FN Clarivate Analytics Web of Science
VR 1.0
PT J
AU Croft, WL
Sack, JR
AF Croft, William L.
Sack, Joerg-Rudiger
TI Predicting the citation count and CiteScore of journals one year in
advance
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Impact metrics; Predictive modeling; Neural networks; Long short-term
memory; CiteScore
ID IMPACT FACTOR; SCIENCE; SCORES
AB Prediction of the future performance of academic journals is a task that can benefit a variety of stakeholders including editorial staff, publishers, indexing services, researchers, university admin-istrators and granting agencies. Using historical data on journal performance, this can be framed as a machine learning regression problem. In this work, we study two such regression tasks: 1) prediction of the number of citations a journal will receive during the next calendar year, and 2) prediction of the Elsevier CiteScore a journal will be assigned for the next calendar year. To address these tasks, we first create a dataset of historical bibliometric data for journals indexed in Scopus. We propose the use of neural network models trained on our dataset to predict the future performance of journals. To this end, we perform feature selection and model configuration for a Multi-Layer Perceptron and a Long Short-Term Memory. Through experimental comparisons to heuristic prediction baselines and classical machine learning models, we demonstrate superior performance in our proposed models for the prediction of future citation and CiteScore values.
C1 [Croft, William L.; Sack, Joerg-Rudiger] Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada.
C3 Carleton University
RP Croft, WL (corresponding author), Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada.
EM leecroft@cmail.carleton.ca; sack@scs.carleton.ca
FU Natural Sciences and Engineering Research Council of Canada (NSERC);
[RGPIN-2016-06253]
FX Funding: This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) [grant number RGPIN-2016-06253] .
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Drongstrup D, 2020, SCIENTOMETRICS, V125, P1541, DOI 10.1007/s11192-020-03613-3
Elsevier, 2020, CITESCORE J METR FAQ
Elsevier, 2020, 2019 CITESCORE VAL R
Feng L, 2020, SCIENTOMETRICS, V124, P233, DOI 10.1007/s11192-020-03422-8
García-Villar C, 2021, RADIOLOGIA-MADRID, V63, P228, DOI 10.1016/j.rx.2021.01.002
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Garfield E., 1961, SCI CITATION INDEX, V1, pv
Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w
Hastie T, 2009, MODEL ASSESSMENT SEL
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Hou J, 2019, COMPUT SCI REV, V34, DOI 10.1016/j.cosrev.2019.100197
Jacsó P, 2010, ONLINE INFORM REV, V34, P339, DOI 10.1108/14684521011037034
Ketcham CM, 2007, LAB INVEST, V87, P520, DOI 10.1038/labinvest.3700554
Kim K, 2018, SCI ED, V5, P16, DOI 10.6087/kcse.112
Lee DH, 2019, SCIENTOMETRICS, V118, P281, DOI 10.1007/s11192-018-2943-z
Manolopoulos Y., 2017, COMMUN COMP INFO SCI, V706, P265, DOI [10.1007/978-3-319-57135-5_19, DOI 10.1007/978-3-319-57135-5_19]
Mingers J, 2017, EUR J OPER RES, V257, P323, DOI 10.1016/j.ejor.2016.07.058
Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002
Ni CQ, 2013, J AM SOC INF SCI TEC, V64, P802, DOI 10.1002/asi.22778
Prathap G, 2012, SCIENTOMETRICS, V92, P403, DOI 10.1007/s11192-012-0746-1
Roldan-Valadez E, 2019, IRISH J MED SCI, V188, P939, DOI 10.1007/s11845-018-1936-5
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0
Saarela M, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101008
Teixeira da Silva JA, 2020, PUBLISH RES Q, V36, P459, DOI 10.1007/s12109-020-09736-y
Teixeira da Silva JA, 2017, SCIENTOMETRICS, V111, P553, DOI 10.1007/s11192-017-2250-0
Templ M, 2020, AUST J STAT, V49, P35, DOI 10.17713/ajs.v49i5.1186
Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008
Trapp JV, 2020, PHYS ENG SCI MED, V43, P739, DOI 10.1007/s13246-020-00903-1
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
WERBOS PJ, 1990, P IEEE, V78, P1550, DOI 10.1109/5.58337
Wu XF, 2008, J ZHEJIANG UNIV-SC B, V9, P582, DOI 10.1631/jzus.B0840001
Xu JG, 2019, IEEE ACCESS, V7, P92248, DOI 10.1109/ACCESS.2019.2927011
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Zijlstra H., 2016, CiteScore: a new metric to help you track journal performance and make decisions
NR 39
TC 5
Z9 5
U1 3
U2 31
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD NOV
PY 2022
VL 16
IS 4
AR 101349
DI 10.1016/j.joi.2022.101349
EA NOV 2022
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 6D9KY
UT WOS:000883004100006
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Muppidi, S
Gorripati, SK
Kishore, B
AF Muppidi, Satish
Gorripati, Satya Keerthi
Kishore, B.
TI An approach for bibliographic citation sentiment analysis using deep
learning
SO INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING
SYSTEMS
LA English
DT Article
DE Citation sentiment analysis; deep learning models; CNN; CNN-LSTM
AB Sentiment analysis of scientific citations is a novel and remarkable research area. Most of the work on opinion or sentiment analysis has been suggested on social platforms such as Blogs, Twitter, and Facebook. Nevertheless, when it comes to recognizing sentiments from scientific citation papers, investigators used to face difficulties due to the implied and unseen natures of sentiments or opinions. As the citation references are reflected implicitly positive in opinion, famous ranking and indexing prototypes frequently disregard the sentiment existence while citing. Hence, in the proposed framework the paper emphasizes the issue of classifying positive and negative polarity of reference sentiments in scientific research papers. First, the paper scraps the PDF articles from arxiv.org under the computer science group consisting of articles that are comprised of 'autism' in their title, then the paper extracted cited references and assigns polarity scores to each cited reference. The paper uses a supervised classifier with a combination of significant feature sets and compared the performance of the models. Experimental results show that a combined CNN-LSTM deep neural network model results in 85% of accuracy while traditional models result in less accuracy.
C1 [Muppidi, Satish] GMRIT, Dept CSE, Rajam, Andhra Pradesh, India.
[Gorripati, Satya Keerthi] GVP Coll Engn Autonomous, Dept CSE, Visakhapatnam, Andhra Pradesh, India.
[Kishore, B.] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA.
C3 GMR Institute of Technology; Gayatri Vidya Parishad College of
Engineering; Oregon State University
RP Muppidi, S (corresponding author), GMRIT, Dept CSE, Rajam, Andhra Pradesh, India.
EM satish.m@gmrit.edu.in
RI Muppidi, Satish/E-4016-2016
OI Muppidi, Satish/0000-0003-1714-1769; B, Kishore/0000-0002-7577-4911
CR [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], 2004, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, DOI 10.3115/1218955.1218990
Athar A., 2011, P ACL 2011 STUD SESS, P81
Bahrainian SA, 2013, IEEE INT C COMPUT, P227, DOI 10.1109/CSE.2013.44
Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256
Ghosh S., 2016, INT C INT TEXT PROC
Godbole N., 2007, ICWSM, V7, P219
Kouloumpis E., 2011, TWITTER SENTIMENT AN, P538
Kumar R., 2018, 2018 IEEE 17 INT C C
Muppidi S, 2020, INT J KNOWL-BASED IN, V24, P19, DOI 10.3233/KES-200025
Pak A, 2010, LREC
Reddy D.M., 2019, ARXIV190412580
Shahana PH, 2015, PROCEDIA COMPUT SCI, V46, P1585, DOI 10.1016/j.procs.2015.02.088
Sosa P. M., 2017, TWITTER SENTIMENT AN
NR 14
TC 4
Z9 4
U1 1
U2 10
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 1327-2314
EI 1875-8827
J9 INT J KNOWL-BASED IN
JI Int. J. Knowl.-Based Intell. Eng. Syst.
PY 2020
VL 24
IS 4
BP 353
EP 362
DI 10.3233/KES-200087
PG 10
WC Computer Science, Artificial Intelligence
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA PW7HI
UT WOS:000610841000009
DA 2024-09-05
ER
PT J
AU Kumar, S
AF Kumar, Suresh
TI An evaluation of author productivity in artificial neural networks
research in India during 1991-2014
SO ANNALS OF LIBRARY AND INFORMATION STUDIES
LA English
DT Article
DE Lotka Law; Bibliometrics; Artificial Neural Networks; India
ID LOTKAS LAW; COLLABORATION
AB The study examines the conformity of Lotka's law to authorship distribution in the field of Artificial Neural Networks research (ANNs) in India during 1991-2014 using Science Citation Index-Expanded. There were 3411 articles contributed by 5654 unique authors. Lotka's law was tested using methodology suggested by Pao and compared with maximum likelihood method advocated by Nicholls. The main elements involved in fitting in Lotka's law were identified. These includes criterion for taking a certain pair of observed data points for calculating Lotka's gradient, the constant for measurement of single author productivity and assessing goodness-of-fit. The results suggested that author productivity distribution, predicted by the modified Lotka's Law suggested by Pao, was confirmed to the ANNs discipline in India whereas methodology suggested by Nicholls was not able to explain the author productivity distribution for the same. Evaluation of the prolific authors indicated that most of them are among the top position in their respective institutions. However, they were not listed as first author in their publications supporting that all the authors should be considered while analysing author productivity.
C1 [Kumar, Suresh] CSIR Natl Inst Sci Technol & Dev Studies, Dr KS Krishnan Marg, New Delhi 110012, India.
C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR -
National Institute of Science Communication & Policy Research (NIScPR)
RP Kumar, S (corresponding author), CSIR Natl Inst Sci Technol & Dev Studies, Dr KS Krishnan Marg, New Delhi 110012, India.
EM sureshkr@nistads.res.in
CR Aaron Laura, 2010, Radiol Technol, V82, P185
Askew C A, 2008, THESIS
BOOKSTEIN A, 1976, LIBR QUART, V46, P416
COILE RC, 1977, J AM SOC INFORM SCI, V28, P366, DOI 10.1002/asi.4630280610
Coursaris CK, 2014, SCIENTOMETRICS, V101, P357, DOI 10.1007/s11192-014-1399-z
Egghe L, 2012, MALAYS J LIBR INF SC, V17, P1
Figg WD, 2006, PHARMACOTHERAPY, V26, P759, DOI 10.1592/phco.26.6.759
Harande YI, 2001, LIBRI, V51, P124, DOI 10.1515/LIBR.2001.124
Huber JC, 2001, SCIENTOMETRICS, V50, P323, DOI 10.1023/A:1010581925357
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Newby GB, 2003, J AM SOC INF SCI TEC, V54, P169, DOI 10.1002/asi.10177
NICHOLLS PT, 1986, INFORM PROCESS MANAG, V22, P417, DOI 10.1016/0306-4573(86)90076-2
PAO ML, 1986, J AM SOC INFORM SCI, V37, P26, DOI 10.1002/(SICI)1097-4571(198601)37:1<26::AID-ASI4>3.0.CO;2-Z
PAO ML, 1985, INFORM PROCESS MANAG, V21, P305, DOI 10.1016/0306-4573(85)90055-X
POTTER WG, 1981, LIBR TRENDS, V30, P21
Rousseau B., 2000, Cybermetrics, V4
SCHORR AE, 1975, J AM SOC INFORM SCI, V26, P189, DOI 10.1002/asi.4630260308
NR 17
TC 0
Z9 0
U1 0
U2 3
PU NATL INST SCIENCE COMMUNICATION-NISCAIR
PI NEW DELHI
PA DR K S KRISHNAN MARG, PUSA CAMPUS, NEW DELHI 110 012, INDIA
SN 0972-5423
EI 0975-2404
J9 ANN LIBR INF STUD
JI Ann. Libr. Inf. Stud.
PY 2016
VL 63
IS 2
BP 126
EP 131
DI 10.56042/alis.v63i2.11697
PG 6
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA FI2HU
UT WOS:000411760500006
DA 2024-09-05
ER
PT J
AU Ausloos, M
AF Ausloos, M.
TI Assessing the true role of coauthors in the h-index measure of an
author scientific impact
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE Co-authorship; h-index; Principal component analysis; Scientific
production; Fractional weight
ID JOURNAL LITERATURE; HIRSCH INDEX; GROWTH-MODEL; CO-AUTHORS; VARIANTS;
COLLABORATION; MANIFESTATION; INDICATORS; REFERENCES
AB A method based on the classical principal component analysis leads to demonstrate that the role of co-authors should give a h-index measure to a group leader higher than usually accepted. The method rather easily gives what is usually searched for, i.e. an estimate of the role (or "weight") of co-authors, as the additional value to an author papers' popularity. The construction of the co-authorship popularity, H-matrix is exemplified and the role of eigenvalues and the main eigenvector component are discussed. Examples illustrate the points and serve as the basis for suggesting a generally practical application of the concept. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Ausloos, M.] KNAW, E Humanities Grp, NL-1096 CJ Amsterdam, Netherlands.
[Ausloos, M.] GRAPES, B-4031 Liege, Federation Wall, Belgium.
C3 Royal Netherlands Academy of Arts & Sciences
RP Ausloos, M (corresponding author), GRAPES, Rue Belle Jardiniere, B-4031 Liege, Federation Wall, Belgium.
EM marcel.ausloos@ulg.ac.be
RI Ausloos, Marcel/AAC-8812-2020
OI Ausloos, Marcel/0000-0001-9973-0019
CR Abramo G, 2013, J INFORMETR, V7, P198, DOI 10.1016/j.joi.2012.11.003
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
Ausloos M, 2008, INT J MOD PHYS C, V19, P371, DOI 10.1142/S0129183108012224
Ausloos M, 2013, SCIENTOMETRICS, V95, P895, DOI 10.1007/s11192-012-0936-x
Ausloos M, 2014, SCIENTOMETRICS, V99, P331, DOI 10.1007/s11192-014-1230-x
Aziz NA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059814
Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y
Batista PD, 2006, SCIENTOMETRICS, V68, P179, DOI 10.1007/s11192-006-0090-4
Beck I. M., 1984, SCI SCI, V4, P183
Borner K, 2005, COMPLEXITY, V10, P57, DOI 10.1002/cplx.20078
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806
Bougrine H, 2014, SCIENTOMETRICS, V98, P1047, DOI 10.1007/s11192-013-1066-9
Braun T., 1985, Scientometric indicators:a 32-country comparative evaluation of publishing performance and citation impact
Buchanan RA, 2006, COLL RES LIBR, V67, P292, DOI 10.5860/crl.67.4.292
Carbone V., 2011, ARXIV11060114V1
Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626
Egghe L, 2008, J AM SOC INF SCI TEC, V59, P1608, DOI 10.1002/asi.20845
Galam S, 2011, SCIENTOMETRICS, V89, P365, DOI 10.1007/s11192-011-0447-1
Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145
Hagen NT, 2009, SCIENCE, V323, P583, DOI 10.1126/science.323.5914.583a
Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Kwok LS, 2005, J MED ETHICS, V31, P554, DOI 10.1136/jme.2004.010553
Laudel G, 2001, 8TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS AND INFORMETRICS, VOLS 1 AND 2 - ISSI-2001, PROCEEDINGS, P369
Melin G, 1996, SCIENTOMETRICS, V36, P363, DOI 10.1007/BF02129600
Miskiewicz J, 2013, PHYSICA A, V392, P5119, DOI 10.1016/j.physa.2013.06.027
Morris SA, 2005, J AM SOC INF SCI TEC, V56, P1250, DOI 10.1002/asi.20208
Morris SA, 2007, J AM SOC INF SCI TEC, V58, P1764, DOI 10.1002/asi.20661
Rotundo G, 2014, PHYSICA A, V404, P296, DOI 10.1016/j.physa.2014.02.011
Schreiber M, 2012, J INFORMETR, V6, P347, DOI 10.1016/j.joi.2012.02.001
Schreiber M, 2007, EPL-EUROPHYS LETT, V78, DOI 10.1209/0295-5075/78/30002
Schreiber M, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/4/040201
Schreiber M, 2008, J INFORMETR, V2, P211, DOI 10.1016/j.joi.2008.05.001
Schreiber M, 2010, ANN PHYS-BERLIN, V522, P536, DOI 10.1002/andp.201000046
Schreiber M, 2010, J INFORMETR, V4, P42, DOI 10.1016/j.joi.2009.06.003
Sekercioglu CH, 2008, SCIENCE, V322, P371, DOI 10.1126/science.322.5900.371a
Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z
Vanclay JK, 2007, J AM SOC INF SCI TEC, V58, P1547, DOI 10.1002/asi.20616
Zhang CT, 2009, EMBO REP, V10, P416, DOI 10.1038/embor.2009.74
NR 39
TC 16
Z9 16
U1 0
U2 38
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0378-4371
EI 1873-2119
J9 PHYSICA A
JI Physica A
PD MAR 15
PY 2015
VL 422
BP 136
EP 142
DI 10.1016/j.physa.2014.12.004
PG 7
WC Physics, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Physics
GA CC1EX
UT WOS:000350085100013
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Momeni, F
Mayr, P
Dietze, S
AF Momeni, Fakhri
Mayr, Philipp
Dietze, Stefan
TI Investigating the contribution of author-and publication-specific
features to scholars' h-index prediction
SO EPJ DATA SCIENCE
LA English
DT Article
DE h-index prediction; Feature importance; Academic mobility; Machine
learning; Open access publishing
ID INTERNATIONAL COLLABORATION; CITATION IMPACT; PRODUCTIVITY
AB Evaluation of researchers' output is vital for hiring committees and funding bodies, and it is usually measured via their scientific productivity, citations, or a combined metric such as the h-index. Assessing young researchers is more critical because it takes a while to get citations and increment of h-index. Hence, predicting the h-index can help to discover the researchers' scientific impact. In addition, identifying the influential factors to predict the scientific impact is helpful for researchers and their organizations seeking solutions to improve it. This study investigates the effect of the author, paper/venue-specific features on the future h-index. For this purpose, we used a machine learning approach to predict the h-index and feature analysis techniques to advance the understanding of feature impact. Utilizing the bibliometric data in Scopus, we defined and extracted two main groups of features. The first relates to prior scientific impact, and we name it 'prior impact-based features' and includes the number of publications, received citations, and h-index. The second group is 'non-prior impact-based features' and contains the features related to author, co-authorship, paper, and venue characteristics. We explored their importance in predicting researchers' h-index in three career phases. Also, we examined the temporal dimension of predicting performance for different feature categories to find out which features are more reliable for long- and short-term prediction. We referred to the gender of the authors to examine the role of this author's characteristics in the prediction task. Our findings showed that gender has a very slight effect in predicting the h-index. Although the results demonstrate better performance for the models containing prior impact-based features for all researchers' groups in the near future, we found that non-prior impact-based features are more robust predictors for younger scholars in the long term. Also, prior impact-based features lose their power to predict more than other features in the long term.
C1 [Momeni, Fakhri; Mayr, Philipp; Dietze, Stefan] GESIS Leibniz Inst Social Sci, Unter Sachsenhausen 6-8, D-50667 Cologne, Germany.
[Dietze, Stefan] Heinrich Heine Univ, Univ Str 1, D-40225 Dusseldorf, Germany.
C3 Leibniz Institut fur Sozialwissenschaften (GESIS); Heinrich Heine
University Dusseldorf
RP Momeni, F (corresponding author), GESIS Leibniz Inst Social Sci, Unter Sachsenhausen 6-8, D-50667 Cologne, Germany.
EM fakhri.momeni@t-online.de
RI Momeni, Fakhri/I-8012-2018
OI Momeni, Fakhri/0000-0002-5572-575X
FU BMBF project OASE [01PU17005A]; [01PQ17001]
FX We acknowledge the support of the German Competence Center for
Bibliometrics (grant: 01PQ17001) for maintaining the used dataset for
the analyses.; Open Access funding enabled and organized by Projekt
DEAL. This work is financially supported by BMBF project OASE, grant
number 01PU17005A.
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Amjad T, 2022, LIBR HI TECH, V40, P685, DOI 10.1108/LHT-05-2021-0154
Artur Mechetin., 2021, Procedia Computer Science, V190, P564, DOI [10.1016/j.procs.2021.06.066, DOI 10.1016/J.PROCS.2021.06.066]
Asaro PM, 2019, IEEE TECHNOL SOC MAG, V38, P40, DOI 10.1109/MTS.2019.2915154
Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5
Blair LD, 2020, The open access policy citation advantage for a medical school
Bornmann L, 2020, SCIENTOMETRICS, V124, P1457, DOI 10.1007/s11192-020-03512-7
Bornmann L, 2014, J ASSOC INF SCI TECH, V65, P1939, DOI 10.1002/asi.23152
Carter TE, 2017, SCIENTOMETRICS, V111, P1547, DOI 10.1007/s11192-017-2287-0
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Confraria H, 2017, RES POLICY, V46, P265, DOI 10.1016/j.respol.2016.11.004
Daud Ali, 2013, Database Systems for Advanced Applications.18th International Conference, DASFAA 2013. Proceedings, P13, DOI 10.1007/978-3-642-37487-6_4
Dong Y, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P149, DOI 10.1145/2684822.2685314
Egghe L., 2006, ISSI NEWSLETTER, V2, P8
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Fraser N, 2020, QUANT SCI STUD, V1, P618, DOI 10.1162/qss_a_00043
Gantman ER, 2012, SCIENTOMETRICS, V93, P967, DOI 10.1007/s11192-012-0736-3
Grech V, 2018, INT UROGYNECOL J, V29, P619, DOI 10.1007/s00192-018-3604-8
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hsu JW, 2011, SCIENTOMETRICS, V86, P317, DOI 10.1007/s11192-010-0265-x
Iglesias JE, 2007, SCIENTOMETRICS, V73, P303, DOI 10.1007/s11192-007-1805-x
Jiang S, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3158, DOI 10.1145/3442381.3450107
Karimi F, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P53, DOI 10.1145/2872518.2889385
Kaur J, 2013, J INFORMETR, V7, P924, DOI 10.1016/j.joi.2013.09.002
Kelly CD, 2006, TRENDS ECOL EVOL, V21, P167, DOI 10.1016/j.tree.2006.01.005
Kossmeier M, 2019, TRANSPL INT, V32, P6, DOI 10.1111/tri.13292
Langham-Putrow A, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0253129
Leydesdorff L, 2019, J ASSOC INF SCI TECH, V70, P198, DOI 10.1002/asi.24109
Lillquist E, 2010, SCIENTOMETRICS, V84, P749, DOI 10.1007/s11192-010-0162-3
Liu JW, 2021, SCIENTOMETRICS, V126, P1079, DOI 10.1007/s11192-020-03783-0
Lopez SA, 2014, J SURG EDUC, V71, P851, DOI 10.1016/j.jsurg.2014.03.015
Malesios CC, 2014, QUAL QUANT, V48, P521, DOI 10.1007/s11135-012-9785-1
McCarty C, 2013, SCIENTOMETRICS, V96, P467, DOI 10.1007/s11192-012-0933-0
Momeni F, 2023, QUANT SCI STUD, V4, P353, DOI 10.1162/qss_a_00253
Momeni F, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101280
Moreno JJM, 2013, PSICOTHEMA, V25, P500, DOI 10.7334/psicothema2013.23
Netz N, 2020, RES EVALUAT, V29, P327, DOI 10.1093/reseval/rvaa007
NEWBOLD P., 1995, Statistics for business and economics
Ni P, 2018, SCIENTOMETRICS, V116, P863, DOI 10.1007/s11192-018-2784-9
Nie YB, 2019, SCIENTOMETRICS, V120, P461, DOI 10.1007/s11192-019-03131-x
Nikolentzos G, 2021, The case of h-index, P177
Ottaviani J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159614
Petersen AM, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0024-y
Puuska HM, 2014, SCIENTOMETRICS, V98, P823, DOI 10.1007/s11192-013-1181-7
Radford DM, 2022, J WOMENS HEALTH, V31, P110, DOI 10.1089/jwh.2020.8579
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x
Singh V, 2018, SCIENTOMETRICS, V115, P1241, DOI 10.1007/s11192-018-2706-x
Smirnova N, 2023, SCIENTOMETRICS, V128, P709, DOI 10.1007/s11192-022-04554-9
Weihs L, 2017, ACM-IEEE J CONF DIG, P49
Wu ZM, 2019, IEEE ACCESS, V7, P51759, DOI 10.1109/ACCESS.2019.2910239
Xie FY, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0279265
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
Zhao Lin, 2022, 2022 7th International Conference on Intelligent Informatics and Biomedical Science (ICIIBMS), P188, DOI 10.1109/ICIIBMS55689.2022.9971528
Zuiderveen Borgesius F, 2018, Linea
NR 57
TC 1
Z9 1
U1 4
U2 4
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
EI 2193-1127
J9 EPJ DATA SCI
JI EPJ Data Sci.
PD OCT 6
PY 2023
VL 12
IS 1
AR 45
DI 10.1140/epjds/s13688-023-00421-6
PG 21
WC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Mathematics; Mathematical Methods In Social Sciences
GA LS8H5
UT WOS:001188878200001
OA gold, Green Submitted
DA 2024-09-05
ER
PT C
AU Adetiba, E
Adeyemi-Kayode, T
Moninuola, F
Akinrinmade, A
Abolarin, O
Moyo, S
AF Adetiba, Emmanuel
Adeyemi-Kayode, Temitope
Moninuola, Funmilayo
Akinrinmade, Adekunle
Abolarin, Olusegun
Moyo, Sibusiso
BE Soliman, KS
TI A Mini Bibliometric Review to Explore Decades of Research in Artificial
Neural Networks
SO EDUCATION EXCELLENCE AND INNOVATION MANAGEMENT: A 2025 VISION TO SUSTAIN
ECONOMIC DEVELOPMENT DURING GLOBAL CHALLENGES
LA English
DT Proceedings Paper
CT 35th International-Business-Information-Management-Association
Conference (IBIMA)
CY APR 01-02, 2020
CL Seville, SPAIN
DE Artificial Neural Networks; ANN; Neurofuzzy; Kohonen; Hopfield;
Bibliometrics
AB In this mini bibliometric review, we explore and report on the contributions made in the field of Artificial Neural Networks (ANN) over more than three decades of research endeavors. The review covers the period from 1986 to 2018 with a total of 380,086 documents extracted from Scopus database. The extracted bibliometric information was thoroughly pre-processed while the analysis of authorship was performed using the VOSviewer (www.vosviewer.com). The result of the bibliometric analysis unearths the types of publications, the languages used for the publications, the evolution of the scientific outputs, the distribution of publications by regions and institutions, the distribution of outputs in subject categories and the networks of authorship. The results presented in this paper could help researchers seeking for collaborations in the field of ANN to promptly locate reputable scholars. Funding agencies could also leverage on the results in this study to properly disburse grants for ground-breaking work and measure impact and accountability of investment to support further research in artificial intelligence.
C1 [Adetiba, Emmanuel; Adeyemi-Kayode, Temitope; Moninuola, Funmilayo; Akinrinmade, Adekunle] Covenant Univ, Coll Engn, Dept Elect & Informat Engn, Ota, Nigeria.
[Adetiba, Emmanuel] Durban Univ Technol, Inst Syst Sci, HRA, POB 1334, Durban, South Africa.
[Abolarin, Olusegun] Schlumberger Technol Corp, 14910 Airline Rd, Rosharon, TX 77583 USA.
[Moyo, Sibusiso] Durban Univ Technol, Inst Syst Sci, DVC Res Innovat & Engagement, Durban, South Africa.
C3 Covenant University; Durban University of Technology; Schlumberger;
Durban University of Technology
RP Adetiba, E (corresponding author), Covenant Univ, Coll Engn, Dept Elect & Informat Engn, Ota, Nigeria.; Adetiba, E (corresponding author), Durban Univ Technol, Inst Syst Sci, HRA, POB 1334, Durban, South Africa.
EM emmanuel.adetiba@covenantuniversity.edu.ng;
mercy.john@covenantuniversity.edu.ng; funmiadefemi@gmail.com;
adekunleakinrinmade@gmail.com; oablarin@slb.com; moyos@dut.ac.za
RI Adetiba, Emmanuel/AAC-4129-2022; Moyo, Sibusiso/GRE-7858-2022
OI Moyo, Sibusiso/0000-0001-5613-7290
FU Covenant University Center for Research Innovation and Discovery
(CUCRID)
FX The authors wish to acknowledge the Covenant University Center for
Research Innovation and Discovery (CUCRID) for sponsoring the
publication of this study.
CR Adeodato PJL, 2011, INT J FORECASTING, V27, P661, DOI 10.1016/j.ijforecast.2009.05.029
Adetiba E., 2016, ADV NATURE BIOL INSP
Adetiba E, 2017, COGENT ENG, V4, DOI 10.1080/23311916.2017.1411220
Adetiba E, 2017, LECT N BIOINFORMAT, V10209, P41, DOI 10.1007/978-3-319-56154-7_5
Adetiba E, 2017, LECT N BIOINFORMAT, V10208, P155, DOI 10.1007/978-3-319-56148-6_13
Adetiba E, 2016, LECT NOTES COMPUT SC, V9680, P243, DOI 10.1007/978-3-319-33618-3_25
Adetiba E, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143542
[Anonymous], 2015, SCI WORLD J
[Anonymous], 2011, INT J COMPUTER APPL
[Anonymous], 2014, MEASURING SCHOLARLY
[Anonymous], 2011, J EMERGING TRENDS EN
Bildirici M, 2010, EXPERT SYST APPL, V37, P2, DOI 10.1016/j.eswa.2009.07.077
Chen CF, 2012, KNOWL-BASED SYST, V26, P281, DOI 10.1016/j.knosys.2011.09.002
Chen WS, 2009, EXPERT SYST APPL, V36, P4075, DOI 10.1016/j.eswa.2008.03.020
Chen YS, 2012, TECHNOL FORECAST SOC, V79, P1537, DOI 10.1016/j.techfore.2012.04.007
Chou SM, 2004, EXPERT SYST APPL, V27, P133, DOI 10.1016/j.eswa.2003.12.013
Hussain AJ, 2008, EXPERT SYST APPL, V35, P1186, DOI 10.1016/j.eswa.2007.08.038
Kara Y, 2011, EXPERT SYST APPL, V38, P5311, DOI 10.1016/j.eswa.2010.10.027
Lin RH, 2010, COMPUT BIOL MED, V40, P665, DOI 10.1016/j.compbiomed.2010.06.002
Palmer A, 2006, TOURISM MANAGE, V27, P781, DOI 10.1016/j.tourman.2005.05.006
Perez-Rodriguez J.V., 2005, Journal of Empirical Finance, V12, P490
Rada R, 2008, EXPERT SYST APPL, V34, P2232, DOI 10.1016/j.eswa.2007.05.012
Robert C, 2004, SCIENTOMETRICS, V59, P117, DOI 10.1023/B:SCIE.0000013302.59845.34
Sivagaminathan RK, 2007, EXPERT SYST APPL, V33, P49, DOI 10.1016/j.eswa.2006.04.010
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wei CH, 2007, ACCIDENT ANAL PREV, V39, P944, DOI 10.1016/j.aap.2006.12.017
Zazoun RS, 2013, J AFR EARTH SCI, V83, P55, DOI 10.1016/j.jafrearsci.2013.03.003
NR 27
TC 0
Z9 0
U1 0
U2 1
PU INT BUSINESS INFORMATION MANAGEMENT ASSOC-IBIMA
PI NORRISTOWN
PA 34 E GERMANTOWN PIKE, NO. 327, NORRISTOWN, PA 19401 USA
BN 978-0-9998551-4-0
PY 2020
BP 12026
EP 12043
PG 18
WC Business; Green & Sustainable Science & Technology; Economics;
Management
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics; Science & Technology - Other Topics
GA BR6JR
UT WOS:000661489802092
DA 2024-09-05
ER
PT J
AU Wu, JH
Liu, TY
Mu, KL
Zhou, L
AF Wu, Jinhong
Liu, Tianye
Mu, Keliang
Zhou, Lei
TI Identification and causal analysis of predatory open access journals
based on interpretable machine learning
SO SCIENTOMETRICS
LA English
DT Article
DE Open access; Journal alerts; Causal analysis; Interpretable machine
learning
ID RANK INDICATOR; IMPACT FACTOR; SCIENCE; INDEX
AB Predatory journals have been a recent phenomenon, drawing attention from the academic community in the last decade. However, as the open access (OA) movement has gained momentum, the indiscriminate growth of predatory journals has had significant negative impacts on academic communication, scholarly publishing, and effective utilization of scientific resources. This rampant growth poses a serious threat to the healthy development of the OA movement and also undermines the integrity of research and the research ecosystem. Identifying predatory journals from the massive number of OA journals would assist scholars in evading negative consequences in areas of monetary investment, reputation, academic influence, and occupational advancement. Traditional methods for identifying predatory journals have relied heavily on the knowledge of domain experts. However, a large number of predatory journals exhibit latent and covert characteristics, and the growth rate of OA journals is extremely rapid, making it difficult for experts to identify these predatory journals from the vast number of OA journals. This paper proposes an interpretable machine learning model for early warning of predatory OA journals, which identifies predatory journals through the ensemble of multiple machine learning algorithms. Specifically, the proposed methodology first constructs an OA journal early warning indicator system and integrates multiple machine learning algorithms to compute the early warning values of OA journals. Then, the SHAP interpretable framework is introduced to analyze the causal factors of the early warning risks in a novel way. To verify the accuracy of the model's causal factors, we conduct a comparative analysis of domestic and foreign medical OA journals using case studies. The empirical analysis conducted in this study demonstrates the efficacy of the ensemble algorithm in accurately identifying the risk of predatory OA journals.
C1 [Wu, Jinhong; Liu, Tianye; Mu, Keliang; Zhou, Lei] Wuhan Text Univ, Wuhan, Peoples R China.
C3 Wuhan Textile University
RP Mu, KL (corresponding author), Wuhan Text Univ, Wuhan, Peoples R China.
EM 704266922@qq.com
FU 2020 Hubei Provincial Social Science Foundation Pre-Funded Projects;
China Scholarship Council
FX This work was supported by the China Scholarship Council.
CR Ahmad S, 2017, J SCIENTOMETR RES, V6, P151, DOI 10.5530/jscires.6.3.22
Beranová L, 2022, SCIENTOMETRICS, V127, P2313, DOI 10.1007/s11192-022-04314-9
Bohannon J, 2013, SCIENCE, V342, P60, DOI 10.1126/science.342.6154.60
Bornmann L, 2005, SCIENTOMETRICS, V65, P391, DOI 10.1007/s11192-005-0281-4
Butler D, 2008, NATURE, V451, P6, DOI 10.1038/451006a
Butler D, 2013, NATURE, V495, P433, DOI 10.1038/495433a
Cantín M, 2015, INT J MORPHOL, V33, P1183, DOI 10.4067/S0717-95022015000300060
Cheng W., 2016, CHINESE SCI BULL, V61, P2861, DOI [10.1360/N972016-00914, DOI 10.1360/N972016-00914]
Clarivate, 2023, SUPP INT SCH REC OUR
Clarivate, 2022, Journal citation reports
Dadkhah M, 2016, ADV PHARM BULL, V6, P1, DOI 10.15171/apb.2016.001
Dai Q., 2018, CHINESE J SCI TECHNI, V29, P1063
Ding H., 2022, DOCUMENT INFORM KNOW, V39, P83
doaj, Directory of Open Access Journals
Dong XL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120039
Falagas ME, 2008, FASEB J, V22, P2623, DOI 10.1096/fj.08-107938
Fang HL., 2018, CHINESE J SCI TECHNI, V29, P935
[冯德成 Feng Decheng], 2022, [建筑结构学报, Journal of Building Structures], V43, P228
Fu ZK., 2022, J INTELL-BASEL, V10, P89
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w
He Y., 2022, CHINESE J SCI TECHNI, V33, P305
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hu DH., 2010, CHINESE J SCI TECHNI, V4, P4
Huang YQ, 2016, J CLIN ONCOL, V34, P2157, DOI 10.1200/JCO.2015.65.9128
Ibrahim M., 2019, ARXIV
Jaafar R, 2021, EUROMED J BUS, V16, P361, DOI 10.1108/EMJB-05-2020-0039
John T., 2019, FTC HITS PREDATORY S
[李俊龙 Li Junlong], 2020, [中国科学基金, Bulletin of National Natural Science Foundation of China], V34, P305
Li X., 2022, J LIB INFORM SCI, V7, P67
Lin Y., 2020, J NAVY MED, V41, P741
Lin Z., 2021, ACTA EDITOLOGICA, V33, P114
Liu XL., 2011, ACTA EDITOLOGICA, V23, P4
Luan M., 2020, J INTELL-BASEL, V39, P37
Lundberg SM, 2017, ADV NEUR IN, V30
Ma Y, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122412864
Mingers J, 2017, EUR J OPER RES, V257, P323, DOI 10.1016/j.ejor.2016.07.058
Mo J., 2012, CHINESE J SCI TECHNI, V23, P8
Moed HF, 2011, J AM SOC INF SCI TEC, V62, P211, DOI 10.1002/asi.21424
National Science Library Chinese Academy of Sciences, 2020, EARL WARN LIST INT J
Normile D., BIG NAME SCI SURPRIS
Pajic D, 2015, J INFORMETR, V9, P990, DOI 10.1016/j.joi.2015.08.005
Parsa AB, 2020, ACCIDENT ANAL PREV, V136, DOI 10.1016/j.aap.2019.105405
Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778
Shapley L.S., 1953, CONTRIBUTIONS THEORY, V2, P307, DOI [10.1515/9781400881970-018, DOI 10.1515/9781400881970-018]
Su LX, 2015, SCIENTOMETRICS, V105, P449, DOI 10.1007/s11192-015-1697-0
Sun R., 2022, J MODERN INFORM, V11, P87
The Paper, 2021, NEARL YEAR 2 OFF ISS
Tian YP, 2023, J INFORMETR, V17, DOI 10.1016/j.joi.2023.101399
Ubeda-Sánchez AM, 2019, EDULEARN PROC, P3394
Valderrama P, 2020, MED ORAL PATOL ORAL, V25, pE180, DOI 10.4317/medoral.23289
Vundavalli Sudhakar, 2016, Indian J Dent Res, V27, P116, DOI 10.4103/0970-9290.183132
Wei MK, 2020, SCIENTOMETRICS, V122, P1027, DOI 10.1007/s11192-019-03306-6
Wolpert AJ, 2013, NEW ENGL J MED, V368, P785, DOI 10.1056/NEJMp1211410
Wu T., 2015, CHINESE J SCI TECHNO, V26, P5
Yang H., 2017, ACTA EDITOLOGICA, V29, P150
Yu LP., 2022, J LIB INFORM SCI AGR, V34, P55
Yu LP., 2023, INFORM DOCUMENTATION, V01, P52
Zarifmahmoudi L, 2015, IRAN J NUCL MED, V23, P8
Zhang H., 2007, J INFORM, V16, P124
Zhao RY, 2019, SCIENTOMETRICS, V120, P1091, DOI 10.1007/s11192-019-03159-z
Zhao TY, 2021, J SCHOLARLY PUBL, V52, P107, DOI 10.3138/jsp.52.2.03
Zong ZJ., 2022, J INTELL-BASEL, V41, P8
NR 63
TC 0
Z9 0
U1 16
U2 16
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD APR
PY 2024
VL 129
IS 4
BP 2131
EP 2158
DI 10.1007/s11192-024-04969-6
EA MAR 2024
PG 28
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA QV6H9
UT WOS:001180362500007
DA 2024-09-05
ER
PT J
AU Tian, S
Mo, SS
Wang, LW
Peng, ZY
AF Tian, Shan
Mo, Songsong
Wang, Liwei
Peng, Zhiyong
TI Deep Reinforcement Learning-Based Approach to Tackle Topic-Aware
Influence Maximization
SO DATA SCIENCE AND ENGINEERING
LA English
DT Article
DE Social network; Influence maximization; Graph embedding; Reinforcement
learning
AB Motivated by the application of viral marketing, the topic-aware influence maximization (TIM) problem has been proposed to identify the most influential users under given topics. In particular, it aims to find k seeds (users) in social network G, such that the seeds can maximize the influence on users under the specific query topics and diffusion model such as independent cascade (IC) or linear threshold (LT). This problem has been proved to be NP-hard, and most of the proposed techniques suffer from the efficiency issue due to the lack of generalization. Even worse, the design of these algorithms requires significant specialized knowledge which is hard to be understood and implemented. To overcome these issues, this paper aims to learn a generalized heuristic framework to solve TIM problems by meta-learning. To this end, we first propose two topic-aware social influence propagation models based on IC and LT model, respectively, which is conducive to better advertising injections. We then encode the feature of each node by a vector and introduce a model, called deep influence evaluation model , to evaluate the user influence under different circumstances. Based on this model, we can construct the solution according to the influence evaluations efficiently, rather than spending a high cost to compute the exact influence by considering the complex graph structure. We conducted experiments on generated graph instances and real-world social networks. The results show the superiority in performance and comparable quality of our framework.
C1 [Tian, Shan; Mo, Songsong; Wang, Liwei; Peng, Zhiyong] Wuhan Univ, Sch Comp Sci, Wuhan, Hubei, Peoples R China.
C3 Wuhan University
RP Peng, ZY (corresponding author), Wuhan Univ, Sch Comp Sci, Wuhan, Hubei, Peoples R China.
EM tianshan14@whu.edu.cn; songsong945@whu.edu.cn; liwei.wang@whu.edu.cn;
peng@whu.edu.cn
FU National Key Research and Development Program of China [2018YFB1003400];
Fundamental Research Funds for the Central Universities [2042017kf1017]
FX This work is supported by the National Key Research and Development
Program of China (Project Number: 2018YFB1003400), and the Fundamental
Research Funds for the Central Universities (Project Number:
2042017kf1017).
CR Albert R, 2001, ARXIVCONDMAT016096 C
[Anonymous], 2017, P 31 INT C NEUR INF
[Anonymous], 2014, EDBT
[Anonymous], 2003, P 9 ACM SIGKDD INT C
[Anonymous], 1998, Introduction to Reinforcement Learning
[Anonymous], 2015, Advances in neural information processing systems
[Anonymous], 2013, Advances in neural information processing systems
Bello I, 2017, 5 INT C LEARN REPR I
Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50
Borgs C, 2012, ARXIV12120884 CORR
Cai HY, 2018, IEEE T KNOWL DATA EN, V30, P1616, DOI 10.1109/TKDE.2018.2807452
Chen S, 2015, PROC VLDB ENDOW, V8, P666, DOI 10.14778/2735703.2735706
Chen W, 2015, LECT NOTES COMPUT SC, V9197, P1, DOI 10.1007/978-3-319-21786-4_1
Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047
Fan J, 2018, PROC INT CONF DATA, P1569, DOI 10.1109/ICDE.2018.00178
Goyal A., 2011, P 20 INT C COMP WORL, P47, DOI DOI 10.1145/1963192.1963217
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Guo J, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P199
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Kwak H., WWW'10, DOI DOI 10.1145/1772690.1772751
Leskovec J, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P420
Li GL, 2014, SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, P87, DOI 10.1145/2588555.2588561
Li YC, 2017, SIGMOD'17: PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, P619, DOI 10.1145/3035918.3035952
Li YC, 2018, IEEE T KNOWL DATA EN, V30, P1852, DOI 10.1109/TKDE.2018.2807843
Li YC, 2015, PROC VLDB ENDOW, V8, P1070, DOI 10.14778/2794367.2794376
Mnih V., 2013, ABS13125602 CORR
Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236
Mo S., 2019, NATL C THEORETICAL C, P131, DOI 10.1007/978-981-15-0105-0_9
Nguyen HT, 2016, IEEE INFOCOM SER
Schaul T, 2015, ARXIV151105952 CORR
Shan Tian, 2019, Web and Big Data. Third International Joint Conference, APWeb-WAIM 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11641), P125, DOI 10.1007/978-3-030-26072-9_9
van Hasselt H, 2016, AAAI CONF ARTIF INTE, P2094
Zhang P, 2019, WORLD WIDE WEB, V22, P1799, DOI 10.1007/s11280-018-0623-9
NR 33
TC 57
Z9 59
U1 1
U2 6
PU SPRINGERNATURE
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND
SN 2364-1185
EI 2364-1541
J9 DATA SCI ENG
JI Data Sci. Eng.
PD MAR
PY 2020
VL 5
IS 1
BP 1
EP 11
DI 10.1007/s41019-020-00117-1
PG 11
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA SL8HQ
UT WOS:000657155000001
OA gold
DA 2024-09-05
ER
PT J
AU Seo, YW
Lee, KC
Lee, S
AF Seo, Young Wook
Lee, Kun Chang
Lee, Sangjae
TI Decision quality of the research project evaluation mechanism by using
particle swarm optimization
SO MANAGEMENT DECISION
LA English
DT Article
DE Research performance; Particle swarm optimization; Research impact;
K-means clustering method; Research fund; Knowledge-based society
ID EFFICIENCY; SUPPORT; IMPACT
AB Purpose - For those who plan research funds and assess the research performance from the funds, it is necessary to overcome the limitations of the conventional classification of evaluated papers published by the research funds. Besides, they need to promote the objective, fair clustering of papers, and analysis of research performance. Therefore, the purpose of this paper is to find the optimum clustering algorithm using the MATLAB tools by comparing the performances of and the hybrid particle swarm optimization algorithms using the particle swarm optimization (PSO) algorithm and the conventional K-means clustering method.
Design/methodology/approach - The clustering analysis experiment for each of the three fields of study - health and medicine, physics, and chemistry - used the following three algorithms: "K-means+Simulated annealing (SA)+ Adjustment of parameters+PSO" (KASA-PSO clustering), "K-means+SA+PSO" clustering, "K-means+PSO" clustering.
Findings - The clustering analyses of all the three fields showed that KASA-PSO is the best method for the minimization of fitness value. Furthermore, this study administered the surveys intended for the "performance measurement of decision- making process" with 13 members of the research fund organization to compare the group clustering by the clustering analysis method of KASA-PSO algorithm and the group clustering by research funds. The results statistically demonstrated that the group clustering by the clustering analysis method of KASA-PSO algorithm was better than the group clustering by research funds.
Originality/value - There are still too few studies that assess the research project evaluation mechanisms and its effectiveness perceived by the research fund managers. To fill the research void like this, this study aims to propose PSO and successfully proves validity of the proposed approach.
C1 [Seo, Young Wook] Daejeon Univ, Dept Business Consulting, Daejeon, South Korea.
[Lee, Kun Chang] Sungkyunkwan Univ, SKK Business Sch, Seoul, South Korea.
[Lee, Kun Chang] Sungkyunkwan Univ, Digital Hlth Dept, SAIHST, Seoul, South Korea.
[Lee, Sangjae] Sejong Univ, Sch Management, Seoul, South Korea.
C3 Daejeon University; Sungkyunkwan University (SKKU); Sungkyunkwan
University (SKKU); Sejong University
RP Lee, KC (corresponding author), Sungkyunkwan Univ, SKK Business Sch, Seoul, South Korea.; Lee, KC (corresponding author), Sungkyunkwan Univ, Digital Hlth Dept, SAIHST, Seoul, South Korea.
EM kunchanglee@gmail.com
RI Lee, Sangjae/F-4383-2014
CR Abramo G, 2009, RES POLICY, V38, P206, DOI 10.1016/j.respol.2008.11.001
Alavi M, 1982, MIS QUART, V6, P1, DOI 10.2307/249063
Albert MN, 2014, MANAGE DECIS, V52, P794, DOI 10.1108/MD-03-2012-0179
Andersen PH, 2015, MANAGE DECIS, V53, P786, DOI 10.1108/MD-06-2014-0399
Auranen O, 2010, RES POLICY, V39, P822, DOI 10.1016/j.respol.2010.03.003
BAROUDI JJ, 1989, MIS QUART, V13, P87, DOI 10.2307/248704
Bertocchi G, 2015, RES POLICY, V44, P451, DOI 10.1016/j.respol.2014.08.004
Chen CY, 2013, MANAGE DECIS, V51, P566, DOI 10.1108/00251741311309661
Chiu CY, 2009, EXPERT SYST APPL, V36, P4558, DOI 10.1016/j.eswa.2008.05.029
Choi BK, 2013, MANAGE DECIS, V51, P1250, DOI 10.1108/MD-Sep-2011-0334
Comeig I, 2014, MANAGE DECIS, V52, P365, DOI 10.1108/MD-01-2012-0051
European Science Foundation, 2012, Evaluation in Research and Research Funding Organisations: European Practices A report by the ESF Member Organisation Forum on Evaluation of Publicly Funded Research
Gibbons J.D., 1985, NONPARAMETRIC STAT I
Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806
Groot T, 2006, RES POLICY, V35, P1362, DOI 10.1016/j.respol.2006.07.002
Kalyani S, 2011, EXPERT SYST APPL, V38, P10839, DOI 10.1016/j.eswa.2011.02.086
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671
Knott PJ, 2015, MANAGE DECIS, V53, P1806, DOI 10.1108/MD-08-2014-0525
Korea Ministry of Strategy and Finance (KMSF), 2016, KOR GOV BUDG
Korea National Research Foundation (KHRF), 2016, PRIM QUEST ANSW KRF
Lahtinen E, 2005, HEALTH PROMOT INT, V20, P306, DOI 10.1093/heapro/dai008
Lee K.C., 2008, DEV TRACKING SYSTEMS
Lee KC, 2006, J MANAGE INFORM SYST, V22, P337, DOI 10.2753/MIS0742-1222220412
Levin RichardI., 1998, STAT MANAGEMENT, V7th
Lim WH, 2015, EXPERT SYST APPL, V42, P5887, DOI 10.1016/j.eswa.2015.03.025
Liu CH, 2015, MANAGE DECIS, V53, P494, DOI 10.1108/MD-02-2014-0076
MacQueen James, 1967, 5 BERK S MATH STAT P, P281
Mårtensson P, 2016, RES POLICY, V45, P593, DOI 10.1016/j.respol.2015.11.009
Sen BK, 1999, J DOC, V55, P325, DOI 10.1108/EUM0000000007149
Sinha AK, 2011, EXPERT SYST APPL, V38, P6132, DOI 10.1016/j.eswa.2010.11.004
Talbi EG, 2009, Metaheuristics from design to implementation
Tang JW, 2015, MANAGE DECIS, V53, P1858, DOI 10.1108/MD-12-2014-0691
van den Bergh F, 2004, IEEE T EVOLUT COMPUT, V8, P225, DOI [10.1109/TEVC.2004.826069, 10.1109/tevc.2004.826069]
van der Merwe D, 2003, IEEE C EVOL COMPUTAT, P215, DOI 10.1109/CEC.2003.1299577
Van Raan A. F. J, 2005, 1 INT C WORLD CLASS
van Raan AFJ, 2002, RES POLICY, V31, P611, DOI 10.1016/S0048-7333(01)00129-9
Wang F, 2014, EXPERT SYST APPL, V41, P3016, DOI 10.1016/j.eswa.2013.10.032
Xu L, 2015, EXPERT SYST APPL, V42, P7186, DOI 10.1016/j.eswa.2015.05.012
Zhang DQ, 2011, RES POLICY, V40, P875, DOI 10.1016/j.respol.2011.03.010
Zhu HH, 2011, EXPERT SYST APPL, V38, P10161, DOI 10.1016/j.eswa.2011.02.075
NR 41
TC 3
Z9 3
U1 0
U2 15
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 0025-1747
EI 1758-6070
J9 MANAGE DECIS
JI Manag. Decis.
PY 2017
VL 55
IS 4
BP 745
EP 765
DI 10.1108/MD-03-2016-0141
PG 21
WC Business; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA EX0UW
UT WOS:000402937300007
DA 2024-09-05
ER
PT C
AU Nugraha, YR
Wibawa, AP
Zaeni, IAE
AF Nugraha, Youngga Rega
Wibawa, Aji Prasetya
Zaeni, Ilham Ari Elbaith
BE Hidayati, A
Oktaviana, S
Ismail, IE
Zain, AR
Nugrahani, F
Kurniawati, D
Permatasari, I
TI Particle Swarm Optimization - Support Vector Machine (PSO-SVM) Algorithm
for Journal Rank Classification
SO 2019 2ND INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATICS
ENGINEERING (IC2IE 2019): ARTIFICIAL INTELLIGENCE ROLES IN INDUSTRIAL
REVOLUTION 4.0
LA English
DT Proceedings Paper
CT 2nd International Conference of Computer and Informatics Engineering
(IC2IE) - Artificial Intelligence Roles in Industrial Revolution 4.0
CY SEP 10-11, 2019
CL Politeknik Negeri Jakarta, Banyuwangi, INDONESIA
HO Politeknik Negeri Jakarta
DE support vector machine; particle swarm optimization; SCImago journal
rank; classification
AB Support Vector Machine (SVM) is a method with basic classification principles for data that can be separated linearly. As it developed, SVM is designed to work on non-linear problems by incorporating kernel concepts in high-dimensional space. The SVM method implemented in this study for classifying international journals using the SCImago Journal Rank (SJR) dataset. To overcome the disadvantages of SVM performance, the researchers used Particle Swarm Optimization (PSO) to optimize its performance. The purpose of using PSO is to get a better classification performance based on the parameters and functions of the kernel used and to approach the SJR classification system. The process includes normalizing and processing the data on the PSO, followed by implementation using the SVM method. The accuracy results obtained from PSO-SVM are 63.12% using Linear kernels. Based on these results, it assumed that PSO-SVM is still unable to optimize the approach in the SJR classification system if the system is 100% accurate.
C1 [Nugraha, Youngga Rega; Wibawa, Aji Prasetya; Zaeni, Ilham Ari Elbaith] Univ Negeri Malang, Elect Engn Dept, Malang, Indonesia.
C3 Universitas Negeri Malang
RP Nugraha, YR (corresponding author), Univ Negeri Malang, Elect Engn Dept, Malang, Indonesia.
EM younggarega@gmail.com; aji.prasetya.ft@um.ac.id; ilham.ari.ft@um.ac.id
RI wibawa, aji prasetya/AAI-7475-2021; Zaeni, Ilham Ari
Elbaith/AAJ-9600-2020
OI Zaeni, Ilham Ari Elbaith/0000-0001-9665-8613
CR Aggarwal CC, 2014, CH CRC DATA MIN KNOW, P457
Al Shalabi L., 2006, Journal of Computer Sciences, V2, P735, DOI 10.3844/jcssp.2006.735.739
Amoozegar M, 2018, EXPERT SYST APPL, V113, P499, DOI 10.1016/j.eswa.2018.07.013
Auria L., 2008, DISCUSS PAP DTSCH I
Banu A. S., 2015, 2015 INT C INN INF E, P1
Braun A. C., 2011, VECTOR MACHINES HYPE, V2, P2
Dash M., 1997, Intelligent Data Analysis, V1
Gharaibeh K. M., 2010, SCI TECHNOL, P0
He X, 2013, INTERNATIONAL CONFERENCE ON INFORMATION SOCIETY (I-SOCIETY 2013), P130
Hric M, 2011, PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE - RADIOELEKTRONIKA 2011, P387
Jiang HY, 2010, I C CONT AUTOMAT ROB, P2519, DOI 10.1109/ICARCV.2010.5707396
Lin S.-L., 2007, J. Zhejiang Univ. Technol, V35, P163
Lucieer A, 2007, INT GEOSCI REMOTE SE, P2034, DOI 10.1109/IGARSS.2007.4423230
Miao JY, 2016, PROCEDIA COMPUT SCI, V91, P919, DOI 10.1016/j.procs.2016.07.111
Monien K, 2005, ST CLASS DAT ANAL, P355, DOI 10.1007/3-540-26981-9_41
Pattanasri N, 2012, IEEE T LEARN TECHNOL, V5, P52, DOI 10.1109/TLT.2011.22
Pedrycz W, 2009, EXPERT SYST APPL, V36, P4610, DOI 10.1016/j.eswa.2008.05.017
Saranya C., 2013, International Journal of Engineering and Technology, V5, P2701
Singh D, 2020, SOFT COMPUT, V24, P9727, DOI 10.1007/s00500-019-04487-1
Wang XK, 2019, ULTRASONICS, V91, P161, DOI 10.1016/j.ultras.2018.08.014
NR 20
TC 3
Z9 3
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-2384-4
PY 2019
BP 69
EP 73
PG 5
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BO7UI
UT WOS:000525626200014
DA 2024-09-05
ER
PT J
AU Mi, HC
Gao, ZH
Zhang, QR
Zheng, YF
AF Mi, Huichao
Gao, Zhanghao
Zhang, Qiaorong
Zheng, Yafeng
TI Research on Constructing Online Learning Performance Prediction Model
Combining Feature Selection and Neural Network
SO INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING
LA English
DT Article
DE learning performance prediction; machine learning; deep neural networks;
multiple linear regression; feature selection
ID STUDENTS PERFORMANCE; DROPOUT
AB Learning performance prediction can help teachers find students who tend to fail as early as possible so as to give them timely help, which is of great significance for online education. With the availability of online data and the continuous development of machine learning technology, learning performance prediction in large-scale online education is gaining new momentum. Traditional prediction methods include statistical methods, machine learning and neural networks. Among them, statistical methods and machine learning have low prediction efficiency. Although neural network can improve prediction efficiency, it ignores the impact of artificial feature filtering on model performance, and cannot find key factors for performance prediction, making predictions uninterpretable. Therefore, this paper proposes an online academic performance prediction model that integrates feature selection and neural network. Multiple linear regression analysis is used for feature extraction to obtain key influence features, and then deep neural networks is used for prediction. The results show that the F1 score of our model on large-scale data set is 99.25%, which is 1.25% higher than that of other related models.
C1 [Mi, Huichao; Gao, Zhanghao; Zhang, Qiaorong; Zheng, Yafeng] Henan Univ Econ & Law, Coll Comp & Informat Engn, Zhengzhou, Peoples R China.
C3 Henan University of Economics & Law
RP Zheng, YF (corresponding author), Henan Univ Econ & Law, Coll Comp & Informat Engn, Zhengzhou, Peoples R China.
EM mmhhcc@126.com
FU Industry-university cooperative education project [202101045002];
Science and Technology Research Project of Henan Province ("Research on
text classification model and application for massive open online
courses")
FX This material is based upon work supported by Industry-university
cooperative education project (202101045002) and the Science and
Technology Research Project of Henan Province ("Research on text
classification model and application for massive open online courses").
CR Alamri A, 2019, LECT NOTES COMPUT SC, V11528, P163, DOI 10.1007/978-3-030-22244-4_20
Amnueypornsakul B., 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P55, DOI DOI 10.3115/V1/W14-4110
[Anonymous], 2014, LEARNING TECHNOLOGY, DOI DOI 10.1007/978-3-319-10671-7_4
Böttcher A, 2020, IEEE GLOB ENG EDUC C, P827, DOI [10.1109/EDUCON45650.2020.9125378, 10.1109/educon45650.2020.9125378]
Bognár L, 2021, INT J EMERG TECHNOL, V16, P106, DOI 10.3991/ijet.v16i06.18347
Chen X Y, 2020, COMPUTER PRODUCTS CI, P85
Dalipi F, 2018, IEEE GLOB ENG EDUC C, P1007, DOI 10.1109/EDUCON.2018.8363340
Evangelista E, 2021, INT J EMERG TECHNOL, V16, P255, DOI 10.3991/ijet.v16i24.26151
Goel S, 2019, ADV INTELL SYST COMP, V841, P583, DOI 10.1007/978-981-13-2285-3_69
He J, 2015, ASS ADV ARTIFICIAL I
Imran AS, 2019, ICCAI '19 - PROCEEDINGS OF THE 2019 5TH INTERNATIONAL CONFERENCE ON COMPUTING AND ARTIFICIAL INTELLIGENCE, P190, DOI 10.1145/3330482.3330514
Jordan K, 2015, INT REV RES OPEN DIS, V16, DOI 10.19173/irrodl.v16i3.2112
Kim HJ, 2018, NEUROCOMPUTING, V315, P128, DOI 10.1016/j.neucom.2018.07.002
Mi F, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P256, DOI 10.1109/ICDMW.2015.174
Muniasamy A, 2020, INT J EMERG TECHNOL, V15, P188, DOI 10.3991/ijet.v15i01.11435
Qi Q, 2018, ACM INT C PROCEEDING, P67
Qiu L, 2018, INT J APPL ELECTROM, V57, P29, DOI 10.3233/JAE-170038
Qiu L, 2019, SOFT COMPUT, V23, P10287, DOI 10.1007/s00500-018-3581-3
Raschka S., 2015, Python Machine Learning
Robinson C, 2016, LAK '16 CONFERENCE PROCEEDINGS: THE SIXTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE,, P383, DOI 10.1145/2883851.2883932
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Shingari I, 2017, J STAT MANAG SYST, V20, P713, DOI 10.1080/09720510.2017.1395191
Tang C, 2018, TIME SERIES MODEL PR, DOI [10.1007/978-3-319-93846-2 66, DOI 10.1007/978-3-319-93846-266]
Tian YJ, 2012, TECHNOL ECON DEV ECO, V18, P5, DOI 10.3846/20294913.2012.661205
Tomasevic N, 2020, COMPUT EDUC, V143, DOI 10.1016/j.compedu.2019.103676
Vitiello M, 2018, J UNIVERS COMPUT SCI, V24, P1131
Wang TH, 2014, COMPUT EDUC, V73, P189, DOI 10.1016/j.compedu.2013.12.002
Zhang G Q, 2018, RES DROPOUT RATE PRE
NR 28
TC 2
Z9 2
U1 5
U2 29
PU INT ASSOC ONLINE ENGINEERING
PI WIEN
PA KIRCHENGASSE 10-200, WIEN, A-1070, AUSTRIA
SN 1863-0383
J9 INT J EMERG TECHNOL
JI Int. J. Emerg. Technol. Learn.
PY 2022
VL 17
IS 7
BP 94
EP 111
DI 10.3991/ijet.v17i07.25587
PG 18
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA 0W3EO
UT WOS:000788914700007
OA gold
DA 2024-09-05
ER
PT J
AU Du, WM
Li, ZM
Xie, Z
AF Du, Wumei
Li, Zhemin
Xie, Zheng
TI A modified LSTM network to predict the citation counts of papers
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
DE Citation analysis; citation count prediction; deep learning; long
short-term memory
ID IMPACT; ARTICLES; INDEXES
AB Quantifiable predictability in the citation counts of articles is significant in scientometrics and informetrics. Many metrics based on the citation counts can evaluate the scientific impact of research articles and journals. Utilising time series models, an article's citation counts up to the yth year after publication can be predicted by those up to the previous years. However, the typically used models cannot predict the fat tail of the actual citation distributions. Thus, based on cumulative advantage of the citation behaviour, we propose a method to predict the accumulated citation counts, by using a random number sampled from a power-law distribution to modify the results given by a recurrent neural network (RNN), long short-term memory. Extensive experiments on the data set including 17 journals in information science verified the effectiveness of our method by the good fittings on distributions and evolutionary trends of the citation counts of articles. Our method has the potential to be extended to predict other popular assessment measures such as impact factor and h-index for journals.
C1 [Du, Wumei; Li, Zhemin; Xie, Zheng] Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410000, Peoples R China.
C3 National University of Defense Technology - China
RP Xie, Z (corresponding author), Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410000, Peoples R China.
EM xiezheng81@nudt.edu.cn
FU National Natural Science Foundation of China [61773020]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This work
was supported by the National Natural Science Foundation of China (grant
no. 61773020).
CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128
[Anonymous], 2015, Network science
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Du J, 2018, SCIENTOMETRICS, V116, P959, DOI 10.1007/s11192-018-2780-0
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Gers FA, 1999, IEE CONF PUBL, P850, DOI [10.1049/cp:19991218, 10.1162/089976600300015015]
Golosovsky M, 2017, PHYS REV E, V96, DOI 10.1103/PhysRevE.96.032306
Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Hollander M., 2013, Nonparametric statistical methods
Hua YX, 2019, IEEE COMMUN MAG, V57, P114, DOI 10.1109/MCOM.2019.1800155
Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1
Lee DH, 2019, SCIENTOMETRICS, V118, P281, DOI 10.1007/s11192-018-2943-z
Lopez J, 2017, J SURG EDUC, V74, P191, DOI 10.1016/j.jsurg.2016.08.005
Ma AQ, 2021, SCIENTOMETRICS, V126, P6803, DOI 10.1007/s11192-021-04033-7
Mistele T, 2019, SCIENTOMETRICS, V120, P87, DOI 10.1007/s11192-019-03110-2
Nair V., 2010, P 27 INT C MACH LEAR, P807, DOI DOI 10.5555/3104322.3104425
Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002
Perneger TV, 2015, J CLIN EPIDEMIOL, V68, P1440, DOI 10.1016/j.jclinepi.2015.01.024
Pobiedina N, 2016, APPL INTELL, V44, P252, DOI 10.1007/s10489-015-0657-y
PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292, DOI 10.1002/asi.4630270505
Redner S, 1998, EUR PHYS J B, V4, P131, DOI 10.1007/s100510050359
Robson BJ, 2016, ENVIRON MODELL SOFTW, V75, P94, DOI 10.1016/j.envsoft.2015.10.007
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Sohrabi B, 2017, SCIENTOMETRICS, V110, P243, DOI 10.1007/s11192-016-2161-5
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008
Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808
Wang FH, 2019, SCIENTOMETRICS, V118, P109, DOI 10.1007/s11192-018-2965-6
Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9
Xie Z, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101065
Xie Z, 2017, SCIENTOMETRICS, V112, P483, DOI 10.1007/s11192-017-2359-1
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
Zhang C, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0004881, 10.1371/journal.pone.0005429]
Zhang XY, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101140
Zhao QH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101235
NR 44
TC 3
Z9 3
U1 16
U2 94
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PD AUG
PY 2024
VL 50
IS 4
BP 894
EP 909
DI 10.1177/01655515221111000
EA AUG 2022
PG 16
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA C3E8I
UT WOS:000837348100001
DA 2024-09-05
ER
PT C
AU Bhardwaj, A
Mercier, D
Dengel, A
Ahmed, S
AF Bhardwaj, Akansha
Mercier, Dominik
Dengel, Andreas
Ahmed, Sheraz
BE Liu, D
Xie, S
Li, Y
Zhao, D
ElAlfy, ESM
TI DeepBIBX: Deep Learning for Image Based Bibliographic Data Extraction
SO NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 24th International Conference on Neural Information Processing (ICONIP)
CY NOV 14-18, 2017
CL Guangzhou, PEOPLES R CHINA
DE Deep learning; Machine learning; Bibliographic data; Reference linking
AB Extraction of structured bibliographic data from document images of non-native-digital academic content is a challenging problem that finds its application in the automation of cataloging systems in libraries and reference linking domain. The existing approaches discard the visual cues and focus on converting the document image to text and further identifying citation strings using trained segmentation models. Apart from the large training data, which these existing methods require, they are also language dependent. This paper presents a novel approach (DeepBIBX) which targets this problem from a computer vision perspective and uses deep learning to semantically segment the individual citation strings in a document image. DeepBIBX is based on deep Fully Convolutional Networks and uses transfer learning to extract bibliographic references from document images. Unlike existing approaches which use textual content to semantically segment bibliographic references, DeepBIBX utilizes image based contextual information, which makes it applicable to documents of any language. To gauge the performance of the presented approach, a dataset consisting of 286 document images containing 5090 bibliographic references is collected. Evaluation results reveals that the DeepBIBX outperforms state-of-the-art method (ParsCit, 71.7%) for bibliographic references extraction and achieved an accuracy of 84.9% in comparison to 71.7%. Furthermore, in terms of pixel classification task, DeepBIBX achieved a precision and a recall rate of 96.2%, 94.4% respectively.
C1 [Bhardwaj, Akansha; Mercier, Dominik; Dengel, Andreas; Ahmed, Sheraz] DFKI Kaiserslautern, Smart Data & Serv, Kaiserslautern, Germany.
[Bhardwaj, Akansha] Univ Fribourg, eXascale Infolab, Fribourg, Switzerland.
C3 German Research Center for Artificial Intelligence (DFKI); University of
Fribourg
RP Bhardwaj, A (corresponding author), DFKI Kaiserslautern, Smart Data & Serv, Kaiserslautern, Germany.; Bhardwaj, A (corresponding author), Univ Fribourg, eXascale Infolab, Fribourg, Switzerland.
EM akansha.bhardwaj@dfki.de; dominik.mercier@dfki.de;
andreas.dengel@dfki.de; sheraz.ahmed@dfki.de
OI Mercier, Dominique/0000-0001-8817-2744
FU DFG [DE 420/18-1]; Swiss National Science Foundation [407540 167320];
Swiss National Science Foundation (SNF) [407540_167320] Funding Source:
Swiss National Science Foundation (SNF)
FX This work was partially supported by the DFG under contract DE 420/18-1
and by the Swiss National Science Foundation under grant number 407540
167320.
CR [Anonymous], 2016, ARXIV161105725
[Anonymous], 2008, DOCUMENT RECOGNITION
Caruana R, 1998, LEARNING TO LEARN, P95, DOI 10.1007/978-1-4615-5529-2_5
Councill I.G., 2008, LREC 2008
Everingham M., 2005, The PASCAL visual object classes challenge, (VOC2007) results, V1, P7
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
Johnson JA, 2007, CARDIOVASCULAR GENETICS AND GENOMICS FOR THE CARDIOLOGIST, P250, DOI 10.1002/9780470691977.ch11
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
Szegedy C, 2017, AAAI CONF ARTIF INTE, P4278
Tkaczyk D, 2015, INT J DOC ANAL RECOG, V18, P317, DOI 10.1007/s10032-015-0249-8
NR 10
TC 4
Z9 4
U1 0
U2 1
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-319-70096-0; 978-3-319-70095-3
J9 LECT NOTES COMPUT SC
PY 2017
VL 10635
BP 286
EP 293
DI 10.1007/978-3-319-70096-0_30
PN II
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BQ1LI
UT WOS:000576766300030
DA 2024-09-05
ER
PT J
AU Bhatt, SM
Noortgate, WV
Verbert, K
AF Bhatt, Sohum M.
Noortgate, Wim Van Den
Verbert, Katrien
TI Investigating the Use of Deep Learning and Implicit Feedback in K12
Educational Recommender Systems
SO IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES
LA English
DT Article
DE Recommender systems; Deep learning; Education; Market research;
Recurrent neural networks; Long short term memory; Context; E-learning
tools; evaluation; K12 education; personalized E-learning; recommender
systems
AB Recommender systems are increasingly being used in university or online education. However, recommender systems still have not found major usage in K12 education. This may be because of the unique challenges that recommender systems face when used by a young and diverse population. However, recommender systems for K12 education could provide many benefits for students and teachers, such as the simplification of personalized learning. Some of the issues with K12 educational recommender systems may be solved by the use of deep learning and implicit feedback. As such, we investigated the use of deep recommendation algorithms and implicit feedback for K12 educational recommender systems. To do this, we compared metrics for highly cited traditional and deep recommendation algorithms trained on explicit and implicit data. We found that recommendation algorithms using deep learning as a group do not differ in performance compared to traditional recommendation algorithms. We also found that the use of implicit feedback led to higher performance than using explicit feedback. The best performing algorithm used both deep learning and implicit feedback. We conclude that deep learning can be a benefit for K12 recommender systems, particularly when the ordered sequence of items is carefully accounted for. We also conclude that researchers and developers must carefully consider which feedback contributes the most information for learning.
C1 [Bhatt, Sohum M.; Noortgate, Wim Van Den] Katholieke Univ Leuven, IMEC Res Grp ITEC, B-8500 Kortrijk, Belgium.
[Bhatt, Sohum M.; Noortgate, Wim Van Den] Fac Psychol & Educ Sci, KU Leuven Campus KulakKortrijk, B-8500 Kortrijk, Belgium.
[Verbert, Katrien] Katholieke Univ Leuven, Dept Comp Sci, Human & Comp Interact Grp, B-3001 Heverlee, Belgium.
C3 KU Leuven; KU Leuven
RP Bhatt, SM (corresponding author), Katholieke Univ Leuven, IMEC Res Grp ITEC, B-8500 Kortrijk, Belgium.; Bhatt, SM (corresponding author), Fac Psychol & Educ Sci, KU Leuven Campus KulakKortrijk, B-8500 Kortrijk, Belgium.
EM sohummandar.bhatt@kuleuven.be; wim.vandennoortgate@kuleuven.be;
katrien.verbert@kuleuven.be
OI Bhatt, Sohum/0000-0002-8917-292X; verbert, katrien/0000-0001-6699-7710
FU Flanders Agency of Innovation amp; Entrepreneurship
FX No Statement Available
CR Abdelrahman G, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3569576
Almeida F, 2023, Arxiv, DOI arXiv:1901.09069
Amatriain X., 2017, Netflix Technology Blog
Bakkenes I, 2010, LEARN INSTR, V20, P533, DOI 10.1016/j.learninstruc.2009.09.001
Batmaz Z, 2019, ARTIF INTELL REV, V52, P1, DOI 10.1007/s10462-018-9654-y
Bennett J., 2007, P KDD CUP WORKSH, V2007, P35
Bernacki ML, 2021, EDUC PSYCHOL REV, V33, P1675, DOI 10.1007/s10648-021-09615-8
Blomgren C, 2018, INT REV RES OPEN DIS, V19, P55
Bodily R, 2017, IEEE T LEARN TECHNOL, V10, P405, DOI 10.1109/TLT.2017.2740172
BUCKLAND M, 1994, J AM SOC INFORM SCI, V45, P12, DOI 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L
Buder J, 2012, COMPUT HUM BEHAV, V28, P207, DOI 10.1016/j.chb.2011.09.002
Bunting L, 2021, Int J Child-Comput Inter, V27, DOI [10.1016/j.ijcci.2020.100236, DOI 10.1016/J.IJCCI.2020.100236]
Cheng Heng-Tze, 2016, 1 WORKSH DEEP LEARN, P7
Claypool Mark, 2001, P 6 INT C INT US INT, P33, DOI [DOI 10.1145/359784.359836, 10.1145/359784.359836]
Urdaneta-Ponte MC, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10141611
Covington P, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P191, DOI 10.1145/2959100.2959190
Cremonesi P., 2010, RECSYS 10 P 4 ACM C, P39, DOI DOI 10.1145/1864708.1864721
Deldjoo Y., 2017, P C INF RES SCI WORK
Gong TJ, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON EDUCATION AND E-LEARNING (ICEEL 2018), P48, DOI 10.1145/3291078.3291118
Gong TJ, 2021, AICCC 2021: 2021 4TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE, P138, DOI 10.1145/3508259.3508279
Guo HF, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1725
Hamari J, 2016, COMPUT HUM BEHAV, V54, P170, DOI 10.1016/j.chb.2015.07.045
He XN, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P173, DOI 10.1145/3038912.3052569
Hidasi B, 2016, Arxiv, DOI arXiv:1511.06939
Jawaheer G., 2010, P 1 INT WORKSH INF H, P47, DOI [DOI 10.1145/1869446, 10.1145/1869446.1869453, DOI 10.1145/1869446.1869453]
Jiang WJ, 2019, RECSYS 2019: 13TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, P506, DOI 10.1145/3298689.3347030
Jiang WJ, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P36, DOI 10.1145/3303772.3303814
Khanal SS, 2020, EDUC INF TECHNOL, V25, P2635, DOI 10.1007/s10639-019-10063-9
Khribi MK, 2015, LECT N EDUC TECHNOL, P159, DOI 10.1007/978-3-662-44659-1_9
Koren Y., 2011, U.S. Patent Application, Patent No. [12/643,237, 12643237]
Koren Yehuda, 2008, P ACM SIGKDD INT C K, P426, DOI DOI 10.1145/1401890.1401944
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Lee TQ, 2008, EXPERT SYST APPL, V34, P3055, DOI 10.1016/j.eswa.2007.06.031
Li G, 2016, MATH PROBL ENG, V2016, DOI 10.1155/2016/2535329
Li J, 2020, COMPLEXITY, V2020, DOI 10.1155/2020/6619249
Liu TY, 2022, ARTIF INTELL REV, V55, P5953, DOI 10.1007/s10462-022-10135-2
massquantity, 2021, massquantity/LibRecommender
Murgia E., 2019, P WORKSHOP RECOMMEND, V2449, P5
Ooge J, 2022, IUI'22: 27TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P93, DOI 10.1145/3490099.3511140
Pera MS, 2014, PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), P9, DOI 10.1145/2645710.2645721
Piech C., 2015, NEURIPS, V28, P505
Rajagopal K, 2020, INTERACT DES ARCHIT, P155, DOI 10.48175/ijarsct-666
Reidenberg JR, 2018, THEORY RES EDUC, V16, P263, DOI 10.1177/1477878518805308
Rendle Steffen, 2010, Proceedings 2010 10th IEEE International Conference on Data Mining (ICDM 2010), P995, DOI 10.1109/ICDM.2010.127
Rendle Steffen, 2012, P UNC ART INT
Reusens M, 2017, DECIS SUPPORT SYST, V98, P26, DOI 10.1016/j.dss.2017.04.002
Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3
Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3_1
Saiyeda A., 2017, Int. J. Adv. Res. Comput. Sci, V8, P68
Selent D, 2016, PROCEEDINGS OF THE THIRD (2016) ACM CONFERENCE ON LEARNING @ SCALE (L@S 2016), P181, DOI 10.1145/2876034.2893409
Song WP, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P1161, DOI 10.1145/3357384.3357925
Steck Harald, 2013, RecSys '13, P213
Tawfik AA, 2021, TECHTRENDS, V65, P925, DOI 10.1007/s11528-021-00648-y
Verbert K., 2011, P 1 INT C LEARN AN K, P44, DOI DOI 10.1145/2090116.2090122
Verbert K, 2012, IEEE T LEARN TECHNOL, V5, P318, DOI 10.1109/TLT.2012.11
Warford MK, 2011, TEACH TEACH EDUC, V27, P252, DOI 10.1016/j.tate.2010.08.008
Zhang M, 2020, IEEE GLOB ENG EDUC C, P374, DOI [10.1109/educon45650.2020.9125245, 10.1109/EDUCON45650.2020.9125245]
Zhou GR, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1059, DOI 10.1145/3219819.3219823
Zhou YW, 2018, INFORM SCIENCES, V444, P135, DOI 10.1016/j.ins.2018.02.053
NR 59
TC 0
Z9 0
U1 14
U2 14
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1939-1382
J9 IEEE T LEARN TECHNOL
JI IEEE Trans. Learn. Technol.
PY 2024
VL 17
BP 112
EP 123
DI 10.1109/TLT.2023.3273422
PG 12
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Education & Educational Research
GA EU8T8
UT WOS:001141545900043
DA 2024-09-05
ER
PT J
AU Meireles, MRG
Cendón, BV
AF Meireles, Magali Rezende Gouvea
Cendon, Beatriz Valadares
TI Citation-Based Document Categorization: An Approach Using Artificial
Neural Networks
SO QUALITATIVE & QUANTITATIVE METHODS IN LIBRARIES
LA English
DT Article
DE Bibliometrics; Document Clustering; Information Science; Classification;
Information Retrieval Systems; Artificial Neural Networks
AB The automatic organization of large collections of documents becomes more important with the growth of the amount of information available in digital form. This study contributes to this issue evaluating the use of Artificial Neural Networks (ANNs) to automatically categorize documents through the analysis of the references cited in these documents. The article describes the method developed to generate clusters of documents based on bibliometric concepts. The method is grounded on the premise that the presence of common citations is indicative of relationships among documents and thus publications are categorized using citations as the main input information. ANNs are typically used to solve problems related to approximation, prediction, classification, categorization and optimization. Many of the experiments reported in the literature describe the use of SOM networks, Self Organizing Maps, in the organization of documents for information retrieval. SOM networks are used in this work in order to categorize documents in a test database. In this categorization process, the semantic relationships among documents are defined not by the identification of terms in common, but by the presence of common cited references and their years of publication. After validation of the method, through the use of a prototype, a database was created, containing the references cited in 200 articles published in the IEEE Transactions on Neural Networks Journal, between years of 2001 and 2010. The publications were categorized by the ANN and presented in groups organized by their common citations. The results obtained show that the ANN successfully identified clusters of authors and texts, through their cited references. These clusters, formed through automatic classification of documents, evidence the existence of semantic relationships between the documents. They can be useful, for example, to automatically identify groups of researchers working in related fields or for identifying research trends in specific domains of knowledge. Another application would be in the process of information retrieval, where they could assist users in the development or reformulation of their queries.
C1 [Meireles, Magali Rezende Gouvea] Pontificia Univ Catolica Minas Gerais, Inst Math Sci & Informat, Belo Horizonte, MG, Brazil.
[Cendon, Beatriz Valadares] Univ Fed Minas Gerais, Sch Informat Sci, Belo Horizonte, MG, Brazil.
C3 Pontificia Universidade Catolica de Minas Gerais; Universidade Federal
de Minas Gerais
RP Meireles, MRG (corresponding author), Pontificia Univ Catolica Minas Gerais, Inst Math Sci & Informat, Belo Horizonte, MG, Brazil.
RI Cendon, Beatriz/G-6141-2011; Meireles, Magali RG/F-6563-2013
OI Cendon, Beatriz/0000-0002-3276-0114;
CR ALVARENGA L, 1998, CIENCIA INFORM BRASI, V27
[Anonymous], THE CITATION PROCESS
Barite MG, 2000, KNOWL ORGAN, V27, P4
Lima GABD, 2010, PERSPECT CIENC INF, V15, P108, DOI 10.1590/S1413-99362010000200008
Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3
Braga AP., 2000, Redes Neurais Artificiais: Teoria e Aplicacoes
DURAES Rodrigo Leite, 2009, THESIS
Guedes V. L. S, 2005, P CINFORM ENC NAC CI
Jacob EK, 2004, LIBR TRENDS, V52, P515
Leal I. C., 2005, THESIS
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
Meireles M. R. G., 2003, IEEE T IND ELECTRON, V50, P1
Souza RR, 2006, PERSPECT CIENC INF, V11, P161
Xavier B. R, 2008, PENSAR FORTALEZA, V13, P57
NR 14
TC 1
Z9 1
U1 0
U2 4
PU INT SOC ART SCIENCE & TECHNOLOGY-ISAST
PI ATHINA
PA INT SOC ART SCIENCE & TECHNOLOGY-ISAST, ATHINA, 00000, GREECE
SN 2241-1925
J9 QUAL QUANT METHODS L
JI Qual. Quant. Methods Libr.
PD JAN
PY 2015
SI SI
BP 71
EP 79
PG 9
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA CV9ZK
UT WOS:000364647800008
DA 2024-09-05
ER
PT J
AU Egger, J
Pepe, A
Gsaxner, C
Jin, Y
Li, JN
Kern, R
AF Egger, Jan
Pepe, Antonio
Gsaxner, Christina
Jin, Yuan
Li, Jianning
Kern, Roman
TI Deep learning-a first meta-survey of selected reviews across scientific
disciplines, their commonalities, challenges and research impact
SO PEERJ COMPUTER SCIENCE
LA English
DT Article
DE Deep learning; Artificial neural networks; Machine learning; Data
analysis; Image analysis; Language processing; Speech recognition; Big
data; Medical image analysis; Meta-review
ID IMAGE; RECOGNITION
AB Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Deep learning tries to achieve this by drawing inspiration from the learning of a human brain. Similar to the basic structure of a brain, which consists of (billions of) neurons and connections between them, a deep learning algorithm consists of an artificial neural network, which resembles the biological brain structure. Mimicking the learning process of humans with their senses, deep learning networks are fed with (sensory) data, like texts, images, videos or sounds. These networks outperform the state-of-the-art methods in different tasks and, because of this, the whole field saw an exponential growth during the last years. This growth resulted in way over 10,000 publications per year in the last years. For example, the search engine PubMed alone, which covers only a sub-set of all publications in the medical field, provides already over 11,000 results in Q3 2020 for the search term 'deep learning', and around 90% of these results are from the last three years. Consequently, a complete overview over the field of deep learning is already impossible to obtain and, in the near future, it will potentially become difficult to obtain an overview over a subfield. However, there are several review articles about deep learning, which are focused on specific scientific fields or applications, for example deep learning advances in computer vision or in specific tasks like object detection. With these surveys as a foundation, the aim of this contribution is to provide a first high-level, categorized meta-survey of selected reviews on deep learning across different scientific disciplines and outline the research impact that they already have during a short period of time. The categories (computer vision, language processing, medical informatics and additional works) have been chosen according to the underlying data sources In we review the common architectures, methods, pros, cons, evaluations, challenges and future directions for every sub-category.
C1 [Egger, Jan; Pepe, Antonio; Gsaxner, Christina; Jin, Yuan; Li, Jianning] Graz Univ Technol, Fac Comp Sci & Biomed Engn, Inst Comp Graph & Vis, Graz, Austria.
[Egger, Jan; Pepe, Antonio; Gsaxner, Christina; Jin, Yuan; Li, Jianning] Comp Algorithms Med Lab, Graz, Austria.
[Egger, Jan; Gsaxner, Christina] Med Univ Graz, Dept Oral & Maxillofacial Surg, Graz, Austria.
[Egger, Jan; Li, Jianning] Univ Med Essen, Inst AI Med IKIM, Essen, Germany.
[Jin, Yuan] Res Ctr Connected Healthcare Big Data, Zhejiang Lab, Hangzhou, Zhejiang, Peoples R China.
[Li, Jianning] Med Univ Graz, Dept Neurosurg, Res Unit Expt Neurotraumatol, Graz, Austria.
[Kern, Roman] Know Ctr, Knowledge Discovery, Graz, Austria.
[Kern, Roman] Graz Univ Technol, Inst Interact Syst & Data Sci, Graz, Austria.
C3 Graz University of Technology; Medical University of Graz; Zhejiang
Laboratory; Medical University of Graz; Graz University of Technology
RP Egger, J (corresponding author), Graz Univ Technol, Fac Comp Sci & Biomed Engn, Inst Comp Graph & Vis, Graz, Austria.; Egger, J (corresponding author), Comp Algorithms Med Lab, Graz, Austria.; Egger, J (corresponding author), Med Univ Graz, Dept Oral & Maxillofacial Surg, Graz, Austria.; Egger, J (corresponding author), Univ Med Essen, Inst AI Med IKIM, Essen, Germany.
EM egger@tugraz.at
RI Pepe, Antonio/AAI-9317-2020; Kern, Roman/ABG-3805-2020
OI Pepe, Antonio/0000-0002-5843-6275; Kern, Roman/0000-0003-0202-6100; Jin,
Yuan/0000-0001-8695-1525
FU Austrian Science Fund (FWF) [KLI 678-B31]; TU Graz Lead Project
(Mechanics, Modeling and Simulation of Aortic Dissection); Austrian
Federal Ministry of Transport, Innovation and Technology (BMVIT)
[871132]; Austrian Federal Ministry for Digital and Economic Affairs
(BMDW) [871132]; Styrian Business Promotion Agency (SFG)
FX The authors received funding from the Austrian Science Fund (FWF) KLI
678-B31: 'enFaced: Virtual and Augmented Reality Training and Navigation
Module for 3D-Printed Facial Defect Reconstructions' and the TU Graz
Lead Project (Mechanics, Modeling and Simulation of Aortic Dissection).
Moreover, this work was supported by CAMed (COMET K-Project 871132),
which is funded by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT), and the Austrian Federal Ministry for
Digital and Economic Affairs (BMDW), and the Styrian Business Promotion
Agency (SFG). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.
CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
Almeida F., 2019, Word embeddings: a survey, V1901
[Anonymous], 2019, ARXIV190601529
[Anonymous], 2018, P 27 INT C COMP LING
Arulkumaran K, 2017, IEEE SIGNAL PROC MAG, V34, P26, DOI 10.1109/MSP.2017.2743240
Ball JE, 2017, J APPL REMOTE SENS, V11, DOI 10.1117/1.JRS.11.042609
Bevilacqua V, 2015, LECT NOTES ARTIF INT, V9227, P264, DOI 10.1007/978-3-319-22053-6_28
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
Campbell M, 2002, ARTIF INTELL, V134, P57, DOI 10.1016/S0004-3702(01)00129-1
Chen JX, 2016, COMPUT SCI ENG, V18, P4, DOI 10.1109/MCSE.2016.74
Cicek O., 2016, MED IMAGE COMPUTING, P424, DOI 10.1007/978-3-319-46723-8_49
Dargan S, 2020, ARCH COMPUT METHOD E, V27, P1071, DOI 10.1007/s11831-019-09344-w
Deng L, 2013, FOUND TRENDS SIGNAL, V7, pI, DOI 10.1561/2000000039
Do HH, 2019, EXPERT SYST APPL, V118, P272, DOI 10.1016/j.eswa.2018.10.003
Egger J, 2020, MED DEEP LEARNING SY
Emmert-Streib F, 2020, FRONT ARTIF INTELL, V3, DOI 10.3389/frai.2020.00004
Fan JT, 2020, ENGINEERING-PRC, V6, P248, DOI 10.1016/j.eng.2019.11.012
Fleischmann D, 2020, RADIOLOGY CARDIOTHOR, V2, DOI [10.1148/ryct.2020190179, DOI 10.1148/RYCT.2020190179]
Gao JF, 2018, ACM/SIGIR PROCEEDINGS 2018, P1371, DOI 10.1145/3209978.3210183
Garcia-Garcia A, 2018, APPL SOFT COMPUT, V70, P41, DOI 10.1016/j.asoc.2018.05.018
Gatt A, 2018, J ARTIF INTELL RES, V61, P65, DOI 10.1613/jair.5477
Gibson E, 2018, COMPUT METH PROG BIO, V158, P113, DOI 10.1016/j.cmpb.2018.01.025
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
Gsaxner C, 2019, INT C MED IM COMP CO
Gsaxner C, 2018, 2018 11 BIOM ENG INT, P1
Gsaxner C, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212550
Hahn LD, 2020, RADIOL-CARDIOTHORAC, V2, DOI 10.1148/ryct.2020190179
Haskins G, 2020, MACH VISION APPL, V31, DOI 10.1007/s00138-020-01060-x
Herath S, 2017, IMAGE VISION COMPUT, V60, P4, DOI 10.1016/j.imavis.2017.01.010
Hesamian MH, 2019, J DIGIT IMAGING, V32, P582, DOI 10.1007/s10278-019-00227-x
Hong JW, 2020, INT J HUM-COMPUT INT, V36, P1768, DOI 10.1080/10447318.2020.1785693
Hong JW, 2020, INT J HUM-COMPUT INT, V36, P1928, DOI 10.1080/10447318.2020.1801226
Hongshen Chen, 2017, ACM SIGKDD Explorations Newsletter, V19, P25, DOI 10.1145/3166054.3166058
Hossain MZ, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3295748
Hu ZL, 2018, PATTERN RECOGN, V83, P134, DOI 10.1016/j.patcog.2018.05.014
HUTTENLOCHER DP, 1993, IEEE T PATTERN ANAL, V15, P850, DOI 10.1109/34.232073
Jiao LC, 2019, IEEE ACCESS, V7, P128837, DOI 10.1109/ACCESS.2019.2939201
Kalinin AA, 2018, PHARMACOGENOMICS, V19, P629, DOI 10.2217/pgs-2018-0008
Kallioinen Noa, 2019, Front Psychol, V10, P2415, DOI 10.3389/fpsyg.2019.02415
Kamilaris A, 2018, COMPUT ELECTRON AGR, V147, P70, DOI 10.1016/j.compag.2018.02.016
Karner F, 2020, LECT NOTES COMPUT SC, V12445, P64, DOI 10.1007/978-3-030-60946-7_7
Kohl C., 2018, J. Bus. Econ., V88, P617, DOI DOI 10.1007/S11573-018-0897-5
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Kwon D, 2019, CLUSTER COMPUT, V22, P949, DOI 10.1007/s10586-017-1117-8
Lan K, 2018, J MED SYST, V42, DOI 10.1007/s10916-018-1003-9
Li J, 2020, AUTOMATIZATION CRANI
Li JN, 2021, IEEE T MED IMAGING, V40, P2329, DOI 10.1109/TMI.2021.3077047
Li J, 2022, IEEE T KNOWL DATA EN, V34, P50, DOI 10.1109/TKDE.2020.2981314
Li S, 2022, IEEE T AFFECT COMPUT, V13, P1195, DOI 10.1109/TAFFC.2020.2981446
Li Y., 2017, 170107274 ARXIV, DOI DOI 10.1007/978-3-319-56991-8_32
Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005
Liu L, 2020, INT J COMPUT VISION, V128, P261, DOI 10.1007/s11263-019-01247-4
Liu XX, 2019, LANCET DIGIT HEALTH, V1, pE271, DOI 10.1016/S2589-7500(19)30123-2
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
Lundervold AS, 2019, Z MED PHYS, V29, P102, DOI 10.1016/j.zemedi.2018.11.002
Masi I, 2018, SIBGRAPI, P471, DOI 10.1109/SIBGRAPI.2018.00067
Mazurowski MA, 2019, J MAGN RESON IMAGING, V49, P939, DOI 10.1002/jmri.26534
MCCULLOCH WS, 1990, B MATH BIOL, V52, P99, DOI 10.1016/S0092-8240(05)80006-0
Meyer P, 2018, COMPUT BIOL MED, V98, P126, DOI 10.1016/j.compbiomed.2018.05.018
Minaee S, 2019, BIOMETRIC RECOGNITIO
Mohammadi M, 2018, IEEE COMMUN SURV TUT, V20, P2923, DOI 10.1109/COMST.2018.2844341
Mousavi SS, 2018, LECT NOTE NETW SYST, V16, P426, DOI 10.1007/978-3-319-56991-8_32
Ota K, 2017, ACM T MULTIM COMPUT, V13, DOI 10.1145/3092831
Paszke Adam, 2017, Automatic differentiation in PyTorch
Pepe A, 2019, J DIGIT IMAGING, V32, P1008, DOI 10.1007/s10278-019-00272-6
Pouyanfar S, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3234150
Raghu M., 2020, ARXIV200311755
Ramachandram D, 2017, IEEE SIGNAL PROC MAG, V34, P96, DOI 10.1109/MSP.2017.2738401
Ravì D, 2017, IEEE J BIOMED HEALTH, V21, P4, DOI 10.1109/JBHI.2016.2636665
Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28
Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707
Sampa MP, 2006, IEEE IMAGE PROC, P81, DOI 10.1109/ICIP.2006.312367
Santhanam Sashank, 2019, SURVEY NATURAL LANGU
Shen DG, 2017, ANNU REV BIOMED ENG, V19, P221, DOI [10.1146/annurev-bioeng-071516044442, 10.1146/annurev-bioeng-071516-044442]
Shi T., 2018, NEURAL ABSTRACTIVE T
Shickel Benjamin, 2018, IEEE J Biomed Health Inform, V22, P1589, DOI 10.1109/JBHI.2017.2767063
Shorten C, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0197-0
Sundararajan K, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3190618
Sylos Labini Mauro, 2019, Intelligent Computing Methodologies. 15th International Conference, ICIC 2019. Proceedings: Lecture Notes in Artificial Intelligence (LNAI 11645), P716, DOI 10.1007/978-3-030-26766-7_65
Sze V, 2017, P IEEE, V105, P2295, DOI 10.1109/JPROC.2017.2761740
Voulodimos A, 2018, COMPUT INTEL NEUROSC, V2018, DOI 10.1155/2018/7068349
Wallner J, 2019, SCI DATA, V6, DOI 10.1038/sdata.2019.3
Wang JJ, 2018, J MANUF SYST, V48, P144, DOI 10.1016/j.jmsy.2018.01.003
Wang M., 2018, DEEP FACE RECOGNITIO
Wang PC, 2018, COMPUT VIS IMAGE UND, V171, P118, DOI 10.1016/j.cviu.2018.04.007
Wang ZH, 2021, IEEE T PATTERN ANAL, V43, P3365, DOI 10.1109/TPAMI.2020.2982166
Wild D, 2019, CLIENT SERVER BASED
Xing FZ, 2018, ARTIF INTELL REV, V50, P49, DOI 10.1007/s10462-017-9588-9
Xing FY, 2018, IEEE T NEUR NET LEAR, V29, P4550, DOI 10.1109/TNNLS.2017.2766168
Yadav V., 2018, P 27 INT C COMP LING, P2145
Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738
Zeiler MD, 2014, LECT NOTES COMPUT SC, V8689, P818, DOI 10.1007/978-3-319-10590-1_53
Zhang CY, 2019, IEEE COMMUN SURV TUT, V21, P2224, DOI 10.1109/COMST.2019.2904897
Zhang L, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1253
Zhang QC, 2018, INFORM FUSION, V42, P146, DOI 10.1016/j.inffus.2017.10.006
Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029
Zhang Y., 2016, NEURAL INFORM RETRIE
Zhao ZQ, 2019, IEEE T NEUR NET LEAR, V30, P3212, DOI 10.1109/TNNLS.2018.2876865
Ziwei Zhang, 2022, IEEE Transactions on Knowledge and Data Engineering, V34, P249, DOI 10.1109/TKDE.2020.2981333
NR 99
TC 15
Z9 15
U1 1
U2 10
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
EI 2376-5992
J9 PEERJ COMPUT SCI
JI PeerJ Comput. Sci.
PD NOV 17
PY 2021
VL 7
AR e773
DI 10.7717/peerj-cs.773
PG 83
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA XA9AB
UT WOS:000720930400002
PM 34901429
OA gold, Green Published, Green Submitted
DA 2024-09-05
ER
PT J
AU Melnikova, EV
AF Melnikova, E. V.
TI Needs of Scientometry and Possibilities of Modern Machine Learning as a
Field of Artificial Intelligence
SO SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING
LA English
DT Article
DE scientometry; scientometric indicators; bibliometry; classification; Web
of Science; Scopus; artificial intelligence; machine learning; deep
learning; artificial neural networks; big data
ID CITATION INDEXES
AB A general description of modern scientometry, its main tasks, and its research methods is presented. The issues of the application of conventional machine learning and deep learning algorithms as tools of artificial intelligence in the thematic classification of scientific literature are considered. The problems and limitations of the classification of literature by sections of science in the systems of indexing and citing of scientific information are outlined. The author presents a specific example of a deep learning application for by-article thematic classification based on convolutional neural networks that was designed by scientists from the United Arab Emirates and Jordan. The article emphasizes the importance of the use of deep learning applications and models for creating correct classifications of the scientific literature that correspond to the realities of the development of science and that are capable of increasing the accuracy of calculating scientometric indicators.
C1 [Melnikova, E. V.] Russian Acad Sci, All Russian Res Inst Sci & Tech Informat, Moscow, Russia.
C3 Russian Academy of Sciences
RP Melnikova, EV (corresponding author), Russian Acad Sci, All Russian Res Inst Sci & Tech Informat, Moscow, Russia.
EM verden.mel@yandex.ru
FU All-Russian Research Institute for Scientific and Technical Information,
Russian Academy of Sciences [FFFU-2022-0007]
FX The article was supported by the state assignment of the All-Russian
Research Institute for Scientific and Technical Information, Russian
Academy of Sciences (project no.FFFU-2022-0007).
CR Akoev M.A., 2021, RUKOVODSTVO NAUKOMET, V2nd
Bhattacharya S, 2019, J SCIENTOMETR RES, V8, pS85, DOI 10.5530/jscires.8.2.26
Daradkeh M, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11132066
Eykens J, 2021, QUANT SCI STUD, V2, P89, DOI 10.1162/qss_a_00106
Gargiulo F., 2018, SMART INNOVATION SYS, V76, P471, DOI [10.1007/978-3-319-59480-4_47, DOI 10.1007/978-3-319-59480-4_47]
Giliarevskii RS, 2020, SCI TECH INF PROCESS, V47, P194, DOI 10.3103/S0147688220030107
Gilyarevskii RS, 2022, AUTOMAT DOC MATH LIN, V56, P26, DOI 10.3103/S000510552201006X
Gilyarevskii R.S., 2022, Scientific Metrics in Science Journalism: A Course of Lectures
Huang H, 2022, SCIENTOMETRICS, V127, P5257, DOI 10.1007/s11192-021-04183-8
Kassab O, 2020, QUANT SCI STUD, V1, P792, DOI 10.1162/qss_a_00032
Melnikova EV, 2022, SCI TECH INF PROCESS, V49, P102, DOI 10.3103/S0147688222020083
Melnikova E.V., 2021, Inf. Resur. Ross., P6, DOI [10.52815/0204-3653_2021_04182_6, DOI 10.52815/0204-36532021041826]
Melnikova E.V., 2022, Naukosfera, P202
Microsoft Corp, 2022, DEEP LEARN VS MACH L
Mikhailov A.I., 1965, OSNOVY NAUCHNOI INFO
Mokhnacheva Y, 2018, NAUCHNYE TEK BIBL, P51
Nalimov V.V., 1969, Naukometriya. Izuchenie Razvitiya Nauki kak Informatsionnogo Protsessa.[Scientometrics. Study of the Development of Science as an Information Process]
Ozcan S, 2022, IEEE T ENG MANAGE, V69, P3023, DOI 10.1109/TEM.2020.3027973
Salazar-Reyna R, 2022, MANAGE DECIS, V60, P300, DOI 10.1108/MD-01-2020-0035
Shraiberg Ya.L., 2021, BIBLIOTEKA, P21
Srinivasa G, 2019, J SCIENTOMETR RES, V8, pS39, DOI 10.5530/jscires.8.2.23
Subelj L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154404
Tsvetkova V.A., 2021, INF RESUR ROSS, P20, DOI [10.52815/0204-3653_2021_04182_20, DOI 10.52815/0204-3653_2021_04182_20]
Waltman L, 2020, QUANT SCI STUD, V1, P691, DOI 10.1162/qss_a_00035
Wang GH, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254054
Wook M, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00439-5
Zhang ZQ, 2021, QUANT SCI STUD, V2, P698, DOI 10.1162/qss_a_00123
NR 27
TC 1
Z9 1
U1 5
U2 5
PU PLEIADES PUBLISHING INC
PI NEW YORK
PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES
SN 0147-6882
EI 1934-8118
J9 SCI TECH INF PROCESS
JI Sci. Tech. Inf. Process.
PD JUN
PY 2023
VL 50
IS 2
BP 114
EP 120
DI 10.3103/S0147688223020089
PG 7
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA Q5HV3
UT WOS:001057838600004
DA 2024-09-05
ER
PT J
AU Ji, TR
Self, N
Fu, KQ
Chen, ZQ
Ramakrishnan, N
Lu, CT
AF Ji, Taoran
Self, Nathan
Fu, Kaiqun
Chen, Zhiqian
Ramakrishnan, Naren
Lu, Chang-Tien
TI Citation Forecasting with Multi-Context Attention-Aided Dependency
Modeling
SO ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA
LA English
DT Article
DE Citation analysis; recurrent neural networks; deep learning
ID COUNT PREDICTION; NETWORKS; IMPACT; INDEX
AB Forecasting citations of scientific patents and publications is a crucial task for understanding the evolution and development of technological domains and for foresight into emerging technologies. By construing citations as a time series, the task can be cast into the domain of temporal point processes. Most existing work on forecasting with temporal point processes, both conventional and neural network-based, only performs single-step forecasting. In citation forecasting, however, the more salient goal is n-step forecasting: predicting the arrival of the next n citations. In this article, we propose Dynamic Multi-Context Attention Networks (DMA-Nets), a novel deep learning sequence-to-sequence (Seq2Seq) model with a novel hierarchical dynamic attention mechanism for long-term citation forecasting. Extensive experiments on two real-world datasets demonstrate that the proposed model learns better representations of conditional dependencies over historical sequences compared to state-of-the-art counterparts and thus achieves significant performance for citation predictions.
C1 [Ji, Taoran] Texas A&M Univ, Dept Comp Sci, CI 317,6300 Ocean Dr, Corpus Christi, TX 78412 USA.
[Self, Nathan; Ramakrishnan, Naren] Virginia Tech, Dept Comp Sci, Arlington, VA USA.
[Self, Nathan; Ramakrishnan, Naren] VTRC Arlington, Dept Comp Sci, 900 North Glebe Rd, Arlington, VA 22203 USA.
[Fu, Kaiqun] South Dakota State Univ, Dept Comp Sci, Daktron Eng Hall 123,Elect Engn Comp Sci Box 2222, Brookings, SD 57007 USA.
[Chen, Zhiqian] Mississippi State Univ, Comp Sci & Engn Dept, Starkville, MS USA.
[Chen, Zhiqian] Mississippi State Univ, Comp Sci & Engn Dept, 304 Butler Hall,75 BS Hood Rd, Mississippi State, MS 39762 USA.
[Lu, Chang-Tien] Virginia Tech, Dept Comp Sci, Falls Church, VA USA.
[Lu, Chang-Tien] Northern Virginia Ctr, Dept Comp Sci, 7054 Haycock Rd,Room 312, Falls Church, VA 22043 USA.
C3 Texas A&M University System; Virginia Polytechnic Institute & State
University; South Dakota State University; Mississippi State University;
Mississippi State University; Virginia Polytechnic Institute & State
University
RP Ji, TR (corresponding author), Texas A&M Univ, Dept Comp Sci, CI 317,6300 Ocean Dr, Corpus Christi, TX 78412 USA.
EM taoran.ji@tamucc.edu; nwself@vt.edu; kaiqun.fu@sdstate.edu;
zchen@cse.msstate.edu; ctlu@vt.edu
RI ; Fu, Kaiqun/L-7587-2015
OI Ji, Taoran/0000-0001-9438-3038; Fu, Kaiqun/0000-0003-4307-9938; Chen,
Zhiqian/0000-0003-4112-9647
FU National Science Foundation [CCF-1918770, NRT DGE-1545362, OAC-1835660,
IIS-2153369]
FX This work is supported in part by the National Science Foundation via
grants Expeditions CCF-1918770, NRT DGE-1545362, OAC-1835660, and
IIS-2153369. The US Government is authorized to reproduce and distribute
reprints of this work for Governmental purposes notwithstanding any
copyright annotation thereon. Disclaimer: The views and conclusions
contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements,
either expressed or implied, of NSF, or the U.S. Government.
CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008
Bessen J, 2008, RES POLICY, V37, P932, DOI 10.1016/j.respol.2008.02.005
Bletsas A, 2009, J AM SOC INF SCI TEC, V60, P2577, DOI 10.1002/asi.21197
Bornmann Lutz, 2013, Technical Report
Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4
Chakraborty T, 2015, COMMUN ACM, V58, P82, DOI 10.1145/2701412
Cho KYHY, 2014, Arxiv, DOI arXiv:1409.1259
Ding DZ, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1114, DOI 10.1145/3292500.3330896
Du N, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1555, DOI 10.1145/2939672.2939875
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Egghe L, 2014, J ASSOC INF SCI TECH, V65, P2152, DOI 10.1002/asi.23168
Ferludin O, 2022, Arxiv, DOI arXiv:2207.03522
Ferrara E, 2013, J AM SOC INF SCI TEC, V64, P2332, DOI 10.1002/asi.22976
Filimonov V, 2015, QUANT FINANC, V15, P1293, DOI 10.1080/14697688.2015.1032544
HAWKES AG, 1971, BIOMETRIKA, V58, P83, DOI 10.1093/biomet/58.1.83
Helmstetter A, 2002, J GEOPHYS RES-SOL EA, V107, DOI 10.1029/2001JB001580
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Jang HJ, 2017, J INFORMETR, V11, P511, DOI 10.1016/j.joi.2017.03.007
Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443
Ji TR, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2621
Kim J, 2014, IEEE INT CONF BIG DA
Kingma D. P., 2014, INT C LEARNING REPRE
Klosik DF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113184
Lee C, 2018, TECHNOL FORECAST SOC, V127, P291, DOI 10.1016/j.techfore.2017.10.002
Lee C, 2012, TECHNOL FORECAST SOC, V79, P16, DOI 10.1016/j.techfore.2011.06.009
Lee Yunjae, 2022, arXiv
Li N, 2012, INT CONF COMP SCI ED, P1115, DOI 10.1109/ICCSE.2012.6295261
Liu HW, 2019, EURASIP J WIREL COMM, V2019, DOI 10.1186/s13638-019-1561-7
Liu X, 2017, AAAI CONF ARTIF INTE, P1438
Luong MT, 2015, Arxiv, DOI arXiv:1508.04025
Massucci FA, 2019, J INFORMETR, V13, P185, DOI 10.1016/j.joi.2018.12.001
McGovern Amy, 2003, ACM SIGKDD Explorations Newsletter, V5, P165, DOI DOI 10.1145/980972.980999
Meho LI, 2007, PHYS WORLD, V20, P32
Mei HY, 2017, ADV NEUR IN, V30
Mishra S, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1069, DOI 10.1145/2983323.2983812
Kipf TN, 2016, Arxiv, DOI arXiv:1611.07308
PERITZ BC, 1992, J AM SOC INFORM SCI, V43, P448, DOI 10.1002/(SICI)1097-4571(199207)43:6<448::AID-ASI5>3.0.CO;2-9
Pobiedina N, 2016, APPL INTELL, V44, P252, DOI 10.1007/s10489-015-0657-y
Prathap G, 2014, J ASSOC INF SCI TECH, V65, P1506, DOI 10.1002/asi.23120
Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105
Radicchi F, 2013, SCIENTOMETRICS, V97, P627, DOI 10.1007/s11192-013-1027-3
Shen HW, 2014, AAAI CONF ARTIF INTE, P291
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Sutskever I, 2014, ADV NEUR IN, V27
Vaswani A, 2017, ADV NEUR IN, V30
Wang K, 2019, NEUROCOMPUTING, V360, P107, DOI 10.1016/j.neucom.2019.05.023
Wang YQ, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2985
Wen JQ, 2020, IEEE INT CONF ELECTR, P303, DOI 10.1109/iceiec49280.2020.9152330
Wu X, 2018, CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1073, DOI 10.1145/3269206.3271794
Xiao S, 2017, AAAI CONF ARTIF INTE, P1597
Xiao S, 2019, IEEE T NEUR NET LEAR, V30, P3124, DOI 10.1109/TNNLS.2018.2889776
Xiao Shuai, 2016, Ijcai, P2676, DOI [DOI 10.1109/SCEECS57921.2023.10061818, DOI 10.1145/3123266.3123277]
Yan Junchi, 2016, P IJCAI, P2690
Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Yang Shuang-Hong, 2013, ICML
Yuan Sha, 2022, arXiv
Zhou K., 2013, PMLR, P2338
NR 60
TC 0
Z9 0
U1 4
U2 4
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY USA
SN 1556-4681
EI 1556-472X
J9 ACM T KNOWL DISCOV D
JI ACM Trans. Knowl. Discov. Data
PD JUL
PY 2024
VL 18
IS 6
AR 144
DI 10.1145/3649140
PG 23
WC Computer Science, Information Systems; Computer Science, Software
Engineering
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA OU9C2
UT WOS:001209901400011
OA hybrid, Green Accepted
DA 2024-09-05
ER
PT J
AU Ibáñez, A
Bielza, C
Larrañaga, P
AF Ibanez, Alfonso
Bielza, Concha
Larranaga, Pedro
TI Cost-sensitive selective naive Bayes classifiers for predicting the
increase of the h-index for scientific journals
SO NEUROCOMPUTING
LA English
DT Article
DE Cost-sensitive learning approach; Selective naive Bayes; h-index;
Neurosciences journals
ID CLASSIFICATION; MODEL
AB Machine learning community is not only interested in maximizing classification accuracy, but also in minimizing the distances between the actual and the predicted class. Some ideas, like the cost-sensitive learning approach, are proposed to face this problem. In this paper, we propose two greedy wrapper forward cost-sensitive selective naive Bayes approaches. Both approaches readjust the probability thresholds of each class to select the class with the minimum-expected cost. The first algorithm (CS-SNB-Accuracy) considers adding each variable to the model and measures the performance of the resulting model on the training data. The variable that most improves the accuracy, that is, the percentage of well classified instances between the readjusted class and actual class, is permanently added to the model. In contrast, the second algorithm (CS-SNB-Cost) considers adding variables that reduce the misclassification cost, that is, the distance between the readjusted class and actual class. We have tested our algorithms on the bibliometric indices prediction area. Considering the popularity of the well-known h-index, we have researched and built several prediction models to forecast the annual increase of the h-index for Neurosciences journals in a four-year time horizon. Results show that our approaches, particularly CS-SNB-Accuracy, achieved higher accuracy values than the analyzed cost-sensitive classifiers and Bayesian classifiers. Furthermore, we also noted that the CS-SNB-Cost always achieved a lower average cost than all analyzed cost-sensitive and cost-insensitive classifiers. These cost-sensitive selective naive Bayes approaches outperform the selective naive Bayes in terms of accuracy and average cost, so the cost-sensitive learning approach could be also applied in different probabilistic classification approaches. (c) 2014 Elsevier B.V. All rights reserved.
C1 [Ibanez, Alfonso; Bielza, Concha; Larranaga, Pedro] Univ Politecn Madrid, Fac Informat, Dept Inteligencia Artificial, Computat Intelligence Grp, E-28660 Madrid, Spain.
C3 Universidad Politecnica de Madrid
RP Ibáñez, A (corresponding author), Univ Politecn Madrid, Fac Informat, Dept Inteligencia Artificial, Computat Intelligence Grp, E-28660 Madrid, Spain.
EM aibanez@fi.upm.es; mcbielza@fi.upm.es; pedro.larranaga@fi.upm.es
RI Ibáñez, Alfonso/B-3423-2010; Larranaga, Pedro/F-9293-2013; Bielza,
Concha/F-9277-2013
OI Larranaga, Pedro/0000-0003-0652-9872; Bielza, Concha/0000-0001-7109-2668
FU Spanish Ministry of Economy and Competitiveness (MINECO) projects
[TIN2010-20900-004-04]; Cajal Blue Brain
FX This work has been partially supported by the Spanish Ministry of
Economy and Competitiveness (MINECO) projects TIN2010-20900-004-04 and
Cajal Blue Brain.
CR Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
[Anonymous], P 21 INT C MACH LEAR
[Anonymous], 2005, Data Mining: Pratical Machine Learning Tools and Techniques
Baskurt OK, 2011, SCIENTOMETRICS, V86, P645, DOI 10.1007/s11192-010-0298-1
Batista PD, 2006, SCIENTOMETRICS, V68, P179, DOI 10.1007/s11192-006-0090-4
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806
Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005
Cardoso JS, 2007, J MACH LEARN RES, V8, P1393
Crammer K, 2002, ADV NEUR IN, V14, P641
Domingos P., 1999, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, V99, P155
Drummond Chris., 2000, P 17 INT C MACHINE L, P239
DUDA D, 1973, PATTERN CLASSIFICATI
Egghe L., 2006, ISSI NEWSLETTER, V2, P8
Egghe L, 2007, J AM SOC INF SCI TEC, V58, P452, DOI 10.1002/asi.20473
Egghe L, 2006, SCIENTOMETRICS, V69, P121, DOI 10.1007/s11192-006-0143-8
Egghe L, 2010, ANNU REV INFORM SCI, V44, P65, DOI 10.1002/aris.2010.1440440109
Elkan C., 2001, INT JOINT C ART INT, VVolume 17, P973
FRANK E, 2004, P 21 INT C MACH LEAR, P305
Fürnkranz J, 2002, LECT NOTES ARTIF INT, V2430, P97
Hall M., 2001, Machine Learning: ECML 2001, P145, DOI 10.1007/3-540-44795-413
HART PE, 1968, IEEE T INFORM THEORY, V14, P515, DOI 10.1109/TIT.1968.1054155
Herbrich R, 2000, ADV NEUR IN, P115
HERBRICH R, 1999, 993 TU BERL DEP COMP
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hosmer W., 2000, Applied Logistic Regression, VSecond
Ibanez A., 2011, Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), P599, DOI 10.1109/ISDA.2011.6121721
Ibáñez A, 2009, BIOINFORMATICS, V25, P3303, DOI 10.1093/bioinformatics/btp585
Jin B., 2006, SCI FOCUS, V1, P8, DOI 10.1209/0295-5075/78/30002
Kotsiantis S.B., 2004, ARTIF INTELL, P1
Kotsiantis SB, 2004, LECT NOTES COMPUT SC, V3025, P220
Kramer S, 2001, FUND INFORM, V47, P1
Krampen G, 2011, SCIENTOMETRICS, V87, P687, DOI 10.1007/s11192-011-0357-2
KRUSKAL WH, 1952, J AM STAT ASSOC, V47, P583, DOI 10.1080/01621459.1952.10483441
Langley P., 1994, Uncertainty in Artificial Intelligence. Proceedings of the Tenth Conference (1994), P399
Lin HT, 2012, NEURAL COMPUT, V24, P1329, DOI 10.1162/NECO_a_00265
MANN HB, 1947, ANN MATH STAT, V18, P50, DOI 10.1214/aoms/1177730491
MCCULLAGH P, 1980, J ROY STAT SOC B MET, V42, P109
McCullagh P., 1989, Monographs on Statistics and Applied Probability, V2
MINSKY M, 1961, P IRE, V49, P8, DOI 10.1109/JRPROC.1961.287775
Potharst R., 2000, Intelligent Data Analysis, V4, P97
Quinlan J. R., 1993, C4 5 PROGRAMS MACHIN
Ruane F, 2008, SCIENTOMETRICS, V75, P395, DOI 10.1007/s11192-007-1869-7
Shashua A., 2003, Advances in neural informa-tion processing systems, P961
Sheng VS, 2007, LECT NOTES ARTIF INT, V4701, P724
Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z
STONE M, 1974, J R STAT SOC B, V36, P111, DOI 10.1111/j.2517-6161.1974.tb00994.x
Ting K.M., 1998, Proceedings of the Second European Symposium on Principles of Data Mining and Knowledge Discovery, P23
Turney PD, 1994, J ARTIF INTELL RES, V2, P369, DOI 10.1613/jair.120
Ye FY, 2008, J INFORMETR, V2, P288, DOI 10.1016/j.joi.2008.09.002
Zadrozny B, 2003, THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P435, DOI 10.1109/icdm.2003.1250950
Zadrozny B., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P204, DOI 10.1145/502512.502540
NR 52
TC 14
Z9 16
U1 2
U2 39
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0925-2312
EI 1872-8286
J9 NEUROCOMPUTING
JI Neurocomputing
PD JUL 5
PY 2014
VL 135
SI SI
BP 42
EP 52
DI 10.1016/j.neucom.2013.08.042
PG 11
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA AH1HM
UT WOS:000335871200006
DA 2024-09-05
ER
PT C
AU Velez-Estevez, A
Garcia-Sanchez, P
Moral-Munoz, JA
Cobo, MJ
AF Velez-Estevez, A.
Garcia-Sanchez, P.
Moral-Munoz, J. A.
Cobo, M. J.
BE Castellano, G
Castiello, C
Mencar, C
TI Thematical and Impact Differences Between National and International
Collaboration on Artificial Intelligence Research
SO 2020 IEEE INTERNATIONAL CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT
SYSTEMS (EAIS)
SE IEEE Conference on Evolving and Adaptive Intelligence Systems
LA English
DT Proceedings Paper
CT 12th IEEE International Conference on Evolving and Adaptive Intelligent
Systems (IEEE EAIS)
CY MAY 27-29, 2020
CL ELECTR NETWORK
DE Research impact; international collaboration; national collaboration;
local collaboration and bibliographic networks
AB In this paper, an analysis to discover the impact differences in terms of citations between three levels of research collaboration is carried out. Thus, the objective, further than discover what kind of collaboration is more rewarding in terms of impact, is to determine if researchers cover different themes when they collaborate with people from other countries or universities within the same country, and if those themes get more citations. To this end, 12610 documents belonging to the "Computer Science & Artificial Intelligence" Web of Science subject category, and published in 2015 were analyzed. The whole corpus was divided into three different datasets, according to the defined collaboration levels (local, national and international). Results indicate that papers by authors from different countries receive more citations in average, but also, there exist some differences with respect to the research themes between the datasets.
C1 [Velez-Estevez, A.; Cobo, M. J.] Univ Cadiz, Dept Comp Sci & Engn, Cadiz, Spain.
[Garcia-Sanchez, P.] Univ Granada, Dept Software Engn, Granada, Spain.
[Moral-Munoz, J. A.] Univ Cadiz, Dept Nursing & Physiotherapy, Cadiz, Spain.
[Moral-Munoz, J. A.] Inst Res & Innovat Biomed Sci Prov Cadiz INiBICA, Cadiz, Spain.
C3 Universidad de Cadiz; University of Granada; Universidad de Cadiz
RP Velez-Estevez, A (corresponding author), Univ Cadiz, Dept Comp Sci & Engn, Cadiz, Spain.
EM antonio.velezestevez@alum.uca.es; pablogarcia@ugr.es;
joseantonio.moral@uca.es; manueljesus.cobo@uca.es
RI FCADIZ, INIBICA/AFS-0591-2022; Cobo Martín, Manuel Jesús/C-5581-2011;
García-Sánchez, Pablo/G-2166-2010; Velez-Estevez, Antonio/AAX-7661-2020;
Moral-Munoz, Jose A./A-5893-2014
OI Cobo Martín, Manuel Jesús/0000-0001-6575-803X; García-Sánchez,
Pablo/0000-0003-4644-2894; Velez-Estevez, Antonio/0000-0002-0109-0293;
Moral-Munoz, Jose A./0000-0002-6465-982X
FU FEDER funds [TIN2016-75850-R, TIN2017-85727-C4-2-P]
FX The authors want to thank the support of FEDER funds (TIN2016-75850-R
and TIN2017-85727-C4-2-P).
CR Adams J, 2013, NATURE, V497, P557, DOI 10.1038/497557a
Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360
Batagelj V, 2013, SCIENTOMETRICS, V96, P845, DOI 10.1007/s11192-012-0940-1
Castillo J. A., 2018, J HISPANIC HIGHER ED
Chinchilla-Rodríguez Z, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0218309
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
García-Sánchez P, 2018, LECT NOTES COMPUT SC, V11315, P138, DOI 10.1007/978-3-030-03496-2_16
Khor KA, 2016, SCIENTOMETRICS, V107, P1095, DOI 10.1007/s11192-016-1905-6
Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859
Moed HF, 2013, SCIENTOMETRICS, V94, P929, DOI 10.1007/s11192-012-0783-9
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Ni P, 2018, SCIENTOMETRICS, V116, P863, DOI 10.1007/s11192-018-2784-9
Sud P, 2016, J ASSOC INF SCI TECH, V67, P1849, DOI 10.1002/asi.23515
Sugimoto CR, 2017, NATURE, V550, P29, DOI 10.1038/550029a
Traag VA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41695-z
Wagner CS, 2017, SCIENTOMETRICS, V110, P1633, DOI 10.1007/s11192-016-2230-9
NR 19
TC 2
Z9 2
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2330-4863
BN 978-1-7281-4384-2
J9 IEEE CONF EVOL ADAPT
PY 2020
DI 10.1109/eais48028.2020.9122769
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BQ8DH
UT WOS:000619398100032
DA 2024-09-05
ER
PT J
AU Zhao, WF
Liu, WJ
Zhang, RY
AF Zhao, Weifan
Liu, Wenjun
Zhang, Ruiyu
TI New methods to quantify an individual's scientific research output based
on h-index and various factors
SO QUALITATIVE & QUANTITATIVE METHODS IN LIBRARIES
LA English
DT Article
DE h-index; principal component analysis; h(f)-index
AB Hirsch proposed h-index in 2005. To overcome some limitations of h-index in practical application, many scholars have proposed a series of derivative indexes. So far, derivative indexes designed by the scholars are mostly based on the citations and total number of papers. Although they are simple to use, they have certain oneness on the data source. To overcome this situation, two methods are used in this paper to analyze various factors. Firstly, we use the principal component analysis method to analyze original data such as the total number of papers, citation and so on, and then draw a comprehensive evaluation result of Z to quantify scientific research output, which avoid the oneness on the factor. Then, based on the "Gold priority" rule and h(a)-index proposed by Xu, we introduce a new comprehensive scientific research evaluation index, named as h(f)-index, to enhance the degree of differentiation and sensitivity of h-index. For two methods above, examples are given respectively.
C1 [Zhao, Weifan; Liu, Wenjun; Zhang, Ruiyu] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China.
C3 Nanjing University of Information Science & Technology
RP Zhao, WF (corresponding author), Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China.
RI Liu, Wenjun/A-3643-2009
OI Liu, Wenjun/0000-0002-4500-6559
CR Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5
Anderson TR, 2008, SCIENTOMETRICS, V76, P577, DOI 10.1007/s11192-007-2071-2
Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325
Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9
Kosmulski M., 2006, ISSI NEWSLETTER, V2, P4, DOI [10.1177/01655515211014478, DOI 10.1177/01655515211014478]
Pearson K, 1901, PHILOS MAG, V2, P559, DOI 10.1080/14786440109462720
Qiang Wu, 2008, W INDEX SIGNIFICANT
Qiu J. P., 2006, KNOWLEDGE LIB INFORM, V4, P101
Wei R. B., 2009, CHINESE J SCI TECHNI, V20, P220
Xu X. J., 2009, J INFORM THEORY PRAC, V11, P8
Ye Y, 2009, INFORM LEARNED J, V28, P142
Zhang X. M., 2007, LIB INFORM SERVICE, V51, P116
NR 15
TC 2
Z9 2
U1 0
U2 22
PU INT SOC ART SCIENCE & TECHNOLOGY-ISAST
PI ATHINA
PA INT SOC ART SCIENCE & TECHNOLOGY-ISAST, ATHINA, 00000, GREECE
SN 2241-1925
J9 QUAL QUANT METHODS L
JI Qual. Quant. Methods Libr.
PD MAR
PY 2016
BP 221
EP 234
PG 14
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA EM4FN
UT WOS:000395269000021
DA 2024-09-05
ER
PT J
AU Wu, ZM
Lin, WW
Liu, P
Chen, JB
Mao, L
AF Wu, Ziming
Lin, Weiwei
Liu, Pan
Chen, Jingbang
Mao, Li
TI Predicting Long-Term Scientific Impact Based on Multi-Field Feature
Extraction
SO IEEE ACCESS
LA English
DT Article
DE H-index prediction; scientific impact; machine learning; heterogeneous
network
AB Nowadays, there have been many studies on evaluating the scientific impact of scholars. However, we still lack effective methods to predict long-term impact, especially 10 years in the future. Therefore, we propose a long-term scientific impact prediction model based on multi-field feature extraction. The workflow of our proposed model consists of feature engineering and model ensemble. In feature engineering, we extract attribute feature, time-series feature, and heterogeneous network feature based on three different fields. Moreover, when extracting heterogeneous network feature, we propose a scientific impact evaluation method based on heterogeneous academic network, which considers both the time of publication and author order factors. In the model ensemble, we adjust the basic model and noise model to the different training set to make full use of the information from the original dataset. The experiment results demonstrate that the proposed model can stably improve the accuracy of scholars' scientific impact prediction, and it also offers a prediction pattern for long-term prediction problem.
C1 [Wu, Ziming; Lin, Weiwei] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China.
[Liu, Pan; Chen, Jingbang] Zhejiang Univ, Chu Kochen Coll, Hangzhou 310000, Zhejiang, Peoples R China.
[Mao, Li] Guangdong Police Coll, Dept Comp Sci, Guangzhou 510440, Guangdong, Peoples R China.
C3 South China University of Technology; Zhejiang University
RP Lin, WW (corresponding author), South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China.
EM linww@scut.edu.cn
OI Liu, Pan/0009-0003-3764-7772; lin, weiwei/0000-0001-6876-1795
FU National Natural Science Foundation of China [61772205, 61872084];
Science and Technology Planning Project of Guangdong Province
[2017B010126002, 2016A010101018, 2016A010119171, 2018KJYZ009]; Guangzhou
Science and Technology Projects [201610010092, 201807010052,
201802010010]; Nansha Science and Technology Projects [2017GJ001];
Special Funds for the Development of Industry and Information of
Guangdong Province (Big Data Demonstrated Applications) in 2017; Young
Teachers Training of Guangdong Police Officer College [2018QNGG06];
Fundamental Research Funds for the Central Universities, SCUT
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 61772205 and Grant 61872084, in part by
the Science and Technology Planning Project of Guangdong Province under
Grant 2017B010126002, Grant 2016A010101018, Grant 2016A010119171, and
Grant 2018KJYZ009, in part by the Guangzhou Science and Technology
Projects under Grant 201610010092, Grant 201807010052, and Grant
201802010010, in part by the Nansha Science and Technology Projects
under Grant 2017GJ001, in part by the Special Funds for the Development
of Industry and Information of Guangdong Province (Big Data Demonstrated
Applications) in 2017, in part by the Young Teachers Training of
Guangdong Police Officer College under Grant 2018QNGG06, and in part by
the Fundamental Research Funds for the Central Universities, SCUT.
CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
[Anonymous], 2013, P 34 INT C INFORM SY
[Anonymous], 2016, EVID-BASED COMPL ALT, DOI DOI 10.3390/APP7010018
[Anonymous], 2015, P AEIT INT ANN C
[Anonymous], PATTERN RECOGNITION
[Anonymous], COMPLEXITY
Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1
Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364
Butun Ertan, 2017, 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P952, DOI 10.1145/3110025.3110160
Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006
Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Dawson S., 2014, P 4 INT C LEARNING A, P231
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
GARFIELD E, 1970, NATURE, V227, P669, DOI 10.1038/227669a0
Gross J.W., 2017, ESANN 2017 P EUR S A, P71
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9
Li YL, 2014, J INFORMETR, V8, P791, DOI 10.1016/j.joi.2014.07.007
Lin WW, 2017, IEEE ACCESS, V5, P16568, DOI 10.1109/ACCESS.2017.2738069
Podlubny I, 2005, SCIENTOMETRICS, V64, P95, DOI 10.1007/s11192-005-0240-0
Shen HW, 2014, AAAI CONF ARTIF INTE, P291
Stewart B, 2015, LEARN MEDIA TECHNOL, V40, P287, DOI 10.1080/17439884.2015.1015547
Walters WH, 2017, IEEE ACCESS, V5, P22036, DOI 10.1109/ACCESS.2017.2761400
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
Wang L, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02344-z
Wang Z, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-05259-5
Weihs L, 2017, ACM-IEEE J CONF DIG, P49
Wu B, 2018, IEEE ACCESS, V6, P51355, DOI 10.1109/ACCESS.2018.2868650
Xiaojun Wan, 2014, Journal of the Association for Information Science and Technology, V65, P1929, DOI 10.1002/asi.23083
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Yan ZW, 2015, MEDIAT INFLAMM, V2015, DOI 10.1155/2015/780149
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
Zhang J, 2018, IEEE ACCESS, V6, P55661, DOI 10.1109/ACCESS.2018.2863938
Zhang J, 2017, SCIENTOMETRICS, V112, P1301, DOI 10.1007/s11192-017-2458-z
Zhou ZH., 2012, Ensemble Methods: Foundations and Algorithms
NR 37
TC 10
Z9 11
U1 1
U2 25
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2019
VL 7
BP 51759
EP 51770
DI 10.1109/ACCESS.2019.2910239
PG 12
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA HW5CR
UT WOS:000466707200001
OA gold
DA 2024-09-05
ER
PT C
AU Su, X
Prasad, A
Kan, MY
Sugiyama, K
AF Su, Xuan
Prasad, Animesh
Kan, Min-Yen
Sugiyama, Kazunari
BE Bonn, M
Wu, D
Downie, SJ
Martaus, A
TI Neural Multi-Task Learning for Citation Function and Provenance
SO 2019 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL 2019)
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 19th ACM/IEEE Joint Conference on Digital Libraries (JCDL)
CY JUN 02-06, 2019
CL IL
DE Citation Analysis; Multi-Task Learning; Neural Networks
AB Citation function and provenance are two cornerstone tasks in citation analysis. Given a citation, the former task determines its rhetorical role, while the latter locates the text in the cited paper that contains the relevant cited information. We hypothesize that these two tasks are synergistically related, and build a model that validates this claim. For both tasks, we show that a single-layer convolutional neural network (CNN) outperforms existing state-of-the-art baselines. More importantly, we show that the two tasks are indeed synergistic: by jointly training both tasks using multi-task learning, we demonstrate additional performance gains.
C1 [Su, Xuan; Prasad, Animesh; Kan, Min-Yen; Sugiyama, Kazunari] Natl Univ Singapore, Sch Comp, Singapore, Singapore.
C3 National University of Singapore
RP Su, X (corresponding author), Natl Univ Singapore, Sch Comp, Singapore, Singapore.
EM suxuan@comp.nus.edu.sg; animesh@comp.nus.edu.sg; kanmy@comp.nus.edu.sg;
sugiyama@comp.nus.edu.sg
RI Sugiyama, Kazunari/JRY-8592-2023
OI Sugiyama, Kazunari/0000-0003-3962-821X; Prasad,
Animesh/0000-0002-9865-6993
CR Bird S, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P1755
Caruana R, 1998, LEARNING TO LEARN, P95, DOI 10.1007/978-1-4615-5529-2_5
Jaidka K, 2018, INT J DIGIT LIBRARIE, V19, P163, DOI 10.1007/s00799-017-0221-y
Low HengWee, 2011, THESIS
Prasad Animesh, 2017, BIRNDL SIGIR, P26
Yulianto Eric, 2012, THESIS
NR 6
TC 12
Z9 14
U1 0
U2 6
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2575-7865
EI 2575-8152
BN 978-1-7281-1547-4
J9 ACM-IEEE J CONF DIG
PY 2019
BP 394
EP 395
DI 10.1109/JCDL.2019.00122
PG 2
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods;
Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BP5KE
UT WOS:000555928200080
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Safdar, M
Siddique, N
Gulzar, A
Adil, SA
Yasin, H
Khan, MA
AF Safdar, Muhammad
Siddique, Nadeem
Gulzar, Ayesha
Adil, Syed Adnan
Yasin, Haisim
Khan, Muhammad Ajmal
TI A bibliometric analysis of literature published on ChatGPT and GPT
SO GLOBAL KNOWLEDGE MEMORY AND COMMUNICATION
LA English
DT Article; Early Access
DE AI tools; ChatGPT; GPT; Artificial intelligence; Bibliometric analysis
AB Purpose-This study aims to analyse the literature published on ChatGPT and generative pre-trained transformer (GPT) available through Scopus to identify the top countries, institutions, authors, journals and titles in terms of publishing and citations in the area. The research also intends to determine the collaborative trends among countries and authors as well as top-used keywords on the topic identified from the analysed literature. Design/methodology/approach-The researchers searched the Scopus database to collect and assess the literature on the topic. The paper used six applications such as Biblioshiny, VosViewer, Python, MS Access and Excel and Endnote to collect and analyse the literature. Findings-It is found that European countries such as the USA, the UK and Germany took the lead in terms of publishing and impact in the area but the USA stood first with 90 publications and 1,720 citations in this connection. Likewise, the organization "Rheinisch-Westf & auml;lische Technische Hochschule Aachen" scored the top position regarding publishing, but Open AI remained on top for getting the highest citations (1,384). Apropos, the author "Choi, Y" produced the highest number of publications. The research also shares the collaborative patterns, top journals and publications in the area, as well as the top-used keywords on the topic. Originality/value-To the best of the authors' knowledge, this is the first study that shares a bibliometric analysis of literature published on GPT and ChatGPT. The research not only fills the research gap on the topic but also shares implications for relevant stakeholders and future research directions for future researchers.
C1 [Safdar, Muhammad; Siddique, Nadeem] Lahore Univ Management Sci, Gad & Birgit Rausing Lib, Lahore, Pakistan.
[Gulzar, Ayesha] Univ Sargodha, Sargodha, Pakistan.
[Adil, Syed Adnan] UCL, London, England.
[Yasin, Haisim] Systems Ltd, Lahore, Pakistan.
[Khan, Muhammad Ajmal] Imam Abdulrahman Bin Faisal Univ, Deanship Lib Affairs, Dammam, Saudi Arabia.
C3 Lahore University of Management Sciences; University of Sargodha;
University of London; University College London; Imam Abdulrahman Bin
Faisal University
RP Safdar, M (corresponding author), Lahore Univ Management Sci, Gad & Birgit Rausing Lib, Lahore, Pakistan.
EM safdargr8@gmail.com
CR Abbas A., 2022, Journal of Information Management and Practices, V2, P1
Adeshola I, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2253858
Aldossary Nada Jaber, 2023, Acta Biomed, V94, pe2023061, DOI 10.23750/abm.v94i1.14086
Alston E., 2023, ChatGPT vs. GPT-3 and GPT-4: what's the difference?
Armstrong D., 2021, Public Sector, V44, P30
Ashiq M, 2021, J ACAD LIBR, V47, DOI 10.1016/j.acalib.2021.102355
Bawack RE, 2022, ELECTRON MARK, V32, P297, DOI 10.1007/s12525-022-00537-z
Bhagat K.J., 2020, Advance and Innovative Research, V7, P272
Biswas S., 2023, Role of Chat GPT in Education
Boudry C, 2022, GRAEF ARCH CLIN EXP, V260, P1779, DOI 10.1007/s00417-021-05511-7
Burcher M., 2020, Social Network Analysis and Law Enforcement: Applications for Intelligence Analysis, P159
Burlakov Vyacheslav V., 2020, Artificial Intelligence: Anthropogenic Nature vs. Social Origin. Advances in Intelligent Systems and Computing (AISC 1100), P374, DOI 10.1007/978-3-030-39319-9_43
Casino F, 2022, IEEE ACCESS, V10, P25464, DOI 10.1109/ACCESS.2022.3154059
Cheng SW, 2023, PSYCHIAT CLIN NEUROS, V77, P592, DOI 10.1111/pcn.13588
Cheng YP, 2022, INT J TECHNOL HUM IN, V18, DOI 10.4018/IJTHI.293191
Costa I.P.D.A., 2022, Pesquisa Operacional, V42, pe249414
Ferreira JJ, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121077
Fink MA, 2023, RADIOLOGY, V308, DOI 10.1148/radiol.231362
Fitria T. N., 2023, J. Engl. Lang. Teach, V12, P44, DOI DOI 10.15294/ELT.V12I1.64069
Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1
Freeman L.A., 2022, Journal of Information Systems Education, V33, P109
Gulzar A, 2022, INT J MOB LEARN ORG, V16, P429, DOI 10.1504/IJMLO.2022.125963
Halpern B., 2022, The difference between ChatGPT and GPT-3
Haupt CE, 2023, JAMA-J AM MED ASSOC, V329, P1349, DOI 10.1001/jama.2023.5321
Hendy A, 2023, Arxiv, DOI [arXiv:2302.09210, DOI 10.48550/ARXIV.2302.09210]
Hill-Yardin EL, 2023, BRAIN BEHAV IMMUN, V110, P152, DOI 10.1016/j.bbi.2023.02.022
Hosseini M, 2023, RES INTEGR PEER REV, V8, DOI 10.1186/s41073-023-00133-5
Imani B., 2019, Library Philosophy and Practice, V2019, P1
Jafarzade K., 2023, 2023 5 INT C PROBL C, P1
Jayadatta S., 2023, Journal of Applied Information Science, V11, P21
Keyes O.K., 2023, Tradition Innovations in Arts, Design, and Media Higher Education, V1, P4
Khan A, 2022, FINANC RES LETT, V47, DOI 10.1016/j.frl.2021.102520
Knickerbocker D., 2023, Network Science with Python: Explore the Networks around us Using Network Science, Social Network Analysis, and Machine Learning
Lingard L, 2023, PERSPECT MED EDUC, V12, P261, DOI 10.5334/pme.1072
Luckett J., 2023, Journal of Computing Sciences in Colleges, V39, P47
Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009
McGee R W., 2023, SSRN, DOI DOI 10.2139/SSRN.4359405
Murati M., 2023, Tweets
Nah F. F., 2023, Journal of Information Technology Case and Application Research, V25, P277, DOI DOI 10.1080/15228053.2023.2233814
Park JY, 2023, J KOR ASSOC ORAL MAX, V49, P105, DOI 10.5125/jkaoms.2023.49.3.105
Pinzolits R. F. J., 2023, MAP Education and Humanities, P37, DOI [10.53880/2744-2373.2023.4.37, DOI 10.53880/2744-2373.2023.4.37]
Raja R., 2018, J Appl Adv Res., V3, P33, DOI [10.21839/jaar.2018.v3iS1.165, DOI 10.21839/JAAR.2018.V3IS1.165]
Safdar M, 2023, J LIBR INF SCI, DOI 10.1177/09610006231155886
Safdar M, 2023, J LIBR INF SCI, V55, P848, DOI 10.1177/09610006221090225
Sezgin E, 2022, JMIR MED INF, V10, DOI 10.2196/32875
Sheikh RA., 2023, Int Res J Innov Eng Technol, V7, P150
Siddique N, 2023, GLOB KNOWL MEM COMMU, V72, P138, DOI 10.1108/GKMC-06-2021-0103
Sirrianni J, 2022, METHOD INFORM MED, V61, P195, DOI 10.1055/a-1900-7351
Sookoo A, 2021, INT J SYST ASSUR ENG, V12, P461, DOI 10.1007/s13198-021-01092-0
Straub D.W., 2009, MIS Quarterly, V33, P3, DOI [10.2307/20650302, DOI 10.2307/20650302]
Surameery NMS., 2023, International Journal of Information Technology & Computer Engineering (IJITC), DOI DOI 10.55529/IJITC.31.17.22
Tijjani B, 2021, ISRA INT J ISLAMIC F, V13, P84, DOI 10.1108/IJIF-03-2020-0056
Wahid N, 2023, GLOB KNOWL MEM COMMU, DOI 10.1108/GKMC-07-2022-0159
NR 53
TC 0
Z9 0
U1 6
U2 6
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 2514-9342
EI 2514-9350
J9 GLOB KNOWL MEM COMMU
JI Glob. Knowl. Mem. Commun.
PD 2024 MAY 20
PY 2024
DI 10.1108/GKMC-08-2023-0304
EA MAY 2024
PG 18
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA QX5V7
UT WOS:001224189500001
DA 2024-09-05
ER
PT J
AU Fang, DB
Yang, HX
Gao, BJ
Li, XJ
AF Fang, Debin
Yang, Haixia
Gao, Baojun
Li, Xiaojun
TI Discovering research topics from library electronic references using
latent Dirichlet allocation
SO LIBRARY HI TECH
LA English
DT Article
DE Academic libraries; Big data; Accounting research; Latent Dirichlet
allocation (LDA); Topic model; Topic trends
ID INFORMATION-SCIENCE; WORD; DISSERTATIONS; TRENDS
AB Purpose Discovering the research topics and trends from a large quantity of library electronic references is essential for scientific research. Current research of this kind mainly depends on human justification. The purpose of this paper is to demonstrate how to identify research topics and evolution in trends from library electronic references efficiently and effectively by employing automatic text analysis algorithms.
Design/methodology/approach The authors used the latent Dirichlet allocation (LDA), a probabilistic generative topic model to extract the latent topic from the large quantity of research abstracts. Then, the authors conducted a regression analysis on the document-topic distributions generated by LDA to identify hot and cold topics.
Findings First, this paper discovers 32 significant research topics from the abstracts of 3,737 articles published in the six top accounting journals during the period of 1992-2014. Second, based on the document-topic distributions generated by LDA, the authors identified seven hot topics and six cold topics from the 32 topics.
Originality/value The topics discovered by LDA are highly consistent with the topics identified by human experts, indicating the validity and effectiveness of the methodology. Therefore, this paper provides novel knowledge to the accounting literature and demonstrates a methodology and process for topic discovery with lower cost and higher efficiency than the current methods.
C1 [Fang, Debin; Yang, Haixia; Gao, Baojun] Wuhan Univ, Econ & Management Sch, Wuhan, Hubei, Peoples R China.
[Li, Xiaojun] Yunnan Univ Finance & Econ, Coll Accounting, Kunming, Yunnan, Peoples R China.
C3 Wuhan University; Yunnan University of Finance & Economics
RP Gao, BJ (corresponding author), Wuhan Univ, Econ & Management Sch, Wuhan, Hubei, Peoples R China.
EM gaobj@whu.edu.cn
RI Lobo, Diele/I-9106-2012; lan, xueyao/JZD-4201-2024; gao,
baojun/AAQ-1613-2020
OI Gao, Baojun/0000-0002-9190-8158; Fang, Debin/0000-0001-8410-8358
FU National Natural Science Foundation Programs of China (NSFC) [71771182,
71673210, 71725007]
FX The authors would like to thank all the supports from the National
Natural Science Foundation Programs of China (NSFC) (71771182, 71673210,
71725007).
CR Agarwal A, 2008, INT J COMPUT VISION, V78, P15, DOI 10.1007/s11263-007-0072-x
An XY, 2011, SCIENTOMETRICS, V88, P133, DOI 10.1007/s11192-011-0374-1
[Anonymous], 1999, Foundations of statistical natural language processing
Bao Y, 2014, MANAGE SCI, V60, P1371, DOI 10.1287/mnsc.2014.1930
Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859]
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
CAMBROSIO A, 1993, SCIENTOMETRICS, V27, P119, DOI 10.1007/BF02016546
Coelho LP, 2010, BIOINFORMATICS, V26, pi7, DOI 10.1093/bioinformatics/btq220
Cushing B.E., 1989, ACCOUNTING HIST J, V16, P1
Ding Y, 2000, J INFORM SCI, V26, P429, DOI 10.1177/016555150002600606
Dunbar AE, 2014, ISS ACCOUNT EDUC, V29, P1, DOI 10.2308/iace-50603
Dunning T., 1993, Computational Linguistics, V19, P61
Farcas T.V., 2015, KNOWLEDGE HORIZONS E, V7, P14
Feinerer I, 2008, J STAT SOFTW, V25, P1
Franklin Renee E., 2007, Journal of Education for Library and Information Science, V48, P187
Gao BJ, 2018, TOURISM MANAGE, V65, P176, DOI 10.1016/j.tourman.2017.10.007
Gao SJ, 2009, LIBR COLLECT ACQUIS, V33, P8, DOI 10.1016/j.lcats.2009.03.001
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grün B, 2011, J STAT SOFTW, V40, P1
Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
Hwang SY, 2017, ONLINE INFORM REV, V41, P318, DOI 10.1108/OIR-06-2016-0166
Jo Yohan, 2011, Proceedings of the fourth ACM international conference on Web search and data mining, P815, DOI DOI 10.1145/1935826.1935932
Kakkonen T, 2008, EDUC TECHNOL SOC, V11, P275
Li W., 2006, ICML, P577, DOI [10.1145/1143844.1143917, 10.1145/]
Liu GY, 2012, SCIENTOMETRICS, V91, P203, DOI 10.1007/s11192-011-0586-4
NEWTON MA, 1994, J R STAT SOC B, V56, P3
Niebles JC, 2008, INT J COMPUT VISION, V79, P299, DOI 10.1007/s11263-007-0122-4
Piepenbrink A, 2015, SCIENTOMETRICS, V102, P2107, DOI 10.1007/s11192-014-1513-2
Priva UC, 2015, COGNITION, V135, P4, DOI 10.1016/j.cognition.2014.11.006
RIP A, 1984, SCIENTOMETRICS, V6, P381, DOI 10.1007/BF02025827
Ritzhaupt AD, 2010, INT REV RES OPEN DIS, V11, P37, DOI 10.19173/irrodl.v11i1.763
Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302
Wallach H.M., 2006, Proc. 23rd Int. Conf. Mach. Learn, P977984, DOI DOI 10.1145/1143844.1143967
Wang XG, 2009, IEEE T PATTERN ANAL, V31, P539, DOI 10.1109/TPAMI.2008.87
Wang Xuerui., P 12 ACM SIGKDD INT, P424
Wu H., 2010, P 12 ACM SIGKDD INT, P424
Xing DS, 2007, PATTERN RECOGN LETT, V28, P1727, DOI 10.1016/j.patrec.2007.04.015
Yan EJ, 2012, SCIENTOMETRICS, V90, P499, DOI 10.1007/s11192-011-0531-6
Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8
Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1
NR 45
TC 18
Z9 22
U1 5
U2 97
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 0737-8831
J9 LIBR HI TECH
JI Libr. Hi Tech
PY 2018
VL 36
IS 3
SI SI
BP 400
EP 410
DI 10.1108/LHT-06-2017-0132
PG 11
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA GI3EB
UT WOS:000434253200003
DA 2024-09-05
ER
PT J
AU Wulff, P
Westphal, A
Mientus, L
Nowak, A
Borowski, A
AF Wulff, Peter
Westphal, Andrea
Mientus, Lukas
Nowak, Anna
Borowski, Andreas
TI Enhancing writing analytics in science education research with machine
learning and natural language processing-Formative assessment of science
and non-science preservice teachers' written reflections
SO FRONTIERS IN EDUCATION
LA English
DT Article
DE machine learning; natural language processing; teachers' reflections;
assessment; deep learning
ID PROFESSIONAL VISION; KNOWLEDGE; SUPPORT; OPPORTUNITIES
AB IntroductionScience educators use writing assignments to assess competencies and facilitate learning processes such as conceptual understanding or reflective thinking. Writing assignments are typically scored with holistic, summative coding rubrics. This, however, is not very responsive to the more fine-grained features of text composition and represented knowledge in texts, which might be more relevant for adaptive guidance and writing-to-learn interventions. In this study we examine potentials of machine learning (ML) in combination with natural language processing (NLP) to provide means for analytic, formative assessment of written reflections in science teacher education. MethodsML and NLP are used to filter higher-level reasoning sentences in physics and non-physics teachers' written reflections on a standardized teaching vignette. We particularly probe to what extent a previously trained ML model can facilitate the filtering, and to what extent further fine-tuning of the previously trained ML model can enhance performance. The filtered sentences are then clustered with ML and NLP to identify themes and represented knowledge in the teachers' written reflections. ResultsResults indicate that ML and NLP can be used to filter higher-level reasoning elements in physics and non-physics preservice teachers' written reflections. Furthermore, the applied clustering approach yields specific topics in the written reflections that indicate quality differences in physics and non-physics preservice teachers' texts. DiscussionOverall, we argue that ML and NLP can enhance writing analytics in science education. For example, previously trained ML models can be utilized in further research to filter higher-level reasoning sentences, and thus provide science education researchers efficient mean to answer derived research questions.
C1 [Wulff, Peter] Heidelberg Univ Educ, Phys & Phys Educ Res, Heidelberg, Germany.
[Westphal, Andrea] Univ Greifswald, Dept Educ Res, Greifswald, Mecklenburg Vor, Germany.
[Mientus, Lukas; Nowak, Anna; Borowski, Andreas] Univ Potsdam, Phys Educ Res Grp, Brandenburg, Germany.
C3 Ruprecht Karls University Heidelberg; Universitat Greifswald; University
of Potsdam
RP Wulff, P (corresponding author), Heidelberg Univ Educ, Phys & Phys Educ Res, Heidelberg, Germany.
EM peter.wulff@ph-heidelberg.de
RI Wulff, Peter/GSI-9069-2022
OI Wulff, Peter/0000-0002-5471-7977; Mientus, Lukas/0000-0001-5344-4770
CR Abels S., 2011, LEHRERINNEN ALSREFLE, V1st
Adams RA, 2013, BRAIN STRUCT FUNCT, V218, P611, DOI 10.1007/s00429-012-0475-5
Aeppli J., 2016, Beitrage zur Lehrerinnen- und Lehrerbildung, V34, P78, DOI DOI 10.36950/BZL.34.2016.9540
[Anonymous], 2012, NORDIC STUDIES SCI E, DOI DOI 10.5617/NORDINA.253
[Anonymous], 2010, UNTERRICHTSWISSENSCH
Baaijen VM, 2018, COGNITION INSTRUCT, V36, P199, DOI 10.1080/07370008.2018.1456431
Bain JohnD., 1999, TEACHERS TEACHING TH, V5, P51, DOI DOI 10.1080/1354060990050104
Bangert-Drowns RL, 2004, REV EDUC RES, V74, P29, DOI 10.3102/00346543074001029
Bhardwaj R., 2020, PREPRINT
Billion-Kramer T., 2020, Z F R DIDAKTIK NATUR, V26, P53, DOI [10.1007/s40573-020-00112-z, DOI 10.1007/S40573-020-00112-Z]
Brazdil Pavel, 2022, Metalearning: Applications to Automated Machine Learning and Data Mining
Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726
Burstein J, 2009, LECT NOTES COMPUT SC, V5449, P6, DOI 10.1007/978-3-642-00382-0_2
Caliskan A, 2017, SCIENCE, V356, DOI 10.1126/science.aal4230
Campello Ricardo J. G. B., 2013, Advances in Knowledge Discovery and Data Mining. 17th Pacific-Asia Conference (PAKDD 2013). Proceedings, P160, DOI 10.1007/978-3-642-37456-2_14
Carlson J., 2019, Repositioning Pedagogical Content Knowledge in Teachers' Knowledge for Teaching Science
Carpenter D, 2020, LECT NOTES ARTIF INT, V12163, P67, DOI 10.1007/978-3-030-52237-7_6
Chan KKH, 2021, STUD SCI EDUC, V57, P1, DOI 10.1080/03057267.2020.1755803
Chen YC, 2013, SCI EDUC, V97, P745, DOI 10.1002/sce.21067
Chodorow M., 2004, ETS Research Report Series, V2004, pi, DOI DOI 10.1002/J.2333-8504.2004.TB01931.X
Christian B., 2021, The Alignment Problem: How can Machines Learn Human Values?
Cronje R, 2013, INT J SCI EDUC, V35, P2718, DOI 10.1080/09500693.2011.628344
Crossley SA, 2016, WRIT COMMUN, V33, P328, DOI 10.1177/0741088316650178
Darling-Hammond L., 2012, POWERFUL TEACHER ED
DEJONG T, 1986, J EDUC PSYCHOL, V78, P279
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Docktor JL, 2016, PHYS REV PHYS EDUC R, V12, DOI 10.1103/PhysRevPhysEducRes.12.010130
Donnelly DF, 2015, J SCI EDUC TECHNOL, V24, P861, DOI 10.1007/s10956-015-9569-1
Engel Andreas, 2001, STAT MECH LEARNING
Fleckenstein J, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.562462
Fleiss JL., 1981, Statistical methods for rates and proportions, V2, P22, DOI [10.1002/0471445428.ch18, DOI 10.1002/0471445428.CH18]
Galbraith David., 2009, BRIT J EDUC PSYCHOL, V2, P5, DOI DOI 10.1348/978185409X421129
Gibson Andrew., 2016, Journal of Learning Analytics, V3, P22, DOI DOI 10.18608/JLA.2016.32.3
Goldberg Y, 2017, SYNTHESIS LECT HUMAN
Graham S, 2007, J EDUC PSYCHOL, V99, P445, DOI 10.1037/0022-0663.99.3.445
Grootendorst M., 2020, Topic modeling with BERT
Ha MS, 2011, CBE-LIFE SCI EDUC, V10, P379, DOI 10.1187/cbe.11-08-0081
Halliday MAK., 2007, An Introduction to Functional Grammar, V2nd ed
Harris ZS, 1954, WORD, V10, P146, DOI 10.1080/00437956.1954.11659520
HATTON N, 1995, TEACH TEACH EDUC, V11, P33, DOI 10.1016/0742-051X(94)00012-U
Honnibal M., 2017, spacy 2: natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing, DOI DOI 10.3233/978-1-60750-588-4-1080
Hume A, 2009, HIGH EDUC RES DEV, V28, P247, DOI 10.1080/07294360902839859
Jescovitch LN, 2021, J SCI EDUC TECHNOL, V30, P150, DOI 10.1007/s10956-020-09858-0
Jung J, 2022, J TEACH EDUC, V73, P301, DOI 10.1177/00224871211056936
Jurafsky D, 2014, Speech and language processing, V3
Kelih E., 2005, LDV FORUM, V20, DOI [10.21248/jlcl.20.2005.74, DOI 10.21248/JLCL.20.2005.74]
Kellogg RT, 2008, J WRIT RES, V1, P1, DOI 10.17239/jowr-2008.01.01.1
Kember D., 1999, International Journal of Lifelong Education, V18, P18, DOI DOI 10.1080/026013799293928
Kleinknecht M, 2016, TEACH TEACH EDUC, V59, P45, DOI 10.1016/j.tate.2016.05.020
Koponen IT, 2010, SCI EDUC-NETHERLANDS, V19, P259, DOI 10.1007/s11191-009-9200-z
Korthagen F., 2005, TEACHERS TEACHING TH, V11, P47, DOI [DOI 10.1080/1354060042000337093, 10.1080/1354060042000337093]
Korthagen F.A. J., 1999, Educational Researcher, V28, P4, DOI [DOI 10.2307/1176444, https://doi.org/10.2307/1176444, DOI 10.3102/0013189X028004004]
Kost D., 2019, DISSERTATION
Kriegel HP, 2011, WIRES DATA MIN KNOWL, V1, P231, DOI 10.1002/widm.30
Kruger D., 2020, Z DIDAKT NATURWISS, V26, P157, DOI DOI 10.1007/S40573-020-00118-7
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Langley P., 1988, Machine Learning, V3, P5, DOI 10.1023/A:1022623814640
Lederman N., 2007, HDB RES SCI ED
Leonhard T., 2011, Ein Lehramtsstudium beginnen: Laufbahnberatung, Bewerberauswahl und erste Schritte im Qualifizierungsprozess Lehrerbildung auf dem Prufstand, V4, P240
Levin DA, 2009, J TEACH EDUC, V60, P142, DOI 10.1177/0022487108330245
Lieberman E, 2007, NATURE, V449, P713, DOI 10.1038/nature06137
Lin XD, 1999, ETR&D-EDUC TECH RES, V47, P43, DOI 10.1007/BF02299633
Liu S, 2022, COMPUT EDUC, V181, DOI 10.1016/j.compedu.2022.104461
Loughran J, 1995, TEACH TEACH EDUC, V11, P565, DOI 10.1016/0742-051X(95)00012-9
Mainzer K, 2009, EVOL INST ECON REV, V6, P1
Marsland S., 2014, MACHINE LEARNING ALG, DOI [DOI 10.1201/B17476, 10.1201/b17476]
McCloskey M., 1989, Psychol. Learn. Motiv., V24, P109, DOI 10.1016/S0079-7421(08)60536-8
McInnes L., 2018, J OPEN SOUR SOFTWARE, V3, DOI [10.21105/joss.00861, DOI 10.21105/JOSS.00861]
McInnes L, 2017, INT CONF DAT MIN WOR, P33, DOI 10.1109/ICDMW.2017.12
McNamara DS, 1996, COGNITION INSTRUCT, V14, P1, DOI 10.1207/s1532690xci1401_1
Mena-Marcos J, 2013, EUR J TEACH EDUC, V36, P147, DOI 10.1080/02619768.2012.713933
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Nehyba J, 2023, EDUC INF TECHNOL, V28, P2961, DOI 10.1007/s10639-022-11254-7
Norris SP, 2003, SCI EDUC, V87, P224, DOI 10.1002/sce.10066
Nowak A., 2019, NATURWISSENSCHAFTLIC, V838
Odden TOB, 2021, SCI EDUC, V105, P653, DOI 10.1002/sce.21623
Ostendorff M, 2019, Arxiv, DOI [arXiv:1909.08402, DOI 10.48550/ARXIV.1909.08402]
Park S, 2008, RES SCI EDUC, V38, P261, DOI 10.1007/s11165-007-9049-6
Poldner E, 2014, EUR J TEACH EDUC, V37, P348, DOI 10.1080/02619768.2014.892479
Prain V, 1996, TEACH TEACH EDUC, V12, P609, DOI 10.1016/S0742-051X(96)00003-0
Rafoth B.A., 1984, Written Communication, V1, P446, DOI DOI 10.1177/0741088384001004004
Rauf I A., 2021, Physics of Data Science and Machine Learning
Reimers N, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3982
Ruder Sebastian, 2019, Neural transfer learning for natural language processing
Sadler PM, 2013, AM EDUC RES J, V50, P1020, DOI 10.3102/0002831213477680
Seidel T, 2014, AM EDUC RES J, V51, P739, DOI 10.3102/0002831214531321
Shum SB., 2017, J LEARN ANAL, V4, P58, DOI DOI 10.18608/JLA.2017.41.5
Smyth JM, 1998, J CONSULT CLIN PSYCH, V66, P174, DOI 10.1037/0022-006X.66.1.174
Sorge S., 2018, MNU J, V6, P420
SPARKSLANGER GM, 1990, J TEACH EDUC, V41, P23, DOI 10.1177/002248719004100504
Stephenson NS, 2016, CHEM EDUC RES PRACT, V17, P72, DOI 10.1039/c5rp00102a
Strubell E, 2019, PREPRINT
Talanquer V, 2015, J RES SCI TEACH, V52, P585, DOI 10.1002/tea.21209
Todorova M, 2017, TEACH TEACH EDUC, V68, P275, DOI 10.1016/j.tate.2017.08.016
Ullmann TD, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), P163, DOI 10.1145/3027385.3027394
Ullmann TD, 2019, INT J ARTIF INTELL E, V29, P217, DOI 10.1007/s40593-019-00174-2
Vaswani A, 2017, ADV NEUR IN, V30
von Aufschnaiter C., 2019, HERAUSFORDERUNG LEHR, V2, P144, DOI DOI 10.4119/UNIBI/HLZ-144
Wenner JA, 2018, J SCI TEACH EDUC, V29, P741, DOI 10.1080/1046560X.2018.1512362
Wu Y., 2016, PREPRINT
Wulff P, 2022, J SCI EDUC TECHNOL, V31, P490, DOI 10.1007/s10956-022-09969-w
Wulff P, 2023, INT J ARTIF INTELL E, V33, P439, DOI 10.1007/s40593-022-00290-6
Wulff P, 2021, J SCI EDUC TECHNOL, V30, P1, DOI 10.1007/s10956-020-09865-1
Yore LD, 2004, READ RES QUART, V39, P347, DOI 10.1598/RRQ.39.3.8
YOUMANS G, 1990, STYLE, V24, P584
Zhai XM, 2022, J RES SCI TEACH, V59, P1765, DOI 10.1002/tea.21773
Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757
NR 107
TC 8
Z9 8
U1 7
U2 25
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2504-284X
J9 FRONT EDUC
JI Front. Educ.
PD JAN 9
PY 2023
VL 7
AR 1061461
DI 10.3389/feduc.2022.1061461
PG 18
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA 8E7XN
UT WOS:000919182700001
OA gold
DA 2024-09-05
ER
PT C
AU Castanha, J
Indrawati
Pillai, SKB
Ramantoko, G
Widarmanti, T
AF Castanha, Jick
Indrawati
Pillai, Subhash K. B.
Ramantoko, Gadang
Widarmanti, Tri
GP IEEE
TI A Systematic Literature Review on Natural Language Processing (NLP)
SO 2022 INTERNATIONAL CONFERENCE ON ADVANCED CREATIVE NETWORKS AND
INTELLIGENT SYSTEMS, ICACNIS
LA English
DT Proceedings Paper
CT International Conference on Advanced Creative Networks and Intelligent
Systems (ICACNIS) - Blockchain Technology, Intelligent Systems, and the
Applications for Human Life
CY NOV 23, 2022
CL Bandung, INDONESIA
DE Natural Language Processing; Artificial Intelligence; Systematic Review;
Bibliometric analysis; NLP
ID TEXT; INFORMATION
AB Natural Language Processing (NLP) is a branch of Artificial Intelligence (AI) technology used by machines to understand, analyze and interpret human languages. In the past decade, NLP received more recognition due to innovation in information and communication technology which led to various research. Thus, it is essential to understand the development taken in the knowledge of literature. The present study aims to present a systematic literature review using bibliometric analysis in NLP research. The study identifies the publication trends, influential journals, cited articles, influential authors, institutions, countries, key research areas, and research clusters in the NLP field. 12541 NLP publications were extracted from the Web of Science (WoS) database and further analyzed using bibliometric analysis. The result indicated that the first NLP publication was in 1989, with the highest publication recorded in 2021. The IEEE access journal was the leading journal with the highest number of publications, and the highest number of citations received for NLP articles is 3174. The most productive author in the NLP field is Liu HF, whereas Harward university is the most influential institution. The US is the leading country in the total number of publications. Researchers extensively researched applied sciences area. The findings further revealed that most of the NLP research focused on five main clusters: modeling, neural networks, artificial intelligence, data mining using social media platforms, and data capturing and learning.
C1 [Castanha, Jick; Pillai, Subhash K. B.] Goa Univ, Goa Business Sch, Taleigao, Goa, India.
[Indrawati; Ramantoko, Gadang; Widarmanti, Tri] Telkom Univ, Sch Business & Econ, Bandung, Indonesia.
C3 Goa University; Telkom University
RP Castanha, J (corresponding author), Goa Univ, Goa Business Sch, Taleigao, Goa, India.
OI CASTANHA, JICK/0000-0003-0665-1691
CR [Anonymous], 1999, Foundations of statistical natural language processing
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Aronson AR, 2001, J AM MED INFORM ASSN, P17
Berger AL, 1996, COMPUT LINGUIST, V22, P39
Cai M, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e06322
Collobert R, 2011, J MACH LEARN RES, V12, P2493
Erkan G, 2004, J ARTIF INTELL RES, V22, P457, DOI 10.1613/jair.1523
Gu JX, 2018, PATTERN RECOGN, V77, P354, DOI 10.1016/j.patcog.2017.10.013
Guo YM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133606
Hofmann T, 2001, MACH LEARN, V42, P177, DOI 10.1023/A:1007617005950
Houssein EH, 2021, IEEE ACCESS, V9, P140628, DOI 10.1109/ACCESS.2021.3119621
Kang Y, 2020, J MANAG ANAL, V7, P139, DOI 10.1080/23270012.2020.1756939
Kreimeyer K, 2017, J BIOMED INFORM, V73, P14, DOI 10.1016/j.jbi.2017.07.012
Le Glaz A, 2021, J MED INTERNET RES, V23, DOI 10.2196/15708
Liu WB, 2017, NEUROCOMPUTING, V234, P11, DOI 10.1016/j.neucom.2016.12.038
Luo JW, 2020, NEUROIMAG CLIN N AM, V30, P447, DOI 10.1016/j.nic.2020.08.001
Mellia JA, 2021, ANN SURG, V273, P900, DOI 10.1097/SLA.0000000000004419
Paul J, 2020, INT BUS REV, V29, DOI 10.1016/j.ibusrev.2020.101717
Raharjana IK, 2021, IEEE ACCESS, V9, P53811, DOI 10.1109/ACCESS.2021.3070606
Savova GK, 2010, J AM MED INFORM ASSN, V17, P507, DOI 10.1136/jamia.2009.001560
Secinaro S, 2022, J BUS RES, V150, P399, DOI 10.1016/j.jbusres.2022.06.011
Singh G, 2022, IETE TECH REV, V39, P1046, DOI 10.1080/02564602.2021.1984323
Spyns P, 1996, METHOD INFORM MED, V35, P285
Sun SL, 2017, INFORM FUSION, V36, P10, DOI 10.1016/j.inffus.2016.10.004
Taskin Z, 2019, ONLINE INFORM REV, V43, P676, DOI 10.1108/OIR-07-2018-0217
Tsochantaridis I, 2005, J MACH LEARN RES, V6, P1453
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
WEISCHEDEL R, 1989, ANNU REV COMPUT SCI, V4, P435
Wikipedia, 2022, OUTL AC DISC
Wu S, 2020, J AM MED INFORM ASSN, V27, P457, DOI 10.1093/jamia/ocz200
Xiang CY, 2017, ECOL ENG, V99, P400, DOI 10.1016/j.ecoleng.2016.11.028
Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738
Zulkarnain, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e08615
NR 33
TC 1
Z9 1
U1 10
U2 28
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 979-8-3503-3444-9
PY 2022
BP 130
EP 135
DI 10.1109/ICACNIS57039.2022.10055568
PG 6
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BV2XB
UT WOS:001012145500022
DA 2024-09-05
ER
PT J
AU Garg, M
Rangra, P
AF Garg, Mohit
Rangra, Priya
TI Bibliometric Analysis of Latent Dirichlet Allocation
SO DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY
LA English
DT Article
DE Bibliometrics; Big data; Citation analysis; Latent dirichlet allocation
ID QUESTION; SCIENCE
AB Latent Dirichlet Allocation (LDA) has emerged as an important algorithm in big data analysis that finds the group of topics in the text data. It posits that each text document consists of a group of topics, and each topic is a mixture of words related to it. With the emergence of a plethora of text data, the LDA has become a popular algorithm for topic modeling among researchers from different domains. Therefore, it is essential to understand the trends of LDA researches. Bibliometric techniques are established methods to study the research progress of a topic. In this study, bibliographic data of 18715 publications that have cited the I,DA were extracted from the Scopus database. The software R and Vosviewer were used to carry out the analysis. The analysis revealed that research interest in LDA had grown exponentially. The results showed that most authors preferred "Book Series" followed by "Conference Proceedings" as the publication venue. The majority of the institutions and authors were from the USA, followed by China. The co-occurrence analysis of keywords indicated that text mining and machine learning were dominant topics in LDA research with significant interest in social media. This study attempts to provide a comprehensive analysis and intellectual structure of LDA compared to previous studies.
C1 [Garg, Mohit] Indian Inst Technol, Delhi 110016, India.
[Rangra, Priya] Cent Univ Himachal Pradesh, Dept Lib & Informat Sci, Shahpur 176206, India.
C3 Indian Institute of Technology System (IIT System); Indian Institute of
Technology (IIT) - Delhi; Central University of Himachal Pradesh
RP Rangra, P (corresponding author), Cent Univ Himachal Pradesh, Dept Lib & Informat Sci, Shahpur 176206, India.
EM priyarangra26494@gmail.com
OI GARG, MOHIT/0000-0001-5787-7143; , Priya/0000-0003-3015-9963
CR Ali R.H., 2020, SEKE, P400
[Anonymous], 2012, PROC 5 ACM INT C WEB
Baburajan V, 2018, IEEE INT C INTELL TR, P3657, DOI 10.1109/ITSC.2018.8569380
Bandeira Alan, 2019, 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), P255, DOI 10.1109/MSR.2019.00051
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Chang J., 2015, lda: Collapsed Gibbs Sampling Methods for Topic Models 1.4.2
Chen S., 2018, APPL MARKETING ANAL, V4, P53
Chen TH, 2016, EMPIR SOFTW ENG, V21, P1843, DOI 10.1007/s10664-015-9402-8
Choi S, 2020, ISSUES MENT HEALTH N, V41, P592, DOI 10.1080/01612840.2019.1705944
Daud A, 2010, FRONT COMPUT SCI CHI, V4, P280, DOI 10.1007/s11704-009-0062-y
Hoang DT, 2018, STUD COMPUT INTELL, V769, P27, DOI 10.1007/978-3-319-76081-0_3
Dwivedi S, 2015, CURR SCI INDIA, V109, P869, DOI 10.18520/v109/i5/869-877
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Figuerola CG, 2017, SCIENTOMETRICS, V112, P1507, DOI 10.1007/s11192-017-2432-9
Haridasan S, 2007, LIBR REV, V56, P299, DOI 10.1108/00242530710743525
Ikegami Y, 2013, IEEE SYS MAN CYBERN, P4676, DOI 10.1109/SMC.2013.796
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Li HJ, 2016, PHYSICA A, V450, P657, DOI 10.1016/j.physa.2016.01.017
Li X, 2021, J INF SCI, V47, P161, DOI 10.1177/0165551519877049
Maity SK, 2018, IEEE T COMPUT SOC SY, V5, P816, DOI 10.1109/TCSS.2018.2859964
Majumdar A, 2019, INT J PROD ECON, V216, P1, DOI 10.1016/j.ijpe.2019.04.008
McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit
Negi S, 2014, INT C PATT RECOG, P1958, DOI 10.1109/ICPR.2014.342
PRITCHARD A, 1969, J DOC, V25, P348
Rehurek R., 2011, Gensim-statistical semantics in python"
Sinha A., 2013, Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, P13, DOI DOI 10.1145/2517312.2517317
Steyvers M., 2011, Matlab topic modeling toolbox version 1.4
Sun XB, 2016, 2016 17TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), P357, DOI 10.1109/SNPD.2016.7515925
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vasconcelos Marisa, 2020, WebMedia '20: Proceedings of the Brazilian Symposium on Multimedia and the Web, P25, DOI 10.1145/3428658.3431090
Vlachos E, 2018, IEEE INT C INT ROBOT, P1255, DOI 10.1109/IROS.2018.8594058
Wang Y-C, 2013, P SIGCHI C HUM FACT, P31, DOI DOI 10.1145/2470654.2470659
Yu DJ, 2020, INT J MACH LEARN CYB, V11, P715, DOI 10.1007/s13042-019-01028-y
Zou CY, 2014, PROC IEEE INT CONF S, P593, DOI 10.1109/ICSME.2014.103
NR 34
TC 5
Z9 5
U1 10
U2 41
PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE
PI DELHI
PA METCALFE HOUSE, DELHI 110054, INDIA
SN 0974-0643
EI 0976-4658
J9 DESIDOC J LIB INF TE
JI DESIDOC J. Lib. Inf. Technol.
PD MAR
PY 2022
VL 42
IS 2
BP 105
EP 113
DI 10.14429/djlit.42.2.17307
PG 9
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA ZQ8QW
UT WOS:000767363700005
OA gold
DA 2024-09-05
ER
PT J
AU Ma, AQ
Liu, Y
Xu, XJ
Dong, T
AF Ma, Anqi
Liu, Yu
Xu, Xiujuan
Dong, Tao
TI A deep-learning based citation count prediction model with paper
metadata semantic features
SO SCIENTOMETRICS
LA English
DT Article
DE Citation count prediction; Metadata semantic features; Deep learning;
Sentence embedding; Semantic information
ID CONVOLUTIONAL NEURAL-NETWORKS; IMPACT; ARTICLES; SCIENCE; TITLES; INDEX
AB Predicting the impact of academic papers can help scholars quickly identify the high-quality papers in the field. How to develop efficient predictive model for evaluating potential papers has attracted increasing attention in academia. Many studies have shown that early citations contribute to improving the performance of predicting the long-term impact of a paper. Besides early citations, some bibliometric features and altmetric features have also been explored for predicting the impact of academic papers. Furthermore, paper metadata text such as title, abstract and keyword contains valuable information which has effect on its citation count. However, present studies ignore the semantic information contained in the metadata text. In this paper, we propose a novel citation prediction model based on paper metadata text to predict the long-term citation count, and the core of our model is to obtain the semantic information from the metadata text. We use deep learning techniques to encode the metadata text, and then further extract high-level semantic features for learning the citation prediction task. We also integrate early citations for improving the prediction performance of the model. We show that our proposed model outperforms the state-of-the-art models in predicting the long-term citation count of the papers, and metadata semantic features are effective for improving the accuracy of the citation prediction models.
C1 [Ma, Anqi; Liu, Yu; Xu, Xiujuan; Dong, Tao] Dalian Univ Technol, Sch Software, Dalian 116621, Peoples R China.
C3 Dalian University of Technology
RP Liu, Y (corresponding author), Dalian Univ Technol, Sch Software, Dalian 116621, Peoples R China.
EM maanqi@mail.dlut.edu.cn; yuliu@dlut.edu.cn; xjxu@dlut.edu.cn;
dongtao2019@mail.dlut.edu.cn
RI Liu, Yu/ABD-6335-2021
OI Ma, Anqi/0000-0002-2683-0657
FU Natural Science Foundation of China [61672128]
FX This work was supported by the Natural Science Foundation of China grant
61672128.
CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Aikawa K., 2019, 2019 IEEE 8 GLOB C C, P441, DOI [10.1109/GCCE46687.2019.9015579, DOI 10.1109/GCCE46687.2019.9015579]
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005
Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004
Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4
Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006
Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Chen YC, 2019, IEEE-ACM T AUDIO SPE, V27, P1481, DOI 10.1109/TASLP.2019.2922832
Clark K., 2020, BT
Clauset A, 2017, SCIENCE, V355, P477, DOI 10.1126/science.aal4217
Colladon AF, 2020, SCIENTOMETRICS, V124, P357, DOI 10.1007/s11192-020-03479-5
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Guo JX, 2018, AAAI CONF ARTIF INTE, P5141
Habibzadeh F, 2010, CROAT MED J, V51, P165, DOI 10.3325/cmj.2010.51.165
Haggan M, 2004, J PRAGMATICS, V36, P293, DOI 10.1016/S0378-2166(03)00090-0
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Hu YH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.101004
Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z
Jati A, 2019, IEEE-ACM T AUDIO SPE, V27, P1577, DOI 10.1109/TASLP.2019.2921890
Karvelis P., 2018, P INT JOINT C NEUR N, V2018, P1, DOI DOI 10.1109/IJCNN.2018.8489513
Lau Jey Han, 2016, P 1 WORKSHOP REPRESE, P78, DOI DOI 10.18653/V1/W16-1609
Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760
Letchford A, 2016, J INFORMETR, V10, P1, DOI 10.1016/j.joi.2015.11.001
Li MJ, 2019, IEEE SYS MAN CYBERN, P1172, DOI 10.1109/SMC.2019.8913961
Li SB, 2018, SCIENTOMETRICS, V117, P721, DOI 10.1007/s11192-018-2905-5
Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914
Liu Yinhan, 2019, Roberta: A robustly optimized bert pretraining approach
Markov I, 2017, LECT NOTES ARTIF INT, V10062, P117, DOI 10.1007/978-3-319-62428-0_9
Mikolov T., 2013, ARXIV
Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002
Platanios E. A., 2020, P 2018 C EMP METH NA, P425
Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707
Saeed-Ul Hassan, 2019, SCIENTOMETRICS, V119, P481, DOI 10.1007/s11192-019-03044-9
Sohrabi B, 2017, SCIENTOMETRICS, V110, P243, DOI 10.1007/s11192-016-2161-5
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Stiebellehner S., 2018, LEARNING CONTINUOUS
Tang JL, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P557
Wang FH, 2019, SCIENTOMETRICS, V118, P109, DOI 10.1007/s11192-018-2965-6
Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9
Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002
Wang ZD, 2019, PROC CVPR IEEE, P1117, DOI 10.1109/CVPR.2019.00121
Weinberger CJ, 2015, PLOS COMPUT BIOL, V11, DOI 10.1371/journal.pcbi.1004205
Wen YD, 2019, INT J COMPUT VISION, V127, P668, DOI 10.1007/s11263-018-01142-4
Wu ZM, 2019, IEEE ACCESS, V7, P51759, DOI 10.1109/ACCESS.2019.2910239
Xiao Shuai, 2016, Ijcai, P2676, DOI [DOI 10.1109/SCEECS57921.2023.10061818, DOI 10.1145/3123266.3123277]
Yahav I, 2019, IEEE T KNOWL DATA EN, V31, P437, DOI 10.1109/TKDE.2018.2840127
Yan E., 2010, P AM SOC INFORM SCI, V47, P1, DOI [10.1002/meet.14504701033, DOI 10.1002/MEET.14504701033]
Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Yu L, 2017, 24TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2017), DOI 10.14722/ndss.2017.23241
Yuan S., 2018, ABS18110 CORR
Zeng J., 2020, P 2018 C EMP METH NA, P447
Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004
Zhou P, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, P207, DOI 10.18653/v1/p16-2034
Zhu SY, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P471
NR 65
TC 20
Z9 21
U1 8
U2 87
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD AUG
PY 2021
VL 126
IS 8
BP 6803
EP 6823
DI 10.1007/s11192-021-04033-7
EA JUN 2021
PG 21
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA TM5GC
UT WOS:000658116700003
DA 2024-09-05
ER
PT J
AU Bornmann, L
Ganser, C
Tekles, A
AF Bornmann, Lutz
Ganser, Christian
Tekles, Alexander
TI Simulation of the h index use at university departments within the
bibliometrics-based heuristics framework: Can the indicator be used to
compare individual researchers?
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Bibliometrics; Bibliometrics-based heuristics; Bibliometrics-based
decision trees; h index
ID HIRSCH-INDEX; QUANTITATIVE-ANALYSIS; CITATION IMPACT; MODELS; FRUGAL;
SCIENCES; CHOICE
AB Bornmann and Marewski (2019) have adapted the concept of fast-and-frugal heuristics to scientometrics in order to study and guide the application of bibliometrics in research evaluation. Bibliometrics-based heuristics (BBHs) are simple decision strategies for evaluative purposes based on bibliometric indicators. One aim of the heuristics research program is to develop methods for studying the use of BBHs in research evaluation. Many deans probably evaluate rough performance differences between researchers in their departments based on h index values. Bornmann, Ganser, Tekles, and Leydesdorff (2020) developed the Stata command h_index and R package hindex which can be deployed in a fast and frugal way to decide on the following question: can the h index be used to compare all researchers in a university department, or are the citation cultures so different between sub-groups in the department that not all researchers can be compared with one another? The command and package can be used for simulations that might answer the question before extensive processes of data collection start. If the citation cultures are very different in the sub-groups, the researchers should be compared with field-normalized indicators (instead of the h index). This paper shows how the h_index command and hindex package can be employed for the decision on the h index use in the BBH.
C1 [Bornmann, Lutz; Tekles, Alexander] Max Planck Gesell, Sci Policy & Strategy Dept Adm Headquarters, Hofgartenstr 8, D-80539 Munich, Germany.
[Ganser, Christian; Tekles, Alexander] Ludwig Maximilians Univ Munchen, Dept Sociol, Konradstr 6, D-80801 Munich, Germany.
C3 Max Planck Society; University of Munich
RP Bornmann, L (corresponding author), Max Planck Gesell, Sci Policy & Strategy Dept Adm Headquarters, Hofgartenstr 8, D-80539 Munich, Germany.
EM bornmann@gv.mpg.de
RI Bornmann, Lutz/A-3926-2008
OI Ganser, Christian/0000-0002-2790-7353
CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
[Anonymous], 2016, HDB BIBLIOMETRIC IND, DOI DOI 10.1002/ANIE.201608447
Åstebro T, 2006, MANAGE SCI, V52, P395, DOI 10.1287/mnsc.1050.0468
Bornmann L, 2005, SCIENTOMETRICS, V65, P391, DOI 10.1007/s11192-005-0281-4
Bornmann L, 2020, DOES H INDEX REINFOR
Bornmann L., 2019, SAGE research methods foundations
Bornmann L, 2020, QUANT SCI STUD, V1, P171, DOI 10.1162/qss_a_00012
Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609
Bornmann L, 2020, SCIENTOMETRICS, V122, P1255, DOI 10.1007/s11192-019-03319-1
Bornmann L, 2019, SCIENTOMETRICS, V120, P419, DOI 10.1007/s11192-019-03018-x
Bornmann L, 2014, RES EVALUAT, V23, P166, DOI 10.1093/reseval/rvu002
Bornmann L, 2014, SCIENTOMETRICS, V98, P487, DOI 10.1007/s11192-013-1161-y
Bornmann L, 2011, J INFORMETR, V5, P346, DOI 10.1016/j.joi.2011.01.006
Boyack KW, 2013, EUR J CLIN INVEST, V43, P1339, DOI 10.1111/eci.12171
Czerlinski J., 1999, Simple heuristics that make us smart, P97
Egghe L, 2010, ANNU REV INFORM SCI, V44, P65, DOI 10.1002/aris.2010.1440440109
Franceschini F, 2014, J INFORMETR, V8, P508, DOI 10.1016/j.joi.2014.04.005
Franceschini F, 2010, EUR J OPER RES, V203, P494, DOI 10.1016/j.ejor.2009.08.001
Gigerenzer G, 1996, PSYCHOL REV, V103, P650, DOI 10.1037/0033-295X.103.4.650
Gigerenzer Gerd., 2001, SIMPLE HEURISTICS MA
GLANZEL W, 1995, J INFORM SCI, V21, P37, DOI 10.1177/016555159502100104
Glänzel W, 2006, SCIENTOMETRICS, V67, P315, DOI 10.1556/Scient.67.2006.2.12
Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087
Goldstein DG, 2002, PSYCHOL REV, V109, P75, DOI 10.1037//0033-295X.109.1.75
Hammarfelt B, 2018, J ASSOC INF SCI TECH, V69, P924, DOI 10.1002/asi.24043
Hertwig Ralph., 2003, THINKING PSYCHOL PER, P213, DOI [DOI 10.1002/047001332X.CH11, 10.1002/047001332X.ch11]
Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jann B., 2005, Statistical Software Components
Jones AW, 2008, J ANAL TOXICOL, V32, P327, DOI 10.1093/jat/32.4.327
Julian N. Marewski, 2010, [心理学报, Acta Psychologica Sinica], V42, P72
Katsikopoulos KV, 2011, DECIS ANAL, V8, P10, DOI 10.1287/deca.1100.0191
Kellner AWA, 2008, AN ACAD BRAS CIENC, V80, P771, DOI 10.1590/S0001-37652008000400016
Lee MD, 2002, AUST J PSYCHOL, V54, P137, DOI 10.1080/00049530412331312704
Lehmann S, 2008, SCIENTOMETRICS, V76, P369, DOI 10.1007/s11192-007-1868-8
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Luan SH, 2017, ORGAN BEHAV HUM DEC, V141, P29, DOI 10.1016/j.obhdp.2017.05.003
Machácek M, 2008, POLIT EKON, V56, P229, DOI 10.18267/j.polek.638
MacRoberts MH, 2018, J ASSOC INF SCI TECH, V69, P474, DOI 10.1002/asi.23970
Martignon L, 2011, Heuristics: The Foundations of Adaptive Behavior, P4
Marx W, 2010, J AM SOC INF SCI TEC, V61, P2061, DOI 10.1002/asi.21377
Mingers J, 2008, J OPER RES SOC, V59, P1013, DOI 10.1057/palgrave.jors.2602428
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
Mousavi S., 2017, Homo Oeconomicus, V34, P361, DOI [10.1007/s41412-017-0058-z, DOI 10.1007/S41412-017-0058-Z]
Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132]
Norris M, 2010, J DOC, V66, P681, DOI 10.1108/00220411011066790
Panaretos J, 2009, SCIENTOMETRICS, V81, P635, DOI 10.1007/s11192-008-2174-9
Phillips ND, 2017, JUDGM DECIS MAK, V12, P344
Raab M, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01672
Robinson S, 2002, EUR J OPER RES, V138, P103, DOI 10.1016/S0377-2217(01)00127-8
Rodríguez-Navarro A, 2020, RES EVALUAT, V29, P215, DOI 10.1093/reseval/rvaa002
Ruiz-Castillo J, 2014, J INFORMETR, V8, P917, DOI 10.1016/j.joi.2014.09.006
Ruiz-Castillo J, 2015, J INFORMETR, V9, P102, DOI 10.1016/j.joi.2014.11.010
Sargent RG, 2011, WINT SIMUL C PROC, P183, DOI 10.1109/WSC.2011.6147750
Scheibehenne B, 2009, MAKING ESSENTIAL CHO, P194
SIMON HA, 1990, ANNU REV PSYCHOL, V41, P1, DOI 10.1146/annurev.ps.41.020190.000245
SIMON HA, 1956, PSYCHOL REV, V63, P129, DOI 10.1037/h0042769
Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852
Tang R, 2008, J DOC, V64, P246, DOI 10.1108/00220410810858047
Thompson DF, 2009, AM J PHARM EDUC, V73, DOI 10.5688/aj7306111
van den Besselaar P., 2018, STI 2018 C P, P346
Waltman L., 2019, INAUGURAL LECT LUDO
Waltman L., 2018, STI 2018 C P, P526
Waltman L, 2013, J AM SOC INF SCI TEC, V64, P372, DOI 10.1002/asi.22775
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2419, DOI 10.1002/asi.22708
Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5
Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001
Wang J, 2013, SCIENTOMETRICS, V94, P851, DOI 10.1007/s11192-012-0775-9
Wegwarth O, 2009, MED EDUC, V43, P721, DOI 10.1111/j.1365-2923.2009.03359.x
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
NR 71
TC 1
Z9 1
U1 2
U2 36
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD FEB
PY 2022
VL 16
IS 1
AR 101237
DI 10.1016/j.joi.2021.101237
PG 17
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 1H0CB
UT WOS:000796212300002
DA 2024-09-05
ER
PT J
AU Cantu-Ortiz, FJ
AF Javier Cantu-Ortiz, Francisco
TI Advancing artificial intelligence research and dissemination through
conference series: Benchmark, scientific impact and the MICAI experience
SO EXPERT SYSTEMS WITH APPLICATIONS
LA English
DT Article
DE Artificial intelligence; AI research and development; Scientific impact
of AI
AB This article presents an overview, analysis and benchmark of the best-known artificial intelligence (AI) conferences, including the Mexican International Conference on Artificial Intelligence (MICAI) conference series, and describes how MICAI has contributed to both the growth of artificial intelligence (AI) research in Mexico and the advancement of AI research worldwide. Among the prestigious AI conferences examined are the IJCAI, AAAI, ECAI, IBERAMIA, AAJCAI and PRICAI. Features analyzed include number of papers, acceptance rate and the h index as a measure of the scientific impact. The MICAI has been held in Mexico since 2000, when the National Meeting on AI, held by the Mexican Society for Artificial Intelligence (SMIA) since 1983, and the International Symposium on Artificial Intelligence (ISAI), organized by Tecnologico de Monterrey (ITESM) since 1988, merged into a single conference. Conference trends and future developments are also explained. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Javier Cantu-Ortiz, Francisco] Tecnol Monterrey, Monterrey 64849, NL, Mexico.
C3 Tecnologico de Monterrey
RP Cantu-Ortiz, FJ (corresponding author), 2501 Eugenio Garza Sada Ave, Monterrey 64849, NL, Mexico.
EM fcantu@itesm.mx
RI Cantu-Ortiz, Francisco Javier/K-2942-2019
OI Cantu-Ortiz, Francisco Javier/0000-0002-2015-0562
CR [Anonymous], LNAI
Batyrshin I, 2012, APPL COMPUT MATH-BAK, V11, P149
Cai XC, 2010, LECT NOTES ARTIF INT, V6464, P476, DOI 10.1007/978-3-642-17432-2_48
Chou CC, 2006, LECT NOTES ARTIF INT, V4099, P161, DOI 10.1007/978-3-540-36668-3_19
Cutello V, 2002, LECT NOTES ARTIF INT, V2527, P361
Gelbukh A., 2008, LECT NOTES COMPUTER, V5317, pI
Hayden B.Y., 2011, Psychology Today
He Y, 2005, LECT NOTES ARTIF INT, V3789, P712
KURZWEIL Raymond, 2005, The Singularity is Near: When Humans Transcend Biology
Lucas Bruce D, 1981, An iterative image registration technique with an application to stereo vision
McCarthy J., 1955, A proposal for the Dartmouth Summer Research Project on Artificial Intelligence
McCorduck Pamela, 2004, MACHINES WHO THINK
Quinlan JR, 1996, PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, VOLS 1 AND 2, P725
Russell Stuart, 2010, Artificial intelligence, a modern approach, V3
Sidorov G, 2011, INT J MACH LEARN CYB, V2, P123, DOI 10.1007/s13042-011-0033-0
NR 15
TC 9
Z9 9
U1 3
U2 46
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0957-4174
EI 1873-6793
J9 EXPERT SYST APPL
JI Expert Syst. Appl.
PD FEB 15
PY 2014
VL 41
IS 3
SI SI
BP 781
EP 785
DI 10.1016/j.eswa.2013.08.008
PG 5
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Operations Research & Management Science
GA 272EU
UT WOS:000328443900002
DA 2024-09-05
ER
PT J
AU Nannini, L
Manerba, MM
Beretta, I
AF Nannini, Luca
Manerba, Marta Marchiori
Beretta, Isacco
TI Mapping the landscape of ethical considerations in explainable AI
research
SO ETHICS AND INFORMATION TECHNOLOGY
LA English
DT Article
DE Explainable AI (XAI); AI ethics; Ethical analysis; Bibliometric study
ID VIRTUE; FAIR
AB With its potential to contribute to the ethical governance of AI, eXplainable AI (XAI) research frequently asserts its relevance to ethical considerations. Yet, the substantiation of these claims with rigorous ethical analysis and reflection remains largely unexamined. This contribution endeavors to scrutinize the relationship between XAI and ethical considerations. By systematically reviewing research papers mentioning ethical terms in XAI frameworks and tools, we investigate the extent and depth of ethical discussions in scholarly research. We observe a limited and often superficial engagement with ethical theories, with a tendency to acknowledge the importance of ethics, yet treating it as a monolithic and not contextualized concept. Our findings suggest a pressing need for a more nuanced and comprehensive integration of ethics in XAI research and practice. To support this, we propose to critically reconsider transparency and explainability in regards to ethical considerations during XAI systems design while accounting for ethical complexity in practice. As future research directions, we point to the promotion of interdisciplinary collaborations and education, also for underrepresented ethical perspectives. Such ethical grounding can guide the design of ethically robust XAI systems, aligning technical advancements with ethical considerations.
C1 [Nannini, Luca] Univ Santiago De Compostela, Ctr Singular Invest Tecnoloxias Intelixentes, Santiago De Compostela, Spain.
[Manerba, Marta Marchiori; Beretta, Isacco] Univ Pisa, Comp Sci Dept, Pisa, Italy.
[Manerba, Marta Marchiori] CNR, KDD Lab, ISTI, Pisa, Italy.
[Nannini, Luca] Indra Sistemas, Minsait, Madrid, Spain.
C3 Universidade de Santiago de Compostela; University of Pisa; Consiglio
Nazionale delle Ricerche (CNR); Istituto di Scienza e Tecnologie
dell'Informazione "Alessandro Faedo" (ISTI-CNR); Indra
RP Nannini, L (corresponding author), Univ Santiago De Compostela, Ctr Singular Invest Tecnoloxias Intelixentes, Santiago De Compostela, Spain.; Nannini, L (corresponding author), Indra Sistemas, Minsait, Madrid, Spain.
EM l.nannini@usc.es; marta.marchiori@phd.unipi.it;
isacco.beretta@phd.unipi.it
OI Nannini, Luca/0000-0002-4733-9760
FU HORIZON EUROPE Framework Programme; ITN project NL4XAI Natural Language
for Explainable AI [860621]; European Union; Marie Curie Actions (MSCA)
[860621] Funding Source: Marie Curie Actions (MSCA)
FX Funding contribution from the ITN project NL4XAI Natural Language for
Explainable AI. This project has received funding from the European
Union's Horizon 2020 research and innovation programme under the Marie
Sk & lstrok;odowska-Curie grant agreement No 860621. This document
reflects the views of the author(s) and does not necessarily reflect the
views or policy of the European Commission. The REA cannot be held
responsible for any use that may be made of the information this
document contains.
CR Adadi A, 2018, IEEE ACCESS, V6, P52138, DOI 10.1109/ACCESS.2018.2870052
ADAMS RM, 1976, J PHILOS, V73, P467, DOI 10.2307/2025783
Ali S, 2023, INFORM FUSION, V99, DOI 10.1016/j.inffus.2023.101805
Alonso JM, 2020, IEEE INT CONF FUZZY, DOI 10.1109/fuzz48607.2020.9177770
Alonso R.S., 2020, Advances in Intelligent Systems and Computing, V1239, P272, DOI 10
Alufaisan Y, 2021, AAAI CONF ARTIF INTE, V35, P6618
Amann J, 2020, BMC MED INFORM DECIS, V20, DOI 10.1186/s12911-020-01332-6
Amugongo LM, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P583, DOI 10.1145/3593013.3594024
[Anonymous], 2021, The Stanford encyclopedia of philosophy
[Anonymous], 1999, NICOMACHEAN ETHICS, V2nd
ANSCOMBE GEM, 1958, PHILOSOPHY, V33, P1, DOI 10.1017/S0031819100037943
Arpaly N, 2002, J PHILOS, V99, P223, DOI 10.2307/3655647
Balagopalan Aparna, 2022, FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency, P1194, DOI 10.1145/3531146.3533179
Balasubramaniam N, 2023, INFORM SOFTWARE TECH, V159, DOI 10.1016/j.infsof.2023.107197
Bansal Gagan, 2021, CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, DOI 10.1145/3411764.3445717
Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012
Batliner A, 2022, IEEE T AFFECT COMPUT, V13, P1236, DOI 10.1109/TAFFC.2020.3021015
Baum K., 2022, Philos. Technol., V35, P1, DOI [10.1007/s13347-022-00510-w, DOI 10.1007/S13347-022-00510-W]
Beauchamp TL, 2001, Principles of Biomedical Ethics
Bentham J., 1789, An introduction to the principles of morals and legislation, VDover ed., DOI DOI 10.1093/OSEO/INSTANCE.00077240
Benzmuller Christoph, 2020, KI 2020: Advances in Artificial Intelligence. 43rd German Conference on AI. Proceedings. Lecture Notes in Artificial Intelligence Subseries of Lecture Notes in Computer Science (LNAI 12325), P251, DOI 10.1007/978-3-030-58285-2_20
Bertrand A, 2022, PROCEEDINGS OF THE 2022 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2022, P78, DOI 10.1145/3514094.3534164
Bhatt U, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P648, DOI 10.1145/3351095.3375624
Bietti E, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P210, DOI 10.1145/3351095.3372860
Blasimme A., 2020, The Oxford Handbook of Ethics of AI, P703, DOI [10.1093/oxfordhb/9780190067397.013.45, DOI 10.1093/OXFORDHB/9780190067397.013.45]
Boden M., 2006, Mind As Machine: A History of Cognitive Science Two-Volume Set
Bordt Sebastian, 2022, FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency, P891, DOI 10.1145/3531146.3533153
Brand J, 2023, PROCEEDINGS OF THE 2023 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2023, P990, DOI 10.1145/3600211.3604741
Brand JLM, 2023, Arxiv, DOI arXiv:2311.14687
Brennan A., 2022, The Stanford Encyclopedia of Philosophy
Brey P., 2010, CAMBRIDGE HDB INFORM, P41
Broniatowski D. A., 2021, PSYCHOL FDN EXPLAINA, DOI DOI 10.6028/NIST.IR.8367
Brun Y., 2018, ACM, V10, P3194776
Brunotte W, 2022, LECT NOTES COMPUT SC, V13216, P26, DOI 10.1007/978-3-030-98464-9_3
Buijsman S., Cambridge Handbook on the Law, Ethics and Policy of AI
Buyl M., 2022, FACCT 22, P1071, DOI DOI 10.1145/3531146.3533169
Cabitza F., 2023, MACHINE LEARNING KNO
Cabitza F, 2024, ARTIF INTELL MED, V150, DOI 10.1016/j.artmed.2024.102819
Calegari R., 2020, CEUR WORKSHOP P, V2742
Cambria E, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2022.103111
Casper S, 2024, Arxiv, DOI arXiv:2401.14446
Chaudhuri K., 2019, P MACHINE LEARNING R
Chazette L, 2019, INT REQUIR ENG CONF, P223, DOI 10.1109/RE.2019.00032
Chouldechova A, 2017, BIG DATA-US, V5, P153, DOI 10.1089/big.2016.0047
Cohen IG, 2014, HEALTH AFFAIR, V33, P1139, DOI 10.1377/hlthaff.2014.0048
Copp David., 2006, OXFORD HDB ETHICAL T
Cumpston M, 2019, COCHRANE DB SYST REV, DOI 10.1002/14651858.ED000142
Cysneiros L.M., 2013, P 6 INT I WORKSH 201, V978, P19
de Bruijn H, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2021.101666
Dexe Jacob, 2020, Artificial Intelligence in HCI. First International Conference, AI-HCI 2020 Held as Part of the 22nd HCI International Conference, HCII 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12217), P3, DOI 10.1007/978-3-030-50334-5_1
Dubler N., 2011, Bioethics mediation: a guide to shaping shared solutions, DOI [10.2307/j.ctv17z84h3, DOI 10.2307/J.CTV17Z84H3]
Ehsan U, 2022, EXTENDED ABSTRACTS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2022, DOI 10.1145/3491101.3503727
Ehsan U, 2024, Arxiv, DOI arXiv:2107.13509
El-Nasr M.S., 2020, FDG 20, p64:1, DOI [10.1145/3402942.3402964, DOI 10.1145/3402942.3402964]
Elish M.C., 2021, FACCT 21, DOI [10.1145/3442188, DOI 10.1145/3442188]
Falomir Z, 2021, FRONT ARTIF INTEL AP, V339, P445, DOI 10.3233/FAIA210165
Felzmann H, 2020, SCI ENG ETHICS, V26, P3333, DOI 10.1007/s11948-020-00276-4
Felzmann H, 2019, BIG DATA SOC, V6, DOI 10.1177/2053951719860542
Fleisher W, 2022, EPISTEME-J INDIV SOC, V19, P534, DOI 10.1017/epi.2022.39
Floridi L., 2019, Philosophy Technology, V32, P185, DOI DOI 10.1007/S13347-019-00354-X
Floridi L., 2019, UNIFIED FRAMEWORK 5, V1, DOI [10.1162/99608f92.8cd550d1, DOI 10.1162/99608F92.8CD550D1]
Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5
Foot P., 1978, VIRTUES VICES OTHER, DOI 10.1093/0199252866.001.0001
Genus A, 2018, RES POLICY, V47, P61, DOI 10.1016/j.respol.2017.09.012
Gerdes A., 2021, Advances in Intelligent Systems and Computing, V1288, DOI [10.1007/978-3-030-63128-419, DOI 10.1007/978-3-030-63128-419]
Gert B., 2006, Bioethics: a return to fundamentals, DOI [10.1093/0195159063.001.0001, DOI 10.1093/0195159063.001.0001]
Graziani M, 2023, ARTIF INTELL REV, V56, P3473, DOI 10.1007/s10462-022-10256-8
Green B, 2022, COMPUT LAW SECUR REV, V45, DOI 10.1016/j.clsr.2022.105681
Gulum M.A., 2020, LECT NOTES COMPUTER
Gunning D, 2019, AI MAG, V40, P44, DOI 10.1609/aimag.v40i2.2850
Habibullah KM, 2021, INT REQUIR ENG CONF, P13, DOI 10.1109/RE51729.2021.00009
Hancox-Li L, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P640, DOI 10.1145/3351095.3372836
Hare RM., 1981, MORAL THINKING ITS L, DOI [10.1093/0198246609.001.0001, DOI 10.1093/0198246609.001.0001]
He G, 2023, PROCEEDINGS OF THE 2023 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2023, DOI 10.1145/3544548.3581025
Hein A, 2022, IEEE INT FUZZY SYST, DOI 10.1109/FUZZ-IEEE55066.2022.9882615
Heinrichs B, 2020, HUM BRAIN MAPP, V41, P1435, DOI 10.1002/hbm.24886
Held V., 2006, ETHICS CARE PERSONAL
Herzog C., 2022, Philosophy & Technology, V35, DOI [DOI 10.1007/S13347-022-00546-Y, 10.1007/s13347-022-00546-y]
Hickok M., 2021, Al and Ethics, V1, P41, DOI [10.1007/s43681-020-00008-1, DOI 10.1007/S43681-020-00008-1]
Hildebrandt M., 2020, FAT 20 C FAIRN ACC T, DOI [10.1145/3351095, DOI 10.1145/3351095]
Hill JThomas E., 1992, Dignity and practical reason in Kant's moral theory
Hofeditz L, 2022, ELECTRON MARK, V32, P2207, DOI 10.1007/s12525-022-00600-9
Hu Lily, 2021, Journal of Social Computing, V2, P238, DOI 10.23919/JSC.2021.0033
Hursthouse R., 2018, STANFORD ENCY PHILOS
Hursthouse R., 1999, On virtue ethics, DOI DOI 10.1093/0199247994.001.0001
Ibáñez JC, 2022, AI SOC, V37, P1663, DOI 10.1007/s00146-021-01267-0
Information Commissioner's Office (ICO) of the United Kingdom The Alan Turing Institute, 2019, Project explain-interim report
International Standards Association(ISO) SAIS, 2023, Iso/iec awi ts 6254 -information technology-artificial intelligence-objectives and approaches for explainability of ml models and ai systems
Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2
John-Mathews J., 2021, arXiv
Jongepier F, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09654-x
Jonsen Albert R, 2012, Virtual Mentor, V14, P264, DOI 10.1001/virtualmentor.2012.14.3.mhst1-1203
Kant Immanuel., 1959, FDN METAPHYSICS MORA
Kant Immanuel., 1996, Kant: The Metaphysics of Morals
Kasirzadeh A, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P228, DOI 10.1145/3442188.3445886
Kasirzadeh A, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P14, DOI 10.1145/3442188.3445866
Kaur H, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376219
Kempt H, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09646-x
Kim TW, 2022, BUS ETHICS Q, V32, P75, DOI 10.1017/beq.2021.3
Kitamura Y., 2021, The Effect of AI Explanations on Complementary Team Performance, ACM, V10, P3445717
Köhl MA, 2019, INT REQUIR ENG CONF, P363, DOI 10.1109/RE.2019.00046
Korsgaard ChristineM., 1996, CREATING KINGDOM END, P311, DOI [10.1017/CBO9781139174503.012, DOI 10.1017/CBO9781139174503.012]
Kroll JA, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P758, DOI 10.1145/3442188.3445937
Lakkaraju H, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P79, DOI 10.1145/3375627.3375833
Langer M, 2021, ARTIF INTELL, V296, DOI 10.1016/j.artint.2021.103473
Larsson S., 2020, Internet Policy Review, DOI [10.14763/2020.2.1469, DOI 10.14763/2020.2.1469]
Liao QV, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376590
Lima G., 2022, P 2022 ACM C FAIRN A, P2103, DOI DOI 10.1145/3531146.3534628
Lindner F, 2019, LECT NOTES ARTIF INT, V11793, P216, DOI 10.1007/978-3-030-30179-8_18
Löfström H, 2022, LECT NOTES BUS INF P, V452, P55, DOI 10.1007/978-3-031-07481-3_7
Loi M, 2021, AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P757, DOI 10.1145/3461702.3462631
Loi M, 2021, ETHICS INF TECHNOL, V23, P253, DOI 10.1007/s10676-020-09564-w
Longo L, 2024, INFORM FUSION, V106, DOI 10.1016/j.inffus.2024.102301
MacIntyre A. C., 1984, After virtue: a study in moral theory
Markham A.N., 2020, AIES 20 AAAI ACM C A, DOI [10.1145/3375627, DOI 10.1145/3375627]
Markus AF, 2021, J BIOMED INFORM, V113, DOI 10.1016/j.jbi.2020.103655
Martinho A, 2021, ARTIF INTELL MED, V121, DOI 10.1016/j.artmed.2021.102190
Martins T, 2024, IEEE ACCESS, V12, P618, DOI 10.1109/ACCESS.2023.3347028
Maruyama Y., 2021, LECT NOTES COMPUTER, P127, DOI DOI 10.1007/978
McDonald Nora, 2019, Proceedings of the ACM on Human-Computer Interaction, V3, DOI 10.1145/3359174
MCDOWELL J, 1979, MONIST, V62, P331, DOI 10.5840/monist197962319
Meo R, 2022, LECT NOTES COMPUT SC, V13389, P25, DOI 10.1007/978-3-031-15740-0_3
Metcalf J, 2019, SOC RES, V86, P449
Mill J.S., 1962, UTILITARIANISM
Miller T, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P333, DOI 10.1145/3593013.3594001
Mittelstadt B, 2019, NAT MACH INTELL, V1, P501, DOI 10.1038/s42256-019-0114-4
Mittelstadt B, 2019, FAT*'19: PROCEEDINGS OF THE 2019 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P279, DOI 10.1145/3287560.3287574
Mökander J, 2023, AI SOC, V38, P153, DOI 10.1007/s00146-021-01286-x
Morley J, 2023, AI SOC, V38, P411, DOI 10.1007/s00146-021-01308-8
Morley J, 2021, MIND MACH, V31, P239, DOI 10.1007/s11023-021-09563-w
Morris MX, 2023, AM SURGEON, V89, P55, DOI 10.1177/00031348221117042
Muralidharan A, 2024, ETHICS INF TECHNOL, V26, DOI 10.1007/s10676-024-09754-w
Nannini L, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P1198, DOI 10.1145/3593013.3594074
Narayanan D, 2023, MIND MACH, V33, P55, DOI 10.1007/s11023-023-09628-y
Nicodeme C, 2020, C HUM SYST INTERACT, P20, DOI [10.1109/HSI49210.2020.9142668, 10.1109/hsi49210.2020.9142668]
Nussbaum Martha., 1993, The Quality of Life, P242, DOI [DOI 10.1111/J.1475-4975.1988.TB00111.X, 10.1111/j.1475-4975.1988.tb00111.x, DOI 10.1093/0198287976.003.0019, 10.1111/j.14754975.1988.tb00111.x, DOI 10.1111/J.14754975.1988.TB00111.X]
Nyrup R, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09632-3
O'Neill O., 1975, ACTING PRINCIPLE
OAKLEY J, 1996, RATIO, V9, P128, DOI 10.1111/j.1467-9329.1996.tb00101.x
Okolo CT, 2023, Arxiv, DOI [arXiv:2304.11861, 10.48550/ARXIV.2304.11861, DOI 10.48550/ARXIV.2304.11861]
Okolo CT, 2022, PROCEEDINGS OF THE 4TH ACM SIGCAS/SIGCHI CONFERENCE ON COMPUTING AND SUSTAINABLE SOCIETIES, COMPASS'22, P439, DOI 10.1145/3530190.3534802
Parfit Derek., 1984, REASONS PERSONS
Pastaltzidis Ioannis, 2022, FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency, P2302, DOI 10.1145/3531146.3534644
Phillips P.J., 2021, 4 PRINCIPLES EXPLAIN, DOI DOI 10.6028/NIST.IR.8312
RAILTON P, 1984, PHILOS PUBLIC AFF, V13, P134
Robbins S, 2019, MIND MACH, V29, P495, DOI 10.1007/s11023-019-09509-3
Ross W. D., 1930, The Right and the Good
Saeed W, 2023, KNOWL-BASED SYST, V263, DOI 10.1016/j.knosys.2023.110273
Samek W, 2017, Arxiv, DOI arXiv:1708.08296
Leite JCSD, 2010, BUS INFORM SYST ENG+, V2, P127, DOI 10.1007/s12599-010-0102-z
Scheffler Samuel., 1982, The Rejection of Consequentialism
Schmid U, 2022, KUNSTL INTELL, V36, P303, DOI 10.1007/s13218-022-00786-2
SEN A, 1979, J PHILOS, V76, P463, DOI 10.2307/2025934
Shafer-Landau R., 2012, Ethical theory: an anthology
Shamsabadi A.S., 2022, Advances in Neural Information Processing Systems, V35
Sherman N., 1989, FABRIC CHARACTER ARI
Sibai F.N., 2020, 2020 INT C CYB SEC P, P1, DOI [10.1109/CYBERSECURITY49315.2020.9138891, DOI 10.1109/CYBERSECURITY49315.2020.9138891]
Sidgwick Henry., 1907, METHODS ETHICS
Slack D, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P180, DOI 10.1145/3375627.3375830
Slote M., 1992, MORALITY VIRTUE
Smart J.J. C., 1973, UTILITARIANISM
Sokol K, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P56, DOI 10.1145/3351095.3372870
Solomon MZ, 2005, HASTINGS CENT REP, V35, P40, DOI 10.2307/3528827
Standard for XAI-eXplainable AI Working Group IEEE Computational Intelligence Society/ Standards Committee (IEEE CIS/SC/XAI WG), 2024, Ieee cis/sc/xai wg p2976-standard for xai-explainable artificial intelligence-for achieving clarity and interoperability of ai systems design
Stepin I, 2021, IEEE ACCESS, V9, P11974, DOI 10.1109/ACCESS.2021.3051315
Sullivan E, 2022, PROCEEDINGS OF THE 2022 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2022, P712, DOI 10.1145/3514094.3534185
Theodorou A, 2017, CONNECT SCI, V29, P230, DOI 10.1080/09540091.2017.1310182
Theunissen M, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09649-8
Tsamados A, 2022, AI SOC, V37, P215, DOI 10.1007/s00146-021-01154-8
Vainio-Pekka H, 2023, ACM T INTERACT INTEL, V13, DOI 10.1145/3599974
van der Waa J, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.640647
van Otterlo M., 2020, Lecture Notes in Computer Science, V13048
Waefler T., 2021, P 2 EUR C IMP ART IN, P185, DOI [10.20378/irb-49775, DOI 10.20378/IRB-49775]
Wagner B, 2018, Being profiled: Cogitas ergo sum. 10 years of 'Profiling the European Citizen', P84, DOI [DOI 10.1515/9789048550180-016, 10.2307/j.ctvhrd092.18, DOI 10.2307/J.CTVHRD092.18]
Weller A., 2019, LNCS (LNAI), P23, DOI [DOI 10.1007/978-3-030-28954-62, DOI 10.1007/978-3-030-28954]
Wu STI, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P593, DOI 10.1145/3593013.3594026
Zerilli J., 2019, Philos. Technol., V32, P683, DOI DOI 10.1007/S13347-018-0330-6
Zhang JH, 2022, LECT NOTES COMPUT SC, V13315, P437, DOI 10.1007/978-3-031-05061-9_31
Zhang YF, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P295, DOI 10.1145/3351095.3372852
Zhou TY, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P407, DOI 10.1145/3375627.3375856
Zicari Roberto V., 2021, IEEE Transactions on Technology and Society, V2, P83, DOI 10.1109/TTS.2021.3066209
NR 181
TC 0
Z9 0
U1 10
U2 10
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1388-1957
EI 1572-8439
J9 ETHICS INF TECHNOL
JI Ethics Inf. Technol.
PD SEP
PY 2024
VL 26
IS 3
AR 44
DI 10.1007/s10676-024-09773-7
PG 22
WC Ethics; Information Science & Library Science; Philosophy
WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Social Sciences - Other Topics; Information Science & Library Science;
Philosophy
GA WI2G6
UT WOS:001254169000001
OA hybrid
DA 2024-09-05
ER
PT J
AU Curiel-Marín, E
Passoni, I
Olmedo-Moreno, EM
Fernández-Cano, A
AF Curiel-Marin, Elvira
Passoni, Isabel
Olmedo-Moreno, Eva M.
Fernandez-Cano, Antonio
TI Self-organizing maps for research evaluation of doctoral dissertations:
the case of teaching Social Sciences in Spain
SO RELIEVE-REVISTA ELECTRONICA DE INVESTIGACION Y EVALUACION EDUCATIVA
LA English
DT Article
DE Scientometrics; Research Evaluation; Doctoral Theses; Self Organizing
Maps; Neural Networks; Methodological Tools; Social Science Teaching
ID ORGANIZATION; THESES
AB This paper has as main objective to highlight the potential use of neural networks, self-organized maps type (SOM), as a clarifying tool in the treatment, analysis and visualization of scientometric data, specifically, in the case of the analysis of the Spanish doctoral theses in teaching Social Sciences, indexed in TESEO (Spanish national database of dissertations), and defended between 1976 and 2014. A census of 301 doctoral theses has been recovered, analyzed according to autonomous communities (Andalusia and Catalonia), five-year term groups, thematic categories and educational stages. In Andalusia, the production is highest in the five-year period 1986-1990 and 2001-2005. In Catalonia, the most productive five-year periods were 1991-1995, 1996-2000, 2001-2005 and 2006-2010. More agreement is needed in the nomenclature of the teaching Social Sciences area, as well as an update in the operation of the TESEO database. As a general conclusion, it can be inferred that the resulting SOM allow to update the understanding of the state of the art in the area based on the various variables considered. The potentiality of SOM as an exploratory approximation of multivariate data becomes evident.
C1 [Curiel-Marin, Elvira] Univ Granada, Dept Res Methods & Diag Educ, Fac Educ Econ & Technol, C Cortadura Valle S-N, Ceuta, Spain.
[Olmedo-Moreno, Eva M.; Fernandez-Cano, Antonio] Univ Granada, Dept Res Methods & Diag Educ, Ceuta, Spain.
[Passoni, Isabel] Natl Univ Mar del Plata, Dept Elect & Comp Engn, Fac Engn, Mar Del Plata, Buenos Aires, Argentina.
C3 University of Granada; University of Granada; National University of Mar
del Plata
RP Curiel-Marín, E (corresponding author), Univ Granada, Fac Educ Econ & Technol, C Cortadura Valle S-N, Ceuta, Spain.
EM ecuriel@ugr.es
RI Fernández-Cano, Antonio/GLS-0532-2022; FERNANDEZ-CANO,
ANTONIO/B-7376-2008; Curiel-Marín, Elvira/C-1064-2016; OLMEDO,
EVA/K-6810-2014
OI FERNANDEZ-CANO, ANTONIO/0000-0003-3991-4443; OLMEDO,
EVA/0000-0003-0558-1513
CR Agudelo D, 2003, PSICOTHEMA, V15, P595
Albo Hernández Ramón Orlando, 2018, Rev. cuba. inf. cienc. salud, P55
Andersen JP, 2011, SCIENTOMETRICS, V88, P371, DOI 10.1007/s11192-011-0408-8
Casillas J., 2016, CIENCIA DATOS ANALIT
Curiel-Marin E., 2017, ANALISIS CIENCIOMETR
Curiel-Marin E., 2013, THESIS
Curiel-Marín E, 2015, REV ESP DOC CIENT, V38, DOI 10.3989/redc.2015.4.1282
Fernández-Bautista A, 2014, RELIEVE, V20, DOI 10.7203/relieve.20.2.4479
Fernandez-Cano A, 2008, REV INVESTIGACION ED, V26, P191
Fernández-Cano A, 2012, SCIENTOMETRICS, V91, P15, DOI 10.1007/s11192-011-0572-x
Ferreira-Villa C, 2013, RELIEVE, V19, DOI 10.7203/relieve.19.1.2460
Hernandez Orallo J., 2004, INTRODUCCION MINERIA
Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a
Jiménez-Contreras E, 2014, RIE-REV INVESTIG EDU, V32, P295, DOI 10.6018/rie.32.2.197401
Kohonen T, 2000, IEEE T NEURAL NETWOR, V11, P574, DOI 10.1109/72.846729
KOHONEN T, 1993, NEURAL NETWORKS, V6, P895, DOI 10.1016/S0893-6080(09)80001-4
KOHONEN T, 1982, BIOL CYBERN, V43, P59, DOI 10.1007/BF00337288
KOHONEN T, 1990, P IEEE, V78, P1464, DOI 10.1109/5.58325
Liceras A., 2004, PROFESORADO REV CURR, V8
Mathworks, 2013, MATLAB COMP SOFTW
Meireles M. R. G., 2017, QUAL QUANT, P71
Meschino G.J., 2013, ADV SELF ORG MAPS, V198, DOI [10.1007/978-3-642-35230-0_9, DOI 10.1007/978-3-642-35230-0_9]
Nielsen SE, 2016, CHEM EDUC RES PRACT, V17, P711, DOI 10.1039/c6rp00058d
Noyons ECM, 1998, J AM SOC INFORM SCI, V49, P68, DOI 10.1002/(SICI)1097-4571(1998)49:1<68::AID-ASI9>3.0.CO;2-1
Passoni L. I., 2005, THESIS
Passoni L. I., 2003, FACES, V9, P73
Pellicer-Chenoll M, 2015, HEALTH EDUC RES, V30, P436, DOI 10.1093/her/cyv016
Prats J., 2003, HIST ENSINO, V9, P133
PRATS J, 2002, REV ED, V328, P81
Prats J, 1997, INVESTIGACION DIDACT
Robinson-Garcia N., 2016, OP EV C
Saavedra Fernández Oscar, 2002, ACIMED, V10, P5
Sotolongo Aguilar G., 2001, Ciencias de la Informacion, V32, P27
Sotolongo-Aguilar G., 2002, Revista Espanola de Documentacion Cientifica, V25, P477, DOI 10.3989/redc.2002.v25.i4.281
Torralbo M., 2003, Ensenanza de las Ciencias, V21, P295
Torralbo M., 2002, ANALISIS CIENCIOMETR
Vallejo M., 2005, ACT 9 SEIEM CORD, P163
Vallejo M., 2005, THESIS
vansLeeuwen T., 2013, BIBLIOMETRIE PRAXIS, V2, P1, DOI [10.5283/bpf.173, DOI 10.5283/BPF.173]
Vatanen T, 2015, NEUROCOMPUTING, V147, P60, DOI 10.1016/j.neucom.2014.02.061
White HD, 2015, SCIENTOMETRICS, V102, P2275, DOI 10.1007/s11192-014-1483-4
NR 41
TC 3
Z9 3
U1 0
U2 6
PU ASOC INTERUNIVERSITARIA INVESTIGACION PEDAGOGICA
PI VALENCIA
PA AVE BLASCO IBANEZ NO 30, VALENCIA, 46010, SPAIN
SN 1134-4032
J9 RELIEVE
JI RELIEVE
PY 2018
VL 24
IS 1
AR 2
DI 10.7203/relieve.24.1.12345
PG 18
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA GM2BZ
UT WOS:000437884500002
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Prado-Romero, MA
Prenkaj, B
Stilo, G
Giannotti, F
AF Prado-Romero, Mario Alfonso
Prenkaj, Bardh
Stilo, Giovanni
Giannotti, Fosca
TI A Survey on Graph Counterfactual Explanations: Definitions, Methods,
Evaluation, and Research Challenges
SO ACM COMPUTING SURVEYS
LA English
DT Article
DE Explainability; explainable AI; counterfactual explainability; post-hoc
explanation; graphs; graph neural networks; graph learning; molecular
recourse; black box problem; fairness in AI; machine learning
ID PREDICTION; DATABASE
AB Graph Neural Networks (GNNs) perform well in community detection and molecule classification. Counter-factual Explanations (CE) provide counter-examples to overcome the transparency limitations of black-box models. Due to the growing attention in graph learning, we focus on the concepts of CE for GNNs. We analysed the SoA to provide a taxonomy, a uniform notation, and the benchmarking datasets and evaluation metrics. We discuss fourteen methods, their evaluation protocols, twenty-two datasets, and nineteen metrics. We integrated the majority of methods into the GRETEL library to conduct an empirical evaluation to understand their strengths and pitfalls. We highlight open challenges and future work.
C1 [Prado-Romero, Mario Alfonso] Gran Sasso Sci Inst, I-67100 Laquila, Italy.
[Prenkaj, Bardh] Sapienza Univ Rome, I-00198 Rome, Italy.
[Stilo, Giovanni] Univ Aquila, I-67100 Laquila, Italy.
[Giannotti, Fosca] Scuola Normale Super Pisa, I-56126 Pisa, Italy.
C3 Gran Sasso Science Institute (GSSI); Sapienza University Rome;
University of L'Aquila; Scuola Normale Superiore di Pisa
RP Prado-Romero, MA (corresponding author), Gran Sasso Sci Inst, I-67100 Laquila, Italy.
EM marioalfonso.prado@gssi.it; prenkaj@di.uniroma1.it;
giovanni.stilo@univaq.it; fosca.giannotti@sns.it
RI Prenkaj, Bardh/AAL-6461-2020
OI Prenkaj, Bardh/0000-0002-2991-2279; stilo, giovanni/0000-0002-2092-0213
FU European Union - NextGenerationEU - National Recovery and Resilience
Plan [IR0000013, 3264, 834756]; HPC & Big Data Laboratory of DISIM,
University of L'Aquila
FX This work is partially supported by the European Union -
NextGenerationEU - National Recovery and Resilience Plan (Piano
Nazionale di Ripresa e Resilienza, PNRR) - Project: SoBigData.it -
Strengthening the Italian RI for Social Mining and Big Data Analytics -
Prot. IR0000013 - Avviso n. 3264 del 28/12/2021, XAI: Science and
technology for the eXplanation of AI decision - ERC Advanced Grant 2018
G.A. 834756 and by the HPC & Big Data Laboratory of DISIM, University of
L'Aquila (https://www.disim.univaq.it/).
CR Abrate C, 2021, KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2495, DOI 10.1145/3447548.3467154
Amara K., 2022, P MACHINE LEARNING R, V198
Artelt A., 2019, A survey
Bajaj M, 2021, ADV NEUR IN, V34
Bajusz D, 2015, J CHEMINFORMATICS, V7, DOI 10.1186/s13321-015-0069-3
Barocas S., 2019, FAIRNESS MACHINE LEA
Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012
Borgwardt KM, 2005, BIOINFORMATICS, V21, pI47, DOI 10.1093/bioinformatics/bti1007
Brown J, 2012, FRONT NEUROINFORM, V6, DOI 10.3389/fninf.2012.00028
Byrne RMJ, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P6276
Cai R., 2023, On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
Chen Z., 2022, Grease: Generate factual and counterfactual explanations for gnn-based recommendations
Colmenarejo AB, 2022, PROCEEDINGS OF THE 2022 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2022, P107, DOI 10.1145/3514094.3534158
Craddock C., 2013, Neuroinformatics 2013, V7, P27, DOI [10.3389/conf.fninf.2013.09.00041, DOI 10.3389/CONF.FNINF.2013.09.00041]
Davis MI, 2011, NAT BIOTECHNOL, V29, P1046, DOI 10.1038/nbt.1990
Dobson PD, 2003, J MOL BIOL, V330, P771, DOI 10.1016/S0022-2836(03)00628-4
Elahi, 2019, Cheminformatics-Dataset for Molecular Machine Learning for Drug Discovery
European Commission, 2020, WHIT PAP ART INT EUR
European Commission, 2021, Regulatory framework proposal on artificial intelligence
Faber L., 2020, P 37 GRAPH REPR LEAR, P28
Giles C. L., 1998, P 3 ACM C DIGITAL LI, P89
Guidotti R, 2022, DATA MIN KNOWL DISC, DOI 10.1007/s10618-022-00831-6
Guidotti R, 2019, IEEE INTELL SYST, V34, P14, DOI 10.1109/MIS.2019.2957223
Guidotti R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3236009
Hiv Dataset, 2019, DTP NCI Bulk Data for Download-Nci DTP Data-nci wiki
Hu W., 2020, Adv. Neural Inf. Proces. Syst., P22118
Huang Zexi, 2023, WSDM '23: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, P141, DOI 10.1145/3539597.3570376
Jain S, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P3543
Kazius J, 2005, J MED CHEM, V48, P312, DOI 10.1021/jm040835a
Kersting K., 2016, Benchmark Data Sets for Graph Kernels
Kipf T. N., 2017, P INT C LEARN REPR
Krenn M, 2020, MACH LEARN-SCI TECHN, V1, DOI 10.1088/2632-2153/aba947
Lanciano T, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3308, DOI 10.1145/3394486.3403383
Lin TY, 2014, LECT NOTES COMPUT SC, V8693, P740, DOI 10.1007/978-3-319-10602-1_48
Lin WY, 2021, PR MACH LEARN RES, V139
Liu YF, 2021, IEEE DATA MINING, P409, DOI 10.1109/ICDM51629.2021.00052
Loyola-González O, 2019, IEEE ACCESS, V7, P154096, DOI 10.1109/ACCESS.2019.2949286
Lucic A, 2022, PR MACH LEARN RES, V151
Lucic A, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P90, DOI 10.1145/3351095.3372824
Luo D., 2020, ADV NEURAL INFORM PR, V33, P19620
Ma J., 2022, NEURIPS, V35, P25895
Madeddu L., 2022, Deep Learning In Biology And Medicine, P197
Madeddu L, 2020, INT J DATA MIN BIOIN, V24, P16, DOI 10.1504/IJDMB.2020.109502
Manerba MM, 2022, PROCEEDINGS OF THE 2022 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2022, P468, DOI 10.1145/3514094.3534170
Martins IF, 2012, J CHEM INF MODEL, V52, P1686, DOI 10.1021/ci300124c
McCallum AK, 2000, INFORM RETRIEVAL, V3, P127, DOI 10.1023/A:1009953814988
Mehrabi N, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3457607
Morris C., 2020, Tudataset: A collection of benchmark datasets for learning with graphs
Mullenbach J., 2018, P 2018 C N AM CHAPTE, DOI [DOI 10.18653/V1/N18-1100.ARXIV:1802.05695, 10.18653/v1/n18-1100. arXiv: 1802.05695]
Nguyen TM, 2023, IEEE ACM T COMPUT BI, V20, P1020, DOI 10.1109/TCBB.2022.3190266
Nigam A, 2021, CHEM SCI, V12, P7079, DOI 10.1039/d1sc00231g
Nowotny KM, 2021, AM J PUBLIC HEALTH, V111, P197, DOI 10.2105/AJPH.2020.306040
Numeroso D., 2021, P 2021 INT JOINT C N, P1
Pareja A, 2020, AAAI CONF ARTIF INTE, V34, P5363
PEMANTLE R, 1992, PROBAB THEORY REL, V92, P117, DOI 10.1007/BF01205239
Pessach D, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3494672
Petch J, 2022, CAN J CARDIOL, V38, P204, DOI 10.1016/j.cjca.2021.09.004
Prado-Romero Mario Alfonso, 2023, WSDM '23: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, P1180, DOI 10.1145/3539597.3573026
Prado-Romero M.A., 2022, INT C ITALIAN ASS AR, P88
Prado-Romero MA, 2022, PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, P4389, DOI 10.1145/3511808.3557608
Prenkaj B, 2021, FUTURE GENER COMP SY, V125, P532, DOI 10.1016/j.future.2021.07.002
Prenkaj B, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P2169, DOI 10.1145/3340531.3412088
Riesen K, 2008, LECT NOTES COMPUT SC, V5342, P287
Rozemberczki B, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P1325, DOI 10.1145/3340531.3411866
Rozemberczki B, 2021, J COMPLEX NETW, V9, DOI 10.1093/comnet/cnab014
Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605
Srinivas S, 2017, IEEE COMPUT SOC CONF, P455, DOI 10.1109/CVPRW.2017.61
Sun LH, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2190356
Sun Y., 2021, Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation
Tan JT, 2022, PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), P1018, DOI 10.1145/3485447.3511948
Velickovic P., 2018, INT C LEARNING REPRE
Verenich I, 2019, J SOFTW-EVOL PROC, V31, DOI 10.1002/smr.2170
Verma H, 2022, EXPERT SYST APPL, V195, DOI 10.1016/j.eswa.2022.116611
Verma S., 2022, Counterfactual explanations and algorithmic recourses for machine learning: A review
Vu M.N., 2020, Advances in neural information processing systems, V33, P12225, DOI DOI 10.48550/ARXIV.2010.05788
Wale N, 2008, KNOWL INF SYST, V14, P347, DOI 10.1007/s10115-007-0103-5
Wang BH, 2021, AAAI CONF ARTIF INTE, V35, P10093
Wang RX, 2004, J MED CHEM, V47, P2977, DOI 10.1021/jm030580l
Wang X, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P165, DOI 10.1145/3331184.3331267
Wellawatte GP, 2022, CHEM SCI, V13, P3697, DOI 10.1039/d1sc05259d
Wouters OJ, 2020, JAMA-J AM MED ASSOC, V323, P844, DOI 10.1001/jama.2020.1166
Wu HR, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P1942
Wu ZQ, 2018, CHEM SCI, V9, P513, DOI 10.1039/c7sc02664a
Yanardag P, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1365, DOI 10.1145/2783258.2783417
Ying Rex, 2019, Adv Neural Inf Process Syst, V32, P9240
Ying R, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P974, DOI 10.1145/3219819.3219890
You JX, 2021, AAAI CONF ARTIF INTE, V35, P10737
Yuan H, 2023, IEEE T PATTERN ANAL, V45, P5782, DOI 10.1109/TPAMI.2022.3204236
Zhao TX, 2021, WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P833, DOI 10.1145/3437963.3441720
Zhou ZP, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47148-x
NR 90
TC 1
Z9 1
U1 5
U2 5
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY USA
SN 0360-0300
EI 1557-7341
J9 ACM COMPUT SURV
JI ACM Comput. Surv.
PD JUL
PY 2024
VL 56
IS 7
AR 171
DI 10.1145/3618105
PG 37
WC Computer Science, Theory & Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA OQ7S3
UT WOS:001208811000010
OA hybrid, Green Submitted
DA 2024-09-05
ER
PT J
AU Marzouk, M
Elhakeem, A
Adel, K
AF Marzouk, Mohamed
Elhakeem, Ahmed
Adel, Kareem
TI Artificial neural networks applications in construction and building
engineering (1991-2021): Science mapping and visualization
SO APPLIED SOFT COMPUTING
LA English
DT Article
DE ANN; Neural Networks; Bibliometrics; Science Mapping; VOSviewer;
Biblioshiny
ID COMPRESSIVE STRENGTH PREDICTION; HIGH-PERFORMANCE CONCRETE; PARTICLE
SWARM OPTIMIZATION; SELF-COMPACTING CONCRETE; NATURAL-GAS CONSUMPTION;
SUPPORT VECTOR MACHINE; RECYCLED AGGREGATE; DAMAGE DETECTION; CRACK
DETECTION; NANO-SILICA
AB Artificial neural network (ANN) has acquired noticeable interest from the research community to handle complex problems in Construction and Building engineering (CB). This interest has led to an enormous amount of scientific publications in diverse CB domains over the last three decades. This study introduces a scientometric review to quantitatively explore and visually map the development pathways and trends of ANN -CB literature. Via the Web of Science (WoS) database, 2406 peer -reviewed journal articles are identified and included for analysis as follows. First, the publication growth over time is inspected and evaluated. Second, the collaboration patterns between key contributors (researchers, countries, and organizations) are explored and mapped using the co -authorship analysis. Third, the key sources' productivity and influence are explored and mapped using the direct citation analysis. Fourth, the publications clusters and research themes are analyzed and visualized via the keyword co -occurrence analysis and document trend topics mapping. The study outcomes include but are not limited to i) recognizing pioneer ANN -CB researchers for future collaboration opportunities, ii) identifying reliable sources of information or suitable ones for publishing new ANN -CB works, and iii) fostering probable academic partnerships with the leading ANN -CB organizations. These outcomes help researchers to comprehend ANN -CB literature and direct research policy -makers and editorial boards to adopt the promising ANN -CB themes for further research and development.
C1 [Marzouk, Mohamed] Cairo Univ, Fac Engn, Struct Engn Dept, Construct Engn & Management, Giza, Egypt.
[Elhakeem, Ahmed; Adel, Kareem] Arab Acad Sci Technol & Maritime Transport AASTMT, Coll Engn & Technol, Construct & Bldg Engn Dept, Cairo, Egypt.
C3 Egyptian Knowledge Bank (EKB); Cairo University; Egyptian Knowledge Bank
(EKB); Arab Academy for Science, Technology & Maritime Transport
RP Marzouk, M (corresponding author), Cairo Univ, Fac Engn, Struct Engn Dept, Construct Engn & Management, Giza, Egypt.
EM mmarzouk@cu.edu.eg
RI adel, kareem/GVS-4750-2022; Elhakeem, Ali/U-9543-2019
OI Elhakeem, Ali/0000-0002-2752-1207; Marzouk, Mohamed/0000-0002-8594-8452;
Adel, Kareem/0000-0002-8193-0204
CR Abdelaziz N, 2020, INT J PAVEMENT ENG, V21, P88, DOI 10.1080/10298436.2018.1441414
Dantas ATA, 2013, CONSTR BUILD MATER, V38, P717, DOI 10.1016/j.conbuildmat.2012.09.026
Abdulla-Al Kafy, 2021, SUSTAIN CITIES SOC, V64, DOI 10.1016/j.scs.2020.102542
Adeli H, 2000, COMPUT-AIDED CIV INF, V15, P251, DOI 10.1111/0885-9507.00189
Adeli H, 2006, J STRUCT ENG, V132, P102, DOI 10.1061/(ASCE)0733-9445(2006)132:1(102)
Adeli H, 2001, COMPUT-AIDED CIV INF, V16, P126, DOI 10.1111/0885-9507.00219
Adeli H, 1998, J CONSTR ENG M, V124, P18, DOI 10.1061/(ASCE)0733-9364(1998)124:1(18)
Adhikary BB, 2006, CONSTR BUILD MATER, V20, P801, DOI 10.1016/j.conbuildmat.2005.01.047
Ahmad A, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11080324
Ahmad MW, 2017, ENERG BUILDINGS, V147, P77, DOI 10.1016/j.enbuild.2017.04.038
Ahmad T, 2018, ENERG BUILDINGS, V166, P460, DOI 10.1016/j.enbuild.2018.01.066
Ahmadi M, 2020, CONSTR BUILD MATER, V234, DOI 10.1016/j.conbuildmat.2019.117293
Akhavian R, 2016, AUTOMAT CONSTR, V71, P198, DOI 10.1016/j.autcon.2016.08.015
Akinosho TD, 2020, J BUILD ENG, V32, DOI 10.1016/j.jobe.2020.101827
Akkurt S, 2004, CEMENT CONCRETE RES, V34, P1429, DOI 10.1016/j.cemconres.2004.01.020
Akkurt S, 2003, CEMENT CONCRETE RES, V33, P973, DOI 10.1016/S0008-8846(03)00006-1
Al-Barqawi H, 2006, J PERFORM CONSTR FAC, V20, P126, DOI 10.1061/(ASCE)0887-3828(2006)20:2(126)
Al-Khatib MI, 2019, PROC INST CIV ENG-CO, V172, P235, DOI 10.1680/jcoma.16.00055
Al-Shamiri AK, 2019, CONSTR BUILD MATER, V208, P204, DOI 10.1016/j.conbuildmat.2019.02.165
Alavi AH, 2011, CONSTR BUILD MATER, V25, P1338, DOI 10.1016/j.conbuildmat.2010.09.010
Ali R, 2019, CONSTR BUILD MATER, V226, P376, DOI 10.1016/j.conbuildmat.2019.07.293
Alrashydah EI, 2018, CONSTR BUILD MATER, V159, P635, DOI 10.1016/j.conbuildmat.2017.10.132
Alshihri MM, 2009, CONSTR BUILD MATER, V23, P2214, DOI 10.1016/j.conbuildmat.2008.12.003
Ante L, 2021, TELEMAT INFORM, V57, DOI 10.1016/j.tele.2020.101519
Antwi-Afari MF, 2018, AUTOMAT CONSTR, V96, P433, DOI 10.1016/j.autcon.2018.10.004
Arangio S, 2012, STRUCT CONTROL HLTH, V19, P3, DOI 10.1002/stc.420
Aria M, 2020, SOC INDIC RES, V149, P803, DOI 10.1007/s11205-020-02281-3
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Armaghani DJ, 2017, TUNN UNDERGR SP TECH, V63, P29, DOI 10.1016/j.tust.2016.12.009
Arora S, 2019, J BUILD ENG, V24, DOI 10.1016/j.jobe.2019.100741
Ashouri M, 2019, ENERG BUILDINGS, V183, P659, DOI 10.1016/j.enbuild.2018.11.050
Ashrafian A, 2020, CONSTR BUILD MATER, V230, DOI 10.1016/j.conbuildmat.2019.117048
Ashtiani A, 2014, ENERG BUILDINGS, V76, P597, DOI 10.1016/j.enbuild.2014.03.018
Asteris PG, 2021, STEEL COMPOS STRUCT, V39, P471, DOI 10.12989/scs.2021.39.4.471
Asteris PG, 2021, CEMENT CONCRETE RES, V145, DOI 10.1016/j.cemconres.2021.106449
Asteris PG, 2019, COMPUT CONCRETE, V24, P469, DOI 10.12989/cac.2019.24.5.469
Asteris PG, 2019, COMPUT CONCRETE, V24, P329, DOI 10.12989/cac.2019.24.4.329
Azari R, 2016, ENERG BUILDINGS, V126, P524, DOI 10.1016/j.enbuild.2016.05.054
Azimi M, 2020, COMPUT-AIDED CIV INF, V35, P597, DOI 10.1111/mice.12517
Azimi-Pour M, 2018, CONSTR BUILD MATER, V189, P978, DOI 10.1016/j.conbuildmat.2018.09.031
Bal L, 2013, CONSTR BUILD MATER, V38, P248, DOI 10.1016/j.conbuildmat.2012.08.043
Behnood A, 2021, CONSTR BUILD MATER, V266, DOI 10.1016/j.conbuildmat.2020.120983
Behnood A, 2020, CONSTR BUILD MATER, V262, DOI 10.1016/j.conbuildmat.2020.120544
Behnood A, 2015, CONSTR BUILD MATER, V98, P519, DOI 10.1016/j.conbuildmat.2015.08.124
Benardos AG, 2004, TUNN UNDERGR SP TECH, V19, P597, DOI 10.1016/j.tust.2004.02.128
Bianchini A, 2010, COMPUT-AIDED CIV INF, V25, P39, DOI 10.1111/j.1467-8667.2009.00615.x
Boussabaine A.H., 1996, CONSTR MANAG ECON, V14, P427, DOI [10.1080/014461996373296, DOI 10.1080/014461996373296]
Braun JE, 2002, HVAC&R RES, V8, P73, DOI 10.1080/10789669.2002.10391290
Cai R, 2020, CEMENT CONCRETE RES, V136, DOI 10.1016/j.cemconres.2020.106164
Cao SJ, 2018, BUILD ENVIRON, V144, P316, DOI 10.1016/j.buildenv.2018.08.032
Dung CV, 2019, AUTOMAT CONSTR, V102, P217, DOI 10.1016/j.autcon.2019.02.013
Dung CV, 2019, AUTOMAT CONSTR, V99, P52, DOI 10.1016/j.autcon.2018.11.028
Catalina T, 2008, ENERG BUILDINGS, V40, P1825, DOI 10.1016/j.enbuild.2008.04.001
Celikoglu HB, 2013, COMPUT-AIDED CIV INF, V28, P273, DOI 10.1111/j.1467-8667.2012.00792.x
Ceylan H, 2009, J MATER CIVIL ENG, V21, P286, DOI 10.1061/(ASCE)0899-1561(2009)21:6(286)
Cha YJ, 2018, COMPUT-AIDED CIV INF, V33, P731, DOI 10.1111/mice.12334
Cha YJ, 2017, COMPUT-AIDED CIV INF, V32, P361, DOI 10.1111/mice.12263
Chae YT, 2016, ENERG BUILDINGS, V111, P184, DOI 10.1016/j.enbuild.2015.11.045
Chen C, 2020, AUTOMAT CONSTR, V110, DOI 10.1016/j.autcon.2019.103045
Chen JY, 2021, AUTOMAT CONSTR, V123, DOI 10.1016/j.autcon.2020.103526
Chen M, 2004, COMPUT-AIDED CIV INF, V19, P364, DOI 10.1111/j.1467-8667.2004.00363.x
Cheng JCP, 2018, AUTOMAT CONSTR, V95, P155, DOI 10.1016/j.autcon.2018.08.006
Chithra S, 2016, CONSTR BUILD MATER, V114, P528, DOI 10.1016/j.conbuildmat.2016.03.214
Chopra P, 2018, ADV CIV ENG, V2018, DOI 10.1155/2018/5481705
Chou JS, 2014, CONSTR BUILD MATER, V73, P771, DOI 10.1016/j.conbuildmat.2014.09.054
Chou JS, 2014, ENERG BUILDINGS, V82, P437, DOI 10.1016/j.enbuild.2014.07.036
Chou JS, 2013, CONSTR BUILD MATER, V49, P554, DOI 10.1016/j.conbuildmat.2013.08.078
Cook R, 2019, J MATER CIVIL ENG, V31, DOI 10.1061/(ASCE)MT.1943-5533.0002902
Bui DK, 2018, CONSTR BUILD MATER, V180, P320, DOI 10.1016/j.conbuildmat.2018.05.201
Dai HZ, 2017, COMPUT-AIDED CIV INF, V32, P344, DOI 10.1111/mice.12257
Dai HZ, 2015, COMPUT-AIDED CIV INF, V30, P151, DOI 10.1111/mice.12086
Dai HZ, 2014, COMPUT-AIDED CIV INF, V29, P801, DOI 10.1111/mice.12117
Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081
Deb C, 2016, ENERG BUILDINGS, V121, P284, DOI 10.1016/j.enbuild.2015.12.050
Delgado JMPQ, 2020, J BUILD ENG, V31, DOI 10.1016/j.jobe.2020.101445
Demir F, 2008, CONSTR BUILD MATER, V22, P1428, DOI 10.1016/j.conbuildmat.2007.04.004
Deng FM, 2018, CONSTR BUILD MATER, V175, P562, DOI 10.1016/j.conbuildmat.2018.04.169
Deng ZP, 2021, ENERG BUILDINGS, V238, DOI 10.1016/j.enbuild.2021.110860
Deng ZP, 2020, ENERG BUILDINGS, V214, DOI 10.1016/j.enbuild.2020.109872
Deng ZP, 2019, ENERG BUILDINGS, V198, P216, DOI 10.1016/j.enbuild.2019.06.015
Deng ZP, 2018, ENERG BUILDINGS, V174, P587, DOI 10.1016/j.enbuild.2018.06.060
Di Piazza MC, 2017, ENERG BUILDINGS, V139, P1, DOI 10.1016/j.enbuild.2017.01.003
Dias WPS, 2001, CONSTR BUILD MATER, V15, P371, DOI 10.1016/S0950-0618(01)00006-X
Dias WPS, 2000, CEMENT CONCRETE RES, V30, P1255, DOI 10.1016/S0008-8846(00)00311-2
Díaz G, 1999, HVAC&R RES, V5, P195, DOI 10.1080/10789669.1999.10391233
Ding LY, 2018, AUTOMAT CONSTR, V86, P118, DOI 10.1016/j.autcon.2017.11.002
Ding XL, 2021, J BUILD ENG, V33, DOI 10.1016/j.jobe.2020.101577
Dong B, 2005, ENERG BUILDINGS, V37, P545, DOI 10.1016/j.enbuild.2004.09.009
Dorafshan S, 2020, AUTOMAT CONSTR, V113, DOI 10.1016/j.autcon.2020.103133
Dorafshan S, 2018, CONSTR BUILD MATER, V186, P1031, DOI 10.1016/j.conbuildmat.2018.08.011
Du ZM, 2014, BUILD ENVIRON, V73, P1, DOI 10.1016/j.buildenv.2013.11.021
Duan ZH, 2013, CONSTR BUILD MATER, V44, P524, DOI 10.1016/j.conbuildmat.2013.02.064
Duan ZH, 2013, CONSTR BUILD MATER, V40, P1200, DOI 10.1016/j.conbuildmat.2012.04.063
El-Abbasy MS, 2014, AUTOMAT CONSTR, V45, P50, DOI 10.1016/j.autcon.2014.05.003
El-Badawy S, 2018, J MATER CIVIL ENG, V30, DOI 10.1061/(ASCE)MT.1943-5533.0002282
Elemam WE, 2020, CONSTR BUILD MATER, V249, DOI 10.1016/j.conbuildmat.2020.118781
Elnour M, 2020, J BUILD ENG, V27, DOI 10.1016/j.jobe.2019.100935
Emamian SA, 2019, CONSTR BUILD MATER, V218, P8, DOI 10.1016/j.conbuildmat.2019.05.092
Eskandari-Naddaf H, 2017, CONSTR BUILD MATER, V138, P1, DOI 10.1016/j.conbuildmat.2017.01.132
Fan DQ, 2020, CONSTR BUILD MATER, V265, DOI 10.1016/j.conbuildmat.2020.120339
Fang WL, 2018, AUTOMAT CONSTR, V91, P53, DOI 10.1016/j.autcon.2018.02.018
Felix EF, 2021, CONSTR BUILD MATER, V266, DOI 10.1016/j.conbuildmat.2020.121050
Feng DC, 2020, CONSTR BUILD MATER, V230, DOI 10.1016/j.conbuildmat.2019.117000
Ferreira PM, 2012, ENERG BUILDINGS, V55, P238, DOI 10.1016/j.enbuild.2012.08.002
Fortuna G, 2020, J ORAL PATHOL MED, V49, P565, DOI 10.1111/jop.13077
Gandomi AH, 2013, MATER STRUCT, V46, P2109, DOI 10.1617/s11527-013-0039-z
Gao XJ, 2019, AUTOMAT CONSTR, V98, P225, DOI 10.1016/j.autcon.2018.11.013
Getahun MA, 2018, CONSTR BUILD MATER, V190, P517, DOI 10.1016/j.conbuildmat.2018.09.097
Gholizadeh S, 2011, J CONSTR STEEL RES, V67, P770, DOI 10.1016/j.jcsr.2011.01.001
Ghosh-Dastidar S, 2003, COMPUT-AIDED CIV INF, V18, P325, DOI 10.1111/1467-8667.t01-1-00311
Gobakis K, 2011, SUSTAIN CITIES SOC, V1, P104, DOI 10.1016/j.scs.2011.05.001
Goh YM, 2015, J CONSTR ENG M, V141, DOI 10.1061/(ASCE)CO.1943-7862.0000972
Goksu I, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101491
Golafshani EM, 2015, MATER STRUCT, V48, P1581, DOI 10.1617/s11527-014-0256-0
Golafshani EM, 2020, CONSTR BUILD MATER, V232, DOI 10.1016/j.conbuildmat.2019.117266
Golafshani EM, 2012, CONSTR BUILD MATER, V36, P411, DOI 10.1016/j.conbuildmat.2012.04.046
Golnaraghi S, 2019, ADV CIV ENG, V2019, DOI 10.1155/2019/5972620
Gong HR, 2021, INT J PAVEMENT ENG, V22, P162, DOI 10.1080/10298436.2019.1580367
Gong HR, 2018, CONSTR BUILD MATER, V190, P710, DOI 10.1016/j.conbuildmat.2018.09.087
Gopalakrishnan K, 2017, CONSTR BUILD MATER, V157, P322, DOI 10.1016/j.conbuildmat.2017.09.110
Gossard D, 2013, ENERG BUILDINGS, V67, P253, DOI 10.1016/j.enbuild.2013.08.026
Grima MA, 2000, TUNN UNDERGR SP TECH, V15, P259
Guo YM, 2021, FUTURE GENER COMP SY, V116, P316, DOI 10.1016/j.future.2020.10.023
Hammoudi A, 2019, CONSTR BUILD MATER, V209, P425, DOI 10.1016/j.conbuildmat.2019.03.119
Hegazy T., 1994, Microcomputers in Civil Engineering, V9, P145
Hegazy T, 1998, J CONSTR ENG M ASCE, V124, P210, DOI 10.1061/(ASCE)0733-9364(1998)124:3(210)
Hendi A, 2019, CONSTR BUILD MATER, V199, P369, DOI 10.1016/j.conbuildmat.2018.12.020
Heravi G, 2015, J CONSTR ENG M, V141, DOI 10.1061/(ASCE)CO.1943-7862.0001006
Neto AH, 2008, ENERG BUILDINGS, V40, P2169, DOI 10.1016/j.enbuild.2008.06.013
Hobson BW, 2019, BUILD ENVIRON, V159, DOI 10.1016/j.buildenv.2019.05.032
Hosseini MR, 2018, AUTOMAT CONSTR, V87, P235, DOI 10.1016/j.autcon.2017.12.002
Huang LQ, 2018, TUNN UNDERGR SP TECH, V81, P265, DOI 10.1016/j.tust.2018.07.006
Huang YH, 2010, J PERFORM CONSTR FAC, V24, P597, DOI 10.1061/(ASCE)CF.1943-5509.0000124
Ilbeigi M, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102325
Jacobsen EL, 2022, J COMPUT CIVIL ENG, V36, DOI 10.1061/(ASCE)CP.1943-5487.0001010
Jeong JH, 2020, COMPUT-AIDED CIV INF, V35, P1209, DOI 10.1111/mice.12546
Jiang XM, 2007, STRUCT CONTROL HLTH, V14, P333, DOI 10.1002/stc.161
Jiang XM, 2005, COMPUT-AIDED CIV INF, V20, P316, DOI 10.1111/j.1467-8667.2005.00399.x
Jin Y, 2021, BUILD SIMUL-CHINA, V14, P219, DOI 10.1007/s12273-020-0638-x
Jing R, 2017, ENERG BUILDINGS, V144, P117, DOI 10.1016/j.enbuild.2017.03.042
Jovanovic RZ, 2015, ENERG BUILDINGS, V94, P189, DOI 10.1016/j.enbuild.2015.02.052
Kamran M, 2020, COMPUT ELECTR ENG, V81, DOI 10.1016/j.compeleceng.2019.106525
Kandasamy NK, 2018, BUILD ENVIRON, V139, P170, DOI 10.1016/j.buildenv.2018.05.005
Kandiri A, 2020, CONSTR BUILD MATER, V248, DOI 10.1016/j.conbuildmat.2020.118676
Kang DH, 2018, COMPUT-AIDED CIV INF, V33, P885, DOI 10.1111/mice.12375
Kang F, 2017, STRUCT CONTROL HLTH, V24, DOI 10.1002/stc.1997
Kao CY, 2013, STRUCT CONTROL HLTH, V20, P282, DOI 10.1002/stc.492
Kazanasmaz T, 2009, BUILD ENVIRON, V44, P1751, DOI 10.1016/j.buildenv.2008.11.012
Kewalramani MA, 2006, AUTOMAT CONSTR, V15, P374, DOI 10.1016/j.autcon.2005.07.003
Khallaf R, 2021, AUTOMAT CONSTR, V129, DOI 10.1016/j.autcon.2021.103760
Khodabandelu A, 2021, AUTOMAT CONSTR, V131, DOI 10.1016/j.autcon.2021.103882
Kim D, 2019, AUTOMAT CONSTR, V99, P168, DOI 10.1016/j.autcon.2018.12.014
Kim GH, 2005, J COMPUT CIVIL ENG, V19, P208, DOI 10.1061/(ASCE)0887-3801(2005)19:2(208)
Kim GH, 2004, BUILD ENVIRON, V39, P1235, DOI 10.1016/j.buildenv.2004.02.013
Kim JI, 2004, J MATER CIVIL ENG, V16, P257, DOI 10.1061/(ASCE)0899-1561(2004)16:3(257)
Kim J, 2019, AUTOMAT CONSTR, V104, P255, DOI 10.1016/j.autcon.2019.03.025
Kim J, 2019, ENERG BUILDINGS, V194, P328, DOI 10.1016/j.enbuild.2019.04.034
Klar A, 2010, TUNN UNDERGR SP TECH, V25, P575, DOI 10.1016/j.tust.2010.04.003
Kolar Z, 2018, AUTOMAT CONSTR, V89, P58, DOI 10.1016/j.autcon.2018.01.003
Kooshkaki A, 2019, CONSTR BUILD MATER, V212, P176, DOI 10.1016/j.conbuildmat.2019.03.243
Kumar SS, 2018, AUTOMAT CONSTR, V91, P273, DOI 10.1016/j.autcon.2018.03.028
Kwon SJ, 2010, CEMENT CONCRETE RES, V40, P119, DOI 10.1016/j.cemconres.2009.08.022
Lai S, 1997, CONSTR BUILD MATER, V11, P93, DOI 10.1016/S0950-0618(97)00007-X
Lakshmanan AK, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103078
Lee KP, 2019, BUILD ENVIRON, V157, P24, DOI 10.1016/j.buildenv.2019.04.029
Lenjani A, 2020, COMPUT-AIDED CIV INF, V35, P241, DOI 10.1111/mice.12493
Li BX, 2020, INT J PAVEMENT ENG, V21, P457, DOI 10.1080/10298436.2018.1485917
Liang X, 2019, COMPUT-AIDED CIV INF, V34, P415, DOI 10.1111/mice.12425
Lin YZ, 2017, COMPUT-AIDED CIV INF, V32, P1025, DOI 10.1111/mice.12313
Ling H, 2019, CONSTR BUILD MATER, V206, P355, DOI 10.1016/j.conbuildmat.2019.02.071
Ling M, 2019, CONSTR BUILD MATER, V206, P130, DOI 10.1016/j.conbuildmat.2019.01.179
Liu B, 2020, TUNN UNDERGR SP TECH, V95, DOI 10.1016/j.tust.2019.103103
Liu H, 2021, TECHNOL FORECAST SOC, V169, DOI 10.1016/j.techfore.2021.120827
Liu H, 2019, SUSTAIN CITIES SOC, V47, DOI 10.1016/j.scs.2019.101471
Liu JC, 2020, J BUILD ENG, V32, DOI 10.1016/j.jobe.2020.101472
Liu QF, 2021, CONSTR BUILD MATER, V268, DOI 10.1016/j.conbuildmat.2020.121082
Liu QC, 2018, COMPUT-AIDED CIV INF, V33, P999, DOI 10.1111/mice.12417
Liu SC, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11209616
Liu X, 2021, COMPOS PART B-ENG, V224, DOI 10.1016/j.compositesb.2021.109152
Liu YL, 2021, TELEMAT INFORM, V57, DOI 10.1016/j.tele.2020.101506
Luo HB, 2018, AUTOMAT CONSTR, V94, P282, DOI 10.1016/j.autcon.2018.06.007
Lv ST, 2020, CONSTR BUILD MATER, V264, DOI 10.1016/j.conbuildmat.2020.120235
Maeda H, 2018, COMPUT-AIDED CIV INF, V33, P1127, DOI 10.1111/mice.12387
Magnier L, 2010, BUILD ENVIRON, V45, P739, DOI 10.1016/j.buildenv.2009.08.016
Mahmoodzadeh A, 2021, AUTOMAT CONSTR, V123, DOI 10.1016/j.autcon.2020.103530
Mao WJ, 2021, SUSTAIN CITIES SOC, V65, DOI 10.1016/j.scs.2020.102567
Marcelino P, 2021, INT J PAVEMENT ENG, V22, P341, DOI 10.1080/10298436.2019.1609673
Markovic R, 2021, ENERG BUILDINGS, V234, DOI 10.1016/j.enbuild.2020.110667
Markovic R, 2019, ENERG BUILDINGS, V185, P1, DOI 10.1016/j.enbuild.2018.12.012
Markovic R, 2018, BUILD ENVIRON, V145, P319, DOI 10.1016/j.buildenv.2018.09.024
Martinez P, 2019, AUTOMAT CONSTR, V107, DOI 10.1016/j.autcon.2019.102947
Marzouk M, 2020, CONSTR INNOV-ENGL, V20, P609, DOI 10.1108/CI-12-2019-0138
Mashhadban H, 2016, CONSTR BUILD MATER, V119, P277, DOI 10.1016/j.conbuildmat.2016.05.034
Mashrei MA, 2013, CONSTR BUILD MATER, V40, P812, DOI 10.1016/j.conbuildmat.2012.11.109
Mba L, 2016, ENERG BUILDINGS, V121, P32, DOI 10.1016/j.enbuild.2016.03.046
McGlinn K, 2017, AUTOMAT CONSTR, V84, P154, DOI 10.1016/j.autcon.2017.08.033
Mohandas P, 2019, SUSTAIN CITIES SOC, V48, DOI 10.1016/j.scs.2019.101499
Mohandes SR, 2019, NEUROCOMPUTING, V340, P55, DOI 10.1016/j.neucom.2019.02.040
Amiruddin AAAM, 2020, NEURAL COMPUT APPL, V32, P447, DOI 10.1007/s00521-018-3911-5
Monlouis-Bonnaire JP, 2004, CEMENT CONCRETE RES, V34, P737, DOI 10.1016/S0008-8846(03)00071-1
Moro C, 2021, CONSTR BUILD MATER, V267, DOI 10.1016/j.conbuildmat.2020.120960
Moselhi O, 2005, J CONSTR ENG M ASCE, V131, P354, DOI 10.1061/(ASCE)0733-9364(2005)131:3(354)
Mostafa K, 2021, AUTOMAT CONSTR, V122, DOI 10.1016/j.autcon.2020.103516
Mozumder RA, 2018, TUNN UNDERGR SP TECH, V72, P131, DOI 10.1016/j.tust.2017.11.023
Muhuri PK, 2018, APPL SOFT COMPUT, V69, P381, DOI 10.1016/j.asoc.2018.03.041
Mustafaraj G, 2011, ENERG BUILDINGS, V43, P1452, DOI 10.1016/j.enbuild.2011.02.007
Nabian MA, 2018, COMPUT-AIDED CIV INF, V33, P443, DOI 10.1111/mice.12359
Naderpour H, 2018, J BUILD ENG, V19, P205, DOI 10.1016/j.jobe.2018.05.012
Naderpour H, 2018, J BUILD ENG, V16, P213, DOI 10.1016/j.jobe.2018.01.007
Nagrath P, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102692
Najimi M, 2019, J BUILD ENG, V22, P216, DOI 10.1016/j.jobe.2018.12.013
Nath ND, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103085
Neaupane KM, 2006, TUNN UNDERGR SP TECH, V21, P151, DOI 10.1016/j.tust.2005.07.001
Nguyen MST, 2020, STEEL COMPOS STRUCT, V35, P415, DOI 10.12989/scs.2020.35.3.415
Hoang ND, 2018, AUTOMAT CONSTR, V94, P203, DOI 10.1016/j.autcon.2018.07.008
Ni HG, 2000, CEMENT CONCRETE RES, V30, P1245, DOI 10.1016/S0008-8846(00)00345-8
Oh BK, 2020, STRUCT CONTROL HLTH, V27, DOI 10.1002/stc.2519
Ongpeng J, 2017, COMPUT CONCRETE, V19, P59, DOI 10.12989/cac.2017.19.1.059
Onyari EK, 2018, CONSTR BUILD MATER, V187, P1232, DOI 10.1016/j.conbuildmat.2018.08.079
Öztas A, 2006, CONSTR BUILD MATER, V20, P769, DOI 10.1016/j.conbuildmat.2005.01.054
Pala M, 2007, CONSTR BUILD MATER, V21, P384, DOI 10.1016/j.conbuildmat.2005.08.009
Pan X, 2020, COMPUT-AIDED CIV INF, V35, P495, DOI 10.1111/mice.12549
Papantoniou S, 2015, ENERG BUILDINGS, V98, P45, DOI 10.1016/j.enbuild.2014.10.083
Parichatprecha R, 2009, CONSTR BUILD MATER, V23, P910, DOI 10.1016/j.conbuildmat.2008.04.015
Patel DA, 2015, J CONSTR ENG M, V141, DOI 10.1061/(ASCE)CO.1943-7862.0000922
Pham TM, 2016, ADV STRUCT ENG, V19, P1710, DOI 10.1177/1369433216649384
Prasad BKR, 2009, CONSTR BUILD MATER, V23, P117, DOI 10.1016/j.conbuildmat.2008.01.014
Qi CC, 2018, CONSTR BUILD MATER, V159, P473, DOI 10.1016/j.conbuildmat.2017.11.006
Qiao WB, 2020, ENERG BUILDINGS, V217, DOI 10.1016/j.enbuild.2020.110023
Rafiei MH, 2018, J CONSTR ENG M, V144, DOI 10.1061/(ASCE)CO.1943-7862.0001570
Rafiei MH, 2017, STRUCT DES TALL SPEC, V26, DOI 10.1002/tal.1400
Rajabi M, 2017, TUNN UNDERGR SP TECH, V64, P51, DOI 10.1016/j.tust.2017.01.010
Rajasekaran S, 1996, COMPUT STRUCT, V61, P291, DOI 10.1016/0045-7949(96)00044-2
Rebouh R, 2017, CONSTR BUILD MATER, V149, P778, DOI 10.1016/j.conbuildmat.2017.05.165
Ren C, 2020, SUSTAIN CITIES SOC, V52, DOI 10.1016/j.scs.2019.101860
Ren C, 2019, SUSTAIN CITIES SOC, V51, DOI 10.1016/j.scs.2019.101673
Ren J, 2019, SUSTAIN CITIES SOC, V47, DOI 10.1016/j.scs.2019.101498
Ren YP, 2020, CONSTR BUILD MATER, V234, DOI 10.1016/j.conbuildmat.2019.117367
Riahi Y, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114702
Roberts D, 2019, AUTOMAT CONSTR, V105, DOI 10.1016/j.autcon.2019.04.006
Ruano AE, 2006, ENERG BUILDINGS, V38, P682, DOI 10.1016/j.enbuild.2005.09.007
Sadrmomtazi A, 2013, CONSTR BUILD MATER, V42, P205, DOI 10.1016/j.conbuildmat.2013.01.016
Salih A, 2020, CONSTR BUILD MATER, V262, DOI 10.1016/j.conbuildmat.2020.120777
Samant A, 2000, COMPUT-AIDED CIV INF, V15, P241, DOI 10.1111/0885-9507.00188
Samant A, 2001, COMPUT-AIDED CIV INF, V16, P239, DOI 10.1111/0885-9507.00229
Sanad A, 2001, J STRUCT ENG-ASCE, V127, P818, DOI 10.1061/(ASCE)0733-9445(2001)127:7(818)
Santos OJ, 2008, TUNN UNDERGR SP TECH, V23, P481, DOI 10.1016/j.tust.2007.07.002
Saridemir M, 2009, CONSTR BUILD MATER, V23, P1279, DOI 10.1016/j.conbuildmat.2008.07.021
Sebaaly H, 2018, CONSTR BUILD MATER, V168, P660, DOI 10.1016/j.conbuildmat.2018.02.118
Seitllari A, 2019, COMPUT CONCRETE, V24, P271, DOI 10.12989/cac.2019.24.3.271
Sezavar R, 2019, CONSTR BUILD MATER, V211, P528, DOI 10.1016/j.conbuildmat.2019.03.114
Shafabakhsh GH, 2015, CONSTR BUILD MATER, V85, P136, DOI 10.1016/j.conbuildmat.2015.03.060
Shukla H, 2020, AUTOMAT CONSTR, V117, DOI 10.1016/j.autcon.2020.103256
Silva FAN, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11020044
Sipos TK, 2017, CONSTR BUILD MATER, V148, P757, DOI 10.1016/j.conbuildmat.2017.05.111
Soldo B, 2014, ENERG BUILDINGS, V69, P498, DOI 10.1016/j.enbuild.2013.11.032
Sollazzo G, 2017, CONSTR BUILD MATER, V134, P684, DOI 10.1016/j.conbuildmat.2016.12.186
Son H, 2019, AUTOMAT CONSTR, V99, P27, DOI 10.1016/j.autcon.2018.11.033
Song L, 2021, ROAD MATER PAVEMENT, V22, P23, DOI 10.1080/14680629.2019.1614969
Song LG, 2008, J CONSTR ENG M, V134, P786, DOI 10.1061/(ASCE)0733-9364(2008)134:10(786)
Song Y, 2020, CEMENT CONCRETE RES, V135, DOI 10.1016/j.cemconres.2020.106118
Stathopoulos A, 2008, COMPUT-AIDED CIV INF, V23, P521, DOI 10.1111/j.1467-8667.2008.00558.x
Su M, 2021, CONSTR BUILD MATER, V270, DOI 10.1016/j.conbuildmat.2020.121456
Suwansawat S, 2006, TUNN UNDERGR SP TECH, V21, P133, DOI 10.1016/j.tust.2005.06.007
Taki M, 2016, ENERG BUILDINGS, V110, P314, DOI 10.1016/j.enbuild.2015.11.010
Tam VWY, 2007, CONSTR BUILD MATER, V21, P1928, DOI 10.1016/j.conbuildmat.2006.05.040
Tan Y, 2021, AUTOMAT CONSTR, V131, DOI 10.1016/j.autcon.2021.103912
Taspinar F, 2013, ENERG BUILDINGS, V56, P23, DOI 10.1016/j.enbuild.2012.10.023
Amlashi AT, 2021, J MATER CIVIL ENG, V33, DOI 10.1061/(ASCE)MT.1943-5533.0003645
Tenza-Abril AJ, 2018, CONSTR BUILD MATER, V189, P1173, DOI 10.1016/j.conbuildmat.2018.09.096
Tian W, 2017, BUILD SIMUL-CHINA, V10, P11, DOI 10.1007/s12273-016-0314-3
Le TT, 2021, MATER STRUCT, V54, DOI 10.1617/s11527-021-01646-5
Tiruneh GG, 2020, AUTOMAT CONSTR, V119, DOI 10.1016/j.autcon.2020.103348
Tong Z, 2018, COMPUT-AIDED CIV INF, V33, P1056, DOI 10.1111/mice.12406
Tong Z, 2018, CONSTR BUILD MATER, V169, P69, DOI 10.1016/j.conbuildmat.2018.02.081
Tuan NS, 2020, CONSTR BUILD MATER, V260, DOI 10.1016/j.conbuildmat.2020.119757
Uysal M, 2012, CONSTR BUILD MATER, V27, P404, DOI 10.1016/j.conbuildmat.2011.07.028
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Van Eck NJ., 2013, Leiden: Universiteit Leiden, V1, P1, DOI DOI 10.1016/J.INFFUS.2016.12.001
Vlahogianni EI, 2008, COMPUT-AIDED CIV INF, V23, P536, DOI 10.1111/j.1467-8667.2008.00554.x
Wang MZ, 2021, TUNN UNDERGR SP TECH, V110, DOI 10.1016/j.tust.2021.103840
Wang MZ, 2020, COMPUT-AIDED CIV INF, V35, P162, DOI 10.1111/mice.12481
Wang W, 2018, BUILD ENVIRON, V138, P160, DOI 10.1016/j.buildenv.2018.04.034
Wang ZL, 2019, AUTOMAT CONSTR, V97, P220, DOI 10.1016/j.autcon.2018.11.009
Wen QJ, 2021, AUTOMAT CONSTR, V124, DOI 10.1016/j.autcon.2021.103558
Wu QL, 2019, SUSTAIN CITIES SOC, V50, DOI 10.1016/j.scs.2019.101657
Wu RT, 2019, COMPUT-AIDED CIV INF, V34, P774, DOI 10.1111/mice.12449
Xiao FP, 2009, J MATER CIVIL ENG, V21, P253, DOI 10.1061/(ASCE)0899-1561(2009)21:6(253)
Xiong C, 2020, AUTOMAT CONSTR, V109, DOI 10.1016/j.autcon.2019.102994
Xu JJ, 2019, CONSTR BUILD MATER, V226, P534, DOI 10.1016/j.conbuildmat.2019.07.155
Xu JJ, 2019, CONSTR BUILD MATER, V211, P479, DOI 10.1016/j.conbuildmat.2019.03.234
Xu XQ, 2012, ENERG BUILDINGS, V55, P637, DOI 10.1016/j.enbuild.2012.09.013
Xu Y, 2019, STRUCT CONTROL HLTH, V26, DOI 10.1002/stc.2313
Xu YJ, 2021, COMPUT-AIDED CIV INF, V36, P504, DOI 10.1111/mice.12628
Xu ZS, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120896
Xue J, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18115985
Xue YD, 2018, COMPUT-AIDED CIV INF, V33, P638, DOI 10.1111/mice.12367
Yang XC, 2018, COMPUT-AIDED CIV INF, V33, P1090, DOI 10.1111/mice.12412
Yang X, 2021, J TRAFFIC TRANSP ENG, V8, P1000, DOI 10.1016/j.jtte.2021.03.005
Yao BZ, 2017, COMPUT-AIDED CIV INF, V32, P154, DOI 10.1111/mice.12221
Ye WL, 2021, ROAD MATER PAVEMENT, V22, P42, DOI 10.1080/14680629.2019.1615533
Ye ZJ, 2020, COMPUT-AIDED CIV INF, V35, P134, DOI 10.1111/mice.12448
Yeh IC, 2007, CEMENT CONCRETE COMP, V29, P474, DOI 10.1016/j.cemconcomp.2007.02.001
Yeh IC, 2006, J MATER CIVIL ENG, V18, P597, DOI 10.1061/(ASCE)0899-1561(2006)18:4(597)
Yeh IC, 1998, CEMENT CONCRETE RES, V28, P1797, DOI 10.1016/S0008-8846(98)00165-3
Yevu SK, 2021, J CLEAN PROD, V322, DOI 10.1016/j.jclepro.2021.129093
Yi W, 2016, AUTOMAT CONSTR, V62, P101, DOI 10.1016/j.autcon.2015.11.003
Yu DJ, 2020, APPL SOFT COMPUT, V94, DOI 10.1016/j.asoc.2020.106467
Yu W, 2015, ENERG BUILDINGS, V88, P135, DOI 10.1016/j.enbuild.2014.11.063
Yu Z, 2010, ENERG BUILDINGS, V42, P1637, DOI 10.1016/j.enbuild.2010.04.006
Yuce B, 2016, ENERG BUILDINGS, V111, P311, DOI 10.1016/j.enbuild.2015.11.017
Yusoff NIM, 2019, CONSTR BUILD MATER, V204, P781, DOI 10.1016/j.conbuildmat.2019.01.203
Zavrtanik N, 2016, AUTOMAT CONSTR, V63, P155, DOI 10.1016/j.autcon.2015.12.009
Zeng XS, 2013, COMPUT-AIDED CIV INF, V28, P359, DOI 10.1111/mice.12000
Zhai Z, 2020, ADV CIV ENG, V2020, DOI 10.1155/2020/6813043
Zhang A, 2017, COMPUT-AIDED CIV INF, V32, P805, DOI 10.1111/mice.12297
Zhang CB, 2020, COMPUT-AIDED CIV INF, V35, P389, DOI 10.1111/mice.12500
Zhang H, 2018, AUTOMAT CONSTR, V94, P1, DOI 10.1016/j.autcon.2018.05.033
Zhang J, 2010, ENERG BUILDINGS, V42, P435, DOI 10.1016/j.enbuild.2009.10.011
Zhang J, 2020, CONSTR BUILD MATER, V244, DOI 10.1016/j.conbuildmat.2020.118295
Zhang J, 2020, AUTOMAT CONSTR, V113, DOI 10.1016/j.autcon.2020.103119
Zhang JZ, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115561
Zhang K, 2020, TUNN UNDERGR SP TECH, V106, DOI 10.1016/j.tust.2020.103594
Zhang P, 2020, TUNN UNDERGR SP TECH, V99, DOI 10.1016/j.tust.2020.103383
Zhang SC, 2020, COMPUT-AIDED CIV INF, V35, P1132, DOI 10.1111/mice.12575
Zhang YQ, 2019, COMPUT-AIDED CIV INF, V34, P822, DOI 10.1111/mice.12447
Zhang YN, 2015, BUILD ENVIRON, V86, P177, DOI 10.1016/j.buildenv.2014.12.023
Zhang YL, 2013, COMPUT-AIDED CIV INF, V28, P594, DOI 10.1111/mice.12014
Zhao S, 2021, STRUCT CONTROL HLTH, V28, DOI 10.1002/stc.2732
Zhao S, 2020, TUNN UNDERGR SP TECH, V95, DOI 10.1016/j.tust.2019.103156
Zheng D, 2018, CONSTR BUILD MATER, V158, P614, DOI 10.1016/j.conbuildmat.2017.10.056
Zhong BT, 2020, AUTOMAT CONSTR, V113, DOI 10.1016/j.autcon.2020.103089
Zhou CG, 2020, SUSTAIN CITIES SOC, V55, DOI 10.1016/j.scs.2019.102000
Zhou ZX, 2021, BUILD ENVIRON, V195, DOI 10.1016/j.buildenv.2021.107775
Zhou ZX, 2020, ENERG BUILDINGS, V224, DOI 10.1016/j.enbuild.2020.110232
Zhu GY, 2017, ENERG BUILDINGS, V155, P503, DOI 10.1016/j.enbuild.2017.09.053
Ziari H, 2018, CONSTR BUILD MATER, V160, P415, DOI 10.1016/j.conbuildmat.2017.11.071
Ziari H, 2016, INT J PAVEMENT ENG, V17, P776, DOI 10.1080/10298436.2015.1019498
Zou JH, 2017, ENERG BUILDINGS, V152, P385, DOI 10.1016/j.enbuild.2017.07.064
Zou ZB, 2020, BUILD ENVIRON, V168, DOI 10.1016/j.buildenv.2019.106535
NR 340
TC 4
Z9 4
U1 9
U2 14
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1568-4946
EI 1872-9681
J9 APPL SOFT COMPUT
JI Appl. Soft. Comput.
PD FEB
PY 2024
VL 152
AR 111174
DI 10.1016/j.asoc.2023.111174
EA JAN 2024
PG 31
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA GN8K2
UT WOS:001153439800001
DA 2024-09-05
ER
PT J
AU Ran, N
AF Ran, Na
TI Association Between Immediacy of Citations and Altmetrics in COVID-19
Research by Artificial Neural Networks
SO DISASTER MEDICINE AND PUBLIC HEALTH PREPAREDNESS
LA English
DT Article
DE journal impact factor; social media; COVID-19; scholarly communication;
neural networks
ID CORE; SCORE
AB Objectives: Both citations and Altmetrics are indexes of influence of a publication, potentially useful, but to what extent that the professional-academic citation and media-dominated Altmetrics are consistent with each other is a topic worthy of being investigated. The objective is to show their correlation. Methods: DOI and citation information of coronavirus disease 2019 (COVID-19) researches were obtained from the Web of Science, its Altmetric indicators were collected from the Altmetrics. Correlation between the immediacy of citation and Altmetrics of COVID-19 research was studied by artificial neural networks. Results: Pearson coefficients are 0.962, 0.254, 0.222, 0.239, 0.363, 0.218, 0.136, 0.134, and 0.505 (P < 0.01) for dimensions citation, attention score, journal impact factor, news, blogs, Twitter, Facebook, video, and Mendeley correlated with the SCI citation, respectively. The citations from the Web of Science and that from the Altmetrics have deviance large enough in the current. Altmetric score is not precise to describe the immediacy of citations of academic publication in COVID-19 research. Conclusions: The effects of news, blogs, Twitter, Facebook, video, and Mendeley on SCI citations are similar to that of the journal impact factor. This paper performs a pioneer study for investigating the role of academic topics across Altmetric sources on the dissemination of scholarly publications.
C1 [Ran, Na] Univ Sci & Technol Beijing, Beijing, Peoples R China.
C3 University of Science & Technology Beijing
RP Ran, N (corresponding author), Univ Sci & Technol Beijing, Beijing, Peoples R China.
EM ranna@ustb.edu.cn
OI na, ran/0000-0003-2204-2183
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Almousa O., 2011, 2011 IEEE JORD C APP
Arencibia-Jorge R, 2016, LIBRES, V26, P1
Azer SA, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2019-029433
Basheer IA, 2000, J MICROBIOL METH, V43, P3, DOI 10.1016/S0167-7012(00)00201-3
Bollen J, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006022, 10.1371/journal.pone.0004803]
Chang J, 2019, J SURG RES, V243, P52, DOI 10.1016/j.jss.2019.05.010
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
Di Franco G., 2020, QUAL QUANTITY, V55, P1007, DOI [10.1007/s11135-020-01037-y, DOI 10.1007/S11135-020-01037-Y]
da Silva NCD, 2020, REV BRAS ENFERM, V73, DOI 10.1590/0034-7167-2019-0362
Elmore SA, 2018, TOXICOL PATHOL, V46, P252, DOI 10.1177/0192623318758294
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Fang ZC, 2020, SCIENTOMETRICS, V124, P2519, DOI 10.1007/s11192-020-03564-9
Fox WP., 2017, MATH MODELING BUSINE, P1
Galligan F, 2013, SERIALS REV, V39, P56, DOI 10.1016/j.serrev.2013.01.003
Garcovich D, 2020, INT J PAEDIATR DENT, V30, P66, DOI 10.1111/ipd.12575
Hansen Rikke P, 2011, BMC Health Serv Res, V11, P284, DOI 10.1186/1472-6963-11-284
Haustein S., 2013, P 18 INT C SCI TECHN
Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101
Jeng W, 2015, J ASSOC INF SCI TECH, V66, P890, DOI 10.1002/asi.23225
Jiang J, 2013, ASIA-PAC POWER ENERG
Kim Y, 2019, CLIN NEUROL NEUROSUR, V183, DOI 10.1016/j.clineuro.2019.105386
Modarres R, 2009, HYDROL EARTH SYST SC, V13, P411, DOI 10.5194/hess-13-411-2009
Mohammadi E, 2014, J ASSOC INF SCI TECH, V65, P1627, DOI 10.1002/asi.23071
Mukherjee S.P., 2018, Statistical Methods in Social Science Research
Parrish JM, 2020, SPINE, V45, P1229, DOI 10.1097/BRS.0000000000003508
Priem J., 2010, Altmetrics: a manifesto
Priem J., ALTEMETRICS WILD USI
Pukelis L., 2019, Politologija, V94, P56, DOI [https://doi.org/10.15388/Polit.2019.94.2, DOI 10.15388/POLIT.2019.94.2]
Rovetta A, 2020, JMIR PUBLIC HLTH SUR, V6, DOI 10.2196/19374
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
Thelwall M, 2015, J ASSOC INF SCI TECH, V66, P876, DOI 10.1002/asi.23236
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Trigo RM, 1999, CLIM RES, V13, P45, DOI 10.3354/cr013045
Walsh L, 2012, DISASTER MED PUBLIC, V6, P44, DOI 10.1001/dmp.2012.4
Warren VT, 2020, CLIN IMPLANT DENT R, V22, P54, DOI 10.1111/cid.12876
Zahedi Z., 2013, P ISSI 2013 14 INT S
Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0
Zhang XY, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101140
NR 39
TC 5
Z9 5
U1 4
U2 34
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 1935-7893
EI 1938-744X
J9 DISASTER MED PUBLIC
JI Dis. Med. Public Health Prep.
PD AUG 31
PY 2021
VL 17
AR PII S1935789321002779
DI 10.1017/dmp.2021.277
EA AUG 2021
PG 6
WC Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Public, Environmental & Occupational Health
GA 8R0OF
UT WOS:000757087500001
PM 34462034
OA Green Published
DA 2024-09-05
ER
PT J
AU Makhashen, GMB
Al-Jamimi, HA
AF Makhashen, Galal M. Bin
Al-Jamimi, Hamdi A.
TI An Intelligent Prediction of the Next Highly Cited Paper Using Machine
Learning
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Artificial Intelligence; Machine Learning; Highly Cited Paper
Indicators; Digital; Libraries; Bibliometric Analysis
ID CITATION COUNTS; IMPACT; IMPROVE
AB Highly cited articles capture the attention of significant contributors in the research community as an opportunity to improve knowledge, source of ideas or solutions, and advance their research in general. Typically, these articles are authored by a large number of scientists with international collaboration. However, this could not be the only reason for an article to be highly cited, there might be several other characteristics for an article to be more attractive to researchers and readers. In other words, there are a few other characteristics that help articles/papers to be more than others to appear in search engines or to grab readers' attention. In this study, we modeled several machine-learning methods with a set of articles, and journal characteristics including authors-count, title characteristics, abstract length, international collaboration, number of keywords, funding information, journal characteristics, etc. We extracted 20 characteristics and developed multiple machine-learning models to automate highly-cited papers recognition from regular papers. In experiments conducted with an ensemble machine learning algorithm, 97% recognition accuracy was achieved. Other algorithms including a deep learning method using LSTMs also achieved high recognition accuracy. Such high performances can be utilized for a promising HCP auto-detection system in the future.
C1 [Makhashen, Galal M. Bin; Al-Jamimi, Hamdi A.] King Fahd Univ Petr & Minerals, Res Inst, Dhahran 31261, Saudi Arabia.
C3 King Fahd University of Petroleum & Minerals
RP Makhashen, GMB (corresponding author), King Fahd Univ Petr & Minerals, Res Inst, Dhahran 31261, Saudi Arabia.
EM binmakhashen@kfupm.edu.sa
RI Al-Jamimi, Hamdi A./G-5734-2016
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645
ALTMAN NS, 1992, AM STAT, V46, P175, DOI 10.2307/2685209
Antonakis J, 2014, LEADERSHIP QUART, V25, P152, DOI 10.1016/j.leaqua.2013.10.014
BinMakhashen GM, 2022, 2022 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MACHINE LEARNING APPLICATIONS (CDMA 2022), P1, DOI 10.1109/CDMA54072.2022.00006
Biscaro C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099502
Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005
Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004
Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112
Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Elgendi M, 2019, IEEE ACCESS, V7, P87977, DOI 10.1109/ACCESS.2019.2925965
Fayaz SA, 2022, INT J ADV COMPUT SC, V13, P466
Gallivan M.J., 2012, P 50 ANN C COMPUTERS, P175, DOI [10.1145/2214091.2214137, DOI 10.1145/2214091.2214137]
Hsu CW, 2002, IEEE T NEURAL NETWOR, V13, P415, DOI 10.1109/72.991427
Hurley L. A., 2013, Proceedings of the American Society for Information Science and Technology, V50, P1, DOI [DOI 10.1002/MEET.14505001070, 10.1002/meet.14505001070]
Liaw A., 2002, R NEWS, V2, P18
Millet-Reyes B, 2013, GLOB FINANC J, V24, P129, DOI 10.1016/j.gfj.2013.07.003
Noorhidawati A, 2017, MALAYS J LIBR INF SC, V22, P85, DOI 10.22452/mjlis.vol22no2.6
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Persson O, 2010, SCIENTOMETRICS, V83, P397, DOI 10.1007/s11192-009-0007-0
Ponomarev IV, 2014, SCIENTOMETRICS, V100, P755, DOI 10.1007/s11192-014-1320-9
Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017
Rojas R., 1996, Neural Networks, P149, DOI [10.1007/978-3-642-61068-4, DOI 10.1007/978-3-642-61068-4, 10.1007/978-3-642-61068-4_7, DOI 10.1007/978-3-642-61068-47]
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
Van Raan AF., 2000, CITATION ANAL MEASUR, P301
Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009
Velez-Estevez A, 2022, SCIENTOMETRICS, V127, P7517, DOI 10.1007/s11192-022-04486-4
Wang FH, 2019, SCIENTOMETRICS, V118, P109, DOI 10.1007/s11192-018-2965-6
Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002
Winnink JJ, 2015, SCIENTOMETRICS, V102, P113, DOI 10.1007/s11192-014-1451-z
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
NR 34
TC 0
Z9 0
U1 5
U2 10
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD JAN-APR
PY 2023
VL 12
IS 1
BP 44
EP 53
DI 10.5530/jscires.12.1.008
PG 10
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA O6RV0
UT WOS:001045065000006
OA hybrid
DA 2024-09-05
ER
PT J
AU Melnikova, EV
AF Melnikova, E. V.
TI Deep Machine Learning in Optimization of Scientific Research Activities
SO SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING
LA English
DT Article
DE artificial intelligence; deep learning; machine learning; artificial
neural networks; big data; scientometrics; research productivity;
predictive models; research data repositories
AB -This article provides a general overview of machine learning, a subdomain of artificial intelligence. The substance of the deep learning process is explained, and key features of deep learning as a high-level artificial intelligence technology are outlined. Differences between deep and conventional machine learning are analyzed. The architecture of deep learning models is considered. Issues with using deep learning in neural networks are outlined, and key processes of the functioning of neural networks are described. The importance of deep learning neural networks for processing big data is noted. Specific examples of application of deep learning algorithms in various research fields, specifically, scientometrics, bibliometrics, medicine, geoseismic research, and others, are provided. It is shown that deep learning plays an important role in optimizing research activities and improving research productivity.
C1 [Melnikova, E. V.] Russian Acad Sci, All Russian Inst Sci & Tech Informat VINITI, Moscow 125315, Russia.
C3 Russian Academy of Sciences; Institute for Scientific & Technical
Information of the Russian Academy of Sciences
RP Melnikova, EV (corresponding author), Russian Acad Sci, All Russian Inst Sci & Tech Informat VINITI, Moscow 125315, Russia.
EM verden.mel@yandex.ru
FU All-Russian Institute for Scientific and Technical Information VINITI,
Russian Academy of Sciences [FFFU-2021-0002]; Russian Foundation for
Basic Research [20-07-00014]
FX The work is supported by the State assignment of the All-Russian
Institute for Scientific and Technical Information VINITI, Russian
Academy of Sciences (project no. FFFU-2021-0002) and by the Russian
Foundation for Basic Research (project no. 20-07-00014).
CR DataAge, 2025 REP INF AN ENT
Denisova O.Yu., 2015, VESTN TEKHNOL U, V18, P226
Elshawi R, 2018, BIG DATA RES, V14, P1, DOI 10.1016/j.bdr.2018.04.004
Gilyarevskii RS, 2021, SCI TECH INF PROCESS, V48, P53, DOI 10.3103/S0147688221010111
hathitrust, HATHITRUST DIGITAL R
Hinton GE, 2007, TRENDS COGN SCI, V11, P428, DOI 10.1016/j.tics.2007.09.004
Komkov A.A., 2020, NAUCHN OBOZR MEDITSI, P33, DOI [10.17513/srms.1141, DOI 10.17513/SRMS.1141]
Krasnov FV, 2018, BIZN INFORM, V44, P7, DOI 10.17323/1998-0663.2018.2.7.16
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
McCarthy J., ARTHUR SAMUEL PIONEE
McCulloch WS, 2016, EMBODIMENTS OF MIND, P19
Melnikova EV, 2022, SCI TECH INF PROCESS, V49, P102, DOI 10.3103/S0147688222020083
Melnikova E.V., 2021, Inf. Resur. Ross., P6, DOI [10.52815/0204-3653_2021_04182_6, DOI 10.52815/0204-36532021041826]
Microsoft Corporation, 2022, DEEP LEARN VS MACH L
Naur P., 1974, Concise Survey of Computer Methods
Piatetsky-Shapiro G., 1991, AI MAG, V11
Rawat, 2021, QUAL QUANTITY, V55, P1371, DOI [DOI 10.1007/S11135-020-01061-Y, 10.1007/s11135-020-01061-y]
SAMUEL AL, 1959, IBM J RES DEV, V3, P211, DOI 10.1147/rd.441.0206
Swiss National Science Foundation, 2022, US
Ulrich R., 2020, E SCI TAGE 2019 DATA, P194, DOI [10.11588/heibooks.598.c8432, DOI 10.11588/HEIBOOKS.598.C8432]
Von der Heyde M., 2019, OPEN RES DATA LANDSC, DOI [10.5281/zenodo.2643460, DOI 10.5281/ZENODO.2643460]
Wook M, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00439-5
NR 22
TC 1
Z9 1
U1 15
U2 46
PU PLEIADES PUBLISHING INC
PI NEW YORK
PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES
SN 0147-6882
EI 1934-8118
J9 SCI TECH INF PROCESS
JI Sci. Tech. Inf. Process.
PD MAR
PY 2023
VL 50
IS 1
BP 53
EP 58
DI 10.3103/S0147688223010082
PG 6
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA H0EW6
UT WOS:000992792300006
DA 2024-09-05
ER
PT C
AU Sadaf, F
Shahid, MH
Islam, MA
AF Sadaf, Fatima
Shahid, Muzammil Hussain
Islam, Muhammad Arshad
GP IEEE
TI Predicting Most Influential Paper Award Using Citation Count
SO 2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE
TECHNOLOGIES (ICODT2)
LA English
DT Proceedings Paper
CT IEEE International Conference on Digital Futures and Transformative
Technologies (ICoDT2)
CY MAY 20-21, 2021
CL Natl Univ Sci & Technol, Islamabad, PAKISTAN
HO Natl Univ Sci & Technol
DE Citation Count Prediction; Time series forecasting; Most influential
paper award; Feature Engineering; Machine Learning
ID IMPACT; NETWORK
AB The early identification of the influential papers is of great significance for assessing the scientific achievements of researchers and institutions as it can help in addressing the processes in an academic and scientific field, such as promotions, recruitment decisions, and funding allocation. This work evaluates features for predicting the most influential paper award that is given by several renowned conferences, ten years subsequent to their publication. The data of five renowned conferences, i.e., ICSE, ICFP, POPL, PLDI, and OOPSLA is used to predict the long-term citations to identify the most influential paper of the respective conference. GD boost model is considered to be better performing among the five different machine learning algorithms. The results show that a three to five years of the time window is good enough to evaluate the most influential paper award. Additionally, the assessment of time window and the citation trajectory of awarded and non awarded papers shows that the citation trajectory of the awarded paper vary from the Citation gain patterns of non-awarded paper.
C1 [Sadaf, Fatima; Shahid, Muzammil Hussain; Islam, Muhammad Arshad] Natl Univ Comp & Emerging Sci, Islamabad, Pakistan.
RP Sadaf, F (corresponding author), Natl Univ Comp & Emerging Sci, Islamabad, Pakistan.
EM i181257@nu.edu.pk; i171090@nu.edu.pk; arshad.islam@nu.edu.pk
RI Islam, Muhammad Arshad/M-2385-2019
OI Islam, Muhammad Arshad/0000-0002-7503-5086; Shahid,
Muzammil/0000-0001-7013-335X
CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Bai XM, 2017, INFORMATION, V8, DOI 10.3390/info8030073
Dunaiski M, 2016, J INFORMETR, V10, P392, DOI 10.1016/j.joi.2016.01.010
Färber M, 2019, LECT NOTES COMPUT SC, V11779, P113, DOI 10.1007/978-3-030-30796-7_8
Fiala D, 2017, J INFORMETR, V11, P1044, DOI 10.1016/j.joi.2017.09.008
Friedman JH, 2002, COMPUT STAT DATA AN, V38, P367, DOI 10.1016/S0167-9473(01)00065-2
Giuffrida C, 2019, J INFORMETR, V13, P500, DOI 10.1016/j.joi.2019.02.008
Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112
Komamizu T, 2020, KNOWL INF SYST, V62, P2989, DOI 10.1007/s10115-020-01445-4
Li MJ, 2019, IEEE SYS MAN CYBERN, P1172, DOI 10.1109/SMC.2019.8913961
Maqsood S, 2020, MALAYS J LIBR INF SC, V25, P31, DOI 10.22452/mjlis.vol25no1.2
Wang Y, 2021, STRUCT HEALTH MONIT, V20, P861, DOI 10.1177/1475921719850641
West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790
Zhang J, 2017, SCIENTOMETRICS, V112, P1301, DOI 10.1007/s11192-017-2458-z
NR 16
TC 1
Z9 1
U1 1
U2 7
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-1285-8
PY 2021
DI 10.1109/ICoDT252288.2021.9441487
PG 7
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BS7GM
UT WOS:000760235700015
DA 2024-09-05
ER
PT C
AU Montelongo, A
Becker, JL
AF Montelongo, Alfredo
Becker, Joao Luiz
BE Wu, XT
Jermaine, C
Xiong, L
Hu, XH
Kotevska, O
Lu, SY
Xu, WJ
Aluru, S
Zhai, CX
Al-Masri, E
Chen, ZY
Saltz, J
TI A bibliometric network analysis of Deep Learning publications applied
into legal documents
SO 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)
SE IEEE International Conference on Big Data
LA English
DT Proceedings Paper
CT 8th IEEE International Conference on Big Data (Big Data)
CY DEC 10-13, 2020
CL ELECTR NETWORK
DE Deep Learning; Neural Networks; bibliometric; legal; applications
ID NEURAL-NETWORKS; CLASSIFICATION
AB Deep Learning has been gradually adopted as the main methodology to perform Natural Language Processing tasks on legal documents. In this work we provide a bibliometric network analysis of Deep Learning publications (formerly Neural Networks) applied to the analysis of legal documents. Our study includes a total sample of 138 works published between 1987 and 2020 that used DL as primary methodology. We focused on three specific objectives: identification of the journals with more publications on the subject, a co-authorship network analysis, and an examination of the most cited works. Our results show that the publications are concentrated in a small number of specialized journals on the topic, and consequently, the number of works that use DL methodologies in the legal context is smaller compared to other areas. The co-authorship network analysis reveals four broad clusters of researchers that are time-dependent concentrated into Connectionism (1), Neural Networks (1) and Deep Learning (2). Our analysis of highly cited publications delivered 10 articles with two particular authors that centralize the network. Finally, we have found that collaboration between groups of researchers from different areas is minimal, showing a window of opportunity to increase interdisciplinary research, particularly between computer and legal research groups.
C1 [Montelongo, Alfredo] Univ Fed Rio Grande do Sul EA PPGA, Porto Alegre, RS, Brazil.
[Becker, Joao Luiz] Fundacao Getulio Vargas FGV EAESP, Sao Paulo, Brazil.
C3 Getulio Vargas Foundation
RP Montelongo, A (corresponding author), Univ Fed Rio Grande do Sul EA PPGA, Porto Alegre, RS, Brazil.
EM alfredo.montelongo@ufrgs.br; joao.becker@fgv.br
RI Becker, João Luiz/R-2088-2016
OI Becker, João Luiz/0000-0003-4176-7374
CR Abood A., 2018, ARTIF INTELL LAW, P1
Alschner Wolfgang., 2016, SSRN Electronic Journal
[Anonymous], 2013, P 2013 C N AM CHAPTE
[Anonymous], 2017, ARXIV170305320
Asra F., 2017, INT J APPL ENG RES, V12, P14984
Bansal N, 2019, P AIAI 19, P374, DOI DOI 10.1007/978-3-030-19823-7_31
Belew R., 1987, P 1 INT C ART INT LA, P116
Bench-Capon T., 1993, Fourth International Conference on Artificial Intelligence and Law. Proceedings of the Conference, P292, DOI 10.1145/158976.159012
BOCHEREAU L, 1991, THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE & LAW, P288, DOI 10.1145/112646.112683
Branting L., 2018, LECT NOTES COMPUTER, P465
Branting LK, 2017, ARTIF INTELL LAW, V25, P5, DOI 10.1007/s10506-017-9193-x
Cerka P, 2015, COMPUT LAW SECUR REV, V31, P376, DOI 10.1016/j.clsr.2015.03.008
Chalkidis I., 2018, ARXIV180503871
Chalkidis I., 2017, DEEP LEARNING APPROA
Chalkidis I., 2017, P INT C ART INT LAW, P19
Chalkidis I, 2019, ARTIF INTELL LAW, V27, P171, DOI 10.1007/s10506-018-9238-9
Chaphalkar NB, 2015, INT J PROJ MANAG, V33, P1827, DOI 10.1016/j.ijproman.2015.09.002
Chau KW, 2007, AUTOMAT CONSTR, V16, P642, DOI 10.1016/j.autcon.2006.11.008
Chen BG, 2019, 2019 COMPANION OF THE 19TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS-C 2019), P145, DOI 10.1109/QRS-C.2019.00040
Chen WQ, 2018, CHINESE J CANCER RES, V30, P1, DOI 10.21147/j.issn.1000-9604.2018.01.01
Chevalier-Boisvert M., 2019, ARXIV181008272
Corcoran JJ, 2003, INT J FORECASTING, V19, P623, DOI 10.1016/S0169-2070(03)00095-5
Da Silva N.C., 2018, P 10 INT C FOR COMP, P29
Dikmen I, 2004, J CONSTR ENG M, V130, P59, DOI 10.1061/(ASCE)0733-9364(2004)130:1(59)
El Jelali S, 2015, ARTIF INTELL LAW, V23, P1, DOI 10.1007/s10506-015-9162-1
Hobson J., 1994, INDEXING THEFT ACT 1
Hollatz J., 1999, Artificial Intelligence and Law, V7, P289, DOI 10.1023/A:1008344904309
John AK, 2017, LECT NOTES COMPUT SC, V10260, P267, DOI 10.1007/978-3-319-59569-6_32
Kim Mi-Young, 2015, JURISIN WORKSH
Lai YH, 2009, EXPERT SYST APPL, V36, P10520, DOI 10.1016/j.eswa.2009.01.027
Li SB, 2018, SCIENTOMETRICS, V117, P721, DOI 10.1007/s11192-018-2905-5
Li Y, 2020, INT J MACH LEARN CYB, P1
Lippi M, 2019, ARTIF INTELL LAW, V27, P117, DOI 10.1007/s10506-019-09243-2
Lopes SA, 2018, INT J PRODUCT PERFOR, V67, P1940, DOI 10.1108/IJPPM-08-2017-0212
Merkl D., 1999, Artificial Intelligence and Law, V7, P185, DOI 10.1023/A:1008365524782
Merkl D., 1995, Fourth International Conference on `Artificial Neural Networks' (Conf. Publ. No.409), P29, DOI 10.1049/cp:19950524
Merkl D., 1995, AUSTR DAT C
Merkl D., 1997, ICAIL, V97, P98
Merkl D., 1995, CONTENT BASED DOCUME
Morimoto A., 2017, COLIEE ICAIL, V47, P79
MOSELHI O, 1991, J CONSTR ENG M ASCE, V117, P606, DOI 10.1061/(ASCE)0733-9364(1991)117:4(606)
Nanda R., 2017, 4th Competition on Legal Information Extraction and Entailment (COLIEE 2017), P68
Nejadgholi I, 2017, FRONT ARTIF INTEL AP, V302, P125, DOI 10.3233/978-1-61499-838-9-125
Son NT, 2016, INT CONF KNOWL SYS, P252, DOI 10.1109/KSE.2016.7758062
Oatley G, 2006, ARTIF INTELL LAW, V14, P35, DOI 10.1007/s10506-006-9023-z
Philipps L., 1999, Artificial Intelligence and Law, V7, P115, DOI 10.1023/A:1008371600675
Philipps L., 1989, NEURAL NETWORK IDENT
Philipps L., 1991, CARDOZO REV, V13, P987
Philipps L., 1989, ARE LEGAL DECISIONS
Rose D. E., 1989, Second International Conference on Artificial Intelligence and Law. Proceedings of the Conference, P138, DOI 10.1145/74014.74033
Sadeghian A., 2016, Proceedings of the Workshop on Legal Text, Document, and Corpus Analytics LTDCA-2016, P70
Sadeghian A, 2018, ARTIF INTELL LAW, V26, P127, DOI 10.1007/s10506-018-9217-1
Sartor G., 1998, Judicial applications of artificial intelligence, P1, DOI DOI 10.1007/978-94-015-9010-5_1
Singh Jaspreet, 2018, Procedia Computer Science, V132, P1041, DOI 10.1016/j.procs.2018.05.019
Stranieri A., 1999, Artificial Intelligence and Law, V7, P153, DOI 10.1023/A:1008325826599
Stranieri A, 2006, INFORMATION TECHNOLOGY AND LAWYERS: ADVANCED TECHNOLOGY IN THE LEGAL DOMAIN, FROM CHALLENGES TO DAILY ROUTINE, P81, DOI 10.1007/1-4020-4146-2_4
Thagard P., 1991, CARDOZO LAW REV, V13, P1001
Nguyen TL, 2019, ADV MATER, V31, DOI 10.1002/adma.201803953
Tran V, 2020, ARTIF INTELL LAW, V28, P441, DOI 10.1007/s10506-020-09262-4
Trappey AJC, 2006, EXPERT SYST APPL, V31, P755, DOI 10.1016/j.eswa.2006.01.013
Undavia S, 2018, FED CONF COMPUT SCI, P515, DOI 10.15439/2018F227
Wagh Rupali Sunil, 2020, Intelligent Systems, Technologies and Applications. Proceedings of ISTA 2018. Advances in Intelligent Systems and Computing (AISC 910), P53, DOI 10.1007/978-981-13-6095-4_4
Winiwarter W., 1995, KNOWLEDGE ACQUISITIO
Xu, 2016, MATCHING LAW CASES R
Yan G, 2019, 2019 COMPANION OF THE 19TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS-C 2019), P281, DOI 10.1109/QRS-C.2019.00060
Yitmen I, 2010, ARTIFICIAL NEURAL NE
Zeleznikow J., 1993, ARTIF INTELL LAW, V2, P169, DOI [10.1007/BF00871889, DOI 10.1007/BF00871889]
NR 67
TC 0
Z9 0
U1 1
U2 11
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2639-1589
BN 978-1-7281-6251-5
J9 IEEE INT CONF BIG DA
PY 2020
BP 2131
EP 2138
DI 10.1109/BigData50022.2020.9377970
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BR6NZ
UT WOS:000662554702034
DA 2024-09-05
ER
PT J
AU Le, TQ
Huynh, NV
AF Thanh Quynh Le
Nam Van Huynh
TI Grading Sewing Operator Skill Using Principal Component Analysis and
Ordinal Logistic Regression
SO INTERNATIONAL JOURNAL OF KNOWLEDGE AND SYSTEMS SCIENCE
LA English
DT Article
DE Delphi Method; Generalized Ordered Logit; Logistic Regression Method;
Operation Research; Ordinal Logistic Regression; Performance Rating;
Principal Component Analysis; Worker Skill Level
ID PARTIAL PROPORTIONAL ODDS; DELPHI METHOD; PERFORMANCE; MODELS; VARIABLES
AB In the apparel manufacturing process, productivity and quality are somewhat determined by operator skill level. Predicting worker skill level is very important for effective production operation management. However, the current methods for ranking skill level in the manufacturing industry have been based on the subjective evaluation of managers and have failed both in predicting the operator skill level needed for planning and in encouraging operators to develop new skills for quality and productivity. This article develops a new method for grading sewing worker skill levels that employs updated knowledge from experts involved in training, coaching and managing operations in factories. This approach uses the Delphi method combined with principal component analysis to define and classify six qualitative variables that effect on three aspects of operator skill, including coordination skill, sustaining skill, and tool operating skill. Based on these three variables, ordinal logistic regression is applied to grade skill levels, with a statistically significance result.
C1 [Thanh Quynh Le] Japan Adv Inst Sci & Technol, Sch Knowledge Sci, Nomi, Japan.
[Nam Van Huynh] Japan Adv Inst Sci & Technol, Nomi, Japan.
C3 Japan Advanced Institute of Science & Technology (JAIST); Japan Advanced
Institute of Science & Technology (JAIST)
RP Le, TQ (corresponding author), Japan Adv Inst Sci & Technol, Sch Knowledge Sci, Nomi, Japan.
OI Le, Thanh Quynh/0000-0002-1099-7807
CR Abdallah FDM., 2017, INT J STAT APPL, V7, P192
Adkins CL, 2001, J ORGAN BEHAV, V22, P453, DOI 10.1002/job.96
Ameyaw EE, 2016, J CIV ENG MANAG, V22, P991, DOI 10.3846/13923730.2014.945953
Asmus S, 2015, PROC CIRP, V26, P127, DOI 10.1016/j.procir.2015.02.086
Chase R.B., 1998, PRODUCTION OPERATION
Chih YY, 2017, J CONSTR ENG M, V143, DOI 10.1061/(ASCE)CO.1943-7862.0001346
Chowdhury M., 2006, J KNOWLEDGE MANAGEME, V7, P1
Das S, 2011, NUTR J, V10, DOI 10.1186/1475-2891-10-124
DEADRICK DL, 1990, PERS PSYCHOL, V43, P717, DOI 10.1111/j.1744-6570.1990.tb00680.x
Fuks M, 2008, ENERG ECON, V30, P1672, DOI 10.1016/j.eneco.2007.09.006
Gao XM, 2017, COMPUT METH PROG BIO, V150, P23, DOI 10.1016/j.cmpb.2017.07.008
Gordon, 1994, FUTUR RES METHODOL, V4, P2
Hosmer W., 2000, Applied Logistic Regression, VSecond
Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325
Johnson R.A., 1982, APPL MULTIVARIATE ST
Jolliffe IT, 2002, Principal Component Analysis, V2nd
Kahya E, 2009, INT J IND ERGONOM, V39, P96, DOI 10.1016/j.ergon.2008.06.006
Koletsi D, 2018, AM J ORTHOD DENTOFAC, V153, P157, DOI 10.1016/j.ajodo.2017.11.011
LANDY FJ, 1980, PSYCHOL BULL, V87, P72, DOI 10.1037/0033-2909.87.1.72
MCCULLAGH P, 1980, J ROY STAT SOC B MET, V42, P109
Nembhard DA, 2001, INT J PROD RES, V39, P1955, DOI 10.1080/00207540110036696
Niebel B.W., 2003, METHODS STANDARDS WO, V11
Okoli C, 2004, INFORM MANAGE-AMSTER, V42, P15, DOI 10.1016/j.im.2003.11.002
PETERSON B, 1990, J R STAT SOC C-APPL, V39, P205
Petroni Alberto., 2000, J SUPPLY CHAIN MANAG, V36, P63, DOI [10.1111/j.1745-493X.2000.tb00078.x, DOI 10.1111/J.1745-493X.2000.TB00078.X]
Polat K, 2007, DIGIT SIGNAL PROCESS, V17, P702, DOI 10.1016/j.dsp.2006.09.005
Sepehr M, 2017, GLOB J ENVIRON SCI M, V3, P89, DOI 10.22034/gjesm.2017.03.01.009
Steyerberg EW., 2016, BIOMETRICS, V72, P1006, DOI DOI 10.1111/BIOM.12569
WALKER SH, 1967, BIOMETRIKA, V54, P167, DOI 10.1093/biomet/54.1-2.167
NR 29
TC 2
Z9 2
U1 0
U2 6
PU IGI GLOBAL
PI HERSHEY
PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA
SN 1947-8208
EI 1947-8216
J9 INT J KNOWL SYST SCI
JI Int. J. Knowl. Syst. Sci.
PD APR-JUN
PY 2018
VL 9
IS 2
BP 28
EP 44
AR 2
DI 10.4018/IJKSS.2018040102
PG 17
WC Operations Research & Management Science
WE Emerging Sources Citation Index (ESCI)
SC Operations Research & Management Science
GA HH1UK
UT WOS:000455505100002
DA 2024-09-05
ER
PT C
AU Montelongo, A
Becker, JL
AF Montelongo, Alfredo
Becker, Joao Luiz
BE DiFatta, G
Sheng, V
Cuzzocrea, A
Zaniolo, C
Wu, X
TI Tasks performed in the legal domain through Deep Learning: A
bibliometric review (1987-2020)
SO 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020)
SE International Conference on Data Mining Workshops
LA English
DT Proceedings Paper
CT 20th IEEE International Conference on Data Mining (ICDM)
CY NOV 17-20, 2020
CL ELECTR NETWORK
DE Legal Corpus; Deep Learning; Neural Networks
ID NEURAL-NETWORKS
AB Deep Learning (DL) has become the state-of-the-art method for Natural Language Processing (NLP). During the last 5 years DL became the primary Artificial Intelligence (AI) method in the legal domain. In this work we provide a systematic bibliometric review of the publications that have utilized DL as the primary methodology. In particular we analyzed the performed objectives (performed tasks), the corpus utilized to train the models and promising areas of research. The sample includes a total of 137 works published between 1987 and 2020. This analysis starts with the first DL models (formerly Neural Networks) in the legal domain until the latest articles in the ongoing year. Our results show an increment of 300% on the total number of publications during the last 5 years, mainly on information extraction and classification tasks. Moreover, classification is the category with most publications with 39% of the total sample. Finally, we have identified that summarization and text generation as promising areas of research. These findings show that DL in the legal domain is currently in a growing stage, and hence it will be a promising topic of research in the coming years.
C1 [Montelongo, Alfredo] Univ Fed Rio Grande do Sul, Porto Alegre, RS, Brazil.
[Becker, Joao Luiz] Fundacao Getulio Vargas FGV EAESP, Sao Paulo, Brazil.
C3 Universidade Federal do Rio Grande do Sul; Getulio Vargas Foundation
RP Montelongo, A (corresponding author), Univ Fed Rio Grande do Sul, Porto Alegre, RS, Brazil.
EM alfredo.montelongo@ufrgs.br; joao.becker@fgv.br
RI Becker, João Luiz/R-2088-2016
OI Becker, João Luiz/0000-0003-4176-7374
CR Abood A., 2018, ARTIF INTELL LAW, P1
Adderley R., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P215, DOI 10.1145/502512.502541
Alschner W, 2017, P 16 ED INT C ART IN, P229, DOI 10.1145/3086512.30865 36
[Anonymous], 2019, ARXIV190308983
[Anonymous], 2018, AMTA
[Anonymous], 2017, ARXIV171103902
[Anonymous], 2000, Building natural language generation systems
Bansal N., 2019, IFIP INT C ART INT A, P374
Belew R., 1987, P 1 INT C ART INT LA, P116
Bench-Capon T., 1993, Fourth International Conference on Artificial Intelligence and Law. Proceedings of the Conference, P292, DOI 10.1145/158976.159012
BOCHEREAU L, 1991, THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE & LAW, P288, DOI 10.1145/112646.112683
Borges F., 2003, 16 ANN C LEG KNOWL I, P187
Bourcier D., 1999, Artificial Intelligence and Law, V7, P211, DOI 10.1023/A:1008388719330
Branting LK, 2017, ARTIF INTELL LAW, V25, P5, DOI 10.1007/s10506-017-9193-x
Brown T. B., 2020, ADV NEURAL INFORM PR
Chalkidis I., 2017, PROC, V17
Chalkidis I, 2017, FRONT ARTIF INTEL AP, V302, P155, DOI 10.3233/978-1-61499-838-9-155
Chalkidis Ilias, 2018, ARTIF INTELL LAW, P1
Chaphalkar NB, 2015, KSCE J CIV ENG, V19, P10, DOI 10.1007/s12205-014-1161-3
Chen BG, 2019, 2019 COMPANION OF THE 19TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS-C 2019), P145, DOI 10.1109/QRS-C.2019.00040
Chhatwal R., 2018, EXPLAINABLE TEXT CLA
Corcoran JJ, 2003, INT J FORECASTING, V19, P623, DOI 10.1016/S0169-2070(03)00095-5
Corcoran J, 2001, LECT NOTES COMPUT SC, V2206, P807
Crombag Hans., 1993, ARTIF INTELL LAW, V2, P39, DOI [10.1007/BF00871746, DOI 10.1007/BF00871746]
Da Silva N.C., 2018, P 10 INT C FOR COMP, P29
Devlin J., 2018, ARXIV
Erhan D, 2010, J MACH LEARN RES, V11, P625
Hunter D., 1994, LEG KNOWL BASED SYST, P55
John A., 2017, LECT NOTES COMPUT SC, P267, DOI DOI 10.1007/978-3-319-59569-6_32
Kowsrihawat K, 2018, PROCEEDINGS OF THE 2018 5TH ASIAN CONFERENCE ON DEFENSE TECHNOLOGY (ACDT 2018), P50, DOI 10.1109/ACDT.2018.8592948
Lai YH, 2009, EXPERT SYST APPL, V36, P10520, DOI 10.1016/j.eswa.2009.01.027
LeCun Y., 2015, NAT METHODS, V521, P436, DOI DOI 10.1038/nmeth.3707
Li SB, 2018, SCIENTOMETRICS, V117, P721, DOI 10.1007/s11192-018-2905-5
Merkl D., 1999, Artificial Intelligence and Law, V7, P185, DOI 10.1023/A:1008365524782
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
Mortazavi M, 2017, COLUMBIA LAW REV, V117, P202
Nanda R., 2018, ARTIF INTELL, P1
Pennington J., 2014, PROCEEDINGS, P1532
Rose D. E., 1989, Second International Conference on Artificial Intelligence and Law. Proceedings of the Conference, P138, DOI 10.1145/74014.74033
Sadeghian A, 2018, ARTIF INTELL LAW, V26, P127, DOI 10.1007/s10506-018-9217-1
Sandbhor Sayali, 2019, Information Systems Design and Intelligent Applications. Proceedings of Fifth International Conference INDIA 2018. Advances in Intelligent Systems and Computing (AISC 862), P481, DOI 10.1007/978-981-13-3329-3_45
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Shahinfar S, 2020, ECOL INFORM, V57, DOI 10.1016/j.ecoinf.2020.101085
Shang Li, 2018, 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). Proceedings, P392, DOI 10.1109/DSC.2018.00063
Sharma RD, 2015, LECT NOTES COMPUT SC, V9490, P475, DOI 10.1007/978-3-319-26535-3_54
Singh Jaspreet, 2018, Procedia Computer Science, V132, P1041, DOI 10.1016/j.procs.2018.05.019
Sugathadasa K, 2019, ADV INTELL SYST COMP, V857, P160, DOI 10.1007/978-3-030-01177-2_12
Tang Raphael, 2019, CORR
Thammaboosadee S, 2012, PROCEDIA COMPUT SCI, V13, P53, DOI 10.1016/j.procs.2012.09.113
Nguyen TL, 2019, ADV MATER, V31, DOI 10.1002/adma.201803953
Theresa M., 2011, C EM TRENDS EL COMP
Tran V, 2020, ARTIFICIAL INTELLIGE, P1
Undavia S, 2018, FED CONF COMPUT SCI, P515, DOI 10.15439/2018F227
Vijayarani S., 2015, International Journal of Computer Science Communication Networks, V5, P7
Vogel F, 2018, LAW SOCIAL INQUIRY, V43, P1340, DOI 10.1111/lsi.12305
Wachsmuth H, 2014, LECT NOTES COMPUT SC, V8404, P115, DOI 10.1007/978-3-642-54903-8_10
Warner Jr David R, 1993, INFORM COMMUNICATION, V2, P135
Yang R., 2011, EXPERT SYST APPL
Yousefi-Azar M, 2017, EXPERT SYST APPL, V68, P93, DOI 10.1016/j.eswa.2016.10.017
Zhang QS, 2018, FRONT INFORM TECH EL, V19, P27, DOI 10.1631/FITEE.1700808
NR 60
TC 0
Z9 0
U1 1
U2 11
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
SN 2375-9232
BN 978-1-7281-9012-9
J9 INT CONF DAT MIN WOR
PY 2020
BP 775
EP 781
DI 10.1109/ICDMW51313.2020.00113
PG 7
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BR5SN
UT WOS:000657112800105
DA 2024-09-05
ER
PT J
AU Nazir, S
Asif, M
Ahmad, S
Aljuaid, H
Iftikhar, R
Nawaz, Z
Ghadi, YY
AF Nazir, Shahzad
Asif, Muhammad
Ahmad, Shahbaz
Aljuaid, Hanan
Iftikhar, Rimsha
Nawaz, Zubair
Ghadi, Yazeed Yasin
TI Important Citation Identification by Exploding the Sentiment Analysis
and Section-Wise In-Text Citation Weights
SO IEEE ACCESS
LA English
DT Article
DE Sentiment analysis; Support vector machines; Random forests; Training
data; Neural networks; Multilayer perceptrons; Linguistics; Machine
learning; Citation analysis; Important citation identification;
sentiment analysis; weight assignment; machine learning
ID QUALITY; INDEX
AB A massive research corpus is generated in this epoch based on some previously established concepts or findings. For the acknowledgment of the base knowledge, researchers perform citations. Citations are the key considerations used in finding the different research measures, such as ranking the institutions, researchers, countries, computing the impact factor of journals, allocating research funds, etc. But in calculating these critical measures, citations are treated equally. However, researchers have argued that all citations can never be equally influential. Therefore, researchers have proposed other techniques to identify the important content-based, meta-data-based, and bibliographic-based citations. However, the produced results by the state-of-the-art still need to be improved. In this research work, we proposed an approach based on two primary modules, 1) The section-wise citation count and 2) Sentiment based analysis of citation sentences. The first technique is based on extracting the different sections of the research articles and performing citation count. We applied Neural Network and Multiple Regression on section-wise citations for automatic weight assignment. The citation sentences were extracted in the second approach, and sentiment analysis was used for sentences. Citations were classified with Support Vector Machine, Multilayer Perceptron, and Random Forest. F-measure, Recall, and Precision were considered to evaluate the results, compared with the state-of-the-art results. The value of precision with the proposed approach was enhanced to 0.94.
C1 [Nazir, Shahzad; Asif, Muhammad; Ahmad, Shahbaz; Iftikhar, Rimsha] Natl Text Univ, Dept Comp Sci, Faisalabad 37610, Pakistan.
[Aljuaid, Hanan] Princess Nourah Bint Abdulrahman Univ PNU, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11671, Saudi Arabia.
[Nawaz, Zubair] Univ Punjab, Dept Data Sci, Lahore 54590, Pakistan.
[Ghadi, Yazeed Yasin] Al Ain Univ, Dept Comp Sci Software Engn, Abu Dhabi, U Arab Emirates.
C3 National Textile University - Pakistan; Princess Nourah bint Abdulrahman
University; University of Punjab
RP Asif, M (corresponding author), Natl Text Univ, Dept Comp Sci, Faisalabad 37610, Pakistan.
EM asif@ntu.edu.pk
RI Asif, Muhammad/B-6072-2012; aljuaid, Hanan/AAJ-4910-2020; Ghadi, Yazeed
Yasin/AAW-6774-2021; Ahmad, Shahbaz/AAA-1264-2021
OI Asif, Muhammad/0000-0003-1839-2527; aljuaid, Hanan/0000-0001-6042-0283;
Ghadi, Yazeed Yasin/0000-0002-7121-495X; Ahmad,
Shahbaz/0000-0003-0148-4521
FU Princess Nourah bint Abdulrahman University Researchers Supporting
Project, Princess Nourah bint Abdulrahman University, Riyadh, Saudi
Arabia [PNURSP2022R54]
FX This work was supported by the Princess Nourah bint Abdulrahman
University Researchers Supporting Project, Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia, under Grant PNURSP2022R54.
CR Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11
Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492
[Anonymous], 1976, EVALUATIVE BIBLIOMET
Athar A., 2014, Sentiment analysis of scientific citations, DOI DOI 10.48456/TR-856
Balaban AT, 2012, SCIENTOMETRICS, V92, P241, DOI 10.1007/s11192-012-0637-5
Bi HH, 2011, IEEE T KNOWL DATA EN, V23, P1274, DOI 10.1109/TKDE.2010.167
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Choi J, 2010, ENVIRON EARTH SCI, V60, P473, DOI 10.1007/s12665-009-0188-0
Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661
Dong C., 2011, P 5 INT JOINT C NAT, P623
Finney B., 1979, THESIS CITY U LONDON
GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306
Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337
Giles C. L., 1998, Digital 98 Libraries. Third ACM Conference on Digital Libraries, P89, DOI 10.1145/276675.276685
Butt BH, 2015, Arxiv, DOI arXiv:1506.08966
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hou WR, 2011, BIOESSAYS, V33, P724, DOI 10.1002/bies.201100067
INHABER H, 1976, SOC STUD SCI, V6, P33, DOI 10.1177/030631277600600102
Jochim C., 2012, P COLING 2012, P1343
Karakaya Fahri, 2014, International Journal of Data Analysis Techniques and Strategies, V6, P121, DOI 10.1504/IJDATS.2014.062461
Khan AY, 2018, TURK J ELECTR ENG CO, V26, P3345, DOI 10.3906/elk-1703-260
Kumar S, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P63, DOI 10.1145/2872518.2889391
Lahitani AR, 2016, 2016 4TH INTERNATIONAL CONFERENCE ON CYBER AND IT SERVICE MANAGEMENT, P205
Lee S, 2002, INT GEOSCI REMOTE SE, P2865, DOI 10.1109/IGARSS.2002.1026804
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
MYERS CR, 1970, AM PSYCHOL, V25, P1041, DOI 10.1037/h0030149
Nazir S., 2020, P INT C ENG EM TECHN, P1, DOI [10.1109/ICEET48479.2020.9048224, DOI 10.1109/ICEET48479.2020.9048224]
Nazir S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228885
Pham SB, 2003, LECT NOTES ARTIF INT, V2903, P759
Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x
Shahid A, 2011, Australian Journal of Basic and Applied Sciences, V5, P1599
Small H, 2011, SCIENTOMETRICS, V87, P373, DOI 10.1007/s11192-011-0349-2
SMITH LC, 1981, LIBR TRENDS, V30, P83
SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111
Sugiyama Kazunari, 2010, Proceedings of the 2010 International Conference on Information Retrieval and Knowledge Management (CAMP 2010), P67, DOI 10.1109/INFRKM.2010.5466945
Sula CA, 2014, LIT LINGUIST COMPUT, V29, P452, DOI 10.1093/llc/fqu019
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Valenzuela M., 2015, PROC WORKSHOPS 29 AA, P1
Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 40
TC 2
Z9 2
U1 9
U2 32
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2022
VL 10
BP 87990
EP 88000
DI 10.1109/ACCESS.2022.3199420
PG 11
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA 4E9UC
UT WOS:000848162600001
OA gold
DA 2024-09-05
ER
PT J
AU Manogna, RL
Anand, A
AF Manogna, R. L.
Anand, Aayush
TI A bibliometric analysis on the application of deep learning in finance:
status, development and future directions
SO KYBERNETES
LA English
DT Article; Early Access
DE Bibliometric analysis; Financial markets; Deep learning; Neural
networks; Co-citation analysis; Keyword analysis
ID NEURAL-NETWORKS; BANKRUPTCY PREDICTION; STATISTICAL ARBITRAGE; MARKET;
SUPPORT; PERCEPTRON; OUTRANKING; SELECTION; RATIOS; MODEL
AB PurposeDeep learning (DL) is a new and relatively unexplored field that finds immense applications in many industries, especially ones that must make detailed observations, inferences and predictions based on extensive and scattered datasets. The purpose of this paper is to answer the following questions: (1) To what extent has DL penetrated the research being done in finance? (2) What areas of financial research have applications of DL, and what quality of work has been done in the niches? (3) What areas still need to be explored and have scope for future research?Design/methodology/approachThis paper employs bibliometric analysis, a potent yet simple methodology with numerous applications in literature reviews. This paper focuses on citation analysis, author impacts, relevant and vital journals, co-citation analysis, bibliometric coupling and co-occurrence analysis. The authors collected 693 articles published in 2000-2022 from journals indexed in the Scopus database. Multiple software (VOSviewer, RStudio (biblioshiny) and Excel) were employed to analyze the data.FindingsThe findings reveal significant and renowned authors' impact in the field. The analysis indicated that the application of DL in finance has been on an upward track since 2017. The authors find four broad research areas (neural networks and stock market simulations; portfolio optimization and risk management; time series analysis and forecasting; high-frequency trading) with different degrees of intertwining and emerging research topics with the application of DL in finance. This article contributes to the literature by providing a systematic overview of the DL developments, trajectories, objectives and potential future research topics in finance.Research limitations/implicationsThe findings of this paper act as a guide for literature review for anyone interested in doing research in the intersection of finance and DL. The article also explores multiple areas of research that have yet to be studied to a great extent and have abundant scope.Originality/valueVery few studies have explored the applications of machine learning (ML), namely, DL in finance, which is a much more specialized subset of ML. The authors look at the problem from the aspect of different techniques in DL that have been used in finance. This is the first qualitative (content analysis) and quantitative (bibliometric analysis) assessment of current research on DL in finance.
C1 [Manogna, R. L.; Anand, Aayush] Birla Inst Technol & Sci Pilani, Dept Econ & Finance, KK Birla Goa Campus, Zuarinagar, India.
C3 Birla Institute of Technology & Science Pilani (BITS Pilani)
RP Manogna, RL (corresponding author), Birla Inst Technol & Sci Pilani, Dept Econ & Finance, KK Birla Goa Campus, Zuarinagar, India.
EM leshma2020@gmail.com
OI R L, Manogna/0000-0002-8882-6434
CR Abdallah AH, 2016, AGRIC FINANCE REV, V76, P494, DOI 10.1108/AFR-05-2016-0052
Abdullaev B., 2023, Journal of Data Acquisition and Processing, V38, P461
Abiodun OI, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00938
Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99
Alfaro E, 2008, DECIS SUPPORT SYST, V45, P110, DOI 10.1016/j.dss.2007.12.002
Alshater MM, 2023, J SUSTAIN FINANC INV, V13, P1131, DOI 10.1080/20430795.2021.1947116
Alshater MM, 2021, INT J ISLAMIC MIDDLE, V14, P339, DOI 10.1108/IMEFM-08-2020-0419
Altan A, 2019, CHAOS SOLITON FRACT, V126, P325, DOI 10.1016/j.chaos.2019.07.011
ALTMAN EI, 1968, J FINANC, V23, P589, DOI 10.2307/2978933
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Atiya AF, 2001, IEEE T NEURAL NETWOR, V12, P929, DOI 10.1109/72.935101
Bao W, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180944
BEAVER WH, 1966, J ACCOUNTING RES, V4, P71, DOI 10.2307/2490171
Bengio Y, 2013, Arxiv, DOI arXiv:1308.3432
Bengio Yoshua, 2009, P ANN INT C MACH LEA, P41, DOI [10.1145/1553374.1553380, DOI 10.1145/1553374.1553380]
Bhattacharyya S, 2011, DECIS SUPPORT SYST, V50, P602, DOI 10.1016/j.dss.2010.08.008
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007
Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
Cao J, 2019, PHYSICA A, V519, P127, DOI 10.1016/j.physa.2018.11.061
Cavalcante RC, 2016, EXPERT SYST APPL, V55, P194, DOI 10.1016/j.eswa.2016.02.006
Chen AS, 2004, COMPUT OPER RES, V31, P1049, DOI 10.1016/S0305-0548(03)00064-9
Chen AS, 2003, COMPUT OPER RES, V30, P901, DOI 10.1016/S0305-0548(02)00037-0
Cioffi R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020492
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Culkin R, 2017, J INVEST MANAG, V15, P92
CYBENKO G, 1989, J PARALLEL DISTR COM, V7, P279, DOI 10.1016/0743-7315(89)90021-X
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
Deng L, 2013, IEEE INT NEW CIRC
Bui DT, 2020, CATENA, V188, DOI 10.1016/j.catena.2019.104426
Dimitras AI, 1996, EUR J OPER RES, V90, P487, DOI 10.1016/0377-2217(95)00070-4
Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Erhan D, 2010, J MACH LEARN RES, V11, P625
Fischer T, 2018, EUR J OPER RES, V270, P654, DOI 10.1016/j.ejor.2017.11.054
Geng RB, 2015, EUR J OPER RES, V241, P236, DOI 10.1016/j.ejor.2014.08.016
Glorot X., 2010, P 13 INT C ART INT S, P249
Gogas P, 2021, COMPUT ECON, V57, P1, DOI 10.1007/s10614-021-10094-w
Goodell JW, 2023, INT REV FINANC ANAL, V85, DOI 10.1016/j.irfa.2022.102442
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Goyal K, 2021, INT J CONSUM STUD, V45, P80, DOI 10.1111/ijcs.12605
Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616
Hajek P., 2013, Engineering Applications of Neural Networks: 14th International Conference, EANN 2013, Halkidiki, Greece, Proceedings, Part II 14, P13
He KM, 2016, LECT NOTES COMPUT SC, V9908, P630, DOI 10.1007/978-3-319-46493-0_38
Heaton JB, 2017, APPL STOCH MODEL BUS, V33, P3, DOI 10.1002/asmb.2209
Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
HORNIK K, 1991, NEURAL NETWORKS, V4, P251, DOI 10.1016/0893-6080(91)90009-T
Huang J, 2020, FRONT BUS RES CHINA, V14, DOI 10.1186/s11782-020-00082-6
Huang Z, 2004, DECIS SUPPORT SYST, V37, P543, DOI 10.1016/S0167-9236(03)00086-1
Huang ZH, 2015, Arxiv, DOI arXiv:1508.01991
Huck N, 2010, EUR J OPER RES, V207, P1702, DOI 10.1016/j.ejor.2010.06.043
Huck N, 2009, EUR J OPER RES, V196, P819, DOI 10.1016/j.ejor.2008.03.025
Ioffe S, 2015, PR MACH LEARN RES, V37, P448
Jarraya SK, 2020, IEEE ACCESS, V8, P26612, DOI 10.1109/ACCESS.2020.2970979
Kan R, 1999, J FINANC, V54, P203, DOI 10.1111/0022-1082.00102
Karasu S, 2020, ENERGY, V212, DOI 10.1016/j.energy.2020.118750
Kraus M, 2017, DECIS SUPPORT SYST, V104, P38, DOI 10.1016/j.dss.2017.10.001
Kraus S, 2020, INT ENTREP MANAG J, V16, P1023, DOI 10.1007/s11365-020-00635-4
Krauss C, 2017, J ECON SURV, V31, P513, DOI 10.1111/joes.12153
Krauss C, 2017, EUR J OPER RES, V259, P689, DOI 10.1016/j.ejor.2016.10.031
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Kumar PR, 2007, EUR J OPER RES, V180, P1, DOI 10.1016/j.ejor.2006.08.043
Laurent P., 2015, Intelligent automation entering the business world
Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678
Liu B., 2012, SYNLECT HUM LANG TEC, V5, P1, DOI [10.2200/S00416ED1V01Y201204HLT016, DOI 10.2200/S00416ED1V01Y201204HLT016]
Liu Y, 2005, J OPER RES SOC, V56, P1099, DOI 10.1057/palgrave.jors.2601976
Manogna RL, 2023, J MODEL MANAG, V18, P190, DOI 10.1108/JM2-04-2021-0104
Manogna RL, 2022, INT J SOC ECON, V49, P73, DOI 10.1108/IJSE-05-2021-0254
Manogna R, 2022, MEAS BUS EXCELL, V26, P288, DOI 10.1108/MBE-05-2020-0073
Manogna RL, 2021, INT J INOV SCI, V13, P233, DOI 10.1108/IJIS-07-2020-0104
Manogna RL, 2021, INTELL SYST ACCOUNT, V28, P72, DOI 10.1002/isaf.1487
Manogna RL, 2021, REV INT BUS STRATEGY, V31, P540, DOI 10.1108/RIBS-07-2020-0077
Manogna RL, 2022, INT J FINANC ECON, V27, P4244, DOI 10.1002/ijfe.2369
Manogna RL, 2021, J AGRIBUS DEV EMERG, V11, P506, DOI 10.1108/JADEE-07-2020-0156
Manogna RL, 2021, REV INT BUS STRATEGY, V31, P1, DOI 10.1108/RIBS-05-2020-0058
Manogna RL, 2021, J STRATEGY MANAG, V14, P50, DOI 10.1108/JSMA-12-2019-0210
Manogna RL, 2020, J AGRIBUS DEV EMERG, V10, P447, DOI 10.1108/JADEE-10-2019-0175
MOED HF, 1985, RES POLICY, V14, P131, DOI 10.1016/0048-7333(85)90012-5
Molina-García A, 2023, REV MANAG SCI, V17, P787, DOI 10.1007/s11846-022-00556-2
Navamani TM, 2019, DEEP LEARNING AND PARALLEL COMPUTING ENVIRONMENT FOR BIOENGINEERING SYSTEMS, P123, DOI 10.1016/B978-0-12-816718-2.00014-2
Olafsson S, 2008, EUR J OPER RES, V187, P1429, DOI 10.1016/j.ejor.2006.09.023
Oztekin A, 2016, EUR J OPER RES, V253, P697, DOI 10.1016/j.ejor.2016.02.056
Paltrinieri A., 2019, International Review of Economics and Finance, P10
Pang XW, 2020, J SUPERCOMPUT, V76, P2098, DOI 10.1007/s11227-017-2228-y
Pinaya W.H.L., 2023, Machine Learning, P173
PRITCHARD A, 1969, J DOC, V25, P348
Qiu MY, 2016, CHAOS SOLITON FRACT, V85, P1, DOI 10.1016/j.chaos.2016.01.004
ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519
RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0
Saeed U, 2021, IEEE SENS J, V21, P20833, DOI 10.1109/JSEN.2021.3096641
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Sermpinis G, 2013, EUR J OPER RES, V225, P528, DOI 10.1016/j.ejor.2012.10.020
Srivastava N., 2014, Tropical Plant Research, V1, P11
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Weiss G, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P740
White H., 1988, IEEE International Conference on Neural Networks (IEEE Cat. No.88CH2632-8), P451, DOI 10.1109/ICNN.1988.23959
WILSON RL, 1994, DECIS SUPPORT SYST, V11, P545, DOI 10.1016/0167-9236(94)90024-8
Wong BK, 2000, COMPUT OPER RES, V27, P1045, DOI 10.1016/S0305-0548(99)00142-2
Xiong T, 2015, INFORM SCIENCES, V305, P77, DOI 10.1016/j.ins.2015.01.029
Yu Y, 2019, NEURAL COMPUT, V31, P1235, DOI 10.1162/neco_a_01199
NR 103
TC 7
Z9 7
U1 8
U2 17
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 0368-492X
EI 1758-7883
J9 KYBERNETES
JI Kybernetes
PD 2023 OCT 12
PY 2023
DI 10.1108/K-04-2023-0637
EA OCT 2023
PG 21
WC Computer Science, Cybernetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA U0IS3
UT WOS:001081735000001
DA 2024-09-05
ER
PT J
AU Melnikova, EV
AF Melnikova, E. V.
TI Relevance of Application of Artificial Intelligence Toolkit in Modern
Scientometric Research
SO SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING
LA English
DT Article
DE scientometry; monitoring of scientific research; effectiveness of
science; artificial intelligence; neural networks; deep learning;
machine learning; representation learning; unsupervised learning
AB The main tasks of modern scientometrics are considered, including monitoring the effectiveness of science, and the possibility of solving them with the use of high-performance artificial intelligence tools is analyzed. The characteristics of artificial intelligence as a branch of computer science are presented, and the contribution of neuroinformatics to its development is noted. The common features and differences of the main types of machine learning developed to date are considered: classical, deep, hybrid, and automatic learning. The features of the functioning of artificial neural networks are presented, including their internal structure, order of operation, distinctive features, areas, and conditions of application. Examples of the practical use of artificial intelligence tools in modern scientometric research are given: central attention is paid to the advanced developments of the Indian scientific school. The urgently demanded method of article-by-article classification of scientific literature, as proposed by Arab scientists, is also outlined. A conclusion is drawn about the great importance of artificial intelligence and the relevance of its application for the implementation of new opportunities in optimizing scientometric research.
C1 [Melnikova, E. V.] Russian Acad Sci, All Russian Inst Sci & Tech Informat, Dept Theoret & Appl Problems Informat, Moscow, Russia.
C3 Russian Academy of Sciences; Institute for Scientific & Technical
Information of the Russian Academy of Sciences
RP Melnikova, EV (corresponding author), Russian Acad Sci, All Russian Inst Sci & Tech Informat, Dept Theoret & Appl Problems Informat, Moscow, Russia.
EM verden.mel@yandex.ru
CR Chollet F., 2018, Astrophys. Source Code Libr. ascl:1806.022
Daradkeh M, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11132066
Eykens J, 2021, QUANT SCI STUD, V2, P89, DOI 10.1162/qss_a_00106
Gilyarevskii R.S., 2022, Scientific Metrics in Science Journalism: A Course of Lectures
Goodfellow Ian B., 2018, Deep Learning
Huang H, 2022, SCIENTOMETRICS, V127, P5257, DOI 10.1007/s11192-021-04183-8
Institute of Neuroinformatics Zurich, ABOUT US
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Melnikova EV, 2023, SCI TECH INF PROCESS, V50, P114, DOI 10.3103/S0147688223020089
Melnikova EV, 2023, SCI TECH INF PROCESS, V50, P53, DOI 10.3103/S0147688223010082
Melnikova E.V., 2022, Naukosfera, P202
Microsoft Corporation, 2022, Deep Learning vs. Machine Learning
Ozcan S, 2022, IEEE T ENG MANAGE, V69, P3023, DOI 10.1109/TEM.2020.3027973
Rawat, 2021, QUAL QUANTITY, V55, P1371, DOI [DOI 10.1007/S11135-020-01061-Y, 10.1007/s11135-020-01061-y]
Shraiberg Ya.L., 2010, Biblioteka, P21
Srinivasa G, 2019, J SCIENTOMETR RES, V8, pS39, DOI 10.5530/jscires.8.2.23
Wook M, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00439-5
NR 17
TC 0
Z9 0
U1 2
U2 2
PU PLEIADES PUBLISHING INC
PI NEW YORK
PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES
SN 0147-6882
EI 1934-8118
J9 SCI TECH INF PROCESS
JI Sci. Tech. Inf. Process.
PD MAR
PY 2024
VL 51
IS 1
BP 57
EP 63
DI 10.3103/S014768822401009X
PG 7
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA RK4R2
UT WOS:001227549600008
DA 2024-09-05
ER
PT J
AU Xu, C
Zong, QJ
AF Xu, Chuer
Zong, Qianjin
TI The effects of international research collaboration on the policy impact
of research: A causal inference drawing on the journal Lancet
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article; Early Access
DE Causal inference; international research collaboration; policy citation
counts; policy impact
ID PROPENSITY SCORE; SCIENTIFIC COLLABORATION; CITATION; SCIENCE; DOCUMENTS
AB Research findings have been widely used as evidence for policy-making. The internationalisation of research activities has been increasing in recent decades, particularly during the COVID-19 pandemic. Previous studies have revealed that international research collaboration can enhance the academic impact of research. However, the effects that international research collaboration exerts on the policy impact of research are still unknown. This study aims to examine the effects of international research collaboration on the policy impact of research (as measured by the number of citations in policy documents) using a causal inference approach. Research articles published by the journal Lancet between 2000 and 2019 were selected as the study sample (n = 6098). The number of policy citations of each article was obtained from Overton, the largest database of policy citations. Propensity score matching analysis, which takes a causal inference approach, was used to examine the dataset. Four other matching methods and alternative datasets of different sizes were used to test the robustness of the results. The results of this study reveal that international research collaboration has significant and positive effects on the policy impact of research (coefficient = 4.323, p < 0.001). This study can provide insight to researchers, research institutions and grant funders for improving the policy impact of research.
C1 [Xu, Chuer; Zong, Qianjin] South China Normal Univ, Sch Econ & Management, Guangzhou 510006, Peoples R China.
C3 South China Normal University
RP Zong, QJ (corresponding author), South China Normal Univ, Sch Econ & Management, Guangzhou 510006, Peoples R China.
EM zongqj@m.scnu.edu.cn
RI Zong, Qianjin/ABD-0454-2022
OI Zong, Qianjin/0000-0002-7517-8191
CR Airoldi G, 2021, HIST PHIL LIFE SCI, V43, DOI 10.1007/s40656-021-00419-1
Akobeng AK, 2005, ARCH DIS CHILD, V90, P840, DOI 10.1136/adc.2004.058222
AL-Aqeel S, 2020, RES SOC ADMIN PHARM, V16, P1513, DOI 10.1016/j.sapharm.2020.05.019
Arbour D., 2014, CEUR WORKSH P, V1, P25
Austin PC, 2019, STAT MED, V38, P751, DOI 10.1002/sim.8008
Austin PC, 2011, MULTIVAR BEHAV RES, V46, P399, DOI 10.1080/00273171.2011.568786
Baek S, 2015, KOREAN J RADIOL, V16, P286, DOI 10.3348/kjr.2015.16.2.286
Bornmann L, 2016, SCIENTOMETRICS, V109, P1477, DOI 10.1007/s11192-016-2115-y
Cartwright N, 2010, PHILOS STUD, V147, P59, DOI 10.1007/s11098-009-9450-2
Cheng X, 2021, HEALTH RES POLICY SY, V19, DOI 10.1186/s12961-021-00770-6
Da Silva S., FAST SLOW CAUSAL INF
Drew CH, 2016, SCIENTOMETRICS, V106, P987, DOI 10.1007/s11192-015-1828-7
Glänzel W, 2001, SCIENTOMETRICS, V50, P199, DOI 10.1023/A:1010561321723
Goldfinch S, 2003, SCIENTOMETRICS, V57, P321, DOI 10.1023/A:1025048516769
GOV.UK, 2020, SCI EV SUPP GOV RESP
Haunschild R, 2017, SCIENTOMETRICS, V110, P1209, DOI 10.1007/s11192-016-2237-2
Hayati Z, 2010, LIBR HI TECH, V28, P433, DOI 10.1108/07378831011076675
Head BW, 2013, AUST J PUBL ADMIN, V72, P397, DOI 10.1111/1467-8500.12037
Hsiehchen D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130930
Huang ZH, 2022, SCIENTOMETRICS, V127, P6453, DOI 10.1007/s11192-022-04532-1
Kato M, 2017, SCIENTOMETRICS, V110, P673, DOI 10.1007/s11192-016-2183-z
Kwiek M, 2021, STUD HIGH EDUC, V46, P2629, DOI 10.1080/03075079.2020.1749254
Barrantes BSL, 2012, J AM SOC INF SCI TEC, V63, P481, DOI 10.1002/asi.21682
Lee Suk Jeong, 2007, Taehan Kanho Hakhoe Chi, V37, P414
Li MX, 2013, ORGAN RES METHODS, V16, P188, DOI 10.1177/1094428112447816
Marginson S, 2022, COMP EDUC, V58, P125, DOI 10.1080/03050068.2021.1981725
Markovic-Denic L, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.1056670
McMurry TL, 2015, J THORAC CARDIOV SUR, V150, P14, DOI 10.1016/j.jtcvs.2015.03.057
NARIN F, 1991, SCIENTOMETRICS, V21, P313, DOI 10.1007/BF02093973
Newson R, 2018, HEALTH RES POLICY SY, V16, DOI [10.1186/s12961-018-0326-9, 10.1186/s12961-018-0310-4]
Payumo J, 2017, SCIENTOMETRICS, V111, P1657, DOI 10.1007/s11192-017-2313-2
Pocock S, 2013, EUR HEART J, V34, P1846, DOI 10.1093/eurheartj/eht071
Ritter A, 2013, INT J DRUG POLICY, V24, P30, DOI 10.1016/j.drugpo.2012.02.005
Ronda-Pupo GA, 2016, SCIENTOMETRICS, V107, P1423, DOI 10.1007/s11192-016-1939-9
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
Schmoch U, 2008, SCIENTOMETRICS, V74, P361, DOI 10.1007/s11192-007-1818-5
Schnake-Mahl AS, 2022, SOC SCI MED, V314, DOI 10.1016/j.socscimed.2022.115444
Sooryamoorthy R, 2009, SCIENTOMETRICS, V81, P177, DOI 10.1007/s11192-009-2126-z
Tang M, 2019, BRIT J CANCER, V121, P515, DOI 10.1038/s41416-019-0532-4
Trapero-Bertran M, 2022, HEALTH RES POLICY SY, V20, DOI 10.1186/s12961-022-00875-6
Velez-Estevez A, 2022, SCIENTOMETRICS, V127, P7517, DOI 10.1007/s11192-022-04486-4
World Health Organization, 2015, Guidelines for the treatment of malaria, V3rd ed, DOI DOI 10.1021/CB300454T
Wu JQ, 2022, NAT MACH INTELL, V4, P436, DOI 10.1038/s42256-022-00470-y
Wu LY, 2023, J INF SCI, V49, P911, DOI 10.1177/01655515211030866
Yamey Gavin, 2011, Evid Based Med, V16, P97, DOI 10.1136/ebm.2011.100060
Yin Y, 2021, SCIENCE, V371, P128, DOI 10.1126/science.abe3084
Zhang ZH, 2019, ANN TRANSL MED, V7, DOI 10.21037/atm.2018.12.10
Zhe C, 2021, SAGE OPEN, V11, DOI 10.1177/21582440211050381
Zhou P, 2010, SCIENTOMETRICS, V82, P597, DOI 10.1007/s11192-010-0174-z
Zong QJ, 2020, SCIENTOMETRICS, V125, P607, DOI 10.1007/s11192-020-03545-y
NR 50
TC 2
Z9 2
U1 14
U2 43
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PD 2023 MAY 11
PY 2023
DI 10.1177/01655515231174381
EA MAY 2023
PG 11
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA F8UE2
UT WOS:000985034900001
DA 2024-09-05
ER
PT J
AU Kilicoglu, H
Peng, ZS
Tafreshi, S
Tran, T
Rosemblat, G
Schneider, J
AF Kilicoglu, Halil
Peng, Zeshan
Tafreshi, Shabnam
Tung Tran
Rosemblat, Graciela
Schneider, Jodi
TI Confirm or refute?: A comparative study on citation sentiment
classification in clinical research publications
SO JOURNAL OF BIOMEDICAL INFORMATICS
LA English
DT Article
DE Citation analysis; Sentiment analysis; Natural language processing;
Supervised machine learning; Neural networks
ID SCIENCE; IMPACT
AB Quantifying scientific impact of researchers and journals relies largely on citation counts, despite the acknowledged limitations of this approach. The need for more suitable alternatives has prompted research into developing advanced metrics, such as h-index and Relative Citation Ratio (RCR), as well as better citation categorization schemes to capture the various functions that citations serve in a publication. One such scheme involves citation sentiment whether a reference paper is cited positively (agreement with the findings of the reference paper), negatively (disagreement), or neutrally. The ability to classify citation function in this manner can be viewed as a first step toward a more fine-grained bibliometrics. In this study, we compared several approaches, varying in complexity, for classification of citation sentiment in clinical trial publications. Using a corpus of 285 discussion sections from as many publications (a total of 4,182 citations), we developed a rule-based method as well as supervised machine learning models based on support vector machines (SVM) and two variants of deep neural networks; namely, convolutional neural network (CNN) and bidirectional long shortterm memory (BiLSTM). A CNN model augmented with hand-crafted features yielded the best performance (0.882 accuracy and 0.721 macro-F-1 on held-out set). Our results show that baseline performances of traditional supervised learning algorithms and deep neural network architectures are similar and that hand-crafted features based on sentiment dictionaries and rhetorical structure allow neural network approaches to outperform traditional machine learning approaches for this task. We make the rule-based method and the best-performing neural network model publicly available at: https://github.com/kilicogluh/clinical-citation-sentiment.
C1 [Kilicoglu, Halil; Peng, Zeshan; Rosemblat, Graciela] Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, Bethesda, MD 20894 USA.
[Tafreshi, Shabnam] George Washington Univ, Dept Comp Sci, Washington, DC 20052 USA.
[Tung Tran] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA.
[Schneider, Jodi] Univ Illinois, Sch Informat Sci, Champaign, IL 61820 USA.
C3 National Institutes of Health (NIH) - USA; NIH National Library of
Medicine (NLM); George Washington University; University of Kentucky;
University of Illinois System; University of Illinois Urbana-Champaign
RP Kilicoglu, H (corresponding author), Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, Bethesda, MD 20894 USA.
EM kilicogluh@mail.nih.gov
RI Schneider, Jodi/AAK-2236-2020; Tafreshi, Shabnam/GXV-9636-2022
OI Schneider, Jodi/0000-0002-5098-5667;
FU U.S. National Library of Medicine, National Institutes of Health
FX HK, ZP, and GR were supported by the intramural research program at the
U.S. National Library of Medicine, National Institutes of Health. ST and
TT took part in this study during their participation in the Lister Hill
National Center for Biomedical Communications (LHNCBC) Research Program
in Medical Informatics for Graduate students at the U.S. National
Library of Medicine. JS was supported by an appointment to the NLM
Research Participation Program, administered by the Oak Ridge Institute
for Science and Education through an interagency agreement between the
U.S. Department of Energy and the National Library of Medicine Research
Participation Program.
CR Abu-Jbara A., 2013, NAACL, P596
Abu-Jbara Amjad., 2012, NAACL-HLT, P80
Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11
[Anonymous], 2014, U CAMBRIDGE COMPUTER
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], ARXIV151003820
[Anonymous], ARXIV14042188
[Anonymous], 1997, BMJ
[Anonymous], 2016, TRAIN GOOD WORD EMBE, DOI [10.18653/v1/w16-2922, DOI 10.18653/V1/W16-2922]
Athar A., 2011, P ACL 2011 STUD SESS, P81
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
ELMAN JL, 1990, COGNITIVE SCI, V14, P179, DOI 10.1207/s15516709cog1402_1
Fan RE, 2008, J MACH LEARN RES, V9, P1871
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Goldberg Y, 2017, Neural network methods for natural language processing, V10, P1, DOI [DOI 10.1007/978-3-031-02165-7, 10.1007/978-3-031-02165-7, 10.2200/S00762ED1V01Y201703HLT037, DOI 10.2200/S00762ED1V01Y201703HLT037]
Greenberg Steven A, 2009, BMJ, V339, pb2680, DOI 10.1136/bmj.b2680
Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346
Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Hutchins BI, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002541
Jia M., 2018, THESIS
Kavuluru R, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), P5, DOI 10.1109/ICHI.2017.15
Kim Y., 2014, C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791
Levy O, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P302, DOI 10.3115/v1/p14-2050
Liu XY, 2009, IEEE T SYST MAN CY B, V39, P539, DOI 10.1109/TSMCB.2008.2007853
Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Mikolov T., 2013, ArXiv13013781 Cs, P1
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
OSeaghdha D., 2014, P 25 INT C COMP LING, P2
Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555
RADEV DR, 2009, P ACL WORKSH NAT LAN
SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111
SWALES J, 1986, APPL LINGUIST, V7, P39, DOI 10.1093/applin/7.1.39
Tang Duyu, 2015, P C EMP METH NAT LAN, P1422, DOI [10.18653/v1/D15-1167, DOI 10.18653/V1/D15-1167]
Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612]
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Teufel S., 2010, STRUCTURE SCI ARTICL
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334
Yin W., CORR
Yu Bei., 2013, P 76 ASIST ANN M CLO, P1, DOI [10.1002/meet.14505001084, DOI 10.1002/MEET.14505001084]
Zhang G, 2013, J AM SOC INF SCI TEC, V64, P1490, DOI 10.1002/asi.22850
Zhu X., CORR
NR 47
TC 14
Z9 17
U1 3
U2 34
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1532-0464
EI 1532-0480
J9 J BIOMED INFORM
JI J. Biomed. Inform.
PD MAR
PY 2019
VL 91
AR 103123
DI 10.1016/j.jbi.2019.103123
PG 11
WC Computer Science, Interdisciplinary Applications; Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Medical Informatics
GA LC9XS
UT WOS:000525688200006
PM 30753947
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Deng, GF
Lin, WT
AF Deng, Guang-Feng
Lin, Woo-Tsong
TI Citation analysis and bibliometric approach for ant colony optimization
from 1996 to 2010
SO EXPERT SYSTEMS WITH APPLICATIONS
LA English
DT Article
DE Citation analysis; Bibliometric analysis; Ant colony optimization (ACO);
Bradford Law; Lotka's Law
ID QUADRATIC ASSIGNMENT PROBLEM; SYSTEM; ALGORITHMS
AB To build awareness of the development of ant colony optimization (ACO), this study clarifies the citation and bibliometric analysis of research publications of ACO during 1996-2010. This study analysed 12,960 citations from a total of 1372 articles dealing with ACO published in 517 journals based on the databases of SCIE, SSCI and AH&CI, retrieved via the Web of Science. Bradford Law and Lotka's Law, respectively, examined the distribution of journal articles and author productivity. Furthermore, this study determines the citation impact of ACO using parameters such as extent of citation received in terms of number of citations per study, distribution of citations over time, distribution of citations among domains, citation of authors, citation of institutions, highly cited papers and citing journals and impact factor of 12,960 citations. This study can help researchers to better understand the history, current status and trends of ACO in the advanced study of it. (C) 2011 Elsevier I.td. All rights reserved.
C1 [Deng, Guang-Feng; Lin, Woo-Tsong] Natl Chengchi Univ, Dept Management Informat Syst, Taipei 116, Taiwan.
C3 National Chengchi University
RP Deng, GF (corresponding author), Natl Chengchi Univ, Dept Management Informat Syst, 64,Sec 2,Chihnan Rd, Taipei 116, Taiwan.
EM deng@nccu.edu.tw; lin@mis.nccu.edu.tw
RI Deng, Guang-Feng/HNS-1201-2023
CR Abdallah H, 2009, EXPERT SYST APPL, V36, P10004, DOI 10.1016/j.eswa.2008.12.064
Blum C, 2003, ACM COMPUT SURV, V35, P268, DOI 10.1145/937503.937505
Bullnheimer B, 1999, ANN OPER RES, V89, P319, DOI 10.1023/A:1018940026670
Costa D, 1997, J OPER RES SOC, V48, P295, DOI 10.1057/palgrave.jors.2600357
Deng GF, 2011, EXPERT SYST APPL, V38, P5787, DOI 10.1016/j.eswa.2010.10.053
Dorigo M, 2005, THEOR COMPUT SCI, V344, P243, DOI 10.1016/j.tcs.2005.05.020
Dorigo M, 1997, BIOSYSTEMS, V43, P73, DOI 10.1016/S0303-2647(97)01708-5
Dorigo M, 1999, ARTIF LIFE, V5, P137, DOI 10.1162/106454699568728
Dorigo M, 1996, IEEE T SYST MAN CY B, V26, P29, DOI 10.1109/3477.484436
Dorigo M, 2006, IEEE COMPUT INTELL M, V1, P28, DOI 10.1109/MCI.2006.329691
Gambardella LM, 1999, J OPER RES SOC, V50, P167, DOI 10.2307/3010565
Gutjahr WJ, 2000, FUTURE GENER COMP SY, V16, P873, DOI 10.1016/S0167-739X(00)00044-3
Maniezzo V, 1999, IEEE T KNOWL DATA EN, V11, P769, DOI 10.1109/69.806935
Merkle D, 2002, IEEE T EVOLUT COMPUT, V6, P333, DOI 10.1109/TEVC.2002.802450
Mishra PN, 2010, MALAYS J LIBR INF SC, V15, P91
Rajendran C, 2004, EUR J OPER RES, V155, P426, DOI 10.1016/S0377-2217(02)00908-6
Shiau WL, 2011, EXPERT SYST APPL, V38, P3999, DOI 10.1016/j.eswa.2010.09.061
Stützle T, 2000, FUTURE GENER COMP SY, V16, P889, DOI 10.1016/S0167-739X(00)00043-1
Takeda Y, 2009, SCIENTOMETRICS, V78, P543, DOI 10.1007/s11192-007-2012-5
Tsay MY, 2000, SCIENTOMETRICS, V49, P491, DOI 10.1023/A:1010593824716
NR 20
TC 21
Z9 23
U1 1
U2 33
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0957-4174
J9 EXPERT SYST APPL
JI Expert Syst. Appl.
PD MAY
PY 2012
VL 39
IS 6
BP 6229
EP 6237
DI 10.1016/j.eswa.2011.12.001
PG 9
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Operations Research & Management Science
GA 902BN
UT WOS:000301013700013
DA 2024-09-05
ER
PT J
AU Gupta, G
Katarya, R
AF Gupta, Garima
Katarya, Rahul
TI Research on Understanding the Effect of Deep Learning on User
Preferences
SO ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
LA English
DT Article
DE Recommender systems; Machine learning; Deep learning
ID RECOMMENDER SYSTEMS; NETWORKS
AB Recommender systems are becoming more essential than ever as the data available online is increasing manifold. The increasing data presents us with an opportunity to build complex systems that can model the user interactions more accurately and extract sophisticated features to provide recommendations with better accuracy. To construct these complex models, deep learning is emerging as one of the most powerful tools. It can process large amounts of data to learn the structure and patterns that can be exploited. It has been used in recommender systems to solve cold-start problem, better estimate the interaction functions, and extract deep feature representations, among other facets that plague the traditional recommender systems. As big data is becoming more prevalent, there is a need to use tools that can take advantage of such explosive data. An extensive study on recommender systems using deep learning has been performed in the paper. The literature review spans in-depth analysis and comparative study of the research domain. The paper exhibits a vast range of scope for efficient recommender systems in future.
C1 [Gupta, Garima; Katarya, Rahul] Delhi Technol Univ, Dept Comp Sci & Engn, Delhi 110042, India.
C3 Delhi Technological University
RP Katarya, R (corresponding author), Delhi Technol Univ, Dept Comp Sci & Engn, Delhi 110042, India.
EM garimacsdtu@gmail.com; rahulkatarya@dtu.ac.in
OI Katarya, Prof. Rahul/0000-0001-7763-291X
CR Ahamed M. T., 2019, 2nd Int Conf Electr Comput Commun Eng ECCE, P1
Almahairi A., 2015, P 9 ACM C REC SYST, P147, DOI [DOI 10.1145/2792838.2800192, 10.1145/2792838.2800192]
[Anonymous], 2016, P 1 WORKSH DEEP LEAR
[Anonymous], 2017, PATTERN RECOGN LETT
[Anonymous], 2016, 1 WORKSHOP DEEP LEAR, DOI [DOI 10.1145/2988450.2988451, 10.1145/2988450.2988451]
[Anonymous], 2014, COLLABORATIVE DEEP L, DOI DOI 10.1145/2783258.2783273
[Anonymous], 2008, SciencesNew York, DOI 10.1.1.146.2352
[Anonymous], 2017, COMPREHENSIVE QUALIT
Bai T, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1979, DOI 10.1145/3132847.3133083
Bansal T, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P107, DOI 10.1145/2959100.2959180
Bobadilla J, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10072441
Cao SX, 2017, 2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), P721
Catherine R, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P288, DOI 10.1145/3109859.3109878
Chatzis SotiriosP., 2017, DLRS RECSYS, P38
Chen WJ, 2017, 2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), P275, DOI 10.1109/CIAPP.2017.8167222
Chen XL, 2017, INT CONF COMP SCI ED, P769, DOI 10.1109/ICCSE.2017.8085597
Cheng Heng-Tze, 2016, 1 WORKSH DEEP LEARN, P7
Chiliguano P, 2016, INT CONF ACOUST SPEE, P2618, DOI 10.1109/ICASSP.2016.7472151
Covington P, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P191, DOI 10.1145/2959100.2959190
Cui Hongliang, 2015, 2015 IEEE International Conferences on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; and Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM). Proceedings, P1016, DOI 10.1109/CIT/IUCC/DASC/PICOM.2015.154
Da'u A, 2020, INFORM SCIENCES, V512, P1279, DOI 10.1016/j.ins.2019.10.038
Da'u A, 2020, EXPERT SYST APPL, V140, DOI 10.1016/j.eswa.2019.112871
Da'u A, 2019, IEEE ACCESS, V7, P45472, DOI 10.1109/ACCESS.2019.2907729
Deng SG, 2017, IEEE T NEUR NET LEAR, V28, P1164, DOI 10.1109/TNNLS.2016.2514368
Deng XY, 2019, IEEE ACCESS, V7, P55679, DOI 10.1109/ACCESS.2019.2913468
Dominguez V., 2017, Proceedings of the 2nd workshop on deep learning for recommender systems p, P55, DOI DOI 10.1145/3125486.3125495DOI.ORG/10.1145/3125486.3125495
Dong X, 2017, AAAI CONF ARTIF INTE, P1309
Donkers T, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P152, DOI 10.1145/3109859.3109877
Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730
Elkahky A, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P278, DOI 10.1145/2736277.2741667
Feinman R, DEEP BELIEF NETWORK, P1
Fessahaye F, 2019, I SYMP CONSUM ELECTR, DOI 10.1109/icce.2019.8662028
Florez O.U., DEEP LEARNING SEMANT, V14, P1
Fu MS, 2019, IEEE T CYBERNETICS, V49, P1084, DOI 10.1109/TCYB.2018.2795041
Gao TW, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), P1556, DOI 10.1109/ICInfA.2016.7832066
Grant P, 2014, BUS GIV, DOI [10.1057/9780230355033.0018, DOI 10.1057/9780230355033.0018]
Greenstein-Messica A, 2017, IUI'17: PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P629, DOI 10.1145/3025171.3025197
Guan Y, 2019, DECIS SUPPORT SYST, V118, P58, DOI 10.1016/j.dss.2019.01.003
Hassan HAM, 2017, PROCEEDINGS OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), P327, DOI 10.1145/3079628.3079708
He XN, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P355, DOI 10.1145/3077136.3080777
Hidasi B., 2017, RECURRENT NEURAL NET, P370, DOI DOI 10.1145/3269206.3271761
Hidasi B, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P241, DOI 10.1145/2959100.2959167
Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527
Huang ZH, 2019, IEEE INTERNET THINGS, V6, P7713, DOI 10.1109/JIOT.2019.2901759
Huck-Fries V., 2017, INFORM 2017, P585, DOI [10.18420/in2017, DOI 10.18420/IN2017]
Jaradat S, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P407, DOI 10.1145/3109859.3109861
Jiang M, 2017, CONF REC ASILOMAR C, P356, DOI 10.1109/ACSSC.2017.8335200
Jiang SH, 2018, ACM T MULTIM COMPUT, V14, DOI 10.1145/3152114
Jishan S.T., 2017, MACH LEARN COMPUT, DOI 10.1145/3055635.3056606
Katzman JL, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0482-1
Kim D, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P233, DOI 10.1145/2959100.2959165
Kim D, 2017, INFORM SCIENCES, V417, P72, DOI 10.1016/j.ins.2017.06.026
Kim KJ, 2008, EXPERT SYST APPL, V34, P1200, DOI 10.1016/j.eswa.2006.12.025
Kumar V, 2017, INT CONF DAT MIN WOR, P765, DOI 10.1109/ICDMW.2017.106
Lee H, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P957, DOI 10.1145/2911451.2914734
Lee H, 2019, ICT EXPRESS, V5, P84, DOI 10.1016/j.icte.2018.05.003
Lee W, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1139, DOI 10.1145/3132847.3132972
Lei CY, 2016, PROC CVPR IEEE, P2545, DOI 10.1109/CVPR.2016.279
Li PJ, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P345, DOI 10.1145/3077136.3080822
Li QW, 2017, CONF REC ASILOMAR C, P305, DOI 10.1109/ACSSC.2017.8335189
Liu J., 2017, PHD PROBABILISTIC MO, P1
Liu WB, 2017, NEUROCOMPUTING, V234, P11, DOI 10.1016/j.neucom.2016.12.038
Liu YH, 2012, SCI CHINA TECHNOL SC, V55, P2656, DOI 10.1007/s11431-012-4938-y
Lu YC, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P773, DOI 10.1145/3178876.3186158
Luo LK, 2018, KNOWL-BASED SYST, V144, P144, DOI 10.1016/j.knosys.2017.12.032
Maheshwary S, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P87, DOI 10.1145/3184558.3186942
Meteren R.Van, 2000, ECML MLNET WORK MACH, DOI [10.1125/5743, DOI 10.1125/5743]
Nassar N, 2020, KNOWL-BASED SYST, V187, DOI 10.1016/j.knosys.2019.06.019
Nguyen TT, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2231, DOI 10.1145/3132847.3133128
Nimirthi P, 2019, Social Network Forensics, Cyber Security, and Machine Learning, P59
Nweke HF, 2018, EXPERT SYST APPL, V105, P233, DOI 10.1016/j.eswa.2018.03.056
Oh KJ, 2014, INT CONF ADV COMMUN, P1283, DOI 10.1109/ICACT.2014.6779166
Oramas S., 2017, DLRS RECSYS, P32, DOI DOI 10.1145/3125486.3125492
Pacheco AGC, 2018, EXPERT SYST APPL, V96, P77, DOI 10.1016/j.eswa.2017.11.054
Pan YT, 2020, WORLD WIDE WEB, V23, P2259, DOI 10.1007/s11280-020-00793-z
Paradarami TK, 2017, EXPERT SYST APPL, V83, P300, DOI 10.1016/j.eswa.2017.04.046
Park K, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2255, DOI 10.1145/3132847.3133154
Peska L., 2017, P 2 WORKSHOP DEEP LE, P19, DOI [10.1145/3125486.3125490, DOI 10.1145/3125486.3125490]
Preethi G, 2017, INT CONF COMP INFO, P93, DOI 10.1109/CITS.2017.8035341
Purkaystha B., 2018, 2018 21 INT C COMPUT, P1, DOI 10.1109/ICCITECHN.2017.8281852
Dang QV, 2017, 2017 IEEE 3RD INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC), P209, DOI 10.1109/CIC.2017.00036
Rafailidis D, 2017, ICTIR'17: PROCEEDINGS OF THE 2017 ACM SIGIR INTERNATIONAL CONFERENCE THEORY OF INFORMATION RETRIEVAL, P151, DOI 10.1145/3121050.3121057
Ruocco M, 2017, INTERSESSION MODELIN, DOI [10.1145/3125486.3125491, DOI 10.1145/3125486.3125491]
Saravanan B, 2019, SOFT COMPUT, V23, P2575, DOI 10.1007/s00500-019-03807-9
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Seo S, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P297, DOI 10.1145/3109859.3109890
Serrà J, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P279, DOI 10.1145/3109859.3109876
Smirnova E, 2017, P 2 WORKSH DEEP LEAR, DOI [10.1145/3125486.3125488, DOI 10.1145/3125486.3125488]
Soh H, 2017, IUI'17: PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P589, DOI 10.1145/3025171.3025207
Song Y, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P909, DOI 10.1145/2911451.2914726
Sottocornola G, 2017, 2017 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2017), P1260, DOI 10.1145/3106426.3110321
Suglia A, 2017, PROCEEDINGS OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), P202, DOI 10.1145/3079628.3079684
Taheri SM, 2018, 2018 6TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), P200, DOI 10.1109/CFIS.2018.8336633
Tan JW, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P65, DOI 10.1145/2983323.2983788
Tan Y K., 2016, Improved Recurrent Neural Networks for Session-based Recommendations, P0, DOI DOI 10.1145/2988450.2988452
Tay Y., 2017, LATENT RELATIONAL ME, P729, DOI [10.1145/3178876.3186154, DOI 10.1145/3178876.3186154]
Tomar A, 2014, 2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P362, DOI 10.1109/ICACCI.2014.6968557
Vekariya V., 2012, 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP), P469, DOI 10.1109/DICTAP.2012.6215409
Verma M, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P1281, DOI 10.1145/3331184.3331377
Vincent P., 2008, ICML, P1096, DOI [DOI 10.1145/1390156.1390294, 10.1145/1390156.1390294]
Wang FJ, 2017, 2017 IEEE 3RD INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC), P369, DOI 10.1109/CIC.2017.00054
Wang H., IEEE T KNOWLEDGE DAT, P1
Wang K, 2019, COGN SYST RES, V55, P164, DOI 10.1016/j.cogsys.2019.01.011
Wang S, 2019, IEEE ACCESS, V7, P136951, DOI 10.1109/ACCESS.2019.2942338
Wang X, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P185, DOI 10.1145/3077136.3080771
Wang X, 2017, IEEE SYS MAN CYBERN, P455, DOI 10.1109/SMC.2017.8122647
Wang XX, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P627, DOI 10.1145/2647868.2654940
Wang XJ, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2051, DOI 10.1145/3097983.3098096
WEBB T, 1976, CANCER RES, V36, P298
Wei J, 2017, EXPERT SYST APPL, V69, P29, DOI 10.1016/j.eswa.2016.09.040
Wei J, 2016, 2016 IEEE 14TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 14TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 2ND INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/DATACOM/CYBERSC, P874, DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.149
Wu H, 2018, KNOWL-BASED SYST, V145, P46, DOI 10.1016/j.knosys.2018.01.003
Xia B., 2018, P 2017 12 INT C INT, P1, DOI [10.1109/ISKE.2017.8258747, DOI 10.1109/ISKE.2017.8258747]
Xu ZH, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1921, DOI 10.1145/2983323.2983874
Xue HJ, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3203
Yi BL, 2016, I C SOFTWARE KNOWL I, P298, DOI 10.1109/SKIMA.2016.7916236
Yin HZ, 2017, IEEE T KNOWL DATA EN, V29, P2537, DOI 10.1109/TKDE.2017.2741484
Yuan JH, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P1901, DOI 10.1109/BigData.2016.7840810
Yuan WW, 2018, NEURAL COMPUT APPL, V30, P2071, DOI 10.1007/s00521-018-3394-4
Zahálka J, 2015, IEEE T MULTIMEDIA, V17, P2235, DOI 10.1109/TMM.2015.2480007
Zarzour H, 2019, INT CONF INFORM COMM, P99, DOI [10.1109/IACS.2019.8809156, 10.1109/iacs.2019.8809156]
Zhang H, 2017, 2017 INTERNATIONAL SYMPOSIUM ON EDUCATIONAL TECHNOLOGY (ISET 2017), P106, DOI 10.1109/ISET.2017.33
Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029
Zhang WW, 2017, INT SYM COMPUT INTEL, P504, DOI 10.1109/ISCID.2017.235
Zhang XF, 2021, NEURAL COMPUT APPL, V33, P2793, DOI 10.1007/s00521-020-05117-w
Zhang XF, 2020, INFORM SCIENCES, V519, P306, DOI 10.1016/j.ins.2020.01.044
Zhang Y, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P709, DOI 10.1145/3159652.3159688
Zhang YW, 2021, IEEE T SYST MAN CY-S, V51, P3796, DOI 10.1109/TSMC.2019.2931723
Zhang YF, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1449, DOI 10.1145/3132847.3132892
Zhao C, 2016, 2016 16TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), P201, DOI 10.1109/ISCIT.2016.7751621
Zheng GJ, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P167, DOI 10.1145/3178876.3185994
Zheng L.:., 2016, A Survey and Critique of Deep Learning on Recommender Systems
Zheng L, 2017, WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P425, DOI 10.1145/3018661.3018665
Zhu H, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1079, DOI 10.1145/3219819.3219826
Zuo Y, 2016, NEUROCOMPUTING, V204, P51, DOI 10.1016/j.neucom.2015.10.134
NR 135
TC 10
Z9 10
U1 2
U2 17
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 2193-567X
EI 2191-4281
J9 ARAB J SCI ENG
JI Arab. J. Sci. Eng.
PD APR
PY 2021
VL 46
IS 4
BP 3247
EP 3286
DI 10.1007/s13369-020-05112-2
EA NOV 2020
PG 40
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA QU1RC
UT WOS:000593093000001
DA 2024-09-05
ER
PT J
AU Nam, S
Kim, D
Jung, W
Zhu, YJ
AF Nam, Seojin
Kim, Donghun
Jung, Woojin
Zhu, Yongjun
TI Understanding the Research Landscape of Deep Learning in Biomedical
Science: Scientometric Analysis
SO JOURNAL OF MEDICAL INTERNET RESEARCH
LA English
DT Article
DE deep learning; scientometric analysis; research publications; research
landscape; research collaboration; knowledge diffusion
ID CONVOLUTIONAL NEURAL-NETWORKS; MODEL; SEGMENTATION; WEB; CLASSIFICATION;
PREDICTION; CNN; MRI
AB Background: Advances in biomedical research using deep learning techniques have generated a large volume of related literature. However, there is a lack of scientometric studies that provide a bird's-eye view of them. This absence has led to a partial and fragmented understanding of the field and its progress.
Objective: This study aimed to gain a quantitative and qualitative understanding of the scientific domain by analyzing diverse bibliographic entities that represent the research landscape from multiple perspectives and levels of granularity.
Methods: We searched and retrieved 978 deep learning studies in biomedicine from the PubMed database. A scientometric analysis was performed by analyzing the metadata, content of influential works, and cited references.
Results: In the process, we identified the current leading fields, major research topics and techniques, knowledge diffusion, and research collaboration. There was a predominant focus on applying deep learning, especially convolutional neural networks, to radiology and medical imaging, whereas a few studies focused on protein or genome analysis. Radiology and medical imaging also appeared to be the most significant knowledge sources and an important field in knowledge diffusion, followed by computer science and electrical engineering. A coauthorship analysis revealed various collaborations among engineering-oriented and biomedicine-oriented clusters of disciplines.
Conclusions: This study investigated the landscape of deep learning research in biomedicine and confirmed its interdisciplinary nature. Although it has been successful, we believe that there is a need for diverse applications in certain areas to further boost the contributions of deep learning in addressing biomedical research problems. We expect the results of this study to help researchers and communities better align their present and future work.
C1 [Nam, Seojin; Kim, Donghun; Jung, Woojin] Sungkyunkwan Univ, Dept Lib & Informat Sci, Seoul, South Korea.
[Zhu, Yongjun] Yonsei Univ, Dept Lib & Informat Sci, 50 Yonsei Ro, Seoul 03722, South Korea.
C3 Sungkyunkwan University (SKKU); Yonsei University
RP Zhu, YJ (corresponding author), Yonsei Univ, Dept Lib & Informat Sci, 50 Yonsei Ro, Seoul 03722, South Korea.
EM zhu@yonsei.ac.kr
RI jung, woojin/GRY-0374-2022; Zhu, Yongjun/K-2486-2015
OI Jung, Woojin/0000-0003-2229-169X; Zhu, Yongjun/0000-0003-4787-5122; Kim,
Donghun/0000-0001-5441-1532
CR Alansary A, 2019, MED IMAGE ANAL, V53, P156, DOI 10.1016/j.media.2019.02.007
Alipanahi B, 2015, NAT BIOTECHNOL, V33, P831, DOI 10.1038/nbt.3300
[Anonymous], 2019, INTR MESH
[Anonymous], 2015, Nature, DOI 10.1038/nature14539
[Anonymous], 2006, ENTREZ HELP
[Anonymous], 2013, Using OpenRefine
Ardila D, 2019, NAT MED, V25, P954, DOI 10.1038/s41591-019-0447-x
Arvaniti E, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-30535-1
Aubreville M, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12320-8
Baevski A, 2020, ArXiv arxiv, V2006, P11477
Bastian M, 2009, P INT AAAI C WEBL SO
Bernard O, 2018, IEEE T MED IMAGING, V37, P2514, DOI 10.1109/TMI.2018.2837502
Betancur J, 2018, JACC-CARDIOVASC IMAG, V11, P1654, DOI 10.1016/j.jcmg.2018.01.020
Bien N, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002699
Blaschke T, 2018, MOL INFORM, V37, DOI 10.1002/minf.201700123
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Byrne MF, 2019, GUT, V68, P94, DOI 10.1136/gutjnl-2017-314547
Campanella G, 2019, NAT MED, V25, P1301, DOI 10.1038/s41591-019-0508-1
Cao CS, 2018, GENOM PROTEOM BIOINF, V16, P17, DOI 10.1016/j.gpb.2017.07.003
Cha KH, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09315-w
Chambon S., 2018, IEEE T NEUR SYS REH, V26, P758, DOI [10.1109/TNSRE.2018.2813138, DOI 10.1109/TNSRE.2018.2813138]
Chang J., 2020, BIOPYTHON
Chang K, 2018, J AM MED INFORM ASSN, V25, P945, DOI 10.1093/jamia/ocy017
Chang P, 2018, AM J NEURORADIOL, V39, P1201, DOI 10.3174/ajnr.A5667
Chapman D, 2009, J CAN ACAD CHILD ADO, V18, P58
Chaudhari AS, 2018, MAGN RESON MED, V80, P2139, DOI 10.1002/mrm.27178
Chaudharyl K, 2018, CLIN CANCER RES, V24, P1248, DOI 10.1158/1078-0432.CCR-17-0853
Chen GC, 2018, J BIOMED INFORM, V85, P149, DOI 10.1016/j.jbi.2018.07.024
Chen Hao, 2018, Neuroimage, V170, P446, DOI 10.1016/j.neuroimage.2017.04.041
Chen H, 2018, IEEE T MED IMAGING, V37, P1333, DOI 10.1109/TMI.2018.2805692
Chilamkurthy S, 2018, LANCET, V392, P2388, DOI 10.1016/S0140-6736(18)31645-3
Chung SW, 2018, ACTA ORTHOP, V89, P468, DOI 10.1080/17453674.2018.1453714
Ciompi F, 2017, SCI REP-UK, V7, DOI 10.1038/srep46479
Coenen A, 2018, CIRC-CARDIOVASC IMAG, V11, DOI 10.1161/CIRCIMAGING.117.007217
Cohen O, 2018, MAGN RESON MED, V80, P885, DOI 10.1002/mrm.27198
De Fauw J, 2018, NAT MED, V24, P1342, DOI 10.1038/s41591-018-0107-6
de Vos BD, 2019, MED IMAGE ANAL, V52, P128, DOI 10.1016/j.media.2018.11.010
de Vos BD, 2016, PROC SPIE, V9784, DOI 10.1117/12.2216971
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Dilsizian ME, 2018, CURR CARDIOL REP, V20, DOI 10.1007/s11886-018-1074-8
Ding Y, 2019, RADIOLOGY, V290, P456, DOI 10.1148/radiol.2018180958
Dolz J, 2018, NEUROIMAGE, V170, P456, DOI 10.1016/j.neuroimage.2017.04.039
dos Santos BS, 2019, COMPUT IND ENG, V138, DOI 10.1016/j.cie.2019.106120
Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056
Falk T, 2019, NAT METHODS, V16, P67, DOI 10.1038/s41592-018-0261-2
Fu HZ, 2018, IEEE T MED IMAGING, V37, P1597, DOI 10.1109/TMI.2018.2791488
Gong E, 2018, J MAGN RESON IMAGING, V48, P330, DOI 10.1002/jmri.25970
González G, 2018, AM J RESP CRIT CARE, V197, P193, DOI 10.1164/rccm.201705-0860OC
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622
Grassmann F, 2018, OPHTHALMOLOGY, V125, P1410, DOI 10.1016/j.ophtha.2018.02.037
Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216
Gurovich Y, 2019, NAT MED, V25, P60, DOI 10.1038/s41591-018-0279-0
Haenssle HA, 2018, ANN ONCOL, V29, P1836, DOI 10.1093/annonc/mdy166
Han SS, 2018, J INVEST DERMATOL, V138, P1529, DOI 10.1016/j.jid.2018.01.028
Han Y, 2018, MAGN RESON MED, V80, P1189, DOI 10.1002/mrm.27106
Han Y, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1997-x
Han ZY, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04075-z
Hauptmann A, 2018, IEEE T MED IMAGING, V37, P1382, DOI 10.1109/TMI.2018.2820382
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
Hochreiter S., 1997, Neural Comput., V9, P1735, DOI 10.1162/neco.1997.9.8.1735
Hosny A, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002711
Hu ZL, 2018, PATTERN RECOGN, V83, P134, DOI 10.1016/j.patcog.2018.05.014
Hyun CM, 2018, PHYS MED BIOL, V63, DOI 10.1088/1361-6560/aac71a
Jiang HY, 2018, IEEE J BIOMED HEALTH, V22, P1227, DOI 10.1109/JBHI.2017.2725903
Jiménez J, 2018, J CHEM INF MODEL, V58, P287, DOI 10.1021/acs.jcim.7b00650
Jo Y, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1700606
Kermany DS, 2018, CELL, V172, P1122, DOI 10.1016/j.cell.2018.02.010
Kim JK, 2018, J HEALTHC ENG, V2018, DOI 10.1155/2018/4651582
Lakhani P, 2017, RADIOLOGY, V284, P574, DOI 10.1148/radiol.2017162326
Lao JW, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10649-8
Lehman CD, 2019, RADIOLOGY, V290, P52, DOI 10.1148/radiol.2018180694
Li XM, 2018, IEEE T MED IMAGING, V37, P2663, DOI 10.1109/TMI.2018.2845918
Li ZJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05848-2
Li ZX, 2018, OPHTHALMOLOGY, V125, P1199, DOI 10.1016/j.ophtha.2018.01.023
Liang HY, 2019, NAT MED, V25, P433, DOI 10.1038/s41591-018-0335-9
Lin ZM, 2016, AAAI CONF ARTIF INTE, P27
Lindsey R, 2018, P NATL ACAD SCI USA, V115, P11591, DOI 10.1073/pnas.1806905115
Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005
Liu F, 2018, RADIOLOGY, V289, P160, DOI 10.1148/radiol.2018172986
Liu Z, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P9992, DOI 10.1109/ICCV48922.2021.00986
Ma JZ, 2018, NAT METHODS, V15, P290, DOI [10.1038/NMETH.4627, 10.1038/nmeth.4627]
Mamoshina P, 2016, MOL PHARMACEUT, V13, P1445, DOI 10.1021/acs.molpharmaceut.5b00982
Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002
Mathis A, 2018, NAT NEUROSCI, V21, P1281, DOI 10.1038/s41593-018-0209-y
Merk D, 2018, MOL INFORM, V37, DOI 10.1002/minf.201700153
Meyer P, 2018, COMPUT BIOL MED, V98, P126, DOI 10.1016/j.compbiomed.2018.05.018
Miao S, 2016, IEEE T MED IMAGING, V35, P1352, DOI 10.1109/TMI.2016.2521800
Nam JG, 2019, RADIOLOGY, V290, P218, DOI 10.1148/radiol.2018180237
Nie D, 2018, IEEE T BIO-MED ENG, V65, P2720, DOI 10.1109/TBME.2018.2814538
Nie Dong, 2016, Med Image Comput Comput Assist Interv, V9901, P212, DOI 10.1007/978-3-319-46723-8_25
Oakden-Rayner L, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01931-w
Ouyang W, 2018, NAT BIOTECHNOL, V36, P460, DOI 10.1038/nbt.4106
Pereira TD, 2019, NAT METHODS, V16, P117, DOI 10.1038/s41592-018-0234-5
Poplin R, 2018, NAT BIOMED ENG, V2, P158, DOI 10.1038/s41551-018-0195-0
Popova M, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aap7885
Preuer K, 2018, BIOINFORMATICS, V34, P1538, DOI 10.1093/bioinformatics/btx806
Putin E, 2018, J CHEM INF MODEL, V58, P1194, DOI 10.1021/acs.jcim.7b00690
Quang D, 2016, NUCLEIC ACIDS RES, V44, DOI 10.1093/nar/gkw226
Rajpurkar P, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002686
Ribli D, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-22437-z
Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28
Saltz J, 2018, CELL REP, V23, P181, DOI 10.1016/j.celrep.2018.03.086
Schlegl T, 2018, OPHTHALMOLOGY, V125, P549, DOI 10.1016/j.ophtha.2017.10.031
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Sharma K, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01779-0
Shelhamer E, 2017, IEEE T PATTERN ANAL, V39, P640, DOI 10.1109/TPAMI.2016.2572683
Shin HC, 2016, IEEE T MED IMAGING, V35, P1285, DOI 10.1109/TMI.2016.2528162
Shu XB, 2018, IEEE T PATTERN ANAL, V40, P905, DOI 10.1109/TPAMI.2017.2705122
Shukla N, 2020, COMPUT METH PROG BIO, V183, DOI 10.1016/j.cmpb.2019.105075
Song QZ, 2017, J HEALTHC ENG, V2017, DOI 10.1155/2017/8314740
Steiner DF, 2018, AM J SURG PATHOL, V42, P1636, DOI 10.1097/PAS.0000000000001151
Stepniewska-Dziubinska MM, 2018, BIOINFORMATICS, V34, P3666, DOI 10.1093/bioinformatics/bty374
Sugimoto C.R., 2018, Measuring research: What everyone needs to know, DOI DOI 10.1093/WENTK/9780190640118.001.0001
Sullivan DP, 2018, NAT BIOTECHNOL, V36, P820, DOI 10.1038/nbt.4225
Szegedy C, 2016, PROC CVPR IEEE, P2818, DOI 10.1109/CVPR.2016.308
Szegedy C, 2015, PROC CVPR IEEE, P1, DOI 10.1109/CVPR.2015.7298594
Van Eck N.J., 2020, VOSviewer Manual Version 1.6.16, P1
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Veltri D, 2018, BIOINFORMATICS, V34, P2740, DOI 10.1093/bioinformatics/bty179
Wainberg M, 2018, NAT BIOTECHNOL, V36, P829, DOI 10.1038/nbt.4233
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Wang GT, 2018, IEEE T MED IMAGING, V37, P1562, DOI 10.1109/TMI.2018.2791721
Wang HD, 2019, NAT METHODS, V16, P103, DOI 10.1038/s41592-018-0239-0
Wang K, 2019, GUT, V68, P729, DOI 10.1136/gutjnl-2018-316204
Wang L, 2018, J COMPUT BIOL, V25, P361, DOI 10.1089/cmb.2017.0135
Wang S, 2018, PROTEINS, V86, P67, DOI 10.1002/prot.25377
Wang S, 2016, NUCLEIC ACIDS RES, V44, pW430, DOI 10.1093/nar/gkw306
Wang XG, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15720-y
Wang Y, 2018, J PERS SOC PSYCHOL, V114, P246, DOI 10.1037/pspa0000098
Wen HG, 2018, CEREB CORTEX, V28, P4136, DOI 10.1093/cercor/bhx268
Xue Y, 2017, CONTRAST MEDIA MOL I, DOI 10.1155/2017/9512370
Yang G, 2018, IEEE T MED IMAGING, V37, P1310, DOI 10.1109/TMI.2017.2785879
Yildirim Ö, 2018, COMPUT BIOL MED, V96, P189, DOI 10.1016/j.compbiomed.2018.03.016
Yousefi S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11817-6
Zaharchuk G, 2018, AM J NEURORADIOL, V39, P1776, DOI 10.3174/ajnr.A5543
Zech JR, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002683
Zhang J, 2018, CIRCULATION, V138, P1623, DOI 10.1161/CIRCULATIONAHA.118.034338
Zhang Y, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03113-2
Zhang YB, 2018, IEEE T MED IMAGING, V37, P1370, DOI 10.1109/TMI.2018.2823083
Zhou J, 2018, NAT GENET, V50, P1171, DOI 10.1038/s41588-018-0160-6
Zhou J, 2015, NAT METHODS, V12, P931, DOI [10.1038/NMETH.3547, 10.1038/nmeth.3547]
Zreik M, 2018, MED IMAGE ANAL, V44, P72, DOI 10.1016/j.media.2017.11.008
NR 143
TC 2
Z9 2
U1 2
U2 18
PU JMIR PUBLICATIONS, INC
PI TORONTO
PA 130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA
SN 1438-8871
J9 J MED INTERNET RES
JI J. Med. Internet Res.
PD APR 22
PY 2022
VL 24
IS 4
AR e28114
DI 10.2196/28114
PG 25
WC Health Care Sciences & Services; Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Health Care Sciences & Services; Medical Informatics
GA 1N3WN
UT WOS:000800589600004
PM 35451980
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Hameed, A
Omar, M
Bilal, M
Park, HW
AF Hameed, Abdul
Omar, Muhammad
Bilal, Muhammad
Park, Han Woo
TI Toward the consolidation of a multi-metric-based journal ranking and
categorization system for computer science subject areas
SO PROFESIONAL DE LA INFORMACION
LA English
DT Article
DE Journal rankings; Research evaluation; Indicators; Scientific journals;
Metrics; Algorithms; Machine learning; Cluster analysis; Principal
component analysis (PCA); t-distributed stochastic neighbor embedding
(t-SNE); Cross tabulation; ESA index
ID IMPACT FACTOR
AB The evaluation of scientific journals poses challenges owing to the existence of various impact measures. This is because journal ranking is a multidimensional construct that may not be assessed effectively using a single metric such as an impact factor. A few studies have proposed an ensemble of metrics to prevent the bias induced by an individual metric. In this study, a multi-metric journal ranking method based on the standardized average index (SA index) was adopted to develop an extended standardized average index (ESA index). The ESA index utilizes six metrics: the CiteScore, Source Normalized Impact per Paper (SNIP), SCImago Journal Rank (SJR), Hirsh index (H-index), Eigenfactor Score, and Journal Impact Factor from three well-known databases (Scopus, SCImago Journal & Country Rank, and Web of Science). Experiments were conducted in two computer science subject areas: (1) artificial intelligence and (2) computer vision and pattern recognition. Comparing the results of the multi-metric-based journal ranking system with the SA index, it was demonstrated that the multi-metric ESA index exhibited high correlation with all other indicators and significantly outperformed the SA index. To further evaluate the performance of the model and determine the aggregate impact of bibliometric indices with the ESA index, we employed unsupervised machine learning techniques such as clustering coupled with principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). These techniques were utilized to measure the clustering impact of various bibliometric indicators on both the complete set of bibliometric features and the reduced set of features. Furthermore, the results of the ESA index were compared with those of other ranking systems, including the internationally recognized Scopus, SJR, and HEC Journal Recognition System (HJRS) used in Pakistan. These comparisons demonstrated that the multi-metric-based ESA index can serve as a valuable reference for publishers, journal editors, researchers, policymakers, librarians, and practitioners in journal selection, decision making, and professional assessment.
C1 [Hameed, Abdul; Omar, Muhammad; Bilal, Muhammad] Islamia Univ, Dept Comp Sci, Bahawalpur, Pakistan.
[Park, Han Woo] Yeungnam Univ, 257 Humanities Hall,280 Dae Dong, Gyongsan 38541, Gyeongsangbuk D, South Korea.
C3 Yeungnam University
RP Omar, M (corresponding author), Islamia Univ, Dept Comp Sci, Bahawalpur, Pakistan.; Park, HW (corresponding author), Yeungnam Univ, 257 Humanities Hall,280 Dae Dong, Gyongsan 38541, Gyeongsangbuk D, South Korea.
EM abdulhameedattari@gmail.com; m.omar.nazeer@gmail.com;
m_bilalcsiub@yahoo.com; hanpark@ynu.ac.kr
OI Bilal, Muhammad/0009-0004-4757-3153
CR Abbas NN, 2019, SCIENTOMETRICS, V121, P1189, DOI 10.1007/s11192-019-03222-9
Allen L, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005910
[Anonymous], 2007, College and Research Libraries News, DOI DOI 10.5860/CRLN.68.5.7804
Beliakov G, 2011, FUZZY SET SYST, V167, P101, DOI 10.1016/j.fss.2010.08.011
Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022
Dellavalle RP, 2007, J AM ACAD DERMATOL, V57, P116, DOI 10.1016/j.jaad.2007.03.005
Duan L, 2018, EXPERT SYST, V35, DOI 10.1111/exsy.12309
Ennas G, 2015, SCIENTOMETRICS, V105, P1911, DOI 10.1007/s11192-015-1751-y
Feng L, 2020, SCIENTOMETRICS, V124, P233, DOI 10.1007/s11192-020-03422-8
Fernandez-Cano A, 2017, SCIENTOMETRICS, V110, P991, DOI 10.1007/s11192-016-2197-6
Ferrer-Sapena A, 2016, RES EVALUAT, V25, P306, DOI 10.1093/reseval/rvv041
Fersht A, 2009, P NATL ACAD SCI USA, V106, P6883, DOI 10.1073/pnas.0903307106
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w
Holmberg K, 2018, SCIENTOMETRICS, V117, P603, DOI 10.1007/s11192-018-2874-8
Hsu WC, 2015, ONLINE INFORM REV, V39, P858, DOI 10.1108/OIR-11-2014-0277
NR 16
TC 2
Z9 2
U1 6
U2 6
PU EDICIONES PROFESIONALES INFORMACION SL-EPI
PI BARCELONA
PA MISTRAL, 36, BARCELONA, ALBOLOTE, SPAIN
SN 1386-6710
EI 1699-2407
J9 PROF INFORM
JI Prof. Inf.
PY 2023
VL 32
IS 7
AR e320703
DI 10.3145/epi.2023.dic.03
PG 17
WC Communication; Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Communication; Information Science & Library Science
GA GZ6U9
UT WOS:001156551800002
OA Green Accepted, hybrid
DA 2024-09-05
ER
PT J
AU Yu, FX
Liu, XR
AF Yu, Fuxing
Liu, Xinran
TI Research on Student Performance Prediction Based on Stacking Fusion
Model
SO ELECTRONICS
LA English
DT Article
DE performance prediction; bagging; stacking; XGBoost; LightGBM; model
fusion
ID CLASSIFICATION; NETWORK
AB Online learning is gradually becoming popular with the continuous development of Internet technology and the rapid development of educational informatization. It plays a key role in predicting students' course performance based on their online learning behavior. It can optimize the effects of teaching and improve teaching strategies. Student performance prediction models that are built with a single algorithm currently have limited prediction accuracy. Meanwhile, model fusion improvement technology can combine many algorithms into a single model, thereby enhancing the overall effect of the model and providing better performance. In this paper, a stacking fusion model based on RF-CART-XGBoost-LightGBM is proposed. The first layer of the model uses a decision tree (CART), random forest, XGBoost and LightGBM as the base models. The second layer uses the LightGBM model. We used the Kalboard360 student achievement dataset, and features related to online learning behavior were selected as the model's input for model training. Finally, we employed five-fold cross-validation to assess the model's performance. In comparison with the four single models, the two fusion models based on the four single models both show significantly better performance. The prediction accuracies of the bagging fusion model and stacking fusion model are 83% and 84%, respectively. This proves that the proposed stacking fusion model has better performance, which helps to improve the accuracy of the performance prediction model further. It also provides an effective basis for optimizing the effects of teaching.
C1 [Yu, Fuxing; Liu, Xinran] North China Univ Sci & Technol, Inst Artificial Intelligence, Tangshan 063210, Peoples R China.
[Yu, Fuxing] Hebei Prov Key Lab Ind Intelligent Sensing, Tangshan 063210, Peoples R China.
C3 North China University of Science & Technology
RP Liu, XR (corresponding author), North China Univ Sci & Technol, Inst Artificial Intelligence, Tangshan 063210, Peoples R China.
EM liuxinran9652@163.com
OI Fuxing, Yu/0000-0002-5481-2413
CR Alam MS B., 2022, P INT C INFORM COMMU, P95
Alhazzani Noura, 2020, Soc Sci Humanit Open, V2, P100030, DOI 10.1016/j.ssaho.2020.100030
Arcinas M., 2021, Turkish Journal of Physiotherapy and Rehabilitation, V32, P6519
Batool S., 2021, P MOHAMMAD ALI JINNA, P1, DOI 10.1109/MAJICC53071.2021.9526239
Benesty J, 2009, Noise Reduction in Speech Processing, P1
Bradley AP, 1997, PATTERN RECOGN, V30, P1145, DOI 10.1016/S0031-3203(96)00142-2
Chen T., R package version 04-2
Demir N, 2018, TURK J ELECTR ENG CO, V26, P418, DOI 10.3906/elk-1702-279
Dong W, 2020, AUTOMAT CONSTR, V114, DOI 10.1016/j.autcon.2020.103155
Durica M., 2019, EkonomickoManazerske Spektrum, V13, P51, DOI [10.26552/ems.2019.1.51-61, DOI 10.26552/EMS.2019.1.51-61]
Dzeroski S, 2002, LECT NOTES COMPUT SC, V2364, P201
Han MM, 2017, 2017 6TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI), P735, DOI 10.1109/IIAI-AAI.2017.73
Hegde Chiranth., 2015, SPE Conference Paper, P1, DOI DOI 10.2118/176792-MS
Hussain M, 2018, COMPUT INTEL NEUROSC, V2018, DOI 10.1155/2018/6347186
Ju Y, 2019, IEEE ACCESS, V7, P28309, DOI 10.1109/ACCESS.2019.2901920
Kaur P, 2015, PROCEDIA COMPUT SCI, V57, P500, DOI 10.1016/j.procs.2015.07.372
Lewis R.J., 2022, P ANN M SOC AC EM SA, P14
Li GY, 2019, PROCEEDINGS OF 2019 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND EDUCATION TECHNOLOGY (ICIET 2019), P289, DOI 10.1145/3323771.3323803
Liu YN, 2020, ANAL BIOCHEM, V609, DOI 10.1016/j.ab.2020.113903
Machado MR, 2019, INT CONF COMP SCI ED, P1111, DOI [10.1109/ICCSE.2019.8845529, 10.1109/iccse.2019.8845529]
Mehta M., 1995, KDD-95 Proceedings. First International Conference on Knowledge Discovery and Data Mining, P216
Persico D, 2015, BRIT J EDUC TECHNOL, V46, P230, DOI 10.1111/bjet.12207
Petkovic D., 2016, 2016 IEEE FRONT ED C, P1, DOI 10.1109/FIE.2016.7757406
Puarungroj W, 2018, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2018), DOI 10.1145/3164541.3164638
Romero C, 2013, COMPUT EDUC, V68, P458, DOI 10.1016/j.compedu.2013.06.009
Sen B, 2012, EXPERT SYST APPL, V39, P9468, DOI 10.1016/j.eswa.2012.02.112
Speiser JL, 2019, EXPERT SYST APPL, V134, P93, DOI 10.1016/j.eswa.2019.05.028
Santos SGTD, 2020, ARTIF INTELL REV, V53, P1293, DOI 10.1007/s10462-019-09696-6
Wang C., 2022, P INTELLIGENT INFORM, P508
Wang G, 2014, DECIS SUPPORT SYST, V57, P77, DOI 10.1016/j.dss.2013.08.002
Wang X, 2020, IEEJ T ELECTR ELECTR, V15, P1734, DOI 10.1002/tee.23247
Wu YC, 2019, SENSOR REV, V39, P743, DOI 10.1108/SR-11-2018-0309
Xia YF, 2017, ELECTRON COMMER R A, V24, P30, DOI 10.1016/j.elerap.2017.06.004
Xing WL, 2016, COMPUT HUM BEHAV, V58, P119, DOI 10.1016/j.chb.2015.12.007
Zhong ST, 2022, NEURAL PROCESS LETT, V54, P3583, DOI 10.1007/s11063-020-10385-7
NR 35
TC 3
Z9 3
U1 12
U2 43
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2079-9292
J9 ELECTRONICS-SWITZ
JI Electronics
PD OCT
PY 2022
VL 11
IS 19
AR 3166
DI 10.3390/electronics11193166
PG 13
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Physics
GA 5F9SO
UT WOS:000866650200001
OA gold
DA 2024-09-05
ER
PT J
AU Reich, Y
Barai, SV
AF Reich, Y
Barai, SV
TI Evaluating machine learning models for engineering problems
SO ARTIFICIAL INTELLIGENCE IN ENGINEERING
LA English
DT Article
DE artificial neural networks; research methodology; performance
evaluation; statistical tests; modeling
ID CROSS-VALIDATION; ERROR RATE; ALGORITHMS; SELECTION
AB The use of machine learning (ML), and in particular, artificial neural networks (ANN), in engineering applications has increased dramatically over the last years. However, by and large, the development of such applications or their report lack proper evaluation. Deficient evaluation practice was observed in the general neural networks community and again in engineering applications through a survey we conducted of articles published in Al in Engineering and elsewhere. This status hinders understanding and prevents progress. This article goal is to remedy this situation. First, several evaluation methods are discussed with their relative qualities. Second, these qualities are illustrated by using the methods to evaluate ANN performance in two engineering problems. Third, a systematic evaluation procedure for ML is discussed. This procedure will lead to better evaluation of studies, and consequently to improved research and practice in the area of ML in engineering applications. (C) 1999 Elsevier Science Ltd. All rights reserved.
C1 Tel Aviv Univ, Fac Engn, Dept Solid Mech Mat & Struct, IL-69978 Tel Aviv, Israel.
Indian Inst Technol, Dept Civil Engn, Kharagpur 721302, W Bengal, India.
C3 Tel Aviv University; Indian Institute of Technology System (IIT System);
Indian Institute of Technology (IIT) - Kharagpur
RP Reich, Y (corresponding author), Tel Aviv Univ, Fac Engn, Dept Solid Mech Mat & Struct, IL-69978 Tel Aviv, Israel.
RI Reich, Yoram/AAE-6262-2020; Barai, Sudhirkumar/AAI-5698-2020; Reich,
Yoram/G-4894-2010
OI Reich, Yoram/0000-0002-0922-8381; Barai,
Sudhirkumar/0000-0001-5100-0607;
CR [Anonymous], 1996, P 13 INT C INT C MAC
[Anonymous], P 11 INT JOINT C ART
[Anonymous], 1962, STAT PRINCIPLES EXPT
BAILEY TL, 1993, P 13 INT JOINT C ART, P895
Breiman L, 1996, ANN STAT, V24, P2350
Breiman L., 1984, CLASSIFICATION REGRE, DOI DOI 10.1201/9781315139470
CONGLETON J, 1995, CORROSION, V51, P901, DOI 10.5006/1.3293566
DEMUTH H, 1994, NEURAL NETWORKS TOOL
DENNY SB, 1989, MAR TECHNOL SNAME N, V26, P173
DIETTERICH T, 1996, STAT TESTS COMPARING
EFRON B, 1983, J AM STAT ASSOC, V78, P316, DOI 10.2307/2288636
Efron B, 1993, INTRO BOOTSTRAP, V57, P17
FEELDERS A, 1995, 5 INT WORKSH ART INT, P219
FLEXER A, 1995, P 13 EUR M CYB SYST, P1005
Gama J., 1995, Progress in Artificial Intelligence. 7th Portuguese Conference on Artificial Intelligence, EPIA '95. Proceedings, P189
GASCUEL P, 1992, P 10 EUR C ART INT, P435
GEMAN S, 1992, NEURAL COMPUT, V4, P1, DOI 10.1162/neco.1992.4.1.1
HAYS W.L., 1988, Statistics, V4th
Henry R. J., 1994, MACHINE LEARNING NEU, P107
HIGHLEYMAN WH, 1962, AT&T TECH J, V41, P723, DOI 10.1002/j.1538-7305.1962.tb02426.x
JAIN AK, 1987, IEEE T PATTERN ANAL, V9, P628, DOI 10.1109/TPAMI.1987.4767957
Kohavi R., 1995, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, P1137
Michie D., 1994, MACHINE LEARNING NEU, V29
Morrison D.F., 1990, MULTIVARIATE STAT ME, V3
NEOCLEUS CC, 1995, P ICNN 95 INT C NEUR, V2, P1098
Prechelt L, 1996, NEURAL NETWORKS, V9, P457, DOI 10.1016/0893-6080(95)00123-9
REICH Y, 1995, INT J HUM-COMPUT ST, V42, P3, DOI 10.1006/ijhc.1995.1002
REICH Y, 1997, MICROCOMPUTERS CIVIL, V12, P307
SCHAFFER CA, 1997, P 11 INT C MACH LEAR, P259
SHAO J, 1993, J AM STAT ASSOC, V88, P486, DOI 10.2307/2290328
STINE RA, 1990, SOCIOLOGICAL METHODS, V18, P243
STONE M, 1977, BIOMETRIKA, V64, P29
WEISS SM, 1991, IEEE T PATTERN ANAL, V13, P285, DOI 10.1109/34.75516
WEISS SM, 1994, PROCEEDINGS OF THE TWELFTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, P626
WELCH BL, 1947, BIOMETRIKA, V34, P28, DOI 10.1093/biomet/34.1-2.28
Wolpert DH, 1996, NEURAL COMPUT, V8, P1341, DOI 10.1162/neco.1996.8.7.1341
NR 36
TC 114
Z9 126
U1 1
U2 17
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0954-1810
J9 ARTIF INTELL ENG
JI Artif. Intell. Eng.
PD JUL
PY 1999
VL 13
IS 3
BP 257
EP 272
DI 10.1016/S0954-1810(98)00021-1
PG 16
WC Computer Science, Artificial Intelligence; Engineering,
Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA 221AT
UT WOS:000081702600006
DA 2024-09-05
ER
PT J
AU Thakuria, A
Deka, D
AF Thakuria, Abhijit
Deka, Dipen
TI A decadal study on identifying latent topics and research trends in open
access LIS journals using topic modeling approach
SO SCIENTOMETRICS
LA English
DT Article
DE Topic modeling; LDA; Open access; LIS
ID INFORMATION-SCIENCE; AUTHOR COCITATION; RESEARCH FRONT; LIBRARY;
EVOLUTION; PUBLICATIONS; ARTICLES
AB The study utilized Latent Dirichlet Allocation (LDA) Topic modeling to identify prevalent latent topics within Open Access (OA) Library and Information Science (LIS) journals from 2013 to 2022. Eight core OA Scopus indexed journals were selected based on their SJR scores and DOAJ listing. Titles, Abstracts and keywords of 2589 articles were extracted from the Scopus database. R software packages were used to perform data analysis and LDA topic modeling. The optimal value of k was determined to be 9. The analysis revealed that 53.89% of documents comprise over 50% of a certain topic (theta > 0.50). Notably, 'Scholarly Communication' and 'Information Systems, Models and Frameworks' emerged as dominant topics with the highest proportions of research literature in the corpus. The topic 'Scholarly Communication' experienced significant growth with an average annual growth rate (AAGR) of 4.37%, while 'Collection development and E-resources' exhibited the lowest research proportion and a negative AAGR of - 4.22%. Additionally, topics such as 'Information Seeking Behaviour and User Studies', 'User Education and Information Literacy', and 'Information Retrieval and Systematic Review' remained stable and persistent topics. Conversely, research on traditional topics like 'Librarianship and Profession', 'Bibliometrics' and 'Medical Library and Health Information' showed a gradual decline. The LDA topic modeling approach unveiled previously unknown or unexplored topics in open access LIS research literature, enhancing our understanding of emerging trends.
C1 [Thakuria, Abhijit; Deka, Dipen] Gauhati Univ, Dept Lib & Informat Sci, Gauhati, Assam, India.
C3 Gauhati University
RP Thakuria, A (corresponding author), Gauhati Univ, Dept Lib & Informat Sci, Gauhati, Assam, India.
EM abhijitthakuria97@gmail.com
OI Thakuria, Abhijit/0000-0002-3852-1982
CR Abbasi Z, 2019, GLOB KNOWL MEM COMMU, V68, P288, DOI 10.1108/GKMC-02-2018-0016
Aharony N, 2012, J LIBR INF SCI, V44, P27, DOI 10.1177/0961000611424819
[Anonymous], 2010, COLING 2010 POSTERS
[Anonymous], 2012, P SIGCHI C HUM FACT, DOI DOI 10.1145/2207676.2207738
Åström F, 2007, J AM SOC INF SCI TEC, V58, P947, DOI 10.1002/asi.20567
Barik Nilaranjan, 2019, Library Hi Tech News, V36, P1, DOI 10.1108/LHTN-05-2019-0035
Beck S.E., 2008, PRACTICAL RES METHOD
Bhatia S, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P844
Blei D, 2006, P 23 INT C MACH LEAR, P113
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blessinger K, 2010, LIBR INFORM SCI RES, V32, P156, DOI 10.1016/j.lisr.2009.12.007
Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
Chan L., 2006, Science and Development Network, V1, P1
Chan L, 2005, NEW LIB WORLD, V106, P141, DOI 10.1108/03074800510587354
CHANG J., 2009, Advances in Neural Information Processing Systems, V22, P288
Chang J, 2009, P 12 INT C ART INT S, P81
Chang W., 2017, Shiny: Web Application Framework for R. manual, V1
Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8
Chang YW, 2012, J AM SOC INF SCI TEC, V63, P22, DOI 10.1002/asi.21649
Chen M, 2016, ELECTRON LIBR, V34, P722, DOI 10.1108/EL-05-2015-0070
Chuang J., 2014, Computer-assisted content analysis: Topic models for exploring multiple subjective interpretations
Cole F L, 1988, Clin Nurse Spec, V2, P53, DOI 10.1097/00002800-198800210-00025
De la Hoz-M J, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9141671
Figuerola CG, 2017, SCIENTOMETRICS, V112, P1507, DOI 10.1007/s11192-017-2432-9
Ghosh, 2023, INT J INFORM SCI MAN, V21, P19, DOI [10.22034/ijism.2023.1977569.0, DOI 10.22034/IJISM.2023.1977569.0]
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grün B, 2011, J STAT SOFTW, V40, P1
Hall Mark, 2012, Theory and Practice of Digital Libraries. Second International Conference, TPDL 2012. Proceedings: LNCS 7489, P323, DOI 10.1007/978-3-642-33290-6_35
Han XY, 2020, SCIENTOMETRICS, V125, P2561, DOI 10.1007/s11192-020-03721-0
Harnad S., 2004, Ser. Rev, V30, P310, DOI [DOI 10.1080/00987913.2004.10764930, DOI 10.1016/J.SERREV.2004.09.013, 10.1016/j.serrev.2004.09.013]
Hider P, 2008, LIBR INFORM SCI RES, V30, P108, DOI 10.1016/j.lisr.2007.11.007
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
JARVELIN K, 1993, INFORM PROCESS MANAG, V29, P129, DOI 10.1016/0306-4573(93)90028-C
Järvelin K, 2022, J DOC, V78, P65, DOI 10.1108/JD-03-2021-0062
Kanjilal U., 2015, INTRO OPEN ACCESS
Khan D, 2023, COLLECT CURATION, V42, P13, DOI 10.1108/CC-03-2022-0010
Kherwa P, 2020, EAI ENDORSED TRANS S, V7, DOI 10.4108/eai.13-7-2018.159623
Kumar V, 2022, ANN LIBR INF STUD, V69, P191, DOI 10.56042/alis.v69i3.58719
Kurata Keiko, 2018, Proceedings of the Association for Information Science and Technology, V55, DOI 10.1002/pra2.2018.14505501143
Lamba M, 2019, SCIENTOMETRICS, V120, P477, DOI 10.1007/s11192-019-03137-5
Landauer TK, 1998, DISCOURSE PROCESS, V25, P259, DOI 10.1080/01638539809545028
Li P, 2019, SCIENTOMETRICS, V121, P1753, DOI 10.1007/s11192-019-03239-0
Li W., 2006, ICML, P577, DOI [10.1145/1143844.1143917, 10.1145/]
Liu GY, 2019, J ACAD LIBR, V45, P278, DOI 10.1016/j.acalib.2019.04.001
Lu K, 2012, J AM SOC INF SCI TEC, V63, P1973, DOI 10.1002/asi.22628
Ma JX, 2021, J ASSOC INF SCI TECH, V72, P1059, DOI 10.1002/asi.24474
Milojevic S, 2011, J AM SOC INF SCI TEC, V62, P1933, DOI 10.1002/asi.21602
Miyata Y, 2020, SCIENTOMETRICS, V125, P665, DOI 10.1007/s11192-020-03657-5
Mokhtarpour R, 2021, J INF SCI, V47, P794, DOI 10.1177/0165551520932119
Mooney, 2010, P 27 INT C MACH LEAR, P903, DOI DOI 10.1007/S10955-009-9892-0
Mukherjee B, 2009, SCIENTOMETRICS, V80, P167, DOI 10.1007/s11192-008-2055-2
Newman D., 2010, P ANN JOINT C DIG LI, P215, DOI [10.1145/1816123.1816156, DOI 10.1145/1816123.1816156]
Nezhad FG., 2022, INT J INFORM SCI MAN, V20, P471
Castellà CO, 2016, LEARN PUBL, V29, P89, DOI 10.1002/leap.1016
Olson Gary M., 2009, Interactions, V16, P15, DOI 10.1145/1487632.1487636
Onyancha OB, 2018, PUBLISH RES Q, V34, P456, DOI 10.1007/s12109-018-9590-3
Panda S., 2021, SOCARXIV, DOI [10.31235/osf.io/67ctu, DOI 10.31235/OSF.IO/67CTU]
Papic A, 2019, 2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P508, DOI [10.23919/MIPRO.2019.8756693, 10.23919/mipro.2019.8756693]
Paul M., 2010, P 24 ANN C ART INT A
Rajan AC., 2019, INT J COMPUTER SCI T, V7, P10
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Suber P, 2012, BMJ-BRIT MED J, V345, DOI 10.1136/bmj.e5184
Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435
Sung HY, 2017, LIBR INFORM SCI RES, V39, P77, DOI 10.1016/j.lisr.2017.03.002
Trivedi SK, 2023, J MODEL MANAG, V18, P1204, DOI 10.1108/JM2-02-2022-0045
Tuomaala O, 2014, J ASSOC INF SCI TECH, V65, P1446, DOI 10.1002/asi.23034
Walker TJ, 1998, AM SCI, V86, P463, DOI 10.1241/johokanri.41.678
Wallach H. M., 2006, P 23 INT C MACH LEAR, V23, P977, DOI [10.1145/1143844.1143967, DOI 10.1145/1143844.1143967]
White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W
Yan E, 2015, J ASSOC INF SCI TECH, V66, P2357, DOI 10.1002/asi.23324
Yan EJ, 2014, J INFORMETR, V8, P98, DOI 10.1016/j.joi.2013.10.010
Yuan SB, 2011, ELECTRON LIBR, V29, P682, DOI 10.1108/02640471111177107
Zeng JX, 2023, ASLIB J INFORM MANAG, V75, P589, DOI 10.1108/AJIM-03-2022-0130
Zhao DZ, 2008, J AM SOC INF SCI TEC, V59, P2070, DOI 10.1002/asi.20910
Zhao DZ, 2014, J ASSOC INF SCI TECH, V65, P995, DOI 10.1002/asi.23027
NR 76
TC 1
Z9 1
U1 18
U2 18
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUL
PY 2024
VL 129
IS 7
BP 3841
EP 3869
DI 10.1007/s11192-024-05058-4
EA JUN 2024
PG 29
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA ZU5Q7
UT WOS:001238196700002
DA 2024-09-05
ER
PT J
AU Zhou, YH
Wang, RJ
Zeng, A
AF Zhou, Yuhao
Wang, Ruijie
Zeng, An
TI Predicting the impact and publication date of individual scientists'
future papers
SO SCIENTOMETRICS
LA English
DT Article
DE Citation counts; H-index; Deep learning; Scientific impact; Prediction
ID CITATION COUNTS; NEURAL-NETWORK
AB Predicting the future career of individual scientists is an important yet challenging problem with numerous applications such as recruitment of scientific research positions, promoting outstanding academic staff, and managing scientific grant proposals. Despite that much effort has been devoted to predict scientists' future performance and success, yet these works focus on the macro future performance of scholars from the perspective of their career ages. A related but different task is to predict the impact and publication date of each future paper. We regard this micro level prediction problem as a dynamic series auto-regression task, and a deep learning method is designed to solve it. The experiments show that our method outperforms the state-of-the-art method in this issue.
C1 [Zhou, Yuhao; Wang, Ruijie] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland.
[Zeng, An] Beijing Normal Univ, Sch Syst Sci, Beijing 100875, Peoples R China.
C3 University of Fribourg; Beijing Normal University
RP Zeng, A (corresponding author), Beijing Normal Univ, Sch Syst Sci, Beijing 100875, Peoples R China.
EM anzeng@bnu.edu.cn
FU National Natural Science Foundation of China [71731002]; China
Scholarship Council (CSC)
FX This work is supported by the National Natural Science Foundation of
China under Grant 71731002. Rui-Jie Wang acknowledges the support from
the China Scholarship Council (CSC).
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128
[Anonymous], 2017, INT C LEARNING REPRE
[Anonymous], 2009, Proc. of the 9th SIAM International Conference on Data Mining
Bai S., 2018, CoRR
Bao P, 2017, SCIENTOMETRICS, V112, P595, DOI 10.1007/s11192-017-2335-9
Batista AD, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101130
Bengio S, 2015, ADV NEUR IN, V28
Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006
Chen XH, 2021, J INTELL MANUF, V32, P971, DOI 10.1007/s10845-020-01600-2
Cho K., 2014, ARXIV, DOI [DOI 10.3115/V1/D14-1179, 10.3115/v1/w14-4012]
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
García-Pérez MA, 2013, SCIENTOMETRICS, V96, P901, DOI 10.1007/s11192-013-0979-7
GEISSER S, 1974, BIOMETRIKA, V61, P101, DOI 10.1093/biomet/61.1.101
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Jean Sebastien, 2014, ARXIV14122007
Kong XJ, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), P242, DOI 10.1109/SmartCity.2015.78
Kuncel NR, 2007, SCIENCE, V315, P1080, DOI 10.1126/science.1136618
Lea C, 2017, PROC CVPR IEEE, P1003, DOI 10.1109/CVPR.2017.113
Lea C, 2016, LECT NOTES COMPUT SC, V9915, P47, DOI 10.1007/978-3-319-49409-8_7
Lee DH, 2019, SCIENTOMETRICS, V121, P1481, DOI 10.1007/s11192-019-03232-7
Li MJ, 2019, IEEE SYS MAN CYBERN, P1172, DOI 10.1109/SMC.2019.8913961
Li N, 2012, INT CONF COMP SCI ED, P1115, DOI 10.1109/ICCSE.2012.6295261
Li XG, 2015, INT CONF ACOUST SPEE, P4520, DOI 10.1109/ICASSP.2015.7178826
Lipton Z.C., 2015, Learning to Diagnose with LSTM Recurrent Neural Networks, V1506, P19
Liu L, 2018, NATURE, V559, P396, DOI 10.1038/s41586-018-0315-8
Lu WJ, 2020, COMPLEXITY, V2020, DOI 10.1155/2020/6622927
Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027
Mariani MS, 2016, J INFORMETR, V10, P1207, DOI 10.1016/j.joi.2016.10.005
Mazloumian A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049246
McCarty C, 2013, SCIENTOMETRICS, V96, P467, DOI 10.1007/s11192-012-0933-0
Mistele T, 2019, SCIENTOMETRICS, V120, P87, DOI 10.1007/s11192-019-03110-2
Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002
Newman MEJ, 2009, EPL-EUROPHYS LETT, V86, DOI 10.1209/0295-5075/86/68001
Nezhadbiglari M, 2016, ACM-IEEE J CONF DIG, P181, DOI 10.1145/2910896.2910905
Penner O, 2013, SCI REP-UK, V3, DOI 10.1038/srep03052
Qi MJ, 2017, SCIENTOMETRICS, V111, P1839, DOI 10.1007/s11192-017-2328-8
Qin DM, 2019, IEEE ACCESS, V7, P20050, DOI 10.1109/ACCESS.2019.2897028
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
Singh SP, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS AND ELECTRONICS (COMPTELIX), P162, DOI 10.1109/COMPTELIX.2017.8003957
Sutskever I, 2014, ADV NEUR IN, V27
Vaccario G, 2017, J INFORMETR, V11, P766, DOI 10.1016/j.joi.2017.05.014
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
Xing YM, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101157
Yan JN, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-65070-5
Yin CY, 2022, IEEE T SYST MAN CY-S, V52, P112, DOI 10.1109/TSMC.2020.2968516
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
Zen HG, 2015, INT CONF ACOUST SPEE, P4470, DOI 10.1109/ICASSP.2015.7178816
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
Zhang F, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101035
Zhang RX, 2018, P INT COMP SOFTW APP, P546, DOI 10.1109/COMPSAC.2018.10292
Zhao Q, 2020, ARXIV PREPRINT ARXIV
Zhou JL, 2016, SCIENTOMETRICS, V106, P805, DOI 10.1007/s11192-015-1805-1
Zhou YH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101038
NR 60
TC 3
Z9 3
U1 6
U2 63
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD APR
PY 2022
VL 127
IS 4
BP 1867
EP 1882
DI 10.1007/s11192-022-04286-w
EA FEB 2022
PG 16
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 0M5LI
UT WOS:000755102600003
DA 2024-09-05
ER
PT C
AU Lin, YY
Lin, L
AF Lin, Yi-yong
Lin, Lei
GP Destech Publicat Inc
TI Research on the Algorithm of LAN Performance Evaluation Based on Deep
Learning
SO INTERNATIONAL CONFERENCE ON MECHANICAL, ELECTRONIC AND INFORMATION
TECHNOLOGY (ICMEIT 2018)
SE DEStech Transactions on Engineering and Technology Research
LA English
DT Proceedings Paper
CT International Conference on Mechanical, Electronic and Information
Technology (ICMEIT)
CY APR 15-16, 2018
CL Shanghai, PEOPLES R CHINA
DE Deep learning; Deep neural network; Recurrent neural network; Evaluation
algorithm; K-line cross-validation
ID CLASSIFICATION; NETWORK
AB A network performance evaluation algorithm is presented based on deep learning framework RNN on this paper. The algorithm collects 8 index parameters in the private LAN and realizes the automatic evaluation of the three levels of the private LAN: excellent, good, and unqualified. The results of the example verification and analysis show that the algorithm proposed in this paper evaluates the performance of the private area network using K-fold cross-validation. The correctness of the algorithm is over 90%. The robustness and high efficiency of the algorithm, the computing time of milliseconds, can be effectively applied to the real-time performance evaluation of the local area network.
C1 [Lin, Yi-yong] Xichang Satellite Launch Ctr, Xichang, Sichuan, Peoples R China.
[Lin, Lei] Chengdu Flight Ind Refco Grp Ltd, Chengdu, Sichuan, Peoples R China.
RP Lin, YY (corresponding author), Xichang Satellite Launch Ctr, Xichang, Sichuan, Peoples R China.
FU Equipment pre-research project
FX This research was financially supported by the Equipment pre-research
project.
CR [Anonymous], 2017, ELECT LETT
Chen YS, 2015, IEEE J-STARS, V8, P2381, DOI 10.1109/JSTARS.2015.2388577
DA Li-rong, 2017, DATA ACQUISITION PRO, V32, P221
Dahl GE, 2012, IEEE T AUDIO SPEECH, V20, P30, DOI 10.1109/TASL.2011.2134090
Gong MG, 2015, IEEE T NEUR NET LEAR, V26, P3263, DOI 10.1109/TNNLS.2015.2469673
Gu F., 2016, COMPUTER SCI, P84
Kato N, 2017, IEEE WIREL COMMUN, V24, P146, DOI 10.1109/MWC.2016.1600317WC
Li Lin, 2016, Journal of Huazhong University of Science and Technology (Natural Science Edition), V44, P70, DOI 10.13245/j.hust.161212
Lu N, 2017, IEEE T NEUR SYS REH, V25, P566, DOI 10.1109/TNSRE.2016.2601240
Maleh Y, 2015, PROCEDIA COMPUT SCI, V52, P1047, DOI 10.1016/j.procs.2015.05.108
Nanyang Chen Lin, 2015, J COMPUTER APPL, V35, P3055
Papyan V, 2017, IEEE T SIGNAL PROCES, V65, P5687, DOI 10.1109/TSP.2017.2733447
Rawat W, 2017, NEURAL COMPUT, V29, P2352, DOI [10.1162/NECO_a_00990, 10.1162/neco_a_00990]
Shi Hong-li, 2005, Journal of Shanghai University, V9, P159, DOI 10.1007/s11741-005-0070-6
[孙旭 Sun Xu], 2017, [自动化学报, Acta Automatica Sinica], V43, P697
Wang L, 2017, IEEE T POWER SYST, V32, P2673, DOI 10.1109/TPWRS.2016.2628873
Wang ZY, 2017, IEEE T NEUR NET LEAR, V28, P1397, DOI 10.1109/TNNLS.2015.2508931
[奚雪峰 Xi Xuefeng], 2016, [自动化学报, Acta Automatica Sinica], V42, P1445
Yan H, 2012, IEEE INFOCOM SER, P2756, DOI 10.1109/INFCOM.2012.6195694
Yu Yan, 2017, DEEP LEARNING PRINCI
Zhang Tuo, 2017, NEW NAVIGATION, V8, P19
Zhang Y, 2017, IET COMPUT VIS, V11, P471, DOI 10.1049/iet-cvi.2016.0322
Zhang Yubing, 2017, MODERN COMPUTER, P26
Zheng Jun, 2004, Control and Decision, V19, P1190
Zhou P, 2015, IEEE-ACM T AUDIO SPE, V23, P631, DOI 10.1109/TASLP.2015.2392944
NR 25
TC 0
Z9 0
U1 0
U2 0
PU DESTECH PUBLICATIONS, INC
PI LANCASTER
PA 439 DUKE STREET, LANCASTER, PA 17602-4967 USA
SN 2475-885X
BN 978-1-60595-548-3
J9 DESTECH TRANS ENG
PY 2018
BP 411
EP 418
PG 8
WC Engineering, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering
GA BM7ZE
UT WOS:000468596500069
DA 2024-09-05
ER
PT J
AU Daradkeh, M
Abualigah, L
Atalla, S
Mansoor, W
AF Daradkeh, Mohammad
Abualigah, Laith
Atalla, Shadi
Mansoor, Wathiq
TI Scientometric Analysis and Classification of Research Using
Convolutional Neural Networks: A Case Study in Data Science and
Analytics
SO ELECTRONICS
LA English
DT Article
DE scientific literature; thematic classification; scientometric; deep
learning; convolutional neural network (CNN)
ID BIG DATA; DETERMINANTS; KNOWLEDGE; ADOPTION
AB With the increasing development of published literature, classification methods based on bibliometric information and traditional machine learning approaches encounter performance challenges related to overly coarse classifications and low accuracy. This study presents a deep learning approach for scientometric analysis and classification of scientific literature based on convolutional neural networks (CNN). Three dimensions, namely publication features, author features, and content features, were divided into explicit and implicit features to form a set of scientometric terms through explicit feature extraction and implicit feature mapping. The weighted scientometric term vectors are fitted into a CNN model to achieve dual-label classification of literature based on research content and methods. The effectiveness of the proposed model is demonstrated using an application example from the data science and analytics literature. The empirical results show that the scientometric classification model proposed in this study performs better than comparable machine learning classification methods in terms of precision, recognition, and F1-score. It also exhibits higher accuracy than deep learning classification based solely on explicit and dominant features. This study provides a methodological guide for fine-grained classification of scientific literature and a thorough investigation of its practice.
C1 [Daradkeh, Mohammad; Atalla, Shadi; Mansoor, Wathiq] Univ Dubai, Coll Engn & Informat Technol, Dubai 14143, U Arab Emirates.
[Daradkeh, Mohammad] Yarmouk Univ, Fac Informat Technol & Comp Sci, Irbid 21163, Jordan.
[Abualigah, Laith] Amman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan.
[Abualigah, Laith] Middle East Univ, Fac Informat Technol, Amman 11831, Jordan.
C3 University of Dubai; Yarmouk University; Middle East University
RP Daradkeh, M (corresponding author), Univ Dubai, Coll Engn & Informat Technol, Dubai 14143, U Arab Emirates.; Daradkeh, M (corresponding author), Yarmouk Univ, Fac Informat Technol & Comp Sci, Irbid 21163, Jordan.
EM mdaradkehc@ud.ac.ae; aligah.2020@gmail.com; satalla@ud.ac.ae;
wmansoor@ud.ac.ae
RI Abualigah, Laith/ABC-9695-2020; Atalla, Shadi/KAO-2626-2024; mansoor,
wathiq/D-8297-2018
OI Abualigah, Laith/0000-0002-2203-4549; Atalla, Shadi/0000-0003-3017-9243;
Daradkeh, Mohammad/0000-0003-2693-7363; mansoor,
wathiq/0000-0003-2784-5188
CR Accuosto P, 2020, DATA KNOWL ENG, V129, DOI 10.1016/j.datak.2020.101840
Adnani H, 2020, MALAYS J LIBR INF SC, V25, P31, DOI 10.22452/mjlis.vol25no3.3
Aljohani NR, 2021, SCIENTOMETRICS, V126, P5509, DOI 10.1007/s11192-021-03986-z
Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492
An X, 2023, J INF SCI, V49, P107, DOI 10.1177/0165551521991034
Andriamamonjy A, 2019, J BUILD ENG, V22, P513, DOI 10.1016/j.jobe.2018.12.021
[Anonymous], 2015, J. Big Data, DOI 10.1186/s40537-014-0007-7
Bhatt C, 2021, MULTIMEDIA SYST, V27, P599, DOI 10.1007/s00530-020-00694-1
Brack Arthur, 2020, Advances in Information Retrieval, 42nd European Conference on IR Research, ECIR 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12035), P251, DOI 10.1007/978-3-030-45439-5_17
Caselli T, 2022, LANG RESOUR EVAL, V56, P417, DOI 10.1007/s10579-021-09554-4
Daradkeh M., 2022, INT J INF TECHNOL SY, V15, P1, DOI [10.4018/IJITSA.307023, DOI 10.4018/IJITSA.307023]
Daradkeh M, 2022, INT J BUS ANAL, V9, DOI 10.4018/IJBAN.292056
Daradkeh M, 2019, J ORGAN END USER COM, V31, P19, DOI 10.4018/JOEUC.2019100102
Daradkeh M, 2017, INT J ENTERP INF SYS, V13, P65, DOI 10.4018/IJEIS.2017070105
Daradkeh MK, 2019, INFORM TECHNOL PEOPL, V32, P668, DOI 10.1108/ITP-10-2017-0359
de Medeiros MM, 2020, BOTTOM LINE, V33, P149, DOI 10.1108/BL-12-2019-0132
Dunham J., 2020, ARXIV
Eykens J, 2021, QUANT SCI STUD, V2, P89, DOI 10.1162/qss_a_00106
González-Alcaide G, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006602
Gryncewicz W., 2021, EUR RES STUD J, V24, P1061, DOI [10.35808/ersj/2558, DOI 10.35808/ERSJ/2558]
Guo DY, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9101928
Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346
Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388
Ho YS, 2021, MULT SCLER RELAT DIS, V54, DOI 10.1016/j.msard.2021.103112
Huang H, 2022, SCIENTOMETRICS, V127, P5257, DOI 10.1007/s11192-021-04183-8
Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1
Kandimalla Bharath, 2020, Front Res Metr Anal, V5, P600382, DOI 10.3389/frma.2020.600382
Kim MC, 2020, J AM MED INFORM ASSN, V27, P1612, DOI 10.1093/jamia/ocaa107
Kozlowski AC, 2019, AM SOCIOL REV, V84, P905, DOI 10.1177/0003122419877135
Liakata M, 2012, BIOINFORMATICS, V28, P991, DOI 10.1093/bioinformatics/bts071
Luo JQ, 2021, J HOSP MARKET MANAG, V30, P71, DOI 10.1080/19368623.2020.1772163
Makabate CT, 2022, ENG CONSTR ARCHIT MA, V29, P179, DOI 10.1108/ECAM-02-2020-0139
Mercer RE, 2003, LECT NOTES ARTIF INT, V2671, P550
Mosallaie S, 2021, COLLNET J SCIENTOMET, V15, P225, DOI 10.1080/09737766.2021.1958659
Mukhamediev RI, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11125541
Nosratabadi S, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8101799
Ozcan S, 2022, IEEE T ENG MANAGE, V69, P3023, DOI 10.1109/TEM.2020.3027973
Porter M. F, 2001, Snowball: A language for stemming algorithms
Provost F, 2013, BIG DATA, V1, P51, DOI 10.1089/big.2013.1508
Purnomo A, 2020, PROCEEDINGS OF 2020 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT AND TECHNOLOGY (ICIMTECH), P893, DOI [10.1109/icimtech50083.2020.9211192, 10.1109/ICIMTech50083.2020.9211192]
Rajput NK, 2022, MULTIMED TOOLS APPL, V81, P32469, DOI 10.1007/s11042-022-12961-6
Ravenscroft J, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173152
Ravikiran M., 2020, P 2020 IEEE INT C BI
Sagnika S, 2021, NEURAL COMPUT APPL, V33, P17425, DOI 10.1007/s00521-021-06328-5
Salazar-Reyna R, 2022, MANAGE DECIS, V60, P300, DOI 10.1108/MD-01-2020-0035
Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x
Schmidt J, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0221-0
Serenko A, 2021, J KNOWL MANAG, V25, P1889, DOI 10.1108/JKM-09-2020-0730
Setyanto A, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12094140
SHELLEY M, 1984, J AM STAT ASSOC, V79, P240, DOI 10.2307/2288384
Sood SK, 2021, ARTIF INTELL REV, V54, P6309, DOI 10.1007/s10462-021-09980-4
Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123
Vicario G, 2020, APPL STOCH MODEL BUS, V36, P6, DOI 10.1002/asmb.2488
Vortmann LM, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21248205
Wahid N, 2021, COLLNET J SCIENTOMET, V15, P287, DOI 10.1080/09737766.2021.1960219
Waller MA, 2013, J BUS LOGIST, V34, P77, DOI 10.1111/jbl.12010
Wang GH, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254054
Wang J., 2020, J PHYS C SER, V1544
Wang LC, 2021, IEEE T IMAGE PROCESS, V30, P9125, DOI 10.1109/TIP.2021.3122003
Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1
Wickett K.M., 2012, P AM SOC INFORM SCI, V49, P1, DOI [10.1002/meet.14504901199, DOI 10.1002/MEET.14504901199]
Wimmer H, 2019, J COMPUT INFORM SYST, V59, P43, DOI 10.1080/08874417.2017.1295790
Xu GX, 2019, IEEE ACCESS, V7, P51522, DOI 10.1109/ACCESS.2019.2909919
Zhang ZQ, 2021, QUANT SCI STUD, V2, P698, DOI 10.1162/qss_a_00123
Zhao DW, 2022, APPL SOFT COMPUT, V124, DOI 10.1016/j.asoc.2022.109071
NR 65
TC 20
Z9 20
U1 2
U2 17
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2079-9292
J9 ELECTRONICS-SWITZ
JI Electronics
PD JUL
PY 2022
VL 11
IS 13
AR 2066
DI 10.3390/electronics11132066
PG 22
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Physics
GA 2X9VE
UT WOS:000825543500001
OA gold
DA 2024-09-05
ER
PT J
AU Li, Q
Li, JX
Sheng, JW
Cui, SY
Wu, J
Hei, YM
Peng, H
Guo, S
Wang, LH
Beheshti, A
Yu, PS
AF Li, Qian
Li, Jianxin
Sheng, Jiawei
Cui, Shiyao
Wu, Jia
Hei, Yiming
Peng, Hao
Guo, Shu
Wang, Lihong
Beheshti, Amin
Yu, Philip S.
TI A Survey on Deep Learning Event Extraction: Approaches and Applications
SO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
LA English
DT Article
DE Task analysis; Deep learning; Electronic mail; Data mining; Measurement;
Feature extraction; Technological innovation; evaluation metrics; event
extraction (EE); research trends
ID JOINT ENTITY; TEXT; TRANSFORMER
AB Event extraction (EE) is a crucial research task for promptly apprehending event information from massive textual data. With the rapid development of deep learning, EE based on deep learning technology has become a research hotspot. Numerous methods, datasets, and evaluation metrics have been proposed in the literature, raising the need for a comprehensive and updated survey. This article fills the research gap by reviewing the state-of-the-art approaches, especially focusing on the general domain EE based on deep learning models. We introduce a new literature classification of current general domain EE research according to the task definition. Afterward, we summarize the paradigm and models of EE approaches, and then discuss each of them in detail. As an important aspect, we summarize the benchmarks that support tests of predictions and evaluation metrics. A comprehensive comparison among different approaches is also provided in this survey. Finally, we conclude by summarizing future research directions facing the research area.
C1 [Li, Qian; Li, Jianxin] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Sch Comp Sci & Engn, Beijing 100083, Peoples R China.
[Sheng, Jiawei; Cui, Shiyao] Chinese Acad Sci, Inst Informat Engn, Beijing 100083, Peoples R China.
[Sheng, Jiawei; Cui, Shiyao] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100083, Peoples R China.
[Wu, Jia; Beheshti, Amin] Macquarie Univ, Sch Comp, Sydney, NSW 2109, Australia.
[Hei, Yiming] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100083, Peoples R China.
[Peng, Hao] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Sch Comp Sci & Engn, Beijing 100083, Peoples R China.
[Peng, Hao] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Beijing 100083, Peoples R China.
[Guo, Shu] Natl Comp Network Emergency Response Tech Team Coo, Beijing 100029, Peoples R China.
[Wang, Lihong; Yu, Philip S.] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA.
C3 Beihang University; Chinese Academy of Sciences; Chinese Academy of
Sciences; University of Chinese Academy of Sciences, CAS; Macquarie
University; Beihang University; Beihang University; Beihang University;
University of Illinois System; University of Illinois Chicago;
University of Illinois Chicago Hospital
RP Li, JX (corresponding author), Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Sch Comp Sci & Engn, Beijing 100083, Peoples R China.
EM liqian@act.buaa.edu.cn; lijx@act.buaa.edu.cn; shengjiawei@iie.ac.cn;
cuishiyao@iie.ac.cn; jia.wu@mq.edu.au; black@buaa.edu.cn;
penghao@act.buaa.edu.cn; guoshu@cert.org.cn; wlh@cert.org.cn;
amin.beheshti@mq.edu.au; psyu@uic.edu
FU NSFC
FX No Statement Available
CR Abdelaziz I, 2021, AAAI CONF ARTIF INTE, V35, P15985
Ahmad WU, 2021, AAAI CONF ARTIF INTE, V35, P12462
Aly R, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019:): STUDENT RESEARCH WORKSHOP, P323
[Anonymous], 2017, P 2017 C EMP METH NA
Araki T., 2015, P EMNLP, P1
Barhom S, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4179
Bean D, 2004, HLT-NAACL 2004: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P297
Bejan CA, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P1412
Ben Veyseh AP, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4393
Björne J, 2018, SIGBIOMED WORKSHOP ON BIOMEDICAL NATURAL LANGUAGE PROCESSING (BIONLP 2018), P98
Bjorne T., 2011, inBioNLP@ACL (Shared Task), P1
Bosselut A, 2021, AAAI CONF ARTIF INTE, V35, P4923
Boyd-Graber B., 2020, P 58 ANN M ASS COMP, P1
Cao PF, 2021, 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), P2636
Cao PF, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, P4862
Cao P, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P707
Cao QQ, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P4487
Cao R., 2020, P ACL, P1
Cao YW, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3383, DOI 10.1145/3442381.3449834
Chalkidis I, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P6314
Chambers D., 2008, ACL, P1
Chambers N., 2014, Trans. Assoc. Comput. Linguist. (TACL), V2, P273, DOI DOI 10.1162/tacl_a_00182
Chan Y.S, 2019, P ACL, P1
Chang C. D., 2013, P SEMEVAL, P1
Chang WC, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3163, DOI 10.1145/3394486.3403368
Chaturvedi S., 2017, P 2017 C EMP METH NA, P1603, DOI DOI 10.18653/V1/D17-1168
Chau D., CoRR
Chen C, 2016, AAAI CONF ARTIF INTE, P2913
Chen H., 2009, P WORKSH EV EM TEXT, P17
Chen H., 2009, P HLT NAACL, P1
Chen JW, 2021, 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), P8078
Chen L, 2020, P 58 ANN M ASS COMP, P8801, DOI [10.18653/v1/2020.acl-main.777, DOI 10.18653/V1/2020.ACL-MAIN.777]
Chen SW, 2021, AAAI CONF ARTIF INTE, V35, P12666
Chen T., 2020, P NLP EMNLP, P1
Chen T, 2021, AAAI CONF ARTIF INTE, V35, P12675
Chen YB, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P409, DOI 10.18653/v1/P17-1038
Chen YB, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P167
Chen Zheng, 2009, Graph-Based Methods Natural Lang. Process. (TextGraphs-4), P54
Cheng F, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 2, P1, DOI 10.18653/v1/P17-2001
Choubey PK, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P485
Choubey Prafulla Kumar, 2017, P 2017 INT C EMP MET, P2124
Collins A. M., 1977, Artificial Intelligence, P190
Cong X, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, P28
Costa TS, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P3157, DOI 10.1145/3340531.3412760
Cui B., 2020, P EMNLP FIND, P1
Cui B., 2020, arXiv
Cybulska P., 2015, P EVENTS HLP NAACL, P1
Davani AM, 2019, C EMPIRICAL METHODS
de Marneffe MC, 2012, COMPUT LINGUIST, V38, P301, DOI 10.1162/COLI_a_00097
Deng SM, 2020, PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), P151, DOI 10.1145/3336191.3371796
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Diab L. S., 2009, THE LAW, P1
Ding N, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P347
Ding X, EVENT REPRESENTATION
Ding X, 2019, Arxiv, DOI arXiv:1907.08015
Dligach T., 2017, ACL SHORT PAPERS, P746
Doddington G.R., 2004, P LREC, V2, P837
Du D., 2020, P ACL, P1
Du T.H, 2020, PROC EMNLP, P1
Du XY, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P909
Du XY, 2021, 16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), P634
Du X, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P671
Ebner P., 2020, ACL, P1
Feng XC, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, P66
Ferguson J., 2018, P NAACL HLT, P1
Finn C, 2017, PR MACH LEARN RES, V70
Frisoni G, 2021, IEEE ACCESS, V9, P160721, DOI 10.1109/ACCESS.2021.3130956
Funke H, 2018, INT CONF MANAGE DATA, P1603, DOI 10.1145/3183713.3183734
Gao L, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P1808
Gao L, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1941, DOI 10.1145/2983323.2983879
Gasmi M, 2018, IEEE T SYST MAN CY-S, V48, P892, DOI 10.1109/TSMC.2016.2625817
Goodfellow I. J., 2014, P NIPS, P2672
Graff C., 2003, inLinguistic DataConsortium
Granroth-Wilding M, 2016, AAAI CONF ARTIF INTE, P2727
Gui T, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P2316
Guo BY, 2021, AAAI CONF ARTIF INTE, V35, P12929
Guo SR, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P891
Hagege X., 2007, P SEMEVAL, P1
Han RJ, 2019 C EMPIRICAL MET
Han RJ, 2021, 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), P7543
Han RJ, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P5717
Hashimoto C, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P987
Hei YM, 2024, IEEE T NEUR NET LEAR, V35, P4703, DOI 10.1109/TNNLS.2021.3105617
Hogenboom F, 2016, DECIS SUPPORT SYST, V85, P12, DOI 10.1016/j.dss.2016.02.006
Hong Y., 2011, ANN M ASS COMP LING, V1, P1127
Hong Y, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P515
Hsi Andrew, 2016, P COLING 2016 26 INT, P1201
Hsu IH, 2022, Arxiv, DOI arXiv:2108.12724
Hu ZC, 2017, 18TH ANNUAL MEETING OF THE SPECIAL INTEREST GROUP ON DISCOURSE AND DIALOGUE (SIGDIAL 2017), P342
Huang K., 2020, P EMNLP, P1277
Huang L, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P718
Huang LF, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P2160
Huang LF, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P258
Huang N., 2021, P 3 WORKSH NARR UND, P1
Huang P., 2020, P 28 INT C COMP LING, P2653, DOI DOI 10.18653/V1/2020.COLINGMAIN.239
Huang R., 2019, LECT NOTES COMPUTER, P404
Huang YJ, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P785
Huang YS, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, P340
Jans S., 2012, ACL, P1
Ji Heng, 2008, P ACL 08 HLT, P254
Jiang T, 2021, AAAI CONF ARTIF INTE, V35, P7987
Jiexin Wang, 2020, Advances in Information Retrieval, 42nd European Conference on IR Research, ECIR 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12035), P774, DOI 10.1007/978-3-030-45439-5_51
Kadowaki K, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P5816
Kipf T. N., 2017, P INT C LEARN REPR
Kuhnle A, 2021, SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P2669, DOI 10.1145/3404835.3462813
Lai VD, 2020, LECT NOTES ARTIF INT, V12085, P233, DOI 10.1007/978-3-030-47436-2_18
Lee K., 2015, P 2015 C EMPIRICAL M, P1643, DOI 10.18653/v1/d15-1189
Li DY, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P1421
Li FY, 2020, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, P829
Li G., 2012, COLING, P1
Li G., 2012, EMNLP CONLL, P1
Li LH, 2020, IEEE ACM T COMPUT BI, V17, P599, DOI 10.1109/TCBB.2018.2868078
Li ML, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P2557
Li Qi, 2013, ANN M ASS COMP LING, P73, DOI DOI 10.1021/BI00231A020
Li Q, 2021, Arxiv, DOI arXiv:2108.10038
Li S, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P894
Li W, 2019, IEEE ACCESS, V7, P25001, DOI 10.1109/ACCESS.2019.2900124
Li XY, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P465, DOI 10.1007/978-981-15-3863-6_51
Li XY, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P1340
Li ZH, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P297, DOI 10.1145/3394486.3403072
Liang X, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4490
Liao JZ, 2021, SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P644, DOI 10.1145/3404835.3462977
Liao SS, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P789
Lin B. Y., 2020, P ACL, P1
Lin HY, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P5278
Lin HY, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P1565
Lin Y., 2020, P ACL, P7999, DOI [10.18653/v1/ 2020.acl-main.713, DOI 10.18653/V1/2020.ACL-MAIN.713]
Liu CY, 2017, IEEE IJCNN, P1532, DOI 10.1109/IJCNN.2017.7966033
Liu FZ, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4981
Liu J, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3608
Liu J, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P1641
Liu J, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P738
Liu JW, 2021, Arxiv, DOI arXiv:2111.03212
Liu K, 2020, AI OPEN, V1, P22, DOI 10.1016/j.aiopen.2021.02.004
Liu SL, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P2134
Liu SL, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1789, DOI 10.18653/v1/P17-1164
Liu X, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2860
Liu X, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P1247
Liu Y, 2018, AAAI CONF ARTIF INTE, P354
Lotan A., 2013, NAACL HLT, P1
Lu J, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P90, DOI 10.18653/v1/P17-1009
Lu J, 2017, 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P113, DOI 10.1109/ICMLA.2017.0-170
Lu Jing., 2016, Proceedings of International Conference on Com-putational Linguistics, P3264
Lu YJ, 59 ANN M ASS COMPUTA
Lv S., 2020, P 28 INT C COMPUTATI, P306, DOI DOI 10.18653/V1/2020.COLING-MAIN.27
Lv SW, 2019, AAAI CONF ARTIF INTE, P6802
Lyu Q, 2021, ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, P322
Ma XX, 2023, IEEE T KNOWL DATA EN, V35, P12012, DOI 10.1109/TKDE.2021.3118815
Mani I, 2006, COLING/ACL 2006, VOLS 1 AND 2, PROCEEDINGS OF THE CONFERENCE, P753
Mejri J., 2017, P LPKM, P1
Mekala D, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P323
Min BN, 2020, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), P1747
Nguyen MV, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P27
Mirza P, 2014, 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: STUDENT RESEARCH WORKSHOP (ACL 2014), P10
Mirza S., 2016, COLING, P1
Mirza S., 2014, COLING, P1
Mostafazadeh N, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P4569
Nairn C., 2006, P 5 INT WORKSH INF C, P1
Nguyen TH, 2016, P 2016 C N AM CHAPT, P300, DOI DOI 10.18653/V1/N16-1034
Nguyen Thien Huu, 2016, P C EMP METH NAT LAN, P886, DOI [DOI 10.18653/V1/D16-1085:URL.HTTPS://WWW.ACLWEB.ORG/ANTHOLOGY/D16-1085, DOI 10.18653/V1/D16-1085]
Ning Q., 2017, P 2017 C EMPIRICAL M
Nuo Xu, 2020, Chinese Computational Linguistics. 19th China National Conference, CCL 2020. Proceedings. Lecture Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science (LNAI 12522), P174, DOI 10.1007/978-3-030-63031-7_13
Peters M, 2018, STUD LATEINAMERIKA, V32, P1, DOI 10.5771/9783845286846
Petrovic S., 2013, P INT AAAI C WEB SOC, V7, P713, DOI DOI 10.1609/ICWSM.V7I1.14450
Pichotta K, 2016, AAAI CONF ARTIF INTE, P2800
Pichotta R., 2014, ACL, P1
Prabhakaran O., 2010, COLING, P1
Pustejovsky J., 2003, New Directions in Question Answering
Qian Z, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4293
Qian Z, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P2799
Qian Z, 2015, INT CONF ASIAN LANG, P103, DOI 10.1109/IALP.2015.7451542
Qin Bing, 2010, Tsinghua Sci. Technol., V15, P251
Ramponi A, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P5357
Rashkin H, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P463
Riaz M., 2013, P SIGDIAL 2013 C, P21
Riaz M, 2010, IEEE INT C SEMANT CO, P361, DOI 10.1109/ICSC.2010.19
Riaz R., 2014, EACL, P1
Ring M. B., 1995, CONTINUAL LEARNING R, V255, P1
Ross H, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P8548
Rudinger A. S., 2018, NAACL HLT, P1
Rudinger P., 2015, P EMNLP, P1
Sap M., 2019, arXiv
Sauri R., 2008, A Factuality Profiler for Eventualities in Text
Saurí R, 2012, COMPUT LINGUIST, V38, P261, DOI 10.1162/COLI_a_00096
Schank R.C, 1977, Readings in Cognitive Science: A Perspective FromPsychology andArtificial Intelligence, P190
Sha L, 2018, AAAI CONF ARTIF INTE, P5916
Sha L, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1224
Shen SR, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, P2417
Sheng B., 2019, LECT NOTES COMPUTER, P486
Sheng JW, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P1681
Sheng JW, 2021, DATA INTELLIGENCE, V3, P444, DOI 10.1162/dint_a_00098
Stengel-Eskin A. S., 2020, ACL, P1
Su X, 2024, IEEE T NEUR NET LEAR, V35, P4682, DOI 10.1109/TNNLS.2021.3137396
Subburathinam A, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P313
Sun K, 2021, AAAI CONF ARTIF INTE, V35, P13851
Sun QY, 2022, AAAI CONF ARTIF INTE, P4165
Sun QY, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P2081, DOI 10.1145/3442381.3449822
SUNDHEIM BM, 1992, FOURTH MESSAGE UNDERSTANDING CONFERENCE (MUC-4), P3
Tang Z, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020): STUDENT RESEARCH WORKSHOP, P169
Nguyen TH, 2018, AAAI CONF ARTIF INTE, P5900
Nguyen TH, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL) AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (IJCNLP), VOL 2, P365
Thrun S, 1998, LEARNING TO LEARN, P181
Tourille J, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 2, P224, DOI 10.18653/v1/P17-2035
Trieu HL, 2020, BIOINFORMATICS, V36, P4910, DOI 10.1093/bioinformatics/btaa540
Nguyen TM, 2019, AAAI CONF ARTIF INTE, P6851
Vanegas JA, 2015, COMPUT MATH METHOD M, V2015, DOI 10.1155/2015/571381
Vaswani A, 2017, ADV NEUR IN, V30
Lai VD, 2021, 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), P5270
Lai VD, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, P2390
Lai VD, 2021, SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P2172, DOI 10.1145/3404835.3463054
Lai VD, 2020, NARRATIVE UNDERSTANDING, STORYLINES, AND EVENTS, P38
Vinyals Oriol, 2016, ADV NEURAL INFORM PR, V29, DOI DOI 10.48550/ARXIV.1606.04080
Wadden D, 2019 C EMPIRICAL MET
Wang LH, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3524, DOI 10.1145/3442381.3449894
Wang XZ, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P1652
Wang XZ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P5777
Wang Z., 2021, P 59 ANN M ASS COMP, V1, P6283
Wei KW, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, P4672
Wen HY, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P62
Wu XD, 2019, IEEE DATA MINING, P1540, DOI 10.1109/ICDM.2019.00204
Xiang W, 2019, IEEE ACCESS, V7, P173111, DOI 10.1109/ACCESS.2019.2956831
Xiao L, 2021, AAAI CONF ARTIF INTE, V35, P14103
Xu RX, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, P3533
Yang, 2021, P 59 ANN M ASS COMP, P6298, DOI [DOI 10.18653/V1/2021.ACL-LONG.492, 10.18653/v1/2021.acl-long.492]
Yang H, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P50
Yang S, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P5284
Yang T. M., 2016, NAACL HLT, P1
Yang YY, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2161, DOI 10.1145/3357384.3358156
Yao L, 2019, AAAI CONF ARTIF INTE, P7370
Ye ZX, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2872
Yu B., 2020, P ACL, P1
Yuan W, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3489, DOI 10.1145/3442381.3449975
Yubo Chen, 2016, Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. 15th China National Conference, CCL 2016, and 4th International Symposium, NLP-NABD 2016. Proceedings: LNAI 10035, P190, DOI 10.1007/978-3-319-47674-2_17
Zeng Y, 2018, AAAI CONF ARTIF INTE, P6045
Zeng Y, 2016, LECT NOTES COMPUT SC, V10102, P275, DOI 10.1007/978-3-319-50496-4_23
Zhang HM, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P201, DOI 10.1145/3366423.3380107
Zhang JC, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P5422
Zhang TT, 2019, DATA INTELLIGENCE, V1, P99, DOI 10.1162/dint_a_00014
Zhang WN, 2021, SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P2681, DOI 10.1145/3404835.3462818
Zhang Y, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P1554
Zhang Z., 2020, ACL, P7479, DOI DOI 10.18653/V1/2020.ACL-MAIN.667
Zhang ZK, 2016, LECT NOTES COMPUT SC, V10102, P324, DOI 10.1007/978-3-319-50496-4_27
Zhang ZX, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P39
Zhao Y, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P414
Zheng B., 2020, P ACL, P1
Zheng J., 2020, P 28 INT C COMP LING, P328
Zheng JM, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3546, DOI 10.1145/3442381.3449949
Zheng S, DOC2EDAG END TO END
Zheng S, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, P4609
Zhou Y, 2021, AAAI CONF ARTIF INTE, V35, P14638
Zhu Z, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P842
Zuo X., 2020, P COLING, P1
NR 252
TC 0
Z9 0
U1 2
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2162-237X
EI 2162-2388
J9 IEEE T NEUR NET LEAR
JI IEEE Trans. Neural Netw. Learn. Syst.
PD MAY
PY 2024
VL 35
IS 5
BP 6301
EP 6321
DI 10.1109/TNNLS.2022.3213168
PG 21
WC Computer Science, Artificial Intelligence; Computer Science, Hardware &
Architecture; Computer Science, Theory & Methods; Engineering,
Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA PM9I4
UT WOS:001214608800104
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Zhang, X
Wang, XH
Zhao, HK
de Pablos, PO
Sun, YQ
Xiong, H
AF Zhang, Xi
Wang, Xianhai
Zhao, Hongke
Ordonez de Pablos, Patricia
Sun, Yongqiang
Xiong, Hui
TI An effectiveness analysis of altmetrics indices for different levels of
artificial intelligence publications
SO SCIENTOMETRICS
LA English
DT Article
DE Altmetrics; Bibliometrics; Artificial intelligence; Highly cited
publication; Increase of citation count; Citation analysis
ID CITATIONS; IMPACT; MODEL
AB Altmetrics indices are increasingly applied to measure scholarly influence in recent years because they can reflect the influence of research outputs more timely comparing with traditional measurements. Simultaneously, artificial intelligence (AI), as an emerging interdiscipline, has a rapid development in these years. Traditional indices can't reflect the influence of the AI research outputs quickly, thus more timely altmetrics indices are needed. In this paper, we conduct four studies about altmetrics indices and AI research outputs based on the datasets collected from Altmetric.com and Scopus database. First, we provide a review of the research status in the AI field. Second, we show the AI researches that attracted the most attention. Third, we demonstrate the general effectiveness of altmetrics indices in the AI field. Last, we examine the effectiveness of altmetrics indices for different levels of AI journal papers and AI conference papers. Our results indicate that there is a rapid increase of AI publications and the public has paid more attention to AI research outputs since 2011. It is found that altmetrics indices are effective to discriminate highly cited publications and publications whose citation counts increase quickly. Among all Altmetric sub-indicators, Number of Mendeley readers is the most effective. Moreover, the results indicate that altmetrics indices are more effective in high levels of AI journal papers and AI conference papers. The main contribution of this paper is investigating the effectiveness of altmetrics indices from the perspective of different levels of publications. This study lays the foundation for further investigations about effectiveness of altmetrics indices from new perspectives, and it has important implication for the studies about the impact of social media on the scientific community.
C1 [Zhang, Xi; Wang, Xianhai; Zhao, Hongke] Tianjin Univ, Coll Management & Econ, Tianjin 300072, Peoples R China.
[Ordonez de Pablos, Patricia] Univ Oviedo, Dept Business Adm, Oviedo, Spain.
[Sun, Yongqiang] Wuhan Univ, Sch Informat Management, Wuhan 430072, Hubei, Peoples R China.
[Xiong, Hui] Rutgers State Univ, Rutgers Business Sch Newark & New Brunswick, Newark, NJ USA.
C3 Tianjin University; University of Oviedo; Wuhan University; Rutgers
University System; Rutgers University Newark; Rutgers University New
Brunswick
RP Zhang, X (corresponding author), Tianjin Univ, Coll Management & Econ, Tianjin 300072, Peoples R China.
EM jackyzhang@tju.edu.cn
RI Ordóñez de Pablos, Patricia/AAC-9329-2022; Zhang, Jacky/HHS-9302-2022;
Sun, Yongqiang/K-4074-2019; Jiang, Cheng/JHU-0179-2023
OI Ordonez de Pablos, Patricia/0000-0002-8388-6382; Xiong,
Hui/0000-0001-6016-6465; Sun, Yongqiang/0000-0001-8753-9268; Zhang,
Xi/0000-0002-1105-9417
FU National Natural Science Foundation of China [71722005, 71571133,
71790594, 71790590]; Natural Science Foundation of Tianjin
[18JCJQJC45900]; Humanities and Social Sciences Foundation of the
Ministry of Education, China [16YJC870011]
FX The study is supported by funds from National Natural Science Foundation
of China (Nos: 71722005 and 71571133 and 71790594 and 71790590). And
from Natural Science Foundation of Tianjin (No. 18JCJQJC45900), the
Humanities and Social Sciences Foundation of the Ministry of Education,
China (Project No. 16YJC870011). We are grateful to Altmetric.com for
providing the data.
CR Adie E, 2013, LEARN PUBL, V26, P11, DOI 10.1087/20130103
[Anonymous], SCIENTOMETRICS
[Anonymous], 2014, INT C NEUR INF PROC
[Anonymous], COMP VIS PATT REC
[Anonymous], 2010, 1 MONDAY
[Anonymous], ACM SIGKDD INT C KNO
[Anonymous], 2016, CVPR
[Anonymous], 2014, J MOL STRUCTURE
[Anonymous], SCIENTOMETRICS
[Anonymous], 2014, SCIENTOMETRICS
[Anonymous], CAN SOC COMP STUD IN
[Anonymous], ALTMETRICS ALTMETRIC
[Anonymous], SOURC ATT ALTM TRACK
[Anonymous], 2013, PLOS ALM WORKSH SAN
[Anonymous], IEEE RSJ INT C INT R
[Anonymous], NAT C ART INT
Bench-Capon TJM, 2007, ARTIF INTELL, V171, P619, DOI 10.1016/j.artint.2007.05.001
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Boyd S., 2004, CONVEX OPTIMIZATION
Colledge L., 2010, Serials, V23, P215, DOI DOI 10.1629/23215
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
Dalal N, 2005, PROC CVPR IEEE, P886, DOI 10.1109/cvpr.2005.177
Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8
de Winter JCF, 2015, SCIENTOMETRICS, V102, P1773, DOI 10.1007/s11192-014-1445-x
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Fei Shu, 2017, Proceedings of the Association for Information Science and Technology, V54, DOI 10.1002/pra2.2017.14505401040
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Hartley R., 2003, Multiple view geometry in computer vision, V2nd, DOI 10.1007/3-540-44480-7_19
Harvey C., 2010, Academic journal quality guide (version 4)
Hassan SU, 2013, SCIENTOMETRICS, V94, P163, DOI 10.1007/s11192-012-0786-6
Haykin S., 1994, Neural networks: a comprehensive foundation
Heagerty PJ, 2005, BIOMETRICS, V61, P92, DOI 10.1111/j.0006-341X.2005.030814.x
Holmberg K, 2014, SCIENTOMETRICS, V101, P1027, DOI [10.1007/s11192-014-1229-3, 10.1159/000358776]
King DB, 2015, ACS SYM SER, V1214, P1
Kousha K, 2017, J ASSOC INF SCI TECH, V68, P762, DOI 10.1002/asi.23694
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Lee YG, 2007, SCIENTOMETRICS, V70, P27, DOI 10.1007/s11192-007-0102-z
METZ CE, 1978, SEMIN NUCL MED, V8, P283, DOI 10.1016/S0001-2998(78)80014-2
Moed HF, 2015, J ASSOC INF SCI TECH, V66, P1988, DOI 10.1002/asi.23314
Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002
Nguyen V, 2007, AUTON ROBOT, V23, P97, DOI 10.1007/s10514-007-9034-y
Peoples BK, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166570
Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a
Pooladian A, 2017, SCIENTOMETRICS, V113, P455, DOI 10.1007/s11192-017-2474-z
Priem J., 2010, ALTMETRICS MANIFESTO
Priem J., 2012, ARXIV
Qian YF, 2017, SCIENTOMETRICS, V110, P1351, DOI 10.1007/s11192-016-2235-4
RENDELL L, 1983, ARTIF INTELL, V20, P369, DOI 10.1016/0004-3702(83)90002-4
Ringelhan S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134389
Russell Stuart, 2010, Artificial intelligence, a modern approach, V3
Sause MGR, 2012, PATTERN RECOGN LETT, V33, P17, DOI 10.1016/j.patrec.2011.09.018
Shuai X, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047523
Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2
Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833
Teixeira da Silva JA, 2017, SCIENTOMETRICS, V111, P553, DOI 10.1007/s11192-017-2250-0
Thelwall M, 2016, J ASSOC INF SCI TECH, V67, P1962, DOI 10.1002/asi.23501
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Van Noorden R, 2014, NATURE, V512, P126, DOI 10.1038/512126a
Wouters P., 2012, Users, narcissism and control-tracking the impact of scholarly publications in the 21st century
Xia F, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165997
Yu HQ, 2017, SCIENTOMETRICS, V111, P267, DOI 10.1007/s11192-017-2251-z
NR 61
TC 26
Z9 28
U1 7
U2 146
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUN
PY 2019
VL 119
IS 3
BP 1311
EP 1344
DI 10.1007/s11192-019-03088-x
PG 34
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA HZ7UB
UT WOS:000469058000002
DA 2024-09-05
ER
PT J
AU Oblizanov, A
Shevskaya, N
Kazak, A
Rudenko, M
Dorofeeva, A
AF Oblizanov, Alexandr
Shevskaya, Natalya
Kazak, Anatoliy
Rudenko, Marina
Dorofeeva, Anna
TI Evaluation Metrics Research for Explainable Artificial Intelligence
Global Methods Using Synthetic Data
SO APPLIED SYSTEM INNOVATION
LA English
DT Article
DE explainable artificial intelligence; XAI; explanation metrics; synthetic
data
ID SMOTE
AB In recent years, artificial intelligence technologies have been developing more and more rapidly, and a lot of research is aimed at solving the problem of explainable artificial intelligence. Various XAI methods are being developed to allow the user to understand the logic of how machine learning models work, and in order to compare the methods, it is necessary to evaluate them. The paper analyzes various approaches to the evaluation of XAI methods, defines the requirements for the evaluation system and suggests metrics to determine the various technical characteristics of the methods. A study was conducted, using these metrics, which determined the degradation in the explanation quality of the SHAP and LIME methods with increasing correlation in the input data. Recommendations are also given for further research in the field of practical implementation of metrics, expanding the scope of their use.
C1 [Oblizanov, Alexandr; Shevskaya, Natalya] St Petersburg Electrotech Univ Leti, Fac Comp Sci & Technol, St Petersburg 197376, Russia.
[Kazak, Anatoliy; Dorofeeva, Anna] VI Vernadsky Crimean Fed Univ, Humanitarian Pedag Acad, Simferopol 295007, Russia.
[Rudenko, Marina] VI Vernadsky Crimean Fed Univ, Inst Phys & Technol, Simferopol 295007, Russia.
C3 Saint Petersburg State Electrotechnical University; VI Vernadsky Crimean
Federal University; VI Vernadsky Crimean Federal University
RP Kazak, A (corresponding author), VI Vernadsky Crimean Fed Univ, Humanitarian Pedag Acad, Simferopol 295007, Russia.
EM kazak@cfuv.ru
RI Kazak, Anatoliy/R-8222-2019
OI Kazak, Anatoliy/0000-0001-7678-9210; Marina, Rudenko/0000-0002-8334-8453
FU International Alexander Popov's Innovation Institute for Artificial
Intelligence, Cybersecurity and Communications of Saint Petersburg
Electrotechnical University"LETI"
FX Authors thank International Alexander Popov's Innovation Institute for
Artificial Intelligence, Cybersecurity and Communications of Saint
Petersburg Electrotechnical University"LETI" for support in work and
research
CR Atapour-Abarghouei A, 2018, PROC CVPR IEEE, P2800, DOI 10.1109/CVPR.2018.00296
Bolón-Canedo V, 2013, KNOWL INF SYST, V34, P483, DOI 10.1007/s10115-012-0487-8
Bunkhumpornpat C, 2009, LECT NOTES ARTIF INT, V5476, P475, DOI 10.1007/978-3-642-01307-2_43
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Chen YH, 2019, PROC CVPR IEEE, P1841, DOI 10.1109/CVPR.2019.00194
Coutinho-Almeida J, 2021, LECT NOTES ARTIF INT, V12986, P282, DOI 10.1007/978-3-030-88942-5_22
DiMattia F, 2019, ARXIV
Doshi-Velez Finale, 2017, arXiv
Douzas G, 2018, INFORM SCIENCES, V465, P1, DOI 10.1016/j.ins.2018.06.056
Dunn KW, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-54244-5
Emam KE., 2020, Practical synthetic data generation: balancing privacy and the broad availability of data
Frid-Adar M, 2018, I S BIOMED IMAGING, P289, DOI 10.1109/ISBI.2018.8363576
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622
Gupta A, 2016, PROC CVPR IEEE, P2315, DOI 10.1109/CVPR.2016.254
Han H, 2005, LECT NOTES COMPUT SC, V3644, P878, DOI 10.1007/11538059_91
He HB, 2008, IEEE IJCNN, P1322, DOI 10.1109/IJCNN.2008.4633969
Hsiao J.H.-w., 2021, ARXIV
Keane MarkT., 2021, ARXIV
Kim K, 2018, IEEE ACCESS, V6, P54207, DOI 10.1109/ACCESS.2018.2872025
Kim MY, 2021, MACH LEARN KNOW EXTR, V3, P900, DOI 10.3390/make3040045
Kingma D. P., 2013, ARXIV
Koch B, 2010, ISPRS J PHOTOGRAMM, V65, P581, DOI 10.1016/j.isprsjprs.2010.09.001
Lin Y., 2020, arXiv
Liu JH, 2019, IEEE T IND INFORM, V15, P3877, DOI 10.1109/TII.2018.2885365
Lundberg SM, 2017, ADV NEUR IN, V30
Mirza M., 2014, ADV NEURAL INFORM PR
Nikolenko S.I., 2021, SYNTHETIC DATA DEEP, P217
Pan ZQ, 2019, IEEE ACCESS, V7, P36322, DOI 10.1109/ACCESS.2019.2905015
Petrauskas V, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112411763
Poursabzi-Sangdeh F, 2021, CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3411764.3445315
Radford A., 2016, INT C LEARN REPR ICL
Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778
Rosenfeld A., 2021, P 20 INT C AUT AG MU, P45, DOI DOI 10.5555/3463952.3463962
Sarp S, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10121406
Saxena D, 2022, ACM COMPUT SURV, V54, DOI 10.1145/3446374
Siddani B, 2021, THEOR COMP FLUID DYN, V35, P807, DOI 10.1007/s00162-021-00593-9
Torkzadehmahani R, 2019, IEEE COMPUT SOC CONF, P98, DOI 10.1109/CVPRW.2019.00018
Utkin L.V., 2021, ARXIV
Utkin LV, 2021, Arxiv, DOI arXiv:2103.03302
Vilone G, 2021, MACH LEARN KNOW EXTR, V3, P615, DOI 10.3390/make3030032
Wang Q, 2021, INT J COMPUT VISION, V129, DOI 10.1007/s11263-020-01365-4
Wang Q, 2019, PROC CVPR IEEE, P8190, DOI 10.1109/CVPR.2019.00839
Wu XM, 2019, GEOPHYSICS, V84, pIM35, DOI 10.1190/GEO2018-0646.1
Zhang LC, 2019, IEEE T IMAGE PROCESS, V28, P1837, DOI 10.1109/TIP.2018.2879249
Zhou JL, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10050593
NR 45
TC 2
Z9 2
U1 4
U2 14
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2571-5577
J9 APPL SYST INNOV
JI Appl. Syst. Innov.
PD FEB
PY 2023
VL 6
IS 1
AR 26
DI 10.3390/asi6010026
PG 13
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science; Engineering; Telecommunications
GA 9H4MF
UT WOS:000938806500001
OA gold
DA 2024-09-05
ER
PT C
AU Mercier, D
Rizvi, STR
Rajashekar, V
Ahmed, S
Dengel, A
AF Mercier, Dominique
Rizvi, Syed Tahseen Raza
Rajashekar, Vikas
Ahmed, Sheraz
Dengel, Andreas
BE Rocha, AP
Steels, L
VanDenHerik, J
TI Utilizing Out-Domain Datasets to Enhance Multi-task Citation Analysis
SO AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2021
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 13th International Conference on Agents and Artificial Intelligence
(ICAART)
CY FEB 04-06, 2021
CL ELECTR NETWORK
DE Artificial intelligence; Natural language processing; Scientific
citation analysis; Multi-task; Transformers; Sentiment analysis; Intent
analysis; Multi-domain
AB Citations are generally analyzed using only quantitative measures while excluding qualitative aspects such as sentiment and intent. However, qualitative aspects provide deeper insights into the impact of a scientific research artifact and make it possible to focus on relevant literature free from bias associated with quantitative aspects. Therefore, it is possible to rank and categorize papers based on their sentiment and intent. For this purpose, larger citation sentiment datasets are required. However, from a time and cost perspective, curating a large citation sentiment dataset is a challenging task. Particularly, citation sentiment analysis suffers from both data scarcity and tremendous costs for dataset annotation. To overcome the bottleneck of data scarcity in the citation analysis domain we explore the impact of out-domain data during training to enhance the model performance. Our results emphasize the use of different scheduling methods based on the use case. We empirically found that a model trained using sequential data scheduling is more suitable for domain-specific usecases. Conversely, shuffled data feeding achieves better performance on a cross-domain task. Based on our findings, we propose an end-to-end trainable multi-task model that covers the sentiment and intent analysis that utilizes out-domain datasets to overcome the data scarcity.
C1 [Mercier, Dominique; Rizvi, Syed Tahseen Raza; Rajashekar, Vikas; Ahmed, Sheraz; Dengel, Andreas] German Res Ctr Artificial Intelligence DFKI GmbH, Trippstadter Str 122, D-67663 Kaiserslautern, Germany.
[Mercier, Dominique; Rizvi, Syed Tahseen Raza; Dengel, Andreas] TU Kaiserslautern, Erwin Schrodinger Str 52, D-67663 Kaiserslautern, Germany.
C3 German Research Center for Artificial Intelligence (DFKI); University of
Kaiserslautern
RP Mercier, D (corresponding author), German Res Ctr Artificial Intelligence DFKI GmbH, Trippstadter Str 122, D-67663 Kaiserslautern, Germany.; Mercier, D (corresponding author), TU Kaiserslautern, Erwin Schrodinger Str 52, D-67663 Kaiserslautern, Germany.
EM dominique.mercier@dfki.de; syed.rizvi@dfki.de; vikas.rajashekar@dfki.de;
sheraz.ahmed@dfki.de; andreas.dengel@dfki.de
OI Mercier, Dominique/0000-0001-8817-2744; Rajashekar,
Vikas/0000-0002-3664-5156; Rizvi, Syed Tahseen Raza/0000-0002-4359-4772;
Dengel, Andreas/0000-0002-6100-8255
CR Abu-Jbara A., 2013, NAACL, P596
[Anonymous], 2004, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics - ACL'04, DOI DOI 10.3115/1218955.1218990
[Anonymous], 2017, P 11 INT WORKSHOP SE, DOI DOI 10.18653/V1/S17-2094
[Anonymous], 2009, P 18 ACM C INF KNOWL, DOI DOI 10.1145/1645953.1646003
[Anonymous], 2006, 11 C EUR CHAPT ASS C
Athar A., 2011, P ACL 2011 STUD SESS, P81
Bahrainian SA, 2013, IEEE INT C COMPUT, P227, DOI 10.1109/CSE.2013.44
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609
Cohan A, 2019, Arxiv, DOI arXiv:1904.01608
Dai ZH, 2019, Arxiv, DOI arXiv:1901.02860
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Feldman R, 2013, COMMUN ACM, V56, P82, DOI 10.1145/2436256.2436274
GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306
Khayrallah H, 2018, NEURAL MACHINE TRANSLATION AND GENERATION, P36
Lan ZZ, 2020, Arxiv, DOI arXiv:1909.11942
Li YT, 2018, Arxiv, DOI arXiv:1805.06088
Maas A, 2011, P 49 ANN M ASS COMP
McAuley J, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P43, DOI 10.1145/2766462.2767755
Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011
Mercier D, 2019, Arxiv, DOI [arXiv:1910.03498, DOI 10.48550/ARXIV.1910.03498, 10.48550/arXiv.1910.03498]
Mercier D, 2021, ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, P159, DOI 10.5220/0010235201590168
Mrksic N, 2015, Arxiv, DOI arXiv:1506.07190
Munikar M., 2019, 2019 ART INT TRANSF, VVolume 1, P1
Ranjan H, 2017, 2017 CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (CICT)
Sajjad H, 2018, Arxiv, DOI arXiv:1708.08712
Snow R, 2008, P 2008 C EMPIRICAL M, P254
Socher R., 2013, ADV NEURAL INFORM PR, V26, DOI DOI 10.1371/JOURNAL.PONE.0073791
Su Dan, 2019, P 2 WORKSH MACH READ, P203, DOI 10.18653/v1/D19-5827
Tang DY, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1555
Thongtan T, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019:): STUDENT RESEARCH WORKSHOP, P407
Wu ZW, 2015, LECT NOTES COMPUT SC, V9052, P76, DOI 10.1007/978-3-319-22324-7_7
Xie QZ, 2020, Arxiv, DOI arXiv:1904.12848
Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334
Yang ZL, 2019, ADV NEUR IN, V32
Yousif A, 2019, ARTIF INTELL REV, V52, P1805, DOI 10.1007/s10462-017-9597-8
Zhou P, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, P207, DOI 10.18653/v1/p16-2034
NR 37
TC 1
Z9 1
U1 0
U2 2
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-10161-8; 978-3-031-10160-1
J9 LECT NOTES COMPUT SC
PY 2022
VL 13251
BP 113
EP 134
DI 10.1007/978-3-031-10161-8_6
PG 22
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods; Mathematics, Applied
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Mathematics
GA BU1DA
UT WOS:000876376200006
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Abrishami, A
Aliakbary, S
AF Abrishami, Ali
Aliakbary, Sadegh
TI Predicting citation counts based on deep neural network learning
techniques
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Informetrics; Citation count prediction; Neural networks; Deep learning;
Scientific impact; Time series prediction
ID SLEEPING BEAUTIES; LINK PREDICTION; IMPACT; SCIENCE
AB With the growing number of published scientific papers world-wide, the need to evaluation and quality assessment methods for research papers is increasing. Scientific fields such as scientometrics, informetrics, and bibliometrics establish quantified analysis methods and measurements for evaluating scientific papers. In this area, an important problem is to predict the future influence of a published paper. Particularly, early discrimination between influential papers and insignificant papers may find important applications. In this regard, one of the most important metrics is the number of citations to the paper, since this metric is widely utilized in the evaluation of scientific publications and moreover, it serves as the basis for many other metrics such as h-index. In this paper, we propose a novel method for predicting long-term citations of a paper based on the number of its citations in the first few years after publication. In order to train a citation count prediction model, we employed artificial neural network which is a powerful machine learning tool with recently growing applications in many domains including image and text processing. The empirical experiments show that our proposed method outperforms state-of-the-art methods with respect to the prediction accuracy in both yearly and total prediction of the number of citations. (C) 2019 Elsevier Ltd. All rights reserved.
C1 [Abrishami, Ali; Aliakbary, Sadegh] Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran, Iran.
C3 Shahid Beheshti University
RP Aliakbary, S (corresponding author), Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran, Iran.
EM a.abrishami@mail.sbu.ac.ir; s_aliakbary@sbu.ac.ir
CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
Amjad T, 2017, J INFORMETR, V11, P307, DOI 10.1016/j.joi.2017.01.004
[Anonymous], P 3 INT C LEARNING R
[Anonymous], 2016, MED EXPRESS
[Anonymous], 2012, PLOS ONE, DOI [DOI 10.1371/JOURNAL.PONE.0049246, DOI 10.1371/journal.pone.0112520]
[Anonymous], 2015, P ICLR
[Anonymous], COMMUN ACM, DOI DOI 10.1145/3065386
[Anonymous], 2016, DEEP LEARNING
[Anonymous], CITATION ANAL RES EV
[Anonymous], 41 ANN M COUNC BIOL
[Anonymous], 2014, P 19 INT DAT ENG APP
[Anonymous], IEEE C COMP VIS PATT
Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1
Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005
Butun Ertan, 2017, 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P952, DOI 10.1145/3110025.3110160
Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006
Castillo C, 2007, LECT NOTES COMPUT SC, V4726, P107, DOI 10.1007/978-3-540-75530-2_10
Chan HF, 2018, SCIENTOMETRICS, V114, P1069, DOI 10.1007/s11192-017-2614-5
Cho K., 2014, P 2014 C EMP METH NA, P1724
Chollet F, 2018, DEEP LEARNING PYTHON
Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110
Dahl GE, 2012, IEEE T AUDIO SPEECH, V20, P30, DOI 10.1109/TASL.2011.2134090
Daud A, 2017, LIBR HI TECH, V35, P509, DOI 10.1108/LHT-02-2017-0044
Dong Y, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P149, DOI 10.1145/2684822.2685314
Fiala D, 2017, J INFORMETR, V11, P1044, DOI 10.1016/j.joi.2017.09.008
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Glorot X., 2011, P 14 INT C ARTIFICIA, V15, P315
Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947
Havemann F, 2015, SCIENTOMETRICS, V102, P1413, DOI 10.1007/s11192-014-1476-3
Hinton G, 2012, IEEE SIGNAL PROC MAG, V29, P82, DOI 10.1109/MSP.2012.2205597
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Karpathy A, 2017, IEEE T PATTERN ANAL, V39, P664, DOI 10.1109/TPAMI.2016.2598339
Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112
Ketcham CM, 2007, LAB INVEST, V87, P520, DOI 10.1038/labinvest.3700554
Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1
Kosteas VD, 2018, SCIENTOMETRICS, V115, P1395, DOI 10.1007/s11192-018-2703-0
Lai SW, 2015, AAAI CONF ARTIF INTE, P2267
Lamb CT, 2018, PEERJ, V6, DOI 10.7717/peerj.4564
Li J, 2016, SCIENTOMETRICS, V108, P821, DOI 10.1007/s11192-016-1977-3
McNamara Daniel, 2013, Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2013 International Workshops: DMApps, DANTH, QIMIE, BDM, CDA, CloudSD. Revised Selected Papers: LNCS 7867, P14, DOI 10.1007/978-3-642-40319-4_2
Mikolov T, 2010, 11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 1-2, P1045
Moed HF, 2012, SCIENTOMETRICS, V92, P367, DOI 10.1007/s11192-012-0679-8
Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002
OPPENHEIM C, 1995, J DOC, V51, P18, DOI 10.1108/eb026940
Pobiedina N, 2016, APPL INTELL, V44, P252, DOI 10.1007/s10489-015-0657-y
RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0
Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x
Severyn A, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P959, DOI 10.1145/2766462.2767830
Severyn A, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P373, DOI 10.1145/2766462.2767738
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
Sutskever I, 2014, ADV NEUR IN, V27
Sutskever Ilya, 2011, Proceedings of the 28th International Conference on Machine Learning (ICML-11), P1017
van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1
Wan J, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P157, DOI 10.1145/2647868.2654948
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
WERBOS PJ, 1990, P IEEE, V78, P1550, DOI 10.1109/5.58337
Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3
Wu XF, 2008, J ZHEJIANG UNIV-SC B, V9, P582, DOI 10.1631/jzus.B0840001
Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
NR 62
TC 88
Z9 94
U1 11
U2 166
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD MAY
PY 2019
VL 13
IS 2
BP 485
EP 499
DI 10.1016/j.joi.2019.02.011
PG 15
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA IB0FF
UT WOS:000469932800002
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Sun, ZL
AF Sun, Zhuanlan
TI Textual features of peer review predict top-cited papers: An
interpretable machine learning perspective
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Peer review reports; Textual features; Machine learning; Explainable
artificial intelligence; Research impact
AB Peer review is crucial in improving the quality and reliability of scientific research. However, the mechanisms through which peer review practices ensure papers become top-cited papers (TCPs) after publication are not well understood. In this study, by collecting a data set containing 13, 066 papers published between 2016 and 2020 from Nature communications with open peer review reports, we aim to examine how textual features embedded within the peer review reports of papers that reflect the reviewers' emotions may predict the papers to be TCPs. We compiled a list of 15 textual features and classified them into three categories: peer review features, linguistic features, and sentiment features. We then chose the XGBoost machine learning model with the best performance in predicting TCPs, and utilized the explainable artificial intelligence techniques SHAP to interpret the role of feature importance on the prediction results. The distribution of feature importance ranking results demonstrates that sentiment features play a crucial role in determining papers' potential to be highly cited. This conclusion still holds, even when the ranking of the feature importance changes in the subgroup analysis of dividing the samples into four disciplines (biological sciences, health sciences, physical sciences, and earth and environmental sciences), as well as two groups based on whether reviewers' identities were revealed. This research emphasizes the textual features retrieved from peer review reports that play role in improving manuscript quality can predict the post-publication research impact.
C1 [Sun, Zhuanlan] Nanjing Univ Posts & Telecommun, High Qual Dev Evaluat Res Inst, Nanjing 210003, Peoples R China.
C3 Nanjing University of Posts & Telecommunications
RP Sun, ZL (corresponding author), Nanjing Univ Posts & Telecommun, High Qual Dev Evaluat Res Inst, Nanjing 210003, Peoples R China.
EM zlsuen@njupt.edu.cn
OI Sun, Zhuanlan/0000-0003-4958-7351
FU Teachers Research Foundation Project of Nanjing University of Posts and
Telecommunications [NYY222042]
FX Funding This work is funded by Teachers Research Foundation Project of
Nanjing University of Posts and Telecommunications (NYY222042) .
CR [Anonymous], 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13625
[Anonymous], 2015, NAT COMMUN, V6, DOI 10.1038/ncomms10277
[Anonymous], 2001, Linguistic inquiry and word count: Liwc 2001
Armstrong J.S., 1997, SCI ENG ETHICS, V3, P63, DOI [DOI 10.1007/S11948-997-0017-3, 10.1007/s11948-997-0017-3]
Bianchi F, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101316
Bird S., 2006, P COLING ACL 2006 IN, P69, DOI 10.3115/1225403.1225421
Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112
Brandt JS, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.18007
Bravo G, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-018-08250-2
Bruce R, 2016, BMC MED, V14, DOI 10.1186/s12916-016-0631-5
Buljan I, 2020, ELIFE, V9, DOI 10.7554/eLife.53249
Casnici N, 2017, SCIENTOMETRICS, V113, P533, DOI 10.1007/s11192-017-2241-1
Casnici N, 2017, J ASSOC INF SCI TECH, V68, P1763, DOI 10.1002/asi.23665
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Chen HC, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102855
Colladon AF, 2020, SCIENTOMETRICS, V124, P357, DOI 10.1007/s11192-020-03479-5
Delgado AF, 2019, SCIENTOMETRICS, V120, P1225, DOI 10.1007/s11192-019-03160-6
Donner P, 2018, J INFORMETR, V12, P330, DOI 10.1016/j.joi.2018.01.012
Franco MC, 2021, J CLIN EPIDEMIOL, V136, P37, DOI 10.1016/j.jclinepi.2021.01.018
García JA, 2019, SCIENTOMETRICS, V118, P885, DOI 10.1007/s11192-019-03008-z
García JA, 2018, SCIENTOMETRICS, V115, P1413, DOI 10.1007/s11192-018-2723-9
Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120
Han Ruxue, 2022, Proceedings of the Association for Information Science and Technology, P89, DOI 10.1002/pra2.607
Huber J, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2205779119
Huisman J, 2017, SCIENTOMETRICS, V113, P633, DOI 10.1007/s11192-017-2310-5
Hunston S, 2011, ROUTL ADV CORPUS LIN, V13, P1
Jiang S, 2021, SCIENTOMETRICS, V126, P6085, DOI 10.1007/s11192-021-04032-8
Jockers M., 2017, Package "syuzhet
Kharasch ED, 2021, ANESTHESIOLOGY, V134, P1, DOI 10.1097/ALN.0000000000003608
Klebel T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239518
LABAND DN, 1990, Q J ECON, V105, P341, DOI 10.2307/2937790
Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266
Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914
Loria S., 2018, Textblob documentation
Lundberg SM, 2017, ADV NEUR IN, V30
Luo JW, 2022, QUANT SCI STUD, V2, P1271, DOI 10.1162/qss_a_00156
Ma YX, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102945
Mahoney M. J., 1977, Cognitive Therapy and Research, V1, P161, DOI [DOI 10.1007/BF01173636, 10.1007/BF01173636]
Mangalathu S, 2020, ENG STRUCT, V219, DOI 10.1016/j.engstruct.2020.110927
Manzoor E, 2021, AAAI CONF ARTIF INTE, V35, P4767
Matsui A, 2021, PEERJ, V9, DOI 10.7717/peerj.11999
Mohammad SM, 2013, COMPUT INTELL-US, V29, P436, DOI 10.1111/j.1467-8640.2012.00460.x
Mukherjee S, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1601315
Ni J, 2021, SCIENTOMETRICS, V126, P9393, DOI 10.1007/s11192-021-04182-9
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017
Rigby J, 2018, SCIENTOMETRICS, V114, P1087, DOI 10.1007/s11192-017-2630-5
Rinker T., 2017, PACKAGESENTIMENTR, V8, P31
Robson BJ, 2016, ENVIRON MODELL SOFTW, V75, P94, DOI 10.1016/j.envsoft.2015.10.007
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
Seraj S, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2017154118
Shah NB, 2022, COMMUN ACM, V65, P75, DOI 10.1145/3528086
Silge J., 2016, The Open Journal, V1, P37, DOI DOI 10.21105/JOSS.00037
Sotudeh H, 2022, SCIENTOMETRICS, V127, P5587, DOI 10.1007/s11192-022-04502-7
Squazzoni F, 2013, JASSS-J ARTIF SOC S, V16, DOI 10.18564/jasss.2128
Stephen D, 2022, SCIENTOMETRICS, V127, P3413, DOI 10.1007/s11192-022-04357-y
Sun ZL, 2023, J INFORMETR, V17, DOI 10.1016/j.joi.2023.101449
Taboada M, 2016, ANNU REV LINGUIST, V2, P325, DOI 10.1146/annurev-linguistics-011415-040518
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
Tenorio-Fornés A, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102724
Wang K, 2018, ACM/SIGIR PROCEEDINGS 2018, P175, DOI 10.1145/3209978.3210056
Wei WJ, 2022, SCIENTOMETRICS, V127, P4315, DOI 10.1007/s11192-022-04462-y
Wolfram D, 2021, RES EVALUAT, V30, P314, DOI 10.1093/reseval/rvab005
Wyner AJ, 2017, J MACH LEARN RES, V18, P1
Xia WJ, 2023, SCIENTOMETRICS, V128, P543, DOI 10.1007/s11192-022-04547-8
Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831
Yuan ZM, 2022, SCIENTOMETRICS, V127, P6191, DOI 10.1007/s11192-022-04515-2
Zhang GY, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101264
Zhang-James Yanli, 2019, Adolescent Brain Cognitive Development Neurocognitive Prediction. First Challenge, ABCD-NP 2019. Held in Conjunction with MICCAI 2019. Proceedings. Lecture Notes in Computer Science (LNCS 11791), P92, DOI 10.1007/978-3-030-31901-4_11
NR 69
TC 3
Z9 3
U1 29
U2 29
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD MAY
PY 2024
VL 18
IS 2
AR 101501
DI 10.1016/j.joi.2024.101501
EA JAN 2024
PG 20
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA JY0I5
UT WOS:001176598700001
DA 2024-09-05
ER
PT J
AU Love, PED
AF Love, Peter E. D.
TI A Pragmatist Research Agenda for Employing Psychological Heuristics in
Construction: Context, Design, Artificial Intelligence, and Performance
Evaluation
SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
LA English
DT Article
DE Artificial intelligence (AI); construction; decision-making;
pragmaticism; psychological heuristics; uncertainty
ID HOMO HEURISTICUS; DECISION-MAKING; MODELS; FRUGAL; SAFETY; RATIONALITY;
UNCERTAINTY; DEFINITION; PROJECTS; JUDGMENT
AB Psychological heuristics are formal models of decision making relying on core psychological capacities, such as perception, attention, memory, language, emotion regulation, and social cognition. They function under conditions of limited information, which is processed using simple computations that are easy to understand, apply, and explain. Under conditions characterized by Knightian uncertainty, psychological heuristics embrace the "less-is-more" effect and have demonstrated to achieve equal and better performance in inference problems than optimality methods. Despite these salient performance outcomes, the construction and engineering management literature remains silent on their role in decision making. Filling this void, in this article, we use a narrative review to address the following research question: How can psychological heuristics be effectively used for decision making under uncertainty in construction? A research agenda comprising four interconnected themes integral to decision making under uncertainty is examined to deal with this question: understanding the context; developing and designing heuristics; the integration of heuristics with artificial intelligence; and performance evaluation. Underpinning these themes is the methodological lens of pragmatism and mixed method research design to foster the actualities of psychological heuristics in real-world situations. Thus, we aim to stimulate new lines of inquiry and the development of a repertoire of decision-making strategies of the mind that can be employed in construction where uncertainty reigns.
C1 [Love, Peter E. D.] Curtin Univ, Sch Civil & Mech Engn, Perth, WA, Australia.
C3 Curtin University
RP Love, PED (corresponding author), Curtin Univ, Sch Civil & Mech Engn, Perth, WA, Australia.
EM p.love@curtin.edu.au
RI Love, Peter/D-7418-2017
OI Love, Peter/0000-0002-3239-1304
CR Alter AL, 2006, P NATL ACAD SCI USA, V103, P9369, DOI 10.1073/pnas.0601071103
[Anonymous], 1999, Simple HeuristicsThat Make Us Smart
Bakht MN, 2015, J CONSTR ENG M, V141, DOI 10.1061/(ASCE)CO.1943-7862.0000984
Barnett E, 2001, AM J PUBLIC HEALTH, V91, P465, DOI 10.2105/AJPH.91.3.465a
Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012
Baumeister R.F., 1997, Rev. Gen. Psychol., V1, P311, DOI DOI 10.1037/1089-2680.1.3.311
Bingham CB, 2014, STRATEGIC MANAGE J, V35, P1698, DOI 10.1002/smj.2257
Bingham CB, 2011, STRATEGIC MANAGE J, V32, P1437, DOI 10.1002/smj.965
Bowers JS, 2022, BEHAV BRAIN SCI, V46, DOI 10.1017/S0140525X22002813
Brighton H., 2012, Ecological Rationality: Intelligence in the World, P60, DOI [10.1093/acprof:oso/9780195315448.003.0014, DOI 10.1093/ACPROF:OSO/9780195315448.003.0014]
Brighton H, 2012, MALAYS J MED SCI, V19, P6
DAWES RM, 1979, AM PSYCHOL, V34, P571, DOI 10.1037/0003-066X.34.7.571
DeMiguel V, 2009, REV FINANC STUD, V22, P1915, DOI 10.1093/rfs/hhm075
Ding LY, 2018, AUTOMAT CONSTR, V86, P118, DOI 10.1016/j.autcon.2017.11.002
Dosi G, 2020, ECON INQ, V58, P1487, DOI 10.1111/ecin.12897
Dragan AD, 2013, ACMIEEE INT CONF HUM, P301, DOI 10.1109/HRI.2013.6483603
Fang WL, 2022, ADV ENG INFORM, V54, DOI 10.1016/j.aei.2022.101729
Fang WL, 2023, IEEE T ENG MANAGE, V70, P4120, DOI 10.1109/TEM.2021.3093166
Fang WL, 2020, ADV ENG INFORM, V43, DOI 10.1016/j.aei.2019.100980
Fang WL, 2018, ADV ENG INFORM, V37, P139, DOI 10.1016/j.aei.2018.05.003
Fang WL, 2018, AUTOMAT CONSTR, V91, P53, DOI 10.1016/j.autcon.2018.02.018
Gadzinski G, 2020, J BEHAV EXP FINANC, V26, DOI 10.1016/j.jbef.2020.100293
García-Peñalvo FJ, 2023, CMES-COMP MODEL ENG, V136, P1023, DOI 10.32604/cmes.2023.023897
GIGERENZER G, 1991, PSYCHOL REV, V98, P254, DOI 10.1037/0033-295X.98.2.254
Gigerenzer G, 1996, PSYCHOL REV, V103, P592, DOI 10.1037/0033-295X.103.3.592
Gigerenzer G, 1996, PSYCHOL REV, V103, P650, DOI 10.1037/0033-295X.103.4.650
Gigerenzer G, 1996, MED DECIS MAKING, V16, P273, DOI 10.1177/0272989X9601600312
Gigerenzer G., 2014, Risk Savvy: How to Make Good Decisions
Gigerenzer G., 2006, sHarvard Business Review, V84, P58
Gigerenzer G., 2022, How to Stay Smart in a Smart World: Why Human Intelligence Still Beats Algorithms
Gigerenzer G, 2023, PERSPECT PSYCHOL SCI, DOI 10.1177/17456916231180597
Gigerenzer G, 2022, ANNU REV ORGAN PSYCH, V9, P171, DOI 10.1146/annurev-orgpsych-012420-090506
Gigerenzer G, 2011, ANNU REV PSYCHOL, V62, P451, DOI 10.1146/annurev-psych-120709-145346
Gigerenzer G, 2009, TOP COGN SCI, V1, P107, DOI 10.1111/j.1756-8765.2008.01006.x
Gigerenzer G, 2008, PERSPECT PSYCHOL SCI, V3, P20, DOI 10.1111/j.1745-6916.2008.00058.x
Goldkuhl G, 2012, EUR J INFORM SYST, V21, P135, DOI 10.1057/ejis.2011.54
Goldstein DG, 2002, PSYCHOL REV, V109, P75, DOI 10.1037//0033-295X.109.1.75
Green L, 1997, J FAM PRACTICE, V45, P219
Groner R., 1983, Adv. Psychol., V16, P87, DOI [10.1016/S0166-4115(08)62195-0, DOI 10.1016/S0166-4115(08)62195-0]
Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120
Hafenbrädl S, 2016, J APPL RES MEM COGN, V5, P215, DOI 10.1016/j.jarmac.2016.04.011
Hertwig R, 2008, J EXP PSYCHOL LEARN, V34, P1191, DOI 10.1037/a0013025
Ho M. K., Advances inNeural Information Processing Systems, P3027
Ho MK, 2022, ANNU REV CONTR ROBOT, V5, P33, DOI 10.1146/annurev-control-042920-015547
HOLT GD, 1994, BUILD ENVIRON, V29, P241, DOI 10.1016/0360-1323(94)90074-4
Johnson JG, 2003, ORGAN BEHAV HUM DEC, V91, P215, DOI 10.1016/S0749-5978(03)00027-X
Johnson RB, 2007, J MIX METHOD RES, V1, P112, DOI 10.1177/1558689806298224
KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185
Kahneman D., 2002, HEURISTICS BIASES PS, V49, P74
Katsikopoulos KV, 2013, J SUPPLY CHAIN MANAG, V49, P3, DOI 10.1111/j.1745-493x.2012.03285.x
Katsikopoulos KV, 2011, DECIS ANAL, V8, P10, DOI 10.1287/deca.1100.0191
Katsikopoulos KV, 2020, CLASSIFICATION IN THE WILD, P1
Keller N, 2016, EUR J OPER RES, V249, P1063, DOI 10.1016/j.ejor.2015.07.023
Kelsey D., 1992, Journal of Economic Surveys, V6, P133, DOI DOI 10.1111/J.1467-6419.1992.TB00148.X
Kong T, 2021, ADV ENG INFORM, V50, DOI 10.1016/j.aei.2021.101400
Li H., 1999, Construction Management and Economics, V17, P169, DOI [10.1080/014461999371664, DOI 10.1080/014461999371664]
Loock M, 2015, J BUS RES, V68, P2027, DOI 10.1016/j.jbusres.2015.02.016
Love PED, 2024, DEV BUILT ENVIRON, V18, DOI 10.1016/j.dibe.2024.100402
Love PED, 2024, IEEE T ENG MANAGE, V71, P5720, DOI 10.1109/TEM.2024.3364168
Love PED, 2023, PROD PLAN CONTROL, DOI 10.1080/09537287.2023.2257178
Love PED, 2023, PROD PLAN CONTROL, DOI 10.1080/09537287.2023.2248942
Love PED, 2023, ADV ENG INFORM, V57, DOI 10.1016/j.aei.2023.102024
Love PED, 2023, DEV BUILT ENVIRON, V14, DOI 10.1016/j.dibe.2023.100129
Love PED, 2023, IEEE T ENG MANAGE, V70, P791, DOI 10.1109/TEM.2021.3097324
Love PED, 2022, RELIAB ENG SYST SAFE, V217, DOI 10.1016/j.ress.2021.108021
Love PED, 2018, PROD PLAN CONTROL, V29, P353, DOI 10.1080/09537287.2018.1424961
Love PED, 2018, SAFETY SCI, V103, P270, DOI 10.1016/j.ssci.2017.11.026
Luan SH, 2019, ACAD MANAGE J, V62, P1735, DOI 10.5465/amj.2018.0172
Luan SH, 2017, ORGAN BEHAV HUM DEC, V141, P29, DOI 10.1016/j.obhdp.2017.05.003
Martignon L, 2002, THEOR DECIS, V52, P29, DOI 10.1023/A:1015516217425
Martignon L., 2003, Thinking: Psychological perspective on reasoning, judgment, and decision making, P211, DOI [DOI 10.1002/047001332X.CH10, 10.1002/047001332X.ch10]
Martignon L, 2008, J MATH PSYCHOL, V52, P352, DOI 10.1016/j.jmp.2008.04.003
Matthews J, 2023, PROD PLAN CONTROL, DOI 10.1080/09537287.2023.2223566
Matthews J, 2022, INT J INFORM MANAGE, V65, DOI 10.1016/j.ijinfomgt.2022.102495
Meder B, 2013, TRENDS COGN SCI, V17, P257, DOI 10.1016/j.tics.2013.04.008
Mostofi F, 2023, J CONSTR ENG M, V149, DOI 10.1061/JCEMD4.COENG-13435
Mousavi S, 2014, J BUS RES, V67, P1671, DOI 10.1016/j.jbusres.2014.02.013
Neth H., 2015, Emerging trends in the social and behavioral sciences: An interdisciplinary, searchable, and linkable resource, P1, DOI DOI 10.1002/9781118900772.ETRDS0394
Paneru S, 2021, AUTOMAT CONSTR, V132, DOI 10.1016/j.autcon.2021.103940
Patton M. Q., 2015, Qualitative Research and Evaluation Methods, V4th ed.
Phillips ND, 2017, JUDGM DECIS MAK, V12, P344
Le PL, 2020, INT J CONSTR MANAG, V20, P490, DOI 10.1080/15623599.2018.1488089
Ployhart RE, 2011, ACAD MANAGE REV, V36, P127, DOI 10.5465/amr.2009.0318
Raab M, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01672
Radzi AR, 2023, J ENG DES TECHNOL, V21, P1083, DOI 10.1108/JEDT-06-2021-0306
Richardson P.J., 2005, NOT GENES ALONE CULT, DOI DOI 10.7208/CHICAGO/9780226712130.001.0001
Rivest R. L., 1987, Machine Learning, V2, P229, DOI 10.1007/BF00058680
Saylors R, 2021, ORGAN RES METHODS, V24, P616, DOI 10.1177/1094428119893452
Schooler LJ, 2005, PSYCHOL REV, V112, P610, DOI 10.1037/0033-295X.112.3.610
Schoonenboom J, 2017, KOLNER Z SOZIOL SOZ, V69, P107, DOI 10.1007/s11577-017-0454-1
Shah AK, 2008, PSYCHOL BULL, V134, P207, DOI 10.1037/0033-2909.134.2.207
Shoar S, 2022, J BUILD ENG, V50, DOI 10.1016/j.jobe.2022.104102
SIMON HA, 1990, ANNU REV PSYCHOL, V41, P1, DOI 10.1146/annurev.ps.41.020190.000245
Simon HA, 1996, SCI ARTIFICIAL
Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852
Stingl V, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120367
Suri G, 2024, J EXP PSYCHOL GEN, DOI 10.1037/xge0001547
Tetlock PE, 2002, PSYCHOL SCI, V13, P94, DOI 10.1111/1467-9280.00418
Tixier AJP, 2016, AUTOMAT CONSTR, V69, P102, DOI 10.1016/j.autcon.2016.05.016
Todd P. M., 2012, ECOLOGICAL RATIONALI, DOI [10.1093/acprof:oso/9780195315448.003.0011, DOI 10.1093/ACPROF:OSO/9780195315448.003.0011]
TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124
Volz KG, 2012, FRONT NEUROSCI-SWITZ, V6, DOI 10.3389/fnins.2012.00105
Vranas PBM, 2000, COGNITION, V76, P179, DOI 10.1016/S0010-0277(99)00084-0
Wang YH, 2022, PSYCH J, V11, P600, DOI 10.1002/pchj.576
Watt DJ, 2009, INT J PROJ MANAG, V27, P250, DOI 10.1016/j.ijproman.2008.03.002
Woike J. K., 2017, Decision,vol, V4, P234, DOI [10.1037/dec0000086, DOI 10.1037/DEC0000086]
Zhan JJ, 2024, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3325951
NR 107
TC 0
Z9 0
U1 1
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9391
EI 1558-0040
J9 IEEE T ENG MANAGE
JI IEEE Trans. Eng. Manage.
PY 2024
VL 71
BP 11183
EP 11197
DI 10.1109/TEM.2024.3411656
PG 15
WC Business; Engineering, Industrial; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Engineering
GA WQ7F8
UT WOS:001256396800001
DA 2024-09-05
ER
PT J
AU Talha, MM
Khan, HU
Iqbal, S
Alghobiri, M
Iqbal, T
Fayyaz, M
AF Talha, Mian Muhammad
Khan, Hikmat Ullah
Iqbal, Saqib
Alghobiri, Mohammed
Iqbal, Tassawar
Fayyaz, Muhammad
TI Deep learning in news recommender systems: A comprehensive survey,
challenges and future trends
SO NEUROCOMPUTING
LA English
DT Article
DE Recommender system; News recommender systems; Research challenges;
Evaluation metrics; Datasets; Deep learning
AB Nowadays, people prefer to read news articles from online sources worldwide due to their easiness and availability. For the last few years, online searching for required information or content has been replaced by item recommendation, and news recommendation is also not an exception. For news recommendations, News Recommender System (NRS) helps the users to find the appropriate and pertinent content, alleviate the problem of information overload, and propose news that would be of interest to news readers. NRS also assists different users all around the world in this regard by recommending the most recent news articles based on their interests and past preferences. Many techniques such as traditional, Deep Learning (DL), and hybrid have been proposed to solve the NRS challenges and issues. DL techniques are considered one of the best techniques and have been successfully applied in various fields such as Natural Language Processing (NLP) and Computer Vision (CV). This survey article provides a detailed analysis of DL models-based techniques to build NRS. In this regard, firstly, a comprehensive comparison is provided between published survey articles on NRS and this research work. Secondly, it discusses the background of recommendation systems and their techniques. Furthermore, NRS is explored along with its current research challenges. Then background knowledge of DL and its methods have been discussed along with the analysis of year-wise published relevant articles having DL as the applied technique. The survey also presents widely used datasets and performance evaluation metrics used in the relevant literature. Finally, a detailed discussion provides several future directions and open research challenges for the researchers to consider DL applications in NRS.
C1 [Talha, Mian Muhammad; Khan, Hikmat Ullah; Iqbal, Tassawar] COMSATS Univ Islamabad, Dept Comp Sci, Wah Campus, Wah Cantt 47040, Pakistan.
[Iqbal, Saqib] Al Ain Univ, Coll Engn, Al Ain, U Arab Emirates.
[Alghobiri, Mohammed] King Khalid Univ, Dept MIS, Abha, Saudi Arabia.
[Fayyaz, Muhammad] FAST Natl Univ Comp & Emerging Sci, Dept Comp Sci, Chiniot Faisalabad Campus, Chiniot, Pakistan.
[Khan, Hikmat Ullah] Univ Sargodha, Dept Informat Management, Sargodha, Pakistan.
C3 COMSATS University Islamabad (CUI); King Khalid University; University
of Sargodha
RP Khan, HU (corresponding author), COMSATS Univ Islamabad, Dept Comp Sci, Wah Campus, Wah Cantt 47040, Pakistan.; Khan, HU (corresponding author), Univ Sargodha, Dept Informat Management, Sargodha, Pakistan.
EM hikmat.ullah@ciitwah.edu.pk
RI Fayyaz, Muhammad/AAP-8145-2021; Khan, Hikmat Ullah/GZG-2251-2022
OI Fayyaz, Muhammad/0000-0002-0909-4539;
CR Aditya PH, 2016, INT C ADV COMP SCI I, P303, DOI 10.1109/ICACSIS.2016.7872755
Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99
Ahmed S.S., 2020, CRPASE: Transactions of Electrical Electronic and Computer Engineering, V6, P132
Ajaegbu C, 2021, J AMB INTEL HUM COMP, V12, P10629, DOI 10.1007/s12652-020-02876-1
Akhter MP, 2022, ENTERP INF SYST-UK, V16, P223, DOI 10.1080/17517575.2020.1755455
Ameen A., 2019, Internat. J. Comput. Appl., V182, P20
Amin SA, 2019, LECT NOTES COMPUT SC, V11517, P46, DOI 10.1007/978-3-030-23381-5_4
Amir N, 2023, ARTIF INTELL REV, V56, P1101, DOI 10.1007/s10462-022-10191-8
An MX, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P336
[Anonymous], 2004, P 21 INT C MACH LEAR, DOI 10.1145/1015330.1015437
Bank D., 2020, arXiv
Binbusayyis A, 2022, INTELL AUTOM SOFT CO, V33, P501, DOI 10.32604/iasc.2022.022239
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012
Bobadilla J, 2010, KNOWL-BASED SYST, V23, P520, DOI 10.1016/j.knosys.2010.03.009
Borges HL, 2010, STUD COMPUT INTELL, V260, P129, DOI 10.1007/978-3-642-04584-4_6
BUCKLAND M, 1994, J AM SOC INFORM SCI, V45, P12, DOI 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L
Buder J, 2012, COMPUT HUM BEHAV, V28, P207, DOI 10.1016/j.chb.2011.09.002
Burke R, 2002, USER MODEL USER-ADAP, V12, P331, DOI 10.1023/A:1021240730564
Burke R., 2000, Encyclopedia of Library and Information Science, V69, P175, DOI DOI 10.1007/S10115-015-0897-5
Cao SX, 2017, 2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), P721
Chen M, 2012, arXiv
Corbeil J.-P., 2020, ORSUM@ RecSys
Covington P, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P191, DOI 10.1145/2959100.2959190
Tran DH, 2023, WORLD WIDE WEB, V26, P713, DOI 10.1007/s11280-022-01059-6
Das A. S., 2007, P 16 INT C WORLD WID, P271
Deshpande M, 2004, ACM T INFORM SYST, V22, P143, DOI 10.1145/963770.963776
Dey R, 2017, MIDWEST SYMP CIRCUIT, P1597, DOI 10.1109/MWSCAS.2017.8053243
Fayyaz M, 2023, NEURAL COMPUT APPL, V35, P11937, DOI 10.1007/s00521-023-08331-4
Fayyaz M, 2021, NEURAL COMPUT APPL, V33, P361, DOI 10.1007/s00521-020-05015-1
Fayyaz M, 2020, NEURAL COMPUT APPL, V32, P10519, DOI 10.1007/s00521-019-04590-2
Feng C, 2020, IEEE ACCESS, V8, P16702, DOI 10.1109/ACCESS.2020.2967792
Fortuna B, 2010, LECT NOTES ARTIF INT, V6323, P583, DOI 10.1007/978-3-642-15939-8_38
Ge SY, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P2863, DOI 10.1145/3366423.3380050
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
Harpale Abhay S, 2008, SIGIR ?08: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval, P91
Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772
Hsieh CK, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P51, DOI 10.1145/2872427.2883006
Iaquinta Leo, 2008, 2008 8th International Conference on Hybrid Intelligent Systems (HIS), P168, DOI 10.1109/HIS.2008.25
IJntema Wouter., 2010, Proceedings of the 2010 EDBT/ICDT Workshops, New York, NY, P1
Isinkaye FO, 2015, EGYPT INFORM J, V16, P261, DOI 10.1016/j.eij.2015.06.005
Jayashree R, 2015, PROCEDIA COMPUT SCI, V50, P216, DOI 10.1016/j.procs.2015.04.057
Karimi M, 2018, INFORM PROCESS MANAG, V54, P1203, DOI 10.1016/j.ipm.2018.04.008
Khan ZA, 2019, IEEE ACCESS, V7, P141287, DOI 10.1109/ACCESS.2019.2940603
Khusro Shah, 2016, International Conference on Information Science and Applications (ICISA) 2016. LNEE 376, P1179, DOI 10.1007/978-981-10-0557-2_112
Kompan M, 2010, LECT NOTES BUS INF P, V61, P61
Kumar B., 2016, INDIAN J SCI TECHNOL, V9, DOI [DOI 10.17485/ijst/2016/v9i47/94892, 10.17485/ijst/2015/v8i1/94892]
Kumar Vaibhav, 2017, CLEF WORKING NOTES
Lam SK, 2006, LECT NOTES COMPUT SC, V3995, P14
Larochelle H., 2011, Journal of Machine Learning Research, P29
Le D-T, 2019, Tech Rep
Lee D, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P695, DOI 10.1145/3340531.3411932
Li L, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P125
Li L, 2011, J COMPUT SCI TECH-CH, V26, P754, DOI 10.1007/s11390-011-0175-2
Li MM, 2019, IEEE ACCESS, V7, P145861, DOI 10.1109/ACCESS.2019.2944927
Lian JX, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3805
Lika B, 2014, EXPERT SYST APPL, V41, P2065, DOI 10.1016/j.eswa.2013.09.005
Liu J, 2010, IUI 2010, P31
Liu R, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3487
Lops P, 2019, USER MODEL USER-ADAP, V29, P239, DOI 10.1007/s11257-019-09231-w
Mahesh G., 2020, ELCVIA Electron Lett Comput Vis Image Anal, V19, P0018, DOI DOI 10.5565/REV/ELCVIA.1232
Mathew P, 2016, PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA MINING AND ADVANCED COMPUTING (SAPIENCE), P47, DOI 10.1109/SAPIENCE.2016.7684166
Melville P., 2011, Encyclopedia of Machine Learning, P829
Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236
Morales De Francisci, 2012, ACM International Conference on Web Search and Data Mining (WSDM), P153, DOI DOI 10.1145/2124295.2124315
Moreira GDP, 2019, IEEE ACCESS, V7, P169185, DOI 10.1109/ACCESS.2019.2954957
Murtaza M, 2022, IEEE ACCESS, V10, P115469, DOI 10.1109/ACCESS.2022.3218322
Myerson J, 2001, J EXP ANAL BEHAV, V76, P235, DOI 10.1901/jeab.2001.76-235
Natarajan S, 2020, EXPERT SYST APPL, V149, DOI 10.1016/j.eswa.2020.113248
Nilashi M, 2018, EXPERT SYST APPL, V92, P507, DOI 10.1016/j.eswa.2017.09.058
Nitu P, 2021, BIG DATA MIN ANAL, V4, P139, DOI 10.26599/BDMA.2020.9020026
Noriega L., 2005, Multilayer Perceptron Tutorial, School of Computing, P444
Nudrat S, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/2347641
Okura S, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1933, DOI 10.1145/3097983.3098108
Ozgobek Ozlem, 2014, 10th International Conference on Web Information Systems and Technologies (WEBIST 2014). Proceedings, P278
Papadakis H, 2022, KNOWL INF SYST, V64, P35, DOI 10.1007/s10115-021-01628-7
Park K, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2255, DOI 10.1145/3132847.3133154
Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325
Moreira GDP, 2018, 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), P578, DOI 10.1145/3240323.3240331
Moreira GDP, 2018, PROCEEDINGS OF THE 3RD WORKSHOP ON DEEP LEARNING FOR RECOMMENDER SYSTEMS (DLRS), P15, DOI 10.1145/3270323.3270328
Phelan O, 2011, LECT NOTES COMPUT SC, V6611, P448, DOI 10.1007/978-3-642-20161-5_44
Probst Patrick., 2016, WORKING NOTES CLEF 2, P669
Raza S, 2021, Arxiv, DOI arXiv:2103.08458
Raza S, 2022, ARTIF INTELL REV, V55, P749, DOI 10.1007/s10462-021-10043-x
Raza S, 2020, IEEE INT CONF BIG DA, P551, DOI 10.1109/BigData50022.2020.9378340
Rendle Steffen, 2010, Proceedings 2010 10th IEEE International Conference on Data Mining (ICDM 2010), P995, DOI 10.1109/ICDM.2010.127
Resnick P, 1997, COMMUN ACM, V40, P56, DOI 10.1145/245108.245121
Resnick P., 1994, P CSCW 94
Sangeetha S.K.B., 2022, Artificial Intelligent Techniques for Wireless Communication and Networking, V8, P105, DOI DOI 10.1002/9781119821809.CH8
Saranya K., 2012, Internat. J. Comput. Appl., V57
Sarwar Badrul, 2001, Proceedings of the 10th international conference on World Wide Web (WWW '01), P285
Schedl M, 2016, ICMR'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, P103, DOI 10.1145/2911996.2912004
Sharma RC, 2016, INT J DIGIT EARTH, V9, P1004, DOI 10.1080/17538947.2016.1168879
Shokeen J, 2020, J INTELL INF SYST, V54, P633, DOI 10.1007/s10844-019-00578-5
Shokeen J, 2020, ARTIF INTELL REV, V53, P965, DOI 10.1007/s10462-019-09684-w
Singh M, 2020, KNOWL INF SYST, V62, P1, DOI 10.1007/s10115-018-1254-2
Singh RK, 2021, ARTIF INTELL REV, V54, P1385, DOI 10.1007/s10462-020-09884-9
Singh RK., 2020, Ingenierie Des Systemes d Inf., V25, P669, DOI 10.18280/ISI.250514
Souabi Sonia, 2021, Advanced Information Networking and Applications. Proceedings of the 35th International Conference on Advanced Information Networking and Applications (AINA-2021). Lecture Notes in Networks and Systems (LNNS 225), P149, DOI 10.1007/978-3-030-75100-5_14
Souabi S, 2020, PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), P10, DOI 10.1109/CloudTech49835.2020.9365874
Su Xiaoyuan, 2009, Adv Artif Intell, V2009, DOI 10.1155/2009/421425
Subramaniyaswamy V., 2017, International Journal of High Performance Computing and Networking, V10, P54
Sundermeyer M, 2012, 13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, P194
Takács G, 2009, J MACH LEARN RES, V10, P623
Türker BB, 2019, 2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), P601, DOI [10.1109/UBMK.2019.8907093, 10.1109/ubmk.2019.8907093]
Uria B, 2016, J MACH LEARN RES, V17
Wang H, 2021, Journal of Physics: Conference Series, V1757
Wang HW, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P1835, DOI 10.1145/3178876.3186175
Wang K, 2020, J VIS COMMUN IMAGE R, V71, DOI 10.1016/j.jvcir.2019.102735
Weng ZZ, 2023, IEEE T WIREL COMMUN, V22, P6227, DOI 10.1109/TWC.2023.3240969
Wu CH, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P6389
Wu CH, 2020, 1ST CONFERENCE OF THE ASIA-PACIFIC CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 10TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (AACL-IJCNLP 2020), P44
Wu CH, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2576, DOI 10.1145/3292500.3330665
Xu L., 2018, 2018 10 INT C MOD ID, P1
Yadav Sambhav, 2018, Procedia Computer Science, V132, P1795, DOI 10.1016/j.procs.2018.05.155
Yang K, 2018, IEEE GLOB CONF SIG, P798, DOI 10.1109/GlobalSIP.2018.8646359
Yang X., 2012, RECSYS, P67
Ying HC, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3926
Yu BY, 2018, ICIIP'18: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION PROCESSING, P17, DOI 10.1145/3232116.3232120
Zhang CY, 2022, SUSTAIN CITIES SOC, V76, DOI 10.1016/j.scs.2021.103373
Zhang H., 2022, ACM Trans. Knowledge Discov. Data (TKDD), V16, P1
Zhang HJ, 2023, INFORMATION, V14, DOI 10.3390/info14020060
Zhang LM, 2018, HT'18: PROCEEDINGS OF THE 29TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA, P201, DOI 10.1145/3209542.3209557
Zhang LM, 2019, MACH LEARN, V108, P1851, DOI 10.1007/s10994-018-05777-9
Zhang N, 2018, NEUROCOMPUTING, V275, P1186, DOI 10.1016/j.neucom.2017.09.065
Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029
Zheng GJ, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P167, DOI 10.1145/3178876.3185994
Zhu P, 2022, NEUROCOMPUTING, V494, P33, DOI 10.1016/j.neucom.2022.04.073
Zhu QN, 2019, AAAI CONF ARTIF INTE, P5973
NR 129
TC 1
Z9 1
U1 7
U2 9
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0925-2312
EI 1872-8286
J9 NEUROCOMPUTING
JI Neurocomputing
PD DEC 28
PY 2023
VL 562
AR 126881
DI 10.1016/j.neucom.2023.126881
EA OCT 2023
PG 23
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA Y2ZD5
UT WOS:001103991000001
DA 2024-09-05
ER
PT J
AU Cai, RA
Tian, WC
Luo, RD
Hu, ZG
AF Cai, Ruonan
Tian, Wencan
Luo, Rundong
Hu, Zhigang
TI The generation mechanism of research leadership in international
collaboration based on GERGM: a case from the field of artificial
intelligence
SO SCIENTOMETRICS
LA English
DT Article; Early Access
DE International collaboration; Research leaderships; GERGM; Artificial
intelligence
ID SCIENTIFIC COLLABORATION; CO-AUTHORSHIP; PROXIMITY; DISTANCE;
PERFORMANCE; IMPACT; ROLES; CHINA
AB Conducting an in-depth analysis of 235,746 research papers in the field of artificial intelligence spanning from 2001 to 2020, this study quantified the extent of research leadership in international collaborations by discerning the country of the corresponding author. To comprehensively investigate both endogenous and exogenous effects, we employed the Generalized Exponential Random Graph Model, an advanced methodology adept at characterizing network structures with real-valued edges. This research elucidates the pivotal role of intrinsic structural factors influenced by edge dependencies and evaluates their impact on research leadership in international collaborations. Specifically, our findings reveal a positive and significant effect of the mutual effect and the transitivity effect. Furthermore, language and geography no longer play a significant role in generating international research collaborations between two countries. Additionally, scientific productivity also holds an important position in generating research leadership. However, R&D expenditures no longer facilitate the establishment of leadership for international research collaboration.
C1 [Cai, Ruonan; Luo, Rundong] Shandong Univ, Sch Business, Weihai, Peoples R China.
[Tian, Wencan] Dalian Univ Technol, Inst Sci Sci & S&T Management, WISE Lab, Dalian, Peoples R China.
[Hu, Zhigang] South China Normal Univ, Inst Sci Technol & Soc, Guangzhou, Peoples R China.
C3 Shandong University; Dalian University of Technology; South China Normal
University
RP Hu, ZG (corresponding author), South China Normal Univ, Inst Sci Technol & Soc, Guangzhou, Peoples R China.
EM huzhigang@scnu.edu.cn
RI zhigang, hu/C-6880-2009
OI zhigang, hu/0000-0003-1835-4264; , Ruonan Cai/0000-0002-2111-1362; Tian,
Wencan/0000-0001-7420-9315
FU National Natural Science Foundation of China [2023 (ISSI 2023)]; Major
Projects of National Social Science Foundation of China [22ZD194];
National Natural Science Foundation of China [71974030]; LiaoNing
Revitalization Talents Program [XLYC2007149]; China Scholarship Council
[202106060134]
FX The present study is an extended version of a paper presented at the
19th International Conference on Scientometrics and Informetrics 2023
(ISSI 2023), Bloomington, Indiana (USA), 2-5 July 2023 (Cai et al.,
2023). This study is partially supported by the Major Projects of
National Social Science Foundation of China (22&ZD194), the National
Natural Science Foundation of China (71974030), and the LiaoNing
Revitalization Talents Program (XLYC2007149). Wencan Tian is financially
supported by the China Scholarship Council (202106060134). The authors
are grateful to the anonymous reviewers for their helpful comments and
suggestions.
CR Abramo G, 2011, SCIENTOMETRICS, V86, P629, DOI 10.1007/s11192-010-0284-7
Abramski K, 2020, STUD COMPUT INTELL, V882, P387, DOI 10.1007/978-3-030-36683-4_32
Acosta M, 2011, SCIENTOMETRICS, V87, P63, DOI 10.1007/s11192-010-0305-6
Akbaritabar A, 2020, SCIENTOMETRICS, V124, P2361, DOI 10.1007/s11192-020-03555-w
Asubiaro T, 2019, SCIENTOMETRICS, V120, P1261, DOI 10.1007/s11192-019-03157-1
Ayanso A, 2014, INFORM TECHNOL DEV, V20, P60, DOI 10.1080/02681102.2013.797378
Balland PA, 2012, REG STUD, V46, P741, DOI 10.1080/00343404.2010.529121
Bergé LR, 2017, PAP REG SCI, V96, P785, DOI 10.1111/pirs.12218
Blau P.M., 2017, Exchange and Power in Social Life
Bordons M, 2015, SCIENTOMETRICS, V102, P1385, DOI 10.1007/s11192-014-1491-4
Bos N, 2007, J COMPUT-MEDIAT COMM, V12, P652, DOI 10.1111/j.1083-6101.2007.00343.x
Boschma RA, 2005, REG STUD, V39, P61, DOI 10.1080/0034340052000320887
Boshoff N, 2009, SCIENTOMETRICS, V81, P413, DOI 10.1007/s11192-008-2211-8
Cai R., 2023, P 19 INT C SCIENT IN
Chen KH, 2019, RES POLICY, V48, P149, DOI 10.1016/j.respol.2018.08.005
Chinchilla-Rodrguez Z., 2016, Frontiers in Research Metrics and Analytics, V1, P2, DOI [10.3389/frma.2016.00002, DOI 10.3389/FRMA.2016.00002]
Chinchilla-Rodríguez Z, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0218309
Choi S, 2012, SCIENTOMETRICS, V90, P25, DOI 10.1007/s11192-011-0509-4
Cimini G, 2016, J INFORMETR, V10, P200, DOI 10.1016/j.joi.2016.01.002
de Frutos-Belizón J, 2023, RES POLICY, V52, DOI 10.1016/j.respol.2023.104779
de Moya-Anegon F, 2018, J INFORMETR, V12, P1251, DOI 10.1016/j.joi.2018.10.004
Desmarais BA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030136
Fernández A, 2016, SCIENTOMETRICS, V106, P1073, DOI 10.1007/s11192-015-1819-8
Ferretti M, 2022, TECHNOVATION, V111, DOI 10.1016/j.technovation.2021.102390
Gazni A, 2012, J AM SOC INF SCI TEC, V63, P323, DOI 10.1002/asi.21688
Glänzel W, 1999, SCIENTOMETRICS, V45, P185, DOI 10.1007/BF02458432
Glanzel W, 1997, SCIENTOMETRICS, V40, P605, DOI 10.1007/BF02459304
González-Alcaide G, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182513
GRANOVETTER M, 1985, AM J SOCIOL, V91, P481, DOI 10.1086/228311
Gui QC, 2019, GEOFORUM, V105, P1, DOI 10.1016/j.geoforum.2019.06.017
He CC, 2023, J INFORMETR, V17, DOI 10.1016/j.joi.2023.101401
He CC, 2022, J ASSOC INF SCI TECH, V73, P70, DOI 10.1002/asi.24546
[贺超城 He Chaocheng], 2020, [情报学报, Journal of the China Society for Scientific and Technical Information], V39, P148
Hemlin S, 2013, ROUT STUD INNOV ORG, V29, P1
Hoekman J, 2010, RES POLICY, V39, P662, DOI 10.1016/j.respol.2010.01.012
Högfeldt AK, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11247236
Hou L, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101194
Hu XJ, 2010, J INF SCI, V36, P73, DOI 10.1177/0165551509348133
Hu ZG, 2018, SCIENTOMETRICS, V115, P1185, DOI 10.1007/s11192-018-2740-8
Huang MH, 2011, J AM SOC INF SCI TEC, V62, P2427, DOI 10.1002/asi.21625
Hung SW, 2010, SCIENTOMETRICS, V82, P121, DOI 10.1007/s11192-009-0032-z
Jackson MS., 2021, China Journal of Social Work, V14, P288, DOI [10.1080/17525098.2021.1909237, DOI 10.1080/17525098.2021.1909237]
Jeong S, 2011, SCIENTOMETRICS, V89, P967, DOI 10.1007/s11192-011-0474-y
Jiang L, 2018, J INFORMETR, V12, P618, DOI 10.1016/j.joi.2018.04.004
Kato M, 2017, SCIENTOMETRICS, V110, P673, DOI 10.1007/s11192-016-2183-z
Kato M, 2013, SCIENTOMETRICS, V97, P535, DOI 10.1007/s11192-013-1011-y
KATZ JS, 1994, SCIENTOMETRICS, V31, P31, DOI 10.1007/BF02018100
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
Kwiek M, 2022, SCIENTOMETRICS, V127, P1697, DOI 10.1007/s11192-022-04308-7
Ma YH, 2022, SCIENTOMETRICS, V127, P1273, DOI 10.1007/s11192-022-04270-4
Machácek V, 2023, RES EVALUAT, V32, P157, DOI 10.1093/reseval/rvac033
Matveeva N, 2022, SCIENTOMETRICS, V127, P1583, DOI 10.1007/s11192-022-04274-0
McPherson M, 2001, ANNU REV SOCIOL, V27, P415, DOI 10.1146/annurev.soc.27.1.415
Mosleh M, 2022, SCIENTOMETRICS, V127, P1931, DOI 10.1007/s11192-022-04300-1
Moya-Anegón F, 2013, SCIENTOMETRICS, V97, P421, DOI 10.1007/s11192-013-1046-0
Ovchinnikova E, 2023, GLOB SOC EDUC, V21, P563, DOI 10.1080/14767724.2022.2070132
Parreira MR, 2017, SCIENTOMETRICS, V113, P1539, DOI 10.1007/s11192-017-2502-z
Peng TQ, 2015, J INFORMETR, V9, P250, DOI 10.1016/j.joi.2015.02.002
Quan W, 2019, SCIENTOMETRICS, V120, P707, DOI 10.1007/s11192-019-03111-1
Sánchez-Jiménez R, 2017, J INFORMETR, V11, P103, DOI 10.1016/j.joi.2016.11.004
Snijders TAB, 2006, SOCIOL METHODOL, V36, P99, DOI 10.1111/j.1467-9531.2006.00176.x
Storper M, 2004, J ECON GEOGR, V4, P351, DOI 10.1093/jnlecg/lbh027
[孙玉涛 Sun Yutao], 2021, [科研管理, Science Research Management], V42, P20
Tang XL, 2022, SCIENTOMETRICS, V127, P181, DOI 10.1007/s11192-021-04207-3
Ter Wal ALJ, 2009, ANN REGIONAL SCI, V43, P739, DOI 10.1007/s00168-008-0258-3
Tian WC, 2024, SCIENTOMETRICS, V129, P985, DOI 10.1007/s11192-023-04909-w
Tian WC, 2024, J ASSOC INF SCI TECH, V75, P3, DOI 10.1002/asi.24836
Vieira ES, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101259
Wagner CS, 2019, RES POLICY, V48, P1260, DOI 10.1016/j.respol.2019.01.002
Wang J, 2018, J INFORMETR, V12, P858, DOI 10.1016/j.joi.2018.07.006
Wang LL, 2017, RES EVALUAT, V26, P124, DOI 10.1093/reseval/rvx009
Wilson JD, 2017, SOC NETWORKS, V49, P37, DOI 10.1016/j.socnet.2016.11.002
Yang JQ, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101225
Yuret T, 2016, SCIENTOMETRICS, V107, P899, DOI 10.1007/s11192-016-1883-8
Zhang CW, 2018, J ASSOC INF SCI TECH, V69, P72, DOI 10.1002/asi.23916
Zhang YZ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12114605
NR 76
TC 1
Z9 1
U1 22
U2 22
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD 2024 MAR 11
PY 2024
DI 10.1007/s11192-024-04974-9
EA MAR 2024
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA KM4E0
UT WOS:001180362500002
DA 2024-09-05
ER
PT J
AU Zhu, YJ
Kim, D
Jiang, T
Zhao, Y
He, JE
Chen, XY
Lou, W
AF Zhu, Yongjun
Kim, Donghun
Jiang, Ting
Zhao, Yi
He, Jiangen
Chen, Xinyi
Lou, Wen
TI Dependency, reciprocity, and informal mentorship in predicting long-term
research collaboration: A co-authorship matrix-based multivariate time
series analysis
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Long-term research collaboration; Co-authorship prediction; dependency;
Reciprocity; Informal mentorship; Interpretable machine learning
ID PATTERNS; IMPACT; PRODUCTIVITY; 20TH-CENTURY
AB In this study, we examine the roles of dependency, reciprocity, and informal mentorship in the prediction of long-term research collaboration in five disciplines. We use co-authorship matrixbased multivariate time series features and interpretable machine learning to train long-term collaboration prediction models and interpret the feature importance of trained models. Overall, long-term research collaboration that is defined using various standards was rare across the examined disciplines, and the prediction results were moderate to good. We found dependency, reciprocity, and informal mentorship to have different roles in different disciplines. Among the three, informal mentorship was important in predicting long-term research collaboration in Agriculture, Geology, and Library and Information Science. Reciprocity, which measures the interdependence between two researchers was important to prediction in the fields of Agriculture and Geology. Finally, dependency was important in all the disciplines with varying degrees of importance.
C1 [Zhu, Yongjun; Kim, Donghun; Jiang, Ting] Yonsei Univ, Dept Lib & Informat Sci, Seoul, South Korea.
[Zhao, Yi] Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Peoples R China.
[He, Jiangen] Univ Tennessee, Sch Informat Sci, Knoxville, TN USA.
[Chen, Xinyi] Yonsei Univ, Dept Cultural Media, Seoul, South Korea.
[Lou, Wen] East China Normal Univ, Sch Econ & Management, Shanghai, Peoples R China.
C3 Yonsei University; Nanjing University of Science & Technology;
University of Tennessee System; University of Tennessee Knoxville;
Yonsei University; East China Normal University
RP Lou, W (corresponding author), East China Normal Univ, Sch Econ & Management, Shanghai, Peoples R China.
EM wlou@infor.ecnu.edu.cn
RI lan, xueyao/JZD-4201-2024; Zhu, Yongjun/AAU-5726-2020; Lou,
Wen/I-7966-2019; Zhu, Yongjun/K-2486-2015
OI Zhu, Yongjun/0000-0002-2099-2209; Lou, Wen/0000-0002-1770-6734; Zhu,
Yongjun/0000-0003-4787-5122
FU Yonsei University [2022-22-0394]
FX This work was supported by the Yonsei University Research Grant of 2022
(2022-22-0394).
CR Abramo G, 2019, SCIENTOMETRICS, V118, P215, DOI 10.1007/s11192-018-2970-9
Abramo G, 2017, J INFORMETR, V11, P1016, DOI 10.1016/j.joi.2017.09.007
Abramo G, 2011, J TECHNOL TRANSFER, V36, P84, DOI 10.1007/s10961-009-9131-5
Agoramoorthy G, 2017, SCI ENG ETHICS, V23, P625, DOI 10.1007/s11948-016-9794-x
AlShebli B, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19723-8
Amjad T, 2017, J INFORMETR, V11, P307, DOI 10.1016/j.joi.2017.01.004
[Anonymous], 1963, The structure of scientific revolutions
Bozeman B, 2013, J TECHNOL TRANSFER, V38, P1, DOI 10.1007/s10961-012-9281-8
Bu Y, 2018, J ASSOC INF SCI TECH, V69, P438, DOI 10.1002/asi.23966
Bu Y, 2018, J ASSOC INF SCI TECH, V69, P87, DOI 10.1002/asi.23911
Bukvova H., 2010, Sprouts: Working Papers on Information Systems, V10
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Cheng MY, 2013, ASLIB PROC, V65, P659, DOI 10.1108/AP-12-2012-0094
Christ M, 2018, NEUROCOMPUTING, V307, P72, DOI 10.1016/j.neucom.2018.03.067
Creamer E.G., 2004, CANADIAN J HIGHER ED, V34, P27
Cronin B, 2004, J AM SOC INF SCI TEC, V55, P160, DOI 10.1002/asi.10353
Cronin B, 2003, J AM SOC INF SCI TEC, V54, P855, DOI 10.1002/asi.10278
FOX MF, 1984, J HIGH EDUC, V55, P347, DOI 10.2307/1981888
Gazni A, 2014, RES EVALUAT, V23, P261, DOI 10.1093/reseval/rvu014
Hoekman J, 2010, RES POLICY, V39, P662, DOI 10.1016/j.respol.2010.01.012
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
Lapidow A, 2019, J MED LIBR ASSOC, V107, P618, DOI 10.5195/jmla.2019.700
Larivière V, 2015, J ASSOC INF SCI TECH, V66, P1323, DOI 10.1002/asi.23266
Lee B, 2011, J INF SCI, V37, P67, DOI 10.1177/0165551510392147
Lee DH, 2012, SCIENTOMETRICS, V91, P925, DOI 10.1007/s11192-011-0602-8
Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359
Levitt JM, 2016, SCIENTOMETRICS, V108, P1103, DOI 10.1007/s11192-016-2061-8
Melin G, 2000, RES POLICY, V29, P31, DOI 10.1016/S0048-7333(99)00031-1
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Petersen AM, 2015, P NATL ACAD SCI USA, V112, pE4671, DOI 10.1073/pnas.1501444112
Savanur K, 2010, SCIENTOMETRICS, V84, P365, DOI 10.1007/s11192-009-0100-4
Shen HQ, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101248
Traore N, 1997, SCI COMMUN, V19, P124, DOI 10.1177/1075547097019002002
Tsai CH, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P375, DOI 10.1145/2872518.2890516
Wang W, 2021, ACM T KNOWL DISCOV D, V15, DOI 10.1145/3442199
Wang W, 2019, IEEE T COMPUT SOC SY, V6, P311, DOI 10.1109/TCSS.2019.2898198
Wray KB, 2006, STUD HIST PHILOS SCI, V37, P505, DOI 10.1016/j.shpsa.2005.07.011
Yarime M, 2010, SUSTAIN SCI, V5, P115, DOI 10.1007/s11625-009-0090-4
Ye Q, 2013, J HOSP TOUR RES, V37, P51, DOI 10.1177/1096348011425500
NR 39
TC 0
Z9 0
U1 16
U2 18
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD FEB
PY 2024
VL 18
IS 1
AR 101486
DI 10.1016/j.joi.2023.101486
EA DEC 2023
PG 11
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA FS5S1
UT WOS:001147863300001
DA 2024-09-05
ER
PT C
AU Huang, SZ
AF Huang, Shengzhong
BE Wu, YW
TI Research and Application of wavelet neural networks of particle swarm
optimization algorithm in the performance prediction of centrifugal
compressor
SO SPORTS MATERIALS, MODELLING AND SIMULATION
SE Advanced Materials Research
LA English
DT Proceedings Paper
CT International Conference on Sport Material, Modelling and Simulation
CY JAN 27-28, 2011
CL Shenzhen, PEOPLES R CHINA
DE Particle swarm optimization; Wavelet neural network; Centrifugal
compressor; Performance prediction
AB The traditional method of centrifugal compressor performance prediction is usually the BP neural network, however, the problems are that prediction accuracy is not high enough, convergence is slow and it is apt to fall into local optimal solution. In order to predict the performance of centrifugal compressors more accurately and identify the implicit problems in advance, now we combine the particle swarm optimization, wavelet theory and neural networks, to establish performance prediction model of centrifugal compressor based on wavelet neural network of PSO. First, set the various parameters of wavelet neural network as the particle position vector X and the energy function of mean square error as the optimized objective function. By particle swarm optimization algorithm to iterate the basic formula to obtain the corresponding WNN coefficient and then use back-propagation algorithm to train WNN to approach any nonlinear function. Simulation results show that application of the prediction model can achieve the accurate prediction of performance and monitoring of centrifugal compressor. The prediction model has the advantages of simple algorithm, stable structure, fast calculation of convergence speed and strong generalization ability with a prediction accuracy of 99%, 13% higher than prediction accuracy of traditional methods, which has a certain theoretical research value and practical value.
C1 Liuzhou Teachers Coll, Dept Math & Comp Sci, Liuzhou 545004, Guangxi, Peoples R China.
RP Huang, SZ (corresponding author), Liuzhou Teachers Coll, Dept Math & Comp Sci, Liuzhou 545004, Guangxi, Peoples R China.
EM gxhsz@126.com
CR Calise F, 2006, ENERGY, V31, P3278, DOI 10.1016/j.energy.2006.03.006
DAUBECHIES, 1990, IEEE T INFORM THEORY, V36, P226
GUO LY, 1997, PATTERN RECOGN, V10, P197
He YY, 2002, NEURAL COMPUT APPL, V10, P357, DOI 10.1007/s005210200008
Janardhanan VM, 2007, J POWER SOURCES, V172, P296, DOI 10.1016/j.jpowsour.2007.07.008
Liu Hong-bo, 2005, Mini-Micro Systems, V26, P638
LU G, 2002, P 9 INT C NEUR INF P, V5
WANG XJ, 2006, J COMPUTERS, V29, P835
WEI CZ, 2008, COMPUTER SIMULATION, V25, P147
WEI LD, 2007, ENG GEOPHYS, V4, P529
YI ZR, 2006, COAL SCI TECHNOLOGY, P67
ZHANG QG, 1992, IEEE T NEURAL NETWOR, V3, P889, DOI 10.1109/72.165591
ZHAO GR, 2010, SYSTEM SIMULATION, V22, P670
NR 13
TC 0
Z9 1
U1 2
U2 15
PU TRANS TECH PUBLICATIONS LTD
PI STAFA-ZURICH
PA LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND
SN 1022-6680
BN 978-3-03785-041-1
J9 ADV MATER RES-SWITZ
PY 2011
VL 187
BP 271
EP 276
DI 10.4028/www.scientific.net/AMR.187.271
PG 6
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Materials Science, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Materials Science
GA BVV36
UT WOS:000292888500051
DA 2024-09-05
ER
PT J
AU Srinivasa, G
AF Srinivasa, Gowri
TI Relevance of Innovations in Machine Learning to Scientometrics
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Feature engineering; Machine learning; Deep learning; Scientometrics
ID REGRESSION; PREDICTION; ADVANTAGES; NETWORKS; IMPACT; INDEX
AB Machine learning envisages building models that either classify, predict, cluster or determine the relative relevance of features to a problem and the associations between them. This paper briefy describes how these tasks are relevant to Scientometrics. Through this brief survey of selected tasks, it is observed that most solution approaches in Scientometric literature are built on the strong foundation of understanding and debating in uencing factors and the process of feature engineering, requiring the descriptors to be intuitive and methods used for classication, prediction, etc., to be amenable to interpretation. Recent trends in machine learning, particularly, deep learning methods, however, pose an interesting question: can we build models that automatically determine what features are important and thereby bypass the step of feature engineering? This paper discusses how such techniques could also be harnessed in Scientometrics.
C1 [Srinivasa, Gowri] PES Univ, Ctr Pattern Recognit, EC Campus, Bengaluru, Karnataka, India.
[Srinivasa, Gowri] PES Univ, Dept Comp Sci & Engn, EC Campus,Hosur Rd, Bengaluru 560100, Karnataka, India.
C3 PES University; PES University
RP Srinivasa, G (corresponding author), PES Univ, Dept Comp Sci & Engn, EC Campus,Hosur Rd, Bengaluru 560100, Karnataka, India.
EM gsrinivasa@pes.edu
RI Srinivasa, Gowri/ABP-9131-2022
OI Srinivasa, Gowri/0000-0002-3568-6749
CR Ajiferuke I, 2015, J INFORMETR, V9, P499, DOI 10.1016/j.joi.2015.05.001
[Anonymous], 2015, Nature, DOI 10.1038/nature14539
[Anonymous], INT C INT INT MULT S
[Anonymous], PATTERN CLASSIFICATI
[Anonymous], THESIS
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], 2013, FOUND TRENDS SIGNAL, DOI DOI 10.1561/2000000039
[Anonymous], TELLING WHOLE STORY
[Anonymous], ADV NEURAL INFORM PR
[Anonymous], 2018, ARXIV180304644
[Anonymous], 2014, CoRR, abs/1402.3722.
Athanasios Voulodimos, 2018, COMPUTATIONAL INTELL, V2018
CHEN YQ, 1994, NEURAL NETWORKS, V7, P1477, DOI 10.1016/0893-6080(94)90093-0
Costas R, 2007, J INFORMETR, V1, P193, DOI 10.1016/j.joi.2007.02.001
EFRON B, 1983, AM STAT, V37, P36, DOI 10.2307/2685844
Érdi P, 2013, SCIENTOMETRICS, V95, P225, DOI 10.1007/s11192-012-0796-4
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Fu Lawrence D, 2008, AMIA Annu Symp Proc, P222
Gamboa J.C.B., 2017, CoRR
Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337
Guns R, 2014, SCIENTOMETRICS, V101, P1461, DOI 10.1007/s11192-013-1228-9
Habib R, 2017, TURK J ELECTR ENG CO, V25, P2708, DOI 10.3906/elk-1608-180
HARRELL FE, 1985, CANCER TREAT REP, V69, P1071
Haslam N, 2008, SCIENTOMETRICS, V76, P169, DOI 10.1007/s11192-007-1892-8
Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jeremic V, 2011, SCIENTOMETRICS, V87, P587, DOI 10.1007/s11192-011-0361-6
Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1
Li F, 2009, PROCEEDINGS OF INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY (ISCSCT 2009), P431
Maas A, 2011, P 49 ANN M ASS COMP
McCarty C, 2013, SCIENTOMETRICS, V96, P467, DOI 10.1007/s11192-012-0933-0
Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191
Papernot N., 2018, ARXIV180304765
Radojicic Z, 2012, CURR SCI INDIA, V103, P158
Salvador MR, 2000, RES EVALUAT, V9, P189, DOI 10.3152/147154400781777214
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Sun MX, 2016, 2016 13TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), P478, DOI 10.1109/ICSICT.2016.7998956
Thelwall M, 2014, J INFORMETR, V8, P963, DOI 10.1016/j.joi.2014.09.011
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678
Wang F, 2019, SCIENTOMETRICS, P1
Wang MY, 2012, SCIENTOMETRICS, V93, P635, DOI 10.1007/s11192-012-0766-x
Xie Y, 2018, PATTERN RECOGN, V81, P50, DOI 10.1016/j.patcog.2018.03.026
Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738
Zhang L, 2010, J INFORMETR, V4, P185, DOI 10.1016/j.joi.2009.11.005
NR 45
TC 5
Z9 5
U1 2
U2 17
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD MAY-AUG
PY 2019
VL 8
IS 2
SI SI
BP S39
EP S43
DI 10.5530/jscires.8.2.23
PG 5
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA KA8FQ
UT WOS:000506037200004
OA hybrid
DA 2024-09-05
ER
PT C
AU Golowko, N
Tamla, P
Stein, H
Böhm, T
Hemmje, M
Onete, CB
AF Golowko, Nina
Tamla, Philippe
Stein, Holger
Boehm, Thilo
Hemmje, Matthias
Onete, Christian Bogdan
BE Soliman, KS
TI On the Trail of Future Management Topics with Digital Technology - How
Can Artificial Intelligence Influence the Didactic Content of Higher
Education in Economics?
SO EDUCATION EXCELLENCE AND INNOVATION MANAGEMENT THROUGH VISION 2020
LA English
DT Proceedings Paper
CT 33rd International-Business-Information-Management-Association (IBIMA)
Conference
CY APR 10-11, 2019
CL Granada, SPAIN
DE Higher education; management trends; Latent Dirichlet Allocation (LDA)
topic modeling; artificial intelligence; transfer didactics; curricular
contents
AB Universities can as little ignore the ever-faster pace of change in their environment as companies can. To anticipate the increase in the quantity of knowledge and the increasing competition in the higher education sector, universities can access their own knowledge base. This paper aims to show that universities can use machine learning to uncover potentials in their own knowledge base and use them for curriculum development. The final theses written at a German university are examined using software based on the Latent Dirichlet Allocation (LDA) topic model. Topic blocks are disclosed that reflect current developments and trends on the market. This paper describes the process and essential features in the preparation of the corpus and the derivation of the thematic areas. The added value of this method is pointed out and subsequently discussed using examples. This results in an innovative approach to future-oriented curriculum development. The study presented here gives only a small insight into the fundamental changes which artificial intelligence will imply for all of us in the future.
C1 [Golowko, Nina; Onete, Christian Bogdan] Bucharest Univ Econ Studies, Bucharest, Romania.
[Tamla, Philippe; Boehm, Thilo; Hemmje, Matthias] Fernuniv, Fac Multimedia & Comp Sci, Hagen, Germany.
[Stein, Holger] FOM Univ Appl Sci, Frankfurt, Germany.
C3 Bucharest University of Economic Studies; Fern University Hagen
RP Golowko, N (corresponding author), Bucharest Univ Econ Studies, Bucharest, Romania.
EM golowko@ninagolowko.de; philippe.tamla@studium.fernuni-hagen.de;
holger.stein@fom.de; thilo.boehm@fernuni-hagen.de;
mhemmje@fernuni-hagen.de; bogdan.onete@com.ase.ro
RI Onete, Cristian Bogdan/E-6579-2017; Prof. Dr.-Ing. Tamla,
Philippe/KPB-3066-2024
OI Prof. Dr.-Ing. Tamla, Philippe/0000-0002-0786-4253
FU FOM University of Applied Sciences [576]
FX This research was supported by FOM University of Applied Sciences,
implemented through the project "LeMaKoTA - Lebenszyklen von
Managementmethoden - Korpusanalyse auf Basis der Titel von
Abschlussarbeiten" (ID 576) under the expert guidance of Prof. Dr.
Matthias Gehrke.
CR [Anonymous], WEG AGILEN ORG
Barua A, 2014, EMPIR SOFTW ENG, V19, P619, DOI 10.1007/s10664-012-9231-y
Benders J, 2007, QUAL QUANT, V41, P815, DOI 10.1007/s11135-006-9027-5
D'Aveni R.A., 1994, Hypercompetition: Managing the dynamics of strategic maneuvering
Denny MJ, 2018, POLIT ANAL, V26, P168, DOI 10.1017/pan.2017.44
Despeisse M, 2018, WINT SIMUL C PROC, P4046, DOI 10.1109/WSC.2018.8632285
Doring N, 2016, Bestimmung von Teststarke, Effektgroβe und optimalem Stichprobenumfang, V5
Glaser W., 2018, VUCA WELT
Golowko N, 2019, INTED PROC, P799
Gratsch S., 2017, VUCA CHANGE MANAGEME
Indira D. N. V. S. L., 2019, Smart Intelligent Computing and Applications. Proceedings of the Second International Conference on SCI 2018. Smart Innovation, Systems and Technologies (SIST 105), P143, DOI 10.1007/978-981-13-1927-3_15
Kaplan R., 2018, BALANCED SCORECARD S
Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5
Madsen DO, 2015, COGENT BUS MANAG, V2, DOI 10.1080/23311975.2015.1122256
Nawroth C., 2018, DATA 2018 P 7 INT C, DOI [10. 5220/0006853200470055, DOI 10.5220/0006853200470055]
Plewe C., 2018, COMPUTERSPIELE FLUCH
Rosen C, 2016, EMPIR SOFTW ENG, V21, P1192, DOI 10.1007/s10664-015-9379-3
Tamla P., 2019, CERC, P131
NR 18
TC 0
Z9 0
U1 1
U2 8
PU INT BUSINESS INFORMATION MANAGEMENT ASSOC-IBIMA
PI NORRISTOWN
PA 34 E GERMANTOWN PIKE, NO. 327, NORRISTOWN, PA 19401 USA
BN 978-0-9998551-2-6
PY 2019
BP 8145
EP 8155
PG 11
WC Education & Educational Research; Management
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research; Business & Economics
GA BO3KC
UT WOS:000510675603070
DA 2024-09-05
ER
PT J
AU Shan, SQ
Wang, L
Wang, J
Hao, Y
Hua, F
AF Shan, Siqing
Wang, Li
Wang, Jing
Hao, Yi
Hua, Fan
TI Research on e-Government evaluation model based on the principal
component analysis
SO INFORMATION TECHNOLOGY & MANAGEMENT
LA English
DT Article
DE e-Government evaluation; Local e-Government; Evaluation model; Principal
component analysis; K-means clustering
ID INFORMATION-SYSTEMS SUCCESS; SERVICES; DELONE; ACCEPTANCE; QUALITY
AB Over the last few years, the area of electronic government (e-Government) has received increasing prominence and attention; people are interacting with e-Government systems to an ever greater extent. It is therefore important to measure the development of e-Government. Adopting principal component analysis (PCA), this study presents, validates and updates an evaluation model with 5 dimensions based on Socio-Technical model and Stakeholder Theory, which captures the multidimensional and interdependent nature of e-Government system. The validity of the model is empirically investigated using a sample of local e-Government of 18 cities in China, all of which have high Internet penetration and mature ICT use. The five dimensions of the evaluation model include project construction, information security management, special construction, transparency of government affairs and informationized ability. K-means clustering is applied in the subspace created by PCA to evaluate the local e-Government stages of growth of these 18 cities. The findings provide several important implications for e-Government research and practice.
C1 [Shan, Siqing; Wang, Li; Wang, Jing; Hao, Yi; Hua, Fan] Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China.
C3 Beihang University
RP Shan, SQ (corresponding author), Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China.
EM shansiqing@buaa.edu.cn; wl2000bh@yahoo.com.cn;
wangjing.sem.buaa@gmail.com; haoyi@buaa.edu.cn; huafan@buaa.edu.cn
RI hao, yi/KHY-8135-2024
CR Akman I, 2005, GOV INFORM Q, V22, P239, DOI 10.1016/j.giq.2004.12.001
[Anonymous], 2001, Proceedings of Neural Information Processing Systems (NIPS)
[Anonymous], 39 ANN HAW INT C SYS
[Anonymous], 1985, Competitive Strategy
BAUM C, 2000, TU116474
Bostrom R. P., 1977, MIS Quarterly", V1, P17, DOI [DOI 10.2307/249019, 10.2307/248710, DOI 10.2307/248710]
Carbo T., 2004, Electronic Journal of e-Government, V2, P95
CHUA C., 2005, J ELECTRON COMMER RE, V6, P262
D'Mello DA, 2010, ENTERP INF SYST-UK, V4, P23, DOI 10.1080/17517570903159467
de Jong M, 2006, GOV INFORM Q, V23, P191, DOI 10.1016/j.giq.2005.11.007
DeLone WH, 2004, INT J ELECTRON COMM, V9, P31, DOI 10.1080/10864415.2004.11044317
Detlor B, 2001, ELECTRONIC GOVERNMENT: DESIGN, APPLICATIONS, AND MANAGEMENT, P99
DONALDSON T, 1995, ACAD MANAGE REV, V20, P65, DOI 10.5465/AMR.1995.9503271992
Feng S, 2007, DECIS SUPPORT SYST, V42, P1989, DOI 10.1016/j.dss.2004.11.004
Flak L. S., 2005, Scandinavian Journal of Information Systems, V17, P41
Flak LS, 2005, COMMUN ASSOC INF SYS, V16, P642
Gottschalk P, 2007, ENTERP INF SYST-UK, V1, P443, DOI 10.1080/17517570701630412
Gupta MP, 2003, GOV INFORM Q, V20, P365, DOI 10.1016/j.giq.2003.08.002
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
Heeks R., 2001, EGOVERNMENT WORKING, P33
Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325
HU PJH, 2003, 36 HAW INT C SYST HI
Hung SY, 2006, GOV INFORM Q, V23, P97, DOI 10.1016/j.giq.2005.11.005
HUNTER DR, 2001, EGOVERNMENT LEADERSH
Iivari J., 2005, DATA BASE ADV INF SY, V36, P8, DOI [DOI 10.1145/1066149.1066152, 10.1145/1066149.1066152]
Issa H, 2009, ENTERP INF SYST-UK, V3, P449, DOI 10.1080/17517570903042754
Jaeger PT, 2003, GOV INFORM Q, V20, P323, DOI 10.1016/j.giq.2003.08.003
Jolliffe IT, 2002, Principal Component Analysis, V2nd
Kaylor C, 2001, GOV INFORM Q, V18, P293, DOI 10.1016/S0740-624X(01)00089-2
KLING R, 1999, D LIB MAGAZ, V5
Kulkarni UR, 2006, J MANAGE INFORM SYST, V23, P309, DOI 10.2753/MIS0742-1222230311
Kunstelj M., 2004, Information Polity, V9, P131
Lenk K., 2001, Designing E-Government, P63
LESSEN VT, 2009, ENTERP INFO SYST, V3, P347
Li L, 2008, INFORM SYST FRONT, V10, P531, DOI 10.1007/s10796-008-9108-1
Li W, 2007, ENTERP INF SYST-UK, V1, P161, DOI 10.1080/17517570701243273
Lofstedt U., 2005, E GOVT ASSESSMENT CU
Luo J, 2007, ENTERP INF SYST-UK, V1, P49, DOI 10.1080/17517570601092184
MacQueen J., 1967, P 5 BERK S MATH STAT, P281, DOI DOI 10.1007/S11665-016-2173-6
McGill T., 2003, Information Resources Management Journal, V16, P24, DOI 10.4018/irmj.2003010103
Molla A., 2001, J ELECTRON COMMER RE, V2, P131
PARE G, 2005, 38 HAW INT C SYST SC
Parent M, 2005, GOV INFORM Q, V22, P720, DOI 10.1016/j.giq.2005.10.001
Pearson K, 1901, PHILOS MAG, V2, P559, DOI 10.1080/14786440109462720
Prattipati SN., 2003, Journal of American Academy of Business, V3, P386
Rai A, 2002, INFORM SYST RES, V13, P50, DOI 10.1287/isre.13.1.50.96
Rosenberg F, 2008, ENTERP INF SYST-UK, V2, P459, DOI 10.1080/17517570802395626
Sauer Chris., 2003, STATE IT PROJECT MAN
Scavo C, 2003, PUBLIC INFORMATION TECHNOLOGY: POLICY AND MANAGEMENT ISSUES, P299
SCOTT M, 2004, P 12 EUR INF SYST TU
SHACKLETON P, 2004, 37 ANN HAW INT C SYS
Shan SQ, 2008, PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON COMPUTERS AND INDUSTRIAL ENGINEERING, VOLS 1-3, P2756
Sharma S. K., 2004, Electronic Government, V1, P198, DOI 10.1504/EG.2004.005178
Skok W, 2001, INFORM MANAGE, V38, P409, DOI 10.1016/S0378-7206(00)00076-8
Stowers G., 2004, Measuring the performance of e-Government
Tao AT, 2008, ENTERP INF SYST-UK, V2, P367, DOI 10.1080/17517570802382590
Torres L, 2005, GOV INFORM Q, V22, P217, DOI 10.1016/j.giq.2005.02.004
*UNPAN, 2005, UN GLOB EGOVERNMENT
Vathanophas V, 2009, ENTERP INF SYST-UK, V3, P133, DOI 10.1080/17517570802653800
Wang L, 2009, SYST RES BEHAV SCI, V26, P357, DOI 10.1002/sres.973
Wang T, 2008, ENTERP INF SYST-UK, V2, P443, DOI 10.1080/17517570802337362
Wang YS, 2008, GOV INFORM Q, V25, P717, DOI 10.1016/j.giq.2007.06.002
Wu JH, 2006, INFORM MANAGE-AMSTER, V43, P728, DOI 10.1016/j.im.2006.05.002
XU L, 2008, IEEE T SYST MAN CY C, V38, P1
Yuan RX, 2010, INFORM SYST FRONT, V12, P149, DOI 10.1007/s10796-008-9131-2
Zha HY, 2002, ADV NEUR IN, V14, P1057
Zhang J, 2005, J ENTERP INF MANAG, V18, P548, DOI 10.1108/17410390510624007
Zhang T, 2008, ENTERP INF SYST-UK, V2, P239, DOI 10.1080/17517570802285959
NR 68
TC 34
Z9 41
U1 5
U2 91
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1385-951X
EI 1573-7667
J9 INFORM TECHNOL MANAG
JI Inf. Technol. Manag.
PD JUN
PY 2011
VL 12
IS 2
SI SI
BP 173
EP 185
DI 10.1007/s10799-011-0083-8
PG 13
WC Information Science & Library Science; Management
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science; Business & Economics
GA 769TE
UT WOS:000291040400012
DA 2024-09-05
ER
PT J
AU Wamba, SF
Queiroz, MM
AF Wamba, Samuel Fosso
Queiroz, Maciel M.
TI Responsible Artificial Intelligence as a Secret Ingredient for Digital
Health: Bibliometric Analysis, Insights, and Research Directions
SO INFORMATION SYSTEMS FRONTIERS
LA English
DT Article
DE Artificial intelligence; Machine learning; Digital health; Responsible
AI; Bibliometric analysis
ID OF-THE-ART; BIG-DATA; EXPERIENCE; ROBOT; CHALLENGES; RECOVERY; MEDICINE;
THERAPY; FUTURE
AB With the unparallel advance of leading-edge technologies like artificial intelligence (AI), the healthcare systems are transforming and shifting for more digital health. In recent years, scientific productions have reached unprecedented levels. However, a holistic view of how AI is being used for digital health remains scarce. Besides, there is a considerable lack of studies on responsible AI and ethical issues that identify and suggest practitioners' essential insights towards the digital health domain. Therefore, we aim to rely on a bibliometric approach to explore the dynamics of the interplay between AI and digital health approaches, considering the responsible AI and ethical aspects of scientific production over the years. We found four distinct periods in the publication dynamics and the most popular approaches of AI in the healthcare field. Also, we highlighted the main trends and insightful directions for scholars and practitioners. In terms of contributions, this work provides a framework integrating AI technologies approaches and applications while discussing several barriers and benefits of AI-based health. In addition, five insightful propositions emerged as a result of the main findings. Thus, this study's originality is regarding the new framework and the propositions considering responsible AI and ethical issues on digital health.
C1 [Wamba, Samuel Fosso] TBS Business Sch, Informat Operat & Management Sci, 1 Pl Alphonse Jourdain, F-31068 Toulouse, France.
[Queiroz, Maciel M.] Paulista Univ UNIP, Postgrad Program Business Adm, Dr Bacelar St 1212, BR-04026002 Sao Paulo, Brazil.
[Queiroz, Maciel M.] Univ Prebiteriana Mackenzie, Sch Engn, Consolacao St 930, BR-01302000 Sao Paulo, Brazil.
C3 Universidade Paulista
RP Queiroz, MM (corresponding author), Paulista Univ UNIP, Postgrad Program Business Adm, Dr Bacelar St 1212, BR-04026002 Sao Paulo, Brazil.; Queiroz, MM (corresponding author), Univ Prebiteriana Mackenzie, Sch Engn, Consolacao St 930, BR-01302000 Sao Paulo, Brazil.
EM s.fosso-wamba@tbs-education.fr; maciel.queiroz@docente.unip.br
RI Queiroz, Maciel M./U-8499-2019; Queiroz, Maciel M./F-1274-2014; Fosso
Wamba, Samuel/AAB-4953-2019
OI Queiroz, Maciel M./0000-0002-6025-9191; Fosso Wamba,
Samuel/0000-0002-1073-058X
CR Ahlering TE, 2003, J UROLOGY, V170, P1738, DOI 10.1097/01.ju.0000092881.24608.5e
Aisen ML, 1997, ARCH NEUROL-CHICAGO, V54, P443, DOI 10.1001/archneur.1997.00550160075019
Alahakoon D, 2023, INFORM SYST FRONT, V25, P221, DOI 10.1007/s10796-020-10056-x
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Benight SJ, 2013, PROG POLYM SCI, V38, P1961, DOI 10.1016/j.progpolymsci.2013.08.001
Benway BM, 2009, J UROLOGY, V182, P866, DOI 10.1016/j.juro.2009.05.037
Beydoun G, 2019, INFORM SYST FRONT, V21, P485, DOI 10.1007/s10796-019-09925-x
Broadbent E, 2009, INT J SOC ROBOT, V1, P319, DOI 10.1007/s12369-009-0030-6
Burke EK, 2004, J SCHEDULING, V7, P441, DOI 10.1023/B:JOSH.0000046076.75950.0b
Chen JH, 2017, NEW ENGL J MED, V376, P2507, DOI 10.1056/NEJMp1702071
Ching T, 2018, J R SOC INTERFACE, V15, DOI 10.1098/rsif.2017.0387
Clarivate Analytics, 2020, Web of Science
De Fauw J, 2018, NAT MED, V24, P1342, DOI 10.1038/s41591-018-0107-6
Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593
Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021
Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002
Esteva A, 2019, NAT MED, V25, P24, DOI 10.1038/s41591-018-0316-z
Fasoli SE, 2003, ARCH PHYS MED REHAB, V84, P477, DOI 10.1053/apmr.2003.50110
Feldman SS, 2022, INFORM SYST FRONT, V24, P121, DOI 10.1007/s10796-020-10064-x
Giulianotti PC, 2003, ARCH SURG-CHICAGO, V138, P777, DOI 10.1001/archsurg.138.7.777
Gottlieb A, 2011, MOL SYST BIOL, V7, DOI 10.1038/msb.2011.26
Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392
He JX, 2019, NAT MED, V25, P30, DOI 10.1038/s41591-018-0307-0
Hu WQ, 2018, NATURE, V554, P81, DOI 10.1038/nature25443
Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101
Kafeza E, 2021, INFORM SYST FRONT, V23, P1303, DOI 10.1007/s10796-020-10033-4
Kapoor KK, 2018, INFORM SYST FRONT, V20, P531, DOI 10.1007/s10796-017-9810-y
Kasar, 2019, INT J SCI RES SCI TE, V5, P8869, DOI [10.32628/ijsrst19633, DOI 10.32628/IJSRST19633]
Kim, 2014, ROBOTICS GEN SURG, V138, P1, DOI [10.1007/978-1-4614-8739-5, DOI 10.1007/978-1-4614-8739-5]
Klinker K, 2020, INFORM SYST FRONT, V22, P1419, DOI 10.1007/s10796-019-09937-7
Kononenko I, 2001, ARTIF INTELL MED, V23, P89, DOI 10.1016/S0933-3657(01)00077-X
Lei ZY, 2017, ADV MATER, V29, DOI 10.1002/adma.201700321
Lovis C, 2018, INT J MED INFORM, V110, P108, DOI 10.1016/j.ijmedinf.2017.12.006
Majidi C, 2014, SOFT ROBOT, V1, P5, DOI 10.1089/soro.2013.0001
Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001
Miotto R, 2018, BRIEF BIOINFORM, V19, P1236, DOI 10.1093/bib/bbx044
Mishra D, 2018, ANN OPER RES, V270, P313, DOI 10.1007/s10479-016-2236-y
Mukherjee S, 2020, INFORM SYST FRONT, V22, P23, DOI 10.1007/s10796-019-09965-3
Mukherjee UK, 2020, J OPER MANAG, V66, P227, DOI 10.1002/joom.1058
Nobre GC, 2017, SCIENTOMETRICS, V111, P463, DOI 10.1007/s11192-017-2281-6
Obermeyer Z, 2016, NEW ENGL J MED, V375, P1216, DOI 10.1056/NEJMp1606181
Peng YF, 2017, INFORM SYST FRONT, V19, P1329, DOI 10.1007/s10796-017-9771-1
Perry JC, 2007, IEEE-ASME T MECH, V12, P408, DOI 10.1109/TMECH.2007.901934
Queiroz MM, 2020, ANN OPER RES, DOI 10.1007/s10479-020-03685-7
Queiroz MM, 2020, BUS PROCESS MANAG J, V26, P1075, DOI 10.1108/BPMJ-03-2019-0134
Rajkomar A, 2019, NEW ENGL J MED, V380, P1347, DOI 10.1056/NEJMra1814259
Rajkomar A, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-018-0029-1
Serrano A, 2020, INFORM SYST FRONT, V22, P455, DOI 10.1007/s10796-018-9869-0
Sharma R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102105
Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001
Stephanie L, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2019.10.017
Tewari A, 2003, BJU INT, V92, P205, DOI 10.1046/j.1464-410X.2003.04311.x
Topol EJ, 2019, NAT MED, V25, P44, DOI 10.1038/s41591-018-0300-7
van Velthoven MH, 2019, INT J MED INFORM, V124, P49, DOI 10.1016/j.ijmedinf.2019.01.007
Vayena E, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002689
Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482
Wang Y., 2020, P 53 HAWAII INT C SY, DOI DOI 10.24251/HICSS.2020.610
Wang YC, 2018, TECHNOL FORECAST SOC, V126, P3, DOI 10.1016/j.techfore.2015.12.019
Wearn OR, 2019, NAT MACH INTELL, V1, P72, DOI 10.1038/s42256-019-0022-7
Xiong HY, 2015, SCIENCE, V347, DOI 10.1126/science.1254806
NR 60
TC 48
Z9 48
U1 12
U2 81
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1387-3326
EI 1572-9419
J9 INFORM SYST FRONT
JI Inf. Syst. Front.
PD DEC
PY 2023
VL 25
IS 6
SI SI
BP 2123
EP 2138
DI 10.1007/s10796-021-10142-8
EA MAY 2021
PG 16
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA AU9X6
UT WOS:000650816700001
PM 34025210
OA Green Published, Bronze
DA 2024-09-05
ER
PT J
AU Prahani, BK
Imah, EM
Maureen, IY
Rakhmawati, L
Saphira, HV
AF Prahani, Binar Kurnia
Imah, Elly Matul
Maureen, Irena Yolanita
Rakhmawati, Lusia
Saphira, Hanandita Veda
TI Trend and Visualization of Artificial Intelligence Research in the Last
10 Years
SO TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS
LA English
DT Article
DE - artificial intelligence; bibliometric; deep learning; machine learning
ID BIBLIOMETRICS; TECHNOLOGIES; NETWORK
AB - Technology is permeating every aspect of our everyday lives, and businesses are increasingly turning to learning algorithms. These technologies are commonly associated with Artificial Intelligence (AI), Artificial Neural Network (ANN). Due to previous research exciting findings, implications, and limitations, the research publication on AI, ML, DL, and ANN will increase each year. Finally, the growth analysis of AI, ML, DL, and ANN publications in last 10 years brings up the results that the publications significantly increase each year. This research utilizes descriptive analyses and bibliometrics. Implications of the investigation of specific keyword mapping visualization results on AI, ML, DL, and ANN, can be created and enhanced for more study. A different area of future research might focus on using fewer terms, particularly to study learning methods like AI, ML, DL, and ANN in a convolutional neural network.
C1 [Prahani, Binar Kurnia; Imah, Elly Matul; Maureen, Irena Yolanita; Rakhmawati, Lusia; Saphira, Hanandita Veda] Univ Negeri Surabaya, Surabaya, Indonesia.
C3 Universitas Negeri Surabaya
RP Prahani, BK (corresponding author), Univ Negeri Surabaya, Surabaya, Indonesia.
EM binarprahani@unesa.ac.id
RI Saphira, Hanandita Veda/KIB-3061-2024; Imah, Elly Matul/D-1258-2015
OI Saphira, Hanandita Veda/0000-0002-3609-952X; Imah, Elly
Matul/0000-0003-1008-4837
FU LPPM Competitive PNBP Research, Universitas Negeri Surabaya, Indonesia
[B/35071/UN38.9/K.04.00/2022]
FX This paper is part of the LPPM Competitive PNBP Research, Universitas
Negeri Surabaya, Indonesia which is fully funded with a contract number
[B/35071/UN38.9/K.04.00/2022].
CR Akiba D, 2021, INNOV HIGH EDUC, V46, P321, DOI 10.1007/s10755-020-09538-2
Arteaga JV, 2021, INT J EMERG TECHNOL, V16, P132, DOI 10.3991/ijet.v16i21.25149
Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360
Baduge SK, 2022, AUTOMAT CONSTR, V141, DOI 10.1016/j.autcon.2022.104440
Choi RY, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.14
Draxler F, 2018, PR MACH LEARN RES, V80
Garg R, 2019, J STROKE CEREBROVASC, V28, P2045, DOI 10.1016/j.jstrokecerebrovasdis.2019.02.004
Grewal P., 2014, IOSR J. Comput. Eng., V16, P9, DOI DOI 10.9790/0661-16210913
Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228
Hassani H, 2020, AI-BASEL, V1, DOI 10.3390/ai1020008
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
Hino N, 2021, RUSS J LINGUIST, V25, P528, DOI 10.22363/2687-0088-2021-25-2-528-545
Hu HT, 2020, J DATA INFO SCI, V5, P86, DOI 10.2478/jdis-2020-0027
Katz Y., 2017, SSRN Electronic Journal, DOI [10.2139/ssrn.3078224, DOI 10.2139/SSRN.3078224]
Kirtil IG, 2021, ADV HOSP TOUR RES-AH, V9, P205, DOI 10.30519/ahtr.801690
Lee M., 2018, J OPEN INNOV TECHNOL, V4, P1, DOI [DOI 10.3390/JOITMC4030021, 10.3390/joitmc4030021]
Li YP, 2020, INT J STEM EDUC, V7, DOI 10.1186/s40594-020-00213-8
Li YL, 2016, IEEE T CYBERNETICS, V46, P1411, DOI 10.1109/TCYB.2015.2437282
Liu XZ, 2013, J AM SOC INF SCI TEC, V64, P1852, DOI 10.1002/asi.22883
Malley CS, 2017, ENVIRON INT, V101, P173, DOI 10.1016/j.envint.2017.01.023
Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731
Natarajarathinam M, 2021, J ENG EDUC, V110, P1049, DOI 10.1002/jee.20424
Pedregosa F., 2011, JMLR, V12, P2825
Perez H, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19163556
Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012
Racic L., 2021, 2021 25 INT C INFORM, P17
Reynolds BL, 2022, ASIA-PAC EDUC RES, V31, P11, DOI 10.1007/s40299-020-00534-w
Roh Y, 2021, IEEE T KNOWL DATA EN, V33, P1328, DOI 10.1109/TKDE.2019.2946162
Sarker I. H., 2021, SN Comput. Sci., V2, P1, DOI DOI 10.1007/S42979-021-00557-0
Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x
Shubina I, 2021, INT J EMERG TECHNOL, V16, P235, DOI 10.3991/ijet.v16i19.24361
Shubina I, 2020, INT J EMERG TECHNOL, V15, P89, DOI 10.3991/ijet.v15i21.16101
Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010
Su J, 2021, CHANG ENGL, V28, P429, DOI 10.1080/1358684X.2021.1915748
Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7
Wu Y, 2019, INFORM SCIENCES, V490, P317, DOI 10.1016/j.ins.2019.03.080
Zappone A, 2019, IEEE T COMMUN, V67, P7331, DOI 10.1109/TCOMM.2019.2924010
Zhang CM, 2021, J IND INF INTEGR, V23, DOI 10.1016/j.jii.2021.100224
Zhang PY, 2021, IEEE NETWORK, V35, P27, DOI 10.1109/MNET.011.2000741
Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994
NR 40
TC 1
Z9 1
U1 3
U2 8
PU UIKTEN - ASSOC INFORMATION COMMUNICATION TECHNOLOGY EDUCATION & SCIENCE
PI NOVI PAZAR
PA HILMA ROZAJCA 15, NOVI PAZAR, 36300, SERBIA
SN 2217-8309
EI 2217-8333
J9 TEM J
JI TEM J.
PD MAY
PY 2023
VL 12
IS 2
BP 918
EP 927
DI 10.18421/TEM122-38
PG 10
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA I6PD4
UT WOS:001003974800038
OA gold
DA 2024-09-05
ER
PT J
AU Yamazaki, T
Sakata, I
AF Yamazaki, Tomomi
Sakata, Ichiro
TI Exploration of Interdisciplinary Fusion and Interorganizational
Collaboration With the Advancement of AI Research: A Case Study on
Natural Language Processing
SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
LA English
DT Article; Early Access
DE Citation network analysis; emerging technology; interdisciplinarity
fusion; interorganizational collaboration; natural language processing
(NLP)
ID ARTIFICIAL-INTELLIGENCE; TECHNOLOGY
AB Network analysis is increasingly being used as a decision-making support tool for science and technology policy and technology management through the understanding of the trends and structure of innovation activities and the prediction of their changes. Since convergence and diversity are generally regarded as opportunities for groundbreaking innovation, analysis of interdisciplinary fusion and interorganizational collaboration using network analysis is expected to provide useful suggestions for policy formation and technology management. Nevertheless, little quantitative analysis has been conducted to date, especially for interorganizational collaboration. Meanwhile, regarding artificial intelligence research, its effectiveness has accelerated its application in various fields, and in the process, interdisciplinary fusion and interorganizational collaboration are developing. In this study, we focused on "natural language processing (NLP)," which is said to have recently surpassed human performance, and conducted a microanalysis by visualizing community formation, topic transition including technology integration with other fields and organizations, and their collaboration engaged in research front. Specifically, using the Scopus dataset, we extracted NLP papers and conducted a network analysis. As a result, we visualized these developments in the fast-changing field, and second, we showed that our method is applicable to many other fields. These results will help researchers interested in the application of NLP.
C1 [Yamazaki, Tomomi; Sakata, Ichiro] Univ Tokyo, Dept Technol Management Innovat, Bunkyo Ku, Tokyo 1138654, Japan.
C3 University of Tokyo
RP Yamazaki, T (corresponding author), Univ Tokyo, Dept Technol Management Innovat, Bunkyo Ku, Tokyo 1138654, Japan.
EM yamazaki-tomomi@g.ecc.u-tokyo.ac.jp; isakata@ipr-ctr.t.u-tokyo.ac.jp
OI SAKATA, ICHIRO/0000-0001-5881-3790
CR Abbass H., 2021, IEEE Trans. Artif. Intell, V2, P94, DOI [10.1109/TAI.2021.3096243, DOI 10.1109/TAI.2021.3096243]
Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Bhullar SS, 2019, TECHNOL FORECAST SOC, V145, P1, DOI 10.1016/j.techfore.2019.04.021
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Brem A, 2023, IEEE T ENG MANAGE, V70, P770, DOI 10.1109/TEM.2021.3109983
Calza F, 2022, IEEE T ENG MANAGE, V69, P2649, DOI 10.1109/TEM.2019.2950514
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642
Elsevier, 2021, Res. Intell.
Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5
Guo HN, 2011, SCIENTOMETRICS, V89, P421, DOI 10.1007/s11192-011-0433-7
Guo HF, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1725
Klavans R, 2006, J AM SOC INF SCI TEC, V57, P251, DOI 10.1002/asi.20274
Kose T, 2019, TECHNOL FORECAST SOC, V146, P751, DOI 10.1016/j.techfore.2018.09.005
Lai SW, 2015, AAAI CONF ARTIF INTE, P2267
Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4
Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682
Leydesdorff L, 2011, J INFORMETR, V5, P87, DOI 10.1016/j.joi.2010.09.002
Liqun Wen, 2020, AIAM2020: Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture, P145, DOI 10.1145/3421766.3421799
Liu H., 2019, INT C LEARN REPR ICL
Miao YS, 2017, PR MACH LEARN RES, V70
Min S, 2017, BRIEF BIOINFORM, V18, P851, DOI 10.1093/bib/bbw068
Moriwaki Y., 2022, Chemistry, V77, P23
Muhlroth C, 2022, IEEE T ENG MANAGE, V69, P493, DOI 10.1109/TEM.2020.2989214
Nakayama M., 2020, Mainabi Book
Nsanzumuhire SU, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120861
Sood SK, 2022, COMPUT ELECTR ENG, V101, DOI 10.1016/j.compeleceng.2022.107948
Spanhol FA, 2016, IEEE IJCNN, P2560, DOI 10.1109/IJCNN.2016.7727519
Suominen A, 2021, IEEE T ENG MANAGE, V68, P1786, DOI 10.1109/TEM.2019.2923634
Tenney I, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4593
Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474
Vahidnia S., 2020, Procedia Computer Science, V177, P581
Vaswani A, 2017, ADV NEUR IN, V30
Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004
Wang XS, 2017, PROC CVPR IEEE, P3462, DOI 10.1109/CVPR.2017.369
Xu YJ, 2021, INNOVATION-AMSTERDAM, V2, DOI 10.1016/j.xinn.2021.100179
Yamazaki Tomomi, 2022, 2022 IEEE International Conference on Big Data (Big Data), P6109, DOI 10.1109/BigData55660.2022.10020326
Yu KH, 2018, NAT BIOMED ENG, V2, P719, DOI 10.1038/s41551-018-0305-z
Zhang Y, 2019, TECHNOVATION, V86-87, P33, DOI 10.1016/j.technovation.2019.05.003
Zhou X, 2021, IEEE T ENG MANAGE, V68, P1360, DOI 10.1109/TEM.2020.2994049
NR 43
TC 1
Z9 1
U1 6
U2 19
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9391
EI 1558-0040
J9 IEEE T ENG MANAGE
JI IEEE Trans. Eng. Manage.
PD 2023 NOV 1
PY 2023
DI 10.1109/TEM.2023.3327209
EA NOV 2023
PG 14
WC Business; Engineering, Industrial; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Engineering
GA Y2WY1
UT WOS:001103933100001
DA 2024-09-05
ER
PT J
AU Tolcheev, VO
AF Tolcheev, V. O.
TI Research and Analysis of the Subject Area of Deep Learning
SO AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS
LA English
DT Article
DE deep learning; deep neural networks; factual and multimedia data;
scientometric analysis; bibliographic database Web of Science;
publication activity; descriptor analysis
AB This paper analyzes the rapidly growing scientific direction of Deep Learning, as one of the most significant parts of artificial intelligence. Using scientometric methods, the growth rates of publications in leading countries and the level of their international cooperation are estimated. The terminological structure of the subject area is investigated and the most perspective directions of studies are revealed. We compare scientometric indicators of Deep Learning with another booming scientific area, Quantum Technology. The conclusion is made that publication activity on Deep Learning is growing faster. It is noted that in both these areas the United States and China are the leaders according to the number of papers. Scientometric analysis showed a fairly low level of publication activity of Russian scientists on Deep Learning and their weak involvement in international cooperation.
C1 [Tolcheev, V. O.] Moscow Power Engn Inst, Moscow 111250, Russia.
C3 Moscow Power Engineering Institute
RP Tolcheev, VO (corresponding author), Moscow Power Engn Inst, Moscow 111250, Russia.
EM tolcheevvo@mail.ru
CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[Anonymous], Convolutional networks for fast, energy-efficient neuromorphic computing
[Anonymous], GUIDELINES STAT METH
[Anonymous], 2015, Nature, DOI 10.1038/nature14539
[Anonymous], COMMUN ACM, DOI DOI 10.1145/3065386
[Anonymous], DOKUMENTOVEDENIE UCH
[Anonymous], MACHINE LEARNING STE
[Anonymous], NAUCHNYE KOMMUNIKATS
Bengio Y., 2007, NIPS, P153
Ding J., 2018, Deciphering Chinas AI Dream: The Context, Components, Capabilities, and Consequences of Chinas Strategy to Lead the World in AI
Golovko V.A., 2017, Opt. Mem. Neural Netw, V26, P1, DOI [10.3103/S1060992X16040081, DOI 10.3103/S1060992X16040081]
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622
Grace K., 2018, When will AI exceed human performance? Evidence from AI experts
Graves A., 2014, NEURAL TURING MACHIN
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647
Huang G, 2016, LECT NOTES COMPUT SC, V9908, P646, DOI 10.1007/978-3-319-46493-0_39
Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889
Mikolov T, 2010, Recurrent neural network based language model
Reese H., 2017, Understanding the differences between AI, machine learning, and deep learning
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
[Созыкин Андрей Владимирович Sozykin A.V.], 2017, [Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика, Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Vychislitel'naya matematika i informatika], V6, P28, DOI 10.14529/cmse170303
Tolcheev VO, 2018, AUTOM DOC MATH LINGU, V52, P121, DOI 10.3103/S000510551803007X
NR 23
TC 1
Z9 1
U1 0
U2 6
PU PLEIADES PUBLISHING INC
PI NEW YORK
PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES
SN 0005-1055
EI 1934-8371
J9 AUTOMAT DOC MATH LIN
JI Autom. Doc. Math. Linguist.
PD MAY
PY 2019
VL 53
IS 3
BP 103
EP 113
DI 10.3103/S000510551903004X
PG 11
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA IT5QJ
UT WOS:000482919700001
DA 2024-09-05
ER
PT J
AU Djeffal, C
Siewert, MB
Wurster, S
AF Djeffal, Christian
Siewert, Markus B.
Wurster, Stefan
TI Role of the state and responsibility in governing artificial
intelligence: a comparative analysis of AI strategies
SO JOURNAL OF EUROPEAN PUBLIC POLICY
LA English
DT Article
DE Artificial intelligence; AI governance; policy instruments; state types;
responsible research innovation; technology assessment
ID TECHNOLOGY; GOVERNANCE; INNOVATION
AB Technologies based on artificial intelligence (AI) represent a crucial governance challenge for policymakers. This study contributes to the understanding of how states plan to govern AI with respect to the role they assume and to the way they develop AI in a responsible manner. In different policy instruments across 22 countries plus the European Union, there is considerable variation in how governments approach the governance of AI, both regarding the policy measures proposed and their focus on public responsibility. Analysing a set of policy instruments we find multiple modes of AI governance, with the major difference being between self-regulation-promoting and market-based approaches, and a combination of entrepreneurial and regulatory governance approaches. Our analysis also indicates that the approach to public responsibility is largely independent of the chosen policy mix of AI governance. Therefore, responsibility seems to be a cross-cutting issue that cannot be tied to a specific approach of states towards technology.
C1 [Djeffal, Christian; Wurster, Stefan] Tech Univ Munich, TUM Sch Social Sci & Technol, Munich, Germany.
[Siewert, Markus B.; Wurster, Stefan] Munich Sch Polit & Publ Policy, Munich, Germany.
C3 Technical University of Munich
RP Siewert, MB (corresponding author), Munich Sch Polit & Publ Policy, Munich, Germany.
EM markus.siewert@hfp.tum.de
CR [Anonymous], 2007, TAKING EUROPEAN KNOW
[Anonymous], 2019, Report of the Special Rapporteur on Extreme Poverty and Human Rights 11 October, UN Doc A/74/493
Bisson P., 2010, MARKET STATE
Borrás S, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.103971
Braithwaite J., 2011, The Oxford Handbook of Political Science
Brooks Harvey., 1976, Newsletter on Science, Technology Human Values, V17, P17
Broussard M, 2018, ARTIFICIAL UNINTELLIGENCE: HOW COMPUTERS MISUNDERSTAND THE WORLD
Bughin J., 2019, Tech for Good: Smoothing Disruption, Improving Well-Being
Casado-Asensio J, 2014, J PUBLIC POLICY, V34, P437, DOI 10.1017/S0143814X13000287
Chessen Matt., 2017, The MADCOM Future: How Artificial Intelligence Will Enhance Computational Propaganda, Reprogram Human Culture and Threaten Democracy and What Can Be Done About It
Crawford K., 2021, Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence
Dauvergne P, 2021, GLOBALIZATIONS, V18, P285, DOI 10.1080/14747731.2020.1785670
Di Stefano G, 2012, RES POLICY, V41, P1283, DOI 10.1016/j.respol.2012.03.021
Dijck Jose van, 2013, The Culture of Connectivity: A Critical History of Social Media, P24
Djeffal C., 2019, GLOBAL SOLUTIONS J, V4, P186
Djeffal C, 2020, REGULATING ARTIFICIAL INTELLIGENCE, P277, DOI 10.1007/978-3-030-32361-5_12
Ely A, 2014, RES POLICY, V43, P505, DOI 10.1016/j.respol.2013.09.004
Erdélyi OJ, 2018, PROCEEDINGS OF THE 2018 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY (AIES'18), P95, DOI 10.1145/3278721.3278731
European Commission, 2020, DIG EC SOC IND DESI
European Commission, COM2020825 EUR COMM
Fatima S, 2020, ECON ANAL POLICY, V67, P178, DOI 10.1016/j.eap.2020.07.008
Fisher E., 2006, B SCI TECHNOL SOC, V26, P485, DOI [10.1177/0270467606295402, DOI 10.1177/0270467606295402]
Fiss PC, 2011, ACAD MANAGE J, V54, P393, DOI 10.5465/AMJ.2011.60263120
Gasser U, 2017, IEEE INTERNET COMPUT, V21, P58, DOI 10.1109/MIC.2017.4180835
Guston DH, 2014, SOC STUD SCI, V44, P218, DOI 10.1177/0306312713508669
Guston DavidH., 2002, Technology in Society, V24, P93
Hasselbalch JA, 2018, J EUR PUBLIC POLICY, V25, P1855, DOI 10.1080/13501763.2017.1363805
Hennen Leonhard, 2012, Poiesis Prax, V9, P27
Hood C., 2007, The Tools of Government in the Digital Age, DOI DOI 10.1111/J.1467-9299.2008.00756_4.X
Howlett M., 2019, The policy design primer. Choosing the right tools for the job
Kim Yun Tae, 2007, Korean Social Science Journal, V34, P31
Knill C, 2012, REGUL GOV, V6, P427, DOI 10.1111/j.1748-5991.2012.01150.x
König PD, 2022, BIG DATA SOC, V9, DOI 10.1177/20539517211069632
Kuhlmann S, 2019, RES POLICY, V48, P1091, DOI 10.1016/j.respol.2019.01.006
Kvist J, 2007, J BUS RES, V60, P474, DOI 10.1016/j.jbusres.2007.01.005
Majone G., 1997, J PUBLIC POLICY, V17, P139, DOI DOI 10.1017/S0143814X00003524
Mandel G.N., 2009, Law, Innovation and Technology, V1, P75, DOI DOI 10.1080/17579961.2009.11428365
Marchant Gary, 2020, JURIMETRICS, V61, P1
Marchant GE, 2013, INNOVATIVE GOVERNANCE MODELS FOR EMERGING TECHNOLOGIES, P136
Mazzucato M., 2011, The Entrepreneurial State
Mittelstadt B, 2019, NAT MACH INTELL, V1, P501, DOI 10.1038/s42256-019-0114-4
Nemitz P, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2018.0089
OECD, 2019, ARTIF INTELL, DOI [10.1787/eedfee77-en, DOI 10.1787/EEDFEE77-EN]
Ornetzeder Michael, 2012, Poiesis Prax, V9, P1
Petrella S, 2021, ORBIS, V65, P75, DOI [10.1016/j.orbis.2020.11.004, DOI 10.1016/J.ORBIS.2020.11.004]
Radu R, 2021, POLICY SOC, V40, P178, DOI 10.1080/14494035.2021.1929728
Ransbotham S., 2020, Expanding AI's Impact With Organizational Learnin
Rayner J., 2009, Policy and Society, V28, P99, DOI DOI 10.1016/J.POLSOC.2009.05.001
Russell Stuart, 2010, Artificial intelligence, a modern approach, V3
Sarewitz D, 2011, INT LIBR ETH LAW TEC, V7, P95, DOI 10.1007/978-94-007-1356-7_7
Saurwein Florian, 2015, Info, V17, P35, DOI 10.1108/info-05-2015-0025
Schaffrin A, 2015, POLICY STUD J, V43, P257, DOI 10.1111/psj.12095
Simonis Georg., 2013, Konzepte und Verfahren der Technikfolgenabschatzung, DOI [10.1007/978-3-658-02035-4, DOI 10.1007/978-3-658-02035-4]
Stilgoe J., 2017, The Handbook of Science and Technology Studies, P853
Stilgoe J., 2019, MONITORING EVOLUTION, DOI 10.2777/285467
Sudmann Andreas, 2019, The Democratization of Artificial Intelligence: Net Politics in the Era of Learning Algorithms
Taeihagh A, 2021, POLICY SOC, V40, P137, DOI 10.1080/14494035.2021.1928377
Taeihagh A, 2021, REGUL GOV, V15, P1009, DOI 10.1111/rego.12392
Thierer AdamD., 2017, Mercatus Research Paper
Trajtenberg M., 2019, Economics of Artificial Intelligence: An Agenda, P175, DOI DOI 10.7208/CHICAGO/9780226613475.003.0006
Ulnicane I, 2021, POLICY SOC, V40, P158, DOI 10.1080/14494035.2020.1855800
Wilsdon J., 2004, See-Through Science: Why Public Engagement Needs to Move Upstream
World Bank, 2021, HARN ART INT DEV POS
WYNNE B, 1975, RES POLICY, V4, P108, DOI 10.1016/0048-7333(75)90028-1
Zwanenberg PV, 2009, 30 STEPS CTR
NR 65
TC 20
Z9 20
U1 29
U2 120
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1350-1763
EI 1466-4429
J9 J EUR PUBLIC POLICY
JI J. Eur. Public Policy
PD NOV 2
PY 2022
VL 29
IS 11
SI SI
BP 1799
EP 1821
DI 10.1080/13501763.2022.2094987
EA JUL 2022
PG 23
WC Political Science; Public Administration
WE Social Science Citation Index (SSCI)
SC Government & Law; Public Administration
GA 6M4NX
UT WOS:000836050700001
OA Green Published
DA 2024-09-05
ER
PT J
AU Chen, H
Deng, ZJ
AF Chen, Huie
Deng, Zhenjie
TI Bibliometric Analysis of the Application of Convolutional Neural Network
in Computer Vision
SO IEEE ACCESS
LA English
DT Article
DE Bibliometrics; Convolutional neural networks; Computer vision; Market
research; Indexes; Technological innovation; Convolutional neural
networks; computer vision; bibliometric analysis
ID FAULT-DIAGNOSIS; ARCHITECTURES; RECOGNITION
AB This article analyzes the research progress in field of Convolutional Neural Networks (CNNs) using the bibliometric method. Literature samples of CNNs are analyzed by a basic statistic and co-citation network. Experimental results show that CNNs are being utilized in many computer vision applications, such as fault and image recognition diagnosis, seismic detection, positioning, and automatic detection of cracks and signals, image classification and image segmentation. In addition, there is systematic research on unbalanced problems in CNNs. Quantitative experimental research, extensive application fields, and market research informatization will be the three vital research tendencies in the future. The ideas and conclusions of this article provide insights to the academic research of CNNs and their practical application in the corporate world.
C1 [Chen, Huie; Deng, Zhenjie] Guangdong Univ Finance, Sch Internet Finance & Informat Engn, Guangzhou 510521, Peoples R China.
C3 Guangdong University of Finance
RP Deng, ZJ (corresponding author), Guangdong Univ Finance, Sch Internet Finance & Informat Engn, Guangzhou 510521, Peoples R China.
EM 47-047@gduf.edu.cn
OI deng, zhenjie/0000-0002-3432-2169; Chen, Huie/0000-0002-4621-6718
FU First Batch of Reform of Innovation and Business Running Education
[201801193131]; Characteristic Innovation Project of Guangdong Province
Ordinary University [2019KTSCX113]
FX This work was supported in part by the First Batch of Reform of
Innovation and Business Running Education with cooperation between
production and learning of the Ministry of Education in 2018 under
Project 201801193131, and in part by the Characteristic Innovation
Project of Guangdong Province Ordinary University under Project
2019KTSCX113.
CR Acharya UR, 2018, COMPUT BIOL MED, V100, P270, DOI 10.1016/j.compbiomed.2017.09.017
Ahmed A, 2008, LECT NOTES COMPUT SC, V5304, P69, DOI 10.1007/978-3-540-88690-7_6
[Anonymous], 2015, Nature, DOI 10.1038/nature14539
Basaran E, 2020, BIOMED SIGNAL PROCES, V56, DOI 10.1016/j.bspc.2019.101734
Basha SHS, 2020, NEUROCOMPUTING, V378, P112, DOI 10.1016/j.neucom.2019.10.008
Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50
Bengio Y, 2009, FOUND TRENDS MACH LE, V2, P1, DOI 10.1561/2200000006
Buda M, 2018, NEURAL NETWORKS, V106, P249, DOI 10.1016/j.neunet.2018.07.011
Cecotti H, 2011, IEEE T PATTERN ANAL, V33, P433, DOI 10.1109/TPAMI.2010.125
Cha YJ, 2017, COMPUT-AIDED CIV INF, V32, P361, DOI 10.1111/mice.12263
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen Y, 2020, J MED IMAG HEALTH IN, V10, P391, DOI 10.1166/jmihi.2020.2967
Cheng G, 2016, IEEE T GEOSCI REMOTE, V54, P7405, DOI 10.1109/TGRS.2016.2601622
Dieleman S, 2015, MON NOT R ASTRON SOC, V450, P1441, DOI 10.1093/mnras/stv632
Egmont-Petersen M, 2002, PATTERN RECOGN, V35, P2279, DOI 10.1016/S0031-3203(01)00178-9
Fan JL, 2010, IEEE T NEURAL NETWOR, V21, P1610, DOI 10.1109/TNN.2010.2066286
Hau Darren., 2011, P 11 UK WORKSHOP COM, P37
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
Hinton G, 2012, IEEE SIGNAL PROC MAG, V29, P82, DOI 10.1109/MSP.2012.2205597
Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527
HUBEL DH, 1962, J PHYSIOL-LONDON, V160, P106, DOI 10.1113/jphysiol.1962.sp006837
Ji SW, 2013, IEEE T PATTERN ANAL, V35, P221, DOI 10.1109/TPAMI.2012.59
Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889
Jin JQ, 2014, IEEE T INTELL TRANSP, V15, P1991, DOI 10.1109/TITS.2014.2308281
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Larochelle H., 2007, IEEE INT C ICML, P473
Lawrence S, 1997, IEEE T NEURAL NETWOR, V8, P98, DOI 10.1109/72.554195
Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791
Li F, 2018, BMC MED IMAGING, V18, DOI 10.1186/s12880-018-0273-5
Linhui L., 2013, ADV MECH ENG, V5
Liu Y, 2017, INFORM FUSION, V36, P191, DOI 10.1016/j.inffus.2016.12.001
Matsugu M, 2001, IEEE IJCNN, P802, DOI 10.1109/IJCNN.2001.939462
Mohamed AR, 2012, INT CONF ACOUST SPEE, P4273, DOI 10.1109/ICASSP.2012.6288863
Neubauer C, 1998, IEEE T NEURAL NETWOR, V9, P685, DOI 10.1109/72.701181
Schemmel J, 2002, IEEE IJCNN, P2704, DOI 10.1109/IJCNN.2002.1007574
Shin HC, 2016, IEEE T MED IMAGING, V35, P1285, DOI 10.1109/TMI.2016.2528162
Sun X, 2016, NEUROCOMPUTING, V210, P227, DOI 10.1016/j.neucom.2016.02.077
SZEGEDY C, 2015, CVPR, DOI [10.1109/cvpr.2015.7298594, DOI 10.1109/CVPR.2015.7298594]
Tseng CH, 2020, BIOSYST ENG, V189, P36, DOI 10.1016/j.biosystemseng.2019.11.002
Venieris SI, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3186332
Wen L, 2018, IEEE T IND ELECTRON, V65, P5990, DOI 10.1109/TIE.2017.2774777
Zhang W, 2018, MECH SYST SIGNAL PR, V100, P439, DOI 10.1016/j.ymssp.2017.06.022
Zhang Y, 2017, IEEE T CYBERNETICS, V47, P3230, DOI 10.1109/TCYB.2016.2628402
Zhang YH, 2018, REMOTE SENS LETT, V9, P11, DOI 10.1080/2150704X.2017.1378452
Zhao ZQ, 2019, IEEE T NEUR NET LEAR, V30, P3212, DOI 10.1109/TNNLS.2018.2876865
NR 45
TC 4
Z9 4
U1 5
U2 32
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2020
VL 8
BP 155417
EP 155428
DI 10.1109/ACCESS.2020.3019336
PG 12
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA NK4GG
UT WOS:000566690000001
OA gold
DA 2024-09-05
ER
PT C
AU Kim, J
Le, DX
Thoma, GR
AF Kim, Jongwoo
Le, Daniel X.
Thoma, George R.
BE Likforman-Sulem, L
Agam, G
TI Naive Bayes and SVM classifiers for classifying Databank Accession
Number sentences from online biomedical articles
SO DOCUMENT RECOGNITION AND RETRIEVAL XVII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Document Recognition and Retrieval XVII
CY JAN 19-21, 2010
CL San Jose, CA
DE Naive Bayes; Support Vector Machine (SVM); databank; labeling; text
classification; bibliographic information
AB This paper describes two classifiers, Nave Bayes and Support Vector Machine (SVM), to classify sentences containing Databank Accession Numbers, a key piece of bibliographic information, from online biomedical articles. The correct identification of these sentences is necessary for the subsequent extraction of these numbers. The classifiers use words that occur most frequently in sentences as features for the classification. Twelve sets of word features are collected to train and test the classifiers. Each set has a different number of word features ranging from 100 to 1,200. The performance of each classifier is evaluated using four measures: Precision, Recall, F-Measure, and Accuracy. The Naive Bayes classifier shows performance above 93.91% at 200 word features for all four measures. The SVM shows 98.80% Precision at 200 word features, 94.90% Recall at 500 and 700, 96.46% F-Measure at 200, and 99.14% Accuracy at 200 and 400. To improve classification performance, we propose two merging operators, Max and Harmonic Mean, to combine results of the two classifiers. The final results show a measureable improvement in Recall, F-Measure, and Accuracy rates.
C1 [Kim, Jongwoo; Le, Daniel X.; Thoma, George R.] Natl Lib Med, Bethesda, MD 20894 USA.
C3 National Institutes of Health (NIH) - USA; NIH National Library of
Medicine (NLM)
RP Kim, J (corresponding author), Natl Lib Med, 8600 Rockville Pike, Bethesda, MD 20894 USA.
EM jongkim@mail.nih.gov
CR Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Dumais S., 1998, Proceedings of the 1998 ACM CIKM International Conference on Information and Knowledge Management, P148, DOI 10.1145/288627.288651
GABRILOVICH E, 2004, ICML 04, P321
Joachims Thorsten, 1998, ECML, P137, DOI DOI 10.1007/BFB0026683
Johnson M., 2008, SVM NET
Kim J, 2006, COMP MED SY, P905
Lewis D.D., 1998, Machine Learning: ECML-98, P4
Madigan D., 2005, STAT GUIDE UNKNOWN, P135
McCallum A., 1998, P AAAI 98 WORKSH LEA, P577
*NIH, 1993, 347 NIH NAT LIB MED
Rennie J.D., 2003, Proceedings of the 20th International Conference on Machine Learning, P616
Sohn S, 2008, J AM MED INFORM ASSN, V15, P546, DOI 10.1197/jamia.M2431
NR 13
TC 0
Z9 0
U1 0
U2 3
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
EI 1996-756X
BN 978-0-8194-7927-3
J9 PROC SPIE
PY 2010
VL 7534
AR 75340U
DI 10.1117/12.838961
PG 8
WC Computer Science, Information Systems; Optics; Imaging Science &
Photographic Technology
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Optics; Imaging Science & Photographic Technology
GA BRR44
UT WOS:000283495700030
DA 2024-09-05
ER
PT J
AU Kaban, A
AF Kaban, Abdullatif
TI Artificial Intelligence in Education: A Science Mapping Approach
SO INTERNATIONAL JOURNAL OF EDUCATION IN MATHEMATICS SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Education; Artificial intelligence; Machine learning; Deep learning;
Bibliometric analysis
ID MANAGEMENT
AB While using artificial intelligence in education is a popular field of study for researchers, it has become a joint application for educational institutions. Educational institutions are trying to establish artificial intelligence-based systems to improve the existing education systems. On the other hand, education researchers want to determine which artificial intelligence models are the most effective. To provide an in-depth resource for both researchers and educators on the use of artificial intelligence in education, this study aims to make a bibliometric analysis of articles related to artificial intelligence in education. After the query was made in the Web of Science database, 1153 articles related to the subject were obtained. As a result of the bibliometric analysis of the articles obtained, the most influential journals are Education and Information Technologies and Computers & Education, and the most influential authors are Scouller, Biggs, and Hwang. After 2019, it has been observed that there has been a significant increase in the number of studies, the first examples of which were found in 1985. It is thought that this study, which provides results on the most cited publications, trending topics, thematic map of keywords, and co-occurrence network, will serve as a bedside resource for both educators and researchers. Implications of the findings for theory and practice are discussed.
C1 [Kaban, Abdullatif] Ataturk Univ, Erzurum, Turkiye.
C3 Ataturk University
RP Kaban, A (corresponding author), Ataturk Univ, Erzurum, Turkiye.
EM abdullatif.kaban@gmail.com
RI Kaban, Abdullatif/ABC-3989-2021
OI Kaban, Abdullatif/0000-0003-4465-3145
CR Agbo FJ, 2021, SMART LEARN ENVIRON, V8, DOI 10.1186/s40561-020-00145-4
Al-Sudani S, 2019, EDUC INF TECHNOL, V24, P2357, DOI 10.1007/s10639-019-09873-8
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Aydogdu S, 2020, EDUC INF TECHNOL, V25, P1913, DOI 10.1007/s10639-019-10053-x
Azza Abdullah A., 2022, International Journal of Computer Science and Information Security (IJCSIS), V20, P27
Baek C., 2020, International Journal of Learning Analytics and Artificial Intelligence for Education (iJAI), V2, P67, DOI [10.3991/ijai.v2i1.14481, DOI 10.3991/IJAI.V2I1.14481]
Bañeres D, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10134427
Basnet RB, 2022, EDUC INF TECHNOL, V27, P11499, DOI 10.1007/s10639-022-11068-7
Chen PSD, 2010, COMPUT EDUC, V54, P1222, DOI 10.1016/j.compedu.2009.11.008
Clarivate, 2022, KeyWords Plus generation, creation, and changes
López-Fernández MC, 2016, J SMALL BUS MANAGE, V54, P622, DOI 10.1111/jsbm.12161
Ferreira FAF, 2018, J BUS RES, V85, P348, DOI 10.1016/j.jbusres.2017.03.026
GOOD R, 1987, J RES SCI TEACH, V24, P325, DOI 10.1002/tea.3660240406
Higgins R, 2002, STUD HIGH EDUC, V27, P53, DOI 10.1080/03075070120099368
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Jokhan A, 2019, STUD HIGH EDUC, V44, P1900, DOI 10.1080/03075079.2018.1466872
Kasemodel M. G. C., 2016, International Journal of Food Studies, V5, P73, DOI 10.7455/ijfs/5.1.2016.a7
Khan I, 2021, SMART LEARN ENVIRON, V8, DOI 10.1186/s40561-021-00161-y
Lawler R. W., 1984, New horizons in educational computing
Lee J, 2017, COMPUT EDUC, V115, P143, DOI 10.1016/j.compedu.2017.06.015
Lykourentzou I, 2009, COMPUT EDUC, V53, P950, DOI 10.1016/j.compedu.2009.05.010
Manesh MF, 2021, IEEE T ENG MANAGE, V68, P289, DOI 10.1109/TEM.2019.2963489
Martí-Parreño J, 2016, J COMPUT ASSIST LEAR, V32, P663, DOI 10.1111/jcal.12161
MARTON F, 1976, BRIT J EDUC PSYCHOL, V46, P4, DOI 10.1111/j.2044-8279.1976.tb02980.x
Nahar K, 2021, EDUC INF TECHNOL, V26, P6051, DOI 10.1007/s10639-021-10575-3
Neimann T, 2017, ADV HIGH ED PROF DEV, P37, DOI 10.4018/978-1-5225-0929-5.ch003
O'Shea T., 1983, Learning and Teaching with Computers:Artificial Intelligence in Education
Papert S., 1980, Mindstorms: Children, computers and powerful ideas
Romero C, 2010, IEEE T SYST MAN CY C, V40, P601, DOI 10.1109/TSMCC.2010.2053532
Scouller K, 1998, HIGH EDUC, V35, P453, DOI 10.1023/A:1003196224280
Sharma P, 2022, EDUC INF TECHNOL, V27, P6197, DOI 10.1007/s10639-021-10882-9
Shen GH, 2023, EDUC INF TECHNOL, V28, P725, DOI 10.1007/s10639-022-11146-w
Sleeman D., 1982, INTELLIGENT TUTORING
Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G
Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2
Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002
Talan T., 2021, International Journal of Research in Education and Science, V7, P822, DOI [DOI 10.46328/IJRES.2409, 10.46328/ijres.2409]
Tas N., 2021, INT C STUD ED SOC SC
Thanuskodi S., 2010, J SOCIAL SCI, V24, P77, DOI [10.1080/09718923.2010.11892847, DOI 10.1080/09718923.2010.11892847]
YAZDANI M, 1986, INSTR SCI, V14, P197, DOI 10.1007/BF00051820
NR 40
TC 1
Z9 1
U1 39
U2 95
PU NECMETTIN ERBAKAN UNIV
PI KONYA
PA AHMET KELESOGLU FAC EDUCATION, DEPT COMPUTER EDUCATION & INSTRUCTIONAL
TECHNOLOGY, KONYA, 42090, Turkiye
SN 2147-611X
J9 INT J EDUC MATH SCI
JI Int. J. Educ. Math. Sci. Technol.
PY 2023
VL 11
IS 4
BP 844
EP 861
DI 10.46328/ijemst.3368
PG 19
WC Education, Scientific Disciplines
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA T7VD9
UT WOS:001080014900002
OA gold
DA 2024-09-05
ER
PT J
AU Zhou, MZ
Liu, HJ
Hu, YR
AF Zhou, Maoze
Liu, Hongjiu
Hu, Yanrong
TI Research on corporate financial performance prediction based on
self-organizing and convolutional neural networks
SO EXPERT SYSTEMS
LA English
DT Article
DE CNN; financial performance; performance forecasting; SOM
ID BANKRUPTCY PREDICTION; DEFAULT PREDICTION; LISTED COMPANIES; RATIOS;
DISTRESS; MODELS; ABILITY; TIME
AB Economic risks faced by manufacturing enterprises are gradually increasing and risk reduction whilst maintaining high financial performance has become key to their survival and development of enterprises. Enterprise performance affects not only enterprise development but also does the interests of investors and creditors. Therefore, a well-performing model for financial performance prediction is particularly important. In this paper, we combine unsupervised and supervised learning, fusing self-organizing mapping neural networks and convolutional neural networks, and apply deep learning to financial analysis to construct a new financial performance prediction model, called SNN-CNN. This paper uses crawler technology to obtain financial data of listed manufacturing enterprises and classifies their financial performance into five levels. It finds that enterprises with high financial performance tend to have balanced financial indicators, strong corporate vitality and stable development of various capabilities, while enterprises with low financial performance have poor repayment and profitability, significant risks in corporate operation and limited growth and development. Compared with traditional risk prediction models, the SOM-CNN model has a higher accuracy rate, up to 95.69%.
C1 [Zhou, Maoze; Liu, Hongjiu; Hu, Yanrong] Zhejiang A&F Univ, Sch Math & Comp Sci, Hangzhou 311300, Peoples R China.
[Zhou, Maoze; Liu, Hongjiu; Hu, Yanrong] Zhejiang A&F Univ, Key Lab Intelligent Forestry Monitoring & Informa, Hangzhou, Peoples R China.
[Zhou, Maoze; Liu, Hongjiu; Hu, Yanrong] Zhejiang A&F Univ, Key Lab Forestry Sensing Technol & Intelligent Eq, State Forestry & Grassland Bur, Hangzhou, Peoples R China.
C3 Zhejiang A&F University; Zhejiang A&F University; Zhejiang A&F
University
RP Liu, HJ (corresponding author), Zhejiang A&F Univ, Sch Math & Comp Sci, Hangzhou 311300, Peoples R China.
EM joe_hunter@zafu.edu.cn
FU Humanity and Social Science Foundation of Ministry of Education of China
[18YJA630037, 21YJA630054]; Zhejiang Philosophy and Social Science
Program of China [19NDJC240YB, 17NDJC262YB]; Zhejiang Provincial Natural
Science Foundation of China [LY18G010005, LY17G020025]
FX The Humanity and Social Science Foundation of Ministry of Education of
China, Grant/Award Numbers: 18YJA630037, 21YJA630054; Zhejiang
Philosophy and Social Science Program of China, Grant/Award Numbers:
19NDJC240YB, 17NDJC262YB; Zhejiang Provincial Natural Science Foundation
of China, Grant/Award Numbers: LY18G010005, LY17G020025
CR Agustia D, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e03317
Alaminos D, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22091056
ALTMAN EI, 1968, J FINANC, V23, P589, DOI 10.2307/2978933
Back B, 1996, EXPERT SYST APPL, V11, P407, DOI 10.1016/S0957-4174(96)00055-3
Barboza F, 2023, COMMUN STAT-SIMUL C, V52, P2615, DOI 10.1080/03610918.2021.1910837
Beaver WH, 2005, REV ACCOUNT STUD, V10, P93, DOI 10.1007/s11142-004-6341-9
BEAVER WH, 1966, J ACCOUNTING RES, V4, P71, DOI 10.2307/2490171
Chauhan N, 2009, EXPERT SYST APPL, V36, P7659, DOI 10.1016/j.eswa.2008.09.019
Chava S., 2004, Review of Finance, V8, P537, DOI 10.1093/rof/8.4.537
Che S., 2020, MATH PROBL ENG, V2020, P1
Chen JH, 2012, EXPERT SYST APPL, V39, P823, DOI 10.1016/j.eswa.2011.07.080
Cheung KTS, 2017, J CORP FINANC, V42, P15, DOI 10.1016/j.jcorpfin.2016.11.006
Cho S, 2010, EXPERT SYST APPL, V37, P3482, DOI 10.1016/j.eswa.2009.10.040
Choi J, 2020, DATA TECHNOL APPL, V54, P151, DOI 10.1108/DTA-08-2019-0127
Ciampi F, 2015, J BUS RES, V68, P1012, DOI 10.1016/j.jbusres.2014.10.003
COATS PK, 1993, FINANC MANAGE, V22, P142, DOI 10.2307/3665934
Dalwai T, 2021, ASIAN REV ACCOUNT, V29, P474, DOI 10.1108/ARA-01-2021-0008
Fernández A, 2010, INFORM SCIENCES, V180, P1268, DOI 10.1016/j.ins.2009.12.014
FitzPatrick P.J., 1932, The Certified Public Accountant, V12, P598
Hang M, 2019, BUS STRATEG ENVIRON, V28, P257, DOI 10.1002/bse.2215
Hasanzadeh MR, 2016, MATH PROBL ENG, V2016, DOI 10.1155/2016/4831867
Hosaka T, 2019, EXPERT SYST APPL, V117, P287, DOI 10.1016/j.eswa.2018.09.039
HUANG C, 2014, MATH PROBL ENG, V2014, P1, DOI DOI 10.1155/2014/749604
Huang JC, 2010, J INFORM OPTIM SCI, V31, P333, DOI 10.1080/02522667.2010.10699963
Jeong C, 2012, EXPERT SYST APPL, V39, P3650, DOI 10.1016/j.eswa.2011.09.056
Kainulainen L., 2014, Case Studies in Business, Industry and Government Statistics (CSBIGS), V4, P116
Kaski S, 2001, IEEE T NEURAL NETWOR, V12, P936, DOI 10.1109/72.935102
조남옥, 2015, [Journal of Intelligence and Information Systems, 지능정보연구], V21, P79
Kumar PR, 2007, EUR J OPER RES, V180, P1, DOI 10.1016/j.ejor.2006.08.043
Lee J, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9060899
Li J, 2007, PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND KNOWLEDGE ENGINEERING (NLP-KE'07), P393
Li SX, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102673
López-Busto A, 2016, CULT CIENC DEPORTE, V11, P185, DOI 10.12800/ccd.v11i33.763
Lukason O, 2019, RISKS, V7, DOI 10.3390/risks7030077
Mohamed EA, 2021, INTELL SYST ACCOUNT, V28, P52, DOI 10.1002/isaf.1484
Nicolis O, 2006, MANAG FINANC, V32, P654, DOI 10.1108/03074350610676750
Nyitrai T, 2019, BENCHMARKING, V26, P317, DOI 10.1108/BIJ-03-2017-0052
OHLSON JA, 1980, J ACCOUNTING RES, V18, P109, DOI 10.2307/2490395
Pendharkar PC, 2005, COMPUT OPER RES, V32, P2561, DOI 10.1016/j.cor.2004.06.023
Richards G, 2019, J COMPUT INFORM SYST, V59, P188, DOI 10.1080/08874417.2017.1334244
Salehi M, 2022, INT J PRODUCT PERFOR, V71, P1490, DOI 10.1108/IJPPM-04-2020-0194
Salehi M, 2021, J FACIL MANAG, V19, P150, DOI 10.1108/JFM-08-2020-0056
Salehi M, 2019, COMPET REV, V29, P440, DOI 10.1108/CR-11-2018-0070
Salehi M, 2016, INT J LAW MANAG, V58, P545, DOI 10.1108/IJLMA-05-2015-0023
Sardo F, 2018, INT J HOSP MANAG, V75, P67, DOI 10.1016/j.ijhm.2018.03.001
Shin KS, 2005, EXPERT SYST APPL, V28, P127, DOI 10.1016/j.eswa.2004.08.009
Srivastava PR, 2021, J ORGAN END USER COM, V33, P204, DOI 10.4018/JOEUC.20210901.oa10
Stevenson M, 2021, EUR J OPER RES, V295, P758, DOI 10.1016/j.ejor.2021.03.008
Sun J, 2009, EXPERT SYST APPL, V36, P8659, DOI 10.1016/j.eswa.2008.10.002
TAM KY, 1992, MANAGE SCI, V38, P926, DOI 10.1287/mnsc.38.7.926
Tang YJ, 2019, COMPLEXITY, V2019, DOI 10.1155/2019/8682124
Tian S, 2015, RISK HAZARDS CRISIS, V6, P91, DOI 10.1002/rhc3.12071
Tinoco MH, 2013, INT REV FINANC ANAL, V30, P394, DOI 10.1016/j.irfa.2013.02.013
Veganzones D, 2021, EUR BUS REV, V33, P204, DOI 10.1108/EBR-12-2018-0209
Yu MC, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8090866
Yu Q, 2014, NEUROCOMPUTING, V128, P296, DOI 10.1016/j.neucom.2013.01.063
NR 56
TC 5
Z9 5
U1 13
U2 69
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0266-4720
EI 1468-0394
J9 EXPERT SYST
JI Expert Syst.
PD NOV
PY 2022
VL 39
IS 9
SI SI
AR e13042
DI 10.1111/exsy.13042
EA JUN 2022
PG 17
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 5F3HH
UT WOS:000807113800001
DA 2024-09-05
ER
PT C
AU Iqbal, S
Shaheen, M
Fazl-e-Basit
AF Iqbal, Saeed
Shaheen, Muhammad
Fazl-e-Basit
GP IEEE
TI A Machine Learning Based Method for Optimal Journal Classification
SO 2013 8TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED
TRANSACTIONS (ICITST)
SE International Conference for Internet Technology and Secured
Transactions
LA English
DT Proceedings Paper
CT 8th International Conference for Internet Technology and Secured
Transactions (ICITST)
CY DEC 09-12, 2013
CL London, UNITED KINGDOM
DE Journal ranking; Impact Factor; Eigenfactor; Article Influence; Prestige
of Journal
ID IMPACT
AB We present a hypothetical and realistic examination and exploration of a number of bibliometric indicators of journal performance. In this paper, the indicators we have focused upon are Eigenfactor indicator, Impact factor, audience factor and Article influence weight indicator. Our focus is to find the missing parameters and some limitations that have not been conducted in previous algorithms. To find the influential parameters and to propose a new journal performance factor, that ranked a journal in best accepted manner. For calssification and verification purpose we use a machine learning classification technique (Bayesian classification). It is one of the most common learning algorithms in machine learning classification. Using bayesain classification, we classify several journals according to our proposed methods and compare results with the previous methods.
C1 [Iqbal, Saeed; Shaheen, Muhammad; Fazl-e-Basit] Natl Univ Comp & Emerging Scinece, Dept Compter Sci, FAST NUCES, Peshawar, Pakistan.
RP Iqbal, S (corresponding author), Natl Univ Comp & Emerging Scinece, Dept Compter Sci, FAST NUCES, Peshawar, Pakistan.
EM saeediqbalkhattak@gmail.com; muhammad.shaheen@nu.edu.pk;
fazl.basit@nu.edu.pk
RI Shaheen, Prof. Dr. Muhammad/AGH-3143-2022
OI Shaheen, Prof. Dr. Muhammad/0000-0003-3647-1261; Iqbal,
Saeed/0000-0002-3176-4658
CR ANDERSON TW, 1963, ANN MATH STAT, V34, P122, DOI 10.1214/aoms/1177704248
[Anonymous], 2003, 2 EIGENVALUE GOOGLE
[Anonymous], 2012, CHAPMAN HALL CRC DAT
[Anonymous], 1997, P INT C KNOWL DISC D
[Anonymous], DATA MINING KNOWLEDG
Arendt J., 2010, ISSUES SCI TECHNOL, P4
Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y
BREU H, 1995, IEEE T PATTERN ANAL, V17, P529, DOI 10.1109/34.391389
Butler D, 2008, NATURE, V451, P6, DOI 10.1038/451006a
Collazo-Reyes F, 2008, SCIENTOMETRICS, V75, P145, DOI 10.1007/s11192-007-1841-6
Colledge L., 2010, Serials, V23, P215, DOI DOI 10.1629/23215
DANIELSSON PE, 1980, COMPUT VISION GRAPH, V14, P227, DOI 10.1016/0146-664X(80)90054-4
Falagas ME, 2008, FASEB J, V22, P2623, DOI 10.1096/fj.08-107938
Flach PA, 2004, MACH LEARN, V57, P233, DOI 10.1023/B:MACH.0000039778.69032.ab
Gama J, 2010, CH CRC DATA MIN KNOW, P1
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Gonzalez-Pereira B., 2009, ARXIV09124141
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Haveliwala TH, 2003, IEEE T KNOWL DATA EN, V15, P784, DOI 10.1109/TKDE.2003.1208999
Holmes DE, 2012, INTEL SYST REF LIBR, V23, P1
Jacsó P, 2010, ONLINE INFORM REV, V34, P642, DOI 10.1108/14684521011073034
Leydesdorff L, 2010, J AM SOC INF SCI TEC, V61, P2365, DOI 10.1002/asi.21371
Li SS, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P414
LIEBOWITZ SJ, 1984, J ECON LIT, V22, P77
Loeliger HA, 2004, IEEE SIGNAL PROC MAG, V21, P28, DOI 10.1109/MSP.2004.1267047
Long X, 2009, IEEE ENG MED BIO, P6107, DOI 10.1109/IEMBS.2009.5334925
Campanario JM, 2009, SCIENTOMETRICS, V81, P859, DOI 10.1007/s11192-008-2257-7
Poelmans J, 2010, LECT NOTES ARTIF INT, V6208, P139, DOI 10.1007/978-3-642-14197-3_15
Prinzie A, 2007, LECT NOTES COMPUT SC, V4653, P349
Ridgeway G., 2007, Update, V1, P2007, DOI DOI 10.1111/J.1467-9752.1996.TB00390.X
Scientific T., 2007, Science Citation Index and Journal Citation Report
Shaheen M., 2012, KNOWLEDGE BASED SYST
SHAHEEN M, 2010, P IASTED ART INT APP, P394
Shaheen M, 2011, KNOWL-BASED SYST, V24, P1159, DOI 10.1016/j.knosys.2011.04.016
Shaheen M, 2011, ARTIF INTELL REV, V35, P1, DOI 10.1007/s10462-010-9180-z
Sombatsompop N, 2004, SCIENTOMETRICS, V60, P217, DOI 10.1023/B:SCIE.0000027794.98854.f6
Vanclay JK, 2011, J INFORMETR, V5, P265, DOI 10.1016/j.joi.2010.12.001
Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07
Wang Shuliang, 2012, SPRINGER HDB GEOGRAP, P49
Zhang S., 2012, KNOWLEDGE DISCOVERY
NR 40
TC 4
Z9 5
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2164-7046
BN 978-1-908320-20-9
J9 INT CONF INTERNET
PY 2013
BP 259
EP 264
PG 6
WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BC1AN
UT WOS:000349902500038
DA 2024-09-05
ER
PT J
AU Wang, YB
Ding, D
AF Wang, Yanbing
Ding, Ding
TI Deep Learning Algorithm Research and Performance Optimization of
Financial Treasury Big Data Monitoring Platform
SO INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS
LA English
DT Article
DE Deep learning; financial database big data monitoring; algorithm
research; performance optimization
AB With the rapid development of information technology and the advent of the digital age, the management of fiscal treasury is facing unprecedented challenges and opportunities. In order to improve the efficiency and effectiveness of deep learning algorithms in the financial and treasury big data monitoring platform, this paper further studies the performance optimization methods of the model. This paper deeply studies deep learning algorithm research and performance optimization of financial Treasury big data monitoring platforms. This paper reviews the basic concepts, methods, and applications of deep learning and their application in the financial database big data monitoring platform. In the financial Treasury big data monitoring platform, deep learning algorithms are widely used in image recognition, natural language processing, recommendation systems and other fields. This article first conducts in-depth theoretical research on deep learning algorithms, including various neural network structures (such as convolutional neural network CNN, recurrent neural network RNN, etc.), optimization algorithms (such as gradient descent method and its variants), regularization techniques, etc. In addition, we also studied the practical applications of deep learning in fields such as image processing, natural language processing, and recommendation systems. In order to verify the effectiveness of deep learning algorithms in the financial and treasury big data monitoring platform, we designed corresponding experiments. These experiments include using deep learning algorithms for image recognition of financial documents, natural language processing, and building recommendation systems. We collected real fiscal treasury data as the experimental dataset and preprocessed and annotated the data.
C1 [Wang, Yanbing] Huishang Vocat Coll, Dept Elect Informat, Hefei 231201, Peoples R China.
[Ding, Ding] AnHui Audit Coll, Hefei 230601, Peoples R China.
RP Ding, D (corresponding author), AnHui Audit Coll, Hefei 230601, Peoples R China.
FU Natural Science Foundation of Anhui Provincial [2023AH053112]
FX This work was sponsored by Natural Science Foundation of Anhui
Provincial (2023AH053112) .
CR Ahmad A, 2023, SMART AGR TECHNOL, V3, DOI 10.1016/j.atech.2022.100083
de Oliveira RA, 2023, ELECTR POW SYST RES, V214, DOI 10.1016/j.epsr.2022.108887
Nguyen DK, 2023, EUR FINANC MANAG, V29, P517, DOI 10.1111/eufm.12365
Isert C, 2023, CURR OPIN STRUC BIOL, V79, DOI 10.1016/j.sbi.2023.102548
de Paz JCL, 2023, J BANK REGUL, V24, P146, DOI 10.1057/s41261-022-00189-1
Lee I, 2020, BUS HORIZONS, V63, P157, DOI 10.1016/j.bushor.2019.10.005
Li Chaoyang, 2023, 2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT), P557, DOI 10.1109/ICEICT57916.2023.10245041
Mohammed A, 2023, J KING SAUD UNIV-COM, V35, P757, DOI 10.1016/j.jksuci.2023.01.014
Narayan V., 2023, 2023 INT C ART INT S, P763, DOI [10.1109/AISC56616.2023.10085665, DOI 10.1109/AISC56616.2023.10085665]
Narayan V, 2023, J SENSORS, V2023, DOI 10.1155/2023/8276738
Novakovsky G, 2023, NAT REV GENET, V24, P125, DOI 10.1038/s41576-022-00532-2
Polak P, 2020, AI SOC, V35, P715, DOI 10.1007/s00146-019-00919-6
Sharifani K., 2023, World Information Technology and Engineering Journal, V10, P3897
Sun YL, 2023, CHINA FINANC REV INT, V13, P183, DOI 10.1108/CFRI-11-2021-0222
Wu YH, 2022, ECON RES-EKON ISTRAZ, DOI 10.1080/1331677X.2022.2106278
Xiang HY, 2023, PATTERN RECOGN, V134, DOI 10.1016/j.patcog.2022.109046
Zamani ED, 2023, ANN OPER RES, V327, P605, DOI 10.1007/s10479-022-04983-y
Zhou HJ, 2020, CMC-COMPUT MATER CON, V64, P1091, DOI 10.32604/cmc.2020.09834
NR 18
TC 0
Z9 0
U1 0
U2 0
PU SCIENCE & INFORMATION SAI ORGANIZATION LTD
PI WEST YORKSHIRE
PA 19 BOLLING RD, BRADFORD, WEST YORKSHIRE, 00000, ENGLAND
SN 2158-107X
EI 2156-5570
J9 INT J ADV COMPUT SC
JI Int. J. Adv. Comput. Sci. Appl.
PD JUN
PY 2024
VL 15
IS 6
BP 322
EP 331
PG 10
WC Computer Science, Theory & Methods
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA ZT9D4
UT WOS:001277649400001
DA 2024-09-05
ER
PT J
AU Serenko, A
Dohan, M
AF Serenko, Alexander
Dohan, Michael
TI Comparing the expert survey and citation impact journal ranking methods:
Example from the field of Artificial Intelligence
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Artificial Intelligence; Journal ranking; Academic journal; Google
Scholar; Survey; Citation impact; H-index; G-index; Hc-index
ID MANAGEMENT JOURNALS; GLOBAL PERCEPTIONS; BUSINESS; QUALITY; PEER;
SCHOLARSHIP; RESEARCHERS; DECISION; SCIENCE; FACULTY
AB The purpose of this study is to: (1) develop a ranking of peer-reviewed AI journals; (2) compare the consistency of journal rankings developed with two dominant ranking techniques, expert surveys and journal impact measures; and (3) investigate the consistency of journal ranking scores assigned by different categories of expert judges. The ranking was constructed based on the survey of 873 active AI researchers who ranked the overall quality of 182 peer-reviewed AI journals. It is concluded that expert surveys and citation impact journal ranking methods cannot be used as substitutes. Instead, they should be used as complementary approaches. The key problem of the expert survey ranking technique is that in their ranking decisions, respondents are strongly influenced by their current research interests. As a result, their scores merely reflect their present research preferences rather than an objective assessment of each journal's quality. In addition, the application of the expert survey method favors journals that publish more articles per year. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Serenko, Alexander] Lakehead Univ, Fac Business Adm, Thunder Bay, ON P7B 5E1, Canada.
[Dohan, Michael] McMaster Univ, DeGroote Sch Business, Hamilton, ON L8S 4M4, Canada.
C3 Lakehead University; McMaster University
RP Serenko, A (corresponding author), Lakehead Univ, Fac Business Adm, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada.
EM aserenko@lakeheadu.ca; dohanms@mcmaster.ca
RI Serenko, Alexander/AAT-2082-2020
OI Serenko, Alexander/0000-0003-4881-2932
CR Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181
[Anonymous], 2003, J INFORM TECHNOLOGY
[Anonymous], 2010, NED TIJDSCHR GENEES
Bharati P, 2002, COMMUN ACM, V45, P21
Bonev I., 2009, SHOULD WE TAKE J IMP
Bontis N, 2009, J KNOWL MANAG, V13, P16, DOI 10.1108/13673270910931134
Butler L, 2002, SCIENTOMETRICS, V53, P207, DOI 10.1023/A:1014852424715
Calver MC, 2009, SCIENTOMETRICS, V81, P611, DOI 10.1007/s11192-008-2229-y
Catling JC, 2009, SCIENTOMETRICS, V81, P333, DOI 10.1007/s11192-009-2124-1
Cheng CH, 1996, AI MAG, V17, P87
CHENG CH, 1994, IEEE EXPERT, V9, P7, DOI 10.1109/64.363256
COE R, 1984, ACAD MANAGE J, V27, P660, DOI 10.2307/256053
Donohue JM, 2000, OMEGA-INT J MANAGE S, V28, P17, DOI 10.1016/S0305-0483(99)00024-9
DuBois FL, 2000, J INT BUS STUD, V31, P689, DOI 10.1057/palgrave.jibs.8490929
Dul J, 2005, HUM FACTOR ERGON MAN, V15, P327, DOI 10.1002/hfm.20029
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Elkins MR, 2010, SCIENTOMETRICS, V85, P81, DOI 10.1007/s11192-010-0262-0
Etzkowitz H., 2000, ATHENA UNBOUND ADV W
Forgionne GA, 2002, OMEGA-INT J MANAGE S, V30, P171, DOI 10.1016/S0305-0483(02)00025-7
Forgionne GA, 2001, INFORM MANAGE, V38, P421, DOI 10.1016/S0378-7206(00)00079-3
Fox MF, 2005, SOC STUD SCI, V35, P131, DOI 10.1177/0306312705046630
Franceschet M, 2010, J INFORMETR, V4, P239, DOI 10.1016/j.joi.2009.12.002
Frandsen TF, 2007, J INFORMETR, V1, P47, DOI 10.1016/j.joi.2006.09.002
Gillenson M., 2008, P 14 AM C INF SYST T
GILLENSON ML, 1991, MIS QUART, V15, P447, DOI 10.2307/249448
Goldstein HA, 2006, J PLAN EDUC RES, V26, P66, DOI 10.1177/0739456X05282353
GOMEZMEJIA LR, 1992, ACAD MANAGE J, V35, P921, DOI 10.5465/256535
Goodyear RK, 2009, EDUC RESEARCHER, V38, P700, DOI 10.3102/0013189X09354778
GORDON MD, 1982, J AM SOC INFORM SCI, V33, P55, DOI 10.1002/asi.4630330109
Haddow G, 2010, SCIENTOMETRICS, V85, P471, DOI 10.1007/s11192-010-0198-4
Harzing A., 2008, Ethics in Science and Environmental Politics, V8, P61, DOI [DOI 10.3354/ESEP00076, 10.3354/esep00076]
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
HOLSAPPLE CW, 1995, DECIS SUPPORT SYST, V14, P359, DOI 10.1016/0167-9236(94)00022-K
Jackson KF, 2010, RES SOCIAL WORK PRAC, V20, P260, DOI 10.1177/1049731509347862
Kao C, 2008, SCIENTOMETRICS, V76, P95, DOI 10.1007/s11192-007-1895-5
Korevaar JC, 1996, SCIENTOMETRICS, V37, P117, DOI 10.1007/BF02093488
Lewison G, 2002, SCIENTOMETRICS, V53, P229, DOI 10.1023/A:1014804608785
Lowry P., 2004, J ASSOC INF SYST, V5, P29, DOI DOI 10.17705/1JAIS.00045
Lowry PB, 2007, IEEE T PROF COMMUN, V50, P352, DOI 10.1109/TPC.2007.908733
Maier G, 2006, SCIENTOMETRICS, V69, P651, DOI 10.1007/s11192-006-0175-0
Manning LM, 2005, CAN J ADM SCI, V22, P273
MCALLISTER PR, 1980, J AM SOC INFORM SCI, V31, P147, DOI 10.1002/asi.4630310304
McCarthy J., 1958, Proceedings of the Symposium on the Mechanization of Thought Processes, P77
McCarthy J., 1956, AUTOMATA STUDIES, P177
Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677
Mingers J, 2007, EUR J INFORM SYST, V16, P303, DOI 10.1057/palgrave.ejis.3000696
Mittal V, 2008, MARKET SCI, V27, P430, DOI 10.1287/mksc.1080.0361
Mylonopoulos NA, 2001, COMMUN ACM, V44, P29, DOI 10.1145/383694.383701
Nederhof AJ, 2001, SCIENTOMETRICS, V51, P241, DOI 10.1023/A:1010533232688
O'Brien JP, 2010, ACAD MANAG LEARN EDU, V9, P638, DOI 10.5465/AMLE.2010.56659881
Olson JE, 2005, INTERFACES, V35, P323, DOI 10.1287/inte.1050.0149
Peritz BC, 2002, SCIENTOMETRICS, V54, P269, DOI 10.1023/A:1016018013096
Rogers P.S., 2007, J BUS COMMUN, V44, P403, DOI 10.1177/0021943607306138
Rousseau R, 1999, SCIENTOMETRICS, V44, P521, DOI 10.1007/BF02458493
Rousseau S, 2008, SCIENTOMETRICS, V77, P223, DOI 10.1007/s11192-007-1980-9
Saha S, 2003, J MED LIBR ASSOC, V91, P42
Schloegl C, 2004, J AM SOC INF SCI TEC, V55, P1155, DOI 10.1002/asi.20070
SEGLEN PO, 1992, J AM SOC INFORM SCI, V43, P628, DOI 10.1002/(SICI)1097-4571(199210)43:9<628::AID-ASI5>3.0.CO;2-0
Seglen PO, 1997, BRIT MED J, V314, P498
Sellers SL, 2004, J SOC WORK EDUC, V40, P143, DOI 10.1080/10437797.2004.10778484
Serenko Alexander, 2009, International Journal of Business Governance and Ethics, V4, P390, DOI 10.1504/IJBGE.2009.023790
Serenko A, 2011, J INFORMETR, V5, P219, DOI 10.1016/j.joi.2010.07.005
Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001
Serenko A, 2009, J KNOWL MANAG, V13, P4, DOI 10.1108/13673270910931125
Sevinc A, 2004, SWISS MED WKLY, V134, P410
Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z
Sonderstrup-Andersen EM, 2008, SCIENTOMETRICS, V76, P391, DOI 10.1007/s11192-007-1924-4
Starbuck WH, 2005, ORGAN SCI, V16, P180, DOI 10.1287/orsc.1040.0107
Suchan J., 2008, J BUS COMMUN, V45, P349
Tahai A, 1999, STRATEGIC MANAGE J, V20, P279
Thomas PR, 1998, SCIENTOMETRICS, V41, P335, DOI 10.1007/BF02459050
Truex D, 2009, J ASSOC INF SYST, V10, P560
Vanclay JK, 2008, J INFORMETR, V2, P326, DOI 10.1016/j.joi.2008.07.002
Walstrom KA, 2001, INFORM MANAGE, V39, P117, DOI 10.1016/S0378-7206(01)00084-2
NR 74
TC 61
Z9 65
U1 0
U2 70
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD OCT
PY 2011
VL 5
IS 4
BP 629
EP 648
DI 10.1016/j.joi.2011.06.002
PG 20
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 841PI
UT WOS:000296524200014
DA 2024-09-05
ER
PT J
AU Goepp, V
Matta, N
Caillaud, E
Feugeas, F
AF Goepp, Virginie
Matta, Nada
Caillaud, Emmanuel
Feugeas, Francoise
TI Systematic community of Practice activities evaluation through Natural
Language Processing: application to research projects
SO AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND
MANUFACTURING
LA English
DT Article
DE Community of practice; Natural Language Processing; performance
evaluation; pragmatics; research project
AB Community of Practice (CoP) efficiency evaluation is a great deal in research. Indeed, having the possibility to know if a given CoP is successful or not is essential to better manage it over time. The existing approaches for efficiency evaluation are difficult and time-consuming to put into action on real CoPs. They require either to evaluate subjective constructs making the analysis unreliable, either to work out a knowledge interaction matrix that is difficult to set up. However, these approaches build their evaluation on the fact that a CoP is successful if knowledge is exchanged between the members. It is the case if there are some interactions between the actors involved in the CoP. Therefore, we propose to analyze these interactions through the exchanges of emails thanks to Natural Language Processing. Our approach is systematic and semi-automated. It requires the e-mails exchanged and the definition of the speech-acts that will be retrieved. We apply it on a real project-based CoP: the SEPOLBE research project that involves different expertise fields. It allows us to identify the CoP core group and to emphasize learning processes between members with different backgrounds (Microbiology, Electrochemistry and Civil engineering).
C1 [Goepp, Virginie; Feugeas, Francoise] INSA Strasbourg, Icube 24, F-67084 Strasbourg, France.
[Matta, Nada] Univ Technol Troyes, TechCICO 12 Rue Marie Curie CS 42060, F-10004 Troyes, France.
[Caillaud, Emmanuel] Unistra, ICube 3,Rue Univ, F-67084 Strasbourg, France.
C3 Universites de Strasbourg Etablissements Associes; Universite de
Strasbourg; Universite de Technologie de Troyes
RP Goepp, V (corresponding author), INSA Strasbourg, Icube 24, F-67084 Strasbourg, France.
EM virginie.goepp@insa-strasbourg.fr
RI Caillaud, Emmanuel/O-7735-2019
OI Caillaud, Emmanuel/0000-0002-9198-6041; GOEPP,
Virginie/0000-0003-2294-7919
CR [Anonymous], 2011, 2011149536 WHO APW, V1, P22
Austin JohnLangshaw., 1975, How to Do Things with Words, V367
Baron NS, 1998, LANG COMMUN, V18, P133, DOI 10.1016/S0271-5309(98)00005-6
Borzillo S, 2011, KNOWL MAN RES PRACT, V9, P353, DOI 10.1057/kmrp.2011.13
Brown JS, 1991, ORGAN SCI, V2, P40, DOI 10.1287/orsc.2.1.40
Carvalho V.R., 2006, ACTS 09 P HLT NAACL, P35
Chu MT, 2009, EXPERT SYST APPL, V36, P1549, DOI 10.1016/j.eswa.2007.11.053
Corney M, 2002, 18 COMP SEC APPL C L
Cox A, 2005, J INF SCI, V31, P527, DOI 10.1177/0165551505057016
Felice RD, 2012, IDENTIFYING SPEECH A
Goepp V, 2014, ADV PRODUCTION MANAG
Guanting Tang, 2014, Knowledge and Information Systems, V41, P1, DOI 10.1007/s10115-013-0658-2
Guptill Janet, 2005, J Health Care Finance, V31, P10
Jeon SH, 2011, EXPERT SYST APPL, V38, P12423, DOI 10.1016/j.eswa.2011.04.023
Kalia A, 2013, IDENTIFYING BUSINESS
Kim SJ, 2012, EXPERT SYST APPL, V39, P13093, DOI 10.1016/j.eswa.2012.05.092
Lampert A, 2010, 11 ANN C N AM CHAPT, P984
Lave J., 1991, Situated learning: Legitimate peripheral participation
Lee J, 2010, EXPERT SYST APPL, V37, P2670, DOI 10.1016/j.eswa.2009.08.011
Lesser E., 2001, IVEY BUSINESS J, V65, P37
Levinson Stephen., 2000, PRAGMATICS
McDermott R., 2004, KM REV, V7, P10
McDermott R., 2000, KNOWLEDGE MANAGEMENT, V3, P16
Nonaka I., 1995, The knowledge-creating company: How Japanese companies create the dynamics of innovation
Probst Gilbert, 2008, European Management Journal, V26, P335, DOI 10.1016/j.emj.2008.05.003
Rauscher F, 2016, 8 IFAC C MAN MOD MAN
Richard J-F., 1990, MENTAL ACTIVITIES UN
Wenger E, 2000, ORGANIZATION, V7, P225, DOI 10.1177/135050840072002
Wenger E., 2002, CULTIVATING COMMUNIT
Wenger E., 2009, COMMUNITIES PRACTICE
Wenger EC, 2000, HARVARD BUS REV, V78, P139
Yelati S., 2011, 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies, P369, DOI 10.1109/WI-IAT.2011.71
Zack MH, 1999, CALIF MANAGE REV, V41, P125, DOI 10.2307/41166000
NR 33
TC 1
Z9 1
U1 1
U2 9
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0890-0604
EI 1469-1760
J9 AI EDAM
JI AI EDAM-Artif. Intell. Eng. Des. Anal. Manuf.
PD MAY
PY 2019
VL 33
IS 2
SI SI
BP 160
EP 171
DI 10.1017/S0890060419000076
PG 12
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Engineering, Multidisciplinary;
Engineering, Manufacturing
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering
GA ID8ZV
UT WOS:000471978100006
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Si, YT
AF Si, Yutong
TI Co-authorship in energy justice studies: Assessing research
collaboration through social network analysis and topic modeling
SO ENERGY STRATEGY REVIEWS
LA English
DT Article; Proceedings Paper
CT Conference on Energy Modelling Platform for Europe (EMP-E) on Modelling
the implementation of a Clean Planet for All Strategy
CY OCT 08-09, 2019
CL Brussels, BELGIUM
DE Energy justice; Co-authorship; Social network analysis; Topic modeling;
Giant component
AB Diverse research collaboration is important to perform innovative science and drive transformational change. In the field of energy justice, the need for transformative team science is no longer bigger, given the urgency of a just energy transition. This study is the first research utilizing social network analysis (SNA) and computational methods to understand the structure of scientific collaboration networks around energy justice, while also exploring existing research topics in the field. The bibliographic data were obtained from Web of Science (1975-2021), including the information of 192 journal articles. Based on the linear regression quadratic assignment procedure (LR-QAP), this study shows that pairs of authors who share the same country (i.e., where an author's institution/affiliation is located) are significantly more likely to collaborate with each other. In addition, according to different actor-level centrality measures, this paper identifies the top four leading authors, who are all within the giant component of the network (about 17.07% of all nodes). Results of topic modeling also show that the articles authored or coauthored by the scholars involved in the giant component can capture all identified topics, suggesting the efficacy of the giant component and the significant impact of leading scientists on shaping hot research topics in the field. This study calls for more research collaboration across different countries in the energy justice research community, which can result in more comparative studies, especially the ones exploring energy justice issues between developing and developed countries. It also calls for a more decentralized network open to outside connections to diversify research collaboration, thus enriching research topics and advancing innovative work on energy justice.
C1 [Si, Yutong] Northeastern Univ, Sch Publ Policy & Urban Affairs, Boston, MA 02115 USA.
C3 Northeastern University
RP Si, YT (corresponding author), Northeastern Univ, Sch Publ Policy & Urban Affairs, Boston, MA 02115 USA.
EM si.yut@northeastern.edu
RI Si, Yutong/ABD-2240-2021
OI Si, Yutong/0000-0002-4937-1721
CR Baker S., 2021, REVOLUTIONARY POWER
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Chae B, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10072231
Fagan J, 2018, J RES ADMIN, V49, P76
Fonseca BDFE, 2016, HEALTH RES POLICY SY, V14, DOI 10.1186/s12961-016-0104-5
FREEMAN LC, 1980, SOC NETWORKS, V2, P119, DOI 10.1016/0378-8733(79)90002-9
Gielen D, 2019, ENERGY STRATEG REV, V24, P38, DOI 10.1016/j.esr.2019.01.006
Gillard R, 2017, ENERGY RES SOC SCI, V29, P53, DOI 10.1016/j.erss.2017.05.012
Healy N, 2019, ENERGY RES SOC SCI, V48, P219, DOI 10.1016/j.erss.2018.09.016
Higaki A, 2020, INT J MED INFORM, V143, DOI 10.1016/j.ijmedinf.2020.104274
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jenkins K, 2018, ENERGY RES SOC SCI, V39, P117, DOI 10.1016/j.erss.2017.11.015
Jenkins K, 2016, ENERGY RES SOC SCI, V11, P174, DOI 10.1016/j.erss.2015.10.004
Jenkins KEH, 2021, ENVIRON RES LETT, V16, DOI 10.1088/1748-9326/abd78c
Jenkins KEH, 2020, ENERGY RES SOC SCI, V69, DOI 10.1016/j.erss.2020.101727
KILDUFF M, 1994, ACAD MANAGE J, V37, P87, DOI 10.5465/256771
KRACKHARDT D, 1988, SOC NETWORKS, V10, P359, DOI 10.1016/0378-8733(88)90004-4
Kumar S, 2016, ASLIB J INFORM MANAG, V68, P19, DOI 10.1108/AJIM-12-2014-0172
Kumar S, 2015, ASLIB J INFORM MANAG, V67, P55, DOI 10.1108/AJIM-09-2014-0116
McCauley D, 2018, ENERG POLICY, V119, P1, DOI 10.1016/j.enpol.2018.04.014
Molose R., 2021, 2021 INT C EL COMP E, P1, DOI [10.1007/978-3-030-67044-3_1, DOI 10.1007/978-3-030-67044-3_1]
Moody J, 2004, AM SOCIOL REV, V69, P213, DOI 10.1177/000312240406900204
Pellegrini-Masini G, 2020, ENERGY RES SOC SCI, V59, DOI 10.1016/j.erss.2019.101310
Pinheiro ML, 2016, INT J PROJ MANAG, V34, P1519, DOI 10.1016/j.ijproman.2016.07.006
Scott J., 2011, The sage handbook on social network analysis
Si YT, 2021, FRONT SUSTAIN CITIES, V3, DOI 10.3389/frsc.2021.632020
Sovacool BK, 2021, ENERGY RES SOC SCI, V73, DOI 10.1016/j.erss.2021.101916
Sovacool BK, 2017, ENERG POLICY, V105, P677, DOI 10.1016/j.enpol.2017.03.005
Sovacool BK, 2016, NAT ENERGY, V1, DOI 10.1038/NENERGY.2016.24
Sovacool BK, 2015, APPL ENERG, V142, P435, DOI 10.1016/j.apenergy.2015.01.002
Stephens J., 2020, DIVERSIFYING POWER W
Tekles A, 2020, QUANT SCI STUD, V1, P1510, DOI 10.1162/qss_a_00081
Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099
Yousefi-Nooraie Reza, 2008, Health Res Policy Syst, V6, P9, DOI 10.1186/1478-4505-6-9
NR 35
TC 6
Z9 7
U1 1
U2 13
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2211-467X
EI 2211-4688
J9 ENERGY STRATEG REV
JI Energy Strateg. Rev.
PD MAY
PY 2022
VL 41
AR 100859
DI 10.1016/j.esr.2022.100859
EA MAY 2022
PG 10
WC Energy & Fuels
WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S)
SC Energy & Fuels
GA 5U9HO
UT WOS:000876851000001
OA gold
DA 2024-09-05
ER
PT C
AU Rizvi, STR
Lucieri, A
Dengel, A
Ahmed, S
AF Rizvi, Syed Tahseen Raza
Lucieri, Adriano
Dengel, Andreas
Ahmed, Sheraz
GP IEEE
TI Benchmarking Object Detection Networks for Image based Reference
Detection in Document Images
SO 2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA)
LA English
DT Proceedings Paper
CT APRS International Conference on Digital Image Computing - Techniques
and Applications (DICTA)
CY DEC 02-04, 2019
CL Perth, AUSTRALIA
DE bibliographic reference detection; Image based Reference Detection;
Benchmarking; Convolutional Neural Networks
AB In this paper we study the performance evaluation of state-of-the-art object detection models for the task of bibliographic reference detection from document images. The motivation of evaluating object detection models for the task in hand is inspired from how human perceive a document containing bibliographic references. Humans can easily distinguish between different references just by exploiting the layout with a glimpse of an eye, without understanding the content. Existing state-of-the-art systems for bibliographic reference detection are purely based on textual content. By contrast, we employed four state-of-the art object detection models and compared their performance with state-of-the-art text based reference extraction models. Evaluations are performed on the publicly available dataset (ICONIP) for image based reference detection, containing 455 scanned bibliographic documents with 8766 references from Social Sciences books and journals. Evaluation results reveal the superiority of image based methods for the task of reference detection in document images.
C1 [Rizvi, Syed Tahseen Raza; Dengel, Andreas] Tech Univ Kaiserslautern, Kaiserslautern, Germany.
[Rizvi, Syed Tahseen Raza; Lucieri, Adriano; Dengel, Andreas; Ahmed, Sheraz] German Res Ctr Artificial Intelligence DFKI, Kaiserslautern, Germany.
C3 University of Kaiserslautern; German Research Center for Artificial
Intelligence (DFKI)
RP Rizvi, STR (corresponding author), Tech Univ Kaiserslautern, Kaiserslautern, Germany.; Rizvi, STR (corresponding author), German Res Ctr Artificial Intelligence DFKI, Kaiserslautern, Germany.
EM syed_tahseen_raza.rizvi@dfki.de; adriano.lucieri@dfki.de;
andreas.dengel@dfki.de; sheraz.ahmed@dfki.de
RI Lucieri, Adriano/KFS-5924-2024
OI Lucieri, Adriano/0000-0003-1473-4745; Rizvi, Syed Tahseen
Raza/0000-0002-4359-4772
CR Bhardwaj A., 2018, ICONIP DATASAET LABE
Bhardwaj A, 2017, LECT NOTES COMPUT SC, V10635, P286, DOI 10.1007/978-3-319-70096-0_30
Chen CC, 2008, 2008 22ND INTERNATIONAL WORKSHOPS ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOLS 1-3, P1175, DOI 10.1109/WAINA.2008.125
Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661
Dai JF, 2017, IEEE I CONF COMP VIS, P764, DOI 10.1109/ICCV.2017.89
Dai J, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1796, DOI 10.1109/ICIT.2016.7475036
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
Girshick R, 2015, IEEE I CONF COMP VIS, P1440, DOI 10.1109/ICCV.2015.169
HE KM, 2016, PROC CVPR IEEE, P770, DOI DOI 10.1109/CVPR.2016.90
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning
Lauscher A, 2018, ACM-IEEE J CONF DIG, P109, DOI 10.1145/3197026.3197050
Lin T.-Y., 2017, ICCV, DOI [DOI 10.1109/CVPR.2017.106, 10.1109/CVPR.2017.106]
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
Madriles C, 2009, CONF PROC INT SYMP C, P474, DOI 10.1145/1555815.1555813
Prasad A, 2018, INT J DIGIT LIBRARIE, V19, P323, DOI 10.1007/s00799-018-0242-1
Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031
Russakovsky O, 2015, INT J COMPUT VISION, V115, P211, DOI 10.1007/s11263-015-0816-y
Smith R, 2007, PROC INT CONF DOC, P629, DOI 10.1109/icdar.2007.4376991
Tkaczyk D., 2018, ABS181110369 ARXIV
Tkaczyk D, 2018, ACM-IEEE J CONF DIG, P99, DOI 10.1145/3197026.3197048
Tkaczyk D, 2015, INT J DOC ANAL RECOG, V18, P317, DOI 10.1007/s10032-015-0249-8
Zou J, 2010, INT J DOC ANAL RECOG, V13, P107, DOI 10.1007/s10032-009-0105-9
NR 23
TC 6
Z9 6
U1 0
U2 8
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-3857-2
PY 2019
BP 400
EP 407
DI 10.1109/dicta47822.2019.8945991
PG 8
WC Computer Science, Theory & Methods; Imaging Science & Photographic
Technology
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Imaging Science & Photographic Technology
GA BO8QY
UT WOS:000529063300056
DA 2024-09-05
ER
PT J
AU WOELFEL, J
AF WOELFEL, J
TI ARTIFICIAL NEURAL NETWORKS IN POLICY RESEARCH - A CURRENT ASSESSMENT
SO JOURNAL OF COMMUNICATION
LA English
DT Article
ID BACK PROPAGATION
AB Recent advances in neuroscience, computer science, psychology, and other fields have led to the development of computer programs that are modeled, in principle, on idealizations Of organic neural structures. These artificial neural networks (ANNs) exhibit important properties that promise great usefulness for policy researchers. Most important among these are ANNs' ability to learn to identify complex patterns of information and to associate them with other patterns. Furthermore, like their biological predecessors, ANNs can recognize and recall these patterns and associations in spite of noisy, incomplete, or otherwise defective information inputs. ANNs can also generalize information learned about one or more patterns to other related patterns. As a result, ANNs have already found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis, and are developing an extensive community of advocates for processing text and other qualitative information.
C1 SUNY BUFFALO,ROCKFELLER INST GOVT,BUFFALO,NY 14260.
C3 State University of New York (SUNY) System; State University of New York
(SUNY) Buffalo
RP WOELFEL, J (corresponding author), SUNY BUFFALO,DEPT COMMUN,BUFFALO,NY 14260, USA.
CR [Anonymous], 1986, Parallel Distributed Processing Explorations in the Microstructure of Cognition Volume 1: Foundations
ARMSTRONG GB, 1993, J COMMUN, V43, P81, DOI 10.1111/j.1460-2466.1993.tb01250.x
BURGATTI S, 1992, UCINET 4 NETWORK ANA
CARPENTER GA, 1987, APPL OPTICS, V26, P4919, DOI 10.1364/AO.26.004919
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
DISPENZA G, 1992, JUN ADV RES TECHN FO
FUNAHASHI K, 1989, NEURAL NETWORKS, V2, P183, DOI 10.1016/0893-6080(89)90003-8
HEBB DO, 1949, ORG BEHAVIOR
JACOBS RA, 1988, NEURAL NETWORKS, V1, P295, DOI 10.1016/0893-6080(88)90003-2
KOHONEN T, 1982, BIOL CYBERN, V43, P59, DOI 10.1007/BF00337288
KOHONEN T, 1986, SELF ORG ASS MEMORY
KOSKO B, 1989, JUN INT JOINT C NEUR
KURKOVA V, 1992, NEURAL NETWORKS, V5, P501, DOI 10.1016/0893-6080(92)90012-8
LEIMAN J, 1992, JUN ADV RES TECHN FO
McClelland J., 1987, Learning Internal Representations by Error Propagation, V1, P318
Richards W.W., 1989, NEGOPY NETWORK ANAL
RIGLER AK, 1991, NEURAL NETWORKS, V4, P225, DOI 10.1016/0893-6080(91)90006-Q
TOLLENAERE T, 1990, NEURAL NETWORKS, V3, P561, DOI 10.1016/0893-6080(90)90006-7
VANOOYEN A, 1992, NEURAL NETWORKS, V5, P465, DOI 10.1016/0893-6080(92)90008-7
VOGL TP, 1988, NEURAL NETWORKS, V3, P561
WASSMAN DA, 1992, JUN ADV RES TECHN FO
Werbos Paul., 1974, New tools for prediction and analysis in the behavioral sciences
WOELFEL J, 1992, CATPAC USER MANUAL
Woelfel J.D., 1980, MEASUREMENT COMMUNIC
1992, APPLYING NEURAL NETW
NR 25
TC 43
Z9 53
U1 0
U2 7
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513
SN 0021-9916
J9 J COMMUN
JI J. Commun.
PD WIN
PY 1993
VL 43
IS 1
BP 63
EP 80
DI 10.1111/j.1460-2466.1993.tb01249.x
PG 18
WC Communication
WE Social Science Citation Index (SSCI)
SC Communication
GA KP598
UT WOS:A1993KP59800005
DA 2024-09-05
ER
PT J
AU Pillai, M
Griffin, AC
Kronk, CA
McCall, T
AF Pillai, Malvika
Griffin, Ashley C.
Kronk, Clair A.
McCall, Terika
TI Toward Community-Based Natural Language Processing (CBNLP): Cocreating
With Communities
SO JOURNAL OF MEDICAL INTERNET RESEARCH
LA English
DT Article
DE ChatGPT; natural language processing; community-based participatory
research; research design; artificial intelligence; participatory;
co-design; machine learning; co-creation; community based; lived
experience; lived experiences; collaboration; collaborative
ID PARTICIPATORY RESEARCH; ENGAGEMENT; BIAS
AB Rapid development and adoption of natural language processing (NLP) techniques has led to a multitude of exciting and innovative societal and health care applications. These advancements have also generated concerns around perpetuation of historical injustices and that these tools lack cultural considerations. While traditional health care NLP techniques typically include clinical subject matter experts to extract health information or aid in interpretation, few NLP tools involve community stakeholders with lived experiences. In this perspective paper, we draw upon the field of community-based participatory research, which gathers input from community members for development of public health interventions, to identify and examine ways to equitably involve communities in developing health care NLP tools. To realize the potential of community-based NLP (CBNLP), research and development teams must thoughtfully consider mechanisms and resources needed to effectively collaborate with community members for maximal societal and ethical impact of NLP-based tools.
C1 [Pillai, Malvika] Stanford Univ, Sch Med, Ctr Biomed Informat Res, Stanford, CA USA.
[Pillai, Malvika; Griffin, Ashley C.] Vet Affairs Palo Alto Hlth Care Syst, Palo Alto, CA USA.
[Griffin, Ashley C.] Stanford Univ, Sch Med, Dept Hlth Policy, Stanford, CA USA.
[Kronk, Clair A.; McCall, Terika] Yale Sch Med, Ctr Med Informat, New Haven, CT USA.
[McCall, Terika] Yale Sch Publ Hlth, Dept Biostat, Div Hlth Informat, New Haven, CT USA.
[McCall, Terika] Yale Sch Med, Sect Biomed Informat & Data Sci, New Haven, CT USA.
[Pillai, Malvika] Stanford Univ, Sch Med, Ctr Biomed Informat Res, 1265 Welch Rd, Stanford, CA 94305 USA.
C3 Stanford University; US Department of Veterans Affairs; Veterans Health
Administration (VHA); VA Palo Alto Health Care System; Stanford
University; Yale University; Yale University; Yale University; Stanford
University
RP Pillai, M (corresponding author), Stanford Univ, Sch Med, Ctr Biomed Informat Res, 1265 Welch Rd, Stanford, CA 94305 USA.
EM mpillai@stanford.edu
OI Pillai, Malvika/0000-0001-8739-189X; McCall, Terika/0000-0002-8143-5393
FU Department of Veterans Affairs (VA) Big Data-Scientist Training
Enhancement Program; VA advanced fellowship in medical informatics;
National Library of Medicine [R01LM013477]
FX Acknowledgments MP is currently supported by the Department of Veterans
Affairs (VA) Big Data-Scientist Training Enhancement Program. ACG is
currently supported by a VA advanced fellowship in medical informatics.
The opinions expressed are those of the authors and not necessarily
those of the VA or those of the US government. TM is currently supported
by funding from the National Library of Medicine (award R01LM013477) .
The authors would like to thank Mary Peng for her support in creating
the community-based natural language processing framework figure.
CR [Anonymous], PAUS GIANT AI EXP OP
[Anonymous], COR VAL ETH SPECTR 3
[Anonymous], BLUEPR AI BILL RIGHT
[Anonymous], GOV GUID IMPL AI PRI
Benjamin R, 2019, SCIENCE, V366, P421, DOI 10.1126/science.aaz3873
Boberg S., 2020, arXiv, DOI DOI 10.1214/20-BA1223
Brizay U, 2015, J INT AIDS SOC, V18, DOI 10.7448/IAS.18.1.19354
Gordon ML, 2022, PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), DOI 10.1145/3491102.3502004
Hoffman KM, 2016, P NATL ACAD SCI USA, V113, P4296, DOI 10.1073/pnas.1516047113
Holkup PA, 2004, ADV NURS SCI, V27, P162, DOI 10.1097/00012272-200407000-00002
Hu K., Reuters
Israel B.A., 2018, Community -based Participatory Research for Health: Advancing Social and health Equity, P31
JACKSON F, 1982, PHILOS QUART, V32, P127, DOI 10.2307/2960077
Jang HJ, 2021, J MED INTERNET RES, V23, DOI 10.2196/25431
Jensen AC, 2022, J GEN INTERN MED, V37, P80, DOI 10.1007/s11606-021-06985-1
Kaye J, 2012, NAT REV GENET, V13, P371, DOI 10.1038/nrg3218
Kim I, 2022, CAN J CARDIOL, V38, P1865, DOI 10.1016/j.cjca.2022.09.009
Kwon SC, 2018, TRANSL BEHAV MED, V8, P683, DOI 10.1093/tbm/ibx026
McFarlane SJ, 2022, HEALTH COMMUN, V37, P1075, DOI 10.1080/10410236.2021.1943978
Mesko B, 2022, J MED INTERNET RES, V24, DOI 10.2196/39178
Mullan F, 2002, AM J PUBLIC HEALTH, V92, P1748, DOI 10.2105/AJPH.92.11.1748
Newman-Griffis D, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P4125
Rahman P, 2020, JMIR MED INF, V8, DOI 10.2196/19612
Samulowitz A, 2018, PAIN RES MANAG, V2018, DOI 10.1155/2018/6358624
Schoenthaler A, 2022, JAMA NETW OPEN, V5, DOI 10.1001/jamanetworkopen.2022.16281
Shmueli B, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P3758
Sylolypavan A, 2023, NPJ DIGIT MED, V6, DOI 10.1038/s41746-023-00773-3
Tamang S, 2023, JMIR MED INF, V11, DOI 10.2196/37805
Tyson A., 2023, 60 AM WOULD BE UNC P
Vaughn L., 2020, Journal of Participatory Research Methods, V1, DOI [DOI 10.35844/001C.13244, 10.35844/001c.13244]
Yang K, 2018, INT CONF MANAGE DATA, P1773, DOI 10.1145/3183713.3193568
NR 31
TC 1
Z9 1
U1 2
U2 7
PU JMIR PUBLICATIONS, INC
PI TORONTO
PA 130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA
SN 1438-8871
J9 J MED INTERNET RES
JI J. Med. Internet Res.
PD AUG 4
PY 2023
VL 25
AR e48498
DI 10.2196/48498
PG 10
WC Health Care Sciences & Services; Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Health Care Sciences & Services; Medical Informatics
GA P1EN0
UT WOS:001048139500001
PM 37540551
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Vallurupalli, V
Bose, I
AF Vallurupalli, Vamsi
Bose, Indranil
TI Exploring thematic composition of online reviews: A topic modeling
approach
SO ELECTRONIC MARKETS
LA English
DT Article
DE Latent Dirichlet allocation; Online reviews; Review influence; Thematic
content; Topic modeling; Yelp
AB Online reviews are a critical component of the retail business ecosystem today. They help consumers share feedback and readers make informed choices. As such, it is important to understand the mechanism driving the creation of reviews and identify factors which make them useful for readers. Extant work in this field has largely ignored the distribution of thematic content in reviews and its role in review diagnosticity. This article attempts to bridge the gap. A novel approach is proposed to explore the distribution of thematic content in reviews, in terms of underlying topics, and test its impact on influence of reviews. The approach is illustrated through a case study using data from Yelp. Implications of the study for theory and practice are discussed.
C1 [Vallurupalli, Vamsi; Bose, Indranil] Indian Inst Management Calcutta, Diamond Harbour Rd, Kolkata 700104, India.
C3 Indian Institute of Management (IIM System); Indian Institute of
Management Calcutta
RP Bose, I (corresponding author), Indian Inst Management Calcutta, Diamond Harbour Rd, Kolkata 700104, India.
EM vallurupalliv13@email.iimcal.ac.in; bose@iimcal.ac.in
CR Anderson M., 88 CONSUMERS TRUST O
[Anonymous], 2007, LIWC2007: Linguistic Inquiry and Word Count. Austin Tex
[Anonymous], P 27 INT C HUM FACT, DOI DOI 10.1145/1518701.1518848
Baek H, 2012, INT J ELECTRON COMM, V17, P99, DOI 10.2753/JEC1086-4415170204
Banerjee S, 2017, DECIS SUPPORT SYST, V96, P17, DOI 10.1016/j.dss.2017.01.006
Bearde WO., 2007, MARKETING
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Buettner R, 2017, ELECTRON MARK, V27, P247, DOI 10.1007/s12525-016-0228-z
Chen Z, 2013, J MARKETING RES, V50, P463, DOI 10.1509/jmr.12.0063
Corley JK, 2013, ELECTRON MARK, V23, P177, DOI 10.1007/s12525-012-0118-y
Debortoli S, 2016, COMMUN ASSOC INF SYS, V39, P110, DOI 10.17705/1CAIS.03907
DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004
Dimoka A, 2012, MIS QUART, V36, P395
Dyer T, 2017, J ACCOUNT ECON, V64, P221, DOI 10.1016/j.jacceco.2017.07.002
Elo S, 2008, J ADV NURS, V62, P107, DOI 10.1111/j.1365-2648.2007.04569.x
Evans J. R., 2002, MARKETING MARKETING
Forman C, 2008, INFORM SYST RES, V19, P291, DOI 10.1287/isre.1080.0193
Fu XH, 2013, KNOWL-BASED SYST, V37, P186, DOI 10.1016/j.knosys.2012.08.003
Gale T., GOODS SERVICES
Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188
Goes PB, 2014, INFORM SYST RES, V25, P222, DOI 10.1287/isre.2013.0512
Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009
Huang LQ, 2013, J MANAGE INFORM SYST, V30, P311, DOI 10.2753/MIS0742-1222300311
Jiang ZH, 2004, J MANAGE INFORM SYST, V21, P111, DOI 10.1080/07421222.2004.11045817
Kempf DS, 1998, J MARKETING RES, V35, P325, DOI 10.2307/3152031
Kuan KKY, 2015, J ASSOC INF SYST, V16, P48, DOI 10.17705/1jais.00386
Lee S, 2016, BEHAV INFORM TECHNOL, V35, P853, DOI 10.1080/0144929X.2016.1173099
LOVELOCK CH, 1983, J MARKETING, V47, P9, DOI 10.2307/1251193
Luca M, 2016, MANAGE SCI, V62, P3412, DOI 10.1287/mnsc.2015.2304
Lugmayr A, 2017, ELECTRON MARK, V27, P33, DOI 10.1007/s12525-016-0239-9
Ma BZ, 2013, J ELECTRON COMMER RE, V14, P304
Mudambi SM, 2010, MIS QUART, V34, P185
Pan Y, 2011, J RETAILING, V87, P598, DOI 10.1016/j.jretai.2011.05.002
Pavlou PA, 2007, MIS QUART, V31, P105
Podium, 2018, 2017 STAT ONL REV
Robinson D., 2017, Text Mining with R, V1st
Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858
Shi Z, 2016, MIS QUART, V40, P1035, DOI 10.25300/MISQ/2016/40.4.11
STEENKAMP JBEM, 1990, J BUS RES, V21, P309, DOI 10.1016/0148-2963(90)90019-A
Vallurupalli V., 2017, P 28 AUSTR C INF SYS
Wallach H.M., 2006, Proc. 23rd Int. Conf. Mach. Learn, P977984, DOI DOI 10.1145/1143844.1143967
Wan Y, 2015, ELECTRON MARK, V25, P313, DOI 10.1007/s12525-015-0186-x
Weathers D, 2015, DECIS SUPPORT SYST, V79, P12, DOI 10.1016/j.dss.2015.07.009
Wu PF, 2013, PSYCHOL MARKET, V30, P971, DOI 10.1002/mar.20660
Yelp, 2018, YELP DAT CHALL
Yin DZ, 2014, MIS QUART, V38, P539, DOI 10.25300/MISQ/2014/38.2.10
ZEITHAML VA, 1985, J MARKETING, V49, P33, DOI 10.2307/1251563
Zhang Y, 2010, INT J MACH LEARN CYB, V1, P43, DOI 10.1007/s13042-010-0001-0
NR 48
TC 9
Z9 9
U1 5
U2 26
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1019-6781
EI 1422-8890
J9 ELECTRON MARK
JI Electron. Mark.
PD DEC
PY 2020
VL 30
IS 4
BP 791
EP 804
DI 10.1007/s12525-020-00397-5
PG 14
WC Business; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA PD6VV
UT WOS:000597821100009
DA 2024-09-05
ER
PT J
AU Okagbue, HI
Nzeadibe, CA
Teixeira da Silva, JA
AF Okagbue, Hilary, I
Nzeadibe, Chinyere A.
Teixeira da Silva, Jaime A.
TI Predicting access mode of multidisciplinary and library and information
sciences journals using machine learning
SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT
LA English
DT Article
DE Adaptive boosting; Gradient boosting; CiteScore; Journal impact factor;
Metrics; Web of Science
AB Academics and librarians might want to identify whether a journal is open access (OA) or subscription-based. While indexes and digital libraries might provide such information for known collections, it is possible that the access mode of a journal or body of journals might be unknown a priori. In this short analysis, a machine learning-based method is used to classify a journal's access mode, OA or subscription, using its CiteScore and Journal Impact Factor (JIF). Using an initial pool of 91 multidisciplinary journals with a CiteScore, 38 journals with both a JIF and a CiteScore were selected (24 = OA; 14 = subscription). Using a data mining tool (Orange), ten machine learning models were applied (k nearest neighbor (kNN), Tree, support vector machine (SVM), Random forest, Neural network, Naive Bayes, Logistic regression, Adaptive boosting (Adaboost)), Gradient Boosting (Scikit-learn) (GBS) and Gradient Boosting (catboost) (GBC). Adaboost, GBS and GBC showed the highest (100%) precision, sensitivity, and specificity. The 3 models correctly classify the access mode with zero error. The 3 optimum models were validated using then to predict the access mode of 54 (7 = OA; 47 = subscription) library and information science (LIS) journals and Adaboost and GBS gave perfect results with no misclassification. With these model, the access mode of multidisciplinary and LIS journals can be accurately and correctly predicted using only JIF-CiteScore data. Libraries in low-resource settings will benefit from the implementation of this research by designing a decision support system for the selection of journals.
C1 [Okagbue, Hilary, I] Covenant Univ, Dept Math, Coll Sci & Technol, KM 10 Idiroko Rd, Ota 112104, Nigeria.
[Nzeadibe, Chinyere A.] Univ Nigeria, Dept Sci Educ, Nsukka, Nigeria.
[Teixeira da Silva, Jaime A.] POB 7,Miki Cho PO,Ikenobe 3011-2, Miki, Kagawa 7610799, Japan.
C3 Covenant University; University of Nigeria
RP Okagbue, HI (corresponding author), Covenant Univ, Dept Math, Coll Sci & Technol, KM 10 Idiroko Rd, Ota 112104, Nigeria.
EM hilary.okagbue@covenantuniversity.edu.ng; chinyere.nzeadibe@unn.edu.ng;
jaimetex@yahoo.com
RI Okagbue, Hilary Izuchukwu/AAD-1102-2020
CR Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Bornmann L, 2017, J INFORMETR, V11, P788, DOI 10.1016/j.joi.2017.06.001
EBADI A, 2020, J INFORMETR, V14, P2, DOI DOI 10.1016/J.JOI.2020.01018
Okagbue HI, 2020, SCIENTOMETRICS, V124, P797, DOI 10.1007/s11192-020-03457-x
Piwowar H, 2018, PEERJ, V6, DOI 10.7717/peerj.4375
Shu F, 2019, J INFORMETR, V13, P202, DOI 10.1016/j.joi.2018.12.005
Teixeira da Silva JA, 2020, PUBLISH RES Q, V36, P459, DOI 10.1007/s12109-020-09736-y
Teixeira da Silva JA, 2019, J ACAD LIBR, V45, DOI 10.1016/j.acalib.2019.102071
Tougui I, 2020, HEALTH TECHNOL-GER, V10, P1137, DOI 10.1007/s12553-020-00438-1
Xie Z, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101036
NR 10
TC 3
Z9 3
U1 1
U2 3
PU TARU PUBLICATIONS
PI NEW DELHI
PA G-159, PUSHKAR ENCLAVE, PASHCHIM VIHAR, NEW DELHI, 110 063, INDIA
SN 0973-7766
EI 2168-930X
J9 COLLNET J SCIENTOMET
JI Collnet J. Scientometr. Inf. Manag.
PD JAN 2
PY 2022
VL 16
IS 1
BP 117
EP 124
DI 10.1080/09737766.2021.2009745
PG 8
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA 3F7VX
UT WOS:000830873200008
DA 2024-09-05
ER
PT J
AU Hajibabaei, A
Schiffauerova, A
Ebadi, A
AF Hajibabaei, Anahita
Schiffauerova, Andrea
Ebadi, Ashkan
TI Gender-specific patterns in the artificial intelligence scientific
ecosystem
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Gender disparity; Interdisciplinary research; Artificial intelligence;
Research performance; Collaboration
ID RESEARCH COLLABORATION; SEX-DIFFERENCES; RESEARCH PRODUCTIVITY; SCIENCE;
CENTRALITY; DIVERSITY; PERFORMANCE; PIPELINE; CAREERS; TEAMS
AB Gender disparity in science is one of the most focused debating points among authorities and the scientific community. Over the last few decades, numerous initiatives have endeavored to accelerate gender equity in academia and research society. However, despite the ongoing efforts, gaps persist across the world, and more measures need to be taken. Using social network analysis, natural language processing, and machine learning, in this study, we comprehensively analyzed gender-specific patterns in the highly interdisciplinary and evolving field of artificial intelligence for the period of 2000-2019. Our findings suggest an overall increasing rate of mixed-gender collaborations. From the observed gender-specific collaborative patterns, the existence of disciplinary homophily at both dyadic and team levels is confirmed. However, a higher preference was observed for female researchers to form homophilous collaborative links. Our core-periphery analysis indicated a significant positive association between having diverse collaboration and scientific performance and experience. We found evidence in support of expecting the rise of new female superstar researchers in the artificial intelligence field.
C1 [Hajibabaei, Anahita; Schiffauerova, Andrea; Ebadi, Ashkan] Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 2W1, Canada.
[Ebadi, Ashkan] Natl Res Council Canada, Montreal, PQ H3T 2B2, Canada.
C3 Concordia University - Canada; National Research Council Canada
RP Ebadi, A (corresponding author), Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 2W1, Canada.
EM ashkan.ebadi@nrc-cnrc.gc.ca
RI Ebadi, Ashkan/AAI-5123-2020; Ebadi, Ashkan/GWZ-9018-2022
OI Ebadi, Ashkan/0000-0002-4542-9105; Schiffauerova,
Andrea/0000-0003-3349-3991
CR Abbasi A, 2012, J INFORMETR, V6, P403, DOI 10.1016/j.joi.2012.01.002
Abramo G, 2013, J INFORMETR, V7, P811, DOI 10.1016/j.joi.2013.07.002
ALPER J, 1993, SCIENCE, V260, P409, DOI 10.1126/science.260.5106.409
AlShebli BK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07634-8
[Anonymous], 1991, The Journal of Applied Behavioral Science, DOI DOI 10.1177/0021886391272001
[Anonymous], 1984, Advances in motivation and achievement
[Anonymous], 2015, Advancing Women in Science. An International Perspective, DOI [DOI 10.1007/978-3-319-08629-3, 10.1007/978-3-319-08629-3, DOI 10.1007/978-3-319-08629-3_9]
[Anonymous], 2005, FAC INT RES
Aydinoglu AU, 2016, RES EVALUAT, V25, P18, DOI 10.1093/reseval/rvv028
Bennett LM, 2012, J INVEST MED, V60, P768, DOI 10.2310/JIM.0b013e318250871d
Berryman S.E., 1983, SPECIAL REPORT
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bonetta & Clayton, 2008, REM WOM SCI
Bordons M, 2003, SCIENTOMETRICS, V57, P159, DOI 10.1023/A:1024181400646
Borgatti SP, 2005, SOC NETWORKS, V27, P55, DOI 10.1016/j.socnet.2004.11.008
Borrego A, 2010, SCIENTOMETRICS, V83, P93, DOI 10.1007/s11192-009-0025-y
Boschma RA, 2005, REG STUD, V39, P61, DOI 10.1080/0034340052000320887
Bozeman B, 2004, RES POLICY, V33, P599, DOI 10.1016/j.respol.2004.01.008
Brewer GD, 1999, POLICY SCI, V32, P327, DOI 10.1023/A:1004706019826
Bunderson JS, 2002, ACAD MANAGE J, V45, P875, DOI 10.2307/3069319
Ceci SJ, 2014, PSYCHOL SCI PUBL INT, V15, P75, DOI 10.1177/1529100614541236
CIFAR, 2019, CAN IS SUPP NEXT GEN
Cummings JN, 2005, SOC STUD SCI, V35, P703, DOI 10.1177/0306312705055535
De Nooy W., 2005, EXPLORATORY SOCIAL N, P509
Duch J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051332
Ebadi A, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101018
Ebadi A, 2016, SCIENTOMETRICS, V106, P1093, DOI 10.1007/s11192-015-1825-x
Ebadi A, 2015, J INFORMETR, V9, P809, DOI 10.1016/j.joi.2015.08.002
Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133061
Edgington E.S., 1980, RANDOMIZATION TESTS
Elsevier, 2021, GENDER GLOBAL RES LA
Feng SH, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64351-3
Fox MF, 2007, J HIGH EDUC, V78, P542, DOI 10.1353/jhe.2007.0032
Ghiasi G, 2018, SCIENTOMETRICS, V115, P785, DOI 10.1007/s11192-018-2701-2
Ghiasi G, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0145931
Ramos AMG, 2015, INTERDISCIPL SCI REV, V40, P182, DOI 10.1179/0308018815Z.000000000112
Government of Canada, 2019, EN BUDG
Government of Canada, 2018, NSERC MAD CAN ATH SW
Gray RM, 2011, ENTROPY AND INFORMATION THEORY , SECOND EDITION, P395, DOI 10.1007/978-1-4419-7970-4
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Han J., 2012, Data Mining, P393, DOI [DOI 10.1016/B978-0-12-381479-1.00009-5, 10.1016/B978-0-12-381479-1.00009-5]
Hogan A., 2010, INT WORKSH INT RES C
Holman L, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0216128
Huang JM, 2020, P NATL ACAD SCI USA, V117, P4609, DOI 10.1073/pnas.1914221117
Hunter LA, 2010, SOC STUD SCI, V40, P433, DOI 10.1177/0306312709358472
Huyer S, 2018, GENDER EQUALITY WILL, V21
Jadidi M, 2018, ADV COMPLEX SYST, V21, DOI 10.1142/S0219525917500114
Jurviste M, 2016, ATERNITY PATERNITY L
Kamraro, 2014, HORIZON 2020 EUROPEA
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
Kwiek M, 2020, SCIENTOMETRICS, V124, P57, DOI 10.1007/s11192-020-03460-2
Kyvik S, 1996, SCI TECHNOL HUM VAL, V21, P54, DOI 10.1177/016224399602100103
Lariviere Vincent, 2013, Nature, V504, P211
Larivière V, 2013, EUR NEUROPSYCHOPHARM, V23, P1340, DOI 10.1016/j.euroneuro.2013.01.006
Larivière V, 2011, SCIENTOMETRICS, V87, P483, DOI 10.1007/s11192-011-0369-y
Leahey E, 2006, GENDER SOC, V20, P754, DOI 10.1177/0891243206293030
Lee E, 2019, NAT HUM BEHAV, V3, P1078, DOI 10.1038/s41562-019-0677-4
Lippa RA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095960
LONG JS, 1992, SOC FORCES, V71, P159, DOI 10.2307/2579971
Luoto S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101021
Mauleón E, 2008, RES EVALUAT, V17, P213, DOI 10.3152/095820208X331676
Moss-Racusin CA, 2012, P NATL ACAD SCI USA, V109, P16474, DOI 10.1073/pnas.1211286109
Murray D, 2019, bioRxiv, DOI [10.1101/400515, 10.1101/400515, DOI 10.1101/400515]
Nelson D. J., 2003, NATL ANAL DIVERSITY
Nielsen MW, 2016, SCI PUBL POLICY, V43, P386, DOI 10.1093/scipol/scv052
Nooteboom B., 2000, LEARNING INNOVATION, DOI [10.1093/acprof:oso/9780199241002.001.0001, DOI 10.1093/ACPROF:OSO/9780199241002.001.0001]
Ovseiko PV, 2017, HEALTH RES POLICY SY, V15, DOI 10.1186/s12961-017-0177-9
Paswan J, 2020, SCIENTOMETRICS, V123, P497, DOI 10.1007/s11192-020-03398-5
Paul-Hus A, 2015, SCIENTOMETRICS, V102, P1541, DOI 10.1007/s11192-014-1386-4
Porter AL, 2007, SCIENTOMETRICS, V72, P117, DOI 10.1007/s11192-007-1700-5
Schummer J, 2004, SCIENTOMETRICS, V59, P425, DOI 10.1023/B:SCIE.0000018542.71314.38
Shannon C. E., 2001, Bell Labs Technical Journal, V5, P3, DOI [DOI 10.1002/J.1538-7305.1948.TB01338.X, 10.1002/j.1538-7305.1948.tb01338.x]
Shaw AK, 2012, P ROY SOC B-BIOL SCI, V279, P3736, DOI 10.1098/rspb.2012.0822
Shelementaicom, 2019, GLOB TAL REP 2019
Shen H, 2013, NATURE, V495, P22, DOI 10.1038/495021a
Stack S, 2004, RES HIGH EDUC, V45, P891, DOI 10.1007/s11162-004-5953-z
Su R, 2009, PSYCHOL BULL, V135, P859, DOI 10.1037/a0017364
Tang XL, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101094
Thelwall M, 2019, J INFORMETR, V13, P118, DOI 10.1016/j.joi.2018.12.003
Thelwall M, 2019, J INFORMETR, V13, P149, DOI 10.1016/j.joi.2018.12.002
Tower Greg., 2007, Journal of Diversity Management (JDM), V2, P23, DOI DOI 10.19030/JDM.V2I4.5020
Uhly KM, 2017, STUD HIGH EDUC, V42, P760, DOI 10.1080/03075079.2015.1072151
UNESCO, 2018, IMPROVING MEASUREMEN
van Arensbergen P, 2012, SCIENTOMETRICS, V93, P857, DOI 10.1007/s11192-012-0712-y
Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Wang J., 2015, PLOS ONE, V10, DOI [10.1371/jour-nal.pone.0127298, DOI 10.1371/JOUR-NAL.PONE.0127298]
Wang MT, 2017, EDUC PSYCHOL REV, V29, P119, DOI 10.1007/s10648-015-9355-x
West JD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066212
Witteman HO, 2019, LANCET, V393, P531, DOI 10.1016/S0140-6736(18)32611-4
World Economic Forum, 2018, The Global Gender Gap Report
Xie Y, 1998, AM SOCIOL REV, V63, P847, DOI 10.2307/2657505
Xie Y., 2003, WOMEN SCI CAREER PRO, V82, P1669
Yan EJ, 2009, J AM SOC INF SCI TEC, V60, P2107, DOI 10.1002/asi.21128
Yuan S, 2020, SCIENTOMETRICS, V124, P993, DOI 10.1007/s11192-020-03423-7
Zeng XHT, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002573
NR 96
TC 2
Z9 2
U1 7
U2 60
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD MAY
PY 2022
VL 16
IS 2
AR 101275
DI 10.1016/j.joi.2022.101275
EA MAR 2022
PG 17
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 1A1UP
UT WOS:000791550800001
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Chen, XL
Xie, HR
AF Chen, Xieling
Xie, Haoran
TI A Structural Topic Modeling-Based Bibliometric Study of Sentiment
Analysis Literature
SO COGNITIVE COMPUTATION
LA English
DT Article
DE Sentiment analysis; Bibliometric; Structural topic modeling; Social
network analysis
ID SOCIAL EMOTION CLASSIFICATION; NEWS IMPACT; EXTRACTION; TEXT;
PREDICTION; RESOURCES; EVOLUTION; NETWORKS; SYSTEM
AB Sentiment analysis is an increasingly evolving field of research in computer science. With the considerable number of studies on innovative sentiment analysis available, it is worth the effort to present a review to understand the research on sentiment analysis comprehensively. This study aimed to investigate issues involved in sentiment analysis; for instance, (1) What types of research topics had been covered in sentiment analysis research? (2) How did the research topics evolve with time? (3) What were the topic distributions for major contributors? (4) How did major contributors collaborate in sentiment analysis research? Based on articles retrieved from the Web of Science, this study presented a bibliometric review of sentiment analysis with the basis of a structural topic modeling method to obtain an extensive overview of the research field. We also utilized methods such as regression analysis, geographic visualization, social network analysis, and the Mann-Kendal trend test. Sentiment analysis research had, overall, received a growing interest in academia. In addition, institutions and authors within the same countries/regions were liable to collaborate closely. Highly discussed topics weresentiment lexicons and knowledge bases,aspect-based sentiment analysis, andsocial network analysis. Several current and potential future directions, such asdeep learning for natural language processing,web services,recommender systems and personalization, andeducation and social issues, were revealed. The findings provided a thorough understanding of the trends and topics regarding sentiment analysis, which could help in efficiently monitoring future research works and projects. Through this study, we proposed a framework for conducting a comprehensive bibliometric analysis.
C1 [Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Lingnan University
RP Xie, HR (corresponding author), Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
EM hrxie2@gmail.com
RI Xie, Haoran/AFS-3515-2022
OI Xie, Haoran/0000-0003-0965-3617; PV, THAYYIB/0000-0001-8929-0398
FU Interdisciplinary Research Scheme of Dean's Research Fund 2018-19
[FLASS/DRF/IDS-3]; Departmental Collaborative Research Fund 2019
[MIT/DCRF-R2/18-19]; Small Grant for Academic Staff of The Education
University of Hong Kong [MIT/SGA04/19-20]; HKIBS Research Seed Fund
2019/20 [190-009]; Lingnan University, Hong Kong [102367]
FX The research presented in this study has been supported by the
Interdisciplinary Research Scheme of Dean's Research Fund 2018-19
(FLASS/DRF/IDS-3), Departmental Collaborative Research Fund 2019
(MIT/DCRF-R2/18-19), Small Grant for Academic Staff (MIT/SGA04/19-20) of
The Education University of Hong Kong, HKIBS Research Seed Fund 2019/20
(190-009), and Research Seed Fund (102367) of Lingnan University, Hong
Kong.
CR Agt-Rickauer H., 2018, INT C MOD DRIV ENG S, V991, P134
Ahlgren O, 2016, INT CONF DAT MIN WOR, P890, DOI [10.1109/ICDMW.2016.0131, 10.1109/ICDMW.2016.94]
Al-Moslmi T, 2018, J INF SCI, V44, P345, DOI 10.1177/0165551516683908
Al-Moslmi T, 2017, IEEE ACCESS, V5, P16173, DOI 10.1109/ACCESS.2017.2690342
Al-Smadi M, 2019, INFORM PROCESS MANAG, V56, P308, DOI 10.1016/j.ipm.2018.01.006
Alaei AR, 2019, J TRAVEL RES, V58, P175, DOI 10.1177/0047287517747753
[Anonymous], 2017, P C EMP METH NAT LAN
[Anonymous], PR INT CONF DEVICE C, DOI DOI 10.1109/CESYS.2016.7889868
Araque O, 2016, INT CONF DAT MIN WOR, P900, DOI [10.1109/ICDMW.2016.71, 10.1109/ICDMW.2016.0132]
Arif MH, 2018, SOFT COMPUT, V22, P7281, DOI 10.1007/s00500-017-2729-x
Bahassine S, 2020, J KING SAUD UNIV-COM, V32, P225, DOI 10.1016/j.jksuci.2018.05.010
Batistic S, 2019, BRIT J MANAGE, V30, P229, DOI 10.1111/1467-8551.12340
Bennett R, 2019, TRANSPORT RES A-POL, V127, P1, DOI 10.1016/j.tra.2019.07.002
Bodrunova SS, 2018, LECT NOTES COMPUT SC, V11193, P226, DOI 10.1007/978-3-030-01437-7_18
Burgers C, 2018, J PRAGMATICS, V127, P71, DOI 10.1016/j.pragma.2018.01.009
López MB, 2018, J UNIVERS COMPUT SCI, V24, P1515
Calefato F, 2018, EMPIR SOFTW ENG, V23, P1352, DOI 10.1007/s10664-017-9546-9
Cambria E, 2017, IEEE INTELL SYST, V32, P74, DOI 10.1109/MIS.2017.4531228
Chandelier M, 2018, BIOL CONSERV, V220, P254, DOI 10.1016/j.biocon.2018.01.029
Chauhan GS, 2019, SMART INNOV SYST TEC, V107, P259, DOI 10.1007/978-981-13-1747-7_25
Chen GB, 2018, LECT NOTES COMPUT SC, V10971, P18, DOI 10.1007/978-3-319-94307-7_2
Chen S, 2016, PROCEEDINGS 2016 IEEE SECOND INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2016), P152, DOI 10.1109/BigDataService.2016.51
Chen X, 2020, COMPUT EDUC, P151
Chen X, 2019, SOCIAL WEB HLTH RES, P31, DOI DOI 10.1007/978-3-030-14714-3_3
Chen X, 2020, BRIT J EDUC TECHNOL, P1, DOI DOI 10.1136/BJOPHTALMOL-2020-316304
Chen X, 2019, INT WORKSH HUM BRAIN, P69
Chen XL, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10062157
Chen XL, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231192
Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1
Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4
Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Chen X, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P305, DOI 10.1145/2911451.2911549
Choi E, 2015, 2015 INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC), P188, DOI 10.1109/ICTC.2015.7354525
Contratres Felipe G., 2018, Trends and Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing (AISC 746), P122, DOI 10.1007/978-3-319-77712-2_12
Dandannavar P. S., 2020, EAI INT C BIG DAT IN, P191, DOI [10.1007/978-3-030-19562-5_19, DOI 10.1007/978-3-030-19562-5_19]
Dashtipour K, 2020, NEUROCOMPUTING, V380, P1, DOI 10.1016/j.neucom.2019.10.009
Souza MLD, 2016, P BRAZ SYMP SOFTW, P1, DOI 10.1109/SBCARS.2016.15
Dinkic N, 2016, INT C ICT INNOVATION
Dragoni M, 2018, IEEE INTELL SYST, V33, P77, DOI 10.1109/MIS.2018.033001419
El Alaoui I, 2018, J BIG DATA-GER, V5, DOI 10.1186/s40537-018-0120-0
Esparza G.G., 2017, INT S DISTR COMP ART, P157
Farrell J, 2016, P NATL ACAD SCI USA, V113, P92, DOI 10.1073/pnas.1509433112
García-Díaz V, 2018, APPL SOFT COMPUT, V67, P822, DOI 10.1016/j.asoc.2017.05.038
García-Pablos A, 2018, EXPERT SYST APPL, V91, P127, DOI 10.1016/j.eswa.2017.08.049
Garcia-Rudolph A, 2019, J MED INTERNET RES, V21, DOI 10.2196/14077
Garg P, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), P17, DOI 10.1109/CCAA.2017.8229812
Gul S, 2016, ONLINE INFORM REV, V40, P900, DOI 10.1108/OIR-10-2015-0330
Guzman E, 2014, INT REQUIR ENG CONF, P153, DOI 10.1109/RE.2014.6912257
Han Z., 2020, WILEY INTERDISC REV, V10, P1
Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4
Hassan A, 2018, IEEE ACCESS, V6, P13949, DOI 10.1109/ACCESS.2018.2814818
He JF, 2016, ADV SOC SCI EDUC HUM, V65, P1, DOI [10.1109/WIW.2016.017, 10.1109/WIW.2016.9]
Hirsch JE, 2014, INT J CLIN HLTH PSYC, V14, P161, DOI 10.1016/S1697-2600(14)70050-X
Hollenstein N, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.291
Hsu A, 2020, CLIM POLICY, V20, P443, DOI 10.1080/14693062.2019.1624252
Huang MH, 2020, INFORM SCIENCES, V520, P389, DOI 10.1016/j.ins.2020.02.026
Huang QX, 2017, 2017 INTERNATIONAL CONFERENCE ON GREEN INFORMATICS (ICGI), P30, DOI 10.1109/ICGI.2017.45
Hussein Doaa Mohey El-Din Mohamed, 2018, Journal of King Saud University - Engineering Sciences, V30, P330, DOI 10.1016/j.jksues.2016.04.002
Ilic S., 2018, WASSA, P2, DOI 10.18653/v1/W18-6202
Jabreel M., 2019, APPL SCI, V9, P6
Jayaratna S, 2017, 2017 IEEE 24TH INTERNATIONAL CONFERENCE ON WEB SERVICES (ICWS 2017), P516, DOI 10.1109/ICWS.2017.60
Jiang HC, 2018, TECHNOL FORECAST SOC, V134, P61, DOI 10.1016/j.techfore.2018.05.012
Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194
Jiang YW, 2019, CURR ISSUES TOUR, V22, P1925, DOI 10.1080/13683500.2017.1408574
Kang M, 2018, EXPERT SYST APPL, V94, P218, DOI 10.1016/j.eswa.2017.07.019
Keramatfar A, 2019, J INF SCI, V45, P3, DOI 10.1177/0165551518761013
Kim K, 2014, PATTERN RECOGN, V47, P758, DOI 10.1016/j.patcog.2013.07.022
Kiritchenko S, 2014, J ARTIF INTELL RES, V50, P723, DOI 10.1613/jair.4272
Kong YY, 2018, BMC MED IMAGING, V18, DOI 10.1186/s12880-018-0252-x
Korfiatis N, 2019, EXPERT SYST APPL, V116, P472, DOI 10.1016/j.eswa.2018.09.037
Kumar Akshi, 2012, International Journal of Intelligent Systems and Applications, V4, P1, DOI 10.5815/ijisa.2012.10.01
Kuta M, 2017, LECT NOTES ARTIF INT, V10415, P74, DOI 10.1007/978-3-319-64206-2_9
Li XS, 2017, IEEE T AFFECT COMPUT, V8, P428, DOI 10.1109/TAFFC.2017.2716930
Li XD, 2016, NEURAL COMPUT APPL, V27, P67, DOI 10.1007/s00521-014-1550-z
Li XD, 2015, IEEE INTELL SYST, V30, P26, DOI 10.1109/MIS.2015.1
Li XD, 2014, KNOWL-BASED SYST, V69, P14, DOI 10.1016/j.knosys.2014.04.022
Li X, 2019, DATA KNOWL ENG, V123, DOI 10.1016/j.datak.2017.07.008
Li Y, 2018, INFORM SCIENCES, V450, P301, DOI 10.1016/j.ins.2018.03.050
Liang TP, 2016, INT J ELECTRON COMM, V20, P236, DOI 10.1080/10864415.2016.1087823
Liang WM, 2018, EXPERT SYST APPL, V114, P322, DOI 10.1016/j.eswa.2018.07.027
Liu B., 2012, SYNLECT HUM LANG TEC, V5, P1, DOI [10.2200/S00416ED1V01Y201204HLT016, DOI 10.2200/S00416ED1V01Y201204HLT016]
Liu B, 2015, SENTIMENT ANALYSIS: MINING OPINIONS, SENTIMENTS, AND EMOTIONS, P1
Liu Q, 2018, ACM T INTEL SYST TEC, V9, DOI 10.1145/3168361
Liu Z, 2016, NEUROCOMPUTING, V185, P11, DOI 10.1016/j.neucom.2015.12.036
Long Y., 2019, IEEE T AFFECTIVE COM
Ma RX, 2019, FUTURE GENER COMP SY, V92, P879, DOI 10.1016/j.future.2017.11.036
Ma YK, 2018, COGN COMPUT, V10, P639, DOI 10.1007/s12559-018-9549-x
Ma YK, 2018, AAAI CONF ARTIF INTE, P5876
Majumder N, 2019, AAAI CONF ARTIF INTE, P6818
Majumdert N, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P3402
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002
Maqsood H, 2020, INT J INFORM MANAGE, V50, P432, DOI 10.1016/j.ijinfomgt.2019.07.011
Jiménez-Zafra SM, 2018, LANG RESOUR EVAL, V52, P533, DOI 10.1007/s10579-017-9391-x
Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011
Mishra A, 2018, COGN INTELL ROBOT, P153, DOI 10.1007/978-981-13-1516-9_7
Mishra Abhijit, 2016, P 20 SIGNLL C COMP N, P156
Nandal N, 2020, SPAT INF RES, V28, P601
Omurca S, 2018, 2018 INNOVATIONS INT, P1
Pang R, 2019, J CLEAN PROD, V233, P84, DOI 10.1016/j.jclepro.2019.05.303
Peng BH, 2018, J CLEAN PROD, V197, P1177, DOI 10.1016/j.jclepro.2018.06.283
Peng HY, 2018, KNOWL-BASED SYST, V148, P167, DOI 10.1016/j.knosys.2018.02.034
Martinho VJPD, 2019, SCI TOTAL ENVIRON, V688, P346, DOI 10.1016/j.scitotenv.2019.06.199
Piryani R, 2017, INFORM PROCESS MANAG, V53, P122, DOI 10.1016/j.ipm.2016.07.001
Poria S, 2018, IEEE INTELL SYST, V33, P17, DOI 10.1109/MIS.2018.2882362
Poria S, 2017, INFORM FUSION, V37, P98, DOI 10.1016/j.inffus.2017.02.003
Purnamasari PD, 2017, PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND INFORMATION PROCESSING (ICCIP 2017), P19, DOI 10.1145/3162957.3163012
Qasem M, 2017, 2017 IEEE S SER COMP, P1
Qazi A, 2017, INTERNET RES, V27, P608, DOI 10.1108/IntR-04-2016-0086
Qingxi Peng, 2014, Journal of Software, V9, P2065, DOI 10.4304/jsw.9.8.2065-2072
Rambocas M, 2018, J RES INTERACT MARK, V12, P146, DOI 10.1108/JRIM-05-2017-0030
Rao YH, 2016, INFORM MANAGE-AMSTER, V53, P978, DOI 10.1016/j.im.2016.04.005
Ravi K, 2015, KNOWL-BASED SYST, V89, P14, DOI 10.1016/j.knosys.2015.06.015
Roberts J, 2014, CRIT PERSPECT INT BU, V10, P2, DOI 10.1108/cpoib-12-2013-0053
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Rothschild JE, 2019, POLIT BEHAV, V41, P423, DOI 10.1007/s11109-018-9457-5
Sato M, 2017, INT C AG ART INT, P62
Seifollahi S, 2019, J INTELL INF SYST, V52, P57, DOI 10.1007/s10844-018-0504-9
Serrano-Guerrero J, 2015, INFORM SCIENCES, V311, P18, DOI 10.1016/j.ins.2015.03.040
Singh JP, 2017, J BUS RES, V70, P346, DOI 10.1016/j.jbusres.2016.08.008
Singh P, 2017, COMM COM INF SC, V712, P73, DOI 10.1007/978-981-10-5780-9_7
Song M, 2019, INFORM PROCESS MANAG, V56, P637, DOI 10.1016/j.ipm.2018.12.005
Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002
Sun MY, 2019, IEEE T SMART GRID, V10, P5007, DOI 10.1109/TSG.2018.2873001
Taj S., 2019, P 2 INT C COMP MATH, P1
Tirea M, 2014, INT SYMP SYMB NUMERI, P273, DOI 10.1109/SYNASC.2013.43
Tubishat M, 2018, INFORM PROCESS MANAG, V54, P545, DOI 10.1016/j.ipm.2018.03.008
Tvinnereim E, 2015, NAT CLIM CHANGE, V5, P744, DOI [10.1038/nclimate2663, 10.1038/NCLIMATE2663]
Valdivia A, 2020, J AMB INTEL HUM COMP, V11, P39, DOI 10.1007/s12652-018-1150-3
Wu FZ, 2016, NEUROCOMPUTING, V175, P599, DOI 10.1016/j.neucom.2015.10.101
Xiaohui Tao, 2016, Advanced Data Mining and Applications. 12th International Conference, ADMA 2016. Proceedings: LNAI 10086, P807, DOI 10.1007/978-3-319-49586-6_59
Xing FZ, 2019, INFORM PROCESS MANAG, V56, P554, DOI 10.1016/j.ipm.2018.11.002
Yan Q, 2018, TOURISM MANAGE, V66, P348, DOI 10.1016/j.tourman.2017.12.015
Yan Zhao, 2018, Security and Communication Networks, V2018, DOI 10.1155/2018/9178941
Yang QJ, 2019, IEEE INTELL SYST, V34, P43, DOI 10.1109/MIS.2019.2899142
Yang ZK, 2015, INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENVIRONMENTAL ENGINEERING (CSEE 2015), P373
Yun YD, 2018, J INF SCI, V44, P331, DOI 10.1177/0165551517692955
Zhang D, 2020, J OPER RES SOC, V71, P528, DOI 10.1080/01605682.2018.1557021
Zhang ZF, 2018, NEUROCOMPUTING, V275, P1407, DOI 10.1016/j.neucom.2017.09.080
Zhao JQ, 2018, IEEE ACCESS, V6, P23253, DOI 10.1109/ACCESS.2017.2776930
Zhao W, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P1549
Zhou XJ, 2017, 2017 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2017), P533, DOI 10.1145/3106426.3106459
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 144
TC 25
Z9 25
U1 8
U2 78
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1866-9956
EI 1866-9964
J9 COGN COMPUT
JI Cogn. Comput.
PD NOV
PY 2020
VL 12
IS 6
BP 1097
EP 1129
DI 10.1007/s12559-020-09745-1
EA JUL 2020
PG 33
WC Computer Science, Artificial Intelligence; Neurosciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Neurosciences & Neurology
GA OU4WX
UT WOS:000554346600001
DA 2024-09-05
ER
PT J
AU Schepers, I
Medvedeva, M
Bruijn, M
Wieling, M
Vols, M
AF Schepers, Iris
Medvedeva, Masha
Bruijn, Michelle
Wieling, Martijn
Vols, Michel
TI Predicting citations in Dutch case law with natural language processing
SO ARTIFICIAL INTELLIGENCE AND LAW
LA English
DT Article
DE Machine learning; Case law; Natural language processing; Citation
analysis; Judicial decisions
ID NETWORK ANALYSIS
AB With the ever-growing accessibility of case law online, it has become challenging to manually identify case law relevant to one's legal issue. In the Netherlands, the planned increase in the online publication of case law is expected to exacerbate this challenge. In this paper, we tried to predict whether court decisions are cited by other courts or not after being published, thus in a way distinguishing between more and less authoritative cases. This type of system may be used to process the large amounts of available data by filtering out large quantities of non-authoritative decisions, thus helping legal practitioners and scholars to find relevant decisions more easily, and drastically reducing the time spent on preparation and analysis. For the Dutch Supreme Court, the match between our prediction and the actual data was relatively strong (with a Matthews Correlation Coefficient of 0.60). Our results were less successful for the Council of State and the district courts (MCC scores of 0.26 and 0.17, relatively). We also attempted to identify the most informative characteristics of a decision. We found that a completely explainable model, consisting only of handcrafted metadata features, performs almost as well as a less well-explainable system based on all text of the decision.
C1 [Schepers, Iris; Bruijn, Michelle; Vols, Michel] Univ Groningen, Fac Law, Dept Legal Methods, Groningen, Netherlands.
[Schepers, Iris; Wieling, Martijn] Univ Groningen, Fac Arts, Ctr Language & Cognit Groningen, Groningen, Netherlands.
[Medvedeva, Masha] Leiden Univ, Fac Law, Ctr Law & Digital Technol, Leiden, Netherlands.
C3 University of Groningen; University of Groningen; Leiden University -
Excl LUMC; Leiden University
RP Schepers, I (corresponding author), Univ Groningen, Fac Law, Dept Legal Methods, Groningen, Netherlands.; Schepers, I (corresponding author), Univ Groningen, Fac Arts, Ctr Language & Cognit Groningen, Groningen, Netherlands.
EM i.schepers@rug.nl
OI Medvedeva, Masha/0000-0002-2972-8447; Bruijn, Larissa
Michelle/0000-0002-1904-8122; Schepers, Iris/0000-0003-4036-5904; Vols,
Michel/0000-0002-5762-8697; Wieling, Martijn/0000-0003-0434-1526
FU European Union [949316]; Center for Information Technology of the
University of Groningen; European Research Council (ERC) [949316]
Funding Source: European Research Council (ERC)
FX The research presented in this paper has received funding from the
European Union's ERC Research Grant under grant agreement No 949316. We
would like to thank the Center for Information Technology of the
University of Groningen for their support and for providing access to
the Peregrine High Performance Computing Cluster. We would like to thank
dr. Marc van Opijnen for making it possible to use the updated LIDO
dataset and for his feedback in the early stages of this research.
CR Ashley KD, 2017, ARTIFICIAL INTELLIGENCE AND LEGAL ANALYTICS: NEW TOOLS FOR LAW PRACTICE IN THE DIGITAL AGE, P234
Barabási AL, 2003, SCI AM, V288, P60, DOI 10.1038/scientificamerican0503-60
Chalkidis I, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4317
Chicco D, 2020, BMC GENOMICS, V21, DOI 10.1186/s12864-019-6413-7
Derlén M, 2017, J INT ECON LAW, V20, P257, DOI 10.1093/jiel/jgx011
Fowler JH, 2008, SOC NETWORKS, V30, P16, DOI 10.1016/j.socnet.2007.05.001
Gholamy A., 2018, Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation
Hernandez Serrano PV, 2020, FRONT ARTIF INTEL AP, V334, P231, DOI 10.3233/FAIA200871
Katz DM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0174698
Kaur A, 2019, IR C ART INT COGN SC
Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112
Leitao JC, 2019, APPL NETW SCI, V4, DOI 10.1007/s41109-018-0110-3
Lippi M, 2019, ARTIF INTELL LAW, V27, P117, DOI 10.1007/s10506-019-09243-2
Medvedeva M, 2021, ASAILLEGALAIIA ICAIL
Medvedeva M, 2021, FRONT ARTIF INTEL AP, V346, P13, DOI 10.3233/FAIA210312
Medvedeva M, 2023, ARTIF INTELL LAW, V31, P195, DOI 10.1007/s10506-021-09306-3
Medvedeva M, 2020, ARTIF INTELL LAW, V28, P237, DOI 10.1007/s10506-019-09255-y
Moens M F., 1997, Proceedings of the Sixth International Conference on Artificial Intelligence and Law, P114
Mones E, 2021, SCI REP-UK, V11, P1
OSullivan C, 2019, 27 AIAI IR C ART INT
Pandya V, 2019, CS IT C P CS IT C P, V9
Sadl U., 2020, RELEVANCE NETWORK AP
Sartor G, 2023, ADV CONCEPTUAL MODEL, P102
Sleimi A, 2021, EMPIR SOFTW ENG, V26, DOI 10.1007/s10664-020-09933-5
Sleimi A, 2018, INT REQUIR ENG CONF, P124, DOI 10.1109/RE.2018.00022
Spinosa P, 2009, P 12 INT C ART INT L, P40, DOI DOI 10.1145/1568234.1568240
Strickson Benjamin, 2020, ICISS 2020: Proceedings of the 2020 The 3rd International Conference on Information Science and System, P204, DOI 10.1145/3388176.3388183
Sulea O-M, 2017, ARXIV PREPRINT ARXIV
Sulea OM, 2017, 2 WORKSHOP AUTOMATED
Van Kuppevelt D, 2017, FRONT ARTIF INTEL AP, V302, P95, DOI 10.3233/978-1-61499-838-9-95
van Opijnen M, 2016, FRONT ARTIF INTEL AP, V294, P155, DOI 10.3233/978-1-61499-726-9-155
Van Opijnen M, 2012, FRONT ARTIF INTEL AP, V250, P95, DOI 10.3233/978-1-61499-167-0-95
VanOpijnen M, 2018, COMPUTERRECHT, V51
VanOpijnen M, 2013, P 14 INT C ART INT L, P140, DOI DOI 10.1145/2514601.2514617
Vapnik VN, 1999, IEEE T NEURAL NETWOR, V10, P988, DOI 10.1109/72.788640
Verheugt J, 2020, INLEIDING NEDERLANDS
Virtucio MBL, 2018, P INT COMP SOFTW APP, P130, DOI 10.1109/COMPSAC.2018.10348
Vols M., 2021, LEGAL RES 100 QUESTI
Vols M, 2021, METHODEN SYSTEMATISC, P125
Whalen R, 2020, COMPUTATIONAL LEGAL
Whalen R., 2016, Mich. St. L. Rev, P539
Winkels R, 2011, AI APPROACHES COMPLE, P106
Wu XD, 2008, KNOWL INF SYST, V14, P1, DOI 10.1007/s10115-007-0114-2
Zhong HX, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P3540
Zweigert K., 1998, INTRO COMP LAW, V3 edn
NR 45
TC 0
Z9 0
U1 5
U2 12
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0924-8463
EI 1572-8382
J9 ARTIF INTELL LAW
JI Artif. Intell. Law
PD SEP
PY 2024
VL 32
IS 3
BP 807
EP 837
DI 10.1007/s10506-023-09368-5
EA JUN 2023
PG 31
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Law
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Government & Law
GA A3L4V
UT WOS:001018103700001
PM 39099768
OA hybrid, Green Published
DA 2024-09-05
ER
PT C
AU Newlin, M
Smathers, K
DeYoung, ME
AF Newlin, Marvin
Smathers, Kyle
DeYoung, Mark E.
GP ASSOC COMP MACHINERY
TI ARC Containers for AI Workloads Singularity Performance Overhead
SO PEARC '19: PROCEEDINGS OF THE PRACTICE AND EXPERIENCE IN ADVANCED
RESEARCH COMPUTING ON RISE OF THE MACHINES (LEARNING)
LA English
DT Proceedings Paper
CT Conference on Practice and Experience in Advanced Research Computing on
Rise of the Machines (learning) (PEARC)
CY JUL 28-AUG 01, 2019
CL Chicago, IL
DE Advanced Research Computing; High Performance Computing; Artificial
Intelligence; Machine Learning; Deep Learning
AB Containerization has taken the software world by storm. Deployment complications, like requiring elevated (i.e. "root") permissions to run, have slowed the adoption of containers in shared advanced research computing (ARC) environments. Singularity is a containerization approach that is designed for ARC in shared high performance computing (HPC) clusters. With the creation of the Singularity, there is finally a viable scientific container solution. However very few papers have looked at the performance tradeoffs of deploying applications using a container based model. The authors are not aware of any published studies evaluating the tradeoffs of the deployment models with complex Artificial Intelligence (AI) workloads. Without detailed evaluations of the performance trade-offs scientists and engineers are unable to make an informed decision on deployment model for time sensitive training or low power inference. Furthering previous research in this area and using emerging community developed benchmarks, we examine performance trade-offs of running AI workloads in a containerized Singularity environment.
C1 [Newlin, Marvin; Smathers, Kyle; DeYoung, Mark E.] Air Force Inst Technol Elect & Comp Engn, Wright Patterson AFB, OH 45433 USA.
C3 Air Force Institute of Technology (AFIT)
RP Newlin, M (corresponding author), Air Force Inst Technol Elect & Comp Engn, Wright Patterson AFB, OH 45433 USA.
EM marvin.newlin@afit.edu; kyle.smathers@afit.edu; mark.deyoung@afit.edu
NR 0
TC 0
Z9 0
U1 0
U2 0
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 978-1-4503-7227-5
PY 2019
DI 10.1145/3332186.3333048
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BT7QE
UT WOS:000850448600001
DA 2024-09-05
ER
PT J
AU de la Paz-Marín, M
Campoy-Muñoz, P
Hervás-Martínez, C
AF de la Paz-Marin, Monica
Campoy-Munoz, Pilar
Hervas-Martinez, Cesar
TI Non-linear multiclassifier model based on Artificial Intelligence to
predict research and development performance in European countries
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE R&D performance; Neural networks; Evolutionary algorithms; k-means
clustering; Multiclassification; European Union
ID NEURAL-NETWORKS; PRODUCT-UNIT; TECHNOLOGICAL CAPABILITIES;
LOGISTIC-REGRESSION; ENDOGENOUS GROWTH; INNOVATION; SYSTEMS; DESIGN;
EXTENSION
AB This paper deals with one of the most important keys for economic growth: scientific knowledge and innovation, following the linear Research and Development (R&D) model. Patents, scientific publications and expenditure in R&D as well as the personnel involved in these activities are taken into account as proxy indicators, together with variables related to education and economy in order to classify R&D performance in 25 European Union (EU) Member States. This study classifies these countries using a set of variables which characterize them from 2005 to 2008 and analyses the most relevant ones for this classification. The Multilayer Perceptron Model (MLP) and the Product-Unit Neural Network (EPUNN) models, both trained by evolutionary algorithms (EA), were used to classify yearly country observations in clusters previously defined by employing unsupervised algorithm k-means clustering, obtaining four different classes of national R&D performance: low, moderate, high and innovation driven economies. Finally, our methodology is compared to other classification methods normally used in machine learning. The results show that while various methods of classification exist, our methodology obtains models with a significantly lower number of coefficients without decreasing their accuracy in predicting the classification of other European countries or in these countries in the following years. (C) 2012 Elsevier Inc. All rights reserved.
C1 [de la Paz-Marin, Monica; Campoy-Munoz, Pilar] Fac Business Adm, ETEA, Dept Management & Quantitat Methods, Cordoba 14004, Spain.
[Hervas-Martinez, Cesar] Univ Cordoba, Dept Comp & Numer Anal, E-14071 Cordoba, Spain.
C3 Universidad Loyola Andalucia; Universidad de Cordoba
RP de la Paz-Marín, M (corresponding author), Fac Business Adm, ETEA, Dept Management & Quantitat Methods, Escritor Castilla Aguayo 4, Cordoba 14004, Spain.
EM mpaz@uco.es; mpcampoy@etea.com; chervas@uco.com
RI Campoy-Muñoz, Pilar/J-8879-2012; Campoy-Muñoz, Pilar/GLS-8345-2022;
Hervas-Martinez, Cesar/A-3979-2009
OI Campoy-Muñoz, Pilar/0000-0003-4163-3907; Hervas-Martinez,
Cesar/0000-0003-4564-1816
CR AGHION P, 1992, ECONOMETRICA, V60, P323, DOI 10.2307/2951599
Alcouffe A, 2004, J EVOL ECON, V14, P223, DOI 10.1007/s00191-004-0205-0
[Anonymous], 2007, SPSS 15.0 Advanced Statistical Procedures Companion
[Anonymous], J INFORM SCI TECHNOL
[Anonymous], MAIN SCI TECHN IND
[Anonymous], 2007, SCI TECHN INN IND CH
Archibugi D, 2005, RES POLICY, V34, P175, DOI 10.1016/j.respol.2004.12.002
Bishop C. M., 1995, NEURAL NETWORKS PATT
Bode J, 1998, INFORM MANAGE-AMSTER, V34, P33, DOI 10.1016/S0378-7206(98)00043-3
Brinkman R., 2001, Int. J. Soc. Econ, V28, P506
BUCK SF, 1960, J ROY STAT SOC B, V22, P302
Cerulli G, 2012, TECHNOL FORECAST SOC, V79, P875, DOI 10.1016/j.techfore.2011.12.002
Charalambous C, 2000, ANN OPER RES, V99, P403, DOI 10.1023/A:1019292321322
Chiesa V, 2009, R&D MANAGE, V39, P488, DOI 10.1111/j.1467-9310.2009.00554.x
Coccia M, 2009, TECHNOL FORECAST SOC, V76, P433, DOI 10.1016/j.techfore.2008.02.008
Conte A., 2009, EUROPEAN COMMISSION, V54
De Smet Y, 2004, EUR J OPER RES, V158, P390, DOI 10.1016/j.ejor.2003.06.012
Durbin R, 1989, NEURAL COMPUT, V1, P133, DOI 10.1162/neco.1989.1.1.133
European Commission, 2012, EUR INN SCOR 2011 CO
Fahrenkrog G., 2002, RTD EVALUATION TOOLB
Filippetti A, 2011, RES POLICY, V40, P179, DOI 10.1016/j.respol.2010.09.001
Fogel LJ, 1966, Artificial Intelligence Through Simulated Evaluation
Furman JL, 2002, RES POLICY, V31, P899, DOI 10.1016/S0048-7333(01)00152-4
GEMMELL N, 1995, ECON PLANN, V28, P169, DOI 10.1007/BF01263636
Godin B, 2006, SCI TECHNOL HUM VAL, V31, P639, DOI 10.1177/0162243906291865
Goldberg DE, 2000, TECHNOL FORECAST SOC, V64, P7, DOI 10.1016/S0040-1625(99)00079-7
GRILICHES Z, 1990, J ECON LIT, V28, P1661, DOI 10.3386/w3301
Griliches Z., 1998, RD and Productivity: The Econometric Evidence
Grossman G. M., 1991, Innovation and growth in the global economy
Gruca TS, 1998, OMEGA-INT J MANAGE S, V26, P49, DOI 10.1016/S0305-0483(97)00046-7
Guan JC, 2006, TECHNOL FORECAST SOC, V73, P666, DOI 10.1016/j.techfore.2005.05.009
Guellec D., 2001, OECD Economic Studies, V33, P103, DOI DOI 10.1787/652870318341
Gutiérrez PA, 2010, OMEGA-INT J MANAGE S, V38, P333, DOI 10.1016/j.omega.2009.11.001
Hájková V, 2010, INT C COMMUN MANAGE, P46
Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
Hayken S., 1994, NEURAL NETWORKS
Hervás-Martínez C, 2007, PATTERN RECOGN, V40, P52, DOI 10.1016/j.patcog.2006.06.003
Holland J, 1975, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, DOI DOI 10.7551/MITPRESS/1090.001.0001
KerssensvanDrongelen IC, 1997, R&D MANAGE, V27, P345, DOI 10.1111/1467-9310.00070
Kline S., 1986, OVERVIEW INNOVATION, DOI DOI 10.1108/14601069810368485
Kuhlmann S, 2003, TECHNOL FORECAST SOC, V70, P619, DOI 10.1016/S0040-1625(03)00027-1
Landwehr N, 2005, MACH LEARN, V59, P161, DOI 10.1007/s10994-005-0466-3
Lippmann RP, 1989, NEURAL COMPUT, V1, P1, DOI 10.1162/neco.1989.1.1.1
Loikkanen T, 2009, TECHNOL FORECAST SOC, V76, P1177, DOI 10.1016/j.techfore.2009.07.011
LUCAS RE, 1988, J MONETARY ECON, V22, P3, DOI 10.1016/0304-3932(88)90168-7
Martínez-Estudillo A, 2006, NEURAL NETWORKS, V19, P477, DOI 10.1016/j.neunet.2005.11.001
O'Donnell FJ, 2002, INT J OPER PROD MAN, V22, P1198, DOI 10.1108/01443570210450301
*OECD, 1994, PROP STAND PRACT SUR
OECD (Organization for Economic Co-operation and Development), 1992, TECHN EC KEY REL
Ojanen V., 2003, 16 LAPP U TECHN TEL
Padmore T, 1998, RES POLICY, V26, P605, DOI 10.1016/S0048-7333(97)00039-5
PORTER ME, 1990, HARVARD BUS REV, V68, P73
Rechenberg I., 1973, Evolutionsstrategie-optimierung technisher systeme nach prinzipien der biologischen evolution
Romer P.M., 2001, INNOVATION POLICY EC
ROMER PM, 1990, J POLIT ECON, V98, pS71, DOI 10.1086/261725
SEGERSTROM PS, 1990, AM ECON REV, V80, P1077
Sheskin DJ., 2004, HDB PARAMETRIC NONPA
Smith KA, 2000, COMPUT OPER RES, V27, P1023, DOI 10.1016/S0305-0548(99)00141-0
Soudien C, 2002, INT J EDUC DEV, V22, P439, DOI 10.1016/S0738-0593(02)00005-6
Trippi R., 1994, NEURAL NETWORKS FINA
Varsakelis NC, 2006, RES POLICY, V35, P1083, DOI 10.1016/j.respol.2006.06.002
Wang EC, 2007, J POLICY MODEL, V29, P345, DOI 10.1016/j.jpolmod.2006.12.005
Watts RJ, 1997, TECHNOL FORECAST SOC, V56, P25, DOI 10.1016/S0040-1625(97)00050-4
Yao X, 1997, IEEE T NEURAL NETWOR, V8, P694, DOI 10.1109/72.572107
Zanakis SH, 2005, EUR J OPER RES, V166, P185, DOI 10.1016/j.ejor.2004.03.028
NR 66
TC 19
Z9 20
U1 0
U2 79
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD NOV
PY 2012
VL 79
IS 9
BP 1731
EP 1745
DI 10.1016/j.techfore.2012.06.001
PG 15
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA 031UI
UT WOS:000310667500013
DA 2024-09-05
ER
PT S
AU Okada, T
Takasu, A
Adachi, J
AF Okada, T
Takasu, A
Adachi, J
BE Heery, R
Lyon, L
TI Bibliographic component extraction using support vector machines and
hidden Markov models
SO RESEARCH AND ADVANCED TECHNOLOGY FOR DIGITAL LIBRARIES
SE Lecture Notes in Computer Science
LA English
DT Article; Proceedings Paper
CT 8th European Conference on Research and Advanced Technology for Digital
Libraries (ECDL 2004)
CY SEP 12-17, 2004
CL Univ Bath, Bath, ENGLAND
HO Univ Bath
AB Article citations are composed of subfields such as 'author', 'title', 'journal', and 'year'. It is useful to automatically identify attributes of these subfields, since they are used for linking a citation with the actual cited article. In this article, we employ a Support Vector Machine (SVM), a method of machine learning, to automatically identify subfields. We then employ a Hidden Markov Model (HMM) to improve the identification accuracy. Information from the subfields identified by the SVM, and syntactic information analyzed by the HMM, are integrated to make an accurate identification.
C1 Univ Tokyo, Tokyo, Japan.
Natl Inst Informat, Chiyoda Ku, Tokyo, Japan.
C3 University of Tokyo; Research Organization of Information & Systems
(ROIS); National Institute of Informatics (NII) - Japan
RP Univ Tokyo, 7-3-1 Bunkyo Ku, Tokyo, Japan.
EM takashi@nii.ac.jp; takasu@nii.ac.jp; adachi@nii.ac.jp
CR AIZAWA A, 2004, NII J, P43
[Anonymous], 1999, REPOSIT TU DORTMUND, DOI DOI 10.17877/DE290R-5098
AYRES FH, 1988, PROGRAM-AUTOM LIBR, V22, P117, DOI 10.1108/eb046992
Bilenko M., 2003, P 9 ACM SIGKDD INT C, P39, DOI [DOI 10.1145/956750.956759, 10.1145/956750.956759]
Hsu CW., 2001, COMP METHODS MULTICL
ITHO T, 2003, 2003DBS130 IPSJ SIG, P181
KITA K, 1999, COMPUTATION LANGUAGE, V4
Lawrence S, 1999, COMPUTER, V32, P67, DOI 10.1109/2.769447
Ristad ES, 1998, IEEE T PATTERN ANAL, V20, P522, DOI 10.1109/34.682181
Takasu A., 1996, Proceedings of the 13th International Conference on Pattern Recognition, P175, DOI 10.1109/ICPR.1996.546933
Takasu A, 2003, ACM-IEEE J CONF DIG, P49, DOI 10.1109/JCDL.2003.1204843
Takasu A, 1998, INT C PATT RECOG, P932, DOI 10.1109/ICPR.1998.711387
NR 12
TC 4
Z9 5
U1 0
U2 2
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 3-540-23013-0
J9 LECT NOTES COMPUT SC
PY 2004
VL 3232
BP 501
EP 512
PG 12
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S); Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA BAX48
UT WOS:000224092600046
DA 2024-09-05
ER
PT J
AU Huang, H
Zhu, DH
Wang, XF
AF Huang, Heng
Zhu, Donghua
Wang, Xuefeng
TI Evaluating scientific impact of publications: combining citation
polarity and purpose
SO SCIENTOMETRICS
LA English
DT Article
DE Scientific impact; Citation polarity; Citation purpose; CNN; Word2Vec
ID SCIENCE; COLLABORATION; RANKING; INDEX; TOOL
AB Citation counts are commonly used to evaluate the scientific impact of a publication on the general premise that more citations probably mean more endorsements. However, two questionable assumptions underpin this idea: a) that all authors contributed equally to the paper; and b) that the endorsement is positive. Obviously, neither of these assumptions hold true. Hence, with this study, we examine two components of citations-their purpose, i.e., the reason for the citation, and polarity, being the author's attitude toward the cited work. Our findings provide a new perspective on the scientific impact of highly-cited publications. Our methodology consists of three steps. Firstly, a pre-trained model composed of a Word2Vec-a well-known word embedding approach-and a convolutional neural network (CNN) is used to identify citation polarity and purpose. Secondly, in a set of highly-cited papers, we compare eight categories of purpose from foundational to critical and three categories of polarity: positive, negative, and neutral. We further explore how different types of papers-those discussing discoveries or those discussing utilitarian topics-influence the evaluation of scientific impact of papers. Finally, we mine and discover the knowledge (e.g. method, concept, tool or data) to explain the actual scientific impact of a highly-cited paper. To demonstrate how combining citation polarity with purpose can provide far greater details of a paper's scientific impact, we undertake a case study with 370 highly-cited journal articles spanning "Biochemistry & Molecular Biology" and "Genetics & Heredity". The results yield valuable insights into the assumption about citation counts as a metric for evaluating scientific impact.
C1 [Huang, Heng; Zhu, Donghua; Wang, Xuefeng] Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China.
C3 Beijing Institute of Technology
RP Wang, XF (corresponding author), Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China.
EM wxf5122@bit.edu.cn
OI Wang, xuefeng/0000-0002-4857-6944
FU General Program of the National Natural Science Foundation of China
[72074020, 71774012]
FX This work was supported by the General Program of the National Natural
Science Foundation of China under Grant Nos. 72074020 and 71774012. The
findings and observations in this paper are those of the authors and do
not necessarily reflect the views of the supporters.
CR Abu-Jbara A., 2013, NAACL, P596
Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128
Alam M. B., 2015, ARXIV PREPRINT ARXIV
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], 1998, Tech. Rep., DOI DOI 10.1007/978-3-319-08789-4_10
Athar A., 2011, P ACL 2011 STUD SESS, P81
Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008
BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404
Bornmann L, 2017, J INFORMETR, V11, P164, DOI 10.1016/j.joi.2016.12.001
Bu Y, 2021, QUANT SCI STUD, V2, P155, DOI 10.1162/qss_a_00109
Butler D, 2008, NATURE, V451, P6, DOI 10.1038/451006a
Chi PS, 2017, SCIENTOMETRICS, V112, P403, DOI 10.1007/s11192-017-2356-4
Crane D., 1972, Invisible colleges. Diffusion of knowledge in scientific communities
Egghe L, 2011, SCIENTOMETRICS, V89, P727, DOI 10.1007/s11192-011-0483-x
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Fujiwara T, 2015, J BIOMED SEMANT, V6, DOI 10.1186/s13326-015-0037-x
GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Garfield E, 1979, CITATION INDEXING IT
Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346
Hernández-Alvarez M, 2015, 2015 IEEE 18TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), P307, DOI 10.1109/CSE.2015.21
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hutchins BI, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002541
Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9
Insu Kim, 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). Proceedings, P1, DOI 10.1109/PVSC.2015.7356246
Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443
Jiang XR, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100977
Jochim C., 2012, P COLING 2012, P1343
Jochim C, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P42
Koshland DE, 2007, SCIENCE, V317, P761, DOI 10.1126/science.1147166
Kosmulski M., 2006, ISSI NEWSLETTER, V2, P4, DOI [10.1177/01655515211014478, DOI 10.1177/01655515211014478]
Lauscher A., 2017, P 6 INT WORKSH MIN S, DOI [DOI 10.1145/3127526.3127531, https://doi.org/10.1145/3127526.3127531]
Leydesdorff L, 2019, J ASSOC INF SCI TECH, V70, P198, DOI 10.1002/asi.24109
Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402
Lin CS, 2018, SCIENTOMETRICS, V116, P797, DOI 10.1007/s11192-018-2770-2
MACROBERTS MH, 1984, SOC STUD SCI, V14, P91, DOI 10.1177/030631284014001006
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926
Parthasarathy G, 2014, 2014 5TH INTERNATIONAL CONFERENCE CONFLUENCE THE NEXT GENERATION INFORMATION TECHNOLOGY SUMMIT (CONFLUENCE), P923, DOI 10.1109/CONFLUENCE.2014.6949321
Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x
Schubert A, 2009, SCIENTOMETRICS, V78, P559, DOI 10.1007/s11192-008-2208-3
Small H, 2017, J INFORMETR, V11, P46, DOI 10.1016/j.joi.2016.11.001
SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111
Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4
Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Winnink JJ, 2019, TECHNOL FORECAST SOC, V146, P673, DOI 10.1016/j.techfore.2018.05.018
Xiao X, 2013, 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR)
Yan EJ, 2020, J ASSOC INF SCI TECH, V71, P314, DOI 10.1002/asi.24237
Yan EJ, 2018, SCIENTOMETRICS, V115, P369, DOI 10.1007/s11192-017-2583-8
Zhang Y., 2015, ARXIV
Zhang YJ, 2018, SCIENTOMETRICS, V114, P1345, DOI 10.1007/s11192-017-2626-1
Zhou ZG, 2018, J VISUAL LANG COMPUT, V48, P134, DOI 10.1016/j.jvlc.2018.08.007
NR 53
TC 9
Z9 9
U1 4
U2 67
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD SEP
PY 2022
VL 127
IS 9
BP 5257
EP 5281
DI 10.1007/s11192-021-04183-8
EA OCT 2021
PG 25
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 4L1UW
UT WOS:000712768100001
DA 2024-09-05
ER
PT J
AU Sousa, AL
Ribeiro, TP
Relvas, S
Barbosa-Póvoa, A
AF Sousa, Ana L.
Ribeiro, Tiago P.
Relvas, Susana
Barbosa-Povoa, Ana
TI Using Machine Learning for Enhancing the Understanding of Bullwhip
Effect in the Oil and Gas Industry
SO MACHINE LEARNING AND KNOWLEDGE EXTRACTION
LA English
DT Article
DE artificial neural networks; bullwhip effect; oil and gas industry;
research proposal; supply networks; machine learning
ID ARTIFICIAL NEURAL-NETWORKS; SUPPLY CHAIN MANAGEMENT; MODEL-PREDICTIVE
CONTROL; DECISION-SUPPORT-SYSTEM; INVENTORY MANAGEMENT; BIG DATA;
FEEDFORWARD NETWORKS; LEAD TIME; DEMAND; IMPACT
AB Several suppliers of oil and gas (O & G) equipment and services have reported the necessity of making frequent resources planning adjustments due to the variability of demand, which originates in unbalanced production levels. The occurrence of these specific problems for the suppliers and operators is often related to the bullwhip effect. For studying such a problem, a research proposal is herein presented. Studying the bullwhip effect in the O & G industry requires collecting data from different levels of the supply chain, namely: services, upstream and midstream suppliers, and downstream clients. The first phase of the proposed research consists of gathering the available production and financial data. A second phase will be the statistical treatment of the data in order to evaluate the importance of the bullwhip effect in the oil and gas industry. The third phase of the program involves applying artificial neural networks (ANN) to forecast the demand. At this stage, ANN based on different training methods will be used. Further on, the attained mathematical model will be used to simulate the effects of demand fluctuations and assess the bullwhip effect in an oil and gas supply chain.
C1 [Sousa, Ana L.] Univ Lisbon, Inst Super Tecn, CERENA, P-1049001 Lisbon, Portugal.
[Ribeiro, Tiago P.] Tal Projecto Lda, P-1350252 Lisbon, Portugal.
[Relvas, Susana; Barbosa-Povoa, Ana] Univ Lisbon, Inst Super Tecn, CEG IST, P-1049001 Lisbon, Portugal.
C3 Universidade de Lisboa; Universidade de Lisboa
RP Sousa, AL (corresponding author), Univ Lisbon, Inst Super Tecn, CERENA, P-1049001 Lisbon, Portugal.
EM ana.margarida.sousa@tecnico.ulisboa.pt; tpribeiro@gmail.com;
susana.relvas@tecnico.ulisboa.pt; apovoa@tecnico.ulisboa.pt
RI Ribeiro, Tiago Pinto/Q-6280-2018; Barbosa-Povoa, Ana/AFM-0470-2022;
Barbosa-Povoa, Ana/AAH-2812-2022; Relvas, Susana/D-7556-2011; Sousa,
Ana/AAB-3319-2019
OI Ribeiro, Tiago Pinto/0000-0002-5967-0864; Barbosa-Povoa,
Ana/0000-0001-6594-9653; Barbosa-Povoa, Ana/0000-0001-6594-9653; Relvas,
Susana/0000-0003-3043-6086; Sousa, Ana/0000-0003-2869-2195
FU Fundacao para a Ciencia e a Tecnologia, I. P [SFRH/BD/131005/2017];
Fundação para a Ciência e a Tecnologia [SFRH/BD/131005/2017] Funding
Source: FCT
FX This research was funded by Fundacao para a Ciencia e a Tecnologia, I.
P, grant number SFRH/BD/131005/2017.
CR Abambres M, 2018, COMPUTERS, V8, DOI 10.3390/computers8010002
Aggelogiannaki E, 2008, INT J PROD ECON, V114, P165, DOI 10.1016/j.ijpe.2008.01.003
Agrawal S, 2009, EUR J OPER RES, V192, P576, DOI 10.1016/j.ejor.2007.09.015
Ahmadi M.A., 2015, Petroleum, V1, P118, DOI [DOI 10.1016/J.PETLM.2015.06.004, 10.1016/j.petlm.2015.06.004]
AlSudairi M., 2012, INT J MANAG VALUE SU, V3, P27, DOI DOI 10.5121/IJMVSC.2012.3403
Arjun KS, 2015, J ENG SCI TECHNOL, V10, P1477
Azhar M., 2013, STUDY BULLWHIP EFFEC
Barlas Y, 2011, J OPER RES SOC, V62, P458, DOI 10.1057/jors.2010.188
Beheshti HM, 2010, INT J PRODUCT PERFOR, V59, P452, DOI 10.1108/17410401011052887
Bello O, 2016, SOC PET ENG SPE NIG, DOI [10.2118/184320-ms, DOI 10.2118/184320-MS]
Bhattacharya S, 2011, DECIS SUPPORT SYST, V50, P576, DOI 10.1016/j.dss.2010.08.011
Birkel HS, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11020384
Boute RN, 2007, EUR J OPER RES, V178, P121, DOI 10.1016/j.ejor.2006.01.023
Bravo C, 2014, SPE J, V19, P547, DOI 10.2118/150314-PA
BROWN DJH, 1977, KYBERNETES, V6, P245, DOI 10.1108/eb005457
Cachon GP, 2007, M&SOM-MANUF SERV OP, V9, P457, DOI 10.1287/msom.1060.0149
Cachon GP, 2000, MANAGE SCI, V46, P1032, DOI 10.1287/mnsc.46.8.1032.12029
Caloiero G, 2008, INT J PROD ECON, V114, P631, DOI 10.1016/j.ijpe.2007.10.009
Cannella S, 2010, INT J PROD RES, V48, P6739, DOI 10.1080/00207540903252308
Carbonneau R, 2008, EUR J OPER RES, V184, P1140, DOI 10.1016/j.ejor.2006.12.004
Carlsson C., 2001, P 34 ANN HAW INT C S
Carvajal G., 2018, Intelligent Digital Oil and Gas Fields
Chaharsooghi SK, 2010, INT J PROD ECON, V124, P475, DOI 10.1016/j.ijpe.2009.12.010
Chandra C, 2005, EUR J OPER RES, V166, P337, DOI 10.1016/j.ejor.2004.02.012
Chao Y.F., 2013, ADV MAT RES, V711, P799, DOI DOI 10.4028/WWW.SCIENTIFIC.NET/AMR.711.799
Chatfield DC, 2004, PROD OPER MANAG, V13, P340, DOI 10.1111/j.1937-5956.2004.tb00222.x
Chawla A, 2019, ADV INTELL SYST, V697, P79, DOI 10.1007/978-981-13-1822-1_8
Chen F, 2000, MANAGE SCI, V46, P436, DOI 10.1287/mnsc.46.3.436.12069
Chen F., 1999, QUANT MODEL SUPPLY C, V17, P419
Chen L, 2009, MANAGE SCI, V55, P781, DOI 10.1287/mnsc.1080.0983
Ciancimino E, 2012, EUR J OPER RES, V221, P49, DOI 10.1016/j.ejor.2012.02.039
Coleman Julian, 2010, International Journal of Networking and Virtual Organisations, V7, P257, DOI 10.1504/IJNVO.2010.031221
Coppini M, 2010, INT J PROD RES, V48, P3943, DOI 10.1080/00207540902896204
Croson R, 2006, MANAGE SCI, V52, P323, DOI 10.1287/mnsc.1050.0436
Croson R, 2003, PROD OPER MANAG, V12, P1, DOI 10.1111/j.1937-5956.2003.tb00194.x
Cucker F, 2002, B AM MATH SOC, V39, P1
Dai JH, 2017, PROCEDIA ENGINEER, V174, P1229, DOI 10.1016/j.proeng.2017.01.291
Dejonckheere J, 2003, EUR J OPER RES, V147, P567, DOI 10.1016/S0377-2217(02)00369-7
Dejonckheere J, 2002, INT J PROD ECON, V78, P133, DOI 10.1016/S0925-5273(01)00084-6
Disney SM, 2006, EUR J OPER RES, V173, P151, DOI 10.1016/j.ejor.2005.01.026
Disney SM, 2003, INT J OPER PROD MAN, V23, P625, DOI 10.1108/01443570310476654
Disney SM, 2004, INT J PROD ECON, V90, P295, DOI 10.1016/j.ijpe.2003.10.009
Disney SM, 2007, EUR J IND ENG, V1, P241, DOI 10.1504/EJIE.2007.014686
Dyckhoff H., 2004, SUPPLY CHAIN MANAGEM
Edwards RE, 2017, APPL ENERG, V202, P685, DOI 10.1016/j.apenergy.2017.05.155
Feng J., 2010, 2010 INT C LOG ENG M, V387, P4336
Ferri M, 2019, MACH LEARN KNOW EXTR, V1, P115, DOI 10.3390/make1010006
FLOOD I, 1994, J COMPUT CIVIL ENG, V8, P131, DOI 10.1061/(ASCE)0887-3801(1994)8:2(131)
Flood I, 2008, ADV ENG INFORM, V22, P4, DOI 10.1016/j.aei.2007.07.001
FORRESTER JW, 1958, HARVARD BUS REV, V36, P37
FORRESTER JW, 1968, MANAGE SCI, V14, P398, DOI 10.1287/mnsc.14.7.398
Fradinata E, 2017, INT J ADV APPL SCI, V4, P64, DOI 10.21833/ijaas.2017.010.011
Fu DF, 2015, COMPUT IND ENG, V81, P46, DOI 10.1016/j.cie.2014.12.024
Fu DF, 2014, COMPUT IND ENG, V73, P21, DOI 10.1016/j.cie.2014.04.003
Geary S, 2006, INT J PROD ECON, V101, P2, DOI 10.1016/j.ijpe.2005.05.009
Gholizadeh S, 2011, J CONSTR STEEL RES, V67, P770, DOI 10.1016/j.jcsr.2011.01.001
Guo SZ, 2006, 2006 INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT, VOLS 1 AND 2, PROCEEDINGS, P1455
HAGAN MT, 1994, IEEE T NEURAL NETWOR, V5, P989, DOI 10.1109/72.329697
Hahn CK, 2000, INTERFACES, V30, P32, DOI 10.1287/inte.30.4.32.11642
Hertzmann A., 2012, Machine Learning and Data Mining Lecture Notes
Huang GB, 2007, NEUROCOMPUTING, V70, P3056, DOI 10.1016/j.neucom.2007.02.009
Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126
Huang GB, 2006, IEEE T NEURAL NETWOR, V17, P879, DOI 10.1109/TNN.2006.875977
Huang XY, 2007, INT J PROD RES, V45, P207, DOI 10.1080/00207540600678912
Hutter F, 2014, ARTIF INTELL-AMST, V206, P79, DOI 10.1016/j.artint.2013.10.003
Ilie-Zudor E, 2015, SUPPLY CHAIN MANAG, V20, P369, DOI 10.1108/SCM-10-2014-0323
Ingalls R. G., 2005, International Journal of Simulation & Process Modelling, V1, P90
Jacoby D, 2010, OIL GAS J, V108, P20
Jaksic M, 2008, EUR J OPER RES, V184, P946, DOI 10.1016/j.ejor.2006.12.018
Kadivar M, 2018, APPL MATH MODEL, V59, P319, DOI 10.1016/j.apm.2018.01.028
KAHN JA, 1987, AM ECON REV, V77, P667
de Almeida MMK, 2015, INT J ADV MANUF TECH, V77, P495, DOI 10.1007/s00170-014-6444-9
Kaisler S, 2013, P ANN HICSS, P995, DOI 10.1109/HICSS.2013.645
Kasun LLC, 2016, IEEE T IMAGE PROCESS, V25, P3906, DOI 10.1109/TIP.2016.2570569
Kelepouris T, 2008, COMPUT OPER RES, V35, P3657, DOI 10.1016/j.cor.2007.04.004
Kim H, 2008, EUR J OPER RES, V189, P172, DOI 10.1016/j.ejor.2007.05.012
Kim JG, 2006, EUR J OPER RES, V173, P617, DOI 10.1016/j.ejor.2005.01.043
Kuo RJ, 2001, FUZZY SET SYST, V118, P21, DOI 10.1016/S0165-0114(98)00399-6
LACHTERMACHER G, 1995, J FORECASTING, V14, P381, DOI 10.1002/for.3980140405
Lampret T., 2014, Logistics sustainable transport, V5, DOI DOI 10.1515/JLST-2015-0005
Lau HCW, 2013, DECIS SUPPORT SYST, V54, P1404, DOI 10.1016/j.dss.2012.12.008
Lee HL, 2004, HARVARD BUS REV, V82, P102
Lee HL, 1997, MANAGE SCI, V43, P546, DOI 10.1287/mnsc.43.4.546
Liang NY, 2006, IEEE T NEURAL NETWOR, V17, P1411, DOI 10.1109/TNN.2006.880583
Litjens G, 2016, SCI REP-UK, V6, DOI 10.1038/srep26286
Liu HJ, 2015, ADV INTEL SYS RES, V124, P177
Liu P, 2016, DISCRETE DYN NAT SOC, V2016, DOI 10.1155/2016/2026715
Lockwood A., 2014, THESIS
Lotfi Z, 2013, PROC TECH, V11, P298, DOI 10.1016/j.protcy.2013.12.194
Makajic-Nikolic D., 2004, Fifth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, P219
MCCULLOCH WS, 1943, B MATH BIOPHYS, V5, P115, DOI DOI 10.1007/BF02478259
Mentzer J.T., 2001, J BUSINESS LOGISTICS, V22, P1, DOI [DOI 10.1002/J.2158-1592.2001.TB00001.X, 10.1002/j.2158-1592.2001.tb00001.x]
Metters R., 1997, Journal of Operations Management, V15, P89, DOI 10.1016/S0272-6963(96)00098-8
Mirzaei-Paiaman A, 2012, ENERG SOURCE PART A, V34, P1834, DOI 10.1080/15567036.2010.492386
Mohammad R.M., 2016, Intellect. Econ., DOI [10.1016/j.intele.2017.02.001, DOI 10.1016/J.INTELE.2017.02.001]
Moyaux T, 2007, IEEE T SYST MAN CY C, V37, P396, DOI 10.1109/TSMCC.2006.887014
Müller JM, 2018, PROCESSES, V6, DOI 10.3390/pr6120260
Müller JM, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010247
Mukherjee A, 1996, J STRUCT ENG-ASCE, V122, P1385, DOI 10.1061/(ASCE)0733-9445(1996)122:11(1385)
Musa A, 2019, MACH LEARN KNOW EXTR, V1, P205, DOI 10.3390/make1010012
Nagaraja CH, 2018, EUR J OPER RES, V267, P96, DOI 10.1016/j.ejor.2017.11.015
Nienhaus J, 2006, PROD PLAN CONTROL, V17, P547, DOI 10.1080/09537280600866587
Pacheco ED, 2017, COMPUT IND ENG, V113, P347, DOI 10.1016/j.cie.2017.09.015
Park H, 2016, DECIS SUPPORT SYST, V91, P89, DOI 10.1016/j.dss.2016.08.003
Prakash A, 2012, DECIS SUPPORT SYST, V52, P528, DOI 10.1016/j.dss.2011.10.024
Prieto A, 2016, NEUROCOMPUTING, V214, P242, DOI 10.1016/j.neucom.2016.06.014
Pu YC, 2006, ENG STRUCT, V28, P1190, DOI 10.1016/j.engstruct.2005.12.009
RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0
Sage A.P., 2000, INTRO SYSTEMS ENG
Sarkar S, 2016, DECIS SCI-J INNOV ED, V14, P25, DOI 10.1111/dsji.12091
Sherhart E., 2013, BULLWHIP EFFECT RECO
Slimani I, 2015, INT CONF INTELL SYST, P266, DOI 10.1109/ISDA.2015.7489236
Sodhi MS, 2011, EUR J OPER RES, V215, P374, DOI 10.1016/j.ejor.2011.06.019
Solà-Serrabou M, 2019, APUNT EDUC FIS DEPOR, P30, DOI 10.5672/apunts.2014-0983.es.(2019/3).137.03
Sousa AL, 2019, J PET EXPLOR PROD TE, V9, P2091, DOI 10.1007/s13202-019-0609-x
Springer M, 2010, EUR J OPER RES, V203, P380, DOI 10.1016/j.ejor.2009.08.009
STERMAN JD, 1989, MANAGE SCI, V35, P321, DOI 10.1287/mnsc.35.3.321
Stock T, 2016, PROC CIRP, V40, P536, DOI 10.1016/j.procir.2016.01.129
Stock T, 2018, PROCESS SAF ENVIRON, V118, P254, DOI 10.1016/j.psep.2018.06.026
Sucky E, 2009, INT J PROD ECON, V118, P311, DOI 10.1016/j.ijpe.2008.08.035
Tanweer A, 2014, PROCD SOC BEHV, V138, P289, DOI 10.1016/j.sbspro.2014.07.206
Toh Albert K., 2014, International Journal of Society Systems Science, V6, P308, DOI 10.1504/IJSSS.2014.066642
Tohidi Sajjad, 2015, IES Journal Part A: Civil & Structural Engineering, V8, P24, DOI 10.1080/19373260.2014.955139
Torabi F, 2011, PETROL SCI TECHNOL, V29, P804, DOI 10.1080/10916460903485876
Tsay A. A., 1999, Manufacturing & Service Operations Management, V1, P89, DOI 10.1287/msom.1.2.89
Wang F, 2011, DECIS SUPPORT SYST, V51, P262, DOI 10.1016/j.dss.2010.11.020
Wang JL, 2010, EXPERT SYST APPL, V37, P4726, DOI 10.1016/j.eswa.2009.09.071
Wang P, 2007, J EXP THEOR ARTIF IN, V19, P249, DOI 10.1080/09528130601143109
Wang X, 2016, EUR J OPER RES, V250, P691, DOI 10.1016/j.ejor.2015.07.022
Wilamowski B.M., 2011, IND ELECT HDB INTELL, V1
Wright D, 2008, INT J PROD ECON, V113, P587, DOI 10.1016/j.ijpe.2007.10.022
Yoo Y, 2015, J INF TECHNOL-UK, V30, P63, DOI 10.1057/jit.2014.30
Yu ZX, 2001, IND MANAGE DATA SYST, V101, P114, DOI 10.1108/02635570110386625
Zhang JH, 2013, APPL MECH MATER, V295-298, P3310, DOI 10.4028/www.scientific.net/AMM.295-298.3310
Zhang XL, 2004, INT J PROD ECON, V88, P15, DOI 10.1016/S0925-5273(03)00128-2
Zhou L, 2006, OR SPECTRUM, V28, P127, DOI 10.1007/s00291-005-0009-0
ZYMELMAN M, 1965, MANAGE SCI, V11, P572, DOI 10.1287/mnsc.11.5.572
NR 137
TC 8
Z9 8
U1 3
U2 12
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2504-4990
J9 MACH LEARN KNOW EXTR
JI Mach. Learn. Knowl. Extr.
PD SEP
PY 2019
VL 1
IS 3
AR 57
DI 10.3390/make1030057
PG 19
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Engineering, Electrical & Electronic
WE Emerging Sources Citation Index (ESCI)
SC Computer Science; Engineering
GA VJ9LO
UT WOS:000646949500001
OA gold
DA 2024-09-05
ER
PT J
AU Zheng, B
Ma, X
Zhang, XQ
Gao, HY
AF Zheng, Bo
Ma, Xin
Zhang, Xiaoqiang
Gao, Huiying
TI Research Article Team Collaboration Particle Swarm Optimization and Its
Application on Reliability Optimization
SO INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS
LA English
DT Article
DE Particle swarm optimization; Premature convergence; Reliability
optimization; Optimization performance improvement
ID ALGORITHM; PSO
AB Particle swarm optimization (PSO) tends to be premature convergence due to easily trapping into local suboptimal areas. In order to overcome the PSO's defects, the reasons causing the defects are analyzed and summarized as population diversity deficiency, insufficient information sharing, unbalance of exploitation and exploration, and single update strategy. On this basis, inspired by human team collaboration behavior, a team collaboration particle swarm optimization (TCPSO) is proposed. Diversified updates strategies, dynamic grouping strategy, selectivity vector, and decreasing and increasing inertia weight are designed in TCPSO to solve the defects' reasons and improve the optimization performance. Eight typical test functions have been used to evaluate and compare the performance of different PSO variants, and the results have been proven that the optimal results found by TCPSO are better compared with other PSO variants, which demonstrates the rationality and effectiveness of TCPSO. Finally, a real-world problem for reliability optimization are solved by five algorithms, and the results prove the convergence rate and stable optimization performance of TCPSO, TCPSO can provide better support for reliability optimization of complex system. (c) 2021 The Authors. Published by Atlantis Press B.V. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).
C1 [Zheng, Bo; Zhang, Xiaoqiang; Gao, Huiying] Civil Aviat Flight Univ China, Aviat Engn Inst, Guanghan 618307, Sichuan, Peoples R China.
[Ma, Xin] Civil Aviat Flight Univ China, Coll Air Traff Management, Guanghan 618307, Sichuan, Peoples R China.
C3 Civil Aviation Flight University of China; Civil Aviation Flight
University of China
RP Zheng, B (corresponding author), Civil Aviat Flight Univ China, Aviat Engn Inst, Guanghan 618307, Sichuan, Peoples R China.
EM b_zheng1@126.com
FU Project of Sichuan Province Sci-ence and Technology program
[2021YJ0519]; China Civil Avia-tion Administration Development
Foundation Educational Talents Program [14002600100018J034]; General
Foundation of Civil Aviation Flight University of China [Q2019053];
Youth Foun-dation of Civil Aviation Flight University of China
[Q2018139]
FX This study was supported by the Project of Sichuan Province Sci-ence and
Technology program (No. 2021YJ0519) ; China Civil Avia-tion
Administration Development Foundation Educational Talents Program (No.
14002600100018J034) ; General Foundation of Civil Aviation Flight
University of China (No. Q2019053) ; Youth Foun-dation of Civil Aviation
Flight University of China (No. Q2018139) .
CR Ali T, 2015, 2015 IEEE 12TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD)
An P, 2017, J NANOELECTRON OPTOE, V12, P404, DOI 10.1166/jno.2017.2033
Anescu G, 2018, COMPUT IND ENG, V120, P31, DOI 10.1016/j.cie.2018.04.020
[Anonymous], 2014, INT J HYBRID INTELL
Arasomwan MA, 2013, SCI WORLD J, DOI 10.1155/2013/860289
Baladeh AE, 2021, IEEE T RELIAB, V70, P99, DOI 10.1109/TR.2020.2974284
Banks Alec, 2008, Natural Computing, V7, P109, DOI 10.1007/s11047-007-9050-z
Bergh V.D, 2002, ANAL PARTICLE SWARM
Blackwell T, 2019, IEEE T EVOLUT COMPUT, V23, P689, DOI 10.1109/TEVC.2018.2880894
Cao YL, 2019, IEEE T EVOLUT COMPUT, V23, P718, DOI 10.1109/TEVC.2018.2885075
Changxin Liu, 2010, Proceedings of the 2010 Fourth International Conference on Genetic and Evolutionary Computing (ICGEC 2010), P8, DOI 10.1109/ICGEC.2010.10
Chen DN., 2017, CHIN HYDRAUL PNEUM, P17
Clerc M, 2002, IEEE T EVOLUT COMPUT, V6, P58, DOI 10.1109/4235.985692
Ding JL, 2014, NEUROCOMPUTING, V137, P261, DOI 10.1016/j.neucom.2013.03.075
Dong WY, 2017, IEEE T SYST MAN CY-S, V47, P1135, DOI 10.1109/TSMC.2016.2560128
Gao KZ, 2019, IEEE-CAA J AUTOMATIC, V6, P904, DOI 10.1109/JAS.2019.1911540
Kalidindi KR, 2020, J SUPERCOMPUT, V76, P5873, DOI 10.1007/s11227-019-03058-3
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
Khorram B, 2019, J DIGIT IMAGING, V32, P162, DOI 10.1007/s10278-018-0111-x
Li J, 2015, IEEE T CYBERNETICS, V45, P2350, DOI 10.1109/TCYB.2015.2424836
Li W, 2020, INFORM SCIENCES, V529, P179, DOI 10.1016/j.ins.2020.02.034
[李昕艺 Li Xinyi], 2019, [浙江大学学报. 理学版, Journal of Zhejiang University. Sciences Edition], V46, P15
Li YK, 2019, INFORM SCIENCES, V494, P233, DOI 10.1016/j.ins.2019.01.084
[刘全金 Liu Quanjin], 2016, [电子学报, Acta Electronica Sinica], V44, P995
Liu TY, 2017, COMMUN NONLINEAR SCI, V44, P167, DOI 10.1016/j.cnsns.2016.08.001
Luo W., 2019, SCI TECH ENG, V19, P173
Lv ZM, 2019, IEEE-CAA J AUTOMATIC, V6, P838, DOI 10.1109/JAS.2019.1911450
Mahmoodabadi MJ, 2014, INFORM SCIENCES, V273, P101, DOI 10.1016/j.ins.2014.02.150
Mellal MA, 2019, P I MECH ENG O-J RIS, V233, P990, DOI 10.1177/1748006X19852814
Melton RG, 2018, ACTA ASTRONAUT, V148, P246, DOI 10.1016/j.actaastro.2018.04.045
Meng DBA, 2016, CONCURRENT ENG-RES A, V24, P48, DOI 10.1177/1063293X15600894
Pant M, 2007, ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL I, PROCEEDINGS, P97, DOI 10.1109/ICCIMA.2007.96
Rehman OU, 2018, COMPEL, V37, P319, DOI 10.1108/COMPEL-04-2017-0160
Roy P, 2019, IEEE-CAA J AUTOMATIC, V6, P1365, DOI 10.1109/JAS.2019.1911753
Shailaja K., 2017, J Eng Appl Sci, V12, P7234
[沈博 Shen Bo], 2019, [导弹与航天运载技术, Missiles and Space Vehicles], P17
Singh RP, 2015, INT J ELEC POWER, V64, P1185, DOI 10.1016/j.ijepes.2014.09.005
Tanweer MR, 2015, INFORM SCIENCES, V294, P182, DOI 10.1016/j.ins.2014.09.053
Tavakkoi-Moghaddam R, 2008, RELIAB ENG SYST SAFE, V93, P550, DOI 10.1016/j.ress.2007.02.009
[王春华 Wang Chunhua], 2018, [机械强度, Journal of Mechanical Strength], V40, P1364
[王岚 Wang Lan], 2019, [土木与环境工程学报(中英文), Journal of Civil and Environmental Engineering], V41, P96
[王晓佳 Wang Xiaojia], 2012, [运筹与管理, Operations Research and Management Science], V21, P114
Wang Zhenchu, 2007, MANUFACTURE INFORM E, V36, P72
Wu Z, 2018, COMPUTING, V100, P861, DOI 10.1007/s00607-018-0625-6
Xu XP, 2020, IEEE T SYST MAN CY-S, V50, P4212, DOI 10.1109/TSMC.2018.2839618
Yu JF., 2020, SCI TECHNOL ENG, V20, P4202
Yuan HT, 2020, IEEE-CAA J AUTOMATIC, V7, P1380, DOI 10.1109/JAS.2020.1003177
Yuhui Shi, 1998, Evolutionary Programming VII. 7th International Conference, EP98. Proceedings, P591, DOI 10.1007/BFb0040810
Zhang K, 2019, INFORM SCIENCES, V471, P1, DOI 10.1016/j.ins.2018.08.049
Zhang T.F, 2020, J N CHINA ELECT POWE, V47, P56
[张晓 Zhang Xiao], 2017, [陕西师范大学学报. 自然科学版, Journal of Shaanxi Normal University. Natural Science Edition], V45, P17
Zheng B., 2020, Aeroengine, V46, P23
Zheng B., 2020, COMPUT SCI, V47, P133
Zheng B., MECH SCI TECHNOL AER, V40, P155
Zheng B, 2018, INTELL DATA ANAL, V22, P191, DOI 10.3233/IDA-163392
Zheng B, 2018, MECH SYST SIGNAL PR, V106, P526, DOI 10.1016/j.ymssp.2017.12.026
Zheng Bo, 2015, Acta Aeronautica et Astronautica Sinica, V36, P3640, DOI 10.7527/S1000-6893.2015.0020
Zheng Bowen., 2016, P 2016 IEEE GLOB COM, P1
Zhou HL, 2018, APPL SOFT COMPUT, V64, P564, DOI 10.1016/j.asoc.2017.12.031
NR 59
TC 2
Z9 2
U1 1
U2 30
PU SPRINGERNATURE
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND
SN 1875-6891
EI 1875-6883
J9 INT J COMPUT INT SYS
JI Int. J. Comput. Intell. Syst.
PY 2021
VL 14
IS 1
BP 1842
EP 1855
DI 10.2991/ijcis.d.210625.001
PG 14
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA TP5YR
UT WOS:000677675400002
OA gold
DA 2024-09-05
ER
PT J
AU Correia, A
Grover, A
Jameel, S
Schneider, D
Antunes, P
Fonseca, B
AF Correia, Antonio
Grover, Andrea
Jameel, Shoaib
Schneider, Daniel
Antunes, Pedro
Fonseca, Benjamim
TI A hybrid human-AI tool for scientometric analysis
SO ARTIFICIAL INTELLIGENCE REVIEW
LA English
DT Article
DE Artificial intelligence; Bibliometric-enhanced information retrieval;
Crowdsourcing; Human-AI interaction; Reinforcement learning from human
feedback; Scientometrics
ID DESIGN SCIENCE; SYSTEM
AB Solid research depends on systematic, verifiable and repeatable scientometric analysis. However, scientometric analysis is difficult in the current research landscape characterized by the increasing number of publications per year, intersections between research domains, and the diversity of stakeholders involved in research projects. To address this problem, we propose SciCrowd, a hybrid human-AI mixed-initiative system, which supports the collaboration between Artificial Intelligence services and crowdsourcing services. This work discusses the design and evaluation of SciCrowd. The evaluation is focused on attitudes, concerns and intentions towards use. This study contributes a nuanced understanding of the interplay between algorithmic and human tasks in the process of conducting scientometric analysis.
C1 [Correia, Antonio; Fonseca, Benjamim] INESC TEC, Apartado 1013, Vila Real, Portugal.
[Correia, Antonio; Fonseca, Benjamim] Univ Tras Os Montes & Alto Douro, UTAD, Apartado 1013, Vila Real, Portugal.
[Correia, Antonio; Grover, Andrea] Univ Nebraska Omaha, Coll Informat Sci & Technol, Omaha, NE 68182 USA.
[Jameel, Shoaib] Univ Southampton, Southampton SO17 1BJ, England.
[Schneider, Daniel] Univ Fed Rio de Janeiro, Tercio Pacitti Inst Comp Applicat & Res NCE, Rio De Janeiro, Brazil.
[Antunes, Pedro] LASIGE, P-1749016 Lisbon, Portugal.
[Antunes, Pedro] Univ Lisbon, P-1749016 Lisbon, Portugal.
C3 INESC TEC; University of Tras-os-Montes & Alto Douro; University of
Nebraska System; University of Nebraska Omaha; University of
Southampton; Universidade Federal do Rio de Janeiro; Universidade de
Lisboa; Universidade de Lisboa
RP Correia, A (corresponding author), INESC TEC, Apartado 1013, Vila Real, Portugal.; Correia, A (corresponding author), Univ Tras Os Montes & Alto Douro, UTAD, Apartado 1013, Vila Real, Portugal.; Correia, A (corresponding author), Univ Nebraska Omaha, Coll Informat Sci & Technol, Omaha, NE 68182 USA.
EM antonio.g.correia@inesctec.pt
RI Antunes, Pedro A/B-8664-2008; Correia, António/AAJ-3347-2021
OI Antunes, Pedro A/0000-0002-5411-8798; Correia,
António/0000-0002-2736-3835
FU Portuguese Foundation for Science and Technology (FCT)
[SFRH/BD/136211/2018]
FX This research was mainly performed during an internship of Antonio
Correia at Microsoft Research, Cambridge, UK. The work was supported in
part by the Portuguese Foundation for Science and Technology (FCT),
national funding through the individual research Grant
SFRH/BD/136211/2018. The authors would like to thank Sian Lindley from
Microsoft Research for the important role in understanding and modifying
the human-AI scientometric workflow that supports the SciCrowd system,
as well as Jorge Santos for the help while building the necessary
infrastructure. Our thanks extend to Hugo Paredes for the helpful
discussions and valuable insights in the early stages of this work.
CR Antunes P, 2023, KNOWL MAN RES PRACT, V21, P806, DOI 10.1080/14778238.2022.2064350
Armentano MG, 2014, EXPERT SYST APPL, V41, P2886, DOI 10.1016/j.eswa.2013.10.023
Bansal G, 2019, AAAI CONF ARTIF INTE, P2429
Beck S, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104491
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Berente N, 2019, INFORM SYST RES, V30, P50, DOI 10.1287/isre.2018.0774
Biermann OC, 2022, PROCEEDINGS OF THE 2022 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE, DIS 2022, P1209, DOI 10.1145/3532106.3533506
Blesik T, 2022, INFORM SYST FRONT, V24, P1647, DOI 10.1007/s10796-021-10176-y
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Chan Joel, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274300
Chilton Lydia B., 2013, P SIGCHI C HUM FACT, P1999, DOI [10.1145/2470654.2466265, DOI 10.1145/2470654.2466265]
CORBIN J, 1990, Z SOZIOL, V19, P418, DOI 10.1007/BF00988593
Correia Antonio, 2022, 2022 IEEE International Conference on Big Data (Big Data), P3417, DOI 10.1109/BigData55660.2022.10020416
Correia A, 2021, INT C COMP SUPP COOP, P150, DOI 10.1109/CSCWD49262.2021.9437769
Correia A, 2020, IEEE INT CONF BIG DA, P2876, DOI 10.1109/BigData50022.2020.9378096
Correia A, 2019, IEEE SYS MAN CYBERN, P1372, DOI 10.1109/SMC.2019.8914637
Correia A, 2018, SCIENTOMETRICS, V114, P31, DOI 10.1007/s11192-017-2562-0
Daniel F, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3148148
Hernández IMD, 2023, ARTIF INTELL REV, V56, P1699, DOI 10.1007/s10462-022-10206-4
Dhamala J, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P862, DOI 10.1145/3442188.3445924
Doré JC, 2000, SCIENTOMETRICS, V47, P475, DOI 10.1023/A:1005667800235
Du W, 2021, ARTIF INTELL REV, V54, P3215, DOI 10.1007/s10462-020-09938-y
Dwivedi YK, 2019, INFORM SYST FRONT, V21, P719, DOI 10.1007/s10796-017-9774-y
Ehsan U, 2021, CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3411764.3445188
Eickhoff C, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P162, DOI 10.1145/3159652.3159654
Engström E, 2020, EMPIR SOFTW ENG, V25, P2630, DOI 10.1007/s10664-020-09818-7
Evans J, 2010, SCIENCE, V329, P399, DOI 10.1126/science.1189416
Ferrara A, 2012, SCIENTOMETRICS, V93, P765, DOI 10.1007/s11192-012-0810-x
Feuston Jessica L., 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3479856
Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
FRAME JD, 1984, SCIENTOMETRICS, V6, P97, DOI 10.1007/BF02021283
Franzoni C, 2014, RES POLICY, V43, P1, DOI 10.1016/j.respol.2013.07.005
Gadiraju U, 2015, IEEE INTELL SYST, V30, P81, DOI 10.1109/MIS.2015.66
GARFIELD E, 1979, CURR CONTENTS, P5
Gero KI, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300526
Gil Y, 2014, SCIENCE, V346, P171, DOI 10.1126/science.1259439
Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625
Hope T, 2022, ARXIV
Howe J., 2006, Wired Mag, V14, P176
Iivari J, 2017, INFORM SYST J, V27, P753, DOI 10.1111/isj.12121
Jackson Corey Brian, 2015, 2015 48th Hawaii International Conference on System Sciences (HICSS). Proceedings, P1624, DOI 10.1109/HICSS.2015.196
Jiang Jialun Aaron, 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3449168
Johnsson M., 2022, ARTIF INTELL INNOV M, V1, P161
Jorge CC, 2022, ACMIEEE INT CONF HUM, P1155, DOI 10.1109/HRI53351.2022.9889652
Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301
Karimi P, 2020, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2020, P221, DOI 10.1145/3377325.3377522
Karunagaran S, 2019, INFORM SYST FRONT, V21, P861, DOI 10.1007/s10796-017-9781-z
Knox WB, 2009, K-CAP'09: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE, P9
Koren J., 2008, P 17 INT C WORLD WID, P477, DOI [DOI 10.1145/1367497.1367562, 10.1145/1367497.1367562]
Krivosheev Evgeny, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274366
Ley M, 2009, PROC VLDB ENDOW, V2, P1493, DOI 10.14778/1687553.1687577
Liu BJ, 2021, J COMPUT-MEDIAT COMM, V26, P384, DOI 10.1093/jcmc/zmab013
Lukyanenko R, 2020, INFORM SYST FRONT, V22, P961, DOI 10.1007/s10796-019-09915-z
Luz N, 2015, ARTIF INTELL REV, V44, P187, DOI 10.1007/s10462-014-9423-5
Lykourentzou, 2022, FRONT ARTIF INTELL, V102, P1
Ma Shutian, 2020, Scientometrics, V122, P1445, DOI 10.1007/s11192-019-03336-0
Micchi G., 2021, T INT SOC MUSIC INF, V4, P263
Mittleman DD, 2008, LECT NOTES COMPUT SC, V5411, P305, DOI 10.1007/978-3-540-92831-7_25
Nakagawa S, 2019, TRENDS ECOL EVOL, V34, P224, DOI 10.1016/j.tree.2018.11.007
Noel-Storr AH, 2021, BMC MED RES METHODOL, V21, DOI 10.1186/s12874-021-01271-4
Peeters MMM, 2021, AI SOC, V36, P217, DOI 10.1007/s00146-020-01005-y
Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302
Price S, 2017, COMMUN ACM, V60, P70, DOI 10.1145/2979672
Rohde M, 2009, P 4 INT C DES SCI RE, P1
Rosser HK, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P5289
Rui Zhang, 2020, Proceedings of the ACM on Human-Computer Interaction, V4, DOI 10.1145/3432945
Rzeszotarski JM, 2012, UIST'12: PROCEEDINGS OF THE 25TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY, P55
Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605
Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858
Schroder A, 2022, P 55 HAW INT C SYST, P206
Seeber I, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103174
Shneiderman B, 1996, IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, P336, DOI 10.1109/VL.1996.545307
Singh S, 2023, P 2023 INT C AUT AG, P317
Suh M, 2021, CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3411764.3445219
Swanson DR, 1997, ARTIF INTELL, V91, P183, DOI 10.1016/S0004-3702(97)00008-8
Tchoua RB, 2017, P IEEE INT C E-SCI, P109, DOI 10.1109/eScience.2017.23
Thilakaratne M, 2020, ACM COMPUT SURV, V52, DOI 10.1145/3365756
Thomas J, 2016, COMPLEXITY, V21, P207, DOI 10.1002/cplx.21799
Tokarchuk O, 2012, IEEE INTERNET COMPUT, V16, P45, DOI 10.1109/MIC.2012.66
Vincent-Lamarre P, 2023, ARXIV
Vössing M, 2022, INFORM SYST FRONT, V24, P877, DOI 10.1007/s10796-022-10284-3
Wagner G, 2022, J INF TECHNOL-UK, V37, P209, DOI 10.1177/02683962211048201
Waltz D, 2009, SCIENCE, V324, P43, DOI 10.1126/science.1172781
Wang SH, 2017, SCIENTOMETRICS, V111, P1017, DOI 10.1007/s11192-017-2298-x
Wang WR, 2022, NPJ COMPUT MATER, V8, DOI 10.1038/s41524-021-00687-2
Wiethof C, 2022, P 30 EUR C INF SYST, P66
Yang FM, 2020, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2020, P189, DOI 10.1145/3377325.3377480
Zhang JZ, 2020, SCIENTOMETRICS, V125, P551, DOI 10.1007/s11192-020-03641-z
NR 89
TC 2
Z9 2
U1 7
U2 24
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0269-2821
EI 1573-7462
J9 ARTIF INTELL REV
JI Artif. Intell. Rev.
PD OCT
PY 2023
VL 56
IS SUPPL 1
SU 1
BP 983
EP 1010
DI 10.1007/s10462-023-10548-7
EA JUL 2023
PG 28
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA U9KW4
UT WOS:001026679400001
DA 2024-09-05
ER
PT J
AU Gokcimen, T
Das, B
AF Gokcimen, Tunahan
Das, Bihter
TI Exploring climate change discourse on social media and blogs using a
topic modeling analysis
SO HELIYON
LA English
DT Article
DE Bibliometric Analysis; Latent Dirichlet Allocation(LDA); BERTopic; Topic
modeling; Climate change; Sentence similarity
AB Climate change is one of the most pressing global issues of our time, and understanding public perception and awareness of the topic is crucial for developing effective policies to mitigate its effects. While traditional survey methods have been used to gauge public opinion, advances in natural language processing (NLP) and data visualization techniques offer new opportunities to analyze user-generated content from social media and blog posts. In this study, a new dataset of climate change-related texts was collected from social media sources and various blogs. The dataset was analyzed using BERTopic and LDA to identify and visualize the most important topics related to climate change. The study also used sentence similarity to determine the similarities in the comments written and which topic categories they belonged to. The performance of different techniques for keyword extraction and text representation, including OpenAI, Maximal Marginal Relevance (MMR), and KeyBERT, was compared for topic modeling with BERTopic. It was seen that the best coherence score and topic diversity metric were obtained with OpenAI-based BERTopic. The results provide insights into the public's attitudes and perceptions towards climate change, which can inform policy development and contribute to efforts to reduce activities that cause climate change.
C1 [Gokcimen, Tunahan; Das, Bihter] Firat Univ, Technol Fac, Dept Software Engn, TR-23119 Elazig, Turkiye.
C3 Firat University
RP Das, B (corresponding author), Firat Univ, Technol Fac, Dept Software Engn, TR-23119 Elazig, Turkiye.
EM tunahangokcimen@gmail.com; bihterdas@firat.edu.tr
FU Republic of Turkey, Ministry of Science, Technology and Industry
[AR-22-087-0001]; Arcelik Digital Transformation, Big Data and
Artificial Intelligence RD Center [5746]
FX This work is supported by the Republic of Turkey, Ministry of Science,
Technology and Industry project named "AI Based Smart Digital Assistant
Customer Dialog Bot project" and project code AR-22-087-0001. It is
funded by R&D project within the scope of law 5746 by the Arcelik
Digital Transformation, Big Data and Artificial Intelligence R&D Center.
CR Abdelrazek A, 2023, INFORM SYST, V112, DOI 10.1016/j.is.2022.102131
Ahmad F., 2022, International Journal of Cognitive Computing in Engineering, V3, P58
An N., 2020, Curr. Inves. Agri. Curr. Res., V8, P288, DOI [10.32474/CIACR.2020.08.000288, DOI 10.32474/CIACR.2020.08.000288]
baeldung, Semantic similarity of two phrases
Bergstedt H., 2018, GI_Forum, V1, P47, DOI [10.1553/giscience2018_01_s4, DOI 10.1553/GISCIENCE2018_01_S4]
Cao ZQ, 2015, AAAI CONF ARTIF INTE, P2210
Chen CF, 2021, ADV CLIM CHANG RES, V12, P913, DOI 10.1016/j.accre.2021.09.011
Ebeling R., 2021, J. Inf. Data Manag., V12, P1889
El Barachi M, 2021, J CLEAN PROD, V312, DOI 10.1016/j.jclepro.2021.127820
Farouk M., 2019, P 13 INT C COMP ENG
Ferreira R, 2016, COMPUT SPEECH LANG, V39, P1, DOI 10.1016/j.csl.2016.01.003
Grootendorst M., 2022, arXiv
Hananto V.R., 2023, Jurnal Online Informatika, V8, P2, DOI [10.15575/join.v8i2.963, DOI 10.15575/JOIN.V8I2.963]
Hlapisi N.N.M, 2023, Mesopotamian Journal of Computer Science, P47
Intellica AI, 2019, comparison of different word embeddings on text similarity-a use case in NLP
Islam A., 2008, ACM Transactions on Knowledge Discovery from Data (TKDD), V2, p10:1
Jost F, 2019, ENVIRON SCI POLICY, V96, P27, DOI 10.1016/j.envsci.2019.02.007
Karimiziarani M, 2023, CLIM RISK MANAG, V39, DOI 10.1016/j.crm.2023.100480
Kenter T., 2015, P 24 ACM INT C INF K, P18
Kirelli Y, 2020, COMPUT INTEL NEUROSC, V2020, DOI 10.1155/2020/1904172
Kirilenko AP, 2015, GLOBAL ENVIRON CHANG, V30, P92, DOI 10.1016/j.gloenvcha.2014.11.003
Kirilenko AP, 2014, GLOBAL ENVIRON CHANG, V26, P171, DOI 10.1016/j.gloenvcha.2014.02.008
Koruyan K., 2022, I.zmir Sosyal Bilimler Dergisi, V4, P66, DOI [10.47899/ijss.1167719, DOI 10.47899/IJSS.1167719]
Koubaa A, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e21624
Lee MC, 2014, SCI WORLD J, DOI 10.1155/2014/437162
Li Y, 2021, CLIM CHANG ECON, V12, DOI 10.1142/S2010007821500044
Li YH, 2006, IEEE T KNOWL DATA EN, V18, P1138, DOI 10.1109/TKDE.2006.130
Loureiro ML, 2020, ENERG POLICY, V143, DOI 10.1016/j.enpol.2020.111490
Masson-Delmotte V., 2021, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, DOI 10.1017/9781009157896
McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861]
Menon D, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e20962
Park CY, 2023, GLOBAL ENVIRON CHANG, V80, DOI 10.1016/j.gloenvcha.2023.102667
Pawar A, 2018, Arxiv, DOI [arXiv:1802.05667, DOI arXiv:1802.05667.v2]
Pekkaya M, 2024, TURK J ELECTR ENG CO, V32, DOI 10.55730/1300-0632.4055
Prabha Sneh, 2023, Procedia Computer Science, P2172, DOI 10.1016/j.procs.2023.01.193
Sawant Sahil, 2022, 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), P2251, DOI 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00332
Srisunont C, 2022, ECOL MODEL, V473, DOI 10.1016/j.ecolmodel.2022.110141
Stuhlmacher M, 2019, J ENVIRON MANAGE, V249, DOI 10.1016/j.jenvman.2019.109352
Tayal M.A., 2014, P 11 INT C NAT LANG
Tong Z., 2016, INT C COMP SCI ENG I, V6, DOI [DOI 10.5121/CSIT.2016.60616, 10.5121/csit.2016.60616]
Tuitjer L., 2021, DIGITAL GEOGRAPHY SO, V2, DOI [10.1016/j.diggeo.2021.100018, DOI 10.1016/J.DIGGEO.2021.100018]
Turkes M, 2020, WOR WATER RESOUR, V2, P467, DOI 10.1007/978-3-030-11729-0_14
Uthirapathy Samson Ebenezar, 2023, Procedia Computer Science, P908, DOI 10.1016/j.procs.2023.01.071
Wang J, 2021, SCI TOTAL ENVIRON, V755, DOI 10.1016/j.scitotenv.2020.142734
Wei YG, 2021, ENERG POLICY, V158, DOI 10.1016/j.enpol.2021.112559
Williams HTP, 2015, GLOBAL ENVIRON CHANG, V32, P126, DOI 10.1016/j.gloenvcha.2015.03.006
Wu MF, 2023, RESOUR CONSERV RECY, V188, DOI 10.1016/j.resconrec.2022.106697
Xie Q, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101055
Xu GX, 2019, IEEE ACCESS, V7, P51522, DOI 10.1109/ACCESS.2019.2909919
Yanarates C, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e20994
Yang LP, 2007, INFORM PROCESS MANAG, V43, P315, DOI 10.1016/j.ipm.2006.07.011
Yoo Y, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13081442
NR 52
TC 0
Z9 0
U1 16
U2 16
PU CELL PRESS
PI CAMBRIDGE
PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA
EI 2405-8440
J9 HELIYON
JI Heliyon
PD JUN 15
PY 2024
VL 10
IS 11
AR e32464
DI 10.1016/j.heliyon.2024.e32464
PG 16
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA UX2K2
UT WOS:001251296800001
PM 38947458
OA gold
DA 2024-09-05
ER
PT J
AU Li, Y
Xu, ZS
Wang, XX
Wang, XZ
AF Li, Yang
Xu, Zeshui
Wang, Xinxin
Wang, Xizhao
TI A bibliometric analysis on deep learning during 2007-2019
SO INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
LA English
DT Article
DE Deep learning; Machine learning; Bibliometric analysis; Hot topic;
Development trend
ID NEURAL-NETWORKS; CLASSIFICATION; ALGORITHM
AB As an emerging and applicable method, deep learning (DL) has attracted much attention in recent years. With the development of DL and the massive of publications and researches in this direction, a comprehensive analysis of DL is necessary. In this paper, from the perspective of bibliometrics, a comprehensive analysis of publications of DL is deployed from 2007 to 2019 (the first publication with keywords "deep learning" and "machine learning" was published in 2007). By preprocessing, 5722 publications are exported from Web of Science and they are imported into the professional science mapping tools: VOS viewer and Cite Space. Firstly, the publication structures are analyzed based on annual publications, and the publication of the most productive countries/regions, institutions and authors. Secondly, by the use of VOS viewer, the co-citation networks of countries/regions, institutions, authors and papers are depicted. The citation structure of them and the most influential of them are further analyzed. Thirdly, the cooperation networks of countries/regions, institutions and authors are illustrated by VOS viewer. Time-line review and citation burst detection of keywords are exported from Cite Space to detect the hotspots and research trend. Finally, some conclusions of this paper are given. This paper provides a preliminary knowledge of DL for researchers who are interested in this area, and also makes a conclusive and comprehensive analysis of DL for these who want to do further research on this area.
C1 [Li, Yang; Xu, Zeshui; Wang, Xinxin] Sichuan Univ, Business Sch, Chengdu 610064, Peoples R China.
[Wang, Xizhao] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China.
C3 Sichuan University; Shenzhen University
RP Xu, ZS (corresponding author), Sichuan Univ, Business Sch, Chengdu 610064, Peoples R China.
EM liyang_ly18@163.com; xuzeshui@263.net; wangxinxin_cd@163.com;
xizhaowang@ieee.org
RI Xu, Zeshui/N-8908-2013
CR Ahmed KI, 2019, IEEE NETWORK, V33, P188, DOI 10.1109/MNET.2019.1900029
[Anonymous], 2016, European conference on computer vision, DOI [DOI 10.1007/978-3-319-46493-0_38, 10.1007/978-3-319-46493-0_38]
Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50
Braun T, 2005, SCIENTOMETRICS, V63, P185
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen LC, 2018, IEEE T PATTERN ANAL, V40, P834, DOI 10.1109/TPAMI.2017.2699184
Cheng G, 2016, IEEE T GEOSCI REMOTE, V54, P7405, DOI 10.1109/TGRS.2016.2601622
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Dao SD, 2017, COMPUT IND ENG, V110, P395, DOI 10.1016/j.cie.2017.06.009
Faust O, 2018, COMPUT METH PROG BIO, V161, P1, DOI 10.1016/j.cmpb.2018.04.005
Ghosh M, 2019, PROC INT CONF DOC, P86, DOI 10.1109/ICDARW.2019.00020
Ghosh S, 2019, PROC INT CONF DOC, P68, DOI 10.1109/ICDARW.2019.00017
Ghosh S, 2019, INT J MACH LEARN CYB, V10, P3145, DOI 10.1007/s13042-019-01005-5
Gu DX, 2017, INT J MED INFORM, V98, P22, DOI 10.1016/j.ijmedinf.2016.11.006
Guha R, 2020, INT J PATTERN RECOGN, V34, DOI 10.1142/S0218001420520096
Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216
Guo GD, 2019, COMPUT VIS IMAGE UND, V189, DOI 10.1016/j.cviu.2019.102805
Guo YM, 2016, NEUROCOMPUTING, V187, P27, DOI 10.1016/j.neucom.2015.09.116
Hamidinekoo A, 2018, MED IMAGE ANAL, V47, P45, DOI 10.1016/j.media.2018.03.006
Hao ZY, 2019, MATEC WEB C, P277
He XR, 2017, INT J INTELL SYST, V32, P1151, DOI 10.1002/int.21894
Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647
Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527
Ji SW, 2013, IEEE T PATTERN ANAL, V35, P221, DOI 10.1109/TPAMI.2012.59
Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889
Jiao LC, 2019, IEEE ACCESS, V7, P128837, DOI 10.1109/ACCESS.2019.2939201
Kamble Parshuram M., 2017, International Journal of Imaging and Robotics, V17, P95
Khalil RA, 2019, IEEE ACCESS, V7, P117327, DOI 10.1109/ACCESS.2019.2936124
Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Li XF, 2019, WIRELESS COMMUNICATI
Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236
Monkam P, 2019, IEEE ACCESS, V7, P78075, DOI 10.1109/ACCESS.2019.2920980
Mukherjee H, 2019, NEURAL COMPUT APPL, V31, P8483, DOI 10.1007/s00521-019-04468-3
Ordóñez FJ, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16010115
Perumal R.S., 2019, COMMUN COMPUT PHYS, V1035, P178
Chuan PM, 2018, APPL INTELL, V48, P2470, DOI 10.1007/s10489-017-1086-x
Qin ZJ, 2019, IEEE WIREL COMMUN, V26, P93, DOI 10.1109/MWC.2019.1800601
Sawat Dattatray D., 2017, CSI Transactions on ICT, V5, P195, DOI 10.1007/s40012-016-0149-1
Sawat DD, 2018, INT C REC TRENDS IM
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Sengupta D, 2020, INT J AMBIENT COMPUT, V11, P1, DOI 10.4018/IJACI.2020010101
Shen DG, 2017, ANNU REV BIOMED ENG, V19, P221, DOI [10.1146/annurev-bioeng-071516044442, 10.1146/annurev-bioeng-071516-044442]
Shi YJ, 2019, INT C COMP SUPP COOP, P239, DOI 10.1109/CSCWD.2019.8791899
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
Taigman Y, 2014, PROC CVPR IEEE, P1701, DOI 10.1109/CVPR.2014.220
Ukil S, 2020, NEURAL COMPUT APPL, V32, P2829, DOI 10.1007/s00521-019-04111-1
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vedaldi A, 2015, MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, P689, DOI 10.1145/2733373.2807412
White H, 2018, SCIENTOMETRICS, V114, P757, DOI 10.1007/s11192-017-2610-9
Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732
Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031
Zhou J, 2019, IEEE ACCESS, V7, P78454, DOI 10.1109/ACCESS.2019.2920075
NR 56
TC 40
Z9 42
U1 10
U2 109
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1868-8071
EI 1868-808X
J9 INT J MACH LEARN CYB
JI Int. J. Mach. Learn. Cybern.
PD DEC
PY 2020
VL 11
IS 12
BP 2807
EP 2826
DI 10.1007/s13042-020-01152-0
EA JUN 2020
PG 20
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA OG5CX
UT WOS:000543945600001
DA 2024-09-05
ER
PT J
AU Keramatfar, A
Rafiee, M
Amirkhani, H
AF Keramatfar, Abdalsamad
Rafiee, Mohadeseh
Amirkhani, Hossein
TI Graph Neural Networks: A bibliometrics overview
SO MACHINE LEARNING WITH APPLICATIONS
LA English
DT Article
DE Bibliometrics; Graph Convolutional Network; Graph Neural Network; Graph
representation learning
ID MODEL; PREDICTION; SCIENCE; INDEX
AB Recently, graph neural networks (GNNs) have become a hot topic in machine learning community. This paper presents a Scopus -based bibliometric overview of the GNNs' research since 2004 when GNN papers were first published. The study aims to evaluate GNN research trends, both quantitatively and qualitatively. We provide the trend of research, distribution of subjects, active and influential authors and institutions, sources of publications, most cited documents, and hot topics. Our investigations reveal that the most frequent subject categories in this field are computer science, engineering, and telecommunications. In addition, the most active source of GNN publications is Lecture Notes in Computer Science. The most prolific or impactful institutions are found in the United States, China, and Canada. We also provide must -read papers based on citation count and future directions. Our analysis reveals that node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature. Moreover, the results suggest that the application of graph convolutional networks and attention mechanisms are now among hot topics of GNN research. Finally, scalability, generalization, over -smoothing, and explainability of graph neural networks are some research directions to pursue.
C1 [Keramatfar, Abdalsamad; Rafiee, Mohadeseh] Acad Ctr Educ Culture & Res ACECR, Tehran, Iran.
[Amirkhani, Hossein] Univ Qom, Fac Engn, Dept Comp Engn & IT, Qom, Iran.
C3 Academic Center for Education, Culture & Research (ACECR); University of
Qom
RP Keramatfar, A (corresponding author), Acad Ctr Educ Culture & Res ACECR, Tehran, Iran.
EM samad@sid.com; mohadeseh.rafie2012@gmail.com; amirkhani@qom.ac.ir
OI Keramatfar, Abdalsamad/0000-0001-6826-4692
CR AlQuraishi M, 2019, CELL SYST, V8, P292, DOI 10.1016/j.cels.2019.03.006
[Anonymous], 2000, PODS 2000
Bengio Y, 2021, COMMUN ACM, V64, P58, DOI 10.1145/3448250
Bianchini M, 2018, STUD COMPUT INTELL, V777, P29, DOI 10.1007/978-3-319-89629-8_2
Bin YR, 2020, PATTERN RECOGN, V106, DOI 10.1016/j.patcog.2020.107410
Bo DY, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P1400, DOI 10.1145/3366423.3380214
Bondy J. A., 1976, Graph theory with applications
Bronstein MM, 2017, IEEE SIGNAL PROC MAG, V34, P18, DOI 10.1109/MSP.2017.2693418
Burnham Judy F, 2006, Biomed Digit Libr, V3, P1
Casas-Valadez M. A., 2020, 2020 INT C INN INT F
Chen DL, 2020, AAAI CONF ARTIF INTE, V34, P3438
Chen L, 2019, MED IMAGE ANAL, V58, DOI 10.1016/j.media.2019.101539
Chen XL, 2020, COGN COMPUT, V12, P1097, DOI 10.1007/s12559-020-09745-1
Chen XL, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/1827074
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Chen ZM, 2019, PROC CVPR IEEE, P5172, DOI 10.1109/CVPR.2019.00532
Chiu CC, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P4774, DOI 10.1109/ICASSP.2018.8462105
Cook Diane J, 2006, Mining graph data
Deng SGJ, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P245, DOI 10.1145/3340531.3411975
Deuerlein JW, 2008, J HYDRAUL ENG-ASCE, V134, P822, DOI 10.1061/(ASCE)0733-9429(2008)134:6(822)
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Dhere A, 2021, Arxiv, DOI arXiv:2101.05456
Ding YK, 2020, NEUROCOMPUTING, V403, P348, DOI 10.1016/j.neucom.2020.04.110
Ebrahim SA, 2020, IEEE ACCESS, V8, P90202, DOI 10.1109/ACCESS.2020.2993538
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Gievska S., 2019, BIG DATA PROCESSING, V1110, P17
Gilmer J, 2017, PR MACH LEARN RES, V70
Giudici P, 2020, J BANK FINANC, V112, DOI 10.1016/j.jbankfin.2017.05.010
Giudici P, 2021, EXPERT SYST APPL, V167, DOI 10.1016/j.eswa.2020.114104
Giudici P, 2021, ANN OPER RES, V299, P443, DOI 10.1007/s10479-019-03282-3
Gogoglou A., 2020, P 1 ACM INT C AI FIN, DOI [10.1145/3383455.3422552, DOI 10.1145/3383455.3422552]
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Gori M, 2005, IEEE IJCNN, P729
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Heimerl F, 2014, P ANN HICSS, P1833, DOI 10.1109/HICSS.2014.231
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hong Y, 2019, IEEE T MED IMAGING, V38, P2717, DOI 10.1109/TMI.2019.2911203
Hou YF, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P65, DOI 10.1145/3292500.3330948
Hu X., 2013, P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE P 6 ACM INT C WEB SE, P537
Huang BX, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4732
Huang C, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2613, DOI 10.1145/3292500.3330790
Jeong C, 2020, SCIENTOMETRICS, V124, P1907, DOI 10.1007/s11192-020-03561-y
Jing YJ, 2020, IEEE ACCESS, V8, P15800, DOI 10.1109/ACCESS.2020.2966409
Keramatfar A., 2015, Caspian Journal of Scientometrics, V2, P33, DOI DOI 10.22088/ACADPUB.BUMS.2.1.33
Keramatfar A, 2023, J INF SCI, V49, P133, DOI 10.1177/0165551521990617
Keramatfar A, 2019, J INF SCI, V45, P3, DOI 10.1177/0165551518761013
Khanfor A, 2020, MIDWEST SYMP CIRCUIT, P1056, DOI 10.1109/mwscas48704.2020.9184643
Khiste G.P., 2018, Asian Journal of Research in Social Sciences and Humanities, V8, P10, DOI [10.5958/2249-7315.2018.00002.3, DOI 10.5958/2249-7315.2018.00002.3]
Khiste G. P., 2017, International Journal of Current Innovation Research, V3, P879
Khiste G. P., 2017, International Journal of Library Science and Information Management (IJLSIM), P81
Kim J, 2019, PROC CVPR IEEE, P11, DOI 10.1109/CVPR.2019.00010
Kipf T. N., 2017, P INT C LEARN REPR
Laranjeira J., 2020, What is traffic prediction and how does it work?
Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Lee JB, 2019, ACM T KNOWL DISCOV D, V13, DOI 10.1145/3363574
Lei K, 2019, IEEE INFOCOM SER, P388, DOI [10.1109/infocom.2019.8737631, 10.1109/INFOCOM.2019.8737631]
Leordeanu M., 2020, Coupling appearance and motion: Unsupervised clustering for object segmentation through space and time
Leordeanu M., 2020, Unsupervised learning in space and time: a modern approach for computer vision using graph-based techniques and deep neural networks, P253
Leordeanu M., 2020, Unsupervised visual learning: From pixels to seeing.
Li A, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2703, DOI 10.1145/3357384.3357820
Li MS, 2019, PROC CVPR IEEE, P3590, DOI 10.1109/CVPR.2019.00371
Li QM, 2019, PROC CVPR IEEE, P9574, DOI 10.1109/CVPR.2019.00981
Li RR, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P2472, DOI 10.1145/3366423.3379994
Li X, 2021, J INF SCI, V47, P161, DOI 10.1177/0165551519877049
Li Y., 2016, ICLR
Li Y, 2020, INT J MACH LEARN CYB, V11, P2807, DOI 10.1007/s13042-020-01152-0
Li ZK, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P539, DOI 10.1145/3357384.3357951
Li ZX, 2021, NEURAL COMPUT APPL, V33, P1773, DOI 10.1007/s00521-020-05087-z
Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591
Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11
Liu PY, 2019, PROCEEDINGS OF THE 13TH WORKSHOP ON GEOGRAPHIC INFORMATION RETRIEVAL (GIR'19), DOI 10.1145/3371140.3371141
Liu ZQ, 2018, CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2077, DOI 10.1145/3269206.3272010
Lopez-Martinez RE, 2020, J SCIENTOMETR RES, V9, P310, DOI 10.5530/jscires.9.3.38
Lu J, 2015, DECIS SUPPORT SYST, V74, P12, DOI 10.1016/j.dss.2015.03.008
Lu Z., 2020, EUR C INF RETR
Lu ZL, 2020, NEUROCOMPUTING, V400, P34, DOI 10.1016/j.neucom.2020.03.031
Mahdavi S, 2019, Arxiv, DOI arXiv:1910.01963
Mao M., 2018, INT C DAT MIN BIG DA
Marcheggiani D., 2017, P EMNLP, P1506
Marin A, 2011, The SAGE handbook of social network analysis, P25, DOI DOI 10.4135/9781446294413.N2
Martinez A., 2019, Graph convolutional networks on customer/supplier graph data to improve default prediction
Mojgani P, 2022, NEUROPSYCHOL REHABIL, V32, P51, DOI 10.1080/09602011.2020.1796714
Monti F, 2017, PROC CVPR IEEE, P5425, DOI 10.1109/CVPR.2017.576
Kipf TN, 2016, Arxiv, DOI arXiv:1611.07308
Nguyen H., 2019, DATA MINING
Nicolaisen J, 2007, ANNU REV INFORM SCI, V41, P609, DOI 10.1002/aris.2007.1440410120
Nicolaisen J, 2010, J AM SOC INF SCI TEC, V61, P205, DOI 10.1002/asi.21181
Ouyang W, 2019, NATURAL LANGUAGE PRO
Pennec X., 2019, Riemannian geometric statistics in medical image analysis
Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732
Persson O., 2009, CELEBRATING SCHOLARL, V5, P9
Qin AY, 2019, IEEE GEOSCI REMOTE S, V16, P241, DOI 10.1109/LGRS.2018.2869563
Qiu RH, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P579, DOI 10.1145/3357384.3358010
Rebecq H, 2019, PROC CVPR IEEE, P3852, DOI 10.1109/CVPR.2019.00398
Sboev A., 2020, Cham
Scarselli F., 2004, Graphical -based learning environments for pattern recognition
Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605
Schlichtkrull M, 2018, LECT NOTES COMPUT SC, V10843, P593, DOI 10.1007/978-3-319-93417-4_38
SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007
Seo S, 2020, IEEE ACCESS, V8, P32816, DOI 10.1109/ACCESS.2020.2973923
Shen J., 2020, Taxoexpan: Self -supervised taxonomy expansion with position -enhanced graph neural network, DOI DOI 10.1145/3366423.3380132
Shi L, 2019, PROC CVPR IEEE, P12018, DOI 10.1109/CVPR.2019.01230
Singh VK, 2015, SCIENTOMETRICS, V104, P529, DOI 10.1007/s11192-015-1612-8
Song LC, 2021, J VIS COMMUN IMAGE R, V76, DOI 10.1016/j.jvcir.2021.103055
Spinelli I., 2017, IIH MSP
Spinelli I, 2020, NEURAL NETWORKS, V129, P249, DOI 10.1016/j.neunet.2020.06.005
Sügis E, 2019, SCI DATA, V6, DOI 10.1038/s41597-019-0152-0
Sun C., 2019, NAACL HLT 2019 2019
Sun X., 2019, Incorporating description embeddings into medical knowledge graphs representation learning
Tan Z, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1777, DOI 10.1145/3132847.3132961
Tang XF, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2269, DOI 10.1145/3394486.3403276
Tang XF, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P1435, DOI 10.1145/3340531.3411872
Thelwall M, 2008, J INF SCI, V34, P605, DOI 10.1177/0165551507087238
Trentin E, 2018, NEUROCOMPUTING, V313, P14, DOI 10.1016/j.neucom.2018.05.095
Trentin E, 2009, NEUROCOMPUTING, V73, P204, DOI 10.1016/j.neucom.2008.07.021
Tu M, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2704
Upadhyay S., 2011, P 1 WORKSH UNS LEARN
Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vaswani A, 2017, ADV NEUR IN, V30
Veličkovic P, 2018, Arxiv, DOI arXiv:1710.10903
Wang DX, 2019, IEEE DATA MINING, P598, DOI 10.1109/ICDM.2019.00070
Wang R, 2020, IEEE ACCESS, V8, P38472, DOI 10.1109/ACCESS.2020.2973039
Wang X, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P165, DOI 10.1145/3331184.3331267
Wang XL, 2018, PROC CVPR IEEE, P6857, DOI 10.1109/CVPR.2018.00717
Wang Y, 2020, ADV SOC SCI EDUC HUM, V415, P341, DOI 10.1145/3383972.3383985
West D. B., 2001, Introduction to graph theory, V2
Wu J, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P406, DOI 10.1145/3292500.3330950
Xiaolu Ding, 2020, ICIAI 2020: Proceedings of the 2020 the 4th International Conference on Innovation in Artificial Intelligence, P130, DOI 10.1145/3390557.3394129
Xie YQ, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1303
Xie YX, 2020, KNOWL-BASED SYST, V194, DOI 10.1016/j.knosys.2020.105548
Xie ZY, 2020, NEUROCOMPUTING, V402, P245, DOI 10.1016/j.neucom.2020.03.086
Yan SJ, 2018, AAAI CONF ARTIF INTE, P7444
Yang JW, 2018, LECT NOTES COMPUT SC, V11205, P690, DOI 10.1007/978-3-030-01246-5_41
Yang K, 2019, ICVIP 2019: PROCEEDINGS OF 2019 3RD INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, P1, DOI 10.1145/3376067.3376076
Yang LX, 2014, IEEE GEOSCI REMOTE S, V11, P651, DOI 10.1109/LGRS.2013.2273792
Yang YY, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2161, DOI 10.1145/3357384.3358156
Yao JT, 2007, GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, P734, DOI 10.1109/GrC.2007.11
Yao T, 2018, LECT NOTES COMPUT SC, V11218, P711, DOI 10.1007/978-3-030-01264-9_42
Yin RP, 2019, KNOWL-BASED SYST, V185, DOI 10.1016/j.knosys.2019.105020
Ying R, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P974, DOI 10.1145/3219819.3219890
Yo HF, 2020, IEEE T GEOSCI REMOTE, V58, P1281, DOI 10.1109/TGRS.2019.2945591
You JX, 2018, ADV NEUR IN, V31
Yu B, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3634
Yu DJ, 2018, KNOWL-BASED SYST, V141, P188, DOI 10.1016/j.knosys.2017.11.018
Zhang CX, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P793, DOI 10.1145/3292500.3330961
Zhang HM, 2021, KNOWL-BASED SYST, V229, DOI 10.1016/j.knosys.2021.107299
Zhang MH, 2022, Arxiv, DOI arXiv:2010.16103
Zhang MH, 2018, AAAI CONF ARTIF INTE, P4438
Zhang S, 2021, KNOWL-BASED SYST, V231, DOI 10.1016/j.knosys.2021.107403
Zhang Si, 2019, Comput Soc Netw, V6, P11, DOI 10.1186/s40649-019-0069-y
Zhang WS, 2019, IEEE ACCESS, V7, P32754, DOI 10.1109/ACCESS.2019.2902865
Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994
Zhang YH, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P2205
Zhao BX, 2020, IEEE ACCESS, V8, P76632, DOI 10.1109/ACCESS.2020.2989443
Zhao M, 2020, LECT NOTES ARTIF INT, V12085, P542, DOI 10.1007/978-3-030-47436-2_41
Zhao PL, 2020, KNOWL-BASED SYST, V193, DOI 10.1016/j.knosys.2019.105443
Zhou J, 2020, AI OPEN, V1, P57, DOI 10.1016/j.aiopen.2021.01.001
Zhou J, 2020, KNOWL-BASED SYST, V205, DOI 10.1016/j.knosys.2020.106292
Zhu X., 2002, Tech. Rep., Technical Report CMU-CALD-02-107
Zou XM, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191163
NR 164
TC 14
Z9 13
U1 3
U2 3
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
EI 2666-8270
J9 MACH LEARN APPL
JI Mach. Learn. Appl.
PD DEC 15
PY 2022
VL 10
AR 100401
DI 10.1016/j.mlwa.2022.100401
PG 18
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA QT9C3
UT WOS:001223227900014
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Serenko, A
AF Serenko, Alexander
TI The development of an AI journal ranking based on the revealed
preference approach
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Artificial intelligence; Journal ranking; Academic journal; Google
scholar; Citation impact; h-Index; g-Index; hc-Index
ID H-INDEX; CITATION ANALYSIS; SCIENTOMETRIC ANALYSIS; KNOWLEDGE
MANAGEMENT; GLOBAL PERCEPTIONS; BUSINESS; QUALITY; IMPACT; SCIENCE;
PRODUCTIVITY
AB This study presents a ranking of 182 academic journals in the field of artificial intelligence. For this, the revealed preference approach, also referred to as a citation impact method, was utilized to collect data from Google Scholar. This list was developed based on three relatively novel indices: h-index, g-index, and hc-index. These indices correlated almost perfectly with one another (ranging from 0.97 to 0.99), and they correlated strongly with Thomson's Journal Impact Factors (ranging from 0.64 to 0.69). It was concluded that journal longevity (years in print) is an important but not the only factor affecting an outlet's ranking position. Inclusion in Thomson's Journal Citation Reports is a must for a journal to be identified as a leading A+ or A level outlet. However, coverage by Thomson does not guarantee a high citation impact of an outlet. The presented list may be utilized by scholars who want to demonstrate their research output, various academic committees, librarians and administrators who are not familiar with the AI research domain. (C) 2010 Elsevier Ltd. All rights reserved.
C1 Lakehead Univ, Fac Business Adm, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada.
C3 Lakehead University
RP Serenko, A (corresponding author), Lakehead Univ, Fac Business Adm, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada.
EM aserenko@lakeheadu.ca
RI Serenko, Alexander/AAT-2082-2020
OI Serenko, Alexander/0000-0003-4881-2932
CR Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181
[Anonymous], 2005, Australian Journal of Management
Ball P, 2005, NATURE, V436, P900, DOI 10.1038/436900a
Banks MG, 2006, SCIENTOMETRICS, V69, P161, DOI 10.1007/s11192-006-0146-5
Barnes SJ, 2005, COMMUN ACM, V48, P110, DOI 10.1145/1039539.1039573
Bharati P, 2002, COMMUN ACM, V45, P21
BOBROW DG, 1993, ARTIF INTELL, V59, P5, DOI 10.1016/0004-3702(93)90163-6
BONEV I, 2009, PARALLEMIC
Bontis N, 2009, J KNOWL MANAG, V13, P16, DOI 10.1108/13673270910931134
Cheng CH, 1996, AI MAG, V17, P87
Cheng CH, 1999, IEEE T ENG MANAGE, V46, P4, DOI 10.1109/17.740028
CHENG CH, 1994, IEEE EXPERT, V9, P7, DOI 10.1109/64.363256
COE R, 1984, ACAD MANAGE J, V27, P660, DOI 10.2307/256053
CUELLAR MJ, 2008, P 14 AM C INF SYST T
Egghe L, 2008, J AM SOC INF SCI TEC, V59, P1304, DOI 10.1002/asi.20823
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Fisher J, 2007, AUSTRALAS J INF SYST, V14, P5
Forgionne GA, 2002, OMEGA-INT J MANAGE S, V30, P171, DOI 10.1016/S0305-0483(02)00025-7
Forgionne GA, 2001, INFORM MANAGE, V38, P421, DOI 10.1016/S0378-7206(00)00079-3
FRANKE RH, 1990, STRATEGIC MANAGE J, V11, P243, DOI 10.1002/smj.4250110306
Gallivan MJ, 2007, EUR J INFORM SYST, V16, P36, DOI 10.1057/palgrave.ejis.3000667
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Garfield E, 1979, CITATION INDEXING IT
Gillenson M., 2008, P 14 AM C INF SYST T
Goodrum AA, 2001, INFORM PROCESS MANAG, V37, P661, DOI 10.1016/S0306-4573(00)00047-9
Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385
GUPTA UG, 1994, EXPERT SYST APPL, V7, P581, DOI 10.1016/0957-4174(94)90081-7
Harzing A., 2008, Ethics in Science and Environmental Politics, V8, P61, DOI [DOI 10.3354/ESEP00076, 10.3354/esep00076]
Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Holsapple C. W., 1994, Journal of Management Information Systems, V11, P131
Holsapple CW, 2008, J AM SOC INF SCI TEC, V59, P166, DOI 10.1002/asi.20679
Holsapple CW, 2009, COMMUN ACM, V52, P117, DOI 10.1145/1467247.1467276
HOLSAPPLE CW, 1995, DECIS SUPPORT SYST, V14, P359, DOI 10.1016/0167-9236(94)00022-K
HOWARD GS, 1995, DEV REV, V15, P136, DOI 10.1006/drev.1995.1006
Kleijnen JPC, 2000, INFORM PROCESS MANAG, V36, P551, DOI 10.1016/S0306-4573(99)00076-X
Kousha K, 2007, J AM SOC INF SCI TEC, V58, P1055, DOI 10.1002/asi.20584
Lewis BR, 2007, J ASSOC INF SYST, V8, P619, DOI 10.17705/1jais.00145
Liang LM, 2006, SCIENTOMETRICS, V69, P153, DOI 10.1007/s11192-006-0145-6
Lowry P., 2004, J ASSOC INF SYST, V5, P29, DOI DOI 10.17705/1JAIS.00045
Lowry PB, 2007, IEEE T PROF COMMUN, V50, P352, DOI 10.1109/TPC.2007.908733
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
Manning LM, 2005, CAN J ADM SCI, V22, P273
Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677
Meho LI, 2007, PHYS WORLD, V20, P32
Merton R., 1976, Sociological Ambivalence and Other Essays
Merton R. K., 1974, SOCIOLOGY SCI THEORE
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
MERTON RK, 1988, ISIS, V79, P606, DOI 10.1086/354848
Mingers J, 2007, EUR J INFORM SYST, V16, P303, DOI 10.1057/palgrave.ejis.3000696
Moussa S, 2010, J INFORMETR, V4, P107, DOI 10.1016/j.joi.2009.10.001
Mylonopoulos NA, 2001, COMMUN ACM, V44, P29, DOI 10.1145/383694.383701
Nisonger TE, 2004, COLL RES LIBR, V65, P152, DOI 10.5860/crl.65.2.152
Oltheten E, 2005, J FINANC QUANT ANAL, V40, P223, DOI 10.1017/S0022109000001800
Paul K, 2004, J SCHOLARLY PUBL, V35, P103, DOI 10.1353/scp.2004.0009
Pauly D., 2005, Ethics Sci Environ Polit, V5, P33
Polites GL, 2008, COMMUN ACM, V51, P95, DOI 10.1145/1327452.1327454
Price D. J. d. S., 1963, Little Science, Big Science
Rogers P.S., 2007, J BUS COMMUN, V44, P403, DOI 10.1177/0021943607306138
Saad G, 2006, SCIENTOMETRICS, V69, P117, DOI 10.1007/s11192-006-0142-9
Serenko Alexander, 2009, International Journal of Business Governance and Ethics, V4, P390, DOI 10.1504/IJBGE.2009.023790
Serenko A, 2009, J INTELLECT CAP, V10, P8, DOI 10.1108/14691930910922860
Serenko A, 2010, J KNOWL MANAG, V14, P3, DOI 10.1108/13673271011015534
Serenko A, 2009, J KNOWL MANAG, V13, P4, DOI 10.1108/13673270910931125
Serenko A, 2008, CAN J ADM SCI, V25, P279, DOI 10.1002/CJAS.73
Serenko Alexander., 2004, KNOWL PROCESS MANAG, V11, P185, DOI DOI 10.1002/KPM.203
Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z
Starbuck WH, 2005, ORGAN SCI, V16, P180, DOI 10.1287/orsc.1040.0107
Straub D, 2006, J ASSOC INF SYST, V7, P241, DOI 10.17705/1jais.00091
Tahai A, 1999, STRATEGIC MANAGE J, V20, P279
Theoharakis V, 2002, MARKET LETT, V13, P389, DOI 10.1023/A:1020378718456
Tol RSJ, 2008, J INFORMETR, V2, P149, DOI 10.1016/j.joi.2008.01.001
Truex D, 2009, J ASSOC INF SYST, V10, P560
Vokurka R.J., 1996, Journal of Operations Management, V14, P345, DOI DOI 10.1016/S0272-6963(96)00092-7
Walstrom KA, 2001, INFORM MANAGE, V39, P117, DOI 10.1016/S0378-7206(01)00084-2
NR 75
TC 39
Z9 39
U1 0
U2 32
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD OCT
PY 2010
VL 4
IS 4
BP 447
EP 459
DI 10.1016/j.joi.2010.04.001
PG 13
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 647KA
UT WOS:000281616200001
DA 2024-09-05
ER
PT J
AU Hori, Y
Hayashi, E
AF Hori, Yoshiki
Hayashi, Eiji
TI A Research on a System Using Deep Learning for Inferring Piano
Performance
SO JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE
LA English
DT Article
DE Automatic piano; Computer music; Deep learning
AB Achieving expressive and human-like automated piano performances has proven challenging. This study proposes a deep learning system to infer expressive nuances from musical scores, addressing the limitations of traditional rule-based approaches. By leveraging neural networks to learn the mapping between scores and expert performances, the system automates the inference process, improving accuracy while enhancing efficiency. This novel application of deep learning shows promise for advancing automated music performance and enabling more artistically expressive renditions. The insights gained could have broader implications for computer-aided musical interpretation and synthesis.
C1 [Hori, Yoshiki; Hayashi, Eiji] Kyushu Inst Technol, 680-4 Kawazu, Iizuka Shi, Fukuoka 8208502, Japan.
C3 Kyushu Institute of Technology
RP Hori, Y (corresponding author), Kyushu Inst Technol, 680-4 Kawazu, Iizuka Shi, Fukuoka 8208502, Japan.
EM hori.yoshiki311@mail.kyutech.jp; haya@mse.kyutech.ac.jp
CR HAYASHI E, 1994, INT J JPN S PREC ENG, V28, P164
NR 1
TC 0
Z9 0
U1 0
U2 0
PU ALife Robotics Corp Ltd
PI Oita
PA Handadai Higashi 2-8-4, Oita, JAPAN
SN 2352-6386
J9 J ROBOT NETW ARTIF L
JI J. Robot Netw. Artif. Life
PD DEC
PY 2023
VL 10
IS 3
BP 282
EP 285
PG 4
WC Robotics
WE Emerging Sources Citation Index (ESCI)
SC Robotics
GA A9L6X
UT WOS:001285686500014
DA 2024-09-05
ER
PT J
AU Hanif, O
Zhu, DH
Wang, XF
Nawaz, MS
AF Hanif, Omer
Zhu Donghua
Wang Xuefeng
Nawaz, M. Saqib
TI Refining the Measurement of Topic Similarities Through Bibliographic
Coupling and LDA
SO IEEE ACCESS
LA English
DT Article
DE Bibliographic coupling; brain cancer; technology mining; Latent
Dirichlet allocation; topic similarity
ID GROWTH-HORMONE; THERAPY; CANCER; TECHNOLOGY; TRACKING; CITATION;
DISEASE; BRAIN; MODEL; AXIS
AB Generally, two topics with vastly different terminology probably indicate different implied concepts. However, these topics themselves might share common references (bibliographic coupling), which suggest the underlying joint concept. Therefore, searching for these joint concepts in different topics would be of scientific interest. Previous studies have measured the similarity between topics based on comparison of the topics' word probability distributions. In contrast, this paper presents an approach for measuring the similarity between topics based on the bibliographic coupling. Besides, the similarity is independent of the topic's word probability distributions generated by a Latent Dirichlet Allocation (LDA) model. The proposed approach was evaluated using its counterpart (intra-topic similarity), baseline topic similarity matrices, and cosine measure. The method was exampled on brain cancer patents. A cross-topic similarity network of eight topics showcases 28 cross-topic pairs to profile which topics were associated with particular topics. Interestingly, some of the 28 combinations may be of scientific interest. For instance, the findings of the top five cross-topic pairs suggest that "growth of cancer cells" and "imbalances in the hormones" have common knowledge sources with the highest similarity value. These two entirely different concepts may suggest some common causative factors within the field. We believe that finding such an association between unrelated innovative inventions across various industries may help public and private research units in planning research direction and serve as a reference for future research.
C1 [Hanif, Omer; Zhu Donghua; Wang Xuefeng] Beijing Inst Technol, Sch Management & Econ, Lab Knowledge Management & Data Anal, Beijing 100081, Peoples R China.
[Nawaz, M. Saqib] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518000, Peoples R China.
C3 Beijing Institute of Technology; Harbin Institute of Technology
RP Hanif, O (corresponding author), Beijing Inst Technol, Sch Management & Econ, Lab Knowledge Management & Data Anal, Beijing 100081, Peoples R China.
EM omerhanif@bit.edu.cn
RI Nawaz, M. Saqib/AAV-3633-2020; Nawaz, M Saqib/JDM-5962-2023; Hanif,
Omer/AAQ-3868-2020
OI Nawaz, M. Saqib/0000-0001-9856-2885; Wang, xuefeng/0000-0002-4857-6944;
HANIF, OMER/0000-0002-3829-5620
FU National Natural Science Foundation of China [71774012, 71373019,
71673024]; Chinese Scholarship Council [278401]
FX This work was supported in part by the General Program of National
Natural Science Foundation of China under Grant 71774012, Grant
71373019, and Grant 71673024, and in part by Chinese Scholarship Council
through the Omer Hanif under Grant 2014-CSC#278401.
CR Adams J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115092
Aletras N., 2014, Short Papers, V2, P22, DOI [10.3115/v1/E14-4005, DOI 10.3115/V1/E14-4005, 10.1017/CBO9781107415324.004]
Ando R.K., 2000, PROC SIGIR, P216
[Anonymous], 2006, ADV NEURAL INFORM PR
[Anonymous], AD CENTR NERV SYST T
[Anonymous], 2008, TECH REP
[Anonymous], 2017, CANCER
[Anonymous], 2006, P 29 ANN INT ACM SIG
[Anonymous], ACM T INTELL SYST TE
[Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076
[Anonymous], BIOMED RES INT
[Anonymous], 2009, WSDM
[Anonymous], 1983, INTRO MODERN INFORM
[Anonymous], STRATEGIC SOURCING N
Arora Sanjeev, 2013, International Conference on Machine Learning
Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391
Blei D.M., 2009, Text mining: Classification, clustering, and applications, P101
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Boyack KW, 2014, J ASSOC INF SCI TECH, V65, P670, DOI 10.1002/asi.22990
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Chaney A., 2021, P INT AAAI C WEB SOC, V6, P419
Chang J, 2009, P 12 INT C ART INT S, P81
Clayton PE, 2011, NAT REV ENDOCRINOL, V7, P11, DOI 10.1038/nrendo.2010.171
Di Marco M, 2016, WORLD J GASTRO ONCOL, V8, P55, DOI 10.4251/wjgo.v8.i1.55
Faba-Pérez C, 2004, LIBRI, V54, P43, DOI 10.1515/LIBR.2004.43
Glänzel W, 2011, SCIENTOMETRICS, V88, P297, DOI 10.1007/s11192-011-0347-4
Goh J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11102869
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Gurcan F, 2019, IEEE ACCESS, V7, P82541, DOI 10.1109/ACCESS.2019.2924075
Hinneburg Alexander, 2012, Machine Learning and Knowledge Discovery in Databases. Proceedings of the European Conference (ECML PKDD 2012), P838, DOI 10.1007/978-3-642-33486-3_59
Huang HL, 2014, BMC PULM MED, V14, DOI 10.1186/1471-2466-14-80
Huang K., 2016, ADV NEURAL INFORM PR, P1786
Huang Y, 2015, SCIENTOMETRICS, V105, P2005, DOI 10.1007/s11192-015-1638-y
Jo Y, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P370
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Kostoff RN, 2014, SCIENTOMETRICS, V100, P623, DOI 10.1007/s11192-014-1298-3
Kuusi O, 2007, SCIENTOMETRICS, V70, P759, DOI 10.1007/s11192-007-0311-5
Lee YY, 2013, PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013), P23, DOI 10.1109/ICSE.2013.6606548
Li Lianghao, 2012, P 26 AAAI C ART INT, P998
Li MN, 2018, TECHNOL FORECAST SOC, V129, P285, DOI 10.1016/j.techfore.2017.09.032
Li W., 2006, ICML, P577, DOI [10.1145/1143844.1143917, 10.1145/]
Lin HY, 2016, COMPR PHYSIOL, V6, P1221, DOI 10.1002/cphy.c150035
Liu SJ, 1997, INT J TECHNOL MANAGE, V13, P661, DOI 10.1504/IJTM.1997.001689
Lupien SJ, 2007, BRAIN COGNITION, V65, P209, DOI 10.1016/j.bandc.2007.02.007
Mahesh S, 2008, PEDIATR NEPHROL, V23, P41, DOI 10.1007/s00467-007-0527-x
Mantyla M., 2018, PROC IEEE INT S EMPI, P1
Meyer M, 2014, SCIENTOMETRICS, V99, P151, DOI 10.1007/s11192-013-1103-8
Morch LS, 2009, JAMA-J AM MED ASSOC, V302, P298, DOI 10.1001/jama.2009.1052
Nakazawa R, 2015, IEEE INT CONF INF VI, P283, DOI 10.1109/iV.2015.58
Nicolaisen J, 2015, J ASSOC INF SCI TECH, V66, P1082, DOI 10.1002/asi.23224
Park B, 2017, AM J HYPERTENS, V30, P713, DOI 10.1093/ajh/hpx037
Raghupathi V, 2018, IEEE ACCESS, V6, P41518, DOI 10.1109/ACCESS.2018.2859052
Ramage Daniel., 2009, EMNLP
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Schally AV, 2008, NAT CLIN PRACT ENDOC, V4, P33, DOI 10.1038/ncpendmet0677
Shao HB, 2012, NEUROLOGY, V79, P1846, DOI 10.1212/WNL.0b013e318271f823
Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009
Sklar C, 2011, J CLIN ONCOL, V29, P4743, DOI 10.1200/JCO.2011.38.9833
Soranzo B, 2016, J ENG TECHNOL MANAGE, V42, P15, DOI 10.1016/j.jengtecman.2016.08.002
Thijs B, 2015, SCIENTOMETRICS, V105, P1453, DOI 10.1007/s11192-015-1641-3
Nguyen T, 2018, INT CONF KNOWL SYS, P91, DOI 10.1109/KSE.2018.8573400
Wang F, 2018, IEEE ACCESS, V6, P24660, DOI 10.1109/ACCESS.2018.2815904
Xiaofei He, 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P96
Xu GX, 2019, IEEE ACCESS, V7, P58407, DOI 10.1109/ACCESS.2019.2914097
Yang XP, 2011, CURR OPIN NEPHROL HY, V20, P133, DOI 10.1097/MNH.0b013e3283431921
Zamboni WC, 2008, ONCOLOGIST, V13, P248, DOI 10.1634/theoncologist.2007-0180
Zhang Jin, 2006, Cancer Genomics & Proteomics, V3, P147
Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814
NR 68
TC 4
Z9 4
U1 0
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2019
VL 7
BP 179997
EP 180011
DI 10.1109/ACCESS.2019.2958489
PG 15
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA KF8JT
UT WOS:000509483800210
OA gold
DA 2024-09-05
ER
PT J
AU Cascella, M
Perri, F
Ottaiano, A
Cuomo, A
Wirz, S
Coluccia, S
AF Cascella, Marco
Perri, Francesco
Ottaiano, Alessandro
Cuomo, Arturo
Wirz, Stefan
Coluccia, Sergio
TI Trends in Research on Artificial Intelligence in Anesthesia: A
VOSviewer-Based Bibliometric Analysis
SO INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE
LA English
DT Article
DE Artificial Intelligence; Anesthesia; Bibliometric analysis; Machine
Learning; Deep Learning; Network analysis
AB Background: The scientific literature on Artificial Intelligence (AI) in anesthesia is rapidly growing. Considering that applications of AI strategies can offer paramount support in clinical decision processes, it is crucial to delineate the research features. Bibliometric analyses can provide an overview of research tendencies useful for supplementary investigations in a research field. Methods: The comprehensive literature about AI in anesthesia was checked in the Web of Science (WOS) core collection. Year of publication, journal metrics including impact factor and quartile, title, document type, topic, and article metric (citations) were extracted. The software tool VOSviewer (version 1.6.17) was implemented for the co-occurrence of keywords and the co-citation analyses, and for evaluating research networks (countries and institutions). Results: Altogether, 288 documents were retrieved from the WOS and 154 articles were included in the analysis. The number of articles increased from 4 articles in 2017 to 37 in 2021. Only 34 were observational investigations and 7 RCTs. The most relevant topic is "anesthesia management". The research network for countries and institutions shows severe gaps. Conclusion: Research on AI in anesthesia is rapidly developing. Further clinical studies are needed. Although different topics are addressed, scientific collaborations must be implemented.
C1 [Cascella, Marco; Cuomo, Arturo] Ist Nazl Tumori IRCCS Fdn Pascale, Div Anesthesia & Pain Med, Naples, Italy.
[Perri, Francesco] IRCCS Fdn G Pascale, Ist Nazl Tumori, Med & Expt Head & Neck Oncol Unit, Naples, Italy.
[Ottaiano, Alessandro] IRCCS G Pascale, Ist Nazl Tumori Napoli, SSD Innovat Therapies Abdominal Metastases, Via M Semmola, I-80131 Naples, Italy.
[Wirz, Stefan] GFO Kliniken Bonn, Cura Krankenhaus, Zent Schmerzmed, Abt Anasthesie Interdisziplinare Intens Med Schmer, Schulgenstr 15, D-53604 Bad Honnef, Germany.
[Coluccia, Sergio] IRCCS Fdn G Pascale, Ist Nazl Tumori, Epidemiol & Biostat Unit, I-80100 Naples, Italy.
C3 IRCCS Fondazione Pascale; IRCCS Fondazione Pascale; Fondazione IRCCS
Istituto Nazionale Tumori Milan; IRCCS Fondazione Pascale; IRCCS
Fondazione Pascale; Fondazione IRCCS Istituto Nazionale Tumori Milan
RP Cascella, M (corresponding author), Ist Nazl Tumori IRCCS Fdn Pascale, Div Anesthesia & Pain Med, Naples, Italy.
EM m.cascella@istitutotumori.na.it
RI cuomo, arturo/AAL-4416-2020; cascella, marco/N-1316-2018; Coluccia,
Sergio/AAC-6043-2022; Wirz, Stefan/KGM-5077-2024
OI cascella, marco/0000-0002-5236-3132; Ottaiano,
Alessandro/0000-0002-2901-3855
CR Afshar S, 2021, IEEE J BIOMED HEALTH, V25, P3408, DOI 10.1109/JBHI.2021.3068481
Alexander JC, 2020, INT ANESTHESIOL CLIN, V58, P7, DOI 10.1097/AIA.0000000000000294
Bellini Valentina, 2022, Acta Biomed, V93, pe2022297, DOI 10.23750/abm.v93i5.13626
Cascella M, 2022, J CLIN MED, V11, DOI 10.3390/jcm11185484
Cascella M, 2022, J PAIN SYMPTOM MANAG, V63, P1041, DOI 10.1016/j.jpainsymman.2022.01.023
Cascella Marco AI_Anesthesia_WoS, 2022, ZENODO
Coelho A., 2017, INTELIGENCIA ARTIFIC, V20, P42, DOI [10.4114/intartif.vol20iss59pp42-52, DOI 10.4114/INTARTIF.VOL20ISS59PP42-52]
Connor CW, 2019, ANESTHESIOLOGY, V131, P1346, DOI 10.1097/ALN.0000000000002694
Cuendet GL, 2016, IEEE T BIO-MED ENG, V63, P328, DOI 10.1109/TBME.2015.2457032
El-Nagar AM, 2014, ARTIF INTELL MED, V61, P1, DOI 10.1016/j.artmed.2014.03.002
Flores Fonseca V. M., 2016, INTELIGENCIA ARTIFIC, V19, P17, DOI [10.4114/intartif.vol19iss58pp17-22, DOI 10.4114/INTARTIF.VOL19ISS58PP17-22]
Gardner H., 1983, THEORY MULTIPLE INTE
Glance LG, 2017, ANESTH ANALG, V125, P689, DOI 10.1213/ANE.0000000000002005
Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228
Hashimoto DA, 2020, ANESTHESIOLOGY, V132, P379, DOI 10.1097/ALN.0000000000002960
Joosten A, 2019, BRIT J ANAESTH, V123, P430, DOI 10.1016/j.bja.2019.04.064
Lee M, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28451-0
Miyaguchi N, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-03112-2
Niu BB, 2014, SCIENTOMETRICS, V98, P511, DOI 10.1007/s11192-013-1065-x
Russell S. J., 2020, ARTIF INTELL
Stephan P, 2017, NATURE, V544, P411, DOI 10.1038/544411a
Szomszor Martin, 2020, Front Res Metr Anal, V5, P628703, DOI 10.3389/frma.2020.628703
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vittori A, 2022, CHILDREN-BASEL, V9, DOI 10.3390/children9050637
Walczak S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229450
Wu HY, 2014, BIOSCI TRENDS, V8, P192, DOI 10.5582/bst.2014.01048
Yoon HK, 2022, KOREAN J ANESTHESIOL, V75, P202, DOI 10.4097/kja.22157
Zhao H, 2021, FRONT SURG, V8, DOI 10.3389/fsurg.2021.634629
NR 28
TC 3
Z9 3
U1 4
U2 24
PU ASOC ESPANOLA INTELIGENCIA ARTIFICIAL
PI VALENCIA
PA FAC INFORMATICA, UNIV POLITECNICA VALENCIA, VALENCIA, SPAIN
SN 1137-3601
EI 1988-3064
J9 INTELIGENCIA ARTIFIC
JI Inteligencia Artif.
PD DEC
PY 2022
VL 25
IS 70
BP 126
EP 137
DI 10.4114/intartif.vol25iss70pp126-137
PG 12
WC Computer Science, Artificial Intelligence
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA 7M8UM
UT WOS:000906926400001
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Ho, YS
Wang, MH
AF Ho, Yuh-Shan
Wang, Ming-Huang
TI A bibliometric analysis of artificial intelligence publications from
1991 to 2018
SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT
LA English
DT Article
DE AI; Neural networks; Hybrid; Machine learning; Support vector machine
ID CHEMICAL INFERENCE; COMPUTER-PROGRAM; ELUCIDATION; SIMULATION; ARTICLES;
GENOA
AB This study aimed to analyze the characteristics of artificial intelligence-related publications in Science Citation Index Expanded (SCI-EXPANDED) from 1991 to 2018. The analyzed aspects covered distribution of annual publications, citations per publication, journals, Web of Science categories, countries, institutions, as well as research foci and their trends. A total of 13,251 artificial intelligence-related articles were found. Articles were published in a wide range of journals and Web of Science categories. The United States took the lead position in total, single country, international collaboration, and first, corresponding, and single author articles as well as citations per publication among 119 countries. Chinese Academy of Sciences in China, Islamic Azad University in Iran, and Massachusetts Institute of Technology (MIT) in USA were the three most productive institutions. MIT had higher citations per publication. An international collaborative article by authors from Canada, the United States, and Switzerland was the most frequently cited article with the most total citations from Web of Science Core Collection since publication through the end of 2018. Results from word cluster analysis showed that models, neural networks, learning, and prediction were the most popular topics and features, classification, and optimization might be focus in artificial intelligence research.
C1 [Ho, Yuh-Shan; Wang, Ming-Huang] Asia Univ, Trend Res Ctr, 500 Lioufeng Rd, Wufeng 41354, Taichung County, Taiwan.
C3 Asia University Taiwan
RP Ho, YS (corresponding author), Asia Univ, Trend Res Ctr, 500 Lioufeng Rd, Wufeng 41354, Taichung County, Taiwan.
EM ysho@asia.edu.tw
RI Wang, Ming-Huang/F-5445-2012
OI Wang, Ming-Huang/0000-0002-2193-9864
CR [Anonymous], 1934, Engineering, DOI [10.1177/016555158501000, DOI 10.1177/016555158501000]
Bahrammirzaee A, 2010, NEURAL COMPUT APPL, V19, P1165, DOI 10.1007/s00521-010-0362-z
Barnich O, 2011, IEEE T IMAGE PROCESS, V20, P1709, DOI 10.1109/TIP.2010.2101613
Barsalou LW, 1999, BEHAV BRAIN SCI, V22, P577, DOI 10.1017/S0140525X99532147
Bellini A, 2008, IEEE T IND ELECTRON, V55, P4109, DOI 10.1109/TIE.2008.2007527
CARBONEL.JR, 1970, IEEE T MAN MACHINE, VMM11, P190, DOI 10.1109/TMMS.1970.299942
CARHART RE, 1981, J ORG CHEM, V46, P1708, DOI 10.1021/jo00321a037
CARHART RE, 1975, J AM CHEM SOC, V97, P5755, DOI 10.1021/ja00853a021
CARHART RE, 1975, J CHEM INF COMP SCI, V15, P124, DOI 10.1021/ci60002a011
Chaouachi A, 2013, IEEE T IND ELECTRON, V60, P1688, DOI 10.1109/TIE.2012.2188873
Chiu WT, 2007, SCIENTOMETRICS, V73, P3, DOI 10.1007/s11192-005-1523-1
Chiu WT, 2005, SCIENTOMETRICS, V63, P3, DOI 10.1007/s11192-005-0201-7
Chuang KY, 2015, CURR SCI INDIA, V108, P933
Chuang KY, 2014, J INFORMETR, V8, P951, DOI 10.1016/j.joi.2014.09.008
Chuang KY, 2011, SCIENTOMETRICS, V87, P551, DOI 10.1007/s11192-011-0365-2
Elango B, 2017, CURR SCI INDIA, V112, P1653, DOI 10.18520/cs/v112/i08/1653-1658
EMERENCIANO VD, 1994, SPECTROSC-INT J, V12, P91
Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056
Fu HZ, 2015, ELECTRON LIBR, V33, P698, DOI 10.1108/EL-12-2013-0221
Fu HZ, 2015, J ENG THERMOPHYS-RUS, V24, P68, DOI 10.1134/S1810232815010075
Fu HZ, 2014, RES EVALUAT, V23, P12, DOI 10.1093/reseval/rvt018
Fu HZ, 2013, SCIENTOMETRICS, V96, P259, DOI 10.1007/s11192-012-0912-5
Fu HZ, 2013, SCI TOTAL ENVIRON, V443, P757, DOI 10.1016/j.scitotenv.2012.11.061
Fu HZ, 2013, J INFORMETR, V7, P210, DOI 10.1016/j.joi.2012.11.005
Fu HZ, 2012, J COLLOID INTERF SCI, V379, P148, DOI 10.1016/j.jcis.2012.04.051
FU KS, 1971, IEEE T AUTOMAT CONTR, VAC16, P70, DOI 10.1109/TAC.1971.1099633
Gardner MW, 1998, ATMOS ENVIRON, V32, P2627, DOI 10.1016/S1352-2310(97)00447-0
GARFIELD E, 1990, CURR CONTENTS, V32, P5
GARFIELD E, 1983, CURR CONTENTS, V49, P5
Garfield E., 1983, CURR CONTENTS, V52, P5
GLOVER F, 1986, COMPUT OPER RES, V13, P533, DOI 10.1016/0305-0548(86)90048-1
GRIBOV LA, 1980, ANAL CHIM ACTA-COMP, V4, P249
Gruber TR, 1995, INT J HUM-COMPUT ST, V43, P907, DOI 10.1006/ijhc.1995.1081
Han JS, 2011, NEUROSCI BIOBEHAV R, V35, P680, DOI 10.1016/j.neubiorev.2010.08.006
Ho YS, 2016, INORG CHEM COMMUN, V73, P174, DOI 10.1016/j.inoche.2016.10.023
Ho YS, 2016, CURR SCI INDIA, V111, P1156, DOI 10.18520/cs/v111/i7/1156-1165
Ho YS, 2016, FUTURE VIROL, V11, P631, DOI 10.2217/fvl-2016-0057
Ho YS, 2014, J ASSOC INF SCI TECH, V65, P372, DOI 10.1002/asi.22974
Ho YS, 2014, SCIENTOMETRICS, V98, P137, DOI 10.1007/s11192-013-1014-8
Ho YS, 2012, CHINESE J CHEM ENG, V20, P478, DOI 10.1016/S1004-9541(11)60209-7
Ho YS, 2010, INTERNAL MED, V49, P2219, DOI 10.2169/internalmedicine.49.3687
Hsieh WH, 2004, SCIENTOMETRICS, V60, P205
Huang CY, 2011, AFR J BUS MANAGE, V5, P276
HUNT E, 1968, ANNU REV PSYCHOL, V19, P135, DOI 10.1146/annurev.ps.19.020168.001031
Jia F, 2016, MECH SYST SIGNAL PR, V72-73, P303, DOI 10.1016/j.ymssp.2015.10.025
KLOPMAN G, 1984, J AM CHEM SOC, V106, P7315, DOI 10.1021/ja00336a004
Kschischang FR, 2001, IEEE T INFORM THEORY, V47, P498, DOI 10.1109/18.910572
LEDERBERG J, 1969, J AM CHEM SOC, V91, P2973, DOI 10.1021/ja01039a025
Lei J, 2018, COLLNET J SCIENTOMET, V12, P327, DOI 10.1080/09737766.2018.1501923
Li JF, 2009, CROAT CHEM ACTA, V82, P695
Li LL, 2009, SCIENTOMETRICS, V80, P39, DOI 10.1007/s11192-008-1939-5
Li Z, 2008, SCIENTOMETRICS, V75, P97, DOI 10.1007/s11192-007-1838-1
Lin CSL, 2015, CELL J, V17, P59
LINDLEY MR, 1983, ORG MAGN RESONANCE, V21, P405, DOI 10.1002/omr.1270210702
Long X, 2014, AM J SURG, V208, P841, DOI 10.1016/j.amjsurg.2014.03.016
Mannsfeld SCB, 2010, NAT MATER, V9, P859, DOI [10.1038/nmat2834, 10.1038/NMAT2834]
Mao N, 2010, HUM ECOL RISK ASSESS, V16, P801, DOI 10.1080/10807039.2010.501248
MASINTER LM, 1974, J AM CHEM SOC, V96, P7702, DOI 10.1021/ja00832a017
Mazaheri H, 2017, PHYS CHEM CHEM PHYS, V19, P11299, DOI 10.1039/c6cp08437k
Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001
MINSKY M, 1961, P IRE, V49, P8, DOI 10.1109/JRPROC.1961.287775
Mo ZW, 2018, ENVIRON SCI POLLUT R, V25, P30257, DOI 10.1007/s11356-018-3019-6
Picknett T, 1999, J MOL BIOL, V293, P173, DOI 10.1006/jmbi.1999.3148
Pierce A., 1959, TASK, V46104
Pouris A, 2016, S AFR J SCI, V112, P83, DOI 10.17159/sajs.2016/20150326
Qian L, 2011, NATURE, V475, P368, DOI 10.1038/nature10262
SCHIMINOVICH S, 1975, BIOSCI COMMUN, V1, P24
SHUBIK M, 1960, J AM STAT ASSOC, V55, P736, DOI 10.2307/2281597
Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270
Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961
Smith DR, 2008, AUST VET J, V86, P337, DOI 10.1111/j.1751-0813.2008.00330.x
SMITH LC, 1980, ANNU REV INFORM SCI, V15, P67
TAM KY, 1992, MANAGE SCI, V38, P926, DOI 10.1287/mnsc.38.7.926
Tan J, 2014, SCIENTOMETRICS, V98, P1473, DOI 10.1007/s11192-013-1125-2
Tanaka H, 2011, DESALIN WATER TREAT, V25, P1, DOI 10.5004/dwt.2011.1936
Tchuifon DRT, 2017, REV BIOL TROP, V65, P1582, DOI 10.15517/rbt.v65i4.27101
Wambu EW, 2017, INT J FOOD SCI TECH, V52, P644, DOI 10.1111/ijfs.13317
Wang CC, 2016, SCIENTOMETRICS, V109, P481, DOI 10.1007/s11192-016-1986-2
Wang MH, 2011, MALAYS J LIBR INF SC, V16, P1
WHITE RW, 1989, PAP REG SCI ASSOC, V67, P43, DOI 10.1007/BF01934666
WOOLDRIDGE M, 1995, KNOWL ENG REV, V10, P115, DOI 10.1017/S0269888900008122
Zhai C, 2018, MEAS CONTROL-UK, V51, P113, DOI 10.1177/0020294018768352
NR 82
TC 11
Z9 11
U1 0
U2 17
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0973-7766
EI 2168-930X
J9 COLLNET J SCIENTOMET
JI Collnet J. Scientometr. Inf. Manag.
PD JUL 2
PY 2020
VL 14
IS 2
BP 369
EP 392
DI 10.1080/09737766.2021.1918032
PG 24
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA SM9LO
UT WOS:000657918700011
DA 2024-09-05
ER
PT J
AU Lokker, C
Bagheri, E
Abdelkader, W
Parrish, R
Afzal, M
Navarro, T
Cotoi, C
Germini, F
Linkins, L
Haynes, RB
Chu, LY
Iorio, A
AF Lokker, Cynthia
Bagheri, Elham
Abdelkader, Wael
Parrish, Rick
Afzal, Muhammad
Navarro, Tamara
Cotoi, Chris
Germini, Federico
Linkins, Lori
Haynes, R. Brian
Chu, Lingyang
Iorio, Alfonso
TI Deep learning to refine the identification of high-quality clinical
research articles from the biomedical literature: Performance evaluation
SO JOURNAL OF BIOMEDICAL INFORMATICS
LA English
DT Article
DE Bioinformatics; Machine learning; Evidence-based medicine; Literature
retrieval; Medical informatics; Natural Language Processing
ID RETRIEVAL; MEDLINE; CARE
AB Background: Identifying practice-ready evidence-based journal articles in medicine is a challenge due to the sheer volume of biomedical research publications. Newer approaches to support evidence discovery apply deep learning techniques to improve the efficiency and accuracy of classifying sound evidence.Objective: To determine how well deep learning models using variants of Bidirectional Encoder Representations from Transformers (BERT) identify high-quality evidence with high clinical relevance from the biomedical literature for consideration in clinical practice. Methods: We fine-tuned variations of BERT models (BERTBASE, BioBERT, BlueBERT, and PubMedBERT) and compared their performance in classifying articles based on methodological quality criteria. The dataset used for fine-tuning models included titles and abstracts of >160,000 PubMed records from 2012 to 2020 that were of interest to human health which had been manually labeled based on meeting established critical appraisal criteria for methodological rigor. The data was randomly divided into 80:10:10 sets for training, validating, and testing. In addition to using the full unbalanced set, the training data was randomly undersampled into four balanced datasets to assess performance and select the best performing model. For each of the four sets, one model that maintained sensitivity (recall) at & GE;99% was selected and were ensembled. The best performing model was evaluated in a prospective, blinded test and applied to an established reference standard, the Clinical Hedges dataset.Results: In training, three of the four selected best performing models were trained using BioBERTBASE. The ensembled model did not boost performance compared with the best individual model. Hence a solo BioBERT-based model (named DL-PLUS) was selected for further testing as it was computationally more efficient. The model had high recall (>99%) and 60% to 77% specificity in a prospective evaluation conducted with blinded research associates and saved >60% of the work required to identify high quality articles. Conclusions: Deep learning using pretrained language models and a large dataset of classified articles produced models with improved specificity while maintaining >99% recall. The resulting DL-PLUS model identifies high-quality, clinically relevant articles from PubMed at the time of publication. The model improves the efficiency of a literature surveillance program, which allows for faster dissemination of appraised research.
C1 [Lokker, Cynthia; Bagheri, Elham; Abdelkader, Wael; Parrish, Rick; Navarro, Tamara; Cotoi, Chris; Germini, Federico; Haynes, R. Brian; Iorio, Alfonso] McMaster Univ, Dept Hlth Res Methods Evidence & Impact, Hlth Informat Res Unit, Hamilton, ON, Canada.
[Afzal, Muhammad] Birmingham City Univ, Dept Comp, Birmingham, England.
[Germini, Federico; Linkins, Lori; Haynes, R. Brian; Iorio, Alfonso] McMaster Univ, Dept Med, Hamilton, ON, Canada.
[Chu, Lingyang] McMaster Univ, Dept Comp & Software, Hamilton, ON, Canada.
C3 McMaster University; Birmingham City University; McMaster University;
McMaster University
RP Lokker, C (corresponding author), McMaster Univ, Dept Hlth Res Methods Evidence & Impact, Hlth Informat Res Unit, Hamilton, ON, Canada.
EM lokkerc@mcmaster.ca
RI Afzal, Muhammad/D-3741-2019; Germini, Federico/K-6881-2016
OI Afzal, Muhammad/0000-0002-7851-2327; Germini,
Federico/0000-0002-0802-3616; Abdelkader, Wael/0000-0002-9581-1521;
Lokker, Cynthia/0000-0003-2436-4290
CR Adhikari A, 2019, Arxiv, DOI arXiv:1904.08398
Afzal M, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9081253
Afzal M, 2019, HEALTH INFORM J, V25, P429, DOI 10.1177/1460458217719560
Ambalavanan AK, 2020, J BIOMED INFORM, V112, DOI 10.1016/j.jbi.2020.103578
[Anonymous], 2021, MEDLINE PUBMED PRODU
[Anonymous], 2023, MCMASTER HLTH KNOWLE
Aphinyanaphongs Y, 2005, J AM MED INFORM ASSN, V12, P207, DOI 10.1197/jamia.M1641
Aphinyanaphongs Yindalon, 2006, AMIA Annu Symp Proc, P6
Bachmann LM, 2002, J AM MED INFORM ASSN, V9, P653, DOI 10.1197/jamia.M1124
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Bernstam EV, 2006, J AM MED INFORM ASSN, V13, P96, DOI 10.1197/jamia.M1909
Cohen AM, 2006, J AM MED INFORM ASSN, V13, P206, DOI 10.1197/jamia.M1929
Del Fiol G, 2018, J MED INTERNET RES, V20, DOI 10.2196/10281
Del Fiol G, 2014, JAMA INTERN MED, V174, P710, DOI 10.1001/jamainternmed.2014.368
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Ganaie MA, 2022, ENG APPL ARTIF INTEL, V115, DOI 10.1016/j.engappai.2022.105151
Geersing GJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032844
Guan Hong, 2019, AMIA Annu Symp Proc, V2019, P1051
H.I.R.U. McMaster, 2022, COVID 19 EVIDENCE AL
Haynes RB, 2006, J AM MED INFORM ASSN, V13, P593, DOI 10.1197/jamia.M2158
Haynes RB., 1993, ACP Journal Club, V993, pA22
hiruweb.mcmaster.ca, MCMASTER HLTH KNOWLE
Holland Jennifer, 2005, AMIA Annu Symp Proc, P340
Howard J, 2018, Arxiv, DOI arXiv:1801.06146
Huang T., 2020, BOOSTINGBERT INTEGRA
Irwin AN, 2017, RES SOC ADMIN PHARM, V13, P389, DOI 10.1016/j.sapharm.2016.04.006
Kamath S, 2016, INDIAN J ANAESTH, V60, P622, DOI 10.4103/0019-5049.190615
Kilicoglu H, 2009, J AM MED INFORM ASSN, V16, P25, DOI 10.1197/jamia.M2996
Lan ZZ, 2020, Arxiv, DOI arXiv:1909.11942
Lanera C, 2019, SYST REV-LONDON, V8, DOI 10.1186/s13643-019-1245-8
Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682
Li LS, 2018, Arxiv, DOI [arXiv:1603.06560, DOI 10.48550/ARXIV.1603.06560, 10.48550/ARXIV.1603.06560]
Liu YH, 2019, Arxiv, DOI arXiv:1907.11692
Marshall IJ, 2018, RES SYNTH METHODS, V9, P602, DOI 10.1002/jrsm.1287
microsoft.github.io, BLURB LEAD
Peng YF, 2020, Arxiv, DOI arXiv:2005.02799
Qiu XP, 2020, SCI CHINA TECHNOL SC, V63, P1872, DOI 10.1007/s11431-020-1647-3
Si YQ, 2019, J AM MED INFORM ASSN, V26, P1297, DOI 10.1093/jamia/ocz096
Wang B., 2021, PRETRAINED LANGUAGE, V1, P46, DOI [10.1145/nnnnnnn.nnnnnnn, DOI 10.1145/NNNNNNN.NNNNNNN]
Wilczynski N L, 1993, Proc Annu Symp Comput Appl Med Care, P601
Wilczynski Nancy L, 2005, BMC Med Inform Decis Mak, V5, P20, DOI 10.1186/1472-6947-5-20
Wilczynski NL, 2004, BMC MED, V2, DOI 10.1186/1741-7015-2-23
Wilczynski NL, 2013, J AM MED INFORM ASSN, V20, P363, DOI 10.1136/amiajnl-2012-001075
Wilczynski NL, 2001, STUD HEALTH TECHNOL, V84, P390
Xie Qianqian, 2022, Knowledge-Based Systems, DOI 10.1016/j.knosys.2022.109460
Yu Gu, 2022, ACM Transactions on Computing and Healthcare, V3, DOI 10.1145/3458754
Zhao SD, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbaa057
NR 47
TC 4
Z9 4
U1 5
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1532-0464
EI 1532-0480
J9 J BIOMED INFORM
JI J. Biomed. Inform.
PD JUN
PY 2023
VL 142
AR 104384
DI 10.1016/j.jbi.2023.104384
EA MAY 2023
PG 9
WC Computer Science, Interdisciplinary Applications; Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Medical Informatics
GA J8TJ9
UT WOS:001012292000001
PM 37164244
OA hybrid, Green Accepted
DA 2024-09-05
ER
PT J
AU Pobiedina, N
Ichise, R
AF Pobiedina, Nataliia
Ichise, Ryutaro
TI Citation count prediction as a link prediction problem
SO APPLIED INTELLIGENCE
LA English
DT Article
DE Citation count; Graph pattern mining; Feature selection
ID IMPACT
AB The citation count is an important factor to estimate the relevance and significance of academic publications. However, it is not possible to use this measure for papers which are too new. A solution to this problem is to estimate the future citation counts. There are existing works, which point out that graph mining techniques lead to the best results. We aim at improving the prediction of future citation counts by introducing a new feature. This feature is based on frequent graph pattern mining in the so-called citation network constructed on the basis of a dataset of scientific publications. Our new feature improves the accuracy of citation count prediction, and outperforms the state-of-the-art features in many cases which we show with experiments on two real datasets.
C1 [Pobiedina, Nataliia] Vienna Univ Technol, Inst Software Technol & Interact Syst, A-1040 Vienna, Austria.
[Ichise, Ryutaro] Natl Inst Informat, Principles Informat Res Div, Tokyo, Japan.
C3 Technische Universitat Wien; Research Organization of Information &
Systems (ROIS); National Institute of Informatics (NII) - Japan
RP Pobiedina, N (corresponding author), Vienna Univ Technol, Inst Software Technol & Interact Syst, A-1040 Vienna, Austria.
EM pobiedina@ec.tuwien.ac.at; ichise@nii.ac.jp
CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1
Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509
Beel J, 2009, INT CONF RES CHAL, P439, DOI 10.1109/RCIS.2009.5089308
Bethard S., 2010, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, P609, DOI [DOI 10.1145/1871437.1871517, 10.1145/1871437.1871517]
Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142
Bringmann B, 2010, IEEE INTELL SYST, V25, P26, DOI 10.1109/MIS.2010.91
Callaham M, 2002, JAMA-J AM MED ASSOC, V287, P2847, DOI 10.1001/jama.287.21.2847
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Devroye L., 1996, A Probabilistic Theory of Pattern Recognition
Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806
Dietterich TG, 1998, NEURAL COMPUT, V10, P1895, DOI 10.1162/089976698300017197
Garfield E, 2001, NATURE, V411, P522, DOI 10.1038/35079156
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hothorn T, 2006, J COMPUT GRAPH STAT, V15, P651, DOI 10.1198/106186006X133933
Kulkarni AV, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000403
Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591
Livne A., 2013, P ICONFERENCE 2013 W, P16
McGovern Amy, 2003, ACM SIGKDD Explorations Newsletter, V5, P165, DOI DOI 10.1145/980972.980999
Munasinghe L, 2012, IEICE T INF SYST, VE95D, P821, DOI 10.1587/transinf.E95.D.821
Pobiedina Nataliia, 2014, Modern Advances in Applied Intelligence. 27th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2014. Proceedings: LNCS 8482, P109, DOI 10.1007/978-3-319-07467-2_12
SHI X, 2010, P 10 ANN JOINT C DIG, P49, DOI DOI 10.1145/1816123.1816131
Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002
Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
NR 24
TC 30
Z9 33
U1 3
U2 43
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0924-669X
EI 1573-7497
J9 APPL INTELL
JI Appl. Intell.
PD MAR
PY 2016
VL 44
IS 2
BP 252
EP 268
DI 10.1007/s10489-015-0657-y
PG 17
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA DF0SB
UT WOS:000371048100002
DA 2024-09-05
ER
PT C
AU Li, JX
Hu, YL
AF Li Jiaxu
Hu Yuling
GP IEEE
TI Research Framework of Risk Assessment in Evacuation Based on Deep
Learning
SO 2020 CHINESE AUTOMATION CONGRESS (CAC 2020)
SE Chinese Automation Congress
LA English
DT Proceedings Paper
CT Chinese Automation Congress (CAC)
CY NOV 06-08, 2020
CL Shanghai, PEOPLES R CHINA
DE risk assessment; emergency evacuation; deep learning; convolutional
neural network
ID AUTOENCODER; ACCIDENTS
AB Aim at the occurrence of security accidents, emergency evacuation has become an important means that cannot be ignored. At present, most of the risk assessment studies are focused on accident analysis, while only a few studies conduct risk assessments on evacuation issues. Without the basis for risk assessment, it is easy to ignore some important factors when formulating an evacuation emergency plan, resulting in lacking of science in the evacuation plan and even a negative impact in actual implementation. Therefore, the research on risk assessment of evacuation is a very significant research direction. In addition, with the advent of the era of big data and the development of artificial intelligence, the data required for risk assessment is also increasing, and traditional risk assessment methods are difficult to deal with these huge amounts of data. Therefore, the use of deep learning methods into risk assessment and deal with this problem is also one trend in future. The major objective of this study Is as to apply deep learning method to evacuation risk assessment, and give a framework of risk assessment in evacuation based on convolutional neural networks.
C1 [Li Jiaxu; Hu Yuling] Beijing Univ Civil Engn & Architecture, Beijing Key Lab Intelligent Proc Jbr Bldg Big Dat, Beijing, Peoples R China.
C3 Beijing University of Civil Engineering & Architecture
RP Li, JX (corresponding author), Beijing Univ Civil Engn & Architecture, Beijing Key Lab Intelligent Proc Jbr Bldg Big Dat, Beijing, Peoples R China.
EM 454453502@qq.com; huyuling@bucea.edu.cn
RI hu, yuling/KLE-4059-2024
OI hu, yuling/0000-0003-0884-0699
FU Fundamental Research Funds for Beijing University of Civil Engineering
and Architecture [X18304]
FX This work was supported by Fundamental Research Funds for Beijing
University of Civil Engineering and Architecture (X18304).
CR [Anonymous], 2019, IND SAFETY ENV PROTE
Chen ZY, 2017, IEEE T INSTRUM MEAS, V66, P1693, DOI 10.1109/TIM.2017.2669947
Gai WM, 2020, J LOSS PREVENT PROC, V63, DOI 10.1016/j.jlp.2019.103993
Gai WM, 2018, SAFETY SCI, V106, P203, DOI 10.1016/j.ssci.2018.03.021
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P321
Gu JX, 2018, PATTERN RECOGN, V77, P354, DOI 10.1016/j.patcog.2017.10.013
Luan QZ, 2020, CHINESE GEOGR SCI, V30, P294, DOI 10.1007/s11769-020-1112-5
Lyu S., 2020, TECHNOLOGY EC AREAS, V22, P54
Mao L, 2020, JAMA NEUROL, V77, P683, DOI 10.1001/jamaneurol.2020.1127
Marhavilas PK, 2019, J LOSS PREVENT PROC, V62, DOI 10.1016/j.jlp.2019.103981
Norazahar N, 2018, APPL OCEAN RES, V79, P1, DOI 10.1016/j.apor.2018.07.002
Paltrinieri N, 2019, SAFETY SCI, V118, P475, DOI 10.1016/j.ssci.2019.06.001
Ramzali N, 2015, SAFETY SCI, V78, P49, DOI 10.1016/j.ssci.2015.04.004
Shao HD, 2017, MECH SYST SIGNAL PR, V95, P187, DOI 10.1016/j.ymssp.2017.03.034
Shi Y., 2020, SAFETY ENV ENG, V27, P111
Skorupski J, 2016, SAFETY SCI, V88, P76, DOI 10.1016/j.ssci.2016.04.025
Sun ZM, 2011, 2011 INTERNATIONAL CONFERENCE ON ECONOMIC, EDUCATION AND MANAGEMENT (ICEEM2011), VOL I, P139
Tao Y., 2019, FIRE SCI TECHNOLOGY, V38, P1624
Wang H, 2020, FUEL, V272, DOI 10.1016/j.fuel.2020.117731
[王坤峰 Wang Kunfeng], 2017, [自动化学报, Acta Automatica Sinica], V43, P321
Wicaksono FD, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e03607
Yao T., 2019, STRUCTURAL ENG, V35, P93
[余萍 Yu Ping], 2020, [计算机工程与应用, Computer Engineering and Application], V56, P1
Zhang Peiyang, 2020, NETWORK SECURITY TEC, P43
Zhang YL, 2019, J MATER SCI TECHNOL, V35, P902, DOI 10.1016/j.jmst.2018.09.067
Zhang YZ, 2020, PEERJ, V8, DOI 10.7717/peerj.9403
Zhao JB, 2020, P REL MAINT S, DOI 10.1109/rams48030.2020.9153632
Zuo L., 2018, LANDSCAPE ARCHITECTU, V25, P90
NR 28
TC 0
Z9 0
U1 1
U2 12
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2688-092X
EI 2688-0938
BN 978-1-7281-7687-1
J9 CHIN AUTOM CONGR
PY 2020
BP 1860
EP 1864
DI 10.1109/CAC51589.2020.9326940
PG 5
WC Automation & Control Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems
GA BR9MR
UT WOS:000678697001175
DA 2024-09-05
ER
PT J
AU Fu, LD
Aphinyanaphongs, Y
Wang, LL
Aliferis, CF
AF Fu, Lawrence D.
Aphinyanaphongs, Yindalon
Wang, Lily
Aliferis, Constantin F.
TI A comparison of evaluation metrics for biomedical journals, articles,
and websites in terms of sensitivity to topic
SO JOURNAL OF BIOMEDICAL INFORMATICS
LA English
DT Article
DE Information retrieval; Machine learning; PageRank; Journal impact
factor; Topic-sensitivity; Bibliometrics
ID IMPACT FACTORS; PAGERANK; SEARCH; LINK
AB Evaluating the biomedical literature and health-related websites for quality are challenging information retrieval tasks. Current commonly used methods include impact factor for journals, PubMed's clinical query filters and machine learning-based filter models for articles, and PageRank for websites. Previous work has focused on the average performance of these methods without considering the topic, and it is unknown how performance varies for specific topics or focused searches. Clinicians, researchers, and users should be aware when expected performance is not achieved for specific topics. The present work analyzes the behavior of these methods for a variety of topics. Impact factor, clinical query filters, and PageRank vary widely across different topics while a topic-specific impact factor and machine learning-based filter models are more stable. The results demonstrate that a method may perform excellently on average but struggle when used on a number of narrower topics. Topic-adjusted metrics and other topic robust methods have an advantage in such situations. Users of traditional topic-sensitive metrics should be aware of their limitations. (C) 2011 Elsevier Inc. All rights reserved.
C1 [Fu, Lawrence D.; Aphinyanaphongs, Yindalon; Aliferis, Constantin F.] NYU, Med Ctr, Ctr Hlth Informat & Bioinformat, New York, NY 10016 USA.
[Wang, Lily] Vanderbilt Univ, Sch Med, Dept Biostat, Nashville, TN 37232 USA.
C3 New York University; Vanderbilt University
RP Fu, LD (corresponding author), NYU, Med Ctr, Ctr Hlth Informat & Bioinformat, 227 E 30th St,7th Floor, New York, NY 10016 USA.
EM lawrence.fu@nyumc.org; yin.a@nyumc.org; lily.wang@vanderbilt.edu;
constantin.aliferis@nyumc.org
OI Aphinyanaphongs, Yin/0000-0001-8605-5392
FU [R56 LM007948-04A1]; [1UL1RR029893]
FX The authors gratefully acknowledge support from Grants R56 LM007948-04A1
and 1UL1RR029893.
CR Aphinyanaphongs Y, 2005, J AM MED INFORM ASSN, V12, P207, DOI 10.1197/jamia.M1641
APHINYANAPHONGS Y, 2003, AMIA ANN S
BLAND JM, 1986, LANCET, V1, P307, DOI 10.1016/s0140-6736(86)90837-8
Borodin A., 2001, WWW, V1, P415
Brin S, 1998, WWW, DOI 10.1016/s0169-7552(98)00110-x.
Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Garfield E., 1965, CAN CITATION INDEXIN
Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806
Haveliwala TH, 2003, IEEE T KNOWL DATA EN, V15, P784, DOI 10.1109/TKDE.2003.1208999
HAYNES RB, 1994, J AM MED INFORM ASSN, V1, P447, DOI 10.1136/jamia.1994.95153434
Kamvar S., 2003, Exploiting the Block Structure of the Web for Computing PageRank
Lempel R, 2005, INFORM RETRIEVAL, V8, P245, DOI 10.1007/s10791-005-5661-0
National Library of Medicine, MESH BROWS
Ng A., 2001, 24 ACM INT C RES DEV
NIE L, 2006, 29 ACM INT C RES DEV
Richardson M, 2002, ADV NEUR IN, V14, P1441
Tabachnick B.G., 2014, USING MULTIVARIATE S, V6
Takahashi K, 1999, OCCUP MED-OXFORD, V49, P57, DOI 10.1093/occmed/49.1.57-a
*THOMS SCI, ISI WEB KNOWL
Uehara M, 2003, J OCCUP HEALTH, V45, P248, DOI 10.1539/joh.45.248
NR 22
TC 4
Z9 4
U1 0
U2 17
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1532-0464
J9 J BIOMED INFORM
JI J. Biomed. Inform.
PD AUG
PY 2011
VL 44
IS 4
BP 587
EP 594
DI 10.1016/j.jbi.2011.03.006
PG 8
WC Computer Science, Interdisciplinary Applications; Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Medical Informatics
GA 800OO
UT WOS:000293371500009
PM 21419864
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Zhou, R
He, ZH
Lu, XB
Gao, Y
AF Zhou, Rui
He, Zhihua
Lu, Xiaobiao
Gao, Ying
TI Applying Deep Learning in the Training of Communication Design Talents
Under University-Industrial Research Collaboration
SO FRONTIERS IN PSYCHOLOGY
LA English
DT Article
DE deep learning; RNN; higher vocational computer science specialty; talent
cultivation; fused attention model; communication design courses
ID TIME-SERIES MODEL; ALGORITHM
AB The purpose of the study was to solve the problem of the mismatching between the supply and demand of the talents that universities provide for society, whose major is communication design. The correlations between social post demand and university cultivation, as well as between social post demand and the demand indexes of enterprises for posts, are explored under the guidance of University-Industrial Research Collaboration. The backpropagation neural network (BPNN) is used, and the advantages of the Seasonal Autoregressive Integrated Moving Average model (SARIMA) model are combined to design the SARIMA-BPNN (SARIMA-BP) model after the relevant parameters are adjusted. Through the experimental analysis, it is found that the error of the root mean square of the designed SARIMA-BP model in post prediction is 7.523 and that of the BPNN model is 16.122. The effect of the prediction model that was designed based on deep learning is smaller than that of the previous model based on the neural network, and it can predict future posts more accurately for colleges and universities. Guided by the "University-Industrial Research Collaboration," students will have more practice in the teaching process in response to social needs. "University-Industrial Research Collaboration" guides the teaching direction for communication design majors and can help to cultivate communication design talents who are competent for the post provided.
C1 [Zhou, Rui; Lu, Xiaobiao] Anhui Agr Univ, Sch Text Engn & Art, Hefei, Peoples R China.
[He, Zhihua; Gao, Ying] Zhejiang Gongshang Univ, Art & Design Coll, Hangzhou, Peoples R China.
C3 Anhui Agricultural University; Zhejiang Gongshang University
RP He, ZH (corresponding author), Zhejiang Gongshang Univ, Art & Design Coll, Hangzhou, Peoples R China.
EM hezhihua@mail.zjgsu.edu.cn
FU Key Research Projects of Humanities and Social Sciences in Colleges and
Universities in Anhui Province [SK2020A0127]
FX Funding This work was supported by Key Research Projects of Humanities
and Social Sciences in Colleges and Universities in Anhui Province (The
Research on the Communication Design of Huizhou Gate Decoration Art from
the Perspective of Omnimedi, Project Number: SK2020A0127).
CR Alhnaity B, 2020, ENG APPL ARTIF INTEL, V95, DOI 10.1016/j.engappai.2020.103873
Arrafii MA, 2021, TEACH TEACH EDUC, V98, DOI 10.1016/j.tate.2020.103245
Awujoola O., 2021, MALAYS J SCI, V6, P67, DOI [10.37231/myjas.2021.6.1.276, DOI 10.37231/MYJAS.2021.6.1.276]
Chattha M.A., 2019, ARXIV PREPRINT ARXIV
Davis JK, 2019, ENVIRON MODELL SOFTW, V119, P275, DOI 10.1016/j.envsoft.2019.06.010
Gates KM, 2017, MULTIVAR BEHAV RES, V52, P129, DOI 10.1080/00273171.2016.1256187
Jha S, 2021, NEURAL COMPUT APPL, V33, P10621, DOI 10.1007/s00521-020-04998-1
Jiang P, 2017, APPL SOFT COMPUT, V55, P44, DOI 10.1016/j.asoc.2017.01.043
Karasu S, 2020, ENERGY, V212, DOI 10.1016/j.energy.2020.118750
Khan MM, 2021, INDIAN J OTOLARYNGOL, V73, P85, DOI [10.1007/s12070-020-01865-2, 10.1109/JESTIE.2020.3041704]
Liao YQ, 2019, IEEE ACCESS, V7, P38044, DOI 10.1109/ACCESS.2019.2904749
Livieris IE, 2019, INTELL DECIS TECHNOL, V13, P367, DOI 10.3233/IDT-180136
Lu YF, 2018, IEEE ACCESS, V6, P10986, DOI 10.1109/ACCESS.2018.2805280
Luo J., 2018, Open Journal of Business and Management, V6, P850, DOI [DOI 10.4236/OJBM.2018.64063, 10.4236/ojbm.2018]
Mahmut O.Z.E. R., 2020, KASTAMONU UNIV KASTA, V28, P558, DOI DOI 10.24106/kefdergi.704878
Msosa SK, 2020, EDUC SCI, V10, DOI 10.3390/educsci10080189
Nashold L., 2020, USING LSTM SARIMA MO
Pramanik PKD, 2021, IEEE ACCESS, V9, P116647, DOI 10.1109/ACCESS.2021.3103903
Song XY, 2020, J PETROL SCI ENG, V186, DOI 10.1016/j.petrol.2019.106682
Tealab Ahmed, 2018, Future Computing and Informatics Journal, V3, P334, DOI 10.1016/j.fcij.2018.10.003
Wagner-Muns IM, 2018, IEEE T INTELL TRANSP, V19, P878, DOI 10.1109/TITS.2017.2706143
Wang CH, 2018, COMPUT IND ENG, V115, P486, DOI 10.1016/j.cie.2017.12.003
Wang Y, 2018, REMOTE SENS LETT, V9, P274, DOI 10.1080/2150704X.2017.1418992
Yang HF, 2019, EXPERT SYST APPL, V120, P128, DOI 10.1016/j.eswa.2018.11.019
Yao JP, 2020, SCI TOTAL ENVIRON, V698, DOI 10.1016/j.scitotenv.2019.134227
Yoon J., 2019, Neural Information Processing Systems (NeurIPS), P1
NR 26
TC 2
Z9 2
U1 3
U2 31
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-1078
J9 FRONT PSYCHOL
JI Front. Psychol.
PD DEC 15
PY 2021
VL 12
AR 742172
DI 10.3389/fpsyg.2021.742172
PG 10
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA YA0RS
UT WOS:000738052000001
PM 34975631
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Kang, Q
Wang, L
Xiao, H
Wu, Q
AF Kang Qi
Wang Lei
Xiao Hui
Wu Qidi
GP IEEE
TI Evaluation mode research on particle swarm optimization algorithm
SO 2007 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING, AND CONTROL,
VOLS 1 AND 2
SE IEEE International Conference on Networking Sensing and Control
LA English
DT Proceedings Paper
CT IEEE International Conference on Networking, Sensing and Control
CY APR 15-17, 2007
CL London, ENGLAND
DE particle swarm optimization; evaluation mode; general optimization
performance; population dynamics
AB This paper presents a series of evaluation indexes for intelligent particle swarm optimization based on the basal evaluation index system in the field of intelligent optimization. A kind of evaluation model used to evaluate synthetically the general optimization performance and population dynamics of particle swarm optimization is proposed. This evaluation model is simulated and validated by function optimization problems.
C1 [Kang Qi; Wang Lei; Xiao Hui] Tongji Univ, Coll Elect & Informat Engn, Siping Rd 1239, Shanghai 200092, Peoples R China.
[Wu Qidi] Minist Educ China, Beijing 100816, Peoples R China.
C3 Tongji University
RP Kang, Q (corresponding author), Tongji Univ, Coll Elect & Informat Engn, Siping Rd 1239, Shanghai 200092, Peoples R China.
EM kangqi_kz@hotmail.com
RI Kang, Qi/M-1037-2018
FU National Science Foundation of China [70531020]; National 973 project
[2002CB312202]; National committee Development and Innovation of China
[CNGI-04-15-5A-2]
FX The workof this paper is supported by National Science Foundation of
China (70531020), sub-item of National 973 project (2002CB312202) and
National committee Development and Innovation of China(CNGI-04-15-5A-2).
CR Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P81, DOI 10.1109/CEC.2001.934374
Fan HY, 2002, ENG COMPUTATION, V19, P970, DOI 10.1108/02644400210450378
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
LEI W, 2004, P IEEE CCA ISIC CACS, P149
LEI W, 2004, P 2004 IEEE INT C CY, P377
LEI W, 2004, FORMALIZATION RES CO, V33, P694
LING W, 2001, INTELLIGENT OPTIMIZA, P1
QI K, 2006, RUIPEEEC2006, P106
Ratnaweera A, 2004, IEEE T EVOLUT COMPUT, V8, P240, DOI 10.1109/tevc.2004.826071
Shi Y., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1945, DOI 10.1109/CEC.1999.785511
NR 10
TC 1
Z9 1
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 1810-7869
BN 978-1-4244-1075-0
J9 IEEE INT C NETW SENS
PY 2007
BP 846
EP +
PG 2
WC Automation & Control Systems; Computer Science, Theory & Methods;
Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Computer Science; Engineering
GA BHB32
UT WOS:000252065800151
DA 2024-09-05
ER
PT J
AU Amon, J
Hornik, K
AF Amon, Julian
Hornik, Kurt
TI Is it all bafflegab? - Linguistic and meta characteristics of research
articles in prestigious economics journals
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Research impact; SJR indicator; NLP; Readability; Gradient boosting;
GLMLSS
ID R-PACKAGE; VARIABLE SELECTION; BETA REGRESSION; IMPACT; READABILITY;
COLLABORATION; COMPLEXITY; MANAGEMENT; CITATIONS; RANKINGS
AB In competitive research environments, scholars have a natural interest to maximize the prestige associated with their scientific work. In order to identify factors that might help them address this goal more effectively, the scientometric literature has tried to link linguistic and meta characteristics of academic papers to the associated degree of scientific prestige, conceptualized as cumulative citation counts. In this paper, we take an alternative approach that instead understands scientific prestige in terms of the rankings of the journals that the articles appeared in, as such rankings are routinely used as surrogate research quality indicators. For the purpose of determining the most important drivers of suchlike prestige, we use state-of-the-art text mining tools to extract 344 interpretable features from a large corpus of over 200,000 journal articles in economics. We then estimate beta regression models to investigate the relationship between these predictors and a cross-sectionally standardized version of SCImago Journal Rank (SJR) in multiple topically homogeneous clusters. In so doing, we also reinvestigate the bafflegab theory, according to which more prestigious research papers tend to be less readable, in a methodologically novel way. Our results show the consistently most informative predictors to be associated with the length of the paper, the span of coreference chains in its full text, the deployment of a personal and moderately informal writing style, the "density" of the article in terms of sentences per page, international and institutional collaboration in research teams and the references cited in the paper. Moreover, we identify various linguistic intricacies that matter in the association between readability and scientific prestige, which suggest this relationship to be more complicated than previously assumed.
C1 [Amon, Julian; Hornik, Kurt] Vienna Univ Econ & Business Adm, Inst Stat & Math, Welthandelspl 1, A-1020 Vienna, Austria.
C3 Vienna University of Economics & Business
RP Amon, J (corresponding author), Vienna Univ Econ & Business Adm, Inst Stat & Math, Welthandelspl 1, A-1020 Vienna, Austria.
EM julian.amon@wu.ac.at
RI ; Hornik, Kurt/S-8548-2017
OI Amon, Julian/0000-0002-1677-8349; Hornik, Kurt/0000-0003-4198-9911
CR Abritis A, 2017, SCIENCE, DOI 10.1126/science.aan7214
[Anonymous], 2010, ICML
Argamon S, 2008, SCIENTOMETRICS, V75, P203, DOI 10.1007/s11192-007-1768-y
Armstrong J.S, 1980, PSYCHOL TODAY, V12
ARMSTRONG JS, 1989, J INFORM SCI, V15, P123, DOI 10.1177/016555158901500209
ARMSTRONG JS, 1980, INTERFACES, V10, P80, DOI 10.1287/inte.10.2.80
Bayer F. M, 2014, ARXIV PREPRINT ARXIV
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bordons M, 2013, SCIENTOMETRICS, V96, P443, DOI 10.1007/s11192-012-0890-7
Boyack KW, 2005, ISSI 2005: Proceedings of the 10th International Conference of the International Society for Scientometrics and Informetrics, Vols 1 and 2, P335
Chen CM, 2012, J AM SOC INF SCI TEC, V63, P431, DOI 10.1002/asi.21694
De Clercq O, 2016, COMPUT LINGUIST, V42, P457, DOI 10.1162/COLI_a_00255
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Eilers PHC, 1996, STAT SCI, V11, P89, DOI 10.1214/ss/1038425655
Ester Martin, 1996, P 2 INT C KNOWL DISC, P226
Feng L, 2010, A Comparison of Features for Automatic Readability Assessment, P276, DOI DOI 10.5555/1944566.1944598
Ferrari SLP, 2004, J APPL STAT, V31, P799, DOI 10.1080/0266476042000214501
Flesch R, 1948, J APPL PSYCHOL, V32, P221, DOI 10.1037/h0057532
Fraley C, 2002, J AM STAT ASSOC, V97, P611, DOI 10.1198/016214502760047131
Frey BS, 2010, J APPL ECON, V13, P1, DOI 10.1016/S1514-0326(10)60002-5
Gazni A, 2011, J INF SCI, V37, P273, DOI 10.1177/0165551511401658
Gazni A, 2011, SCIENTOMETRICS, V87, P251, DOI 10.1007/s11192-011-0343-8
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Groll A., 2018, WORKING PAPERS EC ST
Grün B, 2011, J STAT SOFTW, V40, P1
Guerrero-Bote VP, 2012, J INFORMETR, V6, P674, DOI 10.1016/j.joi.2012.07.001
Gunning Robert, 1952, The Technique of Clear Writing
Hahsler M, 2008, J STAT SOFTW, V25, P1
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
HARTLEY J, 1988, J INFORM SCI, V14, P69, DOI 10.1177/102831538801400202
Hartley J, 2002, SOC STUD SCI, V32, P321, DOI 10.1177/0306312702032002005
Haslam N, 2008, SCIENTOMETRICS, V76, P169, DOI 10.1007/s11192-007-1892-8
Hofner B, 2016, J STAT SOFTW, V74, P1, DOI 10.18637/jss.v074.i01
Hyland K, 2017, ENGL SPECIF PURP, V45, P40, DOI 10.1016/j.esp.2016.09.001
JOHNSON SC, 1967, PSYCHOMETRIKA, V32, P241, DOI 10.1007/BF02289588
Klare G. R., 1963, THE MEASUREMENT OF R
Koltcov S., 2014, P 2014 ACM C WEB SCI, P161, DOI [DOI 10.1145/2615569.2615680, 10.1145/2615569.2615680]
Kormos J, 2011, J SECOND LANG WRIT, V20, P148, DOI 10.1016/j.jslw.2011.02.001
Larivière V, 2015, J ASSOC INF SCI TECH, V66, P1323, DOI 10.1002/asi.23266
Larivière V, 2010, J AM SOC INF SCI TEC, V61, P126, DOI 10.1002/asi.21226
Lee PS, 2018, IEEE T BIG DATA, V4, P117, DOI 10.1109/TBDATA.2017.2689038
Lei L, 2016, SCIENTOMETRICS, V107, P1361, DOI 10.1007/s11192-016-1896-3
Leimu R, 2005, TRENDS ECOL EVOL, V20, P28, DOI 10.1016/j.tree.2004.10.010
Liu F, 2015, R J, V7, P34
Lu C, 2019, J INFORMETR, V13, P817, DOI 10.1016/j.joi.2019.07.004
Lu C, 2019, J ASSOC INF SCI TECH, V70, P462, DOI 10.1002/asi.24126
MacQueen James, 1967, 5 BERK S MATH STAT P, P281
Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010
Mayr A, 2012, J ROY STAT SOC C, V61, P403, DOI 10.1111/j.1467-9876.2011.01033.x
Meyer D., 2023, vcd: Visualizing Categorical Data
Mubin O, 2018, SCIENTOMETRICS, V116, P1181, DOI 10.1007/s11192-018-2778-7
Peng TQ, 2012, J AM SOC INF SCI TEC, V63, P1789, DOI 10.1002/asi.22649
Phan Xuan-Hieu, 2008, P 17 INT C WORLD WID, P91, DOI 10.1145/1367497.1367510
Rigby J, 2013, SCIENTOMETRICS, V94, P57, DOI 10.1007/s11192-012-0779-5
Rigby RA, 2005, J ROY STAT SOC C, V54, P507, DOI 10.1111/j.1467-9876.2005.00510.x
Schwendinger F., 2020, PREPRINT
SELIGMAN L, 1986, J COUNS DEV, V65, P189, DOI 10.1002/j.1556-6676.1986.tb01311.x
Serenko A, 2013, J KNOWL MANAG, V17, P307, DOI 10.1108/13673271311315231
Sienkiewicz J, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160140
Simas AB, 2010, COMPUT STAT DATA AN, V54, P348, DOI 10.1016/j.csda.2009.08.017
Sooryamoorthy R, 2009, SCIENTOMETRICS, V81, P177, DOI 10.1007/s11192-009-2126-z
Sternberg RJ, 1996, PSYCHOL SCI, V7, P69, DOI 10.1111/j.1467-9280.1996.tb00332.x
STEVENS K., 1992, The Journal of Business Comunication, v, V29, n, P367, DOI DOI 10.1177/002194369202900404
Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171
Thomas J, 2018, STAT COMPUT, V28, P673, DOI 10.1007/s11222-017-9754-6
Tüselmann H, 2015, OMEGA-INT J MANAGE S, V51, P11, DOI 10.1016/j.omega.2014.08.002
Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004
Umlauf N, 2018, J COMPUT GRAPH STAT, V27, P612, DOI 10.1080/10618600.2017.1407325
van Wesel M, 2014, SCIENTOMETRICS, V98, P1601, DOI 10.1007/s11192-013-1154-x
Willmott H, 2011, ORGANIZATION, V18, P429, DOI 10.1177/1350508411403532
WOLFF WM, 1970, AM PSYCHOL, V25, P636, DOI 10.1037/h0029770
Zhao WH, 2014, J APPL STAT, V41, P95, DOI 10.1080/02664763.2013.830284
Zimmerman J.L., 1989, Issues in Accounting Education, V4, P458
NR 73
TC 1
Z9 1
U1 2
U2 23
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD MAY
PY 2022
VL 16
IS 2
AR 101284
DI 10.1016/j.joi.2022.101284
EA APR 2022
PG 17
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 2S3GW
UT WOS:000821684900004
OA hybrid
DA 2024-09-05
ER
PT J
AU Muntean, M
Militaru, FD
AF Muntean, Mihaela
Militaru, Florin Daniel
TI Design Science Research Framework for Performance Analysis Using Machine
Learning Techniques
SO ELECTRONICS
LA English
DT Article
DE design science research; performance analysis; machine learning;
classification algorithms; clustering algorithms
AB We propose a methodological framework based on design science research for the design and development of data and information artifacts in data analysis projects, particularly managerial performance analysis. Design science research methodology is an artifact-centric creation and evaluation approach. Artifacts are used to solve real-life business problems. These are key elements of the proposed approach. Starting from the main current approaches of design science research, we propose a framework that contains artifact engineering aspects for a class of problems, namely data analysis using machine learning techniques. Several classification algorithms were applied to previously labelled datasets through clustering. The datasets contain values for eight competencies that define a manager's profile. These values were obtained through a 360 feedback evaluation. A set of metrics for evaluating the performance of the classifiers was introduced, and a general algorithm was described. Our initiative has a predominant practical relevance but also ensures a theoretical contribution to the domain of study. The proposed framework can be applied to any problem involving data analysis using machine learning techniques.
C1 [Muntean, Mihaela; Militaru, Florin Daniel] West Univ Timisoara, Fac Econ & Business Adm, Business Informat Syst Dept, Timisoara 300223, Romania.
C3 West University of Timisoara
RP Muntean, M (corresponding author), West Univ Timisoara, Fac Econ & Business Adm, Business Informat Syst Dept, Timisoara 300223, Romania.
EM mihaela.muntean@e-uvt.ro
RI Muntean, Mihaela/KII-9080-2024
OI Muntean, Mihaela/0000-0001-8428-4415
CR Achampong E.K., 2017, J ADV SCI TECHNOL RE, V4, P1
Ahmed M., 2011, P AUSTR C INF SYST A
Alapati YK., 2016, Int. J. Comput. Sci. Eng, V5, P336
[Anonymous], 2019, Gartner Top 10 Strategic Technology Trends for 2020
[Anonymous], 1973, PATTERN CLASSIFICATI
[Anonymous], 2021, 8 STEP GUIDE PERFORM
[Anonymous], 2021, SELECT MACHINE LEARN
Apt360, 2019, CHEST PENTR EV MAN D
Attaran Mohsen, 2018, International Journal of Knowledge Engineering and Data Mining, V5, P277
Baskerville R., 2009, P 4 INT C DES SCI RE, P1
Behn RD, 2003, PUBLIC ADMIN REV, V63, P586, DOI 10.1111/1540-6210.00322
Bertsimas D, 2017, MACH LEARN, V106, P1039, DOI 10.1007/s10994-017-5633-9
Bhardwaj Garima, 2020, 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM). Proceedings, P47, DOI 10.1109/ICCAKM46823.2020.9051544
Bilandzic M., 2011, J COMMUNITY INFORM, V7, P3, DOI DOI 10.15353/JOCI.V7I3.2592
Celebi ME., 2015, PARTITIONAL CLUSTERI, V79-98
Chakraborty T, 2017, IEEE DATA MINING, P781, DOI 10.1109/ICDM.2017.92
Chicco D, 2020, BMC GENOMICS, V21, DOI 10.1186/s12864-019-6413-7
Choi JG, 2021, IEEE ACCESS, V9, P96739, DOI 10.1109/ACCESS.2021.3088874
Dash M., 2009, Encyclopedia of database systems, P1119, DOI DOI 10.1007/978-0-387-39940-9_613
El Bouchefry K., 2020, Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics, P225, DOI [DOI 10.1016/B978-0-12-819154-5.00023-0, 10.1016/B978-0-12-819154-5.00023-0, https://doi.org/10.1016/B978-0-12-819154-5.00023-0]
Elragal A, 2019, SYSTEMS-BASEL, V7, DOI 10.3390/systems7020027
Ghosal Attri, 2020, Emerging Technology in Modelling and Graphics. Proceedings of IEM Graph 2018. Advances in Intelligent Systems and Computing (AISC 937), P69, DOI 10.1007/978-981-13-7403-6_9
Goecks Lucas Schmidt, 2021, Gest. Prod., V28, pe5811, DOI 10.1590/1806-9649-2021v28e5811
Grabusts P, 2002, PAR ELEC 2002: INTERNATIONAL CONFERENCE ON PARALLEL COMPUTING IN ELECTRICAL ENGINEERING, P425, DOI 10.1109/PCEE.2002.1115319
Herselman M., 2015, P 2015 ANN RES C S A, DOI DOI 10.1145/2815782.2815806
Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625
Hossin M., 2015, INT J DATA MIN KNOWL, V5, P01, DOI [DOI 10.5121/IJDKP.2015.5201, 10.5121/ijdkp.2015.5201]
Huilgol P., 2021, ACCURACY VS F1 SCORE
Loukas S., 2020, K MEANS CLUSTERING I
Madhulatha T.S., 2012, IOSR J ENG, V2, P719, DOI [DOI 10.9790/3021-0204719725, 10.9790/3021-0204719725]
Martens D, 2010, ANN INFORM SYST, V8, P53, DOI 10.1007/978-1-4419-1280-0_3
Muhammad R, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.590
Muntean M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020638
Mwadulo M. W., 2016, Int. J. Comput. Appl. Technol. Res., V5, P395
Narula G., 2021, MACHINE LEARNING ALG
Nunamaker J. F. Jr., 1990, Journal of Management Information Systems, V7, P89
Papas D, 2014, LECT NOTES ARTIF INT, V8445, P273, DOI 10.1007/978-3-319-07064-3_22
Paquette J., 2021, BRIEF INTRO USEFUL D
Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302
Peffers K, 2018, EUR J INFORM SYST, V27, P129, DOI 10.1080/0960085X.2018.1458066
Pramoditha R., 2021, 5 CUTE FEATURES CATB
Rani Y., 2013, International Journal of Information and Computation Technology, V3, P1115
Rong M, 2019, IEEE ACCESS, V7, P19709, DOI 10.1109/ACCESS.2019.2894366
Sander J., 2011, Encyclopedia of Machine Learning, P270, DOI DOI 10.1007/978-0-387-30164-8_211
Sein MK, 2011, MIS QUART, V35, P37
Sinaga KP, 2020, IEEE ACCESS, V8, P80716, DOI 10.1109/ACCESS.2020.2988796
Stroet H., 2020, Bachelor's Thesis
Vaishnavi V., 2017, Design Science Research in Information Systems
Venable JR., 2017, ACIS 2017 P
Vujovic ZD, 2021, INT J ADV COMPUT SC, V12, P599
Weber S., 2010, AMCIS 2010 P
Witten IH, 2011, MOR KAUF D, P1
Zhao L, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10161903
NR 53
TC 3
Z9 3
U1 0
U2 13
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2079-9292
J9 ELECTRONICS-SWITZ
JI Electronics
PD AUG
PY 2022
VL 11
IS 16
AR 2504
DI 10.3390/electronics11162504
PG 18
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Physics
GA 4B6LF
UT WOS:000845885600001
OA gold
DA 2024-09-05
ER
PT C
AU Jaca-Madariaga, M
Bilbao, EZ
Rio-Belver, RM
de la Torre, AR
AF Jaca-Madariaga, Maite
Zarrabeitia Bilbao, Enara
Rio-Belver, Rosa Maria
Ruiz de la Torre, Aitor
BE Bautista-Valhondo, J
Mateo-Doll, M
Lusa, A
Pastor-Moreno, R
TI Is the Impact of Management Research Predictable Through the Title? - A
BERT Model to Find a Response
SO PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL
ENGINEERING AND INDUSTRIAL MANAGEMENT, ICIEIM-XXVII CONGRESO DE
INGENIERIA DE ORGANIZACION, CIO 2023
SE Lecture Notes on Data Engineering and Communications Technologies
LA English
DT Proceedings Paper
CT 17th International Conference on Industrial Engineering and Industrial
Management (ICIEIM) / 27th Organization Engineering Congress (CIO)
CY JUL 06-07, 2023
CL Barcelona, SPAIN
DE BERT; Management science; Text classification; Prediction; Research
impact measurement
AB In academia, the impact a research paper can generate is a matter of concern to most researchers. Therefore, in this study a model is proposed to evaluate whether the impact is predictive by considering the title of the article. To measure this impact, the number of times an article is cited is taken into account. In addition, the aim is to create a tool that, when a new article title is introduced, will go through the designed model and output the impact it will have in five years' time. This paper focuses specifically on the management research field, so a dataset has been created with data downloaded belonging to this specific domain. This dataset has been labeled, preprocessed, tokenized, padded, masked and split into training and validation sets. The data were then trained and evaluated across a BERT model. The F1-score performance metric achieved is 0.56. Finally, some possible improvements are proposed.
C1 [Jaca-Madariaga, Maite; Zarrabeitia Bilbao, Enara] Univ Basque Country UPV EHU, Ind Org & Management Engn Dept, Fac Engn Bilbao, Bilbao 48013, Spain.
[Rio-Belver, Rosa Maria; Ruiz de la Torre, Aitor] Univ Basque Country UPV EHU, Ind Org Management Engn Dept, Fac Engn Vitoria Gasteiz, Vitoria 01006, Spain.
C3 University of Basque Country; University of Basque Country
RP Jaca-Madariaga, M (corresponding author), Univ Basque Country UPV EHU, Ind Org & Management Engn Dept, Fac Engn Bilbao, Bilbao 48013, Spain.
EM maite.jacamadariaga@ehu.eus
CR Agarwal Ayush, 2021, 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), P233, DOI 10.1109/ICACCS51430.2021.9441715
Anastassiou A., 2022, Sentiment Analysis with Deep Learning using BERT
Bedi J, 2022, SUSTAIN CITIES SOC, V80, DOI 10.1016/j.scs.2022.103706
Beltagy I, 2020, Arxiv, DOI arXiv:2004.05150
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Hugging Face, 2023, About us
Katumullage D, 2022, J WINE ECON, V17, P27, DOI 10.1017/jwe.2022.2
Kazemzadeh A, 2022, 2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), DOI [10.1109/PerComWorkshops53856.2022.9767475, 10.1109/PerComWorkshop53856.2022.9767475]
Kim D, 2021, INT CONF UBIQUIT INF, DOI [10.1109/IMCOM51814.2021.9377411, 10.1109/IEDM19574.2021.9720537]
Kumari V., 2022, P CONFL 2022 12 INT, P368, DOI [10.1109/CONFLUENCE52989.2022.9734207, DOI 10.1109/CONFLUENCE52989.2022.9734207]
Pavlov Tashko, 2022, 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO)., P312, DOI 10.23919/MIPRO55190.2022.9803414
Riaz M.T., 2022, TM-BERT: a twitter modified BERT for sentiment analysis on Covid-19 vaccination tweets, P1, DOI [10.1109/ICODT255437.2022.9787395, DOI 10.1109/ICODT255437.2022.9787395]
Scola E, 2021, PROCES LENG NAT, P13, DOI 10.26342/2021-67-1
Soldevilla I, 2021, 2021 IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING (ICICSE 2021), P204, DOI 10.1109/ICICSE52190.2021.9404127
Sriharsha C., 2021, 2021 12 INT C COMP C, DOI [10.1109/ICCCNT51525.2021.9579531, DOI 10.1109/ICCCNT51525.2021.9579531]
Web of Science, 2023, About us
NR 16
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2367-4512
BN 978-3-031-57995-0; 978-3-031-57996-7
J9 LECT NOTE DATA ENG
PY 2024
VL 206
BP 379
EP 384
DI 10.1007/978-3-031-57996-7_65
PG 6
WC Computer Science, Interdisciplinary Applications; Engineering,
Industrial; Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering; Operations Research & Management Science
GA BX2NG
UT WOS:001265092200065
DA 2024-09-05
ER
PT J
AU Karger, E
Kureljusic, M
AF Karger, Erik
Kureljusic, Marko
TI Using Artificial Intelligence for Drug Discovery: A Bibliometric Study
and Future Research Agenda
SO PHARMACEUTICALS
LA English
DT Article
DE drug discovery; drug development; artificial intelligence; machine
learning; deep learning; bibliometric study
ID SUPPORT VECTOR MACHINES; DESIGN SCIENCE RESEARCH; LEARNING APPLICATIONS;
NEURAL-NETWORKS; PREDICTION; SYSTEMS; CITATIONS; EVOLUTION; BUSINESS;
FIELD
AB Drug discovery is usually a rule-based process that is carefully carried out by pharmacists. However, a new trend is emerging in research and practice where artificial intelligence is being used for drug discovery to increase efficiency or to develop new drugs for previously untreatable diseases. Nevertheless, so far, no study takes a holistic view of AI-based drug discovery research. Given the importance and potential of AI for drug discovery, this lack of research is surprising. This study aimed to close this research gap by conducting a bibliometric analysis to identify all relevant studies and to analyze interrelationships among algorithms, institutions, countries, and funding sponsors. For this purpose, a sample of 3884 articles was examined bibliometrically, including studies from 1991 to 2022. We utilized various qualitative and quantitative methods, such as performance analysis, science mapping, and thematic analysis. Based on these findings, we furthermore developed a research agenda that aims to serve as a foundation for future researchers.
C1 [Karger, Erik] Univ Duisburg Essen, Informat Syst & Strateg IT Management, D-45141 Essen, Germany.
[Kureljusic, Marko] Univ Duisburg Essen, Int Accounting, D-45141 Essen, Germany.
C3 University of Duisburg Essen; University of Duisburg Essen
RP Karger, E (corresponding author), Univ Duisburg Essen, Informat Syst & Strateg IT Management, D-45141 Essen, Germany.
EM erik.karger@uni-due.de
OI Kureljusic, Marko/0000-0003-4382-0669
CR Abdi H, 2010, WIRES COMPUT STAT, V2, P433, DOI 10.1002/wics.101
Adams SS, 2012, AI MAG, V33, P25, DOI 10.1609/aimag.v33i1.2322
Aliper A, 2016, MOL PHARMACEUT, V13, P2524, DOI 10.1021/acs.molpharmaceut.6b00248
Alloghani M., 2020, Supervised and Unsupervised Learning for Data Science, P3, DOI [DOI 10.1007/978-3-030-22475-21, 10.1007/978-3-030-22475-2_1]
[Anonymous], 2012, Int J Inf Dissem Technol
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Athey S, 2017, SCIENCE, V355, P483, DOI 10.1126/science.aal4321
Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360
Baker HK, 2021, J FUTURES MARKETS, V41, P1027, DOI 10.1002/fut.22211
Baskin II, 2016, EXPERT OPIN DRUG DIS, V11, P785, DOI 10.1080/17460441.2016.1201262
Bastanlar Y, 2014, METHODS MOL BIOL, V1107, P105, DOI 10.1007/978-1-62703-748-8_7
Bauer K, 2021, BUS INFORM SYST ENG+, V63, P79, DOI 10.1007/s12599-021-00683-2
Bhatt Y, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.120988
BOLIS G, 1991, J COMPUT AID MOL DES, V5, P617, DOI 10.1007/BF00135318
Bolton EE, 2010, ANN REP COMP CHEM, V4, P217, DOI 10.1016/S1574-1400(08)00012-1
Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
Braga A, 2017, INFORMATION, V8, DOI 10.3390/info8040156
Bro R, 2014, ANAL METHODS-UK, V6, P2812, DOI 10.1039/c3ay41907j
Byvatov E, 2003, J CHEM INF COMP SCI, V43, P1882, DOI 10.1021/ci0341161
Carvalho MM, 2013, TECHNOL FORECAST SOC, V80, P1418, DOI 10.1016/j.techfore.2012.11.008
Caviggioli F, 2019, INT J PROD ECON, V208, P254, DOI 10.1016/j.ijpe.2018.11.022
Celebi M.E., 2016, Unsupervised learning algorithms, DOI [DOI 10.1007/978-3-319-24211-8, 10.1007/978-3-319-24211-8]
Chen GL, 2020, MAR DRUGS, V18, DOI 10.3390/md18110545
Chen HM, 2018, DRUG DISCOV TODAY, V23, P1241, DOI 10.1016/j.drudis.2018.01.039
Chen X, 2012, GENOMICS, V99, P323, DOI 10.1016/j.ygeno.2012.04.003
Chiari W, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14163297
Chollet F., 2021, Deep Learning with Python
Coates WJ, 2000, DRUG DISCOV TODAY, V5, P521, DOI 10.1016/S1359-6446(00)01571-3
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Cutler A, 2012, ENSEMBLE MACHINE LEARNING: METHODS AND APPLICATIONS, P157, DOI 10.1007/978-1-4419-9326-7_5
Danvila-del-Valle I, 2019, J BUS RES, V101, P627, DOI 10.1016/j.jbusres.2019.02.026
Dey L, 2020, BIOMED J, V43, P438, DOI 10.1016/j.bj.2020.08.003
Dingli A., 2021, ARTIF INTELL
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039
Escalante H. J., 2018, Explainable and Interpretable Models in Computer Vision and Machine Learning, DOI [10.1007/978-3-319-98131-4, DOI 10.1007/978-3-319-98131-4]
Eulerich M, 2022, EUR MANAG J, V40, P832, DOI 10.1016/j.emj.2022.09.006
Firoozbakht F, 2022, BMC BIOINFORMATICS, V23, DOI 10.1186/s12859-022-04662-6
Forliano C, 2021, TECHNOL FORECAST SOC, V165, DOI 10.1016/j.techfore.2020.120522
Franco P, 2022, CANCERS, V14, DOI 10.3390/cancers14071697
FRANKISH Keith, 2014, The Cambridge handbook of artificial intelligence, DOI 10.1017/CBO9781139046855
Franklin S, 2014, CAMBRIDGE HANDBOOK OF ARTIFICIAL INTELLIGENCE, P15
GARFIELD E, 1993, J AM SOC INFORM SCI, V44, P298, DOI 10.1002/(SICI)1097-4571(199306)44:5<298::AID-ASI5>3.0.CO;2-A
George Joey F, 2020, P 41 INT C INF SYST
Ghahramani Z, 2004, LECT NOTES ARTIF INT, V3176, P72
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
Gregor S, 2013, MIS QUART, V37, P337, DOI 10.25300/MISQ/2013/37.2.01
Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120
Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925
Han LY, 2007, DRUG DISCOV TODAY, V12, P304, DOI 10.1016/j.drudis.2007.02.015
Heikamp K, 2014, EXPERT OPIN DRUG DIS, V9, P93, DOI 10.1517/17460441.2014.866943
Hevner A, 2010, INTEGR SER INFORM SY, V22, P1, DOI 10.1007/978-1-4419-5653-8_1
Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625
Hu F, 2022, BIOMOLECULES, V12, DOI 10.3390/biom12081156
Jagals M., 2021, Corporate Ownership Control, V19, P105, DOI [10.22495/cocv19ilart9, DOI 10.22495/COCV19ILART9]
Janiesch C, 2021, ELECTRON MARK, V31, P685, DOI 10.1007/s12525-021-00475-2
Jiang JH, 2022, PHARMACEUTICS, V14, DOI 10.3390/pharmaceutics14112257
Jiang LX, 2007, FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, P679, DOI 10.1109/FSKD.2007.552
Jiménez-Luna J, 2020, NAT MACH INTELL, V2, P573, DOI 10.1038/s42256-020-00236-4
Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301
Kaushal K, 2022, J BIOMOL STRUCT DYN, V40, P4750, DOI 10.1080/07391102.2020.1855250
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Khanra S, 2021, TOUR MANAG PERSPECT, V37, DOI 10.1016/j.tmp.2020.100777
Khanra S, 2020, ENTERP INF SYST-UK, V14, P737, DOI 10.1080/17517575.2020.1734241
Kim S, 2016, NUCLEIC ACIDS RES, V44, pD1202, DOI 10.1093/nar/gkv951
Koseoglu MA, 2016, SCIENTOMETRICS, V109, P203, DOI 10.1007/s11192-016-1894-5
Kureljusic M., 2022, CORPORATE OWNERSHIP, V19, P159, DOI 10.22495/cocv19i2art13
Lavecchia A, 2019, DRUG DISCOV TODAY, V24, P2017, DOI 10.1016/j.drudis.2019.07.006
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Leitner-Hanetseder S, 2021, J APPL ACCOUNT RES, V22, P539, DOI 10.1108/JAAR-10-2020-0201
Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012
Libbrecht MW, 2015, NAT REV GENET, V16, P321, DOI 10.1038/nrg3920
London AJ, 2019, HASTINGS CENT REP, V49, P15, DOI 10.1002/hast.973
Lu Y.-H., 2022, COC, V19, P133, DOI [10.22495/cocv19i3art10, DOI 10.22495/COCV19I3ART10]
McCulloch WS, 2016, EMBODIMENTS OF MIND, P19
Mohri M., 2012, ADAPTIVE COMPUTATION
Monteiro NRC, 2022, BMC BIOINFORMATICS, V23, DOI 10.1186/s12859-022-04767-y
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Mulligan VK, 2021, EXPERT OPIN DRUG DIS, V16, P1025, DOI 10.1080/17460441.2021.1918097
Patel JL, 2007, CURR CLIN PHARMACOL, V2, P217, DOI 10.2174/157488407781668811
Paul J, 2020, INT BUS REV, V29, DOI 10.1016/j.ibusrev.2020.101717
Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302
Poduri R., 2021, DRUG DISCOVERY DEV, P1
PRITCHARD A, 1969, J DOC, V25, P348
Raschka S., 2019, PYTHON MACHINE LEARN
Rechberger JS, 2021, PHARMACEUTICS, V13, DOI 10.3390/pharmaceutics13111885
Research and Markets, 2022, PHARM GLOB MARK REP
Roser Max., 2013, LIF EXP
Rossetto DE, 2018, SCIENTOMETRICS, V115, P1329, DOI 10.1007/s11192-018-2709-7
Russell Stuart, 2010, Artificial intelligence, a modern approach, V3
Saikia S, 2019, CURR DRUG TARGETS, V20, P501, DOI 10.2174/1389450119666181022153016
Samek W, 2019, EXPLAINABLE INTERPRE, DOI 10.1007/978-3-030-28954-6
Samet H, 2008, IEEE T PATTERN ANAL, V30, P243, DOI 10.1109/TPAMI.2007.1182
Sampietro A, 2022, PHARMACEUTICALS-BASE, V15, DOI 10.3390/ph15050545
SEARLE JR, 1980, BEHAV BRAIN SCI, V3, P417, DOI 10.1017/S0140525X00006038
Secinaro S., 2021, Economia Aziendale Online, V12, P407, DOI [10.13132/2038-5498/12.4.407-431, DOI 10.13132/2038-5498/12.4.407-431]
Secinaro S, 2021, ACCOUNT AUDIT ACCOUN, V35, P168, DOI 10.1108/AAAJ-10-2020-4987
Shalev-Shwartz S., 2014, UNDERSTANDING MACHIN, DOI 10.1017/CBO9781107298019
Shen Jie, 2019, Drug Discov Today Technol, V32-33, P29, DOI 10.1016/j.ddtec.2020.05.001
Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270
Stokes JM, 2020, CELL, V180, P688, DOI 10.1016/j.cell.2020.01.021
Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171
Suenderhauf C, 2011, MOL PHARMACEUT, V8, P213, DOI 10.1021/mp100279d
Sutariya VB, 2013, PR SOUTH BIOMED ENG, P91, DOI 10.1109/SBEC.2013.54
Tandon A, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120649
Taulli T., 2019, Artificial Intelligence Basics
Tian K, 2015, IEEE INT C BIOINFORM, P29, DOI 10.1109/BIBM.2015.7359651
Tsou LK, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-73681-1
Tsubaki M, 2019, BIOINFORMATICS, V35, P309, DOI 10.1093/bioinformatics/bty535
Uluyol B, 2021, J ISLAMIC ACCOUNT BU, V12, P748, DOI 10.1108/JIABR-01-2021-0031
Vamathevan J, 2019, NAT REV DRUG DISCOV, V18, P463, DOI 10.1038/s41573-019-0024-5
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Gerven M, 2017, FRONT COMPUT NEUROSC, V11, DOI 10.3389/fncom.2017.00112
Wallin JA, 2005, BASIC CLIN PHARMACOL, V97, P261, DOI 10.1111/j.1742-7843.2005.pto_139.x
Wang JZ, 2015, LECT NOTES COMPUT SC, V9313, P793, DOI 10.1007/978-3-319-25255-1_65
Weber M, 2022, BUS INFORM SYST ENG+, V64, P91, DOI 10.1007/s12599-021-00732-w
WEINBERG BH, 1974, INFORM STORAGE RET, V10, P189, DOI 10.1016/0020-0271(74)90058-8
WEINSTEIN DB, 1992, J AUTOM CHEM, V14, P59, DOI 10.1155/S1463924692000142
Xu XH, 2018, INT J PROD ECON, V204, P160, DOI 10.1016/j.ijpe.2018.08.003
Yang YQ, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbac147
You YJ, 2022, SIGNAL TRANSDUCT TAR, V7, DOI 10.1038/s41392-022-00994-0
Zanders ED, 2011, SCIENCE AND BUSINESS OF DRUG DISCOVERY: DEMYSTIFYING THE JARGON, P1, DOI 10.1007/978-1-4419-9902-3
Zeller A., 2002, Software Engineering Notes, V27, P1, DOI 10.1145/605466.605468
Zernov VV, 2003, J CHEM INF COMP SCI, V43, P2048, DOI 10.1021/ci0340916
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
Zhao Q, 2019, CURR PROTEIN PEPT SC, V20, P492, DOI 10.2174/1389203720666190123164310
NR 127
TC 6
Z9 6
U1 12
U2 47
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1424-8247
J9 PHARMACEUTICALS-BASE
JI Pharmaceuticals
PD DEC
PY 2022
VL 15
IS 12
AR 1492
DI 10.3390/ph15121492
PG 22
WC Chemistry, Medicinal; Pharmacology & Pharmacy
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Pharmacology & Pharmacy
GA 7H9ZR
UT WOS:000903556000001
PM 36558943
OA Green Published, gold
DA 2024-09-05
ER
PT C
AU Xu, JZ
Ren, AS
AF Xu, Jianzhong
Ren, Jiasong
BE VandeWalle, B
Song, Y
Zlatanova, S
Li, J
TI Research on Management Performance Evaluation of Intellectual Property
for Research-Oriented Universities Based on Bayesian Networks
SO 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS FOR CRISIS RESPONSE
AND MANAGEMENT & 4TH INTERNATIONAL SYMPOSIUM ON GEO-INFORMATION FOR
DISASTER MANAGEMENT
LA English
DT Proceedings Paper
CT Joint Conference of the 3rd International Conference on Information
Systems for Crisis Response and Management/4th International Symposium
on Geo-Information for Disaster Management
CY AUG 04-06, 2008
CL Harbin Engn Univ, Harbin, PEOPLES R CHINA
HO Harbin Engn Univ
DE Bayesian networks; research-oriented university; intellectual property
management; management performance evaluation
AB This paper designs a comprehensive evaluation index system of intellectual property management performance for research-oriented university based on intellectual property management features. Taking into account the qualitative characteristics and feasibility of the evaluation; we innovatively use Bayesian Networks to analyze the management performance evaluation of intellectual property for research-oriented universities. We end the study with the useful implications obtained from this study, including the problems needed to pay attention to in applying Bayesian Networks to conduct the management performance evaluation of intellectual property.
C1 [Xu, Jianzhong; Ren, Jiasong] Harbin Engn Univ, Sch Econ & Management, Harbin 150001, Peoples R China.
C3 Harbin Engineering University
EM XuJianZhongXJZ@163.com; Goodrjs@Yahoo.com
CR ALEXANDER C, 2004, OPERATIONAL RISK REG, P307
BARNES T, 2003, EUROPEAN MANAGEMENT, P35
CARACA J, 2002, HIGHER ED POLICY, P45
DU XJ, 2004, R&D MANAGE, V2, P80
HE JQ, 2002, SCI TECHNOLOGY REV, V3, P33
HU XM, 2004, RES SOFTWARE RISK MA, P33
Li Y, 2006, TECHNOLOGY INNOVATIO, V1, P71
PENG YY, 2004, R&D MANAGE, V3, P110
THOMAS H, 2004, IND INSIDER, P13
ZHOU YM, 2006, J ZHENGZHOU U, V2, P16
NR 10
TC 0
Z9 0
U1 0
U2 3
PU HARBIN ENGINEERING UNIV
PI HARBIN
PA ADMINISTRATION BLDG, 145 NANTONG ST, HARBIN, 150001, PEOPLES R CHINA
BN 978-7-81133-251-3
PY 2008
BP 291
EP 296
PG 6
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Management; Regional & Urban Planning;
Public Administration; Urban Studies
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Business & Economics; Public Administration; Urban
Studies
GA BIQ89
UT WOS:000262092900048
DA 2024-09-05
ER
PT J
AU Iqbal, S
Saeed-Ul Hassan
Aljohani, NR
Alelyani, S
Nawaz, R
Bornmann, L
AF Iqbal, Sehrish
Hassan, Saeed-Ul
Aljohani, Naif Radi
Alelyani, Salem
Nawaz, Raheel
Bornmann, Lutz
TI A decade of in-text citation analysis based on natural language
processing and machine learning techniques: an overview of empirical
studies
SO SCIENTOMETRICS
LA English
DT Article
DE In-text citation analysis; Citation context analysis; Citation content
analysis; Citation classification; Citation sentiment analysis;
Summarisation; Recommendation; Bibliometrics
ID SCIENTIFIC ARTICLES; CONTEXT ANALYSIS; LINGUISTIC PATTERNS; COUNTS
MEASURE; SENTIMENT; CLASSIFICATION; PSYCHOLOGY; REFERENCES; RETRIEVAL;
AUTHOR
AB In-text citation analysis is one of the most frequently used methods in research evaluation. We are seeing significant growth in citation analysis through bibliometric metadata, primarily due to the availability of citation databases such as the Web of Science, Scopus, Google Scholar, Microsoft Academic, and Dimensions. Due to better access to full-text publication corpora in recent years, information scientists have gone far beyond traditional bibliometrics by tapping into advancements in full-text data processing techniques to measure the impact of scientific publications in contextual terms. This has led to technical developments in citation classifications, citation sentiment analysis, citation summarisation, and citation-based recommendation. This article aims to narratively review the studies on these developments. Its primary focus is on publications that have used natural language processing and machine learning techniques to analyse citations.
C1 [Iqbal, Sehrish; Hassan, Saeed-Ul] Informat Technol Univ, Dept Comp Sci, 346-B,Ferozepur Rd, Lahore, Pakistan.
[Aljohani, Naif Radi] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia.
[Alelyani, Salem] King Khalid Univ, Ctr Artificial Intelligence CAI, POB 9004, Abha 61413, Saudi Arabia.
[Alelyani, Salem] King Khalid Univ, Coll Comp Sci, POB 9004, Abha 61413, Saudi Arabia.
[Nawaz, Raheel] Manchester Metropolitan Univ, Dept Operat Technol Events & Hospitality Manageme, Manchester, Lancs, England.
[Bornmann, Lutz] Max Planck Gesell, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany.
C3 King Abdulaziz University; King Khalid University; King Khalid
University; Manchester Metropolitan University; Max Planck Society
RP Saeed-Ul Hassan (corresponding author), Informat Technol Univ, Dept Comp Sci, 346-B,Ferozepur Rd, Lahore, Pakistan.
EM sehrishiqbal@itu.edu.pk; saeed-ul-hassan@itu.edu.pk;
nraljohani@kau.edu.sa; s.alelyani@kku.edu.sa; R.Nawaz@mmu.ac.uk;
lutz.bornmann@gv.mpg.de
RI Nawaz, Raheel/AAX-5293-2021; Aljohani, Naif R/S-1109-2017; Bornmann,
Lutz/A-3926-2008; Hassan, Saeed-Ul/G-1889-2016
OI Nawaz, Raheel/0000-0001-9588-0052; Hassan, Saeed-Ul/0000-0002-6509-9190
FU King Khalid University [R.G.P2/100/41]
FX The authors (Salem Alelyani and Saeed-Ul Hassan) are grateful for the
financial support received from King Khalid University for this research
Under Grant No. R.G.P2/100/41.
CR Abu-Jbara A., 2013, NAACL, P596
Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11
Ahmad R, 2018, SCIENTOMETRICS, V117, P1405, DOI 10.1007/s11192-018-2920-6
Aljaber B, 2011, J BIOMED INFORM, V44, P881, DOI 10.1016/j.jbi.2011.05.007
Ananiadou Sophia, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P318, DOI 10.1007/978-3-642-37256-8_27
Ananiadou S., 2013, FACILITATING ANAL DI, P559
Anderson MH, 2006, ORGAN STUD, V27, P1675, DOI 10.1177/0170840606068346
Angrosh M., 2010, Proceedings of the 10th annual joint conference on Digital libraries, P293, DOI [DOI 10.1145/1816123.1816168, DOI 10.1145/1816123.1816168.1816168]
Angrosh MA, 2013, NAT LANG ENG, V19, P481, DOI 10.1017/S1351324912000277
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], 2007, HUMAN LANGUAGE TECHN
[Anonymous], 2015, DOCUMENT CLUSTERING
Athar Awais., 2012, PROC ACL WORKSHOP DE, P18
Bakhti K, 2018, 2018 INTERNATIONAL CONFERENCE ON CONTROL, ARTIFICIAL INTELLIGENCE, ROBOTICS & OPTIMIZATION (ICCAIRO), P43, DOI 10.1109/ICCAIRO.2018.00016
Barrera Araly, 2012, Computational Linguistics and Intelligent Text Processing. 13th International Conference (CICLing 2012). Proceedings, Part II, P366, DOI 10.1007/978-3-642-28601-8_31
Bertin M., 2014, Ceur workshop proceedings, P5
Bertin M, 2018, INT J DIGIT LIBRARIE, V19, P127, DOI 10.1007/s00799-017-0225-7
Bertin M, 2016, J ASSOC INF SCI TECH, V67, P164, DOI 10.1002/asi.23367
Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001
BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8
Boyack KW, 2018, J INFORMETR, V12, P59, DOI 10.1016/j.joi.2017.11.005
Cao Z, 2016, P JOINT WORKSH BIBL, P132
Chang YW, 2013, SCIENTOMETRICS, V96, P535, DOI 10.1007/s11192-013-0956-1
CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403
Cohan A, 2018, INT J DIGIT LIBRARIE, V19, P287, DOI 10.1007/s00799-017-0216-8
Cohen AM, 2006, J AM MED INFORM ASSN, V13, P206, DOI 10.1197/jamia.M1929
Conroy JohnM., 2015, Proceedings of NAACL-HLT, P186
Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661
Cronin B., 1984, ROLE SIGNIFICANCE CI, P103
Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256
Ding Y, 2013, J INFORMETR, V7, P583, DOI 10.1016/j.joi.2013.03.003
Dong C., 2011, P 5 INT JOINT C NAT, P623
Doslu M, 2016, SCIENTOMETRICS, V108, P653, DOI 10.1007/s11192-016-1982-6
Dreyer Markus, 2012, P 2012 C N AM CHAPTE, P162
Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707
Erikson MG, 2014, SOC STUD SCI, V44, P625, DOI 10.1177/0306312714522871
Erkan G, 2004, J ARTIF INTELL RES, V22, P457, DOI 10.1613/jair.1523
Fang H, 2015, MALAYS J LIBR INF SC, V20, P1
Finney B., 1979, The reference characteristics of scientific texts
FROST CO, 1979, LIBR QUART, V49, P399
Fujiwara T, 2015, J BIOMED SEMANT, V6, DOI 10.1186/s13326-015-0037-x
Galgani F, 2015, EXPERT SYST APPL, V42, P6391, DOI 10.1016/j.eswa.2015.04.022
Gambhir M, 2017, ARTIF INTELL REV, V47, P1, DOI 10.1007/s10462-016-9475-9
GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189
Garfield E., 1956, The Chemical Bulletin, V43, P11
Garfield E, 1955, CITATION INDEXES OLD
Gupta S, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1267, DOI 10.1145/3041021.3053062
Hassan SU, 2018, LECT NOTES COMPUT SC, V11279, P316, DOI 10.1007/978-3-030-04257-8_32
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
Hassannejad S., 2017, 2017 ACM IEEE JOINT, V14, P1, DOI [DOI 10.1109/JCDL.2017.7991558, 10.9734/ARRB/2017/27339]
Hatzivassiloglou V, 1997, 35TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 8TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P174, DOI 10.3115/976909.979640
He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734
Hernandez M, 2015, NATURAL LANGUAGE PRO, P149
Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hoffmann A., 2003, P 2 INT C KNOWL CAPT, P28
HOOTEN PA, 1991, J AM SOC INFORM SCI, V42, P397, DOI 10.1002/(SICI)1097-4571(199107)42:6<397::AID-ASI2>3.0.CO;2-N
Hu ZG, 2017, J INFORMETR, V11, P948, DOI 10.1016/j.joi.2017.08.004
Hu ZG, 2015, PRO INT CONF SCI INF, P221
Hu ZG, 2013, J INFORMETR, V7, P887, DOI 10.1016/j.joi.2013.08.005
Huang WY, 2015, AAAI CONF ARTIF INTE, P2404
Huang Wenyi, 2012, P 21 ACM INT C INF K, P1910, DOI DOI 10.1145/2396761.2398542
HURT CD, 1987, INFORM PROCESS MANAG, V23, P1, DOI 10.1016/0306-4573(87)90033-1
Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9
Ikram MT, 2018, TURK J ELECTR ENG CO, V26, P1922, DOI 10.3906/elk-1712-24
Jahangir M, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P722, DOI 10.1109/IntelliSys.2017.8324209
Jebari C, 2018, LECT NOTES COMPUT SC, V11315, P121, DOI 10.1007/978-3-030-03496-2_14
Jeong YK, 2014, J INFORMETR, V8, P197, DOI 10.1016/j.joi.2013.12.001
Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443
Jochim C., 2012, P COLING 2012, P1343
Judge TA, 2007, ACAD MANAGE J, V50, P491
Kaplan D., 2009, Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries (NLPIR4DL), P88
Karimi S, 2018, SCIENTOMETRICS, V116, P1331, DOI 10.1007/s11192-018-2785-8
Klampfl Stefan., 2016, BIRNDL at JCDL, P122
Lawrence S, 1999, COMPUTER, V32, P67, DOI 10.1109/2.769447
Li L., 2017, P 2 JOINT WORKSH BIB
Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402
Lin CY, 2003, HLT-NAACL 2003: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P150
Liu D, 2004, MEAD PLATFORM MULTID
LIU MX, 1993, J DOC, V49, P370, DOI 10.1108/eb026920
Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62
Ma Shutian, 2020, Scientometrics, V122, P1445, DOI 10.1007/s11192-019-03336-0
Ma ST, 2018, SCIENTOMETRICS, V116, P1303, DOI 10.1007/s11192-018-2754-2
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002
MCCAIN KW, 1989, SCIENTOMETRICS, V17, P127, DOI 10.1007/BF02017729
McCallum AK, 2000, INFORM RETRIEVAL, V3, P127, DOI 10.1023/A:1009953814988
Mei Q., 2008, P ACL 08, P816
Mercer RE, 2004, LECT NOTES ARTIF INT, V3060, P75
Mohammad S., 2009, P HUMAN LANGUAGE TEC, P584
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Nallapati R. M., 2008, P 14 ACM SIGKDD INT, P542, DOI DOI 10.1145/1401890.1401957
Nicholson JM, 2021, QUANT SCI STUD, V2, P882, DOI 10.1162/qss_a_00146
Nomoto T., 2016, P JOINT WORKSH BIBL, P168
OPPENHEIM C, 1978, J AM SOC INFORM SCI, V29, P225, DOI 10.1002/asi.4630290504
Piao SS., 2007, International Workshop on Computational Semantics (IWCS), P366
PRABHA CG, 1983, J AM SOC INFORM SCI, V34, P202, DOI 10.1002/asi.4630340305
Pride D, 2017, PRO INT CONF SCI INF, P1357
Qazvinian V, 2013, J ARTIF INTELL RES, V46, P165, DOI 10.1613/jair.3732
Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555
Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113
Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y
Safer MA, 2009, PERSPECT PSYCHOL SCI, V4, P51, DOI 10.1111/j.1745-6924.2009.01104.x
SALTON G, 1963, J ACM, V10, P440, DOI 10.1145/321186.321188
See A, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1073, DOI 10.18653/v1/P17-1099
SHADISH WR, 1995, SOC STUD SCI, V25, P477, DOI 10.1177/030631295025003003
Sharma M, 2018, BMC HEALTH SERV RES, V18, DOI 10.1186/s12913-018-3043-8
Small H, 2004, SCIENTOMETRICS, V60, P71, DOI 10.1023/B:SCIE.0000027310.68393.bc
Small H., 1982, PROGR COMMUNICATION, V3, P287
Small H, 2018, J INFORMETR, V12, P461, DOI 10.1016/j.joi.2018.03.007
Small H, 2017, J INFORMETR, V11, P46, DOI 10.1016/j.joi.2016.11.001
Sugiyama Kazunari, 2010, Proceedings of the 2010 International Conference on Information Retrieval and Knowledge Management (CAMP 2010), P67, DOI 10.1109/INFRKM.2010.5466945
Sula CA, 2014, LIT LINGUIST COMPUT, V29, P452, DOI 10.1093/llc/fqu019
Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4
Tandon N., 2012, P 35 GERMAN C ARTIFI, P98
Tang J, 2009, LECT NOTES ARTIF INT, V5476, P572, DOI 10.1007/978-3-642-01307-2_55
Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2
Teufel S, 2002, COMPUT LINGUIST, V28, P409, DOI 10.1162/089120102762671936
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Thompson P, 2017, LANG RESOUR EVAL, V51, P409, DOI 10.1007/s10579-016-9344-9
Tkaczyk D, 2015, COMM COM INF SC, V548, P93, DOI 10.1007/978-3-319-25518-7_8
Tuarob S, 2020, IEEE T KNOWL DATA EN, V32, P1881, DOI 10.1109/TKDE.2019.2913376
Turney PD, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P417
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
Verma Rakesh, 2017, Comp. y Sist., V21, P787, DOI 10.13053/cys-21-4-2855
Voos H., 1976, The Journal of Academic Librarianship, V1, P19
Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480
Wang MY, 2019, CURR SCI INDIA, V117, P606, DOI 10.18520/cs/v117/i4/606-616
Wang WJ, 2012, INT J ARTIF INTELL T, V21, DOI 10.1142/S0218213012400040
White HD, 2004, APPL LINGUIST, V25, P89, DOI 10.1093/applin/25.1.89
Xu J., 2016, P JOINT WORKSH BIBL, P139
Yang LB, 2018, IEEE ACCESS, V6, P59618, DOI 10.1109/ACCESS.2018.2872730
Yasunaga M, 2019, AAAI CONF ARTIF INTE, P7386
Yin XS, 2011, INFORM PROCESS MANAG, V47, P53, DOI 10.1016/j.ipm.2010.03.010
Yousif A, 2019, NEUROCOMPUTING, V335, P195, DOI 10.1016/j.neucom.2019.01.021
Zafar L, 2019, 2019 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTING AND DIGITAL SYSTEMS (C-CODE), P120, DOI [10.1109/c-code.2019.8680976, 10.1109/C-CODE.2019.8680976]
Zarrinkalam F, 2013, PROGRAM-ELECTRON LIB, V47, P92, DOI 10.1108/00330331311296320
Zhang G, 2013, J AM SOC INF SCI TEC, V64, P1490, DOI 10.1002/asi.22850
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 141
TC 21
Z9 24
U1 17
U2 132
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD AUG
PY 2021
VL 126
IS 8
BP 6551
EP 6599
DI 10.1007/s11192-021-04055-1
EA JUN 2021
PG 49
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA TM5GC
UT WOS:000664849500019
OA Green Submitted, Green Accepted
DA 2024-09-05
ER
PT J
AU Shen, Y
Lei, C
AF Shen, Yue
Lei, Cao
TI Research on evaluation of university education informatization level
based on clustering technique
SO HELIYON
LA English
DT Article
DE Education informatization; Machine learning; Clustering; Reinforcement
learning; Support vector machine
AB Today, the utilization of Information Technology tools is considered an inevitable path in the education system. In this regard, assessing the effective integration of Information Technology tools in the educational system holds significant importance. This process can be automated using artificial intelligence techniques, which are the subject of the current study. In this research, initially, a set of 14 indicators related to levels of Education Informatization (EI) in higher education is introduced. Subsequently, a clustering-based strategy is proposed to rank the indicators and determine an optimal subset of these features. Based on this framework, it is demonstrated that using 11 indicators related to educational behaviors can achieve the highest accuracy in evaluating EI levels. The proposed approach employs a group of Support Vector Machines (SVMs) for EI level assessment, where classifier hyperparameters are tuned using reinforcement learning strategy. The performance of the proposed method is evaluated on real-world data and compared with previous works. The results indicate that the proposed method can assess EI levels in universities with an average accuracy of 93.64 %, outperforming compared methods by at least 4.09 %.
C1 [Shen, Yue] Jiangsu Food & Pharmaceut Sci Coll, Huaian 223003, Jiangsu, Peoples R China.
[Lei, Cao] China West Normal Univ, Educ Coll, Nanchong 637000, Sichuan, Peoples R China.
C3 Jiangsu Food & Pharmaceutical Science College; China West Normal
University
RP Shen, Y (corresponding author), Jiangsu Food & Pharmaceut Sci Coll, Huaian 223003, Jiangsu, Peoples R China.; Lei, C (corresponding author), China West Normal Univ, Educ Coll, Nanchong 637000, Sichuan, Peoples R China.
EM 20163014@jsfpc.edu.cn; caolei115@cwnu.edu.cn
CR Bai Y, 2019, 2019 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), P437, DOI 10.1109/ICSGEA.2019.00105
Binu Jose A., 2022, SOFT COMPUTING THEOR, P319
Brik Y., 2021, 9 ONLINE INT C APPL, P43
Cervantes J, 2020, NEUROCOMPUTING, V408, P189, DOI 10.1016/j.neucom.2019.10.118
Clifton J, 2020, ANNU REV STAT APPL, V7, P279, DOI 10.1146/annurev-statistics-031219-041220
Dingsheng Deng, 2020, 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), P949, DOI 10.1109/IFEEA51475.2020.00199
Dong K., 2022, Discrete Dynam Nat. Soc, V2022
Fedorenko E.H., 2019, Informatization of Education as a Pledge of the Existence and Development of a Modern Higher Education
Feng H, 2020, 2020 5TH INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA 2020), P558, DOI 10.1109/ICSGEA51094.2020.00127
Halili SH, 2019, The Online Journal of Distance Education and e -Learning, V7, P63
Hawkridge D., 2022, New information technology in education
Hou YH, 2022, MATH PROBL ENG, V2022, DOI 10.1155/2022/5817752
Huang CQ, 2023, COMPUT EDUC, V207, DOI 10.1016/j.compedu.2023.104910
Huang CQ, 2021, AUSTRALAS J EDUC TEC, V37, P81, DOI 10.14742/ajet.6749
Lei K., 2021, APPL BIG DATA BLOCKC, P263
Li BW, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0242023
Li SP, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/5599655
Li XT, 2020, NEURAL COMPUT APPL, V32, P1765, DOI 10.1007/s00521-019-04566-2
Li Y., 2022, 2022 2 INT C ED INFO, P882
Paudel P., 2021, International Journal on Studies in Education (IJonSE), V3
Pisner D.A., 2020, Machine Learning, P101, DOI [DOI 10.1016/B978-0-12-815739-8.00006-7, 10.1016/B978-0-12-815739-8.00006-7]
Raja R., 2018, J Appl Adv Res., V3, P33, DOI [10.21839/jaar.2018.v3iS1.165, DOI 10.21839/JAAR.2018.V3IS1.165]
Singh D, 2020, APPL SOFT COMPUT, V97, DOI 10.1016/j.asoc.2019.105524
Szymkowiak A, 2021, TECHNOL SOC, V65, DOI 10.1016/j.techsoc.2021.101565
Wang DL, 2022, SCI PROGRAMMING-NETH, V2022, DOI 10.1155/2022/9658735
Wei Chengyan, 2021, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/1992/2/022126
Xu L, 2022, PSYCHIAT DANUB, V34, pS363
Xu Wang, 2019, IOP Conference Series: Materials Science and Engineering, V569, DOI 10.1088/1757-899X/569/5/052024
Yan JJ, 2020, KNOWL-BASED SYST, V198, DOI 10.1016/j.knosys.2020.105922
Yan SX, 2021, ECNU REV EDUC, V4, P410, DOI 10.1177/2096531120944929
Yi SP, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14116474
NR 31
TC 0
Z9 0
U1 11
U2 11
PU CELL PRESS
PI CAMBRIDGE
PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA
EI 2405-8440
J9 HELIYON
JI Heliyon
PD FEB 29
PY 2024
VL 10
IS 4
AR e25215
DI 10.1016/j.heliyon.2024.e25215
EA FEB 2024
PG 14
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA KZ7S9
UT WOS:001183863100001
PM 38370245
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Zhu, XP
Ban, ZJ
AF Zhu, XinPing
Ban, ZhiJie
BE Barolli, L
Takizawa, M
Enokido, T
Ogiela, MR
Javaid, N
TI Citation Count Prediction Based on Academic Network Features
SO PROCEEDINGS 2018 IEEE 32ND INTERNATIONAL CONFERENCE ON ADVANCED
INFORMATION NETWORKING AND APPLICATIONS (AINA)
SE International Conference on Advanced Information Networking and
Applications
LA English
DT Proceedings Paper
CT 32nd IEEE International Conference on Advanced Information Networking
and Applications (AINA)
CY MAY 16-18, 2018
CL Krakow, POLAND
DE citation count prediction; academic social network; feature selection
ID JOURNALS IMPACT FACTOR; PUBLICATION
AB Citation count is an important factor to measure the influence of academic publications. Identifying future citation count in advance can help scientists to find references and research area. There are many academic network features which are related to citation count. However, these features have not been completely explored in the existing studies. In this paper, we propose a citation count prediction model based on academic network features. Firstly, some important features are introduced and analyzed in detail. Then, we verify the importance of each feature and use a neural network model to select a set of optimal features. Finally, we present several machine learning methods and one multiple linear regression strategy to predict a paper's future citation. Experimental results on real datasets demonstrate that our model significantly outperforms the baseline method.
C1 [Zhu, XinPing; Ban, ZhiJie] Inner Mongolia Univ, Sch Comp Sci, Hohhot, Peoples R China.
C3 Inner Mongolia University
RP Zhu, XP (corresponding author), Inner Mongolia Univ, Sch Comp Sci, Hohhot, Peoples R China.
EM zhuxinping1993@163.com; banzhijie@imu.edu.cn
FU Natural Science Foundation of China [61662053]
FX We thank the anonymous reviewers for their constructive comments. This
work was supported by the Natural Science Foundation of China (Grant No.
61662053). We thank Jie Tang for providing the basic data set. The
corresponding author is Zhijie Ban in this paper.
CR [Anonymous], Acm Sigkdd Explorations Newsletter, DOI 10.1145/980972.980992
[Anonymous], ASNA
[Anonymous], 1997, TECHNICAL REPORT
Bethard S., 2010, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, P609, DOI [DOI 10.1145/1871437.1871517, 10.1145/1871437.1871517]
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Brin S., 1998, P 7 INT WORLD WID WE, V98, P161
Brody T, 2006, J AM SOC INF SCI TEC, V57, P1060, DOI 10.1002/asi.20373
Callaham M, 2002, JAMA-J AM MED ASSOC, V287, P2847, DOI 10.1001/jama.287.21.2847
Castillo C, 2007, LECT NOTES COMPUT SC, V4726, P107, DOI 10.1007/978-3-540-75530-2_10
Dimitrov JD, 2010, NATURE, V466, P179, DOI 10.1038/466179b
Eberly Lynn E., 2007, V404, P165, DOI 10.1007/978-1-59745-530-5_9
Fersht A, 2009, P NATL ACAD SCI USA, V106, P6883, DOI 10.1073/pnas.0903307106
Fu Lawrence D, 2008, AMIA Annu Symp Proc, P222
Garfield E, 2001, NATURE, V411, P522, DOI 10.1038/35079156
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Ibáñez A, 2009, BIOINFORMATICS, V25, P3303, DOI 10.1093/bioinformatics/btp585
Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140
Kulkarni AV, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000403
KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694
Livne A., 2013, ICONFERENCE 2013 WOR
Lokker C, 2008, BMJ-BRIT MED J, V336, P655, DOI 10.1136/bmj.39482.526713.BE
Mcgovern A., 2003, SIGKDD EXPLORATIONS, V5, P2003
Pobiedina N, 2016, APPL INTELL, V44, P252, DOI 10.1007/s10489-015-0657-y
RODGERS JL, 1988, AM STAT, V42, P59, DOI 10.2307/2685263
Simons K, 2008, SCIENCE, V322, P165, DOI 10.1126/science.1165316
SIU KY, 1993, IEEE T INFORM THEORY, V39, P946, DOI 10.1109/18.256501
Stallings J, 2013, P NATL ACAD SCI USA, V110, P9680, DOI 10.1073/pnas.1220184110
Steel R.G., 1980, PRINCIPLES PROCEDURE, V633
Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
NR 32
TC 12
Z9 13
U1 1
U2 14
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 1550-445X
BN 978-1-5386-2195-0
J9 INT CON ADV INFO NET
PY 2018
BP 534
EP 541
DI 10.1109/AINA.2018.00084
PG 8
WC Computer Science, Hardware & Architecture; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BL7AK
UT WOS:000454817500071
DA 2024-09-05
ER
PT J
AU Dong, XL
Xu, JH
Bu, Y
Zhang, CW
Ding, Y
Hu, BB
Ding, Y
AF Dong, Xianlei
Xu, Jiahui
Bu, Yi
Zhang, Chenwei
Ding, Ying
Hu, Beibei
Ding, Yang
TI Beyond correlation: Towards matching strategy for causal inference in
Information Science
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
DE Causal inference; citation analysis; matching; scientometrics
ID INSTRUMENTAL VARIABLES ESTIMATION; RANDOMIZED CLINICAL-TRIALS; CITATION
IMPACT; PROPENSITY; RISK; PERSPECTIVE
AB Correlation has become a fundamental method for information science. However, correlations are limited in making concrete decisions. In this article, we detail how causal inference could be utilised in the field of information science. There are six main steps of implementing matching for causal inference, namely, selecting candidate control variables, determining control variables, calculating similarities among all samples, forming control group, examining the performance of control group and estimating causal effects. As an example, this article applies causal inference to investigate whether Nobel Physics award increases the after-award citations. The method is presented in a step-by-step manner so that researchers can reproduce our analysis in the future.
C1 [Dong, Xianlei; Xu, Jiahui; Hu, Beibei; Ding, Yang] Shandong Normal Univ, Jinan, Peoples R China.
[Bu, Yi] Peking Univ, 5 Yiheyuan Rd, Beijing 100871, Peoples R China.
[Zhang, Chenwei] Univ Hong Kong, Hong Kong, Peoples R China.
[Ding, Ying] Univ Texas Austin, Austin, TX 78712 USA.
C3 Shandong Normal University; Peking University; University of Hong Kong;
University of Texas System; University of Texas Austin
RP Bu, Y (corresponding author), Peking Univ, 5 Yiheyuan Rd, Beijing 100871, Peoples R China.
EM buyi@pku.edu.cn
RI Bu, Yi/B-4964-2018; xu, jiawen/KGK-4238-2024; Xu, Jiawen/JEF-5028-2023;
xu, jia/GSD-6347-2022
OI Bu, Yi/0000-0003-2549-4580; Zhang, Chenwei/0000-0002-0488-4603; Ding,
Yang/0000-0002-0683-2655
FU programmes of National Natural Science Foundation of China [71904110];
Humanities and Social Science Foundation of Ministry of Education of the
People's Republic of China [19YJCGJW014]; National Natural Science
Foundation of China [71701115]; China Postdoctoral Science Foundation
[2017M610440]; National Nature Science Foundation of Shandong Province
[ZR2017MF058]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship and/or publication of this article: The authors
are grateful to two anonymous reviewers for their constructive comments.
X.D. thanks the programmes of National Natural Science Foundation of
China (Grant No. 71904110) and Humanities and Social Science Foundation
of Ministry of Education of the People's Republic of China (Grant No.
19YJCGJW014) for their support. B.H. thanks the programmes of National
Natural Science Foundation of China (Grant No. 71701115), China
Postdoctoral Science Foundation (Grant No. 2017M610440) and the National
Nature Science Foundation of Shandong Province (Grant No. ZR2017MF058)
for their support.
CR Agrawal AK, 2013, J FINANC ECON, V107, P417, DOI 10.1016/j.jfineco.2012.08.019
AlShebli BK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07634-8
Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P3
Astin JA, 2002, ARTHRIT RHEUM-ARTHR, V47, P291, DOI 10.1002/art.10416
Austin PC, 2014, STAT MED, V33, P1057, DOI 10.1002/sim.6004
Austin PC, 2009, BIOMETRICAL J, V51, P171, DOI 10.1002/bimj.200810488
Azoulay P, 2010, Q J ECON, V125, P549, DOI 10.1162/qjec.2010.125.2.549
Becker SO, 2002, STATA J, V2, P358, DOI 10.1177/1536867X0200200403
Begg C, 1996, JAMA-J AM MED ASSOC, V276, P637, DOI 10.1001/jama.276.8.637
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blumberg Joyce, 2016, INT STAT REV, V84, P159
Bor J, 2014, EPIDEMIOLOGY, V25, P729, DOI 10.1097/EDE.0000000000000138
BOUND J, 1995, J AM STAT ASSOC, V90, P443, DOI 10.2307/2291055
Bu Y, 2019, PRO INT CONF SCI INF, P561
BYAR DP, 1976, NEW ENGL J MED, V295, P74, DOI 10.1056/NEJM197607082950204
Card, 1993, NBER WORK PAPERS, V3386, P4483
COCHRAN WG, 1973, SANKHYA SER A, V35, P417
Duflo E., 2005, Evaluating Development Effectiveness, V7, P205
Falavarjani SAM, 2019, INFORM PROCESS MANAG, V56, DOI 10.1016/j.ipm.2019.102070
Frölich M, 2007, ECONOMET J, V10, P359, DOI 10.1111/j.1368-423X.2007.00212.x
Gitonga ZM, 2013, FOOD POLICY, V43, P44, DOI 10.1016/j.foodpol.2013.08.005
Godlee Fiona, 2011, BMJ, V342, pc7452, DOI 10.1136/bmj.c7452
Goodman S, 2014, J CHILD PSYCHOL PSYC, V55, P121, DOI 10.1111/jcpp.12202
Greenland S, 2000, INT J EPIDEMIOL, V29, P722, DOI 10.1093/ije/29.4.722
Hahn JY, 2001, ECONOMETRICA, V69, P201, DOI 10.1111/1468-0262.00183
Haviland A, 2007, PSYCHOL METHODS, V12, P247, DOI 10.1037/1082-989X.12.3.247
Huang C, 2019, PHYSICA A, V533, DOI 10.1016/j.physa.2019.122043
Huang JM, 2020, P NATL ACAD SCI USA, V117, P4609, DOI 10.1073/pnas.1914221117
Jeong H, 2003, EUROPHYS LETT, V61, P567, DOI 10.1209/epl/i2003-00166-9
King G, 2019, POLIT ANAL, V27, P435, DOI 10.1017/pan.2019.11
Larivière V, 2010, J AM SOC INF SCI TEC, V61, P424, DOI 10.1002/asi.21232
Lechner Michael, 2011, Foundations and Trends in Econometrics, V4, P165, DOI 10.1561/0800000014
Li HJ, 2013, ACCIDENT ANAL PREV, V60, P148, DOI 10.1016/j.aap.2013.08.003
Li WH, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13130-4
Meadowbrooke CC, 2014, J ASSOC INF SCI TECH, V65, P609, DOI 10.1002/asi.23001
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
Morgan SL, 2007, ANAL METHOD SOC RES, P1, DOI 10.1017/CBO9780511804564
Oakes J.M., 2006, METHODS SOCIAL EPIDE, P370
Pearl J., 2000, CAUSALITY MODELS REA, P384
PETO R, 1977, BRIT J CANCER, V35, P1, DOI 10.1038/bjc.1977.1
PSACHAROPOULOS G, 1985, J HUM RESOUR, V20, P583, DOI 10.2307/145686
Rassen JA, 2012, PHARMACOEPIDEM DR S, V21, P41, DOI 10.1002/pds.2328
Ridner SL, 2006, J AM ACAD NURSE PRAC, V18, P374, DOI 10.1111/j.1745-7599.2006.00142.x
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
Rubin DB, 2006, MATCHED SAMPLING FOR CAUSAL EFFECTS, P1, DOI 10.2277/ 0521674360
Rubin DB, 2006, MATCHED SAMPLING FOR CAUSAL EFFECTS, P365
Sander, 1999, AM J PUBLIC HEALTH, V10, P37
Sinatra R, 2015, NAT PHYS, V11, P791, DOI 10.1038/nphys3494
Sovey AJ, 2011, AM J POLIT SCI, V55, P188, DOI 10.1111/j.1540-5907.2010.00477.x
Stuart EA, 2010, STAT SCI, V25, P1, DOI 10.1214/09-STS313
SUN J, 2019, PREDICTING HUMAN DIS
Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4
Thoemmes FJ, 2011, MULTIVAR BEHAV RES, V46, P90, DOI 10.1080/00273171.2011.540475
Waldinger F, 2012, REV ECON STUD, V79, P838, DOI 10.1093/restud/rdr029
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Wang BL, 2018, SCIENTOMETRICS, V116, P675, DOI 10.1007/s11192-018-2787-6
Way SF, 2019, P NATL ACAD SCI USA, V116, P10729, DOI 10.1073/pnas.1817431116
Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3
Wittenburg P, 2019, DATA INTELLIGENCE, V1, P6, DOI 10.1162/dint_a_00004
Wold H, 1954, ECONOMETRICA, V22, P162, DOI 10.2307/1907540
Wood Angela M, 2004, Clin Trials, V1, P368
Yan EJ, 2020, J ASSOC INF SCI TECH, V71, P314, DOI 10.1002/asi.24237
Zhang CW, 2018, J ASSOC INF SCI TECH, V69, P72, DOI 10.1002/asi.23916
Zhao ZY, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101037
NR 64
TC 6
Z9 6
U1 6
U2 86
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PD DEC
PY 2022
VL 48
IS 6
BP 735
EP 748
AR 0165551520979868
DI 10.1177/0165551520979868
EA JUN 2021
PG 14
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 5M6KX
UT WOS:000667859600001
DA 2024-09-05
ER
PT C
AU ElAbdi, M
Smine, B
Ben Yahia, S
AF ElAbdi, Mariem
Smine, Boutheina
Ben Yahia, Sadok
GP IEEE
TI DFBICA: A New Distributed Approach For Sentiment Analysis of
Bibliographic Citations
SO 2018 12TH INTERNATIONAL CONFERENCE ON RESEARCH CHALLENGES IN INFORMATION
SCIENCE (RCIS)
SE International Conference on Research Challenges in Information Science
LA English
DT Proceedings Paper
CT 12th International Conference on Research Challenges in Information
Science (RCIS)
CY MAY 29-31, 2018
CL Nantes, FRANCE
DE Sentiment analysis; Scientific paper; Word2vec; MapReduce
AB Sentiment analysis of citations in scientific papers is a new and interesting research area. In this paper, we focus on the problem of automatic identification of positive and negative sentiment polarity of citations in scientific papers. In this work, we conducted empirical research to investigate the classification of positive and negative citations. It is based on word vectors as a feature space, to which the examined citation context was mapped to. In order to handle with the huge amount of data, we have implemented our proposed approach in a distributed manner according to MapReduce paradigm through the Hadoop framework.
C1 [ElAbdi, Mariem; Ben Yahia, Sadok] Univ Tunis El Manar, Fac Sci Tunis, LIPAH LR 11ES14, Tunis 2092, Tunisia.
[Smine, Boutheina] Univ Carthage, Fac Sci Econ & Gest Nabeul, Tunis 1054, Tunisia.
C3 Universite de Tunis-El-Manar; Faculte des Sciences de Tunis (FST);
Universite de Carthage
RP ElAbdi, M (corresponding author), Univ Tunis El Manar, Fac Sci Tunis, LIPAH LR 11ES14, Tunis 2092, Tunisia.
EM elabdi.mariem@gmail.com; boutheina.smine@yahoo.fr;
sadok.benyahia@fst.rnu.tn
RI BEN YAHIA, Sadok/C-8239-2019
OI BEN YAHIA, Sadok/0000-0001-8939-8948
CR Abu-Jbara A., 2013, NAACL, P596
Athar A., 2011, P ACL 2011 STUD SESS, P81
Bengio Y, 2008, IEEE T NEURAL NETWOR, V19, P713, DOI 10.1109/TNN.2007.912312
Dong L, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P49
FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619
Jochim C, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P42
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Lilleberg J, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P136, DOI 10.1109/ICCI-CC.2015.7259377
Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011
Mikolov T., 2013, ARXIV
Olson D. L, 2008, Advanced Data Mining Techniques, DOI DOI 10.1007/978-3-540-76917-0
Pang B., 2002, THUMBS SENTIMENT CLA, V10
Tang DY, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1555
NR 13
TC 4
Z9 4
U1 0
U2 5
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2151-1357
BN 978-1-5386-6517-6
J9 INT CONF RES CHAL
PY 2018
PG 6
WC Computer Science, Information Systems; Information Science & Library
Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BL3WY
UT WOS:000450067100033
DA 2024-09-05
ER
PT J
AU da Silva, RL
de Sousa, BP
AF da Silva, Renata Lima
de Sousa, Brisa Pozzi
TI Artificial Intelligence and ChatGPT: perspectives and challenges for
Bibliographic Classification
SO REVISTA IBERO-AMERICANA DE CIENCIA DA INFORMACAO
LA English
DT Article
DE Library Science; Bibliographic Classification; ChatGPT; Artificial
Intelligence
AB It presents perspectives and challenges of applying Artificial Intelligence in the field of Library Science. To this end, it focuses on the practice of Bibliographic Classification and conducts a comparative study between the results obtained through classification performed by a human and by ChatGPT, the chatbot tool used in this analysis. The study is based on the Dewey Decimal Classification and the Universal Decimal Classification. The results revealed significant divergences between both methods, exposing mistakes and hallucinations of the generative AI model GPT-3.5, on which the current free version of ChatGPT is based. Challenges and limitations to the effective applicability of ChatGPT in the context of Bibliographic Classification are highlighted, as well as the relevance of the librarian in the practice of classification and thematic analysis, given the importance of mental exercise and critical analysis in interpreting the subject to be classified. It should be noted that the study does not conduct a comprehensive comparative analysis. The need for future, more comprehensive investigations with different perspectives from human experts and AI models is emphasized.
C1 [da Silva, Renata Lima; de Sousa, Brisa Pozzi] Univ Fed Estado Rio De Janeiro, Curso Bibliotecon, Rio De Janeiro, RJ, Brazil.
C3 Universidade Federal do Estado do Rio de Janeiro
RP da Silva, RL (corresponding author), Univ Fed Estado Rio De Janeiro, Curso Bibliotecon, Rio De Janeiro, RJ, Brazil.
EM limarenataa@gmail.com; brisa.pozzi@unirio.br
CR Almeida Vergilio, 2023, IA Generativa: oportunidades, riscos e governanca
Andrade Rodrigo de Oliveira, 2023, Pesquisa FAPESP, Sao Paulo, V325, P17
Anjos Liane dos, 2008, Tese (Doutorado em Cultura e Informacao)
[Anonymous], 2023, ChatGPT-Release Notes-OpenAI Help Center
Aranalde Michel Maya, 2009, Ciencia da Informacao, V38, P86
BARBOSA A., 1969, Teoria e pratica dos sistemas de classificacao bibliografica
Brady Damian, 2023, Github Blog
Carvalho Tiago, 2018, Monografia (Bacharelado em Biblioteconomia)
Cortiz Diogo, 2023, Diogo Cortiz
Daugherty Paul, 2023, Uma nova era da IA generativa para todos: a tecnologia que sustenta o ChatGPT vai transformar o trabalho e reinventar as empresas
Davenport T. H., 2022, Harvard Business Review
Dewey Melvil, 2011, Dewey decimal classification and relative index, V23
Fernandes Anita Maria da Rocha, 2005, Inteligencia artificial: nocoes gerais
Gil A.C., 2002, S O PAULO
Gil Antonio Carlos, 2008, Metodos e tecnicas depesquisa social, V6
Gill S. S., 2023, Internet of Things and Cyber-Physical Systems, V3, DOI DOI 10.1016/J.IOTCPS.2023.05.004
Lund B.D., 2023, LIB HI TECH NEWS, V40
Maciel L, 2023, REGE-REV GEST, V30, P110, DOI 10.1108/REGE-04-2023-207
Miranda Marcos Luiz, 2018, Instrumentos de Representacao Tematica da Informacao, VI
Piedade M., 1983, Introducao a teoria da classificacao
Russel S., 2013, Inteligencia Artificial
Sichman Jaime Simão, 2021, Estud. av., V35, P37, DOI 10.1590/s0103-4014.2021.35101.004
Wang S, 2023, Arxiv, DOI [arXiv:2306.00227, 10.48550/arXiv.2306.00227, DOI 10.48550/ARXIV.2306.00227]
NR 23
TC 0
Z9 0
U1 31
U2 31
PU UNIV BRASILIA, DEPT CIENCIA INFORMACAO
PI BRASILIA
PA CAIXA POSTAL 15-3011, BRASILIA, DF 00000, BRAZIL
SN 1983-5213
J9 REV IBERI-AM CIENC I
JI Rev. Ibero-Am. Cienc. Inf.
PD JAN-APR
PY 2024
VL 17
IS 1
BP 44
EP 65
DI 10.26512/rici.v17.n1.2024.50429
PG 22
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA MQ0I8
UT WOS:001194970100006
OA gold
DA 2024-09-05
ER
PT J
AU Hassan, SU
Saleem, A
Soroya, SH
Safder, I
Iqbal, S
Jamil, S
Bukhari, F
Aljohani, NR
Nawaz, R
AF Hassan, Saeed-Ul
Saleem, Aneela
Soroya, Saira Hanif
Safder, Iqra
Iqbal, Sehrish
Jamil, Saqib
Bukhari, Faisal
Aljohani, Naif Radi
Nawaz, Raheel
TI Sentiment analysis of tweets through Altmetrics: A machine learning
approach
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
DE Altmetrics; comparative analysis; machine learning; sentiment analysis;
Twitter
ID SOCIAL MEDIA; TWITTER; NETWORK
AB The purpose of the study is to (a) contribute to annotating an Altmetrics dataset across five disciplines, (b) undertake sentiment analysis using various machine learning and natural language processing-based algorithms, (c) identify the best-performing model and (d) provide a Python library for sentiment analysis of an Altmetrics dataset. First, the researchers gave a set of guidelines to two human annotators familiar with the task of related tweet annotation of scientific literature. They duly labelled the sentiments, achieving an inter-annotator agreement (IAA) of 0.80 (Cohen's Kappa). Then, the same experiments were run on two versions of the dataset: one with tweets in English and the other with tweets in 23 languages, including English. Using 6388 tweets about 300 papers indexed in Web of Science, the effectiveness of employed machine learning and natural language processing models was measured by comparing with well-known sentiment analysis models, that is, SentiStrength and Sentiment140, as the baseline. It was proved that Support Vector Machine with uni-gram outperformed all the other classifiers and baseline methods employed, with an accuracy of over 85%, followed by Logistic Regression at 83% accuracy and Naive Bayes at 80%. The precision, recall and F1 scores for Support Vector Machine, Logistic Regression and Naive Bayes were (0.89, 0.86, 0.86), (0.86, 0.83, 0.80) and (0.85, 0.81, 0.76), respectively.
C1 [Hassan, Saeed-Ul; Saleem, Aneela; Safder, Iqra; Iqbal, Sehrish] Informat Technol Univ, Lahore, Pakistan.
[Soroya, Saira Hanif] Univ Punjab, Dept Informat Management, Lahore 54590, Pakistan.
[Jamil, Saqib] Univ Okara, Dept Management Sci, Okara, Pakistan.
[Bukhari, Faisal] Univ Punjab, Punjab Univ Coll Informat Technol PUCIT, Lahore, Pakistan.
[Aljohani, Naif Radi] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia.
[Nawaz, Raheel] Manchester Metropolitan Univ, Sch Comp Sci, Manchester, Lancs, England.
C3 University of Punjab; University of Punjab; King Abdulaziz University;
Manchester Metropolitan University
RP Soroya, SH (corresponding author), Univ Punjab, Dept Informat Management, Lahore 54590, Pakistan.
EM sairasroya@gmail.com
RI Aljohani, Naif R/S-1109-2017; Nawaz, Raheel/AAX-5293-2021; Safder,
Iqra/JXN-8069-2024; Hassan, Saeed-Ul/G-1889-2016
OI Nawaz, Raheel/0000-0001-9588-0052; Hassan, Saeed-Ul/0000-0002-6509-9190;
soroya, Dr. Saira Hanif/0000-0002-8153-1529
FU Higher Education Commission; National Centre for Big Data and Cloud
Computing (NCBC)
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: The author
Saeed-Ul Hassan is grateful for the financial support received from the
Higher Education Commission for this research for Crime Investigation
and Prevention Lab (CIPL) affiliated with National Centre for Big Data
and Cloud Computing (NCBC).
CR Ananiadou Sophia, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P318, DOI 10.1007/978-3-642-37256-8_27
[Anonymous], 2004, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics - ACL'04, DOI DOI 10.3115/1218955.1218990
Bagheri A, 2019, J INF SCI, V45, P736, DOI 10.1177/0165551518811458
Batista-Navarro Riza Theresa, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P559, DOI 10.1007/978-3-642-37247-6_45
Bessagnet MN, 2018, P 7 WORKSH BIBL ENH, P80
Bonaccorsi A, 2017, J INFORMETR, V11, P435, DOI 10.1016/j.joi.2017.02.003
Bonaccorsi A, 2017, SCIENTOMETRICS, V110, P217, DOI 10.1007/s11192-016-2180-2
Bradley AP, 1997, PATTERN RECOGN, V30, P1145, DOI 10.1016/S0031-3203(96)00142-2
Bruns A, 2012, JOURNALISM STUD, V13, P801, DOI 10.1080/1461670X.2012.664428
Buitinck Lars, 2013, ECML PKDD WORKSH LAN, P108, DOI DOI 10.48550/ARXIV.1309.0238
Cheng LC, 2020, J INF SCI, V46, P664, DOI 10.1177/0165551519849510
Díaz-Faes AA, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0216408
Didegah F, 2018, J INFORMETR, V12, P960, DOI 10.1016/j.joi.2018.08.002
Emadi M, 2020, J INF SCI, V46, P226, DOI 10.1177/0165551519828627
Erdt M, 2016, SCIENTOMETRICS, V109, P1117, DOI 10.1007/s11192-016-2077-0
Freitag D, 2000, MACH LEARN, V39, P169, DOI 10.1023/A:1007601113994
Friedrich N, DO TWEETS SCI ARTICL
Friedrich N, 2015, TWEETS SCI ARTICLES
Friedrich N, 2015, PRO INT CONF SCI INF, P107
Hallgren Kevin A, 2012, Tutor Quant Methods Psychol, V8, P23
Hassan S.-U., 2017, Digital Libraries: Data, Information, and Knowledge for Digital Lives, P119, DOI DOI 10.1007/978-3-319-70232-2_10
Haustein Stefanie, 2015, PLoS One, V10, pe0120495, DOI 10.1371/journal.pone.0120495
Haustein S, 2019, SPRINGER HBK, P729, DOI 10.1007/978-3-030-02511-3_28
Haustein S, 2016, THEORIES OF INFORMETRICS AND SCHOLARLY COMMUNICATION: A FESTSCHRIFT IN HONOR OF BLAISE CRONIN, P372
Haustein S, 2014, SCIENTOMETRICS, V101, P1145, DOI 10.1007/s11192-013-1221-3
Hellsten I, 2019, J ASS INF SCI TECHNO, DOI 10.1002/asi.24082
Holmberg K, 2014, SCIENTOMETRICS, V101, P1027, DOI [10.1007/s11192-014-1229-3, 10.1159/000358776]
Houghton D, 2017, CREATING MARKETING M, P1413, DOI DOI 10.1007/978-3-319-45596-9_260
Imran M., 2018, 23 INT C SCI TECHN I
Jahangir M, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P722, DOI 10.1109/IntelliSys.2017.8324209
Jussila J., 2017, Strategic innovative marketing, P43, DOI 10.1007/978-3-319-56288-9_7
Kohavi R., 1995, Ijcai, V14, P1137
Lee MK, 2017, SCIENTOMETRICS, V112, P767, DOI 10.1007/s11192-017-2413-z
Letierce J, 2010, P 4 INT AAAI C WEBL
Liu B., 2007, Web Data Mining: Exploring Hyperlinks, Contents
Moed HF, 2010, J INFORMETR, V4, P436, DOI 10.1016/j.joi.2010.03.009
Nawaz R, 2012, LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3505
Nawaz R, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-14
Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704
Park A., 2010, LREC, P1320
Priem J., 2010, Altmetrics: a manifesto
Priem J., 2011, P METR 2011 S INF SC
Provost F., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P445
Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551
Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x
Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y
Safder I, 2017, LECT NOTES COMPUT SC, V10647, P30, DOI 10.1007/978-3-319-70232-2_3
Said A, 2019, SCIENTOMETRICS, V120, P217, DOI 10.1007/s11192-019-03112-0
Sampogna G, 2017, EUR PSYCHIAT, V41, pS89, DOI 10.1016/j.eurpsy.2017.01.279
Sarlan A, 2014, I C INF TECH MULTIM, P212, DOI 10.1109/ICIMU.2014.7066632
Sharma M, 2018, BMC HEALTH SERV RES, V18, DOI 10.1186/s12913-018-3043-8
Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833
Thelwall M., 2013, Cybermetrics, V17
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662
Thompson P, 2017, LANG RESOUR EVAL, V51, P409, DOI 10.1007/s10579-016-9344-9
Wakeling S, 2020, J INF SCI, V46, P82, DOI 10.1177/0165551518819965
Wang XL, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-S8-S11
Wouters P, 2019, SPRINGER HBK, P687, DOI 10.1007/978-3-030-02511-3_26
Zahedi Z, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197326
Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0
NR 61
TC 18
Z9 18
U1 7
U2 77
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PD DEC
PY 2021
VL 47
IS 6
BP 712
EP 726
AR 0165551520930917
DI 10.1177/0165551520930917
EA JUN 2020
PG 15
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA WW0WF
UT WOS:000550209800001
OA Green Accepted
DA 2024-09-05
ER
PT C
AU Guo, MR
AF Guo Meirong
BE Su, Y
Hakim, L
TI Research on Journal Evaluation Based on Principal Component Analysis
SO PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON COOPERATION AND
PROMOTION OF INFORMATION RESOURCES IN SCIENCE AND TECHNOLOGY(COINFO 10)
LA English
DT Proceedings Paper
CT 5th International Conference on Cooperation and Promotion of Information
Resources in Science and Technology
CY NOV 27-29, 2010
CL Beijing, PEOPLES R CHINA
DE principal component analysis; journal evaluation; weight; SPSS
AB Based on the Journal Citation measurement Index and data provided by the expand Chinese Journal Citation Reports 2009, using principal component analysis to reduce the number of related indicators into a few weak correlation indicators, solved the problem of distortion index weights. Put these composite indicators in accordance with the linear combination of weights, and ultimately evaluate the scientific and technical journals.
C1 Inst Sci & Tech Informat China, Beijing 100038, Peoples R China.
RP Guo, MR (corresponding author), Inst Sci & Tech Informat China, Beijing 100038, Peoples R China.
EM meirong1750@126.com
CR Chen Han Chung, 2004, CHINESE J SCI TECHNI, P658
GUAN J, 2004, J MED INTELLIGENCE, P13
[贺颖 HE Ying], 2007, [中国软科学, China Soft Science], P107
*I SCI TECHN INF C, CHIN SCI TECHN CIT R
Li Xiujie, 2006, J LIB SCI JIANGXI, P48
Lin Haiming, 2005, STAT RES, P65
LOU WG, 2010, STAT ED, P57
Pang Jingan, 2000, CHINESE J SCI TECHNI, P217
Qiu Junping, 2004, NEW TECHNOLOGY LIB I, P23
Su X, 2008, DONGYUE TRIBUNE, V1, P35
Wang Jiu, 2003, J MATH MED, P266
YU LP, 2009, INFORM STUDIES THEOR, P84
Yue WP, 2004, SCIENTOMETRICS, V60, P317, DOI 10.1023/B:SCIE.0000034377.93437.18
ZHANG H, 2008, ACTA EDITOLOGICA, P87
NR 14
TC 0
Z9 0
U1 0
U2 5
PU SCI RES PUBL, INC-SRP
PI IRVIN
PA 5005 PASEO SEGOVIA, IRVIN, CA 92603-3334 USA
BN 978-1-935068-43-3
PY 2010
BP 711
EP 716
PG 6
WC Computer Science, Interdisciplinary Applications; Engineering,
Multidisciplinary; Multidisciplinary Sciences
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering; Science & Technology - Other Topics
GA BST09
UT WOS:000285731100138
DA 2024-09-05
ER
PT J
AU Ferrell, B
Raskin, SE
Zimmerman, EB
AF Ferrell, Brian
Raskin, Sarah E.
Zimmerman, Emily B.
TI Calibrating a Transformer-Based Model's Confidence on Community-Engaged
Research Studies: Decision Support Evaluation Study
SO JMIR FORMATIVE RESEARCH
LA English
DT Article
DE explainable artificial intelligence; XAI; Bidirectional Encoder
Representations From Transformers; BERT; transformer-based models; text
classification; community engagement; community-engaged research; deep
learning; decision support; trust; confidence
ID DEEP LEARNING-PERFORMANCE; SCIENCE
AB Background: Deep learning offers great benefits in classification tasks such as medical imaging diagnostics or stock trading, especially when compared with human-level performances, and can be a viable option for classifying distinct levels within community-engaged research (CEnR). CEnR is a collaborative approach between academics and community partners with the aim of conducting research that is relevant to community needs while incorporating diverse forms of expertise. In the field of deep learning and artificial intelligence (AI), training multiple models to obtain the highest validation accuracy is common practice; however, it can overfit toward that specific data set and not generalize well to a real-world population, which creates issues of bias and potentially dangerous algorithmic decisions. Consequently, if we plan on automating human decision-making, there is a need for creating techniques and exhaustive evaluative processes for these powerful unexplainable models to ensure that we do not incorporate and blindly trust poor AI models to make real-world decisions.Objective: We aimed to conduct an evaluation study to see whether our most accurate transformer-based models derived from previous studies could emulate our own classification spectrum for tracking CEnR studies as well as whether the use of calibrated confidence scores was meaningful.Methods: We compared the results from 3 domain experts, who classified a sample of 45 studies derived from our university's institutional review board database, with those from 3 previously trained transformer-based models, as well as investigated whether calibrated confidence scores can be a viable technique for using AI in a support role for complex decision-making systems.Results: Our findings reveal that certain models exhibit an overestimation of their performance through high confidence scores, despite not achieving the highest validation accuracy.Conclusions: Future studies should be conducted with larger sample sizes to generalize the results more effectively. Although our study addresses the concerns of bias and overfitting in deep learning models, there is a need to further explore methods that allow domain experts to trust our models more. The use of a calibrated confidence score can be a misleading metric when determining our AI model's level of competency.(JMIR Form Res 2023;7:e41516) doi: 10.2196/41516
C1 [Ferrell, Brian] Virginia Commonwealth Univ, Richmond, VA USA.
[Raskin, Sarah E.] Virginia Commonwealth Univ, L Douglas Wilder Sch Govt & Publ Affairs, Richmond, VA USA.
[Zimmerman, Emily B.] Virginia Commonwealth Univ, Ctr Soc & Hlth, Richmond, VA USA.
[Ferrell, Brian] Virginia Commonwealth Univ, 907 Floyd Ave, Richmond, VA 23284 USA.
C3 Virginia Commonwealth University; Virginia Commonwealth University;
Virginia Commonwealth University; Virginia Commonwealth University
RP Ferrell, B (corresponding author), Virginia Commonwealth Univ, 907 Floyd Ave, Richmond, VA 23284 USA.
EM ferrellbj@vcu.edu
RI Raskin, Sarah/AAC-2435-2022
OI Raskin, Sarah/0000-0002-1652-6678; Zimmerman, Emily/0000-0003-2678-6657;
Ferrell, Brian/0000-0003-2301-4926
FU National Institutes of Health (National Center for Advancing
Translational Sciences Clinical and Translational Science Awards
Program) [UL1TR002649]; Wright Center for Clinical and Translational
Research at Virginia Commonwealth University
FX Acknowledgments The National Institutes of Health (National Center for
Advancing Translational Sciences Clinical and Translational Science
Awards Program UL1TR002649) and the Wright Center for Clinical and
Translational Research at Virginia Commonwealth University have
supported our work.
CR Alsentzer E, 2019, P 2 CLIN NATURAL LAN, P72, DOI 10.18653/v1/W19-1909
[Anonymous], CLASS COMM ENG RES T
Bahrammirzaee A, 2010, NEURAL COMPUT APPL, V19, P1165, DOI 10.1007/s00521-010-0362-z
Bansal Gagan, 2021, CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, DOI 10.1145/3411764.3445717
Blohm M, 2021, ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, P1131, DOI 10.5220/0010331411311136
Burlina P, 2017, COMPUT BIOL MED, V82, P80, DOI 10.1016/j.compbiomed.2017.01.018
Chromik M, 2021, IUI '21 - 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P307, DOI 10.1145/3397481.3450644
Conneau Alexis, 2019, Unsupervised Cross-lingual Representation Learning at Scale
Desai S, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P295
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Dhanorkar S, 2021, PROCEEDINGS OF THE 2021 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE (DIS 2021), P1591, DOI 10.1145/3461778.3462131
Dodge S, 2017, 2017 26TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN 2017)
Eder MM, 2018, PROG COMM HLTH PARTN, V12, P145, DOI 10.1353/cpr.2018.0034
Enos F, 2006, P INT 2006 2006 INT, DOI [10.21437/interspeech.2006-278, DOI 10.21437/INTERSPEECH.2006-278]
Ferrell BJ, 2023, JMIR FORM RES, V7, DOI 10.2196/41137
Ferrell BJ, 2022, JMIR FORM RES, V6, DOI 10.2196/32460
Fleming N, 2018, NATURE, V557, pS55, DOI 10.1038/d41586-018-05267-x
Geirhos R., 2018, INT C LEARN REPR
Grace K, 2018, J ARTIF INTELL RES, V62, P729, DOI 10.1613/jair.1.11222
Guo CA, 2017, PR MACH LEARN RES, V70
Hayes GR, 2011, ACM T COMPUT-HUM INT, V18, DOI 10.1145/1993060.1993065
Hutson N., 2019, Journal of Community Engagement and Higher Education, V11, P3
Köbis N, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106553
Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682
Li BH, 2017, FRONT INFORM TECH EL, V18, P86, DOI 10.1631/FITEE.1601885
Limwattanayingyong J, 2020, J DIABETES RES, V2020, DOI 10.1155/2020/8839376
Liu XX, 2019, LANCET DIGIT HEALTH, V1, pE271, DOI 10.1016/S2589-7500(19)30123-2
Liu YH, 2019, Arxiv, DOI arXiv:1907.11692
Mucha H, 2021, EXTENDED ABSTRACTS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'21), DOI 10.1145/3411763.3451759
Naeini MP, 2016, IEEE DATA MINING, P360, DOI [10.1109/ICDM.2016.0047, 10.1109/ICDM.2016.96]
Nangia Nikita., 2019, Proceedings of the 57th annual meeting of the association for computational linguistics, P4566, DOI [DOI 10.18653/V1/P19-1449, 10.18653/v1/p19-1449]
Neumann L, 2018, P NIPS WORKSHOP MACH
Nixon J, 2020, Arxiv, DOI arXiv:1904.01685
Project description, PROJ DESCR NETC
Rajapakse T., 2020, THILINARAJAPAKSE SIM
Ross A, 2017, ARXIV, DOI [10.24963/ijcai.2017/371, DOI 10.24963/IJCAI.2017/371]
Rozenblit L, 2002, COGNITIVE SCI, V26, P521, DOI 10.1207/s15516709cog2605_1
Tschandl P, 2019, LANCET ONCOL, V20, P938, DOI 10.1016/S1470-2045(19)30333-X
Valerie LH, 2013, IRB APPROVED COMMUNI
ZADROZNY B, 2001, P 18 INT C MACH LEAR, P609, DOI DOI 10.5555/645530.655658
Zimmerman EB, 2021, J CLIN TRANSL SCI, V6, DOI 10.1017/cts.2021.877
NR 41
TC 1
Z9 1
U1 0
U2 1
PU JMIR PUBLICATIONS, INC
PI TORONTO
PA 130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA
EI 2561-326X
J9 JMIR FORM RES
JI JMIR Form. Res.
PY 2023
VL 7
DI 10.2196/41516
PG 13
WC Health Care Sciences & Services; Medical Informatics
WE Emerging Sources Citation Index (ESCI)
SC Health Care Sciences & Services; Medical Informatics
GA H8MD9
UT WOS:000998428700031
PM 36939830
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Elgendi, M
AF Elgendi, Mohamed
TI Characteristics of a Highly Cited Article: A Machine Learning
Perspective
SO IEEE ACCESS
LA English
DT Article
DE Natural language processing; text mining; artificial intelligence;
scientific writing; citation analysis; bibliometrics
ID TITLES; NUMBER
AB Machine learning (ML) is a fast-growing topic that enables the extraction of patterns from varying types of datasets, ranging from medical data to financial data. However, the application of the ML methodology to understand the key characteristics of highly cited research articles has not been thoroughly investigated, despite the potential practical guidance that ML can provide for researchers during the publication process. To address this research gap, an ML algorithm known as principal component (PC) analysis is used to detect patterns in highly and lowly cited papers. In this paper, eight features (number of citations, number of views, number of characters with no spaces, number of figures, number of tables, number of equations, number of authors, and title length) are extracted from highly and lowly cited papers, leading to eight PCs (PC1-PC8). PC1 shows that the numbers of citations are positively correlated with the character count and negatively correlated with the title length. PC2 shows that the number of tables is positively correlated with the title length. PC3 shows that the number of figures is positively correlated with the number of tables. PC4-PC8 rank the importance of individual features in the descending order: number of equations, number of characters with no spaces, number of figures, number of views, and then the number of authors. The results of the ML analysis provide interesting and valuable tips for researchers, students, and all academic and non-academic writers who are seeking to improve their citation rates.
C1 [Elgendi, Mohamed] Univ British Columbia, Fac Med, Vancouver, BC V6T 1Z3, Canada.
[Elgendi, Mohamed] BC Childrens & Womens Hosp, Vancouver, BC V6H 3N1, Canada.
[Elgendi, Mohamed] Univ British Columbia, Sch Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada.
C3 University of British Columbia; University of British Columbia;
University of British Columbia
RP Elgendi, M (corresponding author), Univ British Columbia, Fac Med, Vancouver, BC V6T 1Z3, Canada.; Elgendi, M (corresponding author), BC Childrens & Womens Hosp, Vancouver, BC V6H 3N1, Canada.; Elgendi, M (corresponding author), Univ British Columbia, Sch Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada.
EM moe.elgendi@gmail.com
RI Elgendi, Mohamed/I-8596-2016
OI Elgendi, Mohamed/0000-0003-1831-0202
FU Mining for Miracles, BC Children's Hospital Foundation, Vancouver,
British Columbia, Canada
FX The author is grateful for the support from Mining for Miracles, BC
Children's Hospital Foundation, Vancouver, British Columbia, Canada.
CR Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645
Chen H., IEEE T ENG MANAG
Clements JC, 2017, FACETS, V2, DOI 10.1139/facets-2016-0032
Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008
Habibzadeh F, 2010, CROAT MED J, V51, P165, DOI 10.3325/cmj.2010.51.165
Ioannidis JPA, 2018, NATURE, V561, P167, DOI 10.1038/d41586-018-06185-8
Jacques Thomas S, 2010, JRSM Short Rep, V1, P2, DOI 10.1258/shorts.2009.100020
Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z
Kane T.S., 2003, Oxford Essential Guide to Writing
LAWANI SM, 1986, SCIENTOMETRICS, V9, P13, DOI 10.1007/BF02016604
Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266
MILLER GA, 1956, PSYCHOL REV, V63, P81, DOI 10.1037/h0043158
Nadri H, 2017, J MED SYST, V41, DOI 10.1007/s10916-017-0794-4
Patience GS, 2015, CAN J CHEM ENG, V93, P1693, DOI 10.1002/cjce.22261
Rostami F, 2014, SCIENTOMETRICS, V98, P2007, DOI 10.1007/s11192-013-1118-1
Soler V, 2007, ENGL SPECIF PURP, V26, P90, DOI 10.1016/j.esp.2006.08.001
Subotic S, 2014, J INF SCI, V40, P115, DOI 10.1177/0165551513511393
Van Noorden R, 2014, NATURE, V514, P550, DOI 10.1038/514550a
Wang Y., 2007, SYSTEM, V35, P388, DOI DOI 10.1016/J.SYSTEM.2007.01.005
Zhang Y, 2017, KNOWL-BASED SYST, V133, P255, DOI 10.1016/j.knosys.2017.07.011
NR 20
TC 17
Z9 18
U1 1
U2 35
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2019
VL 7
BP 87977
EP 87986
DI 10.1109/ACCESS.2019.2925965
PG 10
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA IK7YT
UT WOS:000476810500030
OA gold
DA 2024-09-05
ER
PT J
AU Baba, T
Baba, K
Ikeda, D
AF Baba, Takahiro
Baba, Kensuke
Ikeda, Daisuke
TI Citation Count Prediction using Abstracts
SO JOURNAL OF WEB ENGINEERING
LA English
DT Article
DE Citation count prediction; Document classification; Text analysis;
Machine learning
AB Researchers are expected to find previous literature that is related to their research and potentially has a scientific impact from among a large number of publications. This paper addresses the problem of predicting the citation count of each research paper, that is, the number of citations from other papers to that paper. Previous literature related to the problem claims that the textual data of papers do not deeply affect the prediction compared with data about the authors and venues of publication. In contrast, the authors of this paper detected the citation counts of papers using only the paper abstracts. Additionally, they investigated the effect of technical terms used in the abstracts on the detection. They classified abstracts of papers with high and low citation counts and applied the classification to the abstracts modified by hiding the technical terms used in them. The results of their experiments indicate that the high and low of citation counts of research papers can be detected using their abstracts, and the effective features used in the prediction are related to the trend of research topics.
C1 [Baba, Takahiro] Kyushu Univ, Fukuoka, Fukuoka 8190395, Japan.
[Ikeda, Daisuke] Kyushu Univ, Dept Informat, Fukuoka, Fukuoka 8190395, Japan.
[Ikeda, Daisuke] Kyushu Univ, Comp Ctr, Fukuoka, Fukuoka 8190395, Japan.
[Baba, Kensuke] Fujitsu Labs, Artificial Intelligence Lab, Kawasaki, Kanagawa 2118588, Japan.
C3 Kyushu University; Kyushu University; Kyushu University; Fujitsu Ltd;
Fujitsu Laboratories Ltd
RP Baba, T (corresponding author), Kyushu Univ, Fukuoka, Fukuoka 8190395, Japan.
EM baba.takahiro.414@m.kyushu-u.ac.jp
RI Baba, Kensuke/J-8426-2017
OI Baba, Kensuke/0000-0002-8118-0175
FU JSPS KAKENHI [19K12133]; Grants-in-Aid for Scientific Research
[19K12133] Funding Source: KAKEN
FX We thank Kimberly Moravec, PhD, from Edanz Group (www.edanzedi
ting.com/ac) for editing a draft of this manuscript. This work was
supported by JSPS KAKENHI Grant Number 19K12133.
CR [Anonymous], 2011, Proceedings of the 2011 conference on empirical methods in natural language processing, DOI 10.18653/v1/d16-1202
Baba T, 2018, LECT NOTES COMPUT SC, V11177, P448, DOI 10.1007/978-3-030-01851-1_43
Baba T, 2018, LECT NOTES COMPUT SC, V10960, P366, DOI 10.1007/978-3-319-95162-1_25
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
CALLAHAN PL, 1985, P NATL ACAD SCI USA, V82, P732, DOI 10.1073/pnas.82.3.732
Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Li CT, 2015, LECT NOTES ARTIF INT, V9077, P659, DOI 10.1007/978-3-319-18038-0_51
Schutze H., 2008, Introduction to information retrieval, V39
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
NR 12
TC 4
Z9 4
U1 2
U2 24
PU RIVER PUBLISHERS
PI GISTRUP
PA ALSBJERGVEJ 10, GISTRUP, 9260, DENMARK
SN 1540-9589
EI 1544-5976
J9 J WEB ENG
JI J. Web Eng.
PD JAN
PY 2019
VL 18
IS 1-3
BP 207
EP 228
DI 10.13052/jwe1540-9589.18136
PG 22
WC Computer Science, Software Engineering; Computer Science, Theory &
Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA IF0EP
UT WOS:000472749400006
OA Bronze
DA 2024-09-05
ER
PT J
AU Kim, H
Jang, H
AF Kim, Huijae
Jang, Hoon
TI Predicting research projects' output using machine learning for tailored
projects management
SO ASIAN JOURNAL OF TECHNOLOGY INNOVATION
LA English
DT Article
DE Research and development; research project output; prediction;
classification; artificial intelligence
ID RESEARCH PRODUCTIVITY; DELPHI METHOD; SELECTION; IMPACT; METHODOLOGY;
PERFORMANCE
AB With the increasing interest and investment in research and development (R & D), the need for more efficient research project management has grown. Accordingly, we built prediction models to classify research projects that were expected to show excellent research output. Specifically, we applied five machine learning techniques to build prediction models. In an empirical analysis of data on research projects funded by South Korea over the last five years (2014-2018), we found that the automated machine learning model (autoML), in which the machine builds the most suitable learning model, shows relatively greater and more robust performance than models based on other techniques. We also established that research funding and project type played the most important roles in predicting excellent research projects. This study is significant because it shows the need for a paradigm shift in building an evidence-based project management system by verifying the utility and applicability of a data-driven approach in R & D project management.
C1 [Kim, Huijae] Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, Daejeon, South Korea.
[Jang, Hoon] Korea Univ, Coll Global Business, Sejong Campus, Sejong, South Korea.
[Jang, Hoon] Korea Univ, Coll Global Business, Sejong Campus,2511 Sejong Ro, Sejong 30019, South Korea.
C3 Korea Advanced Institute of Science & Technology (KAIST); Korea
University; Korea University
RP Jang, H (corresponding author), Korea Univ, Coll Global Business, Sejong Campus,2511 Sejong Ro, Sejong 30019, South Korea.
EM hoonjang@korea.ac.kr
FU National Research Foundation of Korea (NRF) - Korean government
[2019R1F1A1063365]
FX This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korean government [grant number
2019R1F1A1063365].
CR Abdel-Basset M, 2018, J AMB INTEL HUM COMP, V9, P1427, DOI 10.1007/s12652-017-0548-7
Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
Amara N, 2015, SCIENTOMETRICS, V103, P489, DOI 10.1007/s11192-015-1537-2
Arik SO, 2021, AAAI CONF ARTIF INTE, V35, P6679
Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364
BAKER NR, 1964, IEEE T ENG MANAGE, V11, P124, DOI 10.1109/TEM.1964.6446420
Chen ZH, 2015, COMMUN ASSOC INF SYS, V36, P357
허정은, 2008, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V11, P376
Chunjia Han, 2017, Journal of High Technology Management Research, V28, P93, DOI 10.1016/j.hitech.2017.04.007
Costantino F, 2015, INT J PROJ MANAG, V33, P1744, DOI 10.1016/j.ijproman.2015.07.003
Dundar H, 1998, RES HIGH EDUC, V39, P607, DOI 10.1023/A:1018705823763
Edquist C, 1998, INSTITUTIONS AND ECONOMIC CHANGE, P131
Eilat H, 2008, OMEGA-INT J MANAGE S, V36, P895, DOI 10.1016/j.omega.2006.05.002
Fox Kevin J., 2015, KDI Journal of Economic Policy, V37, P73
Galbraith C.S., 2007, J HIGH TECHNOLOGY MA, V17, P125, DOI [DOI 10.1016/J.HITECH.2006.11.002, 10.1016/j.hitech.2006.11.002]
Ghapanchi AH, 2012, INT J PROJ MANAG, V30, P791, DOI 10.1016/j.ijproman.2012.01.012
Hall B.H., 2011, Innovation and Productivity
Hsu YL, 2010, EXPERT SYST APPL, V37, P419, DOI 10.1016/j.eswa.2009.05.068
Hwang S., 2019, COMP US CHINA JAPAN
Jacob BA, 2011, J PUBLIC ECON, V95, P1168, DOI 10.1016/j.jpubeco.2011.05.005
Jang H, 2019, DECIS SUPPORT SYST, V121, P1, DOI 10.1016/j.dss.2019.03.010
Jang Pilseong, 2020, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V23, P20, DOI 10.35978/jktis.2020.2.23.1.20
Jin XH, 2011, INT J PROJ MANAG, V29, P591, DOI 10.1016/j.ijproman.2010.07.011
Jung U, 2010, DECIS SUPPORT SYST, V49, P335, DOI 10.1016/j.dss.2010.04.005
Karasakal E, 2017, OMEGA-INT J MANAGE S, V73, P79, DOI 10.1016/j.omega.2016.12.006
Khoshnevis P, 2018, SOCIO-ECON PLAN SCI, V61, P16, DOI 10.1016/j.seps.2017.01.005
LeDell Erin, 2020, Proceedings of the automl workshop at icml, V2020
Lee H., 2020, 2019 PERFORMANCE ANA
Liu C., 2011, SCI RES ESSAYS, V6, P3973, DOI [https://doi.org/10.5897/SRE10.838, DOI 10.5897/SRE10.838]
Liu PD, 2019, INT J FUZZY SYST, V21, P2168, DOI 10.1007/s40815-019-00687-x
NDOUR B, 1992, AGROFOREST SYST, V19, P119, DOI 10.1007/BF00138502
Pathak SK, 2022, SUSTAIN ENERGY TECHN, V50, DOI 10.1016/j.seta.2021.101818
Pudovkin AI, 2004, P ASIST ANNU, V41, P507, DOI 10.1002/meet.1450410159
Smarandache F, 2020, NEUTROSOPHIC SETS SY, V34, P204
Song Gwangsuk, 2015, [Journal of Korean Society for Quality Management, 품질경영학회지], V43, P85, DOI 10.7469/JKSQM.2015.43.1.085
SOUDER WE, 1972, MANAGE SCI B-APPL, V18, pB526
Stephan PE., 1992, Striking the mother lode in science: The importance of age, place, and time
Talias MA, 2007, EUR J OPER RES, V177, P1105, DOI 10.1016/j.ejor.2006.01.011
Tan B, 2010, SYST DYNAM REV, V26, P1, DOI 10.1002/sdr.433
Um I., 2020, EFFICIENCY EVALUATIO
Walworth T., 2013, P IEEE INT SYST C SY, P123
Wang YR, 2012, INT J PROJ MANAG, V30, P470, DOI 10.1016/j.ijproman.2011.09.002
Wang YR, 2010, AUTOMAT CONSTR, V19, P341, DOI 10.1016/j.autcon.2009.12.007
Zhang WQ, 2021, ENVIRON SCI POLLUT R, V28, P6561, DOI 10.1007/s11356-020-10919-5
Zhou JH, 2020, TECHNOVATION, V92-93, DOI 10.1016/j.technovation.2018.11.002
NR 45
TC 0
Z9 0
U1 2
U2 14
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1976-1597
EI 2158-6721
J9 ASIAN J TECHNOL INNO
JI Asian J. Technol. Innov.
PD MAY 3
PY 2024
VL 32
IS 2
BP 346
EP 363
DI 10.1080/19761597.2023.2243611
EA AUG 2023
PG 18
WC Business; Economics
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA YS4U6
UT WOS:001043184500001
DA 2024-09-05
ER
PT J
AU Zhang, BJ
Fan, T
AF Zhang, Bijun
Fan, Ting
TI Knowledge structure and emerging trends in the application of deep
learning in genetics research: A bibliometric analysis [2000-2021]
SO FRONTIERS IN GENETICS
LA English
DT Article
DE deep learning; machine learning; genetics; bibliometric; knowledge graph
ID MODELS
AB Introduction: Deep learning technology has been widely used in genetic research because of its characteristics of computability, statistical analysis, and predictability. Herein, we aimed to summarize standardized knowledge and potentially innovative approaches for deep learning applications of genetics by evaluating publications to encourage more research.
Methods: The Science Citation Index Expanded (TM) (SCIE) database was searched for deep learning applications for genomics-related publications. Original articles and reviews were considered. In this study, we derived a clustered network from 69,806 references that were cited by the 1,754 related manuscripts identified. We used CiteSpace and VOSviewer to identify countries, institutions, journals, co-cited references, keywords, subject evolution, path, current characteristics, and emerging topics.
Results: We assessed the rapidly increasing publications concerned about deep learning applications of genomics approaches and identified 1,754 articles that published reports focusing on this subject. Among these, a total of 101 countries and 2,487 institutes contributed publications, The United States of America had the most publications (728/1754) and the highest h-index, and the US has been in close collaborations with China and Germany. The reference clusters of SCI articles were clustered into seven categories: deep learning, logic regression, variant prioritization, random forests, scRNA-seq (single-cell RNA-seq), genomic regulation, and recombination. The keywords representing the research frontiers by year were prediction (2016-2021), sequence (2017-2021), mutation (2017-2021), and cancer (2019-2021).
Conclusion: Here, we summarized the current literature related to the status of deep learning for genetics applications and analyzed the current research characteristics and future trajectories in this field. This work aims to provide resources for possible further intensive exploration and encourages more researchers to overcome the research of deep learning applications in genetics.
C1 [Zhang, Bijun] China Med Univ, Dept Clin Genet, Shengjing Hosp, Shenyang, Peoples R China.
[Fan, Ting] China Med Univ, Sch Intelligent Med, Dept Comp, Shenyang, Peoples R China.
C3 China Medical University; China Medical University
RP Fan, T (corresponding author), China Med Univ, Sch Intelligent Med, Dept Comp, Shenyang, Peoples R China.
EM tfan@cmu.edu.cn
FU Shengjing Hospital [M0347]; Research on the application of genetic big
data analysis in the prevention and control of newborn birth defects
[2900021013-CMU-013]
FX This study was supported by the 345 Talent Project of Shengjing Hospital
(M0347) and " Research on the application of genetic big data analysis
in the prevention and control of newborn birth defects"
(2900021013-CMU-013).
CR Adrian AB, 2016, GENOME BIOL EVOL, V8, P2597, DOI 10.1093/gbe/evw181
Adrion JR, 2020, MOL BIOL EVOL, V37, P1790, DOI 10.1093/molbev/msaa038
Arisdakessian C, 2019, GENOME BIOL, V20, DOI 10.1186/s13059-019-1837-6
Atak ZK, 2021, GENOME RES, V31, DOI 10.1101/gr.260851.120
Berrar D, 2021, BRIEF BIOINFORM, V22, P1513, DOI 10.1093/bib/bbab087
Bosio M, 2019, HUM MUTAT, V40, P865, DOI 10.1002/humu.23772
Braberg H, 2022, NAT REV GENET, V23, P342, DOI 10.1038/s41576-021-00441-w
Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen Z, 2018, GENOM PROTEOM BIOINF, V16, P451, DOI 10.1016/j.gpb.2018.08.004
Chereda H, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00845-7
Colbran LL, 2021, GENOME BIOL EVOL, V13, DOI 10.1093/gbe/evab237
Cui FF, 2021, BRIEF FUNCT GENOMICS, V20, P61, DOI 10.1093/bfgp/elaa030
Dasgupta A, 2011, GENET EPIDEMIOL, V35, pS5, DOI 10.1002/gepi.20642
Ding YL, 2021, BRIEF FUNCT GENOMICS, V20, P273, DOI 10.1093/bfgp/elab002
Esteva A, 2019, NAT MED, V25, P24, DOI 10.1038/s41591-018-0316-z
Eyre-Walker A, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001675
Groschel MI, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00953-4
He Y, 2020, GENOME BIOL, V21, DOI 10.1186/s13059-020-02083-3
Huang YF, 2020, PLOS GENET, V16, DOI 10.1371/journal.pgen.1008922
Huang Z, 2020, BMC MED GENOMICS, V13, DOI 10.1186/s12920-020-0686-1
Johansen N, 2019, GENOME BIOL, V20, DOI 10.1186/s13059-019-1766-4
Khairi SSM, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10010010
Khan F, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.539227
Liu DJ, 2019, MOL GENET GENOM MED, V7, DOI 10.1002/mgg3.872
Luo P, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00013
Majumdar A, 2021, GENES-BASEL, V12, DOI 10.3390/genes12060844
Mallik S, 2020, GENES-BASEL, V11, DOI 10.3390/genes11080931
Nicholls HL, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.00350
Nicodemus KK, 2010, HUM GENET, V127, P441, DOI 10.1007/s00439-009-0782-y
Poirion OB, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00930-x
Sahraeian SME, 2022, GENOME BIOL, V23, DOI 10.1186/s13059-021-02592-9
Synnestvedt Marie B, 2005, AMIA Annu Symp Proc, P724
Tang XF, 2021, NEURAL COMPUT APPL, V33, P15901, DOI 10.1007/s00521-021-06211-3
Torroja C, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00978
Tran KA, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00968-x
Tripathi R, 2016, NETW MODEL ANAL HLTH, V5, DOI 10.1007/s13721-016-0129-2
VAERNET K, 1972, CONFIN NEUROL, V34, P176, DOI 10.1159/000103055
Vellido A, 2020, NEURAL COMPUT APPL, V32, P18069, DOI 10.1007/s00521-019-04051-w
Wang L, 2022, EUR J RADIOL, V146, DOI 10.1016/j.ejrad.2021.110069
Woo G, 2020, BIOINFORMATICS, V36, P813, DOI 10.1093/bioinformatics/btz645
Wu S, 2020, J AM MED INFORM ASSN, V27, P457, DOI 10.1093/jamia/ocz200
Xiao ML, 2019, GENET EPIDEMIOL, V43, P330, DOI 10.1002/gepi.22182
Xie R, 2017, BMC GENOMICS, V18, DOI 10.1186/s12864-017-4226-0
Yang J, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.707802
Zhang XL, 2021, GENET MED, V23, P69, DOI 10.1038/s41436-020-00972-3
Zhang YL, 2021, GENOMICS, V113, P3774, DOI 10.1016/j.ygeno.2021.09.009
Zhao LL, 2018, CURR GENE THER, V18, P268, DOI 10.2174/1566523218666180913110949
Zou J, 2019, NAT GENET, V51, P12, DOI 10.1038/s41588-018-0295-5
NR 49
TC 2
Z9 2
U1 3
U2 17
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 1664-8021
J9 FRONT GENET
JI Front. Genet.
PD AUG 23
PY 2022
VL 13
AR 951939
DI 10.3389/fgene.2022.951939
PG 13
WC Genetics & Heredity
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Genetics & Heredity
GA 4V4IP
UT WOS:000859442400001
PM 36081985
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Rossi, D
van Rensburg, H
Harreveld, RE
Beer, C
Clark, D
Danaher, PA
AF Rossi, Dolene
van Rensburg, Henriette
Harreveld, R. E. (Bobby)
Beer, Colin
Clark, Damien
Danaher, P. A.
TI Exploring a cross-institutional research collaboration and innovation:
Deploying social software and Web 2.0 technologies to investigate online
learning designs and interactions in two Australian universities
SO JOURNAL OF LEARNING DESIGN
LA English
DT Article
DE Cross-institutional collaboration; interactions; online learning design;
research; social software; Web 2.0 technologies
AB One significant manifestation of the proposition of a "classroom without walls" is the online learning environments evident in most contemporary Australian universities. A key element of the effectiveness of those environments is the quality of the interactions that they foster. Planning and implementing rigorous research into that quality is crucial if these particular "classrooms without walls" are to deliver enhanced and sustained learning outcomes. This article explores selected aspects of a cross-institutional collaboration linking two Australian universities researching the quality of learning interactions in their online courses. In particular, the authors analyse the utility of the social software and Web 2.0 technologies that have been deployed to facilitate their collaborative research. Despite the constraints and tensions attendant on within-and cross-organisational learning, teaching and research activities, the article records evidence of a developing innovation in investigating both the online learning designs and the research project developed to evaluate the effectiveness and impact of those designs.
C1 [Rossi, Dolene] CQUniversity, Sch Nursing & Midwifery, Melbourne, Vic, Australia.
[van Rensburg, Henriette; Danaher, P. A.] Univ So Queensland, Fac Educ, Toowoomba, Qld 4350, Australia.
[Harreveld, R. E. (Bobby)] CQUniversity, Sch Educ, Melbourne, Vic, Australia.
[Beer, Colin; Clark, Damien] CQUniversity, Off Learning & Teaching, Melbourne, Vic, Australia.
C3 Central Queensland University; University of Southern Queensland;
Central Queensland University; Central Queensland University
RP Rossi, D (corresponding author), CQUniversity, Sch Nursing & Midwifery, Melbourne, Vic, Australia.
CR Anderson T, 2008, THEORY AND PRACTICE OF ONLINE LEARNING, 2ND EDITION, P1
[Anonymous], 2009, WELSH J ED
Arnold N, 2009, J INTERACT ONLINE LE, V8, P121
Atkinson T, 2009, TECHTRENDS, V53, P30
Baxter P, 2008, QUAL REP, V13, P544
Beer C, 2010, THESIS
Beer C., 2009, PAPER PRESENTED AT T
Beuchot A., 2005, DISTANCE EDUC, V26, P67, DOI [10.1080/01587910500081285, DOI 10.1080/01587910500081285]
Bexley E., 2011, The Australian academic profession in transition
Cardini A, 2006, J EDUC POLICY, V21, P393, DOI 10.1080/02680930600731773
Casey G, 2015, J LEARN DES, V8, P38
Cavanaugh CS, 2009, INT REV RES OPEN DIS, V10
D'Amour Danielle, 2005, J Interprof Care, V19 Suppl 1, P116, DOI 10.1080/13561820500082529
Denning P, 2004, UBIQUITY, V5, P1
Duff A, 2010, J LEARN DES, V4, P32, DOI 10.5204/jld.v4i1.67
Eddy P.L., 2010, ASHE HIGHER ED REPOR, V36, P1
Hillman D.C. A., 1994, AM J DISTANCE EDUC, V8, P30, DOI 10.1080/08923649409526853
Kehrwald B. A., 2007, THESIS
Kurasawa F., 2007, TOPIA CANADIAN J CUL, V18
Lai YC, 2011, INTERNET HIGH EDUC, V14, P15, DOI 10.1016/j.iheduc.2010.06.001
Lloyd M, 2011, J LEARN DES, V4, P39
Means B., 2009, Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies, DOI DOI 10.30935/CEDTECH/8708
Oliver R, 2007, J LEARN DES, V2, P1
Patton M., 2002, QUALITATIVE RES EVAL, DOI DOI 10.1002/NUR.4770140111
Raffaghelli J. E., 2010, P 7 INT C NETW LEARN, P327
Reushle S., 2012, J LEARNING DESIGN, V3, P11, DOI [10.5204/jld.v3i1.45, DOI 10.5204/JLD.V3I1.45]
Rosenberg JP, 2007, J ADV NURS, V60, P447, DOI 10.1111/j.1365-2648.2007.04385.x
Rossi D. M., 2010, THESIS
Rossi D. M., 2013, DEHUB REPORT SERIES
Rossi D, 2012, J LEARN DES, V5, P1, DOI 10.5204/jld.v5i2.108
Saiki D, 2010, J LEARN DES, V4, P52, DOI 10.5204/jld.v4i1.69
Schuetze U, 2010, J LEARN DES, V4, P24, DOI 10.5204/jld.v4i1.66
SU B, 2005, J INTERACTIVE ONLINE, V4
Turner M., 2007, J LEARNING DESIGN, V2, P70, DOI [10.5204/jld.v2i2.42, DOI 10.5204/JLD.V2I2.42]
Walling A, 2013, FAM MED, V45, P7
Yin R. K., 2003, CASE STUDY RES DESIG
NR 36
TC 1
Z9 1
U1 0
U2 4
PU QUEENSLAND UNIV TECHNOLOGY
PI BRISBANE
PA GPO BOX 2434, BRISBANE, QLD 4001, AUSTRALIA
SN 1832-8342
J9 J LEARN DES
JI J. Learn. Des.
PY 2015
VL 8
IS 3
BP 81
EP 91
PG 11
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA CZ4IC
UT WOS:000367065700013
DA 2024-09-05
ER
PT J
AU Zheng, ET
Fang, ZC
Fu, HZ
AF Zheng, Er -Te
Fang, Zhichao
Fu, Hui-Zhen
TI Is gold open access helpful for academic purification? A causal
inference analysis based on retracted articles in biochemistry
SO INFORMATION PROCESSING & MANAGEMENT
LA English
DT Article
DE Open access; Academic misconduct; Scientometrics; Retraction time lag;
Post-retraction citation; Causal inference
ID PROPENSITY SCORE; JOURNALS; SCIENCE; REPRODUCIBILITY; PUBLICATIONS;
CREDIBILITY; CITATIONS
AB The relationship between transparency and credibility has long been a subject of theoretical and analytical exploration within the realm of social sciences, and it has recently attracted increasing attention in the context of scientific research. Retraction serves as a pivotal mechanism in addressing concerns about research integrity. This study aims to empirically examining the relationship between open access level and the effectiveness of current mechanism, specifically academic purification centered on retracted articles. In this study, we used matching and Difference-in-Difference (DiD) methods to examine whether gold open access is helpful for academic purification in biochemistry field. We collected gold open access (Gold OA) and non -open access (non-OA) biochemistry retracted articles as the treatment group, and matched them with corresponding unretracted articles as the control group from 2005 to 2021 based on Web of Science and Retraction Watch database. The results showed that compared to non-OA, Gold OA is advantageous in reducing the retraction time of flawed articles, but does not demonstrate a significant advantage in reducing citations after retraction. This indicates that Gold OA may help expedite the detection and retraction of flawed articles, ultimately promoting the practice of responsible research.
C1 [Zheng, Er -Te; Fang, Zhichao] Renmin Univ China, Sch Informat Resource Management, Beijing, Peoples R China.
[Fang, Zhichao] Leiden Univ, Ctr Sci & Technol Studies CWTS, Leiden, Netherlands.
[Fu, Hui-Zhen] Zhejiang Univ, Sch Publ Affairs, Dept Informat Resources Management, Hangzhou, Peoples R China.
C3 Renmin University of China; Leiden University; Leiden University - Excl
LUMC; Zhejiang University
RP Fu, HZ (corresponding author), Zhejiang Univ, Sch Publ Affairs, Dept Informat Resources Management, Hangzhou, Peoples R China.
EM zhengerte@ruc.edu.cn; z.fang@cwts.leidenuniv.nl; fuhuizhen@zju.edu.cn
RI Zheng, Er-Te/JNE-7783-2023
OI Zheng, Er-Te/0000-0001-8759-3643
FU Soft Science Research Program of the Zhejiang Provincial Department of
Science of Technology [2021C35040]
FX Acknowledgments This study is supported by the Soft Science
Research Program of the Zhejiang Provincial Department of Science of
Technology (No. 2021C35040) . We gratefully acknowledge the contribution
of team members who collected the data, Jinyuan Huang, Hong Tao, Shichu
Xu, Yawen Yin, Qin Zhang, Yangliu Cui.
CR Ajiferuke I, 2020, J LIBR INF SCI, V52, P169, DOI 10.1177/0961000618785408
Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
Asai S, 2023, INF DISCOV DELIV, V51, P121, DOI 10.1108/IDD-09-2021-0098
ASHENFELTER O, 1985, REV ECON STAT, V67, P648, DOI 10.2307/1924810
Ayodele FO, 2019, SCI ENG ETHICS, V25, P357, DOI 10.1007/s11948-017-9941-z
Baker M, 2016, NATURE, V533, P452, DOI 10.1038/533452a
Baptista MS, 2019, BRAZ J MED BIOL RES, V52, DOI [10.1590/1414-431X20198935, 10.1590/1414-431x20198935]
Bittmann F, 2022, QUANT SCI STUD, V2, P1246, DOI 10.1162/qss_a_00158
Bjork BC, 2014, J ASSOC INF SCI TECH, V65, P237, DOI 10.1002/asi.22963
Blackwell M, 2009, STATA J, V9, P524, DOI 10.1177/1536867X0900900402
Blanton H., 2009, Transparency should trump trust: Rejoinder to McConnell and Leibold (2009) and Ziegert and Hanges
Bornmann L, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101159
Brainard J, 2018, SCIENCE, V362, P390, DOI 10.1126/science.362.6413.390
Brown SJ, 2022, J MED LIBR ASSOC, V110, P47, DOI 10.5195/jmla.2022.1280
Budd JM, 1998, JAMA-J AM MED ASSOC, V280, P296, DOI 10.1001/jama.280.3.296
Candal-Pedreira C, 2020, BMJ GLOB HEALTH, V5, DOI 10.1136/bmjgh-2020-003719
CARD D, 1994, AM ECON REV, V84, P772
Chan L., 2002, Budapest open access initiative, P48
Chen CM, 2013, J AM SOC INF SCI TEC, V64, P234, DOI 10.1002/asi.22755
Christensen G, 2018, J ECON LIT, V56, P920, DOI 10.1257/jel.20171350
Clarivate, 2023, Descriptions of Open Access Types
Cokol M, 2008, EMBO REP, V9, DOI 10.1038/sj.embor.7401143
COPE Council, 2019, COPE retraction guidelines - English, DOI [10.24318/cope.2019.1.4, DOI 10.24318/COPE.2019.1.4]
Craft S., 2008, The handbook of mass media ethics, P231
Curry AL, 2021, JOURNALISM, V22, P901, DOI 10.1177/1464884919850387
Davis PM, 2011, FASEB J, V25, P2129, DOI 10.1096/fj.11-183988
Delli Carpini MX, 1996, WHAT AM KNOW POLITIC
Dinh L., 2019, P ASS INFORM SCI TEC, V56, P390, DOI DOI 10.1002/PRA2.35
Dong XL, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2023.103410
Dong XL, 2022, J INF SCI, V48, P735, DOI 10.1177/0165551520979868
Enria L, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0239247
Faggion CM, 2018, J DENT, V79, P19, DOI 10.1016/j.jdent.2018.09.002
Fanelli D, 2018, P NATL ACAD SCI USA, V115, P2628, DOI 10.1073/pnas.1708272114
Fang FC, 2012, P NATL ACAD SCI USA, V109, P17028, DOI 10.1073/pnas.1212247109
Fang FC, 2011, INFECT IMMUN, V79, P3855, DOI 10.1128/IAI.05661-11
Felzmann H, 2019, BIG DATA SOC, V6, DOI 10.1177/2053951719860542
Foo JYA, 2011, SCI ENG ETHICS, V17, P459, DOI 10.1007/s11948-010-9212-8
Freese J, 2022, SOC SCI RES, V107, DOI 10.1016/j.ssresearch.2022.102770
Fung A, 2007, FULL DISCLOSURE: THE PERILS AND PROMISE OF TRANSPARENCY, P1, DOI 10.1017/CBO9780511510533
Furman JL, 2012, RES POLICY, V41, P276, DOI 10.1016/j.respol.2011.11.001
Gasparyan AY, 2014, CROAT MED J, V55, P61, DOI 10.3325/cmj.2014.55.61
Godlee F, 2008, BMJ-BRIT MED J, V337, DOI 10.1136/bmj.a1051
Grant S, 2022, PREV SCI, V23, P701, DOI 10.1007/s11121-022-01336-w
Grieneisen ML, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044118
Güngör T, 2021, TURK LIBRARIANSH, V35, P10, DOI 10.24146/tk.784583
Hainmueller J, 2012, POLIT ANAL, V20, P25, DOI 10.1093/pan/mpr025
Hasen R.L., 2020, Election Meltdown: Dirty Tricks, Distrust, and the Threat to American Democracy
Heibi I, 2022, QUANT SCI STUD, V3, P953, DOI 10.1162/qss_a_00222
Iacus SM, 2012, POLIT ANAL, V20, P1, DOI 10.1093/pan/mpr013
Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706
Juan I. L. I., 2014, International Journal of Legal Information, V42, P135
Karlsson M, 2014, JOURNALISM STUD, V15, P668, DOI 10.1080/1461670X.2014.886837
Korpela KM, 2010, CURR MED RES OPIN, V26, P843, DOI 10.1185/03007991003603804
Langfeldt L, 2015, RES EVALUAT, V24, P256, DOI 10.1093/reseval/rvv012
LeBel EP, 2018, ADV METH PRACT PSYCH, V1, P389, DOI 10.1177/2515245918787489
Lesk M., 2019, ANAL OPEN DATA AVAIL
Lynch CP, 2022, CLIN SPINE SURG, V35, pE558, DOI 10.1097/BSD.0000000000001303
Makkonen T, 2016, SCIENTOMETRICS, V106, P1193, DOI 10.1007/s11192-015-1824-y
Maleki A., 2015, P INT C SCIENTOMETRI
Martinez A, 2016, RES EVALUAT, V25, P184, DOI 10.1093/reseval/rvv042
Mebane CA, 2019, INTEGR ENVIRON ASSES, V15, P320, DOI 10.1002/ieam.4119
Nian TT, 2021, INFORM SYST RES, V32, P605, DOI 10.1287/isre.2020.0985
Ortega JL, 2021, LEARN PUBL, V34, P164, DOI 10.1002/leap.1339
Pearson K., 1896, Phil. Trans. R. Soc. Lond. Ser. A, V187, P253, DOI [10.1098/rsta.1896.0007, DOI 10.1098/RSTA.1896.0007]
Peng R., 2015, SIGNIFICANCE, V12, P30, DOI [DOI 10.1111/J.1740-9713.2015.00827.X, 10.1111/j.1740-9713.2015.00827.x]
Peterson GM, 2013, J AM SOC INF SCI TEC, V64, P2428, DOI 10.1002/asi.22944
PETO R, 1977, BRIT J CANCER, V35, P1, DOI 10.1038/bjc.1977.1
Pinfield S, 2016, J ASSOC INF SCI TECH, V67, P1751, DOI 10.1002/asi.23446
Pirson M, 2011, ORGAN SCI, V22, P1087, DOI 10.1287/orsc.1100.0581
Pozil S., 2017, J SOCIAL CHANGE, V9, DOI DOI 10.5590/JOSC.2017.09.1
Pulverer B, 2015, EMBO J, V34, P2483, DOI 10.15252/embj.201570080
Rieh SY, 2007, ANNU REV INFORM SCI, V41, P307, DOI 10.1002/aris.2007.1440410114
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
Shah TA, 2021, SCIENTOMETRICS, V126, P4589, DOI 10.1007/s11192-021-03990-3
Shaw D, 2018, ACCOUNT RES, V25, P79, DOI 10.1080/08989621.2017.1413940
Shi DB, 2023, SCIENCE, V379, P62, DOI 10.1126/science.abq1218
Slingsby JA, 2020, S AFR J SCI, V116, P100, DOI 10.17159/sajs.2020/7684
Teixeira da Silva JA, 2022, LEARN PUBL, V35, P292, DOI 10.1002/leap.1409
Teixeira da Silva JA, 2015, ACCOUNT RES, V22, P22, DOI 10.1080/08989621.2014.899909
Titus SL, 2008, NATURE, V453, P980, DOI 10.1038/453980a
Tripathi M, 2019, DESIDOC J LIB INF TE, V39, P74, DOI 10.14429/djlit.39.2.14000
UNESCO, 2023, UNESCO Recommendation on Open Science
Vadhera AS, 2022, AM J SPORT MED, V50, P3690, DOI 10.1177/03635465221124885
Valdez D., 2020, F1000Research, P9
Van Noorden R, 2011, NATURE, V478, P26, DOI 10.1038/478026a
Vos TP, 2017, JOURNALISM STUD, V18, P1505, DOI 10.1080/1461670X.2015.1135754
Wager E, 2009, MATURITAS, V64, P201, DOI 10.1016/j.maturitas.2009.09.018
Wallach OD, 2018, PLOS BIOL, V16, DOI 10.1371/journal.pbio.2006930
Wang T, 2019, SCI ENG ETHICS, V25, P855, DOI 10.1007/s11948-018-0040-6
WCRI, 2017, The Amsterdam Agenda seeks to promote discussion and to coordinate efforts to improve research integrity on a global scale
Weischenberg S., 2005, Handbuch journalismus und medien
Wicherts JM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147913
Wood Angela M, 2004, Clin Trials, V1, P368
Yan E, 2018, J ASSOC INF SCI TECH, V69, P844, DOI 10.1002/asi.24002
Yang SL, 2024, J INF SCI, V50, P531, DOI 10.1177/01655515221097623
Zhang Q, 2020, SCIENTOMETRICS, V125, P213, DOI 10.1007/s11192-020-03636-w
Zheng X, 2023, J ASSOC INF SCI TECH, V74, P219, DOI 10.1002/asi.24723
Zong QJ, 2020, SCIENTOMETRICS, V125, P607, DOI 10.1007/s11192-020-03545-y
NR 98
TC 0
Z9 0
U1 37
U2 37
PU ELSEVIER SCI LTD
PI London
PA 125 London Wall, London, ENGLAND
SN 0306-4573
EI 1873-5371
J9 INFORM PROCESS MANAG
JI Inf. Process. Manage.
PD MAY
PY 2024
VL 61
IS 3
AR 103640
DI 10.1016/j.ipm.2023.103640
EA JAN 2024
PG 18
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA JZ1E8
UT WOS:001176881600001
DA 2024-09-05
ER
PT J
AU Rossi, D
Harreveld, RE
Clark, D
van Rensburg, H
Beer, C
Danaher, PA
AF Rossi, Dolene
Harreveld, R. E. (Bobby)
Clark, Damien
van Rensburg, Henriette
Beer, Colin
Danaher, P. A.
TI Exploring a cross-institutional research collaboration and innovation:
Deploying social software and Web 2.0 technologies to investigate online
learning designs and interactions in two Australian Universities
SO JOURNAL OF LEARNING DESIGN
LA English
DT Article
DE Cross-institutional collaboration; interactions; online learning design;
research; social software; Web 2.0 technologies
AB One significant manifestation of the proposition of a 'classroom without walls' is the online learning environments evident in most contemporary Australian universities. A key element of the effectiveness of those environments is the quality of the interactions that they foster. Planning and implementing rigorous research into that quality is crucial if these particular 'classrooms without walls' are to deliver enhanced and sustained learning outcomes. This article explores selected aspects of a cross-institutional collaboration linking two Australian universities researching the quality of learning interactions in their online courses. In particular, the authors analyse the utility of the social software and Web 2.0 technologies that have been deployed to facilitate their collaborative research. Despite the constraints and tensions attendant on within-and cross-organisational learning, teaching and research activities, the article records evidence of a developing innovation in investigating both the online learning designs and the research project developed to evaluate the effectiveness and impact of those designs.
C1 [Rossi, Dolene] CQ Univ, Sch Nursing & Midwifery, Rockhampton, Qld, Australia.
[Harreveld, R. E. (Bobby)] CQ Univ, Sch Educ, Rockhampton, Qld, Australia.
[Clark, Damien; Beer, Colin] CQ Univ, Off Learning & Teaching, Rockhampton, Qld, Australia.
[van Rensburg, Henriette; Danaher, P. A.] Univ Southern Queensland, Fac Educ, Toowoomba, Qld, Australia.
C3 Central Queensland University; Central Queensland University; Central
Queensland University; University of Southern Queensland
RP Rossi, D (corresponding author), CQ Univ, Sch Nursing & Midwifery, Rockhampton, Qld, Australia.
EM d.rossi@cqu.edu.au; b.harreveld@cqu.edu.au; d.clark@cqu.edu.au;
henriette.vanrensburg@usq.edu.au; c.beer@cqu.edu.au;
patrick.danaher@usq.edu.au
RI Rossi, Dolene M/G-5036-2015; Danaher, Patrick A/N-7315-2014; Beer,
Colin/GZA-5917-2022
OI Rossi, Dolene M/0000-0002-5093-6443; Danaher, Patrick
A/0000-0002-2289-7774; Beer, Colin/0000-0002-1827-1365
FU DeHub Consortium
FX This article reports on a project funded in 2011-2012 by the DeHub
Consortium, hosted by the University of New England. Administrative
support was provided by Ms Tash Toon, Ms Chriss Lenz and Ms Mary
Cranston at the Learning and Teaching Education Research Centre at
CQUniversity, Australia. The project evaluator was Professor Michael
Singh in the Centre for Educational Research at the University of
Western Sydney, Australia. The project reference group was chaired by
Professor Terry Evans (School of Education, Deakin University,
Australia) and included Professor Nita Temmerman (Faculty of Education,
University of Southern Queensland, Australia), Dr Abdurrahman Umar
(Commonwealth of Learning, Canada) and Associate Professor Steve
McKillup and Ms Beth Tennent (CQUniversity, Australia). The authors
thank the guest editors of this special theme issue of the journal and
acknowledge the feedback of two anonymous peer reviewers.
CR Anderson Terry, 2008, MARQUIS PRINTING BOO, V2, P1
[Anonymous], 2009, WELSH J ED
Arnold N, 2009, J INTERACT ONLINE LE, V8, P121
Atkinson T, 2009, TECHTRENDS, V53, P30
Baxter P, 2008, QUAL REP, V13, P544
Beer C., 2009, PAPER PRESENTED AT T
Beuchot A., 2005, DISTANCE EDUC, V26, P67, DOI [10.1080/01587910500081285, DOI 10.1080/01587910500081285]
Bexley E., 2011, The Australian academic profession in transition
Bonk CJ, 2009, INTERNET HIGH EDUC, V12, P126, DOI 10.1016/j.iheduc.2009.04.002
Cardini A, 2006, J EDUC POLICY, V21, P393, DOI 10.1080/02680930600731773
Cavanaugh CS, 2009, INT REV RES OPEN DIS, V10
Chou C.-T. C., 2002, 35 HAW INT C SYST SC
D'Amour Danielle, 2005, J Interprof Care, V19 Suppl 1, P116, DOI 10.1080/13561820500082529
Denning P, 2004, UBIQUITY, V5, P1
Duff A, 2010, J LEARN DES, V4, P32, DOI 10.5204/jld.v4i1.67
Hillman D.C. A., 1994, AM J DISTANCE EDUC, V8, P30, DOI 10.1080/08923649409526853
Kehrwald B. A., 2007, THESIS
Kurasawa F., 2007, TOPIA CANADIAN J CUL, P18
Lai YC, 2011, INTERNET HIGH EDUC, V14, P15, DOI 10.1016/j.iheduc.2010.06.001
Lloyd M, 2011, J LEARN DES, V4, P39
McLoughlin C., 2007, ANN C AUSTR SOC COMP
Means B., 2009, Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies, DOI DOI 10.30935/CEDTECH/8708
Oliver R, 2007, J LEARN DES, V2, P1
Patton M., 2002, QUALITATIVE RES EVAL, DOI DOI 10.1002/NUR.4770140111
Raffaghelli J. E., 2010, P 7 INT C NETW LEARN, P327
Reushle S, 2009, J LEARN DES, V3, P11
Rosenberg JP, 2007, J ADV NURS, V60, P447, DOI 10.1111/j.1365-2648.2007.04385.x
Rossi D. M., 2010, THESIS
Saiki D, 2010, J LEARN DES, V4, P52, DOI 10.5204/jld.v4i1.69
Schuetze U, 2010, J LEARN DES, V4, P24, DOI 10.5204/jld.v4i1.66
Su BD, 2005, J INTERACT ONLINE LE, V4, P1
Turner M, 2007, J LEARN DES, V2, P56
Yin R. K., 2003, CASE STUDY RES DESIG
NR 33
TC 6
Z9 7
U1 0
U2 0
PU QUEENSLAND UNIV TECHNOLOGY
PI BRISBANE
PA GPO BOX 2434, BRISBANE, QLD 4001, AUSTRALIA
SN 1832-8342
J9 J LEARN DES
JI J. Learn. Des.
PY 2012
VL 5
IS 2
SI SI
BP 1
EP 11
DI 10.5204/jld.v5i2.108
PG 11
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA V01JA
UT WOS:000213597300002
OA Green Accepted, hybrid
DA 2024-09-05
ER
PT J
AU Ul Haq, MI
Li, QM
Hou, J
AF Ul Haq, Muhammad Inaam
Li, Qianmu
Hou, Jun
TI Analyzing the Research Trends of IoT Using Topic Modeling
SO COMPUTER JOURNAL
LA English
DT Article
DE topic modeling; text analysis; topic trends; research communities;
topic; correlation
ID OF-THE-ART; INDUSTRY 4.0; COMMUNITY STRUCTURE; HEALTH-CARE; BIG DATA;
INTERNET; THINGS; CHALLENGES; FUTURE; SECURITY
AB The internet of things (IoT) is one of the most rapidly growing technologies. Therefore, the interest in industry and academia has been increasing. The published research data have evolved in IoT because of scientific advances in this field. Since science plays a vital role in decision-making, this study examines the thematic landscape of research on IoT, which may contribute to understanding the research field's structure allows for critical reflections and the identification of blind spots for advancing this field. The current study applies a text mining approach on 25966 Scopus-indexed abstracts and titles published from 2008 to 2020 on a latent Dirichlet allocation-based topic model. In this study, various models in the range of 1-100 topics were created. Examination of coherence scores was combined with manual analysis; the 25-topic model was chosen as an optimal one. The statistical methods employed highlight the timely trends of the extracted topics, intellectual topic structure and resulting communities in the topic network. The study carpingly depicts the quantitative results from an IoT perspective. The statistical analysis depicts that IoT publications has exponential growth rate. The hotspot of the IoT research can be concluded as 'intrusion attack detection', 'cloud and edge computing', 'energy consumption', 'access channels', 'algorithm optimization' and 'healthcare and medical'. The topics that reflect the wireless sensor networks, security and privacy, high-range signal, devices and context aware computing and sensor control and monitoring have stable trends. This study identifies research focus on the development of low-energy consumption systems (Green IoT), application of high-range signals and their performance in tracking and identification, and data analytics (Big data IoT). Furthermore, the research focuses on industrial solutions towards diseases diagnosis and its treatment in health sector. Finally, in agriculture sector for intelligent manufacturing, research focuses on the application of image recognition for plant and food analysis.
C1 [Ul Haq, Muhammad Inaam; Li, Qianmu] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China.
[Hou, Jun] Nanjing Vocat Univ Ind Technol, Sch Social Sci, Nanjing 210046, Peoples R China.
[Ul Haq, Muhammad Inaam] COMSATS Univ Islamabad, Dept Comp Sci, Sahiwal Campus, Sahiwal 57000, Pakistan.
C3 Nanjing University of Science & Technology; Nanjing Vocational
University of Industry Technology; COMSATS University Islamabad (CUI)
RP Ul Haq, MI; Li, QM (corresponding author), Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China.; Ul Haq, MI (corresponding author), COMSATS Univ Islamabad, Dept Comp Sci, Sahiwal Campus, Sahiwal 57000, Pakistan.
EM minaamulhaq@hotmail.com; qianmu@njust.edu.cn
RI Inaam ul haq, Muhammad/HKO-1217-2023
OI Inaam ul haq, Muhammad/0000-0002-5759-073X
FU National Key R&D Program of China [2020YFB1805503]; Jiangsu Province
Modern Education Technology Research Project [84365]; National
Vocational Education Teacher Enterprise Practice Base "Integration of
Industry and Education'' Special Project(study on Evaluation Standard of
Artificial Intelligence Vocational Skilled Level)
FX This work is supported by the National Key R&D Program of China (Funding
No.2020YFB1805503), Jiangsu Province Modern Education Technology
Research Project (84365); National Vocational Education Teacher
Enterprise Practice Base "Integration of Industry and Education''
Special Project(study on Evaluation Standard of Artificial Intelligence
Vocational Skilled Level).
CR Adelantado F, 2017, IEEE COMMUN MAG, V55, P34, DOI 10.1109/MCOM.2017.1600613
Al-Fuqaha A, 2015, IEEE COMMUN SURV TUT, V17, P2347, DOI 10.1109/COMST.2015.2444095
Aletras N, 2013, P 10 INT C COMP SEM, P13, DOI [10.1145/2537052, DOI 10.1145/2537052]
Ambrosino A, 2018, J ECON METHODOL, V25, P329, DOI 10.1080/1350178X.2018.1529215
Amendola S, 2014, IEEE INTERNET THINGS, V1, P144, DOI 10.1109/JIOT.2014.2313981
[Anonymous], 2020, CYBERSPACE, DOI [10.5772/intechopen.85362, DOI 10.5772/INTECHOPEN.85362]
Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062
Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7
Assi A.L.B., 2010, INTERNET THINGS TODA, P44
Atzori L, 2014, IEEE COMMUN MAG, V52, P97, DOI 10.1109/MCOM.2014.6710070
Atzori L, 2012, COMPUT NETW, V56, P3594, DOI 10.1016/j.comnet.2012.07.010
Augustin A, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16091466
Bandodkar AJ, 2016, ACS SENSORS, V1, P464, DOI 10.1021/acssensors.6b00250
Barbieri N, 2013, MACH LEARN, V93, P5, DOI 10.1007/s10994-013-5391-2
BERAN R, 1977, ANN STAT, V5, P445, DOI 10.1214/aos/1176343842
Bi ZM, 2014, IEEE T IND INFORM, V10, P1537, DOI 10.1109/TII.2014.2300338
Bickel MW, 2019, ENERGY SUSTAIN SOC, V9, DOI 10.1186/s13705-019-0226-z
Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit
Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859]
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012
Botta A, 2016, FUTURE GENER COMP SY, V56, P684, DOI 10.1016/j.future.2015.09.021
Bouma G., 2009, From Form to Meaning. Processing Texts Automatically. Proceedings of the Biennial GSCL Conference. Ed. by, P31
Chae B, 2019, TELECOMMUN POLICY, V43, DOI 10.1016/j.telpol.2019.101848
CHANG J., 2009, Advances in Neural Information Processing Systems, V22, P288
Choi HS, 2017, COMPUT SECUR, V67, P244, DOI 10.1016/j.cose.2017.03.007
Dai LL, 2015, IEEE COMMUN MAG, V53, P74, DOI 10.1109/MCOM.2015.7263349
Damani O. P., 2013, P 17 C COMP NAT LANG, P20
Daud A, 2010, FRONT COMPUT SCI CHI, V4, P280, DOI 10.1007/s11704-009-0062-y
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Sánchez AD, 2017, EUR RES MANAG BUS EC, V23, P8, DOI 10.1016/j.iedeen.2016.02.001
Ejaz W, 2019, SPRBRIEF ELECT, P1, DOI 10.1007/978-3-319-95037-2
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
Ganti RK, 2011, IEEE COMMUN MAG, V49, P32, DOI 10.1109/MCOM.2011.6069707
Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799
Gomez C, 2012, SENSORS-BASEL, V12, P11734, DOI 10.3390/s120911734
Granjal J, 2015, IEEE COMMUN SURV TUT, V17, P1294, DOI 10.1109/COMST.2015.2388550
Gravina R, 2017, INFORM FUSION, V35, P68, DOI 10.1016/j.inffus.2016.09.005
Gretzel U, 2015, ELECTRON MARK, V25, P179, DOI 10.1007/s12525-015-0196-8
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Guo L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199510
Hashem IAT, 2016, INT J INFORM MANAGE, V36, P748, DOI 10.1016/j.ijinfomgt.2016.05.002
Hofmann E, 2017, COMPUT IND, V89, P23, DOI 10.1016/j.compind.2017.04.002
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
Tu HT, 2017, INT CONF SYST SCI EN, P588, DOI 10.1109/ICSSE.2017.8030943
Islam SMR, 2015, IEEE ACCESS, V3, P678, DOI 10.1109/ACCESS.2015.2437951
Jahnichen P., 2018, INT C ART INT STAT, P1427
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194
Jin XL, 2015, BIG DATA RES, V2, P59, DOI 10.1016/j.bdr.2015.01.006
Jing Q, 2014, WIREL NETW, V20, P2481, DOI 10.1007/s11276-014-0761-7
Kamalinejad P, 2015, IEEE COMMUN MAG, V53, P102, DOI 10.1109/MCOM.2015.7120024
Kang HS, 2016, INT J PR ENG MAN-GT, V3, P111, DOI 10.1007/s40684-016-0015-5
Kortuem G, 2010, IEEE INTERNET COMPUT, V14, P44, DOI 10.1109/MIC.2009.143
Lee Jay, 2013, Manufacturing Letters, V1, P38, DOI 10.1016/j.mfglet.2013.09.005
Lee M, 2016, BMC BIOINFORMATICS, V17, DOI 10.1186/s12859-016-1225-0
Li Ding-Cheng, 2015, AMIA Jt Summits Transl Sci Proc, V2015, P102
Li H, 2018, IEEE NETWORK, V32, P96, DOI 10.1109/MNET.2018.1700202
Li SC, 2015, INFORM SYST FRONT, V17, P243, DOI 10.1007/s10796-014-9492-7
Li X, 2011, IEEE COMMUN MAG, V49, P68, DOI 10.1109/MCOM.2011.6069711
Lin J, 2017, IEEE INTERNET THINGS, V4, P1125, DOI 10.1109/JIOT.2017.2683200
Liu Y, 2015, AAAI CONF ARTIF INTE, P2418
Lossio-Ventura J.A., 2019, SIMBIG 2018, DOI [10.1007/978-3-030-11680-4, DOI 10.1007/978-3-030-11680-4]
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Marjani M, 2017, IEEE ACCESS, V5, P5247, DOI 10.1109/ACCESS.2017.2689040
Mimno D., 2011, P C
Murtagh F, 2014, J CLASSIF, V31, P274, DOI 10.1007/s00357-014-9161-z
Nasar Z, 2018, SCIENTOMETRICS, V117, P1931, DOI 10.1007/s11192-018-2921-5
Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695
Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103
Newman MEJ, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.056131
Palattella MR, 2016, IEEE J SEL AREA COMM, V34, P510, DOI 10.1109/JSAC.2016.2525418
Palattella MR, 2013, IEEE COMMUN SURV TUT, V15, P1389, DOI 10.1109/SURV.2012.111412.00158
Perera C, 2014, IEEE ACCESS, V2, P1660, DOI 10.1109/ACCESS.2015.2389854
Perera C, 2014, T EMERG TELECOMMUN T, V25, P81, DOI 10.1002/ett.2704
Perera C, 2014, IEEE COMMUN SURV TUT, V16, P414, DOI 10.1109/SURV.2013.042313.00197
Qiu JF, 2016, EURASIP J ADV SIG PR, DOI 10.1186/s13634-016-0355-x
Randriamihamison N, 2021, J CLASSIF, V38, P363, DOI 10.1007/s00357-020-09377-y
Rapp R., 2014, COMPUT LINGUIST, V8403, DOI [10.1007/978-3-642-54906-9_1, DOI 10.1007/978-3-642-54906-9_1]
Raza U, 2017, IEEE COMMUN SURV TUT, V19, P855, DOI 10.1109/COMST.2017.2652320
Razzaque MA, 2016, IEEE INTERNET THINGS, V3, P70, DOI 10.1109/JIOT.2015.2498900
Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
Reyna A, 2018, FUTURE GENER COMP SY, V88, P173, DOI 10.1016/j.future.2018.05.046
Roblek V, 2016, SAGE OPEN, V6, DOI 10.1177/2158244016653987
Röder M, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P399, DOI 10.1145/2684822.2685324
Roman R, 2013, COMPUT NETW, V57, P2266, DOI 10.1016/j.comnet.2012.12.018
Schmidt BenjaminM., 2012, J DIGITAL HUMANITIES, V2
Schreyer AG, 2016, ROFO-FORTSCHR RONTG, V188, P134, DOI 10.1055/s-0041-104892
Shaalan K., 2018, STUDIES COMPUTATIONA, V740
Shafi M, 2017, IEEE J SEL AREA COMM, V35, P1201, DOI 10.1109/JSAC.2017.2692307
Sheng ZG, 2013, IEEE WIREL COMMUN, V20, P91, DOI 10.1109/MWC.2013.6704479
Shi WS, 2016, IEEE INTERNET THINGS, V3, P637, DOI 10.1109/JIOT.2016.2579198
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Sievert Carson., 2015, LDAvis: Interactive Visualization of Topic Models (0.3.2)
Sing DC, 2017, SPINE, V42, P863, DOI 10.1097/BRS.0000000000002079
Stankovic JA, 2014, IEEE INTERNET THINGS, V1, P3, DOI 10.1109/JIOT.2014.2312291
Stergiou C, 2018, FUTURE GENER COMP SY, V78, P964, DOI 10.1016/j.future.2016.11.031
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Syed S, 2018, REV FISH SCI AQUAC, V26, P319, DOI 10.1080/23308249.2017.1416331
Tang J, 2014, PR MACH LEARN RES, V32
Tao F, 2014, IEEE T IND INFORM, V10, P1547, DOI 10.1109/TII.2014.2306397
Tsai CW, 2014, IEEE COMMUN SURV TUT, V16, P77, DOI 10.1109/SURV.2013.103013.00206
Ul Haq MI, 2019, IEEE ACCESS, V7, P162254, DOI 10.1109/ACCESS.2019.2950045
van Altena Allard J., 2016, Journal of Big Data, V3, DOI 10.1186/s40537-016-0057-0
Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9
Wan YPE, 2017, IEEE COMMUN MAG, V55, P117, DOI 10.1109/MCOM.2017.1600510CM
WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307/2282967
Watford Sean M, 2018, Comput Toxicol, V7, P46, DOI 10.1016/j.comtox.2018.06.003
Weber Rolf H., 2010, Computer Law and Security Report, V26, P23, DOI 10.1016/j.clsr.2009.11.008
Welbourne E, 2009, IEEE INTERNET COMPUT, V13, P48, DOI 10.1109/MIC.2009.52
Whitmore A, 2015, INFORM SYST FRONT, V17, P261, DOI 10.1007/s10796-014-9489-2
Wollschlaeger M, 2017, IEEE IND ELECTRON M, V11, P17, DOI 10.1109/MIE.2017.2649104
Wu QH, 2014, IEEE INTERNET THINGS, V1, P129, DOI 10.1109/JIOT.2014.2311513
Xiong H, 2019, COMPUT IND ENG, V135, P333, DOI 10.1016/j.cie.2019.06.010
Xu LD, 2018, INT J PROD RES, V56, P2941, DOI 10.1080/00207543.2018.1444806
Xu LD, 2014, IEEE T IND INFORM, V10, P2233, DOI 10.1109/TII.2014.2300753
Yan Z, 2014, J NETW COMPUT APPL, V42, P120, DOI 10.1016/j.jnca.2014.01.014
Yang YC, 2017, IEEE INTERNET THINGS, V4, P1250, DOI 10.1109/JIOT.2017.2694844
Zhao ZY, 2018, J INTELL FUZZY SYST, V35, P1077, DOI 10.3233/JIFS-17682
Zhong RY, 2017, ENGINEERING-PRC, V3, P616, DOI 10.1016/J.ENG.2017.05.015
Zou C, 2018, EXPERT OPIN DRUG SAF, V17, P629, DOI 10.1080/14740338.2018.1458838
NR 124
TC 3
Z9 3
U1 3
U2 30
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0010-4620
EI 1460-2067
J9 COMPUT J
JI Comput. J.
PD OCT 17
PY 2022
VL 65
IS 10
BP 2589
EP 2609
DI 10.1093/comjnl/bxab091
EA JUL 2021
PG 21
WC Computer Science, Hardware & Architecture; Computer Science, Information
Systems; Computer Science, Software Engineering; Computer Science,
Theory & Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 5L8FZ
UT WOS:000789359600001
DA 2024-09-05
ER
PT J
AU Zamit, I
Musa, IH
Jiang, LM
Wei, YJ
Tang, JJ
AF Zamit, Ibrahim
Musa, Ibrahim Hussein
Jiang, Limin
Wei, Yanjie
Tang, Jijun
TI Trends and features of autism spectrum disorder research using
artificial intelligence techniques: a bibliometric approach
SO CURRENT PSYCHOLOGY
LA English
DT Article
DE Autism spectrum disorder; Artificial intelligence; Machine learning;
Bibliometric analysis; Scientific collaboration; Research hotspots
ID MACHINE; SCIENCE; IDENTIFICATION; METAANALYSIS; DIAGNOSIS; DISEASE
AB The prevalence of autism spectrum disorder (ASD) has risen rapidly in recent decades. Owing to its success across disciplines, the use of artificial intelligence (AI) in the screening of ASD has emerged as a prominent solution. We conducted a bibliometric analysis on AI-powered ASD screening research with a unit of 2090 publications retrieved from Scopus database in the period 2010-2021. Our findings show, among other things, that the annual growth rate of publications was 33.05% and scientific production drastically increased 23-fold from 22 in 2010 to 509 in 2021 with nearly two thirds (1307; 62,54%) of the retrieved documents being published between 2019-2021. The USA was the global leader in terms of scientific output with 730 publications followed by China (255), and India (251). Stanford university, the scientific journal NeuroImage, and Dennis P. Wall were the most globally prolific institution, publication source, and author, respectively. Using VOSviewer's clustering algorithms, keyword and topic analysis identified neuroimaging techniques and genetic research as hot and emerging research trends. Interestingly, three of the top ten prolific authors were women, indicating a significant milestone for gender rebalancing efforts in the AI workforce. The findings will help both experienced and aspiring scientists better understand the structure and current state of knowledge, uncover patterns of collaboration, and identify emerging trends in ASD research using AI.
C1 [Zamit, Ibrahim; Jiang, Limin; Wei, Yanjie; Tang, Jijun] Shenzhen Inst Adv Technol, Inst Adv Comp & Digital Engn, Ctr High Performance Comp Technol, Shenzhen, Peoples R China.
[Zamit, Ibrahim] Univ Chinese Acad Sci, Beijing, Peoples R China.
[Musa, Ibrahim Hussein] Southeast Univ, Sch Comp Sci & Engn, Key Lab Comp Network & Informat Integrat, Nanjing, Peoples R China.
C3 Chinese Academy of Sciences; Shenzhen Institute of Advanced Technology,
CAS; Chinese Academy of Sciences; University of Chinese Academy of
Sciences, CAS; Southeast University - China
RP Wei, YJ; Tang, JJ (corresponding author), Shenzhen Inst Adv Technol, Inst Adv Comp & Digital Engn, Ctr High Performance Comp Technol, Shenzhen, Peoples R China.
EM yj.wei@siat.ac.cn; jj.tang@siat.ac.cn
OI Zamit, Ibrahim/0000-0002-5517-5102
FU ANSO; National Natural Science Foundation of China [NSFC 61772362,
61972280]; Shenzhen KQTD Project [KQTD20200820113106007]; Research and
Development Project of Guangdong Province [2021B0101310002]; Strategic
Priority CAS Project [XDB38050100]; National Science Foundation of China
[62272449]; Shenzhen Basic Research Fund [KQTD20200820113106007,
RCYX202007141 1473419, JCYJ20200109114818703]; CAS Key Lab
[2011DP173015]; Youth Innovation Promotion Association, CAS [Y2021101]
FX I. Z acknowledges support from the ANSO Scholarship for Young Talents.
J.T. was supported by The National Natural Science Foundation of China
(NSFC 61772362, 61972280) and Shenzhen KQTD Project
[KQTD20200820113106007]. W.Y. was partly supported by the Research and
Development Project of Guangdong Province under grant no.
2021B0101310002, the Strategic Priority CAS Project XDB38050100,
National Science Foundation of China under grant no. 62272449, the
Shenzhen Basic Research Fund under grant no KQTD20200820113106007,
RCYX202007141 1473419, JCYJ20200109114818703, CAS Key Lab under grant
no. 2011DP173015, the Youth Innovation Promotion Association (Y2021101),
CAS.
CR Abd-alrazaq AA, 2019, INT J MED INFORM, V132, DOI 10.1016/j.ijmedinf.2019.103978
Abeel T, 2009, BIOINFORMATICS, V25, pI313, DOI 10.1093/bioinformatics/btp191
American Psychiatric Association, 2013, Diagnostic and Statistical Manual of Mental Disorders: DSM-5, V5th, DOI [DOI 10.1176/APPI.BOOKS.9780890425596, 10.1176/APPI.BOOKS.9780890425596]
Arbabshirani MR, 2017, NEUROIMAGE, V145, P137, DOI 10.1016/j.neuroimage.2016.02.079
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Avati A, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0677-8
Bosl W, 2011, BMC MED, V9, DOI 10.1186/1741-7015-9-18
Bracher-Smith M, 2021, MOL PSYCHIATR, V26, P70, DOI 10.1038/s41380-020-0825-2
BROOKES BC, 1969, NATURE, V224, P953, DOI 10.1038/224953a0
Campbell K, 2017, J PEDIATR-US, V183, P133, DOI 10.1016/j.jpeds.2017.01.021
Chiarotti F, 2020, BRAIN SCI, V10, DOI 10.3390/brainsci10050274
Courchesne E, 2011, BRAIN RES, V1380, P138, DOI 10.1016/j.brainres.2010.09.101
de Leeuw A, 2020, AUTISM RES, V13, P1029, DOI 10.1002/aur.2276
Ecker C, 2010, NEUROIMAGE, V49, P44, DOI 10.1016/j.neuroimage.2009.08.024
Elsabbagh Mayada, 2012, Autism Res, V5, P160, DOI 10.1002/aur.239
Eslami T, 2019, FRONT NEUROINFORM, V13, DOI 10.3389/fninf.2019.00070
Falkmer T, 2013, EUR CHILD ADOLES PSY, V22, P329, DOI 10.1007/s00787-013-0375-0
Fombonne E., 2020, Swiss Archives of Neurology Psychiatry and Psychotherapy, V171, DOI DOI 10.4414/SANP.2020.03084
Geschwind DH, 2011, TRENDS COGN SCI, V15, P409, DOI 10.1016/j.tics.2011.07.003
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
Grove J, 2019, NAT GENET, V51, P431, DOI 10.1038/s41588-019-0344-8
Hassan SU, 2014, SCIENTOMETRICS, V99, P549, DOI 10.1007/s11192-013-1193-3
Hazlett HC, 2017, NATURE, V542, P348, DOI 10.1038/nature21369
Heinsfeld AS, 2018, NEUROIMAGE-CLIN, V17, P16, DOI 10.1016/j.nicl.2017.08.017
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hyde KK, 2019, REV J AUTISM DEV DIS, V6, P128, DOI 10.1007/s40489-019-00158-x
Jaganathan K, 2019, CELL, V176, P535, DOI 10.1016/j.cell.2018.12.015
Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101
Jiang YH, 2013, AM J HUM GENET, V93, P249, DOI 10.1016/j.ajhg.2013.06.012
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Legg S, 2007, MIND MACH, V17, P391, DOI 10.1007/s11023-007-9079-x
Liao HC, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010166
Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005
Liu WB, 2016, AUTISM RES, V9, P888, DOI 10.1002/aur.1615
Lord C, 2000, NEURON, V28, P355, DOI 10.1016/S0896-6273(00)00115-X
Mahajan R, 2015, CNS SPECTRUMS, V20, P412, DOI 10.1017/S1092852915000371
Majumder S, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17010130
Masi A, 2017, NEUROSCI BULL, V33, P183, DOI 10.1007/s12264-017-0100-y
Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236
Moeslund TB, 2006, COMPUT VIS IMAGE UND, V104, P90, DOI 10.1016/j.cviu.2006.08.002
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Moustris GP, 2011, INT J MED ROBOT COMP, V7, P375, DOI 10.1002/rcs.408
Orrù G, 2012, NEUROSCI BIOBEHAV R, V36, P1140, DOI 10.1016/j.neubiorev.2012.01.004
Parish SL, 2015, AJIDD-AM J INTELLECT, V120, P166, DOI 10.1352/1944-7558-120.2.166
Pletscher-Frankild S, 2015, METHODS, V74, P83, DOI 10.1016/j.ymeth.2014.11.020
Quang D, 2015, BIOINFORMATICS, V31, P761, DOI 10.1093/bioinformatics/btu703
Sarabadani S, 2020, IEEE T AFFECT COMPUT, V11, P588, DOI 10.1109/TAFFC.2018.2820049
Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961
Song DY, 2019, J KOR ACAD CHILD ADO, V30, P145, DOI 10.5765/jkacap.190027
Stanfield AC, 2008, EUR PSYCHIAT, V23, P289, DOI 10.1016/j.eurpsy.2007.05.006
Sweileh WM, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3165-6
Thabtah F, 2019, HEALTH INFORM J, V25, P1739, DOI 10.1177/1460458218796636
Thabtah F, 2019, INFORM HEALTH SOC CA, V44, P278, DOI 10.1080/17538157.2017.1399132
Tick B, 2016, J CHILD PSYCHOL PSYC, V57, P585, DOI 10.1111/jcpp.12499
Vaidyam AN, 2019, CAN J PSYCHIAT, V64, P456, DOI 10.1177/0706743719828977
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wallin JA, 2005, BASIC CLIN PHARMACOL, V97, P261, DOI 10.1111/j.1742-7843.2005.pto_139.x
Wan GB, 2019, J AUTISM DEV DISORD, V49, P209, DOI 10.1007/s10803-018-3690-y
Wei LY, 2017, INFORM SCIENCES, V384, P135, DOI 10.1016/j.ins.2016.06.026
Woodbury-Smith M, 2018, DEV MED CHILD NEUROL, V60, P445, DOI 10.1111/dmcn.13717
Xiong HY, 2015, SCIENCE, V347, DOI 10.1126/science.1254806
Xu K, 2015, PR MACH LEARN RES, V37, P2048
Yang XX, 2019, BMC BIOINFORMATICS, V20, DOI 10.1186/s12859-019-2983-2
Yu KH, 2018, NAT BIOMED ENG, V2, P719, DOI 10.1038/s41551-018-0305-z
Zhou J, 2019, NAT GENET, V51, P973, DOI 10.1038/s41588-019-0420-0
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 69
TC 0
Z9 0
U1 9
U2 25
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1046-1310
EI 1936-4733
J9 CURR PSYCHOL
JI Curr. Psychol.
PD DEC
PY 2023
VL 42
IS 35
BP 31317
EP 31332
DI 10.1007/s12144-022-03977-0
EA DEC 2022
PG 16
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA EE1X1
UT WOS:000901937100002
DA 2024-09-05
ER
PT J
AU Kushkowski, JD
Shrader, CB
Anderson, MH
White, RE
AF Kushkowski, Jeffrey D.
Shrader, Charles B.
Anderson, Marc H.
White, Robert E.
TI Information flows and topic modeling in corporate governance
SO JOURNAL OF DOCUMENTATION
LA English
DT Article
DE Corporate governance; Bibliometrics; Citation analysis; Latent Dirichlet
allocation; Agency theory; Director; Interdisciplinary
ID INTELLECTUAL STRUCTURE; BIBLIOMETRIC ANALYSIS; MANAGEMENT RESEARCH;
COCITATION ANALYSIS; CITATION; SCIENCE; FIELD; UNIVERSITY; LOGISTICS;
EVOLUTION
AB Purpose Multiple disciplines such as finance, management and economics have contributed to governance research over time. However, the full intellectual structure of the governance "field" including the exchange of knowledge across disciplines and the large variety of governance topics remains to be uncovered. To appreciate the breadth of corporate governance research, it is necessary to understand the disciplinary sources from which the research stems. This manuscript focuses on the interdisciplinary underpinnings of corporate governance research. Design/methodology/approach This paper employs bibliometric analysis to trace the evolution of corporate governance using articles included in the ISI Web of Science database between 1990 and 2015. Journals included in these categories encompass a full range of business disciplines and provide evidence of the multi-disciplinary nature of corporate governance. It also uncovers the topics treated by disciplines under the governance umbrella using a machine learning method called latent Dirichtlet allocation (LDA). Findings Corporate governance research deals with a number of strategy-related topics. Unlike strategy topics that reside in a single discipline, corporate governance crosses disciplinary boundaries and includes contributions from accounting, finance, economics, law and management. Our analysis shows that over 80% of corporate governance articles come from outside the field of management. Our LDA solution indicates that the major topics in governance research include corporate governance theory, control of family firms, executive compensation and audit committees. Originality/value The results illustrate that corporate governance is far more interdisciplinary than previously thought. This is an important insight for corporate governance academics and may lead to collaborative research. More importantly, this research illustrates the usefulness of LDA for investigating interdisciplinary fields. This method is easily transferable to other interdisciplinary fields and it provides a powerful alternative to existing bibliometric methods. We suggest a number of topic areas within library and information science where this method may be applied, including collection development, support for interdisciplinary faculty and basic research into emerging interdisciplinary areas.
C1 [Kushkowski, Jeffrey D.] Iowa State Univ, Univ Lib, Ames, IA 50011 USA.
[Shrader, Charles B.; Anderson, Marc H.; White, Robert E.] Iowa State Univ, Dept Management, Ivy Coll Business, Ames, IA USA.
C3 Iowa State University; Iowa State University
RP Kushkowski, JD (corresponding author), Iowa State Univ, Univ Lib, Ames, IA 50011 USA.
EM kushkows@iastate.edu; cshrader@iastate.edu; mha@iastate.edu;
rewhite@iastate.edu
RI Anderson, Marc/AAD-5445-2020; Kushkowski, Jeffrey/IYJ-9478-2023
OI Anderson, Marc/0000-0001-7379-0902; Kushkowski,
Jeffrey/0000-0002-5331-8149
FU Iowa State University Ivy College of Business
FX The authors wish to thank Florence Honore of the University of Wisconsin
for help with the early stages of this project and feedback on the
manuscript; Kyle Hansen, Manaswi Podduturi and Hope Scheffert of
Kingland Systems for their help with the latent Dirichlet allocation
analysis; and, Kelly Moore for assistance with data collection. Thanks
to the Iowa State University Ivy College of Business and the University
Library for financial support of the open access fees.
CR Acedo FJ, 2005, INT BUS REV, V14, P619, DOI 10.1016/j.ibusrev.2005.05.003
Acedo FJ, 2006, STRATEGIC MANAGE J, V27, P621, DOI 10.1002/smj.532
Alvesson M, 2014, ORGAN STUD, V35, P967, DOI 10.1177/0170840614530916
[Anonymous], 1997, CORPORATE GOVERNANCE
Azar OH, 2008, J ECON MANAGE STRAT, V17, P781, DOI 10.1111/j.1530-9134.2008.00195.x
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Brandenburg MD, 2017, COLL RES LIBR, V78, P272, DOI 10.5860/crl.78.3.272
Calabretta G, 2011, J BUS ETHICS, V104, P499, DOI 10.1007/s10551-011-0924-8
Chen H.P., 2010, FINANCE AND CORPORAT
Chen S., 2018, LATENT DIRICHLET ALL
Chun-Hao C, 2012, APPL ECON, V44, P2827, DOI 10.1080/00036846.2011.566208
CULNAN MJ, 1987, MIS QUART, V11, P341, DOI 10.2307/248680
CULNAN MJ, 1986, MANAGE SCI, V32, P156, DOI 10.1287/mnsc.32.2.156
Delserone LM, 2017, J AGRIC FOOD INF, V18, P373, DOI 10.1080/10496505.2017.1330691
Durisin B, 2010, J PROD INNOVAT MANAG, V27, P437, DOI 10.1111/j.1540-5885.2010.00726.x
Durisin B, 2009, CORP GOV-OXFORD, V17, P266, DOI 10.1111/j.1467-8683.2009.00739.x
Dyer T, 2017, J ACCOUNT ECON, V64, P221, DOI 10.1016/j.jacceco.2017.07.002
Fernandez-Alles M, 2009, J AM SOC INF SCI TEC, V60, P161, DOI 10.1002/asi.20947
Filatotchev I, 2009, CORP GOV-OXFORD, V17, P257, DOI 10.1111/j.1467-8683.2009.00748.x
Georgi C, 2013, INT J LOGIST-RES APP, V16, P522, DOI 10.1080/13675567.2013.846309
Georgi C, 2010, J BUS LOGIST, V31, P63, DOI 10.1002/j.2158-1592.2010.tb00143.x
Gundolf K, 2013, J BUS ETHICS, V112, P177, DOI 10.1007/s10551-012-1240-7
Harzing A-W, 2022, Journal Quality List
Hult GTM, 2015, J ACAD MARKET SCI, V43, P663, DOI 10.1007/s11747-015-0464-3
Keasey K., 2005, Corporate Governance: Accountability: Enterprise and International Comparisions
Koseoglu MA, 2016, BRQ-BUS RES Q, V19, P153, DOI 10.1016/j.brq.2016.02.001
Kushkowski JD, 2012, J BUS FINANC LIBR, V17, P201, DOI 10.1080/08963568.2012.685035
Kushkowski JD, 2013, LIBR RESOUR TECH SER, V57, P51, DOI 10.5860/lrts.57n1.51
Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024
Mryglod O, 2016, SCIENTOMETRICS, V106, P1151, DOI 10.1007/s11192-015-1820-2
Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659
Niu X, 2012, J AM SOC INF SCI TEC, V63, P336, DOI 10.1002/asi.21669
Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533
Pugliese A, 2009, CORP GOV-OXFORD, V17, P292, DOI 10.1111/j.1467-8683.2009.00740.x
Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397
Saggese S, 2016, INT J MANAG REV, V18, P417, DOI 10.1111/ijmr.12072
Samiee S, 2012, J ACAD MARKET SCI, V40, P364, DOI 10.1007/s11747-011-0296-8
Schwab A, 2019, ENTREP THEORY PRACT, V43, P843, DOI 10.1177/1042258718760841
Shafique M, 2013, STRATEGIC MANAGE J, V34, P62, DOI 10.1002/smj.2002
SHARPLIN AD, 1985, HUM RELAT, V38, P139, DOI 10.1177/001872678503800204
Shiau WL, 2013, SCIENTOMETRICS, V94, P1317, DOI 10.1007/s11192-012-0807-5
Shleifer A, 1997, J FINANC, V52, P737, DOI 10.1111/j.1540-6261.1997.tb04820.x
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435
Taskin Z, 2015, SCIENTOMETRICS, V103, P1003, DOI 10.1007/s11192-015-1576-8
Tihanyi L, 2014, ACAD MANAGE J, V57, P1535, DOI 10.5465/amj.2014.4006
van Ees H, 2009, CORP GOV-OXFORD, V17, P307, DOI 10.1111/j.1467-8683.2009.00741.x
Wellings S, 2019, J LIBR INF SCI, V51, P789, DOI 10.1177/0961000617742466
White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W
Williams CJ, 2013, J AM SOC INF SCI TEC, V64, P1768, DOI 10.1002/asi.22874
Yoshikawa T, 2009, CORP GOV-OXFORD, V17, P388, DOI 10.1111/j.1467-8683.2009.00745.x
Zahra SA, 2009, J MANAGE STUD, V46, P1059, DOI 10.1111/j.1467-6486.2009.00848.x
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 54
TC 6
Z9 7
U1 3
U2 57
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 0022-0418
EI 1758-7379
J9 J DOC
JI J. Doc.
PD OCT 5
PY 2020
VL 76
IS 6
BP 1313
EP 1339
DI 10.1108/JD-10-2019-0207
EA JUN 2020
PG 27
WC Computer Science, Information Systems; Information Science & Library
Science
WE Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA PB2EL
UT WOS:000541942200001
OA Green Submitted, hybrid
DA 2024-09-05
ER
PT J
AU Macri, C
Bacchi, S
Teoh, SC
Lim, WY
Lam, L
Patel, S
Slee, M
Casson, R
Chan, WG
AF Macri, Carmelo
Bacchi, Stephen
Teoh, Sheng Chieh
Lim, Wan Yin
Lam, Lydia
Patel, Sandy
Slee, Mark
Casson, Robert
Chan, WengOnn
TI Evaluating the Ability of Open-Source Artificial Intelligence to Predict
Accepting-Journal Impact Factor and Eigenfactor Score Using Academic
Article Abstracts: Cross-sectional Machine Learning Analysis
SO JOURNAL OF MEDICAL INTERNET RESEARCH
LA English
DT Article
DE journal impact factor; artificial intelligence; ophthalmology;
radiology; neurology; eye; neuroscience; impact factor; research
quality; journal recommender; publish; open source; predict; machine
learning; academic journal; scientometric; scholarly literature
ID AUTHORS
AB Background: Strategies to improve the selection of appropriate target journals may reduce delays in disseminating research results. Machine learning is increasingly used in content-based recommender algorithms to guide journal submissions for academic articles.
Objective: We sought to evaluate the performance of open-source artificial intelligence to predict the impact factor or Eigenfactor score tertile using academic article abstracts.
Methods: PubMed-indexed articles published between 2016 and 2021 were identified with the Medical Subject Headings (MeSH) terms "ophthalmology," "radiology," and "neurology." Journals, titles, abstracts, author lists, and MeSH terms were collected. Journal impact factor and Eigenfactor scores were sourced from the 2020 Clarivate Journal Citation Report. The journals included in the study were allocated percentile ranks based on impact factor and Eigenfactor scores, compared with other journals that released publications in the same year. All abstracts were preprocessed, which included the removal of the abstract structure, and combined with titles, authors, and MeSH terms as a single input. The input data underwent preprocessing with the inbuilt ktrain Bidirectional Encoder Representations from Transformers (BERT) preprocessing library before analysis with BERT. Before use for logistic regression and XGBoost models, the input data underwent punctuation removal, negation detection, stemming, and conversion into a term frequency-inverse document frequency array. Following this preprocessing, data were randomly split into training and testing data sets with a 3:1 train:test ratio. Models were developed to predict whether a given article would be published in a first, second, or third tertile journal (0-33rd centile, 34th-66th centile, or 67th-100th centile), as ranked either by impact factor or Eigenfactor score. BERT, XGBoost, and logistic regression models were developed on the training data set before evaluation on the hold-out test data set. The primary outcome was overall classification accuracy for the best-performing model in the prediction of accepting journal impact factor tertile.
Results: There were 10,813 articles from 382 unique journals. The median impact factor and Eigenfactor score were 2.117 (IQR 1.102-2.622) and 0.00247 (IQR 0.00105-0.03), respectively. The BERT model achieved the highest impact factor tertile classification accuracy of 75.0%, followed by an accuracy of 71.6% for XGBoost and 65.4% for logistic regression. Similarly, BERT achieved the highest Eigenfactor score tertile classification accuracy of 73.6%, followed by an accuracy of 71.8% for XGBoost and 65.3% for logistic regression.
Conclusions: Open-source artificial intelligence can predict the impact factor and Eigenfactor score of accepting peer-reviewed journals. Further studies are required to examine the effect on publication success and the time-to-publication of such recommender systems.
C1 [Macri, Carmelo] Univ Adelaide, Discipline Ophthalmol & Visual Sci, Adelaide, Australia.
[Bacchi, Stephen; Teoh, Sheng Chieh; Lam, Lydia; Casson, Robert; Chan, WengOnn] Royal Adelaide Hosp, Dept Ophthalmol, Adelaide, Australia.
[Lim, Wan Yin; Patel, Sandy] Royal Adelaide Hosp, Dept Radiol, Adelaide, Australia.
[Slee, Mark] Flinders Univ S Australia, Coll Med & Publ Hlth, Adelaide, Australia.
[Macri, Carmelo] Univ Adelaide, Discipline Ophthalmol & Visual Sci, Adelaide 5000, Australia.
C3 University of Adelaide; Royal Adelaide Hospital; Royal Adelaide
Hospital; Flinders University South Australia; University of Adelaide
RP Macri, C (corresponding author), Univ Adelaide, Discipline Ophthalmol & Visual Sci, Adelaide 5000, Australia.
EM carmelo.macri@adelaide.edu.au
RI ; Slee, Mark/J-4731-2015
OI Teoh, Ian/0000-0002-8562-6277; Lam, Lydia/0000-0002-1484-5202; Slee,
Mark/0000-0003-4323-2453; Macri, Carmelo/0000-0002-1110-3780; Bacchi,
Stephen/0000-0001-5130-8628
CR Abadi M., 2016, PROC USENIX OSDI
Abraham A, 2014, FRONT NEUROINFORM, V8, DOI 10.3389/fninf.2014.00014
Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99
[Anonymous], 2007, College and Research Libraries News, DOI DOI 10.5860/CRLN.68.5.7804
[Anonymous], J SUGGESTER
[Anonymous], 2022, CHOOSE TARGET J
[Anonymous], J FINDER
Bacchi S, 2022, CLIN EXP OPHTHALMOL, V50, P687, DOI 10.1111/ceo.14087
Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008
Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit
Chen TQ, 2016, Arxiv, DOI [arXiv:1603.02754, 10.48550/arXiv.1603.02754]
Nguyen D, 2021, LECT NOTES COMPUT SC, V12607, P563, DOI 10.1007/978-3-030-67731-2_41
Errami M, 2007, NUCLEIC ACIDS RES, V35, pW12, DOI 10.1093/nar/gkm221
Feng XY, 2019, J MED INTERNET RES, V21, DOI 10.2196/12957
Franceschet M, 2010, INFORM PROCESS MANAG, V46, P555, DOI 10.1016/j.ipm.2010.01.001
Gao J, 2016, J OPHTHALMOL, V2016, DOI 10.1155/2016/6392658
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Gasparyan AY, 2013, J KOREAN MED SCI, V28, P1117, DOI 10.3346/jkms.2013.28.8.1117
Huynh Son T., 2020, Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. 33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2020. Proceedings. Lecture Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science (LNAI 12144), P186, DOI 10.1007/978-3-030-55789-8_17
IEEE Publication Recommender, US
KOCHEN M, 1974, INFORM STORAGE RET, V10, P197, DOI 10.1016/0020-0271(74)90059-X
Kubak MP, 2016, ANN TRANSL MED, V4, DOI 10.21037/atm.2016.05.55
Liu C, 2022, NEUROCOMPUTING, V508, P242, DOI 10.1016/j.neucom.2022.08.043
Maiya AS., 2022, Journal of Machine Learning Research, V23, P1
Manuscript Matcher, MATCH UNPUB
Nguyen DH, 2022, EXPERT SYST APPL, V202, DOI 10.1016/j.eswa.2022.117096
Paine CET, 2018, ECOL EVOL, V8, P9566, DOI 10.1002/ece3.4467
Scherer RW, 2018, COCHRANE DB SYST REV, DOI 10.1002/14651858.MR000005.pub4
Scherer RW, 2015, J CLIN EPIDEMIOL, V68, P803, DOI 10.1016/j.jclinepi.2015.01.027
Schuemie MJ, 2008, BIOINFORMATICS, V24, P727, DOI 10.1093/bioinformatics/btn006
Taylor & Francis Author Services, US
Villaseñor-Almaraz M, 2019, RADIOL MED, V124, P495, DOI 10.1007/s11547-019-00996-z
Wang DH, 2018, KNOWL-BASED SYST, V157, P1, DOI 10.1016/j.knosys.2018.05.001
NR 33
TC 0
Z9 0
U1 5
U2 14
PU JMIR PUBLICATIONS, INC
PI TORONTO
PA 130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA
SN 1438-8871
J9 J MED INTERNET RES
JI J. Med. Internet Res.
PD MAR 7
PY 2023
VL 25
AR e42789
DI 10.2196/42789
PG 7
WC Health Care Sciences & Services; Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Health Care Sciences & Services; Medical Informatics
GA I9QU6
UT WOS:001006062500001
PM 36881455
OA Green Published, gold
DA 2024-09-05
ER
PT C
AU Di Rosa, E
Durante, A
AF Di Rosa, Emanuele
Durante, Alberto
BE Esposito, F
Basili, R
Ferilli, S
Lisi, FA
TI Evaluating Industrial and Research Sentiment Analysis Engines on
Multiple Sources
SO AI*IA 2017 ADVANCES IN ARTIFICIAL INTELLIGENCE
SE Lecture Notes in Artificial Intelligence
LA English
DT Proceedings Paper
CT 16th International Conference of the Italian Association for Artificial
Intelligence (AI*IA)
CY NOV 14-17, 2017
CL Bari, ITALY
DE Sentiment analysis; Natural language processing; Machine learning;
Experimental evaluation; Industrial and research tools comparison;
Cross-domain sentiment classification
ID CLASSIFICATION
AB Sentiment Analysis has a fundamental role in analyzing users opinions in all kinds of textual sources. Computing accurately sentiment expressed in huge amount of textual data is a key task largely required by the market, and nowadays industrial engines make available ready-to-use APIs for sentiment analysis-related tasks. However, building sentiment engines showing high accuracy on structurally different textual sources (e.g. reviews, tweets, blogs, etc.) is not a trivial task. Papers about cross-source evaluation lack of a comparison with industrial engines, which are instead specifically designed for dealing with multiple sources.
In this paper, we compare the results of research and industrial engines on an extensive experimental evaluation, considering the document-level polarity detection task performed on different textual sources: tweets, apps reviews and general products reviews, in both English and Italian. The experimental evaluation results help the reader to quantify the performance gap between industrial and research sentiment engines when both are tested on heterogeneous textual sources and on different languages (English/Italian). Finally, we present the results of our multi-source solution X2Check. Considering an overall cross-source average F-score on all of the results, X2Check shows a performance that is 9.1% and 5.1% higher than Google CNL, respectively on Italian and English benchmarks. Compared to the research engines, X2Check shows a F-score that is always higher than tools not specifically trained on the test set under evaluation; it is lower at most of 3.4% in Italian and 11.6% on English benchmarks, compared to the best research tools specifically trained on the target source.
C1 [Di Rosa, Emanuele] Finsa Spa, Artificial Intelligence, Genoa, Italy.
[Durante, Alberto] Finsa Spa, Genoa, Italy.
RP Di Rosa, E (corresponding author), Finsa Spa, Artificial Intelligence, Genoa, Italy.
EM emanuele.dirosa@finsa.it; alberto.durante@finsa.it
RI Di Rosa, Emanuele/AAP-3475-2021
CR [Anonymous], 2016, P ACM S APPL COMP 20
Araújo M, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P75, DOI 10.1145/2567948.2577013
Barbieri F., 2016, P CLIC IT 2016 EVALI
Blitzer J., 2007, P ACL 2007
Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001
Bollegala D, 2016, IEEE T KNOWL DATA EN, V28, P398, DOI 10.1109/TKDE.2015.2475761
Di Rosa E, 2016, P INT WORKSH SOC MED, P8
Dragoni M., 2016, Revised Selected Papers
Heredia B, 2016, 2016 IEEE 2ND INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (IEEE CIC), P285, DOI [10.1109/CIC.2016.44, 10.1109/CIC.2016.046]
Heredia B, 2016, PROCEEDINGS OF 2016 IEEE 17TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IEEE IRI), P160, DOI 10.1109/IRI.2016.28
Li F, 2014, AAAI CONF ARTIF INTE, P1636
Liu B., 2012, SENTIMENT ANAL OPINI
Mejova Y, 2012, P ICWSM 2012
Nakov P., 2016, P SEMEVAL 2016 ASS C
Pan SinnoJialin., 2010, P 19 INT C WORLD WID, P751
Rosenthal S., 2017, P SEMEVAL 2017 ASS C
Täckström O, 2011, LECT NOTES COMPUT SC, V6611, P368, DOI 10.1007/978-3-642-20161-5_37
Tackstrom Oscar., 2011, ACL, P569
Thelwall M, 2010, J AM SOC INF SCI TEC, V61, P2544, DOI 10.1002/asi.21416
Wilson T, 2009, COMPUT LINGUIST, V35, P399, DOI 10.1162/coli.08-012-R1-06-90
Wu F., 2016, P ACL 2016
Wu FZ, 2017, INFORM FUSION, V35, P26, DOI 10.1016/j.inffus.2016.09.001
NR 22
TC 1
Z9 1
U1 0
U2 4
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-319-70169-1; 978-3-319-70168-4
J9 LECT NOTES ARTIF INT
PY 2017
VL 10640
BP 141
EP 155
DI 10.1007/978-3-319-70169-1_11
PG 15
WC Computer Science, Artificial Intelligence
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BL5GC
UT WOS:000451442200011
DA 2024-09-05
ER
PT C
AU Ochi, M
Shiro, M
Mori, J
Sakata, I
AF Ochi, Masanao
Shiro, Masanori
Mori, Jun'ichiro
Sakata, Ichiro
BE Mayo, FD
Marchiori, M
Filipe, J
TI Which Is More Helpful in Finding Scientific Papers to Be Top-cited in
the Future: Content or Citations? Case Analysis in the Field of Solar
Cells 2009
SO PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON WEB INFORMATION
SYSTEMS AND TECHNOLOGIES (WEBIST)
LA English
DT Proceedings Paper
CT 17th International Conference on Web Information Systems and
Technologies (WEBIST)
CY OCT 26-28, 2021
CL ELECTR NETWORK
DE Citation Analysis; Scientific Impact; Graph Neural Network; BERT
ID H-INDEX
AB With the increasing digital publication of scientific literature and the fragmentation of research, it is becoming more and more difficult to find promising papers. Of course, we can examine the contents of a large number of papers, but it is easier to look at the references cited. Therefore, we want to know whether a paper is promising or not based only on its content and citation information. This paper proposes a method of extracting and clustering the content and citations of papers as distributed representations and comparing them using the same criteria. This method clarifies whether the future promising papers will be biased toward content or citations. We evaluated the proposed method by comparing the distribution of the papers that would become the top-cited papers three years later among the papers published in 2009. As a result, we found that the citation information is 39.9% easier to identify the papers that will be the top-cited papers in the future than the content information. This analysis will provide a basis for developing more general models for early prediction of the impact of various scientific researches and trends in science and technology.
C1 [Ochi, Masanao; Mori, Jun'ichiro; Sakata, Ichiro] Univ Tokyo, Grad Sch Engn, Dept Technol Management Innovat, Bunkyo Ku, Hongo 7-3-1, Tokyo, Japan.
[Shiro, Masanori] Natl Inst Adv Ind Sci & Technol, HIRI, Umezono 1-1-1, Tsukuba, Ibaraki, Japan.
C3 University of Tokyo; National Institute of Advanced Industrial Science &
Technology (AIST)
RP Ochi, M (corresponding author), Univ Tokyo, Grad Sch Engn, Dept Technol Management Innovat, Bunkyo Ku, Hongo 7-3-1, Tokyo, Japan.
RI Ochi, Masanao/KND-7312-2024
OI Ochi, Masanao/0000-0002-6661-6735; Mori, Junichiro/0000-0002-9787-3857
FU New Energy and Industrial Technology Development Organization (NEDO)
[JPNP20006]
FX This article is based on results obtained from a project, JPNP20006,
commissioned by the New Energy and Industrial Technology Development
Organization (NEDO).
CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Bowman S. R., 2015, P 2015 C EMPIRICAL M
Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006
Cohan Arman, 2020, ACL
GARFIELD E, 1963, AM DOC, V14, P195, DOI 10.1002/asi.5090140304
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hu W., 2020, ICLR
McInnes L., 2018, J OPEN SOUR SOFTWARE, V3, DOI [10.21105/joss.00861, DOI 10.21105/JOSS.00861]
Miró O, 2017, EMERG MED J, V34, P175, DOI 10.1136/emermed-2016-205893
Reimers N, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P567
Sasaki H, 2016, J SUSTAIN DEV ENERGY, V4, P418, DOI 10.13044/j.sdewes.2016.04.0032
Schreiber M, 2013, J INFORMETR, V7, P325, DOI 10.1016/j.joi.2013.01.001
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Zhang MH, 2018, ADV NEUR IN, V31
NR 16
TC 0
Z9 0
U1 0
U2 1
PU SCITEPRESS
PI SETUBAL
PA AV D MANUELL, 27A 2 ESQ, SETUBAL, 2910-595, PORTUGAL
BN 978-989-758-536-4
PY 2021
BP 360
EP 364
DI 10.5220/0010689100003058
PG 5
WC Computer Science, Information Systems; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BT0ZP
UT WOS:000795868100038
OA hybrid
DA 2024-09-05
ER
PT J
AU Thelwall, M
Kousha, K
Wilson, P
Makita, M
Abdoli, M
Stuart, E
Levitt, J
Knoth, P
Cancellieri, M
AF Thelwall, Mike
Kousha, Kayvan
Wilson, Paul
Makita, Meiko
Abdoli, Mahshid
Stuart, Emma
Levitt, Jonathan
Knoth, Petr
Cancellieri, Matteo
TI Predicting article quality scores with machine learning: The UK Research
Excellence Framework
SO QUANTITATIVE SCIENCE STUDIES
LA English
DT Article
DE artificial intelligence; bibliometrics; citation analysis; machine
learning; scientometrics
ID RESEARCH COLLABORATION; CITATION COUNTS; NEURAL-NETWORK; IMPACT;
AUTHORS; BIAS; PERFORMANCE; INDICATOR; FEATURES
AB National research evaluation initiatives and incentive schemes choose between simplistic quantitative indicators and time-consuming peer/expert review, sometimes supported by bibliometrics. Here we assess whether machine learning could provide a third alternative, estimating article quality using more multiple bibliometric and metadata inputs. We investigated this using provisional three-level REF2021 peer review scores for 84,966 articles submitted to the U.K. Research Excellence Framework 2021, matching a Scopus record 2014-18 and with a substantial abstract. We found that accuracy is highest in the medical and physical sciences Units of Assessment (UoAs) and economics, reaching 42% above the baseline (72% overall) in the best case. This is based on 1,000 bibliometric inputs and half of the articles used for training in each UoA. Prediction accuracies above the baseline for the social science, mathematics, engineering, arts, and humanities UoAs were much lower or close to zero. The Random Forest Classifier (standard or ordinal) and Extreme Gradient Boosting Classifier algorithms performed best from the 32 tested. Accuracy was lower if UoAs were merged or replaced by Scopus broad categories. We increased accuracy with an active learning strategy and by selecting articles with higher prediction probabilities, but this substantially reduced the number of scores predicted.
C1 [Thelwall, Mike; Kousha, Kayvan; Wilson, Paul; Makita, Meiko; Abdoli, Mahshid; Stuart, Emma; Levitt, Jonathan] Univ Wolverhampton, Stat Cybermetr & Res Evaluat Grp, Wolverhampton, England.
[Knoth, Petr; Cancellieri, Matteo] Open Univ, Knowledge Media Inst, Milton Keynes, England.
C3 University of Wolverhampton; Open University - UK
RP Thelwall, M (corresponding author), Univ Wolverhampton, Stat Cybermetr & Res Evaluat Grp, Wolverhampton, England.
EM m.thelwall@wlv.ac.uk
RI Thelwall, Mike/JDV-4700-2023
OI Thelwall, Mike/0000-0001-6065-205X; Wilson, Paul/0000-0002-1265-543X;
Cancellieri, Matteo/0000-0002-9558-9772; Kousha,
Kayvan/0000-0003-4827-971X; Abdoli, Mahshid/0000-0001-9251-5391
FU Scottish Funding Council; Research England; Higher Education Funding
Council for Wales; Department for the Economy, Northern Ireland; Future
Research Assessment Programme
FX This study was funded by Research England, Scottish Funding Council,
Higher Education Funding Council for Wales, and Department for the
Economy, Northern Ireland as part of the Future Research Assessment
Programme (https://www.jisc.ac.uk/future-research-assessment-programme).
The content is solely the responsibility of the authors and does not
necessarily represent the official views of the funders.
CR Abramo G, 2014, J INFORMETR, V8, P89, DOI 10.1016/j.joi.2013.10.011
Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Bol T, 2018, P NATL ACAD SCI USA, V115, P4887, DOI 10.1073/pnas.1719557115
Bonaccorsi A., 2020, Scholarly AssessmentReports, V2, P1, DOI [10.29024/sar.28, DOI 10.29024/SAR.28]
Buckle R.A., 2019, N. Z. Econ. Pap., V53, P144, DOI [10.1080/00779954.2018.1429486, DOI 10.1080/00779954.2018.1429486]
Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421
Chen YT, 2022, SCIENTOMETRICS, V127, P3317, DOI 10.1007/s11192-022-04371-0
COARA, 2022, Agreement on reforming research assessment
de Moya-Anegon F, 2018, J INFORMETR, V12, P1251, DOI 10.1016/j.joi.2018.10.004
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Fairclough R, 2022, LEARN PUBL, V35, P241, DOI 10.1002/leap.1417
Fox CW, 2019, ECOL EVOL, V9, P3599, DOI 10.1002/ece3.4993
Franceschini F, 2017, J INFORMETR, V11, P337, DOI 10.1016/j.joi.2017.02.005
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Gershoni A, 2018, J AAPOS, V22, P394, DOI 10.1016/j.jaapos.2018.03.012
Haddawy P, 2016, J INFORMETR, V10, P162, DOI 10.1016/j.joi.2015.12.005
Haffar S, 2019, MAYO CLIN PROC, V94, P670, DOI 10.1016/j.mayocp.2018.09.004
HEFCE, 2015, METR TID CORR AN REF
Hemlin S., 2009, Journal of Psychology of Science and Technology, V2, P5, DOI [10.1891/1939-7054.2.1.5, DOI 10.1891/1939-7054.2.1.5]
Herrera AJ, 1999, NATURE, V397, P467, DOI 10.1038/17194
Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a
Hinze S, 2019, SPRINGER HBK, P465, DOI 10.1007/978-3-030-02511-3_18
Hu YH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.101004
Jackson JL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022475
Jones S, 2019, ACCOUNT FINANC, V59, P2509, DOI 10.1111/acfi.12584
Jukola Saana, 2017, Perspectives on Science, V25, P124, DOI 10.1162/POSC_a_00237
KANG DY, 2018, P 2018 C N AM CHAPT, V1, P1647, DOI DOI 10.18653/V1/N18-1149
Kitayama S, 2017, J PERS SOC PSYCHOL, V112, P357, DOI 10.1037/pspa0000077
Kleminski R, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101200
Knoth Petr, 2012, D-Lib Magazine, V18, DOI 10.1045/november2012-knoth
Kousha K., 2022, ARXIV
Kravitz RL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010072
Larivière V, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162709
Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784
Levitt JM, 2011, INFORM PROCESS MANAG, V47, P300, DOI 10.1016/j.ipm.2010.09.005
Li J., 2020, P 1 WORKSHOP SCHOLAR, DOI 10.18653/v1/2020.sdp-1.14
Li MJ, 2019, IEEE SYS MAN CYBERN, P1172, DOI 10.1109/SMC.2019.8913961
Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914
Mattsson P, 2011, SCIENTOMETRICS, V87, P99, DOI 10.1007/s11192-010-0310-9
Medoff MH, 2003, SOUTH ECON J, V70, P425, DOI 10.2307/3648979
Morgan R, 2018, CAN MED ASSOC J, V190, pE487, DOI 10.1503/cmaj.180188
PLOS, 2022, CRIT PUBL
Prins A, 2016, 21ST INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY INDICATORS (STI 2016), P965
Qian YF, 2017, SCIENTOMETRICS, V110, P1351, DOI 10.1007/s11192-016-2235-4
REF2021, 2019, IND REV GUID SUBM 20
Ross JS, 2006, JAMA-J AM MED ASSOC, V295, P1675, DOI 10.1001/jama.295.14.1675
Settles B., 2011, ACT LEARN EXP DES WO, V16, P1
Tan J., 2020, P 58 ANN M ASS COMP, P6004, DOI DOI 10.18653/V1/2020.ACL-MAIN.534
Tennant JP, 2020, RES INTEGR PEER REV, V5, DOI 10.1186/s41073-020-00092-1
Thelwall M., 2022, arXiv
Thelwall M, 2021, LIBR INFORM SCI RES, V43, DOI 10.1016/j.lisr.2021.101094
Thelwall M, 2021, J INF SCI, V47, P809, DOI 10.1177/0165551520938678
Thelwall M, 2017, J INFORMETR, V11, P128, DOI 10.1016/j.joi.2016.12.002
Thelwall M, 2016, J ASSOC INF SCI TECH, V67, P1233, DOI 10.1002/asi.23474
Thelwall M, 2016, J INFORMETR, V10, P48, DOI 10.1016/j.joi.2015.11.007
Thelwall M, 2015, J INFORMETR, V9, P263, DOI 10.1016/j.joi.2015.02.004
Thelwell M, 2022, QUANT SCI STUD, V3, P208, DOI 10.1162/qss_a_00185
Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x
van den Besselaar P, 2009, RES EVALUAT, V18, P273, DOI 10.3152/095820209X475360
van Wesel M, 2014, SCIENTOMETRICS, V98, P1601, DOI 10.1007/s11192-013-1154-x
Wagner CS, 2019, RES POLICY, V48, P1260, DOI 10.1016/j.respol.2019.01.002
Wen JQ, 2020, IEEE INT CONF ELECTR, P303, DOI 10.1109/iceiec49280.2020.9152330
Wessely S, 1998, LANCET, V352, P301, DOI 10.1016/S0140-6736(97)11129-1
Whitley R., 2000, The Intellectual and Social Organization of the Sciences
Wilsdon J., 2016, The metric tide: Independent review of the role of metrics in research assessment and management, DOI DOI 10.4135/9781473978782
Xu JG, 2019, IEEE ACCESS, V7, P92248, DOI 10.1109/ACCESS.2019.2927011
Yuan WZ, 2022, J ARTIF INTELL RES, V75, P171
Zhao QH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101235
Zhongqi Su, 2020, 2020 Proceedings of Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), P101, DOI 10.1109/IPEC49694.2020.9114959
Zhu XP, 2018, INT CON ADV INFO NET, P534, DOI 10.1109/AINA.2018.00084
NR 72
TC 6
Z9 7
U1 7
U2 13
PU MIT PRESS
PI CAMBRIDGE
PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA
EI 2641-3337
J9 QUANT SCI STUD
JI Quant. Sci. Stud.
PD MAY 1
PY 2023
VL 4
IS 2
BP 547
EP 573
DI 10.1162/qss_a_00258
PG 27
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA K5CJ2
UT WOS:001016613900013
OA Green Accepted, Green Submitted, gold
DA 2024-09-05
ER
PT C
AU Zeng, LQ
Hu, H
Han, QW
Ye, L
Lei, Y
AF Zeng, Lingqiu
Hu, Han
Han, Qingwen
Ye, Lei
Lei, Yu
GP IEEE
TI Research on Task Offloading and Typical Application Based on Deep
Reinforcement Learning and Device-Edge-Cloud Collaboration
SO 2024 AUSTRALIAN & NEW ZEALAND CONTROL CONFERENCE, ANZCC
SE Australian and New Zealand Control Conference
LA English
DT Proceedings Paper
CT Australian and New Zealand Control Conference (ANZCC)
CY FEB 01-02, 2024
CL Gold Coast, AUSTRALIA
AB The ever evolving intelligent transportation systems may be able to provide low latency and high-quality service for intelligent connected vehicles (ICVs) on the basis of device-edge-cloud architecture. To match the requirement of vehicle-oriented task computing, the task offloading technology has received extensive attention, while making correct and fast offloading decisions to improve highly dynamic vehicular users' experience is still a considerable challenge. In this paper, we study a device-edge-cloud architecture, where tasks from vehicles can be partially offloaded with a dynamically offloading proportion. To deal with this problem, we firstly introduce SPSO (serial particle swarm optimization) algorithm to search optimal connected MEC (Multi-Access Edge Computing) node. Then we further design a novel offloading strategy based on the deep Q network (DQN), prioritized experience replay based double deep Q-learning network (PERDDQN), which considers priority weight of the sample and sampling probability in loss function definition. A typical complex task, bus remote takeover, is selected to verify the performance of proposed approach. Simulation results show that PERDDQN has lower system cost, faster convergence speed and higher task success rate than the other comparison algorithms.
C1 [Zeng, Lingqiu; Hu, Han] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China.
[Han, Qingwen; Ye, Lei] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China.
[Lei, Yu] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China.
C3 Chongqing University; Chongqing University; Chongqing University
RP Zeng, LQ (corresponding author), Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China.
EM zenglq@cqu.edu.cn; 20174328@cqu.edu.cn; hqw@cqu.edu.cn;
Yelei@cqu.edu.cn; leiyyu@cqu.edu.cn
FU special key project of Chongqing Technology Innovation and Application
Development [cstc2021jscx-gksbX0057]; special major project of Chongqing
Technology Innovation and Application Development [CSTB2022TIAD-STX0003]
FX This research is supported by the special key project of Chongqing
Technology Innovation and Application Development under Grant
No.cstc2021jscx-gksbX0057, and the special major project of Chongqing
Technology Innovation and Application Development under Grant
No.CSTB2022TIAD-STX0003.
CR Boukerche Azzedine, 2020, ACM Comput. Surv., V6
Chen Z, 2020, EURASIP J WIREL COMM, V2020, DOI 10.1186/s13638-020-01801-6
Dang XC, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11152326
Lin QZ, 2018, IEEE T EVOLUT COMPUT, V22, P32, DOI 10.1109/TEVC.2016.2631279
Liu JS, 2022, IEEE INTERNET THINGS, V9, P8315, DOI 10.1109/JIOT.2022.3155667
Maan U, 2021, AD HOC NETW, V120, DOI 10.1016/j.adhoc.2021.102565
Maleki H, 2021, SIU, P1
Shi JM, 2020, IEEE WCNC, DOI 10.1109/wcnc45663.2020.9120816
Taleb T, 2013, IEEE GLOB COMM CONF, P1291, DOI 10.1109/GLOCOM.2013.6831252
Wang B, 2022, PEERJ COMPUT SCI, V8, DOI 10.7717/peerj-cs.893
Zeng L., 2020, Mobile Information Systems, V2020, P1
Zhang WW, 2013, IEEE T WIREL COMMUN, V12, P4569, DOI 10.1109/TWC.2013.072513.121842
NR 12
TC 0
Z9 0
U1 3
U2 3
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2767-7230
EI 2767-7257
BN 979-8-3503-1497-7
J9 AUST N Z C CONF
PY 2024
BP 13
EP 18
DI 10.1109/ANZCC59813.2024.10432815
PG 6
WC Automation & Control Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems
GA BW6GM
UT WOS:001173666600003
DA 2024-09-05
ER
PT J
AU Lou, TF
Hung, WH
AF Lou, Ta-Feng
Hung, Wei-Hsi
TI Revival of Classical Algorithms: A Bibliometric Study on the Trends of
Neural Networks and Genetic Algorithms
SO SYMMETRY-BASEL
LA English
DT Article
DE algorithm; neural network; artificial neural network; genetic algorithm;
bibliometric; artificial intelligence; AI; Lotka's law
ID LOTKA LAW
AB The purpose of our bibliometric research was to capture and analyze the trends of two types of well-known classical artificial intelligence (AI) algorithms: neural networks (NNs) and genetic algorithms (GAs). Symmetry is a very popular international and interdisciplinary scientific journal that cover six major research subjects of mathematics, computer science, engineering science, physics, biology, and chemistry which are all related to our research on classical AI algorithms; therefore, we referred to the most innovative research articles of classical AI algorithms that have been published in Symmetry, which have also introduced new advanced applications for NNs and Gas. Furthermore, we used the keywords of "neural network algorithm" or "artificial neural network" to search the SSCI database from 2002 to 2021 and obtained 951 NN publications. For comparison purposes, we also analyzed GA trends by using the keywords "genetic algorithm" to search the SSCI database over the same period and we obtained 878 GA publications. All of the NN and GA publication results were categorized into eight groups for deep analyses so as to investigate their current trends and forecasts. Furthermore, we applied the Kolmogorov-Smirnov test (K-S test) to check whether our bibliometric research complied with Lotka's law. In summary, we found that the number of applications for both NNs and GAs are continuing to grow but the use of NNs is increasing more sharply than the use of GAs due to the boom in deep learning development. We hope that our research can serve as a roadmap for other NN and GA researchers to help them to save time and stay at the cutting edge of AI research trends.
C1 [Lou, Ta-Feng; Hung, Wei-Hsi] Natl Chengchi Univ, Dept Management Informat Syst, Taipei 116302, Taiwan.
C3 National Chengchi University
RP Lou, TF (corresponding author), Natl Chengchi Univ, Dept Management Informat Syst, Taipei 116302, Taiwan.
EM 103356505@nccu.edu.tw
OI Hung, Wei-Hsi/0000-0002-8480-8079
CR Abiodun OI, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00938
Adnan A, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12081292
Aldallal A, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13122306
Alhakami H, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102023
Bishop J. M., 1993, Artificial Neural Nets and Genetic Algorithms. Proceedings of the International Conference, P719
Blazewicz J, 1996, EUR J OPER RES, V93, P1, DOI 10.1016/0377-2217(95)00362-2
BOOKER LB, 1989, ARTIF INTELL, V40, P235, DOI 10.1016/0004-3702(89)90050-7
Caraka RE, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13071158
Cengiz AB, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102022
Chang TJ, 2000, COMPUT OPER RES, V27, P1271, DOI 10.1016/S0305-0548(99)00074-X
Chen SW, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102132
Cheng RW, 1996, COMPUT IND ENG, V30, P983, DOI 10.1016/0360-8352(96)00047-2
Chin ZH, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14030609
Chu PC, 1997, COMPUT OPER RES, V24, P17, DOI 10.1016/S0305-0548(96)00032-9
COILE RC, 1977, J AM SOC INFORM SCI, V28, P366, DOI 10.1002/asi.4630280610
Ehrgott M, 2000, OR SPEKTRUM, V22, P425, DOI 10.1007/s002910000046
Ernst AT, 2004, EUR J OPER RES, V153, P3, DOI 10.1016/S0377-2217(03)00095-X
Feng CW, 1997, J COMPUT CIVIL ENG, V11, P184, DOI 10.1061/(ASCE)0887-3801(1997)11:3(184)
Garud KS, 2021, INT J ENERG RES, V45, P6, DOI 10.1002/er.5608
Goldber D. E., 1988, Machine Learning, V3, P95, DOI 10.1023/A:1022602019183
Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947
GUPTA DK, 1987, SCIENTOMETRICS, V12, P33, DOI 10.1007/BF02016688
Han H, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102077
Hancock P.J.B., 1990, LECT NOTES COMPUT SC, V2, P292
Haroon M, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102045
Hartmann S, 1998, NAV RES LOG, V45, P733, DOI 10.1002/(SICI)1520-6750(199810)45:7<733::AID-NAV5>3.0.CO;2-C
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
HOLLAND JH, 1992, SCI AM, V267, P66, DOI 10.1038/scientificamerican0792-66
Hou DK, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13112082
Hussain M, 2019, ADV INTELL SYST, V840, P191, DOI 10.1007/978-3-319-97982-3_16
Hussain T., 1997, P 1997 ITRCTRIO RES
Jian WT, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13101904
Jiang T, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14081689
Kubanek M, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11091185
Lan P, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13091706
Liao LX, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13071133
Liu XH, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12010146
MANIEZZO V, 1994, IEEE T NEURAL NETWOR, V5, P39, DOI 10.1109/72.265959
Matricciani E., 1991, IEEE Transactions on Professional Communications, V34, P7, DOI 10.1109/47.68421
Meng FQ, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13061082
Mikhalev AS, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102036
Min SH, 2006, EXPERT SYST APPL, V31, P652, DOI 10.1016/j.eswa.2005.09.070
Mohapatra PK, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102078
NICHOLLS PT, 1989, J AM SOC INFORM SCI, V40, P379, DOI 10.1002/(SICI)1097-4571(198911)40:6<379::AID-ASI1>3.0.CO;2-Q
O'Shea K., 2015, ARXIV, V5, P23
Pan XZ, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11010052
Pao M.L., 1989, CONCEPT INFORM RETRI
PAO ML, 1985, INFORM PROCESS MANAG, V21, P305, DOI 10.1016/0306-4573(85)90055-X
Pater L, 2016, Arxiv, DOI arXiv:1605.00097
Potter W.G., 1988, Journal of Academic Librarianship, V14
POTTER WG, 1981, LIBR TRENDS, V30, P21
Rahman M.M., 2015, Inter. J. Comp. Sci. Technol, V6, P218
Rasheed J, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102098
Schaffer J. D., 1992, COGANN-92. International Workshop on Combinations of Genetic Algorithms and Neural Networks (Cat. No.92TH0435-8), P1, DOI 10.1109/COGANN.1992.273950
Sefiane S., 2012, Journal of Applied Finance and Banking, V2, P143
Sherstinsky A, 2020, PHYSICA D, V404, DOI 10.1016/j.physd.2019.132306
Sivanandam S. N., 2008, Genetic algorithms. Introduction to genetic algorithms, DOI DOI 10.1007/978-3-540-73190-0
Swift R.S., 2001, ACCELERATING CUSTOME
Syed O, 1995, THESIS CASE W RESERV
Tsai H.H., 2010, INT J IND MANUF ENG, V4, P75
Tsay M.Y., 2003, CHARACTERISTIC INFOR
Vidal T, 2012, OPER RES, V60, P611, DOI 10.1287/opre.1120.1048
VLACHY J, 1978, SCIENTOMETRICS, V1, P99, DOI 10.1007/BF02016842
Wang HZ, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14050863
Wang S-C., 2003, KLUWER INT SER ENG C, P81
Wang S, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14010048
WHITLEY D, 1994, STAT COMPUT, V4, P65, DOI 10.1007/BF00175354
Yadav N, 2015, An introduction to neural network methods for differential equations, DOI 10.1007/978-94-017-9816-7
Yang G, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14102138
Yarushkina NG, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE SYSTEMS, PROCEEDINGS, P357, DOI 10.1109/ICAIS.2002.1048127
Yasashvini R, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14091932
Yin C.Y., 2010, ENVIRON SCI-WAT RES, V5, P17
Yu CC, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11020179
Zhang Z, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12060993
Zhong YC, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13020228
NR 76
TC 2
Z9 2
U1 5
U2 14
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2073-8994
J9 SYMMETRY-BASEL
JI Symmetry-Basel
PD FEB
PY 2023
VL 15
IS 2
AR 325
DI 10.3390/sym15020325
PG 23
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA 9J2EX
UT WOS:000940008000001
OA Green Published, gold
DA 2024-09-05
ER
PT C
AU Liu, Y
Li, L
Wan, SH
Gao, ZQ
AF Liu, Yu
Li, Lei
Wan, Shuhong
Gao, Zhiqiao
BE Ma, H
Wang, W
Zhang, Y
TI RESEARCH ON CHINESE MULTI-DOCUMENT HIERARCHICAL TOPIC MODELING AUTOMATIC
EVALUATION METHODS
SO 2014 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND
INTELLIGENCE SYSTEMS (CCIS)
SE International Conference on Cloud Computing and Intelligence Systems
LA English
DT Proceedings Paper
CT 3rd IEEE International Conference on Cloud Computing and Intelligence
Systems (CCIS)
CY NOV 27-29, 2014
CL PEOPLES R CHINA
DE Hierarchical LDA; Hierarchical Topic Modeling; Automatic Evaluation
Methods
ID CLUSTER VALIDITY MEASURE
AB Hierarchical Latent Dirichlet Allocation (hLDA) has achieved good results in the supervised and unsupervised multi-document hierarchical topic modeling. However, the result is diversified. The results maintain randomness even with the same parameters. Thus, this paper proposed automatic evaluation methods for unsupervised multi-document hLDA modeling results over previous studies. This paper used 10 topics of corpus of ACL2013 multilingual multi-document summarization and found 90 topics of news as experimental corpus, then compared the different modeling results. The results showed that automatic evaluation method can provide a good reference for the optimization of the modeling results.
C1 [Liu, Yu; Li, Lei; Wan, Shuhong; Gao, Zhiqiao] Beijing Univ Posts & Telecommun, Sch Comp Sci, Ctr Intelligence Sci & Technol, Beijing 100864, Peoples R China.
C3 Beijing University of Posts & Telecommunications
RP Liu, Y (corresponding author), Beijing Univ Posts & Telecommun, Sch Comp Sci, Ctr Intelligence Sci & Technol, Beijing 100864, Peoples R China.
EM 147121500@qq.com
RI Chen, Qi/GVU-3024-2022; Li, Lei/AAN-5959-2020
OI Chen, Qi/0000-0002-6568-7267;
FU National Natural Science Foundation of China [61202247, 71231002,
61202248, 61472046]; EU FP7 IRSES MobileCloud Project [612212]; 111
Project of China [B08004]; Engineering Research Center of Information
Networks, Ministry of Education; Fundamental Research Funds for the
Central Universities [2013RC0304]; Beijing Institute of Science and
Technology Information
FX This work was supported by the National Natural Science Foundation of
China under Grant 61202247, 71231002, 61202248 and 61472046; EU FP7
IRSES MobileCloud Project (Grant No. 612212); the 111 Project of China
under Grant B08004; Engineering Research Center of Information Networks,
Ministry of Education; the Fundamental Research Funds for the Central
Universities under Grant2013RC0304; the project of Beijing Institute of
Science and Technology Information.
CR Blei DM, 2004, ADV NEUR IN, V16, P17
Brown P. F., 1992, Computational Linguistics, V18, P31
Celikyilmaz A, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P815
Chang J, 2009, Adv. Neural Inf. Process. Syst., P288
Chou CH, 2004, PATTERN ANAL APPL, V7, P205, DOI 10.1007/s10044-004-0218-1
DAVIES DL, 1979, IEEE T PATTERN ANAL, V1, P224, DOI 10.1109/TPAMI.1979.4766909
Dunn J. C., 1974, Journal of Cybernetics, V4, P95, DOI 10.1080/01969727408546059
[衡伟 Heng Wei], 2013, [中文信息学报, Journal of Chinese Information Processing], V27, P117
Jia Yu, 2013, J HENAN SCI TECHNOLO, P273
Liu Hongyan, 2012, MULTIDOCUMENT SUMMAR
Liu Pingan, 2012, CHINESE MULTIDOCUMEN
Steinberge Josef, 2005, P 7 INT C ISIM
Wang JS, 2008, PATTERN RECOGN, V41, P506, DOI 10.1016/j.patcog.2007.06.027
Yang XL, 2006, NEURAL PROCESS LETT, V23, P325, DOI 10.1007/s11063-006-9005-x
Zhang YJ, 2008, INFORM SCIENCES, V178, P1205, DOI 10.1016/j.ins.2007.10.004
NR 15
TC 0
Z9 0
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2376-5933
BN 978-1-4799-4719-5
J9 INT CONF CLOUD COMPU
PY 2014
BP 444
EP 449
PG 6
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BG8UT
UT WOS:000392727800084
DA 2024-09-05
ER
PT C
AU Zhang, QW
Zhang, HX
AF Zhang, Qingqing
Zhang, Hongxin
GP IEEE
TI Research on evaluation metric of cross device bypass attack based on
deep learning
SO 2022 CROSS STRAIT RADIO SCIENCE & WIRELESS TECHNOLOGY CONFERENCE,
CSRSWTC
SE Cross Strait Quad Regional Radio Science and Wireless Technology
Conference
LA English
DT Proceedings Paper
CT Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC)
CY DEC 17-18, 2022
CL Haidian, PEOPLES R CHINA
DE side channel attack; SPECK; deep learning; cross device; evaluation
metric
AB Based on the bypass analysis of SPECK encryption algorithm, this paper considers the feasibility of using commonly used in-depth learning evaluation index to evaluate the attack efficiency in real cross-device scenarios.We considered the impact of in-depth learning model evaluation indicators for side channel attacks in three different scenarios. We showed that using different devices and keys or changing the chip base during the analysis and attack phase would significantly affect the accuracy indicators compared with changing the probe measurement position.Our experimental results show that, although accuracy is the most commonly used indicator for monitoring and evaluating neural networks, it can result in a significant underestimation of attack efficiency under cross-device conditions.
C1 [Zhang, Qingqing; Zhang, Hongxin] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing, Peoples R China.
C3 Beijing University of Posts & Telecommunications
RP Zhang, QW (corresponding author), Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing, Peoples R China.
EM zhangqingqing24630@bupt.edu.cn; hongxinzhang@bupt.edu.cn
RI Zhang, Hongxin/T-3714-2019
CR Beaulieu R, 2015, DES AUT CON, DOI 10.1145/2744769.2747946
Benadjila R., 2018, IACR Cryptol. ePrint Arch.
Biryukov A, 2016, LECT NOTES COMPUT SC, V9696, P537, DOI 10.1007/978-3-319-39555-5_29
Kim K, 2018, AES WIRELESS KEYBOAR
Picek S., 2018, IACR Trans. Cryptogr. Hardw. Embed. Syst., V2019, P209, DOI [10.13154/tches.v2019.i1.209-237, DOI 10.13154/TCHES.V2019.I1.209-237, 10.13154/tches.v2019.i1.209- 237]
Renauld M, 2011, LECT NOTES COMPUT SC, V6632, P109, DOI 10.1007/978-3-642-20465-4_8
Standaert FX, 2009, LECT NOTES COMPUT SC, V5479, P443, DOI 10.1007/978-3-642-01001-9_26
Zhang Jiajia, 2021, RES EVALUATION INDEX, DOI [10.27517/d.cnki.gzkju.2021.001644, DOI 10.27517/D.CNKI.GZKJU.2021.001644]
NR 8
TC 0
Z9 0
U1 0
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2378-1297
BN 978-1-6654-6096-5
J9 Cross Strait Quad Re
PY 2022
DI 10.1109/CSRSWTC56224.2022.10098470
PG 3
WC Engineering, Electrical & Electronic; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Telecommunications
GA BV1QQ
UT WOS:000995192000176
DA 2024-09-05
ER
PT J
AU Heringa, PW
Hessels, LK
van der Zouwen, M
AF Heringa, Pieter W.
Hessels, Laurens K.
van der Zouwen, Marielle
TI The influence of proximity dimensions on international research
collaboration: an analysis of European water projects
SO INDUSTRY AND INNOVATION
LA English
DT Article
DE Proximity; international research collaboration; Framework Programmes;
logistic regression; O31; R12
ID EMPIRICAL-EVIDENCE; COOPERATION; NETWORKS; PATTERNS; DISTANCE; SCIENCE
AB In this paper we investigate the effect of geographical, organisational and social proximity on the propensity of organisations to collaborate internationally in knowledge production. We apply logistic regression models on data from water research projects in the European Union's Framework Programme 1-7. Although the main challenges in the water sector typically cut across borders, knowledge development is traditionally organised in national systems. These systems have a long tradition in collaborating across societal sectors. Despite the fact that about half of the collaborations in the Framework Programmes are not proximate at all, we show that all three proximity dimensions contribute to the propensity to collaborate. The three dimensions of proximity are weakly correlated, and there is a small substitution effect between organisational and geographical proximity.
C1 [Heringa, Pieter W.] Minist Econ Affairs, Directorate Gen Enterprise & Innovat, The Hague, Netherlands.
[Hessels, Laurens K.; van der Zouwen, Marielle] KWR Watercycle Res Inst, Nieuwegein, Netherlands.
[Heringa, Pieter W.; Hessels, Laurens K.] Rathenau Inst, The Hague, Netherlands.
C3 KWR Watercycle Research Institute; Royal Netherlands Academy of Arts &
Sciences; Rathenau Institute (KNAW)
RP Heringa, PW (corresponding author), Minist Econ Affairs, Directorate Gen Enterprise & Innovat, The Hague, Netherlands.; Heringa, PW (corresponding author), Rathenau Inst, The Hague, Netherlands.
EM p.w.heringa@minez.nl
OI Hessels, Laurens/0000-0002-6399-7050
CR Aguiléra A, 2012, IND INNOV, V19, P187, DOI 10.1080/13662716.2012.669609
Aldieri L, 2011, ECON INNOV NEW TECH, V20, P597, DOI 10.1080/10438599.2011.554632
[Anonymous], DISTRIBUTED ORG SCI
Augier M., 1999, J KNOWL MANAG, V3, P252, DOI DOI 10.1108/13673279910304005
Autant-Bernard C, 2007, PAP REG SCI, V86, P495, DOI 10.1111/j.1435-5957.2007.00132.x
Balland PA, 2013, ECON INNOV NEW TECH, V22, P47, DOI 10.1080/10438599.2012.699773
Balland PA, 2012, REG STUD, V46, P741, DOI 10.1080/00343404.2010.529121
Barber Michael, 2008, NEMO NETWORK MODELS
Barber MJ, 2013, REG STUD, V47, P1283, DOI 10.1080/00343404.2011.622745
Boschma RA, 2005, REG STUD, V39, P61, DOI 10.1080/0034340052000320887
Bouba-Olga O, 2012, PAPERS REGIONAL SCI, V91, P355
Bozeman B, 2004, RES POLICY, V33, P599, DOI 10.1016/j.respol.2004.01.008
BRESCHI S., 2003, MOBILITY SOCIAL NETW
Broekel T, 2012, J ECON GEOGR, V12, P409, DOI 10.1093/jeg/lbr010
Chessa A, 2013, SCIENCE, V339, P650, DOI 10.1126/science.1227970
Cunningham SW, 2012, PAP REG SCI, V91, P723, DOI 10.1111/j.1435-5957.2012.00416.x
Delanghe Henri, 2009, EUROPEAN SCI TECHNOL, DOI [10.4337/9781849803281, DOI 10.4337/9781849803281]
Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4
European Innovation Partnership, 2014, BARR BOTTL INN WAT S
Ferru M, 2010, IND INNOV, V17, P531, DOI 10.1080/13662716.2010.509998
Fleming L, 2007, ORGAN SCI, V18, P938, DOI 10.1287/orsc.1070.0289
Frenken K, 2009, J INFORMETR, V3, P222, DOI 10.1016/j.joi.2009.03.005
Heller-Schuh B, 2011, JRC SCI TECHNICAL RE
Heringa P. W., 2015, THESIS
Heringa PW, 2016, WATER POLICY, V18, P493, DOI 10.2166/wp.2015.185
Hessels LK, 2008, RES POLICY, V37, P740, DOI 10.1016/j.respol.2008.01.008
Hoekman J, 2010, RES POLICY, V39, P662, DOI 10.1016/j.respol.2010.01.012
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
KAY R, 1987, BIOMETRIKA, V74, P495, DOI 10.1093/biomet/74.3.495
Knoben J, 2006, INT J MANAG REV, V8, P71, DOI 10.1111/j.1468-2370.2006.00121.x
Laudel G, 2001, INT J TECHNOL MANAGE, V22, P762, DOI 10.1504/IJTM.2001.002990
Leydesdorff L, 2008, J INFORMETR, V2, P317, DOI 10.1016/j.joi.2008.07.003
Melin G, 2000, RES POLICY, V29, P31, DOI 10.1016/S0048-7333(99)00031-1
NARIN F, 1991, SCIENTOMETRICS, V21, P313, DOI 10.1007/BF02093973
Nieminen M., 2001, SITRA REPORTS 11
Paier M, 2011, IND INNOV, V18, P89, DOI 10.1080/13662716.2010.528935
Pond R, 2007, PAP REG SCI, V86, P423, DOI 10.1111/j.1435-5957.2007.00126.x
Poti B., 2007, Science and Public Policy, V34, P417, DOI [10.3152/030234207X239401, DOI 10.3152/030234207X239401]
Rallet A., 1999, GEOJOURNAL, V494, P373, DOI 10.1038/sj.bjc.6690389
Scherngell T, 2013, PAP REG SCI, V92, P555, DOI 10.1111/j.1435-5957.2012.00419.x
Scherngell T, 2011, ANN REGIONAL SCI, V46, P247, DOI 10.1007/s00168-009-0334-3
SINNOTT RW, 1984, SKY TELESCOPE, V68, P159
Ter Wal A. L. J, 2009, THESIS
Thomas D.A., 2005, CRISIS INNOVATION WA
Weterings A, 2009, IND INNOV, V16, P11, DOI 10.1080/13662710902728035
NR 45
TC 16
Z9 16
U1 2
U2 37
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1366-2716
EI 1469-8390
J9 IND INNOV
JI Ind. Innov.
PD NOV
PY 2016
VL 23
IS 8
BP 753
EP 772
DI 10.1080/13662716.2016.1215240
PG 20
WC Economics; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA DV5JU
UT WOS:000382964100006
DA 2024-09-05
ER
PT J
AU Patino-Ramirez, F
O'Sullivan, C
AF Patino-Ramirez, F.
O'Sullivan, C.
TI Analysis of the growth, trends and prevalent topics in Geotechnical
Engineering (1998-2022) using topic modelling
SO GEOTECHNIQUE LETTERS
LA English
DT Article
DE Research output; Latent Dirichlet Allocation (LDA); Topic modelling;
Geotechnical Engineering; Text Mining; History; Data
AB Data gathered from 65,922 articles published in 30 Geotechnical Engineering journals between 1998-2022 were used to build a topic model and study the evolution of research output in the field. Over this period, the number of journal publications has grown exponentially with the number of articles published per year doubling every 6.3 years. The average citations per article (32.7) are skewed by highly-cited articles, which make up 7.8% of the articles but account for 34.5 of the total number of citations. The articles' country of origin has become increasingly centralised, with nearly half the articles published between 2018-2022 coming from China (39%) and the United States (10%). The topic distribution in the field has become highly specialised, with emerging topics being fueled by: i) new technologies and methods (i.e., data science and sensing techniques - the fastest-growing topics), and ii) rising applications seemingly related to mitigation (e.g. offshore and energy geotechnics) and adaptation (e.g., geohazards, mass movements) to climate change. As a consequence, traditional topics (e.g. soil and rock mechanics) have reduced their share in the field, but still remain among the most cited topics in geotechnical engineering.
C1 [Patino-Ramirez, F.; O'Sullivan, C.] Imperial Coll, Dept Civil & Environm Engn, London, England.
C3 Imperial College London
RP Patino-Ramirez, F (corresponding author), Imperial Coll, Dept Civil & Environm Engn, London, England.
EM lpatinor@ic.ac.uk
CR Burland J. B., 2012, ICE manual of geotechnical engineering, VI, P17, DOI [10.1680/moge.57074.0017, DOI 10.1680/MOGE.57074.0017]
Chauhan U, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3462478
Das B.M., 1999, PRINCIPLES FDN ENG, Vfourth
Elsevier B.V, 2023, Elsevier developer portal
Melis G, 2017, Arxiv, DOI arXiv:1707.05589
National Science Board. (NSB), 2021, PUBL OUTP US TRENDS
Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263
Scimago Lab, 2023, Journal rankings on geotechnical engineering and engineering geology
The MathWorks Inc, 2022, Text analytics toolbox version: 9.4 (r2022b)
NR 9
TC 0
Z9 0
U1 7
U2 7
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 2049-825X
EI 2045-2543
J9 GEOTECH LETT
JI Geotech. Lett.
PD FEB 28
PY 2024
VL 14
IS 1
BP 1
EP 19
DI 10.1680/jgele.23.00097
PG 19
WC Engineering, Geological
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA KO3K0
UT WOS:001180865500001
DA 2024-09-05
ER
PT J
AU Di Caro, L
Cataldi, M
Schifanella, C
AF Di Caro, Luigi
Cataldi, Mario
Schifanella, Claudio
TI The d-index: Discovering dependences among scientific
collaborators from their bibliographic data records
SO SCIENTOMETRICS
LA English
DT Article
DE Evaluation metrics; Social networks; Research evaluation; Collaboration
analysis; Data visualization
ID SOCIAL NETWORK; H-INDEX
AB The evaluation of the work of a researcher and its impact on the research community has been deeply studied in literature through the definition of several measures, first among all the h-index and its variations. Although these measures represent valuable tools for analyzing researchers' outputs, they usually assume the co-authorship to be a proportional collaboration between the parts, missing out their relationships and the relative scientific influences. In this work, we propose the d-index, a novel measure that estimates the dependence degree between authors on their research environment along their entire scientific publication history. We also present a web application that implements these ideas and provides a number of visualization tools for analyzing and comparing scientific dependences among all the scientists in the DBLP bibliographic database. Finally, relying on this web environment, we present case and user studies that highlight both the validity and the reliability of the proposed evaluation measure.
C1 [Di Caro, Luigi; Cataldi, Mario; Schifanella, Claudio] Univ Turin, Dept Comp Sci, Turin, Italy.
C3 University of Turin
RP Di Caro, L (corresponding author), Univ Turin, Dept Comp Sci, Turin, Italy.
EM dicaro@di.unito.it
RI Schifanella, Claudio/JVP-2818-2024; Di, Luigi/C-8149-2011
OI Schifanella, Claudio/0000-0001-7449-6529; Di, Luigi/0000-0002-7570-637X
CR [Anonymous], 2010 2 INT C COMM SY
Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7
BEAVER DD, 1979, SCIENTOMETRICS, V1, P133, DOI 10.1007/BF02016966
BRANDAO W.C., 2007, Inf. Inf., V12
Chen P, 2007, J INFORMETR, V1, P8, DOI 10.1016/j.joi.2006.06.001
CHUBIN DE, 1976, SOCIOL QUART, V17, P448, DOI 10.1111/j.1533-8525.1976.tb01715.x
CRANE D, 1969, AM SOCIOL REV, V34, P335, DOI 10.2307/2092499
Feeney MK, 2010, SCIENTOMETRICS, V85, P767, DOI 10.1007/s11192-010-0256-y
Fisher RA., 1918, T ROY SOC EDINBURGH, V52, P399, DOI DOI 10.1017/S0080456800012163
Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799
GOODMAN LA, 1954, J AM STAT ASSOC, V49, P732, DOI 10.2307/2281536
Hou H, 2008, SCIENTOMETRICS, V75, P189, DOI 10.1007/s11192-007-1771-3
HUNT R, 1991, NATURE, V352, P187, DOI 10.1038/352187a0
Imperial J, 2007, SCIENTOMETRICS, V71, P271, DOI 10.1007/s11192-007-1665-4
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
Kendall MG, 1938, BIOMETRIKA, V30, P81, DOI 10.2307/2332226
Melin G, 1996, SCIENTOMETRICS, V36, P363, DOI 10.1007/BF02129600
Moody J, 2004, AM SOCIOL REV, V69, P213, DOI 10.1177/000312240406900204
Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132]
Pelleg D., 2000, P 17 INT C MACH LEAR
Pepe A., 2010, SCIENTOMETRICS, V85
Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105
Radicchi F, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.056103
Rodriguez MA, 2008, J INFORMETR, V2, P195, DOI 10.1016/j.joi.2008.04.002
Schmidt RH., 1987, Bull Ecol Soc Am, V68, P8, DOI [10.2307/20166549, DOI 10.2307/20166549]
Shapin S., 1981, MED HIST, V25, P341
Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z
Tang J, 2007, IEEE DATA MINING, P292, DOI 10.1109/ICDM.2007.30
Tang J, 2010, ACM T KNOWL DISCOV D, V5, DOI 10.1145/1870096.1870098
Torgerson W, 1958, Theory and methods of scaling
Verhagen JV, 2003, NATURE, V426, P602, DOI 10.1038/426602a
Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002
Wang C., 2010, P 16 ACM SIGKDD INT, P203, DOI DOI 10.1145/1835804.1835833
Yan EJ, 2009, J AM SOC INF SCI TEC, V60, P2107, DOI 10.1002/asi.21128
NR 34
TC 8
Z9 8
U1 0
U2 60
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2012
VL 93
IS 3
BP 583
EP 607
DI 10.1007/s11192-012-0762-1
PG 25
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 035RD
UT WOS:000310964500002
DA 2024-09-05
ER
PT J
AU Daud, A
Li, JZ
Zhou, LZ
Muhammad, F
AF Daud, Ali
Li, Juanzi
Zhou, Lizhu
Muhammad, Faqir
TI Temporal expert finding through generalized time topic modeling
SO KNOWLEDGE-BASED SYSTEMS
LA English
DT Article
DE Temporal expert finding; Conferences influence; Generalized time topic
modeling; Unsupervised learning
ID MIXTURE MODEL
AB This paper addresses the problem of semantics-based temporal expert finding, which means identifying a person with given expertise for different time periods. For example, many real world applications like reviewer matching for papers and finding hot topics in newswire articles need to consider time dynamics. Intuitively there will be different reviewers and reporters for different topics during different time periods. Traditional approaches used graph-based link structure by using keywords based matching and ignored semantic information, while topic modeling considered semantics-based information without conferences influence (richer text semantics and relationships between authors) and time information simultaneously. Consequently they result in not finding appropriate experts for different time periods. We propose a novel Temporal-Expert-Topic (TET) approach based on Semantics and Temporal Information based Expert Search (STMS) for temporal expert finding, which simultaneously models conferences influence and time information. Consequently, topics (semantically related probabilistic clusters of words) occurrence and correlations change over time, while the meaning of a particular topic almost remains unchanged. By using Bayes Theorem we can obtain topically related experts for different time periods and show how experts' interests and relationships change over time Experimental results on scientific literature dataset show that the proposed generalized time topic modeling approach significantly outperformed the non-generalized time topic modeling approaches, due to simultaneously capturing conferences influence with time information (C) 2010 Elsevier B.V. All rights reserved.
C1 [Daud, Ali; Li, Juanzi; Zhou, Lizhu] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China.
[Muhammad, Faqir] Allama Iqbal Open Univ, Dept Math & Stat, Sector H 8, Islamabad 44000, Pakistan.
C3 Tsinghua University
RP Daud, A (corresponding author), Tsinghua Univ, Dept Comp Sci & Technol, 1-308 FIT Bldg, Beijing 100084, Peoples R China.
RI Daud, Adil/T-3079-2019; Daud, Ali/ABD-4485-2020; Li,
Zhiyuan/AAT-1121-2020; Daud, Ali/G-6568-2017
OI Daud, Adil/0000-0002-6617-8421; Daud, Ali/0000-0002-8284-6354
FU National Natural Science Foundation of China [60973102, 60703059];
Chinese National Key Foundation Research and Development Plan
[2007CB310803]; Higher Education Commission, Islamabad, Pakistan
FX The work is supported by the National Natural Science Foundation of
China under Grant (60973102, 60703059). Chinese National Key Foundation
Research and Development Plan under Grant (2007CB310803) and Higher
Education Commission, Islamabad, Pakistan for providing scholarship to
the first author the main contributor of this work. We are thankful to
Jie Tang for sharing his topic modeling codes.
CR Alonso O., 2007, ACM SIGIR Forum, V41
Andrieu C, 2003, MACH LEARN, V50, P5, DOI 10.1023/A:1020281327116
[Anonymous], P 26 ACM SIGIR INT C
[Anonymous], 2008, P 14 ACM SIGKDD INT
[Anonymous], P INT AS PAC WEB C W
[Anonymous], P 15 ANN C UNC ART I
Balog K., 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P43, DOI 10.1145/1148170.1148181
BALOG K, 2007, P 30 ANN INT ACM SIG, P551, DOI DOI 10.1145/1277741.1277836
Blei D.M., 2006, P 23 INT C MACHINE L, P113, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859, 10.1145/1143844.114385]
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Cao Y., 2005, RES EXPERT SEARCH EN
DAUD A, 2009, P INT C ADV DAT MIN
DAUD A, 2010, J FRONTIERS IN PRESS, DOI DOI 10.1007/S11704-009-0062-Y
*DBLP, DBLP BIBL DAT
Erten C., 2003, EXPLORING COMPUTING
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
HAWKING D, 2004, P 15 C AUSTR DAT
Li MQ, 2008, KNOWL-BASED SYST, V21, P704, DOI 10.1016/j.knosys.2008.03.025
LI Y, 2008, P INT AS PAC WEB C W
LIU X, 2005, INFORM PROCESSING MA, V41, P681
McCallum A., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P169, DOI 10.1145/347090.347123
Mimno D, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P500
Mutschke P, 2003, LECT NOTES COMPUT SC, V2810, P155, DOI 10.1007/978-3-540-45231-7_15
NALLAPATI R, 2007, P SIGKDD INT C KNOWL
NIE Z, 2007, P 16 INT C WORLD WID, P81
PETKOVA D, 2007, P ACM SIGIR INT C RE
Popescul A, 2000, IEEE ADVANCES IN DIGITAL LIBRARIES 2000, PROCEEDINGS, P173, DOI 10.1109/ADL.2000.848380
ROSENZVI M, 2004, P 20 INT C UNC ART I
White Scott, 2003, KDD '03, P266, DOI 10.1145/956750.956782
XueruiWang Andrew, 2006, International Conference on Knowledge discovery and data mining, P424
ZENG J, 2008, KNOWL-BASED SYST, V21, P704
Zhai C., 2001, Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR'01, P334, DOI DOI 10.1145/383952.384019
Zhang J, 2008, LECT NOTES ARTIF INT, V5012, P466, DOI 10.1007/978-3-540-68125-0_41
Zhang J, 2007, LECT NOTES COMPUT SC, V4443, P1066
NR 34
TC 43
Z9 44
U1 0
U2 23
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0950-7051
EI 1872-7409
J9 KNOWL-BASED SYST
JI Knowledge-Based Syst.
PD AUG
PY 2010
VL 23
IS 6
BP 615
EP 625
DI 10.1016/j.knosys.2010.04.008
PG 11
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 633UO
UT WOS:000280532400015
DA 2024-09-05
ER
PT J
AU Besimi, N
Çiço, B
Shehu, V
Besimi, A
AF Besimi, Nuhi
Cico, Betim
Shehu, Visar
Besimi, Adrian
TI EVALUATION OF MACHINE LEARNING TECHNIQUES FOR RESEARCH ARTICLES
RECOMMANDATION
SO INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY
LA English
DT Article
DE recommendation system; supervised learning; unsupervised learning; text
mining
AB Recently, application of machine learning techniques on textual data has become a crucial factor in terms of extracting useful and unknown information from textual documents. This research adds to the machine learning community by evaluating some of the most significant text mining techniques for unsupervised and supervised learning that will supposedly ease the process of literature review for researchers. Furthermore, it evaluates the accuracy and execution time for all the phases of the model by comparing multiple techniques. Results showed that our proposed model can have a positive impact in terms of easing the processing of literature reviews and identify trend topics for a given field. On the other hand, this solution does not perform very well in execution time as the volume of data increases.
C1 [Besimi, Nuhi] South East European Univ, Tetovo, North Macedonia.
[Shehu, Visar; Besimi, Adrian] South East European Univ, Fac Contemporary Sci & Technol, Tetovo, North Macedonia.
[Cico, Betim] Epoka Univ, Skopje, North Macedonia.
RP Besimi, N (corresponding author), South East European Univ, Tetovo, North Macedonia.
EM nuhibesimi@gmail.com; bcico@epoka.edu.al; v.shehu@seeu.edu.mk;
a.besimi@seeu.edu.mk
RI Cico, Betim/N-4797-2019; Cico, Betim/ABH-8348-2020; Shehu,
Visar/HLX-2722-2023; Besimi, Adrian/U-5817-2019
OI Cico, Betim/0000-0001-9078-6147; Besimi, Nuhi/0000-0002-8264-0444
CR Besimi N., 2017, 6 MED C EMB COMP, P1
Besimi N., 2019, 7 MED C EMB COMP MEC, P1
Bogers T, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P287
Chaitanya V, 2017, INT CONF SOFT COMP, P178, DOI 10.1109/ISCMI.2017.8279622
Denscombe M., 2014, The good research guide: for small-scale social research projects, V5th
Fasheng Liu, 2011, Proceedings 2011 IEEE 2nd International Conference on Software Engineering and Service Science (ICSESS 2011), P196, DOI 10.1109/ICSESS.2011.5982288
Garay A. B., 2011, Proceedings of the 2011 11th International Conference on Hybrid Intelligent Systems (HIS 2011), P572, DOI 10.1109/HIS.2011.6122168
Gupta Tanvi, 2019, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), P10, DOI 10.1109/COMITCon.2019.8862199
Kim CS, 2018, IEEE INT CONF BIG DA, P5360, DOI 10.1109/BigData.2018.8622539
Kumar S, 2019, BIG DATA MIN ANAL, V2, P240, DOI 10.26599/BDMA.2018.9020037
Lee YJ, 2015, INT CONF ADV COMMUN, P556, DOI 10.1109/ICACT.2015.7224857
Putri FK, 2017, IEEE INT CONGR BIG, P533, DOI 10.1109/BigDataCongress.2017.80
Tzou N, 2012, IEEE VLSI TEST SYMP, P140, DOI 10.1109/VTS.2012.6231093
Zhang XD, 2017, PROC INT CONF DATA, P1612, DOI 10.1109/ICDE.2017.235
NR 14
TC 1
Z9 1
U1 1
U2 4
PU UNION SCIENTISTS BULGARIA
PI SOFIA
PA 1505 SOFIA 39, MADRID BLVD, FLR 2, SOFIA, 00000, BULGARIA
SN 1313-8251
J9 INT J INF TECHNOL SE
JI Int. J. Inf. Technol. Secur.
PY 2020
VL 12
IS 1
BP 75
EP 86
PG 12
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA KR9LD
UT WOS:000517933700006
DA 2024-09-05
ER
PT J
AU Manzoor, A
Asghar, S
Amjad, T
AF Manzoor, Ayesha
Asghar, Sohail
Amjad, Tehmina
TI Toward a New Paradigm for Author Name Disambiguation
SO IEEE ACCESS
LA English
DT Article
DE Semantics; Deep learning; Convolutional neural networks; Training;
Support vector machines; Libraries; Collaboration; Author name
disambiguation; digital library; deep learning; classification; word
embedding; journal descriptor; semantic type
AB Author Name Disambiguation (AND) has emerged as a significant challenge in the bibliometric context with the growing volume of scientific literature. When citations written by different authors have the same names (polysemy or homonym names), and when an author has different names, there is ambiguity (synonyms or name variants). It is difficult to associate a citation with the correct author. Polysemy and synonyms cause merging and splitting anomalies in the citations. These anomalies affect the quantification of an author's productivity (bibliometric analysis) and the reliability and quality of the information retrieved. Many techniques for AND have been proposed in the literature; most of them do not go beyond string matching or text matching. Most of the existing work do not consider the context or semantics of the terms used in the citations. In this study, the AND problem is resolved semantically using the deep learning technique on the PubMed dataset. The experimental results show that the proposed method achieves overall (11.72 %, 12.5 %, and 12.1 %) higher precision, recall, and f-measure than the pairwise class classification.
C1 [Manzoor, Ayesha; Amjad, Tehmina] Int Islamic Univ Islamabad, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan.
[Asghar, Sohail] COMSATS Univ Islamabad, Dept Comp Sci, Islamabad 44000, Pakistan.
C3 International Islamic University, Pakistan; COMSATS University Islamabad
(CUI)
RP Manzoor, A (corresponding author), Int Islamic Univ Islamabad, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan.
EM ayeshamanzoor1@gmail.com
RI Amjad, Tehmina/GLS-0209-2022
OI asghar, sohail/0000-0001-6883-3584; Amjad, Tehmina/0000-0003-1201-498X;
manzoor, ayesha/0000-0002-4754-2929
CR Amancio DR, 2015, SCIENTOMETRICS, V102, P465, DOI 10.1007/s11192-014-1381-9
Amancio DR, 2012, EPL-EUROPHYS LETT, V99, DOI 10.1209/0295-5075/99/48002
[Anonymous], 2014, P COLING 2014 25 INT
Atarashi K, 2017, LECT NOTES ARTIF INT, V10234, P83, DOI 10.1007/978-3-319-57454-7_7
Bilenko Mikhail, 2003, 9 ACM SIGKDD INTCONF, P39, DOI DOI 10.1145/956750.956759
Deng CH, 2020, IEEE ACCESS, V8, P28375, DOI 10.1109/ACCESS.2020.2972372
Dogan RI, 2009, DATABASE-OXFORD, DOI 10.1093/database/bap018
Gomide J, 2017, SCIENTOMETRICS, V112, P747, DOI 10.1007/s11192-017-2410-2
Huang XF, 2020, KNOWL-BASED SYST, V204, DOI 10.1016/j.knosys.2020.106230
Humphrey Susanne M, 2006, AMIA Annu Symp Proc, P960
Tran HN, 2014, LECT NOTES COMPUT SC, V8397, P123, DOI 10.1007/978-3-319-05476-6_13
Hussain I, 2018, J INF SCI, V44, P830, DOI 10.1177/0165551518761011
Hussain I, 2017, KNOWL ENG REV, V32, DOI 10.1017/S0269888917000182
Hussain M, 2019, ADV INTELL SYST, V840, P191, DOI 10.1007/978-3-319-97982-3_16
Jamshidi MB, 2020, IEEE ACCESS, V8, P109581, DOI 10.1109/ACCESS.2020.3001973
Jhawar K., 2020, P 20 ACMIEEE JOINT C, P469
Kim K, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2369, DOI 10.1145/3357384.3358153
Kim Y., 2014, P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA P 2014 C EMP METH NA, DOI [10.3115/v1/D14-1181, DOI 10.3115/V1/D14-1181]
Liu WL, 2014, J ASSOC INF SCI TECH, V65, P765, DOI 10.1002/asi.23063
Manzoor A, GITHUB
Milojevic S, 2013, J INFORMETR, V7, P767, DOI 10.1016/j.joi.2013.06.006
Müller MC, 2017, LECT NOTES COMPUT SC, V10450, P300, DOI 10.1007/978-3-319-67008-9_24
Nadimi-Shahraki MH, 2014, Journal of Computing and Security, V1, P307
Otter DW, 2021, IEEE T NEUR NET LEAR, V32, P604, DOI 10.1109/TNNLS.2020.2979670
Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605
Shoaib M, 2016, INT ARAB J INF TECHN, V13, P1004
Smalheiser NR, 2016, J BIOMED DISCOV COLL, V7, DOI 10.5210/disco.v7i0.6654
Song M., DATAST
Song M, 2015, J INFORMETR, V9, P924, DOI 10.1016/j.joi.2015.08.004
Huynh T, 2013, LECT NOTES COMPUT SC, V7802, P226, DOI 10.1007/978-3-642-36546-1_24
Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304
Vishnyakova D, 2016, P 5 WORKSH BUILD EV, DOI 10.5167/uzh-132256
Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738
Yu D, 2013, Arxiv, DOI [arXiv:1301.3605, 10.1371/journal.pcbi.1010633, DOI 10.1371/JOURNAL.PCBI.1010633]
Zahoora U, 2022, APPL INTELL, V52, P13941, DOI 10.1007/s10489-022-03244-6
Zhang SY, 2019, IEEE ACCESS, V7, P104250, DOI 10.1109/ACCESS.2019.2931592
Zhang YT, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1002, DOI 10.1145/3219819.3219859
NR 37
TC 1
Z9 1
U1 1
U2 13
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2022
VL 10
BP 76055
EP 76068
DI 10.1109/ACCESS.2022.3190088
PG 14
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA 3G0NR
UT WOS:000831054800001
OA gold
DA 2024-09-05
ER
PT C
AU Zhang, QP
Shan, W
AF Zhang Qing-pu
Shan Wei
BE Lan, H
TI Research on enterprise tacit knowledge management performance appraisal
based on artificial neural networks
SO PROCEEDINGS OF THE 2006 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE &
ENGINEERING (13TH), VOLS 1-3
LA English
DT Proceedings Paper
CT 13th International Conference on Management Science and Engineering
CY OCT 05-07, 2006
CL Lille, FRANCE
DE BP algorithm; knowledge management; performance appraisal; tacit
knowledge
AB Based on knowledge management theory and performance appraisal methodology, the enterprise tacit knowledge management performance appraisal index system is established, and in view of the neural network structure characteristic, self-adapted and self-taught function, enterprise tacit knowledge management performance appraisal model based on BP neural algorithm is proposed. This model is feasible and suitable in terms of convergence rate, the network adaptability aspect. By using these research results, it can appraise the level of the enterprise tacit knowledge management scientifically, and provide the policy-making basis to correctly instruct enterprise knowledge management development.
C1 Harbin Inst Technol, Sch Management, Harbin 150001, Peoples R China.
C3 Harbin Institute of Technology
RP Zhang, QP (corresponding author), Harbin Inst Technol, Sch Management, Harbin 150001, Peoples R China.
RI Wang, Charles/B-5565-2011
OI Wang, Charles/0000-0001-9331-8437
CR AIM JH, 2002, P 35 HAW INT C SYST
[Anonymous], P 35 HAW INT C SYST
CHENG GH, 2004, T NW U, V2
LI SC, 2001, SCI RES MANAGEMENT, V22, P73
LI XF, 2000, T SICHUAN U, V32, P105
Tiwana A., 2001, The Essential Guide to Knowledge Management: E-Business and CRM Applications
[王军霞 Wang Junxia], 2002, [科学学研究, Studies in Science of Science], V20, P84
WANG Y, 2002, T BEIJING BROADCASTI, V3, P33
YAN GH, 2001, MANAGEMENT REV NANKA, V6, P26
ZHANG LM, 1995, MODEL APPL ARTIFICIA
Zhang Q., 2003, Chinese Wheat Improvement and Pedigree Analysis, P88
NR 11
TC 2
Z9 2
U1 0
U2 4
PU HARBIN INSTITUTE TECHNOLOGY PUBLISHERS
PI HARBIN
PA 16 FUXINGJIE NANGANGQU, HARBIN 150006, HEILONGJIANG, PEOPLES R CHINA
BN 7-5603-2355-3
PY 2006
BP 1333
EP 1337
PG 5
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Engineering, Industrial; Engineering, Electrical & Electronic;
Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering; Operations Research & Management Science
GA BFI54
UT WOS:000242037601110
DA 2024-09-05
ER
PT J
AU Usman, M
Mustafa, G
Afzal, MT
AF Usman, Muhammad
Mustafa, Ghulam
Afzal, Muhammad Tanvir
TI Ranking of author assessment parameters using Logistic Regression
SO SCIENTOMETRICS
LA English
DT Article
DE Parameters ranking; Citation count; Citation intensity; Variants of
h-index; Civil engineering subject classification; ASCE; CSCE; ACI; ICE
ID H-INDEX; GOOGLE-SCHOLAR; VARIANTS; IMPACT
AB The renowned international scientific societies nominate researchers for awards based on qualitative judgments every year. Qualitative judgment uses subjective assessments based on information that is not quantifiable. The way of assessing the quality of the work has not been established or disclosed, nor do we have any qualitative evaluation criteria. We can assess the quality of the researcher's work by mapping the quantitative parameters to qualitative judgments. To date, the scientific community has presented more than 50 research assessment quantitative parameters, including publication count, citation count, h-index, and its variants. The contemporary state-of-the-art in authors ranking does not determine the best parameter that effectively maps on experts' qualitative evaluation. Moreover, these parameters have been evaluated by using same scenarios. In such scenarios, the value and effect of each parameter over the others are complicated to ascertain. Therefore, they must be assessed in inequitable scenarios. The purpose of this research is to identify the significant parameters that map on qualitative judgments of international scientific societies in Civil Engineering (CE) for award nominations. We will identify the rank of author assessment parameters, which includes published papers, citations, No of years since 1st publication, citations in h-core, authors/paper, citations/paper, citations/year, h-index, g-index, hg-index, A-index, R-index, e-index, and f-index. We have evaluated these parameters on the dataset from the discipline of Civil Engineering (CE). The data set contains 250 non-award winners and 250 award winners from prestigious scientific societies of CE. The h-index and its variants have been ranked based on their effectiveness for awardees using Logistic Regression. The award-winning researchers have less number of average authors/paper than the non-awardees. The authors/paper has achieved the highest effectiveness of 67% for awardees. Furthermore, we have also analyzed the ratio of awardees in the ranked list of 50, 100, and 150 researchers by author assessment parameters. The authors/papers have outperformed all other indices by elevating 62% and 66% of the award recipients in its ranked list of 100 and 150 researchers. In the ranked list of 50 researchers, publications elevate 54% awardees, and Authors/papers achieved the second-highest elevation score of awardees of 50%.
C1 [Usman, Muhammad] FAST Natl Univ Comp & Emerging Sci, Islamabad Campus, Islamabad, Pakistan.
[Mustafa, Ghulam] Capital Univ Sci & Technol, Islamabad, Pakistan.
[Afzal, Muhammad Tanvir] Namal Inst Mianwali, Mianwali, Pakistan.
C3 Capital University of Science & Technology
RP Afzal, MT (corresponding author), Namal Inst Mianwali, Mianwali, Pakistan.
EM m.usman@nu.edu.pk; ghulam.mustafa@cust.edu.pk; tanvir.afzal@namal.edu.pk
RI Mustafa, Ghulam/IQV-2174-2023; Mustafa, Ghulam/JPY-1274-2023; Afzal,
Muhammad/D-3741-2019
OI Mustafa, Ghulam/0000-0003-4467-2987; Mustafa,
Ghulam/0000-0002-0354-8229; Afzal, Muhammad/0000-0002-7851-2327; Afzal,
Muhammad Tanvir/0000-0002-9765-8815; Usman, Muhammad/0000-0002-6154-6256
CR Abe N, 2005, LECT NOTES ARTIF INT, V3684, P689
Algamal ZY, 2019, ADV DATA ANAL CLASSI, V13, P753, DOI 10.1007/s11634-018-0334-1
Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
Ameer M, 2019, SCIENTOMETRICS, V121, P653, DOI 10.1007/s11192-019-03209-6
Aoun SG, 2013, WORLD NEUROSURG, V80, pE85, DOI 10.1016/j.wneu.2012.01.052
Ayaz S, 2016, SCIENTOMETRICS, V109, P1511, DOI 10.1007/s11192-016-2122-z
Cameron D. H. L., 2007, Ph.D. dissertation
Crowder R, 2002, LECT NOTES ARTIF INT, V2569, P179
Dienes KR, 2015, J INFORMETR, V9, P385, DOI 10.1016/j.joi.2015.01.003
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
El-adaway IH, 2019, J CONSTR ENG M, V145, DOI 10.1061/(ASCE)CO.1943-7862.0001705
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Hariri-Ardebili MA, 2015, EARTHQ ENG STRUCT D, V44, P461, DOI 10.1002/eqe.2481
Harzing AW, 2014, SCIENTOMETRICS, V98, P565, DOI 10.1007/s11192-013-0975-y
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jin B., 2006, SCI FOCUS, V1, P8, DOI 10.1209/0295-5075/78/30002
Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9
Katsaros D, 2009, J AM SOC INF SCI TEC, V60, P1051, DOI 10.1002/asi.21040
Liang RH, 2016, AAAI CONF ARTIF INTE, P20
Mingers J, 2009, J OPER RES SOC, V60, P1143, DOI 10.1057/jors.2008.94
Moed HF, 2016, J INFORMETR, V10, P533, DOI 10.1016/j.joi.2016.04.017
Qurat-ul Ain, 2019, SCIENTOMETRICS, V119, P187, DOI 10.1007/s11192-019-03009-y
Raheel M, 2018, SCIENTOMETRICS, V114, P1107, DOI 10.1007/s11192-017-2633-2
Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z
Springer DB, 2016, IEEE T BIO-MED ENG, V63, P822, DOI 10.1109/TBME.2015.2475278
Teixeira AAC, 2012, SCIENTOMETRICS, V93, P719, DOI 10.1007/s11192-012-0823-5
Tol RSJ, 2009, SCIENTOMETRICS, V80, P317, DOI 10.1007/s11192-008-2079-7
Van Raan AFJ, 2006, SCIENTOMETRICS, V67, P491, DOI 10.1556/Scient.67.2006.3.10
West R., 2004, UK7 INT SOC ADDICTIO
Wilsdon J., 2015, TECHNICAL REPORT
Wu Q, 2010, J AM SOC INF SCI TEC, V61, P609, DOI 10.1002/asi.21276
Zhang CT, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005429
NR 33
TC 14
Z9 14
U1 3
U2 24
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 2021
VL 126
IS 1
BP 335
EP 353
DI 10.1007/s11192-020-03769-y
EA NOV 2020
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA PU7XL
UT WOS:000591124400001
DA 2024-09-05
ER
PT J
AU Chen, XL
Zhang, XX
Xie, HR
Tao, XH
Wang, F
Xie, NF
Hao, TY
AF Chen, Xieling
Zhang, Xinxin
Xie, Haoran
Tao, Xiaohui
Wang, Fu Lee
Xie, Nengfu
Hao, Tianyong
TI A bibliometric and visual analysis of artificial intelligence
technologies-enhanced brain MRI research
SO MULTIMEDIA TOOLS AND APPLICATIONS
LA English
DT Article
DE Magnetic resonance imaging; Artificial intelligence; Latent Dirichlet
allocation; Research topics
ID MILD COGNITIVE IMPAIRMENT; MAGNETIC-RESONANCE IMAGE; FUNCTIONAL NETWORK;
PATTERN-RECOGNITION; FMRI DATA; CLASSIFICATION; SEGMENTATION; SINGLE;
DIAGNOSIS; DISORDER
AB With the advances and development of imaging and computer technologies, the application of artificial intelligence (AI) in the processing of magnetic resonance imaging (MRI) data has become a significant research field. Based on 2572 research articles concerning AI-enhanced brain MRI processing, this study provides a latent Dirichlet allocation based bibliometric analysis for the exploration of the status, trends, major research issues, and potential future directions of the research field. The trend analyses of articles and citations demonstrate a flourishing and increasing impact of the research.Neuroimageis the most prolific and influential journal. The USA andUniversity College Londonhave contributed the most to the research. The collaboration between European countries is very close. Essential research issues such asImage segmentation,Mental disorder,Functional network connectivity, andAlzheimer's diseasehave been uncovered. Potential inter-topic research directions such asFunctional network connectivityandMental disorder,Image segmentationandImage classification,Cognitive impairmentandDiffusion imaging, as well asSense and memoryandEmotion and feedback, have been highlighted.
C1 [Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Zhang, Xinxin] South China Normal Univ, Inst Brain Res & Rehabil, Guangzhou, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
[Tao, Xiaohui] Univ Southern Queensland, Sch Sci, Toowoomba, Qld, Australia.
[Wang, Fu Lee] Open Univ Hong Kong, Sch Sci & Technol, Hong Kong, Peoples R China.
[Xie, Nengfu] Chinese Acad Agr Sci, Inst Agr Informat, Beijing, Peoples R China.
[Hao, Tianyong] South China Normal Univ, Sch Comp Sci, Guangzhou, Peoples R China.
C3 Education University of Hong Kong (EdUHK); South China Normal
University; Lingnan University; University of Southern Queensland; Hong
Kong Metropolitan University; Chinese Academy of Agricultural Sciences;
South China Normal University
RP Hao, TY (corresponding author), South China Normal Univ, Sch Comp Sci, Guangzhou, Peoples R China.
EM haoty@m.scnu.edu.cn
RI tao, xiaohui/KCK-2677-2024; Xie, Haoran/AFS-3515-2022; Tao,
Xiaohui/JKI-2330-2023; Hao, Tianyong/HJH-2742-2023; Xie,
Haoran/AAW-8845-2020; Wang, Fu Lee/AAD-9782-2021
OI Xie, Haoran/0000-0003-0965-3617; Hao, Tianyong/0000-0002-9792-3949;
Wang, Fu Lee/0000-0002-3976-0053; PV, THAYYIB/0000-0001-8929-0398
CR Agirre-Arrizubieta Z, 2009, BRAIN, V132, P3060, DOI 10.1093/brain/awp137
Ahmadvand A, 2015, APPL MATH COMPUT, V256, P808, DOI 10.1016/j.amc.2015.01.053
Algunaid RF, 2018, BIOMED SIGNAL PROCES, V43, P289, DOI 10.1016/j.bspc.2018.02.018
Allen EA, 2014, CEREB CORTEX, V24, P663, DOI 10.1093/cercor/bhs352
Altameem T, 2015, CONNECT SCI, V27, P305, DOI 10.1080/09540091.2014.970126
Andersson P, 2012, J NEURAL ENG, V9, DOI 10.1088/1741-2560/9/4/045004
Bae Y, 2018, J DIGIT IMAGING, V31, P252, DOI 10.1007/s10278-017-0020-4
Balafar MA, 2010, ARTIF INTELL REV, V33, P261, DOI 10.1007/s10462-010-9155-0
Baldauf D, 2014, SCIENCE, V344, P424, DOI 10.1126/science.1247003
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Bhuvaneswari KS, 2017, J EXP THEOR ARTIF IN, V29, P663, DOI 10.1080/0952813X.2016.1212106
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bollmann S, 2019, NEUROIMAGE, V195, P373, DOI 10.1016/j.neuroimage.2019.03.060
Brambilla P, 2003, BRAIN RES BULL, V61, P557, DOI 10.1016/j.brainresbull.2003.06.001
Cabezas M, 2011, COMPUT METH PROG BIO, V104, pE158, DOI 10.1016/j.cmpb.2011.07.015
Cabral C, 2016, SCHIZOPHRENIA BULL, V42, pS110, DOI 10.1093/schbul/sbw053
Cai CB, 2018, MAGN RESON MED, V80, P2202, DOI 10.1002/mrm.27205
Cai KP, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170875
Cao M, 2017, CEREB CORTEX, V27, P1949, DOI 10.1093/cercor/bhw038
Chen MS, 2017, COMPUT ASSIST SURG, V22, P200, DOI 10.1080/24699322.2017.1389398
Chen SC, 2019, PATTERN RECOGN, V88, P90, DOI 10.1016/j.patcog.2018.11.009
Chen X, 2019, INT WORKSH HUM BRAIN, P69
Chen XD, 2020, J ASIAN NAT PROD RES, V22, P1024, DOI 10.1080/10286020.2019.1680646
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907
Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4
Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0692-9
Chen XL, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/1827074
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Chen YC, 2020, NEUROIMAGE, V207, DOI 10.1016/j.neuroimage.2019.116389
Chen YP, 2015, MOL NEURODEGENER, V10, DOI 10.1186/1750-1326-10-4
Cheng B, 2017, NEUROINFORMATICS, V15, P115, DOI 10.1007/s12021-016-9318-5
Cheng H, 2015, SCHIZOPHR RES, V168, P345, DOI 10.1016/j.schres.2015.08.011
Cherubini A, 2014, MOVEMENT DISORD, V29, P266, DOI 10.1002/mds.25737
Chong CD, 2017, CEPHALALGIA, V37, P828, DOI 10.1177/0333102416652091
Codari M, 2019, AM J ROENTGENOL, V212, P280, DOI 10.2214/AJR.18.20389
Deraeve J, 2018, NEUROINFORMATICS, V16, P253, DOI 10.1007/s12021-018-9371-3
Di Plinio S, 2018, HUM BRAIN MAPP, V39, P4689, DOI 10.1002/hbm.24315
Diekhof EK, 2016, NEUROPSYCHOLOGIA, V84, P70, DOI 10.1016/j.neuropsychologia.2015.10.016
Duchesne S, 2009, NEUROIMAGE, V47, P1363, DOI 10.1016/j.neuroimage.2009.04.023
Ecker C, 2010, NEUROIMAGE, V49, P44, DOI 10.1016/j.neuroimage.2009.08.024
Eklund A, 2017, NEUROIMAGE, V155, P354, DOI 10.1016/j.neuroimage.2017.04.069
Falkai P, 2018, DIALOGUES CLIN NEURO, V20, P179
Fang DB, 2018, LIBR HI TECH, V36, P400, DOI 10.1108/LHT-06-2017-0132
Feis RA, 2018, NEUROIMAGE-CLIN, V20, P188, DOI 10.1016/j.nicl.2018.07.014
Focke NK, 2011, HUM BRAIN MAPP, V32, P1905, DOI 10.1002/hbm.21161
Fukuma R, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00478
Gao LL, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1903-6
Ge Y, 2006, AM J NEURORADIOL, V27, P1165
Ghosh P, 2018, J VIS COMMUN IMAGE R, V54, P63, DOI 10.1016/j.jvcir.2018.04.007
Giger ML, 2018, J AM COLL RADIOL, V15, P512, DOI 10.1016/j.jacr.2017.12.028
Goubran M, 2020, HUM BRAIN MAPP, V41, P291, DOI 10.1002/hbm.24811
Grossman M, 2010, CURR OPIN NEUROL, V23, P643, DOI 10.1097/WCO.0b013e32833fd540
Gunning-Dixon FM, 2009, INT J GERIATR PSYCH, V24, P109, DOI 10.1002/gps.2087
Guo H, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00639
Hacker CD, 2013, NEUROIMAGE, V82, P616, DOI 10.1016/j.neuroimage.2013.05.108
Han X, 2007, IEEE T MED IMAGING, V26, P479, DOI 10.1109/TMI.2007.893282
Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4
Harris LN, 2016, J CLIN ONCOL, V34, P1134, DOI 10.1200/JCO.2015.65.2289
Hart H, 2014, J AM ACAD CHILD PSY, V53, P569, DOI 10.1016/j.jaac.2013.12.024
Heinzel A, 2012, J NUCL MED, V53, P552, DOI 10.2967/jnumed.111.097352
Henkelman RM, 2001, NMR BIOMED, V14, P57, DOI 10.1002/nbm.683
Hill D, 2010, EXPERT OPIN INV DRUG, V19, P23, DOI 10.1517/13543780903381320
Hoexter MQ, 2013, J AFFECT DISORDERS, V150, P1213, DOI 10.1016/j.jad.2013.05.041
HUANG M, 2017, SCI REP-UK, V7, P1, DOI [DOI 10.1038/S41598-016-0028-X, DOI 10.1038/SREP39880]
Iqbal A, 2018, IEEE T BIO-MED ENG, V65, P2519, DOI 10.1109/TBME.2018.2806958
Isin A, 2016, PROCEDIA COMPUT SCI, V102, P317, DOI 10.1016/j.procs.2016.09.407
Jha D, 2017, J HEALTHC ENG, V2017, DOI 10.1155/2017/9060124
Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101
Jiang RK, 2019, IEEE ACCESS, V7, P23579, DOI 10.1109/ACCESS.2019.2899990
Jie B, 2015, HUM BRAIN MAPP, V36, P489, DOI 10.1002/hbm.22642
Jin CF, 2017, HUM BRAIN MAPP, V38, P4479, DOI 10.1002/hbm.23676
Jin W, 2017, J MED IMAG HEALTH IN, V7, P400, DOI 10.1166/jmihi.2017.2028
Johnston BA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0132958
Jung RE, 2010, HUM BRAIN MAPP, V31, P398, DOI 10.1002/hbm.20874
Karimaghaloo Z, 2012, IEEE T MED IMAGING, V31, P1181, DOI 10.1109/TMI.2012.2186639
Khatami M, 2017, PATTERN RECOGN, V63, P593, DOI 10.1016/j.patcog.2016.09.020
Khawaldeh S, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8010027
Koush Y, 2017, NEUROIMAGE, V156, P489, DOI 10.1016/j.neuroimage.2017.06.039
Kumar M, 2017, NEUROIMAGE, V155, P422, DOI 10.1016/j.neuroimage.2017.03.037
Lenglet C, 2009, NEUROIMAGE, V45, pS111, DOI 10.1016/j.neuroimage.2008.10.054
Li R, 2013, PLOS ONE
Li Y, 2020, NEUROCOMPUTING, V379, P370, DOI 10.1016/j.neucom.2019.10.085
Li ZC, 2018, EUR RADIOL, V28, P3640, DOI 10.1007/s00330-017-5302-1
Lian QS, 2020, SIGNAL PROCESS, V170, DOI 10.1016/j.sigpro.2019.107444
Lim KY, 2018, EXPERT SYST APPL, V112, P288, DOI 10.1016/j.eswa.2018.06.041
Lim L, 2013, PLOS ONE, V8, DOI [10.1371/journal.pone.0063660, 10.1371/journal.pone.0084487]
Liu MH, 2020, NEUROIMAGE, V208, DOI 10.1016/j.neuroimage.2019.116459
Liu Y, 2018, KSII T INTERNET INF, V12, P4336, DOI 10.3837/tiis.2018.09.012
Liu YH, 2016, APPL SCI-BASEL, V6, DOI 10.3390/app6050142
Lorenzetti V, 2009, J AFFECT DISORDERS, V117, P1, DOI 10.1016/j.jad.2008.11.021
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Miwa K, 2014, RADIAT ONCOL, V9, DOI 10.1186/1748-717X-9-181
MOED HF, 1995, SCIENTOMETRICS, V33, P381, DOI 10.1007/BF02017338
Moeskops P, 2016, IEEE T MED IMAGING, V35, P1252, DOI 10.1109/TMI.2016.2548501
Mwangi B, 2013, NEUROIMAGE, V75, P58, DOI 10.1016/j.neuroimage.2013.02.055
Nieuwenhuis M, 2012, NEUROIMAGE, V61, P606, DOI 10.1016/j.neuroimage.2012.03.079
Nomi JS, 2016, HUM BRAIN MAPP, V37, P1770, DOI 10.1002/hbm.23135
Park H, 2013, NEUROSCI LETT, V550, P17, DOI 10.1016/j.neulet.2013.06.042
Pereira S, 2016, J NEUROSCI METH, V270, P111, DOI 10.1016/j.jneumeth.2016.06.017
Pesapane F, 2018, INSIGHTS IMAGING, V9, P745, DOI 10.1007/s13244-018-0645-y
Ranlund S, 2018, NEUROIMAGE-CLIN, V20, P1026, DOI 10.1016/j.nicl.2018.10.008
Rasero J, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0207385
Rasoolinejad M, 2019, ARCH PEDIATR INFECT, V7, DOI 10.5812/pedinfect.80318
Reichert C, 2014, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00116
Rovira A, 2009, ARCH NEUROL-CHICAGO, V66, P587, DOI 10.1001/archneurol.2009.49
Rubin-Falcone H, 2018, J AFFECT DISORDERS, V227, P498, DOI 10.1016/j.jad.2017.11.043
Saladi S, 2018, INT J IMAG SYST TECH, V28, P207, DOI 10.1002/ima.22271
Serpa MH, 2014, BIOMED RES INT-UK, V2014, DOI 10.1155/2014/706157
Shenton ME, 2001, SCHIZOPHR RES, V49, P1, DOI 10.1016/S0920-9964(01)00163-3
Sheth D, 2020, J MAGN RESON IMAGING, V51, P1310, DOI 10.1002/jmri.26878
Shi F, 2010, NEUROIMAGE, V49, P391, DOI 10.1016/j.neuroimage.2009.07.066
Soch J, 2016, NEUROIMAGE, V141, P469, DOI 10.1016/j.neuroimage.2016.07.047
Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002
Stamile C, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156405
Szilágyi L, 2012, COMPUT METH PROG BIO, V108, P80, DOI 10.1016/j.cmpb.2012.01.005
Tian Dan, 2007, 2007 1st International Conference on Bioinformatics and Biomedical Engineering, P686, DOI 10.1109/ICBBE.2007.179
Tredinnick L., 2017, Business Information Review, V34, P37, DOI [10.1177/0266382117692621, DOI 10.1177/0266382117692621]
Valli I, 2016, FRONT PSYCHIATRY, V7, DOI 10.3389/fpsyt.2016.00052
Wallace GL, 2013, BRAIN, V136, P1956, DOI 10.1093/brain/awt106
Wang J, 2018, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00166
Wang L, 2012, J AFFECT DISORDERS, V142, P6, DOI 10.1016/j.jad.2012.04.013
Wang PY, 2016, J ALZHEIMERS DIS, V54, P359, DOI 10.3233/JAD-160102
Wang SH, 2015, INT J IMAG SYST TECH, V25, P153, DOI 10.1002/ima.22132
Wang WX, 2018, ELECTRON COMMER R A, V29, P142, DOI 10.1016/j.elerap.2018.04.003
Wei HJ, 2019, NEUROIMAGE, V202, DOI 10.1016/j.neuroimage.2019.116064
Wise T, 2018, ACTA PSYCHIAT SCAND, V138, P73, DOI 10.1111/acps.12887
Wolz R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025446
Wu GR, 2015, NEUROIMAGE, V106, P34, DOI 10.1016/j.neuroimage.2014.11.025
Wu JW, 2017, BRAIN, V140, P344, DOI 10.1093/brain/aww328
Wu X, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00061
Wu Y, 2013, J DIGIT IMAGING, V26, P786, DOI 10.1007/s10278-012-9568-1
Yin XB, 2017, J ELECTROCERAM, V39, P210, DOI 10.1007/s10832-017-0083-0
Zang WK, 2018, ENTROPY-SWITZ, V20, DOI 10.3390/e20120964
Zhan Y, 2015, J ALZHEIMERS DIS, V47, P1057, DOI 10.3233/JAD-142820
Zhang DQ, 2012, NEUROIMAGE, V59, P895, DOI 10.1016/j.neuroimage.2011.09.069
Zhang DQ, 2011, NEUROIMAGE, V55, P856, DOI 10.1016/j.neuroimage.2011.01.008
Zhang JN, 2018, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00152
Zhang J, 2018, COMPUT INTEL NEUROSC, V2018, DOI 10.1155/2018/3956536
Zhang S, 2019, MED IMAGE ANAL, V54, P238, DOI 10.1016/j.media.2019.03.011
Zhang T, 2018, INT J PATTERN RECOGN, V32, DOI 10.1142/S0218001418570057
Zhang T, 2014, NEUROCOMPUTING, V134, P122, DOI 10.1016/j.neucom.2012.12.081
Zhang Y, 2011, PROG ELECTROMAGN RES, V116, P65, DOI 10.2528/PIER11031709
Zhang Y, 2015, INT J GYNECOL CANCER, V25, P4, DOI 10.1097/IGC.0000000000000314
Zia R, 2018, INT J IMAG SYST TECH, V28, P153, DOI 10.1002/ima.22266
NR 146
TC 10
Z9 11
U1 8
U2 56
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1380-7501
EI 1573-7721
J9 MULTIMED TOOLS APPL
JI Multimed. Tools Appl.
PD MAY
PY 2021
VL 80
IS 11
BP 17335
EP 17363
DI 10.1007/s11042-020-09062-7
EA JUN 2020
PG 29
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Computer Science, Theory & Methods; Engineering, Electrical
& Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA SE7XP
UT WOS:000539519200002
OA Green Accepted
DA 2024-09-05
ER
PT C
AU Zhang, ZQ
Zhang, AH
AF Zhang, Zhiqiang
Zhang, Aihua
GP Northeastern Univ, China
TI Research on Performance of Audio Frequency Equalizer Evaluation Based on
Support Vector Regression
SO 2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5
SE Chinese Control and Decision Conference
LA English
DT Proceedings Paper
CT 22nd Chinese Control and Decision Conference
CY MAY 26-AUG 28, 2010
CL Xuzhou, PEOPLES R CHINA
DE Support Vector Regression Machine; Performance of Audio Frequency
Equalizer Evaluation; Amplifier Amplitude Frequency Characteristics
AB A evaluate method of audio frequency equalizer performance based on Support Vector Machine was presented. Taking BPF that applied to audio frequency equalizer as experiment object. First, obtaining dataset of the amplitude frequency of the BPF by amplitude frequency characteristics testing equipment to get samples, and then using support vector regression to get the approach function of the amplifier amplitude frequency characteristics of the BPF, using the function to test four performance parameters. The experimental results show that this method improves the precision of the parameters testing. It is suitable for the evaluate of the electronic production performance that tested by oscillograph.
C1 [Zhang, Zhiqiang; Zhang, Aihua] BoHai Univ, Coll Informat Sci & Engn, Jinzhou 121000, Peoples R China.
C3 Bohai University
RP Zhang, ZQ (corresponding author), BoHai Univ, Coll Informat Sci & Engn, Jinzhou 121000, Peoples R China.
EM Jsxinxi_zzq@163.com; Jsxinxi_zah@163.com
CR CRISTIANINI N, 2004, INTRO SUPPORT VECTOR, P125
DENG NY, 2004, NEW METHOD DATA MINI, P98
Scholkopf B., 1998, P ICANN 98 PERSP NEU, P111
SUYKENS JAK, 1999, EUR C CIRC THEOR DES, P839
VAPNIK V, 2000, ESSENCE STAT LEARNIN, P205
XU JB, 1998, J ACTA ELECT SINICA, V26, P59
XUE LZ, 1983, THEOR METHOD FUNCTIO, P169
NR 7
TC 0
Z9 0
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 1948-9439
BN 978-1-4244-5182-1
J9 CHIN CONT DECIS CONF
PY 2010
BP 810
EP 814
DI 10.1109/CCDC.2010.5498116
PG 5
WC Automation & Control Systems; Engineering, Electrical & Electronic;
Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Engineering; Operations Research &
Management Science
GA BUV61
UT WOS:000290460300163
DA 2024-09-05
ER
PT J
AU Zhou, H
Sun, JQ
Zhao, ZY
Yang, YH
Xie, AL
Chiclana, F
AF Zhou, Hui
Sun, Jinqing
Zhao, Zhongying
Yang, Yonghao
Xie, Ailei
Chiclana, Francisco
TI Attention-Based Deep Learning Model for Predicting Collaborations
Between Different Research Affiliations
SO IEEE ACCESS
LA English
DT Article
DE Relationship prediction; collaboration analysis; coauthor networks; deep
learning
ID LINK PREDICTION; INFLUENCE MAXIMIZATION; NETWORKS
AB It is challenging but important to predict the collaborations between different entities which in academia, for example, would enable finding evaluating trends of scientific research collaboration and the provision of decision support for policy formulation and incentive measures. In this paper, we propose an attention-based Long Short-Term Memory Convolutional Neural Network (LSTM-CNN) model to predict the collaborations between different research affiliations, which takes both the influence of research articles and time (year) relationships into consideration. The experimental results show that the proposed model outperforms the competitive Support Vector Machine (SVM), CNN and LSTM methods. It significantly improves the prediction precision by a minimum of 3.23 percent points and up to 10.80 percent points when compared with the mentioned competitive methods, while in terms of the F1-score, the performance is improved by 13.48, 4.85 and 4.24 percent points, respectively.
C1 [Zhou, Hui; Sun, Jinqing; Zhao, Zhongying; Yang, Yonghao] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Shandong Prov Key Lab Wisdom Mine Informat Techno, Qingdao 266590, Shandong, Peoples R China.
[Xie, Ailei] Guangzhou Univ, Sch Educ, Guangzhou 510006, Guangdong, Peoples R China.
[Chiclana, Francisco] De Montfort Univ, Sch Comp Sci & Informat, Inst Artificial Intelligence, Leicester LE1 9BH, Leics, England.
[Chiclana, Francisco] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, E-18071 Granada, Spain.
C3 Shandong University of Science & Technology; Guangzhou University; De
Montfort University; University of Granada
RP Zhao, ZY (corresponding author), Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Shandong Prov Key Lab Wisdom Mine Informat Techno, Qingdao 266590, Shandong, Peoples R China.
EM zzysuin@163.com
RI zhao, zhongying/V-6991-2019; hui, zhou/JOZ-7380-2023; Chiclana,
Francisco/B-9031-2008; 谢, 爱磊/GWD-0986-2022
OI Chiclana, Francisco/0000-0002-3952-4210;
FU Humanities and Social Science Research Project of the Ministry of
Education in China [17YJCZH262, 18YJAZH136]; National Natural Science
Foundation of China [61303167, 61702306, 61433012, U1435215, 71772107];
Natural Science Foundation of Shandong Province [ZR2018BF013,
ZR2017BF015]; Innovative Research Foundation of Qingdao [18-2-2-41-jch];
Key Project of Industrial Transformation and Upgrading in China
[TC170A5SW]; Scientific Research Foundation of SDUST for Innovative Team
[2015TDJH102]
FX This work was supported in part by the Humanities and Social Science
Research Project of the Ministry of Education in China under Grant
17YJCZH262 and Grant 18YJAZH136, in part by the National Natural Science
Foundation of China under Grant 61303167, Grant 61702306, Grant
61433012, Grant U1435215, and Grant 71772107, in part by the Natural
Science Foundation of Shandong Province under Grant ZR2018BF013 and
Grant ZR2017BF015, in part by the Innovative Research Foundation of
Qingdao under Grant 18-2-2-41-jch, in part by the Key Project of
Industrial Transformation and Upgrading in China under Grant TC170A5SW,
and in part by the Scientific Research Foundation of SDUST for
Innovative Team under Grant 2015TDJH102.
CR Amin MI, 2016, JOINT INT CONF SOFT, P233, DOI [10.1109/SCIS&ISIS.2016.151, 10.1109/SCIS-ISIS.2016.0058]
[Anonymous], 2012, LONG SHORT TERM MEMO
Aref S., 2018, P AUSTR COMP SCI WEE, V49, P1
Cai XL, 2019, IEEE ACCESS, V7, P2017, DOI 10.1109/ACCESS.2018.2886360
CHUA LO, 1993, IEEE T CIRCUITS-I, V40, P147, DOI 10.1109/81.222795
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Gers FA, 2000, NEURAL COMPUT, V12, P2451, DOI 10.1162/089976600300015015
Guo J., 2010, P INT C COMP DES APP
Guo Z, 2016, 2016 INTERNATIONAL CONFERENCE ON BUSINESS AND ECONOMICS (ICBE2016), P515
He Q, 2019, APPL MATH COMPUT, V354, P338, DOI 10.1016/j.amc.2019.02.056
He Q, 2018, IEEE ACCESS, V6, P49654, DOI 10.1109/ACCESS.2018.2867540
He Q, 2018, APPL SOFT COMPUT, V66, P360, DOI 10.1016/j.asoc.2018.02.016
Huang SP, 2014, INT C COMP SUPP COOP, P706, DOI 10.1109/CSCWD.2014.6846931
Li JC, 2018, PHYSICA A, V495, P1, DOI 10.1016/j.physa.2017.12.018
Li LJ, 2019, IEEE ACCESS, V7, P43233, DOI 10.1109/ACCESS.2019.2908208
Li Y, 2018, SCIENTOMETRICS, V117, P85, DOI 10.1007/s11192-018-2837-0
Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027
Lü LY, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.046122
Makrehchi M., 2011, Proceedings of the fifth ACM conference on Recommender systems, RecSys '11, P189
Menon AK, 2011, LECT NOTES ARTIF INT, V6912, P437, DOI 10.1007/978-3-642-23783-6_28
Muniz CP, 2018, KNOWL-BASED SYST, V156, P129, DOI 10.1016/j.knosys.2018.05.027
Murata T, 2007, PROCEEDINGS OF THE IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, P85, DOI 10.1109/WI.2007.52
Murray N, 2014, PROC CVPR IEEE, P2473, DOI 10.1109/CVPR.2014.317
Sharma DD, 2014, IEEE POW ENER SOC GE
Shuguang Han, 2013, Social Computing, Behavioral-Cultural Modeling and Prediction. 6th International Conference, SBP 2013. Proceedings, P274, DOI 10.1007/978-3-642-37210-0_30
Su F., 2011, LIB INF SERVICE, V55, P144
Sun YZ, 2011, 2011 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2011), P121, DOI 10.1109/ASONAM.2011.112
Tang J, 2016, ACM T INFORM SYST, V34, DOI 10.1145/2746230
Wang X., 2004, SCI SCI MANAGE S T, P15
Wang ZQ, 2018, KNOWL-BASED SYST, V159, P72, DOI 10.1016/j.knosys.2018.06.005
Wang ZQ, 2016, IEEE T KNOWL DATA EN, V28, P2857, DOI 10.1109/TKDE.2016.2597823
Xu GL, 2019, ALGORITHMS, V12, DOI 10.3390/a12010012
Zhang ZB, 2017, KNOWL-BASED SYST, V132, P226, DOI 10.1016/j.knosys.2017.06.035
Zhao ZY, 2019, J INTELL FUZZY SYST, V36, P6207, DOI 10.3233/JIFS-182512
Zhao ZY, 2019, KNOWL-BASED SYST, V163, P404, DOI 10.1016/j.knosys.2018.09.002
Zhao ZY, 2018, INFORM SCIENCES, V466, P258, DOI 10.1016/j.ins.2018.07.064
Zhao ZY, 2018, J INTELL FUZZY SYST, V35, P1077, DOI 10.3233/JIFS-17682
Zhou K, 2019, AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, P305
Zhu XY, 2018, KNOWL-BASED SYST, V159, P171, DOI 10.1016/j.knosys.2018.07.015
NR 39
TC 1
Z9 1
U1 1
U2 23
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2019
VL 7
BP 118068
EP 118076
DI 10.1109/ACCESS.2019.2936745
PG 9
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA IV6BV
UT WOS:000484354800001
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Vinayak
Raghuvanshi, A
Kshitij, A
AF Vinayak
Raghuvanshi, Adarsh
Kshitij, Avinash
TI Signatures of capacity development through research collaborations in
artificial intelligence and machine learning
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Artificial intelligence; Co-authorship network; Network statistics;
Closeness centrality; Machine learning; Social network analysis
ID CO-AUTHORSHIP NETWORKS; SCIENTIFIC COLLABORATION; CENTRALITY; IMPACT;
PRODUCTIVITY; PROXIMITY; EVOLUTION; PATTERNS
AB Extant studies suggest that the proximity between the researchers and their structural position-ing in the collaboration network may influence productivity and performance in collaboration research. In this paper, we analyze the co-authorship networks of the three countries, viz. the USA, China, and India, constructed in consecutive non-overlapping 5-year long time windows from bibliometric data of research papers published in the past decade in the rapidly evolving area of Artificial Intelligence and Machine Learning (AI&ML). Our analysis relies on the observa-tions ensued from a comparison of the statistical properties of the evolving networks. We consider macro-level network properties which describe the global characteristics, such as degree distri-bution, assortativity, and large-scale cohesion etc., as well as micro-level properties associated with the actors who have assumed central positions, defining a core in the network assembly with respect to closeness centrality measure. For the analysis of the core actors, who are well connected with a large number of other actors, we consider share of their affiliations with do-mestic institutes. We find dominant representation of domestic affiliations of the core actors for high productivity cases, such as China in the second time window and the USA in the first and second both. Our study, therefore, suggests that the domestic affiliation of the core actors, who could access network resources more efficiently than other actors, influences and catalyzes the collaborative research.
C1 [Vinayak; Raghuvanshi, Adarsh; Kshitij, Avinash] CSIR Natl Inst Sci Commun & Policy Res, Dr KS Krishnan Marg, New Delhi 110012, India.
[Vinayak; Raghuvanshi, Adarsh; Kshitij, Avinash] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India.
C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR -
National Institute of Science Communication & Policy Research (NIScPR);
Academy of Scientific & Innovative Research (AcSIR)
RP Vinayak (corresponding author), CSIR Natl Inst Sci Commun & Policy Res, Dr KS Krishnan Marg, New Delhi 110012, India.; Vinayak (corresponding author), Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India.
EM vinayaksps2003@gmail.com
FU University Grant Commission, India [191620064987]
FX Adarsh Raghuvanshi acknowledges University Grant Commission, India (NTA
Ref. No.: 191620064987) for financial support. The authors acknowledge
Anirban Chakraborty and are indebted to anonymous reviewers for their
insightful comments and suggestions.
CR Abbasi A, 2011, J INFORMETR, V5, P594, DOI 10.1016/j.joi.2011.05.007
Agrawal A, 2008, J URBAN ECON, V64, P258, DOI 10.1016/j.jue.2008.01.003
Ba ZC, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101198
Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509
Barrat A, 2004, P NATL ACAD SCI USA, V101, P3747, DOI 10.1073/pnas.0400087101
Barthélemy M, 2005, PHYSICA A, V346, P34, DOI 10.1016/j.physa.2004.08.047
BEAUCHAMP MA, 1965, BEHAV SCI, V10, P161, DOI 10.1002/bs.3830100205
Broido AD, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08746-5
Chen KH, 2019, RES POLICY, V48, P149, DOI 10.1016/j.respol.2018.08.005
Cheng FX, 2020, BMC BIOL, V18, DOI 10.1186/s12915-020-00868-3
Clarivate, 2021, WEB SCI CORE COLLECT
Clauset A, 2009, SIAM REV, V51, P661, DOI 10.1137/070710111
Dorogovtsev SN, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.031135
Duque RB, 2005, SOC STUD SCI, V35, P755, DOI 10.1177/0306312705053048
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
ERDOS P, 1960, B INT STATIST INST, V38, P343
Faust K, 1997, SOC NETWORKS, V19, P157, DOI 10.1016/S0378-8733(96)00300-0
Fleming L, 2007, ADMIN SCI QUART, V52, P443, DOI 10.2189/asqu.52.3.443
FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7
Ghosh J, 2015, SCIENTOMETRICS, V102, P1207, DOI 10.1007/s11192-014-1475-4
GILBERT EN, 1959, ANN MATH STAT, V30, P1141, DOI 10.1214/aoms/1177706098
Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145
Guan JC, 2016, RES POLICY, V45, P770, DOI 10.1016/j.respol.2016.01.003
Iglic H, 2017, SCIENTOMETRICS, V112, P153, DOI 10.1007/s11192-017-2386-y
KATZ JS, 1994, SCIENTOMETRICS, V31, P31, DOI 10.1007/BF02018100
Kim J, 2016, J ASSOC INF SCI TECH, V67, P1446, DOI 10.1002/asi.23489
Kretschmer H, 2004, SCIENTOMETRICS, V60, P409, DOI 10.1023/B:SCIE.0000034383.86665.22
Laudel G, 2002, RES EVALUAT, V11, P3, DOI 10.3152/147154402781776961
Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359
Li EY, 2013, RES POLICY, V42, P1515, DOI 10.1016/j.respol.2013.06.012
Litvak N, 2013, PHYS REV E, V87, DOI 10.1103/PhysRevE.87.022801
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Lozano S, 2014, SCIENTOMETRICS, V98, P1505, DOI 10.1007/s11192-013-1162-x
March JG, 1991, ORGAN SCI, V2, P71, DOI 10.1287/orsc.2.1.71
McFadyen MA, 2004, ACAD MANAGE J, V47, P735, DOI [10.2307/20159615, 10.5465/20159615]
Melin G, 1996, SCIENTOMETRICS, V36, P363, DOI 10.1007/BF02129600
Moody J., 2002, Sociol. Method., V68, P365
Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898
Newman MEJ, 1999, PHYS REV E, V60, P7332, DOI 10.1103/PhysRevE.60.7332
Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016132, 10.1103/PhysRevE.64.026118]
Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132]
Newman MEJ, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.208701
Raschke M, 2010, PHYS REV E, V82, DOI 10.1103/PhysRevE.82.037102
Subelj L, 2019, J INFORMETR, V13, P10, DOI 10.1016/j.joi.2018.11.005
Sun YT, 2015, TECHNOL FORECAST SOC, V96, P215, DOI 10.1016/j.techfore.2015.03.013
Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918
Yan EJ, 2009, J AM SOC INF SCI TEC, V60, P2107, DOI 10.1002/asi.21128
Zhou B, 2020, SOC NETWORKS, V63, P47, DOI 10.1016/j.socnet.2020.04.004
NR 48
TC 1
Z9 1
U1 9
U2 35
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD FEB
PY 2023
VL 17
IS 1
AR 101358
DI 10.1016/j.joi.2022.101358
EA DEC 2022
PG 17
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 7E0LW
UT WOS:000900872200003
DA 2024-09-05
ER
PT C
AU Wang, GJ
AF Wang, GuoJun
GP IEEE
TI Research on the Construction of Classroom Teaching Evaluation System
Based on Artificial Intelligence
SO 2021 INTERNATIONAL CONFERENCE ON BIG DATA ENGINEERING AND EDUCATION
(BDEE 2021)
LA English
DT Proceedings Paper
CT International Conference on Big Data Engineering and Education (BDEE)
CY AUG 12-14, 2021
CL Guiyang, PEOPLES R CHINA
DE artificial intelligence; classroom teaching; evaluation; construction
research
AB Human beings are accelerating into the era of artificial intelligence. In all areas of society, artificial intelligence is playing an irreplaceable and huge role. The development of artificial intelligence in the field of education is accelerating. The development of artificial intelligence in the field of education is accelerating. It promotes the development of teaching and makes classroom teaching more lively and interesting. Classroom teaching evaluation occupies a very important position in education and teaching, and it is a ruler to measure the quality of classroom teaching. Based on the study of traditional classroom teaching evaluation, this paper analyzes the problems in traditional teaching evaluation from three aspects: single teaching evaluation method, untimely feedback of evaluation results, and inability to achieve comprehensive evaluation. An artificial intelligence-based classroom teaching evaluation system is constructed from three aspects: system structure, procedural evaluation of students' listening to lectures, and procedural evaluation of teachers' teaching. On this basis, it analyzes the technical, ethical, and systematic problems of artificial intelligence in classroom teaching evaluation. In response to these problems, the development strategy of artificial intelligence in classroom teaching evaluation is proposed from several aspects, such as breaking through the technical bottleneck and establishing a teaching evaluation simulation system. Finally, the prospects for the development of artificial intelligence in teaching evaluation are prospected.
C1 [Wang, GuoJun] Shandong Technician Coll Water Conservancy, Dept Intelligent Mfg, Zibo, Peoples R China.
RP Wang, GJ (corresponding author), Shandong Technician Coll Water Conservancy, Dept Intelligent Mfg, Zibo, Peoples R China.
EM 155098193@qq.com
FU Shandong University [SSD-2020-002]
FX This article is part of the research results of the 2020 Shandong
University Student Ideological and Political Education Theory and
Practice Research Project "Curriculum Ideology and Politics Integration
into the Course Evaluation System of Mechatronics Professional Course
Teaching" (Project Number: SSD-2020-002), Project host: Guojun Wang
CR Bian H., 2020, APPL ARTIF INTELL, P114
Hongcheng Jiang, 2021, International Journal of Information and Education Technology, V11, P262, DOI 10.18178/ijiet.2021.11.6.1521
Hu Z. H., 2019, EDUC REV, P128
Li Y. H., 2019, 2 SESSION 13 NATL CO
Sun F. Q., 2019, CHINA ED INFORM, P58
Wang Z. Q., 2020, INT COMP ED, P43
Wu Q., 2021, ED TEACHING REFORM, P81
Xiao R., 2020, CHINA ED TECHNOLOGY, P76
Yi Yuan, 2016, International Journal of Information and Education Technology, V6, P923, DOI 10.7763/IJIET.2016.V6.818
NR 9
TC 1
Z9 1
U1 7
U2 37
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-3957-2
PY 2021
BP 101
EP 105
DI 10.1109/BDEE52938.2021.00024
PG 5
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BT8LI
UT WOS:000853884200018
DA 2024-09-05
ER
PT J
AU Alahmadi, D
Babour, A
Saeedi, K
Visvizi, A
AF Alahmadi, Dimah
Babour, Amal
Saeedi, Kawther
Visvizi, Anna
TI Ensuring Inclusion and Diversity in Research and Research Output: A Case
for a Language-Sensitive NLP Crowdsourcing Platform
SO APPLIED SCIENCES-BASEL
LA English
DT Article
DE human-centric technology; inclusion; decision-making; natural language
processing (NLP); NLP crowdsourcing platforms
ID CORPUS
AB In the context of the debate on the need to place citizens at the center of the technological revolution, this paper makes a case for a natural language processing (NLP) crowdsourcing platform that ensures inclusion and diversity, thus making the research outcome relevant and applicable across issues and domains. This paper also makes the case that by enabling participation for a wide variety of stakeholders, this NLP crowdsourcing platform might ultimately prove useful in the decision- and policy-making processes at city, community, and country levels. Against the backdrop of the debates on artificial intelligence (AI) and NLP research, and considering substantial differentiation specific to the Arab language, this paper introduces and evaluates an Arab language-sensitive NLP crowdsourcing platform. The value of the platform and its accuracy are measured via the System Usability Scale (SUS), where it scores 72.5, i.e., above the accepted usability average. These findings are crucial for NLP research and the research community in general. They are equally promising in view of the practical application of the research findings.
C1 [Alahmadi, Dimah; Babour, Amal; Saeedi, Kawther] King Abdulaziz Univ, Dept Informat Syst, Fac Comp & Informat Technol, Jeddah 21589, Saudi Arabia.
[Visvizi, Anna] Effat Univ, Effat Coll Business, Jeddah 34689, Saudi Arabia.
C3 King Abdulaziz University; Effat University
RP Alahmadi, D (corresponding author), King Abdulaziz Univ, Dept Informat Syst, Fac Comp & Informat Technol, Jeddah 21589, Saudi Arabia.
EM dalahmadi@kau.edu.sa; ababor@kau.edu.sa; ksaeedi@kau.edu.sa;
avisvizi@gmail.com
RI Saeedi, Kawther/JDD-5107-2023; Visvizi, Anna/AFV-1944-2022
OI Alahmadi, Dimah/0000-0001-5576-8832; Babour, Amal/0000-0002-0365-3889;
Saeedi, Kawther/0000-0002-5295-4485; Visvizi, Anna/0000-0003-3240-3771
FU Deanship of Scientific Research (DSR), King Abdulaziz University,
Jeddah, Saudi Arabia [G: 1473-612-1440, 62467]
FX This project was funded by the Deanship of Scientific Research (DSR),
King Abdulaziz University, Jeddah, Saudi Arabia, under grant G:
1473-612-1440 and grant No. 62467. The authors D.A., A.B., and K.S.
therefore gratefully acknowledge the DSR technical and financial
support.
CR Akila G., 2015, P INT C INT TEXT PRO
Al-Muzaini HA, 2018, INT J ADV COMPUT SC, V9, P67
Al-Twairesh N, 2018, PROCEDIA COMPUT SCI, V142, P72, DOI 10.1016/j.procs.2018.10.462
Albadi N, 2019, SOC NETW ANAL MIN, V9, DOI 10.1007/s13278-019-0587-5
Alhelbawy A., 2016, P 10 INT C LANG RES
Almeman K., 2013, P 2013 1 INT C COMM
Alotaibi B, 2020, IEEE ACCESS, V8, P10718, DOI 10.1109/ACCESS.2020.2965181
Alsarsour I., 2018, P 11 INT C LANG RES
Alshutayri A., 2018, P OSACT 3 3 WORKSH O
[Anonymous], **NON-TRADITIONAL**
[Anonymous], **NON-TRADITIONAL**
[Anonymous], **NON-TRADITIONAL**
[Anonymous], **NON-TRADITIONAL**
[Anonymous], 1996, QUICK DIRTY USABILIT
[Anonymous], **NON-TRADITIONAL**
[Anonymous], **NON-TRADITIONAL**
Baly R., ARXIV19060183
Bougrine S, 2017, PROCEDIA COMPUT SCI, V117, P137, DOI 10.1016/j.procs.2017.10.102
Brooke J, 2013, J USABILITY STUD, V8, P29
Chen L, 2019, INT J MED INFORM, V124, P6, DOI 10.1016/j.ijmedinf.2019.01.004
Crowston Kevin, 2012, SHAPING FUTURE ICT R, P210
Dashtipour K, 2020, NEUROCOMPUTING, V380, P1, DOI 10.1016/j.neucom.2019.10.009
de Winter JCF, 2015, PROCEDIA MANUF, V3, P2518, DOI 10.1016/j.promfg.2015.07.514
Denzin NormanK., 2008, The Sage Handbook of Qualitative Research, V3rd
Farra N., 2015, P 2 WORKSH AR NAT LA
Lewis J. R., 2009, P INT C HUM CTR DES, P1
Li X., 2017, FRONT CHEM, V5, P1, DOI DOI 10.1093/europace/eux283.145
Lieberman ES, 2005, AM POLIT SCI REV, V99, P435, DOI 10.1017/S0003055405051762
Miller Tristan., 2016, The European Journal of Humour Research, V4, P59, DOI DOI 10.7592/EJHR2016.4.1.miller
Mora-Cantallops M, 2021, J AMB INTEL HUM COMP, V12, P4363, DOI 10.1007/s12652-019-01273-7
Mubarak H., 2017, P INT C ADV INT SYST
Sauro Jeff., 2011, MeasuringU
Tubaro P, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720919776
Vaughan J. W., 2017, J MACH LEARN RES, V18, P7026
Visvizi A., 2020, Computers in Human Behavior, V107
Zaidan OF, 2014, COMPUT LINGUIST, V40, P171, DOI 10.1162/COLI_a_00169
NR 36
TC 3
Z9 3
U1 1
U2 21
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-3417
J9 APPL SCI-BASEL
JI Appl. Sci.-Basel
PD SEP
PY 2020
VL 10
IS 18
AR 6216
DI 10.3390/app10186216
PG 18
WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials
Science, Multidisciplinary; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Chemistry; Engineering; Materials Science; Physics
GA OE2KI
UT WOS:000580365600001
OA gold
DA 2024-09-05
ER
PT J
AU Tao, KM
Osman, ZA
Tzou, PL
Rhee, SY
Ahluwalia, V
Shafer, RW
AF Tao, Kaiming
Osman, Zachary A.
Tzou, Philip L.
Rhee, Soo-Yon
Ahluwalia, Vineet
Shafer, Robert W.
TI GPT-4 performance on querying scientific publications: reproducibility,
accuracy, and impact of an instruction sheet
SO BMC MEDICAL RESEARCH METHODOLOGY
LA English
DT Article
DE Large language model; HIV drug resistance; Systematic review; GPT-4;
Data extraction
AB BackgroundLarge language models (LLMs) that can efficiently screen and identify studies meeting specific criteria would streamline literature reviews. Additionally, those capable of extracting data from publications would enhance knowledge discovery by reducing the burden on human reviewers.MethodsWe created an automated pipeline utilizing OpenAI GPT-4 32 K API version "2023-05-15" to evaluate the accuracy of the LLM GPT-4 responses to queries about published papers on HIV drug resistance (HIVDR) with and without an instruction sheet. The instruction sheet contained specialized knowledge designed to assist a person trying to answer questions about an HIVDR paper. We designed 60 questions pertaining to HIVDR and created markdown versions of 60 published HIVDR papers in PubMed. We presented the 60 papers to GPT-4 in four configurations: (1) all 60 questions simultaneously; (2) all 60 questions simultaneously with the instruction sheet; (3) each of the 60 questions individually; and (4) each of the 60 questions individually with the instruction sheet.ResultsGPT-4 achieved a mean accuracy of 86.9% - 24.0% higher than when the answers to papers were permuted. The overall recall and precision were 72.5% and 87.4%, respectively. The standard deviation of three replicates for the 60 questions ranged from 0 to 5.3% with a median of 1.2%. The instruction sheet did not significantly increase GPT-4's accuracy, recall, or precision. GPT-4 was more likely to provide false positive answers when the 60 questions were submitted individually compared to when they were submitted together.ConclusionsGPT-4 reproducibly answered 3600 questions about 60 papers on HIVDR with moderately high accuracy, recall, and precision. The instruction sheet's failure to improve these metrics suggests that more sophisticated approaches are necessary. Either enhanced prompt engineering or finetuning an open-source model could further improve an LLM's ability to answer questions about highly specialized HIVDR papers.
C1 [Tao, Kaiming; Osman, Zachary A.; Tzou, Philip L.; Rhee, Soo-Yon; Shafer, Robert W.] Stanford Univ, Dept Med, Div Infect Dis, Stanford, CA 94305 USA.
[Ahluwalia, Vineet] Aphorism Labs, Palo Alto, CA USA.
C3 Stanford University
RP Shafer, RW (corresponding author), Stanford Univ, Dept Med, Div Infect Dis, Stanford, CA 94305 USA.
EM rshafer@stanford.edu
FU National Institutes of Health
FX This work was funded by a grant from the National Institutes of Health:
CR Alshami A, 2023, SYSTEMS-BASEL, V11, DOI 10.3390/systems11070351
Blaizot A, 2022, RES SYNTH METHODS, V13, P353, DOI 10.1002/jrsm.1553
dos Santos AO, 2023, J BIOMED INFORM, V142, DOI 10.1016/j.jbi.2023.104389
Guo E, 2023, Arxiv, DOI arXiv:2305.00844
Jimenez RC, 2022, BMC MED RES METHODOL, V22, DOI 10.1186/s12874-022-01805-4
Jin Q, 2023, BIOINFORMATICS, V39, DOI 10.1093/bioinformatics/btad651
Kandpal N, 2023, Arxiv, DOI [arXiv:2211.08411, 10.48550/arXiv.2211.08411]
Kassaye SG, 2016, CLIN INFECT DIS, V63, P836, DOI 10.1093/cid/ciw382
Khraisha Q, 2023, Arxiv, DOI [arXiv:2310.17526, 10.48550/arXiv.2310.17526]
Liang WX, 2023, Arxiv, DOI arXiv:2310.01783
Liu R, 2023, Arxiv, DOI [arXiv:2306.00622, DOI 10.48550/ARXIV.2306.00622]
Schopow N, 2023, JMIR MED INF, V11, DOI 10.2196/48933
Syriani E., 2023, arXiv, DOI 10.48550/arXiv.2307.06464
Tao KM, 2023, VIRUSES-BASEL, V15, DOI 10.3390/v15091932
van de Schoot R, 2021, NAT MACH INTELL, V3, P125, DOI 10.1038/s42256-020-00287-7
van Dijk SHB, 2023, BMJ OPEN, V13, DOI 10.1136/bmjopen-2023-072254
Weissenbacher D, 2023, medRxiv, DOI [10.1101/2023.07.29.23293370, 10.1101/2023.07.29.23293370v1, DOI 10.1101/2023.07.29.23293370V1]
Zhang Zhuosheng, 2022, arXiv, DOI DOI 10.48550/ARXIV.2210.03493
NR 18
TC 0
Z9 0
U1 0
U2 0
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1471-2288
J9 BMC MED RES METHODOL
JI BMC Med. Res. Methodol.
PD JUN 25
PY 2024
VL 24
IS 1
AR 139
DI 10.1186/s12874-024-02253-y
PG 10
WC Health Care Sciences & Services
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Health Care Sciences & Services
GA WI1Y8
UT WOS:001254161100001
PM 38918736
OA gold
DA 2024-09-05
ER
PT C
AU Urooj, A
Khan, HU
Iqbal, S
Althebyan, Q
AF Urooj, Amber
Khan, Hikmat Ullah
Iqbal, Saqib
Althebyan, Qutaibah
BE Guetl, C
Ceravolo, P
Jararweh, Y
Benkhelifa, E
Adedugbe, O
TI On Prediction of Research Excellence using Data Mining and Deep Learning
Techniques
SO 2021 EIGHTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORK ANALYSIS,
MANAGEMENT AND SECURITY (SNAMS)
LA English
DT Proceedings Paper
CT 8th International Conference on Social Network Analysis, Management and
Security (SNAMS)
CY DEC 06-09, 2021
CL ELECTR NETWORK
DE Scientometrics; Machine Learning Techniques; Deep Learning Techniques;
Research Excellence and Data Mining Techniques
ID AUTHORS
AB Scientometrics analyses the science, technology and innovation. It measures and analyses the scientific literature. The goal of our research is to predict excellence of the researchers and examine the relationship between scientometric indicators. Data Mining Techniques are used to study research excellence in this paper. A dataset used in this research study consisted of 406 researcher's data which is extracted from MathSciNet (MSN) databases. Data mining classification algorithms like Naive Bayes, Decision Tree, Random Forest, Support Vector Machine, Logistic Regression and Deep Learning are applied on the dataset for the prediction of research excellence. The performance of these algorithms is also compared on the basis of some performance measures.
C1 [Urooj, Amber; Khan, Hikmat Ullah] COMSATS Univ Islamabad, Dept Comp Sci, Wah, Pakistan.
[Iqbal, Saqib; Althebyan, Qutaibah] Al Ain Univ, Coll Engn, Al Ain, U Arab Emirates.
C3 COMSATS University Islamabad (CUI)
RP Urooj, A (corresponding author), COMSATS Univ Islamabad, Dept Comp Sci, Wah, Pakistan.
EM amberurooj1122@gmail.com; hikmat.ullah@ciitwah.edu.pk;
saqib.iqbal@aau.ac.ae; qutaibah.althebyan@aau.ac
RI Khan, Hikmat Ullah/GZG-2251-2022
OI Khan, Hikmat/0000-0002-8178-6652
CR Abramo G, 2014, J INFORMETR, V8, P89, DOI 10.1016/j.joi.2013.10.011
[Anonymous], 2013, CWTS WORKING PAPER S
BUCKLAND ST, 1993, J APPL ECOL, V30, P478, DOI 10.2307/2404188
Carli G, 2019, STUD HIGH EDUC, V44, P1912, DOI 10.1080/03075079.2018.1466873
Danell R, 2011, J AM SOC INF SCI TEC, V62, P50, DOI 10.1002/asi.21454
Havemann F, 2015, SCIENTOMETRICS, V102, P1413, DOI 10.1007/s11192-014-1476-3
Larivière V, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162709
Mryglod O, 2015, SCIENTOMETRICS, V102, P2165, DOI 10.1007/s11192-014-1512-3
Rueping S., SVM CLASSIFIER ESTIM, P8
Sammut C., 2016, ENCY MACHINE LEARNIN, DOI [10.1007/978-1-4899-7502-7, DOI 10.1007/978-1-4899-7502-7]
Sandström U, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166149
sciencedirect, PRED RES EXC IND LEV
SWAIN PH, 1977, IEEE T GEOSCI REMOTE, V15, P142, DOI 10.1109/TGE.1977.6498972
NR 13
TC 0
Z9 0
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-9495-3
PY 2021
BP 50
EP 55
DI 10.1109/SNAMS53716.2021.9732153
PG 6
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BT2PA
UT WOS:000813133100007
DA 2024-09-05
ER
PT J
AU Iqbal, AM
Iqbal, S
Khan, AS
Senin, AA
AF Iqbal, Abeda Muhammad
Iqbal, Saima
Khan, Adnan Shahid
Senin, Aslan Amat
TI A Novel Cost Efficient Evaluation Model for Assessing Research-Based
Technology Transfer between University and Industry
SO JURNAL TEKNOLOGI
LA English
DT Article
DE University-industry research collaboration; evaluation metrics;
evaluation model; technology transfer
AB Innovations and inventions are not outcomes of single activity of any organization. This is a result of collaboration of different partners. The evaluation of collaborated research between university and industry has created the greatest interest amongst the collaboration researchers as it can determine the feasibility and value of the collaboration. Despite the enormous importance of this collaboration, there have been certain problems in successful collaboration, for instance issues related to time, trainings, differences in their perceptions, orientations and goals, intellectual property right issues, some other technological competency and fund and financial matters are the key constraints that generates some how proportional to this collaboration. Thus to tackle the basis of these problems and to analyse the strength and weaknesses of these technological linkage, evaluation of such collaboration is highly demanded. This paper intends to illustrate an evaluation model to evaluate the university-industry collaboration and to enhance their technological linkage. For bridging the model, four important variables, constraints, evaluation parameter, success criteria and tangible outcome has been identified. The novelty of this model is, it is cost and time efficient and can be applied for any university-industry research collaboration.
C1 [Iqbal, Abeda Muhammad; Iqbal, Saima; Senin, Aslan Amat] Univ Teknol Malaysia, Fac Management & Human Resource Dev, Utm Johor Bahru 81310, Johor, Malaysia.
[Khan, Adnan Shahid] Univ Teknol Malaysia, Fac Elect Engn, UTM MIMOS Ctr Excellence, Skudai 81310, Malaysia.
C3 Universiti Teknologi Malaysia; Universiti Teknologi Malaysia
RP Iqbal, AM (corresponding author), Univ Teknol Malaysia, Fac Management & Human Resource Dev, Utm Johor Bahru 81310, Johor, Malaysia.
EM abidaiqbal49@yahoo.com
RI Khan, Adnan Shahid S/N-7113-2018; Iqbal, Abeda Muhammad/AAM-2154-2020;
Senin, Aslan Amat/B-1757-2017
OI Senin, Aslan Amat/0000-0002-8004-8746; Khan, Adnan
Shahid/0000-0002-3924-3646
FU Faculty of Management and Human Resource Development (FPPSM); Research
Management Centre (RMC); Universiti Teknologi Malaysia (UTM)
FX The authors would like to thanks Faculty of Management and Human
Resource Development (FPPSM) and Research Management Centre (RMC),
Universiti Teknologi Malaysia (UTM) for their partial funding
contributions.
CR Abeda, 2011, INT J BUSINESS RES M, V2, P59
Agrawal A, 2001, INT J MANAG REV, V3, P285, DOI 10.1111/1468-2370.00069
Cilingir F. C., 1984, JURNAL TEKNOLOGI, V6, P18
Danell R, 2003, SCIENTOMETRICS, V58, P205, DOI 10.1023/A:1026228425125
David, 2006, ASIA PACIFIC BUSINES, V12
Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4
Hall B. H., 2010, N200414 EUI ECO
Hermans J., 2007, The Electronic Journal of Knowledge Management, V5, P43
Majid I.A., 2009, ENTREPRENEURIAL MANA
Matkin G.W., 2006, TECHNOLOGY TRANSFER
Santoro MichaelD., 2000, Journal of High Technology Management Research, V11, P255, DOI [DOI 10.1016/S1047-8310, DOI 10.1016/S1047-8310(00)00032-8, 10.1016/S1047-8310(00)00032-8]
Siegel D.S., 2003, The Journal of High Technology Management Research, V14, P111, DOI [10.1016/S1047-8310(03)00007-5, DOI 10.1016/S1047-8310(03)00007-5, 10.1016/s1047-8310(03)00007-5]
Tansinsin Lydia G., 2006, DEV U IND PARTNERSHI
Teng Heqiang, 2004, U IND TECHNOLOGY TRA
Veugelers R, 2005, INT J IND ORGAN, V23, P355, DOI 10.1016/j.ijindorg.2005.01.008
Winter, 2004, INT J TECHNOLOGY MAN, V10, P643
NR 16
TC 0
Z9 0
U1 0
U2 0
PU PENERBIT UTM PRESS
PI JOHOR
PA PENERBIT UTM PRESS, SKUDAI, JOHOR, 81310, MALAYSIA
SN 0127-9696
EI 2180-3722
J9 J TEKNOL
JI J. Teknol.
PY 2013
VL 64
IS 2
PG 5
WC Engineering, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA V3P1I
UT WOS:000218458900031
DA 2024-09-05
ER
PT C
AU Barakhnin, VB
Duisenbayeva, AN
Kozhemyakina, OY
Yergaliyev, YN
Muhamedyev, RI
AF Barakhnin, V. B.
Duisenbayeva, A. N.
Kozhemyakina, O. Yu
Yergaliyev, Y. N.
Muhamedyev, R., I
GP IOP
TI The automatic processing of the texts in natural language. Some
bibliometric indicators of the current state of this research area
SO BIGDATA CONFERENCE (FORMERLY INTERNATIONAL CONFERENCE ON BIG DATA AND
ITS APPLICATIONS)
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 5th Big Data Conference (BDC)
CY SEP 13, 2018
CL Moscow, RUSSIA
DE Natural language processing; Machine Learning; Bibliometric Indicators;
Scientometrics; Deep Learning; Neural Networks; Information Extraction;
Text Categorization; Dialog Systems; Speech Recognition; Machine
Translation; Information Retrieval; Question Answering; Opinion Mining;
Smart advisors; D1; D2; semantic network
AB This work reviews the bibliometric indicators of a rapidly developing field of research as automatic text processing (Natural language processing). The differential indicators of speed and acceleration were used to evaluate the development dynamics of NLP domains. The evaluation was based on the data from the Science direct bibliometric database. The evaluation of the Russian research segment was conducted according to e-library data. The calculations for the following subdomains of NLP were performed: Grammar Checking, Information Extraction, Text Categorization, Dialog Systems, Speech Recognition, Machine Translation, Information Retrieval, Question Answering, Opinion Mining, Smart advisors and others. The areas with high growth rates (Grammar Checking, Information Extraction, Machine Translation and Question Answering) and the areas that have lost the previously existing dynamics of growth of the publication activity (Information Retrieval, Opinion Mining, Text Categorization) have been identified.
C1 [Barakhnin, V. B.; Kozhemyakina, O. Yu] Inst Computat Technol SB RAS, Moscow, Russia.
[Duisenbayeva, A. N.; Yergaliyev, Y. N.; Muhamedyev, R., I] Inst Informat & Computat Technol MES RK, Alma Ata, Kazakhstan.
[Duisenbayeva, A. N.; Yergaliyev, Y. N.; Muhamedyev, R., I] Satbayev Univ, Alma Ata, Kazakhstan.
[Muhamedyev, R., I] ISMA Univ, Riga, Latvia.
C3 Russian Academy of Sciences; Federal Research Center for Information &
Computational Technologies; Institute of Information & Computational
Technologies; Satbayev University
RP Barakhnin, VB (corresponding author), Inst Computat Technol SB RAS, Moscow, Russia.
EM bar@ict.nsc.ru; a.duisenbayeva@gmail.com; olgakozhemyakina@mail.ru;
erlan21@mail.ru; ravil.muhamedyev@gmail.com
RI Kozhemyakina, Olga Yu./AAG-8715-2019; Mukhamediev, Ravil I./X-1461-2019;
Yergaliyev, Yerlan/AAB-2507-2020; Barakhnin, Vladimir/A-5856-2014
OI Kozhemyakina, Olga Yu./0000-0003-3619-1120; Mukhamediev, Ravil
I./0000-0002-3727-043X; Barakhnin, Vladimir/0000-0003-3299-0507;
Yergaliyev, Yerlan/0000-0001-9632-3784
FU Ministry of Education and Science of the Republic of Kazakhstan
[BR05236839]
FX The work was funded by grant No. BR05236839 of the Ministry of Education
and Science of the Republic of Kazakhstan.
CR Abramo G, 2008, SCIENTOMETRICS, V76, P225, DOI 10.1007/s11192-007-1942-2
Adilmanova A, 2016, CLOUD SCI, V3, P366
[Anonymous], 2003, TATuP Z Tech Theor Prax
[Anonymous], 2015, P 78 ASIS T ANN M IN
Cilibrasi RL, 2007, IEEE T KNOWL DATA EN, V19, P370, DOI 10.1109/TKDE.2007.48
Daim TU, 2005, Technology Management: A Unifying Discipline for Melting the Boundaries, P112
Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004
Dale R, 2015, NAT LANG ENG, V21, P653, DOI 10.1017/S1351324915000200
Debackere K, 2004, SCIENTOMETRICS, V59, P253, DOI 10.1023/B:SCIE.0000018532.70146.02
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Gauthier E, 1998, CANADA SCI TECHNOLOG
Goldberg Y, 2016, J ARTIF INTELL RES, V57, P345, DOI 10.1613/jair.4992
Leo E, 2007, J ASSOC INF SCI TECH, V58, P452
Mokhnacheva J., 2014, INF RESOUR RUSS, V6, P17
Muhamedyev R I, 2014, P 2014 C EL GOV OP S, P178, DOI DOI 10.1145/2729104.2729112
Muhamedyev R I, 2001, ANN LIB INFORM STUDI, V65, P62
Mukhamediev R I, 2017, INT C DIG TRANSF GLO, P130
Rousseau R, 2008, J AM SOC INF SCI TEC, V59, P1853, DOI 10.1002/asi.20890
Sun SL, 2017, INFORM FUSION, V36, P10, DOI 10.1016/j.inffus.2016.10.004
Tablan V, 2013, P 51 ANN M ASS COMP, P19
NR 20
TC 9
Z9 9
U1 0
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
EI 1742-6596
J9 J PHYS CONF SER
PY 2018
VL 1117
AR 012001
DI 10.1088/1742-6596/1117/1/012001
PG 9
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods; Physics, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Physics
GA BO1FH
UT WOS:000495570900001
OA gold
DA 2024-09-05
ER
PT J
AU Gupta, BM
Dhawan, SM
AF Gupta, B. M.
Dhawan, S. M.
TI Machine Translation Research: A Scientometric Assessment of Global
Publications Output during 2007-16
SO DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY
LA English
DT Article
DE Machine translation; Global publications; Scientometrics; Bibliometrics
AB The present study provides a quantitative and qualitative description of global machine translation research published during 2007-16 and as indexed in Scopus database. The study profiles research in the field on a series of measures, such as publications growth rate, global share, citation impact, share of international collaborative papers and distribution of publications by sub-areas. The study also profiles top contributing countries, organisations and authors in machine translation research on a series of bibliometric indicators. The study further reports characteristics of highly cited papers in the field.
C1 [Gupta, B. M.] 1173 Sect 15, Panchkula 134113, India.
[Dhawan, S. M.] 114 Dayanand Vihar, Delhi 110092, India.
RP Dhawan, SM (corresponding author), 114 Dayanand Vihar, Delhi 110092, India.
EM smdhawan@yahoo.com
RI Technology, DESIDOC Journal of Library and Information/AHA-3068-2022
CR Brownlee Jason, 2017, NATURAL LANGUAGE PRO
Dong DH, 2015, SCIENTOMETRICS, V105, P1111, DOI 10.1007/s11192-015-1769-1
Gile D, 2015, PERSPECT STUD TRANSL, V23, P240, DOI 10.1080/0907676X.2014.972418
Okpor MD., 2014, International Journal of Computer Science Issues (IJCSI), V11, P159, DOI [10.20943/01201702.5457, DOI 10.20943/01201702.5457]
Oladosu J., 2016, FUOYEJET, V1, P120, DOI DOI 10.46792/FUOYEJET.V1I1.26
van Doorslaer L, 2015, PERSPECT STUD TRANSL, V23, P305, DOI 10.1080/0907676X.2015.1026360
Voss Stefan, 2005, C ART INT APPL PART
Zanettin F, 2015, PERSPECT STUD TRANSL, V23, P161, DOI 10.1080/0907676X.2015.1010551
NR 8
TC 3
Z9 3
U1 1
U2 13
PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE
PI DELHI
PA METCALFE HOUSE, DELHI 110054, INDIA
SN 0974-0643
EI 0976-4658
J9 DESIDOC J LIB INF TE
JI DESIDOC J. Lib. Inf. Technol.
PD JAN
PY 2019
VL 39
IS 1
BP 31
EP 38
DI 10.14429/djlit.39.1.13558
PG 8
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA HO5AO
UT WOS:000460935300005
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Ahmed, B
Wang, L
Al-Shamayleh, AS
Afzal, MT
Mustafa, G
Alrawagfeh, W
Akhunzada, A
AF Ahmed, Bilal
Wang, Li
Al-Shamayleh, Ahmad Sami
Afzal, Muhammad Tanvir
Mustafa, Ghulam
Alrawagfeh, Wagdi
Akhunzada, Adnan
TI Machine Learning Approach for Effective Ranking of Researcher Assessment
Parameters
SO IEEE ACCESS
LA English
DT Article
DE Measurement; Indexes; Mathematics; Metadata; Reliability; Random
forests; Current measurement; Research evaluation; H index and variants;
research assessment parameters; ranking of researchers; math subject
classification
ID H-INDEX; COMPREHENSIVE EVALUATION; GOOGLE SCHOLAR; PUBLICATION;
EXTENSIONS; VARIANTS; JOURNALS; METRICS; IMPACT
AB The measurement and assessment of academic performance is now a fact of scientific life. This assessment guides the scientific community in making significant judgments such as selecting appropriate candidates for various positions, nominating individuals for scientific awards, and awarding scholarships or grants. Several research assessment parameters have been proposed by researchers to identify the most influential scholars. In the literature, researchers have employed a combination of hypothetical and fictional scenarios, as well as manual approaches, to identify the best assessment parameters. Moreover, there is no established benchmark available for assessing these parameters. The current study employs an innovative machine learning approach, the Dynamic Random Forest with Brouta Optimizer called "BorutaRanked Forest", to prioritize the assessment metrics for researchers by calculating the importance score for each metric. Thirty different assessment metrics have been evaluated on a comprehensive dataset of researchers that contains awardees researchers and non-awardees researchers of three decades from (1990 to 2023). The main purpose of this evaluation is to determine the potential value and significance of each parameter relative to others. In addition, the position of awardees researchers is examined at different percentile ranges form Top 10% to Top 100% in the ranked lists of each parameter. During the individual evaluation of each parameter, we uncovered several intriguing patterns in the data. Our findings indicate that the normalized h-index is a particularly effective assessment parameter for the impact evaluation of researchers in the domain of mathematics. An analysis has been conducted to explore the correlation between parameters and awarding societies, examining the associations between different metrics and specific awarding societies.
C1 [Ahmed, Bilal; Wang, Li] Taiyuan Univ Technol, Coll Informat & Comp, Taiyuan, Peoples R China.
[Al-Shamayleh, Ahmad Sami] Al Ahliyya Amman Univ, Fac Informat Technol, Dept Data Sci & Artificial Intelligence, Amman 19328, Jordan.
[Afzal, Muhammad Tanvir; Mustafa, Ghulam] Shifa Tameer E Millat Univ, Dept Comp, Islamabad 44000, Pakistan.
[Alrawagfeh, Wagdi; Akhunzada, Adnan] Univ Doha Sci & Technol, Coll Comp & IT, Doha, Qatar.
C3 Taiyuan University of Technology; Al-Ahliyya Amman University
RP Alrawagfeh, W (corresponding author), Univ Doha Sci & Technol, Coll Comp & IT, Doha, Qatar.
EM wagdi.alrawagfeh@udst.edu.qa
RI Al-Shamayleh, Ahmad Sami/IVU-8846-2023; Akhunzada, Adnan/N-7917-2017;
Afzal, Muhammad/D-3741-2019
OI Akhunzada, Adnan/0000-0001-8370-9290; Afzal,
Muhammad/0000-0002-7851-2327; Alrawagfeh, Wagdi/0000-0003-4227-9276;
Ahmed, Bilal/0000-0002-9458-9412; Wang, Li/0000-0002-7385-1426;
Al-Shamayleh, Dr. Ahmad Sami/0000-0002-7222-2433
FU Qatar National Library
FX No Statement Available
CR Ahmed B., 2020, P 6 INT C DAT SCI IC, P331
Ahmed B., 2023, IEEE Access, V11
Ahmed B, 2021, INT ARAB J INF TECHN, V18, P365, DOI 10.34028/iajit/18/3/13
Ameer M, 2019, SCIENTOMETRICS, V121, P653, DOI 10.1007/s11192-019-03209-6
Kursa MB, 2011, Arxiv, DOI [arXiv:1106.5112, 10.48550/arXiv.1106.5112]
Balog K., 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P43, DOI 10.1145/1148170.1148181
Bhattacharya S., 2022, P INT INT C MATH ENG, P1
Bihari A, 2023, J INF SCI, V49, P624, DOI 10.1177/01655515211014478
Burrell QL, 2007, J INFORMETR, V1, P170, DOI 10.1016/j.joi.2007.01.003
Burrell QL, 2007, J INFORMETR, V1, P16, DOI 10.1016/j.joi.2006.07.001
Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005
Cheng FF, 2019, LIBR HI TECH, V37, P43, DOI 10.1108/LHT-11-2017-0241
DE N, 2016, DISCRET MATH ALGORIT, V8
Dienes KR, 2015, J INFORMETR, V9, P385, DOI 10.1016/j.joi.2015.01.003
Dillon R., 2022, P 12 INT C VIRT CAMP, P1
Ding JD, 2020, SCIENTOMETRICS, V122, P1303, DOI 10.1007/s11192-020-03364-1
Dunne E., 2020, Nat. Amer. Math. Soc., V67, P410
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Ghani R, 2019, SCIENTOMETRICS, V118, P809, DOI 10.1007/s11192-019-03007-0
Halevi G, 2017, J INFORMETR, V11, P823, DOI 10.1016/j.joi.2017.06.005
Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hussain A, 2019, INT J ADV COMPUT SC, V10, P39
Jiang XR, 2013, SCIENTOMETRICS, V96, P743, DOI 10.1007/s11192-012-0943-y
Khan Nickalus R, 2013, World Neurosurg, V80, P766, DOI 10.1016/j.wneu.2013.07.011
Kursa MB, 2010, J STAT SOFTW, V36, P1, DOI 10.18637/jss.v036.i11
Lane J, 2010, NATURE, V464, P488, DOI 10.1038/464488a
Liang RH, 2016, AAAI CONF ARTIF INTE, P20
Lima H, 2013, ACM-IEEE J CONF DIG, P97
Lötsch J, 2022, PAIN REP, V7, DOI 10.1097/PR9.0000000000001044
Maurya NS, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-33327-4
Moreira C, 2015, EXPERT SYST, V32, P477, DOI 10.1111/exsy.12062
Mustafa G., 2021, IEEE Access, V9
Mustafa G, 2023, IEEE ACCESS, V11, P86597, DOI 10.1109/ACCESS.2023.3304013
Mustafa G, 2023, IEEE ACCESS, V11, P83136, DOI 10.1109/ACCESS.2023.3292248
Mustafa G, 2023, IEEE ACCESS, V11, P65759, DOI 10.1109/ACCESS.2023.3290917
Mustafa G, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-01460-7
Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659
Nguyen K, 2021, ISPRS INT J GEO-INF, V10, DOI 10.3390/ijgi10070452
Qurat-ul Ain, 2019, SCIENTOMETRICS, V119, P187, DOI 10.1007/s11192-019-03009-y
Raheel M, 2018, SCIENTOMETRICS, V114, P1107, DOI 10.1007/s11192-017-2633-2
Rathore MMU, 2021, IEEE T EMERG TOP COM, V9, P280, DOI 10.1109/TETC.2018.2869458
Schreiber M, 2007, EPL-EUROPHYS LETT, V78, DOI 10.1209/0295-5075/78/30002
Schreiber M, 2008, J INFORMETR, V2, P211, DOI 10.1016/j.joi.2008.05.001
Shah SMAH, 2023, IEEE ACCESS, V11, P75528, DOI 10.1109/ACCESS.2023.3294562
Smolinsky L, 2012, SCIENTOMETRICS, V91, P911, DOI 10.1007/s11192-012-0647-3
Usman M, 2021, SCIENTOMETRICS, V126, P335, DOI 10.1007/s11192-020-03769-y
Yu Liu, 2020, 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). Proceedings, P529, DOI 10.1109/AEMCSE50948.2020.00119
NR 49
TC 3
Z9 3
U1 4
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2023
VL 11
BP 133294
EP 133312
DI 10.1109/ACCESS.2023.3336950
PG 19
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA AB6N6
UT WOS:001116036800001
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Huang, L
Cai, YJ
Zhao, ED
Zhang, ST
Shu, Y
Fan, J
AF Huang, Lu
Cai, Yijie
Zhao, Erdong
Zhang, Shengting
Shu, Yue
Fan, Jiao
TI Measuring the interdisciplinarity of Information and Library Science
interactions using citation analysis and semantic analysis
SO SCIENTOMETRICS
LA English
DT Article
DE Interdisciplinary interactions; Citation analysis; Semantic analysis;
LDA; Word2Vec
ID TOPIC EXTRACTION; DIVERSITY; NETWORK; MODEL; NORMALIZATION; EXPLORATION;
INDICATORS; FRAMEWORK; INDEXES
AB Interdisciplinary interaction and integration have become major features of current science and technology development. Hence, ways to measure the strength of the interdisciplinary interactions between two given disciplines has become a crucial issue. In this study, we propose a novel framework for measuring interdisciplinary interaction that is based on both citation analysis and semantic analysis. Within the framework, direct citations combined with bibliographic coupling reflect citation relationship of interdisciplinary knowledge, while an LDA model combined with a word embedding model are used to explore the integration and diffusion of knowledge via semantic similarity. The strength of the interdisciplinary interactions is then assessed with an entropy weighting method. A case study on the interactions between Information & Library Science and six other disciplines demonstrates the efficacy and reliability of the framework.
C1 [Huang, Lu; Cai, Yijie; Zhao, Erdong; Zhang, Shengting; Shu, Yue; Fan, Jiao] Beijing Inst Technol, Sch Management & Econ, 5 South Zhongguancun St, Beijing 100081, Peoples R China.
C3 Beijing Institute of Technology
RP Zhao, ED (corresponding author), Beijing Inst Technol, Sch Management & Econ, 5 South Zhongguancun St, Beijing 100081, Peoples R China.
EM huanglu628@163.com; m15001185835@163.com; teacherzed@163.com;
bhgszst@163.com; shuyue.1997@163.com; 18844116182@163.com
RI lan, xueyao/JZD-4201-2024
FU National Science Foundation of China [71673086, 71774013]
FX This work was supported by the National Science Foundation of China
[Grant No. 71673086; 71774013]. Our heartfelt appreciation goes to
Changtian Wang for his contributions to this paper.
CR Adnani H, 2020, MALAYS J LIBR INF SC, V25, P31, DOI 10.22452/mjlis.vol25no3.3
Ali M, 2020, J INTELL FUZZY SYST, V38, P2661, DOI 10.3233/JIFS-179552
Ayele W. Y., 2019, COMPUTER VISION C CV, P355
Benito-Santos A, 2019, IEEE ACCESS, V7, P98144, DOI 10.1109/ACCESS.2019.2929754
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011
Carass A, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64803-w
Chang YW, 2012, J AM SOC INF SCI TEC, V63, P22, DOI 10.1002/asi.21649
Chen LT, 2019, J ASSOC INF SYST, V20, P1023, DOI 10.17705/1jais.00561
Chi RB, 2013, SCIENTOMETRICS, V96, P147, DOI 10.1007/s11192-012-0894-3
Loureiro SMC, 2020, TOURISM MANAGE, V77, DOI 10.1016/j.tourman.2019.104028
Dai T, 2019, IEEE ACCESS, V7, P1706, DOI 10.1109/ACCESS.2018.2884981
de Oliveira TM, 2019, RES EVALUAT, V28, P23, DOI 10.1093/reseval/rvy013
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Deng SL, 2020, SCIENTOMETRICS, V124, P489, DOI 10.1007/s11192-020-03465-x
Deng SL, 2019, ACM-IEEE J CONF DIG, P384, DOI 10.1109/JCDL.2019.00082
DILLON M, 1983, INFORM PROCESS MANAG, V19, P402, DOI 10.1016/0306-4573(83)90062-6
Edge, 1977, SOC SOCIAL STUDIES S, V2, P13
Frank R., 1988, WORDS ROBERT BURCHFI, P91
Gullbekk E, 2019, J DOC, V75, P247, DOI 10.1108/JD-06-2018-0101
Hammarfelt B, 2011, SCIENTOMETRICS, V86, P705, DOI 10.1007/s11192-010-0314-5
Heo GE, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1640-x
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
Holland GA, 2008, J DOC, V64, P7, DOI 10.1108/00220410810844132
Hu K, 2018, SCIENTOMETRICS, V114, P1031, DOI 10.1007/s11192-017-2574-9
Hu K, 2018, SCIENTOMETRICS, V114, P1141, DOI 10.1007/s11192-017-2604-7
Hu WJ, 2021, NEUROCOMPUTING, V448, P94, DOI 10.1016/j.neucom.2021.03.093
Huang L, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120944
Huang MH, 2012, SCIENTOMETRICS, V91, P789, DOI 10.1007/s11192-012-0619-7
Huang XY., 2020, ED MODERNIZATION, V7, P20
Huang Y, 2021, SCIENTOMETRICS, V126, P6201, DOI 10.1007/s11192-020-03821-x
[黄颖 Huang Ying], 2019, [科学学研究, Studies in Science of Science], V37, P25
Isler Y, 2010, P I MECH ENG H, V224, P453, DOI 10.1243/09544119JEIM642
Jaccard P., 1901, B SOC VAUD SCI NAT, V37, P547, DOI DOI 10.5169/SEALS-266450
Karunan K, 2017, SCIENTOMETRICS, V113, P335, DOI 10.1007/s11192-017-2481-0
Ke Q, 2019, J AM MED INFORM ASSN, V26, P516, DOI 10.1093/jamia/ocy177
Kim M, 2018, J ASSOC INF SCI TECH, V69, P329, DOI 10.1002/asi.23960
Kim SK, 2018, J SUPERCOMPUT, V74, P6691, DOI 10.1007/s11227-017-2062-2
Langer M, 2021, ARTIF INTELL, V296, DOI 10.1016/j.artint.2021.103473
Lee C, 2019, CHI EA '19 EXTENDED ABSTRACTS: EXTENDED ABSTRACTS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290607.3312776
Levy O, 2014, ADV NEUR IN, V27
Leydesdorff L, 2008, J AM SOC INF SCI TEC, V59, P77, DOI 10.1002/asi.20732
Leydesdorff L, 2021, J ASSOC INF SCI TECH, V72, P387, DOI 10.1002/asi.24416
Leydesdorff L, 2011, J INFORMETR, V5, P87, DOI 10.1016/j.joi.2010.09.002
Lin L., 2017, J INTELL-BASEL, V36, P182
Liu YM, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101141
Lu K, 2012, J AM SOC INF SCI TEC, V63, P1973, DOI 10.1002/asi.22628
Lu W, 2019, KNOWL ORGAN, V46, P403, DOI 10.5771/0943-7444-2019-6-403
Ma Ruimin, 2019, Journal of the China Society for Scientific and Technical Information, V38, P688, DOI 10.3772/j.issn.1000-0135.2019.07.003
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Mugabushaka AM, 2016, SCIENTOMETRICS, V107, P593, DOI 10.1007/s11192-016-1865-x
National Academy of Sciences, 2005, Facilitating Interdisciplinary Research, Facilitating Interdisciplinary Research, DOI DOI 10.17226/11153
Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2
Onan A, 2019, IEEE ACCESS, V7, P145614, DOI 10.1109/ACCESS.2019.2945911
Ozkaya I, 2020, IEEE SOFTWARE, V37, P3, DOI 10.1109/MS.2020.2993662
Pan JF., 2013, MAPPING SCI STRUCTUR, P13
Pierce SJ, 1999, J AM SOC INFORM SCI, V50, P271, DOI 10.1002/(SICI)1097-4571(1999)50:3<271::AID-ASI10>3.3.CO;2-D
Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y
Raimbault J, 2019, SCIENTOMETRICS, V119, P617, DOI 10.1007/s11192-019-03090-3
Shang XL., 2018, INFORM SCIENTIST, V36, P57
Shi S., 2018, INFORM STUDIES THEOR, V41, P99
Stirling A, 2007, J R SOC INTERFACE, V4, P707, DOI 10.1098/rsif.2007.0213
Le TTN, 2020, WIRELESS PERS COMMUN, V112, P1875, DOI 10.1007/s11277-020-07131-6
Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004
Wang F, 2021, STRUCT SAF, V88, DOI 10.1016/j.strusafe.2020.102028
Wang LL, 2013, SCIENTOMETRICS, V94, P877, DOI 10.1007/s11192-012-0856-9
Wang XF, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120698
Wang Y, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118437
Wang ZB, 2016, 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), P98, DOI 10.1109/DSC.2016.110
Xing W, 2006, SIXTH IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID, P178
Xu HY, 2016, SCIENTOMETRICS, V106, P583, DOI 10.1007/s11192-015-1792-2
Xu J, 2019, SCIENTOMETRICS, V119, P1597, DOI 10.1007/s11192-019-03106-y
Xu Shurui, 2017, Journal of the China Society for Scientific and Technical Information, V36, P809
Yang LJ, 2019, SCIENTOMETRICS, V120, P507, DOI 10.1007/s11192-019-03141-9
Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031
Zhang L, 2016, J ASSOC INF SCI TECH, V67, P1257, DOI 10.1002/asi.23487
Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004
Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019
Zhou X, 2019, SCIENTOMETRICS, V121, P699, DOI 10.1007/s11192-019-03218-5
Zhou Y., 2018, J INTELL-BASEL, V37, P76
Zhou Y, 2019, PROCEEDINGS OF THE 2019 56TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), DOI 10.1145/3316781.3317884
NR 82
TC 10
Z9 11
U1 24
U2 134
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2022
VL 127
IS 11
BP 6733
EP 6761
DI 10.1007/s11192-022-04401-x
EA JUN 2022
PG 29
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 5U5FU
UT WOS:000807322400004
DA 2024-09-05
ER
PT C
AU Fan, LP
Wang, YF
Ding, SC
AF Fan, Lipeng
Wang, Yuefen
Ding, Shengchun
BE Catalano, G
Daraio, C
Gregori, M
Moed, HF
Ruocco, G
TI Scientific research collaboration in Artificial Intelligence: global
trends and citations at the institution level
SO 17TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS
(ISSI2019), VOL I
SE Proceedings of the International Conference on Scientometrics and
Informetrics
LA English
DT Proceedings Paper
CT 17th International Conference of the
International-Society-for-Scientometrics-and-Informetrics (ISSI) on
Scientometrics and Informetrics
CY SEP 02-05, 2019
CL Sapienza Univ Rome, Rome, ITALY
HO Sapienza Univ Rome
DE Collaboration pattern; Global trends; Citation; Institution level;
Artificial Intelligence
ID INTERNATIONAL COLLABORATION; COMPUTER-SCIENCE; PATTERNS
AB In order to gain a deeper understanding of collaboration and the relationship between collaboration patterns and citations in global Artificial Intelligence (AI) research, this present paper defines institution types and collaboration patterns from a new perspective. According to a variation of H-index, it classifies institutions into two types: Main institutions and Normal institutions. Based on institution types of the first and remaining institutions in a paper, it divides collaboration publications into six parts: M, M&M, M&N, N, N&M and N&N. In this study, all publications were collected from papers listed in Web of science from 1997 to 2017, published in the field of AI. According the number of units in a paper, results show that five or more authors have a great chance to be the primary pattern in Al field in the future; single-institution papers are the primary pattern but decreasing sharply during a long time; single-country papers keep playing a dominant role in past almost 20 years. According to different collaboration types, results show that five or more author publications are the primary form in M&M, M&N and N&M types, while three-author papers in N & N; Domestic two-institution papers in M&N and N&N are obviously more than that in M&M and N&M types; Single-country papers account for a large share in M&N, N&N and N&M, while two-country papers are more than single-country papers and become the most important part since 2010 in M&M. According to the relationship between collaboration types and citations, results show that the number of Main institutions has a positive relationship with the citation values, while the number of Normal institutions has a little negative influence on N&N type.
C1 [Fan, Lipeng; Wang, Yuefen; Ding, Shengchun] Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Peoples R China.
[Wang, Yuefen] Jiangsu Collaborat Innovat Ctr Social Safety Sci, Nanjing, Peoples R China.
C3 Nanjing University of Science & Technology
RP Fan, LP (corresponding author), Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Peoples R China.
EM funnypower@126.com; yuefen163@163.com; todingding@163.com
RI fan, lipeng/IWM-3409-2023
FU National Social Science of China [16ZDA224]
FX The authors are grateful to anonymous referees and editors for their
invaluable and insightful comments, and thank for the support by the
National Social Science of China (16ZDA224).
CR Abramo G, 2011, SCIENTOMETRICS, V86, P347, DOI 10.1007/s11192-010-0297-2
Ali JM, 2015, EXPERT SYST APPL, V42, P5915, DOI 10.1016/j.eswa.2015.03.023
Beaver DD, 2001, SCIENTOMETRICS, V52, P365, DOI 10.1023/A:1014254214337
Franceschet M, 2011, J AM SOC INF SCI TEC, V62, P1992, DOI 10.1002/asi.21614
Gazni A, 2012, J AM SOC INF SCI TEC, V63, P323, DOI 10.1002/asi.21688
Gazni A, 2011, SCIENTOMETRICS, V87, P251, DOI 10.1007/s11192-011-0343-8
Ibáñez A, 2013, SCIENTOMETRICS, V95, P689, DOI 10.1007/s11192-012-0883-6
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
Larivière V, 2006, SCIENTOMETRICS, V68, P519, DOI 10.1007/s11192-006-0127-8
Lee DH, 2012, SCIENTOMETRICS, V91, P925, DOI 10.1007/s11192-011-0602-8
Liu HI, 2012, SCIENTOMETRICS, V92, P145, DOI 10.1007/s11192-012-0719-4
Nguyen TV, 2017, SCIENTOMETRICS, V110, P1035, DOI 10.1007/s11192-016-2201-1
Ni P, 2018, SCIENTOMETRICS, V116, P863, DOI 10.1007/s11192-018-2784-9
Pham DT, 1999, INT J MACH TOOL MANU, V39, P937, DOI 10.1016/S0890-6955(98)00076-5
Sooryamoorthy R, 2009, SCIENTOMETRICS, V81, P177, DOI 10.1007/s11192-009-2126-z
Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6
Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9
Yuan LL, 2018, SCIENTOMETRICS, V116, P401, DOI 10.1007/s11192-018-2753-3
Zhang CW, 2018, J ASSOC INF SCI TECH, V69, P72, DOI 10.1002/asi.23916
NR 19
TC 0
Z9 0
U1 1
U2 15
PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI
PI LEUVEN
PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN,
B-3000, BELGIUM
SN 2175-1935
BN 978-88-3381-118-5
J9 PRO INT CONF SCI INF
PY 2019
BP 596
EP 607
PG 12
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BO2SN
UT WOS:000508217900057
DA 2024-09-05
ER
PT J
AU Shao, Z
Yuan, S
Wang, YL
Xu, J
AF Shao, Zhou
Yuan, Sha
Wang, Yongli
Xu, Jing
TI Evolutions and trends of artificial intelligence (AI): research, output,
influence and competition
SO LIBRARY HI TECH
LA English
DT Article
DE Science of science; Artificial intelligence; KG4AI; Knowledge graph
ID COMPUTER-SCIENCE; IMPACT; PUBLICATIONS; SYSTEMS
AB Purpose This paper throws light on some of the nature of artificial intelligence (AI) development, which will serve as a starter for helping to advance its development. Design/methodology/approach This work reveals the evolutions and trends of AI from four dimensions: research, output, influence and competition through leveraging academic knowledge graph with 130,750 AI scholars and 43,746 scholarly articles. Findings The authors unearth that the "research convergence" phenomenon becomes more evident in current AI research for scholars' highly similar research interests in different regions. The authors notice that Pareto's principle applies to AI scholars' outputs, and the outputs have been increasing at an explosive rate in the past two decades. The authors discover that top works dominate the AI academia, for they attracted considerable attention. Finally, the authors delve into AI competition, which accelerates technology development, talent flow, and collaboration. Originality/value The work aims to throw light on the nature of AI development, which will serve as a starter for helping to advance its development. The work will help us to have a more comprehensive and profound understanding of the evolutions and trends, which bridge the gap between literature research and AI development as well as enlighten the way the authors promote AI development and its strategy formulation.
C1 [Shao, Zhou; Wang, Yongli] Nanjing Univ Sci & Technol, Nanjing, Peoples R China.
[Yuan, Sha] Beijing Acad Artificial Intelligence, Beijing, Peoples R China.
[Xu, Jing] Tsinghua Univ, Beijing, Peoples R China.
C3 Nanjing University of Science & Technology; Tsinghua University
RP Wang, YL (corresponding author), Nanjing Univ Sci & Technol, Nanjing, Peoples R China.
EM shaozhou0001@gmail.com; yuansha@baal.ac.cn; yongllwang@njust.edu.cn;
xjqh@mail.tsinghua.edu.cn
OI Shao, Zhou/0000-0002-6265-7310
FU National Natural Science Foundation of China [61941113, 82074580,
61806111]; Fundamental Research Fund for the Central Universities
[30918015103, 30918012204]; Nanjing Science and Technology Development
Plan Project [201805036]; China Academy of Engineering Consulting
Research Project [2019-ZD-1-02-02]; National Social Science Foundation
[18BTQ073]; NSFC for Distinguished Young Scholar [61825602]; National
Key R&D Program of China [2020AAA010520002]
FX This article has been awarded by the National Natural Science Foundation
of China (61941113, 82074580, 61806111), the Fundamental Research Fund
for the Central Universities (30918015103, 30918012204), Nanjing Science
and Technology Development Plan Project (201805036), China Academy of
Engineering Consulting Research Project (2019-ZD-1-02-02), National
Social Science Foundation (18BTQ073), NSFC for Distinguished Young
Scholar under Grant No. 61825602 and National Key R&D Program of China
under Grant No. 2020AAA010520002.
CR [Anonymous], 2010, Commun ACM, DOI [10.1145/1839676.1839701, DOI 10.1145/1839676.1839701]
Arash B, 2014, SCI REP-UK, V4, DOI [10.1038/srep06479, 10.1038/srep04770, 10.1038/srep05848]
Chen CY, 2018, AAAI CONF ARTIF INTE, P2111
Correia A, 2019, INT C COMP SUPP COOP, P129, DOI [10.1109/cscwd.2019.8791855, 10.1109/CSCWD.2019.8791855]
Correia A, 2018, SCIENTOMETRICS, V114, P31, DOI 10.1007/s11192-017-2562-0
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Franceschet M, 2010, Commun. ACM, V53, P129, DOI [10.1145/1859204.1859234, DOI 10.1145/1859204.1859234]
Hall W., 2017, Independent Report
Barbosa SDJ, 2017, SCIENTOMETRICS, V110, P275, DOI 10.1007/s11192-016-2162-4
Larivière V, 2010, J AM SOC INF SCI TEC, V61, P424, DOI 10.1002/asi.21232
Li XC, 2018, SCIENTOMETRICS, V116, P879, DOI 10.1007/s11192-018-2763-1
Liu JY, 2019, COMPUT SCI REV, V34, DOI 10.1016/j.cosrev.2019.100193
Liu JY, 2019, SCIENTOMETRICS, V118, P617, DOI 10.1007/s11192-018-2974-5
Liu JY, 2018, IEEE ACCESS, V6, P34403, DOI 10.1109/ACCESS.2018.2819688
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
Milojevic S, 2018, P NATL ACAD SCI USA, V115, P12616, DOI 10.1073/pnas.1800478115
Moed H, 2014, SCIENTOMETRICS, V101, P1987, DOI 10.1007/s11192-014-1307-6
Moed HF, 2013, SCIENTOMETRICS, V94, P929, DOI 10.1007/s11192-012-0783-9
Qian YF, 2017, SCIENTOMETRICS, V110, P1351, DOI 10.1007/s11192-016-2235-4
Robinson-Garcia N, 2019, J INFORMETR, V13, P50, DOI 10.1016/j.joi.2018.11.002
Russell Stuart, 2010, Artificial intelligence, a modern approach, V3
Sha Yuan, 2020, WebSci '20: 12th ACM Conference on Web Science, P69, DOI 10.1145/3394231.3397896
Shao Z., 2018, P 24 ACM SIGKDD INT
Shao Z, 2020, IEEE ACCESS, V8, P69734, DOI 10.1109/ACCESS.2020.2986383
Shao Z, 2020, IEEE ACCESS, V8, P70519, DOI 10.1109/ACCESS.2020.2986826
Sinatra R, 2015, NAT PHYS, V11, P791, DOI 10.1038/nphys3494
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Tang J., 2019, China Patents, Patent No. [(CN 109359249A[P]),, 109359249]
Tang J, 2012, IEEE T KNOWL DATA EN, V24, P975, DOI 10.1109/TKDE.2011.13
Van Noorden R., 2014, Nature | News
Van Noorden R, 2012, NATURE, V490, P326, DOI 10.1038/490326a
Yuan S, 2020, SCIENTOMETRICS, V124, P993, DOI 10.1007/s11192-020-03423-7
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
Zhang YT, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1002, DOI 10.1145/3219819.3219859
Zhou Shao, 2020, WebSci '20: 12th ACM Conference on Web Science, P345, DOI 10.1145/3394231.3397925
NR 37
TC 20
Z9 20
U1 17
U2 88
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 0737-8831
J9 LIBR HI TECH
JI Libr. Hi Tech
PD MAY 27
PY 2022
VL 40
IS 3
BP 704
EP 724
DI 10.1108/LHT-01-2021-0018
EA JUL 2021
PG 21
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA 1M5FJ
UT WOS:000675934600001
DA 2024-09-05
ER
PT J
AU Martin, P
Surian, D
Bashir, R
Bourgeois, FT
Dunn, AG
AF Martin, Paige
Surian, Didi
Bashir, Rabia
Bourgeois, Florence T.
Dunn, Adam G.
TI Trial2rev: Combining machine learning and crowd-sourcing to create a
shared space for updating systematic reviews
SO JAMIA OPEN
LA English
DT Article
DE review literature as topic; semi-supervised learning; databases as
topic; bibliographic databases
ID PUBLICATION; SIMILARITY; WORKLOAD
AB Objectives: Systematic reviews of clinical trials could be updated faster by automatically monitoring relevant trials as they are registered, completed, and reported. Our aim was to provide a public interface to a database of curated links between systematic reviews and trial registrations.
Materials and Methods: We developed the server-side system components in Python, connected them to a PostgreSQL database, and implemented the web-based user interface using Javascript, HTML, and CSS. All code is available on GitHub under an open source MIT license and registered users can access and download all available data.
Results: The trial2rev system is a web-based interface to a database that collates and augments information from multiple sources including bibliographic databases, the ClinicalTrials.gov registry, and the actions of registered users. Users interact with the system by browsing, searching, or adding systematic reviews, verifying links to trials included in the review, and adding or voting on trials that they would expect to include in an update of the systematic review. The system can trigger the actions of software agents that add or vote on included and relevant trials, in response to user interactions or by scheduling updates from external resources.
Discussion and Conclusion: We designed a publicly-accessible resource to help systematic reviewers make decisions about systematic review updates. Where previous approaches have sought to reactively filter published reports of trials for inclusion in systematic reviews, our approach is to proactively monitor for relevant trials as they are registered and completed.
C1 [Martin, Paige; Surian, Didi; Bashir, Rabia; Dunn, Adam G.] Macquarie Univ, Ctr Hlth Informat, Australian Inst Hlth Innovat, Level 6,75 Talavera Rd, Sydney, NSW 2109, Australia.
[Bourgeois, Florence T.] Childrens Hosp Boston, Computat Hlth Informat Program, Boston, MA USA.
[Bourgeois, Florence T.] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA.
C3 Macquarie University; Harvard University; Boston Children's Hospital;
Harvard University; Harvard Medical School
RP Martin, P (corresponding author), Macquarie Univ, Ctr Hlth Informat, Australian Inst Hlth Innovat, Level 6,75 Talavera Rd, Sydney, NSW 2109, Australia.
EM paige.newman@mq.edu.au
RI Dunn, Adam/H-4425-2019; Bashir, Rabia/Q-3225-2019
OI Dunn, Adam/0000-0002-1720-8209; Bashir, Rabia/0000-0002-9613-8957;
Surian, Didi/0000-0003-2299-2971; Martin, Paige/0000-0002-6157-4740
FU Agency for Healthcare Research and Quality [R03HS024798]
FX This work was supported by the Agency for Healthcare Research and
Quality (R03HS024798 to FTB).
CR Bangor A, 2008, INT J HUM-COMPUT INT, V24, P574, DOI 10.1080/10447310802205776
Bashir R, 2018, COCHR C
Bastian H, 2010, PLOS MED, V7, DOI 10.1371/journal.pmed.1000326
Bierer BE, 2016, NEW ENGL J MED, V374, P2411, DOI 10.1056/NEJMp1605348
Bourgeois FT, 2010, ANN INTERN MED, V153, P158, DOI 10.7326/0003-4819-153-3-201008030-00006
Chan AW, 2004, JAMA-J AM MED ASSOC, V291, P2457, DOI 10.1001/jama.291.20.2457
Chen RJ, 2016, BMJ-BRIT MED J, V352, DOI 10.1136/bmj.i637
Coens C, 2017, F1000 RES, V6, P71
Cohen AM, 2009, J AM MED INFORM ASSN, V16, P690, DOI 10.1197/jamia.M3162
Cohen AM, 2006, J AM MED INFORM ASSN, V13, P206, DOI 10.1197/jamia.M1929
DeAngelis CD, 2004, JAMA-J AM MED ASSOC, V292, P1363, DOI 10.1001/jama.292.11.1363
DeVito NJ, 2018, BIORXIV, P266452
Dickersin K, 2003, JAMA-J AM MED ASSOC, V290, P516, DOI 10.1001/jama.290.4.516
Dunn AG, 2018, J CLIN EPIDEMIOL, V95, P94, DOI 10.1016/j.jclinepi.2017.12.007
Dwan K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066844
Elliott JH, 2017, J CLIN EPIDEMIOL, V91, P23, DOI 10.1016/j.jclinepi.2017.08.010
Elliott JH, 2014, PLOS MED, V11, DOI 10.1371/journal.pmed.1001603
Garner P, 2016, BMJ-BRIT MED J, V354, DOI 10.1136/bmj.i3507
Garritty C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009914
Ji XN, 2017, J BIOMED INFORM, V69, P33, DOI 10.1016/j.jbi.2017.03.007
Jones CW, 2013, BMJ-BRIT MED J, V347, DOI 10.1136/bmj.f6104
Kirkham JJ, 2010, BMJ-BRIT MED J, V340, DOI 10.1136/bmj.c365
Krivosheev E, 2017, ARXIV170905168
Miwa M, 2014, J BIOMED INFORM, V51, P242, DOI 10.1016/j.jbi.2014.06.005
Mortensen ML, 2017, RES SYNTH METHODS, V8, P366, DOI 10.1002/jrsm.1252
O'Mara-Eves A, 2015, SYST REV-LONDON, V4, DOI 10.1186/2046-4053-4-5
Page MJ, 2013, J CLIN EPIDEMIOL, V66, P524, DOI 10.1016/j.jclinepi.2012.10.010
Saito H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101826
Schmucker C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114023
Shamliyan TA, 2014, J EPIDEMIOL GLOB HEA, V4, P1, DOI 10.1016/j.jegh.2013.08.002
Shekelle PG, 2017, ANN INTERN MED, V167, P213, DOI 10.7326/L17-0124
Shemilt I, 2014, RES SYNTH METHODS, V5, P31, DOI 10.1002/jrsm.1093
Song F, 2010, HEALTH TECHNOL ASSES, V14, P1, DOI 10.3310/hta14080
Surian D, 2018, J BIOMED INFORM, V79, P32, DOI 10.1016/j.jbi.2018.01.008
Takwoingi Y, 2013, BMJ-BRIT MED J, V347, DOI 10.1136/bmj.f7191
Thomas J, 2011, RES SYNTH METHODS, V2, P1, DOI 10.1002/jrsm.27
Trinquart L, 2018, BMC MED, V16, DOI 10.1186/s12916-018-1168-6
Tsafnat G, 2014, SYST REV-LONDON, V3, DOI 10.1186/2046-4053-3-74
Turner EH, 2012, PLOS MED, V9, DOI 10.1371/journal.pmed.1001189
Vawdrey DK, 2013, J BIOMED INFORM, V46, P139, DOI 10.1016/j.jbi.2012.08.007
Wallace BC, 2017, J AM MED INFORM ASSN, V24, P1165, DOI 10.1093/jamia/ocx053
Wallace BC, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-55
NR 42
TC 16
Z9 16
U1 1
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
EI 2574-2531
J9 JAMIA OPEN
JI JAMIA Open
PD APR
PY 2019
VL 2
IS 1
BP 15
EP 22
DI 10.1093/jamiaopen/ooy062
PG 8
WC Health Care Sciences & Services; Medical Informatics
WE Emerging Sources Citation Index (ESCI)
SC Health Care Sciences & Services; Medical Informatics
GA VJ9DU
UT WOS:000645417700004
PM 31984340
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Yang, Q
AF Yang, Qin
TI RESEARCH ON E-COMMERCE CUSTOMER SATISFACTION EVALUATION METHOD BASED ON
PSO-LSTM AND TEXT MINING
SO 3C EMPRESA
LA English
DT Article
DE text mining; PSO-LSTM; particle swarm algorithm; long short-term memory
network
ID SENTIMENT ANALYSIS
AB With the increase of social technology, e-commerce platforms have entered a period of rapid development. Improving customer satisfaction , purchase rate is the key to the survival of e-commerce platforms. Text mining and analysis of customer evaluation data will help to grasp the focus of customers and optimize the e -commerce platform. To this end, through text mining technology, the text comment data of five e-commerce platforms such as Amazon, eBay, Alibaba, Jingdong , Taobao are collected, and the cleaned text is analyzed by particle swarm algorithm (PSO)-long short-term memory (LSTM) model. The data is subject to time scale extraction, and the extraction results are visualized and interpreted. The research shows that the logistics, price, freshness, quality and packaging of e-commerce platform merchants are important factors that affect the evaluation of e-commerce customer satisfaction.
C1 [Yang, Qin] Jinling Inst Sci & Technol, Sch Marxism, Nanjing 211169, Jiangsu, Peoples R China.
RP Yang, Q (corresponding author), Jinling Inst Sci & Technol, Sch Marxism, Nanjing 211169, Jiangsu, Peoples R China.
EM yang2161980@sina.com
CR Cai Xiaozhen, 2014, CURR CONTENTS, V30, P58
Che XB, 2022, APPL MATH NONLIN SCI, V7, P83, DOI 10.2478/amns.2021.1.00098
Fan Qingbo, 2018, J SHANGHAI MARITIME, V39, P54
Feng Yuxu, 2019, CURR CONTENTS, V49, P308
Delgado MF, 2021, 3C TIC, V10, P123, DOI 10.17993/3ctic.2021.102.123-141
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Jia Kong, 2020, PORTL INT CONF MANAG, V40, P173
Le S, 2021, Circuits and Systems II: Express Briefs, IEEE Transactions on, VPP, P1
Li HJ, 2021, FRONT ENERGY RES, V9, DOI 10.3389/fenrg.2021.799039
Li HJ, 2021, FRONT ENERGY RES, V9, DOI 10.3389/fenrg.2021.780928
Li Qichao, 2020, INFORM TECHNOLOGY IN, P54
Liu LZ, 2014, CHINA COMMUN, V11, P154, DOI 10.1109/CC.2014.6825268
Liu Y, 2020, DES AUT CON
Luo Zhengjun, 2020, COMPUTER TECHNOLOGY, V30, P40
Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011
Ming Junren, 2012, CURR CONTENTS, V56, P99
Mitsuru Toyoda, 2019, IEEE T CYBERNETICS
Tang Xiaobo, 2013, CURR CONTENTS, V36, P100
Wu Y, IEEE T NEUR NET LEAR, P1
Xia Maosen, 2019, J HUBEI U SCI TECHNO, V39, P56
Yang Li-gong, 2013, Transactions of Beijing Institute of Technology, V33, P600
Yang M., 2020, MOD INF TECHNOL, V4, P110
Yun He, 2019, QINGHAI TRANSPORTATI, P76
Zhang Y, 2022, ENERGY, V244, DOI 10.1016/j.energy.2022.123104
Zhao Jingpeng, 2021, RES HIERARCHICAL WEB
Zhou Ying, 2018, INTELLIGENCE THEORY, V41, P89
Zhou Zhou, 2019, ANAL RES CURRICULUM
NR 27
TC 0
Z9 0
U1 3
U2 16
PU AREA INNOVACION & DESARROLLO
PI ALICANTE
PA C/ELS ALZAMORA NO 17, ALCOY, ALICANTE, 03802, SPAIN
SN 2254-3376
J9 3C EMPRESA
JI 3C EMPRESA
PD JAN-MAR
PY 2023
VL 12
IS 1
BP 51
EP 66
DI 10.17993/3cemp.2023.120151.51-66
PG 16
WC Business
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA 9A2TK
UT WOS:000933915300003
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Jang, H
AF Jang, Hoon
TI Predicting funded research project performance based on machine learning
SO RESEARCH EVALUATION
LA English
DT Article
DE research and development; project output prediction; commercialization;
artificial intelligence; autoML
ID RESEARCH-AND-DEVELOPMENT; RESEARCH PRODUCTIVITY; RESEARCH COLLABORATION;
DELPHI METHOD; SELECTION; IMPACT; INNOVATION; MODEL; MANAGEMENT; SUCCESS
AB Increasing investment and interest in research and development (R&D) requires an efficient management system for achieving better research project outputs. In tandem with this trend, there is a growing need to develop a method for predicting research project outputs. Motivated by this, using information gathered in the early stage of projects, this study addresses the problem of predicting research projects' output, which is binary coded as either successful or not. To build the prediction model, we apply six machine learning algorithms: five are well-known supervised learning algorithms and the other is autoML, characterized by its ability to produce a learning model appropriate to the data characteristics on its own, with minimal user intervention. Our empirical analysis with real R&D data provided by the South Korean government over 5 years (2014-8) confirms that the autoML-based model performs better than models based on other machine learning algorithms for this task. We also find that project duration and research funding are important factors in predicting R&D project outputs. Based on the results, our study provides insightful implications leading to a paradigm shift for data-based R&D project management.
C1 [Jang, Hoon] Korea Univ, Coll Global Business, Sejong Campus,2511 Sejong Ro, Sejong 30019, South Korea.
C3 Korea University
RP Jang, H (corresponding author), Korea Univ, Coll Global Business, Sejong Campus,2511 Sejong Ro, Sejong 30019, South Korea.
EM hoonjang@korea.ac.kr
FU National Research Foundation of Korea (NRF) - Korean government
[2019R1F1A1063365]
FX This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korean government (2019R1F1A1063365).
CR Abdel-Basset M, 2018, J AMB INTEL HUM COMP, V9, P1427, DOI 10.1007/s12652-017-0548-7
Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Amara N, 2015, SCIENTOMETRICS, V103, P489, DOI 10.1007/s11192-015-1537-2
[Anonymous], 2011, ANN WORLD BANK C DEV
Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364
BAKER NR, 1964, IEEE T ENG MANAGE, V11, P124, DOI 10.1109/TEM.1964.6446420
Balachandra R, 1997, IEEE T ENG MANAGE, V44, P276, DOI 10.1109/17.618169
Brew A, 2016, HIGH EDUC, V71, P681, DOI 10.1007/s10734-015-9930-6
Cerulli G, 2021, APPL ECON LETT, V28, P1419, DOI 10.1080/13504851.2020.1820939
Chang Keum-Young, 2010, [JOURNAL OF TECHNOLOGY INNOVATION, 기술혁신연구], V18, P75
Chen CT, 2009, INT J PROJ MANAG, V27, P389, DOI 10.1016/j.ijproman.2008.04.001
Chen GH, 2019, TECHNOVATION, V82-83, P58, DOI 10.1016/j.technovation.2019.02.001
Chen ZH, 2015, COMMUN ASSOC INF SYS, V36, P357
Chunjia Han, 2017, Journal of High Technology Management Research, V28, P93, DOI 10.1016/j.hitech.2017.04.007
Costantino F, 2015, INT J PROJ MANAG, V33, P1744, DOI 10.1016/j.ijproman.2015.07.003
Davletov F., 2014, P 23 ACM INT C CONFE, P491, DOI [DOI 10.1145/2661829, 10.1145/2661829.2662066, 10.1145/2661829]
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Dundar H, 1998, RES HIGH EDUC, V39, P607, DOI 10.1023/A:1018705823763
Eilat H, 2008, OMEGA-INT J MANAGE S, V36, P895, DOI 10.1016/j.omega.2006.05.002
Freyman CA, 2016, RES EVALUAT, V25, P442, DOI 10.1093/reseval/rvw016
Galbraith C.S., 2007, J HIGH TECHNOLOGY MA, V17, P125, DOI [DOI 10.1016/J.HITECH.2006.11.002, 10.1016/j.hitech.2006.11.002]
Ghapanchi AH, 2012, INT J PROJ MANAG, V30, P791, DOI 10.1016/j.ijproman.2012.01.012
Grimaldi R, 2003, INT J TECHNOL MANAGE, V25, P766, DOI 10.1504/IJTM.2003.003136
Han D., 2008, KOREAN PUBLIC ADM RE, V42, P265
Han W., 2020, GOVT RES DEV R D BUD
Hegde D, 2009, J LAW ECON, V52, P665, DOI 10.1086/605565
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Hiruy K, 2019, RES EVALUAT, V28, P313, DOI 10.1093/reseval/rvz019
Holliday EB, 2014, ACAD MED, V89, P767, DOI 10.1097/ACM.0000000000000229
Holosko MJ, 2016, RES SOCIAL WORK PRAC, V26, P278, DOI 10.1177/1049731514549815
Hourihan M., 2020, AAAS Guide to the President's budget: Research & development FY 2021', a report from American Association for the Advancement of Science
Huang CC, 2008, OMEGA-INT J MANAGE S, V36, P1038, DOI 10.1016/j.omega.2006.05.003
Hwang S., 2019, COMPARISON US CHINA
Jacob BA, 2011, J PUBLIC ECON, V95, P1168, DOI 10.1016/j.jpubeco.2011.05.005
Jang H, 2019, DECIS SUPPORT SYST, V121, P1, DOI 10.1016/j.dss.2019.03.010
Jang Pilseong, 2020, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V23, P20, DOI 10.35978/jktis.2020.2.23.1.20
Jin XH, 2011, INT J PROJ MANAG, V29, P591, DOI 10.1016/j.ijproman.2010.07.011
Jung H, 2017, ASIAN J TECHNOL INNO, V25, P447, DOI 10.1080/19761597.2018.1436411
Jung U, 2010, DECIS SUPPORT SYST, V49, P335, DOI 10.1016/j.dss.2010.04.005
Karasakal E, 2017, OMEGA-INT J MANAGE S, V73, P79, DOI 10.1016/j.omega.2016.12.006
Khoshnevis P, 2018, SOCIO-ECON PLAN SCI, V61, P16, DOI 10.1016/j.seps.2017.01.005
LeDell Erin, 2020, Proceedings of the automl workshop at icml, V2020
Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784
Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359
Leisyte L, 2016, STUD HIGH EDUC, V41, P828, DOI 10.1080/03075079.2016.1147721
Li D, 2017, AM ECON J-APPL ECON, V9, P60, DOI 10.1257/app.20150421
Liu C., 2011, SCI RES ESSAYS, V6, P3973, DOI [https://doi.org/10.5897/SRE10.838, DOI 10.5897/SRE10.838]
Liu PD, 2019, INT J FUZZY SYST, V21, P2168, DOI 10.1007/s40815-019-00687-x
Loo R, 2002, POLICING, V25, P762, DOI 10.1108/13639510210450677
Mitze T, 2015, ANN REGIONAL SCI, V55, P555, DOI 10.1007/s00168-015-0719-4
Okoli C, 2004, INFORM MANAGE-AMSTER, V42, P15, DOI 10.1016/j.im.2003.11.002
Park H, 2015, RES POLICY, V44, P1145, DOI 10.1016/j.respol.2015.03.004
Potì B, 2011, RES EVALUAT, V20, P19, DOI 10.3152/095820211X12941371876427
Ramkumar S., 2016, INT J HLTH SCI RES, V6, P386
Reed DA, 2007, JAMA-J AM MED ASSOC, V298, P1002, DOI 10.1001/jama.298.9.1002
Rosenbloom JL, 2017, RES POLICY, V46, P1454, DOI 10.1016/j.respol.2017.06.008
Schwartz M, 2012, TECHNOVATION, V32, P358, DOI 10.1016/j.technovation.2012.03.004
Song Gwangsuk, 2015, [Journal of Korean Society for Quality Management, 품질경영학회지], V43, P85, DOI 10.7469/JKSQM.2015.43.1.085
SOUDER WE, 1972, MANAGE SCI B-APPL, V18, pB526
Talias MA, 2007, EUR J OPER RES, V177, P1105, DOI 10.1016/j.ejor.2006.01.011
Tan B, 2010, SYST DYNAM REV, V26, P1, DOI 10.1002/sdr.433
Tidd J., 2020, MANAGING INNOVATION
Walworth T., 2013, P IEEE INT SYST C SY, P123
Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002
Wang YR, 2012, INT J PROJ MANAG, V30, P470, DOI 10.1016/j.ijproman.2011.09.002
Wang YR, 2010, AUTOMAT CONSTR, V19, P341, DOI 10.1016/j.autcon.2009.12.007
Wolfinger NH, 2009, SOC FORCES, V87, P1591, DOI 10.1353/sof.0.0182
Yin ZF, 2018, J INFORMETR, V12, P1146, DOI 10.1016/j.joi.2018.09.003
Yoon Doh-keun, 2013, [Journal of Digital Convergence, 디지털융복합연구], V11, P127
Zhou JH, 2020, TECHNOVATION, V92-93, DOI 10.1016/j.technovation.2018.11.002
이종욱, 2011, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V14, P915
NR 72
TC 1
Z9 1
U1 3
U2 29
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0958-2029
EI 1471-5449
J9 RES EVALUAT
JI Res. Evaluat.
PD APR 28
PY 2022
VL 31
IS 2
BP 257
EP 270
DI 10.1093/reseval/rvac005
EA MAR 2022
PG 14
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA 0V3QC
UT WOS:000769089500001
DA 2024-09-05
ER
PT J
AU González-Tejero, CB
Ancillo, AD
Gavrila, SG
Blanco, AG
AF Gonzalez-Tejero, Cristina Blanco
Ancillo, Antonio de Lucas
Gavrila, Sorin Gavrila
Blanco, Antonio Garcia
TI Uncovering the Complexities of Intellectual Property Management in the
era of AI: Insights from a Bibliometric Analysis
SO JOURNAL OF COMPETITIVENESS
LA English
DT Article
DE Intellectual Property; Artificial Intelligence; Natural Language
Processing; Machine Learning
ID OF-THE-ART; ARTIFICIAL-INTELLIGENCE; BIG DATA; RIGHTS; INNOVATION;
COMPETITIVENESS; WATERMARKING; PERFORMANCE; MODELS
AB Intellectual property (IP) management has posed continuous problems in the digital world, so understanding its associated concepts and the particularities they present is crucial. Within artificial intelligence (AI), machine learning (ML) and natural language processing (NLP) have enabled the intelligent processing and analysis of large volumes of data, making them widely used tools. In order to help fill the research gap that exists due to the novelty of the concepts, a bibliometric analysis is proposed of 404 scientific documents linked to AI, ML, NLP and IP, extracted from the Web of Science (WoS) core collection repository. The results demonstrate a current trend in research on the management of IP, related to digital tools and highlight the issues that arise from the management of IP stemming from their use. This research also identifies how these tools have been used to facilitate the management and identification of IP. In this sense, this study brings originality to the field of intellectual property management by examining previous studies and proposing new avenues for future research, thus broadening the current understanding of the subject. Entrepreneurs and business leaders can benefit from this study as it uncovers the complexities of IP management and thus enhances understanding of the opportunities and challenges in the AI era.
C1 [Gonzalez-Tejero, Cristina Blanco; Ancillo, Antonio de Lucas; Gavrila, Sorin Gavrila; Blanco, Antonio Garcia] Univ Alcala, Fac Econ Business & Tourism, Dept Econ & Business Adm, Alcala De Henares, Spain.
C3 Universidad de Alcala
RP González-Tejero, CB (corresponding author), Univ Alcala, Fac Econ Business & Tourism, Dept Econ & Business Adm, Alcala De Henares, Spain.
EM cristina.blancog@uah.es; antonio.lucas@uah.es; sorin.gavrila@uah.es;
antonio.garciab@uah.es
RI De Lucas, Antonio/AAB-2463-2019; Gavrila Gavrila, Sorin/AAG-9867-2021
OI De Lucas, Antonio/0000-0002-8876-7753; Gavrila Gavrila,
Sorin/0000-0002-7574-5504
CR Acemoglu D, 2012, J EUR ECON ASSOC, V10, P1, DOI 10.1111/j.1542-4774.2011.01053.x
Ali SI, 2023, J KNOWL ECON, V14, P4100, DOI 10.1007/s13132-022-00904-3
Ancillo AD, 2023, J BUS RES, V157, DOI 10.1016/j.jbusres.2022.113566
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Aristodemou L, 2018, WORLD PAT INF, V55, P37, DOI 10.1016/j.wpi.2018.07.002
Ata S, 2022, ESIC MARK, V53, DOI 10.7200/esicm.53.280
Bustamante J. C., 2019, International Journal of Intellectual Property Management, V9, P315
Calo R, 2015, CALIF LAW REV, V103, P513
Cao JW, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/1909518
Chen MA, 2019, REV FINANC STUD, V32, P2062, DOI 10.1093/rfs/hhy130
Chen PL, 2022, ECON RES-EKON ISTRAZ, V35, P622, DOI 10.1080/1331677X.2021.1931909
Chowdhary K., 2020, Fundamentals of artificial intelligence, P603, DOI 10.1007/978-81-322-3972-7_19
Cichy RM, 2019, TRENDS COGN SCI, V23, P305, DOI 10.1016/j.tics.2019.01.009
Coleman S, 2013, J DEV ENTREP, V18, DOI 10.1142/S1084946713500027
Dana L.P., 2022, SUSTAINABLE TECHNOLO, V1, DOI DOI 10.1016/J.STAE.2022.100016
Darroch J., 2005, International Entrepreneurship and Management Journal, V1, P45
Davies CR, 2011, COMPUT LAW SECUR REV, V27, P601, DOI 10.1016/j.clsr.2011.09.006
de Laat PB, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09642-1
Denter NM, 2023, INT J INFORM MANAGE, V68, DOI 10.1016/j.ijinfomgt.2022.102506
Domingo-Ferrer J, 2019, COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2019 ), P501
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021
El Naqa I., 2015, Machine Learning in Radiation Oncology: Theory and Applications, P3, DOI [DOI 10.1007/978-3-319-18305-3_1, 10.1007/978-3-319-18305-3, DOI 10.1007/978-3-319-18305-3]
Enrique CM, 2023, J BUS RES, V157, DOI 10.1016/j.jbusres.2022.113561
Falvey R, 2006, REV DEV ECON, V10, P700, DOI 10.1111/j.1467-9361.2006.00343.x
Fossaceca JM, 2015, EXPERT SYST APPL, V42, P4062, DOI 10.1016/j.eswa.2014.12.040
Fujii A, 2007, INFORM PROCESS MANAG, V43, P1149, DOI 10.1016/j.ipm.2006.11.004
Gavrila SG, 2022, INT J ENTREP BEHAV R, V28, P45, DOI 10.1108/IJEBR-05-2021-0395
Gavrila SG, 2021, BRIT FOOD J, V123, P3358, DOI 10.1108/BFJ-11-2020-1037
Griffen EJ, 2018, DRUG DISCOV TODAY, V23, P1373, DOI 10.1016/j.drudis.2018.03.011
Gurkaynak G., 2017, ROBOTICS LAW J, V3, P9
Hartung F, 2000, IEEE COMMUN MAG, V38, P78, DOI 10.1109/35.883493
Heller MA, 1998, SCIENCE, V280, P698, DOI 10.1126/science.280.5364.698
Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685
Ilvonen I, 2018, KNOWL MAN RES PRACT, V16, P235, DOI 10.1080/14778238.2018.1445427
Ioannidis JPA, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002542
van Eck NJ, 2011, Arxiv, DOI arXiv:1109.2058
Jochim C., 2014, Doctoral dissertation, DOI [10.18419/opus-3472, DOI 10.18419/OPUS-3472]
Kaissis GA, 2020, NAT MACH INTELL, V2, P305, DOI 10.1038/s42256-020-0186-1
Kang X, 2022, ECON RES-EKON ISTRAZ, DOI 10.1080/1331677X.2022.2106265
Kannan G., 2004, J INTELLECT CAP, V5, P389, DOI DOI 10.1108/14691930410550363
Ko A, 2022, J COMPETITIVENESS, V14, P78, DOI 10.7441/joc.2022.04.05
Kusuma A. S., 2022, International Journal of Technoentrepreneurship, V4, P242
Lauriola I, 2022, NEUROCOMPUTING, V470, P443, DOI 10.1016/j.neucom.2021.05.103
Li SL, 2023, J INNOV KNOWL, V8, DOI 10.1016/j.jik.2023.100317
Lin HF, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100276
Lin SH, 2022, ECON RES-EKON ISTRAZ, V35, P143, DOI 10.1080/1331677X.2021.1889390
Lupu M., 2017, World Patent Information, Patent No. [49A1A3, 491]
Menell PeterS., 2011, BERKELEY TECH. L. J, P1523
Nadkarni PM, 2011, J AM MED INFORM ASSN, V18, P544, DOI 10.1136/amiajnl-2011-000464
Nedjah N., 2022, Sustainable Technology and Entrepreneurship, V1, DOI [10.1016/j.stae.2022.100001, DOI 10.1016/J.STAE.2022.100001]
Nyagadza B., 2022, Sustainable Technology and Entrepreneurship, V1, P1, DOI DOI 10.1016/J.STAE.2022.100020
Park WG, 1997, CONTEMP ECON POLICY, V15, P51, DOI 10.1111/j.1465-7287.1997.tb00477.x
Peng YZ, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100198
PLACE JF, 1995, CLIN BIOCHEM, V28, P373, DOI 10.1016/0009-9120(95)00002-Q
Popkova EG, 2020, J INTELLECT CAP, V21, P565, DOI 10.1108/JIC-09-2019-0224
Rabbani Mustafa Raza, 2021, 2021 International Conference on Decision Aid Sciences and Application (DASA), P1087, DOI 10.1109/DASA53625.2021.9682360
Ragot S., 2020, World Patent Information, Patent No. [62,101966, 62101966]
Reichman JH, 1997, VANDERBILT LAW REV, V50, P49
Ribeiro-Navarrete S, 2022, REV MANAG SCI, V16, P2381, DOI 10.1007/s11846-021-00491-8
Saura JR, 2022, J COMPETITIVENESS, V14, P172, DOI 10.7441/joc.2022.04.10
Sniecinski I, 2018, TRANSFUS APHER SCI, V57, P422, DOI 10.1016/j.transci.2018.05.004
Stamm MC, 2013, IEEE ACCESS, V1, P167, DOI 10.1109/ACCESS.2013.2260814
Teece DJ, 2018, RES POLICY, V47, P1367, DOI 10.1016/j.respol.2017.01.015
Teece DJ, 2000, LONG RANGE PLANN, V33, P35, DOI 10.1016/S0024-6301(99)00117-X
Tietze Frank, 2022, IEEE Trans Eng Manag, V69, P2039, DOI 10.1109/TEM.2020.2996982
Torre R.D.L., 2019, International Journal of Intellectual Property Management, V9, P264
Trappey AJC, 2020, ADV ENG INFORM, V43, DOI 10.1016/j.aei.2019.101027
Tsou HT, 2022, J COMPETITIVENESS, V14, P44, DOI 10.7441/joc.2022.04.03
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vrochidis S, 2012, WORLD PAT INF, V34, P292, DOI 10.1016/j.wpi.2012.07.002
Wexler R, 2018, STANFORD LAW REV, V70, P1343
Xiao Y, 2019, J PLAN EDUC RES, V39, P93, DOI 10.1177/0739456X17723971
Zhang JL, 2018, PROCEEDINGS OF THE 2018 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (ASIACCS'18), P159, DOI 10.1145/3196494.3196550
Zhang YQ, 2020, IEEE ACCESS, V8, P213296, DOI 10.1109/ACCESS.2020.3039323
Zimmerling A, 2021, TECHNOL SOC, V65, DOI 10.1016/j.techsoc.2021.101541
NR 76
TC 0
Z9 0
U1 20
U2 20
PU UNIV TOMASE BATI & ZLINE, FAK MANAGEMENTU EKONOMIKY
PI ZLIN
PA NAM T G MASARYKA 5555, ZLIN, 760 01, CZECH REPUBLIC
SN 1804-171X
EI 1804-1728
J9 J COMPETITIVENESS
JI J. Competitiveness
PD DEC
PY 2023
VL 15
IS 4
BP 69
EP 86
DI 10.7441/joc.2023.04.05
PG 18
WC Business; Economics; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA FD8Q1
UT WOS:001143918000002
DA 2024-09-05
ER
PT J
AU Sotudeh, H
Saber, Z
Aloni, FG
Mirzabeigi, M
Khunjush, F
AF Sotudeh, Hajar
Saber, Zeinab
Aloni, Farzin Ghanbari
Mirzabeigi, Mahdieh
Khunjush, Farshad
TI A longitudinal study of the evolution of opinions about open access and
its main features: a twitter sentiment analysis
SO SCIENTOMETRICS
LA English
DT Article
DE Open access; Opinion mining; Sentiment analysis; Twitter; Tweets
ID ACADEMICS BEHAVIORS; ATTITUDES; AWARENESS; JOURNALS; IMPACT; USAGE;
PERCEPTIONS; CHALLENGES; ALTMETRICS; CITATIONS
AB The present study aimed to explore how tweeters' opinions about open access publishing and its main features evolved over time. Using a quantitative content analysis method through an opinion mining approach, it explored a sample of English tweets on open access posted from 2007 to December 2019. The main terms related to open access were first identified through reviewing the related literature and were then categorized into five features including "costs & funding", "impact", "models", "publishing & publications", and "quality & quality control". The terms were composed in the form of search formulae. The searches on Twitter led to retrieving 629,123 tweets. A cleansing process was carried out to remove duplicates, non-English, and low-relevant tweets. The final sample reached 80,629 tweets. The tweets were then tagged with the five features. The KNIME data mining tool and SentiStrength were used respectively for processing the tweets' contents and calculating their opinion scores. According to the results, the open-access-related tweets have been growing based on a sigmoidal model. They were mostly neutral and opinion tweets were far lower in number. The tweets in different polarities have been increasing based on a power-law model, with the negative tweets experiencing a disproportionately higher increase. The positive and negative opinions have remained almost stable in strength, with the former being stronger. The results were almost in line with the previous surveys confirming the co-existence of the positive and negative attitudes about open access. However, the social sphere has been gradually becoming more negative. As attitudes are likely to go viral on social networks, and thereby affect users' perceptions and behaviors, the results call for devising appropriate measures to empower the movement and to find solutions for the problems and concerns leading to the negative opinions.
C1 [Sotudeh, Hajar; Saber, Zeinab; Mirzabeigi, Mahdieh] Shiraz Univ, Sch Educ & Psychol, Dept Knowledge & Informat Sci, Eram Campus, Shiraz, Iran.
[Aloni, Farzin Ghanbari; Khunjush, Farshad] Shiraz Univ, Sch Comp Engn, Dept Comp Sci & Engn & IT, Shiraz, Iran.
C3 Shiraz University; Shiraz University
RP Sotudeh, H (corresponding author), Shiraz Univ, Sch Educ & Psychol, Dept Knowledge & Informat Sci, Eram Campus, Shiraz, Iran.
EM sotudeh@shirazu.ac.ir; zeinabsaber92@gmail.com;
f.ghanbari@shirazu.ac.ir; mmirzabeigi@gmail.com; khunjush@shirazu.ac.ir
CR Agee J, 2014, J LIBR ADM, V54, P590, DOI 10.1080/01930826.2014.964021
Aguillo IF, 2020, SCIENTOMETRICS, V123, P1181, DOI 10.1007/s11192-020-03424-6
Agustini B, 2019, AUST NZ J PSYCHIAT, V53, P1044, DOI 10.1177/0004867419864436
Alperin JP, 2019, PUBLIC UNDERST SCI, V28, P2, DOI 10.1177/0963662518761733
Anger I., 2011, P 11 INT C KNOWL MAN, V31, P1, DOI 10.1145/2024288.2024326
[Anonymous], 2014, U CAMBRIDGE COMPUTER
[Anonymous], 2013, IMAGINE INNOVATE INS
[Anonymous], 2018, GUARDIAN 1115
Baumeister R. F., 2001, Review of General Psychology, V5, P477, DOI [DOI 10.1037/10892680.5.4.323, DOI 10.1037/1089-2680.5.4.323]
Beall J, 2013, LEARN PUBL, V26, P79, DOI 10.1087/20130203
Bernius S, 2009, ECON ANAL POLICY, V39, P103, DOI 10.1016/S0313-5926(09)50046-X
Bohannon J, 2013, SCIENCE, V342, P60, DOI 10.1126/science.342.6154.60
Bollen J, 2011, Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena, V5, P450
Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Boukacem-Zeghmouri C, 2018, LEARN PUBL, V31, P345, DOI 10.1002/leap.1169
Brody T., 2004, NAT POL OP ACC OA PR
Burgman M, 2019, CONSERV BIOL, V33, P5, DOI 10.1111/cobi.13248
Chan GR, 2017, LIBR MANAGE, V38, P488, DOI 10.1108/LM-02-2017-0013
Christian G.E., 2008, Issues and challenges to the development of open access institutional repositories in academic and research institutions in Nigeria
Claudio-González MG, 2015, PROF INFORM, V24, P517, DOI 10.3145/epi.2015.sep.02
Collins K., 2015, You Spoony Bard!: An Analysis of Video Game Localization Practices (thesis). University of Massachusetts of Amherst
Collins K, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162680
Coombs Jenny, 2017, New Review of Academic Librarianship, V23, P159, DOI 10.1080/13614533.2017.1329750
Copiello S, 2020, SCIENTOMETRICS, V125, P2449, DOI 10.1007/s11192-020-03698-w
Costas R, 2017, Arxiv, DOI arXiv:1712.05667
Curlin T, 2019, BUS SYST RES J, V10, P102, DOI 10.2478/bsrj-2019-0008
Dalton ED, 2020, PORTAL-LIBR ACAD, V20, P73, DOI 10.1353/pla.2020.0005
Davis Philip M., 2009, Journal of Electronic Publishing, V12, DOI 10.3998/3336451.0012.101
Dawson DD., 2018, J LIBRARIANSHIP SCHO, DOI [10.7710/2162-3309.2216, DOI 10.7710/2162-3309.2216]
Dehdarirad T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0241723
Didegah F, 2018, J INFORMETR, V12, P960, DOI 10.1016/j.joi.2018.08.002
Echevarría L, 2021, NUCLEIC ACID THER, V31, P185, DOI 10.1089/nat.2020.0865
Erskine N, 2021, J MED INTERNET RES, V23, DOI 10.2196/26378
Escota GV., 2019, OPEN FORUM INFECT DI, V6, pS57, DOI 10.1093/ofid/ofz359.125
European Commission, 2012, COM2012401 EUR COMM
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Fang ZC, 2020, J ASSOC INF SCI TECH, V71, P1455, DOI 10.1002/asi.24344
Feenstra R. A., 2021, SOCIAL MOBILISATION, P1
Fredriksson M., 2020, TRANSITION OPEN ACCE
Friedrich N., 2015, ALTM WOKRSH AMST
Gabarron Elia, 2019, J Diabetes Sci Technol, V13, P439, DOI 10.1177/1932296818811679
Garcia K, 2021, APPL SOFT COMPUT, V101, DOI 10.1016/j.asoc.2020.107057
Giachanou A, 2016, ACM COMPUT SURV, V49, DOI 10.1145/2938640
Grgic IH, 2019, INT J EDUC INTEGR, V15, DOI 10.1007/s40979-019-0041-5
Gunasekera C, 2017, SRELS J INFORM MANAG, V54, P147, DOI 10.17821/srels/2017/v54i3/111684
Halevi G, 2021, PUBLISH RES Q, V37, P384, DOI 10.1007/s12109-021-09820-x
Hammad M, 2016, ADV INTELL SYST, V448, P131, DOI 10.1007/978-3-319-32467-8_13
Holmberg Kim, 2014, Scientometrics, V101, P1027, DOI 10.1007/s11192-014-1229-3
Jalali N, 2019, ACAD EMERG MED, V26, P443, DOI 10.1111/acem.13646
Jamali Hamid R., 2015, International Journal of Knowledge Content Development & Technology, V5, P15
Ji X, 2015, SOC NETW ANAL MIN, V5, DOI 10.1007/s13278-015-0253-5
Joung KH, 2019, INFORM DEV, V35, P191, DOI 10.1177/0266666917736360
Jungherr A., 2014, TWITTER POLITICS COM
Kaba A, 2015, NEW LIB WORLD, V116, P94, DOI 10.1108/NLW-05-2014-0053
Kenneway M, 2011, AUTHOR ATTITUDES OPE
Khasawneh RT, 2013, INT CONF INTERNET, P101, DOI 10.1109/ICIST.2013.6747520
Khatua A, 2020, APPL SOFT COMPUT, V97, DOI 10.1016/j.asoc.2020.106743
Kolahi J, 2020, DENT HYPOTHESES, V11, P1, DOI 10.4103/denthyp.denthyp_17_20
Kumar A, 2020, MULTIMED TOOLS APPL, V79, P15349, DOI 10.1007/s11042-019-7346-5
Kumar A, 2019, MULTIMED TOOLS APPL, V78, P24103, DOI 10.1007/s11042-019-7390-1
Laakso M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020961
Lee RW, 2015, THORAX, V70, pA238, DOI 10.1136/thoraxjnl-2015-207770.453
Lewis DW, 2012, COLL RES LIBR, V73, P493, DOI 10.5860/crl-299
López-Vergara C, 2021, PUBLICATIONS, V9, DOI 10.3390/publications9030037
Lopez-Vergara C, 2020, PUBLICATIONS, V8, DOI 10.3390/publications8020029
Lu Y., 2022, Cultures of Science, V4, P208, DOI [10.1177/20966083221084807, DOI 10.1177/20966083221084807]
Marcus A, 2011, NATURE, V480, P449, DOI 10.1038/480449a
Jiménez-Zafra SM, 2021, ROY SOC OPEN SCI, V8, DOI 10.1098/rsos.201756
Mohammadi E, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197265
Mohan V. V., 2012, N SITE 2012 INFORMIN, V12, P205, DOI [10.28945/1650, DOI 10.28945/1650]
Morris S, 2009, LEARN PUBL, V22, P221, DOI 10.1087/2009308
Nagaraj M.N., 2017, INT J LIB INFORM STU, V7, P132
Narayan B., 2018, Open Information Science, V2, P168, DOI DOI 10.1515/OPIS-2018-0013
Narayan B, 2017, INFORM RES, V22
Nishikawa N., 2017, ISIS2017THE 18 INT S, P167
Nobes A., 2019, Emerald Open Res., V1, P17, DOI [10.35241/emeraldopenres.13325.1, DOI 10.35241/EMERALDOPENRES.13325.1]
Obuh AO., 2013, SOCIAL SCI, V8, P153
Oddone NE, 2019, TRANSINFORMACAO, V31, DOI 10.1590/2318-0889201931e190011
Palomino MA, 2018, FRONT ARTIF INTEL AP, V303, P1004, DOI 10.3233/978-1-61499-900-3-1004
Peekhaus W, 2015, J INF SCI, V41, P640, DOI 10.1177/0165551515587855
Pershad Y, 2018, J CLIN MED, V7, DOI 10.3390/jcm7060121
Pisoschi AM, 2016, SCIENTOMETRICS, V109, P1075, DOI 10.1007/s11192-016-2088-x
Piwowar H, 2018, PEERJ, V6, DOI 10.7717/peerj.4375
PRATTO F, 1991, J PERS SOC PSYCHOL, V61, P380, DOI 10.1037/0022-3514.61.3.380
Puschmann C., 2014, Opening science, P89, DOI DOI 10.1007/978-3-319-00026-8_6
Qiao F, 2022, J GLOB INF MANAG, V30, DOI 10.4018/JGIM.296708
Quigley N, 2021, LIBER Q J ASS EUROPE, V31, P1, DOI [10.53377/lq.10937, DOI 10.53377/LQ.10937]
Richtig G, 2019, ESMO OPEN, V4, DOI 10.1136/esmoopen-2019-000580
Robinson-Garcia N., 2018, 23 INT C SCI TECHN I, DOI [10.5281/zenodo.1414022, DOI 10.5281/ZENODO.1414022]
Robinson-Garcia N, 2018, SCI PUBL POLICY, V45, P815, DOI 10.1093/scipol/scy024
Rodriguez JE, 2014, J ACAD LIBR, V40, P604, DOI 10.1016/j.acalib.2014.07.013
Rogers E.M., 2010, DIFFUSION INNOVATION
Rowley J, 2017, J ASSOC INF SCI TECH, V68, P1201, DOI 10.1002/asi.23710
Ruiz-Perez S., 2017, DRIVERS BARRIERS OPE, DOI [10.5281/zenodo.842016, DOI 10.5281/ZENODO.842016]
Ruiz-Péerez S, 2017, PROF INFORM, V26, P722, DOI 10.3145/epi.2017.jul.16
Sadiq M. T., 2022, Journal of Indian Library Association, V57, P67
Saeed-Ul Hassan, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2019.105383
Schroter S, 2005, BMJ-BRIT MED J, V330, P756, DOI 10.1136/bmj.38359.695220.82
Rodrigues RS, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233432
Scott RE, 2021, PORTAL-LIBR ACAD, V21, P365
Seddighi H, 2020, JOURNAL MEDIA, V1, P59, DOI 10.3390/journalmedia1010005
Segado-Boj F, 2018, J SCHOLARLY PUBL, V50, P48, DOI 10.3138/jsp.50.1.08
Segado-Boj F, 2018, IBERSID, V12, P27
Serrano-Vicente R, 2016, J ACAD LIBR, V42, P595, DOI 10.1016/j.acalib.2016.07.002
Sheikh A, 2019, J LIBR INF SCI, V51, P612, DOI 10.1177/0961000617742455
Shema H., 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0035869, DOI 10.1371/journal.pone.0035869]
Siler K, 2017, CAN J SOCIOL, V42, P83, DOI 10.29173/cjs28140
Silva DD, 2021, J ORTHOP SPORT PHYS, V51, P536, DOI 10.2519/jospt.2021.10598
Sinnenberg L, 2017, AM J PUBLIC HEALTH, V107, pE1, DOI 10.2105/AJPH.2016.303512
Smith LM, 2013, 2013 ASE/IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING (SOCIALCOM), P236, DOI 10.1109/SocialCom.2013.41
Snijder R, 2016, SCIENTOMETRICS, V109, P1855, DOI 10.1007/s11192-016-2160-6
Solomon D, 2013, PUBLICATIONS, V1, P16, DOI 10.3390/publications1010016
Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2
Swanberg SM, 2020, J MED LIBR ASSOC, V108, P208, DOI 10.5195/jmla.2020.849
Taylor M, 2020, SCIENTOMETRICS, V125, P2523, DOI 10.1007/s11192-020-03735-8
Tennant JP., 2016, F1000RESEARCH, DOI [10.1268/f1000research.8460.3, DOI 10.1268/F1000RESEARCH.8460.3]
Tenopir C, 2017, COLL RES LIBR, V78, P824, DOI 10.5860/crl.78.6.824
Thelwall Mike, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P1, DOI 10.1007/978-3-642-37256-8_1
Thelwall M, 2013, J AM SOC INF SCI TEC, V64, P1608, DOI 10.1002/asi.22872
Thelwall M, 2011, J AM SOC INF SCI TEC, V62, P406, DOI 10.1002/asi.21462
Thelwall M, 2010, J AM SOC INF SCI TEC, V61, P2544, DOI 10.1002/asi.21416
Tmava A. M., 2017, INT C KNOWLEDGE MANA
Togia Aspasia, 2014, Information Services & Use, V34, P221, DOI 10.3233/ISU-140742
Torres-Salinas D., 2020, bioRxiv, DOI DOI 10.1101/2020.04.23.057307
Trueger NS, 2018, J AM COLL RADIOL, V15, P173, DOI 10.1016/j.jacr.2017.09.036
van Vlokhoven H, 2019, J INFORMETR, V13, P751, DOI 10.1016/j.joi.2019.04.001
Vanherpe J., 2018, LICENSING EXECUTIVES, V53, P269
Verhaar Peter, 2017, LIBER Quarterly, V27, P1, DOI 10.18352/lq.10185
Verma P., 2019, Int. J. Recent Technol. Eng, V8, P8338
Wang T, 2022, INT J CONSTR MANAG, V22, P1585, DOI 10.1080/15623599.2020.1735610
Wang XW, 2015, SCIENTOMETRICS, V103, P555, DOI 10.1007/s11192-015-1547-0
Wicherts JM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147913
Xia JF, 2010, J AM SOC INF SCI TEC, V61, P615, DOI 10.1002/asi.21283
Yanfang Qi, 2021, Journal of Physics: Conference Series, V1802, DOI 10.1088/1742-6596/1802/4/042069
Yang L., 2019, 13 CTV 2019 P 13 INT
Yousif A, 2019, ARTIF INTELL REV, V52, P1805, DOI 10.1007/s10462-017-9597-8
Yu XQ, 2022, J DENT, V119, DOI 10.1016/j.jdent.2022.104067
Zhu YM, 2020, J INF SCI, V46, P41, DOI 10.1177/0165551518823174
Zhu YM, 2017, SCIENTOMETRICS, V111, P557, DOI 10.1007/s11192-017-2316-z
Zimbra D, 2018, ACM TRANS MANAG INF, V9, DOI 10.1145/3185045
NR 141
TC 5
Z9 5
U1 4
U2 37
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD OCT
PY 2022
VL 127
IS 10
BP 5587
EP 5611
DI 10.1007/s11192-022-04502-7
EA SEP 2022
PG 25
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 4P1FY
UT WOS:000849303100001
DA 2024-09-05
ER
PT J
AU Yang, C
Wang, CH
Zheng, RZ
Geng, S
AF Yang, Chen
Wang, Chuhan
Zheng, Ruozhen
Geng, Shuang
TI Link prediction in research collaboration: a multi-network
representation learning framework with joint training
SO MULTIMEDIA TOOLS AND APPLICATIONS
LA English
DT Article
DE Research collaboration; Link prediction; Network representation
learning; Machine learning
ID PERFORMANCE
AB With the rapid advancement of scientific research, collaboration in this area is becoming increasingly important. One of the major challenges is the link prediction problem for research collaboration. Recently, learning-based link prediction methods have received much attention. However, most of these studies have solely concentrated on exploiting a single network and its topology features for prediction, and ignore other factors that may influence link formation. To address this issue, in this paper we propose a link prediction model based on multi-network representation learning. Specifically, we develop new features based on the author's institutions and published papers, and three networks incorporating these features are modeled. Then, the network representation method based on joint training is proposed to embed the networks in a low-dimensional space. Finally, the authors' feature vectors are combined in finer granularity, and collaboration prediction is performed in a supervised manner. The performance of our model is evaluated by comparing it with other link prediction methods on a real-world dataset, and the experimental results show the effectiveness of our model.
C1 [Yang, Chen; Wang, Chuhan; Zheng, Ruozhen; Geng, Shuang] Shenzhen Univ, Coll Management, Shenzhen, Peoples R China.
C3 Shenzhen University
RP Geng, S (corresponding author), Shenzhen Univ, Coll Management, Shenzhen, Peoples R China.
EM gs@szu.edu.cn
FU National Natural Science Foundation of China [71901150, 71701134];
Guangdong Basic and Applied Basic Research Foundation [2023A1515012515,
2 022A1515012077]; Guangdong Province Innovation Team "Intelligent
Management and Interdisciplinary Innovation" [2021WCXTD002]; Shenzhen
Higher Education Support Plan [20200826144104001]
FX This work was supported by grants from National Natural Science
Foundation of China [71901150, 71701134]; Guangdong Basic and Applied
Basic Research Foundation [2023A1515012515, 2 022A1515012077]; Guangdong
Province Innovation Team "Intelligent Management and Interdisciplinary
Innovation" [2021WCXTD002]; Shenzhen Higher Education Support Plan
[20200826144104001].
CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1
Ahmed A, 2013, P 22 INT C WORLD WID, P37
Ahmed C, 2016, SOC NETW ANAL MIN, V6, DOI 10.1007/s13278-016-0333-1
Aldieri L, 2018, SOCIO-ECON PLAN SCI, V62, P13, DOI 10.1016/j.seps.2017.05.003
AlHasan M., 2006, P SDM 06 WORKSH LINK
Aziz F, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-76860-2
Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7
Belkin M, 2003, NEURAL COMPUT, V15, P1373, DOI 10.1162/089976603321780317
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Cao JX, 2021, WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P635, DOI 10.1145/3437963.3441783
Cao Shaosheng, 2015, P 24 ACM INT C INFOR, P891
ChengXiang Zhai, 2008, Synthesis Lect. Hum. Lang. Technol, V1, P1, DOI [DOI 10.1007/978-3-031-02130-5, DOI 10.2200/S00158ED1V01Y200811HLT001]
Cohen S, 2013, PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), P959
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Hassan D, 2019, INT CONF MACH LEARN, P511, DOI 10.1109/icmlc48188.2019.8949320
Jin T, 2021, INT J MACH LEARN CYB, V12, P597, DOI 10.1007/s13042-020-01190-8
KATZ JS, 1994, SCIENTOMETRICS, V31, P31, DOI 10.1007/BF02018100
Katz Leo, 1953, PSYCHOMETRIKA, V18, P39
Kong XJ, 2017, SCIENTOMETRICS, V113, P369, DOI 10.1007/s11192-017-2485-9
Kumar A, 2020, PHYSICA A, V553, DOI 10.1016/j.physa.2020.124289
Li J, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1209, DOI 10.1145/2567948.2579034
Li KY, 2020, COMPUT NETW, V166, DOI 10.1016/j.comnet.2019.106978
Liang W, 2018, FUTURE GENER COMP SY, V87, P591, DOI 10.1016/j.future.2017.12.038
Lin SY, 2017, J INTELL INF SYST, V49, P255, DOI 10.1007/s10844-016-0440-5
Maisonobe M, 2016, J INFORMETR, V10, P1025, DOI 10.1016/j.joi.2016.06.002
Makarov I, 2019, 12TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2019), P204, DOI 10.1145/3316782.3316786
Makarov I, 2019, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.172
Malhotra D, 2021, MACH LEARN APPL, V6, DOI 10.1016/j.mlwa.2021.100086
Mayrose I, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137856
Mikolov T., 2013, ARXIV
Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132]
Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732
Chuan PM, 2018, APPL INTELL, V48, P2470, DOI 10.1007/s10489-017-1086-x
Pradhan T, 2020, KNOWL-BASED SYST, V197, DOI 10.1016/j.knosys.2020.105784
Rahman M, 2018, ARXIV, DOI DOI 10.48550/ARXIV.1804.05755
Robertson S, 2004, J DOC, V60, P503, DOI 10.1108/00220410410560582
Sun K, 2020, IEEE ACCESS, V8, P205600, DOI 10.1109/ACCESS.2020.3037118
Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093
Tong HH, 2006, IEEE DATA MINING, P613
Wang DX, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1225, DOI 10.1145/2939672.2939753
Wang SH, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P115, DOI 10.1145/2983323.2983755
Wang W, 2021, ACM T KNOWL DISCOV D, V15, DOI 10.1145/3442199
Wang X, 2021, DECIS SUPPORT SYST, V141, DOI 10.1016/j.dss.2020.113448
Wang X, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P165, DOI 10.1145/3331184.3331267
West Jevin D., 2016, IEEE Transactions on Big Data, V2, P113, DOI 10.1109/TBDATA.2016.2541167
XIE M, 2016, P 25 ACM INT C INF K, P15, DOI DOI 10.1145/29833213.2983711
Xu KYL, 2018, PR MACH LEARN RES, V80
Xu ZZ, 2019, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.178
Yan M, 2019, INT SYM QUAL ELECT, P1, DOI 10.1109/ISQED.2019.8697584
Yang C, 2020, SCIENTOMETRICS, V123, P429, DOI 10.1007/s11192-020-03374-z
Zhang DK, 2020, IEEE T BIG DATA, V6, P3, DOI 10.1109/TBDATA.2018.2850013
Zhang MH, 2018, ADV NEUR IN, V31
Zhang ZQ, 2020, AAAI CONF ARTIF INTE, V34, P3065
Zhang ZC, 2021, KNOWL-BASED SYST, V228, DOI 10.1016/j.knosys.2021.107297
Zhou T, 2009, EUR PHYS J B, V71, P623, DOI 10.1140/epjb/e2009-00335-8
NR 56
TC 2
Z9 2
U1 1
U2 15
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1380-7501
EI 1573-7721
J9 MULTIMED TOOLS APPL
JI Multimed. Tools Appl.
PD DEC
PY 2023
VL 82
IS 30
BP 47215
EP 47233
DI 10.1007/s11042-023-15720-3
EA MAY 2023
PG 19
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Computer Science, Theory & Methods; Engineering, Electrical
& Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA Z9FI2
UT WOS:000983956900004
DA 2024-09-05
ER
PT C
AU Baba, T
Baba, K
AF Baba, Takahiro
Baba, Kensuke
BE Gervasi, O
Murgante, B
Misra, S
Stankova, E
Torre, CM
Rocha, AMAC
Taniar, D
Apduhan, BO
Tarantino, E
Ryu, Y
TI Citation Count Prediction Using Non-technical Terms in Abstracts
SO COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2018, PT I
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 18th International Conference on Computational Science and Its
Applications (ICCSA)
CY JUL 02-05, 2018
CL Monash Univ, Caulfield Campus, Melbourne, AUSTRALIA
HO Monash Univ, Caulfield Campus
DE Citation count prediction; Document classification; Text analysis;
Machine learning
AB Researchers are required to find previous literature which is related to their research and has a scientific impact efficiently from a large number of publications. The target problem of this paper is predicting the citation count of each scholarly paper, that is, the number of citations from other scholarly papers, as the scientific impact. The authors tried to detect the high and low of the citation count of scholarly papers using only their abstracts, especially, non-technical terms used in them. They conducted a classification of abstracts of scholarly papers with high and low citation counts, and applied the classification also to the abstracts modified by deleting technical terms from them. The results of their experiments indicate that the scientific impact of a scholarly paper can be detected from information which is written in its abstract and is not related to the trend of research topics. The classification accuracy for detecting scholarly papers with the top or bottom 1% citation counts was 0.93, and that using the abstracts without technical terms was 0.90.
C1 [Baba, Takahiro] Kyushu Univ, Fukuoka, Fukuoka 8190395, Japan.
[Baba, Kensuke] Fujitsu Labs, Kawasaki, Kanagawa 2118588, Japan.
C3 Kyushu University; Fujitsu Ltd; Fujitsu Laboratories Ltd
RP Baba, K (corresponding author), Fujitsu Labs, Kawasaki, Kanagawa 2118588, Japan.
EM baba.kensuke@jp.fujitsu.com
RI Baba, Kensuke/J-8426-2017
OI Baba, Kensuke/0000-0002-8118-0175; ma chang, long
kuan/0000-0001-7910-2728
FU JSPS KAKENHI [15K00310]; Grants-in-Aid for Scientific Research
[15K00310] Funding Source: KAKEN
FX This work was supported by JSPS KAKENHI Grant Number 15K00310.
CR Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Schutze H., 2008, Introduction to information retrieval, V39
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
NR 5
TC 4
Z9 4
U1 0
U2 7
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-319-95162-1; 978-3-319-95161-4
J9 LECT NOTES COMPUT SC
PY 2018
VL 10960
BP 366
EP 375
DI 10.1007/978-3-319-95162-1_25
PN I
PG 10
WC Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BM1UH
UT WOS:000460577300025
DA 2024-09-05
ER
PT J
AU Wang, KT
Tan, FB
Zhu, ZM
Kong, LY
AF Wang, Kangtao
Tan, Fengbo
Zhu, Zhiming
Kong, Lingyu
TI Exploring changes in depression and radiology-related publications
research focus: A bibliometrics and content analysis based on natural
language processing
SO FRONTIERS IN PSYCHIATRY
LA English
DT Article
DE major depressive disorder; radiology; bibliometric analysis; Latent
Dirichlet allocation; machine learning
ID CORTICAL SPREADING DEPRESSION; FUNCTIONAL CONNECTIVITY; MRI; MIGRAINE;
DEPOLARIZATION; METAANALYSIS; RELEVANCE; NETWORKS; DISORDER; BIPOLAR
AB ObjectiveThis study aims to construct and use natural language processing and other methods to analyze major depressive disorder (MDD) and radiology studies' publications in the PubMed database to understand the historical growth, current state, and potential expansion trend. MethodsAll MDD radiology studies publications from January 2002 to January 2022 were downloaded from PubMed using R, a statistical computing language. R and the interpretive general-purpose programming language Python were used to extract publication dates, geographic information, and abstracts from each publication's metadata for bibliometric analysis. The generative statistical algorithm "Latent Dirichlet allocation" (LDA) was applied to identify specific research focus and trends. The unsupervised Leuven algorithm was used to build a network to identify relationships between research focus. ResultsA total of 5,566 publications on MDD and radiology research were identified, and there is a rapid upward trend. The top-cited publications were 11,042, and the highly-cited publications focused on improving diagnostic performance and establishing imaging standards. Publications came from 76 countries, with the most from research institutions in the United States and China. Hospitals and radiology departments take the lead in research and have an advantage. The extensive field of study contains 12,058 Medical Subject Heading (MeSH) terms. Based on the LDA algorithm, three areas were identified that have become the focus of research in recent years, "Symptoms and treatment," "Brain structure and imaging," and "Comorbidities research." ConclusionLatent Dirichlet allocation analysis methods can be well used to analyze many texts and discover recent research trends and focus. In the past 20 years, the research on MDD and radiology has focused on exploring MDD mechanisms, establishing standards, and constructing imaging methods. Recent research focuses are "Symptoms and sleep," "Brain structure study," and "functional connectivity." New progress may be made in studies on MDD complications and the combination of brain structure and metabolism.
C1 [Wang, Kangtao; Tan, Fengbo] Cent South Univ, Xiangya Hosp, Dept Gen Surg, Changsha, Hunan, Peoples R China.
[Wang, Kangtao; Tan, Fengbo] Cent South Univ, Xiangya Hosp, Natl Clin Res Ctr Geriatr Disorders, Changsha, Hunan, Peoples R China.
[Zhu, Zhiming; Kong, Lingyu] Cent South Univ, Xiangya Hosp, Dept Radiol, Changsha, Hunan, Peoples R China.
C3 Central South University; Central South University; Central South
University
RP Kong, LY (corresponding author), Cent South Univ, Xiangya Hosp, Dept Radiol, Changsha, Hunan, Peoples R China.
EM kong_lingyu@csu.edu.cn
RI 令煜, 孔/HME-1741-2023; Zhu, Zhiming/ABH-9561-2020
CR [Anonymous], 2009, PLOS MED, V6, pe1000097, DOI DOI 10.1371/JOURNAL.PMED.1000097
Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007
Bethea TN, 2022, CANCER MED-US, V11, P3352, DOI 10.1002/cam4.4682
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bolay H, 2002, NAT MED, V8, P136, DOI 10.1038/nm0202-136
Bora E, 2015, SCHIZOPHRENIA BULL, V41, P1095, DOI 10.1093/schbul/sbu198
Buckner RL, 2008, ANN NY ACAD SCI, V1124, P1, DOI 10.1196/annals.1440.011
Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507
Chen JW, 2022, FRONT HUM NEUROSCI, V16, DOI 10.3389/fnhum.2022.908049
Chireh B, 2019, PREV MED REP, V14, DOI 10.1016/j.pmedr.2019.100822
Dai LS, 2019, PEERJ, V7, DOI 10.7717/peerj.8170
Desikan RS, 2006, NEUROIMAGE, V31, P968, DOI 10.1016/j.neuroimage.2006.01.021
Dreier JP, 2011, NAT MED, V17, P439, DOI 10.1038/nm.2333
Eikermann-Haerter K, 2009, J CLIN INVEST, V119, P99, DOI 10.1172/JCI36059
Fabricius M, 2006, BRAIN, V129, P778, DOI 10.1093/brain/awh716
Feng CZ, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.824201
Fischl B, 2002, NEURON, V33, P341, DOI 10.1016/S0896-6273(02)00569-X
Friedrich M J, 2017, JAMA, V317, P1517, DOI 10.1001/jama.2017.3826
Graham EA, 2020, J AFFECT DISORDERS, V265, P224, DOI 10.1016/j.jad.2020.01.053
Greicius MD, 2007, BIOL PSYCHIAT, V62, P429, DOI 10.1016/j.biopsych.2006.09.020
Higgins JPT, 2003, BMJ-BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557
Jacomy M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098679
Kaiser RH, 2015, JAMA PSYCHIAT, V72, P603, DOI 10.1001/jamapsychiatry.2015.0071
Kang SG, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21062148
Kumar R, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22114276
Kumar R, 2022, ARCH COMPUT METHOD E, V29, P2781, DOI 10.1007/s11831-021-09675-7
Lauritzen M, 2011, J CEREBR BLOOD F MET, V31, P17, DOI 10.1038/jcbfm.2010.191
Lemke H, 2022, DEPRESS ANXIETY, V39, P441, DOI 10.1002/da.23260
Li TT, 2022, J AFFECT DISORDERS, V312, P331, DOI 10.1016/j.jad.2022.05.047
Li XD, 2022, FRONT MOL NEUROSCI, V15, DOI 10.3389/fnmol.2022.825286
Meng RW, 2018, J AFFECT DISORDERS, V234, P59, DOI 10.1016/j.jad.2018.02.052
Meyer JH, 2022, FRONT NEUROSCI-SWITZ, V15, DOI 10.3389/fnins.2021.773404
Miao HF, 2022, J AFFECT DISORDERS, V302, P101, DOI 10.1016/j.jad.2021.12.103
Miller AH, 2009, BIOL PSYCHIAT, V65, P732, DOI 10.1016/j.biopsych.2008.11.029
Mitchell AJ, 2009, LANCET, V374, P609, DOI 10.1016/S0140-6736(09)60879-5
Mojtabai R, 2008, J CLIN PSYCHIAT, V69, P1064, DOI 10.4088/JCP.v69n0704
Nozari A, 2010, ANN NEUROL, V67, P221, DOI 10.1002/ana.21871
Otte C, 2016, NAT REV DIS PRIMERS, V2, DOI 10.1038/nrdp.2016.65
Piilgaard H, 2009, J CEREBR BLOOD F MET, V29, P1517, DOI 10.1038/jcbfm.2009.73
Power JD, 2012, NEUROIMAGE, V59, P2142, DOI 10.1016/j.neuroimage.2011.10.018
Ridgway JP, 2021, JMIR MED INF, V9, DOI 10.2196/23456
Sheline YI, 2010, P NATL ACAD SCI USA, V107, P11020, DOI 10.1073/pnas.1000446107
Smith SM, 2004, NEUROIMAGE, V23, pS208, DOI 10.1016/j.neuroimage.2004.07.051
Tzourio-Mazoyer N, 2002, NEUROIMAGE, V15, P273, DOI 10.1006/nimg.2001.0978
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang KC, 2023, PSYCHOL MED, V53, P3672, DOI 10.1017/S0033291722000320
Wang KT, 2020, THER ADV GASTROENTER, V13, DOI 10.1177/1756284820934594
Wen JH, 2022, JAMA PSYCHIAT, V79, P464, DOI 10.1001/jamapsychiatry.2022.0020
Zhang HF, 2022, IEEE J BIOMED HEALTH, V26, P4100, DOI 10.1109/JBHI.2022.3166826
Zheng KZ, 2023, EUR ARCH PSY CLIN N, V273, P169, DOI 10.1007/s00406-022-01403-x
NR 50
TC 2
Z9 2
U1 6
U2 26
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-0640
J9 FRONT PSYCHIATRY
JI Front. Psychiatry
PD NOV 30
PY 2022
VL 13
AR 978763
DI 10.3389/fpsyt.2022.978763
PG 15
WC Psychiatry
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Psychiatry
GA 6Y3PV
UT WOS:000897010800001
PM 36532194
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Xu, MY
Du, JP
Xue, Z
Guan, ZL
Kou, FF
Shi, L
AF Xu, Mingying
Du, Junping
Xue, Zhe
Guan, Zeli
Kou, Feifei
Shi, Lei
TI A scientific research topic trend prediction model based on multi-LSTM
and graph convolutional network
SO INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS
LA English
DT Article
DE graph convolutional networks; long short-term memory; scientific
Influence modeling; time series prediction; topic trend prediction
ID EVOLUTION; DEMAND; SYSTEM
AB Predicting the development trend of future scientific research not only provides a reference for researchers to understand the development of the discipline, but also provides support for decision-making and fund allocation for decision-makers. The continuous growth of scientific publications has brought challenges to track the development trends of scientific research topics. The existing topic trend prediction methods have proved that the research topic trend of a publication is influenced by other peer publications. However, they ignore the fact that the research topics of different publications belong to different research topic space. Moreover, the existing topic prediction methods do not fully consider the interactive influence among publications that the research topic of one publication affects the topics of other publications, it is also influenced by the research topics of other publications. In line with this, this paper proposes a scientific research topic trend prediction model based on multi-long short-term memory (multi-LSTM) and Graph Convolutional Network. Specifically, multiple LSTMs are employed to map research topics of different publications into their respective topic space. Then, the graph convolutional neural network is applied to learn the scientific influence context of each publication, so that the research topic of each publication not only integrates the influence of neighbor nodes, but also considers the influence of the neighbors of the neighbor node on the research topic of the publication, so as to more accurately fuse scientific influence context of research topic of peer publications. Experiments results on the data set of scientific research papers in the field of artificial intelligence and data mining demonstrate that the model improves the prediction precision and achieves the state-of-the-art research topic trend prediction effect compared with the other baseline models.
C1 [Xu, Mingying; Du, Junping; Xue, Zhe; Guan, Zeli; Kou, Feifei] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China.
[Shi, Lei] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing, Peoples R China.
C3 Beijing University of Posts & Telecommunications; Communication
University of China
RP Du, JP (corresponding author), Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China.
EM junpingdu@126.com
RI Shi, Lei/JAX-8444-2023; shi, lei/ADU-8999-2022
OI Shi, Lei/0000-0002-5570-7818; Xu, Mingying/0000-0002-4175-199X
FU National Key R&D Program of China [2018YFB1402600]; Major Program of
National Natural Science Foundation of China [62192784]; National
Natural Science Foundation of China (NSFC) [61772083, 61802028,
61877006]
FX National Key R&D Program of China, Grant/Award Number: 2018YFB1402600;
Major Program of National Natural Science Foundation of China,
Grant/Award Number: 62192784; National Natural Science Foundation of
China (NSFC), Grant/Award Numbers: 61772083, 61802028, 61877006
CR Abuhay TM, 2018, PROCEDIA COMPUT SCI, V136, P304, DOI 10.1016/j.procs.2018.08.284
Amini MH, 2016, ELECTR POW SYST RES, V140, P378, DOI 10.1016/j.epsr.2016.06.003
[Anonymous], P 26 INT C COMPUTATI
[Anonymous], 2010, ICML
Balili C, 2020, IEEE ACCESS, V8, P108514, DOI 10.1109/ACCESS.2020.3000948
Behpour S, 2021, KNOWL-BASED SYST, V220, DOI 10.1016/j.knosys.2021.106907
Cai GF, 2019, IEEE J-STSP, V13, P1375, DOI 10.1109/JSTSP.2019.2913944
Chandra K, 2018, IEEE VEH TECHNOL MAG, V13, P75, DOI 10.1109/MVT.2018.2814822
Chen BT, 2018, SCIENTOMETRICS, V117, P211, DOI 10.1007/s11192-018-2843-2
Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003
Chen CY, 2018, AAAI CONF ARTIF INTE, P2111
Cho K., 2014, P 2014 C EMPIRICAL M, V1406, P1078, DOI DOI 10.3115/V1/D14-1179
Cover T. M., 1991, Elements of information theory, V1, P12
Cummings D, 2020, INT CONF ACOUST SPEE, P3897, DOI [10.1109/icassp40776.2020.9054769, 10.1109/ICASSP40776.2020.9054769]
Du J, 2019, IEEE T NETW SCI ENG, V6, P103, DOI 10.1109/TNSE.2017.2787746
Fan J, 2023, NEURAL COMPUT APPL, V35, P13109, DOI 10.1007/s00521-021-05958-z
Fong IH, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2020.105622
Hamilton WL, 2017, ADV NEUR IN, V30
Hu C, 2016, IEEE T KNOWL DATA EN, V28, P1635, DOI 10.1109/TKDE.2016.2538223
Jamal N, 2021, ACM T ASIAN LOW-RESO, V20, DOI 10.1145/3410570
Jebari C, 2021, SCIENTOMETRICS, V126, P2971, DOI 10.1007/s11192-020-03858-y
Jung S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101040
Kipf T. N., 2017, P INT C LEARN REPR, P1
Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914
Li XY, 2019, INFORM PROCESS MANAG, V56, P394, DOI 10.1016/j.ipm.2018.10.019
Li YH, 2019, PATTERN RECOGN LETT, V117, P111, DOI 10.1016/j.patrec.2018.11.008
Liang ZT, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102611
Liao WX, 2021, COMPUT ELECTR ENG, V92, DOI 10.1016/j.compeleceng.2021.107096
Lin X, 2021, IEEE T EMERG TOP COM, V9, P1373, DOI 10.1109/TETC.2020.2971831
Liu HL, 2020, SCIENTOMETRICS, V125, P2043, DOI 10.1007/s11192-020-03700-5
Liu YQ, 2020, EXPERT SYST APPL, V143, DOI 10.1016/j.eswa.2019.113082
Liu YQ, 2019, COMPUT ELECTRON AGR, V165, DOI 10.1016/j.compag.2019.104964
Lu W, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102594
Lu ZY, 2019, INFORM SCIENCES, V473, P166, DOI 10.1016/j.ins.2018.09.027
Prabhakaran V, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1170
Qian Y, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101047
Qian Y, 2020, WORLD WIDE WEB, V23, P2281, DOI 10.1007/s11280-020-00796-w
Qin Y, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2627
Qin Y, 2021, IEEE T IND INFORM, V17, P6438, DOI 10.1109/TII.2020.2999442
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
Wang KH, 2021, SCIENTOMETRICS, V126, P6533, DOI 10.1007/s11192-021-04026-6
Wang XG, 2021, SCIENTOMETRICS, V126, P4991, DOI 10.1007/s11192-021-03963-6
Wang YB, 2017, ADV NEUR IN, V30
Wu ZH, 2021, IEEE T NEUR NET LEAR, V32, P4, DOI 10.1109/TNNLS.2020.2978386
Xie Z, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101036
Xu Da, 2020, P 8 INT C LEARN REPR
Xu HY, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101014
Xu J, 2018, SCIENTOMETRICS, V117, P973, DOI 10.1007/s11192-018-2897-1
Xu S, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100983
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Yang X, 2022, INFORM SCIENCES, V585, P41, DOI 10.1016/j.ins.2021.11.035
Yu J., 2018, P CHIN C KNOWL GRAPH, P116, DOI DOI 10.1007/978-981-13-3146-6_102-S2.0-85058521618
Yuan XF, 2021, IEEE T IND ELECTRON, V68, P4404, DOI 10.1109/TIE.2020.2984443
Zhang F, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101035
Zhang FL, 2017, SCIENTOMETRICS, V113, P1155, DOI 10.1007/s11192-017-2510-z
Zhang Q, 2021, INFORM SCIENCES, V553, P305, DOI 10.1016/j.ins.2020.10.023
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 57
TC 15
Z9 16
U1 6
U2 104
PU WILEY-HINDAWI
PI LONDON
PA ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND
SN 0884-8173
EI 1098-111X
J9 INT J INTELL SYST
JI Int. J. Intell. Syst.
PD SEP
PY 2022
VL 37
IS 9
BP 6331
EP 6353
DI 10.1002/int.22846
EA FEB 2022
PG 23
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 3K1XR
UT WOS:000752787800001
OA gold
DA 2024-09-05
ER
PT J
AU Alshdadi, AA
Usman, M
Alassafi, MO
Afzal, MT
AlGhamdi, R
AF Alshdadi, Abdulrahman A.
Usman, Muhammad
Alassafi, Madini O.
Afzal, Muhammad Tanvir
AlGhamdi, Rayed
TI Formulation of rules for the scientific community using deep learning
SO SCIENTOMETRICS
LA English
DT Article
DE Scientific quantitative rules; Rule mining; Citations; Publications;
h-index; g-index; Variants of h-index; ASCE; CSCE; ACI; ICE; AMS; LMS;
IMU; ANS; CNS; FENS; IBRO; SFN
ID H-INDEX; GOOGLE-SCHOLAR; VARIANTS
AB In a deluge of scientific literature, it is important to build scientific quantitative rules (SQR) that can be applied to researchers' quantitative data in order to produce a uniform format for making decisions regarding the nomination of outstanding researchers. Google Scholar and other search engines track scholars' papers, citations, etc. However, the scientific community hasn't agreed on standards a researcher must meet to be regarded as important. In this paper, we suggest rules for the scientific community based on the top five quantitative scientific parameters. The significance of the parameters is measured based on two factors: (i) parameters' impact on the model's performance while classifying awardees and non-awardees, and (ii) the number of award-winning researchers elevated in the ranking of researchers through each respective parameter. The experimental dataset includes information from researchers in the civil engineering, mathematics, and neuroscience domains. There are 250 awardees and 250 non-awardees from each field. The SQR for each discipline has attained an accuracy of 70% or more for their respective award-winning researchers. In addition to this, the top ranked parameters from each discipline have elevated more than 50% of the award-winning researchers into their respective ranked lists of the top 100 researchers. These findings can guide individual researchers to be on the list of prestigious scientists, and scientific societies can use the SQR to filter the list of researchers for subjective evaluation in order to reward prolific researchers in the domain.
C1 [Alshdadi, Abdulrahman A.] Univ Jeddah, Jeddah, Saudi Arabia.
[Alassafi, Madini O.; AlGhamdi, Rayed] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia.
[Usman, Muhammad; Afzal, Muhammad Tanvir] Shifa Tameer e Millat Univ, Islamabad, Pakistan.
C3 University of Jeddah; King Abdulaziz University
RP Usman, M (corresponding author), Shifa Tameer e Millat Univ, Islamabad, Pakistan.
EM alshdadi@uj.edu.sa; usman.alot761@gmail.com; malasafi@kau.edu.sa;
director.ssc@stmu.edu.pk; raalghamdi8@kau.edu.sa
RI Alshdadi, Abdulrahman A./KXQ-6244-2024; Alassafi, Madini
O./AGY-4104-2022; Afzal, Muhammad/D-3741-2019; AlGhamdi,
Rayed/H-8753-2012
OI Alshdadi, Abdulrahman A./0000-0002-9815-0319; Alassafi, Madini
O./0000-0001-9919-8368; Afzal, Muhammad/0000-0002-7851-2327; Usman,
Muhammad/0000-0002-6154-6256; Afzal, Muhammad Tanvir/0000-0002-9765-8815
FU Institutional Fund Project [812-611-1442]; Ministry of Education; King
Abdulaziz University, DSR, Jeddah, Saudi Arabia
FX This research work was funded by the Institutional Fund Project under
grant no. (IFPIP; 812-611-1442). Therefore, the authors gratefully
acknowledge technical and financial support from the Ministry of
Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.
Moreover, there is no conflict of interest between the authors and the
funding department.
CR Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
Ameer M, 2019, SCIENTOMETRICS, V121, P653, DOI 10.1007/s11192-019-03209-6
[Anonymous], 2009, P INT STUD SCI C
Ayaz S, 2016, SCIENTOMETRICS, V109, P1511, DOI 10.1007/s11192-016-2122-z
BABOR TF, 2004, PUBLISHING ADDICTION
Brigato L, 2021, INT C PATT RECOG, P2490, DOI 10.1109/ICPR48806.2021.9412492
Burrell QL, 2007, SCIENTOMETRICS, V73, P19, DOI 10.1007/s11192-006-1774-5
Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005
Crowder R, 2002, LECT NOTES ARTIF INT, V2569, P179
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Harzing AW, 2014, SCIENTOMETRICS, V99, P811, DOI 10.1007/s11192-013-1208-0
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jin B., 2006, SCI FOCUS, V1, P8, DOI 10.1209/0295-5075/78/30002
Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9
Kaushik R., 2013, INT J RES MED SCI, V1, P1, DOI [10.5455/2320-6012.ijrms20130201, DOI 10.5455/2320-6012.IJRMS20130201]
Liang RH, 2016, AAAI CONF ARTIF INTE, P20
Moed HF, 2016, J INFORMETR, V10, P533, DOI 10.1016/j.joi.2016.04.017
Prakash J, 2020, MEASUREMENT, V151, DOI 10.1016/j.measurement.2019.107225
Prathap G, 2010, SCIENTOMETRICS, V84, P167, DOI 10.1007/s11192-009-0068-0
Qurat-ul Ain, 2019, SCIENTOMETRICS, V119, P187, DOI 10.1007/s11192-019-03009-y
Raheel M, 2018, SCIENTOMETRICS, V114, P1107, DOI 10.1007/s11192-017-2633-2
Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
Tol RSJ, 2009, SCIENTOMETRICS, V80, P317, DOI 10.1007/s11192-008-2079-7
Urbanowicz RJ, 2018, J BIOMED INFORM, V85, P189, DOI 10.1016/j.jbi.2018.07.014
Usman M, 2021, SCIENTOMETRICS, V126, P335, DOI 10.1007/s11192-020-03769-y
Velmurugan C., 2016, INT J MULTIDISCIPLIN, V49, P1
Wang Z, 2016, INT GEOSCI REMOTE SE, P755, DOI 10.1109/IGARSS.2016.7729190
Wohlin C, 2009, SCIENTOMETRICS, V81, P521, DOI 10.1007/s11192-008-2155-z
Ye FY, 2010, SCIENTOMETRICS, V84, P431, DOI 10.1007/s11192-009-0099-6
Zhang C, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0004881, 10.1371/journal.pone.0005429]
NR 33
TC 9
Z9 9
U1 6
U2 25
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD MAR
PY 2023
VL 128
IS 3
BP 1825
EP 1852
DI 10.1007/s11192-023-04633-5
EA JAN 2023
PG 28
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 9M3IZ
UT WOS:000922480200001
DA 2024-09-05
ER
PT C
AU Cheng, X
Zhao, YF
AF Cheng, Xin
Zhao, YiFan
GP IEEE
TI Analysis of Scholars' influence evaluation Based on Data collection and
integration in the Context of Big Data - Taking the Hospital Scientific
Research Output Database as an Example
SO 2021 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA AND
BUSINESS INTELLIGENCE (MLBDBI 2021)
LA English
DT Proceedings Paper
CT 3rd International Conference on Machine Learning, Big Data and Business
Intelligence (MLBDBI)
CY DEC 03-05, 2021
CL ELECTR NETWORK
DE Academic influence of scholars; Medical field; Principal component
analysis; First author; Big Data
AB [Purpose/Significance] Evaluating the academic influence of scholars is an important basis for identifying excellent scholars and selecting talents. At present, there is no strict and unified standard for the evaluation index of scholars' academic influence. Using a single index or traditional indexes such as the number of documents has certain limitations and is not comprehensive enough. [Methods / Process] This paper constructs the evaluation index system of academic influence of scholars in the medical field from the perspective of multiple indicators. By dividing the number of scholars' papers into two data sources: the total number of published papers and the number of papers only containing scholars as the first author, the principal component analysis method is used to empirically study the data, obtain the evaluation index model and calculate the corresponding scholar ranking. [Results / Conclusion] It is found that the total number of scholars' papers is quite different from the ranking of only considering the first author, and whether it is the first author has a great impact on the influence evaluation. Therefore, whether it is the first author and the weight of the first author and non first author should be considered when evaluating the influence of scholars.
C1 [Cheng, Xin; Zhao, YiFan] Shanxi Univ Finance & Econ, Sch Informat, Taiyuan, Peoples R China.
C3 Shanxi University Finance & Economics
RP Zhao, YF (corresponding author), Shanxi Univ Finance & Econ, Sch Informat, Taiyuan, Peoples R China.
EM 347063513@qq.com
RI Zhao, Yifan/AAN-7735-2021
OI Zhao, Yifan/0000-0001-6911-3183
CR Bornmann L, 2006, SCIENTOMETRICS, V68, P427, DOI 10.1007/s11192-006-0121-1
Cao Vi, 2011, INFORM RES, P56
Chen Zhengwei, 2013, COMPREHENSIVE EVALUA
Du Jian, 2013, LIB INFORM WORK, V57, P135
Du Jian, 2014, AUTHORS DUAL MEASURE, V33, P388
Jing Jiang, 2011, RES COMPREHENSIVE EV
Li Qinmin, 2019, Journal of the China Society for Scientific and Technical Information, V38, P709, DOI 10.3772/j.issn.1000-0135.2019.07.005
Liu Ping, 2017, INFORM THEORY PRACTI, V40
Lu Wanhui, 2020, INFORM WORK, P60
Ortega JL, 2015, J INFORMETR, V9, P39, DOI 10.1016/j.joi.2014.11.004
Qiu Junping, 2010, J CHONGQING U SOCIAL, P110
Shen Xiaoling, 2013, LIB INFORM WORK, V57, P95
Sotudeh H, 2015, SCIENTOMETRICS, V105, P2237, DOI 10.1007/s11192-015-1745-9
Van Guangcai, 2019, EDUC RES-UK, V06, P16
Wan Hao, 2017, LIB INFORM WORK, P134
[王菲菲 Wang Feifei], 2019, [科研管理, Science Research Management], V40, P178
Wu Shuai, 2018, INFORM THEORY PRACTI, V41, P41
Yang Ruixian, 2017, J INFORM, P106
Yu Liping, 2021, LIB J, V40, P93
NR 19
TC 0
Z9 0
U1 0
U2 18
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-1790-7
PY 2021
BP 402
EP 407
DI 10.1109/MLBDBI54094.2021.00082
PG 6
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BT1XR
UT WOS:000804043100075
DA 2024-09-05
ER
PT C
AU Li, L
Fan, YX
Lin, KY
AF Li, Li
Fan, Yuxi
Lin, Kuo-Yi
GP IEEE
TI A Survey on federated learning
SO 2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA)
SE IEEE International Conference on Control and Automation ICCA
LA English
DT Proceedings Paper
CT 16th IEEE International Conference on Control and Automation (ICCA)
CY OCT 09-11, 2020
CL ELECTR NETWORK
DE Federated learning; Literature survey; Citation analysis; Research front
AB Federated learning (FL) is an emerging setting which implement machine learning in a distributed environment while protecting privacy. Research activities relating to FLhave grown at a fast rate recently in control. Exactly what activities have been carrying the research momentum forward is a question of interest to the research community. This study finds these research activities and optimization path of FL based on survey. Thus, this study aims to review related studies of FL to base on the baseline a universal definition gives a guiding for the future work. Besides, this study presents the prevailing FL applications and the evolution of federated learning. In the end, this study also identifies four research fronts to enrich the FL literature and help advance our understanding of the field. A comprehensive taxonomy of FL can also be developed through analyzing the results of this review.
C1 [Li, Li; Fan, Yuxi; Lin, Kuo-Yi] Tongji Univ, Shanghai 201804, Peoples R China.
C3 Tongji University
RP Li, L (corresponding author), Tongji Univ, Shanghai 201804, Peoples R China.
EM lili@tongji.edu.cn; 1830749@tongji.edu.cn; 19603@tongji.edu.cn
RI Fan, Yuxi/ABG-6950-2021; yuan, lin/JDW-7387-2023; Lin,
Kuo-Yi/HLH-8727-2023
FU National Key R&D Program of China [2018YFE0105000]; National Natural
Science Foundation of China [51475334]; Shanghai Municipal Commission of
science and technology [19511132100]; Fundamental Research Funds for the
Central Universities of China [22120170077]
FX Research supported by National Key R&D Program of China, No.
2018YFE0105000, the National Natural Science Foundation of China under
Grant No. 51475334, the Shanghai Municipal Commission of science and
technology No. 19511132100 and the Fundamental Research Funds for the
Central Universities of China under Grant No. 22120170077.
CR Aivodji Ulrich Matchi, 2019, 2019 IEEE Security and Privacy Workshops (SPW). Proceedings, P175, DOI 10.1109/SPW.2019.00041
[Anonymous], International Journal of Medical Informatics
[Anonymous], IEEE TRUST BIG
[Anonymous], IEEE T INF FOREN SEC
Bagdasaryan E., 2018, ARXIV180700459CS
Bonawitz K, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1175, DOI 10.1145/3133956.3133982
Bos JW, 2014, J BIOMED INFORM, V50, P234, DOI 10.1016/j.jbi.2014.04.003
Brendan McMahan H., 2017, INT C ARTIF
Chai Z, 2019, PROCEEDINGS OF THE 2019 USENIX CONFERENCE ON OPERATIONAL MACHINE LEARNING, P19
Chakraborty S, ANAL FEDERATED LEARN, P10
Chen M., 2019, ARXIV190310635
Chen MZ, 2020, IEEE T WIREL COMMUN, V19, P177, DOI 10.1109/TWC.2019.2942929
Chen Y., 2019, ARXIV190307424CSSTAT
Chen Y., 2019, ARXIV191102134CS
Du D., 2018, LECT NOTES COMPUT SC
Gao D, HIERARCHICAL HETEROG
Gascon A., 2017, P PRIV ENH TECHN 201, V2017, P345
Geyer R.C., 2017, ARXIV171207557, DOI DOI 10.1109/TCSS.2021.3074038
Han X, 2019, LECT NOTES COMPUT SC, V11663, P52, DOI 10.1007/978-3-030-27272-2_5
Hao M., 2019, ICC 20192019 IEEE international conference on communications (ICC), P1, DOI [10.1109/ICC.2019.8761267, DOI 10.1109/ICC.2019.8761267]
Hardy S, 2017, Arxiv, DOI [arXiv:1711.10677, DOI 10.48550/ARXIV.1711.10677]
Ho Qirong, 2013, Adv Neural Inf Process Syst, V2013, P1223
Hsu W., IEEE INFOCOM SER
Hu BX, 2018, IEEE GLOB COMM CONF
Huang L, 2019, J BIOMED INFORM, V99, DOI 10.1016/j.jbi.2019.103291
Ilias C, 2019, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), P544, DOI 10.5220/0007571705440551
Kairouz P., 2019, FOUND TRENDS MACH LE, DOI DOI 10.1561/2200000083
Kang JW, 2019, 2019 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM (APWCS 2019), DOI 10.1109/vts-apwcs.2019.8851649
Khan L. U, 2019, ARXIV191105642CS
Kim YJ, 2019, ASIA-PAC NETW OPER M, DOI 10.23919/apnoms.2019.8893114
Li HY, 2019, IEEE DATA COMPR CONF, P589, DOI 10.1109/DCC.2019.00101
Li S., 2019, ARXIV191009933CSSTAT
Li T., 2019, ARXIV181206127CSSTAT
Liu DB, 2019, SIGBIOMED WORKSHOP ON BIOMEDICAL NATURAL LANGUAGE PROCESSING (BIONLP 2019), P283, DOI 10.18653/v1/W19-5030
Liu Y., 2018, IEEE INTELL SYST, DOI DOI 10.1109/MIS.2020.2988525
Lu YL, 2020, IEEE T IND INFORM, V16, P2134, DOI 10.1109/TII.2019.2942179
Lupu EC, 2019, ARXIV190905125CSSTAT
Ma C, 2019, ARXIV190906512CS
Majeed U., 2019, ASIA-PAC NETW OPER M, P1, DOI DOI 10.23919/APNOMS.2019.8892848
Nasr M, 2019, P IEEE S SECUR PRIV, P739, DOI 10.1109/SP.2019.00065
Nion D., INT CONF ACOUST SPEE, P2077
Nishio T, 2019, IEEE ICC
Nock R, 2018, ARXIV180304035CS
Qian YF, 2019, INFORM SCIENCES, V505, P562, DOI 10.1016/j.ins.2019.07.069
Qin X., 2019, IEEE INTELL SYST, DOI DOI 10.1109/MIS.2020.2988604
Ramaswamy Swaroop, 2019, ARXIV190604329
Saputra Y.M., 2019, ARXIV190900907CSEESS
Sarikaya Y., 2019, ARXIV190803092CS
Silva S, 2019, I S BIOMED IMAGING, P270, DOI [10.1109/isbi.2019.8759317, 10.1109/ISBI.2019.8759317]
Smith V, 2017, ADV NEUR IN, V30
Truex S., 2019, P 12 ACM WORKSH ART, P1
Wang SQ, 2019, IEEE J SEL AREA COMM, V37, P1205, DOI 10.1109/JSAC.2019.2904348
Wang ZB, 2019, IEEE INFOCOM SER, P2512, DOI [10.1109/infocom.2019.8737416, 10.1109/INFOCOM.2019.8737416]
Wu SH, 2019, PROCEEDINGS OF 2019 THE 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY (ICCSP 2019) WITH WORKSHOP 2019 THE 4TH INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP 2019), P13, DOI 10.1145/3309074.3309079
Wu W, 2019, ARXIV191001355CS
Xu R., 2019, P 12 ACM WORKSHOP, P13
Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981
Yao X, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP)
Yurochkin M, 2019, PR MACH LEARN RES, V97
Zhao Y., 2018, ARXIV180600582
Zhu HB, 2020, IEEE J BIOMED HEALTH, V24, P1652, DOI 10.1109/JBHI.2019.2947506
NR 61
TC 20
Z9 20
U1 5
U2 40
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 1948-3449
BN 978-1-7281-9093-8
J9 IEEE INT CONF CON AU
PY 2020
BP 791
EP 796
DI 10.1109/icca51439.2020.9264412
PG 6
WC Automation & Control Systems; Engineering, Electrical & Electronic;
Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Engineering; Operations Research &
Management Science
GA BR3HM
UT WOS:000646357300135
DA 2024-09-05
ER
PT J
AU Porwal, P
Devare, MH
AF Porwal, Priya
Devare, Manoj H.
TI Citation count prediction using weighted latent semantic analysis (wlsa)
and three-layer-deep-learning paradigm: a meta-heuristic approach
SO MULTIMEDIA TOOLS AND APPLICATIONS
LA English
DT Article
DE Citation count prediction; Class distribution factor-based Term
Frequency-Inverse Document Frequency (CDF-TFIDF); Weighted Latent
Semantic Analysis (WLSA); Red fox optimization (RFO); Convolutional
Neural Network (CNN)
ID IMPACT; PUBLICATION
AB Citation count prediction is a subfield of bibliometrics, which involves using mathematical and statistical models to predict the quantity of citations that a scholarly research paper will accept in the future. This study suggests a novel approach for forecasting the number of citations academic papers will receive in future. The proposed model includes four major phases: "(a) pre-processing, (b) feature extraction, (c) feature selection, (d) Three-Layer-Deep-Learning-based-citation-count-prediction". In this paper, the Raw data collected is pre-processed via stop word removal, stemming, lemmatization, tokenization. As a resultant, the tokens are acquired. The features are extracted from the tokens. The features like bag-of-words, Part-of-Speech (POS) Tagger, Pointwise Mutual Information (PMI), Class distribution factor-based Term Frequency-Inverse Document Frequency (CDF-TFIDF), Doc2vec (document to vector) and Weighted Latent Semantic Analysis (WLSA). Subsequently, from the extracted features, the optimal features are selected using the new hybrid optimization model. The proposed hybrid optimization model- Polar Red Fox Optimization (PRFO), is the agglomeration of concepts of the standard "Polar Bear Optimization (PBO)" and "Red the fox optimization (RFO)," respectively. The citation counts are predicted using the new three-layer-deep-learning paradigm that includes the "Long Short-Term Memory (LSTM), Recurrent Neural Net Language Model (RNNL), and Convolutional Neural Network (CNN)," respectively. The input to LSTM and RNNL is the selected optimal features. The outcome from LSTM and RNNL is fed as input to the CNN. The outcome is acquired from CNN. Finally, the proposed prototypical is validated over current models, to manifest its efficiency in accurate citation count prediction.
C1 [Porwal, Priya] Amity Univ, Comp Engn Dept, Mumbai, India.
[Devare, Manoj H.] Amity Univ, Prof & Head Inst, Amity Inst Informat Technol, Mumbai, India.
RP Porwal, P (corresponding author), Amity Univ, Comp Engn Dept, Mumbai, India.
EM priya.porwal20@gmail.com; mhdevare@mum.amity.edu
RI Devare, Manoj/H-2442-2016
OI Devare, Manoj/0000-0002-9530-3914
CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
Abrams DS., 2013, PATENT VALUE CITATIO, DOI [10.3386/w19647, DOI 10.3386/W19647]
Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128
Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Berahmand K, 2021, COMPUTING, V103, P2227, DOI 10.1007/s00607-021-00982-2
Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1100, DOI 10.1002/asi.20531
Choudhury N, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101057
Dey AK, 2019, P NATL ACAD SCI USA, V116, P19368, DOI 10.1073/pnas.1819529116
Dhanith PRJ, 2021, INT J INTERACT MULTI, V6, P122, DOI 10.9781/ijimai.2020.09.003
Dion ML, 2018, POLIT ANAL, V26, P312, DOI 10.1017/pan.2018.12
Färber M, 2020, INT J DIGIT LIBRARIE, V21, P375, DOI 10.1007/s00799-020-00288-2
Gunti P., 2022, Data mining approaches for big data and sentiment analysis in social media, P116
Gusenbauer M, 2020, RES SYNTH METHODS, V11, P181, DOI 10.1002/jrsm.1378
Gusenbauer M, 2019, SCIENTOMETRICS, V118, P177, DOI 10.1007/s11192-018-2958-5
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
Kim M, 2018, APPL SOFT COMPUT, V66, P506, DOI 10.1016/j.asoc.2017.09.028
Konda A, 2020, ACS NANO, V14, P6339, DOI 10.1021/acsnano.0c03252
Kuhn J, 2020, RAND J ECON, V51, P109, DOI 10.1111/1756-2171.12307
Kumar S, 2014, SCIENTOMETRICS, V98, P387, DOI 10.1007/s11192-013-1059-8
Masrour F, 2020, AAAI CONF ARTIF INTE, V34, P841
Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002
Ozcan A, 2019, INT J INF TECH DECIS, V18, P241, DOI 10.1142/S0219622018500530
Porwal P., 2021, CITATION CLASSIFICAT, P540
Qurat-ul Ain, 2019, SCIENTOMETRICS, V119, P187, DOI 10.1007/s11192-019-03009-y
Razzaq S, 2022, INT J INTERACT MULTI, V7, P103, DOI 10.9781/ijimai.2022.03.001
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Tope Megha, 2019, International Journal of Scientific Development and Research, V4, P1
van Dongen T, 2020, ARXIV
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
Zhang Q, 2023, PATTERN RECOGN LETT, V168, P31, DOI 10.1016/j.patrec.2023.02.026
NR 32
TC 0
Z9 0
U1 5
U2 11
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1380-7501
EI 1573-7721
J9 MULTIMED TOOLS APPL
JI Multimed. Tools Appl.
PD MAR
PY 2024
VL 83
IS 11
BP 32245
EP 32276
AR s11042-023-16957-8
DI 10.1007/s11042-023-16957-8
EA SEP 2023
PG 32
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Computer Science, Theory & Methods; Engineering, Electrical
& Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA KF5H9
UT WOS:001070386400005
DA 2024-09-05
ER
PT J
AU Wang, ZW
Jia, YH
Fu, PH
Li, HY
Song, L
Yang, BQ
Zhang, LJ
Yuan, L
Shi, K
AF Wang, Zhiwei
Jia, Yanhao
Fu, Penghao
Li, Haiyin
Song, Li
Yang, Bingqing
Zhang, Lijun
Yuan, Liang
Shi, Kan
TI Research on the online evaluation of the straightness error of
hydrostatic guideways based on deep learning
SO INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
LA English
DT Article
DE Recess pressure; Hydrostatic guideway; Online evaluation; Straightness
error; Deep learning
ID MOTION ERRORS; RAILS
AB Currently, the measurement of guide rail straightness error is basically a direct measurement, which cannot meet the requirements of online straightness error measurement in the machining process of the machine tool. Therefore, this paper proposes a straightness error evaluation model based on the recess pressure, which can realize the online measurement of the straightness error of hydrostatic guideways. To address the nonlinear relationship between the recess pressure and the linear deviation data of the guideway in an experiment, based on deep learning, the hydrostatic guideway straightness error was evaluated. First, the experimental data are analyzed and processed by feature, and a sliding window is processed using the data time sequence. Second, a long short-term memory network model is constructed based on an attention mechanism, the model parameters are obtained through orthogonal experiments, and the theoretical straightness error of the hydrostatic guideway is obtained via training. Finally, the theoretical values and experimental values of straightness error are compared and evaluated with the multilayer perceptron and recurrent neural network models. The results show that the model can effectively evaluate the straightness error of hydrostatic guideways.
C1 [Wang, Zhiwei; Jia, Yanhao; Fu, Penghao; Li, Haiyin; Song, Li; Yang, Bingqing; Yuan, Liang; Shi, Kan] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, 579 Qianwangang Rd, Qingdao 266590, Peoples R China.
[Wang, Zhiwei] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, 28 Xianning West Rd, Xian 710049, Peoples R China.
[Zhang, Lijun] China Univ Petr, Coll Mech & Elect Engn, 66 Yangtze West Rd, Qingdao 266580, Peoples R China.
C3 Shandong University of Science & Technology; Xi'an Jiaotong University;
China University of Petroleum
RP Shi, K (corresponding author), Shandong Univ Sci & Technol, Coll Mech & Elect Engn, 579 Qianwangang Rd, Qingdao 266590, Peoples R China.
EM kan.shi@hotmail.com
FU National Natural Science Foundation of China [52275497]; Natural
Foundation of Shandong Province [ZR2020ME141]
FX This work was supported by the National Natural Science Foundation of
China (52275497) and Natural Foundation of Shandong Province
(ZR2020ME141).
CR Dong H., 2022, J ELECT TECHNOL, V37, P5598
English D, 1999, ISO 230 1 1996
Fan JW, 2018, INT J ADV MANUF TECH, V98, P1131, DOI 10.1007/s00170-018-2335-9
Fu XY, 2023, J MANUF SCI E-T ASME, V145, DOI 10.1115/1.4055897
Gao WG, 2020, INT J ADV MANUF TECH, V106, P4731, DOI 10.1007/s00170-020-04965-z
He GY, 2017, INT J ADV MANUF TECH, V93, P1915, DOI 10.1007/s00170-017-0635-0
Hwang J, 2007, INT J MACH TOOL MANU, V47, P1053, DOI 10.1016/j.ijmachtools.2006.10.003
Jia L., 2008, J MECH ENG SCI, V09, P141, DOI [10.3901/JME.2008.09.141, DOI 10.3901/JME.2008.09.141]
Jiang B, 2022, BUILD ENVIRON, V224, DOI 10.1016/j.buildenv.2022.109536
Jin M., 2015, MECH DES MANUF, V07, P142
Karim F, 2018, IEEE ACCESS, V6, P1662, DOI 10.1109/ACCESS.2017.2779939
Kniel K, 2020, MEASUREMENT, V153, DOI 10.1016/j.measurement.2019.107366
Kono D., 2017, INT J AUTOM TECHNOL, V11, P188, DOI [10.20965/ijat.2017.p0188, DOI 10.20965/IJAT.2017.P0188]
Lin J., 2019, STUDY MEASURING STRA
Linares JM, 2014, PRECIS ENG, V38, P578, DOI 10.1016/j.precisioneng.2014.02.008
Liu HW, 2018, INT J ADV MANUF TECH, V98, P2769, DOI 10.1007/s00170-018-2471-2
Park CH., 2003, INT J PRECIS ENG MAN, V4, P64
Park CH., 2003, INT J PRECIS ENG MAN, V4, P27
[施晨淳 Shi Chenchun], 2020, [机械工程学报, Journal of Mechanical Engineering], V56, P157
Su H., 2003, J MECH ENG SCI, V03, P8, DOI [10.3901/JME.2003.03.008, DOI 10.3901/JME.2003.03.008]
Tang H, 2017, INT J MACH TOOL MANU, V120, P12, DOI 10.1016/j.ijmachtools.2017.04.010
Wang Y., 2020, RES MOTION STRAIGHTN
Wang YP, 2021, SHOCK VIB, V2021, DOI 10.1155/2021/6615920
Wang ZW, 2013, INT J MACH TOOL MANU, V64, P78, DOI 10.1016/j.ijmachtools.2012.07.011
Xiang S, 2020, ISA T, V106, P343, DOI 10.1016/j.isatra.2020.06.023
Yang P., 2022, J INSTRUM, V43, P70
Yin X., 2022, MOD MACH, V06, P52
Zha J, 2017, INT J MACH TOOL MANU, V112, P1, DOI 10.1016/j.ijmachtools.2016.10.002
Zhang PH, 2018, INT J MACH TOOL MANU, V125, P55, DOI 10.1016/j.ijmachtools.2017.10.006
Zhao L, 2019, CHIN J MECH ENG-EN, V32, DOI 10.1186/s10033-019-0338-6
NR 30
TC 0
Z9 0
U1 2
U2 2
PU SPRINGER LONDON LTD
PI LONDON
PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND
SN 0268-3768
EI 1433-3015
J9 INT J ADV MANUF TECH
JI Int. J. Adv. Manuf. Technol.
PD SEP
PY 2024
VL 134
IS 3-4
BP 2023
EP 2034
DI 10.1007/s00170-024-14052-2
EA AUG 2024
PG 12
WC Automation & Control Systems; Engineering, Manufacturing
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Automation & Control Systems; Engineering
GA D7X5A
UT WOS:001290981800004
DA 2024-09-05
ER
PT J
AU Hilmi, MF
Mustapha, Y
AF Hilmi, Mohd Faiz
Mustapha, Yanti
TI A BIBLIOMETRIC AND TOPIC MODELING OVERVIEW OF KAJIAN
MALAYSIA BETWEEN 2011 AND 2020: A RESEARCH NOTE
SO KAJIAN MALAYSIA
LA English
DT Article
DE Kajian Malaysia; bibliometric analysis; topic modeling; latent dirichlet
allocation; social science; humanities; Malaysia
ID CORPORATE SOCIAL-RESPONSIBILITY; COMMUNITY; PROSPECTS; EDUCATION;
SOCIETY
AB Kajian Malaysia, published by Penerbit Universiti Sains Malaysia, is an interdisciplinary journal which provides a forum for a broad range of social sciences and humanities research. This research note presents a bibliometric review of the articles published in the journal Kajian Malaysia between 2011 and 2020. The purpose of this research note is to evaluate publication patterns and the topic model of articles published in Kajian Malaysia. The bibliographical material applied in this study was retrieved from the Scopus database. This study bibliometrically examines 192 documents published in Kajian Malaysia from 2011 to 2020 to rank the most productive countries, institutions, authors, keywords, influential articles and the topic model. This research note assists researchers with an understanding of the development of Kajian Malaysia, provides an important reference for Kajian Malaysia's future trajectory as well as provides an effective method of analysis for the future evaluation of journals.
C1 [Hilmi, Mohd Faiz] Univ Sains Malaysia, Sch Distance Educ, George Town, Malaysia.
[Mustapha, Yanti] Univ Teknol MARA, Fac Business & Management, Kedah, Malaysia.
C3 Universiti Sains Malaysia
RP Hilmi, MF (corresponding author), Univ Sains Malaysia, Sch Distance Educ, George Town, Malaysia.
EM faiz@usm.my
RI Hilmi, Mohd Faiz/GVL-9141-2022; Mustapha, Yanti Aspha
Ameira/HJH-8582-2023; Hilmi, Mohd Faiz/B-9197-2009
OI Hilmi, Mohd Faiz/0000-0003-4548-0565; Mustapha, Yanti Aspha
Ameira/0000-0002-1871-9457
CR Abd Rahim RA, 2011, KAJI MALAYS, V29, P91
Amran A, 2013, KAJI MALAYS, V31, P57
Austin OC, 2012, KAJI MALAYS, V30, P21
Embong AR, 2015, KAJI MALAYS, V33, P117
Embong Abdul Rahman, 2013, KAJI MALAYS, V31, P97
Farouk AFA, 2011, KAJI MALAYS, V29, P91
Foong L, 2018, KAJI MALAYS, V36, P127, DOI 10.21315/km2018.36.1.6
Ghazali MF, 2015, KAJI MALAYS, V33, P69
Halim SA, 2011, KAJI MALAYS, V29, P125
Hamid Ahmad Fauzi Abdul, 2019, 10 GLOBAL C BUSINESS
Harzing A.W., 2007, Publish or perish
Hilmi Mohd Faiz, 2020, 2020 Sixth International Conference on e-Learning (econf), P243, DOI 10.1109/econf51404.2020.9385513
Hilmi Mohd Faiz, 2020, 2020 International Conference on Decision Aid Sciences and Application (DASA), P882, DOI 10.1109/DASA51403.2020.9317278
Holden P, 2012, KAJI MALAYS, V30, P47
Ibrahim Zawawi, 1983, KAJI MALAYS, V1, P1
Idrus R, 2011, KAJI MALAYS, V29, P53
Kajian Malaysia, 2022, KAJIAN MALAYSIA J MA
Khoo SL, 2013, KAJI MALAYS, V31, P37
Leng KY, 2014, KAJI MALAYS, V32, P89
Liu OP, 2017, KAJI MALAYS, V35, P59, DOI 10.21315/km2017.35.Supp.1.4
Ming BH, 2015, KAJI MALAYS, V33, P173
Mustapha M, 2015, KAJI MALAYS, V33, P155
Mustapha Yanti, 2020, FBM INSIGHTS, V1, P82
Narayanan SS, 2016, KAJI MALAYS, V34, P1, DOI 10.21315/km2016.34.2.1
Raman M, 2012, KAJI MALAYS, V30, P71
Sani MAM, 2014, KAJI MALAYS, V32, P123
Scopus, 2021, SOURCE DETAILS
Singh R, 2022, J QUAL ASSUR HOSP TO, V23, P482, DOI 10.1080/1528008X.2021.1884931
Tuck-Po L, 2011, KAJI MALAYS, V29, P23
Yahya Z, 2017, KAJI MALAYS, V35, P39, DOI 10.21315/km2017.35.2.3
Yean TF, 2015, KAJI MALAYS, V33, P141
NR 31
TC 0
Z9 0
U1 0
U2 2
PU PENERBIT UNIV SAINS MALAYSIA
PI PULAU PINANG
PA PENERBIT UNIVERSITI SAINS MALAYSIA, PULAU PINANG, PINANG 11800, MALAYSIA
SN 2180-4273
J9 KAJI MALAYS
JI Kaji. Malays.
PY 2022
VL 40
IS 2
BP 255
EP 268
DI 10.21315/km2022.40.2.11
PG 14
WC Area Studies
WE Emerging Sources Citation Index (ESCI)
SC Area Studies
GA 5Z6US
UT WOS:000880106600011
OA gold
DA 2024-09-05
ER
PT J
AU Liu, R
Liu, Q
Shi, JW
Yu, WY
Gong, X
Chen, N
Yang, Y
Huang, JL
Wang, ZX
AF Liu, Rui
Liu, Qian
Shi, Jianwei
Yu, Wenya
Gong, Xin
Chen, Ning
Yang, Yan
Huang, Jiaoling
Wang, Zhaoxin
TI Application of a feature extraction and normalization method to improve
research evaluation across clinical disciplines
SO ANNALS OF TRANSLATIONAL MEDICINE
LA English
DT Article
DE Research evaluation; clinical discipline; feature extraction;
normalization
AB Background: To deal with the large disparity across disciplines using impact factor, which is widely used in hospitals and has recently come under attack for distorting good scientific practices, we propose a set of systematic methods to improve the equality of research evaluations of various clinical disciplines. Methods: We used bibliometric information on 18 clinical disciplines from 2016 to 2018. We first sought to clarify disciplinary characteristics with the aim of identifying the characteristic fields for each clinical discipline, and we constructed a keyword database. To minimize the disparity across various clinical disciplines, we used normalized evaluation, referring to the calculation of the normalized coefficient of a specific discipline, to enable a relatively clear evaluation across different disciplines. Results: Feature extraction was performed, and over 700,000 journals were retrieved each year. Using this information, the journal correlation coefficient was calculated. From 2016 to 2018, oncology had the largest normalized coefficient (0.133, 0.136, 0.146 respectively), which reflects the highest correlation between the characteristic journals of the discipline. The findings showed a clear distinction in journal coverage and journal correlations for different disciplines. Conclusions: The new evaluation indicator and normalized process measure different features of disciplines, providing a basis for the further balancing of evaluations, and considering differences across disciplines.
C1 [Liu, Rui] Tongji Univ, Shanghai Peoples Hosp 10, Shanghai, Peoples R China.
[Liu, Qian; Yang, Yan] Tongji Univ, Sch Econ & Management, Shanghai, Peoples R China.
[Shi, Jianwei; Yu, Wenya; Huang, Jiaoling; Wang, Zhaoxin] Shanghai Jiao Tong Univ, Sch Publ Hlth, Sch Med, South Chongqing Rd 227, Shanghai 200025, Peoples R China.
[Gong, Xin] Tongji Univ, Sch Med, Shanghai East Hosp, Shanghai, Peoples R China.
[Chen, Ning] Tongji Univ, Sch Med, Shanghai, Peoples R China.
[Wang, Zhaoxin] Southern Med Univ, Nanhai Hosp, Gen Practice Ctr, Foshan, Peoples R China.
C3 Tongji University; Tongji University; Shanghai Jiao Tong University;
Tongji University; Tongji University; Southern Medical University -
China
RP Huang, JL; Wang, ZX (corresponding author), Shanghai Jiao Tong Univ, Sch Publ Hlth, Sch Med, South Chongqing Rd 227, Shanghai 200025, Peoples R China.
EM jiaoling_huang@sina.com; supercell002@sina.com
RI zhang, min/IYI-9869-2023; Wang, Ling/AGR-4917-2022; Liu,
qianhong/HDO-6033-2022; Huang, Joy/HJP-2358-2023
OI Wang, Ling/0000-0003-0272-2974; Huang, Jiaoling/0000-0003-1975-3937
CR Althouse BM, 2009, J AM SOC INF SCI TEC, V60, P27, DOI 10.1002/asi.20936
Bordons M, 1997, SCIENTOMETRICS, V40, P423, DOI 10.1007/BF02459290
Budd JM, 2018, COLL RES LIBR, V79, P853
Comins JA, 2015, SCIENTOMETRICS, V104, P575, DOI 10.1007/s11192-015-1598-2
Costas R, 2011, SCIENTOMETRICS, V89, P177, DOI 10.1007/s11192-011-0436-4
Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256
Fraley RC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109019
Frandsen TF, 2008, J AM SOC INF SCI TEC, V59, P1570, DOI 10.1002/asi.20817
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Hoeffel C, 1998, ALLERGY, V53, P1225, DOI 10.1111/j.1398-9995.1998.tb03848.x
Leydesdorff L, 2019, J INFORMETR, V13, P255, DOI 10.1016/j.joi.2018.12.006
Leydesdorff L, 2016, J ASSOC INF SCI TECH, V67, P707, DOI 10.1002/asi.23408
Leydesdorff L, 2012, SCIENTOMETRICS, V92, P355, DOI 10.1007/s11192-012-0660-6
Makrehchi M, 2008, LECT NOTES COMPUT SC, V4956, P222
Milojevic S, 2011, J AM SOC INF SCI TEC, V62, P1933, DOI 10.1002/asi.21602
Mishra Shubhanshu, 2016, Dlib Mag, V22, DOI 10.1045/september2016-mishra
Rehn C., 2014, Bibliometric indicators - definitions and usage at Karolinska Institutet Solna
Schmidt M, 2015, PRO INT CONF SCI INF, P365
van Leeuwen TN, 2012, RES EVALUAT, V21, P61, DOI 10.1093/reseval/rvr006
Wagner H, 2014, J SPORT SCI MED, V13, P808
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748
Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5
Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001
Wang J, 2016, RES POLICY, V45, P68, DOI 10.1016/j.respol.2015.09.003
NR 24
TC 1
Z9 1
U1 1
U2 8
PU AME PUBLISHING COMPANY
PI SHATIN
PA FLAT-RM C 16F, KINGS WING PLAZA 1, NO 3 KWAN ST, SHATIN, HONG KONG
00000, PEOPLES R CHINA
SN 2305-5839
EI 2305-5847
J9 ANN TRANSL MED
JI ANN. TRANSL. MED.
PD OCT
PY 2021
VL 9
IS 20
AR 1580
DI 10.21037/atm-21-5046
PG 15
WC Oncology; Medicine, Research & Experimental
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Oncology; Research & Experimental Medicine
GA WR8GG
UT WOS:000714733000006
PM 34790786
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Lu, W
Huang, SZ
Yang, JQ
Bu, Y
Cheng, QK
Huang, Y
AF Lu, Wei
Huang, Shengzhi
Yang, Jinqing
Bu, Yi
Cheng, Qikai
Huang, Yong
TI Detecting research topic trends by author-defined keyword frequency
SO INFORMATION PROCESSING & MANAGEMENT
LA English
DT Article
DE Scientometrics; Bibliometrics; Deep learning; Word frequency prediction
ID WORD ANALYSIS; SCIENCE; TECHNOLOGY; EVOLUTION; NETWORKS; COCITATION;
CITATIONS; KNOWLEDGE; SYSTEM; IMPACT
AB Detecting research trends helps researchers and decision makers to promptly identify and analyze research topics. However, due to citation and publication delay, previous studies on trend analysis are more likely to identify ex-post trends. In this study, we employ author-defined keywords to represent topics and propose a simple, effective, and ex-ante approach, called authordefined keyword frequency prediction (AKFP), to detect research trends. More specifically, the proposed AKFP relies on the long short-term memory (LSTM) neural network. Four categories of features are proposed as input variables: Temporal feature, Persistence, Community size, and Community development potential. To verify the effectiveness and feasibility of the AKFP, we also proposed a simple but effective method to build a balanced and sufficient data set and conducted extensive comparative experiments, based on data extracted from the ACM Digital Library. Our empirical result confirms the feasibility of word frequency prediction by forecasting precision. Specifically, the short- and medium-term word frequency prediction achieved excellent performance, and the long-term word frequency prediction obtained acceptable prediction accuracy. In addition, we found that these proposed features have a significant but inconsistent impact on the AKFP. Specifically, the temporal feature is always an unignorable factor. The persistence has a strong correlation with the community size, and both are more important in the short- and medium-term prediction. In contrast, the community development potential is particularly significant in the long-term prediction.
C1 [Lu, Wei; Huang, Shengzhi; Yang, Jinqing; Cheng, Qikai; Huang, Yong] Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China.
[Lu, Wei; Huang, Shengzhi; Yang, Jinqing; Cheng, Qikai; Huang, Yong] Wuhan Univ, Informat Retrieval & Knowledge Min Lab, Wuhan, Hubei, Peoples R China.
[Bu, Yi] Peking Univ, Dept Informat Management, Beijing, Peoples R China.
C3 Wuhan University; Wuhan University; Peking University
RP Huang, Y (corresponding author), Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China.; Huang, Y (corresponding author), Wuhan Univ, Informat Retrieval & Knowledge Min Lab, Wuhan, Hubei, Peoples R China.
EM weilu@whu.edu.cn; ShengzhiHuang@whu.edu.cn; Jinq_yang@163.com;
buyi@pku.edu.cn; chengqikai0806@163.com; yonghuang1991@whu.edu.cn
OI Huang, Shengzhi/0000-0002-7035-4627
CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Alkhodair SA, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.02.016
An XY, 2011, SCIENTOMETRICS, V88, P133, DOI 10.1007/s11192-011-0374-1
Asghari M, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102340
Behrouzi S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101079
Bergstra J, 2012, J MACH LEARN RES, V13, P281
BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I
Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190
Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8
Chen P, 2010, J INFORMETR, V4, P278, DOI 10.1016/j.joi.2010.01.001
Cheng QK, 2020, SCIENTOMETRICS, V124, P1923, DOI 10.1007/s11192-020-03576-5
Choi J, 2014, TECHNOL FORECAST SOC, V83, P170, DOI 10.1016/j.techfore.2013.07.004
Choi J, 2011, INFORM MANAGE-AMSTER, V48, P371, DOI 10.1016/j.im.2011.09.004
Choudhury N, 2016, SCIENTOMETRICS, V108, P745, DOI 10.1007/s11192-016-2003-5
Dehdarirad T, 2014, SCIENTOMETRICS, V101, P273, DOI 10.1007/s11192-014-1327-2
Duvvuru A, 2013, PROCEDIA COMPUT SCI, V20, P439, DOI 10.1016/j.procs.2013.09.300
ELMAN JL, 1990, COGNITIVE SCI, V14, P179, DOI 10.1207/s15516709cog1402_1
Ernst H, 1997, SMALL BUS ECON, V9, P361, DOI 10.1023/A:1007921808138
Geng Q, 2018, LIB INFORM SERVICE, V62, P29
Glorot X., 2011, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, P315
Guo JF, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102067
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
HORNIK K, 1989, NEURAL NETWORKS, V2, P359, DOI 10.1016/0893-6080(89)90020-8
Hu JM, 2015, INFORM PROCESS MANAG, V51, P329, DOI 10.1016/j.ipm.2015.02.002
Hu YH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.101004
Huang TY, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208370
Jia T, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0078
Katsurai M, 2019, SCIENTOMETRICS, V121, P1583, DOI 10.1007/s11192-019-03241-6
Ketkar N., 2017, DEEP LEARNING PYTHON, V1
Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001
Lee C, 2018, TECHNOL FORECAST SOC, V127, P291, DOI 10.1016/j.techfore.2017.10.002
Li LL, 2009, SCIENTOMETRICS, V80, P39, DOI 10.1007/s11192-008-1939-5
Liu GY, 2012, SCIENTOMETRICS, V91, P203, DOI 10.1007/s11192-011-0586-4
Lu W, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101066
McCain KW, 2008, J AM SOC INF SCI TEC, V59, P510, DOI 10.1002/asi.20705
Mousques A., 2014, INT ENV MOD SOFTW SO
Newman N. C., 2017, 2017 PORTL INT C MAN, P1
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Peset F, 2020, J ASSOC INF SCI TECH, V71, P462, DOI 10.1002/asi.24248
Rezaeian M, 2017, TECHNOL FORECAST SOC, V118, P270, DOI 10.1016/j.techfore.2017.02.027
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0
Soriano AS, 2018, SCIENTOMETRICS, V115, P1591, DOI 10.1007/s11192-018-2651-8
Taylor M, 2012, INT J PROD ECON, V140, P541, DOI 10.1016/j.ijpe.2012.07.006
Trevisani M, 2018, KNOWL-BASED SYST, V146, P129, DOI 10.1016/j.knosys.2018.01.035
Tu YN, 2012, INFORM PROCESS MANAG, V48, P303, DOI 10.1016/j.ipm.2011.07.006
Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004
Wang Q, 2018, J ASSOC INF SCI TECH, V69, P290, DOI 10.1002/asi.23930
Wang XG, 2014, SCIENTOMETRICS, V101, P1253, DOI 10.1007/s11192-014-1347-y
Xu S, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100983
Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831
Zeiler Matthew D, 2012, CoRR
Zeng A, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11401-8
Zhao WY, 2018, INFORM PROCESS MANAG, V54, P203, DOI 10.1016/j.ipm.2017.11.005
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 56
TC 29
Z9 31
U1 9
U2 108
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-4573
EI 1873-5371
J9 INFORM PROCESS MANAG
JI Inf. Process. Manage.
PD JUL
PY 2021
VL 58
IS 4
AR 102594
DI 10.1016/j.ipm.2021.102594
EA MAR 2021
PG 18
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA SN6BG
UT WOS:000658372100033
DA 2024-09-05
ER
PT J
AU Qayyum, F
Jamil, H
Iqbal, N
Kim, D
Afzal, MT
AF Qayyum, Faiza
Jamil, Harun
Iqbal, Naeem
Kim, DoHyeun
Afzal, Muhammad Tanvir
TI Toward potential hybrid features evaluation using MLP-ANN binary
classification model to tackle meaningful citations
SO SCIENTOMETRICS
LA English
DT Article
DE Binary Classification; Citation Count; Information Retrieval; Logistic
Regression; Multi-layer Perceptron; Naive Bayes; Support vector machine
ID QUALITY; INDEX
AB Citation analysis-based systems are premised on assuming that all citations are equally important. The scientific community argues that a citation may hold divergent reasons and thus, should not be treated at par. In this regard, a plethora of existing studies classifies citations for varying reasons. Presently, the community has a propensity toward binary citation classification with the notion of contemplating only important reasons while employing quantitative analysis-based measures. We argue that outcomes yielded by the contemporary state-of-the-art models cannot be deemed ideal as the plethora of them has been evaluated on a data set with minimal number of instances due to which the outcomes cannot be generalized. The scope of results from such approaches is restricted to a single domain only which may exhibit entirely different behavior for the different data sets. Most of the studies are ruled by the content based features evaluated by harnessing traditional classification models like Support Vector Machine (SVM), and random forest (RF), while an inconsiderable number of studies employ metadata which holds the potential to serve as a quintessential indicator to tackle meaningful citations. In this study, we introduce Multilayer perceptron artificial neural network (MLP-ANN) binary citation classifier, which exploits the best combinations of features formed using both sources. We also introduce a new benchmark data set from the electrical engineering domain which is consolidated with two existing benchmark data sets for model evaluation. The outcomes reveal that the results produced by the proposed MLP model outperform the contemporary models achieving a precision of 0.92.
C1 [Qayyum, Faiza; Iqbal, Naeem; Kim, DoHyeun] Jeju Natl Univ, Comp Engn Dept, Jeju 63243, South Korea.
[Jamil, Harun] Jeju Natl Univ, Dept Elect Engn, Jeju 63243, South Korea.
[Afzal, Muhammad Tanvir] Shifa Tameer E Milat Univ, Dept Comp Sci, Islamabad 46000, Pakistan.
C3 Jeju National University; Jeju National University
RP Qayyum, F; Kim, D (corresponding author), Jeju Natl Univ, Comp Engn Dept, Jeju 63243, South Korea.
EM faizaqayyum@jejunu.ac.kr; harunjamil@hotmail.com;
naeemiqbal@jejunu.ac.kr; kimdh@jejunu.ac.kr; tanvirqau@hotmail.com
RI Iqbal, Naeem/ABG-1525-2021; Afzal, Muhammad/D-3741-2019
OI Iqbal, Naeem/0000-0003-2749-6344; Afzal, Muhammad/0000-0002-7851-2327;
Afzal, Muhammad Tanvir/0000-0002-9765-8815
FU Energy Cloud R&D Program through the National Research Foundation of
Korea(NRF) - Ministry of Science, ICT [2019M3F2A1073387]; Institute for
Information & communications Technology Promotion (IITP) [2022-0-00980]
FX This research was supported by Energy Cloud R&D Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of
Science, ICT (2019M3F2A1073387), and this work was supported by the
Institute for Information & communications Technology Promotion (IITP)
(NO. 2022-0-00980, Cooperative Intelligence Framework of Scene
Perception for Autonomous IoT Device).
CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500
Adagbasa EG, 2022, GEOCARTO INT, V37, P142, DOI 10.1080/10106049.2019.1704070
Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11
Ahmed I, 2020, IEEE ACCESS, V8, P129359, DOI 10.1109/ACCESS.2020.3009021
Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492
An X, 2022, SCIENTOMETRICS, V127, P6533, DOI 10.1007/s11192-021-04212-6
An X, 2023, J INF SCI, V49, P107, DOI 10.1177/0165551521991034
Ayaz S, 2016, SCIENTOMETRICS, V109, P1511, DOI 10.1007/s11192-016-2122-z
Pham BT, 2017, CATENA, V149, P52, DOI 10.1016/j.catena.2016.09.007
Bishop C.M., 2006, Pattern recognition and machine learning
BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
BROOKS TA, 1985, J AM SOC INFORM SCI, V36, P223, DOI 10.1002/asi.4630360402
Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H
Chen JL, 2000, 2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, P1556, DOI 10.1109/ICOSP.2000.893396
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Diederich J, 2007, LECT NOTES COMPUT SC, V4675, P1
Dong C., 2011, P 5 INT JOINT C NAT, P623
Finney B., 1979, REFERENCE CHARACTERI, V269, P192
Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
INHABER H, 1976, SOC STUD SCI, V6, P33, DOI 10.1177/030631277600600102
Iqbal N, 2021, J INTELL FUZZY SYST, V40, P9361, DOI 10.3233/JIFS-201844
Jochim C., 2012, P COLING 2012, P1343
Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402
Lyu DQ, 2021, SCIENTOMETRICS, V126, P3243, DOI 10.1007/s11192-021-03908-z
Mazloumian A, 2013, SCI REP-UK, V3, DOI 10.1038/srep01167
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926
Nazir S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228885
Pham SB, 2003, LECT NOTES ARTIF INT, V2903, P759
Pradhan B, 2010, ENVIRON MODELL SOFTW, V25, P747, DOI 10.1016/j.envsoft.2009.10.016
Pride D, 2017, LECT NOTES COMPUT SC, V10450, P572, DOI 10.1007/978-3-319-67008-9_48
Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x
SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111
Sugiyama Kazunari, 2010, Proceedings of the 2010 International Conference on Information Retrieval and Knowledge Management (CAMP 2010), P67, DOI 10.1109/INFRKM.2010.5466945
Tandon N., 2012, CITATION CONTEXT SEN
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1
Xu S, 2018, J INF SCI, V44, P48, DOI 10.1177/0165551516677946
Xu S, 2014, MULTIMED TOOLS APPL, V71, P699, DOI 10.1007/s11042-013-1526-5
Zeng T, 2020, SCIENTOMETRICS, V124, P399, DOI 10.1007/s11192-020-03421-9
Zhang Y, 2021, LECT NOTES COMPUT SC, V13081, P363, DOI 10.1007/978-3-030-91560-5_26
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 46
TC 8
Z9 8
U1 4
U2 39
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2022
VL 127
IS 11
BP 6471
EP 6499
DI 10.1007/s11192-022-04530-3
EA OCT 2022
PG 29
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 5U5FU
UT WOS:000870916600001
DA 2024-09-05
ER
PT J
AU Yan, YY
Fan, GX
Liao, X
Zhao, XD
AF Yan, Yangye
Fan, Guoxin
Liao, Xiang
Zhao, Xudong
TI Research trends and hotspots on connectomes from 2005 to 2021: A
bibliometric and latent Dirichlet allocation application study
SO FRONTIERS IN NEUROSCIENCE
LA English
DT Article
DE connectome; bibliometric; latent Dirichlet allocation; Web of Science;
neuroscience
ID FUNCTIONAL CONNECTIVITY; GRAPH-THEORY; RICH-CLUB; BRAIN; NETWORKS;
SCIENCE; PROMISE; STROKE
AB BackgroundThis study aimed to conduct a bibliometric analysis of publications on connectomes and illustrate its trends and hotspots using a machine-learning-based text mining algorithm. MethodsDocuments were retrieved from the Web of Science Core Collection (WoSCC) and Scopus databases and analyzed in Rstudio 1.3.1. Through quantitative and qualitative methods, the most productive and impactful academic journals in the field of connectomes were compared in terms of the total number of publications and h-index over time. Meanwhile, the countries/regions and institutions involved in connectome research were compared, as well as their scientific collaboration. The study analyzed topics and research trends by R package "bibliometrix." The major topics of connectomes were classified by Latent Dirichlet allocation (LDA). ResultsA total of 14,140 publications were included in the study. NEUROIMAGE ranked first in terms of publication volume (1,427 articles) and impact factor (h-index:122) among all the relevant journals. The majority of articles were published by developed countries, with the United States having the most. Harvard Medical School and the University of Pennsylvania were the two most productive institutions. Neuroimaging analysis technology and brain functions and diseases were the two major topics of connectome research. The application of machine learning, deep learning, and graph theory analysis in connectome research has become the current trend, while an increasing number of studies were concentrating on dynamic functional connectivity. Meanwhile, researchers have begun investigating alcohol use disorders and migraine in terms of brain connectivity in the past 2 years. ConclusionThis study illustrates a comprehensive overview of connectome research and provides researchers with critical information for understanding the recent trends and hotspots of connectomes.
C1 [Yan, Yangye] Tongji Univ, Sch Med, Shanghai Eastern Hosp, Shanghai, Peoples R China.
[Fan, Guoxin; Liao, Xiang] Huazhong Univ Sci & Technol, Union Shenzhen Hosp, Dept Pain Med, Shenzhen, Peoples R China.
[Fan, Guoxin; Liao, Xiang] Shenzhen Univ, Sch Biomed Engn, Sch Med, Guangdong Key Lab Biomed Measurements & Ultrasound, Shenzhen, Peoples R China.
[Fan, Guoxin] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Spine Surg, Guangzhou, Peoples R China.
[Zhao, Xudong] Tongji Univ, Chinese German Inst Mental Hlth, Clin Res Ctr Mental Disorders, Shanghai Pudong New Area Mental Hlth Ctr,Sch Med, Shanghai, Peoples R China.
C3 Tongji University; Huazhong University of Science & Technology; Shenzhen
University; Sun Yat Sen University; Tongji University
RP Liao, X (corresponding author), Huazhong Univ Sci & Technol, Union Shenzhen Hosp, Dept Pain Med, Shenzhen, Peoples R China.; Liao, X (corresponding author), Shenzhen Univ, Sch Biomed Engn, Sch Med, Guangdong Key Lab Biomed Measurements & Ultrasound, Shenzhen, Peoples R China.; Zhao, XD (corresponding author), Tongji Univ, Chinese German Inst Mental Hlth, Clin Res Ctr Mental Disorders, Shanghai Pudong New Area Mental Hlth Ctr,Sch Med, Shanghai, Peoples R China.
EM digitalxiang@163.com; zhaoxd@tongji.edu.cn
FU Outstanding Clinical Discipline Project of Shanghai Pudong; Guangdong
Basic and Applied Basic Research Foundation; National Natural Science
Foundation of China; [PWYgy2021-02]; [2019A1515111171]; [82102640]
FX Funding This work was supported by the Outstanding Clinical Discipline
Project of Shanghai Pudong (Grant No.: PWYgy2021-02), Guangdong Basic
and Applied Basic Research Foundation (2019A1515111171), and the
National Natural Science Foundation of China (82102640). The funders
played no part in the study design, data collection, analysis,
interpretation, writing, or the decision to submit the manuscript for
publication.
CR African Union, 2020, DIGITAL TRANSFORMATI, DOI DOI 10.18356/7F55A58E-EN
Aggarwal A, 2021, MINERVA MED, V112, P631, DOI 10.23736/S0026-4806.21.07489-9
Andersson JLR, 2016, NEUROIMAGE, V125, P1063, DOI 10.1016/j.neuroimage.2015.10.019
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Tran BX, 2019, J MED INTERNET RES, V21, DOI 10.2196/15511
Barron DS, 2021, CEREB CORTEX, V31, P2523, DOI 10.1093/cercor/bhaa371
Bernhardt BC, 2019, NEUROLOGY, V92, pE2209, DOI 10.1212/WNL.0000000000007447
Biswal BB, 2010, P NATL ACAD SCI USA, V107, P4734, DOI 10.1073/pnas.0911855107
Burke MJ, 2020, BRAIN, V143, P541, DOI 10.1093/brain/awz405
Coppola G, 2020, J NEUROL, V267, P185, DOI 10.1007/s00415-019-09571-y
delEtoile J, 2017, NEUROSCIENTIST, V23, P616, DOI 10.1177/1073858417702621
Devezas MAM, 2021, J NEUROIMAGING, DOI 10.1111/jon.12877
Dick AS, 2014, NEUROSCIENTIST, V20, P453, DOI 10.1177/1073858413513502
Ding HR, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.689802
Dong DB, 2018, SCHIZOPHRENIA BULL, V44, P168, DOI 10.1093/schbul/sbx034
Elton A, 2021, NEUROIMAGE-CLIN, V32, DOI 10.1016/j.nicl.2021.102801
Farahani FV, 2019, FRONT NEUROSCI-SWITZ, V13, DOI 10.3389/fnins.2019.00585
Fornito A, 2013, NEUROIMAGE, V80, P426, DOI 10.1016/j.neuroimage.2013.04.087
Gerchen MF, 2021, HUM BRAIN MAPP, V42, P36, DOI 10.1002/hbm.25201
Glasser MF, 2016, NATURE, V536, P171, DOI 10.1038/nature18933
Glasser MF, 2013, NEUROIMAGE, V80, P105, DOI 10.1016/j.neuroimage.2013.04.127
Gong B, 2019, J NEUROIMAGING, V29, P14, DOI 10.1111/jon.12570
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Guler AT, 2016, SCIENTOMETRICS, V107, P385, DOI 10.1007/s11192-016-1885-6
He Y, 2007, CEREB CORTEX, V17, P2407, DOI 10.1093/cercor/bhl149
Horn A, 2017, ANN NEUROL, V82, P67, DOI 10.1002/ana.24974
Hutchison RM, 2013, NEUROIMAGE, V80, P360, DOI 10.1016/j.neuroimage.2013.05.079
Kaestner E, 2020, NEUROIMAGE-CLIN, V25, DOI 10.1016/j.nicl.2019.102125
Koch PJ, 2021, BRAIN, V144, P2107, DOI 10.1093/brain/awab082
Krismer F, 2021, NAT REV NEUROL, V17, P527, DOI 10.1038/s41582-021-00543-3
Lichtman JW, 2008, CURR OPIN NEUROBIOL, V18, P346, DOI 10.1016/j.conb.2008.08.010
Lynall ME, 2010, J NEUROSCI, V30, P9477, DOI 10.1523/JNEUROSCI.0333-10.2010
Malagurski B, 2020, HUM BRAIN MAPP, V41, P4829, DOI 10.1002/hbm.25161
Malekpour MR, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0258064
Mill RD, 2017, NEUROIMAGE, V160, P124, DOI 10.1016/j.neuroimage.2017.01.060
Moguilner S, 2021, NEUROIMAGE, V225, DOI 10.1016/j.neuroimage.2020.117522
Neher PF, 2017, NEUROIMAGE, V158, P417, DOI 10.1016/j.neuroimage.2017.07.028
Oh SW, 2014, NATURE, V508, P207, DOI 10.1038/nature13186
Ousdal OT, 2020, HUM BRAIN MAPP, V41, P697, DOI 10.1002/hbm.24833
Sadaghiani S, 2020, NETW NEUROSCI, V4, P1, DOI 10.1162/netn_a_00114
Schwarz C, 2018, STATA J, V18, P101, DOI 10.1177/1536867X1801800107
Seung HS, 2009, NEURON, V62, P17, DOI 10.1016/j.neuron.2009.03.020
Shatte ABR, 2019, PSYCHOL MED, V49, P1426, DOI 10.1017/S0033291719000151
Silasi G, 2014, NEURON, V83, P1354, DOI 10.1016/j.neuron.2014.08.052
Sporns O, 2005, PLOS COMPUT BIOL, V1, P245, DOI 10.1371/journal.pcbi.0010042
Sporns O, 2018, DIALOGUES CLIN NEURO, V20, P111
Sporns O, 2016, ANNU REV PSYCHOL, V67, P613, DOI 10.1146/annurev-psych-122414-033634
Sporns O, 2013, NEUROIMAGE, V80, P53, DOI 10.1016/j.neuroimage.2013.03.023
Taylor SR, 2021, CELL, V184, P4329, DOI 10.1016/j.cell.2021.06.023
Thompson PM, 2013, NEUROIMAGE, V80, P475, DOI 10.1016/j.neuroimage.2013.05.013
Towlson EK, 2013, J NEUROSCI, V33, P6380, DOI 10.1523/JNEUROSCI.3784-12.2013
van den Heuvel MP, 2019, NAT REV NEUROSCI, V20, P435, DOI 10.1038/s41583-019-0177-6
van den Heuvel MP, 2011, J NEUROSCI, V31, P15775, DOI 10.1523/JNEUROSCI.3539-11.2011
Van Dijk KRA, 2012, NEUROIMAGE, V59, P431, DOI 10.1016/j.neuroimage.2011.07.044
Van Essen DC, 2013, NEUROIMAGE, V80, P62, DOI 10.1016/j.neuroimage.2013.05.041
Wang XQ, 2020, MOL NEURODEGENER, V15, DOI 10.1186/s13024-020-00395-3
Xia MR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068910
Yan CG, 2013, NEUROIMAGE, V80, P246, DOI 10.1016/j.neuroimage.2013.04.081
Yan CG, 2013, NEUROIMAGE, V76, P183, DOI 10.1016/j.neuroimage.2013.03.004
Yan WW, 2020, NEUROIMAGE, V220, DOI 10.1016/j.neuroimage.2020.117121
Yu MC, 2021, NAT REV NEUROL, V17, P545, DOI 10.1038/s41582-021-00529-1
Yun JY, 2021, PROG NEURO-PSYCHOPH, V111, DOI 10.1016/j.pnpbp.2021.110401
Zhang ZY, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.687904
NR 63
TC 1
Z9 1
U1 4
U2 12
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 1662-453X
J9 FRONT NEUROSCI-SWITZ
JI Front. Neurosci.
PD DEC 22
PY 2022
VL 16
AR 1046562
DI 10.3389/fnins.2022.1046562
PG 12
WC Neurosciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Neurosciences & Neurology
GA 7N7PG
UT WOS:000907527100001
PM 36620450
OA Green Published, gold, Green Submitted
DA 2024-09-05
ER
PT C
AU Viloria, A
Lis-Gutiérrez, JP
Gaitán-Angulo, M
Stanescu, CLV
Crissien, T
AF Viloria, Amelec
Paola Lis-Gutierrez, Jenny
Gaitan-Angulo, Mercedes
Vasquez Stanescu, Carmen Luisa
Crissien, Tito
BE Rocha, A
Reis, JL
Peter, MK
Bogdanovic, Z
TI Machine Learning Applied to the H Index of Colombian Authors with
Publications in Scopus
SO MARKETING AND SMART TECHNOLOGIES, ICMARKTECH 2019
SE Smart Innovation Systems and Technologies
LA English
DT Proceedings Paper
CT International Conference on Marketing and Technologies (ICMarkTech)
CY NOV 27-29, 2019
CL Porto, PORTUGAL
AB Our research aims to establish how to predict the H index of Colombian authors with publications in Scopus until 2016. The selection of the date was because, as mentioned earlier, the number of documents indexed per year exceeded 10,000 and they obtained the highest number of documents cited. To accomplish this purpose, a quantitative, nonexperimental, cross-sectional, descriptive, explanatory, and predictive research was designed using supervised learning algorithms. These were applied to information from 8,840 Colombian authors. Among the findings we can highlight that: (i) Colombia is in the fifth position in the scope of countries of South America and the Caribbean, in terms of the number of products and citations; (ii) the largest number of Colombian authors with products in Scopus until 2016, belonged mainly to the area of natural sciences, followed by medical sciences and health; (iii) most of the Colombian authors were men (64.2%, or 5,442) and they have higher H index rates than women; (iv) using random cross validation for 10 iterations, the methods with the best predictive value using R2 and the minimization of mean absolute error (MAE) correspond to: AdaBoost (96.6% and 0.397, respectively); Random Forest (96.8% and 0.431, respectively); KNN (94.4% and 0.525, respectively); Tree (94.9% and 0.53, respectively); and Neural Network (93.3% and 0.7, respectively); and (v) the variables that help predict the H index in the case of the Colombian authors, in addition to the citations, correspond to: the quantity of products, number of products in Q1, and international collaboration.
C1 [Viloria, Amelec; Crissien, Tito] Univ Costa, Barranquilla, Colombia.
[Paola Lis-Gutierrez, Jenny] Corp Univ Meta, Villavicencio, Colombia.
[Paola Lis-Gutierrez, Jenny] Univ Nacl Colombia, Bogota, Colombia.
[Gaitan-Angulo, Mercedes] Corp Univ Salamanca, Barranquilla, Colombia.
[Vasquez Stanescu, Carmen Luisa] Univ Nacl Expt Politecn Antonio Jose de Sucre, Barquisimeto, Venezuela.
C3 Universidad de la Costa; Universidad Nacional de Colombia
RP Viloria, A (corresponding author), Univ Costa, Barranquilla, Colombia.
EM aviloria@cuc.edu.co; jenny.lis@unimeta.edu.co; m_gaitan689@cues.edu.co;
cvasquez@unexpo.edu.ve; rectoria@cuc.edu.co
RI Gaitán-Angulo, Mercedes/U-3365-2019
OI Gaitán-Angulo, Mercedes/0000-0002-8248-8788; Lis-Gutierrez,
Jenny-Paola/0000-0002-1438-7619; Vasquez Stanescu, Carmen
Luisa/0000-0002-0657-3470
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Alarcón-Quinapanta Mónica del Rocío, 2019, Ing. Ind., P24
[Anonymous], 2017, HCI 17 P 31 BRIT COM
[Anonymous], 2020, SJR - SCImago Journal Country Rank [Portal]
Belhi A., 2018, QATAR FDN ANN RES C, V2018
Charalambous G, 2017, 2017 INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP)
Csomós G, 2018, J INFORMETR, V12, P547, DOI 10.1016/j.joi.2018.05.003
de Sousa WG, 2019, GOV INFORM Q, V36, DOI 10.1016/j.giq.2019.07.004
Demsar J, 2013, INFORM-J COMPUT INFO, V37, P55
Demsar J, 2013, J MACH LEARN RES, V14, P2349
Fast NJ, 2020, CURR OPIN PSYCHOL, V33, P172, DOI 10.1016/j.copsyc.2019.07.039
Ibáñez A, 2014, NEUROCOMPUTING, V135, P42, DOI 10.1016/j.neucom.2013.08.042
Kilicoglu H, 2019, J BIOMED INFORM, V91, DOI 10.1016/j.jbi.2019.103123
Owens T, 2018, ACM-IEEE J CONF DIG, P1, DOI 10.1145/3197026.3197027
Pretnar A., 2019, MYSTERY TEST SCORE
Rosales R, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8030446
Torres-Samuel Maritza, 2018, Data Mining and Big Data. Third International Conference, DMBD 2018. Proceedings: LNCS 10943, P235, DOI 10.1007/978-3-319-93803-5_22
Torres-Samuel M., 2018, DATA MINING BIG DATA, V10943
Wuestman ML, 2019, RES POLICY, V48, P1771, DOI 10.1016/j.respol.2019.04.004
NR 19
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 2190-3018
EI 2190-3026
BN 978-981-15-1564-4; 978-981-15-1563-7
J9 SMART INNOV SYST TEC
PY 2020
VL 167
BP 388
EP 397
DI 10.1007/978-981-15-1564-4_36
PG 10
WC Business; Computer Science, Artificial Intelligence
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics; Computer Science
GA BT4QS
UT WOS:000833547500036
DA 2024-09-05
ER
PT J
AU Venkatesan, VK
Ramakrishna, MT
Batyuk, A
Barna, A
Havrysh, B
AF Venkatesan, Vinoth Kumar
Ramakrishna, Mahesh Thyluru
Batyuk, Anatoliy
Barna, Andrii
Havrysh, Bohdana
TI High-Performance Artificial Intelligence Recommendation of Quality
Research Papers Using Effective Collaborative Approach
SO SYSTEMS
LA English
DT Article
DE recommender system; quality; artificial intelligence; publications;
research paper; collaborative approach; accuracy; precision; recall
AB The Artificial Intelligence Recommender System has emerged as a significant research interest. It aims at helping users find things online by offering recommendations that closely fit their interests. Recommenders for research papers have appeared over the last decade to make it easier to find publications associated with the field of researchers' interests. However, due to several issues, such as copyright constraints, these methodologies assume that the recommended articles' contents are entirely openly accessible, which is not necessarily the case. This work demonstrates an efficient model, known as RPRSCA: Research Paper Recommendation System Using Effective Collaborative Approach, to address these uncertain systems for the recommendation of quality research papers. We make use of contextual metadata that are publicly available to gather hidden relationships between research papers in order to personalize recommendations by exploiting the advantages of collaborative filtering. The proposed system, RPRSCA, is unique and gives personalized recommendations irrespective of the research subject. Thus, a novel collaborative approach is proposed that provides better performance. Using a publicly available dataset, we found that our proposed method outperformed previous uncertain methods in terms of overall performance and the capacity to return relevant, valuable, and quality publications at the top of the recommendation list. Furthermore, our proposed strategy includes personalized suggestions and customer expertise, in addition to addressing multi-disciplinary concerns.
C1 [Venkatesan, Vinoth Kumar] VIT Univ, Sch Informat Technol & Engn, Vellore 632014, Tamil Nadu, India.
[Ramakrishna, Mahesh Thyluru] JAIN, Fac Engn & Technol, Dept Comp Sci & Engn, Bangalore 562112, Karnataka, India.
[Batyuk, Anatoliy] Lviv Polytech Natl Univ, Dept Automated Control Syst, UA-79013 Lvov, Ukraine.
[Barna, Andrii] Lviv Polytech Natl Univ, Dept Artificial Intelligence, UA-79013 Lvov, Ukraine.
[Havrysh, Bohdana] Lviv Polytech Natl Univ, Dept Publishing Informat Technol, UA-79013 Lvov, Ukraine.
C3 Vellore Institute of Technology (VIT); VIT Vellore; Jain University;
Ministry of Education & Science of Ukraine; Lviv Polytechnic National
University; Ministry of Education & Science of Ukraine; Lviv Polytechnic
National University; Ministry of Education & Science of Ukraine; Lviv
Polytechnic National University
RP Ramakrishna, MT (corresponding author), JAIN, Fac Engn & Technol, Dept Comp Sci & Engn, Bangalore 562112, Karnataka, India.
EM t.mahesh@jainuniversity.ac.in
RI Batyuk, Anatoliy Ye./S-4988-2017; Havrysh, Bohdana/W-5413-2018
OI Batyuk, Anatoliy Ye./0000-0001-7650-7383; TR,
MAHESH/0000-0002-5589-8992; Havrysh, Bohdana/0000-0003-3213-9747
CR Beel J, 2013, ACM-IEEE J CONF DIG, P459
Beltagy Iz, 2019, arXiv
Devarajan D, 2022, IEEE ACCESS, V10, P126957, DOI 10.1109/ACCESS.2022.3221451
Ghosh P., 2017, P 2016 INT C ICT BUS, P1, DOI [10.1109/ICTBIG.2016.7892668, DOI 10.1109/ICTBIG.2016.7892668]
Haruna K., 2016, INT J SOFT COMPUTING, V11, P96
Haruna K, 2018, LECT NOTES COMPUT SC, V10960, P514, DOI 10.1007/978-3-319-95162-1_35
Haruna K, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0184516
Indraneel A., 2021, LECT NOTES DATA ENG, V725, P735, DOI [10.1007/978-981-15-9509-7_59, DOI 10.1007/978-981-15-9509-7_59]
Kim J, 2019, INFORM SCIENCES, V470, P141, DOI 10.1016/j.ins.2018.08.046
Li LH, 2021, SCI PROGRAMMING-NETH, V2021, DOI 10.1155/2021/7427409
Liu HF, 2015, IEEE ACCESS, V3, P1695, DOI 10.1109/ACCESS.2015.2481320
Mahesh TR, 2022, J SENSORS, V2022, DOI 10.1155/2022/4649510
Mahesh TR, 2024, INT J SYST ASSUR ENG, V15, P188, DOI 10.1007/s13198-022-01696-0
McNee SM, 2002, P 2002 ACM C COMP SU, P116, DOI DOI 10.1145/587078.587096
Nascimento C., 2011, Proceeding of the 11th annual international ACMIEEE Joint Conference on Digital libraries, P297, DOI DOI 10.1145/1998076.1998132
Osman NA, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0248695
Pawlicka A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21155248
Ramakrishna MT, 2023, ENTROPY-SWITZ, V25, DOI 10.3390/e25020245
Richa, 2021, APPL ARTIF INTELL, V35, P326, DOI 10.1080/08839514.2021.1881297
Roopashree S, 2022, MEASUREMENT, V200, DOI 10.1016/j.measurement.2022.111484
Sakib N, 2020, IEEE ACCESS, V8, P51246, DOI 10.1109/ACCESS.2020.2980589
Sanh Victor, 2019, arXiv
Shao BL, 2021, EXPERT SYST APPL, V165, DOI 10.1016/j.eswa.2020.113764
Singh Pradeep Kumar, 2021, International Journal of Business and Systems Research, V15, P14, DOI 10.1504/IJBSR.2021.111753
Sugiyama K, 2015, INT J DIGIT LIBRARIE, V16, P91, DOI 10.1007/s00799-014-0122-2
Thomas Binu, 2021, IOP Conference Series: Materials Science and Engineering, V1085, DOI 10.1088/1757-899X/1085/1/012011
Vivek V., 2022, BIG DATA MANAGEMENT, P61
Wu S, 2019, AAAI CONF ARTIF INTE, P346
NR 28
TC 4
Z9 4
U1 2
U2 16
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2079-8954
J9 SYSTEMS-BASEL
JI Systems-Basel
PD FEB
PY 2023
VL 11
IS 2
AR 81
DI 10.3390/systems11020081
PG 14
WC Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Social Sciences - Other Topics
GA 9L2OA
UT WOS:000941392700001
OA gold
DA 2024-09-05
ER
PT J
AU Ma, HZ
Zhang, QJ
AF Ma, Huizhu
Zhang, Qiuju
TI Research on cultural-based multi-objective particle swarm optimization
in image compression quality assessment
SO OPTIK
LA English
DT Article
DE Image compression; Multi-objective optimization; Cultural algorithms;
Particle swarm optimization
AB Quantization is a main factor which affects the performance of the JPEG compression. Compression ratio and the quality of the decoded images are both determined by quantization tables. Appropriate choice of the quantization tables is the key to the Compression performance. To select different optimal quantization tables for different classes of images is multi-objective optimal problem. A cultural-based multi-objective particle swarm optimization model is proposed in this paper. And, different trade-offs between image compression and quality is presented. The simulation result shows that the proposed model is effective to the choice of image compression quality. (C) 2012 Elsevier GmbH. All rights reserved.
C1 [Ma, Huizhu; Zhang, Qiuju] Harbin Engn Univ, Informat & Commun Engn Coll, Harbin 150001, Peoples R China.
C3 Harbin Engineering University
RP Zhang, QJ (corresponding author), Harbin Engn Univ, Informat & Commun Engn Coll, Harbin 150001, Peoples R China.
EM mahuizhu@hrbeu.edu.cn; zhangqiuju_hrbeu@yahoo.com.cn
RI zhang, qiu/GXG-5600-2022
FU Fundamental Research Funds for the Central Universities
FX This work was supported by the Fundamental Research Funds for the
Central Universities.
CR [Anonymous], 2010 IEEE C EV COMP
Coello CAC, 2003, PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), P6, DOI 10.1109/SIS.2003.1202240
Daneshyari M, 2011, IEEE T SYST MAN CY B, V41, P553, DOI 10.1109/TSMCB.2010.2068046
Daneshyari M, 2008, IEEE C EVOL COMPUTAT, P1325, DOI 10.1109/CEC.2008.4630967
Gu Wei, 2010, POWER ENERGY ENG C A, P1
Lazzerini B, 2010, APPL SOFT COMPUT, V10, P548, DOI 10.1016/j.asoc.2009.08.024
NR 6
TC 9
Z9 12
U1 0
U2 5
PU ELSEVIER GMBH
PI MUNICH
PA HACKERBRUCKE 6, 80335 MUNICH, GERMANY
SN 0030-4026
EI 1618-1336
J9 OPTIK
JI Optik
PY 2013
VL 124
IS 10
BP 957
EP 961
DI 10.1016/j.ijleo.2012.02.041
PG 5
WC Optics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Optics
GA 154XV
UT WOS:000319710900020
DA 2024-09-05
ER
PT J
AU Antons, D
Joshi, AM
Salge, TO
AF Antons, David
Joshi, Amol M.
Salge, Torsten Oliver
TI Content, Contribution, and Knowledge Consumption: Uncovering Hidden
Topic Structure and Rhetorical Signals in Scientific Texts
SO JOURNAL OF MANAGEMENT
LA English
DT Article
DE scientific impact; management research; citation analysis; text mining;
latent Dirichlet allocation
ID STRATEGIC MANAGEMENT RESEARCH; INTELLECTUAL STRUCTURE; CO-AUTHORSHIP;
LANGUAGE USE; WORDS; CITATIONS; JOURNALS; ARTICLE; SCIENCE; IMPACT
AB Knowledge production and scientific discourse are observable in published scholarly texts. Citations capture knowledge consumption and impact. Drawing from the sociology of science, our theoretical framework posits scientific communities as thought collectives with distinctive thought styles that embed a hidden topic structure and rhetorical signals into a journal's published articles. We hypothesize and uncover how an article's topic attributes (structure, focus, and newness) and rhetorical attributes (inclusiveness, exclusiveness, tentativeness, and certainty) are related to future knowledge consumption. We empirically test our ideas by applying text mining algorithms to model topics and extract rhetorical signals from 1,646 strategy articles composed of nearly 18 million words generating 172,237 citations over 35 years. We find that strategy articles' hidden topic structure explains 14% of variance in scientific impact. We also show that topic focus and topic newness each independently, directly, and significantly increase impact. As for newness, the first two articles published on a new topic each generate a citation premium >100%, which is higher within the focal thought collective than outside. Importantly, we find that the citation premium of newness increases with greater topic focus (which attracts attention) and greater inflow of prior intracollective knowledge (which enhances absorption). Impact also increases when authors present new topics using a rhetorical style that is more tentative than certain. Overall, our findings demonstrate that topic and rhetorical attributes, as constitutive elements of scientific content, are independently and interdependently related to the consumption of strategy articles across thought collectives in management research.
C1 [Antons, David; Salge, Torsten Oliver] Rhein Westfal TH Aachen, Aachen, Germany.
[Joshi, Amol M.] Oregon State Univ, Corvallis, OR 97331 USA.
C3 RWTH Aachen University; Oregon State University
RP Joshi, AM (corresponding author), Oregon State Univ, Coll Business, 443 Austin Hall, Corvallis, OR 97331 USA.
EM amol.joshi@oregonstate.edu
RI Joshi, Amol M/C-8433-2013; Joshi, Amol/JBQ-4510-2023
OI Joshi, Amol M/0000-0002-3023-6749;
CR Abe JAA, 2011, J LANG SOC PSYCHOL, V30, P212, DOI 10.1177/0261927X10397152
Acedo FJ, 2006, J MANAGE STUD, V43, P957, DOI 10.1111/j.1467-6486.2006.00625.x
Alvesson M, 2011, ACAD MANAGE REV, V36, P247, DOI 10.5465/AMR.2011.59330882
Antons D., 2018, J SERVICE RES
Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300
Astley W.G., 1985, ADMIN SCI QUART, V30, P497, DOI [10.2307/2392694, DOI 10.2307/2392694]
ASTLEY WG, 1992, ORGAN SCI, V3, P443, DOI 10.1287/orsc.3.4.443
Baldi S, 1998, AM SOCIOL REV, V63, P829, DOI 10.2307/2657504
Bao Y, 2014, MANAGE SCI, V60, P1371, DOI 10.1287/mnsc.2014.1930
Barrett M, 2004, INFORMATION SYSTEMS RESEARCH: RELEVANT THEORY AND INFORMED PRACTICE, P293
Bednar MK, 2012, ACAD MANAGE J, V55, P131, DOI 10.5465/amj.2009.0862
Bergh DD, 2006, STRATEGIC MANAGE J, V27, P81, DOI 10.1002/smj.504
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boyd BK, 2005, STRATEGIC MANAGE J, V26, P239, DOI 10.1002/smj.444
Boyd Ryan L, 2015, Tech. Rep.
Colquitt JA, 2007, ACAD MANAGE J, V50, P1281, DOI 10.5465/AMJ.2007.28165855
Corley PC, 2014, LAW SOC REV, V48, P35, DOI 10.1111/lasr.12058
Davis GF, 2015, ADMIN SCI QUART, V60, P179, DOI 10.1177/0001839215585725
Dawson JF, 2014, J BUS PSYCHOL, V29, P1, DOI 10.1007/s10869-013-9308-7
Fagan MB, 2009, STUD HIST PHI PART C, V40, P272, DOI 10.1016/j.shpsc.2009.09.005
Fleck Ludwik., 2012, GENESIS DEV SCI FACT
Galunic DC, 1998, STRATEGIC MANAGE J, V19, P1193, DOI 10.1002/(SICI)1097-0266(1998120)19:12<1193::AID-SMJ5>3.3.CO;2-6
Gamache DL, 2015, ACAD MANAGE J, V58, P1261, DOI 10.5465/amj.2013.0377
Gieryn T. F., 1995, BOUNDARIES SCI SCI Q
Goldstone A, 2014, NEW LITERARY HIST, V45, P359, DOI 10.1353/nlh.2014.0025
Graesser AC, 2004, BEHAV RES METH INS C, V36, P193, DOI 10.3758/BF03195564
Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028
HARWOOD J, 1986, SOC STUD SCI, V16, P173, DOI 10.1177/030631286016001009
He ZL, 2004, ORGAN SCI, V15, P481, DOI 10.1287/orsc.1040.0078
HIRSCHMAN AO, 1964, AM ECON REV, V54, P761
Huff A.S., 2009, DESIGNING RES PUBLIC
Hyland K, 1996, APPL LINGUIST, V17, P433, DOI 10.1093/applin/17.4.433
Joekers ML, 2013, POETICS, V41, P750, DOI 10.1016/j.poetic.2013.08.005
Johnson MS., 2003, MARKETING THEORY, V3, P477
Joksimovic S, 2014, INTERNET HIGH EDUC, V22, P1, DOI 10.1016/j.iheduc.2014.03.001
Judge TA, 2007, ACAD MANAGE J, V50, P491
Kane GC, 2016, ORGAN SCI, V27, P1258, DOI 10.1287/orsc.2016.1075
Kaplan A., 1964, The conduct of inquiry
KAPLAN N, 1965, AM DOC, V16, P179, DOI 10.1002/asi.5090160305
Kaplan S, 2015, STRATEGIC MANAGE J, V36, P1435, DOI 10.1002/smj.2294
King DA, 2004, NATURE, V430, P311, DOI 10.1038/430311a
Lafferty J.D, 2009, Topic Models, P71, DOI [10.1145/1143844.1143859, DOI 10.1145/1143844.1143859]
Latour B., 2005, REASSEMBLING SOCIAL
Laudun J, 2013, J AM FOLKLORE, V126, P455, DOI 10.5406/jamerfolk.126.502.0455
LEYDESDORFF L, 1989, RES POLICY, V18, P209, DOI 10.1016/0048-7333(89)90016-4
Li EY, 2013, RES POLICY, V42, P1515, DOI 10.1016/j.respol.2013.06.012
Locke K, 1997, ACAD MANAGE J, V40, P1023, DOI 10.5465/256926
Long RG, 1998, ACAD MANAGE J, V41, P704, DOI 10.5465/256966
Lowy Ilana., 1998, Sociology of Health Illness, V10, P133
Mann W, 1988, Text, V8, P243, DOI DOI 10.1515/TEXT.1.1988.8.3.243
Mckinley W, 1999, ACAD MANAGE REV, V24, P634
McKinley William., 1993, Journal of Management Inquiry, V2, P284
Mercer RE, 2003, LECT NOTES ARTIF INT, V2671, P550
Mingers J, 2010, EUR J OPER RES, V205, P422, DOI 10.1016/j.ejor.2009.12.008
Mössner N, 2011, STUD HIST PHILOS SCI, V42, P362, DOI 10.1016/j.shpsa.2010.12.002
Murray Tom, 2013, Artificial Intelligence in Education. Proceedings of 16th International Conference (AIED 2013): LNCS 7926, P811, DOI 10.1007/978-3-642-39112-5_119
Nadkarni S, 2014, ACAD MANAGE J, V57, P1810, DOI 10.5465/amj.2011.0401
Nerkar A, 2013, TECH INNOVATION ENTR, V13, P165, DOI 10.1108/S1479-067X(2013)0000013009
Nerur S, 2016, STRATEGIC MANAGE J, V37, P1065, DOI 10.1002/smj.2377
Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659
O'Connor B., 2011, public health, V41, P43
Park SH, 1996, STRATEGIC MANAGE J, V17, P109, DOI 10.1002/(SICI)1097-0266(199602)17:2<109::AID-SMJ796>3.3.CO;2-G
Peine A, 2011, MINERVA, V49, P489, DOI 10.1007/s11024-011-9180-4
Pennebaker J. W., 2015, PENNEBAKER CONGLOMER
Pennebaker JW, 1999, J PERS SOC PSYCHOL, V77, P1296, DOI 10.1037/0022-3514.77.6.1296
Phelan SE, 2002, STRATEGIC MANAGE J, V23, P1161, DOI 10.1002/smj.268
Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533
Podsakoff PM, 2005, STRATEGIC MANAGE J, V26, P473, DOI 10.1002/smj.454
Price SM, 2012, J BANK FINANC, V36, P992, DOI 10.1016/j.jbankfin.2011.10.013
Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105
Rafols I, 2012, RES POLICY, V41, P1262, DOI 10.1016/j.respol.2012.03.015
Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397
SCHNELLE T, 1981, THEOR SOC, V10, P733
SCHNURR PP, 1992, J PERS ASSESS, V58, P311, DOI 10.1207/s15327752jpa5802_10
Shafique M, 2013, STRATEGIC MANAGE J, V34, P62, DOI 10.1002/smj.2002
Short JC, 2010, ORGAN RES METHODS, V13, P320, DOI 10.1177/1094428109335949
Slavova K, 2016, ORGAN SCI, V27, P72, DOI 10.1287/orsc.2015.1026
Smith E A, 1967, AMRL TR, P1
Starbuck WH, 2005, ORGAN SCI, V16, P180, DOI 10.1287/orsc.1040.0107
Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171
Taboada M, 2006, J PRAGMATICS, V38, P567, DOI 10.1016/j.pragma.2005.09.010
Tahai A, 1999, STRATEGIC MANAGE J, V20, P279
Tausczik YR, 2010, J LANG SOC PSYCHOL, V29, P24, DOI 10.1177/0261927X09351676
THOMAS CB, 1985, PSYCHOSOM MED, V47, P201, DOI 10.1097/00006842-198503000-00012
Trieschmann JS, 2000, ACAD MANAGE J, V43, P1130, DOI 10.5465/1556341
Uotila J, 2009, STRATEGIC MANAGE J, V30, P221, DOI 10.1002/smj.738
Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474
VINKLER P, 1994, SCIENTOMETRICS, V30, P495, DOI 10.1007/BF02018130
Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006
Wang X, 2015, J CONSUM RES, V42, P5, DOI 10.1093/jcr/ucv009
Weick K. E., 1995, PUBLISHING ORG SCI, P284
WEICK KE, 1993, ADMIN SCI QUART, V38, P357, DOI 10.2307/2393372
WHETTEN DA, 1989, ACAD MANAGE REV, V14, P490, DOI 10.2307/258554
Whissell C, 1999, PERCEPT MOTOR SKILL, V88, P76, DOI 10.2466/PMS.88.1.76-86
Zavyalova A, 2012, ACAD MANAGE J, V55, P1079, DOI 10.5465/amj.2010.0608
NR 96
TC 39
Z9 40
U1 6
U2 89
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0149-2063
EI 1557-1211
J9 J MANAGE
JI J. Manag.
PD SEP
PY 2019
VL 45
IS 7
BP 3035
EP 3076
DI 10.1177/0149206318774619
PG 42
WC Business; Psychology, Applied; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics; Psychology
GA IR5QB
UT WOS:000481488500015
DA 2024-09-05
ER
PT C
AU Purwitasari, D
Ilmi, AB
Fatichah, C
Fauzi, WA
Sumpeno, S
Purnomo, MH
AF Purwitasari, Diana
Ilmi, Akhmad Bakhrul
Fatichah, Chastine
Fauzi, Willy Achmat
Sumpeno, Surya
Purnomo, Mauridhi Hery
GP IEEE
TI Conflict of Interest based Features for Expert Classification in
Bibliographic Network
SO 2018 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, NETWORK AND
INTELLIGENT MULTIMEDIA (CENIM)
LA English
DT Proceedings Paper
CT Joint International Conference on Computer Engineering, Network and
Intelligent Multimedia (CENIM) / 11th AUN/SEED-Net Regional Conference
on Computer and Information Engineering (RCCIE)
CY NOV 26-27, 2018
CL Surabaya, INDONESIA
DE expert classification; bibliographic data; citation analysis; conflict
of interest feature; word embedding; deep learning
AB Countless approaches of feature extraction in the expert classification problem employ text contents and network structures from bibliographic metadata of published articles. The content part often use title and abstract while the structure part utilize co-authorship and citation. On citation data, the classifier method works on a feature of citation quantity since a frequently cited author is presumed to have more expertise. Citation misconduct occurs if there is no subject relation between citing and cited articles. Therefore, the misconduct becomes a challenge for evaluation of citation quality. Here, the problem is to classify experts with features that can indicate citation misconduct. To address this problem, our contribution exploited the quality and the quantity of citations in feature extraction designed for classifying experts. Co-authorship that influence the misconducts is called as Conflict of Interest (CoI) situation. Accordingly, the class labels are experts with or without CoI indication. We proposed three ratio features of (1) self-citation to represent the citation quantity, then (2) subject similarity of author interests and article contents, as well as (3) subject similarity of citing and cited articles to determine the citation quality. There are various word phrases used in subjects with similar contexts. Therefore the proposed CoI-based features for the citation quality took on deep learning approaches for understanding natural language. Our experiments exercised a selection of data from one of the common datasets in bibliographic related problems called as AMiner. We selected +/- 15K articles from the original data of +/- 2M articles in the experiments. The results showed that our proposed features classified experts with CoI indication by accuracy value of +/- 60%. Although the first feature of citation quantity was not significant for categorizing experts, other features of citation quality confirmed more profound evidence.
C1 [Purwitasari, Diana] Inst Teknol Sepuluh Nopember, Fac Informat Technol, Dept Informat, Dept Elect Engn,Fac Elect Technol, Surabaya, Indonesia.
[Ilmi, Akhmad Bakhrul; Fatichah, Chastine] Kampus Inst Teknol Sepuluh Nopember ITS Sukolilo, Inst Teknol Sepuluh Nopember ITS, Fac Informat Technol, Dept Informat, Surabaya 60111, East Java, Indonesia.
[Fauzi, Willy Achmat] Inst Teknol Sepuluh Nopember, Dept Elect Engn, Fac Elect Technol, Surabaya, Indonesia.
[Sumpeno, Surya; Purnomo, Mauridhi Hery] Inst Teknol Sepuluh Nopember, Dept Elect Engn, Fac Elect Technol, Dept Comp Engn, Surabaya, Indonesia.
C3 Institut Teknologi Sepuluh Nopember; Institut Teknologi Sepuluh
Nopember; Institut Teknologi Sepuluh Nopember; Institut Teknologi
Sepuluh Nopember
RP Purwitasari, D (corresponding author), Inst Teknol Sepuluh Nopember, Fac Informat Technol, Dept Informat, Dept Elect Engn,Fac Elect Technol, Surabaya, Indonesia.
EM diana@if.its.ac.id; chastine@cs.its.ac.id; surya@ee.its.ac.id;
hery@ee.its.ac.id
RI Fatichah, Chastine/W-2402-2019; Setijadi, Eko/A-2128-2012; s,
surya/AER-2052-2022; Fauzi, Willy Achmat/GLN-6678-2022; Purwitasari,
Diana/X-3953-2019
OI Fatichah, Chastine/0000-0002-7348-9762; Fauzi, Willy
Achmat/0000-0002-2919-6575; Purwitasari, Diana/0000-0001-7000-7628;
Sumpeno, Surya/0000-0002-1744-1342
FU Indonesia Endowment Fund for Education, Indonesian called as Lembaga
Pengelola Dana Pendidikan, LPDP, under Indonesian Education Scholarship
for Master and Doctoral Programs of the LPDP Doctoral Scholarship
Programme fiscal year 2017-2020 [PRJ-4228/LPDP.3/2016]
FX This work was supported by the Indonesia Endowment Fund for Education,
or in Indonesian called as Lembaga Pengelola Dana Pendidikan, LPDP,
under Indonesian Education Scholarship for Master and Doctoral Programs
with the grant number PRJ-4228/LPDP.3/2016 of the LPDP Doctoral
Scholarship Programme fiscal year 2017-2020.
CR Alarfaj F., 2012, P NAACL, P1
Bai XM, 2017, IEEE ACCESS, V5, P17607, DOI 10.1109/ACCESS.2017.2740226
Bai X, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0167772
Collobert R, 2011, J MACH LEARN RES, V12, P2493
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Ilmi A. B., 2018, P 4 INT SEM SCI TECH
Manning Christopher D., 2008, Introduction to Information Retrieval
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Moreira C, 2013, EXPERT SYST APPL, V40, P5740, DOI 10.1016/j.eswa.2013.04.001
Moustafa K, 2016, ACCOUNT RES, V23, P230, DOI 10.1080/08989621.2015.1127763
Mueller J, 2016, AAAI CONF ARTIF INTE, P2786
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Purwitasari D., 2017, 2017 IEEE 10 INT WOR, V2017
Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
Tang J, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P467, DOI 10.1145/2835776.2835849
Thinsungnoena T., 2015, Learning, V3, DOI [10.12792/iciae2015.012, DOI 10.12792/ICIAE2015.012]
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
Xia F, 2014, IEEE T EMERG TOP COM, V2, P364, DOI 10.1109/TETC.2014.2356505
Yu T, 2014, J INFORMETR, V8, P123, DOI 10.1016/j.joi.2013.11.001
NR 19
TC 1
Z9 1
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-5386-7509-0
PY 2018
BP 54
EP 59
PG 6
WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BM8IQ
UT WOS:000469263900010
DA 2024-09-05
ER
PT J
AU Zerva, C
Nghiem, MQ
Nguyen, NTH
Ananiadou, S
AF Zerva, Chrysoula
Minh-Quoc Nghiem
Nguyen, Nhung T. H.
Ananiadou, Sophia
TI Cited text span identification for scientific summarisation using
pre-trained encoders
SO SCIENTOMETRICS
LA English
DT Article
DE Cited text span identification; Citation analysis; Scientific
summarisation; Neural networks; BERT; Fine-tuning
ID MODELS
AB We present our approach for the identification of cited text spans in scientific literature, using pre-trained encoders (BERT) in combination with different neural networks. We further experiment to assess the impact of using these cited text spans as input in BERT-based extractive summarisation methods. Inspired and motivated by the CL-SciSumm shared tasks, we explore different methods to adapt pre-trained models which are tuned for generic domain to scientific literature. For the identification of cited text spans, we assess the impact of different configurations in terms of learning from augmented data and using different features and network architectures (BERT, XLNET, CNN, and BiMPM) for training. We show that identifying and fine-tuning the language models on unlabelled or augmented domain specific data can improve the performance of cited text span identification models. For the scientific summarisation we implement an extractive summarisation model adapted from BERT. With respect to the input sentences taken from the cited paper, we explore two different scenarios: (1) consider all the sentences (full-text) of the referenced article as input and (2) consider only the text spans that have been identified to be cited by other publications. We observe that in certain experiments, by using only the cited text-spans we can achieve better performance, while minimising the input size needed.
C1 [Zerva, Chrysoula; Minh-Quoc Nghiem; Nguyen, Nhung T. H.; Ananiadou, Sophia] Univ Manchester, Natl Ctr Text Min, Sch Comp Sci, Manchester, Lancs, England.
[Ananiadou, Sophia] Alan Turing Inst, London, England.
C3 University of Manchester
RP Zerva, C (corresponding author), Univ Manchester, Natl Ctr Text Min, Sch Comp Sci, Manchester, Lancs, England.
EM chrysoula.zerva@manchester.ac.uk; minh-quoc.nghiem@manchester.ac.uk;
nhung.nguyen@manchester.ac.uk; sophia.ananiadou@manchester.ac.uk
RI Zerva, Chrysoula/JOK-8942-2023
OI Zerva, Chrysoula/0000-0002-4031-9492
FU EPSRC [EP/N509565/1]; HSE Discovering Safety, Lloyd's Register
Foundation; Thomas Ashton Institute
FX This work was partly supported by the EPSRC Doctoral Prize award
[EP/N509565/1]; the HSE Discovering Safety, Lloyd's Register Foundation;
and the Thomas Ashton Institute.
CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500
AbuRaed A., 2018, P 3 JOINT WORKSH BIB, V2132, P150
Aggarwal P., 2016, BIRNDL JCDL, P103
AGRAWAL K, 2018, BIRNDL SIGIR, P130
Ammar W., 2018, P 2018 C N AM CHAPT, V3, P84, DOI [DOI 10.18653/V1/N18-3011, 10.18653/v1/N18-3011]
[Anonymous], 2019, Ctrl: A conditional transformer language model for controllable generation
[Anonymous], 2015, P 2015 C N AM CHAPTE, DOI [10.3115/v1/N15-1013, DOI 10.3115/V1/N15-1013]
[Anonymous], 2012, P COLING 2012
Baruah G., 2018, BIRNDL SIGIR, V2132, P134
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Bird S, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P1755
Bornmann L, 2009, EMBO REP, V10, P2, DOI 10.1038/embor.2008.233
Cao Z, 2016, P JOINT WORKSH BIBL, P132
Carbonell J., 1998, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P335, DOI 10.1145/290941.291025
Chandrasekaran MK., 2019, P 4 JOINT WORKSH BIB, P153
Chang LLH, 2019, IEEE ACCESS, V7, P132027, DOI 10.1109/ACCESS.2019.2937220
Cohan A., 2017, ARXIV170406619
Conroy J. M., 2001, SIGIR Forum, P406
Conroy J. M., 2006, P COLING ACL MAIN C, P152
Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661
Craswell N., 2009, Encyclopedia of Database Systems, V1703, DOI 10.1007/978-0-387-39940-9_488
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Ding Y, 2016, Measuring scholarly impact
Duan CQ, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4033
EDMUNDSON HP, 1969, J ACM, V16, P264, DOI 10.1145/321510.321519
FERGADIS A, 2019, ATHENA CL SCISUMM 20
Fister I, 2016, FRONT PHYS, V4, DOI 10.3389/fphy.2016.00049
Galgani F., 2012, PRICAI 2012 TRENDS A, P40
Galgani F, 2015, INFORM PROCESS MANAG, V51, P1, DOI 10.1016/j.ipm.2014.08.001
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
Howard J, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P328
Hutchins BI, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002541
JAIDKA K, 2018, BIRNDL SIGIR, P1
Jaidka K., 2016, P JOINT WORKSH BIBLI, P93
Jaidka K., 2017, BIRNDL SIGIR, P1
JHA S, 2017, P 14 INT C NAT LANG, P23
KARIMI S, 2017, BIRNDL SIGIR, P73
Kim Y, 2014, ARXIV14085882, DOI 10.3115/v1/D14-1181
Klampfl Stefan., 2016, BIRNDL at JCDL, P122
Kupiec J, 1999, ADVANCES IN AUTOMATIC TEXT SUMMARIZATION, P55
Lai Guokun, 2017, Association for Computational Linguistics
LAQUATRA M, 2019, POLI2SUM CL SCISUMM
LI L, 2019, BIRNDL 2019
Li L., 2017, P 2 JOINT WORKSH BIB
Li L., 2018, BIRNDL SIGIR CEUR WO, V2132, P84
Lin C., 2000, P 18 C COMP LING ASS, P495, DOI [10.3115/990820.990892, DOI 10.3115/990820.990892]
Lin Chin-Yew, 2004, P ACL ANN M ASS COMP, P1
LIU Y, 2019, ARXIV190310318CS
Liu Y, 2019, BIOMED RES INT, V2019, DOI 10.1155/2019/4273290
Liu Y, 2021, J IND TEXT, V51, P396, DOI 10.1177/1528083719881816
LUHN HP, 1958, IBM J RES DEV, V2, P159, DOI 10.1147/rd.22.0159
MA S, 2018, BIRNDL SIGIR, P114
MA S, 2019, BIRNDL2019
Mihalcea R., 2006, Proceedings of the National Conference on Artificial Intelligence, V6, P775
Miller Derek, 2019, Leveraging BERT for extractive text summarization on lectures
MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748
Mohammad S., 2009, P HUMAN LANGUAGE TEC, P584
Molla D, 2014, P AUSTR LANG TECHN A, P79
Moraes L.F.T.D., 2018, BIRNDL SIGIR, V2132, P142
Nallapati R, 2017, AAAI CONF ARTIF INTE, P3075
Neculoiu P, 2016, P 1 WORKSH REPR LEAR, P148, DOI DOI 10.18653/V1/W16-1617
Nicosia M, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2235, DOI 10.1145/3132847.3133156
Nie Y., 2017, RepEval, P41
Nomoto T., 2018, FRONTIERS RES METRIC, V3, P31, DOI [10.3389/frma.2018.00031, DOI 10.3389/FRMA.2018.00031]
Nomoto T., 2016, P JOINT WORKSH BIBL, P168
Paulus Romain, 2017, A deep reinforced model for abstractive summarization arXiv preprint arXiv:1705 04304
Prasad Animesh, 2017, BIRNDL SIGIR, P26
Qazvinian V., 2008, P 22 INT C COMP LING, V1, P689
Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2
Rajpurkar Pranav, 2016, EMNLP, DOI DOI 10.18653/V1/D16-1264
Rush Alexander M., 2015, EMNLP, DOI [10.48550/arXiv.1509.00685, DOI 10.18653/V1/D15-1044]
Saggion Horacio., 2016, Proceedings of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL); 2016 June 23; Newark, P175, DOI DOI 10.1007/978-94-017-2388-6_4
See A, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1073, DOI 10.18653/v1/P17-1099
SHEN D, 2007, P 20 INT JOINT C ART, P2862
Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162]
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Wang J, 2014, PROC CVPR IEEE, P1386, DOI 10.1109/CVPR.2014.180
Wang P., 2018, BIRNDL SIGIR, P102
Wang Z, 2017, IEEE IJCNN, P1411, DOI 10.1109/IJCNN.2017.7966018
Wolf T, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING: SYSTEM DEMONSTRATIONS, P38
Yang ZL, 2019, ADV NEUR IN, V32
Yasunaga M, 2019, AAAI CONF ARTIF INTE, P7386
Yeh J.Y., 2017, P 6 INT C SOFTW COMP, P87, DOI [10.1145/3056662.3056692, DOI 10.1145/3056662.3056692]
Zerva C., 2019, BIRNDL SIGIR, P167
Zhang XX, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P5059
Zhou QY, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P654
NR 86
TC 16
Z9 16
U1 1
U2 16
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2020
VL 125
IS 3
BP 3109
EP 3137
DI 10.1007/s11192-020-03455-z
EA MAY 2020
PG 29
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA PE1YL
UT WOS:000531002500001
OA hybrid
DA 2024-09-05
ER
PT J
AU Hernández, IMD
Urdaneta, AS
Carayannis, E
AF De la Vega Hernandez, Ivan Manuel
Serrano Urdaneta, Angel
Carayannis, Elias
TI Global bibliometric mapping of the frontier of knowledge in the field of
artificial intelligence for the period 1990-2019
SO ARTIFICIAL INTELLIGENCE REVIEW
LA English
DT Article
DE Artificial intelligence; Machine learning; Deep learning; Big Data;
Bibliometric mapping; Knowledge networks; WoS; Radical changes
AB Artificial Intelligence (AI) has emerged as a field of knowledge that is displacing and disrupting technologies, leading to changes in human life. Therefore, the purpose of this study is to scientifically map this topic and its ramifications, in order to analyze its growth. The study was developed under the bibliometric approach and considered the period 1990-2019. The steps followed were (i) Identification and selection of keyword terms in three methodological layers by a panel of experts. (ii) Design and application of an algorithm to identify these selected keywords in titles, abstracts, and keywords using terms in Web of Science to contrast them. (iii) Performing data processing based on the Journals of the Journal Citation Report during 2020. Knowing the evolution of a field of knowledge such as AI from a bibliometric study and subsequently establishing the ramifications of new research streams is in itself a relevant finding. Addressing a broad field of knowledge as AI from a multidisciplinary approach given the convergence it generates with other disciplines and specialties is of high strategic value for decision makers such as governments, academics, scientists, and entrepreneurs.
C1 [De la Vega Hernandez, Ivan Manuel; Serrano Urdaneta, Angel] CTR Catolica Grad Business Sch, Lima, Peru.
[De la Vega Hernandez, Ivan Manuel; Serrano Urdaneta, Angel] Pontificia Univ Catolica Peru, Lima, Peru.
[Carayannis, Elias] George Washington Univ, GWU Sch Business, Washington, DC 20052 USA.
C3 Pontificia Universidad Catolica del Peru; George Washington University
RP Hernández, IMD (corresponding author), CTR Catolica Grad Business Sch, Lima, Peru.; Hernández, IMD (corresponding author), Pontificia Univ Catolica Peru, Lima, Peru.
EM idelavega@pucp.edu.pe; angel.serrano@pucp.pe; caraye@gwu.edu
RI CARAYANNIS, ELIAS/H-3075-2014; de la Vega Hernandez, Ivan
Manuel/AAD-5460-2019
OI CARAYANNIS, ELIAS/0000-0003-2348-4311; de la Vega Hernandez, Ivan
Manuel/0000-0002-8554-0510
CR Agarwal M, 2021, J MED SYST, V45, DOI 10.1007/s10916-021-01707-w
[Anonymous], 1980, Principles of Artificial Intelligence
[Anonymous], 1989, Artificial Intelligence: The Very Idea, DOI DOI 10.7551/MITPRESS/1170.001.0001
Bainbridge W.S., 2016, Handbook of science and technology convergence
de Paula LB, 2022, LECT NOTE NETW SYST, V388, P217, DOI 10.1007/978-3-030-93787-4_13
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Bongomin O, 2020, J ENG-NY, V2020, DOI 10.1155/2020/4280156
Bordons M, 1999, REV ESP CARDIOL, V52, P790, DOI 10.1016/S0300-8932(99)75008-6
Carayannis EG, 2023, AI SOC, V38, P2679, DOI 10.1007/s00146-021-01382-y
Carayannis EG, 2022, J KNOWL ECON, V13, P587, DOI 10.1007/s13132-020-00719-0
Chatterjee J, 2021, RENEW SUST ENERG REV, V144, DOI 10.1016/j.rser.2021.111051
Cockburn IM., 2018, IMPACT ARTIFICIAL IN, DOI [10.3386/w24449, DOI 10.3386/W24449]
Cox AM, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00237-8
Hernandez IMD, 2021, KYBERNETES, V50, P2917, DOI 10.1108/K-05-2020-0328
Hernández IMD, 2020, KYBERNETES, V49, P2241, DOI 10.1108/K-08-2019-0522
Delgosha MS, 2022, TECHNOVATION, V118, DOI 10.1016/j.technovation.2021.102236
Dhamija P, 2020, TQM J, V32, P869, DOI 10.1108/TQM-10-2019-0243
Donthu N, 2022, J ADVERTISING, V51, P153, DOI 10.1080/00913367.2021.2006100
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234
Donthu N, 2021, PSYCHOL MARKET, V38, P834, DOI 10.1002/mar.21472
Doreian P, 2006, SOC NETWORKS, V28, P269, DOI 10.1016/j.socnet.2005.12.002
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228
Jiang XG, 2020, CMC-COMPUT MATER CON, V63, P537, DOI 10.32604/cmc.2020.010691
Kumar S, 2022, INT J BANK MARK, V40, P341, DOI 10.1108/IJBM-07-2021-0351
Kumar S, 2021, J BUS RES, V134, P275, DOI 10.1016/j.jbusres.2021.05.041
Kumar S, 2021, BUS STRATEG ENVIRON, V30, P3454, DOI 10.1002/bse.2813
Kumar S, 2021, ELECTRON COMMER RES, V21, P1, DOI 10.1007/s10660-021-09464-1
Lee C, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120653
Liu XJ, 2011, BIODIVERS CONSERV, V20, P807, DOI 10.1007/s10531-010-9981-z
De la Vega IM, 2023, INT J INOV SCI, V15, P59, DOI 10.1108/IJIS-07-2021-0116
Zabala-Iturriagagoitia JM, 2021, TECHNOVATION, V102, DOI 10.1016/j.technovation.2020.102215
Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731
Panch T, 2019, NPJ DIGIT MED, V2, DOI 10.1038/s41746-019-0155-4
Rahwan I, 2009, ARGUMENTATION IN ARTIFICIAL INTELLIGENCE, P1, DOI 10.1007/978-0-387-98197-0
Ramakrishna S, 2020, SCI TECHNOL SOC, V25, P505, DOI 10.1177/0971721820912918
Roco MC, 2020, J NANOPART RES, V22, DOI 10.1007/s11051-020-05032-0
Russell S.J., 2011, Inteligencia artificial: un enfoque moderno
Santoro G, 2018, TECHNOL FORECAST SOC, V136, P347, DOI 10.1016/j.techfore.2017.02.034
Sekli G.F.M., 2021, Journal of Open Innovation: Technology, Market, and Complexity, V7, P221, DOI DOI 10.3390/JOITMC7040221
Rao ASRS, 2020, INFECT CONT HOSP EP, V41, P826, DOI 10.1017/ice.2020.61
Stahl BC., 2021, Artificial Intelligence for a Better Future: An Ecosystem Perspective on the Ethics of AI and Emerging Digital Technologies, DOI 10.1007/978-3-030-69978-9
Sun SJ, 2020, TELEMAT INFORM, V53, DOI 10.1016/j.tele.2020.101433
Tian YG, 2008, J INFORMETR, V2, P65, DOI 10.1016/j.joi.2007.10.001
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Van Raan A, 1999, SCIENTOMETRICS, V45, P417, DOI 10.1007/BF02457601
Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y
Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482
WIPO, 2021, INTELLECTUAL PROPERT
Zhejiang Da Xue IEEE Technology and Engineering Management Society Institute of Electrical and Electronics Engineers, 2019, 2 ANN INT S INN ENTR
NR 51
TC 17
Z9 17
U1 9
U2 34
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0269-2821
EI 1573-7462
J9 ARTIF INTELL REV
JI Artif. Intell. Rev.
PD FEB
PY 2023
VL 56
IS 2
BP 1699
EP 1729
DI 10.1007/s10462-022-10206-4
EA JUN 2022
PG 31
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 8L6FZ
UT WOS:000807969300001
PM 35693001
OA Bronze, Green Published
DA 2024-09-05
ER
PT J
AU La Quatra, M
Cagliero, L
Baralis, E
AF La Quatra, Moreno
Cagliero, Luca
Baralis, Elena
TI Leveraging full-text article exploration for citation analysis
SO SCIENTOMETRICS
LA English
DT Article
DE Citation analysis; Deep natural language processing; Citation
classification
ID SENTIMENT
AB Scientific articles often include in-text citations quoting from external sources. When the cited source is an article, the citation context can be analyzed by exploring the article full-text. To quickly access the key information, researchers are often interested in identifying the sections of the cited article that are most pertinent to the text surrounding the citation in the citing article. This paper first performs a data-driven analysis of the correlation between the textual content of the sections of the cited article and the text snippet where the citation is placed. The results of the correlation analysis show that the title and abstract of the cited article are likely to include content highly similar to the citing snippet. However, the subsequent sections of the paper often include cited text snippets as well. Hence, there is a need to understand the extent to which an exploration of the full-text of the cited article would be beneficial to gain insights into the citing snippet, considering also the fact that the full-text access could be restricted. To this end, we then propose a classification approach to automatically predicting whether the cited snippets in the full-text of the paper contain a significant amount of new content beyond abstract and title. The proposed approach could support researchers in leveraging full-text article exploration for citation analysis. The experiments conducted on real scientific articles show promising results: the classifier has a 90% chance to correctly distinguish between the full-text exploration and only title and abstract cases.
C1 [La Quatra, Moreno; Cagliero, Luca; Baralis, Elena] Politecn Torino, Corso Duca degli Abruzzi 24, I-10129 Turin, Italy.
C3 Polytechnic University of Turin
RP La Quatra, M (corresponding author), Politecn Torino, Corso Duca degli Abruzzi 24, I-10129 Turin, Italy.
EM moreno.laquatra@polito.it; luca.cagliero@polito.it;
elena.baralis@polito.it
RI La Quatra, Moreno/AET-2693-2022
OI La Quatra, Moreno/0000-0001-8838-064X; Cagliero,
Luca/0000-0002-7185-5247
CR AbuRaed A., 2018, P 3 JOINT WORKSH BIB, V2132, P150
Ali Z, 2020, EXPERT SYST APPL, V162, DOI 10.1016/j.eswa.2020.113790
Baruah G., 2018, BIRNDL SIGIR, V2132, P134
Cagliero L, 2021, IEEE T EMERG TOP COM, V9, P329, DOI 10.1109/TETC.2018.2861214
Chandrasekaran M. K., 2019, P 4 JOINT WORKSH BIB, P2019
Chandrasekaran MK., 2019, P 4 JOINT WORKSH BIB, P153
Cohan A, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P2270
Cohan A, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P3586
Davoodi E., 2018, BIRNDL SIGIR, P96
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734
Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346
Jeong C., 2019, CONTEX AWARE CITATIO
Jeong C, 2020, SCIENTOMETRICS, V124, P1907, DOI 10.1007/s11192-020-03561-y
Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443
Jurgens D., 2018, T ASSOC COMPUT LING, V6, P391, DOI [DOI 10.1162/TACLA00028, 10.1162/tacl_a_00028]
Khalid A., 2017, CLUSTER COMPUT, V21, P1
La Quatra M, 2019, BIRNDL SIGIR, P233
La Quatra M, 2020, SCIENTOMETRICS, V125, P3139, DOI 10.1007/s11192-020-03532-3
Li L., 2018, BIRNDL SIGIR CEUR WO, V2132, P84
Lin Chin-Yew, 2004, P ACL ANN M ASS COMP, P1
Ma ST, 2018, SCIENTOMETRICS, V116, P1303, DOI 10.1007/s11192-018-2754-2
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Moraes L.F.T.D., 2018, BIRNDL SIGIR, V2132, P142
Nomoto T., 2018, FRONTIERS RES METRIC, V3, P31, DOI [10.3389/frma.2018.00031, DOI 10.3389/FRMA.2018.00031]
Pagliardini, 2017, ARXIV PREPRINT ARXIV
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Pilehvar M. T., 2020, Synthesis Lectures on Human Language Technologies, V13, P1, DOI [10.2200/S01057ED1V01Y202009HLT047, DOI 10.2200/S01057ED1V01Y202009HLT047]
Reimers N, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P567
Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113
Ritchie A, 2008, LECT NOTES COMPUT SC, V4956, P211
Ritchie Anna., 2006, Proceedings of the Workshop on How Can Computational Linguistics Improve Information Retrieval? CLIIR'06, P25, DOI DOI 10.3115/1629808.1629813
Ronzano F, 2016, LECT NOTES COMPUT SC, V9612, P318, DOI 10.1007/978-3-319-41754-7_30
Saier T, 2020, SCIENTOMETRICS, V125, P3085, DOI 10.1007/s11192-020-03382-z
Wang, 2018, BIRNDL SIGIR
Yasunaga M., 2017, P CONLL 2017
Yasunaga M, 2019, AAAI CONF ARTIF INTE, P7386
Yeh J.Y., 2017, P 6 INT C SOFTW COMP, P87, DOI [10.1145/3056662.3056692, DOI 10.1145/3056662.3056692]
Yousif A, 2019, NEUROCOMPUTING, V335, P195, DOI 10.1016/j.neucom.2019.01.021
Zaki MJ., 2020, DATA MINING MACHINE, DOI DOI 10.1017/9781108564175
Zerva C, 2020, SCIENTOMETRICS, V125, P3109, DOI 10.1007/s11192-020-03455-z
Zhang L, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1253
NR 42
TC 1
Z9 1
U1 2
U2 44
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD OCT
PY 2021
VL 126
IS 10
BP 8275
EP 8293
DI 10.1007/s11192-021-04117-4
EA AUG 2021
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA UW2MR
UT WOS:000686089100011
OA hybrid
DA 2024-09-05
ER
PT J
AU Thelwell, M
AF Thelwell, Mike
TI Can the quality of published academic journal articles be assessed with
machine learning?
SO QUANTITATIVE SCIENCE STUDIES
LA English
DT Article
DE citation analysis; machine learning; research evaluation; text mining
ID CITATION COUNTS; IMPACT; SCIENCE; READABILITY; JUDGMENT; FEATURES;
MODELS; FIELD
AB Formal assessments of the quality of the research produced by departments and universities are now conducted by many countries to monitor achievements and allocate performance-related funding. These evaluations are hugely time consuming if conducted by postpublication peer review and are simplistic if based on citations or journal impact factors. I investigate whether machine learning could help reduce the burden of peer review by using citations and metadata to learn how to score articles from a sample assessed by peer review. An experiment is used to underpin the discussion, attempting to predict journal citation thirds, as a proxy for article quality scores, for all Scopus narrow fields from 2014 to 2020. The results show that these proxy quality thirds can be predicted with above baseline accuracy in all 326 narrow fields, with Gradient Boosting Classifier, Random Forest Classifier, or Multinomial Naive Bayes being the most accurate in nearly all cases. Nevertheless, the results partly leverage journal writing styles and topics, which are unwanted for some practical applications and cause substantial shifts in average scores between countries and between institutions within a country. There may be scope for predicting articles' scores when the predictions have the highest probability.
C1 [Thelwell, Mike] Univ Wolverhampton, Wolverhampton, England.
C3 University of Wolverhampton
RP Thelwell, M (corresponding author), Univ Wolverhampton, Wolverhampton, England.
EM m.thetwall@wlv.ac.uk
RI Thelwall, Mike/JDV-4700-2023
OI Thelwall, Mike/0000-0001-6065-205X
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128
[Anonymous], 2003, The higher education managerial revolution?, DOI DOI 10.1007/978-94-010-0072-7
Buckle R.A., 2019, N. Z. Econ. Pap., V53, P144, DOI [10.1080/00779954.2018.1429486, DOI 10.1080/00779954.2018.1429486]
Checco A, 2021, HUM SOC SCI COMMUN, V8, DOI 10.1057/s41599-020-00703-8
Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006
Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421
Fairclough R, 2022, LEARN PUBL, V35, P241, DOI 10.1002/leap.1417
Foltynek T, 2020, ACM COMPUT SURV, V52, DOI 10.1145/3345317
Franceschini F, 2017, J INFORMETR, V11, P337, DOI 10.1016/j.joi.2017.02.005
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Gov.uk, 2021, PS21219 RESP US TECH
Haddawy P, 2016, J INFORMETR, V10, P162, DOI 10.1016/j.joi.2015.12.005
Hall KL, 2018, AM PSYCHOL, V73, P532, DOI 10.1037/amp0000319
Heo GE, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1640-x
Hinze S, 2019, SPRINGER HBK, P465, DOI 10.1007/978-3-030-02511-3_18
Kim YM, 2018, HEALTH INFORM J, V24, P432, DOI 10.1177/1460458216678443
Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734
Kleminski R, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101200
Kulczycki E, 2017, J INFORMETR, V11, P282, DOI 10.1016/j.joi.2017.01.001
Lei L, 2016, SCIENTOMETRICS, V108, P1155, DOI 10.1007/s11192-016-2036-9
Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914
Maier G, 2006, SCIENTOMETRICS, V69, P651, DOI 10.1007/s11192-006-0175-0
McCannon BC, 2019, ECON LETT, V180, P76, DOI 10.1016/j.econlet.2019.02.017
Mohammadi E, 2013, SCIENTOMETRICS, V97, P383, DOI 10.1007/s11192-013-0993-9
Nie BL, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7040401
Nuijten MB, 2020, RES SYNTH METHODS, V11, P574, DOI 10.1002/jrsm.1408
Parks S, 2019, The changing research landscape and reflections on national research assessment in the future
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
Serenko A, 2022, J KNOWL MANAG, V26, P126, DOI 10.1108/JKM-11-2020-0814
Serenko A, 2011, J INFORMETR, V5, P629, DOI 10.1016/j.joi.2011.06.002
Sohrabi B, 2017, SCIENTOMETRICS, V110, P243, DOI 10.1007/s11192-016-2161-5
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Thelwall M, 2002, J AM SOC INF SCI TEC, V53, P995, DOI 10.1002/asi.10135
Thelwall M, 2021, LIBR INFORM SCI RES, V43, DOI 10.1016/j.lisr.2021.101094
Thelwall M, 2020, ONLINE INFORM REV, V44, P1057, DOI 10.1108/OIR-11-2019-0347
Thelwall M, 2019, J INFORMETR, V13, P149, DOI 10.1016/j.joi.2018.12.002
Thelwall M, 2017, J INFORMETR, V11, P128, DOI 10.1016/j.joi.2016.12.002
Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x
Wang MY, 2020, IEEE ACCESS, V8, P107887, DOI 10.1109/ACCESS.2020.3001190
Wilsdon J., 2016, The metric tide: Independent review of the role of metrics in research assessment and management, DOI DOI 10.4135/9781473978782
Wilsdon J, 2016, METRIC TIDE INDEPEND
Xu JG, 2019, IEEE ACCESS, V7, P92248, DOI 10.1109/ACCESS.2019.2927011
Yuan Sha, 2022, arXiv
Zhao QH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101235
Zhongqi Su, 2020, 2020 Proceedings of Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), P101, DOI 10.1109/IPEC49694.2020.9114959
Zhu XP, 2018, INT CON ADV INFO NET, P534, DOI 10.1109/AINA.2018.00084
NR 47
TC 8
Z9 9
U1 5
U2 25
PU MIT PRESS
PI CAMBRIDGE
PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA
EI 2641-3337
J9 QUANT SCI STUD
JI Quant. Sci. Stud.
PD APR 12
PY 2022
VL 3
IS 1
BP 208
EP 226
DI 10.1162/qss_a_00185
PG 19
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA 4J6XG
UT WOS:000851408900010
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Collado-Villaverde, A
Muñoz, P
Cid, C
AF Collado-Villaverde, Armando
Munoz, Pablo
Cid, Consuelo
TI Comment on "Prediction of the SYM-H Index Using a Bayesian Deep Learning
Method With Uncertainty Quantification" by Abduallah et al. (2024)
SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
LA English
DT Article
DE machine learning; uncertainty; geomagnetic indices forecasting
AB Abduallah et al. (2024b, ) proposed a novel approach using a deep neural network model, which includes a graph neural network and a bidirectional LSTM layer, named SYMHnet, to forecast the SYM-H index one and 2 hr in advance. Additionally, the network also provides an uncertainty quantification of the predictions. While the approach is innovative, there are some areas where the model's design and implementation may not align with best practices in uncertainty quantification and predictive modeling. We focus on discrepancies in the input and output of the model, which can limit the applicability in real-world forecasting scenarios. This comment aims to clarify these issues, offering detailed insights into how such discrepancies could compromise the model's interpretability and reliability, thereby contributing to the advancement of predictive modeling in space weather research.
The use of Machine learning to predict geomagnetic storms is becoming a trend. A recent study by Abduallah et al. (2024b, ) introduces a novel approach to forecast the SYM-H index, which measures geomagnetic activity on a global scale, while also quantifying the uncertainty of these predictions. However, this commentary highlights methodological concerns with their approach, such as data selection issues and the reliability of uncertainty calculations. These factors could significantly affect the model's accuracy and applicability in real-time forecasting scenarios.
Examination of the model input and output reveals oversights that could undermine the model's predictive accuracy and applicability The process to estimate uncertainty has limited applicability for use in real time There are no coverage metrics regarding the uncertainty intervals
C1 [Collado-Villaverde, Armando; Munoz, Pablo] Univ Alcala, Dept Comp Engn, Madrid, Spain.
[Cid, Consuelo] Univ Alcala, Dept Phys & Math, Madrid, Spain.
C3 Universidad de Alcala; Universidad de Alcala
RP Collado-Villaverde, A (corresponding author), Univ Alcala, Dept Comp Engn, Madrid, Spain.
EM armando.collado@uah.es
OI Munoz, Pablo/0000-0003-0581-5383
FU ESA project Deep Neural Networks for Geomagnetic Forecasting
[4000137421/22/NL/GLC/my]; MICINN [PID2020-119407GB-I00]; University of
Alcala [2022/00464/001]
FX The authors are also thankful to the reviewer for their suggestions
which helped us to improve the paper and the ESA's technical officer
Alexi Glover for her support. Armando Collado-Villaverde is supported by
the ESA project Deep Neural Networks for Geomagnetic Forecasting
4000137421/22/NL/GLC/my. Consuelo Cid acknowledges the support by the
MICINN (Grant PID2020-119407GB-I00). Pablo Munoz acknowledges the
support by the University of Alcala (Grant 2022/00464/001).
CR Abduallah Y., 2024, Zenodo, DOI [10.5281/zenodo.10602474, DOI 10.5281/ZENODO.10602474]
Abduallah Y, 2024, SPACE WEATHER, V22, DOI 10.1029/2023SW003824
Alarab I, 2021, NEURAL PROCESS LETT, V53, P1001, DOI 10.1007/s11063-021-10424-x
Bhaskar A, 2019, J SPACE WEATHER SPAC, V9, DOI 10.1051/swsc/2019007
Collado-Villaverde A, 2024, NAT HAZARDS, V120, P1141, DOI 10.1007/s11069-023-06241-1
Collado-Villaverde A, 2023, SPACE WEATHER, V21, DOI 10.1029/2023SW003485
Collado-Villaverde A, 2021, SPACE WEATHER, V19, DOI 10.1029/2021SW002748
GAL Y, 2016, INT C MACH LEARN, P1050, DOI DOI 10.48550/ARXIV.1506.02142
Graves A., 2011, Advances in neural information processing sys-tems, P2348
Iong D, 2022, SPACE WEATHER, V20, DOI 10.1029/2021SW002928
Kim T, 2021, Arxiv, DOI arXiv:2105.08919
Larrodera C, 2020, ASTRON ASTROPHYS, V635, DOI 10.1051/0004-6361/201937307
Redxgit, 2024, Zenodo, DOI 10.5281/ZENODO.10732876
Seoh R, 2020, Arxiv, DOI [arXiv:2007.01720, DOI 10.48550/ARXIV.2007.01720, 10.48550/arxiv.2007.01720]
Siciliano F, 2021, SPACE WEATHER, V19, DOI 10.1029/2020SW002589
NR 15
TC 0
Z9 0
U1 0
U2 0
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
EI 1542-7390
J9 SPACE WEATHER
JI Space Weather
PD AUG
PY 2024
VL 22
IS 8
AR e2024SW003909
DI 10.1029/2024SW003909
PG 6
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA D5A3T
UT WOS:001296304100001
OA hybrid
DA 2024-09-05
ER
PT J
AU Kumar, R
Althaqafi, E
Patro, SGK
Simic, V
Babbar, A
Pamucar, D
Singh, SK
Verma, A
AF Kumar, Raman
Althaqafi, Essam
Patro, S. Gopal Krishna
Simic, Vladimir
Babbar, Atul
Pamucar, Dragan
Singh, Sanjeev Kumar
Verma, Amit
TI Machine and deep learning methods for concrete strength Prediction: A
bibliometric and content analysis review of research trends and future
directions
SO APPLIED SOFT COMPUTING
LA English
DT Article
DE Review; Machine Learning; Deep Learning; Concrete Strength Prediction;
Construction Engineering
ID HIGH-PERFORMANCE CONCRETE; COMPRESSIVE STRENGTH; SHEAR-STRENGTH;
BRADFORD LAW; ACCURACY; SCIENCE; MODELS
AB This review paper provides a detailed evaluation of the existing landscape and future trends in applying machine learning and deep learning approaches for predicting concrete strength in construction engineering. The study contextualizes the investigation of machine learning and deep learning in concrete strength prediction, emphasizing the need for precise strength forecasting in construction. This hybrid review uses quantitative analysis of an extensive collection of 1005 research publications from the Scopus database (2010-2023) to identify clusters, hotspots, and gaps in this area, giving a systematic way to analyze the field's dynamics. This review reveals major research clusters such as concrete characteristics, sustainability, error analysis, and optimization. It identifies research hotspots like compressive strength prediction, reinforced concrete, and neural networks. The review illuminates future research paths, ethical concerns, and environmental implications. It emphasizes the relevance of fairness, bias reduction, and sustainability in developing and deploying machine and deep learning models in the construction sector and the necessity for specialized models in forecasting concrete durability, sustainable concrete strength, and shear strength.
C1 [Kumar, Raman] Guru Nanak Dev Engn Coll, Dept Mech & Prod Engn, Ludhiana 141006, Punjab, India.
[Althaqafi, Essam] King Khalid Univ, Coll Engn, Civil Engn Dept, Abha 61421, Saudi Arabia.
[Patro, S. Gopal Krishna] Woxsen Univ, Sch Technol, Hyderabad, Telangana, India.
[Simic, Vladimir] Univ Belgrade, Fac Transport & Traff Engn, Vojvode Stepe 305, Belgrade 11010, Serbia.
[Simic, Vladimir] Yuan Ze Univ, Coll Engn, Dept Ind Engn & Management, Taoyuan 320315, Taiwan.
[Simic, Vladimir] Korea Univ, Coll Informat, Dept Comp Sci & Engn, Seoul 02841, South Korea.
[Babbar, Atul] SGT Univ, Dept Mech Engn, Gurugram 122505, Haryana, India.
[Pamucar, Dragan] Univ Belgrade, Fac Org Sci, Dept Operat Res & Stat, Belgrade, Serbia.
[Pamucar, Dragan] Western Caspian Univ, Dept Mech & Math, Baku, Azerbaijan.
[Pamucar, Dragan] Sunway Univ, Sch Engn & Technol, Selangor, Malaysia.
[Singh, Sanjeev Kumar] Galgotia Coll Engn, Galgotias Coll Engn & Technol, Knowledge Pk 1, Greater Noida 201310, Uttar Pradesh, India.
[Verma, Amit] Chandigarh Univ, Univ Ctr Res & Dev, Gharuan Mohali 140413, Punjab, India.
C3 Guru Nanak Dev Engineering College Ludhiana; King Khalid University;
University of Belgrade; Yuan Ze University; Korea University; University
of Belgrade; Ministry of Education of Azerbaijan Republic; Western
Caspian University; Sunway University; Galgotias College of Engineering
& Technology (GCET); Chandigarh University
RP Simic, V (corresponding author), Univ Belgrade, Fac Transport & Traff Engn, Vojvode Stepe 305, Belgrade 11010, Serbia.
EM sehgal91@yahoo.co.in; ealthaqafi@kku.edu.sa; sgkpatro2008@gmail.com;
vsima@sf.bg.ac.rs; atulbabbar123@gmail.com; dragan.pamucar@fon.bg.ac.rs;
sksingh72@gmail.com; amit.e9679@cumail.in
RI Patro, Dr. S Gopal Krishna/CAF-9606-2022; Simic, Vladimir/B-8837-2011
OI Patro, Dr. S Gopal Krishna/0000-0003-3130-339X; Simic,
Vladimir/0000-0001-5709-3744
FU Deanship of Scientific Research at King Khalid University, Abha, Saudi
Arabia [RGP2/563/44]
FX The authors extend their appreciation to the Deanship of Scientific
Research at King Khalid University, Abha, Saudi Arabia for providing
financial support to this research work through Large Groups Research
Project under grant number RGP2/563/44.
CR Abuodeh OR, 2020, APPL SOFT COMPUT, V95, DOI 10.1016/j.asoc.2020.106552
Ahmad A, 2022, CASE STUD CONSTR MAT, V16, DOI 10.1016/j.cscm.2021.e00840
Ahmad A, 2021, POLYMERS-BASEL, V13, DOI 10.3390/polym13193389
Ahmad A, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11080324
Ahmad A, 2021, MATERIALS, V14, DOI 10.3390/ma14154222
Ahmad A, 2021, MATERIALS, V14, DOI 10.3390/ma14040794
Ahmad W, 2021, MATERIALS, V14, DOI 10.3390/ma14195762
Ahmed HU, 2022, MATERIALS, V15, DOI 10.3390/ma15051868
Al Yamani W.H., 2023, Asian J. Civ. Eng., DOI [10.1007/s42107-023-00614-4, DOI 10.1007/S42107-023-00614-4]
Al-Hashem MN, 2022, MATERIALS, V15, DOI 10.3390/ma15196928
Al-Sabaeei AM, 2023, ENERGY REP, V10, P1313, DOI 10.1016/j.egyr.2023.08.009
Alabdullah AA, 2022, CONSTR BUILD MATER, V345, DOI 10.1016/j.conbuildmat.2022.128296
Alabdullh AA, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14173505
Albuthbahak OM, 2019, REV ROM MATER, V49, P232
Alidoust P, 2023, EUR J ENVIRON CIV EN, V27, P1853, DOI 10.1080/19648189.2022.2102081
Almustafa MK, 2020, ENG STRUCT, V221, DOI 10.1016/j.engstruct.2020.111109
Almustafa MK, 2023, ENG STRUCT, V294, DOI 10.1016/j.engstruct.2023.116803
Almustafa MK, 2022, CEMENT CONCRETE COMP, V126, DOI 10.1016/j.cemconcomp.2021.104378
Amin MN, 2023, J MATER RES TECHNOL, V25, P1495, DOI 10.1016/j.jmrt.2023.06.006
Amin MN, 2023, J MATER RES TECHNOL, V23, P3943, DOI 10.1016/j.jmrt.2023.02.021
Amin MN, 2023, STRUCTURES, V50, P745, DOI 10.1016/j.istruc.2023.02.080
Amin MN, 2022, MATERIALS, V15, DOI 10.3390/ma15217800
Amin MN, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14214717
Amin MN, 2022, MATERIALS, V15, DOI 10.3390/ma15155207
Amin MN, 2022, MATERIALS, V15, DOI 10.3390/ma15124296
Amin MN, 2022, MATERIALS, V15, DOI 10.3390/ma15113808
Amin MN, 2022, MATERIALS, V15, DOI 10.3390/ma15103478
Amin MN, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14102128
Amin MN, 2021, MATERIALS, V14, DOI 10.3390/ma14195659
Amin MN, 2021, CRYSTALS, V11, DOI 10.3390/cryst11070779
Anjum M, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14183906
Anjum M, 2022, MATERIALS, V15, DOI 10.3390/ma15186261
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Aslam F, 2022, AIN SHAMS ENG J, V13, DOI 10.1016/j.asej.2021.09.020
Aslam F, 2020, ADV CIV ENG, V2020, DOI 10.1155/2020/8850535
Asteris PG, 2021, CEMENT CONCRETE RES, V145, DOI 10.1016/j.cemconres.2021.106449
Bakouregui AS, 2021, ENG STRUCT, V245, DOI 10.1016/j.engstruct.2021.112836
Behnood A, 2020, CONSTR BUILD MATER, V243, DOI 10.1016/j.conbuildmat.2020.118152
Behnood A, 2015, CONSTR BUILD MATER, V98, P519, DOI 10.1016/j.conbuildmat.2015.08.124
Ben Chaabene W, 2020, COMPOS PART C-OPEN, V3, DOI 10.1016/j.jcomc.2020.100070
Ben Chaabene W, 2020, CONSTR BUILD MATER, V260, DOI 10.1016/j.conbuildmat.2020.119889
Binhl PT, 2022, VIETNAM J EARTH SCI, V44, P470, DOI 10.15625/2615-9783/17177
BROOKES BC, 1969, NATURE, V224, P953, DOI 10.1038/224953a0
Bulbul AMR, 2022, MATERIALS, V15, DOI 10.3390/ma15217764
Caballero L, 2020, SN APPL SCI, V2, DOI 10.1007/s42452-020-2060-5
Cakiroglu C, 2023, J BUILD ENG, V76, DOI 10.1016/j.jobe.2023.107279
Cao JX, 2024, STRUCT HEALTH MONIT, V23, P1013, DOI 10.1177/14759217231178457
Castelli M, 2013, EXPERT SYST APPL, V40, P6856, DOI 10.1016/j.eswa.2013.06.037
Chang QY, 2023, J MATER RES TECHNOL, V24, P6348, DOI 10.1016/j.jmrt.2023.04.223
Channi AS, 2023, INT J INTERACT DES M, V17, P2095, DOI 10.1007/s12008-022-01060-3
Chen K, 2023, NEUROSURG REV, V46, DOI 10.1007/s10143-023-01987-5
Chen LL, 2023, J MATER RES TECHNOL, V24, P6391, DOI 10.1016/j.jmrt.2023.04.180
Choi H, 2020, J MATER CIVIL ENG, V32, DOI 10.1061/(ASCE)MT.1943-5533.0003024
Chou JS, 2020, SOFT COMPUT, V24, P3393, DOI 10.1007/s00500-019-04103-2
Chou JS, 2014, CONSTR BUILD MATER, V73, P771, DOI 10.1016/j.conbuildmat.2014.09.054
Chou JS, 2011, J COMPUT CIVIL ENG, V25, P242, DOI 10.1061/(ASCE)CP.1943-5487.0000088
Chun PJ, 2020, CONSTR BUILD MATER, V253, DOI 10.1016/j.conbuildmat.2020.119238
Cui LY, 2021, ADV CIV ENG, V2021, DOI 10.1155/2021/8878396
Dai L, 2022, MATERIALS, V15, DOI 10.3390/ma15134450
Ali AHHD, 2023, ANTIBIOTICS-BASEL, V12, DOI 10.3390/antibiotics12081305
Deger ZT, 2021, ACI STRUCT J, V118, P61, DOI 10.14359/51728177
Deng FM, 2018, CONSTR BUILD MATER, V175, P562, DOI 10.1016/j.conbuildmat.2018.04.169
Dhiman P, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12040948
Dissanayake K., 2023, International Journal of Computing and Digital Systems, V13, P289, DOI [10.12785/ijcds/130124, DOI 10.12785/IJCDS/130124]
Do Espirito Santo Faria R.M., 2023, Confronting Secur. Priv. Chall. Digit. Mark., P73
Dong W, 2023, J BUILD ENG, V72, DOI 10.1016/j.jobe.2023.106577
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Esparham A, 2023, INT J ENG-IRAN, V36, P1383, DOI 10.5829/ije.2023.36.07a.18
Fahad A., 2023, Asian J. Civ. Eng, DOI [10.1007/s42107-023-00786-z, DOI 10.1007/S42107-023-00786-Z]
Faridmehr I, 2022, ENG STRUCT, V256, DOI 10.1016/j.engstruct.2022.114030
Faridmehr I, 2022, STRUCT CONCRETE, V23, P1642, DOI 10.1002/suco.202100641
Farooq F, 2021, MATERIALS, V14, DOI 10.3390/ma14174934
Farooq F, 2021, J CLEAN PROD, V292, DOI 10.1016/j.jclepro.2021.126032
Farooq F, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10207330
Feng DC, 2020, CONSTR BUILD MATER, V230, DOI 10.1016/j.conbuildmat.2019.117000
Feng DC, 2021, ENG STRUCT, V235, DOI 10.1016/j.engstruct.2021.111979
Feng WH, 2022, CONSTR BUILD MATER, V318, DOI 10.1016/j.conbuildmat.2021.125970
Gkountakou F.I., 2022, Math. Model. Eng. Probl., V9, DOI [10.18280/mmep.090101, DOI 10.18280/MMEP.090101]
Gros C, 2019, NEUROIMAGE, V184, P901, DOI 10.1016/j.neuroimage.2018.09.081
Guzmán-Torres JA, 2022, ACI MATER J, V119, P25, DOI 10.14359/51734601
Han QH, 2019, CONSTR BUILD MATER, V226, P734, DOI 10.1016/j.conbuildmat.2019.07.315
He HJ, 2023, TRANSP GEOTECH, V42, DOI 10.1016/j.trgeo.2023.101061
Helmi Rabab Alayham Abbas, 2021, 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC), P7, DOI 10.1109/ICSGRC53186.2021.9515227
Hemmatian A, 2023, J BUILD ENG, V63, DOI 10.1016/j.jobe.2022.105474
Nguyen H, 2021, CONSTR BUILD MATER, V266, DOI 10.1016/j.conbuildmat.2020.120950
Hossain R, 2023, WORLD NEUROSURG, V175, P57, DOI [10.1016/j.wneu.2023.03.115, 10.1016/J.WnEU.2023.03.115]
Hu Y, 2023, MATER TODAY COMMUN, V36, DOI 10.1016/j.mtcomm.2023.106467
Huang H, 2022, SOIL DYN EARTHQ ENG, V163, DOI 10.1016/j.soildyn.2022.107499
Huang H, 2022, ENG STRUCT, V251, DOI 10.1016/j.engstruct.2021.113479
Huang H, 2021, STRUCT INFRASTRUCT E, V17, P1210, DOI 10.1080/15732479.2020.1801768
Huang H, 2021, J BUILD ENG, V39, DOI 10.1016/j.jobe.2021.102266
Huang H, 2020, J STRUCT ENG, V146, DOI 10.1061/(ASCE)ST.1943-541X.0002725
Huang X, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041691
Iftikhar B, 2023, J MATER RES TECHNOL, V25, P5705, DOI 10.1016/j.jmrt.2023.07.034
Iftikhar B, 2022, J CLEAN PROD, V348, DOI 10.1016/j.jclepro.2022.131285
Ilyas I, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14091789
Ilyas I, 2021, MATERIALS, V14, DOI 10.3390/ma14237134
Imran H, 2022, MATERIALS, V15, DOI 10.3390/ma15010317
Iqtidar A, 2021, CRYSTALS, V11, DOI 10.3390/cryst11040352
Ishaque Mohammed, 2022, 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), P749, DOI 10.23919/INDIACom54597.2022.9763122
Jeon JS, 2014, EARTHQ ENG STRUCT D, V43, P2075, DOI 10.1002/eqe.2437
Jiao HB, 2023, MATER TODAY COMMUN, V35, DOI 10.1016/j.mtcomm.2023.106335
Kang MC, 2021, CONSTR BUILD MATER, V266, DOI 10.1016/j.conbuildmat.2020.121117
Sharafshadeh BK, 2023, BUILDINGS-BASEL, V13, DOI 10.3390/buildings13010125
Kashifi M.T., 2023, Asian J Civ Eng, DOI [10.1007/s42107-023-00769-0, DOI 10.1007/S42107-023-00769-0]
Kaur S, 2022, MATER TODAY-PROC, V65, P3780, DOI 10.1016/j.matpr.2022.06.484
KERNER EH, 1961, B MATH BIOPHYS, V23, P141, DOI 10.1007/BF02477468
Keshtegar B, 2021, APPL SOFT COMPUT, V112, DOI 10.1016/j.asoc.2021.107739
Khan K, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14153065
Khan K, 2022, MATERIALS, V15, DOI 10.3390/ma15124108
Khan K, 2022, MATERIALS, V15, DOI 10.3390/ma15113762
Khan K, 2022, MATERIALS, V15, DOI 10.3390/ma15103430
Khan MA, 2023, CONSTR BUILD MATER, V394, DOI 10.1016/j.conbuildmat.2023.132012
Khan MA, 2022, J CLEAN PROD, V350, DOI 10.1016/j.jclepro.2022.131364
Nguyen KT, 2020, CONSTR BUILD MATER, V247, DOI 10.1016/j.conbuildmat.2020.118581
Kumar A, 2023, EXPERT SYST APPL, V216, DOI 10.1016/j.eswa.2022.119497
Kumar P, 2021, IEEE ACCESS, V9, P112312, DOI 10.1109/ACCESS.2021.3102647
Kumar R, 2024, INT J INTERACT DES M, DOI 10.1007/s12008-024-01830-1
Kumar R, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22114276
Kumar R, 2022, ARCH COMPUT METHOD E, V29, P2781, DOI 10.1007/s11831-021-09675-7
Kumar R, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105617
Li JW, 2022, MATER TODAY COMMUN, V33, DOI 10.1016/j.mtcomm.2022.104615
Li K, 2021, J MATER CIVIL ENG, V33, DOI 10.1061/(ASCE)MT.1943-5533.0003843
Liu C, 2021, TUNN UNDERGR SP TECH, V111, DOI 10.1016/j.tust.2021.103857
Liu GL, 2023, J MATER RES TECHNOL, V26, P1808, DOI 10.1016/j.jmrt.2023.07.222
Liu KH, 2023, J BUILD ENG, V63, DOI 10.1016/j.jobe.2022.105570
Liu Y, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15129170
Lu DC, 2023, J ENG MECH, V149, DOI 10.1061/JENMDT.EMENG-7206
Lu DC, 2017, INT J IMPACT ENG, V103, P124, DOI 10.1016/j.ijimpeng.2017.01.011
Luo Y, 2023, METALS-BASEL, V13, DOI 10.3390/met13081402
Lyu ZQ, 2022, MATERIALS, V15, DOI 10.3390/ma15041477
Mangalathu S, 2018, ENG STRUCT, V160, P85, DOI 10.1016/j.engstruct.2018.01.008
Marani A, 2023, ENG APPL ARTIF INTEL, V118, DOI 10.1016/j.engappai.2022.105652
Marani A, 2022, ENG STRUCT, V257, DOI 10.1016/j.engstruct.2022.114083
Marani A, 2020, MATERIALS, V13, DOI 10.3390/ma13214757
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
MURPHY LJ, 1973, J AM SOC INFORM SCI, V24, P461, DOI 10.1002/asi.4630240607
Nafees A, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14081583
Nafees A, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14010030
Nafees A, 2021, MATERIALS, V14, DOI 10.3390/ma14247531
NARANAN S, 1970, NATURE, V227, P631, DOI 10.1038/227631a0
Naser AH, 2022, CASE STUD CONSTR MAT, V17, DOI 10.1016/j.cscm.2022.e01262
Nazar S, 2023, DEV BUILT ENVIRON, V13, DOI 10.1016/j.dibe.2022.100113
Nazar S, 2023, J MATER RES TECHNOL, V24, P100, DOI 10.1016/j.jmrt.2023.02.180
Nazar S, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12122160
Nazar S, 2022, MATER TODAY COMMUN, V32, DOI 10.1016/j.mtcomm.2022.103964
Nguyen NH, 2021, CONSTR BUILD MATER, V304, DOI 10.1016/j.conbuildmat.2021.124467
Trung NT, 2019, STRUCT ENG MECH, V70, P639, DOI 10.12989/sem.2019.70.5.639
Hoang ND, 2020, NEURAL COMPUT APPL, V32, P7289, DOI 10.1007/s00521-019-04258-x
Nhat-Duc Hoang, 2023, J. Soft Comput. Civ. Eng., V7, P114, DOI DOI 10.22115/SCCE.2022.349837.1485
Nordin N, 2024, MANAG REV Q, V74, P171, DOI 10.1007/s11301-022-00297-2
Nunez I, 2020, MATERIALS, V13, DOI 10.3390/ma13194331
Ouyang B, 2020, ACI MATER J, V117, P125, DOI 10.14359/51728128
Ouyang BY, 2021, ENG RES EXPRESS, V3, DOI 10.1088/2631-8695/abe344
Oyebisi S, 2023, CONSTR BUILD MATER, V400, DOI 10.1016/j.conbuildmat.2023.132606
Pak H, 2022, ENG STRUCT, V266, DOI 10.1016/j.engstruct.2022.114579
Parida L, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22249920
Plevris V, 2022, CONSTR BUILD MATER, V328, DOI 10.1016/j.conbuildmat.2022.126899
Prakaash AS, 2021, INT J WAVELETS MULTI, V19, DOI 10.1142/S0219691320500745
Prakash M., 2019, Int. J. Recent Technol. Eng., V7, P988
Qin X, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15086640
Rahchamani G, 2022, COMPLEXITY, V2022, DOI 10.1155/2022/6322834
Rahman J, 2021, ENG STRUCT, V233, DOI 10.1016/j.engstruct.2020.111743
Rani S, 2022, MATER TODAY-PROC, V60, P1800, DOI 10.1016/j.matpr.2021.12.469
Ranjbar I, 2022, STRUCT CONCRETE, V23, P2405, DOI 10.1002/suco.202100199
Rathakrishnan V, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-12890-2
Roman-Naranjo P, 2023, J BIOMED INFORM, V143, DOI 10.1016/j.jbi.2023.104429
Sabour MR, 2021, ENVIRON PROCESS, V8, P1601, DOI 10.1007/s40710-021-00542-y
Setiawan A.A., 2022, ARPN J. Eng. Appl. Sci., V17, P1956
Shah MI, 2022, CONSTR BUILD MATER, V314, DOI 10.1016/j.conbuildmat.2021.125634
Shah MI, 2021, ADV CIV ENG, V2021, DOI 10.1155/2021/6682283
Shah MI, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13052867
Shah SL, 2023, J MATER RES TECHNOL, V25, P5720, DOI 10.1016/j.jmrt.2023.07.041
Shaikhina T, 2017, ARTIF INTELL MED, V75, P51, DOI 10.1016/j.artmed.2016.12.003
Shamsabadi EA, 2022, CONSTR BUILD MATER, V324, DOI 10.1016/j.conbuildmat.2022.126592
Shang MJ, 2022, MATERIALS, V15, DOI 10.3390/ma15020647
Shariati M, 2022, ENG COMPUT-GERMANY, V38, P757, DOI 10.1007/s00366-020-01081-0
Shariati M, 2021, ENG COMPUT-GERMANY, V37, P2089, DOI 10.1007/s00366-019-00930-x
Shariati M, 2019, STEEL COMPOS STRUCT, V33, P319, DOI 10.12989/scs.2019.33.3.319
She AQ, 2023, STRUCTURES, V57, DOI 10.1016/j.istruc.2023.105289
Sidhu AS, 2022, MATER TODAY-PROC, V50, P1248, DOI 10.1016/j.matpr.2021.08.132
Song HW, 2021, CONSTR BUILD MATER, V308, DOI 10.1016/j.conbuildmat.2021.125021
Song HW, 2021, MATERIALS, V14, DOI 10.3390/ma14164518
Song Y, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12010361
Su Y, 2023, AUTOMAT CONSTR, V149, DOI 10.1016/j.autcon.2023.104776
Sun JB, 2022, J MATER RES TECHNOL, V18, P1391, DOI 10.1016/j.jmrt.2022.02.123
Sun JB, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12010065
Sun JB, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11156686
Takahashi M., 2020, J. Struct. Constr. Eng., V85, P1479, DOI [10.3130/AIJS.85.1479, DOI 10.3130/AIJS.85.1479]
Tanhadoust A, 2023, CONSTR BUILD MATER, V362, DOI 10.1016/j.conbuildmat.2022.129703
Tanyildizi H, 2022, CONSTR BUILD MATER, V319, DOI 10.1016/j.conbuildmat.2021.126146
Nguyen T, 2019, COMPUT-AIDED CIV INF, V34, P316, DOI 10.1111/mice.12422
Turk K, 2023, FIRE TECHNOL, V59, P2877, DOI 10.1007/s10694-023-01457-w
Ullah HS, 2022, J BUILD ENG, V56, DOI 10.1016/j.jobe.2022.104746
Ullah HS, 2022, MATERIALS, V15, DOI 10.3390/ma15093166
Wang BC, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122110911
Wang QC, 2022, CASE STUD CONSTR MAT, V17, DOI 10.1016/j.cscm.2022.e01243
Wang Y, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10144724
Wei JA, 2023, ENG STRUCT, V278, DOI 10.1016/j.engstruct.2022.115500
Williams K, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0288469
Wu RL, 2023, J INFORMETR, V17, DOI 10.1016/j.joi.2023.101436
Xi B, 2023, MATER TODAY COMMUN, V35, DOI 10.1016/j.mtcomm.2023.106403
Xie WL, 2023, CASE STUD CONSTR MAT, V18, DOI 10.1016/j.cscm.2023.e02004
Xu JJ, 2020, J BUILD ENG, V30, DOI 10.1016/j.jobe.2020.101308
Xu Y, 2021, MATERIALS, V14, DOI 10.3390/ma14227034
Yajie L., 2023, Indonesian Journal of Electrical Engineering Computer Science, V32, P1712, DOI [10.11591/IJEECS.V32.I3.PP1712-1723, DOI 10.11591/IJEECS.V32.I3.PP1712-1723]
Yang DW, 2023, J MATER RES TECHNOL, V24, P7198, DOI 10.1016/j.jmrt.2023.04.250
Yang L, 2024, INT J INTERACT DES M, DOI 10.1007/s12008-024-01765-7
Yao XF, 2023, CONSTR BUILD MATER, V375, DOI 10.1016/j.conbuildmat.2023.130898
Yaseen ZM, 2018, ADV ENG SOFTW, V115, P112, DOI 10.1016/j.advengsoft.2017.09.004
Yosri AM, 2023, CASE STUD CONSTR MAT, V18, DOI 10.1016/j.cscm.2023.e02096
Young BA, 2019, CEMENT CONCRETE RES, V115, P379, DOI 10.1016/j.cemconres.2018.09.006
Yuan XZ, 2022, MATERIALS, V15, DOI 10.3390/ma15082823
Yue JG, 2021, CEMENT CONCRETE COMP, V123, DOI 10.1016/j.cemconcomp.2021.104205
Zandifaez P, 2023, CONSTR BUILD MATER, V391, DOI 10.1016/j.conbuildmat.2023.131851
Zeng HY, 2024, CONSTR BUILD MATER, V412, DOI 10.1016/j.conbuildmat.2024.134863
Zhang CW, 2024, INT J STRUCT STAB DY, V24, DOI 10.1142/S0219455424500226
Zhang CW, 2023, SCI CHINA TECHNOL SC, V66, P390, DOI 10.1007/s11431-022-2228-0
Zhang JF, 2022, ENG COMPUT-GERMANY, V38, P1293, DOI 10.1007/s00366-020-01076-x
Zhang JF, 2020, CONSTR BUILD MATER, V253, DOI 10.1016/j.conbuildmat.2020.119208
Zhang JF, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120665
Zhang LV, 2022, CONSTR BUILD MATER, V316, DOI 10.1016/j.conbuildmat.2021.126103
Zhao WJ, 2023, CONSTR BUILD MATER, V366, DOI 10.1016/j.conbuildmat.2022.130146
Zheng W, 2023, MATER TODAY COMMUN, V35, DOI 10.1016/j.mtcomm.2023.105901
Zheng W, 2023, J BUILD ENG, V70, DOI 10.1016/j.jobe.2023.106479
Zhou X, 2022, COMPUT METHOD APPL M, V390, DOI 10.1016/j.cma.2021.114356
Zhu YZ, 2022, CRYSTALS, V12, DOI 10.3390/cryst12050569
Zou Y, 2022, GELS-BASEL, V8, DOI 10.3390/gels8050271
NR 228
TC 0
Z9 0
U1 13
U2 13
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1568-4946
EI 1872-9681
J9 APPL SOFT COMPUT
JI Appl. Soft. Comput.
PD OCT
PY 2024
VL 164
AR 111956
DI 10.1016/j.asoc.2024.111956
EA JUL 2024
PG 28
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA YG7E5
UT WOS:001267393300001
DA 2024-09-05
ER
PT J
AU Daud, A
Ghaffar, S
Amjad, T
AF Daud, Ali
Ghaffar, Sehrish
Amjad, Tehmina
TI Citation Count Is Not Enough: Citation's Context-Based Scientific Impact
Evaluation
SO IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS
LA English
DT Article; Early Access
DE Sentiment analysis; Task analysis; Blogs; Software; Social networking
(online); Protocols; Prediction algorithms; Article ranking; citation
context; conflict of interest; context-based article impact factor
(CBAIF); impact evaluation; sentiment analysis
ID SENTIMENT ANALYSIS; RANKING AUTHORS
AB Qualitative analysis of citations received by a scientific manuscript is a challenging task in the field of citation analysis. In most cases, the existing approaches that involve citations for the scientific impact evaluation normally employ a quantitative parameter, such as the number of received citations, while ignoring the qualitative feature, such as the context of citations, while, in reality, a received citation might hold positive feedback and negative or neutral feedback. In this study, a measure is purposed for the scientific evaluation of the articles based on the context of the citations named the context-based article impact factor (CBAIF). CBAIF not only considers the positive, negative, or neutral context of the citations but also involves the citing and cited author's conflict-of-interest relationship for the evaluation of their scientific impact. With the help of experimentation, it is observed that CBAIF performs a fair ranking of articles based on citation's context, whether it is cited positively or being criticized by some authors. Experimental results show that the CBAIF value with the context of citations revealed accurate results rather than the article impact factor (AIF) value without the context of citations.
C1 [Daud, Ali] Abu Dhabi Sch Management, Abu Dhabi, U Arab Emirates.
[Ghaffar, Sehrish] Int Islamic Univ, Islamabad 44000, Pakistan.
[Amjad, Tehmina] Int Islamic Univ, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan.
C3 International Islamic University, Pakistan; International Islamic
University, Pakistan
RP Amjad, T (corresponding author), Int Islamic Univ, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan.
EM tehmina.amj@gmail.com
RI Amjad, Tehmina/GLS-0209-2022; Daud, Ali/ABA-8422-2020
OI Daud, Ali/0000-0002-8284-6354
CR Amjad T, 2022, LIBR HI TECH, V40, P685, DOI 10.1108/LHT-05-2021-0154
Amjad T, 2021, SCIENTOMETRICS, V126, P4333, DOI 10.1007/s11192-021-03930-1
Amjad T, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P373, DOI 10.1145/3184558.3186358
Amjad T, 2020, SCIENTOMETRICS, V122, P915, DOI 10.1007/s11192-019-03334-2
Amjad T, 2018, LIBR HI TECH, V36, P97, DOI 10.1108/LHT-05-2017-0090
Amjad T, 2017, MALAYS J LIBR INF SC, V22, P69, DOI 10.22452/mjlis.vol22no1.6
Amjad T, 2016, KUWAIT J SCI, V43, P101
Amjad T, 2016, INFORM PROCESS MANAG, V52, P374, DOI 10.1016/j.ipm.2015.12.001
[Anonymous], 2004, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics - ACL'04, DOI DOI 10.3115/1218955.1218990
Anupkant S, 2017, PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND COMPUTATIONAL INTELLIGENCE (ICBDAC), P348, DOI 10.1109/ICBDACI.2017.8070862
Bai XM, 2017, INFORMATION, V8, DOI 10.3390/info8030073
Bai XM, 2017, IEEE ACCESS, V5, P17607, DOI 10.1109/ACCESS.2017.2740226
Bai XM, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P9, DOI 10.1145/2872518.2889383
Bal D, 2011, LECT NOTES COMPUT SC, V6997, P129, DOI 10.1007/978-3-642-24434-6_10
Boiy E, 2009, INFORM RETRIEVAL, V12, P526, DOI 10.1007/s10791-008-9070-z
Bouyssou D, 2016, J INFORMETR, V10, P183, DOI 10.1016/j.joi.2015.12.006
Cavalcanti DC, 2011, PROC INT C TOOLS ART, P156, DOI 10.1109/ICTAI.2011.32
Daud A, 2019, LIBR HI TECH, V37, P8, DOI 10.1108/LHT-03-2018-0042
Dunaiski M, 2018, J INFORMETR, V12, P679, DOI 10.1016/j.joi.2018.06.004
Esuli Andrea., 2006, SENTIWORDNET PUBLICL
Giuffrida C, 2019, J INFORMETR, V13, P500, DOI 10.1016/j.joi.2019.02.008
Hu K, 2019, INFORM PROCESS MANAG, V56, P1185, DOI 10.1016/j.ipm.2019.02.014
Kim S., 2004, P 20 INT C COMP LING, V4, P1367, DOI DOI 10.3115/1220355.1220555
Kreutzer J., 2013, Opinion Mining Using SentiWordNet'
Liu HF, 2015, IEEE ACCESS, V3, P1695, DOI 10.1109/ACCESS.2015.2481320
Liu J, 2017, COMM COM INF SC, V761, P334, DOI 10.1007/978-981-10-6370-1_33
Vilares D, 2017, INFORM PROCESS MANAG, V53, P595, DOI 10.1016/j.ipm.2017.01.004
NR 27
TC 0
Z9 0
U1 3
U2 27
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2329-924X
J9 IEEE T COMPUT SOC SY
JI IEEE Trans. Comput. Soc. Syst.
PD 2022 AUG 5
PY 2022
DI 10.1109/TCSS.2022.3193508
EA AUG 2022
PG 7
WC Computer Science, Cybernetics; Computer Science, Information Systems
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 3T7ZW
UT WOS:000840490800001
DA 2024-09-05
ER
PT C
AU Zhao, ZB
Gao, Q
Huang, LY
AF Zhao, Zhenbing
Gao, Qiang
Huang, Liyan
GP IEEE
TI Research on the Order and Specific Component of the Output Signals of
Independent Component Analysis
SO 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23
LA English
DT Proceedings Paper
CT 7th World Congress on Intelligent Control and Automation
CY JUN 25-27, 2008
CL Chongqing, PEOPLES R CHINA
DE Independent component analysis; Independent component ordering; Apriori
knowledge
ID CONSTANT-MODULUS ALGORITHM; NON-GAUSSIAN SIGNALS; BLIND
AB Independent Component Analysis (ICA) is a new signal processing technique that can recover source signals from the observed mixtures. In some applications of ICA, it is desired that the order of the recovered source signals can be predicted and the component which we are interested in can be extracted separately. But the order of recovered source signals is unpredictable. Facing this problem, a new algorithm based on ICA is presented for determining the order of recovered source signals in this paper. First it gives a brief introduction about the problem of ICA, and then by using the observed vectors and apriori knowledge of components from the first run, it also constructs the linear system of equations statistically and achieves the separating matrix. The results of simulation show that the proposed method can separate the source signals in specified order effectively.
C1 [Zhao, Zhenbing; Gao, Qiang] N China Elect Power Univ, Sch Elect & Elect Engn, Baoding 071003, Hebei Province, Peoples R China.
[Huang, Liyan] Tianjin Elect Corp, Elect Power Commun Co, Tianjin 300010, Peoples R China.
C3 North China Electric Power University
RP Zhao, ZB (corresponding author), N China Elect Power Univ, Sch Elect & Elect Engn, Baoding 071003, Hebei Province, Peoples R China.
EM diligencyzhao@yahoo.com.cn; gaoqiang0001@sohu.com; huangliyan08@163.com
CR [Anonymous], P INT C ART NEUR NET
[Anonymous], INTRO RANDOM PROCESS
BACK AD, 1999, P INT JOINT C NEUR N, V2, P989, DOI DOI 10.1109/IJCNN.1999.831089
BINGHAM E, 2000, NEURAL SYSTEMS, V10, P1
Cheung YM, 2001, NEUROCOMPUTING, V41, P145, DOI 10.1016/S0925-2312(00)00358-1
Cichocki A, 1997, ELECTRON LETT, V33, P64, DOI 10.1049/el:19970060
COMON P, 1994, SIGNAL PROCESS, V36, P287, DOI 10.1016/0165-1684(94)90029-9
EDWARD PC, 2003, INTRO STOCHASTIC PRO
HYVARINEN A, 1997, NEURAL NETWORKS SIGN, V7, P388
JUTTEN C, 1991, SIGNAL PROCESS, V24, P1, DOI 10.1016/0165-1684(91)90079-X
KANNAN A, 1979, INTRO STOCHASTIC PRO
Lee TW, 1999, NEURAL COMPUT, V11, P417, DOI 10.1162/089976699300016719
Moreau E, 2000, IEEE T SIGNAL PROCES, V48, P3248, DOI 10.1109/78.875482
Sheinvald J, 1998, IEEE T SIGNAL PROCES, V46, P1878, DOI 10.1109/78.700958
ZHU XL, 2003, 4 INT S IND COMP AN
NR 15
TC 0
Z9 0
U1 1
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4244-2113-8
PY 2008
BP 3569
EP +
DI 10.1109/WCICA.2008.4593491
PG 2
WC Automation & Control Systems; Computer Science, Artificial Intelligence;
Computer Science, Cybernetics; Engineering, Electrical & Electronic;
Robotics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Computer Science; Engineering; Robotics
GA BIJ02
UT WOS:000259965702210
DA 2024-09-05
ER
PT J
AU Umer, M
Sadiq, S
Missen, MMS
Hameed, Z
Aslam, Z
Siddique, MA
Nappi, M
AF Umer, Muhammad
Sadiq, Saima
Missen, Malik Muhammad Saad
Hameed, Zahid
Aslam, Zahid
Siddique, Muhammad Abubakar
Nappi, Michele
TI Scientific papers citation analysis using textual features and SMOTE
resampling techniques
SO PATTERN RECOGNITION LETTERS
LA English
DT Article
DE Citation sentiment analysis; Machine learning; Feature engineering;
TF-IDF; SMOTE
ID SENTIMENT ANALYSIS; IMPACT; CLASSIFICATION; EXTRACTION; INDEX
AB Ascertaining the impact of research is significant for the research community and academia of all disciplines. The only prevalent measure associated with the quantification of research quality is the citationcount. Although a number of citations play a significant role in academic research, sometimes citations can be biased or made to discuss only the weaknesses and shortcomings of the research. By considering the sentiment of citations and recognizing patterns in text can aid in understanding the opinion of the peer research community and will also help in quantifying the quality of research articles. Efficient feature representation combined with machine learning classifiers has yielded significant improvement in text classification. However, the effectiveness of such combinations has not been analyzed for citation sentiment analysis. This study aims to investigate pattern recognition using machine learning models in combination with frequency-based and prediction-based feature representation techniques with and without using Synthetic Minority Oversampling Technique (SMOTE) on publicly available citation sentiment dataset. Sentiment of citation instances are classified into positive, negative or neutral. Results indicate that the Extra tree classifier in combination with Term Frequency-Inverse Document Frequency achieved 98.26% accuracy on the SMOTE-balanced dataset. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
C1 [Umer, Muhammad; Sadiq, Saima; Siddique, Muhammad Abubakar] Khwaja Fareed Univ Engn & Informat Technol, Dept Comp Sci, Rahim Yar Khan, Pakistan.
[Umer, Muhammad; Missen, Malik Muhammad Saad; Aslam, Zahid] Islamia Univ Bahawalpur, Dept Comp Sci & Informat Technol, Bahawalpur 63100, Pakistan.
[Nappi, Michele] Univ Salerno, Dept Comp Sci, Via Giovanni Paolo II 132, I-84084 Salerno, Italy.
[Hameed, Zahid] Khwaja Fareed Univ Engn & Informat Technol, Dept Management Sci, Rahim Yar Khan, Pakistan.
C3 Khwaja Fareed University of Engineering & Information Technology,
Pakistan; Islamia University of Bahawalpur; University of Salerno;
Khwaja Fareed University of Engineering & Information Technology,
Pakistan
RP Umer, M (corresponding author), Khwaja Fareed Univ Engn & Informat Technol, Dept Comp Sci, Rahim Yar Khan, Pakistan.; Umer, M; Missen, MMS (corresponding author), Islamia Univ Bahawalpur, Dept Comp Sci & Informat Technol, Bahawalpur 63100, Pakistan.
EM umersabir1996@gmail.com; s.kamrran@gmail.com; Saad.missen@iub.edu.pk;
zahid.hameed@kfueit.edu.pk; zahid.aslam@iub.edu.pk;
abubakar.ahmadani@gmail.com; mnappi@unisa.it
RI Missen, Malik Muhammad Saad/LEM-0611-2024; Umer, Muhammad/AAX-4594-2020;
Umer, Muhammad/KHU-2339-2024
OI Umer, Muhammad/0000-0002-6015-9326; Umer, Muhammad/0009-0001-8751-6100;
Hameed, Zahid/0000-0002-2413-6143
CR Abu-Jbara A., 2013, NAACL, P596
Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], MACHINE LEARNING
Athar A., 2011, P ACL 2011 STUD SESS, P81
Athar Awais., 2012, PROC ACL WORKSHOP DE, P18
Baccianella S, 2010, LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION
Bar-Ilan J, 2017, SCIENTOMETRICS, V113, P547, DOI 10.1007/s11192-017-2242-0
Bergstrom C.T., 2008, ASSESSING CITATIONS
Bornmann L., 2014, WHICH KIND PAPERS HA
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
BOYD CR, 1987, J TRAUMA, V27, P370, DOI 10.1097/00005373-198704000-00005
Breiman L., 1984, CLASSIFICATION REGRE, DOI DOI 10.1201/9781315139470
CANO V, 1989, J AM SOC INFORM SCI, V40, P284, DOI 10.1002/(SICI)1097-4571(198907)40:4<284::AID-ASI10>3.0.CO;2-Z
Chaturvedi I, 2019, PATTERN RECOGN LETT, V125, P264, DOI 10.1016/j.patrec.2019.04.024
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Devi BL, 2020, ADV INTELL SYST COMP, V1054, P321, DOI 10.1007/978-981-15-0135-7_31
Falagas ME, 2008, FASEB J, V22, P2623, DOI 10.1096/fj.08-107938
Freund Y., 1999, Journal of Japanese Society for Artificial Intelligence, V14, P771
GARDNER WA, 1984, SIGNAL PROCESS, V6, P113, DOI 10.1016/0165-1684(84)90013-6
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Ghosh S., 2016, INT C INT TEXT PROC, P292
He HB, 2008, IEEE IJCNN, P1322, DOI 10.1109/IJCNN.2008.4633969
Hernández-Alvarez M, 2015, 2015 IEEE 18TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), P307, DOI 10.1109/CSE.2015.21
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hjerppe Roland., 1980, A Bibliography of Bibliometrics and Citation Indexing and Analysis
Huggett S, 2013, ATHEROSCLEROSIS, V230, P275, DOI 10.1016/j.atherosclerosis.2013.07.051
Ishaku A., 2020, J MATH BIOL, V81, P209, DOI DOI 10.1007/s00285-020-01508-8
Jokar K., 2021, SCIENTOMETRICS RES J
Kochhar SK, 2020, ICT EXPRESS, V6, P253, DOI 10.1016/j.icte.2020.02.001
Leydesdorff L, 2010, J AM SOC INF SCI TEC, V61, P2365, DOI 10.1002/asi.21371
Lim TS, 2000, MACH LEARN, V40, P203, DOI 10.1023/A:1007608224229
Lindsay J. Michael, 2016, Journal of Electronic Resources in Medical Libraries, V13, P8, DOI 10.1080/15424065.2016.1142836
Ma Z, 2016, P 5 WORKSH COMP LING, P122, DOI [10.18653/v1/w16-0420, DOI 10.18653/V1/W16-0420]
Melero R, 2015, BIOCHEM MEDICA, V25, P152, DOI 10.11613/BM.2015.016
Meng R., 2017, ICONFERENCE 2017 P
Mercier D., 2021, IMPACTCITE XLNET BAS
Mercier D., 2020, ARXIV PREPRINT ARXIV
Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880
Park S, 2015, PATTERN RECOGN LETT, V56, P38, DOI 10.1016/j.patrec.2015.01.004
Sadiq S, 2021, FUTURE GENER COMP SY, V114, P120, DOI 10.1016/j.future.2020.07.050
Scholkopf B., 1996, Artificial Neural Networks - ICANN 96. 1996 International Conference Proceedings, P47
Sendhilkumar S., 2013, P INT C ICCSEA, P411
Sharaff A, 2019, ADV INTELL SYST, V924, P189, DOI 10.1007/978-981-13-6861-5_17
Shi XL, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006547
SIEVERT ME, 1989, J AM SOC INFORM SCI, V40, P334, DOI 10.1002/(SICI)1097-4571(198909)40:5<334::AID-ASI6>3.0.CO;2-S
SMALL H, 1989, J AM SOC INFORM SCI, V40, P152, DOI 10.1002/(SICI)1097-4571(198905)40:3<152::AID-ASI3>3.0.CO;2-K
SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111
Sula CA, 2014, LIT LINGUIST COMPUT, V29, P452, DOI 10.1093/llc/fqu019
West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790
Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334
Yang L, 2020, IEEE ACCESS, V8, P23522, DOI 10.1109/ACCESS.2020.2969854
Yousaf A, 2020, IEEE ACCESS
Yousif A, 2019, ARTIF INTELL REV, V52, P1805, DOI 10.1007/s10462-017-9597-8
Zhao JH, 2020, PATTERN RECOGN LETT, V138, P397, DOI 10.1016/j.patrec.2020.07.035
NR 55
TC 23
Z9 23
U1 2
U2 23
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0167-8655
EI 1872-7344
J9 PATTERN RECOGN LETT
JI Pattern Recognit. Lett.
PD OCT
PY 2021
VL 150
BP 250
EP 257
DI 10.1016/j.patrec.2021.07.009
EA AUG 2021
PG 8
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA UO5DU
UT WOS:000694715500011
OA hybrid, Green Published
DA 2024-09-05
ER
PT J
AU He, CC
Wu, J
Zhang, QP
AF He, Chaocheng
Wu, Jiang
Zhang, Qingpeng
TI Proximity-aware research leadership recommendation in research
collaboration via deep neural networks
SO JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
ID SCIENTIFIC COLLABORATION; CHINA; INSTITUTIONS; FUSION
AB Collaborator recommendation is of great significance for facilitating research collaboration. Proximities have been demonstrated to be significant factors and determinants of research collaboration. Research leadership is associated with not only the capability to integrate resources to launch and sustain the research project but also the production and academic impact of the collaboration team. However, existing studies mainly focus on social or cognitive proximity, failing to integrate critical proximities comprehensively. Besides, existing studies focus on recommending relationships among all the coauthors, ignoring leadership in research collaboration. In this article, we propose a proximity-aware research leadership recommendation (PRLR) model to systematically integrate critical node attribute information (critical proximities) and network features to conduct research leadership recommendation by predicting the directed links in the research leadership network. PRLR integrates cognitive, geographical, and institutional proximity as node attribute information and constructs a leadership-aware coauthorship network to preserve the research leadership information. PRLR learns the node attribute information, the local network features, and the global network features with an autoencoder model, a joint probability constraint, and an attribute-aware skip-gram model, respectively. Extensive experiments and ablation studies have been conducted, demonstrating that PRLR significantly outperforms the state-of-the-art collaborator recommendation models in research leadership recommendation.
C1 [He, Chaocheng; Wu, Jiang] Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China.
[He, Chaocheng; Zhang, Qingpeng] City Univ Hong Kong, Sch Data Sci, Kowloon, Hong Kong, Peoples R China.
C3 Wuhan University; City University of Hong Kong
RP Wu, J (corresponding author), Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China.; Zhang, QP (corresponding author), City Univ Hong Kong, Sch Data Sci, Kowloon, Hong Kong, Peoples R China.
EM jiangw@whu.edu.cn; qingpeng.zhang@cityu.edu.hk
RI Zhang, Qingpeng/D-4682-2011
OI Zhang, Qingpeng/0000-0002-6819-0686; He, Chaocheng/0000-0002-9885-0331
CR Boschma RA, 2005, REG STUD, V39, P61, DOI 10.1080/0034340052000320887
Brandao MA, 2013, PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), P833
Broekel T, 2012, J ECON GEOGR, V12, P409, DOI 10.1093/jeg/lbr010
Fernández A, 2016, SCIENTOMETRICS, V106, P1073, DOI 10.1007/s11192-015-1819-8
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Gui QC, 2018, GROWTH CHANGE, V49, P532, DOI 10.1111/grow.12245
He CC, 2020, J ASSOC INF SCI TECH, V71, P1341, DOI 10.1002/asi.24331
Hoekman J, 2010, RES POLICY, V39, P662, DOI 10.1016/j.respol.2010.01.012
Huang P, 2018, DESTECH TRANS ENVIR
Järvelin K, 2002, ACM T INFORM SYST, V20, P422, DOI 10.1145/582415.582418
Jeck T, 2020, MORAV GEOGR REP, V28, P98, DOI 10.2478/mgr-2020-0008
Klavans R, 2010, SCIENTOMETRICS, V82, P539, DOI 10.1007/s11192-010-0188-6
Kong XJ, 2017, SCIENTOMETRICS, V113, P369, DOI 10.1007/s11192-017-2485-9
Kong XJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148492
Li J, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1209, DOI 10.1145/2567948.2579034
Liang L., 2006, INT WORKSH WEB
Liu Z, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1870, DOI 10.1145/3219819.3220050
Ma YF, 2020, P NATL ACAD SCI USA, V117, P14077, DOI 10.1073/pnas.1915516117
Malmgren RD, 2010, NATURE, V465, P622, DOI 10.1038/nature09040
Melitz J, 2014, J INT ECON, V93, P351, DOI 10.1016/j.jinteco.2014.04.004
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Nooteboom B., 2000, LEARNING INNOVATION, DOI [10.1093/acprof:oso/9780199241002.001.0001, DOI 10.1093/ACPROF:OSO/9780199241002.001.0001]
Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325
Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732
Petruzzelli AM, 2011, TECHNOVATION, V31, P309, DOI 10.1016/j.technovation.2011.01.008
Chuan PM, 2018, APPL INTELL, V48, P2470, DOI 10.1007/s10489-017-1086-x
Plotnikova T, 2014, SCIENTOMETRICS, V98, P1173, DOI 10.1007/s11192-013-1182-6
Pradhan T, 2020, KNOWL-BASED SYST, V197, DOI 10.1016/j.knosys.2020.105784
Sekara V, 2018, P NATL ACAD SCI USA, V115, P12603, DOI 10.1073/pnas.1800471115
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
SINNOTT RW, 1984, SKY TELESCOPE, V68, P159
Tang J., 2012, 18 ACM SIGKDD INT C, P1285, DOI DOI 10.1145/2339530.2339730
Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093
Wang CP, 2020, ACM T KNOWL DISCOV D, V14, DOI 10.1145/3391298
Wang CK, 2019, IEEE T KNOWL DATA EN, V31, P2277, DOI 10.1109/TKDE.2018.2877748
Wang LL, 2017, RES EVALUAT, V26, P124, DOI 10.1093/reseval/rvx009
Wang WC, 2014, SCIENTOMETRICS, V98, P1535, DOI 10.1007/s11192-013-1072-y
Wang XW, 2013, SCIENTOMETRICS, V95, P885, DOI 10.1007/s11192-012-0877-4
Xia F, 2014, IEEE T EMERG TOP COM, V2, P364, DOI 10.1109/TETC.2014.2356505
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
Zhang CY, 2020, IEEE T IND INFORM, V16, P2707, DOI 10.1109/TII.2019.2947066
Zhang C, 2017, SCIENTOMETRICS, V113, P1129, DOI 10.1007/s11192-017-2513-9
Zhang JZ, 2017, INFORM PROCESS MANAG, V53, P42, DOI 10.1016/j.ipm.2016.06.005
Zhang Y, 2019, SCIENTOMETRICS, V121, P399, DOI 10.1007/s11192-019-03206-9
Zhang Z, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3155
Zhao SF, 2020, IEICE T INF SYST, VE103D, P71, DOI 10.1587/transinf.2019EDP7108
Zhou JL, 2018, SCIENTOMETRICS, V114, P1327, DOI 10.1007/s11192-017-2619-0
Zhou X, 2017, INFORM RETRIEVAL J, V20, P317, DOI 10.1007/s10791-017-9300-3
NR 48
TC 16
Z9 16
U1 8
U2 94
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2330-1635
EI 2330-1643
J9 J ASSOC INF SCI TECH
PD JAN
PY 2022
VL 73
IS 1
BP 70
EP 89
DI 10.1002/asi.24546
EA JUN 2021
PG 20
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA XJ2PG
UT WOS:000667522800001
DA 2024-09-05
ER
PT J
AU Du, JC
Soysal, E
Wang, D
He, L
Lin, B
Wang, JQ
Manion, FJ
Li, YR
Wu, E
Yao, LX
AF Du, Jingcheng
Soysal, Ekin
Wang, Dong
He, Long
Lin, Bin
Wang, Jingqi
Manion, Frank J.
Li, Yeran
Wu, Elise
Yao, Lixia
TI Machine learning models for abstract screening task - A systematic
literature review application for health economics and outcome research
SO BMC MEDICAL RESEARCH METHODOLOGY
LA English
DT Article
DE Machine learning; Deep learning; Text classification; Article screening;
Systematic literature review
AB Objective Systematic literature reviews (SLRs) are critical for life-science research. However, the manual selection and retrieval of relevant publications can be a time-consuming process. This study aims to (1) develop two disease-specific annotated corpora, one for human papillomavirus (HPV) associated diseases and the other for pneumococcal-associated pediatric diseases (PAPD), and (2) optimize machine- and deep-learning models to facilitate automation of the SLR abstract screening.Methods This study constructed two disease-specific SLR screening corpora for HPV and PAPD, which contained citation metadata and corresponding abstracts. Performance was evaluated using precision, recall, accuracy, and F1-score of multiple combinations of machine- and deep-learning algorithms and features such as keywords and MeSH terms.Results and conclusions The HPV corpus contained 1697 entries, with 538 relevant and 1159 irrelevant articles. The PAPD corpus included 2865 entries, with 711 relevant and 2154 irrelevant articles. Adding additional features beyond title and abstract improved the performance (measured in Accuracy) of machine learning models by 3% for HPV corpus and 2% for PAPD corpus. Transformer-based deep learning models that consistently outperformed conventional machine learning algorithms, highlighting the strength of domain-specific pre-trained language models for SLR abstract screening. This study provides a foundation for the development of more intelligent SLR systems.
C1 [Du, Jingcheng; Soysal, Ekin; He, Long; Lin, Bin; Wang, Jingqi; Manion, Frank J.] Intelligent Med Objects, Houston, TX USA.
[Wang, Dong; Li, Yeran; Wu, Elise; Yao, Lixia] Merck & Co Inc, Rahway, NJ 07065 USA.
[Soysal, Ekin] Univ Texas Hlth Sci Ctr Houston, McWilliams Sch Biomed Informat, Houston, TX USA.
C3 Merck & Company; University of Texas System; University of Texas Health
Science Center Houston
RP Yao, LX (corresponding author), Merck & Co Inc, Rahway, NJ 07065 USA.
EM Lixia.cn.yao@gmail.com
OI Wang, Dong/0009-0003-3322-6284
FU Merck Sharp Dohme LLC; Merck & Co., Inc., Rahway, NJ, USA
FX This research was supported by Merck Sharp & Dohme LLC, a subsidiary of
Merck & Co., Inc., Rahway, NJ, USA.
CR Achiam OJ, 2023, Arxiv, DOI [arXiv:2303.08774, DOI 10.48550/ARXIV.2303.08774]
[Anonymous], Recent advances in. biomedical literature mining | Briefings in Bioinformatics
[Anonymous], Logistic Regression, DOI [10.1007/978-1-4419-1742-3, DOI 10.1007/978-1-4419-1742-3]
BioBERT, a pre-trained biomedical language representation model for biomedical text mining
Bullers K, 2018, J MED LIBR ASSOC, V106, P198, DOI 10.5195/jmla.2018.323
Carver Jeffrey C., 2013, 2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), P203, DOI 10.1109/ESEM.2013.28
Chen Q, 2022, arXiv
Chen Q., 2022, arXiv
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Do C., 2005, Advances in Neural Information Processing Systems
emapic, about us
Howard J, 2018, Arxiv, DOI arXiv:1801.06146
Kermany DS, 2018, CELL, V172, P1122, DOI 10.1016/j.cell.2018.02.010
Lame G., 2019, Proceedings of the Design Society: International Conference on Engineering Design, P1633, DOI DOI 10.1017/DSI.2019.169
Michelson M, 2019, CONT CLIN TRIAL COMM, V16, DOI 10.1016/j.conctc.2019.100443
nlm, Medical Subject Headings-home page
Noble WS, 2006, NAT BIOTECHNOL, V24, P1565, DOI 10.1038/nbt1206-1565
Pal M, 2005, INT J REMOTE SENS, V26, P217, DOI 10.1080/01431160412331269698
Vaswani A, 2017, ADV NEUR IN, V30
Yu Gu, 2022, ACM Transactions on Computing and Healthcare, V3, DOI 10.1145/3458754
NR 21
TC 0
Z9 0
U1 5
U2 5
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1471-2288
J9 BMC MED RES METHODOL
JI BMC Med. Res. Methodol.
PD MAY 9
PY 2024
VL 24
IS 1
AR 108
DI 10.1186/s12874-024-02224-3
PG 7
WC Health Care Sciences & Services
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Health Care Sciences & Services
GA PX4H9
UT WOS:001217362100002
PM 38724903
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Loan, FA
Bashir, B
Nasreen, N
AF Loan, Fayaz Ahmad
Bashir, Bisma
Nasreen, Nahida
TI Applied artificial intelligence : A bibliometric study of an
International Journal
SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT
LA English
DT Article
DE Artificial intelligence; Applied artificial intelligence; Bibliometrics;
Scientometrics; Citation analysis; Keyword analysis
ID SCIENTOMETRIC ANALYSIS; RESEARCH OUTPUT; SCIENCE; PRODUCTIVITY;
MANAGEMENT; AMERICAN; PATTERNS; IMPACT
AB Purpose: The study aims to conduct a bibliometric analysis of an international journal "Applied Artificial Intelligence (AAI)" to analyze publication trends, authorship patterns, collaborative networks, citation behaviors, and research hotspots of authors, organizations, and countries.
Research Design/Methodology: "Applied Artificial Intelligence" is a peer-reviewed international journal, published by Taylor & Francis. The journal has published more than 1100 articles in 34 volumes so far. The idea was conceived to conduct the bibliometric study of the AAI journal. The data were collected from the Web of Science (WOS) database, owned by the Clarivate Analytics. A total of 1109 articles were retrieved and their metadata was collected for further analysis and interpretation. Additionally, the VOS viewer software was used for mapping and visualization of the bibliographic information.
Findings: The journal has experienced positive growth in research productivity and negative growth in citations. Authors of 74 prominent countries have contributed to the journal and the USA has occupied the first position in publication count followed by Italy, India and England respectively. All the countries work in close collaboration and created a collaborative network and sub-networks. The USA is the pivot of the collaborative network, mostly collaborating with England, Japan, Italy, China and Germany. The keywords like the classification, optimization, algorithms and neural networks are the most common and hence the hot topics of research in the journal.
Originality/Value: The main advantage of this study is that it provides profound knowledge of the content structure and developmental process of the journal to date. It is also valuable for researchers in the field of artificial intelligence to identify the research hotspots in this field.
C1 [Loan, Fayaz Ahmad; Bashir, Bisma; Nasreen, Nahida] Univ Kashmir, Ctr Cent Asian Studies, Srinagar, Jammu & Kashmir, India.
C3 University of Kashmir
RP Loan, FA (corresponding author), Univ Kashmir, Ctr Cent Asian Studies, Srinagar, Jammu & Kashmir, India.
EM fayazlib@yahoo.co.in; bismabashir53@gmail.com;
nahidariasreen94@gmail.com
CR Akhavan P, 2016, SCIENTOMETRICS, V107, P1249, DOI 10.1007/s11192-016-1938-x
Andrikopoulos A, 2018, J CORP FINANC, V51, P98, DOI 10.1016/j.jcorpfin.2018.05.008
Anyi KWU, 2009, MALAYS J LIBR INF SC, V14, P17
Applied Artificial Intelligence, 2020, J INFORM
Arkhipov DB, 1999, SCIENTOMETRICS, V46, P51, DOI 10.1007/BF02766295
Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360
BIRADAR BS, 2006, ANN LIB INF STUD, V53, P109
Biswas BC, 2007, MALAYS J LIBR INF SC, V12, P23
Blanco-Mesa F, 2017, J INTELL FUZZY SYST, V32, P2033, DOI 10.3233/JIFS-161640
Buznik VM, 2004, J STRUCT CHEM+, V45, P1096, DOI 10.1007/s10947-005-0100-z
Casillas J, 2007, FAM BUS REV, V20, P141, DOI 10.1111/j.1741-6248.2007.00092.x
CHUNG KH, 1990, J FINANC, V45, P301, DOI 10.2307/2328824
Cioffi R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020492
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Copeland B., 2020, Artificial Intelligence
Corrales IE, 2016, J Oral Res, V5, P188
Crawley-Low J, 2006, J MED LIBR ASSOC, V94, P430
Dalpé R, 2002, SCIENTOMETRICS, V55, P189, DOI 10.1023/A:1019663607103
Damrosch LF, 2006, AM J INT LAW, V100, P2, DOI 10.2307/3518829
Das A.K., 2001, ILA B, V31, P9
Davarpanah MR, 2008, SCIENTOMETRICS, V77, P21, DOI 10.1007/s11192-007-1803-z
Davarpanah MR, 2012, J SCHOLARLY PUBL, V43, P421, DOI 10.3138/jsp.43.4.421
Dutta B., 2001, IASLIC Bulletin, V46, P221
Genest C, 2002, CAN J STAT, V30, P329, DOI 10.2307/3315955
Glover SW, 2004, TROP MED INT HEALTH, V9, P1327, DOI 10.1111/j.1365-3156.2004.01331.x
Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228
Gupta BM, 2018, DESIDOC J LIB INF TE, V38, P416, DOI 10.14429/djlit.38.6.12309
Gupta B. M., 2012, ANN LIB INFORM STUDI, V59, P25
HALKAR G, 1998, IASLIC B, V43, P89
HAZARIKA T, 2005, ANN LIB INFORM STUDI, V52, P65
Hu HT, 2020, J DATA INFO SCI, V5, P86, DOI 10.2478/jdis-2020-0027
Ibrahim M, 2015, J PAK MED ASSOC, V65, P978
Jena KL, 2012, ELECTRON LIBR, V30, P103, DOI 10.1108/02640471211204097
Jin RY, 2019, RESOUR CONSERV RECY, V140, P175, DOI 10.1016/j.resconrec.2018.09.029
Lamani M.B., 2017, INT J INFORM DISSEMI, V7, P217
Lei YF, 2019, J PHYS CONF SER, V1168, DOI 10.1088/1742-6596/1168/2/022027
Liu N, 2021, SCIENTOMETRICS, V126, P3153, DOI 10.1007/s11192-021-03868-4
Loan F.A., 2017, J CENTRAL ASIAN STUD, V24, P197
Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859
Merigó JM, 2016, SCIENTOMETRICS, V108, P559, DOI 10.1007/s11192-016-1984-4
Narang A, 2004, ANN LIBR INF STUD, V51, P28
Nederhof AJ, 2006, SCIENTOMETRICS, V66, P81, DOI 10.1007/s11192-006-0007-2
Nishy P, 2012, INDIAN J CHEM B, V51, P269
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Phene A, 1998, J INT BUS STUD, V29, P621, DOI 10.1057/palgrave.jibs.8490011
Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533
PRITCHARD A, 1969, J DOC, V25, P348
Ramesh L. S. R. C. V., 2002, SRELS Journal of Information Management, V39, P457
ROCHESTER MK, 2003, INT LIB INFORM SCI R
Seggie SH, 2009, J MARKETING, V73, P122, DOI 10.1509/jmkg.73.1.122
Shao Z, 2020, IEEE ACCESS, V8, P69734, DOI 10.1109/ACCESS.2020.2986383
Shrivastava Rishabh, 2016, Science & Technology Libraries, V35, P136, DOI 10.1080/0194262X.2016.1181023
Swain D. K., 2012, CHINESE LIB INT ELEC, V33
Uddin A, 2015, SCIENTOMETRICS, V105, P97, DOI 10.1007/s11192-015-1654-y
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
VIJ R, 1999, ILA B, V34, P39
Yu DJ, 2019, APPL INTELL, V49, P449, DOI 10.1007/s10489-018-1278-z
Yu DJ, 2018, KNOWL-BASED SYST, V141, P188, DOI 10.1016/j.knosys.2017.11.018
Zainab AN, 2009, MALAYAS J COMPUT SCI, V22, P1
NR 59
TC 4
Z9 4
U1 3
U2 29
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0973-7766
EI 2168-930X
J9 COLLNET J SCIENTOMET
JI Collnet J. Scientometr. Inf. Manag.
PD JAN 2
PY 2021
VL 15
IS 1
BP 27
EP 45
DI 10.1080/09737766.2021.1938742
PG 19
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA TI9DQ
UT WOS:000673096200003
DA 2024-09-05
ER
PT J
AU Tao, FF
Pi, YL
Deng, MH
Tang, YJ
Yuan, C
AF Tao, Feifei
Pi, Yanling
Deng, Menghua
Tang, Yongjun
Yuan, Chi
TI Research on Intelligent Grading Evaluation of Water Conservancy Project
Safety Risks Based on Deep Learning
SO WATER
LA English
DT Article
DE deep learning; hazard sources; risk evaluation; transformer model; task
scenarios; a priori knowledge
ID MANAGEMENT
AB With the rise of artificial intelligence and big data technologies, it is increasingly significant to apply these emerging technologies to scientific decision-making in water conservancy project construction management in the face of many problems in the process of water conservancy project construction. Different from using traditional assessment methods for risk classification of water conservancy construction hazards, this paper integrates a priori attention and constructs a transformer risk prediction model based on a sliding window, which deeply explores the data value of water conservancy construction hazards information, further predicts the risk level of water conservancy construction hazards and realizes efficient and intelligent management of water conservancy project construction hazard identification management.
C1 [Tao, Feifei; Pi, Yanling; Yuan, Chi] Hohai Univ, Coll Comp & Informat, Nanjing 210098, Peoples R China.
[Deng, Menghua; Tang, Yongjun] Hohai Univ, Business Sch, Nanjing 210098, Peoples R China.
C3 Hohai University; Hohai University
RP Pi, YL (corresponding author), Hohai Univ, Coll Comp & Informat, Nanjing 210098, Peoples R China.
EM 211607010123@hhu.edu.cn
RI Tang, Yongjun/AAX-9631-2021
OI Tang, Yongjun/0000-0002-7061-728X; Tao, Feifei/0000-0002-4217-635X
FU National Natural Science Foundation of China [42001250]; Jiangsu Water
Conservancy Science and Technology Foundation [2020014]
FX This research was funded by the National Natural Science Foundation of
China, grant number. 42001250; Jiangsu Water Conservancy Science and
Technology Foundation, grant number. 2020014.
CR [Anonymous], 1995, B ICOLD
[Anonymous], 1974, LESS DAM INC
Bao J.T., 2021, Jiangsu Water Resour, V11, P57
Bing L, 1999, J CONSTR ENG M ASCE, V125, P377, DOI 10.1061/(ASCE)0733-9364(1999)125:5(377)
Diligenti M, 2017, 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P920, DOI 10.1109/ICMLA.2017.00-37
Fu L.J., 2010, Heilongjiang Sci. Technol. Inf, V31, P25
[葛巍 Ge Wei], 2020, [水科学进展, Advances in Water Science], V31, P143
Guo D.L., 2017, COMPUT MOD, P78
He C., 2019, Intell. Comput. Appl, V9, P21
He M., 2016, INTELL SCI, V34, P8
Hreinsson E.B., 2003, P 38 INT UPEC THESS
Hu zhangfang, 2022, Computer Engineering and Applications, P187, DOI 10.3778/j.issn.1002-8331.2012-0264
ICOLD, 1983, DAMS DISPLACEMENT TU
Jiang D., 2022, NE WATER CONSERV HYD, V40, P56
Kim Y, 2014, ARXIV14085882, DOI 10.3115/v1/D14-1181
[李博涵 Li Bohan], 2022, [软件学报, Journal of Software], V33, P3565
Li LJ, 2019, PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT CONTROL AND ARTIFICIAL INTELLIGENCE (RICAI 2019), P738, DOI 10.1145/3366194.3366327
Liu PF, 2016, Arxiv, DOI [arXiv:1605.05101, 10.48550/arXiv.1605.05101]
[刘婷 Liu Ting], 2022, [水力发电学报, Journal of Hydroelectric Engineering], V41, P1
[刘昕 Liu Xin], 2022, [计算机科学, Computer Science], V49, P225
[刘永强 Liu Yongqiang], 2022, [安全与环境学报, Journal of Safety and Environment], V22, P550
Lyons T., 2004, International Journal of Project Management, V22, P51, DOI 10.1016/S0263-7863(03)00005-X
Mills A., 2001, STRUCT SURV, V19, P245, DOI [10.1108/02630800110412615/FULL/XML, 10.1108/02630800110412615, DOI 10.1108/02630800110412615]
Niyogi P, 1998, P IEEE, V86, P2196, DOI 10.1109/5.726787
Pan H., 2018, PRACT UNDERST MATH, V48, P13
Saaty T.L., 1980, ANAL HIERARCHY PROCE, P222
Sheng J., 2022, J UNCONV OIL GAS RES, P1
Vaswani A, 2017, ADV NEUR IN, V30
Wang J., 2022, People's Yellow River, V44, P107
Wang S., 2012, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2, ACL '12, P90
Ward S., 2003, INT J PROJ MANAG, V21, P97, DOI [DOI 10.1016/S0263-7863(01)00080-1, 10.1016/s0263-7863(01)00080-1]
Williams R.F., 1983, P 1983 DEFENSE RISK
Xuan Dong-mei, 2015, Computer Engineering and Design, V36, P3087, DOI 10.16208/j.issn1000-7024.2015.11.041
Yang J, 2007, PEOPLES YANGTZE RIVE, V6, P148
ZADEH LA, 1965, INFORM CONTROL, V8, P338, DOI 10.1016/S0019-9958(65)90241-X
Zhang S., 2021, Mar. Eng, V50, P6
Zhang XC, 2021, SCI CHINA INFORM SCI, V64, DOI 10.1007/s11432-019-2744-2
Zhou YJ, 2016, 2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2016), P137, DOI [10.1109/WI.2016.28, 10.1109/WI.2016.0029]
NR 38
TC 0
Z9 0
U1 65
U2 138
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2073-4441
J9 WATER-SUI
JI Water
PD APR
PY 2023
VL 15
IS 8
AR 1607
DI 10.3390/w15081607
PG 15
WC Environmental Sciences; Water Resources
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Water Resources
GA E8IT6
UT WOS:000977922000001
OA gold
DA 2024-09-05
ER
PT J
AU Ihsan, I
Qadir, MA
AF Ihsan, Imran
Qadir, M. Abdul
TI An NLP-based citation reason analysis using CCRO
SO SCIENTOMETRICS
LA English
DT Article
DE NLP-based citation analysis; Qualitative research evaluation; Text
classification; Ontology
ID REPORTING VERBS; SCIENCE
AB In recent scientific advances, Artificial Intelligence and Natural Language Processing are the major contributors to classifying documents and extracting information. Classifying citations in different classes have gathered a lot of attention due to the large volume of citations available in different digital libraries. Typical citation classification uses sentiment analysis, where various techniques are applied to citations texts to mainly classify them in "Positive", "Negative" and "Neutral" sentiments. However, there can be innumerable reasons why an author selects another research for citation. Citations' Context and Reasons Ontology-CCRO uses a clear scientific method to articulate eight basic reasons for citing by using an iterative process of sentiment analysis, collaborative meanings, and experts' opinions. Using CCRO, this research paper adopts an ontology-based approach to extract citation's reasons and instantiate ontology classes and properties on two different corpora of citation sentences. One corpus of citation sentences is a publicly available dataset, while the other is our own manually curated. The process uses a two-step approach. The first part is an interface to manually annotate each citation text in the selected corpora on CCRO properties. A team of carefully selected annotators has annotated each citation to achieve a high inter-annotator agreement. The second part focuses on the automatic extraction of these reasons. Using Natural Language Processing, Mapping Graph, and Reporting Verb in a citation sentence, citation's reason is extracted and mapped onto a CCRO property. After comparing both manual and automatic mapping, accuracy is calculated. Based on experiments and results, accuracy is calculated for both publicly available and own corpora of citation sentences.
C1 [Ihsan, Imran; Qadir, M. Abdul] Capital Univ Sci & Technol, Dept Comp Sci, Islamabad, Pakistan.
[Ihsan, Imran] Air Univ, Fac Comp & AI, Dept Creat Technol, Islamabad, Pakistan.
C3 Capital University of Science & Technology; Air University Islamabad
RP Ihsan, I (corresponding author), Capital Univ Sci & Technol, Dept Comp Sci, Islamabad, Pakistan.; Ihsan, I (corresponding author), Air Univ, Fac Comp & AI, Dept Creat Technol, Islamabad, Pakistan.
EM iimranihsan@gmail.com; aqadir@cust.edu.pk
RI ihsan, imran/ABA-7494-2021; ihsan, imran/AAZ-6236-2021
OI ihsan, imran/0000-0002-3447-4576; Qadir, Muhammad
Abdul/0000-0003-4634-9016
CR Amjad Z, 2020, INT J ADV COMPUT SC, V11, P621
Angrosh MA., 2010, P ACM INT C DIGITAL, DOI 10.1145/1816123.1816168
[Anonymous], 1973, Essays of an Information Scientist
Artstein R, 2008, COMPUT LINGUIST, V34, P555, DOI 10.1162/coli.07-034-R2
Athar A., 2011, P ACL 2011 STUD SESS, P81
Athar A., 2014, Sentiment analysis of scientific citations, DOI DOI 10.48456/TR-856
BAIRD LM, 1994, J INFORM SCI, V20, P2, DOI 10.1177/016555159402000102
Butt B. H., 2015, CEUR WORKSHOP PROC, P18
Charles M, 2006, ENGL SPECIF PURP, V25, P310, DOI 10.1016/j.esp.2005.05.003
Ciancarini Paolo, 2014, The Semantic Web: Trends and Challenges. 11th International Conference (ESWC 2014). Proceedings: LNCS 8465, P580, DOI 10.1007/978-3-319-07443-6_39
Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661
CRONIN B, 1981, J DOC, V37, P16, DOI 10.1108/eb026703
Dong C., 2011, P 5 INT JOINT C NAT, P623
Finkel Jenny Rose, 2005, P 43 ANN M ASS COMP, P363, DOI DOI 10.3115/1219840.1219885
Garfield E, 1996, LIBR QUART, V66, P449, DOI 10.1086/602912
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
GILBERT GN, 1974, SCI STUD, V4, P279, DOI 10.1177/030631277400400305
GuEmez JM, 2015, P 1 WORKSH ARG MININ, P102, DOI [10.3115/v1/w14-2115, DOI 10.3115/V1/W14-2115]
Han Xu, 2013, P 13 C PAC ASSN COMP, DOI 10.13140/2.1.2737.2484
Hopper Paul J., 2013, ROUTLEDGE HDB DISCOU, P301
Ihsan I., 2019, CORP J CORPUS LINGUI, V2, P25
Ihsan I, 2019, IEEE ACCESS, V7, P30423, DOI 10.1109/ACCESS.2019.2903450
Jochim C., 2012, P COLING 2012, P1343
Kazi, 2016, IEEE INT C COMP COMM, DOI 10.1109/IC4.2015.7375701
Kilgarriff A, 2000, LANGUAGE, V76, P706, DOI 10.2307/417141
Kim I, 2015, 2015 IEEE MAGNETICS CONFERENCE (INTERMAG)
Kipper K, 2008, LANG RESOUR EVAL, V42, P21, DOI 10.1007/s10579-007-9048-2
Levin B, 2008, OPTICAL INFRARED INT
Levin B., 1995, Language - Review, V71, P144, DOI DOI 10.2307/415968
Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402
Manan NA, 2014, PROCD SOC BEHV, V134, P140, DOI 10.1016/j.sbspro.2014.04.232
Mann W, 1988, Text, V8, P243, DOI DOI 10.1515/TEXT.1.1988.8.3.243
Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010
Markoff John., 1975, Sociological Methodology, V6, P1
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001
PETROV S, 2016, GOOGLE AI BLOG
Phugnar, 2014, CITATION ANAL DOCTOR
Piller I., 1999, LANGUAGE, V75, P631, DOI [10.2307/417106, DOI 10.2307/417106]
Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x
Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2
Shum SB., 1998, INTERFACES, V39, P1
Small H, 2011, SCIENTOMETRICS, V87, P373, DOI 10.1007/s11192-011-0349-2
Tandon N., 2012, P 35 GERMAN C ARTIFI, P98
Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2
Teufel S, 1999, ARGUMENTATIVE ZONING
Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612]
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
THOMPSON G, 1991, APPL LINGUIST, V12, P365, DOI 10.1093/applin/12.4.365
Valenzuela M., 2015, P 29 AAAI WORKSH SCH, P21
VINET L, 2011, J PHYS A-MATH THEOR
Wan XJ, 2014, J ASSOC INF SCI TECH, V65, P1929, DOI 10.1002/asi.23083
Wilson V, 2012, EVID BASED LIB INF P, V7, P121, DOI 10.18438/B82C9K
Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334
Yu, 2013, P ASIST ANN M, DOI 10.1002/meet.14505001084
NR 55
TC 2
Z9 2
U1 4
U2 64
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUN
PY 2021
VL 126
IS 6
BP 4769
EP 4791
DI 10.1007/s11192-021-03955-6
EA MAR 2021
PG 23
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA SI9BA
UT WOS:000633283300003
DA 2024-09-05
ER
PT J
AU Chen, XL
Xie, HR
Cheng, G
Poon, LKM
Leng, MM
Wang, FL
AF Chen, Xieling
Xie, Haoran
Cheng, Gary
Poon, Leonard K. M.
Leng, Mingming
Wang, Fu Lee
TI Trends and Features of the Applications of Natural Language Processing
Techniques for Clinical Trials Text Analysis
SO APPLIED SCIENCES-BASEL
LA English
DT Article
DE natural language processing; clinical trials text; bibliometrics;
collaboration; structural topic modeling
ID BIBLIOMETRIC ANALYSIS; INFORMATION EXTRACTION; RADIOLOGY REPORTS;
SCIENCE; WEB; ENGLISH; INTERVENTION; QUALITY; SYSTEMS; SCOPUS
AB Natural language processing (NLP) is an effective tool for generating structured information from unstructured data, the one that is commonly found in clinical trial texts. Such interdisciplinary research has gradually grown into a flourishing research field with accumulated scientific outputs available. In this study, bibliographical data collected from Web of Science, PubMed, and Scopus databases from 2001 to 2018 had been investigated with the use of three prominent methods, including performance analysis, science mapping, and, particularly, an automatic text analysis approach named structural topic modeling. Topical trend visualization and test analysis were further employed to quantify the effects of the year of publication on topic proportions. Topical diverse distributions across prolific countries/regions and institutions were also visualized and compared. In addition, scientific collaborations between countries/regions, institutions, and authors were also explored using social network analysis. The findings obtained were essential for facilitating the development of the NLP-enhanced clinical trial texts processing, boosting scientific and technological NLP-enhanced clinical trial research, and facilitating inter-country/region and inter-institution collaborations.
C1 [Chen, Xieling; Cheng, Gary; Poon, Leonard K. M.] Educ Univ Hong Kong, Dept Math & Informat Technol, Tai Po, Hong Kong 999077, Peoples R China.
[Xie, Haoran; Leng, Mingming] Lingnan Univ, Dept Comp & Decis Sci, Tuen Mun, Hong Kong 999077, Peoples R China.
[Wang, Fu Lee] Open Univ Hong Kong, Sch Sci & Technol, Ho Man Tin, Kowloon, Hong Kong 999077, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Lingnan University; Hong Kong
Metropolitan University
RP Wang, FL (corresponding author), Open Univ Hong Kong, Sch Sci & Technol, Ho Man Tin, Kowloon, Hong Kong 999077, Peoples R China.
EM xielingchen0708@gmail.com; hrxie@ln.edu.hk; chengks@eduhk.hk;
kmpoon@eduhk.hk; mmleng@ln.edu.hk; pwang@ouhk.edu.hk
RI Wang, Fu Lee/AAD-9782-2021; Xie, Haoran/AFS-3515-2022; LENG,
Mingming/O-7640-2017
OI Wang, Fu Lee/0000-0002-3976-0053; Xie, Haoran/0000-0003-0965-3617; POON,
Leonard K. M./0000-0002-8394-1492; PV, THAYYIB/0000-0001-8929-0398;
LENG, Mingming/0000-0002-3377-2387; Cheng, Gary/0000-0002-5614-3348
FU Interdisciplinary Research Scheme of the Dean's Research Fund 2018-19 of
The Education University of Hong Kong, Research Seed Fund
[FLASS/DRF/IDS-3]; Departmental Collaborative Research Fund 2019 of The
Education University of Hong Kong, Research Seed Fund
[MIT/DCRF-R2/18-19]; One-o ff Special Fund from the Central and Faculty
Fund in Support of Research entitled "Facilitating Artificial
Intelligence and Big Data Analytics Research in Education" of The
Education University of Hong Kong, Research Seed Fund [MIT02/19-20];
Hong Kong Institute of Business Studies Research Seed Fund [HKIBS
RSF-190-009]; LEO Dr. David P. Chan Institute of Data Science, Lingnan
University, Hong Kong
FX The work has been supported by the Interdisciplinary Research Scheme of
the Dean's Research Fund 2018-19 (FLASS/DRF/IDS-3), Departmental
Collaborative Research Fund 2019 (MIT/DCRF-R2/18-19), and One-o ff
Special Fund from the Central and Faculty Fund in Support of Research
(MIT02/19-20) entitled "Facilitating Artificial Intelligence and Big
Data Analytics Research in Education" of The Education University of
Hong Kong, Research Seed Fund, Hong Kong Institute of Business Studies
Research Seed Fund (HKIBS RSF-190-009) and LEO Dr. David P. Chan
Institute of Data Science, Lingnan University, Hong Kong.
CR Adriaanse LS, 2013, ELECTRON LIBR, V31, P727, DOI 10.1108/EL-12-2011-0174
Alonso O., 2012, P CCIA AL SPAIN 24 2
Alonso-Calvo R, 2017, COMPUT BIOL MED, V87, P179, DOI 10.1016/j.compbiomed.2017.06.005
[Anonymous], 2017, Knowledge Solutions, DOI 10.1007/978-981-10-0983-9_9
Arici F, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103647
Bakal G, 2018, J BIOMED INFORM, V82, P189, DOI 10.1016/j.jbi.2018.05.003
Bayram B, 2016, AM J EMERG MED, V34, P1210, DOI 10.1016/j.ajem.2016.03.033
Bean DM, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-16674-x
Bekhuis T, 2012, ARTIF INTELL MED, V55, P197, DOI 10.1016/j.artmed.2012.05.002
Bennett R, 2019, J TRANSP HEALTH, V12, P1, DOI 10.1016/j.jth.2018.11.005
Bian J., 2017, P 2017 IEEE EMBS INT
Bisgin H, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-S15-S6
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bosca D., 2013, P MEDINFO COP DENM 2
Bucur A, 2014, STUD HEALTH TECHNOL, V205, P823, DOI 10.3233/978-1-61499-432-9-823
Bustos A, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8071206
Byrne-Davis LMT, 2006, PSYCHOL HEALTH, V21, P667, DOI 10.1080/14768320500444315
Caballero-Ruiz E, 2017, INT J MED INFORM, V102, P35, DOI 10.1016/j.ijmedinf.2017.02.014
Ramírez LJC, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11113121
Cancino CA, 2019, COMPUT IND ENG, V137, DOI 10.1016/j.cie.2019.106015
Canino G., 2016, P 7 ACM INT C BIOINF
Chen CJ, 2019, J AM MED INFORM ASSN, V26, P1227, DOI 10.1093/jamia/ocz128
Chen L, 2019, J AM MED INFORM ASSN, V26, P1218, DOI 10.1093/jamia/ocz109
Chen T, 2019, JMIR MED INF, V7, DOI 10.2196/13039
Chen X., 2017, P INT S EM TECHN ED
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907
Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1
Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4
Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0692-9
Chen XL, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/1827074
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Chen ZH, 2015, HEALTH EDUC BEHAV, V42, P32, DOI 10.1177/1090198114550822
Clare SM, 2019, SMALL-SCALE FOR, V18, P149, DOI 10.1007/s11842-018-9411-8
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Cobo MJ, 2014, IEEE T INTELL TRANSP, V15, P901, DOI 10.1109/TITS.2013.2284756
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Cole-Lewis HJ, 2016, INT J MED INFORM, V85, P96, DOI 10.1016/j.ijmedinf.2015.08.003
Cowie MR, 2017, CLIN RES CARDIOL, V106, P1, DOI 10.1007/s00392-016-1025-6
Cramer H, 2014, BMC COMPLEM ALTERN M, V14, DOI 10.1186/1472-6882-14-328
Cramer H, 2015, CONTEMP CLIN TRIALS, V41, P269, DOI 10.1016/j.cct.2015.02.005
De la Flor-Martínez M, 2016, CLIN ORAL IMPLAN RES, V27, P1317, DOI 10.1111/clr.12749
De Maio C, 2015, IEEE IJCNN
Demner-Fushman D, 2016, Yearb Med Inform, P224
Dhuliawala M., 2018, P 2018 ACM INT C BIO
Dietrich G, 2018, METHOD INFORM MED, V57, pE22, DOI 10.3414/ME17-02-0010
Dreisbach C, 2019, INT J MED INFORM, V125, P37, DOI 10.1016/j.ijmedinf.2019.02.008
Fernandes F., 2015, P 2015 SCI INF C SAI
FRIEDMAN C, 1994, J AM MED INFORM ASSN, V1, P161, DOI 10.1136/jamia.1994.95236146
Gao W, 2015, SCIENTOMETRICS, V102, P1951, DOI 10.1007/s11192-014-1500-7
Romero AG, 2009, SCIENTOMETRICS, V80, P747, DOI 10.1007/s11192-008-2108-6
Garfield E., 1994, Current Contents: Social and Behavioural Sciences, V7, P5
Gazzarata R, 2017, J HEALTHC ENG, V2017, DOI 10.1155/2017/2190679
Gener S., 2017, P MEDINFO HANGZH CHI
Gonzalez-Hernandez G, 2017, Yearb Med Inform, V26, P214, DOI 10.15265/IY-2017-029
Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004
Gutiérrez-Salcedo M, 2018, APPL INTELL, V48, P1275, DOI 10.1007/s10489-017-1105-y
Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4
Hassan SU, 2014, SCIENTOMETRICS, V99, P549, DOI 10.1007/s11192-013-1193-3
Hassanpour S, 2016, ARTIF INTELL MED, V66, P29, DOI 10.1016/j.artmed.2015.09.007
Heidarysafa M., WOMEN ISIS PROPAGAND
Hirsch JE, 2014, INT J CLIN HLTH PSYC, V14, P161, DOI 10.1016/S1697-2600(14)70050-X
Hong SJ, 2016, AM J ROENTGENOL, V206, P917, DOI 10.2214/AJR.15.15640
Huang Z., 2013, PROCESS SUPPORT KNOW
Huhdanpaa HT, 2018, J DIGIT IMAGING, V31, P84, DOI 10.1007/s10278-017-0013-3
Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194
Jonnalagadda S, 2012, J BIOMED INFORM, V45, P129, DOI 10.1016/j.jbi.2011.10.007
Jonnalagadda SR, 2017, J CARDIOVASC TRANSL, V10, P313, DOI 10.1007/s12265-017-9752-2
Tarazona-Santabalbina FJ, 2016, J AM MED DIR ASSOC, V17, P426, DOI 10.1016/j.jamda.2016.01.019
Jung HA, 2019, J THORAC ONCOL, V14, pS328, DOI 10.1016/j.jtho.2019.08.659
Kehl KL, 2019, JAMA ONCOL, V5, P1421, DOI 10.1001/jamaoncol.2019.1800
Kim S, 2014, ACUPUNCT MED, V32, P160, DOI 10.1136/acupmed-2013-010470
Koleck TA, 2019, J AM MED INFORM ASSN, V26, P364, DOI 10.1093/jamia/ocy173
Kowsari K, 2019, INFORMATION, V10, DOI 10.3390/info10040150
Kowsari K, 2017, 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P364, DOI 10.1109/ICMLA.2017.0-134
Kreimeyer K, 2017, J BIOMED INFORM, V73, P14, DOI 10.1016/j.jbi.2017.07.012
Lee JD, 2020, HUM FACTORS, V62, P260, DOI 10.1177/0018720819872672
Lee Y, 2013, ACM T INTEL SYST TEC, V4, DOI 10.1145/2508037.2508052
Lester CA, 2019, J AM PHARM ASSOC, V59, P349, DOI 10.1016/j.japh.2019.02.004
Li Q, 2013, J AM MED INFORM ASSN, V20, P915, DOI 10.1136/amiajnl-2012-001487
Li X, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060338
Liu C, 2019, J AM MED INFORM ASSN, V26, P1333, DOI 10.1093/jamia/ocz121
Livas C, 2018, PROG ORTHOD, V19, DOI 10.1186/s40510-017-0201-1
Löbe M, 2018, STUD HEALTH TECHNOL, V248, P293, DOI 10.3233/978-1-61499-858-7-293
Luo Y, 2017, DRUG SAFETY, V40, P1075, DOI 10.1007/s40264-017-0558-6
Milian K., 2013, P HEALTHINF BARC SPA
Milosevic N., 2016, P HEALTHINF ROM IT 2
Moed H.F., 2004, USE PUBLICATION PATE
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Neveol A, 2015, Yearb Med Inform, V10, P194, DOI 10.15265/IY-2015-035
Noyons ECM, 1999, J AM SOC INFORM SCI, V50, P115, DOI 10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.3.CO;2-A
Oellrich A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0116040
Patterson OV, 2017, BMC CARDIOVASC DISOR, V17, DOI 10.1186/s12872-017-0580-8
Peng BH, 2018, J CLEAN PROD, V197, P1177, DOI 10.1016/j.jclepro.2018.06.283
Petkov VI, 2013, EXP BIOL MED, V238, P1370, DOI 10.1177/1535370213508172
Priyatna F, 2017, J BIOMED SEMANT, V8, DOI 10.1186/s13326-017-0155-8
Radev DR, 2016, J ASSOC INF SCI TECH, V67, P683, DOI 10.1002/asi.23394
Rajapaksha P., 2015, P 2015 15 INT C ADV
Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Rosas SR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017428
Sad Houari N, 2016, INT J INTERACT MULTI, V4, P61, DOI 10.9781/ijimai.2016.4210
Segura-Bedmar I, 2019, J AM MED INFORM ASSN, V26, P1181, DOI 10.1093/jamia/ocz139
Settouti N, 2016, INT J INTERACT MULTI, V4, P46, DOI 10.9781/ijimai.2016.419
Sheikhalishahi S, 2019, JMIR MED INF, V7, P15, DOI 10.2196/12239
Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G
Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002
Spyns P, 1996, METHOD INFORM MED, V35, P285
Stubbs A, 2019, J AM MED INFORM ASSN, V26, P1163, DOI 10.1093/jamia/ocz163
Tao TZ, 2012, CRIT CARE, V16, DOI 10.1186/cc11401
Thompson J, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-45705-y
Timimi F, 2019, J MED INTERNET RES, V21, DOI 10.2196/14809
van Engen-Verheul MM, 2017, INT J MED INFORM, V97, P76, DOI 10.1016/j.ijmedinf.2016.10.003
van Engen-Verheul Mariette M, 2014, Implement Sci, V9, P780, DOI 10.1186/s13012-014-0131-y
van Leeuwen J., 2014, P HEALTHINF LOIR VAL
Velupillai S, 2015, Yearb Med Inform, V10, P183, DOI 10.15265/IY-2015-009
Vidhya KA, 2017, INT CONF ADVAN COMPU
Vydiswaran VGV, 2019, J AM MED INFORM ASSN, V26, P1172, DOI 10.1093/jamia/ocz079
Wang ZT, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13060583
Wu YH, 2013, STUD HEALTH TECHNOL, V192, P662, DOI 10.3233/978-1-61499-289-9-662
Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599
Xiong Y, 2019, J AM MED INFORM ASSN, V26, P1203, DOI 10.1093/jamia/ocz099
Yang GY, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120655
Zeng ZX, 2019, IEEE ACM T COMPUT BI, V16, P139, DOI 10.1109/TCBB.2018.2849968
Zhang J., 2017, P 2017 IEEE ACM INT
Zhang JH, 2018, IEEE ACCESS, V6, P65333, DOI 10.1109/ACCESS.2018.2875677
Zhang Y., 2016, ANTICIPATING FUTURE
Zhang Y, 2019, TECHNOL FORECAST SOC, V146, P795, DOI 10.1016/j.techfore.2018.06.007
NR 131
TC 21
Z9 23
U1 1
U2 31
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-3417
J9 APPL SCI-BASEL
JI Appl. Sci.-Basel
PD MAR
PY 2020
VL 10
IS 6
AR 2157
DI 10.3390/app10062157
PG 36
WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials
Science, Multidisciplinary; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Chemistry; Engineering; Materials Science; Physics
GA LI1NZ
UT WOS:000529252800258
OA gold
DA 2024-09-05
ER
PT J
AU Salehpour, A
Samadzamini, K
AF Salehpour, Arash
Samadzamini, Karim
TI A bibliometric analysis on the application of deep learning in
economics, econometrics, and finance
SO INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING
LA English
DT Article
DE deep learning; bibliometric; economics; econometrics; finance
ID NETWORK; EVOLUTION; TOOL
AB This research looked at the deep learning applications in economics, econometrics, and finance. Two hundred fifty articles from the Scopus database's index of journals published between 2013 and 2022 were gathered using a bibliometric technique. The data was analysed using many programs (R studio, Excel, and Biblioshiny), and in terms of countries, organisations, publications, papers, and authors, the most prominent scientific players were highlighted. Our research found that as of 2019, the quantity of publications has increased. The literature analysis received the most contributions from China and the USA. The most significant findings and discussions came from the following analyses: estimation of share prices, asset management price fluctuations and liquidity, forecast of bankruptcies, evaluation of credit risk, risk assessment, commodity prices top trend analysis, citation analysis, thematic evolution, and thematic map. Our findings offer practical recommendations on how deep learning may be implemented into decision-making processes for market participants, particularly those working in fintech and finance.
C1 [Salehpour, Arash] Islamic Azad Univ, Dept Comp Engn, Rasht Branch, Rasht, Gilan, Iran.
[Samadzamini, Karim] Univ Coll Nabi Akram, Dept Comp Engn, Tabriz, Iran.
C3 Islamic Azad University
RP Salehpour, A (corresponding author), Islamic Azad Univ, Dept Comp Engn, Rasht Branch, Rasht, Gilan, Iran.
EM arash.salehpour4@gmail.com; samadzamini@ucna.ac.ir
RI Salehpour, Arash/KIJ-9771-2024
CR Alkhatib K., 2022, Elsevier, V8, P96, DOI DOI 10.3390/JOITMC8020096
Alshater MM, 2021, INT J ISLAMIC MIDDLE, V14, P339, DOI 10.1108/IMEFM-08-2020-0419
[Anonymous], 2015, J. Big Data, DOI 10.1186/s40537-014-0007-7
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
BOSSERMA.P, 1973, AM J SOCIOL, V79, P180, DOI 10.1086/225517
Brereton P, 2007, J SYST SOFTWARE, V80, P571, DOI 10.1016/j.jss.2006.07.009
Buhler H, 2020, Arxiv, DOI arXiv:2006.14498
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Chen S, 2021, INT REV ECON FINANC, V71, P936, DOI 10.1016/j.iref.2020.07.010
Chowdhury M, 2022, INT J EMBED SYST, V15, P313, DOI 10.1504/IJES.2022.10050472
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Deng L, 2014, APSIPA TRANS SIGNAL, V3, DOI 10.1017/atsip.2013.9
Dong CJ, 2018, J ADV TRANSPORT, DOI 10.1155/2018/3869106
Dong S, 2021, COMPUT SCI REV, V40, DOI 10.1016/j.cosrev.2021.100379
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Fjelland R, 2020, HUM SOC SCI COMMUN, V7, DOI 10.1057/s41599-020-0494-4
Gao B, 2022, COMPUT ECON, V59, P1385, DOI 10.1007/s10614-021-10101-0
Janani K, 2022, CONNECT SCI, V34, P2714, DOI 10.1080/09540091.2022.2149698
Janiesch C, 2021, ELECTRON MARK, V31, P685, DOI 10.1007/s12525-021-00475-2
Jia YH, 2017, J ADV TRANSPORT, DOI 10.1155/2017/6575947
Jiang H, 2022, RESOUR POLICY, V78, DOI 10.1016/j.resourpol.2022.102855
Jiang ZX, 2021, INT J EMBED SYST, V14, P421
Kumar A, 2020, INT J COMPUT SCI ENG, V23, P319, DOI 10.1504/IJCSE.2020.113176
Li D, 2022, SOFT COMPUT, V26, P4423, DOI [10.12133/j.smartag.2020.2.3.202004-SA007, 10.1007/s00500-021-06496-5]
Li YZ, 2022, FINANC INNOV, V8, DOI 10.1186/s40854-022-00336-7
Lu CY, 2022, COMPUT ECON, V59, P1501, DOI 10.1007/s10614-021-10172-z
MOED HF, 1985, RES POLICY, V14, P131, DOI 10.1016/0048-7333(85)90012-5
Nayak SK, 2018, CONNECT SCI, V30, P362, DOI 10.1080/09540091.2018.1487384
Nikou M, 2019, INTELL SYST ACCOUNT, V26, P164, DOI 10.1002/isaf.1459
Peters E., 2020, Journal of Self-Governance and Management Economics, V8, P16, DOI [DOI 10.22381/JSME8320202, 10.22381/JSME8320202]
Pouyanfar S, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3234150
Qin JS, 2022, CONNECT SCI, V34, P2807, DOI 10.1080/09540091.2022.2151977
Sadhwani A, 2021, J FINANC ECONOMET, V19, P313, DOI 10.1093/jjfinec/nbaa025
Salehpour A., 2022, Journal of Artificial Intelligence and Capsule Networks, P230, DOI [10.36548/jaicn.2022.4.001, DOI 10.36548/JAICN.2022.4.001]
Salehpour A., 2022, Journal of Soft Computing Paradigm, V4, P238
Sarma B, 2021, INT J COMPUT SCI ENG, V24, P343, DOI 10.1504/IJCSE.2021.117015
Shetty S, 2022, J RISK FINANC MANAG, V15, DOI 10.3390/jrfm15010035
Sirignano J, 2019, QUANT FINANC, V19, P1449, DOI 10.1080/14697688.2019.1622295
Soentpiet R., 1999, Advances in kernel methods: support vector learning
Stan Z., 2009, Encyclopedia of Biometrics
Steinwart I., 2008, Support Vector Machines
Sun G, 2020, INT J COMPUT SCI ENG, V23, P177, DOI 10.1504/IJCSE.2020.110543
System A.C.C., About Us
Verbeek JJ, 2003, NEURAL COMPUT, V15, P469, DOI 10.1162/089976603762553004
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482
Wang JJ, 2023, STUD NONLINEAR DYN E, V27, P397, DOI 10.1515/snde-2021-0096
Wang SY, 2022, INT J EMBED SYST, V15, P344, DOI 10.1504/IJES.2022.10050474
Wang Y, 2022, INT J EMBED SYST, V15, P448, DOI 10.1504/IJES.2022.127166
Wu ST, 2022, CONNECT SCI, V34, P44, DOI 10.1080/09540091.2021.1940101
Yang X, 2021, INT J EMBED SYST, V14, P201, DOI 10.1504/IJES.2021.113815
Zhang SX, 2022, INT J COMPUT SCI ENG, V25, P479, DOI [10.1504/IJCSE.2022.10051194, 10.1504/IJCSE.2022.126251]
Zhao Y, 2017, ENERG ECON, V66, P9, DOI 10.1016/j.eneco.2017.05.023
Zheng ZH, 2022, CONNECT SCI, V34, P1, DOI 10.1080/09540091.2021.1936455
Zhong X, 2019, FINANC INNOV, V5, DOI 10.1186/s40854-019-0138-0
NR 58
TC 1
Z9 1
U1 6
U2 6
PU INDERSCIENCE ENTERPRISES LTD
PI GENEVA
PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215
GENEVA, SWITZERLAND
SN 1742-7185
EI 1742-7193
J9 INT J COMPUT SCI ENG
JI Int. J. Comput. Sci. Eng.
PY 2024
VL 27
IS 2
DI 10.1504/IJCSE.2024.137286
PG 16
WC Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA LB9L4
UT WOS:001184435200004
DA 2024-09-05
ER
PT C
AU Lipitakis, AD
Lipitakis, EAEC
AF Lipitakis, Anastasia-Dimitra
Lipitakis, Evangelia A. E. C.
BE Akhgar, B
Arabnia, HR
TI On Machine Learning with Imbalanced Data and Research Quality Evaluation
Methodologies
SO 2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL
INTELLIGENCE (CSCI), VOL 1
LA English
DT Proceedings Paper
CT International Conference on Computational Science and Computational
Intelligence (CSCI)
CY MAR 10-13, 2014
CL Las Vegas, NV
DE Bibliometric Indicators; Business Intelligence; Citation Analysis;
Computational Intelligence; Data Mining; Learning Algorithms; Imbalanced
Data; Machine Learning; Quantitative Methods; Research Quality
Evaluation
ID FIRM PERFORMANCE; ROTATION FOREST; E-BUSINESS; CLASSIFICATION;
INTELLIGENCE; PREDICTION; STRATEGY
AB In this article a synoptic review of machine learning techniques with imbalanced data and a class of corresponding learning algorithms is presented. This class of algorithms includes the meta-algorithms: Cost sensitive, Metacost, Rotation forest-cost sensitive, rotation forest-smote. Four learning algorithms (with base classifiers J48 and part processing with F-measure and a predetermined imbalanced data set) are compared in the computational environment WEKA leading to comparative numerical results. The basic concepts of research quality evaluation methodologies are presented, an adaptive citation qualitative-quantitative approach and advanced bibliometric indicators are given. Basic components of research quality performance such as research journal cited publications, citing publications and research quality evaluations at various academic levels are considered and corresponding numerical results are given. An alternative approach using certain machine learning algorithms with imbalanced data in the case of research quality evaluation methodologies is proposed.
C1 [Lipitakis, Anastasia-Dimitra] Univ Patras, Dept Math, Patras 26504, Hellas, Greece.
[Lipitakis, Evangelia A. E. C.] Univ Kent, Kent Business Sch, Canterbury CT2 7PE, Kent, England.
C3 University of Patras; University of Kent
RP Lipitakis, AD (corresponding author), Univ Patras, Dept Math, Patras 26504, Hellas, Greece.
EM adlipitaki@gmail.com; eael2@kentforlife.net
RI Lipitakis, Evangelia/N-2952-2013; Lipitakis, Anastasia
Dimitra/AAO-8831-2020
OI Lipitakis, Evangelia/0000-0002-9506-4319; Lipitakis,
Anastasia-Dimitra/0000-0001-5058-5463
CR [Anonymous], E BUS REVOLUTION UPP
[Anonymous], 1989, ARTIFICIAL INTELLIGE
[Anonymous], COMMUNICATION ACM JA
[Anonymous], THESIS KBS CANTERBUR
[Anonymous], 2005, Data Mining: Pratical Machine Learning Tools and Techniques
[Anonymous], UCI MACHINE REPOSIIT
[Anonymous], 1986, Machine Learning
[Anonymous], 1998, Artificial intelligence: a new synthesis
[Anonymous], ANN REC COMPUTER SCI
[Anonymous], VERY LARGE KNOWLEDGE
[Anonymous], 2003, TATuP Z Tech Theor Prax
[Anonymous], COMPUTER TECHNOLOGY
[Anonymous], INTRO COMPUTATIONAL
[Anonymous], EUR E BUS REP
[Anonymous], E METR BUS METR NEW
[Anonymous], INN EUR
[Anonymous], COMMUNICATIONS ACM
[Anonymous], ADV I MANAGEMENT PAP
[Anonymous], PAC LEARNING RECURSI
[Anonymous], 1993, RES EVALUAT, DOI DOI 10.1093/REV/3.3.151
[Anonymous], ICEBE SOKM 2007 C PR
[Anonymous], THESIS U PATRAS PATR
[Anonymous], MEAS BUS VAK INF TEC
[Anonymous], P 14 INT C SCI INF I
[Anonymous], CITATION ANAL RES EV
[Anonymous], 2010, SERIES ARTIFICIAL IN
[Anonymous], HDB QUANTITATIVE SCI
[Anonymous], COMPUTATIONAL INTELL
[Anonymous], P IEEE S COMP COMM I
[Anonymous], P 18 NAT C ART INT A
[Anonymous], MACHINE LEARNING ART
[Anonymous], MACHINE LEARNING
[Anonymous], APPRAISAL CITATION D
[Anonymous], SERIES INTELLIGENCE
[Anonymous], SERIES ARTIFICIAL IN
[Anonymous], 2009, RES EXC FRAM 2 CONS
[Anonymous], THESIS KBS ENGLAND
[Anonymous], INT J DISTANCE ED TE
[Anonymous], HERCMA 2009 C PROCS
[Anonymous], HERCMA 2007 C PROCS
Anthony M., 1999, NEURAL NETWORK LEARN
Barandela R, 2003, PATTERN RECOGN, V36, P849, DOI 10.1016/S0031-3203(02)00257-1
Bauer E, 1999, MACH LEARN, V36, P105, DOI 10.1023/A:1007515423169
Bellman R. E., 1978, Thomson Course Technology
Beynon-Davies P., 2004, E BUSINESS
Bollen J, 2006, SCIENTOMETRICS, V69, P669, DOI 10.1007/s11192-006-0176-z
Charniak E., 1985, INTRO ARTIFICIAL INT
Chawla NV, 2003, LECT NOTES ARTIF INT, V2838, P107, DOI 10.1007/978-3-540-39804-2_12
Coltman TR, 2007, J INF TECHNOL-UK, V22, P87, DOI 10.1057/palgrave.jit.2000073
Cormen T.H., 2009, Introduction to Algorithms
Domingos P., 1999, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, V99, P155
Farhoomand A F., 2005, Managing (e)business transformation: A global perspective
Fawcett T, 1997, DATA MIN KNOWL DISC, V1, P291, DOI 10.1023/A:1009700419189
Freund Y, 1997, J COMPUT SYST SCI, V55, P119, DOI 10.1006/jcss.1997.1504
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Gavrilova T, 2009, LECT NOTES COMPUT SC, V5686, P158, DOI 10.1007/978-3-642-03426-8_20
GREEN SG, 1995, IEEE T ENG MANAGE, V42, P203, DOI 10.1109/17.403738
Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385
Henderson Michael, 2009, Campus-Wide Information Systems, V26, P149, DOI 10.1108/10650740910967348
Ho T.K., 2002, Hybrid Methods in Pattern Recognition, P171, DOI [DOI 10.1142/9789812778147_0007, 10.1142/9789812778147_0007]
Japkowicz N., 2002, Intelligent Data Analysis, V6, P429
Jelassi T., 2005, STRATEGIES E BUSINES
KAPLAN RS, 1992, HARVARD BUS REV, V70, P71
Knuth D. E., 1968, ART COMPUTER PROGRAM, V1
Koellinger P, 2008, RES POLICY, V37, P1317, DOI 10.1016/j.respol.2008.04.024
Kuncheva LI, 2007, LECT NOTES COMPUT SC, V4472, P459
Kurzweil Ray., 1990, AGE INTELLIGENT MACH
Liu Y, 2006, LECT NOTES ARTIF INT, V3918, P107
LUHN HP, 1958, IBM J RES DEV, V2, P314, DOI 10.1147/rd.24.0314
Meho LI, 2008, J AM SOC INF SCI TEC, V59, P1711, DOI 10.1002/asi.20874
Mesenbourg T.L., 2001, Measuring electronic business
Michalski R. S., 1983, Machine Learning: An Artificial Intelligence Approach, VI
Mingers J, 2013, INFORM PROCESS MANAG, V49, P587, DOI 10.1016/j.ipm.2012.11.002
Mingers J, 2010, SCIENTOMETRICS, V85, P613, DOI 10.1007/s11192-010-0270-0
Mitchell Thomas M., 1997, Machine learning. McGraw Hill series in computer science, V1
Nicolaisen J, 2002, RES EVALUAT, V11, P129, DOI 10.3152/147154402781776808
Porter ME, 2001, HARVARD BUS REV, V79, P62
Rausch P., 2013, Business Intelligence and Performance Management: Theory, Systems and Industrial Applications
Rich E, 1991, ARTIF INTELL
Rodríguez JJ, 2006, IEEE T PATTERN ANAL, V28, P1619, DOI 10.1109/TPAMI.2006.211
Rud O.P., 2009, BUSINESS INTELLIGENC
SCHAPIRE R, 2002, LECT NOTES STAT
Sedgewick R., 1984, Algorithms
SIMON HA, 1995, ARTIF INTELL, V77, P95, DOI 10.1016/0004-3702(95)00039-H
Sun YM, 2007, PATTERN RECOGN, V40, P3358, DOI 10.1016/j.patcog.2007.04.009
Wheeler BC, 2002, INFORM SYST RES, V13, P125, DOI 10.1287/isre.13.2.125.89
Winston P.H., 1992, Artificial Intelligence
NR 87
TC 0
Z9 0
U1 1
U2 18
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4799-3009-8
PY 2014
BP 451
EP 457
DI 10.1109/CSCI.2014.81
PG 7
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BC8NS
UT WOS:000355911900077
DA 2024-09-05
ER
PT J
AU Jiang, HC
Qiang, MS
Lin, P
AF Jiang HanChen
Qiang MaoShan
Lin Peng
TI Finding academic concerns of the Three Gorges Project based on a topic
modeling approach
SO ECOLOGICAL INDICATORS
LA English
DT Article
DE Hydropower project; Three Gorges Project; Topic modeling; Scientific
documents; Latent Dirichlet Allocation; Bibliometric indicators
ID YANGTZE-RIVER; SCIENCE; POLICY; CHINA; TEXT
AB The Three Gorges Project (TGP) has gone into the overall completion acceptance stage in 2014. As the world's largest hydropower project, the TGP has attracted worldwide attention over the past few decades. Previous studies mainly focused on a single aspect, such as engineering technologies, social impacts and environmental impacts, of the TGP. However, a large-scale review gathering systematic data to find academic concerns about the TGP is missing. Topic model is a text mining approach for discovering latent topics in a collection of documents. In this article, an emerging topic modeling approach, Latent Dirichlet Allocation (LDA), was introduced to uncover the intellectual structure of the academic literature focusing on the TGP. A collection of 8280 Chinese research articles highly related to the TGP was established with a time frame ranging from 2001 to 2013, and an 18-topic model was used to describe the intellectual structure. Two novel bibliometric indicators, including topic proportion and topic trend, were constructed to describe the academic concerns of the TGP. Topic proportion analysis shows that post-construction issues, including the social and environmental impacts brought by the TGP, have attracted more attention than the construction issues. "Ecology", "Reservoir Operation", "Land Administration", and "Water Pollution", have become the dominant research topics regarding the TGP during these years. Meanwhile, "Construction Technology" and "Design", have gradually lost scholars' interest. The results show that the approach reported in this study can provide sound and credible conclusions of the major academic concerns for a hydropower project. The topic modeling approach is expected to be widely applied as a methodological strategy in future hydropower and other infrastructure project assessment. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Jiang HanChen; Qiang MaoShan; Lin Peng] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China.
C3 Tsinghua University
RP Qiang, MS (corresponding author), Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China.
EM jhc13@mails.tsinghua.edu.cn; qiangms@mail.tsinghua.edu.cn;
celinpe@tsinghua.edu.cn
RI Lin, Peng/J-4015-2013
FU National Natural Science Foundation of China [51479100, 51179086,
11272178, 51379104]; State Key Laboratory of Hydroscience and
Engineering of China [2015-KY-5, 2013-KY-5]
FX This work was supported by the National Natural Science Foundation of
China under Grant Nos. 51479100, 51179086, 11272178, and 51379104; and
State Key Laboratory of Hydroscience and Engineering of China under
Grant 2015-KY-5 and 2013-KY-5.
CR Barros N, 2011, NAT GEOSCI, V4, P593, DOI 10.1038/ngeo1211
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Chang J, 2009, Adv. Neural Inf. Process. Syst., P288
Chang XL, 2010, ENERGY, V35, P4400, DOI 10.1016/j.energy.2009.06.051
Chen CC, 2011, DECIS SUPPORT SYST, V50, P755, DOI 10.1016/j.dss.2010.08.023
Chen S.H., 1999, SCI FDN CHINA, V5, P313
Chen ZY, 2001, GEOMORPHOLOGY, V41, P77, DOI 10.1016/S0169-555X(01)00106-4
Coglianese C, 2004, SOC SCI COMPUT REV, V22, P85, DOI 10.1177/0894439303259890
Cuéllar MF, 2005, ADMIN LAW REV, V57, P411
Dai ZJ, 2010, HYDROGEOL J, V18, P359, DOI 10.1007/s10040-009-0538-8
Duan YueFang Duan YueFang, 2003, Journal of Refugee Studies, V16, P422, DOI 10.1093/jrs/16.4.422
Feinerer I, 2008, J STAT SOFTW, V25, P1
Fu BJ, 2010, PROG PHYS GEOG, V34, P741, DOI 10.1177/0309133310370286
George G, 2014, ACAD MANAGE J, V57, P321, DOI 10.5465/amj.2014.4002
Gleick PeterH., 2009, WORLDS WATERS 2008 2, P139
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028
Grün B, 2011, J STAT SOFTW, V40, P1
Hofmann T, 2001, MACH LEARN, V42, P177, DOI 10.1023/A:1007617005950
Hwang SS, 2011, SOC INDIC RES, V101, P73, DOI 10.1007/s11205-010-9636-1
[简文星 Jian Wenxing], 2013, [地球科学, Earth Science], V38, P625
Kim S., 2014, J BIOMED INFORM, V53, P267
Kulkarni SS, 2014, DECISION SCI, V45, P971, DOI 10.1111/deci.12095
Leitzinger J.J., 1984, CONTEMP ECON POLICY, V2, P44, DOI DOI 10.1111/J.1465-7287.1984.TB00777.X
Levy KEC, 2014, SOC SCI COMPUT REV, V32, P182, DOI 10.1177/0894439313506847
Lu Youmei, 1994, International Water Power & Dam Construction, V46, P20
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024
Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Robertson S, 2004, J DOC, V60, P503, DOI 10.1108/00220410410560582
Shulman SW, 2003, SOC SCI COMPUT REV, V21, P162, DOI 10.1177/0894439303251557
Singh RK, 2009, ECOL INDIC, V9, P189, DOI 10.1016/j.ecolind.2008.05.011
Song M, 2014, IEEE INTELL SYST, V29, P18, DOI 10.1109/MIS.2014.20
Steelman TA, 1999, J FOREST, V97, P22
Stone R, 2011, SCIENCE, V333, P817, DOI 10.1126/science.333.6044.817
Sutton A, 2004, GEOGRAPHY, V89, P111
Tullos D, 2009, J ENVIRON MANAGE, V90, pS208, DOI 10.1016/j.jenvman.2008.07.031
Wang JZ, 2002, PUBLIC ADMIN DEVELOP, V22, P369, DOI 10.1002/pad.241
Wang M.F., 2004, J HUAZHONG U SCI TEC, V3, P34
Wang Rushu, 2009, Journal of China Three Gorges University, V31, P1
Wood SA, 2013, SCI REP-UK, V3, DOI 10.1038/srep02976
Wu JG, 2003, SCIENCE, V300, P1239, DOI 10.1126/science.1083312
Yang SL, 2011, GLOBAL PLANET CHANGE, V75, P14, DOI 10.1016/j.gloplacha.2010.09.006
Yang XK, 2013, ENVIRON RES LETT, V8, DOI 10.1088/1748-9326/8/4/041006
Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8
Zhang H.-P., 2003, Proc. of the second SIGHAN workshop on Chinese language process, P184, DOI DOI 10.3115/1119250.1119280
Zhao XG, 2012, RENEW ENERG, V44, P1, DOI 10.1016/j.renene.2012.01.005
Zheng B, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-58
NR 49
TC 29
Z9 34
U1 5
U2 83
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1470-160X
EI 1872-7034
J9 ECOL INDIC
JI Ecol. Indic.
PD JAN
PY 2016
VL 60
BP 693
EP 701
DI 10.1016/j.ecolind.2015.08.007
PG 9
WC Biodiversity Conservation; Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA CZ9GW
UT WOS:000367407000070
DA 2024-09-05
ER
PT J
AU Amos, AJ
Lee, KYM
Gupta, TS
Malau-Aduli, BS
AF Amos, Andrew James
Lee, Kyungmi
Gupta, Tarun Sen
Malau-Aduli, Bunmi S.
TI Validating the knowledge represented by a self-organizing map with an
expert-derived knowledge structure
SO BMC MEDICAL EDUCATION
LA English
DT Article
DE Artificial intelligence; Machine learning; Curriculum development;
Scientometrics; Medical education; Explainable AI
AB Background Professionals are reluctant to make use of machine learning results for tasks like curriculum development if they do not understand how the results were generated and what they mean. Visualizations of peer reviewed medical literature can summarize enormous amounts of information but are difficult to interpret. This article reports the validation of the meaning of a self-organizing map derived from the Medline/PubMed index of peer reviewed medical literature by its capacity to coherently summarize the references of a core psychiatric textbook.Methods Reference lists from ten editions of Kaplan and Sadock's Comprehensive Textbook of Psychiatry were projected onto a self-organizing map trained on Medical Subject Headings annotating the complete set of peer reviewed medical research articles indexed in the Medline/PubMed database (MedSOM). K-means clustering was applied to references from every edition to examine the ability of the self-organizing map to coherently summarize the knowledge contained within the textbook.Results MedSOM coherently clustered references into six psychiatric knowledge domains across ten editions (1967-2017). Clustering occurred at the abstract level of broad psychiatric practice including General/adult psychiatry, Child psychiatry, and Administrative psychiatry.Conclusions The uptake of visualizations of published medical literature by medical experts for purposes like curriculum development depends upon validation of the meaning of the visualizations. The current research demonstrates that a self-organizing map (MedSOM) can validate the stability and coherence of the references used to support the knowledge claims of a standard psychiatric textbook, linking the products of machine learning to a widely accepted standard of knowledge.
C1 [Amos, Andrew James; Gupta, Tarun Sen] James Cook Univ, Coll Med & Dent, Townsville, Australia.
[Lee, Kyungmi] James Cook Univ, Coll Sci & Engn, Cairns, Australia.
[Malau-Aduli, Bunmi S.] Univ Newcastle, Sch Med & Publ Hlth, Newcastle, Australia.
C3 James Cook University; James Cook University; University of Newcastle
RP Amos, AJ (corresponding author), James Cook Univ, Coll Med & Dent, Townsville, Australia.
EM Andrew.Amos@jcu.edu.au
RI Malau-Aduli, Bunmi/J-9388-2014
OI Malau-Aduli, Bunmi/0000-0001-6054-8498
CR American Psychiatric Association, 2013, DIAGN STAT MAN MENT
American Psychiatric Association, 2013, Diagnostic and Statistical Manual of Mental Disorders: DSM-5, V5th, DOI [DOI 10.1176/APPI.BOOKS.9780890425596, 10.1176/APPI.BOOKS.9780890425596]
Amos A, 2023, 19 WORLD C MED HLTH
Amos AJ, 2023, CURR PSYCHOL, V42, P30813, DOI 10.1007/s12144-022-04090-y
[Anonymous], 2019, LANCET, V393, P959, DOI 10.1016/S0140-6736(19)30510-0
Antoniadi AM, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11115088
Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012
Boyack KW, 2019, SPRINGER HBK, P187, DOI 10.1007/978-3-030-02511-3_8
Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029
Clarivate. Web of Science Home, 2023, Web of Science Website
Denny, 2010, KNOWL INF SYST, V25, P281, DOI 10.1007/s10115-009-0264-5
Elsevier, 2023, Scopus Home Internet
English JT, 2002, AM J PSYCHIAT, V159, P327, DOI 10.1176/appi.ajp.159.2.327
Harden RM, 2001, MED TEACH, V23, P123, DOI 10.1080/01421590120036547
He X, 2023, INT J HUM-COMPUT INT, V39, P1519, DOI 10.1080/10447318.2022.2095093
Kaplan HI., 1980, Kaplan and Sadocks Comprehensive Textbook of Psychiatry, V3
Kaplan HI., 1985, Kaplan and Sadocks Comprehensive Textbook of Psychiatry, V4
Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734
Kohonen T., 2001, SELF ORGANIZING MAPS, P501, DOI [DOI 10.1007/978-3-642-56927-2, 10.1007/978-3-642-56927-2]
Melka J, 2017, P 9 INT JOINT C COMP, P54, DOI DOI 10.5220/0006499500540063
Melka J, 2019, STUD COMPUT INTELL, V829, P139, DOI 10.1007/978-3-030-16469-0_8
Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007
National Library of Medicine, 2023, MEDLINE Citation Counts by Year of Publication
National Library of Medicine, 2021, MEDLINE Database Home
Ohniwa RL, 2019, SCIENTOMETRICS, V121, P1549, DOI 10.1007/s11192-019-03248-z
Rousseau R, 2019, SPRINGER HBK, P69, DOI 10.1007/978-3-030-02511-3_3
Sadock BJ, 2009, Kaplan Sadocks Comprehensive Textbook of Psychiatry, DOI DOI 10.1080/09638230902946833
Shulner-Tal A, 2023, INT J HUM-COMPUT INT, V39, P1455, DOI 10.1080/10447318.2022.2095705
Silva A, 2023, INT J HUM-COMPUT INT, V39, P1390, DOI 10.1080/10447318.2022.2101698
Skupin A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058779
Thomas P.A., 2016, CURRICULUM DEV MEDIC, DOI DOI 10.7326/0003-4819-130-10-199905180-00028
NR 31
TC 0
Z9 0
U1 1
U2 1
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1472-6920
J9 BMC MED EDUC
JI BMC Med. Educ.
PD APR 16
PY 2024
VL 24
IS 1
AR 416
DI 10.1186/s12909-024-05352-y
PG 16
WC Education & Educational Research; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Education & Educational Research
GA OA4L6
UT WOS:001204524700002
PM 38627742
OA gold
DA 2024-09-05
ER
PT C
AU Hamadicharef, B
AF Hamadicharef, Brahim
BE Deng, H
Miao, DQ
Lei, JS
Wang, FL
TI Bibliometric Analysis of Particle Swarm Optimization (PSO) Research
2000-2010
SO ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT III
SE Lecture Notes in Artificial Intelligence
LA English
DT Proceedings Paper
CT 3rd International Conference on Artificial Intelligence and
Computational Intelligence (AICI 2011)
CY SEP 23-25, 2011
CL Taiyuan, PEOPLES R CHINA
DE Particle Swarm Optimization; bibliometric study; citations
ID PUBLICATION
AB In the last decade, Particle Swarm Optimization (PSO) has grown in popularity as one important method for optimization, compared to recent Differential Evolution (DE) and Harmony Search (HS). In this paper a bibliometric study is presented, carried out on the PSO research literature from 2000 to 2010. The Thomson Reuters Web of Science (WoS) was used to collect publication records and analyzed to identify authorship, co-authorship, top journals, profile the distribution of citations and references. The study also includes the use keyword co-occurrence frequency from the articles' title, to help getting insights into PSO research trends and fields of applications.
C1 Tiara, Singapore 239403, Singapore.
RP Hamadicharef, B (corresponding author), Tiara, 1 Kim Seng Walk, Singapore 239403, Singapore.
EM bhamadicharef@hotmail.com
RI HAMADICHAREF, Brahim/B-8686-2009
OI HAMADICHAREF, Brahim/0000-0003-4192-3517
CR Clerc M, 2002, IEEE T EVOLUT COMPUT, V6, P58, DOI 10.1109/4235.985692
Dereli T, 2009, EUR J IND ENG, V3, P379, DOI 10.1504/EJIE.2009.027034
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Geem ZW, 2001, SIMULATION, V76, P60, DOI 10.1177/003754970107600201
Goldberg DE, 1989, Genetic Algorithms in Search, Optimization and Machine Learning, V1st
Hagen NT, 2010, SCIENTOMETRICS, V84, P785, DOI 10.1007/s11192-009-0129-4
Hamadicharef B., 2010, Proceedings 2010 International Conference on Web Information Systems and Mining (WISM 2010), P201, DOI 10.1109/WISM.2010.166
Hamadicharef Brahim, 2010, 2010 10th International Conference on Information Sciences, Signal Processing and their Applications (ISSPA 2010), P626, DOI 10.1109/ISSPA.2010.5605421
Hamadicharef B, 2009, IEEE INT SYMP CIRC S, P1465, DOI 10.1109/ISCAS.2009.5118043
Karaboga D, 2009, ARTIF INTELL REV, V31, P61, DOI 10.1007/s10462-009-9127-4
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
Kwok LS, 2005, J MED ETHICS, V31, P554, DOI 10.1136/jme.2004.010553
Storn R, 1999, IEEE T EVOLUT COMPUT, V3, P22, DOI 10.1109/4235.752918
Viégas FB, 2009, IEEE T VIS COMPUT GR, V15, P1137, DOI 10.1109/TVCG.2009.171
NR 15
TC 3
Z9 3
U1 0
U2 1
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 978-3-642-23895-6; 978-3-642-23896-3
J9 LECT NOTES ARTIF INT
PY 2011
VL 7004
BP 404
EP 411
PN III
PG 8
WC Computer Science, Artificial Intelligence
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BBZ34
UT WOS:000309149800050
DA 2024-09-05
ER
PT J
AU Kartal, G
Yesilyurt, YE
AF Kartal, Galip
Yesilyurt, Yusuf Emre
TI A bibliometric analysis of artificial intelligence in L2 teaching and
applied linguistics between 1995 and 2022
SO RECALL
LA English
DT Article; Early Access
DE artificial intelligence (AI); L2; applied linguistics; bibliometric
analysis; co-citation analysis
ID LEARNER LANGUAGE; COMPREHENSION; EXPERIENCES; CALL; AI
AB This study offers a comprehensive bibliometric analysis of artificial intelligence (AI) applications in the field of second language (L2) teaching and applied linguistics, spanning from the early developments in 1995 to 2022. It aims to uncover current trends, prominent themes, and influential authors, documents, and sources. A total of 185 relevant articles published in Social Sciences Citation Index (SSCI) indexed journals were analyzed using the VOSviewer bibliometric software tool. Our investigation reveals a highly multidisciplinary and interconnected field, with four main clusters identified: AI, natural language processing (NLP), robot-assisted language learning, and chatbots. Notable themes include the increasing use of intelligent tutoring systems, the importance of syntactic complexity and vocabulary in L2 learning, and the exploration of robots and gamification in language education. The study also highlights the potential of NLP and AI technologies to enhance personalized feedback and instruction for language learners. The findings emphasize the growing interest in AI applications in L2 teaching and applied linguistics, as well as the need for continued research to advance the field and improve language instruction and assessment. By providing a quantitative and rigorous overview of the literature, this study contributes valuable insights into the current state of research in AI-assisted L2 teaching and applied linguistics and identifies key areas for future exploration and development.
C1 [Kartal, Galip] Necmettin Erbakan Univ, Konya, Turkiye.
[Yesilyurt, Yusuf Emre] Burdur Mehmet Akif Ersoy Univ, Burdur, Turkiye.
C3 Necmettin Erbakan University; Mehmet Akif Ersoy University
RP Kartal, G (corresponding author), Necmettin Erbakan Univ, Konya, Turkiye.
EM kartalgalip@gmail.com; yeyesilyurtnew@gmail.com
OI KARTAL, Galip/0000-0003-4656-2108
CR Alexopoulou T, 2017, LANG LEARN, V67, P180, DOI 10.1111/lang.12232
Ali Zuraina, 2020, IOP Conference Series: Materials Science and Engineering, V769, DOI 10.1088/1757-899X/769/1/012043
Alm A, 2020, INT J COMPUT-ASSIST, V10, P51, DOI 10.4018/IJCALLT.2020100104
Amaral L, 2011, COMPUT ASSIST LANG L, V24, P1, DOI 10.1080/09588221.2010.520674
Asher Jordi M, 2022, Vision (Basel), V6, DOI 10.3390/vision6040067
Bouchrika I, 2021, INTERACT LEARN ENVIR, V29, P1244, DOI 10.1080/10494820.2019.1623267
Cao MY, 2020, English Language Teaching, V13, P77
Chang CW, 2010, EDUC TECHNOL SOC, V13, P13
Chen GD, 2013, INTERACT LEARN ENVIR, V21, P172, DOI 10.1080/10494820.2012.705856
Chen XL, 2021, EDUC TECHNOL SOC, V24, P205
Cheng YW, 2020, COMPUT ASSIST LANG L, V34, P6, DOI 10.1080/09588221.2020.1799823
Cheng YW, 2018, COMPUT EDUC, V126, P399, DOI 10.1016/j.compedu.2018.07.020
Crossley SA, 2017, DISCOURSE PROCESS, V54, P340, DOI 10.1080/0163853X.2017.1296264
Crossley SA, 2016, J SECOND LANG WRIT, V32, P1, DOI 10.1016/j.jslw.2016.01.003
Dhimolea TK, 2022, TECHTRENDS, V66, P810, DOI 10.1007/s11528-022-00717-w
Divekar RR, 2022, COMPUT ASSIST LANG L, V35, P2332, DOI 10.1080/09588221.2021.1879162
Dokukina Irina, 2020, Procedia Computer Science, P542, DOI 10.1016/j.procs.2020.02.212
Hallinger P, 2019, REV EDUC RES, V89, P335, DOI 10.3102/0034654319830380
Hamal O, 2022, INT J EMERG TECHNOL, V17, P32, DOI 10.3991/ijet.v17i02.26605
Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610
Huang XY, 2023, EDUC TECHNOL SOC, V26, P112, DOI 10.30191/ETS.202301_26(1).0009
Kessler G, 2018, FOREIGN LANG ANN, V51, P205, DOI 10.1111/flan.12318
Khalifa A., 2017, Proceedings of the 7th ISCA Workshop on Speech and Language Technology in Education, P13, DOI [10.21437/slate.2017-3, 10.21437/SLaTE.2017-3, DOI 10.21437/SLATE.2017-3]
Khalifa A, 2019, INT J EMERG TECHNOL, V14, P105, DOI 10.3991/ijet.v14i02.9212
Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3
Kumar A., 2017, International Journal of Cognitive Research in Science, Engineering, Education, V5, P83, DOI [DOI 10.5937/IJCRSEE1702083K, 10.5937/IJCRSEE1702083K]
Kyle K, 2018, MOD LANG J, V102, P333, DOI 10.1111/modl.12468
Lee H, 2022, EDUC RES REV-NETH, V35, DOI 10.1016/j.edurev.2021.100425
Lee S, 2011, RECALL, V23, P25, DOI 10.1017/S0958344010000273
Lei H., 2022, P 2021 INT C ED LANG, P659, DOI [10.2991/assehr.k.220131.121, DOI 10.2991/ASSEHR.K.220131.121]
Leoste J, 2022, FRONT ROBOT AI, V9, DOI 10.3389/frobt.2022.976836
Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348
McHugh D, 2020, J RES TECHNOL EDUC, V52, P391, DOI 10.1080/15391523.2020.1752337
Meurers WD, 2009, CALICO J, V26, P469
Molenaar B, 2021, MULTIMODAL TECHNOLOG, V5, DOI 10.3390/mti5120076
Nair V, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13179829
Nushi M., 2020, Teaching English with Technology, V20, P65
Oliva SZ, 2021, SCIENTOMETRICS, V126, P1471, DOI 10.1007/s11192-020-03785-y
Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025
Roemer R.C., 2015, MEANINGFUL METRICS 2
Rustan E., 2022, Journal of Language Teaching and Research, V13, P1251, DOI [10.17507/jltr.1306.13, DOI 10.17507/JLTR.1306.13]
Schulze M., 2013, Contemporary computer-assisted language learning, P249
Schulze M, 2008, CALICO J, V25, P510, DOI 10.1558/cj.v25i3.510-527
Sisman B, 2019, INTERACT LEARN ENVIR, V27, P377, DOI 10.1080/10494820.2018.1474234
Sun K, 2019, T ASSOC COMPUT LING, V7, P217, DOI 10.1162/tacl_a_00264
Timpe-Laughlin V, 2022, COMPUT ASSIST LANG L, V35, P1194, DOI 10.1080/09588221.2020.1774904
Tschichold C, 2016, ROUT HANDB APPL, P522
Tsivitanidou Olia, 2021, Learning and Collaboration Technologies Games and Virtual Environments for Learning. 8th International Conference, LCT 2021. Held as Part of the 23rd HCI International Conference, HCII 2021. Proceedings. Lecture Notes in Computer Science (LNCS 12785), P230, DOI 10.1007/978-3-030-77943-6_15
Vall R., 2023, International Journal of Social Sciences and Humanities Invention, V10, P7569, DOI [https://doi.org/10.18535/ijsshi/v10i01.02, DOI 10.18535/IJSSHI/V10I01.02]
van Eck NJ, 2017, PRO INT CONF SCI INF, P1087
Wang W, 2024, ENT-EAR NOSE THROAT, V103, P36, DOI 10.1177/01455613211037641
Wang ZJ, 2021, Arxiv, DOI arXiv:2103.04044
Widiasih Johan, 2021, P INT C ED SCI TEACH, P218, DOI [10.2991/assehr.k.210227.039, DOI 10.2991/ASSEHR.K.210227.039]
Xu ZH, 2019, BRIT J EDUC TECHNOL, V50, P3119, DOI 10.1111/bjet.12758
Yang HZ, 2022, AUSTRALAS J EDUC TEC, V38, P180, DOI 10.14742/ajet.7492
Yang YF, 2010, LEARN INSTR, V20, P72, DOI 10.1016/j.learninstruc.2009.01.003
Zhang ZC, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.880935
Zou B, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15042872
Zou X, 2018, ACCIDENT ANAL PREV, V118, P131, DOI 10.1016/j.aap.2018.06.010
NR 59
TC 0
Z9 0
U1 70
U2 70
PU CAMBRIDGE UNIV PRESS
PI CAMBRIDGE
PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND
SN 0958-3440
EI 1474-0109
J9 RECALL
JI ReCALL
PD 2024 FEB 26
PY 2024
DI 10.1017/S0958344024000077
EA FEB 2024
PG 17
WC Education & Educational Research; Linguistics; Language & Linguistics
WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Education & Educational Research; Linguistics
GA JF5K4
UT WOS:001171763000001
OA hybrid
DA 2024-09-05
ER
PT J
AU Gupta, BM
Dhawan, SM
AF Gupta, B. M.
Dhawan, S. M.
TI Artificial Intelligence Research in India: A Scientometric Assessment of
Publications Output during 2007-16
SO DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY
LA English
DT Article
DE Artificial intelligence; India; Publications; Highly cited papers;
Scientometrics; Bibliometrics
ID COMPUTER-SCIENCE RESEARCH
AB The paper examines the world output in artificial intelligence research, a total of 1,52,655 publications, as seen from Scopus database, covering the period during 2007-16. The top 10 countries of the world in artificial intelligence research accounted for 74.32 per cent global publication share. Individually their global share varied from 3.68 per cent to 19.46 per cent, with China accounting for 19.46 per cent global share, followed by the USA (17.96 %), India (6.37 %), and the U.K. (6.33 %), etc. The paper also examines publications output by India in artificial intelligence research. India cumulated a total of 9730 publications in 10 years during 2007-16, registered an annual average growth rate of 27.45 per cent, averaged citation impact to 2.76 citations per paper, and contributed 10.34 per cent share of its total country output as international collaborative publications during 2007-16. Computer science accounted for the largest publication share (86.99 %), followed by engineering (30.69 %), mathematics (15.95 %), biochemistry, genetics & molecular biology (4.66 %), and several other disciplines. The top 10 organizations and 10 authors together accounted for 19.31 per cent and 2.71 per cent national publications share respectively and 29.78 per cent share and 6.85 per cent national citation share respectively during 2007-16. Top 10 journals accounted for 15.45 per cent share of the country output appearing in journal medium (1650 papers). India accounted for 24 highly cited papers, averaging to 162.46 citations per paper. These 24 highly cited papers involved the participation of 109 authors from 70 organizations, published in 15 journals.
C1 [Gupta, B. M.] 1173,Sect 15, Panchkula 134113, Haryana, India.
[Dhawan, S. M.] 114 Dayanand Vihar, Delhi 110092, India.
RP Gupta, BM (corresponding author), 1173,Sect 15, Panchkula 134113, Haryana, India.
EM bmgupta1@gmail.com
CR Cheng Saiyan, 2012, IEEE P 5 INT JOINT C
Gupta BM, 2017, J SCIENTOMETR RES, V6, P74, DOI 10.5530/jscires.6.2.13
Gupta BM, 2010, DESIDOC J LIB INF TE, V30, P39, DOI 10.14429/djlit.30.680
Gupta BM, 2011, SCIENTOMETRICS, V86, P261, DOI 10.1007/s11192-010-0272-y
Gupta BM, 2005, DESIDOC J LIB INF TE, V25, P3, DOI 10.14429/dbit.25.1.3644
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Shanmugam A. P, 2016, J ADV LIB INF SCI, V5, P235
Shrivastava Rishabh, 2016, Science & Technology Libraries, V35, P136, DOI 10.1080/0194262X.2016.1181023
van den Besselaar P, 1996, J AM SOC INFORM SCI, V47, P415, DOI 10.1002/(SICI)1097-4571(199606)47:6<415::AID-ASI3>3.0.CO;2-Y
NR 9
TC 8
Z9 8
U1 0
U2 25
PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE
PI DELHI
PA METCALFE HOUSE, DELHI 110054, INDIA
SN 0974-0643
EI 0976-4658
J9 DESIDOC J LIB INF TE
JI DESIDOC J. Lib. Inf. Technol.
PD NOV
PY 2018
VL 38
IS 6
BP 416
EP 422
DI 10.14429/djlit.38.6.12309
PG 7
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA GZ0NB
UT WOS:000449059400006
OA Green Submitted, hybrid
DA 2024-09-05
ER
PT J
AU Chen, XL
Xie, HR
Li, ZX
Zhang, D
Cheng, GRY
Wang, FL
Dai, HN
Li, Q
AF Chen, Xieling
Xie, Haoran
Li, Zongxi
Zhang, Dian
Cheng, Gary
Wang, Fu Lee
Dai, Hong-Ning
Li, Qing
TI Leveraging deep learning for automatic literature screening in
intelligent bibliometrics
SO INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
LA English
DT Article
DE Automatic literature screening; Deep neural networks; Intelligent
bibliometrics; Big data analytics
ID SYSTEMATIC REVIEWS; CLASSIFICATION; PATTERNS
AB Intelligent bibliometrics, by providing sufficient statistical information based on large-scale literature data analytics, is promising for understanding innovative pathways, addressing meaningful insights with the assistance of expert knowledge, and indicating key areas of scientific inquiry. However, the exponential growth of global scientific publication output in most areas of modern science makes it extremely difficult and labor-intensive to analyze literature in large volumes. This study aims to accelerate intelligent bibliometrics-driven literature analysis by leveraging deep learning for automatic literature screening. The comparison of different machine learning algorithms for the automatic classification of literature regarding relevance to a given research topic reveals the outstanding performance of deep learning. This study also compares different features as model input and provides suggestions about training dataset size. By leveraging deep learning's abilities in predictive and big data analytics, this study makes contributions to intelligent bibliometrics by promoting literature screening and is promising to track technological changes and scientific evolutionary pathways.
C1 [Chen, Xieling] Guangzhou Univ, Sch Educ, Guangzhou, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
[Li, Zongxi; Wang, Fu Lee] Hong Kong Metropolitan Univ, Sch Sci & Technol, Hong Kong, Peoples R China.
[Zhang, Dian] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China.
[Cheng, Gary] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Dai, Hong-Ning] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Peoples R China.
[Li, Qing] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China.
C3 Guangzhou University; Lingnan University; Hong Kong Metropolitan
University; Shenzhen University; Education University of Hong Kong
(EdUHK); Hong Kong Baptist University; Hong Kong Polytechnic University
RP Xie, HR (corresponding author), Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
EM xielingchen0708@gmail.com; hrxie@ieee.org; zoli@hkmu.edu.hk;
zhangd@szu.edu.cn; chengks@eduhk.hk; pwang@hkmu.edu.hk;
henrydai@comp.hkbu.edu.hk; qing-prof.li@polyu.edu.hk
RI Li, Qing/JMH-1365-2023; zheng, yi/JOZ-7204-2023; Dai,
Hong-Ning/B-1931-2012; Xie, Haoran/AFS-3515-2022; Wang, Fu
Lee/AAD-9782-2021
OI Li, Qing/0000-0003-3370-471X; Dai, Hong-Ning/0000-0001-6165-4196; Xie,
Haoran/0000-0003-0965-3617; Wang, Fu Lee/0000-0002-3976-0053; PV,
THAYYIB/0000-0001-8929-0398
FU Research Grants Council of the Hong Kong Special Administrative Region,
China [UGC/FDS16/E01/19]; Lingnan University, Hong Kong [DR22A2, DB22B4,
DB22B7]; One-off Special Fund from Central and Faculty Fund in Support
of Research [MIT02/19-20]; Interdisciplinary Research Scheme of Dean's
Research Fund 2021/22 of The Education University of Hong Kong
[FLASS/DRF/IDS-3]
FX The research described in this article has been supported by a grant
from the Research Grants Council of the Hong Kong Special Administrative
Region, China (UGC/FDS16/E01/19), the Direct Grant (DR22A2) and the
Faculty Research Grants (DB22B4 and DB22B7) of Lingnan University, Hong
Kong, the One-off Special Fund from Central and Faculty Fund in Support
of Research from 2019/20 to 2021/22 (MIT02/19-20), and Interdisciplinary
Research Scheme of Dean's Research Fund 2021/22 (FLASS/DRF/IDS-3) of The
Education University of Hong Kong.
CR Ali J., 2012, INT J COMPUT SCI ISS, V9, P272
Althnian A, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11020796
[Anonymous], 2011, P 2011 C EMP METH NA
[Anonymous], 2006, Nursing research. principles
Astrom F., 2009, Celebrating scholarly communication studies: a festschrift for Olle Persson at his 60th birthday
Balaji NNA, 2020, HLTH IRVINE CALIF, V100, P100
Balakrishnan N, 2019, INT J MACH LEARN CYB, V10, P3575, DOI 10.1007/s13042-019-00945-2
Barnett GA, 2017, TECHNOL FORECAST SOC, V117, P38, DOI 10.1016/j.techfore.2017.01.011
Barnett GA, 2017, NEW MEDIA SOC, V19, P217, DOI 10.1177/1461444815604421
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Belter CW, 2016, J ASSOC INF SCI TECH, V67, P2766, DOI 10.1002/asi.23605
Bernardo Wanderley Marques, 2004, Rev Assoc Med Bras (1992), V50, P104, DOI 10.1590/S0104-42302004000100045
Bernstam EV, 2006, J AM MED INFORM ASSN, V13, P96, DOI 10.1197/jamia.M1909
Boell SK, FORMULATING RES METH, P8
Bunn F, 2014, SYST REV, V3, DOI 10.1186/2046-4053-3-125
Cheah S, 2017, J CHIN ECON FOREIGN, V10, P229, DOI 10.1108/JCEFTS-05-2017-0013
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen X, 2019, INT S EMERGING TECHN, P201
Chen XL, 2021, LANG LEARN TECHNOL, V25, P151
Chen XL, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10062157
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Cheng FF, 2019, COMPUT-AIDED CHEM EN, V46, P757, DOI 10.1016/B978-0-12-818634-3.50127-2
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Collins JA, 2005, HUM REPROD UPDATE, V11, P103, DOI 10.1093/humupd/dmh058
Collobert R, 2011, J MACH LEARN RES, V12, P2493
Colón-Ruiz C, 2020, J BIOMED INFORM, V110, DOI 10.1016/j.jbi.2020.103539
Cronin Patricia, 2008, Br J Nurs, V17, P38
Dakuo Wang, 2019, Proceedings of the ACM on Human-Computer Interaction, V3, DOI 10.1145/3359313
Dufter P, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P2353
Dunn TJ, 2019, COMPUT EDUC, V137, P104, DOI 10.1016/j.compedu.2019.04.004
Fawagreh K, 2014, SYST SCI CONTROL ENG, V2, P602, DOI 10.1080/21642583.2014.956265
Adeva JJG, 2014, EXPERT SYST APPL, V41, P1498, DOI 10.1016/j.eswa.2013.08.047
Adeva JJG, 2007, ENG APPL ARTIF INTEL, V20, P555, DOI 10.1016/j.engappai.2006.09.001
Gimenez E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10020391
Golmohammadi M, 2017, ROUTL STUD NEW MEDIA
Graham S, 2019, CURR PSYCHIAT REP, V21, DOI 10.1007/s11920-019-1094-0
Grauwin S, 2011, SCIENTOMETRICS, V89, P943, DOI 10.1007/s11192-011-0482-y
Guyon I, 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1162/153244303322753616
Ha T, 2017, TELEMAT INFORM, V34, P1262, DOI 10.1016/j.tele.2017.05.011
Hao TY, 2020, J EDUC COMPUT RES, V58, P1311, DOI 10.1177/0735633120940956
Hart C, 1998, REV RES IMAGINATION
Hearst M.A., 1999, P ASS COMPUTATIONAL, P3, DOI DOI 10.3115/1034678.1034679
Hennigen LT, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P197
Hochreiter S., 1997, Neural Computation, V9, P1735
Hofst„tter S, 2019, Arxiv, DOI arXiv:1907.04614
Howard BE, 2016, SYST REV, V5, DOI 10.1186/s13643-016-0263-z
Iglesias LL, 2021, INSIGHTS IMAGING, V12, DOI 10.1186/s13244-021-01052-z
Immer A, 2022, PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), P1839
Islam KI, 2020, INT CONF COMPUT INFO, DOI 10.1109/ICCIT51783.2020.9392653
Iyyer M, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1113
Jabbar MA, 2014, 2014 INTERNATIONAL CONFERENCE ON CIRCUITS, COMMUNICATION, CONTROL AND COMPUTING (I4C), P322, DOI 10.1109/CIMCA.2014.7057816
Kalchbrenner N, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P655, DOI 10.3115/v1/p14-1062
Kho ME, 2012, J CLIN EPIDEMIOL, V65, P1010, DOI 10.1016/j.jclinepi.2012.03.009
Kim B, 2021, CITIES, V108, DOI 10.1016/j.cities.2020.102941
Kim Y, 2014, ARXIV14085882, DOI 10.3115/v1/D14-1181
Kontonatsios G., 2020, EXPERT SYST APPL X, V6, P100030, DOI [DOI 10.1016/J.ESWAX.2020.100030, 10.1016/j.eswax.2020.100030]
Kucukyilmaz T, 2008, INFORM PROCESS MANAG, V44, P1448, DOI 10.1016/j.ipm.2007.12.009
Kwon O, 2013, EXPERT SYST APPL, V40, P1847, DOI 10.1016/j.eswa.2012.09.017
LANGLEY P, 1993, IJCAI-93, VOLS 1 AND 2, P889
Lee S, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0164680
Lewis D. D., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P4, DOI 10.1007/BFb0026666
Liu Pengfei., 2016, IJCAI, P2873
Liu ZH, 2020, 5TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP (REPL4NLP-2020), P1
Magge A, 2021, J AM MED INFORM ASSN, V28, P2184, DOI 10.1093/jamia/ocab114
Mccallum A., 2001, AAAIICML 98 WORKSHOP, V752
Mikolov T, 2017, P 11 INT C LANG RES
Moschitti A, 2003, LECT NOTES COMPUT SC, V2633, P420
O'Mara-Eves A, 2014, RES SYNTH METHODS, V5, P50, DOI 10.1002/jrsm.1094
Oral B, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102361
Oussous A, 2018, J KING SAUD UNIV-COM, V30, P431, DOI 10.1016/j.jksuci.2017.06.001
Peng Y, 2011, APPL SOFT COMPUT, V11, P2906, DOI 10.1016/j.asoc.2010.11.028
Petticrew M, 2006, SYSTEMATIC REVIEWS IN THE SOCIAL SCIENCES: A PRACTICAL GUIDE, P1, DOI 10.1002/9780470754887
Prusa J, 2015, 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P96, DOI 10.1109/ICMLA.2015.22
Rahman MS, 2017, BMC MED RES METHODOL, V17, DOI 10.1186/s12874-017-0313-9
Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397
Raudys S, 1980, IEEE Trans Pattern Anal Mach Intell, V2, P242, DOI 10.1109/TPAMI.1980.4767011
Robinson KA, 2014, J CLIN EPIDEMIOL, V67, P793, DOI 10.1016/j.jclinepi.2013.11.015
Ros R., 2017, EASE 17 P 21 INT C E, P118, DOI DOI 10.1145/3084226.3084243
Rowley J., 2004, Management research news, V27, P31, DOI [10.1108/01409170410784185, DOI 10.1108/01409170410784185]
Roy K., 2015, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment
Royle P, 2013, SYST REV-LONDON, V2, DOI 10.1186/2046-4053-2-74
Saarela M, 2021, SN APPL SCI, V3, DOI 10.1007/s42452-021-04148-9
Scells H, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1237, DOI 10.1145/3077136.3080707
Shemilt I, 2014, RES SYNTH METHODS, V5, P31, DOI 10.1002/jrsm.1093
Shen YL, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P373, DOI 10.1145/2567948.2577348
Shojania KG, 2007, ANN INTERN MED, V147, P224, DOI 10.7326/0003-4819-147-4-200708210-00179
Sia S, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P1728
Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002
Taha A, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12063209
Tawfik NS, 2020, J BIOMED INFORM, V104, DOI 10.1016/j.jbi.2020.103396
Team S, 2009, SCI2 TOOL TOOL SCI S
Timsina P, 2016, P ANN HICSS, P1195, DOI 10.1109/HICSS.2016.151
van Dinter R, 2021, EXPERT SYST APPL, V182, DOI 10.1016/j.eswa.2021.115261
van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
vom Brocke J, 2015, COMMUN ASSOC INF SYS, V37, P205
Watanabe WM, 2020, INFORM SOFTWARE TECH, V128, DOI 10.1016/j.infsof.2020.106395
Webster J, 2002, MIS QUART, V26, pXIII
Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599
Xieling Chen, 2022, International Journal of Mobile Learning and Organisation, V16, P20, DOI 10.1504/IJMLO.2022.119952
Xiong ZH, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00835
Yesir S, 2021, 9TH INTERNATIONAL SYMPOSIUM ON DIGITAL FORENSICS AND SECURITY (ISDFS'21), DOI 10.1109/ISDFS52919.2021.9486377
Yih WT, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P643
Yu Z, 2019, EXPERT SYST APPL, V120, P57, DOI 10.1016/j.eswa.2018.11.021
Yu Z, 2018, EMPIR SOFTW ENG, V23, P3161, DOI 10.1007/s10664-017-9587-0
Zarate Juan Manuel Ortiz, 2020, String Processing and Information Retrieval. 27th International Symposium, SPIRE 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12303), P194, DOI 10.1007/978-3-030-59212-7_14
Zhang Y, 2021, QUANT SCI STUD, V2, P409, DOI 10.1162/qss_a_00100
Zhang YL, 2022, SYST REV-LONDON, V11, DOI 10.1186/s13643-021-01881-5
Zhou CT, 2015, Arxiv, DOI [arXiv:1511.08630, DOI 10.48550/ARXIV.1511.08630]
NR 109
TC 1
Z9 2
U1 10
U2 37
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1868-8071
EI 1868-808X
J9 INT J MACH LEARN CYB
JI Int. J. Mach. Learn. Cybern.
PD APR
PY 2023
VL 14
IS 4
BP 1483
EP 1525
DI 10.1007/s13042-022-01710-8
EA DEC 2022
PG 43
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA A1ZL5
UT WOS:000899155600001
DA 2024-09-05
ER
PT J
AU Gong, YL
Jia, LG
AF Gong, Yunlu
Jia, Lianguo
TI Research on SVM environment performance of parallel computing based on
large data set of machine learning
SO JOURNAL OF SUPERCOMPUTING
LA English
DT Article
DE SVM environment; Parallel computing; Large data set; Machine learning
ID BIG DATA; ALGORITHM; SCHEME
AB The support vector machine (SVM) algorithm is widely used in various fields because of its good classification effect, simplicity and practicability. However, the support vector machine calculates the support vector by quadratic programming, and the solution of quadratic programming will calculate the n-order matrix. When the amount of data is large, the calculation and storage of the n-order matrix will make the optimization speed very slow, even lead to memory overflow and interrupt operation. Using the big data computing platform Spark to improve the support vector machine algorithm can solve the above problems, but it's not competent for multi-classification problems. Therefore, this paper starts with constructing multiple classifiers, combines the Spark framework of big data programming model and the classification characteristics of support vector machine to realize a parallel one-to-many SVM optimization algorithm based on large data sets and compares them through UCI data sets. In the experiments, the one-to-many support vector machine improved by Spark is obviously better than the one-to-many support vector machine in the single-machine environment. The simulation results show that the proposed algorithm has better performance.
C1 [Gong, Yunlu] Shanghai Univ, Dept Math, Shanghai, Peoples R China.
[Jia, Lianguo] Wuxi Huoqiupuhui Co Ltd, Wuxi, Jiangsu, Peoples R China.
C3 Shanghai University
RP Gong, YL (corresponding author), Shanghai Univ, Dept Math, Shanghai, Peoples R China.
EM ylgong@shu.edu.cn
FU Natural Science Foundation of Jiangsu Province [BK20150204]
FX The authors acknowledge the Natural Science Foundation of Jiangsu
Province (Grant: BK20150204).
CR Allombert V, 2017, INT J PARALLEL PROG, V45, P340, DOI 10.1007/s10766-016-0417-6
[Anonymous], COMPUT SCI
[Anonymous], INT J PARALLEL PROGR
Babiceanu RF, 2016, COMPUT IND, V81, P128, DOI 10.1016/j.compind.2016.02.004
Bhatia V, 2018, EXPERT SYST APPL, V106, P217, DOI 10.1016/j.eswa.2018.04.010
Danchin A, 2018, MICROB BIOTECHNOL, V11, P588, DOI 10.1111/1751-7915.13284
Dastgeer U, 2016, INT J PARALLEL PROG, V44, P506, DOI 10.1007/s10766-015-0357-6
Fang YL, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17081799
Grover P., 2017, GLOBAL J FLEXIBLE SY, V18, P203, DOI DOI 10.1007/S40171-017-0159-3
Guerra G, 2017, J ENG-JOE, V2017, P195, DOI 10.1049/joe.2017.0023
Janka EA, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15020353
Kim JS, 2018, PERVASIVE MOB COMPUT, V44, P45, DOI 10.1016/j.pmcj.2018.01.005
Kim Y, 2014, IEEE COMPUT ARCHIT L, V13, P101, DOI 10.1109/L-CA.2013.19
Kumar N, 2016, IEEE SYST J, V10, P847, DOI 10.1109/JSYST.2015.2409651
Li DZ, 2018, SOFT COMPUT, V22, P2245, DOI 10.1007/s00500-017-2486-x
Madar V, 2016, BIOINFORMATICS, V32, P1716, DOI 10.1093/bioinformatics/btw029
Magnus JR, 2016, J ECON SURV, V30, P117, DOI 10.1111/joes.12094
Ripepi V, 2016, ASTROPHYSICS SPACE, V42, P145, DOI 10.1007/978-3-319-19330-4_23
Sitaridi EA, 2016, VLDB J, V25, P719, DOI 10.1007/s00778-015-0409-y
Smith C, 2016, ACM SIGPLAN NOTICES, V51, P326, DOI [10.1145/2908080.2908102, 10.1145/2980983.2908102]
Tetko IV, 2016, J INORG BIOCHEM, V156, P1, DOI 10.1016/j.jinorgbio.2015.12.006
Washington ID, 2017, COMPUT CHEM ENG, V103, P151, DOI 10.1016/j.compchemeng.2017.03.021
Wu XG, 2016, ACM T EMBED COMPUT S, V15, DOI 10.1145/2914789
Zaharia M, 2016, COMMUN ACM, V59, P56, DOI 10.1145/2934664
Zhang CJ, 2016, J AMB INTEL HUM COMP, V7, P633, DOI 10.1007/s12652-015-0262-2
Zhou SH, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18061934
Zhou SH, 2016, J INTELL FUZZY SYST, V30, P3367, DOI 10.3233/IFS-152084
NR 27
TC 8
Z9 8
U1 0
U2 22
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0920-8542
EI 1573-0484
J9 J SUPERCOMPUT
JI J. Supercomput.
PD SEP
PY 2019
VL 75
IS 9
BP 5966
EP 5983
DI 10.1007/s11227-019-02894-7
PG 18
WC Computer Science, Hardware & Architecture; Computer Science, Theory &
Methods; Engineering, Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA JA2JV
UT WOS:000487643900019
DA 2024-09-05
ER
PT C
AU Sleeman, J
Halem, M
Finin, T
Cane, M
AF Sleeman, Jennifer
Halem, Milton
Finin, Tim
Cane, Mark
BE Nie, JY
Obradovic, Z
Suzumura, T
Ghosh, R
Nambiar, R
Wang, C
Zang, H
BaezaYates, R
Hu, X
Kepner, J
Cuzzocrea, A
Tang, J
Toyoda, M
TI Discovering Scientific Influence using Cross-Domain Dynamic Topic
Modeling
SO 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)
SE IEEE International Conference on Big Data
LA English
DT Proceedings Paper
CT IEEE International Conference on Big Data (IEEE Big Data)
CY DEC 11-14, 2017
CL Boston, MA
DE big data; topic model; cross-domain correlation; data integration;
domain influence
AB We describe an approach using dynamic topic modeling to model influence and predict future trends in a scientific discipline. Our study focuses on climate change and uses assessment reports of the Intergovernmental Panel on Climate Change (IPCC) and the papers they cite. Since 1990, an IPCC report has been published every five years that includes four separate volumes, each of which has many chapters. Each report cites tens of thousands of research papers, which comprise a correlated dataset of temporally grounded documents. We use a custom dynamic topic modeling algorithm to generate topics for both datasets and apply cross-domain analytics to identify the correlations between the IPCC chapters and their cited documents. The approach reveals both the influence of the cited research on the reports and how previous research citations have evolved over time. For the IPCC use case, the report topic model used 410 documents and a vocabulary of 5911 terms while the citations topic model was based on 200K research papers and a vocabulary more than 25K terms. We show that our approach can predict the importance of its extracted topics on future IPCC assessments through the use of cross domain correlations, Jensen-Shannon divergences and cluster analytics.
C1 [Sleeman, Jennifer; Halem, Milton; Finin, Tim] Univ Maryland, Comp Sci & Elect Engn, Baltimore, MD 21250 USA.
[Cane, Mark] Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10027 USA.
C3 University System of Maryland; University of Maryland Baltimore;
Columbia University
RP Sleeman, J (corresponding author), Univ Maryland, Comp Sci & Elect Engn, Baltimore, MD 21250 USA.
EM jsleem1@umbc.edu; halem@umbc.edu; finin@umbc.edu; mac6@columbia.edu
RI Cane, Mark A/I-8086-2012; Finin, Tim/IUO-4834-2023
OI Finin, Tim/0000-0002-6593-1792; Cane, Mark/0000-0001-5408-2388
FU NSF [1439663]; Division Of Computer and Network Systems; Direct For
Computer & Info Scie & Enginr [1439663] Funding Source: National Science
Foundation
FX This work was partially supported by NSF award #1439663 and a gift from
IBM.
CR [Anonymous], 1995, INTRO KALMAN FILTER
Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859]
Blei DavidM., Dynamic Topic Models
Brown P. F., 1992, Computational Linguistics, V18, P467
Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526
Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763
Hu JJ, 2015, 2015 22ND INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), P3, DOI 10.1109/SANER.2015.7081810
Kelley CP, 2015, P NATL ACAD SCI USA, V112, P3241, DOI 10.1073/pnas.1421533112
Li Lianghao., 2012, AAAI
LIN JH, 1991, IEEE T INFORM THEORY, V37, P145, DOI 10.1109/18.61115
McLachlan G., 2007, EM ALGORITHM EXTENSI, V382
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Shalit U., 2013, ICML, V2, P244
Sleeman J, 2016, BIG DAT CHALL RES TE
Sleeman J., 2017, AAAI SPRING S AI SOC
Sleeman J. A., 2016, THESIS
Stirling CH, 1998, EARTH PLANET SC LETT, V160, P745, DOI 10.1016/S0012-821X(98)00125-3
Tang C, 2015, COMPUT SCI ENG, V17, P43, DOI 10.1109/MCSE.2015.128
Wang C., 2008, P 24 C UNC ART INT
Wang Xuerui., P 12 ACM SIGKDD INT, P424
NR 20
TC 4
Z9 4
U1 0
U2 3
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2639-1589
BN 978-1-5386-2715-0
J9 IEEE INT CONF BIG DA
PY 2017
BP 1325
EP 1332
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BJ8DN
UT WOS:000428073701043
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Mazrou, H
AF Mazrou, Hakim
TI Performance improvement of artificial neural networks designed for
safety key parameters prediction in nuclear research reactors
SO NUCLEAR ENGINEERING AND DESIGN
LA English
DT Article
AB The present work explores, through a comprehensive sensitivity study, a new methodology to find a suitable artificial neural network architecture which improves its performances capabilities in predicting two significant parameters in safety assessment i.e. the multiplication factor k(eff) and the fuel powers peaks P-max of the benchmark 10 MW IAEA LEU core research reactor. The performances under consideration were the improvement of network predictions during the validation process and the speed up of computational time during the training phase.
To reach this objective, we took benefit from Neural Network MATLAB Toolbox to carry out a widespread sensitivity study. Consequently, the speed up of several popular algorithms has been assessed during the training process. The comprehensive neural system was subsequently trained on different transfer functions, number of hidden neurons, levels of error and size of generalization corpus.
Thus, using a personal computer with data created from preceding work, the final results obtained for the treated benchmark were improved in both network generalization phase and much more in computational time during the training process in comparison to the results obtained previously. (C) 2009 Elsevier B.V. All rights reserved.
C1 CRNA, Div Phys Radiol, Fanon 16000, Alger, Algeria.
RP Mazrou, H (corresponding author), CRNA, Div Phys Radiol, 02 Blvd Frantz,BP 399, Fanon 16000, Alger, Algeria.
EM mazrou_h@crna.dz
RI MAZROU, Hakim/AAM-5146-2021
OI MAZROU, Hakim/0000-0001-5394-1021
CR Demuth H., 2002, Neural Network Toolbox User's Guide, V13
Erdogan A, 2003, ANN NUCL ENERGY, V30, P35, DOI 10.1016/S0306-4549(02)00041-5
Hakim MA, 2006, NUCL ENG DES, V236, P255, DOI 10.1016/j.nucengdes.2005.08.002
IBRAHIM K, 2002, P INT C NEW FRONT NU
International Atomic Energy Agency-IAEA, 1992, IAEA-TECDOC- 643
KIM HG, 1993, NUCL SCI ENG, V113, P70, DOI 10.13182/NSE93-A23994
Mazrou H, 2004, PROG NUCL ENERG, V44, P263, DOI 10.1016/j.pnucene.2004.03.002
Miller L. F., 1992, Transactions of the American Nuclear Society, V66, P108
Rafiq MY, 2001, COMPUT STRUCT, V79, P1541, DOI 10.1016/S0045-7949(01)00039-6
Sadighi M, 2002, ANN NUCL ENERGY, V29, P41, DOI 10.1016/S0306-4549(01)00024-X
Souza RMGP, 2006, ANN NUCL ENERGY, V33, P594, DOI 10.1016/j.anucene.2006.02.007
Uhrig RE, 1999, PROG NUCL ENERG, V34, P13, DOI 10.1016/S0149-1970(97)00109-1
Walczak S, 1999, INFORM SOFTWARE TECH, V41, P107, DOI 10.1016/S0950-5849(98)00116-5
WENDT SE, 1995, T AM NUCL SOC, V72
[No title captured]
NR 15
TC 13
Z9 13
U1 0
U2 2
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0029-5493
EI 1872-759X
J9 NUCL ENG DES
JI Nucl. Eng. Des.
PD OCT
PY 2009
VL 239
IS 10
BP 1901
EP 1910
DI 10.1016/j.nucengdes.2009.06.004
PG 10
WC Nuclear Science & Technology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Nuclear Science & Technology
GA 501VO
UT WOS:000270411500020
DA 2024-09-05
ER
PT J
AU Wang, QY
Liao, J
Lapata, M
Macleod, M
AF Wang, Qianying
Liao, Jing
Lapata, Mirella
Macleod, Malcolm
TI Risk of bias assessment in preclinical literature using natural language
processing
SO RESEARCH SYNTHESIS METHODS
LA English
DT Article
DE automatic assessment; natural language processing; preclinical research
synthesis; risk of bias
AB We sought to apply natural language processing to the task of automatic risk of bias assessment in preclinical literature, which could speed the process of systematic review, provide information to guide research improvement activity, and support translation from preclinical to clinical research. We use 7840 full-text publications describing animal experiments with yes/no annotations for five risk of bias items. We implement a series of models including baselines (support vector machine, logistic regression, random forest), neural models (convolutional neural network, recurrent neural network with attention, hierarchical neural network) and models using BERT with two strategies (document chunk pooling and sentence extraction). We tune hyperparameters to obtain the highest F1 scores for each risk of bias item on the validation set and compare evaluation results on the test set to our previous regular expression approach. The F1 scores of best models on test set are 82.0% for random allocation, 81.6% for blinded assessment of outcome, 82.6% for conflict of interests, 91.4% for compliance with animal welfare regulations and 46.6% for reporting animals excluded from analysis. Our models significantly outperform regular expressions for four risk of bias items. For random allocation, blinded assessment of outcome, conflict of interests and animal exclusions, neural models achieve good performance; for animal welfare regulations, BERT model with a sentence extraction strategy works better. Convolutional neural networks are the overall best models. The tool is publicly available which may contribute to the future monitoring of risk of bias reporting for research improvement activities.
C1 [Wang, Qianying; Liao, Jing; Macleod, Malcolm] Univ Edinburgh, Ctr Clin Brain Sci, 49 Little France Crescent, Edinburgh EH16 4SB, Midlothian, Scotland.
[Lapata, Mirella] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland.
C3 University of Edinburgh; University of Edinburgh
RP Macleod, M (corresponding author), Univ Edinburgh, Ctr Clin Brain Sci, 49 Little France Crescent, Edinburgh EH16 4SB, Midlothian, Scotland.
EM malcolm.macleod@ed.ac.uk
RI Macleod, Malcolm Robert/B-2052-2010; Wang, Junzhe/KCK-4991-2024; Wang,
Yitong/KBA-1959-2024
OI Macleod, Malcolm Robert/0000-0001-9187-9839; L, Jing/0000-0002-9591-8070
FU China Scholarship Council; UK Reproducibility Network - John Climax PhD
studentship; University of Edinburgh - Edinburgh Global Research
Scholarship; MRC [MR/N015665/1] Funding Source: UKRI
FX China Scholarship Council; UK Reproducibility Network -John Climax PhD
studentship; University of Edinburgh -Edinburgh Global Research
Scholarship
CR Abiodun OI, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00938
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
Bahor Z., 2021, BMJ Open Science, V5
Bahor Zsanett, 2016, Evid Based Preclin Med, V3, pe00022, DOI 10.1002/ebm2.22
Bahor Z, 2017, CLIN SCI, V131, P2525, DOI 10.1042/CS20160722
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Beltagy Iz, 2020, ArXiv Preprint ArXiv.
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Cho K., 2014, ARXIV, DOI [DOI 10.3115/V1/D14-1179, 10.3115/v1/w14-4012]
Currie GL, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000243
Daniel J., 2020, SPEECH LANGUAGE PROC
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
du Sert NP, 2020, PLOS BIOL, V18, DOI 10.1371/journal.pbio.3000410
Elliott JH, 2017, J CLIN EPIDEMIOL, V91, P23, DOI 10.1016/j.jclinepi.2017.08.010
Goldberg Y., 2017, SYNTH LECT HUM LANG, V10, P1, DOI [DOI 10.2200/S00762ED1V01Y201703HLT037, 10.2200/S00762ED1V01Y201703HLT037]
Hair K, 2019, RES INTEGR PEER REV, V4, DOI 10.1186/s41073-019-0069-3
Hastie T., 2009, The Elements of Statistical Learning
Higgins, 2011, COCHRANE DB SYST REV, DOI DOI 10.1002/14651858.CD001930.PUB3
Higgins Julian P T, 2011, BMJ, V343, pd5928, DOI 10.1136/bmj.d5928
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Hooijmans CR, 2014, BMC MED RES METHODOL, V14, DOI 10.1186/1471-2288-14-43
Kim Y, 2014, ARXIV14085882, DOI 10.3115/v1/D14-1181
Lee Jinhyuk, 2020, Bioinformatics
Macleod, 2018, BMJ OPEN SCI
Macleod M, 2019, ILAR J, V60, P17, DOI 10.1093/ilar/ilz015
Macleod MR, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002273
Macleod MR, 2004, STROKE, V35, P1203, DOI 10.1161/01.STR.0000125719.25853.20
Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010
Marshall IJ, 2016, J AM MED INFORM ASSN, V23, P193, DOI 10.1093/jamia/ocv044
Menke J., SUPPLEMENTAL INFORM, V23
Mikolov T., 2013, ARXIV
Millard LAC, 2016, INT J EPIDEMIOL, V45, P266, DOI 10.1093/ije/dyv306
Mulyar A., 2019, PHENOTYPING CLIN NOT
Neumann M, 2019, SIGBIOMED WORKSHOP ON BIOMEDICAL NATURAL LANGUAGE PROCESSING (BIONLP 2019), P319
NPQIP Collaborative group, 2019, BMJ Open Sci, V3, pe000035, DOI 10.1136/bmjos-2017-000035
Pascanu R., 2013, P INT C MACH LEARN, V28, P1310
Pyysalo Sampo, 2013, P LBM
Le Q, 2014, PR MACH LEARN RES, V32, P1188
Raschka S., 2018, Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning, DOI DOI 10.48550/ARXIV.1811.12808
Reimers N, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P567
Sanh Victor, 2019, P 5 WORKSH EN EFF MA
Sutton C, 2012, FOUND TRENDS MACH LE, V4, P267, DOI 10.1561/2200000013
Vaswani A, 2017, ADV NEUR IN, V30
Vollert Jan, 2020, BMJ Open Sci, V4, pe100046, DOI 10.1136/bmjos-2019-100046
WANG Q, PRECLINICAL ROB ASSE
Wu Yonghui, 2016, Google's neural machine translation system: bridging the gap between human and machine translation
Yang Z., 2016, P 2016 C N AM CHAPTE
ZHANG Y, 2016, RATIONALE AUGMENTED
NR 48
TC 7
Z9 7
U1 1
U2 8
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1759-2879
EI 1759-2887
J9 RES SYNTH METHODS
JI Res. Synth. Methods
PD MAY
PY 2022
VL 13
IS 3
BP 368
EP 380
DI 10.1002/jrsm.1533
EA NOV 2021
PG 13
WC Mathematical & Computational Biology; Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematical & Computational Biology; Science & Technology - Other
Topics
GA 1B5RJ
UT WOS:000714691800001
PM 34709718
OA Green Published, Green Submitted
DA 2024-09-05
ER
PT J
AU Wu, RL
Kang, D
Chen, Y
Chen, CF
AF Wu, Renli
Kang, Donghyun
Chen, Yi
Chen, Chuanfu
TI Assessing academic impacts of machine learning applications on a social
science: Bibliometric evidence from economics
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Academic impact; Machine learning application; Citation analysis;
Interdisciplinary impact; Economics research
ID ARTIFICIAL-INTELLIGENCE; WEIGHTED CITATION; TRENDS
AB Machine learning (ML) methods have recently been applied in diverse fields of study. ML methods provide new toolkits and opportunities for social sciences, but they have also raised concerns with their black-box nature, irreproducibility, and emphasis on prediction rather than explanation. Against this backdrop, we study the bibliometric impact of leveraging ML methods in economics using publications indexed in Microsoft Academic Graph. We use our four-dimensional bibliometric framework by which we gage citation intensity, speed, breadth, and disruption to compare two groups of publications in economics (2001-2020)-those using ML methods and others not. We find that economics papers applying ML methods started to have advantages in citation counts and speed after 2010. Our analysis also shows that they received attention from more diverse research communities and had more disruptive citations over the past two decades. Then, we demonstrate that economics papers using ML methods obtained more disruptive citations within economics than outside. These findings suggest bibliometric advantages for applying ML methods in economics, especially in the recent decade, but we also discuss cautions and potential opportunities missed.
C1 [Wu, Renli; Chen, Yi; Chen, Chuanfu] Wuhan Univ, Sch Informat Management, Wuhan 430072, Hubei, Peoples R China.
[Wu, Renli; Chen, Yi; Chen, Chuanfu] Wuhan Univ, Ctr Studies Informat Resources, Wuhan 430072, Hubei, Peoples R China.
[Kang, Donghyun] Univ Chicago, Dept Sociol, Chicago, IL 60637 USA.
[Wu, Renli; Kang, Donghyun] Univ Chicago, Knowledge Lab, Chicago, IL 60637 USA.
C3 Wuhan University; Wuhan University; University of Chicago; University of
Chicago
RP Chen, CF (corresponding author), Wuhan Univ, Sch Informat Management, Wuhan 430072, Hubei, Peoples R China.; Chen, CF (corresponding author), Wuhan Univ, Ctr Studies Informat Resources, Wuhan 430072, Hubei, Peoples R China.
EM cfchen@whu.edu.cn
RI Kang, Donghyun/GQP-7643-2022
OI Kang, Donghyun/0000-0001-6241-8910; Wu, Renli/0000-0003-2370-6236
FU National Natural Science Foundation of China (NSFC) [71921002]
FX We are deeply grateful for the insightful comments from two anonymous
reviewers and the editors. This work was supported by the National
Natural Science Foundation of China (NSFC) under Grant Number 71921002.
This work was completed in part with resources provided by the
University of Chicago Research Computing Center. We thank Professor
James Evans for his support towards this collaboration. We also
appreciate Wenxuan Shi for her assistance in the submission process.
CR Adali T, 2018, P IEEE, V106, P1014, DOI 10.1109/JPROC.2018.2823428
Agrawal A, 2019, J ECON PERSPECT, V33, P31, DOI 10.1257/jep.33.2.31
Agresti A, 2012, Categorical Data Analysis, V792
Ahmed M., 2020, Annals of Data Science, V7, P427
Alpaydin E., 2004, Introduction to Machine Learning
Angrist J, 2020, J ECON LIT, V58, P3, DOI 10.1257/jel.20181508
Aragón AM, 2013, SCI REP-UK, V3, DOI 10.1038/srep01649
Athey, 2018, EC ARTIFICIAL INTELL, P507, DOI DOI 10.7208/CHICAGO/9780226613475.003.0021
Athey S, 2019, ANNU REV ECON, V11, P685, DOI 10.1146/annurev-economics-080217-053433
Baumann A, 2020, SCIENTOMETRICS, V124, P2433, DOI 10.1007/s11192-020-03570-x
Beutel J, 2019, J FINANC STABIL, V45, DOI 10.1016/j.jfs.2019.100693
Bickley SJ, 2022, SCIENTOMETRICS, V127, P2055, DOI 10.1007/s11192-022-04294-w
Bonaccorsi A, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101129
Bornmann L, 2020, QUANT SCI STUD, V1, P1242, DOI 10.1162/qss_a_00068
Bornmann L, 2018, APPL ECON, V50, P659, DOI 10.1080/00036846.2017.1332753
Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004
Bu Y, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2020.102429
Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190
Chen SJ, 2015, J INFORMETR, V9, P1034, DOI 10.1016/j.joi.2015.09.003
Choi RY, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.14
Chu JSG, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2021636118
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Egghe L, 2011, J INFORMETR, V5, P181, DOI 10.1016/j.joi.2010.10.006
Ellison G, 2002, J POLIT ECON, V110, P947, DOI 10.1086/341868
Eshete B, 2021, SCIENCE, V373, P743, DOI 10.1126/science.abi5052
Fernandez-Cano A, 2021, SCIENTOMETRICS, V126, P3673, DOI 10.1007/s11192-020-03833-7
Fouliard J., 2021, ANSWERING QUEEN MACH, DOI [10.3386/w28302, DOI 10.3386/W28302]
Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5
Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366
Ghoddusi H, 2019, ENERG ECON, V81, P709, DOI 10.1016/j.eneco.2019.05.006
GLANZEL W, 1992, INFORM PROCESS MANAG, V28, P53, DOI 10.1016/0306-4573(92)90092-E
Gomez CJ, 2022, NAT HUM BEHAV, V6, P919, DOI 10.1038/s41562-022-01351-5
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Henrique BM, 2019, EXPERT SYST APPL, V124, P226, DOI 10.1016/j.eswa.2019.01.012
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Huang Y, 2019, J ASSOC INF SCI TECH, V70, P1098, DOI 10.1002/asi.24177
Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8
Jean N, 2016, SCIENCE, V353, P790, DOI 10.1126/science.aaf7894
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Kitchin JR, 2018, NAT CATAL, V1, P230, DOI 10.1038/s41929-018-0056-y
Lehmann S, 2006, NATURE, V444, P1003, DOI 10.1038/4441003a
Li WH, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13130-4
Lin YL, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101234
Ruiz-Real JL, 2021, J BUS ECON MANAG, V22, P98, DOI 10.3846/jbem.2020.13641
Lyhagen J, 2020, SCIENTOMETRICS, V125, P2545, DOI 10.1007/s11192-020-03681-5
Martín-Martín A, 2021, SCIENTOMETRICS, V126, P871, DOI 10.1007/s11192-020-03690-4
Marx V, 2019, NAT METHODS, V16, P463, DOI 10.1038/s41592-019-0432-9
McBride L, 2018, WORLD BANK ECON REV, V32, P531, DOI 10.1093/wber/lhw056
McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861]
McMahan P, 2021, AM SOCIOL REV, V86, P341, DOI 10.1177/0003122421996323
Molina M, 2019, ANNU REV SOCIOL, V45, P27, DOI 10.1146/annurev-soc-073117-041106
Mullainathan S, 2017, J ECON PERSPECT, V31, P87, DOI 10.1257/jep.31.2.87
Nakamura H, 2011, SCIENTOMETRICS, V87, P221, DOI 10.1007/s11192-011-0341-x
Pak C, 2018, SCIENTOMETRICS, V114, P905, DOI 10.1007/s11192-017-2627-0
Peng R., 2015, SIGNIFICANCE, V12, P30, DOI [DOI 10.1111/J.1740-9713.2015.00827.X, 10.1111/j.1740-9713.2015.00827.x]
Pilania G, 2013, SCI REP-UK, V3, DOI 10.1038/srep02810
Purkayastha A, 2019, J INFORMETR, V13, P635, DOI 10.1016/j.joi.2019.03.012
Ramage D, 2020, Arxiv, DOI [arXiv:2004.01291, 10.48550/arXiv.2004.01291]
Raudenbush S. W., 2002, HIERARCHICAL LINEAR
Reis J, 2019, IBER CONF INF SYST, DOI 10.23919/cisti.2019.8760893
Rudin C, 2019, NAT MACH INTELL, V1, P206, DOI 10.1038/s42256-019-0048-x
Sabatier M, 2017, RES POLICY, V46, P522, DOI 10.1016/j.respol.2017.01.003
Samitas A, 2020, INT REV FINANC ANAL, V71, DOI 10.1016/j.irfa.2020.101507
Shen ZH, 2018, Arxiv, DOI arXiv:1805.12216
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Sloane M, 2019, NAT MACH INTELL, V1, P330, DOI 10.1038/s42256-019-0084-6
Taheri S, 2022, SCIENTOMETRICS, V127, P849, DOI 10.1007/s11192-021-04240-2
Tang XL, 2022, SCIENTOMETRICS, V127, P181, DOI 10.1007/s11192-021-04207-3
van Dalen HP, 2005, SCIENTOMETRICS, V64, P209, DOI 10.1007/s11192-005-0248-5
Varian HR, 2016, P NATL ACAD SCI USA, V113, P7310, DOI 10.1073/pnas.1510479113
Waljee AK, 2010, AM J GASTROENTEROL, V105, P1224, DOI 10.1038/ajg.2010.173
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045
Wirtz BW, 2020, INT J PUBLIC ADMIN, V43, P818, DOI 10.1080/01900692.2020.1749851
Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9
Wu R. L., 2020, P ACMIEEE JOINT C DI, DOI [10.1145/3383583.3398536.Sinha, DOI 10.1145/3383583.3398536.SINHA]
Xu FL, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2200927119
Yan E, 2014, J ASSOC INF SCI TECH, V65, P2331, DOI 10.1002/asi.23106
Yan E, 2010, J AM SOC INF SCI TEC, V61, P1635, DOI 10.1002/asi.21349
Yang D, 2024, TECHNOL ANAL STRATEG, V36, P563, DOI 10.1080/09537325.2022.2043268
Zhang XY, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101140
Zibar D, 2017, NAT PHOTONICS, V11, P749, DOI 10.1038/s41566-017-0058-3
NR 82
TC 1
Z9 1
U1 8
U2 42
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD AUG
PY 2023
VL 17
IS 3
AR 101436
DI 10.1016/j.joi.2023.101436
EA JUL 2023
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA P4DI0
UT WOS:001050163300001
DA 2024-09-05
ER
PT J
AU Ma, YC
Teng, Y
Deng, ZZ
Liu, L
Zhang, Y
AF Ma, Yongchao
Teng, Ying
Deng, Zhongzhun
Liu, Li
Zhang, Yi
TI Does writing style affect gender differences in the research performance
of articles?: An empirical study of BERT-based textual sentiment
analysis
SO SCIENTOMETRICS
LA English
DT Article
DE Gender; Gender inequalities; Female; Research performance; Marketing;
SDGs; Writing style
ID CITATION ADVANTAGES; SELF-PROMOTION; 1ST AUTHORS; PRODUCTIVITY;
JOURNALS; IMPACT; SCIENTISTS; SCIENCE; COLLABORATION; PUBLICATIONS
AB "Achieve gender equality and empower all women and girls" is essential to reduce gender disparity and improve the status of women. But it remains a challenge to narrow gender differences and improve gender equality in academic research. In this paper, we propose that the impact of articles is lower and writing style of articles is less positive when the article's first author is female relative to male first authors, and writing style mediates this relationship. Focusing on the positive writing style, we attempt to contribute and explain the research on gender differences in research performance. We use BERT-based textual sentiment analysis to analyse 87 years of 9820 articles published in the top four marketing journals and prove our hypotheses. We also consider a set of control variables and conduct a set of robustness checks to ensure the robustness of our findings. We discuss the theoretical and managerial implications of our findings for researchers.
C1 [Ma, Yongchao] Huazhong Univ Sci & Technol, Sch Management, Wuhan, Hubei, Peoples R China.
[Ma, Yongchao; Teng, Ying] City Univ Hong Kong, Dept Mkt, Hong Kong, Peoples R China.
[Deng, Zhongzhun] Sichuan Univ, Business Sch, Chengdu, Sichuan, Peoples R China.
[Liu, Li; Zhang, Yi] Huazhong Univ Sci & Technol, Coll Publ Adm, Wuhan, Hubei, Peoples R China.
C3 Huazhong University of Science & Technology; City University of Hong
Kong; Sichuan University; Huazhong University of Science & Technology
RP Deng, ZZ (corresponding author), Sichuan Univ, Business Sch, Chengdu, Sichuan, Peoples R China.
EM martin@hust.edu.cn; danieldeng@scu.edu.cn
RI Ma, Yongchao Martin/ABG-4449-2021; Liu, Enlong/AFM-5097-2022
OI Ma, Yongchao Martin/0000-0002-7272-9779; Liu,
Enlong/0000-0002-3507-1963; TENG, Ying/0000-0002-7198-4823;
/0000-0001-7822-5064
FU National Natural Science Foundation of China [72202149, 71672063,
72072065]; Major Program of the National Social Science Fund Projects
[19ZDA104]; Fundamental Research Funds for the Central Universities
[2022ZY-SX004]
FX The authors thank the editor, the editorial assistant, and anonymous
reviewers for their insightful comments and suggestions. The authors
thank Maikun Li, Nibing Zhu, Kexin Wu, and Shuai Jin for their
assistance in this paper. The authors gratefully acknowledge the grants
from the National Natural Science Foundation of China (projects
72202149, 71672063 and 72072065), the grant from the Major Program of
the National Social Science Fund Projects (project 19ZDA104), and the
Fundamental Research Funds for the Central Universities (project
2022ZY-SX004) for financial support. The computation is completed in the
HPC Platform of Huazhong University of Science and Technology.
CR Abramo G, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101144
Abramo G, 2019, SCIENTOMETRICS, V120, P405, DOI 10.1007/s11192-019-03136-6
Abramo G, 2019, SCIENTOMETRICS, V118, P215, DOI 10.1007/s11192-018-2970-9
Abramo G, 2015, J INFORMETR, V9, P25, DOI 10.1016/j.joi.2014.11.002
Andersen Jens Peter, 2020, Elife, V9, DOI 10.7554/eLife.58807
Arkin Nicole, 2019, J Grad Med Educ, V11, P44, DOI 10.4300/JGME-D-18-00377.1
Badar K, 2014, ASLIB J INFORM MANAG, V66, P38, DOI 10.1108/AJIM-05-2013-0040
Baerlocher MO, 2007, J INVEST MED, V55, P174, DOI 10.2310/6650.2007.06044
BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173
Barsade SG, 2007, ACAD MANAGE PERSPECT, V21, P36, DOI 10.5465/AMP.2007.24286163
Bauerly RJ, 2005, J ACAD MARKET SCI, V33, P313, DOI 10.1177/0092070304272052
Beyer S, 1997, PERS SOC PSYCHOL B, V23, P157, DOI 10.1177/0146167297232005
Boekhout H., 2021, ARXIV
Bordignon F, 2021, LEARN PUBL, V34, P622, DOI 10.1002/leap.1411
Cao XK, 2021, LEARN PUBL, V34, P82, DOI 10.1002/leap.1322
Cheng CH, 2017, COMMUN STAT-THEOR M, V46, P6909, DOI 10.1080/03610926.2016.1139135
Cheryan S, 2020, PSYCHOL REV, V127, P1022, DOI 10.1037/rev0000209
Decullier E, 2023, ACCOUNT RES, V30, P356, DOI 10.1080/08989621.2021.1988576
DeFilippis EM, 2021, J AM HEART ASSOC, V10, DOI 10.1161/JAHA.120.019005
Dehdarirad T, 2024, J INF SCI, V50, P53, DOI 10.1177/01655515221074327
DeJesus JM, 2021, SEX ROLES, V85, P577, DOI 10.1007/s11199-021-01240-7
Devlin M, 2018, INT J SPORT MARK SPO, V19, P58, DOI [10.1108/IJSMS-10-2016-0078, 10.1108/ijsms-10-2016-0078]
Diezmann Carmel, 2019, WOMEN PROFESSORS, DOI [10.1007/978-981-13-3685-0, DOI 10.1007/978-981-13-3685-0]
Dinu NR, 2021, TELOS, V23, P568, DOI 10.36390/telos233.05
Dunn EW, 2021, PERS SOC PSYCHOL B, V47, P969, DOI 10.1177/0146167220950522
Edwards HA, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201725
Ehrlinger J, 2003, J PERS SOC PSYCHOL, V84, P5, DOI 10.1037/0022-3514.84.1.5
Ehrlinger J, 2018, SEX ROLES, V78, P40, DOI 10.1007/s11199-017-0763-x
Ellis J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157447
Else-Quest NM, 2010, PSYCHOL BULL, V136, P103, DOI 10.1037/a0018053
Elsevier, 2021, GENDER GLOBAL RES LA
Fernandez A, 2021, SCIENTOMETRICS, V126, P579, DOI 10.1007/s11192-020-03748-3
Fishbach A, 2006, J PERS SOC PSYCHOL, V91, P232, DOI 10.1037/0022-3514.91.2.232
Fox CW, 2019, ECOL EVOL, V9, P3599, DOI 10.1002/ece3.4993
Ghiasi G, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0145931
Gruber J, 2021, PERSPECT PSYCHOL SCI, V16, P483, DOI 10.1177/1745691620952789
Ha GL, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2021.12404
HALEVI G, 2019, BIBLIOMETRIC STUDIES, P563, DOI DOI 10.1007/978-3-030-02511-3_21
Harnad S, 2008, SERIALS REV, V34, P36, DOI 10.1016/j.serrev.2007.12.005
Heath JK, 2022, J GEN INTERN MED, V37, P2187, DOI 10.1007/s11606-022-07535-z
Hofstede G., 2003, CULTURES CONSEQUENCE
Holtz P, 2017, J CROSS CULT PSYCHOL, V48, P1410, DOI 10.1177/0022022117724902
Hoops H, 2019, AM J SURG, V217, P301, DOI 10.1016/j.amjsurg.2018.12.023
Horbach SPJM, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101332
Huang CJ, 2013, EUR J PSYCHOL EDUC, V28, P663, DOI 10.1007/s10212-012-0134-5
Huang JM, 2020, P NATL ACAD SCI USA, V117, P4609, DOI 10.1073/pnas.1914221117
Huang S, 2017, J PERS SOC PSYCHOL, V112, P813, DOI 10.1037/pspa0000082
Hubble C., 2016, Journal of Sports Analytics, V2, P19, DOI DOI 10.3233/JSA-150008
INSTONE D, 1983, J PERS SOC PSYCHOL, V44, P322, DOI 10.1037/0022-3514.44.2.322
Jemielniak D, 2023, J INF SCI, V49, P1587, DOI 10.1177/01655515211068168
López AJ, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105426
Jiang L, 2018, J INFORMETR, V12, P618, DOI 10.1016/j.joi.2018.04.004
Joshi PD, 2020, J PERS SOC PSYCHOL, V118, P417, DOI 10.1037/pspa0000177
Jung H, 2017, ASIAN J TECHNOL INNO, V25, P447, DOI 10.1080/19761597.2018.1436411
Khosrowjerdi M, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101160
Kolev J., 2019, ACAD MANAGEMENT P, V2019, P15210, DOI [10.5465/AMBPP.2019.15210abstract, DOI 10.5465/AMBPP.2019.15210ABSTRACT, 10.5465/AMBPP.2019.15210]
Koseoglu MA, 2019, INT J CONTEMP HOSP M, V32, P535, DOI 10.1108/IJCHM-09-2018-0747
Kou MT, 2020, SCIENTOMETRICS, V122, P477, DOI 10.1007/s11192-019-03282-x
Kumar A, 2020, EUR HEART J, V41, P3782, DOI 10.1093/eurheartj/ehaa597
Kwiek M, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101171
Larivière V, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162709
Larivière V, 2016, SOC STUD SCI, V46, P417, DOI 10.1177/0306312716650046
Lerchenmueller MJ, 2019, BMJ-BRIT MED J, V367, DOI 10.1136/bmj.l6573
Lerchenmueller MJ, 2018, RES POLICY, V47, P1007, DOI 10.1016/j.respol.2018.02.009
Li A, 2021, J APPL PSYCHOL, V106, P1188, DOI 10.1037/apl0000956
Liu MJ, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101295
Liu W., 2013, AAAI SPRING S ANAL M
López-Padilla D, 2021, ARCH BRONCONEUMOL, V57, P107, DOI 10.1016/j.arbres.2020.04.020
Mauleón E, 2006, SCIENTOMETRICS, V66, P199, DOI 10.1007/s11192-006-0014-3
Mayer SJ, 2018, SCIENTOMETRICS, V117, P1663, DOI 10.1007/s11192-018-2933-1
Meisha DE, 2021, J DENT EDUC, V85, P1497, DOI 10.1002/jdd.12617
Meyerson S L., 2017, Journal of Surgical Education, V74, pe111, DOI [10.1016/j.jsurg.2017.06, DOI 10.1016/J.JSURG.2017.06.014]
Micari M., 2007, Journal of Women and Minorities in Science and Engineering, V13, P279, DOI [10.1615/JWomenMinorScienEng.v13.i3.50, DOI 10.1615/JWOMENMINORSCIENENG.V13.I3.50]
Millar N, 2019, ENGL SPECIF PURP, V54, P139, DOI 10.1016/j.esp.2019.02.004
Min HY, 2021, J APPL PSYCHOL, V106, P214, DOI 10.1037/apl0000886
Morris DW, 2021, FACETS, V6, P1881, DOI 10.1139/facets-2021-0100
Muric G, 2021, J MED INTERNET RES, V23, DOI 10.2196/25379
Myers KR, 2020, NAT HUM BEHAV, V4, P880, DOI 10.1038/s41562-020-0921-y
Newman ML, 2008, DISCOURSE PROCESS, V45, P211, DOI 10.1080/01638530802073712
Nguyen E, 2021, J AM PHARM ASSOC, V61, pE26, DOI 10.1016/j.japh.2020.08.037
Nielsen MW, 2017, STUD HIGH EDUC, V42, P1033, DOI 10.1080/03075079.2015.1075197
Nunkoo R, 2020, TOURISM MANAGE, V78, DOI 10.1016/j.tourman.2019.104056
Palomo J, 2017, SCIENTOMETRICS, V113, P123, DOI 10.1007/s11192-017-2484-x
Parsons CE, 2021, TRENDS COGN SCI, V25, P639, DOI 10.1016/j.tics.2021.05.003
Paswan J, 2020, SCIENTOMETRICS, V123, P497, DOI 10.1007/s11192-020-03398-5
Polanco NAP, 2020, DIGEST DIS SCI, V65, P3014, DOI 10.1007/s10620-019-06025-3
Powell SN, 2022, J AM ACAD ORTHOP SUR, V30, pE878, DOI 10.5435/JAAOS-D-21-01113
Restrepo N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13095111
Rigg LS, 2012, PROF GEOGR, V64, P491, DOI 10.1080/00330124.2011.611434
Salerno A, 2019, J CONSUM RES, V46, P388, DOI 10.1093/jcr/ucy077
Santamaría L, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.156
Sawdon M, 2014, J ANAT, V224, P279, DOI 10.1111/joa.12072
Scharff C, 2015, SOCIOL REV, V63, P97, DOI 10.1111/1467-954X.12243
Sebo P, 2023, J GEN INTERN MED, V38, P661, DOI 10.1007/s11606-022-07717-9
Selig J.P., 2008, MONTE CARLO METHOD A
Shang YY, 2022, SCIENTOMETRICS, V127, P4769, DOI 10.1007/s11192-022-04430-6
Shauman KA, 2003, EQUAL RITES, UNEQUAL OUTCOMES: WOMEN IN AMERICAN RESEARCH UNIVERSITIES, P175
Skitka LJ, 2021, PERS SOC PSYCHOL B, V47, P863, DOI 10.1177/0146167220947326
Stankov L, 2014, J CROSS CULT PSYCHOL, V45, P821, DOI 10.1177/0022022114527345
Stremersch S, 2005, MARKET SCI, V24, P585, DOI 10.1287/mksc.1050.0152
Sugimoto CR, 2013, NATURE, V504, P211, DOI 10.1038/504211a
Tellis GJ, 1999, J MARKETING RES, V36, P120, DOI 10.2307/3151920
Thelwall M, 2022, J INF SCI, V48, P106, DOI 10.1177/0165551520942729
Thelwall M, 2020, QUANT SCI STUD, V1, P1260, DOI 10.1162/qss_a_00050
Thelwall M, 2020, QUANT SCI STUD, V1, P599, DOI 10.1162/qss_a_00038
Thelwall M, 2020, INT J PSYCHOL, V55, P684, DOI 10.1002/ijop.12633
Thelwall M, 2019, J INFORMETR, V13, P118, DOI 10.1016/j.joi.2018.12.003
Thelwall M, 2018, SCIENTOMETRICS, V117, P2133, DOI 10.1007/s11192-018-2926-0
United Nations, 2015, TRANSF OUR WORLD 203, DOI [10.1891/9780826190123.ap02, DOI 10.1891/9780826190123.AP02]
Urquhart-Cronish M, 2019, FACETS, V4, P442, DOI 10.1139/facets-2018-0039
van Arensbergen P, 2012, SCIENTOMETRICS, V93, P857, DOI 10.1007/s11192-012-0712-y
van den Besselaar P, 2016, SCIENTOMETRICS, V106, P143, DOI 10.1007/s11192-015-1775-3
Vinkers CH, 2015, BMJ-BRIT MED J, V351, DOI 10.1136/bmj.h6467
Walker KA, 2020, ANN ENTOMOL SOC AM, V113, P193, DOI 10.1093/aesa/saz066
Weidmann NB, 2018, PS-POLIT SCI POLIT, V51, P625, DOI 10.1017/S1049096518000124
Wen J, 2022, SCIENTOMETRICS, V127, P4731, DOI 10.1007/s11192-022-04453-z
Wen J, 2022, APPL LINGUIST, V43, P340, DOI 10.1093/applin/amab037
Woolley K, 2021, J CONSUM RES, V47, P675, DOI 10.1093/jcr/ucaa030
Yani-de-Soriano M, 2019, EUR J MARKETING, V53, P708, DOI 10.1108/EJM-09-2017-0570
Yoo B, 2009, AUSTRALAS MARK J, V17, DOI 10.1016/j.ausmj.2009.05.014
Yuan ZM, 2022, SCIENTOMETRICS, V127, P6191, DOI 10.1007/s11192-022-04515-2
Zeina M, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2020-037269
Zhang GY, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101264
Zhang Lin, 2021, Quantitative Science Studies, P376, DOI 10.1162/qss_a_00102
Zhang L, 2022, SCIENTOMETRICS, V127, P145, DOI 10.1007/s11192-021-04209-1
Zhang MY, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101068
Zhao XS, 2010, J CONSUM RES, V37, P197, DOI 10.1086/651257
Zhu BZ, 2022, J BUS RES, V145, P65, DOI 10.1016/j.jbusres.2022.02.071
Zhu DH, 2020, J RETAIL CONSUM SERV, V54, DOI 10.1016/j.jretconser.2019.102028
Zhu NB, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101205
Zippel K., 2020, Women in global science
NR 131
TC 9
Z9 9
U1 10
U2 44
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD APR
PY 2023
VL 128
IS 4
BP 2105
EP 2143
DI 10.1007/s11192-023-04666-w
EA MAR 2023
PG 39
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA M8WZ2
UT WOS:000945307700001
PM 37095862
OA Bronze
DA 2024-09-05
ER
PT J
AU Upshall, M
AF Upshall, Michael
TI An AI toolkit for libraries
SO INSIGHTS-THE UKSG JOURNAL
LA English
DT Article
DE AI; NLP; evaluation; metrics; research support
AB Now that artificial intelligence (AI) tools are being widely used across academic publishing, how can we make informed assessments of these utilities? There is a need for a set of skills for evaluating new tools and measuring existing ones, which should enable anyone commissioning or managing AI utilities to understand what questions to ask, what parameters to measure and possible pitfalls to avoid when introducing a new utility. The skills required are not technical. Potential problems include bias in the corpus, a poor training set or poor use of metrics for evaluation. This article gives a quick overview of some of areas where AI tools are being used and how they work. It then provides a checklist for assessment. The goal is not to discredit AI, but to make effective use of it.
EM michael@consultmu.co.uk
OI Upshall, Michael/0000-0003-1115-6847
CR [Anonymous], 2020, IBM CLOUD LEARN HUB
[Anonymous], ONLINE SPELLCHECK CO
[Anonymous], ACAD INFLUENCE
[Anonymous], SCITE SEE RES HAS BE
[Anonymous], WEB SCI REVIEWER LOC
[Anonymous], 2021, 2021 TRENDS LIB AN
[Anonymous], 2022, wikipedia
[Anonymous], 50 EX 1 0 DOC
[Anonymous], ARTIFICIAL GEN INTEL
[Anonymous], Semantic Scholar | AI-Powered Research Tool
Bernardi K, 2020, AM J MED SCI, V360, P511, DOI 10.1016/j.amjms.2019.11.005
Burrell J, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951715622512
Carr Nicholas., 2020, The Shallows: How the Internet Is Changing the Way We Think, Read and Remember
Cellan-Jones R, 2014, BBC NEWS 1202
Crawford K., 2021, ATLAS POWER POLITICS, DOI [10.12987/9780300252392, DOI 10.12987/9780300252392]
Domagala and Spiro, ENG PUBL
Domagala Natalia, 2021, CTR DATA ETHICS INNO
Domingos P., 2017, The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
Eslami M, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P153, DOI 10.1145/2702123.2702556
European Parliament. Directorate General for Parliamentary Research Services, 2019, A governance framework for algorithmic accountability and transparency, DOI DOI 10.2861/59990
Ewerth R, 2017, LECT NOTES COMPUT SC, V10193, P186, DOI 10.1007/978-3-319-56608-5_15
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Goh YC, 2020, SCIENTOMETRICS, V125, P1197, DOI 10.1007/s11192-020-03614-2
Harikrishnan N. B., 2019, Analytics vidhya
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Kohavi R, 2020, TRUSTWORTHY ONLINE CONTROLLED EXPERIMENTS: A PRACTICAL GUIDE TO A/B TESTING, P1, DOI 10.1017/9781108653985
Kurzweil Ray, 2002, KURZWEILAI NET 0409
Larson, MYTH ART INT
Larson Erik J., 2021, The Myth of Artificial Intelligence: Why Computers Can't Think the Way We Do, DOI DOI 10.4159/9780674259935
LeCun Y., The mnist database
Long DR, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376727
Machado Tyler, 2020, NEWS NE 0305
Merrick Rob, 2022, INDEPENDENT 0210
MILLER GA, 1956, PSYCHOL REV, V63, P81, DOI 10.1037/h0043158
Musk Elon, 2014, WASHINGTON POST 1024
Nayak Pandu, 2019, GOOGLE BLOG 1025
ONeil C., 2016, Weapons of math destruction
Russell S., 2009, Artificial intelligence-A modern approach
Scholarcy, SCHOL LONG FROM ART
Shultz M, 2007, J MED LIBR ASSOC, V95, P442, DOI 10.3163/1536-5050.95.4.442
Turing A. M., 1996, Philosophia Mathematica, V4, P256
Valenzuela Marco, 2015, P AAAI WORKSH SCHOL, P6
NR 42
TC 1
Z9 1
U1 7
U2 21
PU UBIQUITY PRESS LTD
PI LONDON
PA Unit 3.22, East London Works, 65-75 Whitechapel Road, LONDON, E1 1DU,
ENGLAND
SN 2048-7754
J9 INSIGHTS
JI Insights
PD NOV 1
PY 2022
VL 35
DI 10.1629/uksg.592
PG 16
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA 6H2RG
UT WOS:000885293100001
OA gold
DA 2024-09-05
ER
PT J
AU Gursoy, F
Kakadiaris, IA
AF Gursoy, Furkan
Kakadiaris, Ioannis A.
TI Artificial intelligence research strategy of the United States: critical
assessment and policy recommendations
SO FRONTIERS IN BIG DATA
LA English
DT Article
DE artificial intelligence; research; development; policy; strategy;
accountable AI
ID DECISION-MAKING; PROJECT
AB The foundations of Artificial Intelligence (AI), a field whose applications are of great use and concern for society, can be traced back to the early years of the second half of the 20th century. Since then, the field has seen increased research output and funding cycles followed by setbacks. The new millennium has seen unprecedented interest in AI progress and expectations with significant financial investments from the public and private sectors. However, the continual acceleration of AI capabilities and real-world applications is not guaranteed. Mainly, accountability of AI systems in the context of the interplay between AI and the broader society is essential for adopting AI systems via the trust placed in them. Continual progress in AI research and development (R & D) can help tackle humanity's most significant challenges to improve social good. The authors of this paper suggest that the careful design of forward-looking research policies serves a crucial function in avoiding potential future setbacks in AI research, development, and use. The United States (US) has kept its leading role in R & D, mainly shaping the global trends in the field. Accordingly, this paper presents a critical assessment of the US National AI R & D Strategic Plan and prescribes six recommendations to improve future research strategies in the US and around the globe.
C1 [Gursoy, Furkan; Kakadiaris, Ioannis A.] Univ Houston, Computat Biomed Lab, Houston, TX 77204 USA.
C3 University of Houston System; University of Houston
RP Kakadiaris, IA (corresponding author), Univ Houston, Computat Biomed Lab, Houston, TX 77204 USA.
EM ioannisk@uh.edu
RI Gürsoy, Furkan/HSE-4101-2023
FU National Science Foundation [CCF-2131504]
FX Funding This material is based upon work supported by the National
Science Foundation under Grant CCF-2131504.
CR Alfonseca M, 2021, J ARTIF INTELL RES, V70, P65
Araujo T, 2020, AI SOC, V35, P611, DOI 10.1007/s00146-019-00931-w
Bader V, 2019, ORGANIZATION, V26, P655, DOI 10.1177/1350508419855714
Cave S, 2018, PROCEEDINGS OF THE 2018 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY (AIES'18), P36, DOI 10.1145/3278721.3278780
Chou YL, 2022, INFORM FUSION, V81, P59, DOI 10.1016/j.inffus.2021.11.003
Crevier D., 1993, AI: The tumultuous history of the search for artificial intelligence, DOI DOI 10.1177/027046769401400414
Dhar P., 2020, UNDERSTANDING CAUSAL
Goel AK, 2021, AI MAG, V42, P83, DOI 10.1609/aaai.12026
Herrmann T, 2023, AI SOC, V38, P1523, DOI 10.1007/s00146-022-01391-5
Kasirzadeh Atoosa, 2021, FAccT '21: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, P228, DOI 10.1145/3442188.3445886
Knowles B, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P262, DOI 10.1145/3442188.3445890
Koulu R., 2020, Maastricht J. Eur. Comparative Law, V27, P720, DOI [10.1177/1023263X20978649, DOI 10.1177/1023263X20978649]
Kwok R., 2019, SOCIAL SCI USED TALK
McCarthy J, 2006, AI MAG, V27, P12
McCorduck P., 2004, Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence, DOI DOI 10.1201/9780429258985
Meissner P., 2021, HUMAN FACTOR AI BASE
Mitchell S, 2021, ANNU REV STAT APPL, V8, P141, DOI 10.1146/annurev-statistics-042720-125902
Moore J, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00032
Mousavizadeh A., 2021, BOOM TIME TORTOISE
National Science and Technology Council, 2016, NAT ART INT RES DEV
National Science Technology Council, 2019, NAT ART INT RES DEV
NEWELL A, 1956, IRE T INFORM THEOR, V2, P61, DOI 10.1109/tit.1956.1056797
Newquist H. P., 1994, BRAIN MAKERS SAMS
NSF, 2021, NSF PARTN EXP NAT RE
OECD, 2022, GROSS DOM SPEND RAND
Royer A., 2019, WHY NEEDS SOCIAL SCI
Sammut C., 2010, ENCY MACHINE LEARNIN, P881, DOI 10.1007/978-0-387-30164-8_740
Sartori L, 2022, ETHICS INF TECHNOL, V24, DOI 10.1007/s10676-022-09624-3
Scholkopf B., 2022, PROBABILISTIC CAUSAL, P765
Sgaier S. K., 2020, STANFORD SOC INNOV R
SHAPIRO EY, 1983, COMMUN ACM, V26, P637, DOI 10.1145/358172.358179
Shead S., 2020, RES ARE WE CUSP AI W
Taddeo M, 2018, SCIENCE, V361, P751, DOI 10.1126/science.aat5991
Tomasev N, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-15871-z
Turing A.M., 1950, MIND, V59, P433, DOI [10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433]
Tzimas T., 2021, LEGAL ETHICAL CHALLE, P9
van den Besselaar P, 2001, 8TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS AND INFORMETRICS, VOLS 1 AND 2 - ISSI-2001, PROCEEDINGS, P705
Wagner B, 2019, POLICY INTERNET, V11, P104, DOI 10.1002/poi3.198
Yao LY, 2021, ACM T KNOWL DISCOV D, V15, DOI 10.1145/3444944
NR 39
TC 0
Z9 0
U1 8
U2 14
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2624-909X
J9 FRONT BIG DATA
JI Front. Big Data
PD AUG 7
PY 2023
VL 6
AR 1206139
DI 10.3389/fdata.2023.1206139
PG 5
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Multidisciplinary Sciences
WE Emerging Sources Citation Index (ESCI)
SC Computer Science; Science & Technology - Other Topics
GA P4WV6
UT WOS:001050691000001
PM 37609602
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU van de Venter, R
Skelton, E
Matthew, J
Woznitza, N
Tarroni, G
Hirani, SP
Kumar, A
Malik, R
Malamateniou, C
AF van de Venter, Riaan
Skelton, Emily
Matthew, Jacqueline
Woznitza, Nick
Tarroni, Giacomo
Hirani, Shashivadan P.
Kumar, Amrita
Malik, Rizwan
Malamateniou, Christina
TI Artificial intelligence education for radiographers, an evaluation of a
UK postgraduate educational intervention using participatory action
research: a pilot study
SO INSIGHTS INTO IMAGING
LA English
DT Article
DE Artificial intelligence; Radiography; Education; Evaluation; Action
research
ID HEALTH-CARE; TELEHEALTH; INNOVATION; ONLINE
AB BackgroundArtificial intelligence (AI)-enabled applications are increasingly being used in providing healthcare services, such as medical imaging support. Sufficient and appropriate education for medical imaging professionals is required for successful AI adoption. Although, currently, there are AI training programmes for radiologists, formal AI education for radiographers is lacking. Therefore, this study aimed to evaluate and discuss a postgraduate-level module on AI developed in the UK for radiographers.MethodologyA participatory action research methodology was applied, with participants recruited from the first cohort of students enrolled in this module and faculty members. Data were collected using online, semi-structured, individual interviews and focus group discussions. Textual data were processed using data-driven thematic analysis.ResultsSeven students and six faculty members participated in this evaluation. Results can be summarised in the following four themes: a. participants' professional and educational backgrounds influenced their experiences, b. participants found the learning experience meaningful concerning module design, organisation, and pedagogical approaches, c. some module design and delivery aspects were identified as barriers to learning, and d. participants suggested how the ideal AI course could look like based on their experiences.ConclusionsThe findings of our work show that an AI module can assist educators/academics in developing similar AI education provisions for radiographers and other medical imaging and radiation sciences professionals. A blended learning delivery format, combined with customisable and contextualised content, using an interprofessional faculty approach is recommended for future similar courses.
C1 [van de Venter, Riaan] Nelson Mandela Univ, Fac Hlth Sci, Sch Clin Care Sci, Dept Radiog, Port Elizabeth, South Africa.
[van de Venter, Riaan; Skelton, Emily; Malik, Rizwan; Malamateniou, Christina] City Univ London, Sch Hlth & Psychol Sci, Div Midwifery & Radiog, London, England.
[Skelton, Emily; Matthew, Jacqueline; Malamateniou, Christina] Kings Coll London, Dept Perinatal Imaging & Hlth, London, England.
[Matthew, Jacqueline] Guys & St Thomas NHS Fdn Trust, London, England.
[Woznitza, Nick] Univ Coll London Hosp, Radiol Dept, London, England.
[Woznitza, Nick] Canterbury Christ Church Univ, Sch Allied & Publ Hlth Profess, Canterbury, England.
[Tarroni, Giacomo] City Univ London, Dept Comp Sci, Cit AI, London, England.
[Tarroni, Giacomo] Imperial Coll London, Dept Comp, BioMedIA, London, England.
[Hirani, Shashivadan P.] City Univ London, Ctr Healthcare Innovat Res, London, England.
[Kumar, Amrita] Frimley Hlth NHS Fdn Trust, London, England.
[Malik, Rizwan] Royal Bolton Hosp, Farnworth, England.
[Malamateniou, Christina] HESAV Univ, Dept Radiog, Lausanne, Switzerland.
C3 Nelson Mandela University; City St Georges, University of London;
University of London; King's College London; Guy's & St Thomas' NHS
Foundation Trust; University College London Hospitals NHS Foundation
Trust; University of London; University College London; Canterbury
Christ Church University; City St Georges, University of London;
Imperial College London; City St Georges, University of London; Royal
Bolton Hospital
RP van de Venter, R (corresponding author), Nelson Mandela Univ, Fac Hlth Sci, Sch Clin Care Sci, Dept Radiog, Port Elizabeth, South Africa.; van de Venter, R; Malamateniou, C (corresponding author), City Univ London, Sch Hlth & Psychol Sci, Div Midwifery & Radiog, London, England.; Malamateniou, C (corresponding author), Kings Coll London, Dept Perinatal Imaging & Hlth, London, England.; Malamateniou, C (corresponding author), HESAV Univ, Dept Radiog, Lausanne, Switzerland.
EM riaan.vandeventer@mandela.ac.za; christina.malamateniou@city.ac.uk
RI Matthew, Jackie/HQZ-6583-2023; van de Venter, Riaan/JFK-9683-2023
OI Matthew, Jackie/0000-0003-4754-0322; van de Venter,
Riaan/0000-0003-4384-9234; Skelton, Emily/0000-0003-0132-7948;
Malamateniou, Christina/0000-0002-2352-8575
CR [Anonymous], 2016, DOING QUALITATIVE RE, DOI DOI 10.4135/9781473921955
Brewster L, 2014, J ADV NURS, V70, P21, DOI 10.1111/jan.12196
Brink H., 2018, Fundamentals of research methodology for health care professionals
Car LT, 2022, J MED INTERNET RES, V24, DOI 10.2196/31977
Carr W., 2003, BECOMING CRITICAL ED
Chan Kai Siang, 2019, JMIR Med Educ, V5, pe13930, DOI 10.2196/13930
Charow R, 2021, JMIR MED EDUC, V7, DOI 10.2196/31043
Clarke V, 2017, J POSIT PSYCHOL, V12, P297, DOI 10.1080/17439760.2016.1262613
Cohen ManionL., 2011, Research methods in education, V7th
Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd
Dhawan Shivangi, 2020, Journal of Educational Technology Systems, V49, P5, DOI 10.1177/0047239520934018
Di Basilio F, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10010153
Edirippulige S, 2017, J TELEMED TELECARE, V23, P273, DOI 10.1177/1357633X16632968
Edirippulige S, 2022, J TELEMED TELECARE, V28, P258, DOI 10.1177/1357633X20932436
Elliott V, 2018, QUAL REP, V23, P2850
EuSoMII Virtual Annual Meeting, 2021, INSIGHTS IMAGING, V13, P31, DOI [10.1186/s13244-022-01168-w, DOI 10.1186/S13244-022-01168-W]
Fan JT, 2020, ENGINEERING-PRC, V6, P248, DOI 10.1016/j.eng.2019.11.012
Forde C, 2020, ONLINE LEARN, V24, P118, DOI 10.24059/olj.v24i1.1566
Gambling T., 2003, Radiography, V9, P71
Geis JR, 2019, INSIGHTS IMAGING, V10, DOI 10.1186/s13244-019-0785-8
Gibbs A., 1997, SOCIAL RES UPDATE
Gray J.R., 2017, Burns and Gove's the practice of nursing research: Appraisal, synthesis, and generation of evidence, V8
Hardy M, 2020, BRIT J RADIOL, V93, DOI 10.1259/bjr.20190840
Havenga Y, 2018, HEALTH SA GESONDHEID, V23, DOI 10.4102/hsag.v23i0.1107
Health and Care Professions Council [HCPC], 2022, STAND PROF RAD
Henning Peter A, 2021, J Eur CME, V10, P2014099, DOI 10.1080/21614083.2021.2014099
Huang HB, 2010, ACTION RES-LONDON, V8, P93, DOI 10.1177/1476750310362435
Jöhnk J, 2021, BUS INFORM SYST ENG+, V63, P5, DOI 10.1007/s12599-020-00676-7
Lewis SJ, 2019, J MED RADIAT SCI, V66, P292, DOI 10.1002/jmrs.369
Lin YC, 2021, JMIR MED EDUC, V7, DOI 10.2196/30873
Malamateniou C, 2021, RADIOGRAPHY, V27, P1192, DOI 10.1016/j.radi.2021.07.028
Malamateniou C, 2021, RADIOGRAPHY, V27, pS58, DOI 10.1016/j.radi.2021.07.015
Malamateniou C., 2022, RAD. magazine, V48, P19
Mathur P, 2021, ARTIF INTELL, DOI [10.13140/RG.2.2.25350.24645/1, DOI 10.13140/RG.2.2.25350.24645/1]
McNiff J., 2002, ACTION RES PRINCIPLE, DOI [10.4324/9780203199961, DOI 10.4324/9780203199961]
Mitchell SN, 2009, TEACH TEACH EDUC, V25, P344, DOI 10.1016/j.tate.2008.06.008
Mulryan P, 2022, INSIGHTS IMAGING, V13, DOI 10.1186/s13244-022-01209-4
Munn Z, 2013, J MED RADIAT SCI, V60, P47, DOI 10.1002/jmrs.8
Neri E, 2019, INSIGHTS IMAGING, V10, DOI 10.1186/s13244-019-0738-2
Polit D., 2018, Essentials of nursing research: Appraising evidence for nursing practice, V9th
Rainey C, 2021, FRONT DIGIT HEALTH, V3, DOI 10.3389/fdgth.2021.739327
Roddy C., 2017, FRONT EDUC, DOI DOI 10.3389/FEDUC.2017.00059
Saldana Johnny, 2015, The coding manual for qualitative researchers, Vfourth
Sanderson P, 2007, STUD HEALTH TECHNOL, V130, P3
Sapci AH, 2020, JMIR MED EDUC, V6, DOI 10.2196/19285
Schuur F, 2021, EUR RADIOL, V31, P6021, DOI 10.1007/s00330-020-07621-y
Sit C, 2020, INSIGHTS IMAGING, V11, DOI 10.1186/s13244-019-0830-7
Society and College of Radiographers, 2020, SOC COLL RAD POL STA
Stogiannos N, 2022, J MED IMAGING RADIAT, V53, pS47, DOI 10.1016/j.jmir.2022.09.011
Succi MD, 2020, J AM COLL RADIOL, V17, P1329, DOI 10.1016/j.jacr.2020.04.020
Tejani AS, 2021, J AM COLL RADIOL, V18, P605, DOI 10.1016/j.jacr.2020.10.001
Tetui M, 2017, GLOBAL HEALTH ACTION, V10, DOI 10.1080/16549716.2017.1346038
Tong A, 2007, INT J QUAL HEALTH C, V19, P349, DOI 10.1093/intqhc/mzm042
Topol E., 2019, The Topol Review. Preparing the Healthcare Workforce to Deliver the Digital Future, P1
Van De Venter R., 2020, The South African Radiographer, V58, P30
van de Venter R., 2018, S AFR RADIOGR, V56, P7
Van de Venter R, 2021, South Afr Radiogr, V59, P45
Wiggins WF, 2021, J DIGIT IMAGING, V34, P1026, DOI 10.1007/s10278-021-00492-9
Wiggins WF, 2020, RADIOL-ARTIF INTELL, V2, DOI 10.1148/ryai.2020200057
Wiljer D, 2019, J MED IMAGING RADIAT, V50, pS8, DOI 10.1016/j.jmir.2019.09.010
Wood MJ, 2019, J AM COLL RADIOL, V16, P740, DOI 10.1016/j.jacr.2018.10.008
Yasmeen G, 2008, TURK ONLINE J EDUC T, V7, P46
NR 62
TC 9
Z9 9
U1 4
U2 15
PU SPRINGER WIEN
PI Vienna
PA Prinz-Eugen-Strasse 8-10, A-1040 Vienna, AUSTRIA
SN 1869-4101
J9 INSIGHTS IMAGING
JI Insights Imaging
PD FEB 3
PY 2023
VL 14
IS 1
AR 25
DI 10.1186/s13244-023-01372-2
PG 13
WC Radiology, Nuclear Medicine & Medical Imaging
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Radiology, Nuclear Medicine & Medical Imaging
GA 8O2MV
UT WOS:000925674900003
PM 36735172
OA Green Accepted, Green Published, gold
DA 2024-09-05
ER
PT J
AU Fan, P
AF Fan, Peng
TI Application of deep learning and cloud data platform in college teaching
quality evaluation (Publication with Expression of Concern)
SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS
LA English
DT Article; Publication with Expression of Concern
DE Deep learning; teaching quality; cloud computing; data fusions
ID REVIEWS; MODEL
AB In this paper, the author introduces the theory of fuzzy mathematics into the evaluation of higher education. By determining the set of evaluation factors and comments, the author constructs the relevant mathematical model and processes the data, thus turning the evaluation problem into the multiplication problem of the fuzzy matrix. Deep learning is a very active branch of machine learning research in recent years. By increasing the depth and breadth of the model, i.e. increasing the number of operations from the input end to the output end and the number of channels of the model, the scale of parameters of the model is increased, so that the model has the ability to express complex functions. It is appropriate to use deep learning in teaching quality evaluation. The simulation results show that the deep learning model is very effective in dealing with data diversity and extracting complex implicit rules. It can effectively model experts' professional knowledge and experience. Deep neural network has powerful expressive ability, and can effectively extract the deep-seated laws affecting the teaching quality. It can be used as an assistant technology for the evaluation of teaching quality in Colleges.
C1 [Fan, Peng] Xidian Univ, Xian, Peoples R China.
C3 Xidian University
RP Fan, P (corresponding author), Xidian Univ, Xian, Peoples R China.
EM fanpengxidian@163.com
CR Bai TC, 2014, NEURAL COMPUT APPL, V25, P1699, DOI 10.1007/s00521-014-1658-1
Bayindir R, 2016, RENEW SUST ENERG REV, V66, P499, DOI 10.1016/j.rser.2016.08.002
Bayram A, 2015, ENVIRON EARTH SCI, V73, P6565, DOI 10.1007/s12665-014-3876-3
Beuscart JS, 2016, J CULT ECON-UK, V9, P458, DOI 10.1080/17530350.2016.1210534
Cao WD, 2016, INT J ADV MANUF TECH, V85, P2657, DOI 10.1007/s00170-015-8114-y
Castelli M, 2017, EXPERT SYST APPL, V84, P117, DOI 10.1016/j.eswa.2017.05.008
Centeno R, 2015, INFORM SYST FRONT, V17, P809, DOI 10.1007/s10796-014-9526-1
D'Andrea A., 2015, International Journal of Computer Applications, V125, P26, DOI DOI 10.5120/IJCA2015905866
Djenouri Y, 2015, J SUPERCOMPUT, V71, P1318, DOI 10.1007/s11227-014-1366-8
Ebesu T, 2017, INFORM RETRIEVAL J, V20, P109, DOI 10.1007/s10791-017-9295-9
Erica L., 2019, ARCH LATINOAMERICANO, V69, P165
Fang H, 2013, ELECTRON COMMER R A, V12, P208, DOI 10.1016/j.elerap.2013.03.001
Glaucia C., 2019, B MALARIOL SALUD AMB, V59, P130
Kumar A, 2017, IEEE J BIOMED HEALTH, V21, P31, DOI 10.1109/JBHI.2016.2635663
Leiva J, 2016, RENEW SUST ENERG REV, V55, P227, DOI 10.1016/j.rser.2015.11.002
Liu PK, 2016, RENEW SUST ENERG REV, V66, P10, DOI 10.1016/j.rser.2016.07.055
NAYAK PK, 2015, NEURAL COMPUT APPL, V27, P1
Pan H, 2015, J COMPUT THEOR NANOS, V12, P2802, DOI 10.1166/jctn.2015.4180
Renato T., 2019, ARCH LATINOAMERICANO, V69, P122
Rojas F., 2018, ARCH LATINOAMERICANO, V68, P331
Salem AA, 2017, INTEGR MATER MANUF I, V6, P111, DOI 10.1007/s40192-017-0090-7
Sharma S.K., 2017, BEHAV INFORM TECHNOL, V12, P1
[王丽萍 Wang Liping], 2014, [水力发电学报, Journal of Hydroelectric Engineering], V33, P29
Yang GM, 2014, INT J COMPUT INT SYS, V7, P1148, DOI 10.1080/18756891.2014.966999
You XM, 2015, J FUSION ENERG, V34, P918, DOI 10.1007/s10894-015-9903-x
Zemma P., 2018, ARCH LATINOAM NUTR, V68, P343
Zhang Q, 2016, J COMPUTATIONAL THEO, V13, P6005
Zhou C., 2019, B MALARIOL SALUD AMB, V59, P116
Zhou LL, 2017, CHEMOMETR INTELL LAB, V167, P190, DOI 10.1016/j.chemolab.2017.06.009
Zhu RL, 2014, ADV MATER RES-SWITZ, V886, P532, DOI 10.4028/www.scientific.net/AMR.886.532
NR 30
TC 16
Z9 16
U1 0
U2 34
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 1064-1246
EI 1875-8967
J9 J INTELL FUZZY SYST
JI J. Intell. Fuzzy Syst.
PY 2020
VL 39
IS 4
BP 5547
EP 5558
DI 10.3233/JIFS-189036
PG 12
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA OH1HF
UT WOS:000582322000069
DA 2024-09-05
ER
PT J
AU Saputra, NA
Hamidah, I
Setiawan, A
AF Saputra, Nisa Aulia
Hamidah, Ida
Setiawan, Agus
TI A BIBLIOMETRIC ANALYSIS OF DEEP LEARNING FOR EDUCATION RESEARCH
SO JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Bibliometric analysis; Deep learning in education; Learning media;
Technology 4; 0; VOSviewer
ID COVID-19
AB The purpose of this study was to determine the role, trend, and development of deep learning (DL) in education. The research method used is a bibliometric analysis method using the VOSviewer tool. VOSviewer is used to analyse the distribution of documents each year in various countries, institutions, journals, authors, and the relationship between keywords that appear. The results of this study show that the growth of publications on DL articles in the world of education increased by 31.69%, while the growth of DL articles as learning media increased by 11%. The most productive country in publishing articles related to DL in education is the United States with a total of 460 related documents and 13,162 citations. The most productive institution that researches DL in education is Stanford University with a total of 21 articles published. Furthermore, the most productive journal in IEEE Access with a total publication of 58,219 articles and a citation score of 4.8. The relationship between authors shows that the co-authoring network with Zhang Y. is the largest network with a total of 24 co-authored articles. The keyword that appears the most is the keyword "deep learning" which is directly related to "Data Analytics" and "AI". It is also seen that the topics that may arise for future research are topics related to the keyword "deep learning" which is related to "Virtual Reality" or "Educational Psychology". This research can be useful to find research gaps regarding the development or implementation of deep learning in the field of education to improve the quality of education and solving problems related to the world of education.
C1 [Saputra, Nisa Aulia; Hamidah, Ida; Setiawan, Agus] Univ Pendidikan Indonesia, Bandung, Indonesia.
C3 Universitas Pendidikan Indonesia
RP Hamidah, I (corresponding author), Univ Pendidikan Indonesia, Bandung, Indonesia.
EM idahamidah@upi.edu
CR Abràmoff MD, 2016, INVEST OPHTH VIS SCI, V57, P5200, DOI 10.1167/iovs.16-19964
Abumalloh RA, 2022, J INFECT PUBLIC HEAL, V15, P75, DOI 10.1016/j.jiph.2021.11.013
Agbo FJ, 2021, SMART LEARN ENVIRON, V8, DOI 10.1186/s40561-020-00145-4
Al Husaeni D. F., 2022, ASEAN Journal of Science and Engineering, V2, P19, DOI DOI 10.17509/AJSE.V2I1.37368
Al Husaeni D.F., 2023, Indonesian Journal of Teaching in Science, V3, P1
Al Husaeni D. N., 2023, INDONESIAN J COMMUNI, V3, P1
Al Husaeni DN, 2023, Indones J Edu Res Technol, V3, P1
Al Husaeni DF, 2022, J ENG SCI TECHNOL, V17, P1135
Bilad M. R, 2022, ASEAN Journal of Community and Special Needs Education, V1, P61
Brika SKM, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.762819
Bronstein MM, 2017, IEEE SIGNAL PROC MAG, V34, P18, DOI 10.1109/MSP.2017.2693418
Chartrand G, 2017, RADIOGRAPHICS, V37, P2113, DOI 10.1148/rg.2017170077
Chauhan D, 2022, CLIN IMAG, V82, P121, DOI 10.1016/j.clinimag.2021.11.013
Chicaiza J, 2022, IEEE ACCESS, V10, P33281, DOI 10.1109/ACCESS.2022.3159025
Churiyah M., 2022, World Journal on Educational Technology: Current Issues, V14, P484, DOI [10.18844/wjet.v14i2.6990, DOI 10.18844/WJET.V14I2.6990]
Dimililer K, 2021, MICROPROCESS MICROSY, V80, DOI 10.1016/j.micpro.2020.103613
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Fauziah A., 2022, Indonesian Journal of Multidiciplinary Research, V2, P333
Guarascio M., 2019, ENCYCOPEDIA BIOINFOR, V1, P634
Hamidah I., 2020, Indon. J. Sci. Technol., V5, P209, DOI DOI 10.17509/IJOST.V5I2.24522
Hamidah I, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e06406
Han ZC, 2021, MICROPROCESS MICROSY, V80, DOI 10.1016/j.micpro.2020.103343
Hirawan D, 2022, MOROC J CHEM, V10, P576, DOI 10.48317/IMIST.PRSM/morjchem-v10i3.33145
Hong SD, 2020, COMPUT BIOL MED, V122, DOI 10.1016/j.compbiomed.2020.103801
Husain S.S., 2023, Indones. J. Sci. Technol., V8, P197, DOI [10.17509/IJOST.V8I2.54794, DOI 10.17509/IJOST.V8I2.54794]
Jing LY, 2017, MEASUREMENT, V111, P1, DOI 10.1016/j.measurement.2017.07.017
Khairi SSM, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10010010
Tamala JK, 2022, CLEAN ENG TECHNOL, V7, DOI 10.1016/j.clet.2022.100437
Kurniati PS, 2022, MOROC J CHEM, V10, P428, DOI 10.48317/IMIST.PRSM/morjchem-v10i3.33061
Lee JB, 2021, INT J NAV ARCH OCEAN, V13, P641
Lenar S, 2014, PROCD SOC BEHV, V131, P111, DOI 10.1016/j.sbspro.2014.04.088
Li Y, 2020, INT J MACH LEARN CYB, V11, P2807, DOI 10.1007/s13042-020-01152-0
Liang ZT, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102611
Luckyardi S., 2022, MOROC J CHEM, V10, P10
Madabhushi A, 2016, MED IMAGE ANAL, V33, P170, DOI 10.1016/j.media.2016.06.037
Mao M., 2018, BIBLIOMETRIC ANAL DE, V3, P585
Maryanti R., 2022, Journal of Engineering, Science and Technology, V17, P161
Misbah M., 2022, Journal of Engineering Science and Technology, V17, P118
Misbah M., 2022, Journal of Engineering Science and Technology, V17, P152
Mudzakir A., 2022, Indonesian Journal of Science and Technology, V7, P291
Muhammad S., 2022, J ENG SCI TECHNOL, P1
Muji S., 2021, INDONESIAN J SCI TEC, V6, DOI [10.17509/ijost.v6i3.38430, DOI 10.17509/IJOST.V6I3.38430]
Mukhamedyev R.I., 2020, ASSESSMENT DYNAMICS, P744
Mulyawati IB., 2021, ASEAN J Sci Eng Educ, V1, P37, DOI [10.17509/ajsee.v1i1.32405, DOI 10.17509/AJSEE.V1I1.32405]
Nandiyanto A.B.D., 2023, ASEAN Journal for Science and Engineering in Materials, V2, P35
Nandiyanto A.B.D., 2020, Indones. J. Sci. Technol, V5, P154, DOI [10.17509/ijost.v5i1.22265, DOI 10.17509/IJOST.V5I1.22265]
Nandiyanto ABD., 2022, Commun Sci Technol, V7, P50, DOI [10.21924/cst.7.1.2022.757, DOI 10.21924/CST.7.1.2022.757]
Nandiyanto ABD, 2023, MOROC J CHEM, V11, P1, DOI 10.48317/IMIST.PRSM/morjchem-v%vi%i.36576
Nandiyanto ABD, 2021, J ENG RES-KUWAIT, V9, DOI 10.36909/jer.ASSEEE.16037
Nandiyanto ABD, 2022, J ENG SCI TECHNOL, V17, P883
Nayak J, 2020, COMPUT SCI REV, V38, DOI 10.1016/j.cosrev.2020.100297
Nordin N. A. H. M, 2022, Indonesian Journal of Teaching in Science, V2, P127
Nugraha S. A., 2022, Indonesian Journal of Multidiciplinary Research, V2, P327
Oliveira DAB, 2021, LIVEST SCI, V253, DOI 10.1016/j.livsci.2021.104700
ordin N. A. H. M., 2022, ASEAN Journal of Community and Special Needs Education, V1, P9
Pilarz J, 2022, J MOL LIQ, V347, DOI 10.1016/j.molliq.2021.118376
Ragadhita R., 2022, Indonesian Journal of Multidiciplinary Research, V2, P213
Rebai S, 2020, SOCIO-ECON PLAN SCI, V70, DOI 10.1016/j.seps.2019.06.009
Riandi R, 2022, MOROC J CHEM, V10, P417, DOI 10.48317/IMIST.PRSM/morjchem-v10i3.33060
Sahidin I., 2023, Indonesian Journal of Science and Technology, V8, P217, DOI [10.17509/ijost.v8i2.54822, DOI 10.17509/IJOST.V8I2.54822]
Saputra H, 2022, MOROC J CHEM, V10, P37, DOI 10.48317/IMIST.PRSM/morjchem-v10i1.31723
Shen YC, 2017, NAT PHOTONICS, V11, P441, DOI [10.1038/NPHOTON.2017.93, 10.1038/nphoton.2017.93]
Shidiq A. P., 2023, ASEAN J SCI ENG, V3, P31, DOI DOI 10.17509/AJSE.V3I1.43345
Shidiq AS, 2021, MOROC J CHEM, V9, P290, DOI 10.48317/IMIST.PRSM/morjchem-v9i2.27581
Soegoto H., 2022, Indonesian Journal of Science and Technology, V7, P89, DOI [DOI 10.17509/IJOST.V7I1.43328, 10.17509/ijost.v7i1.43328]
Su M, 2021, EXPERT SYST APPL, V186, DOI 10.1016/j.eswa.2021.115728
Sudarjat H., 2023, ASEAN Journal of Community and Special Needs Education, V2, P1
Supratak A, 2017, IEEE T NEUR SYS REH, V25, P1998, DOI 10.1109/TNSRE.2017.2721116
Ting DSW, 2020, NAT MED, V26, P459, DOI 10.1038/s41591-020-0824-5
Utama D.M., 2023, Indonesian Journal of Science and Technology, V8, P171
Uto N, 2022, NEUROPEPTIDES, V92, DOI 10.1016/j.npep.2021.102225
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Veluri RK, 2022, MATER TODAY-PROC, V51, P2317, DOI 10.1016/j.matpr.2021.11.416
Wibowo R.P., 2022, PROCEDIA COMPUTER SC, V197, P484
Wiendartun W, 2022, J ENG SCI TECHNOL, V17, P343
Wirzal M. D. H., 2022, Indonesian Journal of Community and Special Needs Education, V2, P103
Yan W, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.771591
Zhang JZ, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115561
Zhang K, 2017, IEEE T IMAGE PROCESS, V26, P3142, DOI 10.1109/TIP.2017.2662206
Zhang WJ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133548
Zhang Y., 2022, WORLD NEUROSURG, V161, P355
Zhou BL, 2018, IEEE T PATTERN ANAL, V40, P1452, DOI 10.1109/TPAMI.2017.2723009
Zhu X, 2020, SCIENTOMETRICS, V123, P753, DOI 10.1007/s11192-020-03400-0
NR 83
TC 0
Z9 0
U1 2
U2 7
PU TAYLORS UNIV SDN BHD
PI SELANGOR
PA 1 JALAN SS15-8, SUBANG JAYA, SELANGOR, 47500, MALAYSIA
EI 1823-4690
J9 J ENG SCI TECHNOL
JI J. Eng. Sci. Technol.
PD APR
PY 2023
VL 18
IS 2
BP 1258
EP 1276
PG 19
WC Engineering, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA F9SA3
UT WOS:000985660800026
DA 2024-09-05
ER
PT C
AU Wang, MY
AF Wang Mingyan
BE Zhu, KL
Zhang, H
TI Research on E-procurement Supplier Performance Assessment Model Based on
SPSS Principal Component Analysis and Gray Relational Theory
SO COMPREHENSIVE EVALUATION OF ECONOMY AND SOCIETY WITH STATISTICAL SCIENCE
LA English
DT Proceedings Paper
CT 2nd Conference of the
International-Institute-of-Applied-Statistics-Studies
CY JUL 24-29, 2009
CL Qingdao, PEOPLES R CHINA
DE Principal Component Analysis; Grey Theory; Supplier's Performance
Evaluation Model; SPSS
AB The supplier of e-procurement under at the whole supply chain environment are the main operators of the generalized one. Implementation of ongoing supplier performance evaluation is to control the stable operation of the supply chain the key aspect. In this paper, with theoretical analysis and empirical analysis, put forward the gray relational theory and the principal component analysis SPSS combined to build he supplier performance evaluation index system model under e-procurement, and carry out the relevant empirical research. Examples of analysis showed that the evaluation model for supplier performance evaluation under e-procurement provides a new effective way.
C1 [Wang Mingyan] Shanghai Univ Engn Sci, Informat Management Dept, Inst Management, Shanghai 201620, Peoples R China.
C3 Shanghai University of Engineering Science
RI wang, ming/HPC-6329-2023; wang, ming/ITV-5378-2023
CR Chen Churuning, 2005, LEARNING RES, P197
FAN W, 2007, SCI TECHNOLOGY INFOR, P421
FENG H, 2004, MODERN MANAGEMENT SC, V4, P75
Li Yanshuang, 1999, J HEBEI U TECHNOLOGY
PENG JS, 2003, ENTERPRISE EC
NR 5
TC 1
Z9 1
U1 0
U2 1
PU AUSSINO ACAD PUBL HOUSE
PI MARRICKVILLE
PA PO BOX 893, MARRICKVILLE, NSW 2204 00000, AUSTRALIA
BN 978-0-9806057-7-8
PY 2009
BP 745
EP 751
PG 7
WC Agricultural Economics & Policy; Economics; Education & Educational
Research; Environmental Sciences; Environmental Studies; Social
Sciences, Mathematical Methods; Statistics & Probability
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Agriculture; Business & Economics; Education & Educational Research;
Environmental Sciences & Ecology; Mathematical Methods In Social
Sciences; Mathematics
GA BOE48
UT WOS:000276383800129
DA 2024-09-05
ER
PT J
AU Poole, G
Egan, JP
Iqbal, I
AF Poole, Gary
Egan, John P.
Iqbal, Isabeau
TI Innovation in collaborative health research training: The role of active
learning
SO JOURNAL OF INTERPROFESSIONAL CARE
LA English
DT Article
DE Active learning; collaboration; community health; research training
ID TEAMS
AB This paper describes and discusses the essential pedagogical elements of the Partnering in Community Health Research (PCHR) program, which was designed to address the training needs of researchers who participate in collaborative, interdisciplinary health research. These elements were intended to foster specific skills that helped learners develop research partnerships featuring knowledge, capabilities, values and attitudes needed for successful research projects. By establishing research teams called "clusters'', PCHR provided research training and experience for graduate students and post-doctoral fellows, as well as for community health workers and professionals. Pedagogical elements relied on active learning approaches such as inquiry-based and experience-based learning. Links between these elements and learning approaches are explained. Through their work in cluster-based applied research projects, the development of learning plans, and cross-cluster learning events, trainees acquired collaborative research competencies that were valuable, relevant and theoretically informed.
C1 [Poole, Gary] Univ British Columbia, Fac Med, Sch Populat & Publ Hlth, Vancouver, BC V6T 1Z3, Canada.
[Egan, John P.] Univ British Columbia, Fac Med, Ctr Clin Epidemiol & Evaluat, Vancouver, BC V6T 1Z3, Canada.
[Iqbal, Isabeau] Univ British Columbia, Dept Educ Studies & Educ Developer, Ctr Teaching & Acad Growth, Vancouver, BC V6T 1Z3, Canada.
C3 University of British Columbia; University of British Columbia;
University of British Columbia
RP Poole, G (corresponding author), Univ British Columbia, Fac Med, Sch Populat & Publ Hlth, 5804 Fairview Ave, Vancouver, BC V6T 1Z3, Canada.
EM gary.poole@ubc.ca
RI Egan, John P/JHS-5622-2023
CR Edelson DC, 1999, J LEARN SCI, V8, P391, DOI 10.1207/s15327809jls0803&4_3
Fox CE, 2004, ACAD MED, V79, P1169, DOI 10.1097/00001888-200412000-00009
Gilbert J.H., 2000, J INTERPROF CARE, V14, P223, DOI DOI 10.1080/JIC.14.3.223.235
GITLIN LN, 1994, EDUC GERONTOL, V20, P15, DOI 10.1080/0360127940200103
Hall-Long B A, 2001, J Public Health Manag Pract, V7, P60
Kayes AB, 2005, SIMULAT GAMING, V36, P330, DOI 10.1177/1046878105279012
Partridge EE, 2005, FAM COMMUNITY HEALTH, V28, P6, DOI 10.1097/00003727-200501000-00004
Rodgers C, 2002, TEACH COLL REC, V104, P842, DOI 10.1111/1467-9620.00181
Schofield RF, 1999, HEALTH SOC WORK, V24, P210, DOI 10.1093/hsw/24.3.210
Shulman LS, 2019, PROFESORADO, V23, P269, DOI 10.30827/profesorado.v23i3.11230
Splaine Mark E, 2002, Qual Manag Health Care, V10, P10
Trussler Terry., 2005, NEW DIRECTIONS ADULT, V105, P43
NR 12
TC 4
Z9 6
U1 0
U2 10
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 1356-1820
EI 1469-9567
J9 J INTERPROF CARE
JI J. Interprofessional Care
PY 2009
VL 23
IS 2
BP 148
EP 155
DI 10.1080/13561820802634894
PG 8
WC Health Care Sciences & Services; Health Policy & Services
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Health Care Sciences & Services
GA 483PB
UT WOS:000268978600005
PM 19283545
DA 2024-09-05
ER
PT J
AU Zhang, ZP
Yin, H
AF Zhang, Zipeng
Yin, Hu
TI Research on design forms based on artificial intelligence collaboration
model
SO COGENT ENGINEERING
LA English
DT Article
DE AI; industrial design; design morphology; AIGC; co-design
AB With the advent of the era of great intersection and integration, the development of generative artificial intelligence has caused the renewal of design methods, promoting a new paradigm of research in design fundamentals. The study seeks to investigate the research method of design form in the collaborative mode of artificial intelligence, to provide new ideas for design to conduct interdisciplinary research, and to promote design innovation under AI collaboration. This research begins with the design morphology theory, integrates interdisciplinary theories such as bionic design, and topology research, and collaborates with AIGC tools such as Midjourney, Stable Diffusion, and Chilloutmix to conduct case-specific research. To improve the accuracy of the morphological study, parametric design, bi-directional progressive topology optimization, genetic algorithm and simulation analysis, and other methods were also used in the research process to carry out a comprehensive design experiment exploration. This study also summarizes the AIGC prompt formula for the industrial design field and proposes an innovative seven-step design form research method with shape finding and shape making. This study also summarizes the AIGC prompt formula for the industrial design field and proposes an innovative seven-step design form research method with shape finding and shape making. Simultaneously, the pearl shell design morphology research is conducted in collaboration with AI technology, the full case design of the autonomous underwater vehicle is completed, and the efficacy of the seven-step design morphology research method is validated through fluid simulation. AI synergy provides new ideas for complex morphology research, extends and complements design, and plays a crucial role in the phases of morphology exploration, concept generation, and solution implementation, thereby assisting in the exploration of the central content of design morphology.
C1 [Zhang, Zipeng; Yin, Hu] Beihang Univ, Sch Mech Engn & Automat, Dept Ind Design, Beijing, Peoples R China.
[Zhang, Zipeng] Tsinghua Univ, Acad Art & Design, Beijing, Peoples R China.
C3 Beihang University; Tsinghua University
RP Yin, H (corresponding author), Beihang Univ, Sch Mech Engn & Automat, Dept Ind Design, Beijing, Peoples R China.
EM 19375309@buaa.edu.cn
FX Thanks to my supervisor Hu Yin, for his valuable advice on the selection
of the research subjects, the setting of the design evaluation criteria,
and the verification of the morphological laws, which gave me great
encouragement and help in the process of writing the paper.
CR [Anonymous], 2014, A natural history of human thinking
Boden MA, 2009, DIGIT CREAT, V20, P21, DOI 10.1080/14626260902867915
Caires C. S., 2023, Perspectives on Design and Digital Communication IV: Research, Innovations and Best Practices, P113
Cao YH, 2023, Arxiv, DOI [arXiv:2303.04226, DOI 10.48550/ARXIV.2303.04226, 10.48550/arXiv.2303.04226]
Chang Kuang-Hua., 2014, PRODUCT DESIGN MODEL
Chung JJY, 2022, PROCEEDINGS OF THE 2022 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE, DIS 2022, P232, DOI 10.1145/3532106.3533505
Craciun A. E., 2019, IOP Conference Series: Materials Science and Engineering, V682, DOI 10.1088/1757-899X/682/1/012006
Dehouche N, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e16757
Dubberly H, 2023, SHE JI, V9, P135, DOI 10.1016/j.sheji.2023.05.003
DURGEE JF, 1988, J ADVERTISING RES, V28, P42
Farin G. E., 1996, Curves and surfaces for computeraided geometric design, a practical guide
Fathoni Ahmad Faisal Choiril Anam, 2023, E3S Web of Conferences, DOI 10.1051/e3sconf/202342601102
Gupta D., 2022, DifusionBee-Stable difusion App for AI art
Hsiao SW, 2008, INT J IND ERGONOM, V38, P910, DOI 10.1016/j.ergon.2008.02.009
Hugo J., 2023, Artificial intelligence in the industrial design process
INCOSE Systems Engineering Handbook Working Group, 2015, Systems engineering handbook, V4th ed.)
Jarrahi MH, 2023, BUS HORIZONS, V66, P87, DOI 10.1016/j.bushor.2022.03.002
Javaid M., 2023, Journal of Economy and Technology, V1, P127, DOI [DOI 10.1016/J.JECT.2023.08.001, https://doi.org/10.1016/j.ject.2023.08.001]
Kelly K., 2022, What AI-generated art really means for human creativity
Kimball M.A., 2013, Journal of Technical Writing and Communication, V43, P3
Lugo J. E., 2012, DETC201270434 ASME, DOI [https://doi.org/10.1115/DETC2012-70434, DOI 10.1115/DETC2012-70434]
Lugo JE, 2016, J MECH DESIGN, V138, DOI 10.1115/1.4032775
Lugo JE, 2015, J MECH DESIGN, V137, DOI 10.1115/1.4030988
Luo Y., 2023, Proceedings of the 4th International Conference on Education, Knowledge and Information Management, ICEKIM 2023, May 2628, 2023, Nanjing, China, DOI [https://doi.org/10.4108/eai.26-5-2023.2337328, DOI 10.4108/EAI.26-5-2023.2337328]
Mozaffar M, 2022, J MATER PROCESS TECH, V302, DOI 10.1016/j.jmatprotec.2021.117485
Nan LL, 2011, ACM T GRAPHIC, V30, DOI 10.1145/2024156.2024219
Orbay G, 2015, J MECH DESIGN, V137, DOI 10.1115/1.4030206
Oya T., 2012, DETC201270859 ASME, DOI [https://doi.org/10.1115/DETC2012-70859, DOI 10.1115/DETC2012-70859]
Radanliev P, 2022, IEEE ACCESS, V10, P45280, DOI 10.1109/ACCESS.2022.3169580
Sederberg Thomas W., 2012, Computer Aided Geometric Design, V1
Sylcott B, 2013, J MECH DESIGN, V135, DOI 10.1115/1.4024975
Tencent Research Institute, 2023, Tencent Research Institute AIGC Development Trend Report, 2023
Tian X. Luo S. Tan Z. Zhang H. Cheng H. Zhu C. Lin H. Cong F., 2023, AHFE 2023 HAW ED, DOI [https://doi.org/10.54941/ahfe1004238, DOI 10.54941/AHFE1004238]
Tovares N, 2014, J MECH DESIGN, V136, DOI 10.1115/1.4027985
Valencia-Romero A, 2016, J MECH DESIGN, V138, DOI 10.1115/1.4033664
Verheijden Mathias Peter., 2023, 2023 CHI C HUM FACT, P1, DOI [DOI 10.1145/3544549.3585680, 10.1145/3544549.3585680]
Wang Y., 2023, Highlights in Science, Engineering and Technology, V57, P242
Wertheimer M, 1923, PSYCHOL FORSCH, V4, P301, DOI 10.1007/BF00410640
Xi ZH, 2023, Arxiv, DOI arXiv:2309.07864
Xiaopeng Guo, 2020, E3S Web of Conferences, V179, DOI 10.1051/e3sconf/202017902032
Zhang CN, 2023, Arxiv, DOI arXiv:2303.11717
Zhang F, 2022, MATH PROBL ENG, V2022, DOI 10.1155/2022/9342691
Zhao Y., 2024, Proceedings of the 2nd International Conference on Intelligent Design and Innovative Technology (ICIDIT 2023), V), P451, DOI [https://doi.org/10.2991/978-94-6463-266-849, DOI 10.2991/978-94-6463-266-849]
NR 43
TC 0
Z9 0
U1 11
U2 11
PU TAYLOR & FRANCIS AS
PI OSLO
PA KARL JOHANS GATE 5, NO-0154 OSLO, NORWAY
SN 2331-1916
J9 COGENT ENG
JI Cogent Eng.
PD DEC 31
PY 2024
VL 11
IS 1
AR 2364051
DI 10.1080/23311916.2024.2364051
PG 18
WC Engineering, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA XH5J4
UT WOS:001260801700001
OA gold
DA 2024-09-05
ER
PT J
AU Ibáñez, A
Larrañaga, P
Bielza, C
AF Ibanez, Alfonso
Larranaga, Pedro
Bielza, Concha
TI Using Bayesian networks to discover relationships between bibliometric
indices. A case study of computer science and artificial intelligence
journals
SO SCIENTOMETRICS
LA English
DT Article
DE Bibliometric indices; Bayesian networks; Conditional dependencies and
conditional independencies; Computer science and artificial intelligence
ID H-INDEX; PROBABILISTIC NETWORKS; CITATION ANALYSIS; R-INDEX; IMPACT
AB As they are used to evaluate the importance of research at different levels by funding agencies and promotion committees, bibliometric indices have received a lot of attention from the scientific community over the last few years. Many bibliometric indices have been developed in order to take into account aspects not previously covered. The result is that, nowadays, the scientific community faces the challenge of selecting which of this pool of indices meets the required quality standards. In view of the vast number of bibliometric indices, it is necessary to analyze how they relate to each other (irrelevant, dependent and so on). Our main purpose is to learn a Bayesian network model from data to analyze the relationships among bibliometric indices. The induced Bayesian network is then used to discover probabilistic conditional (in) dependencies among the indices and, also for probabilistic reasoning. We also run a case study of 14 well-known bibliometric indices on computer science and artificial intelligence journals.
C1 [Ibanez, Alfonso; Larranaga, Pedro; Bielza, Concha] Univ Politecn Madrid, Computat Intelligence Grp, Dept Inteligencia Artificial, E-28660 Madrid, Spain.
C3 Universidad Politecnica de Madrid
RP Ibáñez, A (corresponding author), Univ Politecn Madrid, Computat Intelligence Grp, Dept Inteligencia Artificial, E-28660 Madrid, Spain.
EM aibanez@fi.upm.es; plarranaga@fi.upm.es; mcbielza@fi.upm.es
RI Bielza, Concha/F-9277-2013; Larranaga, Pedro/F-9293-2013; Ibáñez,
Alfonso/B-3423-2010
OI Bielza, Concha/0000-0001-7109-2668; Larranaga,
Pedro/0000-0003-0652-9872;
FU Spanish Ministry of Science and Innovation [TIN2008-04528-E,
TIN2010-20900-C04-04]; Cajal Blue Brain and Consolider Ingenio
[2010-CSD2007-00018]
FX Research supported by Spanish Ministry of Science and Innovation,
Project TIN2008-04528-E. The study has also been partially supported by
Spanish Ministry of Science and Innovation, grants TIN2010-20900-C04-04,
Cajal Blue Brain and Consolider Ingenio 2010-CSD2007-00018.
CR Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5
[Anonymous], 1988, Probabilistic Reasoning in Intelligent Systems
Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y
Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008
Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022
Bornmann L, 2008, RES EVALUAT, V17, P149, DOI 10.3152/095820208X319166
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806
Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4
Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005
Castillo E., 1997, Expert Systems and Probabilistic Network Models
Consortium Elvira., 2002, Proceedings of the first European workshop on probabilistic graphical models, P222
COOPER GF, 1992, MACH LEARN, V9, P309, DOI 10.1023/A:1022649401552
Costas R, 2008, SCIENTOMETRICS, V77, P267, DOI 10.1007/s11192-007-1997-0
Davis PM, 2008, J AM SOC INF SCI TEC, V59, P2186, DOI 10.1002/asi.20943
Egghe L., 2006, ISSI newsletter., V2, P8
Elkins MR, 2010, SCIENTOMETRICS, V85, P81, DOI 10.1007/s11192-010-0262-0
Franceschet M, 2010, J INFORMETR, V4, P239, DOI 10.1016/j.joi.2009.12.002
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
GARFIELD E, 1972, ESSAYS INFORM SCI CU, V1, P270
Goodrum AA, 2001, INFORM PROCESS MANAG, V37, P661, DOI 10.1016/S0306-4573(00)00047-9
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jin B., 2006, SCI FOCUS, V1, P8, DOI 10.1209/0295-5075/78/30002
Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9
LACAVE C, 2003, THESIS DEP INTELIGEN
Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P1327, DOI 10.1002/asi.21024
Ruane F, 2008, SCIENTOMETRICS, V75, P395, DOI 10.1007/s11192-007-1869-7
SAAD G, J AM SOC IN IN PRESS
Schreiber M, 2008, J AM SOC INF SCI TEC, V59, P1513, DOI 10.1002/asi.20856
*SCIMAGO, 2007, SJR SCIMAGO J C 1112
Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001
WELLMAN MP, 1990, ARTIF INTELL, V44, P257, DOI 10.1016/0004-3702(90)90026-V
Woeginger GJ, 2008, MATH SOC SCI, V56, P224, DOI 10.1016/j.mathsocsci.2008.03.001
Zhang CT, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005429
NR 33
TC 10
Z9 10
U1 1
U2 79
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2011
VL 89
IS 2
BP 523
EP 551
DI 10.1007/s11192-011-0486-7
PG 29
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 840WU
UT WOS:000296473400004
DA 2024-09-05
ER
PT J
AU Huang, W
Song, FB
Zhang, SY
Xia, T
AF Huang, Wei
Song, Fangbin
Zhang, Shenyu
Xia, Tian
TI Influence of deep learning-based journal reading guidance system on
students' national cognition and cultural acceptance
SO FRONTIERS IN PSYCHOLOGY
LA English
DT Article
DE educational psychology; art journal; national identity; guidance system;
deep learning
ID MENTAL-HEALTH; COLLEGE-STUDENTS
AB The purpose is to explore new cultivation modes of college students' national cognition and cultural acceptance. Deep learning (DL) technology and Educational Psychology theory are introduced, and the influence of art journal reading on college students' national cognition and cultural acceptance is analyzed under Educational Psychology. Firstly, the background of Educational Psychology, national cognition and cultural acceptance, and learning system are discussed following a literature review. The DL technology is introduced to construct the journal reading guidance system. The system can provide users with art journals and record the user habits like reading duration and preferences. Secondly, hypotheses are proposed, and a questionnaire survey is designed, with 12 specific indicators to investigate and collect research data. Finally, the collected data are analyzed. The results show that women's cognition of Chinese traditional culture, Chinese excellent revolutionary culture, and Chinese national identity is higher than that of men. By comparison, men's cognition of Chinese advanced socialist culture is higher than women's. After using the journal reading guidance system, the cognition of female college students on traditional Chinese culture is improved by 16.3%. Before and after reading art journals, the overall national cognition and cultural acceptance of Minority students are higher than that of Han students. The overall cognition of Literature and History students is higher than that of Science and Engineering students in traditional Chinese culture and China's excellent revolutionary culture and lower in advanced Chinese socialist culture and Chinese national identity. The overall cognition of college students' party members to the advanced socialist culture is higher than league members. As students read more art journals through the guidance system, their overall national cognition and cultural acceptance have increased. Therefore, reading art journals can promote college students' national cognition and cultural acceptance. A national cognition and cultural acceptance promotion system that conforms to the current situation of college students is constructed. The finding provides a reference for developing complex emotion recognition technology in human-computer interaction.
C1 [Huang, Wei] Southeast Univ, Sch Arts, Nanjing, Peoples R China.
[Song, Fangbin] Nanjing Univ Sci & Technol, Sch Design Art & Media, Nanjing, Peoples R China.
[Zhang, Shenyu] Nanjing Normal Univ, Sch Liberal Arts, Nanjing, Peoples R China.
[Xia, Tian] Southwestern Univ Finance & Econ, Sch Econ, Chengdu, Peoples R China.
C3 Southeast University - China; Nanjing University of Science &
Technology; Nanjing Normal University; Southwestern University of
Finance & Economics - China
RP Huang, W (corresponding author), Southeast Univ, Sch Arts, Nanjing, Peoples R China.
EM 230198768@seu.edu.cn
CR Anders KM, 2019, ARCH SEX BEHAV, V48, P1859, DOI 10.1007/s10508-018-1332-2
Backhaus I, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.00644
Barnes ME, 2020, CBE-LIFE SCI EDUC, V19, DOI 10.1187/cbe.19-10-0197
Barnett TM, 2019, SOC WORK PUBLIC HLTH, V34, P145, DOI 10.1080/19371918.2019.1575308
Braby L, 2022, J ETHN SUBST ABUSE, V21, P621, DOI 10.1080/15332640.2020.1793864
Carvajal L, 2021, J ADOLESCENT HEALTH, V69, P361, DOI 10.1016/j.jadohealth.2021.06.009
Chang WL, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16193560
Chow SKY, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16173210
Edele A, 2020, INT J PSYCHOL, V55, P754, DOI 10.1002/ijop.12677
Gattamorta KA, 2019, J SCHOOL HEALTH, V89, P800, DOI 10.1111/josh.12817
Gómez JM, 2019, AM J ORTHOPSYCHIAT, V89, P237, DOI 10.1037/ort0000367
Graesser AC, 2022, ANNU REV PSYCHOL, V73, P547, DOI 10.1146/annurev-psych-020821-113042
Hartas D, 2021, RES PAP EDUC, V36, P542, DOI 10.1080/02671522.2019.1697734
Jao NC, 2019, J AM COLL HEALTH, V67, P790, DOI 10.1080/07448481.2018.1515744
Krasovska O, 2020, BEHAV SCI-BASEL, V10, DOI 10.3390/bs10020050
Lattie EG, 2019, J MED INTERNET RES, V21, DOI 10.2196/12869
Li YY, 2021, J AFFECT DISORDERS, V281, P597, DOI 10.1016/j.jad.2020.11.109
Lipson SK, 2019, PSYCHIAT SERV, V70, P60, DOI 10.1176/appi.ps.201800332
Liu CH, 2019, DEPRESS ANXIETY, V36, P8, DOI 10.1002/da.22830
Ma Z, 2020, EPIDEMIOL PSYCH SCI, V29, DOI 10.1017/S2045796020000931
McMaster R, 2021, ISSUES MENT HEALTH N, V42, P862, DOI 10.1080/01612840.2021.1894617
Melcher J, 2020, EVID-BASED MENT HEAL, V23, P161, DOI 10.1136/ebmental-2020-300180
Niu ZM, 2020, J MED INTERNET RES, V22, DOI 10.2196/15817
Paananen J, 2021, J PRAGMATICS, V184, P152, DOI 10.1016/j.pragma.2021.07.026
Parker K., 2021, CURR DEV NUTR, V5, P243, DOI [10.1093/cdn/nzab029_044, DOI 10.1093/CDN/NZAB029_044]
Peltz JS, 2021, J AM COLL HEALTH, V69, P577, DOI 10.1080/07448481.2019.1705306
Rogoza R, 2018, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.00343
Sabella D, 2021, AM J NURS, V121, P66, DOI 10.1097/01.NAJ.0000790660.73133.d8
Sajnani N, 2020, ART PSYCHOTHER, V69, DOI 10.1016/j.aip.2020.101668
Schwartz SJ, 2021, J CLIN PSYCHOL, V77, P121, DOI 10.1002/jclp.23009
Seow TXF, 2021, BIOL PSYCHIAT, V90, P436, DOI 10.1016/j.biopsych.2021.05.013
Shea H, 2019, CULT DIVERS ETHN MIN, V25, P553, DOI 10.1037/cdp0000250
Shen CW, 2019, VIRTUAL REAL-LONDON, V23, P313, DOI 10.1007/s10055-018-0348-1
Smith-Keiling BL, 2020, J MICROBIOL BIOL EDU, V21, DOI 10.1128/jmbe.v21i1.2073
Stein KF, 2019, APPETITE, V140, P180, DOI 10.1016/j.appet.2019.05.008
Taliaferro LA, 2020, J AM COLL HEALTH, V68, P565, DOI 10.1080/07448481.2019.1583655
Tokur-Kesgin M, 2021, CHRONOBIOL INT, V38, P1441, DOI 10.1080/07420528.2021.1931277
Tummala-Narra P, 2021, AM J ORTHOPSYCHIAT, V91, P36, DOI 10.1037/ort0000515
Wright KE, 2021, FOOD SECUR, V13, P701, DOI 10.1007/s12571-020-01140-w
Zhou X, 2019, DEV PSYCHOL, V55, P157, DOI 10.1037/dev0000634
NR 40
TC 1
Z9 1
U1 8
U2 45
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-1078
J9 FRONT PSYCHOL
JI Front. Psychol.
PD AUG 25
PY 2022
VL 13
AR 950412
DI 10.3389/fpsyg.2022.950412
PG 17
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA 6Q6PA
UT WOS:000891733200001
PM 36092117
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Ma, J
AF Ma, Jian
BE Li, D
Li, Z
TI Principal Component Analysis Method-Based Research on Agricultural
Science and Technology Website Evaluation
SO COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE IX, CCTA 2015, PT II
SE IFIP Advances in Information and Communication Technology
LA English
DT Proceedings Paper
CT 9th IFIP WG 5.14 International Conference on Computer and Computing
Technologies in Agriculture (CCTA)
CY SEP 27-30, 2015
CL China Agr Univ, Beijing, PEOPLES R CHINA
HO China Agr Univ
DE Agricultural science and technology website; Principal component
analysis method; Website evaluation
AB Agricultural science and technology website is a very important supporter of driving agricultural information and servicing agriculture. An evaluation method is proposed on agricultural science and technology website based on objective data and artificial ratings, using principal component analysis method. Finally the author used the model to evaluate 18 agricultural science and technology websites, and proposed some suggestions on development of agricultural science and technology websites based on the evaluation result which would act as reference to agricultural science and technology website construction.
C1 [Ma, Jian] Chinese Acad Agr Sci, Agr Informat Inst, Beijing 100081, Peoples R China.
[Ma, Jian] Minist Agr, Key Lab Agr Informat Serv Technol 2006 2010, Beijing 100081, Peoples R China.
C3 Chinese Academy of Agricultural Sciences; Agriculture Information
Institute, CAAS; Ministry of Agriculture & Rural Affairs
RP Ma, J (corresponding author), Chinese Acad Agr Sci, Agr Informat Inst, Beijing 100081, Peoples R China.; Ma, J (corresponding author), Minist Agr, Key Lab Agr Informat Serv Technol 2006 2010, Beijing 100081, Peoples R China.
EM majian@caas.cn
RI JIAN, MA/KQU-7977-2024
CR Du J., 2010, EVALUATION SYSTEM AG
Li C., 2005, J NANJING U FINANCES
Liu Y., 2010, EVALUATION METHOD EV
Sha Y. Z., 2004, EVALUATION CHINA PRO
NR 4
TC 0
Z9 0
U1 0
U2 11
PU SPRINGER INT PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 1868-4238
BN 978-3-319-48354-2; 978-3-319-48353-5
J9 IFIP ADV INF COMM TE
PY 2016
VL 479
BP 369
EP 381
DI 10.1007/978-3-319-48354-2_37
PG 13
WC Agricultural Engineering; Computer Science, Information Systems;
Computer Science, Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Agriculture; Computer Science
GA BH5KJ
UT WOS:000401099100037
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Rychalski, A
Aubry, M
AF Rychalski, Aude
Aubry, Mathilde
TI Diversify Approaches to Better Understand the Compatibility of
Artificial Intelligence and Sustainability: "I Love You... Me Neither"
SO JOURNAL OF INNOVATION ECONOMICS & MANAGEMENT
LA English
DT Article
DE Artificial Intelligence; Sustainability; Bibliometrics; Co-Citation
Analysis (CCA); Bibliographic Coupling Analysis (BCA); Ethics
ID BIBLIOMETRIC ANALYSIS; DECISION-MAKING; BIG DATA; IMPACT; MODELS; LAND
AB The aim of this article is twofold: 1. Suggest an overview of current knowledge and understanding of both concepts and 2. Present the six contributions and their positioning in relation to current the literature linked to artificial intelligence and sustainability. For that, we use different but complementary sources. First, we ask artificial intelligence to reveal the mainstream view. Then we call on human intelligence to provide a critical perspective. Finally, we carry out a bibliometric analysis using the SCOPUS database and two different statistical analyses (the CCA - co -citation analysis, the BCA - bibliographic coupling analysis). The diversity of the sources used, and their complementarity allow us to propose a holistic vision of the subject, highlighting the concerns that surround it and identifying future avenues of research for academics. The articles selected in this special issue fill some of the gaps raised and call for further research.
C1 [Rychalski, Aude] ESSCA Sch Management, Angers, France.
[Aubry, Mathilde] EM Normandie Business Sch, Metis Lab, Paris, France.
C3 ESSCA School of Management
RP Rychalski, A (corresponding author), ESSCA Sch Management, Angers, France.
EM aude.rychalski@essca.fr; maubry@em-normandie.fr
CR Acemoglu D, 2018, AM ECON REV, V108, P1488, DOI 10.1257/aer.20160696
Albino V, 2015, J URBAN TECHNOL, V22, P3, DOI 10.1080/10630732.2014.942092
Andronie M, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10202497
Andronie M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020751
Annosi MC, 2020, MANAGE DECIS, V58, P1737, DOI 10.1108/MD-09-2019-1328
Bag S, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120420
Bagstad KJ, 2016, REG ENVIRON CHANGE, V16, P2005, DOI 10.1007/s10113-015-0756-7
Bolukbasi T, 2016, ADV NEUR IN, V29
Brem A, 2023, IEEE T ENG MANAGE, V70, P770, DOI 10.1109/TEM.2021.3109983
BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680
Brynjolfsson E, 2017, SCIENCE, V358, P1530, DOI 10.1126/science.aap8062
Chaudhuri R, 2023, J FAM BUS MANAG, V13, P46, DOI 10.1108/JFBM-12-2021-0153
Courtland R, 2018, NATURE, V558, P357, DOI 10.1038/d41586-018-05469-3
Debref R, 2017, J INNOV ECON MANAG, P9, DOI 10.3917/jie.024.0009
Demirci A., 2020, Food Safety Engineering
Dhar P, 2020, NAT MACH INTELL, V2, P423, DOI 10.1038/s42256-020-0219-9
DIALLO M. F., 2023, Revue francaise de gestion, V312, P9
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021
Durana P., 2021, Economics, Management, and Financial Markets, V16, P20
Dusmanescu D, 2016, ENERGIES, V9, DOI 10.3390/en9090703
ELKINGTON J, 1994, CALIF MANAGE REV, V36, P90, DOI 10.2307/41165746
FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312
Frank B, 2021, J CLEAN PROD, V285, DOI 10.1016/j.jclepro.2020.125242
Galaz V, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101741
GARFIELD E, 1963, AM DOC, V14, P289, DOI 10.1002/asi.5090140405
Gavrilescu M., 2010, Dynamic Biochemistry, Process Biotechnology and Molecular Biology, V4, P1
Giret A, 2019, SERV ORIENTED COMPUT, V13, P185, DOI 10.1007/s11761-019-00271-z
Gupta BB, 2023, TECHNOL FORECAST SOC, V186, DOI 10.1016/j.techfore.2022.122152
Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9
Jarneving B, 2005, SCIENTOMETRICS, V65, P245, DOI 10.1007/s11192-005-0270-7
Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004
Kayikci Y, 2018, PROCEDIA MANUF, V21, P782, DOI 10.1016/j.promfg.2018.02.184
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Kliestik T, 2020, OECON COPERNIC, V11, P371, DOI 10.24136/oc.2020.016
Lazaroiu G., 2021, Journal of SelfGovernance and Management Economics, V9, P20, DOI [10.22381/jsme9120212, DOI 10.22381/JSME9120212]
Lazaroiu G, 2022, OECON COPERNIC, V13, P1047, DOI 10.24136/oc.2022.030
Lazaroiu G, 2020, ENERGIES, V13, DOI 10.3390/en13184922
Lazaroiu G, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.00890
Lazaroiu G, 2019, FRONT PUBLIC HEALTH, V7, DOI 10.3389/fpubh.2019.00340
Lazaroiu G, 2017, FRONT BEHAV NEUROSCI, V11, DOI 10.3389/fnbeh.2017.00188
Leal W, 2023, ENVIRON DEV SUSTAIN, V25, P4957, DOI 10.1007/s10668-022-02252-3
LEPARMENTIER A., 2023, Le Monde.frDecember 6
Liyanage S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11051262
Lytras MD, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13073598
Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006
Maucuer R, 2019, MANAGEMENT, V22, P176
MYEONG S., 2021, How to Integrate the Data-based Strategies and Advanced Technologies into Efficient Air Pollution Management in Smart Cities?
Nasir O, 2023, TECHNOL SOC, V72, DOI 10.1016/j.techsoc.2022.102171
Naz F, 2022, BUS STRATEG ENVIRON, V31, P2400, DOI 10.1002/bse.3034
Naz F, 2022, OPER MANAGE RES, V15, P378, DOI 10.1007/s12063-021-00208-w
Nica E., 2021, Economics, Management, and Financial Markets, V16, P52, DOI 10.22381/emfm16120215
Nica E., 2021, J. Self-Gov. Manag. Econ, V9, P35, DOI [10.22381/jsme9320213, DOI 10.22381/JSME9320213]
Nishant R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102104
NOMA E, 1984, J AM SOC INFORM SCI, V35, P29, DOI 10.1002/asi.4630350105
Olan F, 2022, INT J PROD RES, V60, P4418, DOI 10.1080/00207543.2021.1915510
Olawumi TO, 2018, J CLEAN PROD, V183, P231, DOI 10.1016/j.jclepro.2018.02.162
Ordiano JAG, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1235
Pan SL, 2023, INT J INFORM MANAGE, V72, DOI 10.1016/j.ijinfomgt.2023.102668
Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879
Popescu GH, 2018, RENEW SUST ENERG REV, V81, P768, DOI 10.1016/j.rser.2017.08.055
Popescu GH, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9071230
PRITCHARD A, 1969, J DOC, V25, P348
Rahman MS, 2023, J BUS RES, V156, DOI 10.1016/j.jbusres.2022.113525
Russell S., 2009, Artificial intelligence-A modern approach
Saoudi L, 2023, REV INT PME, V36, P13
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
TELLO S. F., 2009, Examining drivers of sustainable innovation, V6
TESSIER L., 2024, Revue Canadienne Des Sciences de l'Administration, V41
Traag VA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41695-z
Tsolakis N, 2022, INT J PROD RES, V60, P4508, DOI 10.1080/00207543.2021.1914355
Uzunidis D, 2009, J INNOV ECON MANAG, P5, DOI 10.3917/jie.003.0005
Vasile AJ, 2016, LAND USE POLICY, V50, P399, DOI 10.1016/j.landusepol.2015.10.011
Vatamanescu EM, 2020, SYST RES BEHAV SCI, V37, P374, DOI 10.1002/sres.2658
VILLANI C., 2018, Rapport de Cedric Villani: Donner un sens a l'intelligence artificielle (IA)
Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y
Vogel R, 2013, INT J MANAG REV, V15, P426, DOI 10.1111/ijmr.12000
VUARIN L., 2023, Innovations, V72, P103
Walsh I., 2017, SYSTEMES INFORM MANA, V22, P75, DOI [10.3917/sim.173.0075, DOI 10.3917/SIM.173.0075]
Walsh I, 2023, EUR J INFORM SYST, V32, P653, DOI 10.1080/0960085X.2022.2039563
WCED, 1987, Brundtland Report (Britannica)
Wilson C, 2022, TECHNOL SOC, V68, DOI 10.1016/j.techsoc.2022.101926
Yigitcanlar T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208548
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 84
TC 0
Z9 0
U1 0
U2 0
PU DE BOECK UNIV
PI LOUVAIN-LA-NEUVE
PA FOND JEAN-PAQUES 4,, B-1348 LOUVAIN-LA-NEUVE, BELGIUM
EI 2032-5355
J9 J INNOV ECON MANAG
JI J. INNOV. ECON. MANAG.
PY 2024
IS 44
DI 10.3917/jie.044.0001
PG 23
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA XD8L0
UT WOS:001259836400001
DA 2024-09-05
ER
PT J
AU Chen, HH
Nguyen, H
Alghamdi, A
AF Chen, Haihua
Huyen Nguyen
Alghamdi, Asmaa
TI Constructing a high-quality dataset for automated creation of summaries
of fundamental contributions of research articles
SO SCIENTOMETRICS
LA English
DT Article
DE Academic literature; Research contribution; Dataset; Text
classification; Machine learning; BERT
AB Research contributions, which indicate how a research paper contributes new knowledge or new understanding in contrast to prior research on the topic, are the most valuable type of information for researchers to understand the main content of a paper. However, there is little research using research contributions to identify and recommend valuable knowledge in academic literature for users. Instead, most existing studies mainly focus on the analysis of other elements in academic literature, such as keywords, citations, rhetorical structure, discourse, and others. This paper first introduces a fine-grained annotation scheme with six categories for research contributions in academic literature. To evaluate the reliability of our annotation scheme, we conduct annotation on 5024 sentences collected from Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL Anthology) and an academic journal Information Processing & Management (IP &M). We reach an inter-annotator agreement of Cohen's kappa = 0.91 and Fleiss' kappa = 0.91, demonstrating the high quality of the dataset. We then built two types of classifiers for automated research contribution identification based on the dataset: classic feature-based machine learning (ML) and transformer-based deep learning (DL). Our experimental results show that SCI-BERT, a pretrained language model for scientific text, achieves the best performance with an F1 score of 0.58, improving the best classic ML model (nouns + verbs + tf-idf + random forest) by 2%. This also indicates a comparable power of classic feature-based ML models to DL-based model like SCI-BERT on this dataset. The fine-grained annotation scheme can be applied for large-scale analysis for research contributions in academic literature. The automated research contribution classifiers built in this paper provide the basis for the automatic research contributions extraction and knowledge fragment recommendation. The high-quality research contribution dataset developed in this research is publicly available on Zenodo https://zenodo.org/record/6284137#.YhkZ7-iZO4Q. The code for the data analysis and experiments will be released at: https://github.com/HuyenNguyenHelen/Contribution-Sentence-Classification.
C1 [Chen, Haihua; Huyen Nguyen] Univ North Texas, Dept Informat Sci, Denton, TX 76203 USA.
[Alghamdi, Asmaa] Univ North Texas, Dept Comp Sci & Engn, Denton, TX 76203 USA.
C3 University of North Texas System; University of North Texas Denton;
University of North Texas System; University of North Texas Denton
RP Chen, HH (corresponding author), Univ North Texas, Dept Informat Sci, Denton, TX 76203 USA.
EM haihua.chen@unt.edu
OI Chen, Haihua/0000-0002-7088-9752
CR Allard Oelen, 2019, CEUR WORKSHOP PROC, V2526, P21, DOI DOI 10.15488/9388
Angrosh M., 2012, P AUSTR LANG TECHN A, V2012, P5
Auer S., 2018, P 8 INT C WEB INT MI, P1, DOI [DOI 10.1145/3227609.3227689, 10.1145/3227609.3227689]
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Carletta J, 1996, COMPUT LINGUIST, V22, P249
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Chen HH, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102798
Chen HH, 2021, PRO INT CONF SCI INF, P241
Chen HH, 2021, IEEE T RELIAB, V70, P831, DOI 10.1109/TR.2021.3070863
Day RA., 1989, AMWA J, V4, P16
DSouza J., 2020, EEKEJCD20 WORKSH EXT
Falotico R, 2015, QUAL QUANT, V49, P463, DOI 10.1007/s11135-014-0003-1
Fernández-Delgado M, 2014, J MACH LEARN RES, V15, P3133
Fisas B, 2016, LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3081
Hande A, 2021, LECT NOTES ARTIF INT, V12705, P88, DOI 10.1007/978-3-030-75015-2_9
Hao W., 2020, P ACM IEEE JOINT C D, V2020, P261
Hofmann AH., 2016, SCI WRITING COMMUNIC
Hovy Eduard, 2010, International journal of translation, V22, P13, DOI DOI 10.1075/TARGET.22.1
Jaradeh MY, 2019, PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE (K-CAP '19), P243, DOI 10.1145/3360901.3364435
Kok MO, 2012, HEALTH RES POLICY SY, V10, DOI 10.1186/1478-4505-10-21
Kowsari K, 2019, INFORMATION, V10, DOI 10.3390/info10040150
Le XQ, 2019, J DATA INFO SCI, V4, P26, DOI 10.2478/jdis-2019-0019
Li Q., 2020, ARXIV PREPRINT ARXIV
Lindsay, 1995, SCI WRITING
Mehta P., 2018, ARXIV180204675
Mikolov T., 2013, ARXIV
Morton S, 2015, RES EVALUAT, V24, P405, DOI 10.1093/reseval/rvv016
Park S., 2020, P 28 INT C COMPUTATI, P5409, DOI [DOI 10.18653/V1/2020.COLING-MAIN.472, 10.18653/v1/2020.coling]
Qasemi Zadeh B., 2014, P 4 INT WORKSH COMP, P52, DOI [DOI 10.3115/V1/W14-4807, 10.3115/v1/W14-4807]
Rehman T., 2021, EEKEJCD21 WORKSH EXT
Sateli B, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1023, DOI 10.1145/2740908.2742022
Sollaci LB, 2004, J MED LIBR ASSOC, V92, P364
Swales J.M., 1981, Aspects of article introduction
Swales J. M., 1990, Genre analysis: English in academic and research settings
Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612]
Vogt L., 2020, P ACM IEEE JOINT C D
Wang WM, 2018, PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), DOI 10.1145/3207677.3277979
Weng W.H., 2020, MACHINE LEARNING HLT, P415
WHO, 2012, GLOBAL TUBERCULOSIS REPORT 2012, P1
Yifan Shen, 2021, 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), P144, DOI 10.1109/ICFTIC54370.2021.9647258
NR 40
TC 3
Z9 4
U1 6
U2 40
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2022
VL 127
IS 12
BP 7061
EP 7075
DI 10.1007/s11192-022-04380-z
EA APR 2022
PG 15
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 6U3BO
UT WOS:000788455400002
DA 2024-09-05
ER
PT J
AU Aytaç, E
AF Aytac, Ersin
TI EXPLORING ELECTROCOAGULATION THROUGH DATA ANALYSIS AND TEXT MINING
PERSPECTIVES
SO ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL
LA English
DT Article
DE bibliometric analysis; decision tree; exploratory data analysis; k-means
clustering; sentiment analysis; t-SNE
ID ALGORITHM; CLASSIFICATION; ORANGE; CURVE; AREA
AB This study is a bibliometric analysis of electrocoagulation with data analysis and text mining aspects. Related research was conducted to take a picture of the current state of electrocoagulation in the literature to find out the less-used wastewater, electrode, and pollutants types, to discover the common words used in article titles, to understand how many pages an average article has, to figure out if electrocoagulation has passed its prime time and to provide helpful information to the researchers in developing of their research strategies. The first part of the study was the statistical analysis of the raw data. Some valuable information such as cited reference count, publication year, number of pages, and times cited - all databases have been revealed with density plots. Then a word cloud approach was used to inspect the abstracts, the titles, and the keywords. Afterward, the abstracts were classed into two, using word embedding and a k-means algorithm. Descriptive statistics, word cloud, and sentiment analysis were performed for each cluster. Finally, a classification process was conducted depending on research areas with the decision tree algorithm. The decision tree method could not classify the data set sufficiently depending on whether the abstracts of the papers were not compatible with the research area classes or because there were too many research area categories.
C1 [Aytac, Ersin] Zonguldak Bulent Ecevit Univ, Dept Environm Engn, TR-67100 Zonguldak, Turkey.
C3 Zonguldak Bulent Ecevit University
RP Aytaç, E (corresponding author), Zonguldak Bulent Ecevit Univ, Dept Environm Engn, TR-67100 Zonguldak, Turkey.
EM ersin.aytac@beun.edu.tr
RI Aytaç, Ersin/ACU-4789-2022
OI Aytac, Ersin/0000-0002-7124-4438
CR Ahuja V, 2017, PROCEDIA COMPUT SCI, V122, P17, DOI 10.1016/j.procs.2017.11.336
Akansha J, 2020, CHEMOSPHERE, V253, DOI 10.1016/j.chemosphere.2020.126652
Al-Qodah Z, 2020, SCI TOTAL ENVIRON, V744, DOI 10.1016/j.scitotenv.2020.140806
Al-Yaqoobi AM, 2021, ENVIRON ENG MANAG J, V20, P949
Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
Atasoy AD, 2021, ENVIRON ENG MANAG J, V20, P1973
Aytac E., 2021, Fen Ve Muhendislik Bilimleri Dergisi, V21, P958, DOI [10.35414/akufemubid.870649, DOI 10.35414/AKUFEMUBID.870649]
Aytac E., 2018, INT J SCI RES SCI TE, V4, P517
Aytaç E, 2021, ADCAIJ-ADV DISTRIB C, V10, P33, DOI 10.14201/ADCAIJ20211013347
Aytaç E, 2021, ENVIRON ENG MANAG J, V20, P89
Aytaç E, 2020, INT SOIL WATER CONSE, V8, P321, DOI 10.1016/j.iswcr.2020.05.002
Bahn E, 2020, RADIOTHER ONCOL, V144, P148, DOI 10.1016/j.radonc.2019.11.018
Cabeza LF, 2020, J ENERGY STORAGE, V32, DOI 10.1016/j.est.2020.101976
Cheng F, 2019, KNOWL-BASED SYST, V170, P61, DOI 10.1016/j.knosys.2019.01.029
Choi J, 2020, PATTERN RECOGN LETT, V133, P165, DOI 10.1016/j.patrec.2020.03.003
Chu CY, 2020, ADV ENG INFORM, V45, DOI 10.1016/j.aei.2020.101053
Colón-Ruiz C, 2020, J BIOMED INFORM, V110, DOI 10.1016/j.jbi.2020.103539
de Melo T, 2020, DATA BRIEF, V32, DOI 10.1016/j.dib.2020.106179
Demsar J, 2004, LECT NOTES ARTIF INT, V3202, P537
Demsar J, 2013, INFORM-J COMPUT INFO, V37, P55
Drury B, 2019, COMPUT ELECTRON AGR, V163, DOI 10.1016/j.compag.2019.104864
Fischer I, 2020, J STROKE CEREBROVASC, V29, DOI 10.1016/j.jstrokecerebrovasdis.2020.105042
Fujita T, 2020, J STROKE CEREBROVASC, V29, DOI 10.1016/j.jstrokecerebrovasdis.2020.104998
Gao H, 2020, J CLEAN PROD, V275, DOI 10.1016/j.jclepro.2020.122580
García-Díaz JA, 2020, FUTURE GENER COMP SY, V112, P641, DOI 10.1016/j.future.2020.06.019
Goh YM, 2017, ACCIDENT ANAL PREV, V108, P122, DOI 10.1016/j.aap.2017.08.026
Gokhberg L, 2020, FUTURES, V115, DOI 10.1016/j.futures.2019.102476
Hinton G., 2002, NIPS, V15, P833
Hutto C., 2014, P 8 INT C WEBL SOC M
Iftikhar PM, 2019, CUREUS J MED SCIENCE, V11, DOI 10.7759/cureus.4131
Jiang W, 2019, ISA T, V87, P235, DOI 10.1016/j.isatra.2018.11.044
Kabdașli I., 2012, Environmental Technology Reviews, V1, P2, DOI 10.1080/21622515.2012.715390
Kim H, 2020, EXPERT SYST APPL, V150, DOI 10.1016/j.eswa.2020.113288
Kim MK, 2020, SEP PURIF TECHNOL, V247, DOI 10.1016/j.seppur.2020.116911
Kim Y, 2012, PATTERN RECOGN, V45, P2266, DOI 10.1016/j.patcog.2011.11.020
Laccetti G, 2020, J PARALLEL DISTR COM, V145, P34, DOI 10.1016/j.jpdc.2020.06.010
Li X, 2020, NANO ENERGY, V71, DOI 10.1016/j.nanoen.2020.104636
Losse M, 2021, J CLEAN PROD, V296, DOI 10.1016/j.jclepro.2021.126376
Mandrekar JN, 2010, J THORAC ONCOL, V5, P1315, DOI 10.1097/JTO.0b013e3181ec173d
Manochandar S, 2020, COMPUT IND ENG, V141, DOI 10.1016/j.cie.2020.106290
Moro A, 2020, FUTURES, V117, DOI 10.1016/j.futures.2020.102511
Naderalvojoud B, 2020, NEUROCOMPUTING, V405, P149, DOI 10.1016/j.neucom.2020.03.094
Orange, 2020, SENT AN
Orange, 2020, THE TREE
Raschka S., 2019, Python Machine Learning, V3, DOI DOI 10.5555/2886323
Ribeiro J, 2019, PROCEDIA COMPUT SCI, V160, P684, DOI 10.1016/j.procs.2019.11.027
Sandoval MA, 2021, SCI TOTAL ENVIRON, V753, DOI 10.1016/j.scitotenv.2020.142108
Schouten K, 2019, EXPERT SYST APPL, V127, P68, DOI 10.1016/j.eswa.2019.03.005
Sedani Anil, 2021, J Clin Orthop Trauma, V16, P157, DOI 10.1016/j.jcot.2020.12.015
Soon S. L., 2005, Surgery of the Skin, P177, DOI [10.1016/B978-0-323-02752-6.50017-1, DOI 10.1016/B978-0-323-02752-6.50017-1]
Ainin S, 2020, TOUR MANAG PERSPECT, V34, DOI 10.1016/j.tmp.2020.100658
Tahreen A, 2020, J WATER PROCESS ENG, V37, DOI 10.1016/j.jwpe.2020.101440
Un U.T., 2011, P 2 INT C CHEM ENG A, V23, P138
Un UT, 2013, J ENVIRON MANAGE, V123, P113, DOI 10.1016/j.jenvman.2013.03.016
Vanfretti L, 2020, INT J ELEC POWER, V123, DOI 10.1016/j.ijepes.2020.106251
Villeneuve H, 2020, BUILD ENVIRON, V169, DOI 10.1016/j.buildenv.2019.106555
Wallin JA, 2005, BASIC CLIN PHARMACOL, V97, P261, DOI 10.1111/j.1742-7843.2005.pto_139.x
Wang C, 2020, J INF SECUR APPL, V53, DOI 10.1016/j.jisa.2020.102517
Xie X, 2020, FUTURE GENER COMP SY, V111, P859, DOI 10.1016/j.future.2019.08.033
Yang W, 2020, PROCEDIA COMPUT SCI, V166, P507, DOI 10.1016/j.procs.2020.02.056
Yao F, 2020, COMPUT ENVIRON URBAN, V83, DOI 10.1016/j.compenvurbsys.2020.101522
Zeng JJ, 2021, J CLEAN PROD, V295, DOI 10.1016/j.jclepro.2021.126468
NR 62
TC 7
Z9 7
U1 4
U2 15
PU GH ASACHI TECHNICAL UNIV IASI
PI IASI
PA 71 MANGERON BLVD, IASI, 700050, ROMANIA
SN 1582-9596
EI 1843-3707
J9 ENVIRON ENG MANAG J
JI Environ. Eng. Manag. J.
PD APR
PY 2022
VL 21
IS 4
BP 671
EP 685
PG 15
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA 1V6UR
UT WOS:000806222800013
DA 2024-09-05
ER
PT J
AU Batista, AD
Gouveia, FC
Mena-Chalco, JP
AF Batista-Jr, Antonio de Abreu
Gouveia, Fabio Castro
Mena-Chalco, Jesus P.
TI Predicting the Q of junior researchers using data from the first years
of publication
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Junior researcher; Research performance; Deep learning; Linear
regression
ID JOURNAL IMPACT FACTOR; EARLY CAREER; INFLATION
AB A researcher's Q denotes their ability in scientific research as a real number. Due to their short presence in the academic environment, junior researchers have unstable Q values. This article aims to present a model that uses data from junior researchers' first years of publication to predict their stable Q values. We tested the deep model and the linear regression model and compared their accuracies. We have obtained reliable results showing that the predicted values estimated with both models are better than the estimated Q values computed with the Q model itself when using only data from the first five years of publication. Lastly, we note that both approaches are robust approaches to deal with the inflation of citation bias.
(c) 2021 Elsevier Ltd. All rights reserved.
C1 [Batista-Jr, Antonio de Abreu] Univ Fed Maranhao, Dept Informat, Sao Luis, Maranhao, Brazil.
[Gouveia, Fabio Castro] Fundacao Oswaldo Cruz, Museum Life, House Oswaldo Cruz, Rio De Janeiro, RJ, Brazil.
[Batista-Jr, Antonio de Abreu; Mena-Chalco, Jesus P.] Fed Univ ABC, Ctr Math Computat & Cognit, Santo Andre, SP, Brazil.
C3 Universidade Federal do Maranhao; Fundacao Oswaldo Cruz; Universidade
Federal do ABC (UFABC)
RP Batista, AD (corresponding author), Univ Fed Maranhao, Dept Informat, Sao Luis, Maranhao, Brazil.; Batista, AD (corresponding author), Fed Univ ABC, Ctr Math Computat & Cognit, Santo Andre, SP, Brazil.
EM antonio.batista@ufma.br; fgouveia@gmail.com; jesus.mena@ufabc.edu.br
RI Mena-Chalco, Jesus P./C-7550-2014
OI Mena-Chalco, Jesus P./0000-0001-7509-5532
FU Maranhao Research Foundation (FAPEMA) [BD-08792/17]
FX Research partially supported by grant #BD-08792/17, Maranhao Research
Foundation (FAPEMA).
CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
Andersen JP, 2018, J INFORMETR, V12, P950, DOI 10.1016/j.joi.2018.07.010
Bazeley P, 2003, HIGH EDUC, V45, P257, DOI 10.1023/A:1022698529612
Bornmann L, 2017, J INFORMETR, V11, P788, DOI 10.1016/j.joi.2017.06.001
Brito R, 2019, J INFORMETR, V13, P314, DOI 10.1016/j.joi.2019.01.009
Iorio Angelo, 2018, Semantics, Analytics, Visualization. 3rd International Workshop, SAVE-SD 2017 and 4th International Workshop, SAVE-SD 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 10959), P150, DOI 10.1007/978-3-030-01379-0_11
Janosov M, 2020, EPJ DATA SCI, V9, DOI 10.1140/epjds/s13688-020-00227-w
Kayal Subhradeep, 2019, Machine Learning, Optimization, and Data Science. 4th International Conference, LOD 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11331), P317, DOI 10.1007/978-3-030-13709-0_27
Lee DH, 2019, SCIENTOMETRICS, V121, P1481, DOI 10.1007/s11192-019-03232-7
Li WH, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13130-4
Liénard JF, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07034-y
Lindahl J, 2020, SCIENTOMETRICS, V122, P309, DOI 10.1007/s11192-019-03262-1
Lindahl J, 2018, J INFORMETR, V12, P518, DOI 10.1016/j.joi.2018.04.002
Moher D, 2018, PLOS BIOL, V16, DOI 10.1371/journal.pbio.2004089
Pan RK, 2018, J INFORMETR, V12, P656, DOI 10.1016/j.joi.2018.06.005
Penner O, 2013, SCI REP-UK, V3, DOI 10.1038/srep03052
Petersen AM, 2019, RES POLICY, V48, P1855, DOI 10.1016/j.respol.2019.04.009
Piñeiro G, 2008, ECOL MODEL, V216, P316, DOI 10.1016/j.ecolmodel.2008.05.006
Qi MJ, 2017, SCIENTOMETRICS, V111, P1839, DOI 10.1007/s11192-017-2328-8
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
NR 22
TC 4
Z9 4
U1 3
U2 33
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD MAY
PY 2021
VL 15
IS 2
AR 101130
DI 10.1016/j.joi.2021.101130
EA JAN 2021
PG 8
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA SL1FJ
UT WOS:000656661900020
DA 2024-09-05
ER
PT J
AU Gao, Y
Wang, XC
Liu, X
AF Gao, Yuan
Wang, Xuechun
Liu, Xu
TI Mapping Higher Education Internationalisation as a Research Space via
Natural Language Processing (NLP) Techniques
SO JOURNAL OF STUDIES IN INTERNATIONAL EDUCATION
LA English
DT Article; Early Access
DE higher education internationalisation; natural language processing
techniques; bibliometrics; spatial theory; sociology of science
ID CURRICULA
AB The productivity of a specific research field hinges on the periodic examination of both the knowledge produced and the knowledge production activities. By harnessing the strength of traditional bibliometric analyses and a variety of Natural language processing (NLP) techniques, this study portrayed a holistic landscape of higher education internationalisation (HEI) research that incorporated time and region through a spatial lens. The findings reveal the field's evolution into establishment, significant regional variations in research focus, and the expansion of networks for disseminating knowledge. These factors collectively contribute to a diverse 'lived' space of HEI research. However, the dominance of Western-centric key concepts, theories, and discourses highlights a homogenous 'conceived' space, pointing to an underlying tension between these spaces. Despite these challenges, opportunities for breakthroughs exist. Additionally, the study underscores the immense potential of NLP techniques in facilitating the exploration of how research fields evolve, further enriching our understanding of HEI.
C1 [Gao, Yuan] Victoria Univ, Ctr Int Res Educ Syst, Melbourne, Australia.
[Gao, Yuan; Liu, Xu] Southern Univ Sci & Technol, Ctr Higher Educ Res, Shenzhen, Peoples R China.
[Wang, Xuechun] Chinese Univ Hongkong, Fac Educ, Hong Kong, Peoples R China.
C3 Victoria University; Southern University of Science & Technology;
Chinese University of Hong Kong
RP Gao, Y (corresponding author), Victoria Univ, Ctr Int Res Educ Syst, Melbourne, Australia.
EM catherineyuangao@gmail.com
RI Wang, Xuechun/JEO-9948-2023; Liu, May/GSE-0899-2022
OI Liu, May/0000-0002-1567-7925; Gao, Yuan/0000-0001-9290-4397
CR Abd Ghani N, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14148810
Atsyor G. A., 2023, Vyssee Obrazovanie v Rossii (Print), V32, P153, DOI [10.31992/0869-3617-2023-32-3-153-166, DOI 10.31992/0869-3617-2023-32-3-153-166]
Bamberger A, 2022, BRIT J EDUC STUD, V70, P363, DOI 10.1080/00071005.2021.1925084
Barbosa RS, 2022, ED POLICY ANAL ARCH, V30, DOI 10.14507/epaa.30.7211
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bourdieu P., 1986, HDB THEORY RES SOCIO, P241
Bourdieu P., 1986, HDB THEORY RES SOCIO, DOI DOI 10.1002/9780470755679.CH15
Carron-Arthur B, 2016, BMC PSYCHIATRY, V16, DOI 10.1186/s12888-016-1073-5
CERYCH L, 1974, HIGH EDUC, V3, P253, DOI 10.1007/BF00168207
Chowdhary K., 2020, Fundamentals of artificial intelligence, P603, DOI 10.1007/978-81-322-3972-7_19
Creswell J.W., 2017, Qualitative inquiry and research design: Choosing among five approaches
Daenekindt S, 2020, HIGH EDUC, V80, P571, DOI 10.1007/s10734-020-00500-x
de Villiers CJ, 2017, S AFR J ECON MANAG S, V20, DOI 10.4102/sajems.v20i1.1729
de Wit H., 2019, SFU ED REV, V12, P9, DOI [10.21810/sfuer.v12i3.1036, DOI 10.21810/SFUER.V12I3.1036]
de Wit H., 2014, At the forefront of international higher education, a festschrift in honour of philip altbach, P95
De Wit H., 1997, Internationalisation of higher education in Asia Pacific countries, P21
De Wit H., 2020, Policy Reviews in Higher Education, V4, P1, DOI [10.1080/23322969.2020.1712003, DOI 10.1080/23322969.2020.1712003]
de Wit H, 2024, J STUD INT EDUC, V28, P3, DOI 10.1177/10283153231221655
FOUCAULT M, 1982, CRIT INQUIRY, V8, P777, DOI 10.1086/448181
Galvez SMN, 2020, AM EDUC RES J, V57, P612, DOI 10.3102/0002831219860511
Gao C.Y., 2019, Measuring University Internationalization: Indicators across National Contexts
Gao Y, 2015, HIGH EDUC, V70, P359, DOI 10.1007/s10734-014-9834-x
Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028
Grothaus C., 2021, Collaborative online learning in the cultural context of South East Asia: A systematic review
Gümüs S, 2020, J STUD INT EDUC, V24, P495, DOI 10.1177/1028315319893651
Heleta S, 2023, J HIGH EDUC POLICY M, V45, P261, DOI 10.1080/1360080X.2022.2146566
HOFSTEDE G, 1984, J CROSS CULT PSYCHOL, V15, P417, DOI 10.1177/0022002184015004003
Knight J., 2004, Journal of Studies in International Education, V8, P5, DOI DOI 10.1177/1028315303260832
Knight J., 1994, CBIE Research, V7, P1
Knight J., 1997, Internationalisation of Higher Education in Asia Pacific Countries
Kuzhabekova A, 2015, RES HIGH EDUC, V56, P861, DOI 10.1007/s11162-015-9371-1
Lane H., 2019, Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python
Lefebvre Henri, 1991, The Production of Space
Li J, 2023, EDUC PHILOS THEORY, V55, P356, DOI 10.1080/00131857.2021.2022473
LiCausi TJ, 2022, HIGH EDUC, V84, P955, DOI 10.1007/s10734-021-00810-8
Liggett G., 2000, J STUD INT EDUC, P3
Liu J, 2022, TERT EDUC MANAG, V28, P1, DOI 10.1007/s11233-021-09082-4
Lo WYW, 2019, GLOB SOC EDUC, V17, P261, DOI 10.1080/14767724.2018.1525283
Mackay M, 2016, NURS EDUC TODAY, V42, P73, DOI 10.1016/j.nedt.2016.04.004
Marginson S, 2023, GLOB SOC EDUC, DOI 10.1080/14767724.2023.2264223
Marginson S, 2022, HIGH EDUC, V84, P1365, DOI 10.1007/s10734-022-00955-0
Marginson S, 2011, HANDBOOK ON GLOBALIZATION AND HIGHER EDUCATION, P394
Merton R. K., 1973, The sociology of science: theoretical and empirical investigations
Mok KH, 2008, INT J EDUC MANAG, V22, P527, DOI 10.1108/09513540810895444
Nadkarni PM, 2011, J AM MED INFORM ASSN, V18, P544, DOI 10.1136/amiajnl-2011-000464
O'Dwyer CP, 2023, IFLA J-INT FED LIBR, V49, P375, DOI 10.1177/03400352221116922
Robson S., 2018, EUROPEAN J HIGHER ED, V8, P19, DOI [DOI 10.1080/21568235.2017.1376697, 10.1080/21568235.2017, DOI 10.1080/21568235.2017]
Saubert S, 2023, IFLA J-INT FED LIBR, V49, P216, DOI 10.1177/03400352221085293
Saxton M.D., 2018, THEOLOGICAL LIB, V11, P18, DOI DOI 10.31046/TL.V11I1.506
Scholte JA, 2008, WORLD ECON, V31, P1471, DOI 10.1111/j.1467-9701.2007.01019.x
Singh M, 2007, ROUTL RES EDUC, V9, P195
Slaughter S., 2004, ACAD CAPITALISM NEW
Sochan A, 2008, INT NURS REV, V55, P192, DOI 10.1111/j.1466-7657.2007.00595.x
Stein S, 2021, STUD HIGH EDUC, V46, P1771, DOI 10.1080/03075079.2019.1704722
Tight M, 2012, HIGH EDUC RES DEV, V31, P723, DOI 10.1080/07294360.2012.692361
Tran NHN, 2023, STUD HIGH EDUC, V48, P113, DOI 10.1080/03075079.2022.2121813
Valiulis A. V., 2013, World Transactionson Engineeringand Technology Education Canada, V11, P204
Xu X, 2023, DISCOURSE-ABINGDON, V44, P364, DOI 10.1080/01596306.2023.2200075
Xu X, 2024, J STUD INT EDUC, V28, P185, DOI 10.1177/10283153231178129
Yang R., 2002, 3 DELIGHT INT HIGHER
Yilmaz K, 2013, EUR J EDUC, V48, P311, DOI 10.1111/ejed.12014
Zheng J, 2021, HIGH EDUC, V81, P179, DOI 10.1007/s10734-020-00517-2
NR 62
TC 0
Z9 0
U1 7
U2 7
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1028-3153
EI 1552-7808
J9 J STUD INT EDUC
JI J. Stud. Int. Educ.
PD 2024 MAY 2
PY 2024
DI 10.1177/10283153241251924
EA MAY 2024
PG 24
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA PM7S5
UT WOS:001214566800001
DA 2024-09-05
ER
PT J
AU Zhuang, H
Huang, TY
Acuna, DE
AF Zhuang, Han
Huang, Tzu-Yang
Acuna, Daniel E.
TI A computational analysis of accessibility, readability, and
explainability of figures in open access publications
SO EPJ DATA SCIENCE
LA English
DT Article
DE Accessibility; Open Access; Computer Vision
ID VISION; MODEL
AB Figures are an essential part of scientific communication. Yet little is understood about how accessible (e.g., color-blind safe), readable (e.g., good contrast), and explainable (e.g., contain captions and legends) they are. We develop computational techniques to measure these features and analyze a large sample of them from open access publications. Our method combines computer and human vision research principles, achieving high accuracy in detecting problems. In our sample, we estimated that around 20.6% of publications contain either accessibility, readability, or explainability issues (around 2% of all figures contain accessibility issues, 3% of diagnostic figures contain readability issues, and 23% of line charts contain explainability issues). We release our analysis as a dataset and methods for further examination by the scientific community.
C1 [Zhuang, Han] Syracuse Univ, Sch Informat Studies, Syracuse, NY 13244 USA.
[Huang, Tzu-Yang] Amazon Inc, New York, NY USA.
[Acuna, Daniel E.] Univ Colorado Boulder, Dept Comp Sci, Boulder, CO USA.
C3 Syracuse University; Amazon.com; University of Colorado System;
University of Colorado Boulder
RP Zhuang, H (corresponding author), Syracuse Univ, Sch Informat Studies, Syracuse, NY 13244 USA.
EM hzhuang@syr.edu
RI Zhuang, Han/KPY-6284-2024; Acuna, Daniel/JJF-1452-2023
OI Huang, Tzu-Yang/0000-0002-5357-1267
FU NSF [1800956]; US Office of Research Integrity (ORI) [ORIIR180041,
ORIIIR200052, ORIIIR190049, ORIIIR210062]; Syracuse University
Dissertation Fellowship; 2022 Summer Fellowship of the School of
Information Studies at Syracuse University; DHHS-ORI grants
[ORIIR180041, ORIIIR190049]; Alfred P. Sloan Foundation grant
[G-2020-12618]; SBE Off Of Multidisciplinary Activities; Direct For
Social, Behav & Economic Scie [1800956] Funding Source: National Science
Foundation
FX HZ and DEA were funded by NSF award #1800956, and the US Office of
Research Integrity (ORI) awards ORIIR180041, ORIIIR190049, ORIIIR200052,
and ORIIIR210062. HZ was funded by the Syracuse University Dissertation
Fellowship and the 2022 Summer Fellowship of the School of Information
Studies at Syracuse University. TYH was partially funded by the DHHS-ORI
grants ORIIR180041 and ORIIIR190049. DEA was funded by the Alfred P.
Sloan Foundation grant #G-2020-12618.
CR Acuna DE, 2018, bioRxiv, DOI [10.1101/269415, 10.1101/269415, DOI 10.1101/269415, 10.1101/269415v3]
[Anonymous], 2016, WORKING NOTES CLEF 2
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934]
Borland D, 2007, IEEE COMPUT GRAPH, V27, P14, DOI 10.1109/MCG.2007.323435
Hasikin K., 2012, 2012 UKSim 14th International Conference on Computer Modelling and Simulation (UKSim), P371, DOI 10.1109/UKSim.2012.60
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
Helsloot A., 2019, In the eye of the beholder
Hou XD, 2007, PROC CVPR IEEE, P2280
Jafarzadehpur E, 2014, INT OPHTHALMOL, V34, P1067, DOI 10.1007/s10792-014-9911-2
Jambor H, 2021, PLOS BIOL, V19, DOI 10.1371/journal.pbio.3001161
Jefferson L, 2007, CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1 AND 2, P1535
Jefferson Luke., 2006, P 8 INT ACM SIGACCES, P40, DOI DOI 10.1145/1168987.1168996
Kara S, 2016, ARQ BRAS OFTALMOL, V79, P323
Machado GM, 2009, IEEE T VIS COMPUT GR, V15, P1291, DOI 10.1109/TVCG.2009.113
Mancuso R., 2022, bioRxiv, DOI [DOI 10.1101/2022, DOI 10.1101/2022.12, 10.24.512549, 10.1101/2022.10.24.512549, DOI 10.1101/2022.10.24.512549]
Montgomery D.C., 2012, Introduction to Linear Regression Analysis, Vfifth
Normile D, 2004, SCIENCE, V303, P1746
OWSLEY C, 1981, INVEST OPHTH VIS SCI, V21, P362
Saladi S, 2019, JETFIGHTER FIGURE AC
Shah A, 2013, IRAN J PUBLIC HEALTH, V42, P16
Wang Y, 2022, AAAI CONF ARTIF INTE
Watson AB, 2005, J VISION, V5, P717, DOI 10.1167/5.9.6
Wei C, 2018, Arxiv, DOI [arXiv:1808.04560, DOI 10.48550/ARXIV.1808.04560]
Xiang ZY, 2020, Arxiv, DOI arXiv:2001.07799
Zeng T, 2020, SCIENTOMETRICS, V124, P399, DOI 10.1007/s11192-020-03421-9
Zhuang Han, 2021, PLoS Comput Biol, V17, pe1009650, DOI 10.1371/journal.pcbi.1009650
NR 26
TC 0
Z9 0
U1 4
U2 8
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
EI 2193-1127
J9 EPJ DATA SCI
JI EPJ Data Sci.
PD MAR 2
PY 2023
VL 12
IS 1
AR 5
DI 10.1140/epjds/s13688-023-00380-y
PG 16
WC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Mathematics; Mathematical Methods In Social Sciences
GA 9N3SX
UT WOS:000942836600002
OA gold
DA 2024-09-05
ER
PT C
AU Pang, NS
Shi, YL
Ji, CM
AF Pang, Nansheng
Shi, Yingling
Ji, Changming
GP IEEE
TI Research on Comprehensive Bid Evaluation of Construction Project Based
on the Principal Component Analysis
SO 2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING
AND MOBILE COMPUTING, VOLS 1-31
SE International Conference on Wireless Communications, Networking and
Mobile Computing
LA English
DT Proceedings Paper
CT 4th International Conference on Wireless Communications, Networking and
Mobile Computing
CY OCT 12-17, 2008
CL Dalian, PEOPLES R CHINA
DE principal component analysis; contribution ratio; factor load; linear
weighted model
ID NEURAL NETWORKS
AB The bid evaluation of construction project is a multivariate evaluation. Based on the principal component analysis which is included in multivariate statistical analysis, this paper establishes the multi-index comprehensive bid evaluation model of construction project, and proposes that how to calculate the evaluation index weight by introducing the variance contribution ratio, and that how to determine the number of principal components by making comprehensive consideration with an introduction of accumulated contribution ratio and factor load. Finally, an example is given to prove the convenience and feasibility of this bid evaluation method. This method has some characteristics: It overcomes deficiencies like large number of evaluation indexes, the overlap of the information that contained in evaluation indexes, and the determination of weight is artificial. The results of bid evaluation are objective and reasonable, which are suit for the evaluation of multi-index systems of large construction projects.
C1 [Pang, Nansheng; Shi, Yingling; Ji, Changming] NCEPU, Inst Business Management, Beijing, Peoples R China.
C3 North China Electric Power University
RP Pang, NS (corresponding author), NCEPU, Inst Business Management, Beijing, Peoples R China.
CR CHAPMAN SJ, 2002, MATALAB PROGRAMMING
DUNTEMAN GH, 1998, PRINCIPAL COMPONENT, P89
JOHNSON RA, 1998, APPL MULTIVARIATE ST, P162
KARHUNEN J, 1995, NEURAL NETWORKS, V8, P549, DOI 10.1016/0893-6080(94)00098-7
KRAMER MA, 1991, AICHE J, V37, P233, DOI 10.1002/aic.690370209
LINDSAY IA, 2002, TUTORIAL PRINCIPAL C, P132
NR 6
TC 0
Z9 0
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4244-2107-7
J9 I C WIREL COMM NETW
PY 2008
BP 5412
EP 5416
PG 5
WC Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Telecommunications
GA BIW81
UT WOS:000263466102287
DA 2024-09-05
ER
PT C
AU Bin-Obaidellah, O
Al-Fagih, AE
AF Bin-Obaidellah, Omar
Al-Fagih, Ashraf E.
GP IEEE
TI Scientometric Indicators and Machine Learning-Based Models for
Predicting Rising Stars in Academia
SO 2019 7TH INTERNATIONAL CONFERENCE ON SMART COMPUTING & COMMUNICATIONS
(ICSCC)
LA English
DT Proceedings Paper
CT 7th International Conference on Smart Computing & Communications (ICSCC)
CY JUN 28-30, 2019
CL Miri, MALAYSIA
DE kNN; machine learning; rising stars; scientometrics; SVM
ID NETWORKS
AB Newly recruited researchers who are expected to outstandingly surpass their peers in the quality of their work, are often considered as substantial assets in universities and research & development entities. Foreseeably identifying such Rising Stars is vital for highly competitive and profitable institutes and organizations. In this paper, we propose models based on a set of Scientometric Indicators to predict rising stars in academia. In addition, we define the rising stars problem in a comprehensive and methodological manner. Machine learning techniques are applied on actual data subsets collected from the Web of Science (WoS) data source. Our experimental results show that the proposed models and indicators can be used effectively in predicting future rising stars.
C1 [Bin-Obaidellah, Omar; Al-Fagih, Ashraf E.] King Fahd Univ Petr & Minerals, Dept Informat & Comp Sci, Dhahran 31261, Saudi Arabia.
C3 King Fahd University of Petroleum & Minerals
RP Bin-Obaidellah, O (corresponding author), King Fahd Univ Petr & Minerals, Dept Informat & Comp Sci, Dhahran 31261, Saudi Arabia.
EM omar.obaidellah@kfupm.edu.sa; alfagih@kfupm.edu.sa
FU King Fahd University of Petroleum & Minerals (KFUPM)
FX The authors would like to acknowledge the support provided by the
Deanship of Scientific Research at King Fahd University of Petroleum &
Minerals (KFUPM) for conducting this research. We also like to
acknowledge Dr. Moataz Ahmed from the Information & Computer Science
dept., KFUPM and Dr. Hosam Rowaihy from the Computer Engineering dept.,
KFUPM.
CR Abu Alsheikh M, 2014, IEEE COMMUN SURV TUT, V16, P1996, DOI 10.1109/COMST.2014.2320099
Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645
Bar-Ilan J, 2010, SCIENTOMETRICS, V82, P495, DOI 10.1007/s11192-010-0185-9
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Cawley GC, 2010, J MACH LEARN RES, V11, P2079
Daud Ali, 2013, Database Systems for Advanced Applications.18th International Conference, DASFAA 2013. Proceedings, P13, DOI 10.1007/978-3-642-37487-6_4
Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8
Hagen NT, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0004021
Helmy T, 2015, I C ARTIF INTELL, P3, DOI 10.1109/AIMS.2015.11
Huang J, 2005, IEEE T KNOWL DATA EN, V17, P299, DOI 10.1109/TKDE.2005.50
James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1
Kretschmer H, 2004, SCIENTOMETRICS, V60, P409, DOI 10.1023/B:SCIE.0000034383.86665.22
Kubat M, 1998, MACH LEARN, V30, P195, DOI 10.1023/A:1007452223027
Li XL, 2009, LECT NOTES COMPUT SC, V5463, P288, DOI 10.1007/978-3-642-00887-0_25
Michiels S, 2005, LANCET, V365, P488, DOI 10.1016/S0140-6736(05)17866-0
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
Nalimov V.V., 1969, Naukometriya. Izuchenie Razvitiya Nauki kak Informatsionnogo Protsessa.[Scientometrics. Study of the Development of Science as an Information Process]
Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001
R. C. Team,, R PROJECT STAT COMPU
Remler D., 2014, IMPACT SOCIAL SCI BL
Reuters T, 2014, INC IND HDB
Tsatsaronis G, 2011, LECT NOTES COMPUT SC, V6966, P15, DOI 10.1007/978-3-642-24469-8_4
Tso GKF, 2007, ENERGY, V32, P1761, DOI 10.1016/j.energy.2006.11.010
Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002
Xu J, 2016, J ASSOC INF SCI TECH, V67, P1973, DOI 10.1002/asi.23495
Zhang J, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P395, DOI 10.1145/2872518.2890524
NR 26
TC 3
Z9 3
U1 1
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-1557-3
PY 2019
BP 1
EP 7
PG 7
WC Computer Science, Theory & Methods; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BS3DU
UT WOS:000709842500001
DA 2024-09-05
ER
PT C
AU Liu, RC
Mei, WJ
Liu, J
AF Liu Ruochen
Mei Wenjuan
Liu Jun
BE Wang, X
TI Research on Predicting Students' Performance Based on Machine Learning
SO 2018 INTERNATIONAL CONFERENCE ON BIG DATA AND ARTIFICIAL INTELLIGENCE
(ICBDAI 2018)
LA English
DT Proceedings Paper
CT International Conference on Big Data and Artificial Intelligence
(ICBDAI)
CY DEC 21-23, 2018
CL Ningbo, PEOPLES R CHINA
DE Teaching quality; support vector regression; decision tree
AB Machine learning is one of the most core and hot technology of artificial intelligence at present. It can automatically identify patterns and discover rules based on a large amount of data, predict students' learning performance, and provide possibilities for more reasonable teaching evaluation and personalized learning. Taking the final mathematics scores of students in two Portuguese schools in the medium education as an example, this paper analyzes the characteristics of students' stage scores, personal personality, social relations and daily performance. After dimensionality reduction and other preprocessing of data sets by PCA and other methods, the final mathematics scores of students in one academic year are classified and predicted by SVM and decision tree algorithm respectively, and relevant factors affecting students' scores were analyzed. Finally, it concludes that schools can focus on students' family status, bad habit and ordinary grades to enable students to perform better.
C1 [Liu Ruochen; Mei Wenjuan; Liu Jun] Nanjing Univ Finance & Econ, Sch Management Sci & Engn, 3 Wenyuan Rd, Nanjing, Jiangsu, Peoples R China.
C3 Nanjing University of Finance & Economics
RP Liu, J (corresponding author), Nanjing Univ Finance & Econ, Sch Management Sci & Engn, 3 Wenyuan Rd, Nanjing, Jiangsu, Peoples R China.
EM 965703636@qq.com; 1563477026@qq.com; 9120031038@nufe.edu.cn
FU Jiangsu province higher education education reform research project
[2017JSJG218]; Postgraduate Research & Practice Innovation Program of
Jiangsu Province [KYCX18_1325]
FX This paper was supported by the Jiangsu province higher education
education reform research project, 2017, project number: 2017JSJG218 and
Postgraduate Research & Practice Innovation Program of Jiangsu Province,
2018, project number: KYCX18_1325.
CR [Anonymous], CYBERNETICS INFORM T
Bai X., 2016, ED TEACHING BBS, P173
Chiang C. F., 2015, SOC INF TECHN TEACH, P2273
Cortez P, 2008, 15TH EUROPEAN CONCURRENT ENGINEERING CONFERENCE/5TH FUTURE BUSINESS TECHNOLOGY CONFERENCE, P5
Huang Y, 2017, SPRINGER NAT HAZARDS, P11, DOI 10.1007/978-981-10-4379-6_2
Kabakchieva D., 2011, 4 INT C ED DAT MIN E
Strecht P., 2015, P 8 INT C ED DAT MIN, P392
Wang D., 1999, PEDAGOGY, P290
Xu Y, 2016, 2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2016), P121, DOI [10.1109/WI.2016.27, 10.1109/WI.2016.0027]
Zhu C, 2016, BIOORG MED CHEM LETT, V26, P55, DOI 10.1016/j.bmcl.2015.11.030
Zhu H., 2009, RES TEACHING QUALITY
NR 11
TC 0
Z9 0
U1 1
U2 12
PU FRANCIS ACAD PRESS
PI LONDON
PA 35 IVOR PL, LOWER GROUND, LONDON, NW1 6EA, ENGLAND
BN 978-1-912407-14-9
PY 2019
BP 40
EP 48
DI 10.25236/icbdai.2018.007
PG 9
WC Computer Science, Artificial Intelligence
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BM9TB
UT WOS:000471631800007
DA 2024-09-05
ER
PT J
AU Meireles, MRG
Cendon, BV
de Almeida, PEM
AF Gouvea Meireles, Magali Rezende
Cendon, Beatriz Valadares
Maciel de Almeida, Paulo Eduardo
TI Bibliometric Knowledge Organization: A Domain Analytic Method Using
Artificial Neural Networks
SO KNOWLEDGE ORGANIZATION
LA English
DT Article
DE articles; documents; categorization; references; network
ID RESEARCH QUESTIONS; CATEGORIZATION; SOM; CLASSIFICATION; SCIENCE
AB The organization of large collections of documents has become more important with the increase in the amount of digital information available. In certain constricted domains of knowledge, keywords and subject descriptors tend to be similar and therefore insufficient to differentiate documents. In this context, instead of relying only on the presence of common terms, the identification of common cited references can be useful to define semantic relationship among documents. The purpose of this work is to add another instance on the research linking information retrieval and bibliometric techniques aided by information technology. A domain analytic method was developed to generate clusters of documents, which uses self-organizing maps, in the scope of artificial neural networks, to categorize documents. The results obtained show that this approach successfully identified clusters of authors and documents through their cited references. In addition, further qualitative analysis of these clusters demonstrates the existence of semantic relationships between the documents. This study can contribute to the development of the field of knowledge organization by evaluating the use of artificial neural networks in the automatic categorization of documents in a constricted knowledge domain based on the analysis of the references cited by these documents.
C1 [Gouvea Meireles, Magali Rezende] Pontificia Univ Catolica Minas Gerais, Inst Math Sci & Informat, BR-30535901 Belo Horizonte, MG, Brazil.
[Cendon, Beatriz Valadares] Univ Fed Minas Gerais, Sch Informat Sci, BR-31270901 Belo Horizonte, MG, Brazil.
[Maciel de Almeida, Paulo Eduardo] Fed Ctr Technol Educ Minas Gerais, Dept Comp, BR-30510000 Belo Horizonte, MG, Brazil.
C3 Universidade Federal de Minas Gerais
RP Meireles, MRG (corresponding author), Pontificia Univ Catolica Minas Gerais, Inst Math Sci & Informat, Av Dom Jose Gaspar 500, BR-30535901 Belo Horizonte, MG, Brazil.
EM magali@pucminas.br; cendon@eci.ufmg.br; pema@lsi.cefetmg.br
RI Cendon, Beatriz/G-6141-2011; Almeida, Paulo/KHY-6445-2024; Meireles,
Magali/F-6563-2013
OI Cendon, Beatriz/0000-0002-3276-0114; Almeida, Paulo/0009-0005-7350-6875;
Meireles, Magali/0000-0001-6928-7132
CR [Anonymous], 1994, Neural Networks: A Comprehensive Foundation
Bakus J, 2002, ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING, P2212
Barite MG, 2000, KNOWL ORGAN, V27, P4
Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3
CAMPANARIO JM, 1995, SCIENTOMETRICS, V33, P23, DOI 10.1007/BF02020773
Chen YS, 2010, SCIENTOMETRICS, V82, P75, DOI 10.1007/s11192-009-0034-x
Cronin B., 1984, CITATION PROCESS
Do Phuc, 2008, 2008 IEEE International Conference on Research, Innovation and Vision for the Future in Computing and Communication Technologies (RIVF 2008), P209, DOI 10.1109/RIVF.2008.4586357
Gnoli C, 2008, KNOWL ORGAN, V35, P137, DOI 10.5771/0943-7444-2008-2-3-137
Hjorland B, 2002, J DOC, V58, P422, DOI 10.1108/00220410210431136
Hjorland B, 2008, KNOWL ORGAN, V35, P86
Hjorland B, 2007, ANNU REV INFORM SCI, V41, P367, DOI 10.1002/aris.2007.1440410115
Hussin MF, 2003, IEEE IJCNN, P2238
Jacob EK, 2004, LIBR TRENDS, V52, P515
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Khoo CSG, 2006, ANNU REV INFORM SCI, V40, P157, DOI 10.1002/aris.1440400112
Kohonen T, 2000, IEEE T NEURAL NETWOR, V11, P574, DOI 10.1109/72.846729
Lai Kuei-Kuei, 2003, INFORM PROCESSING MA, V41, P313
Lensu A., 1999, 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410), P174, DOI 10.1109/KES.1999.820147
López-Huertas MJ, 2008, KNOWL ORGAN, V35, P113, DOI 10.5771/0943-7444-2008-2-3-113
Luo X, 2003, IEEE IJCNN, P1786
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
Marshakova I. V, 1973, SCI TECHNICAL INFORM, V6, P3
Meireles M. R. G., 2003, IEEE T IND ELECTRON, V50, P1
Morris SA, 2001, IEEE IJCNN, P1914, DOI 10.1109/IJCNN.2001.938456
Moya-Anegón F, 2006, J INF SCI, V32, P63, DOI 10.1177/0165551506059226
ROSCH E, 1975, COGNITIVE PSYCHOL, V7, P573, DOI 10.1016/0010-0285(75)90024-9
SHARMA AK, 1994, J CHEM INF COMP SCI, V34, P1130, DOI 10.1021/ci00021a019
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
SMEATON AF, 1991, ONLINE REV, V15, P373, DOI 10.1108/eb024384
Smiraglia Richard P., 2013, P N AM S KNOWL ORG U, V4
Wang W, 2009, NEURAL COMPUT APPL, V18, P875, DOI 10.1007/s00521-008-0193-3
Yen GG, 2006, IEEE IJCNN, P3279
Yu Y, 2008, 7TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE IN CONJUNCTION WITH 2ND IEEE/ACIS INTERNATIONAL WORKSHOP ON E-ACTIVITY, PROCEEDINGS, P295, DOI 10.1109/ICIS.2008.109
Yulan He, 2001, Library Hi Tech, V19, P274, DOI 10.1108/EUM0000000005889
NR 35
TC 9
Z9 9
U1 0
U2 31
PU NOMOS VERLAGSGESELLSCHAFT MBH & CO KG
PI BADEN-BADEN
PA WALDSEESTR 3 5, BADEN-BADEN, 76530, GERMANY
SN 0943-7444
J9 KNOWL ORGAN
JI Knowl. Organ.
PY 2014
VL 41
IS 2
BP 145
EP 159
DI 10.5771/0943-7444-2014-2-145
PG 15
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA AF7OJ
UT WOS:000334904100005
DA 2024-09-05
ER
PT J
AU Do Cho, S
Hyun, BH
Kim, JK
AF Do Cho, Sung
Hyun, Byung Hwan
Kim, Jae Kyeom
TI Assessment of technological level of stem cell research using principal
component analysis
SO SPRINGERPLUS
LA English
DT Article
DE Technology level assessment; Principal component analysis; Analysis of
scientific literatures and patents; Stem cell
AB Background: In general, technological levels have been assessed based on specialist's opinion through the methods such as Delphi. But in such cases, results could be significantly biased per study design and individual expert.
Findings: In this study, therefore scientific literatures and patents were selected by means of analytic indexes for statistic approach and technical assessment of stem cell fields. The analytic indexes, numbers and impact indexes of scientific literatures and patents, were weighted based on principal component analysis, and then, were summated into the single value. Technological obsolescence was calculated through the cited half-life of patents issued by the United States Patents and Trademark Office and was reflected in technological level assessment. As results, ranks of each nation's in reference to the technology level were rated by the proposed method. Furthermore we were able to evaluate strengthens and weaknesses thereof.
Conclusions: Although our empirical research presents faithful results, in the further study, there is a need to compare the existing methods and the suggested method.
C1 [Do Cho, Sung] Univ Sci & Technol, Sci & Technol Management Policy, Daejeon 305350, South Korea.
[Hyun, Byung Hwan] Daejeon Univ, Grad Sch, Dept Business Consulting, Daejeon 300716, South Korea.
[Kim, Jae Kyeom] Univ Arkansas, Sch Human Environm Sci, Fayetteville, AR 72701 USA.
C3 University of Science & Technology (UST); Daejeon University; University
of Arkansas System; University of Arkansas Fayetteville
RP Kim, JK (corresponding author), Univ Arkansas, Sch Human Environm Sci, Fayetteville, AR 72701 USA.
EM jkk003@uark.edu
OI Kim, Jae Kyeom/0000-0002-2837-9302
CR [Anonymous], 1995, NAT CRIT TECHN REP
BOSWORTH DL, 1978, J IND ECON, V26, P273, DOI 10.2307/2097871
Chia KC, 2004, THESIS
Cho I, 2015, CLUSTER COMPUT, V18, P259, DOI 10.1007/s10586-014-0368-x
Cho Sung-Do, 2013, [JOURNAL OF TECHNOLOGY INNOVATION, 기술혁신연구], V21, P141
Crook JM, 2007, CELL STEM CELL, V1, P490, DOI 10.1016/j.stem.2007.10.004
Ernst H., 2003, World Patent Information, V25, P233, DOI 10.1016/S0172-2190(03)00077-2
Garfield E., 1992, Science and Public Policy, V19, P321, DOI [DOI 10.1093/SPP/19.5.321, 10.1093/spp/19.5.321]
Han MK, 2010, J KOREA TECHNOL INNO, V13, P252
Huang Z, 2003, J NANOPART RES, V5, P333, DOI 10.1023/A:1025556800994
Japan Science and Technology Agency-Center for Research and Development Strategy, 2013, JAP SCI TECHN IND 20
Korea Centers for Disease Control and Prevention, 2013, TREND OV STEM CELL B
Korea Institute of Science & Technology Evaluation and Planning, 2011, 20112014 KOR I SCI T
Korea Institute of Science & Technology Evaluation and Planning, 2013, 2012 TECHN LEV EV
Korea Institute of Science & Technology Evaluation and Planning, 2010, STUD DYN METH EST TE
Litterman NK, 2015, DRUG DISCOV TODAY, V20, P247, DOI 10.1016/j.drudis.2014.10.006
Pattel P, 1988, OECD STI REV, V4, P121
Rao KU, 2010, RENEW SUST ENERG REV, V14, P1070, DOI 10.1016/j.rser.2009.11.007
Raychaudhuri S, 2000, 5 ANN C PAC S BIOC H
Thomas Patrick, 2005, FACULTY SCHOLARSHIP, P7
World Technology Evaluation Center, 2013, SYST ENG CLEAN REN E
World Technology Evaluation Center, 2014, ASS PHYS SCI ENG ADV
Yoo Sunhi, 2006, [Journal of The Korean Operations Research and Management Science Society, 한국경영과학회지], V31, P1
NR 23
TC 1
Z9 1
U1 2
U2 12
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2193-1801
J9 SPRINGERPLUS
JI SpringerPlus
PD JUN 24
PY 2016
VL 5
AR 857
DI 10.1186/s40064-016-2494-9
PG 17
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA DQ0XK
UT WOS:000378924900001
PM 27386306
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Kapusuz, M
Ozcan, H
Yamin, JA
AF Kapusuz, Murat
Ozcan, Hakan
Yamin, Jehad Ahmad
TI Research of performance on a spark ignition engine fueled by
alcohol-gasoline blends using artificial neural networks
SO APPLIED THERMAL ENGINEERING
LA English
DT Article
DE Artificial neural network; Spark ignition engine; Modeling; Ethanol;
Methanol
ID EXHAUST EMISSIONS; METHANOL ADDITION; DIESEL-ENGINE; ETHANOL;
PREDICTION; COMBUSTION
AB In this paper, we investigate various alcohol unleaded gasoline mixtures that can be used with no modifications in a spark-ignition engine. The mixtures consisted of 5%, 10% and 15% ethanol, methanol together and separately. Based on the recommendations of the Jordanian Petroleum Company (JoPetrol), total alcohol content should not exceed 15-20% owing to safety and ignition hazards. Optimizations for the use of alcohol were made for the maximum torque, maximum power and minimum specific fuel consumption values. For torque 0.9906, for brake power 0.997, and for brake specific fuel consumption 0.9312 regression values for tests have been obtained from models generated by the neural network. According to the modeling and optimizations, use of fuel mixture containing 11% methanol-1% ethanol for performance, and fuel mixture containing 2% methanol for BSFC were found to have better results.
Moreover, the paper demonstrates that ANN (Artificial Neural Network) can be used successfully as an alternative type of modeling technique for internal combustion engines. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Kapusuz, Murat; Ozcan, Hakan] Ondokuz Mayis Univ, Dept Mech Engn, TR-55139 Samsun, Turkey.
[Yamin, Jehad Ahmad] Univ Jordan, Dept Mech Engn, Amman 11942, Jordan.
C3 Ondokuz Mayis University; University of Jordan
RP Ozcan, H (corresponding author), Ondokuz Mayis Univ, Dept Mech Engn, TR-55139 Samsun, Turkey.
EM ozcanh@omu.edu.tr
RI Kapusuz, Murat/AAP-2014-2020; ÖZCAN, Hakan/AAG-6973-2019; Yamin,
Jehad/D-9235-2016
OI Kapusuz, Murat/0000-0002-2243-8551; ÖZCAN, Hakan/0000-0002-7848-3650;
Yamin, Jehad/0000-0002-7874-358X
CR Abu-Zaid M, 2004, ENERG FUEL, V18, P312, DOI 10.1021/ef030103d
Ahmed S.S., 2013, INT J MECH MECHATRON, V13, P50
Al-Hasan A, 2003, ENERG CONVERS MANAGE, V44, P1547
Arcaklioglu E, 2005, APPL ENERG, V80, P11, DOI 10.1016/j.apenergy.2004.03.004
Balki MK, 2014, ENERGY, V71, P194, DOI 10.1016/j.energy.2014.04.074
Bilgin A, 2008, ENERG FUEL, V22, P2782, DOI 10.1021/ef8001026
Cay Y., 2011, APPL THERM ENG, V37, P1
Danaiah P, 2013, INT J AMBIENT ENERGY, V34, P175, DOI 10.1080/01430750.2012.755609
Egrioglu E, 2008, APPL MATH COMPUT, V195, P591, DOI 10.1016/j.amc.2007.05.005
Elfasakhany A., 2015, ENG SCI TECHNOL INT
Etghani MM, 2013, APPL THERM ENG, V59, P309, DOI 10.1016/j.applthermaleng.2013.05.041
Eyidogan M, 2010, FUEL, V89, P2713, DOI 10.1016/j.fuel.2010.01.032
Gautam M., 1991, EC PRODUCTION ALCOHO, P377
Geng P, 2015, FUEL, V145, P221, DOI 10.1016/j.fuel.2014.12.067
Ho T, 2010, INT J HYDROGEN ENERG, V35, P10004, DOI 10.1016/j.ijhydene.2010.03.054
Iliev S, 2015, PROCEDIA ENGINEER, V100, P1013, DOI 10.1016/j.proeng.2015.01.461
Kamar HM, 2013, APPL THERM ENG, V50, P63, DOI 10.1016/j.applthermaleng.2012.05.032
Kiani MKD, 2010, ENERGY, V35, P65, DOI 10.1016/j.energy.2009.08.034
Koç M, 2009, RENEW ENERG, V34, P2101, DOI 10.1016/j.renene.2009.01.018
Liu BL, 2013, APPL THERM ENG, V55, P26, DOI 10.1016/j.applthermaleng.2013.02.032
Liu SH, 2007, APPL THERM ENG, V27, P1904, DOI 10.1016/j.applthermaleng.2006.12.024
Ozsezen AN, 2011, ENERGY, V36, P2747, DOI 10.1016/j.energy.2011.02.014
Pulkrabek W., 2003, ENG FUNDAMENTALS INT, V2nd
Rezaei J, 2015, APPL ENERG, V138, P460, DOI 10.1016/j.apenergy.2014.10.088
Sayin C, 2007, APPL THERM ENG, V27, P46, DOI 10.1016/j.applthermaleng.2006.05.016
Yücesu HS, 2007, APPL THERM ENG, V27, P358, DOI 10.1016/j.applthermaleng.2006.07.027
Shayan S.B., 2011, Int. J. Automot. Eng, V1, P219
Shivakumar, 2011, APPL ENERG, V88, P2344, DOI 10.1016/j.apenergy.2010.12.030
Xie FX, 2013, APPL THERM ENG, V50, P1084, DOI 10.1016/j.applthermaleng.2012.08.003
NR 29
TC 65
Z9 65
U1 0
U2 23
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-4311
J9 APPL THERM ENG
JI Appl. Therm. Eng.
PD DEC 5
PY 2015
VL 91
BP 525
EP 534
DI 10.1016/j.applthermaleng.2015.08.058
PG 10
WC Thermodynamics; Energy & Fuels; Engineering, Mechanical; Mechanics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Thermodynamics; Energy & Fuels; Engineering; Mechanics
GA CW5RB
UT WOS:000365053200053
DA 2024-09-05
ER
PT J
AU Wang, RY
Huang, S
Wang, P
Shi, XM
Li, SQ
Ye, YS
Zhang, W
Shi, L
Zhou, X
Tang, XW
AF Wang, Ruiyu
Huang, Shu
Wang, Ping
Shi, Xiaomin
Li, Shiqi
Ye, Yusong
Zhang, Wei
Shi, Lei
Zhou, Xian
Tang, Xiaowei
TI Bibliometric analysis of the application of deep learning in cancer from
2015 to 2023
SO CANCER IMAGING
LA English
DT Article
DE Deep learning; Cancer; Imaging; Bibliometric analysis; VOSviewer;
CiteSpace
ID ARTIFICIAL-INTELLIGENCE; MITOSIS DETECTION; LUNG-CANCER; SKIN-CANCER;
CLASSIFICATION
AB BackgroundRecently, the application of deep learning (DL) has made great progress in various fields, especially in cancer research. However, to date, the bibliometric analysis of the application of DL in cancer is scarce. Therefore, this study aimed to explore the research status and hotspots of the application of DL in cancer.MethodsWe retrieved all articles on the application of DL in cancer from the Web of Science database Core Collection database. Biblioshiny, VOSviewer and CiteSpace were used to perform the bibliometric analysis through analyzing the numbers, citations, countries, institutions, authors, journals, references, and keywords.ResultsWe found 6,016 original articles on the application of DL in cancer. The number of annual publications and total citations were uptrend in general. China published the greatest number of articles, USA had the highest total citations, and Saudi Arabia had the highest centrality. Chinese Academy of Sciences was the most productive institution. Tian, Jie published the greatest number of articles, while He Kaiming was the most co-cited author. IEEE Access was the most popular journal. The analysis of references and keywords showed that DL was mainly used for the prediction, detection, classification and diagnosis of breast cancer, lung cancer, and skin cancer.ConclusionsOverall, the number of articles on the application of DL in cancer is gradually increasing. In the future, further expanding and improving the application scope and accuracy of DL applications, and integrating DL with protein prediction, genomics and cancer research may be the research trends.
C1 [Wang, Ruiyu; Wang, Ping; Shi, Xiaomin; Li, Shiqi; Ye, Yusong; Zhang, Wei; Shi, Lei; Zhou, Xian; Tang, Xiaowei] Southwest Med Univ, Affiliated Hosp, Dept Gastroenterol, St Taiping 25, Luzhou 646099, Sichuan, Peoples R China.
[Wang, Ruiyu; Wang, Ping; Shi, Xiaomin; Li, Shiqi; Ye, Yusong; Zhang, Wei; Shi, Lei; Zhou, Xian; Tang, Xiaowei] Nucl Med & Mol Imaging Key Lab Sichuan Prov, Luzhou, Peoples R China.
[Huang, Shu] Lianshui Cty People Hosp, Dept Gastroenterol, Huaian, Peoples R China.
[Huang, Shu] Nanjing Med Univ, Lianshui People Hosp, Kangda Coll, Dept Gastroenterol, Huaian, Peoples R China.
C3 Southwest Medical University; Nanjing Medical University
RP Zhou, X; Tang, XW (corresponding author), Southwest Med Univ, Affiliated Hosp, Dept Gastroenterol, St Taiping 25, Luzhou 646099, Sichuan, Peoples R China.; Zhou, X; Tang, XW (corresponding author), Nucl Med & Mol Imaging Key Lab Sichuan Prov, Luzhou, Peoples R China.
EM 853023378@qq.com; solitude5834@hotmail.com
CR Albarqouni S, 2016, IEEE T MED IMAGING, V35, P1313, DOI 10.1109/TMI.2016.2528120
Alzubaidi L, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00444-8
Ardila D, 2019, NAT MED, V25, P954, DOI 10.1038/s41591-019-0447-x
Avanzo M, 2020, MED PHYS, V47, pE185, DOI 10.1002/mp.13678
Balkenende L, 2022, SEMIN NUCL MED, V52, P584, DOI 10.1053/j.semnuclmed.2022.02.003
Brinker TJ, 2019, EUR J CANCER, V111, P30, DOI 10.1016/j.ejca.2018.12.016
Cao CS, 2018, GENOM PROTEOM BIOINF, V16, P17, DOI 10.1016/j.gpb.2017.07.003
Chan HP, 2020, ADV EXP MED BIOL, V1213, P3, DOI 10.1007/978-3-030-33128-3_1
Chatterjee S, 2020, TRANSFORM GOV-PEOPLE, V14, P757, DOI 10.1108/TG-05-2019-0031
Chen W, 2021, MED PHYS, V48, P7946, DOI 10.1002/mp.15302
Choi RY, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.14
Currie G, 2019, J MED IMAGING RADIAT, V50, P477, DOI 10.1016/j.jmir.2019.09.005
Dildar M, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18105479
Dong YY, 2021, QUANT IMAG MED SURG, V11, P2354, DOI 10.21037/qims-20-600
Eraslan G, 2019, NAT REV GENET, V20, P389, DOI 10.1038/s41576-019-0122-6
Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056
Gupta A, 2022, CURR GENOMICS, V23, P234, DOI 10.2174/1389202923666220511155939
Heuvelmans MA, 2021, LUNG CANCER, V154, P1, DOI 10.1016/j.lungcan.2021.01.027
Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527
Huang HW, 2021, J DERMATOL, V48, P310, DOI 10.1111/1346-8138.15683
Jindal N., 2019, International Journal of Environment, Ecology, Family and Urban Studies (IJEEFUS), V9, P83, DOI [10.24247/ijeefusapr20197, DOI 10.24247/IJEEFUSAPR20197]
Khairi SSM, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10010010
Kim DW, 2019, SCI REP-UK, V9, DOI [10.1038/s41598-018-36760-y, 10.1038/s41598-019-43372-7]
Klosowski P, 2018, SIG P ALGO ARCH ARR, P223, DOI 10.23919/SPA.2018.8563389
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Li C, 2018, MED IMAGE ANAL, V45, P121, DOI 10.1016/j.media.2017.12.002
Liimatainen K, 2021, BIOMOLECULES, V11, DOI 10.3390/biom11020264
Liu JD, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0293411
Liu WH, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.547327
MacEachern SJ, 2021, GENOME, V64, P416, DOI 10.1139/gen-2020-0131
Mathema VB, 2023, COMPUT STRUCT BIOTEC, V21, P1372, DOI 10.1016/j.csbj.2023.01.043
McCarthy J, 2006, AI MAG, V27, P12
Michelucci U., 2018, Applied Deep Learning, DOI [10.1007/978-1-4842-3790-88, DOI 10.1007/978-1-4842-3790-88]
Nazir M, 2021, COMPUT MED IMAG GRAP, V91, DOI 10.1016/j.compmedimag.2021.101940
Pacheco AGC, 2021, IEEE J BIOMED HEALTH, V25, P3554, DOI 10.1109/JBHI.2021.3062002
Pakhrin SC, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22115553
Paul R, 2018, J MED IMAGING, V5, DOI 10.1117/1.JMI.5.1.011021
Peng S, 2021, LANCET DIGIT HEALTH, V3, pE250, DOI 10.1016/S2589-7500(21)00041-8
Poirion OB, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00930-x
Qin ZJ, 2019, IEEE WIREL COMMUN, V26, P93, DOI 10.1109/MWC.2019.1800601
Ragab DA, 2019, PEERJ, V7, DOI 10.7717/peerj.6201
Rodriguez RV, 2020, PUBLIC ADMIN POLICY, V23, P273, DOI 10.1108/PAP-03-2020-0019
Sahiner B, 2019, MED PHYS, V46, pe1, DOI 10.1002/mp.13264
Sharma J., 2016, International Journal of Research in Humanities and Soc. Sciences, V4, P64
Shen L, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48995-4
Sultan AS, 2020, J ORAL PATHOL MED, V49, P849, DOI 10.1111/jop.13042
Summers RM, 2019, ABDOM RADIOL, V44, P1985, DOI 10.1007/s00261-018-1613-1
Torrisi M, 2020, COMPUT STRUCT BIOTEC, V18, P1301, DOI 10.1016/j.csbj.2019.12.011
Tran KA, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00968-x
Voulodimos A, 2018, COMPUT INTEL NEUROSC, V2018, DOI 10.1155/2018/7068349
Wang LL, 2022, CANCERS, V14, DOI 10.3390/cancers14225569
Wang TQ, 2017, CHINA COMMUN, V14, P92, DOI 10.1109/CC.2017.8233654
Wang ZH, 2018, INT J COMPUT ASS RAD, V13, P1959, DOI 10.1007/s11548-018-1860-1
Wu YH, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.893972
Xiao YW, 2021, COMPUT BIOL MED, V135, DOI 10.1016/j.compbiomed.2021.104540
Yasaka K, 2018, JPN J RADIOL, V36, P257, DOI 10.1007/s11604-018-0726-3
Zhang GY, 2023, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.1075974
Zhong RK, 2024, FRONT ONCOL, V14, DOI 10.3389/fonc.2024.1346010
Zou J, 2019, NAT GENET, V51, P12, DOI 10.1038/s41588-018-0295-5
NR 59
TC 0
Z9 0
U1 1
U2 1
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1740-5025
EI 1470-7330
J9 CANCER IMAGING
JI Cancer Imaging
PD JUL 4
PY 2024
VL 24
IS 1
AR 85
DI 10.1186/s40644-024-00737-0
PG 17
WC Oncology; Radiology, Nuclear Medicine & Medical Imaging
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Oncology; Radiology, Nuclear Medicine & Medical Imaging
GA XQ4B7
UT WOS:001263122000001
PM 38965599
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Hou, XH
Huang, L
Li, XF
AF Hou, Xiaohui
Huang, Lei
Li, Xuefei
BE Zhang, R
Zhang, Z
Liu, K
Zhang, J
TI Evaluation Method of Scientific Research Projects Based on the Neural
Networks
SO LISS 2013
LA English
DT Proceedings Paper
CT 3rd International Conference on Logistics, Informatics and Service
Science (LISS)
CY AUG 21-24, 2013
CL Beijing Jiaotong Univ, Sch Econ & Management, Reading, ENGLAND
HO Beijing Jiaotong Univ, Sch Econ & Management
DE Back propagation neural network; Linear neural network; Scientific
research projects; Evaluation; Index system
AB The scientific research projects are evaluated by using the neural networks in this paper. The evaluation index system of scientific research projects is set up, and based on it, BP neural network model and linear neural network model are established to evaluate the scientific research projects. The Matlab software is used to set the parameters, to solve the two models which are built and by calculating an example, we get the objective evaluation results and then compare the results of these two different neural networks. The result shows that the two neural networks models which we set up have high accuracy and will promote the objective and efficient development of evaluation research of scientific research projects in China.
C1 [Hou, Xiaohui] Beijing Jiaotong Univ, Div Sci & Technol, Beijing 100044, Peoples R China.
[Huang, Lei] Beijing Jiaotong Univ, Sch Econ & Management, Beijing 100044, Peoples R China.
[Li, Xuefei] Beijing Jiaotong Univ, Sch Traff & Transportat, Beijing 100044, Peoples R China.
C3 Beijing Jiaotong University; Beijing Jiaotong University; Beijing
Jiaotong University
RP Hou, XH (corresponding author), Beijing Jiaotong Univ, Div Sci & Technol, Beijing 100044, Peoples R China.
EM xhhou@bjtu.edu.cn; lhuang@bjtu.edu.cn; hopeandfuture2010@gmail.com
RI huang, lei/GQP-8739-2022; HUANG, LING/HTR-1819-2023; Huang,
Li/IUQ-0909-2023
CR CAO ZG, 2007, AERONAUTICAL COMPUTI, V37, P51
LIN H, 2005, SCI TECHNOL ENG, V5, P1365
LIN H, 2006, SCI TECHNOL PROG POL, V23, P47
SONG Z, 2011, ELECT DES ENG, V19, P66
Zhang Zenglian, 2011, SCI TECHNOL MANAG RE, V31, P54
NR 5
TC 0
Z9 0
U1 0
U2 7
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
BN 978-3-642-40660-7; 978-3-642-40659-1
PY 2015
BP 489
EP 496
DI 10.1007/978-3-642-40660-7_72
PG 8
WC Engineering, Industrial; Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Operations Research & Management Science
GA BD1WS
UT WOS:000358441900072
DA 2024-09-05
ER
PT J
AU Chen, K
Zhai, X
Wang, S
Li, XY
Lu, ZK
Xia, DM
Li, M
AF Chen, Kai
Zhai, Xiao
Wang, Sheng
Li, Xiaoyu
Lu, Zhikai
Xia, Demeng
Li, Ming
TI Emerging trends and research foci of deep learning in spine:
bibliometric and visualization study
SO NEUROSURGICAL REVIEW
LA English
DT Article
DE Deep learning; Spine; Bibiometrics; Neural network; Image
ID CONVOLUTIONAL NEURAL-NETWORKS; SEGMENTATION; DISORDERS; ALGORITHM
AB As the cognition of spine develops, deep learning (DL) emerges as a powerful tool with tremendous potential for advancing research in this field. To provide a comprehensive overview of DL-spine research, our study utilized bibliometric and visual methods to retrieve relevant articles from the Web of Science database. VOSviewer and CiteSpace were primarily used for literature measurement and knowledge graph analysis. A total of 273 studies focusing on deep learning in the spine, with a combined total of 2302 citations, were retrieved. Additionally, the overall number of articles published on this topic demonstrated a continuous upward trend. China was the country with the highest number of publications, whereas the USA had the most citations. The two most prominent journals were "European Spine Journal" and "Medical Image Analysis," and the most involved research area was Radiology Nuclear Medicine Medical Imaging. VOSviewer identified three visually distinct clusters: "segmentation," "area," and "neural network." Meanwhile, CiteSpace highlighted "magnetic resonance image" and "lumbar" as the keywords with the longest usage, and "agreement" and "automated detection" as the most commonly used keywords. Although the application of DL in spine is still in its infancy, its future is promising. Intercontinental cooperation, extensive application, and more interpretable algorithms will invigorate DL in the field of spine.
C1 [Chen, Kai; Zhai, Xiao; Li, Xiaoyu; Li, Ming] Shanghai Changhai Hosp, Dept Orthoped, Shanghai 200433, Peoples R China.
[Wang, Sheng] Shanghai Changhai Hosp, Dept Emergency, Shanghai, Peoples R China.
[Lu, Zhikai] No 906 Hosp Joint Logist Support Force PLA, Dept Orthoped, Ningbo, Zhejiang, Peoples R China.
[Xia, Demeng] Shanghai Univ, Shanghai Baoshan Luodian Hosp, Luodian Clin Drug Res Ctr, Shanghai, Peoples R China.
[Xia, Demeng] Naval Hosp Eastern Theater, Emergency Dept, Zhoushan, Zhejiang, Peoples R China.
C3 Naval Medical University; Naval Medical University; Shanghai University
RP Li, M (corresponding author), Shanghai Changhai Hosp, Dept Orthoped, Shanghai 200433, Peoples R China.; Lu, ZK (corresponding author), No 906 Hosp Joint Logist Support Force PLA, Dept Orthoped, Ningbo, Zhejiang, Peoples R China.; Xia, DM (corresponding author), Shanghai Univ, Shanghai Baoshan Luodian Hosp, Luodian Clin Drug Res Ctr, Shanghai, Peoples R China.; Xia, DM (corresponding author), Naval Hosp Eastern Theater, Emergency Dept, Zhoushan, Zhejiang, Peoples R China.
EM spine_kai@smmu.edu.cn; zhaixiao@smmu.edu.cn; wschyy421304714@163.com;
y15721434081@163.com; Lzkjfj113@163.com; demengxia@163.com;
limingspine0103@126.com
RI Xia, Demeng/ADR-6215-2022
OI ZHAI, XIAO/0000-0003-4236-2264
FU National Natural Science Foundation of China [81701199]
FX This research was funded by the National Natural Science Foundation of
China (81701199) of Ming Li
CR Al Arif SMMR, 2018, COMPUT METH PROG BIO, V157, P95, DOI 10.1016/j.cmpb.2018.01.006
Anwar SM, 2018, J MED SYST, V42, DOI 10.1007/s10916-018-1088-1
Chan HP, 2020, ADV EXP MED BIOL, V1213, P3, DOI 10.1007/978-3-030-33128-3_1
Choi RY, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.14
de Jonge MC, 2014, SEMIN MUSCULOSKEL R, V18, P246, DOI 10.1055/s-0034-1375568
Deng HD, 2021, J BIOMED OPT, V26, DOI 10.1117/1.JBO.26.4.040901
Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593
Duan HN, 2021, FRONT NEUROROBOTICS, V15, DOI 10.3389/fnbot.2021.658280
Esteva A, 2019, NAT MED, V25, P24, DOI 10.1038/s41591-018-0316-z
Fehlings MG, 2015, NEUROSURGERY, V77, pS1, DOI 10.1227/NEU.0000000000000953
Galbusera F, 2019, EUR SPINE J, V28, P951, DOI 10.1007/s00586-019-05944-z
Gao KT, 2022, JOR SPINE, V5, DOI 10.1002/jsp2.1204
Goedmakers CMW, 2021, RADIOLOGY, V301, DOI 10.1148/radiol.2021204731
Ha J, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-00161-5
Hallinan JTPD, 2021, RADIOLOGY, V300, P130, DOI 10.1148/radiol.2021204289
Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Horng MH, 2019, COMPUT MATH METHOD M, V2019, DOI 10.1155/2019/6357171
Hsieh CI, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-25779-x
Kochanski RB, 2019, NEUROSURGERY, V84, P1179, DOI 10.1093/neuros/nyy630
Kokabu T, 2021, SPINE J, V21, P980, DOI 10.1016/j.spinee.2021.01.022
Lacout A, 2009, AM J ROENTGENOL, V193, pW505, DOI 10.2214/AJR.09.2268
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Lemay A, 2021, NEUROIMAGE-CLIN, V31, DOI 10.1016/j.nicl.2021.102766
Lessmann N, 2019, MED IMAGE ANAL, V53, P142, DOI 10.1016/j.media.2019.02.005
Li XM, 2018, MED IMAGE ANAL, V45, P41, DOI 10.1016/j.media.2018.01.004
Lim DSW, 2022, RADIOLOGY, V305, P160, DOI 10.1148/radiol.220076
Liu C, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.972079
Liu DQ, 2020, COMPUT METH PROG BIO, V197, DOI 10.1016/j.cmpb.2020.105755
Luo HF, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.759347
Natalia F, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0261659
Oei MW, 2022, RADIOL CLIN N AM, V60, P629, DOI 10.1016/j.rcl.2022.03.006
Qu B, 2022, QUANT IMAG MED SURG, V12, P3454, DOI 10.21037/qims-21-939
Rezaeilouyeh H, 2016, J MED IMAGING, V3, DOI 10.1117/1.JMI.3.4.044501
Roldan-Valadez E, 2019, IRISH J MED SCI, V188, P939, DOI 10.1007/s11845-018-1936-5
Rosenblatt F., 1961, PRINCIPLES NEURODYNA
Rupp TK, 2015, BIOMECH MODEL MECHAN, V14, P1081, DOI 10.1007/s10237-015-0656-2
Saravi B, 2022, J CLIN MED, V11, DOI 10.3390/jcm11144050
Stout NL, 2018, JNCI-J NATL CANCER I, V110, P815, DOI 10.1093/jnci/djy108
Suri A, 2021, BONE, V149, DOI 10.1016/j.bone.2021.115972
Tsai JY, 2021, FRONT BIOENG BIOTECH, V9, DOI 10.3389/fbioe.2021.708137
Wang LL, 2021, COMPUT MED IMAG GRAP, V93, DOI 10.1016/j.compmedimag.2021.101973
Waqas A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0222194
Xia DM, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.990708
Yagi M, 2019, EUR SPINE J, V28, P180, DOI 10.1007/s00586-018-5816-5
Yeh YC, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-87141-x
Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235
Zhao JQ, 2022, J MED INTERNET RES, V24, DOI 10.2196/37532
Zhou YJ, 2019, J DIGIT IMAGING, V32, P513, DOI 10.1007/s10278-018-0130-7
Zou J, 2019, NAT GENET, V51, P12, DOI 10.1038/s41588-018-0295-5
NR 50
TC 8
Z9 8
U1 9
U2 26
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 0344-5607
EI 1437-2320
J9 NEUROSURG REV
JI Neurosurg. Rev.
PD MAR 31
PY 2023
VL 46
IS 1
AR 81
DI 10.1007/s10143-023-01987-5
PG 14
WC Clinical Neurology; Surgery
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Neurosciences & Neurology; Surgery
GA C3WI9
UT WOS:000961253900001
PM 37000304
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Chaki, J
Ghosh, D
AF Chaki, Jyotismita
Ghosh, Dibyajyoti
TI Deep Learning in Leaf Disease Detection (2014-2024): A
Visualization-Based Bibliometric Analysis
SO IEEE ACCESS
LA English
DT Article
DE Bibliometric study; biblioshiny; deep learning; leaf disease detection;
VOSViewer
AB The agriculture industry is critical to delivering high-quality food and contributes significantly to the growth of economies and people which can be affected by the plant disease. This article demonstrates a visualization based bibliometric analysis to depict research trends in deep learning-based leaf disease detection from 2014 to January 2024. The publications used in this study are collected from the Scopus database. The research distributions with respect to sources and country, research trends, and research limits for deep learning in leaf disease detection studies are presented using Biblioshiny and VOSViewer software and visualization technologies. From 2014 to January 2024, the literature on this field has grown at an average rate of 53.41%. 1307 peer-reviewed publications from 54 countries are identified that are published in 594 distinct sources. India is the most productive country, accounting for 36.6% of total publications and 23% of total citations. Chitkara University Institute of Engineering and Technology was the most productive research institute, with 66 publications and 291 citations, while Computers and Electronics in Agriculture journal has the most citations in deep learning-based leaf disease detection research. The findings, in particular, show that "Convolution Neural Network", "Transfer Learning", "Ensemble Learning", etc., are the most widely used research topics in this field from 2014 to January 2024, and the research interest engrossed on applications of deep learning standard architectures. This study gives an insight into deep learning in leaf disease detection's general research patterns, which may assist researchers better understand and forecast the field's dynamic paths.
C1 [Chaki, Jyotismita] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore 632014, India.
[Ghosh, Dibyajyoti] Vellore Inst Technol, VIT Business Sch, Vellore 632014, India.
C3 Vellore Institute of Technology (VIT); VIT Vellore; Vellore Institute of
Technology (VIT); VIT Vellore
RP Ghosh, D (corresponding author), Vellore Inst Technol, VIT Business Sch, Vellore 632014, India.
EM dibyajyoti.ghosh@vit.ac.in
RI Chaki, Jyotismita/T-4882-2019
OI Chaki, Jyotismita/0000-0003-1804-8590
FU Vellore Institute of Technology (VIT), Vellore
FX The authors are thankful to the Vellore Institute of Technology (VIT),
Vellore for providing all the facilities and support.
CR Abbas A, 2021, COMPUT ELECTRON AGR, V187, DOI 10.1016/j.compag.2021.106279
Atila Ü, 2021, ECOL INFORM, V61, DOI 10.1016/j.ecoinf.2020.101182
Bajpai Chandrabhanu, 2023, International Journal of Intelligent Systems Technologies and Applications, P72, DOI 10.1504/IJISTA.2023.130562
Beckman J, 2021, AM J AGR ECON, V103, P1595, DOI 10.1111/ajae.12212
bibliometrix.org, Introduction to Biblioshiny
Chen HC, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11060951
Chen Junde, 2023, Journal of Ambient Intelligence and Humanized Computing, P12359, DOI 10.1007/s12652-022-04334-6
Chen JD, 2020, COMPUT ELECTRON AGR, V173, DOI 10.1016/j.compag.2020.105393
Chouhan SS, 2020, ARCH COMPUT METHOD E, V27, P611, DOI [10.1007/s11831-019-09324-0, 10.33552/abeb.2018.01.000510]
Cibu B, 2023, COMPUTERS, V12, DOI 10.3390/computers12110237
Coulibaly B., 2022, Intell. Syst. With Appli., V16, DOI [10.1016/j.iswa.2022.200102.n, DOI 10.1016/J.ISWA.2022.200102.N]
Dhingra G, 2018, MULTIMED TOOLS APPL, V77, P19951, DOI 10.1007/s11042-017-5445-8
Elfatimi E, 2022, IEEE ACCESS, V10, P9471, DOI 10.1109/ACCESS.2022.3142817
Fuentes A, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17092022
Ganaie MA, 2022, ENG APPL ARTIF INTEL, V115, DOI 10.1016/j.engappai.2022.105151
Geetharamani G, 2019, COMPUT ELECTR ENG, V76, P323, DOI 10.1016/j.compeleceng.2019.04.011
Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228
Hassan SM, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10121388
He Y, 2024, FRONT PLANT SCI, V14, DOI 10.3389/fpls.2023.1280671
Hindarto D., 2023, ''Jurnal TeknologiInformasi Universitas Lambung Mangkurat (JTIULM), V8, P41
Islam A., 2021, Int. J. Intell. Syst. Appl, V13, P35, DOI [10.5815/ijisa.2021.05.04, DOI 10.5815/IJISA.2021.05.04]
Jiang P, 2019, IEEE ACCESS, V7, P59069, DOI 10.1109/ACCESS.2019.2914929
Karthik R, 2020, APPL SOFT COMPUT, V86, DOI 10.1016/j.asoc.2019.105933
Kaur P, 2023, TURK J AGRIC FOR, V47, P727, DOI 10.55730/1300-011X.3123
Kokol P, 2021, HEALTH INFO LIBR J, V38, P125, DOI 10.1111/hir.12295
Li LL, 2021, IEEE ACCESS, V9, P56683, DOI 10.1109/ACCESS.2021.3069646
Li MX, 2022, COMPUT ELECTRON AGR, V194, DOI 10.1016/j.compag.2022.106779
Li Y, 2020, INT J MACH LEARN CYB, V11, P2807, DOI 10.1007/s13042-020-01152-0
Liu B, 2018, SYMMETRY-BASEL, V10, DOI 10.3390/sym10010011
Ma KD, 2015, IEEE T IMAGE PROCESS, V24, P4673, DOI 10.1109/TIP.2015.2460015
Manogna A., 2023, Kybernetes, V52, P1
Marini S., 2023, J. Pathol. Informat., V14
Mzoughi O, 2023, ECOL INFORM, V75, DOI 10.1016/j.ecoinf.2023.102000
Nguyen C, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21030742
Ojo MO, 2023, AGRONOMY-BASEL, V13, DOI 10.3390/agronomy13030887
Pandian JA, 2019, INT CONF ADV COMPU, P199, DOI [10.1109/iacc48062.2019.8971580, 10.1109/IACC48062.2019.8971580]
Pavithra A, 2023, SOFT COMPUT, DOI 10.1007/s00500-023-07936-0
Paymode AS, 2022, ARTIF INTELL AGR, V6, P23, DOI 10.1016/j.aiia.2021.12.002
Qi Y., 2021, Appl. Sci., V11
Qiang Z., 2019, inCommunicationsin Computer and Information Science, V7, P118
Ranganathan G., 2021, Innov. Image Process., V3, P66
Rao U. S., 2021, GLOBAL TRANSITIONS P, V2, P535, DOI [10.1016/j.gltp.2021.08.002, DOI 10.1016/J.GLTP.2021.08.002]
Saleem MH, 2020, PLANTS-BASEL, V9, DOI 10.3390/plants9101319
Sarin P. Kumar, Benchmarking
Shahin MA, 2003, CEREAL CHEM, V80, P285, DOI 10.1094/CCHEM.2003.80.3.285
Sharma Parul, 2020, Information Processing in Agriculture, V7, P566, DOI 10.1016/j.inpa.2019.11.001
Shorten C, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0197-0
Shrestha G, 2020, PROCEEDINGS OF 2020 IEEE APPLIED SIGNAL PROCESSING CONFERENCE (ASPCON 2020), P109, DOI [10.1109/ASPCON49795.2020.9276722, 10.1109/aspcon49795.2020.9276722]
Sujatha R, 2021, MICROPROCESS MICROSY, V80, DOI 10.1016/j.micpro.2020.103615
Tassis LM, 2021, COMPUT ELECTRON AGR, V186, DOI 10.1016/j.compag.2021.106191
Tian Hong-kun, 2020, Information Processing in Agriculture, V7, P1, DOI 10.1016/j.inpa.2019.09.006
Vallabhajosyula S, 2022, J PLANT DIS PROTECT, V129, P545, DOI 10.1007/s41348-021-00465-8
Vishnoi VK, 2022, MULTIMED TOOLS APPL, V81, P367, DOI 10.1007/s11042-021-11375-0
vosviewer.com, VOSviewer-Visualizing Scientific Landscapes
Zhang XH, 2018, IEEE ACCESS, V6, P30370, DOI 10.1109/ACCESS.2018.2844405
Zhang Z, 2023, IEEE ACCESS, V11, P21176, DOI 10.1109/ACCESS.2023.3251098
Zhong Y, 2020, COMPUT ELECTRON AGR, V168, DOI 10.1016/j.compag.2019.105146
NR 57
TC 0
Z9 0
U1 4
U2 4
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2024
VL 12
BP 95291
EP 95308
DI 10.1109/ACCESS.2024.3425897
PG 18
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA YY9Q4
UT WOS:001272169500001
OA gold
DA 2024-09-05
ER
PT J
AU Sarin, G
Kumar, P
Mukund, M
AF Sarin, Gaurav
Kumar, Pradeep
Mukund, M.
TI Text classification using deep learning techniques: a bibliometric
analysis and future research directions
SO BENCHMARKING-AN INTERNATIONAL JOURNAL
LA English
DT Article
DE Data mining; Text analytics; Classification; Deep learning; Bibliometric
analysis
ID CONVOLUTIONAL NEURAL-NETWORK; ATTENTION; MODEL; SEMANTICS; ENSEMBLE;
SYSTEMS; SUPPORT; LSTM; WEB
AB PurposeText classification is a widely accepted and adopted technique in organizations to mine and analyze unstructured and semi-structured data. With advancement of technological computing, deep learning has become more popular among academicians and professionals to perform mining and analytical operations. In this work, the authors study the research carried out in field of text classification using deep learning techniques to identify gaps and opportunities for doing research.Design/methodology/approachThe authors adopted bibliometric-based approach in conjunction with visualization techniques to uncover new insights and findings. The authors collected data of two decades from Scopus global database to perform this study. The authors discuss business applications of deep learning techniques for text classification.FindingsThe study provides overview of various publication sources in field of text classification and deep learning together. The study also presents list of prominent authors and their countries working in this field. The authors also presented list of most cited articles based on citations and country of research. Various visualization techniques such as word cloud, network diagram and thematic map were used to identify collaboration network.Originality/valueThe study performed in this paper helped to understand research gaps that is original contribution to body of literature. To best of the authors' knowledge, in-depth study in the field of text classification and deep learning has not been performed in detail. The study provides high value to scholars and professionals by providing them opportunities of research in this area.
C1 [Sarin, Gaurav] Delhi Sch Business, New Delhi, Delhi, India.
[Kumar, Pradeep] Indian Inst Management Lucknow, Lucknow, India.
[Mukund, M.] VDXtv, New Delhi, India.
C3 Indian Institute of Management (IIM System); Indian Institute of
Management Lucknow
RP Sarin, G (corresponding author), Delhi Sch Business, New Delhi, Delhi, India.
EM gaurav.sarin@iiml.org; pradeep.kumar@iiml.ac.in;
reachoutmukund@gmail.com
CR Akhter MP, 2022, ENTERP INF SYST-UK, V16, P223, DOI 10.1080/17517575.2020.1755455
Akhter MP, 2020, IEEE ACCESS, V8, P42689, DOI 10.1109/ACCESS.2020.2976744
Al-Garadi MA, 2021, BMC MED INFORM DECIS, V21, DOI 10.1186/s12911-021-01394-0
Al-Smadi M, 2017, INFORM PROCESS MANAG, V53, P640, DOI 10.1016/j.ipm.2017.01.002
Alom MZ, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8030292
Alsaleh D, 2021, IEEE ACCESS, V9, P91670, DOI 10.1109/ACCESS.2021.3091376
Altinel B, 2018, INFORM PROCESS MANAG, V54, P1129, DOI 10.1016/j.ipm.2018.08.001
Alvesson M, 2011, ACAD MANAGE REV, V36, P247, DOI 10.5465/AMR.2011.59330882
Bartol T, 2014, SCIENTOMETRICS, V98, P1491, DOI 10.1007/s11192-013-1148-8
BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680
Burkhardt S, 2018, MACH LEARN, V107, P859, DOI 10.1007/s10994-017-5689-6
Cai LK, 2020, IEEE ACCESS, V8, P152183, DOI 10.1109/ACCESS.2020.3017382
Chen CAS, 2021, NEUROCOMPUTING, V452, P253, DOI 10.1016/j.neucom.2021.04.105
Chen HH, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102798
Colace F, 2014, COMPUT HUM BEHAV, V30, P689, DOI 10.1016/j.chb.2013.07.043
Dalal M., 2011, Int. J. Comput. Appl, V28, P37, DOI DOI 10.5120/3358-4633
Dong YR, 2020, IEEE ACCESS, V8, P30548, DOI 10.1109/ACCESS.2019.2954985
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Durán-Sánchez A, 2019, J ENTERP COMMUNITIES, V13, P84, DOI 10.1108/JEC-10-2018-0072
El Rifai H, 2022, NEURAL COMPUT APPL, V34, P1135, DOI 10.1007/s00521-021-06390-z
El-Alfy EM, 2020, TECHNOL ANAL STRATEG, V32, P984, DOI 10.1080/09537325.2020.1732912
El-Halees A.M., 2015, IUG J NATURAL STUDIE, V15
Er MJ, 2016, INFORM SCIENCES, V373, P388, DOI 10.1016/j.ins.2016.08.084
Fang WL, 2020, ADV ENG INFORM, V44, DOI 10.1016/j.aei.2020.101060
Fortuna P, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3232676
Gandotra E, 2021, CYBERNET SYST, V52, P169, DOI 10.1080/01969722.2020.1826659
Gao S, 2021, IEEE J BIOMED HEALTH, V25, P3596, DOI 10.1109/JBHI.2021.3062322
Gargiulo F, 2019, APPL SOFT COMPUT, V79, P125, DOI 10.1016/j.asoc.2019.03.041
Genkin A, 2007, TECHNOMETRICS, V49, P291, DOI 10.1198/004017007000000245
Ghiassi M, 2013, EXPERT SYST APPL, V40, P6266, DOI 10.1016/j.eswa.2013.05.057
Ghiassi M, 2012, EXPERT SYST APPL, V39, P10967, DOI 10.1016/j.eswa.2012.03.027
Griesshaber D, 2020, COMPUT SPEECH LANG, V62, DOI 10.1016/j.csl.2019.101056
Gupta Vishal, 2009, Journal of Emerging Technologies in Web Intelligence, V1, P60, DOI 10.4304/jetwi.1.1.60-76
Gupta V., 2012, INT J COMPUTER APPL, V37, P30
Hajiabadi H, 2020, INT J MACH LEARN CYB, V11, P751, DOI 10.1007/s13042-019-00982-x
Hao M, 2020, ACM T ASIAN LOW-RESO, V19, DOI 10.1145/3388970
Hartmann J, 2019, INT J RES MARK, V36, P20, DOI 10.1016/j.ijresmar.2018.09.009
Hashemi M, 2020, MULTIMED TOOLS APPL, V79, P11921, DOI 10.1007/s11042-019-08373-8
Huan JL, 2022, NEURAL COMPUT APPL, V34, P2341, DOI 10.1007/s00521-021-06542-1
Huang XB, 2021, NANO RES, V14, P4250, DOI 10.1007/s12274-021-3597-3
Ibrahim MA, 2021, J BIOMED INFORM, V116, DOI 10.1016/j.jbi.2021.103699
Irfan R, 2015, KNOWL ENG REV, V30, P157, DOI 10.1017/S0269888914000277
Islam MR, 2020, SOC NETW ANAL MIN, V10, DOI 10.1007/s13278-020-00696-x
Jang B, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10175841
Jing WP, 2021, ACM T ASIAN LOW-RESO, V20, DOI 10.1145/3434239
Kadhim AI, 2019, ARTIF INTELL REV, V52, P273, DOI 10.1007/s10462-018-09677-1
Kardakis S, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11093883
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Khan Aurangzeb, 2010, Journal of Advances in Information Technology, V1, P4, DOI 10.4304/jait.1.1.4-20
Khan T, 2019, MULTIMED TOOLS APPL, V78, P32159, DOI 10.1007/s11042-019-08028-8
Kim HJ, 2018, NEUROCOMPUTING, V315, P128, DOI 10.1016/j.neucom.2018.07.002
Küçük D, 2020, ACM COMPUT SURV, V53, DOI 10.1145/3369026
Kushwaha A. K., 2021, International Journal of Information Management Data Insights, V1, DOI DOI 10.1016/J.JJIMEI.2021.100017
Kwon D, 2019, CLUSTER COMPUT, V22, P949, DOI 10.1007/s10586-017-1117-8
Lee K, 2018, J INF SCI, V44, P715, DOI 10.1177/0165551517743644
Lewis DD, 2004, J MACH LEARN RES, V5, P361
Li Q, 2020, NEUROCOMPUTING, V414, P143, DOI 10.1016/j.neucom.2020.07.049
Li X, 2021, NEUROCOMPUTING, V443, P345, DOI 10.1016/j.neucom.2021.02.069
Liang DC, 2021, INFORM SCIENCES, V547, P271, DOI 10.1016/j.ins.2020.08.051
Liang YJ, 2021, INFORM SCIENCES, V548, P295, DOI 10.1016/j.ins.2020.10.021
Liu C, 2020, J VIS COMMUN IMAGE R, V71, DOI 10.1016/j.jvcir.2019.102724
Liu G, 2019, NEUROCOMPUTING, V337, P325, DOI 10.1016/j.neucom.2019.01.078
Liu JG, 2019, IEEE ACCESS, V7, P154546, DOI 10.1109/ACCESS.2019.2949175
Liu YY, 2022, COMPUT SPEECH LANG, V71, DOI 10.1016/j.csl.2021.101268
Liu ZY, 2020, IEEE ACCESS, V8, P149362, DOI 10.1109/ACCESS.2020.3016727
Lu J, 2015, KNOWL-BASED SYST, V80, P14, DOI 10.1016/j.knosys.2015.01.010
Luo WL, 2022, WIREL COMMUN MOB COM, V2022, DOI 10.1155/2022/4330701
Martarelli N.J., 2022, INT J INF MANAG DATA, V2
Maw M, 2020, MALAYS J COMPUT SCI, V33, P102, DOI 10.22452/mjcs.vol33no2.2
Mitra V, 2007, APPL SOFT COMPUT, V7, P908, DOI 10.1016/j.asoc.2006.04.002
Moirangthem DS, 2021, EXPERT SYST APPL, V165, DOI 10.1016/j.eswa.2020.113898
Moreo A, 2021, DATA MIN KNOWL DISC, V35, P911, DOI 10.1007/s10618-020-00735-3
Mukherjee D, 2022, J BUS RES, V148, P101, DOI 10.1016/j.jbusres.2022.04.042
Linh NV, 2017, KNOWL INF SYST, V50, P763, DOI 10.1007/s10115-016-0956-6
Oleynik M, 2019, J AM MED INFORM ASSN, V26, P1247, DOI 10.1093/jamia/ocz149
Omayio E.O., 2021, DIGITAL TECHNIQUES H, P11
Pan CY, 2019, IEEE ACCESS, V7, P53296, DOI 10.1109/ACCESS.2019.2911850
Paul J, 2021, J BUS RES, V133, P337, DOI 10.1016/j.jbusres.2021.05.005
Qi XG, 2009, ACM COMPUT SURV, V41, DOI 10.1145/1459352.1459357
Queiroz MM, 2020, ANN OPER RES, DOI 10.1007/s10479-020-03685-7
Raffel C, 2020, J MACH LEARN RES, V21
Ranjan N., 2016, INT J COMPUT APPL, V134, P6, DOI DOI 10.5120/IJCA2016907355
Ren JS, 2021, NEUROCOMPUTING, V455, P265, DOI 10.1016/j.neucom.2021.05.072
Rogers D, 2022, IEEE T COMPUT SOC SY, V9, P1154, DOI 10.1109/TCSS.2021.3120138
Sahingoz OK, 2019, EXPERT SYST APPL, V117, P345, DOI 10.1016/j.eswa.2018.09.029
Salloum S.A., 2018, Studies in Computational Intelligence, P417, DOI DOI 10.1007/978-3-319-67056-0_20
Sarikaya R, 2014, IEEE-ACM T AUDIO SPE, V22, P778, DOI 10.1109/TASLP.2014.2303296
Schwenker F, 2014, PATTERN RECOGN LETT, V37, P4, DOI 10.1016/j.patrec.2013.10.017
Shin HS, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9091527
Shuang K, 2019, J EXP THEOR ARTIF IN, V31, P455, DOI 10.1080/0952813X.2019.1572654
Stein RA, 2019, INFORM SCIENCES, V471, P216, DOI 10.1016/j.ins.2018.09.001
Sun SL, 2017, INFORM FUSION, V36, P10, DOI 10.1016/j.inffus.2016.10.004
Tan C., 2022, APPL INTELL, P1
Tan ZP, 2022, IEEE T NEUR NET LEAR, V33, P973, DOI 10.1109/TNNLS.2020.3036192
Tian D, 2021, ADV ENG INFORM, V49, DOI 10.1016/j.aei.2021.101355
Van Phan T, 2016, PATTERN RECOGN, V51, P112, DOI 10.1016/j.patcog.2015.07.012
Vanhala M, 2020, J BUS RES, V106, P46, DOI 10.1016/j.jbusres.2019.09.009
Wagner G, 2022, J INF TECHNOL-UK, V37, P209, DOI 10.1177/02683962211048201
Wang BY, 2021, KNOWL-BASED SYST, V218, DOI 10.1016/j.knosys.2021.106876
Wang CF, 2020, IEEE ACCESS, V8, P202687, DOI 10.1109/ACCESS.2020.3036455
Wang JY, 2019, IEEE ACCESS, V7, P171548, DOI 10.1109/ACCESS.2019.2955924
Wang J, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2915
Wang P, 2016, NEUROCOMPUTING, V174, P806, DOI 10.1016/j.neucom.2015.09.096
Wang SY, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4468
WHETTEN DA, 1989, ACAD MANAGE REV, V14, P490, DOI 10.2307/258554
Wozniak M, 2014, INFORM FUSION, V16, P3, DOI 10.1016/j.inffus.2013.04.006
Xia R, 2016, INFORM PROCESS MANAG, V52, P36, DOI 10.1016/j.ipm.2015.04.003
Xia R, 2011, INFORM SCIENCES, V181, P1138, DOI 10.1016/j.ins.2010.11.023
Xing Zhengzheng., 2010, ACM Sigkdd Explorations Newsletter, V12, P40
Xu JC, 2020, INT J INTELL SYST, V35, P1397, DOI 10.1002/int.22260
Xu JC, 2020, ENG APPL ARTIF INTEL, V92, DOI 10.1016/j.engappai.2020.103641
Xu SY, 2021, EXPERT SYST APPL, V176, DOI 10.1016/j.eswa.2021.114795
Yang BG, 2011, DATA KNOWL ENG, V70, P775, DOI 10.1016/j.datak.2011.05.002
Yang KY, 2022, ACM T KNOWL DISCOV D, V16, DOI 10.1145/3457216
Yang ZY, 2019, IEEE ACCESS, V7, P153012, DOI 10.1109/ACCESS.2019.2948855
Yao HP, 2018, COMPUT INFORM, V37, P992, DOI 10.4149/cai_2018_4_992
Yao JQ, 2019, IEEE ACCESS, V7, P183580, DOI 10.1109/ACCESS.2019.2960626
Yao L, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0781-4
Zeng K, 2020, JMIR MED INF, V8, DOI 10.2196/17832
Zhang JZ, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115561
Zhang S, 2019, INT J COMPUT COMMUN, V14, P124, DOI 10.15837/ijccc.2019.1.3420
Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029
Zhang W, 2015, KNOWL-BASED SYST, V75, P152, DOI 10.1016/j.knosys.2014.11.028
Zhao WJ, 2020, IEEE ACCESS, V8, P100426, DOI 10.1109/ACCESS.2020.2997969
Zheng J, 2019, IEEE ACCESS, V7, P106673, DOI 10.1109/ACCESS.2019.2932619
Zulqarnain M, 2021, ARAB J SCI ENG, V46, P8953, DOI 10.1007/s13369-021-05691-8
NR 126
TC 0
Z9 0
U1 1
U2 10
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 1463-5771
EI 1758-4094
J9 BENCHMARKING
JI Benchmarking
PD AUG 30
PY 2024
VL 31
IS 8
BP 2743
EP 2766
DI 10.1108/BIJ-07-2022-0454
EA AUG 2023
PG 24
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA E0R0X
UT WOS:001049091700001
DA 2024-09-05
ER
PT J
AU Polyakov, M
Gibson, FL
Pannell, DJ
AF Polyakov, Maksym
Gibson, Fiona L.
Pannell, David J.
TI Antipodean agricultural and resource economics at 60: Trends in topics,
authorship and collaboration
SO AUSTRALIAN JOURNAL OF AGRICULTURAL AND RESOURCE ECONOMICS
LA English
DT Article
DE citation analysis; co-authorship; collaboration; Latent Dirichlet
allocation
AB This study presents results of an analysis of 1060 academic articles published in the Australian Journal of Agricultural Economics and the Australian Journal of Agricultural and Resource Economics from 1957 to 2015. Trends in research topics over time identified by the study include a decline in research on agricultural topics offset by growth in publications related to natural resources, the environment, trade, food and international development. Other trends include an increase in the average number of co-authors on each paper, a gradual increase in authorship by females, changes in the shares of top contributing institutions, increases in collaboration between institutions and a steady increase in the number of authors from outside Australia or New Zealand.
C1 [Polyakov, Maksym; Gibson, Fiona L.; Pannell, David J.] Univ Western Australia, Ctr Environm Econ & Policy, Sch Agr & Resource Econ, Nedlands, WA, Australia.
C3 University of Western Australia
RP Polyakov, M (corresponding author), Univ Western Australia, Ctr Environm Econ & Policy, Sch Agr & Resource Econ, Nedlands, WA, Australia.
EM maksym.polyakov@uwa.edu.au
RI Pannell, David/B-4476-2008; Polyakov, Maksym/G-1523-2010
OI Pannell, David/0000-0001-5420-9908; Polyakov,
Maksym/0000-0002-0193-6658; Dempster, Fiona/0000-0002-7989-3483
FU ARC Centre of Excellence for Environmental Decisions
FX Funding support from the ARC Centre of Excellence for Environmental
Decisions is gratefully acknowledged.
CR Alston JM, 2016, AUST J AGR RESOUR EC, V60, P554, DOI 10.1111/1467-8489.12162
Atkinson K., 2003, GNU ASPELL
BATTESE GE, 1977, AUST J AGR ECON, V21, P169, DOI 10.1111/j.1467-8489.1977.tb00204.x
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Curtis K., 2009, RECENT CHANGES AUSTR
Edwards G, 2016, AUST J AGR RESOUR EC, V60, P573, DOI 10.1111/1467-8489.12174
Feinerer Ingo., 2015, Introduction to the tm Package Text Mining in R. 2013‐12‐01
Grün B, 2011, J STAT SOFTW, V40, P1
Karl A, 2015, WIRES COMPUT STAT, V7, DOI 10.1002/wics.1361
Pannell D, 2016, AUST J AGR RESOUR EC, V60, P651, DOI 10.1111/1467-8489.12172
Pannell DJ, 2001, AUST J AGR RESOUR EC, V45, P517, DOI 10.1111/1467-8489.00156
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Productivity Commission, 2006, TRENDS AUSTR AGR RES
Quiggin JC, 2016, AUST J AGR RESOUR EC, V60, P535, DOI 10.1111/1467-8489.12159
Schilizzi S, 2013, AUST J AGR RESOUR EC, V57, P15, DOI 10.1111/j.1467-8489.2012.00602.x
Schymura M, 2014, SCIENTOMETRICS, V99, P631, DOI 10.1007/s11192-014-1248-0
van Dijk AIJM, 2013, WATER RESOUR RES, V49, P1040, DOI 10.1002/wrcr.20123
Westgate MJ, 2015, CONSERV BIOL, V29, P1606, DOI 10.1111/cobi.12605
NR 19
TC 4
Z9 4
U1 3
U2 16
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1364-985X
EI 1467-8489
J9 AUST J AGR RESOUR EC
JI Aust. J. Agr. Resour. Econ.
PD OCT
PY 2016
VL 60
IS 4
BP 506
EP 515
DI 10.1111/1467-8489.12152
PG 10
WC Agricultural Economics & Policy; Economics
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Agriculture; Business & Economics
GA EC7IV
UT WOS:000388311500004
OA Green Submitted, Green Published
DA 2024-09-05
ER
PT J
AU Liu, YM
Chen, M
AF Liu, Yunmei
Chen, Min
TI The Knowledge Structure and Development Trend in Artificial Intelligence
Based on Latent Feature Topic Model
SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
LA English
DT Article
DE Artificial intelligence; Market research; Analytical models; Patents;
Semantics; Collaboration; Computational modeling; development trend;
knowl-edge structures; LDA models
AB Currently, with the rapid development of science and technology, the field of artificial intelligence presents characteristics such as a wide crossover of disciplines and fast update, and the field of artificial intelligence has become a new focus of international competition. As an interdisciplinary field, the field of artificial intelligence has rich knowledge and strategic management significance. This article conducts an in-depth study on the knowledge structure and evolution trends in the field of AI, and the main work is as follows. First, a new potential feature topic model New-LDA is proposed for the study of topic recognition, which enhances the feature learning ability of the traditional LDA model, and makes up for the deficiency of the traditional LDA model in the ability of recognizing topics in complex environments. Second, the knowledge structure in the field of AI is analyzed from two aspects: topic recognition and coword analysis. The time series model is introduced to establish the topic evolution network, and the high-frequency words in three periods are compared and analyzed to find the evolution regular of knowledge structure in the AI domain. Finally, taking the cross-discipline of AI as an example, the thematic evolution of the field and its cross-discipline is analyzed to determine the future development direction and evolutionary trend of the field of AI.
C1 [Liu, Yunmei] Shanghai Univ, Sch Cultural Heritage & Informat Management, Shanghai 200444, Peoples R China.
[Chen, Min] Wenzhou Univ, Sch Business, Wenzhou 325035, Peoples R China.
C3 Shanghai University; Wenzhou University
RP Chen, M (corresponding author), Wenzhou Univ, Sch Business, Wenzhou 325035, Peoples R China.
EM emily0904@shu.edu.cn; minchen@wzu.edu.cn
RI Chen, Min/AAD-4064-2019
FU "Research on Nonstandard Citation Behavior of Scientific Data for
Full-Text Citation Content" (Joint Laboratory Project Between Institute
of Scientific and Technical Information of China and Elsevier in 2022);
MultidimensionalEvaluation Paradigm of ScientificLiterature and
Evaluation System of Scientific and Technological Talents under the
Background of `Breaking Four Principles and Establishing New Standards'
[21wsk169]
FX This work was supported in part by the Project of "Research on
Nonstandard Citation Behavior of Scientific Data for Full-Text Citation
Content" (Joint Laboratory Project Between Institute of Scientific and
Technical Information of China and Elsevier in 2022) and in part by the
Project of "MultidimensionalEvaluation Paradigm of ScientificLiterature
and Evaluation System of Scientific and Technological Talents under the
Background of `Breaking Four Principles and Establishing New Standards"'
under Grant 21wsk169 (Zhejiang Soft Science Research Plan in 2022).
CR An Wang, 2020, 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). Proceedings, P814, DOI 10.1109/ITOEC49072.2020.9141892
Azzam M, 2024, IEEE T ENG MANAGE, V71, P2324, DOI 10.1109/TEM.2022.3179107
Balfaqih Hasan, 2023, Explore Business, Technology Opportunities and Challenges After the Covid-19 Pandemic. Lecture Notes in Networks and Systems (495), P1241, DOI 10.1007/978-3-031-08954-1_106
Bone F, 2020, RES EVALUAT, V29, P300, DOI 10.1093/reseval/rvaa006
Borge L, 2024, IEEE T ENG MANAGE, V71, P1452, DOI 10.1109/TEM.2022.3146199
Borrego M, 2010, REV HIGH EDUC, V34, P61
Chen C. H., 2016, CHIN J MANAGE, V13, P157
Coccia M., IEEE T ENG MANAGE
Coccia M, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21237803
Coccia M, 2020, TECHNOL ANAL STRATEG, V32, P1462, DOI 10.1080/09537325.2020.1785415
Coccia M, 2019, TECHNOL ANAL STRATEG, V31, P517, DOI 10.1080/09537325.2018.1523385
Coccia M, 2017, TECHNOL ANAL STRATEG, V29, P1048, DOI 10.1080/09537325.2016.1268682
Coccia M, 2016, TECHNOL ANAL STRATEG, V28, P381, DOI 10.1080/09537325.2015.1095287
Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113
Dai J., 2018, LIB INTELL KNOWL CHI, V186, P61
Garcia-Murillo M, 2019, DIGIT POLICY REGUL G, V21, P305, DOI 10.1108/DPRG-09-2018-0051
Guo KJ, 2015, 2015 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY, P209, DOI 10.1109/CyberC.2015.20
Gupta A, 2021, COMPUT BIOL MED, V138, DOI 10.1016/j.compbiomed.2021.104920
Hauer T, 2022, HUM SOC SCI COMMUN, V9, DOI 10.1057/s41599-022-01300-7
Hu C, 2017, IEEE DATA MINING, P907, DOI 10.1109/ICDM.2017.113
Jiang S, 2024, IEEE T ENG MANAGE, V71, P1163, DOI 10.1109/TEM.2022.3152216
Kalthoff M, 2015, HARVARD BUS REV, V93, P20
Vinh LT, 2012, APPL INTELL, V37, P100, DOI 10.1007/s10489-011-0315-y
Leahey E, 2017, ADMIN SCI QUART, V62, P105, DOI 10.1177/0001839216665364
Liu ZY, 2015, ACSR ADV COMPUT, V18, P837
Lui AKH, 2022, ANN OPER RES, V308, P373, DOI 10.1007/s10479-020-03862-8
Luo J, 2020, INT J COMPUT COMMUN, V15, DOI 10.15837/ijccc.2020.2.3811
Luo M., 2007, SCI RES MANAGE CHINA, V28, P18
Luo XF, 2014, IEEE T SYST MAN CY-S, V44, P86, DOI 10.1109/TSMCC.2012.2231674
Mikalef P, 2019, LECT NOTES BUS INF P, V373, P409, DOI 10.1007/978-3-030-36691-9_34
Mountford N, 2020, STUD HIGH EDUC, V45, P2558, DOI 10.1080/03075079.2019.1623768
Piepenbrink A, 2015, SCIENTOMETRICS, V102, P2107, DOI 10.1007/s11192-014-1513-2
Robertson J, 2022, IEEE T ENG MANAGE, V69, P3913, DOI 10.1109/TEM.2021.3088382
Shao Z, 2022, EXPERT SYST APPL, V209, DOI 10.1016/j.eswa.2022.118221
Shen JJ, 2022, J CLOUD COMPUT-ADV S, V11, DOI 10.1186/s13677-022-00291-9
Soukup V., 2022, IND 40 CHALLENGES SM, P95
Wang L. X., 2015, J INTELL CHINA, V34, P127
Wang XB, 2008, CONF CYBERN INTELL S, P9, DOI 10.1109/IAS.2008.8
Wu D, 2021, J INTELL INF SYST, V56, P1, DOI 10.1007/s10844-020-00597-7
Xu K, 2018, KNOWL-BASED SYST, V141, P44, DOI 10.1016/j.knosys.2017.11.007
Yang X. Z., 2019, MODERN COMPUT CHINA, V26, P13
Zhang YJ, 2018, INT J DATA WAREHOUS, V14, P18, DOI 10.4018/IJDWM.2018040102
Zou LX, 2021, LIBR HI TECH, V39, P1063, DOI 10.1108/LHT-01-2021-0041
NR 43
TC 22
Z9 22
U1 88
U2 197
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9391
EI 1558-0040
J9 IEEE T ENG MANAGE
JI IEEE Trans. Eng. Manage.
PY 2024
VL 71
BP 12593
EP 12604
DI 10.1109/TEM.2022.3232178
EA JAN 2023
PG 12
WC Business; Engineering, Industrial; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Engineering
GA C6R9A
UT WOS:000920705300001
HC Y
HP N
DA 2024-09-05
ER
PT C
AU Davidescu, AA
Agafitei, MD
Strat, VA
Dima, AM
AF Davidescu, Adriana AnaMaria
Agafitei, Marina-Diana
Strat, Vasile Alecsandru
Dima, Alina Mihaela
TI Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the
Era of Artificial Intelligence and Machine Learning
SO PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BUSINESS EXCELLENCE
LA English
DT Proceedings Paper
CT 18th International Conference on Business Excellence (ICBE) - Smart
Solutions for a Sustainable Future
CY MAR 21-23, 2024
CL Bucharest, ROMANIA
DE Rating agencies; Artificial intelligence; Machine learning; Risk
assessment; Accountable governance
ID BOND RATINGS; CREDIT; CLASSIFICATION; MODELS; INDEX; RISK
AB In the ever-evolving financial landscape, the integration of artificial intelligence (AI) and machine learning (ML) is revolutionising creditworthiness assessment. The vast body of literature on credit rating indicates a growing prevalence of these techniques in the rating processes. Although these methods boast high predictive accuracy, concerns about their robustness, equity, and explainability affect the confidence of various parties in rating agencies. This comprehensive study explores the dynamic intersection of these cutting-edge technologies with rating agencies, presenting an in-depth literature review employing a bibliometric analysis that uses the Bibliometrix and Biblioshiny packages from R. The paper makes a significant contribution by analysing the literature across three prominent databases: Web of Science, Scopus, and arXiv. The empirical findings indicate that despite a recent growing interest, the relatively limited number of documents implies that, while there is a wide literature about credit rating in general, when it comes to rating agencies, the literature is much more limited. This limitation may stem from a certain lack of transparency in the methods and processes used by rating agencies and the complex nature of these entities. The literature witnessed growth after the 2008 global financial crisis, where rating agencies faced significant criticism, and post-pandemic, indicating a need for more adaptable and precise ratings. The examination of the topic reveals a recent shift in focus within AI-driven rating agencies towards accountable governance. While traditional attention persists on artificial intelligence techniques and finance, the emerging emphasis on ethical considerations, societal impacts, and performance evaluation underscores a changing landscape. This transition underscores the growing importance of integrating ethical considerations and societal impacts into the operational frameworks of AI-powered rating agencies, emphasising the necessity for responsible and transparent decision-making practices.
C1 [Davidescu, Adriana AnaMaria; Agafitei, Marina-Diana; Strat, Vasile Alecsandru; Dima, Alina Mihaela] Bucharest Univ Econ Studies, Bucharest, Romania.
C3 Bucharest University of Economic Studies
RP Davidescu, AA (corresponding author), Bucharest Univ Econ Studies, Bucharest, Romania.
EM adriana.alexandru@csie.ase.ro; diana.agafitei@csie.ase.ro;
vasile.strat@csie.ase.ro; alina.dima@ase.ro
FU EU's NextGenerationEU instrument through the National Recovery and
Resilience Plan of Romania [Pillar III-C9-I8, 760049/23.05.2023,
760047/23.05.2023]
FX This work was funded by the EU's NextGenerationEU instrument through the
National Recovery and Resilience Plan of Romania - Pillar III-C9-I8,
managed by the Ministry of Research, Innovation and Digitalization,
within the project entitled "CauseFinder: Causality in the Era of Big
Data and AI and its applications to innovation management", contract no.
760049/23.05.2023, code CF 268/29.11.2023, and within the project
entitled "Accountable Governance and Responsible Innovation in
Artificial Intelligence", contract no. 760047/23.05.2023, code CF
158/15.11.2022.
CR Altman EI, 1997, J BANK FINANC, V21, P1721, DOI 10.1016/S0378-4266(97)00036-8
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Atenstaedt R, 2012, BRIT J GEN PRACT, V62, P148, DOI 10.3399/bjgp12X630142
Bousmalis K, 2013, IEEE T NEUR NET LEAR, V24, P170, DOI 10.1109/TNNLS.2012.2224882
Brennan D, 2004, IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS, P161
BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680
Chen SY, 2011, QUANT FINANC, V11, P135, DOI 10.1080/14697680903410015
Costas R, 2007, J INFORMETR, V1, P193, DOI 10.1016/j.joi.2007.02.001
Cowan A.R., 1991, Journal of the Midwest Finance Association, V20, P47
Daniels H, 1999, NEURAL COMPUT APPL, V8, P226, DOI 10.1007/s005210050025
Dogan S, 2022, OPER RES DECIS, V32, P25, DOI 10.37190/ord220102
Dutta S., 1988, IEEE International Conference on Neural Networks (IEEE Cat. No.88CH2632-8), P443, DOI 10.1109/ICNN.1988.23958
Ebenroth C. T., 1993, Law and Policy in International Business, V24, P783
Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003
Giudici P, 2024, EXPERT SYST APPL, V235, DOI 10.1016/j.eswa.2023.121220
Golbayani P, 2020, N AM J ECON FINANC, V54, DOI 10.1016/j.najef.2020.101251
Griffith-Jones S., 2021, (Working Paper, n. 175).
Hao Z, 2021, ECOL INDIC, V125, DOI 10.1016/j.ecolind.2021.107358
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
HORRIGAN JO, 1966, J ACCOUNTING RES, V4, P44, DOI 10.2307/2490168
Irmatova E, 2016, Arxiv, DOI arXiv:1608.06416
Jun Woo Kim, 1993, Expert Systems, V10, P167, DOI 10.1111/j.1468-0394.1993.tb00093.x
KAPLAN RS, 1979, J BUS, V52, P231, DOI 10.1086/296045
Kim HS, 2010, EUR J OPER RES, V201, P838, DOI 10.1016/j.ejor.2009.03.036
Kim KS, 2005, EXPERT SYST APPL, V29, P75, DOI 10.1016/j.eswa.2005.01.007
Kumar R, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105617
Lee TS, 2006, COMPUT STAT DATA AN, V50, P1113, DOI 10.1016/j.csda.2004.11.006
Lessmann S, 2015, EUR J OPER RES, V247, P124, DOI 10.1016/j.ejor.2015.05.030
Maher J. J., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P59, DOI 10.1002/(SICI)1099-1174(199703)6:1<59::AID-ISAF116>3.0.CO;2-H
Maldonado S, 2017, DECIS SUPPORT SYST, V104, P113, DOI 10.1016/j.dss.2017.10.007
Mattarocci G., 2014, Elsevier Monographs
ODLIS, 2022, about us
Ozturk H, 2016, ECON MODEL, V54, P469, DOI 10.1016/j.econmod.2016.01.012
Paleologo G, 2010, EUR J OPER RES, V201, P490, DOI 10.1016/j.ejor.2009.03.008
Surkan A. J., 1990, IJCNN International Joint Conference on Neural Networks (Cat. No.90CH2879-5), P157, DOI 10.1109/IJCNN.1990.137709
Sylla RichardE., 2002, Ratings, Rating Agencies and the Global Financial System, P19
Trivedi SK, 2020, TECHNOL SOC, V63, DOI 10.1016/j.techsoc.2020.101413
Ubarhande P, 2021, COGENT BUS MANAG, V8, DOI 10.1080/23311975.2021.1878977
Vapnik V., 2013, The nature of statistical learning theory
Yang B, 2017, WORLD REV POLIT ECON, V8, P4
Zeng J. J., 2021, Journal of Cleaner Production
NR 41
TC 0
Z9 0
U1 1
U2 1
PU SCIENDO
PI WARSAW
PA BOGUMILA ZUGA 32A, WARSAW, MAZOVIA, POLAND
SN 2502-0226
EI 2558-9652
J9 P INT CONF BUS EXCEL
JI Proc. Int. Conf. Bus. Excell.
PD JUN 1
PY 2024
VL 18
IS 1
BP 67
EP 85
DI 10.2478/picbe-2024-0007
PG 19
WC Business
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Business & Economics
GA XM4K5
UT WOS:001262084900007
DA 2024-09-05
ER
PT J
AU Lathabai, HH
Nandy, A
Singh, VK
AF Lathabai, Hiran H.
Nandy, Abhirup
Singh, Vivek Kumar
TI Institutional collaboration recommendation: An expertise-based framework
using NLP and network analysis
SO EXPERT SYSTEMS WITH APPLICATIONS
LA English
DT Article
DE Institutional collaboration; Recommendation system; NLP; Network
analysis; Research expertise; Expertise indices
ID PRODUCTIVITY
AB The shift from 'trust-based funding' to 'performance-based funding' is one of the factors that has forced institutions to strive for continuous improvement of performance. Several studies have established the importance of collaboration in enhancing the performance of paired institutions. However, identification of suitable institutions for collaboration is sometimes difficult and therefore institutional collaboration recommendation systems can be vital. Currently, there are no well-developed institutional collaboration recommendation systems. In order to bridge this gap, we design a framework that recognizes the thematic strengths and core competencies of institutions, which can in turn be used for collaboration recommendations. The framework, based on NLP and network analysis techniques, is capable of determining the strengths of an institution in different thematic areas within a field and thereby determining the core competency and potential core competency areas of that institution. It makes use of recently proposed expertise indices such as x and x(g) indices for determination of core and potential core competency areas and can toss two kinds of recommendations: (i) for enhancement of strength of strong areas or core competency areas of an institution and (ii) for complementing the potentially strong areas or potential core competency areas of an institution. A major advantage of the system is that it can help to determine and improve the research portfolio of an institution within a field through suitable collaboration, which may lead to the overall improvement of the performance of the institution in that field. The framework is demonstrated by analyzing the performance of 195 Indian institutions in the field of 'Computer Science'. Upon validation using standard metrics for novelty, coverage and diversity of recommendation systems, the framework is found to be of sufficient coverage and capable of tossing novel and diverse recommendations. The article thus presents an institutional collaboration recommendation system which can be used by institutions to identify potential collaborators.
C1 [Lathabai, Hiran H.] Indian Inst Sci, DST Ctr Policy Res, Bengaluru 560012, India.
[Nandy, Abhirup; Singh, Vivek Kumar] Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India.
C3 Indian Institute of Science (IISC) - Bangalore; Banaras Hindu University
(BHU)
RP Singh, VK (corresponding author), Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India.
EM hiranh@iisc.ac.in; vivek@bhu.ac.in
RI Nandy, Abhirup/AFR-0690-2022; Singh, Vivek Kumar/O-5699-2019
OI Nandy, Abhirup/0000-0001-8618-0847; Singh, Vivek
Kumar/0000-0002-7348-6545; lathabai, hiran/0000-0002-5633-9842
FU DST-NSTMIS [DST/NSTMIS/05/04/2019-20]
FX The authors would like to acknowledge the support provided by the
DST-NSTMIS funded project-'Design of a Computational Framework for
Discipline-wise and Thematic Mapping of Research Performance of Indian
Higher Education Institutions (HEIs)', bearing Grant No.
DST/NSTMIS/05/04/2019-20, for this work.
CR Abramo G, 2009, HIGH EDUC, V57, P155, DOI 10.1007/s10734-008-9139-z
Adams J, 2012, NATURE, V490, P335, DOI 10.1038/490335a
Afolabi IT, 2021, WIRELESS PERS COMMUN, V121, P487, DOI 10.1007/s11277-021-08646-2
Ali Z, 2020, KNOWL-BASED SYST, V210, DOI 10.1016/j.knosys.2020.106438
Alshareef AM, 2019, IEEE ACCESS, V7, P38813, DOI 10.1109/ACCESS.2019.2906106
Ammar W., 2018, P 2018 C N AM CHAPT, V3, P84, DOI [DOI 10.18653/V1/N18-3011, 10.18653/v1/N18-3011]
Ashraf I, 2020, INT ARAB J INF TECHN, V17, P875, DOI 10.34028/iajit/17/6/6
Batagelj V., 2012, COMPUT COMPLEX, P2878
Bouraga S, 2014, INT J INTELL INF TEC, V10, P1, DOI 10.4018/ijiit.2014040101
Brandao MA, 2013, PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), P833
Canto Isabel, 2001, Journal of Studies in International Education, V5, P26, DOI [DOI 10.1177/102831530151003, 10.1177/102831530151003]
Caselles-Dupré H, 2018, 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), P352, DOI 10.1145/3240323.3240377
Deng J, 2019, INSECT CONSERV DIVER, V12, P18, DOI 10.1111/icad.12298
Ductor L, 2015, OXFORD B ECON STAT, V77, P385, DOI 10.1111/obes.12070
Egghe L., 2006, ISSI NEWSLETTER, V2, P8
Elammari M., 2012, INT J COMPUTER COMMU, V1
Feng Xia, 2016, IEEE Transactions on Big Data, V2, P101, DOI 10.1109/TBDATA.2016.2555318
Fouss Francois, 2008, Wl 2008. 2008 IEEE/WIC/ACM International Conference on Web Intelligence. IAT 2008. 2008 IEEE/WIC/ACM International Conference on Intelligent Agent Technology. Wl-IAT Workshop 2008 2008 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Workshops, P735, DOI 10.1109/WIIAT.2008.252
Gao L, 2019, EXPERT SYST APPL, V136, P242, DOI 10.1016/j.eswa.2019.06.013
George S, 2021, EXPERT SYST APPL, V176, DOI 10.1016/j.eswa.2021.114833
Gunawardana A., 2015, Recommender Systems Handbook, P265, DOI DOI 10.1007/978-1-0716-2197-415
Habib R, 2019, SCIENTOMETRICS, V119, P643, DOI 10.1007/s11192-019-03053-8
He C, 2020, J LARYNGOL OTOL, V134, P931, DOI 10.1017/S0022215120001589
Hernandez-Gress Neil, 2018, 2018 5th International Conference on Computational Science and Computational Intelligence (CSCI), P1129, DOI 10.1109/CSCI46756.2018.00218
Luong H, 2012, LECT NOTES ARTIF INT, V7198, P426, DOI 10.1007/978-3-642-28493-9_45
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jatnika D, 2019, PROCEDIA COMPUT SCI, V157, P160, DOI 10.1016/j.procs.2019.08.153
Jinzhu Zhang, 2017, Proceedings of the Association for Information Science and Technology, V54, DOI 10.1002/pra2.2017.14505401182
Jun SP, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120871
Jurgens D., 2012, P SEMEVAL NAACL HLT, V2, P356
Karasu S., 2018, 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 25 May 2018, P1, DOI DOI 10.1109/SIU.2018.8404760
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
Kent A., 1955, American Documentation, V6, P93, DOI [DOI 10.1002/ASI.5090060209, 10.1002/asi.5090060209, 10.1002/]
Kim MC, 2015, SCIENTOMETRICS, V104, P239, DOI 10.1007/s11192-015-1595-5
Kong XJ, 2017, SCIENTOMETRICS, V113, P369, DOI 10.1007/s11192-017-2485-9
Kong XJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148492
Koseoglu MA, 2016, SCIENTOMETRICS, V109, P203, DOI 10.1007/s11192-016-1894-5
Lathabai H. H., 2021, P 11 INT WORKSHOP BI
Lathabai HH, 2021, SCIENTOMETRICS, V126, P9557, DOI 10.1007/s11192-021-04188-3
Lathabai HH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101096
Lathabai HH, 2017, SCIENTOMETRICS, V110, P711, DOI 10.1007/s11192-016-2202-0
Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359
LEVENSHT.VI, 1965, DOKL AKAD NAUK SSSR+, V163, P845
Liu Y, 2019, EXPERT SYST, V36, DOI 10.1111/exsy.12365
Lops P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P73, DOI 10.1007/978-0-387-85820-3_3
Martin T, 2013, Arxiv, DOI arXiv:1304.0473
Medvet E, 2014, PROC INT C TOOLS ART, P1004, DOI 10.1109/ICTAI.2014.152
Meghanathan N, 2016, Advanced methods for complex network analysis
Melin G, 1996, SCIENTOMETRICS, V36, P363, DOI 10.1007/BF02129600
Mikolov T., 2013, INT C LEARNING REPRE
Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100
Parada G. A., 2013, COMPSCI 2013 P 2013, P7, DOI DOI 10.1145/2508497.2508499
Parish AJ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0189742
Payumo Jane, 2020, Front Res Metr Anal, V5, P612442, DOI 10.3389/frma.2020.612442
Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325
Pradhan T, 2021, INFORM SCIENCES, V559, P212, DOI 10.1016/j.ins.2020.12.024
Pradhan T, 2020, FUTURE GENER COMP SY, V110, P1139, DOI 10.1016/j.future.2019.11.017
Pujari M, 2015, NETW HETEROG MEDIA, V10, P17, DOI 10.3934/nhm.2015.10.17
Rollins J., 2017, CEUR Workshop Proceedings, V1823, P18
Sezer A, 2021, SOLDER SURF MT TECH, V33, P291, DOI 10.1108/SSMT-04-2021-0013
Shao BL, 2021, EXPERT SYST APPL, V165, DOI 10.1016/j.eswa.2020.113764
Son J, 2017, EXPERT SYST APPL, V89, P404, DOI 10.1016/j.eswa.2017.08.008
Sorlin S., 2007, Higher Education Policy, V20, P413
Sun N, 2019, IEEE ACCESS, V7, P136036, DOI 10.1109/ACCESS.2019.2941022
Vasile F, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P225, DOI 10.1145/2959100.2959160
Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002
Waheed W, 2019, IEEE ACCESS, V7, P33145, DOI 10.1109/ACCESS.2019.2900520
Wu Sen., 2013, Proceedings of the Sixth ACM International Conference on Web Search and Data Mining,WSDM '13, P43, DOI DOI 10.1145/2433396.2433404
Yang C, 2015, P ANN HICSS, P552, DOI 10.1109/HICSS.2015.73
Yang C, 2015, COMPUT J, V58, P1921, DOI 10.1093/comjnl/bxu033
Ye Q, 2012, TOUR MANAG PERSPECT, V2-3, P55, DOI 10.1016/j.tmp.2012.03.002
Zahálka J, 2015, IEEE T MULTIMEDIA, V17, P2235, DOI 10.1109/TMM.2015.2480007
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
NR 73
TC 5
Z9 5
U1 5
U2 20
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0957-4174
EI 1873-6793
J9 EXPERT SYST APPL
JI Expert Syst. Appl.
PD DEC 15
PY 2022
VL 209
AR 118317
DI 10.1016/j.eswa.2022.118317
EA AUG 2022
PG 17
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Operations Research & Management Science
GA 4R4YQ
UT WOS:000856772000012
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Xu, S
Hao, LY
An, X
Yang, GC
Wang, FF
AF Xu, Shuo
Hao, Liyuan
An, Xin
Yang, Guancan
Wang, Feifei
TI Emerging research topics detection with multiple machine learning models
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Emerging research topics; Topic modeling; Dynamic Influence Model;
Citation Influence Model; Machine learning
ID CO-WORD ANALYSIS; INFORMATION-SCIENCE; RESEARCH FIELDS; RESEARCH FRONTS;
IDENTIFY; EVOLUTION; TRENDS; PUBLICATIONS; TECHNOLOGIES; REFERENCES
AB Emerging research topic detection can benefit the research foundations and policy-makers. With the long-term and recent interest in detecting emerging research topics, various approaches are proposed in the literature. Though, there is still a lack of well-established linkages between the clear conceptual definition of emerging research topics and the proposed indicators for operationalization. This work follows the definition by Wang (2018), and several machine learning models are together used to detect and foresight the emerging research topics. Finally, experimental results on gene editing dataset discover three emerging research topics, which make clear that it is feasible to identify emerging research topics with our framework. (C) 2019 Elsevier Ltd. All rights reserved.
C1 [Xu, Shuo; Hao, Liyuan; Wang, Feifei] Beijing Univ Technol, Coll Econ & Management, Res Base Beijing Modern Mfg Dev, 100 PingLeYuan, Beijing 100124, Peoples R China.
[An, Xin] Beijing Forestry Univ, Sch Econ & Management, 35 Qinghua East Rd, Beijing 100083, Peoples R China.
[Yang, Guancan] Renmin Univ China, Sch Informat Resource Management, 59 Zhongguancun St, Beijing 100872, Peoples R China.
C3 Beijing University of Technology; Beijing Forestry University; Renmin
University of China
RP An, X (corresponding author), Beijing Forestry Univ, Sch Econ & Management, 35 Qinghua East Rd, Beijing 100083, Peoples R China.
EM xushuo@bjut.edu.cn; Leanne.H@qq.com; anxin@bjfu.edu.cn;
yanggc@ruc.edu.cn; feifeiwang@bjut.edu.cn
RI yang, guancan/HLP-8842-2023; Xu, Shuo/KVY-0402-2024; 王, 菲菲/R-1936-2019
OI yang, guancan/0000-0002-1706-1884; Xu, Shuo/0000-0002-8602-1819;
FU Social Science Foundation of Beijing Municipality [17GLB074]; Natural
Science Foundation of Guangdong Province [2018A030313695]
FX This research received the financial support from Social Science
Foundation of Beijing Municipality under grant number 17GLB074, and
Natural Science Foundation of Guangdong Province under grant number
2018A030313695. Our gratitude also goes to the anonymous reviewers for
their valuable comments.
CR AlSumait L, 2009, LECT NOTES ARTIF INT, V5781, P67, DOI 10.1007/978-3-642-04180-8_22
An X, 2019, COMPUT ELECTRON AGR, V157, P239, DOI 10.1016/j.compag.2018.12.035
An X, 2014, INT J DISTRIB SENS N, DOI 10.1155/2014/820715
An XY, 2011, SCIENTOMETRICS, V88, P133, DOI 10.1007/s11192-011-0374-1
Andrieu C, 2003, MACH LEARN, V50, P5, DOI 10.1023/A:1020281327116
[Anonymous], FRACEP EMERGING RES
[Anonymous], 2010, ACM KDD, DOI 10.1145/1835804.1835953
[Anonymous], 2003, P 26 ANN INT ACM SIG
[Anonymous], 2010, ICML
Argyriou A, 2008, MACH LEARN, V73, P243, DOI 10.1007/s10994-007-5040-8
Bakker B, 2004, J MACH LEARN RES, V4, P83, DOI 10.1162/153244304322765658
Ben-David S, 2008, MACH LEARN, V73, P273, DOI 10.1007/s10994-007-5043-5
Bishop Christopher M., 2006, Em: Journal of Electronic Imaging, DOI DOI 10.1117/1.2819119
Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859]
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boyack KW, 2014, J ENG TECHNOL MANAGE, V32, P147, DOI 10.1016/j.jengtecman.2013.07.001
Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Caruana R, 1997, MACH LEARN, V28, P41, DOI 10.1023/A:1007379606734
Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Cozzens S, 2010, TECHNOL ANAL STRATEG, V22, P361, DOI 10.1080/09537321003647396
DiCarlo JE, 2013, NUCLEIC ACIDS RES, V41, P4336, DOI 10.1093/nar/gkt135
Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526
Glänzel W, 2012, SCIENTOMETRICS, V91, P399, DOI 10.1007/s11192-011-0591-7
González-Alcaide G, 2016, SCIENTOMETRICS, V109, P1283, DOI 10.1007/s11192-016-2083-2
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Guo HN, 2011, SCIENTOMETRICS, V89, P421, DOI 10.1007/s11192-011-0433-7
Hansmann T, 2014, 2014 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, P43, DOI 10.1109/WI-IAT.2014.15
Hoffman MD, 2013, J MACH LEARN RES, V14, P1303
Hu CP, 2013, SCIENTOMETRICS, V97, P369, DOI 10.1007/s11192-013-1076-7
Huang MH, 2014, SCIENTOMETRICS, V98, P1721, DOI 10.1007/s11192-013-1126-1
Iwata T, 2012, ACM T KNOWL DISCOV D, V5, DOI 10.1145/2086737.2086739
Jaric I, 2014, SCIENTOMETRICS, V100, P519, DOI 10.1007/s11192-014-1268-9
Jia LT, 2012, CANCER TREAT REV, V38, P868, DOI 10.1016/j.ctrv.2012.06.008
Jordan MI, 1999, MACH LEARN, V37, P183, DOI 10.1023/A:1007665907178
Kawamae N., 2010, Proceedings of the 19th International Conference on World Wide Web,WWW'10, P1129
Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314
KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694
Li XL, 2018, NUCLEIC ACIDS RES, V46, P10195, DOI 10.1093/nar/gky804
LIN JH, 1991, IEEE T INFORM THEORY, V37, P145, DOI 10.1109/18.61115
Liu L, 2015, INTERNATIONAL CONFERENCE ON SIMULATION, MODELLING AND MATHEMATICAL STATISTICS (SMMS 2015), P291
Liu ZG, 2015, SCIENTOMETRICS, V103, P135, DOI 10.1007/s11192-014-1517-y
Ma RM, 2012, J INFORMETR, V6, P532, DOI 10.1016/j.joi.2012.04.006
Moqtaderi Zarmik, 2013, Curr Protoc Mol Biol, V104, DOI 10.1002/0471142727.mb1310cs104
Morris SA, 2003, J AM SOC INF SCI TEC, V54, P413, DOI 10.1002/asi.10227
Ohniwa RL, 2010, SCIENTOMETRICS, V85, P111, DOI 10.1007/s11192-010-0252-2
Porter AL, 2019, TECHNOL FORECAST SOC, V146, P628, DOI 10.1016/j.techfore.2018.04.016
Robinson DKR, 2007, SCIENTOMETRICS, V70, P831, DOI 10.1007/s11192-007-0314-2
Roche I, 2010, SCIENTOMETRICS, V82, P663, DOI 10.1007/s11192-010-0178-8
Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006
SAETRE R, 2007, P 2 BIOCREATIVE CHAL, P209
Soriano AS, 2018, SCIENTOMETRICS, V115, P1591, DOI 10.1007/s11192-018-2651-8
Schultz LI, 2010, SCIENTOMETRICS, V85, P155, DOI 10.1007/s11192-010-0244-2
Sentmanat MF, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19441-8
Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009
SMALL H, 1974, SCI STUD, V4, P17, DOI 10.1177/030631277400400102
Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005
Suykens JAK., 2002, LEAST SQUARES SUPPOR, P308
Tsuruoka Y, 2005, LECT NOTES COMPUT SC, V3746, P382
Tu YN, 2012, INFORM PROCESS MANAG, V48, P303, DOI 10.1016/j.ipm.2011.07.006
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748
Wang C, 2008, P 24 C UNCERTAINTY A, P579
Wang Q, 2018, J ASSOC INF SCI TECH, V69, P290, DOI 10.1002/asi.23930
Wang Xuerui., P 12 ACM SIGKDD INT, P424
Xu S, 2020, SCIENTOMETRICS, V122, P607, DOI 10.1007/s11192-019-03288-5
Xu S, 2019, SCIENTOMETRICS, V120, P1427, DOI 10.1007/s11192-019-03162-4
Xu S, 2019, J ASSOC INF SCI TECH, V70, P1026, DOI 10.1002/asi.24175
Xu S, 2018, SCIENTOMETRICS, V117, P61, DOI 10.1007/s11192-018-2841-4
Xu S, 2014, MULTIMED TOOLS APPL, V71, P699, DOI 10.1007/s11042-013-1526-5
Xu S, 2014, INT J DISTRIB SENS N, DOI 10.1155/2014/280892
Xu S, 2013, PATTERN RECOGN LETT, V34, P1078, DOI 10.1016/j.patrec.2013.01.015
Yan EJ, 2014, J INFORMETR, V8, P98, DOI 10.1016/j.joi.2013.10.010
Zhao DZ, 2008, J AM SOC INF SCI TEC, V59, P2070, DOI 10.1002/asi.20910
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 75
TC 39
Z9 46
U1 17
U2 222
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD NOV
PY 2019
VL 13
IS 4
AR 100983
DI 10.1016/j.joi.2019.100983
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA JU7SB
UT WOS:000501871000011
DA 2024-09-05
ER
PT J
AU Zhang, Q
Mao, R
Li, R
AF Zhang, Qi
Mao, Rui
Li, Rui
TI Spatial-temporal restricted supervised learning for collaboration
recommendation
SO SCIENTOMETRICS
LA English
DT Article
DE Spatial-temporal description; Academic influence; Supervised learning;
Collaboration recommendation
ID DISCRIMINANT-ANALYSIS; RECOGNITION
AB Collaboration recommendation from scholarly big data is an important but challenging problem as it might suffer the difficulty of accurate recommendation from three aspects: how to efficiently integrate the available author-related information, how to precisely describe the characteristics of the scholarly data samples, and how to extract the intrinsic features that are more suitable for collaboration recommendation. Facing these challenges, we incorporate the temporal and academic-influence information of the publications with the spatial information of the researchers to present a spatial-temporal restricted supervised learning (STSL) model for collaboration recommendation. We first present a topic clustering model to determine the topic distribution vector of each researcher, where a temporal parameter is introduced to exponentially weight each topic distribution vector and an academic-influence parameter is further introduced to linearly combine all the topic distribution vectors of the publications. Then, inspired by the geographical-advantage phenomena in collaboration, spatial labels are generated by using the personal information of the researchers. Furthermore, considering that the publication data enhanced by spatial-temporal and academic-influence descriptions usually exhibit multimodal or mixmodal properties, we propose a data-driven supervised learning model to extract the intrinsic features inhered in data, which determines a low-dimensional recommendation subspace. A number of experiments are conducted to test the impact of the topic-clustering number, the temporal parameter, the academic-influence parameter, and the number of extracted features. Besides, several widely-used models are adopted to compare with the proposed STSL model for collaboration recommendation, with results verifying its feasibility and effectiveness.
C1 [Zhang, Qi] Univ Int Business & Econ, Sch Informat Technol & Management, Beijing 100029, Peoples R China.
[Mao, Rui] PLA, Troop 93617, Beijing 101407, Peoples R China.
[Li, Rui] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China.
C3 University of International Business & Economics; Dalian University of
Technology
RP Zhang, Q (corresponding author), Univ Int Business & Econ, Sch Informat Technol & Management, Beijing 100029, Peoples R China.
EM zhangqi@uibe.edu.cn; mr_32@pku.edu.cn; rui_li@dlut.edu.cn
RI ARSLAN, Okan/AAA-3232-2020; Li, Rui/C-2155-2009
OI Zhang, Qi/0000-0003-1912-0523
FU NSFC [61503375]; Fundamental Research Funds for the Central Universities
in UIBE [CXTD10-05,18QD18]
FX This work was supported by NSFC (No. 61503375), and the Fundamental
Research Funds for the Central Universities in UIBE (CXTD10-05,18QD18).
CR Alinani K, 2018, IEEE ACCESS, V6, P20298, DOI 10.1109/ACCESS.2018.2823720
[Anonymous], 2007, ADAPTIVE WEB, DOI DOI 10.1007/978-3-540-72079-9_10
[Anonymous], 2010, Proceedings of the 4th ACM conference on Recommender systems, ACM, DOI DOI 10.1145/1864708.1864760
Araki M, 2017, IEICE T INF SYST, VE100D, P785, DOI 10.1587/transinf.2016DAP0030
Belhumeur PN, 1997, IEEE T PATTERN ANAL, V19, P711, DOI 10.1109/34.598228
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Cai Z. H., 2017, P INT C PION COMP SC, P52
Chen JY, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P335, DOI 10.1145/3077136.3080797
Chen ZW, 2017, MULTIMED TOOLS APPL, V76, P17669, DOI 10.1007/s11042-015-2882-0
Chu KC, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P1119, DOI 10.1109/ASONAM.2016.7752380
Cui JR, 2015, NEUROCOMPUTING, V149, P1451, DOI 10.1016/j.neucom.2014.08.047
Gao ZQ, 2018, INT J DATA WAREHOUS, V14, P1, DOI 10.4018/IJDWM.2018040101
Gutierrez-Santos S, 2017, IEEE T EMERG TOP COM, V5, P56, DOI 10.1109/TETC.2016.2533318
Kong XJ, 2017, SCIENTOMETRICS, V113, P369, DOI 10.1007/s11192-017-2485-9
Kong XJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148492
Li ZJ, 2018, FRONT COMPUT SCI-CHI, V12, P571, DOI 10.1007/s11704-016-6078-1
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Wang DH, 2018, KNOWL-BASED SYST, V157, P1, DOI 10.1016/j.knosys.2018.05.001
Wei J, 2017, EXPERT SYST APPL, V69, P29, DOI 10.1016/j.eswa.2016.09.040
West Jevin D., 2016, IEEE Transactions on Big Data, V2, P113, DOI 10.1109/TBDATA.2016.2541167
Xia F, 2014, IEEE T EMERG TOP COM, V2, P364, DOI 10.1109/TETC.2014.2356505
Xu D, 2007, IEEE T IMAGE PROCESS, V16, P2811, DOI 10.1109/TIP.2007.906769
Yang XW, 2017, IEEE T COMPUT SOC SY, V4, P1, DOI 10.1109/TCSS.2017.2665122
Yerma S., 2017, P IEEE INT C REC TRE, P879
Yuan XF, 2017, 2017 6TH INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP), P577, DOI 10.1109/ADCONIP.2017.7983844
Zhang Q, 2017, MULTIMED TOOLS APPL, V76, P15465, DOI 10.1007/s11042-016-3848-6
Zhao TS, 2015, ACSR ADV COMPUT, P854
Zheng WM, 2005, NEUROCOMPUTING, V67, P357, DOI 10.1016/j.neucom.2004.12.008
NR 28
TC 4
Z9 5
U1 0
U2 39
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUN
PY 2019
VL 119
IS 3
BP 1497
EP 1517
DI 10.1007/s11192-019-03100-4
PG 21
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA HZ7UB
UT WOS:000469058000009
DA 2024-09-05
ER
PT J
AU Wang, N
Lv, XL
Sun, SW
Wang, QJ
AF Wang, Nan
Lv, Xinlong
Sun, Shanwu
Wang, Qingjun
TI Research on the effect of government media and users' emotional
experience based on LSTM deep neural network
SO NEURAL COMPUTING & APPLICATIONS
LA English
DT Article
DE Government media; Emotion analysis; LSTM; Deep learning; Social media
platforms
AB Different government media have different communication effects and users' emotional experience. It carries on a comparative research on government media selecting three different types of government media which include China's Police Online, Central Committee of the Communist Youth League, and China's Fire Control in the context of public health emergencies. Based on the deep learning technique, the emotion classification model of long-term memory network is constructed to analyze the emotion of the users' comments of different government media; taking the number of contents, the number of retweets, the number of praises, and the number of comments as evaluating indicators to do comparative analysis to cross platform government medias. Through the comparative results, it is found that different types and platforms of government media have great differences in users' emotional experience; the emotion performance of users' comments is strongly related to the information communication power and effectiveness of government media.
C1 [Wang, Nan; Lv, Xinlong; Sun, Shanwu] Jilin Univ Finance & Econ, Changchun 130117, Peoples R China.
[Wang, Qingjun] Shenyang Aerosp Univ, Shenyang 110136, Peoples R China.
[Wang, Qingjun] Nanjing Univ Aeronaut & Astronaut, Nanjing 210016, Peoples R China.
C3 Jilin University of Finance & Economics; Shenyang Aerospace University;
Nanjing University of Aeronautics & Astronautics
RP Wang, QJ (corresponding author), Shenyang Aerosp Univ, Shenyang 110136, Peoples R China.; Wang, QJ (corresponding author), Nanjing Univ Aeronaut & Astronaut, Nanjing 210016, Peoples R China.
EM ctuwangnan@126.com; xslvxinlong@163.com; ctusunshanwu@126.com;
wangqingjun@sau.edu.cn
FU Key Project of Jilin Province Education Science During the 13th Five
Year Plan in 2020: Research on new teaching mode in big data cloud
education environment [ZD20024]
FX This work was supported by Key Project of Jilin Province Education
Science During the 13th Five Year Plan in 2020: Research on new teaching
mode in big data cloud education environment (ZD20024).
CR [Anonymous], 7 CHIN INT AUD VIS C
Bengio Y, 2001, ADV NEUR IN, V13, P932
Chang J, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2020.102452
China Internet Information Center, 44 CNNIC CHIN INT
Guiquan ZAC., 2014, J INTELLIGENCE, V33, P108
Guohua W., 2015, J INTELLIGENCE, V34, P66
[胡荣磊 Hu Ronglei], 2019, [计算机应用研究, Application Research of Computers], V36, P3282
Jiang J, 2020, J Intell, P100, DOI [10.3969/j.issn1002-1965.2020.01.014, DOI 10.3969/J.ISSN1002-1965.2020.01.014]
Kingma DP, 2014, ADV NEUR IN, V27
Li SX, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102673
List of government affairs, 2019 GOV MICR INFL R
Liu CY, 2020, NEURAL COMPUT APPL, V32, P1639, DOI 10.1007/s00521-019-04188-8
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704
Rui YCW., 2018, J MODERN INFORM, V38, P110
Su, 2016, TEXT SENTIMENT CLASS
Tian Qianjin Yu., 2018, INFORM RES, V8, P33
Xiaobo T., 2020, J MODERN INF, V40, P159
Xiaoping Y., 2017, COMPUT SCI, V44, P43
Yang K., 2019, J Comput Appl, V39, P6
Yihong R., 2016, E GOV, V8, P53
Zeng Yu, 2017, Xibei Shifan Daxue Xuebao (Ziran Kexue Ban), V53, P56, DOI 10.16783/j.cnki.nwnuz.2017.04.013
Zhanyong J., 2019, INFORM SCIENCES, V37, P142
Zhao JH, 2020, NEURAL COMPUT APPL, V32, P1715, DOI 10.1007/s00521-019-04245-2
NR 24
TC 3
Z9 3
U1 2
U2 45
PU SPRINGER LONDON LTD
PI LONDON
PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND
SN 0941-0643
EI 1433-3058
J9 NEURAL COMPUT APPL
JI Neural Comput. Appl.
PD AUG
PY 2022
VL 34
IS 15
SI SI
BP 12505
EP 12516
DI 10.1007/s00521-021-06567-6
EA OCT 2021
PG 12
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 3E6IS
UT WOS:000705779300003
PM 34642547
OA Bronze, Green Published
DA 2024-09-05
ER
PT C
AU Bae, S
Hwang, C
Lee, T
AF Bae, Sungho
Hwang, Chanwoong
Lee, Taejin
BE Kim, H
TI Research on Improvement of Anomaly Detection Performance in Industrial
Control Systems
SO INFORMATION SECURITY APPLICATIONS
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 22nd World Conference on Information Security Application (WISA)
CY AUG 11-13, 2021
CL SOUTH KOREA
DE Industrial Control System; Anomaly detection; Unsupervised stacked
bidirectional LSTM; HAI dataset; TaPR
AB In the automated Industrial Control System (ICS) where advanced technology is being integrated with core infrastructure, technology development is ahead of the application of security solutions. Our city, power, and transportation control systems are getting smarter and more efficient, but new connectivity and interoperability are making them more vulnerable than ever before. Accordingly, various studies have been conducted for anomaly detection in ICS. In this paper, we propose an unsupervised stacked bidirectional Long Short-Term Memory (LSTM) model for automated anomaly detection in large-scale ICS and introduce a method for performance improvement. In addition, it was written based on participation in HAICon2020, an ICS security threat detection contest hosted by the National Security Research Institute. We use the HAI 2.0 dataset published at HAICon2020 and use Time-series Aware Precision and Recall (TaPR), which is suitable for anomaly detection evaluation in ICS. As a result of submission of test data, we were awarded 2nd place at HAICon2020. We have detected anomalies in ICS. As a follow-up work, we will do further research to identify the sensor and actuator that caused the anomaly and to quickly respond and recover.
C1 [Bae, Sungho; Hwang, Chanwoong; Lee, Taejin] Hoseo Univ, Dept Informat Secur, Asan 31499, South Korea.
C3 Hoseo University
RP Lee, T (corresponding author), Hoseo Univ, Dept Informat Secur, Asan 31499, South Korea.
EM baesungho21@naver.com
FU Institute for Information & communication Technology Planning &
Evaluation (IITP) - Korea government (MSIT) [2019-0-00026]
FX This work was supported by Institute for Information & communication
Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2019-0-00026, ICT infra-structure protection
against intelligent malware threats).
CR CISA, 2016, CYB ATT UKR CRIT INF
HaddadPajouh H, 2021, INTERNET THINGS-NETH, V14, DOI 10.1016/j.iot.2019.100129
Hwang WS, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2241, DOI 10.1145/3357384.3358118
Jacob S, 2021, INTERNET THINGS-NETH, V14, DOI 10.1016/j.iot.2019.100111
Karimipour H, 2018, IEEE ACCESS, V6, P2984, DOI 10.1109/ACCESS.2017.2786584
Kim D., 2021, SOFTWARE ENG ARTIFIC, V951, P181
Kravchik M, 2018, CPS-SPC'18: PROCEEDINGS OF THE 2018 WORKSHOP ON CYBER-PHYSICAL SYSTEMS SECURITY AND PRIVACY, P72, DOI 10.1145/3264888.3264896
Mokhtari S, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10040407
Ren HS, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P3009, DOI 10.1145/3292500.3330680
Ruff L, 2021, P IEEE, V109, P756, DOI 10.1109/JPROC.2021.3052449
Shin H, 2020, IEEE NON-VOLATILE ME, P25, DOI 10.1109/nvmsa51238.2020.9188086
Stouffer K., 2015, 80082 NIST SP
Wang C, 2020, WIREL COMMUN MOB COM, V2020, DOI 10.1155/2020/8897926
Xie X, 2020, IEEE ACCESS, V8, P88348, DOI 10.1109/ACCESS.2020.2993335
Yin CL, 2017, IEEE ACCESS, V5, P21954, DOI 10.1109/ACCESS.2017.2762418
Zaroosin, 2020, HIL BAS AUGM ICS HAI
Zhang F, 2019, IEEE T IND INFORM, V15, P4362, DOI 10.1109/TII.2019.2891261
NR 17
TC 0
Z9 0
U1 0
U2 1
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-89432-0; 978-3-030-89431-3
J9 LECT NOTES COMPUT SC
PY 2021
VL 13009
BP 76
EP 87
DI 10.1007/978-3-030-89432-0_7
PG 12
WC Computer Science, Information Systems; Computer Science, Theory &
Methods; Mathematics, Applied
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Mathematics
GA BS5DU
UT WOS:000728361600007
DA 2024-09-05
ER
PT C
AU Alonso, JM
Castiello, C
Mencar, C
AF Alonso, Jose M.
Castiello, Ciro
Mencar, Corrado
BE Medina, J
OjedaAciego, M
Verdegay, JL
Pelta, DA
Cabrera, IP
BouchonMeunier, B
Yager, RR
TI A Bibliometric Analysis of the Explainable Artificial Intelligence
Research Field
SO INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED
SYSTEMS: THEORY AND FOUNDATIONS, IPMU 2018, PT I
SE Communications in Computer and Information Science
LA English
DT Proceedings Paper
CT 17th International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems (IPMU)
CY JUN 11-15, 2018
CL Cadiz, SPAIN
DE Interpretability; Understandability; Comprehensibility; Explainable AI;
Interpretable Fuzzy Systems
ID SYSTEMS; ACCURACY
AB This paper presents the results of a bibliometric study of the recent research on eXplainable Artificial Intelligence (XAI) systems. We took a global look at the contributions of scholars in XAI as well as in the subfields of AI that are mostly involved in the development of XAI systems. It is worthy to remark that we found out that about one third of contributions in XAI come from the fuzzy logic community. Accordingly, we went in depth with the actual connections of fuzzy logic contributions with AI to promote and improve XAI systems in the broad sense. Finally, we outlined new research directions aimed at strengthening the integration of different fields of AI, including fuzzy logic, toward the common objective of making AI accessible to people.
C1 [Alonso, Jose M.] Univ Santiago de Compostela, Ctr Singular Invest Tecnol Informac CiTIUS, Santiago De Compostela, Spain.
[Castiello, Ciro; Mencar, Corrado] Univ Bari Aldo Moro, Dept Informat, Bari, Italy.
C3 Universidade de Santiago de Compostela; Universita degli Studi di Bari
Aldo Moro
RP Alonso, JM (corresponding author), Univ Santiago de Compostela, Ctr Singular Invest Tecnol Informac CiTIUS, Santiago De Compostela, Spain.
EM josemaria.alonso.moral@usc.es; ciro.castiello@uniba.it;
corrado.mencar@uniba.it
RI Alonso Moral, Jose Maria/A-4374-2017
OI Alonso Moral, Jose Maria/0000-0003-3673-421X; Mencar,
Corrado/0000-0001-8712-023X
FU Ramon y Cajal contract - Spanish "Ministerio de Economia y
Competitividad" [RYC-2016-19802]; MINECO - Spanish "Ministerio de
Economia y Competitividad" [TIN2017-84796-C2-1-R, TIN2014-56633-C3-3-R];
Xunta de Galicia (Centro singular de investigacion de Galicia); European
Union (European Regional Development Fund - ERDF)
FX This work was supported by RYC-2016-19802 (Ramon y Cajal contract), and
two MINECO projects TIN2017-84796-C2-1-R (BIGBISC) and
TIN2014-56633-C3-3-R (ABS4SOW). All of them funded by the Spanish
"Ministerio de Economia y Competitividad". Financial support from the
Xunta de Galicia (Centro singular de investigacion de Galicia
accreditation 2016-2019) and the European Union (European Regional
Development Fund - ERDF), is gratefully acknowledged.
CR Aleven VAWMM, 2002, COGNITIVE SCI, V26, P147, DOI 10.1016/S0364-0213(02)00061-7
[Anonymous], 2017, Statement on Algorithmic Transparency and Accountability
[Anonymous], 1998, Graph drawing: algorithms for the visualization of graphs
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Chen CLP, 2014, INFORM SCIENCES, V275, P314, DOI 10.1016/j.ins.2014.01.015
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics
Epstein SL, 2015, ARTIF INTELL, V221, P36, DOI 10.1016/j.artint.2014.12.006
Fazzolari M, 2013, IEEE T FUZZY SYST, V21, P45, DOI 10.1109/TFUZZ.2012.2201338
Gacto MJ, 2011, INFORM SCIENCES, V181, P4340, DOI 10.1016/j.ins.2011.02.021
García S, 2009, SOFT COMPUT, V13, P959, DOI 10.1007/s00500-008-0392-y
Goodman B, 2017, ARXIV160608813, V38, P3, DOI [10.1609/aimag.v38i3.2741, DOI 10.1609/AIMAG.V38I3.2741]
Guillaume S, 2001, IEEE T FUZZY SYST, V9, P426, DOI 10.1109/91.928739
Gunning D, 2016, IJCAI 2016 WORKSH DE
Ishibuchi H, 2007, INT J APPROX REASON, V44, P4, DOI 10.1016/j.ijar.2006.01.004
Jin YC, 2000, IEEE T FUZZY SYST, V8, P212, DOI 10.1109/91.842154
Kobourov S. G., 2012, HDB GRAPH DRAWING VI
Martínez L, 2012, INFORM SCIENCES, V207, P1, DOI 10.1016/j.ins.2012.04.025
Moya-Anegon F, 2004, SCIENTOMETRICS, V61, P129, DOI 10.1023/B:SCIE.0000037368.31217.34
Pancho DP, 2013, IEEE T FUZZY SYST, V21, P1133, DOI 10.1109/TFUZZ.2013.2245130
Porter M., 2009, NOT AM MATH SOC, V56, P1082, DOI DOI 10.1103/PHYSREVE.69.066133
SALTON G, 1979, IEEE T PROF COMMUN, V22, P146, DOI 10.1109/TPC.1979.6501740
Serrano E, 2010, INFORM SCIENCES, V180, P561, DOI 10.1016/j.ins.2009.11.007
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vargas-Quesada B., 2007, VISUALIZING STRUCTUR, DOI [10.1007/3-540-69728-4, DOI 10.1007/3-540-69728-4]
Wasserman S., 1994, SOCIAL NETWORK ANAL, V8
NR 26
TC 41
Z9 45
U1 2
U2 34
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 1865-0929
EI 1865-0937
BN 978-3-319-91473-2; 978-3-319-91472-5
J9 COMM COM INF SC
PY 2018
VL 853
BP 3
EP 15
DI 10.1007/978-3-319-91473-2_1
PN I
PG 13
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BN4AQ
UT WOS:000481659500001
DA 2024-09-05
ER
PT J
AU Guo, SC
Zheng, YY
Zhai, XM
AF Guo, Shuchen
Zheng, Yuanyuan
Zhai, Xiaoming
TI Artificial intelligence in education research during 2013-2023: A review
based on bibliometric analysis
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article; Early Access
DE Artificial intelligence (AI); AI in education (AIED); Machine learning
(ML); Bibliometric analysis; Citespace software
ID TUTORING SYSTEMS; LEARNING ANALYTICS; SCIENCE; TRENDS; SPEECH; TEXT
AB Research on Artificial Intelligence in Education (AIED) has rapidly progressed in recent years, and understanding the research trends and development is essential for technological innovations and implementations in education. Using a bibliometric analysis of 6843 publications from Web of Science and Scopus, we found that China, US, India, Spain, and Germany led the research profuctivity. AIED research is concerned more with higher education compared to K-12 education. Fifteen research trends emerged from the analysis, such as Educational Robots and Large Data Mining. Research has primarily leveraged technologies of machine learning, decision trees, deep learning, speech recognition, and computer vision in AIED. The major implementations of AI include educational robots, automated grading, recommender systems, learning analytics, and intelligent tutoring systems. Among the implementations, a majority of AIED research was conducted in seven major subject domains, chief among them being science, technology, engineering and mathematics (STEM) and language disciplines, with a focus on computer science and English education.
C1 [Guo, Shuchen; Zheng, Yuanyuan] Nanjing Normal Univ, Sch Educ, Nanjing, Jiangsu, Peoples R China.
[Zhai, Xiaoming] Univ Georgia, AI4STEM Educ Ctr, 125M Aderhold Hall,110 Carlton St, Athens, GA 30602 USA.
[Zhai, Xiaoming] Univ Georgia, Dept Math Sci & Social Studies Educ, 125M Aderhold Hall,110 Carlton St, Athens, GA 30602, Georgia.
C3 Nanjing Normal University; University System of Georgia; University of
Georgia
RP Zhai, XM (corresponding author), Univ Georgia, AI4STEM Educ Ctr, 125M Aderhold Hall,110 Carlton St, Athens, GA 30602 USA.; Zhai, XM (corresponding author), Univ Georgia, Dept Math Sci & Social Studies Educ, 125M Aderhold Hall,110 Carlton St, Athens, GA 30602, Georgia.
EM gsc44@njnu.edu.cn; 3048835050@qq.com; Xiaoming.Zhai@uga.edu
RI Zheng, Yuanyuan/HJA-4183-2022; Zhai, Xiaoming/AAB-7129-2021
OI Zhai, Xiaoming/0000-0003-4519-1931
FU National Science Foundation [2101104]; China Scholarship Council (CSC) -
National Science Foundation (NSF); NSF
FX The authors thank China Scholarship Council (CSC) for supporting the
study. The study was also partially funded by the National Science
Foundation (NSF) (Award # 2101104, PI: Zhai). Any opinions, findings,
conclusions, or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the CSC and
NSF.
CR Adiguzel T, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13152
Aguilar J, 2016, IEEE INT FUZZY SYST, P1539, DOI 10.1109/FUZZ-IEEE.2016.7737873
Ahn TY, 2016, BRIT J EDUC TECHNOL, V47, P778, DOI 10.1111/bjet.12354
Albreiki B, 2021, EDUC SCI, V11, DOI 10.3390/educsci11090552
Aldabe I, 2014, IEEE T LEARN TECHNOL, V7, P375, DOI 10.1109/TLT.2014.2355831
Aldriye H, 2019, INT J ADV COMPUT SC, V10, P215
Alsalman YS, 2019, INT CONF INFORM COMM, P104, DOI [10.1109/iacs.2019.8809106, 10.1109/IACS.2019.8809106]
Altin H., 2014, P 4 INT WORKSHOP TEA, P164
Anupama V., 2022, 2022 INT C INNOVATIV, P1, DOI [10.1109/ICITIIT54346.2022.9744245, DOI 10.1109/ICITIIT54346.2022.9744245]
Arcon N, 2017, READ WRIT Q, V33, P533, DOI 10.1080/10573569.2016.1253513
Bai LF, 2017, EDUC PSYCHOL-UK, V37, P67, DOI 10.1080/01443410.2016.1223275
Banihashem S.K., 2018, Interdisciplinary Journal of Virtual Learning in Medical Sciences, V9, P63024, DOI [10.5812/ijvlms.63024, DOI 10.5812/IJVLMS.63024]
Baskota A, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), P277, DOI 10.1109/IRI.2018.00050
Bhavana D, 2020, INT J SPEECH TECHNOL, V23, P779, DOI 10.1007/s10772-020-09739-2
Rivera AC, 2018, ADV INTELL SYST, V721, P937, DOI 10.1007/978-3-319-73450-7_89
Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233
Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507
Chen XL, 2022, EDUC TECHNOL SOC, V25, P28
Chursin G., 2021, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/1989/1/012011
Corral JMR, 2016, INT J ENG EDUC, V32, P1823
Crow T., 2018, P 20 AUSTR COMP ED C, P53, DOI DOI 10.1145/3160489.3160492
de Freitas S, 2015, BRIT J EDUC TECHNOL, V46, P1175, DOI 10.1111/bjet.12212
Deschênes M, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00219-w
Efendi Toni, 2022, 2022 International Conference on Information Technology Systems and Innovation (ICITSI), P275, DOI 10.1109/ICITSI56531.2022.9970982
Esquivel-Barboza Esteban A., 2020, 2020 Fourth International Conference on Multimedia Computing, Networking and Applications (MCNA), P51, DOI 10.1109/MCNA50957.2020.9264289
Farnqvist Tommy., 2016, ITICSE 16 P 2016 ACM, P130, DOI [10.1145/2899415.2899454, DOI 10.1145/2899415.2899454]
Fernández-Llamas C, 2020, INT J SOC ROBOT, V12, P1009, DOI 10.1007/s12369-017-0440-9
GHALI MA, 2018, INT J ACAD ENG RES, V2, P1
Gobert JD, 2013, J LEARN SCI, V22, P521, DOI 10.1080/10508406.2013.837391
Guan C., 2020, International Journal of Innovation Studies, V4, P134, DOI [DOI 10.1016/J.IJIS.2020.09.001, https://doi.org/10.1016/j.ijis.2020.09.001]
Hernández-de-Menéndez M, 2022, INT J INTERACT DES M, V16, P1209, DOI 10.1007/s12008-022-00930-0
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Homer John, 2015, ASEE ANN C EXP C P 1, P1, DOI [10.18260/p.23569, DOI 10.18260/P.23569]
Huang XY, 2023, EDUC TECHNOL SOC, V26, P112, DOI 10.30191/ETS.202301_26(1).0009
Jiang RH, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1049401
Kewalramani S, 2021, EUR EARLY CHILD EDUC, V29, P652, DOI 10.1080/1350293X.2021.1968458
Kim K J., 2017, Journal of Educational Data Mining, V9, P45
Kulik JA, 2016, REV EDUC RES, V86, P42, DOI 10.3102/0034654315581420
Lacave C, 2018, BEHAV INFORM TECHNOL, V37, P993, DOI 10.1080/0144929X.2018.1485053
Latif E, 2023, Arxiv, DOI arXiv:2310.10072
Lee GG, 2023, Arxiv, DOI arXiv:2401.08660
Lee GG, 2023, Arxiv, DOI [arXiv:2312.06037, 10.48550/arXiv.2312.06037]
Lee GG, 2023, Arxiv, DOI arXiv:2311.12990
Lee H. Y., 2022, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), V13449, DOI [10.1007/978-3-031-15273-3_3, DOI 10.1007/978-3-031-15273-3_3]
Li Y, 2020, INT J MACH LEARN CYB, V11, P2807, DOI 10.1007/s13042-020-01152-0
Limna P., 2022, Adv. Knowled. Execut., V1, P1
Lin PH, 2020, IEEE ACCESS, V8, P45689, DOI 10.1109/ACCESS.2020.2977679
Lu OHT, 2017, INTERACT LEARN ENVIR, V25, P220, DOI 10.1080/10494820.2016.1278391
Ma HQ, 2020, CASE STUD CONSTR MAT, V12, DOI 10.1016/j.cscm.2020.e00350
Mah DK, 2016, TECHNOL KNOWL LEARN, V21, P285, DOI 10.1007/s10758-016-9286-8
Maphosa V., 2021, ICABCD 2021 4 INT C, P1, DOI [10.1109/icABCD51485.2021.9519368, DOI 10.1109/ICABCD51485.2021.9519368]
Martin F, 2020, ETR&D-EDUC TECH RES, V68, P1903, DOI 10.1007/s11423-020-09793-2
Mauro C., 2017, Advocating the Broad Use of the Decision Tree Method in Advocating the Broad Use of the Decision Tree Method in Education, P22
Mohammadzadeh A, 2018, INT J INSTR, V11, P167, DOI 10.12973/iji.2018.11212a
Mousavinasab E, 2021, INTERACT LEARN ENVIR, V29, P142, DOI 10.1080/10494820.2018.1558257
Nesbit JC, 2014, IEEE INT CONF ADV LE, P99, DOI 10.1109/ICALT.2014.38
Ouyang F, 2022, EDUC INF TECHNOL, V27, P7893, DOI 10.1007/s10639-022-10925-9
Paiva JC, 2022, ACM T COMPUT EDUC, V22, DOI 10.1145/3513140
Paladines J, 2020, IEEE ACCESS, V8, P164246, DOI 10.1109/ACCESS.2020.3021383
Peters MA, 2024, EDUC PHILOS THEORY, V56, P828, DOI 10.1080/00131857.2023.2213437
Prahani BK, 2022, INT J EMERG TECHNOL, V17, P169, DOI 10.3991/ijet.v17i08.29833
Pu S., 2021, Cypriot Journal of Educational Sciences, V16, P995, DOI [10.18844/CJES.V16I3.5782, DOI 10.18844/CJES.V16I3.5782]
Rastrollo-Guerrero JL, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10031042
Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3
Shadiev R, 2023, RECALL, V35, P74, DOI 10.1017/S095834402200012X
Shadiev R, 2017, ETR&D-EDUC TECH RES, V65, P1239, DOI 10.1007/s11423-017-9516-3
Shenoy M. A., 2022, 6 INT C ELECT COMMUN, P896, DOI [10.1109/ICECA55336.2022.10009136, DOI 10.1109/ICECA55336.2022.10009136]
Sophokleous A., 2021, Computer Vision meets Educational Robotics, P1
Sottilare R. A., 2019, 1 INT C, P469, DOI [10.4324/9780203880869-41, DOI 10.4324/9780203880869-41]
Taghipour K., 2016, Proceedings of the 2016 conference on empirical methods in natural language processing, P1882
Tahiru F, 2021, J CASES INF TECHNOL, V23, P1, DOI 10.4018/JCIT.2021010101
Talan T., 2021, International Journal of Research in Education and Science, V7, P822, DOI [DOI 10.46328/IJRES.2409, 10.46328/ijres.2409]
van der Haar D., 2019, Lecture notes in electrical engineering, P183, DOI [10.1007/978-981-15-1465-419, DOI 10.1007/978-981-15-1465-419]
Wald M., 2005, USING AUTOMATIC SPEE, pS3G, DOI [10.1109/FIE.2005.1612286, DOI 10.1109/FIE.2005.1612286]
Walker E, 2014, INT J ARTIF INTELL E, V24, P33, DOI 10.1007/s40593-013-0001-9
Williamson B, 2020, LEARN MEDIA TECHNOL, V45, P223, DOI 10.1080/17439884.2020.1798995
Xu WQ, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-022-00377-5
Xu ZH, 2019, BRIT J EDUC TECHNOL, V50, P3119, DOI 10.1111/bjet.12758
Yang Junxiong, 2022, Innovative Computing: Proceedings of the 4th International Conference on Innovative Computing (IC 2021). Lecture Notes in Electrical Engineering (791), P605, DOI 10.1007/978-981-16-4258-6_75
Yilmaz R., 2022, Computers and Education: Artificial Intelligence, V3, DOI 10
Youhao Yu, 2012, Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering (ICCSEE 2012), P306, DOI 10.1109/ICCSEE.2012.359
ZAFARI M, 2022, IEEE ACCESS, V10, P61905, DOI 10.1109/ACCESS.2022.3179356
Cabada RZ, 2018, TELEMAT INFORM, V35, P611, DOI 10.1016/j.tele.2017.03.005
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhai X., 2023, ChatGPT for Next Generation, DOI [10.1145/3589649, DOI 10.1145/3589649]
Zhai XM, 2023, RES SCI EDUC, V53, P405, DOI 10.1007/s11165-022-10062-w
Zhai XM, 2022, J RES SCI TEACH, V59, P1765, DOI 10.1002/tea.21773
Zhai XM, 2020, J RES SCI TEACH, V57, P1430, DOI 10.1002/tea.21658
Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757
Zhai XS, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/8812542
Zhang K., 2021, Computers and Education: Artificial Intelligence, V2, P100025, DOI [DOI 10.1016/J.CAEAI.2021.100025, 10.1016/j.caeai.2021.100025, https://doi.org/10.1016/j.caeai.2021.100025]
NR 91
TC 0
Z9 0
U1 161
U2 174
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD 2024 FEB 9
PY 2024
DI 10.1007/s10639-024-12491-8
EA FEB 2024
PG 23
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA HK6S0
UT WOS:001159441700001
DA 2024-09-05
ER
PT C
AU Hong, MH
Marsh, LA
Feuston, JL
Ruppert, J
Brubaker, JR
Szafr, DA
AF Hong, Matt-Heun
Marsh, Lauren A.
Feuston, Jessica L.
Ruppert, Janet
Brubaker, Jed R.
Szafr, Danielle Albers
GP ACM
TI Scholastic: Graphical Human-AI Collaboration for Inductive and
Interpretive Text Analysis
SO PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE
AND TECHNOLOGY, UIST 2022
LA English
DT Proceedings Paper
CT 35th Annual ACM Symposium on User Interface Software and Technology
(UIST)
CY OCT 29-NOV 02, 2022
CL Bend, OR
DE qualitative research; interpretive research methods; interactive topic
modeling; interactive document clustering; human-AI collaboration;
visual analytics; text data
ID GROUNDED THEORY; PITFALLS
AB Interpretive scholars generate knowledge from text corpora by manually sampling documents, applying codes, and refining and collating codes into categories until meaningful themes emerge. Given a large corpus, machine learning could help scale this data sampling and analysis, but prior research shows that experts are generally concerned about algorithms potentially disrupting or driving interpretive scholarship. We take a human-centered design approach to addressing concerns around machine-assisted interpretive research to build Scholastic, which incorporates a machine-in-the-loop clustering algorithm to scafold interpretive text analysis. As a scholar applies codes to documents and refines them, the resulting coding schema serves as structured metadata which constrains hierarchical document and word clusters inferred from the corpus. Interactive visualizations of these clusters can help scholars strategically sample documents further toward insights. Scholastic demonstrates how human-centered algorithm design and visualizations employing familiar metaphors can support inductive and interpretive research methodologies through interactive topic modeling and document clustering.
C1 [Hong, Matt-Heun] Univ Colorado Boulder, ATLAS Inst, Boulder, CO USA.
[Marsh, Lauren A.] Univ Colorado Boulder, Dept Appl Math, Boulder, CO USA.
[Feuston, Jessica L.; Ruppert, Janet; Brubaker, Jed R.] Univ Colorado Boulder, Dept Informat Sci, Boulder, CO USA.
[Szafr, Danielle Albers] Univ North Carolina Chapel Hill, Dept Comp Sci, Chapel Hill, NC USA.
C3 University of Colorado System; University of Colorado Boulder;
University of Colorado System; University of Colorado Boulder;
University of Colorado System; University of Colorado Boulder;
University of North Carolina School of Medicine; University of North
Carolina; University of North Carolina Chapel Hill
RP Hong, MH (corresponding author), Univ Colorado Boulder, ATLAS Inst, Boulder, CO USA.
OI BRUBAKER, JED/0000-0003-4826-8324
FU NSF [1764092, 2046725]
FX The authors would like to thank Kandrea Wade and Casey Fiesler for their
input at the conceptualization stages, students and faculty at the ATLAS
Institute, CU Boulder during the design, development, and writing
stages, and Matteo Abrate (https://bl.ocks.org/nitaku) for his valuable
examples of geographical treemaps. This work was supported by NSF awards
#1764092 & #2046725.
CR Alexander E, 2014, IEEE CONF VIS ANAL, P173, DOI 10.1109/VAST.2014.7042493
Auber D, 2011, GEOGRAPHICAL TREEMAP
Baumer EPS, 2020, HUM-COMPUT INTERACT, V35, P452, DOI 10.1080/07370024.2020.1734460
Baumer EPS, 2017, BIG DATA SOC, V4, DOI 10.1177/2053951717718854
Baumer EPS, 2017, J ASSOC INF SCI TECH, V68, P1397, DOI 10.1002/asi.23786
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
BOYDGRABER J, 2017, FOUND TRENDS INF RET, V20, P1
Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA]
Brehmer M, 2014, IEEE T VIS COMPUT GR, V20, P2271, DOI 10.1109/TVCG.2014.2346431
Chandrasegaran S, 2017, COMPUT GRAPH FORUM, V36, P201, DOI 10.1111/cgf.13180
Chen NC, 2018, ACM T INTERACT INTEL, V8, DOI 10.1145/3185515
Choo J, 2013, IEEE T VIS COMPUT GR, V19, P1992, DOI 10.1109/TVCG.2013.212
Chuang J, 2012, PROCEEDINGS OF THE INTERNATIONAL WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES, P74, DOI 10.1145/2254556.2254572
Chuang Jason, 2015, NIPS WORKSHOP HUMANP, P1
Collier D, 1996, WORLD POLIT, V49, P56, DOI 10.1353/wp.1996.0023
CORBIN J, 1990, Z SOZIOL, V19, P418, DOI 10.1007/BF00988593
DICKSON LAS, 1988, INSTR SCI, V17, P145, DOI 10.1007/BF00052700
Diehl Alexandra, 2022, CHARACTERIZING GROUN, V41, P3
DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004
Drouhard M, 2017, IEEE PAC VIS SYMP, P220, DOI 10.1109/PACIFICVIS.2017.8031598
El-Assady M, 2020, IEEE T VIS COMPUT GR, V26, P1001, DOI 10.1109/TVCG.2019.2934654
Endert A, 2012, IEEE T VIS COMPUT GR, V18, P2879, DOI 10.1109/TVCG.2012.260
Feuston Jessica L., 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3479856
Gauthier Robert P., 2022, Proceedings of the ACM on Human-Computer Interaction, V6, DOI 10.1145/3492844
Gerlach M, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aaq1360
Green Ben, 2019, Proceedings of the ACM on Human-Computer Interaction, V3, DOI 10.1145/3359152
Green B, 2019, P C FAIRN ACC TRANSP, P90, DOI [10.1145/3287560.3287563, DOI 10.1145/3287560.3287563]
Griffiths T., 2005, ADV NEURAL INFORM PR, V17
Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028
HOLLAND PW, 1983, SOC NETWORKS, V5, P109, DOI 10.1016/0378-8733(83)90021-7
Hyland CC, 2021, EPJ DATA SCI, V10, DOI 10.1140/epjds/s13688-021-00288-5
Jialun Aaron, 2018, P ACM HUMANCOMPUTER, P1, DOI [10.1145/3274350, DOI 10.1145/3274350]
Jiang Jialun Aaron, 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3449168
Kim H, 2021, IEEE T VIS COMPUT GR, V27, P3644, DOI 10.1109/TVCG.2020.2981456
Kivela M, 2014, J COMPLEX NETW, V2, P203, DOI 10.1093/comnet/cnu016
Klein LF, 2015, DIGIT SCHOLARSH HUM, V30, P130, DOI 10.1093/llc/fqv052
Lee H, 2012, COMPUT GRAPH FORUM, V31, P1155, DOI 10.1111/j.1467-8659.2012.03108.x
Lee TY, 2017, INT J HUM-COMPUT ST, V105, P28, DOI 10.1016/j.ijhcs.2017.03.007
McDonald Nora, 2019, Proceedings of the ACM on Human-Computer Interaction, V3, DOI 10.1145/3359174
Miles M. B., 2014, QUALITATIVE DATA ANA
Mimno David., 2011, Proceedings of the Conference on Empirical Methods in Natural Language Processing, P227, DOI DOI 10.5555/2145432.2145459
Muller M., 2016, P 19 INT C SUPPORTIN, P3, DOI [DOI 10.1145/2957276.2957280, 10.1145/2957276.2957280]
Nelson LK, 2020, SOCIOL METHOD RES, V49, P3, DOI 10.1177/0049124117729703
Paul M, 2010, AAAI CONF ARTIF INTE, P545
Peixoto TP., 2020, Advances in Network Clustering and Blockmodeling, DOI [10.1002/9781119483298.ch11, DOI 10.1002/9781119483298.CH11]
Steyvers M, 2010, LATENT SEMANTIC ANAL, V3, P993, DOI [DOI 10.1016/S0364-0213(01)00040-4, 10.1145/1806338.1806450%, DOI 10.1145/1806338.1806450%]
TVERSKY B, 1991, PSYCHOL LEARN MOTIV, V27, P109, DOI 10.1016/S0079-7421(08)60122-X
Wiedemann G, 2013, HIST SOC RES, V38, P332
Xie P., 2013, P 29 C 2013, DOI [DOI 10.48550/ARXIV.1309.6874, 10.5555/3023638.3023709, DOI 10.5555/3023638.3023709]
Yang Yi, 2015, P 2015 C EMP METH NA, P308, DOI DOI 10.18653/V1/D15-1037
NR 50
TC 3
Z9 3
U1 2
U2 7
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 978-1-4503-9320-1
PY 2022
DI 10.1145/3526113.3545681
PG 12
WC Computer Science, Cybernetics; Computer Science, Hardware &
Architecture; Computer Science, Software Engineering; Computer Science,
Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BV5DH
UT WOS:001046841800070
OA Green Submitted, Bronze
DA 2024-09-05
ER
PT J
AU Ritchie, F
Tilbrook, A
Cole, C
Jefferson, E
Krueger, S
Mansouri-Benssassi, E
Rogers, S
Smith, J
AF Ritchie, Felix
Tilbrook, Amy
Cole, Christian
Jefferson, Emily
Krueger, Susan
Mansouri-Benssassi, Esma
Rogers, Simon
Smith, Jim
TI Machine learning models in trusted research environments - understanding
operational risks
SO INTERNATIONAL JOURNAL OF POPULATION DATA SCIENCE (IJPDS)
LA English
DT Article
DE confidentiality; output checking; machine learning; artificial
intelligence; data enclave; trusted research environment
AB Introduction
Trusted research environments (TREs) provide secure access to very sensitive data for research. All TREs operate manual checks on outputs to ensure there is no residual disclosure risk. Machine learning (ML) models require very large amount of data; if this data is personal, the TRE is a well-established data management solution. However, ML models present novel disclosure risks, in both type and scale.
Objectives
As part of a series on ML disclosure risk in TREs, this article is intended to introduce TRE managers to the conceptual problems and work being done to address them.
Methods
We demonstrate how ML models present a qualitatively different type of disclosure risk, compared to traditional statistical outputs. These arise from both the nature and the scale of ML modelling.
Results
We show that there are a large number of unresolved issues, although there is progress in many areas. We show where areas of uncertainty remain, as well as remedial responses available to TREs.
Conclusions
At this stage, disclosure checking of ML models is very much a specialist activity. However, TRE managers need a basic awareness of the potential risk in ML models to enable them to make sensible decisions on using TREs for ML model development.
C1 [Ritchie, Felix] Univ West England, Bristol Business Sch, Coldharbour Lane, Bristol BS16 1QY, Avon, England.
[Tilbrook, Amy] Univ Edinburgh, South Bridge, Edinburgh EH8 9YL, Midlothian, Scotland.
[Cole, Christian; Jefferson, Emily] Ninewells Hosp & Med Sch, Div Populat Hlth & Gen, Dundee DD1 9SY, Scotland.
[Krueger, Susan] Ninewells Hosp & Med Sch, Hlth Informat Ctr, Dundee DD1 9SY, Scotland.
[Mansouri-Benssassi, Esma] AffectiveHalo Ltd, Tom Morris Dr, St Andrews KY16 8HS, Fife, Scotland.
[Rogers, Simon] NHS Natl Serv Scotland, Gyle Sq,1 South Gyle Crescent, Edinburgh EH12 9EB, Midlothian, Scotland.
[Smith, Jim] Univ West England, Sch Comp Sci & Creat Technol, Coldharbour Lane, Bristol BS16 1QY, Avon, England.
C3 University of West England; University of Edinburgh; University of
Dundee; University of Dundee; NHS National Services Scotland; University
of West England
RP Ritchie, F (corresponding author), Univ West England, Bristol Business Sch, Coldharbour Lane, Bristol BS16 1QY, Avon, England.
EM felix.ritchie@uwe.ac.uk
RI ; Smith, Jim/M-7533-2015
OI Jefferson, Emily/0000-0003-2992-7582; Rogers, Simon/0000-0003-3578-4477;
Krueger, Susan/0000-0002-5219-1959; Ritchie, Felix/0000-0003-4097-4021;
Cole, Christian/0000-0002-2560-2484; Smith, Jim/0000-0001-7908-1859
FU UK Medical Research Council as a DARE Phase 1 Sprint Project
FX The GRAIMATTER project was funded by the UK Medical Research Council as
a DARE Phase 1 Sprint Project
https://dareuk.org.uk/sprint-exemplar-project-graimatter/.The DARE
project report [11] was the main project output. This post-project
article was produced by members of the GRAIMATTER team most closely
connected to this workstream. In addition, Amy Tilbrook contributed
significantly to the writing of this document but did not receive any
funding through DARE or MRC for her contribution. Susan Krueger also
contributed to the background analysis and writing of this document but
did not receive any GRAIMATTER funding. She does however received
funding for the MRC PICTURES project developing AI applications of image
data, which continues to help the research team tests recommendations in
a genuine environment.
CR Alves Kyle, 2020, Statistical Journal of the IAOS, V36, P1281, DOI 10.3233/SJI-200661
[Anonymous], 2010, Handbook on statistical disclosure control
[Anonymous], 2010, Guidelines for the checking of output based on microdata research
Christiani N., 2000, An introduction to support vector machines and other kernel-based learning methods, V1
De Cristofaro E, 2021, IEEE SECUR PRIV, V19, P19, DOI 10.1109/MSEC.2021.3076443
Green E., 2021, PRESENT FUTURE CONFI
Harkness F., 2022, A UK-wide public dialogue exploring what the public perceive as 'public good' use of data for research and statistics
Jefferson E., 2022, Recommendations for disclosure control of trained Machine Learning (ML) models from Trusted Research Environments (TREs).
Jegorova M, 2023, IEEE T PATTERN ANAL, V45, P9090, DOI 10.1109/TPAMI.2022.3229593
Kaviani S, 2022, EXPERT SYST APPL, V198, DOI 10.1016/j.eswa.2022.116815
Kavianpour S, 2022, J MED INTERNET RES, V24, DOI 10.2196/33720
Krueger S., 2021, UNECE EUR WORKSH STA
Mansouri-Benssassi E, 2021, arXiv preprint arXiv:2111.05628
ONS, 2021, Output checker training course handbook version 1.0
Ritchie F, 2021, Journal of Privacy and Confidentiality, V11, P1, DOI [10.29012/jpc.766, DOI 10.29012/JPC.766]
Ritchie F., 2007, WISERD Data Resources Paper No. 6
Ritchie F, 2017, DATA POLICY C 2017, DOI [10.5281/zenodo.897821, DOI 10.5281/ZENODO.897821]
Ritchie F, 2019, TRANS DATA PRIV, V12, P145
SDAP, 2018, Handbook on Statistical Disclosure Control for Outputs
Song CZ, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P587, DOI 10.1145/3133956.3134077
NR 20
TC 0
Z9 0
U1 0
U2 0
PU SWANSEA UNIV
PI SWANSEA
PA SINGLETON PARK, SWANSEA, SA2 8PP, WALES
EI 2399-4908
J9 INT J POPUL DATA SCI
JI Int. J. Population Data Sci.
PY 2023
VL 8
IS 1
AR 30
DI 10.23889/ijpds.v8i1.2165
PG 9
WC Health Care Sciences & Services; Public, Environmental & Occupational
Health; Social Sciences, Interdisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Health Care Sciences & Services; Public, Environmental & Occupational
Health; Social Sciences - Other Topics
GA GG6C4
UT WOS:001151542700002
PM 38414545
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Lee, JW
Lee, WK
Sohn, SY
AF Lee, Jong Wook
Lee, Won Kyung
Sohn, So Young
TI Patenting trends in biometric technology of the Big Five patent offices
SO WORLD PATENT INFORMATION
LA English
DT Article
DE Biometrics; Citation analysis; Latent dirichlet allocation; Patent
analysis; Technology trend analysis; Topic modeling
ID RECOGNITION; CENTRALITY; TEXT
AB We examined the overall trends in biometric technology based on patent documents. Using PATSTAT database, we extracted 37,462 patent documents applied at the Big Five patent offices between 1990 and 2016. Latent Dirichlet allocation was applied to their abstracts to observe annual trends by topic. Our results are as follows: Fingerprint-enabled car anti-theft systems have been undergoing rapid technological development since 2014. In response, biometric signal transmitting models are becoming popular owing to concerns about theft of biometric templates. While fingerprint, face, and iris authentication technologies continue to advance, finger vein, voice, and signature authentication technologies are lagging. Use of biometric technologies in financial transactions, server networks, and digital media content security are decreasing as well. A citation analysis discovered key topics and patent applicants: Surprisingly, the quantitative growth rate of topics and the effect on the knowledge network showed an inverse relationship. US firms had the most citations, but fewer backward citations of own work, unlike Japanese companies. We provide practical insights to stakeholders of biometric technology.
C1 [Lee, Jong Wook; Lee, Won Kyung; Sohn, So Young] Yonsei Univ, Dept Ind Engn, 134 Shinchon Dong, Seoul 120749, South Korea.
C3 Yonsei University
RP Sohn, SY (corresponding author), Yonsei Univ, Dept Ind Engn, 134 Shinchon Dong, Seoul 120749, South Korea.
EM sohns@yonsei.ac.kr
OI Sohn, So Young/0000-0002-3958-2269
FU National Research Foundation of Korea (NRF) - Korea government (MSIT)
[2020R1A2C2005026]
FX This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (2020R1A2C2005026) .
CR Abdullah M. K., 2010, 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES 2010), P303, DOI 10.1109/IECBES.2010.5742249
Alsaadi I. M., 2015, Int. J. Sci. Technol. Res., V4, P285
[Anonymous], 2007, HDB BIOMETRICS HDB B
Bailador G, 2011, PATTERN RECOGN, V44, P2468, DOI 10.1016/j.patcog.2011.04.010
Bednarik R, 2005, LECT NOTES COMPUT SC, V3540, P780
Bernauer L, 2018, INFORM PROCESS MANAG, V54, P370, DOI 10.1016/j.ipm.2018.01.003
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bonacich P, 2007, SOC NETWORKS, V29, P555, DOI 10.1016/j.socnet.2007.04.002
Chang S.H., 2018, INT C P MOB WIR TECH, P287
Chen H, 2007, IEEE T PATTERN ANAL, V29, P718, DOI 10.1109/TPAMI.2007.1005
Choi HS, 2017, COMPUT SECUR, V67, P244, DOI 10.1016/j.cose.2017.03.007
Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171
Drira H, 2013, IEEE T PATTERN ANAL, V35, P2270, DOI 10.1109/TPAMI.2013.48
Fong S, 2013, BIOMED ENG ONLINE, V12, DOI 10.1186/1475-925X-12-111
Han EJ, 2016, TECHNOL FORECAST SOC, V106, P1, DOI 10.1016/j.techfore.2016.02.003
Jain AK, 2012, COMPUTER, V45, P87, DOI 10.1109/MC.2012.364
Jee SJ, 2015, TECHNOL FORECAST SOC, V101, P338, DOI 10.1016/j.techfore.2015.09.018
Ju YH, 2015, SCIENTOMETRICS, V102, P389, DOI 10.1007/s11192-014-1382-8
Karki M.M.S., 1997, WORLD PAT INF, V19, P269, DOI DOI 10.1016/S0172-2190(97)00033-1
Kim G, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8121252
Koschützki D, 2005, LECT NOTES COMPUT SC, V3418, P16
Kumar A, 2013, PROC CVPR IEEE, P3438, DOI 10.1109/CVPR.2013.441
Kwon DS, 2019, WORLD PAT INF, V59, DOI 10.1016/j.wpi.2019.04.001
Kyebambe MN, 2017, TECHNOL FORECAST SOC, V125, P236, DOI 10.1016/j.techfore.2017.08.002
Lajevardi SM, 2013, IEEE T IMAGE PROCESS, V22, P3625, DOI 10.1109/TIP.2013.2266257
Leydesdorff L, 2007, J AM SOC INF SCI TEC, V58, P1303, DOI 10.1002/asi.20614
Lin PL, 2012, PATTERN RECOGN, V45, P934, DOI 10.1016/j.patcog.2011.08.027
Liu F, 2014, NEUROCOMPUTING, V145, P75, DOI 10.1016/j.neucom.2014.05.069
Liu S., 2001, IT Professional, V3, P27, DOI 10.1109/6294.899930
Lu GM, 2003, PATTERN RECOGN LETT, V24, P1463, DOI 10.1016/S0167-8655(02)00386-0
Mondal S, 2017, NEUROCOMPUTING, V230, P1, DOI 10.1016/j.neucom.2016.11.031
Muramatsu D, 2015, IEEE T IMAGE PROCESS, V24, P140, DOI 10.1109/TIP.2014.2371335
Opsahl T, 2010, SOC NETWORKS, V32, P245, DOI 10.1016/j.socnet.2010.03.006
Rashid RA, 2008, 2008 INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING, VOLS 1-3, P898, DOI 10.1109/ICCCE.2008.4580735
Sae-Bae N, 2014, IEEE T INF FOREN SEC, V9, P568, DOI 10.1109/TIFS.2014.2302582
Seo SJ, 2015, SCIENTOMETRICS, V105, P905, DOI 10.1007/s11192-015-1709-0
Sharafudeen R, 2012, INT J IND CHEM, V3, DOI 10.1186/2228-5547-3-26
Sharma P, 2017, WORLD PAT INF, V51, P31, DOI 10.1016/j.wpi.2017.11.002
Sri Prakash N, 2016, INDIAN J SCI TECHNOL
Stefan D, 2012, COMPUT SECUR, V31, P109, DOI 10.1016/j.cose.2011.10.001
Thornton J, 2007, IEEE T PATTERN ANAL, V29, P596, DOI 10.1109/TPAMI.2007.1006
Wallach Hanna M., 2009, P 26 ANN INT C MACH, P1105, DOI DOI 10.1145/1553374.1553515
Wang C., 2016, PLOS ONE, V11
You HL, 2017, SCIENTOMETRICS, V111, P297, DOI 10.1007/s11192-017-2252-y
NR 44
TC 7
Z9 7
U1 1
U2 14
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0172-2190
EI 1874-690X
J9 WORLD PAT INF
JI World Pat. Inf.
PD JUN
PY 2021
VL 65
AR 102040
DI 10.1016/j.wpi.2021.102040
EA APR 2021
PG 10
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA SU4ZJ
UT WOS:000663147300001
DA 2024-09-05
ER
PT C
AU Yang, C
Liu, WX
AF Yang Chun
Liu Weixin
BE Hung, J
Zhao, RM
TI Research of the Staff Performance in the University Library Based on the
Principal Component Analysis
SO PROCEEDINGS OF 2008 INTERNATIONAL SEMINAR ON EDUCATION MANAGEMENT AND
ENGINEERING
LA English
DT Proceedings Paper
CT International Seminar on Education Management and Engineering
CY SEP 22, 2008
CL Chengdu, PEOPLES R CHINA
DE principal component analysis; staff performance; university library; the
appraisal model
AB The competition among the university library is fundamentally intense gradually. The methoud to raise the competition ability of the university library lies in introducing the staff and training the staff. Only the stuff's performance are raised, can the university library be developed prosperously. The performance management of the staff is the basis to make the university library policy and carry on the important decision of the university library, which is also an important mechanism for the university library to set up the strategic targets. This ariticle introduces the principal component to judge the performance of the the staff of the university library, which can give the university library a useful result to introducing the highly efficient staff and training the low outstanding staff. Through enstablishing the appraisal model, the university library can get the stituation of the staff performance eassily, then they can take on some effective measures to raise the level of the staff performance so that the university library can be developed effectively and efficiently.
EM yangchun513383000@163.com
CR BING AI, 2006, RES PREFORMANCE APPR
KE L, 2007, RES PERFORMANCE MANA
LI GF, J ANHUI U TECHNOLOGY
LIU JM, 2001, J SHANGHAI U
VANSCOTTER JR, 1996, J PSYCHOL
WANG YM, 2005, J QUANTITATIVE TECHN
YE M, 2004, INFORM SCI
NR 7
TC 0
Z9 0
U1 0
U2 2
PU M D FORUM
PI ALLAWAH NSW
PA 17 AUGUSTA ST, ALLAWAH NSW, 2218, AUSTRALIA
BN 978-0-646-49806-5
PY 2008
BP 857
EP 864
PG 8
WC Education & Educational Research
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BIO55
UT WOS:000261358200168
DA 2024-09-05
ER
PT J
AU Heibi, I
Peroni, S
AF Heibi, Ivan
Peroni, Silvio
TI A quantitative and qualitative open citation analysis of retracted
articles in the humanities
SO QUANTITATIVE SCIENCE STUDIES
LA English
DT Article
DE citation analysis; humanities; retraction; topic modeling
ID PUBLICATIONS
AB In this article, we show and discuss the results of a quantitative and qualitative analysis of open citations of retracted publications in the humanities domain. Our study was conducted by selecting retracted papers in the humanities domain and marking their main characteristics (e.g., retraction reason). Then, we gathered the citing entities and annotated their basic metadata (e.g., title, venue, subject) and the characteristics of their in-text citations (e.g., intent, sentiment). Using these data, we performed a quantitative and qualitative study of retractions in the humanities, presenting descriptive statistics and a topic modeling analysis of the citing entities' abstracts and the in-text citation contexts. As part of our main findings, we noticed that there was no drop in the overall number of citations after the year of retraction, with few entities that have either mentioned the retraction or expressed a negative sentiment toward the cited publication. In addition, on several occasions, we noticed a higher concern/awareness by citing entities belonging to the health sciences domain about citing a retracted publication, compared with the humanities and social science domains. Philosophy, arts, and history are the humanities areas that showed higher concern toward the retraction.
C1 [Heibi, Ivan; Peroni, Silvio] Univ Bologna, Res Ctr Open Scholarly Metadata, Dept Class Philol & Italian Studies, Bologna, Italy.
[Heibi, Ivan; Peroni, Silvio] Univ Bologna, Digital Humanities Adv Res Ctr DHarc, Dept Class Philol & Italian Studies, Bologna, Italy.
C3 University of Bologna; University of Bologna
RP Heibi, I (corresponding author), Univ Bologna, Res Ctr Open Scholarly Metadata, Dept Class Philol & Italian Studies, Bologna, Italy.; Heibi, I (corresponding author), Univ Bologna, Digital Humanities Adv Res Ctr DHarc, Dept Class Philol & Italian Studies, Bologna, Italy.
EM ivan.heibi2@unibo.it
RI Heibi, Ivan/AAZ-9145-2021
OI Heibi, Ivan/0000-0001-5366-5194; Peroni, Silvio/0000-0003-0530-4305
FU European Union [101017452]
FX This work has been partially funded by the European Union's Horizon 2020
research andinnovation program under grant agreement No 101017452
(OpenAIRE-Nexus).
CR Archambault E., 2010, LIMITS BIBLIOMETRICS
Ataie-Ashtiani B, 2018, SCI ENG ETHICS, V24, P1653, DOI 10.1007/s11948-017-9939-6
Azoulay P, 2017, RES POLICY, V46, P1552, DOI 10.1016/j.respol.2017.07.003
Bar-Ilan J, 2018, SCIENTOMETRICS, V116, P1771, DOI 10.1007/s11192-018-2802-y
Bar-Ilan J, 2017, SCIENTOMETRICS, V113, P547, DOI 10.1007/s11192-017-2242-0
Barbour V., 2009, Committee on Publication Ethics, DOI [DOI 10.24318/COPE.2019.1.4, https://doi.org/10.24318/cope.2019.1.4]
Barde BV, 2017, 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), P745, DOI 10.1109/ICCONS.2017.8250563
Boldt J, 2000, ANESTH ANALG, V91, P887, DOI 10.1097/00000539-200010000-00022
Bolland MJ, 2022, ACCOUNT RES, V29, P18, DOI 10.1080/08989621.2021.1886933
Bordignon F, 2020, SCIENTOMETRICS, V124, P1225, DOI 10.1007/s11192-020-03536-z
Bornemann-Cimenti H, 2016, SCI ENG ETHICS, V22, P1063, DOI 10.1007/s11948-015-9680-y
Brainard J, 2018, Science (80-), V25, P1, DOI [10.1126/science.aav8384, DOI 10.1126/SCIENCE.AAV8384]
Brownlee J., 2019, A Gentle Introduction to the Bag-Of-Words Model: 2021 Machine Learning Mastery
Campos-Varela I, 2020, GAC SANIT, V34, P430, DOI 10.1016/j.gaceta.2019.05.008
Candal-Pedreira C, 2020, BMJ GLOB HEALTH, V5, DOI 10.1136/bmjgh-2020-003719
Casadevall A, 2014, FASEB J, V28, P3847, DOI 10.1096/fj.14-256735
Chuang J, 2012, PROCEEDINGS OF THE INTERNATIONAL WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES, P74, DOI 10.1145/2254556.2254572
Collier R, 2011, CAN MED ASSOC J, V183, pE385, DOI 10.1503/cmaj.109-3827
Corbyn Z, 2012, NATURE, V490, P21, DOI 10.1038/490021a
Dinh L., 2019, P ASS INFORM SCI TEC, V56, P390, DOI DOI 10.1002/PRA2.35
Fang FC, 2011, INFECT IMMUN, V79, P3855, DOI 10.1128/IAI.05661-11
Feng LZ, 2020, SCIENTOMETRICS, V125, P1445, DOI 10.1007/s11192-020-03702-3
Ferri P., 2020, PUNTOORG INT J, V5, P135, DOI DOI 10.19245/25.05.PIJ.5.2.3
Gasparyan AY, 2014, CROAT MED J, V55, P61, DOI 10.3325/cmj.2014.55.61
Gaudino M, 2021, JAMA INTERN MED, DOI 10.1001/jamainternmed.2021.1807
GROSSARTHMATICEK R, 1990, PSYCHOL REP, V66, P355, DOI 10.2466/PR0.66.2.355-373
Halevi G, 2020, PUBLISH RES Q, V36, P55, DOI 10.1007/s12109-019-09699-9
Hammarfelt B, 2016, RESEARCH ASSESSMENT IN THE HUMANITIES: TOWARDS CRITERIA AND PROCEDURES, P115, DOI 10.1007/978-3-319-29016-4_10
Heibi Ivan, 2022, Zenodo, DOI 10.5281/ZENODO.7147985
Heibi Ivan, 2021, Zenodo, DOI 10.5281/ZENODO.5639371
Heibi I, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0270872
Heibi I, 2021, SCIENTOMETRICS, V126, P8433, DOI 10.1007/s11192-021-04097-5
Heibi I, 2019, SCIENTOMETRICS, V121, P1213, DOI 10.1007/s11192-019-03217-6
Hendricks G, 2020, QUANT SCI STUD, V1, P414, DOI 10.1162/qss_a_00022
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Lu SF, 2013, SCI REP-UK, V3, DOI 10.1038/srep03146
Luwel M., 2019, PREPRINT, DOI DOI 10.31235/OSF.IO/C6MVS
Mössner N, 2011, STUD HIST PHILOS SCI, V42, P416, DOI 10.1016/j.shpsa.2011.02.001
Mongeon P, 2016, J ASSOC INF SCI TECH, V67, P535, DOI 10.1002/asi.23421
Mott A, 2019, J HEALTH SERV RES PO, V24, P44, DOI 10.1177/1355819618797965
Ngah Z. A., 1997, Malaysian Journal of Library Information Science, V2, P19
Nikpay F, 2020, INFORM SYST FRONT, V22, P789, DOI 10.1007/s10796-016-9716-0
Ojeda, 2018, APPL TEXT ANAL PYTHO
OpenCitations, 2020, COCI CSV DATASET ALL, DOI [DOI 10.6084/M9.FIGSHARE.6741422.V6, 10.6084/M9.FIGSHARE.6741422.V6, DOI 10.6084/M9.FIGSHARE.6741422.V3]
Peroni S., 2018, OPEN CITATION DEFINI, DOI [10.6084/M9.FIGSHARE.6683855, DOI 10.6084/M9.FIGSHARE.6683855]
Peroni S, 2020, QUANT SCI STUD, V1, P428, DOI 10.1162/qss_a_00023
Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001
Priem J, 2022, Arxiv, DOI [arXiv:2205.01833, DOI 10.48550/ARXIV.2205.01833, 10.48550/arXiv.2205.01833]
Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113
Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858
Schneider J, 2020, SCIENTOMETRICS, V125, P2877, DOI 10.1007/s11192-020-03631-1
Shuai X, 2017, J ASSOC INF SCI TECH, V68, P2225, DOI 10.1002/asi.23826
Sievert C., 2014, LDAVIS METHOD VISUAL, DOI 10.13140/2.1.1394.3043
Siluo Yang, 2020, Digital Libraries at Times of Massive Societal Transition. 22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12504), P139, DOI 10.1007/978-3-030-64452-9_12
Sternberg R. J., 2006, Creativity Research Journal, V18, P87, DOI [10.1207/s15326934crj1801_10, DOI 10.1207/S15326934CRJ1801]
Suppe F, 1998, PHILOS SCI, V65, P381, DOI 10.1086/392651
van der Vet Paul E, 2016, Res Integr Peer Rev, V1, P3, DOI 10.1186/s41073-016-0008-5
Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021
NR 58
TC 6
Z9 6
U1 12
U2 31
PU MIT PRESS
PI CAMBRIDGE
PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA
EI 2641-3337
J9 QUANT SCI STUD
JI Quant. Sci. Stud.
PD DEC 20
PY 2022
VL 3
IS 4
BP 953
EP 975
DI 10.1162/qss_a_00222
PG 23
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA 9B9MZ
UT WOS:000935055300004
OA Green Published, gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Hua, V
Huynh, B
AF Hua, Van
Huynh, Bao
TI Forecasting a Journal Impact Factor Under Missing Values Based on
Machine Learning
SO IEEE ACCESS
LA English
DT Article
DE Multivariate; time series; missing values; imputation; journal impact
factor; machine learning; kNNI
ID MULTIVARIATE TIME-SERIES; IMPUTATION
AB Scientists not only engage in research, but also write articles based on their work, and naturally aim to submit their articles to prestigious, well-received, and highly regarded journals or conferences. One way to measure the prestige of a journal is to use the Journal Impact Factor (JIF), but in order to make best use of this information one needs to better understand the relationships among various JIF-related attributes. However, in recent years JIF values have been missing or unavailable for some journals, due to several objective and subjective factors, which significantly impacts the ability to forecast such values in the following years. In this article we study the factors that directly affect the ranking of journals and can be used to forecast the appropriate values in the next few years, in order to help researchers find the right place to submit their articles in certain journals.
C1 [Hua, Van; Huynh, Bao] HUTECH Univ, Fac Informat Technol, Ho Chi Minh City 700000, Vietnam.
RP Huynh, B (corresponding author), HUTECH Univ, Fac Informat Technol, Ho Chi Minh City 700000, Vietnam.
EM hq.bao@hutech.edu.vn
RI Huynh, Bao/O-9317-2018
OI Huynh, Bao/0000-0002-1882-6877
CR Andreadis A., 2022, Missing values imputation on multivariate time series in the field of agriculture
Asraf HM, 2022, ALEX ENG J, V61, P937, DOI 10.1016/j.aej.2021.04.096
Daberdaku S, 2020, J HEALTHC INFORM RES, V4, P174, DOI 10.1007/s41666-020-00069-1
Du SD, 2020, NEUROCOMPUTING, V388, P269, DOI 10.1016/j.neucom.2019.12.118
Du W., 2021, A deep learning model to impute missing data in time series
Du WJ, 2023, EXPERT SYST APPL, V219, DOI 10.1016/j.eswa.2023.119619
Emmanuel T, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00516-9
Feng RH, 2021, COMPUT GEOSCI-UK, V152, DOI 10.1016/j.cageo.2021.104763
Flores A, 2022, LECT NOTE NETW SYST, V359, P445, DOI 10.1007/978-3-030-89880-9_34
Groesser SN, 2012, SYST RES BEHAV SCI, V29, P624, DOI 10.1002/sres.2142
Haslbeck JMB, 2020, MULTIVAR BEHAV RES, V56, P120, DOI 10.1080/00273171.2020.1743630
Jadhav A, 2019, APPL ARTIF INTELL, V33, P913, DOI 10.1080/08839514.2019.1637138
Jakobsen JC, 2017, BMC MED RES METHODOL, V17, DOI 10.1186/s12874-017-0442-1
Kabir G, 2020, SUSTAIN RESIL INFRAS, V5, P365, DOI 10.1080/23789689.2019.1600960
Khan F, 2020, CHAOS SOLITON FRACT, V140, DOI 10.1016/j.chaos.2020.110189
Khomytska I., 2020, P IEEE 15 INT C COMP, V1, P259
Li C, 2023, ALGORITHMS, V16, DOI 10.3390/a16090422
Lin WC, 2020, ARTIF INTELL REV, V53, P1487, DOI 10.1007/s10462-019-09709-4
Luo Y, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbab489
Martínez F, 2022, IEEE ACCESS, V10, P3275, DOI 10.1109/ACCESS.2022.3140377
Nguyen C. C., 2023, J. Sci. Techn.-Sect. Inf. Commun. Technol., V12, P110, DOI [10.56651/lqdtu.jst.v12.n1.661.ict, DOI 10.56651/LQDTU.JST.V12.N1.661.ICT]
Öztürk MM, 2023, VIETNAM J COMPUT SCI, V10, P303, DOI 10.1142/S2196888823500033
Phan Q.-T., 2022, P 8 INT C APPL SYST, P21
Qin R, 2023, ENTROPY-SWITZ, V25, DOI 10.3390/e25010137
Rizvi STH, 2023, CYBERNET SYST, DOI 10.1080/01969722.2023.2247257
Sangeetha M, 2020, SOFT COMPUT, V24, P13369, DOI 10.1007/s00500-020-04755-5
Saroj Abhilasha J., 2021, Journal of Big Data Analytics in Transportation, P95, DOI 10.1007/s42421-021-00043-2
Song XY, 2020, J PETROL SCI ENG, V186, DOI 10.1016/j.petrol.2019.106682
Tran Cao Truong, 2022, 2022 RIVF International Conference on Computing and Communication Technologies (RIVF), P334, DOI 10.1109/RIVF55975.2022.10013809
Vi B. N., 2021, P RIVF INT C COMP CO, P1
Wen XY, 2023, IEEE ACCESS, V11, P48322, DOI 10.1109/ACCESS.2023.3276628
Wu R, 2022, IEEE SENS J, V22, P10671, DOI 10.1109/JSEN.2022.3166643
Yang SV, 2023, IND ENG CHEM RES, V62, P15278, DOI 10.1021/acs.iecr.3c01639
Yang SD, 2022, IND ENG CHEM RES, V61, P8520, DOI 10.1021/acs.iecr.1c04712
Zainuddin A, 2022, 2022 INTERNATIONAL CONFERENCE ON GREEN ENERGY, COMPUTING AND SUSTAINABLE TECHNOLOGY (GECOST), P346, DOI 10.1109/GECOST55694.2022.10010499
Zhang Y, 2021, INFORM SCIENCES, V551, P67, DOI 10.1016/j.ins.2020.11.035
Zhou HY, 2021, AAAI CONF ARTIF INTE, V35, P11106
Zhou J, 2019, IEEE ACCESS, V7, P19775, DOI 10.1109/ACCESS.2019.2895737
NR 38
TC 0
Z9 0
U1 1
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2024
VL 12
BP 85745
EP 85760
DI 10.1109/ACCESS.2024.3416345
PG 16
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA WC3K3
UT WOS:001252628000001
OA gold
DA 2024-09-05
ER
PT J
AU van der Zwaard, S
de Leeuw, AW
Meerhoff, LA
Bodine, SC
Knobbe, A
AF van der Zwaard, Stephan
de Leeuw, Arie-Willem
Meerhoff, L. (Rens) A.
Bodine, Sue C.
Knobbe, Arno
TI Articles with impact: insights into 10 years of research with machine
learning
SO JOURNAL OF APPLIED PHYSIOLOGY
LA English
DT Article
DE altmetrics; bibliometrics; machine learning; natural language
processing; scientometrics
ID MUSCLE PROTEIN-SYNTHESIS; HIGH-INTENSITY EXERCISE; MAXIMAL
OXYGEN-UPTAKE; CARDIORESPIRATORY FITNESS; RESISTANCE EXERCISE; O-2 COST;
IMPROVES PERFORMANCE; ACCEPTABLE ESTIMATE; ENDURANCE EXERCISE; VIEWPOINT
V
AB Worldwide scientific output is growing faster and faster. Academics should not only publish much and fast, but also publish research with impact. The aim of this study is to use machine learning to investigate characteristics of articles that were published in the Journal of Applied Physiology between 2009 and 2018, and characterize high-impact articles. Article impact was assessed for 4,531 publications by three common impact metrics: the Altmetric Attention Scores, downloads, and citations. Additionally, a broad collection of (more than 200) characteristics was collected from the article's title, abstract, authors, keywords, publication, and article engagement. We constructed random forest (RF) regression models to predict article impact and articles with the highest impact (top-25% and top-10% for each impact metric), which were compared with a naive baseline method. RF models outperformed the baseline models when predicting the impact of unseen articles (P < 0.001 for each impact metric). Also, RF models predicted top-25% and top-10% high-impact articles with a high accuracy. Moreover, RF models revealed important article characteristics. Higher impact was observed for articles about exercise, training, performance and (V)over dot(O2max), reviews, human studies, articles from large collaborations, longer articles with many references and high engagement by scientists, practitioners and public or via news outlets and videos. Lower impact was shown for articles about respiratory physiology or sleep apnea, editorials, animal studies, and titles with a question mark or a reference to places or individuals. In summary, research impact can be predicted and better understood using a combination of article characteristics and machine learning.
NEW & NOTEWORTHY Common measures of article impact are the Altmetric Attention Scores, number of downloads, and number of citations. To our knowledge, this is the first study that applies machine learning on a comprehensive collection of article characteristics to predict article attention scores, downloads, and citations. Using 10 years of research articles, we obtained accurate predictions of high-impact articles and discovered important article characteristics related to article impact.
C1 [van der Zwaard, Stephan; de Leeuw, Arie-Willem; Meerhoff, L. (Rens) A.; Knobbe, Arno] Leiden Univ, Leiden Inst Adv Comp Sci, Leiden, Netherlands.
[van der Zwaard, Stephan] Vrije Univ Amsterdam, Dept Human Movement Sci, Amsterdam, Netherlands.
[Bodine, Sue C.] Univ Iowa, Dept Internal Med Endocrinol & Metab, Iowa City, IA USA.
C3 Leiden University - Excl LUMC; Leiden University; Vrije Universiteit
Amsterdam; University of Iowa
RP van der Zwaard, S (corresponding author), Leiden Univ, Leiden Inst Adv Comp Sci, Leiden, Netherlands.; van der Zwaard, S (corresponding author), Vrije Univ Amsterdam, Dept Human Movement Sci, Amsterdam, Netherlands.
EM s.van.der.zwaard@liacs.leidenuniv.nl
RI van der Zwaard, Stephan/J-9622-2019; Knobbe, Arno/AAE-5659-2020; de
Leeuw, Arie-Willem/AAL-5634-2021
OI van der Zwaard, Stephan/0000-0002-8296-828X; de Leeuw,
Arie-Willem/0000-0002-9857-0970; Bodine, Sue/0000-0002-5742-9145
CR Ade CJ, 2017, J APPL PHYSIOL, V122, P968, DOI 10.1152/japplphysiol.00280.2016
Alberts B, 2013, SCIENCE, V340, P787, DOI 10.1126/science.1240319
[Anonymous], 2006, PLOS MED, V3, P707, DOI 10.1371/journal.pmed.0030291
[Anonymous], 2020, 2018 ALTMETRIC TOP 1
[Anonymous], 2020, NLP R UDPIPE TOKENIZ
[Anonymous], 2020, UNIVERSAL POS TAGS O
Arciero PJ, 2014, J APPL PHYSIOL, V117, P1, DOI 10.1152/japplphysiol.00152.2014
Azevedo P, 2018, J APPL PHYSIOL, V125, P233, DOI 10.1152/japplphysiol.00319.2018
Bailey SJ, 2010, J APPL PHYSIOL, V109, P1394, DOI 10.1152/japplphysiol.00503.2010
Bailey SJ, 2010, J APPL PHYSIOL, V109, P135, DOI 10.1152/japplphysiol.00046.2010
Bailey SJ, 2009, J APPL PHYSIOL, V107, P1144, DOI 10.1152/japplphysiol.00722.2009
Beltrame T, 2018, J APPL PHYSIOL, V124, P473, DOI 10.1152/japplphysiol.00299.2017
Billat V, 2017, J APPL PHYSIOL, V122, P430, DOI 10.1152/japplphysiol.00569.2016
Bodine SC, 2017, J APPL PHYSIOL, V123, P1, DOI 10.1152/japplphysiol.00534.2017
Bornmann L., 2020, ANAL PERCENTILE IMPA
Bornmann L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197133
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Bouchard C, 2011, J APPL PHYSIOL, V110, P1160, DOI 10.1152/japplphysiol.00973.2010
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Brodersen Kay H., 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P3121, DOI 10.1109/ICPR.2010.764
Burke LM, 2017, J APPL PHYSIOL, V122, P1055, DOI 10.1152/japplphysiol.00860.2016
Cajochen C, 2011, J APPL PHYSIOL, V110, P1432, DOI 10.1152/japplphysiol.00165.2011
Carroll TJ, 2017, J APPL PHYSIOL, V122, P1068, DOI 10.1152/japplphysiol.00775.2016
Carter SE, 2018, J APPL PHYSIOL, V125, P790, DOI 10.1152/japplphysiol.00310.2018
Chang CH, 2011, J APPL PHYSIOL, V110, P774, DOI 10.1152/japplphysiol.00945.2010
Chapman RF, 2014, J APPL PHYSIOL, V116, P595, DOI 10.1152/japplphysiol.00634.2013
COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
de Winter JCF, 2015, SCIENTOMETRICS, V102, P1773, DOI 10.1007/s11192-014-1445-x
Rodríguez JD, 2010, IEEE T PATTERN ANAL, V32, P569, DOI 10.1109/TPAMI.2009.187
DORA-Declaration on Research Assessment, 2019, San Francisco Declaration on Research Assessment
Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x
Erdt M, 2016, SCIENTOMETRICS, V109, P1117, DOI 10.1007/s11192-016-2077-0
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Falagas ME, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0049476
Figg WD, 2006, PHARMACOTHERAPY, V26, P759, DOI 10.1592/phco.26.6.759
Freeling B, 2019, P NATL ACAD SCI USA, V116, P341, DOI 10.1073/pnas.1819937116
Garavaglia S, 1998, Entropy
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Gazni A, 2012, J AM SOC INF SCI TEC, V63, P323, DOI 10.1002/asi.21688
Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145
Glanzel W., HDB QUANTITATIVE SCI, P257
Gök A, 2015, SCIENTOMETRICS, V102, P653, DOI 10.1007/s11192-014-1434-0
Gonçalves LD, 2017, J APPL PHYSIOL, V123, P213, DOI 10.1152/japplphysiol.00260.2017
Green S, 2018, J APPL PHYSIOL, V125, P241, DOI 10.1152/japplphysiol.00307.2018
Green S, 2018, J APPL PHYSIOL, V125, P229, DOI 10.1152/japplphysiol.00850.2017
Gregorutti B, 2017, STAT COMPUT, V27, P659, DOI 10.1007/s11222-016-9646-1
Gries KJ, 2018, J APPL PHYSIOL, V125, P1636, DOI 10.1152/japplphysiol.00174.2018
Guerrero-Bote VP, 2014, SCIENTOMETRICS, V101, P1043, DOI 10.1007/s11192-014-1243-5
Gunnarsson TP, 2012, J APPL PHYSIOL, V113, P16, DOI 10.1152/japplphysiol.00334.2012
HALL PAV, 1980, COMPUT SURV, V12, P381, DOI 10.1145/356827.356830
Hassan SU, 2020, SCIENTOMETRICS, V123, P1407, DOI 10.1007/s11192-020-03447-z
Haustein S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120495
Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101
Huang WY, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194962
Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z
Jaspers A, 2018, INT J SPORT PHYSIOL, V13, P625, DOI 10.1123/ijspp.2017-0299
Knobbe A, 2017, DATA MIN KNOWL DISC, V31, P1872, DOI 10.1007/s10618-017-0512-3
Kuhn M, 2008, J STAT SOFTW, V28, P1, DOI 10.18637/jss.v028.i05
Kumar V, 2009, J APPL PHYSIOL, V106, P2026, DOI 10.1152/japplphysiol.91481.2008
Kwok Roberta, 2013, Nature, V500, P491
Lansley KE, 2011, J APPL PHYSIOL, V110, P591, DOI 10.1152/japplphysiol.01070.2010
Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266
Li YJ, 2007, IEEE T PATTERN ANAL, V29, P1091, DOI 10.1109/TPAMI.2007.1070
Little JP, 2011, J APPL PHYSIOL, V111, P1554, DOI 10.1152/japplphysiol.00921.2011
Lorenzo S, 2010, J APPL PHYSIOL, V109, P1140, DOI 10.1152/japplphysiol.00495.2010
Louis M, 2009, J APPL PHYSIOL, V106, P1538, DOI 10.1152/japplphysiol.91523.2008
Ortega J, 2016, SCIENTOMETRICS, V109, P1353, DOI 10.1007/s11192-016-2113-0
Lundberg TR, 2014, J APPL PHYSIOL, V116, P611, DOI 10.1152/japplphysiol.01082.2013
Lundberg TR, 2013, J APPL PHYSIOL, V114, P81, DOI 10.1152/japplphysiol.01013.2012
Marcora SM, 2009, J APPL PHYSIOL, V106, P857, DOI 10.1152/japplphysiol.91324.2008
Marquez CMS, 2015, J APPL PHYSIOL, V119, P1363, DOI 10.1152/japplphysiol.00126.2015
Miller BF, 2018, J APPL PHYSIOL, V124, P257, DOI 10.1152/japplphysiol.00004.2018
Mitchell CJ, 2012, J APPL PHYSIOL, V113, P71, DOI 10.1152/japplphysiol.00307.2012
Moed HF, 2016, J ASSOC INF SCI TECH, V67, P412, DOI 10.1002/asi.23405
Moed HF, 2005, J AM SOC INF SCI TEC, V56, P1088, DOI 10.1002/asi.20200
Moore AD, 2014, J APPL PHYSIOL, V117, P231, DOI 10.1152/japplphysiol.01251.2013
Morton RW, 2016, J APPL PHYSIOL, V121, P129, DOI 10.1152/japplphysiol.00154.2016
Murdoch WJ, 2019, P NATL ACAD SCI USA, V116, P22071, DOI 10.1073/pnas.1900654116
Neylon C, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000242
Peake JM, 2017, J APPL PHYSIOL, V122, P1077, DOI 10.1152/japplphysiol.00622.2016
Peake JM, 2017, J APPL PHYSIOL, V122, P559, DOI 10.1152/japplphysiol.00971.2016
Poole DC, 2017, J APPL PHYSIOL, V122, P997, DOI 10.1152/japplphysiol.01063.2016
Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874
Priem J, 2019, ALTMETRICS WILD USIN
Ried-Larsen M, 2017, J APPL PHYSIOL, V123, P790, DOI 10.1152/japplphysiol.00415.2017
Saeed-Ul Hassan, 2019, SCIENTOMETRICS, V119, P481, DOI 10.1007/s11192-019-03044-9
Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x
Sagi I, 2008, J INF SCI, V34, P680, DOI 10.1177/0165551507086261
Salome CM, 2010, J APPL PHYSIOL, V108, P206, DOI 10.1152/japplphysiol.00694.2009
Shema H, 2014, J ASSOC INF SCI TECH, V65, P1018, DOI 10.1002/asi.23037
Skovgaard C, 2014, J APPL PHYSIOL, V117, P1097, DOI 10.1152/japplphysiol.01226.2013
Straka M, P CONLL 2017 SHAR TA, P88
Strobl C, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-307
Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833
Tang JE, 2009, J APPL PHYSIOL, V107, P987, DOI 10.1152/japplphysiol.00076.2009
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Timmons JA, 2011, J APPL PHYSIOL, V110, P846, DOI 10.1152/japplphysiol.00934.2010
Timmons JA, 2010, J APPL PHYSIOL, V108, P1487, DOI 10.1152/japplphysiol.01295.2009
Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004
van der Zwaard S, 2018, J APPL PHYSIOL, V124, P1403, DOI 10.1152/japplphysiol.00946.2017
van der Zwaard S, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.01276
van der Zwaard S, 2016, J APPL PHYSIOL, V121, P636, DOI 10.1152/japplphysiol.00355.2016
Van Noorden R, 2014, NATURE, V514, P550, DOI 10.1038/514550a
Velez DR, 2007, GENET EPIDEMIOL, V31, P306, DOI 10.1002/gepi.20211
Voss MW, 2011, J APPL PHYSIOL, V111, P1505, DOI 10.1152/japplphysiol.00210.2011
Wang L, 2011, J APPL PHYSIOL, V111, P1335, DOI 10.1152/japplphysiol.00086.2011
West KE, 2011, J APPL PHYSIOL, V110, P619, DOI 10.1152/japplphysiol.01413.2009
Willis LH, 2012, J APPL PHYSIOL, V113, P1831, DOI 10.1152/japplphysiol.01370.2011
Wouters P, 2020, SOCIAL MEDIA METRICS
Wright MN, 2017, J STAT SOFTW, V77, P1, DOI 10.18637/jss.v077.i01
Yu HQ, 2017, SCIENTOMETRICS, V111, P267, DOI 10.1007/s11192-017-2251-z
Ziegler A, 2014, WIRES DATA MIN KNOWL, V4, P55, DOI 10.1002/widm.1114
Zuo L, 2018, J APPL PHYSIOL, V125, P966, DOI 10.1152/japplphysiol.00687.2018
NR 114
TC 9
Z9 9
U1 2
U2 20
PU AMER PHYSIOLOGICAL SOC
PI Rockville
PA 6120 Executive Blvd, Suite 600, Rockville, MD, UNITED STATES
SN 8750-7587
EI 1522-1601
J9 J APPL PHYSIOL
JI J. Appl. Physiol.
PD OCT
PY 2020
VL 129
IS 4
BP 967
EP 979
DI 10.1152/japplphysiol.00489.2020
PG 13
WC Physiology; Sport Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Physiology; Sport Sciences
GA QX2XY
UT WOS:000629212200013
PM 32790596
OA Green Published, Green Submitted, Bronze
DA 2024-09-05
ER
PT J
AU Reong, S
Wee, HM
Hsiao, YL
AF Reong, Samuel
Wee, Hui-Ming
Hsiao, Yu-Lin
TI 20 Years of Particle Swarm Optimization Strategies for the Vehicle
Routing Problem: A Bibliometric Analysis
SO MATHEMATICS
LA English
DT Article
DE particle swarm optimization; vehicle routing problem; bibliometric
analysis; supply chain management; metaheuristics; combinatorial
optimization; data mining
ID TIME WINDOWS; DELIVERY; IMPACT; PICKUP; FIELD; PSO
AB This study uses bibliometric analysis to examine the scientific evolution of particle swarm optimization (PSO) for the vehicle routing problem (VRP) over the past 20 years. Analyses were conducted to discover and characterize emerging trends in the research related to these topics and to examine the relationships between key publications. Through queries of the Web of Science and Scopus databases, the metadata for these particle swarm optimization (PSO) and vehicle routing problem (VRP) solution strategies were compared using bibliographic coupling and co-citation analysis using the Bibliometrix R software package, and secondly with VOSViewer. The bibliometric study's purpose was to identify the most relevant thematic clusters and publications where PSO and VRP research intersect. The findings of this study can guide future VRP research and underscore the importance of developing effective PSO metaheuristics.
C1 [Reong, Samuel; Wee, Hui-Ming; Hsiao, Yu-Lin] Chung Yuan Christian Univ, Dept Ind & Syst Engn, Taoyuan 320, Taiwan.
C3 Chung Yuan Christian University
RP Wee, HM (corresponding author), Chung Yuan Christian Univ, Dept Ind & Syst Engn, Taoyuan 320, Taiwan.
EM weehm@cycu.edu.tw
RI Wee, H/JXY-0919-2024
OI wee, hui ming/0000-0002-2935-9506
CR Ahmed AKMF, 2018, ALGORITHMS, V11, DOI 10.3390/a11030031
Ai TJ, 2009, COMPUT OPER RES, V36, P1693, DOI 10.1016/j.cor.2008.04.003
Ai TJ, 2009, COMPUT IND ENG, V56, P380, DOI 10.1016/j.cie.2008.06.012
Alinaghian M, 2017, NETW SPAT ECON, V17, P1185, DOI 10.1007/s11067-017-9364-z
[Anonymous], 1934, Engineering, DOI [10.1177/016555158501000, DOI 10.1177/016555158501000]
[Anonymous], 2001, Swarm Intelligence
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Belmecheri F, 2013, J INTELL MANUF, V24, P775, DOI 10.1007/s10845-012-0627-8
Chen Ai-ling, 2006, Journal of Zhejiang University (Science), V7, P607, DOI 10.1631/jzus.2006.A0607
Chen MC, 2016, TRANSPORT RES E-LOG, V91, P208, DOI 10.1016/j.tre.2016.04.003
Chen RM, 2019, EXPERT SYST APPL, V138, DOI 10.1016/j.eswa.2019.112833
CLARKE G, 1964, OPER RES, V12, P568, DOI 10.1287/opre.12.4.568
Clerc M, 2004, STUD FUZZ SOFT COMP, V141, P219
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
DANTZIG GB, 1959, MANAGE SCI, V6, P80, DOI 10.1287/mnsc.6.1.80
Dethloff J, 2001, OR SPEKTRUM, V23, P79, DOI 10.1007/PL00013346
Ferrucci F, 2013, INTRO TOUR PLANNING, DOI [10.1007/978-3-642-33472-6_2, DOI 10.1007/978-3-642-33472-6_2]
FISHER ML, 1981, NETWORKS, V11, P109, DOI 10.1002/net.3230110205
Garai A, 2022, J CLEAN PROD, V334, DOI 10.1016/j.jclepro.2021.129977
GENDREAU M, 1994, MANAGE SCI, V40, P1276, DOI 10.1287/mnsc.40.10.1276
Goksal FP, 2013, COMPUT IND ENG, V65, P39, DOI 10.1016/j.cie.2012.01.005
Gong YJ, 2012, IEEE T SYST MAN CY C, V42, P254, DOI 10.1109/TSMCC.2011.2148712
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jia YH, 2018, IEEE T SYST MAN CY-S, V48, P1607, DOI 10.1109/TSMC.2017.2682264
Kanthavel Karuppusamy, 2011, American Journal of Applied Sciences, V8, P107, DOI 10.3844/ajassp.2011.107.112
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Khouadjia MR, 2012, APPL SOFT COMPUT, V12, P1426, DOI 10.1016/j.asoc.2011.10.023
Kim BI, 2012, J INTELL MANUF, V23, P1119, DOI 10.1007/s10845-010-0455-7
Lahyani R, 2015, EUR J OPER RES, V241, P1, DOI 10.1016/j.ejor.2014.07.048
LIN S, 1965, AT&T TECH J, V44, P2245, DOI 10.1002/j.1538-7305.1965.tb04146.x
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Marinakis Y., 2018, PARTICLE SWARM OPTIM, DOI [10.1007/978-3-319-07124-4_42, DOI 10.1007/978-3-319-07124-4_42]
Marinakis Y, 2019, INFORM SCIENCES, V481, P311, DOI 10.1016/j.ins.2018.12.086
Marinakis Y, 2013, APPL SOFT COMPUT, V13, P1693, DOI 10.1016/j.asoc.2013.01.007
Marinakis Y, 2013, LECT NOTES COMPUT SC, V7832, P133, DOI 10.1007/978-3-642-37198-1_12
Marinakis Y, 2010, ENG APPL ARTIF INTEL, V23, P463, DOI 10.1016/j.engappai.2010.02.002
Marinakis Y, 2010, EXPERT SYST APPL, V37, P1446, DOI 10.1016/j.eswa.2009.06.085
Moghaddam BF, 2012, COMPUT IND ENG, V62, P306, DOI 10.1016/j.cie.2011.10.001
Naderipour M, 2016, MEASUREMENT, V90, P443, DOI 10.1016/j.measurement.2016.04.043
Norouzi N, 2012, NETW SPAT ECON, V12, P609, DOI 10.1007/s11067-011-9169-4
Norouzi N, 2017, OPTIM LETT, V11, P121, DOI 10.1007/s11590-015-0996-y
Norouzi N, 2015, MEASUREMENT, V62, P162, DOI 10.1016/j.measurement.2014.10.024
Okulewicz M, 2019, SWARM EVOL COMPUT, V48, P44, DOI 10.1016/j.swevo.2019.03.008
Okulewicz M, 2017, APPL SOFT COMPUT, V58, P586, DOI 10.1016/j.asoc.2017.04.070
Ozsoydan FB, 2013, OPTIMIZATION, V62, P1321, DOI 10.1080/02331934.2013.841158
Potvin JY, 2009, INFORMS J COMPUT, V21, P518, DOI 10.1287/ijoc.1080.0312
Rochat Y., 1995, Journal of Heuristics, V1, P147, DOI 10.1007/BF02430370
Sarkar B, 2022, EXPERT SYST APPL, V202, DOI 10.1016/j.eswa.2022.117154
Sarkar B, 2021, J CLEAN PROD, V317, DOI 10.1016/j.jclepro.2021.128079
Shi JL, 2018, ASIA PAC J OPER RES, V35, DOI 10.1142/S0217595918400067
Shi YH, 1998, IEEE C EVOL COMPUTAT, P69, DOI 10.1109/ICEC.1998.699146
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
SOLOMON MM, 1987, OPER RES, V35, P254, DOI 10.1287/opre.35.2.254
Toth P, 2002, SIAM MONOG DISCR MAT, P1
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Vidal T, 2013, EUR J OPER RES, V231, P1, DOI 10.1016/j.ejor.2013.02.053
Waltman L, 2015, J INFORMETR, V9, P872, DOI 10.1016/j.joi.2015.08.001
Wu DQ, 2016, INT J SIMUL MODEL, V15, P742, DOI 10.2507/IJSIMM15(4)CO19
Xu JP, 2011, TRANSPORT RES E-LOG, V47, P1075, DOI 10.1016/j.tre.2011.04.002
NR 60
TC 5
Z9 5
U1 8
U2 32
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-7390
J9 MATHEMATICS-BASEL
JI Mathematics
PD OCT
PY 2022
VL 10
IS 19
AR 3669
DI 10.3390/math10193669
PG 19
WC Mathematics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematics
GA 5G6HI
UT WOS:000867097500001
OA gold
DA 2024-09-05
ER
PT J
AU Wang, J
AF Wang, Jun
TI RESEARCH ON THE REALIZATION MECHANISM AND EVALUATION SYSTEM OF
HIGH-QUALITY UNDERGRADUATE EDUCATION IN PRIVATE UNIVERSITIES BASED ON
DEEP LEARNING
SO 3C TIC
LA English
DT Article
DE Deep learning; private universities; high-quality undergraduate
education; realization mechanism; assessment system
AB Due to the new development stage, it is especially important to improve the education quality of private undergraduate universities. As a result, it is a new hot issue for the construction of a mechanism and assessment system for the quality improvement of private undergraduate education. In this paper, after analyzing and researching the quality of undergraduate education in present-day universities, the mechanism of deep learning is applied to the establishment of the assessment system. Finally, 1082 samples collected from the data center platform of a private university are analyzed as the research object. From the results, the final size of the combined weights of the seven evaluation items constituting the assessment system differed basically little. They were 12.81%, 15.78%, 15.28%, 14.38%, 12.83%, 12.81%, 15.01%, and 13.27%, respectively. In the comparison of this paper's method with FAHP+TOPSIS combined evaluation, euclidean map method, and genetic algorithm assignment, the difference between the seven weight values of the euclidean map method is larger, 5.56%. The evaluation times of the four methods were 41 s, 38 s, 47 s, and 118 s. Compared with the other three methods, the genetic algorithm assignment took the most time.
C1 [Wang, Jun] Guangdong Inst Sci & Technol, Dongguan 523808, Guangdong, Peoples R China.
RP Wang, J (corresponding author), Guangdong Inst Sci & Technol, Dongguan 523808, Guangdong, Peoples R China.
EM wjshgz2022@126.com
CR Bhor HN, 2022, COMPUT INTELL-US, V38, P438, DOI 10.1111/coin.12473
Blythe A, 2018, BRIT J GEN PRACT, V68, P560, DOI 10.3399/bjgp18X699881
Boardman C., 2021, British Journal of Surgery, V108
Chang JY, 2022, APPL MATH NONLIN SCI, V7, P175, DOI 10.2478/amns.2021.2.00154
Cong S. L., 2018, Polymer Bulletin
Gao RM, 2020, J CHEM EDUC, V97, P3028, DOI 10.1021/acs.jchemed.0c00634
Homberg A, 2020, COMPLEMENT THER MED, V54, DOI 10.1016/j.ctim.2020.102542
Hong W, 2021, Journal of Physics: Conference Series, V1738
Hu C., 2021, Complexity
Huang WM, 2021, J INTELL FUZZY SYST, V40, P2373, DOI 10.3233/JIFS-189233
Kali Y, 2019, BRIT J EDUC TECHNOL, V50, P2162, DOI 10.1111/bjet.12847
Marlowe J, 2020, J CHEM EDUC, V97, P4527, DOI 10.1021/acs.jchemed.0c00925
Meng YL, 2020, J CHEM EDUC, V97, P2945, DOI 10.1021/acs.jchemed.0c00874
Murray H, 2020, ACAD MED, V95, P382, DOI 10.1097/ACM.0000000000003085
Natarajan S., 2023, Traitement du Signal
Nilsson P, 2020, J RES MATH EDUC, V51, P574, DOI 10.5951/jresematheduc-2020-0167
Papez M, 2022, KNOWL-BASED SYST, V251, DOI 10.1016/j.knosys.2022.108875
Perets EA, 2020, J CHEM EDUC, V97, P2439, DOI 10.1021/acs.jchemed.0c00879
Qiufeng Cheng, 2021, ICCIR 2021: Proceedings of the 2021 International Conference on Control and Intelligent Robotics, P74, DOI 10.1145/3473714.3473728
Ruder SM, 2020, J CHEM EDUC, V97, P3521, DOI 10.1021/acs.jchemed.9b00912
Ruder SM, 2018, J CHEM EDUC, V95, P2126, DOI 10.1021/acs.jchemed.8b00167
Scott KW, 2019, ACAD MED, V94, P996, DOI 10.1097/ACM.0000000000002726
Tackett S, 2019, ACAD MED, V94, P1995, DOI 10.1097/ACM.0000000000002857
Talla-Chumpitaz R., 2023, Information Fusion
Tempelman C, 2021, J CHEM EDUC, V98, P2559, DOI 10.1021/acs.jchemed.1c00243
Xiao CL, 2020, J CHEM EDUC, V97, P2940, DOI 10.1021/acs.jchemed.0c00642
Xue K., 2019, 2019 INT C ADV ED MA, P13
Zaijuan Xu, 2020, 2020 International Conference on Computing and Data Science (CDS), P198, DOI 10.1109/CDS49703.2020.00047
Zeng YS, 2020, INT J EMERG TECHNOL, V15, P4, DOI 10.3991/ijet.v15i01.12533
NR 30
TC 0
Z9 0
U1 2
U2 3
PU AREA INNOVACION & DESARROLLO
PI ALICANTE
PA C/ELS ALZAMORA NO 17, ALCOY, ALICANTE, 03802, SPAIN
SN 2254-6529
J9 3C TIC
JI 3C Tic
PD APR-JUN
PY 2023
VL 12
IS 2
BP 97
EP 115
DI 10.17993/3ctic.2023.122.97-115
PG 19
WC Computer Science, Theory & Methods
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA U8YQ8
UT WOS:001087605300004
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Zheng, QG
Chen, HY
Wang, Y
Zhang, HB
Hu, ZZ
AF Zheng, Qiangang
Chen, Haoying
Wang, Yong
Zhang, Haibo
Hu, Zhongzhi
TI Research on hybrid optimization and deep learning modeling method in the
performance seeking control
SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF
AEROSPACE ENGINEERING
LA English
DT Article
DE Performance seeking control; on-board turbo engine model; deep neural
network; genetic algorithm particle swarm optimization; feasible
sequential quadratic programming
AB A novel performance seeking control method based on hybrid optimization algorithm and deep learning modeling method is proposed to get a better engine performance. The deep learning modeling method, deep neural network, which has strong representation capability and can deal with big training data, is adopted to establish an on-board engine model. A hybrid optimization algorithm-genetic algorithm particle swarm optimization-feasible sequential quadratic programming-is proposed and applied to performance seeking control. The genetic algorithm particle swarm optimization-feasible sequential quadratic programming not only has the global search ability of genetic algorithm particle swarm optimization, but also has the high local search accuracy of feasible sequential quadratic programming. The final simulation experiments show that, compared with feasible sequential quadratic programming, genetic algorithm particle swarm optimization, and genetic algorithm, the proposed optimization algorithm can get more installed thrust, decrease fuel consumption between 2% to 3%, and decrease turbine blade temperature larger than 15k, while meeting all of the constraints. Moreover, it also shows that the proposed modeling method has high accuracy and real-time performance.
C1 [Zheng, Qiangang; Chen, Haoying; Wang, Yong; Zhang, Haibo; Hu, Zhongzhi] Nanjing Univ Aeronaut & Astronaut, Jiangsu Prov Key Lab Aerosp Power Syst, Yudao St 29, Nanjing 210016, Peoples R China.
C3 Nanjing University of Aeronautics & Astronautics
RP Zheng, QG (corresponding author), Nanjing Univ Aeronaut & Astronaut, Jiangsu Prov Key Lab Aerosp Power Syst, Yudao St 29, Nanjing 210016, Peoples R China.
EM zhqg@nuaa.edu.cn
RI Zhang, Haibo/HLP-9266-2023
FU National Natural Science Foundation of China [51906102]; National
Science and Technology Major Project [2017-V-0004-0054]; Research on the
Basic Problem of Intelligent Aero-engine [2017-JCJQZD-047-21]; China
Postdoctoral Science Foundation [2019M661835]; Aeronautics Power
Foundation [6141B09050385]; Fundamental Research Funds for the Central
Universities [NT2019004]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This study
was supported in part by National Natural Science Foundation of China
[Grant no. 51906102], National Science and Technology Major Project
[Grant no. 2017-V-0004-0054], Research on the Basic Problem of
Intelligent Aero-engine [Grant no. 2017-JCJQZD-047-21, China
Postdoctoral Science Foundation Funded Project [Grant no. 2019M661835],
Aeronautics Power Foundation [Grant no. 6141B09050385], and the
Fundamental Research Funds for the Central Universities [Grant no.
NT2019004].
CR Adam SP, 2017, COMM COM INF SC, V744, P314, DOI 10.1007/978-3-319-65172-9_27
[Anonymous], 2005, ADV MULTIVARIABLE CO
[Anonymous], 2015, THESIS
[Anonymous], 2015, Ph.D. thesis,
DAWEI Y, 2010, INT J INFORM ENG ELE, V2, P31
DENHAM JW, 2002, AIAA20026021
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
HAIBO Z, 2010, ACTA AERONAUT ASTRON, V4, P4
Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527
Huang S., 2017, ARXIV170202284
Ioffe Sergey, 2015, P MACHINE LEARNING R, V37, P448, DOI DOI 10.48550/ARXIV.1502.03167
LAMBERT HH, 1991, 27 JOINT PROP C, P1998
Maine T., 1990, 26 AIAA SAE ASME ASE, P1921
Mikki SaidM., 2008, Synthesis Lectures on Computational Electromagnetics, V3, P1, DOI [DOI 10.2200/S00110ED1V01Y200804CEM020, 10.2200/s00110-d1v01y200804cem020, DOI 10.2200/S00110-D1V01Y200804CEM020]
NAN L, 2013, J NANJING U AERONAUT, V3, P3
NIE YW, 2019, J BEIJING U AERONAUT
NOBBS SG, 1995, EL WORKSH PERF SEEK, P41
Orme JS., 1994, AIAA943210
ORME JS, 1995, EL WORKSH PERF SEEK, P146
Perez RE, 2007, COMPUT STRUCT, V85, P1579, DOI 10.1016/j.compstruc.2006.10.013
Sarkar S, 2008, P I MECH ENG G-J AER, V222, P319, DOI 10.1243/09544100JAERO312
Sharma D., 2014, Energy Technol. Policy, V1, P106, DOI [10.1080/23317000.2014.969450, DOI 10.1080/23317000.2014.969450]
Silva VVR, 2005, ENG APPL ARTIF INTEL, V18, P575, DOI 10.1016/j.engappai.2005.01.001
SIMON DL, 1995, NASATM107110
[孙丰诚 Sun Fengcheng], 2005, [航空动力学报, Journal of Aerospace Power], V20, P862
Sun FY, 2016, INT J TURBO JET ENG, V33, P341, DOI 10.1515/tjj-2015-0036
Wang Yuan, 2016, Journal of Aerospace Power, V31, P948, DOI 10.13224/j.cnki.jasp.2016.04.023
Yu D, 2011, P I MECH ENG G-J AER, V225, P1366, DOI 10.1177/0954410011400959
ZHENG Q, 2018, AEROENGINE BOARD DYN
Zheng QG, 2018, AEROSP SCI TECHNOL, V76, P421, DOI 10.1016/j.ast.2018.01.034
Zheng QG, 2017, INT J TURBO JET ENG, V34, P321, DOI 10.1515/tjj-2016-0015
Zheng QG, 2017, P I MECH ENG I-J SYS, V231, P554, DOI 10.1177/0959651817710127
ZHU YB, 2006, 44 AIAA AER SCI M EX, P44
NR 33
TC 6
Z9 7
U1 0
U2 18
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0954-4100
EI 2041-3025
J9 P I MECH ENG G-J AER
JI Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng.
PD JUN
PY 2020
VL 234
IS 7
BP 1340
EP 1355
AR 0954410020903151
DI 10.1177/0954410020903151
EA FEB 2020
PG 16
WC Engineering, Aerospace; Engineering, Mechanical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA LM6CN
UT WOS:000513327500001
DA 2024-09-05
ER
PT J
AU Polyakov, M
Chalak, M
Iftekhar, MS
Pandit, R
Tapsuwan, S
Zhang, F
Ma, CB
AF Polyakov, Maksym
Chalak, Morteza
Iftekhar, Md. Sayed
Pandit, Ram
Tapsuwan, Sorada
Zhang, Fan
Ma, Chunbo
TI Authorship, Collaboration, Topics, and Research Gaps in Environmental
and Resource Economics 1991-2015
SO ENVIRONMENTAL & RESOURCE ECONOMICS
LA English
DT Article
DE Topic analysis; Latent Dirichlet allocation; Co-authorship;
Environmental and resource economics
ID ECOLOGICAL ECONOMICS; INFLUENTIAL PUBLICATIONS; TEXT
AB Environmental and Resource Economics is one of the premier journals in the field of environmental economics. It was established with an aspiration to focus more on applied and policy relevant research compared to other established journals, and to establish better channels of communication and collaboration between researchers from Europe and other parts of the world. We present a text based exploratory analysis of 1630 articles published in the Journal from 1991 to 2015 that suggests the Journal has been somewhat successful in meeting both these aims. Perhaps more importantly, it shows the Journal continues to progress toward these goals. The European authors are the largest contributors to the Journal, which is in contrast to other prominent journals (such as Journal of Environmental Economics and Management and Ecological Economics). And while most of the collaboration has occurred within this geographic region (e.g., European authors collaborated with other European authors more frequently), this trend appears to be changing as the proportion of articles written by international collaborators is gradually increasing. Topic analysis reveals that almost all of the articles could be grouped under applied and/or policy relevant topics, and almost two-thirds of the articles are empirical in nature, which suggest that the journal has been able to fulfil both of its commitments. We also investigate trends in research foci over the last 25 years and what kind of research gaps can be discerned.
C1 [Polyakov, Maksym; Chalak, Morteza; Iftekhar, Md. Sayed; Pandit, Ram; Zhang, Fan; Ma, Chunbo] Univ Western Australia, M089,35 Stirling Hwy, Crawley, WA 6009, Australia.
[Tapsuwan, Sorada] Private Bag 5, Wembley, WA 6913, Australia.
C3 University of Western Australia
RP Ma, CB (corresponding author), Univ Western Australia, M089,35 Stirling Hwy, Crawley, WA 6009, Australia.
EM maksym.polyakov@uwa.edu.au; morteza.chalak@uwa.edu.au;
mdsayed.iftekhar@uwa.edu.au; ram.pandit@uwa.edu.au;
Sorada.Tapsuwan@csiro.au; fan.zhang@uwa.edu.au; chunbo.ma@uwa.edu.au
RI Iftekhar, Sayed/J-5298-2013; Ma, Chunbo/D-3478-2011; Polyakov,
Maksym/G-1523-2010; Tapsuwan, Sorada/G-5869-2010; Lobo,
Diele/I-9106-2012
OI Ma, Chunbo/0000-0002-9973-2943; Polyakov, Maksym/0000-0002-0193-6658;
Pandit, Ram/0000-0003-4053-5694; Iftekhar, Md Sayed/0000-0002-2827-2943;
Tapsuwan, Sorada/0000-0002-8160-3828
FU Australian Research Council Centre of Excellence for Environmental
Decisions
FX This research was conducted with the support of funding from the
Australian Research Council Centre of Excellence for Environmental
Decisions. We acknowledge helpful comments and suggestions of Ms Tammie
Harold and Mr Tas Thamo of UWA.
CR Adams J, 2013, NATURE, V497, P557, DOI 10.1038/497557a
Backhouse RE, 1998, HIST POLIT ECON, V30, P85, DOI 10.1215/00182702-30-Supplement-85
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Brookshire DS, 2000, J ENVIRON ECON MANAG, V39, P249, DOI 10.1006/jeem.1999.1114
Carson RT, 2001, ENVIRON RESOUR ECON, V19, P173, DOI 10.1023/A:1011128332243
Costanza R, 2004, ECOL ECON, V50, P261, DOI 10.1016/j.ecolecon.2004.06.001
Costanza R, 2016, ECOL ECON, V123, P68, DOI 10.1016/j.ecolecon.2016.01.007
Debertin D. L., 1992, Review of Agricultural Economics, V14, P1, DOI 10.2307/1349603
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Endres DM, 2003, IEEE T INFORM THEORY, V49, P1858, DOI 10.1109/TIT.2003.813506
Furnas G. W., 1988, 11th International Conference on Research and Development in Information Retrieval, P465
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028
Grün B, 2011, J STAT SOFTW, V40, P1
Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763
Hamermesh DS, 2013, J ECON LIT, V51, P162, DOI 10.1257/jel.51.1.162
Hanley N, 1998, ENVIRON RESOUR ECON, V11, P413, DOI 10.1023/A:1008287310583
Karl A, 2015, WIRES COMPUT STAT, V7, DOI 10.1002/wics.1361
KATES RW, 1987, ANN ASSOC AM GEOGR, V77, P525, DOI 10.1111/j.1467-8306.1987.tb00178.x
KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694
Laband DN, 2000, J POLIT ECON, V108, P632, DOI 10.1086/262132
Ma CB, 2006, ECOL ECON, V58, P491, DOI 10.1016/j.ecolecon.2005.07.023
Murtagh F, 2014, J CLASSIF, V31, P274, DOI 10.1007/s00357-014-9161-z
Opschoor JB, 1991, ENVIRON RESOUR ECON, V1, P5
Paul MJ, 2014, PLOS ONE, V9, DOI [10.1371/journal.pone.0103408, 10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117]
Polyakov M, 2016, AUST J AGR RESOUR EC, V60, P506, DOI 10.1111/1467-8489.12152
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Rusch T, 2013, ANN APPL STAT, V7, P613, DOI 10.1214/12-AOAS618
Schymura M, 2014, SCIENTOMETRICS, V99, P631, DOI 10.1007/s11192-014-1248-0
SHOGREN JF, 1991, J ENVIRON ECON MANAG, V20, P205, DOI 10.1016/0095-0696(91)90008-7
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
WCED SWS., 1987, Our Common Future, V17, P1
Westgate MJ, 2015, CONSERV BIOL, V29, P1606, DOI 10.1111/cobi.12605
NR 33
TC 6
Z9 6
U1 4
U2 33
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0924-6460
EI 1573-1502
J9 ENVIRON RESOUR ECON
JI Environ. Resour. Econ.
PD SEP
PY 2018
VL 71
IS 1
BP 217
EP 239
DI 10.1007/s10640-017-0147-2
PG 23
WC Economics; Environmental Studies
WE Social Science Citation Index (SSCI)
SC Business & Economics; Environmental Sciences & Ecology
GA GS2SD
UT WOS:000443405200010
DA 2024-09-05
ER
PT J
AU Bornmann, L
Marewski, JN
AF Bornmann, Lutz
Marewski, Julian N.
TI Heuristics as conceptual lens for understanding and studying the usage
of bibliometrics in research evaluation
SO SCIENTOMETRICS
LA English
DT Article
DE Bibliometrics; Fast-and-frugal heuristics; Research evaluation
ID RECOGNITION-BASED JUDGMENTS; PARALLEL CONSTRAINT SATISFACTION; ADAPTIVE
STRATEGY SELECTION; DECISION-MAKING; CREATIVE ACCOMPLISHMENTS; SCIENCE
HISTORY; PROCESS MODELS; LINEAR-MODELS; ROBUST BEAUTY; FRUGAL
AB While bibliometrics are widely used for research evaluation purposes, a common theoretical framework for conceptually understanding, empirically studying, and effectively teaching its usage is lacking. In this paper, we outline such a framework: the fast-and-frugal heuristics research program, proposed originally in the context of the cognitive and decision sciences, lends itself particularly well for understanding and investigating the usage of bibliometrics in research evaluations. Such evaluations represent judgments under uncertainty in which typically not all possible options, their consequences, and those consequences' probabilities of occurring may be known. In these situations of incomplete information, candidate descriptive and prescriptive models of human behavior are heuristics. Heuristics are simple strategies that, by exploiting the structure of environments, can aid people to make smart decisions. Relying on heuristics does not mean trading off accuracy against effort: while reducing complexity, heuristics can yield better decisions than more information-greedy procedures in many decision environments. The prescriptive power of heuristics is documented in a cross-disciplinary literature, cutting across medicine, crime, business, sports, and other domains. We outline the fast-and-frugal heuristics research program, provide examples of past empirical work on heuristics outside the field of bibliometrics, explain why heuristics may be especially suitable for studying the usage of bibliometrics, and propose a corresponding conceptual framework.
C1 [Bornmann, Lutz] Adm Headquarters Max Planck Soc, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany.
[Marewski, Julian N.] Univ Lausanne, Fac Business & Econ, Quartier UNIL Dorigny, Batiment Internef, CH-1015 Lausanne, Switzerland.
C3 Max Planck Society; University of Lausanne
RP Bornmann, L (corresponding author), Adm Headquarters Max Planck Soc, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany.
EM bornmann@gv.mpg.de; julian.marewski@unil.ch
RI Marewski, Julian N/A-6211-2012; Bornmann, Lutz/A-3926-2008
OI Marewski, Julian/0000-0002-8974-0667; Bornmann, Lutz/0000-0003-0810-7091
FU Max Planck Society
FX Open access funding provided by Max Planck Society. We thank Katrin
Auspurg, Robin Haunschild, Sven Hug, and Alexander Tekles for very
helpful comments on an earlier version of this paper. We also thank Marc
Jekel and another anonymous reviewer for their very thoughtful comments
and feedback.
CR Adler R, 2009, STAT SCI, V24, P1, DOI 10.1214/09-STS285
ALBA JW, 1985, J MARKETING RES, V22, P340, DOI 10.2307/3151430
Anderson JR, 2004, PSYCHOL REV, V111, P1036, DOI 10.1037/0033-295x.111.4.1036
[Anonymous], 2017, IND BOOK
[Anonymous], 2011, HEURISTICS FDN ADAPT
[Anonymous], 2012, MULTIDIMENSIONAL RAN
[Anonymous], 2016, HDB BIBLIOMETRIC IND, DOI DOI 10.1002/ANIE.201608447
[Anonymous], 1999, Simple Heuristics That Make Us Smart, DOI DOI 10.1111/.1745-9125.2010.00223.X
[Anonymous], CITATION ANAL RES EV
[Anonymous], 2012, ECOLOGICAL RATIONALI, DOI DOI 10.1093/ACPROF
[Anonymous], ECOLOGICAL RATIONALI
[Anonymous], 1984, The citation process: The role and significance of citations in scientific communication
[Anonymous], 2008, Rationality for mortals: how people cope with uncertainty
[Anonymous], 1999, The ABC Research Group, Simple Heuristics that Make Us Smart
[Anonymous], SOZIOLOGIE
ARROW KJ, 1966, SYNTHESE, V16, P253, DOI 10.1007/BF00485082
Artinger F. M., 2019, Business Research, P9, DOI DOI 10.1007/S40685-018-0074-2
Auspurg K, 2015, SOZ WELT, V66, P177, DOI 10.5771/0038-6073-2015-2-177
Binmore K, 2009, GORMAN LECT ECON, P1
Binmore K., 2007, ANN EC STAT, V86, P25, DOI DOI 10.2307/20079192
Bishop D, 2018, LUCK DRAW FUNDERS SH
Bobadilla-Suarez S, 2018, J EXP PSYCHOL LEARN, V44, P24, DOI 10.1037/xlm0000419
Bornmann L, 2006, HIGH EDUC, V52, P687, DOI 10.1007/s10734-004-8306-0
Bornmann L, 2005, SCIENTOMETRICS, V63, P297, DOI 10.1007/s11192-005-0214-2
Bornmann L., Encyclopedia of Research Methods
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Bornmann L, 2019, J INF SCI, V45, P84, DOI 10.1177/0165551518782829
Bornmann L, 2018, J INFORMETR, V12, P598, DOI 10.1016/j.joi.2018.05.002
Bornmann L, 2017, J INFORMETR, V11, P788, DOI 10.1016/j.joi.2017.06.001
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P1738, DOI 10.1002/asi.23318
Bornmann L, 2014, SCIENTOMETRICS, V98, P487, DOI 10.1007/s11192-013-1161-y
Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112
Bornmann L, 2011, J INFORMETR, V5, P346, DOI 10.1016/j.joi.2011.01.006
Bornmann L, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014331
Bornmann L, 2010, PLOS ONE, V5, DOI [10.1371/journal.pone.0013327, 10.1371/journal.pone.0011344]
Brandstätter E, 2006, PSYCHOL REV, V113, P409, DOI 10.1037/0033-295X.113.2.409
Brighton H., 2006, AAAI SPRING S COGN S, P17
Bröder A, 2007, PSYCHON B REV, V14, P895, DOI 10.3758/BF03194118
Busemeyer J.R., 1993, TIME PRESSURE STRESS, P181
Busemeyer JR, 2018, J BEHAV DECIS MAKING, V31, P199, DOI 10.1002/bdm.2005
COLE S, 1967, AM SOCIOL REV, V32, P377, DOI 10.2307/2091085
Cronin B., 2005, The hand of science: Academic writing and its rewards. Lanham
Czerlinski J., 1999, Simple heuristics that make us smart, P97
Davis PM, 2009, LEARN PUBL, V22, P5, DOI 10.1087/095315108X378712
DAWES RM, 1974, PSYCHOL BULL, V81, P95, DOI 10.1037/h0037613
DAWES RM, 1979, AM PSYCHOL, V34, P571, DOI 10.1037/0003-066X.34.7.571
de Rijcke S, 2016, RES EVALUAT, V25, P161, DOI 10.1093/reseval/rvv038
Derrick G. E., 2016, P 21 INT C SCI TECHN
Dhami MK, 2003, PSYCHOL SCI, V14, P175, DOI 10.1111/1467-9280.01438
Diekmann A, 2012, KOLNER Z SOZIOL SOZ, V64, P563, DOI 10.1007/s11577-012-0175-4
Dougherty MR, 2008, PSYCHOL REV, V115, P199, DOI 10.1037/0033-295X.115.1.199
EDWARDS W, 1954, PSYCHOL BULL, V51, P380, DOI 10.1037/h0053870
EINHORN HJ, 1975, ORGAN BEHAV HUM PERF, V13, P171, DOI 10.1016/0030-5073(75)90044-6
Elsevier, 2016, QUICK REF CARDS RES
Frenken K, 2009, J INFORMETR, V3, P222, DOI 10.1016/j.joi.2009.03.005
Gaissmaier W, 2011, JUDGM DECIS MAK, V6, P73
Garcia-Retamero R, 2009, PSYCHON B REV, V16, P163, DOI 10.3758/PBR.16.1.163
Gigerenzer G, 1996, PSYCHOL REV, V103, P650, DOI 10.1037/0033-295X.103.4.650
Gigerenzer G., 2014, Risk Savvy: How to Make Good Decisions
Gigerenzer G., 2012, Ecological Rationality: Intelligence in the World, P241, DOI DOI 10.1093/ACPROF:OSO/9780195315448.003.0075
Gigerenzer G., 2004, J. Soc. Econ., V33, P587, DOI DOI 10.1016/J.SOCEC.2004.09.033
Gigerenzer G., 2007, GUT FEELINGS
Gigerenzer G, 2008, PSYCHOL REV, V115, P230, DOI 10.1037/0033-295X.115.1.230
Gigerenzer G, 2015, J MANAGE, V41, P421, DOI 10.1177/0149206314547522
Gigerenzer G, 2011, ANNU REV PSYCHOL, V62, P451, DOI 10.1146/annurev-psych-120709-145346
Gigerenzer G, 2010, TOP COGN SCI, V2, P528, DOI 10.1111/j.1756-8765.2010.01094.x
Gigerenzer G, 2009, TOP COGN SCI, V1, P107, DOI 10.1111/j.1756-8765.2008.01006.x
Gigerenzer G, 2008, PERSPECT PSYCHOL SCI, V3, P20, DOI 10.1111/j.1745-6916.2008.00058.x
Gigerenzer Gerd, 2011, Heuristics: The foundation of adaptive behavior
Gigerenzer Gerd., 2001, SIMPLE HEURISTICS MA
GILBERT GN, 1977, SOC STUD SCI, V7, P113
Gingras Y., 2016, Bibliometrics and research evaluation. Uses and abuses
Glaser J., 2007, CHANGING GOVERNANCE, P101, DOI [10.1007/978-1-4020-6746-4_5, DOI 10.1007/978-1-4020-6746-4_5]
Glöckner A, 2008, JUDGM DECIS MAK, V3, P215
Glöckner A, 2014, COGNITION, V133, P641, DOI 10.1016/j.cognition.2014.08.017
Glöckner A, 2011, EXP PSYCHOL, V58, P180, DOI 10.1027/1618-3169/a000084
Goldstein DG, 2009, INT J FORECASTING, V25, P760, DOI 10.1016/j.ijforecast.2009.05.010
Goldstein DG, 2002, PSYCHOL REV, V109, P75, DOI 10.1037//0033-295X.109.1.75
Gralka S, 2019, J HIGH EDUC POLICY M, V41, P322, DOI 10.1080/1360080X.2019.1588492
Green L, 1997, J FAM PRACTICE, V45, P219
Gunashekar S, 2017, SCIENTOMETRICS, V112, P1813, DOI 10.1007/s11192-017-2417-8
Hafenbrädl S, 2016, J APPL RES MEM COGN, V5, P215, DOI 10.1016/j.jarmac.2016.04.011
Hammarfelt B, 2018, J ASSOC INF SCI TECH, V69, P924, DOI 10.1002/asi.24043
Hammond K.R., 1996, HUMAN JUDGMENT SOCIA
Harzing A.-W., 2017, Running the REF on a rainy Sunday afternoon: Do metrics match peer review?
HAUSER JR, 1990, J CONSUM RES, V16, P393, DOI 10.1086/209225
Heck DW, 2017, PSYCHOL REV, V124, P442, DOI 10.1037/rev0000063
Heinze T, 2013, SCIENTOMETRICS, V95, P927, DOI 10.1007/s11192-012-0848-9
Heinze T, 2012, KOLNER Z SOZIOL SOZ, V64, P583, DOI 10.1007/s11577-012-0173-6
Helmreich R.L., 2016, Culture at work in aviation and medicine: National, organizational and professional influences
Hertwig R., 2013, SIMPLE HEURISTICS SO
Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a
Hilbig BE, 2010, PSYCHON B REV, V17, P923, DOI 10.3758/PBR.17.6.923
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hoffrage U., 2018, The Routledge international handbook of thinking and reasoning, P325
Hoffrage U, 2015, J APPL RES MEM COGN, V4, P145, DOI 10.1016/j.jarmac.2015.08.001
Horta H, 2016, RES HIGH EDUC, V57, P28, DOI 10.1007/s11162-015-9380-0
Jappe A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199031
Jekel M, 2018, J BEHAV DECIS MAKING, V31, P289, DOI 10.1002/bdm.2076
Jekel M, 2018, J BEHAV DECIS MAKING, V31, P265, DOI 10.1002/bdm.1983
Johnson EJ, 2008, PSYCHOL REV, V115, P263, DOI 10.1037/0033-295X.115.1.263
Julian N. Marewski, 2010, [心理学报, Acta Psychologica Sinica], V42, P72
Juslin P, 2002, COGNITIVE SCI, V26, P563, DOI 10.1207/s15516709cog2605_2
Kahnemann D., 1982, JUDGMENT UNCERTAINTY
Katsikopoulos KV, 2011, DECIS ANAL, V8, P10, DOI 10.1287/deca.1100.0191
Katsikopoulos KV, 2010, PSYCHOL REV, V117, P1259, DOI 10.1037/a0020418
Kerr N L, 1998, Pers Soc Psychol Rev, V2, P196, DOI 10.1207/s15327957pspr0203_4
Knight Frank Hyneman, 1921, Risk, uncertainty and profit, V31
Laurance WF, 2013, BIOSCIENCE, V63, P817, DOI 10.1525/bio.2013.63.10.9
Leydesdorff L, 2016, SCIENTOMETRICS, V109, P2129, DOI 10.1007/s11192-016-2150-8
LINDLEY DV, 1983, J ROY STAT SOC D-STA, V32, P1
LOPES LL, 1991, THEOR PSYCHOL, V1, P65, DOI 10.1177/0959354391011005
LOPES LL, 1992, THEOR PSYCHOL, V2, P231, DOI 10.1177/0959354392022010
Luan SH, 2017, ORGAN BEHAV HUM DEC, V141, P29, DOI 10.1016/j.obhdp.2017.05.003
Luan SH, 2011, PSYCHOL REV, V118, P316, DOI 10.1037/a0022684
Macilwain C, 2013, NATURE, V500, P255, DOI 10.1038/500255a
MacRoberts MH, 2018, J ASSOC INF SCI TECH, V69, P474, DOI 10.1002/asi.23970
Marewski J. N., 2019, OPIUM SCI SOC UNPUB
Marewski JN, 2018, J BEHAV DECIS MAKING, V31, P181, DOI 10.1002/bdm.2075
Marewski JN, 2014, WIRES COGN SCI, V5, P39, DOI 10.1002/wcs.1265
Marewski Julian N, 2012, Dialogues Clin Neurosci, V14, P77
Marewski JN, 2011, JUDGM DECIS MAK, V6, P439
Marewski JN, 2011, JUDGM DECIS MAK, V6, P359
Marewski JN, 2011, PSYCHOL REV, V118, P393, DOI 10.1037/a0024143
Marewski JN, 2011, JUDGM DECIS MAK, V6, P1
Marewski JN, 2010, JUDGM DECIS MAK, V5, P207
Marewski JN, 2010, PSYCHON B REV, V17, P287, DOI 10.3758/PBR.17.3.287
Marewski JN, 2010, COGN PROCESS, V11, P103, DOI 10.1007/s10339-009-0337-0
Marewski JN, 2010, COGN PROCESS, V11, P177, DOI 10.1007/s10339-009-0340-5
Marewski JN, 2009, Z PSYCHOL, V217, P49, DOI 10.1027/0044-3409.217.1.49
Martignon L, 2008, J MATH PSYCHOL, V52, P352, DOI 10.1016/j.jmp.2008.04.003
MARTIN BR, 1983, RES POLICY, V12, P61, DOI 10.1016/0048-7333(83)90005-7
Merton R.K., 1965, On the shoulders of giants: A Shandean postscript
Merton R. K., 1974, SOCIOLOGY SCI THEORE
Moed H. F., 2017, Applied evaluative informetrics, DOI DOI 10.1007/978-3-319-60522-7
MOED HF, 1985, RES POLICY, V14, P131, DOI 10.1016/0048-7333(85)90012-5
Montada L, 1999, PSYCHOL RUNDSCH, V50, P69, DOI 10.1026//0033-3042.50.2.69
Moreira JAG, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143108
Mousavi S., 2017, Homo Oeconomicus, V34, P361, DOI [10.1007/s41412-017-0058-z, DOI 10.1007/S41412-017-0058-Z]
Mousavi S, 2014, J BUS RES, V67, P1671, DOI 10.1016/j.jbusres.2014.02.013
Newell BR, 2005, TRENDS COGN SCI, V9, P11, DOI 10.1016/j.tics.2004.11.005
Nicolaisen J, 2007, ANNU REV INFORM SCI, V41, P609, DOI 10.1002/aris.2007.1440410120
Ochsner M., 2016, Research Assessment in the Humanities: Towards Criteria and Procedures
Osterloh M, 2015, EVALUATION REV, V39, P102, DOI 10.1177/0193841X14524957
Pachur T, 2006, J EXP PSYCHOL LEARN, V32, P983, DOI 10.1037/0278-7393.32.5.983
PAYNE JW, 1988, J EXP PSYCHOL LEARN, V14, P534, DOI 10.1037/0278-7393.14.3.534
Phillips ND, 2017, JUDGM DECIS MAK, V12, P344
Pinheiro D, 2014, TECHNOL FORECAST SOC, V81, P56, DOI 10.1016/j.techfore.2012.09.008
Pitt MA, 2002, PSYCHOL REV, V109, P472, DOI 10.1037//0033-295X.109.3.472
Pohl RF, 2006, J BEHAV DECIS MAKING, V19, P251, DOI 10.1002/bdm.522
Prathap G, 2014, SCIENTOMETRICS, V101, P1781, DOI 10.1007/s11192-013-1225-z
Pride D, 2018, LECT NOTES COMPUT SC, V11057, P195, DOI 10.1007/978-3-030-00066-0_17
Ralph Hertwig., 2013, Simple Heuristics in a Social World, P3
Rieskamp J, 2008, ACTA PSYCHOL, V127, P258, DOI 10.1016/j.actpsy.2007.05.004
Rieskamp J, 2006, J EXP PSYCHOL GEN, V135, P207, DOI 10.1037/0096-3445.135.2.207
Rieskamp J, 2018, J BEHAV DECIS MAKING, V31, P280, DOI 10.1002/bdm.2016
Rothenfluh T., 2009, CHANCEN GEFAHREN GEG, P259
Saad G, 2006, SCIENTOMETRICS, V69, P117, DOI 10.1007/s11192-006-0142-9
Savage L. J., 1972, The foundations of statistics
Scheibehenne B, 2007, INT J FORECASTING, V23, P415, DOI 10.1016/j.ijforecast.2007.05.006
Scheibehenne B, 2013, PSYCHOL REV, V120, P39, DOI 10.1037/a0030777
Schooler LJ, 2005, PSYCHOL REV, V112, P610, DOI 10.1037/0033-295X.112.3.610
Serwe S, 2006, J BEHAV DECIS MAKING, V19, P321, DOI 10.1002/bdm.530
Shanks DR, 2000, BEHAV BRAIN SCI, V23, P761, DOI 10.1017/S0140525X00453446
SIMON HA, 1990, ANNU REV PSYCHOL, V41, P1, DOI 10.1146/annurev.ps.41.020190.000245
SIMON HA, 1956, PSYCHOL REV, V63, P129, DOI 10.1037/h0042769
Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
Todd PM, 2000, BEHAV BRAIN SCI, V23, P727, DOI 10.1017/S0140525X00003447
Tomlinson T, 2011, JUDGM DECIS MAK, V6, P89
Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x
TVERSKY A, 1972, PSYCHOL REV, V79, P281, DOI 10.1037/h0032955
Von Neumann J., 1947, Theory of Games and Economic Behavior, V2nd rev. ed.
Waltman L, 2016, 21ST INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY INDICATORS (STI 2016), P541
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7
Wübben M, 2008, J MARKETING, V72, P82, DOI 10.1509/jmkg.72.3.082
NR 177
TC 26
Z9 26
U1 1
U2 61
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD AUG
PY 2019
VL 120
IS 2
BP 419
EP 459
DI 10.1007/s11192-019-03018-x
PG 41
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA IL1FQ
UT WOS:000477044700004
OA hybrid
DA 2024-09-05
ER
PT J
AU Shu, H
Zou, CL
Chen, JY
Wang, SH
AF Shu, Han
Zou, Chunlong
Chen, Jianyu
Wang, Shenghuai
TI Research on Micro/Nano Surface Flatness Evaluation Method Based on
Improved Particle Swarm Optimization Algorithm
SO FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY
LA English
DT Article
DE flatness error; micro; nano surface; improved particle swarm
optimization algorithm; minimum zone method; uncertainty; AFM
ID SEGMENTATION; ERROR
AB Flatness error is an important factor for effective evaluation of surface quality. The existing flatness error evaluation methods mainly evaluate the flatness error of a small number of data points on the micro scale surface measured by CMM, which cannot complete the flatness error evaluation of three-dimensional point cloud data on the micro/nano surface. To meet the needs of nano scale micro/nano surface flatness error evaluation, a minimum zone method on the basis of improved particle swarm optimization (PSO) algorithm is proposed. This method combines the principle of minimum zone method and hierarchical clustering method, improves the standard PSO algorithm, and can evaluate the flatness error of nano scale micro/nano surface image data point cloud scanned by atomic force microscope. The influence of the area size of micro/nano surface topography data on the flatness error evaluation results is analyzed. The flatness evaluation results and measurement uncertainty of minimum region method, standard least squares method, and standard PSO algorithm on the basis of the improved PSO algorithm are compared. Experiments show that the algorithm can stably evaluate the flatness error of micro/nano surface topography point cloud data, and the evaluation result of flatness error is more reliable and accurate than standard least squares method and standard PSO algorithm.
C1 [Shu, Han; Zou, Chunlong; Chen, Jianyu; Wang, Shenghuai] Hubei Univ Automot Technol, Sch Mech Engn, Shiyan, Hubei, Peoples R China.
C3 Hubei University of Automotive Technology
RP Wang, SH (corresponding author), Hubei Univ Automot Technol, Sch Mech Engn, Shiyan, Hubei, Peoples R China.
EM shwangkb@163.com
FU National Natural Science Foundation of China [51675167, 51475150];
National Science and Technology Major Project of China [2018ZX04027001];
Natural Science Foundation of Hubei Province of China [2020CFB755];
Research Project of Education Department of Hubei Province of China
[T2020018, Q20191801]
FX Funding This project is funded by the National Natural Science
Foundation of China (nos. 51675167 and 51475150), National Science and
Technology Major Project of China (no. 2018ZX04027001), Natural Science
Foundation of Hubei Province of China (no. 2020CFB755), and Research
Project of Education Department of Hubei Province of China (nos.
T2020018 and Q20191801).
CR [Anonymous], 2013, PROCEDIA CIRP, DOI [DOI 10.1016/J.PROCIR.2013.08.041, 10.1016/j.procir.2013.08.041]
Arezki Y, 2018, PRECIS ENG, V52, P300, DOI 10.1016/j.precisioneng.2018.01.008
Bensheng Xu, 2018, 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Proceedings, P690, DOI 10.1109/IMCEC.2018.8469450
Blunt L, 2011, WEAR, V271, P604, DOI 10.1016/j.wear.2010.06.014
Chen TG, 2021, AXIOMS, V10, DOI 10.3390/axioms10020106
Cui C.C., 2008, J HUAQIAO U NATURAL, V39, P507, DOI [10.11830/issn.1000-5013.2008.04.0507, DOI 10.11830/ISSN.1000-5013.2008.04.0507]
Cui Chang-cai, 2002, Optics and Precision Engineering, V10, P36
Eberhart R, 1995, P 6 INT S MICR HUM S, P39, DOI DOI 10.1109/MHS.1995.494215
Gan W.Y., 2006, DIANZI XUEBAO ACTA E, V34, P258, DOI [10.3321/j.issn:0372-2112.2006.02.014, DOI 10.3321/J.ISSN:0372-2112.2006.02.014]
Iso I., 2017, 11012017 ISO
Jalid A., 2015, Int, J. Metrol Qual. Eng., V6, P102, DOI [10.1051/ijmqe/2015002, DOI 10.1051/IJMQE/2015002]
Janani R, 2019, EXPERT SYST APPL, V134, P192, DOI 10.1016/j.eswa.2019.05.030
Jiang D, 2021, FUTURE GENER COMP SY, V123, P94, DOI 10.1016/j.future.2021.04.019
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
Lou S, 2020, PRECIS ENG, V63, P177, DOI 10.1016/j.precisioneng.2020.02.005
Luo Jun, 2012, Optics and Precision Engineering, V20, P422, DOI 10.3788/OPE.20122002.0422
MacAulay GD, 2014, SURF TOPOGR-METROL, V2, DOI 10.1088/2051-672X/2/4/044004
Moulai-khatir D., 2018, INT J METROL QUAL EN, V9, P15, DOI [10.1051/ijmqe/2018011, DOI 10.1051/IJMQE/2018011]
Nutsch A, 2007, AIP CONF PROC, V931, P173
Nutsch A, 2008, PROC SPIE, V7155, DOI 10.1117/12.814535
Pin NBC, 2016, MATEC WEB CONF, V68, DOI 10.1051/matecconf/20166817003
Raja J, 2002, PRECIS ENG, V26, P222, DOI 10.1016/S0141-6359(02)00103-4
Samuel GL, 1999, COMPUT AIDED DESIGN, V31, P829, DOI 10.1016/S0010-4485(99)00071-8
Shu H., 2021, J HUBEI I AUTOMOTIVE, V3, P63, DOI [10.3969/j.issn.1008-5483.2021.03.014, DOI 10.3969/J.ISSN.1008-5483.2021.03.014]
Strbac B, 2020, TEH VJESN, V27, P535, DOI 10.17559/TV-20190603084835
Sun Y, 2020, J SUPERCOMPUT, V76, P4132, DOI 10.1007/s11227-018-2255-3
Weber T, 2002, PRECIS ENG, V26, P269, DOI 10.1016/S0141-6359(02)00105-8
Wen Xiulan, 2007, Chinese Journal of Scientific Instrument, V28, P832
Yang SM, 2018, MEAS SCI TECHNOL, V29, DOI 10.1088/1361-6501/aad732
Yue W.L., 2008, ACTA METROLOGICA SIN, V2008, P120, DOI [10.3321/j.issn:1000-1158.2007.01.007, DOI 10.3321/J.ISSN:1000-1158.2007.01.007]
Zhang LN, 2021, ADV FUNCT MATER, V31, DOI 10.1002/adfm.202100503
NR 31
TC 6
Z9 6
U1 7
U2 35
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 2296-4185
J9 FRONT BIOENG BIOTECH
JI Front. Bioeng. Biotechnol.
PD DEC 15
PY 2021
VL 9
AR 775455
DI 10.3389/fbioe.2021.775455
PG 13
WC Biotechnology & Applied Microbiology; Engineering, Biomedical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biotechnology & Applied Microbiology; Engineering
GA YA4CD
UT WOS:000738282300001
PM 34976973
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Feng, JY
Jia, DY
Cui, L
Cao, J
Lin, Z
Zhang, M
AF Feng, Jiayin
Jia, Dongyan
Cui, Li
Cao, Jing
Lin, Zhuo
Zhang, Min
TI COMPARISON OF SVM ALGORITHM AND BP ALGORITHM: STUDY ON THE EVALUATION
INDEX SYSTEM OF SCIENTIFIC RESEARCH PERFORMANCE OF VOCATIONAL COLLEGES
SO ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS
LA English
DT Article
DE SVM algorithm; BP algorithm; vocational colleges; scientific research;
performance evaluation
AB As the education in China develops rapidly, the scientific research of higher vocational education has gradually drawn extensive attentions. In order to construct a reasonable evaluation model of scientific research performance to further enhance the research enthusiasm of teachers, this study constructed a model based on relevant theories of the support vector machine (SVM) algorithm and the back propagation (BP) algorithm. In addition, the simulation of the model was performed and the accuracy rate and errors of these two algorithms were compared and analyzed. Then the most appropriate algorithm was applied to the evaluation index system. The simulation results showed that, simplified data of scientific research evaluation could be applied as the input data of the SVM algorithm to accurately and effectively construct an evaluation index system of scientific research performances of vocational colleges. Thus a more reasonable and accurate evaluation system was constructed.
C1 [Feng, Jiayin; Jia, Dongyan; Cui, Li; Cao, Jing; Lin, Zhuo; Zhang, Min] Hebei Normal Univ Sci & Technol, Qinhuangdao Haigang Dist 066000, Heibei, Peoples R China.
C3 Hebei Normal University of Science & Technology
RP Feng, JY (corresponding author), Hebei Normal Univ Sci & Technol, Qinhuangdao Haigang Dist 066000, Heibei, Peoples R China.
EM feng_ada2001@163.com
FU Research project on the development of social science in Hebei province
2018 The people's livelihood project [201803040106]
FX Research project on the development of social science in Hebei province
2018 The people's livelihood project No.201803040106.
CR [Anonymous], 2008, Enterprise integrated performance evaluation system, CN Patent, Patent No. [2,00,810,080,220. 4, 200810280220]
[Anonymous], 2014, Production enterprise security performance appraisal system, CN Patent, Patent No. [2,01,410,008,561. 6, 201410008561]
Chen CS, 2012, EXPERT SYST APPL, V39, P4102, DOI 10.1016/j.eswa.2011.09.078
Heping Y., 2013, EVALUATION PERFORMAN, V5, P843
Hui Z., 2015, J HUNAN SOCIAL SCI, V6, P194
Hunan institute of finance and economy, 2015, CN Patent, Patent No. [2,01,520,902,556. X, 201520902556]
Jing S., 2015, J HEBEI NORMAL U ED, P110
Lina Z., 2011, J SHENYANG NORMAL U, V29, P226
Qian L., 2015, J ED TEACHING FORUM, V47, P19
Quande Q., 2012, J INTELLIGENT SYSTEM, V7, P547
State Luminita, 2013, Informatica Economica, V17, P173
Wang X., 2015, APPL MECH MAT, V702, P1352
Wave software Co LTD, 2014, CN Patent, Patent No. [2,01,410,426,131. 6, 201410426131]
Yuelan S., 2014, J QINGYUAN POLYTECHN, V4, P26
Ziyu L., 2012, J NANYANG I TECHNOLO, V4, P62
NR 15
TC 0
Z9 0
U1 0
U2 7
PU FORUM EDITRICE UNIV UDINESE
PI UDINE
PA VIA LARGA 38, UDINE, UD 33100, ITALY
SN 1126-8042
EI 2239-0227
J9 ITAL J PURE APPL MAT
JI Ital. J. Pure Appl. Math.
PD JUL
PY 2018
IS 40
BP 244
EP 255
PG 12
WC Mathematics
WE Emerging Sources Citation Index (ESCI)
SC Mathematics
GA HJ4HP
UT WOS:000457135400024
DA 2024-09-05
ER
PT J
AU Lan, GJ
Wu, Y
Hu, F
Hao, Q
AF Lan, Gongjin
Wu, Yu
Hu, Fei
Hao, Qi
TI Vision-Based Human Pose Estimation via Deep Learning: A Survey
SO IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS
LA English
DT Article
DE Action recognition; bibliometric; deep learning; human performance
assessment; human pose estimation (HPE)
ID NETWORK
AB Human pose estimation (HPE) has attracted a significant amount of attention from the computer vision community in the past decades. Moreover, HPE has been applied to various domains, such as human-computer interaction, sports analysis, and human tracking via images and videos. Recently, deep learning-based approaches have shown state-of-the-art performance in HPE-based applications. Although deep learning-based approaches have achieved remarkable performance in HPE, a comprehensive review of deep learning-based HPE methods remains lacking in literature. In this article, we provide an up-to-date and in-depth overview of the deep learning approaches in vision-based HPE. We summarize these methods of 2-D and 3-D HPE, and their applications, discuss the challenges and the research trends through bibliometrics, and provide insightful recommendations for future research. This article provides a meaningful overview as introductory material for beginners to deep learning-based HPE, as well as supplementary material for advanced researchers.
C1 [Lan, Gongjin; Wu, Yu; Hao, Qi] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China.
[Hu, Fei] Univ Alabama, Dept Elect & Comp Engn, Tuscaloosa, AL 35487 USA.
C3 Southern University of Science & Technology; University of Alabama
System; University of Alabama Tuscaloosa
RP Lan, GJ; Hao, Q (corresponding author), Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China.
EM langj@sustech.edu.cn; wuy@mail.sustech.edu.cn; fei@eng.ua.edu;
hao.q@sustech.edu.cn
RI HAO, QI/IST-5581-2023
OI HAO, QI/0000-0002-2792-5965; Lan, Gongjin/0000-0003-2020-8186; Wu,
Yu/0009-0009-4754-0892
FU National Natural Science Foundation of China [61773197]; Shenzhen
Fundamental Research Program [JCYJ20200109141622964]; Intel ICRI-IACV
Research Fund [CG 52514373]
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 61773197, in part by the Shenzhen
Fundamental Research Program under Grant JCYJ20200109141622964, and in
part by the Intel ICRI-IACV Research Fund under Grant CG#52514373. This
article was recommended by Associate Editor Max Mulder. (Corresponding
authors: Gongjin Lan; Qi Hao.)
CR Afrouzian R, 2016, MULTIMED TOOLS APPL, V75, P6809, DOI 10.1007/s11042-015-2611-8
Andriluka M, 2018, PROC CVPR IEEE, P5167, DOI 10.1109/CVPR.2018.00542
Andriluka M, 2014, PROC CVPR IEEE, P3686, DOI 10.1109/CVPR.2014.471
Andriluka M, 2012, INT J COMPUT VISION, V99, P259, DOI 10.1007/s11263-011-0498-z
[Anonymous], 2018, P EUR C COMP VIS ECC
[Anonymous], 2017, P IEEE C COMP VIS PA, DOI DOI 10.1109/CVPR.2017.143
Artacho B, 2020, PROC CVPR IEEE, P7033, DOI 10.1109/CVPR42600.2020.00706
Bazarevsky V, 2020, Arxiv, DOI [arXiv:2006.10204, DOI 10.48550/ARXIV.2006.10204]
Bergtholdt M, 2010, INT J COMPUT VISION, V87, P93, DOI 10.1007/s11263-009-0209-1
Bertasius G, 2019, ADV NEUR IN, V32
Bin YR, 2020, PATTERN RECOGN, V106, DOI 10.1016/j.patcog.2020.107410
Bo Li, 2017, 2017 IEEE International Conference on Multimedia and Expo: Workshops (ICMEW), P613, DOI 10.1109/ICMEW.2017.8026283
Bridgeman Lewis, 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Proceedings, P2487, DOI 10.1109/CVPRW.2019.00304
Bulat A, 2020, IEEE INT CONF AUTOMA, P8, DOI 10.1109/FG47880.2020.00014
Cai YJ, 2019, IEEE I CONF COMP VIS, P2272, DOI 10.1109/ICCV.2019.00236
Chen CH, 2017, PROC CVPR IEEE, P5759, DOI 10.1109/CVPR.2017.610
Chen L, 2020, PROC CVPR IEEE, P3276, DOI 10.1109/CVPR42600.2020.00334
Chen YL, 2018, PROC CVPR IEEE, P7103, DOI 10.1109/CVPR.2018.00742
Chen YC, 2020, COMPUT VIS IMAGE UND, V192, DOI 10.1016/j.cviu.2019.102897
Cheng BW, 2020, PROC CVPR IEEE, P5385, DOI 10.1109/CVPR42600.2020.00543
Cheng Y, 2021, PROC CVPR IEEE, P7645, DOI 10.1109/CVPR46437.2021.00756
Chu X, 2017, PROC CVPR IEEE, P5669, DOI 10.1109/CVPR.2017.601
Congzhentao Huang, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12373), P477, DOI 10.1007/978-3-030-58604-1_29
Dang LM, 2020, PATTERN RECOGN, V108, DOI 10.1016/j.patcog.2020.107561
Dang Q, 2019, TSINGHUA SCI TECHNOL, V24, P663, DOI 10.26599/TST.2018.9010100
Das Srijan, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12354), P72, DOI 10.1007/978-3-030-58545-7_5
Doersch C., 2019, Advances in Neural Information Processing Systems
Dong JT, 2019, PROC CVPR IEEE, P7784, DOI 10.1109/CVPR.2019.00798
Duan HD, 2022, PROC CVPR IEEE, P2959, DOI 10.1109/CVPR52688.2022.00298
Elaoud A, 2020, J AMB INTEL HUM COMP, V11, P419, DOI 10.1007/s12652-019-01301-6
Elmi A, 2021, INT C PATT RECOG, P2755, DOI 10.1109/ICPR48806.2021.9412652
Fabbri M, 2020, PROC CVPR IEEE, P7202, DOI 10.1109/CVPR42600.2020.00723
Fabbri M, 2018, LECT NOTES COMPUT SC, V11208, P450, DOI 10.1007/978-3-030-01225-0_27
Fang HS, 2017, IEEE I CONF COMP VIS, P2353, DOI 10.1109/ICCV.2017.256
Fu H, 2018, PROC CVPR IEEE, P2002, DOI 10.1109/CVPR.2018.00214
Gabriel P, 2016, IEEE ENG MED BIO, P3402, DOI 10.1109/EMBC.2016.7591458
Gadhiya R., 2021, P 2021 INT C CIRCUIT, P1
Gilbert A, 2019, INT J COMPUT VISION, V127, P381, DOI 10.1007/s11263-018-1118-y
Gong KH, 2021, PROC CVPR IEEE, P8571, DOI 10.1109/CVPR46437.2021.00847
Gong WJ, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16121966
Guo HL, 2018, J CONSTR ENG M, V144, DOI 10.1061/(ASCE)CO.1943-7862.0001497
Harltey A, 2006, MULTIPLE VIEW GEOMET
Hbali Y, 2018, IET COMPUT VIS, V12, P16, DOI 10.1049/iet-cvi.2017.0062
He K., 2017, P IEEE INT C COMP VI, P2961
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
Hogg David, 1983, Image Vision Computing
Hornung A, 2007, ACM T GRAPHIC, V26, DOI 10.1145/1186644.1186645
Hu W., 2021, P 29 ACM INT C MULT, P602
Huang FY, 2020, IEEE WINT CONF APPL, P418, DOI [10.1109/WACV45572.2020.9093526, 10.1109/wacv45572.2020.9093526]
Huang JJ, 2020, PROC CVPR IEEE, P5699, DOI 10.1109/CVPR42600.2020.00574
Insafutdinov E, 2016, LECT NOTES COMPUT SC, V9910, P34, DOI 10.1007/978-3-319-46466-4_3
Ionescu C, 2014, IEEE T PATTERN ANAL, V36, P1325, DOI 10.1109/TPAMI.2013.248
Iskakov K, 2019, IEEE I CONF COMP VIS, P7717, DOI 10.1109/ICCV.2019.00781
Jain A, 2015, LECT NOTES COMPUT SC, V9004, P302, DOI 10.1007/978-3-319-16808-1_21
Jhuang HH, 2013, IEEE I CONF COMP VIS, P3192, DOI 10.1109/ICCV.2013.396
Johnson S., 2010, BRIT MACH VIS C, P1
Joo H, 2019, IEEE T PATTERN ANAL, V41, P190, DOI 10.1109/TPAMI.2017.2782743
Kamel A, 2019, INT J HUM-COMPUT INT, V35, P427, DOI 10.1080/10447318.2018.1543081
Kim S, 2019, IEEE WINT CONF APPL, P61, DOI 10.1109/WACV.2019.00014
Kocabas M, 2018, LECT NOTES COMPUT SC, V11215, P437, DOI 10.1007/978-3-030-01252-6_26
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Kumarapu L, 2021, PATTERN RECOGN LETT, V147, P16, DOI 10.1016/j.patrec.2021.03.028
Kurose R., 2018, 2018 International Workshop on Advanced Image Technology (IWAIT), P1
Lan GJ, 2019, 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), P2571, DOI [10.1109/ssci44817.2019.9002863, 10.1109/SSCI44817.2019.9002863]
Lan GJ, 2018, I C CONT AUTOMAT ROB, P1959, DOI 10.1109/ICARCV.2018.8581288
Lan GJ, 2016, 2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), P975, DOI 10.1109/CompComm.2016.7924850
Li JF, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P11005, DOI 10.1109/ICCV48922.2021.01084
Li JF, 2019, PROC CVPR IEEE, P10855, DOI 10.1109/CVPR.2019.01112
Li K, 2021, PROC CVPR IEEE, P1944, DOI 10.1109/CVPR46437.2021.00198
Li SC, 2020, PROC CVPR IEEE, P6172, DOI 10.1109/CVPR42600.2020.00621
Li SJ, 2015, LECT NOTES COMPUT SC, V9004, P332, DOI 10.1007/978-3-319-16808-1_23
Li WB, 2019, Arxiv, DOI arXiv:1901.00148
Li Y, 2020, IEEE IJCNN, DOI 10.1109/ijcnn48605.2020.9207296
Lin TY, 2014, LECT NOTES COMPUT SC, V8693, P740, DOI 10.1007/978-3-319-10602-1_48
Liu J, 2020, IEEE T PATTERN ANAL, V42, P2684, DOI 10.1109/TPAMI.2019.2916873
Liu W., 2020, EUR C COMP VIS, P718
Liu W, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3524497
Liu ZG, 2021, PROC CVPR IEEE, P525, DOI 10.1109/CVPR46437.2021.00059
Liu ZY, 2020, PROC CVPR IEEE, P140, DOI 10.1109/CVPR42600.2020.00022
Lugaresi C, 2019, Arxiv, DOI [arXiv:1906.08172, DOI 10.48550/ARXIV.1906.08172]
Luo Y, 2018, PROC CVPR IEEE, P5207, DOI 10.1109/CVPR.2018.00546
Luvizon DC, 2018, PROC CVPR IEEE, P5137, DOI 10.1109/CVPR.2018.00539
Malleson C, 2017, INT CONF 3D VISION, P449, DOI 10.1109/3DV.2017.00058
Mao W., 2021, arXiv
Marín-Jiménez MJ, 2018, J VIS COMMUN IMAGE R, V55, P627, DOI 10.1016/j.jvcir.2018.07.010
Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002
Martinez J, 2017, IEEE I CONF COMP VIS, P2659, DOI 10.1109/ICCV.2017.288
McNally W, 2021, IEEE ACCESS, V9, P139403, DOI 10.1109/ACCESS.2021.3118207
Mehta D, 2018, INT CONF 3D VISION, P120, DOI 10.1109/3DV.2018.00024
Mehta D, 2017, INT CONF 3D VISION, P506, DOI 10.1109/3DV.2017.00064
Mehta D, 2017, ACM T GRAPHIC, V36, DOI 10.1145/3072959.3073596
Moeslund TB, 2001, COMPUT VIS IMAGE UND, V81, P231, DOI 10.1006/cviu.2000.0897
Newell A., 2017, P 31 INT C NEUR INF, P2277
Newell A, 2016, LECT NOTES COMPUT SC, V9912, P483, DOI 10.1007/978-3-319-46484-8_29
Nibali A, 2019, IEEE WINT CONF APPL, P1477, DOI 10.1109/WACV.2019.00162
Nie XC, 2019, IEEE I CONF COMP VIS, P6941, DOI 10.1109/ICCV.2019.00704
Nie XC, 2019, IEEE I CONF COMP VIS, P6950, DOI 10.1109/ICCV.2019.00705
Obdrzálek S, 2012, IEEE ENG MED BIO, P1188, DOI 10.1109/EMBC.2012.6346149
Osokin D, 2018, Arxiv, DOI arXiv:1811.12004
Papandreou G, 2017, PROC CVPR IEEE, P3711, DOI 10.1109/CVPR.2017.395
Park S, 2017, IEEE COMPUT SOC CONF, P105, DOI 10.1109/CVPRW.2017.19
Pavlakos G, 2017, PROC CVPR IEEE, P1263, DOI 10.1109/CVPR.2017.139
Pavllo D, 2019, PROC CVPR IEEE, P7745, DOI 10.1109/CVPR.2019.00794
Poppe R, 2010, IMAGE VISION COMPUT, V28, P976, DOI 10.1016/j.imavis.2009.11.014
Qiu HB, 2019, IEEE I CONF COMP VIS, P4341, DOI 10.1109/ICCV.2019.00444
Qiu ZW, 2020, AAAI CONF ARTIF INTE, V34, P11924
Rabbito R., 2021, THESIS POLITECNICO T
Rafi U., 2016, PROC BRIT MACH VIS C, V1
Ren B, 2024, Arxiv, DOI arXiv:2002.05907
Rhodin H, 2018, LECT NOTES COMPUT SC, V11214, P765, DOI 10.1007/978-3-030-01249-6_46
Rogez G, 2020, IEEE T PATTERN ANAL, V42, P1146, DOI 10.1109/TPAMI.2019.2892985
Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263
Sapp B, 2013, PROC CVPR IEEE, P3674, DOI 10.1109/CVPR.2013.471
Sarandi I, 2018, Arxiv, DOI arXiv:1809.04987
Shah N. JainS., 2019, P IEEECVF C COMPUTER, P29
Shian-Ru Ke, 2010, Proceedings 7th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2010), P489, DOI 10.1109/AVSS.2010.80
Shotton J, 2011, PROC CVPR IEEE, P1297, DOI 10.1109/CVPR.2011.5995316
Sun K, 2019, PROC CVPR IEEE, P5686, DOI 10.1109/CVPR.2019.00584
Thar MC, 2019, 2019 INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION TECHNOLOGIES (ICAIT), P137, DOI [10.1109/AITC.2019.8920892, 10.1109/aitc.2019.8920892]
Tompson J, 2014, ADV NEUR IN, V27
Toshev A, 2014, PROC CVPR IEEE, P1653, DOI 10.1109/CVPR.2014.214
Trumble M., 2017, P BRIT MACH VIS C, V2, P1, DOI 10.5244/C.31.14
Tsai TH, 2019, IEEE ACCESS, V7, P153049, DOI 10.1109/ACCESS.2019.2947518
von Marcard T, 2018, LECT NOTES COMPUT SC, V11214, P614, DOI 10.1007/978-3-030-01249-6_37
Wang JH, 2021, PROC CVPR IEEE, P11850, DOI 10.1109/CVPR46437.2021.01168
Wang JB, 2019, PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), P374, DOI 10.1145/3343031.3350910
Wang JB, 2021, COMPUT VIS IMAGE UND, V210, DOI 10.1016/j.cviu.2021.103225
Wehrbein T, 2021, Arxiv, DOI arXiv:2107.13788
Wei SE, 2016, PROC CVPR IEEE, P4724, DOI 10.1109/CVPR.2016.511
Weinzaepfel Philippe, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12371), P380, DOI 10.1007/978-3-030-58574-7_23
Weng CY, 2019, PROC CVPR IEEE, P5901, DOI 10.1109/CVPR.2019.00606
Willett NS, 2020, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2020, P88, DOI 10.1145/3377325.3377505
Wu E, 2020, CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3334480.3382853
Wu S., 2021, P IEEECVF INT C COMP, P11148
Xiao B, 2018, LECT NOTES COMPUT SC, V11210, P472, DOI 10.1007/978-3-030-01231-1_29
Xu L., 2021, P IEEE CVF C COMP VI, P16067
Xu YF, 2022, Arxiv, DOI arXiv:2204.12484
Ya Su, 2018, 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), P379, DOI 10.1109/FSKD.2018.8686917
Yang S, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P11782, DOI 10.1109/ICCV48922.2021.01159
Yang W, 2017, IEEE I CONF COMP VIS, P1290, DOI 10.1109/ICCV.2017.144
Yang ZQ, 2020, PROC CVPR IEEE, P5305, DOI 10.1109/CVPR42600.2020.00535
Yihui He, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P7776, DOI 10.1109/CVPR42600.2020.00780
Yu CQ, 2021, PROC CVPR IEEE, P10435, DOI 10.1109/CVPR46437.2021.01030
Zanfir A, 2018, ADV NEUR IN, V31
Zhang F, 2020, PROC CVPR IEEE, P7091, DOI 10.1109/CVPR42600.2020.00712
Zhang SH, 2019, PROC CVPR IEEE, P889, DOI 10.1109/CVPR.2019.00098
Zhang WY, 2013, IEEE I CONF COMP VIS, P2248, DOI 10.1109/ICCV.2013.280
Zhang Z, 2021, INT J COMPUT VISION, V129, P703, DOI 10.1007/s11263-020-01398-9
Zhang Z, 2020, PROC CVPR IEEE, P2197, DOI 10.1109/CVPR42600.2020.00227
Zhao L, 2019, PROC CVPR IEEE, P3420, DOI 10.1109/CVPR.2019.00354
Zhao MM, 2018, PROC CVPR IEEE, P7356, DOI 10.1109/CVPR.2018.00768
Zhen Jianan, 2020, ECCV, P550
Zheng C, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P11636, DOI 10.1109/ICCV48922.2021.01145
NR 153
TC 7
Z9 7
U1 6
U2 30
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-2291
EI 2168-2305
J9 IEEE T HUM-MACH SYST
JI IEEE T. Hum.-Mach. Syst.
PD FEB
PY 2023
VL 53
IS 1
BP 253
EP 268
DI 10.1109/THMS.2022.3219242
EA NOV 2022
PG 16
WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 8B3CU
UT WOS:000890810300001
OA Green Submitted
DA 2024-09-05
ER
PT C
AU Lee, YS
Poh, SW
AF Lee, Yik Sheng
Poh, Siaw Way
BE Markauskaite, L
Goodyear, P
Reimann, P
TI The collaborative work between learning technologists and academics in
implementing online learning
SO WHO'S LEARNING? WHOSE TECHNOLOGY?, PROCEEDINGS, VOLS 1 AND 2
LA English
DT Proceedings Paper
CT 23rd Annual Conference of the
Australasian-Society-for-Computers-in-Learning-in-Tertiary-Education
CY DEC 03-06, 2006
CL Univ Sydney, Ctr Res Comp Supported Learning & Cognit, Sydney, AUSTRALIA
HO Univ Sydney, Ctr Res Comp Supported Learning & Cognit
DE online learning; higher education; collaboration; organisational change;
action research
C1 [Lee, Yik Sheng; Poh, Siaw Way] Tunku Abdul Rahman Coll, Jalan Genting Kelang,Setapak, Kuala Lumpur 53300, Malaysia.
RP Lee, YS (corresponding author), Tunku Abdul Rahman Coll, Jalan Genting Kelang,Setapak, Kuala Lumpur 53300, Malaysia.
EM leeys@mail.tarc.edu.my; pohsw@mail.tarc.edu.my
NR 0
TC 0
Z9 0
U1 0
U2 0
PU SYDNEY UNIV PRESS
PI SYDNEY
PA UNIV SYDNEY LIBRARY F03, SYDNEY, NSW 2006, AUSTRALIA
BN 978-1-920898-48-9
PY 2006
BP 980
EP 980
PG 1
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Education & Educational Research
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BFX00
UT WOS:000245234700138
DA 2024-09-05
ER
PT C
AU Abuein, QQ
Almahmoud, MH
Elayan, ON
AF Abuein, Qusai Q.
Almahmoud, Mothanna H.
Elayan, Omar N.
BE Alsmirat, M
Almaaitah, A
Jararweh, Y
Lloret, J
TI Improving QS Rank Based on The Classification of Authors Research
Collaboration Using Machine Learning Techniques
SO 2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION
SYSTEMS (ICICS)
SE International Conference on Information and Communication Systems
LA English
DT Proceedings Paper
CT 12th International Conference on Information and Communication Systems
(ICICS)
CY MAY 24-26, 2021
CL ELECTR NETWORK
DE QS Ranking; Citation Per Faculty; Academic Collaboration; Co-authorship;
Machine Learning
ID GLOBAL UNIVERSITY RANKINGS; CO-AUTHORSHIP; PERFORMANCE
AB The importance of universities' global ranking lies in providing a trusty resource, which helps students in choosing the right place to complete their academic future. The global ranking systems are based on several metrics that focus on the study environment, the quality of the provided services, the scientific publications, and the extent of the authors' strength. Quacquarelli Symonds (QS) is the most popular global ranking system, it has Citations Per Faculty (CPF) evaluation metric, which constitutes 20% of the total ranking score. In this research, we aim to find the effect of the research collaboration on increasing the CPF score, in which we apply descriptive analytics on a dataset for Jordan University of Science and Technology (JUST) authors, that is scrapped from the official websites of Google Scholar and Researchgate. Then, we find the authors who have a moderate collaboration through building a classification model using machine learning techniques. The results proved that the research collaboration has a significant impact in increasing authors publications that positively correlated with their total citations, which in turn gives a great opportunity to increase the CPF score. Also, the Support Vector Machine classifier has obtained a 95.27% level of accuracy, which considers as an efficient method in classifying the authors research collaboration into strong and moderate collaboration. Finally, the proposed method can be used to improve the QS ranking and obtain a high scientific standing level for academic institutes.
C1 [Abuein, Qusai Q.; Almahmoud, Mothanna H.; Elayan, Omar N.] Jordan Univ Sci & Technol, Comp Informat Syst, Irbid, Jordan.
C3 Jordan University of Science & Technology
RP Abuein, QQ (corresponding author), Jordan Univ Sci & Technol, Comp Informat Syst, Irbid, Jordan.
EM qabuein@just.edu.jo; mhalmahmood18@cit.just.edu.jo;
onelayan18@cit.just.edu.jo
OI Abuein, Qusai/0009-0002-4323-4301
CR Anguita D., 2012, ESANN, P441
[Anonymous], 2006, REGRESSION ANAL
Batt S, 2020, J ECON EDUC, V51, P317, DOI 10.1080/00220485.2020.1804503
Ding Shi-fei, 2011, Journal of University of Electronic Science and Technology of China, V40, P2, DOI 10.3969/j.issn.1001-0548.2011.01.001
Ductor L, 2015, OXFORD B ECON STAT, V77, P385, DOI 10.1111/obes.12070
Frenken K, 2017, J INFORMETR, V11, P859, DOI 10.1016/j.joi.2017.06.006
Hassan D, 2018, INT C HYBR INT SYST, P75
Hossin M., 2015, INT J DATA MIN KNOWL, V5, P01, DOI [DOI 10.5121/IJDKP.2015.5201, 10.5121/ijdkp.2015.5201]
Hu XL, 2020, CHINA J ACCOUNT RES, V13, P1, DOI 10.1016/j.cjar.2019.09.002
Kataria A., 2013, International Journal of Emerging Technology and Advanced Engineering, V3, P354
Khor KA, 2016, SCIENTOMETRICS, V107, P1095, DOI 10.1007/s11192-016-1905-6
Li WH, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13130-4
Maalouf Maher, 2011, International Journal of Data Analysis Techniques and Strategies, V3, P281, DOI 10.1504/IJDATS.2011.041335
Mali F, 2017, SCI PUBL POLICY, V44, P486, DOI 10.1093/scipol/scw076
Maruyama WT., 2016, P AN 5 BRAZ WORKSH S, P61
Mitchell R., 2018, Web Scraping with Python Collecting More Data from the Modern Web
Parish AJ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0189742
Patro SGK., 2015, Normalization: a preprocessing stage, DOI [10.17148/IARJSET.2015.2305, DOI 10.17148/IARJSET.2015.2305]
Pavel AP, 2015, PROC ECON FINANC, V26, P54, DOI 10.1016/S2212-5671(15)00838-2
Peters MA, 2019, EDUC PHILOS THEORY, V51, P5, DOI 10.1080/00131857.2017.1381472
Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x
Shukla S., 2014, International Journal of Information & Computation Technology, V4, P1847
Yu Q, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101214
NR 23
TC 0
Z9 0
U1 2
U2 9
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2471-125X
BN 978-1-6654-3351-8
J9 INT CONF INFORM COMM
PY 2021
BP 63
EP 68
DI 10.1109/ICICS52457.2021.9464603
PG 6
WC Computer Science, Theory & Methods; Engineering, Electrical &
Electronic; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering; Telecommunications
GA BS1QZ
UT WOS:000694853800010
DA 2024-09-05
ER
PT C
AU Han, H
Zha, HY
Giles, CL
AF Han, H
Zha, HY
Giles, CL
GP ACM
TI Name disambiguation spectral in author citations using a K-way
clustering method
SO PROCEEDINGS OF THE 5TH ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES,
PROCEEDINGS
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 5th ACM/IEEE Joint Conference on Digital Libraries
CY JUN 07-11, 2005
CL Denver, CO
DE name disambiguation; feature selection; unsupervised learning; spectral
clustering
AB An author may have multiple names and multiple authors may share the same name simply due to name abbreviations, identical names, or name misspellings in publications or bibliographies (citations)(1). This can produce name ambiguity which can affect the performance of document retrieval, web search, and database integration, and may cause improper attribution of credit. Proposed here is an unsupervised learning approach using K-way spectral clustering that disambiguates authors in citations. The approach utilizes three types of citation attributes: co-author names, paper titles, and publication venue titles(2). The approach is illustrated with 16 name datasets with citations collected from the DBLP database bibliography and author home pages and shows that name disambiguation can be achieved using these citation attributes.
C1 Yahoo Inc, Sunnyvale, CA 95129 USA.
C3 Yahoo! Inc; Yahoo! Inc United States
EM huihan@yahoo-inc.com; zha@cse.psu.edu; giles@ist.psu.edu
CR [Anonymous], P 31 ANN M OH STAT U
[Anonymous], 1999, MODERN INFORM RETRIE
[Anonymous], 2001, P 33 ANN ACM S THEOR
[Anonymous], 1988, Tracking and Data Association
Baker L. D., 1998, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P96, DOI 10.1145/290941.290970
BANERJEE S, 2002, P 3 INT C INT TEXT P
Bilenko M, 2003, IEEE INTELL SYST, V18, P16, DOI 10.1109/MIS.2003.1234765
BITTON D, 1983, ACM T DATABASE SYST, V8, P255, DOI 10.1145/319983.319987
BRANTING LK, 2002, J INFORMATION LAW TE, P1
Califf ME, 1999, SIXTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-99)/ELEVENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE (IAAI-99), P328
Cohen W. W., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P255, DOI 10.1145/347090.347141
DAGAN I, 1994, M ASS COMP LING, P272
DANIEL L, 1995, BUSINESS GEOGRAPHICS, P26
Dhillon I. S., 2003, Journal of Machine Learning Research, V3, P1265, DOI 10.1162/153244303322753661
DILAURO T, 2001, DLIB MAGAZINE, P7
DOLAN WB, 1994, WORD SENSE AMBIGUATI
Drineas P, 1999, PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P291
Feitelson DG, 2004, INFORM RES, V9
FELLEGI IP, 1969, J AM STAT ASSOC, V64, P1183, DOI 10.2307/2286061
FRAKES W, 1992, INFORMATION RETRIEVA
Giles C. L., 1998, P 3 ACM C DIGITAL LI, P89
GILLMAN P, 1998, 91 BRIT LIBR RES INN
Han H, 2003, ACM-IEEE J CONF DIG, P37
HAN H, 2004, P 4 ACM IEEE CS JOIN
Hernandez MA, 1998, DATA MIN KNOWL DISC, V2, P9, DOI 10.1023/A:1009761603038
Hua Y, 2003, PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT'2003, PROCEEDINGS, P268, DOI 10.1109/PDCAT.2003.1236303
Kannan R, 2000, ANN IEEE SYMP FOUND, P367, DOI 10.1109/SFCS.2000.892125
Karlgren J., 2001, Foundations of Real-World Intelligence, P294
KROVETZ R, 1989, SIGIR FORUM, V23, P127, DOI 10.1145/75335.75349
LI H, 1998, P COLING 98, P749
LIN D, 2002, P C COMP LING, P577
McCallum A., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P169, DOI 10.1145/347090.347123
Mong Li Loo, 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P290
MONGE AE, 1997, RES ISSUES DATA MINI, P23
Ng AY, 2002, ADV NEUR IN, V14, P849
PASULA H, 2002, P NEUR INF P SYST NA
Pirkola A., 2003, P 26 ANN INT ACM SIG, P345
POTHEN A, 1990, SIAM J MATRIX ANAL A, V11, P430, DOI 10.1137/0611030
Seymore K, 1999, P AAAI 99 WORKSH MAC
Shi JB, 2000, IEEE T PATTERN ANAL, V22, P888, DOI 10.1109/34.868688
Skounakis M., 2003, P 18 INT JOINT C ART
Takasu A, 2003, ACM-IEEE J CONF DIG, P49, DOI 10.1109/JCDL.2003.1204843
TEJADA S, 2002, P 8 ACM SIGKDD INT C, P350
Terra E, 2003, HLT-NAACL 2003: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P244
Turtle H. R., 1996, UNCERTAINTY MANAGEME, P189
WARNER JW, 2001, P 1 ACM IEEE CS JOIN
Yao YY, 1995, INT J GEN SYST, V23, P343, DOI 10.1080/03081079508908047
Zha H., 2001, Proceedings of the tenth international conference on Information and knowledge management, P25
Zha HY, 2002, ADV NEUR IN, V14, P1057
[No title captured]
NR 50
TC 132
Z9 162
U1 1
U2 21
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
SN 2575-7865
EI 2575-8152
BN 1-58113-876-8
J9 ACM-IEEE J CONF DIG
PY 2005
BP 334
EP 343
DI 10.1145/1065385.1065462
PG 10
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BCO70
UT WOS:000230429800058
DA 2024-09-05
ER
PT C
AU Frankowska, A
Pawlik, B
AF Frankowska, Agata
Pawlik, Bartosz
BE Biele, C
Kacprzyk, J
Kopec, W
Owsinski, JW
Romanowski, A
Sikorski, M
TI A Decade of Artificial Intelligence Research in the European Union: A
Bibliometric Analysis
SO DIGITAL INTERACTION AND MACHINE INTELLIGENCE, MIDI 2021
SE Lecture Notes in Networks and Systems
LA English
DT Proceedings Paper
CT 9th Machine Intelligence and Digital Interaction Conference (MIDI)
CY DEC 09-10, 2021
CL Warsaw, POLAND
DE Artificial intelligence; Bibliometric analysis; Bibliometric indicators;
Clustering; European Union; Principal component analysis
AB In recent years, the body of research on artificial intelligence (AI) has grown rapidly. As the European Union strives for excellence in AI development, this study aims to establish the publication achievements in the field among its member states between 2010 and 2019. We applied clustering and principal component analysis (PCA) on a set of bibliometric data concerning research publications on AI obtained from Scopus. The results reveal that while the union's most populous countries-the United Kingdom, Germany, France, Spain, and Italy- were the most prolific producers of AI publications between 2010 and 2019, the highest impact was noted for publications that originated in the Nordic and Benelux countries, as well as in Austria and Ireland. Analysis confirms that the division between 'old' and 'new' member states has endured: the nations that joined the EU after 2004 recorded the lowest results in scientific output and impact in the AI field. This study can assist research agencies and researchers in developing a broad grasp of the current state of AI research.
C1 [Frankowska, Agata; Pawlik, Bartosz] Natl Informat Proc Inst, Warsaw, Poland.
C3 Information Processing Center - National Research Institute
RP Frankowska, A (corresponding author), Natl Informat Proc Inst, Warsaw, Poland.
EM agata.frankowska@opi.org.pl; bartosz.pawlik@opi.org.pl
RI Pawlik, Bogdan/W-2346-2018
CR Acemoglu D, 2019, J ECON PERSPECT, V33, P3, DOI 10.1257/jep.33.2.3
Agrawal A.K., 2018, Economic Policy for Artificial Intelligence
Aksnes DW, 2012, J INFORMETR, V6, P36, DOI 10.1016/j.joi.2011.08.002
Andrasko J, 2021, AI SOC, V36, P623, DOI 10.1007/s00146-020-01125-5
[Anonymous], GLOSSARY ARTIFICIAL
Association for the Advancement of Artificial Intelligence, AI TOP
Castro D., 2019, Who Is Winning the AI Race: China, the EU or the United States?'
China Institute for Science and Technology Policy at Tsinghua University, 2018, CHIN AI DEV REP
Corea F., AI Knowledge Map: how to classify AI technologies-Francesco Corea
Correia A, 2020, RES INNOVATION EUROP, DOI [10.2777/264689, DOI 10.2777/264689]
Elsevier, 2018, TRENDS CHINA EUROPE
European Commission, 2020, White Paper: On Artificial Intelligence-A European approach to excellence and trust
European Commission, 2020, Science, Research and Innovation Performance of the EU 2020. A fair, green and digital Europe
Frankowska A, 2020, ARTIF INTELL
Goodfellow I., 2018, Deep Learning
Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011
Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004
Korinek A., 2017, Artificial intelligence and its implication for income distribution and unemployment (NBER working paper series 24174). National Bureau of Economic Research Website
Krafft P.M, 2020, PROC 2020 AAAIACM C
Lane M., 2021, OECD Social, Employment and Migration Working Papers, DOI DOI 10.1787/7C895724-EN
LAWSON RG, 1990, J CHEM INF COMP SCI, V30, P36, DOI 10.1021/ci00065a010
Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P1370, DOI 10.1002/asi.21534
Omar M, 2017, SCIENTOMETRICS, V113, P1269, DOI 10.1007/s11192-017-2534-4
Qiu Y, 2010, SCAND J IMMUNOL, V72, P425, DOI 10.1111/j.1365-3083.2010.02456.x
Rehn C., 2014, Bibliometric indicators - definitions and usage at Karolinska Institutet Solna
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Russel S, 2020, Artificial intelligence: A modern approach, V4th
Stahl BC, 2022, AI SOC, V37, P23, DOI 10.1007/s00146-021-01148-6
Stone Peter, 2016, Artificial intelligence and life in 2030: One hundred year study on artificial intelligence
Syakur MA, 2018, IOP CONF SER-MAT SCI, V336, DOI 10.1088/1757-899X/336/1/012017
Waltman L, 2015, J INFORMETR, V9, P872, DOI 10.1016/j.joi.2015.08.001
Waltman L, 2013, J AM SOC INF SCI TEC, V64, P372, DOI 10.1002/asi.22775
Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5
Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8
NR 34
TC 1
Z9 1
U1 2
U2 9
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2367-3370
EI 2367-3389
BN 978-3-031-11432-8; 978-3-031-11431-1
J9 LECT NOTE NETW SYST
PY 2022
VL 440
BP 52
EP 62
DI 10.1007/978-3-031-11432-8_5
PG 11
WC Computer Science, Artificial Intelligence
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BU3OQ
UT WOS:000892355400005
OA hybrid
DA 2024-09-05
ER
PT C
AU Boukhers, Z
Asundi, NB
AF Boukhers, Zeyd
Asundi, Nagaraj Bahubali
BE Silvello, G
Corcho, O
Manghi, P
DiNunzio, GM
Golub, K
Ferro, N
Poggi, A
TI Whois? Deep Author Name Disambiguation Using Bibliographic Data
SO LINKING THEORY AND PRACTICE OF DIGITAL LIBRARIES (TPDL 2022)
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 26th International Conference on Theory and Practice of Digital
Libraries (TPDL)
CY SEP 20-23, 2022
CL Padua, ITALY
DE Author name disambiguation; Entity linkage; Bibliographic data; Neural
networks; Classification
AB As the number of authors is increasing exponentially over years, the number of authors sharing the same names is increasing proportionally. This makes it challenging to assign newly published papers to their adequate authors. Therefore, Author Name Ambiguity (ANA) is considered a critical open problem in digital libraries. This paper proposes an Author Name Disambiguation (AND) approach that links author names to their real-world entities by leveraging their co-authors and domain of research. To this end, we use a collection from the DBLP repository that contains more than 5 million bibliographic records authored by around 2.6 million co-authors. Our approach first groups authors who share the same last names and same first name initials. The author within each group is identified by capturing the relation with his/her co-authors and area of research, which is represented by the titles of the validated publications of the corresponding author. To this end, we train a neural network model that learns from the representations of the co-authors and titles. We validated the effectiveness of our approach by conducting extensive experiments on a large dataset.
C1 [Boukhers, Zeyd; Asundi, Nagaraj Bahubali] Univ Koblenz Landau, Inst Web Sci & Technol WeST, Koblenz, Germany.
[Boukhers, Zeyd] Fraunhofer Inst Appl Informat Technol, St Augustin, Germany.
C3 University of Koblenz & Landau; Fraunhofer Gesellschaft
RP Boukhers, Z (corresponding author), Univ Koblenz Landau, Inst Web Sci & Technol WeST, Koblenz, Germany.; Boukhers, Z (corresponding author), Fraunhofer Inst Appl Informat Technol, St Augustin, Germany.
EM boukhers@uni-koblenz.de; nagarajbahubali@uni-koblenz.de
RI Boukhers, Zeyd/HZL-0733-2023
OI Boukhers, Zeyd/0000-0001-9778-9164; Asundi, Nagaraj
Bahubali/0000-0002-1044-7047
CR [Anonymous], 2010, P 10 ANN JOINT C DIG, DOI 10.1145/1816123.1816130
Arif T, 2014, INT CONF CONTEMP, P135, DOI 10.1109/IC3.2014.6897162
Boukhers Z., 2021, 1 WORKSHOP BIBLIO DA
Cao KS, 2016, Arxiv, DOI arXiv:1606.02601
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Ebraheem M, 2018, PROC VLDB ENDOW, V11, P1454, DOI 10.14778/3236187.3236198
Fan X., 2011, J DATA INF QUAL, V2, P10, DOI [DOI 10.1145/1891879.1891883, 10.1145/1891879.1891883]
Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040
Foxcroft J, 2019, LECT NOTES ARTIF INT, V11489, P505, DOI 10.1007/978-3-030-18305-9_52
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Han H, 2004, ACM-IEEE J CONF DIG, P296, DOI 10.1145/996350.996419
Han XP, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P765
Hermansson L, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1037, DOI 10.1145/2505515.2505565
Hoffart Johannes, 2011, EMNLP, P782, DOI DOI 10.3115/V1/D11-1072
Hourrane O, 2018, COMM COM INF SC, V872, P185, DOI 10.1007/978-3-319-96292-4_15
Tran HN, 2014, LECT NOTES COMPUT SC, V8397, P123, DOI 10.1007/978-3-319-05476-6_13
Hussain I, 2017, KNOWL ENG REV, V32, DOI 10.1017/S0269888917000182
Kai-Hsiang Yang, 2011, 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies, P335, DOI 10.1109/WI-IAT.2011.181
Khabsa M, 2014, IEEE INT CONF BIG DA
Khabsa M, 2015, PROCEEDINGS OF THE 15TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL'15), P37, DOI 10.1145/2756406.2756915
Kim K., 2020, P 1 WORKSHOP SCHOLAR, P72
Kim K, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2018), P265, DOI 10.1109/ICWS.2018.00041
Li JY, 2013, PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ENERGY, P1
Liu WL, 2014, J ASSOC INF SCI TECH, V65, P765, DOI 10.1002/asi.23063
Louppe G, 2016, COMM COM INF SC, V649, P272, DOI 10.1007/978-3-319-45880-9_21
Müller MC, 2017, LECT NOTES COMPUT SC, V10450, P300, DOI 10.1007/978-3-319-67008-9_24
Park H., 2012, INT C DATA MINING SO, P106
Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732
Qian Y., 2011, Proceedings of the 20th ACM international conference on Information and knowledge management, P1241, DOI 10.1145/2063576.2063756
Qian YA, 2015, INFORM RETRIEVAL J, V18, P379, DOI 10.1007/s10791-015-9261-3
Tang J, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1165, DOI 10.1145/2783258.2783307
Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093
Wu H, 2014, SCIENTOMETRICS, V101, P1955, DOI 10.1007/s11192-014-1283-x
Xiaoling Sun, 2011, Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and IEEE Third International Conference on Social Computing (PASSAT/SocialCom 2011), P568, DOI 10.1109/PASSAT/SocialCom.2011.43
Xu J, 2018, CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1735, DOI 10.1145/3269206.3269272
Zhang BC, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1239, DOI 10.1145/3132847.3132873
Zhang BC, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1341, DOI 10.1145/2983323.2983714
Zhang YT, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1002, DOI 10.1145/3219819.3219859
NR 38
TC 6
Z9 6
U1 1
U2 11
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-16802-4; 978-3-031-16801-7
J9 LECT NOTES COMPUT SC
PY 2022
VL 13541
BP 201
EP 215
DI 10.1007/978-3-031-16802-4_16
PG 15
WC Computer Science, Information Systems; Computer Science, Theory &
Methods; Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BU0DS
UT WOS:000867565900016
DA 2024-09-05
ER
PT J
AU Lodge, JM
Thompson, K
Corrin, L
AF Lodge, Jason M.
Thompson, Kate
Corrin, Linda
TI Mapping out a research agenda for generative artificial intelligence in
tertiary education
SO AUSTRALASIAN JOURNAL OF EDUCATIONAL TECHNOLOGY
LA English
DT Article
DE generative artificial intelligence; research; assessment
AB Generative artificial intelligence (AI) has taken the world by storm. In this editorial, we outline some of the key areas of tertiary education impacted by large language models and associated applications that will require re-thinking and research to address in the short to medium term. Given how rapidly generative AI developments are currently occurring, this editorial is speculative. Although there is a long history of research on AI in education, the current situation is both unprecedented and seemingly not something that the AI in education community fully predicted. We also outline the editorial position of AJET in regards to generative AI to assist authors using tools such as ChatGPT as any part of the research or writing process. This is a rapidly evolving space. We have attempted to provide some clarity in this editorial while acknowledging that we may need to revisit some or all of what we offer here in the weeks and months ahead.
C1 [Lodge, Jason M.] Univ Queensland, St Lucia, Australia.
[Thompson, Kate] Queensland Univ Technol, Brisbane, Australia.
[Corrin, Linda] Deakin Univ, Burwood, Australia.
C3 University of Queensland; Queensland University of Technology (QUT);
Deakin University
RP Lodge, JM (corresponding author), Univ Queensland, St Lucia, Australia.
EM jason.lodge@uq.edu.au
RI BUCCINI, FRANCESCA/HTM-4917-2023; Lodge, Jason M/F-8079-2018; Corrin,
Linda/AAD-8545-2019
OI Thompson, Kate/0000-0003-0738-0205; Lodge, Jason/0000-0001-6330-6160;
Corrin, Linda/0000-0002-1593-3271
CR Nguyen A, 2023, EDUC INF TECHNOL, V28, P4221, DOI 10.1007/s10639-022-11316-w
Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012
Bender EM, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P610, DOI 10.1145/3442188.3445922
Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510
Chen XL, 2022, EDUC TECHNOL SOC, V25, P28
Dai W, 2023, IEEE INT CONF ADV LE, P323, DOI 10.1109/ICALT58122.2023.00100
Dawson P., 2021, Defending assessment security in a digital world: Preventing e-cheating and supporting academic integrity in higher education
Future of Life Institute, 2023, Pause giant AI experiments: An open letter
Gasevic D., 2023, Comput. Educ. Artif. Intell., V4, DOI [10.1016/j.caeai.2023.100130, DOI 10.1016/J.CAEAI.2023.100130]
Jarvela S., IN PRESS
Knight S., 2015, The Routledge International Handbook of Research on Teaching Thinking, P467
Kuka L., 2022, Learning with technologies and technologies in learning, V456, DOI [10.1007/978-3-031-04286-7_26, DOI 10.1007/978-3-031-04286-7_26]
Lodge JM, 2023, AUSTRALAS J EDUC TEC, V39, P18, DOI 10.14742/ajet.8695
Morze N., 2021, Journal of Physics: Conference Series, V1840, DOI 10.1088/1742-6596/1840/1/012062
Peng HC, 2019, SMART LEARN ENVIRON, V6, DOI 10.1186/s40561-019-0089-y
Sabzalieva E., 2023, ChatGPT and artificial intelligence in higher education: Quick start guide
Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
NR 18
TC 42
Z9 43
U1 128
U2 311
PU AUSTRALASIAN SOC COMPUTERS LEARNING TERTIARY EDUCATION-ASCILITE
PI TUGUN
PA UNIT 5, 202 COODE ST, PO BOX 350, TUGUN, 4224, AUSTRALIA
SN 1449-3098
EI 1449-5554
J9 AUSTRALAS J EDUC TEC
JI Australas. J. Educ. Technol.
PY 2023
VL 39
IS 1
BP 18
EP 18
DI 10.14742/ajet.8695
PG 1
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA G4FT6
UT WOS:000988740600002
OA gold
HC Y
HP N
DA 2024-09-05
ER
PT J
AU Liu, JY
Kong, XJ
Xia, F
Bai, XM
Wang, L
Qing, Q
Lee, I
AF Liu, Jiaying
Kong, Xiangjie
Xia, Feng
Bai, Xiaomei
Wang, Lei
Qing, Qing
Lee, Ivan
TI Artificial Intelligence in the 21st Century
SO IEEE ACCESS
LA English
DT Article
DE Artificial intelligence; data analytics; scientific impact; science of
science; data science
ID SCIENTOMETRIC ANALYSIS; SCIENCE; TRENDS; DECADE
AB The field of artificial intelligence (AI) has shown an upward trend of growth in the 21st century (from 2000 to 2015). The evolution in AI has advanced the development of human society in our own time, with dramatic revolutions shaped by both theories and techniques. However, the multidisciplinary and fastgrowing features make AI a field in which it is difficult to be well understood. In this paper, we study the evolution of AI at the beginning of the 21st century using publication metadata extracted from 9 top-tier journals and 12 top-tier conferences of this discipline. We find that the area is in the sustainable development and its impact continues to grow. From the perspective of reference behavior, the decrease in self-references indicates that the AI is becoming more and more open-minded. The influential papers/researchers/institutions we identified outline landmarks in the development of this field. Last but not least, we explore the inner structure in terms of topics' evolution over time. We have quantified the temporal trends at the topic level and discovered the inner connection among these topics. These findings provide deep insights into the current scientific innovations, as well as shedding light on funding policies.
C1 [Liu, Jiaying; Kong, Xiangjie; Xia, Feng; Wang, Lei; Qing, Qing] Dalian Univ Technol, Sch Software, Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian 116620, Peoples R China.
[Bai, Xiaomei] Anshan Normal Univ, Comp Ctr, Anshan 114007, Peoples R China.
[Lee, Ivan] Univ South Australia, Sch Informat Technol & Math Sci, Adelaide, SA 5095, Australia.
C3 Dalian University of Technology; Anshan Normal University; University of
South Australia
RP Xia, F (corresponding author), Dalian Univ Technol, Sch Software, Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian 116620, Peoples R China.
EM f.xia@ieee.org
RI Xia, Feng/Y-2859-2019; Liu, JY/GYJ-0138-2022; wang, lei/U-2378-2019;
Kong, Xiangjie/B-8809-2016; Lee, Ivan/F-4131-2013
OI Xia, Feng/0000-0002-8324-1859; Kong, Xiangjie/0000-0003-2698-3319; Lee,
Ivan/0000-0002-2826-6367
CR Bai XM, 2017, IEEE ACCESS, V5, P17607, DOI 10.1109/ACCESS.2017.2740226
Bench-Capon TJM, 2007, ARTIF INTELL, V171, P619, DOI 10.1016/j.artint.2007.05.001
Cameron BD, 2005, PORTAL-LIBR ACAD, V5, P105, DOI 10.1353/pla.2005.0003
Correia A, 2018, SCIENTOMETRICS, V114, P31, DOI 10.1007/s11192-017-2562-0
Ding Y, 2016, Measuring scholarly impact
Garfield E, 2006, INT J EPIDEMIOL, V35, P1123, DOI 10.1093/ije/dyl189
Heilig L, 2015, J PUBLIC TRANSPORT, V18, P111, DOI 10.5038/2375-0901.18.2.8
Heilig L, 2014, IEEE TRANS CLOUD COM, V2, P266, DOI 10.1109/TCC.2014.2321168
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Holsapple C. W., 2003, Computer Supported Cooperative Work: The Journal of Collaborative Computing, V12, P351, DOI 10.1023/A:1025053027925
INTELLIGENCE BY AM TURING, 1950, Computing Machinery and Intelligence, V59, P433, DOI [10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433]
Barbosa SDJ, 2017, SCIENTOMETRICS, V110, P275, DOI 10.1007/s11192-016-2162-4
Kienle A, 2006, INT J COMP-SUPP COLL, V1, P9, DOI 10.1007/s11412-006-6843-5
Kirsh D, 2010, AI SOC, V25, P441, DOI 10.1007/s00146-010-0272-8
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Lee I, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1259, DOI 10.1145/3041021.3053054
Light RP, 2014, SCIENTOMETRICS, V101, P1535, DOI 10.1007/s11192-014-1238-2
MARR D, 1977, ARTIF INTELL, V9, P37, DOI 10.1016/0004-3702(77)90013-3
McCorduck Pamela, 2004, MACHINES WHO THINK
Meyer M, 2009, JASSS-J ARTIF SOC S, V12, pA224
Mubin O, 2017, SCIENTOMETRICS, V112, P367, DOI 10.1007/s11192-017-2293-2
Nilsson N.J, 2014, Principles of Artificial Intelligence
Sinatra R, 2015, NAT PHYS, V11, P791, DOI 10.1038/nphys3494
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Sun LJ, 2017, TRANSPORT RES A-POL, V100, P135, DOI 10.1016/j.tra.2017.04.011
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Van Noorden Richard., 2014, Nature News
Vernon D, 2007, IEEE T EVOLUT COMPUT, V11, P151, DOI 10.1109/TEVC.2006.890274
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
Wang W, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P303, DOI 10.1145/3041021.3054159
Wang W, 2017, SCIENTOMETRICS, V113, P177, DOI 10.1007/s11192-017-2468-x
Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9
Wu ZH, 2014, ACM-IEEE J CONF DIG, P117, DOI 10.1109/JCDL.2014.6970157
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
NR 35
TC 92
Z9 98
U1 3
U2 54
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2018
VL 6
BP 34403
EP 34421
DI 10.1109/ACCESS.2018.2819688
PG 19
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA GN6RS
UT WOS:000439222700017
OA gold
DA 2024-09-05
ER
PT C
AU Zhang, WD
Pang, L
Yang, QL
Zhao, CH
AF Zhang, Wendong
Pang, Liang
Yang, Qingliang
Zhao, Chaohui
GP IEEE
TI Research on Electromagnetic Performance Optimization of Tangential
Magnetizing Parallel Structure Hybrid Excitation Synchronous Motor Based
on Particle Swarm Optimization Algorithm
SO 2022 6TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY ENGINEERING, ICPEE
SE International Conference on Power and Energy Engineering
LA English
DT Proceedings Paper
CT 6th International Conference on Power and Energy Engineering (ICPEE)
CY NOV 25-27, 2022
CL ELECTR NETWORK
DE tangential focus type; hybrid excitation; torque ripple; particle swarm
optimization
AB In order to reduce the torque ripple of the tangential magnetizing parallel structure hybrid excitation synchronous motor (TMPS-HESM) and improve the efficiency of the motor. The TMPS-HESM torque ripple model was established by analyzing the stator and rotor magnetic force. Then, using Maxwell & Workbench & optiSLong co-simulation tool, particle swarm optimization (PSO) algorithm was used to optimize the length of the air gap and the width and length of permanent magnet. The optimal solution is screened by sensitivity analysis. The results show that the optimized motor torque ripple and cogging torque are reduced, and the average torque is improved. Meanwhile, the optimization saves the use of permanent magnets, reduces the loss of the motor, and improves the maximum efficiency of the motor to 93%.
C1 [Zhang, Wendong; Pang, Liang; Zhao, Chaohui] Shanghai Dianji Univ, Sch Elect, Shanghai, Peoples R China.
[Yang, Qingliang] Shanghai Maritime Univ, Logist Engn Coll, Shanghai, Peoples R China.
C3 Shanghai Dianji University; Shanghai Maritime University
RP Zhang, WD (corresponding author), Shanghai Dianji Univ, Sch Elect, Shanghai, Peoples R China.
EM 1427912006@qq.com; 1048789838@qq.com; yangql@sdju.edu.cn;
zhaoch@sdju.edu.cn
RI hu, xin/KHT-2406-2024; Yang, Qingliang/GRY-1981-2022
CR Chen Q, 2018, IEEE T IND ELECTRON, V65, P8520, DOI 10.1109/TIE.2018.2807392
Chen W., 2020, Transactions of China Electrotechnical Society, V35, P377
Cheng Peng, 2019, Electric Machines and Control, V23, P94, DOI 10.15938/j.emc.2019.02.012
Cui K., 2020, MICROMOTORS, V53, P11
Eberhart R.C., 2008, PROC 6 INT S MICROMA
[高锋阳 Gao Fengyang], 2021, [电机与控制学报, Electric Machines and Control], V25, P112
Jeong I, 2013, IEEE ENER CONV, P867, DOI 10.1109/ECCE.2013.6646794
Kamiev K, 2014, IEEE T IND ELECTRON, V61, P5075, DOI 10.1109/TIE.2013.2289871
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
MACMINN SR, 1991, IEEE T IND APPL, V27, P997, DOI 10.1109/28.90358
NING Yinhang, 2017, ELECT MACHINES CONTR, V44, P1
Qin H, 2006, RES DOUBLY SALIENT H
TONG Lanian, 2022, SCI TECHNOLOGY ENG, V22, P1023
Wang DH, 2013, IEEE T MAGN, V49, P2295, DOI 10.1109/TMAG.2013.2242454
WANG Daohan, 2021, P CSEE, V16, P42
[张卓然 Zhang Zhuoran], 2020, [中国电机工程学报, Proceedings of the Chinese Society of Electrical Engineering], V40, P7834
[赵纪龙 Zhao Jilong], 2014, [中国电机工程学报, Proceedings of the Chinese Society of Electrical Engineering], V34, P5876
NR 17
TC 0
Z9 0
U1 0
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-6475-8
J9 Power and Energy Eng
PY 2022
BP 306
EP 311
DI 10.1109/ICPEE56418.2022.10050269
PG 6
WC Energy & Fuels; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Energy & Fuels; Engineering
GA BV3SB
UT WOS:001022922300052
DA 2024-09-05
ER
PT J
AU Chen, XL
Zou, D
Xie, HR
Cheng, G
Liu, CX
AF Chen, Xieling
Zou, Di
Xie, Haoran
Cheng, Gary
Liu, Caixia
TI Two Decades of Artificial Intelligence in Education: Contributors,
Collaborations, Research Topics, Challenges, and Future Directions
SO EDUCATIONAL TECHNOLOGY & SOCIETY
LA English
DT Article
DE Artificial intelligence in education; Structural topic modeling;
Bibliometric analysis; Research topics; Research evolution
ID NEURAL-NETWORK
AB With the increasing use of Artificial Intelligence (AI) technologies in education, the number of published studies in the field has increased. However, no large-scale reviews have been conducted to comprehensively investigate the various aspects of this field. Based on 4,519 publications from 2000 to 2019, we attempt to fill this gap and identify trends and topics related to AI applications in education (AIEd) using topic-based bibliometrics. Results of the review reveal an increasing interest in using AI for educational purposes from the academic community The main research topics include intelligent tutoring systems for special education; natural language processing for language education; educational robots for AI education; educational data mining for performance prediction; discourse analysis in computer-supported collaborative learning; neural networks for teaching evaluation; affective computing for learner emotion detection; and recommender systems for personalized learning. We also discuss the challenges and future directions of AIEd.
C1 [Chen, Xieling; Cheng, Gary; Liu, Caixia] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
[Liu, Caixia] Nanjing Normal Univ, Inst EduInfo Sci & Engn, Nanjing, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Education University of Hong
Kong (EdUHK); Lingnan University; Nanjing Normal University
RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; hrxie2@gmail.com;
chengks@eduhk.hk; cxsqz@126.com
RI Xie, Haoran/AFS-3515-2022; BUCCINI, FRANCESCA/HTM-4917-2023
OI Xie, Haoran/0000-0003-0965-3617; PV, THAYYIB/0000-0001-8929-0398; ZOU,
Di/0000-0001-8435-9739; Cheng, Gary/0000-0002-5614-3348
FU Lingnan University, Hong Kong [DR21A5, DB21A4]; Research Grants Council
of Hong Kong SAR, China [18601118]; Education University of Hong Kong
[MIT02/19-20]
FX An abstract entitled "A Bibliometric Study on Artificial Intelligence in
Education for Two Decades" from this paper was presented at the
International Conference on Education and Artificial Intelligence 2020,
The Education University of Hong Kong, 9-11 November 2020, Hong Kong.
Haoran Xie's work in this research is supported by the Direct Grant
(DR21A5) and the Faculty Research Fund (DB21A4) at Lingnan University,
Hong Kong. Gary Cheng's work is supported by General Research Fund (No.
18601118) of Research Grants Council of Hong Kong SAR, China, and
One-off Special Fund from Central and Faculty Fund in Support of
Research from 2019/20 to 2021/22 (MIT02/19-20) of The Education
University of Hong Kong.
CR Ai F., 2019, P 12 INT C ED DATA M, P240
Albacete P, 2019, LECT NOTES ARTIF INT, V11625, P37, DOI 10.1007/978-3-030-23204-7_4
Aulck Lovenoor, 2019, P 12 INT C ED DATA M, P9
Bayne S, 2015, TEACH HIGH EDUC, V20, P455, DOI 10.1080/13562517.2015.1020783
Beaulac C, 2019, RES HIGH EDUC, V60, P1048, DOI 10.1007/s11162-019-09546-y
Burgess A., 2017, The Executive Guide to Artificial Intelligence - How to identify and implement applications for AI in your organization, DOI [10.1007/978-3-319-63820-1, DOI 10.1007/978-3-319-63820-1]
Chan Kai Siang, 2019, JMIR Med Educ, V5, pe13930, DOI 10.2196/13930
Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233
Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002
Chen X., 2020, Comput Educ Artif Intell, V1, DOI DOI 10.1016/J.CAEAI.2020.100005
Chen XL, 2021, EDUC TECHNOL SOC, V24, P205
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Dowell N, 2019, LECT NOTES ARTIF INT, V11625, P207, DOI 10.1007/978-3-030-23204-7_18
Eom S., 2012, THESIS GEORGETOWN U
Goksel N., 2019, Handbook of research on learning in the age of transhumanism, P224, DOI [10.4018/978-1-5225-8431-5.ch014, DOI 10.4018/978-1-5225-8431-5.CH014]
Gray CC, 2019, COMPUT EDUC, V131, P22, DOI 10.1016/j.compedu.2018.12.006
Guan C., 2020, International Journal of Innovation Studies, V4, P134, DOI [DOI 10.1016/J.IJIS.2020.09.001, https://doi.org/10.1016/j.ijis.2020.09.001]
Hamouda A., 2013, STUDY ENGLISH LANGUA, V1, P228, DOI [10.22158/selt.v1n1p227, DOI 10.22158/SELT.V1N1P227]
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Holstein K, 2018, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'18): TOWARDS USER-CENTRED LEARNING ANALYTICS, P79, DOI 10.1145/3170358.3170377
Holstein K, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), P358, DOI 10.1145/3027385.3027450
Holstein K, 2018, LECT NOTES ARTIF INT, V10947, P154, DOI 10.1007/978-3-319-93843-1_12
Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001]
Ijaz K, 2017, INTERACT LEARN ENVIR, V25, P904, DOI 10.1080/10494820.2016.1225099
Krouska A, 2019, J COMPUT ASSIST LEAR, V35, P168, DOI 10.1111/jcal.12330
Kulich M, 2013, IEEE T EDUC, V56, P18, DOI 10.1109/TE.2012.2224867
Lee K., 2015, CRITICAL CALL P 2015, P362, DOI [10.14705/rpnet.2015.000359, DOI 10.14705/RPNET.2015.000359]
Li H., 2013, TELKOMNIKA Indonesian Journal of Electrical Engineering, V11, P4602, DOI DOI 10.11591/TELKOMNIKA.V11I8.3085
Lin CC, 2017, EDUC TECHNOL SOC, V20, P148
Lin F, 2018, J COMPUT ASSIST LEAR, V34, P567, DOI 10.1111/jcal.12261
Liu S, 2018, PR IEEE INT CONF TEA, P1079, DOI 10.1109/TALE.2018.8615217
Livieris IE, 2019, J EDUC COMPUT RES, V57, P448, DOI 10.1177/0735633117752614
Ma XY, 2018, INT J MOB BLENDED LE, V10, P23, DOI 10.4018/IJMBL.2018070103
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Martínez-Tenor A, 2019, INTERACT LEARN ENVIR, V27, P293, DOI 10.1080/10494820.2018.1525411
Mehmood RM, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17020317
Mondragon Aydee Liza, 2015, Design for Teaching and Learning in a Networked World. 10th European Conference on Technology-Enhanced Learning, EC-TEL 2015. Proceedings: LNCS 9307, P225, DOI 10.1007/978-3-319-24258-3_17
Mondragon AL, 2016, LECT NOTES COMPUT SC, V9684, P402, DOI 10.1007/978-3-319-39583-8_48
Muljono, 2017, INT J EMERG TECHNOL, V12, P138, DOI 10.3991/ijet.v12.i11.7383
Olivé DM, 2019, IEEE T LEARN TECHNOL, V12, P171, DOI 10.1109/TLT.2019.2911068
Panaite M, 2018, ELEARN SOFTW EDUC, P361, DOI 10.12753/2066-026X-18-120
Rashid TA, 2016, COMPUT APPL ENG EDUC, V24, P629, DOI 10.1002/cae.21737
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3
Rosa K. Dela, 2011, 24 INT FLOR ART INT, P507
Saier MH, 2007, WATER AIR SOIL POLL, V181, P1, DOI 10.1007/s11270-007-9372-6
Samoilescu RF, 2019, LECT NOTES ARTIF INT, V11625, P458, DOI 10.1007/978-3-030-23204-7_38
Sato T., 2018, FUTURE PROOF CALL LA, P284, DOI DOI 10.14705/RPNET.2018.26.851
Shibata C, 2017, ELML 2017: THE NINTH INTERNATIONAL CONFERENCE ON MOBILE, HYBRID, AND ON-LINE LEARNING, P65
Su SH, 2016, INT J ONLINE PEDAGOG, V6, P13, DOI [10.4018/IJOPCD.2016010102, 10.4018/ijopcd.2016010102]
Sun Q, 2019, PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (PRAI 2019), P56, DOI 10.1145/3357777.3357795
Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001
Tsai SC, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00186-2
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666
NR 57
TC 99
Z9 103
U1 149
U2 453
PU INT FORUM EDUCATIONAL TECHNOLOGY & SOC, NATL TAIWAN NORMAL UNIV
PI Taipei City
PA No.162, Sec. 1, Heping E. Rd., Da-an Dist, Taipei City, TAIWAN
SN 1176-3647
EI 1436-4522
J9 EDUC TECHNOL SOC
JI Educ. Technol. Soc.
PD JAN
PY 2022
VL 25
IS 1
BP 28
EP 47
PG 20
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA ZS7DL
UT WOS:000768622600003
HC Y
HP N
DA 2024-09-05
ER
PT J
AU Khosravi, H
Shafie, MR
Hajiabadi, M
Raihan, AS
Ahmed, I
AF Khosravi, Hamed
Shafie, Mohammad Reza
Hajiabadi, Morteza
Raihan, Ahmed Shoyeb
Ahmed, Imtiaz
TI Chatbots and ChatGPT: a bibliometric analysis and systematic review of
publications in Web of Science and Scopus databases
SO INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT
LA English
DT Article
DE chatbot; ChatGPT; bibliometrics; artificial intelligence; natural
language processing; NLP; generative artificial intelligence
ID ARTIFICIAL-INTELLIGENCE; BRADFORD LAW; SCATTERING; FIELD
AB This paper presents a bibliometric analysis of the scientific literature related to chatbots, focusing specifically on ChatGPT. Chatbots have gained increasing attention recently, with an annual growth rate of 19.16% and 27.19% on the Web of Sciences (WoS) and Scopus, respectively. The research consists of two study phases: 1) an analysis of chatbot literature; 2) a comprehensive review of scientific documents on ChatGPT. In the first phase, a bibliometric analysis is conducted on all the published literature from both Scopus (5,839) and WoS (2,531) databases covering the period from 1998 to 2023. Consequently, bibliometric analysis has been carried out on ChatGPT publications, and 45 published studies have been analysed thoroughly based on their methods, novelty, and conclusions. Overall, the study aims to provide guidelines for researchers to conduct their research more effectively in the field of chatbots and specifically highlight significant areas for future investigation into ChatGPT.
C1 [Khosravi, Hamed; Raihan, Ahmed Shoyeb; Ahmed, Imtiaz] West Virginia Univ, Dept Ind & Management Syst Engn, Morgantown, WV 26505 USA.
[Shafie, Mohammad Reza] Iran Univ Sci & Technol, Dept Elect Engn, Tehran, Iran.
[Hajiabadi, Morteza] Iran Univ Sci & Technol, Sch Comp Engn, Tehran, Iran.
C3 West Virginia University; Iran University Science & Technology; Iran
University Science & Technology
RP Khosravi, H (corresponding author), West Virginia Univ, Dept Ind & Management Syst Engn, Morgantown, WV 26505 USA.
EM hk00024@mix.wvu.edu; Mr.shafie7731@gmail.com; hajiabadi1377@gmail.com;
ar00065@mix.wvu.edu; imtiaz.ahmed@mail.wvu.edu
CR Adamopoulou E., 2020, ARTIF INTELL, P373, DOI [10.1007/978-3-030-49186-4_31, DOI 10.1007/978-3-030-49186-4_31]
Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006
Ahangar R.G., 2023, Advancement in Business Analytics Tools for Higher Financial Performance
Amara A, 2021, MACH LEARN APPL, V6, DOI 10.1016/j.mlwa.2021.100130
[Anonymous], 2023, NATURE, V613, P612, DOI 10.1038/d41586-023-00191-1
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arif TB, 2023, MED EDUC ONLINE, V28, DOI 10.1080/10872981.2023.2181052
Ashfaq M, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101473
Aydin N., 2022, 2022 3 INT INF SOFTW, DOI [DOI 10.1109/IISEC56263.2022.9998298, 10.1109/IISEC56263.2022.9998298]
Baskara F.R., 2023, P INT C INT HUM SHAR, P76
Bhargav P.N.V., 2020, International Journal of Research in Library Science, V6, P24, DOI [10.26761/ijrls.6.2.2020.1330, DOI 10.26761/IJRLS.6.2.2020.1330]
Bhattacharya K, 2023, INDIAN J SURG, V85, P1346, DOI 10.1007/s12262-023-03727-x
Biswas SS, 2023, ANN BIOMED ENG, V51, P1126, DOI 10.1007/s10439-023-03171-8
Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7
Borgohain DJ, 2021, COLLNET J SCIENTOMET, V15, P197, DOI 10.1080/09737766.2021.1943041
Chai JY, 2021, MACH LEARN APPL, V6, DOI 10.1016/j.mlwa.2021.100134
Charrois-Durand C, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35484
Chatterjee J, 2023, PATTERNS, V4, DOI 10.1016/j.patter.2022.100676
Croes EAJ, 2021, J SOC PERS RELAT, V38, P279, DOI 10.1177/0265407520959463
Dahmen J, 2023, KNEE SURG SPORT TR A, V31, P1187, DOI 10.1007/s00167-023-07355-6
Dale R, 2016, NAT LANG ENG, V22, P811, DOI 10.1017/S1351324916000243
Dasborough MT, 2023, J ORGAN BEHAV, V44, P177, DOI 10.1002/job.2695
De Angelis L, 2023, FRONT PUBLIC HEALTH, V11, DOI 10.3389/fpubh.2023.1166120
DiGiorgio AM, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01926-3
Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662
Dwivedi YK, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2020.102168
Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002
EGGHE L, 1990, J AM SOC INFORM SCI, V41, P469, DOI 10.1002/(SICI)1097-4571(199010)41:7<469::AID-ASI1>3.0.CO;2-P
Else H, 2023, NATURE, V613, P423, DOI 10.1038/d41586-023-00056-7
Flanagin A, 2023, JAMA-J AM MED ASSOC, V329, P637, DOI 10.1001/jama.2023.1344
Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1
Garg K.C., 2020, The Serials Librarian, V79, P118, DOI [10.1080/0361526x.2019.1704341, DOI 10.1080/0361526X.2019.1704341]
Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312
GLUCK M, 1990, J AM SOC INFORM SCI, V41, P43, DOI 10.1002/(SICI)1097-4571(199001)41:1<43::AID-ASI4>3.0.CO;2-P
González-Padilla DA, 2023, J UROLOGY, V209, P682, DOI 10.1097/JU.0000000000003131
Gordijn B, 2023, MED HEALTH CARE PHIL, V26, P1, DOI 10.1007/s11019-023-10136-0
Grudin J, 2023, COMPUTER, V56, P94, DOI 10.1109/MC.2023.3255279
Gupta A.K., 2022, Data Science Insights Magazine, V5
Hamdoun S, 2023, IEEE TECHNOL SOC MAG, V42, P25, DOI 10.1109/MTS.2023.3241309
Hill J, 2015, COMPUT HUM BEHAV, V49, P245, DOI 10.1016/j.chb.2015.02.026
Hosseini M, 2023, ACCOUNT RES, DOI 10.1080/08989621.2023.2168535
Huang JT, 2023, J DIABETES SCI TECHN, V17, P853, DOI 10.1177/19322968231161095
Huh S, 2023, NEUROINTERVENTION, V18, P2, DOI 10.5469/neuroint.2022.00493
Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1
IBM, 2017, What is Natural Language Processing?
Io HN, 2017, IN C IND ENG ENG MAN, P215, DOI 10.1109/IEEM.2017.8289883
Jovanovic M, 2022, COMPUTER, V55, P107, DOI 10.1109/MC.2022.3192720
Keramatfar A, 2022, MACH LEARN APPL, V10, DOI 10.1016/j.mlwa.2022.100401
Khodadadi A., 2022, Machine Learning with Applications, V10, DOI [10.1016/j.mlwa.2022.100424, DOI 10.1016/J.MLWA.2022.100424]
King MR, 2023, CELL MOL BIOENG, V16, P1, DOI 10.1007/s12195-022-00754-8
Kirmani AR, 2022, ACS ENERGY LETT, V8, P574, DOI 10.1021/acsenergylett.2c02758
Lee JY, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.6
LEIMKUHLER FF, 1980, J DOC, V36, P285, DOI 10.1108/eb026699
Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790
Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009
Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750
Lyu Q, 2023, VIS COMPUT IND BIOME, V6, DOI 10.1186/s42492-023-00136-5
Maad M., 2023, IRAQI J COMPUTER SCI, V4, P65, DOI [10.52866/ijcsm.2023.01.01.0019, DOI 10.52866/IJCSM.2023.01.01.0019, 10.52866/.csm.2023.01.01.0019]
Macdonald C, 2023, J GLOB HEALTH, V13, DOI 10.7189/jogh.13.01003
Makkizadeh F, 2017, INT J REPROD BIOMED, V15, P719, DOI 10.29252/ijrm.15.11.719
Mann DL, 2023, JACC-BASIC TRANSL SC, V8, P221, DOI 10.1016/j.jacbts.2023.01.001
Martarelli NJ, 2021, MACH LEARN APPL, V5, DOI 10.1016/j.mlwa.2021.100056
McCarthy J, 2007, ARTIF INTELL, V171, P1174, DOI 10.1016/j.artint.2007.10.009
Molnár G, 2018, I S INTELL SYST INFO, P197, DOI 10.1109/SISY.2018.8524609
Nachshon A, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35649
Nash-Stewart CE, 2012, J MED LIBR ASSOC, V100, P135, DOI 10.3163/1536-5050.100.2.013
Nautiyal R, 2023, ANN TOURISM RES, V99, DOI 10.1016/j.annals.2023.103544
Nisonger Thomas E., 2008, Serials Librarian, V55, P62, DOI 10.1080/03615260801970774
O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537
Patel SB, 2023, LANCET DIGIT HEALTH, V5, pE107, DOI 10.1016/S2589-7500(23)00021-3
Potter J, 2010, J MED LIBR ASSOC, V98, P235, DOI 10.3163/1536-5050.98.3.012
Qiu J., 2017, Informetrics, P89, DOI [10.1007/978-981-10-4032-04, DOI 10.1007/978-981-10-4032-04]
Rajaraman V, 2023, RESONANCE, V28, P889, DOI 10.1007/s12045-023-1620-6
Ralston Kennedy, 2019, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), P1924, DOI 10.1109/ICMLA.2019.00309
Ray P. P., 2023, Internet of Things and CyberPhysical Systems, V3, P121, DOI DOI 10.1016/J.IOTCPS.2023.04.003
Rockwell M, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35644
Sadavarte SS, 2019, 2019 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON), DOI 10.1109/punecon46936.2019.9105762
Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2
Sangam S.L., 2015, Journal of Library Development, V1, P1, DOI [10.32344/jld/v1/i1/2015/1-13, DOI 10.32344/JLD/V1/I1/2015/1-13]
Scerri A, 2023, J CLIN NURS, V32, P4211, DOI 10.1111/jocn.16677
Selivanov A, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-31223-5
Sharma V., 2017, International Journal of New Technology and Research
Skjuve M, 2023, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON CONVERSATIONAL USER INTERFACES, CUI 2023, DOI 10.1145/3571884.3597144
Skjuve M, 2021, INT J HUM-COMPUT ST, V149, DOI 10.1016/j.ijhcs.2021.102601
Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6
Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z
Stokel-Walker Chris, 2022, Nature, DOI 10.1038/d41586-022-04397-7
Taecharungroj V, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7010035
Tawfeeq T.M., 2023, JMCER, V2023, P49
Thornton J, 2023, ASIAN J PSYCHIATR, V81, DOI 10.1016/j.ajp.2023.103509
Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Xu R., 2023, SSRN Electronic Journal, DOI [10.2139/ssrn.4498671, DOI 10.2139/SSRN.4498671]
Yeo-Teh NSL, 2023, ACCOUNT RES, DOI 10.1080/08989621.2023.2177160
NR 94
TC 0
Z9 0
U1 8
U2 8
PU INDERSCIENCE ENTERPRISES LTD
PI GENEVA
PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215
GENEVA, SWITZERLAND
SN 1759-1163
EI 1759-1171
J9 INT J DATA MIN MODEL
JI Int. J. Data Min. Model. Manag.
PY 2024
VL 16
IS 2
DI 10.1504/IJDMMM.2024.138824
PG 36
WC Computer Science, Artificial Intelligence
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA SW5D2
UT WOS:001237489300005
OA Green Submitted
DA 2024-09-05
ER
PT C
AU Ping, L
AF Ping, Li
BE Wang, HS
TI The effect research of multimedia-assisted music teaching based on
principal component analysis- For example HeNan xuchang college
SO PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON SCIENCE AND SOCIAL
RESEARCH (ICSSR 2013)
SE Advances in Intelligent Systems Research
LA English
DT Proceedings Paper
CT 2nd International Conference on Science and Social Research (ICSSR)
CY 2013
CL Beijing, PEOPLES R CHINA
DE Multimedia-assisted instruction; Teaching effect; Principal component
analysis
AB Currently, multimedia-assisted music instruction has been widely used in colleges and universities. The diversification trend of music teaching and greatly promoted students' absorbing ability have increased the extensive use of multimedia-assisted instruction in music teaching. To solve the problems like teachers rely too much on multimedia-assisted instruction in music teaching process, lack of effective interaction between teachers and students and lack of effectiveness, 126 pieces of music multimedia teaching effect questionnaires are analyzed and the music professional classes comprehensive scores of art major students of two sessions are compared. Principal component analysis method is applied to analyze the main factors influencing the music multimedia-assisted instruction effect. Conclusions have been drawn from the research that multimedia-assisted instruction can improve the absorbing ability of students' music learning, that teaching courseware of informative and interesting content may enhance students' interest in learning, that effective interaction between teachers and students can improve the effectiveness of multimedia music instruction, and that students accepting more multimedia-assisted music instruction turn to have better absorbing ability.
C1 Xuchang Univ, Xuchang 461000, Henan, Peoples R China.
C3 Xuchang University
RP Ping, L (corresponding author), Xuchang Univ, Xuchang 461000, Henan, Peoples R China.
EM 360008910@qq.com
CR Dou Wenyu, 2009, MULTIMEDIA TECHNOLOG
Li Fei, 2006, PRELIMINARY STUDY AD
Lu Xiaoxu, 2005, COMPUTER MUSIC TECHN
Luo Hongmin, 2010, BIG STAGE
Wang Chenglai, 2010, EFFECTIVE APPL MULTI
zhang Jing, 2009, COMPREHENSIVE DIGEST
NR 6
TC 0
Z9 0
U1 0
U2 0
PU ATLANTIS PRESS
PI PARIS
PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE
SN 1951-6851
BN 978-90-78677-75-8
J9 ADV INTEL SYS RES
PY 2013
VL 64
BP 861
EP 866
PG 6
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BIE82
UT WOS:000327937000196
DA 2024-09-05
ER
PT J
AU Wu, MF
Yu, KF
Zhao, ZG
Zhu, B
AF Wu, Mingfen
Yu, Kefu
Zhao, Zhigang
Zhu, Bin
TI Knowledge structure and global trends of machine learning in stroke over
the past decade: A scientometric analysis
SO HELIYON
LA English
DT Article
DE Machine learning; Stroke; Deep learning; Global trends; Algorithm
ID ARTIFICIAL-INTELLIGENCE; RISK-FACTORS; CHINA; CARE; EPIDEMIOLOGY
AB Objective: Machine learning (ML) models have been widely applied in stroke prediction, diagnosis, treatment, and prognosis assessment. We aimed to conduct a comprehensive scientometrics analysis of studies related to ML in stroke and reveal its current status, knowledge structure, and global trends. Methods: All documents related to ML in stroke were retrieved from the Web of Science database on March 15, 2023. We refined the documents by including only original articles and reviews in the English language. The literature published over the past decade was imported into scientometrics software for influence detection and collaborative network analysis. Results: 2389 related publications were included. The annual publication outputs demonstrated explosive growth, with an average growth rate of 63.99 %. Among the 90 countries/regions involved, the United States (729 articles) and China (636 articles) were the most productive countries. Frontiers in Neurology was the most prolific journal with 94 articles. 234 highly cited articles, each with more than 31 citations, were detected. Keyword analysis revealed a total of 5333 keywords, with a predominant focus on the application of ML models in the early diagnosis, classification, and prediction of "acute ischemic stroke" and "atrial fibrillation-related stroke". The keyword "classification" had the first and longest burst, spanning from 2013 to 2018. 'Upport vector machine' got the strongest burst strength with 6.2. Keywords such as 'mechanical thrombectomy', 'expression', and 'prognosis' experienced bursts in 2022 and have continued to be prominent. Conclusion: The applications of ML in stroke are increasingly diverse and extensive, with researchers showing growing interest over the past decade. However, the clinical application of ML in stroke is still in its early stages, and several limitations and challenges need to be addressed for its widespread adoption in clinical practice.
C1 [Wu, Mingfen; Yu, Kefu; Zhao, Zhigang; Zhu, Bin] Capital Med Univ, Beijing Tiantan Hosp, Dept Pharm, Beijing 100070, Peoples R China.
[Zhao, Zhigang; Zhu, Bin] Capital Med Univ, Beijing Tiantan Hosp, Dept Pharm, 119 South Fourth Ring West Rd, Beijing 100070, Peoples R China.
C3 Capital Medical University; Capital Medical University
RP Zhao, ZG; Zhu, B (corresponding author), Capital Med Univ, Beijing Tiantan Hosp, Dept Pharm, 119 South Fourth Ring West Rd, Beijing 100070, Peoples R China.
EM 1022zzg@sina.com; zbtcm@163.com
OI Zhu, Bin/0000-0003-1771-9874; Wu, Mingfen/0000-0002-2761-2299
FU Nature Foundation of Capital Medical University [PYZ23122]
FX Acknowledgements The authors would like to express their
appreciation to Professor CM Chen who invented Citespace, and Professor
Van Eck and Waltman who invented VOSviewer, which are free to use. This
study was supported by the Nature Foundation of Capital Medical
University (Number: PYZ23122) .
CR Acosta JN, 2019, GENOME MED, V11, DOI 10.1186/s13073-019-0671-5
[Anonymous], 2023, Brain Images of Normal Subjects
Arbabshirani MR, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-017-0015-z
Attia ZI, 2019, LANCET, V394, P861, DOI 10.1016/S0140-6736(19)31721-0
Bacigaluppi M, 2020, EUR HEART J, V41, P3181, DOI 10.1093/eurheartj/ehaa230
Cai TA, 2022, MED IMAGE ANAL, V80, DOI 10.1016/j.media.2022.102522
Campagnini S, 2022, J NEUROENG REHABIL, V19, DOI 10.1186/s12984-022-01032-4
Campbell BCV, 2020, LANCET, V396, P129, DOI 10.1016/S0140-6736(20)31179-X
Chavva IR, 2022, ANN NEUROL, V92, P574, DOI 10.1002/ana.26435
Chen M, 2017, IEEE ACCESS, V5, P8869, DOI 10.1109/ACCESS.2017.2694446
Chilamkurthy S, 2018, LANCET, V392, P2388, DOI 10.1016/S0140-6736(18)31645-3
Choi YA, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21134269
Czap AL, 2021, NEUROLOGY, V97, pS42, DOI 10.1212/WNL.0000000000012794
Deng P, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.910400
Dengler NF, 2021, NEUROSURG REV, V44, P2837, DOI 10.1007/s10143-020-01453-6
Ding LL, 2020, STROKE, V51, pE351, DOI 10.1161/STROKEAHA.120.031295
Dou Q, 2016, IEEE T MED IMAGING, V35, P1182, DOI 10.1109/TMI.2016.2528129
Farzaneh N, 2020, DIAGNOSTICS, V10, DOI 10.3390/diagnostics10100773
Faust O, 2018, COMPUT METH PROG BIO, V161, P1, DOI 10.1016/j.cmpb.2018.04.005
Greener JG, 2022, NAT REV MOL CELL BIO, V23, P40, DOI 10.1038/s41580-021-00407-0
Guan TJ, 2017, NEUROLOGY, V89, P53, DOI 10.1212/WNL.0000000000004056
Han L, 2019, CIRC-CARDIOVASC QUAL, V12, DOI 10.1161/CIRCOUTCOMES.118.005595
Heo J, 2019, STROKE, V50, P1263, DOI 10.1161/STROKEAHA.118.024293
Hsieh CY, 2019, CLIN EPIDEMIOL, V11, P349, DOI 10.2147/CLEP.S196293
Hussain I, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21165334
Hussain I, 2021, BRAIN SCI, V11, DOI 10.3390/brainsci11070900
Islam MS, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22249859
Jang SK, 2020, J STROKE, V22, P403, DOI 10.5853/jos.2020.02537
Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101
Kamal N, 2022, STROKE, V53, P2768, DOI 10.1161/STROKEAHA.122.039954
Kamnitsas K, 2017, MED IMAGE ANAL, V36, P61, DOI 10.1016/j.media.2016.10.004
Kim DY, 2023, J NEUROL NEUROSUR PS, V94, P369, DOI 10.1136/jnnp-2022-330230
Kuang HL, 2021, STROKE, V52, P223, DOI 10.1161/STROKEAHA.120.030092
Lineback CM, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.649521
Liu CM, 2022, CIRC-CARDIOVASC QUAL, V15, DOI 10.1161/CIRCOUTCOMES.121.008360
Lou YS, 2022, J PERS MED, V12, DOI 10.3390/jpm12020315
Lv J, 2023, INT J MED INFORM, V174, DOI 10.1016/j.ijmedinf.2023.105050
Mainali S, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.734345
Nielsen A, 2018, STROKE, V49, P1394, DOI 10.1161/STROKEAHA.117.019740
Nishi H, 2019, STROKE, V50, P2379, DOI 10.1161/STROKEAHA.119.025411
Ovbiagele B, 2013, STROKE, V44, P2361, DOI 10.1161/STR.0b013e31829734f2
Pitchai R, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/5489084
Poplin R, 2018, NAT BIOMED ENG, V2, P158, DOI 10.1038/s41551-018-0195-0
Powers WJ, 2018, STROKE, V49, pE46, DOI 10.1161/STR.0000000000000158
Qiu W, 2020, RADIOLOGY, V294, P638, DOI 10.1148/radiol.2020191193
Raghunath S, 2021, CIRCULATION, V143, P1287, DOI 10.1161/CIRCULATIONAHA.120.047829
Rajkomar A, 2019, NEW ENGL J MED, V380, P1347, DOI 10.1056/NEJMra1814259
Rutten-Jacobs LC, 2018, BMJ-BRIT MED J, V363, DOI 10.1136/bmj.k4168
Shao A, 2022, FRONT ENDOCRINOL, V13, DOI 10.3389/fendo.2022.1032144
Shao HL, 2023, DIGIT HEALTH, V9, DOI 10.1177/20552076221149528
Sheth SA, 2023, J NEUROINTERV SURG, V15, P195, DOI 10.1136/neurintsurg-2021-018142
Siegel JS, 2016, P NATL ACAD SCI USA, V113, pE4367, DOI 10.1073/pnas.1521083113
Sirsat MS, 2020, J STROKE CEREBROVASC, V29, DOI 10.1016/j.jstrokecerebrovasdis.2020.105162
Tian DS, 2022, SIGNAL TRANSDUCT TAR, V7, DOI 10.1038/s41392-021-00802-1
Wang GT, 2020, MED IMAGE ANAL, V65, DOI 10.1016/j.media.2020.101787
Wang J, 2022, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.811707
Wang JA, 2022, STROKE VASC NEUROL, V7, P94, DOI 10.1136/svn-2021-001096
Wang WZ, 2017, CIRCULATION, V135, P759, DOI 10.1161/CIRCULATIONAHA.116.025250
Weber CJ, 2021, ALZH DEMENT-TRCI, V7, DOI 10.1002/trc2.12226
Wegner FK, 2022, CLIN RES CARDIOL, V111, P1010, DOI 10.1007/s00392-022-02012-3
World Stroke Organization, 2021, The Atlas of Heart Disease and Stroke
Wu SM, 2019, LANCET NEUROL, V18, P394, DOI 10.1016/S1474-4422(18)30500-3
Yang WX, 2022, FRONT NEUROL, V13, DOI 10.3389/fneur.2022.1014346
Yao Z, 2023, J NEUROINTERV SURG, V15, P1136, DOI 10.1136/jnis-2022-019598
Yu D, 2020, ANN CLIN TRANSL NEUR, V7, P2178, DOI 10.1002/acn3.51208
Yu YN, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.220882
Zhang Q., Eur. Radiol., V33, P4052
NR 67
TC 1
Z9 1
U1 9
U2 10
PU CELL PRESS
PI CAMBRIDGE
PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA
EI 2405-8440
J9 HELIYON
JI Heliyon
PD JAN 30
PY 2024
VL 10
IS 2
AR e24230
DI 10.1016/j.heliyon.2024.e24230
EA JAN 2024
PG 15
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA HT4X3
UT WOS:001161756800001
PM 38288018
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Yao, RF
Shen, ZH
Xu, XY
Ling, GX
Xiang, RW
Song, TY
Zhai, F
Zhai, YX
AF Yao, Rufan
Shen, Zhenhua
Xu, Xinyi
Ling, Guixia
Xiang, Rongwu
Song, Tingyan
Zhai, Fei
Zhai, Yuxuan
TI Knowledge mapping of graph neural networks for drug discovery: a
bibliometric and visualized analysis
SO FRONTIERS IN PHARMACOLOGY
LA English
DT Article
DE bibliometric analysis; graph neural network; drug discovery; VOSviewer;
Citespace
ID CONVOLUTIONAL NETWORK; EMERGING TRENDS; PREDICTION
AB Introduction In recent years, graph neural network has been extensively applied to drug discovery research. Although researchers have made significant progress in this field, there is less research on bibliometrics. The purpose of this study is to conduct a comprehensive bibliometric analysis of graph neural network applications in drug discovery in order to identify current research hotspots and trends, as well as serve as a reference for future research. Methods Publications from 2017 to 2023 about the application of graph neural network in drug discovery were collected from the Web of Science Core Collection. Bibliometrix, VOSviewer, and Citespace were mainly used for bibliometric studies. Results and Discussion In this paper, a total of 652 papers from 48 countries/regions were included. Research interest in this field is continuously increasing. China and the United States have a significant advantage in terms of funding, the number of publications, and collaborations with other institutions and countries. Although some cooperation networks have been formed in this field, extensive worldwide cooperation still needs to be strengthened. The results of the keyword analysis clarified that graph neural network has primarily been applied to drug-target interaction, drug repurposing, and drug-drug interaction, while graph convolutional neural network and its related optimization methods are currently the core algorithms in this field. Data availability and ethical supervision, balancing computing resources, and developing novel graph neural network models with better interpretability are the key technical issues currently faced. This paper analyzes the current state, hot spots, and trends of graph neural network applications in drug discovery through bibliometric approaches, as well as the current issues and challenges in this field. These findings provide researchers with valuable insights on the current status and future directions of this field.
C1 [Yao, Rufan; Shen, Zhenhua; Xu, Xinyi; Ling, Guixia; Xiang, Rongwu; Song, Tingyan; Zhai, Fei; Zhai, Yuxuan] Shenyang Pharmaceut Univ, Fac Med Device, Shenyang, Peoples R China.
C3 Shenyang Pharmaceutical University
RP Zhai, F; Zhai, YX (corresponding author), Shenyang Pharmaceut Univ, Fac Med Device, Shenyang, Peoples R China.
EM 106030309@syphu.edu.cn; 278763282@qq.com
FU Scientific Research Foundation of the Education Bureau of Liaoning
Province [LJKR0302]; National Natural Science Foundation of China
[U1908215]; Basic Scientific Research Youth Project of Liaoning
Provincial Department of Education [JYTQN2023337]
FX The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The General
Project supported by the Scientific Research Foundation of the Education
Bureau of Liaoning Province (LJKR0302) Special Fund of the National
Natural Science Foundation of China (U1908215) Basic Scientific Research
Youth Project of Liaoning Provincial Department of Education
(JYTQN2023337).
CR Albu AI, 2023, COMPUT BIOL MED, V153, DOI 10.1016/j.compbiomed.2022.106526
Altae-Tran H, 2017, ACS CENTRAL SCI, V3, P283, DOI 10.1021/acscentsci.6b00367
Ampah JD, 2021, J CLEAN PROD, V320, DOI 10.1016/j.jclepro.2021.128871
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Cai HX, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbac408
Chen CM, 2014, EXPERT OPIN BIOL TH, V14, P1295, DOI 10.1517/14712598.2014.920813
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Cheng KM, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.918483
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Cui ZY, 2020, IEEE T INTELL TRANSP, V21, P4883, DOI 10.1109/TITS.2019.2950416
Dehghan A, 2024, BMC BIOINFORMATICS, V25, DOI 10.1186/s12859-024-05671-3
Feng JN, 2023, COMPUT BIOL MED, V166, DOI 10.1016/j.compbiomed.2023.107492
Feng YH, 2020, BMC BIOINFORMATICS, V21, DOI 10.1186/s12859-020-03724-x
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Gilmer J, 2017, PR MACH LEARN RES, V70
Harigua-Souiai E, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.744170
Jiang DJ, 2021, J CHEMINFORMATICS, V13, DOI 10.1186/s13321-020-00479-8
Karimi M, 2021, J CHEM INF MODEL, V61, P46, DOI 10.1021/acs.jcim.0c00866
Karimi M, 2019, BIOINFORMATICS, V35, P3329, DOI 10.1093/bioinformatics/btz111
Kearnes S, 2016, J COMPUT AID MOL DES, V30, P595, DOI 10.1007/s10822-016-9938-8
Kipf T. N., 2017, P INT C LEARN REPR
Lei S, 2022, FRONT PHARMACOL, V13, DOI 10.3389/fphar.2022.1056605
Li JS, 2020, MOL GENET GENOMICS, V295, P1197, DOI 10.1007/s00438-020-01693-7
Li Y, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbab346
Li ZW, 2022, MOL THER, V30, P1775, DOI 10.1016/j.ymthe.2022.01.041
Li ZW, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbaa240
Liu CY, 2023, J CHEMINFORMATICS, V15, DOI 10.1186/s13321-023-00698-9
Liu K, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20143389
Liu Q, 2020, BIOINFORMATICS, V36, pI911, DOI 10.1093/bioinformatics/btaa822
Liu SC, 2023, IEEE ACM T COMPUT BI, V20, P976, DOI 10.1109/TCBB.2022.3172421
Lu YD, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1460-z
Luo YA, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00680-8
Ma M, 2023, PLOS COMPUT BIOL, V19, DOI 10.1371/journal.pcbi.1010812
Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004
Palhamkhani F, 2023, J BIOMOL STRUCT DYN, DOI 10.1080/07391102.2023.2291829
Paul D, 2020, DRUG DISCOV TODAY, V26, P80, DOI 10.1016/j.drudis.2020.10.010
Puentes PR, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-12180-x
Réau M, 2023, BIOINFORMATICS, V39, DOI 10.1093/bioinformatics/btac759
Ryu S, 2019, CHEM SCI, V10, P8438, DOI 10.1039/c9sc01992h
Schneider P, 2020, NAT REV DRUG DISCOV, V19, P353, DOI 10.1038/s41573-019-0050-3
Schulte-Sasse R, 2021, NAT MACH INTELL, V3, P513, DOI 10.1038/s42256-021-00325-y
Shao KH, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbac109
Shen ZF, 2022, J TRANSL MED, V20, DOI 10.1186/s12967-022-03615-0
Shen ZF, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.843735
Stokes JM, 2020, CELL, V180, P688, DOI 10.1016/j.cell.2020.01.021
Takeda T, 2017, J CHEMINFORMATICS, V9, DOI 10.1186/s13321-017-0200-8
Nguyen T, 2022, IEEE ACM T COMPUT BI, V19, P146, DOI 10.1109/TCBB.2021.3060430
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vella D, 2022, J CHEM INF MODEL, DOI 10.1021/acs.jcim.2c00779
Verhaeghe J, 2022, BMC MED INFORM DECIS, V22, DOI 10.1186/s12911-022-01970-y
Wan XZ, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbac073
Wang JX, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbab390
Wang YY, 2022, NAT MACH INTELL, V4, P279, DOI 10.1038/s42256-022-00447-x
Wen M, 2017, J PROTEOME RES, V16, P1401, DOI 10.1021/acs.jproteome.6b00618
Wu B, 2022, IEEE INTERNET THINGS, V9, P16386, DOI 10.1109/JIOT.2022.3151400
Wu ZX, 2021, BRIEF BIOINFORM, V22, DOI 10.1093/bib/bbab112
Wu ZH, 2021, IEEE T NEUR NET LEAR, V32, P4, DOI 10.1109/TNNLS.2020.2978386
Xiong JC, 2021, DRUG DISCOV TODAY, V26, P1382, DOI 10.1016/j.drudis.2021.02.011
Xiong ZP, 2020, J MED CHEM, V63, P8749, DOI 10.1021/acs.jmedchem.9b00959
Yang ZD, 2022, CHEM SCI, V13, P8693, DOI 10.1039/d2sc02023h
Yang ZD, 2022, CHEM SCI, V13, P816, DOI 10.1039/d1sc05180f
Yazdani-Jahromi M, 2022, BRIEF BIOINFORM, V23, DOI 10.1093/bib/bbac272
Yuan QM, 2022, BIOINFORMATICS, V38, P125, DOI 10.1093/bioinformatics/btab643
Zhang MG, 2019, IEEE ACCESS, V7, P114077, DOI 10.1109/ACCESS.2019.2936461
Zhang PL, 2022, COMPUT BIOL MED, V142, DOI 10.1016/j.compbiomed.2022.105214
Zhang YC, 2022, FRONT PHARMACOL, V13, DOI 10.3389/fphar.2022.872785
Zhang ZH, 2022, CURR OPIN STRUC BIOL, V73, DOI 10.1016/j.sbi.2021.102327
Zhao L, 2020, IEEE T INTELL TRANSP, V21, P3848, DOI 10.1109/TITS.2019.2935152
Zhao TY, 2021, BRIEF BIOINFORM, V22, P2141, DOI 10.1093/bib/bbaa044
Zhou J, 2020, AI OPEN, V1, P57, DOI 10.1016/j.aiopen.2021.01.001
Zitnik M, 2018, BIOINFORMATICS, V34, P457, DOI 10.1093/bioinformatics/bty294
NR 71
TC 0
Z9 0
U1 13
U2 13
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 1663-9812
J9 FRONT PHARMACOL
JI Front. Pharmacol.
PD MAY 10
PY 2024
VL 15
AR 1393415
DI 10.3389/fphar.2024.1393415
PG 19
WC Pharmacology & Pharmacy
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Pharmacology & Pharmacy
GA RU4S3
UT WOS:001230166300001
PM 38799167
OA Green Published, gold
DA 2024-09-05
ER
PT C
AU Papachristopoulos, L
Kleidis, N
Sfakakis, M
Tsakonas, G
Papatheodorou, C
AF Papachristopoulos, Leonidas
Kleidis, Nikos
Sfakakis, Michalis
Tsakonas, Giannis
Papatheodorou, Christos
BE Garoufallou, E
Hartley, RJ
Gaitanou, P
TI Discovering the Topical Evolution of the Digital Library Evaluation
Community
SO METADATA AND SEMANTICS RESEARCH, MTSR 2015
SE Communications in Computer and Information Science
LA English
DT Proceedings Paper
CT 9th Conference on Metadata and Semantics Research (MTSR)
CY SEP 09-11, 2015
CL Manchester, ENGLAND
DE Research trends discovery; Digital library evaluation; Topic modeling;
Metadata extraction; Latent Dirichlet Allocation
AB The successful management of textual information is a rising challenge for all the researchers' communities, in order firstly to assess its current and previous statuses and secondly to enrich the level of their metadata description. The huge amount of unstructured data that is produced has consequently populated text mining techniques for its interpretation, selection and metadata enrichment opportunities that provides. Scientific production regarding Digital Libraries (DLs) evaluation has been grown in size and has broaden the scope of coverage as it consists a complex and multidimensional field. The current study proposes a probabilistic topic modeling implemented on a domain corpus from the JCDL, ECDL/TDPL and ICADL conferences proceedings in the period 2001-2013, aiming at the unveiling of its topics and subject temporal analysis, for exploiting and extracting semantic metadata from large corpora in an automatic way.
C1 [Papachristopoulos, Leonidas; Sfakakis, Michalis; Papatheodorou, Christos] Ionian Univ, Dept Arch Lib Sci & Museol, Corfu, Greece.
[Kleidis, Nikos] Athens Univ Econ & Business, Dept Informat, Athens, Greece.
[Tsakonas, Giannis] Univ Patras, Lib & Informat Ctr, Patras, Greece.
[Papachristopoulos, Leonidas; Papatheodorou, Christos] Athena Res Ctr, IMIS, Digital Curat Unit, Athens, Greece.
C3 Ionian University; Athens University of Economics & Business; University
of Patras
RP Papachristopoulos, L (corresponding author), Ionian Univ, Dept Arch Lib Sci & Museol, Corfu, Greece.
EM l11papa@ionio.gr; klidisnik@aueb.gr; sfakakis@ionio.gr;
john@lis.upatras.gr; papatheodor@ionio.gr
RI Papachristopoulos, Leonidas/AAP-8859-2020; Papatheodorou,
Christos/AAD-2749-2020; Tsakonas, Giannis/M-3219-2019; Sfakakis,
Michalis/AAR-6503-2021
OI Papachristopoulos, Leonidas/0000-0002-4148-2689; Papatheodorou,
Christos/0000-0002-9025-6469; Tsakonas, Giannis/0000-0002-8786-9440;
Sfakakis, Michalis/0000-0003-2973-7455
CR Afiontzi E, 2013, ACM-IEEE J CONF DIG, P125
Aletras N., 2014, ACM IEEE JOINT C DIG
Aletras N., 2013, ACM J COMPUT CULT HE, V5
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bolelli L, 2009, ACM-IEEE J CONF DIG, P69
Bruce T.R., 2004, METADATA PRACTICE
Delen D, 2008, EXPERT SYST APPL, V34, P1707, DOI 10.1016/j.eswa.2007.01.035
Fox C., 1990, SIGIR Forum, V24, P19, DOI 10.1145/378881.378888
Fuhr N, 2007, INT J DIGIT LIBRARIE, V8, P21, DOI 10.1007/s00799-007-0011-z
Marshall C. C., 2002, JCDL 2002. Proceedings of the Second ACM/IEEE-CS Joint Conference on Digital Libraries, P56, DOI 10.1145/544220.544230
Mimno D, JSLDA IMPLEMENTATION
Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024
Newman D., 2010, P ANN JOINT C DIG LI, P215, DOI [10.1145/1816123.1816156, DOI 10.1145/1816123.1816156]
Newman D, 2009, LECT NOTES ARTIF INT, V5866, P270, DOI 10.1007/978-3-642-10439-8_28
Newman D, 2007, ACM-IEEE J CONF DIG, P366, DOI 10.1145/1255175.1255248
Nguyen S. H., 2011, LNCS, V7008, P368
Noh Y., 2011, P 11 ANN INT ACM IEE, P411, DOI [10.1145/1998076.1998160, DOI 10.1145/1998076.1998160]
Pomerantz J, 2006, OPENING INFORMATION HORIZONS, P175
Tsakonas G., 2012, P 12 ACM IEEE CS JOI, P347
Tsakonas G, 2013, J AM SOC INF SCI TEC, V64, P1914, DOI 10.1002/asi.22900
Tuarob S, 2015, INT J DIGIT LIBRARIE, V16, P111, DOI 10.1007/s00799-015-0146-2
NR 21
TC 4
Z9 4
U1 2
U2 14
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 1865-0929
EI 1865-0937
BN 978-3-319-24129-6; 978-3-319-24128-9
J9 COMM COM INF SC
PY 2015
VL 544
BP 101
EP 112
DI 10.1007/978-3-319-24129-6_9
PG 12
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Interdisciplinary Applications; Computer
Science, Theory & Methods; Robotics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Robotics
GA BE1NZ
UT WOS:000368260500009
DA 2024-09-05
ER
PT J
AU Ye, YE
Na, JC
AF Ye, Yingxin Estella
Na, Jin-Cheon
TI Who is mentioning COVID-19 articles on twitter? Classifying twitter
users in the context of scholarly communication
SO SOCIAL NETWORK ANALYSIS AND MINING
LA English
DT Article
DE Altmetrics; Twitter; Scholarly communication; User classification; Graph
neural networks; Social networks; Machine learning
ID TWEETS
AB This study aims to examine the demographics of participants engaged in scholarly communication on Twitter, which has been rebranded as X. Firstly, based on a dataset of tweets citing COVID-19 publications, it proposed a more precise classification system consisting of eleven user categories for individuals who tweeted academic publication. Secondly, it explores the effectiveness of graph neural network models (GNNs) in combination with a transformer-based text classification model (specifically, BERT) to classify these newly defined user categories. The findings of this research highlight that GNNs can effectively interpret the social networks within scholarly communication, and complement text classification models in characterizing user types. The best-performing model achieved an accuracy rate of 84.05 percent in classifying user categories for a dataset of 10,048 labeled users. Subsequently, this model was employed to analyze 393,030 tweeters in our dataset. The analysis revealed that relevant scholarly discussion on Twitter was dominated by members from the general public (over 71 percent). Academic researchers and institutions constituted 12.48 percent, while health science professionals and institutions made up 7.35 percent of the contributors to relevant scholarly discussions on Twitter. Notably, academic publishers and research feed accounts exhibited aggressive tweeting behaviors and were responsible for the highest volume of tweets on average. This study also demonstrates the active involvement of various non-academic members, including commercial businesses, mass media outlets, public authorities, politicians, and civil society organizations, in Twitter scholarly communication.
C1 [Ye, Yingxin Estella; Na, Jin-Cheon] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore.
C3 Nanyang Technological University
RP Ye, YE (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore.
EM yingxin001@e.ntu.edu.sg; tjcna@ntu.edu.sg
CR Aljabri M, 2023, SOC NETW ANAL MIN, V13, DOI 10.1007/s13278-022-01020-5
Aljohani NR, 2020, SOFT COMPUT, V24, P11109, DOI 10.1007/s00500-020-04689-y
Altmetric.com, 2021, Source of Altmetrics-Twitter
Basile V., 2019, P 13 INT WORKSH SEM, P54, DOI [DOI 10.18653/V1/S19-2007, 10.18653/v1/S19-2007]
Brody S, 2022, Arxiv, DOI [arXiv:2105.14491, 10.48550/arXiv.2105.14491]
Campbell WM, 2014, NEURAL INFORM PROCES
Cao RM, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2022.103152
Dambanemuya HK, 2024, Arxiv, DOI arXiv:2203.04228
Dehghan A, 2023, J BIG DATA-GER, V10, DOI 10.1186/s40537-023-00796-3
Devlin J., 2018, ARXIV
Diaz-Faes AA, 2019, 17 INT C SCIENTOMETR
Didegah F, 2018, J INFORMETR, V12, P960, DOI 10.1016/j.joi.2018.08.002
Dukic D, 2020, PR INT CONF DATA SC, P631, DOI 10.1109/DSAA49011.2020.00089
Ferguson C, 2014, COLLEGIAN, V21, P89, DOI 10.1016/j.colegn.2014.03.002
Haustein S, 2016, J ASSOC INF SCI TECH, V67, P232, DOI 10.1002/asi.23456
Hayawi K, 2022, SOC NETW ANAL MIN, V12, DOI 10.1007/s13278-022-00869-w
Holmberg Kim, 2014, Scientometrics, V101, P1027, DOI 10.1007/s11192-014-1229-3
Holmberg K, 2018, SCIENTOMETRICS, V116, P435, DOI 10.1007/s11192-018-2710-1
Jiang JL, 2022, Arxiv, DOI arXiv:2207.08349
Kousha K, 2020, QUANT SCI STUD, V1, P1068, DOI 10.1162/qss_a_00066
Hamilton WL, 2018, Arxiv, DOI arXiv:1706.02216
Li YM, 2019, COGN COMPUT, V11, P459, DOI 10.1007/s12559-019-9624-y
Marco P, 2011, P 5 INT AAAI C WEBLO
Muller Martin, 2020, arXiv
Özkent Y, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0263725
Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874
Robinson-Garcia N, 2018, SCI PUBL POLICY, V45, P815, DOI 10.1093/scipol/scy024
Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551
Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x
Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605
Tsung-Yi Lin, 2017, 2017 IEEE International Conference on Computer Vision (ICCV), P2999, DOI 10.1109/ICCV.2017.324
Vainio J, 2017, SCIENTOMETRICS, V112, P345, DOI 10.1007/s11192-017-2368-0
Vaswani A, 2017, ADV NEUR IN, V30
Veličkovic P, 2018, Arxiv, DOI arXiv:1710.10903
Wu ZH, 2021, IEEE T NEUR NET LEAR, V32, P4, DOI 10.1109/TNNLS.2020.2978386
Xu K., 2018, arXiv, DOI 10.48550/arXiv.1810.00826
Yu HQ, 2017, SCIENTOMETRICS, V111, P267, DOI 10.1007/s11192-017-2251-z
Zhibin Lu, 2020, Advances in Information Retrieval, 42nd European Conference on IR Research, ECIR 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12035), P369, DOI 10.1007/978-3-030-45439-5_25
Zhou J, 2020, AI OPEN, V1, P57, DOI 10.1016/j.aiopen.2021.01.001
NR 39
TC 0
Z9 0
U1 4
U2 4
PU SPRINGER WIEN
PI Vienna
PA Prinz-Eugen-Strasse 8-10, A-1040 Vienna, AUSTRIA
SN 1869-5450
EI 1869-5469
J9 SOC NETW ANAL MIN
JI Soc. Netw. Anal. Min.
PD MAR 28
PY 2024
VL 14
IS 1
AR 72
DI 10.1007/s13278-024-01236-7
PG 17
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA MQ8G0
UT WOS:001195179000001
DA 2024-09-05
ER
PT J
AU Kaparthi, S
AF Kaparthi, Shashidhar
TI Business-Related Research in Neural Networks-Based Intelligent Decision
Support Systems: A Bibliometric Analysis
SO JOURNAL OF DECISION SYSTEMS
LA English
DT Article
DE neural networks; business applications; bibliometric analysis; co-word
method; intelligent decision support systems
AB Neural networks are used in business organizations for providing intelligent decision support. The ABI/Inform bibliographic database has over 1 000 publications on business-related research in neural networks. Historical trends in this area are examined by a bibliometric analysis of this research. Distributions by management function, by industries & markets, by business environment and by keywords are presented and insights into future research possibilities are drawn. Further, this corpus of literature is analyzed by using the co-word bibliometric methodology to assess the state-of-the-art in this research area. Several research themes are identified. Based on the analysis, suggestions for future research are outlined.
C1 [Kaparthi, Shashidhar] Univ Northern Iowa, Coll Business Adm, Dept Management, Cedar Falls, IA 50614 USA.
C3 University of Northern Iowa
RP Kaparthi, S (corresponding author), Univ Northern Iowa, Coll Business Adm, Dept Management, Cedar Falls, IA 50614 USA.
EM Shashi.Kaparthi@uni.edu
FU University of Northern Iowa
FX This research was supported in part by a professional development
assignment from the University of Northern Iowa. An earlier version of
this paper was presented at the 34th Annual Meeting of the Decision
Sciences Institute, Washington DC, November 2003.
CR [Anonymous], 2001, CHALLENGE SCIENTOMET
[Anonymous], NEUROCOMPUTING FDN R
[Anonymous], IEEE ASSP MAGAZINE
Aryee S, 1997, HUM RELAT, V50, P129, DOI 10.1177/001872679705000202
Bailey J. V., 1986, FINANCIAL ANAL J, V42, P20
Baker G. A., 1994, Agribusiness (New York), V10, P319, DOI 10.1002/1520-6297(199407/08)10:4<319::AID-AGR2720100405>3.0.CO;2-J
Cahlik T., 1996, Neural Network World, V6, P847
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Callon M, 1986, MAPPING DYNAMICS SCI
Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F
COURTIAL JP, 1989, SOC STUD SCI, V19, P301, DOI 10.1177/030631289019002005
COURTIAL JP, 1994, SCIENTOMETRICS, V31, P251, DOI 10.1007/BF02016875
Espahbodi H, 2003, J BANK FINANC, V27, P549, DOI 10.1016/S0378-4266(01)00258-8
Farrell KA, 2003, J ACCOUNT ECON, V36, P165, DOI 10.1016/j.jacceco.2003.09.001
Ferreira D, 2004, ENERG POLICY, V32, P1173, DOI 10.1016/S0301-4215(03)00080-6
GASPER JA, 1985, BENEFITS Q, V1, P41
Goetting MarshaA., 2001, J FAM ECON ISS, V22, P243, DOI [DOI 10.1023/A:1016699822855, 10.1023/A:1016699822855]
HALVORSON AL, 1985, REV ECON STAT, V67, P161, DOI 10.2307/1928449
Klein M.R., 1995, KNOWLEDGE BASED DECI
Krasachat W., 2004, Journal of American Academy of Business, V4, P64
LAWTHERS AG, 1992, J HEALTH POLIT POLIC, V17, P463, DOI 10.1215/03616878-17-3-463
Lisboa P. J., 2000, PROGR NEURAL PROCESS
MASTERS MF, 1985, ACAD MANAGE J, V28, P654, DOI 10.5465/256120
McClelland J. L., 1987, PARALLEL DISTRIBUTED, V3
McClelland J. L., 1987, PARALLEL DISTRIBUTED, V1
McClelland J.L., 1987, Parallel distributed processing, vol 2: explorations in the microstructure of cognition: psychological and biological models, V2
MILOTIC D., 2003, J CONSUM BEHAV, V3, P179, DOI DOI 10.1002/CB.131
Moens MF, 1999, J AM SOC INFORM SCI, V50, P151, DOI 10.1002/(SICI)1097-4571(1999)50:2<151::AID-ASI6>3.0.CO;2-I
Nijmeijer M., 2004, British Food Journal, V106, P520, DOI 10.1108/00070700410545728
Peterson R.T., 1999, J BUSINESS FORECASTI, V18, P15
Ravi V, 2000, EUR J OPER RES, V126, P526, DOI 10.1016/S0377-2217(99)00307-0
Renshaw AE, 2003, INSUR MATH ECON, V32, P379, DOI 10.1016/S0167-6687(03)00118-5
Smith K.A., 2003, Neural networks in business: techniques and applications
Urbanovich E, 2003, INTERFACES, V33, P15, DOI 10.1287/inte.33.4.15.16372
Vance C, 2004, INT REGIONAL SCI REV, V27, P326, DOI 10.1177/0160017604266029
Wasserman P.D., 1989, Neural Computing: Theory and Practice
Webley P, 2001, J ECON PSYCHOL, V22, P141, DOI 10.1016/S0167-4870(01)00026-5
WHITTAKER J, 1989, SOC STUD SCI, V19, P473, DOI 10.1177/030631289019003004
Wong BK, 1997, DECIS SUPPORT SYST, V19, P301, DOI 10.1016/S0167-9236(96)00070-X
Wong BK, 2000, COMPUT OPER RES, V27, P1045, DOI 10.1016/S0305-0548(99)00142-2
Yamada K., 1972, RES POLICY, V1, P352
Zhang P G., 2003, Neural Networks in Business Forecasting
NR 42
TC 1
Z9 1
U1 0
U2 3
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 1166-8636
EI 2116-7052
J9 J DECIS SYST
JI J. Decis. Syst.
PY 2005
VL 14
IS 1-2
BP 157
EP 177
DI 10.3166/jds.14.157-177
PG 21
WC Operations Research & Management Science
WE Emerging Sources Citation Index (ESCI)
SC Operations Research & Management Science
GA V88LS
UT WOS:000212725500008
DA 2024-09-05
ER
PT J
AU Sharma, H
Kumar, H
Gupta, A
Shah, MA
AF Sharma, Himanshu
Kumar, Harish
Gupta, Ashulekha
Shah, Mohd Asif
TI Computer vision in manufacturing: a bibliometric analysis and future
research propositions
SO INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
LA English
DT Article
DE Bibliometric analysis; Bibliographic coupling; Computer vision;
Manufacturing; Review
ID COORDINATE MEASURING MACHINE; SURFACE DEFECT DETECTION; QUALITY
INSPECTION; MICROASSEMBLY SYSTEM; INDUSTRY 4.0; ROUGHNESS;
CLASSIFICATION; ACCURATE; WEB; ALGORITHMS
AB Computer vision for the past two decades has been used to simulate human capabilities and automate tasks, and in the process, has benefited all of us. Specifically, its application within the manufacturing context has garnered ample attention and interest from both academics and practitioners. Due to its large-scale applicability and adoption potential, extensive research has been conducted to understand and appreciate it is working. However, extant research in this domain is rather disjointed, thereby delimiting the otherwise vast scope and knowledge boundaries. Thus, this study utilizes bibliometric analysis to synthesize extant literature within this field to address this lacuna. We analyzed 897 articles from Scopus, entailing contributions from 309 journals, 108 countries, 2138 authors, and 1334 organizations from 1981 to 2022. Additionally, we analyzed citation and co-authorship networks to acknowledge prominent authors, organizations, and countries within this domain. The thematic classification of extant literature through bibliographic coupling identified five major thematic areas: automated visual inspection, object tracking and process controlling, real-time monitoring, roughness inspection, and profile projection. Importantly, we used both knowledge and insights from our findings, and propose scope for future research.
C1 [Sharma, Himanshu; Kumar, Harish] Indian Inst Management IIM, Dept Informat Technol & Syst, Kashipur, India.
[Gupta, Ashulekha] Graph Era Deemed Be Univ, Dept Management Studies, Dehra Dun, India.
[Shah, Mohd Asif] Kebri Dehar Univ, Dept Econ, Kebri Dehar 250, Somali, Ethiopia.
[Shah, Mohd Asif] Woxsen Univ, Sch Business, Sadasivpet 502345, Hyderabad, India.
[Shah, Mohd Asif] Lovely Profess Univ, Div Res & Dev, Phagwara 144001, Punjab, India.
[Shah, Mohd Asif] Sharda Univ, Sch Engn & Technol, Greater Noida 201310, India.
C3 Indian Institute of Management (IIM System); Indian Institute of
Management Kashipur; Graphic Era University; Lovely Professional
University; Sharda University
RP Shah, MA (corresponding author), Kebri Dehar Univ, Dept Econ, Kebri Dehar 250, Somali, Ethiopia.; Shah, MA (corresponding author), Woxsen Univ, Sch Business, Sadasivpet 502345, Hyderabad, India.; Shah, MA (corresponding author), Lovely Profess Univ, Div Res & Dev, Phagwara 144001, Punjab, India.; Shah, MA (corresponding author), Sharda Univ, Sch Engn & Technol, Greater Noida 201310, India.
EM himanshu.fpm1806@iimkashipur.ac.in; harishkr08@gmail.com;
ashulekha26@gmail.com; drmohdasifshah@kdu.edu.et
RI Gupta, Ashulekha/AAY-1812-2020; Kumar, Harish/AAU-7634-2020; SHAH, MOHD
ASIF/AAZ-4565-2021; Shah, Mohd Asif/GOJ-7931-2022
OI Gupta, Ashulekha/0000-0001-5155-6090; Kumar, Harish/0000-0002-7204-7321;
SHAH, MOHD ASIF/0000-0001-6164-0915; Shah, Mohd Asif/0000-0002-0351-9559
CR Aghajan HK, 1993, IEEE T IMAGE PROCESS, V2, P454, DOI 10.1109/83.242355
Aminzadeh M, 2019, J INTELL MANUF, V30, P2505, DOI 10.1007/s10845-018-1412-0
Arents J, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12020937
Badmos O, 2020, J INTELL MANUF, V31, P885, DOI 10.1007/s10845-019-01484-x
Barua S, 2014, RAPID PROTOTYPING J, V20, P77, DOI 10.1108/RPJ-04-2012-0036
Benko P, 2001, COMPUT AIDED DESIGN, V33, P839, DOI 10.1016/S0010-4485(01)00100-2
Bhat NN, 2015, J MANUF PROCESS, V20, P274, DOI 10.1016/j.jmapro.2015.07.002
Bhatt Y, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.120988
Bhuyan A, 2021, IN C IND ENG ENG MAN, P482, DOI 10.1109/IEEM50564.2021.9673030
Bi ZM, 2014, ENTERP INF SYST-UK, V8, P225, DOI 10.1080/17517575.2012.654826
Brosnan T, 2004, J FOOD ENG, V61, P3, DOI 10.1016/S0260-8774(03)00183-3
Carbone V, 2001, INT J ADV MANUF TECH, V17, P263, DOI 10.1007/s001700170179
Castillo-Vergara M, 2018, J BUS RES, V85, P1, DOI 10.1016/j.jbusres.2017.12.011
Caviggioli F, 2019, INT J PROD ECON, V208, P254, DOI 10.1016/j.ijpe.2018.11.022
Chan VH, 2001, COMPUT IND, V44, P105, DOI 10.1016/S0166-3615(00)00087-7
Chen F., 2018, IEEE T IND INFORM, V3203, P1
Chen HY, 2020, J INTELL MANUF, V31, P453, DOI 10.1007/s10845-018-1458-z
Chen MC, 2002, COMPUT IND, V47, P185, DOI 10.1016/S0166-3615(01)00143-9
Cheng Y, 2008, IEEE T AUTOM SCI ENG, V5, P140, DOI 10.1109/TASE.2007.912058
Chiu Victoria, 2019, International Journal of Accounting Information Systems, V32, P24, DOI 10.1016/j.accinf.2018.11.003
Chou PB, 1997, MACH VISION APPL, V9, P201, DOI 10.1007/s001380050041
Cicirello VA, 2002, AI EDAM, V16, P385, DOI 10.1017/S0890060402165048
Colosimo BM, 2018, J QUAL TECHNOL, V50, P391, DOI 10.1080/00224065.2018.1507563
Conci A, 1998, COMPUT NETWORKS ISDN, V30, P1887, DOI 10.1016/S0169-7552(98)00211-6
Couto J, 2020, INTRO GUIDE COMPUTER
Danvila-del-Valle I, 2019, J BUS RES, V101, P627, DOI 10.1016/j.jbusres.2019.02.026
DOM BE, 1995, MACH VISION APPL, V8, P5, DOI 10.1007/BF01213634
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Edinbarough I, 2005, COMPUT IND, V56, P986, DOI 10.1016/j.compind.2005.05.022
Ekanayake B, 2021, AUTOMAT CONSTR, V127, DOI 10.1016/j.autcon.2021.103705
Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003
Faugeras O, 1998, COMPUT VIS IMAGE UND, V69, P292, DOI 10.1006/cviu.1998.0665
Feng C, 2015, AUTOMAT CONSTR, V59, P128, DOI 10.1016/j.autcon.2015.06.002
Ferreira FAF, 2018, J BUS RES, V85, P348, DOI 10.1016/j.jbusres.2017.03.026
Franceschini F, 2016, J INFORMETR, V10, P933, DOI 10.1016/j.joi.2016.07.003
GHOSAL S, 1993, IEEE T ROBOTIC AUTOM, V9, P385, DOI 10.1109/70.246050
Grasso M, 2017, J MANUF SCI E-T ASME, V139, DOI 10.1115/1.4034715
Guerra E, 2001, COMPUT IND ENG, V40, P175, DOI 10.1016/S0360-8352(01)00016-X
Gurzki H, 2017, J BUS RES, V77, P147, DOI 10.1016/j.jbusres.2016.11.009
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
He KT, 2019, J INTELL MANUF, V30, P947, DOI 10.1007/s10845-018-1424-9
Ho SY, 2002, INT J MACH TOOL MANU, V42, P1441, DOI 10.1016/S0890-6955(02)00078-0
Hoang K, 1997, COMPUT IND, V34, P43, DOI 10.1016/S0166-3615(97)00019-5
Huang R, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8080825
Iglesias C, 2018, COMPUT IND, V99, P119, DOI 10.1016/j.compind.2018.03.030
Iowa State University library, SCOP COMP 2022
Javaid Mohd., 2022, Sensors International, V3, DOI [DOI 10.1016/J.SINTL.2021.100132, 10.1016/j.sintl.2021.100132]
Jian CX, 2017, APPL SOFT COMPUT, V52, P348, DOI 10.1016/j.asoc.2016.10.030
Jin ZQ, 2019, MANUF LETT, V22, P11, DOI 10.1016/j.mfglet.2019.09.005
Kamguem R, 2013, INT J PRECIS ENG MAN, V14, P183, DOI 10.1007/s12541-013-0026-x
Kerr D, 2006, INT J ADV MANUF TECH, V28, P781, DOI 10.1007/s00170-004-2420-0
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
KHALAJ BH, 1994, MACH VISION APPL, V7, P178, DOI 10.1007/BF01211662
Khanra S, 2021, J BUS RES, V131, P151, DOI 10.1016/j.jbusres.2021.03.056
Khanra S, 2021, TOUR MANAG PERSPECT, V37, DOI 10.1016/j.tmp.2020.100777
Khanra S, 2020, ENTERP INF SYST-UK, V14, P737, DOI 10.1080/17517575.2020.1734241
Kim B, 2006, INT J ADV MANUF TECH, V28, P379, DOI 10.1007/s00170-004-2360-8
Krishnan BR, 2019, T CAN SOC MECH ENG, V43, P509, DOI 10.1139/tcsme-2018-0255
Lee BY, 2004, MECHATRONICS, V14, P129, DOI 10.1016/S0957-4158(02)00096-X
Lee JY, 2004, IEICE T INF SYST, VE87D, P2371
Lee KC, 2005, PRECIS ENG, V29, P95, DOI 10.1016/j.precisioneng.2004.05.002
Li D, 2014, INT J ADV MANUF TECH, V73, P1605, DOI 10.1007/s00170-014-5871-y
Lian J, 2020, IEEE T IND INFORM, V16, P1343, DOI 10.1109/TII.2019.2945403
Liu JJ, 2006, MACH VISION APPL, V16, P374, DOI 10.1007/s00138-005-0009-8
Liu Y, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11014-5
Market and Market, 2022, MACH VIS MARK COMP H
Martinez P, 2019, AUTOMAT CONSTR, V107, DOI 10.1016/j.autcon.2019.102947
Martinez P, 2019, AUTOMAT CONSTR, V97, P151, DOI 10.1016/j.autcon.2018.10.021
MARTYN J, 1964, J DOC, V20, P236, DOI 10.1108/eb026352
Medina R, 2011, INT J ADV MANUF TECH, V57, P1087, DOI 10.1007/s00170-011-3352-0
Medina-Gonzalez Y, 2011, INT J SUSTAIN ENG, V4, P75, DOI 10.1080/19397038.2010.497230
Merigo J.M., 2019, Global Journal of Flexible Systems Management, V20, P1, DOI DOI 10.1007/S40171-018-0201-0
Milovanovic B, 2019, IOP C SER EARTH ENV, V333, DOI 10.1088/1755-1315/333/1/012008
Moganti M, 1996, COMPUT VIS IMAGE UND, V63, P287, DOI 10.1006/cviu.1996.0020
Molleda J, 2016, IEEE T IND APPL, V52, P2684, DOI 10.1109/TIA.2016.2524459
Molleda J, 2013, COMPUT IND, V64, P1186, DOI 10.1016/j.compind.2013.05.002
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Monostori L, 2016, CIRP ANN-MANUF TECHN, V65, P621, DOI 10.1016/j.cirp.2016.06.005
Mostafa K, 2021, AUTOMAT CONSTR, V122, DOI 10.1016/j.autcon.2020.103516
Niñerola A, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11051377
Nobanee H, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13063277
Palani S, 2011, INT J ADV MANUF TECH, V54, P1033, DOI 10.1007/s00170-010-3018-3
Penumuru DP, 2020, J INTELL MANUF, V31, P1229, DOI 10.1007/s10845-019-01508-6
Peres RS, 2020, IEEE ACCESS, V8, P220121, DOI 10.1109/ACCESS.2020.3042874
Pottmann H, 2005, COMPUT AIDED DESIGN, V37, P751, DOI 10.1016/j.cad.2004.08.013
Rao AR, 1996, IMAGE VISION COMPUT, V14, P3, DOI 10.1016/0262-8856(95)01035-1
Schwarz S, 2014, IEEE T IMAGE PROCESS, V23, P214, DOI 10.1109/TIP.2013.2287613
Smith LN, 2005, IMAGE VISION COMPUT, V23, P887, DOI 10.1016/j.imavis.2005.03.009
Smith ML, 1999, IMAGE VISION COMPUT, V17, P1009, DOI 10.1016/S0262-8856(99)00003-7
Soosaraei M, 2018, ANN MED SURG, V26, P30, DOI 10.1016/j.amsu.2017.12.014
Steger C., 2018, Machine Vision Algorithms and Applications, V2
Szeliski R, 2011, TEXTS COMPUT SCI, P1, DOI 10.1007/978-1-84882-935-0
Tandon A, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120649
Thompson WB, 1999, IEEE T ROBOTIC AUTOM, V15, P57, DOI 10.1109/70.744602
Tian X, 2018, TRANSPORT RES D-TR E, V59, P1, DOI 10.1016/j.trd.2017.12.009
Tsai DM, 2000, INT J ADV MANUF TECH, V16, P474, DOI 10.1007/s001700070055
Tsai DM, 2011, MACH VISION APPL, V22, P629, DOI 10.1007/s00138-010-0256-1
Tsai DM, 2010, IMAGE VISION COMPUT, V28, P491, DOI 10.1016/j.imavis.2009.08.001
Tsang CSC, 2016, PATTERN RECOGN, V51, P378, DOI 10.1016/j.patcog.2015.09.022
Tsarouchi P, 2016, CIRP J MANUF SCI TEC, V14, P20, DOI 10.1016/j.cirpj.2016.04.005
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Vedula SB, 2024, J BUS ETHICS, V189, P301, DOI 10.1007/s10551-023-05346-8
Vogel B, 2021, LEADERSHIP QUART, V32, DOI 10.1016/j.leaqua.2020.101381
Wang MM, 2018, IEEE-ASME T MECH, V23, P997, DOI 10.1109/TMECH.2018.2820172
Wuest T, 2016, PROD MANUF RES, V4, P23, DOI 10.1080/21693277.2016.1192517
Xie WF, 2009, IEEE T IND ELECTRON, V56, P520, DOI 10.1109/TIE.2008.2003217
Xu XH, 2018, INT J PROD ECON, V204, P160, DOI 10.1016/j.ijpe.2018.08.003
Xuan Q, 2019, IEEE T IND ELECTRON, V66, P8244, DOI 10.1109/TIE.2018.2885684
Yang G, 2005, IEEE T IND ELECTRON, V52, P1013, DOI 10.1109/TIE.2005.851665
Yang GE, 2003, J INTELL ROBOT SYST, V37, P43, DOI 10.1023/A:1023982907874
Zhang JM, 1999, COMPUT IND, V40, P51, DOI 10.1016/S0166-3615(99)00009-3
Zhang XH, 2011, INT J PROD RES, V49, P1957, DOI 10.1080/00207541003690074
Zheng P, 2018, FRONT MECH ENG-PRC, V13, P137, DOI 10.1007/s11465-018-0499-5
Zhong RY, 2017, ENGINEERING-PRC, V3, P616, DOI 10.1016/J.ENG.2017.05.015
NR 114
TC 1
Z9 1
U1 3
U2 11
PU SPRINGER LONDON LTD
PI LONDON
PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND
SN 0268-3768
EI 1433-3015
J9 INT J ADV MANUF TECH
JI Int. J. Adv. Manuf. Technol.
PD AUG
PY 2023
VL 127
IS 11-12
BP 5691
EP 5710
DI 10.1007/s00170-023-11907-y
EA JUL 2023
PG 20
WC Automation & Control Systems; Engineering, Manufacturing
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Automation & Control Systems; Engineering
GA M9VB5
UT WOS:001033455200002
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Ebadi, A
Tremblay, S
Goutte, C
Schiffauerova, A
AF Ebadi, Ashkan
Tremblay, Stephane
Goutte, Cyril
Schiffauerova, Andrea
TI Application of machine learning techniques to assess the trends and
alignment of the funded research output
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Text mining; Topic modeling; Machine learning; Funded research;
Publications; Government research priorities; Canada
ID SCIENTIFIC COLLABORATION; TOPIC MODEL; SCIENCE; SYSTEM
AB Research and development activities are regarded as one of the most influencing factors of the future of a country. Large investments in research can yield a tremendous outcome in terms of a country's overall wealth and strength. However, public financial resources of countries are often limited which calls for a wise and targeted investment. Scientific publications are considered as one of the main outputs of research investment. Although the general trend of scientific publications is increasing, a detailed analysis is required to monitor the research trends and assess whether they are in line with the top research priorities of the country. Such focused monitoring can shed light on scientific activities evolution as well as the formation of new research areas, thus helping governments to adjust priorities, if required. But monitoring the output of the funded research manually is not only very expensive and difficult, it is also subjective. Using structural topic models, in this paper we evaluated the trends in academic research performed by federally funded Canadian researchers during the time-frame of 2000-2018, covering more than 140,000 research publications. The proposed approach makes it possible to objectively and systematically monitor research projects, or any other set of documents related to research activities such as funding proposals, at large-scale. Our results confirm the accordance between the performed federally funded research projects and the top research priorities of Canada. Crown Copyright (C) 2020 Published by Elsevier Ltd. All rights reserved.
C1 [Ebadi, Ashkan; Tremblay, Stephane; Goutte, Cyril] Natl Res Council Canada, Ottawa, ON K1K 2E1, Canada.
[Ebadi, Ashkan; Schiffauerova, Andrea] Concordia Univ, Concordia Inst Informat Syst Engn CIISE, Montreal, PQ H3G 2W1, Canada.
C3 National Research Council Canada; Concordia University - Canada
RP Ebadi, A (corresponding author), Natl Res Council Canada, Ottawa, ON K1K 2E1, Canada.; Ebadi, A (corresponding author), Concordia Univ, Concordia Inst Informat Syst Engn CIISE, Montreal, PQ H3G 2W1, Canada.
EM ashkan.ebadi@nrc-cnrc.gc.ca
RI Ebadi, Ashkan/AAI-5123-2020; Goutte, Cyril/A-5824-2009; Ebadi,
Ashkan/GWZ-9018-2022
OI Ebadi, Ashkan/0000-0002-4542-9105; Goutte, Cyril/0000-0003-4939-6555;
CR [Anonymous], 2019, STAT REV WORLD EN
[Anonymous], 2018, CONTENT ANAL INTRO I
Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391
Bagozzi BE, 2018, POLIT SCI RES METH, V6, P661, DOI 10.1017/psrm.2016.44
Bastian M., 2009, Association for the Advancement of Artificial Intelligence, DOI 10.13140/2.1.1341.1520
Bischof J., 2012, P 29 INT C INT C MAC, P9
Blasius Jorg., 1998, Visualization of categorical data
Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859]
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Brook R, 2008, BIODIVERS CONSERV, V17, P3501, DOI 10.1007/s10531-008-9445-x
Canadian Association of Petroleum Producers, 2019, OIL SANDS
Canadian Trade Commissioner Service, 2018, CAN INN STRENGTHS PR
Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011
Capeluck I., 2013, CANADA US ICT INVEST
Chandelier M, 2018, BIOL CONSERV, V220, P254, DOI 10.1016/j.biocon.2018.01.029
Chen H., 2015, 2601719 SSRN
CIFAR, 2019, ANN REP CIFAR PAN CA
Clare SM, 2019, SMALL-SCALE FOR, V18, P149, DOI 10.1007/s11842-018-9411-8
Clark BY, 2012, POLICY STUD J, V40, P698, DOI 10.1111/j.1541-0072.2012.00470.x
Council of Canadian Academies, 2016, COMP GLOB INN EC CUR
Council of Canadian Academies, 2006, STAT SCI TECHN CAN
De Bellis N., 2009, BIBLIORNETRICS CITAT
DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017
Doré JC, 2001, J AM SOC INF SCI TEC, V52, P763, DOI 10.1002/asi.1130
Ebadi A, 2016, SCIENTOMETRICS, V107, P477, DOI 10.1007/s11192-016-1852-2
Ebadi A, 2016, SCIENTOMETRICS, V106, P1093, DOI 10.1007/s11192-015-1825-x
Ebadi A, 2015, J INFORMETR, V9, P809, DOI 10.1016/j.joi.2015.08.002
Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133061
Eisenstein J., 2011, SPARSE ADDITIVE GENE, DOI DOI 10.1184/R1/6476342.V1
Erosheva E.A., 2002, GRADE MEMBERSHIP LAT
European Commission, 2017, EUR FUT OP INN OP SC
Fast E., 2007, Mobilizing Science and Technology: The new federal strategy
Findlay S., 2016, SCI TECHNOLOGY CANAD
Foulds J, 2015, PR MACH LEARN RES, V37, P777
Gal D, 2019, EUR HEART J, V40, P2363, DOI 10.1093/eurheartj/ehz282
Gatti C. J., 2015, ARXIV151005154CSSTAT
GenomeCanada, 2015, GEN CAN CEL 15 YEARS
Godin B., 2003, WORKING PAPER
Government of Canada, 2017, INVESTING CANADAS FU
Government of Canada, 2001, ACH EXC INV PEOPL KN
Government of Canada, 2019, CAN NEW SUP
Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004
Greenacre M., 2006, Multiple correspondence analysis and related methods, V1, DOI DOI 10.1201/9781420011319
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028
Hale Geoffrey, 2011, CANADIAN AM PUBLIC P, V76, P1
Hartigan John A, 1975, CLUSTERING ALGORITHM
Herzog A., 2018, ARXIV180600793CS
Hulpus I., 2013, P 6 ACM INT C WEB SE, P465
Kuhn KD, 2018, TRANSPORT RES C-EMER, V87, P105, DOI 10.1016/j.trc.2017.12.018
Kulczycki E, 2017, J INFORMETR, V11, P282, DOI 10.1016/j.joi.2017.01.001
Landauer T. K., 2013, HDB LATENT SEMANTIC, DOI DOI 10.4324/9780203936399
Lastewka W., 2002, CANADAS INNOVATION S
Lau J. H., 2011, P 49 ANN M ASS COMPU, P1536
Lau JH, 2010, EL PACKAG TECH CONF, P560, DOI 10.1109/EPTC.2010.5702702
신규식, 2015, [Journal of Korea Academia-Industrial cooperation Society, 한국산학기술학회논문지], V16, P6411
Lucas C, 2015, POLIT ANAL, V23, P254, DOI 10.1093/pan/mpu019
Magatti D, 2009, INT CONF INTELL SYST, P1227, DOI 10.1109/ISDA.2009.165
Manley J., 2000, REPORT PLANS PRIORIT
Maskeri Girish, 2008, 1st India Software Engineering Conference. ISEC 2008, P113
Mehdad Y., 2013, PROC 2013 C N AM CHA, P179
Mei QZ, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P490
Millar J. R., 2009, 22 INT FLAIRS C
Mimno D., 2012, ARXIV12063278CSSTAT
Mimno David, 2011, P C EMPIRICAL METHOD, P262
*NAT RES CAN, 2019, EN EC
Natural Resources Canada, 2019, EL FACTS
NSERC, 2019, NSERCS AW DAT
NSERC, 2018, NSERC DEP PLAN 2017
NSERC, 2001, PERF REP PER END MAR
NSERC, 2019, DASHB NAT SCI ENG RE
NSERC, 2015, NSERC EST UPD TARG A
NSERC, 2017, COLL RES TRAIN EXP C
NSERC, 2017, NSERC STRAT PARTN GR
OECD, 2018, RES DEV R D GROSS DO
Papadimitriou CH, 2000, J COMPUT SYST SCI, V61, P217, DOI 10.1006/jcss.2000.1711
Park J.-H., 2013, STUDY RES TRENDS LIB, DOI [10,1741/KOSIM,2013,30,1,007, DOI 10.3743/KOSIM.2013.30.1.007]
Paull R, 2003, NAT BIOTECHNOL, V21, P1144, DOI 10.1038/nbt1003-1144
Pritchard JK, 2000, GENETICS, V155, P945
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Roberts Margaret E., 2014, Journal of Statistical Software, V10, P1, DOI [DOI 10.18637/JSS.V000.I00, 10.18637/jss.v091.i02]
Robitaille J. P., 1999, LEVEL FUNDING U RES
Rosner Frank, 2014, Evaluating topic coherence measures
Savoy J, 2013, INFORM PROCESS MANAG, V49, P341, DOI 10.1016/j.ipm.2012.06.003
Statistics Canada, 2011, GROSS DOM EXP RES DE
Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Taddy M., 2012, Artificial intelligence and statistics, P1184
Ubfal D, 2011, RES POLICY, V40, P1269, DOI 10.1016/j.respol.2011.05.023
van den Besselaar P, 2017, J INFORMETR, V11, P905, DOI 10.1016/j.joi.2017.05.016
Wallach Hanna M., 2009, P 26 ANN INT C MACH, P1105, DOI DOI 10.1145/1553374.1553515
Weng J., 2010, P 3 ACM INT C WEB SE, P261, DOI [10.1145/1718487.1718520, DOI 10.1145/1718487.1718520]
Yan EJ, 2014, SCIENTOMETRICS, V100, P407, DOI 10.1007/s11192-014-1308-5
Yang HL, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10082779
ZENG A, 2019, NATURE COMMUNICATION, V10, P1, DOI DOI 10.1018/S41467-019-11401-8
Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015
NR 99
TC 11
Z9 12
U1 3
U2 42
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD MAY
PY 2020
VL 14
IS 2
AR 101018
DI 10.1016/j.joi.2020.101018
PG 15
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA NG7GI
UT WOS:000564148300018
DA 2024-09-05
ER
PT J
AU Robert, C
Arreto, CD
Azerad, J
Gaudy, JF
AF Robert, C
Arreto, CD
Azerad, J
Gaudy, JF
TI Bibliometric overview of the utilization of artificial neural networks
in medicine and biology
SO SCIENTOMETRICS
LA English
DT Article
ID EUROPEAN-UNION
AB The distribution of articles involving artificial neural networks (ANN) in the fields of medicine and biology and appearing in the ISI (Institute for Scientific Information) databases during the period 2000-2001 was analysed. The following parameters were considered: the number of articles, the total impact factor, the ISI journal category, the source country population, and the gross domestic product. Among the 803 articles and the 49 countries considered, the 5 most prolific (in term of the number of publications) were the USA, The United Kingdom, Germany, Italy, and Canada; other active countries included Sweden, Netherlands, Spain, France, Japan, and China. Comparison between the USA and the European Union, and the distribution of ANN publications among the subdisciplines of the life sciences and clinical medicine are also presented.
C1 Univ Paris 05, Lab Anat Fonct, F-92120 Montrouge, France.
Univ Denis Diderot, Lab Physiol Manducat, Paris, France.
C3 Universite Paris Cite; Universite Paris Cite
RP Robert, C (corresponding author), Univ Paris 05, Lab Anat Fonct, 1 Rue Maurice Arnoux, F-92120 Montrouge, France.
EM claude.robert@odontologie.univ-paris5.fr
CR [Anonymous], 2000, Artificial Neural Networks in Biomedicine
Dybowski R., 2001, CLIN APPL ARTIFICIAL
Glänzel W, 2002, SCIENTOMETRICS, V55, P335, DOI 10.1023/A:1020406627944
Gomez I, 1996, SCIENTOMETRICS, V35, P223, DOI 10.1007/BF02018480
Inönü E, 2003, SCIENTOMETRICS, V56, P137, DOI 10.1023/A:1021906925642
Lisboa PJG, 2002, NEURAL NETWORKS, V15, P11, DOI 10.1016/S0893-6080(01)00111-3
MACCAIN KW, 1994, KNOWLEDGE CREATION D, V15, P285
MALMGREN H, 2001, ARTIFICIAL NEURAL NE
Mela GS, 1999, EUR J CANCER, V35, P1182, DOI 10.1016/S0959-8049(99)00107-0
Noyons E., 1996, RES EVALUAT, V6, P133
Schneider G, 1998, PROG BIOPHYS MOL BIO, V70, P175, DOI 10.1016/S0079-6107(98)00026-1
Ugolini D, 2001, SCIENTOMETRICS, V52, P45, DOI 10.1023/A:1012746927721
van Leeuwen TN, 2001, SCIENTOMETRICS, V51, P335, DOI 10.1023/A:1010549719484
WEINSTEIN JN, 1994, WORLD C NEUR NETW SA, P121
NR 14
TC 16
Z9 16
U1 0
U2 19
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
J9 SCIENTOMETRICS
JI Scientometrics
PY 2004
VL 59
IS 1
BP 117
EP 130
PG 14
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 767DD
UT WOS:000188424200008
DA 2024-09-05
ER
PT J
AU Farhat, F
Athar, MT
Ahmad, S
Madsen, DO
Sohail, SS
AF Farhat, Faiza
Athar, Md Tanwir
Ahmad, Sultan
Madsen, Dag Oivind
Sohail, Shahab Saquib
TI Antimicrobial resistance and machine learning: past, present, and future
SO FRONTIERS IN MICROBIOLOGY
LA English
DT Article
DE antimicrobial resistance; antibiotic resistance; machine learning; deep
learning; bibliometric analysis; healthcare
ID IDENTIFICATION
AB Machine learning has become ubiquitous across all industries, including the relatively new application of predicting antimicrobial resistance. As the first bibliometric review in this field, we expect it to inspire further research in this area. The review employs standard bibliometric indicators such as article count, citation count, and the Hirsch index (H-index) to evaluate the relevance and impact of the leading countries, organizations, journals, and authors in this field. VOSviewer and Biblioshiny programs are utilized to analyze citation and co-citation networks, collaboration networks, keyword co-occurrence, and trend analysis. The United States has the highest contribution with 254 articles, accounting for over 37.57% of the total corpus, followed by China (103) and the United Kingdom (78). Among 58 publishers, the top four publishers account for 45% of the publications, with Elsevier leading with 15% of the publications, followed by Springer Nature (12%), MDPI, and Frontiers Media SA with 9% each. Frontiers in Microbiology is the most frequent publication source (33 articles), followed by Scientific Reports (29 articles), PLoS One (17 articles), and Antibiotics (16 articles). The study reveals a substantial increase in research and publications on the use of machine learning to predict antibiotic resistance. Recent research has focused on developing advanced machine learning algorithms that can accurately forecast antibiotic resistance, and a range of algorithms are now being used to address this issue.
C1 [Farhat, Faiza] Aligarh Muslim Univ, Dept Zool, Aligarh, India.
[Athar, Md Tanwir] Buraydah Coll, Coll Dent & Pharm, Dept Pharmacognosy & Pharmaceut Chem, Buraydah, Al Qassim, Saudi Arabia.
[Ahmad, Sultan] Prince Sattam bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Sci, Al Kharj, Saudi Arabia.
[Ahmad, Sultan] Chandigarh Univ, Univ Ctr Res & Dev UCRD, Dept Comp Sci & Engn, Mohali, Punjab, India.
[Madsen, Dag Oivind] Univ South Eastern Norway, Sch Business, Honefoss, Norway.
[Sohail, Shahab Saquib] Jamia Hamdard, Dept Comp Sci & Engn, New Delhi, India.
C3 Aligarh Muslim University; Buraydah Colleges; Prince Sattam Bin
Abdulaziz University; Chandigarh University; University College of
Southeast Norway; Jamia Hamdard University
RP Madsen, DO (corresponding author), Univ South Eastern Norway, Sch Business, Honefoss, Norway.; Sohail, SS (corresponding author), Jamia Hamdard, Dept Comp Sci & Engn, New Delhi, India.
EM dag.oivind.madsen@usn.no; shahabssohail@jamiahamdard.ac.in
RI FARHAT, FAIZA/KIK-8175-2024; Ahmad, Sultan/F-9146-2010; sohail,
shahab/O-3263-2019; Madsen, Dag Øivind/I-1587-2016
OI Ahmad, Sultan/0000-0002-3198-7974; sohail, shahab/0000-0002-5944-7371;
Madsen, Dag Øivind/0000-0001-8735-3332
CR [Anonymous], 2013, Threat Report, P50
Arango-Argoty G, 2018, MICROBIOME, V6, DOI 10.1186/s40168-018-0401-z
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Barlandas-Quintana EA, 2020, 2020 7TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS: SYSTEMS, MANAGEMENT AND SECURITY (IOTSMS), DOI 10.1109/IOTSMS52051.2020.9340214
Berstock JR, 2014, BONE JOINT RES, V3, P175, DOI 10.1302/2046-3758.36.2000239
Cherkasov A, 2009, ACS CHEM BIOL, V4, P65, DOI 10.1021/cb800240j
Chiari W, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14163297
Cockerill FR, 1999, ANTIMICROB AGENTS CH, V43, P199, DOI 10.1128/AAC.43.2.199
Farhat F, 2023, LIFE-BASEL, V13, DOI 10.3390/life13010143
Fatima N., 2022, ICT Analysis and Applications, P193, DOI [10.1007/978-981-16-5655-2_18/COVER, DOI 10.1007/978-981-16-5655-2_18/COVER]
Fjell CD, 2009, J MED CHEM, V52, P2006, DOI 10.1021/jm8015365
Irshad RR, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11040580
Kim JI, 2022, CLIN MICROBIOL REV, V35, DOI 10.1128/cmr.00179-21
Li XX, 2021, J ANTIBIOT, V74, P838, DOI 10.1038/s41429-021-00471-w
Liu ZH, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.00048
Lv J, 2021, BIOSAF HEALTH, V3, P22, DOI 10.1016/j.bsheal.2020.08.003
Macesic N, 2020, MSYSTEMS, V5, DOI 10.1128/mSystems.00656-19
Marini S, 2022, GIGASCIENCE, V11, DOI 10.1093/gigascience/giac029
Melo MCR, 2021, COMMUN BIOL, V4, DOI 10.1038/s42003-021-02586-0
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Mufti T, 2021, 2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), P874, DOI 10.1109/ComPE53109.2021.9752314
Murray CJL, 2022, LANCET, V399, P629, DOI 10.1016/S0140-6736(21)02724-0
Naaz S, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph192416777
Nguyen M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-18972-w
Patience GS, 2017, HELIYON, V3, DOI 10.1016/j.heliyon.2017.e00300
Popa SL, 2022, ANTIBIOTICS-BASEL, V11, DOI 10.3390/antibiotics11111674
Schubert AM, 2015, MBIO, V6, DOI 10.1128/mBio.00974-15
Sinha M, 2018, CLIN MICROBIOL REV, V31, DOI 10.1128/CMR.00089-17
Stokes JM, 2020, CELL, V180, P688, DOI 10.1016/j.cell.2020.01.021
Tyers M, 2019, NAT REV MICROBIOL, V17, P141, DOI 10.1038/s41579-018-0141-x
ValizadehAslani T, 2020, BIOLOGY-BASEL, V9, DOI 10.3390/biology9110365
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Veltri D, 2018, BIOINFORMATICS, V34, P2740, DOI 10.1093/bioinformatics/bty179
Wang SY, 2022, FRONT MICROBIOL, V13, DOI 10.3389/fmicb.2022.841289
Weis CV, 2020, CLIN MICROBIOL INFEC, V26, P1310, DOI 10.1016/j.cmi.2020.03.014
Wiegand I, 2008, NAT PROTOC, V3, P163, DOI 10.1038/nprot.2007.521
Wilson LA, 2020, GLOBALIZATION HEALTH, V16, DOI 10.1186/s12992-020-00623-x
Yang Y, 2018, BIOINFORMATICS, V34, P1666, DOI 10.1093/bioinformatics/btx801
Yasir M, 2022, ANTIBIOTICS-BASEL, V11, DOI 10.3390/antibiotics11111593
Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235
NR 40
TC 5
Z9 5
U1 11
U2 23
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 1664-302X
J9 FRONT MICROBIOL
JI Front. Microbiol.
PD MAY 26
PY 2023
VL 14
AR 1179312
DI 10.3389/fmicb.2023.1179312
PG 14
WC Microbiology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Microbiology
GA I5SH4
UT WOS:001003372600001
PM 37303800
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU He, F
AF He, Fei
TI RESEARCH ON THE EVALUATION MODEL OF STUDENTS' FOREIGN LANGUAGE LEARNING
SITUATION BASED ON ORIENTED ONLINE TEACHING COLLABORATION PLATFORM
SO SCALABLE COMPUTING-PRACTICE AND EXPERIENCE
LA English
DT Article
DE Online Education; Foreign Language Learning; Evaluation Model;
N-Adaboost; DBSCAN
ID COLLEGE ENGLISH; SYSTEM
AB "Internet + Education" makes online teaching gradually penetrate the education industry, and makes the industry enter a great revolution based on information technology. The traditional student learning evaluation system cannot satisfy the actual demand of current learning evaluation. This paper constructs an evaluation model for the foreign language learning of online students. Firstly, the DBSCAN algorithm with distance optimization is used to conduct cluster analysis on the description indicators of student behavior, and the student groups with different behavior characteristics are obtained. Then the ANOVA F-test was used to extract the features of different student groups. Finally, a novel N-Adaboost algorithm based on multiple classifiers is proposed and a model is constructed to evaluate students' foreign language learning. The experimental results show that the accuracy of the evaluation model is 74.02% in the pass and fail groups and 73.74% in the excellent and non-excellent groups. Students' listening, speaking, and reading abilities are in a state of upward development overall through the online teaching collaboration platform, but their writing ability is obviously declining. There is a great improvement in foreign language vocabulary. This study provides a new perspective of thinking for the improvement of the quality of school teaching management, the analysis of students' behavior, and the evaluation of learning situations, and provides a new solution for the problem of students' learning situations in modern information teaching.
C1 [He, Fei] Henan Polytech Univ, Sch Foreign Studies, Jiaozuo 454003, Peoples R China.
C3 Henan Polytechnic University
RP He, F (corresponding author), Henan Polytech Univ, Sch Foreign Studies, Jiaozuo 454003, Peoples R China.
EM feihefhfh@outlook.com
FU Henan Provincial Teaching Reform Research and Practice Project "Research
and Practice on the Teaching Ecosystem of General Academic English in
Science and Engineering Universities under the Double First Class
Background" [2019SJGLX060]
FX The research is supported by the Henan Provincial Teaching Reform
Research and Practice Project "Research and Practice on the Teaching
Ecosystem of General Academic English in Science and Engineering
Universities under the Double First Class Background" (No.
2019SJGLX060).
CR Clayson D, 2022, ASSESS EVAL HIGH EDU, V47, P313, DOI 10.1080/02602938.2021.1909702
Cook C, 2022, J FURTH HIGHER EDUC, V46, P172, DOI 10.1080/0309877X.2021.1895093
Fang CX, 2021, J INTELL FUZZY SYST, V40, P2709, DOI 10.3233/JIFS-189313
Gao H., 2022, International Journal Of Social Sciences In Universities, V5, P255
Jiao FM, 2021, INT J EMERG TECHNOL, V16, P68, DOI 10.3991/ijet.v16i14.24049
Li N, 2021, INT J EMERG TECHNOL, V16, P17, DOI 10.3991/ijet.v16i02.19731
Li Y., 2021, EAI INT C BIGIOT EDU, P216
Liu HY, 2021, INT J EMERG TECHNOL, V16, P173, DOI 10.3991/ijet.v16i02.19727
Lu C, 2021, J INTELL FUZZY SYST, V40, P3185, DOI 10.3233/JIFS-189357
Marks B, 2022, EDUC INF TECHNOL, V27, P1287, DOI 10.1007/s10639-021-10653-6
Marshall P, 2022, HIGH EDUC RES DEV, V41, P1992, DOI 10.1080/07294360.2021.1967887
Noor A., 2021, Pakistan Journal Of Humanities And Social Sciences, V9, P259
Okoye K, 2022, EDUC INF TECHNOL, V27, P3891, DOI 10.1007/s10639-021-10751-5
Sun ZM, 2021, COMPUT INTELL-US, V37, P1166, DOI 10.1111/coin.12351
Susanty L., 2021, Linguistics and Culture Review, V5, P303, DOI 10.21744/lingcure.v5ns1.1401
Tqt T., 2021, International Journal Of TESOL & Education, V1, P72
Wang HZ, 2021, INT J EMERG TECHNOL, V16, P226, DOI 10.3991/ijet.v16i17.24901
Wang Y, 2022, International Journal Of Social Science And Education Research, V5, P93
Yang ZH, 2021, INT J CONTIN ENG EDU, V31, P53, DOI 10.1504/IJCEELL.2021.111836
Yansong Zhang, 2022, International Journal of Continuing Engineering Education and Life-Long Learning, V32, P159, DOI 10.1504/IJCEELL.2022.121947
Zhang YQ, 2021, INT J EMERG TECHNOL, V16, P186, DOI 10.3991/ijet.v16i12.23325
NR 21
TC 0
Z9 0
U1 2
U2 2
PU UNIV VEST TIMISOARA, WEST UNIV TIMISOARA
PI TIMISOARA
PA BLVD VASILE PARVAN 4, TIMISOARA, TIMIS 300223, ROMANIA
SN 1895-1767
J9 SCALABLE COMPUT-PRAC
JI Scalable Comput.-Pract. Exp.
PD JAN
PY 2024
VL 25
IS 1
SI SI
DI 10.12694/scpe.v25i1.2306
PG 16
WC Computer Science, Software Engineering
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA FE1M3
UT WOS:001143994100025
OA gold
DA 2024-09-05
ER
PT J
AU Zhu, YP
Park, HW
AF Zhu, Yu Peng
Park, Han Woo
TI Publication, Collaboration, Citation Performance, and Triple Helix
Innovation Gene of Artificial Intelligence Research in the Communication
Field: Comparing Asia to the Rest of the World
SO JOURNAL OF THE KNOWLEDGE ECONOMY
LA English
DT Article; Early Access
DE Artificial intelligence; Communication; Collaboration; Citation; Network
analysis; Asia; Triple helix
ID QUADRUPLE HELIX; N-TUPLE
AB Artificial intelligence (AI) in the communication field has become increasingly popular in recent years. This study collected data from 482 documents and cited references in the Web of Science database. It explores the knowledge structure related to AI in communication, combined with the triple helix innovation gene model. The analysis employed collaborative network analysis, two-mode network analysis, citation analysis, and quadratic assignment procedure-based correlation analysis. The results show that the most popular hotspots are human-machine communication, automatically generated publications, social media-mediated fake news, and some other AI-based applied research. Academic collaborations can be facilitated by transnational disciplinary leaders. China emerged as the core academic country with the greatest growth potential in Asia, while the core non-Asian country is the United States. In addition, the trend in collaboration among scholars in Asia is better than in non-Asian countries. However, concerning the characteristics of collaborating institutions, the triple-helix collaboration among universities, government bodies, and industries remains insufficient. Particularly, the collaboration between industry and government necessitates further development.
C1 [Zhu, Yu Peng] Chongqing Univ, Sch Journalism & Commun, Chongqing Key Lab Intelligent Commun & Citys Int P, Chongqing, Peoples R China.
[Park, Han Woo] Yeungnam Univ, Dept Media & Commun, Interdisciplinary Grad Programs Digital Convergenc, Gyongsan, South Korea.
C3 Chongqing University; Yeungnam University
RP Zhu, YP (corresponding author), Chongqing Univ, Sch Journalism & Commun, Chongqing Key Lab Intelligent Commun & Citys Int P, Chongqing, Peoples R China.; Park, HW (corresponding author), Yeungnam Univ, Dept Media & Commun, Interdisciplinary Grad Programs Digital Convergenc, Gyongsan, South Korea.
EM yu.peng.zhu@cqu.edu.cn; hanpark@ynu.ac.kr
CR Akbari M., 2022, Quality & Quantity, V56, P3993, DOI [10.1007/s11135-021-01295-4, DOI 10.1007/S11135-021-01295-4]
Allen B, 2021, J AM COLL RADIOL, V18, P1489, DOI 10.1016/j.jacr.2021.08.022
Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364
Cai YZ, 2022, TRIPLE HELIX-NETH, V9, P76, DOI 10.1163/21971927-BJA10029
Cai YZ, 2022, MINERVA, V60, P257, DOI 10.1007/s11024-021-09453-6
Cai YZ, 2015, SOC SCI INFORM, V54, P299, DOI 10.1177/0539018415583527
Carayannis Elias G., 2010, International Journal of Social Ecology and Sustainable Development, V1, P41, DOI 10.4018/jsesd.2010010105
Carayannis EG, 2022, TRIPLE HELIX-NETH, V9, P65, DOI 10.1163/21971927-BJA10028
Carayannis EG, 2021, J KNOWL ECON, V12, P2050, DOI 10.1007/s13132-021-00778-x
Carayannis EG, 2009, INT J TECHNOL MANAGE, V46, P201, DOI 10.1504/IJTM.2009.023374
Choi J.-A., 2021, Journal of Contemporary Eastern Asia, V20, P19, DOI [10.17477/jcea.2021.20.2.01, 10.17477/JCEA.2021.20.2.019, DOI 10.17477/JCEA.2021.20.2.019]
Choi J-A., 2024, Journal of Contemporary Eastern Asia, V23, P18, DOI [10.17477/jcea.2024.23.1.018, DOI 10.17477/JCEA.2024.23.1.018]
Chung CJ, 2020, QUAL REP, V25, P3298
Du-Harpur X, 2020, BRIT J DERMATOL, V183, P423, DOI 10.1111/bjd.18880
Fister I, 2016, FRONT PHYS, V4, DOI 10.3389/fphy.2016.00049
Garcia KR, 2022, J COGN ENG DECIS MAK, V16, P237, DOI 10.1177/15553434221117001
Goyanes M, 2023, SCIENTOMETRICS, V128, P137, DOI 10.1007/s11192-022-04575-4
Guzman AL, 2020, NEW MEDIA SOC, V22, P70, DOI 10.1177/1461444819858691
Hah H, 2021, J MED INTERNET RES, V23, DOI 10.2196/33540
Hameed A, 2023, PROF INFORM, V32, DOI 10.3145/epi.2023.dic.03
Jamshed S., 2022, Quality Quantity, V56, P4269, DOI [10.1007/s11135-022-01315-x, DOI 10.1007/S11135-022-01315-X]
Jimenez D.R., 2024, ROSA Journal, V1, P1, DOI [10.62478/BOTC4972, DOI 10.62478/BOTC4972]
Johnson JA, 2010, J COMMUNITY PRACT, V18, P493, DOI 10.1080/10705422.2010.519683
Jones B, 2019, DIGIT JOURNAL, V7, P1032, DOI 10.1080/21670811.2019.1609371
Lakshman SA, 2020, IOP CONF SER-MAT SCI, V912, DOI 10.1088/1757-899X/912/3/032075
Lewis SC, 2019, DIGIT JOURNAL, V7, P409, DOI 10.1080/21670811.2019.1577147
Leydesdorff L, 2012, J KNOWL ECON, V3, P25, DOI 10.1007/s13132-011-0049-4
Liu D, 2023, J KNOWL ECON, V14, P4583, DOI 10.1007/s13132-022-01073-z
Neyazi TA, 2020, ASIAN J COMMUN, V30, P39, DOI 10.1080/01292986.2019.1699938
Ozbay FA, 2020, PHYSICA A, V540, DOI 10.1016/j.physa.2019.123174
Park H.W., 2024, ROSA Journal, V1, P1, DOI [10.62478/ORVK4600, DOI 10.62478/ORVK4600]
Park HW, 2023, TRIPLE HELIX-NETH, V10, P205, DOI 10.1163/21971927-12340015
Park HW, 2022, TRIPLE HELIX-NETH, V9, P43, DOI 10.1163/21971927-BJA10026
Park HW, 2014, SCIENTOMETRICS, V99, P203, DOI 10.1007/s11192-013-1124-3
Park S, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.sep.16
Phillips F., 2024, ROSA Journal, V1, P1, DOI [10.62478/WSMN9491, DOI 10.62478/WSMN9491]
Simes PC., 2022, Triple Helix, V9, P247, DOI [10.1163/21971927-bja10034, DOI 10.1163/21971927-BJA10034]
Túñez-López JM, 2018, PROF INFORM, V27, P750, DOI 10.3145/epi.2018.jul.04
TURING Alan, 1950, Mind, V59, P433, DOI [10.1007/978-1-4020-6710-5_3, DOI 10.1093/MIND/LIX.236.433]
Yoon J, 2017, SCIENTOMETRICS, V113, P61, DOI 10.1007/s11192-017-2476-x
Yoon S. W., 2020, Journal of Contemporary Eastern Asia, V19, P234, DOI [10.17477/jcea.2020.19.2.234, DOI 10.17477/JCEA.2020.19.2.234, 10.17477/JCEA.2020.19.2.234]
Zhu YP, 2022, PROF INFORM, V31, DOI 10.3145/epi.2022.jul.08
NR 42
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1868-7865
EI 1868-7873
J9 J KNOWL ECON
JI J. Knowl. Econ.
PD 2024 AUG 28
PY 2024
DI 10.1007/s13132-024-02280-6
EA AUG 2024
PG 21
WC Economics
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA E0A0J
UT WOS:001299704800001
DA 2024-09-05
ER
PT J
AU Rybinski, K
AF Rybinski, Krzysztof
TI The forecasting power of the multi-language narrative of sell-side
research: A machine learning evaluation
SO FINANCE RESEARCH LETTERS
LA English
DT Article
DE Economic research; Forecasting; Text mining; NLP; Sentiment analysis;
Wordscores
ID TEXT; FINANCE
AB This is probably the first ever analysis of sell-side daily economic research to use Natural Language Processing, and it shows that the narrative of such reports can be used to predict economic time series. The NLP indexes are based on Polish and English language reports released at the same time and exhibit predictive power for different sets of economic variables. VAR models with the NLP indexes generate smaller forecast errors than ARIMA. The wordscores scaling model uses Monetary Policy Council statements to generate scores and allows NLP indexes to be created with better forecasting power than the sentiment-based ones.
C1 [Rybinski, Krzysztof] Vistula Univ, Warsaw, Poland.
[Rybinski, Krzysztof] Synerise Jsc, Warsaw, Poland.
C3 Vistula University
RP Rybinski, K (corresponding author), Stoklosy 3, PL-02787 Warsaw, Poland.
EM rybinski@rybinski.eu
RI Rybinski, Krzysztof/AAM-1608-2020
OI Rybinski, Krzysztof/0000-0002-4604-7993
FU National Science Centre in Poland [2018/29/B/HS4/01462]
FX Financial support of the Opus 15 project 2018/29/B/HS4/01462
`Construction and testing of country-specific measures of economic
uncertainty' of the National Science Centre in Poland is gratefully
acknowledged. The author would like to thank the anonymous referee and
Wojciech Charemza for many insightful comments on the earlier version of
this paper, and Robin Hazlehurst for his excellent language editing.
CR Bach MP, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11051277
Bennani H., 2018, REV EC, V69, P192
Fisher IE, 2016, INTELL SYST ACCOUNT, V23, P157, DOI 10.1002/isaf.1386
GRANGER CWJ, 1969, ECONOMETRICA, V37, P424, DOI 10.2307/1912791
Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028
Hayo B., 2018, FINANCE RES LETT
Jansen D.J., 2010, DNB Working Paper, No. 259
Kumar BS, 2016, KNOWL-BASED SYST, V114, P128, DOI 10.1016/j.knosys.2016.10.003
Laver M, 2003, AM POLIT SCI REV, V97, P311
Loughran T, 2016, J ACCOUNT RES, V54, P1187, DOI 10.1111/1475-679X.12123
Nassirtoussi AK, 2014, EXPERT SYST APPL, V41, P7653, DOI 10.1016/j.eswa.2014.06.009
Rajput V., 2016, Int. J. Comput. Sci. Mobile Comput., V5, P500
Ravi K, 2015, KNOWL-BASED SYST, V89, P14, DOI 10.1016/j.knosys.2015.06.015
Rybinski K., 2018, STUDIA MEDIOZNAWCZE, V3, P31
Rybinski K., 2019, Bank i Kredyt, V50, P1
Rybinski K., 2017, E POLITIKON, V24, P162
Sun SL, 2017, INFORM FUSION, V36, P10, DOI 10.1016/j.inffus.2016.10.004
Turegun Nida., 2019, Curr. Anal. Econ. Financ, V1, P18
Xing FZ, 2018, ARTIF INTELL REV, V50, P49, DOI 10.1007/s10462-017-9588-9
Zako-Zielinska M., 2015, P INT C REC ADV NAT, P721
NR 20
TC 0
Z9 0
U1 1
U2 30
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1544-6123
EI 1544-6131
J9 FINANC RES LETT
JI Financ. Res. Lett.
PD MAY
PY 2020
VL 34
AR 101261
DI 10.1016/j.frl.2019.08.009
PG 7
WC Business, Finance
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA MO2EQ
UT WOS:000551346400034
DA 2024-09-05
ER
PT J
AU Long, YC
Cao, ZW
Mao, Y
Liu, XR
Gao, Y
Zhou, CZ
Zheng, X
AF Long, Yuchong
Cao, Zhengwei
Mao, Yan
Liu, Xinran
Gao, Yan
Zhou, Chuanzhi
Zheng, Xin
TI Research on Evaluation Elements of Urban Agricultural Green Bases: A
Causal Inference-Based Approach
SO LAND
LA English
DT Article
DE urban agriculture; green base evaluation; Bayesian network; causal
inference
ID FUTURE
AB The construction of agricultural green bases is an important part of sustainable agricultural development. This paper takes urban agriculture green bases in Shanghai as an example, choosing base construction elements, production, and ecological construction elements, as well as status assessment elements as evaluation indicators, in order to construct an evaluation system for urban agriculture green bases. Using a Bayesian network, typical urban agricultural green bases in six agricultural districts of Shanghai were evaluated. The construction of the evaluation system was analyzed by using intervention, counterfactual inference, and other methods to analyze the correlation and importance of the indicators. The results show that there are differences among the bases in various indicators, but they all reach a high level overall; base construction elements as well as production and ecological construction elements are the main factors affecting the level of urban agricultural green bases; improving the base management system (BMS), innovativeness (IN), and economic benefits (EBs) are key ways to improve the production capacity of agriculture green bases. Green base construction should pay attention to top-level design, coordinate the planning of industrial layout, technical mode, scientific and technological support, and supporting policies. Based on the conclusion, this paper provides some useful recommendations for creating urban agriculture green bases, which help promote urban agriculture transformation, upgrading, and coordinating development between urban and rural areas.
C1 [Long, Yuchong; Cao, Zhengwei; Liu, Xinran; Gao, Yan; Zhou, Chuanzhi; Zheng, Xin] Shanghai Jiao Tong Univ, Coll Agr & Biol, Dongchuan Rd, Shanghai 200240, Peoples R China.
[Mao, Yan] Zhejiang Univ, Inst Publ Policy, Hangzhou 310058, Peoples R China.
C3 Shanghai Jiao Tong University; Zhejiang University
RP Cao, ZW (corresponding author), Shanghai Jiao Tong Univ, Coll Agr & Biol, Dongchuan Rd, Shanghai 200240, Peoples R China.
EM ayinmostima@sjtu.edu.cn; zhengweiskylark@sjtu.edu.cn;
myy0716@outlook.com; roxas5@sjtu.edu.cn; gao.yan@sjtu.edu.cn;
zhouchuanzhi@sjtu.edu.cn; zhwngxin@sjtu.edu.cn
OI cao, zhengwei/0000-0002-8101-9568; Mao, Yan/0009-0004-4772-1988; Liu,
Xinran/0000-0003-2284-7547; Yuchong, Long/0000-0002-3271-9760
FU Shanghai Philosophy and Social Science Program [17Z2017030008]; Shanghai
Agriculture Applied Technology Development Program, China [T20200201];
Shanghai Pujiang Talent Program [16Z2022010010]
FX This work was co-supported by the Shanghai Philosophy and Social Science
Program(17Z2017030008), Shanghai Agriculture Applied Technology
Development Program, China (T20200201)and Shanghai Pujiang Talent
Program (16Z2022010010).
CR Ackerman K, 2014, ECON SOC REV, V45, P189
Akinci H, 2013, COMPUT ELECTRON AGR, V97, P71, DOI 10.1016/j.compag.2013.07.006
Ankan Ankur., 2015, pgmpy: Probabilistic graphical models using python, DOI 10.25080/MAJORA-7B98E3ED-001
[Anonymous], 2012, Farming systems research into the 21st century: the new dynamic, DOI [10.1007/978-94-007-4503-2_20, DOI 10.1007/978-94-007-4503-2_20, DOI 10.1007/978-94-007-4503-220, DOI 10.1007/978-94-007-4503-2]
[Anonymous], 2003, Exploring Artificial Intelligence in the New Millennium, DOI DOI 10.5555/779343.779352
Bingen Jim., 2006, AGR STANDARDS
Bloebaum P, 2024, Arxiv, DOI arXiv:2206.06821
Cao A., 2022, JIANGSU AGR SCI, V3, P125
Caputo P, 2020, SCI TOTAL ENVIRON, V729, DOI 10.1016/j.scitotenv.2020.138819
Chen YH, 2017, J CLEAN PROD, V164, P258, DOI 10.1016/j.jclepro.2017.06.216
Coles R, 2018, LANDSCAPE URBAN PLAN, V170, P1, DOI 10.1016/j.landurbplan.2017.10.003
Colson-Fearon B, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph191912752
Deng XZ, 2019, TECHNOL FORECAST SOC, V144, P394, DOI 10.1016/j.techfore.2018.01.027
Duvernoy I, 2018, J RURAL STUD, V57, P25, DOI 10.1016/j.jrurstud.2017.10.007
Elsheikh R, 2013, COMPUT ELECTRON AGR, V93, P98, DOI 10.1016/j.compag.2013.02.003
Flaxman SR, 2016, ACM T INTEL SYST TEC, V7, DOI 10.1145/2806892
Górna A, 2021, LAND-BASEL, V10, DOI 10.3390/land10090987
Hardman M, 2018, LANDSCAPE URBAN PLAN, V170, P6, DOI 10.1016/j.landurbplan.2017.08.015
Ilieva RT, 2022, LAND-BASEL, V11, DOI 10.3390/land11050622
Jacobi P., 2000, Growing cities, growing food: urban agriculture on the policy agenda. A reader on urban agriculture, P257
Kalisch M, 2007, J MACH LEARN RES, V8, P613
Kiminami L, 2022, ASIA-PAC J REG SCI, V6, P541, DOI 10.1007/s41685-022-00233-y
Kingsley J, 2021, URBAN FOR URBAN GREE, V60, DOI 10.1016/j.ufug.2021.127059
Kulak M, 2013, LANDSCAPE URBAN PLAN, V111, P68, DOI 10.1016/j.landurbplan.2012.11.007
Lal R., 1997, Methods for assessment of soil degradation., P17
Li PY, 2018, ENVIRON EARTH SCI, V77, DOI 10.1007/s12665-018-7968-3
Liu Z., 2021, J FOOD SAF QUAL INSP, V1, P355
Tahat MM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12124859
Magwaza ST, 2020, SCI TOTAL ENVIRON, V698, DOI 10.1016/j.scitotenv.2019.134154
Merrington G., 2002, Agricultural Pollution: Environmental problems and practical solutions
Mingxing L., 2021, CONTEMP SOC SCI, P11
Mutersbaugh T, 2005, J RURAL STUD, V21, P389, DOI 10.1016/j.jrurstud.2005.08.003
Pearl J, 2009, STAT SURV, V3, P96, DOI 10.1214/09-SS057
Qiu GY, 2013, J INTEGR AGR, V12, P1307, DOI 10.1016/S2095-3119(13)60543-2
Rao NTY, 2022, SUSTAIN CITIES SOC, V85, DOI 10.1016/j.scs.2022.104063
Robineau O, 2018, LANDSCAPE URBAN PLAN, V170, P48, DOI 10.1016/j.landurbplan.2017.09.010
Runge J., 2016, P EGU GEN ASS 2016 V
Sanyé-Mengual E, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11154221
Sanyé-Mengual E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10072175
Sarmah K., 2018, INT J INNOV RES ENG, V5, P30
Sayer J, 2013, P NATL ACAD SCI USA, V110, P8345, DOI 10.1073/pnas.1208054110
Schjonning P, 2004, MANAGING SOIL QUALITY: CHALLENGES IN MODERN AGRICULTURE, P1, DOI 10.1079/9780851996714.0001
Sharma A, 2020, Arxiv, DOI arXiv:2011.04216
Shen D., 2000, 3912000 NYT MIN AGR
Specht K, 2014, AGR HUM VALUES, V31, P33, DOI 10.1007/s10460-013-9448-4
Teshome M, 2016, Environ Syst Res, V5, P1, DOI DOI 10.1186/S40068-016-0064-3
Tong R, 2022, ENVIRON SCI POLLUT R, V29, P29808, DOI 10.1007/s11356-022-18523-5
Tovar LG, 2005, J RURAL STUD, V21, P461, DOI 10.1016/j.jrurstud.2005.10.002
UNGA, 2015, TRANSF OUR WORLD 203
Vejre H., 2016, Urban Agriculture Europe, P18
Yoshida S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11102887
Zhong C, 2020, J CLEAN PROD, V276, DOI 10.1016/j.jclepro.2020.122686
Zhou P., 2022, 13892022 GB31T
Zhou Y, 2014, INT J APPROX REASON, V55, P1252, DOI 10.1016/j.ijar.2014.02.008
NR 54
TC 0
Z9 0
U1 2
U2 17
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2073-445X
J9 LAND-BASEL
JI Land
PD AUG
PY 2023
VL 12
IS 8
AR 1636
DI 10.3390/land12081636
PG 27
WC Environmental Studies
WE Social Science Citation Index (SSCI)
SC Environmental Sciences & Ecology
GA Q2FE9
UT WOS:001055719300001
OA Green Published, gold
DA 2024-09-05
ER
PT C
AU Cao, Y
Tong, HF
Yu, J
AF Cao Yan
Tong Hefeng
Yu Jie
BE Zhu, KL
Zhang, H
TI Overall and by Fields Research Output Evaluation of Chinese Mainland
Universities Based on ESI Database
SO COMPREHENSIVE EVALUATION OF ECONOMY AND SOCIETY WITH STATISTICAL SCIENCE
LA English
DT Proceedings Paper
CT 3rd International Institute of Statistics and Management Engineering
Symposium
CY 2010
CL Wei Hai Lu, PEOPLES R CHINA
DE Bibliometrics; Research output; AI; CPP/FCSm
ID RESEARCH PERFORMANCE; BASIC RESEARCH; BIBLIOMETRIC ANALYSIS;
MOLECULAR-BIOLOGY; DEPARTMENTS; PUBLICATIONS; EFFICIENCY; DIMENSION
AB The research performance of mainland China universities is evaluated in this study from the global perspective. Based on the Essential Science Indicators (ESI) database, the main research concern is the academic output in overall fields and the strength in certain fields of top 20 universities ranking by citation. Indicators about the numbers of paper and citation are obtained from ESI to interpret the general academic performance of universities. The other indicators are considered as the population of faculty, the activity index, as well as the relative impact index. The statistical results show that the universities in mainland China in terms of quality and quantity of research output have considerable gap. Meanwhile, a large degree of influence to research concentrated in some specific fields is existed.
C1 [Cao Yan; Tong Hefeng; Yu Jie] Inst Sci & Tech Informat China, Beijing 100038, Peoples R China.
EM caoyan@istic.ac.cn
CR [程莹 CHENG Ying], 2007, [科学学与科学技术管理, Science of Science & Management of S.& T.], V28, P132
COLMAN AM, 1995, SCIENTOMETRICS, V32, P49, DOI 10.1007/BF02020188
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Guz A.N., 2005, INT APPL MECH+, V41, P3
He TW, 2005, SCIENTOMETRICS, V62, P249, DOI 10.1007/s11192-005-0018-4
Herbertz H, 1995, RES POLICY, V24, P959, DOI 10.1016/0048-7333(94)00814-0
Hu XJ, 2007, SCIENTOMETRICS, V72, P389, DOI 10.1007/s11192-006-1733-1
Hu XJ, 2009, SCIENTOMETRICS, V81, P475, DOI 10.1007/s11192-008-2202-9
Huang MH, 2006, SCIENTOMETRICS, V67, P419, DOI 10.1556/Scient.67.2006.3.6
ISTIC (Institute of Scientific and Technical Information of China), 1999, ANN RES REP CHIN SCI
Kim MJ, 2000, J INFORM SCI, V26, P111, DOI 10.1177/016555150002600204
MALCIENE L, 1989, SCIENTOMETRICS, V15, P73, DOI 10.1007/BF02021800
Meng W, 2006, SCIENTOMETRICS, V69, P85, DOI 10.1007/s11192-006-0140-y
Moed H.F., 2007, Developing bibliometric indicators of research performance in computer science: an exploratory study
MOED HF, 1985, SCIENTOMETRICS, V8, P149, DOI 10.1007/BF02016933
NEDERHOF AJ, 1992, SCIENTOMETRICS, V24, P393, DOI 10.1007/BF02051037
Pomfret Richard., 2003, Australian Economic Papers, V42, P418, DOI DOI 10.1111/AEPA.2003.42.ISSUE-4
Pouris A, 2007, HIGH EDUC, V54, P501, DOI 10.1007/s10734-006-9034-4
Thomson Scientific, CIT THRESH
Wu Y.S., 2001, CHINESE J SCI TECHNI, V12, P110
ZACHOS G, 1991, SCIENTOMETRICS, V21, P195, DOI 10.1007/BF02017569
Zhang HQ, 1996, SCIENTOMETRICS, V37, P177
NR 22
TC 1
Z9 1
U1 0
U2 8
PU AUSSINO ACAD PUBL HOUSE
PI MARRICKVILLE
PA PO BOX 893, MARRICKVILLE, NSW 2204 00000, AUSTRALIA
BN 978-1-921712-09-8
PY 2010
BP 485
EP 494
PG 10
WC Economics; Social Sciences, Mathematical Methods
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics; Mathematical Methods In Social Sciences
GA BYE74
UT WOS:000298265300084
DA 2024-09-05
ER
PT J
AU Musa, IH
Zamit, I
Xu, K
Boutouhami, K
Qi, GL
AF Musa, Ibrahim Hussein
Zamit, Ibrahim
Xu, Kang
Boutouhami, Khaoula
Qi, Guilin
TI A comprehensive bibliometric analysis on opinion mining and sentiment
analysis global research output
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
DE Bibliometric; opinion mining; Scopus; sentiment analysis
AB The rise of the Internet and social media (i.e. reviews, forum discussions, blogs and social networks) constituted an interesting source to detect user opinion trends. This study examines the global publication output on opinion mining and sentiment analysis from documents published in 2000 to 2020. Bibliometric indicators on the trends, most cited papers, authors, institutions, countries, funding agencies and research subject areas were independently screened and analysed using bibliometrix package in R. A total of 7603 eligible documents were identified from 2000 to 2020. The total number of citations for all publications was 129,251, with an average of 17.0 citations per publication. About 14,629 authors wrote those documents with 1.93 authors per document and a collaboration index of 1.98. The most prolific author was Cambria Erik, with 47 publications and h-index of 42. The leading countries for research were China with n = 824, India with n = 576 and the United States with n = 244 publications. Lecture Notes in Computer Science proceedings was the top-ranked venue for publications with n = 434, h-index of 32 and 4598 total citation scores. National Natural Science Foundation of China was the top-ranked funding agency for research, and most of the publications were computer science (n = 6320) documents. The study provides an in-depth assessment of the landmark of the hot research topic and acknowledges the contribution of the most productive and active authors across different countries in the world. In addition, the findings could support the younger scholars in their future research direction and improve the efficiency in potential future research collaborations and projects.
C1 [Musa, Ibrahim Hussein; Boutouhami, Khaoula; Qi, Guilin] Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Jiangsu, Peoples R China.
[Musa, Ibrahim Hussein; Boutouhami, Khaoula; Qi, Guilin] Southeast Univ, Key Lab Comp Network & Informat Integrat, Minist Educ, Nanjing, Jiangsu, Peoples R China.
[Zamit, Ibrahim] Shenzhen Inst Adv Technol, Ctr High Performance Comp, Shenzhen, Guangdong, Peoples R China.
[Xu, Kang] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Jiangsu, Peoples R China.
C3 Southeast University - China; Southeast University - China; Chinese
Academy of Sciences; Shenzhen Institute of Advanced Technology, CAS;
Nanjing University of Posts & Telecommunications
RP Qi, GL (corresponding author), Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Jiangsu, Peoples R China.
EM gqi@seu.edu.cn
RI Zhang, Yihao/JGM-3514-2023; Wang, Jiacheng/ABE-5948-2020; xu,
lingzhi/JVZ-8748-2024; Liu, Song/KCX-6842-2024; Cheng,
Yuan/JKJ-0794-2023; Musa, Ibrahim/GYJ-0462-2022; Wang,
Peilin/JWP-6008-2024
OI Wang, Jiacheng/0000-0003-4327-1508; BOUTOUHAMI,
khaoula/0000-0001-9631-9507
CR Akintunde TY, 2021, ASIAN J PSYCHIATR, V63, DOI 10.1016/j.ajp.2021.102753
Akintunde TY, 2021, HUM VACC IMMUNOTHER, V17, P4246, DOI 10.1080/21645515.2021.1948785
Appel O, 2015, ACTA POLYTECH HUNG, V12, P87, DOI 10.12700/APH.12.3.2015.3.6
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Bakkalbasi Nisa, 2006, Biomed Digit Libr, V3, P7, DOI 10.1186/1742-5581-3-7
Bakshi RK, 2016, PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, P452
Ceri S., 2013, WEB INFORM RETRIEVAL, P3, DOI [10.1007/978-3-642-39314-3_1, DOI 10.1007/978-3-642-39314-3_1]
Chen XL, 2020, COGN COMPUT, V12, P1097, DOI 10.1007/s12559-020-09745-1
DILLON M, 1983, INFORM PROCESS MANAG, V19, P402, DOI 10.1016/0306-4573(83)90062-6
Feldman R, 2013, COMMUN ACM, V56, P82, DOI 10.1145/2436256.2436274
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Keramatfar A, 2019, J INF SCI, V45, P3, DOI 10.1177/0165551518761013
Larson RR, 2010, J AM SOC INF SCI TEC, V61, P852, DOI 10.1002/asi.21234
Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11
Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002
Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011
Musa T.H., 2021, Bioact. Carbohydr. Diet. Fibre., V25, DOI DOI 10.1016/J.BCDF.2020.100254
Pang B., 2008, INFORM RETRIEVAL, V2, P1, DOI DOI 10.1561/1500000011
Piryani R, 2017, INFORM PROCESS MANAG, V53, P122, DOI 10.1016/j.ipm.2016.07.001
Schutze H., 2008, Introduction to information retrieval, V39, P234
Singh V, 2014, 2014 5TH INTERNATIONAL CONFERENCE CONFLUENCE THE NEXT GENERATION INFORMATION TECHNOLOGY SUMMIT (CONFLUENCE), P232, DOI 10.1109/CONFLUENCE.2014.6949318
Tripathy A, 2015, PROCEDIA COMPUT SCI, V57, P821, DOI 10.1016/j.procs.2015.07.523
Van Eck NJ., 2013, Leiden: Universiteit Leiden, V1, P1, DOI DOI 10.1016/J.INFFUS.2016.12.001
Yang K., 2006, Proc. Am. Soc. Inf. Sci. Technol, V43, P1, DOI DOI 10.1002/MEET.14504301185
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
Zou H, 2015, 2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), P175, DOI 10.1109/CSCI.2015.44
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 27
TC 3
Z9 3
U1 3
U2 45
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PD DEC
PY 2023
VL 49
IS 6
BP 1506
EP 1516
DI 10.1177/01655515211061866
EA SEP 2022
PG 11
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA Y8SE2
UT WOS:000852202900001
DA 2024-09-05
ER
PT J
AU Lee, JW
Han, DH
AF Lee, Jea Woog
Han, Doug Hyun
TI Data Analysis of Psychological Approaches to Soccer Research: Using LDA
Topic Modeling
SO BEHAVIORAL SCIENCES
LA English
DT Article
DE soccer; psychology; research trends; data science; topic modeling;
bibliometric
ID YOUTH SOCCER; ELITE SOCCER; TALENT DEVELOPMENT; INJURY PREVENTION; TEAM
PERFORMANCE; DECISION-MAKING; PENALTY KICKS; FOOTBALL; PLAYERS;
PERCEPTIONS
AB This study identifies the topical areas of research that have attempted a psychological approach to soccer research over the last 33 years (1990-2022) and explored the growth and stagnation of the topic as well as research contributions to soccer development. Data were obtained from 1863 papers from the Web of Science database. The data were collected through keyword text mining and data preprocessing to determine the keywords needed for analysis. Based on the keywords, latent Dirichlet allocation-based topic modeling analysis was performed to analyze the topic distribution of papers and explore research trends by topic area. The topic modeling process included four topic area and fifty topics. The "Coaching Essentials in Football" topic area had the highest frequency, but it was not statistically identified as a trend. However, coaching, including training, is expected to continue to be an important research topic, as it is a key requirement for success in the highly competitive elite football world. Interest in the research field of "Psychological Skills for Performance Development" has waned in recent years. This may be due to the predominance of other subject areas rather than a lack of interest. Various high-tech interventions and problem-solving attempts are being made in this field, providing opportunities for qualitative and quantitative expansion. "Motivation, cognition, and emotion" is a largely underrated subject area in soccer psychology. This could be because survey-based psychological evaluation attempts have decreased as the importance of rapid field application has been emphasized in recent soccer-related studies. However, measuring psychological factors contributes to the study of football psychology through a new methodology and theoretical background. Recognizing the important role of psychological factors in player performance and mental management, as well as presenting new research directions and approaches that can be directly applied to the field, will advance soccer psychology research.
C1 [Lee, Jea Woog] Chung Ang Univ, Intelligent Informat Proc Lab, Seoul 06974, South Korea.
[Han, Doug Hyun] Chung Ang Univ Hosp, Dept Psychiat, Seoul 06974, South Korea.
C3 Chung Ang University; Chung Ang University; Chung Ang University
Hospital
RP Han, DH (corresponding author), Chung Ang Univ Hosp, Dept Psychiat, Seoul 06974, South Korea.
EM yyizeuks@cau.ac.kr; hduk70@gmail.com
OI Han, Doug Hyun/0000-0002-8314-0767
CR Abbas K, 2015, DEV NEUROPSYCHOL, V40, P51, DOI 10.1080/87565641.2014.990455
Adams A, 2018, J GENDER STUD, V27, P313, DOI 10.1080/09589236.2017.1391073
Adams A, 2011, J HOMOSEXUAL, V58, P579, DOI 10.1080/00918369.2011.563654
Adams A, 2010, J LANG SOC PSYCHOL, V29, P278, DOI 10.1177/0261927X10368833
Agustí D, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.582209
[Anonymous], 2013, Rev. Eur. Stud, DOI DOI 10.5539/RES.V5N5P18
Baltzell A, 2014, J CLIN SPORT PSYCHOL, V8, P221, DOI 10.1123/jcsp.2014-0030
Becerra-Patino Boryi, 2023, Journal of Physical Education and Sport, V23, P76, DOI 10.7752/jpes.2023.01009
Behnke M, 2019, CURR PSYCHOL, V38, P504, DOI 10.1007/s12144-017-9629-1
Bouguezzi R, 2020, SPORT SCI HLTH, V16, P297, DOI 10.1007/s11332-019-00605-6
Branquinho L, 2021, STRENGTH COND J, V43, P96, DOI 10.1519/SSC.0000000000000629
Bruner MW, 2010, PSYCHOL SPORT EXERC, V11, P133, DOI 10.1016/j.psychsport.2009.05.008
Cefis M, 2022, ELECTRON J APPL STAT, V15, P232, DOI 10.1285/i20705948v15n1p232
Çetinkalp ZK, 2011, SOC BEHAV PERSONAL, V39, P925, DOI 10.2224/sbp.2011.39.7.925
Cheng X, 2018, AGR ECOSYST ENVIRON, V267, P1, DOI 10.1016/j.agee.2018.07.022
Clemente FM, 2013, INT J SPORTS SCI COA, V8, P723, DOI 10.1260/1747-9541.8.4.723
Cocco A.R., 2019, SAGE Business Cases Originals
Cocking C, 2014, J COMMUNITY APPL SOC, V24, P86, DOI 10.1002/casp.2153
Colantonio A, 2020, CAN PSYCHOL, V61, P163, DOI 10.1037/cap0000208
Corcoran CM, 2020, SCHIZOPHR RES, V226, P158, DOI 10.1016/j.schres.2020.04.032
Coutinho D, 2018, HUM MOVEMENT SCI, V58, P287, DOI 10.1016/j.humov.2018.03.004
Dean F, 2022, SPORTS, V10, DOI 10.3390/sports10040060
Dohme LC, 2019, SPORT PSYCHOL, V33, P261, DOI 10.1123/tsp.2018-0014
Donachie TC, 2022, J APPL SPORT PSYCHOL, V34, P564, DOI 10.1080/10413200.2020.1819472
Duncan MJ, 2022, INT J SPORTS SCI COA, V17, P761, DOI 10.1177/17479541211073547
DURBIN J, 1971, BIOMETRIKA, V58, P1
Eckardt VC, 2022, PSYCHOL SPORT EXERC, V58, DOI 10.1016/j.psychsport.2021.102089
Egan CD, 2007, J MOTOR BEHAV, V39, P423, DOI 10.3200/JMBR.39.5.423-432
Erikstad MK, 2021, SPORT PSYCHOL, V35, P131, DOI 10.1123/tsp.2020-0107
Fernandes T, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.798201
Fleming DJM, 2023, INT J SPORT EXERC PS, V21, P491, DOI 10.1080/1612197X.2022.2058584
Fontana FE, 2009, J SPORT EXERCISE PSY, V31, P135, DOI 10.1123/jsep.31.2.135
Ford P, 2007, J MOTOR BEHAV, V39, P481, DOI 10.3200/JMBR.39.6.481-490
Freemantle AWJ, 2021, PSYCHOL SPORT EXERC, V57, DOI 10.1016/j.psychsport.2021.102050
Gammelsæter H, 2008, EUR SPORT MANAG Q, V8, P1, DOI 10.1080/16184740701814365
Gilbourne D, 2006, PSYCHOL SPORT EXERC, V7, P325, DOI 10.1016/j.psychsport.2005.04.004
Glavas D, 2023, COGN RES, V8, DOI 10.1186/s41235-023-00473-2
Goldstein JD, 2008, J APPL SOC PSYCHOL, V38, P1442, DOI 10.1111/j.1559-1816.2008.00355.x
Gómez MA, 2021, BIOL SPORT, V38, P603, DOI 10.5114/biolsport.2021.101600
Gouttebarge V, 2015, J HUM KINET, V49, P277, DOI 10.1515/hukin-2015-0130
Haddad M, 2013, PHYSIOL BEHAV, V119, P185, DOI 10.1016/j.physbeh.2013.06.016
Hammami A, 2018, J SPORT MED PHYS FIT, V58, P1446, DOI 10.23736/S0022-4707.17.07420-5
Hansen AA, 2019, J CLIN SPORT PSYCHOL, V13, P543, DOI 10.1123/jcsp.2018-0063
Hassan MFH, 2015, INT J SPORTS SCI COA, V10, P487, DOI 10.1260/1747-9541.10.2-3.487
Hendry DT, 2018, J SPORT SCI, V36, P2009, DOI 10.1080/02640414.2018.1432236
Hennrikus WL, 1998, PEDIATRICS, V102, P735
Henriksen K, 2010, SCAND J MED SCI SPOR, V20, P122, DOI 10.1111/j.1600-0838.2010.01187.x
Hirose K, 2022, SCI MED FOOTBALL, V6, P660, DOI 10.1080/24733938.2022.2133161
Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685
Hoigaard R, 2017, INT J SPORTS SCI COA, V12, P697, DOI 10.1177/1747954117738843
Hoigaard R, 2008, INT J SPORTS SCI COA, V3, P241, DOI 10.1260/174795408785100581
Holt JE, 2012, PHYS EDUC SPORT PEDA, V17, P231, DOI 10.1080/17408989.2012.690568
Horrocks DE, 2016, INT J SPORTS SCI COA, V11, P673, DOI 10.1177/1747954116667105
Hosp B, 2021, FRONT SPORTS ACT LIV, V3, DOI 10.3389/fspor.2021.692526
INKLAAR H, 1994, SPORTS MED, V18, P55, DOI 10.2165/00007256-199418010-00006
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jin G, 2022, PSYCHIAT DANUB, V34, pS939
Jones B, 2023, PHYS EDUC SPORT PEDA, DOI 10.1080/17408989.2022.2153817
Jordana A, 2023, J RATION-EMOT COGN-B, V41, P454, DOI 10.1007/s10942-022-00491-x
Kamyab M, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112311255
Keatlholetswe L, 2019, RES Q EXERCISE SPORT, V90, P71, DOI 10.1080/02701367.2018.1563277
Kennedy KW, 2021, PSYCHOL MEN MASCULIN, V22, P16, DOI 10.1037/men0000261
Kim S, 2021, J SAFETY RES, V77, P255, DOI 10.1016/j.jsr.2021.03.008
Kirkendall DT, 2022, SCAND J MED SCI SPOR, V32, P12, DOI 10.1111/sms.14019
Klarin A, 2019, TECHNOL FORECAST SOC, V149, DOI 10.1016/j.techfore.2019.119776
Konter E., 2019, Football Psychology: From Theory to Practice
Kotrba V, 2019, J BEHAV EXP ECON, V78, P89, DOI 10.1016/j.socec.2018.12.010
Kroshus E, 2017, SPORT PSYCHOL, V31, P332, DOI 10.1123/tsp.2016-0067
Kwon J, 2020, PSYCHOL SPORT EXERC, V50, DOI 10.1016/j.psychsport.2020.101730
Larkin P, 2016, J SPORT SCI, V34, P1305, DOI 10.1080/02640414.2015.1126673
Lavallee D, 2005, SPORT PSYCHOL, V19, P193, DOI 10.1123/tsp.19.2.193
Lee JW, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1033872
Lopes JE, 2014, HUM MOVEMENT SCI, V36, P199, DOI 10.1016/j.humov.2014.04.004
Lu ZF, 2002, PERCEPT MOTOR SKILL, V95, P213
Ma Y, 2023, APPL INTELL, V53, P12859, DOI 10.1007/s10489-022-04027-9
MacNamara A, 2015, SPORT PSYCHOL, V29, P73, DOI 10.1123/tsp.2014-0021
Malinauskas R, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11142096
McMorris T, 1996, PERCEPT MOTOR SKILL, V82, P931, DOI 10.2466/pms.1996.82.3.931
Mehrsafar AH, 2021, PSYCHONEUROENDOCRINO, V129, DOI 10.1016/j.psyneuen.2021.105269
Mills A, 2012, J SPORT SCI, V30, P1593, DOI 10.1080/02640414.2012.710753
Moll T, 2021, PSYCHOL SPORT EXERC, V54, DOI 10.1016/j.psychsport.2021.101913
Moore M, 2021, CHILD ADOLESC SOC WO, V38, P409, DOI 10.1007/s10560-021-00770-z
Morgan EA, 2018, INT J SPORTS SCI COA, V13, P122, DOI 10.1177/1747954117707480
Mullin B., 2014, Sport marketing, V4th
Murr D, 2018, EUR J SPORT SCI, V18, P62, DOI 10.1080/17461391.2017.1386719
Musculus L, 2021, J SPORT EXERCISE PSY, V43, P365, DOI 10.1123/jsep.2020-0166
Myers ND, 2006, RES Q EXERCISE SPORT, V77, P111, DOI 10.5641/027013606X13080769704082
Comas GN, 2018, REV PSICOL DEPORTE, V27, P189
Navia JA, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.01438
Neumann ND, 2023, J SPORT EXERCISE PSY, V45, pS99
Nicholls AR, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00684
Nunes NA, 2021, INT J SPORTS SCI COA, V16, P334, DOI 10.1177/1747954120966416
O'Callaghan D, 2015, EXPERT SYST APPL, V42, P5645, DOI 10.1016/j.eswa.2015.02.055
Partington M, 2013, SCAND J MED SCI SPOR, V23, P374, DOI 10.1111/j.1600-0838.2011.01383.x
Pereira MR, 2021, PERCEPT MOTOR SKILL, V128, P2279, DOI 10.1177/00315125211025412
Redkva PE, 2017, PERCEPT MOTOR SKILL, V124, P264, DOI 10.1177/0031512516678727
Reigal RE, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02279
Reilly T, 2003, J SPORT SCI, V21, P693, DOI 10.1080/0264041031000102105
Reilly T, 2000, J SPORT SCI, V18, P695, DOI 10.1080/02640410050120050
Ren YY, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.892118
Robaldo L, 2019, ARTIF INTELL LAW, V27, P113, DOI 10.1007/s10506-019-09251-2
Rollo I, 2021, EUR J SPORT SCI, V21, P1054, DOI 10.1080/17461391.2020.1792558
Rusciano A, 2017, PSYCHOPHYSIOLOGY, V54, P916, DOI 10.1111/psyp.12847
Scaccia JP, 2021, J COMMUNITY PSYCHOL, V49, P1718, DOI 10.1002/jcop.22603
Seo Y, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18083963
Shafizadeh M, 2014, INT J SPORTS SCI COA, V9, P627, DOI 10.1260/1747-9541.9.4.627
Stratton G., 2004, YOUTH SOCCER SCI PER
Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596
Swallow WE, 2021, INT J SPORTS SCI COA, V16, P192, DOI 10.1177/1747954120951762
Terry DP, 2019, J INT NEUROPSYCH SOC, V25, P950, DOI 10.1017/S1355617719000754
Tian C, 2024, TECHNOL ANAL STRATEG, V36, P2084, DOI 10.1080/09537325.2022.2130039
Tighe PJ, 2020, PAIN MED, V21, P3133, DOI 10.1093/pm/pnaa061
Traclet A, 2008, PERCEPT MOTOR SKILL, V106, P234, DOI 10.2466/PMS.106.1.234-240
Van Yperen NW, 2021, PSYCHOL SPORT EXERC, V53, DOI 10.1016/j.psychsport.2020.101882
VANRAALTE JL, 1992, J SPORT EXERCISE PSY, V14, P273, DOI 10.1123/jsep.14.3.273
VANYPEREN NW, 1995, SPORT PSYCHOL, V9, P225, DOI 10.1123/tsp.9.2.225
Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582
Vieira LF, 2013, REV PSICOL DEPORTE, V22, P331
Villalonga T, 2015, REV PSICOL DEPORTE, V24, P319
Vorontsov K, 2015, LECT NOTES ARTIF INT, V9047, P193, DOI 10.1007/978-3-319-17091-6_14
Vu A, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.901438
Yao ZF, 2020, CORTEX, V132, P79, DOI 10.1016/j.cortex.2020.07.016
Yiannaki C, 2018, SCI MED FOOTBALL, V2, P299, DOI 10.1080/24733938.2018.1483079
Yiannaki C, 2018, SCI MED FOOTBALL, V2, P71, DOI 10.1080/24733938.2017.1332422
Zhao Y.-F., 2016, P 2 ANN INT C EN ENV, DOI [10.2991/eesed-16.2017.41, DOI 10.2991/EESED-16.2017.41]
Zoudji B, 2003, INT J SPORT PSYCHOL, V34, P189
Zourbanos N, 2016, J APPL SPORT PSYCHOL, V28, P97, DOI 10.1080/10413200.2015.1074630
Zucchermaglio C, 2005, GROUP DYN-THEOR RES, V9, P219, DOI 10.1037/1089-2699.9.4.219
NR 128
TC 0
Z9 0
U1 5
U2 18
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-328X
J9 BEHAV SCI-BASEL
JI Behav. Sci.
PD OCT
PY 2023
VL 13
IS 10
AR 787
DI 10.3390/bs13100787
PG 19
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA X0RR1
UT WOS:001095614600001
PM 37887437
OA Green Published, gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Shao, Z
Yuan, S
Wang, YL
AF Shao, Zhou
Yuan, Sha
Wang, Yongli
TI Institutional Collaboration and Competition in Artificial Intelligence
SO IEEE ACCESS
LA English
DT Article
DE Collaboration; Artificial intelligence; Industries; Technological
innovation; Market research; Computer science; Licenses; Artificial
intelligence; Science of Science; cooperation and competition; data
analytics; data science
ID INTERNATIONAL COLLABORATION; EVOLUTION; PATTERNS; IMPACT
AB The institutional collaboration and competition in academia have benefited the development of science, with inter-institutional scientific work promoting the exchange of ideas and competing fields developing rapidly. However, understanding of how the institutions collaborate and compete in science is sorely lacking, especially in emerging fields. Artificial intelligence is such a booming field currently, changing the way we live and work daily. To illustrate the problem, we try to reveal the evolution of institutional collaboration and competition in artificial intelligence by applying AI 2000 from the perspective of Science of Science. In this paper, we make multiple multidimensional statistical analyses by scrutinizing the collaboration network, research interests, talent flow, etc. We demonstrate the collaboration evolution in this field and find the advantage of inter-institutional collaboration is growing over time for papers that have been published more than 5 years. We discover the common cooperation modes of top institutions and visualize their closer cooperation. We highlight the critical resources competition among institutions in three dimensions and learn the recent trends in the field. In particular, we are concerned about the competition among institutions for cross-industry cooperation and notice the consistency of competitiveness and cross-industry collaboration. The research of this paper may support further research studies on institutional collaboration and competition as well as policy proposals for promoting scientific innovation, research management, and funding.
C1 [Shao, Zhou; Wang, Yongli] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China.
[Yuan, Sha] Beijing Acad Artificial Intelligence, Beijing 100190, Peoples R China.
[Shao, Zhou; Yuan, Sha] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China.
[Shao, Zhou] Southwest Univ Sci & Technol, Sch Comp Sci & Technol, Mianyang 621010, Sichuan, Peoples R China.
[Shao, Zhou] China Acad Engn Phys, Grad Sch, Mianyang 621010, Sichuan, Peoples R China.
C3 Nanjing University of Science & Technology; Tsinghua University;
Southwest University of Science & Technology - China; Chinese Academy of
Engineering Physics
RP Wang, YL (corresponding author), Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China.
EM yongliwang@mail.njust.edu.cn
OI Shao, Zhou/0000-0002-6265-7310
FU National Natural Science Foundation of China [61941113, 61806111];
Fundamental Research Fund for the Central Universities [30918015103,
30918012204]; Nanjing Science and Technology Development Plan Project
[201805036]; China Academy of Engineering Consulting Research Project
[2019-ZD-1-02-02]; National Social Science Foundation [18BTQ073]; State
Grid Technology Project [5211XT190033]; 13th Five-Year Equipment Field
Fund [61403120501]
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 61941113 and Grant 61806111, in part by
the Fundamental Research Fund for the Central Universities under Grant
30918015103 and Grant 30918012204, in part by the Nanjing Science and
Technology Development Plan Project under Grant 201805036, in part by
the 13th Five-Year Equipment Field Fund under Grant 61403120501, in part
by the China Academy of Engineering Consulting Research Project under
Grant 2019-ZD-1-02-02, in part by the National Social Science Foundation
under Grant 18BTQ073, and in part by the State Grid Technology Project
under Grant 5211XT190033.
CR Abramo G, 2011, SCIENTOMETRICS, V86, P347, DOI 10.1007/s11192-010-0297-2
Adams J, 2012, NATURE, V490, P335, DOI 10.1038/490335a
Ajiferuke I, 2005, ISSI 2005: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE OF THE INTERNATIONAL SOCIETY FOR SCIENTOMETRICS AND INFORMETRICS, VOLS 1 AND 2, P527
Bozeman B, 2016, SCI PUBL POLICY, V43, P226, DOI 10.1093/scipol/scv035
Brankovic J, 2018, Z SOZIOL, V47, P270, DOI 10.1515/zfsoz-2018-0118
CHINCHILLA-RODRIGUEZ Z., 2008, P PRIM EUR LAT AM C, P1
Coccia M, 2020, TECHNOL SOC, V60, DOI 10.1016/j.techsoc.2019.101198
Coccia M, 2018, SCIENTOMETRICS, V117, P1265, DOI 10.1007/s11192-018-2902-8
Coccia M, 2016, SCIENTOMETRICS, V108, P1065, DOI 10.1007/s11192-016-2027-x
Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113
Corley EA, 2006, RES POLICY, V35, P975, DOI 10.1016/j.respol.2006.05.003
Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008
Domke-Damonte D. J., 2000, International Journal of Hospitality & Tourism Administration (IJHTA), V1, P141, DOI 10.1300/J149v01n01_04
Dong Y., 2018, ARXIV180603694
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Gazni A, 2016, RES EVALUAT, V25, P219, DOI 10.1093/reseval/rvv039
Gazni A, 2011, SCIENTOMETRICS, V87, P251, DOI 10.1007/s11192-011-0343-8
Gerdsri N, 2018, INT J BUS, V23, P248
Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145
Gnyawali DR, 2011, RES POLICY, V40, P650, DOI 10.1016/j.respol.2011.01.009
Goralski MA, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100330
Grimpe C, 2013, IND INNOV, V20, P683, DOI 10.1080/13662716.2013.856620
Han JW, 2000, SIGMOD RECORD, V29, P1
Hartley J., 2017, EUROPEAN POLICE SCI, P159
Lang DW, 2002, HIGH EDUC, V44, P153, DOI 10.1023/A:1015573429956
Laudel G, 2001, INT J TECHNOL MANAGE, V22, P762, DOI 10.1504/IJTM.2001.002990
Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359
Lin JY, 2017, TECHNOL FORECAST SOC, V123, P216, DOI 10.1016/j.techfore.2016.03.016
Liu JY, 2018, IEEE ACCESS, V6, P34403, DOI 10.1109/ACCESS.2018.2819688
Loper E., 2002, ASS COMPUTATIONAL LI
Ma YF, 2018, P NATL ACAD SCI USA, V115, P12608, DOI 10.1073/pnas.1800485115
Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100
Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898
Powell J JW., 2018, Emerging Trends in the Social and Behavioral Sciences, P1
Seeber I, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103174
Sharma S., 2017, INT J LIB INF STUD, V7, P111
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Tang J, 2012, IEEE T KNOWL DATA EN, V24, P975, DOI 10.1109/TKDE.2011.13
van den Besselaar P, 2012, HIGH EDUC POLICY, V25, P263, DOI 10.1057/hep.2012.16
Van Raan AFJ, 1998, SCIENTOMETRICS, V42, P423, DOI 10.1007/BF02458380
Wagner CS, 2017, SCIENTOMETRICS, V110, P1633, DOI 10.1007/s11192-016-2230-9
Walker ES, 2019, TOXICOL RES-UK, V8, P480, DOI 10.1039/c9tx00063a
Yahaya N., 2018, THESIS
Yi PH, 2018, J AM COLL RADIOL, V15, P781, DOI 10.1016/j.jacr.2017.12.037
Yuan S., 2019, 2019109874530 TSINGH
Yuan S., 2019, 2018111497336 TSINGH
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
Zhang YT, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1002, DOI 10.1145/3219819.3219859
Zhao SX, 2018, PHYSICA A, V508, P662, DOI 10.1016/j.physa.2018.04.072
NR 49
TC 13
Z9 14
U1 7
U2 55
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2020
VL 8
BP 69734
EP 69741
DI 10.1109/ACCESS.2020.2986383
PG 8
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA MM0CJ
UT WOS:000549827900004
OA gold
DA 2024-09-05
ER
PT J
AU Chen, XL
Cheng, GRY
Zou, D
Zhong, BC
Xie, HR
AF Chen, Xieling
Cheng, Gary
Zou, Di
Zhong, Baichang
Xie, Haoran
TI Artificial Intelligent Robots for Precision Education: A Topic Modeling-
Based Bibliometric Analysis
SO EDUCATIONAL TECHNOLOGY & SOCIETY
LA English
DT Article
DE Artificial intelligence robots; Topic modeling; Bibliometric analysis;
Precision education; Research topics; Future of human-centered
artificial intelligence
ID AI; COMMUNICATION; KNOWLEDGE; THINKING
AB As a human-friendly system, the artificial intelligence (AI) robot is one of the critical applications in promoting precision education. Alongside the call for humanity-oriented applications in education, AI robot supported precision education has developed into an active field, with increasing literature available. This study aimed to comprehensively analyze directions taken in the past in this research field to interpret a roadmap for future work. By adopting structural topic modeling, the Mann-Kendall trend test, and keyword analysis, we investigated the research topics and their dynamics in the field based on literature collected from Web of Science and Scopus databases up to 2021. Results showed that AI robots and chatbots had been widely used in different subject areas (e.g., early education, STEM education, medical, nursing, and healthcare education, and language education) for promoting collaborative learning, mobile/game-based learning, distance learning, and affective learning. However, a limited practice in developing true human-centered AI (HCAI)-supported educational robots is available. To advance HCAI in education and its application in educational robots for precision education, we suggested involving humans in AI robot design, thinking of individual learners, testing, and understanding the learner-AI robot interaction, taking an HCAI multidisciplinary approach in robot system development, and providing sufficient technical support for instructors during robot implementation.
C1 [Chen, Xieling; Zhong, Baichang] South China Normal Univ, Sch Informat Technol Educ, Guangzhou, Peoples R China.
[Cheng, Gary] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
C3 South China Normal University; Education University of Hong Kong
(EdUHK); Education University of Hong Kong (EdUHK); Lingnan University
RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
EM xielingchen0708@gmail.com; chengks@eduhk.hk; dizoudaisy@gmail.com;
zhongbc@163.com; hrxie2@gmail.com
RI Xie, Haoran/AFS-3515-2022; Xie, Haoran/AAW-8845-2020
OI Xie, Haoran/0000-0003-0965-3617; ZOU, Di/0000-0001-8435-9739
CR [Anonymous], 2010, Age of Empathy: Nature's Lesson For a Kinder Society, DOI [10.1080/03057240.2011.541776, DOI 10.1080/03057240.2011.541776]
Axelsson M, 2019, IEEE ROMAN, DOI 10.1109/ro-man46459.2019.8956309
Ben Shneiderman, 2020, ACM T INTERACT INTEL, V10, DOI 10.1145/3419764
Bernardini S, 2014, INFORM SCIENCES, V264, P41, DOI 10.1016/j.ins.2013.10.027
Bers MU, 2014, COMPUT EDUC, V72, P145, DOI 10.1016/j.compedu.2013.10.020
Bickmore T, 2010, HARVARD REV PSYCHIAT, V18, P119, DOI 10.3109/10673221003707538
Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002
Chen XL, 2022, EDUC TECHNOL SOC, V25, P28
Chen XL, 2021, EDUC TECHNOL SOC, V24, P205
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Colpaert J., 2006, Computer Assisted Language Learning, V19, P109, DOI 10.1080/09588220600821461
Edwards C, 2018, COMMUN EDUC, V67, P473, DOI 10.1080/03634523.2018.1502459
Eguchi A., 2017, Robotics in STEM education: Redesigning the learning experience, P3
Fachada Nuno, 2018, Revista Lusofona de Educacao, V40, P151, DOI [10.24140/issn.1645-7250.rle40.10, DOI 10.24140/ISSN.1645-7250.RLE40.10]
Gosper M., 2008, IMPACT WEB BASED LEC
Hart SA, 2016, MIND BRAIN EDUC, V10, P209, DOI 10.1111/mbe.12109
Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610
Huang YC, 2019, Arxiv, DOI [arXiv:1910.12544, 10.48550/arXiv.1910.12544, DOI 10.48550/ARXIV.1910.12544]
Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001]
Kerly A, 2008, KNOWL-BASED SYST, V21, P238, DOI 10.1016/j.knosys.2007.11.015
Kubilinskiene S, 2017, BALT J MOD COMPUT, V5, P50, DOI 10.22364/bjmc.2017.5.1.04
Lee M, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.632015
Li B, 2022, Arxiv, DOI [arXiv:2110.01167, 10.1145/3555803]
López-Robles JR, 2019, INT J INFORM MANAGE, V48, P22, DOI 10.1016/j.ijinfomgt.2019.01.013
Lu OHT, 2018, EDUC TECHNOL SOC, V21, P220
Majid Rifqi, 2021, 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), P46, DOI 10.1109/ICACCS51430.2021.9441740
Morton H., 2005, Computer Assisted Language Learning, V18, P171, DOI 10.1080/09588220500173344
Moyi P., 2019, COMP INT ED, V47, P1, DOI [10.5206/cie-eci.v47i2.9329, DOI 10.5206/CIE-ECI.V47I2.9329]
Na-Young Kim, 2019, [Multimedia-Assisted Language Learning, 멀티미디어 언어교육], V22, P32
Nakao Y, 2022, ACM T INTERACT INTEL, V12, DOI 10.1145/3514258
Oliver M, 2011, J COMPUT ASSIST LEAR, V27, P373, DOI 10.1111/j.1365-2729.2011.00406.x
Rajkumar R, 2020, IEEE ACCESS, V8, P67377, DOI 10.1109/ACCESS.2020.2984591
Renz A, 2021, TECHNOL INNOV MANAG, V11, P5, DOI 10.22215/timreview/1438
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Santos KA, 2020, PROCEEDINGS OF IDC 2020, P483, DOI 10.1145/3392063.3394405
Seering J, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376708
She TH, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10192393
Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862
Sreelakshmi A.S., 2019, 2019 GRACE HOPPER CE, DOI DOI 10.1109/GHCI47972.2019.9071832
Stephanidis C, 2019, INT J HUM-COMPUT INT, V35, P1229, DOI 10.1080/10447318.2019.1619259
Tegos S., 2011, Proceedings of the 2011 15th Panhellenic Conference on Informatics (PCI 2011), P13, DOI 10.1109/PCI.2011.24
Tlili A, 2020, EDUC TECHNOL SOC, V23, P95
Vijayan Akshay, 2018, 2018 International CET Conference on Control, Communication, and Computing (IC4), P361, DOI 10.1109/CETIC4.2018.8530940
Vygotsky LS, 1978, Mind in Society: Development of Higher Psychological Processes, DOI [DOI 10.2307/J.CTVJF9VZ4, 10.2307/j.ctvjf9vz4]
Wambsganss T., 2019, P INT C INF SYST ICI
Weitekamp D, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376226
Williams R, 2019, AAAI CONF ARTIF INTE, P9729
Xia LY, 2018, COMPUT EDUC, V127, P267, DOI 10.1016/j.compedu.2018.09.007
Xu W, 2023, INT J HUM-COMPUT INT, V39, P494, DOI [10.1109/IECON49645.2022.9968424, 10.1080/10447318.2022.2041900]
Yang S. J. H., 2021, Computers and Education: Artificial Intelligence, V2, DOI [DOI 10.1016/J.CAEAI.2021.100008, 10.1016/j.caeai.2021.100008]
Yang SJH, 2023, EDUC TECHNOL SOC, V26, P95, DOI 10.30191/ETS.202301_26(1).0007
Yang SJH, 2021, EDUC TECHNOL SOC, V24, P105
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhong BC, 2023, INTERACT LEARN ENVIR, V31, P370, DOI 10.1080/10494820.2020.1786409
NR 55
TC 17
Z9 17
U1 37
U2 158
PU INT FORUM EDUCATIONAL TECHNOLOGY & SOC, NATL TAIWAN NORMAL UNIV
PI Taipei City
PA No.162, Sec. 1, Heping E. Rd., Da-an Dist, Taipei City, TAIWAN
SN 1176-3647
EI 1436-4522
J9 EDUC TECHNOL SOC
JI Educ. Technol. Soc.
PD JAN
PY 2023
VL 26
IS 1
BP 171
EP 186
DI 10.30191/ETS.202301_26(1).0013
PG 16
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA 7Q6QP
UT WOS:000909514000013
DA 2024-09-05
ER
PT J
AU Ermolayeva, A
Birukou, A
Matyushenko, S
Kochetkov, D
AF Ermolayeva, Anna
Birukou, Aliaksandr
Matyushenko, Sergey
Kochetkov, Dmitry
TI Statistical model and method for analyzing AI conference rankings: China
vs USA
SO HELIYON
LA English
DT Article
DE Conference proceedings; Scientometrics; Research evaluation; Research
assessment; Artificial intelligence
ID UNITED-STATES; SCIENCE; WEB; INDEX; QUALITY; SCOPUS
AB Artificial Intelligence (AI) is a rapidly developing field of research that attracts significant funding from both the state and industry players. Such interest is driven by a wide range of AI technology applications in many fields. Since many AI research topics relate to computer science, where a significant share of research results are published in conference proceedings, the same applies to AI. The world leaders in artificial intelligence research are China and the United States. The authors conducted a comparative analysis of the bibliometric indicators of AI conference papers from these two countries based on Scopus data. The analysis aimed to identify conferences that receive above-average citation rates and suggest publication strategies for authors from these countries to participate in conferences that are likely to provide better dissemination of their research results. The results showed that, although Chinese researchers publish more AI papers than those from the United States, US conference papers are cited more frequently. The authors also conducted a correlation analysis of the MNCS index, which revealed no high correlation between MNCS USA vs. MNCS China, MNCS China/MNCS USA vs. MSAR, and MNCS China/MNCS USA vs. CORE ranking indicators.
C1 [Ermolayeva, Anna; Matyushenko, Sergey; Kochetkov, Dmitry] Peoples Friendship Univ Russia, RUDN Univ, Inst Comp Sci & Telecommun, Dept Probabil Theory & Cyber Secur, 6 Miklukho Maklaya St, Moscow 117198, Russia.
[Birukou, Aliaksandr] Springer Nat, Tiergartenstr 17, D-69121 Heidelberg, Germany.
[Kochetkov, Dmitry] Leiden Univ, Ctr Sci & Technol Studies, Kolffpad 1, NL-2333 BN Leiden, Netherlands.
[Kochetkov, Dmitry] Ural Fed Univ, 19 Mira St, Ekaterinburg 620002, Russia.
C3 Peoples Friendship University of Russia; Leiden University - Excl LUMC;
Leiden University; Ural Federal University
RP Ermolayeva, A; Kochetkov, D (corresponding author), Peoples Friendship Univ Russia, RUDN Univ, Inst Comp Sci & Telecommun, Dept Probabil Theory & Cyber Secur, 6 Miklukho Maklaya St, Moscow 117198, Russia.; Kochetkov, D (corresponding author), Leiden Univ, Ctr Sci & Technol Studies, Kolffpad 1, NL-2333 BN Leiden, Netherlands.; Kochetkov, D (corresponding author), Ural Fed Univ, 19 Mira St, Ekaterinburg 620002, Russia.
EM ermolaevaanna@bk.ru; d.kochetkov@cwts.leidenuniv.nl
RI Matyushenko, Sergey/JQW-8543-2023; Kochetkov, Dmitry/I-4979-2015
OI Matyushenko, Sergey/0000-0001-8247-8988; Kochetkov,
Dmitry/0000-0001-7890-7532; Birukou, Aliaksandr/0000-0002-4925-9131
FU RUDN University Strategic Academic Leadership Program
FX This paper has been supported by the RUDN University Strategic Academic
Leadership Program (Anna Ermolayeva, Sergey Matyushenko, Dmitry
Kochetkov) .
CR Abramo G, 2016, J INFORMETR, V10, P646, DOI 10.1016/j.joi.2016.04.006
Alhoori Hamed, 2013, Research and Advanced Technology for Digital Libraries. International Conference on Theory and Practice of Digital Libraries, TPDL 2013. Proceedings: LNCS 8092, P138, DOI 10.1007/978-3-642-40501-3_14
Almendra VD, 2015, SCIENTOMETRICS, V102, P267, DOI 10.1007/s11192-014-1436-y
Almind TC, 1997, J DOC, V53, P404, DOI 10.1108/EUM0000000007205
Amin M, 2003, MEDICINA-BUENOS AIRE, V63, P347
[Anonymous], 2023, Scopus data
Baker S., Nature
Basu A, 2018, SCIENTOMETRICS, V117, P249, DOI 10.1007/s11192-018-2877-5
Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Castro D., Center for Data Innovation, V19
Chen YN, 2020, SIMUL MODEL PRACT TH, V102, DOI 10.1016/j.simpat.2020.102070
Costas R, 2007, J INFORMETR, V1, P193, DOI 10.1016/j.joi.2007.02.001
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
elsevier, 2023, ABOUT US
Farooq M., INDEX BASED RANKING
Farooq M, 2017, IEEE ACCESS, V5, P19588, DOI 10.1109/ACCESS.2017.2744798
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
Garfield E, 1999, CAN MED ASSOC J, V161, P979
Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806
Gmurman V.V., 2008, Teoriya veroyatnostej i matematicheskaya statistika
Guan J, 2008, SCIENTOMETRICS, V75, P357, DOI 10.1007/s11192-007-1871-0
Gupta S, 2023, J INF SCI, DOI 10.1177/01655515231151411
Haq I.U., 2020, Libr. Philos. Pract., P1522
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Kerl A, 2018, J BANK FINANC, V89, P26, DOI 10.1016/j.jbankfin.2018.01.014
Kochetkov Dmitry, 2021, Analysis of Images, Social Networks and Texts. 9th International Conference, AIST 2020. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 12602), P369, DOI 10.1007/978-3-030-72610-2_28
Küngas P, 2013, SCIENTOMETRICS, V96, P651, DOI 10.1007/s11192-012-0938-8
Lang R, 2020, SCIENTOMETRICS, V122, P759, DOI 10.1007/s11192-019-03291-w
Leydesdorff L, 2014, J INFORMETR, V8, P606, DOI 10.1016/j.joi.2014.05.002
Leydesdorff L, 2009, SCIENTOMETRICS, V78, P23, DOI 10.1007/s11192-008-1830-4
LILLIEFORS HW, 1967, J AM STAT ASSOC, V62, P399, DOI 10.2307/2283970
Makhoba X, 2016, AFR J SCI TECHNOL IN, V8, P187, DOI 10.1080/20421338.2016.1147205
Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002
Meho LI, 2019, J INFORMETR, V13, P419, DOI 10.1016/j.joi.2019.02.006
Mingers J, 2010, SCIENTOMETRICS, V85, P613, DOI 10.1007/s11192-010-0270-0
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
National science foundation, 2023, Science and engineering indicators 2018
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Oikawa A., 2023, China overtakes US in AI research
Page L., 1998, The pagerank citation ranking: Bringing order to the web
Purnell PJ, 2021, SCIENTOMETRICS, V126, P355, DOI 10.1007/s11192-020-03773-2
Reinartz SJ, 2017, J EMPIR FINANC, V42, P155, DOI 10.1016/j.jempfin.2017.03.001
Saier T., 2020, A Large-Scale Analysis of Cross-Lingual Citations in English Papers, P122
Singh AP, 2011, IEEE DATA MINING, P88, DOI 10.1109/DMO.2011.5976510
Thelwall M, 2015, J ASSOC INF SCI TECH, V66, P876, DOI 10.1002/asi.23236
Thelwall Mike., 2009, Synthesis Lectures on Information Concepts, Retrieval, and Services 4, DOI DOI 10.2200/S00176ED1V01Y200903ICR004
Waltman L., 2023, A farewell to the mncs indicator?
Waltman L, 2013, J INFORMETR, V7, P833, DOI 10.1016/j.joi.2013.08.002
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678
Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5
Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001
Zhao ZY, 2021, SCIENTOMETRICS, V126, P931, DOI 10.1007/s11192-020-03796-9
NR 53
TC 0
Z9 0
U1 3
U2 5
PU CELL PRESS
PI CAMBRIDGE
PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA
EI 2405-8440
J9 HELIYON
JI Heliyon
PD NOV
PY 2023
VL 9
IS 11
AR e21592
DI 10.1016/j.heliyon.2023.e21592
EA NOV 2023
PG 12
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA Z3TJ8
UT WOS:001111330100001
PM 38027555
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Kumar, V
Kumar, S
Chatterjee, S
Mariani, M
AF Kumar, Vinod
Kumar, Sachin
Chatterjee, Sheshadri
Mariani, Marcello
TI Artificial Intelligence (AI) Capabilities and the R&D Performance of
Organizations: The Moderating Role of Environmental Dynamism
SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
LA English
DT Article
DE Technological innovation; Organizations; Artificial intelligence;
Business; Research and development; Dynamic scheduling; Industries;
Artificial intelligence (AI) capability (AIC); environmental dynamism
(ED); exploitative innovation (EXI); exploration innovation (EXO);
research and development (R&D) performance
ID PLS-SEM; ANALYTICS CAPABILITY; FIRM PERFORMANCE; OPEN INNOVATION;
INDUSTRY 4.0; EXPLOITATION; EXPLORATION; KNOWLEDGE; COMMITMENT;
MANAGEMENT
AB The potential of artificial intelligence capabilities (AICs) extends beyond fostering both explorative and exploitative innovations (EXO and EXI); it may also enhance the overall performance of organizations. Despite this, the interplay between AIC and research and development performance (RDP) remains unexplored. In this article, we aim to fill this gap by investigating the influence of AIC on RDP, considering both EXO and EXI. Additionally, the study examines the potential moderating role of environmental dynamism in shaping the relationship between AIC and the two types of innovations, ultimately impacting the enhancement of RDP in organizations. To achieve this, a conceptual model was developed based on the existing literature and subsequently validated using the partial least square structural equation modeling. The research gathered 289 responses from a diverse group of industry professionals. The findings of this study contribute both theoretically and practically by shedding light on the pivotal role played by artificial intelligence (AI) capabilities, exploration, and EXI in improving the research and development (R&D) performance of organizations. Understanding these dynamics will provide valuable insights for organizations seeking to leverage AI for strategic advancement in their R&D endeavors.
C1 [Kumar, Vinod] FLAME Univ, FLAME Sch Commun, Pune 412115, Maharashtra, India.
[Kumar, Sachin] Natl Inst Technol, Dept Management Studies, Hamirpur 177005, Himachal Prades, India.
[Chatterjee, Sheshadri] Indian Inst Technol Kharagpur, Kharagpur, W Bengal, India.
[Mariani, Marcello] Univ Reading Greenlands, Henley Business Sch, Henley On Thames RG9 3AU, Oxon, England.
[Mariani, Marcello] Univ Bologna, I-40126 Bologna, Italy.
C3 National Institute of Technology (NIT System); National Institute of
Technology Hamirpur; Indian Institute of Technology System (IIT System);
Indian Institute of Technology (IIT) - Kharagpur; University of Reading;
University of Bologna
RP Mariani, M (corresponding author), Univ Reading Greenlands, Henley Business Sch, Henley On Thames RG9 3AU, Oxon, England.
EM vinod.kumar@flame.edu.in; sachin@nith.ac.in;
sheshadri.academic@gmail.com; m.mariani@henley.ac.uk
RI Kumar, Sachin/AEP-4946-2022; KUMAR, VINOD/AAL-2759-2020
OI Kumar, Sachin/0000-0003-2125-044X; KUMAR, VINOD/0000-0002-5014-0672;
Chatterjee, Sheshadri/0000-0003-1075-5549
CR Akter S, 2021, IND MARKET MANAG, V97, P258, DOI 10.1016/j.indmarman.2021.07.014
Akter S, 2016, INT J PROD ECON, V182, P113, DOI 10.1016/j.ijpe.2016.08.018
Al-Surmi A, 2022, INT J PROD RES, V60, P4464, DOI 10.1080/00207543.2021.1966540
Alsaad A, 2017, COMPUT HUM BEHAV, V68, P157, DOI 10.1016/j.chb.2016.11.040
Ananno AA, 2021, J ENVIRON MANAGE, V282, DOI 10.1016/j.jenvman.2021.111943
Bernal P, 2019, IND INNOV, V26, P295, DOI 10.1080/13662716.2018.1465813
Blichfeldt H, 2021, TECHNOVATION, V105, DOI 10.1016/j.technovation.2021.102275
Bustinza OF, 2020, INT BUS REV, V29, DOI 10.1016/j.ibusrev.2019.01.004
Caputo M, 2016, MANAGE DECIS, V54, P1788, DOI 10.1108/MD-02-2015-0052
Cegarra-Navarro JG, 2023, IEEE T ENG MANAGE, V70, P4278, DOI 10.1109/TEM.2021.3112615
Chaminade C, 2011, EUR PLAN STUD, V19, P1357, DOI 10.1080/09654313.2011.573171
Chatterjee S, 2023, J CLEAN PROD, V427, DOI 10.1016/j.jclepro.2023.139195
Chatterjee S, 2023, TECHNOL FORECAST SOC, V196, DOI 10.1016/j.techfore.2023.122824
Chatterjee S, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3297251
Chatterjee S, 2023, EUR BUS REV, V35, P839, DOI 10.1108/EBR-02-2023-0049
Chatterjee S, 2024, IEEE T ENG MANAGE, V71, P12910, DOI 10.1109/TEM.2022.3214469
Chatterjee S, 2024, IEEE T ENG MANAGE, V71, P13616, DOI 10.1109/TEM.2022.3220946
Chatterjee S, 2020, J KNOWL MANAG, V24, P2531, DOI 10.1108/JKM-04-2020-0252
Chaudhuri R, 2024, ANN OPER RES, V339, P1757, DOI 10.1007/s10479-021-04407-3
Chen AL, 2023, J TECHNOL TRANSFER, V48, P1628, DOI 10.1007/s10961-023-10027-9
Chung Euiyoung, 2023, IEEE Engineering Management Review, P108, DOI 10.1109/EMR.2022.3215074
Dash G, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121092
Dubey R, 2021, IND MARKET MANAG, V96, P135, DOI 10.1016/j.indmarman.2021.05.003
Elia S, 2021, J BUS RES, V132, P158, DOI 10.1016/j.jbusres.2021.04.010
Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146
Faul F, 2009, BEHAV RES METHODS, V41, P1149, DOI 10.3758/BRM.41.4.1149
Fey CF, 2005, J MANAGE, V31, P597, DOI 10.1177/0149206304272346
FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312
Fu HP, 2023, INT J RETAIL DISTRIB, V51, P773, DOI 10.1108/IJRDM-12-2021-0610
Goetz N, 2022, INT J PROJ MANAG, V40, P251, DOI 10.1016/j.ijproman.2022.03.001
Hair J. F., 2021, PRIMER PARTIAL LEAST
Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130
Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202
Hair JF, 2020, J BUS RES, V109, P101, DOI 10.1016/j.jbusres.2019.11.069
Hair JF, 2021, J FAM BUS STRATEG, V12, DOI 10.1016/j.jfbs.2020.100392
Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203
Hair JF, 2012, LONG RANGE PLANN, V45, P320, DOI 10.1016/j.lrp.2012.09.008
Harmancioglu N, 2020, IND MARKET MANAG, V85, P44, DOI 10.1016/j.indmarman.2019.07.005
Henseler J, 2017, INT SER QUAN MARKET, P361, DOI 10.1007/978-3-319-53469-5_12
Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8
Henseler J, 2014, ORGAN RES METHODS, V17, P182, DOI 10.1177/1094428114526928
Henseler J, 2009, ADV INT MARKETING, V20, P277, DOI 10.1108/S1474-7979(2009)0000020014
Hung KP, 2013, TECHNOVATION, V33, P368, DOI 10.1016/j.technovation.2013.06.006
Jumani ZA, 2021, J ISLAMIC MARK, V12, P408, DOI 10.1108/JIMA-09-2019-0196
Kline R. B., 2023, PRINCIPLES PRACTICE
Kumar S, 2024, BRIT FOOD J, V126, P1217, DOI 10.1108/BFJ-07-2023-0667
Kumar S, 2021, IND MARKET MANAG, V95, P54, DOI 10.1016/j.indmarman.2021.03.010
Laud G, 2023, J SERV MANAGE, V34, P368, DOI 10.1108/JOSM-06-2021-0224
Lennerts S, 2020, EUR MANAG J, V38, P121, DOI 10.1016/j.emj.2019.06.002
Ngo LV, 2019, J BUS RES, V94, P154, DOI 10.1016/j.jbusres.2017.10.050
Lin HE, 2017, J PROD INNOVAT MANAG, V34, P122, DOI 10.1111/jpim.12337
Malhotra NK, 2017, J ADVERTISING, V46, P193, DOI 10.1080/00913367.2016.1252287
Mansoor M, 2022, BUS STRATEG ENVIRON, V31, P94, DOI 10.1002/bse.2876
Mariani Marcello M., 2021, Technological Forecasting and Social Change, V172, DOI 10.1016/j.techfore.2021.121009
Mariani M, 2024, J BUS RES, V175, DOI 10.1016/j.jbusres.2024.114542
Mariani M, 2022, INT J CONTEMP HOSP M, V34, P231, DOI 10.1108/IJCHM-03-2021-0301
Mariani M, 2021, INT J CONTEMP HOSP M, V33, P3956, DOI 10.1108/IJCHM-06-2020-0622
Mariani MM, 2023, J BUS RES, V161, DOI 10.1016/j.jbusres.2023.113838
Mariani MM, 2023, J BUS RES, V155, DOI 10.1016/j.jbusres.2022.113364
Mariani MM, 2023, TECHNOVATION, V122, DOI 10.1016/j.technovation.2022.102623
Mariani MM, 2020, J BUS RES, V121, P338, DOI 10.1016/j.jbusres.2020.09.012
Mikalef P, 2023, GOV INFORM Q, V40, DOI 10.1016/j.giq.2022.101797
Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434
Mikalef P, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2020.103361
Mikalef P, 2019, BRIT J MANAGE, V30, P272, DOI 10.1111/1467-8551.12343
nasscom, Unlocking value from data and AI-The India opportunity
Naz S, 2024, J HOSP TOUR INSIGHTS, V7, P2055, DOI 10.1108/JHTI-01-2023-0017
Patil G, 2023, BUS STRATEGY DEV, V6, P158, DOI 10.1002/bsd2.230
Patil KP, 2021, J INF TECHNOL RES, V14, P123, DOI 10.4018/JITR.2021010108
Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879
pwc, AI business predictions
Ramadani V, 2023, IEEE T ENG MANAGE, V70, P2864, DOI 10.1109/TEM.2022.3174628
Rialti R, 2019, TECHNOL FORECAST SOC, V149, DOI 10.1016/j.techfore.2019.119781
Ringle M., 2022, SmartPLS 4
Rozak H, 2023, IEEE T ENG MANAGE, V70, P3766, DOI 10.1109/TEM.2021.3085977
Saha V, 2023, IND MARKET MANAG, V114, P32, DOI 10.1016/j.indmarman.2023.07.009
Sarstedt M, 2014, J FAM BUS STRATEG, V5, P105, DOI 10.1016/j.jfbs.2014.01.002
Sharma VK, 2024, IEEE T ENG MANAGE, V71, P4665, DOI 10.1109/TEM.2023.3236768
Singh A, 2015, BENCHMARKING, V22, P1192, DOI 10.1108/BIJ-01-2014-0007
Sivarajah U, 2024, TECHNOL FORECAST SOC, V202, DOI 10.1016/j.techfore.2024.123328
Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z
Truong Y, 2022, TECHNOL FORECAST SOC, V183, DOI 10.1016/j.techfore.2022.121852
Wamba SF, 2024, INT J PROD ECON, V268, DOI 10.1016/j.ijpe.2023.109131
Wamba-Taguimdje SL, 2020, BUS PROCESS MANAG J, V26, P1893, DOI 10.1108/BPMJ-10-2019-0411
Yang TT, 2011, MANAGE DECIS, V49, P1444, DOI 10.1108/00251741111173934
NR 85
TC 0
Z9 0
U1 11
U2 11
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9391
EI 1558-0040
J9 IEEE T ENG MANAGE
JI IEEE Trans. Eng. Manage.
PY 2024
VL 71
BP 11522
EP 11532
DI 10.1109/TEM.2024.3423669
PG 11
WC Business; Engineering, Industrial; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Engineering
GA ZP0P7
UT WOS:001276385800002
DA 2024-09-05
ER
PT J
AU Villaseñor, EA
Arencibia-Jorge, R
Carrillo-Calvet, H
AF Atenogenes Villasenor, Elio
Arencibia-Jorge, Ricardo
Carrillo-Calvet, Humberto
TI Multiparametric characterization of scientometric performance profiles
assisted by neural networks: a study of Mexican higher education
institutions
SO SCIENTOMETRICS
LA English
DT Article
DE Bibliometric rankings; Higher education; Institutional academic
assessment; Scientometric indicators; Self-organized neural networks;
Scientometric data mining; Mexico
ID BIBLIOMETRIC ANALYSIS; UNIVERSITY RANKINGS; TRIPLE-HELIX; SCIENCE;
INDEX; COLLABORATION; CONSEQUENCES; PRODUCTIVITY; PUBLICATION;
VISIBILITY
AB Development of accurate systems to assess academic research performance is an essential topic in national science agendas around the world. Providing quantitative elements such as scientometric rankings and indicators have contributed to measure prestige and excellence of universities, but more sophisticated computational tools are seldom exploited. We compare the evolution of Mexican scientific production in Scopus and the Web of Science as well as Mexico's scientific productivity in relation to the growth of the National Researchers System of Mexico is analyzed. As a main analysis tool we introduce an artificial intelligence procedure based on self-organizing neural networks. The neural network technique proves to be a worthy scientometric data mining and visualization tool which automatically carries out multiparametric scientometric characterizations of the production profiles of the 50 most productive Mexican Higher Education Institutions (in Scopus database). With this procedure we automatically identify and visually depict clusters of institutions that share similar bibliometric profiles in bidimensional maps. Four perspectives were represented in scientometric maps: productivity, impact, expected visibility and excellence. Since each cluster of institutions represents a bibliometric pattern of institutional performance, the neural network helps locate various bibliometric profiles of academic production, and the identification of groups of institutions which have similar patterns of performance. Also, scientometric maps allow for the identification of atypical behaviors (outliers) which are difficult to identify with classical tools, since they outstand not because of a disparate value in just one variable, but due to an uncommon combination of a set of indicators values.
C1 [Atenogenes Villasenor, Elio] Ctr Res & Innovat Informat & Commun Technol INFOT, Circuito Tecnopolo Sur 112, Mexico City, Aguascalientes, Mexico.
[Arencibia-Jorge, Ricardo] Empresa Tecnol Informac, Havana, Cuba.
[Carrillo-Calvet, Humberto] Univ Nacl Autonoma Mexico, Fac Sci, Lab Nonlinear Dynam, Mexico City, DF, Mexico.
[Carrillo-Calvet, Humberto] Univ Nacl Autonoma Mexico, Ctr Complex Sci, Mexico City, DF, Mexico.
C3 Universidad Nacional Autonoma de Mexico; Universidad Nacional Autonoma
de Mexico
RP Carrillo-Calvet, H (corresponding author), Univ Nacl Autonoma Mexico, Fac Sci, Lab Nonlinear Dynam, Mexico City, DF, Mexico.; Carrillo-Calvet, H (corresponding author), Univ Nacl Autonoma Mexico, Ctr Complex Sci, Mexico City, DF, Mexico.
EM elio.villasenor@infotec.mx; ricardo.arencibia@eti.biocubafarma.cu;
carr@unam.mx
RI Atenogenes, Elio/GSE-4644-2022; Carrillo Calvet, Humberto/E-2265-2012;
GARCÍA, ELIO ATENÓGENES VILLASEÑOR/W-7501-2019; Arencibia-Jorge,
Ricardo/AAK-3567-2020; Arencibia-Jorge, Ricardo/B-1330-2016; CARRILLO
CALVET, HUMBERTO/ITW-2657-2023
OI Atenogenes, Elio/0000-0002-8611-8661; Carrillo Calvet,
Humberto/0000-0003-3659-6769; GARCÍA, ELIO ATENÓGENES
VILLASEÑOR/0000-0002-8611-8661; Arencibia-Jorge,
Ricardo/0000-0001-8907-2454;
FU Proyecto CITMA-CONACyT [B330.166]; Empresa de Tecnologias Inteligentes y
Modelacion de Sistemas S.A. de C.V.
FX This research was partially supported by the Proyecto CITMA-CONACyT
(B330.166) and the Empresa de Tecnologias Inteligentes y Modelacion de
Sistemas S.A. de C.V. The authors acknowledge the collaboration of Jose
Luis Jimenez Andrade (UNAM, Mexico), and of Dr. Felix de Moya Anegon
(CSIC, Spain) for the data support given from SCImago Institutions
Rankings.
CR Abramo G, 2013, SCIENTOMETRICS, V95, P311, DOI 10.1007/s11192-012-0875-6
Aguillo IF, 2005, INTERCIENCIA, V30, P735
Aguillo IF, 2010, SCIENTOMETRICS, V85, P243, DOI 10.1007/s11192-010-0190-z
Allen N, 2013, BRIT J POLIT INT REL, V15, P147, DOI 10.1111/1467-856X.12006
[Anonymous], 2005, HDB QUANTITATIVE SCI, DOI DOI 10.1007/1-4020-2755-9_11
[Anonymous], 2005, 46 U MARB DEP MATH C
Arencibia-Jorge R, 2010, SCIENTOMETRICS, V83, P723, DOI 10.1007/s11192-009-0150-7
Arvanitis R, 1996, SCIENTOMETRICS, V35, P247, DOI 10.1007/BF02018482
Belkhodja O, 2007, SCIENTOMETRICS, V70, P301, DOI 10.1007/s11192-007-0205-6
Belter CW, 2013, SCIENTOMETRICS, V95, P629, DOI 10.1007/s11192-012-0836-0
Bengoetxea E, 2013, INT J CLIN HLTH PSYC, V13, P67, DOI 10.1016/S1697-2600(13)70009-7
Benito M, 2011, SCIENTOMETRICS, V89, P153, DOI 10.1007/s11192-011-0419-5
Billaut JC, 2010, SCIENTOMETRICS, V84, P237, DOI 10.1007/s11192-009-0115-x
Bornmann L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056768
Bornmann L, 2012, J INFORMETR, V6, P333, DOI 10.1016/j.joi.2011.11.006
Caputo C, 2012, SCIENTOMETRICS, V90, P781, DOI 10.1007/s11192-011-0548-x
Collazo-Reyes F, 2008, SCIENTOMETRICS, V75, P145, DOI 10.1007/s11192-007-1841-6
Collazo-Reyes F, 2010, SCIENTOMETRICS, V85, P791, DOI 10.1007/s11192-010-0229-1
CONACyT, 2013, RES ANT SIST NAC INV
CONACyT, 2012, ATL CIENC MEX
de Arenas JL, 2000, EDUC RES, V42, P85
de Arenas JL, 2002, SCIENTOMETRICS, V53, P39
Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
Egghe L, 2012, J INFORMETR, V6, P307, DOI 10.1016/j.joi.2011.12.007
Luna-Morales ME, 2012, INVESTIG BIBLIOTECOL, V26, P103
Foro Consultivo Cientifico y Tecnologico, 2011, RANK PROD CIENT MEX
Gómez-Núñez AJ, 2011, SCIENTOMETRICS, V89, P741, DOI 10.1007/s11192-011-0485-8
Guzman M. V., 2010, ART SCI TUBERCULOSIS, P425
Helene AF, 2011, SCIENTOMETRICS, V89, P677, DOI 10.1007/s11192-011-0470-2
Huang MH, 2012, ONLINE INFORM REV, V36, P534, DOI 10.1108/14684521211254059
Ioannidis JP, 2007, BMC MED, V5, DOI 10.1186/1741-7015-5-30
Kohonen T., 2001, INFORM SCIENCES
Kohonen T, 2013, NEURAL NETWORKS, V37, P52, DOI 10.1016/j.neunet.2012.09.018
Krauskopf M, 2007, SCIENTOMETRICS, V72, P93, DOI 10.1007/s11192-007-1737-5
Krishna D, 2002, J SCI IND RES INDIA, V61, P940
Kurzydlowski KJ, 2003, SOL ST PHEN, V94, P349, DOI 10.4028/www.scientific.net/SSP.94.349
Lena MMYL, 1997, ENVIRON BEHAV, V29, P169, DOI 10.1177/001391659702900202
Leydesdorff L, 2007, SCIENTOMETRICS, V70, P207, DOI 10.1007/s11192-007-0200-y
Macías-Chapula CA, 2007, PROCEEDINGS OF ISSI 2007: 11TH INTERNATIONAL CONFERENCE OF THE INTERNATIONAL SOCIETY FOR SCIENTOMETRICS AND INFORMETRICS, VOLS I AND II, P894
Sierra-Flores MM, 2009, INVESTIG BIBLIOTECOL, V23, P127
Sierra-Flores MM, 2009, SCIENTOMETRICS, V81, P765, DOI 10.1007/s11192-008-2264-8
Miguel S, 2011, J AM SOC INF SCI TEC, V62, P1130, DOI 10.1002/asi.21532
Miguel S, 2010, SCIENTOMETRICS, V85, P495, DOI 10.1007/s11192-010-0266-9
Moya-Anegón F, 2006, J INF SCI, V32, P63, DOI 10.1177/0165551506059226
Mryglod O, 2013, SCIENTOMETRICS, V95, P115, DOI 10.1007/s11192-012-0874-7
Polanco X, 2001, SCIENTOMETRICS, V51, P267, DOI 10.1023/A:1010537316758
Rehn C., 2008, Bibliometric handbook for Karolinska Institutet
SCImago Research Group, 2013, SIR IB 2013
Skupin A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058779
Sotolongo-Aguilar G, 2001, 8TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS AND INFORMETRICS, VOLS 1 AND 2 - ISSI-2001, PROCEEDINGS, P665
Sotolongo-Aguilar G., 2002, Revista Espanola de Documentacion Cientifica, V25, P477, DOI 10.3989/redc.2002.v25.i4.281
Statzner B, 2010, FRESHWATER BIOL, V55, P2639, DOI 10.1111/j.1365-2427.2010.02484.x
Torres-Salinas D, 2011, SCIENTOMETRICS, V88, P771, DOI 10.1007/s11192-011-0418-6
Vanclay JK, 2012, SCIENTOMETRICS, V91, P751, DOI 10.1007/s11192-012-0618-8
Vesanto J., 1999, Intelligent Data Analysis, V3, P111, DOI 10.1016/S1088-467X(99)00013-X
Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5
Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7
Zell D, 2005, J MANAGE INQUIRY, V14, P271, DOI 10.1177/1056492605279097
Zhao SX, 2009, ADVANCES IN MANAGEMENT OF TECHNOLOGY, PT 1, P220
NR 59
TC 25
Z9 26
U1 5
U2 91
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 2017
VL 110
IS 1
BP 77
EP 104
DI 10.1007/s11192-016-2166-0
PG 28
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA EK2HL
UT WOS:000393748300005
DA 2024-09-05
ER
PT C
AU BinMakhashen, GM
Al-Jamimi, HA
AF BinMakhashen, Galal M.
Al-Jamimi, Hamdi A.
GP IEEE
TI Evaluation of Machine Learning to Early Detection of Highly Cited Papers
SO 2022 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MACHINE LEARNING
APPLICATIONS (CDMA 2022)
LA English
DT Proceedings Paper
CT 7th International Conference on Data Science and Machine Learning
Applications (CDMA)
CY MAR 01-03, 2022
CL Prince Sultan Univ, Riyadh, SAUDI ARABIA
HO Prince Sultan Univ
DE Highly-cited Research; Bibliometric Analysis; Machine Learning; Digital
Libraries
ID CITATION IMPACT; COLLABORATION; IMPROVE; PREDICT; COUNTS
AB As one of the fastest-growing topics, machine learning has many applications that span through different domains including image and signal recognition, text mining, information retrieval, robotics, etc. It enables information extraction and analysis for better insights and decision-based systems. The Web of Science(WoS) citation database is a leading organization that provides citation data of high-quality published research. WoS has its metrics to label published articles as Highly Cited Paper(HCP). Machine learning (ML) can help researchers in identifying the key characteristics of HCP. Moreover, it can allow research evaluation units forecasting significant scientific articles. In other words, it may allow researchers and/or research evaluators to detect potential scientific breakthrough ideas and stay current. In this study, more than 26 thousand records of published articles indexed by WoS were analyzed. All the records are drawn from the Technology research area as defined by WoS. Four ML algorithms are evaluated to verify the HCP common factors influence in raising citations and interest in scientific articles. The ensemble algorithms show promising results to identify HCP articles using only four factors.
C1 [BinMakhashen, Galal M.; Al-Jamimi, Hamdi A.] King Fahd Univ Petr & Minerals, Res Inst, Dhahran, Saudi Arabia.
C3 King Fahd University of Petroleum & Minerals
RP BinMakhashen, GM (corresponding author), King Fahd Univ Petr & Minerals, Res Inst, Dhahran, Saudi Arabia.
EM binmakhashen@kfupm.edu.sa; aljamimi@kfupm.edu.sa
RI Al-Jamimi, Hamdi A./G-5734-2016
FU King Fahd University of Petroleum and Minerals (KFUPM) [DF191012]
FX The authors would like to acknowledge the help and support provided by
King Fahd University of Petroleum and Minerals (KFUPM) through funding
the project number DF191012.
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645
Antonakis J, 2014, LEADERSHIP QUART, V25, P152, DOI 10.1016/j.leaqua.2013.10.014
Biscaro C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099502
Bloch C, 2019, J INFORMETR, V13, P593, DOI 10.1016/j.joi.2019.03.003
Bornmann L, 2020, SCIENTOMETRICS, V124, P1457, DOI 10.1007/s11192-020-03512-7
Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005
Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004
BUCKLAND ST, 1993, J APPL ECOL, V30, P478, DOI 10.2307/2404188
Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112
Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190
Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Elgendi M, 2019, IEEE ACCESS, V7, P87977, DOI 10.1109/ACCESS.2019.2925965
Gallivan M.J., 2012, P 50 ANN C COMPUTERS, P175, DOI [10.1145/2214091.2214137, DOI 10.1145/2214091.2214137]
Hsu CW, 2002, IEEE T NEURAL NETWOR, V13, P415, DOI 10.1109/72.991427
Hurley L. A., 2013, Proceedings of the American Society for Information Science and Technology, V50, P1, DOI [DOI 10.1002/MEET.14505001070, 10.1002/meet.14505001070]
Lv ZB, 2019, FRONT BIOENG BIOTECH, V7, DOI 10.3389/fbioe.2019.00215
Malik N, 2019, NEW REV HYPERMEDIA M, V25, P182, DOI 10.1080/13614568.2019.1653996
Millet-Reyes B, 2013, GLOB FINANC J, V24, P129, DOI 10.1016/j.gfj.2013.07.003
Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002
Noorhidawati A, 2017, MALAYS J LIBR INF SC, V22, P85, DOI 10.22452/mjlis.vol22no2.6
Persson O, 2010, SCIENTOMETRICS, V83, P397, DOI 10.1007/s11192-009-0007-0
Ponomarev IV, 2014, SCIENTOMETRICS, V100, P755, DOI 10.1007/s11192-014-1320-9
Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017
Rish I., 2001, IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM IJCAI 2001 WORKSH EM, V3, P41
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
van Raan AFJ, 2000, ASIST MON SER, P301
Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009
Wang FH, 2019, SCIENTOMETRICS, V118, P109, DOI 10.1007/s11192-018-2965-6
Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9
Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002
Winnink JJ, 2015, SCIENTOMETRICS, V102, P113, DOI 10.1007/s11192-014-1451-z
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
Zhu J, 2009, STAT INTERFACE, V2, P349
NR 38
TC 3
Z9 3
U1 6
U2 17
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-1014-4
PY 2022
BP 1
EP 6
DI 10.1109/CDMA54072.2022.00006
PG 6
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Engineering, Biomedical
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BT2WE
UT WOS:000814738100002
DA 2024-09-05
ER
PT J
AU Liu, Y
Chen, HX
Thoff, A
AF Liu, Yang
Chen, Huaxi
Thoff, Anjahol
TI Research on evaluation method of students' classroom performance based
on artificial intelligence
SO INTERNATIONAL JOURNAL OF CONTINUING ENGINEERING EDUCATION AND LIFE-LONG
LEARNING
LA English
DT Article
DE artificial intelligence; classroom performance; evaluation method;
students' performance; monitoring image
ID BEHAVIOR
AB In order to solve the problem of time-consuming and low reliability of the traditional evaluation method for students' classroom performance, an artificial intelligence-based evaluation method for students' classroom performance is proposed. This paper establishes the evaluation standard of students' classroom performance and quantifies the evaluation of students' classroom performance. Classroom monitoring device is driven by program code. The initial acquired image is processed by image enhancement and recognition, and the result is transmitted to the upper computer. This paper analyses the evaluation indexes of students' classroom performance, such as attendance, participation, attention and abnormal behaviour, and finally outputs the results of teachers' classroom performance. The experimental results show that compared with the traditional evaluation method, the artificial intelligence-based evaluation method saves 69 seconds on average and improves its reliability by 6.25%.
C1 [Liu, Yang] Chuzhou Univ, Sch Math & Finance, Chuzhou 329000, Peoples R China.
[Chen, Huaxi] Bengbu Univ, Sch Sci, Bengbu 233000, Anhui, Peoples R China.
[Thoff, Anjahol] Univ Copenhagen, Dept Comp Sci, DK-1017 Copenhagen, Denmark.
C3 Chuzhou University; Bengbu University; University of Copenhagen
RP Chen, HX (corresponding author), Bengbu Univ, Sch Sci, Bengbu 233000, Anhui, Peoples R China.
EM 946261665@qq.com; aiiiang@sina.com; anjahol.thoff@outlook.com
RI Valdiviezo, Lorgio/KRO-5493-2024
FU Anhui Provincial Education Department Foundation [2016jyxm0724]; Key
project of teaching research in Anhui province [2017jyxm0541]
FX This work was supported by Anhui Provincial Education Department
Foundation under grant no. 2016jyxm0724, and Key project of teaching
research in Anhui province under grant no. 2017jyxm0541.
CR Blazar D, 2017, EDUC EVAL POLICY AN, V39, P146, DOI 10.3102/0162373716670260
Caldarella P., 2017, UPDATE APPL RES MUSI, V35, P615
Connell G.L., 2016, CBE-LIFE SCI EDUC, V15, P113
Decristan J., 2017, AM EDUC RES J, V52, P283
Gage NA, 2018, BEHAV DISORDERS, V43, P302, DOI 10.1177/0198742917714809
Goates MC, 2017, COLL RES LIBR, V78, P382, DOI 10.5860/crl.78.3.382
Hansen BD, 2017, BEHAV MODIF, V41, P626, DOI 10.1177/0145445517698418
Kostaris C, 2017, EDUC TECHNOL SOC, V20, P261
Litterio LM, 2018, ASSESS WRIT, V38, P1, DOI 10.1016/j.asw.2018.06.002
Looi C.K., 2005, SCITECH BOOK NEWS, V25, P249
Panadero E., 2016, EDUC PSYCHOL REV, V28, P1
Potter B.S., 2017, TECHNOLOGY ENG TEACH, V76, P355
Rasooli A, 2018, STUD EDUC EVAL, V56, P164, DOI 10.1016/j.stueduc.2017.12.008
Scott TM, 2017, PREV SCH FAIL, V61, P80, DOI 10.1080/1045988X.2016.1196645
Shuter R., 2017, WESTERM J COMMUN, V26, P1
Tousignant M, 2002, ADV HEALTH SCI EDUC, V7, P19, DOI 10.1023/A:1014516206120
Wood C.L., 2017, RURAL SPECIAL ED Q, V28, P39
Zapata GC, 2016, FOREIGN LANG ANN, V49, P93, DOI 10.1111/flan.12176
Zhao XY, 2017, STUD EDUC EVAL, V52, P42, DOI 10.1016/j.stueduc.2016.12.002
NR 19
TC 1
Z9 1
U1 4
U2 29
PU INDERSCIENCE ENTERPRISES LTD
PI GENEVA
PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215
GENEVA, SWITZERLAND
SN 1560-4624
EI 1741-5055
J9 INT J CONTIN ENG EDU
JI Int. J. Contin. Eng. Educ. Life-Long Learn.
PY 2020
VL 30
IS 4
SI SI
BP 476
EP 491
PG 16
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA OP8WG
UT WOS:000588370800008
DA 2024-09-05
ER
PT J
AU Zhang, Y
Lu, J
Liu, F
Liu, Q
Porter, A
Chen, HS
Zhang, GQ
AF Zhang, Yi
Lu, Jie
Liu, Feng
Liu, Qian
Porter, Alan
Chen, Hongshu
Zhang, Guangquan
TI Does deep learning help topic extraction? A kernel k-means clustering
method with word embedding
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Bibliometrics; Topic analysis; Cluster analysis; Text mining
ID AUTHOR COCITATION; SCIENCE
AB Topic extraction presents challenges for the bibliometric community, and its performance still depends on human intervention and its practical areas. This paper proposes a novel kernel k-means clustering method incorporated with a word embedding model to create a solution that effectively extracts topics from bibliometric data. The experimental results of a comparison of this method with four clustering baselines (i.e., k-means, fuzzy c-means, principal component analysis, and topic models) on two bibliometric datasets demonstrate its effectiveness across either a relatively broad range of disciplines or a given domain. An empirical study on bibliometric topic extraction from articles published by three top tier bibliometric journals between 2000 and 2017, supported by expert knowledge-based evaluations, provides supplemental evidence of the method's ability on topic extraction. Additionally, this empirical analysis reveals insights into both overlapping and diverse research interests among the three journals that would benefit journal publishers, editorial boards, and research communities. (C) 2018 Elsevier Ltd. All rights reserved.
C1 [Zhang, Yi; Lu, Jie; Liu, Feng; Liu, Qian; Chen, Hongshu; Zhang, Guangquan] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Sydney, NSW, Australia.
[Liu, Qian] Beijing Inst Technol, Sch Comp Sci, Beijing, Peoples R China.
[Porter, Alan] Georgia Inst Technol, Technol Policy & Assessment Ctr, Atlanta, GA 30332 USA.
[Porter, Alan] Search Technol Inc, Herndon, VA USA.
C3 University of Technology Sydney; Beijing Institute of Technology;
University System of Georgia; Georgia Institute of Technology
RP Chen, HS (corresponding author), Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Sydney, NSW, Australia.
EM yi.zhang@uts.edu.au; jie.lu@uts.edu.au; feng.liu-2@student.uts.edu.au;
qian.liu-9@student.uts.edu.au; alan.porter@isye.gatech.edu;
hongsue1114@hotmail.com; guangquan.zhang@uts.edu.au
RI Liu, Feng/I-1816-2016; Chen, Hongshu/O-2926-2017; Zhang,
Yi/AAT-6945-2021; Zhang, Guangquan/G-2553-2017; Liu, Qian/AGD-5748-2022;
porter, alan/A-7013-2009
OI Liu, Feng/0000-0002-5005-9129; Chen, Hongshu/0000-0002-0893-1817; Zhang,
Yi/0000-0002-7731-0301; Liu, Qian/0000-0002-3162-935X; porter,
alan/0000-0002-4520-6518
FU Australian Research Council [DP150101645]; United States National
Science Foundation [1759960]; Direct For Social, Behav & Economic Scie;
SBE Off Of Multidisciplinary Activities [1759960] Funding Source:
National Science Foundation
FX This work is partially supported by the Australian Research Council
under Discovery Grant DP150101645 and the United States National Science
Foundation Award #1759960.
CR Amigó E, 2009, INFORM RETRIEVAL, V12, P461, DOI 10.1007/s10791-008-9066-8
[Anonymous], 2015, Transactions of the Association for Computational Linguistics, DOI [DOI 10.1186/1472-6947-15-S2-S2.ARXIV:1103.0398, DOI 10.1162/TACLA00134, DOI 10.1162/TACL_A_00134]
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029
Chang Y.-W., 2010, Journal of Machine Learning Research, V11, P1471
Chen K. Y., 2007, IEEE T KNOWLEDGE DAT, V19
Colavizza G, 2016, J INFORMETR, V10, P1037, DOI 10.1016/j.joi.2016.07.009
Ding WY, 2014, J ASSOC INF SCI TECH, V65, P2084, DOI 10.1002/asi.23134
Dong Ruihai., 2013, Proceedings of the Twenty- Third international joint conference on Artificial Intelligence, P1310
Faleiros TD, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P4363
Firth J.R., 1957, Studies in Linguistic Analysis
Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366
Hou JH, 2018, SCIENTOMETRICS, V115, P869, DOI 10.1007/s11192-018-2695-9
Jain AK, 1999, ACM COMPUT SURV, V31, P264, DOI 10.1145/331499.331504
Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011
Kanungo T, 2002, IEEE T PATTERN ANAL, V24, P881, DOI 10.1109/TPAMI.2002.1017616
Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734
Kulis B., 2004, SIGKDD
Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Levy O, 2014, ADV NEUR IN, V27
Leydesdorff L, 2008, J AM SOC INF SCI TEC, V59, P77, DOI 10.1002/asi.20732
Li GC, 2014, RES POLICY, V43, P941, DOI 10.1016/j.respol.2014.01.012
Liu Q, 2018, AAAI CONF ARTIF INTE, P5261
Manning C. D., 2008, FLAT CLUSTERING INTR, P350
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Nieminen P, 2013, J INFORMETR, V7, P874, DOI 10.1016/j.joi.2013.08.004
PETERS HPF, 1993, RES POLICY, V22, P23, DOI 10.1016/0048-7333(93)90031-C
Rip A., 1988, HDB QUANTITATIVE STU, P253
Salton G., 1986, Introduction to Modern Information Retrieval
Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162]
Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424
Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596
Velden T, 2017, SCIENTOMETRICS, V111, P1169, DOI 10.1007/s11192-017-2306-1
Waltman L, 2017, PRO INT CONF SCI INF, P691
Xu R, 2005, IEEE T NEURAL NETWOR, V16, P645, DOI 10.1109/TNN.2005.845141
Xuan JY, 2018, IEEE T NEUR NET LEAR, V29, P1835, DOI 10.1109/TNNLS.2017.2676817
Xuan JY, 2017, IEEE T KNOWL DATA EN, V29, P1357, DOI 10.1109/TKDE.2016.2636182
Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814
Zhang Y, 2016, J INFORMETR, V10, P1108, DOI 10.1016/j.joi.2016.09.006
Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015
Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019
Zhao DZ, 2014, J ASSOC INF SCI TECH, V65, P995, DOI 10.1002/asi.23027
Zhao Y, 2004, MACH LEARN, V55, P311, DOI 10.1023/B:MACH.0000027785.44527.d6
Zhao Y, 2005, DATA MIN KNOWL DISC, V10, P141, DOI 10.1007/s10618-005-0361-3
NR 45
TC 80
Z9 83
U1 3
U2 117
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD NOV
PY 2018
VL 12
IS 4
BP 1099
EP 1117
DI 10.1016/j.joi.2018.09.004
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA HB5CH
UT WOS:000451074800008
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Riehl, K
AF Riehl, Kevin
TI On the scientometric value of full-text, beyond abstracts and titles:
evidence from the business and economic literature
SO MANAGEMENT REVIEW QUARTERLY
LA English
DT Article; Early Access
DE Scientometrics; Topic modelling; Latent Dirichlet allocation; LDA;
Textual analysis; Natural language processing; I23; M21; O31; O35; Z19
ID CO-WORD ANALYSIS; INTERNATIONAL-BUSINESS; BIBLIOMETRIC ANALYSIS;
MANAGEMENT JOURNALS; CITATION ANALYSIS; ARTICLE; SCIENCE; INFORMATION;
READABILITY; EVOLUTION
AB Are abstracts or titles a good proxy for what an article contains? The majority of scientometric studies have used easily accessible representations of publications such as reference and author lists, citations, keywords, titles, and abstracts, rather than full-texts. However, better accessibility to full-text databases is on the rise. First studies employing full-texts are promising, yet the extent to which scientometric exploration of papers beyond title and abstract is beneficial to gain further insights is still under discussion. In this paper, we analyse the similarity between a paper's title, abstract and full-text and examine whether scientometric analyses should better rely on full-texts. Our dataset includes 66,392 articles published in 27 leading journals in the business administration and economics literature. We examine the use of these representations in textual analysis, topic modelling and research evaluation. The results suggest that, unlike titles, abstracts and full-texts exhibit significant similarities and can be used interchangeably. While, abstracts contain less extraneous information and approximately 30% less noise compared to full-texts in topic modelling, full-text-based models to explain future number of citations yield a 5% higher explanatory power. Additionally, we recommend considering the influence of diverse writing styles as a textual and rhetorical property, as our analysis demonstrates its significant explanatory power for future publication success.
C1 [Riehl, Kevin] Tech Univ Darmstadt, Dept Law & Econ, Darmstadt, Germany.
C3 Technical University of Darmstadt
RP Riehl, K (corresponding author), Tech Univ Darmstadt, Dept Law & Econ, Darmstadt, Germany.
EM kevin.riehl.de@googlemail.com
OI Riehl, Kevin/0000-0003-4620-8379
CR Adam D, 2002, NATURE, V415, P726, DOI 10.1038/415726a
Ahmad H, 2024, ENVIRON DEV SUSTAIN, V26, P2965, DOI 10.1007/s10668-023-02921-x
Akpan I. J., 2020, Journal of Small Business & Entrepreneurship, P1, DOI [10.1080/08276331.2020.1786229, DOI 10.1080/08276331.2020.1786229]
Anagnostou N.K., 2006, ICT ANAL TEACHING LE, P33
[Anonymous], 1980, Computerstrategien fur die Kommunikationsanalyse
[Anonymous], 2020, Web of Science
[Anonymous], 2007, AAAI, DOI DOI 10.5555/1619645.1619752
[Anonymous], 2020, Google Scholar Database
[Anonymous], 2009, Harvard H-IV dictionary
Antons D, 2019, J MANAGE, V45, P3035, DOI 10.1177/0149206318774619
Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300
ARMSTRONG JS, 1980, INTERFACES, V10, P80, DOI 10.1287/inte.10.2.80
ARUN R, 2010, LECT NOTES ARTIF INT, V6118
Astley W.G., 1985, ADMIN SCI QUART, V30, P497, DOI [10.2307/2392694, DOI 10.2307/2392694]
Aziz S, 2022, EUR FINANC MANAG, V28, P744, DOI 10.1111/eufm.12326
Baheti Santosh Satyanarayan, 2023, International Journal of Business Innovation and Research, P283, DOI 10.1504/IJBIR.2023.129362
Baier P., 2020, Financial Markets, Institutions Instruments, V29, P93, DOI DOI 10.1111/FMII.12132
Bailey J., 1996, BUS STRAT REV, V7, P7
Baldi S, 1998, AM SOCIOL REV, V63, P829, DOI 10.2307/2657504
Ball R, 2009, SCIENTOMETRICS, V79, P667, DOI 10.1007/s11192-007-1984-5
Balz T, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14174285
Barker K, 2007, RES EVALUAT, V16, P3, DOI 10.3152/095820207X190674
Baumgartner H, 2003, J MARKETING, V67, P123, DOI 10.1509/jmkg.67.2.123.18610
BAVELAS JB, 1978, CAN PSYCHOL REV, V19, P158, DOI 10.1037/h0081472
BAYER AE, 1982, J MARRIAGE FAM, V44, P527, DOI 10.2307/351577
Bergh DD, 2006, STRATEGIC MANAGE J, V27, P81, DOI 10.1002/smj.504
Berninger M, 2021, J BANK FINANC, V131, DOI 10.1016/j.jbankfin.2021.106188
Bhardwaj RK, 2016, SCIENTOMETRICS, V106, P299, DOI 10.1007/s11192-015-1777-1
Blei D, 2006, P 23 INT C MACH LEAR, P113
Blei D, 2010, IEEE SIGNAL PROC MAG, V27, P55, DOI 10.1109/MSP.2010.938079
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6
Briggs LC, 2014, Text complexity and readability measures: an examination of historical trends
Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011
Card D, 2013, J ECON LIT, V51, P144, DOI 10.1257/jel.51.1.144
COLE JR, 1972, SCIENCE, V178, P368, DOI 10.1126/science.178.4059.368
Cole JR., 1977, Am J Sociol, V83, P491, DOI [10.1086/226571, DOI 10.1086/226571]
Colquitt JA, 2007, ACAD MANAGE J, V50, P1281, DOI 10.5465/AMJ.2007.28165855
Corsi M, 2010, AM J ECON SOCIOL, V69, P1495, DOI 10.1111/j.1536-7150.2010.00754.x
Dai R, 2023, REV FINANC, V27, P79, DOI 10.1093/rof/rfac018
Dale E, 1948, EDUC RES BULL, V27, P37
Damasevicius R, 2023, J DOC, V79, P183, DOI 10.1108/JD-02-2022-0030
DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017
Domschke W., 2015, Einfhrung in operations research, V9, DOI [10.1007/978-3-662-48216-2, DOI 10.1007/978-3-662-48216-2]
Duriau VJ, 2007, ORGAN RES METHODS, V10, P5, DOI 10.1177/1094428106289252
Fahrmeir L., 2007, Der Weg zur Datenanalyse
Fleck Ludwik., 1935, ENTSTEHUNG ENTWICKLU
Flesch R, 1948, J APPL PSYCHOL, V32, P221, DOI 10.1037/h0057532
Fox CW, 2015, ECOL EVOL, V5, P1970, DOI 10.1002/ece3.1480
Garfield E., 1972, Technol Humanit, V2, P98
Gioia DA, 2013, ORGAN RES METHODS, V16, P15, DOI 10.1177/1094428112452151
Glenisson P, 2005, INFORM PROCESS MANAG, V41, P1548, DOI 10.1016/j.ipm.2005.03.021
Glenisson P, 2005, SCIENTOMETRICS, V63, P163, DOI 10.1007/s11192-005-0208-0
Glnzel W., 2019, Springer handbook of science and technology indicators, DOI [10.1007/978-3-030-02511-3, DOI 10.1007/978-3-030-02511-3]
Gordon R.A., 1959, Journal of Education for Business, V35, P115, DOI DOI 10.1080/08832323.1959.10116245
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Gunning Robert, 1952, The Technique of Clear Writing
Gurcan F, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15139854
Hannigan TR, 2019, ACAD MANAG ANN, V13, P586, DOI 10.5465/annals.2017.0099
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
Huang MH, 2008, J AM SOC INF SCI TEC, V59, P1819, DOI 10.1002/asi.20885
Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1
Jamali HR, 2015, SCIENTOMETRICS, V105, P1635, DOI 10.1007/s11192-015-1642-2
Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z
Jin YR, 2021, TEXT RES J, V91, P1609, DOI 10.1177/0040517520985908
Johnson MS., 2003, MARKETING THEORY, V3, P477
Judge TA, 2007, ACAD MANAGE J, V50, P491
KESSLER MM, 1963, IEEE T INFORM THEORY, V9, P49, DOI 10.1109/TIT.1963.1057800
Kincaid J.P., 1975, Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel
Klarin A, 2021, J BUS RES, V126, P250, DOI 10.1016/j.jbusres.2020.12.063
Knorr-Cetina K. D., 1981, The manufacture of knowledge, DOI [10.1016/C2009-0-09537-3, DOI 10.1016/C2009-0-09537-3]
Krippendorff K., 2019, Content Analysis: An Introduction to Its Methodology, DOI DOI 10.4135/9781071878781
Kuhn HW, 2005, NAV RES LOG, V52, P7, DOI 10.1002/nav.20053
La Quatra M, 2021, SCIENTOMETRICS, V126, P8275, DOI 10.1007/s11192-021-04117-4
Latour B., 2013, Laboratory life. The construction of scientific facts, DOI [10.2307/j.ctt32bbxc, DOI 10.2307/J.CTT32BBXC]
Leydesdorff L., 2015, International Encyclopedia of the Social Behavioral Sciences, V21, P322, DOI [10.1016/B978-0-08-097086-8.85030-8, DOI 10.1016/B978-0-08-097086-8.85030-8]
Li CY, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e18446
Liesch PW, 2011, SCIENTOMETRICS, V88, P17, DOI 10.1007/s11192-011-0372-3
Liu JJ, 2020, TECHNOL FORECAST SOC, V155, DOI 10.1016/j.techfore.2020.120022
Locke K, 1997, ACAD MANAGE J, V40, P1023, DOI 10.5465/256926
Locke K., 2003, Grounded theory in management research, DOI DOI 10.4135/9780857024428
Loughran T, 2014, J FINANC, V69, P1643, DOI 10.1111/jofi.12162
Lowry P., 2004, J ASSOC INF SYST, V5, P29, DOI DOI 10.17705/1JAIS.00045
Lowry PB, 2007, IEEE T PROF COMMUN, V50, P352, DOI 10.1109/TPC.2007.908733
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
MALIN MV, 1968, LIBR TRENDS, V16, P374
Marshakova IV., 1973, Nauchno-Tekhnicheskaya Informatisiya: Sci Tech Inf Process, V2, P49
Maulana FI, 2022, 7 N AM INT C IND ENG, DOI [10.46254/NA07.20220234, DOI 10.46254/NA07.20220234]
MCLAUGHLIN GH, 1969, J READING, V12, P639
Merton RK, 1985, Ders., Entwicklung und Wandel von Forschungsinteressen. Aufsatze zur Wissenschaftssoziologie. Mit einer Einleitung von Nico Stehr, P86
Mingers J, 2017, EUR J OPER RES, V257, P323, DOI 10.1016/j.ejor.2016.07.058
Mingers J, 2010, EUR J OPER RES, V205, P422, DOI 10.1016/j.ejor.2009.12.008
Monastersky R., 2005, CHRON HIGHER EDUC, V52, pA12
Morales-Parragué M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14042291
Morris TA, 1998, J AM MED INFORM ASSN, V5, P448, DOI 10.1136/jamia.1998.0050448
Moya-Anegon F, 2004, SCIENTOMETRICS, V61, P129, DOI 10.1023/B:SCIE.0000037368.31217.34
Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044
Nadi-Ravandi S, 2022, EDUC INF TECHNOL, V27, P10207, DOI 10.1007/s10639-022-11048-x
Nerkar A, 2013, TECH INNOVATION ENTR, V13, P165, DOI 10.1108/S1479-067X(2013)0000013009
Nerur S, 2016, STRATEGIC MANAGE J, V37, P1065, DOI 10.1002/smj.2377
Newman D, 2009, J MACH LEARN RES, V10, P1801
Patra BC, 2024, BENCHMARKING, V31, P162, DOI 10.1108/BIJ-02-2022-0091
Pauly D., 2005, Ethics Sci Environ Politics, P33, DOI [DOI 10.3354/ESEP005033, 10.3354/esep005033]
Pennebaker J.W., 2007, DEV PSYCHOMETRIC PRO
PETERS HPF, 1994, SCIENTOMETRICS, V29, P115, DOI 10.1007/BF02018386
Pfeffer J, 2002, ACAD MANAG LEARN EDU, V1, P78, DOI 10.5465/AMLE.2002.7373679
Phelan SE, 2002, STRATEGIC MANAGE J, V23, P1161, DOI 10.1002/smj.268
Pierson F.C., 1959, The Journal of Business Education, V35, P114, DOI DOI 10.1080/08832323.1959.10116244
Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533
Podsakoff PM, 2005, STRATEGIC MANAGE J, V26, P473, DOI 10.1002/smj.454
Pollack J., 2006, International Journal of Project Management, V24, P175, DOI 10.1016/j.ijproman.2005.10.005
PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814
PRICE DJD, 1965, SCIENCE, V149, P510
Ravikumar S, 2015, SCIENTOMETRICS, V102, P929, DOI 10.1007/s11192-014-1402-8
Rojas-Lamorena AJ, 2022, J BUS RES, V139, P1067, DOI 10.1016/j.jbusres.2021.10.025
ROWLETT RJ, 1985, J CHEM INF COMP SCI, V25, P159, DOI 10.1021/ci00047a005
Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y
Sagi I, 2008, J INF SCI, V34, P680, DOI 10.1177/0165551507086261
Saini N, 2022, J CLEAN PROD, V381, DOI 10.1016/j.jclepro.2022.135173
Smith Page., 1990, Killing the Spirit: Higher Education in America
SNIZEK WE, 1991, SCIENTOMETRICS, V20, P25, DOI 10.1007/BF02018141
Song M, 2013, SCIENTOMETRICS, V96, P183, DOI 10.1007/s11192-012-0900-9
STEWART JA, 1983, SOC FORCES, V62, P166, DOI 10.2307/2578354
Stone B., 2010, TOP COGN SCI, V3, P92, DOI DOI 10.1111/J.1756-8765.2010.01108.X
Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171
Sullivan D, 2011, J INT BUS STUD, V42, P446, DOI 10.1057/jibs.2010.56
Suominen A, 2017, TECHNOL FORECAST SOC, V115, P131, DOI 10.1016/j.techfore.2016.09.028
Tahai A, 1999, STRATEGIC MANAGE J, V20, P279
Tan LW, 2015, NANKAI BUS REV NT, V6, P20, DOI 10.1108/NBRI-09-2014-0036
Tausczik YR, 2010, J LANG SOC PSYCHOL, V29, P24, DOI 10.1177/0261927X09351676
Thelwall M, 2014, J INFORMETR, V8, P963, DOI 10.1016/j.joi.2014.09.011
Van Dalen HP, 2009, J EUR SOC POLICY, V19, P47, DOI 10.1177/0958928708098523
Wang X, 2015, J CONSUM RES, V42, P5, DOI 10.1093/jcr/ucv009
Wei FF, 2020, ELECTRON LIBR, V38, P493, DOI 10.1108/EL-12-2019-0279
Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7
Whissell C, 1999, PERCEPT MOTOR SKILL, V88, P76, DOI 10.2466/PMS.88.1.76-86
White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W
Wuehrer GA, 2013, SCIENTOMETRICS, V95, P541, DOI 10.1007/s11192-012-0909-0
Young L, 2015, J BUS-BUS MARK, V22, P111, DOI 10.1080/1051712X.2015.1021591
Zhou L, 2021, INF SYST E-BUS MANAG, V19, P757, DOI 10.1007/s10257-020-00461-9
NR 141
TC 0
Z9 0
U1 1
U2 1
PU SPRINGERNATURE
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND
SN 2198-1620
EI 2198-1639
J9 MANAG REV Q
JI Manag. Rev. Q.
PD 2024 MAY 24
PY 2024
DI 10.1007/s11301-024-00439-8
EA MAY 2024
PG 55
WC Business; Business, Finance; Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA SJ3O2
UT WOS:001234049200001
DA 2024-09-05
ER
PT J
AU Crockett, C
Finelli, CJ
Demonbrun, M
Nguyen, KA
Tharayil, S
Shekhar, P
Rosenberg, RS
AF Crockett, Caroline
Finelli, Cynthia J.
Demonbrun, Matt
Nguyen, Kevin A.
Tharayil, Sneha
Shekhar, Prateek
Rosenberg, Robyn S.
TI Common Characteristics of High-quality Papers Studying Student Response
to Active Learning
SO INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION
LA English
DT Article
DE active learning; student response; systematic literature review
ID EDUCATION; SCIENCE
AB Active learning is increasingly used in engineering classrooms to improve student learning and engagement. Although students tend to respond positively to the introduction of active learning, some instructors experience negative student responses. Determining why and how to alleviate such negative responses is an open research question. Because there are many contextual variables to consider, we believe this question will best be addressed by increasing the number of faculty who are able to study their own implementation of active learning. This paper examines the underlying characteristics of 27 high-quality papers on student response to active learning. Using a six step research framework, this paper: (1) discusses common categories of research questions, (2) offers rules of thumb for literature reviews, (3) provides example theories, (4) discusses the data collected by qualitative, quantitative, and mixed methods studies and how the data is analyzed, (5) points to different approaches for data presentation, and (6) lists elements which authors typically include in their description of context and discussion sections. We offer literature-driven recommendations for faculty to help them quickly adopt good practices for how to share evidence based on their experiences.
C1 [Crockett, Caroline; Finelli, Cynthia J.] Univ Michigan, Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA.
[Demonbrun, Matt] Southern Methodist Univ, Enrollment Management Res Grp, Dallas, TX USA.
[Nguyen, Kevin A.] Sonoma State Univ, Hutchins Sch Liberal Studies, Rohnert Pk, CA 94928 USA.
[Tharayil, Sneha] Univ Texas Austin, STEM Educ, Austin, TX 78712 USA.
[Shekhar, Prateek] New Jersey Inst Technol, Sch Appl Engn & Technol, Newark, NJ 07102 USA.
[Rosenberg, Robyn S.] Harvard Univ, Cabot Sci Lib, Cambridge, MA 02138 USA.
C3 University of Michigan System; University of Michigan; Southern
Methodist University; California State University System; Sonoma State
University; University of Texas System; University of Texas Austin; New
Jersey Institute of Technology; Harvard University
RP Crockett, C (corresponding author), Univ Michigan, Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA.
EM cecroc@umich.edu; cfinelli@umich.edu; rdemonbrun@smu.edu;
nguyenkevi@sonoma.edu; sneha.tharayil@utexas.edu;
prateek.shekhar@njit.edu; robyn_rosenberg@harvard.edu
FU NSF [DUE-1744407]
FX The authors would like to thank Dr. Maura Borrego and Dr. Cindy Waters
for their contributions to the overall systematic literature, without
which this project would not have been possible. We also thank the
reviewers for their thoughtful comments. We would like to gratefully
acknowledge the NSF for their financial support (through the DUE-1744407
grant). Any opinions, findings, and conclusions or recommendations
expressed in this Report are those of the authors and do not necessarily
reflect the views of the National Science Foundation; NSF has not
approved or endorsed its content.
CR [Anonymous], 2018, J COLL SCI TEACH
Astin AW, 1999, J COLL STUDENT DEV, V40, P518
Azevedo LF, 2011, REV PORT PNEUMOL, V17, P232, DOI 10.1016/j.rppneu.2011.06.014
Bandura A, 2002, APPL PSYCHOL-INT REV, V51, P269, DOI 10.1111/1464-0597.00092
Borrego M, 2018, PROC FRONT EDUC CONF
Borrego M, 2015, J ENG EDUC, V104, P212, DOI 10.1002/jee.20069
Borrego M, 2009, J ENG EDUC, V98, P53, DOI 10.1002/j.2168-9830.2009.tb01005.x
Borrego M, 2008, J ENG EDUC, V97, P123, DOI 10.1002/j.2168-9830.2008.tb00962.x
Clark V.L. P., 2014, UNDERSTANDING RES CO
Creswell J. W., 2005, ED RES PLANNING COND
Deci E.L., 1980, Advances in experimental social psychology, V13, P39, DOI DOI 10.1016/S0065-2601(08)60130-6
Dewey J., 1986, EDUC FORUM, V50, P241, DOI [10.1080/00131728609335764, DOI 10.1080/00131728609335764]
Eddy RM, 2000, J CHEM EDUC, V77, P514, DOI 10.1021/ed077p514
Eisner C., 2018, GOING PUBLIC YOUR SO
Evans BC, 2011, J MIX METHOD RES, V5, P276, DOI 10.1177/1558689811412972
Faust JL., 1998, Journal onExcellence in College Teaching, V9, P3, DOI [10.5926/arepj1962.47.029, DOI 10.5926/AREPJ1962.47.029]
Finelli CJ, 2014, J ENG EDUC, V103, P331, DOI 10.1002/jee.20042
Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111
Frey B.B., 2018, The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation, DOI DOI 10.4135/9781506326139.N
Henderson C, 2007, PHYS REV SPEC TOP-PH, V3, DOI 10.1103/PhysRevSTPER.3.020102
Hilpert JC, 2010, PROC FRONT EDUC CONF
Howe KR, 2009, EDUC RESEARCHER, V38, P428, DOI 10.3102/0013189X09342003
Hutchings P., 2000, Opening Lines: Approaches to the Scholarship of Teaching and Learning
Kovach R., 1996, DEV SELF REGULATED L, P147
MCAULEY E, 1989, RES Q EXERCISE SPORT, V60, P48, DOI 10.1080/02701367.1989.10607413
PINTRICH PR, 1993, EDUC PSYCHOL MEAS, V53, P801, DOI 10.1177/0013164493053003024
Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x
Redish EF, 1998, AM J PHYS, V66, P212, DOI 10.1119/1.18847
Rosenberg R., 2018, 2018 ASEE ANN C EXP
Schau C., 2003, STUDENTS ATTITUDES O, P11
Semsar K, 2011, CBE-LIFE SCI EDUC, V10, P268, DOI 10.1187/cbe.10-10-0133
[Shavelson R.J. NRC. NRC.], 2002, SCI RES ED
Stains M, 2018, SCIENCE, V359, P1468, DOI 10.1126/science.aap8892
Svinicki M. D., GUIDEBOOK CONCEPTUAL, P37
Walberg H. J., 1980, PSYCHOL THEORY ED PR
Williams GC, 1996, J PERS SOC PSYCHOL, V70, P767, DOI 10.1037/0022-3514.70.4.767
NR 36
TC 2
Z9 2
U1 0
U2 2
PU TEMPUS PUBLICATIONS
PI DURRUS, BANTRY
PA IJEE , ROSSMORE,, DURRUS, BANTRY, COUNTY CORK 00000, IRELAND
SN 0949-149X
J9 INT J ENG EDUC
JI Int. J. Eng. Educ
PY 2021
VL 37
IS 2
BP 420
EP 432
PG 13
WC Education, Scientific Disciplines; Engineering, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Education & Educational Research; Engineering
GA RO4PJ
UT WOS:000641026600012
DA 2024-09-05
ER
PT J
AU Bai, XM
Liu, H
Zhang, FL
Ning, ZL
Kong, XJ
Lee, I
Xia, F
AF Bai, Xiaomei
Liu, Hui
Zhang, Fuli
Ning, Zhaolong
Kong, Xiangjie
Lee, Ivan
Xia, Feng
TI An Overview on Evaluating and Predicting Scholarly Article Impact
SO INFORMATION
LA English
DT Article
DE scholarly big data; article impact; machine learning; data mining
ID CITATION IMPACT; UNIVERSALITY; NETWORKS
AB Scholarly article impact reflects the significance of academic output recognised by academic peers, and it often plays a crucial role in assessing the scientific achievements of researchers, teams, institutions and countries. It is also used for addressing various needs in the academic and scientific arena, such as recruitment decisions, promotions, and funding allocations. This article provides a comprehensive review of recent progresses related to article impact assessment and prediction. The review starts by sharing some insight into the article impact research and outlines current research status. Some core methods and recent progress are presented to outline how article impact metrics and prediction have evolved to consider integrating multiple networks. Key techniques, including statistical analysis, machine learning, data mining and network science, are discussed. In particular, we highlight important applications of each technique in article impact research. Subsequently, we discuss the open issues and challenges of article impact research. At the same time, this review points out some important research directions, including article impact evaluation by considering Conflict of Interest, time and location information, various distributions of scholarly entities, and rising stars.
C1 [Bai, Xiaomei; Liu, Hui; Ning, Zhaolong; Kong, Xiangjie; Xia, Feng] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China.
[Bai, Xiaomei] Anshan Normal Univ, Ctr Comp, Anshan 114007, Peoples R China.
[Zhang, Fuli] Anshan Normal Univ, Anshan 114007, Peoples R China.
[Lee, Ivan] Univ South Australia, Sch Informat Technol & Math Sci, Mawson Lakes, SA 5095, Australia.
C3 Dalian University of Technology; Anshan Normal University; Anshan Normal
University; University of South Australia
RP Liu, H (corresponding author), Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China.
EM xiaomeibai@outlook.com; liuhui1126@dlut.edu.cn; zfuli@outlook.com;
Zhaolongning@dlut.edu.cn; xjkong@ieee.org; ivan.lee@unisa.edu.au;
f.xia@ieee.org
RI Xia, Feng/Y-2859-2019; Kong, Xiangjie/B-8809-2016; Ning,
Zhaolong/ABI-3626-2022; Lee, Ivan/F-4131-2013
OI Xia, Feng/0000-0002-8324-1859; Kong, Xiangjie/0000-0003-2698-3319; Ning,
Zhaolong/0000-0002-7870-5524; Lee, Ivan/0000-0002-2826-6367
CR Aguinis H, 2012, ACAD MANAGE PERSPECT, V26, P105, DOI 10.5465/amp.2011.0088
Anicich EM, 2015, P NATL ACAD SCI USA, V112, P1338, DOI 10.1073/pnas.1408800112
[Anonymous], 2013, P AAAI C ART INT
[Anonymous], 1989, Applied Logistic Regression
[Anonymous], 2016, ARXIV160605752
[Anonymous], 2009, Proc. of the 9th SIAM International Conference on Data Mining
Bai XM, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P9, DOI 10.1145/2872518.2889383
Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364
Barábasi AL, 2013, PHILOS T R SOC A, V371, DOI 10.1098/rsta.2012.0375
Barbaro A., 2014, JEAHIL, V10, P3
Bhise R B., 2013, IOSR Journal Of Humanities And Social Science, V6, P18, DOI DOI 10.9790/0837-0661821
Bruns SB, 2016, SCIENTOMETRICS, V108, P917, DOI 10.1007/s11192-016-1979-1
Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006
Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112
Chen P, 2007, J INFORMETR, V1, P8, DOI 10.1016/j.joi.2006.06.001
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Cheung MK, 2013, NATURE, V494, P176, DOI 10.1038/494176d
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
Di Ciaccio A., 2012, Advanced statistical methods for the analysis of large data-sets
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Gargouri Y, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013636
Hastie T., 2009, ELEMENTS STAT LEARNI, P485, DOI [DOI 10.1007/978-0-387-84858-7_14, DOI 10.1007/978-0-387-84858-7_7]
Hearst MA, 1998, IEEE INTELL SYST APP, V13, P18, DOI 10.1109/5254.708428
Hemmat Esfe M, 2015, SCI ENG ETHICS, V21, P1581, DOI 10.1007/s11948-014-9598-9
Jarrow RA, 1997, REV FINANC STUD, V10, P481, DOI 10.1093/rfs/10.2.481
Jing Z, 2016, CHIN CONTR CONF, P211, DOI 10.1109/ChiCC.2016.7553085
Johnson Richard Arnold, 2002, Applied multivariate statistical analysis, V5-8
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Kaur J, 2013, J INFORMETR, V7, P924, DOI 10.1016/j.joi.2013.09.002
Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112
Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140
Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1
Kwok Roberta, 2013, Nature, V500, P491
Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266
Liu ZR, 2014, PROC INT C TOOLS ART, P493, DOI 10.1109/ICTAI.2014.80
Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236
Page L., 1999, The PageRank citation ranking: bringing order to the web
Petersen AM, 2015, P NATL ACAD SCI USA, V112, pE4671, DOI 10.1073/pnas.1501444112
Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a
Priem J, 2014, BEYOND BIBLIOMETRICS: HARNESSING MULTIDIMENSIONAL INDICATORS OF SCHOLARLY IMPACT, P263
Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877
Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105
Rojas R., 2013, Neural Networks: A Systematic Introduction
Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707
Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x
Schneider M, 2017, J CLIN TRANSL SCI, V1, P45, DOI 10.1017/cts.2016.8
Shah N., 2015, ARXIV150703650
Simkin MV., 2003, COMPLEX SYSTEMS, V14, P269, DOI [DOI 10.1111/J.1740-9713.2006.00202.X, 10.25088/ComplexSystems.14.3.269]
Small H, 2010, SCIENTOMETRICS, V83, P835, DOI 10.1007/s11192-009-0121-z
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Sugiyama Kazunari., 2011, P 11 ANN INT ACMIEEE, P307, DOI DOI 10.1145/1998076.1998133
Sutherland KA, 2017, STUD HIGH EDUC, V42, P743, DOI 10.1080/03075079.2015.1072150
Thelwall Mike., 2016, Journal of Data and Information Science, V1, P7, DOI [DOI 10.20309/JDIS.201610, 10.20309/jdis.201610]
Timilsina M, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P1388, DOI 10.1109/ASONAM.2016.7752425
Tin Kam Ho, 1995, Proceedings of the Third International Conference on Document Analysis and Recognition, P278, DOI 10.1109/ICDAR.1995.598994
Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808
Walker D, 2007, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2007/06/P06010
Wang SJ, 2014, ADV INTEL SYS RES, V111, P24
West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790
Wilsdon J, 2015, NATURE, V523, P129, DOI 10.1038/523129a
Yan E., 2010, P AM SOC INFORM SCI, V47, P1, DOI [10.1002/meet.14504701033, DOI 10.1002/MEET.14504701033]
Yan EJ, 2012, J AM SOC INF SCI TEC, V63, P1313, DOI 10.1002/asi.22680
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
Zhou YB, 2012, NEW J PHYS, V14, DOI 10.1088/1367-2630/14/3/033033
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 65
TC 34
Z9 36
U1 0
U2 24
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2078-2489
J9 INFORMATION
JI Information
PD SEP
PY 2017
VL 8
IS 3
AR 73
DI 10.3390/info8030073
PG 14
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA FQ6YB
UT WOS:000418508900003
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Bickley, SJ
Chan, HF
Torgler, B
AF Bickley, Steve J.
Chan, Ho Fai
Torgler, Benno
TI Artificial intelligence in the field of economics
SO SCIENTOMETRICS
LA English
DT Article
DE Artificial intelligence; Machine learning; Economics; Scientometrics;
Science of science; Bibliometrics
ID WEB-OF-SCIENCE; GOOGLE-SCHOLAR; BIG DATA; SCOPUS; AI; CREATIVITY;
BUSINESS; CYBERNETICS; MANAGEMENT; LANDSCAPE
AB The history of AI in economics is long and winding, much the same as the evolving field of AI itself. Economists have engaged with AI since its beginnings, albeit in varying degrees and with changing focus across time and places. In this study, we have explored the diffusion of AI and different AI methods (e.g., machine learning, deep learning, neural networks, expert systems, knowledge-based systems) through and within economic subfields, taking a scientometrics approach. In particular, we centre our accompanying discussion of AI in economics around the problems of economic calculation and social planning as proposed by Hayek. To map the history of AI within and between economic sub-fields, we construct two datasets containing bibliometrics information of economics papers based on search query results from the Scopus database and the EconPapers (and IDEAs/RePEc) repository. We present descriptive results that map the use and discussion of AI in economics over time, place, and subfield. In doing so, we also characterise the authors and affiliations of those engaging with AI in economics. Additionally, we find positive correlations between quality of institutional affiliation and engagement with or focus on AI in economics and negative correlations between the Human Development Index and share of learning-based AI papers.
C1 [Bickley, Steve J.; Chan, Ho Fai; Torgler, Benno] Queensland Univ Technol, Sch Econ & Finance, 2 George St, Brisbane, Qld 4000, Australia.
[Bickley, Steve J.; Chan, Ho Fai; Torgler, Benno] Ctr Behav Econ Soc & Technol BEST, 2 George St, Brisbane, Qld 4000, Australia.
[Torgler, Benno] CREMA Ctr Res Econ Management & Arts, Sudstr 11, CH-8008 Zurich, Switzerland.
C3 Queensland University of Technology (QUT); Queensland University of
Technology (QUT)
RP Chan, HF (corresponding author), Queensland Univ Technol, Sch Econ & Finance, 2 George St, Brisbane, Qld 4000, Australia.; Chan, HF (corresponding author), Ctr Behav Econ Soc & Technol BEST, 2 George St, Brisbane, Qld 4000, Australia.
EM hofai.chan@qut.edu.au
RI Torgler, Benno/W-4556-2019; Bickley, Steve/HZH-8985-2023; Chan, Ho
Fai/G-9541-2015
OI Torgler, Benno/0000-0002-9809-963X; Chan, Ho Fai/0000-0002-7281-5212;
Bickley, Steven/0000-0002-9579-4231
FU Australian Research Council [DP180101169]
FX Open Access funding enabled and organized by CAUL and its Member
Institutions. The funding was provided by Australian Research Council,
Grant No (DP180101169).
CR Agarwal A., 2018, PREDICTION MACHINES, DOI DOI 10.1080/15228053.2019.1673511
Aksnes DW, 2019, J DATA INFO SCI, V4, P1, DOI 10.2478/jdis-2019-0001
Amir R, 2008, REV ECON STAT, V90, P185, DOI 10.1162/rest.90.1.185
[Anonymous], 1976, Cognition and reality
[Anonymous], 2001, CASE BASED REASONING
[Anonymous], 2005, Fuzzy expert systems and Fuzzy reasoning
Bastani Aaron., 2020, FULLY AUTOMATED LUXU
Bickley S. J., 2021, CREMA Working Paper online
Bickley SJ, 2021, TECHNOL ANAL STRATEG, V33, P1290, DOI 10.1080/09537325.2021.1921137
BilleterFrey EP, 1996, KYBERNETES, V25, P130, DOI 10.1108/03684929610149701
Boden MA, 1998, ARTIF INTELL, V103, P347, DOI 10.1016/S0004-3702(98)00055-1
Bolton GE, 2012, J ECON PSYCHOL, V33, P665, DOI 10.1016/j.joep.2011.09.003
Boulding K.E., 1970, EC SCI
Calvano E, 2020, SCIENCE, V370, P1040, DOI 10.1126/science.abe3796
Campedelli GM, 2021, J COMPUT SOC SCI, V4, P503, DOI 10.1007/s42001-020-00082-9
Chan H. F., 2019, CREMA WORKING PAPER
COCHRANE JL, 1976, ECON INQ, V14, P241, DOI 10.1111/j.1465-7295.1976.tb00390.x
Cockburn IainM., 2019, EC ARTIFICIAL INTELL, P115
Colton S, 2012, FRONT ARTIF INTEL AP, V242, P21, DOI 10.3233/978-1-61499-098-7-21
Loureiro SMC, 2021, J BUS RES, V129, P911, DOI 10.1016/j.jbusres.2020.11.001
Coveney PV, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2016.0153
Dauvergne, 2020, AI WILD SUSTAINABILI, DOI DOI 10.7551/MITPRESS/12350.001.0001
Dhamija P, 2020, TQM J, V32, P869, DOI 10.1108/TQM-10-2019-0243
Dreyfus H. L., 1965, ALCHEMY ARTIFICIAL I
du Sautoy M., 2019, CREATIVITY CODE, DOI 10.2307/j.ctv2sp3dpd
Duarte PG, 2020, HIST POLIT ECON, V52, P10, DOI 10.1215/00182702-8717898
Duflo E, 2017, AM ECON REV, V107, P1, DOI 10.1257/aer.p20171153
Dyer-Witheford N., 2019, Inhuman Power: Artificial Intelligence and the Future of Capitalism, DOI DOI 10.2307/J.CTVJ4SXC6
Else Holly., 2018, Nature, DOI DOI 10.1038/D41586-018-04190-5
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5
Ghoddusi H, 2019, ENERG ECON, V81, P709, DOI 10.1016/j.eneco.2019.05.006
Giles P, 2019, J CULT ECON-UK, V12, P612, DOI 10.1080/17530350.2019.1639068
Gmeiner R., 2021, Artificial intelligence and economic calculation
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Griffiths M. R., 2016, VALUE EC ETHICAL IMP
Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925
Hardyns W, 2018, EUR J CRIM POLICY RE, V24, P201, DOI 10.1007/s10610-017-9361-2
Harzing AW, 2019, SCIENTOMETRICS, V120, P341, DOI 10.1007/s11192-019-03114-y
Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9
Hawe P, 2015, ANNU REV PUBL HEALTH, V36, P307, DOI 10.1146/annurev-publhealth-031912-114421
Hayek FA, 1945, AM ECON REV, V35, P519
Hayek F.A., 1952, COUNTER REVOLUTION S
Helbing D, 2022, Handbook of complexity economics
Helbing D., 2015, Thinking Ahead-Essays on Big Data, Digital Revolution, and Participatory Market Society, P177
Holling CS, 2001, ECOSYSTEMS, V4, P390, DOI 10.1007/s10021-001-0101-5
Hunt M., 2007, The Story of Psychology
Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2
Kao YF, 2015, EUR J HIST ECON THOU, V22, P236, DOI 10.1080/09672567.2013.792366
Lazear EP, 2000, Q J ECON, V115, P99, DOI 10.1162/003355300554683
Leib M., 2021, ARXIV PREPRINT ARXIV
Levin S, 2013, ENVIRON DEV ECON, V18, P111, DOI 10.1017/S1355770X12000460
Levine-Clark M, 2021, J BUS FINANC LIBR, V26, P145, DOI 10.1080/08963568.2021.1916724
Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018
Liu N, 2021, SCIENTOMETRICS, V126, P3153, DOI 10.1007/s11192-021-03868-4
Lo A. W., 2010, ARXIV PREPRINT ARXIV
López-Robles JR, 2019, INT J INFORM MANAGE, V48, P22, DOI 10.1016/j.ijinfomgt.2019.01.013
Ruiz-Real JL, 2021, J BUS ECON MANAG, V22, P98, DOI 10.3846/jbem.2020.13641
Mankiw NG, 2006, J ECON PERSPECT, V20, P29, DOI 10.1257/jep.20.4.29
Marcus G., 2019, Rebooting AI: Building Artificial IntelligenceWe Can Trust, V1st edn
Mariotti S, 2022, J IND BUS ECON, V49, P1, DOI 10.1007/s40812-021-00203-z
Mariotti S, 2021, J IND BUS ECON, V48, P551, DOI 10.1007/s40812-021-00187-w
Martín-Martín A, 2021, SCIENTOMETRICS, V126, P871, DOI 10.1007/s11192-020-03690-4
Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002
Martín-Martín A, 2018, SCIENTOMETRICS, V116, P2175, DOI 10.1007/s11192-018-2820-9
Mason Paul., 2015, POSTCAPITALISM GUIDE
May CR, 2016, IMPLEMENT SCI, V11, DOI 10.1186/s13012-016-0506-3
McCorduck Pamela., 2019, This Could Be Important: My Life and Times with the Artificial Intelligentsia
Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
MINSKY M, 1991, AI MAG, V12, P34
Minsky M., 1992, Toshiba Review, V47, P1
Minsky M., 2006, EMOTION MACHINE COMM
Minsky M., 1986, SOC MIND
Mitchell M., 2019, ARTIFICIAL INTELLIGE
Mizer?k M., 2019, EUROPEAN J BUSINESS, V5, P107
Morgan MaryS., 2003, The Cambridge History of Science, V7, P275
Morozov E, 2019, NEW LEFT REV, P33
Mullainathan S, 2017, J ECON PERSPECT, V31, P87, DOI 10.1257/jep.31.2.87
Newell A., 1959, Report on a general problem-solving program
Nilsson Nils, 2010, The Quest for Artificial Intelligence., DOI DOI 10.1017/CBO9780511819346
NISBETT RE, 1977, PSYCHOL REV, V84, P231, DOI 10.1037/0033-295X.84.3.231
Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001
Omurtag Y, 2009, EMJ-ENG MANAG J, V21, P3, DOI 10.1080/10429247.2009.11431839
Parkes DC, 2015, SCIENCE, V349, P267, DOI 10.1126/science.aaa8403
Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263
Rosheim MarkE., 2006, LEONARDOS LOST ROBOT, V2nd
Roth AE, 2002, ECONOMETRICA, V70, P1341, DOI 10.1111/1468-0262.00335
ROWE J, 1993, ARTIF INTELL REV, V7, P43, DOI 10.1007/BF00849197
Rumelhart D., 1986, Explorations in the Microstructure of Cognition: Foundations, P318, DOI 10.1016/b978-1-4832-1446-7.50035-2
Samuelson PA., 2004, LIVES LAUREATES 18 N, P49
Schwartz J. T., 1986, ENCY ARTIFICIAL INTE, V1, P488
Sent EM, 1997, HIST POLIT ECON, V29, P41, DOI 10.1215/00182702-1997-suppl_1009
Sestino A, 2022, TECHNOL ANAL STRATEG, V34, P16, DOI 10.1080/09537325.2021.1883583
Siau K, 2020, J DATABASE MANAGE, V31, P74, DOI 10.4018/JDM.2020040105
Simon H.A., 1991, Models of my Life
Simon HA, 1995, INT JOINT CONF ARTIF, P939
SIMON HA, 1978, BELL J ECON, V9, P494, DOI 10.2307/3003595
Simon HA, 1996, SCI ARTIFICIAL
Singh, 2003, PANALOGY ARCHI UNPUB
Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5
Srnicek N., 2017, Platform Capitalism
Taube Mortimer., 1961, COMPUTERS COMMON SEN
Torgler B, 2013, PALGRAVE PIVOT, P1, DOI 10.1057/9781137333056
Torgler B., 2021, CREMA WORKING PAPER
TURBAN E, 1988, IEEE T ENG MANAGE, V35, P71, DOI 10.1109/17.6007
Varian HR, 2014, J ECON PERSPECT, V28, P3, DOI 10.1257/jep.28.2.3
White I., 1988, AI SOC, V2, P161
Wiener, 1988, HUMAN USE HUMAN BEIN
Wu YY, 2015, P NATL ACAD SCI USA, V112, P1036, DOI 10.1073/pnas.1418680112
Zuboff S, 2015, J INF TECHNOL-UK, V30, P75, DOI 10.1057/jit.2015.5
NR 111
TC 12
Z9 13
U1 19
U2 105
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD APR
PY 2022
VL 127
IS 4
BP 2055
EP 2084
DI 10.1007/s11192-022-04294-w
EA MAR 2022
PG 30
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 0M5LI
UT WOS:000764911500001
OA Green Published, hybrid
DA 2024-09-05
ER
PT J
AU An, L
Han, YX
Yi, XY
Li, G
Yu, CM
AF An, Lu
Han, Yuxin
Yi, Xingyue
Li, Gang
Yu, Chuanming
TI Prediction and Evolution of the Influence of Microblog Entries in the
Context of Terrorist Events
SO SOCIAL SCIENCE COMPUTER REVIEW
LA English
DT Article
DE influence prediction; microblogging; evolution; topic identification;
sentiment analysis; h-index; terrorist event
ID COLLECTIVE SENSE-MAKING; SOCIAL MEDIA; TWITTER; CRISIS
AB The outbreak of terrorist events often causes tremendous damage to the country and society and arouses high attention from the public and an overwhelming response on the microblogging platform. Predicting the influence of microblogging in the context of terrorist events and revealing its evolutionary mode can help counterterrorism departments foresee potential risks, take effective countermeasures in time, and provide a reference for reducing public panic caused by terrorist events. In this study, Word2Vec is combined with the K-means clustering technique to discover the topics of microblogging, and an emotion analysis of microblogging is performed. The user features, time features, and content features of microblogging in the context of terrorist events are extracted. The prediction model of microblogging influence based on the logistic regression model was constructed and evaluated. The experimental results showed that the prediction accuracy of the model was 85.8%, which had superior performance over other six classification models. In addition, the high-influence characteristics of microblogging in the context of terrorist events were analyzed and summarized. Finally, a quantitative method of the influence of a microblogging topic based on the h-index was proposed. The evolution pattern of the influence of a microblogging topic was analyzed. The results can help predict microblog entries of high influence, understand the intensity and variation of public concern over terrorist events, and assist counterterrorism departments in taking scientific decisions.
C1 [An, Lu; Li, Gang] Wuhan Univ, Ctr Studies Informat Resources, 299 Bayi Rd, Wuhan 430072, Hubei, Peoples R China.
[An, Lu; Han, Yuxin; Yi, Xingyue] Wuhan Univ, Sch Informat Management, Wuhan, Peoples R China.
[Yu, Chuanming] Zhongnan Univ Econ & Law, Sch Informat & Safety Engn, Wuhan, Peoples R China.
C3 Wuhan University; Wuhan University; Zhongnan University of Economics &
Law
RP Li, G (corresponding author), Wuhan Univ, Ctr Studies Informat Resources, 299 Bayi Rd, Wuhan 430072, Hubei, Peoples R China.
EM anlu97@163.com; yxhanccnu@163.com; yixingyue@126.com;
imiswhu@aliyun.com; yuchuanming2003@126.com
RI Han, yuxin/LCD-8775-2024
FU National Natural Science Foundation of China [71790612, 71974202,
71603189, 71921002]; Major Project of the Ministry of Education of China
[17JZD034]; world class discipline of the Ministry of Education of China
"Library, Information, and Data Science"
FX The authors disclosed receipt of the following financial support for the
research, authorship, and/or publication of this article: This work was
supported by the National Natural Science Foundation of China (Grant no.
71921002), the Major Project of the Ministry of Education of China
(Grant no. 17JZD034), the National Natural Science Foundation of China
(Grant nos. 71790612, 71974202, and 71603189), and the world class
discipline of the Ministry of Education of China "Library, Information,
and Data Science."
CR An L, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102327
An L, 2018, ONLINE INFORM REV, V42, P821, DOI 10.1108/OIR-04-2016-0100
Bora S, 2015, SOC NETW ANAL MIN, V5, DOI 10.1007/s13278-015-0300-2
Chao Li, 2012, Intelligence and Security Informatics. Proceedings Pacific Asia Workshop, PAISI 2012, P60, DOI 10.1007/978-3-642-30428-6_5
China Internet Network Information Center, 2019, 43 STAT REP INT DEV
Costantino G, 2017, IEEE SYMP COMP COMMU, P890, DOI 10.1109/ISCC.2017.8024639
Dhir A, 2019, SOC SCI COMPUT REV, V37, P529, DOI 10.1177/0894439318779145
Fischer-Pressler D, 2019, COMPUT HUM BEHAV, V100, P138, DOI 10.1016/j.chb.2019.05.012
Ghavami, 2017, INT S TEL GHAN TECHN, P559
Goldstein DM, 2010, CURR ANTHROPOL, V51, P487, DOI 10.1086/655393
Hagen L, 2018, SOC SCI COMPUT REV, V36, P523, DOI 10.1177/0894439317721985
Heverin T, 2012, J AM SOC INF SCI TEC, V63, P34, DOI 10.1002/asi.21685
Investopedia, 2021, IMP 9 11 BUS
Jones NM, 2016, PSYCHOL METHODS, V21, P526, DOI 10.1037/met0000099
Jong W, 2016, COMPUT HUM BEHAV, V59, P334, DOI 10.1016/j.chb.2016.02.032
Kaur, 2016, 2016 INT C COMP TECH
Liu Y, 2016, PHYSICA A, V463, P202, DOI 10.1016/j.physa.2016.07.022
Macso J, 2014, THEATER OPERATIONS N
Majer T, 2012, LECT NOTES COMPUT SC, V7147, P518
Maleewong K, 2016, LECT NOTES COMPUT SC, V9810, P306, DOI 10.1007/978-3-319-42911-3_26
Oh O, 2011, INFORM SYST FRONT, V13, P33, DOI 10.1007/s10796-010-9275-8
Palen L, 2009, SOC SCI COMPUT REV, V27, P467, DOI 10.1177/0894439309332302
Patnaik S., 2018, RECENT DEV DATA SCI
Reddick CG, 2015, GOV INFORM Q, V32, P129, DOI 10.1016/j.giq.2015.01.003
Reyes JAL, 2017, TERROR POLIT VIOLENC, V29, P1026, DOI 10.1080/09546553.2015.1105798
Starbird K, 2011, 29TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P1071
Sun XL, 2018, INT SYM DISCH ELECTR, P151, DOI 10.1109/DEIV.2018.8537070
Toshniwal D, 2014, INT C INT DAT ENG AU, DOI [10.1007/978-3-319-10840-7_48, DOI 10.1007/978-3-319-10840-7_48]
Varshney D, 2017, KNOWL-BASED SYST, V133, P66, DOI 10.1016/j.knosys.2017.07.003
Williams GA, 2017, COMMUN STUD, V68, P385, DOI 10.1080/10510974.2017.1340901
Xie D, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P2545, DOI 10.1109/BigData.2016.7840895
NR 31
TC 3
Z9 3
U1 11
U2 123
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0894-4393
EI 1552-8286
J9 SOC SCI COMPUT REV
JI Soc. Sci. Comput. Rev.
PD FEB
PY 2023
VL 41
IS 1
BP 64
EP 82
AR 08944393211029193
DI 10.1177/08944393211029193
EA JUL 2021
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science; Social Sciences, Interdisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science; Social Sciences
- Other Topics
GA 7S7ZM
UT WOS:000676872600001
DA 2024-09-05
ER
PT C
AU Li, N
Su, WT
Li, Y
Yu, H
Xu, WZ
Gao, BZ
AF Li, Na
Su, Wentao
Li, Yang
Yu, Hui
Xu, Weizhi
Gao, Baozhong
GP IEEE
TI Research on Machine Translation Automatic Evaluation Based on Extended
Reference
SO 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION
ENGINEERING TECHNOLOGY (CCET)
LA English
DT Proceedings Paper
CT 2nd IEEE International Conference on Computer and Communication
Engineering Technology (CCET)
CY AUG 16-18, 2019
CL Beijing, PEOPLES R CHINA
DE machine translation; automatic evaluation; reference extension
AB Language is the main carrier of communication between cultures, but the translation between languages has become the biggest problem of people's communication. Machine translation is a process that uses computer to transform a natural language into another natural language. The automatic evaluation of machine translation is an important research content in machine translation technology. It can discover defects in translation system and promote its development. It has achieved rich fruits, and various evaluation methods emerge endlessly after several decades of development of the automatic evaluation method. In this paper, three kinds of representative evaluation methods are introduced and their respective advantages and disadvantages are analyzed. In addition, we describe the evaluation technique based on reference. It plays an important role in improving the performance of automatic evaluation methods although the coverage expansion of reference is not the main method. Finally, we summarize the development trends of automatic evaluation metric based on extended reference and related issues that need to be further addressed.
C1 [Li, Na; Yu, Hui] Shandong Normal Univ, Sch Business, Jinan, Peoples R China.
[Su, Wentao] CNIPA, Ctr Patent Off, Patent Examinat Cooperat Beijing, Beijing, Peoples R China.
[Li, Yang] China Natl Elect Import & Export Corp, Beijing, Peoples R China.
[Xu, Weizhi; Gao, Baozhong] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China.
C3 Shandong Normal University; Shandong Normal University
RP Gao, BZ (corresponding author), Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China.
EM gaobaozhong@sdnu.edu.cn
RI Yu, Hui/G-1115-2018; Zeng, Yun/JFK-6190-2023; su, wentao/AAK-3862-2021
OI Yu, Hui/0000-0002-7655-9228; su, wentao/0000-0002-3476-8259
FU NNSF of China [61602285, 61602284, 61602282]; Shandong Natural Science
Foundation [ZR2015FQ 009, ZR2016FP07]; Project of Shandong Province
Higher Educational Science and Technology Program [J16LN05]
FX This work was supported in part by NNSF of China (No. 61602285 and No.
61602284 and No. 61602282), Shandong Natural Science Foundation
(No.ZR2015FQ 009 and No. ZR2016FP07), and Project of Shandong Province
Higher Educational Science and Technology Program (No.J16LN05)
CR [Anonymous], 2005, P ACL WORKSH INTR EX
[Anonymous], P ASS MACH TRANSL AM
[Anonymous], 2011, P 49 ANN M ASS COMPU
[Anonymous], 2006, AMTA
Barzilay R, 2003, HLT-NAACL 2003: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P16
Biswas P, 2005, I CONF VLSI DESIGN, P651
Boonthum C., 2004, S TUD RES WORKSH
Denkowski M, 2010, P JOINT 5 WORKSH STA, P339
Denkowski M., 2010, Human language technologies: The 2010 annual conf. of the north american chapter of the acl, P250
Denkowski M. J., 2011, WMT EMNLP
Denkowski Michael, 2014, P EACL 2014 WORKSH S
Doddington G., 2002, P 2 INT C HUMAN LANG, P138
Echizen-ya H, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P108
FINCH Andrew, 2004, P C 1 INT JOINT C NA, P6
Ji Hongjie, 2017, RES MACHINE TRANSLAT
Kauchak D., 2006, HUMAN LANGUAGE TECHN, P455
Kauchak David, 2006, P HUM LANG TECHN C N
Lavie A., 2007, P 2 WORKSHOP STAT MA, P228
Lepgae Y., 2005, IWP
Li Liangyou, 2014, OVERVIEW AUTOMATIC E, V28, P81
Li Maoxi, 2016, J CHINESE INFORM PRO, V30, P117
Liu Ting, 2006, J CHINESE INFORM PRO, P25
Lo C.-k., 2012, P 7 WORKSH STAT MACH, P243
OWCZARZAK K, 2007, P 2 WORKSH STAT MACH, P104
Owczarzak K., 2007, Proceedings of the NAACL/HTL/AMTA Workshop on Syntax and Structure in Statistical Translation (SSST), P80
Owczarzak K, 2007, MACH TRANSL, V21, P95, DOI 10.1007/s10590-008-9038-1
Pado S., 2009, P 4 WORKSHOP STAT MA, P37
Popovic M., 2009, Proceedings of the Fourth Workshop on Statistical Machine Translation, P29
Russo-Lassner Grazia, 2005, LAMPTR125CSTR4754UMI
Tillmann C., 1997, 5 EUR C SPEECH COMM
Wang Bo, 2010, RES AUTOMATIC EVALUA
Wong B. T. M., 2011, 2011 7th International Conference on Natural Language Processing and Knowledge Engineering (NLPKE), P238, DOI 10.1109/NLPKE.2011.6138201
Zhang Jian, 2003, CHINESE J INFORM, V17, P1
ZHOU L, 2006, P 2006 C EMP METH NA, P77
Zhou Liang, 2006, P ACL 2006
NR 35
TC 0
Z9 0
U1 0
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-2871-9
PY 2019
BP 41
EP 45
DI 10.1109/ccet48361.2019.8989400
PG 5
WC Computer Science, Theory & Methods; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BP2XS
UT WOS:000545638300009
DA 2024-09-05
ER
PT J
AU de la Paz, LD
Collado, FNR
Mendoza, JLG
González, LMG
Mederos, AAL
Crispi, AT
AF Diaz de la Paz, Lisandra
Riestra Collado, Francisco N.
Garcia Mendoza, Juan L.
Gonzalez Gonzalez, Luisa M.
Leiva Mederos, Amed A.
Taboada Crispi, Alberto
TI Weights Estimation in the Completeness Measurement of Bibliographic
Metadata
SO COMPUTACION Y SISTEMAS
LA English
DT Article
DE Bibliographic metadata; completeness metric; particle swarm optimization
(PSO); weights estimation
ID DATA QUALITY; DIGITAL REPOSITORIES; PARTICLE SWARM; LIBRARY; MANAGEMENT;
FRAMEWORK
AB Y The weighted completeness metrics for metadata use a weighting factor to indicate the importance of each field. In the case of bibliographic metadata, a common way of representing the importance of a field is its frequency of appearance in a given repository. The inaccuracy of this method is why we need to recalculate the weights as the volume of the repository grows. In this paper, we used the Particle Swarm Optimization (PSO) method in the estimation of the weights for the completeness metrics of bibliographic metadata. This method is independent of the metadata format, of the collection and the volume of the repository used. As part of this work, we defined the fitness function of the PSO method to reflect the importance levels of the fields. Finally, we presented a case study with the estimated weights and the calculated completeness of the bibliographic records described at the full cataloging level in MARC 21 format.
C1 [Diaz de la Paz, Lisandra; Gonzalez Gonzalez, Luisa M.; Leiva Mederos, Amed A.; Taboada Crispi, Alberto] Univ Cent Marta Abreu Las Villas, Santa Clara, Cuba.
[Diaz de la Paz, Lisandra; Taboada Crispi, Alberto] Ctr Invest Informat, Santa Clara, Cuba.
[Riestra Collado, Francisco N.] Melia Dunas Cayo Santa Maria, Cayo De Santa Maria, Cuba.
[Garcia Mendoza, Juan L.] Inst Nacl Astrofis Opt & Electr, Cholula, Mexico.
C3 Universidad Central "Marta Abreu" de Las Villas; Instituto Nacional de
Astrofisica, Optica y Electronica
RP de la Paz, LD (corresponding author), Univ Cent Marta Abreu Las Villas, Santa Clara, Cuba.; de la Paz, LD (corresponding author), Ctr Invest Informat, Santa Clara, Cuba.
EM ldp@uclv.edu.cu; informatico.mld@mld.solmelia.cu; juanluis@inaoep.mx;
luisagon@uclv.edu.cu; amed@uclv.edu.cu; ataboada@uclv.edu.cu
RI Majumder, Abhishek/AAV-3041-2020; Taboada-Crispi, Alberto/ABC-5178-2020;
Majumder, Abhishek/GQO-9495-2022; Majumder, Abhishek/ABC-3221-2021;
Balasubramanian, Gomathy/JUF-7312-2023; Taboada-Crispi,
Alberto/K-4732-2019
OI Majumder, Abhishek/0000-0001-8451-0451; Taboada-Crispi,
Alberto/0000-0002-7797-1441; Majumder, Abhishek/0000-0001-8451-0451;
Balasubramanian, Gomathy/0000-0002-0418-2150; Taboada-Crispi,
Alberto/0000-0002-7797-1441; Garcia Mendoza, Juan
Luis/0000-0002-8165-9661
FU Project 3 ICT supporting the educational processes and the knowledge
management in higher education (ELINF)of the NETWORK University
Cooperation Strengthening of the role of ICT in Cuban Universities for
the development of the society
FX This work is partially supported by Project 3 ICT supporting the
educational processes and the knowledge management in higher education
(ELINF)of the NETWORK University Cooperation Strengthening of the role
of ICT in Cuban Universities for the development of the society.
CR Alemu G., 2015, EMERGENT THEORY DIGI
Gaona-Garcia PA, 2017, ONLINE INFORM REV, V41, P840, DOI 10.1108/OIR-04-2016-0114
Angelozzi S., 2007, 3 ENCUENTRO INT CATA, P1
[Anonymous], 2017, INT J ENG SCI MATH
[Anonymous], 2006, GENETIC ALGORITHMS
[Anonymous], 2006, EdMedia+ innovate learning
[Anonymous], 2008, THESIS
Awad AI, 2015, PROCEDIA COMPUT SCI, V65, P920, DOI 10.1016/j.procs.2015.09.064
Batini C, 2009, ACM COMPUT SURV, V41, DOI 10.1145/1541880.1541883
Bellini E., 2013, INFORM TECHNOLOGIES, P90
Berti-Equille L, 2007, STUDIES COMPUTATIONA, V43, P101
Bratton D, 2007, 2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, P120, DOI 10.1109/SIS.2007.368035
Bruce T., 2004, METADATA PRACTICE, P248
Burnard Lou, 2013, Journal of the Text Encoding Initiative, DOI [10.4000/jtei.811, DOI 10.4000/JTEI.811]
Cappiello C., 2004, IQIS, P68, DOI [DOI 10.1145/1012453.1012465, 10.1145/1012453.1012465]
Chapman A.D., 2006, Guide to Best Practices for Georeferencing
Cichy C, 2019, IEEE ACCESS, V7, P24634, DOI 10.1109/ACCESS.2019.2899751
Clerc M, 2002, IEEE T EVOLUT COMPUT, V6, P58, DOI 10.1109/4235.985692
Crespo-Borges T., 2007, RESPUESTAS 16 PREGUN
Deepti A., 2015, IOSR J COMPUTER ENG, V17, P75
Duval E, 2001, J UNIVERS COMPUT SCI, V7, P591
Furner J., 2019, J ASS INFORM SCI TEC
Garcia-Mendoza J., 2017, PROCEDIMIENTO MEJORA
Garcia-Mendoza J., 2015, REV PUBLICANDO, V3, P397
Gavrilis D, 2015, LECT NOTES COMPUT SC, V9316, P56, DOI 10.1007/978-3-319-24592-8_5
GOLDBERG DE, 1989, PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P80
Goovaerts M, 2012, COMM COM INF SC, V343, P181
Haegemans T., 2016, INT C INFORM QUALITY, V15, P1
Hassan Rania, 2005, 46 AIAAASMEASCEAHSAS, DOI DOI 10.2514/6.2005-1897
Hillier F., 2021, Introduction to Operations Research, V11th
Hillmann DI, 2008, CAT CLASSIF Q, V46, P65, DOI 10.1080/01639370802183008
Hopkinson Andrew, 2018, IND PAPERS, P200
Kemps-Snijders M., 2014, CLARIN C CAC14
Kiraly P., 2015, METADATA QUALITY ASS
Király P, 2018, IEEE INT CONF BIG DA, P2711, DOI 10.1109/BigData.2018.8622487
La Fe-Jimenez R., 2017, THESIS
Les G., 2001, NEW FRAMEWORK INFORM
Liaw ST, 2013, INT J MED INFORM, V82, P10, DOI 10.1016/j.ijmedinf.2012.10.001
Library of Congress, 2006, INTRODUCTION
Library of Congress, 2010, MARC 21 FORM BIBL DA
Library of Congress, 2003, MARC 21 FORM BIBL DA
Library of Congress, 2019, ENC ARCH DESC
Library of Congress, 2003, APP B FULL LEV REC E
Library of Congress, 2020, MARC 21 FORM BIBL DA, V1999
Madnick S.E., 2009, Journal of Data and Information Quality (JDIQ), V1, P1, DOI [10.1145/1515693.1516680, DOI 10.1145/1515693.1516680]
Margaritopoulos Thomas., 2008, International Conference on Dublin Core and Metadata Applications, P104
Mayernik M, 2010, LIBR RESOUR TECH SER, V54, P40, DOI 10.5860/lrts.54n1.40
McMahon Christiana, 2016, AMIA Jt Summits Transl Sci Proc, V2016, P199
Medrano JF, 2012, SCIRE, V18, P109
Mendes P.N., 2012, P 2012 JOINT EDBTICD, P116, DOI [DOI 10.1145/2320765.2320803, 10.1145/2320765.2320803]
Michalewicz Z., 2013, How to Solve It: Modern Heuristics
Moen W., 1997, IEEE COMP SOC MET C, P1
Moges HT, 2013, INFORM MANAGE-AMSTER, V50, P43, DOI 10.1016/j.im.2012.10.001
Najjar J., 2003, P 3 ANN ARIADNE C AR, P1
Nápoles Gonzalo, 2012, Polibits, V0, P05
Nápoles G, 2014, COMPUT SIST, V18, P79, DOI 10.13053/CyS-18-1-2014-020
Nichols D., 2008, TOOL METADATA ANAL
Nilsson PO, 2002, NAV ARCHIT, P22
Ochoa X, 2009, INT J DIGIT LIBRARIE, V10, P67, DOI 10.1007/s00799-009-0054-4
Palavitsinis N., 2013, THESIS
Palavitsinis N, 2014, J ASSOC INF SCI TECH, V65, P1202, DOI 10.1002/asi.23045
Phillips ME., 2019, P INT C DUBL COR MET, P49
Prakash Sangwan M., 2019, INT J COMPUTER SCI I, V17, P71
Raghuwanshi K., 2018, SMART TRENDS SYSTEMS, P169
Rashid M, 2019, SEMANT WEB, V10, P349, DOI 10.3233/SW-180324
Reza V., 2017, TOTAL QUAL MANAG BUS, V30, P708
Sadiq S., 2011, Proceedings of the Twenty-Second Australasian Database Conference-Volume, P153
Saini N., 2017, Int. J.Eng. Comput. Sci., V6, P22261, DOI DOI 10.18535/IJECS/V6I12.04
Shankaranarayanan G, 2006, DECIS SUPPORT SYST, V42, P302, DOI 10.1016/j.dss.2004.12.006
Shi YH, 1998, IEEE C EVOL COMPUTAT, P69, DOI 10.1109/ICEC.1998.699146
Shreeves S., 2005, P 12 NATL C ASS COLL, P223
Shyam Sundar S., 2002, GOOGLE PATENTS
Tabares Morales Valentina, 2013, Rev. Interam. Bibliot, V36, P183
Tani A, 2013, INFORM PROCESS MANAG, V49, P1194, DOI 10.1016/j.ipm.2013.05.003
Tayi GK, 1998, COMMUN ACM, V41, P54, DOI 10.1145/269012.269021
Thompson S., 2019, FACULTY STAFF STUDEN
Wang R. Y., 1996, Journal of Management Information Systems, V12, P5
Yang L, 2016, COLL RES LIBR, V77, P7, DOI 10.5860/crl.77.1.7
Yeganeh NK, 2014, INFORM SYST, V46, P24, DOI 10.1016/j.is.2014.05.005
Yuan Man, 2010, 2010 Third International Symposium on Electronic Commerce and Security (ISECS 2010), P29, DOI 10.1109/ISECS.2010.15
Zavalina OL, 2016, PROCEDIA COMPUT SCI, V99, P50, DOI 10.1016/j.procs.2016.09.100
NR 81
TC 3
Z9 3
U1 0
U2 5
PU IPN, CENTRO INVESTIGAVION COMPUTACION
PI MEXICO CITY
PA AV JUAN DIOS BATIZ, S N ESQ M OTHON MENDIZABAL, UP ADOLFO LOPEZ MATEOS
ZACATENCO, MEXICO CITY, 07738, MEXICO
SN 1405-5546
EI 2007-9737
J9 COMPUT SIST
JI Comput. Sist.
PY 2021
VL 25
IS 1
BP 47
EP 65
DI 10.13053/CyS-25-1-3355
PG 19
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA RY1WZ
UT WOS:000647710700005
DA 2024-09-05
ER
PT J
AU Rahman, A
Raj, A
Tomy, P
Hameed, MS
AF Rahman, Abdur
Raj, Antony
Tomy, Prajeesh
Hameed, Mohamed Sahul
TI A comprehensive bibliometric and content analysis of artificial
intelligence in language learning: tracing between the years 2017 and
2023
SO ARTIFICIAL INTELLIGENCE REVIEW
LA English
DT Article
DE Artificial intelligence; Language learning; Bibliometric analysis;
Natural language processing; Review; Content analysis
ID RESEARCH TRENDS; EDUCATION; CHATBOT; FUTURE; FIELD
AB The rising pervasiveness of Artificial Intelligence (AI) has led applied linguists to combine it with language teaching and learning processes. In many cases, such implementation has significantly contributed to the field. The retrospective amount of literature dedicated on the use of AI in language learning (LL) is overwhelming. Thus, the objective of this paper is to map the existing literature on Artificial Intelligence in language learning through bibliometric and content analysis. From the Scopus database, we systematically explored, after keyword refinement, the prevailing literature of AI in LL. After excluding irrelevant articles, we conducted our study with 606 documents published between 2017 and 2023 for further investigation. This review reinforces our understanding by identifying and distilling the relationships between the content, the contributions, and the contributors. The findings of the study show a rising pattern of AI in LL. Along with the metrics of performance analysis, through VOSviewer and R studio (Biblioshiny), our findings uncovered the influential authors, institutions, countries, and the most influential documents in the field. Moreover, we identified 7 clusters and potential areas of related research through keyword analysis. In addition to the bibliographic details, this review aims to elucidate the content of the field. NVivo 14 and Atlas AI were used to perform content analysis to categorize and present the type of AI used in language learning, Language learning factors, and its participants.
C1 [Rahman, Abdur; Raj, Antony; Tomy, Prajeesh; Hameed, Mohamed Sahul] Vellore Inst Technol, Sch Social Sci & Languages, Dept English, Vellore 632104, Tamil Nadu, India.
C3 Vellore Institute of Technology (VIT); VIT Vellore
RP Rahman, A (corresponding author), Vellore Inst Technol, Sch Social Sci & Languages, Dept English, Vellore 632104, Tamil Nadu, India.
EM mrabdurrahmanofficial@gmail.com; antonyr311@gmail.com
RI raj, antony/HGF-3077-2022
OI raj, antony/0000-0003-0351-4245
CR Ahmed S, 2022, RES INT BUS FINANC, V61, DOI 10.1016/j.ribaf.2022.101646
Ali Zuraina, 2020, IOP Conference Series: Materials Science and Engineering, V769, DOI 10.1088/1757-899X/769/1/012043
Amaral LA, 2011, RECALL, V23, P4, DOI 10.1017/S0958344010000261
Bazeley KJP., 2019, Qualitative data analysis with NVivo
Botero-Gómez V, 2023, SOC SCI-BASEL, V12, DOI 10.3390/socsci12020070
Briggs N., 2018, JALT CALL Journal, V14, P3
Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510
Chen XB, 2022, LECT NOTES COMPUT SC, V13356, P582, DOI 10.1007/978-3-031-11647-6_120
Chen XL, 2021, IEEE INT CONF ADV LE, P241, DOI 10.1109/ICALT52272.2021.00079
Chu HC, 2022, AUSTRALAS J EDUC TEC, V38, P22, DOI 10.14742/ajet.7526
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
CUMMING G, 1993, COMPUT EDUC, V20, P119, DOI 10.1016/0360-1315(93)90078-W
Dagdeler KO, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00235-z
Dizon G., 2022, Computers and Education: Artificial Intelligence, V3, P100088, DOI DOI 10.1016/J.CAEAI.2022.100088
Dizon G, 2023, RELC J, V54, P848, DOI 10.1177/00336882211020548
Dizon G, 2017, TESOL J, V8, P811, DOI 10.1002/tesj.353
Dogan ME, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13053056
Dokukina Irina, 2020, Procedia Computer Science, P542, DOI 10.1016/j.procs.2020.02.212
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
El Shazly R, 2021, EXPERT SYST, V38, DOI 10.1111/exsy.12667
Esit Ö, 2011, COMPUT ASSIST LANG L, V24, P211, DOI 10.1080/09588221.2010.538702
Fang XX, 2023, EDUC INF TECHNOL, V28, P14361, DOI 10.1007/s10639-023-11741-5
Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846
Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023
Fryer LK, 2017, COMPUT HUM BEHAV, V75, P461, DOI 10.1016/j.chb.2017.05.045
Gayed J. M., 2022, Comput. Educ. Artif. Intell., V3, DOI [10.1016/j.caeai.2022.100055, DOI 10.1016/J.CAEAI.2022.100055]
Godwin-Jones R, 2022, LANG LEARN TECHNOL, V26, P5, DOI 10.10125/73474
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Górriz JM, 2020, NEUROCOMPUTING, V410, P237, DOI 10.1016/j.neucom.2020.05.078
Gruetzemacher R, 2022, The power of natural language processing
Gugerty L., 2006, Proc. Hum. Factors Ergon. Soc. Annu. Meet., V50, P880, DOI [10.1177/154193120605000904, DOI 10.1177/154193120605000904]
Hariri W, 2024, Arxiv, DOI [arXiv:2304.02017, 10.48550/arxiv.2304.02017, DOI 10.48550/ARXIV.2304.02017]
Hou YK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13020125
Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610
Huang XY, 2023, EDUC TECHNOL SOC, V26, P112, DOI 10.30191/ETS.202301_26(1).0009
INTELLIGENCE BY AM TURING, 1950, Computing Machinery and Intelligence, V59, P433, DOI [10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433]
Jeon J, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204343
Jeon J, 2023, COMPUT ASSIST LANG L, V36, P1338, DOI 10.1080/09588221.2021.1987272
Ji H, 2023, J RES TECHNOL EDUC, V55, P48, DOI 10.1080/15391523.2022.2142873
Katsarou Eirene, 2023, International Journal of Emerging Technologies in Learning, P65, DOI 10.3991/ijet.v18i10.37723
Kessler G, 2018, FOREIGN LANG ANN, V51, P205, DOI 10.1111/flan.12318
Kienberger M, 2022, INT C TECHNOLOGICAL, P1092
Kohnke L, 2023, RELC J, V54, P537, DOI 10.1177/00336882231162868
Krippendorff K., 2018, CONTENT ANAL INTRO I
Lee S, 2024, COMPUT ASSIST LANG L, V37, P1048, DOI 10.1080/09588221.2022.2067182
Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348
Lin MPC, 2020, EDUC TECHNOL SOC, V23, P78
Litman D, 2018, LANG ASSESS Q, V15, P294, DOI 10.1080/15434303.2018.1472265
Liu CC, 2023, EDUC INF TECHNOL, V28, P13027, DOI 10.1007/s10639-023-11697-6
Liu Z, 2023, FOODS, V12, DOI 10.3390/foods12061242
López-Belmonte J, 2023, INTERACT LEARN ENVIR, V31, P1860, DOI 10.1080/10494820.2020.1859546
Luo JX, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141610230
Ma L, 2021, MOB INF SYST, V2021, DOI 10.1155/2021/2637439
Meurers D, 2012, Encyc Appl Ling 4193-4205
Min WH, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097235
Nagata N, 2013, CALICO J, V13, P47, DOI [10.1558/cj.v13i1.47-67, DOI 10.1558/CJ.V13I1.47-67]
Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160]
Peters Matthew E., 2017, Semi-supervised sequence tagging with bidirectional language models, DOI [DOI 10.48550/ARXIV.1705.00108, 10.48550/arXiv.1705.00108]
Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025
Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8
Rahman A, 2022, Appropriate Allocation of Specified NLP Tools for the Four Language Skills, DOI [10.1080/10494820.2023.2204324, DOI 10.1080/10494820.2023.2204324]
Rahman A, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204324
Ruiz S, 2021, LANG TEACH RES, V25, P510, DOI 10.1177/1362168819872859
Rusmiyanto R., 2023, Journal on Education, V6, P750, DOI [10.31004/joe.v6i1.2990, DOI 10.31004/JOE.V6I1.2990]
Russell Stuart, 2010, Artificial intelligence, a modern approach, V3
Segler T. M., 2002, Computer Assisted Language Learning, V15, P409, DOI 10.1076/call.15.4.409.8272
Seising R, 2018, MATHEMATICS-BASEL, V6, DOI 10.3390/math6070110
Shadiev R, 2023, RECALL, V35, P74, DOI 10.1017/S095834402200012X
Sharadgah TA, 2022, J INF TECHNOL EDUC-R, V21, P337, DOI 10.28945/4999
Simonite T, 2020, MIT Technology Review
Slavuj V, 2015, 38 INT CONVENTION IN, DOI [10.1109/mipro.2015.7160383, DOI 10.1109/MIPRO.2015.7160383]
stanford, Home
Tai TY, 2023, INTERACT LEARN ENVIR, V31, P1485, DOI 10.1080/10494820.2020.1841801
Tan S C., 2022, Computers and Education: Artificial Intelligence, V3, P100097, DOI [DOI 10.1016/J.CAEAI.2022.100097, 10.1016/j.caeai.2022.100097]
Thayyib PV, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15054026
Triantafillou E, 2003, COMPUT EDUC, V41, P87, DOI 10.1016/S0360-1315(03)00031-9
Vaswani A, 2017, ADV NEUR IN, V30
Verma S, 2020, J BUS RES, V118, P253, DOI 10.1016/j.jbusres.2020.06.057
Weitzman T, 2023, Forbes
Weng X., 2023, Computers and Education: Artificial Intelligence, DOI DOI 10.1016/J.CAEAI.2022.100117
Wijekumar K, 2013, COMPUT EDUC, V68, P366, DOI 10.1016/j.compedu.2013.05.021
Xu ZH, 2019, BRIT J EDUC TECHNOL, V50, P3119, DOI 10.1111/bjet.12758
Yang CTY, 2024, INTERACT LEARN ENVIR, V32, P2175, DOI 10.1080/10494820.2022.2141266
Yang HZ, 2022, AUSTRALAS J EDUC TEC, V38, P180, DOI 10.14742/ajet.7492
Zhang RF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2202704
Ziegler N, 2017, LANG LEARN, V67, P209, DOI 10.1111/lang.12227
Zilio L, 2017, RANLP, P839
NR 87
TC 0
Z9 0
U1 27
U2 27
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0269-2821
EI 1573-7462
J9 ARTIF INTELL REV
JI Artif. Intell. Rev.
PD APR 1
PY 2024
VL 57
IS 4
AR 107
DI 10.1007/s10462-023-10643-9
PG 27
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA MR5M5
UT WOS:001195372800002
OA hybrid
DA 2024-09-05
ER
PT C
AU Bhattacharjee, KK
AF Bhattacharjee, Kalyan Kumar
GP IEEE
TI Research Output on the Usage of Artificial Intelligence in Indian Higher
Education - A Scientometric Study
SO 2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND
ENGINEERING MANAGEMENT (IEEM)
SE International Conference on Industrial Engineering and Engineering
Management IEEM
LA English
DT Proceedings Paper
CT IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM)
CY DEC 15-18, 2019
CL Macao, MACAO
DE Scientometric analysis; Artificial Intelligence; Indian higher education
AB Scientrometrics is a branch of science which performs reproducible measurements of scientific activity. Scientometric analysis of research papers/ articles indexed in Scopus database (www.scopus.com) for last ten years (2009 to 2018) have been done. The study focuses on the research publications for the applications of Artificial Intelligence (AI) in higher education. A scientometric assessment of the trend of the research papers on AI usage in education sector have been presented in the study by way of analyzing; annual growth of research publications of AI (both globally and country wise) and growth trend of the "AI usage in education" publications (both country-wise as well as individual share). The study reveals the growth of AI in research publications both in international and in Indian context, but its applicability in the field of higher education is substantially low. The usage of AI in Indian education sector has tremendous scope for growth and in most likelihood research publications in the said field will expand considerably in years to come. This study will help subject specialists, researchers, policy makers for drafting effective policies, and those who wish to map the scientrometric patterns of research publications in the capacity of academic administrator or as an individual.
C1 [Bhattacharjee, Kalyan Kumar] Indian Inst Technol Delhi, New Delhi 16, India.
C3 Indian Institute of Technology System (IIT System); Indian Institute of
Technology (IIT) - Delhi
RP Bhattacharjee, KK (corresponding author), Indian Inst Technol Delhi, New Delhi 16, India.
EM kalyan@admin.iitd.ac.in
RI Bhattacharjee, Kalyan/AAM-8341-2021
OI Bhattacharjee, Kalyan/0000-0001-9844-6091
CR ANDREWS S., 2016, Contingent Academic Employment in Australian Universities
Bonder G, 2001, J CHEM EDUC, V78, P1107
Bostrom N., 2011, CAMBRIDGE HDB ARTIFI, P316
Brindley G., 1998, LANG TEST, V15, P45, DOI 10.1177/026553229801500103
Grove J., 2015, Times Higher Education
Haitun D., 1983, SCIENCE, V8, P48
Herr H, 2015, NEW SCI, V227, P24
Hines PJ, 2013, SCIENCE, V340, P291
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Ismail Noor Azizi, 2008, Campus-Wide Information Systems, V25, P145, DOI 10.1108/10650740810886321
Kübler A, 2015, ARCH PHYS MED REHAB, V96, pS27, DOI 10.1016/j.apmr.2014.03.036
Luckin R, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-016-0028
Nasrallah R., 2014, Education, Business and Society: Contemporary Middle Eastern Issues, V7, P257, DOI DOI 10.1108/EBS-03-2014-0016
Neven H., 2013, Launching the quantum artificial intelligence lab Google Research
Norris SP, 2003, SCI EDUC, V87, P224, DOI 10.1002/sce.10066
Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8
Schleicher A., 2015, Schools for 21st-century learners: Strong leaders, confident teachers
NR 17
TC 3
Z9 3
U1 3
U2 12
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2157-3611
BN 978-1-7281-3804-6
J9 IN C IND ENG ENG MAN
PY 2019
BP 916
EP 919
DI 10.1109/ieem44572.2019.8978798
PG 4
WC Engineering, Industrial; Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Operations Research & Management Science
GA BP2CR
UT WOS:000541902500182
DA 2024-09-05
ER
PT J
AU Yeom, S
Choi, C
Kim, K
AF Yeom, Sungwoong
Choi, Chulwoong
Kim, Kyungbaek
TI LSTM-Based Collaborative Source-Side DDoS Attack Detection
SO IEEE ACCESS
LA English
DT Article
DE Collaboration; Adaptive systems; Denial-of-service attack; Neural
networks; Market research; Logic gates; Time series analysis; Network
security; DDoS attack; SDN; LSTM; collaborative detection; traffic
seasonality embedding
ID NETWORK; DEFENSE
AB As denial of service attacks become more sophisticated, the source-side detection techniques are being studied to solve the limitations of target-side detection techniques such as delayed detection and difficulty in tracking attackers. Recently, some source-side detection techniques are being studied to use an adaptive attack detection threshold considering seasonal behavior of network traffic. However, because patterns of network traffic usage have become irregular with increased randomness and explosive traffic, the performance of the adaptive threshold technique has deteriorated. In addition, by limitations of the local view of a single site, distributed attacks from multiple sites may not be detected. In this paper, we propose a LSTM (Long Short Term Memory) based collaborative source-side DDoS (Distributed Denial of Service) attack detection framework which provides the attack detection result of a collaboration network in a global view. The proposed framework applies LSTM-based adaptive thresholds to each source-side network to mitigate performance degradation caused by irregular network traffic behavior. Also, in order to overcome the limitation of performance caused by the local view of single source-side network, the proposed framework constructs a collaborative network through multiple detection sites and aggregates feedback from each site, such as detection rates, local traffic patterns, and timestamp. The collaborative attack detection technique uses the aggregated feedback to determine whether the attack is finally detected and shares the finial detection results with multiple sites. Depending on this final detection result, the adaptive thresholds of each site are reset. Through extensive evaluation of actual network traffic data, the proposed collaborative source-side attack detection technique shows around 15% lower false positive rate than the single source-side attack detection technique while maintaining a high detection rate.
C1 [Yeom, Sungwoong; Choi, Chulwoong; Kim, Kyungbaek] Chonnam Natl Univ, Dept Artificial Intelligence Convergence, Gwangju 61186, South Korea.
C3 Chonnam National University
RP Kim, K (corresponding author), Chonnam Natl Univ, Dept Artificial Intelligence Convergence, Gwangju 61186, South Korea.
EM kyungbaekkim@jnu.ac.kr
OI Kim, Kyungbaek/0000-0001-9985-3051
FU Institute for Information & communications Technology Planning &
Evaluation (IITP); Korea Government Ministry of Science and ICT (MSIT)
[2019-0-01343]; Regional strategic Industry convergence Security Core
Talent Training Business; Bio and Medical Technology Development Program
of the National Research Foundation (NRF) through the Korean Government
Ministry of Science and ICT (MSIT) [NRF-2019M3E5D1A02067961]
FX This work was supported by the Institute for Information &
communications Technology Planning & Evaluation (IITP) and the Korea
Government Ministry of Science and ICT (MSIT) under Grant 2019-0-01343,
in part by the Regional strategic Industry convergence Security Core
Talent Training Business, and in part by the Bio and Medical Technology
Development Program of the National Research Foundation (NRF) through
the Korean Government Ministry of Science and ICT (MSIT) under Grant
NRF-2019M3E5D1A02067961.
CR Bhanu M, 2021, IEEE T INTELL TRANSP, V22, P3359, DOI 10.1109/TITS.2020.2984175
Chan KY, 2011, C IND ELECT APPL, P376, DOI 10.1109/ICIEA.2011.5975612
Ciucu F, 2014, IEEE INFOCOM SER, P2616, DOI 10.1109/INFOCOM.2014.6848209
Cui JJ, 2018, LECT NOTES ARTIF INT, V11144, P283, DOI 10.1007/978-3-030-00202-2_23
Duma C, 2006, INT WORKSHOP DATABAS, P692, DOI 10.1109/DEXA.2006.21
Feldmann Anja, 2020, IMC '20: Proceedings of the ACM Internet Measurement Conference, P1, DOI 10.1145/3419394.3423658
Fouladi RF, 2020, J INF SECUR APPL, V54, DOI 10.1016/j.jisa.2020.102587
Fung CJ, 2009, 2009 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2009) VOLS 1 AND 2, P33, DOI 10.1109/INM.2009.5188784
Geng Y, 2019, INT CONF SOFTW ENG, P324, DOI 10.1109/icsess47205.2019.9040735
Nguyen GT, 2019, KSII T INTERNET INF, V13, P2651, DOI 10.3837/tiis.2019.05.023
Jiang H., 2005, Performance Evaluation Review, V33, P241, DOI 10.1145/1071690.1064240
Jing Q, 2014, WIREL NETW, V20, P2481, DOI 10.1007/s11276-014-0761-7
Kim H, 2013, IEEE COMMUN MAG, V51, P114, DOI 10.1109/MCOM.2013.6461195
Lazaris A, 2019, 2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), P19
Lee C., 2019, ARXIV191111552
LELAND WE, 1994, IEEE ACM T NETWORK, V2, P1, DOI 10.1109/90.282603
Lopez-Benitez M., 2017, Proc. IEEE Wirel. Comms. and Net. Conf. (WCNC 2017), P1
Mantere M, 2013, FUTURE INTERNET, V5, P460, DOI 10.3390/fi5040460
Mirkovic J, 2005, IEEE T DEPEND SECURE, V2, P216, DOI 10.1109/TDSC.2005.35
Oduro-Gyimah F. K., 2018, P IEEE 7 INT C AD SC, P1
Paxson V, 2001, ACM SIGCOMM COMP COM, V31, P38, DOI 10.1145/505659.505664
Ramakrishnan N, 2018, 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P187, DOI 10.1109/ICMLA.2018.00035
Robert C., 1990, Journal of Official Statistics, V6, P3
Nguyen SN, 2018, IEICE T INF SYST, VE101D, P1686, DOI 10.1587/transinf.2018EDL8020
Song BH, 2007, IEICE T COMMUN, VE90B, P2655, DOI 10.1093/ietcom/e90-b.10.2655
Sungwoong Yeom, 2021, SAC '21: Proceedings of the 36th Annual ACM Symposium on Applied Computing, P1130, DOI 10.1145/3412841.3441987
Tran TV, 2016, IEEE SENS J, V16, P9021, DOI 10.1109/JSEN.2016.2616114
Yaacob Asrul H., 2010, Proceedings of the Second International Conference on Communication Software and Networks (ICCSN 2010), P205, DOI 10.1109/ICCSN.2010.55
Yeom S, 2020, ASIA-PAC NETW OPER M, P239, DOI 10.23919/APNOMS50412.2020.9237014
Zecheng He, 2017, 2017 IEEE 4th International Conference on Cyber-Security and Cloud Computing (CSCloud), P114, DOI 10.1109/CSCloud.2017.58
Zhang Y, 2013, PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON EMERGING NETWORKING EXPERIMENTS AND TECHNOLOGIES (CONEXT '13), P25
NR 31
TC 3
Z9 3
U1 2
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2022
VL 10
BP 44033
EP 44045
DI 10.1109/ACCESS.2022.3169616
PG 13
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA 0Y9RE
UT WOS:000790719100001
OA gold
DA 2024-09-05
ER
PT J
AU Armenia, S
Franco, E
Iandolo, F
Maielli, G
Vito, P
AF Armenia, Stefano
Franco, Eduardo
Iandolo, Francesca
Maielli, Giuliano
Vito, Pietro
TI Zooming in and out the landscape: Artificial intelligence and system
dynamics in business and management
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE System dynamics; Artificial intelligence; Bibliometrics; Topic modeling;
Technology; Forecasting
ID SUPPLY CHAIN DYNAMICS; DECISION-MAKING; KNOWLEDGE MANAGEMENT;
HEALTH-CARE; BANKRUPTCY PREDICTION; INNOVATION SYSTEM; NEURAL-NETWORKS;
POLICY-ANALYSIS; BIG DATA; MODEL
AB Organizations are increasingly leveraging the ability of artificial intelligence to analyze and resolve complex problems. This can potentially reshape the interdependencies and interactions of complex systems, leading to our research question: To what extent and in which direction is the literature on Artificial Intelligence (AI) and System Dynamics (SD) converging within the business and management landscape? We conducted an extensive literature review using bibliometric and topic modeling methods to address this question. Through a bibliometric analysis, we identified the areas in which academic papers referred to both SD and AI literature. However, bibliometrics do not show a clear path towards convergence. The top modeling analysis highlights more details on how convergence is structured, providing insights into how SD and AI may be integrated. Two trajectories are identified. In the "soft convergence," AI supports system dynamics analysis and modeling more deeply characterized by social interaction. In the "hard convergence," AI shapes innovative ways of rethinking system design, dynamics, and interdependencies. Our analysis suggests that while soft convergence is more visible in the business and management landscape, hard convergence may well represent a new frontier in studying system dynamics with the potential to reshape the landscape.
C1 [Armenia, Stefano] IUL Univ, Rome, Italy.
[Franco, Eduardo] Univ Sao Paulo, Sao Paulo, Brazil.
[Iandolo, Francesca; Vito, Pietro] Sapienza Univ Rome, Rome, Italy.
[Maielli, Giuliano] Queen Mary Univ London, Sch Business & Management, London, England.
C3 Universidade de Sao Paulo; Sapienza University Rome; University of
London; Queen Mary University London
RP Iandolo, F (corresponding author), Sapienza Univ Rome, Rome, Italy.
EM francesca.iandolo@uniroma1.it
RI Armenia, Stefano/K-2167-2017; Maielli, Giuliano/KDM-8272-2024; Iandolo,
Francesca/AFK-0311-2022
OI Armenia, Stefano/0000-0002-0777-4004; Iandolo,
Francesca/0000-0002-2366-4892
CR AAMODT A, 1995, DATA KNOWL ENG, V16, P191, DOI 10.1016/0169-023X(95)00017-M
Adya M, 1998, J FORECASTING, V17, P481, DOI 10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.3.CO;2-H
Ahn J, 2022, J BUS RES, V141, P50, DOI 10.1016/j.jbusres.2021.12.007
Akaev A, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120675
Akkermans H, 2016, PROJ MANAG J, V47, P79, DOI 10.1002/pmj.21585
Alinasab J, 2022, J KNOWL ECON, V13, P2490, DOI 10.1007/s13132-021-00801-1
Alkaldy EAH, 2019, INT J ENERGY SECT MA, V13, P149, DOI 10.1108/IJESM-03-2018-0008
[Anonymous], 1969, Urban Dynamics
[Anonymous], 1971, World dynamics
Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300
Armenia S., 2023, Syst. Res. Behav. Sci., P1
Armenia S., 2018, P 60 C UK SOC OR60, V178
Armenia S., 2019, New Challenges in Corporate Governance: Theory and Practice, P41, DOI [10.22495/ncpr_10, DOI 10.22495/NCPR_10]
Armenia S., 2017, P BSLABSYDIC WORKSHO
Arroyabe MF, 2022, STUD HIGH EDUC, V47, P955, DOI 10.1080/03075079.2022.2055318
Atsalakis GS, 2018, EUR J OPER RES, V268, P716, DOI 10.1016/j.ejor.2018.01.044
Azadeh A, 2014, SYST RES BEHAV SCI, V31, P236, DOI 10.1002/sres.2199
Badakhshan E, 2020, INT J PROD RES, V58, P5253, DOI 10.1080/00207543.2020.1715505
Badinelli R, 2012, J SERV MANAGE, V23, P498, DOI 10.1108/09564231211260396
Bai G.H, 2017, DESTECH T SOCIAL SCI
Baldwin C.Y., 2020, Design rules, Volume 1: The power of modularity.
Baldwin R, 2015, WORLD ECON, V38, P1682, DOI 10.1111/twec.12189
Ballester O, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101224
Barile S, 2016, J SERV MANAGE, V27, P652, DOI 10.1108/JOSM-09-2015-0268
Barlas Y, 2011, J OPER RES SOC, V62, P458, DOI 10.1057/jors.2010.188
Bayer S, 2021, J OPER RES SOC, V72, P2122, DOI 10.1080/01605682.2020.1772018
Bennett CC, 2013, ARTIF INTELL MED, V57, P9, DOI 10.1016/j.artmed.2012.12.003
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bordot F, 2022, J INNOV ECON MANAG, P117, DOI 10.3917/jie.037.0117
Braganza A, 2021, J BUS RES, V131, P485, DOI 10.1016/j.jbusres.2020.08.018
Brailsford SC, 2004, J OPER RES SOC, V55, P34, DOI 10.1057/palgrave.jors.2601667
Campbell C, 2022, J ADVERTISING, V51, P22, DOI 10.1080/00913367.2021.1909515
Caponio G, 2015, INT J ENG BUS MANAG, V7, DOI 10.5772/61768
Caputo F, 2021, J BUS RES, V135, P19, DOI 10.1016/j.jbusres.2021.06.012
Caputo F, 2020, J BUS RES, V119, P330, DOI 10.1016/j.jbusres.2019.03.040
Caputo F, 2019, MANAGE DECIS, V57, P2032, DOI 10.1108/MD-07-2018-0833
Ceylan Z, 2021, J FORECASTING, V40, P279, DOI 10.1002/for.2747
Chaney Nathan, 2020, CRAN
Charfi S, 2020, J MODEL MANAG, V15, P166, DOI 10.1108/JM2-09-2018-0130
Chekima K., 2010, Document Categorizer Agent for Computer Science Academic Papers
Chiang AH, 2022, TECHNOL FORECAST SOC, V177, DOI 10.1016/j.techfore.2022.121550
Chung B, 2018, SYST RES BEHAV SCI, V35, P248, DOI 10.1002/sres.2477
Clay NM, 2018, INT T OPER RES, V25, P215, DOI 10.1111/itor.12326
Collins C, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102383
Core MG, 2006, AAAI, V2, P1766
Loureiro SMC, 2021, J BUS RES, V129, P911, DOI 10.1016/j.jbusres.2020.11.001
Cosenz F, 2021, J BUS RES, V130, P658, DOI 10.1016/j.jbusres.2020.03.003
Cosenz F, 2018, LONG RANGE PLANN, V51, P127, DOI 10.1016/j.lrp.2017.07.001
Cramton CD, 2001, ORGAN SCI, V12, P346, DOI 10.1287/orsc.12.3.346.10098
Cronin MA, 2009, ORGAN BEHAV HUM DEC, V108, P116, DOI 10.1016/j.obhdp.2008.03.003
Cusumano M.A., 2019, BUSINESS PLATFORMS S, V320
Das SR, 2007, MANAGE SCI, V53, P1375, DOI 10.1287/mnsc.1070.0704
Davenport JH, 2020, J SYMB COMPUT, V100, P1, DOI 10.1016/j.jsc.2019.07.017
Gomes LAD, 2018, TECHNOL FORECAST SOC, V136, P30, DOI 10.1016/j.techfore.2016.11.009
Dejonckheere J, 2003, EUR J OPER RES, V147, P567, DOI 10.1016/S0377-2217(02)00369-7
DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017
Dordkeshan MJ, 2017, J FOOD PROD MARK, V23, P890, DOI 10.1080/10454446.2017.1244798
Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021
Duch-Brown N, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104446
Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002
DYNER I, 1995, J OPER RES SOC, V46, P1163, DOI 10.1038/sj/jors/0461001
Dyson B, 2005, WASTE MANAGE, V25, P669, DOI 10.1016/j.wasman.2004.10.005
Er H, 2017, EURASIAN BUS REV, V7, P313, DOI 10.1007/s40821-016-0056-2
Espinasse B, 1997, EUR J OPER RES, V103, P389, DOI 10.1016/S0377-2217(97)00127-6
Eugeni R, 2019, LECT NOTES COMPUT SC, V11579, P291, DOI 10.1007/978-3-030-21905-5_23
Fan WH, 2021, TSINGHUA SCI TECHNOL, V26, P608, DOI 10.26599/TST.2021.9010005
Feng N, 2019, ELECTRON COMMER R A, V35, DOI 10.1016/j.elerap.2019.100843
Ferreira P, 2020, LECT NOTES BUS INF P, V377, P202, DOI 10.1007/978-3-030-38724-2_15
Fethi MD, 2010, EUR J OPER RES, V204, P189, DOI 10.1016/j.ejor.2009.08.003
Fiala P, 2005, OMEGA-INT J MANAGE S, V33, P419, DOI 10.1016/j.omega.2004.07.006
Ford A, 1997, SYST DYNAM REV, V13, P57, DOI 10.1002/(SICI)1099-1727(199721)13:1<57::AID-SDR117>3.0.CO;2-B
Ford DN, 1998, SYST DYNAM REV, V14, P309, DOI 10.1002/(SICI)1099-1727(199824)14:4<309::AID-SDR154>3.0.CO;2-5
Forrester J.W., 1961, Industrial Dynamics
Forrester JW, 2007, SYST DYNAM REV, V23, P359, DOI 10.1002/sdr.381
FORRESTER JW, 1992, EUR J OPER RES, V59, P42, DOI 10.1016/0377-2217(92)90006-U
Fridgeirsson TV, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13042345
Gao B, 2022, COMPUT ECON, V59, P1385, DOI 10.1007/s10614-021-10101-0
Garbero A, 2021, TECHNOL FORECAST SOC, V172, DOI 10.1016/j.techfore.2021.121012
Gary MS, 2005, STRATEGIC MANAGE J, V26, P643, DOI 10.1002/smj.468
Gawer A, 2021, LONG RANGE PLANN, V54, DOI 10.1016/j.lrp.2020.102045
Gawer A, 2014, RES POLICY, V43, P1239, DOI 10.1016/j.respol.2014.03.006
Gelman IA, 2005, EUR J OPER RES, V160, P325, DOI 10.1016/j.ejor.2003.09.004
Ghaffarzadegan N, 2017, EUR J OPER RES, V261, P1085, DOI 10.1016/j.ejor.2017.02.041
Ghaffarzadegan N, 2011, SYST DYNAM REV, V27, P22, DOI 10.1002/sdr.442
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Gruetzemacher R, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120909
Gruia L., 2020, Human-made in the Age of Artificial Intelligence, P443
Grum M, 2020, LECT NOTES BUS INF P, V391, P182, DOI 10.1007/978-3-030-52306-0_12
Guerreiro J, 2016, J BUS ETHICS, V139, P111, DOI 10.1007/s10551-015-2622-4
Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392
Hannigan TR, 2019, ACAD MANAG ANN, V13, P586, DOI 10.5465/annals.2017.0099
Harrison G, 2017, TECHNOL FORECAST SOC, V114, P165, DOI 10.1016/j.techfore.2016.08.007
Hein R, 2012, TECHNOL FORECAST SOC, V79, P1654, DOI 10.1016/j.techfore.2012.06.002
Hekkert MP, 2007, TECHNOL FORECAST SOC, V74, P413, DOI 10.1016/j.techfore.2006.03.002
HENDERSON RM, 1990, ADMIN SCI QUART, V35, P9, DOI 10.2307/2393549
Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014
Hess TJ, 2000, DECISION SCI, V31, P1, DOI 10.1111/j.1540-5915.2000.tb00922.x
Hovmand PS, 2012, SYST RES BEHAV SCI, V29, P179, DOI 10.1002/sres.2105
Huang D, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120594
Huang L, 2007, PROCEEDINGS OF THE 2007 CONFERENCE ON SYSTEMS SCIENCE, MANAGEMENT SCIENCE AND SYSTEM DYNAMICS: SUSTAINABLE DEVELOPMENT AND COMPLEX SYSTEMS, VOLS 1-10, P793
Huang MH, 2019, CALIF MANAGE REV, V61, P43, DOI 10.1177/0008125619863436
Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459
Huelsen P, 2021, RISUS, V12, P17, DOI 10.23925/2179-3565.2021v12i2p17-29
Hwang S, 2010, INT J STRATEG PROP M, V14, P157, DOI 10.3846/ijspm.2010.12
Hwarng HB, 2008, EUR J OPER RES, V184, P1163, DOI 10.1016/j.ejor.2006.12.014
Iandolo F, 2021, J KNOWL ECON, V12, P1982, DOI 10.1007/s13132-020-00703-8
Jacobides MG, 2018, STRATEGIC MANAGE J, V39, P2255, DOI 10.1002/smj.2904
Jafarian-Namin S, 2019, INT J ENERGY SECT MA, V13, P1038, DOI 10.1108/IJESM-06-2018-0002
Jahangirian M, 2010, EUR J OPER RES, V203, P1, DOI 10.1016/j.ejor.2009.06.004
van Eck NJ, 2011, Arxiv, DOI arXiv:1109.2058
Jana RK, 2022, TECHNOL FORECAST SOC, V178, DOI 10.1016/j.techfore.2022.121584
Jarrahi MH, 2018, BUS HORIZONS, V61, P577, DOI 10.1016/j.bushor.2018.03.007
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jiang F, 2017, STROKE VASC NEUROL, V2, P230, DOI 10.1136/svn-2017-000101
Jiang YY, 2020, INT J CONTEMP HOSP M, V32, P2563, DOI 10.1108/IJCHM-03-2020-0237
Jnitova V, 2021, INT J ENG BUS MANAG, V13, DOI 10.1177/18479790211004010
KABIR C, 1981, COMPUT IND ENG, V5, P7, DOI 10.1016/0360-8352(81)90009-7
Kahneman D, 2015, FORTUNE, V172, P20
Kaiser C, 2020, J BUS RES, V117, P707, DOI 10.1016/j.jbusres.2019.09.017
Kambur E, 2022, INT J MANPOWER, V43, P168, DOI 10.1108/IJM-04-2021-0216
Kampmann CE, 2008, SYST RES BEHAV SCI, V25, P505, DOI 10.1002/sres.909
Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Khashei M, 2022, J MODEL MANAG, V17, P154, DOI 10.1108/JM2-06-2020-0159
Khmiadashvili CL, 2019, QUAL-ACCESS SUCCESS, V20, P85
Kim H, 2008, EUR J OPER RES, V189, P172, DOI 10.1016/j.ejor.2007.05.012
Kim J, 2022, J BUS RES, V144, P797, DOI 10.1016/j.jbusres.2022.02.047
Kitanaka H, 2021, J PERS SELL SALES M, V41, P351, DOI 10.1080/08853134.2021.1935976
Kobbacy KAH, 2007, J OPER RES SOC, V58, P10, DOI 10.1057/palgrave.jors.2602132
Kogan K, 2003, EUR J OPER RES, V149, P448, DOI 10.1016/S0377-2217(02)00450-2
Kong HY, 2021, INT J CONTEMP HOSP M, V33, P717, DOI 10.1108/IJCHM-07-2020-0789
Kopainsky B, 2008, SYST RES BEHAV SCI, V25, P471, DOI 10.1002/sres.913
Kozikowski D, 2020, EDUCATION EXCELLENCE AND INNOVATION MANAGEMENT: A 2025 VISION TO SUSTAIN ECONOMIC DEVELOPMENT DURING GLOBAL CHALLENGES, P7438
Krenz P, 2014, PROC CIRP, V16, P38, DOI 10.1016/j.procir.2014.01.006
Krusinskas R, 2014, TRANSFORM BUS ECON, V13, P102
Kunc M, 2018, J SIMUL, V12, P115, DOI 10.1080/17477778.2018.1468950
Kunsch P, 2008, EUR J OPER RES, V185, P1285, DOI 10.1016/j.ejor.2006.05.048
Kunsch PL, 2004, EUR J OPER RES, V153, P386, DOI 10.1016/S0377-2217(03)00160-7
Kwakkel JH, 2015, SYST RES BEHAV SCI, V32, P358, DOI 10.1002/sres.2225
Lambrecht A, 2019, MANAGE SCI, V65, P2966, DOI 10.1287/mnsc.2018.3093
Lee K, 2011, INT J INFORM MANAGE, V31, P160, DOI 10.1016/j.ijinfomgt.2010.07.009
Liebowitz J, 2001, EXPERT SYST APPL, V20, P1, DOI 10.1016/S0957-4174(00)00044-0
Liu CY, 2015, J OPER MANAG, V39-40, P31, DOI 10.1016/j.jom.2015.07.004
Liu Q, 2018, Manag. Des. Eng., V32, P67
Lusch RF, 2018, MARKETING THEOR, V18, P435, DOI 10.1177/1470593118777904
Lustig IJ, 2001, INTERFACES, V31, P29, DOI 10.1287/inte.31.6.29.9647
Lv H, 2022, J HOSP MARKET MANAG, V31, P145, DOI 10.1080/19368623.2021.1937434
Lyneis JM, 2000, SYST DYNAM REV, V16, P3, DOI 10.1002/(SICI)1099-1727(200021)16:1<3::AID-SDR183>3.0.CO;2-5
Maier FH, 1998, SYST DYNAM REV, V14, P285, DOI 10.1002/(SICI)1099-1727(199824)14:4<285::AID-SDR153>3.0.CO;2-F
Maliapen M, 2010, J OPER RES SOC, V61, P255, DOI 10.1057/jors.2008.134
Manahov V, 2019, INT J ELECTRON COMM, V23, P12, DOI 10.1080/10864415.2018.1512271
MARSHAKOVA IV, 1973, NAUCH-TEKHN INFORM 2, P3
Martínez-López FJ, 2013, IND MARKET MANAG, V42, P489, DOI 10.1016/j.indmarman.2013.03.001
MARTINO JP, 1980, MANAGE SCI, V26, P28, DOI 10.1287/mnsc.26.1.28
McLean G, 2021, J BUS RES, V124, P312, DOI 10.1016/j.jbusres.2020.11.045
Mendoza JD, 2014, INT J OPER PROD MAN, V34, P1055, DOI 10.1108/IJOPM-06-2012-0238
Middleton K, 2021, MARKETING THEOR, V21, P561, DOI 10.1177/14705931211035163
Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434
Mingers J, 2010, EUR J OPER RES, V207, P1147, DOI 10.1016/j.ejor.2009.12.019
MORECROFT JDW, 1988, EUR J OPER RES, V35, P301, DOI 10.1016/0377-2217(88)90221-4
Moxnes E, 1990, SYST DYNAM REV, V6, P44, DOI 10.1002/sdr.4260060104
Nag AK, 2002, J FORECASTING, V21, P501, DOI 10.1002/for.838
Nasirzadeh F, 2013, INT J PROJ MANAG, V31, P903, DOI 10.1016/j.ijproman.2012.11.003
Nazareth DL, 2015, INFORM MANAGE-AMSTER, V52, P123, DOI 10.1016/j.im.2014.10.009
Nemati HR, 2002, DECIS SUPPORT SYST, V33, P143, DOI 10.1016/S0167-9236(01)00141-5
Nicholson CF, 2008, J BUS RES, V61, P1125, DOI 10.1016/j.jbusres.2007.11.011
Noniashvili M, 2020, J E EUR CENT ASIAN R, V7, P96, DOI 10.15549/jeecar.v7i1.386
North K., 2018, KNOWLEDGE MANAGEMENT
Nyam YS, 2022, SYST RES BEHAV SCI, V39, P305, DOI 10.1002/sres.2753
O'Leary DE, 1998, COMPUTER, V31, P54, DOI 10.1109/2.660190
Oladimeji OO, 2020, INT J PRODUCT PERFOR, V69, P1539, DOI 10.1108/IJPPM-12-2018-0453
Oliva R, 2003, EUR J OPER RES, V151, P552, DOI 10.1016/S0377-2217(02)00622-7
Oliva R, 2001, MANAGE SCI, V47, P894, DOI 10.1287/mnsc.47.7.894.9807
Ozalp H, 2022, CALIF MANAGE REV, V64, P78, DOI 10.1177/00081256221094307
Park E, 2018, INT J CONTEMP HOSP M, V30, P3386, DOI 10.1108/IJCHM-11-2017-0714
Parry K, 2016, GROUP ORGAN MANAGE, V41, P571, DOI 10.1177/1059601116643442
Paschen J, 2020, J PROD BRAND MANAG, V29, P223, DOI 10.1108/JPBM-12-2018-2179
Patterson DW, 1990, INTRO ARTIFICIAL INT
Paucar-Caceres A, 2007, J OPER RES SOC, V58, P701, DOI 10.1057/palgrave.jors.2602188
Perolla H, 2021, REV GEINTEC, V11, P1312, DOI 10.47059/revistageintec.v11i2.1759
Pillai R, 2020, BENCHMARKING, V27, P2599, DOI 10.1108/BIJ-04-2020-0186
Pitardi V, 2022, J SERV MANAGE, V33, P389, DOI 10.1108/JOSM-12-2020-0435
Pitt CS, 2020, EUR J MARKETING, V54, P305, DOI 10.1108/EJM-01-2019-0083
Powell JH, 2017, J OPER RES SOC, V68, P1211, DOI 10.1057/s41274-016-0147-6
Prentic C, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102186
Prentice C, 2023, J RETAIL CONSUM SERV, V73, DOI 10.1016/j.jretconser.2023.103376
Prentice C, 2020, J HOSP MARKET MANAG, V29, P739, DOI 10.1080/19368623.2020.1722304
PRICE DJD, 1965, SCIENCE, V149, P510
Rahman MS, 2022, J ENTERP INF MANAG, V35, P455, DOI 10.1108/JEIM-05-2020-0185
Rahmandad H, 2008, MANAGE SCI, V54, P998, DOI 10.1287/mnsc.1070.0787
Rahmandad H, 2016, STRATEGIC MANAGE J, V37, P649, DOI 10.1002/smj.2354
Rashwan W, 2015, EUR J OPER RES, V247, P276, DOI 10.1016/j.ejor.2015.05.043
Reddi KR, 2011, INT J ADV MANUF TECH, V55, P1225, DOI 10.1007/s00170-010-3143-z
Redmond M, 2002, EUR J OPER RES, V141, P660, DOI 10.1016/S0377-2217(01)00264-8
Rezaee MJ, 2019, INT J ENERGY SECT MA, V13, P828, DOI 10.1108/IJESM-09-2018-0015
Richardson GP, 2011, SYST DYNAM REV, V27, P219, DOI 10.1002/sdr.462
Rodrigues A.G., 2001, 4 EUROPEAN PROJECT M, P1
Rodriguez-Ulloal R, 2005, SYST PRACT ACT RES, V18, P303, DOI 10.1007/s11213-005-4816-7
Rouwette EAJA, 2004, SYST RES BEHAV SCI, V21, P351, DOI 10.1002/sres.647
Russell MG, 2018, TECHNOL FORECAST SOC, V136, P114, DOI 10.1016/j.techfore.2017.11.024
Sajjad R, 2007, PROCEEDINGS OF THE 2007 CONFERENCE ON SYSTEMS SCIENCE, MANAGEMENT SCIENCE AND SYSTEM DYNAMICS: SUSTAINABLE DEVELOPMENT AND COMPLEX SYSTEMS, VOLS 1-10, P1713
Salman A, 2007, EUR J OPER RES, V183, P785, DOI 10.1016/j.ejor.2006.10.020
Scherer Matthew U., 2016, HARVARD J LAW TECHNO, V29, P359, DOI DOI 10.2139/SSRN.2609777
Schwaninger M, 2006, SYST RES BEHAV SCI, V23, P583, DOI 10.1002/sres.800
Segura MG, 2020, INT J LEAN SIX SIG, V11, P863, DOI 10.1108/IJLSS-05-2017-0042
SHARIF MN, 1976, TECHNOL FORECAST SOC, V9, P89, DOI 10.1016/0040-1625(76)90046-9
Shrestha YR, 2021, J BUS RES, V123, P588, DOI 10.1016/j.jbusres.2020.09.068
Shrestha YR, 2019, CALIF MANAGE REV, V61, P66, DOI 10.1177/0008125619862257
Simkova N, 2021, J THEOR APPL EL COMM, V16, P1186, DOI 10.3390/jtaer16050067
Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852
Smith G, 2020, J INF TECHNOL-UK, V35, P182, DOI 10.1177/0268396220915600
Srinivasan N, 2021, REV GEINTEC, V11, P1526, DOI 10.47059/revistageintec.v11i2.1778
Stancu MS, 2021, P INT CONF BUS EXCEL, V15, P749, DOI 10.2478/picbe-2021-0070
Sterman J, 2015, J OPER MANAG, V39-40, P1, DOI 10.1016/j.jom.2015.07.001
Sundaresan S, 2022, INT J ORGAN ANAL, V30, P983, DOI 10.1108/IJOA-12-2020-2558
Suryani E, 2021, J MODEL MANAG, V16, P37, DOI 10.1108/JM2-03-2019-0055
Swaminathan JM, 1998, DECISION SCI, V29, P607, DOI 10.1111/j.1540-5915.1998.tb01356.x
Talafidaryani M, 2021, MANAG RES REV, V44, P236, DOI 10.1108/MRR-03-2020-0139
Konchou FAT, 2021, INT J ENERGY SECT MA, V15, P566, DOI 10.1108/IJESM-04-2020-0008
TAM KY, 1992, EUR J OPER RES, V63, P322, DOI 10.1016/0377-2217(92)90034-7
Tigabu AD, 2015, TECHNOL FORECAST SOC, V90, P331, DOI 10.1016/j.techfore.2013.09.019
Tiwana A, 2010, INFORM SYST RES, V21, P675, DOI 10.1287/isre.1100.0323
Toorajipour R, 2021, J BUS RES, V122, P502, DOI 10.1016/j.jbusres.2020.09.009
Townshend JRP, 2000, J OPER RES SOC, V51, P812, DOI 10.1057/palgrave.jors.2600978
van de Poel I, 2020, MIND MACH, V30, P385, DOI 10.1007/s11023-020-09537-4
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Oorschot KE, 2018, PROJ MANAG J, V49, P78, DOI 10.1177/8756972818802714
Vennix JAM, 1990, SYST DYNAM REV, V6, P194, DOI 10.1002/sdr.4260060205
VENNIX JAM, 1992, EUR J OPER RES, V59, P85, DOI 10.1016/0377-2217(92)90008-W
VENNIX JAM, 1992, EUR J OPER RES, V59, P28, DOI 10.1016/0377-2217(92)90005-T
Vennix JAM, 1999, SYST DYNAM REV, V15, P379, DOI 10.1002/(SICI)1099-1727(199924)15:4<379::AID-SDR179>3.0.CO;2-E
Wang CX, 2009, ICMECG: 2009 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT, PROCEEDINGS, P339, DOI 10.1109/ICMeCG.2009.27
Westermann A, 2021, CORP COMMUN, V26, P2, DOI 10.1108/CCIJ-01-2020-0028
Wiart L, 2022, J BUS RES, V144, P391, DOI 10.1016/j.jbusres.2022.02.024
Wien AH, 2021, J BUS RES, V137, P13, DOI 10.1016/j.jbusres.2021.08.016
WILLIAMS T, 1995, J OPER RES SOC, V46, P809, DOI 10.1057/jors.1995.114
Winz I, 2009, WATER RESOUR MANAG, V23, P1301, DOI 10.1007/s11269-008-9328-7
Wirth N, 2018, INT J MARKET RES, V60, P435, DOI 10.1177/1470785318776841
Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119
Xia M, 2005, EUR J OPER RES, V164, P239, DOI 10.1016/j.ejor.2003.11.018
Xu JJ, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100550
Xue CG, 2013, J OPER RES SOC, V64, P864, DOI 10.1057/jors.2012.91
Yang Y, 2022, J HOSP MARKET MANAG, V31, P1, DOI 10.1080/19368623.2021.1926037
Zaim S, 2013, PROCD SOC BEHV, V99, P545, DOI 10.1016/j.sbspro.2013.10.524
Zhang GQ, 1999, EUR J OPER RES, V116, P16, DOI 10.1016/S0377-2217(98)00051-4
Zhang LX, 2021, J SERV MARK, V35, P628, DOI 10.1108/JSM-05-2020-0162
Zhang X, 2018, J REAL ESTATE FINANC, V57, P476, DOI 10.1007/s11146-017-9650-z
Zhao JY, 2018, TECHNOL FORECAST SOC, V137, P128, DOI 10.1016/j.techfore.2018.07.001
Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8
Zhou L, 2019, J APPL PSYCHOL, V104, P388, DOI 10.1037/apl0000370
NR 253
TC 4
Z9 4
U1 33
U2 41
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD MAR
PY 2024
VL 200
AR 123131
DI 10.1016/j.techfore.2023.123131
EA JAN 2024
PG 20
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA GR7Q5
UT WOS:001154469500001
OA hybrid, Green Submitted
DA 2024-09-05
ER
PT J
AU Galán, JJ
Carrasco, RA
LaTorre, A
AF Galan, Jose Javier
Carrasco, Ramon Alberto
LaTorre, Antonio
TI Military Applications of Machine Learning: A Bibliometric Perspective
SO MATHEMATICS
LA English
DT Article
DE machine learning; military; artificial intelligence; bibliometric
analysis
ID STRESS; INTELLIGENCE; IDENTIFICATION; TECHNOLOGY; NETWORKS; VETERANS;
TRENDS; MODEL
AB The military environment generates a large amount of data of great importance, which makes necessary the use of machine learning for its processing. Its ability to learn and predict possible scenarios by analyzing the huge volume of information generated provides automatic learning and decision support. This paper aims to present a model of a machine learning architecture applied to a military organization, carried out and supported by a bibliometric study applied to an architecture model of a nonmilitary organization. For this purpose, a bibliometric analysis up to the year 2021 was carried out, making a strategic diagram and interpreting the results. The information used has been extracted from one of the main databases widely accepted by the scientific community, ISI WoS. No direct military sources were used. This work is divided into five parts: the study of previous research related to machine learning in the military world; the explanation of our research methodology using the SciMat, Excel and VosViewer tools; the use of this methodology based on data mining, preprocessing, cluster normalization, a strategic diagram and the analysis of its results to investigate machine learning in the military context; based on these results, a conceptual architecture of the practical use of ML in the military context is drawn up; and, finally, we present the conclusions, where we will see the most important areas and the latest advances in machine learning applied, in this case, to a military environment, to analyze a large set of data, providing utility, machine learning and decision support.
C1 [Galan, Jose Javier] Univ Complutense Madrid, Fac Stat, Madrid 3728040, Spain.
[Carrasco, Ramon Alberto] Univ Madrid, Fac Commerce & Tourism Complutense, Dept Management & Mkt, Madrid 28223, Spain.
[LaTorre, Antonio] Univ Politecn Madrid, Ctr Computat Simulat CCS, Madrid 28660, Spain.
C3 Complutense University of Madrid; Universidad Politecnica de Madrid
RP Galán, JJ (corresponding author), Univ Complutense Madrid, Fac Stat, Madrid 3728040, Spain.
EM josejgal@ucm.es; ramoncar@ucm.es; a.latorre@upm.es
RI Galan Hernandez, Jose Javier/AHA-8253-2022; CARRASCO, RAMON
ALBERTO/D-9973-2012; LaTorre, Antonio/A-5361-2011
OI Galan Hernandez, Jose Javier/0000-0002-1668-1731; CARRASCO, RAMON
ALBERTO/0000-0001-7365-349X; LaTorre, Antonio/0000-0002-8718-5735
FU FEDER funds [PGC2018-096509-B-I00]
FX This research has been partially supported support from the FEDER funds
provided by the National Spanish project PGC2018-096509-B-I00.
CR Adamowski T., 2006, ADV CLIN EXP MED, V15, P355
Ajakwe SO, 2020, I C INF COMM TECH CO, P417, DOI 10.1109/ICTC49870.2020.9289286
Al-Kaff A, 2018, EXPERT SYST APPL, V92, P447, DOI 10.1016/j.eswa.2017.09.033
Alfandi O, 2021, CLUSTER COMPUT, V24, P37, DOI 10.1007/s10586-020-03137-8
Amalina F, 2020, IEEE ACCESS, V8, P3629, DOI 10.1109/ACCESS.2019.2923270
Aouto A, 2019, I C INF COMM TECH CO, P626, DOI 10.1109/ictc46691.2019.8939983
Arnous FI, 2020, PROC SPIE, V11408, DOI 10.1117/12.2567139
Azar AT, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10090999
Aziz L, 2020, IEEE ACCESS, V8, P170461, DOI 10.1109/ACCESS.2020.3021508
Banerjee A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21041253
Bekesiene S, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060626
Berry D, 2021, HEALTH TECHNOL-GER, V11, P251, DOI 10.1007/s12553-020-00513-7
Bickel KE, 2020, J GEN INTERN MED, V35, P505, DOI 10.1007/s11606-019-05538-x
Camara N., 2015, SSRN Electronic Journal, DOI DOI 10.2139/SSRN.2634616
Cho S, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9122187
Chukhnov A.P., 2021, Journal of Physics: Conference Series, V2096
Cid-López A, 2015, TECHNOL ECON DEV ECO, V21, P720, DOI 10.3846/20294913.2015.1056281
Cobo MJ, 2018, PROCEDIA COMPUT SCI, V139, P364, DOI 10.1016/j.procs.2018.10.278
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Convertino VA, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20226413
de las Heras-Rosas C, 2021, INT J FINANC STUD, V9, DOI 10.3390/ijfs9020031
de Neufville R, 2021, TECHNOL SOC, V66, DOI 10.1016/j.techsoc.2021.101649
Degenstein LM, 2021, MICROMACHINES-BASEL, V12, DOI 10.3390/mi12070773
Dodge J, 2021, ACM T INTERACT INTEL, V11, DOI 10.1145/3453173
Duddu V, 2018, DEFENCE SCI J, V68, P356, DOI 10.14429/dsj.68.12371
Dwivedi R.K., 2018, P 2018 8 INT C CLOUD, P192
Escobar-Flores JG, 2022, ENVIRON SCI POLLUT R, V29, P61662, DOI 10.1007/s11356-022-18985-7
Fazekas F., 2021, ARTIF INTELL, P79
GODEREZ BI, 1987, B MENNINGER CLIN, V51, P96
Gomes GF, 2018, COMPOS STRUCT, V196, P44, DOI 10.1016/j.compstruct.2018.05.002
Evangelista JRG, 2021, J APPL SEC RES, V16, P345, DOI 10.1080/19361610.2020.1761737
Graham K, 2019, J PSYCHOSOM RES, V127, DOI 10.1016/j.jpsychores.2019.109838
Hanson PJ, 2018, PROC SPIE, V10643, DOI 10.1117/12.2305071
Hu WD, 2019, ACTA PHYS SIN-CH ED, V68, DOI 10.7498/aps.68.20190281
Huang WQ, 2015, 2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 1, P1318, DOI [10.1109/Trustcom-2015.524, 10.1109/Trustcom.2015.524]
Iftimie IA, 2020, PR INT CONF INF WAR, P262, DOI 10.34190/ICCWS.20.078
Jahromi AN, 2020, IEEE TETCI, V4, P630, DOI 10.1109/TETCI.2019.2910243
Jian Pan, 2021, E3S Web of Conferences, V235, DOI 10.1051/e3sconf/202123503046
Kang B, 2021, J ADV NURS, V77, P3176, DOI 10.1111/jan.14864
Kang JJ, 2021, 2021 31ST INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), P13, DOI 10.1109/ITNAC53136.2021.9652140
Karstoft KI, 2015, J AFFECT DISORDERS, V184, P170, DOI 10.1016/j.jad.2015.05.057
Kehle-Forbes SM, 2017, J HEAD TRAUMA REHAB, V32, pE16, DOI 10.1097/HTR.0000000000000227
Khan MJ, 2018, IEEE ACCESS, V6, P14118, DOI 10.1109/ACCESS.2018.2812999
Lammers D, 2022, J SURG RES, V270, P369, DOI 10.1016/j.jss.2021.09.017
Lance B.J., 2020, INT SOC OPT PHOTONIC, V11413, P1141306, DOI [10.1117/12.2564515, DOI 10.1117/12.2564515]
Li Y, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1264
Liu H., 2020, ACTA PHYS-CHIM SIN, V38
López-Robles JR, 2019, INT J INFORM MANAGE, V48, P22, DOI 10.1016/j.ijinfomgt.2019.01.013
Martins OO, 2021, GAZI U J SCI, V34, P765, DOI 10.35378/gujs.792682
Mellit A, 2014, ENERGY, V70, P1, DOI 10.1016/j.energy.2014.03.102
Miller DJ, 2020, P IEEE, V108, P402, DOI 10.1109/JPROC.2020.2970615
Moreno C, 2019, INT J INTERACT MULTI, V5, P7, DOI 10.9781/ijimai.2019.06.003
Morse S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0235017
Nampoothiri MGH, 2021, SN APPL SCI, V3, DOI 10.1007/s42452-021-04453-3
Oh D, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20247321
Pietrzak RH, 2012, J PSYCHIATR RES, V46, P317, DOI 10.1016/j.jpsychires.2011.11.013
Ploumis Michail, 2022, COMP STRATEGY, V41, P1
Privett GJ, 2003, P SOC PHOTO-OPT INS, V5203, P163, DOI 10.1117/12.510037
Pundir M, 2021, J NETW COMPUT APPL, V188, DOI 10.1016/j.jnca.2021.103084
Rempel M, 2021, OPER RES PERSPECT, V8, DOI 10.1016/j.orp.2021.100204
Restituyo R, 2018, 2018 9TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), P26, DOI 10.1109/UEMCON.2018.8796596
Rosellini AJ, 2016, PSYCHOL MED, V46, P303, DOI 10.1017/S0033291715001774
Rosellini AJ, 2018, DEPRESS ANXIETY, V35, P1073, DOI 10.1002/da.22807
Samarasinghe D, 2021, IEEE ACCESS, V9, P114051, DOI 10.1109/ACCESS.2021.3103198
Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x
Shahid H, 2021, ACM T INTERNET TECHN, V21, DOI 10.1145/3418204
Shin G, 2018, SOFT COMPUT, V22, P6835, DOI 10.1007/s00500-018-3433-1
Small SG, 2014, NEURAL COMPUT APPL, V25, P533, DOI 10.1007/s00521-013-1516-6
Srinath R, 2021, INT J IMAG SYST TECH, V31, P729, DOI 10.1002/ima.22486
Svenmarck P., 2018, Possibilities and Challenges for Artificial Intelligence in Military Applications, P1
Talbot LA, 2020, MIL MED, V185, pE1364, DOI 10.1093/milmed/usaa108
Tian YY, 2020, INT J ADV ROBOT SYST, V17, DOI 10.1177/1729881420936091
Tursunbayeva A, 2018, INT J INFORM MANAGE, V43, P224, DOI 10.1016/j.ijinfomgt.2018.08.002
Verma V, 2020, SOC NETW ANAL MIN, V10, DOI 10.1007/s13278-020-00660-9
Walker PB, 2017, IEEE ACM T COMPUT BI, V14, P534, DOI 10.1109/TCBB.2016.2591549
Wang W, 2020, IEEE ACCESS, V8, P131614, DOI 10.1109/ACCESS.2020.3009840
Wang X., 2018, P IECON 2018 44 ANN, p3171 3175
Wilson AN, 2022, IEEE SENS J, V22, P1807, DOI 10.1109/JSEN.2021.3139124
Xu YY, 2021, DEV BUILT ENVIRON, V6, DOI 10.1016/j.dibe.2021.100045
YuLong Zhang, 2020, 2020 6th International Conference on Big Data and Information Analytics (BigDIA), P113, DOI 10.1109/BigDIA51454.2020.00026
Zhang H, 2020, FRONT INFORM TECH EL, V21, P1671, DOI 10.1631/FITEE.2000228
Zhang Y, 2017, BIOMED ENG ONLINE, V16, DOI 10.1186/s12938-017-0397-9
Zhang YJ, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19214790
Zheng Y, 2020, NEURAL COMPUT APPL, V32, P1869, DOI 10.1007/s00521-019-04567-1
Zhong GQ, 2019, WIRES DATA MIN KNOWL, V9, DOI 10.1002/widm.1255
Zuluaga JGC, 2018, PROC NAECON IEEE NAT, P521, DOI 10.1109/NAECON.2018.8556642
Zuromski KL, 2020, J PSYCHIATR RES, V121, P214, DOI 10.1016/j.jpsychires.2019.12.003
Zuromski KL, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.0766
NR 88
TC 10
Z9 10
U1 8
U2 36
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-7390
J9 MATHEMATICS-BASEL
JI Mathematics
PD MAY
PY 2022
VL 10
IS 9
AR 1397
DI 10.3390/math10091397
PG 27
WC Mathematics
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Mathematics
GA 1G9BQ
UT WOS:000796143500001
OA gold
DA 2024-09-05
ER
PT C
AU Qi, J
Liu, CY
Guo, Y
Gao, Y
Hu, XX
AF Qi, Jin
Liu, Chenya
Guo, Yang
Gao, Yu
Hu, Xiaoxuan
GP IEEE
TI Research and Practice on the Talent Evaluation Model of the First-class
Undergraduate Major in Network Engineering for Emerging engineering
SO 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC
SE Chinese Control and Decision Conference
LA English
DT Proceedings Paper
CT 35th Chinese Control and Decision Conference (CCDC)
CY MAY 20-22, 2023
CL Yichang, PEOPLES R CHINA
DE emerging engineering; outcome-based education; network engineering;
talent evaluation; reinforcement learning
AB In view of the continuous quality improvement of network engineering education in the context of emerging engineering, we propose a talent evaluation method in the field of network engineering based on deep reinforcement learning with time windows. Firstly, a mathematical model of talent evaluation is established, and then a comprehensive index system is built from four aspects: engineering awareness, engineering foundation, engineering ability and engineering innovation. Secondly, the time window mode is used to divide the time slots of the data source, and the evaluation results are solved through the dynamic interaction between the agent and the environment. Further, the evaluation results are used as feedback factors to continuously improve the quality of education. Finally, we take "Nanjing University of Posts and Telecommunications-Network Engineering" as an example to conduct experimental simulation. The results show that the proposed method can obtain more accurate and reliable evaluation conclusions.
C1 [Qi, Jin; Liu, Chenya; Hu, Xiaoxuan] Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing, Peoples R China.
[Guo, Yang] Nanjing Vovat Univ Ind Technol, Sch Elect Engn, Nanjing, Peoples R China.
[Gao, Yu] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing, Peoples R China.
[Gao, Yu] Nanjing Univ Posts & Telecommun, Coll Artif Intelligence, Nanjing, Peoples R China.
C3 Nanjing University of Posts & Telecommunications; Nanjing University of
Posts & Telecommunications; Nanjing University of Posts &
Telecommunications
RP Qi, J (corresponding author), Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing, Peoples R China.
EM qijin@njupt.edu.cn
FU Education Reform of Nanjing University of Posts and Telecommunications
[JG01620JX04]; Ministry of Education 2020 School Cooperative Education
Project [QT-HKEDU2021030800069]
FX This paper is a key project funded by Education Reform of Nanjing
University of Posts and Telecommunications. Project
number:JG01620JX04;Ministry of Education 2020 School Cooperative
Education Project:QT- HKEDU2021030800069.
CR Ak J, 1999, NEURAL PROCESSING LE
BIAN Yi-jie, 2015, J CHONGQING U TECHNO, P71
Dorigo M, 1996, IEEE T SYST MAN CY B, V26, P29, DOI 10.1109/3477.484436
HU Kai, 2022, J DEZHOU U, V38, P92
Jiaming LI, 2020, COMPUTER KNOWLEDGE T, V16, P124, DOI [10.14004/j.cnki.ckt.2020. 0788.J, DOI 10.14004/J.CNKI.CKT.2020.0788]
LI Guang-Qiong, 2020, SCI TECHNOLOGY VISIO, P19, DOI [10.19694/j.cnki.issn2095-2457.2020.29.009, DOI 10.19694/J.CNKI.ISSN2095-2457.2020.29.009]
Li Nana, 2020, Computer Engineering, V46, P80, DOI 10.19678/j.issn.1000-3428.0053625
Li R. Y., 2020, Comput. Syst. Appl, V29, P13
LIANG Y, 2003, STUDIES FOREIGN ED, P35
Liu Y T, 2020, 2020 CHIN CONTR DEC
Maxwell J. Clerk, 1892, Signals and systems, V2, P68
Mnih V., 2013, ARXIV E PRINTS
Nana LI, 2020, COMPUTER ENG, V46, P80
Rosenblatt F., 1961, PRINCIPLES NEURODYNA
Ruguo Luo, 2019, NANJING J SOCIAL SCI, P149, DOI [10.15937/j.cnki.issn1001- 8263.2019.01.019, DOI 10.15937/J.CNKI.ISSN1001-8263.2019.01.019]
Sutton RS, 2018, ADAPT COMPUT MACH LE, P1
Wang Xibin, 2022, HEILONGJIANG ED RES, P4
WANG Xin, 2016, CHINA ED LIGHT IND, P56
WEI Wei, 2021, J SCI ED, P98, DOI [10.1687 1lj.cnki.kjwha.2021.10.032, DOI 10.16871/J.CNKI.KJWHA.2021.10.032]
Zhang Z., 2021, J PHYS C SERIES, V2004
NR 20
TC 0
Z9 0
U1 1
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 1948-9439
BN 979-8-3503-3472-2
J9 CHIN CONT DECIS CONF
PY 2023
BP 1130
EP 1135
DI 10.1109/CCDC58219.2023.10327192
PG 6
WC Automation & Control Systems; Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Operations Research & Management Science
GA BW2HE
UT WOS:001116704301059
DA 2024-09-05
ER
PT C
AU Chandrasekaran, MK
Jaidka, K
Mayr, P
AF Chandrasekaran, Muthu Kumar
Jaidka, Kokil
Mayr, Philipp
GP ACM/SIGIR
TI Joint Workshop on Bibliometric-enhanced Information Retrieval and
Natural Language Processing for Digital Libraries (BIRNDL 2017)
SO SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON
RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL
LA English
DT Proceedings Paper
CT 40th International ACM SIGIR conference on research and development in
Information Retrieval
CY AUG 07-11, 2017
CL Shinjuku, JAPAN
DE Scientometrics; Information Retrieval; Digital Libraries; NLP;
Summarization; Information Extraction; Citation analysis
AB The large scale of scholarly publications poses a challenge for scholars in information seeking and sensemaking. Bibliometrics, information retrieval (IR), text mining and NLP techniques could help in these search and look-up activities, but are not yet widely used. This workshop is intended to stimulate IR researchers and digital library professionals to elaborate on new approaches in natural language processing, information retrieval, scientometrics, text mining and recommendation techniques that can advance the state-of-the-art in scholarly document understanding, analysis, and retrieval at scale. The BIRNDL workshop at SIGIR 2017 will incorporate an invited talk, paper sessions and the third edition of the Computational Linguistics (CL) Scientific Summarization Shared Task.
C1 [Chandrasekaran, Muthu Kumar] Natl Univ Singapore, Sch Comp, Singapore, Singapore.
[Jaidka, Kokil] Univ Penn, Sch Arts & Sci, Philadelphia, PA 19104 USA.
[Mayr, Philipp] GESIS Leibniz Inst Social Sci, Mannheim, Germany.
C3 National University of Singapore; University of Pennsylvania; Leibniz
Institut fur Sozialwissenschaften (GESIS)
RP Chandrasekaran, MK (corresponding author), Natl Univ Singapore, Sch Comp, Singapore, Singapore.
EM muthu.chandra@comp.nus.edu.sg; jaidka@sas.upenn.edu;
philipp.mayr@gesis.org
RI Jaidka, Kokil/AAK-2618-2020
OI Jaidka, Kokil/0000-0002-8127-1157
FU Microsoft Research Asia
FX We thank Microsoft Research Asia for their generous support in funding
the development, dissemination and organization of the CL-SciSumm
dataset and the Shared Task. We are also grateful to the co-organizers
of the 1st BIRNDL workshop - Guillaume Cabanac, Ingo Frommholz, Min-Yen
Kan and Dietmar Wolfram, for their continued support and involvement.
CR Cabanac G., 2017, SIGIR FORUM, V50, P36, DOI [10.1145/3053408.3053417, DOI 10.1145/3053408.3053417]
Jaidka K., 2016, P JOINT WORKSH BIBL
Jaidka Kokil, 2014, The computational linguistics summarization pilot task
Mayr P., 2016, SIGIR FORUM, V50, P28
Mayr P, 2015, SCIENTOMETRICS, V102, P2193, DOI 10.1007/s11192-014-1484-3
Wolfram D, 2016, P JOINT WORKSH BIBL, P6
NR 6
TC 0
Z9 0
U1 1
U2 4
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-5022-8
PY 2017
BP 1421
EP 1422
DI 10.1145/3077136.3084370
PG 2
WC Computer Science, Information Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BL6UH
UT WOS:000454711900249
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Fahd, K
Miah, SJ
AF Fahd, Kiran
Miah, Shah J.
TI Designing and evaluating a big data analytics approach for predicting
students' success factors
SO JOURNAL OF BIG DATA
LA English
DT Article
DE Design Science Research (DSR); Big Data; Big Data Analytical Solution
(BDAS); Machine Learning (ML); Deep Learning (DL); DSR evaluation;
Artificial Intelligence (AI)
ID SCIENCE RESEARCH; HIGHER-EDUCATION; ARTIFACT DESIGN; SYSTEMS;
MANAGEMENT; METHODOLOGY; CONTEXT
AB Reducing student attrition in tertiary education plays a significant role in the core mission and financial well-being of an educational institution. The availability of big data source from the Learning Management System (LMS) can be analysed to help with the attrition issues. This study aims to use an integrated Design Science Research (DSR) methodology to develop and evaluate a novel Big Data Analytical Solution (BDAS) as an educational decision support artefact. The BDAS as DSR artefact utilises Artificial Intelligence (AI) approaches to predict potential students at risk. Identifying students at risk helps to take timely intervention in the learning process to improve student academic progress for increasing their retention rate. To evaluate the performance of the predictive model, we compare the accuracy of the collection of representational AI algorithms in the literature. The study utilized an integrated DSR methodology founded on the similarities of DSR and design based research (DBR) to design and develop the proposed BDAS employing an specific evaluation framework that works on real data scenarios. The BDAS does not only aimto replace any existing practice but also support educators to implement a variety of pedagogical practices for improving students' academic performance.
C1 [Fahd, Kiran; Miah, Shah J.] Univ Newcastle, Newcastle Business Sch, Business Analyt, Hunter St, Newcastle, NSW 2300, Australia.
C3 University of Newcastle
RP Miah, SJ (corresponding author), Univ Newcastle, Newcastle Business Sch, Business Analyt, Hunter St, Newcastle, NSW 2300, Australia.
EM shah.miah@newcastle.edu.au
FU Not applicable.
FX Not applicable.
CR Ali Md Shaheb, 2018, International Journal of Business Intelligence Research, V9, P47, DOI 10.4018/IJBIR.2018070103
Aljohani O., 2016, HIGHER ED STUDIES, V6, P1, DOI DOI 10.5539/HES.V6N2P1
Altay O, 2023, NEURAL COMPUT APPL, V35, P529, DOI 10.1007/s00521-022-07775-4
Anderson T, 2012, EDUC RESEARCHER, V41, P16, DOI 10.3102/0013189X11428813
Ang KLM, 2020, IEEE ACCESS, V8, P116392, DOI 10.1109/ACCESS.2020.2994561
Anshari M, 2016, J E-LEARN KNOWL SOC, V12, P121
Ashaari MA, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121119
Babiceanu RF, 2016, COMPUT IND, V81, P128, DOI 10.1016/j.compind.2016.02.004
Beer C, 2017, J FURTH HIGH EDUC, V41, P773, DOI 10.1080/0309877X.2016.1177171
Begum A, 2019, Explorations in Technology Education Research, P594, DOI [10.1007/978-3-030-11890-7_57, DOI 10.1007/978-3-030-11890-7_57]
Bravo-Agapito J, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2020.106595
Cantabella M, 2019, FUTURE GENER COMP SY, V90, P262, DOI 10.1016/j.future.2018.08.003
Carstensen AK, 2019, EUR J ENG EDUC, V44, P85, DOI 10.1080/03043797.2018.1498459
Cherastidtham I., 2018, University attrition: What helps and what hinders university completion
Chunzi S, 2020, 2020 2 INT C MACH LE
de Vass T, 2018, 29 AUSTR C INF SYSTE
Elatia S., 2021, Learning analytics and education data mining in higher education, P108
Fahd K, 2021, 2021 31 INT TEL NETW
Fahd K, 2021, EDUC INF TECHNOL, V26, P4027, DOI 10.1007/s10639-021-10442-1
Ferguson H., 2021, About us
Genemo H, 2016, EDUC INF TECHNOL, V21, P1769, DOI 10.1007/s10639-015-9417-1
Hasan N, 2022, INFORM TECHNOL DEV, V28, P230, DOI 10.1080/02681102.2021.1951150
Hasan R, 2021, DATA, V6, DOI 10.3390/data6110110
Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625
Institute TV., 2013, Student attrition report comprehensive analysis and recommendations
Jain Abhinav, 2019, 2019 International Conference on Communication and Electronics Systems (ICCES), P1457, DOI 10.1109/ICCES45898.2019.9002038
Janssen M, 2017, J BUS RES, V70, P338, DOI 10.1016/j.jbusres.2016.08.007
Kumar P, 2021, 2021 8 INT C COMP SU
Martin MD., 2016, Understanding the Problem Student attrition and retention in university Language Culture programs in Australia. The Doubters' Dilemma. Exploring student attrition and retention in university language and culture programs, P1
Miah SJ, 2021, EDUC INF TECHNOL, V26, P763, DOI 10.1007/s10639-020-10285-2
Miah SJ, 2020, EDUC INF TECHNOL, V25, P553, DOI 10.1007/s10639-019-09981-5
Miah SJ, 2020, EDUC INF TECHNOL, V25, P725, DOI 10.1007/s10639-020-10129-z
Miah SJ, 2020, HEALTH INFORM J, V26, P2300, DOI 10.1177/1460458219895386
Miah SJ, 2019, HEALTHC INFORM RES, V25, P313, DOI 10.4258/hir.2019.25.4.313
Miah SJ, 2014, INFORM TECHNOL PEOPL, V27, P259, DOI 10.1108/ITP-04-2012-0041
Miah SJ, 2019, J ASSOC INF SYST, V20, P570, DOI 10.17705/1jais.00544
Miah SJ, 2017, EDUC INF TECHNOL, V22, P1895, DOI 10.1007/s10639-016-9525-6
Miah SJ, 2017, INFORM SYST, V69, P1, DOI 10.1016/j.is.2017.04.001
Miah SJ, 2014, AUSTRALAS J INF SYST, V18, P5
Miah SJ., 2012, Aust J Inf Syst, DOI [10.3127/ajis.v17i2.694, DOI 10.3127/AJIS.V17I2.694]
Miah SJ, 2016, Australas J Inf Syst., V20, DOI [10.3127/ajis.v20i0.1482, DOI 10.3127/AJIS.V20I0.1482]
Miah SJ., 2008, An ontology based design environment for rural decision support
Muhammad JS, 2020, EDUC INF TECHNOL, V25, P5565, DOI 10.1007/s10639-020-10206-3
Nghe NT, 2007, PROC FRONT EDUC CONF, P290
Otoo-Arthur D., 2019, ACM International Conference Proceeding Series, P79, DOI [10.1145/3377817.3377836, DOI 10.1145/3377817.3377836]
Otoo-Arthur D., 2020, A scalable heterogeneous big data framework for e-learning systems, P1
Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160]
Panel HES, 2017, Final report-improving retention, completion and success in higher education
Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302
Plak S, 2022, HIGH EDUC Q, V76, P131, DOI 10.1111/hequ.12298
Rahmani AM, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.488
Rokach L, 2010, ARTIF INTELL REV, V33, P1, DOI 10.1007/s10462-009-9124-7
Sahin M., 2020, Present and Future, V9, P121
Sarker Kamal Uddin, 2019, International Journal of Computing and Digital Systems, V8, P265, DOI 10.12785/ijcds/080306
Sarra A, 2019, SOC INDIC RES, V146, P41, DOI 10.1007/s11205-018-1901-8
Sein MK, 2011, MIS QUART, V35, P37
Sekeroglu B, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112210907
Sharma A, 2021, book: Advancing the Power of Learning Analytics and Big Data in Education, P208, DOI [10.4018/978-1-7998-7103-3.ch010, DOI 10.4018/978-1-7998-7103-3.CH010]
Singh H, 2020, EDUC INF TECHNOL, V25, P3299, DOI 10.1007/s10639-020-10116-4
Singh H, 2019, EDUC INF TECHNOL, V24, P995, DOI 10.1007/s10639-018-9816-1
Sun XG, 2022, J CIRCUIT SYST COMP, V31, DOI 10.1142/S0218126622300070
Tenpipat W., 2020, 2020 1 INT C BIG DAT
TEQSA, 2019, Contract No.: 2.3
Ulriksen L, 2010, STUD SCI EDUC, V46, P209, DOI 10.1080/03057267.2010.504549
Vahdat Mehrnoosh, 2015, Design for Teaching and Learning in a Networked World. 10th European Conference on Technology-Enhanced Learning, EC-TEL 2015. Proceedings: LNCS 9307, P352, DOI 10.1007/978-3-319-24258-3_26
Venable J.R., 2006, First International Conference on Design Science Research in Information Systems and Technology, Claremont, California, V1, P1
Venable J, 2016, EUR J INFORM SYST, V25, P77, DOI 10.1057/ejis.2014.36
Xu J, 2017, IEEE J-STSP, V11, P742, DOI 10.1109/JSTSP.2017.2692560
NR 68
TC 0
Z9 0
U1 12
U2 30
PU SPRINGERNATURE
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND
EI 2196-1115
J9 J BIG DATA-GER
JI J. Big Data
PD OCT 13
PY 2023
VL 10
IS 1
AR 159
DI 10.1186/s40537-023-00835-z
PG 19
WC Computer Science, Theory & Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA U0LZ2
UT WOS:001081820100001
OA gold, Green Accepted
DA 2024-09-05
ER
PT C
AU Ye, QS
AF Ye, Qiusun
BE Wang, H
Zhang, BJ
Liu, XZ
Luo, DZ
Zhong, SB
TI AI-VCR Computational Research on Visibility of 3D Materials Solids
Reality Pictures
SO SMART MATERIALS AND INTELLIGENT SYSTEMS, PTS 1 AND 2
SE Advanced Materials Research
LA English
DT Proceedings Paper
CT International Conference on Smart Materials and Intelligent Systems
CY DEC 17-20, 2010
CL Chongqing, PEOPLES R CHINA
DE Showing plane; sighting plane; visibility; 3D Materials solids;
VCR(Variable Carrying Rules); AI(Artificial Intelligence)
AB An optional spatial 3D material solid reality picture may be showed on a 2D showing plane, its surface is commonly consisted of too many sub-surfaces of the 3D solid reality picture in both dispersal and continuation. It was a difficult problem to express all exact visibilities of solids subsurfaces; because of some numerals computational error properties of visibilities are always unknown. So far, we cannot choose but select a proper dispersal degree of materials sub-surfaces, an approaching function of an optional material sub-surfaces B-Rep (Bound Representation), and numerals computation without any perturbation motion, etc. A novel numeral computational method of expressing exact visibilities of 3D spatial materials solids reality pictures with intelligent properties of VCR is given in this paper.
C1 Wuyi Univ, Dept Math & Comp Sci Engn, Wuyishan 354300, Fujian, Peoples R China.
C3 Wuyi University, Fujian
RP Ye, QS (corresponding author), Wuyi Univ, Dept Math & Comp Sci Engn, Wuyishan 354300, Fujian, Peoples R China.
EM qsye2005@yahoo.com.cn
CR CAI W, 1997, EXTENSION METHOD ENG
FU KS, 1988, ARTIFICIAL INTELLIGE
GUAN QX, 1990, J COMPUTER AIDED DES
LIANG YD, 1989, ALGORITHM BASIS COMP
STAUDHAMMER J, 1991, P SECOND INT C CAD C
WU WT, 2003, P CAAI 10
YAO KR, 1993, COMPUTER APPL SOFTWA
YE QS, 1993, COMPUTER AIDED ENG, V2, P22
YE QS, 1995, MATH APPL, P140
YE QS, 1995, IEEE INT C NEUR NETW, V2, P910
YE QS, 1997, COMPUTER AIDED ENG, V6, P38
YE QS, 1994, P 3 PAC RIM INT IFIP, V1, P142
2004, MASTER TOPICS NUMBER
NR 13
TC 0
Z9 0
U1 0
U2 0
PU TRANS TECH PUBLICATIONS LTD
PI STAFA-ZURICH
PA LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND
SN 1022-6680
BN 978-0-87849-223-7
J9 ADV MATER RES-SWITZ
PY 2011
VL 143-144
BP 592
EP 597
DI 10.4028/www.scientific.net/AMR.143-144.592
PG 6
WC Computer Science, Artificial Intelligence; Materials Science,
Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Materials Science
GA BUC64
UT WOS:000288884700116
DA 2024-09-05
ER
PT J
AU Doan, LP
Nguyen, LH
Auquier, P
Boyer, L
Fond, G
Nguyen, HT
Latkin, CA
Vu, GT
Hall, BJ
Ho, CSH
Ho, RCM
AF Doan, Linh Phuong
Nguyen, Long Hoang
Auquier, Pascal
Boyer, Laurent
Fond, Guillaume
Nguyen, Hien Thu
Latkin, Carl A.
Vu, Giang Thu
Hall, Brian J.
Ho, Cyrus S. H.
Ho, Roger C. M.
TI Social network and HIV/AIDS: A bibliometric analysis of global
literature
SO FRONTIERS IN PUBLIC HEALTH
LA English
DT Article
DE social network; HIV; bibliometric; topic modeling; Latent Dirichlet
Allocation
ID INJECTION-DRUG USERS; HIV-RELATED RISK; RANDOMIZED CONTROLLED-TRIAL;
PREVENTION; BEHAVIORS; SUPPORT; WOMEN; SEX; MEN; INTERVENTIONS
AB Social networks (SN) shape HIV risk behaviors and transmission. This study was performed to quantify research development, patterns, and trends in the use of SN in the field of HIV/AIDS, and used Global publications extracted from the Web of Science Core Collection database. Networks of countries, research disciplines, and most frequently used terms were visualized. The Latent Dirichlet Allocation method was used for topic modeling. A linear regression model was utilized to identify the trend of research development. During the period 1991-2019, in a total of 5,698 publications, topics with the highest volume of publications consisted of (1) mental disorders (16.1%); (2) HIV/sexually transmitted infections prevalence in key populations (9.9%); and (3) HIV-related stigma (9.3%). Discrepancies in the geographical distribution of publications were also observed. This study highlighted (1) the rapid growth of publications on a wide range of topics regarding SN in the field of HIV/AIDS, and (2) the importance of SN in HIV prevention, treatment, and care. The findings of this study suggest the need for interventions using SN and the improvement of research capacity via regional collaborations to reduce the HIV burden in low- and middle-income countries.
C1 [Doan, Linh Phuong; Nguyen, Hien Thu] Duy Tan Univ, Inst Global Hlth Innovat, Da Nang, Vietnam.
[Doan, Linh Phuong; Nguyen, Hien Thu] Duy Tan Univ, Fac Med, Da Nang, Vietnam.
[Nguyen, Long Hoang] Karolinska Inst, Dept Global Publ Hlth, Stockholm, Sweden.
[Auquier, Pascal; Boyer, Laurent; Fond, Guillaume] Aix Marseille Univ, Res Ctr Hlth Serv & Qual Life, Marseille, France.
[Latkin, Carl A.] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Baltimore, MD USA.
[Vu, Giang Thu] Nguyen Tat Thanh Univ, Ctr Excellence Hlth Serv & Syst Res, Ho Chi Minh, Vietnam.
[Hall, Brian J.] NYU, Sch Global Publ Hlth, New York, NY USA.
[Ho, Cyrus S. H.; Ho, Roger C. M.] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Psychol Med, Singapore, Singapore.
[Ho, Roger C. M.] Natl Univ Singapore, Inst Hlth Innovat & Technol iHealthtech, Singapore, Singapore.
C3 Duy Tan University; Duy Tan University; Karolinska Institutet;
Aix-Marseille Universite; Johns Hopkins University; Johns Hopkins
Bloomberg School of Public Health; Nguyen Tat Thanh University (NTTU);
New York University; National University of Singapore; National
University of Singapore
RP Doan, LP (corresponding author), Duy Tan Univ, Inst Global Hlth Innovat, Da Nang, Vietnam.; Doan, LP (corresponding author), Duy Tan Univ, Fac Med, Da Nang, Vietnam.
EM doanphuonglinh@duytan.edu.vn
RI Hall, Brian J./B-7694-2016; Ho, Roger C./ABD-9061-2021; Nguyen, Long
H/E-6145-2015; Nguyen, Hien Thi/JKH-4812-2023; nguyen,
long/KHV-1588-2024; Boyer, Laurent/E-5728-2016
OI Hall, Brian J./0000-0001-9358-2377; Ho, Roger C./0000-0001-9629-4493;
Nguyen, Hien Thi/0000-0003-1444-3120; Boyer,
Laurent/0000-0003-1229-6622; Vu, Giang Thu/0000-0002-3470-4458; Ho,
Cyrus SH/0000-0002-7092-9566
FU NUS Department of Psychological Medicine;
[R-177-000-100-001/R-177-000-003-001]; [R-722-000-004-731]
FX Funding The article process charge of this paper is supported by NUS
Department of Psychological Medicine
(R-177-000-100-001/R-177-000-003-001) and NUS iHeathtech Other Operating
Expenses (R-722-000-004-731).
CR Albarracin D, 2010, AIDS BEHAV, V14, pS239, DOI 10.1007/s10461-010-9801-1
[Anonymous], 2010, Social Networks and Health: Models, Methods and Applications
[Anonymous], 2000, SOCIAL EPIDEMIOLOGY, DOI DOI 10.1016/S0277-9536(00)00065-4
AUERBACH DM, 1984, AM J MED, V76, P487, DOI 10.1016/0002-9343(84)90668-5
Tran BX, 2021, AIDS REV, V23, P91, DOI 10.24875/AIDSRev.20000135
Tran BX, 2019, AIDS REV, V21, P93, DOI 10.24875/AIDSRev.19000062
Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16101772
Baral S, 2013, BMC PUBLIC HEALTH, V13, DOI 10.1186/1471-2458-13-482
Barman-Adhikari A, 2016, J HEALTH COMMUN, V21, P809, DOI 10.1080/10810730.2016.1177139
Berger BE, 2001, RES NURS HEALTH, V24, P518, DOI 10.1002/nur.10011
Beyrer C, 2012, LANCET, V380, P367, DOI 10.1016/S0140-6736(12)60821-6
Cederbaum JA, 2017, WOMEN HEALTH, V57, P268, DOI 10.1080/03630242.2016.1157126
Cepeda JA, 2017, JAIDS-J ACQ IMM DEF, V75, P257, DOI 10.1097/QAI.0000000000001372
Choi KH, 2004, AIDS EDUC PREV, V16, P19, DOI 10.1521/aeap.16.1.19.27721
Clarivate Analytics, 2019, WEB SCI DAT
COBB S, 1976, PSYCHOSOM MED, V38, P300, DOI 10.1097/00006842-197609000-00003
Costenbader EC, 2006, ADDICTION, V101, P1003, DOI 10.1111/j.1360-0443.2006.01431.x
Davey-Rothwell MA, 2011, AIDS BEHAV, V15, P1654, DOI 10.1007/s10461-011-9943-9
De P, 2008, J URBAN HEALTH, V85, P77, DOI 10.1007/s11524-007-9225-z
De P, 2007, ADDICTION, V102, P1730, DOI 10.1111/j.1360-0443.2007.01936.x
Eames KTD, 2002, P NATL ACAD SCI USA, V99, P13330, DOI 10.1073/pnas.202244299
El-Bassel N, 1998, AIDS CARE, V10, P735, DOI 10.1080/09540129848352
Farmer Paul., 2006, AIDS and Accusation: Haiti and the Geography of Blame, Updated with a New Preface
Friedman SR, 2006, AIDS, V20, P959, DOI 10.1097/01.aids.0000222066.30125.b9
Ghosh D, 2017, AIDS BEHAV, V21, P1183, DOI 10.1007/s10461-016-1413-y
Vu GT, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17062127
GORDON AJ, 1991, J SUBST ABUSE TREAT, V8, P143, DOI 10.1016/0740-5472(91)90005-U
Gross A, 2014, NEURAL NETWORKS, V58, P38, DOI 10.1016/j.neunet.2014.05.008
Hall V P, 1999, J Assoc Nurses AIDS Care, V10, P74, DOI 10.1016/S1055-3290(05)60121-5
ISRAEL BA, 1985, HEALTH EDUC QUART, V12, P65, DOI 10.1177/109019818501200106
Latkin CA, 1996, DRUG ALCOHOL DEPEN, V42, P175, DOI 10.1016/S0376-8716(96)01279-3
Latkin CA, 2003, SOC SCI MED, V56, P465, DOI 10.1016/S0277-9536(02)00047-3
Latkin C, 2013, ADDICTION, V108, P934, DOI 10.1111/add.12095
Latkin C, 2010, AIDS BEHAV, V14, pS222, DOI 10.1007/s10461-010-9804-y
Latkin CA, 2015, BEHAV MED, V41, P90, DOI 10.1080/08964289.2015.1034645
Latkin CA, 2013, JAIDS-J ACQ IMM DEF, V63, pS54, DOI 10.1097/QAI.0b013e3182928e2a
Latkin CA, 2009, SOC SCI MED, V68, P740, DOI 10.1016/j.socscimed.2008.11.019
Li YL, 2019, QUAL LIFE RES, V28, P1441, DOI 10.1007/s11136-019-02132-w
Luke DA, 2007, ANNU REV PUBL HEALTH, V28, P69, DOI 10.1146/annurev.publhealth.28.021406.144132
Magnani R, 2005, AIDS, V19, pS67, DOI 10.1097/01.aids.0000172879.20628.e1
Major B, 2005, ANNU REV PSYCHOL, V56, P393, DOI 10.1146/annurev.psych.56.091103.070137
Martín-Martín A, 2018, SCIENTOMETRICS, V116, P2175, DOI 10.1007/s11192-018-2820-9
McCreesh N, 2012, EPIDEMIOLOGY, V23, P138, DOI 10.1097/EDE.0b013e31823ac17c
Mitchell J.Clyde., 1969, SOCIAL NETWORKS URBA
Mitchell JW, 2015, CURR HIV-AIDS REP, V12, P516, DOI 10.1007/s11904-015-0290-8
Muessig KE, 2015, CURR HIV-AIDS REP, V12, P173, DOI 10.1007/s11904-014-0239-3
Qiao S, 2014, AIDS BEHAV, V18, P419, DOI 10.1007/s10461-013-0561-6
ROOK KS, 1987, J PERS SOC PSYCHOL, V52, P1132, DOI 10.1037/0022-3514.52.6.1132
Rosser BRS, 2011, AIDS BEHAV, V15, pS91, DOI 10.1007/s10461-011-9910-5
Shushtari ZJ, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-018-5944-1
SITKIN SB, 1993, ORGAN SCI, V4, P367, DOI 10.1287/orsc.4.3.367
Smith AMA, 2004, SEX TRANSM INFECT, V80, P455, DOI 10.1136/sti.2004.010355
Thelwall M, 2016, PROF INFORM, V25, P47, DOI 10.3145/epi.2016.ene.06
Tong Z., 2016, DOCUMENT EXPLORING S
UNAIDS, 2016, COLL GLOB AIDS FUND
Valente TW, 2012, SCIENCE, V337, P49, DOI 10.1126/science.1217330
Valente TW, 1997, SOC SCI MED, V45, P677, DOI 10.1016/S0277-9536(96)00385-1
Valle D, 2018, GLOBAL CHANGE BIOL, V24, P5560, DOI 10.1111/gcb.14412
Wang KD, 2011, AIDS BEHAV, V15, P1298, DOI 10.1007/s10461-011-0020-1
Wang WQ, 2017, BMC PUBLIC HEALTH, V17, DOI 10.1186/s12889-017-4409-2
Yang X, 2020, SEX TRANSM INFECT, V96, P485, DOI 10.1136/sextrans-2019-054349
Young SD, 2014, AM J PUBLIC HEALTH, V104, P1707, DOI 10.2105/AJPH.2014.301992
NR 62
TC 0
Z9 1
U1 3
U2 14
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2296-2565
J9 FRONT PUBLIC HEALTH
JI Front. Public Health
PD NOV 2
PY 2022
VL 10
AR 1015023
DI 10.3389/fpubh.2022.1015023
PG 10
WC Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Public, Environmental & Occupational Health
GA 6H7GP
UT WOS:000885603400001
PM 36408016
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Chandrasekaran, MK
Mayr, P
Yasunaga, M
Freitag, D
Radev, D
Kan, MY
AF Chandrasekaran, Muthu Kumar
Mayr, Philipp
Yasunaga, Michihiro
Freitag, Dayne
Radev, Dragomir
Kan, Min-Yen
GP ACM
TI Joint Workshop on Bibliometric-enhanced Information Retrieval and
Natural Language Processing for Digital Libraries (BIRNDL 2019)
SO PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH
AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19)
LA English
DT Proceedings Paper
CT 42nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR)
CY JUL 21-25, 2019
CL Paris, FRANCE
DE Scientometrics; Information Retrieval; Digital Libraries; NLP;
Summarization; Information Extraction; Citation analysis
AB The deluge of scholarly publication poses a challenge for scholars find relevant research and policy makers to seek in-depth information and understand research impact. Information retrieval (IR), natural language processing (NLP) and bibliometrics could enhance scholarly search, retrieval and user experience, but their use in digital libraries is not widespread. To address this gap, we propose the 4th Joint Workshop on BIRNDL and the 5th CL-SciSumm Shared Task. We seek to foster collaboration among researchers in NLP, IR and Digital Libraries (DL), and to stimulate the development of new methods in NLP, IR, recommendation systems and scientometrics toward improved scholarly document understanding, analysis, and retrieval at scale.
C1 [Chandrasekaran, Muthu Kumar] SRI Int, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA.
[Mayr, Philipp] GESIS Leibniz Inst Social Sci, Mannheim, Germany.
[Yasunaga, Michihiro; Radev, Dragomir] Yale Univ, New Haven, CT 06520 USA.
[Freitag, Dayne] SRI Int, San Diego, CA USA.
[Kan, Min-Yen] Natl Univ Singapore, Sch Comp, Singapore, Singapore.
C3 SRI International; Leibniz Institut fur Sozialwissenschaften (GESIS);
Yale University; SRI International; National University of Singapore
RP Chandrasekaran, MK (corresponding author), SRI Int, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA.
EM cmkumar087@gmail.com; philipp.mayr@gesis.org; michi@yale.edu;
freitag@ai.sri.com; dragomir.radev@yale.edu; kanmy@comp.nus.edu.sg
RI Radev, Dragomir/E-9641-2012; Yasunaga, Michihiro/GPW-9499-2022
FU SRI International; Chan-Zuckerberg Initiative (CZI); CZI; Deutsche
Forschungsgemeinschaft (DFG), the "Establishing Contextual Dataset
Retrieval - transferring concepts from document to dataset retrieval
(ConDATA)" project [MA 3964/10-1]
FX We thank SRI International and Chan-Zuckerberg Initiative (CZI) for
their generous support in funding the organization of the CL-SciSumm
Shared Task 2019. CZI sponsored Alex Wade's keynote. We immensely than
Prof. Dragomir Radev and Michihiro Yasunaga from Yale University for
sharing the SciSummNet dataset for CL-SciSumm 2019 and co-organising
this time. This work by Philipp Mayr was partly funded by Deutsche
Forschungsgemeinschaft (DFG) under grant number MA 3964/10-1, the
"Establishing Contextual Dataset Retrieval - transferring concepts from
document to dataset retrieval (ConDATA)" project.
CR Atanassova Iana, 2019, Front Res Metr Anal, V4, P2, DOI 10.3389/frma.2019.00002
Cabanac G., 2017, SIGIR FORUM, V50, P36, DOI [10.1145/3053408.3053417, DOI 10.1145/3053408.3053417]
Cabanac G, 2018, SCIENTOMETRICS, V116, P1225, DOI 10.1007/s11192-018-2861-0
Jaidka Kokil, 2014, The computational linguistics summarization pilot task
Mayr Philipp, 2014, Advances in Information Retrieval. 36th European Conference on IR Research, ECIR 2014. Proceedings: LNCS 8416, P798, DOI 10.1007/978-3-319-06028-6_99
Mayr P, 2018, INT J DIGIT LIBRARIE, V19, P107, DOI 10.1007/s00799-017-0230-x
Mayr Philipp, 2018, SIGIR FORUM, V52, P105
Philipp Mayr, 2017, SIGIR FORUM, V51, P107
Wolfram D, 2016, P JOINT WORKSH BIBL, P6
Yasunaga Michihiro, 2019, SCISUMMNET LARGE ANN
NR 10
TC 0
Z9 1
U1 1
U2 8
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-6172-9
PY 2019
BP 1441
EP 1443
DI 10.1145/3331184.3331650
PG 3
WC Computer Science, Information Systems; Information Science & Library
Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BO1LU
UT WOS:000501488900248
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Romanov, D
Molokanov, V
Kazantsev, N
Jha, AK
AF Romanov, Dmitry
Molokanov, Valentin
Kazantsev, Nikolai
Jha, Ashish Kumar
TI Removing order effects from human-classified datasets: A machine
learning method to improve decision making systems
SO DECISION SUPPORT SYSTEMS
LA English
DT Article
DE Order effect; Machine learning; Artificial intelligence;
Decision-making; Information systems (IS) research
ID DESIGN SCIENCE RESEARCH; QUESTION ORDER; INFORMATION; BIAS; JUDGMENTS;
MEMORY; MODEL
AB Although recent developments in Artificial Intelligence (AI) and machine learning (ML) aim to enhance the fairness and transparency of decision-making systems, research has found that neural networks (or other similar AI techniques) are still effected by human cognitive biases due to the training datasets. In this study, we focus on order effects, i.e., when the input of information impacts human perception and the decisions resulting from this information. We propose the Order Effect Removal Method (OERM) for handling the order effect which leads to bias and for helping organizations remove these biases from their training datasets and, therefore, from auto-mated decision-making systems. Using design science principles to theoretically create, test, and validate the method, we can eliminate the order bias even in basic classification systems. Furthermore, the method can be applied in a multidisciplinary context, where an AI-based algorithm substitutes for manual work.
C1 [Romanov, Dmitry] HSE Univ, Grad Sch Business, Business Informat, Moscow, Russia.
[Molokanov, Valentin] IQMen Business Intelligence, Moscow, Russia.
[Kazantsev, Nikolai] Univ Cambridge, Inst Mfg, Cambridge, England.
[Jha, Ashish Kumar] Trinity Coll Dublin, Trinity Business Sch, Dublin, Ireland.
C3 HSE University (National Research University Higher School of
Economics); University of Cambridge; Trinity College Dublin
RP Jha, AK (corresponding author), Trinity Coll Dublin, Trinity Business Sch, Dublin, Ireland.
EM dromanov@hse.ru; nk622@cam.ac.uk; akjha@tcd.ie
RI Jha, Ashish Kumar/AAG-9098-2021
OI Jha, Ashish Kumar/0000-0002-5450-9983
FU EPSRC [EP/T022566/1]; Science Foundation Ireland research Centre ADAPT
[13/RC/2106_P2]
FX The authors wish to thank HSE University students for their assis- tance
in this research: Ekaterina Semenova, Ekaterina Shilova, Daria Davydova,
Elina Zaytseva (Edgeeva) , and Nikita Pronin. The third author
acknowledges the EPSRC funding via ?Next Stage Digital Econ- omy Centre?
and UKRI funding, grant reference EP/T022566/1. The last author
acknowledges the support of Science Foundation Ireland research Centre
ADAPT through Grant 13/RC/2106_P2.
CR Aerts D, 2009, J MATH PSYCHOL, V53, P314, DOI 10.1016/j.jmp.2009.04.005
Akter S, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102387
Andreassen A., 2021, ARXIV
[Anonymous], 2000, Introduction to Markov Chains with Special Emphasis on Rapid Mixing
[Anonymous], 2019, PHYS REV J
[Anonymous], 2017, U.S.
Arad A, 2013, ORGAN BEHAV HUM DEC, V121, P267, DOI 10.1016/j.obhdp.2013.01.006
Bansback N, 2014, PATIENT EDUC COUNS, V96, P197, DOI 10.1016/j.pec.2014.05.021
Baskerville R, 2018, J ASSOC INF SYST, V19, P358, DOI 10.17705/1jais.00495
Bergus GR, 2002, J GEN INTERN MED, V17, P612, DOI 10.1046/j.1525-1497.2002.11001.x
Bergus GR, 1998, MED DECIS MAKING, V18, P412, DOI 10.1177/0272989X9801800409
Berrar D, 2018, Reference Module in Life Sciences
Buda R., 2003, INT J MANAGEMENT, V20, P156
Camilleri AR, 2020, DECIS SUPPORT SYST, V133, DOI 10.1016/j.dss.2020.113307
Chau M, 2021, MIS QUART, V45, P985, DOI 10.25300/MISQ/2021/15324
Chen E, 2014, ELECT STUD, V35, P115, DOI 10.1016/j.electstud.2014.04.018
Chinander KR, 2003, ORGAN BEHAV HUM DEC, V91, P243, DOI 10.1016/S0749-5978(03)00025-6
Clemmensen ML, 2016, J DOC, V72, P194, DOI 10.1108/JD-04-2015-0051
Coussement K, 2021, DECIS SUPPORT SYST, V150, DOI 10.1016/j.dss.2021.113664
Das TK, 1999, J MANAGE STUD, V36, P757, DOI 10.1111/1467-6486.00157
Dastin J., 2018, Insight - Amazon scraps secret AI recruiting tool that showed bias against women, DOI DOI 10.1017/CBO9781139025751
De Martino B, 2006, SCIENCE, V313, P684, DOI 10.1126/science.1128356
Dickey D., 2005, PRACTICAL ASSESSMENT, V10, P1, DOI DOI 10.7275/8FDY-VR38
Felfernig A, 2007, LECT NOTES COMPUT SC, V4744, P283, DOI 10.1007/978-3-540-77006-0_34
Grant D, 2017, PUBLIC CHOICE, V172, P421, DOI 10.1007/s11127-017-0454-8
Gregor S., 2007, ANATOMY DESIGN THEOR
Gregor S, 2013, MIS QUART, V37, P337, DOI 10.25300/MISQ/2013/37.2.01
Guiral-Contreras A, 2007, ACCOUNT FINANC, V47, P285, DOI 10.1111/j.1467-629x.2006.00208.x
HAUGTVEDT CP, 1994, J CONSUM RES, V21, P205, DOI 10.1086/209393
Hevner A.R., 2007, Scandinavian Journal of Information Systems, V19, P4
Highhouse S, 1997, HUM PERFORM, V10, P31, DOI 10.1207/s15327043hup1001_2
Huber M, 2011, ORGAN BEHAV HUM DEC, V115, P283, DOI 10.1016/j.obhdp.2011.03.003
Hunt Elle, 2016, GUARDIAN
Jackson P., 2007, NATURAL LANGUAGE PRO
Joshi D., 2014, INT J RES COMMER MAN, V5, P46
Kaviani P., 2017, INT J ADV RES COMPUT, V04
Khrennikov A.Y, 2014, Ubiquitous Quantum Structure
Kliegr T, 2021, ARTIF INTELL-AMST, V295, DOI 10.1016/j.artint.2021.103458
Kolmogorov A.N., 2018, Foundations of the theory of probability, VSecond
Kung L., 2022, DE BIAS TECHNIQUES C
Li C, 2010, J CONSUM BEHAV, V9, P32, DOI 10.1002/cb.291
MARCH ST, 1995, DECIS SUPPORT SYST, V15, P251, DOI 10.1016/0167-9236(94)00041-2
Marcus B., 2021, WE FIX IT
MCFARLAND SG, 1981, PUBLIC OPIN QUART, V45, P208, DOI 10.1086/268651
Mehrabi N, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3457607
Mogiliansky AL, 2009, J MATH PSYCHOL, V53, P349, DOI 10.1016/j.jmp.2009.01.001
Moreira C, 2021, DECIS SUPPORT SYST, V150, DOI 10.1016/j.dss.2021.113561
Mueller S.T., 2019, ARXIV
Ntoutsi E, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1356
Oppewal H, 2015, TOURISM MANAGE, V48, P467, DOI 10.1016/j.tourman.2014.12.016
Pieters R, 2006, ORGAN BEHAV HUM DEC, V99, P34, DOI 10.1016/j.obhdp.2005.05.004
Pothos EM, 2013, BEHAV BRAIN SCI, V36, P255, DOI 10.1017/S0140525X12001525
Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5
Rey A, 2020, PSYCHOL RES-PSYCH FO, V84, P1739, DOI 10.1007/s00426-019-01178-2
Romanov D., 2019, PRESENCE ORDER EFFEC, P337
Schlosser AE, 2018, ORGAN BEHAV HUM DEC, V144, P112, DOI 10.1016/j.obhdp.2017.11.001
Seeber I, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103174
Serenko A, 2013, J INFORMETR, V7, P138, DOI 10.1016/j.joi.2012.10.005
SHANTEAU J, 1992, ORGAN BEHAV HUM DEC, V53, P95, DOI 10.1016/0749-5978(92)90057-E
Shrestha YR, 2019, CALIF MANAGE REV, V61, P66, DOI 10.1177/0008125619862257
Sohn K, 2019, FINANC RES LETT, V30, P314, DOI 10.1016/j.frl.2018.10.014
STONE VA, 1969, J COMMUN, V19, P239, DOI 10.1111/j.1460-2466.1969.tb00846.x
Sumner E, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0217207
Theis J.C., 2012, J MANAG CONTROL, V23, P133, DOI DOI 10.1007/s00187-012-0160-0
Tripathi S, 2022, INT J ENVIRON SCI TE, V19, P2025, DOI 10.1007/s13762-021-03233-1
Trueblood Jennifer S, 2014, Front Psychol, V5, P322, DOI 10.3389/fpsyg.2014.00322
Veganzones D, 2018, DECIS SUPPORT SYST, V112, P111, DOI 10.1016/j.dss.2018.06.011
vom Brocke J., 2018, BUSINESS PROCESS MAN, DOI [DOI 10.1007/978-3-319-58307-5_1, 10.1007/978-3-319-58307-5_1]
Wang BY, 2016, ENTROPY-SWITZ, V18, DOI 10.3390/e18040144
Wang Z., 2019, PROC ASS INF SCI TEC, V56, P803
Wang Z, 2013, TOP COGN SCI, V5, P689, DOI 10.1111/tops.12040
Wilson V, 2021, COMMUN ASSOC INF SYS, V49, P760, DOI 10.17705/1CAIS.04940
Xu YJ, 2008, J RETAILING, V84, P477, DOI 10.1016/j.jretai.2008.09.007
Yan P, 2021, KNOWL-BASED SYST, V234, DOI 10.1016/j.knosys.2021.107557
Yearsley JM, 2016, J MATH PSYCHOL, V74, P99, DOI 10.1016/j.jmp.2015.11.005
Zare S, 2018, INT J TOUR CITIES, V4, P194, DOI 10.1108/IJTC-08-2017-0042
Zhou SS, 2017, DECIS SUPPORT SYST, V93, P77, DOI 10.1016/j.dss.2016.09.016
NR 77
TC 5
Z9 5
U1 18
U2 44
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0167-9236
EI 1873-5797
J9 DECIS SUPPORT SYST
JI Decis. Support Syst.
PD FEB
PY 2023
VL 165
AR 113891
DI 10.1016/j.dss.2022.113891
EA DEC 2022
PG 12
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Operations Research & Management Science
GA 8H7MO
UT WOS:000921214800001
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Savithri, S
Prathap, G
AF Savithri, S.
Prathap, Gangan
TI Indian and Chinese higher education institutions compared using an
end-to-end evaluation
SO CURRENT SCIENCE
LA English
DT Article
DE Bibliometrics indicators; higher education institutions; principal
component analysis; research performance
ID BIBLIOMETRIC INDICATORS
AB The latest (2014) release of the SCImago Institutions Rankings (SIR) allows to compare the research performance of leading higher education institutions in India and China using an end-to-end bibliometric performance analysis procedure. Six carefully chosen primary and secondary bibliometric indicators summarize the chain of activity: input output excellence outcome productivity. From principal component analysis it is established that the primary indicators are orthogonal and represent size-dependent quantity and size-independent quality/productivity dimensions respectively. Using this insight two-dimensional maps can be used to visualize the results.
C1 [Savithri, S.; Prathap, Gangan] CSIR, Natl Inst Interdisciplinary Sci & Technol, Thiruvananthapuram 695019, Kerala, India.
C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR -
National Institute Interdisciplinary Science & Technology (NIIST)
RP Savithri, S (corresponding author), CSIR, Natl Inst Interdisciplinary Sci & Technol, Thiruvananthapuram 695019, Kerala, India.
EM sivakumarsavi@gmail.com
RI S, Savithri/H-1145-2013; Prathap, Gangan/T-4054-2019; s,
s/GYR-2278-2022; QI, DANDAN/GVR-9324-2022
CR Franceschet M, 2009, J AM SOC INF SCI TEC, V60, P1950, DOI 10.1002/asi.21152
Hendrix D, 2008, J MED LIBR ASSOC, V96, P324, DOI 10.3163/1536-5050.96.4.007
NR 2
TC 8
Z9 10
U1 1
U2 21
PU INDIAN ACAD SCIENCES
PI BANGALORE
PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA
SN 0011-3891
J9 CURR SCI INDIA
JI Curr. Sci.
PD MAY 25
PY 2015
VL 108
IS 10
BP 1922
EP 1926
PG 5
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA CK0JF
UT WOS:000355890800033
DA 2024-09-05
ER
PT J
AU Xu, ZY
AF Xu, Ziyun
TI Doctoral Dissertations in Chinese Interpreting Studies: A Scientometric
Survey Using Topic Modeling
SO FORUM-REVUE INTERNATIONALE D INTERPRETATION ET DE
TRADUCTION-INTERNATIONAL JOURNAL OF INTERPRETATION AND TRANSLATION
LA English
DT Article
DE Machine learning; scientometrics; Chinese interpreting studies; doctoral
dissertations; topic modeling
C1 [Xu, Ziyun] Univ Rovira & Virgili, Intercultural Studies Grp, Tarragona, Spain.
C3 Universitat Rovira i Virgili
RP Xu, ZY (corresponding author), Univ Rovira & Virgili, Intercultural Studies Grp, Tarragona, Spain.
EM xuziyun@gmail.com
CR [Anonymous], 2010, THESIS
[Anonymous], 2004, THESIS CORNELL U ITH
[Anonymous], 2005, THESIS U TEXAS AUSTI
[Anonymous], 2012, Introducing psycholinguistics
[Anonymous], 2004, Introducing Interpreting Studies, DOI DOI 10.4324/9781315649573
[Anonymous], THESIS
[Anonymous], 2013, Master thesis
[Anonymous], 2012, Thesis
[Anonymous], 2014, CHINESE TRANSLATORS
[Anonymous], 2011, THESIS
BADDELEY A, 1992, Science (Washington D C), V255, P556, DOI 10.1016/j.cub.2009.12.014
Baker Mona., 1998, ROUTLEDGE ENCY TRANS
Blei D, 2006, P 23 INT C MACH LEAR, P113
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Cai Xiaohong, 2001, CHINESE TRANSLATORS, V22, P26
Chernov G.V., 2004, Inference and Anticipation in Simultaneous Interpreting: A Probability-prediction Model
Fadde P.J., 2009, Technology, Instruction, Cognition and Learning, V7, P77
Gao B., 2008, THESIS
Gile D., 1994, Bridging the gap: empirical research in simultaneous interpretation, P39
Gile D., 2000, TARGET-NETH, V12, P297, DOI [DOI 10.1075/TARGET.12.2.07GIL, https://doi.org/10.1075/target.12.2.07gil]
Gile D, 2013, INTERLINGUA, V120, P9
Gile D, 2009, MONTI, V1, P135
GraphLab Inc, 2014, GRAPHLAB CREAT VERS
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grimmer J, 2011, POLIT ANAL, V19, P32, DOI [10.1093/pan/mpq027, 10.1093/pan/mpp034]
Guo L, 2011, THESIS
Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763
Hu L, 2008, THESIS
Jia D., 2010, THESIS
Kang Z., 2011, THESIS
Kushkowski J. D., 2003, THESIS
Li X., 2007, NEW W, V2, P206
Liu M., 2001, THESIS
Liu M., 2010, Understanding the mechanical strength of microcapsules and their adhesion on fabric surfaces
Liu Q., 2011, THESIS
Liu S., 2007, J GUANGDONG U FOREIG, V1, P37
Lovitts B. E., 2001, LEAVING IVORY TOWER
Moser-Mercer Barbara., 1997, TRANSLATIONSDIDAKTIK, P255
Paul M.J., 2011, ICWSM, P265
Peng K., 2006, THESIS
Ren W., 2008, THESIS
Seleskovitch D., 1978, Interpreting for International Conferences: Problems of Language and Communication
Setton R., 1999, Simultaneous Interpretation. A Cognitive-pragmatic Analysis: John Benjamins, DOI [10.1075/btl.28, DOI 10.1075/BTL.28]
Setton R, 2009, TRANSL INTERPRET STU, V4, P210, DOI 10.1075/tis.4.2.05set
Sha L., 2004, THESIS
SISU, 2014, GRAD CER 2014 SHANGH
Sowell R., 2008, THESIS
Su W., 2011, THESIS
Sun SG, 2012, THESIS TIANJIN U TIA
Sun X., 2010, THESIS
Tzou Y., 2008, THESIS
WAN HD, 2006, THESIS
Wang Y., 2008, THESIS
Xu Q., 2012, THESIS
Xu ZY, 2014, FORUM-REV INT INTERP, V12, P159, DOI 10.1075/forum.12.2.08xuz
Xu ZY, 2015, PERSPECT STUD TRANSL, V23, P284, DOI 10.1080/0907676X.2015.1011175
Yang L., 2012, THESIS
Yu W., 2012, THESIS
Yunkai Zhang, 2010, 2010 2nd International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC 2010), P7, DOI 10.1109/IHMSC.2010.99
Zhan C., 2011, THESIS
Zhan C., 2012, CHINESE TRANSLATORS, V1, P107
Zhang J., 2008, Microstructure Study of Cementitious Materials Using Resistivity Measurement
Zhang Q., 2010, THESIS
Zhang W., 2011, THESIS, P1
Zhang Wei, 2012, CHINESE TRANSLATORS, V3, P13
Zhao Q, 2011, LECT NOTES COMPUT SC, V7064, P139, DOI 10.1007/978-3-642-24965-5_16
NR 68
TC 3
Z9 3
U1 0
U2 3
PU JOHN BENJAMINS PUBLISHING CO
PI AMSTERDAM
PA PO BOX 36224, 1020 ME AMSTERDAM, NETHERLANDS
SN 1598-7647
EI 2451-909X
J9 FORUM-REV INT INTERP
JI Forum-Rev. Int. Interpret. Trad.
PY 2015
VL 13
IS 1
BP 131
EP 165
DI 10.1075/forum.13.1.07xuz
PG 35
WC Language & Linguistics
WE Emerging Sources Citation Index (ESCI)
SC Linguistics
GA V5R8G
UT WOS:000219880900007
DA 2024-09-05
ER
PT J
AU Siche, R
Siche, N
AF Siche, Raul
Siche, Nikol
TI The language model based on sensitive artificial intelligence-ChatGPT:
Bibliometric analysis and possible uses in agriculture and livestock
SO SCIENTIA AGROPECUARIA
LA English
DT Article
DE autoregressive language model; deep learning; text production; text
mining; data mining; artificial intelligence; chatbot
AB ChatGPT adds to the list of artificial intelligence-based systems designed to perform specific tasks and answer questions by interacting with ChatGPT works using OpenAI's GPT (Generative Pretrained Transformer) language model and is capable of learning from users' preferences scientific writing, communication, cell biology, and biotechnology, where there is already evidence. The aim of this work was to analyze the question: What are the main applications in which ChatGTP will revolutionize agriculture (or livestock) in the world? ChatGPT responded: (a) in the agricultural field: improvement of agricultural decision-making, optimization of agricultural production, detection and prevention of plant diseases, climate management, and supply chain management; and (b) in the livestock field: improvement of animal health and welfare, optimization of animal production, supply chain management, detection and prevention of zoonotic diseases, and climate is enough scientific evidence to conclude, in this case, that its answers were correct. While ChatGPT does not necessarily scientifically substantiate its answers, users should. There is a lack of studies on the use of Artificial Intelligence and its relationship with ethics.
C1 [Siche, Raul; Siche, Nikol] Univ Nacl Trujillo, Escuela Ingn Agroind, Fac Ciencias Agr, Trujillo, Peru.
Univ Nacl Trujillo, Escuela Ingn Zootecnia, Fac Ciencias Agr, Trujillo, Peru.
C3 Universidad Nacional de Trujillo; Universidad Nacional de Trujillo
RP Siche, R (corresponding author), Univ Nacl Trujillo, Escuela Ingn Agroind, Fac Ciencias Agr, Trujillo, Peru.
EM rsiche@unitru.edu.pe
OI Siche, Nikol/0000-0002-7174-8337
CR Agtecher, 2022, OPENAI CHATGPT CAN U
Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7
Cahan P, 2023, STEM CELL REP, V18, P1, DOI 10.1016/j.stemcr.2022.12.009
Di Y, 2022, AGRONOMY-BASEL, V12, DOI 10.3390/agronomy12123194
Dimitriadou E, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00231-3
Else H, 2023, NATURE, V613, P423, DOI 10.1038/d41586-023-00056-7
Ezanno P, 2021, VET RES, V52, DOI 10.1186/s13567-021-00902-4
Gallardo M, 2020, AGR WATER MANAGE, V240, DOI 10.1016/j.agwat.2020.106209
Ganesh D, 2022, COMPUT IND ENG, V169, DOI 10.1016/j.cie.2022.108206
García R, 2023, J IND INF INTEGR, V31, DOI 10.1016/j.jii.2022.100425
Hassan SM, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10121388
Holzinger A, 2023, NEW BIOTECHNOL, V74, P16, DOI 10.1016/j.nbt.2023.02.001
Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.5
Janzen T., 2023, WHAT ARE 5 WAYS CHAT
Ji BY, 2020, BIOSYST ENG, V199, P4, DOI 10.1016/j.biosystemseng.2020.07.009
Kumar P, 2023, ENVIRON MONIT ASSESS, V195, DOI 10.1007/s10661-022-10529-3
Matthew N. O. S., 2021, International Journal of Scientific Advances, V2, P5, DOI 10.51542/ijscia.v2i1.2
Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577
Reagan KL, 2022, J VET DIAGN INVEST, V34, P612, DOI 10.1177/10406387221096781
Sajith G, 2022, AGR WATER MANAGE, V269, DOI 10.1016/j.agwat.2022.107638
Singh AK, 2021, SPAN J AGRIC RES, V19, DOI 10.5424/sjar/2021194-17801
Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6
Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z
Tedeschi LO, 2022, J ANIM SCI, V100, DOI 10.1093/jas/skac111
Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879
Uyeh DD, 2022, FRONT PLANT SCI, V13, DOI 10.3389/fpls.2022.929672
Vidyarthi VK, 2023, J WATER RES PLAN MAN, V149, DOI 10.1061/(ASCE)WR.1943-5452.0001631
Wilkinson JM, 2020, GRASS FORAGE SCI, V75, P1, DOI 10.1111/gfs.12458
Wong LW, 2024, INT J PROD RES, V62, P5535, DOI 10.1080/00207543.2022.2063089
Yag I, 2022, BIOLOGY-BASEL, V11, DOI 10.3390/biology11121732
NR 30
TC 7
Z9 9
U1 21
U2 93
PU UNIV NACL TRUJILLO, FAC CIENCIAS AGROPECUARIAS
PI TRUJILLO
PA AV JUAN PABLO II S-N, TRUJILLO, 00000, PERU
SN 2077-9917
EI 2306-6741
J9 SCI AGROPEC
JI Sci. Agropecu.
PD JAN-MAR
PY 2023
VL 14
IS 1
BP 111
EP 116
DI 10.17268/sci.agropecu.2023.010
PG 6
WC Agriculture, Dairy & Animal Science
WE Emerging Sources Citation Index (ESCI)
SC Agriculture
GA E5HW5
UT WOS:000975859700010
OA gold
DA 2024-09-05
ER
PT J
AU Idnay, B
Fang, YL
Dreisbach, C
Marder, K
Weng, CH
Schnall, R
AF Idnay, Betina
Fang, Yilu
Dreisbach, Caitlin
Marder, Karen
Weng, Chunhua
Schnall, Rebecca
TI Clinical research staff perceptions on a natural language
processing-driven tool for eligibility prescreening: An iterative
usability assessment
SO INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS
LA English
DT Article
DE Eligibility prescreening; Cohort identification; Clinical research;
Natural language processing; Usability; Cognitive walkthrough
ID TRUSTWORTHINESS; CRITERIA
AB Background: Participant recruitment is a barrier to successful clinical research. One strategy to improve recruitment is to conduct eligibility prescreening, a resource-intensive process where clinical research staff manually reviews electronic health records data to identify potentially eligible patients. Criteria2Query (C2Q) was developed to address this problem by capitalizing on natural language processing to generate queries to identify eligible participants from clinical databases semi-autonomously.Objective: We examined the clinical research staff's perceived usability of C2Q for clinical research eligibility prescreening.Methods: Twenty clinical research staff evaluated the usability of C2Q using a cognitive walkthrough with a think-aloud protocol and a Post-Study System Usability Questionnaire. On-screen activity and audio were recorded and transcribed. After every-five evaluators completed an evaluation, usability problems were rated by informatics experts and prioritized for system refinement. There were four iterations of system refinement based on the evaluation feedback. Guided by the Organizational Framework for Intuitive Human-computer Interaction, we performed a directed deductive content analysis of the verbatim transcriptions. Results: Evaluators aged from 24 to 46 years old (33.8; SD: 7.32) demonstrated high computer literacy (6.36; SD:0.17); female (75 %), White (35 %), and clinical research coordinators (45 %). C2Q demonstrated high usability during the final cycle (2.26 out of 7 [lower scores are better], SD: 0.74). The number of unique usability issues decreased after each refinement. Fourteen subthemes emerged from three themes: seeking user goals, performing well-learned tasks, and determining what to do next.Conclusions: The cognitive walkthrough with a think-aloud protocol informed iterative system refinement and demonstrated the usability of C2Q by clinical research staff. Key recommendations for system development and implementation include improving system intuitiveness and overall user experience through comprehensive consideration of user needs and requirements for task completion.
C1 [Idnay, Betina; Schnall, Rebecca] Columbia Univ, Sch Nursing, New York, NY USA.
[Idnay, Betina; Marder, Karen] Columbia Univ, Dept Neurol, New York, NY USA.
[Idnay, Betina; Fang, Yilu; Weng, Chunhua] Columbia Univ, Dept Biomed Informat, New York, NY USA.
[Dreisbach, Caitlin] Columbia Univ, Data Sci Inst, New York, NY USA.
[Schnall, Rebecca] Columbia Univ, Mailman Sch Publ Hlth, Dept Populat & Family Hlth, New York, NY USA.
[Idnay, Betina] Columbia Univ, Dept Biomed Informat, 622 West 168th St, New York, NY 10032 USA.
C3 Columbia University; Columbia University; Columbia University; Columbia
University; Columbia University; Columbia University
RP Idnay, B (corresponding author), Columbia Univ, Dept Biomed Informat, 622 West 168th St, New York, NY 10032 USA.
EM bsi2102@cumc.columbia.edu
OI Fang, Yilu/0000-0002-2681-1931; Idnay, Betina/0000-0002-4318-5987;
Schnall, Rebecca/0000-0003-2184-4045; Dreisbach,
Caitlin/0000-0003-3964-3161
FU Agency for Healthcare Research and Quality [R36HS028752]; National
Institute of Nursing Research [T32NR007969, P30NR016587, K24NR018621];
National Library of Medicine [R01LM009886]; National Center for
Advancing Clinical and Translational Science [UL1TR001873, OT2TR003434]
FX This work was supported by the Agency for Healthcare Research and
Quality grant R36HS028752, the National Institute of Nursing Research
grants T32NR007969, P30NR016587, and K24NR018621, the National Library
of Medicine grant R01LM009886, and the National Center for Advancing
Clinical and Translational Science grants UL1TR001873 and OT2TR003434.
The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of
Health.
CR Alwashmi MF, 2019, JMIR MHEALTH UHEALTH, V7, DOI 10.2196/11656
[Anonymous], 2021, Dedoose Version 9.0.17, cloud application for managing, analyzing, and presenting qualitative and mixed method research data
[Anonymous], Usability engineering
Bannon L. J., 1995, READINGS HUMAN COMPU, P205, DOI DOI 10.1016/B978-0-08-051574-8.50024-8
Bhutkar Ganesh, 2013, Biomed Instrum Technol, VSuppl, P45, DOI 10.2345/0899-8205-47.s2.45
Birt L, 2016, QUAL HEALTH RES, V26, P1802, DOI 10.1177/1049732316654870
Butler Alex, 2018, AMIA Jt Summits Transl Sci Proc, V2017, P320
Centers for Medicare & Medicaid Services, 20082010 CMS
Cummings J, 2020, ALZH DEMENT-TRCI, V6, DOI 10.1002/trc2.12050
Dorner D. G., 2004, Library Hi Tech, V22, P182, DOI 10.1108/07378830410543502
Dumas J. S., 2004, Interactions, V11, P24, DOI 10.1145/1005261.1005274
England I, 2000, Aust Health Rev, V23, P176
Fang YL, 2022, J AM MED INFORM ASSN, V29, P1161, DOI 10.1093/jamia/ocac051
Fang YL, 2021, STUD HEALTH TECHNOL, V281, P984, DOI 10.3233/SHTI210325
GOODWIN NC, 1987, COMMUN ACM, V30, P229, DOI 10.1145/214748.214758
GUBA EG, 1981, ECTJ-EDUC COMMUN TEC, V29, P75
Hinderer D., 2003, 234 Tips and Tricks for Recruiting Users as Participants in Usability Studies
Hsieh HF, 2005, QUAL HEALTH RES, V15, P1277, DOI 10.1177/1049732305276687
Idnay B, 2021, J AM MED INFORM ASSN, V29, P197, DOI 10.1093/jamia/ocab228
Jain NM, 2019, JCO CLIN CANCER INFO, V3, DOI 10.1200/CCI.19.00033
Jaspers MWM, 2009, INT J MED INFORM, V78, P340, DOI 10.1016/j.ijmedinf.2008.10.002
Ji MT, 2021, J MED INTERNET RES, V23, DOI 10.2196/25929
Kaufman DR, 2016, JMIR MED INF, V4, P21, DOI 10.2196/medinform.5544
Kennell Timothy Jr, 2016, AMIA Annu Symp Proc, V2016, P696
Khajouei R, 2017, J AM MED INFORM ASSN, V24, pE55, DOI 10.1093/jamia/ocw100
Lai YS, 2019, CLIN TRIALS, V16, P194, DOI 10.1177/1740774519829709
Lewis JR, 2002, INT J HUM-COMPUT INT, V14, P463, DOI 10.1080/10447318.2002.9669130
LEWIS JR, 1992, PROCEEDINGS OF THE HUMAN FACTORS SOCIETY, 36TH ANNUAL MEETING, VOLS 1 AND 2, P1259, DOI 10.1177/154193129203601617
Li Xinhang, 2021, AMIA Jt Summits Transl Sci Proc, V2021, P394
Lin TC, 2011, J NURS RES, V19, P305, DOI 10.1097/JNR.0b013e318236d03f
Liu H, 2021, J BIOMED INFORM, V117, DOI 10.1016/j.jbi.2021.103771
Metzker E., 2005, ADOPTION CENTRIC USA
Meystre S M, 2008, Yearb Med Inform, P128
Meystre SM, 2019, INT J MED INFORM, V129, P13, DOI 10.1016/j.ijmedinf.2019.05.018
Nelson SD, 2016, APPL CLIN INFORM, V7, P22, DOI 10.4338/ACI-2015-07-CR-0091
Ni YZ, 2019, JMIR MED INF, V7, DOI 10.2196/14185
Nielsen J., 1994, Usability Engineering | Guidebooks, pp 362, DOI DOI 10.5555/2821575
Nielsen J., 1995, SEVERITY RATINGS USA
O'Brien Marita A, 2008, Proc Hum Factors Ergon Soc Annu Meet, V52, P1645, DOI 10.1518/107118108X352850
Obeid JS, 2017, J CLIN TRANSL SCI, V1, P246, DOI 10.1017/cts.2017.301
Obeid Jihad S, 2013, AMIA Jt Summits Transl Sci Proc, V2013, P189
Penberthy LT, 2012, J ONCOL PRACT, V8, P365, DOI 10.1200/JOP.2012.000646
POLSON PG, 1992, INT J MAN MACH STUD, V36, P741, DOI 10.1016/0020-7373(92)90039-N
Pressler TR, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-47
Rad MS, 2018, UNIVERSAL ACCESS INF, V17, P361, DOI 10.1007/s10209-017-0534-z
Rimel BJ, 2016, FRONT ONCOL, V6, DOI 10.3389/fonc.2016.00103
Sauro J, 2016, QUANTIFYING THE USER EXPERIENCE: PRACTICAL STATISTICS FOR USER RESEARCH, 2ND EDITION, P185, DOI 10.1016/B978-0-12-802308-2.00008-4
Schnall R, 2016, J BIOMED INFORM, V60, P243, DOI 10.1016/j.jbi.2016.02.002
Scott E, 2019, CONT CLIN TRIAL COMM, V15, DOI 10.1016/j.conctc.2019.100424
Shivade C, 2015, J BIOMED INFORM, V58, pS211, DOI 10.1016/j.jbi.2015.09.008
Stubbs A, 2019, J AM MED INFORM ASSN, V26, P1163, DOI 10.1093/jamia/ocz163
Terry M., 2002, P 4 C CREATIVITY COG, P38, DOI 10.1145/581710.581718
Thadani SR, 2009, J AM MED INFORM ASSN, V16, P869, DOI 10.1197/jamia.M3119
Tissot HC, 2020, IEEE J BIOMED HEALTH, V24, P2950, DOI 10.1109/JBHI.2020.2977925
Treweek S, 2018, COCHRANE DB SYST REV, DOI 10.1002/14651858.MR000013.pub6
Wang J, 2020, J MED INTERNET RES, V22, DOI 10.2196/16816
Yoon Y, 2015, 2015 IEEE/ACM 37TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, VOL 1, P223, DOI 10.1109/ICSE.2015.43
Yuan C, 2019, J AM MED INFORM ASSN, V26, P294, DOI 10.1093/jamia/ocy178
NR 58
TC 3
Z9 3
U1 0
U2 5
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 1386-5056
EI 1872-8243
J9 INT J MED INFORM
JI Int. J. Med. Inform.
PD MAR
PY 2023
VL 171
AR 104985
DI 10.1016/j.ijmedinf.2023.104985
EA JAN 2023
PG 12
WC Computer Science, Information Systems; Health Care Sciences & Services;
Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Health Care Sciences & Services; Medical Informatics
GA G7UE0
UT WOS:000991155600001
PM 36638583
OA Green Accepted
DA 2024-09-05
ER
PT C
AU Li, MJ
Xu, JG
Ge, BF
Liu, J
Jiang, J
Zhao, QS
AF Li, Mengjun
Xu, Jianguo
Ge, Bingfeng
Liu, Jia
Jiang, Jiang
Zhao, Qingsong
GP IEEE
TI A Deep Learning Methodology for Citation Count Prediction with
Large-scale Biblio-Features
SO 2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC)
SE IEEE International Conference on Systems Man and Cybernetics Conference
Proceedings
LA English
DT Proceedings Paper
CT IEEE International Conference on Systems, Man and Cybernetics (SMC)
CY OCT 06-09, 2019
CL Bari, ITALY
ID NETWORK
AB Recently, many efforts have been devoted to the impact of scientific papers within different citation windows. However, it is still an elusive task to predict scientific impact shortly after the publication date. In this paper, a deep learning methodology is proposed to predict long-term citation count. First, large-scale biblio-features are extracted from heterogeneous information network based on five types of links. Next, a deep learning model is designed by taking it as a regression and prediction task. Then Pearson coefficient is used to confirm the correlations between input features and future citation count. Finally, as a case study, papers of Markov Chain published in 1980 are analyzed. The result shows the proposed methodology outperforms the state-of-the-art models and gives accurate prediction of future citations.
C1 [Li, Mengjun; Xu, Jianguo; Ge, Bingfeng; Liu, Jia; Jiang, Jiang; Zhao, Qingsong] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China.
C3 National University of Defense Technology - China
RP Xu, JG (corresponding author), Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China.
EM mjli11260774@sina.com; jgxu1992@hotmail.com; bingfengge@nudt.edu.cn;
JLiu1223@163.com; jiangjiangnudt@nudt.com; qingsongzhao99@163.com
RI jiang, jiang/GRX-1861-2022; jiang, jun/GWC-9329-2022
OI zhao, qingsong/0000-0003-1392-845X
FU National Natural Science Foundation of China [71690233, 71671186,
71571185]
FX Research supported in part by the National Natural Science Foundation of
China under Grants 71690233, 71671186, and 71571185..
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
Bai XM, 2018, IEEE ACCESS, V6, P11842, DOI 10.1109/ACCESS.2018.2812804
Bruns SB, 2016, SCIENTOMETRICS, V108, P917, DOI 10.1007/s11192-016-1979-1
Clauset A, 2017, SCIENCE, V355, P477, DOI 10.1126/science.aal4217
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Hu YQ, 2018, P NATL ACAD SCI USA, V115, P7468, DOI 10.1073/pnas.1710547115
Kosteas VD, 2018, SCIENTOMETRICS, V115, P1395, DOI 10.1007/s11192-018-2703-0
Sebastian Y, 2017, KNOWL-BASED SYST, V115, P66, DOI 10.1016/j.knosys.2016.10.015
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
Zhang J, 2018, IEEE ACCESS, V6, P55661, DOI 10.1109/ACCESS.2018.2863938
NR 15
TC 10
Z9 10
U1 0
U2 7
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 1062-922X
BN 978-1-7281-4569-3
J9 IEEE SYS MAN CYBERN
PY 2019
BP 1172
EP 1176
PG 5
WC Computer Science, Cybernetics; Computer Science, Information Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BO6NM
UT WOS:000521353901032
DA 2024-09-05
ER
PT J
AU ul Haq, MI
Li, QM
Hou, J
Iftekhar, A
AF ul Haq, Muhammad Inaam
Li, Qianmu
Hou, Jun
Iftekhar, Adnan
TI Detecting the research structure and topic trends of social media using
static and dynamic probabilistic topic models
SO ASLIB JOURNAL OF INFORMATION MANAGEMENT
LA English
DT Article
DE Social media; Topic models; Latent dirichlet allocation; DTM; Topic
trends; Temporal evolution
ID HEALTH-CARE; IMPACT; FUTURE; INFORMATION; CHALLENGES; ADOLESCENT;
EVOLUTION; FRAMEWORK; TOURISM; TWITTER
AB PurposeA huge volume of published research articles is available on social media which evolves because of the rapid scientific advances and this paper aims to investigate the research structure of social media.Design/methodology/approachThis study employs an integrated topic modeling and text mining-based approach on 30381 Scopus index titles, abstracts, and keywords published between 2006 and 2021. It combines analytical analysis of top-cited reviews with topic modeling as means of semantic validation. The output sequences of the dynamic model are further analyzed using the statistical techniques that facilitate the extraction of topic clusters, communities, and potential inter-topic research directions.FindingsThis paper brings into vision the research structure of social media in terms of topics, temporal topic evolutions, topic trends, emerging, fading, and consistent topics of this domain. It also traces various shifts in topic themes. The hot research topics are the application of the machine or deep learning towards social media in general, alcohol consumption in different regions and its impact, Social engagement and media platforms. Moreover, the consistent topics in both models include food management in disaster, health study of diverse age groups, and emerging topics include drug violence, analysis of social media news for misinformation, and problems of Internet addiction.Originality/valueThis study extends the existing topic modeling-based studies that analyze the social media literature from a specific disciplinary viewpoint. It focuses on semantic validations of topic-modeling output and correlations among the topics and also provides a two-stage cluster analysis of the topics.
C1 [ul Haq, Muhammad Inaam; Li, Qianmu] Nanjing Univ Sci & Technol, Nanjing, Peoples R China.
[Hou, Jun] Nanjing Vocat Univ Ind Technol, Nanjing, Peoples R China.
[Iftekhar, Adnan] Wuhan Univ, Wuhan, Peoples R China.
C3 Nanjing University of Science & Technology; Nanjing Vocational
University of Industry Technology; Wuhan University
RP ul Haq, MI (corresponding author), Nanjing Univ Sci & Technol, Nanjing, Peoples R China.
EM Minaamulhaq@hotmail.com
RI Iftekhar, Adnan/ABB-1590-2020; Inaam ul haq, Muhammad/HKO-1217-2023
OI Iftekhar, Adnan/0000-0002-8249-6876; Inaam ul haq,
Muhammad/0000-0002-5759-073X
FU Research Project of Nanjing Polytechnic Institute [2020SKYJo3]; major
project of philosophy and social science research in colleges and
universities of Jiangsu Province "Research on the Construction of
Selective Compulsory Courses of Ideological and Political Science in
Higher vocational Colleges" [2022SJZDSZ011]
FX This work was supported by the major project of philosophy and social
science research in colleges and universities of Jiangsu Province
"Research on the Construction of Selective Compulsory Courses of
Ideological and Political Science in Higher vocational Colleges"
(2022SJZDSZ011) and the Research Project of Nanjing Polytechnic
Institute (2020SKYJo3).
CR Acquisti A, 2018, The Cambridge Handbook of Consumer Privacy, P184
Aichner T, 2021, CYBERPSYCH BEH SOC N, V24, P215, DOI 10.1089/cyber.2020.0134
Aichner T, 2015, INT J MARKET RES, V57, P257, DOI 10.2501/IJMR-2015-018
Alalwan AA, 2017, TELEMAT INFORM, V34, P1177, DOI 10.1016/j.tele.2017.05.008
Aletras N, 2013, P 10 INT C COMP SEM, P13, DOI [10.1145/2537052, DOI 10.1145/2537052]
Alexander DE, 2014, SCI ENG ETHICS, V20, P717, DOI 10.1007/s11948-013-9502-z
Ambrosino A, 2018, J ECON METHODOL, V25, P329, DOI 10.1080/1350178X.2018.1529215
Andreassen CS, 2014, CURR PHARM DESIGN, V20, P4053, DOI 10.2174/13816128113199990616
Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7
Bercovici J., 2010, Forbes
Bickel MW, 2019, ENERGY SUSTAIN SOC, V9, DOI 10.1186/s13705-019-0226-z
Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Bouma G., 2009, From Form to Meaning. Processing Texts Automatically. Proceedings of the Biennial GSCL Conference. Ed. by, P31
Boyd-Graber JordanL., 2009, Advances in neural information processing systems, P185
Carnot ML, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22111303
Chae B, 2019, TELECOMMUN POLICY, V43, DOI 10.1016/j.telpol.2019.101848
Chang YH, 2020, J CLIN PSYCHIAT, V81, DOI 10.4088/JCP.20l13454
Chen Q, 2017, CHIN MED-UK, V12, DOI 10.1186/s13020-017-0148-7
Chen XL, 2021, MULTIMED TOOLS APPL, V80, P17335, DOI 10.1007/s11042-020-09062-7
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Cheng X, 2022, J INF SCI, V48, P304, DOI 10.1177/0165551520954674
Cheng X, 2018, AGR ECOSYST ENVIRON, V267, P1, DOI 10.1016/j.agee.2018.07.022
Cheston CC, 2013, ACAD MED, V88, P893, DOI 10.1097/ACM.0b013e31828ffc23
Choi HS, 2017, COMPUT SECUR, V67, P244, DOI 10.1016/j.cose.2017.03.007
Chomutare T, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.1874
Chou Wen-ying Sylvia, 2013, Am J Public Health, V103, pe9, DOI 10.2105/AJPH.2012.301071
Crawford K, 2009, CONTINUUM-J MEDIA CU, V23, P525, DOI 10.1080/10304310903003270
De Vries NJ, 2014, J BRAND MANAG, V21, P495, DOI 10.1057/bm.2014.18
Ding ZK, 2018, AUTOMAT CONSTR, V96, P398, DOI 10.1016/j.autcon.2018.10.008
El-Gayar Omar, 2013, J Diabetes Sci Technol, V7, P247
Eysenbach G, 2009, J MED INTERNET RES, V11, DOI 10.2196/jmir.1157
Filo K, 2015, SPORT MANAG REV, V18, P166, DOI 10.1016/j.smr.2014.11.001
Geng Y, 2017, J CLEAN PROD, V159, P301, DOI 10.1016/j.jclepro.2017.05.091
Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188
Grajales FJ III, 2014, J MED INTERNET RES, V16, DOI 10.2196/jmir.2912
Gralinski LE, 2020, VIRUSES-BASEL, V12, DOI 10.3390/v12020135
Griffiths TL, 2007, PSYCHOL REV, V114, P211, DOI 10.1037/0033-295X.114.2.211
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Guessoum SB, 2020, PSYCHIAT RES, V291, DOI 10.1016/j.psychres.2020.113264
Gurcan F, 2021, INT J HUM-COMPUT INT, V37, P267, DOI 10.1080/10447318.2020.1819668
Guse K, 2012, J ADOLESCENT HEALTH, V51, P535, DOI 10.1016/j.jadohealth.2012.03.014
Hahn A, 2017, LECT N BIOINFORMAT, V10330, P279, DOI 10.1007/978-3-319-59575-7_25
Hida R, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P516
Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685
Hoffman Matthew D., 2010, Adv. Neural Inf. Process. Syst. (NIPS), DOI DOI 10.5555/2997189.2997285
Hurle MR, 2013, CLIN PHARMACOL THER, V93, P335, DOI 10.1038/clpt.2013.1
Jungherr A, 2016, J INF TECHNOL POLITI, V13, P72, DOI 10.1080/19331681.2015.1132401
Kamel Boulos Maged N, 2011, Int J Health Geogr, V10, P67, DOI 10.1186/1476-072x-10-67
Kane GC, 2014, MIS QUART, V38, P275, DOI 10.25300/MISQ/2014/38.1.13
Karl A, 2015, WIRES COMPUT STAT, V7, DOI 10.1002/wics.1361
Kitsos C., 2017, British Journal of Mathematics Computer Science, VVol. 21, P1, DOI DOI 10.9734/BJMCS/2017/32229
Krawczyk B, 2016, PROG ARTIF INTELL, V5, P221, DOI 10.1007/s13748-016-0094-0
Kuss DJ, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14030311
Laranjo L, 2015, J AM MED INFORM ASSN, V22, P243, DOI 10.1136/amiajnl-2014-002841
Lee JH, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13031269
Lee M, 2016, BMC BIOINFORMATICS, V17, DOI 10.1186/s12859-016-1225-0
Leung D, 2013, J TRAVEL TOUR MARK, V30, P3, DOI 10.1080/10548408.2013.750919
Liang TP, 2011, INT J ELECTRON COMM, V16, P5, DOI 10.2753/JEC1086-4415160201
Liu S, 2021, PSYCHOL HEALTH MED, V26, P395, DOI 10.1080/13548506.2020.1738019
Madathil KC, 2015, HEALTH INFORM J, V21, P173, DOI 10.1177/1460458213512220
Malthouse EC, 2013, J INTERACT MARK, V27, P270, DOI 10.1016/j.intmar.2013.09.008
Manolio TA, 2013, GENET MED, V15, P258, DOI 10.1038/gim.2012.157
Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002
Mathew G, 2023, IEEE T SOFTWARE ENG, V49, P1397, DOI 10.1109/TSE.2018.2870388
Minka T.P., 2002, Uncertainty in Artificial Intelligence, P352
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Moorhead SA, 2013, J MED INTERNET RES, V15, DOI 10.2196/jmir.1933
Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024
Moses H, 2013, JAMA-J AM MED ASSOC, V310, P1947, DOI 10.1001/jama.2013.281425
Muchene L, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0243208
Nassirtoussi AK, 2014, EXPERT SYST APPL, V41, P7653, DOI 10.1016/j.eswa.2014.06.009
Nicola M, 2020, INT J SURG, V78, P185, DOI 10.1016/j.ijsu.2020.04.018
O'Keeffe GS, 2011, PEDIATRICS, V127, P800, DOI 10.1542/peds.2011-0054
Piotrowicz W, 2014, INT J ELECTRON COMM, V18, P5, DOI 10.2753/JEC1086-4415180400
Puhl RM, 2013, BEST PRACT RES CL EN, V27, P117, DOI 10.1016/j.beem.2012.12.002
Randriamihamison N, 2021, J CLASSIF, V38, P363, DOI 10.1007/s00357-020-09377-y
Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
Sahoo B., 2018, INT J INFORM DISSEMI, V8, P99, DOI [DOI 10.5958/2249-5576.2018.00021.3, 10.5958/2249-5576.2018.00021.3]
Sallam M., 2021, VACCINES-BASEL, P1
Sarker A, 2015, J BIOMED INFORM, V54, P202, DOI 10.1016/j.jbi.2015.02.004
Saw J, 2016, J AM COLL CARDIOL, V68, P297, DOI 10.1016/j.jacc.2016.05.034
Sawyer SM, 2012, LANCET, V379, P1630, DOI 10.1016/S0140-6736(12)60072-5
Seabrook EM, 2016, JMIR MENT HEALTH, V3, DOI 10.2196/mental.5842
Shah AM, 2021, INT J MED INFORM, V149, DOI 10.1016/j.ijmedinf.2021.104434
Simon T, 2015, INT J INFORM MANAGE, V35, P609, DOI 10.1016/j.ijinfomgt.2015.07.001
Sinnenberg L, 2017, AM J PUBLIC HEALTH, V107, pE1, DOI 10.2105/AJPH.2016.303512
Som A., 2015, LUXURY ROAD EVOLUTIO
Son Changwon, 2020, J Med Internet Res, V22, pe21279, DOI 10.2196/21279
Sui D, 2011, INT J GEOGR INF SCI, V25, P1737, DOI 10.1080/13658816.2011.604636
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Syed S, 2018, REV FISH SCI AQUAC, V26, P319, DOI 10.1080/23308249.2017.1416331
Talafidaryani M, 2021, MANAG RES REV, V44, P236, DOI 10.1108/MRR-03-2020-0139
Taneja SL, 2021, J MED INTERNET RES, V23, DOI 10.2196/26956
Thaha A R., 2021, Library Philosophy and Practice, V2021, P1
Thakur K, 2022, NEW REV ACAD LIBR, V28, P279, DOI 10.1080/13614533.2021.1918190
Torous John, 2020, JMIR Ment Health, V7, pe18848, DOI 10.2196/18848
Ul Haq MI, 2022, COMPUT J, V65, P2589, DOI 10.1093/comjnl/bxab091
Ul Haq MI, 2019, IEEE ACCESS, V7, P162254, DOI 10.1109/ACCESS.2019.2950045
Vaccari C., 2013, ITAL POLIT SCI REV, V43, P381, DOI [10.1426/75245, DOI 10.1426/75245]
van Gemert-Pijnen JEWC, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.1672
Vance K, 2009, DERMATOL CLIN, V27, P133, DOI 10.1016/j.det.2008.11.010
Wallach H. M., 2006, P 23 INT C MACH LEAR, V23, P977, DOI [10.1145/1143844.1143967, DOI 10.1145/1143844.1143967]
Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9
Wang J, 2016, P IEEE, V104, P34, DOI 10.1109/JPROC.2015.2487976
Wang YX, 2019, SOC SCI MED, V240, DOI 10.1016/j.socscimed.2019.112552
Wang ZY, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9110632
Welch V, 2016, HEALTH PROMOT CHRON, V36, P63, DOI 10.24095/hpcdp.36.4.01
Whitaker C, 2017, J MED INTERNET RES, V19, DOI 10.2196/jmir.7071
Xiong H, 2019, COMPUT IND ENG, V135, P333, DOI 10.1016/j.cie.2019.06.010
Xiong JQ, 2020, J AFFECT DISORDERS, V277, P55, DOI 10.1016/j.jad.2020.08.001
Yaqub O, 2014, SOC SCI MED, V112, P1, DOI 10.1016/j.socscimed.2014.04.018
Yip PSF, 2012, LANCET, V379, P2393, DOI 10.1016/S0140-6736(12)60521-2
You Y, 2015, J MARKETING, V79, P19, DOI 10.1509/jm.14.0169
Zebrack B, 2012, J CLIN ONCOL, V30, P1221, DOI 10.1200/JCO.2011.39.5467
Zeng BX, 2014, TOUR MANAG PERSPECT, V10, P27, DOI 10.1016/j.tmp.2014.01.001
Zhang Y, 2020, J MED INTERNET RES, V22, DOI 10.2196/17582
Zou C, 2018, EXPERT OPIN DRUG SAF, V17, P629, DOI 10.1080/14740338.2018.1458838
Zyoud SH, 2018, INT J MENT HEALTH SY, V12, DOI 10.1186/s13033-018-0182-6
NR 121
TC 1
Z9 1
U1 10
U2 56
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 2050-3806
EI 1758-3748
J9 ASLIB J INFORM MANAG
JI Aslib J. Inf. Manag.
PD MAR 23
PY 2023
VL 75
IS 2
BP 215
EP 245
DI 10.1108/AJIM-02-2022-0091
EA SEP 2022
PG 31
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA A4BU1
UT WOS:000853140500001
DA 2024-09-05
ER
PT J
AU Alp, ZZ
Ögüdücü, SG
AF Alp, Zeynep Zengin
Oguducu, Sule Gunduz
TI Identifying topical influencers on twitter based on user behavior and
network topology
SO KNOWLEDGE-BASED SYSTEMS
LA English
DT Article
DE Social influence; Topical influence; Twitter; User modeling; Page Rank;
Topic modeling; LDA; Evaluation metrics; Viral marketing
ID MODELS
AB Social media web sites have become major media platforms to share personal information, news, photos, videos and more. Users can even share live streams whenever they want to reach out to many other. This prevalent usage of social media attracted companies, data scientists, and researchers who are trying to infer meaningful information from this vast amount of data. Information diffusion and maximizing the spread of words is one of the most important focus for researchers working on social media. This information can serve many purposes such as; user or content recommendation, viral marketing, and user modeling. In this research, finding topical influential/authority users on Twitter is addressed. Since Twitter is a good platform to spread knowledge as a word of mouth approach and it has many more public profiles than protected ones, it is a target media for marketers. In this paper, we introduce a novel methodology, called Personalized PageRank, that integrates both the information obtained from network topology and the information obtained from user actions and activities in Twitter. The proposed approach aims to determine the topical influencers who are experts on a specific topic. Experimental results on a large dataset consisting of Turkish tweets show that using user specific features like topical focus rate, activeness, authenticity and speed of getting reaction on specific topics positively affects identifying influencers and lead to higher information diffusion. Algorithms are implemented on a distributed computing environment which makes high-cost graph processing more efficient. (C) 2017 Elsevier B.V. All rights reserved.
C1 [Alp, Zeynep Zengin] Istanbul Tech Univ Maslak, Inst Sci & Technol, TR-34469 Istanbul, Turkey.
[Oguducu, Sule Gunduz] Istanbul Tech Univ Maslak, Dept Comp Engn, TR-34469 Istanbul, Turkey.
C3 Istanbul Technical University; Istanbul Technical University
RP Alp, ZZ (corresponding author), Istanbul Tech Univ Maslak, Inst Sci & Technol, TR-34469 Istanbul, Turkey.
EM zzalp@itu.edu.tr; sgunduz@itu.edu.tr
RI Alp, Zeynep/KHX-4733-2024; Oguducu, Sule Gunduz/C-7710-2009
OI Oguducu, Sule Gunduz/0000-0002-0288-4757
FU 2211 - TUBITAK BIDEB Ph.D. Scholarship Fund
FX This research is partially funded by 2211 - TUBITAK BIDEB Ph.D.
Scholarship Fund.
CR Alp ZZ, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P1321, DOI 10.1109/ASONAM.2016.7752407
Alp ZZ, 2015, 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P644, DOI 10.1109/ICMLA.2015.73
Altinel B, 2016, KNOWL-BASED SYST, V108, P50, DOI 10.1016/j.knosys.2016.06.021
Anger I., 2011, P 11 INT C KNOWL TEC, P1, DOI DOI 10.1145/2024288.2024326
[Anonymous], 2011, P 20 INT C WORLD WID
[Anonymous], 2003, P 9 ACM SIGKDD INT C
[Anonymous], 2002, Proceedings of the 11th international conference on World Wide Web, DOI [DOI 10.1145/511446.511513, 10.1145/511446.511513]
[Anonymous], 2010, ICWSM, DOI DOI 10.1016/J.IPM.2016.04.003
[Anonymous], THESIS
Aral S, 2014, MANAGE SCI, V60, P1352, DOI 10.1287/mnsc.2014.1936
Aral S, 2012, SCIENCE, V337, P337, DOI 10.1126/science.1215842
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bravo-Marquez F, 2016, KNOWL-BASED SYST, V108, P65, DOI 10.1016/j.knosys.2016.05.018
Cohen A R., 1959, SOME IMPLICATIONS SE
DEUTSCH MORTON, 1955, JOUR ABNORMAL AND SOCIAL PSYCHOL, V51-31, P629, DOI 10.1037/h0046408
Goldenberg J, 2001, MARKET LETT, V12, P211, DOI 10.1023/A:1011122126881
Goyal A, 2011, PROC VLDB ENDOW, V5, P73, DOI 10.14778/2047485.2047492
GRANOVETTER M, 1978, AM J SOCIOL, V83, P1420, DOI 10.1086/226707
Guille Adrien, 2012, P 21 INT C WORLD WID, P1145, DOI [DOI 10.1145/2187980.2188254, 10.1145/2187980.2188254]
Hong Liangjie, 2010, Proceedings of the First Workshop on Social Media Analytics, P80, DOI [DOI 10.1145/1964858.1964870, 10.1145/1964858.1964870]
Jendoubi S, 2017, KNOWL-BASED SYST, V121, P58, DOI 10.1016/j.knosys.2017.01.014
Katz E., 1957, CAN J EC POLIT SCI, V6
Kitsak M, 2010, NAT PHYS, V6, P888, DOI [10.1038/NPHYS1746, 10.1038/nphys1746]
Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140
Kwak H., WWW'10, DOI DOI 10.1145/1772690.1772751
Lippitt R, 1952, HUM RELAT, V5, P37, DOI 10.1177/001872675200500102
Liu L, 2012, DATA MIN KNOWL DISC, V25, P511, DOI 10.1007/s10618-012-0252-3
Liu WY, 2016, KNOWL-BASED SYST, V109, P266, DOI 10.1016/j.knosys.2016.07.008
Long C, 2014, INFORM SYST, V46, P1, DOI 10.1016/j.is.2014.05.003
Lou Tiancheng, 2013, P 22 INT C WORLD WID, P825, DOI [DOI 10.1145/2488388.2488461, 10.1145/2488388.2488461]
Lu WX, 2016, KNOWL-BASED SYST, V113, P143, DOI 10.1016/j.knosys.2016.09.020
McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit
Mehrotra R., 2013, Improving LDA topic models for microblogs via tweet pooling and automatic labeling, P889, DOI DOI 10.1145/2484028.2484166
Muhammad A, 2016, KNOWL-BASED SYST, V108, P92, DOI 10.1016/j.knosys.2016.05.032
Page L., 1999, Technical Report Stanford InfoLab
Pal A., 2011, P 4 ACM INT C WEB SE, P45, DOI [10.1145/1935826.1935843, DOI 10.1145/1935826.1935843]
Petz Gerald, 2013, Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data. Third International Workshop, HCI-KDD 2013. Held at SouthCHI 2013. Proceedings: LNCS 7947, P35, DOI 10.1007/978-3-642-39146-0_4
Poria S, 2016, KNOWL-BASED SYST, V108, P42, DOI 10.1016/j.knosys.2016.06.009
Rill S, 2014, KNOWL-BASED SYST, V69, P24, DOI 10.1016/j.knosys.2014.05.008
Riquelme F, 2016, INFORM PROCESS MANAG, V52, P949, DOI 10.1016/j.ipm.2016.04.003
Saito K, 2011, LECT NOTES COMPUT SC, V6804, P153, DOI 10.1007/978-3-642-21916-0_18
Sankar CP, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0168125
Sulis E, 2016, KNOWL-BASED SYST, V108, P132, DOI 10.1016/j.knosys.2016.05.035
Weng J., 2010, P 3 ACM INT C WEB SE, P261, DOI [10.1145/1718487.1718520, DOI 10.1145/1718487.1718520]
Yang Y, 2015, AAAI CONF ARTIF INTE, P367
Yildiz E, 2016, AAAI CONF ARTIF INTE, P2863
Zhao WNX, 2011, LECT NOTES COMPUT SC, V6611, P338, DOI 10.1007/978-3-642-20161-5_34
NR 47
TC 72
Z9 75
U1 2
U2 133
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0950-7051
EI 1872-7409
J9 KNOWL-BASED SYST
JI Knowledge-Based Syst.
PD FEB 1
PY 2018
VL 141
BP 211
EP 221
DI 10.1016/j.knosys.2017.11.021
PG 11
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA FU1ZP
UT WOS:000423648300015
DA 2024-09-05
ER
PT J
AU Konkiel, S
AF Konkiel, Stacy
TI Approaches to creating 'humane' research evaluation metrics for the
humanities
SO INSIGHTS-THE UKSG JOURNAL
LA English
DT Article
DE Humanities; research metrics; bibliometrics; evaluation; indicators
AB There are many complexities and challenges associated with developing 'humane' research evaluation metrics in the humanities. This monumental task can only be addressed by reverse engineering evaluation metrics based upon the practices and values that funders, institutions, professional societies and individuals want to encourage in their disciplines. The work of the HuMetricsHSS initiative is described in this article as a framework for doing so.
EM s.konkiel@digital-science.com
OI Konkiel, Stacy/0000-0002-0546-8257
FU Andrew W Mellon Foundation
FX The author gratefully acknowledges the support of the Andrew W Mellon
Foundation, which has made the HuMetricsHSS initiative's work possible,
and Nicky Agate, for her valuable input on this article.
CR American Anthropological Association, 2017, AAA Guidelines for Tenure and Promotion Review: Communicating Public Scholarship in Anthropology
[Anonymous], 2012, GUID EV WORK DIG HUM
[Anonymous], 2015, GUID PROF EV DIG SCH
Ball C, 2017, OPEN SCHOLARSHIP INI, V2
Belfiore E, 2015, ARTS HUM HIGH EDUC, V14, P95, DOI 10.1177/1474022214531503
Butler L, 2003, RES EVALUAT, V12, P39, DOI 10.3152/147154403781776780
Curry S, 2018, NATURE, V554, P147, DOI 10.1038/d41586-018-01642-w
de Rijcke S, 2016, RES EVALUAT, V25, P161, DOI 10.1093/reseval/rvv038
Gogolin I, 2014, ASSESSING QUALITY EU, DOI [10.1007/978-3-658-05969-9_1, DOI 10.1007/978-3-658-05969-9_1]
Guetzkow J, 2004, AM SOCIOL REV, V69, P190, DOI 10.1177/000312240406900203
Hammarfelt B., 2012, Following the footnotes: A bibliometric analysis of citation patterns in literary studies
Hammarfelt B, 2013, PRO INT CONF SCI INF, P720
Haustein S., 2014, Incentives and Performance, P121, DOI [DOI 10.1007/978-3-319-09785-5_8, 10.1007/978-3-319-09785, DOI 10.1007/978-3-319-09785]
Hoffman A., 2017, INSIDE HIGHER ED
Moore S, 2017, PALGR COMMUN, V3, DOI 10.1057/palcomms.2016.105
Ochsner M., 2016, Research Assessment in the Humanities, DOI DOI 10.1007/978-3-319-29016-4
Ochsner M, 2017, PALGR COMMUN, V3, DOI 10.1057/palcomms.2017.20
Schimanski L.A., 2018, F1000Research, V7, DOI DOI 10.12688/F1000RESEARCH.16493.1
Sivertsen G, 2016, SCIENTOMETRICS, V107, P357, DOI 10.1007/s11192-016-1845-1
NR 19
TC 5
Z9 5
U1 0
U2 4
PU UBIQUITY PRESS LTD
PI LONDON
PA 2N, 6 OSBORNE ST, LONDON, E1 6TD, ENGLAND
SN 2048-7754
J9 INSIGHTS
JI Insights
PD NOV 15
PY 2018
VL 31
AR 44
DI 10.1629/uksg.445
PG 7
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA HY4EV
UT WOS:000468081700001
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Bai, XM
Zhang, FL
Hou, J
Xia, F
Tolba, A
Elashkar, E
AF Bai, Xiaomei
Zhang, Fuli
Hou, Jie
Xia, Feng
Tolba, Amr
Elashkar, Elsayed
TI Implicit Multi-Feature Learning for Dynamic Time Series Prediction of
the Impact of Institutions
SO IEEE ACCESS
LA English
DT Article
DE Scientific impact; prediction; feature selection; machine learning;
scientometrics
AB Predicting the impact of research institutions is an important tool for decision makers, such as resource allocation for funding bodies. Despite significant effort of adopting quantitative indicators to measure the impact of research institutions, little is known that how the impact of institutions evolves in time. Previous studies have focused on using the historical relevance scores of different institutions to predict potential future impact for these institutions. In this paper, we explore the factors that can drive the changes of the impact of institutions, finding that the impact of an institution, as measured by the number of the accepted papers of the institution, more is determined by the authors' influence of the institution. Geographic location of institution feature and state GDP can drive the changes of the impact of institutions. Identifying these features allows us to formulate a predictive model that integrates the effects of individual ability, location of institution, and state GDP. The model unveils the underlying factors driving the future impact of institutions, which can be used to accurately predict the future impact of institutions.
C1 [Bai, Xiaomei; Hou, Jie; Xia, Feng] Dalian Univ Technol, Key Lab Ubiquitous Network & Serv Software Liaoni, Sch Software, Dalian 116620, Peoples R China.
[Bai, Xiaomei] Anshan Normal Univ, Ctr Comp, Anshan 114007, Peoples R China.
[Zhang, Fuli] Anshan Normal Univ, Anshan 114007, Peoples R China.
[Tolba, Amr] King Saud Univ, Dept Comp Sci, Community Coll, Riyadh 11437, Saudi Arabia.
[Tolba, Amr] Menoufia Univ, Fac Sci, Math Dept, Shibin Al Kawm 32511, Egypt.
[Elashkar, Elsayed] King Saud Univ, Adm Sci Dept, Community Coll, Riyadh 11437, Saudi Arabia.
[Elashkar, Elsayed] Mansoura Univ, Fac Commerce, Dept Appl Stat, Mansoura 35516, Egypt.
C3 Dalian University of Technology; Anshan Normal University; Anshan Normal
University; King Saud University; Egyptian Knowledge Bank (EKB); Menofia
University; King Saud University; Egyptian Knowledge Bank (EKB);
Mansoura University
RP Xia, F (corresponding author), Dalian Univ Technol, Key Lab Ubiquitous Network & Serv Software Liaoni, Sch Software, Dalian 116620, Peoples R China.
EM f.xia@ieee.org
RI Tolba, Amr/O-8464-2016; Xia, Feng/Y-2859-2019; Elashkar, Elsayed
Elsherbini/AAV-9503-2021; Elashkar, Elsayed/O-6416-2018
OI Tolba, Amr/0000-0003-3439-6413; Xia, Feng/0000-0002-8324-1859; Elashkar,
Elsayed/0000-0003-2326-6779
FU King Saud University [RGP-1438-27]
FX The authors extend their appreciation to the Deanship of Scientific
Research at King Saud University for funding this work through research
group NO (RGP-1438-27).
CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
[Anonymous], 2010, The evaluation of research by scientometric indicators
[Anonymous], 2016, PROC IEEE INT C PROG, DOI DOI 10.1109/ICPHM.2016.7542845
Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364
Bensman SJ, 2011, J AM SOC INF SCI TEC, V62, P208, DOI 10.1002/asi.21417
Bornmann L, 2017, J KOREAN MED SCI, V32, P180, DOI 10.3346/jkms.2017.32.2.180
Bornmann L, 2014, ONLINE INFORM REV, V38, P43, DOI 10.1108/OIR-12-2012-0214
Bruns SB, 2016, SCIENTOMETRICS, V108, P917, DOI 10.1007/s11192-016-1979-1
Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006
Chen Chen T. T., KDD16 P 22 ACM, V785, P785, DOI [DOI 10.1145/2939672.2939785, 10.1145/2939672.2939785]
Hastie T., 2009, Springer series in statistics
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1
Orouskhani Y., 2016, RANKING RES I BASED
Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880
Penner O, 2013, SCI REP-UK, V3, DOI 10.1038/srep03052
Petersen AM, 2014, P NATL ACAD SCI USA, V111, P15316, DOI 10.1073/pnas.1323111111
Sandulescu V., 2016, CoRR
Setti G, 2013, IEEE ACCESS, V1, P232, DOI 10.1109/ACCESS.2013.2261115
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Svider P. F., 2016, LARYNGOSCOPE, V127, P87
Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
Xia F, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165997
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
NR 26
TC 28
Z9 30
U1 0
U2 16
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2017
VL 5
BP 16372
EP 16382
DI 10.1109/ACCESS.2017.2739179
PG 11
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA FF9PS
UT WOS:000409349400017
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Albanese, F
Pinto, S
Semeshenko, V
Balenzuela, P
AF Albanese, Federico
Pinto, Sebastian
Semeshenko, Viktoriya
Balenzuela, Pablo
TI Analyzing mass media influence using natural language processing and
time series analysis
SO JOURNAL OF PHYSICS-COMPLEXITY
LA English
DT Article
DE mass media influence; sentiment analysis; topic detection; time series
analysis
ID PUBLIC-OPINION; AGENDA; NEWS; ECONOMY
AB A key question of collective social behavior is related to the influence of mass media on public opinion. Different approaches have been developed to address quantitatively this issue, ranging from field experiments to mathematical models. In this work we propose a combination of tools involving natural language processing and time series analysis. We compare selected features of mass media news articles with measurable manifestation of public opinion. We apply our analysis to news articles belonging to the 2016 US presidential campaign. We compare variations in polls (as a proxy of public opinion) with changes in the connotation of the news (sentiment) or in the agenda (topics) of a selected group of media outlets. Our results suggest that the sentiment content by itself is not enough to understand the differences in polls, but the combination of topics coverage and sentiment content provides an useful insight of the context in which public opinion varies. The methodology employed in this work is far general and can be easily extended to other topics of interest.
C1 [Albanese, Federico] Univ Buenos Aires, Inst Ciencias Computac, CONICET, Buenos Aires, DF, Argentina.
[Pinto, Sebastian; Balenzuela, Pablo] Consejo Nacl Invest Cient & Tecn, Inst Fis Buenos Aires IFIBA, Ave Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina.
[Pinto, Sebastian; Balenzuela, Pablo] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Ave Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina.
[Semeshenko, Viktoriya] Univ Buenos Aires, Fac Ciencias Econ, Buenos Aires, DF, Argentina.
[Semeshenko, Viktoriya] Univ Buenos Aires, Inst Interdisciplinario Econ Polit Buenos Aires, CONICET, Ave Cordoba 2122,C1120 AAQ, Buenos Aires, DF, Argentina.
C3 Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET);
University of Buenos Aires; Consejo Nacional de Investigaciones
Cientificas y Tecnicas (CONICET); University of Buenos Aires; University
of Buenos Aires; University of Buenos Aires; University of Buenos Aires;
Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET)
RP Albanese, F (corresponding author), Univ Buenos Aires, Inst Ciencias Computac, CONICET, Buenos Aires, DF, Argentina.
EM falbanese@dc.uba.ar
RI Semeshenko, Viktoriya/HTS-8922-2023
OI Semeshenko, Viktoriya/0000-0003-0295-5946; Albanese,
Federico/0000-0001-7140-2910; Balenzuela, Pablo/0000-0002-8581-4892
FU Agencia Nacional de Promocion Cientifica of Argentina [PICT 201-0215]
FX We thank Marcos Trevisan for careful reading of the manuscript and
helpful comments. This work was partially funded by the Agencia Nacional
de Promocion Cientifica of Argentina via grant PICT 201-0215.
CR Albanese F., 2019, ARXIV190910554PHYSIC
Allcott H, 2017, J ECON PERSPECT, V31, P211, DOI 10.1257/jep.31.2.211
[Anonymous], 2016, REALCLEARPOLITICS
[Anonymous], 2005, JMP BASIC UNIVARIATE
Bae Y, 2012, J AM SOC INF SCI TEC, V63, P2521, DOI 10.1002/asi.22768
Besley T, 2002, Q J ECON, V117, P1415, DOI 10.1162/003355302320935061
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Brians CL, 1996, AM J POLIT SCI, V40, P172, DOI 10.2307/2111699
De Vreese CH, 2006, JCMS-J COMMON MARK S, V44, P419, DOI 10.1111/j.1468-5965.2006.00629.x
Efron B, 2003, STAT SCI, V18, P135, DOI 10.1214/ss/1063994968
Efron B., 1993, MONOGRAPHS STAT APPL
Fortunato JA, 2016, J INFORM POLICY, V6, P129, DOI 10.5325/jinfopoli.6.2016.0129
Gerber AS, 2009, AM ECON J-APPL ECON, V1, P35, DOI 10.1257/app.1.2.35
Gerlach M, 2019, NAT MACH INTELL, V1, P606, DOI 10.1038/s42256-019-0112-6
González-Avella JC, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.046119
Gorodnichenko Yuriy, 2018, Technical Report
GRANGER CWJ, 1969, ECONOMETRICA, V37, P424, DOI 10.2307/1912791
Haribhakta Y., 2017, INT J SCI RES COMPUT, V2, P52
Hopkins DJ, 2017, RES POLITICS, V4, DOI 10.1177/2053168017737900
King G, 2017, SCIENCE, V358, P776, DOI 10.1126/science.aao1100
Koltsova O, 2013, POLICY INTERNET, V5, P207, DOI 10.1002/1944-2866.POI331
Koreni D., 2015, Proceedings of the 2015 Workshop on Topic Models: PostProcessing and Applications, P61
Lee DD, 1999, NATURE, V401, P788, DOI 10.1038/44565
Lischka JA, 2015, J MASS COMMUN Q, V92, P374, DOI 10.1177/1077699015574098
Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010
McCombs M. E., 2005, JOURNALISM STUD, V6, P543, DOI [10.1080/14616700500250438, DOI 10.1080/14616700500250438, https://doi.org/10.1080/14616700500250438]
MCCOMBS ME, 1972, PUBLIC OPIN QUART, V36, P176, DOI 10.1086/267990
Muhammad A, 2016, KNOWL-BASED SYST, V108, P92, DOI 10.1016/j.knosys.2016.05.032
Oberholzer-Gee F, 2009, AM ECON REV, V99, P2120, DOI 10.1257/aer.99.5.2120
Pinto S, 2019, PHYSICA A, V524, P614, DOI 10.1016/j.physa.2019.04.108
Pinto S, 2016, PHYSICA A, V458, P378, DOI 10.1016/j.physa.2016.04.024
Seabold S., 2010, SciPy, DOI 10.25080/Majora-92bf1922-011
Shibanai Y, 2001, J CONFLICT RESOLUT, V45, P80, DOI 10.1177/0022002701045001004
Shumway R. H., 2016, Springer Texts in Statistics, V4th, DOI [DOI 10.1007/978-3-319-52452-8, 10.1007/978-3-319-52452-8]
Socher R., 2013, J P 2013 C EMP METH, P1631
Soroka SN, 2015, AM J POLIT SCI, V59, P457, DOI 10.1111/ajps.12145
Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049
Xu W., 2003, INT ACM SIGIR C RES, P267, DOI DOI 10.1145/860435.860485
Yasseri T, 2016, EPJ DATA SCI, V5, DOI 10.1140/epjds/s13688-016-0083-3
NR 39
TC 10
Z9 11
U1 3
U2 16
PU IOP Publishing Ltd
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
EI 2632-072X
J9 J PHYS-COMPLEXITY
JI J. Phys.-Complex.
PD SEP
PY 2020
VL 1
IS 2
AR 025005
DI 10.1088/2632-072X/ab8784
PG 12
WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences;
Physics, Mathematical
WE Emerging Sources Citation Index (ESCI)
SC Mathematics; Science & Technology - Other Topics; Physics
GA SQ6MF
UT WOS:000660466800001
OA gold, Green Submitted, Green Published
DA 2024-09-05
ER
PT C
AU Hong, XY
Li, ZX
AF Yun Hong Xu
Xian Li Zuo
BE Yang, BJ
Chen, J
Cai, XQ
Qin, KD
Zhou, C
TI A LDA Model Based Text-Mining Method to Recommend Reviewer for Proposal
of Research Project Selection
SO 2016 13TH INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE
MANAGEMENT
SE International Conference on Service Systems and Service Management
LA English
DT Proceedings Paper
CT 13th International Conference on Service Systems and Service Management
(ICSSSM)
CY JUN 24-26, 2016
CL Kunming Univ Sci & Technol, Sch Management & Econ, Kumming, PEOPLES R
CHINA
HO Kunming Univ Sci & Technol, Sch Management & Econ
DE Reviewer recommendation; Research project proposal; Latent Dirichlet
Allocation Model; Text mining; Expert evaluation model
AB Reviewer recommendation for research projects proposals plays an indispensable role in funding agencies, because the opinions or feedback of reviewers will exert a direct impact on the result of the projects selection. Current methods mainly focus on grouping the proposals by declared disciplines or evaluating the reviewers with their individual profile, however, the two methods ignore the rich information with different types and formats of proposals and experts, such as subjective information (e.g., evaluation of colleague), objective information (e.g., publications' number). Besides, prior studies mostly applied to English documents, which has limitations when dealing with projects proposals in Chinese. In order to effectively solve the research gap that ignored the different information forms and Chinese contexts, this paper proposes firstly extract the topics words in proposal by LDA and expert's profile with text-mining; secondly automatically classify the information of proposal and profile, and integrate the information into several categories according to its different types. Each category represents the different dimensions of information of proposal and expert. Thirdly, we calculate the similarity of information in each category, and sort the similarity to select top 8 experts as candidate reviewers. Finally, we establish the evaluation model for the candidate reviewers to decide several reviewers to review proposal. A recommendation approach is proposed by integrating these categories of information. In future research, we will try to evaluate the proposed approach using real data.
C1 [Yun Hong Xu; Xian Li Zuo] Kunming Univ Sci & Technol, Fac Econ & Management, Kunming, Peoples R China.
C3 Kunming University of Science & Technology
RP Hong, XY (corresponding author), Kunming Univ Sci & Technol, Fac Econ & Management, Kunming, Peoples R China.
EM xuyunhong@gmail.com; 1029035822@qq.com
CR Amiri MP, 2010, EXPERT SYST APPL, V37, P6218, DOI 10.1016/j.eswa.2010.02.103
[Anonymous], 2006, TEXT MINING HDB ADV
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Chang PT, 2012, COMPUT OPER RES, V39, P112, DOI 10.1016/j.cor.2010.10.021
Das GS, 2014, COMPUT IND ENG, V72, P50, DOI 10.1016/j.cie.2014.02.014
Konchady Manu., 2006, Text Mining Application Programming
Ma Jian, 2012, ONTOLOGY BASED TEXT
Preethi T., 2013, IMPLEMENTATION CLUST
Sun YH, 2008, EXPERT SYST APPL, V34, P817, DOI 10.1016/j.eswa.2006.10.021
Wang Yibo, 2015, 48 HAW INT C SYST SC
Watanabe Toyohide, 2013, PROCEDIA COMPUTER SC, V22, P633
Xu YH, 2010, EXPERT SYST APPL, V37, P6948, DOI 10.1016/j.eswa.2010.03.027
NR 12
TC 0
Z9 0
U1 0
U2 5
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2161-1890
BN 978-1-5090-2842-9
J9 I C SERV SYST SERV M
PY 2016
PG 5
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BG6DX
UT WOS:000390104400130
DA 2024-09-05
ER
PT J
AU Lopez-Martinez, RE
Sierra, G
AF Lopez-Martinez, Roberto E.
Sierra, Gerardo
TI Research Trends in the International Literature on Natural Language
Processing, 2000-2019 - A Bibliometric Study
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Bibliometrics; Natural language processing; Computational linguistics
ID EVOLUTION; TECHNOLOGIES; INFORMATICS; NETWORKS; BUSINESS
AB This work presents a review, using bibliometric methods, of the state of research on the whole field of natural language processing (NLP), understanding this as the methods to process human language, including semantic techniques, statistical techniques or a combination of both. Particularly we focus on the trends of research in NLP, since there are not in the literature studies that embrace in an integral way bibliometric studies about natural language processing, its applications and related topics. Our work includes an identification of the main sources where research is published, the most productive and influential countries and research institutions, the main actors involved in research, as well as the main topics that are investigated. We found that research in the field and subfields has increased continuously during the period under study: conference proceedings are the preferred media to communicate results and that biomedical informatics is one relevant field of application of NLP. We conclude with both, a synchronic and a diachronic characterization of research topics carried out internationally on natural language processing and related topics, which showed that several subfields of artificial intelligence are closely related to natural language processing in recent years.
C1 [Lopez-Martinez, Roberto E.] Univ Nacl Autonoma Mexico, Inst Ingn, Mexico City, DF, Mexico.
C3 Universidad Nacional Autonoma de Mexico
RP Lopez-Martinez, RE (corresponding author), Edificio 12 Inst Ingn, Ciudad De Mexico 04510, Mexico.
EM robertol@unam.mx
RI Lopez-Martinez, Roberto Ernesto/A-4547-2009
OI Sierra, Gerardo/0000-0002-6724-1090
CR Alejo-Machado OJ, 2015, SCIENTOMETRICS, V102, P1669, DOI 10.1007/s11192-014-1467-4
Alom MZ, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8030292
[Anonymous], 2002, P 8 ACM SIGKDD INT C
[Anonymous], 2018, WIRELESS COMMUNICATI
Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360
Barakhnin VB, 2018, J PHYS CONF SER, V1117, DOI 10.1088/1742-6596/1117/1/012001
Bhattacharya S, 2019, J SCIENTOMETR RES, V8, pS85, DOI 10.5530/jscires.8.2.26
Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Chen G, 2016, J INFORMETR, V10, P212, DOI 10.1016/j.joi.2016.01.006
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Crane D., 1972, Invisible colleges. Diffusion of knowledge in scientific communities
De Nooy W., 2018, EXPLORATORY SOCIAL N
dos Santos BS, 2019, COMPUT IND ENG, V138, DOI 10.1016/j.cie.2019.106120
Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z
Gupta S, 2019, EXPERT SYST APPL, V121, P49, DOI 10.1016/j.eswa.2018.12.011
Henkel M, 2017, INT J INFORM MANAGE, V37, P1507, DOI 10.1016/j.ijinfomgt.2016.05.008
Io HN, 2017, IN C IND ENG ENG MAN, P215, DOI 10.1109/IEEM.2017.8289883
Jia YX, 2018, COMPUT METH PROG BIO, V166, P19, DOI 10.1016/j.cmpb.2018.08.017
Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1
Keramatfar A, 2019, J INF SCI, V45, P3, DOI 10.1177/0165551518761013
Khasmakhi NN, 2019, ENG APPL ARTIF INTEL, V82, P126, DOI 10.1016/j.engappai.2019.03.020
Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5
Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018
Liao HC, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010166
Makawana PR, 2018, LECT NOTE NETW SYST, V19, P213, DOI 10.1007/978-981-10-5523-2_20
Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002
Mao M., 2018, LNCS, V0943
Mosavi A, 2019, ENERGIES, V12, DOI 10.3390/en12071301
Persson I, 2009, TLS-TIMES LIT SUPPL, P9
Piryani R, 2017, INFORM PROCESS MANAG, V53, P122, DOI 10.1016/j.ipm.2016.07.001
PRICE DJD, 1965, SCIENCE, V149, P510
Randhawa K, 2016, J PROD INNOVAT MANAG, V33, P750, DOI 10.1111/jpim.12312
Saheb T, 2019, HEALTHC INFORM RES, V25, P61
Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16122150
van Eck NJ, 2010, J AM SOC INF SCI TEC, V61, P2405, DOI 10.1002/asi.21421
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang XY, 2019, J CANCER, V10, P2643, DOI 10.7150/jca.32739
Xu ZS, 2019, INT J MACH LEARN CYB, V10, P2375, DOI 10.1007/s13042-018-0875-9
Yeung AWK, 2017, CURR SCI INDIA, V112, P725, DOI 10.18520/cs/v112/i04/725-734
Yu D., 2019, J. Data. Infor. Manag, V1, P3, DOI [10.3390/su10010166, 10.1007/s42488-019-00001-2, DOI 10.1007/S42488-019-00001-2]
Yu DJ, INT J MACHINE LEARNI, DOI 10.1007/s13042-019-01028-y
Zimbra D, 2018, ACM TRANS MANAG INF, V9, DOI 10.1145/3185045
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 45
TC 7
Z9 7
U1 4
U2 31
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD SEP-DEC
PY 2020
VL 9
IS 3
BP 310
EP 318
DI 10.5530/jscires.9.3.38
PG 9
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA PP1WG
UT WOS:000605658100008
OA hybrid
DA 2024-09-05
ER
PT C
AU Wen, J
AF Wen, Ji
BE MizeraPietraszko, J
Pichappan, P
TI Research on Effect Evaluation of Physical Education Teaching Based on
Artificial Intelligence Expert Decision Making System
SO LECTURE NOTES IN REAL-TIME INTELLIGENT SYSTEMS (RTIS 2016)
SE Advances in Intelligent Systems and Computing
LA English
DT Proceedings Paper
CT 1st Beijing International Conference on Real-Time Intelligent Systems
(RTIS)
CY SEP 01-03, 2016
CL Beijing, PEOPLES R CHINA
DE Artificial intelligence; Expert system; Physical education
AB Teaching Result Evaluation in physical education plays an extremely important role in the link of the teaching of Physical Education. The development is accompanied with the development of evaluation and evaluation of education. The principle, data, mathematical model and human computer interaction model were used in the evaluation of Physical Education teaching according to artificial intelligence expert decision system, and the index system of evaluation of physical education teaching work was constructed, based on this, the sports evaluation and monitoring system with functions of diagnostic evaluation, data statistics and assistant decision making was studied in this paper, then the math model was built by calling a variety of sports teaching information resources and a large number of analytical tools, and the simulation process of decision making and the environment of analysis and execution were provided. The results show that the evaluation results of physical education teaching effect based on artificial intelligence expert decision-making system can provide theoretical basis for decision-making and evaluation of relevant competent departments, which plays a positive role in promoting the reform of physical education and improving the quality of physical education.
C1 [Wen, Ji] Hohai Univ, Dept Phys Educ, Nanjing, Jiangsu, Peoples R China.
C3 Hohai University
RP Wen, J (corresponding author), Hohai Univ, Dept Phys Educ, Nanjing, Jiangsu, Peoples R China.
EM JIW2541JW@163.com
CR Alder H., 2014, INT J RHEUMATOL, V2014, P672
Bravo C, 2014, SPE J, V19, P547, DOI 10.2118/150314-PA
Páez-Logreira HD, 2015, REV FAC ING-UPTC, V24, P109, DOI 10.19053/01211129.3555
Ericsson K. A., 2013, THINKING PROBLEM SOL, V2, P37
Ghadirli H M, 2013, ARXIV PREPRINT ARXIV, V1304, P4619
Crespo RG, 2013, EXPERT SYST APPL, V40, P7381, DOI 10.1016/j.eswa.2013.06.054
Koedinger KR, 2013, AI MAG, V34, P27, DOI 10.1609/aimag.v34i3.2484
Luxton DD, 2014, PROF PSYCHOL-RES PR, V45, P332, DOI 10.1037/a0034559
Mellit A, 2014, ENERGY, V70, P1, DOI 10.1016/j.energy.2014.03.102
Piltan Farzin, 2013, International Journal of Information Engineering and Electronic Business, V5, P44, DOI 10.5815/ijieeb.2013.02.07
Piltan Farzin, 2013, International Journal of Intelligent Systems and Applications, V5, P83, DOI 10.5815/ijisa.2013.08.10
Piltan Farzin, 2013, International Journal of Intelligent Systems and Applications, V5, P1, DOI 10.5815/ijisa.2013.05.01
Raza MQ, 2015, RENEW SUST ENERG REV, V50, P1352, DOI 10.1016/j.rser.2015.04.065
Shiavi R., 2000, COMP INSTRUCTIONAL M, V1, P14
Wang D, 2013, J CONVERG INF TECHNO, V8, P716
NR 15
TC 4
Z9 4
U1 4
U2 32
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2194-5357
EI 2194-5365
BN 978-3-319-60744-3; 978-3-319-60743-6
J9 ADV INTELL SYST
PY 2018
VL 613
BP 289
EP 298
DI 10.1007/978-3-319-60744-3_31
PG 10
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Neurosciences
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Neurosciences & Neurology
GA BL5XT
UT WOS:000452919900031
DA 2024-09-05
ER
PT C
AU Chen, XL
Zou, D
Cheng, G
Xie, HR
AF Chen, Xieling
Zou, Di
Cheng, Gary
Xie, Haoran
BE Chang, M
Chen, NS
Sampson, DG
Tlili, A
TI Artificial intelligence-assisted personalized language learning:
systematic review and co-citation analysis
SO IEEE 21ST INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES
(ICALT 2021)
SE IEEE International Conference on Advanced Learning Technologies
LA English
DT Proceedings Paper
CT 21st IEEE International Conference on Advanced Learning Technologies
(ICALT)
CY JUL 12-15, 2021
CL ELECTR NETWORK
DE artificial intelligence; personalized language learning; systematic
review; co-citation network analysis
ID TECHNOLOGY
AB Artificial intelligence (AI) for personalized learning has attracted increasing attention in various educational contexts and domains, including language learning. This study systematically reviewed academic studies on AI-assisted personalized language learning (PLL) from the perspectives of article trends, top journals, countries/regions and institutions, AI technology types, learning outcomes and supports, participants, scientific collaborations, and co-citation relations. Results indicated Taiwanese institutions' predominance in the field and the prevalent use of intelligent tutoring systems, natural language processing, and artificial neural network in facilitating personalized diagnosis and learning path and material recommendations in language learning. Furthermore, students' improved language outcomes and positive perception, satisfaction, or motivation towards language learning and AI technologies were commonly reported. The co-authorship analysis results indicated the close inter-regional collaborations, while the cross-regional collaborations are expected to be enhanced. The co-citation network analysis results highlighted the significance of fuzzy systems and item response theory. Additionally, learner profiling mining and learning resource adaptation were important directions to realize mobile- and web-based PLL.
C1 [Chen, Xieling; Cheng, Gary] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Education University of Hong
Kong (EdUHK); Lingnan University
RP Chen, XL (corresponding author), Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; chengks@eduhk.hk;
hrxie2@gmail.com
RI Xie, Haoran/AFS-3515-2022
OI Xie, Haoran/0000-0003-0965-3617; ZOU, Di/0000-0001-8435-9739; PV,
THAYYIB/0000-0001-8929-0398
CR Bastian M., 2009, Association for the Advancement of Artificial Intelligence, DOI 10.13140/2.1.1341.1520
Chang C.-Y., COMPUT EDUC
Chen CM, 2006, IEEE SYS MAN CYBERN, P4898, DOI 10.1109/ICSMC.2006.385081
Chen CM, 2007, EXPERT SYST APPL, V33, P6, DOI 10.1016/j.eswa.2006.04.025
Chen CM, 2006, EXPERT SYST APPL, V30, P378, DOI 10.1016/j.eswa.2005.07.029
Chen XL, 2021, EDUC TECHNOL SOC, V24, P205
Chih-Ming C., 2011, EDUC TECHNOL SOC, P153
Demenko G, 2010, ARCH ACOUST, V35, P309, DOI 10.2478/v10168-010-0027-z
Gaheen MM, 2021, EDUC INF TECHNOL, V26, P1165, DOI 10.1007/s10639-020-10300-6
Hsu CK, 2010, COMPUT EDUC, V55, P76, DOI 10.1016/j.compedu.2009.12.004
Hsu MH, 2008, EXPERT SYST APPL, V34, P683, DOI 10.1016/j.eswa.2006.10.004
Hsu YC, 2012, EDUC TECHNOL SOC, V15, P354
Ismail HM, 2016, IEEE INT CONF INNOV, P197
Kim WH, 2020, IEEE ACCESS, V8, P27927, DOI 10.1109/ACCESS.2020.2972167
Kong SC, 2014, J COMPUT EDUC, V1, P187, DOI 10.1007/s40692-014-0011-0
Lee CS, 2005, IEEE T SYST MAN CY B, V35, P859, DOI 10.1109/TSMCB.2005.845032
Lian AP, 2017, GEMA ONLINE J LANG S, V17, P1, DOI 10.17576/gema-2017-1704-01
Lin CT, 1996, IEEE T SYST MAN CY B, V26, P744, DOI 10.1109/3477.537316
Liu Y, 2018, NEUROQUANTOLOGY, V16, P881, DOI 10.14704/nq.2018.16.5.1416
Lo HY, 2014, COMPUT EDUC, V78, P250, DOI 10.1016/j.compedu.2014.06.007
Shang J., 2006, Learning by effective utilization of technologies: Facilitating intercultural, P503
Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001
Troussas C, 2019, EXPERT SYST APPL, V127, P85, DOI 10.1016/j.eswa.2019.03.003
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang YH, 2011, EXPERT SYST APPL, V38, P6480, DOI 10.1016/j.eswa.2010.11.098
Wible D, 2011, J COMPUT ASSIST LEAR, V27, P530, DOI 10.1111/j.1365-2729.2011.00413.x
NR 26
TC 9
Z9 9
U1 6
U2 69
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
SN 2161-3761
BN 978-1-6654-4106-3
J9 IEEE INT CONF ADV LE
PY 2021
BP 241
EP 245
DI 10.1109/ICALT52272.2021.00079
PG 5
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods;
Education & Educational Research
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BS4HI
UT WOS:000719352000072
DA 2024-09-05
ER
PT J
AU Corrales-Garay, D
Rodríguez-Sánchez, JL
Montero-Navarro, A
AF Corrales-Garay, Diego
Rodriguez-Sanchez, Jose-Luis
Montero-Navarro, Antonio
TI Co-Creating Value With Artificial Intelligence: A Bibliometric Approach
to the Use of AI in Open Innovation Ecosystems
SO IEEE ACCESS
LA English
DT Article
DE AI; artificial intelligence; bibliometric analysis; innovation
ecosystems; OI; open innovation; value co-creation
ID INDUSTRY 4.0; ABSORPTIVE-CAPACITY
AB Open innovation, which blurs the boundaries of organizations using inflows and outflows of knowledge to boost their innovation processes, has transformed the innovation paradigm, evolving from higher degrees of protectionism to cooperative relationships. Nevertheless, frequently the management of the huge amount of information and data generated in an open innovation ecosystem requires the use of information and communication technologies. In this context, artificial intelligence can be a major help to profit from all the opportunities derived from open innovation. Considering the growing body of academic literature dealing with the use of artificial intelligence tools in the context of open innovation environments, the objective of this article is revealing the main references, the academic trends and the hottest topics dealing with this subject, disentangling the knowledge structure of the research through a bibliometric analysis carried out over 63 papers selected from Web of Science database, using both co-word analysis and bibliographic coupling. The recent burst in the academic production anticipates a potentially massive interest in this topic, which is studied by the literature at three different levels (operational, managerial, and social). This study reveals the existence of relevant research opportunities, specially related with the management of the potential conflicts that may stem from the fuzzy ownership of the data generated by an artificial intelligence, and the roles of the different agents in such context.
C1 [Corrales-Garay, Diego; Rodriguez-Sanchez, Jose-Luis; Montero-Navarro, Antonio] Univ Rey Juan Carlos, Fac Ciencias Econ & Empresa, Dept Business Econ Adm Dir & Org, Appl Econ & Fundamentals Econ Anal 2, Madrid 28032, Spain.
C3 Universidad Rey Juan Carlos
RP Corrales-Garay, D (corresponding author), Univ Rey Juan Carlos, Fac Ciencias Econ & Empresa, Dept Business Econ Adm Dir & Org, Appl Econ & Fundamentals Econ Anal 2, Madrid 28032, Spain.
EM diego.corrales@urjc.es
RI castro wanderley, lorenna/HGA-7990-2022; Rodriguez-Sanchez,
Jose-Luis/N-6040-2018; Corrales-Garay, Diego/N-6024-2018
OI Rodriguez-Sanchez, Jose-Luis/0000-0001-7913-8747; Corrales-Garay,
Diego/0000-0003-2362-6367; Montero-Navarro, Antonio/0000-0001-8096-5352
FU OPENINNOVA High Performance Research Group (Grupo de investigacin de
alto rendimiento en Innovacin abierta de la Universidad Rey Juan Carlos)
FX No Statement Available
CR Abdurrahman A., 2022, J. Inf. Syst. Eng. Bus. Intell., V8, P100, DOI [10.20473/jisebi.8.2.100-108, DOI 10.20473/JISEBI.8.2.100-108.[53]H]
Abouzeedan A, 2012, WORLD J SCI TECHNOL, V9, P6, DOI 10.1108/20425941211223598
Alam MA, 2022, J PROD INNOVAT MANAG, V39, P177, DOI 10.1111/jpim.12615
Allal-Chérif O, 2023, J BUS RES, V154, DOI 10.1016/j.jbusres.2022.113379
Alvarez-Aros Erick Leobardo, 2022, Rev. adm. empres., V62, pe2020, DOI 10.1590/s0034-759020220301
Aquilani B, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12218943
Arias-P rez J., 2023, BusProcess Manage. J., V29, P1791, DOI [10.1108/bpmj-10-2022-0484, DOI 10.1108/BPMJ-10-2022-0484]
Arias-Pérez J, 2023, IND MARKET MANAG, V111, P30, DOI 10.1016/j.indmarman.2023.03.005
Arias-Pérez J, 2022, J STRATEGY MANAG, V15, P1, DOI 10.1108/JSMA-09-2020-0262
Baban CF, 2021, SCI TECHNOL SOC, V26, P482, DOI 10.1177/09717218211020475
Bahoo S, 2023, TECHNOL FORECAST SOC, V188, DOI 10.1016/j.techfore.2022.122264
Bautista-Bernal I, 2021, SAFETY SCI, V137, DOI 10.1016/j.ssci.2021.105167
Bogers M, 2018, CALIF MANAGE REV, V60, P5, DOI 10.1177/0008125617745086
Broekhuizen T, 2023, J BUS RES, V167, DOI 10.1016/j.jbusres.2023.114196
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Cammarano A, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3240213
Cantú-Ortiz FJ, 2020, INT J INTERACT DES M, V14, P1195, DOI 10.1007/s12008-020-00702-8
Capozzi F, 2021, NUTRIENTS, V13, DOI 10.3390/nu13113948
Cetindamar D, 2020, THUNDERBIRD INT BUS, V62, P457, DOI 10.1002/tie.22158
Chesbrough H., 2006, Open Innovation:Researching a New Paradigm, P15
Chesbrough H. W., 2003, Open Innovation: The New Imperative for Creating and Profiting from Technology
Chung H, 2023, MANAG DECIS ECON, V44, P4404, DOI 10.1002/mde.3958
Cirjevskis A, 2022, J RISK FINANC MANAG, V15, DOI 10.3390/jrfm15090411
Cirule I, 2022, EUR INTEGR STUD, P111, DOI 10.5755/j01.eis.0.16.31635
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Coco N, 2024, R&D MANAGE, V54, P118, DOI 10.1111/radm.12645
COHEN WM, 1990, ADMIN SCI QUART, V35, P128, DOI 10.2307/2393553
Corrales-Garay D, 2020, IEEE ACCESS, V8, P34696, DOI 10.1109/ACCESS.2020.2974378
Corrales-Garay D, 2019, GOV INFORM Q, V36, P77, DOI 10.1016/j.giq.2018.10.008
Culot G, 2020, INT J PROD ECON, V226, DOI 10.1016/j.ijpe.2020.107617
Dabic M, 2023, TECHNOL FORECAST SOC, V194, DOI 10.1016/j.techfore.2023.122720
Dabrowska A., R&D Manage
Donthu N, 2021, INT J RES MARK, V38, P232, DOI 10.1016/j.ijresmar.2020.10.006
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Fernandes S, 2019, INT J INNOV LEARN, V26, P82
Ferràs X, 2020, J CASES INF TECHNOL, V22, P1, DOI 10.4018/JCIT.2020010101
Ferrás-Hernández X, 2020, INT J BUS ENVIRON, V11, P404, DOI 10.1504/IJBE.2020.111403
Frias L.V, 2022, ESICMarket, V53, pe281, DOI [10.7200/esicm.53.281, DOI 10.7200/ESICM.53.281]
Füller J, 2021, INT J PROJ MANAG, V39, P183, DOI 10.1016/j.ijproman.2021.01.005
Guggenberger T, 2021, INT J INNOV TECHNOL, V18, DOI 10.1142/S0219877021400022
Hall CM, 2011, TOURISM MANAGE, V32, P16, DOI 10.1016/j.tourman.2010.07.001
Harif MAAM, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e10441
Harison E, 2010, RES POLICY, V39, P351, DOI 10.1016/j.respol.2010.01.008
Hartmann P, 2020, ACAD MANAG DISCOV, V6, P359, DOI 10.5465/amd.2019.0043
He Q, 1999, LIBR TRENDS, V48, P133
Himanen L, 2019, ADV SCI, V6, DOI 10.1002/advs.201900808
Hofmann E, 2017, COMPUT IND, V89, P23, DOI 10.1016/j.compind.2017.04.002
Hozdic E, 2023, APPL SYST INNOV, V6, DOI 10.3390/asi6020049
Huizingh EKRE, 2011, TECHNOVATION, V31, P2, DOI 10.1016/j.technovation.2010.10.002
Jagatheesaperumal SK, 2022, IEEE INTERNET THINGS, V9, P12861, DOI 10.1109/JIOT.2021.3139827
Jing G., 2023, Kybernetes, early access, DOI [10.1108/k-05-2023-0825.[35]X, DOI 10.1108/K-05-2023-0825.[35]X]
Kamada Y, 2023, J GASTROENTEROL, V58, P79, DOI 10.1007/s00535-022-01932-1
Keathley-Herring H, 2016, SCIENTOMETRICS, V109, P927, DOI 10.1007/s11192-016-2096-x
Kelly BS, 2023, RADIOGRAPHY, V29, pS103, DOI 10.1016/j.radi.2023.03.009
Kim K, 2022, INFORMATION, V13, DOI 10.3390/info13050253
Kumar S, 2022, PROD OPER MANAG, V31, P4488, DOI 10.1111/poms.13859
Kuzior A, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097205
Lee H, 2018, IND MANAGE DATA SYST, V118, P683, DOI 10.1108/IMDS-02-2017-0044
Li T, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151813779
Liu ZG, 2015, SCIENTOMETRICS, V103, P135, DOI 10.1007/s11192-014-1517-y
Luthra S, 2018, PROCESS SAF ENVIRON, V117, P168, DOI 10.1016/j.psep.2018.04.018
Majumdarr S, 2023, MANAGE DECIS, DOI 10.1108/MD-10-2022-1484
MARTYN J, 1964, J DOC, V20, P236, DOI 10.1108/eb026352
Masucci M, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2019.103823
McCarthy J, 2007, WHAT IS ARTIFICIAL INTELLIGENCE?
McKinsey & Company, 2022, What are Industry 4.0,the Fourth Industrial Revolution, and 4IR
Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434
Minati V., IEEE Access, V7
Misra NN, 2022, IEEE INTERNET THINGS, V9, P6305, DOI 10.1109/JIOT.2020.2998584
Nuryakin, 2022, MANAG SYST PROD ENG, V30, P214, DOI 10.2478/mspe-2022-0027
Nylund PA, 2020, REV MANAG SCI, V14, P269, DOI 10.1007/s11846-018-0294-z
Ottonicar M. L. P., 2021, AtoZ: Novas Praticas emInformacao e Conhecimento, V10, P1, DOI [10.5380/atoz.v10i3.81882, DOI 10.5380/ATOZ.V10I3.81882]
Ouechtati S, 2022, INT J INNOV MANAG, V26, DOI 10.1142/S1363919622500013
Oztemel E, 2020, J INTELL MANUF, V31, P127, DOI 10.1007/s10845-018-1433-8
Park SH, 2020, QUAL INNOV PROSPER, V24, P1, DOI [10.12776/QIP.V24I1.1430, 10.15814/jpr.2020.24.1.1]
Pedota M, 2023, RES POLICY, V52, DOI 10.1016/j.respol.2023.104812
Poje T, 2022, J BUS ETHICS, V179, P451, DOI 10.1007/s10551-021-04846-9
Priestley M, 2022, DATA POLICY, V4, DOI 10.1017/dap.2022.8
Rana J, 2023, OPER MANAGE RES, V16, P1641, DOI 10.1007/s12063-022-00335-y
Roblek V, 2021, ORGANIZACIJA, V54, P293, DOI 10.2478/orga-2021-0020
Schmidt A, 2023, RES TECHNOL MANAGE, V66, P36, DOI 10.1080/08956308.2023.2235535
Schwab K., 2017, 4 IND REVOLUTION
Sie RLL, 2011, J UNIVERS COMPUT SCI, V17, P1659
Skulimowski AMJ, 2023, J ASSOC INF SCI TECH, V74, P905, DOI 10.1002/asi.24763
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z
Thomas A, 2020, BUS PROCESS MANAG J, V26, P707, DOI 10.1108/BPMJ-01-2019-0001
Tripathi V, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14127452
Uribe-Echeberria R, 2020, DYNA-BILBAO, V95, P74, DOI 10.6036/9166
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang SY, 2020, CURR OPIN OPHTHALMOL, V31, P318, DOI 10.1097/ICU.0000000000000676
Westerman George, 2014, MIT SLOAN MANAGEMENT
Xue ZB, 2023, J RETAIL CONSUM SERV, V72, DOI 10.1016/j.jretconser.2023.103299
Yang JL, 2022, CALIF MANAGE REV, V64, P24, DOI 10.1177/00081256211041787
Yang XP, 2020, INT J TECHNOL MANAGE, V82, P151
Yigitcanlar T, 2020, ENERGIES, V13, DOI 10.3390/en13061473
Yoon B, 2014, IND MANAGE DATA SYST, V114, P1068, DOI 10.1108/IMDS-03-2014-0086
Yun JJ, 2021, SCI TECHNOL SOC, V26, P183, DOI 10.1177/09717218211006969
Yun JJ, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8080797
Zahra SA, 2002, ACAD MANAGE REV, V27, P185, DOI 10.2307/4134351
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 102
TC 0
Z9 0
U1 15
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2024
VL 12
BP 56860
EP 56871
DI 10.1109/ACCESS.2024.3391054
PG 12
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA OQ8Z6
UT WOS:001208844400001
OA gold
DA 2024-09-05
ER
PT J
AU Rover, A
AF Jose Rover, Aires
TI A bibliometric overview of data protection and privacy in the context
of the advance of artificial intelligence
SO SCIRE-REPRESENTACION Y ORGANIZACION DEL CONOCIMIENTO
LA English
DT Article
DE Bibliographic reviews; Data protection; Artificial intelligence; Privacy
AB A new societal landscape is taking form, marked by a myriad of emerging themes warranting thorough examination. Chief among these discussions is the pivotal role of artificial intelligence (AI), particularly machine learning and its predictive applications. Despite extensive exploration of issues pertaining to personal data protection and privacy across scientific literature, there remains a conspicuous dearth of studies integrating this analysis with the latest AI methodologies. Hence, this study endeavors to undertake a predominantly quantitative mapping of the most influential scientific works addressing these interconnected themes. Our approach, conducted over the span of March and April 2024, employs a bibliometric methodology, prioritizing an inductive analysis framework and adopting the case study methodology to fulfill this objective.
C1 [Jose Rover, Aires] Univ Fed Santa Catarina, Fac Derecho, Florianopolis, SC, Brazil.
C3 Universidade Federal de Santa Catarina (UFSC)
RP Rover, A (corresponding author), Univ Fed Santa Catarina, Fac Derecho, Florianopolis, SC, Brazil.
EM aires.j.r@ufsc.br
CR Assuncao Luis, Lex Machinae.
Beck Ulrich, 2022, Prim@ Facie., V1, P18
Bufrem L., 2005, Ciencia da Informacao, V34, P9, DOI 10.1590/S0100-19652005000200002
Castells M., 1999, SOC REDE
Fonseca E. N., 1986, Bibliometria: teoria e pratica.
Gehlen A., 1980, Man in the Age of Technology
Medeiros Nelma, 2003, Novamente Revista., V4, P247
Minsky M., 1985, SOC MIND
Ribeiro C.J. S., 2014, Informacao Tecnologia, V1, P96
Rover Aires Jose, 1995, Revista sequencia., V30, P65
ROVER Aires Jose., 2001, Informatica no direito: inteligencia artificial
Sarlet Ingo Wolfgang, 2022, Serie Direito, Tecnologia, Inovacao e Protecao de Dados num Mundo em Transformacao
NR 12
TC 0
Z9 0
U1 2
U2 2
PU UNIV ZARAGOZA
PI ZARAGOZA
PA C/PEDRO CERBUNA 12, ZARAGOZA, 50009, SPAIN
SN 1135-3716
EI 2340-7042
J9 SCIRE
JI Scire
PD JAN-JUN
PY 2024
VL 30
IS 1
BP 49
EP 58
PG 10
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA WC9J0
UT WOS:001252784900003
DA 2024-09-05
ER
PT J
AU Shevchuk, R
Martsenyuk, V
AF Shevchuk, Ruslan
Martsenyuk, Vasyl
TI Neural Networks Toward Cybersecurity: Domaine Map Analysis of
State-of-the-Art Challenges
SO IEEE ACCESS
LA English
DT Article
DE Neural networks; Computer security; Market research; Bibliometrics;
Visualization; Knowledge engineering; Databases; Neural network;
cybersecurity; scientometric database; domaine map analysis; CiteSpace
ID DEEP LEARNING APPROACH; CYBER SECURITY; ARTIFICIAL-INTELLIGENCE; ATTACK
DETECTION; IOT; INTERNET; SCIENCE; DATASET; WEB
AB The growing interest in applying neural networks for cybersecurity has prompted a substantial increase in related research. This paper presents a comprehensive bibliometric analysis of research on cybersecurity towards neural networks published in the Web of Science over the past two decades (2003-2023) using bibliometric methods and CiteSpace software. The analysis encompasses yearly publication trends, types of publications, and trends across various dimensions such as publishing sources, organizations, researchers, countries, and keywords. Additionally, timeline and burst detection analyses were conducted to identify significant topic trends and citations in the last two decades. It also outlines the latest trends, under-explored topics, and open challenges.
C1 [Shevchuk, Ruslan; Martsenyuk, Vasyl] Univ Bielsko Biala, Dept Comp Sci & Automat, PL-43309 Biala, Poland.
[Shevchuk, Ruslan] West Ukrainian Natl Univ, Dept Comp Sci, UA-46009 Ternopol, Ukraine.
C3 University of Bielsko-Biala; Ministry of Education & Science of Ukraine;
West Ukrainian National University
RP Shevchuk, R (corresponding author), Univ Bielsko Biala, Dept Comp Sci & Automat, PL-43309 Biala, Poland.; Shevchuk, R (corresponding author), West Ukrainian Natl Univ, Dept Comp Sci, UA-46009 Ternopol, Ukraine.
EM rshevchuk@ubb.edu.pl
RI Shevchuk, Ruslan/G-5668-2017
OI Shevchuk, Ruslan/0000-0001-5381-9528
FU European Union through the ERASMUS+ Project: The Future is in Applied
Artificial Intelligence
FX No Statement Available
CR Abdullahi M, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11020198
Al-Garadi MA, 2020, IEEE COMMUN SURV TUT, V22, P1646, DOI 10.1109/COMST.2020.2988293
AL-Hawawreh M, 2018, J INF SECUR APPL, V41, P1, DOI 10.1016/j.jisa.2018.05.002
Al-Khater WA, 2020, IEEE ACCESS, V8, P137293, DOI 10.1109/ACCESS.2020.3011259
Al-Turaiki I, 2021, BIG DATA-US, V9, P233, DOI 10.1089/big.2020.0263
Alazab M, 2019, ADV SCI TECH SEC APP, P1, DOI 10.1007/978-3-030-13057-2
AlEroud A, 2020, PROCEEDINGS OF THE SIXTH INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS (IWSPA'20), P53, DOI 10.1145/3375708.3380315
Ali S, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11233934
Alkadi O, 2021, IEEE INTERNET THINGS, V8, P9463, DOI 10.1109/JIOT.2020.2996590
Alohali MA, 2022, COGN NEURODYNAMICS, V16, P1045, DOI 10.1007/s11571-022-09780-8
Alom MZ, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8030292
Alotaibi I., 2020, P 3 INT C COMP APPL, P1
Alsaedi A, 2020, IEEE ACCESS, V8, P165130, DOI 10.1109/ACCESS.2020.3022862
[Anonymous], 2024, Citespace 6.2.r7,
[Anonymous], 2019, Int. J. Adv. Res. Comput. Sci., V10, P1
Bailey T., 2014, McKinsey Quarterly, V2, P17
Berman DS, 2019, INFORMATION, V10, DOI 10.3390/info10040122
Biggio B, 2018, PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), P2154, DOI 10.1145/3243734.3264418
Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018
Bozkir AS, 2023, COMPUT SECUR, V124, DOI 10.1016/j.cose.2022.102964
Buczak AL, 2016, IEEE COMMUN SURV TUT, V18, P1153, DOI 10.1109/COMST.2015.2494502
Capuano N, 2022, IEEE ACCESS, V10, P93575, DOI 10.1109/ACCESS.2022.3204171
Carlini N, 2017, P IEEE S SECUR PRIV, P39, DOI 10.1109/SP.2017.49
Chaudhary Harsh, 2020, Proceedings of the 3rd International Conference on Intelligent Sustainable Systems (ICISS 2020), P829, DOI 10.1109/ICISS49785.2020.9316003
Choras M, 2021, NEUROCOMPUTING, V452, P705, DOI 10.1016/j.neucom.2020.07.138
Dasgupta D, 2022, J DEF MODEL SIMUL-AP, V19, P57, DOI 10.1177/1548512920951275
Davis S., 2020, P IEEE INT IOT EL ME, P1
Deora R S., 2021, Journal of communication engineering Systems, V11, P1
DILEK S., 2015, Applications of artificial intelligence techniques to combating cyber crimes: A review
Ding DR, 2018, NEUROCOMPUTING, V275, P1674, DOI 10.1016/j.neucom.2017.10.009
Ding YX, 2016, IEEE IJCNN, P3901, DOI 10.1109/IJCNN.2016.7727705
Diro AA, 2018, FUTURE GENER COMP SY, V82, P761, DOI 10.1016/j.future.2017.08.043
Dixit S., 2021, Comput. Sci. Rev., V39, P16
Drewek-Ossowicka A, 2021, J AMB INTEL HUM COMP, V12, P497, DOI 10.1007/s12652-020-02014-x
Feng F, 2015, J INFORMETR, V9, P118, DOI 10.1016/j.joi.2014.11.009
Ferrag MA, 2020, J INF SECUR APPL, V50, DOI 10.1016/j.jisa.2019.102419
Ford A., 2014, P 27 INT C COMP APPL, P1
Gamage S, 2020, J NETW COMPUT APPL, V169, DOI 10.1016/j.jnca.2020.102767
Garg V., 2021, P 49 RES C COMM INF, P17
Goldstein V. C., Preventing DNN model IP theft via hardware obfuscation
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
Halgas L, 2020, LECT NOTES COMPUT SC, V11897, P219, DOI 10.1007/978-3-030-39303-8_17
Hasan M, 2019, INTERNET THINGS-NETH, V7, DOI 10.1016/j.iot.2019.100059
Hassan MM, 2020, INFORM SCIENCES, V513, P386, DOI 10.1016/j.ins.2019.10.069
HE KM, 2016, PROC CVPR IEEE, P770, DOI DOI 10.1109/CVPR.2016.90
Imtiaz SI, 2021, FUTURE GENER COMP SY, V115, P844, DOI 10.1016/j.future.2020.10.008
Jha S, 2020, COMPUT SECUR, V99, DOI 10.1016/j.cose.2020.102037
Jiang XY, 2023, COMPUT BIOL MED, V167, DOI 10.1016/j.compbiomed.2023.107604
Jinpei Yan, 2018, Security and Communication Networks, V2018, DOI 10.1155/2018/7247095
Kingma D. P., 2014, INT C LEARNING REPRE
Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314
Kolias C, 2017, COMPUTER, V50, P80, DOI 10.1109/MC.2017.201
Koroniotis N, 2019, FUTURE GENER COMP SY, V100, P779, DOI 10.1016/j.future.2019.05.041
Kovalchuk O, 2023, INT J ELECTRON TELEC, V69, P301, DOI 10.24425/ijet.2023.144365
Kovalchuk O, 2023, INFORMATION, V14, DOI 10.3390/info14030161
Lai M., 2024, ACMComput. Surv., V56, P1
Li C., 2016, CiteSpace: Text Mining and Visualization in ScientificLiterature, P149
Li DQ, 2021, IEEE T NETW SCI ENG, V8, P736, DOI 10.1109/TNSE.2021.3051354
Li JH, 2018, FRONT INFORM TECH EL, V19, P1462, DOI 10.1631/FITEE.1800573
Liu WS, 2019, SCIENTOMETRICS, V121, P1815, DOI 10.1007/s11192-019-03238-1
Macas M, 2022, COMPUT NETW, V212, DOI 10.1016/j.comnet.2022.109032
Mandavifar S, 2019, NEUROCOMPUTING, V347, P149, DOI 10.1016/j.neucom.2019.02.056
Mbaziira AV, 2015, PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON COMPUTE AND DATA ANALYSIS (ICCDA 2018), P42, DOI 10.1145/3193077.3193080
Mei Yang, 2021, 2021 2nd International Conference on Artificial Intelligence and Education (ICAIE), P460, DOI 10.1109/ICAIE53562.2021.00102
Meidan Y, 2018, IEEE PERVAS COMPUT, V17, P12, DOI 10.1109/MPRV.2018.03367731
Mirsky Y, 2018, Arxiv, DOI arXiv:1802.09089
Mohammad RM, 2014, NEURAL COMPUT APPL, V25, P443, DOI 10.1007/s00521-013-1490-z
Moustafa N, 2016, INF SECUR J, V25, P18, DOI 10.1080/19393555.2015.1125974
Mukkamala S, 2002, IEEE IJCNN, P1702, DOI 10.1109/IJCNN.2002.1007774
Papernot N, 2016, 1ST IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY, P372, DOI 10.1109/EuroSP.2016.36
Pawlicki M, 2022, NEUROCOMPUTING, V500, P1075, DOI 10.1016/j.neucom.2022.06.002
Podder S., 2021, arXiv
Qiu JY, 2021, ACM COMPUT SURV, V53, DOI 10.1145/3417978
Rahmani M., 2021, J. Netw. Comput. Appl., V187
Rodriguez E, 2021, IEEE COMMUN SURV TUT, V23, P1920, DOI 10.1109/COMST.2021.3086296
Sarker IH., 2021, SN COMPUT SCI, V2, P1, DOI DOI 10.1007/S42979-021-00535-6
Shahapure KR, 2020, PR INT CONF DATA SC, P747, DOI 10.1109/DSAA49011.2020.00096
Sharafaldin I, 2018, ICISSP: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, P108, DOI 10.5220/0006639801080116
Sharif M.H. U., 2022, World J Adv Res Rev, V15, P138, DOI DOI 10.30574/WJARR.2022.15.1.0573
Shaukat K, 2020, IEEE ACCESS, V8, P222310, DOI 10.1109/ACCESS.2020.3041951
Shen ZF, 2023, SCI JUSTICE, V63, P19, DOI 10.1016/j.scijus.2022.10.005
Shone N, 2018, IEEE T EM TOP COMP I, V2, P41, DOI 10.1109/TETCI.2017.2772792
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
Sukhvinder Singh Dari E. A., 2024, Electr. Syst, V19, P78
Sundararaj V, 2019, WIRELESS PERS COMMUN, V104, P173, DOI 10.1007/s11277-018-6014-9
Sundararaj V, 2018, COMPUT SECUR, V77, P277, DOI 10.1016/j.cose.2018.04.009
Sykes D, 2021, NAT LANG ENG, V27, P203, DOI 10.1017/S1351324920000509
Tariq N. A., 2020, Mobile Inf. Syst., P1
Nguyen TD, 2019, INT CON DISTR COMP S, P756, DOI 10.1109/ICDCS.2019.00080
Tobiyama S, 2016, P INT COMP SOFTW APP, P577, DOI 10.1109/COMPSAC.2016.151
Tsimenidis S, 2022, J NETW SYST MANAG, V30, DOI 10.1007/s10922-021-09621-9
Ulsch M., 2014, Cyber Threat!: How to Manage the Growing Risk of CyberAttacks, DOI 10.1002/9781118915028
Vera-Baceta MA, 2019, SCIENTOMETRICS, V121, P1803, DOI 10.1007/s11192-019-03264-z
Vinayakumar R, 2019, IEEE ACCESS, V7, P41525, DOI 10.1109/ACCESS.2019.2895334
Xin Y, 2018, IEEE ACCESS, V6, P35365, DOI 10.1109/ACCESS.2018.2836950
Xu Y. Zhu, 2022, World Neurosurgery, V162, P21
Yi F, 2020, IEEE ACCESS, V8, P63214, DOI 10.1109/ACCESS.2020.2984582
Yin CL, 2017, IEEE ACCESS, V5, P21954, DOI 10.1109/ACCESS.2017.2762418
Yinka-Banjo C, 2020, ARTIF INTELL REV, V53, P1721, DOI 10.1007/s10462-019-09717-4
Yushko Andriy, 2023, 2023 13th International Conference on Advanced Computer Information Technologies (ACIT), P393, DOI 10.1109/ACIT58437.2023.10275630
Zhang-Kennedy L, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3427920
Zheng H, 2007, PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II, P1220
Zheng ZB, 2018, IEEE T IND INFORM, V14, P1606, DOI 10.1109/TII.2017.2785963
NR 104
TC 1
Z9 1
U1 2
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2024
VL 12
BP 81265
EP 81280
DI 10.1109/ACCESS.2024.3411632
PG 16
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA UL2E1
UT WOS:001248140800001
OA gold
DA 2024-09-05
ER
PT J
AU Dai, R
Donohue, L
Drechsler, Q
Jiang, W
AF Dai, Rui
Donohue, Lawrence
Drechsler, Qingyi (Freda)
Jiang, Wei
TI Dissemination, Publication, and Impact of Finance Research: When Novelty
Meets Conventionality*
SO REVIEW OF FINANCE
LA English
DT Article
DE Finance research; Impact; Publication; Innovation; Machine learning;
Textual analysis
ID CAREER CONCERNS; PRODUCTIVITY; CITATIONS; NETWORKS; JOURNALS; ANALYSTS
AB Using numeric and textual data extracted from over 50,000 finance articles in Social Science Research Network (SSRN) during 2001-19, we examine the relationship between measured qualities and a paper's readership, eventual outlet, and impact. Conventionality (semantic similarity with existent research) helps boost readership and publication prospects. However, novelty in the forms of emerging topics and databases are associated with better publishing outcomes. Studies that do not easily map into established finance subfields or that introduce nonfinance elements face a higher hurdle. Finally, papers whose research questions span multiple fields are a hard sell, but those building on prior knowledge from multiple fields are valued.
C1 [Dai, Rui; Donohue, Lawrence; Drechsler, Qingyi (Freda)] Univ Penn, Wharton Res Data Serv WRDS, Philadelphia, PA 19104 USA.
[Jiang, Wei] Columbia Business Sch, New York, NY USA.
C3 University of Pennsylvania; Columbia University
RP Dai, R (corresponding author), Univ Penn, Wharton Res Data Serv WRDS, Philadelphia, PA 19104 USA.
RI Jiang, Wei/KCX-8643-2024
OI Jiang, Wei/0000-0003-3256-4938; Dai, Rui/0000-0002-0690-1980
CR ALEXANDER JC, 1994, J FINANC, V49, P697, DOI 10.1111/j.1540-6261.1994.tb05158.x
Arnold T, 2003, J BUS, V76, P343, DOI 10.1086/367753
Bajo E, 2016, J FINANC ECON, V122, P376, DOI 10.1016/j.jfineco.2015.12.001
Balsmeier B, 2017, J FINANC ECON, V123, P536, DOI 10.1016/j.jfineco.2016.12.005
Bena J, 2014, J FINANC, V69, P1923, DOI 10.1111/jofi.12059
Berninger M., 2021, COMMERCIAL DATA FINA
Bernstein S, 2015, J FINANC, V70, P1364, DOI 10.1111/jofi.12275
BLACK F, 1973, J POLIT ECON, V81, P637, DOI 10.1086/260062
BOROKHOVICH KA, 1995, J FINANC, V50, P1691, DOI 10.2307/2329331
Brogaard J., 2020, CAUSAL EFFECT FAME C
Brogaard J, 2014, J FINANC ECON, V111, P251, DOI 10.1016/j.jfineco.2013.10.006
Card D, 2020, Q J ECON, V135, P269, DOI 10.1093/qje/qjz035
Card D, 2013, J ECON LIT, V51, P144, DOI 10.1257/jel.51.1.144
Cer D, 2018, ARXIV PREPRINT ARXIV, DOI DOI 10.48550/ARXIV.1803.11175
Chen CR, 2007, J CORP FINANC, V13, P1008, DOI 10.1016/j.jcorpfin.2007.04.011
Chevalier J, 1999, Q J ECON, V114, P389, DOI 10.1162/003355399556034
Chung KH, 2001, FINANC MANAGE, V30, P99, DOI 10.2307/3666378
Cohen L, 2013, REV FINANC STUD, V26, P635, DOI 10.1093/rfs/hhs183
Currie RR, 2020, J BANK FINANC, V111, DOI 10.1016/j.jbankfin.2019.105717
Ductor L, 2014, REV ECON STAT, V96, P936, DOI 10.1162/REST_a_00430
Dyer T, 2017, J ACCOUNT ECON, V64, P221, DOI 10.1016/j.jacceco.2017.07.002
Ellison G, 2002, J POLIT ECON, V110, P994, DOI 10.1086/341871
Ferreira D, 2014, REV FINANC STUD, V27, P256, DOI 10.1093/rfs/hhs070
Goldstein I, 2019, REV FINANC STUD, V32, P1647, DOI 10.1093/rfs/hhz025
Hall BH., 2001, NBER WORKING PAPER W, DOI [10.3386/w8498, DOI 10.3386/W8498]
Hamermesh DS, 2018, J ECON LIT, V56, P115, DOI 10.1257/jel.20161326
Hanley KW, 2019, REV FINANC STUD, V32, P4543, DOI 10.1093/rfs/hhz023
Hirshleifer D, 2018, REV FINANC STUD, V31, P2553, DOI 10.1093/rfs/hhx101
Hirshleifer D, 2015, REV FINANC STUD, V28, P637, DOI 10.1093/rfs/hhu093
Hoberg G, 2016, J POLIT ECON, V124, P1423, DOI 10.1086/688176
HOLMSTROM B, 1989, J ECON BEHAV ORGAN, V12, P305, DOI 10.1016/0167-2681(89)90025-5
Hong H, 2000, RAND J ECON, V31, P121, DOI 10.2307/2601032
Hong H, 2003, J FINANC, V58, P313, DOI 10.1111/1540-6261.00526
Hong H, 2020, REV FINANC STUD, V33, P1011, DOI 10.1093/rfs/hhz146
Hope OK, 2016, REV ACCOUNT STUD, V21, P1005, DOI 10.1007/s11142-016-9371-1
Kennedy G., 1988, ETC: A Review of General Semantics, V45, P164
Kerr WR, 2015, ANNU REV FINANC ECON, V7, P445, DOI 10.1146/annurev-financial-111914-041825
Kim EH, 2009, J FINANC ECON, V93, P353, DOI 10.1016/j.jfineco.2008.09.007
Kogan L, 2017, Q J ECON, V132, P665, DOI 10.1093/qje/qjw040
Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784
Lerner J., 2017, The use and misuse of patent data: Issues for corporate finance and beyond, Technical report
Manso G, 2011, J FINANC, V66, P1823, DOI 10.1111/j.1540-6261.2011.01688.x
Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Schaefer SM, 1998, SCAND J ECON, V100, P425, DOI 10.1111/1467-9442.00111
Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009
Shepherd GB, 1995, REJECTED LEADING EC
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Spiegel M, 2012, REV FINANC STUD, V25, P1331, DOI 10.1093/rfs/hhs052
Stephan P, 2017, NATURE, V544, P411, DOI 10.1038/544411a
Swanson EP, 2004, CONTEMP ACCOUNT RES, V21, P223, DOI 10.1506/RCKM-13FM-GK0E-3W50
TRAJTENBERG M, 1997, Econ Innovat New Technol, V5, P19, DOI 10.1080/10438599700000006
Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474
Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006
Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045
Welch I, 2014, REV FINANC STUD, V27, P2773, DOI 10.1093/rfs/hhu029
West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790
Zingales L, 2015, J FINANC, V70, P1327, DOI 10.1111/jofi.12295
NR 58
TC 3
Z9 3
U1 23
U2 65
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1572-3097
EI 1573-692X
J9 REV FINANC
JI Rev. Financ.
PD JAN 6
PY 2023
VL 27
IS 1
BP 79
EP 141
DI 10.1093/rof/rfac018
EA MAR 2022
PG 63
WC Business, Finance; Economics
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA 7O9OO
UT WOS:000786168700001
OA hybrid
DA 2024-09-05
ER
PT C
AU Wan, YC
AF Wan Yucheng
BE Zhu, KL
Zhang, H
TI The Evaluation Method for Science Research Project Based on Logistic
Regression Analysis Model
SO COMPREHENSIVE EVALUATION OF ECONOMY AND SOCIETY WITH STATISTICAL SCIENCE
LA English
DT Proceedings Paper
CT 2nd Conference of the
International-Institute-of-Applied-Statistics-Studies
CY JUL 24-29, 2009
CL Qingdao, PEOPLES R CHINA
DE Forecast; Logistic Regression; Research Project Supported by Science
Foundation; Science Research Management
AB In order to improve the accurateness of science research project, a comprehensive evaluation model for evaluating the applying of science research project is presented by applying the logistic regression analysis model. To solve the parameter estimation problem by taking maximum likelihood method, the logistic module in SPSS package is used. Compared with general methods, it is very easy to calculate and realize on computer using logistic regression models. By using this method, science foundation can get more theoretical guidance in evaluating the applying of science research project. An example of practical application is given to show the high correct-rate of forecast backward, the effectiveness of this model and the rationality of the evaluating results.
C1 [Wan Yucheng] Xuzhou AF Coll, Dept Air Mat Management, Xuzhou 221002, Peoples R China.
EM wanyucheng@126.com
CR ALBERT A, 1984, BIOMETRIKA, V71, P1
[Anonymous], SPSS REGR MOD 10 0
[Anonymous], SPSS ADV MOD 10 0
[Anonymous], 2001, Applied logistic regression analysis
Demaris A., 1992, LOGIT MODELING
Eliason SR, 1993, Maximum likelihood estimation: Logic and practice
FEINBERG S, 1985, ANAL CROSSCLASSFIED
[高歌 Gao Ge], 2003, [同济大学学报. 自然科学版, Journal of Tongji University], V31, P1237
Hou X.M., 1995, J NORTHEAST FOR UNIV, V23, P102, DOI [10.13759/j.cnki.dlxb.1995.01.016., DOI 10.13759/J.CNKI.DLXB.1995.01.016]
Li Pinfang, 2006, Journal of Tongji University (Natural Science), V34, P701
Liao T.F., 1994, INTERPRETING PROBABI
Liu J, 2001, PROG NAT SCI-MATER, V11, P40
Liu Kaidi, 2000, SYSTEMS ENG THEORY P, V20, P110
McCullagh P., 1989, Monographs on Statistics and Applied Probability, V2
Pan B., 2002, Strait J Prev Med, V8, P1, DOI [10.3969/j.issn.1007-2705.2002.06.001, DOI 10.3969/J.ISSN.1007-2705.2002.06.001]
PANG SL, 2006, MATH PRACTICE THEORY, V36, P129
[孙传恒 Sun Chuanheng], 2004, [昆虫知识, Entomological Knowledge], V41, P599
WAN YC, 2007, P P INT C IND ENG SY
Wang J., 2001, Logistic Regression Model-Methodology and Application
[王冀宁 Wang Jining], 2003, [系统工程理论与实践, Systems Engineering-Theory & Practice], V23, P22
XIAO JH, 2001, SCI RES MANAGEMENT, V22, P8
ZHOU RL, 2006, J SHANGHAI JIAOTONG, V40
ZHU X, 2004, J BEIJING I TECHNOLO, V6, P89
NR 23
TC 0
Z9 0
U1 0
U2 2
PU AUSSINO ACAD PUBL HOUSE
PI MARRICKVILLE
PA PO BOX 893, MARRICKVILLE, NSW 2204 00000, AUSTRALIA
BN 978-0-9806057-7-8
PY 2009
BP 471
EP 476
PG 6
WC Agricultural Economics & Policy; Economics; Education & Educational
Research; Environmental Sciences; Environmental Studies; Social
Sciences, Mathematical Methods; Statistics & Probability
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Agriculture; Business & Economics; Education & Educational Research;
Environmental Sciences & Ecology; Mathematical Methods In Social
Sciences; Mathematics
GA BOE48
UT WOS:000276383800082
DA 2024-09-05
ER
PT J
AU Li, KC
Wong, BTM
AF Li, Kam Cheong
Wong, Billy Tak-Ming
TI Artificial intelligence in personalised learning: a bibliometric
analysis
SO INTERACTIVE TECHNOLOGY AND SMART EDUCATION
LA English
DT Article; Early Access
DE Personalised learning; Personalised education; Personalisation;
Artificial intelligence; AI; Bibliometric analysis
ID EMERGING TRENDS; REGENERATIVE MEDICINE; TUTORING SYSTEMS; EDUCATION;
STYLE
AB PurposeThis paper aims to present a comprehensive overview of the patterns and trends of publications on artificial intelligence (AI) in personalised learning. It addresses the need to investigate the intellectual structure and development of this area in view of the growing amount of related research and practices. Design/methodology/approachA bibliometric analysis was conducted to cover publications on AI in personalised learning published from 2000 to 2022, including a total of 1,005 publications collected from the Web of Science and Scopus. The patterns and trends in terms of sources of publications, intellectual structure and major topics were analysed. FindingsResearch on AI in personalised learning has been widely published in various sources. The intellectual bases of related work were mostly on studies on the application of AI technologies in education and personalised learning. The relevant research covered mainly AI technologies and techniques, as well as the design and development of AI systems to support personalised learning. The emerging topics have addressed areas such as big data, learning analytics and deep learning. Originality/valueThis study depicted the research hotspots of personalisation in learning with the support of AI and illustrated the evolution and emerging trends in the field. The results highlight its latest developments and the need for future work on diverse means to support personalised learning with AI, the pedagogical issues, as well as teachers' roles and teaching strategies.
C1 [Li, Kam Cheong] Hong Kong Metropolitan Univ, Sch Open Learning, Kowloon, Hong Kong, Peoples R China.
[Wong, Billy Tak-Ming] Hong Kong Metropolitan Univ, Inst Res Open & Innovat Educ, Kowloon, Hong Kong, Peoples R China.
C3 Hong Kong Metropolitan University; Hong Kong Metropolitan University
RP Wong, BTM (corresponding author), Hong Kong Metropolitan Univ, Inst Res Open & Innovat Educ, Kowloon, Hong Kong, Peoples R China.
EM kcli@hkmu.edu.hk; tamiwong@hkmu.edu.hk
FU Hong Kong Metropolitan University [2021/011]
FX The work described in this paper was partially supported by a grant from
Hong Kong Metropolitan University (2021/011).
CR Almohammadi K, 2017, J ARTIF INTELL SOFT, V7, P47, DOI 10.1515/jaiscr-2017-0004
Alsobhi AY, 2019, DATA TECHNOL APPL, V53, P189, DOI 10.1108/DTA-10-2018-0092
Aryadoust V, 2021, COMPUT ASSIST LANG L, V34, P898, DOI 10.1080/09588221.2019.1647251
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Baek C., 2020, International Journal of Learning Analytics and Artificial Intelligence for Education (iJAI), V2, P67, DOI [10.3991/ijai.v2i1.14481, DOI 10.3991/IJAI.V2I1.14481]
Baker RS, 2016, INT J ARTIF INTELL E, V26, P600, DOI 10.1007/s40593-016-0105-0
Ben Ammar M, 2010, EXPERT SYST APPL, V37, P3013, DOI 10.1016/j.eswa.2009.09.031
Brusilovsky P., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P3, DOI 10.1007/978-3-540-72079-9_1
Cha HJ, 2014, ASIA PAC EDUC REV, V15, P511, DOI 10.1007/s12564-014-9337-6
Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233
Chen CM, 2008, DATA KNOWL ENG, V67, P234, DOI 10.1016/j.datak.2008.05.004
Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006
Chen CM, 2014, EXPERT OPIN BIOL TH, V14, P1295, DOI 10.1517/14712598.2014.920813
Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507
Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510
Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002
Chen X., 2020, Comput Educ Artif Intell, V1, DOI DOI 10.1016/J.CAEAI.2020.100005
Chen XL, 2022, EDUC TECHNOL SOC, V25, P28
Chen XL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00239-6
Chiu MC, 2024, INTERACT LEARN ENVIR, V32, P824, DOI 10.1080/10494820.2022.2100426
Choi SPM, 2018, EDUC TECHNOL SOC, V21, P273
Chu S T., 2022, Computers and Education: Artificial Intelligence, V3, P100091, DOI [10.1016/j.caeai.2022.100091, DOI 10.1016/J.CAEAI.2022.100091, 10.1016/J.CAEAI.2022.100091]
Costa N, 2019, IEEE INT CONF ADV LE, P57, DOI 10.1109/ICALT.2019.00021
Demetriou A, 2011, EDUC PSYCHOL REV, V23, P601, DOI 10.1007/s10648-011-9178-3
Fiorella L, 2016, EDUC PSYCHOL REV, V28, P717, DOI 10.1007/s10648-015-9348-9
Goksu I, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101491
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Holmes W., 2019, Artificial intelligence in Education: Promises and implications for teaching & learning
Hwang GJ, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060584
Ingkavara T., 2022, Computers and Education: Artificial Intelligence, V3, P100086, DOI DOI 10.1016/J.CAEAI.2022.100086
Jia K, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.795039
Kabudi T., 2021, P PACIFIC ASIA C INF
Klasnja-Milicevic A, 2011, COMPUT EDUC, V56, P885, DOI 10.1016/j.compedu.2010.11.001
Li H., 2019, J DISTANCE ED, V2019, P63
Li J., 2022, LECT NOTES DATA ENG, V98, P798
Li J., 2022, LECT NOTES DATA ENG, V98, P803
Li J., 2015, CITESPACE MANUAL CHI
Li KC, 2023, J COMPUT HIGH EDUC, V35, P186, DOI 10.1007/s12528-022-09341-2
Li KC, 2022, INTERACT TECHNOL SMA, V19, P3, DOI 10.1108/ITSE-05-2021-0083
Li KC, 2021, INTERACT LEARN ENVIR, V29, P182, DOI 10.1080/10494820.2020.1811735
Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348
Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365
Lu Y, 2021, AAAI CONF ARTIF INTE, V35, P16087
Luckin R., 2016, INTELLIGENCE UNLEASH
Magomadov V. S., 2020, Journal of Physics: Conference Series, V1691, DOI 10.1088/1742-6596/1691/1/012169
Mehigan T., 2019, 12 ANN INT C ED RES, DOI [10.21125/iceri.2019.0509, DOI 10.21125/ICERI.2019.0509]
Mehigan T., 2019, P 11 INT C ED NEW LE, DOI [10.21125/edulearn.2019.1380, DOI 10.21125/EDULEARN.2019.1380]
Miaomiao Zhang, 2020, International Journal of Information and Education Technology, V10, P394, DOI 10.18178/ijiet.2020.10.5.1396
Moreno-Guerrero AJ, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12080124
Mousavinasab E, 2021, INTERACT LEARN ENVIR, V29, P142, DOI 10.1080/10494820.2018.1558257
Murtaza M, 2022, IEEE ACCESS, V10, P81323, DOI 10.1109/ACCESS.2022.3193938
Niazi MA, 2016, COMPLEX ADAPT SYST M, V4, DOI 10.1186/s40294-016-0036-5
Ou C, 2019, ONLINE LEARN, V23, P82, DOI 10.24059/olj.v23i2.1449
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Phillips T, 2020, TECHTRENDS, V64, P878, DOI 10.1007/s11528-020-00519-y
Piech C., 2015, NEURIPS, V28, P505
Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8
Popescu E, 2009, LECT NOTES COMPUT SC, V5686, P332, DOI 10.1007/978-3-642-03426-8_40
Rawat KS, 2021, COMPUT APPL ENG EDUC, V29, P1324, DOI 10.1002/cae.22388
Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3
Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707
Salas-Pilco SZ, 2022, INT J EDUC TECHNOL H, V19, DOI 10.1186/s41239-022-00326-w
Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2
SU X, 2019, SAGE OPEN, V9, DOI DOI 10.1177/2F2158244019840119
Tang HL, 2022, J MATH-UK, V2022, DOI 10.1155/2022/4428416
Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001
TAVAKOLI M, 2022, ACM INT C PROCEEDING, P563
VanLehn K, 2011, EDUC PSYCHOL-US, V46, P197, DOI 10.1080/00461520.2011.611369
Wang S, 2023, INTERACT LEARN ENVIR, V31, P793, DOI 10.1080/10494820.2020.1808794
Wong BTM, 2023, J COMPUT HIGH EDUC, V35, P371, DOI 10.1007/s12528-022-09324-3
Woo Jin Ha, 2021, [Journal of Digital Contents Society, 디지털콘텐츠학회논문지], V22, P1783, DOI 10.9728/dcs.2021.22.11.1783
Xia P., 2020, ADV INTELLIGENT SYST, V1282, P194
Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599
Xu SS, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/3502992
Xu WQ, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-022-00377-5
Zhang Y, 2022, INT J SYST ASSUR ENG, V13, P1102, DOI 10.1007/s13198-021-01440-0
Zheng LQ, 2021, EDUC TECHNOL SOC, V24, P174
Zhu WW, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051510
NR 80
TC 6
Z9 6
U1 25
U2 31
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 1741-5659
EI 1758-8510
J9 INTERACT TECHNOL SMA
JI Interact. Technol. Smart Educ.
PD 2023 MAY 26
PY 2023
DI 10.1108/ITSE-01-2023-0007
EA MAY 2023
PG 24
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA H0EQ1
UT WOS:000992785800001
DA 2024-09-05
ER
PT J
AU Gelman, A
AF Gelman, Andrew
TI Criticism as asynchronous collaboration: An example from social science
research
SO STAT
LA English
DT Article
DE causal inference; regression; social sciences; subject areas
ID FAILURE
AB I discuss a published paper in political science that made a claim that aroused skepticism. The reanalysis is an example of how we, as consumers as well as producers of science, can engage with published work. This can be viewed as a sort of collaboration performed implicitly between the authors of a published paper and later researchers who want to understand or use the published work.
C1 [Gelman, Andrew] Columbia Univ, New York, NY 10027 USA.
C3 Columbia University
RP Gelman, A (corresponding author), Columbia Univ, New York, NY 10027 USA.
EM gelman@stat.columbia.edu
OI Gelman, Andrew/0000-0002-6975-2601
FU U.S. Office of Naval Research, Institute for Education Sciences; Sloan
Foundation
FX To appear in Stat., I thank Erik Gahner Larsen, Bill Harris, and two
anonymous reviewers for helpful comments and the U.S. Office of Naval
Research, Institute for Education Sciences, and Sloan Foundation for
partial support of this work.
CR Barfort S, 2021, POLIT SCI RES METH, V9, P658, DOI 10.1017/psrm.2019.63
Bem DJ, 2011, J PERS SOC PSYCHOL, V100, P407, DOI 10.1037/a0021524
Borgschulte M, 2019, J ECON BEHAV ORGAN, V167, P18, DOI 10.1016/j.jebo.2019.09.003
Button KS, 2013, NAT REV NEUROSCI, V14, P365, DOI 10.1038/nrn3475
Gelman A., 2013, The garden of forking paths: Why multiple comparisons can be a problem, even when there is no fishing expedition or phacking and the research hypothesis was posited ahead of time
Gelman A., 2019, ANOTHER REGRESSION D
Gelman A., 2020, COMMENT
Gelman A, 2015, RES POLITICS, V2, DOI 10.1177/2053168015569830
Gelman A, 2019, J BUS ECON STAT, V37, P447, DOI 10.1080/07350015.2017.1366909
Gelman A, 2018, PERS SOC PSYCHOL B, V44, P16, DOI 10.1177/0146167217729162
Gelman A, 2014, AM SCI, V102, P460, DOI 10.1511/2014.111.460
Gelman A, 2009, AM SCI, V97, P310, DOI 10.1511/2009.79.310
Kahneman Daniel., 2011, Thinking, fast and slow
Kanazawa S, 2007, J THEOR BIOL, V244, P133, DOI 10.1016/j.jtbi.2006.07.017
Kim JB, 2021, J CORP FINANC, V69, DOI 10.1016/j.jcorpfin.2021.101991
Larsen E.G, 2020, RESPONSE A GELMAN
Nosek BA, 2012, PERSPECT PSYCHOL SCI, V7, P615, DOI 10.1177/1745691612459058
Simmons JP, 2011, PSYCHOL SCI, V22, P1359, DOI 10.1177/0956797611417632
Simonsohn U, 2016, P HACKED HYPOTHESES
NR 19
TC 2
Z9 2
U1 0
U2 1
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2049-1573
J9 STAT-US
JI Stat
PD DEC
PY 2022
VL 11
IS 1
AR e464
DI 10.1002/sta4.464
PG 12
WC Statistics & Probability
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematics
GA 2J5IM
UT WOS:000815690400001
DA 2024-09-05
ER
PT J
AU Abbas, K
Hasan, MK
Abbasi, A
Mokhtar, UA
Khan, A
Abdullah, SNHS
Dong, S
Islam, S
Alboaneen, D
Ahmed, FRA
AF Abbas, Khushnood
Hasan, Mohammad Kamrul
Abbasi, Alireza
Mokhtar, Umi Asma
Khan, Asif
Abdullah, Siti Norul Huda Sheikh
Dong, Shi
Islam, Shayla
Alboaneen, Dabiah
Ahmed, Fatima Rayan Awad
TI Predicting the Future Popularity of Academic Publications Using Deep
Learning by Considering It as Temporal Citation Networks
SO IEEE ACCESS
LA English
DT Article
DE Citation prediction; citation networks; node ranking; deep learning;
temporal networks; and popularity prediction
ID RANKING; IMPACT; CENTRALITY; PAGERANK; INDEX
AB One of the key goals of Informetrics is to identify citation-based popular articles among so many other aspects, such as determining popular research topics, identifying influential scholars, and predicting hot trends in science. These can be achieved by applying network science approaches to scientific networks and formulating the problem as a popular (most-cited) node ranking task. To rank the papers based on their future citation gain. In this work a deep learning based framework is proposed. Which helps in automatic node level feature extraction and can make node level prediction in dynamic graphs such as citation networks. To achieve this we have learned global ranking preserve d dimensional node embedding. We have only considered temporal features, which makes it suitable for generalisation to other networks. Although our model can consider node level explicit features also. Further we have given novel cost function which can be easily solve ranking problem for dynamic graphs using probabilistic regression method. Which can be easily optimised. Another novelty of our work is that our model can be trained using different snapshots of the graph and different time. Further trained model can be used to make future prediction. The proposed model has been tested on an arXiv paper citation network using six standard information retrieval-based metrics. The results show that our proposed model outperforms, on average, other state-of-the-art static models as well as dynamic node ranking models. The outcome of this research study leads to informed data-driven decision-making in science, such as the allocation and distribution of research funds and investment in strategic research centers. When considering past time window size as 10 months and making prediction after 10 months our proposed model's performance on various ranking based evaluation metrics are as follows: AUC-0.974, Kendal's rank correlation tau-0.455, Precision- 0.643, Novelty-0.0456, Temporal novelty-0.375 and on NDCG-0.949. Our model is able to make long term trend prediction with just training on short time window.
C1 [Abbas, Khushnood; Dong, Shi] Zhoukou Normal Univ, Sch Comp Sci & Technol, Zhoukou 466000, Henan, Peoples R China.
[Abbas, Khushnood; Abbasi, Alireza] Univ New South Wales UNSW, Sch Engn & IT, Sydney, NSW 2052, Australia.
[Hasan, Mohammad Kamrul; Mokhtar, Umi Asma] Univ Kebangsaan Malaysia, Fac Informat Sci & Technol, Bangi 43600, Selangor, Malaysia.
[Khan, Asif] Integral Univ, Sch Comp Applicat, Lucknow 226026, India.
[Islam, Shayla] UCSI Univ, Inst Comp Sci & Digital Innovat, Kuala Lumpur 56000, Malaysia.
[Alboaneen, Dabiah] Imam Abdulrahman Bin Faisal Univ, Coll Sci & Humanities, Comp Sci Dept, Al Jubail 34212, Saudi Arabia.
[Ahmed, Fatima Rayan Awad] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Comp Sci Dept, Al Kharj 16273, Saudi Arabia.
C3 Zhoukou Normal University; University of New South Wales Sydney;
Universiti Kebangsaan Malaysia; Integral University; UCSI University;
Imam Abdulrahman Bin Faisal University; Prince Sattam Bin Abdulaziz
University
RP Hasan, MK (corresponding author), Univ Kebangsaan Malaysia, Fac Informat Sci & Technol, Bangi 43600, Selangor, Malaysia.; Khan, A (corresponding author), Integral Univ, Sch Comp Applicat, Lucknow 226026, India.
EM hasankamrul@ieee.org; asif05amu@gmail.com
RI Abbasi, Alireza/HLW-8556-2023; dong, shi/AAC-6333-2022; Abbas,
Khushnood/I-6735-2017; Sheikh Abdullah, Siti Norul Huda/J-7949-2015;
mokhtar, umi asma/G-7121-2017
OI Abbasi, Alireza/0000-0001-9136-1837; dong, shi/0000-0003-4616-6519;
Abbas, Khushnood/0000-0002-0096-3179; Hasan, Dr. Mohammad
Kamrul/0000-0001-5511-0205; Islam, Dr. Shayla/0000-0002-0490-7799;
Sheikh Abdullah, Siti Norul Huda/0000-0002-2602-7805; mokhtar, umi
asma/0000-0002-9097-3441; Alboaneen, Dabiah/0000-0003-2215-9963
FU Ministry of Higher Education Malaysia [FRGS/1/2020/ICT03/UKM/02/6]
FX This work was supported in part by the Ministry of Higher Education
Malaysia through the Research Grant Scheme under Grant
FRGS/1/2020/ICT03/UKM/02/6.
CR Abbas K., 2018, Scientific Reports, V8, P1
Abbas Khushnood, 2018, Mendeley Data, V1, DOI 10.17632/csm9vrmhzd.1
Abbas K, 2017, PHYSICA A, V484, P506, DOI 10.1016/j.physa.2017.04.156
Abbasi A, 2013, SCIENTOMETRICS, V96, P633, DOI 10.1007/s11192-013-0959-y
Amanlou S, 2021, COMPUT NETW, V199, DOI 10.1016/j.comnet.2021.108465
[Anonymous], 2000, ICML
[Anonymous], 2018, Searching for activation functions
Asatani K, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197260
Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509
Basak D., 2007, Neural Information Processing-Letters and Reviews, V11, P203, DOI DOI 10.1007/978-1-4302-5990-9_4
Bengio Y, 2021, COMMUN ACM, V64, P58, DOI 10.1145/3448250
Bhagat S, 2011, SOCIAL NETWORK DATA ANALYTICS, P115
Bhat HS, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P589, DOI 10.1109/ICDMW.2015.131
BONACICH P, 1987, AM J SOCIOL, V92, P1170, DOI 10.1086/228631
Boyack KW, 2011, PRO INT CONF SCI INF, P123
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339
Butun E, 2020, IEEE T CYBERNETICS, V50, P4518, DOI 10.1109/TCYB.2019.2900495
Chen CM, 2012, J AM SOC INF SCI TEC, V63, P431, DOI 10.1002/asi.21694
Cui P, 2019, IEEE T KNOWL DATA EN, V31, P833, DOI 10.1109/TKDE.2018.2849727
Defferrard M, 2016, ADV NEUR IN, V29
Deng HB, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P239
Dong S, 2021, COMPUT SCI REV, V40, DOI 10.1016/j.cosrev.2021.100379
Eger S, 2019, Arxiv, DOI arXiv:1901.02671
Fiala D, 2008, SCIENTOMETRICS, V76, P135, DOI 10.1007/s11192-007-1908-4
Fiala D, 2012, J INFORMETR, V6, P370, DOI 10.1016/j.joi.2012.02.002
FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543
Gao Bin, 2011, P 17 ACM SIGKDD INT, P96, DOI DOI 10.1145/2020408
GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306
Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087
Glorot X., 2011, P 14 INT C ARTIFICIA, V15, P315
HANLEY JA, 1982, RADIOLOGY, V143, P29, DOI 10.1148/radiology.143.1.7063747
Hasan MK, 2022, IEEE T IND INFORM, V18, P9153, DOI 10.1109/TII.2022.3164066
Hasan MK, 2022, IEEE T IND INFORM, V18, P8895, DOI [10.4018/IJTD.304381, 10.1109/TII.2022.3148250]
Hasan MK, 2021, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.737149
Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hsu CC, 2017, WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P771, DOI 10.1145/3018661.3018668
Iñiguez G, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-29256-x
Järvelin K, 2002, ACM T INFORM SYST, V20, P422, DOI 10.1145/582415.582418
Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112
Kingma D. P., 2014, INT C LEARNING REPRE
Ko K., 2008, CONNECTIONS, V28, P4
Korn A, 2009, PHYSICA A, V388, P2221, DOI 10.1016/j.physa.2009.02.013
Kumar A, 2020, PHYSICA A, V553, DOI 10.1016/j.physa.2020.124289
Lai Y.-A., ADV NEURAL INFORM PR, V30
Lai YA, 2019, DATA MIN KNOWL DISC, V33, P474, DOI 10.1007/s10618-018-0601-y
Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Li CT, 2015, LECT NOTES ARTIF INT, V9077, P659, DOI 10.1007/978-3-319-18038-0_51
Li SQ, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4914
Li YJ, 2017, Arxiv, DOI arXiv:1511.05493
Liao H, 2017, PHYS REP, V689, P1, DOI 10.1016/j.physrep.2017.05.001
Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005
Long L, 2020, PROCEEDINGS OF 2020 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MACHINE VISION AND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND MACHINE LEARNING, IPMV 2020, P146, DOI 10.1145/3421558.3421582
Ma ZY, 2013, J AM SOC INF SCI TEC, V64, P1399, DOI 10.1002/asi.22844
Maggini M., 2003, RESEARCHGATE, P356
Mahayuddin ZR, 2020, Asia-Pacific Journal of Information Technology and Multimedia, V09, P28, DOI DOI 10.17576/APJITM-2020-0901-03
Mariani MS, 2016, J INFORMETR, V10, P1207, DOI 10.1016/j.joi.2016.10.005
Mariani MS, 2015, SCI REP-UK, V5, DOI 10.1038/srep16181
Newman MEJ, 2009, EPL-EUROPHYS LETT, V86, DOI 10.1209/0295-5075/86/68001
Pasumarthi R. K., P 25 ACM SIGKDD INT
PRICE DJD, 1965, SCIENCE, V149, P510
Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105
Radicchi F, 2011, PHYS REV E, V83, DOI 10.1103/PhysRevE.83.046116
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605
Skrlj B, 2021, Arxiv, DOI arXiv:1902.03964
SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
Vieira ES, 2009, SCIENTOMETRICS, V81, P587, DOI 10.1007/s11192-009-2178-0
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Wang G, 2023, WORLD WIDE WEB, V26, P683, DOI 10.1007/s11280-022-01109-z
Wang X, 2017, AAAI CONF ARTIF INTE, P203
Wang Y, 2021, STRUCT HEALTH MONIT, V20, P861, DOI 10.1177/1475921719850641
Wilsdon J, 2016, METRIC TIDE INDEPEND
Wouters P, 2019, NATURE, V569, P621, DOI 10.1038/d41586-019-01643-3
Yan E, 2010, J AM SOC INF SCI TEC, V61, P1635, DOI 10.1002/asi.21349
Yan E, 2011, J AM SOC INF SCI TEC, V62, P467, DOI 10.1002/asi.21461
Zeng A, 2013, ADV COMPLEX SYST, V16, DOI 10.1142/S0219525913500240
Zhang CT, 2009, EMBO REP, V10, P416, DOI 10.1038/embor.2009.74
Zhang SL, 2019, INFORM SCIENCES, V488, P257, DOI 10.1016/j.ins.2019.03.021
Zhao SX, 2011, J INFORMETR, V5, P668, DOI 10.1016/j.joi.2011.06.005
Zhou JL, 2016, SCIENTOMETRICS, V106, P805, DOI 10.1007/s11192-015-1805-1
Zhou YB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120735
Zhou YH, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101038
NR 86
TC 9
Z9 9
U1 5
U2 16
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2023
VL 11
BP 83052
EP 83068
DI 10.1109/ACCESS.2023.3290906
PG 17
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA O9UA9
UT WOS:001047184200001
OA gold
DA 2024-09-05
ER
PT C
AU Liao, Q
Zheng, JB
Shen, Y
Me, J
AF Liao, Qin
Zheng, Jiabi
Shen, Ying
Me, Jing
GP Univ Academic Press Toronto
TI Research on evaluation and optimized structure of managerial competence
SO INTERNATIONAL CONFERENCE ON MANAGEMENT INNOVATION, VOLS 1 AND 2
LA English
DT Proceedings Paper
CT 1st International Conference on Management Innovation
CY JUN 04-06, 2007
CL Shanghai, PEOPLES R CHINA
DE managerial competence; factor analysis; logistic regression; genetic
algorithms
AB Managerial competence is a hot issue in the field of human resource (HR). Based on the questionnaires from Want Want group, Guangzhou Pepsi Cola group and other enterprises, this paper extracts the main influencing factors of managerial competence in specified industry with Factor Analysis and establishes evaluation & prediction & optimization model with combination of Logistic Regression and Genetic Algorithms. This paper designs fitness with the influence of factor score to competence, designs chromosome & crossover & mutation with different position and different competence, searches the optimal collocation of persons and structure of position in the condition of limited competence resource, so that enterprise & person & position can match each other authentically. Demonstration indicates that the way in this paper is valid and practicable for evaluation, prediction and optimization in HR management (HRM).
C1 S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China.
C3 South China University of Technology
RP Liao, Q (corresponding author), S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China.
EM maqliao@scut.edu.cn; zhengjiabi123@163.com
CR BUTLER FC, 1978, ED TECHNOLOGY
CHEN YC, 2004, SCI RES MANAGEMENT
GUANGMAN X, 2000, PUBLISHING HOUSE SCI
JING X, 2006, THESIS S CHINA U TEC
LONG Y, 2003, CHINA SOFT SCI
MCCLELLAND, 1973, AM PSYCHOL
Shippmann J. S., 2000, PERSONNEL PSYCHOL
WEI X, 2004, PUBLISHING HOUSE ELE, P326
XIAOQUN H, 2001, PUBLISHING HOUSE REN, P49
ZHONG LF, 2003, NANKAI BUSINESS
NR 10
TC 0
Z9 0
U1 0
U2 1
PU UNIV ACADEMIC PRESS TORONTO
PI TORONTO
PA UNIV TORONTO, 409 HURON STREET, TORONTO, ON M5S 2G5, CANADA
BN 978-0-9783350-0-7
PY 2007
BP 761
EP 764
PG 4
WC Business; Business, Finance; Management
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics
GA BGN47
UT WOS:000248620600142
DA 2024-09-05
ER
PT J
AU Kanakaris, N
Giarelis, N
Siachos, I
Karacapilidis, N
AF Kanakaris, Nikos
Giarelis, Nikolaos
Siachos, Ilias
Karacapilidis, Nikos
TI Shall I Work with Them? A Knowledge Graph-Based Approach for Predicting
Future Research Collaborations
SO ENTROPY
LA English
DT Article
DE knowledge graph; link prediction; natural language processing; document
representation; future research collaborations; graph kernels; word
embeddings
ID LINK PREDICTION; NEIGHBORS
AB We consider the prediction of future research collaborations as a link prediction problem applied on a scientific knowledge graph. To the best of our knowledge, this is the first work on the prediction of future research collaborations that combines structural and textual information of a scientific knowledge graph through a purposeful integration of graph algorithms and natural language processing techniques. Our work: (i) investigates whether the integration of unstructured textual data into a single knowledge graph affects the performance of a link prediction model, (ii) studies the effect of previously proposed graph kernels based approaches on the performance of an ML model, as far as the link prediction problem is concerned, and (iii) proposes a three-phase pipeline that enables the exploitation of structural and textual information, as well as of pre-trained word embeddings. We benchmark the proposed approach against classical link prediction algorithms using accuracy, recall, and precision as our performance metrics. Finally, we empirically test our approach through various feature combinations with respect to the link prediction problem. Our experimentations with the new COVID-19 Open Research Dataset demonstrate a significant improvement of the abovementioned performance metrics in the prediction of future research collaborations.
C1 [Kanakaris, Nikos; Giarelis, Nikolaos; Siachos, Ilias; Karacapilidis, Nikos] Univ Patras, Ind Management & Informat Syst Lab, MEAD, Rion 26504, Greece.
C3 University of Patras
RP Kanakaris, N (corresponding author), Univ Patras, Ind Management & Informat Syst Lab, MEAD, Rion 26504, Greece.
EM nkanakaris@upnet.gr; giarelis@ceid.upatras.gr; ilias.siachos@upnet.gr;
karacap@upatras.gr
OI Kanakaris, Nikos/0000-0001-9352-5807; Karacapilidis,
Nikos/0000-0002-6581-6831; Giarelis, Nikolaos/0000-0003-2611-3129;
Siachos, Ilias/0000-0001-5489-3500
FU European Union; Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCHCREATE-INNOVATE [T2EDK-04389]
FX The work presented in this paper is supported by the inPOINT project
(https://inpointproject.eu/), which is co-financed by the European Union
and Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCHCREATE-INNOVATE (Project id: T2EDK-04389).
CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1
Aggarwal C. C., 2018, MACHINE LEARNING TEX
Albert R, 2002, REV MOD PHYS, V74, P47, DOI 10.1103/RevModPhys.74.47
Almeida F., 2019, Word embeddings: a survey, V1901
Andreas J, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P822
[Anonymous], 2008, WSDM
[Anonymous], 2014, P INT C MACH LEARN
[Anonymous], 2017, P 31 INT C NEUR INF
[Anonymous], 2018, CSIROS DATA61 STELLA
Borgwardt KM, 2005, Fifth IEEE International Conference on Data Mining, Proceedings, P74, DOI 10.1109/ICDM.2005.132
Fey M., 2019, ARXIV190302428V3
Fire M., 2011, Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and IEEE Third International Conference on Social Computing (PASSAT/SocialCom 2011), P73, DOI 10.1109/PASSAT/SocialCom.2011.20
Gärtner T, 2003, LECT NOTES ARTIF INT, V2777, P129, DOI 10.1007/978-3-540-45167-9_11
Giarelis Nikolaos, 2020, Discovery Science. 23rd International Conference, DS 2020. Proceedings. Lecture Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science (LNAI 12323), P437, DOI 10.1007/978-3-030-61527-7_29
Giarelis N., 2020, P IFIP INT C ART INT, P96, DOI [10.1007/978-3-030-49161-1_9, DOI 10.1007/978-3-030-49161-1_9]
Giarelis N., 2020, P 12 KES INT C INTEL
Guns R, 2014, SCIENTOMETRICS, V101, P1461, DOI 10.1007/s11192-013-1228-9
Jaccard P., 1901, Distribution de la Flore Alpine: dans le Bassin des dranses et dans quelques regions voisines, V37, P547
Joulin A., 2016, P INT C LANG RES EV
Julian K., 2016, APPL MACH LEARN LINK
Kholghi M., 2016, P AUSTR LANG TECHN A
Kusner M.J., 2015, P 32 INT C INT C MAC
Li SB, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-35423-2
Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591
Linardatos P, 2021, ENTROPY-SWITZ, V23, DOI 10.3390/e23010018
Lundberg SM, 2017, ADV NEUR IN, V30
Mikolov T., 2013, P 26 INT C NEURAL IN
Molokwu BC, 2019, COMM COM INF SC, V1143, P573, DOI 10.1007/978-3-030-36802-9_61
Nathani D., 2019, P 57 ANN M ASS COMP
Neumann M, 2016, MACH LEARN, V102, P209, DOI 10.1007/s10994-015-5517-9
Nikolentzos G., 2019, ARXIV190412218
Nikolentzos G, 2017, AAAI CONF ARTIF INTE, P2429
Panagopoulos G, 2017, J INFORMETR, V11, P198, DOI 10.1016/j.joi.2016.11.003
Pedregosa F., 2011, J MACH LEARN RES, V11, P198
Pennington J., 2014, P 2014 C EMP METH NA, P1532, DOI 10.3115/v1/D14-1162
Tran PV, 2018, PR INT CONF DATA SC, P237, DOI 10.1109/DSAA.2018.00034
Pho P, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-020-00366-x
Ponomariov B, 2016, SCIENTOMETRICS, V109, P1939, DOI 10.1007/s11192-016-2127-7
Ramon J., 2003, P 1 INT WORKSH MIN G
Rousseau F, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P59, DOI 10.1145/2505515.2505671
Rousseau F, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P1702
Siglidis G., 2018, ARXIV, V21, P1
Sun YZ, 2011, 2011 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2011), P121, DOI 10.1109/ASONAM.2011.112
Vahdati S, 2018, LECT NOTES COMPUT SC, V11057, P103, DOI 10.1007/978-3-030-00066-0_9
Van Der Heijden N., 2020, P AAAI C ART INT NEW
Vathy-Fogarassy A., 2013, Graph-based clustering and data visualization algorithms
Veira N., 2019, P 28 INT JOINT C ART
Vishwanathan SVN, 2010, J MACH LEARN RES, V11, P1201
Wang L.L., 2020, ARXIV200410706V4
Wang Q, 2017, IEEE T KNOWL DATA EN, V29, P2724, DOI 10.1109/TKDE.2017.2754499
Wang ZY, 2018, LECT NOTES COMPUT SC, V10882, P745, DOI 10.1007/978-3-319-93000-8_84
West DB., 2001, INTRO GRAPH THEORY
Ye X, 2016, PROC INT CONF SOFTW, P404, DOI 10.1145/2884781.2884862
Ying R., 2019, ARXIV 190303894V4
Yu Q, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101214
NR 56
TC 6
Z9 6
U1 0
U2 20
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1099-4300
J9 ENTROPY-SWITZ
JI Entropy
PD JUN
PY 2021
VL 23
IS 6
AR 664
DI 10.3390/e23060664
PG 18
WC Physics, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physics
GA SX7BG
UT WOS:000665355000001
PM 34070422
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Safder, I
Saeed-Ul Hassan
AF Safder, Iqra
Saeed-Ul Hassan
TI Bibliometric-enhanced information retrieval: a novel deep feature
engineering approach for algorithm searching from full-text publications
SO SCIENTOMETRICS
LA English
DT Article
DE Algorithm search; Bibliometric-enhanced information retrieval;
Full-text; Deep learning; Bi-directional LSTM
ID SCHOLARLY DATA
AB Recently, tremendous advances have been observed in information retrieval systems designed to search for relevant knowledge in scientific publications. Although these techniques are quite powerful, there is still room for improvement in the area of searching for metadata relating to algorithms in full-text publication datasetsfor instance, efficiency-related metrics such as precision, recall, f-measure and accuracy, and other useful metadata such as the datasets deployed and the algorithmic run-time complexity. In this study, we proposed a novel deep learning-based feature engineering approach that improves search capabilities by mining algorithmic-specific metadata from full-text scientific publications. Typically, traditional term frequency-inverse document frequency (TF-IDF)-based approaches function like a bag of words' model and thus fail to capture either the text's semantics or the word sequence. In this work, we designed a semantically enriched synopsis of each full-text document by adding algorithmic-specific deep metadata text lines to enhance the search mechanism of algorithm search systems. These text lines are classified by our deployed deep learning-based bi-directional long short term memory (LSTM) model. The designed bi-directional LSTM model outperformed the support vector machine by 9.46%, with a 0.81f1-score on a dataset of 37,000 algorithm-specific deep metadata text lines that had been tagged by four human experts. Lastly, we present a case study on 21,940 full-text publications downloaded from ACL (https://aclweb.org/) to show the effectiveness of deep learning-based advanced feature engineering search compared to the conventional TF-IDF-based (Lucene) search.
C1 [Safder, Iqra; Saeed-Ul Hassan] Informat Technol Univ, 346-B Ferozepur Rd, Lahore, Pakistan.
RP Safder, I (corresponding author), Informat Technol Univ, 346-B Ferozepur Rd, Lahore, Pakistan.
EM iqra.safder@itu.edu.pk
RI Safder, Iqra/JXN-8069-2024; Hassan, Saeed-Ul/G-1889-2016
OI Hassan, Saeed-Ul/0000-0002-6509-9190
FU NRPU - Higher Education Commission of Pakistan [6857]
FX This research work is supported by the NRPU Grant #6857, funded by the
Higher Education Commission of Pakistan.
CR Al-Zaidy RA, 2017, AAAI CONF ARTIF INTE, P4644
Al-Zaidy RA, 2018, IEEE INT C SEMANT CO, P56, DOI 10.1109/ICSC.2018.00017
Al-Zaidy RA, 2017, PROCEEDINGS OF THE 2017 ACM SYMPOSIUM ON DOCUMENT ENGINEERING (DOCENG 17), P149, DOI 10.1145/3103010.3121043
Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50
Bhatia S, 2012, ACM T INFORM SYST, V30, DOI 10.1145/2094072.2094075
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Cabanac G, 2018, SCIENTOMETRICS, V116, P1225, DOI 10.1007/s11192-018-2861-0
Chen Q, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1657, DOI 10.18653/v1/P17-1152
Collobert R, 2011, J MACH LEARN RES, V12, P2493
Hassan SU, 2017, INT C AS DIG LIB, P119
Hassan SU, 2018, SCIENTOMETRICS, V8, P1
Heffernan K, 2018, SCIENTOMETRICS, V116, P1367, DOI 10.1007/s11192-018-2718-6
Hingmire S., 2017, P KNOWL CAPT C
Hingmire S, 2013, SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, P877
Huang ML, 2017, ACM T INFORM SYST, V35, DOI 10.1145/3052770
Karimi S, 2018, SCIENTOMETRICS, V116, P1331, DOI 10.1007/s11192-018-2785-8
Khabsa Madian., 2012, PROC ACMIEEE JOINT C, P185, DOI DOI 10.1145/2232817.2232852
Khan S, 2017, INFORM PROCESS MANAG, V53, P923, DOI 10.1016/j.ipm.2017.03.006
Lai SW, 2015, AAAI CONF ARTIF INTE, P2267
Lee PS, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P413, DOI 10.1145/2872518.2890523
Li CL, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P85, DOI 10.1145/2983323.2983721
Lin YM, 2017, J INTELL FUZZY SYST, V33, P3949, DOI 10.3233/JIFS-17781
Ma ST, 2018, SCIENTOMETRICS, V116, P1303, DOI 10.1007/s11192-018-2754-2
Mayr P, 2018, INT J DIGIT LIBRARIE, V19, P107, DOI 10.1007/s00799-017-0230-x
Mesbah S, 2017, LECT NOTES COMPUT SC, V10249, P321, DOI 10.1007/978-3-319-58068-5_20
Mitra P., 2007, CIMS '07: Proceedings of the ACM first workshop on CyberInfrastructure: Information Management in eScience, P7, DOI DOI 10.1145/1317353.1317356
Osborne F, 2017, K-CAP 2017: PROCEEDINGS OF THE KNOWLEDGE CAPTURE CONFERENCE, DOI 10.1145/3148011.3148080
Robertson S. E., 1995, Text REtrieval Conference (TREC-3) (NIST SP 500-225), P109
Rose S., 2010, Text Min. Appl. Theory, P1, DOI DOI 10.1002/9780470689646.CH1
Saeed-Ul Hassan, 2017, ACM-IEEE J CONF DIG, P41
SAEEDULHASSAN, 2018, SCIENTOMETRICS, V116, P973, DOI DOI 10.1007/S11192-018-2767-X
Safder I, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P251, DOI 10.1145/3184558.3186334
Safder I, 2018, INT CONF DAT MIN WOR, P1308, DOI 10.1109/ICDMW.2018.00186
Safder I, 2017, LECT NOTES COMPUT SC, V10647, P30, DOI 10.1007/978-3-319-70232-2_3
Siegel N, 2018, ACM-IEEE J CONF DIG, P223, DOI 10.1145/3197026.3197040
Siegel N, 2016, LECT NOTES COMPUT SC, V9911, P664, DOI 10.1007/978-3-319-46478-7_41
Nguyen TTH, 2017, PROC INT CONF DOC, P242, DOI 10.1109/ICDAR.2017.48
Tuarob Suppawong, 2016, IEEE Transactions on Big Data, V2, P3, DOI 10.1109/TBDATA.2016.2546302
Tuarob S., 2016, P INT COMP SCI ENG C, P1
Tuarob S, 2015, PROC INT CONF DOC, P1081, DOI 10.1109/ICDAR.2015.7333927
Tuarob S, 2013, PROC INT CONF DOC, P738, DOI 10.1109/ICDAR.2013.151
Wang CL, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2061, DOI 10.1145/3097983.3098140
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
NR 43
TC 34
Z9 34
U1 1
U2 39
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD APR
PY 2019
VL 119
IS 1
BP 257
EP 277
DI 10.1007/s11192-019-03025-y
PG 21
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA HS1QS
UT WOS:000463637600013
DA 2024-09-05
ER
PT J
AU Memisevic, H
Pasalic, A
Mujkanovic, E
Memisevic, M
AF Memisevic, Haris
Pasalic, Arnela
Mujkanovic, Edin
Memisevic, Mahira
TI In Search of a Silver Bullet: Evaluating Researchers' Performance in
Bosnia and Herzegovina
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Academic performance; Evaluation; h-index; Principal component analysis;
Bosnia and Herzegovina
ID GOOGLE-SCHOLAR; H-INDEX; SCOPUS; JOURNALS; SCIENCE; WEB; INDICATOR
AB Background: Evaluating academic production and researchers' impact has become a common practice in many areas of academic life. Researchers are being evaluated for many purposes such as getting employment, promotion, tenure and winning grants. Achieving full objectivity of the evaluation is a rather difficult, if not the impossible task. The goal of the present paper was to evaluate research performance of scholars from Bosnia and Herzegovina (BiH and to propose a single number that captures several scientometric indices. Methods: We took data from 303 scholars from 4 public universities in BiH on their number of citations and h-indexes derived from four databases/services: Web of Science, Scopus, Google Scholar and Research Gate. In addition to this, we performed a Principal Component Analysis of number of citations and h-indexes from these indices to come up with a single number that best captures the scientific impact of the researchers. Results: The results of this study indicate a strong relationship between all indices of scholarly achievement as measured through citations and h-indexes. Principal component analysis has shown that it is possible to obtain a single number that captures researchers' scientific impact. Conclusion: Many metrics can be useful in evaluating researchers' scientific impact. As the researchers in BiH have a low scientific production, universities in BiH need to adapt a strategy to stimulate the increase in their scientific productivity.
C1 [Memisevic, Haris; Pasalic, Arnela] Univ Sarajevo, Fac Educ Sci, Sarajevo 71000, Bosnia & Herceg.
[Mujkanovic, Edin] Herzegovina Univ, Dept Special Educ, Mostar, Bosnia & Herceg.
[Memisevic, Mahira] Univ Sarajevo, Fac Sci, Sarajevo, Bosnia & Herceg.
C3 University of Sarajevo; University of Sarajevo
RP Memisevic, H (corresponding author), Univ Sarajevo, Fac Educ Sci, Sarajevo 71000, Bosnia & Herceg.
EM hmemisevic@gmail.com
RI Memisevic, Haris/N-3458-2016
OI Memisevic, Haris/0000-0001-7340-3618
CR Abdi H, 2010, WIRES COMPUT STAT, V2, P433, DOI 10.1002/wics.101
Aguillo IF, 2012, SCIENTOMETRICS, V91, P343, DOI 10.1007/s11192-011-0582-8
Asefeh A, 2018, J SCIENTOMETRIC RES, V7
Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y
Bollen J, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006022, 10.1371/journal.pone.0004803]
Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609
Bornmann L, 2009, EMBO REP, V10, P2, DOI 10.1038/embor.2008.233
Cadez S, 2017, STUD HIGH EDUC, V42, P1455, DOI 10.1080/03075079.2015.1104659
Eck NJV, 2013, PLOS ONE, V8
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
García-Gallego A, 2015, APPL ECON, V47, P4868, DOI 10.1080/00036846.2015.1037438
Gasparyan AY, 2013, RHEUMATOL INT, V33, P277, DOI 10.1007/s00296-012-2582-2
Ghazavi R, 2019, J SCIENTOMETR RES, V8, P9, DOI 10.5530/jscires.8.1.2
Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hornstein HA, 2017, COGENT EDUC, V4, DOI 10.1080/2331186X.2017.1304016
Jacsó P, 2008, ONLINE INFORM REV, V32, P524, DOI 10.1108/14684520810897403
Lacasse JR, 2011, RES SOCIAL WORK PRAC, V21, P599, DOI 10.1177/1049731511405069
Lane J, 2010, NATURE, V464, P488, DOI 10.1038/464488a
Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002
Marusic A, 1999, CROAT MED J, V40, P508
Memisevic Haris, 2017, Acta Inform Med, V25, P187, DOI 10.5455/aim.2017.25.187-190
Miller JC, 2013, SCIENTOMETRICS, V97, P519, DOI 10.1007/s11192-013-0987-7
Onyancha O.B., 2009, MOUSAION, V27, P43
Ovadia S., 2014, BSSL, V33, P165, DOI DOI 10.1080/01639269.2014.934093
Payne A. A., 2003, ADV EC ANAL POLICY, V3, P1018, DOI [DOI 10.2202/1538-0637.1018, 10.2202/1538-0637.1018]
Petersen AM, 2010, PHYS REV E, V82, DOI 10.1103/PhysRevE.82.036114
Purvis A, 2006, TRENDS ECOL EVOL, V21, P422, DOI 10.1016/j.tree.2006.05.014
Rivera H, 2018, J KOREAN MED SCI, V33, DOI 10.3346/jkms.2018.33.e105
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
Thelwall M, 2017, SCIENTOMETRICS, V112, P1125, DOI 10.1007/s11192-017-2400-4
Uttl B, 2017, STUD EDUC EVAL, V54, P22, DOI 10.1016/j.stueduc.2016.08.007
Wislar JS, 2011, BRIT MED J, V343, DOI 10.1136/bmj.d6128
Yong A., 2014, Not. Am. Math. Soc., V61, P1040, DOI [DOI 10.1090/NOTI1164, DOI 10.1090/N0TI1164]
Yu MC, 2016, COMPUT HUM BEHAV, V55, P1001, DOI 10.1016/j.chb.2015.11.007
Zerem E, 2017, J BIOMED INFORM, V75, P107, DOI 10.1016/j.jbi.2017.10.007
NR 36
TC 4
Z9 4
U1 0
U2 2
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD SEP-DEC
PY 2019
VL 8
IS 3
BP 125
EP 130
DI 10.5530/jscires.8.3.27
PG 6
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA KA8GC
UT WOS:000506038800001
OA hybrid
DA 2024-09-05
ER
PT J
AU Geraci, M
Esposti, M
AF Geraci, Marco
Degli Esposti, M.
TI Where do Italian universities stand? An in-depth statistical analysis of
national and international rankings
SO SCIENTOMETRICS
LA English
DT Article
DE Ranking; Higher education; Principal component analysis; Correlation;
Reform law; h-index
AB In a previous article (Degli Esposti and Geraci. Bulletin of Italian Politics, 2011), we presented an historical survey of the university reform laws that took place in Italy in the last 30 years. On that occasion, we stressed how important is merit evaluation for academics and their institutions, especially in view of the much debated but not yet implemented 'Gelmini' reform with its long awaited new regulation for accessing academic positions (concorsi) and for determining individual weight in financial resource allocation among universities. Here, we present and compare several rankings used to evaluate the prestige and merit of Italian universities. We also consider alternative approaches to academic rankings that highlight peculiar aspects of the universities in Italy which cannot be reasonably accounted for by other international rankings. Finally, we propose a new approach that combines both national and international standing of Italian universities. It is hoped that this study will provide practical guidance to policy makers for establishing the criteria upon which merit should be assessed.
C1 [Geraci, Marco] UCL Inst Child Hlth, MRC Ctr Epidemiol Child Hlth, London WC1N 1EH, England.
[Degli Esposti, M.] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England.
C3 University of London; University College London; University of
Manchester
RP Geraci, M (corresponding author), UCL Inst Child Hlth, MRC Ctr Epidemiol Child Hlth, 30 Guilford St, London WC1N 1EH, England.
EM m.geraci@ucl.ac.uk
RI Geraci, Marco/B-9588-2009; Degli Esposti, Mauro/C-3270-2012
OI Geraci, Marco/0000-0002-6311-8685;
FU MRC [G0400546] Funding Source: UKRI
CR *CAMP, 2009, GUIDA ALL U
DEGLIESPOSTI M, 2011, B ITALIAN P IN PRESS
Everitt B., 1998, The Cambridge Dictionary of Statistics
GRAZIOSI A, 2010, U TUTTI
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Lazaridis T, 2010, SCIENTOMETRICS, V82, P211, DOI 10.1007/s11192-009-0048-4
Marchant T, 2009, SCIENTOMETRICS, V80, P325, DOI 10.1007/s11192-008-2075-y
Tocci W, 2009, QUALE RIFORMA U
*UDU, 2009, MIST MIN
*VIS, 2009, U NUOV CLASS VIS
*VIS, 2009, CLASS U IT
NR 11
TC 10
Z9 12
U1 0
U2 14
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
J9 SCIENTOMETRICS
JI Scientometrics
PD JUN
PY 2011
VL 87
IS 3
BP 667
EP 681
DI 10.1007/s11192-011-0350-9
PG 15
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 753PS
UT WOS:000289792600016
DA 2024-09-05
ER
PT C
AU Kongthon, A
Haruechaiyasak, C
Thaiprayoon, S
AF Kongthon, Alisa
Haruechaiyasak, Choochart
Thaiprayoon, Santipong
BE Buchanan, G
Masoodian, M
Cunningham, SJ
TI Enhancing the Literature Review Using Author-Topic Profiling
SO DIGITAL LIBRARIES: UNIVERSAL AND UBIQUITOUS ACCESS TO INFORMATION,
PROCEEDINGS
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 11th International Conference on Asian Digital Libraries
CY DEC 02-05, 2008
CL Bali, INDONESIA
DE Bibliographic data; text mining; Latent Dirichlet Allocation (LDA);
author-topic profiling; literature review
AB In this paper, we utilize bibliographic data for identifying author-topic relations which call be used to enhance the traditional literature review. When writing a research paper, researchers often cite oil the order of tens of references which do not provide the complete coverage of the research context especially when the targeted research is multidisciplinary. Author-topic profiling can help researchers discover a broader picture of their topic of interest including topical relationships and research community. We apply the Latent Dirichlet Allocation (LDA) to generate multinomial distributions over words and topics to discover author-topic relations from text collections. As ail illustration, we apply the methodology to bibliographic abstracts related to Emerging Infectious Diseases (ElDs) research topic.
C1 [Kongthon, Alisa; Haruechaiyasak, Choochart; Thaiprayoon, Santipong] Natl Elect & Comp Technol Ctr NECTEC, Human Language Technol Lab HLT, Klongluang 12120, Pathumthani, Thailand.
C3 National Science & Technology Development Agency - Thailand; National
Electronics & Computer Technology Center (NECTEC)
EM alisa.kon@nectec.or.th; choochart.har@nectec.or.th;
santipong.tha@nectec.or.th
RI Kongthon, Alisa/E-4470-2011
OI Kongthon, Alisa/0009-0009-8682-5006
CR Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
Steyvers M., 2006, LATENT SEMANTIC ANAL
Steyvers M., 2004, Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), P306, DOI [10.1145/1014052.1014087, 10.1145/1014052, DOI 10.1145/1014052]
NR 5
TC 0
Z9 0
U1 0
U2 3
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
BN 978-3-540-89532-9
J9 LECT NOTES COMPUT SC
PY 2008
VL 5362
BP 335
EP 338
PG 4
WC Computer Science, Information Systems; Computer Science, Theory &
Methods; Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BIT31
UT WOS:000262503100038
OA Bronze
DA 2024-09-05
ER
PT C
AU Guo, J
Yan, YM
Zhang, B
Ma, QM
AF Guo Jun
Yan Yongming
Zhang Bin
Ma Qingmin
GP IEEE
TI SLA-Oriented Research on Prediction and Evaluation of Service Components
Performance
SO 2015 12TH WEB INFORMATION SYSTEM AND APPLICATION CONFERENCE (WISA)
LA English
DT Proceedings Paper
CT 12th Web Information System and Application Conference (WISA)
CY SEP 11-13, 2015
CL Shandong Univ, Jinan, PEOPLES R CHINA
HO Shandong Univ
DE cloud service component; performance prediction; non-negative matrix
factorization; response time sequence
AB The application services which deployed in cloud environment have some characteristics, such as the variability of concurrent requests and the differences of resource demands among components, which bring certain influence on service performance even cause some potential problems. Therefore, making an effective service performance prediction mechanism has become a research hotspot for application services based cloud service components. This paper proposes SLA-oriented research on prediction of service component and introduces the fundamental process of performance prediction. It adopts the non-negative matrix factorization method for performance prediction and makes an evaluation on component performance. The experiment result indicates the method in this paper is feasible and valid, and the accuracy is higher than the traditional approaches.
C1 [Guo Jun; Yan Yongming; Zhang Bin; Ma Qingmin] Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Peoples R China.
C3 Northeastern University - China
RP Guo, J (corresponding author), Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Peoples R China.
EM guojun@ise.neu.edu.cn; yym_sy@163.com; zhangbing@ise.neu.edu.cn;
maqingmin10@163.com
RI Zhang, Bin/U-9174-2019
OI Zhang, Bin/0000-0002-2127-9560
CR Armbrust M, 2010, COMMUN ACM, V53, P50, DOI 10.1145/1721654.1721672
Calheiros R. N., 2011, 2011 International Conference on Parallel Processing, P295, DOI 10.1109/ICPP.2011.17
Chauhan T., 2011, Proceedings of the 2011 World Congress on Information and Communication Technologies (WICT), P564, DOI 10.1109/WICT.2011.6141307
[陈光 Chen Guang], 2012, [计算机科学与探索, Journal of Frontiers of Computer Science & Technology], V6, P495
Chen Hanwei, 2011, COMPUTER APPL SOFTWA, V28, P4
Fito JO, 2010, EC GRIDS CLOUDS SYST, P34
García AG, 2014, FUTURE GENER COMP SY, V31, P1, DOI 10.1016/j.future.2013.10.005
Hauck Michael, 2011, Proceedings of the 1st International Conference on Cloud Computing and Services Science. CLOSER 2011, P616
Iosup A, 2011, IEEE T PARALL DISTR, V22, P931, DOI 10.1109/TPDS.2011.66
Kebbal D, 2001, DOA'01: 3RD INTERNATIONAL SYMPOSIUM ON DISTRIBUTED OBJECTS & APPLICATIONS, PROCEEDINGS, P125, DOI 10.1109/DOA.2001.954078
Khan A, 2012, IEEE IFIP NETW OPER, P1287, DOI 10.1109/NOMS.2012.6212065
Lee DD, 1999, NATURE, V401, P788, DOI 10.1038/44565
Nasridinov A, 2012, SECOND INTERNATIONAL CONFERENCE ON CLOUD AND GREEN COMPUTING / SECOND INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING AND ITS APPLICATIONS (CGC/SCA 2012), P799, DOI 10.1109/CGC.2012.123
Pacheco-Sanchez S., 2011, Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing (CLOUD 2011), P147, DOI 10.1109/CLOUD.2011.100
Patel SG, 2012, INT J ENG, V1
Shao L, 2007, IEEE ICCE, P439, DOI 10.1109/ICWS.2007.140
Song Huanhuan, 2011, DESIGN IMPLEMENT CLO
Truong HL, 2010, PROCEDIA COMPUT SCI, V1, P2169, DOI 10.1016/j.procs.2010.04.243
Zhang YL, 2011, SYM REL DIST SYST, P1, DOI 10.1109/SRDS.2011.10
Zheng ZB, 2012, IEEE T SERV COMPUT, V5, P540, DOI 10.1109/TSC.2011.42
NR 20
TC 0
Z9 0
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4673-9372-0
PY 2015
BP 136
EP 141
DI 10.1109/WISA.2015.33
PG 6
WC Computer Science, Information Systems; Computer Science, Theory &
Methods; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BF1EO
UT WOS:000380387900026
DA 2024-09-05
ER
PT J
AU Ye, ZY
Li, Z
Zhong, SY
Xing, QC
Li, KH
Sheng, WC
Shi, X
Bao, YJ
AF Ye, Ziyin
Li, Zhi
Zhong, Shiyu
Xing, Qichen
Li, Kunhang
Sheng, Weichen
Shi, Xin
Bao, Yijun
TI The recent two decades of traumatic brain injury: a bibliometric
analysis and systematic review
SO INTERNATIONAL JOURNAL OF SURGERY
LA English
DT Article
DE bibliometric analysis; Latent Dirichlet Allocation; topic modeling;
traumatic brain injury
ID RAISED INTRACRANIAL-PRESSURE; FIBRILLARY ACIDIC PROTEIN; C-TERMINAL
HYDROLASE-L1; HYPERTONIC SALINE; DECOMPRESSIVE CRANIECTOMY;
UNITED-STATES; CLINICAL-TRIAL; HEAD TRAUMA; CARE; ENCEPHALOPATHY
AB Background:Traumatic brain injury (TBI) is a serious public health burden worldwide, with a mortality rate of 20-30%; however, reducing the incidence and mortality rates of TBI remains a major challenge. This study provides a multidimensional analysis to explore the potential breakthroughs in TBI over the past two decades.Materials and methods:The authors used bibliometric and Latent Dirichlet Allocation (LDA) analyses to analyze publications focusing on TBI published between 2003 and 2022 from the Web of Science Core Collection (WOSCC) database to identify core journals and collaborations among countries/regions, institutions, authors, and research trends.Results:Over the past 20 years, 41 545 articles on TBI from 3043 journals were included, with 12 916 authors from 20 449 institutions across 145 countries/regions. The annual number of publications has increased 10-fold compared to previous publications. This study revealed that high-income countries, especially the United States, have a significant influence. Collaboration was limited to several countries/regions. The LDA results indicated that the hotspots included four main areas: 'Clinical finding', 'Molecular mechanism', 'Epidemiology', and 'Prognosis'. Epidemiological research has consistently increased in recent years. Through epidemiological topic analysis, the main etiology of TBI has shifted from traffic accidents to falls in a demographically aging society.Conclusion:Over the past two decades, TBI research has developed rapidly, and its epidemiology has received increasing attention. Reducing the incidence of TBI from a preventive perspective is emerging as a trend to alleviate the future social burden; therefore, epidemiological research might bring breakthroughs in TBI.
C1 [Ye, Ziyin; Zhong, Shiyu; Xing, Qichen; Li, Kunhang; Sheng, Weichen; Bao, Yijun] China Med Univ, Hosp 4, Dept Neurosurg, 4 Chongshandong, Shenyang 110084, Peoples R China.
[Li, Zhi] China Med Univ, Hosp 1, Dept Oncol, Shenyang, Heping, Peoples R China.
[Shi, Xin] China Med Univ, Sch Hlth Management, 77 Puhe Rd, Shenyang, Liaoning, Peoples R China.
C3 China Medical University; China Medical University; China Medical
University
RP Bao, YJ (corresponding author), China Med Univ, Hosp 4, Dept Neurosurg, 4 Chongshandong, Shenyang 110084, Peoples R China.; Shi, X (corresponding author), China Med Univ, Sch Hlth Management, 77 Puhe Rd, Shenyang, Liaoning, Peoples R China.
EM y18924280072@163.com; zli@cmu.edu.cn; zsy757301823@163.com;
tonyxxv@Hotmail.com; khli@cmu.edu.cn; sWeiccc1201@163.com;
20221010@cmu.edu.cn; yjbao@cmu.edu.cn
FU Liaoning Provincial Natural Science Foundation [2020-MS-155]; China
Medical University novel coronavirus pneumonia prevention and control
research project [2020-12-11]; Shenyang Planning Foundation for Science
and Technology [21-173-9-38]; China Medical University [YDJK2021011];
National Science Foundation of China [72074104]; Immersive Smart Devices
for Healthcare System R&D and Industrial Application Innovation Platform
(2022) of Immersion Technology and Evaluation Shandong Engineering
Research Center (2022); Research Project on Undergraduate Teaching
Reform of Liaoning General Higher Education - Educational Department of
Liaoning Province [2022-10159-479]; Research Project on Postgraduate
Teaching Reform - Educational Department of Liaoning Province
[2022-10159-311]; China Stroke Association Whole Course Management of
Cerebrovascular Disease Sailing Fund [202001]; The 2023 Undergraduate
Teaching Reform Research Project of China Medical University - 2022
Provincial First-class Curriculum Construction Specialization; Natural
Science Foundation of Liaoning Province of China [2021-MS-179]
FX This study was funded by Liaoning Provincial Natural Science Foundation
(2020-MS-155), China Medical University novel coronavirus pneumonia
prevention and control research project (2020-12-11), Shenyang Planning
Foundation for Science and Technology (21-173-9-38), the first batch of
medical education scientific research project of China Medical
University for the 14th Five-Year Plan (YDJK2021011), National Science
Foundation of China (72074104), Immersive Smart Devices for Healthcare
System R&D and Industrial Application Innovation Platform (2022) of
Immersion Technology and Evaluation Shandong Engineering Research Center
(2022) , Research Project on Undergraduate Teaching Reform of Liaoning
General Higher Education sponsored by Educational Department of Liaoning
Province (2022-10159-479), Research Project on Postgraduate Teaching
Reform sponsored by Educational Department of Liaoning Province
(2022-10159-311), China Stroke Association Whole Course Management of
Cerebrovascular Disease Sailing Fund (202001), 2023 Undergraduate
Teaching Reform Research Project of China Medical University - 2022
Provincial First-class Curriculum Construction Specialization, and The
Natural Science Foundation of Liaoning Province of China (2021-MS-179).
The researchers are grateful for the support of several organizations.
CR [Anonymous], 1999, JAMA, V282, P974
Appiah AB, 2023, INJURY PREV, V29, P50, DOI 10.1136/ip-2022-044683
Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391
Bazarian JJ, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2020.37349
Berger RP, 2005, J NEUROSURG, V103, P61, DOI 10.3171/ped.2005.103.1.0061
Blei D, 2010, IEEE SIGNAL PROC MAG, V27, P55, DOI 10.1109/MSP.2010.938079
Brazinova A, 2021, J NEUROTRAUM, V38, P1411, DOI 10.1089/neu.2015.4126
Bulger EM, 2010, JAMA-J AM MED ASSOC, V304, P1455, DOI 10.1001/jama.2010.1405
Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011
Cheng PC, 2017, PLOS MED, V14, DOI 10.1371/journal.pmed.1002332
Chesnut RM, 2012, NEW ENGL J MED, V367, P2471, DOI 10.1056/NEJMoa1207363
Chong SL, 2015, BMC MED RES METHODOL, V15, DOI 10.1186/s12874-015-0015-0
Chou YY, 2022, INFLAMM REGEN, V42, DOI 10.1186/s41232-022-00244-4
Clark D, 2022, LANCET NEUROL, V21, P438, DOI 10.1016/S1474-4422(22)00037-0
CLIFTON GL, 1995, J NEUROTRAUM, V12, P923, DOI 10.1089/neu.1995.12.923
Clifton GL, 2011, LANCET NEUROL, V10, P131, DOI 10.1016/S1474-4422(10)70300-8
Coats T, 2005, CROAT MED J, V46, P146
Cooper DJ, 2018, JAMA-J AM MED ASSOC, V320, P2211, DOI 10.1001/jama.2018.17075
Cooper DJ, 2011, NEW ENGL J MED, V364, P1493, DOI 10.1056/NEJMoa1102077
Czeiter E, 2020, EBIOMEDICINE, V56, DOI 10.1016/j.ebiom.2020.102785
Dewan MC, 2019, J NEUROSURG, V130, P1080, DOI 10.3171/2017.10.JNS17352
Dewan Y, 2012, TRIALS, V13, DOI 10.1186/1745-6215-13-87
Douglas David B, 2015, Top Magn Reson Imaging, V24, P241, DOI 10.1097/RMR.0000000000000062
Engrand N, 2019, JAMA-J AM MED ASSOC, V321, P1725, DOI 10.1001/jama.2019.1534
Feigin VL, 2013, LANCET NEUROL, V12, P53, DOI 10.1016/S1474-4422(12)70262-4
Francony G, 2008, CRIT CARE MED, V36, P795, DOI 10.1097/CCM.0B013E3181643B41
Geng M, 2022, TRANSL PEDIATR, V11, P909, DOI 10.21037/tp-22-180
Ghaith HS, 2022, MOL NEUROBIOL, V59, P4141, DOI 10.1007/s12035-022-02822-6
Goldstein LE, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3003716
Hale AT, 2018, NEUROSURG FOCUS, V45, DOI 10.3171/2018.8.FOCUS17773
Hawryluk GWJ, 2020, NEUROSURGERY, V87, P427, DOI 10.1093/neuros/nyaa278
Hazrati LN, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00222
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hui JY, 2021, ECLINICALMEDICINE, V32, DOI 10.1016/j.eclinm.2021.100732
Hutchinson PJ, 2016, NEW ENGL J MED, V375, P1119, DOI 10.1056/NEJMoa1605215
James SL, 2019, LANCET NEUROL, V18, P56, DOI [10.1016/S1474-4422(18)30415-0, 10.1016/S1474-4422(18)30499-X, 10.1016/S1474-4422(19)30034-1]
Jiang JY, 2007, SURG NEUROL, V68, P2, DOI 10.1016/j.surneu.2007.09.016
Jiang JY, 2019, LANCET NEUROL, V18, P286, DOI 10.1016/S1474-4422(18)30469-1
Kamel H, 2011, CRIT CARE MED, V39, P554, DOI 10.1097/CCM.0b013e318206b9be
Karagianni MD, 2022, NEUROCRIT CARE, V36, P1044, DOI 10.1007/s12028-021-01428-5
Karydakis P, 2020, IRISH J MED SCI, V189, P315, DOI 10.1007/s11845-019-02085-6
Kawata K, 2018, HAND CLINIC, V158, P217, DOI 10.1016/B978-0-444-63954-7.00022-7
Khellaf A, 2019, J NEUROL, V266, P2878, DOI 10.1007/s00415-019-09541-4
Korley FK, 2022, LANCET NEUROL, V21, P803, DOI 10.1016/S1474-4422(22)00256-3
Kulbe JR, 2016, EXP NEUROL, V275, P334, DOI 10.1016/j.expneurol.2015.05.004
Kuo CY, 2015, IRAN J PUBLIC HEALTH, V44, P470
Lepard JR, 2021, PLOS MED, V18, DOI 10.1371/journal.pmed.1003795
Lewis SR, 2017, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD001048.pub5
Li L, 2018, WORLD NEUROSURG, V113, pE82, DOI 10.1016/j.wneu.2018.01.164
Liu NT, 2017, SHOCK, V48, P504, DOI 10.1097/SHK.0000000000000898
Lui YW, 2014, NEUROLOGY, V83, P1235, DOI 10.1212/WNL.0000000000000834
Maas AIR, 2008, LANCET NEUROL, V7, P728, DOI 10.1016/S1474-4422(08)70164-9
Maas AIR, 2022, LANCET NEUROL, V21, P1004, DOI 10.1016/S1474-4422(22)00309-X
Maas AIR, 2022, LANCET NEUROL, V21, P768, DOI 10.1016/S1474-4422(22)00307-6
Maas AIR, 2017, LANCET NEUROL, V16, P987, DOI 10.1016/S1474-4422(17)30371-X
Mangat HS, 2015, J NEUROSURG, V122, P202, DOI 10.3171/2014.10.JNS132545
Marion DW, 1997, NEW ENGL J MED, V336, P540, DOI 10.1056/NEJM199702203360803
Marion DW, 2000, CRIT CARE MED, V28, P16, DOI 10.1097/00003246-200001000-00003
Martinez BI, 2019, J BIOL ENG, V13, DOI 10.1186/s13036-019-0145-8
Masel BE, 2010, J NEUROTRAUM, V27, P1529, DOI 10.1089/neu.2010.1358
McIntyre LA, 2003, JAMA-J AM MED ASSOC, V289, P2992, DOI 10.1001/jama.289.22.2992
McKee AC, 2016, ACTA NEUROPATHOL, V131, P75, DOI 10.1007/s00401-015-1515-z
McKee AC, 2015, BRAIN PATHOL, V25, P350, DOI 10.1111/bpa.12248
Mckee AC, 2009, J NEUROPATH EXP NEUR, V68, P709, DOI 10.1097/NEN.0b013e3181a9d503
Melinosky C, 2018, FRONT NEUROL, V9, DOI 10.3389/fneur.2018.00761
Mena A., 2021, Topic Identification from Spanish Unstructured Health Texts Applied Technologies
Metting Z, 2012, NEUROLOGY, V78, P1428, DOI 10.1212/WNL.0b013e318253d5c7
Meyfroidt G, 2022, INTENS CARE MED, V48, P649, DOI 10.1007/s00134-022-06702-4
MILLER H, 1966, P ROY SOC MED, V59, P257, DOI 10.1177/003591576605900327
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Mitra J, 2016, NEUROIMAGE, V129, P247, DOI 10.1016/j.neuroimage.2016.01.056
Mojgani P, 2022, NEUROPSYCHOL REHABIL, V32, P51, DOI 10.1080/09602011.2020.1796714
Mondello S, 2012, NEUROSURGERY, V70, P666, DOI 10.1227/NEU.0b013e318236a809
Mondello S, 2011, CRIT CARE, V15, DOI 10.1186/cc10286
Mortazavi MM, 2012, J NEUROSURG, V116, P210, DOI 10.3171/2011.7.JNS102142
Münch E, 2000, NEUROSURGERY, V47, P315, DOI 10.1097/00006123-200008000-00009
Ogden AT, 2005, NEUROSURGERY, V57, P207, DOI 10.1227/01.NEU.0000166533.79031.D8
Okonkwo DO, 2017, CRIT CARE MED, V45, P1907, DOI 10.1097/CCM.0000000000002619
Olivera A, 2015, JAMA NEUROL, V72, P1109, DOI 10.1001/jamaneurol.2015.1383
Omalu BI, 2006, NEUROSURGERY, V59, P1086, DOI 10.1227/01.NEU.0000245601.69451.27
Omalu BI, 2005, NEUROSURGERY, V57, P128, DOI 10.1227/01.NEU.0000163407.92769.ED
Papa L, 2010, CRIT CARE MED, V38, P138, DOI 10.1097/CCM.0b013e3181b788ab
Perel P, 2010, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007877.pub2
Peters ME, 2016, INT PSYCHOGERIATR, V28, P1931, DOI 10.1017/S1041610216001666
Peterson AB, 2021, MMWR-MORBID MORTAL W, V70, P1664, DOI 10.15585/mmwr.mm7048a3
Peterson AB, 2020, MMWR-MORBID MORTAL W, V69, P225, DOI 10.15585/mmwr.mm6909a2
Posti JP, 2016, NEUROSURGERY, V79, P456, DOI 10.1227/NEU.0000000000001226
Postolache TT, 2020, J ALZHEIMERS DIS, V74, P1, DOI 10.3233/JAD-191150
Puvenna V, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096296
Rauchman SH, 2023, FRONT NEUROSCI-SWITZ, V17, DOI 10.3389/fnins.2023.1090672
Roberts I, 2019, LANCET, V394, P1713, DOI 10.1016/S0140-6736(19)32233-0
ROOF RL, 1992, RESTOR NEUROL NEUROS, V4, P425, DOI 10.3233/RNN-1992-4608
Roozenbeek B, 2013, NAT REV NEUROL, V9, P231, DOI 10.1038/nrneurol.2013.22
Roquilly A, 2021, JAMA-J AM MED ASSOC, V325, P2056, DOI 10.1001/jama.2021.5561
Rosenfeld JV, 2012, LANCET, V380, P1088, DOI 10.1016/S0140-6736(12)60864-2
Ruchika F, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24031847
Sakellaridis N, 2011, J NEUROSURG, V114, P545, DOI 10.3171/2010.5.JNS091685
Sarmiento K, 2017, J SAFETY RES, V63, P105, DOI 10.1016/j.jsr.2017.08.003
Saunders RN, 2018, AM J SURG, V215, P424, DOI 10.1016/j.amjsurg.2017.09.033
Schwarz S, 2002, STROKE, V33, P136, DOI 10.1161/hs0102.100877
Shahim P, 2020, NEUROLOGY, V95, pE623, DOI 10.1212/WNL.0000000000009985
Shahim P, 2016, JAMA NEUROL, V73, P1308, DOI 10.1001/jamaneurol.2016.2038
Shao JB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051634
Shen L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0168901
Shi J, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.687796
Singh RD, 2022, WORLD NEUROSURG, V161, P410, DOI 10.1016/j.wneu.2021.11.092
Skolnick BE, 2014, NEW ENGL J MED, V371, P2467, DOI 10.1056/NEJMoa1411090
Stein SC, 2010, J NEUROTRAUM, V27, P1343, DOI 10.1089/neu.2009.1206
Stern RA, 2016, J ALZHEIMERS DIS, V51, P1099, DOI 10.3233/JAD-151028
Stern RA, 2013, NEUROLOGY, V81, P1122, DOI 10.1212/WNL.0b013e3182a55f7f
Steyerberg EW, 2019, LANCET NEUROL, V18, P923, DOI 10.1016/S1474-4422(19)30232-7
Stout NL, 2018, JNCI-J NATL CANCER I, V110, P815, DOI 10.1093/jnci/djy108
Takala RSK, 2016, WORLD NEUROSURG, V87, P8, DOI 10.1016/j.wneu.2015.10.066
Taylor A, 2001, CHILD NERV SYST, V17, P154, DOI 10.1007/s003810000410
Taylor CA, 2017, MMWR SURVEILL SUMM, V66, P1, DOI 10.15585/mmwr.ss6609a1
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vialet R, 2003, CRIT CARE MED, V31, P1683, DOI 10.1097/01.CCM.0000063268.91710.DF
Walcott BP, 2012, J NEUROTRAUM, V29, P1879, DOI 10.1089/neu.2012.2382
WANG CC, 1986, ARCH NEUROL-CHICAGO, V43, P570, DOI 10.1001/archneur.1986.00520060034013
WISE BL, 1962, J NEUROSURG, V19, P1038, DOI 10.3171/jns.1962.19.12.1038
Wright DW, 2007, ANN EMERG MED, V49, P391, DOI 10.1016/j.annemergmed.2006.07.932
Wu X, 2008, J TRAUMA, V64, P1313, DOI 10.1097/TA.0b013e318165c803
Xiao GM, 2008, CRIT CARE, V12, DOI 10.1186/cc6887
Yue JK, 2019, LANCET NEUROL, V18, P953, DOI 10.1016/S1474-4422(19)30282-0
Zehtabchi S, 2014, AM J EMERG MED, V32, P1503, DOI 10.1016/j.ajem.2014.09.023
Zhang DF, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-08959-y
Zhao YD, 2001, WORLD J SURG, V25, P1202
NR 127
TC 1
Z9 1
U1 19
U2 19
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA
SN 1743-9191
EI 1743-9159
J9 INT J SURG
JI Int. J. Surg.
PD JUN
PY 2024
VL 110
IS 6
BP 3745
EP 3759
DI 10.1097/JS9.0000000000001367
PG 15
WC Surgery
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Surgery
GA UL4X2
UT WOS:001248212000058
PM 38608040
OA hybrid
DA 2024-09-05
ER
PT J
AU Wang, Q
Huang, R
Li, RR
AF Wang, Qiang
Huang, Rui
Li, Rongrong
TI Renewable energy and sustainable development goals: Insights from latent
dirichlet allocation thematic and bibliometric analysis
SO SUSTAINABLE DEVELOPMENT
LA English
DT Article; Early Access
DE comprehensive evolution; renewable energy; sustainable development
goals; topic modeling
ID ECONOMIC-POLICY UNCERTAINTY; NONRENEWABLE ENERGY; CONSUMPTION;
CHALLENGES; EMISSIONS; WIND; GROWTH; STATES; NEXUS
AB This research conducts a comprehensive analysis of the intricate relationship between renewable energy and the sustainable development goals (SDGs). Employing diverse methodologies including latent dirichlet allocation (LDA) topic modeling, bibliometrics, citation analysis, and regression modeling, the study explores the evolving landscape of renewable energy research and its implications for SDGs. The analysis identifies a pronounced scholarly interest in renewable energy, reflected in the escalating publication volumes and citations across environmental sciences, green technology, and energy studies. Through meticulous examination, it uncovers interconnected research themes; encompassing policy uncertainty, Environmental Kuznets Curve, and ecological footprint, elucidating the multifaceted impact of renewable energy on the SDGs. Geographical distributions underscore diverse regional focuses, emphasizing the need for nuanced, context-specific approaches. Regression analysis highlights influential factors like carbon dioxide emissions and gross domestic product (GDP) growth, delineating their pivotal roles in shaping scholarly attention toward renewable energy research. Furthermore, the study delves into the economic, environmental, and social dimensions of renewable energy's influence. It reveals its contributions to employment generation, sustainable production, energy access, and infrastructure development while navigating challenges related to climate change mitigation and biodiversity conservation. This comprehensive investigation offers crucial insights into the complex interplay between renewable energy and the SDGs. It predicts future research directions and highlights the urgency for interdisciplinary collaboration, international cooperation, and policy innovations to harness renewable energy's transformative potential for global sustainable development.
C1 [Wang, Qiang; Li, Rongrong] Xinjiang Univ, Sch Econ & Management, Urumqi, Peoples R China.
[Wang, Qiang; Huang, Rui; Li, Rongrong] China Univ Petr East China, Sch Econ & Management, Qingdao 266580, Peoples R China.
C3 Xinjiang University; China University of Petroleum
RP Wang, Q; Li, RR (corresponding author), China Univ Petr East China, Sch Econ & Management, Qingdao 266580, Peoples R China.
EM wangqiang7@upc.edu.cn; lirr@upc.edu.cn
RI Wang, Qiang/F-4618-2011
OI Wang, Qiang/0000-0002-8751-8093
FU National Natural Science Foundation of China; [72104246]
FX The authors would like to thank the editor and the anonymous reviewer
for their helpful and constructive comments that greatly contributed to
improving the final version of the manuscript. This work is supported by
the National Natural Science Foundation of China (Grant No. 72104246).
CR Abu Hamed T, 2020, RENEW ENERG FOCUS, V35, P97, DOI 10.1016/j.ref.2020.09.006
Ahmad T, 2020, ENERGY REP, V6, P1973, DOI 10.1016/j.egyr.2020.07.020
Algarni S, 2023, SUSTAIN ENERGY TECHN, V56, DOI 10.1016/j.seta.2023.103098
Hoang AT, 2021, ENERG POLICY, V154, DOI 10.1016/j.enpol.2021.112322
Anwar A, 2023, ENVIRON SCI POLLUT R, DOI 10.1007/s11356-023-28761-w
Aydin M, 2023, GONDWANA RES, V118, P105, DOI 10.1016/j.gr.2023.01.013
Baerwald TJ, 2013, INT REGIONAL SCI REV, V36, P29, DOI 10.1177/0160017612441202
Bai B, 2021, J CLEAN PROD, V284, DOI 10.1016/j.jclepro.2020.124684
Swain RB, 2022, INT J SUST DEV WORLD, V29, P695, DOI 10.1080/13504509.2022.2078902
Baños R, 2011, RENEW SUST ENERG REV, V15, P1753, DOI 10.1016/j.rser.2010.12.008
Bekun FV, 2019, SCI TOTAL ENVIRON, V657, P1023, DOI 10.1016/j.scitotenv.2018.12.104
Bergmann A, 2006, ENERG POLICY, V34, P1004, DOI 10.1016/j.enpol.2004.08.035
Çelik O, 2021, ENVIRON SCI POLLUT R, V28, P13047, DOI 10.1007/s11356-021-12414-x
Cheng X, 2021, ENVIRON DEV, V40, DOI 10.1016/j.envdev.2021.100679
Chernysh Y, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122410384
Cherp A, 2021, NAT ENERGY, V6, P742, DOI 10.1038/s41560-021-00863-0
Chien FS, 2021, TECHNOL SOC, V65, DOI 10.1016/j.techsoc.2021.101587
Cui LB, 2022, RENEW ENERG, V184, P215, DOI 10.1016/j.renene.2021.11.075
Deveci M, 2021, ENG APPL ARTIF INTEL, V103, DOI 10.1016/j.engappai.2021.104311
Diggon S, 2022, MAR POLICY, V142, DOI 10.1016/j.marpol.2020.104065
Doesburg SM, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006142, 10.1371/journal.pone.0006802]
Dogan E, 2016, RENEW SUST ENERG REV, V60, P1074, DOI 10.1016/j.rser.2016.02.006
El-Fadel M, 2003, RENEW ENERG, V28, P1257, DOI 10.1016/S0960-1481(02)00229-X
Elavarasan RM, 2020, IEEE ACCESS, V8, P74432, DOI 10.1109/ACCESS.2020.2988011
Gulaliyev MG, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12031116
Haberl H, 2020, ENVIRON RES LETT, V15, DOI 10.1088/1748-9326/ab842a
Hasan M, 2022, ENERGY STRATEG REV, V44, DOI 10.1016/j.esr.2022.101005
Huang FB, 2021, J CLEAN PROD, V283, DOI 10.1016/j.jclepro.2020.124586
Ibn-Mohammed T, 2021, RESOUR CONSERV RECY, V164, DOI 10.1016/j.resconrec.2020.105169
Ike GN, 2020, SCI TOTAL ENVIRON, V721, DOI 10.1016/j.scitotenv.2020.137813
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jia X, 2021, INT J TECHNOL MANAGE, V87, P113, DOI 10.1504/IJTM.2021.120937
Khan I, 2021, SCI TOTAL ENVIRON, V754, DOI 10.1016/j.scitotenv.2020.142222
Khan SAR, 2022, SUSTAIN DEV, V30, P275, DOI 10.1002/sd.2243
Khandelwal C, 2022, INT J DISCL GOV, V19, P129, DOI 10.1057/s41310-022-00141-9
Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001
Kim JE, 2020, ENERGY RES SOC SCI, V70, DOI 10.1016/j.erss.2020.101613
Kumar JCR, 2020, ENERGY SUSTAIN SOC, V10, DOI 10.1186/s13705-019-0232-1
Li FY, 2022, J CLEAN PROD, V372, DOI 10.1016/j.jclepro.2022.133726
Li R, 2021, ENERGY REP, V7, P1712, DOI 10.1016/j.egyr.2021.03.030
Li RR, 2024, J ENVIRON MANAGE, V351, DOI 10.1016/j.jenvman.2023.119663
Li RR, 2023, RESOUR POLICY, V85, DOI 10.1016/j.resourpol.2023.103890
Liang C, 2022, TECHNOL FORECAST SOC, V182, DOI 10.1016/j.techfore.2022.121810
Lin XC, 2021, ENVIRON IMPACT ASSES, V86, DOI 10.1016/j.eiar.2020.106496
Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754
Mitra M, 2023, SUSTAIN ENERGY TECHN, V57, DOI 10.1016/j.seta.2023.103295
Mohsin M, 2021, J ENVIRON MANAGE, V284, DOI 10.1016/j.jenvman.2021.111999
Nakhli MS, 2022, RENEW ENERG, V185, P75, DOI 10.1016/j.renene.2021.12.046
Ostergaard PA, 2022, RENEW ENERG, V199, P1145, DOI 10.1016/j.renene.2022.09.065
Rani M, 2021, COMPOS PART B-ENG, V215, DOI 10.1016/j.compositesb.2021.108768
Raza MY, 2021, SUSTAIN ENERGY TECHN, V44, DOI 10.1016/j.seta.2020.100966
Sarkis J, 2021, INT J OPER PROD MAN, V41, P63, DOI 10.1108/IJOPM-08-2020-0568
Savvidis G, 2019, ENERG POLICY, V125, P503, DOI 10.1016/j.enpol.2018.10.033
Smyth K, 2015, MAR POLLUT BULL, V90, P247, DOI 10.1016/j.marpolbul.2014.10.045
Sun HP, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120659
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Tan H, 2021, J ENVIRON MANAGE, V297, DOI 10.1016/j.jenvman.2021.113382
Tan QF, 2021, APPL ENERG, V285, DOI 10.1016/j.apenergy.2021.116442
Tariq A, 2023, J CLEAN PROD, V413, DOI 10.1016/j.jclepro.2023.137425
Tawalbeh M, 2021, SCI TOTAL ENVIRON, V759, DOI 10.1016/j.scitotenv.2020.143528
Ullah A, 2021, J ENVIRON MANAGE, V295, DOI 10.1016/j.jenvman.2021.113073
Usman M, 2022, SCI TOTAL ENVIRON, V841, DOI 10.1016/j.scitotenv.2022.156662
Wang Q, 2024, J CLEAN PROD, V447, DOI 10.1016/j.jclepro.2024.141298
Wang Q, 2024, TELECOMMUN POLICY, V48, DOI 10.1016/j.telpol.2023.102699
Wang Q, 2023, ENERG ENVIRON-UK, DOI 10.1177/0958305X231220520
Wang Q, 2024, SUSTAIN DEV, V32, P1700, DOI 10.1002/sd.2743
Wang Q, 2024, SUSTAIN DEV, V32, P876, DOI 10.1002/sd.2703
Wang ZL, 2020, SCI TOTAL ENVIRON, V726, DOI 10.1016/j.scitotenv.2020.138574
Yadav P, 2019, ENERGY RES SOC SCI, V48, P1, DOI 10.1016/j.erss.2018.09.013
Yi S, 2023, RENEW ENERG, V202, P1357, DOI 10.1016/j.renene.2022.11.089
Yu ZY, 2021, ADV MATER, V33, DOI 10.1002/adma.202007100
Zafar MW, 2020, J CLEAN PROD, V268, DOI 10.1016/j.jclepro.2020.122149
Zakari A, 2022, ENERG POLICY, V169, DOI 10.1016/j.enpol.2022.113183
Zhang H, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120729
Zhang Y, 2017, OCEAN COAST MANAGE, V149, P69, DOI 10.1016/j.ocecoaman.2017.09.014
NR 75
TC 1
Z9 1
U1 24
U2 24
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0968-0802
EI 1099-1719
J9 SUSTAIN DEV
JI Sustain. Dev.
PD 2024 MAY 8
PY 2024
DI 10.1002/sd.3027
EA MAY 2024
PG 21
WC Development Studies; Green & Sustainable Science & Technology; Regional
& Urban Planning
WE Social Science Citation Index (SSCI)
SC Development Studies; Science & Technology - Other Topics; Public
Administration
GA PR9L1
UT WOS:001215926500001
DA 2024-09-05
ER
PT J
AU Seeber, M
Alon, I
Pina, DG
Piro, FN
Seeber, M
AF Seeber, Marco
Alon, Ilan
Pina, David G.
Piro, Fredrik Niclas
Seeber, Michele
TI Predictors of applying for and winning an ERC Proof-of-Concept grant: An
automated machine learning model
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Research proposals evaluation; Automated machine learning; ERC; PoC;
Research valorization; Research funding; Likelihood to apply; Artificial
intelligence
ID GENDER-DIFFERENCES; KNOWLEDGE TRANSFER; LIFE SCIENCES; UNIVERSITY;
COMMERCIALIZATION; DETERMINANTS; ENGAGEMENT; BIAS; GAP; TECHNOLOGIES
AB Research often fails to be translated into applications because of lack of financial support. The Proof of Concept (PoC) funding scheme from the European Research Council (ERC) supports the early stages of the valorization process of the research conducted by its grantees. This article explores the factors that predict who will apply for ERC grants and which grant proposals will prove successful. By combining information from two datasets of 10,074 ERC grants (representing 8361 individual grantees) and 2186 PoC proposals, and using automated machine learning, we can identify the main predictors of the propensity to apply and to win. Doing so fills a void in the literature on likelihood to apply. The results reveal major differences between potential and actual ben-eficiaries, due to decisions about applying for a grant and evaluations of the proposals. The decision to apply is affected by the interaction between the characteristics of the PoC funding scheme, the ERC grantee, and his/her environment. Grantees in countries that invest little in innovation, with low cost of personnel, and strong collaboration in innovation are more likely to apply. Male grantees are more likely to apply but have similar chances of winning as women.
C1 [Seeber, Marco] Univ Agder, Dept Polit Sci & Management, Kristiansand, Norway.
[Alon, Ilan] Univ Ariel, Dept Econ, Business Adm, Ariel, Israel.
[Alon, Ilan] Univ Agder, Sch Business & Law, POB 422, Kristiansand, Norway.
[Pina, David G.] European Res Execut Agcy, European Commiss, Brussels, Belgium.
[Piro, Fredrik Niclas] Nord Inst Studies Innovat, Educ & Res NIFU, Oslo, Norway.
[Seeber, Michele] Univ Modena & Reggio Emilia, Dept Life Sci, Modena, Italy.
C3 University of Agder; Ariel University; University of Agder; Universita
di Modena e Reggio Emilia
RP Seeber, M (corresponding author), Univ Agder, Dept Polit Sci & Management, Kristiansand, Norway.
EM marco.seeber@uia.no; ilanal@ariel.ac.il; david.pina@ec.europa.eu;
fredrik.piro@nifu.no; michele.seeber@unimore.it
RI seeber, marco/AFO-9598-2022
OI seeber, marco/0000-0002-0162-6289; Pina, David/0000-0002-4930-748X
CR Abdoul H., 2012, PLoS ONE, V7, P1
Albarrán P, 2010, SCIENTOMETRICS, V85, P329, DOI 10.1007/s11192-010-0223-7
Albers CJ, 2015, P NATL ACAD SCI USA, V112, pE6828, DOI 10.1073/pnas.1518936112
Alon I., 2001, Journal of Retailing and Consumer Services, V8, P147, DOI [10.1016/S0969-6989, DOI 10.1016/S0969-6989]
Alon I, 2015, COMPET REV, V25, P205, DOI 10.1108/CR-10-2014-0034
Truong A, 2019, PROC INT C TOOLS ART, P1471, DOI 10.1109/ICTAI.2019.00209
[Anonymous], 2000, Presidency Conclusions
[Anonymous], 2017, Europe's New Scientific Elite: Social Mechanisms of Science in the European Research Area
[Anonymous], 1995, COM95688 EUR COMM
[Anonymous], 2020, European Innovation Scoreboard 2020
Auerswald PE., 2003, The Journal of Technology Transfer, V28, P227
Azoulay P, 2007, J ECON BEHAV ORGAN, V63, P599, DOI 10.1016/j.jebo.2006.05.015
Blondel M, 2013, MACH LEARN, V93, P31, DOI 10.1007/s10994-013-5367-2
Bol T, 2018, P NATL ACAD SCI USA, V115, P4887, DOI 10.1073/pnas.1719557115
Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112
Boudreau K., 2012, 13053 HARV BUS SCH
Boyack KW, 2018, SCIENTOMETRICS, V114, P449, DOI 10.1007/s11192-017-2609-2
Bradley SR, 2013, J TECHNOL TRANSFER, V38, P349, DOI 10.1007/s10961-013-9309-8
Bromham L, 2016, NATURE, V534, P684, DOI 10.1038/nature18315
Bruneel J, 2010, RES POLICY, V39, P858, DOI 10.1016/j.respol.2010.03.006
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
CLARK B.R., 1998, CREATING ENTREPRENEU
COLE S, 1981, SCIENCE, V214, P881, DOI 10.1126/science.7302566
D'Este P, 2007, RES POLICY, V36, P1295, DOI 10.1016/j.respol.2007.05.002
Doornenbal BM, 2022, LEADERSHIP QUART, V33, DOI 10.1016/j.leaqua.2021.101515
Dosi G, 2006, RES POLICY, V35, P1450, DOI 10.1016/j.respol.2006.09.012
Enger SG, 2018, SCI PUBL POLICY, V45, P884, DOI 10.1093/scipol/scy029
Enger SG, 2016, SCIENTOMETRICS, V109, P1611, DOI 10.1007/s11192-016-2145-5
European Commission, 1994, EUR REP SCI TECHN IN
European Commission, 2015, BIBL ASS REP EC
European Commission, 2021, SHE FIG 2021
Fisher A, 2019, J MACH LEARN RES, V20
Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451
Gabrilovich E, 2007, 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1606
García-Quevedo J, 2018, TECHNOL FORECAST SOC, V127, P127, DOI 10.1016/j.techfore.2017.05.029
Gerbin A, 2016, J TECHNOL TRANSFER, V41, P979, DOI 10.1007/s10961-015-9457-0
Geuna A, 1998, RES POLICY, V26, P677, DOI 10.1016/S0048-7333(97)00050-4
Giuri P, 2019, TECHNOL FORECAST SOC, V138, P261, DOI 10.1016/j.techfore.2018.09.030
Gulbrandsen M, 2005, RES POLICY, V34, P932, DOI 10.1016/j.respol.2005.05.004
Haeussler C, 2011, RES POLICY, V40, P41, DOI 10.1016/j.respol.2010.09.012
Henriques L, 2009, JRC technical notes, V53681
King DA, 2004, NATURE, V430, P311, DOI 10.1038/430311a
Kuhn M., 2013, Applied Predictive Modeling
Lam A, 2011, RES POLICY, V40, P1354, DOI 10.1016/j.respol.2011.09.002
Larsen K. R., 2021, Automated Machine Learning for Business
Laudel G., 2006, Science and Public Policy, V33, P489, DOI DOI 10.3152/147154306781778777
Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784
Lepori B, 2015, SCIENTOMETRICS, V105, P2149, DOI 10.1007/s11192-015-1768-2
Lockett A, 2005, RES POLICY, V34, P1043, DOI 10.1016/j.respol.2005.05.006
Mantere S, 2013, ACAD MANAGE REV, V38, P70, DOI 10.5465/amr.2011.0188
Marsh HW, 2008, AM PSYCHOL, V63, P160, DOI 10.1037/0003-066X.63.3.160
Mayo NE, 2006, J CLIN EPIDEMIOL, V59, P842, DOI 10.1016/j.jclinepi.2005.12.007
Meng Y, 2016, RES POLICY, V45, P56, DOI 10.1016/j.respol.2015.07.004
Munari F, 2021, RES POLICY, V50, DOI 10.1016/j.respol.2021.104211
Munari F, 2018, TECHNOL FORECAST SOC, V127, P70, DOI 10.1016/j.techfore.2017.07.024
Munim ZH, 2021, MARIT ECON LOGIST, V23, P310, DOI 10.1057/s41278-020-00156-5
Munim ZH, 2019, J RISK FINANC MANAG, V12, DOI 10.3390/jrfm12020103
Murray DL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0155876
Murray F, 2007, IND CORP CHANGE, V16, P657, DOI 10.1093/icc/dtm021
Mutz R, 2012, Z PSYCHOL, V220, P121, DOI 10.1027/2151-2604/a000103
Neufeld J, 2013, RES EVALUAT, V22, P237, DOI 10.1093/reseval/rvt014
O'Gorman C, 2008, J TECHNOL TRANSFER, V33, P23, DOI 10.1007/s10961-006-9010-2
Perkmann M, 2013, RES POLICY, V42, P423, DOI 10.1016/j.respol.2012.09.007
Piro FN, 2020, SCI PUBL POLICY, V47, P581, DOI 10.1093/scipol/scaa037
Rasmussen E, 2008, TECHNOVATION, V28, P506, DOI 10.1016/j.technovation.2007.12.002
Rasmussen E, 2012, TECHNOL ANAL STRATEG, V24, P663, DOI 10.1080/09537325.2012.705119
Research Council of Norway, 2021, SCI TECHN IND NORW 2
Rodríguez-Navarro A, 2018, SCI PUBL POLICY, V45, P14, DOI 10.1093/scipol/scx021
Sandström U, 2008, SCIENTOMETRICS, V74, P175, DOI 10.1007/s11192-008-0211-3
Schiffbaenker Helene, ELEPHANT ROOM, P109
Seeber M, 2022, J ASSOC INF SCI TECH, V73, P1106, DOI 10.1002/asi.24617
Seeber M, 2021, RES EVALUAT, V30, P349, DOI 10.1093/reseval/rvab011
Seeber M, 2013, STUD HIGH EDUC, V38, P20, DOI 10.1080/03075079.2011.561308
Sellenthin MO, 2009, J TECHNOL TRANSFER, V34, P603, DOI 10.1007/s10961-009-9108-4
Stephan PE, 2007, ECON INNOV NEW TECH, V16, P71, DOI 10.1080/10438590600982806
Stuart TE, 2006, AM J SOCIOL, V112, P97, DOI 10.1086/502691
Tamblyn R, 2018, CAN MED ASSOC J, V190, pE489, DOI 10.1503/cmaj.170901
Tartari V, 2015, RES POLICY, V44, P1176, DOI 10.1016/j.respol.2015.01.014
Thune T, 2016, SCI PUBL POLICY, V43, P774, DOI 10.1093/scipol/scw019
van den Besselaar P, 2018, SCIENTOMETRICS, V117, P313, DOI 10.1007/s11192-018-2848-x
van den Besselaar P, 2009, RES EVALUAT, V18, P273, DOI 10.3152/095820209X475360
Vilkkumaa E, 2015, TECHNOL FORECAST SOC, V96, P173, DOI 10.1016/j.techfore.2015.03.001
Volker B, 2015, P NATL ACAD SCI USA, V112, pE7036, DOI 10.1073/pnas.1519046112
Wanzenböck I, 2020, QUANT SCI STUD, V1, P1136, DOI 10.1162/qss_a_00067
NR 84
TC 5
Z9 5
U1 1
U2 14
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD NOV
PY 2022
VL 184
AR 122009
DI 10.1016/j.techfore.2022.122009
EA SEP 2022
PG 16
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA 5B0AE
UT WOS:000863238800013
OA hybrid
DA 2024-09-05
ER
PT J
AU Tseng, CY
Ting, PH
AF Tseng, Chun-Yao
Ting, Ping-Ho
TI Patent analysis for technology development of artificial intelligence: A
country-level comparative study
SO INNOVATION-ORGANIZATION & MANAGEMENT
LA English
DT Article
DE artificial intelligence; technology development; patent and citation
analysis; technology flow
ID INDICATORS
AB Artificial intelligence (AI) plays a key role in knowledge economies, because it can be used to develop systems that think like humans, act like humans, think rationally, and act rationally (Russell & Norvig, 2010). In this study, we divide AI into four sub-technological fields: Problem reasoning and solving, machine learning, network structures, and knowledge processing systems. This study investigates three main issues related to the technology development of AI. First, the aggregate technology development of AI is examined, and the four sub-technological fields of AI are compared. Second, we employ measures of patent quantity and patent quality to demonstrate the technology development of AI in different countries. Finally, we investigate the technology positions of different countries in the four sub-technological fields of AI. By analyzing a patent and citation dataset comprised of all patents granted by the United States patent and trademark office from 1976 to 2010, we obtain empirical findings that help us understand the technology development of AI in different countries. The major contributions of this study are four measures of patent quantity (PCA, PCI, SHAI, and SHIA) and three measures of patent quality (citation ratios, CII, and TCT). These measures are helpful in understanding technological development of AI in different counties. Moreover, we use patent citation data and investigate the technology flow in AI, in order to determine the technology position of different countries in the four sub-technological fields of AI.
C1 [Tseng, Chun-Yao] Tunghai Univ, Dept Business Adm, Taichung 40704, Taiwan.
[Ting, Ping-Ho] Chi Nan Univ, Dept Hosp Management, Nantou, Taiwan.
[Ting, Ping-Ho] Chi Nan Univ, Dept Leisure Studies & Tourism Management, Nantou, Taiwan.
C3 Tunghai University
RP Tseng, CY (corresponding author), Tunghai Univ, Dept Business Adm, Taichung 40704, Taiwan.
CR Alfonso-Gil J, 2003, INT J TECHNOL MANAGE, V26, P346
Bergek A, 2010, RES POLICY, V39, P1321, DOI 10.1016/j.respol.2010.08.002
Bloom N, 2002, ECON J, V112, pC97, DOI 10.1111/1468-0297.00022
Dernis H., 2001, STI Review, V27, P129
Grupp H, 1999, RES POLICY, V28, P377, DOI 10.1016/S0048-7333(98)00125-5
Guellec D, 2001, RES POLICY, V30, P1253, DOI 10.1016/S0048-7333(00)00149-9
Hu AGZ, 2003, INT J IND ORGAN, V21, P849, DOI 10.1016/S0167-7187(03)00035-3
Jaffe A.B., 1999, Econ. Innov. N. Technol., V8, P105
JAFFE AB, 1993, Q J ECON, V108, P577, DOI 10.2307/2118401
Lukach R, 2005, BEYOND BORDERS: INTERNATIONALISATION OF R&D AND POLICY IMPLICATIONS FOR SMALL OPEN ECONOMIES, P331
MacGarvie M, 2005, ECON LETT, V87, P121, DOI 10.1016/j.econlet.2004.09.011
Russell S. J., 2010, Articial intelligence: A modern approach, Vthird
Schoenecker T, 2002, IEEE T ENG MANAGE, V49, P36, DOI 10.1109/17.985746
Sherry EF, 2004, RES POLICY, V33, P179, DOI 10.1016/S0048-7333(03)00088-X
Spector L, 2006, ARTIF INTELL, V170, P1251, DOI 10.1016/j.artint.2006.10.009
Tseng CY, 2007, INT J TECHNOL MANAGE, V37, P162, DOI 10.1504/IJTM.2007.011809
Tseng CY, 2009, INT J TECHNOL MANAGE, V45, P50, DOI 10.1504/IJTM.2009.021519
Tseng FM, 2011, TECHNOL FORECAST SOC, V78, P332, DOI 10.1016/j.techfore.2010.10.010
United States Patent and Trademark Office, 2008, CLASS SCHEDULE FOR C
Waltz DL, 2006, IEEE INTELL SYST, V21, P66, DOI 10.1109/MIS.2006.46
NR 20
TC 37
Z9 40
U1 10
U2 120
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1447-9338
EI 2204-0226
J9 INNOV-ORGAN MANAG
JI Innov.-Organ. Manag.
PD DEC
PY 2013
VL 15
IS 4
BP 463
EP 475
DI 10.5172/impp.2013.15.4.463
PG 13
WC Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA AA4KT
UT WOS:000331065200006
DA 2024-09-05
ER
PT J
AU Gil, R
Virgili-Goma, J
López-Gil, JM
García, R
AF Gil, Rosa
Virgili-Goma, Jordi
Lopez-Gil, Juan-Miguel
Garcia, Roberto
TI Deepfakes: evolution and trends
SO SOFT COMPUTING
LA English
DT Article
DE Deepfakes; Artificial intelligence; Deep learning; Bibliometrics
ID ARTIFICIAL-INTELLIGENCE; FACE MANIPULATION; NEURAL-NETWORKS; DEEP FAKES;
VIDEOS; CHALLENGES; IMAGES; TOOL; RECOGNITION; TECHNOLOGY
AB This study conducts research on deepfakes technology evolution and trends based on a bibliometric analysis of the articles published on this topic along with six research questions: What are the main research areas of the articles in deepfakes? What are the main current topics in deepfakes research and how are they related? Which are the trends in deepfakes research? How do topics in deepfakes research change over time? Who is researching deepfakes? Who is funding deepfakes research? We have found a total of 331 research articles about deepfakes in an analysis carried out on the Web of Science and Scopus databases. This data serves to provide a complete overview of deepfakes. Main insights include: different areas in which deepfakes research is being performed; which areas are the emerging ones, those that are considered basic, and those that currently have the most potential for development; most studied topics on deepfakes research, including the different artificial intelligence methods applied; emerging and niche topics; relationships among the most prominent researchers; the countries where deepfakes research is performed; main funding institutions. This paper identifies the current trends and opportunities in deepfakes research for practitioners and researchers who want to get into this topic.
C1 [Gil, Rosa; Virgili-Goma, Jordi; Garcia, Roberto] Univ Lleida, Lleida 25001, Spain.
[Lopez-Gil, Juan-Miguel] Univ Basque Country, Donostia San Sebastian 20018, Spain.
C3 Universitat de Lleida; University of Basque Country
RP García, R (corresponding author), Univ Lleida, Lleida 25001, Spain.
EM rosamaria.gil@udl.cat; jordi.virgili@udl.cat; juanmiguel.lopez@ehu.eus;
roberto.garcia@udl.cat
RI Garcia, Roberto/B-3388-2008; Lopez-Gil, Juan-Miguel/GVT-9867-2022
OI Garcia, Roberto/0000-0003-2207-9605; Lopez-Gil,
Juan-Miguel/0000-0001-7730-0472; Virgili Goma, Jordi/0000-0002-7144-7489
FU CRUE-CSIC agreement; Springer Nature; MCIN/AEI [PID2020-117912RB-C22];
Research Group program of the University of the Basque Country;
[GIU21/037]
FX Open Access funding provided thanks to the CRUE-CSIC agreement with
Springer Nature. This work has been partially supported by the project
"ANGRU: Applying kNowledge Graphs to research data ReUsability" with
reference PID2020-117912RB-C22 and funded by
MCIN/AEI/10.13039/501100011033. Additionally, this research benefits
from funding from the Research Group program of the University of the
Basque Country under contract GIU21/037.
CR Aboueldahab S, 2021, INT CRIM LAW REV, V21, P505, DOI 10.1163/15718123-BJA10061
Agarwal H., 2021, 2 INT C EL SUST COMM, P1245
Agarwal S., 2019, PROC CVPR 2019 WORKS, P38, DOI DOI 10.1109/ICCV.2015.425
Agarwal S, 2020, IEEE COMPUT SOC CONF, P2814, DOI 10.1109/CVPRW50498.2020.00338
Agarwal S, 2021, IEEE COMPUT SOC CONF, P981, DOI 10.1109/CVPRW53098.2021.00109
Agarwal S, 2020, IEEE INT WORKS INFOR, DOI 10.1109/WIFS49906.2020.9360904
Agrawal Ronak, 2021, Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), P663, DOI 10.1109/INDIACom51348.2021.00117
Ahmed M, 2021, 2021 INT C ADV TECHN, DOI [10.1109/ICOTEN52080.2021.9493549, DOI 10.1109/ICOTEN52080.2021.9493549]
Ahmed SRA, 2021, APPL NANOSCI, DOI 10.1007/s13204-021-02072-3
Ahmed S, 2021, PERS INDIV DIFFER, V182, DOI 10.1016/j.paid.2021.111074
Ahmed S, 2023, NEW MEDIA SOC, V25, P1108, DOI 10.1177/14614448211019198
Ahmed S, 2021, TELEMAT INFORM, V57, DOI 10.1016/j.tele.2020.101508
Ajoy Atmik, 2021, 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), P1329, DOI 10.1109/ICIRCA51532.2021.9544734
Alattar A, 2020, IS T INT S EL IM SCI, DOI 10.2352/
Albahar M., 2019, J. Theor. Appl. Inf. Technol., V97, P3242
Aliman NM, 2020, 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY (AIVR 2020), P130, DOI 10.1109/AIVR50618.2020.00031
Amelin R., 2020, COMMUN COMPUT INF SC, V1242, P223, DOI [10.1007/978-3-030-65218-0_17, DOI 10.1007/978-3-030-65218-0_17]
Amerini Irene, 2020, IH&MMSec '20: Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security, P97, DOI 10.1145/3369412.3395070
Amerini I, 2021, FOUND TRENDS COMPUT, V12, P309, DOI 10.1561/0600000096
Amerini I, 2019, IEEE INT CONF COMP V, P1205, DOI 10.1109/ICCVW.2019.00152
[Anonymous], 2021, CEUR WORKSHOP PROC
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Ayers D, 2021, CONVERGENCE-US, V27, P1018, DOI 10.1177/13548565211027810
Baek JY, 2020, IEEE ACCESS, V8, P45421, DOI 10.1109/ACCESS.2020.2968612
Bailer W, 2021, P 2021 IEEE C COGN C, P133, DOI [10.1109/CogSIMA51574.2021.9475929, DOI 10.1109/COGSIMA51574.2021.9475929]
Biswas A., 2021, Journal of Information Systems and Telecommunication (JIST), V9, P161
Bode L, 2021, CONVERGENCE-US, V27, P849, DOI 10.1177/13548565211034044
Bode L, 2021, CONVERGENCE-US, V27, P919, DOI 10.1177/13548565211030454
Bondi L, 2020, IEEE INT WORKS INFOR, DOI 10.1109/WIFS49906.2020.9360901
Bonettini N, 2021, INT C PATT RECOG, P5012, DOI 10.1109/ICPR48806.2021.9412711
Bonomi M, 2021, J VIS COMMUN IMAGE R, V79, DOI 10.1016/j.jvcir.2021.103239
Bore J., 2020, Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity, DOI [10.1007/978-3-030-35746-7_19, DOI 10.1007/978-3-030-35746-7_19]
Bose AJ, 2019, IEEE INT WORKSH MULT, DOI 10.1109/mmsp.2019.8901744
Brooks CF, 2021, CYBERPSYCH BEH SOC N, V24, P159, DOI 10.1089/cyber.2020.0183
Burroughs SJ, 2020, IEEE APP IMG PAT, DOI 10.1109/AIPR50011.2020.9425347
Caldelli R, 2021, PATTERN RECOGN LETT, V146, P31, DOI 10.1016/j.patrec.2021.03.005
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Camacho IC, 2021, J IMAGING, V7, DOI 10.3390/jimaging7040069
Caporusso N., 2020, Advances in Intelligent Systems and Computing, P235, DOI [10.1007/978-3-030-51328-3_33, DOI 10.1007/978-3-030-51328-3_33]
Carlini N, 2020, IEEE COMPUT SOC CONF, P2804, DOI 10.1109/CVPRW50498.2020.00337
Carter M, 2021, IEEE INTERNET COMPUT, V25, P73, DOI 10.1109/MIC.2020.3032323
Chang X, 2020, CHIN CONTR CONF, P7252, DOI [10.23919/CCC50068.2020.9189596, 10.23919/ccc50068.2020.9189596]
Du CXT, 2020, 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), P707, DOI 10.1109/SSCI47803.2020.9308305
Chawla R., 2019, International Journal for Advance Research and Development, V4, P4
Chen BY, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/9942754
Chen P, 2020, IEEE INT CON MULTI, DOI 10.1109/icme46284.2020.9102914
Chesney B, 2019, CALIF LAW REV, V107, P1753, DOI 10.15779/Z38RV0D15J
Chi H., 2021, ADV INTELL SYST COMP, V1288, P588, DOI [10.1007/978-3-030-63128-4_45, DOI 10.1007/978-3-030-63128-4_45]
Chintha A, 2020, IEEE/IAPR INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2020), DOI 10.1109/ijcb48548.2020.9304936
Chintha A, 2020, IEEE J-STSP, V14, P1024, DOI 10.1109/JSTSP.2020.2999185
Cho M, 2017, SOFT COMPUT, V21, P3429, DOI 10.1007/s00500-015-2019-4
Choras M, 2021, APPL SOFT COMPUT, V101, DOI 10.1016/j.asoc.2020.107050
Chowdhury S, 2020, 2020 11 INT C COMP C, DOI [10.1109/ICCCNT49239.2020.9225630, DOI 10.1109/ICCCNT49239.2020.9225630]
Chugh K, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P439, DOI 10.1145/3394171.3413700
Chunlei Peng, 2020, Machine Learning for Cyber Security. Third International Conference, ML4CS 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12488), P55, DOI 10.1007/978-3-030-62463-7_6
Ciftci U, 2020, IJCB 2020, DOI [10.1109/IJCB48548.2020.9304909, DOI 10.1109/IJCB48548.2020.9304909]
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Colon MJM, 2020, IOWA LAW REV, V106, P411
Cozzolino Davide, 2019, P IEEE CVF C COMP VI, P130
D'Alessandra F, 2021, J INT CRIM JUSTICE, V19, P9, DOI 10.1093/jicj/mqab034
da Silva RB, 2022, INT CRIM LAW REV, V22, P941, DOI 10.1163/15718123-bja10083
Dal Cortivo D, 2021, J IMAGING, V7, DOI 10.3390/jimaging7080135
Dang H, 2020, PROC CVPR IEEE, P5780, DOI 10.1109/CVPR42600.2020.00582
Davis M., 2020, IFIP ADV INF COMMUN, V590, P291, DOI [10.1007/978-3-030-62803-1_23, DOI 10.1007/978-3-030-62803-1_23]
de Ruiter A., 2021, PHILOS TECHNOLOGY, V34, P1311, DOI DOI 10.1007/S13347-021-00459-2
de Seta G, 2021, CONVERGENCE-US, V27, P935, DOI 10.1177/13548565211030185
Demir I, 2021, PROCEEDINGS ETRA 2021: ACM SYMPOSIUM ON EYE TRACKING RESEARCH AND APPLICATIONS, DOI 10.1145/3448017.3457387
Deshmukh Anushree, 2021, Intelligent Computing and Networking. Proceedings of IC-ICN 2020. Lecture Notes in Networks and Systems (LNNS 146), P293, DOI 10.1007/978-981-15-7421-4_27
Diakopoulos N, 2021, NEW MEDIA SOC, V23, P2072, DOI 10.1177/1461444820925811
Dobber T, 2021, INT J PRESS/POLIT, V26, P69, DOI 10.1177/1940161220944364
Dondero M., 2021, LEXIA, V2021, P439, DOI [10.4399/978882553853321, DOI 10.4399/978882553853321]
Du MN, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P325, DOI 10.1145/3340531.3411892
Echizen I, 2021, IEICE T INF SYST, VE104D, P12, DOI 10.1587/transinf.2020MUI0002
El Rai M.C., 2020, 2020 3 INT C SIGN PR, P1, DOI [10.1109/ICSPIS51252.2020.9340138, DOI 10.1109/ICSPIS51252.2020.9340138]
England P, 2021, MMSYS '21: PROCEEDINGS OF THE 2021 MULTIMEDIA SYSTEMS CONFERENCE, P108, DOI 10.1145/3458305.3459599
Fagni T, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0251415
Fallis Don, 2021, Philos Technol, V34, P623, DOI 10.1007/s13347-020-00419-2
Farish K, 2020, J INTELLET PROP LAW, V15, P40, DOI 10.1093/jiplp/jpz139
Fei JW, 2021, MULTIMED TOOLS APPL, V80, P30789, DOI 10.1007/s11042-020-09147-3
Feng D., 2020, ICONIP, V1333, P316, DOI [DOI 10.1007/978-3-030-63823-8_37, 10.1007/978-3-030-63823-8_37]
Fernandes Steven Lawrence, 2020, Computer Vision - ECCV 2020 Workshops. Proceedings. Lecture Notes in Computer Science (LNCS 12535), P220, DOI 10.1007/978-3-030-66415-2_14
Fernandes S, 2020, IEEE COMPUT SOC CONF, P1250, DOI 10.1109/CVPRW50498.2020.00162
Fernando T, 2021, IEEE T INF FOREN SEC, V16, P1973, DOI 10.1109/TIFS.2020.3047768
Fletcher J, 2018, THEATRE J, V70, P455, DOI 10.1353/tj.2018.0097
Frank J, 2020, 37 INT C MACH LEARN, P3205
Freeman L, 2021, J INT CRIM JUSTICE, V19, P35, DOI 10.1093/jicj/mqab013
Frick R, 2021, IS T INT S EL IM SCI, DOI 10.2352/
Fung SO, 2021, IEEE IJCNN, DOI 10.1109/IJCNN52387.2021.9534089
Gandhi A, 2020, IEEE IJCNN, DOI 10.1109/ijcnn48605.2020.9207034
García-Ull FJ, 2021, ANALISI, P103, DOI 10.5565/rev/analisi.3378
Godulla A, 2021, SCM STUD COMM MEDIA, V10, P72, DOI 10.5771/2192-4007-2021-1-72
Goebel M, 2021, IS T INT S EL IM SCI, DOI 10.2352/
Gong D., 2020, International Journal of Advanced Trends in Computer Science and Engineering, V9, P2861, DOI [DOI 10.30534/IJATCSE/2020/58932020, 10.30534/ijatcse/2020/58932020]
Gong DF, 2021, INT J ADV COMPUT SC, V12, P201
Gosse C, 2020, CRIT STUD MEDIA COMM, V37, P497, DOI 10.1080/15295036.2020.1832697
Guan HY, 2019, IEEE WINT CONF APPL, P63, DOI 10.1109/WACVW.2019.00018
Guo ZQ, 2021, COMPUT VIS IMAGE UND, V204, DOI 10.1016/j.cviu.2021.103170
Gupta Parul, 2020, ICMI '20: Proceedings of the 2020 International Conference on Multimodal Interaction, P519, DOI 10.1145/3382507.3418857
Hancock JT, 2021, CYBERPSYCH BEH SOC N, V24, P149, DOI 10.1089/cyber.2021.29208.jth
Hanska M, 2021, COMMUNICATION DOMINA, DOI [10.4324/9780429280795, DOI 10.4324/9780429280795]
Hartmann K, 2020, INT CONF CYBER CONFL, P233, DOI [10.23919/CyCon49761.2020.9131716, 10.23919/cycon49761.2020.9131716]
Hasan HR, 2019, IEEE ACCESS, V7, P41596, DOI 10.1109/ACCESS.2019.2905689
Hashmi MF, 2020, IEEE ACCESS, V8, P101293, DOI 10.1109/ACCESS.2020.2998330
Hayward KJ, 2021, CRIME MEDIA CULT, V17, P209, DOI 10.1177/1741659020917434
Hazan Susan, 2020, Culture and Computing. 8th International Conference, C&C 2020 Held as Part of the 22nd HCI International Conference, HCII 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12215), P65, DOI 10.1007/978-3-030-50267-6_6
Hewage C, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12070121
Higgins JP., 2019, COCHRANE HDB SYSTEMA, DOI [10.1002/9781119536604.ch10, 10.1002/9781119536604]
Holliday C, 2021, CONVERGENCE-US, V27, P899, DOI 10.1177/13548565211029412
Hosier BC, 2020, IEEE COMPUT SOC CONF, P2860, DOI 10.1109/CVPRW50498.2020.00343
Hosler B, 2021, IEEE COMPUT SOC CONF, P1013, DOI 10.1109/CVPRW53098.2021.00112
Houde S, 2020, CEUR WORKSHOP PROC
Hu S, 2021, 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), P2500, DOI 10.1109/ICASSP39728.2021.9414582
Huang R, 2020, IEEE IMAGE PROC, P2236, DOI [10.1109/ICIP40778.2020.9190678, 10.1109/icip40778.2020.9190678]
Huang YH, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P1217, DOI 10.1145/3394171.3413732
Huber E, 2021, P 2021 IEEE INT C CO, P127, DOI [10.1109/CogSIMA51574.2021.9475926, DOI 10.1109/COGSIMA51574.2021.9475926]
Hussain S, 2021, IEEE WINT CONF APPL, P3347, DOI 10.1109/WACV48630.2021.00339
Iacobucci S, 2021, CYBERPSYCH BEH SOC N, V24, P194, DOI 10.1089/cyber.2020.0149
Ismail A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21165413
Ivanov Nikita S., 2020, 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). Proceedings, P326, DOI 10.1109/EIConRus49466.2020.9039498
Jafar Mousa Tayseer, 2020, 2020 11th International Conference on Information and Communication Systems (ICICS), P053, DOI 10.1109/ICICS49469.2020.239493
Javed AR, 2021, ENG APPL ARTIF INTEL, V106, DOI 10.1016/j.engappai.2021.104456
Jeong D, 2020, IEEE ACCESS, V8, P184560, DOI 10.1109/ACCESS.2020.3029280
Jeong Y, 2021, LNCS, P83, DOI 10.1007/978-3-030-69544-6_6
Jian Han, 2021, Computer Vision - ACCV 2020 15th Asian Conference on Computer Vision. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 12626), P121, DOI 10.1007/978-3-030-69541-5_8
Jian Wu, 2020, HPCCT & BDAI 2020: Proceedings of the 2020 4th High Performance Computing and Cluster Technologies Conference & 2020 3rd International Conference on Big Data and Artificial Intelligence, P104, DOI 10.1145/3409501.3409544
Jiang J, 2021, 2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), DOI 10.1109/IJCB52358.2021.9484396
Jiang LM, 2020, PROC CVPR IEEE, P2886, DOI 10.1109/CVPR42600.2020.00296
Jin XL, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/6626974
Johnson DG, 2021, COMMUN ACM, V64, P33, DOI 10.1145/3447255
Johnson J, 2021, J STRATEGIC STUD, DOI 10.1080/01402390.2020.1867541
Jongman B., 2020, PERSPECT TERROR, V14, P155
Jung T, 2020, IEEE ACCESS, V8, P83144, DOI 10.1109/ACCESS.2020.2988660
Kang Minguk, 2020, Advances in Neural Information Processing Systems (NeurIPS)
Karandikar A., 2020, Int. J. Adv. Trends Comput. Sci. Eng., V9, P1311, DOI 10.30534/ijatcse/2020/62922020
Karasavva V, 2021, CYBERPSYCH BEH SOC N, V24, P203, DOI 10.1089/cyber.2020.0272
Katarya Rahul, 2020, 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), P485, DOI 10.1109/I-SMAC49090.2020.9243588
Kaur S, 2020, J ELECTRON IMAGING, V29, DOI 10.1117/1.JEI.29.3.033013
Kawa P, 2021, SECRYPT 2021: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, P779, DOI 10.5220/0010581707790784
Kaye BK, 2020, ATL J COMMUN, V28, P257, DOI 10.1080/15456870.2020.1720023
Kha-Luan Pham, 2020, 2020 7th NAFOSTED Conference on Information and Computer Science (NICS), P344, DOI 10.1109/NICS51282.2020.9335837
Khalid H, 2020, IEEE COMPUT SOC CONF, P2794, DOI 10.1109/CVPRW50498.2020.00336
Khalil Hady A., 2021, 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), P24, DOI 10.1109/MIUCC52538.2021.9447642
Khalil SS, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13040093
Kharbat F.F., 2019, I C COMP SYST APPLIC, DOI [10.1109/AICCSA47632.2019.9035360, DOI 10.1109/aiccsa47632.2019.9035360]
Khodabakhsh A, 2020, 2020 INT C BIOMETRIC
Khormali A, 2021, BIG DATA COGN COMPUT, V5, DOI 10.3390/bdcc5040049
Ki Chan Christopher Chun, 2020, 2020 IEEE/ITU International Conference on Artificial Intelligence for Good (AI4G), P55, DOI 10.1109/AI4G50087.2020.9311067
Kietzmann J, 2021, INT J ADVERT, V40, P473, DOI 10.1080/02650487.2020.1834211
Kietzmann J, 2020, BUS HORIZONS, V63, P135, DOI 10.1016/j.bushor.2019.11.006
Kikerpill K., 2020, Porn Stud, V7, P352, DOI [DOI 10.1080/23268743.2020.1765851, 10.1080/23268743.2020.1765851]
Kim KS, 2021, LIBR INFORM SCI RES, V43, DOI 10.1016/j.lisr.2021.101104
Kim M, 2021, IEEE COMPUT SOC CONF, P1001, DOI 10.1109/CVPRW53098.2021.00111
Kohli A, 2021, MULTIMED TOOLS APPL, V80, P18461, DOI 10.1007/s11042-020-10420-8
Korshunov P, 2021, 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), P2510, DOI 10.1109/ICASSP39728.2021.9414258
Korshunov P, 2019, INT CONF BIOMETR
Kozyreva A, 2020, PSYCHOL SCI PUBL INT, V21, P103, DOI 10.1177/1529100620946707
Kuang ZZ, 2021, NEUROCOMPUTING, V457, P322, DOI 10.1016/j.neucom.2021.06.061
Kubanek M, 2021, ADV INTELLIGENT SYST, V1267, P197, DOI [10.1007/978-3-030-57805-3_19, DOI 10.1007/978-3-030-57805-3_19]
Kui Zhu, 2020, 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC). Proceedings, P257, DOI 10.1109/DSC50466.2020.00046
Kukanov I, 2020, ASIAPAC SIGN INFO PR, P1300
Kwok AOJ, 2021, CURR ISSUES TOUR, V24, P1798, DOI 10.1080/13683500.2020.1738357
Lai XJ, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106894
Laishram L, 2021, COMM COM INF SC, V1405, P131, DOI 10.1007/978-3-030-81638-4_11
Lees D, 2021, CONVERGENCE-US, V27, P954, DOI 10.1177/13548565211030452
Lewis JK, 2020, IEEE APP IMG PAT, DOI 10.1109/AIPR50011.2020.9425167
Li HD, 2020, SIGNAL PROCESS, V174, DOI 10.1016/j.sigpro.2020.107616
Li LZ, 2020, PROC CVPR IEEE, P5000, DOI 10.1109/CVPR42600.2020.00505
Li M, 2021, I W BIOMETRIC FORENS, DOI 10.1109/IWBF50991.2021.9465076
Li M, 2021, INT C PATT RECOG, P5184, DOI 10.1109/ICPR48806.2021.9413139
Li WX, 2021, LECT NOTES COMPUT SC, V12919, P3, DOI 10.1007/978-3-030-88052-1_1
Li Y, 2021, ADV COMPUTER VISION, P247, DOI [10.1007/978-3-030-74697-1_12, DOI 10.1007/978-3-030-74697-1_12]
Li YZ, 2020, PROC CVPR IEEE, P3204, DOI 10.1109/CVPR42600.2020.00327
Liang JH, 2021, 2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), DOI 10.1109/IJCB52358.2021.9484400
Liang T, 2020, PROC INT C TOOLS ART, P675, DOI 10.1109/ICTAI50040.2020.00108
Ling HF, 2021, IEEE IJCNN, DOI 10.1109/IJCNN52387.2021.9533912
Trinh L, 2021, IEEE WINT CONF APPL, P1972, DOI 10.1109/WACV48630.2021.00202
Lomnitz M, 2020, IEEE APP IMG PAT, DOI 10.1109/AIPR50011.2020.9425192
Lu YJ, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/5524930
Luo YF, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/4280328
Luochen Lv, 2021, 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), P380, DOI 10.1109/ICCCS52626.2021.9449287
Lyu SQ, 2020, PLATELETS, V31, P971, DOI 10.1080/09537104.2020.1780205
Maddocks S., 2020, PORN STUDIES, V7, P415, DOI DOI 10.1080/23268743.2020.1757499
Maksutov Artem A., 2020, 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). Proceedings, P408, DOI 10.1109/EIConRus49466.2020.9039057
Malolan B, 2020, 2020 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTER TECHNOLOGIES (ICICT 2020), P289, DOI 10.1109/ICICT50521.2020.00051
Maras MH, 2019, INT J EVID PROOF, V23, P255, DOI 10.1177/1365712718807226
Marcon F, 2021, J IMAGING, V7, DOI 10.3390/jimaging7100193
Masi Iacopo, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12352), P667, DOI 10.1007/978-3-030-58571-6_39
Masood M, 2021, 2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), DOI 10.1109/ICoDT252288.2021.9441519
Matern F, 2019, IEEE WINT CONF APPL, P83, DOI 10.1109/WACVW.2019.00020
McGlynn Clare., 2021, Cyberflashing: Recognising harms, reforming laws
Medoff N, 2021, INTERCONNECTED INTER, DOI [10.4324/9781003020721-5, DOI 10.4324/9781003020721-5]
Megahed Amr, 2020, 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), P1260, DOI 10.1109/TrustCom50675.2020.00169
Megias D, 2021, ACM INT C P SERIES, DOI [10.1145/3465481.3470088, DOI 10.1145/3465481.3470088]
Meskys E, 2020, J INTELLET PROP LAW, V15, P24, DOI 10.1093/jiplp/jpz167
Mi ZJ, 2020, IEEE J-STSP, V14, P969, DOI 10.1109/JSTSP.2020.2994523
Mihailova M, 2021, CONVERGENCE-US, V27, P882, DOI 10.1177/13548565211029401
Mirsky Y, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3425780
Mitra A, 2020, 2020 6TH IEEE INTERNATIONAL SYMPOSIUM ON SMART ELECTRONIC SYSTEMS (ISES 2020) (FORMERLY INIS), P91, DOI 10.1109/iSES50453.2020.00031
Mittal H, 2020, 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), P989, DOI 10.1109/SSCI47803.2020.9308337
Mittal T, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P2823, DOI 10.1145/3394171.3413570
Montserrat DM, 2020, IEEE COMPUT SOC CONF, P2851, DOI 10.1109/CVPRW50498.2020.00342
Murphy G, 2022, MEMORY, V30, P480, DOI 10.1080/09658211.2021.1919715
Nasar Bismi Fathima, 2020, 2020 IEEE Recent Advances in Intelligent Computational Systems (RAICS), P74, DOI 10.1109/RAICS51191.2020.9332516
Neves JC, 2020, IEEE J-STSP, V14, P1038, DOI 10.1109/JSTSP.2020.3007250
Nguyen H, 2020, BIOSIG 2020
Nguyen X., 2021, FORENSIC SCI INT DIG, DOI 10.1016/j.fsidi.2021.301108
Nygren T, 2021, INFORMATION, V12, DOI 10.3390/info12050201
O'Donnell N, 2021, U ILLINOIS LAW REV, P701
P Swathi, 2021, 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), P584, DOI 10.1109/ICIRCA51532.2021.9544522
Pan D, 2020, 2020 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT 2020), P134, DOI 10.1109/BDCAT50828.2020.00001
Pan ZG, 2021, MULTIMEDIA SYST, V27, P353, DOI 10.1007/s00530-021-00756-y
Pant K, 2020, AACL-IJCNLP 2020: THE 1ST CONFERENCE OF THE ASIA-PACIFIC CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 10TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING: PROCEEDINGS OF THE STUDENT RESEARCH WORKSHOP, P37
Pantserev K, 2020, P EUR C IMP ART INT, P93, DOI [10.34190/EAIR.20.003, DOI 10.34190/EAIR.20.003]
Partadiredja RA, 2020, 2020 13TH CMI CONFERENCE ON CYBERSECURITY AND PRIVACY (CMI) - DIGITAL TRANSFORMATION - POTENTIALS AND CHALLENGES(51275), P45, DOI 10.1109/CMI51275.2020.9322673
Pashentsev E, 2020, P EUROPEAN C IMPACT, P100, DOI [10.34190/EAIR.20.025, DOI 10.34190/EAIR.20.025]
Patil Ujwal, 2021, 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), P1646, DOI 10.1109/ICIRCA51532.2021.9544854
Patil Ujwal, 2021, 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), P1110, DOI 10.1109/ICESC51422.2021.9532725
Pavis M, 2021, CONVERGENCE-US, V27, P974, DOI 10.1177/13548565211033418
PAVLIKOVA Miroslava - SENKYROVA, 2021, Challenging online propaganda and disinformation in the 21st century, P43, DOI DOI 10.1007/978-3-030-58624
Dasilva JP, 2021, MEDIA COMMUN-LISBON, V9, P301, DOI 10.17645/mac.v9i1.3433
Perot E, 2020, J INTELLET PROP LAW, V15, P32, DOI 10.1093/jiplp/jpz164
Pertsch K., 2020, ADV NEURAL INFORM PR, p2020a
Pokroy AA, 2021, IEEE NW RUSS YOUNG, P598, DOI 10.1109/ElConRus51938.2021.9396092
Prajwal KR, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P484, DOI 10.1145/3394171.3413532
Pu JM, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P981, DOI 10.1145/3442381.3449978
Pu JM, 2020, ANN COMPUT SECURITY, P913, DOI 10.1145/3427228.3427285
Ramadhani Kurniawan Nur, 2020, 2020 3rd International Conference on Information and Communications Technology (ICOIACT), P394, DOI 10.1109/ICOIACT50329.2020.9331963
Ranjan P, 2020, 2020 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTER TECHNOLOGIES (ICICT 2020), P86, DOI 10.1109/ICICT50521.2020.00021
Ranjith Kumar M., 2020, J ADV RES DYN CONTRO, V12, P792, DOI [10.5373/JARDCS/V12I2/S20201098, DOI 10.5373/JARDCS/V12I2/S20201098]
Rao SJ, 2021, EXPERT SYST APPL, V186, DOI 10.1016/j.eswa.2021.115742
Rössler A, 2019, IEEE I CONF COMP VIS, P1, DOI 10.1109/ICCV.2019.00009
Ross A, 2020, PATTERN RECOGN LETT, V138, P346, DOI 10.1016/j.patrec.2020.07.009
Ru YW, 2021, 2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), DOI 10.1109/IJCB52358.2021.9484408
Samek W, 2021, P IEEE, V109, P247, DOI 10.1109/JPROC.2021.3060483
Sanghvi Bhavik, 2021, Proceedings of 5th International Conference on Computing Methodologies and Communication (ICCMC 2021), P1238, DOI 10.1109/ICCMC51019.2021.9418008
Sankaranarayanan A, 2021, CEUR WORKSHOP PROC, P57
Schwarcz S, 2021, IEEE COMPUT SOC CONF, P933, DOI 10.1109/CVPRW53098.2021.00104
Sener O, 2020, NEW LITERACIES DISIN
Sepec M., 2020, BALKAN SOCIAL SCI RE, V15, P117
Shah Yash, 2020, 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), P564, DOI 10.1109/I-SMAC49090.2020.9243530
Shahar H, 2020, FIN PROGR P IS T SID, P175, DOI [10.2352/issn.2169-2629.2020.28.27, DOI 10.2352/ISSN.2169-2629.2020.28.27]
Shang ZH, 2021, PATTERN RECOGN, V116, DOI 10.1016/j.patcog.2021.107950
Shelke NA, 2021, MULTIMED TOOLS APPL, V80, P6247, DOI 10.1007/s11042-020-09974-4
Siegel D, 2021, J IMAGING, V7, DOI 10.3390/jimaging7070108
Singh Raj Kumar, 2021, Proceedings of 5th International Conference on Computing Methodologies and Communication (ICCMC 2021), P1290, DOI 10.1109/ICCMC51019.2021.9418477
Sohrawardi SJ, 2019, PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19), P2613, DOI 10.1145/3319535.3363269
Su YS, 2021, NEURAL PROCESS LETT, V53, P4159, DOI 10.1007/s11063-021-10588-6
Sun P, 2021, LECT NOTES COMPUT SC, V12878, P346, DOI 10.1007/978-3-030-86608-2_38
Suratkar S, 2020, 2020 IEEE 17 IND COU, DOI [10.1109/INDICON49873.2020.9342252, DOI 10.1109/INDICON49873.2020.9342252]
Suratkar S., 2020, 2020 11 INT C COMP C, P1, DOI [10.1109/ICCCNT49239.2020.9225400, DOI 10.1109/ICCCNT49239.2020.9225400]
Sybrandt J, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0253905
Tahir Rashid, 2021, P 2021 CHI C HUM FAC, P1
Tarasiou M, 2020, IEEE IMAGE PROC, P1821, DOI [10.1109/ICIP40778.2020.9190714, 10.1109/icip40778.2020.9190714]
Tariq S, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3625, DOI 10.1145/3442381.3449809
Tesfagergish SG, 2021, LECT NOTES COMPUT SC, V12954, P523, DOI 10.1007/978-3-030-86979-3_37
Thaw N. N., 2021, P 23 HCI INT C HCI 1, P631, DOI [10.1007/978-3-030-78635-980, DOI 10.1007/978-3-030-78635-980]
Tjon E, 2021, INT CONF UBIQUIT INF, DOI 10.1109/IMCOM51814.2021.9377373
Tolosana Ruben, 2021, Pattern Recognition. ICPR International Workshops and Challenges. Proceedings. Lecture Notes in Computer Science (LNCS 12665), P442, DOI 10.1007/978-3-030-68821-9_38
Tolosana R, 2020, INFORM FUSION, V64, P131, DOI 10.1016/j.inffus.2020.06.014
Tran VN, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11167678
Jesso ST, 2020, FRONT ROBOT AI, V7, DOI 10.3389/frobt.2020.531805
Tursman E, 2020, IEEE COMPUT SOC CONF, P2784, DOI 10.1109/CVPRW50498.2020.00335
Valenzuela A, 2021, IEEE COMPUT SOC CONF, P1023, DOI 10.1109/CVPRW53098.2021.00113
Verdoliva L, 2020, IEEE J-STSP, V14, P910, DOI 10.1109/JSTSP.2020.3002101
Vizoso A, 2021, MEDIA COMMUN-LISBON, V9, P291, DOI 10.17645/mac.v9i1.3494
Wahl-Jorgensen K, 2021, JOURNAL PRACT, V15, P803, DOI 10.1080/17512786.2021.1908838
Wang Fazheng, 2021, 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI), P192, DOI 10.1109/BDAI52447.2021.9515222
Wang R, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P1207, DOI 10.1145/3394171.3413716
Wang R, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3444
Wang X., 2020, INT C NEURAL INFORM, P313
Wang YH, 2020, IEEE INT CONF AUTOMA, P515, DOI 10.1109/FG47880.2020.00089
Ward J., 2019, JUDICATURE, V103, P12
Westerlund M, 2019, TECHNOL INNOV MANAG, V9, P39, DOI 10.22215/timreview/1282
Whler L, 2021, P 2021 CHI C HUM FAC, DOI DOI 10.1145/3411764.3445627
Wu X, 2020, INT CONF ACOUST SPEE, P2952, DOI [10.1109/icassp40776.2020.9053969, 10.1109/ICASSP40776.2020.9053969]
Xiang ZY, 2021, IEEE COMPUT SOC CONF, P1042, DOI 10.1109/CVPRW53098.2021.00115
Xie D, 2020, 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), P1866, DOI 10.1109/SSCI47803.2020.9308428
Xu BZ, 2021, CMC-COMPUT MATER CON, V68, P1375, DOI 10.32604/cmc.2021.016760
Xu YT, 2021, 2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021), DOI 10.1109/IJCB52358.2021.9484407
Xuan XS, 2019, LECT NOTES COMPUT SC, V11818, P134, DOI 10.1007/978-3-030-31456-9_15
Yang C, 2020, PROC CVPR IEEE, P5920, DOI 10.1109/CVPR42600.2020.00596
Yang CF, 2021, IEEE IJCNN, DOI 10.1109/IJCNN52387.2021.9533868
Yang CZ, 2021, IEEE T INF FOREN SEC, V16, P1841, DOI 10.1109/TIFS.2020.3045937
Yang JC, 2021, IEEE T INF FOREN SEC, V16, P4234, DOI 10.1109/TIFS.2021.3102487
Yang JC, 2021, FUTURE GENER COMP SY, V125, P127, DOI 10.1016/j.future.2021.06.043
Yang TF, 2020, CHIN CONTR CONF, P7247, DOI 10.23919/CCC50068.2020.9188580
Yang X, 2019, INT CONF ACOUST SPEE, P8261, DOI 10.1109/ICASSP.2019.8683164
Yao T, 2021, arXiv
Yavuzkilic S, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13081352
Yewei Gu, 2021, Digital Forensics and Watermarking 19th International Workshop, IWDW 2020. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 12617), P168, DOI 10.1007/978-3-030-69449-4_13
Yifeng Tu, 2021, ICMLC 2021: 2021 13th International Conference on Machine Learning and Computing, P356, DOI 10.1145/3457682.3457736
Younus M, 2020, 2020 INT C COMP SCI, P186, DOI 10.1109/CSASE48920.2020.9142077
Younus Mohammed A., 2020, 2020 6th International Engineering Conference, Sustainable Technology and Development (IEC). Proceedings, P115, DOI 10.1109/IEC49899.2020.9122916
Yu MM, 2021, IET IMAGE PROCESS, V15, P2478, DOI 10.1049/ipr2.12234
Zendran M, 2021, PROCEDIA COMPUT SCI, V192, P834, DOI 10.1016/j.procs.2021.08.086
Zeng Y, 2020, COMMUN COMPUT PHYS, V1253, P536, DOI [10.1007/978-981-15-8086-4_51, DOI 10.1007/978-981-15-8086-4_51]
Zhang HC, 2021, ELECTRON LETT, V57, P183, DOI 10.1049/ell2.12015
Zhang Hongmeng, 2020, HPCCT & BDAI 2020: Proceedings of the 2020 4th High Performance Computing and Cluster Technologies Conference & 2020 3rd International Conference on Big Data and Artificial Intelligence, P98, DOI 10.1145/3409501.3409542
Zhang KJ, 2019, IEEE ACCESS, V7, P129494, DOI 10.1109/ACCESS.2019.2939812
Zhang WG, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22020249
Zhang X, 2019, IEEE INT WORKS INFOR, DOI 10.1109/wifs47025.2019.9035107
Zhang Y, 2021, PROC SPIE, V11878, DOI 10.1117/12.2600889
Zhao B, 2021, CARTOGR GEOGR INF SC, V48, P338, DOI 10.1080/15230406.2021.1910075
Zhao YR, 2020, LECT NOTES COMPUT SC, V11999, P630, DOI 10.1007/978-3-030-41579-2_37
Zhao Z, 2021, INT J DIGIT CRIME FO, V13, P26, DOI 10.4018/IJDCF.20210701.oa3
Zheng QH, 2018, IEEE ACCESS, V6, P15844, DOI 10.1109/ACCESS.2018.2810849
Zheng Zhao, 2020, ICCAI '20: Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence, P291, DOI 10.1145/3404555.3404564
Zhu BQ, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P414, DOI 10.1145/3375627.3375849
Zhu H, 2020, ADV NEURAL INFORM PR
Zi BJ, 2020, MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, P2382, DOI 10.1145/3394171.3413769
Zotov S, 2020, SSPS 2020: 2020 2ND SYMPOSIUM ON SIGNAL PROCESSING SYSTEMS, P43, DOI 10.1145/3421515.3421532
NR 311
TC 3
Z9 3
U1 26
U2 63
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1432-7643
EI 1433-7479
J9 SOFT COMPUT
JI Soft Comput.
PD AUG
PY 2023
VL 27
IS 16
BP 11295
EP 11318
DI 10.1007/s00500-023-08605-y
EA JUN 2023
PG 24
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA J9AG9
UT WOS:001008460000001
OA hybrid
DA 2024-09-05
ER
PT J
AU Thelwall, M
Kousha, K
AF Thelwall, Mike
Kousha, Kayvan
TI Technology assisted research assessment: algorithmic bias and
transparency issues
SO ASLIB JOURNAL OF INFORMATION MANAGEMENT
LA English
DT Article; Early Access
DE Technology assisted research assessment; Bibliometrics; Research
evaluation; Machine learning; Algorithmic bias; Transparency
ID CITATION BIAS; SCIENCE; COVERAGE; ARTICLES; DISTANCE; BEHAVIOR
AB PurposeTechnology is sometimes used to support assessments of academic research in the form of automatically generated bibliometrics for reviewers to consult during their evaluations or by replacing some or all human judgements. With artificial intelligence (AI), there is increasing scope to use technology to assist research assessment processes in new ways. Since transparency and fairness are widely considered important for research assessment and AI introduces new issues, this review investigates their implications.Design/methodology/approachThis article reviews and briefly summarises transparency and fairness concerns in general terms and through the issues that they raise for various types of Technology Assisted Research Assessment (TARA).FindingsWhilst TARA can have varying levels of problems with both transparency and bias, in most contexts it is unclear whether it worsens the transparency and bias problems that are inherent in peer review.Originality/valueThis is the first analysis that focuses on algorithmic bias and transparency issues for technology assisted research assessment.
C1 [Thelwall, Mike; Kousha, Kayvan] Univ Wolverhampton, Stat Cybermetr Res Grp, Wolverhampton, England.
C3 University of Wolverhampton
RP Thelwall, M (corresponding author), Univ Wolverhampton, Stat Cybermetr Res Grp, Wolverhampton, England.
EM m.a.thelwall@sheffield.ac.uk
RI Thelwall, Mike/JDV-4700-2023
OI Thelwall, Mike/0000-0001-6065-205X
FU Research England; Scottish Funding Council; Higher Education Funding
Council for Wales; Department for the Economy, Northern Ireland, Future
Research Assessment Programme
FX This study was funded by Research England, Scottish Funding Council,
Higher Education Funding Council for Wales, and Department for the
Economy, Northern Ireland as part of the Future Research Assessment
Programme
(https://www.jisc.ac.uk/future-research-assessment-programme).The
content is solely the responsibility of the authors and does not
necessarily represent the officialviews of the funders.
CR Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645
Ancaiani A, 2015, RES EVALUAT, V24, P242, DOI 10.1093/reseval/rvv008
Antonakis J, 2014, LEADERSHIP QUART, V25, P152, DOI 10.1016/j.leaqua.2013.10.014
Bader H, 2021, J COMMUNITY HOSP INT, V11, P817, DOI 10.1080/20009666.2021.1965704
Biggs J, 2018, SEX ROLES, V78, P394, DOI 10.1007/s11199-017-0800-9
Bornmann L, 2013, J INFORMETR, V7, P158, DOI 10.1016/j.joi.2012.10.001
Boudreau KJ, 2016, MANAGE SCI, V62, P2765, DOI 10.1287/mnsc.2015.2285
Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H
Ceci SJ, 2011, P NATL ACAD SCI USA, V108, P3157, DOI 10.1073/pnas.1014871108
Checco A, 2021, HUM SOC SCI COMMUN, V8, DOI 10.1057/s41599-020-00703-8
Chen JP, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P434, DOI 10.1109/ICCI-CC.2015.7259421
Chen T., 2015, R package version 0.4-2, V1, P1
Cheuk T, 2021, SCI EDUC, V105, P825, DOI 10.1002/sce.21671
Culumber ZW, 2019, BIOSCIENCE, V69, P631, DOI 10.1093/biosci/biz063
Diakopoulos N, 2017, DIGIT JOURNAL, V5, P809, DOI 10.1080/21670811.2016.1208053
Duma SM, 2021, ANN BIOMED ENG, V49, P947, DOI 10.1007/s10439-021-02739-6
Fairclough R, 2022, LEARN PUBL, V35, P241, DOI 10.1002/leap.1417
Feiyu Xu, 2019, Natural Language Processing and Chinese Computing. 8th CCF International Conference, NLPCC 2019. Proceedings. Lecture Notes in Artificial Intelligence, Subseries of Lecture Notes in Computer Science (LNAI 11839), P563, DOI 10.1007/978-3-030-32236-6_51
Fiez T, 2020, PR MACH LEARN RES, V124, P580
Furl N, 2002, COGNITIVE SCI, V26, P797, DOI 10.1016/S0364-0213(02)00084-8
GANS JS, 1994, J ECON PERSPECT, V8, P165, DOI 10.1257/jep.8.1.165
Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120
Harzing A., 2017, Web of Science: how to be robbed of 10 years of citations in one week!
HEFCE, 2015, METR TID CORR AN REF
Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a
Hojat M, 2003, ADV HEALTH SCI EDUC, V8, P75, DOI 10.1023/A:1022670432373
Hook DW., 2018, FRONT RES METR ANAL, V3, P23, DOI DOI 10.3389/FRMA.2018.00023
Hutchins BI, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002541
van Eck NJ, 2019, Arxiv, DOI arXiv:1906.07011
Jannot AS, 2013, J CLIN EPIDEMIOL, V66, P296, DOI 10.1016/j.jclinepi.2012.09.015
Karhulahti VM, 2021, RES INTEGR PEER REV, V6, DOI 10.1186/s41073-021-00116-4
Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734
Kordzadeh N, 2022, EUR J INFORM SYST, V31, P388, DOI 10.1080/0960085X.2021.1927212
Kumar S, 2022, ACM-IEEE J CONF DIG, DOI 10.1145/3529372.3530937
Lambrecht A, 2019, MANAGE SCI, V65, P2966, DOI 10.1287/mnsc.2018.3093
Barrantes BSL, 2012, J AM SOC INF SCI TEC, V63, P481, DOI 10.1002/asi.21682
Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784
Lee NT, 2018, J INF COMMUN ETHICS, V16, P252, DOI 10.1108/JICES-06-2018-0056
Mahoney M. J., 1977, Cognitive Therapy and Research, V1, P161, DOI [DOI 10.1007/BF01173636, 10.1007/BF01173636]
Mañana-Rodríguez J, 2015, RES EVALUAT, V24, P343, DOI 10.1093/reseval/rvu008
Mehrabi N, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3457607
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
Campanario JM, 2009, SCIENTOMETRICS, V81, P549, DOI 10.1007/s11192-008-2141-5
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Moys J.L., 2014, Visible Language, V48, P881
Navarro CLA, 2021, BMJ-BRIT MED J, V375, DOI 10.1136/bmj.n2281
Prates MOR, 2020, NEURAL COMPUT APPL, V32, P6363, DOI 10.1007/s00521-019-04144-6
Rinia EJ, 2001, RES POLICY, V30, P357, DOI 10.1016/S0048-7333(00)00082-2
Ruiz-Castillo J, 2015, J INFORMETR, V9, P102, DOI 10.1016/j.joi.2014.11.010
Sandström U, 2008, SCIENTOMETRICS, V74, P175, DOI 10.1007/s11192-008-0211-3
Siler K, 2015, P NATL ACAD SCI USA, V112, P360, DOI 10.1073/pnas.1418218112
Thelwall M., 2022, arXiv
Thelwall M, 2023, QUANT SCI STUD, V4, P547, DOI 10.1162/qss_a_00258
Thelwall M, 2023, J ASSOC INF SCI TECH, V74, P941, DOI 10.1002/asi.24767
Thelwall M, 2021, LIBR INFORM SCI RES, V43, DOI 10.1016/j.lisr.2021.101094
Thelwall M, 2020, J ASSOC INF SCI TECH, V71, P979, DOI 10.1002/asi.24316
Thelwall M, 2018, ONLINE INFORM REV, V42, P343, DOI 10.1108/OIR-05-2017-0153
Thelwall M, 2017, J INFORMETR, V11, P128, DOI 10.1016/j.joi.2016.12.002
Thelwall M, 2015, J ASSOC INF SCI TECH, V66, P1124, DOI 10.1002/asi.23252
Tincani M, 2019, PERSPECT BEHAV SCI, V42, P59, DOI 10.1007/s40614-019-00191-5
Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x
Tran D, 2020, Arxiv, DOI [arXiv:2010.05137, 10.48550/arXiv.2010.05137]
Urlings MJE, 2021, J CLIN EPIDEMIOL, V132, P71, DOI 10.1016/j.jclinepi.2020.11.019
van Leeuwen TN, 2001, SCIENTOMETRICS, V51, P335, DOI 10.1023/A:1010549719484
Vera-Baceta MA, 2019, SCIENTOMETRICS, V121, P1803, DOI 10.1007/s11192-019-03264-z
Vilone G, 2020, Arxiv, DOI arXiv:2006.00093
Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5
Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006
Wang Q, 2015, RES EVALUAT, V24, P271, DOI 10.1093/reseval/rvv009
Wilsdon J., 2015, REPORT INDEPENDENT R, DOI 10.13140/RG.2.1.4929.1363
Wren JD, 2018, EMBO J, V37, DOI 10.15252/embj.201899651
Zhang H, 2010, LEARN PUBL, V23, P9, DOI 10.1087/20100103
NR 72
TC 0
Z9 0
U1 16
U2 36
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 2050-3806
EI 1758-3748
J9 ASLIB J INFORM MANAG
JI Aslib J. Inf. Manag.
PD 2023 OCT 2
PY 2023
DI 10.1108/AJIM-04-2023-0119
EA OCT 2023
PG 16
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA T0QX6
UT WOS:001075132200001
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Kong, XJ
Zhang, J
Zhang, D
Bu, Y
Ding, Y
Xia, F
AF Kong, Xiangjie
Zhang, Jun
Zhang, Da
Bu, Yi
Ding, Ying
Xia, Feng
TI The Gene of Scientific Success
SO ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA
LA English
DT Article
DE Scientific impact; academic networks; machine learning; feature
selection
ID IMPACT
AB This article elaborates how to identify and evaluate causal factors to improve scientific impact. Currently, analyzing scientific impact can be beneficial to various academic activities including funding application, mentor recommendation, discovering potential cooperators, and the like. It is universally acknowledged that high-impact scholars often have more opportunities to receive awards as an encouragement for their hard work. Therefore, scholars spend great efforts in making scientific achievements and improving scientific impact during their academic life. However, what are the determinate factors that control scholars' academic success? The answer to this question can help scholars conduct their research more efficiently. Under this consideration, our article presents and analyzes the causal factors that are crucial for scholars' academic success. We first propose five major factors including article-centered factors, author-centered factors, venue-centered factors, institution-centered factors, and temporal factors. Then, we apply recent advanced machine learning algorithms and jackknife method to assess the importance of each causal factor. Our empirical results show that author-centered and article-centered factors have the highest relevancy to scholars' future success in the computer science area. Additionally, we discover an interesting phenomenon that the h-index of scholars within the same institution or university are actually very close to each other.
C1 [Kong, Xiangjie] Zhejiang Univ Technol, Coll Comp Sci & Technol, 288 Liuhe Rd, Hangzhou 310023, Zhejiang, Peoples R China.
[Zhang, Jun] Dalian Univ Technol, Grad Sch Educ, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China.
[Zhang, Da] Univ Miami, Dept Elect & Comp Engn, 5952 Coral Gables, Coral Gables, FL 33129 USA.
[Bu, Yi] Peking Univ, Dept Informat Management, 5 Yiheyuan Rd, Beijing 100871, Peoples R China.
[Ding, Ying] Univ Texas Austin, Sch Informat, 1616 Guadalupe St, Austin, TX 78701 USA.
[Xia, Feng] Federat Univ Australia, Sch Sci Engn & Informat Technol, POB 663, Ballarat, Vic 3353, Australia.
C3 Zhejiang University of Technology; Dalian University of Technology;
University of Miami; Peking University; University of Texas System;
University of Texas Austin; Federation University Australia
RP Xia, F (corresponding author), Federat Univ Australia, Sch Sci Engn & Informat Technol, POB 663, Ballarat, Vic 3353, Australia.
EM xjkong@acm.org; junzhang@dlut.edu.cn; zhang.1855@miami.edu;
buyipku@gmail.com; ying.ding@austin.utexas.edu; f.xia@acm.org
RI Ding, Ying/X-3657-2019; Kong, Xiangjie/B-8809-2016; Xia,
Feng/Y-2859-2019
OI Kong, Xiangjie/0000-0003-2698-3319; Xia, Feng/0000-0002-8324-1859;
Zhang, Da/0000-0003-3321-1835
CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
Amjad T, 2017, J INFORMETR, V11, P307, DOI 10.1016/j.joi.2017.01.004
Amjad T, 2016, INFORM PROCESS MANAG, V52, P374, DOI 10.1016/j.ipm.2015.12.001
Amjad T, 2015, SCIENTOMETRICS, V104, P313, DOI 10.1007/s11192-015-1601-y
[Anonymous], 2018, APPL BIONICS BIOMECH
[Anonymous], 1999, WWW 1999
[Anonymous], 2016, ARXIV160803251
Bai XM, 2017, IEEE ACCESS, V5, P17607, DOI 10.1109/ACCESS.2017.2740226
Bornmann L, 2016, SCIENTOMETRICS, V107, P1405, DOI 10.1007/s11192-016-1893-6
Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006
Clauset A, 2017, SCIENCE, V355, P477, DOI 10.1126/science.aal4217
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
Dunaiski M, 2016, J INFORMETR, V10, P392, DOI 10.1016/j.joi.2016.01.010
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140
Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1
Kong XJ, 2019, IEEE T COMPUT SOC SY, V6, P1318, DOI 10.1109/TCSS.2019.2950445
Li LY, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P655, DOI 10.1145/2783258.2783340
Liang RH, 2016, AAAI CONF ARTIF INTE, P20
Liu JY, 2021, IEEE T KNOWL DATA EN, V33, P1763, DOI 10.1109/TKDE.2019.2946825
Liu L, 2018, NATURE, V559, P396, DOI 10.1038/s41586-018-0315-8
Liu Y, 2016, AAAI CONF ARTIF INTE, P201
Severiano A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019539
Shiffrin RM, 2016, P NATL ACAD SCI USA, V113, P7308, DOI 10.1073/pnas.1608845113
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
Spirtes Peter, 2016, Appl Inform (Berl), V3, P3
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Le TD, 2013, BIOINFORMATICS, V29, P765, DOI 10.1093/bioinformatics/btt048
Valenzuela Marco, 2015, P WORKSH 29 AAAI C A
Van Houten B, 2000, ENVIRON HEALTH PERSP, V108, pA392, DOI 10.1289/ehp.108-a392
VANHOUTEN B, 2000, ENVIRON HEALTH PERSP, V108, pA39
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
Wang SZ, 2016, ACM T INTEL SYST TEC, V7, DOI 10.1145/2897371
Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9
Wei Y, 2016, J STRUCT FIRE ENG, V7, P2, DOI 10.1108/JSFE-03-2016-001
Wu H, 2018, ACM T KNOWL DISCOV D, V12, DOI 10.1145/3047017
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
Xia F, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165997
Yu DJ, 2017, SCIENTOMETRICS, V111, P521, DOI 10.1007/s11192-017-2262-9
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
Zhang J, 2017, SCIENTOMETRICS, V112, P1301, DOI 10.1007/s11192-017-2458-z
NR 44
TC 19
Z9 19
U1 2
U2 37
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA
SN 1556-4681
EI 1556-472X
J9 ACM T KNOWL DISCOV D
JI ACM Trans. Knowl. Discov. Data
PD JUL
PY 2020
VL 14
IS 4
AR 41
DI 10.1145/3385530
PG 19
WC Computer Science, Information Systems; Computer Science, Software
Engineering
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA OI9ZB
UT WOS:000583626600004
OA Green Published, Green Submitted
DA 2024-09-05
ER
PT J
AU Thiem, A
AF Thiem, Alrik
TI Beyond the Facts: Limited Empirical Diversity and Causal Inference in
Qualitative Comparative Analysis
SO SOCIOLOGICAL METHODS & RESEARCH
LA English
DT Article
DE Boolean algebra; causal inference; configurational comparative methods;
empirical research methods; method evaluation; qualitative comparative
analysis
ID MINIMIZATION
AB Qualitative Comparative Analysis (QCA) is a relatively young method of causal inference that continues to diffuse across the social sciences. However, recent methodological research has found the conservative (QCA-CS) and the intermediate solution type (QCA-IS) of QCA to fail fundamental tests of correctness. Even under conditions otherwise ideal for causal discovery, both solution types frequently committed causal fallacies by presenting inferences that were in direct disagreement with the underlying data-generating structure to be discovered by QCA. None of these problems affected the parsimonious solution type (QCA-PS). These findings conflict with conventional wisdom in the QCA literature, which has it that QCA-CS uses empirical information only and that QCA-IS is preferable to both QCA-CS and QCA-PS. The present article resolves these contradictions. It shows that QCA-CS and QCA-IS systematically supplement empirical data with matching artificial data. These artificial data, however, regularly induce causal fallacies of severe magnitude. Researchers who employ QCA-CS or QCA-IS in empirical analyses thus always risk moving further away from the truth rather than closer to it.
C1 [Thiem, Alrik] Univ Lucerne, Dept Polit Sci, Luzern, Switzerland.
C3 University of Lucerne
RP Thiem, A (corresponding author), Univ Lucerne, CH-6002 Luzern, Switzerland.
EM alrik.thiem@unilu.ch
OI Thiem, Alrik/0000-0002-4769-2185
FU Swiss National Science Foundation [PP00P1_170442]; Swiss National
Science Foundation (SNF) [PP00P1_170442] Funding Source: Swiss National
Science Foundation (SNF)
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: Swiss
National Science Foundation (PP00P1_170442).
CR [Anonymous], 1987, The Comparative Method: Moving Beyond Qualitative and Quantitative Strategies
[Anonymous], 2000, Fuzzy-set social science, DOI DOI 10.2307/3089736
Baumgartner M, 2020, SOCIOL METHOD RES, V49, P279, DOI 10.1177/0049124117701487
Baumgartner M, 2017, SOCIOL METHOD RES, V46, P954, DOI 10.1177/0049124115610351
Baumgartner M, 2015, QUAL QUANT, V49, P839, DOI 10.1007/s11135-014-0026-7
Baumgartner M, 2008, PHILOSOPHIA, V36, P327, DOI 10.1007/s11406-007-9114-4
Cartwright N, 2007, HUNTING CAUSES AND USING THEM: APPROACHES IN PHILOSOPHY AND ECONOMICS, P1, DOI 10.2277/ 0521860814
Cooper B, 2016, FIELD METHOD, V28, P300, DOI 10.1177/1525822X15598974
De Meur Gisele., 2009, CONFIGURATIONAL COMP, P147
Dusa A, 2015, J MATH SOCIOL, V39, P92, DOI 10.1080/0022250X.2014.897949
Grasshoff G., 2001, CURRENT ISSUES CAUSA, P85
HUG S, 2014, QUALITATIVE MULTIMET, V12, P24
Hug S, 2013, POLIT ANAL, V21, P252, DOI 10.1093/pan/mps061
Krogslund C, 2015, POLIT ANAL, V23, P21, DOI 10.1093/pan/mpu016
Lucas SR, 2014, SOCIOL METHODOL, V44, P1, DOI 10.1177/0081175014532763
Mackie J.L., 1974, CEMENT UNIVERSE STUD
MACKIE JL, 1965, AM PHILOS QUART, V2, P245
Paine J, 2016, COMP POLIT STUD, V49, P703, DOI 10.1177/0010414014564851
Ragin C.C., 2005, VERGLEICHEN POLITIKW, P180, DOI [10.1007/978-3-322-80441-9_9, DOI 10.1007/978-3-322-80441-9_9]
Ragin CC, 2008, SOCIOL METHOD RES, V36, P431, DOI 10.1177/0049124107313903
Ragin Charles C., 2008, Redesigning social inquiry: Fuzzy sets and beyond, DOI 10.7208/chicago/9780226702797.001.0001
Ragin CharlesC., 2009, CONFIGURATIONAL COMP, P87, DOI [10.4135/9781452226569.n5, DOI 10.4135/9781452226569.N5]
Rihoux B, 2013, POLIT RES QUART, V66, P175, DOI 10.1177/1065912912468269c
Rohlfing I, 2015, RES POLITICS, V2, DOI 10.1177/2053168015623562
Schneider CQ, 2012, STRAT SOC INQ, P1
Schneider CQ, 2018, POLIT ANAL, V26, P246, DOI 10.1017/pan.2017.45
Schneider CQ, 2016, FIELD METHOD, V28, P316, DOI 10.1177/1525822X15598977
Schneider CQ, 2016, SOCIOL METHOD RES, V45, P526, DOI 10.1177/0049124114532446
Schneider CQ, 2013, POLIT RES QUART, V66, P211, DOI 10.1177/1065912912468269h
Thiem A., 2014, QUALITATIVE MULTIMET, V12, P19
Thiem A, 2018, J WATER SANIT HYG DE, V8, P622, DOI 10.2166/washdev.2018.149
Thiem A, 2017, AM J EVAL, V38, P420, DOI 10.1177/1098214016673902
Thiem A, 2016, SOCIOL METHODOL, V46, P345, DOI 10.1177/0081175016654736
Thiem A, 2016, POLIT ANAL, V24, P478, DOI 10.1093/pan/mpw024
Thiem A, 2016, POLIT ANAL, V24, P104, DOI 10.1093/pan/mpv028
Thiem A, 2016, COMP POLIT STUD, V49, P801, DOI 10.1177/0010414015626455
Thiem A, 2016, COMP POLIT STUD, V49, P742, DOI 10.1177/0010414014565892
Thiem A, 2013, SOC SCI COMPUT REV, V31, P505, DOI 10.1177/0894439313478999
Vis B, 2012, SOCIOL METHOD RES, V41, P168, DOI 10.1177/0049124112442142
Wagemann C., 2015, Qualitative & Multi-Method Research, V13, P38
NR 40
TC 30
Z9 32
U1 24
U2 33
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0049-1241
EI 1552-8294
J9 SOCIOL METHOD RES
JI Sociol. Methods. Res.
PD MAY
PY 2022
VL 51
IS 2
BP 527
EP 540
AR 0049124119882463
DI 10.1177/0049124119882463
EA NOV 2019
PG 14
WC Social Sciences, Mathematical Methods; Sociology
WE Social Science Citation Index (SSCI)
SC Mathematical Methods In Social Sciences; Sociology
GA 0N5YZ
UT WOS:000496361300001
OA hybrid
DA 2024-09-05
ER
PT J
AU Mohsen, MA
Althebi, S
Albahooth, M
AF Mohsen, Mohammed Ali
Althebi, Sultan
Albahooth, Mohammed
TI A scientometric study of three decades of machine translation research:
Trending issues, hotspot research, and co-citation analysis
SO COGENT ARTS & HUMANITIES
LA English
DT Article
DE machine translation; research; scientometric; translation studies;
co-citation
ID EMERGING TRENDS; COMMUNITY
AB This study aims to examine machine translation research in journals indexed in the Web of Science to find out the research trending issue, hotspot areas of research, and document co-citation analysis. To this end, 541 documents published between 1992 and 2022 were retrieved and analyzed using CiteSpace, and Bibexcel. Many metrics were analyzed such as document co-citation analysis, sources co-citation analyses, authors' keywords analysis, and Hirsch index. Data were coded and filtered to include research related to machine translation from the perspectives of language and translation studies. We identified 11 clusters that represented the hotspot research during the period of almost three decades of research. We also discovered that a significant focus of research in machine translation centered around enhancing the translation process through the implementation of neural networks integrated with artificial intelligence. Additionally, we observed the incorporation of human post-editing as a means to refine and improve machine-translated outputs. We found that translation studies journals were the most highly co-cited journals and Google translate was the most highly used machine translation. This study highlights the trending issues and hotspots in machine translation research within language and translation studies. The integration of neural networks with artificial intelligence and human post-editing emerged as prominent areas of focus for enhancing translation quality. The findings of the current study inform future research and technological advancements in machine translation, guiding efforts to improve translation processes and outcomes.
C1 [Mohsen, Mohammed Ali; Althebi, Sultan; Albahooth, Mohammed] Najran Univ, Coll Languages & Translat, Najran, Saudi Arabia.
C3 Najran University
RP Mohsen, MA (corresponding author), Najran Univ, Coll Languages & Translat, Najran, Saudi Arabia.
EM mamohsen@nu.edu.sa
RI AlThebi, Sultan/GQQ-3465-2022; MOHSEN, MOHAMMED/K-1861-2015
OI AlThebi, Sultan/0000-0002-8459-6969; MOHSEN,
MOHAMMED/0000-0003-3169-102X
FU Literature, Publishing and Translation Commission, Ministry of Culture,
Kingdom of Saudi Arabia [102/022]
FX This study was funded by the Literature, Publishing and Translation
Commission, Ministry of Culture, Kingdom of Saudi Arabia under [102/022]
as part of the Arabic Observatorof Translation.
CR Al Mahasees Z., 2020, Master's thesis
Allen J., 2003, Computers and Translation: A Translators Guide, P297
Andrabi S. A. B., 2021, Turk J Comp Mathematics Educ, V12, P1134
[Anonymous], 2017, PERSPECT STUD TRANSL, V25, P2, DOI 10.1080/0907676X.2017.1246219
[Anonymous], 2006, AMTA
Aryadoust V, 2020, SYSTEM, V88, DOI 10.1016/j.system.2019.102180
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Brown P.F., 1993, The mathematics of statistical machine translation: Parameter estimation
Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Dong DH, 2015, SCIENTOMETRICS, V105, P1111, DOI 10.1007/s11192-015-1769-1
European Association of Machine Translation, WHAT IS MACH TRANSL
Fiederer R, 2009, J SPEC TRANSL, P52
Garcia I, 2011, MACH TRANSL, V25, P217, DOI 10.1007/s10590-011-9115-8
Garcia I, 2011, COMPUT ASSIST LANG L, V24, P471, DOI 10.1080/09588221.2011.582687
Garcia I, 2010, TARGET-NETH, V22, P7, DOI 10.1075/target.22.1.02gar
Gimenez Jesus, 2010, Prague Bulletin of Mathematical Linguistics, P77, DOI 10.2478/v10108-010-0022-6
Gupta BM, 2019, DESIDOC J LIB INF TE, V39, P31, DOI 10.14429/djlit.39.1.13558
Huang Q, 2019, TRANSLATION REV, V105, P34, DOI 10.1080/07374836.2019.1664959
Kahlon NK, 2023, UNIVERSAL ACCESS INF, V22, P1, DOI 10.1007/s10209-021-00823-1
Klimova B, 2023, EDUC INF TECHNOL, V28, P663, DOI 10.1007/s10639-022-11194-2
Krings Hans P., 2001, Repairing Texts: Empirical Investigations of Machine Translation Post-Editing Processes
Lee SM, 2023, COMPUT ASSIST LANG L, V36, P103, DOI 10.1080/09588221.2021.1901745
Lee SM, 2020, COMPUT ASSIST LANG L, V33, P157, DOI 10.1080/09588221.2018.1553186
Li XD, 2015, PERSPECT STUD TRANSL, V23, P183, DOI 10.1080/0907676X.2015.1006645
Lim MH, 2022, COMPUT ASSIST LANG L, V35, P2675, DOI 10.1080/09588221.2021.1892768
Mi CG, 2022, NEURAL NETWORKS, V148, P194, DOI 10.1016/j.neunet.2022.01.016
Mohsen MA, 2024, EDUC INF TECHNOL, V29, P3571, DOI 10.1007/s10639-023-11968-2
Mohsen MA, 2024, INTERACT LEARN ENVIR, V32, P1763, DOI 10.1080/10494820.2022.2127780
Mohsen MA, 2021, ELECTRON LIBR, V39, P865, DOI 10.1108/EL-06-2021-0121
Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103
O'Brien S, 2012, TRANSL SPACES, V1, P101, DOI 10.1075/ts.1.05obr
Papineni K, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P311, DOI 10.3115/1073083.1073135
Plitt Mirko, 2010, Prague Bulletin of Mathematical Linguistics, P7, DOI 10.2478/v10108-010-0010-X
Quah CK, 2006, PALG TXB TRANSL INTE, P1, DOI 10.1057/9780230287105
Rivera-Trigueros I, 2022, LANG RESOUR EVAL, V56, P593, DOI 10.1007/s10579-021-09537-5
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Rovira-Esteva S, 2015, PERSPECT STUD TRANSL, V23, P159, DOI 10.1080/0907676X.2015.1026361
Stahlschmidt S., 2020, Comparison of Web of Science, Scopus and Dimensions databases KB Forschungspoolprojekt 2020, P37
Tan ZX, 2020, AI OPEN, V1, P5, DOI 10.1016/j.aiopen.2020.11.001
van Doorslaer L, 2015, PERSPECT STUD TRANSL, V23, P305, DOI 10.1080/0907676X.2015.1026360
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
Vanroy B., 2021, SYNTACTIC DIFFICULTI
Voβ S., 2005, P 23 IASTED INT MULT, P651
Wang HF, 2022, ENGINEERING-PRC, V18, P143, DOI 10.1016/j.eng.2021.03.023
Zhu XL, 2023, TARGET-NETH, V35, P157, DOI 10.1075/target.20154.zhu
NR 46
TC 2
Z9 2
U1 6
U2 28
PU TAYLOR & FRANCIS AS
PI OSLO
PA KARL JOHANS GATE 5, NO-0154 OSLO, NORWAY
SN 2331-1983
J9 COGENT ARTS HUMANITE
JI Cogent Art Humanities
PD DEC 31
PY 2023
VL 10
IS 1
AR 2242620
DI 10.1080/23311983.2023.2242620
PG 16
WC Humanities, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Arts & Humanities - Other Topics
GA O0ZX1
UT WOS:001041200900001
OA gold
DA 2024-09-05
ER
PT J
AU Zhang, J
Yu, MX
He, K
AF Zhang, Jia
Yu, Mengxia
He, Ke
TI Research on high-efficiency optimization algorithm applied to near-field
effect error correction
SO INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING
LA English
DT Article
DE BP-GA; hybrid algorithm; neural networks; PSO; PSO-SVM
ID PARTICLE SWARM OPTIMIZATION; HYBRID
AB In order to achieve a more efficient and accurate correction of near-field error in the semiphysical radio frequency simulation system, the precise control parameters of the three antenna elements need to be obtained. This article is based on the method of moments electromagnetic simulation, and propose corresponding improvement ideas for the problems of limited optimization accuracy and low calculation efficiency in the near-field error correction process. From the aspects of high-precision intelligent inversion algorithm and high-efficiency electromagnetic forward modeling, systematic optimization design and verification were carried out. The results prove that the control parameter filtering scheme based on PSO-GA hybrid method has better optimization efficiency and accuracy than single genetic algorithm or differential evolution algorithm, which can provide more ideal initial amplitude and phase parameters for the subsequent selection of electromagnetic simulation and forward verification. In order to solve the problem of time-consuming in the electromagnetic simulation, the multivariate vector forward model based on GA-BP network and PSO-SVM network are established, which can achieve high-precision positioning of synthetic vector target points. The neural network method has been proved to be feasible on the basis of the current sample size. The paper selects hybrid algorithms to improve the shortcomings of single algorithm and uses algorithms to optimize neural networks, thereby obtaining better optimization results and reducing the time-consuming of electromagnetic simulations, which can realize efficient correction of near-field error.
C1 [Zhang, Jia; Yu, Mengxia; He, Ke] Univ Elect Sci & Technol China, Sch Phys, Chengdu, Sichuan, Peoples R China.
C3 University of Electronic Science & Technology of China
RP Yu, MX (corresponding author), Univ Elect Sci & Technol China, Sch Phys, Chengdu, Sichuan, Peoples R China.
EM yumengxia@uestc.edu.cn
RI ripert, marion/HHN-5115-2022; Yu, Mengxia/AAD-9435-2021
CR Ababneh J, 2006, INT J RF MICROW C E, V16, P322, DOI 10.1002/mmce.20141
Cervantes J, 2020, NEUROCOMPUTING, V408, P189, DOI 10.1016/j.neucom.2019.10.118
Cui YF, 2017, ENERGY, V125, P681, DOI 10.1016/j.energy.2017.02.174
Garg H, 2016, APPL MATH COMPUT, V274, P292, DOI 10.1016/j.amc.2015.11.001
Gonçalves JF, 2011, J HEURISTICS, V17, P487, DOI 10.1007/s10732-010-9143-1
Gong YJ, 2016, IEEE T CYBERNETICS, V46, P2277, DOI 10.1109/TCYB.2015.2475174
Jarndal A, 2021, INT J RF MICROW C E, V31, DOI 10.1002/mmce.22542
Joó A, 2012, IEEE T EVOLUT COMPUT, V16, P749, DOI 10.1109/TEVC.2011.2159270
Li WT, 2010, INT J RF MICROW C E, V20, P190, DOI 10.1002/mmce.20421
Lin SW, 2008, EXPERT SYST APPL, V35, P1817, DOI 10.1016/j.eswa.2007.08.088
Luthra I, 2017, 2017 INTERNATIONAL CONFERENCE OF ELECTRONICS, COMMUNICATION AND AEROSPACE TECHNOLOGY (ICECA), VOL 2, P143, DOI 10.1109/ICECA.2017.8212781
Min Duan, 2018, 2018 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). Proceedings, P41, DOI 10.1109/ICITBS.2018.00018
Omidi A, 2009, 2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, P369, DOI 10.1109/ICCSIT.2009.5234707
Soleimani H, 2015, APPL MATH MODEL, V39, P3990, DOI 10.1016/j.apm.2014.12.016
Sun XG, 2007, SPECTROSC SPECT ANAL, V27, P213
Varnamkhasti MJ, 2013, J INTELL FUZZY SYST, V25, P793, DOI 10.3233/IFS-120685
Wang DS, 2018, SOFT COMPUT, V22, P387, DOI 10.1007/s00500-016-2474-6
Wang Y, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY ICEICT 2016 PROCEEDINGS, P470, DOI 10.1109/ICEICT.2016.7879743
Xi YH, 2019, IET GENER TRANSM DIS, V13, P3968, DOI 10.1049/iet-gtd.2018.6148
Yang ZR, 2010, METHODS MOL BIOL, V609, P197, DOI 10.1007/978-1-60327-241-4_12
Zhan ZH, 2011, IEEE T EVOLUT COMPUT, V15, P832, DOI 10.1109/TEVC.2010.2052054
NR 21
TC 0
Z9 0
U1 2
U2 8
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1096-4290
EI 1099-047X
J9 INT J RF MICROW C E
JI Int. J. RF Microw. Comput-Aid. Eng.
PD DEC
PY 2022
VL 32
IS 12
DI 10.1002/mmce.23530
EA NOV 2022
PG 10
WC Computer Science, Interdisciplinary Applications; Engineering,
Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA 7H4QP
UT WOS:000877594200001
DA 2024-09-05
ER
PT J
AU Zhen-Wu
AF Zhen-Wu
TI Application research of bel canto performance based on artificial
intelligence technology
SO APPLIED MATHEMATICS AND NONLINEAR SCIENCES
LA English
DT Article; Early Access
DE artificial intelligence; bel canto; performance; science and technology
AB In the 21st century, with the rapid development of information processing technology, neurophysiology, non-linear dynamics, fuzzy mathematics and other disciplines, artificial intelligence (AI) has come to be widely used in many aspects. Considering AI music, music, art, AI and music media fuse together. For the perfect combination of modern technology and traditional art, a variety of technologies, including machine learning, machine perception, neural network, genetic algorithm, knowledge representation, knowledge system and so on, form a new category in AI. The advent of this technology has dramatically changed traditional music. Therefore, this paper applies AI technology to bel canto singing and combines it with AI technology, summarises the corresponding algorithm principle and analyses its development trend and characteristics with specific application cases, in order to better serve music.
C1 [Zhen-Wu] Xiamen Univ, Tan Kah Kee Coll, Zhangzhou 363105, Fujian, Peoples R China.
C3 Xiamen University
RP Zhen-Wu (corresponding author), Xiamen Univ, Tan Kah Kee Coll, Zhangzhou 363105, Fujian, Peoples R China.
EM Zhenwu1225@outlook.com
CR Aissani N, 2009, ENG APPL ARTIF INTEL, V22, P1089, DOI 10.1016/j.engappai.2009.01.014
Angel G, 2010, LOGICAL FDN ARTIFICI
[Anonymous], 1995, APPL MECH MAT
[Anonymous], 2003, APPL MECH MAT
Bel-Enguix G, 2011, FRONT ARTIF INTEL AP, V228, P85, DOI 10.3233/978-1-60750-762-8-85
Chaudhri K., 2013, AI MAG
Chaudhri VK, 2013, AI MAG, V34, P10
Chen Y Q., 2009, J CHUXIONG NORMAL U
Fox M, 1994, HDB LOGIC ARTIFICIAL, V1
Haugeland J., 1985, PHILOS REV, V7, P3
Intelligence C, TOTSE COM
James S, 2014, MODELING DECISIONS A
Kirschenbaum M G., POETICS ARTIFICIAL I
Kohavi R, 1997, ARTIF INTELL, V97, P273, DOI 10.1016/S0004-3702(97)00043-X
Kojima K., 2004, SPEECH PROSODY
LEHMANN D, 1992, ARTIF INTELL, V55, P1, DOI 10.1016/0004-3702(92)90041-U
Ligeza A., 2009, Artificial Intelligence: A Modern Approach, V263, P2829, DOI DOI 10.4028/WWW.SCIENTIFIC.NET/AMM.263-266.2829
Negnevitsky M, 2005, Inf & Comput Sci, V48, P284
Nilsson N J., 1982, PRINCIPLE ARTIFICIAL
Norvig P, 1995, APPL MECH MAT, V263, P2829
Rossi F, 2006, FOUND ARTIF INTELL, P1
Russell S., 2009, Artificial Intelligence: A Modern Approach, V3rd
Russell Stuart, 2010, Artificial intelligence, a modern approach, V3
Vinod B, 2021, MANAGEMENT PROFESSIO
Wang F, 2011, PROC NATL CONF ARTIF, V36, P823
Wei E., 2021, INTONATION CHARACTER
Zhang L K., 2011, J QINGHAI NATIONALIT
Zhu Xiaojin, 2009, Synth. Lectures Artif. Intell. Mach. Learn., V3, P1, DOI 10.2200/S00196ED1V01Y200906AIM006
NR 28
TC 0
Z9 0
U1 1
U2 8
PU WALTER DE GRUYTER GMBH
PI BERLIN
PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
EI 2444-8656
J9 APPL MATH NONLIN SCI
JI Appl. Math. Nonlinear Sci.
PD 2022 NOV 30
PY 2022
DI 10.2478/amns.2021.2.00255
EA NOV 2022
PG 12
WC Mathematics, Applied
WE Emerging Sources Citation Index (ESCI)
SC Mathematics
GA 7E2SQ
UT WOS:000901025000001
OA gold
DA 2024-09-05
ER
PT J
AU Anderson, BS
Schueler, J
Baum, M
Wales, WJ
Gupta, VK
AF Anderson, Brian S.
Schueler, Jens
Baum, Matthias
Wales, William J.
Gupta, Vishal K.
TI The Chicken or the Egg? Causal Inference in Entrepreneurial
Orientation-Performance Research
SO ENTREPRENEURSHIP THEORY AND PRACTICE
LA English
DT Article
DE causality; endogeneity; research design; entrepreneurial orientation;
firm performance
ID FIRM PERFORMANCE; STRATEGIC MANAGEMENT; MEDIATING ROLE; RESOURCE
ORCHESTRATION; BUSINESS PERFORMANCE; MODERATING ROLE; ENDOGENEITY;
CONSTRUCT; MARKET; RECOMMENDATIONS
AB While entrepreneurial orientation (EO) correlates with many organizational phenomena, we lack convincing evidence of causal relationships within EO's nomological network. We explore the challenges to establishing causal relationships with a systematic review of EO-performance research. We then use a simulation to illustrate how popular research designs in EO research limit our ability to make causal claims. We conclude by outlining the research design considerations to move from associational to causal EO-performance research. Our message is that while experiments may not be practical or feasible in many areas of organizational research, including EO, scholars can nevertheless move towards causal understanding.
C1 [Anderson, Brian S.] Univ Missouri Kansas City, Henry W Bloch Sch Management, 5108 Cherry St, Kansas City, MO 64110 USA.
[Anderson, Brian S.] Univ Ghent, Ctr Entrepreneurship Res, Ghent, Belgium.
[Schueler, Jens; Baum, Matthias] Unvers Kaiserslautern, Dept Law Business & Econ, Kaiserslautern, Germany.
[Wales, William J.] SUNY Albany, Sch Business, Albany, NY 12222 USA.
[Gupta, Vishal K.] Univ Alabama, Culverhouse Coll Business, Tuscaloosa, AL USA.
C3 University of Missouri System; University of Missouri Kansas City; Ghent
University; State University of New York (SUNY) System; State University
of New York (SUNY) Albany; University of Alabama System; University of
Alabama Tuscaloosa
RP Anderson, BS (corresponding author), Univ Missouri Kansas City, Henry W Bloch Sch Management, 5108 Cherry St, Kansas City, MO 64110 USA.
EM andersonbri@umkc.edu
RI Wales, William/C-3837-2016; Anderson, Brian/E-6102-2017
OI Wales, William/0000-0001-6565-6439; Anderson, Brian/0000-0001-9749-4104;
Schuler, Jens/0000-0002-8899-3718
CR Adams RB, 2016, LEADERSHIP QUART, V27, P371, DOI 10.1016/j.leaqua.2015.11.001
Aguinis H, 2018, ACAD MANAG ANN, V12, P83, DOI 10.5465/annals.2016.0011
Aguinis H, 2012, J BUS VENTURING, V27, P493, DOI 10.1016/j.jbusvent.2012.01.002
Amrhein V, 2019, AM STAT, V73, P262, DOI 10.1080/00031305.2018.1543137
Anderson BS, 2019, J BUS VENTURING, V34, DOI 10.1016/j.jbusvent.2019.02.001
Anderson BS, 2019, STRATEG ENTREP J, V13, P199, DOI 10.1002/sej.1306
Anderson BS, 2015, STRATEGIC MANAGE J, V36, P1579, DOI 10.1002/smj.2298
Anderson BS, 2013, J BUS VENTURING, V28, P413, DOI 10.1016/j.jbusvent.2011.10.001
Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P1
Antonakis J, 2010, LEADERSHIP QUART, V21, P1086, DOI 10.1016/j.leaqua.2010.10.010
Bergh DD, 2002, STRATEGIC MANAGE J, V23, P359, DOI 10.1002/smj.232
Bernerth JB, 2016, PERS PSYCHOL, V69, P229, DOI 10.1111/peps.12103
Bollen KA., 1989, STRUCTURAL EQUATIONS
Bradley SW, 2011, J BUS VENTURING, V26, P537, DOI 10.1016/j.jbusvent.2010.03.002
Certo ST, 2017, STRATEGIC MANAGE J, V38, P1536, DOI 10.1002/smj.2586
Certo ST, 2016, STRATEGIC MANAGE J, V37, P2639, DOI 10.1002/smj.2475
Chenhall RH, 2007, EUR ACCOUNT REV, V16, P173, DOI 10.1080/09638180701265937
Chirico F, 2011, STRATEG ENTREP J, V5, P307, DOI 10.1002/sej.121
Clougherty JA, 2016, ORGAN RES METHODS, V19, P286, DOI 10.1177/1094428115619013
Cook T. D., 2002, Experimental and quasi-experimental designs for generalized causal inference, DOI DOI 10.1198/JASA.2005.S22
Covin J.G., 1991, ENTREP THEORY PRACT, V16, P7
Covin JG, 2011, ENTREP THEORY PRACT, V35, P855, DOI 10.1111/j.1540-6520.2011.00482.x
Covin JG, 2012, ENTREP THEORY PRACT, V36, P677, DOI 10.1111/j.1540-6520.2010.00432.x
COVIN JG, 1989, STRATEGIC MANAGE J, V10, P75, DOI 10.1002/smj.4250100107
COVIN JG, 2019, ENTREP THEORY PRACT, V43, P3, DOI [DOI 10.1177/1042258718773181, 10.1177/1042258718773181]
Davidsson P, 2016, ENTREP THEORY PRACT, V40, P915, DOI 10.1111/etap.12152
De Clercq D, 2010, J BUS VENTURING, V25, P87, DOI 10.1016/j.jbusvent.2009.01.004
DESS GG, 1984, ADMIN SCI QUART, V29, P52, DOI 10.2307/2393080
Deutscher F, 2016, J BUS RES, V69, P849, DOI 10.1016/j.jbusres.2015.07.005
Edwards JR, 2001, ORGAN RES METHODS, V4, P265, DOI 10.1177/109442810143005
Engelen A, 2016, J MANAGE, V42, P698, DOI 10.1177/0149206313495413
Engelen A, 2015, J MANAGE, V41, P1069, DOI 10.1177/0149206312455244
Engelen A, 2014, RES POLICY, V43, P1353, DOI 10.1016/j.respol.2014.03.002
Eshima Y, 2017, STRATEGIC MANAGE J, V38, P770, DOI 10.1002/smj.2532
Feldman E.R., 2020, STRATEGIC MANAGE J, V63, P1
Flammer C, 2016, MANAGE SCI, V62, P1982, DOI 10.1287/mnsc.2015.2229
Gelman A., 2013, Bayesian Data Analysis, V3rd ed.
George BA, 2011, ENTREP THEORY PRACT, V35, P989, DOI 10.1111/j.1540-6520.2011.00455.x
George BA, 2011, J MANAGE STUD, V48, P1291, DOI 10.1111/j.1467-6486.2010.01004.x
Ghoshal S, 2005, ACAD MANAG LEARN EDU, V4, P75, DOI 10.5465/AMLE.2005.16132558
Goldfarb B, 2016, STRATEGIC MANAGE J, V37, P167, DOI 10.1002/smj.2459
Grühn B, 2017, ENTREP THEORY PRACT, V41, P591, DOI [10.1111/etap.12239, 10.1111/etp.12239]
Gupta V, 2018, REV MANAG SCI, V12, P1, DOI 10.1007/s11846-016-0210-3
Gupta V, 2015, FOUND TRENDS ENTREP, V11, P55, DOI 10.1561/0300000054
Gupta VK, 2020, REV MANAG SCI, V14, P1123, DOI 10.1007/s11846-019-00327-6
Gupta VK, 2019, REV MANAG SCI, V13, P649, DOI 10.1007/s11846-017-0262-z
Gupta VK, 2016, INT SMALL BUS J, V34, P660, DOI 10.1177/0266242615577708
Hakala H, 2011, INT J MANAG REV, V13, P199, DOI 10.1111/j.1468-2370.2010.00292.x
HAMBRICK DC, 1983, ACAD MANAGE J, V26, P5, DOI 10.5465/256132
Hernández-Linares R, 2018, FAM BUS REV, V31, P318, DOI 10.1177/0894486518781940
HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064
Ireland RD, 2009, ENTREP THEORY PRACT, V33, P19, DOI 10.1111/j.1540-6520.2008.00279.x
Ireland RD, 2003, J MANAGE, V29, P963, DOI 10.1016/S0149-2063(03)00086-2
Kang JH, 2016, J BUS VENTURING, V31, P628, DOI 10.1016/j.jbusvent.2016.08.002
Keil T., 2017, Entrepreneurship theory and practice, V41, P475, DOI [DOI 10.1111/ETAP.12213, DOI 10.1111/ETP.12213]
Ketokivi M, 2017, J OPER MANAG, V52, P1, DOI 10.1016/j.jom.2017.05.001
Kline R.B., 2015, Principles and practice of structural equation modeling
Kollmann T, 2014, ENTREP THEORY PRACT, V38, P1001, DOI 10.1111/j.1540-6520.2012.00530.x
Kreiser PM, 2020, ENTREP THEORY PRACT, V44, P1174, DOI 10.1177/1042258719891389
Levinthal DA, 2011, STRATEGIC MANAGE J, V32, P1517, DOI 10.1002/smj.963
Li YA, 2010, J MANAGE STUD, V47, P1457, DOI 10.1111/j.1467-6486.2010.00949.x
Loken E, 2017, SCIENCE, V355, P584, DOI 10.1126/science.aal3618
Lomberg C, 2017, ENTREP THEORY PRACT, V41, P973, DOI 10.1111/etap.12237
Lumpkin GT, 1996, ACAD MANAGE REV, V21, P135, DOI 10.2307/258632
MacKenzie SB, 2011, MIS QUART, V35, P293
Matsuno K, 2014, J PROD INNOVAT MANAG, V31, P1106, DOI 10.1111/jpim.12147
McKenny AF, 2018, J MANAGE, V44, P2909, DOI 10.1177/0149206316657594
Menguc B, 2010, J BUS ETHICS, V94, P279, DOI 10.1007/s10551-009-0264-0
Messersmith JG, 2013, INT SMALL BUS J, V31, P115, DOI 10.1177/0266242611416141
MILLER D, 1983, MANAGE SCI, V29, P770, DOI 10.1287/mnsc.29.7.770
Miller D, 2011, ENTREP THEORY PRACT, V35, P1051, DOI 10.1111/j.1540-6520.2011.00447.x
Morgan SL, 2007, ANAL METHOD SOC RES, P1, DOI 10.1017/CBO9780511804564
Morgan T, 2015, INT SMALL BUS J, V33, P731, DOI 10.1177/0266242614521054
Morris MH, 2011, ENTREP THEORY PRACT, V35, P947, DOI 10.1111/j.1540-6520.2011.00453.x
O'Boyle EH Jr, 2012, J BUS VENTURING, V27, P1, DOI 10.1016/j.jbusvent.2011.09.002
Patel PC, 2015, STRATEGIC MANAGE J, V36, P1739, DOI 10.1002/smj.2310
Pearl Judea, 2009, Causality: Models, reasoning, and inference, V2
Rauch A, 2009, ENTREP THEORY PRACT, V33, P761, DOI 10.1111/j.1540-6520.2009.00308.x
Real JC, 2014, BRIT J MANAGE, V25, P186, DOI 10.1111/j.1467-8551.2012.00848.x
Rocha V, 2019, ORGAN RES METHODS, V22, P740, DOI 10.1177/1094428118757313
Rosenbusch N, 2013, J MANAGE, V39, P633, DOI 10.1177/0149206311425612
Rubin DB, 2005, J AM STAT ASSOC, V100, P322, DOI 10.1198/016214504000001880
RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350
Saeed S, 2014, ENTREP THEORY PRACT, V38, P255, DOI 10.1111/etap.12097
Sampson RC, 2023, STRATEGIC MANAGE J, V44, P231, DOI 10.1002/smj.3158
Schneider M, 2015, J WORLD BUS, V50, P439, DOI 10.1016/j.jwb.2014.06.001
Semadeni M, 2014, STRATEGIC MANAGE J, V35, P1070, DOI 10.1002/smj.2136
Shaver JM, 1998, MANAGE SCI, V44, P571, DOI 10.1287/mnsc.44.4.571
Shepherd DA, 2010, ENTREP THEORY PRACT, V34, P59, DOI 10.1111/j.1540-6520.2009.00313.x
Slevin DP, 2011, ENTREP THEORY PRACT, V35, P973, DOI 10.1111/j.1540-6520.2011.00483.x
Spector PE, 2011, ORGAN RES METHODS, V14, P287, DOI 10.1177/1094428110369842
Taeuscher K, 2021, STRATEGIC MANAGE J, V42, P435, DOI 10.1002/smj.3229
Tajeddini K, 2010, TOURISM MANAGE, V31, P221, DOI 10.1016/j.tourman.2009.02.013
Tang JT, 2017, ENTREP THEORY PRACT, V41, P883, DOI 10.1111/etap.12235
Taras V, 2018, MANAG RES REV, V41, P225, DOI 10.1108/MRR-05-2017-0150
Van Doorn S, 2013, J PROD INNOVAT MANAG, V30, P821, DOI 10.1111/jpim.12032
Wales W, 2015, INT SMALL BUS J, V33, P351, DOI 10.1177/0266242613506023
Wales W, 2011, ENTREP THEORY PRACT, V35, P895, DOI 10.1111/j.1540-6520.2011.00451.x
Wales WJ, 2020, STRATEG ENTREP J, V14, P639, DOI 10.1002/sej.1344
Wales WJ, 2013, INT SMALL BUS J, V31, P357, DOI 10.1177/0266242611418261
Wales WJ, 2013, STRATEG ENTREP J, V7, P93, DOI 10.1002/sej.1153
Wales WJ, 2016, INT SMALL BUS J, V34, P3, DOI 10.1177/0266242615613840
Wang TY, 2017, STRATEG ENTREP J, V11, P373, DOI 10.1002/sej.1246
Wennberg K, 2020, J BUS VENTURING, V35, DOI 10.1016/j.jbusvent.2019.05.002
Wiklund J, 2011, ENTREP THEORY PRACT, V35, P925, DOI 10.1111/j.1540-6520.2011.00454.x
Zaefarian G, 2017, IND MARKET MANAG, V65, P39, DOI 10.1016/j.indmarman.2017.05.006
Zhao YB, 2011, ENTREP THEORY PRACT, V35, P293, DOI 10.1111/j.1540-6520.2009.00359.x
NR 107
TC 16
Z9 16
U1 12
U2 60
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1042-2587
EI 1540-6520
J9 ENTREP THEORY PRACT
JI Entrep. Theory Pract.
PD NOV
PY 2022
VL 46
IS 6
BP 1569
EP 1596
AR 1042258720976368
DI 10.1177/1042258720976368
EA DEC 2020
PG 28
WC Business
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA 5D7FX
UT WOS:000631599500001
DA 2024-09-05
ER
PT J
AU Luechtefeld, T
Bozada, T Jr
Goel, R
Wang, L
Paller, CJ
AF Luechtefeld, Thomas
Bozada Jr, Thomas
Goel, Rahul
Wang, Lin
Paller, Channing J.
TI Applications for open access normalized synthesis in metastatic prostate
cancer trials
SO FRONTIERS IN ARTIFICIAL INTELLIGENCE
LA English
DT Article
DE data curation; prostate cancer; biomarker; text mining; natural language
processing; machine learning
ID ABIRATERONE ACETATE; SURVIVAL ANALYSIS; PLUS PREDNISONE; DOUBLE-BLIND;
ENZALUTAMIDE; INHIBITORS
AB Recent metastatic castration-resistant prostate cancer (mCRPC) clinical trials have integrated homologous recombination and DNA repair deficiency (HRD/DRD) biomarkers into eligibility criteria and secondary objectives. These trials led to the approval of some PARP inhibitors for mCRPC with HRD/DRD indications. Unfortunately, biomarker-trial outcome data is only discovered by reviewing publications, a process that is error-prone, time-consuming, and laborious. While prostate cancer researchers have written systematic evidence reviews (SERs) on this topic, given the time involved from the last search to publication, an SER is often outdated even before publication. The difficulty in reusing previous review data has resulted in multiple reviews of the same trials. Thus, it will be useful to create a normalized evidence base from recently published/presented biomarker-trial outcome data that one can quickly update. We present a new approach to semi-automating normalized, open-access data tables from published clinical trials of metastatic prostate cancer using a data curation and SER platform. and were used to collect mCRPC clinical trial publications with HRD/DRD biomarkers. We extracted data from 13 publications covering ten trials that started before 22nd Apr 2021. We extracted 585 hazard ratios, response rates, duration metrics, and 543 adverse events. Across 334 patients, we also extracted 8,180 patient-level survival and biomarker values. Data tables were populated with survival metrics, raw patient data, eligibility criteria, adverse events, and timelines. A repeated strong association between HRD and improved PARP inhibitor response was observed. Several use cases for the extracted data are demonstrated via analyses of trial methods, comparison of treatment hazard ratios, and association of treatments with adverse events. Machine learning models are also built on combined and normalized patient data to demonstrate automated discovery of therapy/biomarker relationships. Overall, we demonstrate the value of systematically extracted and normalized data. We have also made our code open-source with simple instructions on updating the analyses as new data becomes available, which anyone can use even with limited programming knowledge. Finally, while we present a novel method of SER for mCRPC trials, one can also implement such semi-automated methods in other clinical trial domains to advance precision medicine.
C1 [Luechtefeld, Thomas; Bozada Jr, Thomas] Insilica LLC, Bethesda, MD USA.
[Wang, Lin] Johns Hopkins Univ, Dept Epidemiol, Bloomberg Sch Publ Hlth, Baltimore, MD USA.
[Paller, Channing J.] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Sch Med, Baltimore, MD 21205 USA.
C3 Johns Hopkins University; Johns Hopkins Bloomberg School of Public
Health; Johns Hopkins University; Johns Hopkins Medicine
RP Paller, CJ (corresponding author), Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Sch Med, Baltimore, MD 21205 USA.
EM cpaller1@jhmi.edu
RI goel, rahul/KMY-8257-2024
OI Bozada, Thomas/0000-0002-6100-0384; Wang, Lin/0000-0003-2046-4366
CR Annala M, 2018, CANCER DISCOV, V8, P444, DOI 10.1158/2159-8290.CD-17-0937
Antonarakis ES, 2020, EUR UROL ONCOL, V3, P594, DOI 10.1016/j.euo.2020.07.005
Antonarakis ES, 2020, JCO PRECIS ONCOL, V4, P370, DOI [10.1200/PO.19.00399, 10.1200/po.19.00399]
Bairoch A., 2009, NAT PRECED, V2009, P1, DOI [10.1038/npre.2009.3092.1, DOI 10.1038/NPRE.2009.3092.1]
Balduzzi S, 2019, EVID-BASED MENT HEAL, V22, P153, DOI 10.1136/ebmental-2019-300117
Beer TM, 2014, NEW ENGL J MED, V371, P424, DOI 10.1056/NEJMoa1405095
Beller EM, 2013, SYST REV-LONDON, V2, DOI 10.1186/2046-4053-2-36
Borkovec Martin, 2019, CRAN
Bozada T, 2021, FRONT ARTIF INTELL, V4, DOI 10.3389/frai.2021.685298
Clarke N, 2018, LANCET ONCOL, V19, P975, DOI 10.1016/S1470-2045(18)30365-6
Colaprico A, 2016, NUCLEIC ACIDS RES, V44, DOI 10.1093/nar/gkv1507
COX DR, 1972, J R STAT SOC B, V34, P187
de Bono J, 2020, NEW ENGL J MED, V382, P2091, DOI 10.1056/NEJMoa1911440
Dolgalev Igor, 2022, CRAN
Dziadkowiec KN, 2016, MENOPAUSE REV, V15, P215, DOI 10.5114/pm.2016.65667
FDA, 2020, LYNPARZA FDA DRUG LA
Fischbach A, 2018, NUCLEIC ACIDS RES, V46, P804, DOI 10.1093/nar/gkx1205
Fizazi K, 2017, NEW ENGL J MED, V377, P352, DOI 10.1056/NEJMoa1704174
Fizazi K, 2012, LANCET ONCOL, V13, P983, DOI 10.1016/S1470-2045(12)70379-0
Garge NR, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-125
Graff JN, 2020, J IMMUNOTHER CANCER, V8, DOI 10.1136/jitc-2020-000642
Hussain M, 2020, NEW ENGL J MED, V383, P2345, DOI 10.1056/NEJMoa2022485
Hussain M, 2018, J CLIN ONCOL, V36, P991, DOI 10.1200/JCO.2017.75.7310
Hussain M, 2017, J CLIN ONCOL, V35, DOI 10.1200/JCO.2017.35.15_suppl.5001
Jang A, 2020, CANCERS, V12, DOI 10.3390/cancers12113467
Kaufman B, 2015, J CLIN ONCOL, V33, P244, DOI 10.1200/JCO.2014.56.2728
Luechtefeld T., 2021, PROSPERO 2021
Luechtefeld T, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-65369-3
Luo J, 2019, NAT REV UROL, V16, P4, DOI 10.1038/s41585-018-0129-3
Maertens A, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60456-x
McLaren W, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-0974-4
Mounir M, 2019, PLOS COMPUT BIOL, V15, DOI 10.1371/journal.pcbi.1006701
Page MJ, 2021, INT J SURG, V88, DOI [10.1186/s13643-021-01626-4, 10.1016/j.jclinepi.2021.02.003, 10.1016/j.ijsu.2021.105906]
Pedersen Thomas Lin, 2024, CRAN
Rivera SC, 2020, LANCET DIGIT HEALTH, V2, pE549, DOI [10.1016/S2589-7500(20)30219-3, 10.1136/bmj.m3210, 10.1038/s41591-020-1037-7]
Ryan CJ, 2015, LANCET ONCOL, V16, P152, DOI 10.1016/S1470-2045(14)71205-7
Sachs M., 2020, GGKM SURVIVAL PLOTS
Scher HI, 2012, NEW ENGL J MED, V367, P1187, DOI 10.1056/NEJMoa1207506
Sievert C, 2020, INTERACTIVE WEB BASE
Silva Tiago C, 2016, F1000Res, V5, P1542, DOI 10.12688/f1000research.8923.2
Sumanasuriya S, 2018, CSH PERSPECT MED, V8, DOI 10.1101/cshperspect.a030635
Tasneem A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033677
Therneau Terry M, 2024, CRAN
Therneau Terry M, 2000, STAT BIOL HEALTH, DOI 10.1007/978-1-4757-3294-8_3
Viechtbauer W, 2010, J STAT SOFTW, V36, P1, DOI 10.18637/jss.v036.i03
Wickham H., 2007, GGPLOT PACKAGE
Zeileis A., 2010, party with the mob: Model-Based Recursive Partitioning in R. R package version 0.9-9999
NR 47
TC 0
Z9 0
U1 2
U2 2
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2624-8212
J9 FRONT ARTIF INTELL
JI Front. Artif. Intell.
PD SEP 12
PY 2022
VL 5
AR 984836
DI 10.3389/frai.2022.984836
PG 15
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA 8D1JO
UT WOS:000918055500001
PM 36171797
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Zong, QJ
Huang, ZH
Huang, JR
AF Zong, Qianjin
Huang, Zhihong
Huang, Jiaru
TI Can open access increase LIS research's policy impact? Using regression
analysis and causal inference
SO SCIENTOMETRICS
LA English
DT Article
DE Policy impact; Open access; Evidence-based policy-making; Policy-makers;
Policy citation counts; Unpaywall; Dimensions
ID HEALTH-POLICY; INFORMATION; GOVERNMENT; PUBLICATIONS; CITATIONS;
JOURNALS; EFFICACY; DATABASE; LIBRARY; STATE
AB The relationship between open access and academic impact (usually measured as citations received from academic publications) has been extensively studied but remains a very controversial topic. However, the effect of open access on policy impact (measured as citations received from policy documents) is still unknown. The purpose of this study was to examine the effect of open access on the policy impact, which might initiate a new controversial topic. Research articles in the field of library and information science (LIS) were selected as the data sample (n = 48,884). Negative binomial regression models were used to examine the dataset. Furthermore, propensity score matching (PSM) analysis, a causal inference approach, was used to estimate the effect of open access on the policy impact based on a selected LIS journal (Scientometrics, n = 4019) that received the most policy citations among the LIS journals. Linear regression models, logit regression models, four other matching methods, open access status provided by different databases, and different sizes of data samples were used to check the robustness of the main results. This study revealed that open access had significant and positive effects on the policy impact.
C1 [Zong, Qianjin; Huang, Zhihong; Huang, Jiaru] South China Normal Univ, Sch Econ & Management, Guangzhou, Peoples R China.
C3 South China Normal University
RP Zong, QJ (corresponding author), South China Normal Univ, Sch Econ & Management, Guangzhou, Peoples R China.
EM zongqj@m.scnu.edu.cn
RI lan, xueyao/JZD-4201-2024; Zong, Qianjin/ABD-0454-2022
OI Zong, Qianjin/0000-0002-7517-8191; Huang, Zhihong/0000-0001-6679-2133
CR Adie E., 2020, SEPTENTRIO C SERIES, DOI [10.7557/5.5571, DOI 10.7557/5.5571]
Aguillo IF, 2020, SCIENTOMETRICS, V123, P1181, DOI 10.1007/s11192-020-03424-6
Airoldi G, 2021, HIST PHIL LIFE SCI, V43, DOI 10.1007/s40656-021-00419-1
Alkhawtani RHM, 2020, EUR RADIOL, V30, P482, DOI 10.1007/s00330-019-06389-0
AlRyalat SA, 2021, CURR UROL, V15, P59, DOI 10.1097/CU9.0000000000000007
AlRyalat SA, 2019, J GASTROINTEST ONCOL, V10, P777, DOI 10.21037/jgo.2019.02.13
Altmetric, 2020, WHAT ARE ALTM
Atchison A, 2015, PS-POLIT SCI POLIT, V48, P129, DOI 10.1017/S1049096514001668
Basson I, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0265545
Basson I, 2021, SCIENTOMETRICS, V126, P459, DOI 10.1007/s11192-020-03734-9
Beaujean AA., 2016, Pract. Assess. Res. Eval, V21, P2, DOI [DOI 10.7275/PJ8C-H254, 10.7275/pj8c-h254]
Cho J, 2021, SCIENTOMETRICS, V126, P7623, DOI 10.1007/s11192-021-04084-w
Cho J, 2021, SERIALS REV, V47, P17, DOI 10.1080/00987913.2021.1882652
Clarivate, 2020, SEARCH GROUP AUTH FI
Clarivate, 2021, OPEN ACCESS
Clayson PE, 2021, INT J PSYCHOPHYSIOL, V164, P103, DOI 10.1016/j.ijpsycho.2021.03.006
Combs T, 2022, HEALTH SERV RES, V57, P122, DOI 10.1111/1475-6773.13916
Davis PM, 2008, BMJ-BRIT MED J, V337, DOI 10.1136/bmj.a568
Dickersin K, 2002, JAMA-J AM MED ASSOC, V287, P2772, DOI 10.1001/jama.287.21.2772
Dorta-González P, 2020, SCIENTOMETRICS, V124, P2619, DOI 10.1007/s11192-020-03557-8
Estakhr Z, 2021, INFORM RES, V26, DOI 10.47989/irpaper897
EuropeanUnion, 2020, EU SUPP OP ACC
Eysenbach G, 2006, J MED INTERNET RES, V8, DOI 10.2196/jmir.8.2.e8
Ferreras-Fernández T, 2015, THIRD INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ECOSYSTEMS FOR ENHANCING MULTICULTURALITY, PROCEEDINGS TEEM'15, P419, DOI 10.1145/2808580.2808643
Fiebig A, 2019, ERWERBS-OBSTBAU, V61, P1, DOI 10.1007/s10341-018-0394-6
Funk T, 2022, HEALTH POLICY, V126, P16, DOI 10.1016/j.healthpol.2021.10.001
Glänzel W, 2020, SCIENTOMETRICS, V125, P1011, DOI 10.1007/s11192-020-03473-x
Guo F, 2014, J SCHOLARLY PUBL, V45, P336, DOI 10.3138/jsp.45.4.02
Hartemink AE, 2019, GEODERMA REG, V18, DOI 10.1016/j.geodrs.2019.e00231
Holmberg K, 2020, SCIENTOMETRICS, V122, P645, DOI 10.1007/s11192-019-03301-x
Hook D., 2019, ASCENT OPEN ACCESS
Huang ZH, 2022, SCIENTOMETRICS, V127, P6453, DOI 10.1007/s11192-022-04532-1
Jeffery S, 2020, ENVIRON SCI POLICY, V112, P371, DOI 10.1016/j.envsci.2020.07.006
Jewell CJ, 2008, MILBANK Q, V86, P177, DOI 10.1111/j.1468-0009.2008.00519.x
Joosse IR, 2023, HEALTH POLICY, V134, DOI 10.1016/j.healthpol.2022.03.003
Jukola S, 2021, HIST PHIL LIFE SCI, V43, DOI 10.1007/s40656-021-00410-w
Kale B, 2017, PROCEEDINGS OF THE 2017 ACM WEB SCIENCE CONFERENCE (WEBSCI '17), P389, DOI 10.1145/3091478.3098865
Kolpekwar JA, 2021, CYTOJOURNAL, V18, DOI 10.25259/Cytojournal_32_2021
Konno K, 2020, ENVIRON SCI POLICY, V114, P256, DOI 10.1016/j.envsci.2020.08.021
Kuballa S, 2017, STUD HEALTH TECHNOL, V245, P901, DOI 10.3233/978-1-61499-830-3-901
Kumar MB, 2020, HEALTH POLICY PLANN, V35, P799, DOI 10.1093/heapol/czaa027
Laakso M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020961
Leopold SS, 2014, CLIN ORTHOP RELAT R, V472, P1665, DOI 10.1007/s11999-014-3615-9
Liao CH, 2018, SCIENTOMETRICS, V117, P1991, DOI 10.1007/s11192-018-2925-1
Lin WYC, 2021, SCIENTOMETRICS, V126, P4841, DOI 10.1007/s11192-021-03956-5
Lohse S, 2021, EUR J PHILOS SCI, V11, DOI 10.1007/s13194-021-00416-y
Loubère L, 2019, INFORM RES, V24
Lynch CP, 2022, CLIN SPINE SURG, V35, pE558, DOI 10.1097/BSD.0000000000001303
Malkawi L, 2019, AM J ROENTGENOL, V213, P736, DOI 10.2214/AJR.19.21215
Malkov D, 2023, QUANT SCI STUD, V4, P68, DOI 10.1162/qss_a_00243
McCabe MJ, 2021, MANAG DECIS ECON, V42, P1960, DOI 10.1002/mde.3353
McCann TV, 2018, J ADV NURS, V74, P809, DOI 10.1111/jan.13483
Miller GW, 2021, CLIN ANAT, V34, P660, DOI 10.1002/ca.23580
Milojevic S, 2011, J AM SOC INF SCI TEC, V62, P1933, DOI 10.1002/asi.21602
Ming W, 2022, J ASSOC INF SCI TECH, V73, P1608, DOI 10.1002/asi.24699
Morillo F, 2020, SCIENTOMETRICS, V125, P689, DOI 10.1007/s11192-020-03652-w
Nabavi M, 2022, LEARN PUBL, V35, P617, DOI 10.1002/leap.1492
Newman J, 2017, PUBLIC MANAG REV, V19, P157, DOI 10.1080/14719037.2016.1148191
Newson R, 2018, HEALTH RES POLICY SY, V16, DOI [10.1186/s12961-018-0326-9, 10.1186/s12961-018-0310-4]
Nogrady B, 2023, NATURE, V615, P175, DOI 10.1038/d41586-023-00575-3
O'Kelly F, 2019, J PEDIATR UROL, V15, DOI 10.1016/j.jpurol.2018.08.019
Oliver K, 2014, BMC HEALTH SERV RES, V14, DOI 10.1186/1472-6963-14-2
Ottaviani J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159614
Overton, 2023, SHOW SOURC
Overton, 2022, WHAT IS OV COV COMP
Patel RB, 2019, AM J MED, V132, P1103, DOI 10.1016/j.amjmed.2019.02.009
Peterson AT, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000352
Pinheiro H, 2021, QUANT SCI STUD, V2, P616, DOI 10.1162/qss_a_00137
Piwowar Heather, 2018, PeerJ, V6, pe4375, DOI 10.7717/peerj.4375
Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874
Priem J., 2010, Altmetrics: A manifesto
Purtle J, 2022, HEALTH SERV RES, V57, P842, DOI 10.1111/1475-6773.13955
Rahmouni M, 2021, RISK MANAG HEALTHC P, V14, P3091, DOI 10.2147/RMHP.S312511
Richards GW, 2017, CAN PUBLIC POL, V43, P165, DOI 10.3138/cpp.2016-046
Ritter A, 2009, INT J DRUG POLICY, V20, P70, DOI 10.1016/j.drugpo.2007.11.017
Roemer R.C., 2015, Library Technology Reports, V51, P5
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
Saberi MK, 2019, PERFORM MEAS METR, V20, P37, DOI 10.1108/PMM-10-2018-0025
Salisbury Lutishoor, 2017, Science & Technology Libraries, V36, P187, DOI 10.1080/0194262X.2016.1273815
Segerholm C, 2022, SCAND J EDUC RES, V66, P642, DOI 10.1080/00313831.2021.1897882
Serra R, 2020, GLOB FOOD SECUR-AGR, V26, DOI 10.1016/j.gfs.2020.100428
Sotudeh H, 2009, SCIENTOMETRICS, V81, P7, DOI 10.1007/s11192-009-1870-4
Szomszor M, 2022, QUANT SCI STUD, V3, P624, DOI 10.1162/qss_a_00204
Tahamtan I, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.02
Tattersall A., 2018, FRONTIERS RES METRIC, V2, P9, DOI [DOI 10.3389/FRMA.2017.00009, 10.3389/frma.2017.00009]
Taylor M, 2020, SCIENTOMETRICS, V125, P2523, DOI 10.1007/s11192-020-03735-8
Valderrama-Zurián JC, 2019, SCIENTOMETRICS, V120, P1031, DOI 10.1007/s11192-019-03175-z
van den Akker W., 2017, PRODUCTIVE INTERACTI
Vilkins S, 2017, SCIENTOMETRICS, V113, P1681, DOI 10.1007/s11192-017-2544-2
Wang JX, 2021, PHARM STAT, V20, P15, DOI 10.1002/pst.2051
Wassef DW, 2022, ANN OTO RHINOL LARYN, V131, P704, DOI 10.1177/00034894211039627
Wei MK, 2020, SCIENTOMETRICS, V122, P1027, DOI 10.1007/s11192-019-03306-6
Wilsdon J., 2017, NEXT GENERATION METR, P1
Wu SS, 2020, HEALTH POLICY PLANN, V35, P665, DOI 10.1093/heapol/czaa025
Wyatt JC, 2019, J MED INTERNET RES, V21, DOI 10.2196/16532
Yingling DL, 2020, EVID POLICY, V16, P579, DOI 10.1332/174426419X15752577942927
Zanti Sharon, 2021, Glob Implement Res Appl, V1, P304, DOI 10.1007/s43477-021-00028-x
Zhang DF, 2021, J AM ACAD ORTHOP SUR, V29, pE1239, DOI 10.5435/JAAOS-D-20-01074
Zhang L, 2022, SCIENTOMETRICS, V127, P7653, DOI 10.1007/s11192-022-04407-5
Zong QJ, 2023, LEARN PUBL, V36, P266, DOI 10.1002/leap.1523
NR 100
TC 4
Z9 4
U1 19
U2 80
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD AUG
PY 2023
VL 128
IS 8
BP 4825
EP 4854
DI 10.1007/s11192-023-04750-1
EA MAY 2023
PG 30
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA L4VQ8
UT WOS:000999292600007
DA 2024-09-05
ER
PT J
AU Hu, ZW
Cui, JJ
Lin, AEL
AF Hu, Zewen
Cui, Jingjing
Lin, Angela
TI Identifying potentially excellent publications using a citation-based
machine learning approach
SO INFORMATION PROCESSING & MANAGEMENT
LA English
DT Article
DE Machine learning; Artificial intelligence; Excellent papers; Highly
cited papers; Sleeping beauty; Citation -based measures; Citation peak;
Neural network; LightGBM; TabNet
ID HIGHLY CITED PAPERS; SLEEPING BEAUTIES; IMPACT; COUNTS; PREDICTION;
PATTERNS; FEATURES; PROBE
AB Excellent research papers are vital to science and technology advances. Thus, the early identification of potentially excellent research papers and recognizing their value in science and technology is high on the research agenda. This study used a set of 5 static and 8 time-dependent citation features to explore six machine learning methods and identify the method with the best performance to identify potentially excellent papers. The study modelled Random Forest, LightGBM, Naive Bayes, Support Vector Machine, Neural Network, and TabNet to identify PEPs in the artificial intelligence field. The study defined highly cited papers using the threshold of the top 1% and top 5% and collected the data from the Web of Science (R). Bibliometric and citation data from 485,041 research articles, proceeding papers, and reviews published in AI between 1990 and 2010 were collected initially. The data was screened and processed, and the final dataset consists of 96,169 papers for the training and test sets. The findings suggest that the timedependent citation features are more important than the static features, and citation peak features are more significant than the citation features in identifying potentially excellent papers. The findings demonstrate the effect of threshold on machine learning outcomes (e.g., the top 1% and 5%); therefore, the study argues that the decision about threshold selection should be carefully made. LightGBM and Random Forest both performed with the given conditions and achieved the same score in accuracy and recall. Nevertheless, when comparing their performance in other indicators, such as F1 and cross-entropy loss, LightGBM performed better. The study concluded that LightGBM was the best-performing model for identifying potentially excellent papers. The papers identified the contributions and recommended future research.
C1 [Hu, Zewen; Cui, Jingjing] Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China.
[Lin, Angela] Univ Sheffield, Informat Sch, Sheffield S10 2TN, England.
C3 Nanjing University of Information Science & Technology; University of
Sheffield
RP Lin, AEL (corresponding author), Univ Sheffield, Informat Sch, Sheffield S10 2TN, England.
EM a.lin@sheffield.ac.uk
OI hu, ze wen/0000-0002-9518-7204
FU National Social Science Fund of China ? [20CTQ031]
FX This study was supported by the National Social Science Fund of China
?The Identification Method and Its Application in Iden-tifying the
?Hidden Treasures? from Massive Scientifical and Technical Literature?
(Grant No. 20CTQ031) .
CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128
Aksnes DW, 2004, SCIENTOMETRICS, V59, P213, DOI 10.1023/B:SCIE.0000018529.58334.eb
Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645
Arik SO, 2021, AAAI CONF ARTIF INTE, V35, P6679
AVERSA ES, 1985, SCIENTOMETRICS, V7, P383, DOI 10.1007/BF02017156
AVRAMESCU A, 1979, J AM SOC INFORM SCI, V30, P296, DOI 10.1002/asi.4630300509
Bornmann L, 2020, SCIENTOMETRICS, V124, P1457, DOI 10.1007/s11192-020-03512-7
Bornmann L, 2014, RES EVALUAT, V23, P166, DOI 10.1093/reseval/rvu002
Bornmann L, 2013, J INFORMETR, V7, P158, DOI 10.1016/j.joi.2012.10.001
Bornmann L, 2010, PLOS ONE, V5, DOI [10.1371/journal.pone.0013327, 10.1371/journal.pone.0011344]
Dey R, 2017, SCIENTOMETRICS, V113, P1645, DOI 10.1007/s11192-017-2543-3
Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806
Du W., 2022, PROC CVPR IEEE, P1
Falagas ME, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0049476
Fiala D, 2021, COMPUTERS, V10, DOI 10.3390/computers10080096
Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Garfield E, 1979, CITATION INDEXING IT
Glänzel W, 2004, SCIENTIST, V18, P8
GLANZEL W, 1992, SCIENTOMETRICS, V25, P373, DOI 10.1007/BF02016926
Hafeez DM, 2019, J PSYCHIATR RES, V108, P90, DOI 10.1016/j.jpsychires.2018.07.010
Hasan S, 2021, SCIENTOMETRICS, V126, P7583, DOI 10.1007/s11192-021-04083-x
Huang SZ, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102799
Iqbal W, 2019, SCIENTOMETRICS, V119, P1121, DOI 10.1007/s11192-019-03086-z
Ke GL, 2017, ADV NEUR IN, V30
Lachance C, 2014, J INFORMETR, V8, P863, DOI 10.1016/j.joi.2014.08.002
Lavrakas P. J., 2008, Encyclopedia of Survey Research Methods, V1-0, DOI [DOI 10.4135/9781412963947, DOI 10.1136/BMJ.F6304]
Lee S, 2014, EXPERT SYST APPL, V41, P3041, DOI 10.1016/j.eswa.2013.10.034
Li J, 2016, SCIENTOMETRICS, V108, P821, DOI 10.1007/s11192-016-1977-3
Li J, 2014, MALAYS J LIBR INF SC, V19, P17
Li Lingying, 2019, Journal of the China Society for Scientific and Technical Information, V38, P697, DOI 10.3772/j.issn.1000-0135.2019.07.004
Liang ZT, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102611
Lu W, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102594
Mistele T, 2019, SCIENTOMETRICS, V120, P87, DOI 10.1007/s11192-019-03110-2
Ohba N, 2012, SCIENTOMETRICS, V93, P253, DOI 10.1007/s11192-012-0667-z
Peng-hui Lyu, 2018, Proceedings of the Association for Information Science and Technology, V55, DOI 10.1002/pra2.2018.14505501035
Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017
Robson BJ, 2016, ENVIRON MODELL SOFTW, V75, P94, DOI 10.1016/j.envsoft.2015.10.007
Ruan XM, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101039
So M, 2015, QUAL QUANT, V49, P1513, DOI 10.1007/s11135-014-0110-z
Tahamtan I, 2018, J INFORMETR, V12, P203, DOI 10.1016/j.joi.2018.01.002
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
Teixeira AAC, 2017, SCIENTOMETRICS, V110, P541, DOI 10.1007/s11192-016-2186-9
Tijssen RJW, 2002, SCIENTOMETRICS, V54, P381, DOI 10.1023/A:1016082432660
Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004
van Leeuwen TN, 2003, SCIENTOMETRICS, V57, P257, DOI 10.1023/A:1024141819302
van Leeuwen TN, 1999, J INFORM SCI, V25, P489, DOI 10.1177/016555159902500605
van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1
Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009
Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808
Weihs L, 2017, ACM-IEEE J CONF DIG, P49
Wendzel S, 2020, SCIENTOMETRICS, V122, P267, DOI 10.1007/s11192-019-03279-6
Wong TC, 2017, APPL SOFT COMPUT, V52, P1169, DOI 10.1016/j.asoc.2016.09.011
Wong TC, 2015, INT J PROD RES, V53, P4050, DOI 10.1080/00207543.2014.988886
Xie J, 2019, SCIENTOMETRICS, V119, P1429, DOI 10.1007/s11192-019-03094-z
Xu JG, 2019, IEEE ACCESS, V7, P92248, DOI 10.1109/ACCESS.2019.2927011
Yoon SJ, 2017, AM J ROENTGENOL, V209, P248, DOI 10.2214/AJR.16.17769
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
Yuan Sha, 2022, arXiv
Zhao SX, 2015, CURR SCI INDIA, V109, P1523
NR 62
TC 7
Z9 7
U1 21
U2 75
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-4573
EI 1873-5371
J9 INFORM PROCESS MANAG
JI Inf. Process. Manage.
PD MAY
PY 2023
VL 60
IS 3
AR 103323
DI 10.1016/j.ipm.2023.103323
EA FEB 2023
PG 22
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 9V4SR
UT WOS:000948384700001
OA Green Accepted, hybrid
DA 2024-09-05
ER
PT J
AU Zhu, XD
Turney, P
Lemire, D
Vellino, A
AF Zhu, Xiaodan
Turney, Peter
Lemire, Daniel
Vellino, Andre
TI Measuring Academic Influence: Not All Citations Are Equal
SO JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE natural language processing
ID H-INDEX; FREQUENCY; ARTICLES; OUTCOMES
AB The importance of a research article is routinely measured by counting how many times it has been cited. However, treating all citations with equal weight ignores the wide variety of functions that citations perform. We want to automatically identify the subset of references in a bibliography that have a central academic influence on the citing paper. For this purpose, we examine the effectiveness of a variety of features for determining the academic influence of a citation. By asking authors to identify the key references in their own work, we created a data set in which citations were labeled according to their academic influence. Using automatic feature selection with supervised machine learning, we found a model for predicting academic influence that achieves good performance on this data set using only four features. The best features, among those we evaluated, were those based on the number of times a reference is mentioned in the body of a citing paper. The performance of these features inspired us to design an influence-primed h-index (the hip-index). Unlike the conventional h-index, it weights citations by how many times a reference is mentioned. According to our experiments, the hip-index is a better indicator of researcher performance than the conventional h-index.
C1 [Zhu, Xiaodan; Turney, Peter] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada.
[Lemire, Daniel] Univ Quebec, TELUQ, Montreal, PQ H2S 3L5, Canada.
[Vellino, Andre] Univ Ottawa, Sch Informat Studies, Ottawa, ON K1N 6N5, Canada.
C3 National Research Council Canada; University of Quebec; Universite
TELUQ; University of Quebec Montreal; University of Ottawa
RP Zhu, XD (corresponding author), Natl Res Council Canada, 1200 Montreal Rd,Bldg M50, Ottawa, ON K1A 0R6, Canada.
EM Xiaodan.Zhu@nrc-cnrc.gc.ca; peter.turney@nrc-cnrc.gc.ca; lemire@acm.org;
avellino@uottawa.ca
RI Turney, Peter/AAI-8278-2021; Lemire, Daniel/N-7632-2017; Vellino,
Andre/E-8105-2017
OI Turney, Peter/0000-0003-0909-4085; Lemire, Daniel/0000-0003-3306-6922;
Vellino, Andre/0000-0003-4304-2801
FU Natural Sciences and Engineering Research Council of Canada (NSERC)
[26143]
FX We are grateful to the volunteers who identified key citations in their
own work. Daniel Lemire acknowledges support from the Natural Sciences
and Engineering Research Council of Canada (NSERC) with grant number
26143. We thank M. Couture, V. Lariviere, and the anonymous reviewers
for their helpful comments.
CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500
Adler R, 2009, STAT SCI, V24, P1, DOI 10.1214/09-STS285
Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11
Ajiferuke I, 2010, J AM SOC INF SCI TEC, V61, P2086, DOI 10.1002/asi.21383
[Anonymous], 2007, College and Research Libraries News, DOI DOI 10.5860/CRLN.68.5.7804
Athar Awais., 2012, PROC ACL WORKSHOP DE, P18
Balaban AT, 2012, SCIENTOMETRICS, V92, P241, DOI 10.1007/s11192-012-0637-5
Bollen J, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006022, 10.1371/journal.pone.0004803]
Bornmann L., 2008, European Science Editing, V34, P35
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806
Buckley C., 2000, P 23 ANN INT ACM SIG, P33, DOI DOI 10.1145/345508.345543
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403
Councill I. G., 2008, P LANG RES EV C
Darwin C., 1859, ORIGIN SPECIES MEANS, DOI DOI 10.5962/BHL.TITLE.82303
Di Marco C, 2006, INFORM RETRIEVAL SER, V20, P247
Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526
Ding Y, 2011, J AM SOC INF SCI TEC, V62, P236, DOI 10.1002/asi.21452
Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002
Dubin D, 2004, LIBR TRENDS, V52, P748
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Garfield E., 1965, NBS MISCELLANEOUS PU, V269, P188
Garfield E., 1968, 135 ANN M AM ASS ADV
Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337
GILBERT GN, 1977, SOC STUD SCI, V7, P113
Giles C. L., 1998, Digital 98 Libraries. Third ACM Conference on Digital Libraries, P89, DOI 10.1145/276675.276685
Gingras Y, 2010, SCIENTOMETRICS, V82, P401, DOI 10.1007/s11192-009-0035-9
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Hanney S, 2005, SCIENTOMETRICS, V65, P357, DOI 10.1007/s11192-005-0279-y
Haque A., 2011, P 11 ANN INT ACM IEE, P25
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hou WR, 2011, BIOESSAYS, V33, P724, DOI 10.1002/bies.201100067
Ioannidis JPA, 2006, PLOS ONE, V1, DOI 10.1371/journal.pone.0000005
Kaplan D., 2009, Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries (NLPIR4DL), P88
Le MH, 2006, LECT NOTES ARTIF INT, V3918, P265
Lehmann S, 2006, NATURE, V444, P1003, DOI 10.1038/4441003a
Leskovec J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P497
Lewis D., 1991, HLT WORKSHOP SPEECH, P312, DOI DOI 10.3115/112405.112471
Liang YC, 2011, LECT NOTES COMPUT SC, V6897, P403, DOI 10.1007/978-3-642-23535-1_35
Long J.S., 2011, Regression models for categorical and limited dependent variables
Marchant T, 2009, J AM SOC INF SCI TEC, V60, P1132, DOI 10.1002/asi.21059
Mazloumian A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049246
Mercer RE, 2004, LECT NOTES ARTIF INT, V3060, P75
Mohammad S.M., 2010, Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, P26, DOI DOI 10.5555/1860631.1860635
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926
Osgood C., 1957, The measurement of meaning
Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001
Pham SB, 2003, LECT NOTES ARTIF INT, V2903, P759
PINSKI G, 1976, INFORM PROCESS MANAG, V12, P297, DOI 10.1016/0306-4573(76)90048-0
Porter MF, 2006, PROGRAM-ELECTRON LIB, V40, P211, DOI 10.1108/eb046814
Qazvinian V, 2008, P 22 INT C COMP LING, V1, P689, DOI DOI 10.3115/1599081.1599168
Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555
QI X, 2007, P 3 INT WORKSH ADV I, P49
RADEV DR, 2009, P ACL WORKSH NAT LAN
Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113
Rokach L, 2011, J AM SOC INF SCI TEC, V62, P2456, DOI 10.1002/asi.21638
Schreiber M, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/4/040201
Shotton David, 2010, J Biomed Semantics, V1 Suppl 1, pS6, DOI 10.1186/2041-1480-1-S1-S6
Simkin MV., 2003, COMPLEX SYSTEMS, V14, P269, DOI [DOI 10.1111/J.1740-9713.2006.00202.X, 10.25088/ComplexSystems.14.3.269]
Small H., 1982, PROGR COMMUNICATION, V3, P287
Soon WM, 2001, COMPUT LINGUIST, V27, P521, DOI 10.1162/089120101753342653
Stone Philip J, 1966, The General Inquirer: A computer approach to content analysis
Taheriyan M., 2011, Proceedings of the 2011 workshop on Knowledge discovery, modeling and simulation, P39, DOI [DOI 10.1145/2023568.2023579, 10.1145/2023568.2023579]
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Turney P., 1996, P WORKSHOP LEARNING, P60
Turney PD, 2003, ACM T INFORM SYST, V21, P315, DOI 10.1145/944012.944013
TURNEY PD, 1993, INDUSTRIAL AND ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS - IEA/AIE 93, P268
Turney PD, 2010, J ARTIF INTELL RES, V37, P141, DOI 10.1613/jair.2934
Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009
Vellino A., 2010, Proceedings of the American Society for Information Science and Technology, V47, P1, DOI DOI 10.1002/MEET.14504701330
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678
Wilhite AW, 2012, SCIENCE, V335, P542, DOI 10.1126/science.1212540
Witten IH, 2011, MOR KAUF D, P1
Yan E, 2010, J AM SOC INF SCI TEC, V61, P1635, DOI 10.1002/asi.21349
Zitt M, 2008, J AM SOC INF SCI TEC, V59, P1856, DOI 10.1002/asi.20880
NR 79
TC 155
Z9 170
U1 10
U2 118
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2330-1635
EI 2330-1643
J9 J ASSOC INF SCI TECH
PD FEB
PY 2015
VL 66
IS 2
BP 408
EP 427
DI 10.1002/asi.23179
PG 20
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA CA2HR
UT WOS:000348730000013
OA Green Accepted, Green Submitted
DA 2024-09-05
ER
PT J
AU Ibáñez, A
Armañanzas, R
Bielza, C
Larrañaga, P
AF Ibanez, Alfonso
Armananzas, Ruben
Bielza, Concha
Larranaga, Pedro
TI Genetic algorithms and Gaussian Bayesian networks to uncover the
predictive core set of bibliometric indices
SO JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE machine learning; predictive models; bibliometrics
ID H-INDEX; INDICATORS; MODEL; OPTIMIZATION
AB The diversity of bibliometric indices today poses the challenge of exploiting the relationships among them. Our research uncovers the best core set of relevant indices for predicting other bibliometric indices. An added difficulty is to select the role of each variable, that is, which bibliometric indices are predictive variables and which are response variables. This results in a novel multioutput regression problem where the role of each variable (predictor or response) is unknown beforehand. We use Gaussian Bayesian networks to solve the this problem and discover multivariate relationships among bibliometric indices. These networks are learnt by a genetic algorithm that looks for the optimal models that best predict bibliometric data. Results show that the optimal induced Gaussian Bayesian networks corroborate previous relationships between several indices, but also suggest new, previously unreported interactions. An extended analysis of the best model illustrates that a set of 12 bibliometric indices can be accurately predicted using only a smaller predictive core subset composed of citations, g-index, q(2)-index, and h(r)-index. This research is performed using bibliometric data on Spanish full professors associated with the computer science area.
C1 [Ibanez, Alfonso; Bielza, Concha; Larranaga, Pedro] Univ Politecn Madrid, Computat Intelligence Grp, Dept Inteligencia Artificial, Campus Montegancedo S-N, Boadilla Del Monte 28660, Spain.
[Armananzas, Ruben] George Mason Univ, Krasnow Inst Adv Study, 4400 Univ Dr, Fairfax, VA 22030 USA.
C3 Universidad Politecnica de Madrid; George Mason University
RP Ibáñez, A (corresponding author), Univ Politecn Madrid, Computat Intelligence Grp, Dept Inteligencia Artificial, Campus Montegancedo S-N, Boadilla Del Monte 28660, Spain.
EM fonsoim@gmail.com; rarmanan@gmu.edu; mcbielza@fi.upm.es;
plarranaga@fi.upm.es
RI Armañanzas, Rubén/O-7403-2019; Bielza, Concha/F-9277-2013; Ibáñez,
Alfonso/B-3423-2010; Larranaga, Pedro/F-9293-2013
OI Armañanzas, Rubén/0000-0003-4049-0000; Bielza,
Concha/0000-0001-7109-2668; Larranaga, Pedro/0000-0003-0652-9872
FU Spanish Ministry of Economy and Competitiveness [TIN2013-41592-P]; Cajal
Blue Brain Project (Spanish partner of the Blue Brain Project initiative
from EPFL); National Institutes of Health (NINDS) [R01 NS39600]
FX Research partially supported by the Spanish Ministry of Economy and
Competitiveness (grant no. TIN2013-41592-P) and the Cajal Blue Brain
Project (Spanish partner of the Blue Brain Project initiative from
EPFL). R.A. is currently supported by grant R01 NS39600 from the
National Institutes of Health (NINDS).
CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705
Alonso S, 2010, SCIENTOMETRICS, V82, P391, DOI 10.1007/s11192-009-0047-5
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
Anderson Theodore Wilbur, 1962, An introduction to multivariate statistical analysis
Bui AT, 2012, PATTERN RECOGN LETT, V33, P2134, DOI 10.1016/j.patrec.2012.06.013
[Anonymous], 1998, TUTORIAL LEARNING BA
[Anonymous], 1988, Probabilistic Reasoning in Intelligent Systems
[Anonymous], 1975, Ann Arbor
[Anonymous], P AISTATS 95
[Anonymous], 2005, AAAI
[Anonymous], P WORLD C ENG
[Anonymous], 15 C UNC ART INT UAI
[Anonymous], P 2010 WORLD C COMP
Batista PD, 2006, SCIENTOMETRICS, V68, P179, DOI 10.1007/s11192-006-0090-4
Blanco R, 2004, INT J PATTERN RECOGN, V18, P1373, DOI 10.1142/S0218001404003800
Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022
Bornmann L, 2008, RES EVALUAT, V17, P149, DOI 10.3152/095820208X319166
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806
Breiman L, 1997, J ROY STAT SOC B MET, V59, P3, DOI 10.1111/1467-9868.00054
Cabezas-Clavijo A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068258
Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005
Castillo E., 1997, Expert Systems and Probabilistic Network Models
Cheng J, 2002, ARTIF INTELL, V137, P43, DOI 10.1016/S0004-3702(02)00191-1
COOPER GF, 1992, MACH LEARN, V9, P309, DOI 10.1023/A:1022649401552
Costas R, 2008, SCIENTOMETRICS, V77, P267, DOI 10.1007/s11192-007-1997-0
Costas R, 2007, J INFORMETR, V1, P193, DOI 10.1016/j.joi.2007.02.001
de Campos LM, 2002, INT J APPROX REASON, V31, P291, DOI 10.1016/S0888-613X(02)00091-9
De Campos LM, 1998, J EXP THEOR ARTIF IN, V10, P511, DOI 10.1080/095281398146743
De Jong K.A., 1990, International Conference on Parallel Problem Solving from Nature, P38, DOI [DOI 10.1007/BFB0029729, 10.1007/BFb0029729]
Egghe L., 2006, ISSI NEWSLETTER, V2, P8
Egghe L, 2007, J AM SOC INF SCI TEC, V58, P452, DOI 10.1002/asi.20473
Egghe L, 2010, ANNU REV INFORM SCI, V44, P65, DOI 10.1002/aris.2010.1440440109
Etxeberria R, 1997, PATTERN RECOGN LETT, V18, P1269, DOI 10.1016/S0167-8655(97)00106-2
Franceschet M, 2010, J INFORMETR, V4, P239, DOI 10.1016/j.joi.2009.12.002
Franceschet M, 2009, J AM SOC INF SCI TEC, V60, P1950, DOI 10.1002/asi.21152
Friedman N., 1998, Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference (1998), P139
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Garfield E, 1996, SCIENTIST, V10, P13
Geiger D., 1994, Uncertainty in Artificial Intelligence. Proceedings of the Tenth Conference (1994), P235
GREFENSTETTE JJ, 1986, IEEE T SYST MAN CYB, V16, P122, DOI 10.1109/TSMC.1986.289288
HECKERMAN D, 1995, MACH LEARN, V20, P197, DOI 10.1007/BF00994016
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Huang S, 2013, IEEE T PATTERN ANAL, V35, P1328, DOI 10.1109/TPAMI.2012.129
Ibanez A., 2011, Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), P599, DOI 10.1109/ISDA.2011.6121721
Ibáñez A, 2014, NEUROCOMPUTING, V135, P42, DOI 10.1016/j.neucom.2013.08.042
Ibáñez A, 2011, SCIENTOMETRICS, V89, P523, DOI 10.1007/s11192-011-0486-7
Ibáñez A, 2009, BIOINFORMATICS, V25, P3303, DOI 10.1093/bioinformatics/btp585
Jensen F.V., 2007, Bayesian networks and decision graphs
Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3
Jia HY, 2005, PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, P2934
Jin Bihui, 2006, SCI FOCUS, V1, P1
Kellegöz T, 2008, APPL MATH COMPUT, V199, P590, DOI 10.1016/j.amc.2007.10.013
Kissin I, 2011, SCIENTOMETRICS, V86, P785, DOI 10.1007/s11192-010-0320-7
Krampen G, 2011, SCIENTOMETRICS, V87, P687, DOI 10.1007/s11192-011-0357-2
Larranaga P, 1996, IEEE T PATTERN ANAL, V18, P912, DOI 10.1109/34.537345
Larrañaga P, 2012, J HEURISTICS, V18, P795, DOI 10.1007/s10732-012-9208-4
Lauritzen S.L., 1996, OXFORD STAT SCI SERI
LAURITZEN SL, 1992, J AM STAT ASSOC, V87, P1098, DOI 10.2307/2290647
LAURITZEN SL, 1989, ANN STAT, V17, P31, DOI 10.1214/aos/1176347003
Levitt JM, 2011, INFORM PROCESS MANAG, V47, P300, DOI 10.1016/j.ipm.2010.09.005
Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P1327, DOI 10.1002/asi.21024
Marchant T, 2009, J AM SOC INF SCI TEC, V60, P1132, DOI 10.1002/asi.21059
Mascherini M, 2006, INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, P61
Morales MM, 2004, PROCEEDINGS OF THE FIFTH MEXICAN INTERNATIONAL CONFERENCE IN COMPUTER SCIENCE (ENC 2004), P176
Pinto PC, 2008, IEEE C EVOL COMPUTAT, P2741, DOI 10.1109/CEC.2008.4631166
Provan G.M., 1995, P 5 INT WORKSHOP ART, P450
RISSANEN J, 1978, AUTOMATICA, V14, P465, DOI 10.1016/0005-1098(78)90005-5
Ruane F, 2008, SCIENTOMETRICS, V75, P395, DOI 10.1007/s11192-007-1869-7
Ruiz-Pérez R, 2002, J MED LIBR ASSOC, V90, P411
Schreiber M, 2008, J AM SOC INF SCI TEC, V59, P1513, DOI 10.1002/asi.20856
SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136
SHACHTER RD, 1989, MANAGE SCI, V35, P527, DOI 10.1287/mnsc.35.5.527
Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z
Sivaraj R., 2011, International Journal of Engineering Science and Technology, V3, P3792
Smith PWF, 1998, NATO ADV SCI I D-BEH, V89, P555
Soler JM, 2007, J INFORMETR, V1, P123, DOI 10.1016/j.joi.2006.10.004
Spears W., 1991, Proceedings of the 6th International Symposium on Methodologies for Intelligent Systems, P409, DOI DOI 10.1007/3-540-54563-8_104
Spirtes P., 2000, Causation, prediction, and search
STONE M, 1974, J R STAT SOC B, V36, P111, DOI 10.1111/j.2517-6161.1974.tb00994.x
Tucker A, 2001, INT J INTELL SYST, V16, P621, DOI 10.1002/int.1027
van Dijk S, 2003, LECT NOTES COMPUT SC, V2723, P886
Vidaurre D, 2010, IEEE T SYST MAN CY B, V40, P1231, DOI 10.1109/TSMCB.2009.2036593
Vieira ES, 2014, J ASSOC INF SCI TECH, V65, P560, DOI 10.1002/asi.22981
Vieira ES, 2014, J INFORMETR, V8, P390, DOI 10.1016/j.joi.2014.01.012
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678
Ye FY, 2008, J INFORMETR, V2, P288, DOI 10.1016/j.joi.2008.09.002
Yehezkel R, 2009, J MACH LEARN RES, V10, P1527
NR 89
TC 7
Z9 7
U1 3
U2 47
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2330-1635
EI 2330-1643
J9 J ASSOC INF SCI TECH
PD JUL
PY 2016
VL 67
IS 7
BP 1703
EP 1721
DI 10.1002/asi.23467
PG 19
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA DP6YB
UT WOS:000378644700011
OA Green Accepted
DA 2024-09-05
ER
PT C
AU Tkaczyk, D
Collins, A
Sheridan, P
Beel, J
AF Tkaczyk, Dominika
Collins, Andrew
Sheridan, Paraic
Beel, Joeran
GP Assoc Comp Machinery
TI Machine Learning vs. Rules and Out-of-the-Box vs. Retrained: An
Evaluation of Open-Source Bibliographic Reference and Citation Parsers
SO JCDL'18: PROCEEDINGS OF THE 18TH ACM/IEEE JOINT CONFERENCE ON DIGITAL
LIBRARIES
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 18th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL)
CY JUN 03-07, 2018
CL Univ N Texas Coll Informat, Fort Worth, TX
HO Univ N Texas Coll Informat
DE bibliographic reference parsing; citation parsing; machine learning;
sequence tagging
ID METADATA; METHODOLOGY; EXTRACTION
AB Bibliographic reference parsing refers to extracting machine-readable metadata, such as the names of the authors, the title, or journal name, from bibliographic reference strings. Many approaches to this problem have been proposed so far, including regular expressions, knowledge bases and supervised machine learning. Many open source reference parsers based on various algorithms are also available. In this paper, we apply, evaluate and compare ten reference parsing tools in a specific business use case. The tools are Anystyle-Parser, Biblio, CERMINE, Citation, Citation-Parser, GROBID, ParsCit, PDFSSA4MET, Reference Tagger and Science Parse, and we compare them in both their out-of-the-box versions and versions tuned to the project-specific data. According to our evaluation, the best performing out-of-the-box tool is GROBID (F1 0.89), followed by CERMINE (F1 0.83) and ParsCit (F1 0.75). We also found that even though machine learning-based tools and tools based on rules or regular expressions achieve on average similar precision (0.77 for ML-based tools vs. 0.76 for non-ML-based tools), applying machine learning-based tools results in a recall three times higher than in the case of non-ML-based tools (0.66 vs. 0.22). Our study also confirms that tuning the models to the task-specific data results in the increase in the quality. The retrained versions of reference parsers are in all cases better than their out-of-the-box counterparts; for GROBID F1 increased by 3% 0.92 vs. 0.89), for CERMINE by 11% (0.92 vs. 0.83), and for ParsCit by 16% (0.87 vs. 0.75).
C1 [Tkaczyk, Dominika; Collins, Andrew; Sheridan, Paraic; Beel, Joeran] Trinity Coll Dublin, ADAPT Ctr, Sch Comp Sci & Stat, Dublin, Ireland.
C3 Trinity College Dublin
RP Tkaczyk, D (corresponding author), Trinity Coll Dublin, ADAPT Ctr, Sch Comp Sci & Stat, Dublin, Ireland.
EM Dominika.Tkaczyk@adaptcentre.ie; Andrew.Collins@adaptcentre.ie;
Paraic.Sheridan@adaptcentre.ie; Joeran.Beel@adaptcentre.ie
OI Beel, Joeran/0000-0002-4537-5573
FU Science Foundation Ireland (SFI) [13/RC/2016]; European Union [713567]
FX This publication has emanated from research conducted with the financial
support of Science Foundation Ireland (SFI) under Grant Number
13/RC/2016. The project has also received funding from the European
Union's Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 713567.
CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
Beel J., 2017, VIRTUAL CITATION PRO
Beel J., 2017, JCDL
Beel J, 2016, INT J DIGIT LIBRARIE, V17, P305, DOI 10.1007/s00799-015-0156-0
Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4
Chen CC, 2012, IEEE T KNOWL DATA EN, V24, P236, DOI 10.1109/TKDE.2010.231
Constantin Alexandru., 2013, Proceedings of the 2013 ACM symposium on Document engineering, P177, DOI DOI 10.1145/2494266.2494271
Cortez E, 2009, J AM SOC INF SCI TEC, V60, P1144, DOI 10.1002/asi.21049
Councill I., 2008, INT C LANG RES EV
Day MY, 2007, DECIS SUPPORT SYST, V43, P152, DOI 10.1016/j.dss.2006.08.006
Fedoryszak M., 2013, INT C THEOR PRACT DI
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Gupta D., 2009, INT C CONT COMP
Hetzner E., 2008, JOINT C DIG LIB PITT
Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9
Hsieh Y.-L., 2014, TECHNOLOGIES APPL AR
Khabsa M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093949
Kim Y.-M., 2012, ACM S DOC ENG
Lange C., 2015, SEMWEBEVAL ESWC
Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62
Matsuoka D., 2016, INT C DIG INF MAN
Molinari JF, 2008, SCIENTOMETRICS, V75, P163, DOI 10.1007/s11192-007-1853-2
Ojokoh B, 2011, INFORM SCIENCES, V181, P1538, DOI 10.1016/j.ins.2011.01.014
Tkaczyk D., 2015, SEMANTIC WEB EVALUAT
Tkaczyk D, 2015, INT J DOC ANAL RECOG, V18, P317, DOI 10.1007/s10032-015-0249-8
Torres-Salinas D, 2011, SCIENTOMETRICS, V88, P771, DOI 10.1007/s11192-011-0418-6
Wu J, 2015, AI MAG, V36, P35, DOI 10.1609/aimag.v36i3.2601
Xiong Chenyan, 2017, WWW
Yin P., 2004, INT C AS DIG LIB
Zhang Q, 2011, COMPUT BIOL MED, V41, P190, DOI 10.1016/j.compbiomed.2011.02.005
Zhang XL, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-S3-S7
Zou J, 2010, INT J DOC ANAL RECOG, V13, P107, DOI 10.1007/s10032-009-0105-9
NR 33
TC 27
Z9 28
U1 0
U2 6
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
SN 2575-7865
EI 2575-8152
BN 978-1-4503-5178-2
J9 ACM-IEEE J CONF DIG
PY 2018
BP 99
EP 108
DI 10.1145/3197026.3197048
PG 10
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BL9RX
UT WOS:000458178700017
DA 2024-09-05
ER
PT J
AU Blank, S
Mason, C
Steinicke, F
Herzog, C
AF Blank, Sabrina
Mason, Celeste
Steinicke, Frank
Herzog, Christian
TI Tailoring responsible research and innovation to the translational
context: the case of AI-supported exergaming
SO ETHICS AND INFORMATION TECHNOLOGY
LA English
DT Article
DE Responsible research and innovation; Industry; Trustworthiness; Medical
artificial intelligence; Interdisciplinary collaboration
ID DILEMMA
AB We discuss the implementation of Responsible Research and Innovation (RRI) within a project for the development of an AI-supported exergame for assisted movement training, outline outcomes and reflect on methodological opportunities and limitations. We adopted the responsibility-by-design (RbD) standard (CEN CWA 17796:2021) supplemented by methods for collaborative, ethical reflection to foster and support a shift towards a culture of trustworthiness inherent to the entire development process. An embedded ethicist organised the procedure to instantiate a collaborative learning effort and implement RRI in a translational context. Within the interdisciplinary setting of the collaboration and with the support of a technoethicist, we successfully identified relevant, project-specific challenges and developed a roadmap with derived actions, thus meaningfully integrating RRI into the development process. We discuss the methodological procedure in terms of its effectiveness and efficiency, the allocation of responsibilities and roles, particularly regarding potential frictions in the interdisciplinary context with embedded ethics, and the challenges of the translational context. We conclude that the responsibility-by-design standard effectively established a productive workflow for collaborative investigation and work on ethical challenges. We reflect on methodological difficulties and propose possible avenues to our approach.
C1 [Blank, Sabrina; Herzog, Christian] Univ Lubeck, Eth Innovat Hub, Ratzeburger Allee 160, D-23562 Lubeck, Germany.
[Mason, Celeste; Steinicke, Frank] Univ Hamburg, Dept Informat, Vogt Kolln Str 30, D-22527 Hamburg, Germany.
C3 University of Lubeck; University of Hamburg
RP Blank, S (corresponding author), Univ Lubeck, Eth Innovat Hub, Ratzeburger Allee 160, D-23562 Lubeck, Germany.
EM sabrina.blank@uni-luebeck.de; celeste.mason@uni-hamburg.de;
frank.steinicke@uni-hamburg.de; christian.herzog@uni-luebeck.de
RI Steinicke, Frank/AAC-2976-2020
OI Steinicke, Frank/0000-0001-9879-7414; Herzog,
Christian/0000-0003-2513-2563
CR Auer A, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010017
Benzing V, 2018, J CLIN MED, V7, DOI 10.3390/jcm7110422
Bhattacharya I., 2022, Global Bioethics Enquiry Journal, V10, P75, DOI [10.38020/GBE.10.2.2022.75-79, DOI 10.38020/GBE.10.2.2022.75-79]
Blok V., 2020, Zenodo, DOI [10.5281/zenodo.4972691, DOI 10.5281/ZENODO.4972691]
Breyer S., 2022, Novel innovation design for the future of health: Entrepreneurial concepts for patient empowerment and health democratization, P253, DOI [10.1007/978-3-031-08191-0_23, DOI 10.1007/978-3-031-08191-0_23]
Burget M, 2017, SCI ENG ETHICS, V23, P1, DOI 10.1007/s11948-016-9782-1
Business Model Foundry AG, 2014, Business Model Canvas
CEN CWA, 2021, CEN CWA 17796:2021
Demers-Payette O, 2016, J RESPONSIBLE INNOV, V3, P188, DOI 10.1080/23299460.2016.1256659
Dreyer M, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9101719
Floridi L, 2020, MIND MACH, V30, P77, DOI 10.1007/s11023-020-09521-y
Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5
Gohar F, 2019, FRONT MED-LAUSANNE, V6, DOI 10.3389/fmed.2019.00035
Goirand M, 2021, SCI ENG ETHICS, V27, DOI 10.1007/s11948-021-00336-3
Grunwald A., 2011, ENTERPRISE WORK INNO, V31, P9
Gurzawska A, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9101759
Hallensleben S., 2020, From principles to practice. An interdisciplinary framework to operationalise ai ethics
Herzog C, 2022, ETHICS, V2, P219, DOI [10.1007/s43681-021-00121-9, DOI 10.1007/S43681-021-00121-9]
Koene A, 2017, IEEE TECHNOL SOC MAG, V36, P31, DOI 10.1109/MTS.2017.2697080
Kuzma J, 2018, J RESPONSIBLE INNOV, V5, P338, DOI 10.1080/23299460.2018.1511329
Li JH, 2018, J MED INTERNET RES, V20, DOI 10.2196/10486
Martinuzzi A, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030702
McLennan S, 2022, BMC MED ETHICS, V23, DOI 10.1186/s12910-022-00746-3
Mittelstadt B, 2019, NAT MACH INTELL, V1, P501, DOI 10.1038/s42256-019-0114-4
Morley J, 2020, SCI ENG ETHICS, V26, P2141, DOI 10.1007/s11948-019-00165-5
Morrison M, 2020, LIFE SCI SOC POLICY, V16, DOI 10.1186/s40504-020-00109-z
Nazarko L., 2020, J. Open Innov. Technol. Mark. Complex, V6, P12, DOI [10.3390/joitmc6010012, DOI 10.3390/JOITMC6010012]
Owen R, 2012, SCI PUBL POLICY, V39, P751, DOI 10.1093/scipol/scs093
Petersen E, 2022, IEEE ACCESS, V10, P58375, DOI 10.1109/ACCESS.2022.3178382
Porcari A., 2019, PRISMA RRI-CSR Roadmap
Reijers W., 2018, This changes everything-ICT and climate change: what can we do?, DOI [10.1007/978-3-319-99605-9_23, DOI 10.1007/978-3-319-99605-9_23]
Ribeiro B, 2018, J RESPONSIBLE INNOV, V5, P316, DOI 10.1080/23299460.2018.1495033
Rommetveit K., 2019, International handbook on responsible innovation, P83, DOI 10.4337/9781784718862.00012Ruth
Rüth M, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.644036
Silva HP, 2018, HEALTH RES POLICY SY, V16, DOI 10.1186/s12961-018-0362-5
Stahl BC, 2021, J RESPONSIBLE INNOV, V8, P175, DOI 10.1080/23299460.2021.1955613
Tobaigy Abdullah, 2018, J Phys Ther Sci, V30, P555, DOI 10.1589/jpts.30.555
Tsujimoto M, 2018, TECHNOL FORECAST SOC, V136, P49, DOI 10.1016/j.techfore.2017.06.032
van de Poel I, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9112045
von Schomberg R., 2013, Responsible Innovation, P51, DOI [10.1002/9781118551424.ch3, DOI 10.1002/9781118551424.CH3]
Wachter S, 2021, COMPUT LAW SECUR REV, V41, DOI 10.1016/j.clsr.2021.105567
Whittlestone J, 2019, AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P195, DOI 10.1145/33066183314289
Yaghmaei E., 2020, Assessment of Responsible Innovation. Methods and Practices, DOI [10.4324/9780429298998, DOI 10.4324/9780429298998]
Zwart Hub, 2014, Life Sci Soc Policy, V10, P11, DOI 10.1186/s40504-014-0011-x
NR 44
TC 0
Z9 0
U1 4
U2 4
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1388-1957
EI 1572-8439
J9 ETHICS INF TECHNOL
JI Ethics Inf. Technol.
PD JUN
PY 2024
VL 26
IS 2
AR 22
DI 10.1007/s10676-024-09753-x
PG 16
WC Ethics; Information Science & Library Science; Philosophy
WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Social Sciences - Other Topics; Information Science & Library Science;
Philosophy
GA MB9W2
UT WOS:001191294700001
OA hybrid
DA 2024-09-05
ER
PT J
AU Arora, M
Gupta, J
Mittal, A
Prakash, A
AF Arora, Meenal
Gupta, Jaya
Mittal, Amit
Prakash, Anshika
TI Achieving sustainable development goals (SDGs) through corporate
sustainability: a topic modeling-based bibliometric analysis approach
SO KYBERNETES
LA English
DT Article; Early Access
DE Bibliometric analysis; Corporate sustainability; VOSviewer; Latent
Dirichlet allocation; Sustainable development goals
ID SOCIAL-RESPONSIBILITY; PERSPECTIVE; CHALLENGES; STRATEGIES; SYSTEMS;
TRENDS; WASTE
AB PurposeConsidering the swift adoption of innovative sustainability practices in businesses to accomplish sustainable development goals (SDGs), research on corporate sustainability has increased significantly over the years. This research intends to analyze the published literature, emphasizing the existing, emerging and future research directions on achieving the SDGs through corporate sustainability.Design/methodology/approachThis research analyzed the growing trends in corporate sustainability by incorporating 2,038 Scopus articles published between 1999 and 2022 using latent Dirichlet allocation (LDA) topic modeling, bibliometrics and qualitative content analysis techniques. The bibliometric data were analyzed using performance and science mapping. Thereafter, topic modeling and content analysis uncovered the topics included under the corporate sustainability umbrella.FindingsThe findings indicate that investigation into corporate sustainability has considerably increased from 2015 to date. Additionally, the majority of studies on corporate sustainability are from the United States of America, the United Kingdom and Germany. Besides, the USA has the most collaboration in terms of co-authorship. S. Schaltegger was considered the most productive author. However, P. Bansal was ranked as the top author based on a co-citation analysis of authors. Further, bibliometric data were evaluated to analyze leading publications, journals and institutions. Besides, keyword co-occurrence analysis, topic modeling and content analysis highlighted the theoretical underpinnings and new patterns and provided directions for further research.Originality/valueThis study demonstrates various existing and emerging themes in corporate sustainability, which have various repercussions for academicians and organizations. This research also examines the lagging themes in the current domain.
C1 [Arora, Meenal; Mittal, Amit] Chitkara Univ, Chitkara Business Sch, Rajpura, India.
[Gupta, Jaya] New Delhi Inst Management, New Delhi, India.
[Prakash, Anshika] KR Mangalam Univ, Sch Management & Commerce, Gurugram, India.
C3 Chitkara University, Punjab
RP Arora, M (corresponding author), Chitkara Univ, Chitkara Business Sch, Rajpura, India.
EM meenal.bajaj20@gmail.com
RI MITTAL, AMIT/AAD-2112-2019; Arora, Meenal/ADH-7267-2022
OI MITTAL, AMIT/0000-0002-1191-4620; Arora, Meenal/0000-0001-7670-6948
CR Aggarwal C.C., 2012, MINING TEXT DATA, P77, DOI 10.1007/978-1-4614-3223-4
Ajayi SO, 2016, J BUILD ENG, V5, P185, DOI 10.1016/j.jobe.2015.12.007
Almeida F, 2023, SOC BUS REV, V18, P28, DOI 10.1108/SBR-12-2021-0233
Alodat AY, 2022, MANAG ENVIRON QUAL, DOI 10.1108/MEQ-07-2021-0182
Alosi A, 2023, BUS STRATEG ENVIRON, V32, P3529, DOI 10.1002/bse.3314
[Anonymous], 2015, AUST J EMERG MANAG, V30, P9
[Anonymous], 1993, Handbook of National Accounting - Integrated Environmental and Economic Accounting
[Anonymous], 2021, IFC ESG Guidebook
Arora M, 2023, INF DISCOV DELIV, V51, P267, DOI 10.1108/IDD-05-2022-0038
Barbosa AD, 2023, HUM SOC SCI COMMUN, V10, DOI 10.1057/s41599-023-01919-0
Barreiro-Gen M, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12125031
Martínez JB, 2016, EUR J MANAG BUS ECON, V25, P8, DOI 10.1016/j.redee.2015.11.002
Basuki B., 2018, Asian Journal of Accounting Research, V3, P169, DOI [10.1108/AJAR-06-2018-0013, DOI 10.1108/AJAR-06-2018-0013]
Benckendorff P, 2009, J HOSP TOUR MANAG, V16, P1, DOI 10.1375/jhtm.16.1.1
Bero BN, 2012, INT J SUST HIGHER ED, V13, P133, DOI 10.1108/14676371211211827
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bohoslavsky J.P., 2018, Journal of Financial Crime, V25, P750, DOI [10.1108/JFC-04-2017-0029, DOI 10.1108/JFC-04-2017-0029]
Centobelli P, 2021, INT J PROD ECON, V242, DOI 10.1016/j.ijpe.2021.108297
Centobelli P, 2020, BUS STRATEG ENVIRON, V29, P1563, DOI 10.1002/bse.2453
Chen ZS, 2020, J COMPUT APPL MATH, V365, DOI 10.1016/j.cam.2019.112395
Cheng X, 2022, J INF SCI, V48, P304, DOI 10.1177/0165551520954674
Choudhury A, 2021, BENCHMARKING, V28, P2075, DOI 10.1108/BIJ-08-2020-0461
Cole LB, 2019, INT J STEM EDUC, V6, DOI 10.1186/s40594-019-0171-6
Cosma S, 2022, J APPL ACCOUNT RES, V23, P207, DOI 10.1108/JAAR-04-2021-0102
de Oliveira UR, 2024, ENVIRON DEV SUSTAIN, V26, P3045, DOI 10.1007/s10668-023-02933-7
Dhanda U, 2021, QUAL RES ORGAN MANAG, V16, P464, DOI 10.1108/QROM-01-2020-1886
Jordao RVD, 2022, BOTTOM LINE, V35, P1, DOI 10.1108/BL-11-2021-0103
Doni F, 2020, MEDITARI ACCOUNT RES, V28, P781, DOI 10.1108/MEDAR-12-2018-0423
Dwivedi A, 2019, J SCI TECHNOL POLICY, V10, P319, DOI 10.1108/JSTPM-06-2018-0054
Dyllick T., 2002, BUSINESS STRATEGY EN, V11, P130, DOI [10.1002/bse.323, DOI 10.1002/BSE.323]
Edgeman Rick, 2014, TQM Journal, V26, P368, DOI 10.1108/TQM-01-2014-0012
Eltayeb TK, 2011, RESOUR CONSERV RECY, V55, P495, DOI 10.1016/j.resconrec.2010.09.003
European Parliament, 2014, Directive 2014/95/EU of the European Parliament and of the Council of 22 October 2014
Farooq MB, 2021, SUSTAIN ACCOUNT MANA, V12, P1108, DOI 10.1108/SAMPJ-05-2020-0166
Fatima Tahniyath, 2020, International Journal of Customer Relationship Marketing and Management, V11, P25, DOI 10.4018/IJCRMM.2020070102
Fatima T, 2023, MANAGE DECIS, V61, P1677, DOI 10.1108/MD-06-2022-0748
Ferrero-Ferrero I, 2023, MARK INTELL PLAN, V41, P457, DOI 10.1108/MIP-07-2022-0332
Freeman E., 2013, Umwelt Wirtschafts Forum, V21, P5, DOI DOI 10.1007/S00550-013-0266-3
Fukuda-Parr S., 2015, Journal of Global Ethics, V11, P10, DOI DOI 10.1080/17449626.2015.1004738
Galeazzo A, 2024, J MANAG GOV, V28, P113, DOI 10.1007/s10997-023-09671-y
Gangwar H, 2023, INT J QUAL RELIAB MA, V40, P965, DOI 10.1108/IJQRM-07-2021-0224
Garcia-Meca E., 2021, Journal of Cleaner Production, V298, P1
Geng MM, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13073960
Gold NO, 2023, SOC RESPONSIB J, V19, P184, DOI 10.1108/SRJ-06-2021-0228
Green KW, 2012, SUPPLY CHAIN MANAG, V17, P290, DOI 10.1108/13598541211227126
Gupta S, 2018, BENCHMARKING, V25, P797, DOI 10.1108/BIJ-06-2017-0140
Gupta SK, 2018, MANAG ENVIRON QUAL, V29, P406, DOI 10.1108/MEQ-06-2017-0051
Gurcan F, 2023, INTERACT LEARN ENVIR, V31, P1007, DOI 10.1080/10494820.2020.1815795
Hahn T, 2018, J BUS ETHICS, V148, P235, DOI 10.1007/s10551-017-3587-2
Hahn T, 2017, BUS SOC, V56, P155, DOI 10.1177/0007650315576152
Halkos G, 2017, MANAGE DECIS, V55, P595, DOI 10.1108/MD-12-2016-0868
Heras-Saizarbitoria I, 2022, CORP SOC RESP ENV MA, V29, P316, DOI 10.1002/csr.2202
Jan AA, 2023, ENVIRON SCI POLLUT R, V30, P36521, DOI 10.1007/s11356-022-24842-4
Jha NK, 2023, MANAG ENVIRON QUAL, V34, P865, DOI 10.1108/MEQ-04-2022-0098
Johnston P, 2007, ENVIRON SCI POLLUT R, V14, P60, DOI 10.1065/espr2007.01.375
Kainzbauer A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132111745
Kang J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11123478
Kapkiyai C., 2020, African Journal of Education, Science and Technology, V5, P92
Karagiannopoulou S, 2023, ENERGIES, V16, DOI 10.3390/en16031102
Karl AA, 2022, J HUMANIT LOGIST SUP, V12, P382, DOI 10.1108/JHLSCM-11-2020-0104
Ketprapakorn N, 2019, J CLEAN PROD, V239, DOI 10.1016/j.jclepro.2019.117995
Khatter A, 2019, INT J CONTEMP HOSP M, V31, P2394, DOI 10.1108/IJCHM-08-2018-0670
Khural RA, 2024, ENG CONSTR ARCHIT MA, V31, P1608, DOI 10.1108/ECAM-02-2022-0138
Kiymalioglu A, 2024, MANAGE DECIS, V62, P614, DOI 10.1108/MD-11-2022-1566
Kumar S, 2022, BENCHMARKING, V29, P1640, DOI 10.1108/BIJ-02-2021-0086
Kushkowski JD, 2020, J DOC, V76, P1313, DOI 10.1108/JD-10-2019-0207
Latif B, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12114506
Lozano R, 2021, J ORGAN CHANGE MANAG, V34, P613, DOI 10.1108/JOCM-09-2020-0276
Lozano R, 2018, CORP SOC RESP ENV MA, V25, P508, DOI 10.1002/csr.1475
Lozano R, 2015, CORP SOC RESP ENV MA, V22, P32, DOI 10.1002/csr.1325
Lu MX, 2020, RENEW SUST ENERG REV, V119, DOI 10.1016/j.rser.2019.109545
Lueg R, 2016, EUR MANAG J, V34, P158, DOI 10.1016/j.emj.2015.11.005
Luque-Vílchez M, 2023, SUSTAIN DEV, V31, P1845, DOI 10.1002/sd.2488
Lytras MD, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11185067
Makhlouf H, 2023, INT J QUAL RELIAB MA, V40, P2592, DOI 10.1108/IJQRM-10-2022-0291
Matten D, 2004, J BUS ETHICS, V54, P323, DOI 10.1007/s10551-004-1822-0
Mio C, 2020, BUS STRATEG ENVIRON, V29, P306, DOI 10.1002/bse.2390
Mishra S, 2020, SOC RESPONSIB J, V16, P1341, DOI 10.1108/SRJ-04-2019-0135
Nolting B., 2022, Sustainability Management Forum | NachhaltigkeitsManagementForum, V30, P11, DOI [10.1007/s00550-022-00528-w, DOI 10.1007/S00550-022-00528-W]
Ozyurt O, 2022, EDUC INF TECHNOL, V27, P11025, DOI 10.1007/s10639-022-11071-y
Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160]
Reb J., 2014, Mindfulness in organizations
Rounaghi MM, 2019, INT J ETHICS SYST, V35, P504, DOI 10.1108/IJOES-03-2019-0056
Sakshi, 2020, BUS STRATEG ENVIRON, V29, P1109, DOI 10.1002/bse.2420
Sari Y, 2021, INT J PRODUCT PERFOR, V70, P1162, DOI 10.1108/IJPPM-10-2019-0481
Schaltegger S, 2011, BUS STRATEG ENVIRON, V20, P222, DOI 10.1002/bse.682
Shahbaz W, 2021, CORP GOV-INT J BUS S, V21, P433, DOI 10.1108/CG-06-2020-0242
Shi Y, 2023, FINANC INNOV, V9, DOI 10.1186/s40854-023-00506-1
Simões-Coelho Marco F., 2021, BAR, Braz. Adm. Rev., V18, pe190042
Steurer R, 2005, J BUS ETHICS, V61, P263, DOI 10.1007/s10551-005-7054-0
Sudha S, 2020, MANAG ENVIRON QUAL, V31, P1497, DOI 10.1108/MEQ-01-2020-0011
Topleva SA, 2020, BRIT FOOD J, V122, P1463, DOI 10.1108/BFJ-03-2019-0208
Tunji-Olayeni P, 2024, SMART SUSTAIN BUILT, V13, P291, DOI 10.1108/SASBE-06-2022-0126
ul Haq MI, 2023, ASLIB J INFORM MANAG, V75, P215, DOI 10.1108/AJIM-02-2022-0091
Ülker P, 2023, J HOSP TOUR INSIGHTS, V6, P797, DOI 10.1108/JHTI-10-2021-0291
UN, 2019, UN: environment programme-annual report
United Nations, 1948, Universal Declaration of Human Rights
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wackernagel Mathis., 1996, Green Teacher, V45, P5
Wang YM, 2023, MANAG ENVIRON QUAL, V34, P1225, DOI 10.1108/MEQ-05-2022-0136
World Commission on Environment and Development, 1987, United Nations General Assembly document A/42/427, DOI DOI 10.1017/S0376892900016702
Xia L, 2020, ENVIRON IMPACT ASSES, V85, DOI 10.1016/j.eiar.2020.106459
Zerbini F, 2017, J BUS ETHICS, V146, P1, DOI 10.1007/s10551-015-2922-8
Zhang B, 2019, TECHNOL FORECAST SOC, V144, P436, DOI 10.1016/j.techfore.2018.03.001
NR 104
TC 1
Z9 1
U1 11
U2 11
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 0368-492X
EI 1758-7883
J9 KYBERNETES
JI Kybernetes
PD 2024 MAR 7
PY 2024
DI 10.1108/K-09-2023-1802
EA MAR 2024
PG 27
WC Computer Science, Cybernetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA KG0P2
UT WOS:001178689200001
DA 2024-09-05
ER
PT J
AU Bara, A
Oprea, SV
AF Bara, Adela
Oprea, Simona-Vasilica
TI The Impact of Academic Publications over the Last Decade on Historical
Bitcoin Prices Using Generative Models
SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH
LA English
DT Article
DE cryptocurrency; research publication; topic modelling; latent Dirichlet
allocation; sentiment analysis; Bitcoin prices
ID BLOCKCHAIN; SENTIMENT; MARKET
AB Since 2012, researchers have explored various factors influencing Bitcoin prices. Up until the end of July 2023, more than 9100 research papers on cryptocurrencies were published and indexed in the Web of Science Clarivate platform. The objective of this paper is to analyze the impact of publications on Bitcoin prices. This study aims to uncover significant themes within these research articles, focusing on cryptocurrencies in general and Bitcoin specifically. The research employs latent Dirichlet allocation to identify key topics from the unstructured abstracts. To determine the optimal number of topics, perplexity and topic coherence metrics are calculated. Additionally, the abstracts are processed using BERT-transformers and Word2Vec and their potential to predict Bitcoin prices is assessed. Based on the results, while the research helps in understanding cryptocurrencies, the potential of academic publications to influence Bitcoin prices is not significant, demonstrating a weak connection. In other words, the movements of Bitcoin prices are not influenced by the scientific writing in this specific field. The primary topics emerging from the analysis are the blockchain, market dynamics, transactions, pricing trends, network security, and the mining process. These findings suggest that future research should pay closer attention to issues like the energy demands and environmental impacts of mining, anti-money laundering measures, and behavioral aspects related to cryptocurrencies.
C1 [Bara, Adela] Acad Romanian Scientists, Ilfov 3, Bucharest 050044, Romania.
[Oprea, Simona-Vasilica] Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, 6 Piata Romana, Bucharest 010374, Romania.
C3 Romanian Academy of Sciences; Bucharest University of Economic Studies
RP Oprea, SV (corresponding author), Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, 6 Piata Romana, Bucharest 010374, Romania.
EM bara.adela@ie.ase.ro; simona.oprea@csie.ase.ro
OI Oprea, Simona Vasilica/0000-0002-9005-5181; Bara,
Adela/0000-0002-0961-352X
FU Academy of Romanian Scientists
FX This paper was supported by Academy of Romanian Scientists, Ilfov 3,
050044 Bucharest, Romania, project title: "Solutii informatice pentru
analiza impactului retelelor de social media asupra instrumentelor
investitionale cu grad ridicat de risc: cryptomonede si bursa".
CR Aghashahi M, 2023, INT J MANAG SCI ENG, V18, P126, DOI 10.1080/17509653.2022.2032442
Ahmed WMA, 2022, N AM J ECON FINANC, V62, DOI 10.1016/j.najef.2022.101728
Alahi I., 2019, P 2019 IEEE 43 ANN C
Azzi R, 2019, COMPUT IND ENG, V135, P582, DOI 10.1016/j.cie.2019.06.042
Bâra A, 2023, KYBERNETES, DOI 10.1108/K-01-2023-0032
Bashir HA, 2023, MANAG FINANC, V49, P620, DOI 10.1108/MF-09-2021-0414
Bejan CA, 2023, APPL ECON, V55, P1497, DOI 10.1080/00036846.2022.2097194
Bello A, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23010506
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bohmecke-Schwafert M, 2023, TECHNOL FORECAST SOC, V191, DOI 10.1016/j.techfore.2023.122446
Bouri E, 2023, FINANC INNOV, V9, DOI 10.1186/s40854-023-00464-8
Burnie A., 2019, P 42 INT ACM SIGIR C
Caliciotti A, 2024, ANN OPER RES, V336, P359, DOI 10.1007/s10479-023-05444-w
Cevik EI, 2023, FINANC RES LETT, V54, DOI 10.1016/j.frl.2023.103768
CHANG J., 2009, Advances in Neural Information Processing Systems, V22, P288
Chawki M, 2022, J TRANSP SECUR, V15, P173, DOI 10.1007/s12198-022-00252-y
Chen JW, 2023, J RISK FINANC MANAG, V16, DOI 10.3390/jrfm16010051
Chursook A, 2022, TEM J, V11, P44, DOI 10.18421/TEM111-06
Cotfas LA, 2023, VACCINES-BASEL, V11, DOI 10.3390/vaccines11081381
Coulter KA, 2022, ROY SOC OPEN SCI, V9, DOI 10.1098/rsos.220276
de Vries A, 2022, JOULE, V6, P498, DOI 10.1016/j.joule.2022.02.005
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Dias R, 2023, ENERGIES, V16, DOI 10.3390/en16135232
Dwivedi D.N., 2023, Lecture Notes in Computer Science
Erik-Robert K, 2024, J INFORM TELECOMMUN, V8, P108, DOI 10.1080/24751839.2023.2262067
Farimani SA, 2022, KNOWL-BASED SYST, V247, DOI 10.1016/j.knosys.2022.108742
Feng WJ, 2023, J INT MONEY FINANC, V132, DOI 10.1016/j.jimonfin.2023.102811
Grassman R, 2021, REV SOCIONETWORK STR, V15, P169, DOI 10.1007/s12626-021-00069-6
Gurrib I, 2022, STUD ECON FINANC, V39, P347, DOI 10.1108/SEF-07-2021-0293
Hajek P, 2023, RES INT BUS FINANC, V64, DOI 10.1016/j.ribaf.2022.101836
Hassan MK, 2022, STUD ECON FINANC, V39, P365, DOI 10.1108/SEF-06-2021-0237
Ibba G., 2023, P 2023 IEEE INT C SO
Jakubik J, 2023, QUANT FINANC, V23, P335, DOI 10.1080/14697688.2022.2130085
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jia D, 2023, FINANC RES LETT, V52, DOI 10.1016/j.frl.2022.103529
Köse N, 2023, FINANC UVER, V73, P189, DOI 10.32065/CJEF.2023.02.04
Koutmos D, 2023, REV QUANT FINANC ACC, V60, P1, DOI 10.1007/s11156-022-01086-4
Kyriazis N, 2023, RES INT BUS FINANC, V64, DOI 10.1016/j.ribaf.2022.101832
Kyriazis N, 2023, Q REV ECON FINANC, V89, P307, DOI 10.1016/j.qref.2022.09.004
Kyriazis NA, 2023, ECON MODEL, V128, DOI 10.1016/j.econmod.2023.106502
Liu F, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e15099
Liu F, 2023, FRONT BLOCKCHAIN, V6, DOI 10.3389/fbloc.2023.996070
Liu F, 2023, IEEE T COMPUT SOC SY, DOI 10.1109/TCSS.2023.3239031
Liu F, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12115342
Liu F, 2022, ENTROPY-SWITZ, V24, DOI 10.3390/e24040557
Liu YL, 2022, SCI DATA, V9, DOI 10.1038/s41597-022-01254-0
Mikolov T., 2013, ARXIV
Mikolov T., 2006, Neural Inf. Process. Syst, V26
Moustapha BA, 2020, DIGIT COMMUN NETW, V6, P157, DOI 10.1016/j.dcan.2019.01.006
Mulahuwaish A, 2023, IT PROF, V25, P52, DOI 10.1109/MITP.2023.3253103
Oprea SV, 2023, IEEE ACCESS, V11, P18461, DOI 10.1109/ACCESS.2023.3247964
Oprea SV, 2022, SUSTAIN ENERGY TECHN, V53, DOI 10.1016/j.seta.2022.102738
Oprea SV, 2021, ENERG POLICY, V152, DOI 10.1016/j.enpol.2021.112237
Ortu M, 2022, MACH LEARN APPL, V7, DOI 10.1016/j.mlwa.2021.100229
Papadamou S, 2021, J BEHAV EXP FINANC, V30, DOI 10.1016/j.jbef.2021.100469
Papadamou S, 2021, N AM J ECON FINANC, V56, DOI 10.1016/j.najef.2020.101343
Parino F, 2018, EPJ DATA SCI, V7, DOI 10.1140/epjds/s13688-018-0170-8
Pathak AR, 2021, APPL SOFT COMPUT, V108, DOI 10.1016/j.asoc.2021.107440
Pritchard JK, 2000, GENETICS, V155, P945
Prybila C, 2020, FUTURE GENER COMP SY, V107, P816, DOI 10.1016/j.future.2017.08.024
Rathore RK, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102968
Sapra N, 2023, MANAG FINANC, V49, P1828, DOI 10.1108/MF-03-2023-0179
Schulte M., 2021, Lecture Notes in Information Systems and Organisation
Seow KT, 2020, IEEE T SYST MAN CY-S, V50, P159, DOI 10.1109/TSMC.2019.2895345
Shahzad MK, 2021, I C INF COMM TECH CO, P119, DOI 10.1109/ICTC52510.2021.9620216
Sharif A, 2023, ENERG ECON, V120, DOI 10.1016/j.eneco.2023.106594
Sharma C, 2022, MULTIMED TOOLS APPL, V81, P36805, DOI 10.1007/s11042-022-13500-z
Song Y, 2023, FINANC INNOV, V9, DOI 10.1186/s40854-022-00445-3
Treiblmaier H, 2021, DATA BASE ADV INF SY, V52, P27, DOI 10.1145/3447934.3447938
Van Wegberg R., 2018, J. Financ. Crime, V25, P419, DOI [DOI 10.1108/JFC-11-2016-0067, 10.1108/JFC-11-2016-0067]
Wang F, 2023, INT REV FINANC ANAL, V88, DOI 10.1016/j.irfa.2023.102692
Welekar R., 2023, Int. J. Next-Gener. Comput, V14, DOI [10.47164/ijngc.v14i1.1043, DOI 10.47164/IJNGC.V14I1.1043]
Wu XY, 2020, ECON COMPUT ECON CYB, V54, P77, DOI 10.24818/18423264/54.3.20.05
Yen JC, 2021, INT J ACCOUNT INF SY, V40, DOI 10.1016/j.accinf.2021.100499
Zaghloul E, 2020, IEEE INTERNET THINGS, V7, P10288, DOI 10.1109/JIOT.2020.3004273
Zaman S, 2023, GLOB KNOWL MEM COMMU, V72, P341, DOI 10.1108/GKMC-09-2021-0154
Zhou L, 2021, INF SYST E-BUS MANAG, V19, P757, DOI 10.1007/s10257-020-00461-9
NR 77
TC 1
Z9 1
U1 8
U2 8
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 0718-1876
J9 J THEOR APPL EL COMM
JI J. Theor. Appl. Electron. Commer. Res.
PD MAR
PY 2024
VL 19
IS 1
BP 538
EP 560
DI 10.3390/jtaer19010029
PG 23
WC Business
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA MG3Y9
UT WOS:001192446400001
OA gold
DA 2024-09-05
ER
PT C
AU Woo, SH
Choi, MS
Duffy, VG
AF Woo, Seung Ho
Choi, Min Soo
Duffy, Vincent G.
BE Duffy, VG
Kromker, H
Streitz, NA
Konomi, S
TI Artificial Intelligence and Transportations on Road Safety: A
Bibliometric Review
SO HCI INTERNATIONAL 2023 LATE BREAKING PAPERS, HCII 2023,PT IV
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 25th International Conference on Human-Computer Interaction (HCI
International)
CY JUL 23-28, 2023
CL Copenhagen, DENMARK
DE Artificial Intelligence; machine learning; road safety; transportation;
human-computer interaction
ID DRIVING SAFETY; SYSTEMS
AB The topic of road safety modeling by applying artificial intelligence has been aroused in the research field. The purpose of this study was to explore artificial intelligence enhancing road safety using bibliometric analyses. The data sources were collected from three databases: Scopus, ProQuest, and Web of Science. Numerous analysis tools were applied to visualize the trends and get meaningful outcomes, such as MaxQDA, Vicinitas, Scopus, etc. The measures of analysis were shown in five individual analysis results which include content, co-citation, keyword, trend, and statistical analysis. Statistical analysis was performed by ANOVA to distinguish the significant predictors in publication yields with interpretation. The recent trend in artificial intelligence and road safety has increased in the field of research. All analysis and findings are shown in the analysis section. We briefly mention the future work area ideas in various aspects of the study.
C1 [Woo, Seung Ho; Choi, Min Soo; Duffy, Vincent G.] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47906 USA.
C3 Purdue University System; Purdue University
RP Choi, MS (corresponding author), Purdue Univ, Sch Ind Engn, W Lafayette, IN 47906 USA.
EM woo44@purdue.edu; choi502@purdue.edu; duffy@purdue.edu
OI Woo, Seung Ho/0000-0001-9839-8616
CR Abduljabbar R, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010189
Anderson TK, 2009, ACCIDENT ANAL PREV, V41, P359, DOI 10.1016/j.aap.2008.12.014
Arbabzadeh N, 2018, IEEE T INTELL TRANSP, V19, P446, DOI 10.1109/TITS.2017.2700869
Barodi A., 2021, Adv. Sci. Technol. Eng. Syst. J., V6, P672
Bhatti S., 2022, 2022 1 INT C ARTIFIC, P1, DOI 10.1109/ICECET55527
Carroll JM, 1997, ANNU REV PSYCHOL, V48, P61, DOI 10.1146/annurev.psych.48.1.61
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Gao XW, 2006, J VIS COMMUN IMAGE R, V17, P675, DOI 10.1016/j.jvcir.2005.10.003
Goerlandt F, 2022, J SAF SCI RESIL, V3, P189, DOI 10.1016/j.jnlssr.2022.02.003
Gostin L., 2018, JAMA Forum, DOI DOI 10.1001/JAMAHEALTHFORUM.2018.0009
Halim Z, 2016, ARTIF INTELL REV, V46, P351, DOI 10.1007/s10462-016-9467-9
Harzing A.W., 2007, Publish or perish
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Kala R, 2016, ON-ROAD INTELLIGENT VEHICLES: MOTION PLANNING FOR INTELLIGENT TRANSPORTATION SYSTEMS, P59, DOI 10.1016/B978-0-12-803729-4.00004-0
Katreddi S, 2022, ENERGIES, V15, DOI 10.3390/en15207457
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Laurell C, 2017, TECHNOL FORECAST SOC, V125, P58, DOI 10.1016/j.techfore.2017.05.038
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Mandal V, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12219177
maxqda, VERBI Software. "Online Manual
McCulloch WS, 2016, EMBODIMENTS OF MIND, P19
Michel JB, 2011, SCIENCE, V331, P176, DOI 10.1126/science.1199644
Mogelmose A, 2012, IEEE T INTELL TRANSP, V13, P1484, DOI 10.1109/TITS.2012.2209421
Olugbade S, 2022, MATH COMPUT APPL, V27, DOI 10.3390/mca27050077
Panda C, 2023, INT J CRASHWORTHINES, V28, P186, DOI 10.1080/13588265.2022.2074643
Rai A, 2019, MICROBIAL DIVERSITY IN ECOSYSTEM SUSTAINABILITY AND BIOTECHNOLOGICAL APPLICATIONS: VOL 1. MICROBIAL DIVERSITY IN NORMAL & EXTREME ENVIRONMENTS, P3, DOI 10.1007/978-981-13-8315-1_1
Sagberg F, 2015, HUM FACTORS, V57, P1248, DOI 10.1177/0018720815591313
selentis D.I., 2023, IEEE Open J. Intell. Transp. Syst.
Silva PB, 2020, J TRAFFIC TRANSP ENG, V7, P775, DOI 10.1016/j.jtte.2020.07.004
Stanton NA, 2001, SAFETY SCI, V39, P189, DOI 10.1016/S0925-7535(01)00010-8
Szegedy C, 2015, PROC CVPR IEEE, P1, DOI 10.1109/CVPR.2015.7298594
Taib R., 2014, P CHI14 EXT ABSTR HU, P1777
Torbaghan ME, 2022, ACCIDENT ANAL PREV, V166, DOI 10.1016/j.aap.2021.106543
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vecino-Ortiz AI, 2015, J URBAN HEALTH, V92, P940, DOI 10.1007/s11524-015-9975-y
Vural Esra., 2008, Automated drowsiness detection for improved driving safety
Wang P, 2010, TRAFFIC INJ PREV, V11, P425, DOI 10.1080/15389581003754593
Woo H, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9224875
World Health Organization, 2018, Global Status Report on alcohol and health 2018
Yu H, 2014, ACCIDENT ANAL PREV, V66, P80, DOI 10.1016/j.aap.2014.01.017
Zheng L, 2021, ANAL METHODS ACCID R, V29, DOI 10.1016/j.amar.2020.100142
NR 41
TC 0
Z9 0
U1 5
U2 5
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-48046-1; 978-3-031-48047-8
J9 LECT NOTES COMPUT SC
PY 2023
VL 14057
BP 450
EP 464
DI 10.1007/978-3-031-48047-8_30
PG 15
WC Computer Science, Artificial Intelligence; Computer Science,
Cybernetics; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BW5EV
UT WOS:001159620100030
DA 2024-09-05
ER
PT J
AU Jia, K
Wang, PH
Li, Y
Chen, ZZ
Jiang, XY
Lin, CL
Chin, T
AF Jia, Kan
Wang, Penghui
Li, Yang
Chen, Zezhou
Jiang, Xinyue
Lin, Chien-Liang
Chin, Tachia
TI Research Landscape of Artificial Intelligence and e-Learning: A
Bibliometric Research
SO FRONTIERS IN PSYCHOLOGY
LA English
DT Article
DE artificial intelligence; online learning; technological education;
bibliometrics research; Web of Science Publications
ID ONLINE TEACHER; SYSTEM; STYLE; IMPLEMENTATION; ENVIRONMENTS; PRECISION;
ANALYTICS; PATTERNS; MODEL; TOOL
AB While an increasing number of organizations have introduced artificial intelligence as an important facilitating tool for learning online, the application of artificial intelligence in e-learning has become a hot topic for research in recent years. Over the past few decades, the importance of online learning has also been a concern in many fields, such as technological education, STEAM, AR/VR apps, online learning, amongst others. To effectively explore research trends in this area, the current state of online learning should be understood. Systematic bibliometric analysis can address this problem by providing information on publishing trends and their relevance in various topics. In this study, the literary application of artificial intelligence combined with online learning from 2010 to 2021 was analyzed. In total, 64 articles were collected to analyze the most productive countries, universities, authors, journals and publications in the field of artificial intelligence combined with online learning using VOSviewer through WOS data collection. In addition, the mapping of co-citation and co-occurrence was explored by analyzing a knowledge map. The main objective of this study is to provide an overview of the trends and pathways in artificial intelligence and online learning to help researchers understand global trends and future research directions.
C1 [Jia, Kan; Wang, Penghui; Chin, Tachia] Zhejiang Univ Technol, Sch Management, Hangzhou, Peoples R China.
[Li, Yang] Commun Univ Zhejiang, Sch Cultural Creat & Management, Hangzhou, Peoples R China.
[Chen, Zezhou; Jiang, Xinyue] Zhejiang Univ Technol, Sch Econ, Hangzhou, Peoples R China.
[Lin, Chien-Liang] Ningbo Univ, Coll Sci & Technol, Ningbo, Peoples R China.
C3 Zhejiang University of Technology; Communication University of Zhejiang;
Zhejiang University of Technology; Ningbo University
RP Li, Y (corresponding author), Commun Univ Zhejiang, Sch Cultural Creat & Management, Hangzhou, Peoples R China.; Lin, CL (corresponding author), Ningbo Univ, Coll Sci & Technol, Ningbo, Peoples R China.
EM 20040096@cuz.edu.com; linjianliang@nbu.edu.cn
FU First Batch of Industry University Collaborative Education Project of
the Ministry of Education-"Social Practice Training Camp Plan Based on
Science and Technology Innovation and Entrepreneurship Projects"
[202002143051]; National Social Science Late Funding Project of China
[20FXWB020]; KC Wong Magna Fund in Ningbo University [RC190015]; China
Postdoctoral Science Foundation [2016M60283]
FX This research was supported by the First Batch of Industry University
Collaborative Education Project of the Ministry of Education--"Social
Practice Training Camp Plan Based on Science and Technology Innovation
and Entrepreneurship Projects" (Grant No. 202002143051), the National
Social Science Late Funding Project of China (Grant No. 20FXWB020), KC
Wong Magna Fund in Ningbo University (Grant No. RC190015), and the China
Postdoctoral Science Foundation (Grant No. 2016M60283).
CR Ally M, 2019, INT REV RES OPEN DIS, V20, P302
Almohammadi K, 2017, J ARTIF INTELL SOFT, V7, P47, DOI 10.1515/jaiscr-2017-0004
Alsobhi AY, 2019, DATA TECHNOL APPL, V53, P189, DOI 10.1108/DTA-10-2018-0092
Barlybayev A, 2020, IEEE ACCESS, V8, P58829, DOI 10.1109/ACCESS.2020.2979277
Ben Ammar M, 2010, EXPERT SYST APPL, V37, P3013, DOI 10.1016/j.eswa.2009.09.031
Bywater JP, 2019, COMPUT EDUC, V139, P16, DOI 10.1016/j.compedu.2019.05.004
Caputi V, 2015, J NETW COMPUT APPL, V53, P115, DOI 10.1016/j.jnca.2015.04.001
Chan-Olmsted SM, 2019, JMM-INT J MEDIA MANA, V21, P193, DOI 10.1080/14241277.2019.1695619
Chang TY, 2013, J NETW COMPUT APPL, V36, P533, DOI 10.1016/j.jnca.2012.04.002
Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Colares GS, 2020, SCI TOTAL ENVIRON, V714, DOI 10.1016/j.scitotenv.2020.136776
Conde A, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102232
Corsini F, 2012, WORLD CONGRESS ON SUSTAINABLE TECHNOLOGIES (WCST-2012), P95
Dias SB, 2015, EXPERT SYST APPL, V42, P7399, DOI 10.1016/j.eswa.2015.05.048
Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039
Duque-Acevedo M, 2020, GLOB ECOL CONSERV, V22, DOI 10.1016/j.gecco.2020.e00902
Dwivedi YK, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102211
Faust O, 2018, COMPUT METH PROG BIO, V161, P1, DOI 10.1016/j.cmpb.2018.04.005
Ferasso M, 2020, BUS STRATEG ENVIRON, V29, P3006, DOI 10.1002/bse.2554
Flis I, 2018, HIST PSYCHOL, V21, P334, DOI 10.1037/hop0000067
Franzoni V, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10207195
Gálvez-Sánchez FJ, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13063156
García P, 2007, COMPUT EDUC, V49, P794, DOI 10.1016/j.compedu.2005.11.017
George G, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103642
Crespo RG, 2013, EXPERT SYST APPL, V40, P7381, DOI 10.1016/j.eswa.2013.06.054
Hallinger P, 2019, REV EDUC RES, V89, P335, DOI 10.3102/0034654319830380
He JX, 2019, NAT MED, V25, P30, DOI 10.1038/s41591-018-0307-0
Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647
Hinton G. E., 2012, ARXIV12070580, DOI DOI 10.9774/GLEAF.978-1-909493-38-4_2
Hu N., 2014, GINECO RO, V8, P90
Huang F, 2020, ETR&D-EDUC TECH RES, V68, P575, DOI 10.1007/s11423-019-09695-y
Hung IC, 2014, COMPUT EDUC, V70, P80, DOI 10.1016/j.compedu.2013.08.007
Hwang GJ., 2014, Smart Learn. Environ, V1, P4, DOI [DOI 10.1186/S40561-014-0004-5, 10.1186/s40561-014-0004-5]
Hwang GJ, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060584
Ivanitskaya LV, 2021, J RELIG HEALTH, V60, P3759, DOI 10.1007/s10943-021-01255-0
Iyanda Abimbola R., 2018, International Journal of Modern Education and Computer Science, V10, P1, DOI 10.5815/ijmecs.2018.06.01
Jalal A, 2019, EDUC INF TECHNOL, V24, P2797, DOI 10.1007/s10639-019-09892-5
Jia XF, 2014, SCIENTOMETRICS, V99, P881, DOI 10.1007/s11192-013-1220-4
Jin YQ, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.632787
Katz Y. J., 2000, Educational Media International, V37, P25, DOI 10.1080/095239800361482
Katz YJ, 2002, J COMPUT ASSIST LEAR, V18, P2, DOI 10.1046/j.0266-4909.2001.00202.x
Kavitha V, 2019, CLUSTER COMPUT, V22, pS6985, DOI 10.1007/s10586-018-2017-2
Khumrin P, 2017, STUD HEALTH TECHNOL, V245, P447, DOI 10.3233/978-1-61499-830-3-447
Kocak M, 2019, SCIENTOMETRICS, V121, P1339, DOI 10.1007/s11192-019-03259-w
Kok JN., 2009, ARTIF INTELL, V1, P1
Kose U, 2016, INT J ENG EDUC, V32, P185
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Kuk KV, 2017, ACTA POLYTECH HUNG, V14, P121, DOI 10.12700/APH.14.4.2017.4.7
Kurilovas E, 2015, COMPUT HUM BEHAV, V51, P945, DOI 10.1016/j.chb.2014.10.027
Kurilovas E, 2014, COMPUT HUM BEHAV, V30, P550, DOI 10.1016/j.chb.2013.06.036
Latham A, 2012, COMPUT EDUC, V59, P95, DOI 10.1016/j.compedu.2011.11.001
Li A., 2020, Journal of Intelligent and Fuzzy Systems, V40, P1
Li AY, 2021, J INTELL FUZZY SYST, V40, P3547, DOI 10.3233/JIFS-189391
Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018
Liao HC, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010166
Lin CL, 2021, ASIA-PAC EDUC RES, V30, P229, DOI 10.1007/s40299-021-00570-0
Lu T, 2018, EURASIA J MATH SCI T, V14, P1719, DOI 10.29333/ejmste/85110
Martins LL, 2004, ACAD MANAG LEARN EDU, V3, P7, DOI 10.5465/AMLE.2004.12436815
Mas-Verdu F, 2021, EUR POLIT SCI, V20, P85, DOI 10.1057/s41304-021-00320-2
Miao TC, 2023, BEHAV INFORM TECHNOL, V42, pXIV, DOI 10.1080/0144929X.2020.1831074
Miyazawa AA, 2019, HEART, V105, P1214, DOI 10.1136/heartjnl-2018-314464
Mo CY, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105471
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Mou J, 2019, J ELECTRON COMMER RE, V20, P219
Mulder RH, 2013, EUR J TRAIN DEV, V37, P49, DOI 10.1108/03090591311293284
Orduña-Malea E, 2021, SCIENTOMETRICS, V126, P8153, DOI 10.1007/s11192-021-04082-y
Osmanbegovic E., 2012, J ECON BUS, VX, P3
Gonçalves MCP, 2019, PROCESS BIOCHEM, V76, P95, DOI 10.1016/j.procbio.2018.09.016
Petit J, 2018, IEEE T LEARN TECHNOL, V11, P321, DOI 10.1109/TLT.2017.2723389
Piccoli G, 2001, MIS QUART, V25, P401, DOI 10.2307/3250989
Rastegarmoghadam M, 2017, EDUC INF TECHNOL, V22, P1067, DOI 10.1007/s10639-016-9472-2
Samarakou M, 2018, EDUC TECHNOL SOC, V21, P126
Santos OC, 2015, EXPERT SYST, V32, P293, DOI 10.1111/exsy.12041
Sarkodie SA, 2019, SCI TOTAL ENVIRON, V649, P128, DOI 10.1016/j.scitotenv.2018.08.276
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2
Song YH, 2023, LIBR HI TECH, V41, P1145, DOI 10.1108/LHT-06-2020-0126
Stantchev V, 2015, COMPUT HUM BEHAV, V51, P762, DOI 10.1016/j.chb.2014.11.092
Su YS, 2020, LIBR HI TECH, V38, P420, DOI 10.1108/LHT-01-2019-0028
Sweileh WM, 2017, GLOBALIZATION HEALTH, V13, DOI 10.1186/s12992-017-0233-9
Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001
Tarus JK, 2017, FUTURE GENER COMP SY, V72, P37, DOI 10.1016/j.future.2017.02.049
Teo T, 2016, INTERACT LEARN ENVIR, V24, P745, DOI 10.1080/10494820.2014.917110
Trentin G, 1997, J COMPUT ASSIST LEAR, V13, P261, DOI 10.1046/j.1365-2729.1997.00029.x
Turchet L, 2018, IEEE ACCESS, V6, P61994, DOI 10.1109/ACCESS.2018.2872625
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vílchez-Román C, 2021, LIBR HI TECH, V39, P263, DOI 10.1108/LHT-10-2019-0209
Voskoglou MG, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8040611
Wang Q, 2020, IND MANAGE DATA SYST, V120, P1863, DOI 10.1108/IMDS-12-2019-0671
Wang T, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084586
Wu J, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102562
Xie HY, 2021, J INTELL FUZZY SYST, V40, P7335, DOI 10.3233/JIFS-189558
Yang CCY, 2021, EDUC TECHNOL SOC, V24, P152
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhang CY, 2020, TOUR MANAG PERSPECT, V35, DOI 10.1016/j.tmp.2020.100715
Zhao YX, 2020, J MED INTERNET RES, V22, DOI 10.2196/18825
Zou X, 2018, ACCIDENT ANAL PREV, V118, P131, DOI 10.1016/j.aap.2018.06.010
NR 99
TC 14
Z9 14
U1 11
U2 111
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-1078
J9 FRONT PSYCHOL
JI Front. Psychol.
PD FEB 16
PY 2022
VL 13
AR 795039
DI 10.3389/fpsyg.2022.795039
PG 14
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA ZW0OS
UT WOS:000770921500001
PM 35250730
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Huang, SZ
Huang, Y
Bu, Y
Luo, ZR
Lu, W
AF Huang, Shengzhi
Huang, Yong
Bu, Yi
Luo, Zhuoran
Lu, Wei
TI Disclosing the interactive mechanism behind scientists' topic selection
behavior from the perspective of the productivity and the impact
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Scientometrics; Topic selection behavior; Random walk; Reinforcement
learning
ID RESEARCH PERFORMANCE
AB The productivity and the impact are two most recognized aspects to evaluate the research per-formance of scientists. Figuring out whether and how these two factors shape the evolution of scientists' research interests may facilitate researchers to go deep into scientists' topic selection behavior. In this paper, we employ Microsoft Academic Graph as our data source, and propose two correlation metrics, by which over 20,000 scientists' publication sequence from the com-puter science field are analyzed. We confirm that the productivity and the impact are related to the evolution of scientists' research interests, and scientists tend to select topics which help them produce the productivity and the impact. To further explore how these two factors affects topic selection behavior, we propose a novel Q seashore walk model based on the interactive mech-anism hypothesis. Our analysis results based on the simulation data are consistent with those based on the empirical data, which confirms the validity of our model and reports the evidence for the interactive mechanism. Based on the simulation data, we also analyze the role of reward for scientists' research performance, and find that "too much is as bad as too little ". This research may help researchers deeply understand the process of topic selection, and provide a theoretical basis for research and development policy formulation.
C1 [Huang, Shengzhi; Huang, Yong; Luo, Zhuoran; Lu, Wei] Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China.
[Huang, Shengzhi; Huang, Yong; Luo, Zhuoran; Lu, Wei] Wuhan Univ, Informat Retrieval & Knowledge Min Lab, Wuhan, Hubei, Peoples R China.
[Bu, Yi] Peking Univ, Dept Informat Management, Beijing, Peoples R China.
C3 Wuhan University; Wuhan University; Peking University
RP Lu, W (corresponding author), Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China.
EM weilu@whu.edu.cn
RI Bu, Yi/B-4964-2018
OI Bu, Yi/0000-0003-2549-4580; Luo, Zhuoran/0000-0003-0677-8350; lu,
wei/0000-0002-0929-7416; Huang, Shengzhi/0000-0002-7035-4627
FU Youth Science Foundation of the National Natural Science Foundation of
China [72004168]
FX Acknowledgments This work was supported by the Youth Science Foundation
of the National Natural Science Foundation of China (grant no. 72004168)
.
CR Bu Y, 2018, J ASSOC INF SCI TECH, V69, P87, DOI 10.1002/asi.23911
Buehling K, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101199
Ciranka S, 2022, NAT HUM BEHAV, V6, P555, DOI 10.1038/s41562-021-01263-w
De Domenico Manlio, 2016, Appl Netw Sci, V1, P15, DOI 10.1007/s41109-016-0017-9
Duan XY, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102540
Duch J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051332
Fadhly F Z., 2018, English Review, Journal of English Education, V7, P157, DOI DOI 10.25134/ERJEE.V7I1.1535
Foster JG, 2015, AM SOCIOL REV, V80, P875, DOI 10.1177/0003122415601618
Hoonlor A, 2013, COMMUN ACM, V56, P74, DOI 10.1145/2500892
Huang SZ, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.103110
Huang SZ, 2022, J ASSOC INF SCI TECH, V73, P1025, DOI 10.1002/asi.24610
Huang SZ, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102799
Jia T, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0078
Jin C, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-25712-2
Keshavarz H, 2020, LIBR INFORM SCI RES, V42, DOI 10.1016/j.lisr.2020.101052
Khosrowjerdi M, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101160
Kuhn TS., 1977, The essential tension: Selected studies in scientific tradition and change, DOI [10.7208/chicago/9780226217239.001.0001, DOI 10.7208/CHICAGO/9780226217239.001.0001]
Lakeh AB, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04527-6
Laudel G., 2006, Science and Public Policy, V33, P489, DOI DOI 10.3152/147154306781778777
Li MH, 2017, J INFORMETR, V11, P598, DOI 10.1016/j.joi.2017.04.004
Mandelbrote S., 2001, FOOTPRINTS LION
Mnih V, 2013, Arxiv, DOI arXiv:1312.5602
Perianes-Rodriguez A, 2018, J ASSOC INF SCI TECH, V69, P1046, DOI 10.1002/asi.24017
Qiu J, 2010, NATURE, V463, P142, DOI 10.1038/463142a
Shen ZH, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P87
Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Sutton RS, 2018, ADAPT COMPUT MACH LE, P1
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
van Hasselt H, 2016, AAAI CONF ARTIF INTE, P2094
Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808
Wallace ML, 2018, RES POLICY, V47, P1975, DOI 10.1016/j.respol.2018.07.005
Wang ZY, 2016, PR MACH LEARN RES, V48
Watkins C. J. C. H., 1989, Learning from Delayed Rewards
WATKINS CJCH, 1992, MACH LEARN, V8, P279, DOI 10.1007/BF00992698
Wei T., 2013, SCI REP-UK, V3, P1
Yu XY, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101193
Zeng A, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11401-8
Zhang FJ, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2585, DOI 10.1145/3292500.3330785
Zhu NB, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101205
NR 41
TC 3
Z9 3
U1 21
U2 65
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD MAY
PY 2023
VL 17
IS 2
AR 101409
DI 10.1016/j.joi.2023.101409
EA APR 2023
PG 15
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA G5SA0
UT WOS:000989740500001
DA 2024-09-05
ER
PT J
AU Smith, JG
Tissing, R
AF Smith, Justin G.
Tissing, Reid
TI Using Computational Text Classification for Qualitative Research and
Evaluation in Extension
SO JOURNAL OF EXTENSION
LA English
DT Article
DE qualitative research; natural language processing; machine learning;
text classification
AB This article introduces a process for computational text classification that can be used in a variety of qualitative research and evaluation settings. The process leverages supervised machine learning based on an implementation of a multinomial Bayesian classifier. Applied to a community of inquiry framework, the algorithm was used to identify evidence of cognitive presence, social presence, and teaching presence in the text contributions (44,000 unique posts) of more than 4,000 participants in an online environmental education course. Results indicate that computational text classification can significantly reduce labor costs and can help Extension research faculty scale, accelerate, and ensure reproducibility of their research.
C1 [Smith, Justin G.; Tissing, Reid] Washington State Univ, Shelton, WA 98584 USA.
C3 Washington State University
RP Smith, JG (corresponding author), Washington State Univ, Shelton, WA 98584 USA.
EM justingriffis@wsu.edu; reid.tissing@wsu.edu
CR Diao Q., 2011, IMPROVED NEAREST NEI
Lai SW, 2015, AAAI CONF ARTIF INTE, P2267
Loria S., 2014, Secondary TextBlob: Simplified Text Processing
Pang B., 2008, INFORM RETRIEVAL, V2, P1, DOI DOI 10.1561/1500000011
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Rehurek R., 2011, GENSIM PYTHON FRAMEW, V3, P2
Saldana Johnny, 2015, The coding manual for qualitative researchers, Vfourth
Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283
Skelly J., 2014, J EXT, V52
Smith M. F., 1984, J EXTENSION, V22
Swan K., 2009, Information technology and constructivism in higher education: Progressive learning frameworks, P43, DOI DOI 10.4018/978-1-60566-654-9.CH004
NR 11
TC 1
Z9 1
U1 0
U2 1
PU UNIV OF WISCONSIN EXTENSION JOURNAL INC
PI MADISON
PA 605 EXTENSION BLDG 432 NORTH LAKE ST, MADISON, WI 53706 USA
SN 0022-0140
EI 1077-5315
J9 J EXT
JI J. Ext.
PD APR
PY 2018
VL 56
IS 2
AR 2TOT2
PG 7
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA GQ0LA
UT WOS:000441309200024
DA 2024-09-05
ER
PT J
AU Chen, YL
Chen, XH
AF Chen, Yen-Liang
Chen, Xiang-Han
TI An evolutionary PageRank approach for journal ranking with expert
judgements
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
DE citation-based approach; experts' survey method; journal ranking;
PageRank; Particle Swarm Optimization
ID PARTICLE SWARM OPTIMIZATION; IMPACT; MANAGEMENT; ALGORITHM; QUALITY;
MIS; CITATIONS; SINGLE; FORUMS; MODEL
AB The journal ranking problem has drawn a great deal of attention from researchers in various fields due to its importance in the evaluation of academic performance. Most previous studies solved the problem with either a subjective approach, based on expert survey metrics, or an objective approach, based on citation-based metrics. Since both have their own advantages and disadvantages, and since they are usually complementary, this work proposes a brand new approach that integrates the two. In this work, we propose the Evolutionary PageRank algorithm, which first uses the PageRank algorithm to evaluate journal prestige and then uses the Multi-Objective Particle Swarm Optimization to balance citation analysis and expert opinion. Experiments evaluating ranking quality were carried out with citation records and experts' surveys to show the effectiveness of the proposed method. The results indicate that the proposed method can improve PageRank journal ranking results.
C1 [Chen, Yen-Liang; Chen, Xiang-Han] Natl Cent Univ, Dept Informat Management, Jung Li City 32001, Taoyuan County, Taiwan.
C3 National Central University
RP Chen, YL (corresponding author), Natl Cent Univ, Dept Informat Management, 300 Jung Da Rd, Jung Li City 32001, Taoyuan County, Taiwan.
EM ylchen@mgt.ncu.edu.tw
CR Agarwal A., 2006, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '06, ACM, New York, NY, USA, P14
[Anonymous], 2003, J INFORM TECHNOLOGY
[Anonymous], 2002, Proceedings of the 11th international conference on World Wide Web, DOI [DOI 10.1145/511446.511513, 10.1145/511446.511513]
Bar-Ilan J, 2006, COMPUT NETW, V50, P1448, DOI 10.1016/j.comnet.2005.10.020
Bar-Ilan J, 2010, J INFORMETR, V4, P141, DOI 10.1016/j.joi.2009.11.006
Barnes SJ, 2005, COMMUN ACM, V48, P110, DOI 10.1145/1039539.1039573
Bergstrom CT, 2008, NEUROLOGY, V71, P1850, DOI 10.1212/01.wnl.0000338904.37585.66
Bollen J, 2006, SCIENTOMETRICS, V69, P669, DOI 10.1007/s11192-006-0176-z
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Cagnina L, 2005, J COMPUT SCI TECHNOL, V5, P204
Chen P, 2007, J INFORMETR, V1, P8, DOI 10.1016/j.joi.2006.06.001
Clerc M, 2004, STUD FUZZ SOFT COMP, V141, P219
Coello CAC, 2004, IEEE T EVOLUT COMPUT, V8, P256, DOI [10.1109/TEVC.2004.826067, 10.1109/tevc.2004.826067]
Coleman A, 2007, J AM SOC INF SCI TEC, V58, P1148, DOI 10.1002/asi.20599
Davis PM, 2008, J AM SOC INF SCI TEC, V59, P2186, DOI 10.1002/asi.20943
Dellavalle RP, 2007, J AM ACAD DERMATOL, V57, P116, DOI 10.1016/j.jaad.2007.03.005
Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171
DOKE ER, 1995, J COMPUT INFORM SYST, V36, P49
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
GILLENSON ML, 1991, MIS QUART, V15, P447, DOI 10.2307/249448
Goodacre A., 2006, ACCOUNT BUS RES, V36, P65, DOI [10.1080/00014788.2006.9730011, DOI 10.1080/00014788.2006.9730011]
Habibzadeh F, 2008, J INFORMETR, V2, P164, DOI 10.1016/j.joi.2008.02.001
Hardgrave BC, 1997, COMMUN ACM, V40, P119, DOI 10.1145/265684.265700
Harris C, 2008, J SCHOLARLY PUBL, V39, P373, DOI 10.3138/jsp.39.4.373
Herbrich R, 2000, ADV NEUR IN, P115
Hofacker CF, 2009, J ACAD MARKET SCI, V37, P238, DOI 10.1007/s11747-008-0124-y
Jing Y, 2008, IEEE T PATTERN ANAL, V30, P1877, DOI 10.1109/TPAMI.2008.121
Katerattanakul P, 2003, COMMUN ACM, V46, P111, DOI 10.1145/944217.944221
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
Krink T., 2002, P IEEE C EV COMP CEC
LIM A, 2007, J RANKING
Lim A, 2009, COMMUN ACM, V52, P111, DOI 10.1145/1536616.1536645
Lowry P., 2004, J ASSOC INF SYST, V5, P29, DOI DOI 10.17705/1JAIS.00045
Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006
Marsh SJ, 2006, J MANAGE INQUIRY, V15, P301, DOI 10.1177/1056492606291208
Maslov S, 2008, J NEUROSCI, V28, P11103, DOI 10.1523/JNEUROSCI.0002-08.2008
Mylonopoulos NA, 2001, COMMUN ACM, V44, P29, DOI 10.1145/383694.383701
NORD JH, 1995, INFORM MANAGE, V29, P29, DOI 10.1016/0378-7206(95)00010-T
Olson JE, 2005, INTERFACES, V35, P323, DOI 10.1287/inte.1050.0149
Page L., 1998, The pagerank citation ranking: Bringing order to the web
Pillai SU, 2005, IEEE SIGNAL PROC MAG, V22, P62, DOI 10.1109/MSP.2005.1406483
PINSKI G, 1976, INFORM PROCESS MANAG, V12, P297, DOI 10.1016/0306-4573(76)90048-0
Rainer RK, 2005, COMMUN ACM, V48, P91, DOI 10.1145/1042091.1042096
Rasmussen TK, 2003, BIOSYSTEMS, V72, P5, DOI 10.1016/s0303-2647(03)00131-X
Ratnaweera A, 2004, IEEE T EVOLUT COMPUT, V8, P240, DOI 10.1109/tevc.2004.826071
Serenko A, 2009, J KNOWL MANAG, V13, P4, DOI 10.1108/13673270910931125
Svensson G, 2008, MARK INTELL PLAN, V26, P340, DOI 10.1108/02634500810879250
Tasgetiren MF, 2007, EUR J OPER RES, V177, P1930, DOI 10.1016/j.ejor.2005.12.024
Tripathi PK, 2007, INFORM SCIENCES, V177, P5033, DOI 10.1016/j.ins.2007.06.018
Via BJ, 2007, PORTAL-LIBR ACAD, V7, P333, DOI 10.1353/pla.2007.0038
WALSTROM KA, 1995, COMMUN ACM, V38, P93, DOI 10.1145/203330.203348
WEST J, 2007, EIGENFACTOR ORG RANK
Zhang H, 2004, LECT NOTES COMPUT SC, V3201, P501
Zhao L, 2009, EXPERT SYST APPL, V36, P2805, DOI 10.1016/j.eswa.2008.01.061
NR 55
TC 11
Z9 12
U1 1
U2 30
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PD JUN
PY 2011
VL 37
IS 3
BP 254
EP 272
DI 10.1177/0165551511402421
PG 19
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 775QC
UT WOS:000291476000004
DA 2024-09-05
ER
PT J
AU Warin, T
Stojkov, A
AF Warin, Thierry
Stojkov, Aleksandar
TI Discursive dynamics and local contexts on Twitter: The refugee crisis in
Europe
SO DISCOURSE & COMMUNICATION
LA English
DT Article
DE Agenda-setting theory; authority; discourse analysis; influence; natural
language processing; refugee crisis; social media; structural topic
modeling
ID MEDIA BIAS; COVERAGE; NEWS
AB In today's hybrid media environment, traditional news organizations extend their presence on Online Social Networks (OSNs) and compete with political and civil society organizations, public figures, and other influential digital storytelling individuals. This article examines conversations on Twitter, one of the most widely used OSNs, about Europe's refugee crisis in 2014 and 2015. We use, in particular, topic modeling techniques to deduce the existence of a complex network of Twitter topics formed in response to coverage of and opinion formation surrounding the European refugee crisis. We collected more than 11 million tweets in six different languages. One of our most significant findings is that while most conversations happen in English, the refugee crisis has had different rhythms in other languages. Our assumption is that this could be evidence that the power of mainstream local media on Twitter to set the agenda is considerable, at least regarding refugee-related conversations in Europe.
C1 [Warin, Thierry] HEC Montreal, Montreal, PQ, Canada.
[Stojkov, Aleksandar] Ss Cyril & Methodius Univ, Skopje, North Macedonia.
[Warin, Thierry] Dept Int Business, 3000,chemin Cote Sainte Catherine, Montreal, PQ H3T2A7, Canada.
C3 Universite de Montreal; HEC Montreal; Saints Cyril & Methodius
University of Skopje
RP Warin, T (corresponding author), Dept Int Business, 3000,chemin Cote Sainte Catherine, Montreal, PQ H3T2A7, Canada.
EM thierry.warin@hec.ca
CR Agarwal N., 2012, Behavior Computing, P3, DOI [DOI 10.1007/978-1-4471-2969-1_1, 10.1007/978-1-4471-2969-1_1]
Ahmed R, 2020, MCGILL-QUEENS REFUG, V2, P151
Alencar A, 2018, INFORM COMMUN SOC, V21, P1588, DOI 10.1080/1369118X.2017.1340500
Alford JH, 2014, ENGL TEACH-PRACT CRI, V13, P71
Althaus SL, 2002, COMMUN RES, V29, P180, DOI 10.1177/0093650202029002004
[Anonymous], 1922, Public Opinion
Antonakaki D, 2021, EXPERT SYST APPL, V164, DOI 10.1016/j.eswa.2020.114006
Barbera Pablo., 2020, The SAGE Handbook of Research Methods in Political Science and International Relations, P404, DOI [10.4135/9781526486387, DOI 10.4135/9781526486387, DOI 10.4135/9781526486387.N26]
Bestgen Y, 2012, BEHAV RES METHODS, V44, P998, DOI 10.3758/s13428-012-0195-z
Chadwick Andrew., 2013, HYBRID MEDIA SYSTEM
Costa DL, 2017, ECONOMICA, V84, P393, DOI 10.1111/ecca.12227
Crepaz K, 2022, J ETHN MIGR STUD, V48, P1448, DOI 10.1080/1369183X.2020.1851471
DellaVigna S, 2007, Q J ECON, V122, P1187, DOI 10.1162/qjec.122.3.1187
Fraga I, 2012, Q J EXP PSYCHOL, V65, P1740, DOI 10.1080/17470218.2012.662989
Gao B, 2014, LECT NOTES SOC NETW, P129, DOI 10.1007/978-3-319-13590-8_7
Gentzkow M, 2006, J POLIT ECON, V114, P280, DOI 10.1086/499414
Groseclose T, 2005, Q J ECON, V120, P1191, DOI 10.1162/003355305775097542
Guess A, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aau4586
Honeycutt C., 2009, Beyond microblogging: Conversation and collaboration via twitter, P1, DOI 10.1109/HICSS.2009.602
Jungherr A, 2015, CONTRIBUT POLIT SCI, P1, DOI 10.1007/978-3-319-20319-5
Jungherr A, 2016, J COMPUT-MEDIAT COMM, V21, P50, DOI 10.1111/jcc4.12143
Jungherr A, 2014, J COMMUN, V64, P239, DOI 10.1111/jcom.12087
Kahn KF, 2002, AM POLIT SCI REV, V96, P381
Kreis R, 2017, DISCOURSE COMMUN, V11, P498, DOI 10.1177/1750481317714121
Larcinese V, 2007, J THEOR POLIT, V19, P249, DOI 10.1177/0951629807077569
Leveau N, 2012, BEHAV RES METHODS, V44, P1007, DOI 10.3758/s13428-012-0208-y
Lott JR, 2014, PUBLIC CHOICE, V160, P65, DOI 10.1007/s11127-014-0171-5
Nerghes A, 2019, MEDIA COMMUN-LISBON, V7, P275, DOI 10.17645/mac.v7i2.1983
Pearce W, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094785
Puglisi R, 2011, BE J ECON ANAL POLI, V11
Purcell, 2019, WERE DANGER WHO WILL
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Rogers E. M., 1988, Communication yearbook 11, V11, P555, DOI [10.1080/23808985.1988.11678708, DOI 10.1080/23808985.1988.11678708]
Scott GG, 2012, J EXP PSYCHOL LEARN, V38, P783, DOI 10.1037/a0027209
Shaw E.F., 1977, GAZETTE LEIDEN NETHE, V23, P230
Siapera E, 2018, SOC MEDIA SOC, V4, DOI 10.1177/2056305118764437
Small TA, 2011, INFORM COMMUN SOC, V14, P872, DOI 10.1080/1369118X.2011.554572
The Pew Research Center for the People and the Press, 2004, NEWS AUD INCR POL
Verona E, 2012, J ABNORM PSYCHOL, V121, P498, DOI 10.1037/a0025308
Vestergaard KT, 2020, J CONTEMP EUR STUD, V28, P411, DOI 10.1080/14782804.2020.1773775
Vinson D, 2014, COGNITION EMOTION, V28, P737, DOI 10.1080/02699931.2013.851068
Wigger I, 2022, EUR J COMMUN, V37, P21, DOI 10.1177/02673231211012173
Yardi Sarita, 2010, Bulletin of Science, Technology Society, V30, P316, DOI [10.1177/0270467610380011, DOI 10.1177/0270467610380011]
NR 43
TC 0
Z9 0
U1 3
U2 16
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1750-4813
EI 1750-4821
J9 DISCOURSE COMMUN
JI Discourse Commun.
PD JUN
PY 2023
VL 17
IS 3
BP 354
EP 380
DI 10.1177/17504813231155739
EA MAR 2023
PG 27
WC Communication
WE Social Science Citation Index (SSCI)
SC Communication
GA AR8J0
UT WOS:000941813000001
OA hybrid
DA 2024-09-05
ER
PT J
AU Hou, JH
Zheng, BL
Wang, DY
Zhang, Y
Chen, CM
AF Hou, Jianhua
Zheng, Bili
Wang, Dongyi
Zhang, Yang
Chen, Chaomei
TI How Boundary-spanning Paper Sparkles Citation: From Citation Count to
Citation Network
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Boundary-spanning; Paper's role definition; Sentence-BERT; Knowledge
diffusion; Citation network
ID PROPENSITY SCORE; IMPACT; CLASSIFICATION; INNOVATION; BEHAVIORS;
KNOWLEDGE; DYNAMICS; ARTICLES; SEARCH; ROLES
AB Previous studies diverged on whether boundary-spanning papers are cited more heavily, how-ever, there is as yet no research that explains how boundary-spanning papers affect citation counts from a causal view and how they influence knowledge diffusion in citation network. To this end, we utilized Propensity Score Matching to clarify the relationship between the citation counts and the degree of boundary-spanning of 281,707 papers in the field of Astronomy (AS), Natural Language Processing (NLP), Library and Information Science (LIS) based on causal inference. We also adopted Sentence-BERT to compute the content similarity among seed papers, cited papers, citing papers, to imply how seed paper affects citation network when knowledge diffuses. According to the similarity between seed paper and citing paper, cited paper and citing paper, we defined paper's role in citation network as four types: Disseminator, Broker, Trigger, and Outlier. The major findings are as follows: (1) Papers with a higher degree of boundary-spanning are more likely to be cited heavily; (2) Disseminator and Outlier account for a larger proportion in three disciplines, while Broker and Trigger account for a smaller proportion; (3) The degree of boundary-spanning and citation counts of four types vary in three disciplines. This work, which reveals paper's value and role in citation network from the perspective of content, has implica-tions to provide some enlightenment for the paper's evaluation.
C1 [Hou, Jianhua; Zheng, Bili; Wang, Dongyi; Zhang, Yang] Sun Yat Sen Univ, Guangzhou Higher Educ Mega Ctr, Sch Informat Management, 132 Waihuan East Rd, Guangzhou 510006, Peoples R China.
[Chen, Chaomei] Drexel Univ, Coll Comp & Informat, 3675 Market St, Philadelphia, PA 19104 USA.
C3 Sun Yat Sen University; Drexel University
RP Zhang, Y (corresponding author), Sun Yat Sen Univ, Guangzhou Higher Educ Mega Ctr, Sch Informat Management, 132 Waihuan East Rd, Guangzhou 510006, Peoples R China.
EM houjh5@mail.sysu.edu.cn; zhengbli@mail2.sysu.edu.cn;
wangdy37@mail2.sysu.edu.cn; zhyang2@mail.sysu.edu.cn; cc345@drexel.edu
RI Chen, Chaomei/A-1252-2007; Hou, Jianhua/JQI-1081-2023
OI Chen, Chaomei/0000-0001-8584-1041;
FU Natural Science Foundation of Guangdong Province [2021A1515012291]
FX This research was support by the Natural Science Foundation of Guangdong
Province under Grant 2021A1515012291.
CR [Anonymous], 2007, P 9 WEBKDD 1 SNA KDD, DOI DOI 10.1145/1348549.1348556
Austin PC, 2007, STAT MED, V26, P734, DOI 10.1002/sim.2580
Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509
BARBER B, 1961, SCIENCE, V134, P596, DOI 10.1126/science.134.3479.596
Bianconi G, 2001, EUROPHYS LETT, V54, P436, DOI 10.1209/epl/i2001-00260-6
Bornmann L, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101098
Bornmann L, 2020, SCIENTOMETRICS, V123, P1149, DOI 10.1007/s11192-020-03406-8
Bornmann L, 2015, SCIENTOMETRICS, V102, P455, DOI 10.1007/s11192-014-1425-1
Brooks D, 2013, PHYSIOTHER CAN, V65, P1, DOI 10.3138/ptc.65.1.GEE
Bu Y, 2021, J ASSOC INF SCI TECH, V72, P523, DOI 10.1002/asi.24433
Burt RS, 2004, AM J SOCIOL, V110, P349, DOI 10.1086/421787
Chang YW, 2013, INFORM PROCESS MANAG, V49, P983, DOI 10.1016/j.ipm.2013.03.003
Chen CM, 2012, J AM SOC INF SCI TEC, V63, P431, DOI 10.1002/asi.21694
Cheng QK, 2020, SCIENTOMETRICS, V124, P1923, DOI 10.1007/s11192-020-03576-5
Jabbour CJC, 2013, SERIALS REV, V39, P93, DOI 10.1016/j.serrev.2013.03.001
CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Fazel I, 2015, J ENGL ACAD PURP, V20, P203, DOI 10.1016/j.jeap.2015.10.002
Feng M., 2009, CHINESE J LIB INFORM, V2, P28
Foster JG, 2015, AM SOCIOL REV, V80, P875, DOI 10.1177/0003122415601618
FROST CO, 1979, LIBR QUART, V49, P399
Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366
Gordon M, 2019, MED TEACH, V41, P1232, DOI 10.1080/0142159X.2018.1513642
GRUBER TR, 1993, KNOWL ACQUIS, V5, P199, DOI 10.1006/knac.1993.1008
He ZY, 2018, J ASSOC INF SCI TECH, V69, P1148, DOI 10.1002/asi.24041
Hou JH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101306
Hou JH, 2021, SCIENTOMETRICS, V126, P5945, DOI 10.1007/s11192-021-03979-y
Hou JH, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0234347
Jones BF, 2009, REV ECON STUD, V76, P283, DOI 10.1111/j.1467-937X.2008.00531.x
Kuhn T.S., 1962, The structure of scientific revolutions
Kwan BSC, 2014, J ENGL ACAD PURP, V14, P29, DOI 10.1016/j.jeap.2013.11.004
Lyu DQ, 2021, SCIENTOMETRICS, V126, P3243, DOI 10.1007/s11192-021-03908-z
Ma YF, 2018, P NATL ACAD SCI USA, V115, P12608, DOI 10.1073/pnas.1800485115
Mäkinen EI, 2020, MINERVA, V58, DOI 10.1007/s11024-019-09381-6
MARCUS RA, 1956, J CHEM PHYS, V24, P966, DOI 10.1063/1.1742723
Min C, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120502
PERITZ BC, 1983, SCIENTOMETRICS, V5, P303, DOI 10.1007/BF02147226
Peters ME, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1756, DOI 10.18653/v1/P17-1161
Plantec Q, 2021, TECHNOL FORECAST SOC, V168, DOI 10.1016/j.techfore.2021.120782
Reimers N, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3982
Rostami F, 2014, SCIENTOMETRICS, V98, P2007, DOI 10.1007/s11192-013-1118-1
Roth C, 2012, J INFORMETR, V6, P111, DOI 10.1016/j.joi.2011.08.005
Sang CY, 2020, PHYSICA A, V537, DOI 10.1016/j.physa.2019.122639
Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009
Scripps J, 2007, IEEE DATA MINING, P649, DOI 10.1109/ICDM.2007.37
Sebastian Y, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254744
Shi L, 2010, APPL LINGUIST, V31, P1, DOI 10.1093/applin/amn045
Shurong X. U., 2017, CHINESE J SCI TECHNI, V28, P28
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Smojver V, 2021, J KNOWL MANAG, V25, P433, DOI 10.1108/JKM-01-2020-0079
Spreeuwenberg MD, 2010, MED CARE, V48, P166, DOI 10.1097/MLR.0b013e3181c1328f
Stuart EA, 2010, STAT SCI, V25, P1, DOI 10.1214/09-STS313
Tahamtan Iman, 2016, Scientometrics, V107, P1195, DOI 10.1007/s11192-016-1889-2
Tahamtan I, 2018, J INFORMETR, V12, P203, DOI 10.1016/j.joi.2018.01.002
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
Tan HX, 2015, SCIENTOMETRICS, V102, P885, DOI 10.1007/s11192-014-1393-5
Tang SJ, 2022, SCI CHINA LIFE SCI, V65, P753, DOI 10.1007/s11427-021-1974-7
Teixeira AAC, 2011, SCIENTOMETRICS, V89, P1, DOI 10.1007/s11192-011-0445-3
Teplitskiy M, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104484
Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474
VINKLER P, 1987, SCIENTOMETRICS, V12, P47, DOI 10.1007/BF02016689
Wager S, 2018, J AM STAT ASSOC, V113, P1228, DOI 10.1080/01621459.2017.1319839
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006
White MD, 1997, LIBR QUART, V67, P122, DOI 10.1086/629929
Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9
Xie J, 2019, SCIENTOMETRICS, V119, P1429, DOI 10.1007/s11192-019-03094-z
Xie Q, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101055
Yan E, 2013, J INFORMETR, V7, P249, DOI 10.1016/j.joi.2012.11.008
Yayavaram S, 2008, ADMIN SCI QUART, V53, P333, DOI 10.2189/asqu.53.2.333
Ye X., 2014, INFORM RES, P17
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
Zhang CZ, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101134
Zhang JJ, 2019, TECHNOL FORECAST SOC, V143, P260, DOI 10.1016/j.techfore.2019.01.022
Zhang L, 2011, J INFORMETR, V5, P583, DOI 10.1016/j.joi.2011.05.004
Zhuge H, 2010, J AM SOC INF SCI TEC, V61, P1824, DOI 10.1002/asi.21353
NR 77
TC 4
Z9 4
U1 26
U2 69
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD AUG
PY 2023
VL 17
IS 3
AR 101434
DI 10.1016/j.joi.2023.101434
EA JUL 2023
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA Q6WJ8
UT WOS:001058905500001
DA 2024-09-05
ER
PT J
AU Gupta, BM
Dhawan, SM
Mamdapur, GMN
AF Gupta, B. M.
Dhawan, S. M.
Mamdapur, Ghouse Modin N.
TI Research trends in the field of natural language processing : A
scientometric study based on global publications during 2001-2020
SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT
LA English
DT Article
DE Natural language processing; Global publications; Scientometrics;
Bibliometrics
AB The study provides a quantitative and qualitative description of global research in "Natural Language Processing" ( NLP) using bibliometric methods. The analysis is based on publications data sourced from Scopus database for the period 2001-2020. The purpose of the study is to understand the status of NLP research at the global, national, institutional, and author level. The study highlights the productivity and performance of NLP research on a series of metrics as well as provides a visual view of collaborative network relationship between authors, research institutions, and leading countries using standard software tools. In addition, the study identified the leading players in NLP research such as key countries, institutions, authors, and areas of research. According to the study, the USA leads in global publications output as well as it leads in terms of relative citation index.
C1 [Gupta, B. M.] CSIR NISTADS, Delhi 110012, India.
[Dhawan, S. M.] CSIR NPL, Delhi 110012, India.
[Mamdapur, Ghouse Modin N.] Synthite Ind P Ltd, New Prod Dev & Res, Kolenchery 682311, Kerala, India.
C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR -
National Institute of Science Communication & Policy Research (NIScPR);
Council of Scientific & Industrial Research (CSIR) - India; CSIR -
National Physical Laboratory (NPL)
RP Mamdapur, GMN (corresponding author), Synthite Ind P Ltd, New Prod Dev & Res, Kolenchery 682311, Kerala, India.
EM bmgupta1@gmail.com; smdhawan@yahoo.com; ghouse@synthite.com
OI Mamdapur, Ghouse Modin/0000-0003-4155-1987
CR Banerjee Dibyendu, 2020, NATURAL LANGUAGE PRO
Chen XL, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10062157
Chen XL, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/1827074
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Dhawan S. M., 2021, International Journal of Knowledge Content Development & Technology, V11, P29
IBM Cloud Education, 2020, WHAT IS NAT LANG PRO
Lopez-Martinez RE, 2020, J SCIENTOMETR RES, V9, P310, DOI 10.5530/jscires.9.3.38
Raghavan VV, 2016, COGNITIVE COMPUTING
Reshamwala A., 2013, REV NATURAL LANGUAGE
Rybkin Yuriy, 2020, NLP APPL BUSINESS
Wang J, 2020, J MED INTERNET RES, V22, DOI 10.2196/16816
NR 11
TC 0
Z9 0
U1 2
U2 4
PU TARU PUBLICATIONS
PI NEW DELHI
PA G-159, PUSHKAR ENCLAVE, PASHCHIM VIHAR, NEW DELHI, 110 063, INDIA
SN 0973-7766
EI 2168-930X
J9 COLLNET J SCIENTOMET
JI Collnet J. Scientometr. Inf. Manag.
PD JUN
PY 2023
VL 17
IS 1
BP 61
EP 79
DI 10.47974/CJSIM-2022-0023
PG 19
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA M8KC9
UT WOS:001032640000005
DA 2024-09-05
ER
PT J
AU Alnowaiser, K
AF Alnowaiser, Khaled
TI Scientific text citation analysis using CNN features and ensemble
learning model
SO PLOS ONE
LA English
DT Article
ID BIBLIOMETRICS; CONTEXT; COUNTS; INDEX
AB Citation illustrates the link between citing and cited documents. Different aspects of achievements like the journal's impact factor, author's ranking, and peers' judgment are analyzed using citations. However, citations are given the same weight for determining these important metrics. However academics contend that not all citations can ever have equal weight. Predominantly, such rankings are based on quantitative measures and the qualitative aspect is completely ignored. For a fair evaluation, qualitative evaluation of citations is needed in addition to quantitative ones. Many existing works that use qualitative evaluation consider binary class and categorize citations as important or unimportant. This study considers multi-class tasks for citation sentiments on imbalanced data and presents a novel framework for sentiment analysis in in-text citations of research articles. In the proposed technique, features are retrieved using a convolutional neural network (CNN), and classification is performed using a voting classifier that combines Logistic Regression (LR) and Stochastic Gradient Descent (SGD). The class imbalance problem is handled by the synthetic minority oversampling technique (SMOTE). Extensive experiments are performed in comparison with the proposed approach using SMOTE-generated data and machine learning models by term frequency (TF), and term frequency-inverse document frequency (TF-IDF) to evaluate the efficacy of the proposed approach for citation analysis. It is found that the proposed voting classifier using CNN features achieves an accuracy, precision, recall, and F1 score of 0.99 for all. This work not only advances the field of sentiment analysis in academic citations but also underscores the importance of incorporating qualitative aspects in evaluating the impact and sentiments conveyed through citations.
C1 [Alnowaiser, Khaled] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Engn, Al Kharj, Saudi Arabia.
C3 Prince Sattam Bin Abdulaziz University
RP Alnowaiser, K (corresponding author), Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Engn, Al Kharj, Saudi Arabia.
EM k.alnowaiser@psau.edu.sa
RI Alnowaiser, Khaled/GQY-5062-2022
OI Alnowaiser, Khaled/0009-0007-2717-6902
FU Prince Sattam bin Abdulaziz University [PSAU/2024/R/1445]
FX This study was supported by Prince Sattam bin Abdulaziz University in
the form of a grant to KA [PSAU/2024/R/1445].
CR Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492
Amjad Z, 2020, INT J ADV COMPUT SC, V11, P621
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], 2017, INT C COMP SCI APPL
Ashraf I, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9112337
Athar A., 2011, P ACL 2011 STUD SESS, P81
Bar-Ilan J, 2017, SCIENTOMETRICS, V113, P547, DOI 10.1007/s11192-017-2242-0
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Brijain M., 2014, International Journal Of Science And Research (IJSR)
Catal C, 2017, APPL SOFT COMPUT, V50, P135, DOI 10.1016/j.asoc.2016.11.022
Chawla NV, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P875, DOI 10.1007/978-0-387-09823-4_45
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Freund Y, 1997, J COMPUT SYST SCI, V55, P119, DOI 10.1006/jcss.1997.1504
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Garfield E., 1998, 41 ANN M COUNC BIOL
Ghosh S., 2020, P 53 HAW INT C SYST
Gregorutti B, 2017, STAT COMPUT, V27, P659, DOI 10.1007/s11222-016-9646-1
Herther NK, 2009, ELECTRON LIBR, V27, P361, DOI 10.1108/02640470910966835
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
HJERPPE R, 1982, SCIENTOMETRICS, V4, P241, DOI 10.1007/BF02021064
Huggett S, 2013, ATHEROSCLEROSIS, V230, P275, DOI 10.1016/j.atherosclerosis.2013.07.051
Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9
Ishaq A, 2021, IEEE ACCESS, V9, P39707, DOI 10.1109/ACCESS.2021.3064084
Karim M, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12063203
Khan S., 2018, Synthesis Lect. Comp. Vision, V8, P1, DOI DOI 10.2200/S00822ED1V01Y201712COV015
Kochhar SK, 2020, ICT EXPRESS, V6, P253, DOI 10.1016/j.icte.2020.02.001
Moed HF, 2012, SCIENTOMETRICS, V92, P367, DOI 10.1007/s11192-012-0679-8
Nazir S, 2022, IEEE ACCESS, V10, P87990, DOI 10.1109/ACCESS.2022.3199420
Oppenheim C, 1997, J DOC, V53, P477, DOI 10.1108/EUM0000000007207
Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880
Rustam F, 2021, IEEE ACCESS, V9, P33675, DOI 10.1109/ACCESS.2021.3061592
Rustam F, 2019, ENTROPY-SWITZ, V21, DOI 10.3390/e21111078
SAFAVIAN SR, 1991, IEEE T SYST MAN CYB, V21, P660, DOI 10.1109/21.97458
Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283
Umer M, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22072431
Umer M, 2021, ETRI J, V43, P95, DOI 10.4218/etrij.2019-0443
Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1
West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790
Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3
Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334
Yousif A, 2019, ARTIF INTELL REV, V52, P1805, DOI 10.1007/s10462-017-9597-8
Yu Bei., 2013, P 76 ASIST ANN M CLO, P1, DOI [10.1002/meet.14505001084, DOI 10.1002/MEET.14505001084]
ZADROZNY B, 2002, P 8 ACM SIGKDD INT C, P694, DOI DOI 10.1145/775047.775151
Zhang Y., 2014, Abstract And Applied Analysis, V2014
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 45
TC 0
Z9 0
U1 7
U2 7
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD MAY 28
PY 2024
VL 19
IS 5
AR e0302304
DI 10.1371/journal.pone.0302304
PG 19
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA SI9G2
UT WOS:001233936700036
PM 38805427
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Lang, J
Repp, H
AF Lang, Johannes
Repp, Holger
TI Artificial intelligence in medical education and the meaning of
interaction with natural intelligence - an interdisciplinary approach
SO GMS JOURNAL FOR MEDICAL EDUCATION
LA English
DT Article
DE artificial intelligence; interdisciplinary research; interdisciplinary
learning; evaluation; teaching
AB Introduction: The practice of medicine is characterized by decision making in which digital techniques can provide good support. In this context, artificial intelligence (AI) is becoming increasingly important. The challenge for physicians, however, is to maintain an overview of the potential applications and usefulness of AI in order to be able to apply it efficiently and safely in their work. Therefore, appropriate skills must be imparted during the course of medical studies so that future practitioners can meet this requirement.
Project description: The interdisciplinary research-related teaching and learning project "(Natural) Science and Technology in Medicine NWTmed" brings together students at the Justus-Liebig-University Giessen (JLU) from the fields of medicine and other (natural) scientific disciplines in structured courses with the aim of thinking, learning, and working in an interdisciplinary and research-oriented manner already during their medical education. With the involvement of local researchers, a "multi-disciplinary" seminar on the basic premises, methods, and applications of AI was established.
Results: The participants of the course came from a wide variety of fields of study, which promoted an interdisciplinary exchange and animated discussions. A gain in knowledge and an increase in interest in the topic of AI was noted in the evaluations, and a willingness on the part of the students to pursue further independent study was also expressed.
Discussion and conclusion: The topic of AI and its relevance to the field of medicine is not yet sufficiently represented in medical education. It will require integration in the curriculum and performance evaluations as well as interdisciplinary and research-related teaching formats.
C1 [Lang, Johannes; Repp, Holger] Justus Liebig Univ Giessen, Med Fac, Div Study & Teaching, Deans Off, Klin Str 29, D-35392 Giessen, Germany.
C3 Justus Liebig University Giessen
RP Lang, J (corresponding author), Justus Liebig Univ Giessen, Med Fac, Div Study & Teaching, Deans Off, Klin Str 29, D-35392 Giessen, Germany.
EM johannes.lang@dekanat.med.uni-giessen.de
FU central and decentralized QSL funds of the JLU Giessen; study structure
program of the State of Hesse
FX The work is supported by central and decentralized QSL funds of the JLU
Giessen as well as by funds from the study structure program of the
State of Hesse.
CR Ertl G, 2018, DEUT MED WOCHENSCHR, V143, P1421, DOI 10.1055/a-0669-1618
Haag M, 2018, GMS J MED EDU, V35, DOI 10.3205/zma001189
Heinz S, 2019, GEMEINSAME JAHRESTAG, DOI [10.3205/19gma202, DOI 10.3205/19GMA202]
Lang J, 2018, JAHRESTAGUNG GESELLS, DOI [10.3205/18gma050, DOI 10.3205/18GMA050]
Linnyk O., 2015, DILEPTONS PHOTONS PR
Obert M, 2019, EUR RESPIR J, V54, DOI 10.1183/13993003.01185-2019
Schreibgruppe Digitalisierung, 2018, SCHW ARZTEZ, V99, P1441
Topol Eric, 2019, How artificial intelligence can make healthcare human again
NR 8
TC 7
Z9 8
U1 1
U2 10
PU GERMAN MEDICAL SCIENCE-GMS
PI DUESSELDORF
PA UBIERSTRASSE 20, DUESSELDORF, 40223, GERMANY
SN 2366-5017
J9 GMS J MED EDU
JI GMS J. Med. Educ.
PY 2020
VL 37
IS 6
AR Doc59
DI 10.3205/zma001352
PG 3
WC Education, Scientific Disciplines
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA OU6XD
UT WOS:000591668800005
PM 33225051
DA 2024-09-05
ER
PT J
AU Ruiz-Sánchez, R
Arencibia-Jorge, R
Tagüeña, J
Jiménez-Andrade, JL
Carrillo-Calvet, H
AF Ruiz-Sanchez, Ricardo
Arencibia-Jorge, Ricardo
Taguena, Julia
Jimenez-Andrade, Jose Luis
Carrillo-Calvet, Humberto
TI Exploring research on ecotechnology through artificial intelligence and
bibliometric maps
SO ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY
LA English
DT Article
DE Ecotechnologies; Bibliometrics; Sustainable development goals; Network
analysis; SOM neural networks
ID WASTE-WATER TREATMENT; DEA ENVIRONMENTAL ASSESSMENT; CONSTRUCTED
WETLANDS; TECHNOLOGY DEVELOPMENT; TREATMENT PERFORMANCES; CARBON;
SUSTAINABILITY; EFFICIENCY; NIGERIA; RECOVERY
AB Ecotechnology, quintessential for crafting sustainable socio-environmental strategies, remains tantalizingly uncharted. Our analysis, steered by the nuances of machine learning and augmented by bibliometric insights, delineates the expansive terrain of this domain, elucidates pivotal research themes and conundrums, and discerns the vanguard nations in this field. Furthermore, we deftly connect our discoveries to the United Nations' 2030 Sustainable Development Goals, thereby accentuating the profound societal ramifications of ecotechnology. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
C1 [Ruiz-Sanchez, Ricardo] Inst Politecn Nacl, Unidad Profes Interdisciplinaria Ingn Palenque UPI, Palenque 29960, Chiapas, Mexico.
[Ruiz-Sanchez, Ricardo; Arencibia-Jorge, Ricardo; Taguena, Julia; Jimenez-Andrade, Jose Luis; Carrillo-Calvet, Humberto] Natl Autonomous Univ Mex, Complex Sci Ctr, Circuito Ctr Cultural S-N, Coyoacan 04510, Mexico City, Mexico.
[Taguena, Julia] Univ Nacl Autonoma Mexico, Inst Renewable Energies IER, Priv Xochicalco S-N, Temixco 62580, Morelos, Mexico.
[Jimenez-Andrade, Jose Luis; Carrillo-Calvet, Humberto] Univ Nacl Autonoma Mexico, Fac Sci, Circuito Ctr Cultural S-N, Coyoacan 04510, Mexico City, Mexico.
C3 Universidad Nacional Autonoma de Mexico; Universidad Nacional Autonoma
de Mexico
RP Arencibia-Jorge, R (corresponding author), Natl Autonomous Univ Mex, Complex Sci Ctr, Circuito Ctr Cultural S-N, Coyoacan 04510, Mexico City, Mexico.
EM ricardo.arencibia@c3.unam.mx
RI Carrillo Calvet, Humberto/E-2265-2012; Jiménez-Andrade, José-Luis Luis
Jiménez/T-1666-2018; Arencibia-Jorge, Ricardo/B-1330-2016
OI Carrillo Calvet, Humberto/0000-0003-3659-6769; Jiménez-Andrade,
José-Luis Luis Jiménez/0000-0003-3453-7159; Arencibia-Jorge,
Ricardo/0000-0001-8907-2454
FU UNAM- DGAPA postdoctoral fellowship program; [OPP-00534251STEAMINC]
FX This research is a result of the program "Scientometrics, Complexity,
and Science of Science ", at the Complexity Science Center of the
National Autonomous University of Mexico (UNAM) . Ricardo Ruiz-Sanchez
was partially supported by the UNAM- DGAPA postdoctoral fellowship
program. We are very grateful to Clarivate Analytics for granting us a
temporary license to use In-Cites. Contract ID: OPP-00534251STEAMINC,
Subscription Name: UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO_OPP-
00534251STEAMINC_1.
CR Aba RP, 2021, WATER-SUI, V13, DOI 10.3390/w13101403
Ademiluyi YS, 2021, AMA-AGR MECH ASIA AF, V52, P82
Afzal M, 2019, NAT SUSTAIN, V2, P863, DOI 10.1038/s41893-019-0350-y
Agnhage T, 2016, IND CROP PROD, V86, P334, DOI 10.1016/j.indcrop.2016.04.016
Akbari M, 2020, COGENT BUS MANAG, V7, DOI 10.1080/23311975.2020.1751906
Aniskevich S, 2017, LATV J PHYS TECH SCI, V54, P10, DOI 10.1515/lpts-2017-0037
[Anonymous], 2002, Netdraw Network Visualization
Villaseñor EA, 2017, SCIENTOMETRICS, V110, P77, DOI 10.1007/s11192-016-2166-0
Bannister JR, 2018, RESTOR ECOL, V26, P1039, DOI 10.1111/rec.12880
Boetzkes A., 2010, Ecotechnology and the Receptive Surface, DOI [10.5749/j.cttttt24.8, DOI 10.5749/J.CTTTTT24.8]
Brown MT, 1997, ECOL ENG, V9, P51, DOI 10.1016/S0925-8574(97)00033-5
Button M, 2015, ECOL ENG, V80, P162, DOI 10.1016/j.ecoleng.2014.09.073
Chen LM, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.141352
Chen LM, 2019, WATER-SUI, V11, DOI 10.3390/w11030444
Coello J, 2018, FOREST SYST, V27, DOI 10.5424/fs/2018273-13540
Czekala W, 2017, ICEE INT C ENERG, P574
Alvarez-Castañón LD, 2019, CIENCIAUAT, V13, P83, DOI 10.29059/cienciauat.v13i2.1121
Alvarez-Castañon LD, 2018, WORLD SUSTAIN SER, P139, DOI 10.1007/978-3-319-70560-6_9
Ewald N, 2020, WASTE MANAGE, V102, P40, DOI 10.1016/j.wasman.2019.10.014
Silva PYF, 2021, ESTUD DEMOGR URBANOS, V36, P563, DOI 10.24201/edu.v36i2.1950
Gustavsson E, 2017, J URBAN TECHNOL, V24, P93, DOI 10.1080/10630732.2016.1175806
Haddaway NR, 2019, ENVIRON EVID, V8, DOI 10.1186/s13750-018-0145-z
Haddaway NR, 2019, ENVIRON EVID, V8, DOI 10.1186/s13750-019-0150-x
Haddaway NR, 2018, ECOHYDROL HYDROBIOL, V18, P247, DOI 10.1016/j.ecohyd.2018.06.008
Han R, 2021, WATER AIR SOIL POLL, V232, DOI 10.1007/s11270-021-05285-y
Houmoller AP, 2017, RENEWABLE ENERGY INTEGRATION: PRACTICAL MANAGEMENT OF VARIABILITY, UNCERTAINTY, AND FLEXIBILITY IN POWER GRIDS, 2ND EDITION, P55, DOI 10.1016/B978-0-12-809592-8.00005-6
Irandoust M, 2016, ECOL INDIC, V69, P118, DOI 10.1016/j.ecolind.2016.03.051
Johannesdottir SL, 2020, ENVIRON EVID, V9, DOI 10.1186/s13750-020-00207-7
Jurmalietis R, 2015, INT MULTIDDISCIP SCI, P325
Kasprzyk M, 2021, RESOUR CONSERV RECY, V168, DOI 10.1016/j.resconrec.2020.105335
Kataki S, 2021, RENEW SUST ENERG REV, V148, DOI 10.1016/j.rser.2021.111261
Kataki S, 2021, J ENVIRON MANAGE, V283, DOI 10.1016/j.jenvman.2021.111986
Kesavan PC, 2008, PHILOS T R SOC B, V363, P877, DOI 10.1098/rstb.2007.2189
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Khalifa J, 2020, DESALIN WATER TREAT, V178, P53, DOI 10.5004/dwt.2020.24950
Kim SL, 2018, ASIA-PAC J ACCOUNT E, V25, P433, DOI 10.1080/16081625.2017.1339617
Kluczka J, 2020, POLYMERS-BASEL, V12, DOI 10.3390/polym12030635
Knapp S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11205846
Knights P, 2011, ENVIRON ETHICS, V33, P339, DOI 10.5840/enviroethics201133441
Kobayashi H, 2011, SUSTAINABILITY-BASEL, V3, P1282, DOI 10.3390/su3081282
Kohonen T, 2013, NEURAL NETWORKS, V37, P52, DOI 10.1016/j.neunet.2012.09.018
Konur O, 2020, Handbook of Algal Science, Technology and Medicine, P319, DOI [10.1016/B978-0-12-818305-2.00020-6, DOI 10.1016/B978-0-12-818305-2.00020-6]
Korkusuz EA, 2005, ECOL ENG, V24, P187, DOI 10.1016/j.ecoleng.2004.10.002
Krichevsky S, 2018, PHILOS COSMOL, V20, P92, DOI 10.29202/phil-cosm/20/8
Kronbergs E, 2003, ENVIRONMENT, TECHNOLOGY, RESOURCES, PROCEEDINGS, P145
Lai HX, 2021, INT J HYDROGEN ENERG, V46, P5612, DOI 10.1016/j.ijhydene.2020.11.032
Latrach L, 2018, ECOL ENG, V117, P140, DOI 10.1016/j.ecoleng.2018.04.003
Ldnl-Unam, 2020, Zenodo, DOI 10.5281/ZENODO.3630581
Limnios EAM, 2009, ECOL ECON, V68, P2525, DOI 10.1016/j.ecolecon.2009.04.020
Liu JC, 2023, FORESTS, V14, DOI 10.3390/f14071442
Lopes IG, 2020, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.01616
Lopes IG, 2020, J CLEAN PROD, V251, DOI 10.1016/j.jclepro.2019.119753
Lopes IG, 2019, WASTE MANAGE RES, V37, P590, DOI 10.1177/0734242X19830170
Macura B, 2019, ENVIRON EVID, V8, DOI 10.1186/s13750-019-0173-3
Mahlberg B, 2014, EUR J OPER RES, V234, P885, DOI 10.1016/j.ejor.2013.11.017
Malaviya P, 2016, CRIT REV MICROBIOL, V42, P607, DOI 10.3109/1040841X.2014.974501
Merlin G, 2002, HYDROBIOLOGIA, V469, P87, DOI 10.1023/A:1015567325463
Mitsch WJ, 2003, ECOL ENG, V20, P363, DOI 10.1016/j.ecoleng.2003.05.001
Mitsch WJ, 1998, ECOL ENG, V10, P119, DOI 10.1016/S0925-8574(98)00009-3
Morken J, 2013, ENERG POLICY, V60, P98, DOI 10.1016/j.enpol.2013.04.081
Moser A, 1996, ECOL ENG, V7, P117, DOI 10.1016/0925-8574(96)00005-5
Murray T, 2014, DIACRITICS, V42, P10, DOI 10.1353/dia.2014.0012
Nilsson M, 2016, NATURE, V534, P320, DOI 10.1038/534320a
Ofori J, 2005, ECOL ENG, V24, P235, DOI 10.1016/j.ecoleng.2004.12.017
Oladele OI, 2012, J FOOD AGRIC ENVIRON, V10, P772
Oladele OI, 2010, J FOOD AGRIC ENVIRON, V8, P1014
Osmundsen TC, 2022, MAR POLICY, V138, DOI 10.1016/j.marpol.2022.104978
Ostergaard C.R., 2021, Sustainable Development Goals Series, P195, DOI [10.1007/978-3-030-61923, DOI 10.1007/978-3-030-61923]
Pagliarini L, 2020, J ROBOT NETW ARTIF L, V6, P217, DOI 10.2991/jrnal.k.200222.002
Pradhan P, 2017, EARTHS FUTURE, V5, P1169, DOI 10.1002/2017EF000632
Rai UN, 2013, BIORESOURCE TECHNOL, V148, P535, DOI 10.1016/j.biortech.2013.09.005
Rene ER, 2023, CLEAN TECHNOL ENVIR, V25, P311, DOI 10.1007/s10098-022-02417-8
Roy ED, 2017, ECOL ENG, V98, P213, DOI 10.1016/j.ecoleng.2016.10.076
Saglam I, 2023, B ECON RES, V75, P180, DOI 10.1111/boer.12349
Sandhu HS, 2010, ENVIRON SCI POLICY, V13, P1, DOI 10.1016/j.envsci.2009.11.002
Schirone B, 2011, LANDSC ECOL ENG, V7, P81, DOI 10.1007/s11355-010-0117-0
Sharma R, 2022, CHEMOSPHERE, V290, DOI 10.1016/j.chemosphere.2021.133358
STRASKRABA M, 1994, ECOL MODEL, V74, P1, DOI 10.1016/0304-3800(94)90108-2
STRASKRABA M, 1993, ECOL ENG, V2, P311, DOI 10.1016/0925-8574(93)90001-V
Sueyoshi T, 2016, ENERG ECON, V55, P173, DOI 10.1016/j.eneco.2016.01.004
Sueyoshi T, 2015, ENERG ECON, V52, P69, DOI 10.1016/j.eneco.2015.09.006
Sueyoshi T, 2015, ENERG ECON, V51, P329, DOI 10.1016/j.eneco.2015.07.010
Sun CW, 2018, ENERG POLICY, V123, P8, DOI 10.1016/j.enpol.2018.08.029
Techato K, 2014, AGRIC AGRIC SCI PROC, V10, P49, DOI 10.1016/j.apcbee.2014.10.014
Nguyen TTT, 2023, ARAB J SCI ENG, V48, P8835, DOI 10.1007/s13369-022-07391-3
Tsai DDW, 2017, ECOL ENG, V98, P17, DOI 10.1016/j.ecoleng.2016.10.049
Tsai DDW, 2016, ECOL ENG, V92, P106, DOI 10.1016/j.ecoleng.2016.03.021
Umans L, 2022, GEOFORUM, V131, P61, DOI 10.1016/j.geoforum.2022.03.008
Valipour A, 2016, ENVIRON SCI POLLUT R, V23, P180, DOI 10.1007/s11356-015-5713-y
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Verasoundarapandian G, 2022, AGRONOMY-BASEL, V12, DOI 10.3390/agronomy12010117
Verma S, 2023, CLEAN TECHNOL ENVIR, V25, P1485, DOI 10.1007/s10098-021-02029-8
Wei X, 2023, INT J ENV RES PUB HE, V20, DOI 10.3390/ijerph20010520
Wesselink A, 2020, EARTH SYST GOV-NETH, V4, DOI 10.1016/j.esg.2020.100062
Wu YH, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17072253
Zhang RW, 1998, ECOL ENG, V11, P17, DOI 10.1016/S0925-8574(98)00041-X
Zhang YQ, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14148288
Zhang Y, 2021, ENVIRON IMPACT ASSES, V89, DOI 10.1016/j.eiar.2021.106580
NR 98
TC 0
Z9 0
U1 19
U2 20
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2666-4984
J9 ENVIRON SCI ECOTECH
JI Env. Sci. Ecotechnol.
PD SEP
PY 2024
VL 21
AR 100386
DI 10.1016/j.ese.2023.100386
EA FEB 2024
PG 8
WC Green & Sustainable Science & Technology; Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA KE7H7
UT WOS:001178342000001
PM 38328508
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Heo, GE
Ko, YS
Xie, Q
Song, M
AF Heo, Go Eun
Ko, Young Soo
Xie, Qing
Song, Min
TI High acknowledgement index: Characterizing research supporters with
factors of acknowledgement affecting paper citation counts
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Acknowledgement type; Named entity recognition; Academic performance;
Citation count; Sensitivity analysis; Neural network
ID PATTERNS; TRENDS
AB The acknowledgments section of scientific papers is paramount in academic production, providing valuable insights into the individuals and organizations involved in the research process. Developing a standard index of acknowledgments would provide a significant metric for measuring institutional and researcher influence. However, the absence of standardized formats has impeded effective analysis of information in acknowledgement sections. This study develop an acknowledgement index utilizing automated text-mining techniques to address these limitations. In addition, we propose two methods to disambiguate research supporters in the acknowledgement section: entity scores based on specific keywords and research similarity scores calculated through co-references. Based on our investigation, we explore the characteristics of research supporters with high acknowledgement index scores and examine the correlation between each acknowledgement index and their performance. Notably, paper citation strongly correlates with research supporters' performance. Next, our analysis delves into the impact of acknowledgement and entity types on paper citations. Our findings reveal that acknowledgments with only person names exert the most significant impact on paper citation.
C1 [Heo, Go Eun; Ko, Young Soo; Song, Min] Yonsei Univ, Dept Lib & Informat Sci, 50 Yonsei Ro, Seoul 03722, South Korea.
[Xie, Qing] Shenzhen Polytech, Sch Management, Shenzhen 518055, Guangdong, Peoples R China.
C3 Yonsei University; Shenzhen Polytechnic University
RP Song, M (corresponding author), Yonsei Univ, Dept Lib & Informat Sci, 50 Yonsei Ro, Seoul 03722, South Korea.
EM min.song@yonsei.ac.kr
RI song, min/KPA-7030-2024
OI Song, Min/0000-0003-3255-1600
FU Ministry of Education of the Republic of Korea; National Research
Foundation of Korea [72204167]; Yonsei University; National Natural
Science Foundation of China (NSFC); [NRF-2020S1A5B1104865]
FX This work was supported by the Ministry of Education of the Republic of
Korea and the National Research Foundation of Korea
(NRF-2020S1A5B1104865) . In addition, this work was supported by the
Yonsei University Research Grant of 2023. This work was also supported
by the National Natural Science Foundation of China (NSFC) , Grant No.
72204167.
CR Akbik A, 2019, NAACL HLT 2019: THE 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES: PROCEEDINGS OF THE DEMONSTRATIONS SESSION, P54
[Anonymous], 1964, The Use of Citation Data in Writing the History of Science
BAZERMAN C, 1984, SOC STUD SCI, V14, P163, DOI 10.1177/030631284014002001
Bazerman C., 1988, SHAPING WRITTEN KNOW
Costas R, 2012, J AM SOC INF SCI TEC, V63, P1647, DOI 10.1002/asi.22692
CRAWFORD ET, 1970, SOC SC INFORM, V9, P51
Cronin B, 2001, J DOC, V57, P427, DOI 10.1108/EUM0000000007089
CRONIN B, 1991, J DOC, V47, P227, DOI 10.1108/eb026878
CRONIN B, 1992, J DOC, V48, P107, DOI 10.1108/eb026893
Cronin B., 1995, REV ESP DOC CIENT, V18, P172, DOI DOI 10.3989/REDC.1995.V18.I2.654
Desrochers N, 2017, J ASSOC INF SCI TECH, V68, P2821, DOI 10.1002/asi.23903
Díaz-Faes AA, 2014, J ASSOC INF SCI TECH, V65, P1834, DOI 10.1002/asi.23081
Garson G. D., 1991, AI Expert, V6, P46
Giles CL, 2004, P NATL ACAD SCI USA, V101, P17599, DOI 10.1073/pnas.0407743101
Khabsa Madian., 2012, PROC ACMIEEE JOINT C, P185, DOI DOI 10.1145/2232817.2232852
KOLMOGOROV AN, 1957, DOKL AKAD NAUK SSSR+, V114, P953
Mackintosh K. H., 1972, Acknowledgement patterns in sociology
McCain KW, 2018, SCIENTOMETRICS, V114, P605, DOI 10.1007/s11192-017-2598-1
Paul-Hus A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0226727
Paul-Hus A, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185578
Paul-Hus A, 2016, SCIENTOMETRICS, V108, P167, DOI 10.1007/s11192-016-1953-y
Song M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228928
Tang L, 2010, SCIENTOMETRICS, V84, P763, DOI 10.1007/s11192-010-0196-6
Xie Q, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101142
NR 24
TC 1
Z9 1
U1 4
U2 14
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD NOV
PY 2023
VL 17
IS 4
AR 101447
DI 10.1016/j.joi.2023.101447
EA AUG 2023
PG 11
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA Q7FL9
UT WOS:001059143000001
DA 2024-09-05
ER
PT J
AU Bornmann, L
AF Bornmann, Lutz
TI Bibliometrics-based decision trees (BBDTs) based on bibliometrics-based
heuristics (BBHs): Visualized guidelines for the use of bibliometrics in
research evaluation
SO QUANTITATIVE SCIENCE STUDIES
LA English
DT Article
DE bibliometrics; heuristics; bibliometrics-based heuristic (BBH);
bibliometrics-based decision tree (BBDT)
ID CITATION IMPACT; FRUGAL; NORMALIZATION; MODELS
AB Fast-and-frugal heuristics are simple strategies that base decisions on only a few predictor variables. In so doing, heuristics may not only reduce complexity but also boost the accuracy of decisions, their speed, and transparency. In this paper, bibliometrics-based decision trees (BBDTs) are introduced for research evaluation purposes. BBDTs visualize bibliometrics-based heuristics (BBHs), which are judgment strategies solely using publication and citation data. The BBDT exemplar presented in this paper can be used as guidance to find an answer on the question in which situations simple indicators such as mean citation rates are reasonable and in which situations more elaborated indicators (i.e., [sub-]field-normalized indicators) should be applied.
C1 [Bornmann, Lutz] Adm Headquarters Max Planck Soc, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany.
C3 Max Planck Society
RP Bornmann, L (corresponding author), Adm Headquarters Max Planck Soc, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany.
EM bornmann@gv.mpg.de
RI Bornmann, Lutz/A-3926-2008
OI Bornmann, Lutz/0000-0003-0810-7091
CR [Anonymous], 2010, The evaluation of research by scientometric indicators
[Anonymous], 2016, HDB BIBLIOMETRIC IND, DOI DOI 10.1002/ANIE.201608447
[Anonymous], 2012, ECOLOGICAL RATIONALI, DOI DOI 10.1093/ACPROF
Bornmann L., 2008, ETHICS SCI ENV POLIT, V8, P93, DOI [10.3354/esep00084, DOI 10.3354/ESEP00084]
Bornmann L., 2019, arXiv
Bornmann L., Encyclopedia of Research Methods
Bornmann L, 2019, SCIENTOMETRICS, V120, P419, DOI 10.1007/s11192-019-03018-x
Bornmann L, 2019, SCIENTOMETRICS, V120, P841, DOI 10.1007/s11192-019-03140-w
Bornmann L, 2014, BEYOND BIBLIOMETRICS: HARNESSING MULTIDIMENSIONAL INDICATORS OF SCHOLARLY IMPACT, P201
Bornmann L, 2013, PUBLICATIONS, V1, P78, DOI 10.3390/publications1020078
Bornmann L, 2014, SCIENTOMETRICS, V98, P487, DOI 10.1007/s11192-013-1161-y
Boyack KW, 2004, P NATL ACAD SCI USA, V101, P5192, DOI 10.1073/pnas.0307509100
Czerlinski J., 1999, Simple heuristics that make us smart, P97
De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics
Gigerenzer G, 1996, PSYCHOL REV, V103, P650, DOI 10.1037/0033-295X.103.4.650
Gigerenzer G., 1999, Simple heuristics that make us smart, P3
Hammarfelt B, 2018, J ASSOC INF SCI TECH, V69, P924, DOI 10.1002/asi.24043
Harzing A.-W., 2017, Running the REF on a rainy Sunday afternoon: Do metrics match peer review?
Hertwig Ralph., 2003, THINKING PSYCHOL PER, P213, DOI [DOI 10.1002/047001332X.CH11, 10.1002/047001332X.ch11]
Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a
Jappe A, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199031
Julian N. Marewski, 2010, [心理学报, Acta Psychologica Sinica], V42, P72
Katsikopoulos KV, 2011, DECIS ANAL, V8, P10, DOI 10.1287/deca.1100.0191
Kelman MarkG., 2011, HEURISTICS DEBATE
Kurz-Milcke E., 2007, Marketing JRM, P48
Leydesdorff L, 2016, SCIENTOMETRICS, V109, P2129, DOI 10.1007/s11192-016-2150-8
Luan SH, 2017, ORGAN BEHAV HUM DEC, V141, P29, DOI 10.1016/j.obhdp.2017.05.003
Martignon L., 2011, HEURISTICS FDN ADAPT, P4
Martignon L, 2008, J MATH PSYCHOL, V52, P352, DOI 10.1016/j.jmp.2008.04.003
Merton R.K., 1965, SHOULDERS GIANTS
Moed H. F., 2017, Applied evaluative informetrics, DOI DOI 10.1007/978-3-319-60522-7
MOED HF, 1985, RES POLICY, V14, P131, DOI 10.1016/0048-7333(85)90012-5
Mousavi S., 2017, Homo Oeconomicus, V34, P361, DOI [10.1007/s41412-017-0058-z, DOI 10.1007/S41412-017-0058-Z]
Narin F., 1987, Science and Public Policy, V14, P99, DOI DOI 10.1093/spp/14.2.99
Opthof T, 2010, J INFORMETR, V4, P423, DOI 10.1016/j.joi.2010.02.003
Phillips ND, 2017, JUDGM DECIS MAK, V12, P344
Pride D, 2018, LECT NOTES COMPUT SC, V11057, P195, DOI 10.1007/978-3-030-00066-0_17
Raab M, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01672
Radicchi F, 2011, PHYS REV E, V83, DOI 10.1103/PhysRevE.83.046116
Robinson-Garcia N, 2019, RES EVALUAT, V28, P232, DOI 10.1093/reseval/rvz014
Rodriguez Navarro A., 2019, LIKE FOR LIKE BIBLOM
Scheibehenne B., 2009, Making Essential Choices with Scant Information; Front-end Decision Making in Major Projects, P194
SIMON HA, 1990, ANNU REV PSYCHOL, V41, P1, DOI 10.1146/annurev.ps.41.020190.000245
SIMON HA, 1956, PSYCHOL REV, V63, P129, DOI 10.1037/h0042769
Teplitskiy M., 2016, Socius: Sociological Research for a Dynamic World, V2, DOI DOI 10.1177/2378023116640278
Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x
Tuccio W.A., 2011, The Journal of Aviation/Aerospace Education Research, V20, P39
van Raan AFJ, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P19
van Raan AFJ, 2010, J INFORMETR, V4, P431, DOI 10.1016/j.joi.2010.03.008
Waltman L., 2018, STI 2018 C P, P526
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2419, DOI 10.1002/asi.22708
Wegwarth O, 2009, MED EDUC, V43, P721, DOI 10.1111/j.1365-2923.2009.03359.x
NR 53
TC 3
Z9 3
U1 18
U2 19
PU MIT PRESS
PI CAMBRIDGE
PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA
EI 2641-3337
J9 QUANT SCI STUD
JI Quant. Sci. Stud.
PD WIN
PY 2020
VL 1
IS 1
BP 171
EP 182
DI 10.1162/qss_a_00012
PG 12
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA UK2XH
UT WOS:000691837400009
OA gold
DA 2024-09-05
ER
PT J
AU Mazzei, D
Chiarello, F
Fantoni, G
AF Mazzei, Daniele
Chiarello, Filippo
Fantoni, Gualtiero
TI Analyzing Social Robotics Research with Natural Language Processing
Techniques
SO COGNITIVE COMPUTATION
LA English
DT Article
DE Social robotics; Human-robot interaction; Bibliometric analysis; Topic
modelling; Natural language processing
ID SOFT SKILLS; ANTHROPOMORPHISM; CHILDREN; EMOTION
AB The fast growth of social robotics (SR) has not been unidirectional, but rather towards a multidisciplinary scenario, creating a need for collaboration between different fields. This divergent expansion calls for a clear analysis of the field aimed at better orienting the research, thus paving the future of social robotics. This paper aims at understanding how the SR research field evolved in the last two decades by analyzing academic publications in SR and human-robot interaction using natural language processing (NLP) techniques. The analysis spotted an overlap between SR and human-robot interaction research fields that have been disambiguated using a data-driven approach that leads to the identification of a new group of papers we clustered under the concept of "soft HRI." This research topic has been analyzed by extracting trends and insights. Finally, another topic modelling step has been applied to identify seven sub-topics that have been discussed and analyzed picturing the current state of the art of SR. The paper reports a complete overview of the SR research field identifying various topics and sub-topics helping researchers in understanding the evolution of this field, thus supporting the strategic placing and evolution of their research activities.
C1 [Mazzei, Daniele] Univ Pisa, Comp Sci Dept, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy.
[Chiarello, Filippo] Univ Pisa, Dept Energy Proc & Syst Engn, Pisa, Italy.
[Fantoni, Gualtiero] Univ Pisa, Dept Civil & Ind Engn, Pisa, Italy.
C3 University of Pisa; University of Pisa; University of Pisa
RP Mazzei, D (corresponding author), Univ Pisa, Comp Sci Dept, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy.
EM daniele.mazzei@unipi.it; filippo.chiarello@unipi.it;
gualtiero.fantoni@unipi.it
RI Fantoni, Gualtiero/GWZ-8445-2022; Mazzei, Daniele/AAB-9819-2019
OI Fantoni, Gualtiero/0000-0003-0772-600X; Mazzei,
Daniele/0000-0001-8383-3355
CR Amami M, 2016, LECT NOTES COMPUT SC, V9612, P200, DOI 10.1007/978-3-319-41754-7_17
Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391
Bartneck C, 2009, INT J SOC ROBOT, V1, P71, DOI 10.1007/s12369-008-0001-3
Belpaeme T, 2018, SCI ROBOT, V3, DOI 10.1126/scirobotics.aat5954
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Breazeal C, 2003, INT J HUM-COMPUT ST, V59, P119, DOI 10.1016/S1071-5819(03)00018-1
Breazeal C, 2003, ROBOT AUTON SYST, V42, P167, DOI 10.1016/S0921-8890(02)00373-1
Breazeal C, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P1146
Breazeal C., 2004, DESIGNING SOCIABLE R, DOI 10.7551/mitpress/2376.001.0001
Breazeal C, 2016, SPRINGER HANDBOOK OF ROBOTICS, P1935
Calinon S, 2007, IEEE T SYST MAN CY B, V37, P286, DOI 10.1109/TSMCB.2006.886952
Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011
Cascini G, 2013, DESIGN STUD, V34, P636, DOI 10.1016/j.destud.2012.12.001
Chiarello F, 2019, P DES SOC INT C ENG, V1, P2765, DOI [10.1017/dsi.2019.283, DOI 10.1017/DSI.2019.283]
Cimatti B, 2016, INT J QUAL RES, V10, P97, DOI 10.18421/IJQR10.01-05
Dagan I, 1997, 35TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 8TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P56, DOI 10.3115/979617.979625
Dashtipour K, 2020, NEUROCOMPUTING, V380, P1, DOI 10.1016/j.neucom.2019.10.009
Dautenhahn Kerstin, 2009, Applied Bionics and Biomechanics, V6, P369, DOI 10.1080/11762320903123567
Dautenhahn K, 2007, PHILOS T R SOC B, V362, P679, DOI 10.1098/rstb.2006.2004
Dawe J, 2019, BMJ PAEDIATR OPEN, V3, DOI 10.1136/bmjpo-2018-000371
DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017
Duffy BR, 2003, ROBOT AUTON SYST, V42, P177, DOI 10.1016/S0921-8890(02)00374-3
Fischer K, 2020, ACMIEEE INT CONF HUM, P195, DOI 10.1145/3371382.3378377
Fong T, 2003, ROBOT AUTON SYST, V42, P143, DOI 10.1016/S0921-8890(02)00372-X
Gácsi M, 2016, COMPUT HUM BEHAV, V59, P411, DOI 10.1016/j.chb.2016.02.043
Goodrich Michael A., 2007, Foundations and Trends in Human-Computer Interaction, V1, P203, DOI 10.1561/1100000005
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Hancock PA, 2011, HUM FACTORS, V53, P517, DOI 10.1177/0018720811417254
Hodson H., 2014, 1 FAMILY ROBOT
Johal W., 2020, Curr Robot Rep, V1, P75, DOI DOI 10.1007/S43154-020-00008-3
Kozima H, 2009, INT J SOC ROBOT, V1, P3, DOI 10.1007/s12369-008-0009-8
Kumari R, 2021, J INF SCI, V47, P658, DOI 10.1177/0165551519887878
Laker DR, 2011, HUM RESOUR DEV Q, V22, P111, DOI 10.1002/hrdq.20063
Lazzeri N, 2015, FRONT BIOENG BIOTECH, V3, DOI 10.3389/fbioe.2015.00064
Leite I, 2013, INT J SOC ROBOT, V5, P291, DOI 10.1007/s12369-013-0178-y
Li YJ, 2007, IEEE T PATTERN ANAL, V29, P1091, DOI 10.1109/TPAMI.2007.1070
Liu R, 2011, J TAIYUAN U TECHNOL, P2
Lu YC, 2014, PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON INNOVATIVE DESIGN AND MANUFACTURING (ICIDM), P78, DOI 10.1109/IDAM.2014.6912674
Mazzei D, 2012, P IEEE RAS-EMBS INT, P195
Mazzei D, 2010, 2010 IEEE RO-MAN, P791, DOI 10.1109/ROMAN.2010.5598683
Mejia C, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7121316
Metta G., 2008, PERFORMANCE METRICS, P50, DOI DOI 10.1145/1774674.1774683
Mitchinson B, 2016, LECT NOTES COMPUT SC, V9793, P179, DOI 10.1007/978-3-319-42417-0_17
Newman D., 2012, COLING, P2077
Ng K. W., 2011, DIRICHLET RELATED DI
Nishio Shuichi, 2007, Humanoid robots: New developments, V14, P10, DOI [10.5772/4876, DOI 10.5772/4876]
Nocentini O, 2019, ROBOTICS, V8, DOI 10.3390/robotics8030054
Paiva A, 2017, ACM T INTERACT INTEL, V7, DOI 10.1145/2912150
Persson P, 2001, IEEE T SYST MAN CY A, V31, P349, DOI 10.1109/3468.952710
Pineau J, 2003, ROBOT AUTON SYST, V42, P271, DOI 10.1016/S0921-8890(02)00381-0
Robinson NL, 2019, J MED INTERNET RES, V21, DOI 10.2196/13203
Salvador MJ, 2015, IEEE INT CONF ROBOT, P6128, DOI 10.1109/ICRA.2015.7140059
Schulz B., 2008, Nawa Journal of Communication, V2, P146, DOI DOI 10.9790/7388-0251929
Sheridan TB, 2020, CURR OPIN PSYCHOL
Siddiqi S., 2015, International Journal of Computer Applications, V109, P18, DOI [DOI 10.5120/19161-0607, 10.5120/19161-0607]
Straka M., 2017, P CONLL 2017 SHARE, P88, DOI [10.18653/v1/K17-3009, DOI 10.18653/V1/K17-3009]
Tarabella A, 2019, BRIT FOOD J
Taylor Estelle, 2016, Interdisciplinary Journal of e-Learning and Learning Objects, V12, P1
Wainer J, 2014, IEEE T AUTON MENT DE, V6, P183, DOI 10.1109/TAMD.2014.2303116
Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480
NR 60
TC 8
Z9 8
U1 3
U2 18
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1866-9956
EI 1866-9964
J9 COGN COMPUT
JI Cogn. Comput.
PD MAR
PY 2021
VL 13
IS 2
BP 308
EP 321
DI 10.1007/s12559-020-09799-1
EA JAN 2021
PG 14
WC Computer Science, Artificial Intelligence; Neurosciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Neurosciences & Neurology
GA QU0DI
UT WOS:000608081500001
DA 2024-09-05
ER
PT J
AU Gao, H
Ding, XH
AF Gao, Hui
Ding, Xiuhao
TI The research landscape on the artificial intelligence: a bibliometric
analysis of recent 20 years
SO MULTIMEDIA TOOLS AND APPLICATIONS
LA English
DT Article
DE Artificial intelligence (AI); Bibliometric methods; Patent analysis;
Visualization
ID STRATEGIC-MANAGEMENT; PATTERNS; PERSPECTIVE; SCIENCE; TRENDS; DOMAIN;
MODEL
AB Artificial intelligence (AI), a general term that implies the imitation of information process of intelligent behavior and sense with minimal intervention, is one of the most promising research areas and has received a considerable attention with coexisting pros and cons. In order to understand the research status quo and future trends on AI technology, this work uses bibliometric analysis method to obtain this objective. By analyzing the datasets including journal article data collected from Web of Science (WOS), conference paper data retrieved from Scopus and the patent data extracted from Derwent Innovations Index (DII) in the period of 2000-2019, we primarily provide a comprehensive overview to better understand the research status of AI. Bibliometric analysis results can also shed light on the evolution and trends in AI.
C1 [Gao, Hui] Hubei Univ, Sch Business, Youyi Ave 368, Wuhan, Peoples R China.
[Ding, Xiuhao] Huazhong Univ Sci & Technol, Sch Management, Luoyu Rd 1037, Wuhan, Peoples R China.
C3 Hubei University; Huazhong University of Science & Technology
RP Gao, H (corresponding author), Hubei Univ, Sch Business, Youyi Ave 368, Wuhan, Peoples R China.
EM gaohui-hust@qq.com
OI Gao, Hui/0000-0001-8629-6532
CR Browne M, 2007, COAST ENG, V54, P445, DOI 10.1016/j.coastaleng.2006.11.007
Carvalho MM, 2013, TECHNOL FORECAST SOC, V80, P1418, DOI 10.1016/j.techfore.2012.11.008
Castelfranchi C, 2013, TOPOI-INT REV PHILOS, V32, P293, DOI 10.1007/s11245-013-9182-y
Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006
Chen CM, 2014, J ASSOC INF SCI TECH, V65, P334, DOI 10.1002/asi.22968
Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309
Chen CM, 2009, J INFORMETR, V3, P191, DOI 10.1016/j.joi.2009.03.004
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Érdi P, 2013, SCIENTOMETRICS, V95, P225, DOI 10.1007/s11192-012-0796-4
Fernandes C, 2017, SCIENTOMETRICS, V112, P529, DOI 10.1007/s11192-017-2397-8
Fujii H, 2018, ECON ANAL POLICY, V58, P60, DOI 10.1016/j.eap.2017.12.006
Hamet P, 2017, METABOLISM, V69, pS36, DOI 10.1016/j.metabol.2017.01.011
He JX, 2019, NAT MED, V25, P30, DOI 10.1038/s41591-018-0307-0
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
INTELLIGENCE BY AM TURING, 1950, Computing Machinery and Intelligence, V59, P433, DOI [10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433]
Koyuncugil AS, 2012, EXPERT SYST APPL, V39, P6238, DOI 10.1016/j.eswa.2011.12.021
Liu JY, 2018, IEEE ACCESS, V6, P34403, DOI 10.1109/ACCESS.2018.2819688
MARR D, 1977, ARTIF INTELL, V9, P37, DOI 10.1016/0004-3702(77)90013-3
Mikhaylov SJ, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2017.0357
Najmi A, 2017, SCIENTOMETRICS, V110, P843, DOI 10.1007/s11192-016-2171-3
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Palaniappan R, 2014, BIOMED ENG-BIOMED TE, V59, P7, DOI 10.1515/bmt-2013-0074
Parkes DC, 2015, SCIENCE, V349, P267, DOI 10.1126/science.aaa8403
Patrício DI, 2018, COMPUT ELECTRON AGR, V153, P69, DOI 10.1016/j.compag.2018.08.001
Prasad S, 2005, INFORM MANAGE-AMSTER, V42, P1137, DOI 10.1016/j.im.2005.01.003
Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397
Rodriguez A, 2016, IEEE T ENG MANAGE, V63, P426, DOI 10.1109/TEM.2016.2580619
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507
Sikdar S, 2018, CLEAN TECHNOL ENVIR, V20, P1, DOI 10.1007/s10098-017-1478-y
Soranzo B, 2016, J ENG TECHNOL MANAGE, V42, P15, DOI 10.1016/j.jengtecman.2016.08.002
Tseng CY, 2013, INNOV-ORGAN MANAG, V15, P463, DOI 10.5172/impp.2013.15.4.463
Wang FY, 2017, IEEE INTEL TRANSP SY, V9, P6, DOI 10.1109/MITS.2017.2746407
Wang MG, 2018, APPL ENERG, V220, P480, DOI 10.1016/j.apenergy.2018.03.148
Youssef A, 2017, RENEW SUST ENERG REV, V78, P72, DOI 10.1016/j.rser.2017.04.046
Zeng Y, 2017, NATL SCI REV, V4, P490, DOI 10.1093/nsr/nwx060
NR 38
TC 6
Z9 6
U1 15
U2 78
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1380-7501
EI 1573-7721
J9 MULTIMED TOOLS APPL
JI Multimed. Tools Appl.
PD APR
PY 2022
VL 81
IS 9
BP 12973
EP 13001
DI 10.1007/s11042-022-12208-4
EA FEB 2022
PG 29
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Computer Science, Theory & Methods; Engineering, Electrical
& Electronic
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering
GA 0P3ES
UT WOS:000760059700008
DA 2024-09-05
ER
PT J
AU Shi, JC
Wang, YC
AF Shi, Jincheng
Wang, Yingchun
TI Prerequisites for the Innovation Performance of Artificial Intelligence
Laboratory: A Fuzzy-Set Qualitative Comparative Analysis
SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
LA English
DT Article
DE Artificial intelligence; Technological innovation; Research and
development; Organizations; Ecosystems; Patents; Particle measurements;
Artificial intelligence (AI) laboratory; basic research; engineering
breakthrough; innovation performance; qualitative comparative analysis
(QCA)
ID KNOWLEDGE; CONFIGURATIONS; MANAGEMENT; STRATEGY; SYSTEM
AB Artificial intelligence (AI) is widely adopted as a general-purpose technology, bringing about disruptive innovative changes. R&D laboratories (labs) from universities, enterprises, and public institutions drive AI innovation. However, research on the factors affecting AI innovation in R&D labs is rarely discussed. To address this gap, we constructed an adjusted technology-organization-environment framework to analyze different configurations that influence AI basic research and engineering breakthroughs. This article uses fuzzy set qualitative comparative analysis for analysis aimed at 43 international typical AI labs. The results indicate that technological, organizational, and environmental conditions jointly impact AI labs' innovation. Specifically, AI basic research depends on strong computing resources and a high-quality innovation ecology, and it is moving from academia to industry. AI Engineering breakthroughs rely on public R&D institutions and leading firms, and high-quality data has a significant impact on applications. The findings highlight the equivalent effect of different configurations in AI innovation. In addition, this study provides implications for the government's AI innovation policies and the technological management of AI labs.
C1 [Shi, Jincheng; Wang, Yingchun] Shanghai Artificial Intelligence Lab, Governance Res Ctr, Shanghai 200232, Peoples R China.
RP Shi, JC (corresponding author), Shanghai Artificial Intelligence Lab, Governance Res Ctr, Shanghai 200232, Peoples R China.
EM shijincheng0819@163.com; wangyingchun@pjlab.org.cn
RI Wang, Yingchun/N-1864-2018
OI Shi, Jincheng/0000-0002-9877-0710
FU National Key Ramp;D Program of China
FX No Statement Available
CR Adams P, 2019, J BUS RES, V97, P129, DOI 10.1016/j.jbusres.2018.12.071
Adner R, 2006, HARVARD BUS REV, V84, P98
Adner R, 2017, J MANAGE, V43, P39, DOI 10.1177/0149206316678451
Adner R, 2010, STRATEGIC MANAGE J, V31, P306, DOI 10.1002/smj.821
Ameye N, 2023, TECHNOVATION, V127, DOI 10.1016/j.technovation.2023.102846
Arenal A, 2020, TELECOMMUN POLICY, V44, DOI 10.1016/j.telpol.2020.101960
Balzano M, 2023, TECHNOVATION, V128, DOI 10.1016/j.technovation.2023.102878
Bentley PJ, 2015, HIGH EDUC, V70, P689, DOI 10.1007/s10734-015-9861-2
Borges AFS, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102225
Bouschery SG, 2023, J PROD INNOVAT MANAG, V40, P139, DOI 10.1111/jpim.12656
Brem A, 2023, IEEE T ENG MANAGE, V70, P770, DOI 10.1109/TEM.2021.3109983
Carayol N, 2004, RES POLICY, V33, P1081, DOI 10.1016/j.respol.2004.03.004
Choi H, 2022, IEEE T ENG MANAGE, V69, P1011, DOI 10.1109/TEM.2020.2972347
Coccia M, 2004, R&D MANAGE, V34, P267, DOI 10.1111/j.1467-9310.2004.00338.x
Coccia M, 2008, J INFORMETR, V2, P183, DOI 10.1016/j.joi.2008.04.001
Coccia M, 2020, TECHNOL ANAL STRATEG, V32, P1462, DOI 10.1080/09537325.2020.1785415
Coccia M, 2017, TECHNOL ANAL STRATEG, V29, P1048, DOI 10.1080/09537325.2016.1268682
Conti A, 2015, RES POLICY, V44, P1633, DOI 10.1016/j.respol.2015.01.001
Della Peruta MR, 2018, J KNOWL ECON, V9, P680, DOI 10.1007/s13132-016-0356-x
Di Stefano G, 2012, RES POLICY, V41, P1283, DOI 10.1016/j.respol.2012.03.021
Doloreux D, 2021, REG STUD, V55, P1751, DOI 10.1080/00343404.2021.1919610
Fecher F, 2020, J BUS RES, V110, P567, DOI 10.1016/j.jbusres.2018.05.039
Giczy AV, 2022, J TECHNOL TRANSFER, V47, P476, DOI 10.1007/s10961-021-09900-2
Greckhamer T, 2018, STRATEG ORGAN, V16, P482, DOI 10.1177/1476127018786487
Gupta S, 2021, IEEE T ENG MANAGE, DOI 10.1109/TEM.2021.3116770
Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392
Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925
Henfridsson O, 2013, MIS QUART, V37, P907, DOI 10.25300/MISQ/2013/37.3.11
Hung CL, 2014, RES EVALUAT, V23, P366, DOI 10.1093/reseval/rvu022
Intarakumnerd P, 2018, RES POLICY, V47, P1309, DOI 10.1016/j.respol.2018.04.011
Jee SJ, 2023, J EVOL ECON, V33, P209, DOI 10.1007/s00191-022-00804-4
Kinkel S, 2022, TECHNOVATION, V110, DOI 10.1016/j.technovation.2021.102375
Lewis M., 2005, Creativity and Innovation Management, V14, P73, DOI DOI 10.1111/J.1467-8691.2005.00327.X
Li JZ, 2020, INT J TECHNOL MANAGE, V84, P8, DOI 10.1504/IJTM.2020.112122
Lin HF, 2014, TECHNOL FORECAST SOC, V86, P80, DOI 10.1016/j.techfore.2013.09.001
Llanos-Paredes P, 2023, RES EVALUAT, V32, P566, DOI 10.1093/reseval/rvad028
Lundvall BÅ, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104395
Lungeanu A, 2014, J INFORMETR, V8, P59, DOI 10.1016/j.joi.2013.10.006
Marrucci A, 2023, MANAGE DECIS, DOI 10.1108/MD-05-2022-0644
Maurseth PB, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.104012
Moller C, 2007, ENTERP INF SYST-UK, V1, P113, DOI 10.1080/17517570601092143
Nambisan S, 2019, RES POLICY, V48, DOI 10.1016/j.respol.2019.03.018
Ordanini A, 2014, J SERV RES-US, V17, P134, DOI 10.1177/1094670513513337
Osorio F, 2019, CREAT INNOV MANAG, V28, P82, DOI 10.1111/caim.12301
Park MY, 2021, 2021 21ST ACIS INTERNATIONAL WINTER CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD-WINTER 2021), P119, DOI 10.1109/SNPDWinter52325.2021.00034
Robertson J, 2022, IEEE T ENG MANAGE, V69, P3913, DOI 10.1109/TEM.2021.3088382
Rohrbeck R, 2015, TECHNOL FORECAST SOC, V97, P115, DOI 10.1016/j.techfore.2013.09.015
Rothschild L, 2005, TECHNOVATION, V25, P59, DOI 10.1016/S0166-4972(03)00064-6
Scaringella L, 2018, TECHNOL FORECAST SOC, V136, P59, DOI 10.1016/j.techfore.2017.09.023
Schiuma G, 2023, TECHNOVATION, V123, DOI 10.1016/j.technovation.2023.102690
Schmidt S, 2014, Z WIRTSCHAFTSGEOGR, V58, P232
Siegel D, 2023, RES POLICY, V52, DOI 10.1016/j.respol.2022.104646
Tappeiner G, 2008, RES POLICY, V37, P861, DOI 10.1016/j.respol.2007.07.013
Tijssen RJW, 2012, RES EVALUAT, V21, P204, DOI 10.1093/reseval/rvs013
Tubaro P, 2019, J IND BUS ECON, V46, P333, DOI 10.1007/s40812-019-00121-1
Vanino E, 2019, RES POLICY, V48, P1714, DOI 10.1016/j.respol.2019.04.001
Verendel V, 2023, NAT CLIM CHANGE, DOI 10.1038/s41558-022-01536-w
Wei FF, 2022, IEEE T ENG MANAGE, V69, P3648, DOI 10.1109/TEM.2021.3102321
Weterings A, 2009, IND INNOV, V16, P11, DOI 10.1080/13662710902728035
Wu H, 2020, KNOWL MAN RES PRACT, DOI 10.1080/14778238.2020.1813642
Xu Y, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100195
Yu Z, 2022, REG STUD, V56, P619, DOI 10.1080/00343404.2021.1954610
Zhang NN, 2023, RES POLICY, V52, DOI 10.1016/j.respol.2023.104738
NR 63
TC 0
Z9 0
U1 114
U2 114
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9391
EI 1558-0040
J9 IEEE T ENG MANAGE
JI IEEE Trans. Eng. Manage.
PY 2024
VL 71
BP 5341
EP 5356
DI 10.1109/TEM.2024.3355235
PG 16
WC Business; Engineering, Industrial; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Engineering
GA IT6G4
UT WOS:001168619400001
OA hybrid
DA 2024-09-05
ER
PT J
AU O'Donovan, J
Kahn, K
MacRae, M
Namanda, AS
Hamala, R
Kabali, K
Geniets, A
Lakati, A
Mbae, SM
Winters, N
AF O'Donovan, James
Kahn, Ken
MacRae, MacKenzie
Namanda, Allan Saul
Hamala, Rebecca
Kabali, Ken
Geniets, Anne
Lakati, Alice
Mbae, Simon M.
Winters, Niall
TI Analysing 3429 digital supervisory interactions between Community Health
Workers in Uganda and Kenya: the development, testing and validation of
an open access predictive machine learning web app
SO HUMAN RESOURCES FOR HEALTH
LA English
DT Article
DE Machine learning; Artificial intelligence; Supervision; Community Health
Worker; Digital Health; Training
ID COUNTRIES
AB Background Despite the growth in mobile technologies (mHealth) to support Community Health Worker (CHW) supervision, the nature of mHealth-facilitated supervision remains underexplored. One strategy to support supervision at scale could be artificial intelligence (AI) modalities, including machine learning. We developed an open access, machine learning web application (CHWsupervisor) to predictively code instant messages exchanged between CHWs based on supervisory interaction codes. We document the development and validation of the web app and report its predictive accuracy. Methods CHWsupervisor was developed using 2187 instant messages exchanged between CHWs and their supervisors in Uganda. The app was then validated on 1242 instant messages from a separate digital CHW supervisory network in Kenya. All messages from the training and validation data sets were manually coded by two independent human coders. The predictive performance of CHWsupervisor was determined by comparing the primary supervisory codes assigned by the web app, against those assigned by the human coders and calculating observed percentage agreement and Cohen's kappa coefficients. Results Human inter-coder reliability for the primary supervisory category of messages across the training and validation datasets was 'substantial' to 'almost perfect', as suggested by observed percentage agreements of 88-95% and Cohen's kappa values of 0.7-0.91. In comparison to the human coders, the predictive accuracy of the CHWsupervisor web app was 'moderate', suggested by observed percentage agreements of 73-78% and Cohen's kappa values of 0.51-0.56. Conclusions Augmenting human coding is challenging because of the complexity of supervisory exchanges, which often require nuanced interpretation. A realistic understanding of the potential of machine learning approaches should be kept in mind by practitioners, as although they hold promise, supportive supervision still requires a level of human expertise. Scaling-up digital CHW supervision may therefore prove challenging. Trial registration: This was not a clinical trial and was therefore not registered as such.
C1 [O'Donovan, James; MacRae, MacKenzie; Namanda, Allan Saul; Hamala, Rebecca; Kabali, Ken] Omni Med Uganda, Div Res & Hlth Equ, Makata, Uganda.
[O'Donovan, James; Kahn, Ken; Geniets, Anne; Winters, Niall] Univ Oxford, Dept Educ, Learning & New Technol Res Grp, Oxford, England.
[MacRae, MacKenzie] Tufts Univ, Sch Med, Dept Med, Boston, MA 02111 USA.
[Lakati, Alice] Amref Int Univ, Div Hlth & Social Sci, Nairobi, Kenya.
[Mbae, Simon M.] Med Mobile, Div Res, Nairobi, Kenya.
C3 University of Oxford; Tufts University
RP O'Donovan, J (corresponding author), Omni Med Uganda, Div Res & Hlth Equ, Makata, Uganda.
EM jamesodonovan@post.harvard.edu
OI Lakati, Alice Sipyian/0000-0003-3246-6924; O'Donovan,
James/0000-0002-7248-5436
FU Economic and Social Research Council (ESRC) [ES/P000649/1]; ESRC-DFID
Joint Scheme for Research on International Development [ES/J018619/2]
FX Funding for this study was provided jointly by grants from the Economic
and Social Research Council (ESRC) (ES/P000649/1) and the ESRC-DFID
Joint Scheme for Research on International Development (ES/J018619/2).
CR Abadi Martin, 2016, arXiv
[Anonymous], How WhatsApp is used and misused in Africa
[Anonymous], CONTEXT EFFECTIVE SU
Baxter MS, 2021, J GLOB HEALTH, V11, DOI 10.7189/jogh.11.03017
Bowles J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0240005
Cer D, 2018, CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P169
Feroz A, 2020, BMC PUBLIC HEALTH, V20, DOI 10.1186/s12889-020-8173-3
Harvey B, P CONSTR 2010, P1
Henry JV, 2016, GLOB HEALTH-SCI PRAC, V4, P311, DOI 10.9745/GHSP-D-15-00386
Kadirire J, 2007, INT REV RES OPEN DIS, P8
Källander K, 2013, J MED INTERNET RES, V15, DOI 10.2196/jmir.2130
Kahn K., 2020, CONSTRUCTIONISM 2020
Limb M, 2016, BMJ-BRIT MED J, V354, DOI 10.1136/bmj.i5169
O'Donovan J, 2018, BMJ OPEN, V8, DOI 10.1136/bmjopen-2017-021467
Olaniran A, 2017, GLOBAL HEALTH ACTION, V10, DOI 10.1080/16549716.2017.1272223
Payne J, 2017, J COMMUN HEALTH, V42, P983, DOI 10.1007/s10900-017-0345-4
Perry H, 2013, DEV STRENGTHENING CO
Perry H, 2017, HUM RESOUR HEALTH, V15, DOI 10.1186/s12960-016-0178-8
Pimmer C, 2017, GLOBAL HEALTH ACTION, V10, DOI 10.1080/16549716.2017.1368236
Pimmer C, 2018, KNOWL MANAG E-LEARN, V10, P334
Tan TE, 2021, LANCET DIGIT HEALTH, V3, pE317, DOI 10.1016/S2589-7500(21)00055-8
Ting DSW, 2019, BRIT J OPHTHALMOL, V103, P167, DOI 10.1136/bjophthalmol-2018-313173
Tong Y, 2020, EYE VISION, V7, DOI 10.1186/s40662-020-00183-6
Wang SJ, 2012, MED IMAGE ANAL, V16, P933, DOI 10.1016/j.media.2012.02.005
WhatsApp Inc, 2019, WHATSAPP MESS VERS 2
Whidden C, 2018, J GLOB HEALTH, V8, DOI 10.7189/jogh.08.020418
Winters N, 2018, BMJ OPEN, V8, DOI 10.1136/bmjopen-2017-019827
Winters N, 2018, LANCET GLOB HEALTH, V6, pE489, DOI 10.1016/S2214-109X(18)30072-X
Winters N, 2017, COMP EDUC, V53, P115, DOI 10.1080/03050068.2017.1254983
GLOBAL EXPERIENCE CO
NR 30
TC 1
Z9 1
U1 2
U2 13
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1478-4491
J9 HUM RESOUR HEALTH
JI Hum. Resour. Health
PD MAR 16
PY 2022
VL 20
IS 1
AR 6
DI 10.1186/s12960-021-00699-5
PG 8
WC Health Policy & Services; Industrial Relations & Labor
WE Social Science Citation Index (SSCI)
SC Health Care Sciences & Services; Business & Economics
GA ZT9HJ
UT WOS:000769459300001
PM 35292073
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Wang, SM
Yang, WP
Chou, HP
Chen, FM
Hou, JL
Sheu, JJ
AF Wang, Sheng-Ming
Yang, Wei-Pang
Chou, Hsin-Ping
Chen, Fu-Mei
Hou, Jia-Li
Sheu, Jyh-Jian
TI Automatic Bibliographic Component Extraction Using Conditional Random
Fields
SO JOURNAL OF INTERNET TECHNOLOGY
LA English
DT Article
DE Conditional random field; Citation analysis; Machine learning
AB Bibliographic data and publication data are composed of subficlds such as "author," "title," "journal," and "year." Citation analysis of articles in scholarly journals is a very effective method for their evaluation. This paper proposes a system for analyzing bibliographic component strings, which is based on the technique of Conditional Random Fields (CRF). The system is composed of two major modules: the Bibliographic Extraction Module (BEM) and the Statistical Evaluation Module (SEM). The objective of the Bibliographic Extraction Module is to extract the bibliographic components based on the machine learning technique, and the objective of the Statistical Evaluation Module is to turn the extracted bibliographic information into a statistical report.
In this paper, we apply the CRF technique to build a probability model for dividing sequential data and giving proper tags to the components according to their characteristics. This is the framework for building the BEM to segment and label bibliographic information, identifying the author's name, journal's name, date of publication and so on. Then we employ the SEM to filter and match the intermediate representations produced by the BEM. In the end, the SEM will output the final evaluation report. Experimental results show that our system is reliable, with excellent overall efficiency.
C1 [Wang, Sheng-Ming] Natl Taipei Univ Technol, Grad Inst Interact Media Design, Taipei, Taiwan.
[Yang, Wei-Pang; Chou, Hsin-Ping; Hou, Jia-Li] Natl Dong Hwa Univ, Dept Informat Management, Taipei, Taiwan.
[Chen, Fu-Mei] Natl Taipei Univ Technol, Ctr Res & Dev, Taipei, Taiwan.
[Sheu, Jyh-Jian] Natl Chengchi Univ, College Commun, Taipei, Taiwan.
C3 National Taipei University of Technology; National Dong Hwa University;
National Taipei University of Technology; National Chengchi University
RP Wang, SM (corresponding author), Natl Taipei Univ Technol, Grad Inst Interact Media Design, Taipei, Taiwan.
EM ryan5885@mail.ntut.edu.tw; wpyang@mail.ndhu.edu.tw;
shean@ms49.url.com.tw; chenfmei@mail.ntut.edu.tw;
alexhou@mail.ndhu.edu.tw; jjshezi@nccu.edu.tw
RI Wang, Ryan/JFJ-0465-2023
CR [Anonymous], 2002, P ACL 02 WORKSHOP NA, DOI [10.3115/1118149.1118150, DOI 10.3115/1118149.1118150]
[Anonymous], 2003, SIGIR 03, DOI DOI 10.1145/860435.860479
[Anonymous], 2003, Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003
[Anonymous], P 2003 C N AM CHAPT
Chen GX, 2008, FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, P245, DOI 10.1109/FSKD.2008.94
Chien HL, 2002, EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, P786
CLEVERDON CW, 1972, J DOC, V28, P195, DOI 10.1108/eb026538
Freitag D, 2000, SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), P577
Granitzer Michael, 2012, P 2 INT C WEB INT MI, DOI [10.1145/2254129.2254154, DOI 10.1145/2254129.2254154]
Guo BF, 2008, IEEE T IMAGE PROCESS, V17, P622, DOI 10.1109/TIP.2008.918955
Lafferty John, 2001, PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L, V1, P282
Li K., 2011, INT J DIGITAL CONTEN, V5, P244
Mansouri A, 2008, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, P24, DOI 10.1109/ICCSIT.2008.187
Ohta M., 2012, Proceedings of the 10th IAPR International Workshop on Document Analysis Systems (DAS 2012), P276, DOI 10.1109/DAS.2012.28
Peng FC, 2004, HLT-NAACL 2004: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P329
Prajapati Gend Lal, 2011, P IMECS 2011 HONG KO
RABINER LR, 1989, P IEEE, V77, P257, DOI 10.1109/5.18626
Seymore Kristie, 1999, AAAI 99 WORKSH MACH, P37
Sproat R., 1990, Computer Processing of Chinese & Oriental Languages, V4, P336
Stewart L, 2008, IEEE T PATTERN ANAL, V30, P1415, DOI 10.1109/TPAMI.2007.70790
Torii M, 2011, J AM MED INFORM ASSN, V18, P580, DOI 10.1136/amiajnl-2011-000155
Vapnik Vladimir N., 1995, The nature of statistical learning theory
Wang HC, 2012, J INTERNET TECHNOL, V13, P45
Wermter Stefan., 1996, Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing
Wu DL, 2011, IEEE T AUDIO SPEECH, V19, P1652, DOI 10.1109/TASL.2010.2096213
Xiwu Han, 2004, Natural Language Processing - IJCNLP 2004. First International Joint Conference. Revised Selected Papers (Lecture Notes in Artificial Intelligence Vol. 3248), P664
NR 26
TC 0
Z9 0
U1 0
U2 6
PU LIBRARY & INFORMATION CENTER, NAT DONG HWA UNIV
PI HUALIEN
PA LIBRARY & INFORMATION CENTER, NAT DONG HWA UNIV, HUALIEN, 00000, TAIWAN
SN 1607-9264
EI 2079-4029
J9 J INTERNET TECHNOL
JI J. Internet Technol.
PD SEP
PY 2012
VL 13
IS 5
BP 737
EP 747
PG 11
WC Computer Science, Information Systems; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Telecommunications
GA 018UL
UT WOS:000309691900005
DA 2024-09-05
ER
PT J
AU Mariani, J
Francopoulo, G
Paroubek, P
AF Mariani, Joseph
Francopoulo, Gil
Paroubek, Patrick
TI Reuse and plagiarism in Speech and Natural Language Processing
publications
SO INTERNATIONAL JOURNAL ON DIGITAL LIBRARIES
LA English
DT Article
DE Plagiarism; Detection; Text reuse; Natural Language Processing; Speech
Processing; Scientometrics; Informetrics
AB The aim of this experiment is to present an easy way to compare fragments of texts in order to detect (supposed) results of copy and paste operations between articles in the domain of Natural Language Processing (NLP), including Speech Processing. The search space of the comparisons is a corpus labeled as NLP4NLP, which includes 34 different conferences and journals and gathers a large part of the NLP activity over the past 50 years. This study considers the similarity between the papers of each individual event and the complete set of papers in the whole corpus, according to four different types of relationship (self-reuse, self-plagiarism, reuse and plagiarism) and in both directions: a paper borrowing a fragment of text from another paper of the corpus (that we will call the source paper), or in the reverse direction, fragments of text from the source paper being borrowed and inserted in another paper of the corpus. The results show that self-reuse is rather a common practice, but that plagiarism seems to be very unusual, and that both stay within legal and ethical limits.
C1 [Mariani, Joseph; Francopoulo, Gil; Paroubek, Patrick] Univ Paris Saclay, CNRS, LIMSI, Orsay, France.
[Francopoulo, Gil] Tagmatica, Paris, France.
C3 Centre National de la Recherche Scientifique (CNRS); Universite Paris
Cite; Universite Paris Saclay
RP Mariani, J (corresponding author), Univ Paris Saclay, CNRS, LIMSI, Orsay, France.
EM joseph.mariani@limsi.fr; gil.francopoulo@wanadoo.fr; pap@limsi.fr
CR [Anonymous], 2014, Transactions of the Association for Computational Linguistics, DOI [DOI 10.1162/TACL_A_00179, DOI 10.1162/TACLA00179]
[Anonymous], P 23 INT C COMP LING
[Anonymous], ACL 2012 SPEC WORKSH
[Anonymous], 2011, IJCNLP
Barron-Cedeno A., 2010, P 7 INT C LANG RES E, P771
Barrón-Cedeño A, 2013, COMPUT LINGUIST, V39, P917, DOI 10.1162/COLI_a_00153
Bensalem I., 2014, C EMPIRICAL METHODS, P1459
Bird S, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P1755
Calzolari N, 2012, LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P1084
Ceska Zdenek., 2009, International conference RANLP-Borovets, P55
Chong M., 2011, P REC ADV NAT LANG P, P704
Citron DT, 2015, P NATL ACAD SCI USA, V112, P25, DOI 10.1073/pnas.1415135111
Clough P, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P152
Clough P., 2002, Proceedings of the 3rd International Conference on Language Resources and Evaluation, V5, P1678
Clough P, 2011, LANG RESOUR EVAL, V45, P5, DOI 10.1007/s10579-009-9112-1
Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661
Francopoulo G., 2013, LMF Lexical Markup Framework
Francopoulo G., 2008, P ICGL INT C GLOB IN
Francopoulo G., 2016, P LREC 2016, P72
Francopoulo G, 2015, D LIB MAG, V21
Frey M., 2015, D LIB MAG, V21
Gaizauskas R., 2001, P CORP LING 2001 C, V2001, P214
Grove J., 2014, TIMES HIGHER ED
Hoad TC, 2003, J AM SOC INF SCI TEC, V54, P203, DOI 10.1002/asi.10170
Kasprzak J., 2010, P UNC PLAG AUTH SOC
Lyon C, 2001, PROCEEDINGS OF THE 2001 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P118
Mariani J., 2013, P INT 2013, P4632
Nawab Rao Muhammad Adeel, 2012, P 1 JOINT C LEX COMP, V2, P54
Potthast M., 2010, An evaluation framework for plagiarism detection, P997
Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2
SAMUELSON P, 1994, COMMUN ACM, V37, P21
Stamatatos E, 2011, J AM SOC INF SCI TEC, V62, P2512, DOI 10.1002/asi.21630
Stamatatos E, 2011, LANG RESOUR EVAL, V45, P1, DOI 10.1007/s10579-011-9136-1
Stein B, 2011, LANG RESOUR EVAL, V45, P63, DOI 10.1007/s10579-010-9115-y
Vilnat Anne, 2010, P LREC 2010, P2478
NR 35
TC 5
Z9 5
U1 0
U2 11
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1432-5012
EI 1432-1300
J9 INT J DIGIT LIBRARIE
JI Int. J. Digit. Llibraries
PD SEP
PY 2018
VL 19
IS 2-3
SI SI
BP 113
EP 126
DI 10.1007/s00799-017-0211-0
PG 14
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA GQ5QB
UT WOS:000441741300002
DA 2024-09-05
ER
PT J
AU Momeni, F
Dietze, S
Mayr, P
Biesenbender, K
Peters, I
AF Momeni, Fakhri
Dietze, Stefan
Mayr, Philipp
Biesenbender, Kristin
Peters, Isabella
TI Which factors are associated with Open Access publishing? A Springer
Nature case study
SO QUANTITATIVE SCIENCE STUDIES
LA English
DT Article
DE APC policies; bibliometrics; citation impact; machine learning; open
access
ID AUTHOR-PAYS MODEL; CITATION ADVANTAGE; IMPACT; OA
AB Open Access (OA) facilitates access to research articles. However, authors or funders often must pay the publishing costs, preventing authors who do not receive financial support from participating in OA publishing and gaining citation advantage for OA articles. OA may exacerbate existing inequalities in the publication system rather than overcome them. To investigate this, we studied 522,411 articles published by Springer Nature. Employing correlation and regression analyses, we describe the relationship between authors affiliated with countries from different income levels, their choice of publishing model, and the citation impact of their papers. A machine learning classification method helped us to explore the importance of different features in predicting the publishing model. The results show that authors eligible for article processing charge (APC) waivers publish more in gold OA journals than others. In contrast, authors eligible for an APC discount have the lowest ratio of OA publications, leading to the assumption that this discount insufficiently motivates authors to publish in gold OA journals. We found a strong correlation between the journal rank and the publishing model in gold OA journals, whereas the OA option is mostly avoided in hybrid journals. Also, results show that the countries' income level, seniority, and experience with OA publications are the most predictive factors for OA publishing in hybrid journals.
C1 [Momeni, Fakhri; Dietze, Stefan; Mayr, Philipp] GESIS Leibniz Inst Social Sci, Cologne, Germany.
[Dietze, Stefan] Heinrich Heine Univ Dusseldorf, Dept Comp Sci, Dusseldorf, Germany.
[Biesenbender, Kristin; Peters, Isabella] ZBW Leibniz Informat Ctr Econ, Kiel, Germany.
C3 Leibniz Institut fur Sozialwissenschaften (GESIS); Heinrich Heine
University Dusseldorf; Deutsche Zentralbibliothek fur
Wirtschaftswissenschaften (ZBW)
RP Momeni, F (corresponding author), GESIS Leibniz Inst Social Sci, Cologne, Germany.
EM fakhri.momeni@t-online.de
RI Momeni, Fakhri/I-8012-2018; Mayr, Philipp/C-4359-2013; Peters,
Isabella/C-9891-2012
OI Momeni, Fakhri/0000-0002-5572-575X; Mayr, Philipp/0000-0002-6656-1658;
Biesenbender, Kristin/0000-0003-2497-5411; Peters,
Isabella/0000-0001-5840-0806
FU BMBF project OASE [01PU17005A]; German Competence Center for
Bibliometrics [01PQ17001]
FX This work is financially supported by BMBF project OASE, grant number
01PU17005A. We acknowledge the support of the German Competence Center
for Bibliometrics (grant:01PQ17001) for maintaining the used data set
for the analyses.
CR Bahlai CA, 2019, AM SCI, V107, P78
Barner JR, 2014, BRIT J SOC WORK, V44, P2448, DOI 10.1093/bjsw/bct161
Bautista-Puig N, 2020, SCIENTOMETRICS, V124, P2551, DOI 10.1007/s11192-020-03546-x
Behr A, 2020, JAHRB NATL STAT, V240, P743, DOI 10.1515/jbnst-2019-0006
Bornmann L, 2020, SCIENTOMETRICS, V124, P1457, DOI 10.1007/s11192-020-03512-7
Bornmann L, 2014, J ASSOC INF SCI TECH, V65, P1939, DOI 10.1002/asi.23152
Ekstrom J., 2011, J KOREAN STAT SOC, V42, P323, DOI [10.1016/j.jkss.2012.10.002, DOI 10.1016/J.JKSS.2012.10.002]
Evans JA, 2009, SCIENCE, V323, P1025, DOI 10.1126/science.1154562
Farys R, 2021, QUANT SCI STUD, V2, P505, DOI 10.1162/qss_a_00129
Fox J, 2021, J COMMUN, V71, P764, DOI 10.1093/joc/jqab029
Fraser N, 2020, QUANT SCI STUD, V1, P618, DOI 10.1162/qss_a_00043
Gargouri Y, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013636
Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X
Hodge DR, 2011, RES SOCIAL WORK PRAC, V21, P222, DOI 10.1177/1049731510369141
Iyandemye J, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0220229
Jannot AS, 2013, J CLIN EPIDEMIOL, V66, P296, DOI 10.1016/j.jclinepi.2012.09.015
Karimi F, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P53, DOI 10.1145/2872518.2889385
King DA, 2004, NATURE, V430, P311, DOI 10.1038/430311a
Kumar N, 2019, ASIA JT CONF INF SEC, P16, DOI [10.1109/AsiaJCIS.2019.00011, 10.1109/AsiaJCIS.2019.00-10]
Langham-Putrow A, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0253129
Lawson S, 2015, PUBLICATIONS, V3, P155, DOI 10.3390/publications3030155
LeBlanc V, 2017, QUANT METH PSYCHOL, V13, P46, DOI 10.20982/tqmp.13.1.p046
Lewis C, 2018, INFORM TECHNOL LIBR, V37, P50, DOI 10.6017/ital.v37i3.10604
Liu WS, 2018, LEARN PUBL, V31, P107, DOI 10.1002/leap.1114
Matthias L, 2019, PUBLICATIONS, V7, DOI 10.3390/publications7020023
McKiernan EC, 2016, ELIFE, V5, DOI 10.7554/eLife.16800
Momeni F, 2022, Arxiv, DOI arXiv:2207.09655
Momeni F, 2021, SCIENTOMETRICS, V126, P9811, DOI 10.1007/s11192-021-03972-5
Munafò MR, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-016-0021
Olejniczak AJ, 2020, QUANT SCI STUD, V1, P1429, DOI 10.1162/qss_a_00091
Ottaviani J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159614
Piwowar H, 2018, PEERJ, V6, DOI 10.7717/peerj.4375
Rimmert C., 2017, DISAMBIGUATION AUTHO
Ross-Hellauer T, 2022, ROY SOC OPEN SCI, V9, DOI 10.1098/rsos.211032
Rouhi S., 2022, SCI EDITOR, V45, P5, DOI [10.36591/SE-D-4501-5, DOI 10.36591/SE-D-4501-5]
Roy SS, 2020, INT J AD HOC UBIQ CO, V33, P62, DOI 10.1504/IJAHUC.2020.104715
Samimi Ahmad Jafari., 2011, Journal of Education and Vocational Research, V2, P38, DOI [10.22610/jevr.v2i2.23, DOI 10.22610/JEVR.V2I2.23]
Santamaría L, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.156
Schroter S, 2005, BMJ-BRIT MED J, V330, P756, DOI 10.1136/bmj.38359.695220.82
Simard MA, 2021, PRO INT CONF SCI INF, P1033
Smith AC, 2022, QUANT SCI STUD, V2, P1123, DOI 10.1162/qss_a_00157
Sotudeh H, 2015, SCIENTOMETRICS, V104, P581, DOI 10.1007/s11192-015-1607-5
Spelmen VS, 2018, 2018 INT C CURR TREN, P1, DOI DOI 10.1109/ICCTCT.2018.8551020
Sullo E, 2016, EVID BASED LIB INF P, V11, P60, DOI 10.18438/B84W67
Wang ZQ, 2020, SCIENTOMETRICS, V125, P1403, DOI 10.1007/s11192-020-03612-4
Xia JF, 2012, COLL RES LIBR, V73, P134, DOI 10.5860/crl-234
Yamak Z, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P955, DOI 10.1145/2872518.2890586
Zhu YM, 2017, SCIENTOMETRICS, V111, P557, DOI 10.1007/s11192-017-2316-z
NR 48
TC 2
Z9 2
U1 10
U2 24
PU MIT PRESS
PI CAMBRIDGE
PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA
EI 2641-3337
J9 QUANT SCI STUD
JI Quant. Sci. Stud.
PD MAY 1
PY 2023
VL 4
IS 2
BP 353
EP 371
DI 10.1162/qss_a_00253
PG 19
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA K5CJ2
UT WOS:001016613900003
OA Green Published, Green Submitted, gold, Green Accepted
DA 2024-09-05
ER
PT C
AU Schröder, S
Thiele, T
Jooss, C
Vossen, R
Richert, A
Isenhardt, I
Jeschke, S
AF Schroeder, Stefan
Thiele, Thomas
Jooss, Claudia
Vossen, Rene
Richert, Anja
Isenhardt, Ingrid
Jeschke, Sabina
BE Ribiere, V
Worasinchai, L
TI Text Mining Analytics as a Method of Benchmarking Interdisciplinary
Research Collaboration
SO PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON INTELLECTUAL CAPITAL
KNOWLEDGE MANAGEMENT & ORGANISATIONAL LEARNING (ICICKM 2015)
SE Proceedings of the International Conference on Intellectual Capital
Knowledge Management & Organizational Learning
LA English
DT Proceedings Paper
CT 12th International Conference on Intellectual Capital Knowledge
Management and Organisational Learning (ICICKM)
CY NOV 05-06, 2015
CL Bangkok Univ, Inst Knowledge Innovat, Bangkok, THAILAND
HO Bangkok Univ, Inst Knowledge Innovat
DE benchmarking; interdisciplinarity; text mining; clustering; k-means;
principal component analysis
AB This paper introduces the process of adopting and implementing modern text mining approaches of analysis within the Cluster of Excellence (CoE) Tailor-Made Fuels from Biomass (TMFB) at RWTH Aachen University and presents initial results of the analysis of research output by use of common clustering algorithms, namely Principal Component Analysis and k-means. As one main part of this paper the data driven approach is classified into benchmarking efforts, which are part of the research work of the so called Supplementary Cluster Activities. The SCA, supporting the cluster management, are initiated in order to promote interdisciplinary collaboration of CoE researchers with different disciplinary backgrounds. This cross-linking is aided by means of knowledge engineering and knowledge transfer strategies, such as the exploration of synergies and benchmarking of research results as well as progress. In this course an adoption of current benchmarking efforts to the specific cluster research framework conditions is described. At this, in case of differing data sources according to those used in widespread business organisational benchmarking, possible TMFB data sources are outlined and a selection for analysis is reasoned. While benchmarking is usually differentiated in internal and external benchmarking, in this case focus lies on internal analysis of publications in order to reflect research work. Benchmarking of publications is used and implemented to identify (best) methods, practices and processes of CoE to improve the research organization. Second major part and central question within the scope of this paper is in which way text mining respectively clustering algorithms are sensitive applicable to TMFB publications and are able to be used as benchmark for research clusters. Thus thematically priorities of TMFB researchers will be investigated in order to create an overview according to research topics, keywords and methods. In case of an outlook further steps, e.g. dealing with generated results, data visualisation or further acquisition of data corpora, are formulated.
C1 [Schroeder, Stefan] Rhein Westfal TH Aachen, Inst Informat Management Mech Engn IMA, Aachen, Germany.
Rhein Westfal TH Aachen, Ctr Learning & Knowledge Management ZLW, Aachen, Germany.
Rhein Westfal TH Aachen, Assoc Inst Management Cybernet IfU, Aachen, Germany.
C3 RWTH Aachen University; RWTH Aachen University; RWTH Aachen University
RP Schröder, S (corresponding author), Rhein Westfal TH Aachen, Inst Informat Management Mech Engn IMA, Aachen, Germany.
EM stefan.schroeder@ima-zlw-ifu.rwth-aachen.de;
thomas.thiele@ima-zlw-ifu.rwth-aachen.de;
claudia.jooss@ima-zlw-ifu.rwth-aachen.de;
rene.vossen@ima-zlw-ifu.rwth-aachen.de;
anja.richert@ima-zlw-ifu.rwth-aachen.de;
ingrid.isenhardt@ima-zlw-ifu.rwth-aachen.de;
sabina.jeschke@ima-zlw-ifu.rwth-aachen.de
RI Thiele, Thomas/J-7334-2016; Jeschke, Sabina/M-9453-2013
OI Isenhardt, Ingrid/0000-0002-5645-5341
CR Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
[Anonymous], 2010, PRINCIPAL COMPONENT
[Anonymous], 1977, CLUSTERANALYSE EINFU
Backhaus K., 1990, MULTIVARIATE ANALYSE, V6th
Berry M. W., 2010, TEXT MINING APPL THE
Bishop C.M., 2006, J ELECTRON IMAGING, V16, P049901, DOI DOI 10.1117/1.2819119
Bogetoft P., 2012, Performance benchmarking-Measuring and managing performance
Chisholm A., 2013, Exploring Data with RapidMiner
Cluster of Excellence, 2011, REN PROP CLUST UNPUB
Dai XF, 2014, OMEGA-INT J MANAGE S, V42, P179, DOI 10.1016/j.omega.2013.05.007
Ding C., 2004, 21st International Conference on Machine Learning, P1
Dzwonnek D., 2012, MIN C GERM RES COUNC
Fodor I.K, 2002, SURVEY DIMENSION RED, DOI DOI 10.2172/15002155
German Research Foundation-DFG, 2013, EXZ BLICK WETTB BUND
German Research Foundation - DFG, 2008, ECKP WEIT EXZ
Hall MA, 2003, IEEE T KNOWL DATA EN, V15, P1437, DOI 10.1109/TKDE.2003.1245283
HARTUNG J, 1984, MULTIVARIATE STAT LE
Hener Y., 2008, 103 U LEIPZ CHE CTR
Höppner F, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P299, DOI 10.1007/978-0-387-09823-4_15
Hofmann Markus., 2014, RapidMiner Data Mining Use Cases and Business Analytics Applications, Vfirst
Jackson N.Lund., 2000, Benchmarking for Higher Education
Joo C., 2014, GESTALTUNG KOOPERATI
Kempf S., 1995, BENCHMARKING PRAXIS
Krcmar H., 2015, EINFUHRUNG INFORMATI
Levy G. D., 2012, BENCHMARKING I RES N
Levy G.D., 2012, New Directions for Institutional Research, V2012, P5, DOI [10.1002/ir.20026, DOI 10.1002/IR.20026]
Maimon O, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P1, DOI 10.1007/978-0-387-09823-4
Miner G, 2012, PRACTICAL TEXT MINING AND STATISTICAL ANALYSIS FOR NON-STRUCTURED TEXT DATA APPLICATIONS, P1
Monfreda M., 2012, PRINCIPAL COMPONENT, P49
Nisbet R., 2009, HDB STAT ANAL DATA M
Rehauser Jakob, 1999, PROZESSORIENTIERTES
Ronco S.L., 2012, New Directions for Institutional Research, V2012, P15
Sanguansat P., 2012, Principal Component Analysis-Engineering Applications
Smith AE, 2006, BEHAV RES METHODS, V38, P262, DOI 10.3758/BF03192778
Svensen M., 2009, Pattern Recognition and Machine Learning: Solutions to the Exercises
Thiele T., 2015, P 19 TRIENN C INT ER P 19 TRIENN C INT ER
NR 36
TC 1
Z9 1
U1 0
U2 5
PU ACAD CONFERENCES LTD
PI NR READING
PA CURTIS FARM, KIDMORE END, NR READING, RG4 9AY, ENGLAND
SN 2048-9803
BN 978-1-910810-74-3
J9 PROC INT CONF INTELL
PY 2015
BP 408
EP 417
PG 10
WC Business; Psychology, Applied; Management
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics; Psychology
GA BE4JO
UT WOS:000371799600049
DA 2024-09-05
ER
PT J
AU Chen, XL
Xie, HR
Wang, FL
Liu, ZQ
Xu, J
Hao, TY
AF Chen, Xieling
Xie, Haoran
Wang, Fu Lee
Liu, Ziqing
Xu, Juan
Hao, Tianyong
TI A bibliometric analysis of natural language processing in medical
research
SO BMC MEDICAL INFORMATICS AND DECISION MAKING
LA English
DT Article; Proceedings Paper
CT 3rd China Health Information Processing Conference (CHIP)
CY NOV 24-25, 2017
CL Shenzhen, PEOPLES R CHINA
DE Natural language processing; Medical; Bibliometrics; Statistical
characteristics; Scientific collaboration; Thematic discovery and
evolution
ID NETWORK ANALYSIS; SCIENCE; ALGORITHM; EVOLUTION; EDUCATION; TRENDS;
DOMAIN; FIELD
AB Background: Natural language processing (NLP) has become an increasingly significant role in advancing medicine. Rich research achievements of NLP methods and applications for medical information processing are available. It is of great significance to conduct a deep analysis to understand the recent development of NLP-empowered medical research field. However, limited study examining the research status of this field could be found. Therefore, this study aims to quantitatively assess the academic output of NLP in medical research field.
Methods: We conducted a bibliometric analysis on NLP-empowered medical research publications retrieved from PubMed in the period 2007-2016. The analysis focused on three aspects. Firstly, the literature distribution characteristics were obtained with a statistics analysis method. Secondly, a network analysis method was used to reveal scientific collaboration relations. Finally, thematic discovery and evolution was reflected using an affinity propagation clustering method.
Results: There were 1405 NLP-empowered medical research publications published during the 10 years with an average annual growth rate of 18.39%. 10 most productive publication sources together contributed more than 50% of the total publications. The USA had the highest number of publications. A moderately significant correlation between country's publications and GDP per capita was revealed. Denny, Joshua C was the most productive author. Mayo Clinic was the most productive affiliation. The annual co-affiliation and co-country rates reached 64.04% and 15.79% in 2016, respectively. 10 main great thematic areas were identified including Computational biology, Terminology mining, Information extraction, Text classification, Social medium as data source, Information retrieval, etc.
Conclusions: A bibliometric analysis of NLP-empowered medical research publications for uncovering the recent research status is presented. The results can assist relevant researchers, especially newcomers in understanding the research development systematically, seeking scientific cooperation partners, optimizing research topic choices and monitoring new scientific or technological activities.
C1 [Chen, Xieling] Jinan Univ, Coll Econ, Guangzhou, Guangdong, Peoples R China.
[Xie, Haoran] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Hong Kong, Peoples R China.
[Wang, Fu Lee] Open Univ Hong Kong, Sch Sci & Technol, Hong Kong, Hong Kong, Peoples R China.
[Liu, Ziqing] Guangzhou Univ Chinese Med, Clin Med Coll 2, Guangzhou, Guangdong, Peoples R China.
[Xu, Juan] Nanjing Audit Univ, Res Inst Natl Supervis & Audit Law, Nanjing, Jiangsu, Peoples R China.
[Hao, Tianyong] Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou, Guangdong, Peoples R China.
[Hao, Tianyong] South China Normal Univ, Sch Comp, Guangzhou, Guangdong, Peoples R China.
C3 Jinan University; Education University of Hong Kong (EdUHK); Hong Kong
Metropolitan University; Guangzhou University of Chinese Medicine;
Nanjing Audit University; Guangdong University of Foreign Studies; South
China Normal University
RP Hao, TY (corresponding author), Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou, Guangdong, Peoples R China.; Hao, TY (corresponding author), South China Normal Univ, Sch Comp, Guangzhou, Guangdong, Peoples R China.
EM haoty@gdufs.edu.cn
RI Hao, Tianyong/HJH-2742-2023; Wang, Fu Lee/AAD-9782-2021; Xie,
Haoran/AFS-3515-2022; Xie, Haoran/AAW-8845-2020
OI Hao, Tianyong/0000-0002-9792-3949; Wang, Fu Lee/0000-0002-3976-0053;
Xie, Haoran/0000-0003-0965-3617; Zhang, Dong/0000-0001-8186-4692; PV,
THAYYIB/0000-0001-8929-0398; Chen, Xieling/0000-0003-3417-7421; xing,
libo/0000-0002-8918-7128
FU National Natural Science Foundation of China [61772146]; Research Grants
Council of Hong Kong Special Administrative Region, China
[UGC/FDS11/E04/16]; Innovative School Project in Higher Education of
Guangdong Province [YQ2015062]
FX Publication of the article is supported by grants from National Natural
Science Foundation of China (No. 61772146), Research Grants Council of
Hong Kong Special Administrative Region, China (UGC/FDS11/E04/16), and
Innovative School Project in Higher Education of Guangdong Province (No.
YQ2015062).
CR Albers DJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096443
Martínez MA, 2015, RES SOCIAL WORK PRAC, V25, P257, DOI 10.1177/1049731514522101
[Anonymous], 2007, Introductory statistics
[Anonymous], 2017, Knowledge Solutions, DOI 10.1007/978-981-10-0983-9_9
Batet M, 2011, J BIOMED INFORM, V44, P118, DOI 10.1016/j.jbi.2010.09.002
Bodenhofer U, 2011, BIOINFORMATICS, V27, P2463, DOI 10.1093/bioinformatics/btr406
Boudry C, 2016, PEERJ, V4, DOI 10.7717/peerj.1557
Boudry C, 2015, EUR J OPHTHALMOL, V25, P357, DOI 10.5301/ejo.5000556
Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227
Chasin R, 2014, J AM MED INFORM ASSN, V21, P842, DOI 10.1136/amiajnl-2013-002133
Chen XL, 2017, LECT NOTES COMPUT SC, V10594, P89, DOI 10.1007/978-3-319-69182-4_10
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Cobo MJ, 2014, IEEE T INTELL TRANSP, V15, P901, DOI 10.1109/TITS.2013.2284756
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Dehdarirad T, 2014, SCIENTOMETRICS, V101, P273, DOI 10.1007/s11192-014-1327-2
Demner-Fushman D, 2016, Yearb Med Inform, P224
Diem A, 2013, RES HIGH EDUC, V54, P86, DOI 10.1007/s11162-012-9264-5
El-Samak AF, 2015, J ARTIF INTELL SOFT, V5, P239, DOI 10.1515/jaiscr-2015-0032
Fan XM, 2016, BURNS, V42, P1463, DOI 10.1016/j.burns.2016.02.002
Frey BJ, 2007, SCIENCE, V315, P972, DOI 10.1126/science.1136800
Frey BJ, 2008, SCIENCE, V319, DOI 10.1126/science.1151268
Geaney F, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133009
Hao T, 2015, METHOD INFORM MED, V54, P164, DOI 10.3414/ME13-01-0130
Hao TY, 2016, METHOD INFORM MED, V55, P266, DOI 10.3414/ME15-01-0112
Hao TY, 2014, J BIOMED INFORM, V52, P112, DOI 10.1016/j.jbi.2014.01.009
HARANDE YI, 2014, J LIB INFORM SCI, V2, P49
Heo GE, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1640-x
Holliday EB, 2015, INT J RADIAT ONCOL, V92, P721, DOI 10.1016/j.ijrobp.2015.03.011
Hussain A., 2011, WEBOLOGY, V8, P87
Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194
Khan A, 2016, OBES REV, V17, P377, DOI 10.1111/obr.12372
Kramer PF, 2016, DENT TRAUMATOL, V32, P341, DOI 10.1111/edt.12262
Li L, 2017, COMPUT GEOSCI-UK, V99, P1, DOI 10.1016/j.cageo.2016.10.006
Li Q, 2015, BMC MED INFORM DECIS, V15, DOI 10.1186/s12911-015-0160-8
Liddy E.D, 2001, Encyclopedia of Library and Information Science, V2nd
Lin C, 2016, J AM MED INFORM ASSN, V23, P387, DOI 10.1093/jamia/ocv113
MacEachren AM, 1998, IEEE SYMPOSIUM ON INFORMATION VISUALIZATION - PROCEEDINGS, P87, DOI 10.1109/INFVIS.1998.729563
MacQueen James, 1967, 5 BERK S MATH STAT P, P281
Meystre Stephane, 2005, BMC Med Inform Decis Mak, V5, P30, DOI 10.1186/1472-6947-5-30
Muñoz-Leiva F, 2012, QUAL QUANT, V46, P1077, DOI 10.1007/s11135-011-9565-3
Neveol A, 2016, Yearb Med Inform, P234
Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100
Nikfarjam A, 2015, J AM MED INFORM ASSN, V22, P671, DOI 10.1093/jamia/ocu041
Osborne JD, 2016, J AM MED INFORM ASSN, V23, P1077, DOI 10.1093/jamia/ocw006
Otte E, 2002, J INF SCI, V28, P441, DOI 10.1177/016555150202800601
Radev DR, 2016, J ASSOC INF SCI TECH, V67, P683, DOI 10.1002/asi.23394
Ramos JM, 2008, INT J TUBERC LUNG D, V12, P1461
Romesburg C., 2004, Cluster Analysis for Researchers
Shental N, 2004, ADV NEUR IN, V16, P185
Shi JB, 2000, IEEE T PATTERN ANAL, V22, P888, DOI 10.1109/34.868688
Sidorov G, 2014, EXPERT SYST APPL, V41, P853, DOI 10.1016/j.eswa.2013.08.015
Sun WY, 2015, J AM MED INFORM ASSN, V22, P1001, DOI 10.1093/jamia/ocu004
Tianyong Hao, 2015, Advances in Web-Based Learning - ICWL 2015. 14th International Conference. Proceedings: LNCS 9412, P3, DOI 10.1007/978-3-319-25515-6_1
Velmurugan C., 2013, LIB PHILOS PRACT, V1043, P1
Venable GT, 2014, WORLD NEUROSURG, V81, P468, DOI 10.1016/j.wneu.2013.11.013
Wallace ML, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033339
Wang PW, 2017, J ASSOC INF SCI TECH, V68, P2649, DOI 10.1002/asi.23876
Wang Yue, 2016, AMIA Annu Symp Proc, V2016, P2062
Wasserman S., 1994, Social Network Analysis
Xiao B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143055
Xieling Chen, 2017, Emerging Technologies for Education. Second International Symposium, SETE 2017 Held in Conjunction with ICWL 2017. Revised Selected Papers: LNCS 10676, P507, DOI 10.1007/978-3-319-71084-6_60
Yadav K, 2016, ACAD EMERG MED, V23, P171, DOI 10.1111/acem.12859
Yeung AWK, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00120
Zhang YY, 2015, J AM MED INFORM ASSN, V22, P967, DOI 10.1093/jamia/ocu048
Zheng L, 2016, JMIR MED INF, V4, P38, DOI 10.2196/medinform.6328
NR 65
TC 98
Z9 103
U1 3
U2 67
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1472-6947
J9 BMC MED INFORM DECIS
JI BMC Med. Inform. Decis. Mak.
PD MAR 22
PY 2018
VL 18
SU 1
AR 14
DI 10.1186/s12911-018-0594-x
PG 14
WC Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Science (CPCI-S)
SC Medical Informatics
GA GA9CN
UT WOS:000428638800001
PM 29589569
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Chuang, CW
Chang, A
Chen, MC
Selvamani, MJP
Shia, BC
AF Chuang, Chien-Wei
Chang, Ariana
Chen, Mingchih
Selvamani, Maria John P.
Shia, Ben-Chang
TI A Worldwide Bibliometric Analysis of Publications on Artificial
Intelligence and Ethics in the Past Seven Decades
SO SUSTAINABILITY
LA English
DT Article; Data Paper
DE AI; ethics; bibliometric analysis; citation analysis; worldwide trend
ID BIG DATA ANALYTICS; AI
AB Issues related to artificial intelligence (AI) and ethics have gained much traction worldwide. The impact of AI on society has been extensively discussed. This study presents a bibliometric analysis of research results, citation relationships among researchers, and highly referenced journals on AI and ethics on a global scale. Papers published on AI and ethics were recovered from the Microsoft Academic Graph Collection data set, and the subject terms included "artificial intelligence" and "ethics." With 66 nations' researchers contributing to AI and ethics research, 1585 papers on AI and ethics were recovered, up to 5 July 2021. North America, Western Europe, and East Asia were the regions with the highest productivity. The top ten nations produced about 94.37% of the wide variety of papers. The United States accounted for 47.59% (286 articles) of all papers. Switzerland had the highest research production with a million-person ratio (1.39) when adjusted for populace size. It was followed by the Netherlands (1.26) and the United Kingdom (1.19). The most productive authors were found to be Khatib, O. (n = 10), Verner, I. (n = 9), Bekey, G. A. (n = 7), Gennert, M. A. (n = 7), and Chatila, R., (n = 7). Current research shows that research on artificial intelligence and ethics has evolved dramatically over the past 70 years. Moreover, the United States is more involved with AI and ethics research than developing or emerging countries.
C1 [Chuang, Chien-Wei; Chen, Mingchih; Shia, Ben-Chang] Fu Jen Catholic Univ, Grad Inst Business Adm, New Taipei 242062, Taiwan.
[Chuang, Chien-Wei; Chen, Mingchih; Shia, Ben-Chang] Fu Jen Catholic Univ, Artificial Intelligence Dev Ctr, New Taipei 242062, Taiwan.
[Chang, Ariana] Fu Jen Catholic Univ, Interdisciplinary Studies Program, New Taipei 242062, Taiwan.
[Selvamani, Maria John P.] Fu Jen Catholic Univ, Sch Med, New Taipei 242062, Taiwan.
[Selvamani, Maria John P.] Fu Jen Catholic Univ, Fu Jen Acad Catholica, New Taipei 242062, Taiwan.
C3 Fu Jen Catholic University; Fu Jen Catholic University; Fu Jen Catholic
University; Fu Jen Catholic University; Fu Jen Catholic University
RP Shia, BC (corresponding author), Fu Jen Catholic Univ, Grad Inst Business Adm, New Taipei 242062, Taiwan.; Shia, BC (corresponding author), Fu Jen Catholic Univ, Artificial Intelligence Dev Ctr, New Taipei 242062, Taiwan.
EM 025674@mail.fju.edu.tw
OI Chuang, Chien-wei/0000-0002-3592-4794; Shia,
Ben-Chang/0000-0003-2854-8361
FU [7100397]; [A0110152]
FX This manuscript was partially funded byGrant number: 7100397 and Grant
number: A0110152.
CR Akter S, 2016, INT J PROD ECON, V182, P113, DOI 10.1016/j.ijpe.2016.08.018
[Anonymous], 2017, Nature, V550, P301, DOI 10.1038/550301b
[Anonymous], 2019, visNetwork: Network Visualization using 'vis.js' Library. R package version 2.0.9
Brundage M, 2018, ARXIV
Castañeda K, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14095544
Cetindamar D, 2020, THUNDERBIRD INT BUS, V62, P457, DOI 10.1002/tie.22158
Demir E, 2020, J FORENSIC LEG MED, V69, DOI 10.1016/j.jflm.2019.101885
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Fiandrino S, 2022, J BUS ETHICS, V180, P959, DOI 10.1007/s10551-022-05189-9
Hermann E., 2022, AI Ethics, V2, P29, DOI [10.1007/s43681-021-00114-8, DOI 10.1007/S43681-021-00114-8]
Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2
Kazim E, 2021, PATTERNS, V2, DOI 10.1016/j.patter.2021.100314
Mela GS, 2003, EUR RADIOL, V13, P657, DOI 10.1007/s00330-002-1640-7
Merigó JM, 2018, INFORM SCIENCES, V432, P245, DOI 10.1016/j.ins.2017.11.054
Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434
Mikalef P, 2019, J BUS RES, V98, P261, DOI 10.1016/j.jbusres.2019.01.044
Radu V, 2021, INT J COMPUT COMMUN, V16, DOI 10.15837/ijccc.2021.1.4120
Ryan M, 2021, J INF COMMUN ETHICS, V19, P61, DOI 10.1108/JICES-12-2019-0138
Singh S, 2020, TECHNOL FORECAST SOC, V154, DOI 10.1016/j.techfore.2020.119963
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001
Stahl BC, 2022, AI SOC, V37, P23, DOI 10.1007/s00146-021-01148-6
Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045
Wilson J, 2018, HARVARD BUS REV, V96, P115
Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994
Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015
Zou J, 2018, NATURE, V559, P324, DOI 10.1038/d41586-018-05707-8
NR 27
TC 2
Z9 2
U1 9
U2 39
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD SEP
PY 2022
VL 14
IS 18
AR 11125
DI 10.3390/su141811125
PG 13
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA 4R9PZ
UT WOS:000857087700001
OA gold
DA 2024-09-05
ER
PT J
AU Nastasa, A
Dumitra, TC
Grigorescu, A
AF Nastasa, Anamaria
Dumitra, Teodora-Catalina
Grigorescu, Adriana
TI Artificial intelligence and sustainable development during the pandemic:
An overview of the scientific debates
SO HELIYON
LA English
DT Article
DE Artificial intelligence; Sustainable development; Bibliometric analysis;
Text mining; LDA
ID DEVELOPMENT GOALS; INFORMATION-TECHNOLOGY; USER ACCEPTANCE; R PACKAGE;
PERSPECTIVE; EVOLUTION; ACHIEVE
AB The current work aims to analyze the main themes related to artificial intelligence (AI) and sustainable development during the pandemic period. This study provides an overview of the specialized literature related to AI and sustainability from the beginning of the pandemic through 2023. The present paper analyses scientific literature emphasizing both artificial intelligence's positive and negative impacts on sustainable development objectives (SDGs). To conduct the research, we employed bibliometric analysis and text-mining techniques to identify the major themes in the literature indexed in the Web of Science and Scopus databases. Firstly, we used descriptive measures to identify the authors' impact, the article production by country, the main keywords used, and other descriptive data. We further used data reduction methods based on coword analysis (such as multiple correspondence analysis) on authors' keywords to show patterns in the themes explored in the literature. Bibliometric analysis was supplemented by text mining using Latent Dirichlet allocation (LDA) and structural topic modeling on abstracts to provide a comprehensive view of scientific debates on AI and sustainable development. Our research has identified various themes in the literature related to AI and sustainable development. These themes include social sustainability, health-related issues, AI technologies for energy efficiency, sustainability in industry and innovation, IoT technologies for smart and sustainable cities, urban planning, technologies for education and knowledge production, and the impact of technologies on SDGs. We also found that there is a significant positivity bias in the literature when discussing the impact of AI on sustainable development. Despite acknowledging certain risks, the literature tends to focus on the potential benefits of AI across various sectors. In addition, the analysis shows a growing emphasis on energy efficiency, which is facilitated by the use of AI technologies. Our study contributes to a better understanding of current scholarly discussion trends and emerging scientific avenues regarding AI and sustainable development. It also highlights the areas where research is needed and the implications for practitioners and policymakers.
C1 [Nastasa, Anamaria; Dumitra, Teodora-Catalina] Natl Sci Res Inst Lab & Social Protect, 6-8 Povernei St, Bucharest 010643, Romania.
[Nastasa, Anamaria] Univ Bucharest, Doctoral Sch Sociol, 36-46 Mihail Kogalniceanu Blvd, Bucharest 050107, Romania.
[Dumitra, Teodora-Catalina] Bucharest Univ Econ Studies, Bucharest 010552, Romania.
[Grigorescu, Adriana] Natl Univ Polit Studies & Publ Adm, 30A Expozitiei Bd, Bucharest 012104, Romania.
C3 University of Bucharest; Bucharest University of Economic Studies;
National University of Political Studies & Public Administration (SNSPA)
- Romania
RP Nastasa, A (corresponding author), Natl Sci Res Inst Lab & Social Protect, 6-8 Povernei St, Bucharest 010643, Romania.
EM anamaria.nastasa@incsmps.ro; teodora.dumitra@incsmps.ro;
adriana.grigorescu@snspa.ro
RI Nastasa, Anamaria/AED-5337-2022
OI Nastasa, Anamaria/0000-0002-4641-1273
FU Romanian Ministry of Research, Innovation and Digitalization [PN
22_10_0103]
FX Part of this work was supported by the NUCLEU Program funded by the
Romanian Ministry of Research, Innovation and Digitalization (Project PN
22_10_0103-"Development of digital skills for the new socio-economic
normality"/"Dezvoltarea competentelor digitale pentru noua normalitate
socio-economica")
CR Agrawal R, 2022, OPER MANAGE RES, V15, P609, DOI 10.1007/s12063-021-00212-0
Ahad MA, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102301
AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T
Al-Emran M, 2023, TECHNOL SOC, V75, DOI 10.1016/j.techsoc.2023.102383
Alonso RS, 2020, AD HOC NETW, V98, DOI 10.1016/j.adhoc.2019.102047
[Anonymous], 2023, CointelegraphSeptember 12
[Anonymous], 2023, The Important Role of AI in Supply Chain Management & Logistics-the Quantic Blog
Anthopoulos LeonidasG., 2012, The Future Internet: Future Internet Assembly 2012: From Promises to Reality, P178, DOI DOI 10.1007/978-3-642-30241-1_16
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Baena-Morales S, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18042129
Bajwa Junaid, 2021, Future Healthc J, V8, pe188, DOI 10.7861/fhj.2021-0095
Baker J, 2010, INTEGR SER INFORM SY, V28, P231, DOI 10.1007/978-1-4419-6108-2_12
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
BranE RughinisC, 2023, 2023 24 INT C CONTR, P391, DOI [10.1109/CSCS59211.2023.00068, DOI 10.1109/CSCS59211.2023.00068]
Brock University, 2023, Sustainability versus sustainable development: what's the difference?
Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011
Castro GD, 2021, J CLEAN PROD, V280, DOI 10.1016/j.jclepro.2020.122204
Chaney Nathan, 2020, CRAN
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Cowls J, 2023, AI SOC, V38, P283, DOI 10.1007/s00146-021-01294-x
Dalmia N., 2023, The Economic TimesApril 25
Davenport Thomas, 2019, Future Healthc J, V6, P94, DOI 10.7861/futurehosp.6-2-94
David LO, 2022, J CLEAN PROD, V363, DOI 10.1016/j.jclepro.2022.132522
Davidescu AA, 2022, ECON ANAL POLICY, V73, P683, DOI 10.1016/j.eap.2021.12.016
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017
Di Vaio A, 2020, J BUS RES, V121, P283, DOI 10.1016/j.jbusres.2020.08.019
DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004
Drage Eleanor, 2022, Philos Technol, V35, P89, DOI 10.1007/s13347-022-00543-1
Du SL, 2021, J BUS RES, V129, P961, DOI 10.1016/j.jbusres.2020.08.024
Duggal N., 2023, Simplilearn
Eden L, 2021, J INT BUS POLICY, V4, P28, DOI 10.1057/s42214-020-00054-w
Elavarasan RM, 2021, APPL ENERG, V292, DOI 10.1016/j.apenergy.2021.116665
F.N. Horizons, 2023, How AI can impact agriculture
Fu HZ, 2022, CLIMATIC CHANGE, V170, DOI 10.1007/s10584-022-03324-z
Gerschke A., 2023, The environmental impacts of AI
Ghosh A, 2018, CAAI T INTELL TECHNO, V3, P208, DOI 10.1049/trit.2018.1008
Goralski MA, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100330
Greenacre M.J., 2013, Statistical Analysis, V2
Grün B, 2011, J STAT SOFTW, V40, P1
Gue IHV, 2020, CLEAN TECHNOL ENVIR, V22, P1449, DOI 10.1007/s10098-020-01883-2
Halkos G, 2021, ECON ANAL POLICY, V70, P94, DOI 10.1016/j.eap.2021.02.001
Hamidi A, 2024, CURR PSYCHOL, V43, P155, DOI 10.1007/s12144-023-04264-2
He Q, 1999, LIBR TRENDS, V48, P133
He XZ, 2023, SUSTAIN DEV, V31, P1888, DOI 10.1002/sd.2491
HILL RJ, 1977, CONTEMP SOCIOL, V6, P244, DOI 10.2307/2065853
Husson F, 2014, COMP SCI DATA ANAL S, P165
Isabelle DA, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14041979
Jamali SM, 2023, INT J TECHNOL DES ED, V33, P819, DOI 10.1007/s10798-022-09762-1
Joyce K, 2021, SOCIUS, V7, DOI 10.1177/2378023121999581
Kamalov F, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151612451
Kanungo A., 2023, Earth
Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004
Klein HK, 2002, SCI TECHNOL HUM VAL, V27, P28, DOI 10.1177/016224390202700102
Kreinin H, 2022, EMPIRICA, V49, P281, DOI 10.1007/s10663-021-09526-5
Kulkov I, 2024, SUSTAIN DEV, V32, P2253, DOI 10.1002/sd.2773
Leal W, 2023, ENVIRON DEV SUSTAIN, V25, P4957, DOI 10.1007/s10668-022-02252-3
Lenzen M, 2022, NAT SUSTAIN, V5, P157, DOI 10.1038/s41893-021-00811-6
Li R., 2023, Insights
Lindstedt NC, 2019, SOC CURR, V6, P307, DOI 10.1177/2329496519846505
Liu J, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19042091
MacIntyre CR, 2023, J INT MED RES, V51, DOI 10.1177/03000605231159335
Maer-Matei M.M., 2019, Logos Univ. Mentality Educ. Novelty: Econ. Adm. Sci., V4, P21, DOI [10.18662/lumeneas/10, DOI 10.18662/LUMENEAS/10]
Manzoor B, 2021, APPL SYST INNOV, V4, DOI 10.3390/asi4030052
Maretti M, 2019, INT REV SOCIOL, V29, P142, DOI 10.1080/03906701.2019.1641270
Marope P., 2015, Unleashing the potential. Transforming technical and vocational education and training
McKinsey & Company, 2023, What is AI?
Mhlanga D, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031879
Mirbabaie M, 2021, HEALTH TECHNOL-GER, V11, P693, DOI 10.1007/s12553-021-00555-5
Mlteva S., 2022, How Can AI Help in Achieving the Sustainable Development Goals?
Mocanu C., 2022, Circular Economy and Sustainability, P71
Mondejar ME, 2021, SCI TOTAL ENVIRON, V794, DOI 10.1016/j.scitotenv.2021.148539
Muresan M., 2023, Impact of Artificial Intelligence on Education, DOI [10.5281/ZENODO.8132828, DOI 10.5281/ZENODO.8132828]
Murgado-Armenteros EM, 2015, SCIENTOMETRICS, V102, P519, DOI 10.1007/s11192-014-1443-z
Napolitano E., 2023, Report Says-CBS News, CBS NewsJune 2
Nhamo G, 2021, GLOB PUBLIC HEALTH, V16, P319, DOI 10.1080/17441692.2020.1860249
Nishant R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102104
Noyons ECM, 1999, J AM SOC INFORM SCI, V50, P115, DOI 10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.3.CO;2-A
O'Sullivan K, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-26217-8
Ogunsakin RE, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19052508
Ordonez de Pablos P., 2023, 5G, artificial intelligence, and next generation internet of things: digital innovation for green and sustainable economies
Ravikumar Ghiath Shabsigh E.B.B., 2022, Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Rogers, 2003, DIFFUSION INNOVATION
Rousseau S, 2021, J ECON SURV, V35, P1428, DOI 10.1111/joes.12415
Ruhanen L, 2015, J SUSTAIN TOUR, V23, P517, DOI 10.1080/09669582.2014.978790
Ryan M, 2023, AI SOC, V38, P2473, DOI 10.1007/s00146-021-01377-9
Sachithra V, 2023, ARTIF INTELL AGR, V8, P46, DOI 10.1016/j.aiia.2023.04.002
Saheb T, 2022, SUSTAIN COMPUT-INFOR, V35, DOI 10.1016/j.suscom.2022.100699
Sanchez TW, 2023, INT J URBAN SCI, V27, P179, DOI 10.1080/12265934.2022.2102538
Scheyvens R, 2019, J SUSTAIN TOUR, V27, P1061, DOI 10.1080/09669582.2018.1551404
Schoormann T, 2023, COMMUN ASSOC INF SYS, V52
Schwalbe N, 2020, LANCET, V395, P1579, DOI 10.1016/S0140-6736(20)30226-9
Singh A, 2024, SUSTAIN DEV, V32, P724, DOI 10.1002/sd.2706
Sun J, 2021, SCI BULL, V66, P1493, DOI 10.1016/j.scib.2021.03.014
Sustainability for All, 2024, Active Sustainability
Tennant JP., 2020, Eur. Sci. Ed, V46, pe51987, DOI [10.3897/ese.2020.e51987, DOI 10.3897/ESE.2020.E51987]
Thamik H, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063568
Tschang FT, 2021, ACAD MANAGE PERSPECT, V35, P642, DOI 10.5465/amp.2019.0062
University of Nebraska-Lincoln, 2023, Sustainable Development Goals
van Wynsberghe A., 2021, AI and Ethics, V1, P3, DOI [10.1007/s43681-021-00043-6, DOI 10.1007/S43681-021-00043-6]
Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540
Venkatesh V, 2012, MIS QUART, V36, P157
Viana CM, 2022, SCI TOTAL ENVIRON, V806, DOI 10.1016/j.scitotenv.2021.150718
Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y
Violante G.L., 2018, The New Palgrave Dictionary of Economics, P12389, DOI [10.1057/978-1-349-95189-52388, DOI 10.1057/978-1-349-95189-52388]
Wang J, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14010010
Xiang XJ, 2021, ENVIRON IMPACT ASSES, V86, DOI 10.1016/j.eiar.2020.106515
Yamasaki K, 2022, SUSTAIN CITIES SOC, V84, DOI 10.1016/j.scs.2022.104002
Yang SH, 2023, ENVIRON DEV, V48, DOI 10.1016/j.envdev.2023.100922
Ye N, 2020, J CLEAN PROD, V272, DOI 10.1016/j.jclepro.2020.122679
Yeh SC, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13169165
Yigitcanlar T, 2020, ENERGIES, V13, DOI 10.3390/en13061473
Zaleniene I, 2021, GEOGR SUSTAIN, V2, P99, DOI 10.1016/j.geosus.2021.05.001
Zamponi ME, 2022, SMART CITIES-BASEL, V5, P728, DOI 10.3390/smartcities5020038
Zengin Y, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13052682
Zia T., 2023, Technopedia
Zlatanovic S.S., 2023, Stanovnistvo, V61, P53, DOI [10.2298/STNV230220001S, DOI 10.2298/STNV230220001S]
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 120
TC 0
Z9 0
U1 8
U2 8
PU CELL PRESS
PI CAMBRIDGE
PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA
EI 2405-8440
J9 HELIYON
JI Heliyon
PD MAY 15
PY 2024
VL 10
IS 9
AR e30412
DI 10.1016/j.heliyon.2024.e30412
PG 27
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA TC2J1
UT WOS:001238990800001
PM 38711639
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Fu, LD
Aliferis, CF
AF Fu, Lawrence D.
Aliferis, Constantin F.
TI Using content-based and bibliometric features for machine learning
models to predict citation counts in the biomedical literature
SO SCIENTOMETRICS
LA English
DT Article
DE Bibliometrics; Citation analysis; Machine learning; Information
retrieval
ID TEXT CATEGORIZATION
AB The most popular method for judging the impact of biomedical articles is citation count which is the number of citations received. The most significant limitation of citation count is that it cannot evaluate articles at the time of publication since citations accumulate over time. This work presents computer models that accurately predict citation counts of biomedical publications within a deep horizon of 10 years using only predictive information available at publication time. Our experiments show that it is indeed feasible to accurately predict future citation counts with a mixture of content-based and bibliometric features using machine learning methods. The models pave the way for practical prediction of the long-term impact of publication, and their statistical analysis provides greater insight into citation behavior.
C1 [Fu, Lawrence D.; Aliferis, Constantin F.] NYU Med Ctr, Ctr Hlth Informat & Bioinformat, New York, NY 10016 USA.
C3 New York University
RP Fu, LD (corresponding author), NYU Med Ctr, Ctr Hlth Informat & Bioinformat, 333 E 38th St,6th Floor, New York, NY 10016 USA.
EM lawrence.fu@nyumc.org
CR ALIFERIS C, 2009, JMLR IN PRESS
Aliferis CF, 2006, CANCER INFORM, V2, P133
Aphinyanaphongs Y, 2005, J AM MED INFORM ASSN, V12, P207, DOI 10.1197/jamia.M1641
Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555
Feitelson DG, 2004, J DOC, V60, P44, DOI 10.1108/00220410410516644
FU L, 2008, AMIA S
Garfield E., 1977, ESSAYS INFORM SCI, V1, P84
Getoor L., 2003, SIGKDD EXPLORATIONS, V5, P84
Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385
Leopold E, 2002, MACH LEARN, V46, P423, DOI 10.1023/A:1012491419635
Lokker C., 2008, BMJ
MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604
Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472
PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814
Rattigan M., 2003, SIGKDD EXPLORATIONS, V5, P41
Seglen PO, 1998, ACTA ORTHOP SCAND, V69, P224, DOI 10.3109/17453679809000920
NR 16
TC 75
Z9 84
U1 8
U2 108
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD OCT
PY 2010
VL 85
IS 1
BP 257
EP 270
DI 10.1007/s11192-010-0237-1
PG 14
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 639CC
UT WOS:000280947400019
OA Bronze
DA 2024-09-05
ER
PT J
AU Tam, J
Lagisz, M
Cornwell, W
Nakagawa, S
AF Tam, Jessica
Lagisz, Malgorzata
Cornwell, Will
Nakagawa, Shinichi
TI Quantifying research interests in 7,521 mammalian species with h-index:
a case study
SO GIGASCIENCE
LA English
DT Article
DE bibliometrics; research bias; meta-research; scientific mapping;
research on research; topic modeling
ID TAXONOMIC BIAS; MODELS
AB Background Taxonomic bias is a known issue within the field of biology, causing scientific knowledge to be unevenly distributed across species. However, a systematic quantification of the research interest that the scientific community has allocated to individual species remains a big data problem. Scalable approaches are needed to integrate biodiversity data sets and bibliometric methods across large numbers of species. The outputs of these analyses are important for identifying understudied species and directing future research to fill these gaps.
Findings In this study, we used the species h-index to quantity the research interest in 7,521 species of mammals. We tested factors potentially driving species h-index, by using a Bayesian phylogenetic generalized linear mixed model (GLMM). We found that a third of the mammals had a species h-index of zero, while a select few had inflated research interest. Further, mammals with higher species h-index had larger body masses; were found in temperate latitudes; had their humans uses documented, including domestication; and were in lower-risk International Union for Conservation of Nature Red List categories. These results surprisingly suggested that critically endangered mammals are understudied. A higher interest in domesticated species suggested that human use is a major driver and focus in mammalian scientific literature.
Conclusions Our study has demonstrated a scalable workflow and systematically identified understudied species of mammals, as well as identified the likely drivers of this taxonomic bias in the literature. This case study can become a benchmark for future research that asks similar biological and meta-research questions for other taxa.
C1 Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia.
Univ New South Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia.
C3 University of New South Wales Sydney; University of New South Wales
Sydney
RP Tam, J (corresponding author), UNSW, Level 5 West,Biol Sci South E26, Kensington, NSW 2052, Australia.
EM jessicatin-ying.tam@unsw.edu.au
RI Lagisz, Malgorzata/A-3100-2010; Nakagawa, Shinichi/B-5571-2011
OI Lagisz, Malgorzata/0000-0002-3993-6127; Nakagawa,
Shinichi/0000-0002-7765-5182; Cornwell, Will/0000-0003-4080-4073; Tam,
Jesse / Jess/0000-0003-3655-1974
FU Research Technology Services at UNSW Sydney
FX We are grateful for the comments from Prof. Ian Suthers and A/Prof.
Tracy Ainsworth from UNSW Sydney. This research includes computations
using the computational cluster Katana supported by Research Technology
Services at UNSW Sydney.
CR Adamo M, 2021, NAT PLANTS, V7, P574, DOI 10.1038/s41477-021-00912-2
Albert C, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199149
Bar-On YM, 2018, P NATL ACAD SCI USA, V115, P6506, DOI 10.1073/pnas.1711842115
Berti E, 2020, BIOL CONSERV, V251, DOI 10.1016/j.biocon.2020.108790
Bonnet X, 2002, TRENDS ECOL EVOL, V17, P1, DOI 10.1016/S0169-5347(01)02381-3
Borges R, 2019, BIOINFORMATICS, V35, P1862, DOI 10.1093/bioinformatics/bty800
Bryda Elizabeth C, 2013, Mo Med, V110, P207
Burgin CJ, 2018, J MAMMAL, V99, P1, DOI 10.1093/jmammal/gyx147
Ceballos G, 2006, P NATL ACAD SCI USA, V103, P19374, DOI 10.1073/pnas.0609334103
Chamberlain S., 2020, TAXIZE TAXONOMIC INF
Colléony A, 2017, BIOL CONSERV, V206, P263, DOI 10.1016/j.biocon.2016.11.035
Cox R, 2016, TRANSBOUND EMERG DIS, V63, P79, DOI 10.1111/tbed.12221
Crotty D, 2017, EUR HEART J, V38, P2646, DOI 10.1093/eurheartj/ehx446
Culumber ZW, 2019, BIOSCIENCE, V69, P631, DOI 10.1093/biosci/biz063
da Silva AF, 2020, J NAT CONSERV, V56, DOI 10.1016/j.jnc.2020.125829
Di Marco M, 2017, GLOB ECOL CONSERV, V10, P32, DOI 10.1016/j.gecco.2017.01.008
Donaldson MR, 2016, FACETS, V1, P105, DOI 10.1139/facets-2016-0011
dos Reis M, 2012, P ROY SOC B-BIOL SCI, V279, P3491, DOI 10.1098/rspb.2012.0683
dos Santos JW, 2020, ANIM CONSERV, V23, P679, DOI 10.1111/acv.12586
Ducatez S, 2019, REV FISH BIOL FISHER, V29, P355, DOI 10.1007/s11160-019-09556-0
Fleming PA, 2016, MAMMAL REV, V46, P241, DOI 10.1111/mam.12066
Gerlach J, 2014, J INSECT CONSERV, V18, P573, DOI 10.1007/s10841-014-9660-6
Global Biodiversity Information Facility: GBIF, 2022, GLOBAL BIODIVERSITY
Google: Google Trends, 2021, GOOGLE TRENDS
Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x
Hadfield JD, 2010, J STAT SOFTW, V33, P1, DOI 10.18637/jss.v033.i02
Harris E, 2004, EMBO REP, V5, P7, DOI 10.1038/sj.embor.7400058
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
IUCN, 2021, IUCN RED LIST THREAT
Jaffe K, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232458
Massicotte P., 2021, GTRENDSR PERFORM DIS
McKenzie AJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0131004
McTavish EJ, 2015, BIOINFORMATICS, V31, P2794, DOI 10.1093/bioinformatics/btv276
Michonneau F, 2016, METHODS ECOL EVOL, V7, P1476, DOI 10.1111/2041-210X.12593
Miralles A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-56006-9
Nakagawa S, 2019, SYST BIOL, V68, P632, DOI 10.1093/sysbio/syy089
Nakagawa S, 2017, J R SOC INTERFACE, V14, DOI 10.1098/rsif.2017.0213
Nakagawa S, 2015, ECOLOGICAL STATISTICS: CONTEMPORARY THEORY AND APPLICATION, P81
Noruzi Alireza., 2016, Webology, V13, P1
Remsen D, 2016, ZOOKEYS, P207, DOI 10.3897/zookeys.550.9546
Renfrew C, 1997, NATURE, V386, P339, DOI 10.1038/386339a0
Research, 2020, MICROSOFT NNI
Research Techonology Services UNSW, 2010, KATANA, DOI [DOI 10.26190/669X-A286, 10.26190/669X-A286]
Ripple WJ, 2017, P NATL ACAD SCI USA, V114, P10678, DOI 10.1073/pnas.1702078114
Robertson PA, 2015, MAMMAL REV, V45, P128, DOI 10.1111/mam.12038
Rosenthal MF, 2017, ANIM BEHAV, V127, P83, DOI 10.1016/j.anbehav.2017.02.017
RStudio Team, 2020, RSTUDIO INT DEV R
RUBIN DB, 1976, BIOMETRIKA, V63, P581, DOI 10.2307/2335739
Rudd MA, 2011, CONSERV BIOL, V25, P860, DOI 10.1111/j.1523-1739.2011.01712.x
Schiesari L, 2007, CONSERV BIOL, V21, P465, DOI 10.1111/j.1523-1739.2006.00616.x
Seddon PJ, 2005, ANIM CONSERV, V8, P51, DOI 10.1017/S1367943004001799
Sulzner K, 2021, ZOO BIOL, V40, P44, DOI 10.1002/zoo.21572
Tam J., 2021, **DATA OBJECT**, DOI 10.5281/zenodo.5711932
Tam J, 2020, SPECIESHINDEX VERSIO
Tam J., 2022, **DATA OBJECT**, DOI 10.5281/zenodo.6672954
Tam J., 2022, **DATA OBJECT**, DOI 10.5281/zenodo.6644032
Tam J., 2022, GIGASCIENCE DATABASE, DOI 10.5524/102237
Tensen L, 2018, GLOB ECOL CONSERV, V15, DOI 10.1016/j.gecco.2018.e00423
The World Bank, 2019, GDP CURR US
Titley MA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189577
Trimble MJ, 2010, CONSERV BIOL, V24, P886, DOI 10.1111/j.1523-1739.2010.01453.x
Troudet J, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09084-6
Tuck N, 2020, ANIMALS-BASEL, V10, DOI 10.3390/ani10040629
Upham NS, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000494
van Buuren S, 2011, J STAT SOFTW, V45, P1
van Helden P, 2012, EMBO REP, V13, P395, DOI 10.1038/embor.2012.43
Vose P. B., 1983, International Atomic Energy Agency Bulletin, V25, P37
Wang ZY, 2021, INSECT CONSERV DIVER, V14, P700, DOI 10.1111/icad.12499
Watkins HV, 2021, CONSERV LETT, V14, DOI 10.1111/conl.12802
Wiens JJ, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.2001104
Wikipedia, 2021, LIST DOM AN
Wilman H., 2014, Ecology, V95, P2027, DOI [10.1890/13-1917.1, DOI 10.1890/13-1917.1]
NR 72
TC 4
Z9 4
U1 1
U2 5
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 2047-217X
J9 GIGASCIENCE
JI GigaScience
PY 2022
VL 11
AR giac074
DI 10.1093/gigascience/giac074
PG 11
WC Biology; Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Life Sciences & Biomedicine - Other Topics; Science & Technology - Other
Topics
GA 4C9BL
UT WOS:000846739000088
PM 35962776
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Isgüzar, S
Fendoglu, E
Simsek, AI
AF Isguzar, Seda
Fendoglu, Eda
Simsek, Ahmed Ihsan
TI INNOVATIVE APPLICATIONS IN BUSINESSES: AN EVALUATION ON GENERATIVE
ARTIFICIAL INTELLIGENCE
SO AMFITEATRU ECONOMIC
LA English
DT Article
DE ChatGPT; artificial intelligence (AI); generative artificial
intelligence (GenAI); OpenAI; business; business management; technology
adoption; bibliometric analysis
AB The utilisation of Chat Generative Pre -Trained Transformer (ChatGPT) and generative artificial intelligence (GenAI) technologies has started to demonstrate its impact across several domains. The swift shift and widespread implementation of efficient artificial intelligence (AI) present distinct prospects such as optimisation, advancement, enhanced efficiency, boosted sales and marketing, expansion, reduced costs, and heightened profitability. GenAI has the potential to create a competition crisis between technologically advanced enterprises and less developed ones. Additionally, it may give rise to legal, moral, and ethical issues such as copyright infringement and the production of fake and false information. Hence, it is crucial for organisations to ensure that the productivity of AI is maximized in order to maximise its benefits and minimise any potential harm. The aim of this study is to provide suggestions regarding the use and potential of GenAI technologies in the corporate sector and to emphasise the potential research areas of future GenAI. This study contributes to research and practice in business and management and also identifies future research avenues. This study examines the benefits and disadvantages of using GenAI tools in businesses and individual departments, and it highlights the potential risks and dangers. A bibliometric analysis of 198 studies in the discipline of Business & Management from the Scopus database was conducted using the R program's bibliometrix package. The study focuses on descriptive data, annual scientific production, most productive journals, most productive authors and authors dominance factor, most cited publications, and most relevant keywords. The findings show that GenAI is likely to continue with a strong and rapidly rising trend in 2024 and beyond.
C1 [Isguzar, Seda; Fendoglu, Eda] Malatya Turgut Ozal Univ, Malatya, Turkiye.
[Simsek, Ahmed Ihsan] Firat Univ, Elazig, Turkiye.
C3 Malatya Turgut Ozal University; Firat University
RP Fendoglu, E (corresponding author), Malatya Turgut Ozal Univ, Malatya, Turkiye.
EM eda.fendoglu@ozal.edu.tr
RI Simsek, Ahmed Ihsan/W-3881-2018
OI Simsek, Ahmed Ihsan/0000-0002-2900-3032
CR Aguinis H, 2024, ORGAN DYN, V53, DOI 10.1016/j.orgdyn.2024.101029
Al Naqbi H, 2024, SUSTAINABILITY-BASEL, V16, DOI 10.3390/su16031166
Arenas A.D., 2018, INDIAN J SCI TECHNOL, V11, P1, DOI DOI 10.17485/ijst/2018/v11i18/122604
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Beerbaum D., 2023, Generative artificial intelligence (GAI) with chat gpt for accounting -a business case
Carvalho I, 2024, TOUR REV, V79, P290, DOI 10.1108/TR-02-2023-0088
Chen BY, 2023, J CHIN ECON BUS STUD, V21, P471, DOI 10.1080/14765284.2023.2245279
Chuma E. L., 2023, Management Science and Business Decisions, V3, P5, DOI [10.52812/msbd.63, DOI 10.52812/MSBD.63]
Crane D., 1972, Invisible colleges. Diffusion of knowledge in scientific communities
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642
Gill SS, 2022, INTERNET THINGS-NETH, V19, DOI 10.1016/j.iot.2022.100514
GROOS OV, 1969, J DOC, V25, P344, DOI 10.1108/eb026482
Gupta V., 2024, Internet Reference Services Quarterly, V28, P1, DOI [10.1080/10875301.2023.2300114, DOI 10.1080/10875301.2023.2300114]
Gursoy D, 2022, J HOSP MARKET MANAG, V31, P527, DOI 10.1080/19368623.2022.2072504
Han J, 2020, J BIOMED INFORM, V109, DOI 10.1016/j.jbi.2020.103516
Hassani H, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7020062
Herubel J.P.V.M., 1999, LIB CULTURE, P380, DOI [10.2307/25548766, DOI 10.2307/25548766]
Isguzar S., 2021, Dijital Yozlasma ve Etik
Iskender A, 2023, EUR J TOUR RES, V34, DOI 10.54055/ejtr.v34i.3169
Kanbach DK, 2024, REV MANAG SCI, V18, P1189, DOI 10.1007/s11846-023-00696-z
Khan MS, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2024.e24890
Knight W, 2017, MIT Technology Review
Korzynski P, 2023, CENT EUR MANAG J, V31, P3, DOI 10.1108/CEMJ-02-2023-0091
Lewis S., 2017, Journal of the Medical Library Association, V105, P385, DOI [10.5195/jmla.2017, DOI 10.5195/JMLA.2017]
Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790
Ruiz-Real JL, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15122699
Lyu Q, 2023, VIS COMPUT IND BIOME, V6, DOI 10.1186/s42492-023-00136-5
OpenAI, 2023, Introducing ChatGPT Enterprise
OpenAI, 2023, Learning from human preferences
Paul J, 2023, INT J CONSUM STUD, V47, P1213, DOI 10.1111/ijcs.12928
Pereira V, 2023, HUM RESOUR MANAGE R, V33, DOI 10.1016/j.hrmr.2021.100857
Peres R, 2023, INT J RES MARK, V40, P269, DOI 10.1016/j.ijresmar.2023.03.001
Rane N., 2023, Role and Challenges of ChatGPT and Similar Generative Artificial Intelligence in Human Resource Management
Rane N., 2023, ChatGPT and similar generative artificial intelligence (AI) for smart industry: role, challenges and opportunities for industry 4.0, industry 5.0 and society 5.0
Rane N., 2024, Intelligent Manufacturing through Generative Artificial Intelligence, Such as ChatGPT or Bard
Rane N., 2023, PREPRINT
Say C., 2018, 50 Soruda Yapay Zeka
Serdaliyev Y., 2023, e-journal, V24, P129, DOI [10.47526/2023-1/2524, DOI 10.47526/2023-1/2524]
Shahedul A. M., 2024, J. Comp. Sci. Tech. Stud., V6, P58, DOI [10.32996/jcsts.2024.6.1.7, DOI 10.32996/JCSTS.2024.6.1.7]
Soni V., 2023, Reviews of Contemporary Business Analytics, e-journal, V6, P133
Soni V., 2023, Sage Sci. Rev. Appl. Mach. Learn, V6, P1
Wamba SF, 2023, INT J PROD ECON, V265, DOI 10.1016/j.ijpe.2023.109015
Wang Q, 2020, COMPUT SCI REV, V37, DOI 10.1016/j.cosrev.2020.100275
NR 44
TC 0
Z9 0
U1 34
U2 34
PU EDITURA ASE
PI BUCURESTI
PA PIATA ROMANA, NR 6, SECTOR 1, BUCURESTI, 701731, ROMANIA
SN 1582-9146
EI 2247-9104
J9 AMFITEATRU ECON
JI Amfiteatru Econ.
PD MAY
PY 2024
VL 26
IS 66
DI 10.24818/EA/2024/66/511
PG 283
WC Business; Economics; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA UL5C7
UT WOS:001248217500007
OA gold
DA 2024-09-05
ER
PT C
AU Dunn, AG
Arachi, D
Bourgeois, FT
AF Dunn, Adam G.
Arachi, Diana
Bourgeois, Florence T.
BE Sarkar, IN
Georgiou, A
Marques, PMD
TI Identifying Clinical Study Types from PubMed Metadata: The Active
(Machine) Learning Approach
SO MEDINFO 2015: EHEALTH-ENABLED HEALTH
SE Studies in Health Technology and Informatics
LA English
DT Proceedings Paper
CT 15th World Congress on Health and Biomedical Informatics (MEDINFO)
CY AUG 19-23, 2015
CL Int Med Informat Assoc, Brazilian Hlth Informat Soc, Sao Paulo, BRAZIL
HO Int Med Informat Assoc, Brazilian Hlth Informat Soc
DE Machine Learning; Databases; Bibliographic; Antidepressants
ID OPTIMAL SEARCH STRATEGIES; RETRIEVING SCIENTIFICALLY STRONG; MEDLINE;
CLASSIFICATION; CATEGORIZATION; MESH
AB We examined a process for automating the classification of articles in MEDLINE aimed at minimising manual effort without sacrificing accuracy. From 22,808 articles pertaining to 19 antidepressants, 1000 were randomly selected and manually labelled according to article type (including, randomised controlled trials, editorials, etc.). We applied a machine learning approach termed 'active learning', where the learner (machine) selects the order in which the user (human) labels examples. Via simulation, we determined the number of articles a user needed to label to produce a classifier with at least 95% recall and 90% precision in three scenarios related to evidence synthesis. We found that the active learning process reduced the number of training instances required by 70%, 19%, and 14% in the three scenarios. The results show that the active learning method may be used in some scenarios to produce accurate classifiers that meet the needs of evidence synthesis tasks and reduce manual effort.
C1 [Dunn, Adam G.; Arachi, Diana] Macquarie Univ, Ctr Hlth Informat, Australian Inst Hlth Innovat, N Ryde, NSW 2109, Australia.
[Bourgeois, Florence T.] Boston Childrens Hosp, Childrens Hosp Informat Program, Boston, MA USA.
[Bourgeois, Florence T.] Harvard Med Sch, Dept Pediat, Boston, MA USA.
C3 Macquarie University; Harvard University; Boston Children's Hospital;
Harvard University; Harvard Medical School
RP Dunn, AG (corresponding author), Macquarie Univ, Ctr Hlth Informat, Australian Inst Hlth Innovat, N Ryde, NSW 2109, Australia.
EM adam.dunn@mq.edu.au
RI Dunn, Adam/H-4425-2019; Arachi, Diana/AAY-8129-2020; Bourgeois,
Florence/H-6710-2016
OI Dunn, Adam/0000-0002-1720-8209; Arachi, Diana/0000-0003-2446-7011;
Bourgeois, Florence/0000-0001-7798-4560
CR [Anonymous], 2004, BMC MED
[Anonymous], ECP
Aphinyanaphongs Y, 2005, J AM MED INFORM ASSN, V12, P207, DOI 10.1197/jamia.M1641
Cohen Aaron M, 2008, AMIA Annu Symp Proc, P121
Ertekin S., 2007, INT C INF KNOWL MANA, P127, DOI [DOI 10.1145/1321440.1321461, 10.1145/1321440.1321461]
Gay Clifford W, 2005, AMIA Annu Symp Proc, P271
Haynes RB, 2004, BMJ-BRIT MED J, V328, P1040, DOI 10.1136/bmj.38068.557998.EE
Haynes RB, 2005, BMJ-BRIT MED J, V330, P1179, DOI 10.1136/bmj.38446.498542.8F
HAYNES RB, 1994, J AM MED INFORM ASSN, V1, P447, DOI 10.1136/jamia.1994.95153434
Joachims T., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P137, DOI 10.1007/BFb0026683
Kilicoglu H, 2009, J AM MED INFORM ASSN, V16, P25, DOI 10.1197/jamia.M2996
Liu Y, 2004, J CHEM INF COMP SCI, V44, P1936, DOI 10.1021/ci049810a
Montori VM, 2005, BMJ-BRIT MED J, V330, P68, DOI 10.1136/bmj.38336.804167.47
Névéol A, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-S11-S11
Nguyen H.T., 2004, P 21 INT C MACH LEAR, P79
Rak R, 2007, IEEE ENG MED BIOL, V26, P47, DOI 10.1109/MEMB.2007.335581
Robinson KA, 2002, INT J EPIDEMIOL, V31, P150, DOI 10.1093/ije/31.1.150
Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283
Tong S, 2002, J MACH LEARN RES, V2, P45, DOI 10.1162/153244302760185243
Trieschnigg D, 2009, BIOINFORMATICS, V25, P1412, DOI 10.1093/bioinformatics/btp249
Tsafnat G, 2014, SYST REV-LONDON, V3, DOI 10.1186/2046-4053-3-74
Wallace BC, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-55
Warmuth MK, 2003, J CHEM INF COMP SCI, V43, P667, DOI 10.1021/ci025620t
Wilczynski NL, 2004, CAN MED ASSOC J, V171, P1179, DOI 10.1503/cmaj.1040512
Yepes Antonio Jose Jimeno, 2013, AMIA Annu Symp Proc, V2013, P709
Yetisgen-Yildiz Meliha, 2005, AMIA Annu Symp Proc, P849
NR 26
TC 2
Z9 2
U1 0
U2 0
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 0926-9630
EI 1879-8365
BN 978-1-61499-564-7; 978-1-61499-563-0
J9 STUD HEALTH TECHNOL
PY 2015
VL 216
BP 867
EP 871
DI 10.3233/978-1-61499-564-7-867
PG 5
WC Computer Science, Interdisciplinary Applications; Health Care Sciences &
Services; Medical Informatics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Health Care Sciences & Services; Medical Informatics
GA BL7ZK
UT WOS:000455836700178
PM 26262175
DA 2024-09-05
ER
PT J
AU Gendron, Y
Andrew, J
Cooper, C
AF Gendron, Yves
Andrew, Jane
Cooper, Christine
TI The perils of artificial intelligence in academic publishing*
SO CRITICAL PERSPECTIVES ON ACCOUNTING
LA English
DT Article
DE Academia; artificial intelligence; Deskilling; Editorial systems;
Evaluation of research; Selection of reviewers; Algorithms
AB This essay aims to reflect on the potentially perilous implications of artificial intelligence in academic publishing. Our main point is that the colonization of academia by artificial intelligence technologies may erode, deskill and degrade core academic activities, where the role of key actors historically involved in the evaluation of research could become less and less tangible and significant. We are concerned particularly with the gradual removal of human involvement in journal editor and reviewer roles, as artificial intelligence and automated expert systems become increasingly influential across a range of tasks and judgments historically carried out and performed by people. Although these thoughts are exploratory, we believe it is imperative that researchers from all paradigmatic allegiances and geographies engage in initiatives that document, reflect, and debate the implications of artificial intelligence on the ways we evaluate research. The future of academic publishing as a meaningful human activity is at stake.
C1 [Gendron, Yves] Univ Laval, Fac Sci Adm, Pavillon Palasis Prince,2325 rue Terrasse,Local 26, Quebec City, PQ G1V 0A6, Canada.
[Andrew, Jane] Univ Sydney, H69 Codrington, Sydney, NSW 2006, Australia.
[Cooper, Christine] Univ Edinburgh, 29 Buccleuch Pl, Edinburgh EH8 9JS, Scotland.
C3 Laval University; University of Sydney; University of Edinburgh
RP Gendron, Y (corresponding author), Univ Laval, Fac Sci Adm, Pavillon Palasis Prince,2325 rue Terrasse,Local 26, Quebec City, PQ G1V 0A6, Canada.
EM yves.gendron@fsa.ulaval.ca; jane.andrew@sydney.edu.au;
christine.cooper@ed.ac.uk
RI Cooper, Christine/KMY-8758-2024
CR Alvesson M, 2016, J ORGAN CHANGE MANAG, V29, P29, DOI 10.1108/JOCM-11-2015-0221
Alvesson M, 2014, ORGAN STUD, V35, P967, DOI 10.1177/0170840614530916
Alvesson M, 2013, J MANAGE STUD, V50, P128, DOI 10.1111/j.1467-6486.2012.01070.x
[Anonymous], 2017, GUARDIAN 0627
[Anonymous], 2001, HANSARD, V365
Bazari N, 2018, HELPING HAND FINDING
Becker H., 1986, Writing for social scientists
Bonsall SB, 2017, J ACCOUNT ECON, V63, P329, DOI 10.1016/j.jacceco.2017.03.002
Bourdieu P., 1984, Homo Academicus
Cabitza Federico, 2017, Recenti Progressi in Medicina, V108, P397, DOI 10.1701/2802.28353
CALLON M, 1986, SOCIOL RE MONOGR, P196, DOI 10.1111/j.1467-954X.1984.tb00113.x
Checco A, 2021, HUM SOC SCI COMMUN, V8, DOI 10.1057/s41599-020-00703-8
Chomsky Noam., 2003, CHOMSKY DEMOCRACY ED
Courtois C, 2020, QUAL RES ACCOUNT MAN, V17, P465, DOI 10.1108/QRAM-11-2019-0127
Crawford K., 2021, COSTS OF WAR
Dirsmith W. M., 1982, J ACCOUNTING AUDITIN, P214
Dourish P, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716665128
Elsevier, 2021, ELS
Elsevier, 2021, SEARCH REV US REV RE
Elsevier, 2018, I US NEW REV REC EV
Foucault M., 1977, DISCIPLINE PUNISH BI
Gabriel Y, 2010, ORGAN STUD, V31, P757, DOI 10.1177/0170840610372574
Gendron Y, 2008, EUR ACCOUNT REV, V17, P97, DOI 10.1080/09638180701705973
Giles P, 2019, J CULT ECON-UK, V12, P612, DOI 10.1080/17530350.2019.1639068
Golden-Biddle K., 2007, COMPOSING QUALITATIV, V2nd
Han B.-C., 2017, PSYCHOPOLITICS NEOLI
Heaven D, 2018, NATURE, V563, P609, DOI 10.1038/d41586-018-07245-9
Humphrey C, 2015, CRIT PERSPECT ACCOUN, V26, P47, DOI 10.1016/j.cpa.2014.09.008
Impelsys, 2019, ARTIF INTELL
Latour B., 1987, Science in Action
Lord S., 2017, LES AFFAIRES
Lyon D., 2001, SURVEILLANCE SOC MON
MacKenzie D., 2006, An Engine, Not a Camera: How Financial Models Shape Markets
Malsch B, 2016, AUDITING-J PRACT TH, V35, P1, DOI 10.2308/ajpt-51170
Malsch B, 2015, CRIT PERSPECT ACCOUN, V26, P84, DOI 10.1016/j.cpa.2014.02.006
Nilsson Patricia., 2018, FINANC TIMES
Pare I., 2017, DEVOIR
Parker M, 2014, ORGANIZATION, V21, P281, DOI 10.1177/1350508413502646
Picard CF, 2019, EUR ACCOUNT REV, V28, P737, DOI 10.1080/09638180.2018.1535323
Porter T. M., 1995, TRUST NUMBERS PURSUI
RELX, 2019, ANN REP FIN STAT 201
Rettino-Parazelli K., 2018, DEVOIR 1205
Taylor A, 2018, Logic Magazine, V5
Tedford A., 2015, HELPING EDITORS FIND
Viale T, 2017, ACCOUNT AUDIT ACCOUN, V30, P270, DOI 10.1108/AAAJ-12-2014-1887
WEICK KE, 1989, ACAD MANAGE REV, V14, P516, DOI 10.2307/258556
Willmott H, 2011, ORGANIZATION, V18, P429, DOI 10.1177/1350508411403532
NR 47
TC 20
Z9 20
U1 8
U2 47
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1045-2354
EI 1095-9955
J9 CRIT PERSPECT ACCOUN
JI Crit. Perspect. Account.
PD SEP
PY 2022
VL 87
AR 102411
DI 10.1016/j.cpa.2021.102411
EA SEP 2022
PG 12
WC Business, Finance
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA 4U8SF
UT WOS:000859056500004
OA Green Accepted, Green Submitted
DA 2024-09-05
ER
PT J
AU Hückstädt, M
AF Hueckstaedt, Malte
TI Ten reasons why research collaborations succeed-a random forest approach
SO SCIENTOMETRICS
LA English
DT Article
DE Research collaboration success; Team science; Collaboration
effectiveness; Random forest; Machine Learning
ID INTERDISCIPLINARY RESEARCH; TEAM CLIMATE; PERFORMANCE; INNOVATION;
STRATEGIES; CONFLICT; MODEL; TASK
AB The state of research in the Science of Team Science is characterised by a wide range of findings on how successful research collaboration should be structured. However, it remains unclear how the multitude of findings can be put into a hierarchical order with regard to their significance for the success of cooperation. This is where the article comes in: based on the state of research, the question of which intra- and interpersonal factors are most significant for the success of a research team is investigated. In order to explore the ten most important reasons for the success of a research collaboration, a Random Forest classifier is specified that predicts the success of research collaborations on the basis of 51 input variables. The analyses presented in the paper are based on representative survey data on n = 1.417 principal investigators and spokespersons of ongoing and completed research clusters funded by the German Research Foundation. The success of a research cluster is operationalised as the extent to which it has achieved the goals that it communicated to the funding agency before it began. Highly realistic and clear research objectives are central to the success of research clusters, as are comprehensive agreement on objectives, close interconnection of the subprojects' research work and a fair and trusting cooperation climate.
C1 [Hueckstaedt, Malte] German Ctr Higher Educ Res & Sci Studies, Lange Laube 12, D-30159 Hannover, Germany.
RP Hückstädt, M (corresponding author), German Ctr Higher Educ Res & Sci Studies, Lange Laube 12, D-30159 Hannover, Germany.
EM hueckstaedt@dzhw.eu
OI Huckstadt, Malte/0000-0002-0185-4230
FU Projekt DEAL; German Federal Ministry of Education and Research; Projekt
DEAL [M527800]; German Federal Ministry of Education and Research
FX Open Access funding enabled and organized by Projekt DEAL. This research
was supported by the German Federal Ministry of Education and Research
[grant number M527800].
CR Aboelela SW, 2007, HEALTH SERV RES, V42, P329, DOI 10.1111/j.1475-6773.2006.00621.x
Abramo G, 2017, J INFORMETR, V11, P1016, DOI 10.1016/j.joi.2017.09.007
Abramo G, 2014, SCIENTOMETRICS, V98, P2275, DOI 10.1007/s11192-013-1185-3
Ambrasat J., 2022, DZHW WISSENSCHAFTSBE
Andersen H, 2013, SYNTHESE, V190, P1881, DOI 10.1007/s11229-012-0172-1
Anderson N., 2000, TEAM CLIMATE INVENTO
Anderson NR, 1998, J ORGAN BEHAV, V19, P235, DOI 10.1002/(SICI)1099-1379(199805)19:3<235::AID-JOB837>3.0.CO;2-C
[Anonymous], 1990, INNOVATION CREATIVIT
[Anonymous], 2005, Transdisziplinaritat: systematisch-vergleichende Untersuchung disziplinenubergreifender Wissenschaftspraxis [Transdisciplinarity: systematic-comparative study of cross-disciplinary scientific practice]
[Anonymous], 1984, Die Fabrikation von Erkenntnis. Zur Anthropologie der Naturwissenschaft
[Anonymous], 2003, Linked: How everything is connected to everything else and what it means for business, sciense and everyday life
[Anonymous], 2007, Structures of scientific collaboration
Antoni, 2000, TEAMARBEIT GESTALTEN
Arriaga RI, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P81, DOI 10.1007/978-3-030-20992-6_5
Aubé C, 2005, GROUP DYN-THEOR RES, V9, P189, DOI 10.1037/1089-2699.9.3.189
Bachrach C, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P455, DOI 10.1007/978-3-030-20992-6_35
Bain PG, 2001, SMALL GR RES, V32, P55, DOI 10.1177/104649640103200103
Baurmann M., 2014, POLITIK STRATEGIE MA, V2, P73
Beer A., 2020, INTEGRIEREN KOMMUNIZ
Bennett LM, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P295, DOI 10.1007/978-3-030-20992-6_22
Andrade HB, 2009, RES EVALUAT, V18, P301, DOI 10.3152/095820209X451041
Blanckenburg C., 2005, PROJEKTE INITIIEREN
Blot WJ, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P207, DOI 10.1007/978-3-030-20992-6_16
Boehmke B, 2019, HANDS ON MACHINE LEA, DOI DOI 10.1201/9780367816377
Bozeman B, 2004, RES POLICY, V33, P599, DOI 10.1016/j.respol.2004.01.008
Bozeman B, 2001, INT J TECHNOL MANAGE, V22, P716, DOI 10.1504/IJTM.2001.002988
Bozeman B., 2014, Research collaboration and team science: A state-of-the-art review and agenda
Bozeman B, 2007, RES POLICY, V36, P694, DOI 10.1016/j.respol.2007.01.007
Bozeman Barry., 2017, The strength in numbers: the new science of team science
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Breiman L., 1984, CLASSIFICATION REGRE, DOI DOI 10.1201/9781315139470
Breiman L, 2004, 666 UC BERK DEP STAT
Bruce P, 2017, PRACTICAL STAT DATA
Bukvova, 2010, WORK PAPERS INFORM S, V3, P1
Chawla A, 1998, SCIENTOMETRICS, V43, P373, DOI 10.1007/BF02457405
Choi BCK, 2007, CLIN INVEST MED, V30, pE224, DOI 10.25011/cim.v30i6.2950
Cooke NJ., 2015, OVERVIEW RES TEAM EF
Crow MM, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P477, DOI 10.1007/978-3-030-20992-6_37
Crutchfield R. S., 1973, SCHADLICHE AUSWIRKUN
De Dreu CKW, 2003, J APPL PSYCHOL, V88, P741, DOI 10.1037/0021-9010.88.4.741
Defila R., 2006, FORSCHUNGSVERBUNDMAN
Defila R., 2008, Management von Forschungsverbuenden: Moeglichkeiten der Professionalisierung und Unterstuetzung
Defila R., 2015, MANAGEMENTVERANTWORT
Derry S.J., 2005, Interdisciplinary Collabora- tion: An Emerging Cognitive Science
Di Giulio A., 2008, FORSCHUNG, V1, P69
Doring N., 2016, Forschungsmethoden und Evaluation in den Sozialund Humanwissenschaften
DuRussel LA, 2005, INTERDISCIPLINARY COLLABORATION: AN EMERGING COGNITIVE SCIENCE, P187
Elias N., 1982, Scientific establishments and hierarchies
Falcone M, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P69, DOI 10.1007/978-3-030-20992-6_4
Fiore S. M., 2015, RES MANAGING GROUPS
Genuer R., 2020, Random forests with R
German Research Foundation, 2019, GUID CLUST EXC
German Research Foundation, 2015, GUID PRIOR PROGR
German Research Foundation, 2010, GUID RES CTR
German Research Foundation, 2021, GEPRIS DAT
German Research Foundation, 2021, GUID RES UN
German Research Foundation, 2020, GUID COLL RES CTR
Ghatak A., 2017, MACHINE LEARNING R
Gibbs KD, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P197, DOI 10.1007/978-3-030-20992-6_15
Hall KL, 2008, AM J PREV MED, V35, pS161, DOI 10.1016/j.amepre.2008.03.035
Hall KL, 2012, TRANSL BEHAV MED, V2, P415, DOI 10.1007/s13142-012-0167-y
Hastie T., 2009, The Elements of Statistical Learning
Hendren CO, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P363, DOI 10.1007/978-3-030-20992-6_27
Holbrook JB, 2013, SYNTHESE, V190, P1865, DOI 10.1007/s11229-012-0179-7
Hollaender K., 2003, INTERDISZIPLINARE FO
James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1
Janis I. L., 1972, VICTIMS GROUPTHINK P
Janitza S., 2014, 174 DEP STAT U MUN
John M., 2019, MANAGEMENT INTERDISZ, P21
Kern C, 2019, SURV RES METHODS-GER, V13, P73, DOI 10.18148/srm/2019.v13i1.7395
Khalilia M, 2011, BMC MED INFORM DECIS, V11, DOI 10.1186/1472-6947-11-51
Klein J.T., 2012, CASE STUDIES INTERDI, P283, DOI [10.4135/9781483349541.n10, DOI 10.4135/9781483349541.N10]
Kozlowski S.W. J., 2003, Handbook of psychology: Industrial and organizational psychology, V12, P333, DOI DOI 10.1002/0471264385.WEI1214
Krott M., 1996, OKOLOGIE INTERDISZIP, P87
Laudel, 1999, INTERDISZIPLINARE FO
Laudel G, 2002, RES EVALUAT, V11, P3, DOI 10.3152/147154402781776961
Liaw A., 2018, RANDOMFOREST BREIMAN
MeiSSner Florian, 2021, Front Res Metr Anal, V6, P778176, DOI 10.3389/frma.2021.778176
Misra S, 2011, CONVERGING DISCIPLINES: A TRANSDISCIPLINARY RESEARCH APPROACH TO URBAN HEALTH PROBLEMS, P97, DOI 10.1007/978-1-4419-6330-7_8
Munch R, 2007, Die akademische Elite: zur sozialen Konstruktion wissenschaftlicher Exzellenz
Neufeld J., 2016, WISSENSCHAFTLERBEFRA
Nurius PS, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P171, DOI 10.1007/978-3-030-20992-6_13
Nwanganga Fred., 2020, PRACTICAL MACHINE LE
O'Rourke M, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P21, DOI 10.1007/978-3-030-20992-6_2
Olechnicka A., 2019, The geography of scientific collaboration
Paluszynska A., 2020, randomForestExplainer: explaining and visualizing random forests in terms of variable importance
Pohl C., 2007, Principles for Designing Transdisciplinary Research
Porter JJ, 2018, ENVIRON SCI POLICY, V89, P100, DOI 10.1016/j.envsci.2018.07.004
ROSSINI FA, 1979, RES POLICY, V8, P70, DOI 10.1016/0048-7333(79)90030-1
Rufibach K, 2010, J CLIN EPIDEMIOL, V63, P938, DOI 10.1016/j.jclinepi.2009.11.009
Salas E., 2017, The Wiley Blackwell Handbook ofthe Psychology of Team Working and Collaborative Processes
Salazar MR, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P313, DOI 10.1007/978-3-030-20992-6_24
Shinn T., 2004, KOOPERATION NIEMANDS
Shrum W, 2001, SOC STUD SCI, V31, P681, DOI 10.1177/030631201031005002
Stokols D, 2008, AM J PREV MED, V35, pS96, DOI 10.1016/j.amepre.2008.05.003
Strobl C, 2009, PSYCHOL METHODS, V14, P323, DOI 10.1037/a0016973
Strobl C, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-307
Thompson JL, 2009, J APPL COMMUN RES, V37, P278, DOI 10.1080/00909880903025911
Twyman M, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P217, DOI 10.1007/978-3-030-20992-6_17
Vinck D, 2010, PRIME SER RES INNOV, P1
Vowe G., 2020, KONSEQUENZEN PUBLIZI, V65, P151, DOI [10.1007/s11616-020-00575-7, DOI 10.1007/S11616-020-00575-7]
Weisberg H. F., 2009, The total survey error approach
West M.A., 1990, INNOVATION CREATIVIT
Winter S, 2019, STRATEGIES FOR TEAM SCIENCE SUCCESS: HANDBOOK OF EVIDENCE-BASED PRINCIPLES FOR CROSS-DISCIPLINARY SCIENCE AND PRACTICAL LESSONS LEARNED FROM HEALTH RESEARCHERS, P329, DOI 10.1007/978-3-030-20992-6_25
Yuan L., 2008, INT C INFORM MANAGEM, DOI [10.1109/ICIII.2008.249, DOI 10.1109/ICIII.2008.249]
Zaccaro SJ, 2001, LEADERSHIP QUART, V12, P451, DOI 10.1016/S1048-9843(01)00093-5
NR 106
TC 5
Z9 6
U1 6
U2 27
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD MAR
PY 2023
VL 128
IS 3
BP 1923
EP 1950
DI 10.1007/s11192-022-04629-7
EA JAN 2023
PG 28
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 9M3IZ
UT WOS:000911272900003
OA hybrid
DA 2024-09-05
ER
PT C
AU Han, H
Giles, L
Zha, H
Li, C
Tsioutsiouliklis, K
AF Han, H
Giles, L
Zha, H
Li, C
Tsioutsiouliklis, K
BE Chen, H
Christel, M
Lim, EP
TI Two supervised learning approaches for name disambiguation in author
citations
SO JCDL 2004: PROCEEDINGS OF THE FOURTH ACM/IEEE JOINT CONFERENCE ON
DIGITAL LIBRARIES: GLOBAL REACH AND DIVERSE IMPACT
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 4th Joint Conference on Digital Libraries
CY JUN 07-11, 2004
CL Tucson, AZ
DE naive Bayes; name disambiguation; Support Vector Machine
AB Due to name abbreviations, identical names, name misspellings, and pseudonyms in publications or bibliographies (citations), an author may have multiple names and multiple authors may share the same name. Such name ambiguity affects the performance of document retrieval, web search, database integration, and may cause improper attribution to authors. This paper investigates two supervised teaming approaches to disambiguate authors in the citations'. One approach uses the naive Bayes probability model, a generative model; the other uses Support Vector Machines(SVMs) [39] and the vector space representation of citations, a discriminative model. Both approaches utilize three types of citation attributes: co-author names, the title of the paper, and the title of the journal or proceeding. We illustrate these two approaches on two types of data, one collected from the web, mainly publication lists from homepages, the other collected from the DBLP citation databases.
C1 Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA.
C3 Pennsylvania Commonwealth System of Higher Education (PCSHE);
Pennsylvania State University; Pennsylvania State University -
University Park
EM hhan@cse.psu.edu; giles@ist.psu.edu; zha@cse.psu.edu;
cli@hsph.harvard.edu; kt@nec-labs.com
CR [Anonymous], P 16 ANN INT ACM SIG
[Anonymous], M ASS COMP LING
[Anonymous], 1988, Tracking and Data Association
Baker L. D., 1998, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P96, DOI 10.1145/290941.290970
Banerjee A., 2003, P 9 ACM SIGKDD INT C, P19, DOI DOI 10.1145/956755.956757
BANERJEE S, P 3 INT C INT TEXT P
Bilenko M, 2003, IEEE INTELL SYST, V18, P16, DOI 10.1109/MIS.2003.1234765
BITTON D, 1983, ACM T DATABASE SYST, V8, P255, DOI 10.1145/319983.319987
BRANTING LK, 2002, J INFORMATION LAW TE, P1
Califf ME, 1999, SIXTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-99)/ELEVENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE (IAAI-99), P328
Cohen W. W., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P255, DOI 10.1145/347090.347141
Cristianini N., 2000, Support Vector Machines and other kernel-based learning methods
DAGAN I, 1994, M ASS COMP LING, P272
Dhillon I. S., 2003, Journal of Machine Learning Research, V3, P1265, DOI 10.1162/153244303322753661
DiLauro T., 2001, D-Lib Magazine, V7
ESCUDERO G, 2000, P 14 EUR C ART INT E
FELLEGI IP, 1969, J AM STAT ASSOC, V64, P1183, DOI 10.2307/2286061
Giles C. L., 1998, P 3 ACM C DIGITAL LI, P89
GILLMAN P, 1998, 91 BRIT LIB BOARD
Han H, 2003, ACM-IEEE J CONF DIG, P37
Han H., 2003, P 2 INT SEM WEB C IS
Hernandez MA, 1998, DATA MIN KNOWL DISC, V2, P9, DOI 10.1023/A:1009761603038
Hofmann T., 1999, UAI
Joachims T., 2001, Proceedings of the 24th ACM-SIGIR international conference on research and development in information retrieval, P128, DOI DOI 10.1145/383952.383974
LIN D, 2002, P C COMP LING, P577
McCallum A., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P169, DOI 10.1145/347090.347123
Mong Li Loo, 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P290
MONGE AE, 1997, RES ISSUES DATA MINI, P23
PASULA H, 2002, P NEUR INF PROC SYST
Petinot Y, 2003, ACM-IEEE J CONF DIG, P199, DOI 10.1109/JCDL.2003.1204864
Seymore K, 1999, P AAAI 99 WORKSH MAC
Skounakis M., 2003, P 18 INT JOINT C ART
Takasu A, 2003, ACM-IEEE J CONF DIG, P49, DOI 10.1109/JCDL.2003.1204843
TAKEUCHI K, 2002, USE SUPPORT VECTOR M
TEJADA S, 2002, P 8 ACM SIGKDD INT C, P350
Tsuruoka Y., 2003, Proceedings of NAACL, P127, DOI DOI 10.3115/1119176.1119193
Vapnik Vladimir N., 1995, The nature of statistical learning theory
WARNER JW, 2001, P 1 ACM IEEE CS JOIN
Yao YY, 1995, INT J GEN SYST, V23, P343, DOI 10.1080/03081079508908047
Zha H., 2001, Proceedings of the tenth international conference on Information and knowledge management, P25
ZHANG X, 2001, RECURSIVE SAMPLE CLA
NR 41
TC 166
Z9 209
U1 1
U2 16
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
SN 2575-7865
EI 2575-8152
BN 1-58113-832-6
J9 ACM-IEEE J CONF DIG
PY 2004
BP 296
EP 305
DI 10.1145/996350.996419
PG 10
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BAM92
UT WOS:000222881400052
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Sánchez-Bello, NF
Quiroga, JEM
Pérez-Martelo, CB
AF Sanchez-Bello, Nubia Fernanda
Quiroga, Jorge Enrique Mejia
Perez-Martelo, Constanza Beatriz
TI Factors Associated with Citation of Colombian Biomedical Articles:
Analysis with Machine Learning
SO INVESTIGACION BIBLIOTECOLOGICA
LA English
DT Article
DE Citation Analysis; Machine Learning; Biomedical Research; Colombia
ID COLLABORATION; COUNTS
AB Citation indicators can be used to measure the impact or usefulness of research results in a scientific article; however, this usage can be controversial. Intrinsic and extrinsic factors influence the citation of an article, not to mention that citation behavior can differ between thematic areas, which hinders the comparison between articles and disciplines. Understanding that context can affect citation analysis is essential to interpret indicators properly; for this reason, we want to recognize the fac- tors that influence the citation of Colombian biomedical journals indexed in Scopus using Machine Learning al- gorithms. With 'Gradient Boosting Classifier' and 'Light Gradient Boosting Machine' algorithms, we find char- acteristics of importance such as the h -index of the first and last author, open access, number of authors and key- words of the article, in addition to identifying the num- ber of pages. These characteristics are relevant to the ar- ea of interest and can provide context for future analyses, always considering that what should be relevant about an article is not how many citations it attracts but whether it helps to fill gaps in knowledge.
C1 [Sanchez-Bello, Nubia Fernanda] Univ Cent, Fac Ingn & Ciencias Basicas, Bogota, Colombia.
[Quiroga, Jorge Enrique Mejia; Perez-Martelo, Constanza Beatriz] Univ Cent, Fac Ingn & Ciencias Basicas, Grp Invest Prod Innovac Desarrollo & Org, Bogota, Colombia.
RP Sánchez-Bello, NF (corresponding author), Univ Cent, Fac Ingn & Ciencias Basicas, Bogota, Colombia.
EM nsanchezb1@ucentral.edu.co; jmejiaq@ucentral.edu.co;
cperezm@ucentral.edu.co
CR Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575
Ali Moez, 2020, PyCaret: An open source, low-code machine learning library in Python
Alohali YAA, 2022, BIOMED RES INT, V2022, DOI 10.1155/2022/2239152
Anderson Caleb, 2021, J Prim Care Community Health, V12, p21501327211015592, DOI 10.1177/21501327211015592
Aphinyanaphongs Y, 2006, J AM MED INFORM ASSN, V13, P446, DOI 10.1197/jamia.M2031
Ronda-Pupo GA, 2022, INVESTIG BIBLIOTECOL, V36, P109, DOI 10.22201/iibi.24488321xe.2022.91.58505
Arrizabalaga Olatz, 2020, F1000Res, V9, P649, DOI 10.12688/f1000research.24136.1
Basson I, 2021, SCIENTOMETRICS, V126, P459, DOI 10.1007/s11192-020-03734-9
Bordons M, 2013, SCIENTOMETRICS, V96, P443, DOI 10.1007/s11192-012-0890-7
Cáceres Castellanos Gustavo, 2014, Rev. Fac. ing., V23, P7
Crespo Juan, 2012, Working Papers Economic Series, V12, P1
Crespo JA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058727
Cronin B, 2006, J AM SOC INF SCI TEC, V57, P1275, DOI 10.1002/asi.20354
Datos Abiertos Colombia, 2022, Ciencia, Tecnologia e Innovacion
Figg WD, 2006, PHARMACOTHERAPY, V26, P759, DOI 10.1592/phco.26.6.759
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Grover V, 2014, COMMUN ASSOC INF SYS, V34, P1435
Harzing A.W., 2007, Publish or perish
He ZL, 2009, J AM SOC INF SCI TEC, V60, P2151, DOI 10.1002/asi.21150
Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1
Langham-Putrow A, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0253129
Martínez-Plumed F, 2021, IEEE T KNOWL DATA EN, V33, P3048, DOI 10.1109/TKDE.2019.2962680
Martinovich V, 2020, DADOS-REV CIENC SOC, V63, DOI 10.1590/001152582020218
MERTON RK, 1988, ISIS, V79, P606, DOI 10.1086/354848
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
Navarrete L, 2019, REV MED CLIN CONDES, V30, P219, DOI 10.1016/j.rmclc.2019.04.002
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Piwowar Heather, 2018, PeerJ, V6, pe4375, DOI 10.7717/peerj.4375
Pradhan DK, 2019, PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD, P330, DOI 10.1145/3297001.3297053
Repiso R., 2021, Iberoam J Sci Meas Commun, V1, P007, DOI [10.47909/ijsmc.09, DOI 10.47909/IJSMC.08, 10.47909/ijsmc.08]
Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263
Stephan P, 2017, NATURE, V544, P411, DOI 10.1038/544411a
The pandas development team, 2023, Zenodo
Zhongqi Su, 2020, 2020 Proceedings of Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), P101, DOI 10.1109/IPEC49694.2020.9114959
NR 35
TC 0
Z9 0
U1 0
U2 0
PU UNIV NACIONAL AUTONOMA MEXICO
PI MEXICO CITY
PA CIUDAD UNIV, CENTRO UNIV BIBLIOTECOLOGICAS, TORRE II HUMANIDADES, PISO
11, 12 & 13, MEXICO CITY, CP 04510, MEXICO
SN 0187-358X
EI 2448-8321
J9 INVESTIG BIBLIOTECOL
JI Investig. Bibliotecol.
PD APR-JUN
PY 2024
VL 38
IS 99
BP 89
EP 107
DI 10.22201/iibi.24488321xe.2024.99.58857
PG 19
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA LY6J1
UT WOS:001190408500001
OA gold
DA 2024-09-05
ER
PT J
AU Huang, LT
Shi, FF
Hu, D
Kang, DY
AF Huang, Litao
Shi, Fanfan
Hu, Dan
Kang, Deying
TI Analysis of research topics and trends in investigator-initiated
research/trials (IIRs/IITs): A topic modeling study
SO MEDICINE
LA English
DT Article
DE bibliometric; investigator-initiated trials; latent Dirichlet
allocation; Web of Science
ID ATRIAL-FIBRILLATION; CLINICAL-TRIALS
AB Background:With the exponential growth of publications in the field of investigator-initiated research/trials (IIRs/IITs), it has become necessary to employ text mining and bibliometric analysis as tools for gaining deeper insights into this area of study. By using these methods, researchers can effectively identify and analyze research topics within the field.Methods:This study retrieved relevant publications from the Web of Science Core Collection and conducted bioinformatics analysis. The latent Dirichlet allocation model, which is based on machine learning, was utilized to identify subfield research topics.Results:A total of 4315 articles related to IIRs/IITs were obtained from the Web of Science Core Collection. After excluding duplicates and articles with missing abstracts, a final dataset of 3333 articles was included for bibliometric analysis. The number of publications showed a steady increase over time, particularly since 2000. The United States, Germany, the United Kingdom, the Netherlands, Canada, Denmark, Japan, Switzerland, and France emerged as the most productive countries in terms of IIRs/IITs. The citation analysis revealed intriguing trends, with certain highly cited articles showing a significant increase in citation frequency in recent years. A model with 45 topics was deemed the best fit for characterizing the extensively researched fields within IIRs/IITs. Our analysis revealed 10 top topics that have garnered significant attention, spanning domains such as community health, cancer treatment, brain development and disease mechanisms, nursing research, and stem cell therapy. These top topics offer researchers valuable directions for further investigation and innovation. Additionally, we identified 12 hot topics, which represent the most cutting-edge and highly regarded research areas within the field.Conclusion:This study contributes to a comprehensive understanding of the current research landscape and provides valuable insights for researchers working in this domain.
C1 [Huang, Litao] Sichuan Univ, West China Hosp, Chinese Evidence Based Med Ctr, Natl Clin Res Ctr Geriatr, Chengdu, Sichuan, Peoples R China.
[Huang, Litao; Shi, Fanfan; Hu, Dan; Kang, Deying] Sichuan Univ, Dept Clin Res Management, West China Hosp, Chengdu, Peoples R China.
[Kang, Deying] Sichuan Univ, West China Hosp, Dept Evidence Based Med & Clin Epidemiol, Chengdu, Peoples R China.
C3 Sichuan University; Sichuan University; Sichuan University
RP Kang, DY (corresponding author), Sichuan Univ, Dept Clin Res Management, West China Hosp, Chengdu, Peoples R China.; Kang, DY (corresponding author), Sichuan Univ, West China Hosp, Dept Evidence Based Med & Clin Epidemiol, Chengdu, Peoples R China.
EM huanglitao@wchscu.cn; shifanfan0706@163.com; deyingkang@126.com
FU National Clinical Research Center for Geriatrics, West China Hospital,
Sichuan University [Z20192005]; The 1.3.5 project for disciplines of
excellence, West China Hospital, Sichuan University [ZYGD23002]
FX This work was supported by the National Clinical Research Center for
Geriatrics, West China Hospital, Sichuan University (Z20192005); 1.3.5
project for disciplines of excellence, West China Hospital, Sichuan
University (ZYGD23002).
CR Backhouse A, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.m865
Devaiah A, 2016, LARYNGOSCOPE, V126, pE300, DOI 10.1002/lary.25942
Dézsi CA, 2017, EUR J INTERN MED, V40, P1, DOI 10.1016/j.ejim.2017.01.001
Enck P, 2019, HANDB EXP PHARMACOL, V260, P399, DOI 10.1007/164_2019_269
Etemadi A, 2020, LANCET GASTROENTEROL, V5, P42, DOI 10.1016/S2468-1253(19)30328-0
Feinberg BA, 2020, VALUE HEALTH, V23, P1358, DOI 10.1016/j.jval.2020.06.006
Fink R, 2000, Proc (Bayl Univ Med Cent), V13, P236
Gray DM, 2021, LANCET GASTROENTEROL, V6, P605, DOI 10.1016/S2468-1253(21)00228-4
Hatfield LA, 2016, J NURS ADMIN, V46, P245, DOI 10.1097/NNA.0000000000000338
Heravi AT, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0264427
Herfarth HH, 2017, INFLAMM BOWEL DIS, V23, P14, DOI 10.1097/MIB.0000000000000907
Heyland DK, 2023, LANCET, V401, P568, DOI 10.1016/S0140-6736(22)02469-2
Istaiti M, 2021, AM J HEMATOL, V96, P545, DOI 10.1002/ajh.26131
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jung YJ, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e14208
Kandiah J, 2022, CLIN TRANSL GASTROEN, V13, DOI 10.14309/ctg.0000000000000516
Kistler PM, 2023, JAMA-J AM MED ASSOC, V329, P127, DOI 10.1001/jama.2022.23722
McDonald HG, 2023, SURG ONCOL CLIN N AM, V32, P13, DOI 10.1016/j.soc.2022.07.003
Mills A, 2014, NEW ENGL J MED, V370, P552, DOI 10.1056/NEJMra1110897
Mori N, 2021, FRONT HUM NEUROSCI, V15, DOI 10.3389/fnhum.2021.786225
Mudaranthakam DP, 2020, CONT CLIN TRIAL COMM, V18, DOI 10.1016/j.conctc.2020.100579
Nury E, 2020, BMC MED RES METHODOL, V20, DOI 10.1186/s12874-020-01125-5
Otokiti A, 2019, INT J HEALTH CARE Q, V32, P425, DOI 10.1108/IJHCQA-03-2018-0062
Poulsen CH, 2022, TRIALS, V23, DOI 10.1186/s13063-022-06670-6
Ralapanawa U, 2021, J EPIDEMIOL GLOB HEA, V11, P169, DOI 10.2991/jegh.k.201217.001
Saesen R, 2023, ESMO OPEN, V8, P1, DOI 10.1016/j.esmoop.2023.100878
Stephenson D, 2022, CLIN PHARMACOL THER, V111, P799, DOI 10.1002/cpt.2528
Suvarna Viraj, 2012, Perspect Clin Res, V3, P119, DOI 10.4103/2229-3485.103591
Tanemura N, 2021, TRIALS, V22, DOI 10.1186/s13063-021-05143-6
Teufel-Shone NI, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16010044
Yan J, 2022, NAT LANG ENG, V28, P137, DOI 10.1017/S1351324920000649
Yildirim O, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00461
Zhao Y, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/s12859-015-0558-4
NR 33
TC 0
Z9 0
U1 0
U2 0
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA
SN 0025-7974
EI 1536-5964
J9 MEDICINE
JI Medicine (Baltimore)
PD MAR 8
PY 2024
VL 103
IS 10
AR e37375
DI 10.1097/MD.0000000000037375
PG 8
WC Medicine, General & Internal
WE Science Citation Index Expanded (SCI-EXPANDED)
SC General & Internal Medicine
GA QS0C1
UT WOS:001222731500056
PM 38457583
OA gold
DA 2024-09-05
ER
PT J
AU Taskin, Z
Al, U
AF Taskin, Zehra
Al, Umut
TI Natural language processing applications in library and information
science
SO ONLINE INFORMATION REVIEW
LA English
DT Article
DE Social network analysis; Bibliometrics; Library and information science;
Citespace; VOSviewer; Natural language processing
ID COMBINING BIBLIOMETRICS; RETRIEVAL; RELEVANCE; CITATIONS; NLP
AB Purpose With the recent developments in information technologies, natural language processing (NLP) practices have made tasks in many areas easier and more practical. Nowadays, especially when big data are used in most research, NLP provides fast and easy methods for processing these data. The purpose of this paper is to identify subfields of library and information science (LIS) where NLP can be used and to provide a guide based on bibliometrics and social network analyses for researchers who intend to study this subject. Design/methodology/approach Within the scope of this study, 6,607 publications, including NLP methods published in the field of LIS, are examined and visualized by social network analysis methods. Findings After evaluating the obtained results, the subject categories of publications, frequently used keywords in these publications and the relationships between these words are revealed. Finally, the core journals and articles are classified thematically for researchers working in the field of LIS and planning to apply NLP in their research. Originality/value The results of this paper draw a general framework for LIS field and guides researchers on new techniques that may be useful in the field.
C1 [Taskin, Zehra; Al, Umut] Hacettepe Univ, Dept Informat Management, Ankara, Turkey.
C3 Hacettepe University
RP Taskin, Z (corresponding author), Hacettepe Univ, Dept Informat Management, Ankara, Turkey.
EM ztaskin@hacettepe.edu.tr; umutal@hacettepe.edu.tr
RI Al, Umut/E-9584-2013; Taskin, Zehra/H-3025-2011
OI Taskin, Zehra/0000-0001-7102-493X
FU Turkish Scientific and Technological Research Center [115K440]
FX This paper was supported in part by a research grant from the Turkish
Scientific and Technological Research Center (115K440).
CR Adedayo AV, 2015, PERFORM MEAS METR, V16, P303, DOI 10.1108/PMM-01-2015-0001
Akbulut M., 2016, THESIS
[Anonymous], 1979, INFORM RETRIEVAL
[Anonymous], 2017, Oxford Living Dictionary
[Anonymous], 1983, INTRO MODERN INFORM
[Anonymous], 1999, Foundations of statistical natural language processing
Arisoy E, 2010, INT CONF ACOUST SPEE, P5538, DOI 10.1109/ICASSP.2010.5495226
Avram S, 2014, CONTROL ENG APPL INF, V16, P62
BATES MJ, 1989, ONLINE REV, V13, P407, DOI 10.1108/eb024320
BELKIN NJ, 1982, J DOC, V38, P61, DOI 10.1108/eb026722
BIRNDL2018, 2018, 3 JOINT WORKSH BIBL
Blair D.C., 1990, ANNU REV INFORM SCI, V44, P159
Blake C., 2013, ANNU REV INFORM SCI, V45, P121
Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227
Carevic Z., 2014, 13 EUR NETW KNOWL OR
Çarki K, 2000, INT CONF ACOUST SPEE, P1563, DOI 10.1109/ICASSP.2000.861971
Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112
Chen C., 2018, THE CITESPACE MANUAL
Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Chowdhury GG, 2003, ANNU REV INFORM SCI, V37, P51, DOI 10.1002/aris.1440370103
Clarivate Analytics, 2018, WEB SCI COR COLL FIE
Ding Y, 2001, INFORM PROCESS MANAG, V37, P817, DOI 10.1016/S0306-4573(00)00051-0
Eryiit G., 2014, ITU TURKISH NATURAL
Feldman S, 1999, ONLINE, V23, P62
Fiszman M, 2009, J BIOMED INFORM, V42, P801, DOI 10.1016/j.jbi.2008.10.002
Galvez C, 2007, SCIENTOMETRICS, V70, P3, DOI 10.1007/s11192-007-0101-0
Garfield E., 2001, BIBLIO COUPLING COCI
Glänzel W, 2017, SCIENTOMETRICS, V111, P1897, DOI 10.1007/s11192-017-2336-8
Gumpenberger C, 2013, SCIENTOMETRICS, V95, P277, DOI 10.1007/s11192-012-0829-z
Hooper CJ, 2015, LECT NOTES COMPUT SC, V9089, P63, DOI 10.1007/978-3-319-18609-2_5
Ingwersen P, 1996, J DOC, V52, P3, DOI 10.1108/eb026960
Jha R., 2016, NAT LANG ENG, V23, P93
Kim IC, 2014, IEEE SYS MAN CYBERN, P1991, DOI 10.1109/SMC.2014.6974213
KUHLTHAU CC, 1991, J AM SOC INFORM SCI, V42, P361, DOI 10.1002/(SICI)1097-4571(199106)42:5<361::AID-ASI6>3.0.CO;2-#
Lewis DD, 1996, COMMUN ACM, V39, P92, DOI 10.1145/234173.234210
Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5
Liddy E.D., 2010, ENCY LIB INFORM SCI, P3864
Maricic S, 1998, J AM SOC INFORM SCI, V49, P530, DOI 10.1002/(SICI)1097-4571(19980501)49:6<530::AID-ASI5>3.0.CO;2-U
Mayr P, 2015, SCIENTOMETRICS, V102, P2191, DOI 10.1007/s11192-015-1529-2
MCCAIN KW, 1991, J AM SOC INFORM SCI, V42, P290, DOI 10.1002/(SICI)1097-4571(199105)42:4<290::AID-ASI5>3.0.CO;2-9
Mikova N, 2016, INNOV TECH KNOWL MAN, P59, DOI 10.1007/978-3-319-39056-7_4
Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926
Neveol A, 2016, Yearb Med Inform, P234
ROBERTSON SE, 1976, J AM SOC INFORM SCI, V27, P129, DOI 10.1002/asi.4630270302
Rotto E, 1997, SCIENTOMETRICS, V40, P83, DOI 10.1007/BF02459263
SARACEVIC T, 1975, J AM SOC INFORM SCI, V26, P321, DOI 10.1002/asi.4630260604
Schultz T, 2001, SPEECH COMMUN, V35, P31, DOI 10.1016/S0167-6393(00)00094-7
Sedighi M, 2016, LIBR REV, V65, P52, DOI 10.1108/LR-07-2015-0075
Shen HP, 2015, ACM T ASIAN LOW-RESO, V14, DOI 10.1145/2661637
Silahtarolu G., 2013, VERI MADENCILII KAVR
Su HN, 2010, SCIENTOMETRICS, V85, P65, DOI 10.1007/s11192-010-0259-8
Takn Z., 2017, STI2017 OPEN INDICAT
Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2
Taskin Z, 2014, SCIENTOMETRICS, V98, P347, DOI 10.1007/s11192-013-1004-x
Taskin Z, 2013, PROCD SOC BEHV, V73, P544, DOI 10.1016/j.sbspro.2013.02.089
Trujillo CM, 2018, SCI ADV, V4, DOI 10.1126/sciadv.1701130
Van Eck N.J., 2018, VOSviewer Manual
White HD, 2007, J AM SOC INF SCI TEC, V58, P536, DOI 10.1002/asi.20543
White H, 2018, SCIENTOMETRICS, V114, P757, DOI 10.1007/s11192-017-2610-9
NR 60
TC 19
Z9 22
U1 6
U2 107
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 1468-4527
EI 1468-4535
J9 ONLINE INFORM REV
JI Online Inf. Rev.
PD AUG 12
PY 2019
VL 43
IS 4
BP 676
EP 690
DI 10.1108/OIR-07-2018-0217
PG 15
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA IX7UX
UT WOS:000485891600012
DA 2024-09-05
ER
PT J
AU Cao, EW
AF Cao, Enwei
TI Research on students' classroom performance evaluation algorithm based
on machine learning
SO INTERNATIONAL JOURNAL OF CONTINUING ENGINEERING EDUCATION AND LIFE-LONG
LEARNING
LA English
DT Article
DE machine learning; students' classroom performance; evaluation; test
statistics; intelligent teaching
AB In order to overcome the poor accuracy of traditional classroom performance evaluation algorithm, a machine learning-based classroom performance evaluation algorithm was designed. This paper makes an empirical analysis of the statistical data and constructs a statistical information analysis model for students' classroom performance evaluation. According to the mining results of students' classroom performance evaluation information, the adaptive mining and feature clustering of students' classroom performance evaluation data are carried out. This paper uses quantitative game method to evaluate students' classroom performance, constructs the explanatory variable and control variable model of students' classroom performance evaluation, and then uses machine learning method to optimise the evaluation of students' classroom performance. The simulation results show that the evaluation accuracy of the proposed method is always above 0.77, which has high reliability and adaptability, and improves the quantitative evaluation ability of students' classroom performance.
C1 [Cao, Enwei] Jingdezhen Ceram Inst, Sch Management & Econ, Jingdezhen 333000, Jiangxi, Peoples R China.
C3 Jingdezhen Ceramic Institute
RP Cao, EW (corresponding author), Jingdezhen Ceram Inst, Sch Management & Econ, Jingdezhen 333000, Jiangxi, Peoples R China.
EM enweicao@36haojie.com
CR Allawi MF, 2018, ENVIRON EARTH SCI, V77, DOI 10.1007/s12665-018-7546-8
Bao Y., 2017, FUZZY SYSTEMS MATH, V31, P73
Chen Y-r., 2018, LIGHT IND TECHNOLOGY, V234
[贾建鑫 Jia Jianxin], 2017, [计算机工程, Computer Engineering], V43, P144
Liang JJ, 2014, NEUROCOMPUTING, V137, P252, DOI 10.1016/j.neucom.2013.03.069
Liu Z., 2017, STAT DECISION, V427, P55
Torres EL, 2015, MED PHYS, V42, P1477, DOI 10.1118/1.4907970
[罗会兰 Luo Huilan], 2016, [电子与信息学报, Journal of Electronics & Information Technology], V38, P1594
Pan Chengsheng, 2019, Computer Engineering, V45, P85, DOI 10.19678/j.issn.1000-3428.0049722
Ren Q, 2016, EDUC RES-UK, V435, P107
Wang Q., 2017, CHINA SCI TECHNOLOGY, V13, P40
Wang WK, 2019, ACTA MATH APPL SIN-E, V35, P386, DOI 10.1007/s10255-019-0817-7
Wang Y., 2015, J NATL ACAD ED ADM, V77, P79
Xie J., 2017, MODERN DISTANCE ED R, V5, P95
Yang J, 2019, ACTA MATH APPL SIN-E, V35, P401, DOI 10.1007/s10255-019-0808-8
Yin CL, 2017, IEEE ACCESS, V5, P21954, DOI 10.1109/ACCESS.2017.2762418
[张景祥 Zhang Jingxiang], 2014, [自动化学报, Acta Automatica Sinica], V40, P236
Zhang X, 2019, ACTA MATH APPL SIN-E, V35, P327, DOI 10.1007/s10255-019-0823-9
Zheng Q., 2017, CHINA U TEACHING, V12
Zhou Qi, 2019, Computer Engineering, V45, P41, DOI 10.19678/j.issn.1000-3428.0052189
Zhou Z., 2017, MODERN ELECT TECHNIQ, V40, P74
NR 21
TC 0
Z9 0
U1 2
U2 43
PU INDERSCIENCE ENTERPRISES LTD
PI GENEVA
PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215
GENEVA, SWITZERLAND
SN 1560-4624
EI 1741-5055
J9 INT J CONTIN ENG EDU
JI Int. J. Contin. Eng. Educ. Life-Long Learn.
PY 2022
VL 32
IS 2
BP 227
EP 239
PG 13
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA 0I4VV
UT WOS:000779420000008
DA 2024-09-05
ER
PT J
AU Nivash, JP
Babu, LDD
AF Nivash, J. P.
Babu, L. D. Dhinesh
TI Analyzing the impact of news trends on research publications and
scientific collaboration networks
SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE
LA English
DT Article
DE bibliometric analysis; citation networks; LDA; scientific collaboration
networks
ID CITATION; SCIENCE
AB Scientific collaboration plays a vital role in generating novel ideas and innovative research progress among the researchers. Similarly, news diffusion also has an important role among the research communities. Though the collaboration networks have made an impact in scientific activities and attracted the attention of scientific communities, no work so far analyzed the cause which can determine the future research publications. The objective of this paper is to study influence of news trends on scientific collaboration and research publications. For this purpose, we have collected the top technological news trends and applied the LDA model to identify top research keywords from the articles. The results show that the news trends play a significant role on scientific collaborations and innovative research progress. It is found that the researchers identify their research gap, make future collaborations and does interdisciplinary research. Our results highlight the important role of diffusion of news, which influence the young researchers to generate novel ideas and tend to collaborate more with different scientific communities.
C1 [Nivash, J. P.; Babu, L. D. Dhinesh] VIT Univ, Sch Informat Technol & Engn, Vellore 632014, Tamil Nadu, India.
C3 Vellore Institute of Technology (VIT); VIT Vellore
RP Nivash, JP (corresponding author), VIT Univ, Sch Informat Technol & Engn, Vellore 632014, Tamil Nadu, India.
EM nivash.jeevan@vit.ac.in
RI d, d/GZL-3202-2022; D, D/HNJ-1774-2023; L D, Dhinesh Babu/K-6683-2017
OI L D, Dhinesh Babu/0000-0002-3354-8713; JP, NIVASH/0000-0002-2977-5593
CR [Anonymous], 2012, Formal concept analysis: mathematical foundations
Baker L, 1967, 3 INFORM SCI
Belohlavek R, 2005, CLA 2005 INT WORKSH
BLEI DM, 2006, 23 INT C MACH LEARN
Cashmore P, CNN
Dang Q, 2016, EXPERT SYST APPL, V57, P285, DOI 10.1016/j.eswa.2016.03.050
Garvey W., 1979, COMMUNICATION ESSENC
Ihler A, 2006, 12 ACM SIGKDD INT C
Kiernan V, 1997, SCI COMMUN, V18, P297, DOI 10.1177/1075547097018004002
Kim HJ, 2016, J INFORMETR, V10, P954, DOI 10.1016/j.joi.2016.07.007
Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314
LEWENSTEIN BV, 1995, SOC STUD SCI, V25, P403, DOI 10.1177/030631295025003001
Moed HF, 2009, ARCH IMMUNOL THER EX, V57, P13, DOI 10.1007/s00005-009-0001-5
Nerur S, 2005, COMMUN ACM, V48, P71, DOI 10.1145/1096000.1096007
Number AD, 1968, UNCLASSIFIED AD NUMB
PHILLIPS DP, 1991, NEW ENGL J MED, V325, P1180, DOI 10.1056/NEJM199110173251620
Pratama M, 2016, NEUROCOMPUTING, V191, P304, DOI 10.1016/j.neucom.2016.01.049
PRICE DJD, 1965, SCIENCE, V149, P510
Richmond S, TECHNOLOGY 2012 YEAR
Rosen-Zvi M., 2004, 20 C UNC ART INT UAI
Shane R, TECHNOLOGY TRENDS 20
Shane R, TOP 10 TECHNOLOGY TR
Shane R, TOP 10 TECHNOLOGY HI
Sutter JD, TOP 10 TECH TRENDS 2
van Dalen HP, 2005, SCIENTOMETRICS, V64, P209, DOI 10.1007/s11192-005-0248-5
Wang NX, 2016, DECIS SUPPORT SYST, V86, P35, DOI 10.1016/j.dss.2016.03.006
Wang X., 2006, 12 ACM SIGKDD INT C
Wang X, 2007, 13 ACM SIGKDD INT C
WILLEMS J, 1993, SCIENTOMETRICS, V28, P205, DOI 10.1007/BF02016900
NR 29
TC 3
Z9 3
U1 3
U2 30
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1532-0626
EI 1532-0634
J9 CONCURR COMP-PRACT E
JI Concurr. Comput.-Pract. Exp.
PD JUL 25
PY 2019
VL 31
IS 14
AR e5058
DI 10.1002/cpe.5058
PG 10
WC Computer Science, Software Engineering; Computer Science, Theory &
Methods
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA IF0NW
UT WOS:000472775300015
DA 2024-09-05
ER
PT J
AU Lyu, DQ
Gong, KL
Ruan, XM
Cheng, Y
Li, J
AF Lyu, Dongqing
Gong, Kaile
Ruan, Xuanmin
Cheng, Ying
Li, Jiang
TI Does research collaboration influence the "disruption" of articles?
Evidence from neurosciences
SO SCIENTOMETRICS
LA English
DT Article
DE Disruption index; Collaboration; Neurosciences; Logistic regression
ID INTERNATIONAL COLLABORATION; SCIENTIFIC COLLABORATION; TECHNOLOGICAL
NOVELTY; TEAM SCIENCE; IMPACT; INNOVATION; KNOWLEDGE; BEHAVIOR; AUTHORS;
SEARCH
AB A new indicator (the disruption index) quantifying the extent to which a paper disrupts or consolidates established knowledge was recently introduced from the perspective of subsequent use of the current knowledge. This study explored whether different types of collaboration (i.e., at the author, institution, and country levels) equally affect the disruption of papers. We selected 505,168 papers from Neurosciences indexed in the Web of Science from 1954-2011 and employed logistic regression analysis. Our principal findings are that team size and international collaboration are negatively associated with the disruption of articles, while an additional increase in the number of domestic institutions of a team statistically favors disruption.
C1 [Lyu, Dongqing; Ruan, Xuanmin; Cheng, Ying; Li, Jiang] Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China.
[Gong, Kaile] Nanjing Normal Univ, Sch Journalism & Commun, Nanjing 210097, Peoples R China.
C3 Nanjing University; Nanjing Normal University
RP Li, J (corresponding author), Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China.
EM lijiang@nju.edu.cn
RI Cheng, Yongzhi/AAY-9109-2020; Li, Jiang/JHV-1585-2023; Li,
Jiang/Z-1709-2019; Gong, Kaile/T-2945-2019
OI Li, Jiang/0000-0001-5769-8647; Gong, Kaile/0000-0001-9269-8669
FU National Natural Science Foundation of China [71874077]
FX This work uses Web of Science data by Clarivate Analytics provided by
the Indiana University Network Science Institute and the
Cyberinfrastructure for Network Science Center at Indiana University. We
also acknowledge the National Natural Science Foundation of China Grant
71874077 for financial support.
CR Adams JD, 2005, RES POLICY, V34, P259, DOI 10.1016/j.respol.2005.01.014
Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645
ALDRICH HE, 1976, ANNU REV SOCIOL, V2, P79, DOI 10.1146/annurev.so.02.080176.000455
[Anonymous], 1962, The Structure of Scientific Revolutions
Arthur WB, 2007, RES POLICY, V36, P274, DOI 10.1016/j.respol.2006.11.005
Asubiaro T, 2019, SCIENTOMETRICS, V120, P1261, DOI 10.1007/s11192-019-03157-1
Asubiaro TV, 2018, AFR J LIBR ARCH INFO, V28, P17
Azoulay P, 2019, NATURE, V566, P330, DOI 10.1038/d41586-019-00350-3
Bartneck C, 2010, SCIENTOMETRICS, V85, P41, DOI 10.1007/s11192-010-0242-4
Beaver D. deB., 1978, Scientometrics, V1, P65, DOI 10.1007/BF02016840
Bercovitz J, 2011, RES POLICY, V40, P81, DOI 10.1016/j.respol.2010.09.008
Bikard M, 2019, ORGAN SCI, V30, P426, DOI 10.1287/orsc.2018.1235
Bloch C, 2019, J INFORMETR, V13, P593, DOI 10.1016/j.joi.2019.03.003
Bordons M, 2013, SCIENTOMETRICS, V96, P443, DOI 10.1007/s11192-012-0890-7
Bornmann L, 2020, SCIENTOMETRICS, V123, P1149, DOI 10.1007/s11192-020-03406-8
Bornmann L, 2019, PROF INFORM, V28, DOI 10.3145/epi.2019.mar.07
Bornmann L, 2019, SCIENTOMETRICS, V120, P331, DOI 10.1007/s11192-019-03113-z
Bornmann L, 2017, J ASSOC INF SCI TECH, V68, P1036, DOI 10.1002/asi.23728
Bunderson JS, 2002, ACAD MANAGE J, V45, P875, DOI 10.2307/3069319
Burright MA, 2005, COLL RES LIBR, V66, P198, DOI 10.5860/crl.66.3.198
Christensen C.M., 1997, INNOVATORS DILEMMA N
Cummings JN, 2005, SOC STUD SCI, V35, P703, DOI 10.1177/0306312705055535
Cummings JN, 2007, RES POLICY, V36, P1620, DOI 10.1016/j.respol.2007.09.001
Cummings JN, 2013, PSYCHOL SCI, V24, P880, DOI 10.1177/0956797612463082
Dahlin KB, 2005, RES POLICY, V34, P717, DOI 10.1016/j.respol.205.03.009
DAVIS RA, 1987, NEUROSURGERY, V20, P652, DOI 10.1227/00006123-198704000-00028
DEWAR RD, 1986, MANAGE SCI, V32, P1422, DOI 10.1287/mnsc.32.11.1422
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Ettarh RR, 2015, CARDIOVASC DIAGN THE, V5, P311, DOI 10.3978/j.issn.2223-3652.2015.07.04
ETTLIE JE, 1984, MANAGE SCI, V30, P682, DOI 10.1287/mnsc.30.6.682
FLEISHMAN JA, 1980, J PERS SOC PSYCHOL, V38, P629, DOI 10.1037/0022-3514.38.4.629
Fleming L, 2001, MANAGE SCI, V47, P117, DOI 10.1287/mnsc.47.1.117.10671
FOSTER RN, 1986, RES MANAGE, V29, P17, DOI 10.1080/00345334.1986.11756976
FOX MF, 1984, J HIGH EDUC, V55, P347, DOI 10.2307/1981888
Franceschet M, 2010, J INFORMETR, V4, P540, DOI 10.1016/j.joi.2010.06.003
Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366
Garrity PA, 2005, NAT NEUROSCI, V8, P1635, DOI 10.1038/nn1205-1635
Gazni A, 2016, SCIENTOMETRICS, V109, P1209, DOI 10.1007/s11192-016-2101-4
Gazni A, 2011, SCIENTOMETRICS, V87, P251, DOI 10.1007/s11192-011-0343-8
Glänzel W, 2002, LIBR TRENDS, V50, P461
Glänzel W, 2001, SCIENTOMETRICS, V50, P199, DOI 10.1023/A:1010561321723
González-Alvarez J, 2017, J INFORMETR, V11, P232, DOI 10.1016/j.joi.2016.12.007
Bote VPG, 2013, J AM SOC INF SCI TEC, V64, P392, DOI 10.1002/asi.22754
Hall KL, 2008, AM J PREV MED, V35, pS243, DOI 10.1016/j.amepre.2008.05.007
He ZL, 2009, J AM SOC INF SCI TEC, V60, P2151, DOI 10.1002/asi.21150
Hsu JW, 2011, SCIENTOMETRICS, V86, P317, DOI 10.1007/s11192-010-0265-x
Iribarren-Maestro I, 2009, SCIENTOMETRICS, V79, P191, DOI 10.1007/s11192-009-0412-4
Jones BF, 2008, SCIENCE, V322, P1259, DOI 10.1126/science.1158357
Jones BF, 2009, REV ECON STUD, V76, P283, DOI 10.1111/j.1467-937X.2008.00531.x
KAPLAN N, 1965, AM DOC, V16, P179, DOI 10.1002/asi.5090160305
Kaplan S, 2015, STRATEGIC MANAGE J, V36, P1435, DOI 10.1002/smj.2294
Katila R, 2002, ACAD MANAGE J, V45, P1183, DOI 10.5465/3069433
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
Kim DJ, 1996, ORGAN SCI, V7, P283, DOI 10.1287/orsc.7.3.283
Kim DI, 2016, IEEE WIREL COMMUN LE, V5, P1, DOI 10.1109/LWC.2016.2520159
Barrantes BSL, 2012, J AM SOC INF SCI TEC, V63, P481, DOI 10.1002/asi.21682
Larivière V, 2015, J ASSOC INF SCI TECH, V66, P1323, DOI 10.1002/asi.23266
Ledford H, 2015, NATURE, V525, P308, DOI 10.1038/525308a
Lee YN, 2015, RES POLICY, V44, P684, DOI 10.1016/j.respol.2014.10.007
Lin JY, 2010, INT J TECHNOL MANAGE, V49, P174, DOI 10.1504/IJTM.2010.029417
Menard SW, 2002, APPL LOGISTIC REGRES
NARIN F, 1978, SCIENTOMETRICS, V1, P35, DOI 10.1007/BF02016838
NONAKA I, 1994, ORGAN SCI, V5, P14, DOI 10.1287/orsc.5.1.14
Persson O, 2004, SCIENTOMETRICS, V60, P421, DOI 10.1023/B:SCIE.0000034384.35498.7d
Ponomarev IV, 2014, SCIENTOMETRICS, V100, P755, DOI 10.1007/s11192-014-1320-9
Qin J, 1997, J AM SOC INFORM SCI, V48, P893, DOI 10.1002/(SICI)1097-4571(199710)48:10<893::AID-ASI5>3.0.CO;2-X
SALANCIK GR, 1978, US SOC PSYCHOL, V41, P246, DOI 10.2307/3033561
Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009
Shpilko I, 2015, LIBR COLLECT ACQUIS, V39, P9, DOI 10.1080/14649055.2015.1121067
Sonnenwald DH, 2007, ANNU REV INFORM SCI, V41, P643, DOI 10.1002/aris.2007.1440410121
Sooryamoorthy R, 2009, SCIENTOMETRICS, V81, P177, DOI 10.1007/s11192-009-2126-z
Strumsky D, 2015, RES POLICY, V44, P1445, DOI 10.1016/j.respol.2015.05.008
Subelj L, 2019, J INFORMETR, V13, P10, DOI 10.1016/j.joi.2018.11.005
SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105
Sud P, 2016, J ASSOC INF SCI TECH, V67, P1849, DOI 10.1002/asi.23515
TRAJTENBERG M, 1990, RAND J ECON, V21, P172, DOI 10.2307/2555502
TRAJTENBERG M, 1997, Econ Innovat New Technol, V5, P19, DOI 10.1080/10438599700000006
Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474
Van Raan AFJ, 1998, SCIENTOMETRICS, V42, P423, DOI 10.1007/BF02458380
van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1
Verhoeven D, 2016, RES POLICY, V45, P707, DOI 10.1016/j.respol.2015.11.010
Wagner CS, 2019, RES POLICY, V48, P1260, DOI 10.1016/j.respol.2019.01.002
Wagner CS, 2017, SCIENTOMETRICS, V110, P1633, DOI 10.1007/s11192-016-2230-9
Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002
Walsh JP, 2007, J COMPUT-MEDIAT COMM, V12, P712, DOI 10.1111/j.1083-6101.2007.00346.x
Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006
Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9
Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099
Xu JY, 2010, NAT NEUROSCI, V13, P22, DOI 10.1038/nn.2459
Yu D, 2010, INT J MANAG REV, V12, P435, DOI 10.1111/j.1468-2370.2009.00272.x
NR 90
TC 11
Z9 15
U1 18
U2 185
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 2021
VL 126
IS 1
BP 287
EP 303
DI 10.1007/s11192-020-03757-2
EA OCT 2020
PG 17
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA PU7XL
UT WOS:000582810200011
DA 2024-09-05
ER
PT C
AU Li, HJ
Li, L
Yu, YQ
AF Li Haijun
Li Lin
Yu Yongqing
BE Fang, J
Wang, Z
TI Research on simulation methods of evaluation for diagnostic Bayesian
networks
SO SIGNAL ANALYSIS, MEASUREMENT THEORY, PHOTO-ELECTRONIC TECHNOLOGY, AND
ARTIFICIAL INTELLIGENCE, PTS 1 AND 2
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT 6th International Symposium on Instrumentation and Control Technology
CY OCT 13-15, 2006
CL Beijing, PEOPLES R CHINA
DE Bayesian Networks; diagnostic models; evaluation; algorithm; faults
injection; faults propagation
AB Bayesian Networks that based on probability inference is proposed to solve problems of uncertainty and imperfection. It has more advantages to solve faults caused by uncertainty and relevancy of complex devices. Diagnostic models of Bayesian Networks must be evaluated roundly before used for diagnosis. The usual way to evaluate diagnostic models is using standard cases to test the model, but the cases are limited and the quality of these cases depend on their source, and these cases could not include all instances. Based on sample means of Monte Carlo, an algorithm of evaluation for diagnostic models is proposed this article; this algorithm does not need special diagnostic cases. Faults injecting algorithm with equal probability of every components are adopted, test cases are produced by this algorithm of system itself, and course of faults propagation is simulated by this algorithm of system too. This algorithm could test diagnostic models roundly, and make overall evaluation of diagnostic models.
C1 [Li Haijun; Li Lin] Naval Aero Engn Acad, Yantai 264001, Peoples R China.
[Yu Yongqing] Mil Deputy Off NAD 8357 Inst, Tianjin 300141, Peoples R China.
RP Li, HJ (corresponding author), Naval Aero Engn Acad, Yantai 264001, Peoples R China.
CR Darwiche Adnan, 2000, AI MAGAZINE SUM
JAMES S, 1992, BAYESIAN STAT PRINCI, P152
Jensen F.V., 1996, AISB Quarterly, V94, P9
LI HJ, 2006, RES INTEGRATED DIAGN
PRZYTULA KW, 2002, 187 IEEEAC
VEHTAR A, 2002, NEURAL COMPUTATION, V14
NR 6
TC 0
Z9 0
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
EI 1996-756X
BN 0-8194-6452-X
J9 PROC SPIE
PY 2006
VL 6357
AR 63574Q
DI 10.1117/12.717469
PN 1-2
PG 5
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic; Instruments & Instrumentation; Optics; Imaging Science &
Photographic Technology
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering; Instruments & Instrumentation; Optics;
Imaging Science & Photographic Technology
GA BFM84
UT WOS:000243123200170
DA 2024-09-05
ER
PT J
AU Krishna, D
Mohan, SR
Murthy, BSN
Rao, AR
AF Krishna, D
Mohan, SR
Murthy, BSN
Rao, AR
TI Performance evaluation of public research institutes using principal
component analysis
SO JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH
LA English
DT Article
AB Public research institutes are the organisations, which carry out scientific research and tender technological services. Owing to the phenomenon of globalisation, resource constraints and increased accountability, public research institutes, especially in the developing countries, are under tremendous pressure to improve their performance. The need to improve performance of these organizations necessitates evaluating the performance of the institution in relation to other institutes. In this study, public research institutes are considered as systems and some models based on statistical concepts are utilized to compare performance of different research institutes by measuring productivity index of those institutes. Performance ranking is done, based on productivity index values. Ranks obtained with the study are also compared with those of the experts judgment for studying the accuracy of the methodologies.
C1 Indian Inst Chem Technol, Hyderabad 500007, Andhra Pradesh, India.
Sri Venkateswara Univ, Coll Engn, Tirupati 517502, Andhra Pradesh, India.
C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR -
Indian Institute of Chemical Technology (IICT); Sri Venkateswara
University
RP Mohan, SR (corresponding author), Indian Inst Chem Technol, Hyderabad 500007, Andhra Pradesh, India.
CR Anderson T.W, 1998, An Introduction to Multivariate Statistical Analysis
BROWN MG, 1988, RES TECHNOL MANAGE, V31, P11, DOI 10.1080/08956308.1988.11670531
Coccia M, 2001, R&D MANAGE, V31, P453, DOI 10.1111/1467-9310.00231
Gupta AK, 2000, R&D MANAGE, V30, P289, DOI 10.1111/1467-9310.00182
Kendall M., 1980, Multivariate Analysis
KRISHNA D, 1994, CHEMOMETR INTELL LAB, V22, P273, DOI 10.1016/0169-7439(94)80003-0
Mohan SR, 2001, J SCI IND RES INDIA, V60, P929
MOHAN SR, R D MANAGE
MORRISON, 1978, MULIVARIATE STAT MET
MUNDEL, 1976, IND ENG J, V10, P50
NR 10
TC 7
Z9 7
U1 0
U2 7
PU NATL INST SCIENCE COMMUNICATION
PI NEW DELHI
PA DR K S KRISHNAN MARG, NEW DELHI 110 012, INDIA
SN 0022-4456
J9 J SCI IND RES INDIA
JI J. Sci. Ind. Res.
PD NOV
PY 2002
VL 61
IS 11
BP 940
EP 947
PG 8
WC Engineering, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA 614RK
UT WOS:000179204100004
DA 2024-09-05
ER
PT J
AU Wao, H
Wang, Y
Wao, MA
Were, JA
AF Wao, Hesborn
Wang, Yan
Wao, Melvin A.
Were, Juliana A.
TI Factors associated with North-South research collaboration focusing on
HIV/AIDS: lessons from ClinicalTrials.gov
SO AIDS RESEARCH AND THERAPY
LA English
DT Article
DE Clinical trials; HIV; AIDS; Logistic regression; North-South
collaborations; Research capacity strengthening
ID HEALTH; CAPACITY
AB Background A North-South (N-S) research collaboration is one way through which research capacity of developing countries can be strengthened. Whereas N-S collaboration in HIV/AIDS area may result in research capacity strengthening of Southern partners, it is not clear what factors are associated with this type of collaboration. The study aims to characterize N-S research collaboration focusing on HIV/AIDS and to determine factors associated with such N-S research collaborations. Methods Clinical trial data on HIV/AIDS-related studies conducted between 2000 and 2019 were obtained from ClinicalTrials.gov. Using these data, we characterized N-S collaborative studies focusing on HIV/AIDS and summarized them using frequencies and percentages. To determine factors associated with these studies, we used logistic regression and reported results as adjusted odds ratios with Wald 95% confidence intervals. Results and discussion Of the 4,832 HIV/AIDS-related studies retrieved from the registry, less than one-quarter (n = 1133, 23%) involved a Southern institution, with 77% of these studies classified as N-S collaborations. Majority of these studies have single PI (50%), are conducted at single location (39%); have large sample sizes (41%); are federally-funded (32%) or receive funding from other sources (32%); are intervention studies (64%); and involve a mixture of male and female participants (58%) and adult participants (54%). Single PIs (as opposed to multiple PIs) were more likely to be from the North than South institution (odds ratio = 5.59, 95%CI: 4.16 - 11.57). Trend analyses showed that N-S research collaborations produced HIV/AIDS-related studies at a faster rate than S-S research collaborations. N-S collaborations involving female or children produced HIV/AIDS-related studies between 2000 and 2019 at a significantly faster rate than S-S collaborations involving females and children during the same period. Holding other factors constant, N-S collaborative research focusing on HIV/AIDS are associated with: multiple PIs as opposed to single PI, multiple institutions as opposed to a single institution, multiple locations as opposed to a single location, large number of participants as opposed to small sample sizes, and public funding as opposed to industry funding. Almost half of these studies had a Northern PI only, about one-third had a Southern PI only, and much fewer had PIs from both North and South. However, these studies were less likely to receive funding from other sources than industry funding. Conclusions HIV/AIDS-related research is increasingly becoming a more collaborative global research involving more N-S collaborations than S-S collaborations. Factors associated with N-S collaborative studies focusing on HIV/AIDS include multiple PIs, institutions, and locations; large sample sizes; publicly funded; and involve vulnerable populations such as women and children. Whereas almost half of these studies have a Northern PI only, about one-third have a Southern PI only, and much fewer have PIs from both North and South. Our results inform future design and implementation of N-S research collaborations in this area. Suggestions for improvement of ClinicalTrials.gov registry are provided.
C1 [Wao, Hesborn; Wang, Yan] African Populat & Hlth Res Ctr, APHRC Campus,Manga Close,Kirawa Rd,POB 10-8-00100, Nairobi, Kenya.
[Wang, Yan] Drexel Univ, Dornsife Sch Publ Hlth, Urban Hlth Collaborat, 3600 Market St,7th Floor, Philadelphia, PA 19104 USA.
[Wang, Yan] Univ Calif Los Angeles, Div Infect Dis, 10833 Conte Ave, Los Angeles, CA 90095 USA.
[Wao, Melvin A.] US Int Univ Africa USIU Africa, USIU Rd,Thika Rd Exit 7,POB 14634-00800, Nairobi, Kenya.
[Were, Juliana A.] Management Univ Africa MUA, Popo Rd,Mombasa Rd,Belleview,South C,POB 29677-00, Nairobi, Kenya.
C3 African Population & Health Research Centre; Drexel University;
University of California System; University of California Los Angeles
RP Wang, Y (corresponding author), African Populat & Hlth Res Ctr, APHRC Campus,Manga Close,Kirawa Rd,POB 10-8-00100, Nairobi, Kenya.; Wang, Y (corresponding author), Drexel Univ, Dornsife Sch Publ Hlth, Urban Hlth Collaborat, 3600 Market St,7th Floor, Philadelphia, PA 19104 USA.; Wang, Y (corresponding author), Univ Calif Los Angeles, Div Infect Dis, 10833 Conte Ave, Los Angeles, CA 90095 USA.
EM wangyan@ucla.edu
RI Wao, Melvin/AAB-8890-2022
FU NIH [T32MH080634]; National Institute on Minority Health and Health
Disparities [1T37MD014251]
FX This work was supported by NIH [Grant Number T32MH080634] and National
Institute on Minority Health and Health Disparities [Grant Number NIMHD
#1T37MD014251].
CR Analytical Services, 2019, HIV AIDS RES INS IMP
[Anonymous], 2018, LANCET GLOB HEALTH, V6, pE593, DOI 10.1016/S2214-109X(18)30239-0
[Anonymous], 2014, 7 PRINC STRENGTH RES
Califf RM, 2012, JAMA-J AM MED ASSOC, V307, P1838, DOI 10.1001/jama.2012.3424
Cash-Gibson L, 2015, HEALTH RES POLICY SY, V13, DOI 10.1186/s12961-015-0048-1
Ciaranello A, 2014, PEDIATR INFECT DIS J, V33, P623, DOI 10.1097/INF.0000000000000223
Corbin JH, 2008, HEALTH PROMOT INT, V23, P365, DOI 10.1093/heapro/dan029
Ezeh AC, 2010, GLOBAL HEALTH ACTION, V3, DOI 10.3402/gha.v3i0.5693
Färnman R, 2016, GLOBAL HEALTH ACTION, V9, DOI 10.3402/gha.v9.30522
Gaillard J., 1994, Knowledge and Policy: The International Journal of Knowledge Transfer and Utilization, V7, P31, DOI DOI 10.1007/BF02692761
Ghaffar A., 2008, Changing Mindsets: Research Capacity Strengthening in Low and Middle -Income Countries
Girum T, 2018, ARCH PUBLIC HEALTH, V76, DOI 10.1186/s13690-018-0299-8
Goswami ND, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077086
Hofman K, 2013, GLOBAL HEALTH ACTION, V6, P1, DOI 10.3402/gha.v6i0.19668
IHSN, 2004, AIDS IMP SURV 2 2004
Kempton J, 2019, J VIRUS ERAD, V5, P92, DOI 10.1016/S2055-6640(20)30058-3
Lakeh AB, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04527-6
Magnus M, 2016, AIDS BEHAV, V20, pS273, DOI 10.1007/s10461-016-1487-6
Martin NA, 2019, ANN GLOB HEALTH, V85, DOI 10.5334/aogh.2564
McCoy CB, 2017, GLOBAL VIROLOGY 2 HI, P1
Michel C, 2013, EVIDENCE POLICY SERI, V15
Mirzoev T, 2014, HEALTH POLICY PLANN, V29, P831, DOI 10.1093/heapol/czt065
Mugabo L, 2015, HEALTH RES POLICY SY, V13, DOI 10.1186/s12961-015-0017-8
Murunga VI, 2020, HEALTH RES POLICY SY, V18, DOI 10.1186/s12961-019-0524-0
Parker M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163579
Sibanda M, 2018, PAN AFR MED J, V29, DOI 10.11604/pamj.2018.29.224.12683
Tagoe N, 2019, BMJ GLOB HEALTH, V4, DOI 10.1136/bmjgh-2018-001318
UN, 2019, WHAT IS S S COOP WHY
Van der Veken K, 2017, HEALTH RES POLICY SY, V15, DOI 10.1186/s12961-017-0202-z
Zarin DA, 2011, NEW ENGL J MED, V364, P852, DOI 10.1056/NEJMsa1012065
NR 30
TC 2
Z9 2
U1 0
U2 2
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1742-6405
J9 AIDS RES THER
JI Aids Res. Ther.
PD AUG 25
PY 2021
VL 18
IS 1
AR 54
DI 10.1186/s12981-021-00376-6
PG 10
WC Infectious Diseases
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Infectious Diseases
GA UF4IH
UT WOS:000688538400001
PM 34433475
OA Green Published, gold
DA 2024-09-05
ER
PT C
AU Tsuji, K
Yoshikane, F
Sato, S
Itsumura, H
AF Tsuji, Keita
Yoshikane, Fuyuki
Sato, Sho
Itsumura, Hiroshi
GP IEEE
TI Book Recommendation Using Machine Learning Methods Based on Library Loan
Records and Bibliographic Information
SO 2014 IIAI 3RD INTERNATIONAL CONFERENCE ON ADVANCED APPLIED INFORMATICS
(IIAI-AAI 2014)
LA English
DT Proceedings Paper
CT 3rd IIAI International Conference on Advanced Applied Informatics
(IIAI-AAI)
CY AUG 31-SEP 04, 2014
CL Kitakyushu, JAPAN
DE Book Recommendation; Recommender System; Library Loan Records; Support
Vector Machine (SVM); Random Forest; Adaboost
AB We propose a method to recommend books through machine learning modules based on several features, including library loan records. We evaluated the most effective method among ones using (a) a Support Vector Machine (SVM), (b) Random Forest and (c) Adaboost, as well as the most effective combination of relevant features among (1) library loan records, (2) book titles, (3) Nippon Decimal Classification categories, (4) publication year and (5) frequencies at which books were borrowed. We performed an experiment involving 40 subjects who are students at T University. The books that our methods recommended and the loan records that we used were obtained from the T University Library. The results show that books recommended by the SVM based on features (1), (2), (3) and (5) were rated most favorably by the subjects. Our method outperforms preceding ones, such as the method proposed by Tsuji et al. (2013), and is comparable in performance to the recommendation by the website Amazon.co.jp.
C1 [Tsuji, Keita] Univ Tsukuba, Fac Lib Informat & Media Sci, Tsuchiura, Ibaraki 3058550, Japan.
Doshisha Univ, Fac Social Studies, Kamigyo Ku, Kyoto 6028580, Japan.
C3 University of Tsukuba; Doshisha University
RP Tsuji, K (corresponding author), Univ Tsukuba, Fac Lib Informat & Media Sci, 1-2 Kasuga, Tsuchiura, Ibaraki 3058550, Japan.
EM keita@slis.tsukuba.ac.jp; fuyuki@slis.tsukuba.ac.jp; min2fly@gmail.com;
hits@slis.tsukuba.ac.jp
CR Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
Chen CC, 2007, ELECTRON LIBR, V25, P711, DOI 10.1108/02640470710837137
Friedman J, 2000, ANN STAT, V28, P337, DOI 10.1214/aos/1016218223
Harada T., 2010, DIGITAL LIB, V38, P54
Harada T., 2009, DIGITAL LIB, V36, P22
Tsuji, 2013, P 3 INT C INT INF IC
Tsuji K., 2012, 2012 IIAI International Conference on Advanced Applied Informatics (IIAIAAI 2012), P30, DOI 10.1109/IIAI-AAI.2012.16
Whitney C., 2006, D LIB MAGAZINE, V12
Yongcheng Luo, 2009, Proceedings of the 2009 Second International Workshop on Computer Science and Engineering (WCSE 2009), P323, DOI 10.1109/WCSE.2009.822
NR 9
TC 7
Z9 8
U1 1
U2 18
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4799-4173-5
PY 2014
BP 76
EP 79
DI 10.1109/IIAI-AAI.2014.26
PG 4
WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BD1PY
UT WOS:000358256400014
OA Green Submitted
DA 2024-09-05
ER
PT C
AU Guo, PF
Wang, PY
Zhou, JY
Jiang, SS
Patel, VM
AF Guo, Pengfei
Wang, Puyang
Zhou, Jinyuan
Jiang, Shanshan
Patel, Vishal M.
GP IEEE COMP SOC
TI Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning
SO 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION,
CVPR 2021
SE IEEE Conference on Computer Vision and Pattern Recognition
LA English
DT Proceedings Paper
CT IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
CY JUN 19-25, 2021
CL ELECTR NETWORK
AB Fast and accurate reconstruction of magnetic resonance (MR) images from under-sampled data is important in many clinical applications. In recent years, deep learning-based methods have been shown to produce superior performance on MR image reconstruction. However, these methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations. In order to overcome this challenge, we propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy. However, the generalizability of models trained with the FL setting can still be suboptimal due to domain shift, which results from the data collected at multiple institutions with different sensors, disease types, and acquisition protocols, etc. With the motivation of circumventing this challenge, we propose a cross-site modeling for MR image reconstruction in which the learned intermediate latent features among different source sites are aligned with the distribution of the latent features at the target site. Extensive experiments are conducted to provide various insights about FL for MR image reconstruction. Experimental results demonstrate that the proposed framework is a promising direction to utilize multi-institutional data without compromising patients' privacy for achieving improved MR image reconstruction.
C1 [Guo, Pengfei; Wang, Puyang; Zhou, Jinyuan; Jiang, Shanshan; Patel, Vishal M.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
C3 Johns Hopkins University
RP Guo, PF (corresponding author), Johns Hopkins Univ, Baltimore, MD 21218 USA.
EM pguo4@jhu.edu; pwang47@jhu.edu; jzhou2@jhmi.edu; sjiang21@jhmi.edu;
vpatel36@jhu.edu
RI guo, peng/AAG-4052-2019; Jiang, Shanshan/O-8265-2019; Wang,
Puyang/ITU-4535-2023; Guo, Peng/GWC-0572-2022; Guo, Peng/IZQ-0331-2023
OI Jiang, Shanshan/0000-0003-2853-9991;
FU National Science Foundation [1910141]; National Institutes of Health
[R01CA248077]; Direct For Computer & Info Scie & Enginr; Div Of
Information & Intelligent Systems [1910141] Funding Source: National
Science Foundation
FX Vishal M. Patel was supported by the National Science Foundation grant
1910141. This work was supported in part by grants from the National
Institutes of Health (R01CA248077).
CR Akçakaya M, 2019, MAGN RESON MED, V81, P439, DOI 10.1002/mrm.27420
Bonawitz K, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1175, DOI 10.1145/3133956.3133982
Candès EJ, 2006, IEEE T INFORM THEORY, V52, P489, DOI 10.1109/TIT.2005.862083
Guo Pengfei, 2020, Med Image Comput Comput Assist Interv, V12262, P104, DOI 10.1007/978-3-030-59713-9_11
Guo Pengfei, 2020, IEEE T MED IMAGING
Guo Pengfei, 2020, ARXIV200802859
Han Y, 2020, IEEE T MED IMAGING, V39, P377, DOI 10.1109/TMI.2019.2927101
Hoffman J, 2018, PR MACH LEARN RES, V80
Jiang SS, 2019, CLIN CANCER RES, V25, P552, DOI 10.1158/1078-0432.CCR-18-1233
Kelekis NL, 1998, AM J ROENTGENOL, V170, P1005, DOI 10.2214/ajr.170.4.9530051
Knoll F, 2020, RADIOL-ARTIF INTELL, V2, DOI 10.1148/ryai.2020190007
Knoll F, 2020, IEEE SIGNAL PROC MAG, V37, P128, DOI 10.1109/MSP.2019.2950640
Lee DW, 2018, IEEE T BIO-MED ENG, V65, P1985, DOI 10.1109/TBME.2018.2821699
Li T, 2020, IEEE SIGNAL PROC MAG, V37, P50, DOI 10.1109/MSP.2020.2975749
Li WQ, 2019, LECT NOTES COMPUT SC, V11861, P133, DOI 10.1007/978-3-030-32692-0_16
Li XX, 2020, MED IMAGE ANAL, V65, DOI 10.1016/j.media.2020.101765
Liang Dong, 2019, ARXIV190711711
Long MS, 2015, PR MACH LEARN RES, V37, P97
Lundervold AS, 2019, Z MED PHYS, V29, P102, DOI 10.1016/j.zemedi.2018.11.002
Lustig M, 2007, MAGN RESON MED, V58, P1182, DOI 10.1002/mrm.21391
Ma SQ, 2008, PROC CVPR IEEE, P389
Mardani M., 2017, ARXIV PREPRINT
McMahan HB, 2017, PR MACH LEARN RES, V54, P1273
Menze BH, 2015, IEEE T MED IMAGING, V34, P1993, DOI 10.1109/TMI.2014.2377694
Mohassel P, 2018, PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), P35, DOI 10.1145/3243734.3243760
Peng X., 2019, INT C LEARN REPR
Qin C, 2019, IEEE T MED IMAGING, V38, P280, DOI 10.1109/TMI.2018.2863670
Ravishankar S, 2020, P IEEE, V108, P86, DOI 10.1109/JPROC.2019.2936204
Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28
Roski J, 2014, HEALTH AFFAIR, V33, P1115, DOI 10.1377/hlthaff.2014.0147
Sahu A. K., 2018, arXiv preprint arXiv:1812.06127
Sandfort V, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-52737-x
Sheller Micah J, 2018, LECT NOTES COMPUT SC, P92, DOI [DOI 10.1007/978-3-030-11723-8_9, 10.1007/978-3-030-11723-8_9]
Suresh, 2019, ARXIV190200146
Tzeng E, 2015, IEEE I CONF COMP VIS, P4068, DOI 10.1109/ICCV.2015.463
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
Wang Puyang, 2020, Med Image Comput Comput Assist Interv, V12262, P3, DOI 10.1007/978-3-030-59713-9_1
Wang Puyang, 2019, ARXIV191200543
Wang SS, 2022, NMR BIOMED, V35, DOI 10.1002/nbm.4131
Yan Wenjun, 2020, RADIOL ARTIF INTELL, V2
Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981
NR 41
TC 92
Z9 99
U1 3
U2 10
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
SN 1063-6919
BN 978-1-6654-4509-2
J9 PROC CVPR IEEE
PY 2021
BP 2423
EP 2432
DI 10.1109/CVPR46437.2021.00245
PG 10
WC Computer Science, Artificial Intelligence; Imaging Science &
Photographic Technology
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Imaging Science & Photographic Technology
GA BS5QS
UT WOS:000739917302060
PM 35444379
OA Green Accepted, Green Submitted
DA 2024-09-05
ER
PT C
AU Chakraborty, J
Maity, B
Pradhan, DK
Nandi, S
AF Chakraborty, Joyita
Maity, Biswajit
Pradhan, Dinesh K.
Nandi, Subrata
GP ACM
TI CiteDEK: A hybrid EMD-kNN-DTW model for classification of paper citation
trajectories
SO PROCEEDINGS OF 7TH JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND
MANAGEMENT OF DATA, CODS-COMAD 2024
LA English
DT Proceedings Paper
CT 7th ACM India Joint International Conference on Data Science and
Management of Data (CODS-COMAD) / 11th ACM IKDD CODS Conference / 29th
COMAD Conference
CY JAN 04-07, 2024
CL IIIT Bangalore, Bangalore, INDIA
HO IIIT Bangalore
DE Time-series classification; Citation trajectory classification;
Supervised machine learning; EMD; kNN; DTW; Bibliographic databases
AB Classifying citation trajectories of scientific publications is crucial. However, they diffuse anomalously due to non-linear, non-stationary, and long-ranged correlations. Previous studies define hard thresholds, arbitrary parameters, and subjective rules to classify based on their rise and fall patterns. It leads to substantial variance and, thus, ambiguous classification. This paper proposes CiteDEK, a hybrid EMD-kNN-DTW classification model framework. It predicts the nature of 5,039 trajectories, each 30 years in length, using only raw time series. We get a classification accuracy of similar to 76%, and Cohen's kappa-statistic is 0.63, which is significant.
C1 [Chakraborty, Joyita; Nandi, Subrata] Natl Inst Technol, Durgapur, India.
[Maity, Biswajit] Inst Engn & Management, Kolkata, India.
[Pradhan, Dinesh K.] Dr BC Roy Engn Coll, Durgapur, India.
C3 National Institute of Technology (NIT System); National Institute of
Technology Durgapur; Institute of Engineering & Management (IEM),
Kolkata; Dr. B. C. Roy Engineering College
RP Chakraborty, J (corresponding author), Natl Inst Technol, Durgapur, India.
EM joyita.ckra@gmail.com; biswajit.maity1@gmail.com; dineshkrp@gmail.com;
subrata.nandi@gmail.com
RI Pradhan, Dinesh K./AAE-4386-2019
OI Pradhan, Dinesh K./0000-0001-9132-9255; MAITY,
BISWAJIT/0000-0002-3891-7469; Nandi, Subrata/0000-0002-8743-4770
CR Chakraborty J, 2023, Arxiv, DOI arXiv:2309.04949
Chakraborty T, 2015, COMMUN ACM, V58, P82, DOI 10.1145/2701412
Colavizza G, 2016, J INFORMETR, V10, P1037, DOI 10.1016/j.joi.2016.07.009
Gou ZY, 2022, SCIENTOMETRICS, V127, P5027, DOI 10.1007/s11192-022-04437-z
Pradhan DK, 2019, PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD, P330, DOI 10.1145/3297001.3297053
Quinn AndrewJ, 2021, Journal of open source software, V6, P59
Ye FY, 2018, J ASSOC INF SCI TECH, V69, P359, DOI 10.1002/asi.23846
Zamani M, 2021, J PHYS-COMPLEXITY, V2, DOI 10.1088/2632-072X/ac24f1
NR 8
TC 0
Z9 0
U1 1
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 979-8-4007-1634-8
PY 2024
BP 576
EP 577
DI 10.1145/3632410.3632481
PG 2
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BW5HU
UT WOS:001160848200085
DA 2024-09-05
ER
PT J
AU Parteka, A
Kordalska, A
AF Parteka, Aleksandra
Kordalska, Aleksandra
TI Artificial intelligence and productivity: global evidence from AI patent
and bibliometric data
SO TECHNOVATION
LA English
DT Article
DE Technological innovation; Productivity paradox; Productivity growth;
Artificial intelligence; Patents
ID UNITED-STATES; GROWTH; TECHNOLOGY; ROBOTS; SLOWDOWN; PARADOX; ICT;
INFORMATION; INDICATORS; EUROPE
AB In this paper we analyse the relationship between technological innovation in the artificial intelligence (AI) domain and macroeconomic productivity. We embed recently released data on patents and publications related to AI in an augmented model of productivity growth, which we estimate for the OECD countries and compare to an extended sample including non-OECD countries. Our estimates provide evidence in favour of the modern productivity paradox. We show that the development of AI technologies remains a niche innovation phenomenon with a negligible role in the officially recorded productivity growth process. This general result, i.e. a lack of a strong relationship between AI and registered macroeconomic productivity growth, is robust to changes in the country sample, in the way we quantify labour productivity and technology (including AI stock), in the specification of the empirical model (control variables) and in estimation methods.
C1 [Parteka, Aleksandra; Kordalska, Aleksandra] Gdansk Univ Technol, Fac Management & Econ, Narutowicza 11-12, PL-80233 Gdansk, Poland.
C3 Fahrenheit Universities; Gdansk University of Technology
RP Parteka, A (corresponding author), Gdansk Univ Technol, Fac Management & Econ, Narutowicza 11-12, PL-80233 Gdansk, Poland.
EM aparteka@zie.pg.edu.pl; Aleksandra.Kordalska@zie.pg.edu.pl
RI Kordalska, Aleksandra/R-8011-2016; Parteka, Aleksandra/AAN-5881-2020
OI Kordalska, Aleksandra/0000-0002-8842-4777; Parteka,
Aleksandra/0000-0003-1149-6614
FU National Science Centre, Poland [2020/37/B/HS4/01302]
FX Acknowledgment The research has been conducted within the project
financed by the National Science Centre, Poland (2020/37/B/HS4/01302) .
All remain-ing errors are the authors' responsibility.
CR Acemoglu D, 2005, HANDB ECON, V22, P385
Acemoglu D, 2020, AEA PAP P, V110, P383, DOI 10.1257/pandp.20201003
Acemoglu D, 2018, AM ECON REV, V108, P1488, DOI 10.1257/aer.20160696
Acemoglu D, 2014, AM ECON REV, V104, P394, DOI 10.1257/aer.104.5.394
AGHION P, 1992, ECONOMETRICA, V60, P323, DOI 10.2307/2951599
Aghion P., 2019, ARTIF INTELL, P237
Agrawal A., 2019, EC ARTIFICIAL INTELL, DOI DOI 10.7208/CHICAGO/9780226613475.003.0005
[Anonymous], OECD Compendium of Productivity Indicators, DOI DOI 10.1787/F25CDB25-EN
[Anonymous], 1960, Energy in the American Economy, 1850-1975
Archibugi D., 1992, TECHNOLOGICAL SPECIA, V13188
Barro RJ, 2013, J DEV ECON, V104, P184, DOI 10.1016/j.jdeveco.2012.10.001
Baruffaldi S., 2020, Identifying and measuring developments in artificial intelligence: Making the impossible possible
Bassetti T., 2020, 30428 EUR EN, DOI [10.2760/333292,JRC122268, DOI 10.2760/333292,JRC122268]
Belderbos RA, 2022, REG STUD, V56, P210, DOI 10.1080/00343404.2021.1947486
Benassi M, 2022, IND CORP CHANGE, V31, P112, DOI 10.1093/icc/dtab041
Bloom N, 2020, AM ECON REV, V110, P1104, DOI 10.1257/aer.20180338
Botev J, 2019, OECD EC DEP WORKING, V1575, DOI [10.1787/d12d7305-en, DOI 10.1787/D12D7305-EN]
BRESNAHAN TF, 1995, J ECONOMETRICS, V65, P83, DOI 10.1016/0304-4076(94)01598-T
BRYNJOLFSSON E, 1993, COMMUN ACM, V36, P67, DOI 10.1145/163298.163309
Brynjolfsson E., 2014, The Second Machine Age, DOI DOI 10.1080/15228053.2014.943094
Brynjolfsson E., 2019, The Economics of Artificial Intelligence: An Agenda, P23
Brynjolfsson E, 2021, AM ECON J-MACROECON, V13, P333, DOI 10.1257/mac.20180386
Buccirossi P, 2013, REV ECON STAT, V95, P1324, DOI 10.1162/REST_a_00304
Bughin J., 2018, McKinsey Glob. Inst., V4
Byrne DM, 2016, BROOKINGS PAP ECO AC, P109
Castellani D, 2022, J IND BUS ECON, V49, P51, DOI 10.1007/s40812-021-00204-y
Ceccobelli M, 2012, TELECOMMUN POLICY, V36, P282, DOI 10.1016/j.telpol.2011.12.012
Corrado C, 2021, OXFORD REV ECON POL, V37, P435, DOI 10.1093/oxrep/grab018
Corrado C, 2009, REV INCOME WEALTH, V55, P661, DOI 10.1111/j.1475-4991.2009.00343.x
Crafts N, 2004, J ECON HIST, V64, P521
Crafts N, 2020, NATL INST ECON REV, V251, pR47, DOI 10.1017/nie.2020.6
Crafts N, 2018, OXFORD REV ECON POL, V34, P443, DOI 10.1093/oxrep/gry001
Cugno M, 2022, TECHNOVATION, V114, DOI 10.1016/j.technovation.2021.102443
Dalla Benetta A., 2021, WATCH 2020 EU INVEST, DOI [10.2760/017514,2021, DOI 10.2760/017514,2021]
Damioli G, 2021, EURASIAN BUS REV, V11, P1, DOI 10.1007/s40821-020-00172-8
Dernis H., 2019, JRC117068
Elstner Steffen, 2018, CESifo Working Paper 7231
EPO European Patent Office, 2020, PAT 4 IND REV GLOB T
Feenstra RC, 2015, AM ECON REV, V105, P3150, DOI 10.1257/aer.20130954
Foster-McGregor N., 2019, MERIT WORKING PAPERS, V053
Frietsch R, 2014, TECHNOVATION, V34, P546, DOI 10.1016/j.technovation.2014.05.007
Fujii H, 2018, ECON ANAL POLICY, V58, P60, DOI 10.1016/j.eap.2017.12.006
Gal P, 2019, INT PRODUCT MONIT, V37, P39
Gordon R. J, 2018, Why has economic growth slowed when innovation appears to be accelerating?' (No. w24554
Graetz G, 2018, REV ECON STAT, V100, P753, DOI 10.1162/rest_a_00754
GRILICHES Z, 1990, J ECON LIT, V28, P1661, DOI 10.3386/w3301
Growiec J., ACCELERATING EC GROW
Growiec J., 2020, SGH KAE WORKING PAPE, V2019/042
Growiec J, 2022, MACROECON DYN, V26, P1731, DOI 10.1017/S1365100521000031
Haskel J., 2017, CAPITALISM CAPITAL R
Hilbert M, 2011, SCIENCE, V332, P60, DOI 10.1126/science.1200970
Igna I, 2023, RES POLICY, V52, DOI 10.1016/j.respol.2022.104661
Inklaar R, 2005, REV INCOME WEALTH, P505
IPO, 2019, ARTIF INTELL
Jaffe A.B., 2005, PATENTS CITATIONS IN
Jones CI, 2005, HANDB ECON, V22, P1063
JONES CI, 1995, J POLIT ECON, V103, P759, DOI 10.1086/262002
Jorgenson DW, 2008, J ECON PERSPECT, V22, P3, DOI 10.1257/jep.22.1.3
Koch M, 2021, ECON J, V131, P2553, DOI 10.1093/ej/ueab009
Kromann L, 2020, IND CORP CHANGE, V29, P265, DOI 10.1093/icc/dtz039
Lewbel A, 2012, J BUS ECON STAT, V30, P67, DOI 10.1080/07350015.2012.643126
Miller SM, 2000, J DEV ECON, V63, P399, DOI 10.1016/S0304-3878(00)00112-7
Miyagawa T, 2021, J JPN INT ECON, V61, DOI 10.1016/j.jjie.2021.101137
Nordhaus WD, 2021, AM ECON J-MACROECON, V13, P299, DOI 10.1257/mac.20170105
OECD, 2021, SCI TECHN PAT
OECD, 2022, OECD EC OUTL 2022
OECD, 2021, Main science and technology indicators
OECD.AI, 2022, VIS POW JSI US DAT M
Oliner SD, 2007, BROOKINGS PAP ECO AC, P81
Pieri F, 2018, RES POLICY, V47, P1842, DOI 10.1016/j.respol.2018.06.013
Pilat D., 2003, OECD Economic Studies, V2002, P47, DOI [10.1787/eco_studies-v2002-art9-en, DOI 10.1787/ECO_STUDIES-V2002-ART9-EN]
Polák P, 2017, INF ECON POLICY, V38, P38, DOI 10.1016/j.infoecopol.2016.11.003
Purdy M., 2016, Why artificial intelligence is the future of growth
Righi R., 2022, AI WATCH INDEX 2021, DOI [10.2760/435020JRC128744, DOI 10.2760/435020JRC128744]
ROMER PM, 1990, J POLIT ECON, V98, pS71, DOI 10.1086/261725
SalaiMartin XX, 1996, ECON J, V106, P1019, DOI 10.2307/2235375
SCHANKERMAN M, 1986, ECON J, V96, P1052, DOI 10.2307/2233173
Schwab K., 2017, 4 IND REVOLUTION
SOLOW RM, 1987, NEW YORK TIMES BK R, P36
SOLOW RM, 1956, Q J ECON, V70, P65, DOI 10.2307/1884513
Syverson C, 2017, J ECON PERSPECT, V31, P165, DOI 10.1257/jep.31.2.165
Ballestar MT, 2020, J BUS RES, V108, P119, DOI 10.1016/j.jbusres.2019.11.017
The Conference Board, 2022, TOT EC DAT SUMM TABL
Timmer MP, 2005, OXFORD ECON PAP, V57, P693, DOI 10.1093/oep/gpi032
Tseng CY, 2013, INNOV-ORGAN MANAG, V15, P463, DOI 10.5172/impp.2013.15.4.463
UNIDO, 2019, UNIDOS IND DEV REP 2
Uspto, 2020, INV AI TRAC DIFF ART
Van Ark B., 2019, EUROPEAN EC DISCUSSI, V2015
van Ark B, 2008, J ECON PERSPECT, V22, P25, DOI 10.1257/jep.22.1.25
van Ark B, 2016, INT PRODUCT MONIT, V31, P3
Van Roy V., 2020, Handbook of Labor, Human Resources and Population Economics, DOI DOI 10.1007/978-3-319-57365-6_12-1
Venturini F, 2022, J ECON BEHAV ORGAN, V194, P220, DOI 10.1016/j.jebo.2021.12.018
Watanabe C, 2018, TECHNOL FORECAST SOC, V137, P226, DOI 10.1016/j.techfore.2018.07.053
WIPO, 2019, WIPO Technology Trends 2019: Artificial Intelligence
World Bank, 2021, The Worldwide Governance Indicators (WGI)
World Bank, 2020, WORLD DEV IND
World Bank, 2021, LAC SEMIANNUAL REPOR
Zeira J, 1998, Q J ECON, V113, P1091, DOI 10.1162/003355398555847
Zhang D., 2022, AI INDEX 2022 ANN RE
Zhang Y, 2021, PROCEEDINGS OF 2021 48TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION (QNDE2021)
NR 100
TC 11
Z9 11
U1 93
U2 194
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0166-4972
EI 1879-2383
J9 TECHNOVATION
JI Technovation
PD JUL
PY 2023
VL 125
AR 102764
DI 10.1016/j.technovation.2023.102764
EA MAY 2023
PG 15
WC Engineering, Industrial; Management; Operations Research & Management
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Engineering; Business & Economics; Operations Research & Management
Science
GA H8AN2
UT WOS:000998126000001
OA Green Submitted, hybrid
DA 2024-09-05
ER
PT J
AU Singh, A
Kanaujia, A
Singh, VK
Vinuesa, R
AF Singh, Aakash
Kanaujia, Anurag
Singh, Vivek Kumar
Vinuesa, Ricardo
TI Artificial intelligence for Sustainable Development Goals: Bibliometric
patterns and concept evolution trajectories
SO SUSTAINABLE DEVELOPMENT
LA English
DT Article
DE artificial intelligence (AI); bibliometrics; path analysis; Sustainable
Development Goals (SDGs)
ID CITATION NETWORK ANALYSIS; INTEGRATED APPROACH; PARADIGM SHIFTS;
PATH-ANALYSIS; TECHNOLOGY; PREDICTION; MANAGEMENT; RADIOMICS
AB The development of artificial intelligence (AI) as a field has impacted almost all aspects of human life. More recently it has found a role in addressing developmental challenges, specifically the Sustainable Development Goals (SDGs). However, there are not enough systematic studies on analysis of the role of AI research towards the SDGs. Therefore, this article attempts to bridge this gap by identifying the major bibliometric trends and concept-evolution trajectories in the area of AI applications for sustainable-development goals. The research publication data for the last 20 years in the areas of artificial intelligence, machine learning, deep learning, and so forth, is obtained and computationally analysed using a framework comprising bibliometrics, path analysis and content analysis. The findings show an incremental trend in overall publications on the application of AI for SDGs across the different regions of the world. SDGs 3 (good health & well-being) and 7 (affordable and clean energy) are found as the areas with the most applications of AI. In SDG3, the literature reflects application of AI techniques such as deep learning for precision and personalised medicine while in SDG7, a number of studies have employed AI techniques for the integration of systems for efficient generation of solar power and improving the energy efficiency of a building. Furthermore, SDG 4 (quality education), SDG 13 (climate action), SDG 11 (sustainable cities and communities) and SDG 16 (peace, justice and strong institutions) are the other SDGs where AI approaches and techniques are applied. The analytical results present a detailed insight of application of AI for achieving the SDGs.
C1 [Singh, Aakash; Kanaujia, Anurag; Singh, Vivek Kumar] Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, India.
[Vinuesa, Ricardo] KTH Royal Inst Technol, FLOW, Engn Mech, SE-10044 Stockholm, Sweden.
C3 Banaras Hindu University (BHU); Royal Institute of Technology
RP Singh, VK (corresponding author), Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, India.; Vinuesa, R (corresponding author), KTH Royal Inst Technol, FLOW, Engn Mech, SE-10044 Stockholm, Sweden.
EM vivek@bhu.ac.in; rvinuesa@mech.ktc.se
RI Vinuesa, Ricardo/ABG-6234-2020; Singh, Vivek Kumar/O-5699-2019;
Kanaujia, Anurag/GOK-0097-2022
OI Vinuesa, Ricardo/0000-0001-6570-5499; Singh, Vivek
Kumar/0000-0002-7348-6545; Singh, Aakash/0000-0002-6213-718X
FU Science and Engineering Research Board (SERB), India [MTR/2020/000625];
[M-22-69]
FX ACKNOWLEDGEMENTSThe authors would like to acknowledge the support in
form of the extramural research grant no. MTR/2020/000625 from Science
and Engineering Research Board (SERB), India, and by HPE Aruba Centre
for Research in Information Systems at BHU (No. M-22-69 of BHU).
CR Allen C, 2020, SUSTAIN SCI, V15, P521, DOI 10.1007/s11625-019-00711-x
Anderson EF, 2010, VIRTUAL REAL-LONDON, V14, P255, DOI 10.1007/s10055-010-0177-3
[Anonymous], 1964, The Use of Citation Data in Writing the History of Science
Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012
Batagelj Vladimir., 2003, Efficient algorithms for citation network analysis
Baum K, 2023, FRONT COMP SCI-SWITZ, V5, DOI 10.3389/fcomp.2023.1210421
Biswas G, 2005, APPL ARTIF INTELL, V19, P363, DOI 10.1080/08839510590910200
Borgatti SP, 2005, SOC NETWORKS, V27, P55, DOI 10.1016/j.socnet.2004.11.008
Brughmans T, 2013, LIT LINGUIST COMPUT, V28, P538, DOI 10.1093/llc/fqt048
Chaouachi A, 2013, IEEE T IND ELECTRON, V60, P1688, DOI 10.1109/TIE.2012.2188873
Chiang M, 2016, IEEE INTERNET THINGS, V3, P854, DOI 10.1109/JIOT.2016.2584538
Chui M., 2018, MCKINSEY GLOBAL I
Deng L, 2013, IEEE T AUDIO SPEECH, V21, P1060, DOI 10.1109/TASL.2013.2244083
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dressel J, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aao5580
Farrukh M, 2020, BUS STRATEG ENVIRON, V29, P2572, DOI 10.1002/bse.2521
Foley AM, 2012, RENEW ENERG, V37, P1, DOI 10.1016/j.renene.2011.05.033
Fotovatikhah F, 2018, ENG APPL COMP FLUID, V12, P411, DOI 10.1080/19942060.2018.1448896
Goh HH, 2021, DISCOV SUSTAIN, V2, DOI 10.1007/s43621-021-00064-5
Goralski MA, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100330
Graesser AC, 2004, BEHAV RES METH INS C, V36, P180, DOI 10.3758/BF03195563
Gupta S., 2021, Transportation Engineering, V4, P100064, DOI DOI 10.1016/J.TRENG.2021.100064
Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925
HUMMON NP, 1989, SOC NETWORKS, V11, P39, DOI 10.1016/0378-8733(89)90017-8
Jain RK, 2014, APPL ENERG, V123, P168, DOI 10.1016/j.apenergy.2014.02.057
Jo SJ, 2009, HUM RESOUR DEV Q, V20, P503, DOI 10.1002/hrdq.20023
Jung M, 2010, NATURE, V467, P951, DOI 10.1038/nature09396
Kessler RC, 2015, JAMA PSYCHIAT, V72, P49, DOI 10.1001/jamapsychiatry.2014.1754
Kong WC, 2019, IEEE T SMART GRID, V10, P841, DOI 10.1109/TSG.2017.2753802
Kumar S, 2021, BUS STRATEG ENVIRON, V30, P3454, DOI 10.1002/bse.2813
Lambin P, 2017, NAT REV CLIN ONCOL, V14, P749, DOI 10.1038/nrclinonc.2017.141
Lathabai HH, 2018, SCIENTOMETRICS, V117, P1871, DOI 10.1007/s11192-018-2917-1
Lathabai HH, 2017, SCIENTOMETRICS, V110, P711, DOI 10.1007/s11192-016-2202-0
Lathabai HH, 2015, PHYSICA A, V429, P157, DOI 10.1016/j.physa.2015.01.085
Li L., 2020, Radiology, V296, pE65, DOI [DOI 10.1148/RADIOL.2020200905, 10.1148/radiol.2020200905]
Li X, 2017, ENVIRON POLLUT, V231, P997, DOI 10.1016/j.envpol.2017.08.114
Liengpunsakul S, 2021, CHIN ECON, V54, P235, DOI 10.1080/10971475.2020.1857062
Liu JS, 2012, J AM SOC INF SCI TEC, V63, P528, DOI 10.1002/asi.21692
Liu Y, 2023, COMMUN EARTH ENVIRON, V4, DOI 10.1038/s43247-023-00730-8
Mina A, 2007, RES POLICY, V36, P789, DOI 10.1016/j.respol.2006.12.007
Moavenzadeh J., 2015, DHL GLOB ENG MAN SUM, P57
Muthukrishnan N, 2020, NEUROIMAG CLIN N AM, V30, P393, DOI 10.1016/j.nic.2020.07.004
National Stratregy for Artificial Intelligence, 2018, NITI AAYOG
Prabhakaran T, 2018, SCIENTOMETRICS, V117, P1611, DOI 10.1007/s11192-018-2931-3
Prabhakaran T, 2015, TECHNOL FORECAST SOC, V91, P124, DOI 10.1016/j.techfore.2014.02.003
PRICE DJD, 1965, SCIENCE, V149, P510
Rajkomar A, 2018, NPJ DIGIT MED, V1, DOI 10.1038/s41746-018-0029-1
Rudin C, 2019, NAT MACH INTELL, V1, P206, DOI 10.1038/s42256-019-0048-x
Sætra HS, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041738
Sanderman J, 2017, P NATL ACAD SCI USA, V114, P9575, DOI 10.1073/pnas.1706103114
Scardoni G., 2012, New Frontiers in Graph Theory, 2008, P323, DOI DOI 10.5772/35846
Singh A, 2022, J SCI IND RES INDIA, V81, P1147, DOI 10.56042/jsir.v81i11.64456
Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5
Stefanov DH, 2004, IEEE T NEUR SYS REH, V12, P228, DOI 10.1109/TNSRE.2004.828423
Tampubolon G., 2007, Graduate Journal of Social Science, V4, P54
van Griethuysen JJM, 2017, CANCER RES, V77, pE104, DOI 10.1158/0008-5472.CAN-17-0339
Vinuesa R, 2021, NAT MACH INTELL, V3, P926, DOI 10.1038/s42256-021-00414-y
Vinuesa R, 2020, RESULTS ENG, V8, DOI 10.1016/j.rineng.2020.100163
Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y
Voyant C, 2017, RENEW ENERG, V105, P569, DOI 10.1016/j.renene.2016.12.095
Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482
Yeh SC, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13169165
Zhao HX, 2012, RENEW SUST ENERG REV, V16, P3586, DOI 10.1016/j.rser.2012.02.049
NR 63
TC 21
Z9 21
U1 25
U2 59
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0968-0802
EI 1099-1719
J9 SUSTAIN DEV
JI Sustain. Dev.
PD FEB
PY 2024
VL 32
IS 1
BP 724
EP 754
DI 10.1002/sd.2706
EA JUL 2023
PG 31
WC Development Studies; Green & Sustainable Science & Technology; Regional
& Urban Planning
WE Social Science Citation Index (SSCI)
SC Development Studies; Science & Technology - Other Topics; Public
Administration
GA HI0K6
UT WOS:001038163500001
OA hybrid
DA 2024-09-05
ER
PT J
AU Mukhamediev, RI
Yakunin, K
Mussabayev, R
Buldybayev, T
Yan, KC
Murzakhmetov, S
Yelis, M
AF Mukhamediev, Ravil, I
Yakunin, Kirill
Mussabayev, Rustam
Buldybayev, Timur
Yan Kuchin
Murzakhmetov, Sanzhar
Yelis, Marina
TI Classification of Negative Information on Socially Significant Topics in
Mass Media
SO SYMMETRY-BASEL
LA English
DT Article
DE Bayesian rules; journalism; mass media; multimodal mass media
assessment; natural language processing; social influence; social
significance; topic modeling
ID RENEWABLE ENERGY; DECISION-MAKING; SYSTEM
AB Mass media not only reflect the activities of state bodies but also shape the informational context, sentiment, depth, and significance level attributed to certain state initiatives and social events. Multilateral and quantitative (to the practicable extent) assessment of media activity is important for understanding their objectivity, role, focus, and, ultimately, the quality of the society's "fourth power". The paper proposes a method for evaluating the media in several modalities (topics, evaluation criteria/properties, classes), combining topic modeling of the text corpora and multiple-criteria decision making. The evaluation is based on an analysis of the corpora as follows: the conditional probability distribution of media by topics, properties, and classes is calculated after the formation of the topic model of the corpora. Several approaches are used to obtain weights that describe how each topic relates to each evaluation criterion/property and to each class described in the paper, including manual high-level labeling, a multi-corpora approach, and an automatic approach. The proposed multi-corpora approach suggests assessment of corpora topical asymmetry to obtain the weights describing each topic's relationship to a certain criterion/property. These weights, combined with the topic model, can be applied to evaluate each document in the corpora according to each of the considered criteria and classes. The proposed method was applied to a corpus of 804,829 news publications from 40 Kazakhstani sources published from 01 January 2018 to 31 December 2019, to classify negative information on socially significant topics. A BigARTM model was derived (200 topics) and the proposed model was applied, including to fill a table of the analytical hierarchical process (AHP) and all of the necessary high-level labeling procedures. Experiments confirm the general possibility of evaluating the media using the topic model of the text corpora, because an area under receiver operating characteristics curve (ROC AUC) score of 0.81 was achieved in the classification task, which is comparable with results obtained for the same task by applying the BERT (Bidirectional Encoder Representations from Transformers) model.
C1 [Mukhamediev, Ravil, I; Yakunin, Kirill; Yelis, Marina] Satbayev Univ KazNRTU, Inst Cybernet & Informat Technol, Satpayev Str 22A, Alma Ata 050013, Kazakhstan.
[Mukhamediev, Ravil, I] ISMA Univ, Dept Nat Sci & Comp Technol, Lomonosov Str 1, LV-1011 Riga, Latvia.
[Mukhamediev, Ravil, I; Yakunin, Kirill; Mussabayev, Rustam; Yan Kuchin; Murzakhmetov, Sanzhar] Inst Informat & Computat Technol, Pushkin Str 125, Alma Ata 050010, Kazakhstan.
[Buldybayev, Timur] Informat Analyt Ctr, Dostyk Str 18, Nur Sultan 010000, Kazakhstan.
C3 Institute of Information & Computational Technologies
RP Mukhamediev, RI; Yakunin, K; Yelis, M (corresponding author), Satbayev Univ KazNRTU, Inst Cybernet & Informat Technol, Satpayev Str 22A, Alma Ata 050013, Kazakhstan.; Mukhamediev, RI (corresponding author), ISMA Univ, Dept Nat Sci & Comp Technol, Lomonosov Str 1, LV-1011 Riga, Latvia.; Mukhamediev, RI; Yakunin, K; Mussabayev, R (corresponding author), Inst Informat & Computat Technol, Pushkin Str 125, Alma Ata 050010, Kazakhstan.
EM ravil.muhamedyev@gmail.com; Yakunin.k@mail.ru; rustam@iict.kz;
Timur.Buldybayev@iac.kz; ykuchin@mail.ru; sanzharmrz@gmail.com;
k.marina92@gmail.com
RI Kuchin, Yan/IUO-8562-2023; Mussabayev, Rustam/AAQ-9781-2020; Yelis,
Marina/AAD-8506-2021; Murzakhmetov, Sanzhar/AAD-8637-2021; Mukhamediev,
Ravil I./X-1461-2019
OI Kuchin, Yan/0000-0002-5271-9071; Mussabayev, Rustam/0000-0001-7283-5144;
Mukhamediev, Ravil I./0000-0002-3727-043X; Yelis,
Marina/0000-0003-4203-800X; Yakunin, Kirill/0000-0002-7378-9212
FU Committee of Science under the Ministry of Education and Science of the
Republic of Kazakhstan [BR05236839]
FX This research was funded by the Committee of Science under the Ministry
of Education and Science of the Republic of Kazakhstan, grant
BR05236839.
CR Abaei MM, 2017, RENEW ENERG, V102, P341, DOI 10.1016/j.renene.2016.10.054
Agilitypr, MED MON ULT GUID
[Anonymous], 2019, ARXIV190305987
Atanayeva M., 2019, SCI ASP, V3, P277
Bandari R., 2012, PULSE NEWS SOCIAL ME
Barakhnin VB, 2019, BIZN INFORM, V13, P60, DOI 10.17323/1998-0663.2019.4.60.72
Barile F, 2019, 2019 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2019), P132, DOI 10.1145/3350546.3352510
Barysevich A., TOP BEST SOCIAL MEDI
Basnyat PEB, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP), P411
Bauer M.W., 2016, OECD Blue Sky Forum on Science and Innovation Indicators, P19
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
BRANS JP, 1985, MANAGE SCI, V31, P647, DOI 10.1287/mnsc.31.6.647
Bushman B., 2017, NEUROSCIENCE BIOBEHA
Bushman B., 2012, Encyclopedia of human behavior, P571
Charabi Y, 2011, RENEW ENERG, V36, P2554, DOI 10.1016/j.renene.2010.10.037
Curiskis SA, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.04.002
Detlof V.W., 1975, UTILITY PROBABILITY, P47
Devlin J, BERT PRETRAINING DEE
EDELMAN R, EDELMAN TRUST BAROME
Figueira J, 2005, INT SER OPER RES MAN, V78, P133, DOI 10.1007/0-387-23081-5_4
Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009
Hansen P, 2008, J MULTI-CRITERIA DEC, V15, P87, DOI 10.1002/mcda.428
Hoceini Youssef, 2011, Prague Bulletin of Mathematical Linguistics, P19, DOI 10.2478/v10108-011-0002-5
Ionel DM, 1998, IEEE IND APPLIC SOC, P65, DOI 10.1109/IAS.1998.732260
Ko H, 2019, COGN SYST RES, V55, P77, DOI 10.1016/j.cogsys.2018.12.018
Kumar A, 2017, RENEW SUST ENERG REV, V69, P596, DOI 10.1016/j.rser.2016.11.191
LAI YJ, 1994, EUR J OPER RES, V76, P486, DOI 10.1016/0377-2217(94)90282-8
Macharia S., 2020, INT ENCY GENDER MEDI, P1, DOI DOI 10.1002/9781119429128.IEGMC074
Mardani A, 2015, SUSTAINABILITY-BASEL, V7, P13947, DOI 10.3390/su71013947
[Машечкин И.В. Mashechkin I.V.], 2013, [Вычислительные методы и программирование: новые вычислительные технологии, Vychislitel'nye metody i programmirovanie: novye vychislitel'nye tekhnologii], V14, P91
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Mishra S, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1069, DOI 10.1145/2983323.2983812
Mukhamediev R.I., 2020, CLOUD SCI, V7, P87
Mukhamediev RI, 2019, IEEE ACCESS, V7, P122275, DOI 10.1109/ACCESS.2019.2937627
Neresini F, 2016, PUBLIC UNDERST SCI, V25, P171, DOI 10.1177/0963662514551506
Newberry C., SOCIAL MEDIA MONITOR
Nikulchev E, 2020, DATA, V5, DOI 10.3390/data5040095
Opricovic S, 2007, EUR J OPER RES, V178, P514, DOI 10.1016/j.ejor.2006.01.020
Ospanova U., 2019, SOCIOLOGIA, V2, P259
[Пархоменко П.А. Parhomenko P.A.], 2017, [Труды Института системного программирования РАН, Trudy Instituta sistemnogo programmirovaniya RAN], V29, P161, DOI 10.15514/ISPRAS-2017-29(2)-6
Saaty T. L., 2015, CLOUD SCI, V2, P5
Saaty T.L., 1990, DECISION MAKING LEAD
Saaty TL, 2000, FUNDAMENTALS DECISIO, DOI [10.1007/978-3-642-50244-64, DOI 10.1007/978-3-642-50244-64]
Scott J, 2015, INT J PROD ECON, V166, P226, DOI 10.1016/j.ijpe.2014.11.008
Stacks DW., 2015, INT ENCY SOCIAL BEHA, VSecond, P29
Tatar A, 2012, 2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P106, DOI 10.1109/ASONAM.2012.28
Thanasopon Bundit, 2017, 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE), DOI 10.1109/ICITEED.2017.8250454
[Воронцов Константин Вячеславович Vorontsov K.V.], 2012, [Компьютерные исследования и моделирование, Computer Research and Modeling, Komp'yuternye issledovaniya i modelirovanie], V4, P693
Vorontsov K, 2015, COMM COM INF SC, V542, P370, DOI 10.1007/978-3-319-26123-2_36
Wanderer T, 2015, ENVIRON IMPACT ASSES, V52, P2, DOI 10.1016/j.eiar.2014.09.002
Willaert T, 2020, SOC MEDIA SOC, V6, DOI 10.1177/2056305119898778
YAGER RR, 1988, IEEE T SYST MAN CYB, V18, P183, DOI 10.1109/21.87068
Yakunin K., AIRFLOW DAGS NLPMONI
Yakunin K., THIS REPO PRESENTS D
Yakunin K., MEDIA MONITORING SYS
NR 55
TC 9
Z9 9
U1 1
U2 15
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2073-8994
J9 SYMMETRY-BASEL
JI Symmetry-Basel
PD DEC
PY 2020
VL 12
IS 12
AR 1945
DI 10.3390/sym12121945
PG 23
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics
GA PK3WF
UT WOS:000602378900001
OA gold
DA 2024-09-05
ER
PT J
AU Umer, M
Aljrees, T
Ullah, S
Bashir, AK
AF Umer, Muhammad
Aljrees, Turki
Ullah, Saleem
Bashir, Ali Kashif
TI Novel approach for quantitative and qualitative authors research
profiling using feature fusion and tree-based learning approach
SO PEERJ COMPUTER SCIENCE
LA English
DT Article
DE Citation sentiment analysis; Ensemble learning; Feature engineering;
Feature fusion; Intelligent recommendation and text analysis; Authors
research profiling; Self citation analysis
ID SELF-CITATION RATES; H-INDEX; IMPACT; CLASSIFICATION; PATTERNS; MACRO;
SMOTE
AB Article citation creates a link between the cited and citing articles and is used as a basis for several parameters like author and journal impact factor, H-index, i10 index, etc., for scientific achievements. Citations also include self-citation which refers to article citation by the author himself. Self-citation is important to evaluate an author's research profile and has gained popularity recently. Although different criteria are found in the literature regarding appropriate self-citation, self-citation does have a huge impact on a researcher's scientific profile. This study carries out two cases in this regard. In case 1, the qualitative aspect of the author's profile is analyzed using hand-crafted feature engineering techniques. The sentiments conveyed through citations are integral in assessing research quality, as they can signify appreciation, critique, or serve as a foundation for further research. Analyzing sentiments within in-text citations remains a formidable challenge, even with the utilization of automated sentiment annotations. For this purpose, this study employs machine learning models using term frequency (TF) and term frequency-inverse document frequency (TF-IDF). Random forest using TF with Synthetic Minority Oversampling Technique (SMOTE) achieved a 0.9727 score of accuracy. Case 2 deals with quantitative analysis and investigates direct and indirect self-citation. In this study, the top 2% of researchers in 2020 is considered as a baseline. For this purpose, the data of the top 25 Pakistani researchers are manually retrieved from this dataset, in addition to the citation information from the Web of Science (WoS). The self citation is estimated using the proposed model and results are compared with those obtained from WoS. Experimental results show a substantial difference between the two, as the ratio of self-citation from the proposed approach is higher than WoS. It is observed that the citations from the WoS for authors are overstated. For a comprehensive evaluation of the researcher's profile, both direct and indirect self citation must be included.
C1 [Umer, Muhammad; Ullah, Saleem] Khwaja Fareed Univ Engn & IT, Dept Comp Sci, Rahim Yar Khan, Punjab, Pakistan.
[Aljrees, Turki] Univ Hafr Al Batin, Dept Comp Sci & Engn, Hafar Al Batin, Saudi Arabia.
[Bashir, Ali Kashif] Manchester Metropolitan Univ, Dept Comp & Math, Manchester, England.
C3 Hafr Albatin University; Manchester Metropolitan University
RP Ullah, S (corresponding author), Khwaja Fareed Univ Engn & IT, Dept Comp Sci, Rahim Yar Khan, Punjab, Pakistan.
EM saleem.ullah@kfueit.edu.pk
RI Aljrees, Turki/HLQ-3139-2023; Umer, Muhammad/AAX-4594-2020; Umer,
Muhammad/KHU-2339-2024; Ullah, Dr. Saleem/D-2644-2014
OI Aljrees, Turki/0000-0002-7473-7115; Umer, Muhammad/0000-0002-6015-9326;
Umer, Muhammad/0009-0001-8751-6100; Bashir, Ali
Kashif/0000-0003-2601-9327; Ullah, Dr. Saleem/0000-0003-3747-1263
FU Turki Aljrees
FX The funding is supported by Turki Aljrees with the support of the
University of Hafr-Al Batin. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the
manuscript.
CR Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575
Aksnes DW, 2003, SCIENTOMETRICS, V56, P235, DOI 10.1023/A:1021919228368
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], 2017, INT C COMP SCI APPL
Athar A., 2011, P ACL 2011 STUD SESS, P81
Ben HE., 2003, Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM '03, P10, DOI DOI 10.1145/956863.956867
Budimir G, 2021, SCIENTOMETRICS, V126, P2249, DOI 10.1007/s11192-021-03862-w
Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H
Catal C, 2017, APPL SOFT COMPUT, V50, P135, DOI 10.1016/j.asoc.2016.11.022
Chawla NV, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P875, DOI 10.1007/978-0-387-09823-4_45
Christian H., 2016, COMTECH COMPUT MATH, V7, P285, DOI DOI 10.21512/COMTECH.V7I4.3746
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Costas R, 2010, SCIENTOMETRICS, V82, P517, DOI 10.1007/s11192-010-0187-7
Foley JA, 2010, CORTEX, V46, P802, DOI 10.1016/j.cortex.2010.01.004
Fowler JH, 2007, SCIENTOMETRICS, V72, P427, DOI 10.1007/s11192-007-1777-2
Garfield E, 1997, BRIT MED J, V314, P1765, DOI 10.1136/bmj.314.7096.1765a
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Garfield E., 1998, 41 ANN M COUNC BIOL
Ghosh S., 2020, P 53 HAW INT C SYST
Gianoli E, 2009, J AM SOC INF SCI TEC, V60, P1283, DOI 10.1002/asi.21042
Glänzel W, 2006, SCIENTOMETRICS, V67, P263, DOI 10.1556/Scient.67.2006.2.8
Glänzel W, 2004, SCIENTOMETRICS, V59, P281, DOI 10.1023/B:SCIE.0000018535.99885.e9
Gregorutti B, 2017, STAT COMPUT, V27, P659, DOI 10.1007/s11222-016-9646-1
Herther NK, 2009, ELECTRON LIBR, V27, P361, DOI 10.1108/02640470910966835
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9
Ioannidis JPA, 2020, PLOS BIOL, V18, DOI 10.1371/journal.pbio.3000918
Ishaq A, 2021, IEEE ACCESS, V9, P39707, DOI 10.1109/ACCESS.2021.3064084
Jaffe K, 2011, INTERCIENCIA, V36, P694
Karim M, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12063203
Kochhar SK, 2020, ICT EXPRESS, V6, P253, DOI 10.1016/j.icte.2020.02.001
LAWANI SM, 1982, J AM SOC INFORM SCI, V33, P281
Livas C, 2018, J EVID-BASED DENT PR, V18, P269, DOI 10.1016/j.jebdp.2017.09.001
Lopez J, 2016, J SURG EDUC, V73, P317, DOI 10.1016/j.jsurg.2015.10.012
Mavrogenis AF, 2010, CLIN ORTHOP RELAT R, V468, P2803, DOI 10.1007/s11999-010-1480-8
Medoff MH, 2006, SCIENTOMETRICS, V69, P69, DOI 10.1007/s11192-006-0139-4
Moed HF, 2012, SCIENTOMETRICS, V92, P367, DOI 10.1007/s11192-012-0679-8
Oppenheim C, 1997, J DOC, V53, P477, DOI 10.1108/EUM0000000007207
Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880
Pride D, 2017, PRO INT CONF SCI INF, P1357
Rustam F, 2019, ENTROPY-SWITZ, V21, DOI 10.3390/e21111078
SAFAVIAN SR, 1991, IEEE T SYST MAN CYB, V21, P660, DOI 10.1109/21.97458
Schreiber M, 2007, EPL-EUROPHYS LETT, V78, DOI 10.1209/0295-5075/78/30002
Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283
Sharma Himani., 2016, International Journal of Science and Research (IJSR), V5
Shehatta I, 2019, SCIENTOMETRICS, V120, P775, DOI 10.1007/s11192-019-03139-3
Simoes N, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.100990
Snyder H, 1998, J INF SCI, V24, P431, DOI 10.1177/016555159802400606
Sundaram K, 2020, EUR J ORTHOP SURG TR, V30, P629, DOI 10.1007/s00590-019-02616-y
Szomszor M, 2020, SCIENTOMETRICS, V123, P1119, DOI 10.1007/s11192-020-03417-5
TAGLIACOZZO R, 1977, J DOC, V33, P251, DOI 10.1108/eb026644
Umer M, 2022, PATTERN RECOGN LETT, V164, P224, DOI 10.1016/j.patrec.2022.11.012
Umer M, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22072431
Umer M, 2021, PATTERN RECOGN LETT, V150, P250, DOI 10.1016/j.patrec.2021.07.009
Van Noorden R, 2019, NATURE, V572, P578, DOI 10.1038/d41586-019-02479-7
Vinkler P, 2007, J INF SCI, V33, P481, DOI 10.1177/0165551506072165
West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790
Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3
WoS, 2023, Web of science journal citation reports: suppression policy-clarivate
Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334
ZADROZNY B, 2002, P 8 ACM SIGKDD INT C, P694, DOI DOI 10.1145/775047.775151
Zhang Y., 2014, Abstract And Applied Analysis, V2014
Zhao DZ, 2018, J ASSOC INF SCI TECH, V69, P949, DOI 10.1002/asi.24046
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 64
TC 0
Z9 0
U1 3
U2 3
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
EI 2376-5992
J9 PEERJ COMPUT SCI
JI PeerJ Comput. Sci.
PD DEC 19
PY 2023
VL 9
AR e1752
DI 10.7717/peerj-cs.1752
PG 26
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA DK4Q8
UT WOS:001131925400003
PM 38192451
OA gold
DA 2024-09-05
ER
PT J
AU Nadathur, SG
Warren, JR
AF Nadathur, Shyamala G.
Warren, James R.
TI Formal-Transfer In and Out of Stroke Care Units: An Analysis Using
Bayesian Networks
SO INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS
LA English
DT Article
DE Administrative Data; Bayesian Networks; Health Services Research;
Outcome and Process Assessment; Patient Care; Stroke Units
AB The positive impact of stroke care units (SCUs) on patient outcome has been previously reported. In this study, long-term stroke patients that are formally admitted to teaching-hospitals are compared with and without SCUs. The authors focus on the patients' experience with ongoing care or formal transfers following current care as this cohort is often high users of the system with associated high costs. Bayesian Networks were employed to analyze routinely collected public-hospital administrative data. The results illustrate that the teaching-hospitals with SCUs, while achieving shorter length of stay, in fact deal with younger patients with lower overall patient complexity than non-SCU teaching-hospitals. Other differences include SCUs predominantly treating subarachnoid hemorrhages whereas the non-SCUs treat more cerebral infarctions. This study illustrates the power of Bayesian Networks to expose the nature of caseload and outcomes recorded in hospital-administrative data as a means to gain insight on current practice and create opportunities for benchmarking and improving care.
C1 [Nadathur, Shyamala G.] Monash Univ, Clayton, Vic, Australia.
[Warren, James R.] Univ Auckland, Dept Comp Sci, Auckland, New Zealand.
[Warren, James R.] Univ Auckland, Sch Populat Hlth, Auckland, New Zealand.
[Warren, James R.] Univ Natl Inst Hlth Innovat, Auckland, New Zealand.
C3 Monash University; University of Auckland; University of Auckland
RP Nadathur, SG (corresponding author), Monash Univ, Clayton, Vic, Australia.
OI Warren, James/0000-0002-8660-8951
CR Abston KC, 1997, J AM MED INFORM ASSN, P168
Bidyuk PI, 2005, CYBERN SYST ANAL+, V41, P587, DOI 10.1007/s10559-005-0094-8
Bonavita V, 2008, NEUROL SCI, V29, pS99, DOI 10.1007/s10072-008-0898-1
Brown RD, 1996, STROKE, V27, P373
Cadilhac D, 1998, Aust Nurs J, V5, P18
Candelise L, 2007, LANCET, V369, P299, DOI 10.1016/S0140-6736(07)60152-4
Claesson L, 2003, AGE AGEING, V32, P109, DOI 10.1093/ageing/32.1.109
Cloutier LM, 2008, DRUG DISCOV TODAY, V13, P536, DOI 10.1016/j.drudis.2008.03.022
Collins D, 2000, Ir Med J, V93, P84
COUNSELL C, 1995, STROKE, V26, P498, DOI 10.1161/01.STR.26.3.498
Crimmins DS, 2009, INTERN MED J, V39, P325, DOI 10.1111/j.1445-5994.2009.01935.x
Curtis JR, 2008, MED CARE, V46, P969, DOI 10.1097/MLR.0b013e318179253b
Dai HH, 1997, INT JOINT CONF ARTIF, P1304
Díez-Tejedor E, 2001, CEREBROVASC DIS, V11, P31, DOI 10.1159/000049123
Dion J.E., 2004, J VASCULAR INTERVENT, V15, P133
Donnan GA, 2008, LANCET, V371, P1612, DOI 10.1016/S0140-6736(08)60694-7
Dunbabin D, 1992, Pharmacoeconomics, V2, P468
el-Darzi E, 1998, Health Care Manag Sci, V1, P143
Elixhauser A, 1998, MED CARE, V36, P8, DOI 10.1097/00005650-199801000-00004
Evans A, 2002, STROKE, V33, P449, DOI 10.1161/hs0202.102364
Fischer U, 2006, ACTA NEUROL SCAND, V113, P108, DOI 10.1111/j.1600-0404.2005.00551.x
Fuentes B, 2009, INT J STROKE, V4, P28, DOI 10.1111/j.1747-4949.2009.00244.x
Indredavik B, 2000, STROKE, V31, P2989, DOI 10.1161/01.STR.31.12.2989
Kalra L, 2000, LANCET, V356, P894, DOI 10.1016/S0140-6736(00)02679-9
Karatepe AG, 2008, J REHABIL MED, V40, P831, DOI 10.2340/16501977-0269
Kazmierski R, 2006, EXPERT REV NEUROTHER, V6, P1349, DOI 10.1586/14737175.6.9.1349
Kim I.-C., 2003, P 3 INT C MACH LEARN, P5
Klon AE, 2006, J CHEM INF MODEL, V46, P1945, DOI 10.1021/ci0601315
Launois R, 2004, STROKE, V35, P770, DOI 10.1161/01.STR.0000117574.19517.80
Lee SM, 2003, J BIOMED INFORM, V36, P389, DOI 10.1016/j.jbi.2003.09.022
Lorenzano S, 2006, CLIN EXP HYPERTENS, V28, P377, DOI 10.1080/10641960600549728
Lucas Peter, 2004, Curr Opin Crit Care, V10, P399, DOI 10.1097/01.ccx.0000141546.74590.d6
Lucas PJF, 2004, ARTIF INTELL MED, V30, P201, DOI 10.1016/j.artmed.2003.11.001
Luthi JC, 2007, INT J QUAL HEALTH C, V19, P225, DOI 10.1093/intqhc/mzm017
MALENKA DJ, 1994, J CLIN EPIDEMIOL, V47, P1027, DOI 10.1016/0895-4356(94)90118-X
Monash University Data Mining Centre (MDMC), 2002, INTRODUCTION
Nadathur S. G., 2010, BMC HLTH SERVICES RE
NADATHUR SG, 2006, HEALTH INF MANAG J, V37, P33
NADATHUR SG, 2009, DYNAMIC ADV DATA MIN, P342, DOI DOI 10.4018/978-1-60566-908-3.CH014
NADATHUR SG, 2010, AUST HEALTH REV, V34, P1, DOI DOI 10.1071/AH09801
Norsys, 2008, NER BAYES NETW DEV S
O'Donnell RT, 2006, LECT NOTES COMPUT SC, V4304, P192
Read SJ, 2005, INTERN MED J, V35, P447, DOI 10.1111/j.1445-5994.2005.00882.x
Roe C J, 1996, J Qual Clin Pract, V16, P203
Ronning OM, 1998, STROKE, V29, P586, DOI 10.1161/01.STR.29.3.586
Ronning OM, 1998, STROKE, V29, P58, DOI 10.1161/01.STR.29.1.58
Rudd AG, 2005, STROKE, V36, P103, DOI 10.1161/01.STR.0000149618.14922.8a
Saka Ö, 2009, STROKE, V40, P24, DOI 10.1161/STROKEAHA.108.518043
Sarker SJ, 2008, J NEUROL NEUROSUR PS, V79, P260, DOI 10.1136/jnnp.2007.129189
Seenan P, 2007, STROKE, V38, P1886, DOI 10.1161/STROKEAHA.106.480871
Sierra B, 2001, ARTIF INTELL MED, V22, P233, DOI 10.1016/S0933-3657(00)00111-1
Slany J, 2002, DEUT MED WOCHENSCHR, V127, P1575, DOI 10.1055/s-2002-32942
Smith WP, 2009, ARTIF INTELL MED, V46, P119, DOI 10.1016/j.artmed.2008.12.002
Somerford PJ, 2004, ANN EPIDEMIOL, V14, P773, DOI 10.1016/j.annepidem.2004.02.003
Stroke Unit Trialists' Collaboration, 2007, COCHRANE DATABASE SY, V4
Terént A, 2009, J NEUROL NEUROSUR PS, V80, P881, DOI 10.1136/jnnp.2008.169102
Tervo-Heikkinen T, 2009, J NURS MANAGE, V17, P986, DOI 10.1111/j.1365-2834.2009.01020.x
Tessier A, 2008, ARCH PHYS MED REHAB, V89, P1276, DOI 10.1016/j.apmr.2007.11.049
Twardy C. R., 2005, AUSTR RES COUNC NETW
Valderas JM, 2009, ANN FAM MED, V7, P357, DOI 10.1370/afm.983
van der Gaag L.C., 2008, Aligning Bayesian Network Classifiers with Medical Contexts
van Gerven MAJ, 2008, J BIOMED INFORM, V41, P515, DOI 10.1016/j.jbi.2008.01.006
Verduijn M, 2007, J BIOMED INFORM, V40, P609, DOI 10.1016/j.jbi.2007.07.003
Wallace C. S., 1999, CAUSAL MODELS INTELL, DOI [10.1007/978-3-642-58648-4_7, DOI 10.1007/978-3-642-58648-4_]
Young JA, 2009, TOP STROKE REHABIL, V16, P389, DOI 10.1310/tsr1606-389
Zhu HF, 2009, STROKE, V40, P18, DOI 10.1161/STROKEAHA.108.527606
NR 66
TC 0
Z9 0
U1 0
U2 0
PU IGI GLOBAL
PI HERSHEY
PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA
SN 1555-3396
EI 1555-340X
J9 INT J HEALTHC INF SY
JI Int. J. Healthc. Inf. Syst. Inf.
PD JUL-SEP
PY 2011
VL 6
IS 3
BP 32
EP 45
DI 10.4018/jhisi.2011070103
PG 14
WC Medical Informatics
WE Emerging Sources Citation Index (ESCI)
SC Medical Informatics
GA V14ZL
UT WOS:000214518800003
DA 2024-09-05
ER
PT J
AU Lee, C
AF Lee, Changsoo
TI A topic modeling analysis of Korea's T&I research trends in the 2010s
SO BABEL-REVUE INTERNATIONALE DE LA TRADUCTION-INTERNATIONAL JOURNAL OF
TRANSLATION
LA English
DT Article
DE research trends; bibliographic study; text mining; topic modeling;
Korean T&I research
ID TRANSLATION
AB The present study aims to demonstrate the relevance of topic modeling as a new research tool for analyzing research trends in the T&I field. Until now, most efforts to this end have relied on manual classification based on pre-established typologies. This method is time- and labor-consuming, prone to subjective biases, and limited in describing a vast amount of research output. As a key component of text mining, topic modeling offers an efficient way of summarizing topic structure and trends over time in a collection of documents while being able to describe the entire system without having to rely on sampling. As a case study, the present paper applies the technique to analyzing a collection of abstracts from four Korean Language T&I journals for the 2010s decade (from 2010 to 2019). The analysis proves the technique to be highly successful in uncovering hidden topical structure and trends in the abstract corpus. The results are discussed along with implications of the technique for the T&I field.
C1 [Lee, Changsoo] Hankuk Univ Foreign Studies, Seoul, South Korea.
C3 Hankuk University Foreign Studies
RP Lee, C (corresponding author), Hankuk Univ Foreign Studies, Grad Sch Interpretat & Translat, Imunro 107, Seoul 02450, South Korea.
EM dewywag@gmail.com
FU Hankuk University of Foreign Studies Research Fund
FX This work was supported by the Hankuk University of Foreign Studies
Research Fund of 2021.
CR [Anonymous], 2012, DESCRIPTIVE TRANSLAT
Ball R., 2018, INTRO BIBLIOMETRICS
Cheong Ho-Jeong, 2013, [Interpretation and Translation, 통역과 번역], V15, P235
Das BijayKumar., 2005, Handbook of Translation Studies
Dilley Paul., 2016, Ancient Worlds in Digital Culture, P17
Fortuna B., 2009, Text Mining: Classification, Clustering, and Applications, P27
Guo W, 2011, P 2011 C EMPIRICAL M, P552
Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4
Hee Han Hyun, 2016, [The Journal of Translation Studies, 번역학연구], V17, P251
Jacobi C, 2016, DIGIT JOURNAL, V4, P89, DOI 10.1080/21670811.2015.1093271
Kim Hye-Rim, 2013, [The Journal of Translation Studies, 번역학연구], V14, P95
Lafferty J.D, 2009, Topic Models, P71, DOI [10.1145/1143844.1143859, DOI 10.1145/1143844.1143859]
Lee Chang-Soo, 2019, [The Journal of Translation Studies, 번역학연구], V20, P107
Lee Chang-Soo, 2013, [Interpretation and Translation, 통역과 번역], V15, P99
Lee Jieun, 2018, [Interpretation and Translation, 통역과 번역], V20, P75, DOI 10.20305/it201803075104
Li XD, 2015, PERSPECT STUD TRANSL, V23, P183, DOI 10.1080/0907676X.2015.1006645
OHagan Minako., 2013, The Routledge Handbook of Translation Studies, P503
Rani J, 2015, J BIOSCIENCES, V40, P671, DOI 10.1007/s12038-015-9552-2
Reisenbichler M., 2019, J BUSINESS EC, V89, P327, DOI DOI 10.1007/S11573-018-0915-7
Roberts Roda., 1997, CRITICAL LINK INTERP, P7, DOI [10.1075/btl.19.03rob, DOI 10.1075/BTL.19.03ROB]
Rovira-Esteva S, 2015, PERSPECT STUD TRANSL, V23, P159, DOI 10.1080/0907676X.2015.1026361
Saori Hasegawa, 2018, [Interpretation and Translation, 통역과 번역], V20, P163, DOI 10.20305/it201803163194
Simon C, 2019, BMC BIOINFORMATICS, V19, DOI 10.1186/s12859-019-2607-x
Snell-Hornby M, 2018, BENJAMIN TRANSL LIB, V142, P143, DOI 10.1075/btl.142.19sne
Snell-Hornby Mary, 2006, The Turns of Translation Studies
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Turovsky Barak, 2016, TRANSLATE 1115
van Doorslaer L, 2015, PERSPECT STUD TRANSL, V23, P305, DOI 10.1080/0907676X.2015.1026360
van Kessel Patrick, 2018, MAKING SENSE TOPIC M
Venuti Lawrence., 2008, TRANSLATORS INVISIBI, V2nd
Waldlierr A., 2016, Political Communication in the Online World: Theoretical Approaches and Research Designs, P201
Wiedemann G., 2016, TEXT MINING QUALITAT
Zanettin F, 2015, PERSPECT STUD TRANSL, V23, P161, DOI 10.1080/0907676X.2015.1010551
Zhang MF, 2015, PERSPECT STUD TRANSL, V23, P223, DOI 10.1080/0907676X.2015.1021260
임현경, 2015, [Interpretation and Translation, 통역과 번역], V17, P27
NR 35
TC 0
Z9 0
U1 0
U2 4
PU JOHN BENJAMINS PUBLISHING CO
PI AMSTERDAM
PA PO BOX 36224, 1020 ME AMSTERDAM, NETHERLANDS
SN 0521-9744
EI 1569-9668
J9 BABEL-AMSTERDAM
JI Babel
PY 2021
VL 67
IS 4
BP 482
EP 499
DI 10.1075/babel.00228.lee
PG 18
WC Linguistics; Language & Linguistics
WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Linguistics
GA WT6EP
UT WOS:000715956200005
DA 2024-09-05
ER
PT C
AU Correia, A
Jameel, S
Schneider, D
Paredes, H
Fonseca, B
AF Correia, Antonio
Jameel, Shoaib
Schneider, Daniel
Paredes, Hugo
Fonseca, Benjamim
BE Wu, XT
Jermaine, C
Xiong, L
Hu, XH
Kotevska, O
Lu, SY
Xu, WJ
Aluru, S
Zhai, CX
Al-Masri, E
Chen, ZY
Saltz, J
TI A Workflow-Based Methodological Framework for Hybrid Human-AI Enabled
Scientometrics
SO 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)
SE IEEE International Conference on Big Data
LA English
DT Proceedings Paper
CT 8th IEEE International Conference on Big Data (Big Data)
CY DEC 10-13, 2020
CL ELECTR NETWORK
DE artificial intelligence; crowdsourcing; human-AI hybrid interaction;
human-machine symbiosis; science mapping; research evaluation;
scientometrics; workflows
ID INFORMATION-SCIENCE; SOFTWARE; KNOWLEDGE; TOOL; NETWORKS; MODEL
AB With cutting edge scientific breakthroughs, human-centred algorithmic approaches have proliferated in recent years and information technology (IT) has begun to redesign socio-technical systems in the context of human-AI collaboration. As a result, distinct forms of interaction have emerged in tandem with the proliferation of infrastructures aiding interdisciplinary work practices and research teams. Concomitantly, large volumes of heterogeneous datasets are produced and consumed at a rapid pace across many scientific domains. This results in difficulties in the reliable analysis of scientific production since current tools and algorithms are not necessarily able to provide acceptable levels of accuracy when analyzing the content and impact of publication records from large continuous scientific data streams. On the other hand, humans cannot consider all the information available and may be adversely influenced by extraneous factors. Using this rationale, we propose an initial design of a human-AI enabled pipeline for performing scientometric analyses that exploits the intersection between human behavior and machine intelligence. The contribution is a model for incorporating central principles of human-machine symbiosis (HMS) into scientometric workflows, demonstrating how hybrid intelligence systems can drive and encapsulate the future of research evaluation.
C1 [Correia, Antonio; Paredes, Hugo; Fonseca, Benjamim] INESC TEC, Apartado 1013, Vila Real, Portugal.
[Correia, Antonio; Paredes, Hugo; Fonseca, Benjamim] Univ Tras Os Montes & Alto Douro, UTAD, Apartado 1013, Vila Real, Portugal.
[Jameel, Shoaib] Univ Essex, Sch Comp Sci & Elect Engn, Colchester Campus, Colchester, Essex, England.
[Schneider, Daniel] Univ Fed Rio de Janeiro, Tercio Pacitti Inst Comp Applicat & Res NCE, Rio De Janeiro, RJ, Brazil.
C3 INESC TEC; University of Tras-os-Montes & Alto Douro; University of
Essex; Universidade Federal do Rio de Janeiro
RP Correia, A (corresponding author), INESC TEC, Apartado 1013, Vila Real, Portugal.; Correia, A (corresponding author), Univ Tras Os Montes & Alto Douro, UTAD, Apartado 1013, Vila Real, Portugal.
EM antonio.g.correia@inesctec.pt
RI Correia, António/AAJ-3347-2021; Paredes, Hugo/D-8347-2010
OI Correia, António/0000-0002-2736-3835; Paredes, Hugo/0000-0002-4274-4783;
Fonseca, Benjamim/0000-0002-0850-9755
FU National Funds through the Portuguese funding agency, FCT -Fundacao para
a Ciencia e a Tecnologia [UIDB/50014/2020]
FX This work is financed by National Funds through the Portuguese funding
agency, FCT -Fundacao para a Ciencia e a Tecnologia within project
UIDB/50014/2020.
CR Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Bailón-Moreno R, 2005, SCIENTOMETRICS, V63, P259, DOI 10.1007/s11192-005-0212-4
Barbosa NM, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300773
Börner K, 2011, COMMUN ACM, V54, P60, DOI 10.1145/1897852.1897871
Börner K, 2010, SCIENTOMETRICS, V83, P863, DOI 10.1007/s11192-009-0149-0
Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
Brereton P., 2014, P INT C EV ASS SOFTW, P1
BRUSILOVSKY BY, 1978, TECHNOL FORECAST SOC, V12, P193, DOI 10.1016/0040-1625(78)90055-0
Chan Joel, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274300
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Comins JA, 2016, SCIENTOMETRICS, V107, P1509, DOI 10.1007/s11192-016-1928-z
Correia Antonio, 2013, Human Factors in Computing and Informatics. Proceedings of the First International Conference (SouthCHI 2013): LNCS 7946, P137, DOI 10.1007/978-3-642-39062-3_9
Correia A., 2020, P HAW INT C SYST SCI, P4630
Correia A, 2018, 2018 14TH CONFERENCE ON PHD RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIME 2018), P33, DOI 10.1109/PRIME.2018.8430338
Correia A, 2019, IEEE SYS MAN CYBERN, P1372, DOI 10.1109/SMC.2019.8914637
Correia A, 2019, IEEE SYS MAN CYBERN, P4013, DOI 10.1109/SMC.2019.8914075
Correia A, 2019, INT C COMP SUPP COOP, P129, DOI [10.1109/cscwd.2019.8791855, 10.1109/CSCWD.2019.8791855]
Correia A, 2018, LECT NOTES COMPUT SC, V11001, P133, DOI 10.1007/978-3-319-99504-5_11
Correia A, 2018, SCIENTOMETRICS, V114, P31, DOI 10.1007/s11192-017-2562-0
Correia Antonio., 2019, Macrotask Crowdsourcing, P149
Daniel F, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3148148
Dellermann D, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P274
Dobrkovic A, 2018, ADV INTELL SYST COMP, V722, P361, DOI 10.1007/978-3-319-73888-8_56
Dong ZA, 2017, CLUSTER COMPUT, V20, P3629, DOI 10.1007/s10586-017-1089-8
Dresbeck R, 2015, J MED LIBR ASSOC, V103, P164, DOI 10.3163/1536-5050.103.3.018
Endert A., 2014, Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics (IDEA'14), P52
Enojas MJB, 2019, 2019 4TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS 2019), P1, DOI [10.1109/acirs.2019.8935969, 10.1109/ACIRS.2019.8935969]
Feger S.S., 2020, PROC ACM HUM INTERAC, V4, P1, DOI [10.1145/3415212, DOI 10.1145/3415212]
Frehe V., 2014, INFORMATIK, P1699
Gadiraju Ujwal, 2017, Evaluation in the Crowd. Crowdsourcing and Human-Centered Experiments. Revised Contributions: LNCS 10264, P6, DOI 10.1007/978-3-319-66435-4_2
Gagolewski M, 2011, J INFORMETR, V5, P678, DOI 10.1016/j.joi.2011.06.006
Garfield E., 2004, P ANN M AM SOC INF S, V83
Gil Y, 2007, COMPUTER, V40, P24, DOI 10.1109/MC.2007.421
Gil Y, 2014, SCIENCE, V346, P171, DOI 10.1126/science.1259439
Gil Y, 2009, SCI PROGRAMMING-NETH, V17, P231, DOI [10.3233/SPR-2009-0261, 10.1155/2009/167604]
Goh YC, 2020, SCIENTOMETRICS, V125, P1197, DOI 10.1007/s11192-020-03614-2
Grauwin S, 2011, SCIENTOMETRICS, V89, P943, DOI 10.1007/s11192-011-0482-y
Guler AT, 2016, SCIENTOMETRICS, V107, P385, DOI 10.1007/s11192-016-1885-6
Harzing A., 2008, Ethics in Science and Environmental Politics, V8, P61, DOI [DOI 10.3354/ESEP00076, 10.3354/esep00076]
Hou H, 2008, SCIENTOMETRICS, V75, P189, DOI 10.1007/s11192-007-1771-3
Hussain I, 2017, KNOWL ENG REV, V32, DOI 10.1017/S0269888917000182
Jonkers K, 2013, RES POLICY, V42, P1366, DOI 10.1016/j.respol.2013.05.005
Kobayashi M, 2020, WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, P118, DOI 10.1145/3366424.3382727
Krivosheev Evgeny, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274366
Leydesdorff L, 2009, J INFORMETR, V3, P353, DOI 10.1016/j.joi.2009.05.005
Liu HR, 2021, SEP SCI TECHNOL, V56, P558, DOI 10.1080/01496395.2020.1717532
Liu Y., 2016, PEERJ PREPRINTS, V4
Loglisci C, 2011, LECT NOTES ARTIF INT, V6912, P358, DOI 10.1007/978-3-642-23783-6_23
McLevey J, 2017, J INFORMETR, V11, P176, DOI 10.1016/j.joi.2016.12.005
Mills MC, 2019, COMMUN BIOL, V2, DOI 10.1038/s42003-018-0261-x
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Mortensen ML, 2017, RES SYNTH METHODS, V8, P366, DOI 10.1002/jrsm.1252
Nama N, 2019, J MED INTERNET RES, V21, DOI 10.2196/12953
Persson O., 2009, CELEBRATING SCHOLARL, V5, P9
Porter A.L., 2004, Tech mining: Exploiting new technologies for competitive advantage
Rahi S., 2019, P INT C SMART INF CO, P357
Rosen-Zvi Michal., 2004, UAI
Ruiz-Rosero J, 2019, SCIENTOMETRICS, V121, P1165, DOI 10.1007/s11192-019-03213-w
Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y
Savov P, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102168
Schildt H. A., 2002, HELSINKI I STRATEGY, V6, P1
Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303
Siniksaran E, 2020, SCIENTOMETRICS, V122, P701, DOI 10.1007/s11192-019-03269-8
SMALL H, 1974, SCI STUD, V4, P17, DOI 10.1177/030631277400400102
Thilakaratne M, 2019, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.235
Thomas J, 2017, J CLIN EPIDEMIOL, V91, P31, DOI 10.1016/j.jclinepi.2017.08.011
Thor A, 2016, J INFORMETR, V10, P503, DOI 10.1016/j.joi.2016.02.005
Ting-HaoKenneth Huang Chieh-Yang, 2020, ARXIV200502367
Trappey AJC, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9071478
Tseng YH, 2013, SCIENTOMETRICS, V95, P503, DOI 10.1007/s11192-013-0964-1
Uddin A, 2016, SCIENTOMETRICS, V106, P1135, DOI 10.1007/s11192-016-1836-2
Uhlmann EL, 2019, PERSPECT PSYCHOL SCI, V14, P711, DOI 10.1177/1745691619850561
van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang JT, 2019, COMPUTER, V52, P46, DOI 10.1109/MC.2018.2890174
Wise JA, 1999, J AM SOC INFORM SCI, V50, P1224, DOI 10.1002/(SICI)1097-4571(1999)50:13<1224::AID-ASI8>3.0.CO;2-4
Wyatt S., 2015, SSRN ELECT J
Yang J, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P23, DOI 10.1145/3178876.3186033
Yu J, 2005, SIGMOD REC, V34, P44, DOI 10.1145/1084805.1084814
Zhang Q, 2019, SCIENTOMETRICS, V119, P1497, DOI 10.1007/s11192-019-03100-4
Zhang Y., 2020, P 1 INT WORKSH LIT B
Zhao T., 2020, P 58 ANN ANN M ASS C
Zhou Y, 2019, SCIENTOMETRICS, V120, P167, DOI 10.1007/s11192-019-03126-8
Zhu X, 2014, GREEN CHEM SUSTAIN T, P1, DOI 10.1007/978-3-642-54646-4_1
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 87
TC 4
Z9 4
U1 5
U2 37
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2639-1589
BN 978-1-7281-6251-5
J9 IEEE INT CONF BIG DA
PY 2020
BP 2876
EP 2883
DI 10.1109/BigData50022.2020.9378096
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BR6NZ
UT WOS:000662554703001
DA 2024-09-05
ER
PT J
AU Ivanovic, I
AF Ivanovic, Igor
TI CAN AI-ASSISTED ESSAY ASSESSMENT SUPPORT TEACHERS? A CROSS-SECTIONAL
MIXED-METHODS RESEARCH CONDUCTED AT THE UNIVERSITY OF MONTENEGRO
SO ANNALES-ANALI ZA ISTRSKE IN MEDITERANSKE STUDIJE-SERIES HISTORIA ET
SOCIOLOGIA
LA English
DT Article
DE ChatGPT; automated grading; AI language models; essay assessment; essay
feedback; assessment metrics; natural language processing
ID MAGICAL NUMBER
AB In this study, we will try to answer the question if an AI language model can provide teachers with essay assessment solutions that are on a par with the solutions provided by experienced professors. We designed a study with the aim of comparing the essay assessment outputs of the AI language model and three of our colleagues working at the University of Montenegro. The main aim of this paper is to investigate if this AI language model can be a viable teachers' assistance tool that provides immediate and meaningful feedback to teachers and students. Our hypothesis is, with some caveats, that the AI language model is more than a viable and useful tool, capable of providing meaningful and immediate feedback, greatly reducing the assessment time, and thus helping the teachers become more efficient and consistent. We will compare the results of 78 essays assessed by three teachers with the results provided by ChatGPT and see where the two sets of results converge or diverge in terms of their individual and overall scores.
C1 [Ivanovic, Igor] Univ Montenegro, Fac Philol, Danila Bojov Bb, Niksic 81400, Montenegro.
C3 University of Montenegro
RP Ivanovic, I (corresponding author), Univ Montenegro, Fac Philol, Danila Bojov Bb, Niksic 81400, Montenegro.
EM iggybosnia@ucg.ac.me
CR [Anonymous], 2013, Qualitative Inquiry and Research Design: Choosing Among Five Approaches, DOI DOI 10.1089/TMJ.2009.0067
[Anonymous], 2000, Field Methods, DOI [10.1177/1525822X0001200301, DOI 10.1177/1525822X0001200301]
Brace I., 2004, QUESTIONNAIRE DESIGN
Brewer J., 2006, FDN MULTIMETHOD RES
Cowan N, 2015, PSYCHOL REV, V122, P536, DOI 10.1037/a0039035
Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd
Creswell J. W., 2018, Designing and conducting mixed methods research, V3rd
Davis James, 2005, ICPSR04295V1 NAT OP
de Leeuw E. D., 2008, International Handbook of Survey Methodology, DOI DOI 10.4324/9780203843123.CH7
Dehouche Nassim, 2021, Ethics in Science and Environmental Politics, V21, P17, DOI DOI 10.3354/ESEP00195
Dillman D. A., 2007, Mail and internet surveys: The tailored design method, V2nd ed.
Elkins K., 2020, J CULTURAL ANAL, V5, P1, DOI DOI 10.22148/001C.17212
Elpidorou A, 2023, REV PHILOS PSYCHOL, V14, P959, DOI 10.1007/s13164-021-00599-6
Erturk S, 2022, MOTIV EMOTION, V46, P264, DOI 10.1007/s11031-022-09929-2
Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1
Gabrijelcic MK, 2015, ANN-ANAL ISTRSKE MED, V25, P385
Gao CA., 2023, npj Digit Med., V6, P75, DOI [10.1038/s41746-023-00819-6, DOI 10.1038/S41746-023-00819-6, DOI 10.1101/2022.12.23.521610, 10.1101/2022.12.23.521610]
Gao JM, 2021, INT J EMERG TECHNOL, V16, P322, DOI 10.3991/ijet.v16i11.19657
Gray PS, 2007, RESEARCH IMAGINATION: AN INTRODUCTION TO QUALITATIVE AND QUANTITATIVE METHODS, P1, DOI 10.1017/CBO9780511819391
Grillon C, 2015, EMOTION, V15, P383, DOI 10.1037/emo0000058
Kiger ME, 2020, MED TEACH, V42, P846, DOI 10.1080/0142159X.2020.1755030
Koo TK, 2016, J CHIROPR MED, V15, P155, DOI 10.1016/j.jcm.2016.02.012
Marcora SM, 2009, J APPL PHYSIOL, V106, P857, DOI 10.1152/japplphysiol.91324.2008
MILLER GA, 1956, PSYCHOL REV, V63, P81, DOI 10.1037/h0043158
Mizuno K, 2011, BEHAV BRAIN FUNCT, V7, DOI 10.1186/1744-9081-7-17
O'Muircheartaigh C., 2000, HARRIS SCH PUBLIC PO
Peterson R.A., 2000, CONSTRUCTING EFFECTI
Ryan GW., 2003, FIELD METHOD, V15, P85, DOI [DOI 10.1177/1525822X02239569, 10.1177/1525822X02239569]
Sauro J, 2012, QUANTIFYING THE USER EXPERIENCE: PRACTICAL STATISTICS FOR USER RESEARCH, P1
Tuzzi Arjuna, 2001, ADV CLASSIFICATION D
Wallis Allen, 2014, NATURE STAT ILLUSTRA
NR 31
TC 0
Z9 0
U1 11
U2 11
PU HISTORICAL SOC SOUTHERN PRIMORSKA KOPER-HSSP
PI KOPER
PA GARIBALDIJEVA 18, KOPER, 6000, SLOVENIA
SN 1408-5348
EI 2591-1775
J9 ANN-ANAL ISTRSKE MED
JI Ann.-Anal. Istrske Mediteranske
PY 2023
VL 33
IS 3
BP 571
EP 590
DI 10.19233/ASHS.2023.30
PG 20
WC Humanities, Multidisciplinary
WE Arts & Humanities Citation Index (A&HCI)
SC Arts & Humanities - Other Topics
GA HX9Y5
UT WOS:001162939500010
DA 2024-09-05
ER
PT J
AU Liu, JHC
AF Liu, Juhong Christie
TI Evaluating Online Learning Orientation Design With a Readiness Scale
SO ONLINE LEARNING
LA English
DT Article
DE student online learning readiness; orientation for online learning;
design research; structure and interaction; evaluation
ID HIGHER-EDUCATION; SOCIAL PRESENCE; MOTIVATION; STUDENTS; SATISFACTION;
SUCCESS
AB Student online learning readiness (SOLR) has been identified as being closely associated with the success of learning in online environments. Online learning orientations have also been used as a key intervention to support students. However, the evaluation practice and research of online learning orientation design are limited. This research studied the effects of an orientation course on SOLR, using a multiyear design-based research with a one-group pretest and posttest method as the evaluation measurement. The design and implementation of a self-paced orientation course in Canvas learning management system was detailed as the intervention. A 20-item SOLR questionnaire was selected as the pretest and posttest instrument. After the initial cycles, a sample of 2,590 college students were invited to participate in the 2017 orientation and respond to the pretest and posttest. Because separate consent forms were distributed and collected at the pretest and posttest stages, the researcher was able to use 445 pretest and 624 posttest datasets. The independent samples t-test results indicated statistically significant improvement of SOLR competencies. The exploratory factor analysis results also indicated changes of items associated with the SOLR constructs. The reliability coefficients of all subscales were > .90, with an increase in the reliability of the SOLR instrument as a whole from pretest (alpha = .92) to posttest (alpha = .95). Implications for the design and evaluation of online learning orientations and preparing student online learning readiness are discussed toward future design and implementation.
C1 [Liu, Juhong Christie] James Madison Univ, Harrisonburg, VA 22807 USA.
C3 James Madison University
RP Liu, JHC (corresponding author), James Madison Univ, Harrisonburg, VA 22807 USA.
OI Liu, Juhong Christie/0000-0002-3384-4379
CR Alem F, 2014, ELECTRON J E-LEARN, V12, P375
[Anonymous], TURKISH ONLINE J DIS
[Anonymous], ONLINE LEARNING
[Anonymous], 1991, MOTIVATED STRATEGIES
[Anonymous], QUAL SCOR ADM ONL PR
[Anonymous], 2019, THE GUARDIAN
[Anonymous], LEARNING KNOWLEDGE A
Bandura A., 1989, The multidimensional self-efficacy scale (unpublished test)
Barab S., 2013, Handbook of research on educational communications and technology, P208
Beckford M.M., 2015, Distance Learning, V12, P43
Benson R, 2009, DISTANCE EDUC, V30, P5, DOI 10.1080/01587910902845972
Brooks D.C., 2017, ECAR Study of undergraduate students and information technology
Carruth AK, 2010, J NURS EDUC, V49, P687, DOI 10.3928/01484834-20100831-06
Chan M., 2017, College University, V92, P12
Cheon J, 2012, COMPUT EDUC, V59, P1054, DOI 10.1016/j.compedu.2012.04.015
Cho MH, 2015, DISTANCE EDUC, V36, P80, DOI 10.1080/01587919.2015.1019963
Cho MH, 2012, ETR&D-EDUC TECH RES, V60, P1051, DOI 10.1007/s11423-012-9271-4
Coleman A., 2013, Journal of Communication, V4, P95
Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd
Dabbagh Nada, 2007, Contemporary Issues in Technology and Teacher Education, V7
Demir Kaymak Z, 2013, KURAM UYGUL EGIT BIL, V13, P1792
Diamond R.M., 2011, Designing and assessing courses and curricula: A practical guide
Dray BJ, 2011, DISTANCE EDUC, V32, P29, DOI 10.1080/01587919.2011.565496
Entwistle N., 2015, Understanding student learning
Fraenkel J.R., 2015, How to Design and Evaluate Research in Education
Gilmore M, 2012, NURS EDUC PERSPECT, V33, P45
Glazer HR, 2015, AM J DISTANCE EDUC, V29, P135, DOI 10.1080/08923647.2015.1023093
Gray B., 2004, Journal of Distance Education, V19, P20
Horzum MB, 2015, EDUC SCI-THEOR PRACT, V15, P759, DOI 10.12738/estp.2015.3.2410
Hung ML, 2010, COMPUT EDUC, V55, P1080, DOI 10.1016/j.compedu.2010.05.004
Johnson R, 2015, INTERACT LEARN ENVIR, V23, P528, DOI 10.1080/10494820.2013.788037
Kaptelinin V., 2006, ACTING TECHNOLOGY AC
Kauffman H, 2015, RES LEARN TECHNOL, V23, DOI 10.3402/rlt.v23.26507
Kim J, 2011, COMPUT EDUC, V57, P1512, DOI 10.1016/j.compedu.2011.02.005
Kvavik R.B., 2005, Educating the Next Generation
Lee SM, 2014, INTERNET HIGH EDUC, V21, P41, DOI 10.1016/j.iheduc.2013.12.002
Lieberman M., 2017, Inside Higher Ed
Liu JW, 2016, IEEE INT SYM MULTIM, P216, DOI [10.1109/ISM.2016.0050, 10.1109/ISM.2016.92]
McKenney S., 2019, Conducting educational design research
Moore M.G., 2011, Distance Education: A Systems View of Online Learning, V3rd
Mosa A. A., 2016, Computer and Information Science, V9, P113, DOI [10.5539/cis.v9n1p113, DOI 10.5539/CIS.V9N1P113]
Robichaud W., 2016, DISTANCE LEARNING, V13, P57
Scagnoli N. L., 2001, Journal of Research on Computing in Education, V34, P19
Scanlon E, 2005, J COMPUT ASSIST LEAR, V21, P430, DOI 10.1111/j.1365-2729.2005.00153.x
Seaman J.E., 2018, Grade Increase: Tracking Distance Education in the United States
Smith P., 2003, Distance Education, V24, P57, DOI DOI 10.1080/01587910303043
Smith P.L., 2005, Instructional Design
So HJ, 2008, COMPUT EDUC, V51, P318, DOI 10.1016/j.compedu.2007.05.009
Swan K., 2002, ED COMMUNICATION INF, V2, P23, DOI DOI 10.1080/1463631022000005016
Swan K., 2001, Distance Education, V22, P306, DOI [10.1080/0158791010220208, 10. 1080/0158791010220208, DOI 10.1080/0158791010220208, https://doi.org/10.1080/0158791010220208]
TINTO V, 1975, REV EDUC RES, V45, P89, DOI 10.3102/00346543045001089
Tomei LA, 2009, INT J INF COMMUN TEC, V5, P73, DOI 10.4018/jicte.2009040107
Uden L., 2007, International Journal of Mobile Learning and Organisation, V1, P81, DOI 10.1504/IJMLO.2007.011190
van Rooij SW, 2016, INTERNET HIGH EDUC, V28, P1, DOI 10.1016/j.iheduc.2015.08.001
Williams PE, 2004, RES HIGH EDUC, V45, P71, DOI 10.1023/B:RIHE.0000010047.46814.78
Yilmaz R, 2017, COMPUT HUM BEHAV, V70, P251, DOI 10.1016/j.chb.2016.12.085
Yu T, 2018, ONLINE LEARN, V22, P277, DOI 10.24059/olj.v22i4.1297
Yu T, 2015, ONLINE LEARN, V19, P120
Yukselturk E, 2007, EDUC TECHNOL SOC, V10, P71
NR 59
TC 20
Z9 36
U1 0
U2 13
PU ONLINE LEARNING CONSORTIUM
PI NEWBURYPORT
PA PO BOX 1238, NEWBURYPORT, MA 01950 USA
SN 2472-5749
EI 2472-5730
J9 ONLINE LEARN
JI Online Learn.
PD DEC
PY 2019
VL 23
IS 4
BP 42
EP 61
DI 10.24059/olj.v23i4.2078
PG 20
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA JR9TU
UT WOS:000499959500004
OA gold
DA 2024-09-05
ER
PT J
AU Sekli, GM
AF Sekli, Giulio Marchena
TI The research landscape on generative artificial intelligence: a
bibliometric analysis of transformer-based models
SO KYBERNETES
LA English
DT Article; Early Access
DE Generative artificial intelligence; Transformer-based models;
Bibliometrics; Co-citation analysis; Co-word analysis; Strategic diagram
ID ABSORPTIVE-CAPACITY; INFORMATION; COCITATION; INNOVATION; EVOLUTION;
INTERVIEW; NETWORK; TOOL
AB Purpose - The aim of this study is to offer valuable insights to businesses and facilitate better understanding on transformer-based models (TBMs), which are among the widely employed generative artificial intelligence (GAI) models, garnering substantial attention due to their ability to process and generate complex data. Design/methodology/approach - Existing studies on TBMs tend to be limited in scope, either focusing on specific fields or being highly technical. To bridge this gap, this study conducts robust bibliometric analysis to explore the trends across journals, authors, affiliations, countries and research trajectories using science mapping techniques - co-citation, co-words and strategic diagram analysis. Findings - Identified research gaps encompass the evolution of new closed and open-source TBMs; limited exploration across industries like education and disciplines like marketing; a lack of in-depth exploration on TBMs' adoption in the health sector; scarcity of research on TBMs' ethical considerations and potential TBMs' performance research in diverse applications, like image processing. Originality/value - The study offers an updated TBMs landscape and proposes a theoretical framework for TBMs' adoption in organizations. Implications for managers and researchers along with suggested research questions to guide future investigations are provided.
C1 [Sekli, Giulio Marchena] Ctr Catolica Grad Business Sch, Lima, Peru.
[Sekli, Giulio Marchena] Pontificia Univ Catolica Peru, Lima, Peru.
C3 Pontificia Universidad Catolica del Peru
RP Sekli, GM (corresponding author), Ctr Catolica Grad Business Sch, Lima, Peru.; Sekli, GM (corresponding author), Pontificia Univ Catolica Peru, Lima, Peru.
EM gmarchena@pucp.pe
RI MARCHENA SEKLI, GIULIO FRANZ/IST-0279-2023
OI Marchena Sekli, Giulio/0000-0003-3854-2879
CR Acheampong FA, 2021, ARTIF INTELL REV, V54, P5789, DOI 10.1007/s10462-021-09958-2
Adam Nawal Abdalla, 2021, J Innov Entrep, V10, P15, DOI 10.1186/s13731-021-00156-6
Agarwal N., 2023, National Bureau of Economic Research Working Paper Series, DOI DOI 10.3386/W31422
Akbari F, 2022, IEEE INT CONF HEALT, P27, DOI 10.1109/ICHI54592.2022.00016
Alayrac JB, 2022, Arxiv, DOI arXiv:2204.14198
Benítez-Andrades JA, 2022, JMIR MED INF, V10, DOI 10.2196/34492
Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179
Alqahtani Y, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13031387
Alsentzer E, 2019, Arxiv, DOI arXiv:1904.03323
Amatriain X, 2024, Arxiv, DOI [arXiv:2302.07730, DOI 10.48550/ARXIV.2302.07730]
Ameen N, 2022, PSYCHOL MARKET, V39, P1802, DOI 10.1002/mar.21699
Martínez MA, 2015, RES SOCIAL WORK PRAC, V25, P257, DOI 10.1177/1049731514522101
Angelis GF, 2023, IEEE T CONSUM ELECTR, V69, P308, DOI 10.1109/TCE.2023.3237862
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Yeung JA, 2023, FRONT DIGIT HEALTH, V5, DOI 10.3389/fdgth.2023.1161098
Ayling J., 2022, AI and Ethics, V2, P405, DOI DOI 10.1007/S43681-021-00084-X
Beeri I, 2013, J BUS ETHICS, V112, P59, DOI 10.1007/s10551-012-1232-7
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Bhattacharya K, 2023, INDIAN J SURG, V85, P1346, DOI 10.1007/s12262-023-03727-x
Bird JJ, 2023, PROCEEDINGS OF THE 16TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2023, P475, DOI 10.1145/3594806.3596520
Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7
Botelle R, 2022, BMJ OPEN, V12, DOI 10.1136/bmjopen-2021-052911
Bouschery SG, 2023, J PROD INNOVAT MANAG, V40, P139, DOI 10.1111/jpim.12656
Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Castelli M, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12094127
Chandra A, 2023, ELIFE, V12, DOI 10.7554/eLife.82819
Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8
Chen LJ, 2023, Arxiv, DOI [arXiv:2307.09009, 10.48550/arXiv.2307.09009]
Chen YB, 2022, AIR QUAL ATMOS HLTH, V15, P1533, DOI 10.1007/s11869-022-01197-w
Cheng KM, 2023, ANN BIOMED ENG, V51, P1645, DOI 10.1007/s10439-023-03221-1
Cheng KM, 2023, ANN BIOMED ENG, V51, P1658, DOI 10.1007/s10439-023-03213-1
Cheng M., 2023, P IEEECVF C COMPUTER, P1702
Chui M., 2022, Generative AI Is Here: How Tools like ChatGPT Could Change Your Business
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
COHEN WM, 1990, ADMIN SCI QUART, V35, P128, DOI 10.2307/2393553
Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02
Cuevas-Vargas H, 2022, J BUS RES, V140, P11, DOI 10.1016/j.jbusres.2021.11.058
Hernández IMD, 2023, ARTIF INTELL REV, V56, P1699, DOI 10.1007/s10462-022-10206-4
Dennean K., 2023, Let's chat about ChatGPT
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Dogru T, 2023, J HOSP TOUR RES, DOI 10.1177/10963480231188663
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dosovitskiy A., 2020, ARXIV, DOI 10.48550/arXiv.1412.11929
Dwivedi R., 2023, International Journal of Information Management Data Insights, V3, P100185
El-Alami FZ, 2022, J KING SAUD UNIV-COM, V34, P8422, DOI 10.1016/j.jksuci.2021.02.005
Espejel JL, 2023, Arxiv, DOI arXiv:2303.12869
Fan LZ, 2023, Arxiv, DOI arXiv:2304.02020
Fang ZY, 2022, PROC CVPR IEEE, P17988, DOI 10.1109/CVPR52688.2022.01748
Farahani M, 2021, NEURAL PROCESS LETT, V53, P3831, DOI 10.1007/s11063-021-10528-4
Fazlija B, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10132156
Fedorova E, 2022, INT J ACCOUNT INF MA, V30, P73, DOI 10.1108/IJAIM-06-2021-0117
Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1
Franzoni Valentina, 2023, Computational Science and Its Applications - ICCSA 2023 Workshops: Proceedings. Lecture Notes in Computer Science (14107), P118, DOI 10.1007/978-3-031-37114-1_9
Fu Y, 2023, Arxiv, DOI arXiv:2305.17306
Gad G, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11111785
Gao H, 2022, MULTIMED TOOLS APPL, V81, P12973, DOI 10.1007/s11042-022-12208-4
Gillioz Anthony, 2020, 2020 15th Conference on Computer Science and Information Systems (FedCSIS), P179, DOI 10.15439/2020F20
Goktas P, 2023, J ALLER CL IMM-PRACT, V11, P2697, DOI 10.1016/j.jaip.2023.05.042
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622
Gozalo-Brizuela R., 2023, GRACE: Global Review of AI Community Ethics, V1
Grant RM, 1996, STRATEGIC MANAGE J, V17, P109, DOI 10.1002/smj.4250171110
Hadwan M, 2023, CMC-COMPUT MATER CON, V74, P3471, DOI 10.32604/cmc.2023.033457
Han K, 2023, IEEE T PATTERN ANAL, V45, P87, DOI 10.1109/TPAMI.2022.3152247
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
Hongqi Han, 2013, 2013 International Conference on Information Science and Cloud Computing Companion (ISCC-C), P653, DOI 10.1109/ISCC-C.2013.121
Howard J, 2018, Arxiv, DOI arXiv:1801.06146
Illia L, 2023, BUS ETHICS ENV RESP, V32, P201, DOI 10.1111/beer.12479
Iskender A, 2023, EUR J TOUR RES, V34, DOI 10.54055/ejtr.v34i.3169
Islam Md Nurul, 2024, Science & Technology Libraries, V43, P31, DOI 10.1080/0194262X.2023.2185919
Ivanov S, 2021, J TOUR FUTURES, V9, P214, DOI 10.1108/JTF-02-2023-0038
Jacobides MG, 2021, STRATEG SCI, V6, P412, DOI 10.1287/stsc.2021.0148
Johnson AEW, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.35
Johnson DR, 2023, BEHAV RES METHODS, V55, P3726, DOI 10.3758/s13428-022-01986-2
Jovanovic M, 2022, COMPUTER, V55, P107, DOI 10.1109/MC.2022.3192720
Jumper J, 2021, NATURE, V596, P583, DOI 10.1038/s41586-021-03819-2
Kabullar E., 2022, INT IST MOD SCI RES
Kalyan K. S., 2021, arXiv
Kaplan-Rakowski R., 2023, Journal of Interactive Learning Research, V34, P313
Khaltar O, 2020, PUBLIC INTEGR, V22, P372, DOI 10.1080/10999922.2019.1615163
Kim M.S., 2023, SENTIMENT ANAL DEEP, P1, DOI [10.1007/978-981-19-5443-61, DOI 10.1007/978-981-19-5443-61]
Kim Y, 2022, AUTOMAT CONSTR, V134, DOI 10.1016/j.autcon.2021.104061
Kingma D. P., 2014, INT C LEARNING REPRE
Kingma D.P., 2013, INT C LEARN REPR
Tamala JK, 2022, CLEAN ENG TECHNOL, V7, DOI 10.1016/j.clet.2022.100437
Knani M, 2022, INT J HOSP MANAG, V107, DOI 10.1016/j.ijhm.2022.103317
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Kucharavy A., 2023, arXiv, DOI [10.48550/arXiv.2303.1213, DOI 10.48550/ARXIV.2303.1213]
Kulkarni S, 2014, BUS ETHICS, V23, P15, DOI 10.1111/beer.12035
Kumar L., 2022, PREPRINT
Lanz Z., 2022, International Journal of Cybersecurity Intelligence Cybercrime, V5, P43, DOI [10.52306/FWOZ7041, DOI 10.52306/FWOZ7041]
Le NQK, 2022, COMPUT BIOL CHEM, V99, DOI 10.1016/j.compbiolchem.2022.107732
Lecler A, 2023, DIAGN INTERV IMAG, V104, P269, DOI 10.1016/j.diii.2023.02.003
Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791
Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682
Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012
Li B, 2022, COGN COMPUT, V14, P989, DOI 10.1007/s12559-022-09993-3
Li F, 2019, JMIR MED INF, V7, DOI 10.2196/14830
Liao WX, 2021, APPL INTELL, V51, P3522, DOI 10.1007/s10489-020-01964-1
Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790
Liu Y, 2023, J MATERIOMICS, V9, P798, DOI 10.1016/j.jmat.2023.05.001
Liu Z, 2021, 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), P9992, DOI 10.1109/ICCV48922.2021.00986
Lopez-Garcia G, 2021, IEEE ACCESS, V9, P72387, DOI 10.1109/ACCESS.2021.3080085
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Lu HX, 2022, BMC MED RES METHODOL, V22, DOI 10.1186/s12874-022-01665-y
Lyu CL, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100187
Magni D, 2022, ASIA PAC J MANAG, DOI 10.1007/s10490-022-09813-0
Menzel D.C., 2012, Ethics Management for Public Administrators: Building Organizations of Integrity, DOI [10.4324/9781315704500, DOI 10.4324/9781315704500]
Mezzi R, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22030846
Mich L, 2023, INF TECHNOL TOUR, V25, P1, DOI 10.1007/s40558-023-00248-x
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Mondal S, 2023, TECHNOLOGIES, V11, DOI 10.3390/technologies11020044
Moreland, 2023, iNFTs: bringing NFT characters to life
Nájera-Sánchez JJ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12010278
Naveen S, 2021, IMAGE VISION COMPUT, V115, DOI 10.1016/j.imavis.2021.104284
Ng QX, 2022, VACCINES-BASEL, V10, DOI 10.3390/vaccines10091457
Noorian A, 2024, COMPUT STAND INTER, V87, DOI 10.1016/j.csi.2023.103766
Oppenlaender J, 2024, Arxiv, DOI arXiv:2306.05036
Pal KK, 2023, Arxiv, DOI arXiv:2302.10346
Pan RH, 2023, PROCES LENG NAT, P27, DOI 10.26342/2023-70-2?2023
Paszke A, 2019, ADV NEUR IN, V32
Pearce K., 2023, P AAAI C ART INT, V37, P16025, DOI [10.1609/aaai.v37i13.26903, DOI 10.1609/AAAI.V37I13.26903]
Peng GQ, 2023, COMPUT BIOL MED, V154, DOI 10.1016/j.compbiomed.2023.106537
Peng YF, 2019, Arxiv, DOI [arXiv:1906.05474, 10.48550/arXiv.1906.05474, DOI 10.48550/ARXIV.1906.05474]
Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07
Qiu CP, 2022, IEEE J-STARS, V15, P4104, DOI 10.1109/JSTARS.2022.3175200
Ho QT, 2021, COMPUT BIOL MED, V131, DOI 10.1016/j.compbiomed.2021.104258
Radford A., 2018, Improving language understanding by generative pre-training
Radford A., 2019, LANGUAGE MODELS ARE
Raffel C, 2020, J MACH LEARN RES, V21
Rahali A, 2023, AI-BASEL, V4, P54, DOI 10.3390/ai4010004
Reimers N, 2019, Arxiv, DOI [arXiv:1908.10084, DOI 10.48550/ARXIV.1908.10084]
Reisenbichler M, 2022, MARKET SCI, V41, P441, DOI 10.1287/mksc.2022.1354
Ren YK, 2023, PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, P3364, DOI 10.1145/3539618.3591855
Rogers A, 2020, T ASSOC COMPUT LING, V8, P842, DOI 10.1162/tacl_a_00349
Rojas-Lamorena AJ, 2022, J BUS RES, V139, P1067, DOI 10.1016/j.jbusres.2021.10.025
Roumeliotis K I., 2023, Llama 2: Early Adopters' Utilization of Meta's New Open-Source Pretrained Model, DOI [DOI 10.20944/PREPRINTS202307.2142.V2, 10.20944/PREPRINTS202307.2142.V2]
Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2
Sanderson K, 2023, NATURE, V615, P773, DOI 10.1038/d41586-023-00816-5
Sawhney R, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P7685
Sezgin E, 2022, JMIR MED INF, V10, DOI 10.2196/32875
Shamshad F, 2023, MED IMAGE ANAL, V88, DOI 10.1016/j.media.2023.102802
Si YQ, 2019, J AM MED INFORM ASSN, V26, P1297, DOI 10.1093/jamia/ocz096
Sidhu AS, 2022, MATER TODAY-PROC, V50, P1248, DOI 10.1016/j.matpr.2021.08.132
Siegle D., 2023, Gifted Child Today, V46, P211, DOI [DOI 10.1177/10762175231168443, 10.1177/10762175231168443]
Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162]
Sohl-Dickstein J, 2015, PR MACH LEARN RES, V37, P2256
Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6
Su JH, 2023, ECNU REV EDUC, V6, P355, DOI 10.1177/20965311231168423
Sumbal MS, 2024, KYBERNETES, DOI 10.1108/K-06-2023-1126
Sun C, 2019, LECT NOTES ARTIF INT, V11856, P194, DOI 10.1007/978-3-030-32381-3_16
Sun PYT, 2010, INT J MANAG REV, V12, P130, DOI 10.1111/j.1468-2370.2008.00256.x
Tan L, 2022, IEEE T INTELL TRANSP, V23, P2830, DOI 10.1109/TITS.2021.3119921
Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001
Tang XC, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14122884
Tiwari D, 2022, NEW GENERAT COMPUT, V40, P1165, DOI 10.1007/s00354-022-00182-2
Todorova G, 2007, ACAD MANAGE REV, V32, P774, DOI 10.5465/AMR.2007.25275513
Tomas David, 2023, Journal of Ambient Intelligence and Humanized Computing, P7399, DOI 10.1007/s12652-022-04447-y
Tornatzky L. G., 1990, The Processes of Technological Innovation
Touvron H, 2023, Arxiv, DOI arXiv:2307.09288
Touvron H, 2022, LECT NOTES COMPUT SC, V13684, P516, DOI 10.1007/978-3-031-20053-3_30
Üzen H, 2022, EXPERT SYST APPL, V209, DOI 10.1016/j.eswa.2022.118269
Vaismoradi M, 2013, NURS HEALTH SCI, V15, P398, DOI 10.1111/nhs.12048
Van Eck N.J., 2020, VOSviewer Manual Version 1.6.16, P1
Vaswani A, 2017, ADV NEUR IN, V30
Velez-Estevez A, 2022, SCIENTOMETRICS, V127, P7517, DOI 10.1007/s11192-022-04486-4
Wan CX, 2022, J SUPERCOMPUT, V78, P6503, DOI 10.1007/s11227-021-04097-5
Wang Guan, 2020, CCRIS 2020: 2020 International Conference on Control, Robotics and Intelligent System, P176, DOI 10.1145/3437802.3437832
Wang W, 2022, IEEE GEOSCI REMOTE S, V19, DOI 10.1109/LGRS.2022.3187135
Wang YS, 2018, J BIOMED INFORM, V77, P34, DOI 10.1016/j.jbi.2017.11.011
Watanabe T, 2022, JMIR CANCER, V8, DOI 10.2196/37840
Xie J, 2022, IEEE T NEUR SYS REH, V30, P2126, DOI 10.1109/TNSRE.2022.3194600
Xie XM, 2018, J BUS RES, V88, P289, DOI 10.1016/j.jbusres.2018.01.019
Yan D, 2024, KYBERNETES, DOI 10.1108/K-09-2023-1933
Yang L, 2023, KYBERNETES, DOI 10.1108/K-06-2023-1011
Yang M, 2023, AUTOMAT CONSTR, V146, DOI 10.1016/j.autcon.2022.104703
Yu KP, 2021, IEEE COMMUN MAG, V59, P76, DOI 10.1109/MCOM.101.2001126
Zhang M, 2021, FUND RES-CHINA, V1, P831, DOI 10.1016/j.fmre.2021.11.011
Zhang XY, 2024, Arxiv, DOI arXiv:2312.09911
Zhu GX, 2023, ACM T WEB, V17, DOI 10.1145/3577032
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 181
TC 0
Z9 0
U1 3
U2 3
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 0368-492X
EI 1758-7883
J9 KYBERNETES
JI Kybernetes
PD 2024 JUL 19
PY 2024
DI 10.1108/K-03-2024-0554
EA JUL 2024
PG 37
WC Computer Science, Cybernetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA ZB4L0
UT WOS:001272816000001
DA 2024-09-05
ER
PT J
AU Habib, R
Afzal, MT
AF Habib, Raja
Afzal, Muhammad Tanvir
TI Paper recommendation using citation proximity in bibliographic coupling
SO TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
LA English
DT Article
DE Paper recommendation; bibliographic coupling; citation proximity
analysis; DBSCAN
AB Research paper recommendation has been a hot research area for the last few decades. Thus far, numerous different paper recommendation approaches have been proposed. Some of these include methods based on metadata, content similarity, collaborative filtering, and citation analysis, among others. Citation analysis methods include bibliographic coupling and co-citation analysis. Much research has been done in the area of co-citation analysis. Researchers have also performed experiments using the proximity of in-text citations in co-citation analysis and have found that it improves the accuracy of paper recommendation. In co-citation analysis, the similarity is discovered based on the frequency of co-cited papers in different research papers and those citing papers may belong to different areas. However, when proximity is used to calculate co-citation, the accuracy of recommendations improves significantly. Bibliographic coupling finds bibliographic coupling strength based on the common references between two papers. In bibliographic coupling, a large number of common references of two papers means that they belong to the same area, unlike co-citation analysis, in which there is a possibility that the citing papers may belong to different areas. Based on the observation that with the use of proximity analysis the accuracy in cases of co-citation analysis has improved, this paper investigates if the accuracy of paper recommendation can be further improved by using proximity analysis in bibliographic coupling. This paper proposes an approach that extends the traditional bibliographic coupling by exploiting the proximity of in-text citations of bibliographically coupled articles. The proposed approach takes into account the proximity of in-text citations by clustering the in-text citations using a density-based algorithm called DBSCAN. Experiments on a data set of research papers are presented to show that there is a substantial increase in accuracy of the recommendations produced by DBSCAN based on proximity analysis of in-text citations compared to traditional bibliographic coupling and content-based approaches.
C1 [Habib, Raja; Afzal, Muhammad Tanvir] Capital Univ Sci & Technol, Dept Comp Sci, Islamabad, Pakistan.
C3 Capital University of Science & Technology
RP Habib, R (corresponding author), Capital Univ Sci & Technol, Dept Comp Sci, Islamabad, Pakistan.
EM r_habib_pk@yahoo.com
RI Afzal, Muhammad/D-3741-2019
OI Afzal, Muhammad/0000-0002-7851-2327; Afzal, Muhammad
Tanvir/0000-0002-9765-8815
FU Higher Education Commission (HEC) of Pakistan
FX This research was supported by Higher Education Commission (HEC) of
Pakistan. We thank the Capital University of Science and Technology
Islamabad for assistance. We thank Ansar Mehmood for assistance with
compilation of the gold standard dataset and for important
recommendations and comments during this research and previous versions
of the manuscript.
CR Afzal MT, 2007, J UNIVERS COMPUT SCI, V13, P1234
[Anonymous], 2010, Proceedings of the 10th Joint Conference on Digital Libraries, DOI DOI 10.1145/1816123.1816129
Beel Joeran., 2013, P INT WORKSH REPR RE, P15, DOI 10.1145/2532508.2532512
Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256
Doerfel S, 2012, P 4 ACM RECSYS WORKS, P9, DOI DOI 10.1145/2365934.2365937
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Gipp B, 2009, PRO INT CONF SCI INF, V2, P571
Goldberg K, 2001, INFORM RETRIEVAL, V4, P133, DOI 10.1023/A:1011419012209
Hongyan P, 2006, J CHINA SOC SCI TECH, V1
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Khabsa M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093949
Kuhn T, 2014, PHYS REV X, V4, DOI 10.1103/PhysRevX.4.041036
Lee J, 2008, ARXIV13045457
McNee SM, 2002, P 2002 ACM C COMP SU, P116, DOI DOI 10.1145/587078.587096
Nassiri I, 2013, J INFORMETR, V7, P91, DOI 10.1016/j.joi.2012.08.006
Perc M, 2014, J R SOC INTERFACE, V11, DOI 10.1098/rsif.2014.0378
Perc M, 2010, J INFORMETR, V4, P358, DOI 10.1016/j.joi.2010.03.001
Ratprasartporn N, 2007, LECT NOTES COMPUT SC, V4675, P271
Shahid A, 2011, Australian Journal of Basic and Applied Sciences, V5, P1599
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Spearman C, 1904, AM J PSYCHOL, V15, P72, DOI 10.2307/1412159
NR 21
TC 18
Z9 20
U1 3
U2 40
PU Tubitak Scientific & Technological Research Council Turkey
PI ANKARA
PA ATATURK BULVARI NO 221, KAVAKLIDERE, TR-06100 ANKARA, TURKIYE
SN 1300-0632
EI 1303-6203
J9 TURK J ELECTR ENG CO
JI Turk. J. Electr. Eng. Comput. Sci.
PY 2017
VL 25
IS 4
BP 2708
EP 2718
DI 10.3906/elk-1608-180
PG 11
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA FC7AR
UT WOS:000406993300013
OA Bronze
DA 2024-09-05
ER
PT J
AU Miranda, O
Kiehl, SM
Qi, XG
Brannock, MD
Kosten, T
Ryan, ND
Kirisci, L
Wang, YS
Wang, LR
AF Miranda, Oshin
Kiehl, Sophie Marie
Qi, Xiguang
Brannock, M. Daniel
Kosten, Thomas
Ryan, Neal David
Kirisci, Levent
Wang, Yanshan
Wang, Lirong
TI Enhancing post-traumatic stress disorder patient assessment: leveraging
natural language processing for research of domain criteria
identification using electronic medical records
SO BMC MEDICAL INFORMATICS AND DECISION MAKING
LA English
DT Article
DE Post-traumatic stress disorder; Research of domain criteria; Real-world
evidence; Clinical notes; Natural language processing
ID SYMPTOM SEVERITY; PTSD; ALCOHOL
AB Background Extracting research of domain criteria (RDoC) from high-risk populations like those with post-traumatic stress disorder (PTSD) is crucial for positive mental health improvements and policy enhancements. The intricacies of collecting, integrating, and effectively leveraging clinical notes for this purpose introduce complexities.Methods In our study, we created a natural language processing (NLP) workflow to analyze electronic medical record (EMR) data and identify and extract research of domain criteria using a pre-trained transformer-based natural language model, all-mpnet-base-v2. We subsequently built dictionaries from 100,000 clinical notes and analyzed 5.67 million clinical notes from 38,807 PTSD patients from the University of Pittsburgh Medical Center. Subsequently, we showcased the significance of our approach by extracting and visualizing RDoC information in two use cases: (i) across multiple patient populations and (ii) throughout various disease trajectories.Results The sentence transformer model demonstrated high F1 macro scores across all RDoC domains, achieving the highest performance with a cosine similarity threshold value of 0.3. This ensured an F1 score of at least 80% across all RDoC domains. The study revealed consistent reductions in all six RDoC domains among PTSD patients after psychotherapy. We found that 60.6% of PTSD women have at least one abnormal instance of the six RDoC domains as compared to PTSD men (51.3%), with 45.1% of PTSD women with higher levels of sensorimotor disturbances compared to men (41.3%). We also found that 57.3% of PTSD patients have at least one abnormal instance of the six RDoC domains based on our records. Also, veterans had the higher abnormalities of negative and positive valence systems (60% and 51.9% of veterans respectively) compared to non-veterans (59.1% and 49.2% respectively). The domains following first diagnoses of PTSD were associated with heightened cue reactivity to trauma, suicide, alcohol, and substance consumption.Conclusions The findings provide initial insights into RDoC functioning in different populations and disease trajectories. Natural language processing proves valuable for capturing real-time, context dependent RDoC instances from extensive clinical notes.
C1 [Miranda, Oshin; Qi, Xiguang; Wang, Lirong] Univ Pittsburgh, Computat Chem Genom Screening Ctr, Sch Pharm, Dept Pharmaceut Sci, Pittsburgh, PA 15213 USA.
[Kiehl, Sophie Marie] Colorado State Univ, Ft Collins, CO 80521 USA.
[Brannock, M. Daniel] RTI Int, Durham, NC 27709 USA.
[Kosten, Thomas] Baylor Coll Med, Menninger Dept Psychiat, Houston, TX 77030 USA.
[Ryan, Neal David] Univ Pittsburgh, Sch Med, Dept Psychiat, Pittsburgh, PA 15213 USA.
[Kirisci, Levent] Univ Pittsburgh, Sch Pharm, Pittsburgh, PA 15213 USA.
[Wang, Yanshan] Univ Pittsburgh, Sch Hlth & Rehabil Sci, Pittsburgh, PA 15213 USA.
C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); University
of Pittsburgh; Colorado State University; Research Triangle Institute;
Baylor College of Medicine; Pennsylvania Commonwealth System of Higher
Education (PCSHE); University of Pittsburgh; Pennsylvania Commonwealth
System of Higher Education (PCSHE); University of Pittsburgh;
Pennsylvania Commonwealth System of Higher Education (PCSHE); University
of Pittsburgh
RP Wang, LR (corresponding author), Univ Pittsburgh, Computat Chem Genom Screening Ctr, Sch Pharm, Dept Pharmaceut Sci, Pittsburgh, PA 15213 USA.
EM liw30@pitt.edu
OI Brannock, Daniel/0000-0001-8095-547X
FU Office of the Assistant Secretary of Defense for Health Affairs through
the Alcohol and Substance Abuse Research Program; University of
Pittsburgh Center for Research Computing through the NIH
[S10OD028483-01A1]; NIH [UL1 TR001857]; [W81XWH-22-2-0081 (PASA3)]
FX The U.S. Army Medical Research Acquisition Activity, 820 Chandler
Street, Fort Detrick MD 21702-5014 is the awarding and administering
acquisition office. This work was supported by the Office of the
Assistant Secretary of Defense for Health Affairs through the Alcohol
and Substance Abuse Research Program under Award No. W81XWH-22-2-0081
(PASA3). Opinions, interpretations, conclusions, and recommendations are
those of the author and are not necessarily endorsed by the Department
of Defense. This research was supported in part by the University of
Pittsburgh Center for Research Computing through the NIH
S10OD028483-01A1 grant and NIH UL1 TR001857 grant.
CR Arioli M, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/4283427
Beam E, 2021, NAT NEUROSCI, V24, P1733, DOI 10.1038/s41593-021-00948-9
Blum Kenneth, 2008, Neuropsychiatr Dis Treat, V4, P893
Bomyea J, 2012, NEUROPHARMACOLOGY, V62, P607, DOI 10.1016/j.neuropharm.2011.05.028
Boyd JE, 2018, EUR J PSYCHOTRAUMATO, V9, DOI 10.1080/20008198.2018.1463794
Cain CK, 2012, EXPERT OPIN INV DRUG, V21, P1323, DOI 10.1517/13543784.2012.704020
Charuvastra A, 2008, ANNU REV PSYCHOL, V59, P301, DOI 10.1146/annurev.psych.58.110405.085650
Chen J., 2021, ANN OPER RES
Clark C, 2017, J BIOMED INFORM, V75, pS120, DOI 10.1016/j.jbi.2017.07.005
Coffey SF, 2016, PSYCHOL ADDICT BEHAV, V30, P778, DOI 10.1037/adb0000201
Compean E, 2019, PROG NEURO-PSYCHOPH, V88, P265, DOI 10.1016/j.pnpbp.2018.08.001
COONEY NL, 1987, J CONSULT CLIN PSYCH, V55, P150, DOI 10.1037/0022-006X.55.2.150
CS. W, 2014, Front Psychiatry, V5
Cuthbert BN, 2022, CURR DIR PSYCHOL SCI, V31, P107, DOI 10.1177/09637214211051363
Dalgleish T, 2020, J CONSULT CLIN PSYCH, V88, P179, DOI 10.1037/ccp0000482
Damme KSF, 2021, SCHIZOPHRENIA BULL, V47, P332, DOI 10.1093/schbul/sbaa138
Dugré JR, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-08909-3
Eder-Moreau E, 2022, FRONT PSYCHIATRY, V13, DOI 10.3389/fpsyt.2022.862476
Elixhauser A, 2006, Healthcare Cost and Utilization Project (HCUP) Statistical Briefs
Fani N, 2019, J PSYCHIATR RES, V116, P34, DOI 10.1016/j.jpsychires.2019.05.009
Ferrafiat V, 2020, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.00724
Filannino M, 2017, J BIOMED INFORM, V75, pS62, DOI 10.1016/j.jbi.2017.04.017
GA, 2018, Neurobiol Stress, V9, P214
Gates MA, 2012, PSYCHOL SERV, V9, P361, DOI 10.1037/a0027649
Goodwin TR, 2017, J BIOMED INFORM, V75, pS71, DOI 10.1016/j.jbi.2017.05.020
Hart KL, 2021, J ACAD CONSULT-LIAIS, V62, P430, DOI 10.1016/j.jaclp.2021.01.002
Hasratian AM, 2022, BEHAV THER, V53, P1092, DOI 10.1016/j.beth.2022.04.009
Hayes JP, 2012, FRONT INTEGR NEUROSC, V6, DOI 10.3389/fnint.2012.00089
Hearst MPE, 2019, ation of semantically grouped word cloud designs, P1
Hori H, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60096-1
Jiang S, 2019, FRONT PSYCHIATRY, V10, DOI 10.3389/fpsyt.2019.00808
Karstoft KI, 2015, BMC PSYCHIATRY, V15, DOI 10.1186/s12888-015-0399-8
Kip A, 2022, PSYCHOL MED, V52, P2201, DOI 10.1017/S0033291722001866
Koenigs M, 2009, NEUROSCIENTIST, V15, P540, DOI 10.1177/1073858409333072
Koyuncu Ahmet, 2019, Drugs Context, V8, P212573, DOI 10.7573/dic.212573
Lei CL, 2022, FRONT PSYCHIATRY, V13, DOI 10.3389/fpsyt.2022.857087
López-Castro T, 2019, J TRAUMA STRESS, V32, P484, DOI 10.1002/jts.22411
Lucarini VAA, 2023, BMC Psychiatry, P23
Mann S., 2023, Posttraumatic Stress Disorder
Maren S, 2016, NEUROPSYCHOPHARMACOL, V41, P58, DOI 10.1038/npp.2015.180
Markatou M, 2023, FRONT MED-LAUSANNE, V10, DOI 10.3389/fmed.2023.1076794
McCauley JL, 2012, CLIN PSYCHOL-SCI PR, V19, P283, DOI 10.1111/cpsp.12006
Miles SR, 2023, PSYCHOL TRAUMA-US, V15, P1398, DOI 10.1037/tra0001292
Morris SE, 2022, BMC MED, V20, DOI 10.1186/s12916-022-02414-0
Pace-Schott EF, 2015, BIOL MOOD ANXIETY DI, V5, DOI 10.1186/s13587-015-0018-9
Pineles SL, 2016, PSYCHOPHYSIOLOGY, V53, P1377, DOI 10.1111/psyp.12679
Posada JD, 2017, J BIOMED INFORM, V75, pS94, DOI 10.1016/j.jbi.2017.05.019
Rini PL, 2024, INT J LANG COMM DIS, V59, P1110, DOI 10.1111/1460-6984.12973
Rios A, 2017, J BIOMED INFORM, V75, pS85, DOI 10.1016/j.jbi.2017.05.008
Sadeghi MMA, 2022, PLoS ONE, V17
Sanderson MBAG, 2020, EClinicalMedicine, P20
Scheurwegs E, 2017, J BIOMED INFORM, V75, pS112, DOI 10.1016/j.jbi.2017.06.007
Seidemann Rebecca, 2021, Chronic Stress (Thousand Oaks), V5, p2470547021996006, DOI 10.1177/2470547021996006
Sentence-Transformers, 2022, Sentence-Transformers
Tran T, 2017, J BIOMED INFORM, V75, pS138, DOI 10.1016/j.jbi.2017.06.010
Watkins LE, 2018, FRONT BEHAV NEUROSCI, V12, DOI 10.3389/fnbeh.2018.00258
Williams T, 2022, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD002795.pub3
Zambrano-Vazquez L, 2017, PSYCHOL TRAUMA-US, V9, P679, DOI 10.1037/tra0000257
Zoellner LA, 2014, DEPRESS ANXIETY, V31, P97, DOI 10.1002/da.22133
NR 59
TC 0
Z9 0
U1 1
U2 1
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1472-6947
J9 BMC MED INFORM DECIS
JI BMC Med. Inform. Decis. Mak.
PD JUN 4
PY 2024
VL 24
IS 1
AR 154
DI 10.1186/s12911-024-02554-8
PG 14
WC Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Medical Informatics
GA TB0M8
UT WOS:001238679900001
PM 38835009
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Saravanan, TM
Ajmal, MM
Manoranjith, M
Sanjaay, BG
Mishra, JP
AF Saravanan, T. M.
Ajmal, M. Mohammed
Manoranjith, M.
Sanjaay, B. G.
Mishra, Jay Prakash
TI Rumour influence minimization and topic modelling for twitter dataset
using machine learning schemes
SO MATERIALS TODAY-PROCEEDINGS
LA English
DT Proceedings Paper
CT International Conference on Artificial Intelligence and Energy Systems
(AIES)
CY DEC 08-09, 2021
CL St Josephs Coll Engn & Technol, Palai, INDIA
HO St Josephs Coll Engn & Technol
DE Sentiment analysis; Support Vector Machine (SVM); Greedy and Dynamic
Blocking Algorithm; Tweet
AB We advocate a joint combined trend sentiment categorization method to guide sentiment classifiers for a couple of tweets at the same time. Distinctively, putrefy the sentiment classifier of all trends linked to two additives, namely the specific trend and the global trend. Our method gives a green way to as it should sort out trendy subjects devoid of the lack of outside facts making news channels to find out the infringement news in a particular time or to rush out viral memes to enhance marketing decisions with competitors. The analysis of social functions also reveals styles associated with all kinds of trends, such as tweets with approximately ongoing activities of trendsetters. The unique version of the Trends Greedy and Dynamic Blocking Algorithms can capture the precise expressions of sentiment in each Trend. In addition, we extract trends unique sentimental knowledge from each of the classified and unmarked samples in each Trend and use it to embellish the mastery of Trends precise sentiment clas-sifiers. In addition, we are introducing green algorithms to resolve the version of our technique. These schemes can effectively boost the performance of the combined trends group and outperform traditional methods with experimental effects on benchmark datasets. Copyright (C) 2022 Elsevier Ltd. All rights reserved.
C1 [Saravanan, T. M.; Ajmal, M. Mohammed; Manoranjith, M.; Sanjaay, B. G.; Mishra, Jay Prakash] Kongu Engn Coll, Dept Comp Applicat, Perundurai 638060, Tamil Nadu, India.
C3 Kongu Engineering College
RP Mishra, JP (corresponding author), Kongu Engn Coll, Dept Comp Applicat, Perundurai 638060, Tamil Nadu, India.
EM tmskec@gmail.com
NR 0
TC 0
Z9 0
U1 0
U2 1
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2214-7853
J9 MATER TODAY-PROC
JI Mater. Today-Proc.
PY 2022
VL 58
SI SI
BP 535
EP 539
DI 10.1016/j.matpr.2022.03.059
EA MAY 2022
PN 1
PG 5
WC Materials Science, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Materials Science
GA 1S5DF
UT WOS:000804070100028
DA 2024-09-05
ER
PT J
AU Sandu, A
Cotfas, LA
Stanescu, A
Delcea, C
AF Sandu, Andra
Cotfas, Liviu-Adrian
Stanescu, Aurelia
Delcea, Camelia
TI A Bibliometric Analysis of Text Mining: Exploring the Use of Natural
Language Processing in Social Media Research
SO APPLIED SCIENCES-BASEL
LA English
DT Article
DE text mining; natural language processing; social media; bibliometric;
Biblioshiny
ID SENTIMENT ANALYSIS
AB Natural language processing (NLP) plays a pivotal role in modern life by enabling computers to comprehend, analyze, and respond to human language meaningfully, thereby offering exciting new opportunities. As social media platforms experience a surge in global usage, the imperative to capture and better understand the messages disseminated within these networks becomes increasingly crucial. Moreover, the occurrence of adverse events, such as the emergence of a pandemic or conflicts in various parts of the world, heightens social media users' inclinations towards these platforms. In this context, this paper aims to explore the scientific literature dedicated to the utilization of NLP in social media research, with the goal of highlighting trends, keywords, and collaborative networks within the authorship that contribute to the proliferation of papers in this field. To achieve this objective, we extracted and analyzed 1852 papers from the ISI Web of Science database. An initial observation reveals a remarkable annual growth rate of 62.18%, underscoring the heightened interest of the academic community in this domain. This paper includes an n-gram analysis and a review of the most cited papers in the extracted database, offering a comprehensive bibliometric analysis. The insights gained from these efforts provide essential perspectives and contribute to identifying pertinent issues in social media analysis addressed through the application of NLP.
C1 [Sandu, Andra; Cotfas, Liviu-Adrian; Delcea, Camelia] Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 010552, Romania.
[Stanescu, Aurelia] Bucharest Univ Econ Studies, Dept Management, Bucharest 010552, Romania.
C3 Bucharest University of Economic Studies; Bucharest University of
Economic Studies
RP Cotfas, LA (corresponding author), Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 010552, Romania.
EM liviu.cotfas@ase.ro
RI Delcea, Camelia/C-4343-2011
OI Delcea, Camelia/0000-0003-3589-1969
CR Al-Saif HF, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13158815
[Anonymous], WoS Document Types
[Anonymous], WOS WEB SCI
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arora S, 2022, EXPERT SYST APPL, V200, DOI 10.1016/j.eswa.2022.117000
Bakir M, 2022, J AIR TRANSP MANAG, V104, DOI 10.1016/j.jairtraman.2022.102273
Block JH., 2020, Manage Rev Q, V70, P307, DOI [10.1007/s11301-020-00188-4, DOI 10.1007/S11301-020-00188-4]
Boon-Itt S, 2020, JMIR PUBLIC HLTH SUR, V6, P245, DOI 10.2196/21978
Callier V, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2205058119
Camelia Delcea, 2015, Grey Systems: Theory and Application, V5, P244, DOI 10.1108/GS-03-2015-0005
Cancino CA, 2017, J INNOV KNOWL, V2, P106, DOI 10.1016/j.jik.2017.03.006
Chang KH, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app132011395
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Cucari N, 2023, CORP SOC RESP ENV MA, V30, P1, DOI 10.1002/csr.2346
Deans PC, 2018, J ORG COMP ELECT COM, V28, P173, DOI 10.1080/10919392.2018.1484597
Delcea C, 2023, AXIOMS, V12, DOI 10.3390/axioms12121083
Domenteanu A, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app132312693
Edosomwan S., 2011, J APPL MANAGEMENT EN, V16, P79, DOI DOI 10.1108/JHTT-11-2014-0067
El Barachi M, 2022, J COMMUN SOFTW SYS, V18, P193, DOI 10.24138/jcomss-2022-0031
Gan CM, 2014, IFIP ADV INF COMM TE, V445, P23
Gu YM, 2016, TRANSPORT RES C-EMER, V67, P321, DOI 10.1016/j.trc.2016.02.011
Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685
Jiang YQ, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app132212346
Kim J, 2021, J MED INTERNET RES, V23, DOI 10.2196/24870
Lee D, 2018, MANAGE SCI, V64, P5105, DOI 10.1287/mnsc.2017.2902
Li LF, 2020, IEEE T COMPUT SOC SY, V7, P556, DOI 10.1109/TCSS.2020.2980007
Li YY, 2020, J MARKETING RES, V57, P1, DOI 10.1177/0022243719881113
Lin Lianghong, 2023, Cancer Innov, V2, P219, DOI 10.1002/cai2.68
Liu F, 2023, SCIENTOMETRICS, V128, P853, DOI 10.1007/s11192-022-04540-1
Liu WS, 2019, SCIENTOMETRICS, V121, P1815, DOI 10.1007/s11192-019-03238-1
Ljubobratovic D, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22155791
Mahajan R., 2021, J. Content Community Commun, V14, P218, DOI [10.31620/JCCC.12.21/18, DOI 10.31620/JCCC.12.21/18]
Aiello LM, 2013, IEEE T MULTIMEDIA, V15, P1268, DOI 10.1109/TMM.2013.2265080
Michailidis PD, 2022, INFORMATION, V13, DOI 10.3390/info13080372
Middleton SE, 2014, IEEE INTELL SYST, V29, P9, DOI 10.1109/MIS.2013.126
Montoyo A, 2012, DECIS SUPPORT SYST, V53, P675, DOI 10.1016/j.dss.2012.05.022
Mulet-Forteza C, 2018, J TRAVEL TOUR MARK, V35, P1201, DOI 10.1080/10548408.2018.1487368
Nikfarjam A, 2015, J AM MED INFORM ASSN, V22, P671, DOI 10.1093/jamia/ocu041
Ortiz-Garces I, 2024, APPL SCI-BASEL, V14, DOI 10.3390/app14051737
Pandey Kamal Kishor, 2023, 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), P326, DOI 10.1109/ICACITE57410.2023.10182590
Puteh N., 2021, Turk. J. Comput. Math. Educ, V12, P1509
Ravi K, 2015, KNOWL-BASED SYST, V89, P14, DOI 10.1016/j.knosys.2015.06.015
RDRR Website Bradford, Bradford's Law in Bibliometrix: Comprehensive Science Mapping Analysis
Reyes A, 2012, DATA KNOWL ENG, V74, P1, DOI 10.1016/j.datak.2012.02.005
Sandu A, 2024, ALGORITHMS, V17, DOI 10.3390/a17020070
Sandu A, 2024, INFORMATION, V15, DOI 10.3390/info15010060
Sandu A, 2023, INFORMATION, V14, DOI 10.3390/info14120659
Sarirete Akila, 2021, Procedia Comput Sci, V194, P280, DOI 10.1016/j.procs.2021.10.083
Sarker A, 2015, J BIOMED INFORM, V53, P196, DOI 10.1016/j.jbi.2014.11.002
Sharma S., 2018, Social Media Marketing: Emerging Concepts and Applications, V1st, P19, DOI [DOI 10.1007/978-981-10-5323-8_2, 10.1007/978-981-10-5323-8, DOI 10.1007/978-981-10-5323-8]
Telikani A, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3467477
Wardikar V., 2013, Libr. Philos. Pract, V15, P1
Yan L, 2023, SAGE OPEN, V13, DOI 10.1177/21582440231158562
Zhang D.D., 2020, ResearchGate, V3, P38, DOI [10.23977/jaip.2020.030107, DOI 10.23977/JAIP.2020.030107]
Zubiaga A, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3161603
NR 55
TC 3
Z9 3
U1 5
U2 5
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-3417
J9 APPL SCI-BASEL
JI Appl. Sci.-Basel
PD APR
PY 2024
VL 14
IS 8
AR 3144
DI 10.3390/app14083144
PG 34
WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials
Science, Multidisciplinary; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Engineering; Materials Science; Physics
GA OW1B1
UT WOS:001210212300001
OA gold
DA 2024-09-05
ER
PT J
AU Curiac, CD
Micea, MV
AF Curiac, Christian-Daniel
Micea, Mihai V.
TI Identifying Hot Information Security Topics Using LDA and Multivariate
Mann-Kendall Test
SO IEEE ACCESS
LA English
DT Article
DE Market research; Bibliometrics; Natural language processing; Databases;
Data mining; Time series analysis; Information security; Metadata; LDA
topic modeling; multivariate Mann-Kendall test; natural language
processing; paper metadata; research theme; research trend
ID NONPARAMETRIC-TESTS; TREND
AB Discovering promising research themes in a scientific domain by evaluating semantic information extracted from bibliometric databases represents a challenging task for Natural Language Processing (NLP). While existing NLP methods generally characterize the research topics using unique key terms, we take a step further by more accurately modeling the research themes as finite sets of key terms. The proposed approach involves two stages: identifying the research themes from paper metadata using LDA topic modeling; and, evaluation of research theme trends by employing a version of the Mann-Kendall test that is able to cope with multivariate time series of term occurrences. The results obtained by applying this general methodology to Information Security domain confirm its viability.
C1 [Curiac, Christian-Daniel; Micea, Mihai V.] Politehn Univ Timisoara, Comp & Informat Technol Dept, Timisoara 300223, Romania.
C3 Universitatea Politehnica Timisoara
RP Curiac, CD (corresponding author), Politehn Univ Timisoara, Comp & Informat Technol Dept, Timisoara 300223, Romania.
EM christian.curiac@cs.upt.ro
OI Curiac, Christian-Daniel/0000-0002-2253-7226
CR Barua A, 2014, EMPIR SOFTW ENG, V19, P619, DOI 10.1007/s10664-012-9231-y
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Burauskaite-Harju A, 2012, INT J CLIMATOL, V32, P86, DOI 10.1002/joc.2263
Cai CW, 2019, ABACUS, V55, P709, DOI 10.1111/abac.12179
Curiac C.-D., 2022, PROC 15 INT S ELECT, P15
Curiac CD, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10173115
Curiac CD, 2022, SCIENTOMETRICS, V127, P5661, DOI 10.1007/s11192-022-04481-9
Curiac CD, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10020233
Daradkeh M, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11132066
Fang DB, 2018, LIBR HI TECH, V36, P400, DOI 10.1108/LHT-06-2017-0132
Ferragina Paolo, 2010, P 19 ACM INT C INFOR, P1625, DOI DOI 10.1145/1871437.1871689
Gal D, 2019, EUR HEART J, V40, P2363, DOI 10.1093/eurheartj/ehz282
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Harris ZS, 1954, WORD, V10, P146, DOI 10.1080/00437956.1954.11659520
Hoffman MD, 2013, J MACH LEARN RES, V14, P1303
Hussain M., 2019, J OPEN SOURCE SOFTW, V4, P1556, DOI [DOI 10.21105/JOSS.01556, 10.21105/joss.01556]
Katsurai Marie, 2017, 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), P115, DOI 10.1109/ICBDA.2017.8078788
KENDALL K, 1975, J PHYS D APPL PHYS, V8, P1449, DOI 10.1088/0022-3727/8/13/005
Khalid MA, 2008, LECT NOTES COMPUT SC, V4956, P705
Korzycki M, 2017, COGNITIVE APPROACH TO NATURAL LANGUAGE PROCESSING, P21
Kumar S, 2020, INT J ACCOUNT INF SY, V39, DOI 10.1016/j.accinf.2020.100488
Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4
Lei L, 2023, LIBR HI TECH, V41, P570, DOI 10.1108/LHT-12-2019-0247
LETTENMAIER DP, 1988, WATER RESOUR BULL, V24, P505
Libiseller C, 2002, ENVIRONMETRICS, V13, P71, DOI 10.1002/env.507
Mane KK, 2004, P NATL ACAD SCI USA, V101, P5287, DOI 10.1073/pnas.0307626100
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Marrone M, 2020, SCIENTOMETRICS, V122, P357, DOI 10.1007/s11192-019-03274-x
Pohlert T., 2022, NONPARAMETRIC TREND
Sharma D., 2019, Int J Intel Syst Appl, V11, P70, DOI [10.5815/ijisa.2019.02.08, DOI 10.5815/IJISA.2019.02.08]
Swacha J, 2022, EDUC SCI, V12, DOI 10.3390/educsci12100640
Vangara R, 2021, IEEE ACCESS, V9, P117217, DOI 10.1109/ACCESS.2021.3106879
Wang B, 2014, SCIENTOMETRICS, V101, P685, DOI 10.1007/s11192-014-1342-3
Xiong Chenyan, 2016, P 2016 ACM INT C THE, P181, DOI 10.1145/2970398.2970423
Zhao DZ, 2014, J ASSOC INF SCI TECH, V65, P995, DOI 10.1002/asi.23027
NR 35
TC 0
Z9 0
U1 4
U2 26
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2023
VL 11
BP 18374
EP 18384
DI 10.1109/ACCESS.2023.3247588
PG 11
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA 9M5IO
UT WOS:000942263400001
OA gold
DA 2024-09-05
ER
PT J
AU McCardle, JR
AF McCardle, JR
TI The challenge of integrating AI & Smart Technology in design education
SO INTERNATIONAL JOURNAL OF TECHNOLOGY AND DESIGN EDUCATION
LA English
DT Article
DE artificial intelligence; industrial design; research dissemination;
technology integration; tertiary education
AB This paper examines some of the many problems and issues associated with integrating new and developing technologies into the education of future designers. As technology in general races ahead challenges arise for both commercial designers and educators on how best to keep track and utilise the advances. The challenge is particularly acute within tertiary education where the introduction of new cutting edge technology is often encouraged. Although this is generally achieved through the feedback of research activity, integrating new concepts at an appropriate level is a major task. Of particular concern is how focussed areas of applied technology can be made part of the multidisciplinary scope of design education.
The paper describes the model used to introduce areas of Artificial Intelligence (AI) to undergraduate industrial design students. The successful interaction of research and education within a UK higher education establishment are discussed and project examples given. It is shown that, through selective tuition of research topics and appropriate technical support, innovative design solutions can result. In addition, it shows that by introducing leading edge and, in some cases, underdeveloped technology, specific key skills of independent learning, communication and research methods can be encouraged.
C1 Loughborough Univ Technol, Bridgeman Ctr, Dept Design & Technol, Loughborough LE11 3TU, Leics, England.
C3 Loughborough University
RP McCardle, JR (corresponding author), Loughborough Univ Technol, Bridgeman Ctr, Dept Design & Technol, Loughborough LE11 3TU, Leics, England.
RI McCardle, John/AAP-4557-2020
OI McCardle, John/0000-0002-5358-5765
CR Aleksander I., 1979, IEE Journal on Computers and Digital Techniques, V2, P29, DOI 10.1049/ij-cdt.1979.0009
ALEKSANDER I, 1984, SENSOR REV, P120
[Anonymous], 1998, IQ HUMAN INTELLIGENC
Bonner JVH, 1999, HUMAN FACTORS IN PRODUCT DESIGN: CURRENT PRACTICE AND FUTURE TRENDS, P56
Ewing P. D, 1987, CURRICULUM DEV REPOR
Gardner Howard., 1993, FRAMES MIND, V2d
Hofstadter D., 2000, Godel, Escher, Bach
Jordan P.W., 1998, INTRO USABILITY
MCCARDLE JR, 1998, MONET NEWSLETTER EUR
*MONET, 2000, EUR NETW EXC MOD BAS
MYERSON J, 1991, TECHNOLOGICAL CHANGE
Neumann PeterG., 1995, COMPUTER RELATED RIS
*OXF, 1997, ART INT
Rich E, 1991, ARTIF INTELL
SLOMAN A, 1995, P 14 INT JOINT C ART
SLOMAN A, 2000, AISB Q, P31
Stanton N.A., 1998, Human factors in consumer products
WAYT GW, 1996, SCI AM EXPLORATI MAY
NR 18
TC 12
Z9 12
U1 3
U2 54
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0957-7572
J9 INT J TECHNOL DES ED
JI Int. J. Technol. Des. Educ.
PY 2002
VL 12
IS 1
BP 59
EP 76
DI 10.1023/A:1013089404168
PG 18
WC Education & Educational Research; Education, Scientific Disciplines;
Engineering, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Education & Educational Research; Engineering
GA 497HG
UT WOS:000172448900004
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Zheng, B
Chen, WF
Zhao, H
AF Zheng, Bin
Chen, Wenfeng
Zhao, Hui
TI The Spatial and Temporal Characteristics of Industry-University Research
Collaboration Efficiency in Chinese Mainland Universities
SO SUSTAINABILITY
LA English
DT Article
DE IUR collaboration; potential; spatio-temporal distribution; principal
component analysis
ID INNOVATION; KNOWLEDGE; COOPERATION; PERFORMANCE; EDUCATION
AB The aim of this study was to investigate the spatio-temporal characteristics of the industry-university research (IUR) collaboration efficiency of Chinese mainland colleges and universities, from 2008 to 2018. A comparative analysis method was used to analyze the data from the Statistical Yearbook of China's Education Funds, the Compilation of Science and Technology Statistics of Colleges and Universities, and the China Statistical Yearbook. The principal components were extracted from relevant indicators of IUR capability in colleges and universities, with a principal component analysis (PCA) method. The principal component scores and comprehensive scores of 31 provinces in mainland China were calculated. The results showed that the efficiency of IUR collaboration in Chinese colleges and universities has increased rapidly within the 11 years studied. The efficiency in the eastern region has grown faster than that in the western region, and the gap between the southern region and the northern region has also continued to widen. The results also showed that the development of IUR collaboration efficiency of colleges and universities in mainland China is unbalanced. Scientific and technological funds, and scientific and technological manpower, were excessively concentrated in the southeast. Therefore, there is large room for improvement in the overall development of IUR collaboration in Chinese colleges and universities.
C1 [Zheng, Bin] China Univ Min & Technol, Sch Management, Xuzhou 221116, Jiangsu, Peoples R China.
[Zheng, Bin] Wuxi Taihu Univ, Scotland Acad, Wuxi 214063, Jiangsu, Peoples R China.
[Chen, Wenfeng] Wuxi Univ, Grad Sch, Wuxi 214105, Jiangsu, Peoples R China.
[Zhao, Hui] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200438, Peoples R China.
C3 China University of Mining & Technology; Wuxi University; Fudan
University
RP Zhao, H (corresponding author), Fudan Univ, Dept Environm Sci & Engn, Shanghai 200438, Peoples R China.
EM zhengbin5202@163.com; wenf_chen@163.com; zhaohui_nuist@163.com
RI Zheng, Bin/ACR-9720-2022; Zheng, Bin/CAF-2106-2022
OI Zheng, Bin/0000-0003-3476-5936; Zhao, Hui/0000-0001-8585-8222
CR Ali D. A., 2014, Policy Research Working Paper - World Bank
Anderson TR, 2007, TECHNOVATION, V27, P306, DOI 10.1016/j.technovation.2006.10.003
Bai XJ, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101310
Bellucci A, 2016, J TECHNOL TRANSFER, V41, P730, DOI 10.1007/s10961-015-9408-9
Calero C, 2007, SCIENTOMETRICS, V71, P87, DOI 10.1007/s11192-007-1650-y
Cao X, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60974-8
Chang A, 2014, J GEN INTERN MED, V29, P940, DOI 10.1007/s11606-013-2752-2
Chen FY, 2016, SCI TECHNOL SOC, V21, P181, DOI 10.1177/0971721816640617
Chen Y., 2018, ED MOD, V5, P4
Chiu WH, 2016, TECHNOL ANAL STRATEG, V28, P965, DOI 10.1080/09537325.2016.1181735
Chu G.G, 2018, RES MODEL MECH CULTI
Chunjia Han, 2017, Journal of High Technology Management Research, V28, P93, DOI 10.1016/j.hitech.2017.04.007
Costa M., 2004, Stat. Methods Appl, V13, P375, DOI [10.1007/s10260-004-0088-0, DOI 10.1007/S10260-004-0088-0]
Cui Y, 2010, TECHNOL MARK, V17, P27
Etzkowitz H, 2000, RES POLICY, V29, P313, DOI 10.1016/S0048-7333(99)00069-4
Farrell M, 2001, J ADV NURS, V36, P765, DOI 10.1046/j.1365-2648.2001.02042.x
Feng C, 2010, ASIAN SOC SCI, V7, P102, DOI [10.5539/ass.v7n1p102, DOI 10.5539/ASS.V7N1P102]
Gao X, 2014, SCIENTOMETRICS, V98, P247, DOI 10.1007/s11192-013-1048-y
Gray DO, 2003, SCIENTOMETRICS, V58, P281, DOI 10.1023/A:1026236626942
Guo HX, 2012, EXPERT SYST APPL, V39, P8514, DOI 10.1016/j.eswa.2011.12.032
He G.M, 2013, CASE STUDY COURSE AP
He YB., 2012, STUDIES SCI SCI, V30, P165, DOI DOI 10.16192/J.CNKI.1003-2053.2012.02.002
Hermans J, 2017, KNOWL MAN RES PRACT, V15, P68, DOI 10.1057/s41275-016-0002-1
Hossain KMZ, 2014, EUR POLYM J, V53, P270, DOI 10.1016/j.eurpolymj.2014.02.001
Huo Y, 2008, CHINA ADULT ED, V5, P16
Kang J, 2014, SCI RES MANAG, V35, P19
Kwon KS, 2012, SCIENTOMETRICS, V90, P177, DOI 10.1007/s11192-011-0513-8
Laursen K, 2004, RES POLICY, V33, P1201, DOI 10.1016/j.respol.2004.07.004
Li C.P, 2017, CHIN U SCI TECHNOL, V8, P14
Li J.P, 2013, SOFT SCI, V5, P136
Li PY, 2016, EXPOS HEALTH, V8, P305, DOI 10.1007/s12403-016-0210-1
Li-Ping F.U, 2013, RES KNOWLEDGE SPILLO
Madsen JB, 2007, J INT ECON, V72, P464, DOI 10.1016/j.jinteco.2006.12.001
Muller U., 2013, MULTICULT ED TECHNOL, V7, P207, DOI [10.1108/17504971311328080, DOI 10.1108/17504971311328080]
Pugach MC, 2009, TEACH TEACH EDUC, V25, P575, DOI 10.1016/j.tate.2009.02.007
Schartinger D, 2002, RES POLICY, V31, P303, DOI 10.1016/S0048-7333(01)00111-1
Song YW, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120094
Su Y., 2016, China Soft Sci. Mag, V3, P44, DOI DOI 10.3969/J.ISSN.1002-9753.2016.03.005
Wang X, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10041243
Wei Y.Q., 2020, CHINESE FOREIGN ENTR
Xia CY, 2021, EDUC RES INT, V2021, DOI 10.1155/2021/9699640
Xia HS, 2022, INT J INOV SCI, V14, P62, DOI 10.1108/IJIS-08-2020-0122
Ying Q.M, 2012, RES U ENTERPRISE COO
Yu C.H., 2019, RES SELECTION MODES
Zhang SP, 2022, TECHNOL ANAL STRATEG, V34, P1038, DOI 10.1080/09537325.2021.1942446
Zhou J. Z., 2005, SCI TECHNOL PROG CO, V3, P70
Zhou X.S, 2012, J TAIYUAN U TECHNOL, P68
Zhu Z.H, 2021, J MUDANJIANG U, V30, P29
NR 48
TC 4
Z9 4
U1 2
U2 40
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD DEC
PY 2021
VL 13
IS 23
AR 13180
DI 10.3390/su132313180
PG 13
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA XU9YJ
UT WOS:000734610600001
OA gold
DA 2024-09-05
ER
PT J
AU Verstegen, DML
Dailey-Hebert, A
Fonteijn, HTH
Clarebout, G
Spruijt, A
AF Verstegen, D. M. L.
Dailey-Hebert, A.
Fonteijn, H. T. H.
Clarebout, G.
Spruijt, A.
TI How do Virtual Teams Collaborate in Online Learning Tasks in a MOOC?
SO INTERNATIONAL REVIEW OF RESEARCH IN OPEN AND DISTRIBUTED LEARNING
LA English
DT Article
DE MOOC; problem-based learning; PBL; open educational resources; online
learning; virtual teams; team collaboration; design-based research
AB Modern learning theories stress the importance of student-centered and self-directed learning. Problem-Based Learning (PBL) supports this by focusing on small group learning centered around authentic problems. PBL, however, usually relies heavily on face-to-face team collaboration and tutor guidance. Yet, when applied in online/blended environments, such elements may not be feasible or even desirable. This study explores how virtual teams collaborate in online learning tasks in the context of a nine-week Massive Open Online Course (MOOC) where international, virtual teams worked on PBL-like tasks. Twenty-one self-formed teams were observed. An inductive thematic analysis resulted in five themes: 1) team formation and team composition, 2) team process (organization and leadership), 3) approach to task work (task division and interaction), 4) use of tools, and 5) external factors (MOOC design and interaction with others). Overall findings revealed that online, virtual teams can collaborate on learning tasks without extensive guidance, but this requires additional communication and technological skills and support. Explicit discussion about group organization and task work, a positive atmosphere, and acceptance of unequal contributions seem to be positive factors. Additional support is required to prepare participants for virtual team work, develop digital literacy, and stimulate more elaborate brainstorming and discussion.
C1 [Verstegen, D. M. L.] Maastricht Univ, Sch Hlth Profess Educ SHE, Maastricht, Netherlands.
[Dailey-Hebert, A.] Pk Univ, Parkville, MO USA.
[Dailey-Hebert, A.] Maastricht Univ, SBE, Maastricht, Netherlands.
[Fonteijn, H. T. H.] Maastricht Univ, Dept Work & Social Psychol, Maastricht, Netherlands.
[Clarebout, G.] Univ Leuven, Ctr Instruct Psychol & Technol, Leuven, Belgium.
[Clarebout, G.; Spruijt, A.] Maastricht Univ, SHE, Maastricht, Netherlands.
[Spruijt, A.] Univ Utrecht, Fac Vet Med, Utrecht, Netherlands.
C3 Maastricht University; Maastricht University; Maastricht University; KU
Leuven; Maastricht University; Utrecht University
RP Verstegen, DML (corresponding author), Maastricht Univ, Sch Hlth Profess Educ SHE, Maastricht, Netherlands.
RI Spruijt, Annemarie/ABB-2416-2021
OI Spruijt, Annemarie/0000-0002-0995-5503
CR Ahn J., 2013, J ONLINE LEARNING TE, V9, P2
[Anonymous], 1980, Problem-based learning: An approach to medical education. Volume
[Anonymous], 2010, EDUCAUSE REV
Barber W, 2015, ELECTRON J E-LEARN, V13, P59
Bergman Esther, 2012, Acad Med, V87, P545, DOI 10.1097/ACM.0b013e31824fbc8a
Blaschke LM, 2012, INT REV RES OPEN DIS, V13, P56, DOI 10.19173/irrodl.v13i1.1076
Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA]
Clark D., 2016, Classcentral
Dailey-Hebert A, 2015, ADV BUS EDUC TRAIN, V6, P97, DOI 10.1007/978-3-319-09247-8_6
de Freitas SI, 2015, BRIT J EDUC TECHNOL, V46, P455, DOI 10.1111/bjet.12268
de Jong N, 2014, PERSPECT MED EDUC, V3, P278, DOI 10.1007/s40037-014-0108-1
Dolmans DHJM, 2005, MED EDUC, V39, P732, DOI 10.1111/j.1365-2929.2005.02205.x
Ertmer PA, 2015, J COMPUT HIGH EDUC, V27, P69, DOI 10.1007/s12528-015-9094-5
Espasa A, 2010, HIGH EDUC, V59, P277, DOI 10.1007/s10734-009-9247-4
Evans BJ, 2016, J HIGH EDUC, V87, P206, DOI 10.1353/jhe.2016.0006
Fernández-Díaz E, 2017, INT REV RES OPEN DIS, V18, P18
Fournier H., 2015, Int. J. e Learn., V14, P289
Gurtner A, 2007, ORGAN BEHAV HUM DEC, V102, P127, DOI 10.1016/j.obhdp.2006.05.002
Hagedoorn T. R., 2017, THESIS
Haines R, 2014, COMPUT HUM BEHAV, V39, P213, DOI 10.1016/j.chb.2014.07.019
Hayashi S, 2013, BMC MED EDUC, V13, DOI 10.1186/1472-6920-13-158
Hollands F.M., 2014, MOOCs: Expectations and reality: Full report
Kauffman H, 2015, RES LEARN TECHNOL, V23, DOI 10.3402/rlt.v23.26507
Khalil H., 2014, EDMEDIA INNOVATE LEA, P1236, DOI DOI 10.1007/S11575-006-0100-Z
Littlejohn A, 2016, INTERNET HIGH EDUC, V29, P40, DOI 10.1016/j.iheduc.2015.12.003
Mackness J, 2013, INT REV RES OPEN DIS, V14, P140
Mayer L., 2016, THESIS
Moust J., 2014, INTRO PROBLEM BASED
Salazar-Márquez R, 2017, INT REV RES OPEN DIS, V18, P231
Toven-Lindsey B, 2015, INTERNET HIGH EDUC, V24, P1, DOI 10.1016/j.iheduc.2014.07.001
Van Tilburg J., 2014, THESIS
Veletsianos G, 2016, INT REV RES OPEN DIS, V17, P198
Verstegen D, 2016, MOOCS PBL PROJECT RE
Verstegen D, WILEY HDB PROBLEM BA
Verstegen DML, 2016, ADV MED EDUC, V5, P9, DOI 10.1007/978-3-319-08275-2_2
Wen MM, 2015, LECT NOTES ARTIF INT, V9112, P820, DOI 10.1007/978-3-319-19773-9_124
Woods DR, 1996, AM J PHARM EDUC, V60, P231
NR 37
TC 10
Z9 13
U1 0
U2 32
PU ATHABASCA UNIV PRESS
PI ATHABASCA
PA 1 UNIVERSITY DR, ATHABASCA, AB T9S 3A3, CANADA
SN 1492-3831
J9 INT REV RES OPEN DIS
JI Int. Rev. Res. Open Distrib. Learn.
PD SEP
PY 2018
VL 19
IS 4
BP 39
EP 55
PG 17
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA GV1BS
UT WOS:000445802700003
DA 2024-09-05
ER
PT J
AU Koltcov, S
Ignatenko, V
Boukhers, Z
Staab, S
AF Koltcov, Sergei
Ignatenko, Vera
Boukhers, Zeyd
Staab, Steffen
TI Analyzing the Influence of Hyper-parameters and Regularizers of Topic
Modeling in Terms of Renyi Entropy
SO ENTROPY
LA English
DT Article
DE topic modeling; Renyi entropy; regularization
ID ADDITIVE REGULARIZATION
AB Topic modeling is a popular technique for clustering large collections of text documents. A variety of different types of regularization is implemented in topic modeling. In this paper, we propose a novel approach for analyzing the influence of different regularization types on results of topic modeling. Based on Renyi entropy, this approach is inspired by the concepts from statistical physics, where an inferred topical structure of a collection can be considered an information statistical system residing in a non-equilibrium state. By testing our approach on four models-Probabilistic Latent Semantic Analysis (pLSA), Additive Regularization of Topic Models (BigARTM), Latent Dirichlet Allocation (LDA) with Gibbs sampling, LDA with variational inference (VLDA)-we, first of all, show that the minimum of Renyi entropy coincides with the "true" number of topics, as determined in two labelled collections. Simultaneously, we find that Hierarchical Dirichlet Process (HDP) model as a well-known approach for topic number optimization fails to detect such optimum. Next, we demonstrate that large values of the regularization coefficient in BigARTM significantly shift the minimum of entropy from the topic number optimum, which effect is not observed for hyper-parameters in LDA with Gibbs sampling. We conclude that regularization may introduce unpredictable distortions into topic models that need further research.
C1 [Koltcov, Sergei; Ignatenko, Vera] Natl Res Univ Higher Sch Econ, Soyuza Pechatnikov St 16, St Petersburg 190121, Russia.
[Boukhers, Zeyd] Univ Koblenz Landau, Inst Web Sci & Technol, Univ Str 1, D-56070 Koblenz, Germany.
[Staab, Steffen] Univ Stuttgart, Inst Parallel & Distributed Syst IPVS, Univ Str 32, D-50569 Stuttgart, Germany.
[Staab, Steffen] Univ Southampton, Web & Internet Sci Res Grp, Univ Rd, Southampton SO17 1BJ, Hants, England.
C3 HSE University (National Research University Higher School of
Economics); University of Koblenz & Landau; University of Stuttgart;
University of Southampton
RP Koltcov, S (corresponding author), Natl Res Univ Higher Sch Econ, Soyuza Pechatnikov St 16, St Petersburg 190121, Russia.
EM skoltsov@hse.ru; vignatenko@hse.ru; boukhers@uni-koblenz.de;
Steffen.Staab@ipvs.uni-stuttgart.de
RI Boukhers, Zeyd/HZL-0733-2023
OI Boukhers, Zeyd/0000-0001-9778-9164; Ignatenko, Vera/0000-0003-1407-0168;
Staab, Steffen/0000-0002-0780-4154; Koltcov, Sergei/0000-0002-2932-2746
FU Basic Research Program at the National Research University Higher School
of Economics in 2019; German Research Foundation (DFG) through the
project grant 'Extraction of Citations from PDF Documents (EXCITE)' [STA
572/14-1]; German Research Foundation (DFG) [STA 572/18-1]
FX Sergei Koltcov and Vera Ignatenko were supported by the Basic Research
Program at the National Research University Higher School of Economics
in 2019. Zeyd Boukhers and Steffen Staab were previously supported by
the German Research Foundation (DFG) through the project grant
'Extraction of Citations from PDF Documents (EXCITE)' under grant number
STA 572/14-1. Steffen Staab is now supported by the German Research
Foundation (DFG) through the project grant "Open Argument Mining" (grant
number STA 572/18-1).
CR [Anonymous], 2018, Weekly epidemiological record; Meeting of the Strategic Advisory Group of Experts on immunization, April 2018 - conclusions and recommendations
[Anonymous], 2007, Probability Theory
[Anonymous], TECHNICAL REPORT
Apishev M, 2017, LECT NOTES ARTIF INT, V10061, P169, DOI 10.1007/978-3-319-62434-1_14
Asuncion A., 2009, C UNC ART INT UAI QU, P27, DOI DOI 10.1080/10807030390248483
Balasubramanyan Ramnath, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference (ECML PKDD 2013). Proceedings: LNCS 8189, P628, DOI 10.1007/978-3-642-40991-2_40
Basu S, 2009, CH CRC DATA MIN KNOW, P1
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
BUGRA, ENTR PERPL IM TEXT
Chang V, 2007, I C DIGIT ECOSYST TE, P7
Chernyavsky Ilya., 2012, German Conference on Bioinformatics 2012, V26, P39
De Waal Alta., 2008, 19 ANN S PATTERN REC, V5221, P79
GEMAN S, 1984, IEEE T PATTERN ANAL, V6, P721, DOI 10.1109/TPAMI.1984.4767596
George C. P., 2017, Journal of Machine Learning Research, V18, P5937
Goodman JT, 2001, COMPUT SPEECH LANG, V15, P403, DOI 10.1006/csla.2001.0174
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Heinrich Gregor., 2004, Parameter estimation for text analysis
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
Hofmann T, 2001, MACH LEARN, V42, P177, DOI 10.1023/A:1007617005950
Hu PF, 2014, PATTERN RECOGN, V47, P1138, DOI 10.1016/j.patcog.2013.06.010
Koltcov S., 2014, P 2014 ACM C WEB SCI, P161, DOI [DOI 10.1145/2615569.2615680, 10.1145/2615569.2615680]
Koltcov S, 2019, ENTROPY-SWITZ, V21, DOI 10.3390/e21070660
Koltcov S, 2018, PHYSICA A, V512, P1192, DOI 10.1016/j.physa.2018.08.050
Koltcov S, 2016, LECT NOTES COMPUT SC, V9934, P176, DOI 10.1007/978-3-319-45982-0_16
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Nelson C, 2012, 2012 IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGIES FOR HOMELAND SECURITY, P637, DOI 10.1109/THS.2012.6459923
Newman D, 2009, J MACH LEARN RES, V10, P1801
ROSE K, 1990, PHYS REV LETT, V65, P945, DOI 10.1103/PhysRevLett.65.945
Rosen-Zvi M, 2010, ACM T INFORM SYST, V28, DOI 10.1145/1658377.1658381
Steyvers M., 2007, PROBABILISTIC TOPIC, P427
Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302
Teh YeeW., 2007, Advances in neural information processing systems, P1481
Tikhonov A.N., 1977, Solution of Ill-Posed Problems
Vorontsov KV, 2014, DOKL MATH, V89, P301, DOI 10.1134/S1064562414020185
Vorontsov K, 2014, COMM COM INF SC, V436, P29, DOI 10.1007/978-3-319-12580-0_3
Wallach Hanna M., 2009, P 26 ANN INT C MACH, P1105, DOI DOI 10.1145/1553374.1553515
Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9
Wang Chong., 2012, Advances in neural information processing systems, P413
Wang L, 2011, ACTA POLYM SIN, P752, DOI 10.3724/SP.J.1105.2011.10220
Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8
Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8
NR 41
TC 8
Z9 9
U1 0
U2 4
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1099-4300
J9 ENTROPY-SWITZ
JI Entropy
PD APR
PY 2020
VL 22
IS 4
AR 394
DI 10.3390/e22040394
PG 13
WC Physics, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physics
GA LT7BS
UT WOS:000537222600057
PM 33286169
OA Green Published, Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Bornmann, L
Hug, S
AF Bornmann, Lutz
Hug, Sven
TI Bibliometrics-based heuristics: What is their definition and how can
they be studied? - Research note
SO PROFESIONAL DE LA INFORMACION
LA English
DT Article
DE Bibliometrics; Heuristics; Bibliometrics-based heuristics; Research
evaluation; Decision strategies
ID SCIENCE; FRUGAL; MODELS; INDEX
AB When scientists study the phenomena they are interested in, they apply sound methods and base their work on theoretical considerations. In contrast, when the fruits of their research are being evaluated, basic scientific standards do not seem to matter. Instead, simplistic bibliometric indicators (i.e., publication and citation counts) are, paradoxically, both widely used and criticized without any methodological and theoretical framework that would serve to ground both use and critique. Recently, however Bornmann and Marewski (2019) proposed such a framework. They developed bibliometrics-based heuristics (BBHs) based on the fast-and-frugal heuristics approach (Gigerenzer; Todd; ABC Research Group, 1999) to decision making, in order to conceptually understand and empirically investigate the quantitative evaluation of research as well as to effectively train end-users of bibliometrics (e.g., science managers, scientists). Heuristics are decision strategies that use part of the available information and ignore the rest. By exploiting the statistical structure of task environments, they can aid to make accurate, fast, effortless, and cost-efficient decisions without that trade-offs are incurred. Because of their simplicity, heuristics are easy to understand and communicate, enhancing the transparency of decision processes. In this commentary, we explain several BBHs and discuss how such heuristics can be employed in practice (using the evaluation of applicants for funding programs as one example). Furthermore, we outline why heuristics can perform well, and how they and their fit to task environments can be studied. In pointing to the potential of research on BBHs and to the risks that come with an under-researched, mindless usage of bibliometrics, this commentary contributes to make research evaluation more scientific.
C1 [Bornmann, Lutz] Max Planck Gesell, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany.
[Hug, Sven] Univ Zurich, Dept Psychol, Binzmuhlestr 14, CH-8050 Zurich, Switzerland.
C3 Max Planck Society; University of Zurich
RP Bornmann, L (corresponding author), Max Planck Gesell, Div Sci & Innovat Studies, Hofgartenstr 8, D-80539 Munich, Germany.
EM bornmann@gv.mpg.de; sven.hug@uzh.ch
RI Hug, Sven E./G-7810-2015; Bornmann, Lutz/A-3926-2008
OI Hug, Sven E./0000-0002-7624-9529; Bornmann, Lutz/0000-0003-0810-7091
CR [Anonymous], 2014, Research Excellence Framework
[Anonymous], 2008, Rationality for mortals: how people cope with uncertainty
Binmore K, 2009, GORMAN LECT ECON, P1
Binmore K., 2007, ANN EC STAT, V86, P25, DOI DOI 10.2307/20079192
Bishop Doroty, 2018, NATURE INDEX 0507
Bornmann L., 2019, SAGE research methods foundations
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806
Bornmann L, 2020, QUANT SCI STUD, V1, P331, DOI 10.1162/qss_a_00008
Bornmann L, 2019, SCIENTOMETRICS, V120, P419, DOI 10.1007/s11192-019-03018-x
Brighton H., 2006, AAAI SPRING S COGN S, P17
Czerlinski J., 1999, Simple heuristics that make us smart, P97
de Rijcke S, 2016, RES EVALUAT, V25, P161, DOI 10.1093/reseval/rvv038
EMBO, 2018, EMBO YOUNG INV PROGR
Evans JSBT, 2008, ANNU REV PSYCHOL, V59, P255, DOI 10.1146/annurev.psych.59.103006.093629
Gigerenzer G, 1996, PSYCHOL REV, V103, P650, DOI 10.1037/0033-295X.103.4.650
Gigerenzer G., 1999, Simple heuristics that make us smart, P3
Gigerenzer G, 2015, J MANAGE, V41, P421, DOI 10.1177/0149206314547522
Gigerenzer G, 2011, ANNU REV PSYCHOL, V62, P451, DOI 10.1146/annurev-psych-120709-145346
Gigerenzer Gerd, 2011, Heuristics: The foundation of adaptive behavior
Goldstein DG, 2009, INT J FORECASTING, V25, P760, DOI 10.1016/j.ijforecast.2009.05.010
Hafenbrädl S, 2016, J APPL RES MEM COGN, V5, P215, DOI 10.1016/j.jarmac.2016.04.011
HAUSER JR, 1990, J CONSUM RES, V16, P393, DOI 10.1086/209225
Hertwig Ralph., 2003, THINKING PSYCHOL PER, P213, DOI [DOI 10.1002/047001332X.CH11, 10.1002/047001332X.ch11]
Hertwig Ralph, 2013, SIMPLE HEURISTICS SO, DOI [10.1093/acprofoso/9780195388435.001.0001, DOI 10.1093/ACPR0F0S0/9780195388435.001.0001]
Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a
Hirsch JE, 2019, SCIENTOMETRICS, V118, P673, DOI 10.1007/s11192-018-2994-1
Kahnemann D., 1982, JUDGMENT UNCERTAINTY
Katsikopoulos KV, 2011, DECIS ANAL, V8, P10, DOI 10.1287/deca.1100.0191
Kelman MarkG., 2011, HEURISTICS DEBATE
Knight F. H., 1921, RISK UNCERTAINTY PRO
MacRoberts MH, 2018, J ASSOC INF SCI TECH, V69, P474, DOI 10.1002/asi.23970
Marewski JN, 2011, PSYCHOL REV, V118, P393, DOI 10.1037/a0024143
Marewski JN, 2010, PSYCHON B REV, V17, P287, DOI 10.3758/PBR.17.3.287
Marewski JN, 2010, COGN PROCESS, V11, P103, DOI 10.1007/s10339-009-0337-0
Marx W, 2014, ANN PHYS-BERLIN, V526, pA41, DOI 10.1002/andp.201400806
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
Raab M, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01672
Rothenfluh Tomas, 2009, CHANCEN GEFAHREN GEG, P259
Savage L. J., 1972, The foundations of statistics
SIMON HA, 1990, ANNU REV PSYCHOL, V41, P1, DOI 10.1146/annurev.ps.41.020190.000245
SIMON HA, 1956, PSYCHOL REV, V63, P129, DOI 10.1037/h0042769
Todd Peter M., 2012, ECOLOGICAL RATIONALI, DOI [10.1093/acprof:oso/9780195315448.001.0001, DOI 10.1093/ACPR0F:0S0/9780195315448.001.0001]
Waltman L., 2018, STI 2018 C P, P526
NR 43
TC 2
Z9 3
U1 2
U2 38
PU EDICIONES PROFESIONALES INFORMACION SL-EPI
PI BARCELONA
PA MISTRAL, 36, BARCELONA, ALBOLOTE, SPAIN
SN 1386-6710
EI 1699-2407
J9 PROF INFORM
JI Prof. Inf.
PD JUL-AUG
PY 2020
VL 29
IS 4
AR e290420
DI 10.3145/epi.2020.jul.20
PG 9
WC Communication; Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Communication; Information Science & Library Science
GA NK5HY
UT WOS:000566763500016
OA Bronze
DA 2024-09-05
ER
PT C
AU Alexandru, D
Iftene, A
Gîfu, D
AF Alexandru, Dan
Iftene, Adrian
Gifu, Daniela
BE Mititelu, VB
Irimia, E
Tufis, D
Cristea, D
TI WHAT INDICATORS TELL US ABOUT MAKING ACCURATE RANK OF THE BEST PAPER
PREDICTIONS
SO PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE LINGUISTIC RESOURCES
AND TOOLS FOR NATURAL LANGUAGE PROCESSING
SE Linguistic Resources and Tools for Romanian Language Processing
LA English
DT Proceedings Paper
CT 15th International Conference on Linguistic Resources and Tools for
Natural Language Processing
CY OCT 14-15, 2020
CL ELECTR NETWORK
DE arXiv collection; h-index; machine learning; paper ranking
ID QUALITY
AB We propose a pilot research methodology intended to predict the best paper ranking, including machine learning algorithms based on arXiv collection. Our approach plans to link the author's h-index, identified in the Semantic Scholar, with the quality of a paper. It is well known that the h-index is a significant indicator of research impact realised by one author or a team, based on citation measurement. Out of these considerations of paper ranking use, we will concentrate in this survey only on the one or more of the authors on the search results page, by checking the h-index for each of them.
C1 [Alexandru, Dan; Iftene, Adrian; Gifu, Daniela] Alexandru Ioan Cuza Univ, Fac Comp Sci, 16 Berthelot St, Iasi, Romania.
[Gifu, Daniela] Romanian Acad, Inst Comp Sci, 2 Codrescu St, Iasi, Romania.
C3 Alexandru Ioan Cuza University; Romanian Academy of Sciences
RP Alexandru, D (corresponding author), Alexandru Ioan Cuza Univ, Fac Comp Sci, 16 Berthelot St, Iasi, Romania.
EM dan.alexandru@info.uaic.ro; adiftene@info.uaic.ro;
daniela.gifu@info.uaic.ro
RI Gifu, Daniela/D-1805-2015
FU [848098]; [H2020-SC1-BHC2018-2020/H2020-SC1-2019-Two-Stage-RTD]
FX This work was supported by project REVERT (taRgeted thErapy for adVanced
colorEctal canceR paTients), Grant Agreement number: 848098,
H2020-SC1-BHC2018-2020/H2020-SC1-2019-Two-Stage-RTD.
CR Alexandru D, 2019, 28 INT C INF SYST DE
Athalye A., 2017, ARXIV PREPRINT ARXIV
Baboi M, 2019, PROCEDIA COMPUT SCI, V159, P1035, DOI 10.1016/j.procs.2019.09.271
Bensman S.J., 2014, ARXIV PREPRINT ARXIV
Buckman J, 2018, P INT C LEARN REPR I
Ciaccio Edward J., 2019, Informatics in Medicine Unlocked, V15, P210, DOI 10.1016/j.imu.2019.100166
Cioffi R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020492
Erfani S. M., 2018, ARXIV PREPRINT ARXIV
Gifu D, 2014, INT LETT SOCIAL HUMA, V29, P48
Gschwend T, 2005, FR POLITICS, V3, P88, DOI 10.1057/palgrave.fp.8200068
Gupta N.A., 2017, LIT SURVEY ARTIFICIA
Horzyk, 2014, P INDEX A FAIR ALTER
Klein M, 2019, INT J DIGIT LIBRARIE, V20, P335, DOI 10.1007/s00799-018-0234-1
Lee PS, 2018, IEEE T BIG DATA, V4, P117, DOI 10.1109/TBDATA.2017.2689038
Lee YH, 2018, KOREAN J INTERN MED, V33, P277, DOI 10.3904/kjim.2016.195
MILMAN VD, 1986, LECT NOTES MATH, V1200, P1
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Szklo M, 2006, REV SAUDE PUBL, V40, P30, DOI 10.1590/S0034-89102006000400005
Talagrand M, 1999, ANN PROBAB, P1
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Wagner D., 2018, INT C MACHINE LEARNI
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678
Wickson F, 2014, J RESPONSIBLE INNOV, V1, P254, DOI 10.1080/23299460.2014.963004
Yokus G., 2019, International Journal of Eurasia Social Sciences, V10, P516, DOI [10.35826/IJOESS.2479, DOI 10.35826/IJOESS.2479]
NR 24
TC 0
Z9 0
U1 0
U2 2
PU EDITURA UNIV ALEXANDRU IOAN CUZA IASI
PI IASI
PA STR PINULUI NR 1A, IASI, 700109, ROMANIA
SN 1843-911X
J9 LING RES T ROM L PRO
PY 2020
BP 173
EP 182
PG 10
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Linguistics; Language & Linguistics
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Linguistics
GA BR6BE
UT WOS:000659362800016
DA 2024-09-05
ER
PT J
AU Kuppler, M
AF Kuppler, Matthias
TI Predicting the future impact of Computer Science researchers: Is there a
gender bias?
SO SCIENTOMETRICS
LA English
DT Article
DE Impact prediction; h-index; Gender; Discrimination; Machine learning
ID RISING STARS; EMPLOYMENT; STEREOTYPES; SCIENTISTS; WOMEN; INDEX
AB The advent of large-scale bibliographic databases and powerful prediction algorithms led to calls for data-driven approaches for targeting scarce funds at researchers with high predicted future scientific impact. The potential side-effects and fairness implications of such approaches are unknown, however. Using a large-scale bibliographic data set of N = 111,156 Computer Science researchers active from 1993 to 2016, I build and evaluate a realistic scientific impact prediction model. Given the persistent under-representation of women in Computer Science, the model is audited for disparate impact based on gender. Random forests and Gradient Boosting Machines are used to predict researchers' h-index in 2010 from their bibliographic profiles in 2005. Based on model predictions, it is determined whether the researcher will become a high-performer with an h-index in the top-25% of the discipline-specific h-index distribution. The models predict the future h-index with an accuracy of R-2 = 0.875 and correctly classify 91.0% of researchers as high-performers and low-performers. Overall accuracy does not vary strongly across researcher gender. Nevertheless, there is indication of disparate impact against women. The models underestimate the true h-index of female researchers more strongly than the h-index of male researchers. Further, women are 8.6% less likely to be predicted to become high-performers than men. In practice, hiring, tenure, and funding decisions that are based on model predictions risk to perpetuate the under-representation of women in Computer Science.
C1 [Kuppler, Matthias] Univ Siegen, Dept Social Sci, Adolf Reichwein Str 2, D-57076 Siegen, Germany.
C3 Universitat Siegen
RP Kuppler, M (corresponding author), Univ Siegen, Dept Social Sci, Adolf Reichwein Str 2, D-57076 Siegen, Germany.
EM matthias.kuppler@uni-siegen.de
OI Kuppler, Matthias/0000-0002-7324-4722
FU Projekt DEAL
FX Open Access funding enabled and organized by Projekt DEAL.
CR Abramo G, 2015, J INFORMETR, V9, P25, DOI 10.1016/j.joi.2014.11.002
Abramo G, 2013, J INFORMETR, V7, P811, DOI 10.1016/j.joi.2013.07.002
Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
AIGNER DJ, 1977, IND LABOR RELAT REV, V30, P175, DOI 10.2307/2522871
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
AlShebli BK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-07634-8
[Anonymous], 2018, Science engineering indicators 2018: Higher education in science and engineering
[Anonymous], 2016, ARXIV160605752
Arrow KJ., 1973, Discrimination in labor markets
Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1
Barocas S, 2016, CALIF LAW REV, V104, P671, DOI 10.15779/Z38BG31
Beaudry C, 2016, RES POLICY, V45, P1790, DOI 10.1016/j.respol.2016.05.009
Bendels MHK, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0189136
Bertsimas D, 2015, OPER RES, V63, P1246, DOI 10.1287/opre.2015.1447
Blau FD, 2010, AM ECON REV, V100, P348, DOI 10.1257/aer.100.2.348
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Burton JW, 2020, J BEHAV DECIS MAKING, V33, P220, DOI 10.1002/bdm.2155
Carli LL, 2016, PSYCHOL WOMEN QUART, V40, P244, DOI 10.1177/0361684315622645
Caton S., 2020, ARXIV PREPRINT ARXIV
Ceci SJ, 2014, PSYCHOL SCI PUBL INT, V15, P75, DOI 10.1177/1529100614541236
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Chouldechova A, 2017, BIG DATA-US, V5, P153, DOI 10.1089/big.2016.0047
Daud A, 2020, SCIENTOMETRICS, V124, P633, DOI 10.1007/s11192-020-03466-w
Daud A, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P33, DOI 10.1145/3041021.3054137
Demetrescu C, 2020, SCIENTOMETRICS, V124, P2207, DOI 10.1007/s11192-020-03548-9
Dwork Cynthia, 2012, P 3 INN THEOR COMP S, P214, DOI DOI 10.1145/2090236.2090255
Eaton AA, 2020, SEX ROLES, V82, P127, DOI 10.1007/s11199-019-01052-w
European Commission, 2018, She Figures 2018 Report
Flanagin A, 1998, JAMA-J AM MED ASSOC, V280, P222, DOI 10.1001/jama.280.3.222
Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451
Heilman ME, 2012, RES ORGAN BEHAV, V32, P113, DOI 10.1016/j.riob.2012.11.003
Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hofstra B, 2020, P NATL ACAD SCI USA, V117, P9284, DOI 10.1073/pnas.1915378117
Holman L, 2018, PLOS BIOL, V16, DOI 10.1371/journal.pbio.2004956
Huang JM, 2020, P NATL ACAD SCI USA, V117, P4609, DOI 10.1073/pnas.1914221117
Jadidi M, 2018, ADV COMPLEX SYST, V21, DOI 10.1142/S0219525917500114
James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1
Kessels U, 2006, BRIT J EDUC PSYCHOL, V76, P761, DOI 10.1348/000709905X59961
Knobloch-Westerwick S, 2013, SCI COMMUN, V35, P603, DOI 10.1177/1075547012472684
Koch AJ, 2015, J APPL PSYCHOL, V100, P128, DOI 10.1037/a0036734
Lane KA, 2012, SEX ROLES, V66, P220, DOI 10.1007/s11199-011-0036-z
Leavy S., 2020, BIAS SOCIAL ASPECTS, P12, DOI DOI 10.1007/978-3-030-52485-2_2
Lepri B., 2018, PHILOS TECHNOLOGY, V31, P611, DOI DOI 10.1007/S13347-017-0279-X
Leslie SJ, 2015, SCIENCE, V347, P262, DOI 10.1126/science.1261375
Li XL, 2009, LECT NOTES COMPUT SC, V5463, P288, DOI 10.1007/978-3-642-00887-0_25
LONG JS, 1992, SOC FORCES, V71, P159, DOI 10.2307/2579971
Mazloumian A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049246
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
Miller DI, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00037
Mitchell S, 2021, ANNU REV STAT APPL, V8, P141, DOI 10.1146/annurev-statistics-042720-125902
Moss-Racusin CA, 2012, P NATL ACAD SCI USA, V109, P16474, DOI 10.1073/pnas.1211286109
National Center for Science and Engineering Statistics (NCSES), 2021, Women, Minorities, and Persons with Disabilities in Science and Engineering Special Report NSF 21-321
NCSES, 2019, 21320 NCSES NSF
Nie YB, 2019, SCIENTOMETRICS, V120, P461, DOI 10.1007/s11192-019-03131-x
Nielsen MW, 2017, P NATL ACAD SCI USA, V114, P1740, DOI 10.1073/pnas.1700616114
Nosek BA, 2002, J PERS SOC PSYCHOL, V83, P44, DOI 10.1037//0022-3514.83.1.44
Panagopoulos G, 2017, J INFORMETR, V11, P198, DOI 10.1016/j.joi.2016.11.003
Penner O, 2013, PHYS TODAY, V66, P8, DOI 10.1063/PT.3.1928
Reskin BF, 2000, AM SOCIOL REV, V65, P210, DOI 10.2307/2657438
Reskin BF, 2000, CONTEMP SOCIOL, V29, P319, DOI 10.2307/2654387
Reymert I, 2021, MINERVA, V59, P53, DOI 10.1007/s11024-020-09419-0
Santamaría L, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.156
Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605
Sarsons H, 2017, AM ECON REV, V107, P141, DOI 10.1257/aer.p20171126
Seeber M, 2019, RES POLICY, V48, P478, DOI 10.1016/j.respol.2017.12.004
Sheltzer JM, 2014, P NATL ACAD SCI USA, V111, P10107, DOI 10.1073/pnas.1403334111
Sugimoto CR, 2013, NATURE, V504, P211, DOI 10.1038/504211a
Symonds MRE, 2006, PLOS ONE, V1, DOI 10.1371/journal.pone.0000127
Tang SJ, 2022, SCI CHINA LIFE SCI, V65, P753, DOI 10.1007/s11427-021-1974-7
Tekles, 2019, ARXIV190412746CS
van Anders SM, 2004, SEX ROLES, V51, P511, DOI 10.1007/s11199-004-5461-9
van Arensbergen P, 2012, SCIENTOMETRICS, V93, P857, DOI 10.1007/s11192-012-0712-y
van der Lee R, 2015, P NATL ACAD SCI USA, V112, P12349, DOI 10.1073/pnas.1510159112
Weihs L, 2017, ACM-IEEE J CONF DIG, P49
Wenneras C, 1997, NATURE, V387, P341, DOI 10.1038/387341a0
West JD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066212
Wilhite AW, 2012, SCIENCE, V335, P542, DOI 10.1126/science.1212540
Witteman HO, 2019, LANCET, V393, P531, DOI 10.1016/S0140-6736(18)32611-4
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
Zhang J, 2016, ACM-IEEE J CONF DIG, P211, DOI 10.1145/2910896.2925436
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
Zuo ZY, 2021, J ASSOC INF SCI TECH, V72, P454, DOI 10.1002/asi.24415
NR 85
TC 4
Z9 4
U1 7
U2 29
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2022
VL 127
IS 11
BP 6695
EP 6732
DI 10.1007/s11192-022-04337-2
EA APR 2022
PG 38
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 5U5FU
UT WOS:000779267100001
OA hybrid
DA 2024-09-05
ER
PT J
AU Chen, H
Hu, WZ
AF Chen, Hong
Hu, WenZhe
TI Research on exchange rate pass-through effect based on artificial
intelligence approach
SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE
LA English
DT Article
DE artificial intelligence; exchange rate pass-through; Hermite polynomial;
neural network
ID IMPORT PRICES; COMPETITION; QUALITY; TRADE
AB Artificial intelligence is widely believed to reshape many industries in the future. This paper analyzes the chaotic characteristics of Chinese export price index, exchange rate data, and studies the predictive ability of the neural network model in exchange rate passthrough (ERPT) prediction. The Hermite neural network model, one of artificial intelligence models, is selected to forecast the rate of pass-through effect. Hermite neural network model demonstrates a superior forecasting accuracy, and its forecasting error is less than that of the general neural network model.
C1 [Chen, Hong; Hu, WenZhe] Wuhan Univ, Econ & Management Sch, Wuhan 430072, Peoples R China.
C3 Wuhan University
RP Hu, WZ (corresponding author), Wuhan Univ, Econ & Management Sch, Wuhan 430072, Peoples R China.
EM wenzhe.hu@whu.edu.cn
CR Alvarez R, 2012, EMERG MARK FINANC TR, V48, P100, DOI 10.2753/REE1540-496X480106
[Anonymous], APPL RES COMPUT
Antoniades A, 2016, INT ECON REV, V57, P1425, DOI 10.1111/iere.12203
Aron J, 2014, J DEV STUD, V50, P144, DOI 10.1080/00220388.2013.847179
Auer RA, 2015, J MONEY CREDIT BANK, V47, P1617, DOI 10.1111/jmcb.12286
Bahrammirzaee A, 2010, NEURAL COMPUT APPL, V19, P1165, DOI 10.1007/s00521-010-0362-z
Ben Cheikh N, 2016, REV WORLD ECON, V152, P69, DOI 10.1007/s10290-015-0233-x
Bernini M, 2015, EUR ECON REV, V77, P117, DOI 10.1016/j.euroecorev.2015.04.005
Bussiere M, 2013, OXFORD B ECON STAT, V75, P731, DOI 10.1111/j.1468-0084.2012.00711.x
Chen N, 2016, J INT ECON, V100, P61, DOI 10.1016/j.jinteco.2016.02.003
Chen P, 1988, SYST DYNAM REV, V4, P81, DOI 10.1002/sdr.4260040106
Donayre L, 2016, J INT MONEY FINANC, V64, P170, DOI 10.1016/j.jimonfin.2016.02.018
Guresen E, 2011, EXPERT SYST APPL, V38, P10389, DOI 10.1016/j.eswa.2011.02.068
Gust C, 2010, J MONETARY ECON, V57, P309, DOI 10.1016/j.jmoneco.2010.02.001
Jammazi R, 2015, J INT FINANC MARK I, V34, P173, DOI 10.1016/j.intfin.2014.11.011
[李哲敏 Li Zhemin], 2015, [系统工程理论与实践, Systems Engineering-Theory & Practice], V35, P2083
LIU HY, 2017, FINANCE, V5
Marazzi M, 2005, INT FINANCE DISCUSS, V2005, P883
Olivei GP, 2002, NEW ENGL ECON REV, P3
[潘昊 PAN Hao], 2005, [计算机应用, Computer Applications], V25, P2777
ROSENSTEIN MT, 2001, PHYSICA D, V65, P117
Sun Q, 2011, SEEKER, P11
Trippi Robert R, 1992, Neural networks in finance and investing: using artificial intelligence to improve real-world performance
Turner P, 2017, APPL ECON, V49, P397, DOI 10.1080/00036846.2016.1197374
Winkelried D, 2014, EMPIR ECON, V46, P1181, DOI 10.1007/s00181-013-0715-4
Xie C, 2015, MATH PROBL ENG, V2015, DOI 10.1155/2015/635345
XIONG Z, 2011, QUANT TECHN ECON, V6, P64
Zhang G, 1998, OMEGA-INT J MANAGE S, V26, P495, DOI 10.1016/S0305-0483(98)00003-6
Zou AJ, 2019, CLUSTER COMPUT, V22, pS9941, DOI 10.1007/s10586-017-1020-3
NR 29
TC 2
Z9 2
U1 0
U2 28
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1532-0626
EI 1532-0634
J9 CONCURR COMP-PRACT E
JI Concurr. Comput.-Pract. Exp.
PD MAY 10
PY 2019
VL 31
IS 9
SI SI
AR e4986
DI 10.1002/cpe.4986
PG 9
WC Computer Science, Software Engineering; Computer Science, Theory &
Methods
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA HU1NF
UT WOS:000465038400010
DA 2024-09-05
ER
PT C
AU Jangid, N
Saha, S
Narasimhamurthy, A
Mathur, A
AF Jangid, Neelam
Saha, Snehanshu
Narasimhamurthy, Anand
Mathur, Archana
BE Mitra, S
McIntosh, S
Nair, I
Bedi, P
Rajasree, MS
TI Computing the Prestige of a journal: A Revised Multiple Linear
Regression Approach
SO PROCEEDING OF THE THIRD INTERNATIONAL SYMPOSIUM ON WOMEN IN COMPUTING
AND INFORMATICS (WCI-2015)
LA English
DT Proceedings Paper
CT 3rd International Symposium on Women in Computing and Informatics (WCI)
CY AUG 10-13, 2015
CL SCMS Sch Engn & Technol, Aluva, INDIA
HO SCMS Sch Engn & Technol
DE Revised Multiple Linear Regression Model (RMLRM); Journal ranking; PCA
ID SCIENCE; IMPACT
AB The evaluation of journals based on their influence is of interest for numerous reasons. Various methods of computing a score have been proposed for measuring the scientific influence of scholarly journals. Typically the computation of any of these scores involves compiling the citation information pertaining to the journal under consideration. This involves significant overhead since the article citation information of not only the journal under consideration but also that of other journals for the recent few years need to be stored. Our work is motivated by the idea of developing a computationally lightweight scheme that does not require any data storage, yet yields a score which is useful for measuring the importance of journals. In this paper, a Journal Influence Score is mooted and a regression analysis based method is proposed to calculate the score. We validated our model using historical data from the SCImago portal. The results are promising, the rankings obtained using the proposed method compare favourably with the SCImago Journal Rank, thus indicating that the proposed approach is a feasible and effective method of calculating scientific impact of journals.
C1 [Jangid, Neelam; Saha, Snehanshu; Mathur, Archana] PESIT South, Dept Comp Sci & Engn, Bangalore, Karnataka, India.
[Narasimhamurthy, Anand] BITS, Dept Comp Sci & Engn, Hyderabad, Andhra Pradesh, India.
C3 PES University; Birla Institute of Technology & Science Pilani (BITS
Pilani)
RP Jangid, N (corresponding author), PESIT South, Dept Comp Sci & Engn, Bangalore, Karnataka, India.
EM neelu.jangid88@gmail.com; snehanshusaha@pes.edu; anandmnl@gmail.com;
archanamathur@pes.edu
RI ; Saha, Snehanshu/R-1028-2018
OI Mathur, Archana/0000-0003-4522-6890; Saha, Snehanshu/0000-0002-8458-604X
CR Abrizah A, 2013, SCIENTOMETRICS, V94, P721, DOI 10.1007/s11192-012-0813-7
[Anonymous], 2006, Google's PageRank and Beyond: The Science of Search Engine Rankings
Buela-Casal G, 2006, SCIENTOMETRICS, V67, P45, DOI 10.1556/Scient.67.2006.1.4
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Haddow G, 2010, SCIENTOMETRICS, V85, P471, DOI 10.1007/s11192-010-0198-4
Jain Raj, 2009, ART COMPUTER SYSTEM
Kao C, 2009, SCIENTOMETRICS, V81, P123, DOI 10.1007/s11192-009-2093-4
Svensson G, 2008, MARK INTELL PLAN, V26, P340, DOI 10.1108/02634500810879250
NR 8
TC 2
Z9 2
U1 0
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-3361-0
PY 2015
BP 1
EP 4
DI 10.1145/2791405.2791407
PG 4
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BH0PF
UT WOS:000395824100001
DA 2024-09-05
ER
PT C
AU Cabanac, G
Chandrasekaran, MK
Frommholz, I
Jaidka, K
Kan, MY
Mayr, P
Wolfram, D
AF Cabanac, Guillaume
Chandrasekaran, Muthu Kumar
Frommholz, Ingo
Jaidka, Kokil
Kan, Min-Yen
Mayr, Philipp
Wolfram, Dietmar
GP IEEE
TI Joint Workshop on Bibliometric-enhanced Information Retrieval and
Natural Language Processing for Digital Libraries (BIRNDL 2016)
SO 2016 IEEE/ACM JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL)
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 16th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL)
CY JUN 19-23, 2016
CL Newark, NJ
DE Bibliometrics; Information Retrieval; Digital Libraries; Natural
Language Processing; Text Mining
AB The large scale of scholarly publications poses a challenge for scholars in information-seeking and sensemaking. Bibliometric, information retrieval (IR), text mining and NLP techniques could help in these activities, but are not yet widely used in digital libraries. This workshop is intended to stimulate IR researchers and digital library professionals to elaborate on new approaches in natural language processing, information retrieval, scientometric and recommendation techniques which can advance the state-of-the-art in scholarly document understanding, analysis and retrieval at scale.
C1 [Cabanac, Guillaume] Univ Toulouse, Toulouse, France.
[Chandrasekaran, Muthu Kumar; Kan, Min-Yen] NUS Sch Comp, Singapore, Singapore.
[Frommholz, Ingo] Univ Bedfordshire, Luton, Beds, England.
[Jaidka, Kokil] Adobe Syst Inc, Bangalore, Karnataka, India.
[Mayr, Philipp] GESIS Leibniz Inst Social Sci, Leibniz, Germany.
[Wolfram, Dietmar] Univ Wisconsin, Milwaukee, WI 53201 USA.
C3 Universite de Toulouse; University of Bedfordshire; Adobe Systems Inc.;
Leibniz Institut fur Sozialwissenschaften (GESIS); University of
Wisconsin System; University of Wisconsin Milwaukee
RP Cabanac, G (corresponding author), Univ Toulouse, Toulouse, France.
EM guillaume.cabanac@univ-tlse3.fr; muthu.chandra@comp.nus.edu.sg;
ingo.frommholz@beds.ac.uk; jaidka@adobe.com; kanmy@comp.nus.edu.sg;
philipp.mayr@gesis.org; dwolfram@uwn.edu
RI Jaidka, Kokil/AAK-2618-2020; Cabanac, Guillaume/C-5913-2011; Frommholz,
Ingo/IUM-8186-2023
OI Jaidka, Kokil/0000-0002-8127-1157; Cabanac,
Guillaume/0000-0003-3060-6241; Frommholz, Ingo/0000-0002-5622-5132
CR Atanassova Iana, 2015, P 1 WORKSH MIN SCI C
Jaidka Kokil, 2014, P TEXT AN C GAITH
Mayr Philipp, 2016, P 3 WORKSH BIBL ENH
Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81
NR 4
TC 2
Z9 2
U1 2
U2 10
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2575-7865
EI 2575-8152
BN 978-1-4503-4229-2
J9 ACM-IEEE J CONF DIG
PY 2016
BP 299
EP 300
DI 10.1145/2910896.2926734
PG 2
WC Computer Science, Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BG5HY
UT WOS:000389502300078
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Bollen, J
Van de Sompel, H
Hagberg, A
Chute, R
AF Bollen, Johan
Van de Sompel, Herbert
Hagberg, Aric
Chute, Ryan
TI A Principal Component Analysis of 39 Scientific Impact Measures
SO PLOS ONE
LA English
DT Article
ID JOURNAL IMPACT
AB Background: The impact of scientific publications has traditionally been expressed in terms of citation counts. However, scientific activity has moved online over the past decade. To better capture scientific impact in the digital era, a variety of new impact measures has been proposed on the basis of social network analysis and usage log data. Here we investigate how these new measures relate to each other, and how accurately and completely they express scientific impact.
Methodology: We performed a principal component analysis of the rankings produced by 39 existing and proposed measures of scholarly impact that were calculated on the basis of both citation and usage log data.
Conclusions: Our results indicate that the notion of scientific impact is a multi-dimensional construct that can not be adequately measured by any single indicator, although some measures are more suitable than others. The commonly used citation Impact Factor is not positioned at the core of this construct, but at its periphery, and should thus be used with caution.
RP Bollen, J (corresponding author), Los Alamos Natl Lab, Res Lib, Digital Lib Res & Prototyping Team, Los Alamos, NM 87545 USA.
EM jbollen@lanl.gov
CR AGGARWAL CC, 1998, IEEE DATA ENG B, V21
[Anonymous], 2006, PLOS MED, V3, P707, DOI 10.1371/journal.pmed.0030291
[Anonymous], 2002, Principal components analysis
[Anonymous], BRIT MED J FEB
[Anonymous], 2009, Social Network Analysis. Methods and Applications
Bollen J, 2005, INFORM PROCESS MANAG, V41, P1419, DOI 10.1016/j.ipm.2005.03.024
BOLLEN J, 2008, J AM SOC INFORM SCI, V59
BOLLEN J, 2008, JOINT C DIG LIBR JCD
Bollen J, 2006, SCIENTOMETRICS, V69, P669, DOI 10.1007/s11192-006-0176-z
Bollen J, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006022, 10.1371/journal.pone.0004803]
Bordons M, 2002, SCIENTOMETRICS, V53, P195, DOI 10.1023/A:1014800407876
Braun T, 2005, SCIENTIST, V19, P8
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Brody T, 2006, J AM SOC INF SCI TEC, V57, P1060, DOI 10.1002/asi.20373
Chen P, 2007, J INFORMETR, V1, P8, DOI 10.1016/j.joi.2006.06.001
Darmoni SJ, 2002, J MED LIBR ASSOC, V90, P323
Dellavalle RP, 2007, J AM ACAD DERMATOL, V57, P116, DOI 10.1016/j.jaad.2007.03.005
EGGHE L, 1998, INFORM PROCESSING MA, V24, P567
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Garfield E, 1999, CAN MED ASSOC J, V161, P979
Harter SP, 1997, J AM SOC INFORM SCI, V48, P1146, DOI 10.1002/(SICI)1097-4571(199712)48:12<1146::AID-ASI9>3.0.CO;2-U
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9
Leydesdorff L, 2007, J AM SOC INF SCI TEC, V58, P1303, DOI 10.1002/asi.20614
Leydesdorff L, 2007, J AM SOC INF SCI TEC, V58, P25, DOI 10.1002/asi.20406
Opthof T, 1997, CARDIOVASC RES, V33, P1, DOI 10.1016/S0008-6363(96)00215-5
PINSKI G, 1976, INFORM PROCESS MANAG, V12, P297, DOI 10.1016/0306-4573(76)90048-0
Rousseau R, 2005, SCIENTOMETRICS, V63, P431, DOI 10.1007/s11192-005-0223-1
SHEPHERD PT, 2007, J SERIALS COMMUNITY, V20, P117, DOI DOI 10.1629/20117
NR 29
TC 222
Z9 226
U1 2
U2 160
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 29
PY 2009
VL 4
IS 6
AR e6022
DI 10.1371/journal.pone.0006022
PG 11
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics
GA 463XB
UT WOS:000267465900001
OA Green Published, Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Thijs, B
Zhang, L
Glänzel, W
AF Thijs, Bart
Zhang, Lin
Glanzel, Wolfgang
TI Bibliographic coupling and hierarchical clustering for the validation
and improvement of subject-classification schemes
SO SCIENTOMETRICS
LA English
DT Article
DE Bibliographic coupling; Journal clustering; Second order similarities;
Subject classification
AB An attempt is made to cluster journals from the complete Web of Science database by using bibliographic coupling similarities. Since the sparseness of the underlying similarity matrix proved inappropriate for this exercise, second-order similarities have been used. Only 0.12 % out of 8282 journals had to be removed from the classification as being singletons. The quality at three hierarchical levels with 6, 14 and 24 clusters substantiated the applicability of this method. Cluster labelling was made on the basis of the about 70 subfields of the Leuven-Budapest subject-classification scheme that also allowed the comparison with the existing two-level journal classification system developed in Leuven. The further comparison with the 22 field classification system of the Essential Science Indicators does, however, reveal larger deviations.
C1 [Thijs, Bart; Zhang, Lin; Glanzel, Wolfgang] Katholieke Univ Leuven, Dept MSI, ECOOM, Louvain, Belgium.
[Zhang, Lin] North China Univ Water Conservancy & Elect Power, Dept Management & Econ, Zhengzhou, Peoples R China.
[Glanzel, Wolfgang] Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Budapest, Hungary.
C3 KU Leuven; North China University of Water Resources & Electric Power;
Hungarian Academy of Sciences
RP Thijs, B (corresponding author), Katholieke Univ Leuven, Dept MSI, ECOOM, Louvain, Belgium.
EM Bart.Thijs@econ.kuleuven.be
RI Glanzel, Wolfgang/AAE-4395-2021; zhang, lin/M-3007-2017
OI zhang, lin/0000-0003-0526-9677
FU National Natural Science Foundation of China [71103064]
FX This is a revised and extended version of a paper presented at the 14th
International Conference on Scientometrics and Informetrics, Vienna,
Austria, 15-19 July 2013 (Thijs et al. 2013b). The authors wish to thank
the reviewers for their comments which helped us to improve and extend
the paper. Lin Zhang acknowledges the support from the National Natural
Science Foundation of China under Grant 71103064.
CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003
Bassecoulard E, 1999, SCIENTOMETRICS, V44, P323, DOI 10.1007/BF02458483
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
GARFIELD E, 1998, 150 ANN M AAAS PHIL
Glänzel W, 2011, SCIENTOMETRICS, V88, P297, DOI 10.1007/s11192-011-0347-4
Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087
Glanzel W, 1996, SCIENTOMETRICS, V37, P195, DOI 10.1007/BF02093621
Janssens F., 2007, THESIS
Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7
Janssens F, 2009, INFORM PROCESS MANAG, V45, P683, DOI 10.1016/j.ipm.2009.06.003
Jarneving B., 2005, THESIS
Leydesdorff L, 2004, J DOC, V60, P371, DOI 10.1108/00220410410548144
NARIN F, 1972, J AM SOC INFORM SCI, V23, P323, DOI 10.1002/asi.4630230508
Narin F., 1976, Evaluative Bibliometrics: The Use of Publication and Citation Analysis in the Evaluation of Scientific Activity
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Sen S.K., 1983, Annals of library science and documentation, V30, P78
Thijs B, 2013, PRO INT CONF SCI INF, P237
Thijs B, 2013, SCIENTOMETRICS, V96, P667, DOI 10.1007/s11192-012-0896-1
Zhang L, 2010, SCIENTOMETRICS, V82, P687, DOI 10.1007/s11192-010-0180-1
NR 19
TC 23
Z9 25
U1 1
U2 97
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2015
VL 105
IS 3
BP 1453
EP 1467
DI 10.1007/s11192-015-1641-3
PG 15
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA CW6TG
UT WOS:000365130100006
DA 2024-09-05
ER
PT J
AU Sharma, D
Mittal, R
Sekhar, R
Shah, PT
Renz, M
AF Sharma, Deepak
Mittal, Ruchi
Sekhar, Ravi
Shah, Pritesh
Renz, Matthias
TI A bibliometric analysis of cyber security and cyber forensics research
SO RESULTS IN CONTROL AND OPTIMIZATION
LA English
DT Article
DE Anomaly detection; Cyber security; Cyber forensics; Cyber attack;
Malware detection; Machine learning; Deep learning; Bibliometry
ID SOCIAL NETWORK ANALYSIS; TOURISM; JOURNALS; SCIENCE
AB Cybersecurity is one of the most important concerns associated with ever expanding internet based technologies, products, services and networks. If cybersecurity is prevention then cyber forensics is the cure. Both are equally important pillars of digital security. This paper presents an extensive bibliometric analysis of cybersecurity and cyberforensic research published in Web of Science during the past decade (2011-2021). The analysis included yearly publications, publication types and trends across different verticals such as publishing sources, organizations, researchers, countries and keywords. Full counting method was used for citation analysis, whereas fractional counting method was implemented to analyze co-citation, co-author collaborations as well as keyword co-occurrences across all these verticals. Furthermore, timeline and burst detection analyses were carried out to unravel significant topic trends and citations in the last decade. The study presents bibliometric results in terms of the authors, organizations, countries, keywords, sources and documents with the highest collaborative link strengths worldwide in the field of cybersecurity and forensics. Latest trends, under-investigated topics and future directions are also presented.
C1 [Sharma, Deepak; Renz, Matthias] Christian Albrechts Univ Kiel, Dept Comp Sci, D-24118 Kiel, Germany.
[Mittal, Ruchi] Ganga Inst Technol & Management, Dept Comp Sci, Bahadurgarh Jhajjar Rd Kablana, Jhajjar 124104, Haryana, India.
[Sekhar, Ravi; Shah, Pritesh] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune 412115, India.
C3 University of Kiel; Symbiosis International University; Symbiosis
Institute of Technology (SIT)
RP Shah, PT (corresponding author), Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune 412115, India.
EM deepak.btg@gmail.com; ruchi.mittal138@gmail.com;
ravi.sekhar@sitpune.edu.in; pritesh.ic@gmail.com;
mr@informatik.uni-kiel.de
RI dbs, hunzla/HZL-0324-2023; Shah, Pritesh/Q-7269-2016
OI Shah, Pritesh/0000-0002-7504-2323
CR Aafer Y, 2013, L N INST COMP SCI SO, V127, P86
Ahmed U., 2015, J Reliab Intell Environ, V1, P123
Arp D, 2014, 21ST ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2014), DOI 10.14722/ndss.2014.23247
Azambuja AJGd, 2021, Res Soc Dev, P1
Azmoodeh A, 2019, Handbook of big data and IoT security, P1
Baggio R, 2008, P EUTO, P1
Baldwin J, 2018, ADV INFORM SECUR, V70, P311, DOI 10.1007/978-3-319-73951-9_16
Benckendorff P, 2013, ANN TOURISM RES, V43, P121, DOI 10.1016/j.annals.2013.04.005
Benckendorff P, 2009, J HOSP TOUR MANAG, V16, P1, DOI 10.1375/jhtm.16.1.1
Bhuyan MH, 2014, IEEE COMMUN SURV TUT, V16, P303, DOI 10.1109/SURV.2013.052213.00046
Bolbot Victor, 2022, International Journal of Critical Infrastructure Protection, DOI 10.1016/j.ijcip.2022.100571
Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3
Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
Chabrow E., 2015, Data Breach Today, V1
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Chatfield K, 2014, Arxiv, DOI arXiv:1405.3531
Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100
Cheng CK, 2011, TOURISM MANAGE, V32, P53, DOI 10.1016/j.tourman.2009.11.004
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Cojocaru I, 2019, Central and Eastern European eDem and eGov days, V335, P151
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Elango B, 2020, P INT C RECENT ADV C
Erfani SM, 2016, PATTERN RECOGN, V58, P121, DOI 10.1016/j.patcog.2016.03.028
Gill J, 2018, ADV INFORM SECUR, V70, P297, DOI 10.1007/978-3-319-73951-9_15
Gokhale Angelina, 2020, Science & Technology Libraries, V39, P96, DOI 10.1080/0194262X.2020.1714529
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622
Gou XQ, 2022, SAFETY SCI, V147, DOI 10.1016/j.ssci.2021.105617
Goyal Reema, 2021, 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), P1570, DOI 10.1109/ICAC3N53548.2021.9725660
Grooby S, 2019, Handbook of big data and IoT security, P25
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Hu C, 2008, INT J HOSP MANAG, V27, P302, DOI 10.1016/j.ijhm.2007.01.002
Ismayilova N, 2015, Comput Commun, V616, P1
Jalali MS, 2019, J MED INTERNET RES, V21, DOI 10.2196/12644
Jamal T, 2008, TOURISM MANAGE, V29, P66, DOI 10.1016/j.tourman.2007.04.001
Jiang YW, 2019, CURR ISSUES TOUR, V22, P1925, DOI 10.1080/13683500.2017.1408574
Khan S, 2018, MECH SYST SIGNAL PR, V107, P241, DOI 10.1016/j.ymssp.2017.11.024
Kingma D. P., 2014, INT C LEARNING REPRE
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Kusuma Mandahadi, 2021, 2021 IEEE Mysore Sub Section International Conference (MysuruCon), P13, DOI 10.1109/MysuruCon52639.2021.9641641
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Mahmud M, 2021, Libr Philos Pract, P1
Makawana PR, 2018, LECT NOTE NETW SYST, V19, P213, DOI 10.1007/978-981-10-5523-2_20
McKercher B, 2008, TOURISM MANAGE, V29, P1226, DOI 10.1016/j.tourman.2008.03.003
McKercher B, 2006, TOURISM MANAGE, V27, P1235, DOI 10.1016/j.tourman.2005.06.008
Miskiewicz R, 2020, MARK MANAG INNOV, P371, DOI 10.21272/mmi.2020.3-27
Mohammadi S, 2019, J INF SECUR APPL, V44, P80, DOI 10.1016/j.jisa.2018.11.007
Nakhodchi S, 2020, Security of cyber-physical systems: Vulnerability and impact, P203
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Pei KX, 2017, PROCEEDINGS OF THE TWENTY-SIXTH ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (SOSP '17), P1, DOI 10.1145/3132747.3132785
Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006
Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732
Pimentel MAF, 2014, SIGNAL PROCESS, V99, P215, DOI 10.1016/j.sigpro.2013.12.026
Prasad NR, 2009, CMC-COMPUT MATER CON, V14, P1, DOI 10.1145/1541880.1541882
Rahim N, 2021, Cybersecurity threats with new perspectives
Ramim M, 2006, J CASES INF TECHNOL, V8, P24, DOI 10.4018/jcit.2006100103
Rieck K, 2011, J COMPUT SECUR, V19, P639, DOI 10.3233/JCS-2010-0410
Rouzbahani HM, 2020, Advances in Information Security, V79, P129, DOI DOI 10.1007/978-3-030-38181-37
Santos I, 2013, INFORM SCIENCES, V231, P64, DOI 10.1016/j.ins.2011.08.020
Schlegl T, 2017, LECT NOTES COMPUT SC, V10265, P146, DOI 10.1007/978-3-319-59050-9_12
SCOTT N., 2008, Network Analysis and Tourism: From Theory to Practice
Sekhar R, 2021, APPL SYST INNOV, V4, DOI 10.3390/asi4040086
Shabtai A, 2012, J INTELL INF SYST, V38, P161, DOI 10.1007/s10844-010-0148-x
Sharafaldin I, 2018, ICISSP: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, P108, DOI 10.5220/0006639801080116
Sharma D, 2021, Metaheuristic algorithms in industry 4.0, P1
Shone N, 2018, IEEE T EM TOP COMP I, V2, P41, DOI 10.1109/TETCI.2017.2772792
Shukla G., 2020, Eur J Mol Clin Med, V7, P2567
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
Tavallaee M., 2009, P IEEE S COMP INT SE, P1
Thakur Hardik, 2022, AIP Conference Proceedings, V2519, DOI 10.1063/5.0112569
Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299
van Raan AFJ, 2005, MEAS-INTERDISCIP RES, V3, P50, DOI 10.1207/s15366359mea0301_7
White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W
Wu DJ, 2012, ASIA JT CONF INF SEC, P62, DOI 10.1109/AsiaJCIS.2012.18
Yarovenko HM, 2022, Dynamic and bibliometric analysis of terms identifying the combating financial and cyber fraud system
Ye Q, 2012, TOUR MANAG PERSPECT, V2-3, P55, DOI 10.1016/j.tmp.2012.03.002
Ying TY, 2012, J HOSP TOUR RES, V36, P450, DOI 10.1177/1096348011400745
Zhou YJ, 2012, P IEEE S SECUR PRIV, P95, DOI 10.1109/SP.2012.16
Zou S, 2012, Proceedings of the 10th international conference on Mobile systems, applications, and services, P281, DOI 10.1145/2307636.2307663
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 79
TC 4
Z9 4
U1 2
U2 2
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
EI 2666-7207
J9 RESULTS CONTROL OPTI
JI Results Control Optim.
PD MAR
PY 2023
VL 10
AR 100204
DI 10.1016/j.rico.2023.100204
PG 32
WC Mathematics, Applied
WE Emerging Sources Citation Index (ESCI)
SC Mathematics
GA OR3Z4
UT WOS:001208974200005
OA gold
DA 2024-09-05
ER
PT J
AU de Winter, J
AF de Winter, Joost
TI Can ChatGPT be used to predict citation counts, readership, and social
media interaction? An exploration among 2222 scientific abstracts
SO SCIENTOMETRICS
LA English
DT Article
DE Citation prediction; Scientometrics; Altmetrics; ChatGPT; GPT-4;
Scientific abstracts; Artificial intelligence
AB This study explores the potential of ChatGPT, a large language model, in scientometrics by assessing its ability to predict citation counts, Mendeley readers, and social media engagement. In this study, 2222 abstracts from PLOS ONE articles published during the initial months of 2022 were analyzed using ChatGPT-4, which used a set of 60 criteria to assess each abstract. Using a principal component analysis, three components were identified: Quality and Reliability, Accessibility and Understandability, and Novelty and Engagement. The Accessibility and Understandability of the abstracts correlated with higher Mendeley readership, while Novelty and Engagement and Accessibility and Understandability were linked to citation counts (Dimensions, Scopus, Google Scholar) and social media attention. Quality and Reliability showed minimal correlation with citation and altmetrics outcomes. Finally, it was found that the predictive correlations of ChatGPT-based assessments surpassed traditional readability metrics. The findings highlight the potential of large language models in scientometrics and possibly pave the way for AI-assisted peer review.
C1 [de Winter, Joost] Delft Univ Technol, Fac Mech Engn, Dept Cognit Robot, Delft, Netherlands.
C3 Delft University of Technology
RP de Winter, J (corresponding author), Delft Univ Technol, Fac Mech Engn, Dept Cognit Robot, Delft, Netherlands.
EM j.c.f.dewinter@tudelft.nl
OI de Winter, Joost/0000-0002-1281-8200
CR Aiyappa R., 2023, P 3 WORKSH TRUSTW NA, P47, DOI [10.18653/v1/2023.trustnlp-1.5, DOI 10.18653/V1/2023.TRUSTNLP-1.5]
Akcan D, 2013, SCIENTOMETRICS, V96, P297, DOI 10.1007/s11192-013-0949-0
Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128
Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575
Altmetric, 2023, ALTMETRIC
[Anonymous], 1967, Report No. AMRL-TR-66-220
Ante L, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101252
Antonakis J, 2014, LEADERSHIP QUART, V25, P152, DOI 10.1016/j.leaqua.2013.10.014
Baldwin C, 2002, J PROF NURS, V18, P8, DOI 10.1053/jpnu.2002.30896
Bornmann L, 2015, SCIENTOMETRICS, V103, P1123, DOI 10.1007/s11192-015-1565-y
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Bubeck S., 2023, ARXIV
Caon M, 2020, PHYS ENG SCI MED, V43, P1145, DOI 10.1007/s13246-020-00941-9
CATTELL RB, 1966, MULTIVAR BEHAV RES, V1, P245, DOI 10.1207/s15327906mbr0102_10
Cohen J., 1977, STAT POWER ANAL BEHA
COLEMAN M, 1975, J APPL PSYCHOL, V60, P283, DOI 10.1037/h0076540
Croux C, 2010, STAT METHOD APPL-GER, V19, P497, DOI 10.1007/s10260-010-0142-z
de Winter JCF, 2015, SCIENTOMETRICS, V102, P1773, DOI 10.1007/s11192-014-1445-x
de Winter JCF, 2023, INT J ARTIF INTELL E, DOI 10.1007/s40593-023-00372-z
de Winter JCF, 2016, PSYCHOL METHODS, V21, P273, DOI 10.1037/met0000079
de Winter JCF, 2015, PEERJ, V3, DOI 10.7717/peerj.733
Dimensions, 2023, DIMENSIONS
Dowling M, 2018, ECON LETT, V173, P100, DOI 10.1016/j.econlet.2018.09.023
Ferguson CJ, 2009, PROF PSYCHOL-RES PR, V40, P532, DOI 10.1037/a0015808
Flesch R, 1948, J APPL PSYCHOL, V32, P221, DOI 10.1037/h0057532
Gignac GE, 2016, PERS INDIV DIFFER, V102, P74, DOI 10.1016/j.paid.2016.06.069
Gunning R., 1952, TECHNIQUE CLEAR WRIT, P36
HANCOCK PA, IN PRESS, DOI DOI 10.1080/1463922X.2022.2157066
Hardwicke TE, 2021, ADV METH PRACT PSYCH, V4, DOI 10.1177/25152459211040837
Hartley J, 2016, SCIENTOMETRICS, V107, P1523, DOI 10.1007/s11192-016-1920-7
Harzing A.W., 2007, Publish or perish
Haustein Stefanie, 2015, PLoS One, V10, pe0120495, DOI 10.1371/journal.pone.0120495
Haustein S, 2014, SCIENTOMETRICS, V101, P1145, DOI 10.1007/s11192-013-1221-3
Hu HT, 2021, ONLINE INFORM REV, V45, P1290, DOI 10.1108/OIR-05-2020-0188
Huang F, 2023, COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, P294, DOI 10.1145/3543873.3587368
Ioannidis JPA, 2019, AM STAT, V73, P20, DOI 10.1080/00031305.2018.1447512
Ipeirotis P., 2023, READABILITY METRICS
Jimenez S, 2020, SCIENTOMETRICS, V125, P3187, DOI 10.1007/s11192-020-03526-1
Katz DM, 2024, PHILOS T R SOC A, V382, DOI 10.1098/rsta.2023.0254
Kincaid J.P., 1975, Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel
Kousha K., 2022, ARXIV, DOI DOI 10.48550/ARXIV.2212.06574
Liu XY, 2023, SCIENTOMETRICS, V128, P3107, DOI 10.1007/s11192-023-04679-5
Lu C, 2019, J INFORMETR, V13, P817, DOI 10.1016/j.joi.2019.07.004
Ma AQ, 2021, SCIENTOMETRICS, V126, P6803, DOI 10.1007/s11192-021-04033-7
MCLAUGHLIN GH, 1969, J READING, V12, P639
Mendeley, 2023, MENDELEY
Murray R, 2008, J FURTH HIGHER EDUC, V32, P119, DOI 10.1080/03098770701851854
Nori H., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2303.13375
OpenAI, 2023, GPT-4 technical report
OpenAI, 2023, TEXT COMPL
OpenAI, 2022, INTR CHATGPT
Pei ZR, 2023, NAT COMMUN, V14, DOI 10.1038/s41467-022-35766-5
Peterson R.A., 2000, MARKET LETT, V11, P261, DOI [10.1023/A:1008191211004, DOI 10.1023/A:1008191211004]
Pulido CM, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0203117
Saeed-Ul Hassan, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2019.105383
Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x
Sand-Jensen K, 2007, OIKOS, V116, P723, DOI 10.1111/j.2007.0030-1299.15674.x
Scopus, 2023, SCOPUS
Sienkiewicz J, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160140
Sommer V, 2017, APPL ECON LETT, V24, P809, DOI 10.1080/13504851.2016.1229410
Tabone W, 2023, ROY SOC OPEN SCI, V10, DOI 10.1098/rsos.231053
Tahamtan Iman, 2016, Scientometrics, V107, P1195, DOI 10.1007/s11192-016-1889-2
Thelwall M, 2018, SCIENTOMETRICS, V115, P1231, DOI 10.1007/s11192-018-2715-9
Wang S, 2022, SCIENTOMETRICS, V127, P4697, DOI 10.1007/s11192-022-04427-1
Warren HR, 2017, JAMA-J AM MED ASSOC, V317, P131, DOI 10.1001/jama.2016.18346
Weijters B, 2012, J MARKETING RES, V49, P737, DOI 10.1509/jmr.11.0368
Xie J, 2019, SCIENTOMETRICS, V118, P763, DOI 10.1007/s11192-019-03015-0
Yang X., 2023, ARXIV, DOI [10.48550/arXiv.2302.08081, DOI 10.48550/ARXIV.2302.08081]
Zhang B., 2022, ARXIV, DOI DOI 10.48550/ARXIV.2212.14548
Zhong Q., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2302.10198
NR 70
TC 3
Z9 3
U1 55
U2 61
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD APR
PY 2024
VL 129
IS 4
BP 2469
EP 2487
DI 10.1007/s11192-024-04939-y
EA FEB 2024
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA QV6H9
UT WOS:001162583700002
OA hybrid
DA 2024-09-05
ER
PT J
AU Hove, D
Olugbara, O
Singh, A
AF Hove, Dickson
Olugbara, Oludayo
Singh, Alveen
TI Bibliometric Analysis of Recent Trends in Machine Learning for Online
Credit Card Fraud Detection
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Bibliometric analysis; Credit card; Deep learning; Ensemble learning;
Machine; learning; Online fraud.; transaction. Online Credit Card Fraud
(OCCF) occurs exclusively
AB Online credit card fraud (OCCF) is the malicious act of using credit card details belonging to another person to complete fraudulent transactions over the Internet. Naturally, masses of researchers have engaged in the imperative search for effective solutions across a wide range of disciplines. The result is a rich tapestry of methodologies, models, frameworks, and inventions exhibiting dramatic spread and growth. However, this also results in an unorganized research domain. In this state, a bibliometric analysis is a useful technique for establishing a reconciled snapshot of the OCCF research domain. This paper has particular interest in determining the intellectual structure of the knowledge of machine learning, deep learning, and ensemble learning models for early detection of OCCF. This bibliometric analysis is conducted using 524 publications between 2013 and 2022 extracted from the SCOPUS core collection database. Microsoft Excel, VOSViewer, and Biblioshiny software tools were used for data analysis. The findings indicate that ensemble learning models are trending and the three most authoritative authors have been exposed in this study. There is a sharp rise in global publications annually and India has the most publications with the most impactful authors. Five broad clusters of knowledge are imbalanced data, anomaly detection, machine learning, decision trees, and ensemble learning. Intellectual collaboration across regions is strong amongst Asia, Europe, and North America with weak associations between Africa and South America. This is the first bibliometric analysis in the domain of OCCF detection to the best of the author's ability. The findings significantly contribute to the application of OCCF detection through the creation of intellectual patterns in existing literature. The results bring about synthesis within a domain of research that is currently disorganized. This in turn helps researchers to identify research gaps, and areas for further research and formulate a curriculum.
C1 [Hove, Dickson; Olugbara, Oludayo; Singh, Alveen] Durban Univ Technol, MICT SETA Ctr Excellence 4IR, Dept Informat Technol, Durban, South Africa.
C3 Durban University of Technology
RP Hove, D (corresponding author), Durban Univ Technol, MICT SETA Ctr Excellence 4IR, Dept Informat Technol, Durban, South Africa.
EM hovedickson@gmail.com
CR Abakarim Y, 2018, INT CONF INTELL SYS, DOI 10.1145/3289402.3289530
Al Rubaie EMH, 2021, INT J NONLINEAR ANAL, V12, P1240, DOI 10.22075/IJNAA.2021.5228
Alarfaj FK, 2022, IEEE ACCESS, V10, P39700, DOI 10.1109/ACCESS.2022.3166891
Ali I, 2020, IEEE 23 INT MULT C I
[Anonymous], 2013, Using OpenRefine
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Ata O, 2020, TEH VJESN, V27, P618, DOI 10.17559/TV-20180427091048
Bayram B, 2020, 19 IEEE INT C MACH L
Benchaji I, 2021, J ADV INFORM TECHNOL, V12, P113, DOI 10.12720/jait.12.2.113-118
Chen YX, 2022, CHEMOSPHERE, V297, DOI 10.1016/j.chemosphere.2022.133932
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Crocetti E, 2016, EMERG ADULTHOOD, V4, P3, DOI 10.1177/2167696815617076
Dhankhad S, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), P122, DOI 10.1109/IRI.2018.00025
Divya P., 2021, ICCCE 2020. Proceedings of the 3rd International Conference on Communications and Cyber Physical Engineering. Lecture Notes in Electrical Engineering (LNEE 698), P243, DOI 10.1007/978-981-15-7961-5_24
Dong XB, 2020, FRONT COMPUT SCI-CHI, V14, P241, DOI 10.1007/s11704-019-8208-z
Esna-Ashari M, 2022, Journal of Mathematics and Modeling in Finance, V2, P167
Feng H, 2021, 2 INT C COMP DAT SCI
Fiore U, 2019, INFORM SCIENCES, V479, P448, DOI 10.1016/j.ins.2017.12.030
Forough J, 2021, APPL SOFT COMPUT, V99, DOI 10.1016/j.asoc.2020.106883
González S, 2020, INFORM FUSION, V64, P205, DOI 10.1016/j.inffus.2020.07.007
Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228
Gupta K, 2022, INT C APPL ART INT C
Hallinger P, 2019, REV EDUC RES, V89, P335, DOI 10.3102/0034654319830380
Karthik VSS, 2022, ARAB J SCI ENG, V47, P1987, DOI 10.1007/s13369-021-06147-9
Laveti RN, 2021, 2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), DOI 10.1109/I2CT51068.2021.9417896
Maurya A, 2022, IEEE INT C CYB COMP
Nguyen VB, 2022, arXiv
Padhi B. K., 2020, Advances in Intelligent Computing and Communication. Proceedings of ICAC 2019. Lecture Notes in Networks and Systems (LNNS 109), P413, DOI 10.1007/978-981-15-2774-6_49
Prabha N., 2022, 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), P131, DOI 10.1109/ICAIS53314.2022.9742878
Rao GM, 2022, INT J COMPUT SCI ENG, V25, P166, DOI 10.1504/IJCSE.2022.122212
Riehmann P, 2005, INFOVIS 05: IEEE SYMPOSIUM ON INFORMATION VISUALIZATION, PROCEEDINGS, P233, DOI 10.1109/INFVIS.2005.1532152
Sadgali I, 2019, 1 INT C SMART SYST D
Shaji A, 2021, INT C UB COMM NETW C
Showalter S, 2019, arXiv
Shukla S, 2020, IEEE 17 IND COUNC IN
Singh A, 2022, J EXP THEOR ARTIF IN, V34, P571, DOI 10.1080/0952813X.2021.1907795
Stellwall M., 2019, Oracle AI & Data Science Blog
Thennakoon A, 2019, 2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), P488, DOI [10.1109/CONFLUENCE.2019.8776942, 10.1109/confluence.2019.8776942]
Tomar P, 2021, 5 C INF COMM TECHN C
Trisanto D., 2021, INT J INTELL ENG SYS, V14, P350, DOI DOI 10.22266/IJIES2021.0831.31
Yang Y, 2022, 14 INT C COMP RES DE
Yuan M, 2022, 7 INT C MACH LEARN T
Zadafiya N, 2022, 2022 4 INT C SMART S
Zhang LL, 2022, ENERGY REP, V8, P14072, DOI 10.1016/j.egyr.2022.10.347
Zhang ZH, 2020, IEEE ACCESS, V8, P25210, DOI 10.1109/ACCESS.2020.2970614
NR 45
TC 0
Z9 0
U1 2
U2 2
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD JAN-APR
PY 2024
VL 13
IS 1
BP 43
EP 57
DI 10.5530/jscires.13.1.4
PG 15
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA TZ7J6
UT WOS:001245143700004
OA hybrid
DA 2024-09-05
ER
PT C
AU Terziyan, V
Kaikova, O
Golovianko, M
Vitko, O
AF Terziyan, Vagan
Kaikova, Olena
Golovianko, Mariia
Vitko, Oleksandra
BE Longo, F
Shen, W
Padovano, A
TI Can ChatGPT Challenge the Scientific Impact of Published Research,
Particularly in the Context of Industry 4.0 and Smart Manufacturing?
SO 5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING,
ISM 2023
SE Procedia Computer Science
LA English
DT Proceedings Paper
CT 5th International Conference on Industry 4.0 and Smart Manufacturing
(ISM)
CY NOV 22-24, 2023
CL Lisbon, PORTUGAL
DE Artificial Intelligence; ChatGPT; Industry 4.0; Smart Manufacturing;
academic impact
AB The released ChatGPT as a powerful language model is capable of assisting with a wide range of tasks, including answering questions, summarizing, paraphrasing, proofreading, classifying, and integrating texts. In this study, we tested ChatGPT capability to assist researchers in evaluating the academic articles' contribution. We suggest a dialogue schema in which ChatGPT is asked to answer research questions from the target article and then to compare its own answers with the answers from the article. Finally, ChatGPT is asked to integrate both solutions coherently. We experimented with Proceedings of ISM-2022 Conference on Industry 4.0 and Smart Manufacturing, utilizing explicit research questions. The chat context enabled assessing studied articles' contributions to Industry 4.0, uncovering advancements beyond the state-of-the-art. However, ChatGPT demonstrates limitations in content understanding and contribution evaluation. We conclude that while it collaborates with humans on academic tasks, human guidance remains essential, while ChatGPT's assistance efficiently complements traditional academic processes.
C1 [Terziyan, Vagan; Kaikova, Olena] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla 40014, Finland.
[Golovianko, Mariia; Vitko, Oleksandra] Kharkiv Natl Univ Radio Elect, Dept Artificial Intelligence, UA-61166 Kharkiv, Ukraine.
C3 University of Jyvaskyla; Ministry of Education & Science of Ukraine;
Kharkiv National University of Radio Electronics
RP Terziyan, V (corresponding author), Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla 40014, Finland.
EM vagan.terziyan@jyu.fi
RI Terziyan, Vagan/C-4899-2018
OI Terziyan, Vagan/0000-0001-7732-2962; Kaikova, Olena/0000-0002-8427-6236
CR Ali Omar, 2023, Procedia Comput Sci, V217, P205, DOI 10.1016/j.procs.2022.12.216
Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7
Deng J., 2023, Frontiers in Computing and Intelligent Systems, V2, P81, DOI [10.54097/fcis.v2i2.4465, DOI 10.54097/FCIS.V2I2.4465]
Dunn P.K., 2021, Scientific Research and Methodology: An introduction to quantitative research in science and health
Golovianko Mariia, 2023, Procedia Computer Science, P102, DOI 10.1016/j.procs.2022.12.206
Lin H, 2020, LANGUAGE MODELS ARE, V33, P1877
Lin T., 2022, AI Open, V3, P111, DOI [DOI 10.1016/J.AIOPEN.2022.10.001, 10.1016/j.aiopen.2022.10.001]
Longo F., 2023, PROCEDIA COMPUTER SC, V217, P1
Opara E., 2023, Glob. Acad. J. Human. Soc. Sci, V5, P33, DOI DOI 10.36348/GAJHSS.2023.V05I02.001
OpenAI, 2021, ChatGPT
Radford A., 2019, LANGUAGE MODELS ARE
Rudolph J., 2023, Journal of Applied Learning and Teaching, V6, P342, DOI [10.37074/jalt.2023.6.1.9, DOI 10.37074/JALT.2023.6.1.23, DOI 10.37074/JALT.2023.6.1.9]
Terziyan Vagan, 2023, Procedia Computer Science, P495, DOI 10.1016/j.procs.2022.12.245
Thelwall M, 2020, QUANT SCI STUD, V1, P730, DOI 10.1162/qss_a_00041
Trevino-Elizondo Bertha Leticia, 2023, Procedia Computer Science, P876, DOI 10.1016/j.procs.2022.12.284
Vaswani A, 2017, ARXIV
Wooldridge M., 2022, INTELL COMPUT, V2022, DOI [10.34133/2022/9847630, DOI 10.34133/2022/9847630]
Zhou J, 2024, FRONT INFORM TECH EL, V25, P6, DOI 10.1631/FITEE.2300089
NR 18
TC 0
Z9 0
U1 1
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1877-0509
J9 PROCEDIA COMPUT SCI
PY 2024
VL 232
BP 2540
EP 2550
DI 10.1016/j.procs.2024.02.072
PG 11
WC Computer Science, Theory & Methods; Engineering, Industrial;
Engineering, Manufacturing
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BW7UP
UT WOS:001196800602057
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Loi, CK
Lim, JMH
Suki, NM
Lee, HA
AF Loi, Chek-Kim
Lim, Jason Miin-Hwa
Suki, Norazah Mohd
Lee, Hock -Ann
TI Exploring University Students' Online Learning Readiness: A Mixed
Methods Study of Forced Online Learning
SO JOURNAL OF LANGUAGE AND EDUCATION
LA English
DT Article
DE institutional support; online learning; social influence; students'
readiness; technology accessibility
ID DENTAL EDUCATION; USER ACCEPTANCE; SAUDI-ARABIA; TECHNOLOGY;
SATISFACTION; ENVIRONMENTS; PERCEPTIONS; ASSESSMENTS; SUPPORT
AB Background: Despite the advancement achieved in previous research into online learning, few studies have used both quantitative and qualitative data to examine how students' readiness to learn online is affected by three different external factors, comprising (i) the degrees to which technology is available to students, (ii) the support provided by the institutions of learning, and (iii) the social influence affecting the students engaged in forced online learning in a pandemic situation. Purpose: To fill this research gap, this study explored university students' forced online learning readiness in relation to technological accessibility, institutional support and social influence during a pandemic, in an attempt to furnish insights into how educators can maximize the benefits of adopting online learning methods. Method: A mixed methods research design was employed in this study. Quantitative data, elicited via self-administered questionnaires completed by 211 participants, was analyzed using the frequencies, means, standard deviations and Pearson correlation analysis involving the Statistical Package for the Social Sciences (SPSS) software version 27. Qualitative data, elicited via 11 open-ended questions posed to 41 students through in-depth interviews, was then studied using a thematic analysis of the participants' feedback concerning the three constructs in online learning. Results: Our quantitative analysis showed that institutional support had the strongest positive correlation with online learning readiness, and this was followed by technology accessibility and social influence in relation to students' readiness to learn online. Qualitative findings further indicated that students were largely concerned about Internet accessibility and the setting where their roles were restricted to being mere listeners in online sessions. Apart from being apprehensive about excessive online assignments, students also acknowledged that their online interactions were influenced by their friends and family members, and they would prefer practical work that could inspire them to reflect and engage actively with the course material given during the pandemic. Conclusion: While lecturers can make online classes more interactive and discussion -generative, university administrators need to aptly facilitate their institution's transition to the forced online learning mode, moderate social influence, improve the learning management system, and provide training to teachers and students on the use of emerging technology.
C1 [Loi, Chek-Kim; Lee, Hock -Ann] Univ Malaysia Sabah, Kota Kinabalu, Malaysia.
[Lim, Jason Miin-Hwa] Jiangsu Univ Technol, Zhenjiang, Peoples R China.
[Suki, Norazah Mohd] Univ Utara Malaysia, Sintok, Malaysia.
C3 Universiti Malaysia Sabah; Jiangsu University of Technology; Universiti
Utara Malaysia
RP Loi, CK (corresponding author), Univ Malaysia Sabah, Kota Kinabalu, Malaysia.; Lim, JMH (corresponding author), Jiangsu Univ Technol, Zhenjiang, Peoples R China.
EM lck734@yahoo.com; drjasonlim@gmail.com
RI MOHD SUKI, NORAZAH/C-9312-2016
OI MOHD SUKI, NORAZAH/0000-0002-8422-2449
CR Adnan M., 2020, J. Pedagogical Sociology Psychol, V2, P45, DOI [DOI 10.33902/JPSP.2020261309, 10.33902/jpsp.2020261309]
Ahmad N., 2020, Journal of Computing Research and Innovation (JCRINN), V5, P54, DOI [10.24191/jcrinn.v5i2.134, DOI 10.24191/JCRINN.V5I2.134]
Al-Ammary Jaflah H., 2014, International Journal of Information and Education Technology, V4, P208, DOI 10.7763/IJIET.2014.V4.400
Al-Shehri AM, 2010, J FAM COMMUNITY MED, V17, P147, DOI 10.4103/1319-1683.74333
Albrecht JR, 2018, J EXP EDUC, V86, P1, DOI 10.1080/00220973.2017.1380593
Alkis N., 2014, ACM INT C P SERIES, P55, DOI DOI 10.1145/2662253.2662308
Allen I.E., 2003, Sizing the opportunity: The quality and extent of online education in the United States, 2002 and 2003
Almaiah MA, 2020, EDUC INF TECHNOL, V25, P5261, DOI 10.1007/s10639-020-10219-y
Azlan CA, 2020, PHYS MEDICA, V80, P10, DOI 10.1016/j.ejmp.2020.10.002
Baber H, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100503
Betlej P., 2013, Studia Ekonomiczne, V152, P9
Bowen J., 2012, Teaching naked: How moving technology out of your classromm will improve student learning, VFirst
Britt Rebecca, 2006, Radiol Technol, V77, P183
Buzzetto-More N., 2013, Issues in Informing Science and Information Technology, V10, P81
Cao WJ, 2020, PSYCHIAT RES, V287, DOI 10.1016/j.psychres.2020.112934
Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
de Luca K, 2021, CHIROPR MAN THER, V29, DOI 10.1186/s12998-021-00364-7
Dhawan Shivangi, 2020, Journal of Educational Technology Systems, V49, P5, DOI 10.1177/0047239520934018
Dogruer N, 2011, PROCD SOC BEHV, V28, DOI 10.1016/j.sbspro.2011.11.115
Elkaseh A M., 2015, IPASJ International Journal of Information Technology (IIJIT), V3, P1
Farahat T, 2012, PROCD SOC BEHV, V64, P95, DOI 10.1016/j.sbspro.2012.11.012
Favale T, 2020, COMPUT NETW, V176, DOI 10.1016/j.comnet.2020.107290
Ferri F, 2020, SOCIETIES, V10, DOI 10.3390/soc10040086
Fitzpatrick T., 2012, US-China Education Review, P789
Gherghel C, 2023, COMPUT EDUC, V200, DOI 10.1016/j.compedu.2023.104795
Golladay RM, 2000, J COMPUT INFORM SYST, V40, P69
Graham C.R., 2008, HDB RES ED COMMUNICA, P269
Greenhow Christine, 2011, International Journal of Cyber Behavior, Psychology and Learning, V1, P36, DOI 10.4018/ijcbpl.2011010104
Hai L.C., 2015, Asian Social Science, V11
Hara N., 2000, Information Communication & Society, V3, P557, DOI 10.1080/13691180010002297
Hodges C. B., 2020, DIFFERENCE EMERGENCY
Holden H, 2011, J RES TECHNOL EDUC, V43, P343
Hoss T, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.642616
Jaffar MN, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.813679
Khan S, 2019, EDUC INF TECHNOL, V24, P661, DOI 10.1007/s10639-018-9797-0
Kuriakose RB, 2016, PROCD SOC BEHV, V228, P78, DOI 10.1016/j.sbspro.2016.07.012
Laugasson E, 2016, LECT NOTES COMPUT SC, V9753, P695, DOI 10.1007/978-3-319-39483-1_63
Lee J, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00286-7
Lee SJ, 2011, INTERNET HIGH EDUC, V14, P158, DOI 10.1016/j.iheduc.2011.04.001
Lim J, 2023, EDUC INF TECHNOL, V28, P4109, DOI 10.1007/s10639-022-11241-y
Lim YJ, 2016, PROC ECON FINANC, V35, P401, DOI 10.1016/S2212-5671(16)00050-2
Lind D.A., 2010, STAT TECHNIQUES BUSI, V14th
Linjawi AI, 2012, EUR J DENT EDUC, V16, pE3, DOI 10.1111/j.1600-0579.2010.00662.x
Linjawi AI, 2018, ADV MED EDUC PRACT, V9, P855, DOI 10.2147/AMEP.S175395
Loyd B. H., 1984, AEDS Journal, V18, P67
Maheshwari G, 2021, EDUC INF TECHNOL, V26, P6629, DOI 10.1007/s10639-021-10465-8
Mailizar AlmanthariA., 2020, EURASIA J MATH SCI T, V16, pem1860, DOI DOI 10.29333/EJMSTE/8240
Mills G.E., 2019, ED RES COMPETENCIES
Mukhtar K, 2020, PAK J MED SCI, V36, pS27, DOI 10.12669/pjms.36.COVID19-S4.2785
Murphy MPA, 2020, CONTEMP SECUR POL, V41, P492, DOI 10.1080/13523260.2020.1761749
Nunnally J.C., 1978, Psychometric Theory, Vsecond
Odriozola-González P, 2020, PSYCHIAT RES, V290, DOI 10.1016/j.psychres.2020.113108
Patricia Aguilera-Hermida A, 2020, Int J Educ Res Open, V1, P100011, DOI 10.1016/j.ijedro.2020.100011
Pedro NS, 2020, ONLINE LEARN, V24, P50, DOI 10.24059/olj.v24i3.2309
Piccoli G, 2001, MIS QUART, V25, P401, DOI 10.2307/3250989
Reyes-Millán M, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e22070
Ryan S., 2001, AM AGENT BROKER, V73, P54
Saafin S., 2008, Learning and Teaching in Higher Education: Gulf Perspectives, V5, P1, DOI DOI 10.18538/LTHE.V5.N2.02
Salloum S. A., 2018, Investigating students' acceptance of e-learning system in higher educational environments in the UAE: Applying the extended Technology Acceptance Model (TAM)
Scherer R, 2021, COMPUT HUM BEHAV, V118, DOI 10.1016/j.chb.2020.106675
Singh V, 2019, AM J DISTANCE EDUC, V33, P289, DOI 10.1080/08923647.2019.1663082
Tabang M. P., 2022, International Journal of Humanities and Education Development (IJHED), V4, P237, DOI [10.22161/jhed.4.3.28, DOI 10.22161/JHED.4.3.28]
Tuntirojanawong S., 2013, Journal of Learning in Higher Education, V9, P59
Veletsianos G, 2012, INT REV RES OPEN DIS, V13, P144, DOI 10.19173/irrodl.v13i1.1078
Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540
Webb A, 2021, WORLD J SCI TECHNOL, V18, P1, DOI 10.1108/WJSTSD-11-2020-0090
Yukselturk E, 2008, EDUC TECHNOL SOC, V11, P51
NR 68
TC 0
Z9 0
U1 1
U2 1
PU NATL RESEARCH UNIV HIGHER SCH ECONOMICS
PI MOSCOW
PA SHABOLOVKA, 26, MOSCOW, 119049, RUSSIA
EI 2411-7390
J9 J LANG EDUC
JI J. Lang. Educ.
PY 2024
VL 10
IS 1
BP 49
EP 67
DI 10.17323/jle.2024.16016
PG 19
WC Education & Educational Research; Linguistics
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research; Linguistics
GA RN1Q4
UT WOS:001228253300009
OA gold
DA 2024-09-05
ER
PT J
AU Baminiwatta, A
AF Baminiwatta, Anuradha
TI Global trends of machine learning applications in psychiatric research
over 30 years: A bibliometric analysis
SO ASIAN JOURNAL OF PSYCHIATRY
LA English
DT Article
DE Machine learning; Artificial intelligence; Psychiatry; Mental health;
Trends; Bibliometrics
ID BIOMARKERS; DISEASE
AB This bibliometric analysis aimed to identify active research areas and trends in machine learning applications within the psychiatric literature. An exponential growth in the number of related publications indexed in Web of Science during the last decade was noted. Document co-citation analysis revealed 10 clusters of knowledge, which included several mental health conditions, albeit with visible structural overlap. Several influential publications in the co-citation network were identified. Keyword trends illustrated a recent shift of focus from "psychotic" to "neurotic" conditions. Despite a relative lack of literature from the developing world, a recent rise in publications from Asian countries was observed.
Data Availability: Bibliographic data for this study were downloaded from the Web of Science. The search strategy is included in the Supplementary file.
C1 [Baminiwatta, Anuradha] Univ Kelaniya, Fac Med, Dept Psychiat, Colombo, Sri Lanka.
C3 University Kelaniya; University of Colombo
RP Baminiwatta, A (corresponding author), Univ Kelaniya, Fac Med, Dept Psychiat, Colombo, Sri Lanka.
EM baminiwatta@kln.ac.lk
CR Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007
Bzdok D, 2018, BIOL PSYCHIAT-COGN N, V3, P223, DOI 10.1016/j.bpsc.2017.11.007
Chekroud AM, 2016, LANCET PSYCHIAT, V3, P243, DOI 10.1016/S2215-0366(15)00471-X
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Dwyer DB, 2018, ANNU REV CLIN PSYCHO, V14, P91, DOI [10.1146/annurev-clinpsy-032816-045037, 10.1146/annurev-clinpsy-032816045037]
Koutsouleris N, 2009, ARCH GEN PSYCHIAT, V66, P700, DOI 10.1001/archgenpsychiatry.2009.62
Orrù G, 2012, NEUROSCI BIOBEHAV R, V36, P1140, DOI 10.1016/j.neubiorev.2012.01.004
Perera IR, 2020, ASIAN J PSYCHIATR, V49, DOI 10.1016/j.ajp.2020.101977
Shatte ABR, 2019, PSYCHOL MED, V49, P1426, DOI 10.1017/S0033291719000151
Woo CW, 2017, NAT NEUROSCI, V20, P365, DOI 10.1038/nn.4478
NR 10
TC 6
Z9 6
U1 5
U2 38
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1876-2018
EI 1876-2026
J9 ASIAN J PSYCHIATR
JI Asian J. Psychiatr.
PD MAR
PY 2022
VL 69
AR 102986
DI 10.1016/j.ajp.2021.102986
EA JAN 2022
PG 4
WC Psychiatry
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Psychiatry
GA YF1CN
UT WOS:000741553300003
PM 34990914
DA 2024-09-05
ER
PT C
AU Zhang, W
Zeng, XY
Ming, DY
Wang, JH
AF Zhang, Wei
Zeng, Xinyao
Ming, Daoyang
Wang, Jihan
GP IEEE
TI Research on the Construction of Evaluation Indicators of Students'
Computational Thinking Based on Spectral Clustering
SO 2022 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND EDUCATION
TECHNOLOGY (ICIET 2022)
LA English
DT Proceedings Paper
CT 10th International Conference on Information and Education Technology
(ICIET)
CY APR 09-11, 2022
CL Matsue, JAPAN
DE CT concepts; spectral clustering; evaluation indicators; CT practice; CT
perspective
AB The scientific and reasonable evaluation indicators that can fully reflect the various dimensions of students' computational thinking (CT) skills is the basis and premise of accurately evaluating students' CT skills, which is of great significance to the cultivation of students' CT skills. However, the current research on how to construct the evaluation indicators is still inadequate, and most of the research is put forward by the subjective experience of researchers, lacking objectivity and the universality of ability. In the paper, we comprehensively reviewed the concepts of CT in the theoretical literature of CT, aiming to construct the comprehensive and effective evaluation indicators of CT for students by clustering the keywords of CT concepts and extracting indicators. The validity of indicators is verified by qualitative analysis, quantitative analysis and expert evaluation. The results show that the evaluation indicators of CT constructed by spectral clustering technology are a more scientific, more comprehensive reflection of the ability dimensions of CT. It has unique advantages in constructing objective and comprehensive evaluation indicators and provides an evaluation basis for the evaluation practice of CT skills.
C1 [Zhang, Wei; Zeng, Xinyao; Ming, Daoyang; Wang, Jihan] Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan, Peoples R China.
C3 Central China Normal University
RP Zhang, W (corresponding author), Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan, Peoples R China.
EM zwccnu@mail.ccnu.edu.cn; zengxy_98@mails.ccuu.edu.cn;
mingdaoyang@qq.com; 2110401398@qq.com
FU National Natural Science Foundation of China [61977031]
FX This study was funded by the National Natural Science Foundation of
China [grant number 61977031].
CR Adams C., 2019, INTERACT LEARN ENVIR, V26, P386
Allsop Yasemin, 2019, International Journal of Child-Computer Interaction, V19, P30, DOI 10.1016/j.ijcci.2018.10.004
Angeli C, 2020, COMPUT HUM BEHAV, V105, DOI 10.1016/j.chb.2019.106185
Blaschko MB, 2008, PROC CVPR IEEE, P93, DOI 10.1109/CVPR.2008.4587353
Chen X., 2020, J DISTANCE ED
ISTE and CSTA, OP DEF COMP THINK K
Janani R, 2019, EXPERT SYST APPL, V134, P192, DOI 10.1016/j.eswa.2019.05.030
Kong SC, 2021, COMPUT HUM BEHAV, V122, DOI 10.1016/j.chb.2021.106836
Lee I, 2020, J SCI EDUC TECHNOL, V29, P9, DOI 10.1007/s10956-019-09802-x
Li Yeping, 2020, J STEM Educ Res, V3, P1, DOI 10.1007/s41979-020-00030-2
Liu JL, 2014, CH CRC DATA MIN KNOW, P177
Moreno-Leon J., 2015, RED-REV EDUC DISTANC, V46, P1, DOI 10.6018/red/46/10
Nie Y., THESIS QUFU NORMAL U
So HJ, 2020, ASIA-PAC EDUC RES, V29, P1, DOI 10.1007/s40299-019-00494-w
Wang L, 2009, LECT NOTES ARTIF INT, V5476, P134, DOI 10.1007/978-3-642-01307-2_15
Weintrop D, 2021, COMPUT SCI EDUC, V31, P113, DOI 10.1080/08993408.2021.1918380
Wing JM, 2006, COMMUN ACM, V49, P33, DOI 10.1145/1118178.1118215
Yagci M, 2019, EDUC INF TECHNOL, V24, P929, DOI 10.1007/s10639-018-9801-8
Yasar O, 2017, COMPUT SCI ENG, V19, P74, DOI 10.1109/MCSE.2017.3151241
YEON PARK JU, 2019, [JOURNAL OF The Korean Association of information Education, 정보교육학회논문지], V23, P207
Ying Liu, 2009, Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2009), P529, DOI 10.1109/FSKD.2009.792
Yu SX, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P313, DOI 10.1109/iccv.2003.1238361
Zhang L, 2017, CHIN CONTR CONF, P5629, DOI 10.23919/ChiCC.2017.8028251
NR 23
TC 0
Z9 0
U1 3
U2 8
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-8048-2
PY 2022
BP 104
EP 112
DI 10.1109/ICIET55102.2022.9779003
PG 9
WC Computer Science, Cybernetics; Computer Science, Information Systems;
Computer Science, Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BT5WU
UT WOS:000839122100021
DA 2024-09-05
ER
PT J
AU Li, JY
Bao, QF
AF Li, Junying
Bao, Qingfen
TI Research on the coordinated development of agglomeration economy and
environmental performance based on artificial intelligence
SO PHYSICS AND CHEMISTRY OF THE EARTH
LA English
DT Article
DE Artificial intelligence; Agglomeration economy; Environmental
performance; Coordinated development
ID TAX
AB In order to promote the coordinated development of agglomeration economy and environmental performance, this paper combines artificial intelligence technology to conduct research on the coordinated development of agglomeration economy and environmental performance, and presents an easy-to-implement controller design. For discrete linear multi-agent systems under asynchronous packet loss, all communication edges are indepen-dent and random. In this paper, from the perspective of the overall change of communication topology, a switching model based on Markov packet loss channel is constructed and the sufficient conditions for the system to achieve almost certain consistency are given. In addition, this paper constructs an analysis model for the coordinated development of agglomeration economy and environmental performance based on artificial intel-ligence. The simulation study verifies that the model proposed in this paper has certain effects.
C1 [Li, Junying; Bao, Qingfen] Inner Mongolia Agr Univ, Coll Econ Management, Hohhot 010018, Peoples R China.
[Li, Junying] Inner Mongolia Univ Finance & Econ, Coll Business Adm, Hohhot 010070, Peoples R China.
C3 Inner Mongolia Agricultural University; Inner Mongolia University of
Finance & Economics
RP Li, JY (corresponding author), Inner Mongolia Agr Univ, Coll Econ Management, Hohhot 010018, Peoples R China.
EM ljyljgf@163.com
CR Alkhazali R.C.A., 2021, PALARCHS J ARCHAEOL, V18, P806
Bulikova M., 2021, ENVIRON DEV SUSTAIN, V10, P19
Christians A., 2022, CAN J FOREST RES, V70, P97
Nguyen HH, 2019, J ASIAN FINANC ECON, V6, P129, DOI 10.13106/jafeb.2019.vol6.no4.129
Jacobs B, 2018, INT TAX PUBLIC FINAN, V25, P883, DOI 10.1007/s10797-017-9481-0
Klenert D, 2018, ENVIRON RESOUR ECON, V71, P605, DOI 10.1007/s10640-016-0070-y
Knezevic G, 2020, LEX LOCALIS, V18, P503, DOI 10.4335/18.3.503-522(2020)
Li YM, 2022, ENVIRON SCI POLLUT R, V29, P15931, DOI 10.1007/s11356-021-16650-z
Pérez SDL, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132011269
Mahajan A., 2021, INDIAN ECON J, V69, P705
Martynenko V, 2019, BALT J ECON STUD, V5, P124, DOI 10.30525/2256-0742/2019-5-2-124-130
Muhammad I, 2022, AIMS ENVIRON SCI, V9, P145, DOI 10.3934/environsci.20220012
Mwangoka B.G., 2022, TANZANIA J SOCIOL, V7, P42
Nakada M, 2020, ECON GOV, V21, P335, DOI 10.1007/s10101-020-00243-6
Shahzad U, 2020, ENVIRON SCI POLLUT R, V27, P24848, DOI 10.1007/s11356-020-08349-4
Steenkamp LA, 2021, CLIM POLICY, V21, P897, DOI 10.1080/14693062.2021.1946381
Timmermans B, 2018, INT J LIFE CYCLE ASS, V23, P2217, DOI 10.1007/s11367-018-1439-7
Xu Q, 2020, J COASTAL RES, P506, DOI 10.2112/JCR-SI115-139.1
Zamani Eskandari E., 2021, INT J FINANCE MANAGE, V6, P193
Zvereva A., 2020, INT MULTIDISCIPLINAR, P279
NR 20
TC 0
Z9 0
U1 5
U2 13
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1474-7065
EI 1873-5193
J9 PHYS CHEM EARTH
JI Phys. Chem. Earth
PD JUN
PY 2023
VL 130
AR 103371
DI 10.1016/j.pce.2023.103371
EA FEB 2023
PG 11
WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences;
Water Resources
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Geology; Meteorology & Atmospheric Sciences; Water Resources
GA 9C2YZ
UT WOS:000935290300001
DA 2024-09-05
ER
PT C
AU Pride, D
Cancellieri, M
Knoth, P
AF Pride, David
Cancellieri, Matteo
Knoth, Petr
BE Alonso, O
Cousijn, H
Silvello, G
Marrero, M
Lopes, CT
Marchesin, S
TI CORE-GPT: Combining Open Access Research and Large Language Models for
Credible, Trustworthy Question Answering
SO LINKING THEORY AND PRACTICE OF DIGITAL LIBRARIES, TPDL 2023
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 27th International Conference on Theory and Practice of Digital
Libraries (TPDL)
CY SEP 26-29, 2023
CL Zadar, CROATIA
AB In this paper, we present CORE-GPT, a novel question-answering platform that combines GPT-based language models and more than 32 million full-text open access scientific articles from CORE (https://core.ac.uk). We first demonstrate that GPT3.5 and GPT4 cannot be relied upon to provide references or citations for generated text. We then introduce CORE-GPT which delivers evidence-based answers to questions, along with citations and links to the cited papers, greatly increasing the trustworthiness of the answers and reducing the risk of hallucinations. CORE-GPT's performance was evaluated on a dataset of 100 questions covering the top 20 scientific domains in CORE, resulting in 100 answers and links to 500 relevant articles. The quality of the provided answers and relevance of the links were assessed by two annotators. Our results demonstrate that CORE-GPT can produce comprehensive and trustworthy answers across the majority of scientific domains, complete with links to genuine, relevant scientific articles.
C1 [Pride, David; Cancellieri, Matteo; Knoth, Petr] Open Univ, Knowledge Media Inst, Milton Keynes, Bucks, England.
C3 Open University - UK
RP Pride, D (corresponding author), Open Univ, Knowledge Media Inst, Milton Keynes, Bucks, England.
EM david.pride@open.ac.uk; matteo.cancellieri@open.ac.uk;
petr.knoth@open.ac.uk
OI Cancellieri, Matteo/0000-0002-9558-9772
CR Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179
Armstrong K., 2023, BBC
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165
Fan LZ, 2023, Arxiv, DOI arXiv:2304.02020
Gao C.A., 2022, bioRxiv
Gusenbauer M, 2022, SCIENTOMETRICS, V127, P2683, DOI 10.1007/s11192-022-04289-7
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Knoth P., 2023, CORE: A Global Aggregation Service for Open Access Papers
Liu YH, 2019, Arxiv, DOI arXiv:1907.11692
LSE: LSE, 2022, New AI tools that can write student essays require educators to rethink teaching and assessment
McMichael J., 2023, ARTIFICIAL INTELLIGE
OpenAI. OpenAI, 2023, GPT-4 Techincal Report
Radford A., 2019, LANGUAGE MODELS ARE
Shen Y., 2023, Chatgpt and other large language models are double-edged swords
Zhao WX, 2023, Arxiv, DOI [arXiv:2303.18223, DOI 10.48550/ARXIV.2303.18223, 10.48550/arXiv.2303.18223]
NR 16
TC 5
Z9 5
U1 7
U2 8
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-43848-6; 978-3-031-43849-3
J9 LECT NOTES COMPUT SC
PY 2023
VL 14241
BP 146
EP 159
DI 10.1007/978-3-031-43849-3_13
PG 14
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BW4WR
UT WOS:001156311600014
DA 2024-09-05
ER
PT J
AU Kochhar, SK
Ojha, U
AF Kochhar, Sarabjeet Kaur
Ojha, Uma
TI Index for objective measurement of a research paper based on sentiment
analysis
SO ICT EXPRESS
LA English
DT Article
DE Impact factor; Index; Metric; Sentiment analysis; SentiWordNet; Citation
sentiment analysis; Sentiment scores; Citation extraction; Publication
impact factor; ACL anthology
ID IMPACT FACTOR; CITATION; TRACKING
AB Establishing impact of a research paper is essential for academia, industry and research community alike. The attempts made in this direction are hitherto limited to some objective metrics, largely based on the citation count. The number of citations has always been used as a measure for ascertaining quality and popularity of research papers. Though, citations play an essential role in academic research, sometimes researchers may cite a paper to just point out its weaknesses and infirmities. A subjective look into the sentiments behind citations of a research paper aids in understanding the opinion of the peer research community for a paper. Objective measures such as citing author's impact factor and the publication's impact factor, may help to quantify the weightage of citations themselves and should also be included in the assessment of impact of a research paper. In this paper, we formulate a model that combines both the objective and subjective metrics and forms basis for an index to objectively convey the impact of a research paper. (C) 2020 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V.
C1 [Kochhar, Sarabjeet Kaur] Univ Delhi, Dept Comp Sci, Indraprastha Coll Women, New Delhi, India.
[Ojha, Uma] Univ Delhi, Dept Comp Sci, Atma Ram Sanatan Dharma Coll, New Delhi, India.
C3 University of Delhi; Atma Ram Sanatan Dharma College; University of
Delhi
RP Ojha, U (corresponding author), Univ Delhi, Dept Comp Sci, Atma Ram Sanatan Dharma Coll, New Delhi, India.
EM sarabjeet.kochhar@gmail.com; uojha@arsd.du.ac.in
RI Kochhar, Sarabjeet Kaur/HMV-8788-2023
OI Kochhar, Sarabjeet Kaur/0000-0001-9406-7414
CR Agarwal A, 2016, ASIAN J ANDROL, V18, P296, DOI 10.4103/1008-682X.171582
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
Baccianella S, 2010, LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION
Bergstrom CT, 2008, NEUROLOGY, V71, P1850, DOI 10.1212/01.wnl.0000338904.37585.66
Bienert IRC, 2015, REV BRAS CIR CARDIOV, V30, P254, DOI 10.5935/1678-9741.20150019
Bornmann L., 2014, ARXIV1409, pv1
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Cavalcanti DC, 2011, PROC INT C TOOLS ART, P156, DOI 10.1109/ICTAI.2011.32
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Falagas ME, 2008, FASEB J, V22, P2623, DOI 10.1096/fj.08-107938
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Huggett S, 2013, ATHEROSCLEROSIS, V230, P275, DOI 10.1016/j.atherosclerosis.2013.07.051
Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9
Kaur Sarabjeet, SENT AN 1 INT C SUST
Kazi P, 2016, SCIENTOMETRICS, V107, P103, DOI 10.1007/s11192-016-1844-2
Leydesdorff L, 2010, J AM SOC INF SCI TEC, V61, P2365, DOI 10.1002/asi.21371
Melero R, 2015, BIOCHEM MEDICA, V25, P152, DOI 10.11613/BM.2015.016
Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880
Papakostidis C., 2018, MED WRITING RES METH
Pronin E, 2007, TRENDS COGN SCI, V11, P37, DOI 10.1016/j.tics.2006.11.001
Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2
Sevinc A, 2004, SWISS MED WKLY, V134, P410
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Wang K, 2018, ACM/SIGIR PROCEEDINGS 2018, P175, DOI 10.1145/3209978.3210056
West JD, 2013, J AM SOC INF SCI TEC, V64, P787, DOI 10.1002/asi.22790
Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334
NR 28
TC 4
Z9 4
U1 3
U2 14
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2405-9595
J9 ICT EXPRESS
JI ICT Express
PD SEP
PY 2020
VL 6
IS 3
BP 253
EP 257
DI 10.1016/j.icte.2020.02.001
PG 5
WC Computer Science, Information Systems; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Telecommunications
GA NF8SG
UT WOS:000563562300019
OA gold
DA 2024-09-05
ER
PT J
AU Zhu, WD
Liu, F
Chen, YW
Yang, JB
Xu, DL
Wang, DP
AF Zhu, Wei-dong
Liu, Fang
Chen, Yu-wang
Yang, Jian-bo
Xu, Dong-ling
Wang, Dong-peng
TI Research project evaluation and selection: an evidential reasoning
rule-based method for aggregating peer review information with
reliabilities
SO SCIENTOMETRICS
LA English
DT Article
DE Research project evaluation and selection; Evidential reasoning;
Reliability; Confusion matrix
ID DECISION-ANALYSIS; NETWORK; MODEL
AB Research project evaluation and selection is mainly concerned with evaluating a number of research projects and then choosing some of them for implementation. It involves a complex multiple-experts multiple-criteria decision making process. Thus this paper presents an effective method for evaluating and selecting research projects by using the recently-developed evidential reasoning (ER) rule. The proposed ER rule based evaluation and selection method mainly includes (1) using belief structures to represent peer review information provided by multiple experts, (2) employing a confusion matrix for generating experts' reliabilities, (3) implementing utility based information transformation to handle qualitative evaluation criteria with different evaluation grades, and (4) aggregating multiple experts' evaluation information on multiple criteria using the ER rule. An experimental study on the evaluation and selection of research proposals submitted to the National Science Foundation of China demonstrates the applicability and effectiveness of the proposed method. The results show that (1) the ER rule based method can provide consistent and informative support to make informed decisions, and (2) the reliabilities of the review information provided by different experts should be taken into account in a rational research project evaluation and selection process, as they have a significant influence to the selection of eligible projects for panel review.
C1 [Zhu, Wei-dong] Hefei Univ Technol, Sch Econ, Hefei 230009, Anhui, Peoples R China.
[Liu, Fang; Yang, Jian-bo; Xu, Dong-ling; Wang, Dong-peng] Hefei Univ Technol, Sch Management, Hefei 230009, Anhui, Peoples R China.
[Liu, Fang; Chen, Yu-wang; Yang, Jian-bo; Xu, Dong-ling] Univ Manchester, Manchester Business Sch, Manchester M15 6PB, Lancs, England.
C3 Hefei University of Technology; Hefei University of Technology;
University of Manchester
RP Liu, F (corresponding author), Hefei Univ Technol, Sch Management, 193 Tunxi Rd, Hefei 230009, Anhui, Peoples R China.
EM liu_fang2014@163.com
RI Xu, Dong-Ling/AFO-9481-2022; Chen, Yu-wang/A-1129-2019; Yang,
Jian-Bo/D-8047-2016
OI Xu, Dong-Ling/0000-0003-4480-1611; Chen, Yu-wang/0000-0002-2007-1821;
Yang, Jian-Bo/0000-0001-8953-1550; Yang, Jian-Bo/0000-0002-1368-5294
FU National Natural Science Foundation of China [71071048]; China
Scholarship Council [201306230047]
FX This research is partially supported by the National Natural Science
Foundation of China under Grant No. 71071048 and the Scholarship from
China Scholarship Council under Grant No. 201306230047.
CR Agarski B, 2012, ENVIRON MODEL ASSESS, V17, P255, DOI 10.1007/s10666-011-9294-y
[Anonymous], 2007, ENG TECHNOLOGY
Bulathsinhala N. A., 2014, SCI PUBL POLICY, Vscu035, P1
Carlsson C, 2007, INT J APPROX REASON, V44, P93, DOI 10.1016/j.ijar.2006.07.003
Chen X. T., 2009, NATL SCI FUND MANAGE
Coffin MA, 1996, COMPUT OPER RES, V23, P207, DOI 10.1016/0305-0548(96)81768-0
Feng B, 2011, EXPERT SYST APPL, V38, P5532, DOI 10.1016/j.eswa.2010.10.083
Henriksen AD, 1999, IEEE T ENG MANAGE, V46, P158, DOI 10.1109/17.759144
Horrobin DF, 1996, LANCET, V348, P1293, DOI 10.1016/S0140-6736(96)08029-4
Hsu YG, 2003, R&D MANAGE, V33, P539, DOI 10.1111/1467-9310.00315
Huang CC, 2008, OMEGA-INT J MANAGE S, V36, P1038, DOI 10.1016/j.omega.2006.05.003
Jayasinghe UW, 2006, SCIENTOMETRICS, V69, P591, DOI 10.1007/s11192-006-0171-4
Juznic P, 2010, SCIENTOMETRICS, V85, P429, DOI 10.1007/s11192-010-0230-8
Khalili-Damghani K, 2013, INFORM SCIENCES, V252, P42, DOI 10.1016/j.ins.2013.05.005
Lawson CP, 2006, TECHNOVATION, V26, P242, DOI 10.1016/j.technovation.2004.07.017
Linton JD, 2002, R&D MANAGE, V32, P139, DOI 10.1111/1467-9310.00246
Meade LA, 2002, IEEE T ENG MANAGE, V49, P59, DOI 10.1109/17.985748
Olsson NOE, 2010, TRANSPORT POLICY, V17, P251, DOI 10.1016/j.tranpol.2010.01.008
Oral M, 2001, EUR J OPER RES, V130, P332, DOI 10.1016/S0377-2217(00)00040-0
Provost F, 1998, MACH LEARN, V30, P127, DOI 10.1023/A:1007442505281
Shafer G., 1976, MATH THEORY EVIDENCE, DOI DOI 10.1080/00401706.1978.10489628
Silva T., 2015, ACM T MANAG INF SYST, V5, P21
Silva T, 2013, DECIS SUPPORT SYST, V55, P957, DOI 10.1016/j.dss.2013.01.005
Smarandache F., 2010, alpha‐Discounting Method for Multi‐Criteria Decision Making (alpha‐D MCDM), P1
Solak S, 2010, EUR J OPER RES, V207, P420, DOI 10.1016/j.ejor.2010.04.032
Tavana M, 2013, COMPUT IND ENG, V66, P10, DOI 10.1016/j.cie.2013.06.002
Tian QJ, 2005, DECIS SUPPORT SYST, V39, P403, DOI 10.1016/j.dss.2003.08.005
Wang D. P., 2015, SCI SCI MANAGEMENT S, V36, P22
Wang JT, 2007, OMEGA-INT J MANAGE S, V35, P247, DOI 10.1016/j.omega.2005.06.002
Xu DL, 2012, ANN OPER RES, V195, P163, DOI 10.1007/s10479-011-0945-9
YANG JB, 1994, IEEE T SYST MAN CYB, V24, P1, DOI 10.1109/21.259681
Yang JB, 2001, EUR J OPER RES, V131, P31, DOI 10.1016/S0377-2217(99)00441-5
Yang JB, 2002, IEEE T SYST MAN CY A, V32, P289, DOI 10.1109/TSMCA.2002.802746
Yang JB, 2013, ARTIF INTELL, V205, P1, DOI 10.1016/j.artint.2013.09.003
NR 34
TC 25
Z9 27
U1 2
U2 73
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2015
VL 105
IS 3
BP 1469
EP 1490
DI 10.1007/s11192-015-1770-8
PG 22
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA CW6TG
UT WOS:000365130100007
DA 2024-09-05
ER
PT C
AU Cao, L
Zhang, A
Wang, QA
AF Cao, Lu
Zhang, An
Wang, Qiang
BE Li, K
Fei, MR
Jia, L
Irwin, GW
TI Research on Situation Assessment of UCAV Based on Dynamic Bayesian
Networks in Complex Environment
SO LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, PT II
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT International Conference on Life System Modeling and Simulation /
International Conference on Intelligent Computing for Sustainable Energy
and Environment (LSMS-ICSEE)
CY SEP 17-20, 2010
CL Wuxi, PEOPLES R CHINA
DE situation assessment; UCAV; dynamic Bayesian networks; complex
environment
AB UCAV is an inevitable trend of the future intelligent and uninhabited flight platform. Situation assessment (SA) is an effective method to solve the problem of the autonomous decision-making in UCAV investigation. The concepts, contents and process of SA are put forward and the methods about the implementation of SA are analyzed. Then the concept and inference of dynamic Bayesian networks (DBN) are introduced, and SA configuration of UCAV autonomous decision system is given. Finally, the SA is applied to the UCAV autonomous decision system, especially SA based on DBN is used and the model is propounded. The simulation result indicates that the inference results are consistent with the theoretical analysis. The subjectivity of the assessment is reduced and the accuracy is greatly improved.
C1 [Cao, Lu; Zhang, An; Wang, Qiang] NW Ploytech Univ, Dept Elect & Informat, Xian 710129, Peoples R China.
RP Cao, L (corresponding author), NW Ploytech Univ, Dept Elect & Informat, Xian 710129, Peoples R China.
EM cao1u2563@126.com; zhangan@nwpu.edu.cn; 15076686@qq.com
RI zhang, an/JMR-3763-2023; Wang, Qiang/AAV-7131-2021
CR Ba Hong-xin, 2004, Journal of PLA University of Science and Technology (Natural Science Edition), V5, P10
Chao X.L., 2001, FLIGHT DYNAMIC, V19, P1
ENDSLEY MR, 1987, 8783 NOR DOC NORTHR
Gonsalves PG, 2003, FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, P965
Hinman ML, 2002, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL I, P687, DOI 10.1109/ICIF.2002.1021221
Howard C, 2005, Third International Conference on Information Technology and Applications, Vol 1, Proceedings, P383
Jan T, 2004, IEEE IJCNN, P1309
MURPHY K, 2002, THESIS U C BERKELEY
Sanghai S, 2005, J ARTIF INTELL RES, V24, P759, DOI 10.1613/jair.1625
[唐强 Tang Qiang], 2004, [系统工程与电子技术, Systems engineering & electronics], V26, P418
White F.E., 1987, DATA FUSION SUBPANEL
Yu Zhou-yi, 2005, Journal of System Simulation, V17, P555
NR 12
TC 1
Z9 3
U1 0
U2 1
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 978-3-642-15596-3
J9 LECT NOTES COMPUT SC
PY 2010
VL 6329
BP 58
EP 68
DI 10.1007/978-3-642-15597-0_7
PG 11
WC Automation & Control Systems; Computer Science, Artificial Intelligence;
Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Computer Science
GA BTD67
UT WOS:000286579100007
DA 2024-09-05
ER
PT J
AU Burns, GA
Li, XC
Peng, NY
AF Burns, Gully A.
Li, Xiangci
Peng, Nanyun
TI Building deep learning models for evidence classification from the open
access biomedical literature
SO DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION
LA English
DT Article
AB We investigate the application of deep learning to biocuration tasks that involve classification of text associated with biomedical evidence in primary research articles. We developed a large-scale corpus of molecular papers derived from PubMed and PubMed Central open access records and used it to train deep learning word embeddings under the GloVe, FastText and ELMo algorithms. We applied those models to a distant supervised method classification task based on text from figure captions or fragments surrounding references to figures in the main text using a variety or models and parameterizations. We then developed document classification (triage) methods for molecular interaction papers by using deep learning mechanisms of attention to aggregate classification-based decisions over selected paragraphs in the document. We were able to obtain triage performance with an accuracy of 0.82 using a combined convolutional neural network, bi-directional long short-term memory architecture augmented by attention to produce a single decision for triage. In this work, we hope to encourage biocuration systems developers to apply deep learning methods to their specialized tasks by repurposing large-scale word embedding to apply to their data.
C1 [Burns, Gully A.] Chan Zuckerberg Initiat, Redwood City, CA 94063 USA.
[Li, Xiangci; Peng, Nanyun] Univ Southern Calif, Viterbi Sch Engn, Informat Sci Inst, Marina Del Rey, CA 90292 USA.
C3 Chan Zuckerberg Initiative (CZI); University of Southern California
RP Burns, GA (corresponding author), Chan Zuckerberg Initiat, Redwood City, CA 94063 USA.
EM gullyburns@gmail.com
OI Li, Xiangci/0000-0002-7493-9534
FU National Institute of Health's National Library of Medicine [LM012592]
FX National Institute of Health's National Library of Medicine (LM012592).
CR [Anonymous], CORR
[Anonymous], DATABASE OXFORD
[Anonymous], CORR
[Anonymous], 2015, P ICLR
[Anonymous], 2016, ABS160704606 CORR, DOI DOI 10.1162/TACL_A_00051
[Anonymous], METHOD CLASSIFICATIO
[Anonymous], P 4 BIOCREATIVE CHAL
[Anonymous], SEMSCI 2017 WORKSH I
[Anonymous], 2018, P 2018 C N AM CHAPTE
[Anonymous], 2016, DEEP LEARNING
[Anonymous], SEMSCI 2018 WORKSH I
[Anonymous], NAACL HLT 2018
[Anonymous], BIONLP ACL 2011
[Anonymous], TEXT RETRIEVAL C TRE
[Anonymous], 2013, P LBM 2013
Björne J, 2018, SIGBIOMED WORKSHOP ON BIOMEDICAL NATURAL LANGUAGE PROCESSING (BIONLP 2018), P98
Burns GAPC, 2016, DATABASE-OXFORD, DOI 10.1093/database/baw122
Casteleiro MA, 2018, J BIOMED SEMANT, V9, DOI 10.1186/s13326-018-0181-1
Cohen Aaron M, 2006, J Biomed Discov Collab, V1, P4, DOI 10.1186/1747-5333-1-4
Craven M, 1999, Proc Int Conf Intell Syst Mol Biol, P77
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Lee K, 2018, PLOS COMPUT BIOL, V14, DOI 10.1371/journal.pcbi.1006390
Mikolov T., 2013, ADV NEURAL INFORM PR, DOI DOI 10.48550/ARXIV.1310.4546
Mohan S, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P77, DOI 10.1145/3178876.3186049
Russ TA, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-351
Wang YS, 2018, J BIOMED INFORM, V87, P12, DOI 10.1016/j.jbi.2018.09.008
NR 26
TC 16
Z9 24
U1 0
U2 8
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1758-0463
J9 DATABASE-OXFORD
JI Database
PD APR 2
PY 2019
AR baz034
DI 10.1093/database/baz034
PG 9
WC Mathematical & Computational Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematical & Computational Biology
GA IA9NG
UT WOS:000469883300001
PM 30938776
OA gold, Green Published, Green Submitted
DA 2024-09-05
ER
PT C
AU Zeng, XF
AF Zeng Xianfeng
GP IEEE
TI Research on Security Assessment and Maintenance Decision of Trains based
on Bayesian Networks
SO 2014 SIXTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND
MECHATRONICS AUTOMATION (ICMTMA)
SE International Conference on Measuring Technology and Mechatronics
Automation
LA English
DT Proceedings Paper
CT 6th International Conference on Measuring Technology and Mechatronics
Automation (ICMTMA)
CY JAN 10-11, 2014
CL Zhangjiajie, PEOPLES R CHINA
DE Magler Train; Security Assessment; Fault Tree; Bayesian Networks;
Maintenance Decision
AB With the medium and low speed maglev train plays the role of commercial operation gradually, people put forward higher requirements for train safety reliability, which makes train security assessment even more prominent. Aiming at the characteristics of the maglev train equipments as well as the limitations of traditional security assessment, the establishment of a multi-state security assessment based on Bayesian network model has better diagnostic reasoning and causal reasoning ability. Finally, using the model to analysis the train traction system quantitatively, fmding the weaknesses of the system and the relationship between the equipments to make rational maintenance decision. This will provide a basis to improve the reliability of train equipment and repair and maintenance work.
C1 Guangzhou Inst Railway Technol, Guangzhou, Guangdong, Peoples R China.
RP Zeng, XF (corresponding author), Guangzhou Inst Railway Technol, Guangzhou, Guangdong, Peoples R China.
EM wujing2013c@163.com
CR Bobbio A., 2001, RELIABILITY ENG SYST, V71
Li Haijun, 2003, APPL EQUIPMENT FAILU
Yasuda Y., 2004, MAGLEV 2004 PROC 18
Zhou Zhongbao, 2009, SYSTEM ENG ACAD J, V24
NR 4
TC 1
Z9 1
U1 0
U2 5
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2157-1473
BN 978-1-4799-3434-8
J9 INT CONF MEAS
PY 2014
BP 534
EP 537
DI 10.1109/ICMTMA.2014.129
PG 4
WC Automation & Control Systems; Engineering, Electrical & Electronic;
Engineering, Mechanical
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Engineering
GA BC7WU
UT WOS:000355260500126
DA 2024-09-05
ER
PT C
AU Yuan, XE
Shi, MW
Song, CM
AF Yuan, Xiu-e
Shi, Meng-wei
Song, Chun-mei
BE Muhin, VE
Ye, Z
TI Research on Supply Chain Performance Evaluation Based on Rough set and
SVM
SO IEEC 2009: FIRST INTERNATIONAL SYMPOSIUM ON INFORMATION ENGINEERING AND
ELECTRONIC COMMERCE, PROCEEDINGS
LA English
DT Proceedings Paper
CT 1st International Symposium on Information Engineering and Electronic
Commerce
CY MAY 16-17, 2009
CL Ternopil, UKRAINE
DE Supply Chain; Rough set; SVM
AB For implementing supply chain management effectively, a manufacturing supply chain performance evaluation nethod was very important. Based on the comprehensive evaluation index system of supply Chain Performance Evaluation, a new evaluation model with Support vector machine (SVM) and Rough set Is founded. Rough Set is introduced to reduce numbers of evaluation indicators, thus reducing the dimensions of the input space of SVM. Finally, a example is provided to validate the proposed method. The findings indicate that the method proposed in this paper is a useful tool for solving the supply chain performance evaluation.
C1 [Yuan, Xiu-e; Shi, Meng-wei] North China Elect Power Univ, Business & Management Dept, Beijing, Peoples R China.
[Song, Chun-mei] ShiJiaZhuang Foreign Affair Coll, Foreign Affair Management Dept, Shijiazhuang, Peoples R China.
C3 North China Electric Power University
RP Yuan, XE (corresponding author), North China Elect Power Univ, Business & Management Dept, Beijing, Peoples R China.
EM hdyxe@126.com; scm780929@sina.com
CR [Anonymous], INTELLIGENT CONTROL
[Anonymous], 1991, ROUGH SETS THEORETIC, DOI [DOI 10.1007/978-94-011-3534-4, 10.1007/978-94-011-3534-4]
FANG QL, 2006, MATH PRACTICE THEORY, V36, P244
LIU H, 2005, STAT DECISION, P142
Pawlak Z, 2002, EUR J OPER RES, V136, P181, DOI 10.1016/S0377-2217(01)00029-7
Su Jian, 2003, Chinese Journal of Computers, V26, P737
[王铁男 WANG Tienan], 2006, [中国软科学, China Soft Science], P136
YE CM, 2005, IND ENG MANAGEMENT, P35
[张利 ZHANG Li], 2006, [系统工程理论方法应用, Systems engineering theory methodology applications], V15, P220
ZHANG WX, 2005, UNCERTAIN DECISION B
NR 10
TC 0
Z9 0
U1 0
U2 1
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
BN 978-0-7695-3686-6
PY 2009
BP 276
EP +
DI 10.1109/IEEC.2009.182
PG 2
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BNT86
UT WOS:000275528800057
DA 2024-09-05
ER
PT J
AU Saarela, M
Kärkkäinen, T
AF Saarela, Mirka
Kaerkkaeinen, Tommi
TI Can we automate expert-based journal rankings? Analysis of the Finnish
publication indicator
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Performance-based research funding system; Machine learning; Automation;
Feature importance
ID NORWEGIAN MODEL; SOCIAL-SCIENCES; PERFORMANCE; INTERNATIONALIZATION;
CITATIONS; QUALITY; IMPACT; SNIP
AB The publication indicator of the Finnish research funding system is based on a manual ranking of scholarly publication channels. These ranks, which represent the evaluated quality of the channels, are continuously kept up to date and thoroughly reevaluated every four years by groups of nominated scholars belonging to different disciplinary panels. This expert-based decision-making process is informed by available citation-based metrics and other relevant metadata characterizing the publication channels. The purpose of this paper is to introduce various approaches that can explain the basis and evolution of the quality of publication channels, i.e., ranks. This is important for the academic community, whose research work is being governed using the system. Data-based models that, with sufficient accuracy, explain the level of or changes in ranks provide assistance to the panels in their multi-objective decision making, thus suggesting and supporting the need to use more cost-effective, automated ranking mechanisms. The analysis relies on novel advances in machine learning systems for classification and predictive analysis, with special emphasis on local and global feature importance techniques (C) 2020 Published by Elsevier Ltd.
C1 [Saarela, Mirka; Kaerkkaeinen, Tommi] Univ Jyvaskyla, Fac Informat Technol, POB 35, FI-40014 Jyvaskyla, Finland.
C3 University of Jyvaskyla
RP Saarela, M (corresponding author), Univ Jyvaskyla, Fac Informat Technol, POB 35, FI-40014 Jyvaskyla, Finland.
EM mirka.saarela@jyu.fi
RI Saarela, Mirka/AAC-4087-2019
OI Saarela, Mirka/0000-0002-1559-154X; Karkkainen,
Tommi/0000-0003-0327-1167
FU Academy of Finland [315550, 311877]; Academy of Finland (AKA) [315550]
Funding Source: Academy of Finland (AKA)
FX This research was supported by the Academy of Finland (grants no. 315550
and 311877) and is related to the the matic research area DEMO (Decision
Analytics Utilizing Causal Models and Multiobjective Optimization,
jyu.fi/demo) of the University of Jyvaskyla.
CR Aagaard K., 2019, INFORM SCI, V3, P20
Aagaard K, 2015, RES EVALUAT, V24, P106, DOI 10.1093/reseval/rvv003
Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Ahlgren P, 2014, J INFORMETR, V8, P985, DOI 10.1016/j.joi.2014.09.010
Akusok A, 2019, PROC ADAPT LEARN OPT, V10, P240, DOI 10.1007/978-3-030-01520-6_22
Bach M, 2017, INFORM SCIENCES, V384, P174, DOI 10.1016/j.ins.2016.09.038
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Bensman SJ, 2010, J AM SOC INF SCI TEC, V61, P1440, DOI 10.1002/asi.21332
Boemer F, 2018, NEUROCOMPUTING, V277, P228, DOI 10.1016/j.neucom.2017.05.096
Bornmann L, 2018, J INFORMETR, V12, P931, DOI 10.1016/j.joi.2018.07.009
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Breiman L., 2017, Classification And Regression Trees, V1st, DOI DOI 10.1201/9781315139470-8
Breiman L, 1997, Arcing The Edge
Butler L, 2003, RES POLICY, V32, P143, DOI 10.1016/S0048-7333(02)00007-0
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8
Dondio P, 2019, J INFORMETR, V13, P708, DOI 10.1016/j.joi.2019.03.018
Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Guyon I, 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1162/153244303322753616
Haddawy P, 2016, J INFORMETR, V10, P162, DOI 10.1016/j.joi.2015.12.005
Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w
Hammarfelt B, 2018, J DATA INFO SCI, V3, P85, DOI 10.2478/jdis-2018-0023
Heinisch DP, 2018, SCIENTOMETRICS, V117, P351, DOI 10.1007/s11192-018-2840-5
Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a
Kim J, 2018, SCIENTOMETRICS, V117, P511, DOI 10.1007/s11192-018-2865-9
Kolesnikov S, 2018, SCIENTOMETRICS, V116, P1995, DOI 10.1007/s11192-018-2793-8
Kulczycki E., 2018, PUBLICATION PATTERNS, P1
Kulczycki E, 2017, J INFORMETR, V11, P282, DOI 10.1016/j.joi.2017.01.001
Letto-Vanamo P, 2019, EVALUATING ACADEMIC LEGAL RESEARCH IN EUROPE: THE ADVANTAGE OF LAGGING BEHIND, P218
Leydesdorff L, 2010, J AM SOC INF SCI TEC, V61, P2365, DOI 10.1002/asi.21371
Li XD, 2018, SYST CONTROL LETT, V116, P1, DOI 10.1016/j.sysconle.2018.04.001
Little R.J., 2014, Statistical analysis with missing data, V793
Meho LI, 2019, J INFORMETR, V13, P419, DOI 10.1016/j.joi.2019.02.006
Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002
Molnar C., 2022, Interpretable machine learning: A guide for making Black Box models explainable, V2nd edn
Mutz R, 2019, J INFORMETR, V13, P643, DOI 10.1016/j.joi.2019.03.007
Olson R., 2018, DATA DRIVEN ADVICE A, V23, P192
Pölönen J, 2018, J DATA INFO SCI, V3, P31, DOI 10.2478/jdis-2018-0019
Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778
Rodríguez-Navarro A, 2019, SCIENTOMETRICS, V119, P213, DOI 10.1007/s11192-019-03022-1
Saarela M., 2015, JEDM J ED DATA MIN, V7, P3
Saarela M, 2019, ARTIF INTELL MED, V95, P88, DOI 10.1016/j.artmed.2018.09.004
Saarela M, 2016, J INFORMETR, V10, P693, DOI 10.1016/j.joi.2016.03.004
Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x
Sandström U, 2018, J INFORMETR, V12, P365, DOI 10.1016/j.joi.2018.01.007
Sandström U, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166149
Serenko A, 2018, J ASSOC INF SCI TECH, V69, P749, DOI 10.1002/asi.23985
Sile L, 2019, SCIENTOMETRICS, V118, P71, DOI 10.1007/s11192-018-2963-8
Sivertsen G., 2019, Data and Information Management, V3, P61, DOI [DOI 10.2478/DIM-2019-0008, 10.2478/dim-2019-0008]
Sivertsen G, 2018, J DATA INFO SCI, V3, P3, DOI 10.2478/jdis-2018-0017
Sivertsen G, 2016, RESEARCH ASSESSMENT IN THE HUMANITIES: TOWARDS CRITERIA AND PROCEDURES, P79, DOI 10.1007/978-3-319-29016-4_7
Sivertsen G, 2016, SCIENTOMETRICS, V107, P357, DOI 10.1007/s11192-016-1845-1
Sivertsen G, 2012, SCIENTOMETRICS, V91, P567, DOI 10.1007/s11192-011-0615-3
Small H, 2018, J INFORMETR, V12, P461, DOI 10.1016/j.joi.2018.03.007
Subochev A, 2018, J INFORMETR, V12, P416, DOI 10.1016/j.joi.2018.03.001
Thelwall M, 2017, J INFORMETR, V11, P128, DOI 10.1016/j.joi.2016.12.002
Tibshirani R, 1996, J ROY STAT SOC B, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x
Treeratpituk P, 2009, ACM-IEEE J CONF DIG, P39
Tüselmann H, 2015, OMEGA-INT J MANAGE S, V51, P11, DOI 10.1016/j.omega.2014.08.002
van den Besselaar P, 2017, J INFORMETR, V11, P905, DOI 10.1016/j.joi.2017.05.016
van Vlokhoven H, 2019, J INFORMETR, V13, P751, DOI 10.1016/j.joi.2019.04.001
Vanhoeyveld J, 2018, DATA MIN KNOWL DISC, V32, P25, DOI 10.1007/s10618-017-0517-y
Verleysen FT, 2014, SCIENTOMETRICS, V101, P1431, DOI 10.1007/s11192-014-1267-x
Vieira ES, 2010, J INFORMETR, V4, P1, DOI 10.1016/j.joi.2009.06.002
Vrettas G, 2015, J ASSOC INF SCI TECH, V66, P2674, DOI 10.1002/asi.23349
Wallace FH, 2018, SCIENTOMETRICS, V115, P749, DOI 10.1007/s11192-018-2690-1
Walters WH, 2019, SCIENTOMETRICS, V118, P321, DOI 10.1007/s11192-018-2972-7
Walters WH, 2017, J INFORMETR, V11, P730, DOI 10.1016/j.joi.2017.05.001
Waltman L, 2017, J INFORMETR, V11, P904, DOI 10.1016/j.joi.2017.05.015
Yu XY, 2019, IEEE T NEUR NET LEAR, V30, P2805, DOI 10.1109/TNNLS.2018.2886017
Zacharewicz T, 2019, SCI PUBL POLICY, V46, P105, DOI 10.1093/scipol/scy041
Zhang RZ, 2017, J INFORMETR, V11, P629, DOI 10.1016/j.joi.2017.05.007
NR 73
TC 17
Z9 17
U1 4
U2 48
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD MAY
PY 2020
VL 14
IS 2
AR 101008
DI 10.1016/j.joi.2020.101008
PG 17
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA NG7GI
UT WOS:000564148300006
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Timko, C
Niederstadt, M
Goel, N
Faltings, B
AF Timko, Christina
Niederstadt, Malte
Goel, Naman
Faltings, Boi
TI Incentive Mechanism Design for Responsible Data Governance: A
Large-scale Field Experiment
SO ACM JOURNAL OF DATA AND INFORMATION QUALITY
LA English
DT Article
DE Data quality assessment; experimental; quantitative research; incentive
mechanism design; responsible AI
ID PREDICTION
AB A crucial building block of responsible artificial intelligence is responsible data governance, including data collection. Its importance is also underlined in the latest EU regulations. The data should be of high quality, foremost correct and representative, and individuals providing the data should have autonomy over what data is collected. In this article, we consider the setting of collecting personally measured fitness data (physical activity measurements), in which some individuals may not have an incentive to measure and report accurate data. This can significantly degrade the quality of the collected data. On the other hand, high-quality collective data of this nature could be used for reliable scientific insights or to build trustworthy artificial intelligence applications. We conduct a framed field experiment (N = 691) to examine the effect of offering fixed and quality-dependent monetary incentives on the quality of the collected data. We use a peer-based incentive-compatible mechanism for the quality-dependent incentives without spot-checking or surveilling individuals. We find that the incentive-compatible mechanism can elicit good-quality data while providing a good user experience and compensating fairly, although, in the specific study context, the data quality does not necessarily differ under the two incentive schemes. We contribute new design insights from the experiment and discuss directions that future field experiments and applications on explainable and transparent data collection may focus on.
C1 [Timko, Christina; Niederstadt, Malte] Ruhr Univ Bochum, Univ Str 150, D-44801 Bochum, Germany.
[Goel, Naman] Univ Oxford, Wolf Son Bldg,Parks Rd, Oxford OX1 3QD, England.
[Faltings, Boi] EPFL IC IINFCOM LIA, Stn 14, CH-1015 Lausanne, Switzerland.
C3 Ruhr University Bochum; University of Oxford
RP Timko, C (corresponding author), Ruhr Univ Bochum, Univ Str 150, D-44801 Bochum, Germany.
EM christina.timko@rub.de; malte.niederstadt@rub.de;
naman.goel@cs.ox.ac.uk; boi.faltings@epfl.ch
FU Research Department Closed Carbon Cycle Economy at the Ruhr-Universitat
Bochum
FX Christina Timko was supported by a personal research grant of the
Research Department Closed Carbon Cycle Economy at the Ruhr-Universitat
Bochum.
CR Abiteboul S, 2019, ACM J DATA INF QUAL, V11, DOI 10.1145/3310231
Agley J, 2022, BEHAV RES METHODS, V54, P885, DOI 10.3758/s13428-021-01665-8
Aguinis H, 2021, J MANAGE, V47, P823, DOI 10.1177/0149206320969787
Baillon A, 2022, J ECON PSYCHOL, V93, DOI 10.1016/j.joep.2022.102552
Biermann Jan, 2022, ZEW DISCUSSION PAPER, V22, P071
Chen DL, 2016, J BEHAV EXP FINANC, V9, P88, DOI 10.1016/j.jbef.2015.12.001
European Commission, 2022, Press Release
Faltings B., 2017, Synth. Lect. Artif. Intell. Mach. Learn., V11, P1, DOI DOI 10.2200/S00788ED1V01Y201707AIM035
Faltings Boi, 2014, HCOMP 2014, P59, DOI DOI 10.1609/HCOMP.V2I1.13145
Frank MR, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177385
Gao X. A., 2014, P 15 ACM C EC COMPUT, P507, DOI DOI 10.1145/2600057.2602865
Giles P, 2019, J CULT ECON-UK, V12, P612, DOI 10.1080/17530350.2019.1639068
Gneezy U, 2018, AM ECON REV, V108, P419, DOI 10.1257/aer.20161553
Gneiting T, 2007, J AM STAT ASSOC, V102, P359, DOI 10.1198/016214506000001437
Goel N, 2019, AAAI CONF ARTIF INTE, P1996
Goel Naman, 2020, THESIS EPFL
Goel Naman, 2019, UNCERTAINTY ARTIFICI, P18
Harrison GW, 2004, J ECON LIT, V42, P1009, DOI 10.1257/0022051043004577
Heinrich B, 2018, ACM J DATA INF QUAL, V9, DOI 10.1145/3148238
Hussam Reshmaan, 2017, TARGETING HIGH UNPUB
John LK, 2012, PSYCHOL SCI, V23, P524, DOI 10.1177/0956797611430953
Jung I, 2017, ARCH PLAST SURG-APS, V44, P93, DOI 10.5999/aps.2017.44.2.93
Liu Y, 2017, EC'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, P63, DOI 10.1145/3033274.3085126
Madnick S.E., 2009, Data Inf. Quality, V1, P1, DOI [DOI 10.1145/1515693.1516680, 10.1145/1515693.1516680]
Miller N, 2005, MANAGE SCI, V51, P1359, DOI 10.1287/mnsc.1050.0379
Mohan K, 2021, J AM STAT ASSOC, V116, P1023, DOI 10.1080/01621459.2021.1874961
NeCamp T, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P539, DOI 10.1145/3303772.3303812
NIST/SEMATECH, 2013, E HDB STAT METH
Prelec D, 2004, SCIENCE, V306, P462, DOI 10.1126/science.1102081
Radanovic Goran, 2016, ACM Transactions on Intelligent Systems and Technology, V7, DOI 10.1145/2856102
Rigol Natalia, 2016, PAYING TRUTH E UNPUB
Roe BE, 2009, AM J AGR ECON, V91, P1266, DOI 10.1111/j.1467-8276.2009.01295.x
Sambasivan Nithya, 2021, CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, DOI 10.1145/3411764.3445518
Saravanos Antonios, 2021, LECT NOTES COMPUTER, V13094
Shnayder V, 2016, EC'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, P179, DOI 10.1145/2940716.2940790
Waggoner Bo, 2014, 2 AAAI C HUMAN COMPU
Weaver R, 2013, J MARKETING RES, V50, P289, DOI 10.1509/jmr.09.0039
Zhou L, 2022, J BUS RES, V139, P354, DOI 10.1016/j.jbusres.2021.09.056
NR 38
TC 0
Z9 0
U1 4
U2 7
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY USA
SN 1936-1955
J9 ACM J DATA INF QUAL
JI ACM J. Data Inf. Qual.
PD JUN
PY 2023
VL 15
IS 2
AR 16
DI 10.1145/3592617
PG 18
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA L0RD5
UT WOS:001020404600007
OA Green Submitted, Bronze
DA 2024-09-05
ER
PT J
AU Radu, C
Ciocoiu, CN
Veith, C
Dobrea, RC
AF Radu, Catalina
Ciocoiu, Carmen Nadia
Veith, Cristina
Dobrea, Razvan Catalin
TI ARTIFICIAL INTELLIGENCE AND COMPETENCY-BASED EDUCATION: A BIBLIOMETRIC
ANALYSIS
SO AMFITEATRU ECONOMIC
LA English
DT Article
DE artificial intelligence (AI); competency-based education (CBE);
bibliometric analysis; thematic map; Web of Science (WoS)
AB In the context of the educational transition toward a competency -based approach, this study aimed to identify trends, challenges, and emerging opportunities generated by the intersection of Artificial Intelligence (AI) and Competency -Based Education (CBE). The research was carried out using a bibliometric analysis of 1,028 articles included in the Web of Science database and based on reports provided by the biblioshiny application, the graphical interface of the bibliometrix R package. The results included a quantitative analysis of scientific production, collaborations, and cocitations, as well as the evolution and thematic map of the field. These revealed an annual increase of 8.43% in publications with acceleration after 2017 and global involvement, with the United States and China in leading positions. Thematic analyses have shown the field's evolution from technological foundations to an interdisciplinary approach, highlighting the influences of global events, such as COVID-19. The research confirmed the profound interaction between AI and CBE, demonstrating its potential, complexity, and the need for collaborative and interdisciplinary approaches. The bibliometric analysis performed can serve as a guide for future research directions and for identifying strategic directions in the implementation of AI in education.
C1 [Radu, Catalina; Ciocoiu, Carmen Nadia; Dobrea, Razvan Catalin] Bucharest Univ Econ Studies, Bucharest, Romania.
[Veith, Cristina] Univ Bucharest, Bucharest, Romania.
C3 Bucharest University of Economic Studies; University of Bucharest
RP Radu, C (corresponding author), Bucharest Univ Econ Studies, Bucharest, Romania.
EM catalina.radu@man.ase.ro
RI Veith, Cristina/KIH-8901-2024
OI Veith, Cristina/0000-0002-3592-8779
CR Akgun Selin, 2022, AI Ethics, V2, P431, DOI 10.1007/s43681-021-00096-7
Almohammadi K, 2017, J ARTIF INTELL SOFT, V7, P47, DOI 10.1515/jaiscr-2017-0004
Anderson-Levitt K, 2021, COMP EDUC, V57, P1, DOI 10.1080/03050068.2020.1852719
Nguyen A, 2023, EDUC INF TECHNOL, V28, P4221, DOI 10.1007/s10639-022-11316-w
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Azañedo D, 2022, TROP MED INFECT DIS, V7, DOI 10.3390/tropicalmed7080198
Baek C., 2020, International Journal of Learning Analytics and Artificial Intelligence for Education (iJAI), V2, P67, DOI [10.3991/ijai.v2i1.14481, DOI 10.3991/IJAI.V2I1.14481]
Baker RS, 2022, INT J ARTIF INTELL E, V32, P1052, DOI 10.1007/s40593-021-00285-9
Borenstein Jason, 2021, AI Ethics, V1, P61, DOI 10.1007/s43681-020-00002-7
Brammer M.K., 2021, SOC SCI J, P1, DOI [10.1080/03623319.2021.1883380, DOI 10.1080/03623319.2021.1883380]
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Burnette DM, 2016, J CONTIN HIGH EDUC, V64, P84, DOI 10.1080/07377363.2016.1177704
Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510
Chen SQ, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0277484
Ellahi RM, 2019, PROCEDIA COMPUT SCI, V151, P699, DOI 10.1016/j.procs.2019.04.093
Evans CM., 2020, The Journal of Competency-Based Education, V5, DOI DOI 10.1002/CBE2.1228
Harto B., 2022, 1 WOW SAIPIS 2021, P385, DOI [10.2478/9788366675827-067, DOI 10.2478/9788366675827-067]
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Holmes W, 2022, INT J ARTIF INTELL E, V32, P504, DOI 10.1007/s40593-021-00239-1
Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001]
Jia K, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.795039
Johnstone S.M., 2014, Change: The Magazine of Higher Learning, V46, P12, DOI DOI 10.1080/00091383.2014.896705
Kanungo RP, 2022, TECHNOL FORECAST SOC, V182, DOI 10.1016/j.techfore.2022.121808
Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Kuleto V, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131810424
Lazaroiu G, 2023, OECON COPERNIC, V14, P703, DOI 10.24136/oc.2023.020
Lindsay T., 2018, Forbes
Mehall S., 2019, The Journal of Competency-Based Education, V4, DOI DOI 10.1002/CBE2.1201
Mhlanga D, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13115788
Paek S, 2021, EDUC SCI, V11, DOI 10.3390/educsci11060303
Peters M, 2023, ETR&D-EDUC TECH RES, DOI 10.1007/s11423-023-10234-z
Poria S, 2019, IEEE ACCESS, V7, P100943, DOI 10.1109/ACCESS.2019.2929050
Prahani BK, 2022, INT J EMERG TECHNOL, V17, P169, DOI 10.3991/ijet.v17i08.29833
Talan T., 2021, International Journal of Research in Education and Science, V7, P822, DOI [DOI 10.46328/IJRES.2409, 10.46328/ijres.2409]
Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482
Winkler-Schwartz A, 2019, J SURG EDUC, V76, P1681, DOI 10.1016/j.jsurg.2019.05.015
Yip HK, 2000, BRIT DENT J, V189, P324, DOI 10.1038/sj.bdj.4800758a
NR 38
TC 0
Z9 0
U1 6
U2 6
PU EDITURA ASE
PI BUCURESTI
PA PIATA ROMANA, NR 6, SECTOR 1, BUCURESTI, 701731, ROMANIA
SN 1582-9146
EI 2247-9104
J9 AMFITEATRU ECON
JI Amfiteatru Econ.
PD FEB
PY 2024
VL 26
IS 65
BP 220
EP 240
DI 10.24818/EA/2024/65/220
PG 21
WC Business; Economics; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA UX2M3
UT WOS:001251298900013
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Pitkäaho, T
Ryynänen, OP
Partanen, P
Vehviläinen-Julkunen, K
AF Pitkaaho, Taina
Ryynanen, Olli-Pekka
Partanen, Pirjo
Vehvilainen-Julkunen, Katri
TI Data-based nurse staffing indicators with Bayesian networks explain
nurse job satisfaction: a pilot study
SO JOURNAL OF ADVANCED NURSING
LA English
DT Article
DE Bayesian networks; nurse job satisfaction; outcome research; register
data; time series
ID LARGE DATA SETS; PATIENT MORTALITY; WORK ENVIRONMENTS; OUTCOMES; CARE;
QUALITY; MODELS; DISSATISFACTION; REGRESSION; DATABASES
AB P>Aim.
This paper is a report of a pilot study to examine the relationship of nursing intensity, work environment intensity and nursing resources to nurse job satisfaction.
Background.
There is an ever increasing amount of information in hospital information systems; however, still very little of it is actually used in nursing management and leadership.
Methods.
The combination of a retrospective time series and cross-sectional survey data was used. The time series patient data of 9704 in/outpatients and nurse data of 110 nurses were collected from six inpatient units in a medical clinic of a university hospital in Finland in 2006. A unit-level measure of nurse job satisfaction was collected with a survey (n = 98 nurses) in the autumn of 2006. Bayesian networks were applied to examine a model that explains nurse job satisfaction.
Results.
In a hospital data system, 18 usable nurse staffing indicators were identified. There were four nurse staffing indicators: patient acuity from nursing intensity subgroup, diagnosis-related group volume from work environment subgroup, and skill mix and nurse turnover from nursing resources subgroup that explained the likelihood of nurse job satisfaction in the final model. The Bayesian networks also revealed the elusive non-linear relationship between nurse job satisfaction and patient acuity.
Conclusion.
Survey-based information on nurse job satisfaction can be modelled with data-based nurse staffing indicators. Nurse researchers could use the Bayesian approach to obtain information about the effects of nurse staffing on nursing outcomes.
C1 [Pitkaaho, Taina; Partanen, Pirjo; Vehvilainen-Julkunen, Katri] Univ Eastern Finland, Dept Nursing Sci, Kuopio, Finland.
[Pitkaaho, Taina; Ryynanen, Olli-Pekka; Vehvilainen-Julkunen, Katri] Kuopio Univ Hosp, SF-70210 Kuopio, Finland.
[Ryynanen, Olli-Pekka] Univ Eastern Finland, Fac Med, Kuopio, Finland.
C3 University of Eastern Finland; University of Eastern Finland; Kuopio
University Hospital; University of Eastern Finland
RP Pitkäaho, T (corresponding author), Univ Eastern Finland, Dept Nursing Sci, Kuopio Campus, Kuopio, Finland.
EM taina.pitkaaho@kuh.fi
FU Northern-Savo Cultural Foundation; Kuopio University Hospital
FX We are grateful to Northern-Savo Cultural Foundation and Kuopio
University Hospital for funding this study.
CR Adewale AJ, 2007, NURS RES, V56, pS40, DOI 10.1097/01.NNR.0000280634.71278.a0
Aiken LH, 2002, JAMA-J AM MED ASSOC, V288, P1987, DOI 10.1001/jama.288.16.1987
Aiken LH, 2008, J NURS ADMIN, V38, P223, DOI 10.1097/01.NNA.0000312773.42352.d7
Aiken LH, 2008, J CLIN NURS, V17, P3330, DOI 10.1111/j.1365-2702.2008.02640.x
[Anonymous], 2008, GLOB ATL HLTH WORKF
[Anonymous], NEW PALGRAVE DICT EC
[Anonymous], 2002, NIPS
Balogh Ruth, 2006, J Nurs Manag, V14, P366, DOI 10.1111/j.1365-2934.2006.00623.x
Beecroft PC, 2008, J ADV NURS, V62, P41, DOI 10.1111/j.1365-2648.2007.04570.x
BULLARD F, 2001, BRIEF INTRO BAYESIAN
Carpenter J, 2008, NURS RES, V57, P214, DOI 10.1097/01.NNR.0000319495.59746.b8
Cowin LS, 2008, INT J NURS STUD, V45, P1449, DOI 10.1016/j.ijnurstu.2007.10.009
Cummings GG, 2008, J NURS MANAGE, V16, P508, DOI 10.1111/j.1365-2834.2008.00897.x
DONABEDIAN A, 1988, JAMA-J AM MED ASSOC, V260, P1743, DOI 10.1001/jama.260.12.1743
Gajewski BJ, 2008, BMC MED RES METHODOL, V8, DOI 10.1186/1471-2288-8-77
GOODSON J, 2008, HLTH CARE MANAGEMENT, V11, P328
Halm M, 2005, CLIN NURSE SPEC, V19, P241, DOI 10.1097/00002800-200509000-00007
Harbison J, 2006, J CLIN NURS, V15, P1489, DOI 10.1111/j.1365-2702.2005.01487.x
Harris M, 2009, APPL NURS RES, V22, P146, DOI 10.1016/j.apnr.2009.02.002
Hurst K, 2005, INT J NURS STUD, V42, P75, DOI 10.1016/j.ijnurstu.2004.05.011
Hyun S, 2008, NURS ECON, V26, P151
Jackson CH, 2009, BIOSTATISTICS, V10, P335, DOI 10.1093/biostatistics/kxn041
Jacobson AK, 1999, NURS ECON, V17, P55
Jiang HJ, 2006, J NURS SCHOLARSHIP, V38, P187, DOI 10.1111/j.1547-5069.2006.00099.x
Kane RL, 2007, MED CARE, V45, P1195, DOI 10.1097/MLR.0b013e3181468ca3
Kramer Marlene, 2005, Nurs Adm Q, V29, P275
Ladouceur M, 2007, BIOMETRICS, V63, P272, DOI 10.1111/j.1541-0420.2006.00665.x
Lake ET, 2006, APPL NURS RES, V19, P51, DOI 10.1016/j.apnr.2005.10.002
Lee SM, 2005, NURS RES, V54, P133
Lee SM, 2003, J BIOMED INFORM, V36, P389, DOI 10.1016/j.jbi.2003.09.022
Lucas Peter, 2004, Curr Opin Crit Care, V10, P399, DOI 10.1097/01.ccx.0000141546.74590.d6
Lucas PJF, 2004, ARTIF INTELL MED, V30, P201, DOI 10.1016/j.artmed.2003.11.001
Lundgren Solveig M, 2005, J Nurs Manag, V13, P322, DOI 10.1111/j.1365-2934.2005.00565.x
Magee T, 2006, NURS RES, V55, pS50, DOI 10.1097/00006199-200603001-00009
Mark BA, 2006, WESTERN J NURS RES, V28, P694, DOI 10.1177/0193945905277354
McClure M.L., 2002, MAGNET HOSP REVISITE
Murrells T, 2009, J NURS MANAGE, V17, P120, DOI 10.1111/j.1365-2834.2008.00854.x
Murrells T, 2008, HUM RESOUR HEALTH, V6, DOI 10.1186/1478-4491-6-22
Myllymaki P., 2002, International Journal on Artificial Intelligence Tools (Architectures, Languages, Algorithms), V11, P369, DOI 10.1142/S0218213002000940
NOJONEN K, 2001, SAIRAALAVIESTI, V4, P10
O'Brien-Pallas L, 2008, J CLIN NURS, V17, P3338, DOI 10.1111/j.1365-2702.2008.02641.x
Park S, 2005, NURS RES, V54, P406, DOI 10.1097/00006199-200511000-00007
PARTANEN P, 2002, THESIS KUOPIO U PU E, V99
Rafferty AM, 2007, INT J NURS STUD, V44, P175, DOI 10.1016/j.ijnurstu.2006.08.003
RYYNANEN OP, 2006, SUOM LAAKARILEHTI, V61, P5353
Sales AE, 2007, NURS RES, V56, pS67, DOI 10.1097/01.NNR.0000280632.86525.8f
Savitz L., 2005, Quality indicators sensitive to nurse staffing in acute care settings
Schmalenberg C, 2008, CRIT CARE NURSE, V28, P65
Schmalenberg C, 2008, NURS RES, V57, P2, DOI 10.1097/01.NNR.0000280657.04008.2a
Smaldone AM, 2003, APPL NURS RES, V16, P205, DOI 10.1016/S0897-1897(03)00040-5
Soini EJO, 2009, DATA KNOWL ENG, V68, P1427, DOI 10.1016/j.datak.2009.07.005
Spiegelhalter D J, 2000, Health Technol Assess, V4, P1
Szydlowski Steven, 2009, Hosp Top, V87, P3, DOI 10.3200/HTPS.87.1.3-9
Tervo-Heikkinen T, 2009, J NURS MANAGE, V17, P986, DOI 10.1111/j.1365-2834.2009.01020.x
Tervo-Heikkinen T, 2008, INT J NURS PRACT, V14, P357, DOI 10.1111/j.1440-172X.2008.00707.x
TERVOHEIKKINEN T, 2008, THESIS KUOPIO U PU E, V162
Tourangeau AE, 2007, J ADV NURS, V57, P32, DOI 10.1111/j.1365-2648.2006.04084.x
Unruh L, 2009, WESTERN J NURS RES, V31, P66, DOI 10.1177/0193945908319992
Van den Heede K, 2007, J NURS SCHOLARSHIP, V39, P290, DOI 10.1111/j.1547-5069.2007.00183.x
2002, B COURS VERS 2 0 0 W
NR 60
TC 18
Z9 26
U1 3
U2 26
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0309-2402
J9 J ADV NURS
JI J. Adv. Nurs.
PD MAY
PY 2011
VL 67
IS 5
BP 1053
EP 1066
DI 10.1111/j.1365-2648.2010.05538.x
PG 14
WC Nursing
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Nursing
GA 749LW
UT WOS:000289469600014
PM 21198804
DA 2024-09-05
ER
PT C
AU Sridhar, P
Karanji, D
Sampatrao, GS
Danda, S
Saha, S
AF Sridhar, Pragnya
Karanji, Deepika
Sampatrao, Gambhire Swati
Danda, Sravan
Saha, Snehanshu
BE Kotsis, G
Tjoa, AM
Khalil, I
Moser, B
Mashkoor, A
Sametinger, J
Fensel, A
Martinez-Gil, J
Fischer, L
Czech, G
Sobieczky, F
Khan, S
TI Semantic Influence Score: Tracing Beautiful Minds Through Knowledge
Diffusion and Derivative Works
SO DATABASE AND EXPERT SYSTEMS APPLICATIONS - DEXA 2021 WORKSHOPS
SE Communications in Computer and Information Science
LA English
DT Proceedings Paper
CT 32nd International Conference on Database and Expert Systems
Applications (DEXA)
CY SEP 27-30, 2021
CL ELECTR NETWORK
DE Big scholarly data; Semantic influence; Reference mining; Citation
analysis; Machine learning; Research impact networks; AI
ID TECHNOLOGY DOMAIN
AB Articles judged on the basis of raw citations or citation counts (or similar) are biased with "Rich gets Richer" conjecture, and continue to propagate a perceived notion of paper quality and influence among scientific communities. This perception of preferential attachment, overlooking important factors such as context and the age of the paper has been criticized recently. In this paper, we propose 'Semantic Influence Score (SIS)', an unbiased alternative to metrics which rely on raw citation counts. We compute the semantic influence of a paper on its derivative works by developing a multilevel influence network, which takes into account references, domain intersection and influence scores of the articles in the network. SIS provides a robust alternative to the widely used mechanism of raw citation counts i.e., the number of citations it receives.
C1 [Sridhar, Pragnya; Karanji, Deepika; Sampatrao, Gambhire Swati] PES Univ, Dept CSE, Bengaluru, India.
[Danda, Sravan; Saha, Snehanshu] BITS Pilani, CSIS, KK Birla Goa Campus, Sancoale, Goa, India.
[Danda, Sravan; Saha, Snehanshu] BITS Pilani, APPCAIR, KK Birla Goa Campus, Sancoale, Goa, India.
C3 PES University; Birla Institute of Technology & Science Pilani (BITS
Pilani); Birla Institute of Technology & Science Pilani (BITS Pilani)
RP Sridhar, P (corresponding author), PES Univ, Dept CSE, Bengaluru, India.
RI Danda, Sravan/E-7881-2019; Saha, Snehanshu/R-1028-2018
OI Saha, Snehanshu/0000-0002-8458-604X; Karanji,
Deepika/0000-0002-1290-9233
FU BITS Pilani K K Birla Goa Campus
FX Supported by BITS Pilani K K Birla Goa Campus.
CR [Anonymous], GOOGL SCHOL TOP AI J
Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509
Beltagy I., 2020, ARXIV190407248 EMNLP
Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008
Jangid N, 2014, IERI PROC, V10, P57, DOI 10.1016/j.ieri.2014.09.091
Lo K., S2ORC SEMANTIC SCHOL
Mingers J, 2014, J INFORMETR, V8, P890, DOI 10.1016/j.joi.2014.09.004
Moed H.F., MEASURING CONTEXTUAL
Saha S, 2016, COLLNET J SCIENTOMET, V10, P41, DOI 10.1080/09737766.2016.1177939
Shen ZH, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P87
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Teixeira da Silva JA, 2017, SCIENTOMETRICS, V111, P553, DOI 10.1007/s11192-017-2250-0
NR 13
TC 0
Z9 0
U1 0
U2 1
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 1865-0929
EI 1865-0937
BN 978-3-030-87101-7; 978-3-030-87100-0
J9 COMM COM INF SC
PY 2021
VL 1479
BP 106
EP 115
DI 10.1007/978-3-030-87101-7_11
PG 10
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Interdisciplinary Applications; Computer
Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BS3IK
UT WOS:000711896000011
DA 2024-09-05
ER
PT C
AU Khiat, H
AF Khiat, Henry
BE Chova, LG
Martinez, AL
Torres, IC
TI WHAT CONSTITUTES AN EFFECTIVE ONLINE LEARNING EXPERIENCE FOR MATHEMATICS
STUDENTS?
SO INTED2012: INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT
CONFERENCE
SE INTED Proceedings
LA English
DT Proceedings Paper
CT 6th International Conference of Technology, Education and Development
(INTED)
CY MAR 05-07, 2012
CL Valencia, SPAIN
DE Mathematics learning; online learning; content delivery; self
evaluation; qualitative research
AB This study reported on the students' perceptions of an effective online mathematics learning programme. 194 sets of qualitative data were collected from an open ended question that was part of a survey used to capture student perceptions of an online preparatory mathematics programme in a polytechnic. There were 376 students who responded to this online survey, from a total of 1095 students who had completed this programme. From the analysis, through coding and categorisation, the students identified important features of an effective online mathematics programme in two areas. In the area of content delivery, an online mathematics programme has to be diagnostic, recapitulative, connected, incremental, dynamic, meaningful, challenging, sufficient and monitoring. On the other hand, in the domain of self evaluation, an online mathematics programme has to be consistent, convenient, friendly, scaffolding, detailed, intelligent, challenging, sufficient and monitoring. In summary, this study has implications in the future design of online courses, specifically in mathematics, as it illuminated some of its desirable unique features as compared to other content areas.
C1 [Khiat, Henry] SIM Univ, Singapore, Singapore.
C3 Singapore University of Social Sciences (SUSS)
EM henrykhiat@unisim.edu.sg
CR Chang CC, 2008, COMPUT HUM BEHAV, V24, P1753, DOI 10.1016/j.chb.2007.07.005
Dinov ND, 2008, COMPUT EDUC, V50, P284, DOI 10.1016/j.compedu.2006.06.003
Golanics JD, 2008, J COMPUT ASSIST LEAR, V24, P167, DOI 10.1111/j.1365-2729.2007.00251.x
Grant LK, 2007, PSYCHOL REC, V57, P265, DOI 10.1007/BF03395576
Janicki T., 2001, J ASYNCHRONOUS LEARN, V5, P58
Rourke L., 1999, Journal of Distance Education, V14, P50, DOI DOI 10.1080/08923640109527071
Tselios N.K., 2001, International Journal of Educational Telecommunications, V7, P355
Zhang DS, 2005, AM J DISTANCE EDUC, V19, P149, DOI 10.1207/s15389286ajde1903_3
NR 8
TC 0
Z9 0
U1 0
U2 2
PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT
PI VALENICA
PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN
SN 2340-1079
BN 978-84-615-5563-5
J9 INTED PROC
PY 2012
BP 6754
EP 6760
PG 7
WC Education & Educational Research
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BHQ76
UT WOS:000326396406100
DA 2024-09-05
ER
PT C
AU Wu, D
Zhang, QP
AF Wu, David
Zhang, Qiping
GP IEEE
TI An Altmetric Study of Artificial Intelligence in Medicine
SO 2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL
INTELLIGENCE (CSCI 2021)
LA English
DT Proceedings Paper
CT International Conference on Computational Science and Computational
Intelligence (CSCI)
CY DEC 15-17, 2021
CL Las Vegas, NV
DE Altmetric; artificial intelligence; medicine
AB Artificial Intelligence (AI) and its powered technologies have been crucial for medical research and clinical practice In While AI in medicine is a rapidly evolving field, this study provides a new perspective to review its related bodies of literature through a bibliometric analysis of Altmetric data. Altimetric is a system that tracks the attention that research outputs such as scholarly articles receive from different web sources (e.g. social media, mainstream news, blogs). Altmetric Explorer is an online platform that enables users to browse and report on citation-based attention metric data for a given scholarly output (including journal articles and dataset). The purpose of this study is to perform an Altmetric analysis to systematically study research trends on AI in medicine. The study identifies various aspects of research outputs on AI in medicine (mentions, attention scores, a timeline of mentions, a timeline of yearly publication, top journals, top research affiliations, and twitter demographics). These findings would be of interest to both researchers and practitioners in the field. In conclusion, research of AI in medicine has been attracting significant attention in the past 4-5 years and top journals and top research affiliations follow the trend of Bradford's law and Lotka's law.
C1 [Wu, David] Great Neck North High Sch, 35 Polo Rd, Great Neck, NY 11023 USA.
[Zhang, Qiping] Long Isl Univ, Palmer Sch Lib & Informat Sci, Brookville, NY USA.
C3 Long Island University Post
RP Wu, D (corresponding author), Great Neck North High Sch, 35 Polo Rd, Great Neck, NY 11023 USA.
EM david.zn.wu@gmail.com; Qiping.Zhang@liu.edu
CR Amisha, 2019, J FAM MED PRIM CARE, V8, P2328, DOI 10.4103/jfmpc.jfmpc_440_19
Briganti G, 2020, FRONT MED-LAUSANNE, V7, DOI 10.3389/fmed.2020.00027
Buch VH, 2018, BRIT J GEN PRACT, V68, P143, DOI 10.3399/bjgp18X695213
Donepudi PK., 2018, ABC J Adv Res, V7, P109, DOI DOI 10.18034/ABCJAR.V7I2.514
Gameiro J, 2020, J CLIN MED, V9, DOI 10.3390/jcm9030678
Laguarta J, 2020, IEEE OPEN J ENG MED, V1, P275, DOI 10.1109/OJEMB.2020.3026928
Porumb M, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-56927-5
NR 7
TC 0
Z9 0
U1 0
U2 10
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-5841-2
PY 2021
BP 196
EP 198
DI 10.1109/CSCI54926.2021.00105
PG 3
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BT4NL
UT WOS:000832229300034
DA 2024-09-05
ER
PT C
AU Leidner, JL
AF Leidner, Jochen L.
GP ACM
TI Nobody Said it Would be Easy: A Decade of R&D Projects in Information
Access from Thomson over Reuters to Refinitiv
SO PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH
AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19)
LA English
DT Proceedings Paper
CT 42nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR)
CY JUL 21-25, 2019
CL Paris, FRANCE
DE Information retrieval; information extraction; natural language
processing; machine learning; innovation; academic collaboration;
professional information services; corporate research & development
AB In this talk, I survey a small, non-random sample of research projects in information access carried out as part of the Thomson Reuters family of companies over the course of a 10+-year period.
I analyse into how these projects are similar and different when compared to academic research efforts and attempt a critical (and personal, so certainly subjective) assessment of what academia can do for industry, and what industry can do for research in terms of R&D efforts. I will conclude with some advice for academic-industry collaboration initiatives in several areas of vertical information services (legal, finance, pharma and regulatory/compliance) as well as news.
C1 [Leidner, Jochen L.] Refinitiv Labs, London, England.
[Leidner, Jochen L.] Univ Sheffield, Sheffield, S Yorkshire, England.
C3 Refinitiv; University of Sheffield
RP Leidner, JL (corresponding author), Refinitiv Labs, London, England.; Leidner, JL (corresponding author), Univ Sheffield, Sheffield, S Yorkshire, England.
EM leidner@acm.org
RI Leidner, Jochen L./AAP-6871-2021
OI Leidner, Jochen L./0000-0002-1219-4696
CR Leidner J. L., 2017, P 1 ACL WORKSHOP ETH, P30, DOI [10.18653/v1/W17-1604, DOI 10.18653/V1/W17-1604]
Leidner JL., 2010, Proceedings of the association for computational linguistics (ACL), association for computational linguistics, Stroudsburg, PA, P54
Nugent T, 2016, INT CONF DAT MIN WOR, P1308, DOI [10.1109/ICDMW.2016.176, 10.1109/ICDMW.2016.0191]
Petroni F, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P626, DOI 10.1145/3219819.3219827
Pfeifer Daniel, 2019, Advances in Information Retrieval. 41st European Conference on IR Research, ECIR 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11437), P590, DOI 10.1007/978-3-030-15712-8_38
Plachouras V., 2016, International Conference on Social Media Society, P1, DOI DOI 10.1145/2930971.2930977
Plachouras V, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1121, DOI 10.1145/2911451.2911457
Smiley C., 2016, P 9 INT NAT LANG GEN, P36, DOI DOI 10.18653/V1/W16-6606
NR 8
TC 0
Z9 0
U1 1
U2 11
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-6172-9
PY 2019
BP 1387
EP 1388
DI 10.1145/3331184.3331444
PG 2
WC Computer Science, Information Systems; Information Science & Library
Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BO1LU
UT WOS:000501488900224
DA 2024-09-05
ER
PT J
AU Whipple, EE
Hughes, A
Bowden, S
AF Whipple, Ellen
Hughes, Anne
Bowden, Susan
TI Evaluation of a BSW Research Experience: Improving Student Research
Competency
SO JOURNAL OF TEACHING IN SOCIAL WORK
LA English
DT Article
DE active learning; evaluation; mentoring; research methods; social work
education
ID SOCIAL-WORK EDUCATION
AB This article examines the experience of 24 BSW students in a faculty- mentored undergraduate research experience (URE) over the course of 1 academic year. In particular, we sought to better understand students' self-perceived sense of competency across 15 specific research skills. In addition, we examined the URE's impact on students' knowledge about and attitudes toward research, as well as anxiety levels about research. A cross-sectional pre- and posttest design utilized both quantitative (survey) and qualitative (focus group) methodologies. All of the students' ratings of their 15 research skills improved over time; 3 were statistically significant. Students demonstrated the most gain in evidence-based practice, ability to use statistical software, and data entry and analysis. Both knowledge about and attitude toward research improved significantly. Anxiety levels were surprisingly low. The importance of faculty mentoring is discussed, and suggestions for future research are provided.
C1 [Whipple, Ellen; Hughes, Anne; Bowden, Susan] Michigan State Univ, Sch Social Work, 655 Auditorium Rd,244 Baker Hall, E Lansing, MI 48824 USA.
C3 Michigan State University
RP Whipple, EE (corresponding author), Michigan State Univ, Sch Social Work, 655 Auditorium Rd,244 Baker Hall, E Lansing, MI 48824 USA.
EM whipple@msu.edu
CR Adedokun OA., 2011, J STEM ED INNOVATION, V12
[Anonymous], J BACCALAUREATE SOCI
[Boyer Commission] Boyer Commission on Educating Undergraduates in the Research University, 1998, REINV UND ED BLUEPR
Corcoran K, 2007, RES SOCIAL WORK PRAC, V17, P548, DOI 10.1177/1049731507301036
Epstein I., 1987, Journal of Teaching in Social Work, V1, P71, DOI DOI 10.1300/J067V01N0106
Gambrill E, 2006, RES SOCIAL WORK PRAC, V16, P338, DOI 10.1177/1049731505284205
Green RG, 2001, J SOC WORK EDUC, V37, P333, DOI 10.1080/10437797.2001.10779058
Harder J, 2010, J TEACH SOC WORK, V30, P195, DOI 10.1080/08841231003705404
Howitt S, 2010, HIGH EDUC RES DEV, V29, P405, DOI 10.1080/07294361003601883
Jacobson M., 2006, J BACCALAUREATE SOCI, V12, P87, DOI DOI 10.18084/1084-7219.12.1.87
Kardash CM, 2000, J EDUC PSYCHOL, V92, P191, DOI 10.1037//0022-0663.92.1.191
Maschi T, 2009, J BACCALAUREATE SOCI, V14, P63
Maschi T., 2007, J BACCALAUREATE SOCI, V13, P8
Moore LS, 2008, SOC WORK RES, V32, P231, DOI 10.1093/swr/32.4.231
Rubin D, 2010, J SOC WORK EDUC, V46, P39, DOI 10.5175/JSWE.2010.200800040
Secret M, 2003, J SOC WORK EDUC, V39, P411, DOI 10.1080/10437797.2003.10779146
Tompkins C., 2009, The Journal Of Baccalaureate Social Work, V14, P1
WAINSTOCK SL, 1994, J TEACHING SOCIAL WO, V9, P3, DOI [DOI 10.1300/J067V09N01_, DOI 10.1300/J067V09N01_02]
Zlotnik JL, 2007, RES SOCIAL WORK PRAC, V17, P625, DOI 10.1177/1049731507300168
NR 19
TC 11
Z9 14
U1 0
U2 7
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0884-1233
EI 1540-7349
J9 J TEACH SOC WORK
JI J. Teach. Soc. Work
PY 2015
VL 35
IS 4
BP 397
EP 409
DI 10.1080/08841233.2015.1063568
PG 13
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA V56RN
UT WOS:000210577400004
DA 2024-09-05
ER
PT J
AU Ghosal, T
Tiwary, P
Patton, R
Stahl, C
AF Ghosal, Tirthankar
Tiwary, Piyush
Patton, Robert
Stahl, Christopher
TI Towards establishing a research lineage via identification of
significant citations
SO QUANTITATIVE SCIENCE STUDIES
LA English
DT Article
DE academic influence; citation classification; citation graph; citation
significance detection; machine learning; research lineage
ID MEASURING ACADEMIC INFLUENCE
AB Finding the lineage of a research topic is crucial for understanding the prior state of the art and advancing scientific displacement. The deluge of scholarly articles makes it difficult to locate the most relevant previous work. It causes researchers to spend a considerable amount of time building up their literature list. Citations play a crucial role in discovering relevant literature. However, not all citations are created equal. The majority of the citations that a paper receives provide contextual and background information to the citing papers. In those cases, the cited paper is not central to the theme of citing papers. However, some papers build upon a given paper and further the research frontier. In those cases, the concerned cited paper plays a pivotal role in the citing paper. Hence, the nature of the citation that the former receives from the latter is significant. In this work, we discuss our investigations towards discovering significant citations of a given paper. We further show how we can leverage significant citations to build a research lineage via a significant citation graph. We demonstrate the efficacy of our idea with two real-life case studies. Our experiments yield promising results with respect to the current state of the art in classifying significant citations, outperforming the earlier ones by a relative margin of 20 points in terms of precision. We hypothesize that such an automated system can facilitate relevant literature discovery and help identify knowledge flow for a particular category of papers.
C1 [Ghosal, Tirthankar] Charles Univ Prague, Fac Math & Phys, Inst Formal & Appl Linguist, Prague, Czech Republic.
[Tiwary, Piyush] Indian Inst Sci, Bengaluru, India.
[Patton, Robert; Stahl, Christopher] Oak Ridge Natl Lab, Oak Ridge, TN USA.
C3 Charles University Prague; Indian Institute of Science (IISC) -
Bangalore; United States Department of Energy (DOE); Oak Ridge National
Laboratory
RP Ghosal, T (corresponding author), Charles Univ Prague, Fac Math & Phys, Inst Formal & Appl Linguist, Prague, Czech Republic.
EM ghosal@ufal.mff.cuni.cz
FU U.S. Department of Energy (DOE) [DE-AC0500OR22725]; Oak Ridge Institute
for Science and Education (ORISE); Digital India Corporation under
Ministry of Electronics and Information Technology, Government of India
[VISPHD-MEITY-2518]
FX This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC0500OR22725 with the U.S. Department of Energy (DOE). The views
expressed in the article do not necessarily represent the views of the
DOE or the U.S. government. The U.S. government retains and the
publisher, by accepting the article for publication, acknowledges that
the U.S. government retains a nonexclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for U.S. government purposes. The
Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access
Plan (https://energy.gov/downloads/doe-public-access-plan).TG also
thanks the Oak Ridge Institute for Science and Education (ORISE) for
sponsorship for the Advanced Short-Term Research Opportunity (ASTRO)
program at the Oak Ridge National Laboratory (ORNL). The ASTRO program
is administered by the Oak Ridge Institute for Science and Education
(ORISE) for the U.S. Department of Energy. TG also acknowledges the
Visvesvaraya PhD fellowship award VISPHD-MEITY-2518 from Digital India
Corporation under Ministry of Electronics and Information Technology,
Government of India.
CR Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492
Allan J., 2003, P 26 ANN INT ACM SIG, P314, DOI [DOI 10.1145/860435.860493, 10.1145/860435.860493]
Amjad Z, 2020, INT J ADV COMPUT SC, V11, P621
[Anonymous], 2016, Advances in Neural Information Processing Systems
Ronda-Pupo GA, 2018, SCIENTOMETRICS, V116, P363, DOI 10.1007/s11192-018-2761-3
Athar A., 2011, P ACL 2011 STUD SESS, P81
Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364
Baldi P, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5308
Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5
Bottou L, 2010, COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, P177, DOI 10.1007/978-3-7908-2604-3_16
Camacho-Miñano MDM, 2009, J AM SOC INF SCI TEC, V60, P754, DOI 10.1002/asi.21018
Campos R, 2018, LECT NOTES COMPUT SC, V10772, P806, DOI 10.1007/978-3-319-76941-7_80
Cerda J.H.C., 2009, D LIB MAGAZINE, V15, DOI [10.1045/march2009-canos, DOI 10.1045/MARCH2009-CANOS]
Chae J, 2019, IEEE INT CONF BIG DA, P4498, DOI 10.1109/BigData47090.2019.9006470
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110
Cohan A, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P3586
Colomo-Palacios R., 2010, REDUNDANCY NOVELTY M
Dong C., 2011, P 5 INT JOINT C NAT, P623
Ghosal T., 2018, P 27 INT C COMPUTATI, P2802
Ghosal T, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P3541
Ghosal T, 2021, NAT LANG ENG, V27, P427, DOI 10.1017/S1351324920000194
Ghosal T, 2019, IEEE IJCNN
Ghosal T, 2019, ACM-IEEE J CONF DIG, P237, DOI 10.1109/JCDL.2019.00040
Gilbert C., 2014, Proceedings of the International AAAI Conference on Web and Social Media, V81, P82
Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346
Ihsan I., 2019, CORP J CORPUS LINGUI, V2, P25
Ji C., 2019, EMERGING TECHNOLOGIE, V1984, P214, DOI [10.1007/978-3-030-38778-5_24, DOI 10.1007/978-3-030-38778-5_24]
Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889
Johnston T, 2019, PROCEEDINGS OF 2019 5TH IEEE/ACM WORKSHOP ON MACHINE LEARNING IN HIGH PERFORMANCE COMPUTING ENVIRONMENTS (MLHPC 2019), P9, DOI 10.1109/MLHPC49564.2019.00007
Johnston Travis, 2017, P MACHINE LEARNING H
Karkali M, 2013, LECT NOTES COMPUT SC, V8180, P57, DOI 10.1007/978-3-642-41230-1_5
Kusner MJ, 2015, PR MACH LEARN RES, V37, P957
Laloe F., 2009, EUR NEWS, V40, P26, DOI [10.1051/epn/2009704, DOI 10.1051/EPN/2009704]
Li X., 2005, P 14 ACM INT C INFOR, P744
Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62
Lucchi A, 2015, IEEE T MED IMAGING, V34, P1096, DOI 10.1109/TMI.2014.2376274
Manju G, 2017, INT J INTELL INF TEC, V13, P1, DOI 10.4018/IJIIT.2017010101
McCann B, 2017, ADV NEUR IN, V30
Nazir S., 2020, P INT C ENG EM TECHN, P1, DOI [10.1109/ICEET48479.2020.9048224, DOI 10.1109/ICEET48479.2020.9048224]
Nazir S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228885
Noh H, 2015, IEEE I CONF COMP VIS, P1520, DOI 10.1109/ICCV.2015.178
Patton RM, 2019, IEEE INT CONF BIG DA, P1488, DOI [10.1109/bigdata47090.2019.9006467, 10.1109/BigData47090.2019.9006467]
Patton RM, 2018, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE, AND ANALYSIS (SC'18)
Perier-Camby J., 2019, CEUR WORKSHOP PROC, P125
Pileggi SF, 2018, UNIVERSAL ACCESS INF, V17, P541, DOI 10.1007/s10209-017-0565-5
Pride D., 2020, P ACM IEEE JOINT C D, P337, DOI [DOI 10.1145/3383583.3398617, 10.1145/3383583.3398617]
Pride D, 2017, PRO INT CONF SCI INF, P1357
Pride D, 2017, LECT NOTES COMPUT SC, V10450, P572, DOI 10.1007/978-3-319-67008-9_48
Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x
Radford A., 2018, OPENAI
Rousseau R, 2007, J INFORMETR, V1, P2, DOI 10.1016/j.joi.2006.05.001
Saltz J, 2018, CELL REP, V23, P181, DOI 10.1016/j.celrep.2018.03.086
Schiffman B., 2005, P HUM LANG TECHN C E, P716, DOI 10.3115/1220575.1220665
Shen J., 2016, SCHOL BIG DAT PERSP
Shi C, 2019, IEEE ACCESS, V7, P113853, DOI 10.1109/ACCESS.2019.2932051
Soboroff I., 2005, HLT 05, P105
Soboroff Ian., 2003, Proceedings of The Twelfth Text Retrieval Conference, P38
Tang WY, 2010, EXPERT SYST APPL, V37, P5172, DOI 10.1016/j.eswa.2009.12.075
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Thorsson V, 2019, IMMUNITY, V51, P411, DOI [10.1016/j.immuni.2019.08.004, 10.1016/j.immuni.2018.03.023]
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
Van Noorden R, 2019, NATURE, V572, P578, DOI 10.1038/d41586-019-02479-7
Van Noorden R, 2017, NATURE, V552, P162, DOI 10.1038/d41586-017-08404-0
Vîiu GA, 2016, J INFORMETR, V10, P552, DOI 10.1016/j.joi.2016.04.010
Wang FF, 2019, PRO INT CONF SCI INF, P2528
Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1
West R., 2017, Publishing addiction science, P191, DOI 10.5334/bbd.j
Wilhite AW, 2012, SCIENCE, V335, P542, DOI 10.1126/science.1212540
Xie Y, 2016, INT C COMP SUPP COOP, P539, DOI 10.1109/CSCWD.2016.7566047
Yi Zhang, 2002, Proceedings of SIGIR 2002. Twenty-Fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P81
Young S R., 2017, Proceedings of the Machine Learning on HPC Environments, P1
Young S.R., 2015, P WORKSH MACH LEARN, P1
Zhang F, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101035
Zhang FZ, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1362, DOI 10.1145/2736277.2741095
Zhao F, 2019, SCIENTOMETRICS, V118, P1119, DOI 10.1007/s11192-019-03010-5
Zhao PF, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P315, DOI 10.1145/2911451.2911488
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 78
TC 5
Z9 6
U1 1
U2 12
PU MIT PRESS
PI CAMBRIDGE
PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA
EI 2641-3337
J9 QUANT SCI STUD
JI Quant. Sci. Stud.
PD FEB 4
PY 2022
VL 2
IS 4
BP 1511
EP 1528
DI 10.1162/qss_a_00170
PG 18
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA YU4AT
UT WOS:000751988600016
OA gold
DA 2024-09-05
ER
PT J
AU Zhang, MJ
Li, JT
Huang, QX
Kan, HB
AF Zhang, Mengjie
Li, Jingtao
Huang, Qixuan
Kan, Haibin
TI Learning counterfactual outcomes of MOOC multiple learning behaviors
SO COMPUTER APPLICATIONS IN ENGINEERING EDUCATION
LA English
DT Article
DE action research; assessment tools; causal inference; counterfactual
outcome; research methods
ID PROPENSITY SCORE
AB The absence of counterfactual outcomes presents a fundamental challenge in causal inference. However, existing work typically does not apply to multiple learning behaviors of Massive Open Online Courses. This paper proposes a counterfactual representation learning model based on multitask learning, applicable to any dimension, and any type of treatment. The model consists of a potential outcome network and a propensity score encoder, which shares feature information from the base layer. The propensity scores calculated by the encoder are then utilized in the potential outcome network to mitigate selection bias. Experiments based on real-world data sets demonstrate the superior performance of our model compared with baselines.
C1 [Zhang, Mengjie; Li, Jingtao; Huang, Qixuan] Fudan Univ, Software Sch, Shanghai, Peoples R China.
[Li, Jingtao; Kan, Haibin] Shanghai Engn Res Ctr Blockchain, Shanghai, Peoples R China.
[Kan, Haibin] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China.
[Li, Jingtao] Fudan Univ, Cross 2 Bldg,Jiangwan Campus, Shanghai, Peoples R China.
C3 Fudan University; Fudan University; Fudan University
RP Li, JT (corresponding author), Fudan Univ, Cross 2 Bldg,Jiangwan Campus, Shanghai, Peoples R China.
EM lijt@fudan.edu.cn
RI zhang, mengjie/GRN-9277-2022; HUANG, QIXUAN/JXN-6677-2024; Li,
Jingtao/IST-9889-2023
OI Li, Jingtao/0000-0002-0263-9831
FU Computer Course Teaching Reform Project of Shanghai Municipal Education
Commission "Information Security Course" [202111]; National Natural
Science Foundation of China [62272107, U19A2066]; National Key Ramp;D
Program of China [2019YFB2101703]; Key Ramp;D Program of Guangdong
Province [2020B0101090001]; Undergraduate Key Course construction
Project of Shanghai Municipal Education Commission "Computer Network"
[2019021]; Innovation Action Plan of Shanghai Science and Technology
[21511102200]
FX Computer Course Teaching Reform Project of Shanghai Municipal Education
Commission "Information Security Course", Grant/Award Number: 202111;
National Natural Science Foundation of China, Grant/Award Number:
62272107;U19A2066; National Key R&D Program of China, Grant/Award
Number: 2019YFB2101703; The Key R&D Program of Guangdong Province,
Grant/Award Number: 2020B0101090001; Undergraduate Key Course
construction Project of Shanghai Municipal Education Commission
"Computer Network", Grant/Award Number: 2019021; The Innovation Action
Plan of Shanghai Science and Technology, Grant/Award Number: 21511102200
CR Alaa A. M., 2017, INT C MACH LEARN DEE, P1
[Anonymous], 2018, ARXIV181000656
Borrella I, 2019, L@S '19: PROCEEDINGS OF THE SIXTH (2019) ACM CONFERENCE ON LEARNING @ SCALE, DOI 10.1145/3330430.3333634
Clarke RT, 2007, HYDROL EARTH SYST SC, V11, P408, DOI 10.5194/hess-11-408-2007
Daxberger E, 2021, PR MACH LEARN RES, V139
Fong C, 2018, ANN APPL STAT, V12, P156, DOI 10.1214/17-AOAS1101
Gulen H., 2021, HETEROGENEOUS EFFECT
[何升 He Sheng], 2016, [计算机应用研究, Application Research of Computers], V33, P1399
Hmedna Brahim., 2017, International Journal of Innovation and Applied Studies, V19, P267
Hong Guo, 2021, 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), P63, DOI 10.1109/BigDataSecurityHPSCIDS52275.2021.00022
Imbens GW, 2009, J ECON LIT, V47, P5, DOI 10.1257/jel.47.1.5
Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706
Karimi A.-H., 2020, Advances in Neural Information Processing Systems
Li S., 2017, CHINA ED TECHNOL, V3, P88
Lin WY, 2021, PR MACH LEARN RES, V139
Pang YX, 2018, COMPUT APPL ENG EDUC, V26, P2071, DOI 10.1002/cae.21995
Pardos ZA, 2017, PROCEEDINGS OF THE FOURTH (2017) ACM CONFERENCE ON LEARNING @ SCALE (L@S'17), P23, DOI 10.1145/3051457.3051471
Park Jungwuk, 2021, ADV NEURAL INFORM PR, V34
Pearl J, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P3, DOI 10.1145/3159652.3160601
Prado E. B., 2021, ARXIV PREPRINT ARXIV
Ren Z., 2016, P 9 INT C ED DAT MIN, P484, DOI DOI 10.48550/ARXIV.1605.02269
Ressa Maria, 2021, NOBEL PEACE PRIZE 20
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
Schwab P, 2020, AAAI CONF ARTIF INTE, V34, P5612
Shah D., 2021, By the numbers: MOOCs in 2021, class central
Sunar AS, 2020, COMPUT HUM BEHAV, V107, DOI 10.1016/j.chb.2018.12.013
Tang S, 2017, ADJUNCT PUBLICATION OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), P165, DOI 10.1145/3099023.3099038
Wang HY, 2016, 2016 IEEE 14TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 14TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 2ND INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/DATACOM/CYBERSC, P202, DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2016.53
Wang JX, 2021, PR MACH LEARN RES, V130, P721
Wang X., 2021, DIGIT ED, V7, P68
Wang YR, 2020, COMPUT APPL ENG EDUC, V28, P1421, DOI 10.1002/cae.22310
Xiliang Z., 2017, MOSTLY USEFUL SCI EC
Xiong Feng., 2019, Proceedings of the ACM Turing Celebration Conference-China, P1, DOI DOI 10.1145/3321408.3322855
Xu CX, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P1853, DOI 10.1145/3357384.3357864
Zhan L., 2021, STATIST RES, V38, P130
Zhang K., 2020, ADV NEURAL INFORM PR, V33, P4965
NR 36
TC 0
Z9 0
U1 3
U2 7
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1061-3773
EI 1099-0542
J9 COMPUT APPL ENG EDUC
JI Comput. Appl. Eng. Educ.
PD NOV
PY 2023
VL 31
IS 6
BP 1678
EP 1689
DI 10.1002/cae.22666
EA JUL 2023
PG 12
WC Computer Science, Interdisciplinary Applications; Education, Scientific
Disciplines; Engineering, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Education & Educational Research; Engineering
GA Y7FP1
UT WOS:001036516100001
OA Bronze
DA 2024-09-05
ER
PT J
AU Xie, Y
Seth, I
Rozen, WM
Hunter-Smith, DJ
AF Xie, Yi
Seth, Ishith
Rozen, Warren M. M.
Hunter-Smith, David J. J.
TI Evaluation of the Artificial Intelligence Chatbot on Breast
Reconstruction and Its Efficacy in Surgical Research: A Case Study
SO AESTHETIC PLASTIC SURGERY
LA English
DT Article
DE ChatGPT; Artificial intelligence; Chatbot; Breast reconstruction
AB Background ChatGPT is an open-source artificial intelligence (AI) chatbot that uses deep learning to produce human-like text dialog. Its potential applications in the scientific community are vast; however, its efficacy on performing comprehensive literature searches, data analysis and report writing in aesthetic plastic surgery topics remains unknown. This study aims to evaluate both the accuracy and comprehensiveness of ChatGPT's responses to assess its suitability for use in aesthetic plastic surgery research.Methods Six questions were prompted to ChatGPT on post-mastectomy breast reconstruction. First two questions focused on the current evidence and options for breast reconstruction post-mastectomy, and remaining four questions focused specifically on autologous breast reconstruction. Using the Likert framework, the responses provided by ChatGPT were qualitatively assessed for accuracy and information content by two specialist plastic surgeons with extensive experience in the field.Results ChatGPT provided relevant, accurate information; however, it lacked depth. It could provide no more than a superficial overview in response to more esoteric questions and generated incorrect references. It created non-existent references, cited wrong journal and date, which poses a significant challenge in maintaining academic integrity and caution of its use in academia.Conclusion While ChatGPT demonstrated proficiency in summarizing existing knowledge, it created fictitious references which poses a significant concern of its use in academia and healthcare. Caution should be exercised in interpreting its responses in the aesthetic plastic surgical field and should only be used for such with sufficient oversight.
C1 [Xie, Yi; Seth, Ishith; Rozen, Warren M. M.; Hunter-Smith, David J. J.] Peninsula Hlth, Dept Plast Surg, Melbourne, Vic 3199, Australia.
[Seth, Ishith; Rozen, Warren M. M.; Hunter-Smith, David J. J.] Monash Univ, Fac Med, Melbourne, Vic 3004, Australia.
C3 Peninsula Health; Monash University
RP Seth, I (corresponding author), Peninsula Hlth, Dept Plast Surg, Melbourne, Vic 3199, Australia.; Seth, I (corresponding author), Monash Univ, Fac Med, Melbourne, Vic 3004, Australia.
EM ishithseth1@gmail.com
RI Seth, Ishith/IXX-0725-2023
OI Seth, Ishith/0000-0001-5444-8925
FU CAUL
FX Open Access funding enabled and organized by CAUL and its Member
Institutions. No authors have received any funding orsupport.
CR Al-Ghazal SK, 2000, EUR J SURG ONCOL, V26, P17, DOI 10.1053/ejso.1999.0733
Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7
Broyles JM, 2022, PRS-GLOB OPEN, V10, DOI 10.1097/GOX.0000000000004180
Cordova LZ, 2019, GLAND SURG, V8, P441, DOI 10.21037/gs.2019.07.02
Devlin J., 2018, ARXIV
Else H, 2023, NATURE, V613, P423, DOI 10.1038/d41586-023-00056-7
Extance A, 2018, NATURE, V561, P273, DOI 10.1038/d41586-018-06617-5
Frey JD, 2019, PLAST RECONSTR SURG, V143, p404E, DOI 10.1097/PRS.0000000000005290
Huang JT, 2023, J DIABETES SCI TECHN, V17, P853, DOI 10.1177/19322968231161095
Itahashi K, 2018, FRONT MED-LAUSANNE, V5, DOI 10.3389/fmed.2018.00305
King MR, 2023, CELL MOL BIOENG, V16, P1, DOI 10.1007/s12195-022-00754-8
Macdonald C, 2023, J GLOB HEALTH, V13, DOI 10.7189/jogh.13.01003
Panchal H, 2017, PLAST RECONSTR SURG, V140, p7S, DOI 10.1097/PRS.0000000000003941
Radford A., 2018, OPENAI
Seth I, 2021, BREAST CANCER-TARGET, V13, P711, DOI 10.2147/BCTT.S256393
van Hartskamp M, 2019, INTERACT J MED RES, V8, DOI 10.2196/12100
Xie Y, 2023, AESTHET PLAST SURG, V47, P1985, DOI 10.1007/s00266-023-03338-7
NR 17
TC 16
Z9 16
U1 3
U2 26
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 0364-216X
EI 1432-5241
J9 AESTHET PLAST SURG
JI Aesthet. Plast. Surg.
PD DEC
PY 2023
VL 47
IS 6
BP 2360
EP 2369
DI 10.1007/s00266-023-03443-7
EA JUN 2023
PG 10
WC Surgery
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Surgery
GA MM6Z2
UT WOS:001010426300003
PM 37314466
OA hybrid
DA 2024-09-05
ER
PT J
AU Deike, M
AF Deike, Michael
TI Evaluating the performance of ChatGPT and Perplexity AI in Business
Reference
SO JOURNAL OF BUSINESS & FINANCE LIBRARIANSHIP
LA English
DT Article
DE Artificial intelligence; assessment; business reference services;
business libraries; business librarians; ChatGPT; Perplexity AI;
research assistance
AB The Thomas Mahaffey Jr. Business Library conducted a study to assess the performance of two competing generative AI products, ChatGPT and Perplexity AI, in answering business reference questions. The study used a data set consisting of a sample of anonymized reference questions submitted through the library's ServiceNow ticketing system between January 2018 and May 2022. The questions were input as prompts to each competing AI. Responses were collected and evaluated by their performance in four separate dimensions relevant to business reference: accessibility, library referral, quality, and serendipity. Each dimension was scored on a 0-5 Likert scale resulting in a final composite performance score for each AI. Results showed similar and underwhelming performance between each AI at the composite level. Analysis of scores in each individual scoring dimension showed greater variance in the score distributions between the competing AI. Through the evaluation process, key strengths, weaknesses, and trends emerged between each AI. The study provides a quantitative measure of where generative AI stands in its capabilities in a business library reference context, and it recommends, based on the results of the evaluation, making use of generative AI in its current iteration as a supplementary tool for business reference as opposed to considering it as a replacement.
C1 [Deike, Michael] Univ Notre Dame, Notre Dame, IN 46556 USA.
C3 University of Notre Dame
RP Deike, M (corresponding author), Univ Notre Dame, Notre Dame, IN 46556 USA.
EM mdeike@nd.edu
CR Adetayo A. J., 2023, Internet Reference Services Quarterly, V27, P131, DOI [https://doi.org/10.1080/10875301.2023.2203681, DOI 10.1080/10875301.2023.2203681]
Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179
Buckley A., 2019, BUSINESS RES COMPETE
Chen L., 2023, arXiv
Chen X., 2023, Internet Reference Services Quarterly, V27, P1, DOI [10.1080/10875301.2023.2181262, DOI 10.1080/10875301.2023.2181262]
Drapkin A., 2023, DOES CHATGPT SAVE MY
Fostikov A., 2023, PREPRINT, DOI [10.17613/9t6p-2229, DOI 10.17613/9T6P-2229]
Giray L, 2023, ANN BIOMED ENG, V51, P2629, DOI 10.1007/s10439-023-03272-4
Gupta V., 2023, Internet Reference Services Quarterly, P1, DOI [10.1080/10875301.2023.2240773, DOI 10.1080/10875301.2023.2240773]
Houston AB, 2023, TECH SERV Q, V40, P76, DOI 10.1080/07317131.2023.2187110
Jalil S., 2023, CHATGPT SOFTWARE TES, DOI [10.1109/ICSTW58534.2023.00078, DOI 10.1109/ICSTW58534.2023.00078]
Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410
Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009
Lund BD, 2020, COLL RES LIBR, V81, P865
Marr B., 2023, Forbes
OpenAI, 2023, GPT-4 is OpenAI's most advanced system, producing safer and more useful responses
Panda Subhajit, 2023, Library Hi Tech News, P22, DOI 10.1108/LHTN-02-2023-0032
Panda Subhajit, 2022, Library Hi Tech News, P12, DOI 10.1108/LHTN-11-2021-0081
perplexity-ai.notion, 2023, PERPLEXITY FAQS
Roumeliotis KI, 2023, FUTURE INTERNET, V15, DOI 10.3390/fi15060192
Southern M. G., 2023, SEARCH ENGINE J
United States Census Bureau, 2023, DID AM FACTFINDER GO
Whitlatch J. B., 2008, PROFESSIONAL COMPETE
NR 23
TC 2
Z9 2
U1 30
U2 30
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0896-3568
EI 1547-0644
J9 J BUS FINANC LIBR
JI J. Bus. Financ. Libr.
PD APR 2
PY 2024
VL 29
IS 2
BP 125
EP 154
DI 10.1080/08963568.2024.2317534
EA FEB 2024
PG 30
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA LI0S1
UT WOS:001170173900001
DA 2024-09-05
ER
PT J
AU Bao, T
Gao, JS
Wang, JY
Chen, Y
Xu, F
Qiao, GZ
Li, F
AF Bao, Tong
Gao, Jiasi
Wang, Jinyi
Chen, Yang
Xu, Feng
Qiao, Guanzhong
Li, Fei
TI A global bibliometric and visualized analysis of gait analysis and
artificial intelligence research from 1992 to 2022
SO FRONTIERS IN ROBOTICS AND AI
LA English
DT Article
DE gait analysis; artificial intelligence (AI); wearable device; sensor;
bibliometric analysis
ID ANTERIOR CRUCIATE LIGAMENT; CEREBRAL-PALSY; PARKINSONS-DISEASE;
PATHOLOGICAL GAIT; CLASSIFICATION; CHILDREN; MOVEMENT; WALKING;
RECOGNITION; PARAMETERS
AB Gait is an important basic function of human beings and an integral part of life. Many mental and physical abnormalities can cause noticeable differences in a person's gait. Abnormal gait can lead to serious consequences such as falls, limited mobility and reduced life satisfaction. Gait analysis, which includes joint kinematics, kinetics, and dynamic Electromyography (EMG) data, is now recognized as a clinically useful tool that can provide both quantifiable and qualitative information on performance to aid in treatment planning and evaluate its outcome. With the assistance of new artificial intelligence (AI) technology, the traditional medical environment has undergone great changes. AI has the potential to reshape medicine, making gait analysis more accurate, efficient and accessible. In this study, we analyzed basic information about gait analysis and AI articles that met inclusion criteria in the WoS Core Collection database from 1992-2022, and the VosViewer software was used for web visualization and keyword analysis. Through bibliometric and visual analysis, this article systematically introduces the research status of gait analysis and AI. We introduce the application of artificial intelligence in clinical gait analysis, which affects the identification and management of gait abnormalities found in various diseases. Machine learning (ML) and artificial neural networks (ANNs) are the most often utilized AI methods in gait analysis. By comparing the predictive capability of different AI algorithms in published studies, we evaluate their potential for gait analysis in different situations. Furthermore, the current challenges and future directions of gait analysis and AI research are discussed, which will also provide valuable reference information for investors in this field.
C1 [Bao, Tong; Wang, Jinyi] Tsinghua Univ, Sch Med, Beijing, Peoples R China.
[Bao, Tong; Li, Fei] Tsinghua Univ, Inst Precis Med, Beijing, Peoples R China.
[Bao, Tong; Wang, Jinyi; Chen, Yang; Xu, Feng; Qiao, Guanzhong; Li, Fei] Tsinghua Univ, Affiliated Hosp 1, Orthoped Dept, Beijing, Peoples R China.
[Gao, Jiasi] Tsinghua Univ, Inst AI Ind Res, Beijing, Peoples R China.
C3 Tsinghua University; Tsinghua University; Tsinghua University; Tsinghua
University
RP Li, F (corresponding author), Tsinghua Univ, Inst Precis Med, Beijing, Peoples R China.; Li, F (corresponding author), Tsinghua Univ, Affiliated Hosp 1, Orthoped Dept, Beijing, Peoples R China.
EM lifeisulker@126.com
FU Tsinghua University Initiative Scientific Research Program of Precision
Medicine [2022TS008]
FX The authors declare financial support was received for the research,
authorship, and/or publication of this article. Supported by Tsinghua
University Initiative Scientific Research Program of Precision Medicine
(2022TS008).
CR Alaqtash M, 2011, IEEE ENG MED BIO, P453, DOI 10.1109/IEMBS.2011.6090063
Alaqtash M, 2011, ENG APPL ARTIF INTEL, V24, P1018, DOI 10.1016/j.engappai.2011.04.010
Alharthi AS, 2019, IEEE SENS J, V19, P9575, DOI 10.1109/JSEN.2019.2928777
[Anonymous], BIOMECHANICS MOTOR C
Anwary AR, 2019, IEEE J BIOMED HEALTH, V23, P2021, DOI 10.1109/JBHI.2018.2875812
Arnold AS, 2006, GAIT POSTURE, V23, P273, DOI 10.1016/j.gaitpost.2005.03.003
Baker R, 2006, J NEUROENG REHABIL, V3, DOI 10.1186/1743-0003-3-4
Begg R., 2006, AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, V29, P188, DOI 10.1007/BF03178892
Begg RK, 2005, IEEE T BIO-MED ENG, V52, P828, DOI 10.1109/TBME.2005.845241
Bergamini E, 2014, SENSORS-BASEL, V14, P18625, DOI 10.3390/s141018625
Berlinberg A, 2019, INT J DERMATOL, V58, P1023, DOI 10.1111/ijd.14261
Bin Altaf MU, 2015, IEEE T BIO-MED ENG, V62, P2001, DOI 10.1109/TBME.2015.2410142
Brandt JS, 2010, AM J OBSTET GYNECOL, V203, DOI 10.1016/j.ajog.2010.07.025
Brassard P, 2014, FRONT PHYSIOL, V5, DOI 10.3389/fphys.2014.00204
Brognara L, 2019, DISEASES-BASEL, V7, DOI 10.3390/diseases7010018
Camomilla V, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18030873
Casamassima F, 2014, SENSORS-BASEL, V14, P6229, DOI 10.3390/s140406229
Celik Y, 2021, MED ENG PHYS, V87, P9, DOI 10.1016/j.medengphy.2020.11.005
Chan HP, 2020, ADV EXP MED BIOL, V1213, P3, DOI 10.1007/978-3-030-33128-3_1
Chang PC, 2009, 2009 11TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2009), P88, DOI 10.1109/ISM.2009.81
Chen KY, 2005, MED SCI SPORT EXER, V37, pS490, DOI 10.1249/01.mss.0000185571.49104.82
Clarivate, 2023, J CITATION REPORTS
Cooper C, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0545-3
Corazza S, 2006, ANN BIOMED ENG, V34, P1019, DOI 10.1007/s10439-006-9122-8
Costa A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154136
Cunningham CB, 2010, J EXP BIOL, V213, P790, DOI 10.1242/jeb.038984
Dehzangi O, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17122735
Devanne M, 2016, INT C PATT RECOG, P895, DOI 10.1109/ICPR.2016.7899749
Dobson F, 2007, GAIT POSTURE, V25, P140, DOI 10.1016/j.gaitpost.2006.01.003
Duan P, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7111130
Duffy CM, 1996, J PEDIATR ORTHOPED, V16, P786, DOI 10.1097/01241398-199611000-00016
Souza ADE, 2018, J CONTROL AUTOM ELEC, V29, P586, DOI 10.1007/s40313-018-0401-z
Farah JD, 2019, J NEUROENG REHABIL, V16, DOI 10.1186/s12984-019-0486-z
Farmer S, 2014, J NEURAL ENG, V11, DOI 10.1088/1741-2560/11/5/056027
Nicolas-Alonso LF, 2012, SENSORS-BASEL, V12, P1211, DOI 10.3390/s120201211
Fleischer C, 2008, IEEE T ROBOT, V24, P872, DOI 10.1109/TRO.2008.926860
Gage Jr, 2004, CLIN DEV MED, P42
Galna B, 2013, GAIT POSTURE, V37, P580, DOI 10.1016/j.gaitpost.2012.09.025
Ganea R, 2012, J CHILD NEUROL, V27, P30, DOI 10.1177/0883073811413581
Gao Q, 2020, ARCH OSTEOPOROS, V15, DOI 10.1007/s11657-020-0705-z
García-Cossio E, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137910
Gil CR, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9030502
Goh SK, 2018, IEEE T NEUR SYS REH, V26, P1858, DOI 10.1109/TNSRE.2018.2864119
Graham HK, 2007, J BONE JOINT SURG BR, V89B, P993, DOI 10.1302/0301-620X.89B8
Guo GD, 2017, NEUROINFORMATICS, V15, P13, DOI 10.1007/s12021-016-9313-x
Harle R, 2012, COMPUT COMMUN, V35, P650, DOI 10.1016/j.comcom.2011.03.019
Hasson CJ, 2015, FRONT HUM NEUROSCI, V9, DOI 10.3389/fnhum.2015.00459
Hecht GG, 2022, J AM ACAD ORTHOP SUR, V30, pE1366, DOI 10.5435/JAAOS-D-21-00785
Heinen M. R., 2006, Advances in artificial intelligence-iberamia-sbia 2006, proceedings
Herold F, 2018, J CLIN MED, V7, DOI 10.3390/jcm7120466
Hong KS, 2018, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00246
Hong KS, 2017, FRONT NEUROROBOTICS, V11, DOI 10.3389/fnbot.2017.00035
Ilesan RR, 2022, BIOSENSORS-BASEL, V12, DOI 10.3390/bios12040189
Inam S, 2010, AMYOTROPH LATERAL SC, V11, P558, DOI 10.3109/17482961003792958
Sburlea AI, 2015, J NEUROENG REHABIL, V12, DOI 10.1186/s12984-015-0087-4
Jarchi Delaram, 2018, IEEE Rev Biomed Eng, V11, P177, DOI 10.1109/RBME.2018.2807182
Jun K, 2020, IEEE ACCESS, V8, P139881, DOI 10.1109/ACCESS.2020.3013029
Kaczmarczyk K, 2009, GAIT POSTURE, V30, P207, DOI 10.1016/j.gaitpost.2009.04.010
Kaur R, 2021, IEEE T BIO-MED ENG, V68, P2666, DOI 10.1109/TBME.2020.3048142
Khan H, 2021, FRONT HUM NEUROSCI, V14, DOI 10.3389/fnhum.2020.613254
Khan RA, 2018, J NEUROENG REHABIL, V15, DOI 10.1186/s12984-018-0346-2
Khera Preeti, 2020, Journal of Medical Engineering & Technology, V44, P441, DOI 10.1080/03091902.2020.1822940
Klöpfer-Krämer I, 2020, INJURY, V51, pS90, DOI 10.1016/j.injury.2019.11.011
Kluge F, 2018, GAIT POSTURE, V66, P194, DOI 10.1016/j.gaitpost.2018.08.026
Knippenberg E, 2017, J NEUROENG REHABIL, V14, DOI 10.1186/s12984-017-0270-x
Lai DTH, 2009, IEEE T INF TECHNOL B, V13, P687, DOI 10.1109/TITB.2009.2022913
Lazarou I, 2018, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00014
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Leightley D, 2017, IEEE J BIOMED HEALTH, V21, P939, DOI 10.1109/JBHI.2016.2558540
Li FM, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16111809
Li TY, 2020, INFORM FUSION, V60, P41, DOI 10.1016/j.inffus.2020.02.001
Lin F, 2016, IEEE T IND INFORM, V12, P2281, DOI 10.1109/TII.2016.2585643
Liu DX, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), P1058, DOI 10.1109/ROBIO.2016.7866465
Liu ZY, 2006, IEEE T PATTERN ANAL, V28, P863, DOI 10.1109/TPAMI.2006.122
Lu HP, 2008, IEEE T NEURAL NETWOR, V19, P18, DOI 10.1109/TNN.2007.901277
Nguyen LV, 2016, IEEE T HUM-MACH SYST, V46, P822, DOI 10.1109/THMS.2016.2586741
Madgwick SOH, 2011, INT C REHAB ROBOT
Mahlknecht P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069627
Mahony R, 2008, IEEE T AUTOMAT CONTR, V53, P1203, DOI 10.1109/TAC.2008.923738
Mao GZ, 2018, SCI TOTAL ENVIRON, V635, P1081, DOI 10.1016/j.scitotenv.2018.04.173
Mazilu S., 2012, 2012 6th International Conference on Pervasive Computing Technologies for Healthcare, P123, DOI 10.4108/icst.pervasivehealth.2012.248680
Melin R, 2003, J REHABIL MED, V35, P84, DOI 10.1080/16501970306119
Mirelman A, 2018, HAND CLINIC, V159, P119, DOI 10.1016/B978-0-444-63916-5.00007-0
Moed HF, 2009, ARCH IMMUNOL THER EX, V57, P13, DOI 10.1007/s00005-009-0001-5
Moore MM, 2003, IEEE T NEUR SYS REH, V11, P162, DOI 10.1109/TNSRE.2003.814433
Morshed B.I., 2014, J. Bioeng. Biomed. Sci, V4, P1, DOI DOI 10.4172/2155-9538.1000128
Mündermann L, 2006, J NEUROENG REHABIL, V3, DOI 10.1186/1743-0003-3-6
Muro-de-la-Herran A, 2014, SENSORS-BASEL, V14, P3362, DOI 10.3390/s140203362
Nandy A, 2016, NEUROCOMPUTING, V191, P117, DOI 10.1016/j.neucom.2016.01.002
Nazeer H, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/abb417
Nijboer F, 2008, J NEUROSCI METH, V167, P43, DOI 10.1016/j.jneumeth.2007.02.009
OUNPUU S, 1993, J PEDIATR ORTHOPED, V13, P331, DOI 10.1097/01241398-199305000-00011
Palmieri-Smith RM, 2013, J ATHL TRAINING, V48, P186, DOI 10.4085/1062-6050-48.2.10
Patel S, 2012, J NEUROENG REHABIL, V9, DOI 10.1186/1743-0003-9-21
Paulo J, 2019, INTEL SERV ROBOT, V12, P255, DOI 10.1007/s11370-019-00280-z
Perry J, 2010, GAIT ANALYSIS: NORMAL AND PATHOLOGICAL FUNCTION, SECOND EDITION, P1
Pfurtscheller G, 2010, FRONT NEUROSCI-SWITZ, V4, DOI 10.3389/fnpro.2010.00003
Pinti P, 2019, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00505
Pla A, 2017, NEUROCOMPUTING, V268, P109, DOI 10.1016/j.neucom.2016.11.084
Prakash C, 2018, ARTIF INTELL REV, V49, P1, DOI 10.1007/s10462-016-9514-6
Prasanth H, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21082727
Pratheepan Y, 2009, 2009 13TH INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, P111, DOI 10.1109/IMVIP.2009.27
Prentice SD, 2001, J ELECTROMYOGR KINES, V11, P19, DOI 10.1016/S1050-6411(00)00038-9
Qiu S, 2018, MICROMACHINES-BASEL, V9, DOI 10.3390/mi9090442
Ramesh AN, 2004, ANN ROY COLL SURG, V86, P334, DOI 10.1308/147870804290
Rea M, 2014, NEUROREHAB NEURAL RE, V28, P564, DOI 10.1177/1545968313520410
Rehman RZU, 2020, IEEE OPEN J ENG MED, V1, P65, DOI 10.1109/OJEMB.2020.2966295
Rigoll G., 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), P342, DOI 10.1109/AFGR.2000.840657
Saab M, 2019, ORTHOP TRAUMATOL-SUR, V105, P1439, DOI 10.1016/j.otsr.2019.09.018
Sabatini AM, 2011, SENSORS-BASEL, V11, P1489, DOI 10.3390/s110201489
Samson MM, 2001, AGING CLIN EXP RES, V13, P16, DOI 10.1007/BF03351489
Sander K, 2012, ORTHOPADE, V41, P802, DOI 10.1007/s00132-012-1947-2
Sarkodie SA, 2019, SCI TOTAL ENVIRON, V649, P128, DOI 10.1016/j.scitotenv.2018.08.276
Schollhorn W., 2008, Routledge Handbook of Biomechanics and Human Movement Science, P50
Semwal VB, 2015, ROBOT AUTON SYST, V63, P122, DOI 10.1016/j.robot.2014.09.001
Senanayake CM, 2010, IEEE T INF TECHNOL B, V14, P1173, DOI 10.1109/TITB.2010.2058813
Senanayake SMNA, 2014, APPL SOFT COMPUT, V20, P127, DOI 10.1016/j.asoc.2013.11.010
Seniorou M, 2007, GAIT POSTURE, V26, P475, DOI 10.1016/j.gaitpost.2007.07.008
Shibasaki Hiroshi, 2010, Brain and Nerve (Tokyo), V62, P1109
Shim HM, 2015, J CENT SOUTH UNIV, V22, P1801, DOI 10.1007/s11771-015-2698-0
Shull PB, 2014, GAIT POSTURE, V40, P11, DOI 10.1016/j.gaitpost.2014.03.189
Sobral H, 2018, IEEE ANN INT CONF CY, P701, DOI 10.1109/CYBER.2018.8688159
Sprager S, 2015, SENSORS-BASEL, V15, P22089, DOI 10.3390/s150922089
Stöggl T, 2017, J SPORT SCI, V35, P196, DOI 10.1080/02640414.2016.1161205
SUTHERLAND DH, 1980, J BONE JOINT SURG AM, V62, P336, DOI 10.2106/00004623-198062030-00004
Sutherland DH, 2002, GAIT POSTURE, V16, P159, DOI 10.1016/S0966-6362(02)00004-8
Sutherland DH, 2001, GAIT POSTURE, V14, P61, DOI 10.1016/S0966-6362(01)00100-X
Szczerbik E, 2011, ACTA BIOENG BIOMECH, V13, P43
Taborri J, 2014, SENSORS-BASEL, V14, P16212, DOI 10.3390/s140916212
Takakusaki K, 2013, MOVEMENT DISORD, V28, P1483, DOI 10.1002/mds.25669
Tang N, 2021, ORTHOP J SPORTS MED, V9, DOI 10.1177/2325967120976372
Tao WJ, 2012, SENSORS-BASEL, V12, P2255, DOI 10.3390/s120202255
Ngo TT, 2014, PATTERN RECOGN, V47, P228, DOI 10.1016/j.patcog.2013.06.028
Theologis TN, 2011, CHILDREN'S NEUROMUSCULAR DISORDERS, P1
Thongsook A, 2019, 2019 FIRST INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION, CONTROL, ARTIFICIAL INTELLIGENCE, AND ROBOTICS (ICA-SYMP 2019), P69, DOI [10.1109/ica-symp.2019.8646253, 10.1109/ICA-SYMP.2019.8646253]
Troje NF, 2002, J VISION, V2, P371, DOI 10.1167/2.5.2
Van Gestel L, 2011, RES DEV DISABIL, V32, P2542, DOI 10.1016/j.ridd.2011.07.004
Verghese J, 2010, J NEUROL, V257, P392, DOI 10.1007/s00415-009-5332-y
Vikara D, 2020, UPSTREAM OIL GAS TEC, V4, DOI 10.1016/j.upstre.2020.100007
Sang VNT, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18113612
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Washabaugh EP, 2017, GAIT POSTURE, V55, P87, DOI 10.1016/j.gaitpost.2017.04.013
Wei WC, 2018, IEEE INT CONF HEALT, P180, DOI 10.1109/ICHI.2018.00028
Whittle M. W., 2007, Gait Analysis: An Introduction, V4th
Williams G, 2014, BRAIN INJURY, V28, P610
Xiong BP, 2019, IEEE ACCESS, V7, P29973, DOI 10.1109/ACCESS.2019.2900591
Yang CC, 2010, SENSORS-BASEL, V10, P7772, DOI 10.3390/s100807772
Yang CP, 2016, OPTIK, V127, P1797, DOI 10.1016/j.ijleo.2015.11.084
Yang L, 2017, J SEMICOND, V38, DOI 10.1088/1674-4926/38/10/105004
Yoo TK, 2013, IEEE ENG MED BIO, P192, DOI 10.1109/EMBC.2013.6609470
Yuwono M, 2014, APPL SOFT COMPUT, V14, P72, DOI 10.1016/j.asoc.2013.07.027
Zago M, 2018, GAIT POSTURE, V61, P408, DOI 10.1016/j.gaitpost.2018.02.007
Zeng W, 2020, SOFT COMPUT, V24, P1851, DOI 10.1007/s00500-019-04017-z
Zhang J, 2014, ANN BIOMED ENG, V42, P600, DOI 10.1007/s10439-013-0917-0
Zhao HH, 2017, AUTON ROBOT, V41, P725, DOI 10.1007/s10514-016-9565-1
Zhu ML, 2019, ACS NANO, V13, P1940, DOI 10.1021/acsnano.8b08329
Zhu YL, 2021, ORTHOP TRAUMATOL-SUR, V107, DOI 10.1016/j.otsr.2021.102988
NR 157
TC 2
Z9 2
U1 6
U2 12
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 2296-9144
J9 FRONT ROBOT AI
JI Front. Robot. AI
PD NOV 17
PY 2023
VL 10
AR 1265543
DI 10.3389/frobt.2023.1265543
PG 23
WC Robotics
WE Emerging Sources Citation Index (ESCI)
SC Robotics
GA Z4IG7
UT WOS:001111722400001
PM 38047061
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Butkute, V
Lapin, K
AF Butkute, Viktorija
Lapin, Kristina
BE Targamadze, A
Butleris, R
Butkiene, R
TI USABILITY HEURISTICS FOR ONLINE VIRTUAL WORLDS
SO INFORMATION TECHNOLOGIES' 2010
SE Information Technologies Conference Proceedings
LA English
DT Proceedings Paper
CT 16th International conference on Information and Software Technologies
(IT 2010)
CY APR 21-23, 2010
CL Kaunas, LITHUANIA
DE virtual world; usability evaluation; heuristic evaluations; online
communication and collaboration; user research; user needs
AB This paper explores a set of usability heuristics developed for the EU FP7 ICT VirtualLife project. The purpose of the project is to create a three-dimensional online virtual world - in the form of a safe, democratic and legally ruled collaboration platform. 3D virtual worlds are a relatively new expression of online communication and collaboration tools. The most essential aspect - usability - still is in tentative phase. Consequently, conventional usability heuristics are not suitable for 3D virtual worlds. The paper identifies major differences between 3D virtual worlds and other online collaboration and communication tools. Specific user needs are discussed considering the users' real experience, mistakes and problems.
C1 [Butkute, Viktorija; Lapin, Kristina] Vilnius State Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania.
C3 Vilnius University
RP Butkute, V (corresponding author), Vilnius State Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania.
EM Viktorija.Butkute@mif.stud.vu.lt; Kristina.Lapin@mif.vu.lt
RI Lapin, Kristina/ISS-9336-2023
CR [Anonymous], 2003, HUM FAC ER
Bogdanov D., 2009, EBOOK P 2009 NEM SUM, P124
Bradner E., P EUR COMP SUPP COOP
Cyras V., 2009, INT S METH ART INT A
Dourish P., 1992, CHI '92 Conference Proceedings. ACM Conference on Human Factors in Computing Systems. Striking a Balance, P541, DOI 10.1145/142750.142982
Eastgate R. M., 2001, THESIS U NOTTINGHAM
FITZPATRICK G, 1998, CHI 98 C SUMM HUM FA, P281
Geumacs, 2008, VIRT LIF D2 1 END US
Knudtzon K., 2002, Social and cultural theories
Nielsen J., 1990, SIGCHI Bulletin, P249
Nielsen J., 1994, Usability Inspection Methods Computer, P413, DOI [10.1145/259963.260531, DOI 10.1145/259963.260531]
Preece J., 2003, HUM FAC ER, P596
Preece J., 2002, INTERACTION DESIGN H, P105
Schroder H., 2002, VIRTUAL COMMUNITY DE
Sutcliffe A, 2004, INTERACT COMPUT, V16, P831, DOI 10.1016/j.intcom.2004.05.001
University of Minnesota's Collaborative Wiki, 2008, DES GUID
Villanueva R., 2004, P 16 ANN C SPAT INF
WHITTAKER S, 1997, WIDENING NET
Williams S. D., 2008, STC UUX COMMUNITY NE, V13
NR 19
TC 0
Z9 0
U1 0
U2 2
PU KAUNAS UNIV TECHNOLOGY PRESS
PI KAUNAS
PA K DONELAICIO 73, KAUNAS LT 3006, LITHUANIA
SN 2029-0020
J9 INFORM TECHNOL C PR
PY 2010
BP 285
EP 291
PG 7
WC Computer Science, Information Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BDN77
UT WOS:000314082000036
DA 2024-09-05
ER
PT J
AU Liu, XY
Zhu, HR
AF Liu, Xueying
Zhu, Haoran
TI Linguistic positivity in soft and hard disciplines: temporal dynamics,
disciplinary variation, and the relationship with research impact
SO SCIENTOMETRICS
LA English
DT Article
DE Linguistic positivity; Sentiment analysis; Disciplinary variation;
Research impact
ID ARTICLES; SCIENCE; SENTIMENT; LANGUAGE; CITATION; QUALITY; PUBLISH; HYPE
AB Previous studies have investigated the use of positive/negative language in academic discourse, and have found a tendency toward using more positive language in academic writing. However, little is known about whether the features and dynamics of linguistic positivity vary across disciplines. In addition, the relationship between linguistic positivity and research impact deserves further evaluation. To address these issues, the present study investigated linguistic positivity in academic writing from a cross-disciplinary perspective. Based on a 111-million-word corpus of research article abstracts collected from the Web of Science, the study examined the diachronic trends of positive/negative language in eight academic disciplines, and explored the relationship between linguistic positivity and citation counts. The results demonstrated that the increase in linguistic positivity is a common phenomenon across the examined academic disciplines. In addition, hard disciplines showed a higher and faster-growing degree of linguistic positivity compared with soft disciplines. Last, a significant positive correlation was identified between citation counts and the degree of linguistic positivity. Reasons for the temporal dynamics and disciplinary variation of linguistic positivity were explored, and implications for the scientific community were discussed.
C1 [Liu, Xueying; Zhu, Haoran] Huazhong Univ Sci & Technol, 1037 Luoyu Rd, Wuhan, Peoples R China.
C3 Huazhong University of Science & Technology
RP Zhu, HR (corresponding author), Huazhong Univ Sci & Technol, 1037 Luoyu Rd, Wuhan, Peoples R China.
EM hrzhu@hust.edu.cn
RI Haoran, Zhu/GPW-7084-2022
FU Humanities and Social Sciences Youth Foundation, Ministry of Education
of the People's Republic of China [21YJC740085]
FX This study was supported by Humanities and Social Sciences Youth
Foundation, Ministry of Education of the People's Republic of China
(Grant No. 21YJC740085).
CR Afros E, 2009, ENGL SPECIF PURP, V28, P58, DOI 10.1016/j.esp.2008.09.001
Alluqmani A, 2018, SCIENTOMETRICS, V115, P1071, DOI 10.1007/s11192-018-2688-8
[Anonymous], 2017, NATURE, V551, P414, DOI 10.1038/d41586-017-07325-2
[Anonymous], 2015, NATURE, V521, P259, DOI 10.1038/521259a
Ball P., 2015, NATURE NEWS, DOI [10.1038/nature.2015.19024, DOI 10.1038/NATURE.2015.19024]
Bednarek M, 2021, MEDIA INT AUST, V181, P131, DOI 10.1177/1329878X20947124
Biagioli M, 2016, NATURE, V535, P201, DOI 10.1038/535201a
Boeckx C, 2005, LINGUIST REV, V22, P447, DOI 10.1515/tlir.2005.22.2-4.447
Bordignon F, 2021, LEARN PUBL, V34, P622, DOI 10.1002/leap.1411
Boyack KW, 2005, ISSI 2005: Proceedings of the 10th International Conference of the International Society for Scientometrics and Informetrics, Vols 1 and 2, P335
Bradley A, 2019, INT GAMBL STUD, V19, P451, DOI 10.1080/14459795.2019.1606927
Browman HI, 1999, MAR ECOL PROG SER, V191, P301, DOI 10.3354/meps191301
Cao XK, 2021, LEARN PUBL, V34, P82, DOI 10.1002/leap.1322
Casal JE, 2021, J ENGL ACAD PURP, V52, DOI 10.1016/j.jeap.2021.100996
Caulfield T, 2012, PUBLIC HEALTH GENOM, V15, P209, DOI 10.1159/000336533
Caulfield T, 2016, SCIENCE, V352, P776, DOI 10.1126/science.aaf4620
Chen BK, 2020, SCIENTOMETRICS, V122, P1769, DOI 10.1007/s11192-020-03361-4
Degaetano-Ortlieb S, 2014, LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P1327
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Dodds P.S., 2015, P NAT AC SCI US AM
Doyle J, 2015, HIGH EDUC RES DEV, V34, P671, DOI 10.1080/07294360.2015.1025467
Dwan K, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003081
El Ouardighi F, 2010, EUR J OPER RES, V206, P329, DOI 10.1016/j.ejor.2010.02.035
Fanelli D, 2012, SCIENTOMETRICS, V90, P891, DOI 10.1007/s11192-011-0494-7
Gazni A, 2011, J INF SCI, V37, P273, DOI 10.1177/0165551511401658
Harwood N, 2005, APPL LINGUIST, V26, P343, DOI 10.1093/applin/ami012
Holtz P, 2017, J CROSS CULT PSYCHOL, V48, P1410, DOI 10.1177/0022022117724902
Hulme PE, 2022, BIOL INVASIONS, V24, P1651, DOI 10.1007/s10530-022-02740-7
Hussain M., 2019, J OPEN SOURCE SOFTW, V4, P1556, DOI [DOI 10.21105/JOSS.01556, 10.21105/joss.01556]
Hyland K., 2005, Metadiscourse: Exploring interaction in writing
Hyland K, 2007, TESOL QUART, V41, P235, DOI 10.2307/40264352
Hyland K, 2021, J PRAGMATICS, V182, P189, DOI 10.1016/j.pragma.2021.06.018
Hyland K, 2009, INT J ENGL STUD, V9, P111
Jiang F, 2021, LINGUA, V252, DOI 10.1016/j.lingua.2020.103017
Jiang F, 2017, INT J CORPUS LINGUIS, V22, P85, DOI 10.1075/ijcl.22.1.04jia
Jin T, 2021, SCIENTOMETRICS, V126, P8471, DOI 10.1007/s11192-021-04112-9
Kellsey C, 2004, COLL RES LIBR, V65, P194, DOI 10.5860/crl.65.3.194
Knight J, 2003, NATURE, V422, P554, DOI 10.1038/422554a
Kosteas VD, 2018, SCIENTOMETRICS, V115, P1395, DOI 10.1007/s11192-018-2703-0
Lerchenmueller MJ, 2019, BMJ-BRIT MED J, V367, DOI 10.1136/bmj.l6573
Lexchin J, 2003, BMJ-BRIT MED J, V326, P1167, DOI 10.1136/bmj.326.7400.1167
Lillis T, 2013, CRIT LANG LIT STUD, V17, P220
Liu DL, 2018, DISCOURSE CONTEXT ME, V25, P143, DOI 10.1016/j.dcm.2018.05.001
Liu WS, 2018, LEARN PUBL, V31, P107, DOI 10.1002/leap.1114
Lozano GA, 2014, SCI ENG ETHICS, V20, P363, DOI 10.1007/s11948-013-9451-6
Lu C, 2019, J INFORMETR, V13, P817, DOI 10.1016/j.joi.2019.07.004
Lu XF, 2021, SYSTEM, V100, DOI 10.1016/j.system.2021.102543
Millar N, 2020, ENGL SPECIF PURP, V60, P53, DOI 10.1016/j.esp.2020.07.001
Millar N, 2019, ENGL SPECIF PURP, V54, P139, DOI 10.1016/j.esp.2019.02.004
Mohammadi E, 2015, J ASSOC INF SCI TECH, V66, P1832, DOI 10.1002/asi.23286
Mukhtar N, 2018, TELEMAT INFORM, V35, P2173, DOI 10.1016/j.tele.2018.08.003
Neill US, 2008, J CLIN INVEST, V118, P2368, DOI 10.1172/JCI36371
Pautasso M, 2010, SCIENTOMETRICS, V85, P193, DOI 10.1007/s11192-010-0233-5
Scott SL, 2017, ACS CATAL, V7, P2218, DOI 10.1021/acscatal.7b00566
Sienkiewicz J, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160140
Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2
Swales J., 2004, RES GENRES EXPLORATI, DOI DOI 10.1017/CBO9781139524827
Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049
Vergeer M, 2020, COMMUN STUD, V71, P373, DOI 10.1080/10510974.2020.1733038
Vinkers CH, 2015, BMJ-BRIT MED J, V351, DOI 10.1136/bmj.h6467
Wei YY, 2018, SCIENTOMETRICS, V117, P1771, DOI 10.1007/s11192-018-2948-7
Weidmann NB, 2018, PS-POLIT SCI POLIT, V51, P625, DOI 10.1017/S1049096518000124
Wen J, 2022, APPL LINGUIST, V43, P340, DOI 10.1093/applin/amab037
Yan EJ, 2020, QUANT SCI STUD, V1, P664, DOI 10.1162/qss_a_00040
Yuan ZM, 2022, SCIENTOMETRICS, V127, P6191, DOI 10.1007/s11192-022-04515-2
Zhang HL, 2014, 2014 11TH WEB INFORMATION SYSTEM AND APPLICATION CONFERENCE (WISA), P262, DOI 10.1109/WISA.2014.55
Zhu HR, 2021, LEARN PUBL, V34, P578, DOI 10.1002/leap.1404
NR 67
TC 6
Z9 6
U1 13
U2 43
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD MAY
PY 2023
VL 128
IS 5
BP 3107
EP 3127
DI 10.1007/s11192-023-04679-5
EA MAR 2023
PG 21
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA U5FW4
UT WOS:000954476500005
PM 37101976
OA Bronze, Green Published
DA 2024-09-05
ER
PT J
AU Bevern, R
Komusiewicz, C
Niedermeier, R
Sorge, M
Walsh, T
AF van Bevern, Rene
Komusiewicz, Christian
Niedermeier, Rolf
Sorge, Manuel
Walsh, Toby
TI H-index manipulation by merging articles: Models, theory, and
experiments
SO ARTIFICIAL INTELLIGENCE
LA English
DT Article
DE Citation index; Hirsch index; Parameterized complexity; Exact
algorithms; AI's 10 to watch
ID MULTIVARIATE ALGORITHMICS; GOOGLE SCHOLAR; COMPLEXITY
AB An author's profile on Google Scholar consists of indexed articles and associated data, such as the number of citations and the H-index. The author is allowed to merge articles; this may affect the H-index. We analyze the (parameterized) computational complexity of maximizing the H-index using article merges. Herein, to model realistic manipulation scenarios, we define a compatibility graph whose edges correspond to plausible merges. Moreover, we consider several different measures for computing the citation count of a merged article. For the measure used by Google Scholar, we give an algorithm that maximizes the H-index in linear time if the compatibility graph has constant-size connected components. In contrast, if we allow to merge arbitrary articles (that is, for compatibility graphs that are cliques), then already increasing the H-index by one is NP-hard. Experiments on Google Scholar profiles of AI researchers show that the H-index can be manipulated substantially only if one merges articles with highly dissimilar titles. (C) 2016 Elsevier B.V. All rights reserved.
C1 [van Bevern, Rene] Novosibirsk State Univ, Ul Pirogova 2, Novosibirsk 630090, Russia.
[van Bevern, Rene] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Novosibirsk, Russia.
[Komusiewicz, Christian] Univ Jena, Inst Informat, D-07745 Jena, Germany.
[van Bevern, Rene; Komusiewicz, Christian; Niedermeier, Rolf; Sorge, Manuel; Walsh, Toby] TU Berlin, Inst Softwaretech & Theoret Informat, Berlin, Germany.
[Walsh, Toby] Univ New South Wales, Sydney, NSW, Australia.
[Walsh, Toby] Data61, Sydney, NSW, Australia.
C3 Novosibirsk State University; Russian Academy of Sciences; Sobolev
Institute of Mathematics; Friedrich Schiller University of Jena;
Technical University of Berlin; University of New South Wales Sydney;
Commonwealth Scientific & Industrial Research Organisation (CSIRO)
RP Bevern, R (corresponding author), Novosibirsk State Univ, Ul Pirogova 2, Novosibirsk 630090, Russia.
EM rvb@nsu.ru; christian.komusiewicz@uni-jena.de;
rolf.niedermeier@tu-berlin.de; manuel.sorge@tu-berlin.de;
toby.walsh@nicta.com.au
RI van Bevern, René/L-1374-2016; Komusiewicz, Christian/X-2452-2019; Walsh,
Toby/Q-9043-2016
OI van Bevern, René/0000-0002-4805-218X; Komusiewicz,
Christian/0000-0003-0829-7032; Walsh, Toby/0000-0003-2998-8668
FU German Research Foundation (DFG), project DAPA [NI 369/12]; Russian
Foundation for Basic Research (RFBR) [16-31-60007 mol_a_dk]; DFG project
MAGZ [KO 3669/4-1]; Alexander von Humboldt Foundation, Bonn, Germany
FX Rene van Bevern was supported by the German Research Foundation (DFG),
project DAPA (NI 369/12), at TU Berlin, and by the Russian Foundation
for Basic Research (RFBR), project 16-31-60007 mol_a_dk, at Novosibirsk
State University. Christian Komusiewicz was supported by the DFG project
MAGZ (KO 3669/4-1) and Manuel Sorge was supported by the DFG project
DAPA (NI 369/12). Toby Walsh was supported by the Alexander von Humboldt
Foundation, Bonn, Germany, while at TU Berlin. The main work was done
while Toby Walsh was affiliated with University of New South Wales and
Data61, Sydney, Australia.
CR ASSMANN SF, 1984, J ALGORITHM, V5, P502, DOI 10.1016/0196-6774(84)90004-X
Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5
Bevern R. van, 2016, FRONTIERS ARTIFICIAL
Bodlaender HL, 2015, INFORM PROCESS LETT, V115, P965, DOI 10.1016/j.ipl.2015.07.003
Coffman E. G., 2013, Bin Packing Approximation Algorithms: Survey and Classification, P455, DOI DOI 10.1007/978-1-4419-7997-135
Cygan M., 2015, PARAMETERIZED ALGORI, V5
de Keijzer B, 2013, BULL EUR ASSOC THEOR, P79
López-Cózar ED, 2014, J ASSOC INF SCI TECH, V65, P446, DOI 10.1002/asi.23056
Denman R, 2009, DISCRETE APPL MATH, V157, P1655, DOI 10.1016/j.dam.2008.09.011
Downey Rodney G., 2013, Undergraduate Texts in Computer Science
Dutta B, 2001, ECONOMETRICA, V69, P1013, DOI 10.1111/1468-0262.00228
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Faliszewski P, 2010, AI MAG, V31, P53, DOI 10.1609/aimag.v31i4.2314
Faliszewski P, 2010, COMMUN ACM, V53, P74, DOI 10.1145/1839676.1839696
Fellows MR, 2013, EUR J COMBIN, V34, P541, DOI 10.1016/j.ejc.2012.04.008
Fellows MR, 2009, THEOR COMPUT SCI, V410, P53, DOI 10.1016/j.tcs.2008.09.065
Flum Jorg, 2006, TEXT THEORET COMP S
FRIESEN DK, 1981, MATH OPER RES, V6, P74, DOI 10.1287/moor.6.1.74
Guo J., 2007, SIGACT News, V38, P31, DOI 10.1145/1233481.1233493
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Komusiewicz C, 2012, LECT NOTES COMPUT SC, V7464, P19, DOI 10.1007/978-3-642-32589-2_2
Kratsch Stefan, 2014, Bulletin of the European Association for Theoretical Computer Science, V113, P58
Niedermeier R., 2006, OXFORD LECT SERIES M, V31
Niedermeier R, 2010, LEIBNIZ INT PR INFOR, V5, P17, DOI 10.4230/LIPIcs.STACS.2010.2495
Pavlou C, 2016, AAMAS'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, P32
van Bevern R, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P808
Vinkler P, 2013, J INFORMETR, V7, P72, DOI 10.1016/j.joi.2012.08.001
Walter R., 2016, J SCHED IN PRESS
Wang FY, 2011, IEEE INTELL SYST, V26, P5
Woeginger GJ, 2008, J INFORMETR, V2, P364, DOI 10.1016/j.joi.2008.05.002
Woeginger GJ, 2008, MATH SOC SCI, V56, P224, DOI 10.1016/j.mathsocsci.2008.03.001
Yong A., 2014, Not. Am. Math. Soc., V61, P1040, DOI [DOI 10.1090/NOTI1164, DOI 10.1090/N0TI1164]
Zeng D, 2013, IEEE INTELL SYST, V28, P86, DOI 10.1109/MIS.2013.57
NR 33
TC 13
Z9 13
U1 1
U2 15
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0004-3702
EI 1872-7921
J9 ARTIF INTELL
JI Artif. Intell.
PD NOV
PY 2016
VL 240
BP 19
EP 35
DI 10.1016/j.artint.2016.08.001
PG 17
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA DY1JM
UT WOS:000384851300002
OA Green Submitted, Green Published, hybrid
DA 2024-09-05
ER
PT J
AU Lu, QQ
Chai, YX
Ren, LH
Ren, PY
Zhou, JH
Lin, CL
AF Lu, Qianqian
Chai, Yongxiang
Ren, Lihui
Ren, Pengyu
Zhou, Junhui
Lin, Chunlei
TI Research on quality evaluation of innovation and entrepreneurship
education for college students based on random forest algorithm and
logistic regression model
SO PEERJ COMPUTER SCIENCE
LA English
DT Article
DE Innovation; Entrepreneurship; Random forest; Logistic regression;
Entrepreneurial education; Curriculum development
AB The quality evaluation of innovation and entrepreneurship (I&E) in the education sector is achieving worldwide attention as empowering nations with high quality talents is quintessential for economic progress. China, a pioneer in the world market in almost all sectors have transformed its educational policies and incorporated entrepreneurial skills as a part of their education models to further catalyst the country's economic progress. This research focuses on building a novel hybrid Machine Learning (ML) model by integrating two powerful algorithms namely Random Forest (RF) and Logistic Regression (LR) to assess the intensity of the I&E in education from the data acquired from 25 leading Higher Educational Institution's (HEI) in different provinces. The major contributions to the work are, (1) construction of quality index for each topic of interest using individual RF, (2) ranking the indicators based on the quality index to assess the strength and weaknesses, (3) and finally use the LR algorithm study the quality of each indicator. The efficacy of the proposed hybrid model is validated using the benchmark classification metrics to assess its learning and prediction performance in evaluating the quality of I&E education. The result of the research portrays that the universities have now started to integrate entrepreneurship skills as a part of the curriculum, which is evident from the better ranking of the topic curriculum development which is followed by the enrichment of skills. This comprehensive research will help the institutions to identify the potential areas of growth to boost the economic development and improve the skill set necessary for I&E education among college students.
C1 [Lu, Qianqian] Zhejiang Guangsha Vocat & Tech Univ Construct, Adm Off, Dongyang, Peoples R China.
[Chai, Yongxiang] Zhejiang Guangsha Vocat & Tech Univ Construct, Sch Informat, Dongyang, Peoples R China.
[Ren, Lihui; Ren, Pengyu; Zhou, Junhui] Zhejiang Guangsha Vocat & Tech Univ Construct, Dept Publ Phys Educ, Dongyang, Peoples R China.
[Lin, Chunlei] Zhejiang Guangsha Vocat & Tech Univ Construct, Dept Educ & Engn, Dongyang, Peoples R China.
RP Ren, LH (corresponding author), Zhejiang Guangsha Vocat & Tech Univ Construct, Dept Publ Phys Educ, Dongyang, Peoples R China.
EM renlihui578@163.com
CR Arqawi SM, 2022, INT J ADV COMPUT SC, V13, P315
Boldureanu G, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12031267
Chen XX, 2022, MOB INF SYST, V2022, DOI 10.1155/2022/6176675
Chen Y, ED LANGUAGE SOCIOLOG, V3, P1, DOI [10.22158/ELSR.V3N2P1, DOI 10.22158/ELSR.V3N2P1]
Dirik M., 2022, Journal of Fuzzy Extension and Applications, P302, DOI DOI 10.22105/JFEA.2022.345344.1223
Duan LH, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2022.627818
Edwards AS, 2021, TRANSPLANTATION, V105, P699, DOI 10.1097/TP.0000000000003316
Eisinga R, 2013, INT J PUBLIC HEALTH, V58, P637, DOI 10.1007/s00038-012-0416-3
Fawagreh K, 2014, SYST SCI CONTROL ENG, V2, P602, DOI 10.1080/21642583.2014.956265
Geng L, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/7228833
Gkiokas A, 2018, COMPUT INTELL-US, V34, P603, DOI 10.1111/coin.12167
Gong YJ, 2020, ED MODERNIZATION, V7, P19, DOI [10.16541/j.cnki.2095-8420.2020.12.007, DOI 10.16541/J.CNKI.2095-8420.2020.12.007]
Gordon A, 2022, J ED RES POLICIES, V4, P42, DOI [10.53469/JERP.2022.04(06).09, DOI 10.53469/JERP.2022.04(06).09]
Graham B, 2022, J BUS RES, V152, P42, DOI 10.1016/j.jbusres.2022.07.043
Guo K, 2022, JIANGSU COMMERCIAL F, V458, P108, DOI [10.13395/j.cnki.issn.1009-0061.2022.12.008, DOI 10.13395/J.CNKI.ISSN.1009-0061.2022.12.008]
Han G, 2018, J SHENYANG I ENG, V14, P134, DOI [10.13888/j.cnki.jsie(ss).2018.01.022, DOI 10.13888/J.CNKI.JSIE(SS).2018.01.022]
He W, 2022, CONT ED CULTURE, V14, P103, DOI [10.13749/j.cnki.cn62-1202/g4.2022.05.001, DOI 10.13749/J.CNKI.CN62-1202/G4.2022.05.001]
Jiang YZ, 2021, SCI PROGRAMMING-NETH, V2021, DOI 10.1155/2021/8971588
Jing G, 2022, MATH PROBL ENG, V2022, DOI 10.1155/2022/1802156
Karahan M, 2022, Journal of Fuzzy Extension and Applications, V3, P219, DOI [10.22105/jfea.2022.328472.1201, DOI 10.22105/JFEA.2022.328472.1201]
Karen W, 2008, ENTREPRENEURSHIP ED
Knox J., 2019, Education and technological unemployment, P297
Li J, 2021, SCI PROGRAMMING-NETH, V2021, DOI 10.1155/2021/1833979
Liñán F, 2015, INT ENTREP MANAG J, V11, P907, DOI 10.1007/s11365-015-0356-5
Liu XY, 2022, EDUC INF TECHNOL, V27, P9913, DOI 10.1007/s10639-022-11010-x
Mehbodniya A, 2022, EXPERT SYST, V39, DOI 10.1111/exsy.12899
Meyners M, 2022, FOOD QUAL PREFER, V95, DOI 10.1016/j.foodqual.2021.104339
Niu L, 2020, EDUC REV, V72, P41, DOI 10.1080/00131911.2018.1483892
Onesmus M., 2020, Introduction to random forest in machine learning
Rastrollo-Guerrero JL, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10031042
Ratten V, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2020.100367
Sabahi S, 2020, INT J PROD ECON, V226, DOI 10.1016/j.ijpe.2020.107621
Setiawan A, 2021, TECHNIUM SOC SCI J, V23, P134, DOI [10.47577/tssj.v23i1.4500, DOI 10.47577/TSSJ.V23I1.4500]
Trakunphutthirak R, 2022, J EDUC COMPUT RES, V60, P742, DOI 10.1177/07356331211048777
Vij S, 2020, WIRELESS PERS COMMUN, V111, P1271, DOI 10.1007/s11277-019-06913-x
Wang CL, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.767310
Wang H, 2022, ED J, V11, P249
Wang J, 2022, J NATL ACAD ED ADM, V298, P50
Wang WH, 2023, COMPUT APPL ENG EDUC, V31, P100, DOI 10.1002/cae.22573
Wenfeng Huang, 2019, Journal of Physics: Conference Series, V1423, DOI 10.1088/1742-6596/1423/1/012058
Xiong WY, 2022, CHINA ECON REV, V72, DOI 10.1016/j.chieco.2022.101752
Xu HJ, 2023, ENVIRON SCI POLLUT R, V30, P21708, DOI 10.1007/s11356-022-23770-7
Yang Q, 2021, J INTELL FUZZY SYST, V40, P6517, DOI 10.3233/JIFS-189490
Yulian F, 2014, P 2014 2 INT C SOCIA, P101
Zhang JL, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.01605
Zhou YL, 2021, SAGE OPEN, V11, DOI 10.1177/21582440211031616
NR 46
TC 1
Z9 1
U1 8
U2 18
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
EI 2376-5992
J9 PEERJ COMPUT SCI
JI PeerJ Comput. Sci.
PD APR 17
PY 2023
VL 9
AR e1329
DI 10.7717/peerj-cs.1329
PG 22
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA P8TE7
UT WOS:001053334400005
PM 37346726
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Zhang, K
AF Zhang, Ke
BE Li, K
Fei, M
Irwin, GW
Ma, SW
TI Research on coaxiality errors evaluation based on ant colony
optimization algorithm
SO BIO-INSPIRED COMPUTATIONAL INTELLIGENCE AND APPLICATIONS
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT International Conference on Life System Modeling and Simulation (LSMS)
CY SEP 14-17, 2007
CL Shanghai, PEOPLES R CHINA
ID FLATNESS
AB Based on the analysis of existent evaluation methods for coaxiality errors, an intelligent evaluation method is provided in this paper. The evolutional optimum model and the calculation process are introduced in detail. According to characteristics of coaxiality error evaluation, ant colony optimization (ACO) algorithm is proposed to evaluate the minimum zone error. Compared with conventional optimum evaluation methods such as simplex search and Powell method, it can find the global optimal solution, and the precision of calculating result is very good. Then, the objective function calculation approaches for using the ACO algorithm to evaluate minimum zone error are formulated. Finally, the control experiment results evaluated by different method such as the least square, simplex search, Powell optimum methods and GA, indicate that the proposed method does provide better accuracy on coaxiality error evaluation, and it has fast convergent speed as well as using computer expediently and popularizing application easily.
C1 [Zhang, Ke] Shanghai Inst Technol, Sch Mech & Automat Engn, Shanghai 200235, Peoples R China.
C3 Shanghai Institute of Technology
RP Zhang, K (corresponding author), Shanghai Inst Technol, Sch Mech & Automat Engn, Shanghai 200235, Peoples R China.
EM zkwy@hotmail.com
CR [Anonymous], 2004, ANT COLONY OPTIMIZAT
[Anonymous], 1999, Swarm Intelligence
BESTEN M, 2000, PPSN 6 LNCS, V1917
Botee H., 1999, APPEAR ADV COMPLEX S, V1, P149
Cheraghi SH, 1996, PRECIS ENG, V18, P30, DOI 10.1016/0141-6359(95)00033-X
Colorni A., 1991, Distributed optimization by ant colonies, V142, P134
Gambardella LM, 1999, J OPER RES SOC, V50, P167, DOI 10.2307/3010565
GAMBARDELLA LM, 2002, PPSN 7 LNCS, V2439
HUANG ST, 1993, PRECIS ENG, V15, P25, DOI 10.1016/0141-6359(93)90275-F
KANADA T, 1993, PRECIS ENG, V15, P93, DOI 10.1016/0141-6359(93)90343-9
Singiresu S. R., 1996, ENG OPTIMIZATION
NR 11
TC 0
Z9 0
U1 0
U2 1
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 978-3-540-74768-0
J9 LECT NOTES COMPUT SC
PY 2007
VL 4688
BP 267
EP 276
PG 10
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Software Engineering; Computer Science,
Theory & Methods; Mathematical & Computational Biology
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Mathematical & Computational Biology
GA BGV86
UT WOS:000250830800030
DA 2024-09-05
ER
PT J
AU Romanello, M
Najem-Meyer, S
AF Romanello, Matteo
Najem-Meyer, Sven
TI A Named Entity-Annotated Corpus of 19th Century Classical
Commentaries
SO JOURNAL OF OPEN HUMANITIES DATA
LA English
DT Article; Data Paper
DE historical commentaries; classics; named entity recognition; entity
linking; bibliographic reference extraction
AB We release a multilingual named entity (NE) corpus of 19th century commentaries to Sophocles' Ajax. Selected commentaries are written in English, German and French, but are also replete with Latin and Greek quotes. Bibliographic entities were annotated along traditional named entities following our guidelines (Romanello & Najem-Meyer, 2022). The corpus contains about 300 annotated pages, 111,216 tokens and 7,334 entity mentions and was featured in the HIPE-2022 shared task. Although named entity recognition (NER) showed reassuring results, optical character recognition (OCR) mistakes and extensive use of abbreviation kept entity linking (EL) a challenging task. With such characteristics, this corpus offers an excellent way to assess the adaptability of information extraction systems to noisy, domain-specific multilingual and multiscript environments.
C1 [Romanello, Matteo] Univ Lausanne, Inst Archeol & Class Studies, Lausanne, Switzerland.
[Najem-Meyer, Sven] Swiss Fed Inst Technol Lausanne, Digital Humanities Lab, Lausanne, Switzerland.
C3 University of Lausanne; Swiss Federal Institutes of Technology Domain;
Ecole Polytechnique Federale de Lausanne
RP Romanello, M (corresponding author), Univ Lausanne, Inst Archeol & Class Studies, Lausanne, Switzerland.
EM matteo.romanello@unil.ch
OI Romanello, Matteo/0000-0002-7406-6286
FU Swiss National Science Foundation under the Ambizione scheme
[PZ00P1_186033]; Swiss National Science Foundation (SNF) [PZ00P1_186033]
Funding Source: Swiss National Science Foundation (SNF)
FX This research was funded by the Swiss National Science Foundation under
the Ambizione scheme (Grant number: PZ00P1_186033) .
CR Bugert M., 2018, P 27 INT C COMP LING, P5
Colavizza G., 2019, Journal of European Periodical Studies, V4, DOI [DOI 10.21825/JEPS.V4I1.10120, 10.21825/jeps.v4i1.10120]
Colavizza Giovanni, 2017, J. Open Human. Data, V3, P2, DOI DOI 10.5334/JOHD.9
Ehrmann M., 2022, P WORKING NOTES CLEF, V3180, DOI [10.1007/978-3-031- 13643-6_26, DOI 10.1007/978-3-031-13643-6_26]
Ehrmann M, 2024, ACM COMPUT SURV, V56, DOI 10.1145/3604931
Hamacher Marius, 2022, Zenodo, DOI 10.5281/ZENODO.5654690
Romanello M, 2021, PROCEEDINGS OF THE 6TH INTERNATIONAL WORKSHOP ON HISTORICAL DOCUMENT IMAGING AND PROCESSING, HIP 2021, P1, DOI 10.1145/3476887.3476911
Romanello Matteo, 2022, Guidelines for the annotation of named entities in the domain of classics, DOI [10.5281/zenodo.6368101, DOI 10.5281/ZENODO.6368101]
SCHwETER Stefan, 2022, P CLEF 2022 C LABS E, P1109
NR 9
TC 0
Z9 0
U1 0
U2 0
PU UBIQUITY PRESS LTD
PI LONDON
PA Unit 3N, 6 Osborn Street, LONDON, E1 6TD, ENGLAND
EI 2059-481X
J9 J OPEN HUMANIT DATA
JI J. Open Humanit. Data
PY 2024
VL 10
AR 1
DI 10.5334/johd.150
PG 7
WC Humanities, Multidisciplinary; Social Sciences, Interdisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Arts & Humanities - Other Topics; Social Sciences - Other Topics
GA OR0S7
UT WOS:001208889500008
OA gold
DA 2024-09-05
ER
PT J
AU Yu, SS
Carroll, F
Bentley, BL
AF Yu, Shasha
Carroll, Fiona
Bentley, Barry L.
TI Insights Into Privacy Protection Research in AI
SO IEEE ACCESS
LA English
DT Article
DE AI; artificial intelligence; bibliometric analysis; privacy protection
ID ARTIFICIAL-INTELLIGENCE; BIBLIOMETRIC ANALYSIS; SCIENCE; SECURITY; INDEX
AB This paper presents a systematic bibliometric analysis of the artificial intelligence (AI) domain to explore privacy protection research as AI technologies integrate and data privacy concerns rise. Understanding evolutionary patterns and current trends in this research is crucial. Leveraging bibliometric techniques, the authors analyze 8,322 papers from the Web of Science (WoS) database, spanning 1990 to 2023. The analysis highlights IEEE Transactions on Knowledge and Data Engineering and IEEE Access journals as highly influential, the former being an early contributor and the latter emerging as a pivotal source. The study demonstrates substantial disparities in scientific productivity across countries. Specifically, the top 10 countries collectively accounted for 74.8% of the articles, with China and the USA making up nearly half of the total contribution (46.1%). In contrast, regions in Africa and South America exhibited lower scientific production. The evolution of privacy preservation research is reflected, shifting from an algorithm-oriented approach to a focus on data orientation, and subsequently, to privacy solutions centered around Cloud Computing. In recent years, there has been a shift towards embracing Federated Learning and Differential Privacy. The analysis brings to light emerging themes and identifies research gaps, notably a global disparity in research output and a lag in ethical and legal inquiry. It asserts that enhanced interdisciplinary collaboration is imperative to formulate comprehensive privacy solutions for AI. Specifically, the paper imparts invaluable insights that are pivotal for effectively addressing the evolving privacy concerns in the era of AI and big data.
C1 [Yu, Shasha] Clark Univ, Sch Profess Studies, Worcester, MA 01610 USA.
[Carroll, Fiona; Bentley, Barry L.] Cardiff Metropolitan Univ, Cardiff Sch Technol, Cardiff CF5 2YB, Wales.
C3 Clark University; Cardiff Metropolitan University
RP Yu, SS (corresponding author), Clark Univ, Sch Profess Studies, Worcester, MA 01610 USA.
EM ShaYu@clarku.edu
RI Bentley, Barry L./K-2802-2017
OI Bentley, Barry L./0000-0002-4360-5902; Carroll,
Fiona/0000-0002-9967-2207
CR Abadi M, 2016, CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P308, DOI 10.1145/2976749.2978318
Abduljabbar R, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010189
Agustí MA, 2023, SPAN J FINANC ACCOUN, V52, P412, DOI 10.1080/02102412.2022.2099675
Al-Rubaie M, 2019, IEEE SECUR PRIV, V17, P49, DOI 10.1109/MSEC.2018.2888775
Alepis E, 2017, IEEE ACCESS, V5, P17841, DOI 10.1109/ACCESS.2017.2747626
Ali A. S., 2023, Bull. Electr. Eng. Informat., V12, P587
[Anonymous], 2021, UN NewsNov.
[Anonymous], ART INT
Arachchige PCM, 2020, IEEE INTERNET THINGS, V7, P5827, DOI 10.1109/JIOT.2019.2952146
Aria M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063643
Aria M, 2020, SOC INDIC RES, V149, P803, DOI 10.1007/s11205-020-02281-3
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Bansal G, 2010, DECIS SUPPORT SYST, V49, P138, DOI 10.1016/j.dss.2010.01.010
Bolton T, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21072312
Bonawitz K, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1175, DOI 10.1145/3133956.3133982
Cao L., 2020, Journal of Information Technology, V1, P1, DOI [10.2139/ssrn.3647625, DOI 10.2139/SSRN.3647625]
Chan AB, 2008, PROC CVPR IEEE, P1766, DOI 10.1109/cvpr.2008.4587569
Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Entezari A, 2023, ENERGY STRATEG REV, V45, DOI 10.1016/j.esr.2022.101017
European Parliament, 2021, Artificial Intelligence Act
Fast NJ, 2020, CURR OPIN PSYCHOL, V31, P44, DOI 10.1016/j.copsyc.2019.07.011
Feng CM, 2021, AUSTRALAS MARK J, V29, P252, DOI 10.1016/j.ausmj.2020.07.006
Garfield E, 2004, J INF SCI, V30, P119, DOI 10.1177/0165551504042802
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925
Hajkowicz S, 2023, TECHNOL SOC, V74, DOI 10.1016/j.techsoc.2023.102260
Hao M, 2020, IEEE T IND INFORM, V16, P6532, DOI 10.1109/TII.2019.2945367
Hinds J, 2020, INT J HUM-COMPUT ST, V143, DOI 10.1016/j.ijhcs.2020.102498
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Islam MM, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9040441
Jha K, 2019, ARTIF INTELL AGR, V2, P1, DOI 10.1016/j.aiia.2019.05.004
Kaissis GA, 2020, NAT MACH INTELL, V2, P305, DOI 10.1038/s42256-020-0186-1
Kantarcioglu M, 2004, IEEE T KNOWL DATA EN, V16, P1026, DOI 10.1109/TKDE.2004.45
Li P, 2017, FUTURE GENER COMP SY, V74, P76, DOI 10.1016/j.future.2017.02.006
Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348
Lin HC, 2016, INFORMATION, V7, DOI 10.3390/info7030044
Linden T, 2019, Arxiv, DOI [arXiv:1809.08396, 10.48550/arXiv.1809.08396, DOI 10.48550/ARXIV.1809.08396]
Liu K, 2006, IEEE T KNOWL DATA EN, V18, P92, DOI 10.1109/TKDE.2006.14
Liu N, 2021, SCIENTOMETRICS, V126, P3153, DOI 10.1007/s11192-021-03868-4
Lu YL, 2020, IEEE T IND INFORM, V16, P4177, DOI 10.1109/TII.2019.2942190
Ma C, 2022, LIBR HI TECH, V40, P786, DOI 10.1108/LHT-01-2021-0006
Manheim Kari, 2019, YALE J LAW TECHNOLOG, V21, P106
McCarthy J, 2006, AI MAG, V27, P12
Melin G, 1996, SCIENTOMETRICS, V36, P363, DOI 10.1007/BF02129600
Mohassel P, 2017, P IEEE S SECUR PRIV, P19, DOI [10.1109/SP.2017.12, 10.1145/3132747.3132768]
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Morris SA, 2008, ANNU REV INFORM SCI, V42, P213
Mothukuri V, 2021, FUTURE GENER COMP SY, V115, P619, DOI 10.1016/j.future.2020.10.007
Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731
Murdoch B, 2021, BMC MED ETHICS, V22, DOI 10.1186/s12910-021-00687-3
Naker S., 2017, BUJ Sci. Tech. L., V23, P88
Nasr M, 2019, P IEEE S SECUR PRIV, P739, DOI 10.1109/SP.2019.00065
Nasr M, 2018, PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), P634, DOI 10.1145/3243734.3243855
Newton EM, 2005, IEEE T KNOWL DATA EN, V17, P232, DOI 10.1109/TKDE.2005.32
Nikolaenko V, 2013, P IEEE S SECUR PRIV, P334, DOI 10.1109/SP.2013.30
Noyons ECM, 1999, J AM SOC INFORM SCI, V50, P115, DOI 10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.3.CO;2-A
OECD AI Policy Observatory, 2023, National AI Policies.
Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006
PETERS HPF, 1991, SCIENTOMETRICS, V20, P235, DOI 10.1007/BF02018157
Pfeifle A, 2018, WASH LAW REV, V93, P421
Phan N, 2017, IEEE DATA MINING, P385, DOI 10.1109/ICDM.2017.48
Phong LT, 2018, IEEE T INF FOREN SEC, V13, P1333, DOI 10.1109/TIFS.2017.2787987
PRITCHARD A, 1969, J DOC, V25, P348
Rezende IN, 2020, NEW J EUR CRIM LAW, V11, P375, DOI 10.1177/2032284420948161
Saheb T, 2021, COMPUT BIOL MED, V135, DOI 10.1016/j.compbiomed.2021.104660
Sharma S., 2019, Data Privacy and GDPR Handbook
Shokri R, 2015, ANN ALLERTON CONF, P909, DOI 10.1109/ALLERTON.2015.7447103
Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010
Small H, 1997, SCIENTOMETRICS, V38, P275, DOI 10.1007/BF02457414
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Sweeney L, 2002, INT J UNCERTAIN FUZZ, V10, P557, DOI 10.1142/S0218488502001648
Sweileh WM, 2017, MULTIDISCIP RESP MED, V11, DOI 10.1186/s40248-016-0081-0
Szolovits P., 2019, Artificial intelligence in medicine
Taeihagh A, 2019, TRANSPORT REV, V39, P103, DOI 10.1080/01441647.2018.1494640
The White House, 2023, FACT SHEET PRES BID
Ünal Z, 2020, IEEE ACCESS, V8, P105587, DOI 10.1109/ACCESS.2020.3000175
UNESCO, 2021, REC ETH ART INT
Vaidya J, 2008, VLDB J, V17, P879, DOI 10.1007/s00778-006-0041-y
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482
Wang C, 2018, ENGINEERING-PRC, V4, P21, DOI 10.1016/j.eng.2018.02.005
Wang N, 2019, PROC INT CONF DATA, P638, DOI 10.1109/ICDE.2019.00063
Wei K, 2020, IEEE T INF FOREN SEC, V15, P3454, DOI 10.1109/TIFS.2020.2988575
Yin Y., 2022, Open J. Bus. Manage, V10, P3024
Yu S., 2023, Data Protection in a Post-Pandemic Society: Laws, Regulations, Best Practices and Recent Solutions, P145
Yu S., 2022, Artificial Intelligence in Cyber Security: Impact and Implications: Security Challenges, Technical and Ethical Issues, Forensic Investigative Challenges, P157
Yuan JW, 2014, IEEE T PARALL DISTR, V25, P212, DOI 10.1109/TPDS.2013.18
Zhang D., 2022, Tech. Rep.
Zhang QC, 2016, IEEE T COMPUT, V65, P1351, DOI 10.1109/TC.2015.2470255
Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994
Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8
NR 94
TC 0
Z9 0
U1 14
U2 14
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2024
VL 12
BP 41704
EP 41726
DI 10.1109/ACCESS.2024.3378126
PG 23
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA MF5R3
UT WOS:001192229700001
OA gold
DA 2024-09-05
ER
PT C
AU Ho, TKT
Bui, QV
Bui, M
AF Thi Kim Thoa Ho
Quang Vu Bui
Bui, Marc
GP Assoc Comp Machinery
TI Co-author Relationship Prediction in Bibliographic Network: A New
Approach Using Geographic Factor and Latent Topic Information
SO SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON
INFORMATION AND COMMUNICATION TECHNOLOGY
LA English
DT Proceedings Paper
CT 10th International Symposium on Information and Communication Technology
(SoICT)
CY DEC 04-06, 2019
CL VIETNAM
DE Link prediction; bibliographic network; multi-relation network; topic
modeling
AB In this research, we propose a novel approach for co-author relationship prediction in a bibliographic network utilizing geographic factor and latent topic information. We utilize a supervised method to predict the co-author relationship formation where combining dissimilar features with the dissimilar measuring coefficient. Firstly, besides existing relations have been studied in previous researches, we exploit new relation related to the geographic factor which contributes as a topological feature. Moreover, we discover content feature based on textual information from author's papers using topic modeling. Finally, we amalgamate topological features and content feature in co-author relationship prediction. We conducted experiments on dissimilar datasets of the bibliographic network and have attained satisfactory results.
C1 [Thi Kim Thoa Ho; Bui, Marc] PSL Res Univ, CHArt Lab EA 4004, EPHE, Paris, France.
[Thi Kim Thoa Ho] Hue Univ, Univ Educ, Hue, Vietnam.
[Quang Vu Bui] Hue Univ Vietnam, Univ Sci, Hue, Vietnam.
C3 Universite PSL; Ecole Pratique des Hautes Etudes (EPHE); Universite
Paris-Est-Creteil-Val-de-Marne (UPEC); Hue University; Hue University
RP Ho, TKT (corresponding author), PSL Res Univ, CHArt Lab EA 4004, EPHE, Paris, France.; Ho, TKT (corresponding author), Hue Univ, Univ Educ, Hue, Vietnam.
EM thi-kim-thoa.ho@etu.ephe.psl.eu; buiquangvu@hueuni.edu.vn;
marc.bui@ephe.psl.eu
CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1
Al Hasan Mohammad, LINK PREDICTION USIN, P10
[Anonymous], P ACM KDD, DOI DOI 10.1145/1835804.1835837
[Anonymous], 2005, ACM SIGKDD EXPLOR NE
Blei DM, 2002, ADV NEUR IN, V14, P601
Buntine W, 2009, LECT NOTES ARTIF INT, V5828, P51, DOI 10.1007/978-3-642-05224-8_6
Gao F, 2015, SCI PROGRAMMING-NETH, V2015, DOI 10.1155/2015/172879
Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591
Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027
Popescul Alexandrin, 2003, STAT RELATIONAL LEAR
Bui QV, 2017, LECT NOTES ARTIF INT, V10191, P248, DOI 10.1007/978-3-319-54472-4_24
Rosen-Zvi Michal., 2004, UAI
SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0
Srinivas V, 2016, SPRINGERBRIEF COMPUT, P57, DOI 10.1007/978-3-319-28922-9_5
Sun YZ, 2011, 2011 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2011), P121, DOI 10.1109/ASONAM.2011.112
Taskar B., 2003, Advances in neural information processing systems, P659
Wang C, 2007, IEEE DATA MINING, P322, DOI 10.1109/ICDM.2007.108
Yang Y, 2015, KNOWL INF SYST, V45, P751, DOI 10.1007/s10115-014-0789-0
NR 18
TC 1
Z9 1
U1 0
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-7245-9
PY 2019
BP 69
EP 77
DI 10.1145/3368926.3369668
PG 9
WC Computer Science, Theory & Methods; Engineering, Electrical &
Electronic; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering; Telecommunications
GA BP3MI
UT WOS:000548118100011
DA 2024-09-05
ER
PT J
AU Hu, ZW
Luo, JM
Chi, CGQ
Gursoy, D
AF Hu, Zongwei
Luo, Jian Ming
Chi, Christina Geng-Qing
Gursoy, Dogan
TI Examination of experience attributes of parks in urban tourist
destinations and their influence on visitor satisfaction: a topic
modelling approach
SO LEISURE STUDIES
LA English
DT Article; Early Access
DE Urban destinations; park experience; user-generated content (UGC);
latent Dirichlet allocation (LDA); seasonal
ID CITY; REVIEWS; HEALTH; MANAGEMENT; BENEFITS; SEASON; SPACES
AB Understanding visitors' park experience in urban tourist destinations to enhance their satisfaction is crucial for effective park management and urban planning. Through a topic modelling analysis using user-generated data from TripAdvisor and employing the Latent Dirichlet Allocation (LDA) algorithm, 20 attributes of urban park experience are identified and grouped into three categories and five dimensions. Besides confirming some of the attributes of park experience identified in previous research, this study also uncovers new attributes that provide insights into visitors' urban park experience related to the historical and cultural aspects (e.g. filming location, carriage rides and rickshaws). Furthermore, positive and negative effects of each attribute on visitor satisfaction are identified. Findings also suggest significant seasonal difference in attributes of visitors' urban park experience.
C1 [Hu, Zongwei] Macau Univ Sci & Technol, Fac Hospitality & Tourism Management, Macau, Peoples R China.
[Luo, Jian Ming] Macau Univ Sci & Technol, Sch Liberal Arts, Macau, Peoples R China.
[Chi, Christina Geng-Qing; Gursoy, Dogan] Washington State Univ, Carson Coll Business, Sch Hospitality Business Management, Pullman, WA USA.
[Chi, Christina Geng-Qing; Gursoy, Dogan] Univ Johannesburg, Sch Tourism & Hospitality, Johannesburg, South Africa.
C3 Macau University of Science & Technology; Macau University of Science &
Technology; Washington State University; University of Johannesburg
RP Luo, JM (corresponding author), Macau Univ Sci & Technol, Sch Liberal Arts, Macau, Peoples R China.
EM kenny.luo@connect.polyu.hk
RI ; Chi, Christina G/AGE-9108-2022; Gursoy, Dogan/A-3493-2008
OI Hu, Zongwei/0000-0002-7456-0006; Chi, Christina G/0000-0002-8265-1768;
Gursoy, Dogan/0000-0002-3602-9433
FU Macau University of Science and Technology Faculty Research Grants
[FRG-24-004-SLA]
FX This work was supported by the Macau University of Science and
Technology Faculty Research Grants [FRG-24-004-SLA].
CR Ahas R, 2007, TOURISM MANAGE, V28, P898, DOI 10.1016/j.tourman.2006.05.010
Albayrak T, 2024, J HOSP MARKET MANAG, DOI 10.1080/19368623.2024.2327077
Ali T, 2022, METHODSX, V9, DOI 10.1016/j.mex.2022.101894
Ayala-Azcárraga C, 2019, LANDSCAPE URBAN PLAN, V189, P27, DOI 10.1016/j.landurbplan.2019.04.005
Barnes MR, 2019, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.02617
Bilotta E., 2019, Environmental psychology: An introduction, V2nd, P36, DOI DOI 10.1002/9781119241072.CH4
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Brooks AM, 2017, J ENVIRON PSYCHOL, V54, P91, DOI 10.1016/j.jenvp.2017.10.004
Calheiros AC, 2017, J HOSP MARKET MANAG, V26, P675, DOI 10.1080/19368623.2017.1310075
Chi CGQ, 2009, J HOSP MARKET MANAG, V18, P4, DOI 10.1080/19368620801988891
Churchman A., 2002, Handbook of environmental psychology
COHEN E, 1985, ANN TOURISM RES, V12, P5, DOI 10.1016/0160-7383(85)90037-4
Fan YL, 2021, J OUTDOOR REC TOUR, V33, DOI 10.1016/j.jort.2020.100360
Frumkin P, 2001, AM J PREV MED, V20, P234, DOI 10.1016/S0749-3797(00)00317-2
Garzia F., 2020, International Journal of Safety and Security Engineering (IJSSE), V10, P11, DOI [https://doi.org/10.18280/ijsse.100102, DOI 10.18280/IJSSE.100102]
Gatti ETJ, 2022, J OUTDOOR REC TOUR, V37, DOI 10.1016/j.jort.2021.100366
Godovykh M, 2020, TOUR MANAG PERSPECT, V35, DOI 10.1016/j.tmp.2020.100694
Grilli G, 2020, LANDSCAPE URBAN PLAN, V199, DOI 10.1016/j.landurbplan.2020.103814
Grossi L, 2021, TOURISM MANAGE, V84, DOI 10.1016/j.tourman.2021.104289
Guan C, 2021, URBAN FOR URBAN GREE, V58, DOI 10.1016/j.ufug.2020.126973
Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009
Halkos G, 2021, ECON ANAL POLICY, V70, P502, DOI 10.1016/j.eap.2021.04.005
Hannam K, 2021, TOURIST STUD, V21, P57, DOI 10.1177/1468797621992931
Hu N, 2019, TOURISM MANAGE, V72, P417, DOI 10.1016/j.tourman.2019.01.002
Huai S, 2022, LANDSCAPE URBAN PLAN, V218, DOI 10.1016/j.landurbplan.2021.104307
Hwang J, 2018, ASIA PAC J TOUR RES, V23, P359, DOI 10.1080/10941665.2018.1444648
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jones KR, 2018, ENVIRON HIST-UK, V24, P39, DOI 10.3197/096734018X15137949591837
Kladou S, 2015, J DESTIN MARK MANAGE, V4, P187, DOI 10.1016/j.jdmm.2015.04.003
Kuo TM, 2024, J HOSP MARKET MANAG, V33, P169, DOI 10.1080/19368623.2023.2241048
Lee ACK, 2011, J PUBLIC HEALTH-UK, V33, P212, DOI 10.1093/pubmed/fdq068
Lee JS, 2023, TOURISM MANAGE, V98, DOI 10.1016/j.tourman.2023.104746
Li FX, 2021, CURR ISSUES TOUR, V24, P2130, DOI 10.1080/13683500.2020.1820456
Liu RX, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18010253
Liu ZW, 2015, TOURISM MANAGE, V47, P140, DOI 10.1016/j.tourman.2014.09.020
Lu WL, 2015, J HOSP MARKET MANAG, V24, P119, DOI 10.1080/19368623.2014.907758
Lucas C, 2015, POLIT ANAL, V23, P254, DOI 10.1093/pan/mpu019
Luo JM, 2024, INT J HOSP MANAG, V119, DOI 10.1016/j.ijhm.2024.103721
Luo JM, 2020, J TRAVEL TOUR MARK, V37, P272, DOI 10.1080/10548408.2020.1740138
Ma K, 2023, COMPLEX INTELL SYST, V9, P2571, DOI 10.1007/s40747-020-00223-7
Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754
Mak BKL, 2019, CITIES, V92, P97, DOI 10.1016/j.cities.2019.03.008
Maniruzzaman KM, 2021, AIN SHAMS ENG J, V12, P3365, DOI 10.1016/j.asej.2020.11.020
Manning R.E., 2011, STUDIES OUTDOOR RECR, V3rd
McCormack GR, 2010, HEALTH PLACE, V16, P712, DOI 10.1016/j.healthplace.2010.03.003
Meng F., 2008, J VACAT MARK, V14, P41, DOI [https://doi.org/10.1177/1356766707084218, DOI 10.1177/1356766707084218]
Kaosiri YN, 2019, J TRAVEL RES, V58, P253, DOI 10.1177/0047287517746014
Nghiem-Phu Binh, 2021, Leisure/Loisir, V45, P121, DOI 10.1080/14927713.2021.1872409
Nordh H, 2009, URBAN FOR URBAN GREE, V8, P225, DOI 10.1016/j.ufug.2009.06.003
Özgüner H, 2006, LANDSCAPE URBAN PLAN, V74, P139, DOI 10.1016/j.landurbplan.2004.10.003
Perles-Ribes JF, 2021, ANATOLIA, V32, P489, DOI 10.1080/13032917.2021.1901752
Pine B.Joseph., 1999, EXPERIENCE EC WORK I
Plunz RA, 2019, LANDSCAPE URBAN PLAN, V189, P235, DOI 10.1016/j.landurbplan.2019.04.024
Raboti B., 2010, INT C TOUR ENV PHIL, P353364
Roberts H, 2019, URBAN STUD, V56, P818, DOI 10.1177/0042098017748544
Roberts H, 2017, GEO-GEOGR ENVIRON, V4, DOI 10.1002/geo2.41
Roemmich JN, 2014, PREV CHRONIC DIS, V11, DOI 10.5888/pcd11.140175
Rusu V., 2016, DESIGN USER EXPERIEN
Senbeto DL, 2024, TOUR ANAL, V29, P175, DOI 10.3727/108354224X17076820300692
Shang ZY, 2023, CURR ISSUES TOUR, V26, P2317, DOI 10.1080/13683500.2022.2086107
Shin S, 2024, J HOSP MARKET MANAG, V33, P602, DOI 10.1080/19368623.2023.2279166
Shirazi S.F. Mostafavi., 2011, Journal of Relationship Marketing, V10, P76, DOI DOI 10.1080/15332667.2011.577731
Shoukat MH, 2022, J HOSP MARKET MANAG, V31, P757, DOI 10.1080/19368623.2022.2062692
Sorakunnas E, 2020, J OUTDOOR REC TOUR, V31, DOI 10.1016/j.jort.2020.100311
Taecharungroj V, 2024, J PLACE MANAG DEV, V17, P49, DOI 10.1108/JPMD-04-2023-0041
Taecharungroj V, 2019, TOURISM MANAGE, V75, P550, DOI 10.1016/j.tourman.2019.06.020
Turrión-Prats J, 2017, TOUR ANAL, V22, P583, DOI 10.3727/108354217X15023805737701
Tyrväinen L, 2017, SCAND J FOREST RES, V32, P349, DOI 10.1080/02827581.2016.1241892
Veitch J, 2022, BMC PUBLIC HEALTH, V22, DOI 10.1186/s12889-022-13064-5
Veitch J, 2019, LANDSCAPE URBAN PLAN, V185, P173, DOI 10.1016/j.landurbplan.2019.02.013
Veitch J, 2017, LANDSCAPE URBAN PLAN, V161, P52, DOI 10.1016/j.landurbplan.2016.12.004
Wan C, 2021, URBAN FOR URBAN GREE, V62, DOI 10.1016/j.ufug.2021.127172
Wan C, 2020, URBAN FOR URBAN GREE, V51, DOI 10.1016/j.ufug.2020.126691
Wang WF, 2012, ANN TOURISM RES, V39, P1763, DOI 10.1016/j.annals.2012.05.029
Wilkins EJ, 2021, ENVIRON MANAGE, V67, P120, DOI 10.1007/s00267-020-01373-7
Wolf ID, 2015, J SUSTAIN TOUR, V23, P358, DOI 10.1080/09669582.2014.959968
WTO, 2007, A practical guide to tourism destination management, DOI [https://doi.org/10.18111/9789284412433, DOI 10.18111/9789284412433]
Zhao ChunRong Zhao ChunRong, 2013, Journal of Landscape Research, V5, P48
Zhu X, 2021, URBAN FOR URBAN GREE, V62, DOI 10.1016/j.ufug.2021.127133
Zolfaghari A, 2023, J OUTDOOR REC TOUR, V43, DOI 10.1016/j.jort.2023.100666
NR 80
TC 0
Z9 0
U1 0
U2 0
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0261-4367
EI 1466-4496
J9 LEISURE STUD
JI Leis. Stud.
PD 2024 AUG 23
PY 2024
DI 10.1080/02614367.2024.2392583
EA AUG 2024
PG 16
WC Hospitality, Leisure, Sport & Tourism
WE Social Science Citation Index (SSCI)
SC Social Sciences - Other Topics
GA D4Z7V
UT WOS:001296288700001
DA 2024-09-05
ER
PT J
AU Murphy, J
AF Murphy, Jackie
TI Exploring the Impact of an Open Access Mindfulness Course with Online
Graduate Students: A Mixed Methods Explanatory Sequential Study
SO ONLINE LEARNING
LA English
DT Article
DE mindfulness; stress; online learning; graduate students; open access;
mind wandering
ID RANDOMIZED CONTROLLED-TRIAL; STRESS REDUCTION; NURSING-STUDENTS; MIND;
INTERVENTION; PERFORMANCE; ATTENTION; ANXIETY; STATES
AB As enrollment in online graduate education increases, retention continues to be problematic for many colleges and universities across the United States. Non-traditional students, who represent the majority of online graduate student enrollment, have unique issues related to persistence considering they often must juggle the demands of graduate school with work and families. The competing demands can lead to increased levels of perceived stress, which can impact academic performance due to increased mind wandering and decreased attention. Mindfulness is a practice that has been shown in the literature to decrease levels of perceived stress and mind wandering, therefore, the integration of mindfulness practice could have a positive effect on student persistence in online graduate education. Therefore, an online open access mindfulness course was created at one large urban university. The purpose of this explanatory sequential study was to explore the impact of teaching mindfulness to online graduate students. Self-report levels of perceived stress and mind wandering were significantly lower after students completed Module One of an open access mindfulness course. Self-reported perceived persistence levels were found to be significantly higher after Module One with students in the first or second quarter of their program, students with little or no mindfulness experience, and students who meditated four or more times a week. Furthermore, students interviewed felt that the course provided excellent foundational information about mindfulness that could be immediately applied, and therefore should be a requirement for all incoming students.
C1 [Murphy, Jackie] Drexel Univ, Philadelphia, PA 19104 USA.
C3 Drexel University
RP Murphy, J (corresponding author), Drexel Univ, Philadelphia, PA 19104 USA.
OI Murphy, Jackie/0000-0003-3736-2032
CR [Anonymous], 2017, REP
[Anonymous], 2009, J ASYNCHRONOUS LEARN
Banks JB, 2017, COGNITION EMOTION, V31, P1023, DOI 10.1080/02699931.2016.1179174
Bawa P, 2016, SAGE OPEN, V6, DOI 10.1177/2158244015621777
Beck HP, 2014, INTERNET HIGH EDUC, V20, P51, DOI 10.1016/j.iheduc.2013.09.002
Bennike IH, 2017, J COGN ENHANCE, V1, P172, DOI 10.1007/s41465-017-0020-9
Call D, 2014, MINDFULNESS, V5, P658, DOI 10.1007/s12671-013-0218-6
Caruth G. D, 2018, PARTICIP ED RES, V5, P17
Cavanagh K, 2018, MINDFULNESS, V9, P1191, DOI 10.1007/s12671-017-0856-1
Cavanagh K, 2013, BEHAV RES THER, V51, P573, DOI 10.1016/j.brat.2013.06.003
Cheyne JA, 2009, COGNITION, V111, P98, DOI 10.1016/j.cognition.2008.12.009
COHEN S, 1983, J HEALTH SOC BEHAV, V24, P385, DOI 10.2307/2136404
Cohen S, 2012, J APPL SOC PSYCHOL, V42, P1320, DOI 10.1111/j.1559-1816.2012.00900.x
Creswell J.W., 2019, ED RES PLANNING COND
Crosswell AD, 2020, EMOTION, V20, P403, DOI 10.1037/emo0000548
Davidson WB, 2009, J COLL STUDENT DEV, V50, P373, DOI 10.1353/csd.0.0079
Dixon P, 2013, CAN J EXP PSYCHOL, V67, P1, DOI 10.1037/a0031234
Economides M, 2018, MINDFULNESS, V9, P1584, DOI 10.1007/s12671-018-0905-4
Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101
Farley J, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00619
Farrington C.A., 2012, Teaching adolescents to become learners: The role of noncognitive factors in shaping school performance
Farruggia SP, 2018, J COLL STUD RETENT-R, V20, P308, DOI 10.1177/1521025116666539
Friedman Z., 2019, Student loan debt statistics in 2019: A .5 trillion crisis
Halladay JE, 2019, MINDFULNESS, V10, P397, DOI 10.1007/s12671-018-0979-z
Hindman RK, 2015, MINDFULNESS, V6, P873, DOI 10.1007/s12671-014-0331-1
Hölzel BK, 2010, SOC COGN AFFECT NEUR, V5, P11, DOI 10.1093/scan/nsp034
Iani L, 2019, MINDFULNESS, V10, P366, DOI 10.1007/s12671-018-0981-5
Janssen M, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191332
Ju YJ, 2018, CONSCIOUS COGN, V63, P1, DOI 10.1016/j.concog.2018.06.006
Kabat-Zinn J, 1990, FULL CATASTROPHE LIV
Killingsworth MA, 2010, SCIENCE, V330, P932, DOI 10.1126/science.1192439
Klein K, 2001, APPL COGNITIVE PSYCH, V15, P565, DOI 10.1002/acp.727
Lam A. G., 2015, J PSYCHOL CLIN PSYCH, V2
Langer E. J., 2014, MINDFULNESS
Leland M., 2015, Journal of Adult Education, V44, P19
Lukasik KM, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.00004
McKinney B., 2017, VAHPERD Journal, V38, P4
Mrazek MD, 2013, PSYCHOL SCI, V24, P776, DOI 10.1177/0956797612459659
Muljana PS, 2019, J INF TECHNOL EDUC-R, V18, P19, DOI 10.28945/4182
Napora L., 2013, The impact of classroom-based meditation practice on cognitive engagement, mindfulness and academic performance of undergraduate college students
Ramsburg JT, 2014, MINDFULNESS, V5, P431, DOI 10.1007/s12671-013-0199-5
Saldana Johnny, 2015, The coding manual for qualitative researchers, Vfourth
Salkind N.J., 2017, STAT PEOPLE WHO THIN, V6th
Sampl J, 2017, MINDFULNESS, V8, P1393, DOI 10.1007/s12671-017-0715-0
Sanko J, 2016, NURS EDUC TODAY, V45, P142, DOI 10.1016/j.nedt.2016.07.006
Schwind JK, 2017, NURS EDUC TODAY, V50, P92, DOI 10.1016/j.nedt.2016.12.017
Seaman J.E., 2018, Grade Increase: Tracking Distance Education in the United States
Shapiro SL, 2012, J POSIT PSYCHOL, V7, P504, DOI 10.1080/17439760.2012.723732
Shapiro SL, 2006, J CLIN PSYCHOL, V62, P373, DOI 10.1002/jclp.20237
Smallwood J, 2015, ANNU REV PSYCHOL, V66, P487, DOI 10.1146/annurev-psych-010814-015331
Smallwood J, 2011, COGNITION EMOTION, V25, P1481, DOI 10.1080/02699931.2010.545263
Song Y, 2015, NURS EDUC TODAY, V35, P86, DOI 10.1016/j.nedt.2014.06.010
Sorensen C, 2017, ONLINE LEARN, V21, P206, DOI 10.24059/olj.v21i3.935
Spadaro KC, 2016, NURS EDUC TODAY, V39, P163, DOI 10.1016/j.nedt.2016.02.006
Stelnicki AM, 2015, CAN J HIGH EDUC, V45, P214
Tang YY, 2007, P NATL ACAD SCI USA, V104, P17152, DOI 10.1073/pnas.0707678104
Vago DR, 2016, ANN NY ACAD SCI, V1373, P96, DOI 10.1111/nyas.13171
van der Riet P, 2015, NURS EDUC TODAY, V35, P44, DOI 10.1016/j.nedt.2014.05.003
Van Doorn JR, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00324
Wahbeh Helane, 2014, Open Med J, V1, P66
Wammes JD., 2016, SCHOLARSHIP TEACHING, V2, P33, DOI DOI 10.1037/STL0000055
Warttig SL, 2013, J HEALTH PSYCHOL, V18, P1617, DOI 10.1177/1359105313508346
Willgens A.M., 2015, Journal of Physical Therapy Education, V29, P70
Zeidan F, 2010, CONSCIOUS COGN, V19, P597, DOI 10.1016/j.concog.2010.03.014
Zimmerman TD, 2012, INT REV RES OPEN DIS, V13, P152, DOI 10.19173/irrodl.v13i4.1302
NR 65
TC 3
Z9 6
U1 1
U2 11
PU ONLINE LEARNING CONSORTIUM
PI NEWBURYPORT
PA PO BOX 1238, NEWBURYPORT, MA 01950 USA
SN 2472-5749
EI 2472-5730
J9 ONLINE LEARN
JI Online Learn.
PD JUN
PY 2021
VL 25
IS 2
BP 299
EP 323
DI 10.24059/olj.v25i2.2292
PG 25
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA SO1PR
UT WOS:000658752000014
OA gold
DA 2024-09-05
ER
PT C
AU Wang, YH
He, XC
AF Wang, Yong-Hong
He, Xiang-Chun
BE Rodrigo, MMT
Iyer, S
Mitrovic, A
TI Research on the Application of College Students' Online Learning
Cognitive Engagement Evaluation
SO 29TH INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION (ICCE 2021), VOL
I
LA English
DT Proceedings Paper
CT 29th International Conference on Computers in Education (ICCE)
CY NOV 22-26, 2021
CL ELECTR NETWORK
DE Online learning; cognitive engagement; evaluation index system
AB College Students' online learning is gradually becoming more and more normalized. There is a correlation between learning engagement and learning quality. Cognitive engagement is important components of online learning engagement. Through literature research, expert consultation and analytic hierarchy process, this paper constructs the "online cognitive engagement evaluation index system of college students", which includes two first-class indicators, four second-class indicators, and determines the weight of each level of indicators. Through the design and development of the evaluation index system, based on the structural equation model of the observed variables on the corresponding latent variables of the factor load, the experimental class of college students online cognitive engagement was evaluated and analyzed, which provides reference for the development of online learning engagement evaluation of college students.
C1 [Wang, Yong-Hong; He, Xiang-Chun] Northwest Normal Univ, Coll Educ Technol, Lanzhou, Peoples R China.
C3 Northwest Normal University - China
RP Wang, YH (corresponding author), Northwest Normal Univ, Coll Educ Technol, Lanzhou, Peoples R China.
EM wangyh4437@nwnu.edu.cn
RI Wang, Yonghong/AAN-4845-2020
FU Northwest Normal University Young Teachers' scientific research ability
improvement plan project [SKQN2021-29]
FX This research is supported by the 2021 Northwest Normal University Young
Teachers' scientific research ability improvement plan project "Research
on data literacy model construction and cultivation strategy of primary
and secondary school teachers under the background of big data". Project
No: NWNU-SKQN2021-29.
CR Heflin H, 2017, COMPUT EDUC, V107, P91, DOI 10.1016/j.compedu.2017.01.006
Lee E, 2015, TECHTRENDS, V59, P54, DOI 10.1007/s11528-015-0871-9
NR 2
TC 0
Z9 0
U1 0
U2 8
PU ASIA PACIFIC SOC COMPUTERS IN EDUCATION
PI TAOYUAN CITY
PA NO 300, JUNGDA RD, JHONGLI DISTRICT, TAOYUAN CITY, 320, TAIWAN
BN 978-986-97214-7-9
PY 2021
BP 182
EP 184
PG 3
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BS8GL
UT WOS:000772144100027
DA 2024-09-05
ER
PT J
AU Altememy, HA
Mohammed, BA
Hsony, MK
Hassan, AY
Mazhair, R
Dawood, II
Al Jouani, ISH
Zearah, SA
Sharif, HR
AF Altememy, Haady Abdilnibi
Mohammed, Bahira Abdulrazzaq
Hsony, Mizher Khlif
Hassan, Aalaa Yaseen
Mazhair, Rabaa
Dawood, Imad Ibrahim
Al Jouani, Isra Shakir Hassan
Zearah, Sajad Ali
Sharif, Hedab Rasoul
TI The influence of the artificial intelligence capabilities of higher
education institutions in Iraq on students' academic performance: The
role of AI-based technology application as a mediator
SO EURASIAN JOURNAL OF EDUCATIONAL RESEARCH
LA English
DT Article
DE Artificial intelligence; Capability; higher education; Iraq
AB Objective: Artificial intelligence ( AI) plays a crucial role in promoting unbiased and effective advancements in the field of education. The benefits of these state-of-the-art technologies in the areas of teaching methods and the acquisition of knowledge have attracted considerable attention in current discussions. The present study aims to investigate the influence of artificial intelligence capabilities (AIC) within Iraqi higher education institutions on students' academic performance. Additionally, the study has also investigated the mediating role of AI-based technology applications (AIBTA). Methodology: The research employed a quantitative survey-based approach to gather data, utilizing a questionnaire as the data collection instrument. For the analysis, Smart-PLS 3, a software tool known for its implementation of the PLS-SEM (partial least squares structural equation modeling) analysis method, was utilized (Sarstedt et al., 2022). The study achieved a response rate of 64.3 percent from the participants. Results: The findings of the study reveal a significant influence of AIBTA (Artificial Intelligence-Based Teaching and Assessment) on student performance within the context of Iraqi higher education. Moreover, there exists a positive and notable correlation between the AI capabilities integrated into Iraqi higher education and the academic achievements of university students in Iraq. The study's results also suggest that AI capabilities substantially impact the AIBTA framework within Iraqi higher education. Furthermore, the mediating role of AIBTA in Iraqi higher education is identified in relation to the relationship between the AI capabilities of the educational system and the academic performance of university students in Iraq. Implication: The outcomes of this study hold considerable implications for the landscape of higher education in Iraq. The results underscore that the incorporation of AI-driven technology bears a substantial influence on students' academic achievements. This relationship serves as a pivotal connection, linking the AI capabilities present within higher education institutions to the attainment of academic excellence by students. Novelty: This study stands as one of the pioneering efforts in exploring the realm of AIBTA within the context of Iraqi higher education.
(c) 2023 Ani Publishing Ltd. All rights reserved.
C1 [Altememy, Haady Abdilnibi] Islamic Univ Najaf, Coll Islamic Sci, Najaf, Iraq.
[Mohammed, Bahira Abdulrazzaq] Al Hadi Univ Coll, Dept Med Engn, Baghdad 10011, Iraq.
[Hsony, Mizher Khlif] Al Manara Coll Med Sci, Maysan, Iraq.
[Hassan, Aalaa Yaseen] Al Nisour Univ Coll, Dept Educ, Baghdad, Iraq.
[Mazhair, Rabaa] Al Nisour Univ Coll, Coll Educ, English Dept, Baghdad, Iraq.
[Dawood, Imad Ibrahim] Mazaya Univ Coll, Dept Media, Nasiriyah, Iraq.
[Al Jouani, Isra Shakir Hassan] Al Esraa Univ, Dept Media, Coll Arts, Baghdad, Iraq.
[Zearah, Sajad Ali] Al ayen Univ, Sci Res Ctr, Thi Qar, Iraq.
[Sharif, Hedab Rasoul] Natl Univ Sci & Technol, Coll Nursing, Dhi Qar, Iraq.
C3 Islamic University College; Al-Nisour University College; Al-Nisour
University College; Al-Esraa University College; Al-Ayen University
RP Altememy, HA (corresponding author), Islamic Univ Najaf, Coll Islamic Sci, Najaf, Iraq.
EM haady.altememy@gmail.com; dr.bahera@huc.edu.iq;
mizherkhlifhsony@uomanara.edu.iq; alaa.y.english@nuc.edu.iq;
mizherrabaa4@gmail.com; prof.dr.imad.i.dawood@mpu.edu.iq;
isramasar@gmail.com; sajad@alayen.edu.iq; hadab.r.sh@nust.edu.iq
OI Ali Zearah, Sajad/0009-0001-4827-0128
CR Alamoudi A., 2021, 2021 INT C ADV COMP, P1, DOI DOI 10.1109/ICAC353642.2021.9697300
Ardito L, 2021, J BUS RES, V123, P44, DOI 10.1016/j.jbusres.2020.09.022
Basheer H., 2023, Doctoral dissertation
Becirovic S., 2023, Digital pedagogy: The use of digital technologies in contemporary education, DOI [10.1007/978-981-99-0444-0, DOI 10.1007/978-981-99-0444-0]
Celik V, 2013, COMPUT EDUC, V60, P148, DOI 10.1016/j.compedu.2012.06.008
Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002
Chou CM, 2022, EDUC INF TECHNOL, V27, P8723, DOI 10.1007/s10639-021-10866-9
Cote A.- M., 2022, The Impact of Artificial Intelligence on Higher Education: Transformations, Challenges and Opportunities, DOI [10.2139/ssrn.4012883, DOI 10.2139/SSRN.4012883]
Ding F., 2021, First Year in a Multilingual University: Double Transitions, P5, DOI [10.1007/978-981-16-0796-7_2, DOI 10.1007/978-981-16-0796-7_2]
Doroudi S, 2023, INT J ARTIF INTELL E, V33, P885, DOI 10.1007/s40593-022-00313-2
Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642
El Said GR, 2021, ADV HUM-COMPUT INTER, V2021, DOI 10.1155/2021/6649524
Eliezer J., 2021, Journal Of Education and Learning (Edulearn), V15, P88, DOI [10.11591/Edulearn.V15i1.17392, DOI 10.11591/EDULEARN.V15I1.17392]
Garcia SD, 2020, J ALZHEIMERS DIS, V78, P1547, DOI 10.3233/JAD-200888
Guo XR, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132413776
Hong JC, 2021, COMPUT EDUC, V166, DOI 10.1016/j.compedu.2021.104172
Hradecky D, 2022, INT J INFORM MANAGE, V65, DOI 10.1016/j.ijinfomgt.2022.102497
Huang ZY, 2020, ACM T INFORM SYST, V38, DOI 10.1145/3379507
Kamruzzaman MM, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15108354
Kock F, 2021, TOURISM MANAGE, V86, DOI 10.1016/j.tourman.2021.104330
Lee HS, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010351
Liu YR, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.872014
Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750
Malinka K, 2023, PROCEEDINGS OF THE 2023 CONFERENCE ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, ITICSE 2023, VOL 1, P47, DOI 10.1145/3587102.3588827
Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434
Mogavi RH, 2023, Arxiv, DOI arXiv:2305.13114
Nikou S, 2023, INT J ENTREP BEHAV R, V29, P81, DOI 10.1108/IJEBR-08-2022-0760
Okunlaya RO, 2022, LIBR HI TECH, V40, P1869, DOI 10.1108/LHT-07-2021-0242
Purwanto, 2021, J IND ENG MANAG-JIEM, V2, P114, DOI [DOI 10.7777/JIEMAR.V2I4.168, DOI 10.7777/JIEMAR.V2I4]
Qasim A, 2020, J EMERG TECHNOL ACCO, V17, P107, DOI 10.2308/jeta-52649
Rekha IS, 2023, EDUC INF TECHNOL, V28, P4265, DOI 10.1007/s10639-022-11308-w
Salajan FD, 2019, EUR J EDUC, V54, P591, DOI 10.1111/ejed.12362
Sarstedt M, 2022, PSYCHOL MARKET, V39, P1035, DOI 10.1002/mar.21640
Sawangchai A, 2020, POL J MANAG STUD, V22, P502, DOI 10.17512/pjms.2020.22.2.33
Sunday OJ, 2021, COMPUT HUM BEHAV REP, V4, DOI 10.1016/j.chbr.2021.100114
Waer H, 2023, INNOV LANG LEARN TEA, V17, P47, DOI 10.1080/17501229.2021.1914062
Wang SF, 2023, EDUC INF TECHNOL, V28, P4919, DOI 10.1007/s10639-022-11338-4
NR 37
TC 1
Z9 1
U1 16
U2 36
PU ANI YAYINCILIK
PI BAKANLIKLAR
PA KIZILIRMAK SOK NO 10-A, BAKANLIKLAR, ANKARA 00000, Turkiye
SN 1302-597X
EI 2528-8911
J9 EURASIAN J EDUC RES
JI Egit. Arast.
PY 2023
IS 104
BP 267
EP 282
DI 10.14689/ejer.2023.104.015
PG 16
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA R4HA0
UT WOS:001063960700015
DA 2024-09-05
ER
PT C
AU Bredikhin, S
Scherbakova, N
AF Bredikhin, Sergey
Scherbakova, Natalya
GP IEEE
TI Normalized Spectral Clustering of the Journal Citation Network
SO 2019 15TH INTERNATIONAL ASIAN SCHOOL-SEMINAR OPTIMIZATION PROBLEMS OF
COMPLEX SYSTEMS (OPCS 2019)
LA English
DT Proceedings Paper
CT 15th International Asian School-Seminar on Optimization Problems of
Complex Systems (OPCS)
CY AUG 26-30, 2019
CL Novosibirsk, RUSSIA
DE spectral clustering; normalized cut; generalized weighted cut; journal
citation network
AB The task of clustering of a set of objects is treated as the graph partitioning problem. The normalized cut criterion is used for a weighted graph partitioning and the approach is applied in two implemented algorithms. The results of testing the method for the journal citation network clustering are presented.
C1 [Bredikhin, Sergey; Scherbakova, Natalya] SB RAS, Inst Computat Math & Math Geophys, Novosibirsk, Russia.
C3 Russian Academy of Sciences
RP Bredikhin, S (corresponding author), SB RAS, Inst Computat Math & Math Geophys, Novosibirsk, Russia.
EM bredikhin@sscc.ru; scherbakova@sscc.ru
RI Bredikhin, Sergey I/C-8139-2016
CR ALPERT CJ, 1995, DES AUT CON, P195
Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
Bredikhin S. V., 2018, PROBLEMY INFORM, P24
Bredikhin S. V., 2017, PROBLEMY INFORM, P38
Bredikhin S. V., 2014, PROBLEMY INFORM, P36
Chung F R K., 1997, Spectral graph theory
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
Lancaster P., 1965, THEORY MATRICES
Meila M., 2001, P INT WORKSH AI STAT
Meila M, 2007, PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, P135
Shi JB, 2000, IEEE T PATTERN ANAL, V22, P888, DOI 10.1109/34.868688
von Luxburg U, 2007, STAT COMPUT, V17, P395, DOI 10.1007/s11222-007-9033-z
WEI YC, 1989, 1989 IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, P298
WU Z, 1993, IEEE T PATTERN ANAL, V15, P1101, DOI 10.1109/34.244673
NR 14
TC 0
Z9 0
U1 0
U2 3
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-2986-0
PY 2019
BP 17
EP 20
DI 10.1109/opcs.2019.8880205
PG 4
WC Engineering, Electrical & Electronic; Operations Research & Management
Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Operations Research & Management Science
GA BO7WE
UT WOS:000525749600004
DA 2024-09-05
ER
PT J
AU Chikhaoui, B
Chiazzaro, M
Wang, S
Sotir, M
AF Chikhaoui, Belkacem
Chiazzaro, Mauricio
Wang, Shengrui
Sotir, Martin
TI Detecting Communities of Authority and Analyzing Their Influence in
Dynamic Social Networks
SO ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY
LA English
DT Article
DE Community of authority; meta-community; topic modeling; betweenness
centrality; community influence; granger causality
AB Users in real-world social networks are organized into communities that differ from each other in terms of influence, authority, interest, size, etc. This article addresses the problems of detecting communities of authority and of estimating the influence of such communities in dynamic social networks. These are new issues that have not yet been addressed in the literature, and they are important in applications such as marketing and recommender systems. To facilitate the identification of communities of authority, our approach first detects communities sharing common interests, which we call "meta-communities,"by incorporating topic modeling based on users' community memberships. Then, communities of authority are extracted with respect to each meta-community, using a new measure based on the betweenness centrality. To assess the influence between communities over time, we propose a new model based on the Granger causality method. Through extensive experiments on a variety of social network datasets, we empirically demonstrate the suitability of our approach for community-of-authority detection and assessment of the influence between communities over time.
C1 [Chikhaoui, Belkacem; Sotir, Martin] Comp Res Inst Montreal, 405 Ave Ogilvy,Bur 101, Montreal, PQ, Canada.
[Chiazzaro, Mauricio; Wang, Shengrui] Univ Sherbrooke, Dept Comp Sci, Prospectus Lab, 2500 Blvd Univ, Sherbrooke, PQ, Canada.
C3 University of Sherbrooke
RP Chikhaoui, B (corresponding author), Comp Res Inst Montreal, 405 Ave Ogilvy,Bur 101, Montreal, PQ, Canada.
EM belkacem.chikhaoui@crim.ca; mauricio.chiazzaro@usherbrooke.ca;
shengrui.wang@usherbrooke.ca; martin.sotir@crim.ca
CR Anagnostopoulos A., 2008, P 14 ACM SIGKDD INT, P7, DOI [10.1145/1401890.1401897, DOI 10.1145/1401890.1401897]
[Anonymous], 2010, P 19 INT C WORLD WID, DOI [10.1145/1772690.1772755, DOI 10.1145/1772690.1772755]
[Anonymous], 2010, WSDM
[Anonymous], 2009, SDM, DOI DOI 10.1137/1.9781611972795.84
[Anonymous], 2012, 2012 ASIA PACIFIC PO
[Anonymous], 2003, Linked: How everything is connected to everything else and what it means for business, sciense and everyday life
Aral S, 2009, P NATL ACAD SCI USA, V106, P21544, DOI 10.1073/pnas.0908800106
Asimakopoulos I, 2000, ECON LETT, V68, P25, DOI 10.1016/S0165-1765(00)00219-6
Aufaure, 2013, P 28 ANN ACM S APPL
Barbieri N., 2014, P SIAM INT C DAT MIN
Barbieri N., 2013, Proc. ACM Intl. Conf. on Web search and data mining (WSDM), P33, DOI DOI 10.1145/2433396.2433403
Belak Vaclav, 2012, P INT C WEB SOC MED
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
BONACICH P, 1972, J MATH SOCIOL, V2, P113, DOI 10.1080/0022250X.1972.9989806
Bouguessa Mohamed, 2009, IEEE T KNOWL DATA EN, V21, P4
Bouguessa Mohamed., 2008, SIGKDD, P866
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Budalakoti S., 2012, Proc. of the 21st international confer- ence on World Wide Web (WWW), P709
Chen J, 2012, IEEE T KNOWL DATA EN, V24, P1216, DOI 10.1109/TKDE.2010.271
Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047
Chikhaoui B, 2015, AAAI CONF ARTIF INTE, P51
Crandall DavidJ., 2008, KDD, P160
Cui P, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P901
Cui P, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P185
Dietz Laura, 2009, P NIPS WORKSH APPL T
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7
Galeotti A, 2009, RAND J ECON, V40, P509, DOI 10.1111/j.1756-2171.2009.00075.x
Goyal A, 2011, PROC VLDB ENDOW, V5, P73, DOI 10.14778/2047485.2047492
GRANGER CWJ, 1969, ECONOMETRICA, V37, P424, DOI 10.2307/1912791
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Heinrich G., 2008, TECHNICAL REPORT
Hinz O, 2011, J MARKETING, V75, P55, DOI 10.1509/jm.10.0088
Kempe D., 2005, Automata, Languages and Programming. 32nd International Colloquium, ICALP 2005. Proceedings (Lecture Notes in Computer Science Vol. 3580), P1127, DOI 10.1007/11523468_91
Kim M. H., 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS), DOI 10.1109/PLASMA.2013.6633482
Lai DR, 2010, PHYSICA A, V389, P2443, DOI 10.1016/j.physa.2010.02.014
Liu Dong-Sheng, 2011, SENSORS, V11, P6494, DOI DOI 10.1109/W
Liu L, 2012, DATA MIN KNOWL DISC, V25, P511, DOI 10.1007/s10618-012-0252-3
Liu Lu., 2010, CIKM
McPherson M, 2001, ANNU REV SOCIOL, V27, P415, DOI 10.1146/annurev.soc.27.1.415
Mehmood Yasir, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference (ECML PKDD 2013). Proceedings: LNCS 8189, P48, DOI 10.1007/978-3-642-40991-2_4
Minka T.P., 2002, Uncertainty in Artificial Intelligence, P352
Myers Seth A., 2012, P 18 ACM SIGKDD INT, P33, DOI [10.1145/956750.956769, DOI 10.1145/2339530.2339540]
Newman MEJ, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.036104
Probst F, 2013, BUS INFORM SYST ENG+, V5, P179, DOI 10.1007/s12599-013-0263-7
Shuai X, 2012, INT J SEMANT WEB INF, V8, P20, DOI 10.4018/jswis.2012100102
Tang J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P807
Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302
Trusov M, 2010, J MARKETING RES, V47, P643, DOI 10.1509/jmkr.47.4.643
Ye M, 2012, SIGIR 2012: PROCEEDINGS OF THE 35TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P671, DOI 10.1145/2348283.2348373
Yin ZB, 2012, Proceedings of 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on Social Computing (SocialCom/PASSAT 2012), P502, DOI 10.1109/SocialCom-PASSAT.2012.10
Zhang Haizheng, 2007, 2007 IEEE INT SEC IN, P200
Zhang Jing, 2013, IJCAI
Zhou D., 2006, WWW '06, P173
Zhou Ding., 2006, P 15 ACM INT C INFOR, P248, DOI DOI 10.1145/1183614.1183653
NR 55
TC 1
Z9 1
U1 1
U2 19
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA
SN 2157-6904
EI 2157-6912
J9 ACM T INTEL SYST TEC
JI ACM Trans. Intell. Syst. Technol.
PD SEP
PY 2017
VL 8
IS 6
AR 82
DI 10.1145/3070658
PG 28
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA FL5XE
UT WOS:000414319000011
DA 2024-09-05
ER
PT J
AU Aljohani, NR
Fayoumi, A
Hassan, SU
AF Aljohani, Naif Radi
Fayoumi, Ayman
Hassan, Saeed-Ul
TI A Novel Deep Neural Network-Based Approach to Measure Scholarly Research
Dissemination Using Citations Network
SO APPLIED SCIENCES-BASEL
LA English
DT Article
DE citations context classification; citation network analysis; deep
learning
ID ARCHITECTURE; KNOWLEDGE; SYSTEMS; IMPACT; GRAPH
AB We investigated the scientific research dissemination by analyzing the publications and citation data, implying that not all citations are significantly important. Therefore, as alluded to existing state-of-the-art models that employ feature-based techniques to measure the scholarly research dissemination between multiple entities, our model implements the convolutional neural network (CNN) with fastText-based pre-trained embedding vectors, utilizes only the citation context as its input to distinguish between important and non-important citations. Moreover, we speculate using focal-loss and class weight methods to address the inherited class imbalance problems in citation classification datasets. Using a dataset of 10 K annotated citation contexts, we achieved an accuracy of 90.7% along with a 90.6% f1-score, in the case of binary classification. Finally, we present a case study to measure the comprehensiveness of our deployed model on a dataset of 3100 K citations taken from the ACL Anthology Reference Corpus. We employed state-of-the-art graph visualization open-source tool Gephi to analyze the various aspects of citation network graphs, for each respective citation behavior.
C1 [Aljohani, Naif Radi; Fayoumi, Ayman] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah 21589, Saudi Arabia.
[Hassan, Saeed-Ul] Manchester Metropolitan Univ, Dept Comp & Math, Manchester M15 6BH, Lancs, England.
C3 King Abdulaziz University; Manchester Metropolitan University
RP Aljohani, NR (corresponding author), King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah 21589, Saudi Arabia.
EM nraljohani@kau.edu.sa; afayoumi@kau.edu.sa; s.ul-hassan@mmu.ac.uk
RI Aljohani, Naif R/S-1109-2017; Fayoumi, Ayman/E-7236-2014; Hassan,
Saeed-Ul/G-1889-2016
OI Fayoumi, Ayman/0000-0002-4160-3305; Hassan, Saeed-Ul/0000-0002-6509-9190
FU Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah
[RG-14-611-40]
FX This project was funded by the Deanship of Scientific Research (DSR),
King Abdulaziz University, Jeddah, under Grant No. RG-14-611-40. The
authors, therefore, gratefully acknowledge DSR's technical and financial
support.
CR Agarwal N, 2005, LECT NOTES COMPUT SC, V3739, P475
Aljohani NR, 2021, SCIENTOMETRICS, V126, P5509, DOI 10.1007/s11192-021-03986-z
Aljohani NR, 2023, J INF SCI, V49, P79, DOI 10.1177/0165551521991022
Aljohani NR, 2020, SOFT COMPUT, V24, P11109, DOI 10.1007/s00500-020-04689-y
Arshad N, 2022, LIBR HI TECH, V40, P115, DOI 10.1108/LHT-02-2019-0048
Basiri ME, 2021, FUTURE GENER COMP SY, V115, P279, DOI 10.1016/j.future.2020.08.005
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Berger M, 2017, IEEE T VIS COMPUT GR, V23, P691, DOI 10.1109/TVCG.2016.2598667
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bonacich P, 2007, SOC NETWORKS, V29, P555, DOI 10.1016/j.socnet.2007.04.002
Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Chang J., 2009, AISTATS
Drongstrup D, 2020, SCIENTOMETRICS, V125, P1541, DOI 10.1007/s11192-020-03613-3
Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730
Eto M, 2019, INFORM PROCESS MANAG, V56, DOI 10.1016/j.ipm.2019.05.007
Fang H., 2017, J LIBR INF SCI, V20, P13
Frandsen T.F, 2004, ASLIB PROC
Ganguly S, 2017, LECT NOTES COMPUT SC, V10193, P383, DOI 10.1007/978-3-319-56608-5_30
Gori M, 2006, 2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS), P778, DOI 10.1109/WI.2006.149
Guo YC, 2019, CMC-COMPUT MATER CON, V58, P829, DOI 10.32604/cmc.2019.03729
Hassan S.U., 2017, MEASURING SCI KNOWLE, P322
Hassan S.U., 2020, ARXIV200813023
Hassan SU, 2021, J INF SCI, V47, P712, DOI 10.1177/0165551520930917
Hassan SU, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2019.102045
Hassan SU, 2015, SCIENTOMETRICS, V103, P33, DOI 10.1007/s11192-015-1528-3
Hassan SU, 2013, SCIENTOMETRICS, V94, P163, DOI 10.1007/s11192-012-0786-6
Imran M., 2018, 23 INT C SCI TECHN I
Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1
Jurgens D., 2018, T ASSOC COMPUT LING, DOI 10.1162/tacl_a_00028
Kong XJ, 2021, IEEE T EMERG TOP COM, V9, P226, DOI 10.1109/TETC.2018.2830698
Kucuktunc Onur, 2012, ARXIV12051143
Lancichinetti A, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.016118
Latapy M, 2008, THEOR COMPUT SCI, V407, P458, DOI 10.1016/j.tcs.2008.07.017
Li DY, 2020, CMC-COMPUT MATER CON, V64, P623, DOI 10.32604/cmc.2020.09800
Liu Y., 2009, PROC 26 ANN INT C M, P665, DOI DOI 10.1145/1553374.1553460
Lu C, 2017, SCIENTOMETRICS, V112, P927, DOI 10.1007/s11192-017-2398-7
Meng FQ, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1509
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
Patsopoulos NA, 2005, JAMA-J AM MED ASSOC, V293, P2362, DOI 10.1001/jama.293.19.2362
Peng H, 2020, INTELL AUTOM SOFT CO, V26, P609, DOI 10.32604/iasc.2020.013939
Qasim MA, 2017, LIBR HI TECH, V35, P577, DOI 10.1108/LHT-04-2017-0076
Rahi S., 2019, P INT C SMART INF CO, P357
Rowlands I, 2002, ASLIB PROC, V54, P77, DOI 10.1108/00012530210435211
Saeed-Ul Hassan, 2019, SCIENTOMETRICS, V119, P481, DOI 10.1007/s11192-019-03044-9
Sagnika S, 2021, NEURAL COMPUT APPL, V33, P17425, DOI 10.1007/s00521-021-06328-5
Said A, 2021, FUTURE GENER COMP SY, V119, P166, DOI 10.1016/j.future.2021.02.005
Said A, 2019, SCIENTOMETRICS, V120, P217, DOI 10.1007/s11192-019-03112-0
Tarjan R., 1972, SIAM Journal on Computing, V1, P146, DOI 10.1137/0201010
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Wang J, 2020, J INTERNET TECHNOL, V21, P393, DOI 10.3966/160792642020032102008
Wang MS, 2019, CMC-COMPUT MATER CON, V60, P781, DOI 10.32604/cmc.2019.05595
Wu BR, 2021, ENERGY, V226, DOI 10.1016/j.energy.2021.120403
Wu BR, 2021, MEASUREMENT, V168, DOI 10.1016/j.measurement.2020.108468
Wu HP, 2020, CMC-COMPUT MATER CON, V63, P1309, DOI 10.32604/cmc.2020.010172
Xu YB, 2020, CMC-COMPUT MATER CON, V62, P137, DOI 10.32604/cmc.2020.05825
Yang LB, 2018, IEEE ACCESS, V6, P59618, DOI 10.1109/ACCESS.2018.2872730
Zhang JY, 2020, J INTERNET TECHNOL, V21, P1, DOI 10.3966/160792642020012101001
Zhang Q, 2013, SCI REP-UK, V3, DOI 10.1038/srep01640
Zhou P, 2007, J AM SOC INF SCI TEC, V58, P223, DOI 10.1002/asi.20475
Zhu QN, 2020, AAAI CONF ARTIF INTE, V34, P6999
Zhuge H, 2006, COMMUN ACM, V49, P101, DOI 10.1145/1125944.1125948
NR 62
TC 7
Z9 7
U1 3
U2 18
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-3417
J9 APPL SCI-BASEL
JI Appl. Sci.-Basel
PD NOV
PY 2021
VL 11
IS 22
AR 10970
DI 10.3390/app112210970
PG 14
WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials
Science, Multidisciplinary; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Chemistry; Engineering; Materials Science; Physics
GA XJ3JO
UT WOS:000726689000001
OA gold
DA 2024-09-05
ER
PT J
AU Senter, MS
AF Senter, Mary Scheuer
TI Integrating Program Assessment and a Career Focus into a Research
Methods Course
SO TEACHING SOCIOLOGY
LA English
DT Article
DE research methods; program assessment; active learning; careers
ID TEACHING-RESEARCH METHODS; STUDENTS
AB Sociology research methods students in 2013 and 2016 implemented a series of real world data gathering activities that enhanced their learning while assisting the department with ongoing program assessment and program review. In addition to the explicit collection of program assessment data on both students' development of sociological concepts and skills while undergraduates and alumni's use of such knowledge after graduation, an effort was made throughout the semesters to highlight key research methods knowledge using examples that focused on job searching and careers appropriate for baccalaureate-trained sociologists. Students reported that these real-world activities both increased their interest in and their learning about research methods. These explicit and implicit experiences with an employment focus also led them to increase their own thinking about their eventual careers and preparing job search materials, such as resumes, that include skills developed in their undergraduate sociology courses.
C1 [Senter, Mary Scheuer] Cent Michigan Univ, Sociol, Mt Pleasant, MI 48859 USA.
C3 Central Michigan University
RP Senter, MS (corresponding author), Cent Michigan Univ, Dept Sociol, 312B Anspach Hall, Mt Pleasant, MI 48859 USA.
EM Mary.Senter@cmich.edu
CR Blank G, 2004, SOC SCI COMPUT REV, V22, P187, DOI 10.1177/0894439303262559
Crull SR, 2004, TEACH SOCIOL, V32, P206, DOI 10.1177/0092055X0403200206
Earl Babbie., 2014, The basics of social research
Ferguson SJ, 2016, TEACH SOCIOL, V44, P163, DOI 10.1177/0092055X16651478
Jennings PK, 2006, TEACH SOCIOL, V34, P286, DOI 10.1177/0092055X0603400307
Kathleen McKinney, 2004, LIBERAL LEARNING SOC
Macheski GE, 2008, TEACH SOCIOL, V36, P42, DOI 10.1177/0092055X0803600106
Pfeffer CA, 2012, TEACH SOCIOL, V40, P368, DOI 10.1177/0092055X12446783
Potter SJ, 2003, TEACH SOCIOL, V31, P38, DOI 10.2307/3211423
Raddon MB, 2008, TEACH SOCIOL, V36, P141, DOI 10.1177/0092055X0803600204
Roberta Spalter-Roth, 2010, LAUNCHING MAJORS SAT
Roberta Spalter-Roth, 2008, PATHWAYS JOB SATISFA
Roberta Spalter-Roth, 2012, RECRUITING SOCIOLOGY
Roberta Spalter-Roth, 2013, VICTORY ASSESSMENT W
Scheuer Senter Mary, 2001, ASSESSING STUDENT LE, P14
Senter Mary S., 2015, JOBS CAREERS SOCIOLO
Singleton RA, 2007, TEACH SOCIOL, V35, P48
Spalter-Roth R, 2010, TEACH SOCIOL, V38, P314, DOI 10.1177/0092055X10378827
Sweet S, 2014, TEACH SOCIOL, V42, P287, DOI 10.1177/0092055X14541551
Wiegers Vitullo Margaret, 2009, FOOTNOTES, V37
NR 20
TC 7
Z9 7
U1 0
U2 5
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0092-055X
EI 1939-862X
J9 TEACH SOCIOL
JI Teach. Sociol.
PD APR
PY 2017
VL 45
IS 2
BP 131
EP 141
DI 10.1177/0092055X16686151
PG 11
WC Education & Educational Research; Sociology
WE Social Science Citation Index (SSCI)
SC Education & Educational Research; Sociology
GA ET2XH
UT WOS:000400138500003
DA 2024-09-05
ER
PT J
AU Fan, LP
Wang, YF
Ding, SC
Qi, BB
AF Fan, Lipeng
Wang, Yuefen
Ding, Shengchun
Qi, Binbin
TI Productivity trends and citation impact of different institutional
collaboration patterns at the research units' level
SO SCIENTOMETRICS
LA English
DT Article
DE Institutional collaboration pattern; Productivity trends; Citation
impact; Negative binomial; Artificial intelligence
ID INTERNATIONAL COLLABORATION; SCIENTIFIC COLLABORATION; COMPUTER-SCIENCE;
UNIVERSITIES; PERFORMANCE
AB In order to gain a deeper understanding of how research performance and collaboration patterns of institutions affect productivity trends and citations, this paper classifies institutions into two types: main and normal institutions, and then divides the dataset into six types: M and N as intra-institution collaboration types, and M&M, M&N, N&M, N&N as inter-institution types (M: main institutions, N: normal institutions). After analysing the productivity trends and citation impact at the research units' level, the main results are shown as following: through a large-scale and long-span data, M papers account for the highest percentage, and play an important leading role in the beginning, and the average citation value of M&M papers is significantly higher than other types; although the number of papers with multi-authors is increasing over time, the impact of the number of authors on citations may vary from discipline to discipline, and there is a slightly negative relationship between them in artificial intelligence field in our data; despite the number of institutions and countries has a positive impact on citations in whole dataset, it differs when considering different institutional collaboration patterns and the first author's country; no matter what institutional collaboration pattern is, the papers with USA as first author's country always have a significant greater impact than China as first author's country. After analysing two negative binomial regression models, some results support the above conclusions. Moreover, we find that the number of M institutions has a significant greatest impact on citations, while M institution as first author's affiliation only has a slightly influence; China as first author's country has a negative impact, while USA as first author's country has a moderately positive impact, and slightly lower than that of the number of countries, moderately higher than that of the number of institutions.
C1 [Fan, Lipeng; Wang, Yuefen; Ding, Shengchun] Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Peoples R China.
[Wang, Yuefen] Jiangsu Collaborat Innovat Ctr Social Safety Sci, Nanjing, Peoples R China.
[Qi, Binbin] Nanjing Univ, Sch Informat Management, Nanjing, Peoples R China.
C3 Nanjing University of Science & Technology; Nanjing University
RP Wang, YF (corresponding author), Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Peoples R China.; Wang, YF (corresponding author), Jiangsu Collaborat Innovat Ctr Social Safety Sci, Nanjing, Peoples R China.
EM yuefen163@163.com
RI fan, lipeng/IWM-3409-2023
FU National Social Science of China [16ZDA224]
FX The authors are grateful to anonymous referees and editors for their
invaluable and insightful comments, and thank for the support by the
National Social Science of China (16ZDA224).
CR Abramo G, 2011, SCIENTOMETRICS, V86, P347, DOI 10.1007/s11192-010-0297-2
[Anonymous], QUALITY QUANTITY, DOI DOI 10.1007/s11135-014-0110-z
Beaver DD, 2001, SCIENTOMETRICS, V52, P365, DOI 10.1023/A:1014254214337
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Franceschet M, 2011, J AM SOC INF SCI TEC, V62, P1992, DOI 10.1002/asi.21614
Gazni A, 2012, J AM SOC INF SCI TEC, V63, P323, DOI 10.1002/asi.21688
Gazni A, 2011, SCIENTOMETRICS, V87, P251, DOI 10.1007/s11192-011-0343-8
Han P, 2014, SCIENTOMETRICS, V98, P53, DOI 10.1007/s11192-013-1146-x
Ibáñez A, 2013, SCIENTOMETRICS, V95, P689, DOI 10.1007/s11192-012-0883-6
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
Barrantes BSL, 2012, J AM SOC INF SCI TEC, V63, P481, DOI 10.1002/asi.21682
Lee DH, 2012, SCIENTOMETRICS, V91, P925, DOI 10.1007/s11192-011-0602-8
Liu HI, 2012, SCIENTOMETRICS, V92, P145, DOI 10.1007/s11192-012-0719-4
Nguyen TV, 2017, SCIENTOMETRICS, V110, P1035, DOI 10.1007/s11192-016-2201-1
Ni P, 2018, SCIENTOMETRICS, V116, P863, DOI 10.1007/s11192-018-2784-9
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
Peng TQ, 2012, J AM SOC INF SCI TEC, V63, P1789, DOI 10.1002/asi.22649
Puuska HM, 2014, SCIENTOMETRICS, V98, P823, DOI 10.1007/s11192-013-1181-7
Reingewertz Y, 2018, J INFORMETR, V12, P74, DOI 10.1016/j.joi.2017.11.006
Sooryamoorthy R, 2009, SCIENTOMETRICS, V81, P177, DOI 10.1007/s11192-009-2126-z
Sud P, 2016, J ASSOC INF SCI TECH, V67, P1849, DOI 10.1002/asi.23515
TRENCHARD PM, 1992, J INFORM SCI, V18, P69, DOI 10.1177/016555159201800108
Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6
VanHooydonk G, 1997, J AM SOC INFORM SCI, V48, P944, DOI 10.1002/(SICI)1097-4571(199710)48:10<944::AID-ASI8>3.0.CO;2-1
Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9
Wang WC, 2014, SCIENTOMETRICS, V98, P1535, DOI 10.1007/s11192-013-1072-y
Yuan LL, 2018, SCIENTOMETRICS, V116, P401, DOI 10.1007/s11192-018-2753-3
NR 27
TC 8
Z9 9
U1 8
U2 73
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2020
VL 125
IS 2
BP 1179
EP 1196
DI 10.1007/s11192-020-03609-z
EA JUL 2020
PG 18
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA OT3PI
UT WOS:000547804200009
DA 2024-09-05
ER
PT C
AU Koni, I
AF Koni, I
BE Chova, LG
Martinez, AL
Torres, IC
TI HOW TO SUCCESSFULLY COLLABORATE IN AN ONLINE COURSE?
SO 12TH INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION
(ICERI2019)
SE ICERI Proceedings
LA English
DT Proceedings Paper
CT 12th Annual International Conference of Education, Research and
Innovation (ICERI)
CY NOV 11-13, 2019
CL Seville, SPAIN
DE Collaboration; online learning; study skills; action research
AB The contemporary educational system evaluates life-long learning and knowledgeable application of skills [1], [2]. One of these skills that help the learner to learn and relearn in new contexts are study skills. Although the field of study skills is rich in variety, one of the essential study skills, emphasized both in learning and working context, is a skill to collaborate [3], [4]. The collaboration skill is, also, considered as one of the 21st-century learning skills [5]. Research has shown that collaborative learning leads to higher achievement, less stress and greater student satisfaction [6]. Moreover, the online environment, as compared to the classroom, allows students to gain deeper experience in team-work and communication [7]. In recent years, the number of online courses has increased along with the development of technology. These courses might challenge collaboration between participants who are strangers to each other but working together towards the same aim in the learning process. This action research is about restructuring the online course with the team-work assignment to enhance collaboration among participants taking the online course.
The restructuring process involved adding a team-work assignment to previous assignments (in 2018). In the process of this assignment, the student looked back to their learning experience acquired from the online course and created a virtual poster in team-work following assessment rubric. Therefore, to study the effectiveness of the assignment, the aim was to find out student opinions about what developed in their collaboration as a study skill within the assignment and their suggestions on how to enhance the collaboration within the assignment.
This action research involves 43 high school students participating in an online course on study skills in 2018. The data was gathered via the feedback questionnaire and analyzed using qualitative inductive content analysis. The results indicate that within the assignment, participants had an opportunity to develop their skills related to leadership, communication, and compromising. To enhance the collaboration within the assignment, the participants suggested that the lecturer should make random groups to facilitate collaboration between the students who are strangers to each other, and the personal data for contacting each other should be provided. Participants also highlighted that the technical tool for forming the groups should prevent the possibility to erase other members from the team. Further research will address the question of why some of the participants 'disappear' from the team-work assignment or prefer to do the assignment alone, from which the latter annuls the aim of the team-work.
C1 [Koni, I] Tartu Univ, Tartu, Estonia.
C3 University of Tartu
RP Koni, I (corresponding author), Tartu Univ, Tartu, Estonia.
CR [Anonymous], 2006, J ASYNCHRONOUS LEARN, DOI DOI 10.24059/OLJ.V10I1.1770
[Anonymous], FRAM 21 CENT LEARN
Cottrell S., 2013, The study skills handbook
Fadel C., 2008, 21 CENTURY SKILLS CA
Garrison D. R., 1999, Internet and Higher Education, V2, P87, DOI 10.1016/S1096-7516(00)00016-6
Hoag A, 2000, J Educ Techno Soc, V3, P337
Hsieh HF, 2005, QUAL HEALTH RES, V15, P1277, DOI 10.1177/1049732305276687
Mayring P., 2002, Forum: Qualitative Social Research, V1
Moore S., 2010, ULTIMATE STUDY SKILL
Taylor A, 2011, BIOCHEM MOL BIOL EDU, V39, P219, DOI 10.1002/bmb.20511
NR 10
TC 0
Z9 0
U1 0
U2 0
PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT
PI VALENICA
PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN
SN 2340-1095
BN 978-84-09-14755-7
J9 ICERI PROC
PY 2019
BP 6841
EP 6845
PG 5
WC Education & Educational Research
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BO8YP
UT WOS:000530212402115
DA 2024-09-05
ER
PT C
AU Liu, HM
AF Liu Huimin
GP IEEE COMP SOC
TI Research on Practice Evaluation System of Higher Vocational Preschool
Education Based on Artificial Intelligence
SO 2021 13TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND
MECHATRONICS AUTOMATION (ICMTMA 2021)
SE International Conference on Measuring Technology and Mechatronics
Automation
LA English
DT Proceedings Paper
CT 13th International Conference on Measuring Technology and Mechatronics
Automation (ICMTMA)
CY JAN 16-17, 2021
CL Beihai, PEOPLES R CHINA
DE BP neural network; GA; artificial intelligence; practice evaluation;
higher vocational college teaching
AB To improve the quality of practical teaching and promote the synchronization of practical teaching and practice, the theory of artificial intelligence network is introduced into the evaluation of practical teaching quality, and the relevant mathematical model is established. Firstly, a perfect practical teaching evaluation index system is provided, and the related index system and quality standard are established. Then, when the convergence speed of BP algorithm training network is slow, genetic algorithm is used to optimize the operation parameters of the network, the optimization results are taken as the initial value of BP algorithm, and BP algorithm is used to train the network until the required accuracy is reached. Finally, by using data cleaning, network training and rationalization test, a more reasonable result is obtained, which provides a new idea for teaching quality evaluation.
C1 [Liu Huimin] Shanxi Vocat Acad Art, Xian 710054, Shaanxi, Peoples R China.
RP Liu, HM (corresponding author), Shanxi Vocat Acad Art, Xian 710054, Shaanxi, Peoples R China.
EM a0Zhangyanzz@outlook.com
FU Infant School Education Research Project of Shaanxi Province [ZdKT1914]
FX This work was supported by Infant School Education Research Project of
Shaanxi Province in 2019 (Key Project) under grant no. ZdKT1914. Title
of the Project: Research on the Talent Cultivation of Infant School
Education in Higher Vocational Colleges Based on Market Demand.
CR Cox JL, 2010, J EVAL CLIN PRACT, V16, P315, DOI 10.1111/j.1365-2753.2010.01391.x
Das S, 2016, BMC MICROBIOL, V16, DOI 10.1186/s12866-016-0723-6
Elfgren IMH, 2016, PRIM HEALTH CARE RES, V17, P549, DOI 10.1017/S1463423616000098
Frykman PK, 2013, J LAPAROENDOSC ADV S, V23, P639, DOI 10.1089/lap.2013.0125
Huang R, 2014, CENT EUR J IMMUNOL, V39, P488, DOI 10.5114/ceji.2014.47734
Katz DL, 2008, J EVAL CLIN PRACT, V14, P294, DOI 10.1111/j.1365-2753.2007.00853.x
Li H., 2018, INT J ENV RES PUB HE, V15, P146
Liaw Siaw-Teng, 2011, AMIA Annu Symp Proc, V2011, P785
Xia LM, 2012, APPL MECH MATER, V174-177, P2925, DOI 10.4028/www.scientific.net/AMM.174-177.2925
NR 9
TC 0
Z9 0
U1 2
U2 11
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
SN 2157-1473
BN 978-1-6654-3892-6
J9 INT CONF MEAS
PY 2021
BP 615
EP 618
DI 10.1109/ICMTMA52658.2021.00142
PG 4
WC Automation & Control Systems; Engineering, Electrical & Electronic;
Engineering, Mechanical; Instruments & Instrumentation
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Engineering; Instruments & Instrumentation
GA BR8SH
UT WOS:000672818900134
DA 2024-09-05
ER
PT C
AU Ramírez-de-la-Rosa, G
Villatoro-Tello, E
Jiménez-Salazar, H
Sánchez-Sánchez, C
AF Ramirez-de-la-Rosa, Gabriela
Villatoro-Tello, Esau
Jimenez-Salazar, Hector
Sanchez-Sanchez, Christian
BE Gelbukh, A
Espinoza, FC
GaliciaHaro, SN
TI Towards Automatic Detection of User Influence in Twitter by Means of
Stylistic and Behavioral Features
SO HUMAN-INSPIRED COMPUTING AND ITS APPLICATIONS, PT I
SE Lecture Notes in Artificial Intelligence
LA English
DT Proceedings Paper
CT 13th Mexican International Conference on Artificial Intelligence (MICAI)
CY NOV 16-22, 2014
CL Tuxtla Gutierrez, MEXICO
DE Opinion Leaders; User Influence; Author Profiling; Machine Learning;
Natural Language Processing
AB Online communities are filled with comments of loyal readers or first-time viewers, that are constantly creating and sharing information at an unprecedented level, resulting in millions of messages containing opinions, ideas, needs and beliefs of Internet users. Therefore, businesses companies are very interested in finding influential users and encouraging them to create positive influence. Influential users represent users with the ability to influence individual's attitudes in a desired way with relative frequency. We present an empirical analysis on influential users identification problem in Twitter. Our proposed approach considers that the influential level of users can be detected by considering its communication patterns, by means of particular writing style features as well as behavioral features. Performed experiments on more that 7000 users profiles, indicate that it is possible to automatically identify influential users among the members of a social networking community, and also it obtains competitive results against several state-of-the-art methods
C1 [Ramirez-de-la-Rosa, Gabriela; Villatoro-Tello, Esau; Jimenez-Salazar, Hector; Sanchez-Sanchez, Christian] Univ Autonoma Metropolitana, Dept Tecnol Informac, Unidad Cuajimalpa, Mexico City, DF, Mexico.
C3 Universidad Autonoma Metropolitana - Mexico
RP Ramírez-de-la-Rosa, G (corresponding author), Univ Autonoma Metropolitana, Dept Tecnol Informac, Unidad Cuajimalpa, Mexico City, DF, Mexico.
EM gramirez@correo.cua.uam.mx; evillatoro@correo.cua.uam.mx;
hjimenez@correo.cua.uam.mx; csanchez@correo.cua.uam.mx
OI VILLATORO-TELLO, ESAU/0000-0002-1322-0358
CR [Anonymous], 1999, TECH REPORT STANFORD
[Anonymous], 2014, INFORM ACCESS EVALUA
Cha M., 2010, MEASURING USER INFLU
Chakravarthy S., 2011, International Journal of Management Business Studies, V1, P61
Dong Liu, 2013, Advances in Swarm Intelligence. 4th International Conference, ICSI 2013. Proceedings, P146, DOI 10.1007/978-3-642-38715-9_18
Hastie T., 2009, Springer series in statistics
Horrigan J.B., 2001, Online communities: Networks that nurture long-distance relationships and local ties
Huffaker D, 2010, HUM COMMUN RES, V36, P593, DOI 10.1111/j.1468-2958.2010.01390.x
Kong SB, 2011, LECT NOTES ARTIF INT, V7120, P138
Ma N, 2014, EXPERT SYST APPL, V41, P1357, DOI 10.1016/j.eswa.2013.08.033
Rad AA, 2011, LECT NOTES BUS INF P, V78, P227
Stephen R, 1995, P NZ COMP SCI RES ST, P57
Trusov M, 2010, J MARKETING RES, V47, P643, DOI 10.1509/jmkr.47.4.643
NR 13
TC 13
Z9 13
U1 0
U2 12
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 978-3-319-13647-9; 978-3-319-13646-2
J9 LECT NOTES ARTIF INT
PY 2014
VL 8856
BP 245
EP 256
PG 12
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BC7JE
UT WOS:000354931600023
DA 2024-09-05
ER
PT J
AU Ebadi, A
Schiffauerova, A
AF Ebadi, Ashkan
Schiffauerova, Andrea
TI iSEER: an intelligent automatic computer system for scientific
evaluation of researchers
SO SCIENTOMETRICS
LA English
DT Article; Proceedings Paper
CT 15th International Conference of the
International-Society-for-Scientometrics-and-Informetrics (ISSI) on
Scientometrics and Informetrics
CY JUN 29-JUL 04, 2015
CL Bogazici Univ, Istanbul, TURKEY
HO Bogazici Univ
DE Machine learning; Scientific output; Funding; Research performance;
Scientific evaluation
ID RESEARCH PRODUCTIVITY; CITATION; IMPACT; PERFORMANCE; COLLABORATION;
UNIVERSITIES; DYNAMICS; MODELS
AB Funding is one of the crucial drivers of scientific activities. The increasing number of researchers and the limited financial resources have caused a tight competition among scientists to secure research funding. On the other side, it is now even harder for funding allocation organizations to select the most proper researchers. Number of publications and citation counts based indicators are the most common methods in the literature for analyzing the performance of researchers. However, the mentioned indicators are highly correlated with the career age and reputation of the researchers, since they accumulate over time. This makes it almost impossible to evaluate the performance of a researcher based on quantity and impact of his/her articles at the time of the publication. This article proposes an intelligent machine learning framework for scientific evaluation of researchers (iSEER). iSEER may help decision makers to better allocate the available funding to the distinguished scientists through providing fair comparative results, regardless of the career age of the researchers. Our results show that iSEER performs well in predicting the performance of the researchers with high accuracy, as well as classifying them based on collaboration patterns, research performance, and efficiency.
C1 [Ebadi, Ashkan; Schiffauerova, Andrea] Concordia Univ, CIISE, Montreal, PQ, Canada.
[Schiffauerova, Andrea] Masdar Inst Sci & Technol, Dept Engn Syst & Management, Abu Dhabi, U Arab Emirates.
C3 Concordia University - Canada; Khalifa University of Science &
Technology
RP Ebadi, A (corresponding author), Concordia Univ, CIISE, Montreal, PQ, Canada.
EM a_ebad@encs.concordia.ca
RI Ebadi, Ashkan/AAI-5123-2020; Ebadi, Ashkan/GWZ-9018-2022
OI Ebadi, Ashkan/0000-0002-4542-9105;
CR Abbasi A, 2011, J INFORMETR, V5, P594, DOI 10.1016/j.joi.2011.05.007
Allen L, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005910
[Anonymous], 2011, EXPLORATORY SOCIAL N, DOI DOI 10.1017/CBO9780511996368
[Anonymous], 1970, INFORM SCI
[Anonymous], 2011, BIG DATA NEXT FRONTI
[Anonymous], 2008, WSDM
[Anonymous], 1997, OECD SCI TECHNOLOGY
[Anonymous], 2009, Social Network Analysis. Methods and Applications
[Anonymous], 2005, GRAPH THEORY
Beaudry C, 2012, RES POLICY, V41, P1589, DOI 10.1016/j.respol.2012.03.022
BELL JG, 1978, ECON INQ, V16, P599, DOI 10.1111/j.1465-7295.1978.tb00530.x
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
BONACICH P, 1972, J MATH SOCIOL, V2, P113, DOI 10.1080/0022250X.1972.9989806
Borgatti SP, 2005, SOC NETWORKS, V27, P55, DOI 10.1016/j.socnet.2004.11.008
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
Breunig MM, 2000, SIGMOD REC, V29, P93, DOI 10.1145/335191.335388
BUSS AR, 1976, CAN PSYCHOL REV, V17, P143, DOI 10.1037/h0081831
Butler L., 2005, HDB QUANTITATIVE SCI, P389, DOI DOI 10.1007/1-4020-2755-9_18
Cowan R, 2003, J ECON BEHAV ORGAN, V52, P513, DOI 10.1016/S0167-2681(03)00091-X
Creamer E.G., 1998, ASHE ERIC HIGHER ED, V26
Creamer E.G., 1998, ASSESSING FACULTY PU, V26
De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics
Deng HT, 2011, LECT NOTES COMPUT SC, V6792, P293, DOI 10.1007/978-3-642-21738-8_38
Dundar H, 1998, RES HIGH EDUC, V39, P607, DOI 10.1023/A:1018705823763
Ebadi A, 2015, PRO INT CONF SCI INF, P425
Ebadi A, 2015, J INFORMETR, V9, P809, DOI 10.1016/j.joi.2015.08.002
Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133061
Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121129
Ebadi A, 2013, J INF KNOWL MANAG, V12, DOI 10.1142/S0219649213500378
Elzinga Aant., 1995, HDB SCI TECHNOLOGY S
Eslami H, 2013, SCIENTOMETRICS, V97, P99, DOI 10.1007/s11192-013-1069-6
Fu LD, 2013, SCIENTOMETRICS, V97, P871, DOI 10.1007/s11192-013-0983-y
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Gingras Y., 1996, Bibliometric Analysis of Funded Research. A Feasibility Study
Godin B., 2003, IMPACT RES GRANTS PO
Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385
Hanneman R.a., 2014, The SAGE handbook of social network analysis, DOI 10.4135/9781446294413.n24
Hicks D, 2004, RES EVALUAT, V13, P78
Huffman W. E., 2005, 3029 IOW STAT U DEP
Jacob BA, 2011, J PUBLIC ECON, V95, P1168, DOI 10.1016/j.jpubeco.2011.05.005
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501
Kyvik S, 2008, SCIENTOMETRICS, V76, P439, DOI 10.1007/s11192-007-1767-z
Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359
LUUKKONENGRONOW T, 1987, R&D MANAGE, V17, P207, DOI 10.1111/j.1467-9310.1987.tb00055.x
MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604
MCALLISTER PR, 1983, J AM SOC INFORM SCI, V34, P123, DOI 10.1002/asi.4630340205
Merton R. K., 1974, SOCIOLOGY SCI THEORE
Nicolaisen J, 2002, J DOC, V58, P383, DOI 10.1108/00220410210431118
Payne A. A., 2003, ADV EC ANAL POLICY, V3, P1018, DOI [DOI 10.2202/1538-0637.1018, 10.2202/1538-0637.1018]
PERITZ BC, 1990, SCIENTOMETRICS, V19, P199, DOI 10.1007/BF02095347
Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472
Plume A., 2014, TRENDS J SCI RES, V38
Polster C, 2007, HIGH EDUC, V53, P599, DOI 10.1007/s10734-005-1118-z
Porter SR, 2001, RES HIGH EDUC, V42, P171, DOI 10.1023/A:1026573503271
Provost F., 1998, Mach. Learn, V30, P271, DOI 10.1023/A:1017181826899
Quinlan J. R., 1993, C4 5 PROGRAMS MACHIN
Sanz Menendez L, 2000, Working Paper 00-01
SEGLEN PO, 1992, J AM SOC INFORM SCI, V43, P628, DOI 10.1002/(SICI)1097-4571(199210)43:9<628::AID-ASI5>3.0.CO;2-0
Sonnenwald DH, 2007, ANNU REV INFORM SCI, V41, P643, DOI 10.1002/aris.2007.1440410121
TAN DL, 1986, RES HIGH EDUC, V24, P223, DOI 10.1007/BF00992074
Tijssen RJW, 2004, RES POLICY, V33, P709, DOI 10.1016/j.respol.2003.11.002
Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6
WANNER RA, 1981, SOCIOL EDUC, V54, P238, DOI 10.2307/2112566
Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918
Weiss S.M., 1991, Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems
NR 66
TC 5
Z9 5
U1 0
U2 54
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD MAY
PY 2016
VL 107
IS 2
BP 477
EP 498
DI 10.1007/s11192-016-1852-2
PG 22
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Information Science & Library Science
GA DM3VA
UT WOS:000376273600009
DA 2024-09-05
ER
PT C
AU Freire, N
Borbinha, J
Martins, B
AF Freire, Nuno
Borbinha, Jose
Martins, Bruno
BE Buchanan, G
Masoodian, M
Cunningham, SJ
TI Consolidation of References to Persons in Bibliographic Databases
SO DIGITAL LIBRARIES: UNIVERSAL AND UBIQUITOUS ACCESS TO INFORMATION,
PROCEEDINGS
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 11th International Conference on Asian Digital Libraries
CY DEC 02-05, 2008
CL Bali, INDONESIA
DE Entity resolution; bibliographic metadata; similarity metrics; machine
learning
AB Entity resolution is the process of determining if, in a specific context, two or more references correspond to the same entity. In this work, we address this problem in the context of references to persons as they are found in bibliographic data, specifically in the case of consolidating multiple datasets. Or solution follows the extraction, transformation and loading (ETL) process, typical in data warehouses. It computes the similarities of the attribute values for the references, and employs a decision tree to decide when the references match. We describe the characteristics of these references within bibliographic datasets, and how we explored those characteristics by developing new similarity metrics to improve the quality of the consolidation process. We evaluated our work by designing an experiment with data from four national libraries. The results show that the proposed similarity metrics contribute significantly to the consolidation process.
C1 [Freire, Nuno; Borbinha, Jose; Martins, Bruno] Univ Tecn Lisboa, Inst Super Tecn, P-1049001 Lisbon, Portugal.
C3 Universidade de Lisboa
EM nuno.freire@ist.utl.pt; jlb@ist.utl.pt; bruno.g.martins@ist.utl.pt
RI da Graça Martins, Bruno Emanuel/J-9735-2015; Freire, Nuno/AAD-9410-2022;
Borbinha, Jose/A-7355-2010
OI da Graça Martins, Bruno Emanuel/0000-0002-3856-2936; Freire,
Nuno/0000-0002-3632-8046; Borbinha, Jose/0000-0001-5463-8438
CR *ALA CLA CILIP, 2002, ANGL CAT RUL 2002 RE
[Anonymous], 2005, Proceedings of the 2nd international workshop on Information quality in information systems
Dong Xin., 2005, Proceedings of the 2005 ACM SIGMOD international conference on Management of data, P85
Elmagarmid AK, 2007, IEEE T KNOWL DATA EN, V19, P1, DOI 10.1109/TKDE.2007.250581
Freund Y, 1999, MACHINE LEARNING, PROCEEDINGS, P124
Jaro M.A., 1989, J AM STAT SOC, V64, P1183
KAISER M, 2003, D LIB MAGAZINE, V9
LAWRENCE S, 1999, P 3 INT C AUT AG
Levenshtein V. I., 1966, Soviet Physics Doklady, V10, P707
MANGUINHAS H, 2008, 3 ICA WORKSH DIG APP
MARTINS B, 2008, P 2 IEEE INT C SEM C
MARTINS B, 2008, INT C AS PAC DIG LIB
Pasula H., 2002, Advances in Neural Information Processing
NR 13
TC 1
Z9 1
U1 0
U2 4
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 978-3-540-89532-9
J9 LECT NOTES COMPUT SC
PY 2008
VL 5362
BP 256
EP 265
PG 10
WC Computer Science, Information Systems; Computer Science, Theory &
Methods; Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BIT31
UT WOS:000262503100026
DA 2024-09-05
ER
PT J
AU Wang, J
Feng, QM
Tam, A
Sun, T
Zhou, PJ
So, S
AF Wang, Jing
Feng, Qiming
Tam, Andrew
Sun, Tong
Zhou, Peijing
So, Samuel
TI Evaluation of the first open-access hepatitis B and safe injection
online training course for health professionals in China
SO BMC MEDICAL EDUCATION
LA English
DT Article
DE Hepatitis B; Internet based education; Open-access education; Online
learning; Continuing medical education; Online learning evaluation
ID BURDEN; CARE; DISEASES
AB Background: Despite the high prevalence of chronic hepatitis B virus (HBV) infection in China, HBV infection prevention and long-term care knowledge of health professionals is inadequate. To address this knowledge gap, we developed an open-access evidence-based online training course, "KnowHBV", to train health professionals on prevention of HBV transmission and safe injections. We conducted an evaluation of the course with health professionals in China to examine its effectiveness in improving knowledge and learner's satisfaction of the course.
Methods: Between July and December 2011, 1015 health professionals from selected hospitals and disease control institutions of Shandong province registered for the course and 932 (92 %) completed the three-module course. Participants' demographic information, pre- and post-course knowledge test results and learner's feedback were collected through the course website.
Results: Pre-course knowledge assessment confirmed gaps in HBV transmission routes, prevention and long-term care knowledge. Only 50.4 % of participants correctly identified all of the transmission routes of HBV, and only 40.7 % recognized all of the recommended tests to monitor chronically infected persons. The number of participants that answered all six multi-part multiple-choice knowledge questions correctly increased from 183 (19.7 %) before taking the course to 395 (42.4 %) on their first attempt upon completion of the course. Over 90 % of the 898 participants who completed the learner-feedback questionnaire rated the course as 'good' or 'very good'; over 94 % found the course instructional design helpful; 57.5 %, 65.7 % and 68.5 % reported that half or more than half of the course content in modules 1, 2 and 3 respectively provided new information; and 93.2 % of the participants indicated they preferred the online learning over traditional face-to-face classroom learning.
Conclusions: The "KnowHBV" online training course appears to be an effective online training tool to improve HBV prevention and care knowledge of the health professionals in China.
C1 [Wang, Jing; Tam, Andrew; So, Samuel] Stanford Univ, Asian Liver Ctr, 780 Welch Rd,CJ130, Palo Alto, CA 94304 USA.
[Feng, Qiming] Guangxi Med Univ, Sch Publ Hlth, 22 Shuangyong Rd, Nanning, Guangxi Provinc, Peoples R China.
[Sun, Tong; Zhou, Peijing] Shandong Prov Ctr Dis Control & Prevent, 16992 Jingshi Rd, Jinan, Shandong, Peoples R China.
C3 Stanford University; Guangxi Medical University
RP Wang, J; So, S (corresponding author), Stanford Univ, Asian Liver Ctr, 780 Welch Rd,CJ130, Palo Alto, CA 94304 USA.
EM alcjwang@gmail.com; samso@stanford.edu
FU Zeshan Foundation (Hongkong); Zeshan Foundation (Hongkong)
FX We would like to thank Zeshan Foundation (Hongkong) and Mr. Paul Davis
for providing funding support for this project. Dr. Yvan Hutin from the
China office of the World Health Organization provided suggestions for
the course content development. We are also most grateful to Michael
Mohrman and Paul Davis at Videx Inc for their technical support. Dr.
Mehlika Toy contributed to the editing of the manuscript. Portions of
this study have been presented at the poster session at the 14th
International Symposium on Viral Hepatitis and Liver Disease (ISVHLD) in
Shanghai, China, 2012. The study group and the study have no conflict of
interests with any other institutions.
CR [Anonymous], 2011, Xinhua News Agency
Bloom BS, 2005, INT J TECHNOL ASSESS, V21, P380, DOI 10.1017/S026646230505049X
Chao J, 2010, BMC PUBLIC HEALTH, V10, DOI 10.1186/1471-2458-10-98
China Internet Network Information Center, 2015, 36 CHIN INT NETW INF
Curran VR, 2005, MED EDUC, V39, P561, DOI 10.1111/j.1365-2929.2005.02173.x
Fleisher L, 2012, J HEALTH COMMUN, V17, P41, DOI 10.1080/10810730.2011.571338
Jia Ji-dong, 2004, Zhonghua Gan Zang Bing Za Zhi, V12, P698
Kirkpatrick D.L., 1994, EVALUATING TRAINING
Lavanchy D, 2004, J VIRAL HEPATITIS, V11, P97, DOI 10.1046/j.1365-2893.2003.00487.x
Li Qin, 2003, Zhonghua Liu Xing Bing Xue Za Zhi, V24, P176
Liang XF, 2009, VACCINE, V27, P6550, DOI 10.1016/j.vaccine.2009.08.048
Lu JJ, 2013, BMC HEALTH SERV RES, V13, DOI 10.1186/1472-6963-13-37
Maloney S, 2012, J MED INTERNET RES, V14, DOI 10.2196/jmir.2040
Naghavi M, 2015, LANCET, V385, P117, DOI 10.1016/S0140-6736(14)61682-2
Olson Curtis A, 2004, J Contin Educ Health Prof, V24, P100, DOI 10.1002/chp.1340240207
Ruiz JG, 2006, ACAD MED, V81, P207, DOI 10.1097/00001888-200603000-00002
Sullivan TM, 2012, J HEALTH COMMUN, V17, P5, DOI 10.1080/10810730.2012.666629
[孙奕 Sun Yi], 2005, [中国循证医学杂志, Chinese Journal of Evidence-Based Medicine], V5, P394
[王静 Wang Jing], 2013, [中国全科医学, Chinese General Practice], V16, P919
Wang LD, 2008, LANCET, V372, P1598, DOI 10.1016/S0140-6736(08)61365-3
Wang T, 2011, CHINA PRIMARY HLTH C, V9, P32
World Health Organization, 2008, DISEASE AND INJURY C
World Health Organization, 2006, INJ SAF
Xu Y, 2010, CHIN J DIS CONTROL P, V14, P1109
Yang T, 2011, LANCET, V378, P1059, DOI 10.1016/S0140-6736(11)61460-8
NR 25
TC 5
Z9 5
U1 0
U2 25
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1472-6920
J9 BMC MED EDUC
JI BMC Med. Educ.
PD MAR 8
PY 2016
VL 16
AR 81
DI 10.1186/s12909-016-0608-2
PG 8
WC Education & Educational Research; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Education & Educational Research
GA DG0ON
UT WOS:000371764700001
PM 26952079
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Garay-Jiménez, LI
Romero-Lujambio, JF
Santiago-Horta, A
Tovar-Corona, B
Gómez-Miranda, P
Mata-Rivera, MF
AF Garay-Jimenez, Laura I.
Romero-Lujambio, Jose Fausto
Santiago-Horta, Amaury
Tovar-Corona, Blanca
Gomez-Miranda, Pilar
Mata-Rivera, Miguel Felix
TI Collaboration System for Multidisciplinary Research with Essential Data
Analysis Toolkit Built-In
SO INFORMATION
LA English
DT Article
DE data visualization; multidimensional dataset; fuzzy searching;
collaborative research; t-SNE; microservices; approximate
string-matching; knowledge-sharing behaviors
ID INFORMATION
AB Environmental research calls for a multidisciplinary approach, where highly specialized research teams collaborate in data analysis. Nevertheless, managing the data lifecycle and research artifacts becomes challenging because the project teams require techniques and tools tailored to their study fields. Another pain point is the unavailability of essential analysis and data representation formats for querying and interpreting the shared results. In addition, managing progress reports across the teams is demanding because they manage different platforms and systems. These concerns discourage the knowledge-sharing process and lead to researchers' low adherence to the system. A hybrid methodology based on Design Thinking and an Agile approach enables us to understand and attend to the research process needs. As a result, a microservices-based architecture of the system, which can be deployed in cloud, hybrid, or standalone environments and adapt the computing resources according to the actual requirements with an access control system based on users and roles, enables the security and confidentiality, allowing the team's lead to share or revoke access. Additionally, intelligent assistance is available for document searches and dataset analyses. A multidisciplinary researchers' team that uses this system as a knowledge-sharing workspace reported an 83% acceptance.
C1 [Garay-Jimenez, Laura I.; Tovar-Corona, Blanca] Inst Politecn Nacl, UPIITA, SEPI, LIPS, Mexico City 07340, Mexico.
[Romero-Lujambio, Jose Fausto; Santiago-Horta, Amaury] Inst Politecn Nacl, UPIITA, Mexico City 07340, Mexico.
[Gomez-Miranda, Pilar] Inst Politecn Nacl, UPIICSA, SEPI, Mexico City 08400, Mexico.
[Mata-Rivera, Miguel Felix] Inst Politecn Nacl, UPIITA, SEPI, Lab Geospatial Intelligence & Mobile Comp, Mexico City 07340, Mexico.
C3 Instituto Politecnico Nacional - Mexico; Instituto Politecnico Nacional
- Mexico; Instituto Politecnico Nacional - Mexico; Instituto Politecnico
Nacional - Mexico
RP Garay-Jiménez, LI (corresponding author), Inst Politecn Nacl, UPIITA, SEPI, LIPS, Mexico City 07340, Mexico.
EM lgaray@ipn.mx; jromerol0902@alumno.ipn.mx; asantiagoh2300@alumno.ipn.mx;
bltovar@ipn.mx; pgomezm@ipn.mx; mmatar@ipn.mx
RI Gomez Miranda, Pilar/KFB-8604-2024; Garay Jimenez, Laura/S-5637-2018
OI Garay Jimenez, Laura/0000-0001-9478-4835; Santiago Horta,
Amaury/0000-0003-3497-5546; Romero-Lujambio, Jose
Fausto/0009-0001-5416-9771
FU Instituto Politcnico National
FX No Statement Available
CR Akhavan Peyman, 2013, VINE, V43, P357, DOI 10.1108/VINE-06-2012-0020
[Anonymous], 2012, SOFTWARE FOR PEOPLE
[Anonymous], 2012, Information Technology-Procedures for the Operation of Object Identifier Registration Authorities: Generation of Universally Unique Identifiers and Their Use in Object Identifiers
Attwal KPS, 2020, ADV APPL MATH SCI, V19, P451
BaezaYates RA, 1996, INFORM PROCESS LETT, V59, P21, DOI 10.1016/0020-0190(96)00083-X
Bisong E., 2019, Matplotlib and seaborn. Building machine learning and deep learning models on google cloud platform: A comprehensive guide for beginners, P151, DOI DOI 10.1007/978-1-4842-4470-8_12
Lopes MAD, 2020, IEEE ACCESS, V8, P11482, DOI 10.1109/ACCESS.2020.2964413
de Paula D, 2022, IEEE T ENG MANAGE, V69, P1664, DOI 10.1109/TEM.2021.3084884
Direccion General de Informacion en Salud, Datos Abiertos
Figma Co, About us
Fisher RA, 1936, ANN EUGENIC, V7, P179, DOI 10.1111/j.1469-1809.1936.tb02137.x
Franz M, 2016, BIOINFORMATICS, V32, P309, DOI 10.1093/bioinformatics/btv557
GitHub Inc, GitHub Platform
Halladin-Dabrowska A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12010039
Jain Shivani., 2021, International Journal of Information Management Data Insights, V1, P100009, DOI DOI 10.1016/J.JJIMEI.2021.100009
Janssen M, 2020, GOV INFORM Q, V37, DOI 10.1016/j.giq.2020.101493
kanbantool, Shore Labs Kanban Tool
Kulkarni E.G., 2016, Int. J. Comput. Appl, V975, P8887
Kuriakose Teneema, 2023, Curr Top Microbiol Immunol, V442, P65, DOI 10.1007/82_2019_189
Leach P, 2005, A universally unique identifier (uuid) urn namespace, DOI [10.17487/RFC4122, DOI 10.17487/RFC4122, 10.17487/rfc4122]
Li YJ, 2007, IEEE T PATTERN ANAL, V29, P1091, DOI 10.1109/TPAMI.2007.1070
Liu HH, 2021, J HYDROL, V597, DOI 10.1016/j.jhydrol.2021.126146
Lubell M, 2015, CURR OPIN ENV SUST, V12, P41, DOI 10.1016/j.cosust.2014.08.011
Medina-Quispe Fernando, 2020, Ingeniare. Rev. chil. ing., V28, P596
Morales J., 2019, Ingeniare, V27, P495, DOI [10.4067/s0718-33052019000300495, DOI 10.4067/S0718-33052019000300495]
Moriarty K., 2017, PKCS #5: Password-Based Cryptography Specification Version 2.1
Mullon PA, 2019, REC MANAG J, V29, P103, DOI 10.1108/RMJ-09-2018-0030
Ou JH, 2019, NAT METHODS, V16, P453, DOI 10.1038/s41592-019-0430-y
Qin XD, 2020, VLDB J, V29, P93, DOI 10.1007/s00778-019-00588-3
Sandhu Ravi S, 1998, Advances in computers, V46, P237
Schmidt J, 2020, IVAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 3: IVAPP, P309, DOI 10.5220/0009181903090316
Shao XY, 2006, J MANUF SYST, V25, P95, DOI 10.1016/S0278-6125(07)00007-6
Singhal S., 2013, International Journal of Innovative technology and exploring engineering (IJItee), V2, P250
Srivastava A, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), P864, DOI 10.1109/CCAA.2017.8229928
Sutherland J, 2005, AGILE 2005, PROCEEDINGS, P90, DOI 10.1109/ADC.2005.28
Swimm Team, Popular Collaborative Coding Practices
Taivalsaari A, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE (ICSA 2017), P51, DOI 10.1109/ICSA.2017.23
Taivalsaari A, 2008, PROCEEDINGS OF THE 34TH EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS, P293, DOI 10.1109/SEAA.2008.17
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
Van Rossum G., 2014, The Python Language Reference
Villamizar M, 2015, COMPUT COLOMB CONF, P583, DOI 10.1109/ColumbianCC.2015.7333476
Waseem M, 2020, J SYST SOFTWARE, V170, DOI 10.1016/j.jss.2020.110798
Yalim C., 2023, P MOD SIM VIS STUD C, DOI [10.25776/y65q-qy42, DOI 10.25776/Y65Q-QY42]
Yoon SW, 2011, J INTELL MANUF, V22, P101, DOI 10.1007/s10845-009-0282-x
NR 44
TC 0
Z9 0
U1 0
U2 0
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2078-2489
J9 INFORMATION
JI Information
PD DEC
PY 2023
VL 14
IS 12
AR 626
DI 10.3390/info14120626
PG 21
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA DI4N5
UT WOS:001131389900001
OA gold
DA 2024-09-05
ER
PT J
AU Kulakli, A
Osmanaj, V
AF Kulakli, Atik
Osmanaj, Valmira
TI Global Research on Big Data in Relation with Artificial Intelligence (A
Bibliometric Study: 2008-2019)
SO INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING
LA English
DT Article
DE Bibliometric analysis; big data; artificial intelligence; business
intelligence; citations; research evaluation and Impact; SCI-Expanded;
SSCI
ID CHALLENGES; PREDICTION
AB The purpose of this paper is to analyze and explore the research studies on Big Data in relation with Artificial Intelligence domain, which published in Peer Review Journals and indexed in Web of Science Core Collection for the period of 2008-2019 years.
The publication data for our research analysis "Big Data in relation with Artificial Intelligence" has been derived from the Web of Science (WoS) Core Collection database (Indexes included SCI Expanded and SSCI). The Bibliometric Analysis Methods is applied for the study in order to find out the relations between two domains and to investigate the status of scientific development level in the research era. Therefore, our research concentrates and highlights the current issues discussed and studied by the scholars around the globe. This paper would useful for researchers to show the publication trends on big data in relation with artificial intelligence research outcomes in highly reputable SCI-Exp and SSCI journal (ranked by WoS).
C1 [Kulakli, Atik; Osmanaj, Valmira] Amer Univ Middle East, Coll Business Adm, Egaila, Kuwait.
C3 American University of the Middle East
RP Kulakli, A (corresponding author), Amer Univ Middle East, Coll Business Adm, Egaila, Kuwait.
EM atik.kulakli@aum.edu.kw
RI Kulakli, Atik/D-6033-2016; Osmanaj, Valmira Hysen/B-7175-2019
OI Kulakli, Atik/0000-0002-2368-3225; Osmanaj, Valmira
Hysen/0000-0002-9864-8627
CR Abbass HA, 2016, IEEE ACCESS, V4, P2808, DOI 10.1109/ACCESS.2016.2571058
Altman RB, 2015, CIRCULATION, V131, P232, DOI 10.1161/CIRCULATIONAHA.114.014106
Carlos RC, 2018, J AM COLL RADIOL, V15, P497, DOI 10.1016/j.jacr.2018.01.029
Casey AJ, 2016, U TORONTO LAW J, V66, P429, DOI 10.3138/UTLJ.4006
Chen M, 2018, IEEE COMMUN MAG, V56, P16, DOI 10.1109/MCOM.2018.1700788
Coates J, 2016, FRONT ONCOL, V6, DOI 10.3389/fonc.2016.00149
Dilsizian SE, 2014, CURR CARDIOL REP, V16, DOI 10.1007/s11886-013-0441-8
Draxl C, 2018, MRS BULL, V43, P676, DOI 10.1557/mrs.2018.208
Gani A, 2016, KNOWL INF SYST, V46, P241, DOI 10.1007/s10115-015-0830-y
Griffen EJ, 2018, DRUG DISCOV TODAY, V23, P1373, DOI 10.1016/j.drudis.2018.03.011
Jing YK, 2018, AAPS J, V20, DOI 10.1208/s12248-018-0210-0
Kanevsky J, 2016, PLAST RECONSTR SURG, V137, p890E, DOI 10.1097/PRS.0000000000002088
Kiral-Kornek I, 2018, EBIOMEDICINE, V27, P103, DOI 10.1016/j.ebiom.2017.11.032
Kolle SR, 2016, COLLECT BUILD, V35, P84, DOI 10.1108/CB-05-2016-0008
Lei YG, 2016, IEEE T IND ELECTRON, V63, P3137, DOI 10.1109/TIE.2016.2519325
Li YZ, 2018, IEEE COMMUN MAG, V56, P56, DOI 10.1109/MCOM.2018.1700425
Ma TJ, 2017, INF DISCOV DELIV, V45, P79, DOI 10.1108/IDD-01-2017-0004
Muhammed S., 2018, J BUSINESS TURK, V10, P15, DOI [10.20491/isarder.2018.460, DOI 10.20491/ISARDER.2018.460]
O'Leary DE, 2013, IEEE INTELL SYST, V28, P96, DOI 10.1109/MIS.2013.39
Özdemir V, 2018, OMICS, V22, P65, DOI 10.1089/omi.2017.0194
Syeda-Mahmood T, 2018, J AM COLL RADIOL, V15, P569, DOI 10.1016/j.jacr.2018.01.028
Wolfert S, 2017, AGR SYST, V153, P69, DOI 10.1016/j.agsy.2017.01.023
Wolff JG, 2014, IEEE ACCESS, V2, P301, DOI 10.1109/ACCESS.2014.2315297
Xing EP, 2016, ENGINEERING-PRC, V2, P179, DOI 10.1016/J.ENG.2016.02.008
Yan HH, 2018, IEEE ACCESS, V6, P17190, DOI 10.1109/ACCESS.2018.2809681
Zhou YZ, 2018, ACTA PETROL SIN, V34, P255
Zhuang YT, 2017, FRONT INFORM TECH EL, V18, P3, DOI 10.1631/FITEE.1601883
NR 27
TC 12
Z9 13
U1 0
U2 18
PU INT ASSOC ONLINE ENGINEERING
PI WIEN
PA KIRCHENGASSE 10-200, WIEN, A-1070, AUSTRIA
EI 2626-8493
J9 INT J ONLINE BIOMED
JI Int. J. Online Biomed. Eng.
PY 2020
VL 16
IS 2
BP 31
EP 46
DI 10.3991/ijoe.v16i02.12617
PG 16
WC Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA KM5WB
UT WOS:000514209100003
OA gold
DA 2024-09-05
ER
PT J
AU Chen, KH
Tang, MC
Wang, CM
Hsiang, J
AF Chen, Kuang-hua
Tang, Muh-chyun
Wang, Chun-mei
Hsiang, Jieh
TI Exploring alternative metrics of scholarly performance in the social
sciences and humanities in Taiwan
SO SCIENTOMETRICS
LA English
DT Article
DE Research evaluation; Bibliometrics; Evaluation metrics; Altmetrics
ID BIBLIOMETRIC INDICATORS; IMPACT; WEB; COMMUNICATION; WEBOMETRICS
AB Research output and impact metrics derived from commercial citation databases such as Web of Science and Scopus have become the de facto indicators of scholarly performance across different disciplines and regions. However, it has been pointed out that the existing metrics are largely inadequate to reflect scholars' overall peer-mediated performance, especially in the social sciences and humanities (SSH) where publication channels are more diverse. In this paper alternative metrics exploring a variety of formal and informal communication channels were proposed, with the aim of better reflecting SSH scholarship. Data for a group of SSH scholars in Taiwan on these metrics were collected. Principal component analysis revealed four underlying dimensions represented by the 18 metrics. Multiple-regression analyses were then performed to examine how well each of these dimensions predicted the academic standing of the scholars, measured by the number of public grants awarded and prestigious research awards received. Differences in the significance of the predictors were found between the social sciences and humanities. The results suggest the need to consider disciplinary differences when evaluating scholarly performance.
C1 [Chen, Kuang-hua; Tang, Muh-chyun; Wang, Chun-mei] Natl Taiwan Univ, Dept Lib & Informat Sci, Taipei 10617, Taiwan.
[Hsiang, Jieh] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan.
C3 National Taiwan University; National Taiwan University
RP Tang, MC (corresponding author), Natl Taiwan Univ, Dept Lib & Informat Sci, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan.
EM mctang@ntu.edu.tw
RI muh-chyun, Tang/O-9385-2019
OI muh-chyun, Tang/0000-0001-7321-6927; HSIANG, JIEH/0000-0002-2649-4331
FU "The Aim for the Top University Project, Integrated Platform of Digital
Humanities" at National Taiwan University in Taiwan
FX The study was sponsored by "The Aim for the Top University Project,
Integrated Platform of Digital Humanities" at National Taiwan University
in Taiwan.
CR Aguillo I., 2008, HIGHER ED EUROPE, V33, P233, DOI [10.1080/03797720802254031, DOI 10.1080/03797720802254031]
Aguillo IF, 2006, J AM SOC INF SCI TEC, V57, P1296, DOI 10.1002/asi.20433
Allen L, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005910
[Anonymous], 2010, 1 MONDAY
[Anonymous], METR 2011 S INF SCIE
[Anonymous], 2012, ARXIV12055611
[Anonymous], 2007, 1 MONDAY, DOI DOI 10.5210/FM.V12I8.1997
Björneborn L, 2004, J AM SOC INF SCI TEC, V55, P1216, DOI 10.1002/asi.20077
Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022
Bornmann L, 2013, J INFORMETR, V7, P286, DOI 10.1016/j.joi.2012.12.003
CLEMENS ES, 1995, AM J SOCIOL, V101, P433, DOI 10.1086/230730
Fry J, 2004, P ASIST ANNU, V41, P20, DOI 10.1002/meet.1450410103
Fry J, 2006, INFORM PROCESS MANAG, V42, P299, DOI 10.1016/j.ipm.2004.09.004
Haustein S, 2011, J INFORMETR, V5, P446, DOI 10.1016/j.joi.2011.04.002
Huang MH, 2008, J AM SOC INF SCI TEC, V59, P1819, DOI 10.1002/asi.20885
Kousha K, 2008, J AM SOC INF SCI TEC, V59, P2060, DOI 10.1002/asi.20920
Li XM, 2012, SCIENTOMETRICS, V91, P461, DOI 10.1007/s11192-011-0580-x
Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677
Must Ü, 2012, SCIENTOMETRICS, V91, P527, DOI 10.1007/s11192-011-0596-2
Nederhof A., 1993, CWTS9309
Nederhof AJ, 2006, SCIENTOMETRICS, V66, P81, DOI 10.1007/s11192-006-0007-2
NEDERHOF AJ, 1988, SCIENTOMETRICS, V14, P475, DOI 10.1007/BF02017103
Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001
Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a
Priem J., 2010, ALTMETRICS MANIFESTO
Priem J., 2010, Proceedings of the American Society for Information Science and Technology, V47, P1, DOI [DOI 10.1002/MEET.14504701201, 10.1002/meet.14504701201]
Rousseau R, 2013, CHINESE SCI BULL, V58, P10
Shema H, 2014, J ASSOC INF SCI TECH, V65, P1018, DOI 10.1002/asi.23037
Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2
Thelwall M, 2004, J AM SOC INF SCI TEC, V55, P149, DOI 10.1002/asi.10362
Thelwall M, 2008, J INF SCI, V34, P605, DOI 10.1177/0165551507087238
VANDERMEULEN B, 1991, SCI TECHNOL HUM VAL, V16, P288, DOI 10.1177/016224399101600302
Waltman L, 2014, J ASSOC INF SCI TECH, V65, P433, DOI 10.1002/asi.23040
White HD, 2009, J AM SOC INF SCI TEC, V60, P1083, DOI 10.1002/asi.21045
Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0
NR 35
TC 32
Z9 34
U1 2
U2 120
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 2015
VL 102
IS 1
BP 97
EP 112
DI 10.1007/s11192-014-1420-6
PG 16
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA AY0OZ
UT WOS:000347297400006
DA 2024-09-05
ER
PT J
AU Scaccia, JP
Scott, VC
AF Scaccia, Jonathan P.
Scott, Victoria C.
TI 5335 days of Implementation Science: using natural language
processing to examine publication trends and topics
SO IMPLEMENTATION SCIENCE
LA English
DT Article
DE Implementation science; Natural language processing; Synthesis and
translation; Bibliometric study; Systematic review
ID HEALTH; FRAMEWORK; SUPPORT; SCOPE
AB Introduction Moving evidence-based practices into the hands of practitioners requires the synthesis and translation of research literature. However, the growing pace of scientific publications across disciplines makes it increasingly difficult to stay abreast of research literature. Natural language processing (NLP) methods are emerging as a valuable strategy for conducting content analyses of academic literature. We sought to apply NLP to identify publication trends in the journal Implementation Science, including key topic clusters and the distribution of topics over time. A parallel study objective was to demonstrate how NLP can be used in research synthesis. Methods We examined 1711 Implementation Science abstracts published from February 22, 2006, to October 1, 2020. We retrieved the study data using PubMed's Application Programming Interface (API) to assemble a database. Following standard preprocessing steps, we use topic modeling with Latent Dirichlet allocation (LDA) to cluster the abstracts following a minimization algorithm. Results We examined 30 topics and computed topic model statistics of quality. Analyses revealed that published articles largely reflect (i) characteristics of research, or (ii) domains of practice. Emergent topic clusters encompassed key terms both salient and common to implementation science. HIV and stroke represent the most commonly published clinical areas. Systematic reviews have grown in topic prominence and coherence, whereas articles pertaining to knowledge translation (KT) have dropped in prominence since 2013. Articles on HIV and implementation effectiveness have increased in topic exclusivity over time. Discussion We demonstrated how NLP can be used as a synthesis and translation method to identify trends and topics across a large number of (over 1700) articles. With applicability to a variety of research domains, NLP is a promising approach to accelerate the dissemination and uptake of research literature. For future research in implementation science, we encourage the inclusion of more equity-focused studies to expand the impact of implementation science on disadvantaged communities.
C1 [Scaccia, Jonathan P.] Dawn Chorus Grp, 1014 Hartman Rd, Reading, PA 19606 USA.
[Scott, Victoria C.] Univ North Carolina Charlotte, Dept Psychol Sci, 9201 Univ City Blvd, Charlotte, NC 28223 USA.
C3 University of North Carolina; University of North Carolina Charlotte
RP Scaccia, JP (corresponding author), Dawn Chorus Grp, 1014 Hartman Rd, Reading, PA 19606 USA.
EM jon@dawnchrousgroup.com
OI Scaccia, Jonathan/0000-0001-6800-1286
CR Asatani K, 2020, ENERGIES, V13, DOI 10.3390/en13040975
Atkinson M, 2008, J NURS CARE QUAL, V23, P362, DOI 10.1097/01.NCQ.0000336675.48466.37
Bahadori Mohammadkarim, 2016, J Educ Health Promot, V5, P14, DOI 10.4103/2277-9531.184553
Balas E A, 2000, Yearb Med Inform, P65
Bauer Mark S, 2015, BMC Psychol, V3, P32, DOI 10.1186/s40359-015-0089-9
Bender E. M., 2021, P 2021 ACM C FAIRN A, DOI [10.1145/3442188.3445922, DOI 10.1145/3442188.3445922]
Bergstrom C. T., 2021, Calling Bullshit: The Art of Skepticism in a Data- Driven World
Borah R, 2017, BMJ OPEN, V7, DOI 10.1136/bmjopen-2016-012545
Boyd-Graber J., 2014, Handbook of mixed membership models and their applications
Chen HN, 2019, ADV ENG INFORM, V42, DOI 10.1016/j.aei.2019.100959
Conway Mike, 2019, Yearb Med Inform, V28, P208, DOI 10.1055/s-0039-1677918
Eccles MP, 2006, IMPLEMENT SCI, V1, DOI 10.1186/1748-5908-1-1
Eccles MP, 2012, IMPLEMENT SCI, V7, DOI 10.1186/1748-5908-7-71
Fudge N, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0160475
Gal D, 2019, EUR HEART J, V40, P2363, DOI 10.1093/eurheartj/ehz282
Grant J, 2003, RES EVALUAT, V12, P217, DOI 10.3152/147154403781776618
Greenhalgh T, 2011, J ROY SOC MED, V104, P501, DOI 10.1258/jrsm.2011.110285
Grün B, 2011, J STAT SOFTW, V40, P1
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jivani Anjali Ganesh, 2011, Int. J. Comp. Tech. Appl, V2, P1930
Lessick S, 2016, J MED LIBR ASSOC, V104, P166, DOI 10.3163/1536-5050.104.2.015
Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5
McGuffie K, ARXIV200906807
Michie S, 2017, IMPLEMENT SCI, V12, DOI 10.1186/s13012-017-0641-5
Mizen LAM, 2012, IMPLEMENT SCI, V7, DOI 10.1186/1748-5908-7-42
Morris ZS, 2011, J ROY SOC MED, V104, P510, DOI 10.1258/jrsm.2011.110180
ONeil C., 2016, Weapons of math destruction
Pham MT, 2014, RES SYNTH METHODS, V5, P371, DOI 10.1002/jrsm.1123
Sales AE, 2019, IMPLEMENT SCI, V14, DOI 10.1186/s13012-019-0922-2
Scott VC., 2020, USING EVALUATION PRO
Selles OA, 2020, LAND USE POLICY, V94, DOI 10.1016/j.landusepol.2020.104483
Shaikh A, 2019, MEHRAN UNIV RES J EN, V38, P901, DOI 10.22581/muet1982.1904.04
Silge J., 2019, Text Mining with R: A Tidy Approach
Vincent J., 2020, VERGE
Wandersman A, 2008, AM J COMMUN PSYCHOL, V41, P171, DOI 10.1007/s10464-008-9174-z
Wandersman A, 2012, AM J COMMUN PSYCHOL, V50, P445, DOI 10.1007/s10464-012-9509-7
Wang JC, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12060903
Woodward EN, 2019, IMPLEMENT SCI, V14, DOI 10.1186/s13012-019-0861-y
Wu L., 2018, P 2018 C EMP METH NA
Xu JM., 2012, C N AM CHAPT ASS COM, P665
Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8
NR 41
TC 14
Z9 17
U1 2
U2 19
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-5908
J9 IMPLEMENT SCI
JI Implement. Sci.
PD APR 26
PY 2021
VL 16
IS 1
AR 47
DI 10.1186/s13012-021-01120-4
PG 12
WC Health Care Sciences & Services; Health Policy & Services
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Health Care Sciences & Services
GA RT7QQ
UT WOS:000644652300001
PM 33902657
OA Green Submitted, gold, Green Published
DA 2024-09-05
ER
PT J
AU Wu, J
Ou, GY
Liu, XH
Dong, K
AF Wu, Jiang
Ou, Guiyan
Liu, Xiaohui
Dong, Ke
TI How does academic education background affect top researchers'
performance? Evidence from the field of artificial intelligence
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Educational background; Research performance; AI; Academic career
ID FACULTY RESEARCH PRODUCTIVITY; PUBLICATION PRODUCTIVITY;
GENDER-DIFFERENCES; SCIENTIFIC PERFORMANCE; UNIVERSITY RANKINGS; IMPACT;
DETERMINANTS; OUTPUT; COLLABORATION; MANAGEMENT
AB The early academic beginning is critical in the development of a researcher's academic career because it helps determine one's further success. We aim to shed light on the path that drives the success of talents in the field of artificial intelligence (AI) by investigating the academic education background of distinguished AI researchers and analyzing the contribution of different educational factors to their research performance. In this study, we collected and coded the curriculum vitae of 1832 AI researchers. Results show that most AI researchers were educated in the United States and obtained their highest degrees from top universities. As for their educational background, approximately 18.27% of AI researchers chose non-AI majors, such as mathematics, physics, and chemistry, instead of AI-related majors, such as computer science. Furthermore, negative binomial regression analysis demonstrates that individuals who publish more during study period will have better research output, whether they are currently in academia or industry. Researchers in academia with overseas degrees published more articles than those without overseas degrees. In terms of interdisciplinary education, a mathematics background leads to increased research visibility of AI researchers in the industry but depresses the scholarly productivity of AI researchers in academia. Academic qualification is the main factor determining the scientific performance of AI researchers in industry, which is not the case in academia. The analysis also showed that individuals who graduated from more prestigious universities tended to receive more citations than those graduating from less famous universities. Moreover, AI researchers in academia who have graduated from prestigious universities seem to pay more attention to the quality of the papers rather than the quantity.
C1 [Wu, Jiang; Ou, Guiyan; Dong, Ke] Wuhan Univ, Ctr Studies Informat Resources, Wuhan 430072, Peoples R China.
[Wu, Jiang; Ou, Guiyan; Liu, Xiaohui; Dong, Ke] Wuhan Univ, Sch Informat Management, Wuhan 430072, Peoples R China.
C3 Wuhan University; Wuhan University
RP Dong, K (corresponding author), Wuhan Univ, Ctr Studies Informat Resources, Wuhan 430072, Peoples R China.
EM dongke@whu.edu.cn
FU Ministry of Education Key Projects of Philosophy and Social Sciences
Research, People's Republic of China [20JZD024]; National Social Science
Foundation of China [21CTQ017]
FX This research was supported by Ministry of Education Key Projects of
Philosophy and Social Sciences Research, People's Republic of China
(Grant No. 20JZD024) and National Social Science Foundation of China
(Grant No. 21CTQ017) . The authors would like to thank the anonymous
reviewers for their kind help.
CR Abramo G, 2014, SCIENTOMETRICS, V98, P891, DOI 10.1007/s11192-013-1075-8
Akbaritabar A, 2018, SCIENTOMETRICS, V114, P859, DOI 10.1007/s11192-017-2606-5
ALLISON PD, 1990, AM SOCIOL REV, V55, P469, DOI 10.2307/2095801
Babu AR, 1998, SCIENTOMETRICS, V43, P309
Baccini A, 2014, SCIENTOMETRICS, V101, P2035, DOI 10.1007/s11192-014-1395-3
Barnett WP, 1997, ADMIN SCI QUART, V42, P128, DOI 10.2307/2393811
Beaudry C, 2016, RES POLICY, V45, P1790, DOI 10.1016/j.respol.2016.05.009
Bentley P, 2012, J SOCIOL, V48, P85, DOI 10.1177/1440783311411958
Biamonte J, 2017, NATURE, V549, P195, DOI 10.1038/nature23474
Blaine B.E., 2018, The SAGE encyclopedia of educational research, measurement, and evaluation, V1, P1818, DOI [DOI 10.4135/9781506326139.N747, 10.4135/9781506326139.n747, DOI 10.4135/9781506326139]
Borrego A, 2010, SCIENTOMETRICS, V83, P93, DOI 10.1007/s11192-009-0025-y
Buchmueller TC, 1999, ECON EDUC REV, V18, P65, DOI 10.1016/S0272-7757(98)00019-3
Chan HF, 2015, SCIENTOMETRICS, V102, P847, DOI 10.1007/s11192-014-1367-7
Cole J. R., 1984, ADV MOTIVATION ACHIE
Cooper T, 2019, INFORM RES
COX DR, 1983, BIOMETRIKA, V70, P269, DOI 10.1093/biomet/70.1.269
Dhillon SK, 2015, TECHNOL SOC, V42, P160, DOI 10.1016/j.techsoc.2015.04.004
Diem A, 2013, RES HIGH EDUC, V54, P86, DOI 10.1007/s11162-012-9264-5
Dietz JS, 2005, RES POLICY, V34, P349, DOI 10.1016/j.respol.2005.01.008
Doh S, 2018, REV POLICY RES, V35, P31, DOI 10.1111/ropr.12261
Fennewald J, 2008, COLL RES LIBR, V69, P104, DOI 10.5860/crl.69.2.104
Fox MF, 2021, HIGH EDUC, V81, P1237, DOI 10.1007/s10734-020-00609-z
Fox MF, 2005, SOC STUD SCI, V35, P131, DOI 10.1177/0306312705046630
Frandsen TF, 2015, J INFORMETR, V9, P1007, DOI 10.1016/j.joi.2015.09.006
Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5
Frick B. L., 2016, POSTGRADUATE SUPERVI, P203
Fursov K., 2016, DETERMINANTS RES PRO, V10
Gobeyn S, 2019, ECOL MODEL, V392, P179, DOI 10.1016/j.ecolmodel.2018.11.013
Gomes UE, 2011, AN ACAD BRAS CIENC, V83, P1121, DOI 10.1590/S0001-37652011005000011
Gonzalez-Brambila C, 2007, RES POLICY, V36, P1035, DOI 10.1016/j.respol.2007.03.005
Harris T, 2014, STATA J, V14, P562, DOI 10.1177/1536867X1401400306
HazelKorn E., 2017, Centre for Global Higher Education
Hollister C.V., 2015, BEHAV SOCIAL SCI LIB, V34, P97, DOI DOI 10.1080/01639269.2015.1062584
Horta H, 2016, RES HIGH EDUC, V57, P28, DOI 10.1007/s11162-015-9380-0
Hunter LA, 2010, SOC STUD SCI, V40, P433, DOI 10.1177/0306312709358472
Jin YY, 2021, SCIENTOMETRICS, V126, P2329, DOI 10.1007/s11192-020-03860-4
Jonkers K, 2008, SCIENTOMETRICS, V77, P309, DOI 10.1007/s11192-007-1971-x
Kang YK, 2021, RES POLICY, V50, DOI 10.1016/j.respol.2020.104098
Krampen G, 2007, SCIENTOMETRICS, V71, P191, DOI 10.1007/s11192-007-1659-2
Kusters R, 2020, FRONT BIG DATA, V3, DOI 10.3389/fdata.2020.577974
Larivière V, 2010, RES EVALUAT, V19, P45, DOI 10.3152/095820210X492495
Laurance WF, 2013, BIOSCIENCE, V63, P817, DOI 10.1525/bio.2013.63.10.9
Leahey E, 2017, ADMIN SCI QUART, V62, P105, DOI 10.1177/0001839216665364
Li WH, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13130-4
Lin Min-Wei., 2006, Journal of Technology Transfer, V31, P269, DOI DOI 10.1007/S10961-005-6111-2
Lindahl J, 2020, SCIENTOMETRICS, V122, P309, DOI 10.1007/s11192-019-03262-1
Liu JY, 2018, IEEE ACCESS, V6, P34403, DOI 10.1109/ACCESS.2018.2819688
Long J. S., 2006, Regression models for categorical dependent variables using Stata, V7
LONG JS, 1979, AM SOCIOL REV, V44, P816, DOI 10.2307/2094529
Long JS, 1997, REGRESSION MODELS CA
Long R, 2009, SCIENTOMETRICS, V78, P231, DOI 10.1007/s11192-007-1990-7
Long RG, 1998, ACAD MANAGE J, V41, P704, DOI 10.5465/256966
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Mamun SAK, 2015, SCIENTOMETRICS, V105, P2179, DOI 10.1007/s11192-015-1759-3
Más-Bleda A, 2013, SCIENTOMETRICS, V96, P51, DOI 10.1007/s11192-013-0952-5
Mayer SJ, 2018, SCIENTOMETRICS, V117, P1663, DOI 10.1007/s11192-018-2933-1
Miller JC, 2013, SCIENTOMETRICS, V97, P519, DOI 10.1007/s11192-013-0987-7
Mishra V, 2013, SCIENTOMETRICS, V96, P411, DOI 10.1007/s11192-012-0886-3
Moed H. F., 2006, CITATION ANAL RES EV
Möller T, 2016, SCIENTOMETRICS, V109, P2217, DOI 10.1007/s11192-016-2090-3
Neufeld J, 2016, RES EVALUAT, V25, P50, DOI 10.1093/reseval/rvv029
Pfeiffer M, 2016, BMC MED EDUC, V16, DOI 10.1186/s12909-016-0712-3
Pinheiro D, 2014, TECHNOL FORECAST SOC, V81, P56, DOI 10.1016/j.techfore.2012.09.008
Piro FN, 2016, SCIENTOMETRICS, V109, P2263, DOI 10.1007/s11192-016-2056-5
Prpic K, 2002, SCIENTOMETRICS, V55, P27, DOI 10.1023/A:1016046819457
Puuska HM, 2010, SCIENTOMETRICS, V82, P419, DOI 10.1007/s11192-009-0037-7
Rorstad K, 2015, J INFORMETR, V9, P317, DOI 10.1016/j.joi.2015.02.003
Safon V, 2019, SCIENTOMETRICS, V121, P897, DOI 10.1007/s11192-019-03214-9
Shen HJ, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104372
Shin JC, 2014, MINERVA, V52, P467, DOI 10.1007/s11024-014-9259-9
Shuang Li, 2019, IOP Conference Series: Materials Science and Engineering, V677, DOI 10.1088/1757-899X/677/5/052023
Sinclair J, 2014, STUD HIGH EDUC, V39, P1972, DOI 10.1080/03075079.2013.806460
Sinclair J, 2014, HIGH EDUC RES DEV, V33, P1007, DOI 10.1080/07294360.2014.890574
Sugimoto CR, 2013, NATURE, V504, P211, DOI 10.1038/504211a
Tang J, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P467, DOI 10.1145/2835776.2835849
Thelwall M, 2014, J INFORMETR, V8, P963, DOI 10.1016/j.joi.2014.09.011
Tien FF, 1996, J HIGH EDUC-UK, V67, P2, DOI 10.2307/2943901
Wang W, 2017, SCIENTOMETRICS, V112, P329, DOI 10.1007/s11192-017-2388-9
Way SF, 2017, P NATL ACAD SCI USA, V114, pE9216, DOI 10.1073/pnas.1702121114
Williamson IO, 2003, J ORGAN BEHAV, V24, P25, DOI 10.1002/job.178
Xu F, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101153
Yuan S, 2020, SCIENTOMETRICS, V124, P993, DOI 10.1007/s11192-020-03423-7
Yue ML, 2020, SCIENTOMETRICS, V125, P1559, DOI 10.1007/s11192-020-03562-x
Zhang J, 2021, SCI CHINA INFORM SCI, V64, DOI 10.1007/s11432-019-9884-y
NR 84
TC 5
Z9 6
U1 30
U2 136
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD MAY
PY 2022
VL 16
IS 2
AR 101292
DI 10.1016/j.joi.2022.101292
EA MAY 2022
PG 17
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 1T2KG
UT WOS:000804563600002
DA 2024-09-05
ER
PT C
AU Lin, LC
Wang, F
AF Lin, Longcheng
Wang, Fang
BE ACM
TI Research on the relationship between learning engagement and learning
performance in online learning
SO PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY
AND COMPUTERS, ICETC 2023
LA English
DT Proceedings Paper
CT 15th International Conference on Education Technology and Computers
(ICETC)
CY SEP 26-28, 2023
CL Univ Barcelona, Barcelona, SPAIN
HO Univ Barcelona
DE online learning; learning engagement; learning performance; relationship
AB With the continuous development and popularisation of internet technology, online learning has become an indispensable learning method in the field of education. However, the relationship between learning engagement and learning performance in online learning has always been of great concern. This paper investigates the relationship between learning engagement and learning performance in an online learning environment. This study used scale surveys and experimental research methods to analyse learning engagement from behavioural, cognitive and emotional perspectives and to investigate the relationship between learning engagement and learning performance. The research findings indicate that in online learning, emotional engagement is relatively high and students have a strong willingness to learn, but cognitive and behavioural engagement are relatively low. There is a positive correlation between learning engagement and learning performance, and students with high learning engagement tend to have higher learning performance. Classifying students into three categories based on learning engagement and learning performance is useful for understanding the characteristics of learners' learning engagement and for providing data support and reference for improving the quality of learning.
C1 [Lin, Longcheng; Wang, Fang] Nantong Hlth Coll Jiangsu Prov, Nantong, Peoples R China.
RP Lin, LC (corresponding author), Nantong Hlth Coll Jiangsu Prov, Nantong, Peoples R China.
EM 754289407@qq.com
FU Jiangsu Vocational Education Research Project [XHYBLX2023136]
FX This study is supported by the Jiangsu Vocational Education Research
Project (Project Number: XHYBLX2023136): Research on the Impact
Mechanism and Improvement Strategies of Vocational School Students'
Learning Engagement under Blended Learning.
CR Akyol Z, 2011, INTERNET HIGH EDUC, V14, P183, DOI 10.1016/j.iheduc.2011.01.005
ASTIN AW, 1984, J COLL STUDENT DEV, V25, P297
Buelow JR, 2018, ONLINE LEARN, V22, P313, DOI 10.24059/olj.v22i4.1384
Chan SCH, 2019, J EDUC BUS, V94, P234, DOI 10.1080/08832323.2018.1520684
FINN JD, 1993, J NEGRO EDUC, V62, P249, DOI 10.2307/2295464
Fredricks JA, 2004, REV EDUC RES, V74, P59, DOI 10.3102/00346543074001059
Hill JR, 2009, AM J DISTANCE EDUC, V23, P88, DOI 10.1080/08923640902857713
Lai CH, 2019, INT J DIST EDUC, V17, P66, DOI 10.4018/IJDET.2019010105
Lee E, 2015, TECHTRENDS, V59, P54, DOI 10.1007/s11528-015-0871-9
Ong Ardvin Kester S., 2022, International Journal of Information and Education Technology, P555, DOI 10.18178/ijiet.2022.12.6.1653
Pi ZL, 2023, EDUC INF TECHNOL, V28, P3493, DOI 10.1007/s10639-022-11361-5
Qureshi MA, 2023, INTERACT LEARN ENVIR, V31, P2371, DOI 10.1080/10494820.2021.1884886
Rosmadi Ainil Fauzani, 2023, International Journal of Information and Education Technology, P114, DOI 10.18178/ijiet.2023.13.1.1786
Tseng CJ., 2020, CONTEMP EDUC TECHNOL, V12
NR 14
TC 0
Z9 0
U1 33
U2 33
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 979-8-4007-0911-1
PY 2023
BP 201
EP 206
DI 10.1145/3629296.3629327
PG 6
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BW5RO
UT WOS:001166851900031
DA 2024-09-05
ER
PT J
AU Liu, G
Pan, L
Jiang, WQ
Fan, S
Buhari, A
AF Liu, Gang
Pan, Lei
Jiang, Weiqiang
Fan, Shuai
Buhari, Abudhahir
TI Dynamic performance and optimization research for six-link mechanism
considering the coupling effect of flexible structure and wear
clearances
SO NONLINEAR DYNAMICS
LA English
DT Article
DE Wear clearance; Flexible structure; Six-link mechanism; Dynamic
performance; Optimization research; Simulated annealing algorithm
ID SYSTEM
AB The adverse effects of flexible structure and wear clearances on dynamic performance of mechanical systems cannot be ignored. At present, scholars have carried out extensive research on mechanism with clearance, but few consider the coupling effect of wear clearance and flexible structure on dynamic performance of mechanism. Therefore, this paper develops a dynamic model of six-link mechanism considering multiple wear clearances and flexible structure through Lagrange method. The influence of clearance size and frictional coefficient on dynamic performance and nonlinear characteristics of mechanism is investigated. In view of the adverse effects of wear clearances and flexible structure on the performance of mechanism, a new optimization method of mechanism based on simulated annealing algorithm (SAA) is proposed. This method takes the mass parameters of each component for mechanism as the design variables and minimizes the maximal wear depth of clearance as the objective function. The results indicate that the optimization method can reduce the vibration and error, and improve the overall dynamic performance of mechanism.
C1 [Liu, Gang; Buhari, Abudhahir] Infrastruct Univ Kuala Lumpur, Fac Engn Sci & Technol, Jln Ikram Uniten, Kajang 43000, Selangor, Malaysia.
[Liu, Gang; Pan, Lei; Jiang, Weiqiang] Weifang Vocat Coll, Weifang 261041, Shandong, Peoples R China.
[Fan, Shuai] Chengdu Univ Technol, Sch Mech & Elect Engn, Chengdu 610059, Peoples R China.
C3 Infrastructure University Kuala Lumpur (IUKL); Chengdu University of
Technology
RP Jiang, WQ (corresponding author), Weifang Vocat Coll, Weifang 261041, Shandong, Peoples R China.
EM jiangweiqiang_wfvc@163.com
FU Development Path and Industrialization Research Project of Kinetic
Energy Coupling Technology for Large Composite Intelligent Agricultural
Machinery Equipment [2022RKX027]
FX This work was supported by the [Development Path and Industrialization
Research Project of Kinetic Energy Coupling Technology for Large
Composite Intelligent Agricultural Machinery Equipment: 2022RKX027].
CR Ahmedalbashir M, 2017, J MECH SCI TECHNOL, V31, P1023, DOI 10.1007/s12206-017-0201-6
Alves DS, 2021, TRIBOL INT, V153, DOI 10.1016/j.triboint.2020.106640
Amiri A, 2019, MULTIBODY SYST DYN, V47, P363, DOI 10.1007/s11044-019-09684-2
Askari E, 2015, NONLINEAR DYNAM, V82, P1039, DOI 10.1007/s11071-015-2216-9
Bai ZF, 2013, SCI CHINA PHYS MECH, V56, P1581, DOI 10.1007/s11433-013-5125-2
Ben Abdallah MA, 2016, MULTIBODY SYST DYN, V38, P173, DOI 10.1007/s11044-016-9526-7
Chen Y, 2023, MECCANICA, V58, P43, DOI 10.1007/s11012-022-01629-y
Erkaya S, 2018, STROJ VESTN-J MECH E, V64, P82, DOI 10.5545/sv-jme.2017.4534
Gao H, 2021, P I MECH ENG C-J MEC, V235, P7569, DOI 10.1177/09544062211025566
Gao SZ, 2023, TRIBOL INT, V182, DOI 10.1016/j.triboint.2023.108330
Geng XY, 2016, MECH MACH THEORY, V104, P202, DOI 10.1016/j.mechmachtheory.2016.05.013
Guo J, 2020, MECH MACH THEORY, V149, DOI 10.1016/j.mechmachtheory.2020.103824
Li HQ, 2018, MULTIBODY SYST DYN, V44, P277, DOI 10.1007/s11044-018-9625-8
Li P, 2016, J COMPUT NONLIN DYN, V11, DOI 10.1115/1.4030539
Li YY, 2019, MECH SYST SIGNAL PR, V117, P188, DOI 10.1016/j.ymssp.2018.07.037
Liu N, 2018, WIRELESS PERS COMMUN, V102, P1683, DOI 10.1007/s11277-017-5227-7
Ordiz M, 2021, MECH MACH THEORY, V160, DOI 10.1016/j.mechmachtheory.2021.104293
Salahshoor E, 2018, MECH MACH THEORY, V126, P429, DOI 10.1016/j.mechmachtheory.2018.04.027
Singh A, 2021, MECCANICA, V56, P73, DOI 10.1007/s11012-020-01259-2
Sun DY, 2016, EUR J MECH A-SOLID, V58, P256, DOI 10.1016/j.euromechsol.2016.02.007
Tan X, 2020, J COMPUT NONLIN DYN, V15, DOI 10.1115/1.4045240
Tang LL, 2018, NONLINEAR DYNAM, V94, P2423, DOI 10.1007/s11071-018-4500-y
Wang GX, 2019, MECH MACH THEORY, V137, P83, DOI 10.1016/j.mechmachtheory.2019.03.017
Wang GX, 2015, J TRIBOL-T ASME, V137, DOI 10.1115/1.4029277
Yu XD, 2022, J APPL FLUID MECH, V15, P505, DOI 10.47176/jafm.15.02.33039
Zheng EL, 2019, MECH MACH THEORY, V131, P234, DOI 10.1016/j.mechmachtheory.2018.09.023
Zheng XD, 2018, APPL MATH MECH-ENGL, V39, P1239, DOI 10.1007/s10483-018-2371-9
Zhuang XC, 2019, ENG FAIL ANAL, V96, P543, DOI 10.1016/j.engfailanal.2018.10.017
NR 28
TC 0
Z9 0
U1 27
U2 29
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0924-090X
EI 1573-269X
J9 NONLINEAR DYNAM
JI Nonlinear Dyn.
PD MAR
PY 2024
VL 112
IS 6
BP 4299
EP 4320
DI 10.1007/s11071-023-09247-3.
PG 22
WC Engineering, Mechanical; Mechanics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Mechanics
GA ZO5V5
UT WOS:001276261600013
DA 2024-09-05
ER
PT J
AU Buehling, K
AF Buehling, Kilian
TI Changing research topic trends as an effect of publication rankings-The
case of German economists and the Handelsblatt Ranking
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Research rankings; Topic modeling; Text classification; Topic change;
Research field mapping
ID PERFORMANCE; INNOVATION; BUSINESS; SCIENCE; IMPACT; DYNAMICS; JOURNALS;
VALIDITY; SYSTEMS
AB In order to arrive at informed judgments about the quality of research institutions and individual scholars, funding agencies, academic employers and researchers have turned to publication rankings. While such rankings, often based on journal citations, promise a more efficient and transparent funding allocation, individual researchers are at risk of showing adaptive behavior. This paper investigates whether the use of journal rankings in assessing the quality of scholarly research results in the unintended consequence of researchers adapting their research topics to the publishing interests of high-ranked journals. The introduction of the Handelsblatt Ranking (HBR) for economists in German language institutions serves as a quasi-natural experiment, allowing for an examination of research topic dynamics in economics via topic modeling and text classification . It is found that the Handelsblatt Ranking did not cause a significant shift of topics researched by German-affiliated authors in comparison to their international counterparts, even though topic convergence is apparent.
C1 [Buehling, Kilian] Tech Univ Dresden, Res Grp Knowledge & Technol Transfer, Muenchner Pl 2-3, D-01062 Dresden, Germany.
C3 Technische Universitat Dresden
RP Buehling, K (corresponding author), Tech Univ Dresden, Res Grp Knowledge & Technol Transfer, Muenchner Pl 2-3, D-01062 Dresden, Germany.
EM kilian.buehling@tu-dresden.de
OI Buehling, Kilian/0000-0002-5244-7547
CR Aagaard K, 2015, RES EVALUAT, V24, P106, DOI 10.1093/reseval/rvv003
Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181
Alberts B, 2014, P NATL ACAD SCI USA, V111, P5773, DOI 10.1073/pnas.1404402111
Alvarez-Bornstein B, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101102
Anderson D., 1996, PERFORMANCEBASED FUN
Anderson MS, 2007, SCI ENG ETHICS, V13, P437, DOI 10.1007/s11948-007-9042-5
Angrist J, 2017, AM ECON REV, V107, P293, DOI 10.1257/aer.p20171117
[Anonymous], 2019, HANDELSBLATT VWL RAN
[Anonymous], 2000, Health Technol Assess
[Anonymous], 2000, Practising Interdisciplinarity
Azoulay P, 2015, REV ECON STAT, V97, P1118, DOI 10.1162/REST_a_00469
Azoulay P, 2011, RAND J ECON, V42, P527, DOI 10.1111/j.1756-2171.2011.00140.x
Baum JAC, 2011, ORGANIZATION, V18, P449, DOI 10.1177/1350508411403531
Beise M, 1999, RES POLICY, V28, P397, DOI 10.1016/S0048-7333(98)00126-7
Bergstrom C. T., 2016, ARXIV160505822PHYSIC
Bergstrom CT, 2008, NEUROLOGY, V71, P1850, DOI 10.1212/01.wnl.0000338904.37585.66
Berlemann M, 2015, RES POLICY, V44, P1108, DOI 10.1016/j.respol.2014.12.002
Biagioli M., 2018, ACAD MISCONDUCT MISR
Birkmaier D, 2014, J INFORMETR, V8, P880, DOI 10.1016/j.joi.2014.08.005
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Bornmann L, 2010, J INFORMETR, V4, P211, DOI 10.1016/j.joi.2009.10.004
Bruns SB, 2019, RES POLICY, V48, DOI 10.1016/j.respol.2019.05.005
Butler L, 2003, RES POLICY, V32, P143, DOI 10.1016/S0048-7333(02)00007-0
Butz A, 2016, OKONOMEN RANKINGS 20
Cokol M, 2007, EMBO REP, V8, P422, DOI 10.1038/sj.embor.7400970
Combes P.-P., 2010, Inferring Missing Citations: A Quantitative Multi-Criteria Ranking of all Journals in Economics
Combes PP, 2003, J EUR ECON ASSOC, V1, P1250, DOI 10.1162/154247603322752548
Corsi M, 2010, AM J ECON SOCIOL, V69, P1495, DOI 10.1111/j.1536-7150.2010.00754.x
DiNardo J., 2010, Microeconometrics, P139, DOI DOI 10.1057/9780230280816_18
Dwan K, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003081
Elango B., 2018, Library Philosophy and Practice, V2018, P1
Erola J, 2015, SOCIOLOGY, V49, P374, DOI 10.1177/0038038514542495
Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4
Fanelli D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010271
Fang FC, 2012, P NATL ACAD SCI USA, V109, P17028, DOI 10.1073/pnas.1212247109
Ferlie E., 1996, The new public management in action
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Foster JG, 2015, AM SOCIOL REV, V80, P875, DOI 10.1177/0003122415601618
Frey B. S., 2006, SSRN ELECT J, DOI [10.2139/ssrn.928354, DOI 10.2139/SSRN.928354]
Frey BS, 2003, PUBLIC CHOICE, V116, P205, DOI 10.1023/A:1024208701874
GANS JS, 1994, J ECON PERSPECT, V8, P165, DOI 10.1257/jep.8.1.165
Geissler M., 2021, U IND KNOWLEDGE INTE
Gralka S, 2019, J HIGH EDUC POLICY M, V41, P322, DOI 10.1080/1360080X.2019.1588492
Gygli Savina, 2017, HANDELSBLATT RANKING
Gyorffy B, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101050
Haunschild R., 2021, GRUYTER SAUR, DOI [10.1515/9783110646610-028, DOI 10.1515/9783110646610-028]
Hazelkorn E, 2015, RANKINGS AND THE RESHAPING OF HIGHER EDUCATION: THE BATTLE FOR WORLD-CLASS EXCELLENCE, 2ND EDITION, P1, DOI 10.1057/9781137446671
Heckman JJ, 2020, J ECON LIT, V58, P419, DOI 10.1257/jel.20191574
Hofmeister R., 2008, PERSPEKTIVEN WIRTSCH, V9, P254
Hornbostel S, 2001, SCIENTOMETRICS, V50, P523, DOI 10.1023/A:1010566916697
Kelly MA, 2011, ECON INQ, V49, P658, DOI 10.1111/j.1465-7295.2010.00282.x
Laband DN, 2013, ECON J, V123, pF223, DOI 10.1111/ecoj.12067
Larivière V, 2019, SPRINGER HBK, P3, DOI 10.1007/978-3-030-02511-3_1
Larivière V, 2010, J AM SOC INF SCI TEC, V61, P126, DOI 10.1002/asi.21226
Laudel G., 2006, Science and Public Policy, V33, P489, DOI DOI 10.3152/147154306781778777
Lee FS, 2013, CAMB J ECON, V37, P693, DOI 10.1093/cje/bet031
Leimu R, 2005, TRENDS ECOL EVOL, V20, P28, DOI 10.1016/j.tree.2004.10.010
Linkova M, 2014, HUM AFF, V24, P78, DOI 10.2478/s13374-014-0207-z
Malsch B, 2015, CRIT PERSPECT ACCOUN, V26, P84, DOI 10.1016/j.cpa.2014.02.006
Martin B., 2010, UK RES ASSESSMENT EX, DOI [10.1093/acprof:oso/9780199590193.001.0001/acprof-9780199590193-chapter-2, DOI 10.1093/ACPROF:OSO/9780199590193.001.0001/ACPROF-9780199590193-CHAPTER-2]
Merigó JM, 2016, J BUS ECON MANAG, V17, P397, DOI 10.3846/16111699.2013.807868
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
MERTON RK, 1988, ISIS, V79, P606, DOI 10.1086/354848
Merton RK., 1973, The sociology of science, P267
MOED HF, 1985, RES POLICY, V14, P131, DOI 10.1016/0048-7333(85)90012-5
Nederhof AJ, 2008, SCIENTOMETRICS, V74, P163, DOI 10.1007/s11192-008-0109-0
Nuredini K., 2021, 4 3 SOCIAL MEDIA ALT, DOI [10.1515/9783110646610-021, DOI 10.1515/9783110646610-021]
Osterloh M, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2019.103831
Osterloh M, 2015, EVALUATION REV, V39, P102, DOI 10.1177/0193841X14524957
Oswald AJ, 2007, ECONOMICA, V74, P21, DOI 10.1111/j.1468-0335.2006.00575.x
Rafols I, 2012, RES POLICY, V41, P1262, DOI 10.1016/j.respol.2012.03.015
Rath K, 2016, APPL ECON LETT, V23, P897, DOI 10.1080/13504851.2015.1119783
Rath K, 2016, APPL ECON LETT, V23, P660, DOI 10.1080/13504851.2015.1095998
Rehs A, 2020, SCIENTOMETRICS, V125, P1229, DOI 10.1007/s11192-020-03640-0
Reymert I, 2021, MINERVA, V59, P53, DOI 10.1007/s11024-020-09419-0
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Schlapfer F., 2010, PERSPEKTIVEN WIRTSCH, V11, P325
Schwemmer C, 2020, SOCIOLOGY, V54, P3, DOI 10.1177/0038038519853146
Spiewanowski P, 2021, SCIENTOMETRICS, V126, P3227, DOI 10.1007/s11192-021-03891-5
Stephan P. E., 2012, EC SHAPES SCI, V1
Stern Nicholas., 2016, Building on success and learning from experience: An independent review of the research excellence framework
Stöckelová T, 2012, SCI TECHNOL HUM VAL, V37, P286, DOI 10.1177/0162243911415872
Tunger D, 2021, 4 1 FUTURE HAS ALREA, DOI [10.1515/9783110646610-019, DOI 10.1515/9783110646610-019]
van Arensbergen P, 2014, RES EVALUAT, V23, P298, DOI 10.1093/reseval/rvu017
van den Besselaar P, 2015, J INFORMETR, V9, P826, DOI 10.1016/j.joi.2015.07.011
Wallace ML, 2018, RES POLICY, V47, P1975, DOI 10.1016/j.respol.2018.07.005
Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7
Wouters, 2019, HDB SCI PUBLIC POLIC, DOI 10.4337/9781784715946.00035
Zhang N, 2018, SCIENTOMETRICS, V116, P1039, DOI 10.1007/s11192-018-2786-7
NR 92
TC 8
Z9 8
U1 0
U2 18
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD AUG
PY 2021
VL 15
IS 3
AR 101199
DI 10.1016/j.joi.2021.101199
EA AUG 2021
PG 13
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA WB5KY
UT WOS:000703611800002
OA Green Accepted
DA 2024-09-05
ER
PT C
AU Liu, ZD
Wang, BH
AF Liu, Zhendong
Wang, Beihai
BE Long, S
Dhillon, BS
TI Research on Text Visual Effect of Multimedia Courseware for Mobile
Online Learning
SO MAN-MACHINE-ENVIRONMENT SYSTEM ENGINEERING, MMESE
SE Lecture Notes in Electrical Engineering
LA English
DT Proceedings Paper
CT 21st International Conference on Man-Machine-Environment System
Engineering (MMESE)
CY OCT 23-25, 2021
CL Beijing, PEOPLES R CHINA
DE Online learning; Mobile learning; Visual design; Courseware
AB The purpose of this study is to make the multimedia courseware, which designed on the computer, can terminal obtain satisfactory visual effect on the mobile screen. Methods interviews and questionnaires were conducted to online learning students to determine the factors that affect visual effect. Then an experiment on visual effect with font, font size, color and spacing as variables was conducted with 20 subjects. Results the influence of each variable on visual effect was obtained. Conclusion the study gives the clear suggestions on the parameterization of font designed on computer to ensure good visual effect on the mobile screen.
C1 [Liu, Zhendong; Wang, Beihai] Wuhan Polytech Univ, Wuhan, Peoples R China.
C3 Wuhan Polytechnic University
RP Wang, BH (corresponding author), Wuhan Polytech Univ, Wuhan, Peoples R China.
RI ZHAO, S/IWV-4219-2023
CR Cheng H, 2015, EFFECTS FONT SIZE SP
Ge L, 2016, ENG PSHCHOLOGY
[宫殿坤 Gong Diankun], 2009, [心理科学, Psychological Science], V32, P1142
Li H., 2011, APPL PSYCHOL, V17, P62
Li Xixia, 2016, Renmin chubanshe, P48
Li Y, 2012, EFFECTS FONT SIZE SP
Liu L, 2015, EFFECTS FONT SIZE FO
Peng Y., 2010, SCI TECHNOL ASS FORU, V6, P92
Zhang L., 2014, ERGONOMICS, V20, P32
NR 9
TC 0
Z9 0
U1 0
U2 11
PU SPRINGER-VERLAG SINGAPORE PTE LTD
PI SINGAPORE
PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
SN 1876-1100
EI 1876-1119
BN 978-981-16-5963-8; 978-981-16-5962-1
J9 LECT NOTES ELECTR EN
PY 2022
VL 800
BP 841
EP 847
DI 10.1007/978-981-16-5963-8_115
PG 7
WC Automation & Control Systems; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Engineering
GA BS4UW
UT WOS:000722635300115
DA 2024-09-05
ER
PT C
AU Djen, RAM
Nurmandi, A
Muallidin, I
Kurniawan, D
Loilatu, MJ
AF Djen, Risman A. M.
Nurmandi, Achmad
Muallidin, Isnaini
Kurniawan, Danang
Loilatu, Mohammad Jafar
BE Yang, XS
Sherratt, S
Dey, N
Joshi, A
TI Artificial Intelligence: Bibliometric Analysis in Government Studies
SO PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND
COMMUNICATION TECHNOLOGY, VOL 4
SE Lecture Notes in Networks and Systems
LA English
DT Proceedings Paper
CT 7th International Congress of Information and Communication Technology
(ICICT)
CY FEB 21-24, 2022
CL London, ENGLAND
DE Artificial intelligence; Government; Public policy
AB Artificial intelligence systems have become a massive thing in all sectors, both in the business world and government institutions and in the development of technology and information. Therefore, this research focuses on mapping the trend of the study of artificial Intelligence in a government study. This research uses a qualitative method with a literature study. In this bibliometric research, the data collected are journals and articles taken from Scopus using the keyword "artificial intelligence" and processed through NVivo 12 Plus and VOSviewer. Through this research, the researcher finds a tendency in the artificial intelligence discourse more directed to alternative system improvements in government, both in policymaking and public sector management. This research is expected to be a trigger for improving the government system, especially in a more transparent and democratic policymaking plan, seeing that several countries have started to develop research on artificial intelligence, of course, this research will help analyze the direction of the development of synthetic intelligence studies which are more directed toward the improvement of the policymaking system in government institutions.
C1 [Djen, Risman A. M.; Nurmandi, Achmad; Muallidin, Isnaini; Kurniawan, Danang; Loilatu, Mohammad Jafar] Univ Muhammadiyah Yogyakarta, Jusuf Kalla Sch Govt, Dept Govt Affairs & Adm, Yogyakarta, Indonesia.
C3 Universitas Muhammadiyah Yogyakarta
RP Djen, RAM (corresponding author), Univ Muhammadiyah Yogyakarta, Jusuf Kalla Sch Govt, Dept Govt Affairs & Adm, Yogyakarta, Indonesia.
EM djenrisman03@gmail.com; nurmandi_achmad@umy.ac.id
RI Nurmandi, Achmad/J-4428-2019
OI Nurmandi, Achmad/0000-0002-6730-0273; Kurniawan,
Danang/0000-0003-2013-6821; Jafar Loilatu, Mohammad/0000-0001-6921-6879
CR Janssen M, 2022, SOC SCI COMPUT REV, V40, P478, DOI 10.1177/0894439320980118
Kim J, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010115
Kindylidi I, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132112064
MotomuraY, 2021, SYNTHESIOLOGY, V13, P1, DOI [10.5571/synth.13.1_1, DOI 10.5571/SYNTH.13.1_1]
Richardson L, 2019, GEOFORUM, V99, P278, DOI 10.1016/j.geoforum.2017.09.014
Sætra HS, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101283
Scholz RW, 2018, SUSTAINABILITY SWITZ, V10
Sima V, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12104035
Sipior JC, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102170
NR 9
TC 1
Z9 1
U1 10
U2 40
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2367-3370
EI 2367-3389
BN 978-981-19-2397-5; 978-981-19-2396-8
J9 LECT NOTE NETW SYST
PY 2023
VL 465
BP 411
EP 418
DI 10.1007/978-981-19-2397-5_39
PG 8
WC Computer Science, Information Systems; Computer Science, Theory &
Methods; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BU3ZT
UT WOS:000894285700038
DA 2024-09-05
ER
PT J
AU Ghalambaz, S
Abbaszadeh, M
Sadrehaghighi, I
Younis, O
Ghalambaz, M
Ghalambaz, M
AF Ghalambaz, Sepideh
Abbaszadeh, Mohammad
Sadrehaghighi, Ideen
Younis, Obai
Ghalambaz, Mehdi
Ghalambaz, Mohammad
TI A forty years scientometric investigation of artificial intelligence for
fluid-flow and heat-transfer (AIFH) during 1982 and 2022
SO ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
LA English
DT Article
DE Scientometric; Bibliometric analysis; Artificial intelligence (AI);
Fluid -flow and heat -transfer (FH)
ID SOLAR-RADIATION; NEURAL-NETWORKS; PREDICTION
AB A scientometric approach is utilized to investigate the dynamic maps of relationships among researchers, institutes, and countries in the field of Artificial Intelligence for Fluid-flow and Heat-transfer (AIFH). The Web of Science database was searched for related publications during the last 40 years (1982 and 2022). A total of 6151 articles were discovered, which were analyzed in detail. Using a bibliometric analysis, the most relevant and most cited sources of publications were identified. The most active researchers, institutions, and countries leading AIFH were reported. Then, the worldwide dynamic collaboration maps and coupling maps of relation-ships were reported. The Islamic Azad University (1893 T.C.), the Chinese Academy of Sciences (1374 T.C.), and Beihang University (1266 T.C.) were the most influential institutes in AIFH. The most influential countries were China, the USA, and Iran. The dynamic map of collaborations shows a good worldwide collaboration distribution. The USA and China established the most connection with the rest of the world. ANNs are the most studied topic (19.5% of publications), followed by Machine Learning (17.9%) and Neural Networks (15.4%). Support Vector Machines lag behind at 1.4%. ANNs boast the highest total citations (17,064) and H-index (63). Most ANIF papers were published by Medical Physics (119 T.P.). Half of the articles in AIFH were published by five journals of Medical Physics, Neurocomputing, International Journal of Heat and Mass Transfer, International Journal of Radiation Oncology Biology Physics, and IEEE Access. The International Journal of Heat and Mass Transfer received the most citations in AIFH.
C1 [Ghalambaz, Sepideh] Payame Noor Univ, Dept Knowledge & Informat Sci, Tehran, Iran.
[Abbaszadeh, Mohammad] Shiraz Univ, Hydroaeronaut Res Ctr, Shiraz, Iran.
[Sadrehaghighi, Ideen] Old Dominion Univ, Mech Engn, Norfolk, VA USA.
[Younis, Obai] Prince Sattam Bin Abdulaziz Univ, Coll Engn Wadi Alddwasir, Dept Mech Engn, Al Kharj, Saudi Arabia.
[Younis, Obai] Univ Khartoum, Fac Engn, Dept Mech Engn, Khartoum, Sudan.
[Ghalambaz, Mehdi] Almaaqal Univ, Coll Engn, Basra 61003, Iraq.
[Ghalambaz, Mohammad] Tomsk State Univ, Lab Convect Heat & Mass Transfer, Tomsk 634050, Russia.
C3 Payame Noor University; Shiraz University; Old Dominion University;
Prince Sattam Bin Abdulaziz University; University of Khartoum; Tomsk
State University
RP Ghalambaz, S (corresponding author), Payame Noor Univ, Dept Knowledge & Informat Sci, Tehran, Iran.; Ghalambaz, M (corresponding author), Tomsk State Univ, Lab Convect Heat & Mass Transfer, Tomsk 634050, Russia.
EM sepideh_ghalambaz@pnu.ac.ir; mabbaszadeh@shirazu.ac.ir;
ghalambaz.mehdi@gmail.com; m.ghalambaz@gmail.com
RI Ghalambaz, Mehdi/AGI-3994-2022; younis, obai/HHZ-8864-2022
OI Ghalambaz, Mehdi/0000-0001-8762-5510; younis, obai/0000-0002-1701-9387;
Ghalambaz, Sepideh/0000-0001-8916-8245; Abbaszadeh,
Mohammad/0000-0002-7754-4191
FU Prince sattam bin Abdulaziz University [PSAU/2023/R/1445]
FX This study is supported via funding from Prince sattam bin Abdulaziz
University project number (PSAU/2023/R/1445) .
CR Adnan RM, 2023, ENG APPL COMP FLUID, V17, DOI 10.1080/19942060.2023.2192258
Alagumalai A, 2021, NANO ENERGY, V83, DOI 10.1016/j.nanoen.2021.105844
Ali N, 2021, NANOMATERIALS-BASEL, V11, DOI 10.3390/nano11061628
Alizadeh R, 2021, J TAIWAN INST CHEM E, V124, P75, DOI 10.1016/j.jtice.2021.04.067
Alizadeh R, 2021, J TAIWAN INST CHEM E, V124, P290, DOI 10.1016/j.jtice.2021.03.043
Azad AK, 2022, ENERGY REP, V8, P2699, DOI 10.1016/j.egyr.2022.01.182
Bawack RE, 2022, ELECTRON MARK, V32, P297, DOI 10.1007/s12525-022-00537-z
Borri E, 2021, APPL THERM ENG, V189, DOI 10.1016/j.applthermaleng.2021.116666
Brunton SL, 2020, ANNU REV FLUID MECH, V52, P477, DOI 10.1146/annurev-fluid-010719-060214
Duraisamy K, 2019, ANNU REV FLUID MECH, V51, P357, DOI 10.1146/annurev-fluid-010518-040547
Ghalambaz S, 2022, J MAGN MAGN MATER, V561, DOI 10.1016/j.jmmm.2022.169685
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Han X, 2017, MED PHYS, V44, P1408, DOI 10.1002/mp.12155
Hay T, 2021, STEEL RES INT, V92, DOI 10.1002/srin.202000395
Ikram RMA, 2023, J MAR SCI ENG, V11, DOI 10.3390/jmse11020259
Ikram RMA, 2022, APPL SOFT COMPUT, V131, DOI 10.1016/j.asoc.2022.109739
Kumar S, 2021, J ENERG RESOUR-ASME, V143, DOI 10.1115/1.4050081
Lafon S, 2006, IEEE T PATTERN ANAL, V28, P1784, DOI 10.1109/TPAMI.2006.223
Lafon S, 2006, IEEE T PATTERN ANAL, V28, P1393, DOI 10.1109/TPAMI.2006.184
Ling J, 2016, J FLUID MECH, V807, P155, DOI 10.1017/jfm.2016.615
Lu JG, 2008, CHAOS SOLITON FRACT, V35, P116, DOI 10.1016/j.chaos.2007.05.002
Ma T, 2021, RENEW SUST ENERG REV, V138, DOI 10.1016/j.rser.2020.110494
Manzoor B, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12042136
MARTYN J, 1964, J DOC, V20, P236, DOI 10.1108/eb026352
Mohandes M, 1998, RENEW ENERG, V14, P179, DOI 10.1016/S0960-1481(98)00065-2
Paoli C, 2010, SOL ENERGY, V84, P2146, DOI 10.1016/j.solener.2010.08.011
Rehman S, 2008, ENERG POLICY, V36, P571, DOI 10.1016/j.enpol.2007.09.033
Sadeghianjahromi A, 2021, RENEW SUST ENERG REV, V137, DOI 10.1016/j.rser.2020.110470
Sahiner B, 2019, MED PHYS, V46, pe1, DOI 10.1002/mp.13264
Sfetsos A, 2000, SOL ENERGY, V68, P169, DOI 10.1016/S0038-092X(99)00064-X
Sharma M., 2021, CFD ANAL SOLAR AIR H
Sridharan M., 2020, Advanced Analytic and Control Techniques for Thermal Systems with Heat Exchangers, P325
Tymvios FS, 2005, SOL ENERGY, V78, P752, DOI 10.1016/j.solener.2004.09.007
Varsha PS, 2021, J GLOB INF MANAG, V29, P221, DOI 10.4018/JGIM.20210701.oa10
Verma R, 2021, APPL MATH MODEL, V89, P1177, DOI 10.1016/j.apm.2020.07.004
Verma VK., 2021, Partial Differ Equ Appl Math, V3, P100034, DOI [10.1016/j.padiff.2021.100034, DOI 10.1016/J.PADIFF.2021.100034]
Voyant C, 2017, RENEW ENERG, V105, P569, DOI 10.1016/j.renene.2016.12.095
Yadav AK, 2014, RENEW SUST ENERG REV, V33, P772, DOI 10.1016/j.rser.2013.08.055
Yang XS, 2013, SIAM J CONTROL OPTIM, V51, P3486, DOI 10.1137/120897341
Yuan XH, 2018, STOCH ENV RES RISK A, V32, P2199, DOI 10.1007/s00477-018-1560-y
Zhang YJ, 2022, FRONT BIOSCI-LANDMRK, V27, DOI 10.31083/j.fbl2708224
Zhu ZC, 2013, REMOTE SENS-BASEL, V5, P927, DOI 10.3390/rs5020927
NR 42
TC 2
Z9 2
U1 0
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0952-1976
EI 1873-6769
J9 ENG APPL ARTIF INTEL
JI Eng. Appl. Artif. Intell.
PD JAN
PY 2024
VL 127
AR 107334
DI 10.1016/j.engappai.2023.107334
EA OCT 2023
PN B
PG 19
WC Automation & Control Systems; Computer Science, Artificial Intelligence;
Engineering, Multidisciplinary; Engineering, Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Automation & Control Systems; Computer Science; Engineering
GA Y3IB9
UT WOS:001104228600001
DA 2024-09-05
ER
PT C
AU Plancher, B
Reddi, VJ
AF Plancher, Brian
Reddi, Vijay Janapa
GP ACM
TI TinyMLedu: The Tiny Machine Learning Open Education Initiative
SO PROCEEDINGS OF THE 53RD ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE
EDUCATION (SIGCSE 2022), VOL 2
LA English
DT Proceedings Paper
CT 53rd Annual ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE)
CY MAR 02-05, 2022
CL Providence, RI
DE Computing Education; TinyML; Applied Machine Learning; Embedded Systems;
Open-Access Materials; Global Network
AB TinyML is a cutting-edge field that brings the transformative power of machine learning (ML) to the performance and power-constrained domain of embedded systems. This opens new avenues of opportunity for a smarter and cheaper internet of things (IoT). TinyML is also a great educational tool as it touches on topics from across the computer science curriculum, ranging from machine learning to embedded systems. TinyMLedu is working to build an international coalition of researchers and practitioners advancing TinyML in the developing world, and to develop and share highquality, open-access educational materials globally. To date, we have helped launch two courses derived from our materials, taught in Portuguese in Brazil, held an outreach workshop for middle and high school teachers and students of the Navajo nation, and launched an Academic Network of over 20 universities from around the globe. Moving forward we want to grow our impact by helping develop more workshops and courses, in more languages, targeting an even broader audience, to introduce the world to TinyML.
C1 [Plancher, Brian; Reddi, Vijay Janapa] Harvard John A Paulson Sch Engn & Appl Sci, Boston, MA 02134 USA.
RP Plancher, B (corresponding author), Harvard John A Paulson Sch Engn & Appl Sci, Boston, MA 02134 USA.
RI Plancher, Brian/HKW-7966-2023
OI Plancher, Brian/0000-0002-0078-3653
CR Reddi Vijay Janapa, 2021, arXiv
Warden Pete, 2019, TinyML: Machine Learning with TensorflowLite on Arduino and Ultra Low Power Microcontrollers
NR 2
TC 0
Z9 0
U1 0
U2 0
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 978-1-4503-9070-5
PY 2022
BP 1159
EP 1159
DI 10.1145/3478432.3499093
PG 1
WC Computer Science, Theory & Methods; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Education & Educational Research
GA BU8GR
UT WOS:000947124200113
DA 2024-09-05
ER
PT J
AU Yan, RH
Liu, TY
Peng, YG
Peng, XX
AF Yan, Ruohua
Liu, Tianyi
Peng, Yaguang
Peng, Xiaoxia
TI Can statistical adjustment guided by causal inference improve the
accuracy of effect estimation? A simulation and empirical research based
on meta-analyses of case-control studies
SO BMC MEDICAL INFORMATICS AND DECISION MAKING
LA English
DT Article
DE Simulation; Confounder; Causal inference; Case– control study;
Meta-analysis
ID BREAST-CANCER; PASSIVE SMOKING; SYSTEMATIC REVIEWS; RISK
AB Background Statistical adjustment is often considered to control confounding bias in observational studies, especially case-control studies. However, different adjustment strategies may affect the estimation of odds ratios (ORs), and in turn affect the results of their pooled analyses. Our study is aimed to investigate how to deal with the statistical adjustment in case-control studies to improve the validity of meta-analyses. Methods Three types of adjustment strategies were evaluated including insufficient adjustment (not all preset confounders were adjusted), full adjustment (all confounders were adjusted under the guidance of causal inference), and improper adjustment (covariates other than confounders were adjusted). We carried out a series of Monte Carlo simulation experiments based on predesigned scenarios, and assessed the accuracy of effect estimations from meta-analyses of case-control studies by combining ORs calculated according to different adjustment strategies. Then we used the data from an empirical review to illustrate the replicability of the simulation results. Results For all scenarios with different strength of causal relations, combining ORs that were comprehensively adjusted for confounders would get the most precise effect estimation. By contrast, combining ORs that were not sufficiently adjusted for confounders or improperly adjusted for mediators or colliders would easily introduce bias in causal interpretation, especially when the true effect of exposure on outcome was weak or none. The findings of the simulation experiments were further verified by the empirical research. Conclusions Statistical adjustment guided by causal inference are recommended for effect estimation. Therefore, when conducting meta-analyses of case-control studies, the causal relationship formulated by exposure, outcome, and covariates should be firstly understood through a directed acyclic graph, and then reasonable original ORs could be extracted and combined by suitable methods.
C1 [Yan, Ruohua; Liu, Tianyi; Peng, Yaguang; Peng, Xiaoxia] Capital Med Univ, Beijing Childrens Hosp, Ctr Clin Epidemiol & Evidence Based Med, Natl Ctr Childrens Hlth, Nanlishilu 56, Beijing 100045, Peoples R China.
[Liu, Tianyi] AstraZenaca, Int Fortune Ctr, Evidence Generat, Med Affairs, Level 22,Jianguomenwai Ave 8, Beijing 100010, Peoples R China.
C3 Capital Medical University
RP Peng, XX (corresponding author), Capital Med Univ, Beijing Childrens Hosp, Ctr Clin Epidemiol & Evidence Based Med, Natl Ctr Childrens Hlth, Nanlishilu 56, Beijing 100045, Peoples R China.
EM pengxiaoxia@bch.com.cn
RI Peng, Xiao/ITR-9448-2023; Yan, Ruohua/HGE-2321-2022; Guo,
yongqing/KDS-5864-2024; Li, Huizhen/JPX-2563-2023
OI Peng, Yaguang/0000-0002-7987-6464; Yan, Ruohua/0000-0003-1423-5962
FU Beijing Municipal Administration of Hospitals Clinical Medicine
Development of Special Funding Support [ZYLX201840]; Special Fund of the
Pediatric Medical Coordinated Development Center of Beijing Hospitals
Authority [XTCX201812]
FX This study is funded by the Beijing Municipal Administration of
Hospitals Clinical Medicine Development of Special Funding Support (No.
ZYLX201840) and the Special Fund of the Pediatric Medical Coordinated
Development Center of Beijing Hospitals Authority (No. XTCX201812). The
funding bodies had no role in the design of the study and collection,
analysis, and interpretation of data and in writing the manuscript.
CR Al Janabi S, 2017, I C DEV ESYST ENG, P37, DOI 10.1109/DeSE.2017.23
Al-Janabi S, 2019, INT J GRID UTIL COMP, V10, P512
Al-Janabi S, 2020, SOFT COMPUT, V24, P555, DOI 10.1007/s00500-019-03972-x
Al-Janabi S, 2014, 2014 INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK)
Ali SH, 2012, 2012 6TH INTERNATIONAL CONFERENCE ON SCIENCES OF ELECTRONICS, TECHNOLOGIES OF INFORMATION AND TELECOMMUNICATIONS (SETIT), P962, DOI 10.1109/SETIT.2012.6482043
[Anonymous], 2013, Simulating data with SAS
Blettner M, 1999, INT J EPIDEMIOL, V28, P1, DOI 10.1093/ije/28.1.1
Burton A, 2006, STAT MED, V25, P4279, DOI 10.1002/sim.2673
Chen C, 2014, CHIN J CANCER, V33, P306, DOI 10.5732/cjc.013.10248
Chen ZH, 2015, ASIA-PAC J PUBLIC HE, V27, pNP58, DOI 10.1177/1010539513481493
Egger M, 1997, BMJ-BRIT MED J, V315, P1533, DOI 10.1136/bmj.315.7121.1533
Evangelou E, 2013, NAT REV GENET, V14, P379, DOI 10.1038/nrg3472
Glass G.V., 1976, Educational Researcher, V5, P3, DOI [10.3102/0013189x005010003, DOI 10.3102/0013189X005010003, 10.2307/1174772ISSN0536-1036, DOI 10.2307/1174772]
Higgins JPT, 2010, REV MANAGER, V5
Higgins JPT, 2008, INT J EPIDEMIOL, V37, P1158, DOI 10.1093/ije/dyn204
IntHout J, 2014, BMC MED RES METHODOL, V14, DOI 10.1186/1471-2288-14-25
Jackson D, 2018, STAT MED, V37, P1059, DOI 10.1002/sim.7588
Jadad AR, 1998, JAMA-J AM MED ASSOC, V280, P278, DOI 10.1001/jama.280.3.278
Johnson KC, 2005, INT J CANCER, V117, P619, DOI 10.1002/ijc.21150
Khuder SA, 2000, EUR J EPIDEMIOL, V16, P1117, DOI 10.1023/A:1010967513957
Kontopantelis E, 2012, STAT METHODS MED RES, V21, P657, DOI 10.1177/0962280211413451
Langan D, 2019, RES SYNTH METHODS, V10, P83, DOI 10.1002/jrsm.1316
Lee PN, 2016, INHAL TOXICOL, V28, P431, DOI 10.1080/08958378.2016.1210701
Li HK, 2016, BMC MED RES METHODOL, V16, DOI 10.1186/s12874-016-0206-3
Liu TY, 2017, BMC MED RES METHODOL, V17, DOI 10.1186/s12874-017-0454-x
Metelli S, 2020, EVID-BASED MENT HEAL, V23, P83, DOI 10.1136/ebmental-2019-300129
Morris TP, 2019, STAT MED, V38, P2074, DOI 10.1002/sim.8086
Pirie K, 2008, INT J EPIDEMIOL, V37, P1069, DOI 10.1093/ije/dyn110
Senn S, 2011, STAT PROBABIL LETT, V81, P842, DOI 10.1016/j.spl.2011.02.010
Shapiro S, 1997, J CLIN EPIDEMIOL, V50, P223, DOI 10.1016/S0895-4356(96)00360-5
Shrier I, 2007, AM J EPIDEMIOL, V166, P1203, DOI 10.1093/aje/kwm189
Stang A, 2010, EUR J EPIDEMIOL, V25, P603, DOI 10.1007/s10654-010-9491-z
Stroup DF, 2000, JAMA-J AM MED ASSOC, V283, P2008, DOI 10.1001/jama.283.15.2008
Tadano Kiichi, 2016, Igaku Butsuri, V36, P148, DOI 10.11323/jjmp.36.3_148
Valentine JC, 2013, RES SYNTH METHODS, V4, P26, DOI 10.1002/jrsm.1064
Wang MH, 2019, SEMIN CANCER BIOL, V55, P53, DOI 10.1016/j.semcancer.2018.04.008
WHITEHEAD A, 1991, STAT MED, V10, P1665, DOI 10.1002/sim.4780101105
Yang WY, 2010, DIABETES RES CLIN PR, V88, pS3, DOI 10.1016/S0168-8227(10)70002-4
NR 38
TC 3
Z9 4
U1 0
U2 7
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1472-6947
J9 BMC MED INFORM DECIS
JI BMC Med. Inform. Decis. Mak.
PD DEC 11
PY 2020
VL 20
IS 1
AR 333
DI 10.1186/s12911-020-01343-3
PG 11
WC Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Medical Informatics
GA PD6RU
UT WOS:000597810600001
PM 33308213
OA Green Submitted, gold, Green Published
DA 2024-09-05
ER
PT J
AU Khalid, S
Wu, SL
Zhang, F
AF Khalid, Shah
Wu, Shengli
Zhang, Fang
TI A multi-objective approach to determining the usefulness of papers in
academic search
SO DATA TECHNOLOGIES AND APPLICATIONS
LA English
DT Article
DE Academic search; Citation analysis; Usefulness; Relevance; Impact;
Publication age; Evaluation metrics
AB Purpose How to provide the most useful papers for searchers is a key issue for academic search engines. A lot of research has been carried out to address this problem. However, when evaluating the effectiveness of an academic search engine, most of the previous investigations assume that the only concern of the user is the relevancy of the paper to the query. The authors believe that the usefulness of a paper is determined not only by its relevance to the query but also by other aspects including its publication age and impact in the research community. This is vital, especially when a large number of papers are relevant to the query. Design/methodology/approach This paper proposes a group of metrics to measure the usefulness of a ranked list of papers. When defining these metrics, three factors, including relevance, publication age and impact, are considered at the same time. To accommodate this, the authors propose a framework to rank papers by a combination of their relevance, publication age and impact scores. Findings The framework is evaluated with the ACL (Association for Computational Linguistics Anthology Network) dataset. It demonstrates that the proposed ranking algorithm is effective for improving usefulness when two or three aspects of academic papers are considered at the same time, while the relevance of the retrieved papers is slightly down compared with the relevance-only retrieval. Originality/value To the best of the authors' knowledge, the proposed multi-objective academic search framework is the first of its kind that is proposed and evaluated with a group of new evaluation metrics.
C1 [Khalid, Shah; Wu, Shengli; Zhang, Fang] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang, Jiangsu, Peoples R China.
[Khalid, Shah] Natl Univ Sci & Technol, Sch Comp Sci, Islamabad, Pakistan.
C3 Jiangsu University; National University of Sciences & Technology -
Pakistan
RP Wu, SL (corresponding author), Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang, Jiangsu, Peoples R China.
EM shahkhalid@ujs.edu.cn; swu@ujs.edu.cn; fangzh_1014@126.com
RI Khalid, Shah/AAC-8325-2021
OI Khalid, Shah/0000-0001-5735-5863; wu, shengli/0000-0003-2008-1736
CR Agrawal Rakesh, 2009, P 2 INT C WEB SEARCH, P5, DOI DOI 10.1145/1498759.1498766
Amolochitis E, 2013, INFORM PROCESS MANAG, V49, P1326, DOI 10.1016/j.ipm.2013.07.002
[Anonymous], 2014, ACAD SEARCH ENGINES
[Anonymous], 2003, ACM Trans Internet Technol, DOI DOI 10.1145/857166.857170
[Anonymous], 2007, P 30 ANN INT ACM SIG, DOI DOI 10.1145/1277741.1277756
Buckley C., 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P25, DOI 10.1145/1008992.1009000
Chen H, 2006, P 29 ANN INT ACM SIG, P429, DOI [DOI 10.1145/1148170.1148245, 10.1145/1148170.1148245]
Clarke C., 2008, P 31 ANN INT ACM SIG, P659, DOI DOI 10.1145/1390334.1390446
DASDAN A, 2009, P 18 INT C WORLD WID, P1129
Hagen Matthias, 2016, Advances in Information Retrieval. 38th European Conference on IR Research, ECIR 2016. Proceedings; LNCS 9626, P507, DOI 10.1007/978-3-319-30671-1_37
Han JC, 2004, IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2004), PROCEEDINGS, P677
Järvelin K, 2002, ACM T INFORM SYST, V20, P422, DOI 10.1145/582415.582418
Khalid S, 2020, ENG TECHNOL APPL SCI, V10, P6102
Khalid S, 2021, J INF SCI, V47, P3, DOI 10.1177/0165551519863346
Khazaei T, 2017, INT J DIGIT LIBRARIE, V18, P59, DOI 10.1007/s00799-016-0170-x
KLUCK M, 2004, WORKSH CROSS LANG EV, P260
KLUCK M, 2005, WORKSH CROSS LANG EV, P212
Li XY, 2017, INFORM PROCESS MANAG, V53, P666, DOI 10.1016/j.ipm.2017.01.005
Liu XZ, 2013, J AM SOC INF SCI TEC, V64, P1852, DOI 10.1002/asi.22883
MIRYLENKA D, 2015, THESIS
Moffat A, 2009, ACM T INFORM SYST, V27, DOI 10.1145/1416950.1416952
Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2
Salehi Sara., 2015, P 26 ACM C HYPERTEXT, P103, DOI DOI 10.1145/2700171.2791039
Shogen S, 2015, LECT NOTES COMPUT SC, V9460, P56, DOI 10.1007/978-3-319-28940-3_5
Sugiyama K, 2015, INT J DIGIT LIBRARIE, V16, P91, DOI 10.1007/s00799-014-0122-2
Terzi, 2012, P 2012 ACM SIGMOD IN, P621
VERBERNE S, 2014, EUR C INF RETR, P560
VERBERNE S, 2018, ABS180411131 CORR
Wu D, 2018, ASLIB J INFORM MANAG, V70, P2, DOI 10.1108/AJIM-03-2017-0063
Wu S, 2012, ADAPT LEARN OPTIM, V13, P1, DOI 10.1007/978-3-642-28866-1
Wu SL, 2006, LECT NOTES COMPUT SC, V4042, P86
Xiong CY, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P1271, DOI 10.1145/3038912.3052558
NR 32
TC 12
Z9 12
U1 2
U2 31
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 2514-9288
EI 2514-9318
J9 DATA TECHNOL APPL
JI Data Technol. Appl.
PD OCT 11
PY 2021
VL 55
IS 5
BP 734
EP 748
DI 10.1108/DTA-05-2020-0104
EA MAY 2021
PG 15
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA WF5PG
UT WOS:000653156700001
DA 2024-09-05
ER
PT J
AU Liu, G
Pan, L
Jiang, WQ
Fan, S
Buhari, A
AF Liu, Gang
Pan, Lei
Jiang, Weiqiang
Fan, Shuai
Buhari, Abudhahir
TI Dynamic performance and optimization research for six-link mechanism
considering the coupling effect of flexible structure and wear
clearances
SO NONLINEAR DYNAMICS
LA English
DT Article
DE Wear clearance; Flexible structure; Six-link mechanism; Dynamic
performance; Optimization research; Simulated annealing algorithm
ID SYSTEM
AB The adverse effects of flexible structure and wear clearances on dynamic performance of mechanical systems cannot be ignored. At present, scholars have carried out extensive research on mechanism with clearance, but few consider the coupling effect of wear clearance and flexible structure on dynamic performance of mechanism. Therefore, this paper develops a dynamic model of six-link mechanism considering multiple wear clearances and flexible structure through Lagrange method. The influence of clearance size and frictional coefficient on dynamic performance and nonlinear characteristics of mechanism is investigated. In view of the adverse effects of wear clearances and flexible structure on the performance of mechanism, a new optimization method of mechanism based on simulated annealing algorithm (SAA) is proposed. This method takes the mass parameters of each component for mechanism as the design variables and minimizes the maximal wear depth of clearance as the objective function. The results indicate that the optimization method can reduce the vibration and error, and improve the overall dynamic performance of mechanism.
C1 [Liu, Gang; Buhari, Abudhahir] Infrast Univ Kuala Lumpur, Fac Engn Sci & Technol, Jln Ikram Uniten, Kajang 43000, Selangor, Malaysia.
[Liu, Gang; Pan, Lei; Jiang, Weiqiang] Weifang Vocat Coll, Weifang 261041, Shandong, Peoples R China.
[Fan, Shuai] Chengdu Univ Technol, Sch Mech & Elect Engn, Chengdu 610059, Sichuan, Peoples R China.
C3 Chengdu University of Technology
RP Jiang, WQ (corresponding author), Weifang Vocat Coll, Weifang 261041, Shandong, Peoples R China.
EM jiangweiqiang_wfvc@163.com
FU Development Path and Industrialization Research Project of Kinetic
Energy Coupling Technology for Large Composite Intelligent Agricultural
Machinery Equipment; [2022RKX027]
FX This work was supported by the [Development Path and Industrialization
Research Project of Kinetic Energy Coupling Technology for Large
Composite Intelligent Agricultural Machinery Equipment: 2022RKX027].
CR Ahmedalbashir M, 2017, J MECH SCI TECHNOL, V31, P1023, DOI 10.1007/s12206-017-0201-6
Alves DS, 2021, TRIBOL INT, V153, DOI 10.1016/j.triboint.2020.106640
Amiri A, 2019, MULTIBODY SYST DYN, V47, P363, DOI 10.1007/s11044-019-09684-2
Askari E, 2015, NONLINEAR DYNAM, V82, P1039, DOI 10.1007/s11071-015-2216-9
Bai ZF, 2013, SCI CHINA PHYS MECH, V56, P1581, DOI 10.1007/s11433-013-5125-2
Ben Abdallah MA, 2016, MULTIBODY SYST DYN, V38, P173, DOI 10.1007/s11044-016-9526-7
Chen Y, 2023, MECCANICA, V58, P43, DOI 10.1007/s11012-022-01629-y
Erkaya S, 2018, STROJ VESTN-J MECH E, V64, P82, DOI 10.5545/sv-jme.2017.4534
Gao H, 2021, P I MECH ENG C-J MEC, V235, P7569, DOI 10.1177/09544062211025566
Gao SZ, 2023, TRIBOL INT, V182, DOI 10.1016/j.triboint.2023.108330
Geng XY, 2016, MECH MACH THEORY, V104, P202, DOI 10.1016/j.mechmachtheory.2016.05.013
Guo J, 2020, MECH MACH THEORY, V149, DOI 10.1016/j.mechmachtheory.2020.103824
Li HQ, 2018, MULTIBODY SYST DYN, V44, P277, DOI 10.1007/s11044-018-9625-8
Li P, 2016, J COMPUT NONLIN DYN, V11, DOI 10.1115/1.4030539
Li YY, 2019, MECH SYST SIGNAL PR, V117, P188, DOI 10.1016/j.ymssp.2018.07.037
Liu N, 2018, WIRELESS PERS COMMUN, V102, P1683, DOI 10.1007/s11277-017-5227-7
Ordiz M, 2021, MECH MACH THEORY, V160, DOI 10.1016/j.mechmachtheory.2021.104293
Salahshoor E, 2018, MECH MACH THEORY, V126, P429, DOI 10.1016/j.mechmachtheory.2018.04.027
Singh A, 2021, MECCANICA, V56, P73, DOI 10.1007/s11012-020-01259-2
Sun DY, 2016, EUR J MECH A-SOLID, V58, P256, DOI 10.1016/j.euromechsol.2016.02.007
Tan X, 2020, J COMPUT NONLIN DYN, V15, DOI 10.1115/1.4045240
Tang LL, 2018, NONLINEAR DYNAM, V94, P2423, DOI 10.1007/s11071-018-4500-y
Wang GX, 2019, MECH MACH THEORY, V137, P83, DOI 10.1016/j.mechmachtheory.2019.03.017
Wang GX, 2015, J TRIBOL-T ASME, V137, DOI 10.1115/1.4029277
Yu XD, 2022, J APPL FLUID MECH, V15, P505, DOI 10.47176/jafm.15.02.33039
Zheng EL, 2019, MECH MACH THEORY, V131, P234, DOI 10.1016/j.mechmachtheory.2018.09.023
Zheng XD, 2018, APPL MATH MECH-ENGL, V39, P1239, DOI 10.1007/s10483-018-2371-9
Zhuang XC, 2019, ENG FAIL ANAL, V96, P543, DOI 10.1016/j.engfailanal.2018.10.017
NR 28
TC 0
Z9 0
U1 27
U2 29
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0924-090X
EI 1573-269X
J9 NONLINEAR DYNAM
JI Nonlinear Dyn.
PD MAR
PY 2024
VL 112
IS 6
BP 4929
EP 4950
DI 10.1007/s11071-023-09247-3
EA JAN 2024
PG 22
WC Engineering, Mechanical; Mechanics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Mechanics
GA ZO5V5
UT WOS:001147898600007
DA 2024-09-05
ER
PT J
AU Gurcan, F
Ayaz, A
Dalveren, GGM
Derawi, M
AF Gurcan, Fatih
Ayaz, Ahmet
Dalveren, Gonca Gokce Menekse
Derawi, Mohammad
TI Business Intelligence Strategies, Best Practices, and Latest Trends:
Analysis of Scientometric Data from 2003 to 2023 Using Machine Learning
SO SUSTAINABILITY
LA English
DT Article
DE business intelligence; topic modeling; text mining; trend analysis;
machine learning
ID SEMANTIC CONTENT-ANALYSIS; BIG DATA ANALYTICS; EXPLORATORY ANALYSIS;
SYSTEMS; MANAGEMENT; INTERESTS; EVOLUTION; INTENTION; IMPACT
AB The widespread use of business intelligence products, services, and applications piques the interest of researchers in this field. The interest of researchers in business intelligence increases the number of studies significantly. Identifying domain-specific research patterns and trends is thus a significant research problem. This study employs a topic modeling approach to analyze domain-specific articles in order to identify research patterns and trends in the business intelligence field over the last 20 years. As a result, 36 topics were discovered that reflect the field's research landscape and trends. Topics such as "Organizational Capability", "AI Applications", "Data Mining", "Big Data Analytics", and "Visualization" have recently gained popularity. A systematic taxonomic map was also created, revealing the research background and BI perspectives based on the topics. This study may be useful to researchers and practitioners interested in learning about the most recent developments in the field. Topics generated by topic modeling can also be used to identify gaps in current research or potential future research directions.
C1 [Gurcan, Fatih] Karadeniz Tech Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, TR-61080 Trabzon, Turkiye.
[Ayaz, Ahmet] Karadeniz Tech Univ, Digital Transformat Off, TR-61080 Trabzon, Turkiye.
[Dalveren, Gonca Gokce Menekse] Atilim Univ, Fac Engn, Dept Software Engn, TR-06830 Ankara, Turkiye.
[Derawi, Mohammad] Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept Elect Syst, N-7034 Gjovik, Norway.
C3 Karadeniz Technical University; Karadeniz Technical University; Atilim
University; Norwegian University of Science & Technology (NTNU)
RP Derawi, M (corresponding author), Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept Elect Syst, N-7034 Gjovik, Norway.
EM mohammad.derawi@ntnu.no
RI Ayaz, Ahmet/JBJ-2146-2023; Menekse Dalveren, Gonca Gokce/HHS-4591-2022;
GURCAN, Fatih/AAJ-7503-2021
OI Menekse Dalveren, Gonca Gokce/0000-0002-8649-1909; GURCAN,
Fatih/0000-0001-9915-6686; Ayaz, Ahmet/0000-0003-1405-0546
CR Ain N, 2019, DECIS SUPPORT SYST, V125, DOI 10.1016/j.dss.2019.113113
Al-Ramahi NM, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141912744
[Anonymous], 2017, INT J BIBLIOMETR BUS, DOI DOI 10.1504/IJBBM.2017.082422
[Anonymous], 2004, P DOLAP ACM INT WORK
[Anonymous], 2008, Business Intelligence. Em: Handbook on Decision Support Systems 2, DOI [DOI 10.1007/978-3-540-48716-6_9, 10.1007/978-3-540-48716-6_9]
Bach MP, 2016, PROCEDIA COMPUT SCI, V100, P995, DOI 10.1016/j.procs.2016.09.270
Bharadwaj AS, 2000, MIS QUART, V24, P169, DOI 10.2307/3250983
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Brum L. M. da L., 2019, Journal of Agricultural Science (Toronto), V11, P353
BYRD TA, 1991, INT J PROD RES, V29, P2471, DOI 10.1080/00207549108948097
Campbell JC., 2003, The Art and Science of Analyzing Software Data, V3, P139, DOI DOI 10.1016/B978-0-12-411519-4.00006-9
Chang YW, 2014, COGN TECHNOL WORK, V16, P247, DOI 10.1007/s10111-013-0261-z
Chen HC, 2012, MIS QUART, V36, P1165
Chen YS, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102232
Cheng C, 2020, J BUS RES, V110, P95, DOI 10.1016/j.jbusres.2020.01.003
Niño HAC, 2020, INT J INFORM MANAGE, V50, P405, DOI 10.1016/j.ijinfomgt.2018.11.012
De Mauro A, 2018, INFORM PROCESS MANAG, V54, P807, DOI 10.1016/j.ipm.2017.05.004
Debortoli S, 2014, BUS INFORM SYST ENG+, V6, P289, DOI 10.1007/s12599-014-0344-2
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dorti A., 2021, ONLINE J SCI TECHNOL, V11, P82
Doucet MS., 2003, Encyclopedia of Information Systems, P601, DOI [10.1016/B0-12-227240-4/00143-X, DOI 10.1016/B0-12-227240-4/00143-X]
Fan SK, 2015, BIG DATA RES, V2, P28, DOI 10.1016/j.bdr.2015.02.006
Gallinucci E, 2015, INFORM SYST, V53, P87, DOI 10.1016/j.is.2015.04.005
gartner.com, GARTNER ANALYTICS BU
George J. F., 1991, Journal of Management Information Systems, V8, P109
Golden B., 2013, AMAZON WEB SERVICES
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Gurcan F., 2020, Journal of Computer and Education Research, DOI [10.18009/jcer.769349, DOI 10.18009/769349]
Gurcan F., 2019, P 1 INT INFORMATICS
Gurcan F, 2023, PEERJ COMPUT SCI, V9, DOI 10.7717/peerj-cs.1361
Gurcan F, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097496
Gurcan F, 2023, EDUC INF TECHNOL, V28, P15067, DOI 10.1007/s10639-023-11803-8
Gurcan F, 2022, IEEE ACCESS, V10, P123349, DOI 10.1109/ACCESS.2022.3224034
Gurcan F, 2022, IEEE ACCESS, V10, P106093, DOI 10.1109/ACCESS.2022.3211949
Gurcan F, 2022, IEEE ACCESS, V10, P74638, DOI 10.1109/ACCESS.2022.3190632
Gurcan F, 2022, IEEE ACCESS, V10, P31480, DOI 10.1109/ACCESS.2022.3160795
Gürcan F, 2018, 2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP)
Hare J., 2019, MARKET SHARE ANALYTI
Hedberg J. G., 2002, Educational Media International, V39, P111, DOI 10.1080/09523980210153471
Herschel R. T., 2005, Journal of Knowledge Management, V9, P45, DOI 10.1108/13673270510610323
Hou CK, 2016, INFORM DEV, V32, P1359, DOI 10.1177/0266666915599588
Kapetaneas N., 2022, P LECT NOTES BUSINES
Kherwa P, 2020, EAI ENDORSED TRANS S, V7, DOI 10.4108/eai.13-7-2018.159623
Konrad M, TEXT MINING TOPIC MO
Lee MC, 2007, INT J INNOV LEARN, V4, P145, DOI 10.1504/IJIL.2007.011690
Lee M, 2019, INT J CONTEMP HOSP M, V31, P4313, DOI 10.1108/IJCHM-03-2018-0263
Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018
Liu JY, 2021, BIG DATA RES, V25, DOI 10.1016/j.bdr.2021.100236
López-Robles JR, 2018, FRONT ARTIF INTEL AP, V303, P395, DOI 10.3233/978-1-61499-900-3-395
LUHN HP, 1958, IBM J RES DEV, V2, P314, DOI 10.1147/rd.24.0314
Marine-Roig E, 2015, J DESTIN MARK MANAGE, V4, P162, DOI 10.1016/j.jdmm.2015.06.004
McAfee A, 2012, HARVARD BUS REV, V90, P60
Meramveliotakis G, 2021, ADM SCI, V11, DOI 10.3390/admsci11030090
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Mohan KK, 2010, INT J SYST ASSUR ENG, V1, P316, DOI 10.1007/s13198-011-0029-x
Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024
Muntean M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020638
Nedelcu B., 2013, DATABASE SYSTEMS J, V4, P12, DOI DOI 10.1007/978-3-319-77679-8_3
Negnevitsky Michael, 2005, Artificial intelligence: a guide to intelligent systems
Negro A.R., 2020, J APPL BUS EC, V22, DOI [10.33423/jabe.v22i2.2807, DOI 10.33423/JABE.V22I2.2807]
Ozyurt O, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12199787
Ozyurt O, 2022, EDUC INF TECHNOL, V27, P11025, DOI 10.1007/s10639-022-11071-y
Power D.J., 2007, A Brief History of Decision Support Systems
Purnomo A, 2021, 2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION, NETWORKS AND SATELLITE (COMNETSAT 2021), P32, DOI 10.1109/COMNETSAT53002.2021.9530790
Raghupathi We., 2013, J Health Med Informat, V4, P21577420, DOI [DOI 10.4172/2157-7420.1000132, 10.4172/2157-7420.1000132]
Rajaraman V, 2016, RESONANCE, V21, P695, DOI 10.1007/s12045-016-0376-7
Rehani B., 2011, 2011 Annual IEEE India Conference, Hyderabad, P1, DOI DOI 10.1109/INDCON.2011.6139618
Rossmann B, 2018, TECHNOL FORECAST SOC, V130, P135, DOI 10.1016/j.techfore.2017.10.005
Seeley C.P., 2006, KNOWLEDGE MANAGEMENT, V8, P10
Shah M, 2014, PROCD SOC BEHV, V116, P2799, DOI 10.1016/j.sbspro.2014.01.659
Sharma M., 2019, ICT Unbounded, Social Impact of Bright ICT Adoption: Proceedings from IFIP WG 8.6 International Conference on Transfer and Diffusion of IT, P212
Shollo A, 2016, INFORM SYST J, V26, P339, DOI 10.1111/isj.12071
Sousa MJ, 2019, J MED SYST, V43, DOI 10.1007/s10916-019-1419-x
Romero CAT, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131810026
Trieu VH, 2017, DECIS SUPPORT SYST, V93, P111, DOI 10.1016/j.dss.2016.09.019
Václav C, 2021, TRANSP RES PROC, V53, P212, DOI 10.1016/j.trpro.2021.02.028
Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582
Venter P, 2009, SOUTH AFR BUS REV, V13, P88
Wyskwarski M., 2019, SCI PAP SILESIAN U T, V2019, P263, DOI [10.29119/1641-3466.2019.137.17, DOI 10.29119/1641-3466.2019.137.17]
Yasuda K., 2014, P ASIA PACIFIC IND E, P62
Yeoh W, 2016, J ASSOC INF SCI TECH, V67, P134, DOI 10.1002/asi.23366
Yurtay Y., 2014, J MANAG EC RES, V12, P228, DOI [10.11611/JMER353, DOI 10.11611/JMER353]
Zohuri B., 2020, J. Mater. Sci. Manuf. Res, V3, P231, DOI [10.32474/MAMS.2020.02.000137, DOI 10.32474/MAMS.2020.02.000137]
Zou ZF, 2019, J PHYS CONF SER, V1176, DOI 10.1088/1742-6596/1176/4/042089
NR 84
TC 3
Z9 3
U1 11
U2 27
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD JUL
PY 2023
VL 15
IS 13
AR 9854
DI 10.3390/su15139854
PG 23
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA M1VP2
UT WOS:001028127500001
OA gold
DA 2024-09-05
ER
PT J
AU Enduri, MK
Sankar, VU
Hajarathaiah, K
AF Enduri, Murali Krishna
Sankar, V. Udaya
Hajarathaiah, Koduru
TI Empirical Study on Citation Count Prediction of Research Articles
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE PACS codes; Citation; APS journals; Machine learning
ID IMPACT; FEATURES; TITLE
AB Citation is a measure that quantifies the impact of the researcher, research article and journal's quality. Investigating the citation of articles and/or researchers is one of the important tasks in the research community. So, understanding and predicting citation patterns of research articles has become popular in scientific research fields. In this work, we give a machine learning approach to predict the citations of research articles using the keywords. We study the citation impact based on keywords motioned in the articles using the data set of publications which are published in the various physical review journals from 1985-2012. In this dataset, for each publication is allocated some PACS codes (keywords) by their authors which represent a sub-field of Physics. In this work, we are investigating the impact of PACS codes of article on article's citation. We are performing our analysis on the first (sub-field of physics), second (sub area of sub-field of physics) and third level of PACS codes. We observed that compared to the first level, every pair of citation patterns of the second level is highly correlated. We also obtained a universal approximation curve for the third level that matches with the average value of the first level. This curve looks like a shifted and scaled version of the Gaussian function and is right skewed. We can also predict the citations based on the keywords by using this universal curve.
C1 [Enduri, Murali Krishna; Hajarathaiah, Koduru] SRM Univ, Dept Comp Sci & Engn, Amaravati, Andhra Pradesh, India.
[Sankar, V. Udaya] SRM Univ, Dept Elect & Commun Engn, Amaravati, Andhra Pradesh, India.
[Enduri, Murali Krishna] SRM Univ, Dept Comp Sci & Engn, Amaravati 522502, Andhra Pradesh, India.
C3 SRM University-AP; SRM University-AP; SRM University-AP
RP Enduri, MK (corresponding author), SRM Univ, Dept Comp Sci & Engn, Amaravati 522502, Andhra Pradesh, India.
EM muralikrishna.e@srmap.edu.in
RI Enduri, Murali Krishna/AEK-0968-2022
CR Alimoradi F, 2016, ANN LIBR INF STUD, V63, P74, DOI 10.56042/alis.v63i1.11571
Anderson DavidL., 2013, New Zealand Economic Papers, V47, P140, DOI DOI 10.1080/00779954.2013.772879
Baba T, 2019, J WEB ENG, V18, P207, DOI 10.13052/jwe1540-9589.18136
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004
Brizan DG, 2016, SCIENTOMETRICS, V108, P183, DOI 10.1007/s11192-016-1950-1
Contreras EJ, 2009, P WORKSHOP EUROPEAN
Crowe SF, 2020, AUST PSYCHOL, V55, P468, DOI 10.1111/ap.12453
Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806
Enduri MK, 2015, 2015 11TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), P505, DOI 10.1109/SITIS.2015.60
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Fumani MRFQ, 2015, ANN LIBR INF STUD, V62, P126
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Gazni A, 2012, J AM SOC INF SCI TEC, V63, P323, DOI 10.1002/asi.21688
Guns R, 2009, J INFORMETR, V3, P64, DOI 10.1016/j.joi.2008.11.004
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Jamali HR, 2020, J INF SCI, V46, P131, DOI 10.1177/0165551519837191
Janavi E, 2020, SCIENTOMETRICS, V125, P2229, DOI 10.1007/s11192-020-03685-1
Khan A, 2016, OBES REV, V17, P377, DOI 10.1111/obr.12372
Madani F, 2018, INT J GEN SYST, V47, P821, DOI 10.1080/03081079.2018.1524892
Martin T, 2013, Arxiv, DOI arXiv:1304.0473
Mryglod O, 2013, SCIENTOMETRICS, V97, P767, DOI 10.1007/s11192-013-1058-9
Radicchi F, 2011, PHYS REV E, V83, DOI 10.1103/PhysRevE.83.046116
Redner S, 2005, Arxiv, DOI arXiv:physics/0506056
Reed WJ, 2004, COMMUN STAT-THEOR M, V33, P1733, DOI 10.1081/STA-120037438
Robson BJ, 2016, ENVIRON MODELL SOFTW, V75, P94, DOI 10.1016/j.envsoft.2015.10.007
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Uddin S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057546
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
NR 30
TC 3
Z9 3
U1 1
U2 10
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD MAY-AUG
PY 2022
VL 11
IS 2
BP 155
EP 163
DI 10.5530/jscires.11.2.17
PG 9
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA 5B1PC
UT WOS:000863346300002
DA 2024-09-05
ER
PT J
AU Yin, YM
AF Yin, Yamei
TI Research on ideological and political evaluation model of university
students based on data mining artificial intelligence technology
SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS
LA English
DT Article
DE Data mining; artificial intelligence; ideology and politics; teaching
evaluation
AB The teaching evaluation index system based on artificial intelligence not only evaluates and reflects the teaching situation of ideological and political theory courses in universities as a whole, but also provides specific feasible goals and direction guidance for the construction of ideological and political theory courses in universities. Based on data mining technology, this paper combines machine learning algorithms and dimensional analysis to study the ideological and political evaluation model of colleges and universities and builds an artificial intelligence teaching evaluation model based on actual needs. Moreover, this study transforms the model selection problem into a hybrid optimization algorithm optimization problem, and the algorithm attempts to find the optimal model from the model set. In addition, this study designs a control experiment to perform model performance analysis. The results of the study show that the performance of the model meets the expected goals and can be applied to practice.
C1 [Yin, Yamei] Hebei Inst Int Business & Econ, Qinhuangdao 066311, Hebei, Peoples R China.
RP Yin, YM (corresponding author), Hebei Inst Int Business & Econ, Qinhuangdao 066311, Hebei, Peoples R China.
EM yameiyin@tutanota.com
CR Al-Maamari F., 2015, Higher Education Studies, V5, P9, DOI [DOI 10.5539/HES.V9N6P9, 10.5539/hes.v5n6p9, DOI 10.5539/HES.V5N6P9]
Tewell E, 2017, COMMUN INF LIT, V11, P95
Brkovic M., 2016, FACTA U, V14, P1, DOI DOI 10.2298/FUACE1601001B
Eckler U, 2017, INT J HLTH PROF, V4, P109
Garofalo F, 2017, WORLD J SURG, V41, P100, DOI 10.1007/s00268-016-3710-z
Heitkamp SJ, 2018, BMC MED EDUC, V18, DOI 10.1186/s12909-018-1220-4
Jiang Y., 2016, J COMPUT THEOR NANOS, V13, P9848, DOI DOI 10.1166/JCTN.2016.5939
Khalaf O.I., 2019, PERIODICALS ENG NATU, V7, P1096, DOI DOI 10.21533/PEN.V7I3.645
Lalvarmawi F., 2015, NATL J PHYSL PHARM P, V5, P1
Son L, 2020, IEEE INTELL SYST, V35, P6, DOI 10.1109/MIS.2019.2938441
Li AF, 2015, J COMPUT, V10, P166, DOI 10.17706/jcp.10.3.166-175
Liu, 2016, OPEN J SOCIAL SCI, V4, P82, DOI DOI 10.4236/JSS.2016.47013
Müller T, 2017, BMC MED EDUC, V17, DOI 10.1186/s12909-017-0970-8
Oliveros M.A., 2015, CREATIVE ED, V6, P1768
Porozovs L., 2015, J. Pedagogy Psychol.Signum Temporis, V7, P60
Prathik A., 2019, INT J ENG ADV TECHNO, V9, P2330, DOI DOI 10.35940/IJEAT.AL377.109119
Reisenwitz T.H., 2015, J MARKETING ED, V38, P139
Royal KD, 2016, J VET MED EDUC, V43, P1, DOI 10.3138/jvme.0315-030R
Sánchez Cerón Manuel, 2015, RMIE, V20, P1233
Shuang Liu, 2015, International Journal of Modern Education and Computer Science, V7, P12, DOI 10.5815/ijmecs.2015.11.02
Tran ND, 2015, ISS EDUC RES, V25, P50
Zhao H., 2015, OPEN CYBERNETICS SYS, V9, P2017, DOI DOI 10.2174/1874110X01509012017
Zhou T, 2016, HUM MOVEMENT SCI, V46, P1, DOI 10.1016/j.humov.2015.12.002
NR 23
TC 5
Z9 5
U1 6
U2 45
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 1064-1246
EI 1875-8967
J9 J INTELL FUZZY SYST
JI J. Intell. Fuzzy Syst.
PY 2021
VL 40
IS 2
BP 3689
EP 3698
DI 10.3233/JIFS-189403
PG 10
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA QH1ZP
UT WOS:000618076700173
DA 2024-09-05
ER
PT J
AU Nakatoh, T
Hirokawa, S
Minami, T
Nanri, T
Funamori, M
AF Nakatoh, Tetsuya
Hirokawa, Sachio
Minami, Toshiro
Nanri, Takeshi
Funamori, Miho
TI Attribute-based quality classification of academic papers
SO ARTIFICIAL LIFE AND ROBOTICS
LA English
DT Article
DE Bibliometrics; Academic paper; Feature selection; Machine learning; SVM
AB Investigating the relevant literature is very important for research activities. However, it is difficult to select the most appropriate and important academic papers from the enormous number of papers published annually. Researchers search paper databases by combining keywords, and then select papers to read using some evaluation measure-often, citation count. However, the citation count of recently published papers tends to be very small because citation count measures accumulated importance. This paper focuses on the possibility of classifying high-quality papers superficially using attributes such as publication year, publisher, and words in the abstract. To examine this idea, we construct classifiers by applying machine-learning algorithms and evaluate these classifiers using cross-validation. The results show that our approach effectively finds high-quality papers.
C1 [Nakatoh, Tetsuya; Hirokawa, Sachio; Nanri, Takeshi] Kyushu Univ, Res Inst Informat Technol, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan.
[Minami, Toshiro] Kyushu Inst Informat Sci, Fukuoka, Fukuoka, Japan.
[Funamori, Miho] Natl Inst Informat, Tokyo, Japan.
C3 Kyushu University; Research Organization of Information & Systems
(ROIS); National Institute of Informatics (NII) - Japan
RP Nakatoh, T (corresponding author), Kyushu Univ, Res Inst Informat Technol, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan.
EM nakatoh@cc.kyushu-u.ac.jp; hirokawa@cc.kyushu-u.ac.jp;
minamitoshiro@gmail.com; nanri.takeshi.995@m.kyushu-u.ac.jp;
funamori@nii.ac.jp
FU JSPS KAKENHI Grant [JP15K00426]
FX This work was supported by JSPS KAKENHI Grant Number JP15K00426. The
computation was mainly carried out using the computer facilities at
Research Institute for Information Technology, Kyushu University.
CR Ashok V.G., 2013, P 2013 C EMPIRICAL M, P1753
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Martin BR, 1996, SCIENTOMETRICS, V36, P343, DOI 10.1007/BF02129599
Nakatoh T, 2015, 2015 IIAI 4TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI), P166, DOI 10.1109/IIAI-AAI.2015.282
Otani S, 2014, 2014 IIAI 3RD INTERNATIONAL CONFERENCE ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2014), P216, DOI 10.1109/IIAI-AAI.2014.53
Sakai T., 2012, P IIWAS2012, P360, DOI [10.1145/2428736.2428803, DOI 10.1145/2428736.2428803]
Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0
NR 9
TC 0
Z9 0
U1 0
U2 7
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1433-5298
EI 1614-7456
J9 ARTIF LIFE ROBOT
JI Artif. Life Robot.
PD JUN
PY 2018
VL 23
IS 2
BP 235
EP 240
DI 10.1007/s10015-017-0412-z
PG 6
WC Robotics
WE Emerging Sources Citation Index (ESCI)
SC Robotics
GA GT0UR
UT WOS:000444164800010
DA 2024-09-05
ER
PT J
AU Zhang, BJ
AF Zhang, Bangjin
TI Research on performance evaluation of intelligent manufacturing
enterprises supported by machine learning and big data technology
SO INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
LA English
DT Article
DE Machine learning; Big data technology; Intelligent manufacturing;
Performance evaluation
AB Intelligent manufacturing, as a pillar of the manufacturing industry, provides crucial support for achieving China's strategic goal of becoming a manufacturing powerhouse. The operation and management process of intelligent manufacturing enterprises requires a large amount of capital investment, and the efficiency of capital utilization directly affects the economic benefits of intelligent manufacturing enterprises. Relevant enterprises continue to improve the performance evaluation mechanism and enhance their performance evaluation ability, so as to effectively promote the realization of corporate strategic objectives and continue to become a solid support for the steady operation of China's economy. On this basis, the performance of intelligent manufacturing enterprises was deeply explored, and a set of performance evaluation indicator framework for intelligent manufacturing enterprises was established by using machine learning and big data technology. Through empirical analysis, machine learning methods are introduced into performance evaluation to establish an assessment mechanism for intelligent manufacturing enterprises that is suitable for China's national conditions. For ridge regression, lasso regression, and elastic network regression in machine algorithm, we have conducted in-depth research and built a set of performance evaluation system using the model of lightGBM. Construct a framework of performance evaluation system for intelligent manufacturing enterprises based on machine learning and big data technology support, and use TOPSIS method to conduct empirical analysis, thus further highlighting the importance of evaluation and feedback mechanism for intelligent manufacturing enterprises.
C1 [Zhang, Bangjin] Guangzhou Coll Commerce, Sch Accounting, Guangzhou 511363, Peoples R China.
C3 Guangzhou College of Commerce
RP Zhang, BJ (corresponding author), Guangzhou Coll Commerce, Sch Accounting, Guangzhou 511363, Peoples R China.
EM zhangbangjin001@163.com
CR Alharthi A, 2017, BUS HORIZONS, V60, P285, DOI 10.1016/j.bushor.2017.01.002
Bakare BI., 2019, INT J ELECT COMMUNIC, V10, P60
Balaji TK, 2021, COMPUT SCI REV, V40, DOI 10.1016/j.cosrev.2021.100395
Chen M., 2017, International Journal of Performability Engineering, V13, DOI [10.23940/ijpe.17.08.p7.12461256, DOI 10.23940/IJPE.17.08.P7.12461256]
Dey A., 2016, Int. J. Sci. Res., V7, P1174
Fan CX, 2020, IEEE ACCESS, V8, P126927, DOI 10.1109/ACCESS.2020.3006078
Günther WA, 2017, J STRATEGIC INF SYST, V26, P191, DOI 10.1016/j.jsis.2017.07.003
Li BH, 2017, FRONT INFORM TECH EL, V18, P86, DOI 10.1631/FITEE.1601885
Osisanwo FY., 2017, International Journal of Computer Trends and Technology, V48, P128, DOI [10.14445/22312803/IJCTT-V48P126, DOI 10.14445/22312803/IJCTT-V48P126]
Pham CTA, 2022, INNOV-ORGAN MANAG, V24, P290, DOI 10.1080/14479338.2021.1894942
Shen F, 2021, APPL SOFT COMPUT, V98, DOI 10.1016/j.asoc.2020.106852
Singh B, 2021, J AIR TRANSP MANAG, V94, DOI 10.1016/j.jairtraman.2021.102080
Wang BC, 2021, ENGINEERING-PRC, V7, P738, DOI 10.1016/j.eng.2020.07.017
Wang CC, 2019, ENERGIES, V12, DOI 10.3390/en12244620
Wu WD, 2018, J COMPUT CIVIL ENG, V32, DOI 10.1061/(ASCE)CP.1943-5487.0000722
Zhang L, 2019, COMPUT IND, V112, DOI 10.1016/j.compind.2019.08.004
NR 16
TC 0
Z9 0
U1 15
U2 21
PU SPRINGER LONDON LTD
PI LONDON
PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND
SN 0268-3768
EI 1433-3015
J9 INT J ADV MANUF TECH
JI Int. J. Adv. Manuf. Technol.
PD JAN
PY 2024
VL 130
IS 5-6
BP 2811
EP 2832
DI 10.1007/s00170-023-12864-2
EA DEC 2023
PG 22
WC Automation & Control Systems; Engineering, Manufacturing
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Automation & Control Systems; Engineering
GA HH7Q7
UT WOS:001127127300002
DA 2024-09-05
ER
PT J
AU Zhang, XY
Shi, WB
AF Zhang, Xiaoyue
Shi, Wanbing
TI Research about the university teaching performance evaluation under the
data envelopment method
SO COGNITIVE SYSTEMS RESEARCH
LA English
DT Article
DE Principal component analysis; Data envelopment analysis; Performance
evaluation
AB How to take active and effective measures to evaluate the university scientifically and rationally has been an eternal topic that the educational circles are constantly exploring. Based on the principle of index construction, the current educational performance evaluation index system is improved and a more reasonable evaluation index system is formed. On this basis, taking the sample data in 2017 as an example, the principal component analysis method is used to reduce the dimension of input and output indicators and eliminate the correlation between indicators, and three principal components of input and three principal components of output are obtained. Secondly, data envelopment analysis model is established, and the data processed are analyzed with the help of MATLAB and DEAP2.1 operation software. The efficiency of these 24 colleges and universities is compared to understand the efficiency and differences of each college. Moreover, projection analysis of non-DEA effective DMU is completed and the direction of improvement and the specific adjustment value are pointed out. (C) 2018 Elsevier B.V. All rights reserved.
C1 [Zhang, Xiaoyue; Shi, Wanbing] Northeastern Univ, Sch Humanities & Law, Shenyang, Liaoning, Peoples R China.
C3 Northeastern University - China
RP Zhang, XY (corresponding author), Northeastern Univ, Sch Humanities & Law, Shenyang, Liaoning, Peoples R China.
EM sherylyue@live.com
FU National Fund Pedagogy Project of Social Sciences "The Evaluation System
Research of Universities' Scientific Research Performance of Humanistic
and Social Science" [BFA150043]
FX The project was supported by the National Fund Pedagogy Project of
Social Sciences "The Evaluation System Research of Universities'
Scientific Research Performance of Humanistic and Social Science"
(Project No.: BFA150043).
CR Hosseinzadeh-Bandbafha H, 2017, ENERGY, V120, P652, DOI 10.1016/j.energy.2016.11.117
Hsiao B, 2017, ANN OPER RES, V259, P119, DOI 10.1007/s10479-016-2190-8
Liu Q., 2018, Eurasia J. Math. Sci. Technol. Educ, V14, P2255
Liu WL, 2017, ANN OPER RES, V259, P241, DOI 10.1007/s10479-017-2524-1
Otay I, 2017, KNOWL-BASED SYST, V133, P90, DOI 10.1016/j.knosys.2017.06.028
Ouanteur C, 2017, WIREL NETW, V23, P1343, DOI 10.1007/s11276-016-1226-y
Pinamonti M, 2017, MON NOT R ASTRON SOC, V468, P3775, DOI 10.1093/mnras/stx664
Rakha MS, 2017, IEEE T SOFTWARE ENG, VPP, P1
Ruan L., 2018, EURASIA J MATH SCI T, V14, P3245, DOI [10.29333/ejmste/90627, DOI 10.29333/EJMSTE/90627]
Shen CW, 2019, COMPUT HUM BEHAV, V101, P474, DOI 10.1016/j.chb.2018.09.031
Thanassoulis E, 2017, J OPER RES SOC, V68, P431, DOI 10.1057/s41274-016-0165-4
Yang F., 2018, ANN OPER RES, P1
Yu K., 2018, Eurasia Journal Mathematics, Science Technology Education, V14, P2987, DOI DOI 10.29333/EJMSTE/90628
Zu TP, 2017, MICROELECTRON RELIAB, V75, P283, DOI 10.1016/j.microrel.2017.03.033
NR 14
TC 32
Z9 32
U1 5
U2 54
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2214-4366
EI 1389-0417
J9 COGN SYST RES
JI Cogn. Syst. Res.
PD AUG
PY 2019
VL 56
BP 108
EP 115
DI 10.1016/j.cogsys.2018.11.004
PG 8
WC Computer Science, Artificial Intelligence; Neurosciences; Psychology,
Experimental
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Neurosciences & Neurology; Psychology
GA HZ6PP
UT WOS:000468975100015
DA 2024-09-05
ER
PT J
AU Griggs, DM
Crain-Dorough, M
AF Griggs, Dana M.
Crain-Dorough, Mindy
TI Appreciative inquiry's potential in program evaluation and research
SO QUALITATIVE RESEARCH JOURNAL
LA English
DT Article
DE Appreciative inquiry; Qualitative research; AI as a research tool; AI
and program evaluation
ID TOOL
AB Purpose The purposes of this paper are to provide a description of AI and to document and compare two applications of AI, one in program evaluation and another in an applied research study. Design/methodology/approach Focus groups, interviews and observations were used to gather rich qualitative data which was used to detail Appreciative Inquiry's value in evaluation and research. Findings AI aided the researcher in connecting with the participants and valuing what they shared. In both studies, the use of AI amassed information that answered the research questions, provided a rich description of the context and findings, and led to data saturation. The authors describe and compare experiences with two applications of AI: program evaluation and a research study. This paper contributes further understanding of the use of AI in public education institutions. The researchers also explore the efficacy of using AI in qualitative research and recommend its use for multiple purposes. Research limitations/implications Limitations occurred in the AI-Design Stage by using a positive viewpoint and because both program and partnership studied were new with limited data to use for designing a better future. So, the authors recommend a revisit of both studies through the same 4D Model. Practical implications This manuscript shows that AI is useful for evaluation and research. It amplifies the participants' voices through favorite stories and successes. AI has many undiscovered uses. Social implications Through the use of AI the authors can: improve theoretical perspectives; conduct research that yields more authentic data; enable participants to deeply reflect on their practice and feel empowered; and ultimately impact and improve the world. Originality/value AI is presented as an evaluation tool for a high-school program and as a research approach identifying strengths and perceptions of an educational partnership. In both studies, AI crumbled the walls that are often erected by interviewees when expecting to justify or defend decisions and actions. This paper contributes further understanding of the use of AI in public education institutions.
C1 [Griggs, Dana M.] Columbus State Univ, Coll Educ & Hlth Profess, Educ Leadership, Columbus, GA 31907 USA.
[Crain-Dorough, Mindy] Southeastern Louisiana Univ, Educ Leadership & Technol, Hammond, LA 70402 USA.
C3 University System of Georgia; Columbus State University; University of
Louisiana System; Southeastern Louisiana University
RP Griggs, DM (corresponding author), Columbus State Univ, Coll Educ & Hlth Profess, Educ Leadership, Columbus, GA 31907 USA.
EM dgriggs0011@gmail.com; Mindy.Dorough@southeastern.edu
CR Barge JK, 2003, ACAD MANAGE REV, V28, P124
Barrett F.J., 2005, APPRECIATIVE INQUIRY
Berger R, 2015, QUAL RES, V15, P219, DOI 10.1177/1468794112468475
Best J.W., 2005, Research in education, V10th
Bright DS, 2013, ADV APPREC INQ, V4, P135, DOI 10.1108/S1475-9152(2013)0000004005
Bushe G., 2012, AI Practitioner, V14, P8
Bushe G.R., 2012, The Routledge companion to organizational change, P87, DOI 10.4324/9780203810279
Calabrese R, 2013, QUAL REP, V18
Coghlin A.T., 2003, NEW DIRECTIONS EVALU, V10, P36
Cooperrider D.L., 2006, Organization development: A Jossey-Bass reader, P223
Cooperrider D.L., 2001, APPRECIATIVE INQUIRY, P9
Cooperrider D.L., 1998, Appreciative Inquiry
Cooperrider D.L., 1987, RES ORG CHANGE DEV, V1, P129
Cooperrider DL, 2013, ADV APPREC INQ, V4, P3, DOI 10.1108/S1475-9152(2013)0000004001
Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd
Creswell J. W., 1998, QUAL INQ
Crous F., 2019, AI Practitioner, V21, P11, DOI [10.12781/978-1-907549-38-0-3, DOI 10.12781/978-1-907549-38-0-3]
Davis C.R., 2010, Encyclopedia of research design, DOI [DOI 10.4135/9781412961288, 10.4135/9781412961288]
Elleven R., 2007, EDUCATION, V127, P451
Frey B.B., 2018, The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation, DOI DOI 10.4135/9781506326139.N
Golembiewski R.T., 2000, ORG DEV PRACTITIONER, V32, P53
Griggs D.M., 2015, THESIS AUBURN U
Hammond SueAnnis., 2013, The thin book of appreciative inquiry, V3rd
Hays D.G., 2012, Qualitative Inquiry in Clinical and Educational Settings
Hirschman AlbertO., 1995, DEV PROJECTS OBSERVE
Ludema J.D., 2000, HDB ACTION RES, P189
Marshak RJ, 2008, BRIT J MANAGE, V19, pS7, DOI 10.1111/j.1467-8551.2008.00567.x
MESSERSCHMIDT DA, 1988, WORLD DEV, V16, P733, DOI 10.1016/0305-750X(88)90179-9
Messerschmidt D, 2008, HUM ORGAN, V67, P454, DOI 10.17730/humo.67.4.xp341p168m141641
Michael S, 2005, DEV PRACT, V15, P222, DOI 10.1080/09614520500042094
Patton M. Q., 2015, Qualitative Research and Evaluation Methods, V4th ed.
Preskill H., 2006, REFRAMING EVALUATION
Ravitch S., 2021, QUALITATIVE RES BRID, V2nd
Reames, 2017, SE J ED ADM, V17, P71
Schiller M., 2001, APPRECIATIVE LEADERS
SHUAYB Maha., 2009, USING APPRECIATIVE I
Tendler J., 1997, Good government in the Tropics.
Tosey, 2007, ED MANAGEMENT ADM LE, V35, P1
Uphoff Norman., 1998, Reasons for Success: Learning from Instructive Experiences in Rural Development
Watkins J.M., 2019, AI Practitioner, P4
Watkins JM., 2001, Organization Development Journal, V19, P92
Webb L., 2005, AI PRACTITIONER INT, P1
Whitney Diana., 2003, POWER APPRECIATIVE I
NR 43
TC 1
Z9 6
U1 2
U2 9
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 1443-9883
EI 1448-0980
J9 QUAL RES J
JI Qual. Res. J.
PD OCT 12
PY 2021
VL 21
IS 4
BP 375
EP 393
DI 10.1108/QRJ-06-2020-0059
EA JAN 2021
PG 19
WC Social Sciences, Interdisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Social Sciences - Other Topics
GA WF4QN
UT WOS:000614469100001
DA 2024-09-05
ER
PT J
AU Hajkowicz, S
Sanderson, C
Karimi, S
Bratanova, A
Naughtin, C
AF Hajkowicz, Stefan
Sanderson, Conrad
Karimi, Sarvnaz
Bratanova, Alexandra
Naughtin, Claire
TI Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021
SO TECHNOLOGY IN SOCIETY
LA English
DT Article
DE Artificial intelligence; Machine learning; Bibliometric analysis;
Technology adoption; Technology diffusion
ID DEFINITION
AB Analysing historical patterns of artificial intelligence (AI) adoption can inform decisions about AI capability uplift, but research to date has provided a limited view of AI adoption across different fields of research. In this study we examine worldwide adoption of AI technology within 333 fields of research during 1960-2021. We do this by using bibliometric analysis with 137 million peer-reviewed publications captured in The Lens database. We define AI using a list of 214 phrases developed by expert working groups at the Organisation for Economic Cooperation and Development (OECD). We found that 3.1 million of the 137 million peer-reviewed research publications during the entire period were AI-related, with a surge in AI adoption across practically all research fields (physical science, natural science, life science, social science and the arts and humanities) in recent years. The diffusion of AI beyond computer science was early, rapid and widespread. In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to cover over half of all research fields by 1972, over 80% by 1986 and over 98% in current times. We note AI has experienced boom-bust cycles historically; the AI "springs" and "winters". We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.
C1 [Hajkowicz, Stefan; Sanderson, Conrad; Karimi, Sarvnaz; Bratanova, Alexandra; Naughtin, Claire] CSIRO, Eveleigh, Australia.
C3 Commonwealth Scientific & Industrial Research Organisation (CSIRO)
RP Hajkowicz, S (corresponding author), CSIRO, Eveleigh, Australia.
EM stefan.hajkowicz@csiro.au
RI Naughtin, Claire/LCD-8181-2024
OI Karimi, Sarvnaz/0000-0002-4927-3937
CR Acemoglu D, 2014, AM ECON REV, V104, P394, DOI 10.1257/aer.104.5.394
[Anonymous], 2008, IEEE Intelligent Systems, DOI DOI 10.1109/MIS.2008.20
Baruffaldi S., 2020, Identifying and measuring developments in artificial intelligence: Making the impossible possible
Baum ZJ, 2021, J CHEM INF MODEL, V61, P3197, DOI 10.1021/acs.jcim.1c00619
Bianchini S, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104604
Bloom N, 2020, AM ECON REV, V110, P1104, DOI 10.1257/aer.20180338
Boeing P, 2020, ECON LETT, V197, DOI 10.1016/j.econlet.2020.109646
Bratanova A, 2022, TECHNOL SOC, V71, DOI 10.1016/j.techsoc.2022.102104
Brown A., 2018, TECHOPEDIA, V23, P31
Crew B., 2020, NATURE NEWS LON 0713
Damioli G, 2021, EURASIAN BUS REV, V11, P1, DOI 10.1007/s40821-020-00172-8
De la Vega I, 2015, TECHNOL SOC, V42, P123, DOI 10.1016/j.techsoc.2015.03.007
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Else H., 2018, NATURE NEWS Q A 0411
Ezanno P, 2021, VET RES, V52, DOI 10.1186/s13567-021-00902-4
Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5
Gobble MM, 2019, RES TECHNOL MANAGE, V62, P55, DOI 10.1080/08956308.2019.1587336
Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228
Haak LL, 2012, LEARN PUBL, V25, P259, DOI 10.1087/20120404
Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925
Hajkowicz S., 2022, ARTIF INTELL
Hajkowicz S.A., 2019, ARTIF INTELL
Harrison S, 2009, J MACROECON, V31, P363, DOI 10.1016/j.jmacro.2009.05.003
Hu Q, 2016, J PUBL ADM RES THEOR, V26, P593, DOI 10.1093/jopart/muv032
Jefferson OA, 2021, TRANSGENIC RES, V30, P585, DOI 10.1007/s11248-021-00237-y
Jefferson OA, 2021, NAT BIOTECHNOL, V39, P401, DOI 10.1038/s41587-021-00849-z
John W.L., 1995, 1995 INT S, P33
Kitano H, 2021, NPJ SYST BIOL APPL, V7, DOI 10.1038/s41540-021-00189-3
Kumar I, 2021, J FOOD QUALITY, V2021, DOI 10.1155/2021/4535567
Lavallin A., 2021, MACHINE LEARNING GEO
LEHMANWILZIG SN, 1981, FUTURES, V13, P442, DOI 10.1016/0016-3287(81)90100-2
Lichtenthaler U, 2018, RES TECHNOL MANAGE, V61, P12, DOI 10.1080/08956308.2018.1495962
Liu N, 2021, SCIENTOMETRICS, V126, P3153, DOI 10.1007/s11192-021-03868-4
Malcolm E., 2021, FLEXIBLE SOLAR PANEL
Malde K, 2020, ICES J MAR SCI, V77, P1274, DOI 10.1093/icesjms/fsz057
McCarthy J., 2006, DARTM WORKSH AAS PLA
Miyagawa T., 2019, RIETI DISCUSSION PAP, V052
Mullainathan S, 2017, J ECON PERSPECT, V31, P87, DOI 10.1257/jep.31.2.87
Naughtin C., 2022, Our Future World: Global Megatrends Impacting the Way We Live Over Coming Decades
Nikolaev P, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/npjcompumats.2016.31
Nolan A., 2021, ARTIF INTELL
Norouzzadeh MS, 2018, P NATL ACAD SCI USA, V115, pE5716, DOI 10.1073/pnas.1719367115
OECD OECD, 2021, POL OBS DAT NAT AI P
Orduna-Malea E., 2017, FRONTIERS RES METRIC
Palos-Sánchez PR, 2022, APPL ARTIF INTELL, V36, DOI 10.1080/08839514.2022.2145631
Pandey V, 2022, TECHNOL SOC, V69, DOI 10.1016/j.techsoc.2022.101954
Pei Wang, 2019, Journal of Artificial General Intelligence, V10, P1, DOI 10.2478/jagi-2019-0002
Penfold R, 2020, J MED LIBR ASSOC, V108, P341
Pizzi S, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101738
Pontika Nancy, 2016, LIBER Quarterly, V25, P172, DOI 10.18352/lq.10138
Purkayastha S, 2021, J AM COLL RADIOL, V18, P517, DOI 10.1016/j.jacr.2020.11.008
Riahi Y, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114702
Roberts M, 2021, NAT MACH INTELL, V3, P199, DOI 10.1038/s42256-021-00307-0
Ruiz-Real JL, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111839
Scopus, 2021, WHAT AR SCOP SUBJ AR
Shehu H.A., 2021, PLOMS AI, P1
Shin YJ, 2019, IEEE ANN HIST COMPUT, V41, P71, DOI 10.1109/MAHC.2019.2922909
Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010
Shum V, 2019, RES TECHNOL MANAGE, V62, P34, DOI 10.1080/08956308.2019.1541728
SIMMONS AB, 1988, IEEE J OCEANIC ENG, V13, P14, DOI 10.1109/48.551
Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2
Strickland E., 2021, IEEE SPECTRUM
Tandon Divya, 2020, J Oral Biol Craniofac Res, V10, P391, DOI 10.1016/j.jobcr.2020.07.015
Van Roy V., 2021, AI watch-national strategies on artificial intelligence: A European perspective. No. JRC122684
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021
Wang Q, 2016, J INFORMETR, V10, P347, DOI 10.1016/j.joi.2016.02.003
White Jacob, 2020, Medical Reference Services Quarterly, V39, P382, DOI 10.1080/02763869.2020.1826228
Wynants L, 2020, BMJ-BRIT MED J, V369, DOI 10.1136/bmj.m1328
Yang CH, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104536
Yasnitsky LN, 2020, LECT NOTE NETW SYST, V78, P13, DOI 10.1007/978-3-030-22493-6_2
Ying MS, 2010, ARTIF INTELL, V174, P162, DOI 10.1016/j.artint.2009.11.009
Zhang LL, 2022, ENERGY REP, V8, P14072, DOI 10.1016/j.egyr.2022.10.347
Zhang WQ, 2020, NAT ELECTRON, V3, P371, DOI 10.1038/s41928-020-0435-7
Zhang Y, 2021, PROCEEDINGS OF 2021 48TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION (QNDE2021)
NR 75
TC 12
Z9 12
U1 18
U2 56
PU ELSEVIER SCI LTD
PI London
PA 125 London Wall, London, ENGLAND
SN 0160-791X
EI 1879-3274
J9 TECHNOL SOC
JI Technol. Soc.
PD AUG
PY 2023
VL 74
AR 102260
DI 10.1016/j.techsoc.2023.102260
EA JUN 2023
PG 8
WC Social Issues; Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Social Issues; Social Sciences - Other Topics
GA K6JX9
UT WOS:001017495300001
OA Green Published, Green Submitted, hybrid
DA 2024-09-05
ER
PT C
AU Tang, L
Li, XM
He, L
Zhang, SH
AF Tang Li
Li Xiaomei
He Li
Zhang Shuhua
BE Zhang, Y
TI A Research on the Evaluation of Scientific Researchers in Chinese
Universities from the Perspective of Sustainable Development
SO PROCEEDINGS OF THE 12TH EURO-ASIA CONFERENCE ON ENVIRONMENT AND CSR:
TOURISM, SOCIETY AND EDUCATION SESSION, PT II
LA English
DT Proceedings Paper
CT 12th Euro-Asian Conference on Corporate Social Responsibility and
Environmental Management - Tourism, Society and Education
CY AUG 29-30, 2016
CL Hanover, GERMANY
DE Support Vector Machine (SVM); Evaluation of Scientific Researchers;
Scientific Research Management; Machine Learning Theory
AB The evaluation of scientific researchers is an important part of scientific research management in Chinese colleges and universities from the perspective of sustainable development. Focusing on the evaluation of scientific researchers in universities, this paper designs an evaluation model, and constructs an evaluation index system by combining the basic personal information of scientific researchers with their achievements. Furthermore, a new evaluation method for scientific researchers based on Support Vector Machine (EMSR-SVM) is proposed. Finally, the comparative experiments have been done with a large number of data sets from the scientific research platform of the university. The experimental results show that this method is simple, rapid and accurate. It can efficiently improve the evaluation of scientific researchers.
C1 [Tang Li; He Li] Tianjin Univ Finance & Econ, Inst Technol, Tianjin, Peoples R China.
[Li Xiaomei] Tianjin Univ Finance & Econ, Sci Res Off, Tianjin, Peoples R China.
[Zhang Shuhua] Tianjin Univ Finance & Econ, Coordinated Innovat Ctr Computable Modeling Manag, Tianjin, Peoples R China.
C3 Tianjin University of Finance & Economics; Tianjin University of Finance
& Economics; Tianjin University of Finance & Economics
RP Tang, L (corresponding author), Tianjin Univ Finance & Econ, Inst Technol, Tianjin, Peoples R China.
EM tangli0831@tjufe.edu.cn; lixiaomei@tjufe.edu.cn; renkeheli@163.com;
shuhua55@126.com
FU General project of Humanities and social science research of the
Ministry of Education [14YJA630025]; Tianjin Natural Science Foundation
[15JCYBJC16000]; Tianjin Social Science Foundation [TJYY15-017]
FX This work is partly supported by the General project of Humanities and
social science research of the Ministry of Education (14YJA630025),
Tianjin Natural Science Foundation (15JCYBJC16000) and Tianjin Social
Science Foundation (TJYY15-017).
CR Du Cong, 2009, RES APPL DATA MINING
Gao T., 2011, SCI TECHNOLOGY MANAG, V31, P131
[孟溦 Meng Wei], 2007, [科研管理, Science Research Management], V28, P1
Li L., 2014, J CHONGQING U TECHNO, V28, P69
[孙佰清 Sun Baiqing], 2010, [哈尔滨工程大学学报, Journal of Harbin Engineering University], V31, P803
VAPNIK, 2000, NATURE STAT LEARNING
Zhang J., 2014, RES EVALUATION MODEL
NR 7
TC 0
Z9 0
U1 0
U2 3
PU WISSENSCHAFTLICHER VERLAG BERLIN
PI BERLIN
PA OLAF GAUDIG & KLAUS-PETER VEIT GBR, VERKEHRSNUMMER 96258, KORTESTR 10,
BERLIN, 10967, GERMANY
BN 978-3-86573-963-6
PY 2016
BP 31
EP 37
PG 7
WC Hospitality, Leisure, Sport & Tourism
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Social Sciences - Other Topics
GA BH4RP
UT WOS:000400597800005
DA 2024-09-05
ER
PT C
AU Hassan, SU
Iqbal, S
Imran, M
Aljohani, NR
Nawaz, R
AF Hassan, Saeed-Ul
Iqbal, Sehrish
Imran, Mubashir
Aljohani, Naif Radi
Nawaz, Raheel
BE Dobreva, M
Hinze, A
Zumer, M
TI Mining the Context of Citations in Scientific Publications
SO MATURITY AND INNOVATION IN DIGITAL LIBRARIES, ICADL 2018
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 20th International Conference on Asia-Pacific Digital Libraries (ICADL)
CY NOV 19-22, 2018
CL Univ Waikato, Hamilton, NEW ZEALAND
HO Univ Waikato
DE Citation context analysis; Influential citations; Machine learning;
Self-organizing maps
AB Recent advancements in information retrieval systems significantly rely on the context-based features and semantic matching techniques to provide relevant information to users from ever-growing digital libraries. Scientific communities seek to understand the implications of research, its importance and its applicability for future research directions. To mine this information, absolute citations merely fail to measure the importance of scientific literature, as a citation may have a specific context in full text. Thus, a comprehensive contextual understanding of cited references is necessary. For this purpose, numerous techniques have been proposed that tap the power of artificial intelligence models to detect important or incidental (non-important) citations in full text scholarly publications. In this paper, we compare and build upon on four state-of-the-art models that detect important citations using 450 manually annotated citations by experts - randomly selected from 20,527 papers from the Association for Computational Linguistics corpus. Of the total 64 unique features proposed by the four selected state-of-the-art models, the top 29 were chosen using the Extra-Trees classifier. These were then fed it to our supervised machine learning based models: Random Forest (RF) and Support Vector Machine. The RF model outperforms existing selected systems by more than 10%, with 89% precision-recall curve. Finally, we qualitatively assessed important and non-important citations by employing and self-organizing maps. Overall, our research work supports information retrieval algorithms that detect and fetch scientific articles on the basis of both qualitative and quantitative indices in scholarly big data.
C1 [Hassan, Saeed-Ul; Iqbal, Sehrish] Informat Technol Univ, Ferozepur Rd, Lahore, Pakistan.
[Imran, Mubashir] Univ Queensland, St Lucia, Qld 4072, Australia.
[Aljohani, Naif Radi] King Abdulaziz Univ, Al Malaeb St, Jeddah, Saudi Arabia.
[Nawaz, Raheel] Manchester Metropolitan Univ, Manchester M15 6BH, Lancs, England.
C3 University of Queensland; King Abdulaziz University; Manchester
Metropolitan University
RP Hassan, SU (corresponding author), Informat Technol Univ, Ferozepur Rd, Lahore, Pakistan.
EM saeed-ul-hassan@itu.edu.pk
RI Aljohani, Naif R/S-1109-2017; Nawaz, Raheel/AAX-5293-2021; Hassan,
Saeed-Ul/G-1889-2016
OI Nawaz, Raheel/0000-0001-9588-0052; Imran, Mubashir/0000-0003-4721-499X;
Hassan, Saeed-Ul/0000-0002-6509-9190; Iqbal, Sehrish/0000-0003-1956-1572
CR Abu-Jbara A., 2013, NAACL, P596
Auria L., 2008, Support vector machines (SVM) as a technique for solvency analysis, DOI 10.2139/ssrn.1424949
Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8
Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
Cao H, 2008, 1 INT WORKSH MACH LE
Cohan A, 2018, INT J DIGIT LIBRARIE, V19, P287, DOI 10.1007/s00799-017-0216-8
Geurts P, 2006, MACH LEARN, V63, P3, DOI 10.1007/s10994-006-6226-1
Hassan S.-U., 2017, Digital Libraries: Data, Information, and Knowledge for Digital Lives, P119, DOI DOI 10.1007/978-3-319-70232-2_10
Hassannejad S., 2017, 2017 ACM IEEE JOINT, V14, P1, DOI [DOI 10.1109/JCDL.2017.7991558, 10.9734/ARRB/2017/27339]
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 14
TC 4
Z9 5
U1 2
U2 5
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-04257-8; 978-3-030-04256-1
J9 LECT NOTES COMPUT SC
PY 2018
VL 11279
BP 316
EP 322
DI 10.1007/978-3-030-04257-8_32
PG 7
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Interdisciplinary Applications; Information
Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BS8PU
UT WOS:000775537800032
DA 2024-09-05
ER
PT J
AU Eke, G
Holttum, S
Hayward, M
AF Eke, Gemma
Holttum, Sue
Hayward, Mark
TI Testing a Model of Research Intention Among UK Clinical Psychologists: A
Logistic Regression Analysis
SO JOURNAL OF CLINICAL PSYCHOLOGY
LA English
DT Article
DE clinical psychologist; research output; research intention; research
training environment (RTE); subjective norm; research self-efficacy;
control belief; outcome expectancy; value
ID RESEARCH TRAINING ENVIRONMENT; SCIENTIST-PRACTITIONER MODEL; HOLLAND
PERSONALITY TYPE; SOCIAL COGNITIVE THEORY; RESEARCH SELF-EFFICACY;
RESEARCH PRODUCTIVITY; SCHOLARLY PRODUCTIVITY; STUDENTS; CAREER; IMPACT
AB Objectives: Previous research highlights barriers to clinical psychologists conducting research, but has rarely examined U. K. clinical psychologists. The study investigated U. K. clinical psychologists' self-reported research output and tested part of a theoretical model of factors influencing their intention to conduct research. Methods: Questionnaires were mailed to 1,300 U.K. clinical psychologists. Results: Three hundred and seventy-four questionnaires were returned (29% response-rate). This study replicated in a U.K. sample the finding that the modal number of publications was zero, highlighted in a number of U.K. and U.S. studies. Research intention was bimodally distributed, and logistic regression classified 78% of cases successfully. Outcome expectations, perceived behavioral control and normative beliefs mediated between research training environment and intention. Conclusions: Further research should explore how research is negotiated in clinical roles, and this issue should be incorporated into prequalification training. (C) 2012 Wiley Periodicals, Inc. J. Clin. Psychol 68:263-278, 2012.
C1 [Eke, Gemma] Sussex Partnership NHS Fdn Trust, Linwood Community Mental Hlth Ctr, Haywards Heath RH16 4BE, W Sussex, England.
[Holttum, Sue] Canterbury Christ Church Univ, Sussex Partnership NHS Fdn Trust, Canterbury, New Zealand.
C3 University of Canterbury
RP Eke, G (corresponding author), Sussex Partnership NHS Fdn Trust, Linwood Community Mental Hlth Ctr, Butlers Green Rd, Haywards Heath RH16 4BE, W Sussex, England.
EM gemma.eke@sussexpartnership.nhs.uk
RI Hayward, Mark/AAJ-9858-2020
OI Hayward, Mark/0000-0001-6567-7723; Holttum, Sue/0000-0003-2618-8518
CR AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T
[Anonymous], 2008, FRAM HIGH ED QUAL EN
[Anonymous], 1988, Non parametric Statistics for the Behavioral Sciences
[Anonymous], NEW WAYS WORK APPL P
[Anonymous], 1992, Questionnaire Design, Interviewing and Attitude Measurement
[Anonymous], ACCR PARTN HDB GUID
Armitage CJ, 2001, BRIT J SOC PSYCHOL, V40, P471, DOI 10.1348/014466601164939
Bandura A., 1986, SOCIAL FDN THOUGHT A
Barkham M., 2010, DEVELOPING DELIVERIN, P175
BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173
Bieschke KJ, 2000, J CAREER ASSESSMENT, V8, P303, DOI 10.1177/106907270000800307
Bishop R. M., 1994, RES OUTCOME EX UNPUB
Bishop RM, 1998, J COUNS PSYCHOL, V45, P182, DOI 10.1037/0022-0167.45.2.182
Brems C, 1996, J CLIN PSYCHOL, V52, P723, DOI 10.1002/(SICI)1097-4679(199611)52:6<723::AID-JCLP15>3.0.CO;2-O
British Psychological Society, 2006, COR COMP CLIN PSYCH
Ceci SJ, 2009, PSYCHOL BULL, V135, P218, DOI 10.1037/a0014412
CHAMBERS MJ, 1993, PROF PSYCHOL-RES PR, V24, P20, DOI 10.1037/0735-7028.24.1.20
Clearing House for Postgraduate Courses in Clinical Psychology, 2010, EQ OPP NUMB
Cooper M, 2007, CLIN PSYCHOL PSYCHOT, V14, P54, DOI 10.1002/cpp.513
Corrie S, 2001, BRIT J MED PSYCHOL, V74, P135, DOI 10.1348/000711201160858
Davey G, 2002, PSYCHOLOGIST, V15, P331
Department of Health, 2005, TREATM CHOIC PSYCH T
Field A., 2018, Discovering Statistics Using SPSS, V5th
Forester M, 2004, J CAREER ASSESSMENT, V12, P3, DOI 10.1177/1069072703257719
Francis J, 2004, Quality of life and management of living resources, DOI DOI 10.1177/0018726707075703
GELSO CJ, 1993, PROF PSYCHOL-RES PR, V24, P468, DOI 10.1037/0735-7028.24.4.468
Gelso CJ, 1996, COUNS PSYCHOL, V24, P304, DOI 10.1177/0011000096242010
GELSO CJ, 2006, TRAIN EDUC PROF PSYC, P3, DOI DOI 10.1037/1931-3918.S.1.3
HAYNES SN, 1987, PROF PSYCHOL-RES PR, V18, P515, DOI 10.1037/0735-7028.18.5.515
Hollingsworth MA, 2002, J COUNS PSYCHOL, V49, P324, DOI 10.1037//0022-0167.49.3.330
Holttum S, 2006, CLIN PSYCHOL PSYCHOT, V13, P339, DOI 10.1002/cpp.501
Jefferis P., 1997, CLIN PSYCHOL FORUM, V108, P13
Kahn JH, 1997, COUNS PSYCHOL, V25, P22, DOI 10.1177/0011000097251004
Kahn JH, 1997, COUNS PSYCHOL, V25, P38, DOI 10.1177/0011000097251005
Kahn JH, 2001, J COUNS PSYCHOL, V48, P344
Krippendorff K., 2018, CONTENT ANAL INTRO I
Lavender J., 2003, Clinical Psychology, V27, P11
LeBlanc M, 2000, SCHOOL PSYCHOL QUART, V15, P344, DOI 10.1037/h0088791
LENT RW, 1994, J VOCAT BEHAV, V45, P79, DOI 10.1006/jvbe.1994.1027
Leonard D., 2001, WOMANS GUIDE DOCTORA
LEVY LH, 1962, AM PSYCHOL, V17, P244, DOI 10.1037/h0048838
Lilienfeld S.O., 2003, Science and pseudoscience in clinical psychology
Long CG, 1997, CLIN PSYCHOL PSYCHOT, V4, P75, DOI 10.1002/(SICI)1099-0879(199706)4:2<75::AID-CPP116>3.0.CO;2-E
MALLINCKRODT B, 1990, PROF PSYCHOL-RES PR, V21, P26, DOI 10.1037/0735-7028.21.1.26
Mallinckrodt B, 2002, J COUNS PSYCHOL, V49, P60, DOI 10.1037//0022-0167.49.1.60
Milne D., 1990, CLIN PSYCHOL FORUM, V96, P24
National Mental Health Development Unit/IAPT Programme, 2010, REAL BEN IAPT PROGR
NEWNES C, 2005, CLIN PSYCHOL, V46, P10
Norcross JC, 2005, J CLIN PSYCHOL, V61, P1467, DOI 10.1002/jclp.20135
Pallant J., 2001, SPSS SURVIVAL MANUAL, DOI DOI 10.1080/17439760701756946
Park SM, 1996, J HIGH EDUC, V67, P46, DOI 10.2307/2943903
PHILLIPS JC, 1994, COUNS PSYCHOL, V22, P628, DOI 10.1177/0011000094224008
Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879
Roth A., 2005, WHAT WORKS WHOM, V2nd
ROYALTY GM, 1985, J COUNS PSYCHOL, V32, P458, DOI 10.1037/0022-0167.32.3.458
Shapiro D, 2002, PSYCHOLOGIST, V15, P232
Szymanski DM, 2007, TRAIN EDUC PROF PSYC, V1, P135, DOI 10.1037/1931-3918.1.2.135
Tabachnick B.G., 2005, USING MULTIVARIATE S, V5th
Thomas GV, 2002, PSYCHOLOGIST, V15, P286
WEINER G, 1998, EUR C ED RES SLOV
Wenneras C, 1997, NATURE, V387, P341, DOI 10.1038/387341a0
Wright AB, 2012, CLIN PSYCHOL PSYCHOT, V19, P46, DOI 10.1002/cpp.732
NR 62
TC 9
Z9 13
U1 0
U2 12
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0021-9762
EI 1097-4679
J9 J CLIN PSYCHOL
JI J. Clin. Psychol.
PD MAR
PY 2012
VL 68
IS 3
BP 263
EP 278
DI 10.1002/jclp.20860
PG 16
WC Psychology, Clinical
WE Social Science Citation Index (SSCI)
SC Psychology
GA 908XJ
UT WOS:000301526100004
PM 22422562
DA 2024-09-05
ER
PT J
AU Lee, JL
Kim, Y
AF Lee, Jung Lim
Kim, Youngji
TI Research Topic Trends on Turnover Intention among Korean Registered
Nurses: An Analysis Using Topic Modeling
SO HEALTHCARE
LA English
DT Article
DE nurses; employee turnover; data mining; social network analysis
AB This study aimed to explore research topic trends on turnover intention among Korean hospital nurses by analyzing the keywords and topics of related articles. Methods: This text-mining study collected, processed, and analyzed text data from 390 nursing articles published between 1 January 2010 and 30 June 2021 that were collected via search engines. The collected unstructured text data were preprocessed, and the NetMiner program was used to perform keyword analysis and topic modeling. Results: The word with the highest degree centrality was "job satisfaction", the word with the highest betweenness centrality was "job satisfaction", and the word with the highest closeness centrality and frequency was "job stress". The top 10 keywords in both the frequency analysis and the 3 centrality analyses included "job stress", "burnout", "organizational commitment", "emotional labor", "job", and "job embeddedness". The 676 preprocessed key words were categorized into five topics: "job", "burnout", "workplace bullying", "job stress", and "emotional labor". Since many individual-level factors have already been thoroughly investigated, future research should concentrate on enabling successful organizational interventions that extend beyond the microsystem.
C1 [Lee, Jung Lim] Daejeon Univ, Dept Nursing, Daejeon Si 34520, South Korea.
[Kim, Youngji] Kongju Natl Univ, Coll Nursing & Hlth, Dept Nursing, Kongju Si 32588, South Korea.
C3 Daejeon University; Kongju National University
RP Kim, Y (corresponding author), Kongju Natl Univ, Coll Nursing & Hlth, Dept Nursing, Kongju Si 32588, South Korea.
EM leejl@dju.kr; superdr1@hanmail.net
OI Lee, Jung Lim/0000-0001-9464-383X
FU Daejeon University fund
FX This research was supported by the Daejeon University fund (2021).
CR Al Muharraq EH, 2022, SAGE OPEN NURS, V8, DOI 10.1177/23779608221074655
[Anonymous], 2021, HOSP NURSING WORKFOR
[Anonymous], 2010 2019 HOSP NURSI
Bae SH, 2022, INT NURS REV, V69, P392, DOI 10.1111/inr.12769
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bronfenbrenner U., 1979, Ecology of Human Development: Experiments by Nature and Design, P21
Fasbender U, 2019, J ADV NURS, V75, P327, DOI 10.1111/jan.13842
Griffiths P, 2019, BMJ QUAL SAF, V28, P609, DOI 10.1136/bmjqs-2018-008043
Hariyati R.T.S., 2018, INT J NURSING HLTH S, V1, P99, DOI DOI 10.35654/IJNHS.V1I2.47
Hong KJ, 2017, Perspect Nurs Sci, V14, P55, DOI [10.16952/pns.2017.14.2.55, DOI 10.16952/PNS.2017.14.2.55]
Kang J, 2019, J KOREAN ACAD NURS, V49, P736, DOI 10.4040/jkan.2019.49.6.736
이영옥, 2018, [Korean Journal of Adult Nursing, 성인간호학회지], V30, P1, DOI 10.7475/kjan.2018.30.1.1
Kim E, 2014, Perspect Nurs Sci, DOI DOI 10.16952/PNS.2014.11.2.109
Kim Jinhyun, 2017, Journal of The Korean Data Analysis Society, V19, P1083, DOI 10.37727/jkdas.2017.19.2.1083
Kramer Marlene, 2010, Nurs Adm Q, V34, P4, DOI 10.1097/NAQ.0b013e3181c95ef4
최미건, 2015, [Journal of Korea Academia-Industrial cooperation Society, 한국산학기술학회논문지], V16, P3257
Lafferty J.D, 2009, Topic Models, P71, DOI [10.1145/1143844.1143859, DOI 10.1145/1143844.1143859]
Lee K, 2009, GLOB INST, P1
Lee Soosang, 2014, [Journal of the Korean Society for Information Management, 정보관리학회지], V31, P49, DOI 10.3743/KOSIM.2014.31.4.049
Lee Sungjick, 2009, [The Journal of Society for e-Business Studies, 한국전자거래학회지], V14, P59
Lu H, 2019, INT J NURS STUD, V94, P21, DOI 10.1016/j.ijnurstu.2019.01.011
Nei D, 2015, HEALTH CARE MANAGE R, V40, P237, DOI 10.1097/HMR.0000000000000025
Nelson-Brantley HV, 2018, J NURS ADMIN, V48, P31, DOI 10.1097/NNA.0000000000000567
Niskala J, 2020, J ADV NURS, V76, P1498, DOI 10.1111/jan.14342
Roche MA, 2015, COLLEGIAN, V22, P353, DOI 10.1016/j.colegn.2014.05.002
sil choi jeong, 2019, [Korean Journal of Occupational Health Nursing, 한국직업건강간호학회지], V28, P221, DOI 10.5807/kjohn.2019.28.4.221
Taylor-Clark TM, 2022, J NURS ADMIN, V52, P73, DOI 10.1097/NNA.0000000000001106
Wasserman S., 1994, SOCIAL NETWORK ANAL, P177
Woodward KF, 2022, NURS OUTLOOK, V70, P664, DOI 10.1016/j.outlook.2022.04.005
NR 29
TC 0
Z9 0
U1 2
U2 5
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-9032
J9 HEALTHCARE-BASEL
JI Healthcare
PD APR
PY 2023
VL 11
IS 8
AR 1139
DI 10.3390/healthcare11081139
PG 10
WC Health Care Sciences & Services; Health Policy & Services
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Health Care Sciences & Services
GA F7IM8
UT WOS:000984042800001
PM 37107972
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Campbell, DG
Mayhew, A
AF Campbell, D. Grant
Mayhew, Alex
TI Repositioning the Base Level of Bibliographic Relationships: Or, a
Cataloguer, a Post-Modernist and a Chatbot Walk Into a Bar
SO KNOWLEDGE ORGANIZATION
LA English
DT Article
DE bibliographic relationships; superwork; cataloguing; literary theory;
artificial intelligence
AB Designers and maintainers of library catalogues are facing fresh challenges representing bibliographic relationships, due both to changes in cataloguing standards and to a broader information environment that has grown increasingly diverse, sophisticated and complex. This paper presents three different paradigms, drawn from three different fields of study, for representing relationships between bibliographic entities beyond the FRBR/LRM models: superworks, as developed in information studies; adaptation, as developed in literary studies; and artificial intelligence, as developed in computer science. Theories of literary adaptation remain focused on "the work," as traditionally conceived. The concept of the superwork reminds us that there are some works which serve as ancestors for entire families of works, and that those familial relationships are still useful. Crowd-sourcing projects often make more granular connections, a trend which has escalated significantly with current and emerging artificial intelligence systems. While the artificial intelligence paradigm is proving more pervasive outside conventional library systems, it could lead to a seismic shift in knowledge organization, a shift in which the power both to arrange information and to use it are moving beyond the control of users and intermediaries alike.
C1 [Campbell, D. Grant; Mayhew, Alex] Univ Western Ontario, Fac Informat & Media Studies, London, ON, Canada.
C3 Western University (University of Western Ontario)
RP Campbell, DG (corresponding author), Univ Western Ontario, Fac Informat & Media Studies, London, ON, Canada.
EM gcampbel@uwo.ca; amayhew@uwo.ca
CR [Anonymous], 2000, The intellectual foundation of information organization
[Anonymous], 1968, Two Kinds of Power: An Essay on Bibliographic Control
[Anonymous], 2007, Understanding FRBR: What it is and How it Will Affect Our Retrieval Tools
Campbell DG, 2020, ADV KNOW OR, V17, P69
Campbell DG, 2004, J ACAD LIBR, V30, P382, DOI 10.1016/j.acalib.2004.06.007
Dawkins Richard., 1989, The Selfish Gene
Domanovszky Akos, 1973, Libri, V23, P307, DOI [10.1515/libr.1973.23.4.307, DOI 10.1515/LIBR.1973.23.4.307]
Future of Life Institute, 2023, Pause Giant AI Experiments: An Open Letter
Hune-Brown Nicolas, 2023, The Walrus, P60
Hutcheon Linda., 2006, A Theory of Adaptation
Iuchanka Anna, 2022, ITechArtMarch 22
Maeda John, 2023, Microsoft Semantic KernelMay 23
OLIVER C., 2021, Introducing RDA: A guide to the basics after 3R, V2
Pettee J, 1936, LIBR QUART, V6, P270, DOI 10.1086/613854
Propp V., 1968, MORPHOLOGY FOLKTALE
Smiraglia RP, 2012, LIBR TRENDS, V61, P35, DOI 10.1353/lib.2012.0026
Smiraglia RP, 1999, J AM SOC INFORM SCI, V50, P493, DOI 10.1002/(SICI)1097-4571(1999)50:6<493::AID-ASI4>3.0.CO;2-U
Weinberger David, 2006, KM World MagazineSeptember 29
NR 18
TC 0
Z9 0
U1 5
U2 5
PU NOMOS VERLAGSGESELLSCHAFT MBH & CO KG
PI BADEN-BADEN
PA WALDSEESTR 3 5, BADEN-BADEN, 76530, GERMANY
SN 0943-7444
J9 KNOWL ORGAN
JI Knowl. Organ.
PY 2023
VL 50
IS 8
BP 519
EP 525
DI 10.5771/0943-7444-2023-8-519
PG 7
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA IF8G5
UT WOS:001165000100002
DA 2024-09-05
ER
PT C
AU Triebus, C
Geiger, C
AF Triebus, Charlotte
Geiger, Christian
BE Olivero, LF
DaVeiga, PA
Araujo, AB
Dourado, P
DaSilva, BM
TI Precious Camouflage - A Dance Performance Interweaving Human Movement
and Artificial Intelligence Artistic Research for Exploring the
Communication Between Dancers and AI
SO PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON DIGITAL AND
INTERACTIVE ARTS, ARTECH 2023
LA English
DT Proceedings Paper
CT 11th International Conference on Digital and Interactive Arts (ARTECH) -
Digital Creation Processes
CY NOV 28-30, 2023
CL Faro, PORTUGAL
DE Performance Art; Dance; AI; Digital Art; Agency; Body; Live Interaction;
Ethics
AB This paper presents the layout created for Precious Camouflage, a dance performance that entangles human movement and artificial intelligence (AI) in a museal space. The performance, which features four dancers and five AI systems, challenges traditional notions of performance and authorship, and serves as a reflection on the rapid development of digital technologies and their societal implications. This is done by staging different kinds of agency in a communicative setup and a mesh of interactions accompanied by extended research on ethical questions with a focus point on bodies in datasets. In this paper we present the research to develop the piece. Background information and the recorded performance can be found at http://www.precious.dance.
C1 [Triebus, Charlotte; Geiger, Christian] Univ Appl Sci, Dept Media, Dusseldorf, Nrw, Germany.
RP Triebus, C (corresponding author), Univ Appl Sci, Dept Media, Dusseldorf, Nrw, Germany.
EM charlotte.triebus@hs-duesseldorf.de; geiger@hs-duesseldorf.de
FU Nationales Performance Netz, Neustart Kultur and Dachverband Tanz;
Federal Government Commissioner for Culture and Media; German Federal
Ministry of Education and Research (BMBF) [16SV8878]
FX This work has been supported by Nationales Performance Netz, Neustart
Kultur and Dachverband Tanz. Funded by the Federal Government
Commissioner for Culture and Media within the framework of the
initiative NEUSTART KULTUR. Assistance Program for Dance tanz:digital by
German Dance Association. The research was partially funded by the
German Federal Ministry of Education and Research (BMBF) within the
scope of the HIVAM project, Grant Number: 16SV8878.
CR Gatys LA, 2015, Arxiv, DOI [arXiv:1508.06576, DOI 10.48550/ARXIV.1508.06576, 10.1167/16.12.326]
Chicau Joana, 2022, Anatomies of Intelligence
Chung Sougwen, 2018, Drawing Operations
Crawford Kate, 2020, Fondazione Prada
Crawford Kate, 2020, Training Humans
Experiments with Google, 2019, Living Archive by Wayne McGregor
Experiments with Google, 2019, Body, Movement, Language: AI Sketches With Bill T. Jones
Glanz Berit, 2023, Filter
Juliane Laura, State of the deep
McDonald Kyle, Discrete figures
Memo Aktens, 2016, Review of machine / deep learning in an artistic context
Memo Aktens, 2017, Gloomy Sunday
Pettee Mariel, 2019, Beyond Imitation: Generative and Variational Choreography via Machine Learning
Roth Christian, 2012, P 11 INT C ENT COMP
Stokel-Walker Chris, 2022, This couple is launching an organization to protect artists in the AI era
NR 15
TC 0
Z9 0
U1 0
U2 0
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 979-8-4007-0872-5
PY 2023
AR 49
DI 10.1145/3632776.3632810
PG 4
WC Art; Computer Science, Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Art; Computer Science
GA BW9DF
UT WOS:001211709700049
DA 2024-09-05
ER
PT C
AU Pradhan, DK
Chakraborty, J
Nandi, S
AF Pradhan, Dinesh K.
Chakraborty, Joyita
Nandi, Subrata
GP Assoc Comp Machinery
TI Applications of Machine Learning in Analysis of Citation Network
SO PROCEEDINGS OF THE 6TH ACM IKDD CODS AND 24TH COMAD
LA English
DT Proceedings Paper
CT ACM India Joint International Conference on Data Science and Management
of Data (CoDS-COMAD)
CY JAN 03-05, 2019
CL Kolkata, INDIA
DE Machine learning models; bibliographic dataset analysis; clustering;
temporal citation profiles
ID PREDICTION
AB Research standard and quality should be continuously monitored to direct progress of science in right direction. With exponential growth and continuous expansion in citation network, manual and static analysis is becoming insignificant. To fill in the gap, application of machine learning models might prove to be useful. In this paper, we propose some of the problems that we intend to solve using machine learning. Among various applications outlier analysis for early detection of anomalies in citation network, long term prediction of high impact and seminal authors, papers and field of study, deriving inherent features on diverse temporal and demographic scale governing citation structure etc. Starting with empirical analysis of open academic graph dataset, we try to understand the complex relational citation structure of entities. As a preliminary step, we do time series clustering of citation data and study characteristics of diverse profiles of citation curves. When compared to static classification in past literature, we overcome drawbacks of past study and get better insights.
C1 [Pradhan, Dinesh K.; Chakraborty, Joyita; Nandi, Subrata] NIT Durgapur, Dept Comp Sci & Engn, Durgapur, W Bengal, India.
C3 National Institute of Technology (NIT System); National Institute of
Technology Durgapur
RP Pradhan, DK (corresponding author), NIT Durgapur, Dept Comp Sci & Engn, Durgapur, W Bengal, India.
RI Pradhan, Dinesh K/AAN-3592-2021; Pradhan, Dinesh K./AAE-4386-2019
OI Pradhan, Dinesh K./0000-0001-9132-9255
FU West Bengal | Department of Higher Education, Science Technology
FX We would like to thank `West Bengal | Department of Higher Education,
Science & Technology' for funding the research work.
CR Chakraborty Joyita, 2018, J COMPUTER SCI
Chakraborty T, 2015, COMMUN ACM, V58, P82, DOI 10.1145/2701412
Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8
Dey R, 2017, SCIENTOMETRICS, V113, P1645, DOI 10.1007/s11192-017-2543-3
Fister I, 2016, FRONT PHYS, V4, DOI 10.3389/fphy.2016.00049
Guns R, 2014, SCIENTOMETRICS, V101, P1461, DOI 10.1007/s11192-013-1228-9
Heneberg P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153730
MONGEON P, 2016, WHAT DO WE KNOW J CI
Pradhan D, 2016, PROCEEDINGS OF THE 2016 ACM WEB SCIENCE CONFERENCE (WEBSCI'16), P318, DOI 10.1145/2908131.2908185
Redner S, 2004, PHYSICS0407137 ARXIV
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
NR 11
TC 12
Z9 12
U1 0
U2 8
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-6207-8
PY 2019
BP 330
EP 333
DI 10.1145/3297001.3297053
PG 4
WC Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BP5OG
UT WOS:000557252800052
DA 2024-09-05
ER
PT J
AU Zhang, WY
Mukerjee, S
Qin, HZ
AF Zhang, Weiyu
Mukerjee, Subhayan
Qin, Huazhi
TI Topics and Sentiments Influence Likes: A Study of Facebook Public Pages'
Posts About COVID-19 Vaccination
SO CYBERPSYCHOLOGY BEHAVIOR AND SOCIAL NETWORKING
LA English
DT Article
DE COVID-19; Facebook; likes; sentiment analysis; topic modeling
ID EMOTION; NEWS; MEDIA
AB In this study, we analyzed >200,000 posts collected from Facebook public pages that were published in December 2020 during the rollout of the first dose of the Pfizer-BioNTech vaccine to the American public. We ran both topic modeling and sentiment analysis of the posts and found that first Facebook posts talked about not only treatment effectiveness such as trial results and testing approaches but also other issues that surround vaccines such as approval and distribution. Second, although the general sentiment during this period was positive and anticipation was the highest emotion, Facebook posts expressed a salient amount of fear and sadness, especially when discussing emergency approval and trial results. Finally, we found that both topics and sentiments have a significant influence on user likes. Using the topic of vaccine distribution as a baseline, posts that discuss related aspects of vaccines (e.g., effectiveness, shipment, and testing), call for actions (e.g., use of masks) and indicate care to vulnerable groups (e.g., health care workers and seniors) received more likes. Posts with bad news (e.g., new cases and deaths) and doubts over the usefulness of vaccines received fewer likes. Regardless of their valences, approach emotions lead to more likes whereas withdrawal emotions lead to fewer likes. Our study suggests that to facilitate actions, using certain topics and approach emotions in the posts could be helpful.
C1 [Zhang, Weiyu; Mukerjee, Subhayan] Natl Univ Singapore, Dept Commun & New Media, Singapore, Singapore.
[Qin, Huazhi] Univ Chicago, Div Social Sci, Chicago, IL USA.
C3 National University of Singapore; University of Chicago
RP Zhang, WY (corresponding author), Natl Univ Singapore, Dept Commun & New Media, Singapore, Singapore.
EM weiyu.zhang@nus.edu.sg
RI Zhang, Weiyu/KIE-1785-2024; Mukerjee, Subhayan/AAK-6864-2020; Qin,
Huazhi/JAX-6031-2023
OI Mukerjee, Subhayan/0000-0002-1885-5440; Qin, Huazhi/0009-0006-5365-2282
CR Al-Zaman Md Sayeed, 2021, F1000Res, V10, P236, DOI 10.12688/f1000research.51210.2
Ceron A, 2016, J INF TECHNOL POLITI, V13, P159, DOI 10.1080/19331681.2016.1160266
Chang YC, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0223317
Damiano AD, 2020, CYBERPSYCH BEH SOC N, V23, P889, DOI 10.1089/cyber.2020.0425
Feezell JT, 2018, POLIT RES QUART, V71, P482, DOI 10.1177/1065912917744895
Gilbert C., 2014, Proceedings of the International AAAI Conference on Web and Social Media, V81, P82
Hussain A, 2021, J MED INTERNET RES, V23, DOI 10.2196/26627
Kalichman SC, 2022, J PUBLIC HEALTH-UK, V44, pE96, DOI 10.1093/pubmed/fdab093
Kaminski M, 2021, CYBERPSYCH BEH SOC N, V24, P123, DOI 10.1089/cyber.2020.0336
Khoo CSG, 2012, ONLINE INFORM REV, V36, P858, DOI 10.1108/14684521211287936
Kurten S, 2021, CYBERPSYCH BEH SOC N, V24, P117, DOI 10.1089/cyber.2020.0341
Mohammad SM, 2013, COMPUT INTELL-US, V29, P436, DOI 10.1111/j.1467-8640.2012.00460.x
Preotiuc-Pietro D., 2016, P 7 WORKSHOP COMPUTA
Rianto A., 2021, Journal Riset Informatika, V3, P353, DOI DOI 10.34288/JRI.V3I4.282
Salganik MJ, 2006, SCIENCE, V311, P854, DOI 10.1126/science.1121066
Skogerbo E, 2015, JOURNAL PRACT, V9, P350, DOI 10.1080/17512786.2014.950471
Spielberg JM, 2008, SOC PERSONAL PSYCHOL, V2, P135, DOI 10.1111/j.1751-9004.2007.00064.x
Statista, Most Popular Social Networks Worldwide as of April 2020
Tandoc EC, 2018, NEW MEDIA SOC, V20, P1679, DOI 10.1177/1461444817702398
Ballestar MT, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12052122
Vargo CJ, 2018, NEW MEDIA SOC, V20, P2028, DOI 10.1177/1461444817712086
Weismueller J, 2022, COMPUT HUM BEHAV, V129, DOI 10.1016/j.chb.2021.107150
WHO, 2020, Top ten threats to global health in 2019: vaccine hesitancy
Yang A., 2021, HARV KENNEDY SCH MIS, V2, DOI 10.37016/mr-2020-78
NR 24
TC 3
Z9 3
U1 15
U2 28
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 2152-2715
EI 2152-2723
J9 CYBERPSYCH BEH SOC N
JI Cyberpsychology Behav. Soc. Netw.
PD SEP 1
PY 2022
VL 25
IS 9
BP 552
EP 560
DI 10.1089/cyber.2022.0063
EA AUG 2022
PG 9
WC Psychology, Social
WE Social Science Citation Index (SSCI)
SC Psychology
GA 6J0MB
UT WOS:000840772800001
PM 35969378
DA 2024-09-05
ER
PT J
AU Zhong, ZL
Guo, H
Qian, K
AF Zhong, Zilong
Guo, Hui
Qian, Kun
TI Deciphering the impact of machine learning on education: Insights from a
bibliometric analysis using bibliometrix R-package
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article; Early Access
DE Artificial intelligence; Machine learning; Educational research;
Bibliometric analysis; Bibliometrix R-package
ID PREDICTING STUDENTS PERFORMANCE
AB This study leverages bibliometric analysis through the bibliometrix R-package to dissect the expansive influence of machine learning on education, a field where machine learning's adaptability and data-processing capabilities promise to revolutionize teaching and learning methods. Despite its potential, the integration of machine learning in education requires a nuanced understanding to navigate the associated challenges and ethical considerations effectively. Our investigation spans articles from 2000 to 2023, focusing on identifying growth patterns, key contributors, and emerging trends within this interdisciplinary domain. By analyzing 970 selected articles, this study uncovers the developmental trajectory of machine learning in education, revealing significant insights into publication trends, prolific authors, influential institutions, and the geographical distribution of research. Furthermore, it highlights the journals pivotal in disseminating machine learning education research, the most cited works that shape the field, and the dynamic evolution of research themes. This bibliometric exploration not only charts the current landscape but also anticipates future directions, suggesting areas for further inquiry and potential breakthroughs. Through a detailed examination of empirical evidence and a critical analysis of machine learning applications in educational settings, this study aims to provide a foundational understanding of the field's complexities and potentials. The anticipated outcome is a comprehensive roadmap that guides researchers, educators, and policymakers towards a thoughtful integration of machine learning in education, balancing innovation with ethical stewardship.
C1 [Zhong, Zilong] Beijing Foreign Studies Univ, Res Inst Foreign Languages, 2 Xisanhuan North Rd, Beijing 100089, Peoples R China.
[Guo, Hui] Harbin Normal Univ, Coll Comp Sci & Informat Engn, Harbin, Peoples R China.
[Qian, Kun] Chongqing Univ, Sch Elect Engn, Chongqing, Peoples R China.
C3 Beijing Foreign Studies University; Harbin Normal University; Chongqing
University
RP Zhong, ZL (corresponding author), Beijing Foreign Studies Univ, Res Inst Foreign Languages, 2 Xisanhuan North Rd, Beijing 100089, Peoples R China.
EM zhongzilong1106@bfsu.edu.cn
RI Zhong, Zilong/HSC-9312-2023
OI Zhong, Zilong/0000-0002-8512-4701
FU Zhejiang Provincial Philosophy and Social Science Planning Project
FX We thank editors and reviewers for their valuable feedback, which has
greatly improved this manuscript. Their insights and suggestions have
been instrumental in refining our work.
CR Alshamaila Y, 2024, MULTIMED TOOLS APPL, DOI 10.1007/s11042-024-18262-4
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Basnet RB, 2022, EDUC INF TECHNOL, V27, P11499, DOI 10.1007/s10639-022-11068-7
Botvin M, 2023, EDUC INF TECHNOL, V28, P489, DOI 10.1007/s10639-022-11176-4
Brungard CW, 2015, GEODERMA, V239, P68, DOI 10.1016/j.geoderma.2014.09.019
Carcillo F, 2021, INFORM SCIENCES, V557, P317, DOI 10.1016/j.ins.2019.05.042
Chen Z, 2020, BRIEF BIOINFORM, V21, P1047, DOI 10.1093/bib/bbz041
Choi H, 2023, IEEE ACCESS, V11, P15002, DOI 10.1109/ACCESS.2023.3244614
Cui X, 2024, SOFT COMPUT, V28, P3533, DOI 10.1007/s00500-023-09618-3
de Oliveira O.J., 2019, Scientometrics Recent Advances, DOI [10.5772/intechopen.85856, DOI 10.5772/INTECHOPEN.85856]
Delen D, 2010, DECIS SUPPORT SYST, V49, P498, DOI 10.1016/j.dss.2010.06.003
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dworkin JD, 2020, NAT NEUROSCI, V23, P918, DOI 10.1038/s41593-020-0658-y
Earhart AE, 2021, DIGIT SCHOLARSH HUM, V36, P581, DOI 10.1093/llc/fqaa011
Evangelista E, 2021, INT J EMERG TECHNOL, V16, P255, DOI 10.3991/ijet.v16i24.26151
Fernandez-Morante C, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14010124
Gordon C, 2002, BRIT J EDUC PSYCHOL, V72, P483, DOI 10.1348/00070990260377488
Greener S, 2022, INTERACT LEARN ENVIR, V30, P1168, DOI 10.1080/10494820.2022.2118463
Hew KF, 2020, COMPUT EDUC, V145, DOI 10.1016/j.compedu.2019.103724
Holmes W, 2022, INT J ARTIF INTELL E, V32, P504, DOI 10.1007/s40593-021-00239-1
Hussain MT, 2019, ARTIF INTELL REV, V52, P381, DOI 10.1007/s10462-018-9620-8
Hussain S, 2021, EDUC INF TECHNOL, V26, P783, DOI 10.1007/s10639-020-10241-0
Jing YH, 2023, EDUC INF TECHNOL, DOI 10.1007/s10639-023-12178-6
Kabudi T., 2021, Computers and Education: Artificial Intelligence, V2, DOI DOI 10.1016/J.CAEAI.2021.100017
Kimmons R, 2021, TECHTRENDS, V65, P125, DOI 10.1007/s11528-021-00589-6
Kokol P, 2022, SCI PROGRESS-UK, V105, DOI 10.1177/00368504211029777
Korkmaz C, 2019, EDUC MEDIA INT, V56, P250, DOI 10.1080/09523987.2019.1669875
Kotsiantis S, 2004, APPL ARTIF INTELL, V18, P411, DOI 10.1080/08839510490442058
Liu MC, 2023, EDUC INF TECHNOL, V28, P7845, DOI 10.1007/s10639-022-11479-6
Liu SJ, 2021, IEEE T GEOSCI REMOTE, V59, P5085, DOI 10.1109/TGRS.2020.3018879
Mao GZ, 2021, ENVIRON POLLUT, V275, DOI 10.1016/j.envpol.2020.115785
Masiero S, 2021, Arxiv, DOI [arXiv:2108.12255, 10.48550/arXiv.2108.12255, DOI 10.48550/ARXIV.2108.12255]
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Munir H, 2022, INFORMATION, V13, DOI 10.3390/info13040203
Nagao K., 2019, Artificial intelligence accelerates human learning: Discussion data analytics, DOI [10.1007/978-981-13-6175-3, DOI 10.1007/978-981-13-6175-3]
Odden TOB, 2020, PHYS REV PHYS EDUC R, V16, DOI 10.1103/PhysRevPhysEducRes.16.010142
Oducado RMF, 2022, EDUC INF TECHNOL, V27, P9713, DOI 10.1007/s10639-022-11017-4
Qian K, 2023, BIOMED ENG-BIOMED TE, V68, P445, DOI 10.1515/bmt-2023-0113
Raihan MZ, 2023, J EDUC-US, V203, P73, DOI 10.1177/00220574211016444
Ranjeeth S., 2021, Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science), V14, P1728, DOI [10.2174/2666255813666191116150319, DOI 10.2174/2666255813666191116150319]
Riemann S., 2022, bioRxiv, DOI [10.1101/2022.07.28.501862, DOI 10.1101/2022.07.28.501862]
Sabharwal R, 2024, SOC NETW ANAL MIN, V14, DOI 10.1007/s13278-023-01195-5
Saltz J, 2019, ACM T COMPUT EDUC, V19, DOI 10.1145/3341164
Sommer C, 2013, J CELL SCI, V126, P5529, DOI 10.1242/jcs.123604
Su M, 2021, EXPERT SYST APPL, V186, DOI 10.1016/j.eswa.2021.115728
Su YS, 2022, FRONT NEUROSCI-SWITZ, V16, DOI 10.3389/fnins.2022.1018005
Tekles A, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0274810
Tiwari R., 2023, International Journal of Scientific Research in Engineering and Management, V7, P1, DOI [DOI 10.55041/IJSREM17592, 10.55041/IJSREM17592]
Vos N, 2011, COMPUT EDUC, V56, P127, DOI 10.1016/j.compedu.2010.08.013
Waheed H, 2020, COMPUT HUM BEHAV, V104, DOI 10.1016/j.chb.2019.106189
Webb ME, 2021, ETR&D-EDUC TECH RES, V69, P2109, DOI 10.1007/s11423-020-09858-2
Xu SS, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/3502992
Yang CS, 2021, J EDUC COMPUT RES, V59, P1015, DOI 10.1177/0735633120986256
Yang J, 2020, PHYS REV PHYS EDUC R, V16, DOI 10.1103/PhysRevPhysEducRes.16.020130
Zeng KL, 2022, IEEE ROBOT AUTOM LET, V7, P12251, DOI 10.1109/LRA.2022.3214057
Zhong ZL, 2023, SAGE OPEN, V13, DOI 10.1177/21582440231211657
NR 56
TC 0
Z9 0
U1 27
U2 27
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD 2024 MAY 6
PY 2024
DI 10.1007/s10639-024-12734-8
EA MAY 2024
PG 28
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA PN5T9
UT WOS:001214778100006
DA 2024-09-05
ER
PT J
AU Ofer, D
Kaufman, H
Linial, M
AF Ofer, Dan
Kaufman, Hadasah
Linial, Michal
TI What's next? Forecasting scientific research trends
SO HELIYON
LA English
DT Article
DE PubMed; NLP; MeSH; Bibliometrics; Time series; Machine learning;
Citation analysis
ID CITATION; PUBLICATION; PATENTS; SCIENCE
AB Scientific research trends and interests evolve over time. The ability to identify and forecast these trends is vital for educational institutions, practitioners, investors, and funding organizations. In this study, we predict future trends in scientific publications using heterogeneous sources, including historical publication time series from PubMed, research and review articles, pre -trained language models, and patents. We demonstrate that scientific topic popularity levels and changes (trends) can be predicted five years in advance across 40 years and 125 diverse topics, including life-science concepts, biomedical, anatomy, and other science, technology, and engineering topics. Preceding publications and future patents are leading indicators for emerging scientific topics. We find the ratio of reviews to original research articles informative for identifying increasing or declining topics, with declining topics having an excess of reviews. We find that language models provide improved insights and predictions into temporal dynamics. In temporal validation, our models substantially outperform the historical baseline. Our findings suggest that similar dynamics apply across other scientific and engineering research topics. We present SciTrends, a user-friendly webtool for predicting future publication trends for any topic covered in PubMed.
C1 [Ofer, Dan; Kaufman, Hadasah; Linial, Michal] Hebrew Univ Jerusalem, Inst Life Sci, Dept Biol Chem, Jerusalem, Israel.
[Linial, Michal] Hebrew Univ Jerusalem, Inst Life Sci, Dept Biol Chem, IL-91904 Jerusalem, Israel.
C3 Hebrew University of Jerusalem; Hebrew University of Jerusalem
RP Linial, M (corresponding author), Hebrew Univ Jerusalem, Inst Life Sci, Dept Biol Chem, IL-91904 Jerusalem, Israel.
EM dan.ofer@mail.huji.ac.il; hadasah.kaufman@mail.huji.ac.il;
michall@cc.huji.ac.il
RI Linial, Michal/AAQ-9259-2020; Ofer, Dan/GPK-5264-2022
OI Linial, Michal/0000-0002-9357-4526; Ofer, Dan/0000-0001-5136-8014
FU Center for Interdisciplinary Data Science Research (CIDR) at the Hebrew
University, Jerusalem [3035000440]
FX We thank the members from D. Shahaf and M. Linial laboratories for
sharing their ideas and valuable discussions. We thank N. Rappoport and
R. Zucker for supporting the web application. This work was partially
supported by the Center for Interdisciplinary Data Science Research
(CIDR, #3035000440) at the Hebrew University, Jerusalem.
CR ABELSON PH, 1964, SCIENCE, V143, P218, DOI 10.1126/science.143.3603.218
Abuhay TM, 2018, PROCEDIA COMPUT SCI, V136, P304, DOI 10.1016/j.procs.2018.08.284
Ahmad T, 2021, HUM VACC IMMUNOTHER, V17, P2367, DOI 10.1080/21645515.2021.1886806
Bornmann L, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101253
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Bornmann L, 2013, J INFORMETR, V7, P722, DOI 10.1016/j.joi.2013.05.002
BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I
Brandes N, 2022, BIOINFORMATICS, V38, P2102, DOI 10.1093/bioinformatics/btac020
Chu JSG, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2021636118
Cohen S, 2021, IEEE ACCESS, V9, P91584, DOI 10.1109/ACCESS.2021.3091622
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Effendy S, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1245, DOI 10.1145/3041021.3053064
Fairclough R, 2022, LEARN PUBL, V35, P241, DOI 10.1002/leap.1417
Gatherer D, 2009, J CLIN VIROL, V45, P174, DOI 10.1016/j.jcv.2009.06.004
Griffin TD, 2010, ADV EXP MED BIOL, V680, P737, DOI 10.1007/978-1-4419-5913-3_82
Grossmann I, 2023, NAT HUM BEHAV, V7, P484, DOI 10.1038/s41562-022-01517-1
Hancock JT, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-020-00369-8
Hope T, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P235, DOI 10.1145/3097983.3098038
Kittur A, 2019, P NATL ACAD SCI USA, V116, P1870, DOI 10.1073/pnas.1807185116
Klein DB, 2009, INDEP REV, V13, P585
Kleminski R, 2022, J INF SCI, V48, P349, DOI 10.1177/0165551520962775
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Larsen PO, 2010, SCIENTOMETRICS, V84, P575, DOI 10.1007/s11192-010-0202-z
Makridakis S, 2022, INT J FORECASTING, V38, P1346, DOI 10.1016/j.ijforecast.2021.11.013
Mao YQ, 2017, J BIOMED SEMANT, V8, DOI 10.1186/s13326-017-0123-3
Marx W, 2016, SCIENTOMETRICS, V109, P1397, DOI 10.1007/s11192-016-2111-2
Mazov NA, 2020, SCI TECH INF PROCESS, V47, P221, DOI 10.3103/S0147688220040036
Nájera GS, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-94897-9
Nezhad F.G., 2022, International Journal of Information Science & Management, V20
Nsoesie EO, 2014, INFLUENZA OTHER RESP, V8, P309, DOI 10.1111/irv.12226
Ofer D., 2022, arXiv
Ofer D, 2022, FRONT MOL BIOSCI, V9, DOI 10.3389/fmolb.2022.916639
Ofer D, 2021, COMPUT STRUCT BIOTEC, V19, P1750, DOI 10.1016/j.csbj.2021.03.022
Park M, 2023, NATURE, V613, P138, DOI 10.1038/s41586-022-05543-x
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Prabhakaran V., 2016, Long Papers, V1
Reimers N, 2019, Arxiv, DOI [arXiv:1908.10084, DOI 10.48550/ARXIV.1908.10084]
Salganik MJ, 2023, NAT HUM BEHAV, V7, P478, DOI 10.1038/s41562-023-01535-7
Sander JD, 2014, NAT BIOTECHNOL, V32, P347, DOI 10.1038/nbt.2842
Savov P, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102168
Sperr EV, 2006, MOL CANCER, V5, DOI 10.1186/1476-4598-5-58
Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4
Tang L, 2015, J ASSOC INF SCI TECH, V66, P1923, DOI 10.1002/asi.23302
Tattershall E, 2020, SCIENTOMETRICS, V122, P681, DOI 10.1007/s11192-019-03307-5
Van Noorden R., 2013, News, Nature, V3
Dorogush AV, 2018, Arxiv, DOI arXiv:1810.11363
Viboud C, 2019, P NATL ACAD SCI USA, V116, P2802, DOI 10.1073/pnas.1822167116
Voytek JB, 2012, J NEUROSCI METH, V208, P92, DOI 10.1016/j.jneumeth.2012.04.019
Wang WH, 2021, Arxiv, DOI arXiv:2012.15828
Zhang CS, 2017, EXPERT SYST APPL, V82, P128, DOI 10.1016/j.eswa.2017.04.003
NR 50
TC 0
Z9 0
U1 4
U2 8
PU CELL PRESS
PI CAMBRIDGE
PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA
EI 2405-8440
J9 HELIYON
JI Heliyon
PD JAN 15
PY 2024
VL 10
IS 1
AR e23781
DI 10.1016/j.heliyon.2023.e23781
EA DEC 2023
PG 12
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA FE3C3
UT WOS:001144036600001
PM 38223716
OA Green Submitted, gold
DA 2024-09-05
ER
PT S
AU Ho, DE
Rubin, DB
AF Ho, Daniel E.
Rubin, Donald B.
BE Hagan, J
Scheppele, KL
Tyler, TR
TI Credible Causal Inference for Empirical Legal Studies
SO ANNUAL REVIEW OF LAW AND SOCIAL SCIENCE, VOL 7
SE Annual Review of Law and Social Science
LA English
DT Article; Book Chapter
DE research design; policy evaluation; matching; regression discontinuity
ID REGRESSION DISCONTINUITY DESIGNS; PROPENSITY SCORE; MATCHING METHODS;
PRINCIPAL STRATIFICATION; RANDOMIZED EXPERIMENTS; CLASS-SIZE; BIAS;
CLASSIFICATION; IDENTIFICATION; ENVIRONMENT
AB We review advances toward credible causal inference that have wide application for empirical legal studies. Our chief point is simple: Research design trumps methods of analysis. We explain matching and regression discontinuity approaches in intuitive (nontechnical) terms. To illustrate, we apply these to existing data on the impact of prison facilities on inmate misconduct, which we compare to experimental evidence. What unifies modern approaches to causal inference is the prioritization of research design to create-without reference to any outcome data-subsets of comparable units. Within those subsets, outcome differences may then be plausibly attributed to exposure to the treatment rather than control condition. Traditional methods of analysis play a small role in this venture. Credible causal inference in law turns on substantive legal, not mathematical, knowledge.
C1 [Ho, Daniel E.] Stanford Univ, Stanford Law Sch, Stanford, CA 94305 USA.
[Rubin, Donald B.] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA.
C3 Stanford University; Harvard University
RP Ho, DE (corresponding author), Stanford Univ, Stanford Law Sch, Stanford, CA 94305 USA.
EM dho@law.stanford.edu; rubin@stat.harvard.edu
OI Ho, Daniel/0000-0002-2195-5469
CR Abadie A, 2003, AM ECON REV, V93, P113, DOI 10.1257/000282803321455188
Abadie A, 2001, STAT SOFTWARE
Abrams DS, 2007, U CHICAGO LAW REV, V74, P1145, DOI 10.2307/20141859
Angrist JD, 1999, Q J ECON, V114, P533, DOI 10.1162/003355399556061
Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P1
ANGRIST JD, 1990, AM ECON REV, V80, P1284
Angrist JD, 2010, J ECON PERSPECT, V24, P3, DOI 10.1257/jep.24.2.3
[Anonymous], 1995, Identification Problems in the Social Sciences
[Anonymous], 2004, Applied Bayesian modeling and causal inference from incomplete-data perspectives
[Anonymous], 1978, Specification searches: Ad hoc inference with nonexperimental data
[Anonymous], 2022, gam: Generalized Additive Models
[Anonymous], 2004, Regression Analysis: A Constructive Critique
[Anonymous], 2007, American Law and Economics Review
[Anonymous], 2000, CAUSALITY
[Anonymous], 1999, Handbook of Labor Economics, DOI [DOI 10.1016/S1573-4463(99)03004-7, 10.1016/S1573-4463(99)03004-7]
Autor DH, 2004, AM ECON REV, V94, P440, DOI 10.1257/0002828041302091
AYRES I, 1991, HARVARD LAW REV, V104, P817, DOI 10.2307/1341506
Ayres I., 2008, Super crunchers: Why thinking-by-numbers is the new way to be smart
Barnard J, 2003, J AM STAT ASSOC, V98, P299, DOI 10.1198/016214503000071
Bayer P, 2009, Q J ECON, V124, P105, DOI 10.1162/qjec.2009.124.1.105
Becker SO, 2002, STAT SOFTWARE
Bench LL, 2003, PRISON J, V83, P367, DOI 10.1177/0032885503260143
Berk R.A., 2003, Criminology and Public Policy, V2, P215, DOI DOI 10.1111/J.1745-9133.2003.TB00121.X
BERK RA, 1985, AM SOCIOL REV, V50, P253, DOI 10.2307/2095413
Berk RA, 1999, J AM STAT ASSOC, V94, P1045, DOI 10.2307/2669918
Berry CR, 2007, HARRIS SCH WORK PAP
Bertrand M, 2004, Q J ECON, V119, P249, DOI 10.1162/003355304772839588
Black Bernard S., 2008, 1032005 ECGI
Boyd CL, 2010, AM J POLIT SCI, V54, P389, DOI 10.1111/j.1540-5907.2010.00437.x
Brady HE, 2007, MIDW POL SCI ASS CHI
Bubb R., 2009, STATES LAW PROPERTY
Calif. Dep. Correct. (CDC), 2000, OP MAN
Camp SD, 2005, CRIME DELINQUENCY, V51, P425, DOI 10.1177/0011128704271471
CARD D, 1994, AM ECON REV, V84, P772
Card D, 2008, AM ECON REV, V98, P2242, DOI 10.1257/aer.98.5.2242
Chay KY, 2005, J POLIT ECON, V113, P376, DOI 10.1086/427462
Chen M.Keith., 2007, American Law and Economics Review, V9, P1, DOI [DOI 10.1093/ALER/AHM006, 10.1093/aler/ahm006]
Clark W, 1930, YALE LAW J, V39, P1013, DOI 10.2307/790111
Dehejia RH, 1999, J AM STAT ASSOC, V94, P1053, DOI 10.2307/2669919
Dehejia RH, 2002, REV ECON STAT, V84, P151, DOI 10.1162/003465302317331982
DiNardo J, 2004, Q J ECON, V119, P1383, DOI 10.1162/0033553042476189
Donohue J.J., 2007, Journal of Empirical Legal Studies, V4, P69
Donohue JJ, 2005, STANFORD LAW REV, V58, P791
Douglas W.O., 1950, YALE LAW J, V59, P187
Eggers AC, 2009, AM POLIT SCI REV, V103, P513, DOI 10.1017/S0003055409990190
Epstein L, 2005, NEW YORK U LAW REV, V80, P1
Epstein L, 2002, U CHICAGO LAW REV, V69, P1, DOI 10.2307/1600349
Fisher R.A., 1925, STAT METHODS RES WOR
Fisher RA., 1935, DESIGN EXPT
Frangakis CE, 2002, BIOMETRICS, V58, P21, DOI 10.1111/j.0006-341X.2002.00021.x
Galiani S, 2005, J POLIT ECON, V113, P83, DOI 10.1086/426041
Gerber Alan, 2008, 14206 NBER
Gerber AS, 2000, AM POLIT SCI REV, V94, P653, DOI 10.2307/2585837
Gibson JL, 2008, AM POLIT SCI REV, V102, P59, DOI 10.1017/S0003055408080015
Green DP, 2010, CRIMINOLOGY, V48, P357, DOI 10.1111/j.1745-9125.2010.00189.x
Greiner DJ, 2008, HARVARD LAW REV, V122, P533
Greiner DJ, 2010, REV EC STAT IN PRESS
Grogger J, 2006, J AM STAT ASSOC, V101, P878, DOI 10.1198/016214506000000168
Guttentag MD, 2008, J EMPIR LEGAL STUD, V5, P239, DOI 10.1111/j.1740-1461.2008.00124.x
Hahn Jinyong., 1999, NBER Working Paper 7131
Hahn JY, 2001, ECONOMETRICA, V69, P201, DOI 10.1111/1468-0262.00183
Hansen BB, 2004, J AM STAT ASSOC, V99, P609, DOI 10.1198/016214504000000647
Hansen BB, 2010, STAT SOFTWARE
Heckman J, 1998, ECONOMETRICA, V66, P1017, DOI 10.2307/2999630
Heckman J.J., 1999, Handbook of Labor Economics, V3A, P1865, DOI DOI 10.1016/S1573-4463(99)03012-6
Heckman JJ, 1998, REV ECON STUD, V65, P261, DOI 10.1111/1467-937X.00044
Helland E, 2004, J LAW ECON, V47, P93, DOI 10.1086/378694
Hirano K, 2000, Biostatistics, V1, P69, DOI 10.1093/biostatistics/1.1.69
Hirano K., 2004, Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, V226164, P73
Hjalmarsson R, 2009, AM LAW ECON REV, V11, P209, DOI 10.1093/aler/ahn016
Hjalmarsson R, 2009, J LAW ECON, V52, P778
Ho DE, 2007, POLIT ANAL, V15, P199, DOI 10.1093/pan/mpl013
Ho DE, 2006, J AM STAT ASSOC, V101, P888, DOI 10.1198/016214505000001258
Ho DE, 2005, YALE LAW J, V114, P2011
Ho DE, 2005, YALE LAW J, V114, P1997
Ho DE, 2004, STAT SOFTWARE
HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064
Hopkins DJ, 2009, CELS 2009 4 ANN C EM
Iacus SM, 2009, STAT SOFTWARE
Iacus SM, 2009, POLIT ANAL IN PRESS
Imai K, 2004, J AM STAT ASSOC, V99, P854, DOI 10.1198/016214504000001187
Imbens GW, 2008, J ECONOMETRICS, V142, P615, DOI 10.1016/j.jeconom.2007.05.001
Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706
Imbens GW, 2005, J ROY STAT SOC A STA, V168, P109, DOI 10.1111/j.1467-985X.2004.00339.x
Imbens GW, 2004, REV ECON STAT, V86, P4, DOI 10.1162/003465304323023651
Joffe MM, 1999, AM J EPIDEMIOL, V150, P327
Kane ThomasJ., 2006, American Law and Economics Review, V8, P183, DOI DOI 10.1093/ALER/AHL007
King G, 2007, J POLICY ANAL MANAG, V26, P479, DOI 10.1002/pam.20279
King G, 2007, INT STUD QUART, V51, P183, DOI 10.1111/j.1468-2478.2007.00445.x
Kritzer Herbert., 2010, OXFORD HDB EMPIRICAL, P875
Lalive R, 2008, J ECONOMETRICS, V142, P785, DOI 10.1016/j.jeconom.2007.05.013
LALONDE RJ, 1986, AM ECON REV, V76, P604
LEAMER EE, 1983, AM ECON REV, V73, P31
Lee DS, 2008, J ECONOMETRICS, V142, P675, DOI 10.1016/j.jeconom.2007.05.004
Lee DS, 2010, J ECON LIT, V48, P281, DOI 10.1257/jel.48.2.281
Lee DavidS., 2005, CRIME PUNISHMENT MYO
Lemieux T, 2008, J ECONOMETRICS, V142, P807, DOI 10.1016/j.jeconom.2007.05.014
List J. A., 2006, 12777 NBER
Listokin Y, 2009, AM LAW ECON REV, V11, P608, DOI 10.1093/aler/ahp015
Listokin Y, 2008, AM LAW ECON REV, V10, P159, DOI 10.1093/aler/ahn010
Litvak K, 2007, MICH LAW REV, V105, P1857
Ludwig J, 2007, Q J ECON, V122, P159, DOI 10.1162/qjec.122.1.159
MANSKI CF, 1990, AM ECON REV, V80, P319
McCrary J, 2008, J ECONOMETRICS, V142, P698, DOI 10.1016/j.jeconom.2007.05.005
Mocan N.H., 2006, Contributions to Economic Analysis and Policy, V5, P13
Moore U, 1943, YALE LAW J, V53, P1, DOI 10.2307/792883
Morantz AD, 2010, 413 STANF LAW EC
Morgan SL, 2007, ANAL METHOD SOC RES, P1, DOI 10.1017/CBO9780511804564
Pager D, 2003, AM J SOCIOL, V108, P937, DOI 10.1086/374403
Papachristos T.M., 2007, J EMPIR LEGAL STUD, V4, P223, DOI DOI 10.1111/J.1740-1461.2007.00096.X
Persson T, 2002, EUR ECON REV, V46, P908, DOI 10.1016/S0014-2921(01)00224-0
Petersilia J, 2008, CRIME JUSTICE, V37, P207, DOI 10.1086/520944
Petersilia Joan., 1986, Prison versus Probation in California: Implications for Crime and Offender Recidivism
Pfaff J, 2010, PLEA MORE AGGREGATIO
Qian Y, 2007, REV ECON STAT, V89, P436, DOI 10.1162/rest.89.3.436
Ridgeway G, 2006, J QUANT CRIMINOL, V22, P1, DOI 10.1007/s10940-005-9000-9
Rosenbaum P. R., 2002, OBSERVATIONAL STUDIE
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
ROSENBAUM PR, 1984, J AM STAT ASSOC, V79, P516, DOI 10.2307/2288398
ROSENBAUM PR, 1983, J ROY STAT SOC B MET, V45, P212
Rubin D., 1977, J EDUC STAT, V2, P1, DOI DOI 10.3102/10769986002001001
RUBIN DB, 1979, J AM STAT ASSOC, V74, P318, DOI 10.2307/2286330
RUBIN DB, 1976, BIOMETRICS, V32, P109, DOI 10.2307/2529342
RUBIN DB, 1973, BIOMETRICS, V29, P159, DOI 10.2307/2529684
Rubin DB, 2006, MATCHED SAMPLING FOR CAUSAL EFFECTS, P1, DOI 10.2277/ 0521674360
RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350
RUBIN DB, 1978, ANN STAT, V6, P34, DOI 10.1214/aos/1176344064
Rubin DB, 1976, P SOC STAT SECT AM S, P233
Rubin DB, 2008, ANN APPL STAT, V2, P808, DOI 10.1214/08-AOAS187
Rubinfeld DL, 2010, J INST THEOR ECON, V166, P62, DOI 10.1628/093245610790711519
Schlegel JohnHenry., 1995, American Legal Realism and Empirical Social Science
Sekhon JS, 2009, ANNU REV POLIT SCI, V12, P487, DOI 10.1146/annurev.polisci.11.060606.135444
Sekhon JS, 2011, J STAT SOFT IN PRESS
Sobel ME, 2000, J AM STAT ASSOC, V95, P647, DOI 10.2307/2669410
STIGLER SM, 1977, J AM STAT ASSOC, V72, P493, DOI 10.2307/2286206
Stuart Elizabeth A, 2008, Best practices in quantitative methods, P155
THISTLETHWAITE DL, 1960, J EDUC PSYCHOL, V51, P309, DOI 10.1037/h0044319
Urquiola M, 2009, AM ECON REV, V99, P179, DOI 10.1257/aer.99.1.179
van der Klaauw W, 2002, INT ECON REV, V43, P1249, DOI 10.1111/1468-2354.t01-1-00055
Zimring FranklinE. Gordon J. Hawkins., 1973, DETERRENCE LEGAL THR
NR 141
TC 37
Z9 41
U1 1
U2 29
PU ANNUAL REVIEWS
PI PALO ALTO
PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA
SN 1550-3585
BN 978-0-8243-4107-7
J9 ANNU REV LAW SOC SCI
JI Annu. Rev. Law. Soc. Sci.
PY 2011
VL 7
BP 17
EP 40
DI 10.1146/annurev-lawsocsci-102510-105423
PG 24
WC Law; Sociology
WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH); Social Science Citation Index (SSCI)
SC Government & Law; Sociology
GA BYL92
UT WOS:000299297100002
DA 2024-09-05
ER
PT J
AU Zheng, C
Zhang, Q
Long, GD
Zhang, CQ
Young, SD
Wang, W
AF Zheng, Cheng
Zhang, Qin
Long, Guodong
Zhang, Chengqi
Young, Sean D.
Wang, Wei
TI Measuring Time-Sensitive and Topic-Specific Influence in Social Networks
With LSTM and Self-Attention
SO IEEE ACCESS
LA English
DT Article
DE Social influence; time-sensitive; topic-specific; LSTM; self-attention
AB Influence measurement in social networks is vital to various real-world applications, such as online marketing and political campaigns. In this paper, we investigate the problem of measuring time-sensitive and topic-specific influence based on streaming texts and dynamic social networks. A user & x2019;s influence can change rapidly in response to a new event and vary on different topics. For example, the political influence of Douglas Jones increased dramatically after winning the Alabama special election, and then rapidly decreased after the election week. During the same period, however, Douglas Jones & x2019; influence on sports remained low. Most existing approaches can only model the influence based on static social network structures and topic distributions. Furthermore, as popular social networking services embody many features to connect their users, multi-typed interactions make it hard to learn the roles that different interactions play when propagating information. To address these challenges, we propose a Time-sensitive and Topic-specific Influence Measurement (TTIM) method, to jointly model the streaming texts and dynamic social networks. We simulate the influence propagation process with a self-attention mechanism to learn the contributions of different interactions and track the influence dynamics with a matrix-adaptive long short-term memory. To the best of our knowledge, this is the first attempt to measure time-sensitive and topic-specific influence. Furthermore, the TTIM model can be easily adapted to supporting online learning which consumes constant training time on newly arrived data for each timestamp. We comprehensively evaluate the proposed TTIM model on five datasets from Twitter and Reddit. The experimental results demonstrate promising performance compared to the state-of-the-art social influence analysis models and the potential of TTIM in visualizing influence dynamics and topic distribution.
C1 [Zheng, Cheng; Wang, Wei] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA.
[Zhang, Qin; Long, Guodong; Zhang, Chengqi] Univ Technol Sydney, Ctr Artificial Intelligence, Fac Engn & IT FEIT, Ultimo, NSW 2007, Australia.
[Young, Sean D.] Univ Calif Irvine, Irvine, CA 92697 USA.
C3 University of California System; University of California Los Angeles;
University of Technology Sydney; University of California System;
University of California Irvine
RP Wang, W (corresponding author), Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA.
EM weiwang@cs.ucla.edu
RI zhang, chao/IXD-9965-2023; zhang, chao/HTO-2468-2023; Zhang,
Cheng/JAD-2236-2023
OI Wang, Wei/0000-0002-8180-2886; Zhang, Chengqi/0000-0001-5715-7154
FU National Institutes of Health [U01HG008488]; National Institute of
Allergy and Infectious Diseases [R56AI125105, 7R01AI132030]; National
Institute of Mental Health [5R01MH106415]
FX The work was supported in part by the National Institutes of Health
under Grant U01HG008488, in part by the National Institute of Allergy
and Infectious Diseases under Grant R56AI125105 and Grant 7R01AI132030,
and in part by the National Institute of Mental Health under Grant
5R01MH106415.
CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
Aggarwal C. C., 2012, P SIAM INT C DAT MIN, P636, DOI DOI 10.1137/1.9781611972825.55
[Anonymous], 2013, PREPRINT ARXIV 1308
[Anonymous], Proceedings of the 20th international conference on World wide web, DOI DOI 10.1145/1963405.1963504
[Anonymous], 2005, SIGKDD
Badashian AS, 2016, 2016 IEEE/ACM 3RD INTERNATIONAL WORKSHOP ON CROWDSOURCING IN SOFTWARE ENGINEERING (CSI-SE), P15, DOI [10.1109/CSI-SE.2016.011, 10.1145/2897659.2897663]
Bakshy E., 2011, P 4 ACM INT C WEB SE, P65
Bi B, 2014, WSDM'14: PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P513, DOI 10.1145/2556195.2556229
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Campbell C.S., 2003, P 12 INT C INFORM KN, P528, DOI DOI 10.1145/956863.956965
Cao Q, 2020, PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), P70, DOI 10.1145/3336191.3371834
Chen S, 2015, PROC VLDB ENDOW, V8, P666, DOI 10.14778/2735703.2735706
Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047
Cossu JV, 2015, SECOND EUROPEAN NETWORK INTELLIGENCE CONFERENCE (ENIC 2015), P83, DOI 10.1109/ENIC.2015.20
Domingos P., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P57, DOI 10.1145/502512.502525
Gao Bin, 2011, P 17 ACM SIGKDD INT, P96, DOI DOI 10.1145/2020408
Garimella K, 2016, PROCEEDINGS OF THE 2016 ACM WEB SCIENCE CONFERENCE (WEBSCI'16), P200, DOI 10.1145/2908131.2908170
Gers FA, 2000, IEEE IJCNN, P189, DOI 10.1109/IJCNN.2000.861302
Glorot X., 2010, JMLR Workshop and Conference Proceedings., P249
Hochreiter S., 1997, Neural Comput., V9, P1735, DOI 10.1162/neco.1997.9.8.1735
Huang J, 2005, IEEE T KNOWL DATA EN, V17, P299, DOI 10.1109/TKDE.2005.50
Jagarlamudi J., 2012, EACL 2012 13 C EUROP, P204
Kelman H. C., 1958, Journal of Conflict Resolution, P51, DOI [10.1177/002200275800200106, DOI 10.1177/002200275800200106]
Kempe David, 2003, Theory Comput., P137, DOI DOI 10.1145/956750.956769
Kingma D. P., 2014, INT C LEARNING REPRE
Pal A., 2011, P 4 ACM INT C WEB SE, P45, DOI [10.1145/1935826.1935843, DOI 10.1145/1935826.1935843]
Qiu JZ, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2110, DOI 10.1145/3219819.3220077
Ranganath S, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P43, DOI 10.1145/2835776.2835807
Richardson M., 2002, KDD 2002, P61, DOI DOI 10.1145/775047.775057
Riquelme F, 2016, INFORM PROCESS MANAG, V52, P949, DOI 10.1016/j.ipm.2016.04.003
Serdyukov P., 2008, P 17 ACM C INF KNOWL, P1133, DOI [10.1145/1458082.1458232, DOI 10.1145/1458082.1458232]
Sha M, 2018, INT CONF DAT MIN WOR, P1429, DOI 10.1109/ICDMW.2018.00203
Tang J, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P347
Tang J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P807
Tinati R., 2012, WWW, DOI DOI 10.1145/2187980.2188256
Vaswani A., 2017, PROC NEURIPS, P5998
Velickovic P., 2018, PROC INT C LEARN REP
Wang X., 2019, PROC ACM TURING CELE, P1
Weng J., 2010, P 3 ACM INT C WEB SE, P261, DOI [10.1145/1718487.1718520, DOI 10.1145/1718487.1718520]
Yang Y, 2017, IEEE T KNOWL DATA EN, V29, P2615, DOI 10.1109/TKDE.2017.2734667
Yu WC, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2663, DOI 10.1145/3219819.3220000
Zhang Jiani, 2018, ARXIV180307294
Zhuang HL, 2013, IEEE DATA MINING, P1313, DOI 10.1109/ICDM.2013.145
NR 43
TC 15
Z9 16
U1 1
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2020
VL 8
BP 82481
EP 82492
DI 10.1109/ACCESS.2020.2991683
PG 12
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA ML5JL
UT WOS:000549502200065
PM 32577335
OA Green Submitted, Green Accepted, gold
DA 2024-09-05
ER
PT C
AU Amato, F
Di Cicco, F
Fonisto, M
Giacalone, M
AF Amato, Flora
Di Cicco, Francesco
Fonisto, Mattia
Giacalone, Marco
BE Barolli, L
Hussain, F
Enokido, T
TI A Survey on Neural Recommender Systems: Insights from a Bibliographic
Analysis
SO ADVANCED INFORMATION NETWORKING AND APPLICATIONS, AINA-2022, VOL 3
SE Lecture Notes in Networks and Systems
LA English
DT Proceedings Paper
CT 36th International Conference on Advanced Information Networking and
Applications (AINA)
CY APR 13-15, 2022
CL Sydney, AUSTRALIA
DE Recommender systems; Deep learning; Research trend analysis
AB In recent years, deep learning has gotten a lot of attention, notably in fields like Computer Vision and Natural Language Processing. With the growing amount of online information, recommender systems have shown to be an effective technique for coping with information overload. The purpose of this article is to provide a comprehensive overview of recent deep learning-based recommender systems. Furthermore, it provides an experimental assessment of prominent topics within the latest published papers in the field. Results showed that explainable AI and Graph Neural Networks are two of the most attractive topics in the field to this day, and that the adoption of deep learning methods is increasing over.
C1 [Amato, Flora; Fonisto, Mattia] Univ Naples Federico II, I-80125 Naples, Italy.
[Di Cicco, Francesco] Univ Turin, I-10124 Turin, Italy.
[Giacalone, Marco] Vrije Univ Brussel, B-1050 Brussels, Belgium.
C3 University of Naples Federico II; University of Turin; Vrije
Universiteit Brussel
RP Fonisto, M (corresponding author), Univ Naples Federico II, I-80125 Naples, Italy.
EM flora.amato@unina.it; francesco.dicicco@unito.it;
mattia.fonisto@unina.it; marco.giacalone@vub.be
RI Giacalone, Marco/IAN-6488-2023; Amato, Flora/N-1408-2016
OI Giacalone, Marco/0000-0001-7097-4394; Amato, Flora/0000-0002-5128-5558
FU European Union [101046629]
FX This paper has been produced with the financial support of the Justice
Programme of the European Union, 101046629 CREA2, JUST-2021-EJUSTICE,
JUST2027 Programme. The contents of this report are the sole
responsibility of the authors and can in no way be taken to reflect the
views of the European Commission.
NR 0
TC 0
Z9 0
U1 3
U2 4
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2367-3370
EI 2367-3389
BN 978-3-030-99619-2; 978-3-030-99618-5
J9 LECT NOTE NETW SYST
PY 2022
VL 451
BP 104
EP 114
DI 10.1007/978-3-030-99619-2_10
PG 11
WC Computer Science, Information Systems; Computer Science, Theory &
Methods; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BU6OK
UT WOS:000926702400010
DA 2024-09-05
ER
PT C
AU Boukhers, Z
Mayr, P
Peroni, S
AF Boukhers, Zeyd
Mayr, Philipp
Peroni, Silvio
GP ASSOC COMP MACHINERY
TI BiblioDAP'21: The 1st Workshop on Bibliographic Data Analysis and
Processing
SO KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE
DISCOVERY & DATA MINING
LA English
DT Proceedings Paper
CT 27th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD)
CY AUG 14-18, 2021
CL ELECTR NETWORK
DE Bibliographic data; Digital libraries; Machine Learning; Data Science
AB Automatic processing of bibliographic data becomes very important in digital libraries, data science and machine learning due to its importance in keeping pace with the significant increase of published papers every year from one side and to the inherent challenges from the other side. This processing has several aspects including but not limited to I) Automatic extraction of references from PDF documents, II) Building an accurate citation graph, III) Author name disambiguation, etc. Bibliographic data is heterogeneous by nature and occurs in both structured (e.g. citation graph) and unstructured (e.g. publications) formats. Therefore, it requires data science and machine learning techniques to be processed and analysed. Here we introduce BiblioDAP'21: The 1st Workshop on Bibliographic Data Analysis and Processing.
C1 [Boukhers, Zeyd] Univ Koblenz Landau, Inst Web Sci & Technol, Koblenz, Germany.
[Mayr, Philipp] GESIS Leibniz Inst Social Sci, Cologne, Germany.
[Peroni, Silvio] Univ Bologna, Dept Class Philol & Italian Studies, Res Ctr Open Scholarly Metadata, Bologna, Italy.
C3 University of Koblenz & Landau; Leibniz Institut fur
Sozialwissenschaften (GESIS); University of Bologna
RP Boukhers, Z (corresponding author), Univ Koblenz Landau, Inst Web Sci & Technol, Koblenz, Germany.
EM boukhers@uni-koblenz.de; philipp.mayr@gesis.org; silvio.peroni@unibo.it
RI Boukhers, Zeyd/HZL-0733-2023
OI Boukhers, Zeyd/0000-0001-9778-9164
CR Boukhers Zeyd, 2021, 2021 ACM IEEE JOINT, P1
Cabanac Guillaume, 2020, ADV INFORM RETRIEVAL, V12036, P641
Chang M., 2020, EUR C COMP VIS SPRIN, P171, DOI DOI 10.1007/978-3-030-58577-8_11
Ferreira Anderson A., 2020, AUTOMATIC DISAMBIGUA, DOI DOI 10.2200/S01011ED1V01Y202005ICR070
Hosseini A, 2019, ACM-IEEE J CONF DIG, P432, DOI 10.1109/JCDL.2019.00105
Jeong C, 2020, SCIENTOMETRICS, V124, P1907, DOI 10.1007/s11192-020-03561-y
Tekles A, 2020, QUANT SCI STUD, V1, P1510, DOI 10.1162/qss_a_00081
Visser M, 2021, QUANT SCI STUD, V2, P20, DOI [10.1162/qss_a_00112, 10.1162/qes_a_00112]
NR 8
TC 0
Z9 0
U1 0
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 978-1-4503-8332-5
PY 2021
BP 4110
EP 4111
DI 10.1145/3447548.3469482
PG 2
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BS6LU
UT WOS:000749556804051
OA Green Submitted, Green Published
DA 2024-09-05
ER
PT J
AU Wu, H
Gu, XM
Zhao, YJ
Liu, W
AF Wu, Hui
Gu, Xiaomin
Zhao, Yuanjun
Liu, Wei
TI Research on the Relationship between Structural Hole Location, Knowledge
Management and Cooperative Innovation Performance in Artificial
Intelligence
SO KNOWLEDGE MANAGEMENT RESEARCH & PRACTICE
LA English
DT Article; Early Access
DE Structure hole location; collaborative innovation performance; knowledge
management; artificial intelligence
ID SOCIAL NETWORK; DECISION
AB This paper builds a conceptual model of the relationship between structural hole location, knowledge management, and collaborative innovation performance in the artificial intelligence environment. A questionnaire survey was conducted on 267 companies, and sample data were analysed using SEM statistics. In the artificial intelligence environment, under the influence of the embedded relationship of the collaborative innovation network structure, the influence of network structure hole position on the performance of collaborative innovation is discussed. The research results show that the location of network structure holes has a direct impact on the performance of collaborative innovation; At the same time, the location of network structure holes has a significant positive impact on knowledge management, and knowledge management plays a part of the mediating role in the process of network structure hole locations affecting collaborative innovation performance.
C1 [Wu, Hui; Gu, Xiaomin] Shanghai Lixin Univ Accounting & Finance, Sch Financial Technol, Shanghai, Peoples R China.
[Zhao, Yuanjun] Shanghai Lixin Univ Accounting & Finance, Sch Business Adm, Shanghai, Peoples R China.
[Liu, Wei] Qingdao Univ, Business Sch, Qingdao, Peoples R China.
C3 Shanghai Lixin University of Accounting & Finance; Shanghai Lixin
University of Accounting & Finance; Qingdao University
RP Gu, XM (corresponding author), 2800 Wenxiang Rd, Shanghai 201620, Peoples R China.
EM guxiaomin126@163.com
RI Liu, Wei/ABB-7317-2021
FU National Social Science Fund of China [18CGL015]
FX This work was supported by the National Social Science Fund of China
[(Grant No. 18CGL015)].
CR Abubakar AM, 2019, INT J INFORM MANAGE, V49, P45, DOI 10.1016/j.ijinfomgt.2019.02.006
Bettiol M, 2011, KNOWL MAN RES PRACT, V9, P305, DOI 10.1057/kmrp.2011.35
Gloor PA, 2008, INT J PROD RES, V46, P1357, DOI 10.1080/00207540701224582
Kane GC, 2017, INFORM ORGAN-UK, V27, P37, DOI 10.1016/j.infoandorg.2017.01.001
Liu Z, 2020, COMPLEXITY, V2020, DOI 10.1155/2020/2145951
Liu Z, 2020, IEEE ACCESS, V8, P48264, DOI 10.1109/ACCESS.2020.2978911
Liu Z, 2019, IEEE ACCESS, V7, P141404, DOI 10.1109/ACCESS.2019.2944000
Liu Z, 2018, ASIA PAC J OPER RES, V35, DOI 10.1142/S0217595918400043
Maleszka M, 2019, ENTERP INF SYST-UK, V13, P1120, DOI 10.1080/17517575.2018.1526325
Nemati HR, 2002, DECIS SUPPORT SYST, V33, P143, DOI 10.1016/S0167-9236(01)00141-5
Park JY, 2017, KNOWL MAN RES PRACT, V15, P560, DOI 10.1057/s41275-017-0071-9
Sun L, 2020, NEURAL COMPUT APPL, V32, P15357, DOI 10.1007/s00521-019-04125-9
Sun WQ, 2020, INT J INFORM MANAGE, V50, P557, DOI 10.1016/j.ijinfomgt.2018.11.017
Vaccaro A, 2010, TECHNOL FORECAST SOC, V77, P1076, DOI 10.1016/j.techfore.2010.02.006
Valkokari K, 2012, KNOWL MAN RES PRACT, V10, P27, DOI 10.1057/kmrp.2011.39
Wang FT, 2020, INF SYST E-BUS MANAG, V18, P311, DOI 10.1007/s10257-019-00414-x
Xie MH, 2020, J COMPUT APPL MATH, V372, DOI 10.1016/j.cam.2020.112723
Yang RJ, 2020, INT J INFORM MANAGE, V50, P452, DOI 10.1016/j.ijinfomgt.2019.05.027
NR 18
TC 11
Z9 11
U1 17
U2 170
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 1477-8238
EI 1477-8246
J9 KNOWL MAN RES PRACT
JI Knowl. Manag. Res. Pract.
PD 2020 SEP 3
PY 2020
DI 10.1080/14778238.2020.1813642
EA SEP 2020
PG 10
WC Information Science & Library Science; Management
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science; Business & Economics
GA NH9YD
UT WOS:000565015600001
DA 2024-09-05
ER
PT C
AU Wen, Z
Rui, W
AF Wen, Zhang
Rui, Wang
BE Deng, MG
Ye, JM
Kaminishi, K
Duysters, G
DeHoyos, A
TI Research on the Multilevel Indicator Evaluation Model of Online Learning
Based on Fuzzy Set
SO PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INNOVATION AND
MANAGEMENT, VOLS I AND II
LA English
DT Proceedings Paper
CT 7th International Conference on Innovation and Management
CY DEC 04-05, 2010
CL Wuhan Univ Technol, Wuhan, PEOPLES R CHINA
HO Wuhan Univ Technol
DE Entropy; Online learning; Weight; Fuzzy Comprehensive evaluation
AB Learning evaluation is an effective way to ensure the quality of online education. However, most of online learning evaluation models are not fully consider the characteristics of online learning. This paper, from the view of the characteristics of online learning, establishes an index system of evaluation of the online learning's effect. Besides, weight of every factor affecting online learning is calculated by using entropy method. At the same time, a model based on entropy weight of the fuzzy comprehensive evaluation is established and its calculation is given out. At last, the learning effects of a learner are evaluated and its result is analyzed by this model.
C1 [Wen, Zhang] Gannan Normal Univ, Off Recruitment & Employment, Ganzhou 341000, Peoples R China.
[Rui, Wang] Gannan Normal Univ, Sch Business, Ganzhou 341000, Peoples R China.
C3 Gannan Normal University; Gannan Normal University
RP Wen, Z (corresponding author), Gannan Normal Univ, Off Recruitment & Employment, Ganzhou 341000, Peoples R China.
EM djwhsdlk1982@126.com; 80772557@qq.com
RI ruirui, WANG/KCY-0880-2024
CR BUCKLEY JJ, 1995, FUZZY SET SYSTEMS, P233
Hrieko Mary, 2005, ONLINE ASSESSMENT ME, V10, P299
Qi Huan, 2004, SYSTEM MODELING SIMU, P28
NR 3
TC 0
Z9 0
U1 0
U2 2
PU WUHAN UNIV TECHNOLOGY PRESS
PI WUHAN
PA 122 LUOSHI RD, WUHAN 430070, PEOPLES R CHINA
BN 978-7-5629-3370-0
PY 2010
BP 1456
EP +
PG 2
WC Business; Computer Science, Information Systems; Management; Operations
Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics; Computer Science; Operations Research & Management
Science
GA BUX78
UT WOS:000290638901026
DA 2024-09-05
ER
PT J
AU Montague-Hellen, B
AF Montague-Hellen, Beth
TI Empowering knowledge through AI: open scholarship proactively supporting
well trained generative AI
SO INSIGHTS-THE UKSG JOURNAL
LA English
DT Article
DE AI; licensing; Creative Commons; open access; ChatGPT; copyright; BETH
MONTAGUE
AB Generative AI has taken the world by storm over the last few years, and the world of scholarly communications has not been immune to this. Most discussions in this area address how we can integrate these tools into our workflows, concerns about how researchers and students might misuse the technology or the unauthorised use of copyrighted work. This article argues for a novel viewpoint that librarians and publishers should be encouraging the use of their scholarly content in the training of AI algorithms. Inclusion of scholarly works would advance the reliability and accuracy of the information in training datasets and ensure that this content is included in new knowledge discovery platforms. The article also argues that inclusion can be achieved by improving linkage to content, and, by making sure that licences explicitly allow inclusion in AI training datasets, it advocates for a more collaborative approach to shaping the future of the information landscape in academia.
C1 [Montague-Hellen, Beth] Francis Crick Inst, Lib & Informat Serv, London, England.
C3 Francis Crick Institute
RP Montague-Hellen, B (corresponding author), Francis Crick Inst, Lib & Informat Serv, London, England.
EM beth.montague-hellen@crick.ac.uk
OI Montague-Hellen, Beth/0000-0003-0946-1842
FU Francis Crick Institute - Cancer Research UK [CC0103]; UK Medical
Research Council [CC0103]; Wellcome Trust [CC0103]
FX This work was supported by the Francis Crick Institute which receives
its core funding from Cancer Research UK (CC0103) , the UK Medical
Research Council (CC0103) and the Wellcome Trust (CC0103) .
CR Achiam OJ, 2023, Arxiv, DOI [arXiv:2303.08774, DOI 10.48550/ARXIV.2303.08774]
Aithal S., 2023, SSRN Scholarly Paper 4453581, DOI [10.2139/ssrn.4453581, DOI 10.2139/SSRN.4453581]
[Anonymous], OpenAI
Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165
Chang Edward Y, 2023, 10 INT C COMP SCI CO
Contractor Danish, 2022, FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency, P778, DOI 10.1145/3531146.3533143
Creative Commons, 2009, Defining 'Noncommercial': a study of how the online population understands 'noncommercial use'
Creative Commons, Defining 'Noncommercial'
Creative Commons, CC BY 4.0 License
Fenwick M, 2023, COMPUT LAW SECUR REV, V51, DOI 10.1016/j.clsr.2023.105892
Fricke S, 2018, J MED LIBR ASSOC, V106, P145, DOI 10.5195/jmla.2018.280
Gaudino M, 2021, J AM HEART ASSOC, V10, DOI 10.1161/JAHA.120.019903
Gendron Y, 2022, CRIT PERSPECT ACCOUN, V87, DOI 10.1016/j.cpa.2021.102411
Guadamuz Andre, 2023, TechnoLlama (blog)November 19
Hong Z, 2021, JOM-US, V73, P3383, DOI 10.1007/s11837-021-04902-9
Hosseini M, 2023, COLL RES LIBR, V84, P836
Huang XL, 2023, SCIENTOMETRICS, V128, P2337, DOI 10.1007/s11192-023-04649-x
Jasani Bhavin M., 2015, International Journal of Computer Applications, V120, DOI [10.5120/21258-4115, DOI 10.5120/21258-4115]
Kaebnick Gregory E, 2023, Med Health Care Philos, V26, P499, DOI 10.1007/s11019-023-10176-6
Kahveci, Attribution problem of generative AI, P796
Kahveci ZU, 2023, J INTELLET PROP LAW, V18, P796, DOI 10.1093/jiplp/jpad076
Kraker Peter, 2021, ABI Technik, V41, P3, DOI 10.1515/abitech-2021-0003
Layton, ChatGPT-Show me
Layton Dennis, 2023, Medium (blog)January 30
Lee M, 2023, MATHEMATICS-BASEL, V11, DOI 10.3390/math11102320
Lemley M.A., 2020, FAIR LEARNING, DOI [DOI 10.2139/SSRN.3528447, 10.2139/ssrn.3528447]
Lingard L, 2023, PERSPECT MED EDUC, V12, P261, DOI 10.5334/pme.1072
Lucchi, ChatGPT: a case study, P1
Lucchi N, 2023, EUR J RISK REGUL, DOI 10.1017/err.2023.59
Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009
Margoni Thomas, 2016, Editorial Office News, V9, DOI [10.2139/ssrn.2746044, DOI 10.2139/SSRN.2746044]
Matulionyte Rita, 2023, Intellectual Property Forum: journal of the Intellectual and Industrial Property Society of Australia and New Zealand, V134, P33, DOI [10.3316/informit.485601143177392, DOI 10.3316/INFORMIT.485601143177392]
Mehdi Yusuf, 2023, Official Microsoft Blog (blog)
Meyer JG, 2023, BIODATA MIN, V16, DOI 10.1186/s13040-023-00339-9
Mishra Pooja, 2022, The Serials Librarian, V83, P166, DOI [10.1080/0361526X.2022.2138682, DOI 10.1080/0361526X.2022.2138682]
Morrison Rob, 2011, Faculty Publications, V6
Nah F. F., 2023, Journal of Information Technology Case and Application Research, V25, P277, DOI DOI 10.1080/15228053.2023.2233814
Ojala Marydee, 2020, The Serials Librarian, V78, P98, DOI [10.1080/0361526X.2020.1722894, DOI 10.1080/0361526X.2020.1722894]
Opderbeck DW., 2024, Oklahoma Law Rev, DOI [10.2139/ssrn.4679299, DOI 10.2139/SSRN.4679299]
OpenAI, GPT-4 technical report
OpenAI, 2023, GPT 4 TECHN REP
OpenAI, 2024, OpenAI.com (blog)January 10
Pride D, 2023, LECT NOTES COMPUT SC, V14241, P146, DOI 10.1007/978-3-031-43849-3_13
Priem J, 2022, Arxiv, DOI [arXiv:2205.01833, DOI 10.48550/ARXIV.2205.01833, 10.48550/arXiv.2205.01833]
Rao Dana, 2023, Adobe Blog (blog)March 21
Rathinasabapathy G., 2023, Indian Journal of Information Library & Society, V36, P163
Razack HIA, 2021, SCI EDIT, V8, P134, DOI 10.6087/kcse.244
Romain Danielle, 2023, The Keyword (blog)July 6
Saetra HS, 2023, TECHNOL SOC, V75, DOI 10.1016/j.techsoc.2023.102372
Samuelson P, 2024, COMMUN ACM, V67, P25, DOI 10.1145/3637627
Samuelson P, 2023, SCIENCE, V381, P158, DOI 10.1126/science.adi0656
Sankaran Vishwam, 2024, The IndependentJanuary 9
Schwartz Vered, 2024, UBC Science (blog)January 11
Seibert H., 2019, The Serials Librarian, V76, P103, DOI [10.1080/0361526X.2019.1589893, DOI 10.1080/0361526X.2019.1589893]
Senftleben M, 2023, IIC-INT REV INTELL P, V54, P1535, DOI 10.1007/s40319-023-01399-4
Stihler Catherine, 2023, Creative Commons (blog)August 31
Suber P., 2012, Open access, DOI [10.7551/mitpress/9286.001.0001, DOI 10.7551/MITPRESS/9286.001.0001]
Vezina and Pearson, Should CC-licensed content
Vezina Brigitte, 2021, Creative Commons (blog)March 4
Wodecki Ben, 2023, AI BusinessAugust 8
Wu TY, 2023, IEEE-CAA J AUTOMATIC, V10, P1122, DOI 10.1109/JAS.2023.123618
Zheng HY, 2023, AM J MED, V136, P725, DOI 10.1016/j.amjmed.2023.02.011
NR 62
TC 0
Z9 0
U1 2
U2 2
PU UBIQUITY PRESS LTD
PI LONDON
PA Unit 3N, 6 Osborn Street, LONDON, E1 6TD, ENGLAND
SN 2048-7754
J9 INSIGHTS
JI Insights
PD JUN 18
PY 2024
VL 37
BP 1
EP 9
DI 10.1629/uksg.649
PG 9
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA XA1C5
UT WOS:001258858200001
OA gold
DA 2024-09-05
ER
PT J
AU Javed, S
Adewumi, TP
Liwicki, FS
Liwicki, M
AF Javed, Saleha
Adewumi, Tosin P.
Liwicki, Foteini Simistira
Liwicki, Marcus
TI Understanding the Role of Objectivity in Machine Learning and Research
Evaluation
SO PHILOSOPHIES
LA English
DT Article
DE objectivity; machine learning; ethics; naturalism; philosophy of science
AB This article makes the case for more objectivity in Machine Learning (ML) research. Any research work that claims to hold benefits has to be scrutinized based on many parameters, such as the methodology employed, ethical considerations and its theoretical or technical contribution. We approach this discussion from a Naturalist philosophical outlook. Although every analysis may be subjective, it is important for the research community to keep vetting the research for continuous growth and to produce even better work. We suggest standardizing some of the steps in ML research in an objective way and being aware of various biases threatening objectivity. The ideal of objectivity keeps research rational since objectivity requires beliefs to be based on facts. We discuss some of the current challenges, the role of objectivity in the two elements (product and process) that are up for consideration in ML and make recommendations to support the research community.
C1 [Javed, Saleha; Adewumi, Tosin P.; Liwicki, Foteini Simistira; Liwicki, Marcus] Lulea Univ Technol, EISLAB, Dept Comp Sci Elect & Space Engn, Machine Learning Grp, S-97187 Lulea, Sweden.
C3 Lulea University of Technology
RP Javed, S (corresponding author), Lulea Univ Technol, EISLAB, Dept Comp Sci Elect & Space Engn, Machine Learning Grp, S-97187 Lulea, Sweden.
EM saleha.javed@ltu.se; oluwatosin.adewumi@ltu.se; foteini.liwicki@ltu.se;
marcus.liwicki@ltu.se
RI Javed, saleha/GWZ-8529-2022; Liwicki, Marcus/D-5572-2014
OI Javed, saleha/0000-0002-2123-8187; Adewumi, Tosin/0000-0002-5582-2031;
Liwicki, Marcus/0000-0003-4029-6574
CR Adewumi T.P., 2007, ARXIV EPRINTS
Adewumi TP, 2019, PHILOSOPHIES, V4, DOI 10.3390/philosophies4030041
Adler E.S., 2007, How it's done: An invitation to social research, V3rd
Anney V., 2014, J EMERGING TRENDS ED, V5, P272, DOI DOI 10.1080/13623699.2018.1518748
[Anonymous], 2001, The fate of knowledge
[Anonymous], 2012, From statistics to neural networks: theory and pattern recognition applications
Balci O, 1998, 1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, P41, DOI 10.1109/WSC.1998.744897
Blackwell SE, 2017, SPAN J PSYCHOL, V20, DOI 10.1017/sjp.2017.41
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Cherkassky V., 2007, LEARN DATA CONCEPTS, DOI DOI 10.1002/9780470140529.CH4.[38]L
Creath R., 2020, EMPIRICISM STANFORD
DASTON L, 1992, REPRESENTATIONS, P81
de Jesus SN, 2013, CREATIVITY RES J, V25, P80, DOI 10.1080/10400419.2013.752235
Dictionary Cambridge., 2008, Cambridge Advance Learner's Dictionary, V3rd
Douglas C.M., 2001, DESIGN ANAL EXPT
GORDON DF, 1995, MACH LEARN, V20, P5, DOI 10.1007/BF00993472
Hagan M.T., 2000, NEURAL NETWORK DESIG, V2nd
HARAWAY D, 1988, FEMINIST STUD, V14, P575, DOI 10.2307/3178066
Hartman J., 2013, NATURE NATURALISM PH
Hennessey B.A., 2010, CREATIVITY MOTIVATIO
Indurkhya N, 2010, HDB NATURAL LANGUAGE, V2
Jukola S., 2015, LONGINOS THEORY OBJE, P127
Kazmier L., 1976, Schaum's outline of theory and problems of business statistics
Lavesson Niklas, 2007, International Journal of Intelligent Information and Database Systems, V1, P37, DOI 10.1504/IJIIDS.2007.013284
Lei Y, 2017, PATTERN RECOGN, V65, P58, DOI 10.1016/j.patcog.2016.12.003
Longino H., 2002, SCI SOCIAL KNOWLEDGE
McDermott MBA, ARXIV190701463
Mikolov T., 2013, ARXIV
Morse JM, 2015, QUAL HEALTH RES, V25, P1212, DOI 10.1177/1049732315588501
Musgrave K., ARXIV200308505
Olorisade B.K., 2017, P ML WORKSH 34 INT C
Onwuegbuzie AJ, 2007, QUAL QUANT, V41, P233, DOI 10.1007/s11135-006-9000-3
Papineni K, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P311, DOI 10.3115/1073083.1073135
Parry W.T., 1991, ARISTOTELIAN LOGIC
Reimers N., ARXIV180309578
Reiss J., 2017, SCI OBJECTIVITY STAN
RUBIN HR, 1993, J GEN INTERN MED, V8, P255, DOI 10.1007/BF02600092
SEGERSTRALE U, 1992, CONTEMP SOCIOL, V21, P138, DOI 10.2307/2074813
Shamoo A. E., 2009, RESPONSIBLE CONDUCT, DOI 10.1093/acprof:oso/9780195368246.001.0001
Shamoun D., 2015, OBJECTIVE RISK
Stevens E., 2019, Deep learning with PyTorch essential excerpts
THAGARD P, 1990, CAN J PHILOS, V20, P261
Ware M., 2008, Peer Review: Benefits, Perceptions and Alternatives
White MD, 2009, HANDBOOK OF ECONOMICS AND ETHICS, P301
Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0
Zhang, ARXIV191100536
NR 46
TC 6
Z9 6
U1 0
U2 7
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2409-9287
J9 PHILOSOPHIES
JI Philosophies
PD MAR
PY 2021
VL 6
IS 1
AR 22
DI 10.3390/philosophies6010022
PG 8
WC History & Philosophy Of Science; Philosophy
WE Emerging Sources Citation Index (ESCI)
SC History & Philosophy of Science; Philosophy
GA RG6WP
UT WOS:000635676500001
OA gold
DA 2024-09-05
ER
PT J
AU van de Laar, M
West, RE
Cosma, P
Katwal, D
Mancigotti, C
AF van de Laar, Mindel
West, Richard E.
Cosma, Paris
Katwal, Dennis
Mancigotti, Cristina
TI The value of educational microcredentials in open access online
education: a doctoral education case
SO OPEN LEARNING
LA English
DT Article; Early Access
DE Educational open microcredentials; online learning; Higher Education;
open access; Sub-Saharan Africa; doctoral education
ID PERFORMANCE
AB This research explores the effect of implementing educational open microcredentials on student motivation, engagement, and completion in open access online courses. Our case study reviews the impact on the Community of Learning for African PhD Fellows, a capacity-building project supporting PhD fellows in Sub-Saharan Africa. It builds on an analysis of data from learning analytics, surveys, and semi-structured interviews. Our case study findings indicate that course completion was low, in course offering rounds with and without online certification. Main hurdles to completion are lack of time and lack of direct career benefits or academic value attached to the course completion. We found that, while open access online courses are appreciated by PhD fellows, the implementation of open microcredentials did not provide an incentive towards completion of online courses for this population. Hard and soft copy certificates at this point are more appreciated.
C1 [van de Laar, Mindel; Cosma, Paris; Katwal, Dennis; Mancigotti, Cristina] Maastricht Univ, UNU MERIT, Boschstr 24, NL-6211 AX Maastricht, Netherlands.
[West, Richard E.] Brigham Young Univ, McKay Sch Educ, Provo, UT 84602 USA.
C3 Maastricht University; Brigham Young University
RP van de Laar, M (corresponding author), Maastricht Univ, UNU MERIT, Boschstr 24, NL-6211 AX Maastricht, Netherlands.
EM mindel.vandelaar@maastrichtuniversity.nl
OI West, Richard/0000-0002-1417-0823; van de Laar,
Mindel/0000-0003-4028-9630; Mancigotti, Cristina/0000-0002-6222-6027
FU Sustainablity Theme Group of the School of Business and Economics,
Maastricht University
FX This work was supported by The Sustainablity Theme Group of the School
of Business and Economics, Maastricht University, which supported the
educational round offered to the African Doctoral students in Fall 2019
financially.
CR African Union, 2020, POL GUID DIG TEACH L
Asunka S., 2008, INT REV RES OPEN DIS, V9, P1, DOI 10.19173/irrodl.v9i3.586
Atchley W, 2013, INT REV RES OPEN DIS, V14, P104
Bisaso R, 2010, J HIGH EDUC POLICY M, V32, P343, DOI 10.1080/1360080X.2010.491108
Botha A, 2018, ELECTR J INF SYS DEV, V84, DOI 10.1002/isd2.12007
British Council, 2018, BUILD PHD CAP SUBS A
Cheng Z, 2020, J COMPUT HIGH EDUC, V32, P406, DOI 10.1007/s12528-019-09240-z
Cheng Z, 2018, TECHTRENDS, V62, P190, DOI 10.1007/s11528-018-0249-x
Cloete N, 2014, STUD HIGH EDUC, V39, P1355, DOI 10.1080/03075079.2014.949533
Cross S., 2014, International Journal of e-Assessment, V4
European Commission, 2021, A European approach to micro-credentials
Jarvinen S., 2020, THESIS OULU U APPL S
MICROBOL, 2020, MICR LINK BOL KEY CO
Motheeram P, 2018, TD-J TRANSDISCIPL RE, V14, DOI 10.4102/td.v14i1.463
Randall DL, 2022, OPEN LEARN, V37, P65, DOI 10.1080/02680513.2020.1752166
Sorensen C, 2017, ONLINE LEARN, V21, P206, DOI 10.24059/olj.v21i3.935
UNESCO, 2021, Open educational resources
Van de Laar M., 2017, Transformation in Higher Education. Vol, V2, P1, DOI DOI 10.4102/THE.V2I0.17
West R.E., 2022, HDB OPEN DISTANCE DI, DOI [https://doi.org/10.1007/978-981-19-0351-9, DOI 10.1007/978-981-19-0351-9]
Whitehead Clive., 2017, Sharing higher educations promise beyond the few in Sub-Saharan Africa, DOI [DOI 10.1596/978-1-4648-1050-3, 10.1596/978-1-4648-1050-3]
World Bank, 2020, The COVID-19 Crisis Response: Supporting Tertiary Education for Continuity, Adaptation, and Innovation, DOI DOI 10.1596/33738
NR 21
TC 0
Z9 1
U1 3
U2 13
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0268-0513
EI 1469-9958
J9 OPEN LEARN
JI Open Learn.
PD 2022 MAY 11
PY 2022
DI 10.1080/02680513.2022.2072721
EA MAY 2022
PG 14
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA 1C3VR
UT WOS:000793051400001
OA hybrid
DA 2024-09-05
ER
PT J
AU Liu, H
AF Liu, Huan
TI Research on Performance Prediction of Technological Innovation
Enterprises Based on Deep Learning
SO WIRELESS COMMUNICATIONS & MOBILE COMPUTING
LA English
DT Article
ID SYSTEM; NETWORK
AB High-tech enterprises are the leaders in promoting economic development. The study of the relationship between their scientific and technological innovation capabilities and corporate performance is of far-reaching practical significance for guiding companies to formulate independent innovation strategies scientifically, improving their independent innovation capabilities, and promoting further transformation into an innovative country. In view of the large-scale technological innovation enterprise network, the traditional technological innovation enterprise performance prediction method cannot fully reflect the real-time technological innovation enterprise status. Aiming at the deficiencies of the existing short-term technology innovation enterprise forecasting methods, this paper proposes a technology innovation enterprise performance forecasting method based on deep learning. I analyze the temporal and spatial characteristics of the data of technological innovation enterprises and divide the data according to the temporal characteristics of technological innovation enterprises. According to the spatial relevance of technological innovation enterprises, grouping is carried out by setting different correlation coefficient thresholds. The method of spectral decomposition is used to divide the data of scientific and technological innovation enterprises into trend items and random fluctuation items, to decompose the matrix of scientific and technological innovation enterprises, and to construct a compressed matrix using correlation. Using the deep belief network model in deep learning combined with support vector regression to establish a prediction model for technological innovation enterprises, this paper proposes a convolutional neural network model for performance prediction of scientific and technological innovation enterprises. Through the convolution operation and subsampling operation based on the concept of local window, the feature learning from the local to the whole is completed. This article uses the Naive Bayes model, logistic regression model, support vector regression model, and other mainstream methods to predict and compare the performance of technological innovation enterprises. I use the dropout method to reduce the impact of overfitting during training. The experimental results show that the deep neural network model method used in this article can achieve better prediction results than mainstream methods under the same characteristics. The experimental results on the data set confirm that the method of performance prediction of technology innovation enterprises based on deep learning used in this paper can effectively improve the results of performance prediction of technology innovation enterprises.
C1 [Liu, Huan] Northwest Univ, Sch Econ & Management, Xian 710000, Shaanxi, Peoples R China.
C3 Northwest University Xi'an
RP Liu, H (corresponding author), Northwest Univ, Sch Econ & Management, Xian 710000, Shaanxi, Peoples R China.
EM jiuyue010318@163.com
CR Abudureheman A, 2020, J INTELL FUZZY SYST, V39, P1563, DOI 10.3233/JIFS-179929
[Anonymous], 2018, IEEE T IND INFORM, DOI [10.1109/TII.2018.2809730, DOI 10.1109/TII.2018.2809730]
Beynon MJ, 2015, EXPERT SYST, V32, P141, DOI 10.1111/exsy.12067
Fan C, 2017, APPL ENERG, V195, P222, DOI 10.1016/j.apenergy.2017.03.064
Finn C, 2017, PR MACH LEARN RES, V70
Ge ZQ, 2019, IEEE T CONTR SYST T, V27, P323, DOI 10.1109/TCST.2017.2767022
Guo JJ, 2020, IEEE T WIREL COMMUN, V19, P2827, DOI [10.1109/TWC.2020.2968430, 10.1109/TNSE.2020.2997359]
Han Y, 2019, IEEE T COMMUN, V67, P4020, DOI 10.1109/TCOMM.2019.2900625
He HT, 2019, IEEE WIREL COMMUN, V26, P77, DOI 10.1109/MWC.2019.1800447
Jin HP, 2016, CHEMOMETR INTELL LAB, V151, P228, DOI 10.1016/j.chemolab.2016.01.009
Borrajo ML, 2011, INT J NEURAL SYST, V21, P277, DOI 10.1142/S0129065711002833
Risquet C.P., 2009, INT C ICT INN 2009 S, P217
Saeed-Ul Hassan, 2019, INT J INTELL SYST, V34, P1935, DOI 10.1002/int.22129
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Souza FAA, 2014, CHEMOMETR INTELL LAB, V130, P192, DOI 10.1016/j.chemolab.2013.11.006
Truong HM, 2016, COMPUT HUM BEHAV, V55, P1185, DOI 10.1016/j.chb.2015.02.014
Vafeiadis T, 2015, SIMUL MODEL PRACT TH, V55, P1, DOI 10.1016/j.simpat.2015.03.003
Varisco M, 2018, IFAC PAPERSONLINE, V51, P7, DOI 10.1016/j.ifacol.2018.08.226
Wang K, 2019, IEEE ACCESS, V7, P22554, DOI 10.1109/ACCESS.2019.2894764
Wang XF, 2015, IEEE ACCESS, V3, P1379, DOI 10.1109/ACCESS.2015.2467174
Wen CK, 2018, IEEE WIREL COMMUN LE, V7, P748, DOI 10.1109/LWC.2018.2818160
Westerski A, 2011, IEEE INT ENTERP, P395, DOI 10.1109/EDOCW.2011.14
Xing WL, 2016, COMPUT HUM BEHAV, V58, P119, DOI 10.1016/j.chb.2015.12.007
Yang YW, 2019, IEEE ACCESS, V7, P36579, DOI 10.1109/ACCESS.2019.2901066
Yuan XF, 2018, IEEE T IND ELECTRON, V65, P1508, DOI 10.1109/TIE.2017.2733443
Yuan XF, 2017, IEEE T CONTR SYST T, V25, P1124, DOI 10.1109/TCST.2016.2579609
Zhang JM, 2021, J AMB INTEL HUM COMP, V12, P8427, DOI 10.1007/s12652-020-02572-0
Zhang JM, 2020, MULTIMED TOOLS APPL, V79, P15095, DOI 10.1007/s11042-018-6562-8
Zhang JX, 2019, IEEE T CYBERNETICS, V49, P198, DOI 10.1109/TCYB.2017.2771229
Zhen Z, 2021, NEURAL COMPUT APPL, V33, P755, DOI 10.1007/s00521-020-05106-z
NR 30
TC 1
Z9 1
U1 2
U2 30
PU WILEY-HINDAWI
PI LONDON
PA ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND
SN 1530-8669
EI 1530-8677
J9 WIREL COMMUN MOB COM
JI Wirel. Commun. Mob. Comput.
PD SEP 25
PY 2021
VL 2021
AR 1682163
DI 10.1155/2021/1682163
PG 12
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA WB1IF
UT WOS:000703332200004
OA gold
DA 2024-09-05
ER
PT J
AU Yang, YQ
Chen, LBY
He, WM
Sun, DN
Salas-Pilco, SZ
AF Yang, Yuqin
Chen, Linbaiyu
He, Wenmeng
Sun, Daner
Salas-Pilco, Sdenka Zobeida
TI Artificial Intelligence for Enhancing Special Education for K-12: A
Decade of Trends, Themes, and Global Insights (2013-2023)
SO INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION
LA English
DT Article; Early Access
DE Artificial intelligence (AI); Special education; Special needs students;
Bibliometric analysis
ID ASSISTIVE TECHNOLOGIES; LEARNING-DISABILITIES; BIBLIOMETRIC ANALYSIS;
AMBIENT INTELLIGENCE; MOBILE TECHNOLOGY; AUGMENTED REALITY;
SCHOOL-STUDENTS; CHILDREN; DESIGN; NEEDS
AB This paper provided a review of 210 studies on AI-enhanced special education from 2013 to 2023. Through bibliometric analysis, this review aimed to explore trends, focus areas, developments, and evolving themes of the field of AI for enhancing special education. Several noteworthy findings emerged from our analysis. The trend analysis of publications and citations revealed distinct phases, including an initial exploratory phase (2013-2016) followed by a period of rapid development (2017-2023). keyword co-occurrence networks and emergent word mapping highlight AI's transformative potential, especially in autism spectrum disorder interventions and advancements in learning environments. Emerging trends focus on mathematics learning outcomes and educational equity, evolving through phases of understanding AI's support and integrating advanced tools like virtual reality and educational robots. Topic clustering analysis revealed categories including cognitive rehabilitation and ethical AI integration, emphasizing personalized instructional environments. Implications for research stress the need to bolster foundational skills and explore innovative teaching methods, including addressing challenges in gamified learning and integrating AI seamlessly. The review reveals a need for larger sample sizes and longitudinal studies to enhance statistical robustness and real-world relevance. In educational practices, using AI tools like apps, robots, and simulations can boost engagement and support social and academic progress. Tailored interventions for specific learning difficulties, such as dyslexia and dyscalculia, through intelligent tutoring systems, offer promise for positive learning outcomes. Policymakers are crucial in facilitating technology integration by ensuring comprehensive teacher training, increased funding for tech infrastructure, and strong leadership. Initiatives targeting underserved communities aim to promote equity and access to transformative resources. This study highlights AI's transformative potential in special education, advocating for inclusive and personalized learning environments with ethical Al solutions to address unique challenges faced by special needs students.
C1 [Chen, Linbaiyu; Salas-Pilco, Sdenka Zobeida] Cent China Normal Univ, Fac Artificial Intelligence Educ, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China.
[He, Wenmeng] Wuhan Univ Technol, Wuhan, Hubei, Peoples R China.
[Sun, Daner] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Yang, Yuqin] Cent China Normal Univ, Fac Artificial Intelligence Educ, Hubei Key Lab Digital Educ, Wuhan, Peoples R China.
C3 Central China Normal University; Wuhan University of Technology;
Education University of Hong Kong (EdUHK); Central China Normal
University
RP Salas-Pilco, SZ (corresponding author), Cent China Normal Univ, Fac Artificial Intelligence Educ, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China.; Yang, YQ (corresponding author), Cent China Normal Univ, Fac Artificial Intelligence Educ, Hubei Key Lab Digital Educ, Wuhan, Peoples R China.
EM yangyuqin@ccnu.edu.cn; chenlinbaiyu@mails.ccnu.edu.cn;
hwm20041016@whut.edu.cn; dsun@eduhk.hk; sdenkasp@ccnu.edu.cn
OI Sun, Daner/0000-0002-9813-6306
FU National Natural Science Foundation of China
FX No Statement AvailableDAS:The data of this study are available upon
reasonable request from the corresponding author.
CR Al Jaffal M, 2023, INT J MENT HEALTH PR, V25, P881, DOI 10.32604/ijmhp.2023.028982
Alqarni T, 2021, J BALT SCI EDUC, V20, P558, DOI 10.33225/jbse/21.20.558
Badilla-Quintana MG, 2022, AULA ABIERTA, V51, P227, DOI 10.17811/rifie.51.3.2022.227-236
Badilla-Quintana MG, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12198116
Bagon S, 2018, INT J EMERG TECHNOL, V13, P56, DOI 10.3991/ijet.v13i06.8051
Baldassarri S, 2021, UNIVERSAL ACCESS INF, V20, P239, DOI 10.1007/s10209-020-00725-8
Baragash RS, 2022, J SPEC EDUC TECHNOL, V37, P74, DOI 10.1177/0162643420910413
Bargagna S, 2019, TECHNOL KNOWL LEARN, V24, P315, DOI 10.1007/s10758-018-9366-z
Bates T, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00218-x
Becker BE, 2002, EDUC PSYCHOL-US, V37, P197, DOI 10.1207/S15326985EP3704_1
Berry RAW, 2005, LEARN DISABILITY Q, V28, P35, DOI 10.2307/4126972
Bono-Nuez A, 2014, J AMB INTEL SMART EN, V6, P57, DOI 10.3233/AIS-130241
Bridges SA, 2020, J SPEC EDUC TECHNOL, V35, P3, DOI 10.1177/0162643419836411
Burdette P.J., 2013, J ASYNCHRONOUS LEARN, V17, P65, DOI [DOI 10.24059/OLJ.VL7I3.327, 10.24059/olj.v17i3.327, DOI 10.24059/OLJ.V17I3.327]
Cai S, 2014, COMPUT HUM BEHAV, V37, P31, DOI 10.1016/j.chb.2014.04.018
Cascales-Martínez A, 2017, EURASIA J MATH SCI T, V13, P355, DOI 10.12973/eurasia.2017.00621a
Cataudella S, 2021, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.611818
Cavus N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131910532
Chang CHS, 2022, COMPUT HUM BEHAV, V128, DOI 10.1016/j.chb.2021.107085
Chang CY., 2018, International Journal of Mobile Learning and Organisation, V12, P373, DOI [10.1504/ijmlo.2018.095153, DOI 10.1504/IJMLO.2018.095153]
Chen CM, 2019, UNIVERSAL ACCESS INF, V18, P141, DOI 10.1007/s10209-017-0576-2
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen JH, 2023, OCEAN COAST MANAGE, V244, DOI 10.1016/j.ocecoaman.2023.106775
Chen J, 2020, EARLY CHILD RES Q, V53, P1, DOI 10.1016/j.ecresq.2020.02.002
Cheng SC, 2020, J COMPUT EDUC, V7, P131, DOI 10.1007/s40692-019-00150-8
Cheng YF, 2024, INTERACT TECHNOL SMA, V21, P44, DOI 10.1108/ITSE-04-2022-0045
Cinquin PA, 2019, COMPUT EDUC, V130, P152, DOI 10.1016/j.compedu.2018.12.004
Clabaugh C, 2019, ANNU REV CONTR ROBOT, V2, P33, DOI 10.1146/annurev-control-060117-104911
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Cook DJ, 2009, PERVASIVE MOB COMPUT, V5, P277, DOI 10.1016/j.pmcj.2009.04.001
D'Amico A, 2019, ROBOTICS, V8, DOI 10.3390/robotics8010008
Dai David Y., 2022, Journal of East China Normal University (Educational Sciences), V40, P4, DOI [10.16382/j.cnki.1000-5560.2022.11.002, DOI 10.16382/J.CNKI.1000-5560.2022.11.002]
Di Lieto MC, 2020, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02813
Díez-Palomar J, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.662867
Donmez M, 2023, EDUC INF TECHNOL, V28, P6515, DOI 10.1007/s10639-022-11456-z
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234
Donthu N, 2021, MARK INTELL PLAN, V39, P48, DOI 10.1108/MIP-02-2020-0066
Drigas A, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141610170
du Boulay B, 2016, IEEE INTELL SYST, V31, P76, DOI 10.1109/MIS.2016.93
Erdem E, 2022, J ARTIF INTELL RES, V73, P1131
Fonseca D, 2018, J EDUC COMPUT RES, V56, P940, DOI 10.1177/0735633117733995
Garnier P, 2023, J RES SPEC EDUC NEED, V23, P163, DOI 10.1111/1471-3802.12588
Genc Z, 2021, INT J EMERG TECHNOL, V16, P69, DOI 10.3991/ijet.v16i19.26025
Górriz JM, 2023, INFORM FUSION, V100, DOI 10.1016/j.inffus.2023.101945
Guarini A, 2021, J LEARN DISABIL-US, V54, P83, DOI 10.1177/0022219420950651
Guilford J.P., 1971, The analysis of intelligence
Habgood MPJ, 2011, J LEARN SCI, V20, P169, DOI 10.1080/10508406.2010.508029
Han L., 2018, P INT C ED E LEARN M, V220, P608, DOI [DOI 10.2991/ICEEMT-18.2018.118, 10.2991/iceemt-18.2018.118]
Hofmann V, 2021, LEARN CULT SOC INTER, V30, DOI 10.1016/j.lcsi.2021.100534
Holmes J, 2021, J ABNORM PSYCHOL, V130, P909, DOI 10.1037/abn0000710
Hutson J, 2022, SOCIETIES, V12, DOI 10.3390/soc12040102
Irvine KN, 2018, J NAT CONSERV, V46, P1, DOI 10.1016/j.jnc.2018.08.010
Ojeda-Castelo JJ, 2018, MULTIMED TOOLS APPL, V77, P24013, DOI 10.1007/s11042-018-5678-1
Kacetl J, 2019, EDUC SCI, V9, DOI 10.3390/educsci9030179
Khalfaoui A, 2020, SOC SCI-BASEL, V9, DOI 10.3390/socsci9070116
Khalil M, 2024, J COMPUT HIGH EDUC, V36, P202, DOI 10.1007/s12528-023-09363-4
Khamparia A, 2020, EDUC INF TECHNOL, V25, P3881, DOI 10.1007/s10639-020-10142-2
Khare SK, 2023, INFORM FUSION, V99, DOI 10.1016/j.inffus.2023.101898
Kong SC, 2024, RES PRACT TECH ENHAN, V19, DOI 10.58459/rptel.2024.19030
Kosanic A, 2022, CURR OPIN ENV SUST, V55, DOI 10.1016/j.cosust.2022.101159
Kosmas P, 2018, TECHTRENDS, V62, P594, DOI 10.1007/s11528-018-0294-5
Kramarenko T., 2021, Journal of Physics: Conference Series, V1840, DOI 10.1088/1742-6596/1840/1/012009
Kraus S, 2022, REV MANAG SCI, V16, P2577, DOI 10.1007/s11846-022-00588-8
Kumar S, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121393
Kumar S, 2021, BUS STRATEG ENVIRON, V30, P3454, DOI 10.1002/bse.2813
Lane HC, 2023, INT J ARTIF INTELL E, V33, P427, DOI 10.1007/s40593-023-00359-w
Lee H, 2012, INT J SCI EDUC, V34, P925, DOI 10.1080/09500693.2011.625505
Lin CY, 2016, DISPLAYS, V42, P51, DOI 10.1016/j.displa.2015.02.004
Liu J, 2022, ASIA-PAC EDUC RES, V31, P635, DOI 10.1007/s40299-021-00614-5
Liua Y., 2021, International Journal of Innovation, Creativity and Change, P891, DOI [10.53333/ijicc2013/15369, DOI 10.53333/IJICC2013/15369]
Lorusso ML, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18072368
Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365
Ma Y., 2017, e-Education Research, V38, P123
Maher AJ, 2021, PHYS EDUC SPORT PEDA, V26, P317, DOI 10.1080/17408989.2020.1806996
Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045
Marino MT, 2023, J SPEC EDUC TECHNOL, V38, P404, DOI 10.1177/01626434231165977
Mazon C, 2023, EDUC INF TECHNOL, V28, P9325, DOI 10.1007/s10639-022-11129-x
Mazon C, 2019, COMPUT HUM BEHAV, V93, P235, DOI 10.1016/j.chb.2018.12.001
Mehmood RM, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17020317
Milano S, 2023, NAT MACH INTELL, V5, P333, DOI 10.1038/s42256-023-00644-2
Mitsea E, 2023, EDUC SCI, V13, DOI 10.3390/educsci13070639
Ali MA, 2021, SAGE OPEN, V11, DOI 10.1177/21582440211054494
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Mosher MA, 2022, REV J AUTISM DEV DIS, V9, P334, DOI 10.1007/s40489-021-00259-6
Mukherjee D, 2024, AUTISM, V28, P6, DOI 10.1177/13623613221133176
Muller CM, 2021, J APPL DEV PSYCHOL, V76, DOI 10.1016/j.appdev.2021.101327
Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044
Narin F, 1996, SCIENTOMETRICS, V36, P293, DOI 10.1007/BF02129596
Nguyen UP, 2020, SIMULAT GAMING, V51, P744, DOI 10.1177/1046878120941569
Nilsen S, 2020, INT J INCLUSIVE EDUC, V24, P980, DOI 10.1080/13603116.2018.1503348
Ouherrou N, 2019, EDUC INF TECHNOL, V24, P1777, DOI 10.1007/s10639-018-09852-5
Özgüç CS, 2016, EGIT BILIM, V41, P197, DOI 10.15390/EB.2016.6691
Bastias MP, 2021, PIXEL-BIT, P231, DOI 10.12795/pixelbit.78020
Pincock K, 2024, DISABIL SOC, V39, P571, DOI 10.1080/09687599.2022.2087488
Polychronis SC, 2023, FOCUS AUTISM DEV DIS, V38, P199, DOI 10.1177/10883576221124805
PRITCHARD A, 1969, J DOC, V25, P348
Qahmash AIM, 2018, TECHTRENDS, V62, P647, DOI 10.1007/s11528-018-0298-1
Que EN, 2021, PERTANIKA J SOC SCI, V29, P1487, DOI 10.47836/pjssh.29.3.02
Rashid S, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9020017
Rawat KS, 2021, COMPUT APPL ENG EDUC, V29, P1324, DOI 10.1002/cae.22388
Rimu AJ, 2022, TRANSPORT RES REC, V2676, P250, DOI 10.1177/03611981221092386
Ros M, 2013, INFORM SCIENCES, V220, P86, DOI 10.1016/j.ins.2011.10.005
Safi MF, 2023, INT J DEV DISABIL, V69, P555, DOI 10.1080/20473869.2021.1977596
Sánchez J, 2007, EDUC INF TECHNOL, V12, P149, DOI 10.1007/s10639-007-9039-3
Segaran TC, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2024.e28418
Sivakova V, 2020, PEDAGOGIKA, V92, P122
Smakman MHJ, 2022, FRONT ROBOT AI, V9, DOI 10.3389/frobt.2022.734955
Smith SJ, 2016, J SPEC EDUC TECHNOL, V31, P123, DOI 10.1177/0162643416660839
Snell J, 2018, AM EDUC RES J, V55, P40, DOI 10.3102/0002831217730010
Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2
Spitzer MWH, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0255629
Starks AC, 2023, COMPUT EDUC, V193, DOI 10.1016/j.compedu.2022.104665
Sulaimani MF, 2023, ASSIST TECHNOL, V35, P235, DOI 10.1080/10400435.2022.2035017
Sun D, 2024, INTERACT LEARN ENVIR, V32, P693, DOI 10.1080/10494820.2022.2096640
Sun Y, 2024, EDUC STUD-UK, V50, P186, DOI 10.1080/03055698.2021.1937945
Takahashi I, 2018, INT J DES, V12, P111
Tan SZK, 2024, TECHNOL KNOWL LEARN, V29, P781, DOI 10.1007/s10758-023-09648-8
Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001
Tedre M, 2021, IEEE ACCESS, V9, P110558, DOI 10.1109/ACCESS.2021.3097962
Thapliyal M, 2022, J COMPUT HIGH EDUC, V34, P60, DOI 10.1007/s12528-021-09278-y
Tohara AJT., 2021, Turkish Journal of Computer and Mathematics Education (Turcomat), V12, P3345, DOI DOI 10.17762/TURCOMAT.V12I9.5741
Tomaino MAE, 2022, BEHAV ANAL PRACT, V15, P243, DOI 10.1007/s40617-020-00549-1
Tomlin KA, 2021, J BUS ETHICS, V169, P731, DOI 10.1007/s10551-019-04294-6
Tosto C, 2021, VIRTUAL REAL-LONDON, V25, P879, DOI 10.1007/s10055-020-00485-z
Ugalde L, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.674033
Vahabzadeh A, 2018, BEHAV SCI-BASEL, V8, DOI 10.3390/bs8100085
Vaquero-Blasco MA, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20216211
Verma S, 2020, J BUS RES, V118, P253, DOI 10.1016/j.jbusres.2020.06.057
Warnock M., 1978, SPECIAL ED NEEDS REP
Wei QH, 2023, J BIOMED INFORM, V137, DOI 10.1016/j.jbi.2022.104254
Wu YP, 2020, RES PRACT PERS SEV D, V45, P178, DOI 10.1177/1540796919900955
Yakubu MN, 2020, EDUC INF TECHNOL, V25, P3515, DOI 10.1007/s10639-020-10110-w
Yang X., 2019, ECNU Review of Education, V2, P347, DOI DOI 10.1177/2096531119878590
Yankova Z., 2020, Access to quality inclusive education for children and students with special educational needs, V92, P1300, DOI [10.37547/tajssei/volume03issue03-74, DOI 10.37547/TAJSSEI/VOLUME03ISSUE03-74]
Yenioglu BY, 2023, INTERACT LEARN ENVIR, V31, P4572, DOI 10.1080/10494820.2021.1976802
Yildiz G, 2022, BRIT J EDUC TECHNOL, V53, P2029, DOI 10.1111/bjet.13235
Yu DJ, 2023, EXPERT SYST APPL, V225, DOI 10.1016/j.eswa.2023.120114
Yun-Fang Tu, 2018, International Journal of Mobile Learning and Organisation, V12, P42
Zafar A, 2015, COMPUT APPL ENG EDUC, V23, P542, DOI 10.1002/cae.21625
Zainuddin Z, 2020, EDUC RES REV-NETH, V30, DOI 10.1016/j.edurev.2020.100326
Zeki U, 2023, INTELL AUTOM SOFT CO, V36, P1121, DOI 10.32604/iasc.2023.032554
Zou D, 2022, EDUC INF TECHNOL, V27, P10585, DOI 10.1007/s10639-022-10991-z
NR 143
TC 0
Z9 0
U1 3
U2 3
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1560-4292
EI 1560-4306
J9 INT J ARTIF INTELL E
JI Int. J. Artif. Intell. Educ.
PD 2024 AUG 19
PY 2024
DI 10.1007/s40593-024-00422-0
EA AUG 2024
PG 49
WC Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA D0V9T
UT WOS:001293460100001
DA 2024-09-05
ER
PT J
AU Mubin, O
Alnajjar, F
Trabelsi, Z
Ali, L
Parambil, MMA
Zou, Z
AF Mubin, Omar
Alnajjar, Fady
Trabelsi, Zouheir
Ali, Luqman
Parambil, Medha Mohan Ambali
Zou, Zhao
TI Tracking ChatGPT Research: Insights From the Literature and the Web
SO IEEE ACCESS
LA English
DT Article
DE Chatbots; Bibliometrics; Education; Artificial intelligence; Task
analysis; Market research; Search engines; Natural language processing;
Open Access; ChatGPT; artificial intelligence; natural language
processing; NLM
ID ARTIFICIAL-INTELLIGENCE; SCIENCE
AB This article presents a scientometric and literature analysis of current research on ChatGPT, a conversational AI technology developed by OpenAI. Using various databases, 103 relevant articles were retrieved and analyzed through scientometric, quantitative, and application-based approaches. A Google trend analysis and comparison with other generative AI and chatbot technologies were also carried out. The study provides insights into the distribution of ChatGPT publications across different countries and regions, the network of co-occurring keywords, authorship analysis, article typology, and publishing entities. The findings offer a comprehensive overview of the current state of ChatGPT research, highlighting key directions for future research. The study finds that ChatGPT has gained significant attention and interest in online platforms, particularly in technology, education, and healthcare, and highlights potential ethical and legal concerns related to its use. Its applications extend to several literary and text generation areas. We do note that the sample of extracted publications is lower than anticipated due to the niche area of investigation. The article is relevant to researchers, practitioners, and policymakers interested in the field of AI-powered language models, especially ChatGPT.
C1 [Mubin, Omar; Zou, Zhao] Western Sydney Univ, Sch Comp Data & Math Sci, Sydney, NSW 2751, Australia.
[Alnajjar, Fady; Trabelsi, Zouheir; Ali, Luqman; Parambil, Medha Mohan Ambali] United Arab Emirates Univ UAEU, Coll IT, Al Ain, U Arab Emirates.
C3 Western Sydney University
RP Alnajjar, F (corresponding author), United Arab Emirates Univ UAEU, Coll IT, Al Ain, U Arab Emirates.
EM fady.alnajjar@uaeu.ac.ae
RI ALI, LUQMAN/LDF-2311-2024; Alnajjar, Fady/GRX-4246-2022
OI Alnajjar, Fady/0000-0001-6102-3765; Zou, Zhao/0000-0002-2867-7246; ,
Medha Mohan Ambali Parambil/0000-0002-9336-2902
CR Alawi F, 2023, OR SURG OR MED OR PA, V135, P313, DOI 10.1016/j.oooo.2023.01.002
Aljanabi M., Iraqi J. Comput. Sci. Math., V4, P65
Alshater M., 2022, M EXPLORING ROLE ART, DOI DOI 10.2139/SSRN.4312358
[Anonymous], 2023, ChatGPT Is Dangerous For Islamic Questions and Fatwas
Antaki F, 2023, OPHTHALMOL SCI, V3, DOI 10.1016/j.xops.2023.100324
Armstrong Ashley B, 2023, Who's Afraid of ChatGPT? An Examination of ChatGPT's Implications for LegalWriting, DOI DOI 10.2139/SSRN.4336929
Bartneck C, 2011, SCIENTOMETRICS, V86, P487, DOI 10.1007/s11192-010-0281-x
Bishop L., 2023, Tech. Rep., DOI [10.2139/ssrn.4338995, DOI 10.2139/SSRN.4338995]
Bishop L., 2023, Res. Writ, DOI DOI 10.2139/SSRN.4338981
Blanco-González A, 2022, Arxiv, DOI arXiv:2212.08104
Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165
Cahan P, 2023, STEM CELL REP, V18, P1, DOI 10.1016/j.stemcr.2022.12.009
Chatterjee J, 2023, PATTERNS, V4, DOI 10.1016/j.patter.2022.100676
Chen YR, 2023, Arxiv, DOI [arXiv:2212.10522, 10.48550/arXiv.2212.10522]
Choi J., 2022, J. Legal Educ., V71
Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148
Dave T, 2023, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1169595
Day T, 2023, PROF GEOGR, V75, P1024, DOI 10.1080/00330124.2023.2190373
De Angelis L, 2023, FRONT PUBLIC HEALTH, V11, DOI 10.3389/fpubh.2023.1166120
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Di Girolamo N, 2020, SCIENTOMETRICS, V125, P795, DOI 10.1007/s11192-020-03632-0
Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662
Fuentes S. P., 2023, Tech. Rep, DOI [10.53593/n3579a, DOI 10.53593/N3579A]
Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312
Google Trends, About us
Gupta B. M., 2019, Int. J. Inf. Dissemination Technol., V9, P18, DOI [10.5958/2249-5576.2019.00004.9, DOI 10.5958/2249-5576.2019.00004.9]
Gwak GT., 2023, J Musculoskelet Sci Technol, V7, P8
Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1
Iqbal W, 2019, SCIENTOMETRICS, V119, P1121, DOI 10.1007/s11192-019-03086-z
Jiao WX, 2023, Arxiv, DOI [arXiv:2301.08745, DOI 10.48550/ARXIV.2301.08745, 10.48550/ARXIV.2301.08745]
Kamran M, 2020, COMPUT ELECTR ENG, V81, DOI 10.1016/j.compeleceng.2019.106525
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Klang E, 2023, J THROMB HAEMOST, V21, P1055, DOI 10.1016/j.jtha.2023.01.011
Kung Tiffany H, 2023, PLOS Digit Health, V2, pe0000198, DOI 10.1371/journal.pdig.0000198
Lehnert K, 2023, Arxiv, DOI arXiv:2301.08155
Li ZH, 2023, Arxiv, DOI arXiv:2304.14347
Lin JL, 2020, SCIENTOMETRICS, V124, P555, DOI 10.1007/s11192-020-03430-8
Lin ZC, 2023, ROY SOC OPEN SCI, V10, DOI 10.1098/rsos.230658
Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009
Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750
Magnone E, 2014, SCIENTOMETRICS, V101, P179, DOI 10.1007/s11192-014-1378-4
Mann DL, 2023, JACC-BASIC TRANSL SC, V8, P221, DOI 10.1016/j.jacbts.2023.01.001
McKee F, 2022, Arxiv, DOI [arXiv:2212.11126, 10.5121/ijci.2023.120207]
Mejia C, 2017, APPL SCI-BASEL, V7, DOI 10.3390/app7121316
Mhlanga D., 2023, FinTech and Artificial Intelligence for Sustainable Development: The Role of Smart Technologies in Achieving Development Goals, P387, DOI DOI 10.1007/978-3-031-37776-1172
Moran Chris., 2014, Guardian
Mubin O, 2022, INT J HUM-COMPUT INT, V38, P1546, DOI 10.1080/10447318.2021.2004701
Nisar S., 2023, Is ChatGPT a good tool for T&CM students in studying pharmacology?, DOI [10.2139/ssrn.4324310, DOI 10.2139/SSRN.4324310]
Nov Oded, 2023, arXiv, DOI DOI 10.48550/ARXIV.2301.1003537428540
O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537
onlinechatgpt, Online-ChatGPT-Optimizing Language Models for Dialogue-Onlinechatgpt.com
Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577
Raban DR, 2020, SCIENTOMETRICS, V122, P1563, DOI 10.1007/s11192-020-03371-2
Rahimi F, 2023, ARCH MED RES, V54, P272, DOI 10.1016/j.arcmed.2023.03.004
Ray P. P., 2023, Internet of Things and CyberPhysical Systems, V3, P121, DOI DOI 10.1016/J.IOTCPS.2023.04.003
Reuters, 2023, REUTERS
Sallam M, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11060887
Sharma G, 2023, chemRxiv, DOI [10.26434/chemrxiv-2023-qgs3k, 10.26434/chemrxiv-2023-qgs3k, DOI 10.26434/CHEMRXIV-2023-QGS3K]
Shen YQ, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.230163
similarweb, ChatGPT Tops 25 Million Daily Visits
Sison AJG, 2023, INT J HUM-COMPUT INT, DOI 10.1080/10447318.2023.2225931
Statista Infographics, 2023, Infographic: ChatGPT Sprints To One Million Users
Tang XL, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101094
Topsakal O., 2022, The Journal of Cognitive Systems, V7, P33, DOI 10.52876/jcs.1227392
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Ventayen R. J. M., 2023, Soft Computing for Security Applications, P215
Xia WJ, 2021, J SCIENTOMETR RES, V10, P18, DOI 10.5530/jscires.10.1.3
Yeadon Will, 2023, Physics Education, DOI 10.1088/1361-6552/acc5cf
Zhai Xiaoming, 2023, XRDS: Crossroads, The ACM Magazine for Students, P42, DOI 10.1145/3589649
Zhai X., 2022, CHATGPT USER EXPERIE, DOI DOI 10.2139/SSRN.4312418
Zhang BW, 2024, Arxiv, DOI [arXiv:2212.14548, DOI 10.48550/ARXIV.2212.14548]
Zhang SR, 2022, Arxiv, DOI [arXiv:2206.05442, 10.48550/ARXIV.2206.05442, DOI 10.48550/ARXIV.2206.05442]
Zhou JL, 2023, Arxiv, DOI arXiv:2305.10646
Zhou L, 2021, INF SYST E-BUS MANAG, V19, P757, DOI 10.1007/s10257-020-00461-9
Zhuo TY, 2023, Arxiv, DOI arXiv:2301.12867
NR 75
TC 0
Z9 0
U1 19
U2 19
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2024
VL 12
BP 30518
EP 30532
DI 10.1109/ACCESS.2024.3356584
PG 15
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA JW4V1
UT WOS:001176194200001
OA gold
DA 2024-09-05
ER
PT J
AU Tomic, BB
Kijevcanin, AD
Sevarac, ZV
Jovanovic, JM
AF Tomic, Bojan B.
Kijevcanin, Anisja D.
Sevarac, Zoran, V
Jovanovic, Jelena M.
TI An AI-based Approach for Grading Students' Collaboration
SO IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES
LA English
DT Article
DE Collaboration; Codes; Software engineering; Measurement; Teamwork;
Market research; Electronic mail; Automatic assessment tools;
collaboration; computer science education; fuzzy systems; machine
learning (ML); soft skills
ID SOFT SKILLS
AB Soft skills (such as communication and collaboration) are rarely addressed in programming courses, mostly because they are difficult to teach, assess, and grade. A quantitative, modular, AI-based approach for assessing and grading students' collaboration has been examined in this article. The pedagogical underpinning of the approach includes a pedagogical framework and a quantitative soft skill assessment rubric, which have been adapted and used in an extracurricular Java programming course. The objective was to identify pros and cons of using different AI methods within this approach when it comes to assessing and grading collaboration in group programming projects. More specifically, fuzzy rules and several machine learning methods (ML onward) have been examined to see which one would yield the best results regarding performance, interpretability/explainability of recommendations, and feasibility/practicality. The data used for training and testing span four academic years, and the results suggest that almost all of the examined AI methods, when used within the proposed AI-based approach, can provide adequate grading recommendations as long as teachers cover other aspects of the assessment not covered by the rubrics: code quality, plagiarism, and project completion. The fuzzy-rule-based method requires time and effort to be spent on (manual) creation and tuning of fuzzy rules and sets, whereas the examined ML methods require lesser initial investments but do need historical data for training. On the other hand, the fuzzy-rule-based method can provide the best explanations on how the assessment/grading was made-something that proved to be very important to teachers.
C1 [Tomic, Bojan B.; Kijevcanin, Anisja D.; Sevarac, Zoran, V; Jovanovic, Jelena M.] Univ Belgrade, Fac Org Sci, Dept Software Engn, Belgrade 11000, Serbia.
C3 University of Belgrade
RP Tomic, BB (corresponding author), Univ Belgrade, Fac Org Sci, Dept Software Engn, Belgrade 11000, Serbia.
EM bojan.tomic@fon.bg.ac.rs; anisjakijevcanin@gmail.com;
zoran.sevarac@fon.bg.ac.rs; jelena.jovanovic@fon.bg.ac.rs
OI Sevarac, Zoran/0000-0001-9418-6915; Jovanovic,
Jelena/0000-0002-1904-0446
CR Ahmed F, 2012, IT PROF, V14, P44, DOI 10.1109/MITP.2012.7
Beckett C., 2018, THESIS UTAH STATE U
Binkley M, 2012, ASSESSMENT AND TEACHING OF 21ST CENTURY SKILLS, P17, DOI 10.1007/978-94-007-2324-5_2
Capretz L. F., 2018, Psychol. Cogn. Sci. Open J, V4, pe1, DOI [DOI 10.17140/PCSOJ-4-E011, 10.17140/PCSOJ-4-e011]
Cawsey A., 1993, User Modeling and User-Adapted Interaction, V3, P221, DOI 10.1007/BF01257890
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Cingolani P, 2013, INT J COMPUT INT SYS, V6, P61, DOI 10.1080/18756891.2013.818190
Cinque M., 2016, Tuning Journal for Higher Education, V3, DOI [DOI 10.18543/TJHE-3(2)-2016PP389-427, https://doi.org/10.18543/tjhe-3(2)-2016pp389-427]
Coman ID, 2014, J SYST SOFTWARE, V91, P124, DOI 10.1016/j.jss.2013.12.037
Dascalu M, 2015, INT J COMP-SUPP COLL, V10, P395, DOI 10.1007/s11412-015-9226-y
Devedzic V, 2018, APPL MEAS EDUC, V31, P283, DOI 10.1080/08957347.2018.1495212
Eraslan S, 2020, J SYST SOFTWARE, V167, DOI 10.1016/j.jss.2020.110613
Florea R, 2018, LECT NOTES BUS INF P, V314, P54, DOI 10.1007/978-3-319-91602-6_4
Gitinabard N., 2020, P 13 INT C ED DAT MI, P409
GRASS Project, 2014, GRASS D2 2 SUPP DOC
GRASS Project, 2015, GRASS D3 2 SUPP DOC
GRASS Project, 2014, GRASS D2 2 PED APPR
ITL Research, 2015, 21CLD STUD WORK RUBR
ITL Research, 2015, 21CLD LEARN ACT RUBR
Kumar Padhi D. P., 2014, IOSR J HUMANITIES SO, V19, P1
Le K, 2017, 2017 24TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE WORKSHOPS (APSECW), P78, DOI 10.1109/APSECW.2017.19
Lee HJ, 2017, INNOV EDUC TEACH INT, V54, P418, DOI 10.1080/14703297.2015.1105754
Lee HJ, 2012, EDUC TECHNOL SOC, V15, P214
Main J.B., 2015, 2015 IEEE Frontiers in Education Conference (FIE), P1
Martinez-Maldonado R, 2021, J LEARN ANAL, V8, P126, DOI 10.18608/jla.2021.7227
Matturro G, 2019, J UNIVERS COMPUT SCI, V25, P16
Matturro G, 2013, 2013 6TH INTERNATIONAL WORKSHOP ON COOPERATIVE AND HUMAN ASPECTS OF SOFTWARE ENGINEERING (CHASE), P133, DOI 10.1109/CHASE.2013.6614749
Menardi G, 2014, DATA MIN KNOWL DISC, V28, P92, DOI 10.1007/s10618-012-0295-5
Miaomiao Wen, 2017, Proceedings of the ACM on Human-Computer Interaction, V1, DOI 10.1145/3134744
Molnar C., 2020, Lulu. com
Näykki P, 2014, INT J EDUC RES, V68, P1, DOI 10.1016/j.ijer.2014.07.001
Northrup S., 2006, PROC 36 ANN C FRONT
OECD, 2017, PISA 2015 DRAFT COLL
Parikh R, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS, MATERIALS ENGINEERING & NANO-TECHNOLOGY (IEMENTECH), P268
Petkovic D., 2016, 2016 IEEE FRONT ED C, P1, DOI 10.1109/FIE.2016.7757406
Radermacher Alex, P 44 ACM TECHN S COM, P525, DOI [10.1145/2445196.2445351, DOI 10.1145/2445196.2445351]
Schneider B., 2016, ED MEDIA TECHNOLOGY, P99
Sedelmaier Y, 2015, INT J ENG PEDAGOG, V5, P20, DOI 10.3991/ijep.v5i1.4047
Som A, 2021, FRONT COMP SCI-SWITZ, V3, DOI 10.3389/fcomp.2021.728801
Tomic B, 2019, BRIT J EDUC TECHNOL, V50, P518, DOI 10.1111/bjet.12564
van der Duim L, 2007, PROC INT CONF SOFTW, P698
YE LR, 1995, MIS QUART, V19, P157, DOI 10.2307/249686
NR 42
TC 4
Z9 4
U1 13
U2 29
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1939-1382
J9 IEEE T LEARN TECHNOL
JI IEEE Trans. Learn. Technol.
PD JUN 1
PY 2023
VL 16
IS 3
BP 292
EP 305
DI 10.1109/TLT.2022.3225432
PG 14
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Education & Educational Research
GA J9IH3
UT WOS:001012684000001
DA 2024-09-05
ER
PT J
AU Wang, KS
AF Wang, Kuansan
TI Opportunities in Open Science With AI
SO FRONTIERS IN BIG DATA
LA English
DT Article
DE open science; big data; microsoft academic graph; artificial
intelligence; research assessment
AB Bolstered by ever affordable computational power and open big datasets, artificial intelligence (AI) technologies are bringing revolutionary changes to our lives. This article examines the current trends and elaborates the future potentials of AI in its role for making science more open and accessible. Based on the experience derived from a research project called Microsoft Academic, the advocates have reasons to be optimistic about the future of open science as the advanced discovery, ranking, and distribution technologies enabled by AI are offering strong incentives for scientists, funders and research managers to make research articles, data and software freely available and accessible.
C1 [Wang, Kuansan] Microsoft Res, Redmond, WA 98052 USA.
C3 Microsoft
RP Wang, KS (corresponding author), Microsoft Res, Redmond, WA 98052 USA.
EM kuansanw@microsoft.com
CR Candela L, 2015, J ASSOC INF SCI TECH, V66, P1747, DOI 10.1002/asi.23358
Dong YX, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1437, DOI 10.1145/3097983.3098016
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Gibbs P.E, 2013, PRESPACETIME J, V4, P7
Gleeson P, 2017, NEURON, V96, P964, DOI 10.1016/j.neuron.2017.10.013
HARARI YuVAL NoAH, 2011, SAPIENS: A BRIEF HISToRY oF HuMANKIND, V1st
Kanakia A, 2019, WWW 2019, DOI [10.1145/3308558.3313700, DOI 10.1145/3308558.3313700]
Li Y, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201885
Mann F, 2009, COMMUN ACM, V52, P135, DOI 10.1145/1467247.1467279
Microsoft Academic FAQ, DOES MICR AC RANK PU
Osborne R, 2015, ONLINE INFORM REV, V39, P637, DOI 10.1108/OIR-03-2015-0083
Perkel J, 2016, NATURE, V538, P127, DOI 10.1038/538127a
Pinfield S, 2016, SAGE OPEN, V6, DOI 10.1177/2158244015625447
Piwowar H, 2018, PEERJ, V6, DOI 10.7717/peerj.4375
Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a
Rougier NP, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.142
Shen ZH, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P87
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Solomon DJ, 2012, J AM SOC INF SCI TEC, V63, P98, DOI 10.1002/asi.21660
NR 19
TC 4
Z9 4
U1 5
U2 21
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2624-909X
J9 FRONT BIG DATA
JI Front. Big Data
PD SEP 27
PY 2019
VL 2
AR 26
DI 10.3389/fdata.2019.00026
PG 4
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Multidisciplinary Sciences
WE Emerging Sources Citation Index (ESCI)
SC Computer Science; Science & Technology - Other Topics
GA TW9KI
UT WOS:000682708800001
PM 33693349
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Oosthuizen, R
Pretorius, L
AF Oosthuizen, Rudolph
Pretorius, Leon
TI Analysis of INCOSE Systems Engineering journal and international
symposium research topics
SO SYSTEMS ENGINEERING
LA English
DT Article
DE bibliometrics; natural language processing; research; systems
engineering; topic modeling
ID TECHNOLOGY; SCIENCE
AB The pressure on systems engineering is ever-increasing to support the development and implementation of systems that meet a complex environment's demands. As a growing discipline, systems engineering requires insight into past research to identify opportunities for future growth. Analyzing the bibliometric data on published research provides valuable information on a scientific discipline's past progress and future prospects. Therefore, this paper extracts the research topics published in INCOSE's journal Systems Engineering and the annual international symposium proceedings to analyze their composition and allocation to papers. The implemented process applies natural language processing and topic modeling to extract the main topics from these papers' titles and abstracts. Analyzing these research topics' composition and mapping them to processed articles helps to understand their relative importance. The analysis's output confirms the importance of modeling in systems engineering, as it is the most popular topic. The additional focus of research papers on the systems engineering process, practice, and methodologies also indicates that the field is still growing and evolving. Some important topics to systems engineering, which were not found as prominent topics, are humans' roles in systems, verification and validation, and other specialty fields. This new knowledge about the structure of research into systems engineering can identify future research project opportunities to continue growing the field.
C1 [Oosthuizen, Rudolph] CSIR, Def & Safety, Pretoria, South Africa.
[Oosthuizen, Rudolph; Pretorius, Leon] Univ Pretoria, Grad Sch Technol Management, Pretoria, South Africa.
C3 Council for Scientific & Industrial Research (CSIR) - South Africa;
University of Pretoria
RP Oosthuizen, R (corresponding author), Univ Pretoria, Grad Sch Technol Management, Pretoria, South Africa.
EM rudolph.oosthuizen@up.ac.za
RI Pretorius, Leon/M-7573-2017; Oosthuizen, Rudolph/AAH-9253-2021
OI Pretorius, Leon/0000-0002-2842-3596; Oosthuizen,
Rudolph/0000-0002-2333-6995
CR Agrawal A, 2018, INFORM SOFTWARE TECH, V98, P74, DOI 10.1016/j.infsof.2018.02.005
[Anonymous], 2015, Systems Engineering Handbook: A Guide for System Life Cycle Pro- cesses and Activities
Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7
Axelsson J, 2015, 2015 10th System of Systems Engineering Conference (SoSE), P18, DOI 10.1109/SYSOSE.2015.7151918
Bashri M. F. A., 2017, PROC 5 INT C INF COM, P1
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Brill J.H., 1998, Systems Engineering, V1, P258, DOI [10.1002/(SICI)1520-6858(1998)1:43.0.CO;2-E, DOI 10.1002/(SICI)15206858(1998)]
Broniatowski DA, 2018, SYSTEMS ENG, V21, P259, DOI 10.1002/sys.21426
Chitra, 2015, INT J INNOVATIONS EN, V5
Cook SC., 2013, INCOSE INT S, V23, P933
Eker S, 2019, ENVIRON MODELL SOFTW, V117, P43, DOI 10.1016/j.envsoft.2019.03.009
Ferris TLJ, 2009, P 7 ANN C SYST ENG R, P20
Ferris TLJ., 2009, INCOSE INT S, V19, P1378
Gonzalez-Aleu F., 2015, P INT ANN C AM SOC E
Hagen L, 2018, INFORM PROCESS MANAG, V54, P1292, DOI 10.1016/j.ipm.2018.05.006
Hecking T, 2019, RES EVALUAT, V28, P263, DOI 10.1093/reseval/rvz015
Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342
Isoaho K, 2021, POLICY STUD J, V49, P300, DOI 10.1111/psj.12343
Jia YX, 2018, COMPUT METH PROG BIO, V166, P19, DOI 10.1016/j.cmpb.2018.08.017
Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194
Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1
Kuhn T.S., 1962, The structure of scientific revolutions
Kunc M, 2018, J SIMUL, V12, P115, DOI 10.1080/17477778.2018.1468950
Lamba M, 2019, SCIENTOMETRICS, V120, P477, DOI 10.1007/s11192-019-03137-5
Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4
Li J, 2015, PROCEDIA ENGINEER, V84, P70, DOI 10.1016/j.proeng.2014.10.411
Lin JR, 2016, COMPUT-AIDED CIV INF, V31, P18, DOI 10.1111/mice.12151
Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754
Muller G, 2013, PROCEDIA COMPUT SCI, V16, P1092, DOI 10.1016/j.procs.2013.01.115
Oosthuizen R., 2020, Bibliometric Analysis of Technology Management Research Topic Trends
Patel F., 2012, International Journal of Advanced Computer Research, V2, P243
Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263
Sage A. P., 1998, SYSTEMS ENG, V1, P1
Sahraoui AEK, 2008, J SYST SCI SYST ENG, V17, P319, DOI 10.1007/s11518-008-5083-9
Squires Alice., 2012, INT COUNCIL SYSTEMS, V22, P1967
Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596
Tong Z., 2016, INT C COMP SCI ENG I, V6, DOI [DOI 10.5121/CSIT.2016.60616, 10.5121/csit.2016.60616]
Valerdi R, 2009, SYSTEMS ENG, V12, P169, DOI 10.1002/sys.20117
Verma Dinesh, 2018, INSIGHT, V21, P48, DOI 10.1002/inst.12190
NR 41
TC 1
Z9 3
U1 3
U2 15
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1098-1241
EI 1520-6858
J9 SYSTEMS ENG
JI Syst. Eng.
PD JUL
PY 2021
VL 24
IS 4
BP 203
EP 220
DI 10.1002/sys.21575
EA MAR 2021
PG 18
WC Engineering, Industrial; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Engineering; Operations Research & Management Science
GA TH9HD
UT WOS:000635351900001
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Zhou, YZ
Lin, ZP
Tu, L
Shi, JH
Yang, YL
AF Zhou, Yuzhong
Lin, Zhengping
Tu, Liang
Shi, Jiahao
Yang, Yuliang
TI Research on the Performance of Text Mining and Processing in Power Grid
Networks
SO EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS
LA English
DT Article
DE Text mining; performance analysis; deep learning
ID TRANSMISSION
AB This paper employs deep learning technique to perform the research of text mining for power grid networks, focusing on fundamental elements such as loss and activation functions. Through some analysis and formulas, we explain how these functions contribute to deep learning. We also introduce major deep learning training models, including CNN and RNN, and provide visual aids to aid understanding. To demonstrate the impact of various factors on deep learning training, we employ control variable experiments to analyze the influence of factors such as learning rate, batch size, and data noise on model training trends. While the influence of hyperparameters and data noise are covered in this paper, other factors such as CPU and memory frequency, as well as GPU performance, also play a crucial role in deep learning training. Therefore, continuous adjustments to various factors are necessary to achieve optimal training results for deep learning models in power grid networks.
C1 [Zhou, Yuzhong; Lin, Zhengping; Tu, Liang; Shi, Jiahao; Yang, Yuliang] Res Inst China Southern Power Grid, Guangzhou, Peoples R China.
RP Zhou, YZ (corresponding author), Res Inst China Southern Power Grid, Guangzhou, Peoples R China.
EM yuzhong_zhou@hotmail.com
CR Cai Y, 2023, IEEE T COMMUN, V71, P256, DOI 10.1109/TCOMM.2022.3225186
Chaieb C, 2023, IEEE T COMMUN, V71, P187, DOI 10.1109/TCOMM.2022.3225163
Fang XR, 2023, IEEE T WIREL COMMUN, V22, P138, DOI 10.1109/TWC.2022.3191719
Fisch ATM, 2022, IEEE T SIGNAL PROCES, V70, P47, DOI 10.1109/TSP.2021.3125136
Gonzalez ME, 2022, IEEE T SIGNAL PROCES, V70, P158, DOI 10.1109/TSP.2021.3135689
Guo SA, 2023, IEEE T COMMUN, V71, P131, DOI 10.1109/TCOMM.2022.3222460
Gupta A, 2023, IEEE T COMMUN, V71, P199, DOI 10.1109/TCOMM.2022.3225460
Han JH, 2023, IEEE T VEH TECHNOL, V72, P162, DOI 10.1109/TVT.2022.3203056
Hong W, 2022, LECT NOTES COMPUT SC, V13787, P86, DOI 10.1007/978-3-031-23020-2_5
Hui HM, 2023, IEEE T WIREL COMMUN, V22, P107, DOI 10.1109/TWC.2022.3191361
Lin ZY, 2023, IEEE T COMMUN, V71, P282, DOI 10.1109/TCOMM.2022.3226190
Lu JG, 2023, EAI ENDORSED TRANS S, V10, DOI 10.4108/eetsis.v10i1.2527
Mosharafian S, 2023, IEEE T VEH TECHNOL, V72, P136, DOI 10.1109/TVT.2022.3202084
Orlando D, 2023, IEEE T WIREL COMMUN, V22, P205, DOI 10.1109/TWC.2022.3192225
Xiao F, 2023, IEEE T VEH TECHNOL, V72, P253, DOI 10.1109/TVT.2022.3205710
Yin J, 2023, IEEE T IND INFORM, V19, P5593, DOI 10.1109/TII.2022.3192027
Yin J, 2022, WORLD WIDE WEB, V25, P401, DOI 10.1007/s11280-021-00909-z
ZHOU Y., 2022, EAI Endorsed Transactions on Scalable Information Systems, V10
Zhou YZ, 2023, EAI ENDORSED TRANS S, V10, DOI 10.4108/eetsis.v9i6.2642
NR 19
TC 0
Z9 0
U1 2
U2 2
PU INST COMPUTER SCIENCES, SOCIAL INFORMATICS & TELECOMMUNICATIONS ENG-ICST
PI GHENT
PA BEGIJNHOFLAAN 93, GHENT, 90000, BELGIUM
SN 2032-9407
J9 EAI ENDORSED TRANS S
JI EAI Endorsed Trans. Scalable Inform. Syst.
PY 2023
VL 10
IS 5
AR 3094
DI 10.4108/eetsis.v10i4.3094
PG 7
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA IE4R4
UT WOS:001164642900002
OA gold
DA 2024-09-05
ER
PT J
AU Das, K
Patel, JD
Sharma, A
Shukla, Y
AF Das, Kallol
Patel, Jayesh D.
Sharma, Anuj
Shukla, Yupal
TI Creativity in marketing: Examining the intellectual structure using
scientometric analysis and topic modeling
SO JOURNAL OF BUSINESS RESEARCH
LA English
DT Article
DE Creativity; Marketing; Scientometric Analysis; Topic Modeling
ID CONSUMER-BRAND RELATIONSHIPS; SERVICE EMPLOYEE CREATIVITY; ADVERTISING
CREATIVITY; SOCIAL MEDIA; PRODUCT CREATIVITY; INNOVATION; CONSEQUENCES;
TECHNOLOGY; IMPACT; FUTURE
AB Creativity helps marketers better address customer needs, competitive actions, and challenges of an unpredictable environment. However, marketing academics have been debating the value added by creativity. This confusion can be best addressed by a comprehensive analysis of the creativity in marketing (CiM) literature, which we attempt to achieve. In this endeavor, we conducted citation, keyword, and authorship analyses from a corpus comprising 375 scholarly papers from 1973 to 2021. The most frequent keywords (e.g., advertising, co-creation, consumer creativity) may aid interested researchers in effectively exploring/understanding this domain. The domain's most productive journals (e.g., JBR, JA, P&M) are recommended target journals. We used structural topic modeling to extract ten key topics and content-analyzed them to develop an organizing framework. Furthermore, we used the six trending topics (e.g., creativity and branding, consumer creativity, new product creativity) to suggest implications for theory, practice, and future research.
C1 [Das, Kallol] MICA, Ahmadabad, Gujarat, India.
[Patel, Jayesh D.] Ganpat Univ, VM Patel Inst Management Ganpat, Ganpat Vidyanagar, Gujarat, India.
[Sharma, Anuj] OP Jindal Global Univ, Jindal Global Business Sch, Sonipat, Haryana, India.
[Shukla, Yupal] Univ Bologna, Dept Management, Bologna, Italy.
C3 MICA; Ganpat University; O.P. Jindal Global University; University of
Bologna
RP Das, K (corresponding author), MICA, Ahmadabad, Gujarat, India.
EM kallol.das@micamail.in; jayesh.patel@ganpatuniversity.ac.in;
f09anujs@iimidr.ac.in; yupal.shukla3@unibo.it
RI Patel, Jayesh D./AAM-4121-2020; Sharma, Anuj/JTS-4887-2023
OI Sharma, Anuj/0000-0002-6281-6115; Das, Kallol/0000-0002-3601-707X;
Sharma, Anuj/0000-0001-6602-9285
CR ABERNATHY WJ, 1985, RES POLICY, V14, P3, DOI 10.1016/0048-7333(85)90021-6
Acar OA, 2018, MARKET LETT, V29, P177, DOI 10.1007/s11002-018-9454-9
Alexander B, 2016, J FASH MARK MANAG, V20, P254, DOI 10.1108/JFMM-09-2015-0075
Amabile T.M., 1996, Creativity in context: The social psychology of creativity
AMABILE TM, 1983, J PERS SOC PSYCHOL, V45, P357, DOI 10.1037/0022-3514.45.2.357
Anderson N, 2014, J MANAGE, V40, P1297, DOI 10.1177/0149206314527128
Andrews J, 1996, J MARKETING RES, V33, P174, DOI 10.2307/3152145
Ang SH, 2007, J ACAD MARKET SCI, V35, P220, DOI 10.1007/s11747-007-0042-4
Animesh A, 2011, INFORM SYST RES, V22, P153, DOI 10.1287/isre.1090.0254
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Ashley C, 2015, PSYCHOL MARKET, V32, P15, DOI 10.1002/mar.20761
Baack DW, 2016, IND MARKET MANAG, V55, P169, DOI 10.1016/j.indmarman.2015.10.001
Baker HK, 2023, CONTEMP ACCOUNT RES, V40, P196, DOI 10.1111/1911-3846.12779
Bayus BL, 2013, MANAGE SCI, V59, P226, DOI 10.1287/mnsc.1120.1599
Bicen P, 2014, J BUS RES, V67, P2877, DOI 10.1016/j.jbusres.2012.06.007
Bilby J, 2023, J ADVERTISING, V52, P57, DOI 10.1080/00913367.2021.1981497
Bilby J, 2016, J ADVERTISING RES, V56, P245, DOI 10.2501/JAR-2016-018
Bollinger SR, 2020, EUR J INNOV MANAG, V23, P214, DOI 10.1108/EJIM-07-2018-0153
Bonchek M., 2017, HARVARD BUS REV, V22, P2
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Bose M, 2013, J CONSUM MARK, V30, P400, DOI 10.1108/JCM-02-2013-0475
Bruner Jerome S., 1962, The conditions of creativity, P1, DOI DOI 10.1037/13117-001
Burroughs JE, 2004, J CONSUM RES, V31, P402, DOI 10.1086/422118
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Camarero C, 2019, J TRAVEL TOUR MARK, V36, P144, DOI 10.1080/10548408.2018.1497567
Castillo-Vergara M, 2018, J BUS RES, V85, P1, DOI 10.1016/j.jbusres.2017.12.011
Chang SH, 2015, J TRAVEL TOUR MARK, V32, P438, DOI 10.1080/10548408.2014.908158
Chen LS, 2021, ASIA PAC J MARKET LO, V33, P1630, DOI 10.1108/APJML-05-2020-0363
Coelho F, 2010, J SERV RES-US, V13, P426, DOI 10.1177/1094670510369379
Das K, 2022, MARK INTELL PLAN, V40, P693, DOI 10.1108/MIP-11-2021-0393
Dean D, 2019, ASIA PAC J TOUR RES, V24, P393, DOI 10.1080/10941665.2019.1572631
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
El-Murad J, 2004, J ADVERTISING RES, V44, P188, DOI 10.1017/S0021849904040097
Eyvazian M, 2008, INT J ADV MANUF TECH, V39, P261, DOI 10.1007/s00170-007-1213-7
Felber J., 2020, IMPORTANCE CREATIVIT
Fetscherin M, 2015, J BUS RES, V68, P380, DOI 10.1016/j.jbusres.2014.06.010
Finch D, 2013, J MARKET EDUC, V35, P54, DOI 10.1177/0273475312465091
Fischer G, 2000, KNOWL-BASED SYST, V13, P527, DOI 10.1016/S0950-7051(00)00065-4
Gouvea R., 2018, Creat. Ind. J, V11, P22, DOI [https://doi.org/10.1080/17510694.2017.1416529, DOI 10.1080/17510694.2017.1416529]
Gretzel U, 2009, TOUR ANAL, V14, P471, DOI 10.3727/108354209X12596287114219
Groza MD, 2016, J BUS RES, V69, P4185, DOI 10.1016/j.jbusres.2016.03.006
Guiltinan J, 2009, J BUS ETHICS, V89, P19, DOI 10.1007/s10551-008-9907-9
HAMEL G, 1991, HARVARD BUS REV, V69, P81
Herd KB, 2019, J CONSUM RES, V46, P36, DOI 10.1093/jcr/ucy058
Hewer P, 2010, J MARKET MANAG-UK, V26, P428, DOI 10.1080/02672570903458730
Hildebrand C, 2013, INFORM SYST RES, V24, P14, DOI 10.1287/isre.1120.0455
Hu N, 2019, TOURISM MANAGE, V72, P417, DOI 10.1016/j.tourman.2019.01.002
Hur WM, 2021, ASIA PAC J MARKET LO, V33, P888, DOI 10.1108/APJML-03-2019-0138
Hur WM, 2016, J SERV MARK, V30, P302, DOI 10.1108/JSM-10-2014-0342
Im S, 2004, J MARKETING, V68, P114, DOI 10.1509/jmkg.68.2.114.27788
Im S, 2013, J PROD INNOVAT MANAG, V30, P170, DOI 10.1111/j.1540-5885.2012.00887.x
Jensen MB, 2009, J BRAND MANAG, V16, P468, DOI 10.1057/palgrave.bm.2550138
Jimenez R, 2020, WHY YOU SHOULD INCLU
Kampylis PG, 2010, J CREATIVE BEHAV, V44, P191, DOI 10.1002/j.2162-6057.2010.tb01333.x
Kandampully J, 2016, J HOSP TOUR MANAG, V29, P154, DOI 10.1016/j.jhtm.2016.07.003
KELLY G, 1982, IND MARKET MANAG, V11, P105, DOI 10.1016/0019-8501(82)90003-7
Kim N, 2013, J PROD INNOVAT MANAG, V30, P136, DOI 10.1111/j.1540-5885.2012.00992.x
Kneller GeorgeF., 1965, ART SCI CREATIVITY
Kozinets RV, 2008, J MACROMARKETING, V28, P339, DOI 10.1177/0276146708325382
Kraus S, 2022, INT J INFORM MANAGE, V63, DOI 10.1016/j.ijinfomgt.2021.102466
Kraus S, 2023, J SMALL BUS MANAGE, V61, P1095, DOI 10.1080/00472778.2021.1955128
Kraus S, 2020, INT ENTREP MANAG J, V16, P1023, DOI 10.1007/s11365-020-00635-4
Kristensson P, 2004, J PROD INNOVAT MANAG, V21, P4, DOI 10.1111/j.0737-6782.2004.00050.x
Kucharska W, 2018, J PROD BRAND MANAG, V27, P249, DOI 10.1108/JPBM-01-2017-1391
Kuhn KD, 2018, TRANSPORT RES C-EMER, V87, P105, DOI 10.1016/j.trc.2017.12.018
Kumar V, 2018, J MARKETING, V82, P1, DOI 10.1509/jm.82.41
Lalicic L, 2019, TECHNOL FORECAST SOC, V144, P233, DOI 10.1016/j.techfore.2017.02.024
Lee J, 2016, INT J INFORM MANAGE, V36, P360, DOI 10.1016/j.ijinfomgt.2016.01.001
Lee T, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102726
Lehnert K, 2014, J ADVERTISING, V43, P274, DOI 10.1080/00913367.2013.851630
Levitt T, 2002, HARVARD BUS REV, V80, P137
Luo H, 2021, MANAGE SCI, V67, P6358, DOI 10.1287/mnsc.2020.3815
MacInnis DJ, 2011, J MARKETING, V75, P136, DOI 10.1509/jmkg.75.4.136
Maia SC, 2019, SCIENTOMETRICS, V120, P929, DOI 10.1007/s11192-019-03165-1
Martinaityte I, 2019, J MANAGE, V45, P728, DOI 10.1177/0149206316672532
Mas-Tur A, 2020, REV MANAG SCI, V14, P933, DOI 10.1007/s11846-020-00406-z
Meinel M, 2020, EUR MANAG J, V38, P661, DOI 10.1016/j.emj.2020.02.002
Miao CF, 2016, J BUS RES, V69, P6021, DOI 10.1016/j.jbusres.2016.05.017
Modig E, 2020, J ADVERTISING RES, V60, P324, DOI 10.2501/JAR-2019-009
Modig E, 2014, J PROD BRAND MANAG, V23, P452, DOI 10.1108/JPBM-06-2014-0651
Moldovan S, 2019, J INTERACT MARK, V47, P102, DOI 10.1016/j.intmar.2019.02.004
Moreau CP, 2016, J MARKETING RES, V53, P18, DOI 10.1509/jmr.13.0499
Moreau CP, 2005, J CONSUM RES, V32, P13, DOI 10.1086/429597
Mukherjee D, 2022, J BUS RES, V148, P101, DOI 10.1016/j.jbusres.2022.04.042
Nakata C, 2018, J PROD INNOVAT MANAG, V35, P939, DOI 10.1111/jpim.12436
O'Connor TS, 2009, J BUS RES, V62, P1002, DOI 10.1016/j.jbusres.2008.09.013
Okhuysen G, 2011, ACAD MANAGE REV, V36, P6, DOI 10.5465/amr.2011.55662498
Pandey N, 2023, CORP GOV-OXFORD, V31, P127, DOI 10.1111/corg.12444
Pera R, 2021, J BUS RES, V128, P222, DOI 10.1016/j.jbusres.2021.01.058
Pitta DA, 2008, J CONSUM MARK, V25, P137, DOI 10.1108/07363760810870635
Piyathasanan B, 2018, J SERV MARK, V32, P19, DOI 10.1108/JSM-02-2017-0044
Powell S, 2008, J CONSUM MARK, V25, P158, DOI 10.1108/07363760810870653
Qiao F, 2022, J PROD BRAND MANAG, V31, P177, DOI 10.1108/JPBM-05-2019-2363
Radhakrishnan S, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172778
Rank J, 2004, APPL PSYCHOL-INT REV, V53, P518, DOI 10.1111/j.1464-0597.2004.00185.x
Rauwers F, 2018, INT J ADVERT, V37, P749, DOI 10.1080/02650487.2018.1480167
RHODES M, 1961, PHI DELTA KAPPAN, V42, P305
Richards G, 2006, TOURISM MANAGE, V27, P1209, DOI 10.1016/j.tourman.2005.06.002
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684
Roggeveen AL, 2021, J RETAILING, V97, P81, DOI 10.1016/j.jretai.2020.11.006
Rosa JA, 2014, J BUS RES, V67, P386, DOI 10.1016/j.jbusres.2012.12.023
Rosengren S, 2020, J MARKETING, V84, P39, DOI 10.1177/0022242920929288
Rovelli P, 2022, J FAM BUS STRATEG, V13, DOI 10.1016/j.jfbs.2021.100422
Ryan RM, 2000, CONTEMP EDUC PSYCHOL, V25, P54, DOI 10.1006/ceps.1999.1020
Sasser SL, 2008, J ADVERTISING, V37, P5, DOI 10.2753/JOA0091-3367370401
Schlee RP, 2010, J MARKET EDUC, V32, P341, DOI 10.1177/0273475310380881
Septianto F, 2022, ASIA PAC J MARKET LO, V34, P1145, DOI 10.1108/APJML-04-2021-0274
Sethi R, 2001, J MARKETING RES, V38, P73, DOI 10.1509/jmkr.38.1.73.18833
Sharma A, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102316
Shen WB, 2020, J CLEAN PROD, V271, DOI 10.1016/j.jclepro.2020.122618
Simonton DK, 2000, AM PSYCHOL, V55, P151, DOI 10.1037/0003-066X.55.1.151
Singh S, 2020, TECHNOL FORECAST SOC, V154, DOI 10.1016/j.techfore.2020.119963
Slater SF, 2010, IND MARKET MANAG, V39, P551, DOI 10.1016/j.indmarman.2008.03.007
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Smith RE, 2007, MARKET SCI, V26, P819, DOI 10.1287/mksc.1070.0272
Smith RE, 2008, J ADVERTISING, V37, P47, DOI 10.2753/JOA0091-3367370404
Sok P, 2018, J SERV RES-US, V21, P365, DOI 10.1177/1094670517746778
Song M, 2001, ACAD MANAGE J, V44, P61, DOI 10.5465/3069337
Stathopoulou A, 2017, PSYCHOL MARKET, V34, P448, DOI 10.1002/mar.20999
Trujillo CA, 2017, INT J CONSUM STUD, V41, P576, DOI 10.1111/ijcs.12369
Vallaster C, 2019, J BUS RES, V99, P226, DOI 10.1016/j.jbusres.2019.02.050
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Vanhala M, 2020, J BUS RES, V106, P46, DOI 10.1016/j.jbusres.2019.09.009
Verma S, 2021, J INTERACT MARK, V53, P111, DOI 10.1016/j.intmar.2020.07.001
Wales WJ, 2021, J BUS RES, V128, P564, DOI 10.1016/j.jbusres.2020.10.046
Wang F, 2020, MARK INTELL PLAN, V38, P653, DOI 10.1108/MIP-07-2019-0408
Wang XY, 2021, INT J HOSP MANAG, V94, DOI 10.1016/j.ijhm.2020.102846
WOODMAN RW, 1993, ACAD MANAGE REV, V18, P293, DOI 10.2307/258761
Xu B, 2020, J PROD BRAND MANAG, V29, P999, DOI 10.1108/JPBM-10-2018-2075
Yang HY, 2012, J CONSUM PSYCHOL, V22, P573, DOI 10.1016/j.jcps.2012.04.002
Yang X., 2004, MARKETING THEOR, V4, P31, DOI DOI 10.1177/1470593104044086
Zampetakis LA, 2014, J STRATEG MARK, V22, P59, DOI 10.1080/0965254X.2013.876062
NR 133
TC 9
Z9 9
U1 14
U2 53
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0148-2963
EI 1873-7978
J9 J BUS RES
JI J. Bus. Res.
PD JAN
PY 2023
VL 154
AR 113384
DI 10.1016/j.jbusres.2022.113384
EA OCT 2022
PG 21
WC Business
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA 6Y1TQ
UT WOS:000896885200011
DA 2024-09-05
ER
PT J
AU Yang, ZB
Zhang, SH
Shen, WJ
Xing, XF
Gao, Y
AF Yang, Zongbao
Zhang, Shaohong
Shen, Wenjun
Xing, Xiaofei
Gao, Ying
TI Artificial Intelligence Related Publication Analysis Based on Citation
Counting
SO IEEE ACCESS
LA English
DT Article
DE Artificial intelligence; citation counting; recommendation lists
ID POWER-LAW DISTRIBUTIONS; CREDIT ALLOCATION; ARTICLES
AB Artificial intelligence is one of the most popular technologies in recently years. Journals and conferences are widely viewed as major tools to track the development of technologies. Citation counting analysis is one of the most acknowledged metrics in spite of its controversial drawbacks. To the best of our knowledge, most methods based on citation counting do not taken into account the citation weight in different years. In this paper, we focused on citation counting and designed a scheme to calculate both the citation weight and weighting of the cited credits of different publications, which are used to verify the efficiency of the proposed scheme. We also evaluated the popularity of publications by calculating their popularity scores. Unlike other ranking regulations, our proposed measure was able to compare journals and conferences simultaneously. In addition, we extracted ranking results to calculate the pairwise similarity via a generalized measure, which provided a more objective insight into the differences between publications. Several interesting observations were found from the experimental results with real data.
C1 [Yang, Zongbao; Zhang, Shaohong; Xing, Xiaofei; Gao, Ying] Guangzhou Univ, Sch Comp Sci & Educ Software, Guangzhou 510006, Guangdong, Peoples R China.
[Shen, Wenjun] Shantou Univ, Med Coll, Shantou 515041, Peoples R China.
C3 Guangzhou University; Shantou University
RP Zhang, SH (corresponding author), Guangzhou Univ, Sch Comp Sci & Educ Software, Guangzhou 510006, Guangdong, Peoples R China.
EM zimzsh@qq.com
RI shen, Wen-jun/ACG-0761-2022
OI shen, Wen-jun/0000-0001-5150-1698
FU Scientific and Technological Project of Guangzhou [201607010053,
201607010191, 201604016045, 201707010284]; Natural Science Foundation of
China [61772007, 61502292]; Guangdong Natural Science Foundation of
China [2014A030313524, 2016A030313540]; Science and Technology Projects
of Guangdong Province, China [2016B010127001]; Guangzhou Education
Scientific Research Project [1201730714]; Education Reform Project of
Guangdong Province under Research on Construction and Mining methods in
Knowledge Graphs of Computer Sciences Courses Project [426, (2016)236];
Guangzhou Education Bureau Science Foundation [1201430560]; Postgraduate
Educational Reform Project of Guangdong Province [2017JGXM-MS45];
Graduate Innovative Research Grant Program of Guangzhou University
[2017GDJC-M15]
FX This work was supported by the Scientific and Technological Project of
Guangzhou under Project 201607010053, Project 201607010191, Project
201604016045, and Project 201707010284, in part by the Natural Science
Foundation of China under Grant 61772007 and Grant 61502292, in part by
the Guangdong Natural Science Foundation of China under Grant
2014A030313524 and Grant 2016A030313540, in part by the Science and
Technology Projects of Guangdong Province, China, under Grant
2016B010127001, in part by the Funding of the Guangzhou Education
Scientific Research Project under Grant 1201730714, in part by the 2016
Education Reform Project of Guangdong Province under Research on
Construction and Mining methods in Knowledge Graphs of Computer Sciences
Courses Project under Grant 426, File [(2016)236], in part bqy the
Guangzhou Education Bureau Science Foundation under Grant 1201430560, in
part by the Postgraduate Educational Reform Project of Guangdong
Province under Grant 2017JGXM-MS45, and in part by the Graduate
Innovative Research Grant Program of Guangzhou University under Grant
2017GDJC-M15.
CR [Anonymous], BEAUTY MATH
[Anonymous], 2010, Commun ACM, DOI [10.1145/1839676.1839701, DOI 10.1145/1839676.1839701]
Bao P, 2017, SCIENTOMETRICS, V112, P595, DOI 10.1007/s11192-017-2335-9
Bouyssou D, 2016, J INFORMETR, V10, P183, DOI 10.1016/j.joi.2015.12.006
Calma A, 2017, SCIENTOMETRICS, V110, P1579, DOI 10.1007/s11192-016-2228-3
Chakraborty T., 2017, CORR
Chakraborty T, 2018, SCIENTOMETRICS, V114, P1011, DOI 10.1007/s11192-017-2628-z
Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002
Farooq M, 2017, IEEE ACCESS, V5, P19588, DOI 10.1109/ACCESS.2017.2744798
Farys R, 2017, J ASSOC INF SCI TECH, V68, P2201, DOI 10.1002/asi.23802
Franceschet M, 2010, Commun. ACM, V53, P129, DOI [10.1145/1859204.1859234, DOI 10.1145/1859204.1859234]
HUBERT L, 1985, J CLASSIF, V2, P193, DOI 10.1007/BF01908075
Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P1146, DOI 10.1002/asi.21511
Luo FH, 2018, SCIENTOMETRICS, V114, P1, DOI 10.1007/s11192-017-2571-z
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
Pal A., 2017, CORR
Qian YF, 2017, SCIENTOMETRICS, V110, P1351, DOI 10.1007/s11192-016-2235-4
Shen HW, 2014, P NATL ACAD SCI USA, V111, P12325, DOI 10.1073/pnas.1401992111
Thelwall M., 2016, CORR
Thelwall M, 2016, SCIENTOMETRICS, V108, P337, DOI 10.1007/s11192-016-1973-7
Thelwall M, 2016, J INFORMETR, V10, P454, DOI 10.1016/j.joi.2016.03.001
Thelwall M, 2016, J INFORMETR, V10, P336, DOI 10.1016/j.joi.2015.12.007
Thelwall M, 2015, J INFORMETR, V9, P263, DOI 10.1016/j.joi.2015.02.004
Thelwall M, 2014, J INFORMETR, V8, P824, DOI 10.1016/j.joi.2014.08.001
Wang CM, 2010, PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING 2010, VOL 3, P203
Wang W, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P303, DOI 10.1145/3041021.3054159
Wu TY, 2010, DATA MIN KNOWL DISC, V21, P371, DOI 10.1007/s10618-009-0161-2
Yan E, 2010, J AM SOC INF SCI TEC, V61, P1635, DOI 10.1002/asi.21349
Zhang SH, 2012, PATTERN RECOGN, V45, P2214, DOI 10.1016/j.patcog.2011.11.017
Zitt M, 2012, SCIENTOMETRICS, V92, P485, DOI 10.1007/s11192-012-0697-6
NR 30
TC 2
Z9 2
U1 0
U2 22
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2018
VL 6
BP 52205
EP 52217
DI 10.1109/ACCESS.2018.2869140
PG 13
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA GX5OC
UT WOS:000447797200001
OA gold
DA 2024-09-05
ER
PT J
AU Jha, R
Jbara, AA
Qazvinian, V
Radev, DR
AF Jha, Rahul
Jbara, Amjad-Abu
Qazvinian, Vahed
Radev, Dragomir R.
TI NLP-driven citation analysis for scientometrics
SO NATURAL LANGUAGE ENGINEERING
LA English
DT Article
ID SCIENCE; INDEX; PREDICTORS; REFERENCES; AGREEMENT; ARTICLES; IMPACT;
USAGE
AB This paper summarizes ongoing research in Natural-Language-Processing-driven citation analysis and describes experiments and motivating examples of how this work can be used to enhance traditional scientometrics analysis that is based on simply treating citations as a ` vote' from the citing paper to cited paper. In particular, we describe our dataset for citation polarity and citation purpose, present experimental results on the automatic detection of these indicators, and demonstrate the use of such annotations for studying research dynamics and scientific summarization. We also look at two complementary problems that show up in Natural-Language-Processing-driven citation analysis for a specific target paper. The first problem is extracting citation context, the implicit citation sentences that do not contain explicit anchors to the target paper. The second problem is extracting reference scope, the target relevant segment of a complicated citing sentence that cites multiple papers. We show how these tasks can be helpful in improving sentiment analysis and citation-based summarization.
C1 [Jha, Rahul; Jbara, Amjad-Abu] Microsoft Corp, Redmond, WA 98052 USA.
[Jha, Rahul; Jbara, Amjad-Abu; Qazvinian, Vahed] Univ Michigan, Ann Arbor, MI 48109 USA.
[Radev, Dragomir R.] Univ Michigan, EECS & SI, Ann Arbor, MI 48109 USA.
C3 Microsoft; University of Michigan System; University of Michigan;
University of Michigan System; University of Michigan
RP Jha, R (corresponding author), Microsoft Corp, Redmond, WA 98052 USA.
EM rajh@microsoft.com; amjada@microsoft.com; vahed@umich.edu;
radev@umich.edu
RI Radev, Dragomir/E-9641-2012
CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500
Abu-Jbara A., 2013, NAACL, P596
Abu-Jbara Amjad., 2012, NAACL-HLT, P80
[Anonymous], CITATION INDEXES
[Anonymous], USE CITATION DATA WR
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], 1995, P 33 ANN M ASS COMP
[Anonymous], P 7 EUR C RES ADV TE
[Anonymous], P LREC 2008 MARR MOR
[Anonymous], LIT ANAL CHEM SCIENT
[Anonymous], ARXIV E PRINTS
[Anonymous], ARXIV E PRINTS
[Anonymous], P EMN LP 06 SYDN AUS
[Anonymous], 2009, P HUM LANG TECHN 200, DOI DOI 10.3115/1620754.1620839
[Anonymous], 2013, P 1 AUSTR WEB C SYDN
[Anonymous], 1968, Public Knowledge: An Essay Concerning the Social Dimension of Science
[Anonymous], 2004, P ASIS CHIC IL US
[Anonymous], 2007, COLL RES LIBR NEWS, DOI DOI 10.5860/CRLN.68.5.7804
[Anonymous], P N AM CHAPT ASS COM
[Anonymous], 2013, J ARTIF INTELL RES
[Anonymous], THESIS
Athar A., 2011, P ACL 2011 STUD SESS, P81
Athar Awais., 2012, PROC ACL WORKSHOP DE, P18
Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008
Biber D, 1988, Variation across speech and writing, DOI [10.1017/CBO9780511621024, DOI 10.1017/CBO9780511621024]
Bletsas A, 2009, J AM SOC INF SCI TEC, V60, P2577, DOI 10.1002/asi.21197
BONZI S, 1991, SCIENTOMETRICS, V21, P245, DOI 10.1007/BF02017571
BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404
Bornmann L, 2014, J ASSOC INF SCI TECH, V65, P1288, DOI 10.1002/asi.23100
Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4
Brody T, 2006, J AM SOC INF SCI TEC, V57, P1060, DOI 10.1002/asi.20373
Bunescu Razvan C, 2005, P C HUM LANG TECHN E
Cheang B, 2014, J ASSOC INF SCI TECH, V65, P2581, DOI 10.1002/asi.23133
CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403
Church K. W., 1988, Second Conference on Applied Natural Language Processing, P136
COHEN J, 1968, PSYCHOL BULL, V70, P213, DOI 10.1037/h0026256
Cormode G, 2013, J INFORMETR, V7, P718, DOI 10.1016/j.joi.2013.05.001
Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256
Egghe L, 2014, J ASSOC INF SCI TECH, V65, P2152, DOI 10.1002/asi.23168
Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707
Erkan G, 2004, J ARTIF INTELL RES, V22, P457, DOI 10.1613/jair.1523
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Ferrara E, 2013, J AM SOC INF SCI TEC, V64, P2332, DOI 10.1002/asi.22976
Frandsen TF, 2013, J AM SOC INF SCI TEC, V64, P437, DOI 10.1002/asi.22785
Garfield E, 2006, INT J EPIDEMIOL, V35, P1123, DOI 10.1093/ije/dyl189
Gorraiz J, 2014, SCIENTOMETRICS, V101, P1077, DOI 10.1007/s11192-014-1271-1
Halevi G, 2013, J AM SOC INF SCI TEC, V64, P1903, DOI 10.1002/asi.22897
Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101
Heneberg P, 2013, J AM SOC INF SCI TEC, V64, P334, DOI 10.1002/asi.22753
Hou WR, 2011, BIOESSAYS, V33, P724, DOI 10.1002/bies.201100067
Jonkers K, 2014, SCIENTOMETRICS, V101, P1179, DOI 10.1007/s11192-014-1411-7
Kaplan D., 2009, Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries (NLPIR4DL), P88
Kim Hyun Duk, 2009, CIKM, P385, DOI DOI 10.1145/1645953.1646004
Klosik DF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113184
Kostoff RN, 2001, J AM SOC INF SCI TEC, V52, P1148, DOI 10.1002/asi.1181
Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Li R, 2014, J ASSOC INF SCI TECH, V65, P1007, DOI 10.1002/asi.23054
Liu JS, 2014, J ASSOC INF SCI TECH, V65, P2479, DOI 10.1002/asi.23135
Liu SB, 2014, SCIENTOMETRICS, V101, P1293, DOI 10.1007/s11192-014-1233-7
Liu YX, 2014, J ASSOC INF SCI TECH, V65, P281, DOI 10.1002/asi.22978
MACROBERTS MH, 1984, SOC STUD SCI, V14, P91, DOI 10.1177/030631284014001006
Milard B, 2014, J ASSOC INF SCI TECH, V65, P2459, DOI 10.1002/asi.23149
Morante R, 2012, SEM MONTREAL, V2012, P265
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Nakov PreslavI., 2004, SIGIR, DOI DOI 10.1016/j.techfore.2018.05.018
Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926
Och FJ, 2003, COMPUT LINGUIST, V29, pc, DOI 10.1162/089120103321337421
Papineni K, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P311, DOI 10.3115/1073083.1073135
Prathap G, 2014, J ASSOC INF SCI TECH, V65, P1506, DOI 10.1002/asi.23120
Qazvinian V., 2010, P 23 INT C COMP LING, P895
Qazvinian V, 2008, P 22 INT C COMP LING, V1, P689, DOI DOI 10.3115/1599081.1599168
Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555
Quirk Randolph, 1985, A Comprehensive Grammar of the English Language
Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2
Radicchi F, 2013, SCIENTOMETRICS, V97, P627, DOI 10.1007/s11192-013-1027-3
Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y
Shen JT, 2013, J AM SOC INF SCI TEC, V64, P2157, DOI 10.1002/asi.22890
Small H., 1982, PROGR COMMUNICATION, V3, P287
Socher R., 2013, ADV NEURAL INFORM PR, V26, DOI DOI 10.1371/JOURNAL.PONE.0073791
SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111
Surowiecki, 2004, The wisdom of crowds why the many are smarter than the few and how collective wisdom shapes business, economies, societies, and nations
Swales J. M., 1990, Genre analysis: English in academic and research settings
Teufel S, 2006, INFORM RETRIEVAL SER, V20, P159
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
THOMPSON G, 1991, APPL LINGUIST, V12, P365, DOI 10.1093/applin/12.4.365
Velden T, 2013, J AM SOC INF SCI TEC, V64, P2405, DOI 10.1002/asi.22929
Vinkler P, 2010, CHANDOS INF PROF SER, P1
Waltman L, 2013, J INFORMETR, V7, P635, DOI 10.1016/j.joi.2013.04.001
Wan XJ, 2014, J ASSOC INF SCI TECH, V65, P2509, DOI 10.1002/asi.23151
White HD, 2004, APPL LINGUIST, V25, P89, DOI 10.1093/applin/25.1.89
Wilson T., 2005, Proceedings of HLT/EMNLP on Interactive Demonstrations -, P34
Xiaojun Wan, 2014, Journal of the Association for Information Science and Technology, V65, P1929, DOI 10.1002/asi.23083
Yarowsky David, 1995, 33 ANN M ASS COMP LI, P189, DOI 10.3115/981658.981684
Yin XS, 2011, INFORM PROCESS MANAG, V47, P53, DOI 10.1016/j.ipm.2010.03.010
Zhang CT, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005429
Zhao DZ, 2014, J ASSOC INF SCI TECH, V65, P2348, DOI 10.1002/asi.23107
NR 97
TC 55
Z9 62
U1 5
U2 71
PU CAMBRIDGE UNIV PRESS
PI CAMBRIDGE
PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND
SN 1351-3249
EI 1469-8110
J9 NAT LANG ENG
JI Nat. Lang. Eng.
PD JAN
PY 2017
VL 23
IS 1
BP 93
EP 130
DI 10.1017/S1351324915000443
PG 38
WC Computer Science, Artificial Intelligence; Linguistics; Language &
Linguistics
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Computer Science; Linguistics
GA EI1VN
UT WOS:000392274300005
DA 2024-09-05
ER
PT J
AU Ali, N
Halim, Z
Hussain, SF
AF Ali, Nisar
Halim, Zahid
Hussain, Syed Fawad
TI An artificial intelligence-based framework for data-driven
categorization of computer scientists: a case study of world's Top 10
computing departments
SO SCIENTOMETRICS
LA English
DT Article
DE Scientists ranking; Data driven decision-making; Artificial
intelligence; Clustering; Classification; Research output measurement
ID RANKING AUTHORS; CITATION ANALYSIS; INDEX
AB The total number of published articles and the resulting citations are generally acknowledged as suitable criteria of the scientist's evaluation. However, it is challenging to determine the ranking of scientists as the value of their scientific work (at times) is not directly reflective of the abovementioned aspects. In this regard, multiple other elements needs to be examined in combination for better evaluating the scientific worth of an individual. This work presents a learning-based technique, i.e., an Artificial Intelligence (AI)-based solution towards categorizing scientists utilizing a multifaceted criteria. In this context, a novel ranking metric is proposed which is grounded on authorship, experience, publications count, total citations, i10-index, and h-index. To assess the proposed framework's performance, a dataset is collected considering the world's top ten computing departments and ten domestic ones. This results in a data of 1000 computer scientists. The dataset is preprocessed and afterwards three techniques for feature selection are employed, i.e., Mutual Information (MI), Chi-Square (X-2), and Fisher-Test (F-Test) to rank the features in the data. To validate the collected data, the framework has three clustering techniques as well, namely, k-medoids, k-means, and spectral clustering to identify the optimum number of heterogeneous groups. Three cluster validity indices are used to evaluate the clustering outcomes, namely, Calinski-Harabasz Index (CHI), Davies Bouldin Index (DBI), and Silhouette Coefficient (SC). Once the optimum clusters are obtained, five classification procedures are used, including, Artificial Neural Network (ANN), k-Nearest Neighbor (k-NN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Linear Regression Classifier (LRC) to predict the category of a previously unknown scientist. Among all classifiers, an average accuracy of 94.44% is shown by the ANN to predict an unknown/new scientist category. The current proposal is also compared with closely related past works. The proposed framework offers the possibility to independently classify scientists based on AI techniques.
C1 [Ali, Nisar; Halim, Zahid] Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Machine Intelligence Res Grp MInG, Topi, Pakistan.
[Ali, Nisar] Univ Regina, Fac Engn & Appl Sci, Regina, SK, Canada.
[Hussain, Syed Fawad] Univ Birmingham, Sch Comp Sci, Birmingham, England.
C3 GIK Institute Engineering Science & Technology; University of Regina;
University of Birmingham
RP Halim, Z (corresponding author), Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Machine Intelligence Res Grp MInG, Topi, Pakistan.
EM zahid.halim@giki.edu.pk
RI Ali, Nisar/HMD-4203-2023
OI Ali, Nisar/0000-0001-5926-0569
FU GIK Institute graduate research fund under PSS; GIK Institute graduate
research fund under PSS [CS1917]
FX This work was sponsored by the GIK Institute graduate research fund
under PSS scheme. Grant number CS1917.
CR Amjad T, 2018, LIBR HI TECH, V36, P97, DOI 10.1108/LHT-05-2017-0090
[Anonymous], 1999, PAGERANK CITATION RA
Bartneck C, 2010, SCIENTOMETRICS, V85, P41, DOI 10.1007/s11192-010-0242-4
Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609
Bouyssou D, 2016, J INFORMETR, V10, P183, DOI 10.1016/j.joi.2015.12.006
CARPENTER MP, 1981, J AM SOC INFORM SCI, V32, P430, DOI 10.1002/asi.4630320606
Chu W, 2007, NEURAL COMPUT, V19, P792, DOI 10.1162/neco.2007.19.3.792
Connor James., 2011, Google Scholar Citations
Dey L., 2016, PREPRINT, DOI DOI 10.48550/ARXIV.1610.09982DHAMDHERE
Dhamdhere S., 2018, International Journal of Library and Information Science, V10, P1, DOI DOI 10.5897/IJLIS2017.0797
Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256
Ding Y, 2011, J AM SOC INF SCI TEC, V62, P236, DOI 10.1002/asi.21452
Dorogovtsev SN, 2015, NAT PHYS, V11, P882, DOI 10.1038/nphys3533
Dunaiski M, 2012, PROCEEDINGS OF THE SOUTH AFRICAN INSTITUTE FOR COMPUTER SCIENTISTS AND INFORMATION TECHNOLOGISTS CONFERENCE, P21
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Fang Y, 2010, SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, P683
Gao BJ, 2019, IEEE INT CONF BIG DA, P6055, DOI 10.1109/BigData47090.2019.9006349
Gao C, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161755
Gao WF, 2018, PATTERN RECOGN, V79, P328, DOI 10.1016/j.patcog.2018.02.020
Granik M, 2017, 2017 IEEE FIRST UKRAINE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (UKRCON), P900, DOI 10.1109/UKRCON.2017.8100379
Guggari Shankru, 2018, Future Computing and Informatics Journal, V3, P275, DOI 10.1016/j.fcij.2018.06.003
Halaweh M, 2020, COMM COM INF SC, V1177, P93, DOI 10.1007/978-3-030-39905-4_10
Halim Z, 2020, INFORM FUSION, V53, P66, DOI 10.1016/j.inffus.2019.06.006
Halim Z, 2019, IEEE T AFFECT COMPUT, V10, P568, DOI 10.1109/TAFFC.2017.2751602
Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8
Jiang XR, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100977
Joachims T, 2006, P 12 ACM SIGKDD INT, P217, DOI DOI 10.1145/1150402.1150429
Jokar K., 2021, SCIENTOMETRICS RES J, DOI [10.22070/RSCI.2021.13633, DOI 10.22070/RSCI.2021.13633]
Jozaghi, 2019, METHODOLOGICAL INNOV, V12
Kalachikhin PA, 2018, AUTOM DOC MATH LINGU, V52, P187, DOI 10.3103/S0005105518040076
Kremelberg D., 2010, PRACTICAL STAT QUICK
Liang HG, 2016, INFORM MANAGE-AMSTER, V53, P227, DOI 10.1016/j.im.2015.10.001
Lima H, 2013, ACM-IEEE J CONF DIG, P97
Liu JS, 2012, J AM SOC INF SCI TEC, V63, P528, DOI 10.1002/asi.21692
Livas C, 2021, PROG ORTHOD, V22, DOI 10.1186/s40510-020-00348-y
Moreira C, 2011, LECT NOTES ARTIF INT, V7026, P431, DOI 10.1007/978-3-642-24769-9_32
Pappalardo L, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3343172
Rahangdale A, 2019, INT J SOFTW ENG KNOW, V29, P729, DOI 10.1142/S021819401930001X
Santos J.R.Q., 1999, Journal of Extension, V37, DOI DOI 10.1080/09500690802187025
Senanayake U, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134794
Sidiropoulos A, 2005, SIGMOD REC, V34, P54, DOI 10.1145/1107499.1107506
Sidiropoulos A, 2005, INFORM PROCESS MANAG, V41, P289, DOI 10.1016/j.ipm.2003.09.002
Usmani A., 2017, INTERNA TIONAL ARAB, V14
Vavrycuk V, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195509
Xie Z, 2021, IEEE T COMPUT SOC SY, V8, P423, DOI 10.1109/TCSS.2020.3032568
Yang L, 2010, THIRD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING: WKDD 2010, PROCEEDINGS, P355, DOI 10.1109/WKDD.2010.13
Yang Zhang, 2009, Proceedings of the 2009 International Conference on Computational Intelligence and Security (CIS 2009), P1, DOI 10.1109/CIS.2009.263
Yisong Yue, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P271
Zerem E, 2017, J BIOMED INFORM, V75, P107, DOI 10.1016/j.jbi.2017.10.007
Zhou D, 2007, IEEE DATA MINING, P739, DOI 10.1109/ICDM.2007.57
Zhu JH, 2010, KNOWL INF SYST, V23, P29, DOI 10.1007/s10115-009-0202-6
NR 53
TC 6
Z9 6
U1 4
U2 13
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD MAR
PY 2023
VL 128
IS 3
BP 1513
EP 1545
DI 10.1007/s11192-022-04627-9
EA DEC 2022
PG 33
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 9M3IZ
UT WOS:000906311800003
DA 2024-09-05
ER
PT J
AU Sued, GE
AF Sued, Gabriela Elisa
TI Mexican Scientific Production on Artificial Intelligence: A Bibliometric
Analysis
SO INVESTIGACION BIBLIOTECOLOGICA
LA English
DT Article
DE Artificial Intelligence; Bibliometrics; Scientific Production; Mexico
ID SCIENCE
AB This article surveys the current state of AI scientific pro - duction in Mexico using bibliometric techniques. It examines AI specialization across six subfields. As a meth - odology, it utilizes metadata from 13 265 publications -collected from the OpenAlex catalogue- and conducts a quantitative productivity analysis based on metrics of publications, authors, citations, and international collaborations, identifying key research themes and their development. Findings reveal a broad local scientific structure with significant international collaborations. Both mature subfields, developed over three decades, including robotics and neural networks, and emerging subfields, developed in the last five years, encompassing machine learning, natural language processing, and computer vision, were identified. The article highlights recent applications in the health, environment, finance, natural language processing, and acoustics fields.
C1 [Sued, Gabriela Elisa] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Coyoacan, Mexico.
C3 Universidad Nacional Autonoma de Mexico
RP Sued, GE (corresponding author), Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Coyoacan, Mexico.
EM gabriela.sued@iimas.unam.mx
OI Sued, Gabriela Elisa/0000-0002-4516-678X
CR Amaro Rosales Marcela, 2020, PAAKAT: rev. tecnol. soc., V10, pe415, DOI 10.32870/pk.a10n18.415
[Anonymous], 2022, OpenAlex
Arencibia-Jorge R, 2023, TRANSINFORMACAO, V35, DOI 10.1590/2318-0889202335e237320
Aria Massimo, 2023, openalexR: Getting Bibliographic Records from 'OpenAlex' Database Using 'DSL' API". V. 1.3.1
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Bredahl Laura, 2022, The Current and Evolving Landscape of Bibliometric Tools and Technologies
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Cornejo J, 2023, Emerging Science Journal, V7, P1430, DOI [10.28991/ESJ-2023-07-04-025, DOI 10.28991/ESJ-2023-07-04-025]
Demografix ApS, Genderize.io
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Eck Nees Jan van, 2019, VosViewer. V. 1.6.20, V1
Garg KC, 2000, SCIENTOMETRICS, V49, P359, DOI 10.1023/A:1010529405152
Girasa Rosario., 2020, Artificial Intelligence as a Disruptive Technology: Economic Transformation and Government Regulation
Gomez-Mont Constanza, 2020, La inteligencia artificial al servicio del bien social en America Latina y el Caribe. Panoramica regional e instantaneas de doce paises, DOI [10.18235/0002393, DOI 10.18235/0002393]
Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004
Lancho-Barrantes BS, 2019, SCIENTOMETRICS, V118, P499, DOI 10.1007/s11192-018-2985-2
Loan FA, 2021, COLLNET J SCIENTOMET, V15, P27, DOI 10.1080/09737766.2021.1938742
Lopez-Martinez RE., 2021, Journal of Data, Information and Management, V3, P183, DOI [10.1007/s42488-021-00051-5, DOI 10.1007/S42488-021-00051-5]
Pedersen Thomas Lin, 2024, CRAN
Priem J, 2022, Arxiv, DOI [arXiv:2205.01833, DOI 10.48550/ARXIV.2205.01833, 10.48550/arXiv.2205.01833]
Queiroz Gabriela de, 2023, tidytext: Text Mining Using 'dplyr', 'ggplot2', and Other Tidy Tools". V. 0.4.2.
RStudio Team, 2020, RSTUDIO INT DEV R
Ruiz Leon Alejandro, 2018, Redes. Revista Hispana para el Analisis de Redes Sociales, V29, P1, DOI [10.5565/rev/redes.755, DOI 10.5565/REV/REDES.755]
Sued Gabriela Elisa, 2024, Zenodo, DOI 10.5281/ZENODO.10642462
Sued Gabriela Elisa, 2024, BibliometriadelaIAenMexico.R
Villegas OOV, 2021, INT J COMB OPTIM PRO, V12, P1
Wickham H., 2023, dplyr: A Grammar of Data Manipulation
Wickham H., 2023, tidyr: Tidy messy data
NR 28
TC 0
Z9 0
U1 2
U2 2
PU UNIV NACIONAL AUTONOMA MEXICO
PI MEXICO CITY
PA CIUDAD UNIV, CENTRO UNIV BIBLIOTECOLOGICAS, TORRE II HUMANIDADES, PISO
11, 12 & 13, MEXICO CITY, CP 04510, MEXICO
SN 0187-358X
EI 2448-8321
J9 INVESTIG BIBLIOTECOL
JI Investig. Bibliotecol.
PD JUL-SEP
PY 2024
VL 38
IS 100
BP 87
EP 105
DI 10.22201/iibi.24488321xe.2024.100.58893
PG 19
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA UK4Z2
UT WOS:001247952400002
OA gold
DA 2024-09-05
ER
PT C
AU Han, XD
Baldwin, T
Cohn, T
AF Han, Xudong
Baldwin, Timothy
Cohn, Trevor
BE Vlachos, A
Augenstein, I
TI Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP
SO 17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR
COMPUTATIONAL LINGUISTICS, EACL 2023
LA English
DT Proceedings Paper
CT 17th Conference of the European-Chapter of the
Association-for-Computational-Linguistics (EACL)
CY MAY 02-06, 2023
CL Dubrovnik, CROATIA
AB Modern NLP systems exhibit a range of biases, which a growing literature on model debiasing attempts to correct. However current progress is hampered by a plurality of definitions of bias, means of quantification, and oftentimes vague relation between debiasing algorithms and theoretical measures of bias. This paper seeks to clarify the current situation and plot a course for meaningful progress in fair learning, with two key contributions: (1) making clear inter-relations among the current gamut of methods, and their relation to fairness theory; and (2) addressing the practical problem of model selection, which involves a trade-off between fairness and accuracy and has led to systemic issues in fairness research. Putting them together, we make several recommendations to help shape future work.1
C1 [Han, Xudong; Baldwin, Timothy; Cohn, Trevor] Univ Melbourne, Melbourne, Australia.
[Han, Xudong; Baldwin, Timothy] MBZUAI, Abu Dhabi, U Arab Emirates.
C3 University of Melbourne; Mohamed Bin Zayed University of Artificial
Intelligence
RP Han, XD (corresponding author), Univ Melbourne, Melbourne, Australia.; Han, XD (corresponding author), MBZUAI, Abu Dhabi, U Arab Emirates.
EM xudongh1@student.unimelb.edu.au; tbaldwin@unimelb.edu.au;
t.cohn@unimelb.edu.au
FU Australian Research Council [DP200102519]; Australian Research Council
[DP200102519] Funding Source: Australian Research Council
FX We thank Lea Frermann, Aili Shen, and Shivashankar Subramanian for their
discussions and inputs. We thank the anonymous reviewers for their
helpful feedback and suggestions. This work was funded by the Australian
Research Council, Discovery grant DP200102519.
CR [Anonymous], 2022, P 2022 C N AM CHAPT
Badjatiya P, 2019, WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), P49, DOI 10.1145/3308558.3313504
Barocas S., 2019, FAIRNESS MACHINE LEA
Berk R, 2021, SOCIOL METHOD RES, V50, P3, DOI 10.1177/0049124118782533
Bird S., 2020, MSRTR202032
Bolukbasi T, 2016, ADV NEUR IN, V29
Caliskan A, 2017, SCIENCE, V356, DOI 10.1126/science.aal4230
Chouldechova A, 2017, BIG DATA-US, V5, P153, DOI 10.1089/big.2016.0047
De-Arteaga M, 2019, FAT*'19: PROCEEDINGS OF THE 2019 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P120, DOI 10.1145/3287560.3287572
Dev S, 2019, PR MACH LEARN RES, V89, P879
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Díaz M, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3173986
Dodge J, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P2185
Dwork C., 2012, P 3 INNOVATIONS THEO, P214
Elazar Y, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P11
Feldman M, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P259, DOI 10.1145/2783258.2783311
Goldfarb-Tarrant S, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), P1926
Hadsell R, 2020, ADV NEURAL INFORM PR, P728
Han Xudong, 2022, 2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC), P60, DOI 10.1109/PEAC56338.2022.9959530
Han XD, 2021, 16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), P2760
Han Xudong, 2022, P 2022 C EMPIRICAL M, P11335
Han Xudong, 2022, ARXIV220306317
Hardt M, 2016, ADV NEUR IN, V29
Hashimoto TB, 2018, PR MACH LEARN RES, V80
Kearns M, 2018, PR MACH LEARN RES, V80
Kearns Michael, 2019, P C FAIRN ACC TRANSP
Li YT, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P25
Lum Kristian, 2022, 2022 ACM C FAIRN ACC
Marler RT, 2004, STRUCT MULTIDISCIP O, V26, P369, DOI 10.1007/s00158-003-0368-6
May C, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P622
Ravfogel Shauli, 2020, P 58 ANN M ASS COMPU, P7237
Rawls J, 2001, Justice as Fairness. A Restatement
Roh Yuji, 2021, P 9 INT C LEARN REPR
Romanov A, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4187
Salukvadze M. E., 1971, Avtomatika i Telemekhanika, P5
Shen Aili, 2022, FINDINGS ASS COMPUTA, P81
Subramanian S, 2021, 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), P2492
Wang TL, 2019, IEEE I CONF COMP VIS, P5309, DOI 10.1109/ICCV.2019.00541
Yang F, 2020, ADV NEURAL INFORM PR, V33, P4067
Zafar MB, 2017, PR MACH LEARN RES, V54, P962
Zhao H., 2019, INT C LEARN REPR
NR 41
TC 0
Z9 0
U1 0
U2 0
PU ASSOC COMPUTATIONAL LINGUISTICS-ACL
PI STROUDSBURG
PA 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA
BN 978-1-959429-44-9
PY 2023
BP 297
EP 312
PG 16
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BW6RX
UT WOS:001181056902006
DA 2024-09-05
ER
PT J
AU Bittermann, A
Fischer, A
AF Bittermann, Andre
Fischer, Andreas
TI How to Identify Hot Topics in Psychology Using Topic Modeling
SO ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY
LA English
DT Article
DE topic modeling; hotspots; scientometrics; trends; controlled terms
ID BIG DATA; SCIENCE
AB Latent topics and trends in psychological publications were examined to identify hotspots in psychology. Topic modeling was contrasted with a classification-based scientometric approach in order to demonstrate the benefits of the former. Specifically, the psychological publication output in the German-speaking countries containing German-and English-language publications from 1980 to 2016 documented in the PSYNDEX database was analyzed. Topic modeling based on latent Dirichlet allocation (LDA) was applied to a corpus of 314,573 publications. Input for topic modeling was the controlled terms of the publications, that is, a standardized vocabulary of keywords in psychology. Based on these controlled terms, 500 topics were determined and trending topics were identified. Hot topics, indicated by the highest increasing trends in this data, were facets of neuropsychology, online therapy, cross-cultural aspects, traumatization, and visual attention. In conclusion, the findings indicate that topics can reveal more detailed insights into research trends than standardized classifications. Possible applications of this method, limitations, and implications for research synthesis are discussed.
C1 [Bittermann, Andre] Leibniz Inst Psychol Informat ZPID, Univ Ring 15, D-54296 Trier, Germany.
[Fischer, Andreas] F Bb, Nurnberg, Germany.
C3 Leibniz Institute for Psychology Information & Documentation
RP Bittermann, A (corresponding author), Leibniz Inst Psychol Informat ZPID, Univ Ring 15, D-54296 Trier, Germany.
EM abi@leibniz-psychology.org
RI Bittermann, André/AAA-5600-2019; Fischer, Andreas/E-9202-2012
OI Bittermann, André/0000-0003-2942-9831; Fischer,
Andreas/0009-0006-0748-6076
CR Atkins DC, 2012, J FAM PSYCHOL, V26, P816, DOI 10.1037/a0029607
Awati Kailash, 2015, A gentle introduction to topic modeling using R. Eight to Late
Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859]
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Chaney A.J.B., 2012, P 6 INT AAAI C WEBL
Chen EE, 2016, PSYCHOL METHODS, V21, P458, DOI 10.1037/met0000111
Coppersmith G., 2014, P WORKSHOP COMPUTATI, P51
De Battisti F, 2015, SCIENTOMETRICS, V103, P413, DOI 10.1007/s11192-015-1554-1
Erdfelder E, 2016, Z PSYCHOL, V224, P141, DOI 10.1027/2151-2604/a000249
Feinerer I, 2008, J STAT SOFTW, V25, P1
Fischer A, 2015, ECOL MODEL, V309, P60, DOI 10.1016/j.ecolmodel.2015.04.015
Friedman DP, 2008, J NEUROSCI, V28, P11743, DOI 10.1523/JNEUROSCI.0005-08.2008
Goldstone A., 2014, SIGNS AT 40, P40
Griffiths TL, 2007, PSYCHOL REV, V114, P211, DOI 10.1037/0033-295X.114.2.211
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grün B, 2011, J STAT SOFTW, V40, P1
Imel ZE, 2015, PSYCHOTHERAPY, V52, P19, DOI 10.1037/a0036841
Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194
Kosinski M, 2016, PSYCHOL METHODS, V21, P493, DOI 10.1037/met0000105
Krampen G., 2013, HDB PSYCHOL EMOTIONS, V1, P63
Krampen G, 2016, SCIENTOMETRICS, V106, P1217, DOI 10.1007/s11192-016-1834-4
Lu K, 2012, J AM SOC INF SCI TEC, V63, P1973, DOI 10.1002/asi.22628
Mimno David M., 2009, Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2, P880
Natale F, 2012, SCIENTOMETRICS, V90, P983, DOI 10.1007/s11192-011-0562-z
Park G, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0155885
Paul M., 2009, INT C RANLP 2009, P337
Ponweiser M., 2014, Advances in Latent Variables, P93, DOI 10.1007/10104_ 2014_11
R Core Team, 2017, R LANG ENV STAT COMP
Resnik P., 2013, EMNLP, P1348
Rosen-Zvi Michal., 2004, UAI
RStudio Team, 2016, RSTUDIO INT DEV R CO
SCHOFIELD A, 2017, P 15 C EUR CHAPT ASS, V2, P432, DOI DOI 10.18653/V1/E17-2069
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Sievert Carson., 2015, LDAvis: Interactive Visualization of Topic Models (0.3.2)
Steyvers M., 2008, The probabilistic mind: Prospects for a Bayesian cognitive science, P329, DOI DOI 10.1093/ACPROF:OSO/9780199216093.003.0015
Tang J, 2014, PR MACH LEARN RES, V32
Thelwall M, 2016, PROF INFORM, V25, P47, DOI 10.3145/epi.2016.ene.06
Tuleya LG., 2007, Thesaurus of Psychological Index Terms, V11th
Vulic I, 2015, INFORM PROCESS MANAG, V51, P111, DOI 10.1016/j.ipm.2014.08.003
Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9
Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480
Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8
Zheng B, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-58
ZPID, 2016, PSYNDEX TERMS
NR 46
TC 34
Z9 36
U1 4
U2 44
PU HOGREFE & HUBER PUBLISHERS
PI GOTTINGEN
PA MERKELSTR 3, D-37085 GOTTINGEN, GERMANY
SN 2190-8370
EI 2151-2604
J9 Z PSYCHOL
JI Z. Psychol.-J. Psychol.
PD JAN
PY 2018
VL 226
IS 1
BP 3
EP 13
DI 10.1027/2151-2604/a000318
PG 11
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA FZ0XO
UT WOS:000427298600002
DA 2024-09-05
ER
PT J
AU Tomas, C
Jessop, T
AF Tomas, Carmen
Jessop, Tansy
TI Struggling and juggling: a comparison of student assessment loads across
research and teaching-intensive universities
SO ASSESSMENT & EVALUATION IN HIGHER EDUCATION
LA English
DT Article
DE Assessment load; programme assessment; deep learning
ID FORMATIVE ASSESSMENT; ASSESSMENT PATTERNS; FEEDBACK; EXPERIENCE; DESIGN;
WORK
AB In spite of the rising tide of metrics in UK higher education, there has been scant attention paid to assessment loads, when evidence demonstrates that heavy demands lead to surface learning. Our study seeks to redress the situation by defining assessment loads and comparing them across research and teaching intensive universities. We clarify the concept of 'assessment load' in response to findings about high volumes of summative assessment on modular degrees. We define assessment load across whole undergraduate degrees, according to four measures: the volume of summative assessment; volume of formative assessment; proportion of examinations to coursework; number of different varieties of assessment. All four factors contribute to the weight of an assessment load, and influence students' approaches to learning. Our research compares programme assessment data from 73 programmes in 14 UK universities, across two institutional categories. Research-intensives have higher summative assessment loads and a greater proportion of examinations; teaching-intensives have higher varieties of assessment. Formative assessment does not differ significantly across both university groups. These findings pose particular challenges for students in different parts of the sector. Our study questions the wisdom that 'more' is always better, proposing that lighter assessment loads may make room for 'slow' and deep learning.
C1 [Tomas, Carmen] Univ Nottingham, Teaching Transformat Programme, Nottingham, England.
[Jessop, Tansy] Solent Univ, Solent Learning & Teaching Inst, Southampton, Hants, England.
C3 University of Nottingham
RP Jessop, T (corresponding author), Solent Univ, Solent Learning & Teaching Inst, Southampton, Hants, England.
EM tansy.jessop@solent.ac.uk
OI Tomas, Carmen/0000-0001-6163-2907
CR Adams J, 2013, ARTS HUM HIGH EDUC, V12, P36, DOI 10.1177/1474022212460743
Ainley P, 2008, STUD HIGH EDUC, V33, P615, DOI 10.1080/03075070802373222
[Anonymous], 2009, PROGR ASS STRAT
[Anonymous], EDUCAUSE
[Anonymous], SUPP HIGH ED STUD SP
Arum R., 2011, Academically adrift: Limited learning on college campuses
Barlow A., 2016, ED DEV, V17, P12
Becker H.S., 1968, Making the grade: The academic side of college life
Berg M., 2016, SLOW PROFESSOR CHALL
Black P., 1998, INSIDE BLACK BOX RAI, DOI [10.1080/02671520600615612, DOI 10.1080/02671520600615612]
Bloxham S., 2007, Developing Effective Assessment in Higher Education: a practical guide
Boud D., 2006, ASSESS EVAL HIGH EDU, V31, P399, DOI DOI 10.1080/02602930600679050
Boud D., 2000, STUDIES INCONTINUING, V22, P151167, DOI DOI 10.1080/713695728
Bovill C, 2011, INT J ACAD DEV, V16, P133, DOI 10.1080/1360144X.2011.568690
Brew A, 2010, HIGH EDUC RES DEV, V29, P139, DOI 10.1080/07294360903552451
Bridges P., 2002, Assessment Evaluation in Higher Education, V27, P35, DOI DOI 10.1080/02602930120105045
Carless D, 2007, INNOV EDUC TEACH INT, V44, P57, DOI 10.1080/14703290601081332
ENTWISTLE NJ, 1991, HIGH EDUC, V22, P205, DOI 10.1007/BF00132288
Fung D., 2017, Excellent education in researchrich universities
Fung D., 2017, CONNECTED CURRICULUM, P1, DOI DOI 10.14324/111.9781911576358
GIBBS G., 2007, The Effects of Programme Assessment Environments on Student Learning
Gibbs G., 2005, LEARNING TEACHING HI, P3, DOI DOI 10.1007/978-3-8348-9837-1
Gibbs G., 2017, CAPTURE, V5, P55
Gibbs G, 2013, INT J ACAD DEV, V18, P4, DOI 10.1080/1360144X.2013.751691
Gibbs G, 2009, ASSESS EVAL HIGH EDU, V34, P481, DOI 10.1080/02602930802071114
Hanney R, 2013, LOND REV EDUC, V11, P7, DOI 10.1080/14748460.2012.761816
Harland T, 2015, ASSESS EVAL HIGH EDU, V40, P528, DOI 10.1080/02602938.2014.931927
Jessop T, 2017, ASSESS EVAL HIGH EDU, V42, P990, DOI 10.1080/02602938.2016.1217501
Jessop T, 2016, STUD HIGH EDUC, V41, P696, DOI 10.1080/03075079.2014.943170
Jessop T, 2012, ACT LEARN HIGH EDUC, V13, P143, DOI 10.1177/1469787412441285
Jessop T, 2014, ASSESS EVAL HIGH EDU, V39, P73, DOI 10.1080/02602938.2013.792108
Kalyuga S, 2011, EDUC PSYCHOL REV, V23, P1, DOI 10.1007/s10648-010-9150-7
Knight PT, 2002, STUD HIGH EDUC, V27, P275, DOI 10.1080/03075070220000662
Lizzio A, 2002, STUD HIGH EDUC, V27, P27, DOI 10.1080/03075070120099359
Lizzio A, 2013, ASSESS EVAL HIGH EDU, V38, P389, DOI 10.1080/02602938.2011.637156
MARTON F, 1976, BRIT J EDUC PSYCHOL, V46, P4, DOI 10.1111/j.2044-8279.1976.tb02980.x
McLean M, 2013, BRIT J SOCIOL EDUC, V34, P262, DOI 10.1080/01425692.2012.710007
Miller C.M., 1974, MARK STUDY EXAMINATI
Neves J., 2017, 2017 Student Academic Experience Survey
Neves J., 2016, The 2016 Student Academic Experience Survey, DOI Accessed 19th January 2017 At
Newstead S. E., 1997, PSYCHOL TEACHING REV, V6, P14
Nicol D, 2010, ASSESS EVAL HIGH EDU, V35, P501, DOI 10.1080/02602931003786559
Pitt E, 2017, ASSESS EVAL HIGH EDU, V42, P499, DOI 10.1080/02602938.2016.1142500
Price M, 2010, ASSESS EVAL HIGH EDU, V35, P277, DOI 10.1080/02602930903541007
Pryor J, 2010, ASSESS EVAL HIGH EDU, V35, P265, DOI 10.1080/02602930903512891
Richardson JTE, 2015, ASSESS EVAL HIGH EDU, V40, P439, DOI 10.1080/02602938.2014.919628
SADLER DR, 1989, INSTR SCI, V18, P119, DOI 10.1007/BF00117714
Tuck J, 2012, TEACH HIGH EDUC, V17, P209, DOI 10.1080/13562517.2011.611870
Warren Piper D., 1996, EXAMINATION PRACTICE
Wass R, 2015, HIGH EDUC RES DEV, V34, P1324, DOI 10.1080/07294360.2015.1052351
Wu Q., 2018, ASSESSMENT EVALUATIO
NR 51
TC 21
Z9 24
U1 2
U2 20
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0260-2938
EI 1469-297X
J9 ASSESS EVAL HIGH EDU
JI Assess. Eval. High. Educ.
PD JAN 2
PY 2019
VL 44
IS 1
BP 1
EP 10
DI 10.1080/02602938.2018.1463355
PG 10
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA HD7LT
UT WOS:000452734400001
DA 2024-09-05
ER
PT J
AU Xu, JG
Li, MY
Gao, Y
Liu, M
Shi, SZ
Shi, JY
Yang, KL
Zhou, Z
Tian, JH
AF Xu, Jianguo
Li, Muyang
Gao, Ya
Liu, Ming
Shi, Shuzhen
Shi, Jiyuan
Yang, Kelu
Zhou, Zheng
Tian, Jinhui
TI Using Mendelian randomization as the cornerstone for causal inference in
epidemiology
SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
LA English
DT Article
DE Mendelian randomization analysis; Bibliometric analysis; Citation
analysis; Visualization
ID GENETIC EPIDEMIOLOGY; FUTURE-PROSPECTS; RISK; DETERMINANTS;
METAANALYSIS; DISEASE; TRENDS
AB Mendelian randomization (MR) is attracting considerable critical attention. This paper aimed to explore the characteristics of the publications of MR, to reach an insight in this field and prospect the future trend. A bibliometric analysis was performed to identify published MR-related research. The articles were selected from the Web of Science Core Collection database. Excel 2019, VOSviewer 1.6.9, and CiteSpace 5.7.R3 were used to analyze the information. A total of 1783 papers of MR were identified, and the first included literature appeared in 2003. A total of 2829 institutions from 72 countries participated in the relevant research, while the UK contributed to 852 articles and were in a leading position. The most productive institution was the University of Bristol, and Smith GD who has posted the most articles (n=202) was also from there. The Int J Epidemiol (100 publications, 6861 citations) was the most prolific and high citation journal. Related topics of frontiers will still focus on coronary heart disease, diabetes, cancer, psychiatric disorder, body mass index, and lifestyle factors. We summarized the publication information of MR-related literature from 2003 to 2020, including country and institution of origin, authors, and publication journal. We analyzed former research hotspots in the field of MR and predicted future areas of interest. Exposures and outcomes detected in this paper will be the hotspots and frontiers of research in the next few years.
C1 [Xu, Jianguo; Gao, Ya; Liu, Ming; Shi, Shuzhen; Shi, Jiyuan; Yang, Kelu; Zhou, Zheng; Tian, Jinhui] Lanzhou Univ, Evidence Based Med Ctr, Lanzhou, Peoples R China.
[Xu, Jianguo; Gao, Ya; Liu, Ming; Shi, Shuzhen; Zhou, Zheng; Tian, Jinhui] Lanzhou Univ, Sch Basic Med Sci, Lanzhou, Peoples R China.
[Li, Muyang] Lanzhou Univ, Clin Med Coll 2, Lanzhou, Peoples R China.
[Tian, Jinhui] Lanzhou Univ, Evidence Based Med Ctr, Sch Basic Med Sci, 199 Donggang West Rd, Lanzhou 730000, Gansu, Peoples R China.
C3 Lanzhou University; Lanzhou University; Lanzhou University; Lanzhou
University
RP Tian, JH (corresponding author), Lanzhou Univ, Evidence Based Med Ctr, Lanzhou, Peoples R China.; Tian, JH (corresponding author), Lanzhou Univ, Sch Basic Med Sci, Lanzhou, Peoples R China.; Tian, JH (corresponding author), Lanzhou Univ, Evidence Based Med Ctr, Sch Basic Med Sci, 199 Donggang West Rd, Lanzhou 730000, Gansu, Peoples R China.
EM tjh996@163.com
RI Gao, Ya/HGA-2705-2022; shi, jiyuan/ACB-6953-2022; xu,
jianguo/JZD-9552-2024
OI Gao, Ya/0000-0002-9280-4457
CR Agarwal A, 2016, ASIAN J ANDROL, V18, P296, DOI 10.4103/1008-682X.171582
Analytics Clarivate, 2020, WEB SCI DAT
Bochud M, 2008, EUR HEART J, V29, P2456, DOI 10.1093/eurheartj/ehn428
Bochud M, 2008, INT J EPIDEMIOL, V37, P414, DOI 10.1093/ije/dym186
Bowden J, 2019, RES SYNTH METHODS, V10, P486, DOI 10.1002/jrsm.1346
Burgess Stephen, 2019, Wellcome Open Res, V4, P186, DOI 10.12688/wellcomeopenres.15555.3
Burton PR, 2007, NATURE, V447, P661, DOI 10.1038/nature05911
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100
Clayton D, 2001, LANCET, V358, P1356, DOI 10.1016/S0140-6736(01)06418-2
Ebrahim S, 2008, HUM GENET, V123, P15, DOI 10.1007/s00439-007-0448-6
Egghe L, 2008, J AM SOC INF SCI TEC, V59, P1276, DOI 10.1002/asi.20809
Emdin CA, 2017, JAMA-J AM MED ASSOC, V318, P1925, DOI 10.1001/jama.2017.17219
Gao Y, 2019, ENVIRON SCI POLLUT R, V26, P17809, DOI 10.1007/s11356-019-05071-8
Gao Y, 2019, INT IMMUNOPHARMACOL, V72, P374, DOI 10.1016/j.intimp.2019.03.045
GARFIELD E, 1980, CURR CONTENTS, P5
GRAY R, 1991, BONE MARROW TRANSPL, V7, P9
Katikireddi SV, 2018, ADDICTION, V113, P764, DOI 10.1111/add.14038
Keating S, 1998, BRIT J HAEMATOL, V102, P1344, DOI 10.1111/j.1365-2141.1998.896hm3674.x
Larsson SC, 2020, EUR HEART J, V41, P3304, DOI 10.1093/eurheartj/ehaa193
Lauridsen BK, 2018, EUR HEART J, V39, P385, DOI 10.1093/eurheartj/ehx662
Lawlor DA, 2008, STAT MED, V27, P1133, DOI 10.1002/sim.3034
Levin MG, 2020, PLOS MED, V17, DOI 10.1371/journal.pmed.1003288
Lin BD, 2019, INT J EPIDEMIOL, V48, P1505, DOI 10.1093/ije/dyz176
Liu M, 2020, FUTURE ONCOL, V16, P597, DOI 10.2217/fon-2019-0810
Locke AE, 2015, NATURE, V518, P197, DOI 10.1038/nature14177
McGue M, 2010, PERSPECT PSYCHOL SCI, V5, P546, DOI 10.1177/1745691610383511
Mendel Gregor., 1865, EXPT PLANT HYBRIDIZA
Nienaber CA, 2020, EUR HEART J, V41, P3921, DOI 10.1093/eurheartj/ehaa225
Nordestgaard BG, 2012, PLOS MED, V9, DOI 10.1371/journal.pmed.1001212
Pierce BL, 2018, CURR EPIDEMIOL REP, V5, P184, DOI 10.1007/s40471-018-0144-1
Pigeyre M, 2020, DIABETES CARE, V43, P835, DOI 10.2337/dc19-1973
Pingault JB, 2018, NAT REV GENET, V19, P566, DOI 10.1038/s41576-018-0020-3
Richardson TG, 2020, BMJ-BRIT MED J, V369, DOI 10.1136/bmj.m1203
Richmond RC, 2019, BMJ-BRIT MED J, V365, DOI 10.1136/bmj.l2327
Sheehan NA, 2020, HUM GENET, V139, P121, DOI 10.1007/s00439-019-02027-3
Sheehan NA, 2008, PLOS MED, V5, P1205, DOI 10.1371/journal.pmed.0050177
Siedlinski M, 2020, CIRCULATION, V142, pE191, DOI 10.1161/CIRCULATIONAHA.120.049870
Smith GD, 2004, INT J EPIDEMIOL, V33, P30, DOI 10.1093/ije/dyh132
Smith GD, 2003, INT J EPIDEMIOL, V32, P1, DOI 10.1093/ije/dyg070
Smith GD, 2007, PLOS MED, V4, P1985, DOI 10.1371/journal.pmed.0040352
Smith GD, 2010, PERSPECT PSYCHOL SCI, V5, P527, DOI 10.1177/1745691610383505
Valdes-Marquez E, 2019, NEUROLOGY, V92, pE1176, DOI 10.1212/WNL.0000000000007091
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Venable GT, 2016, J NEUROSURG, V124, P569, DOI 10.3171/2015.3.JNS15149
Voight Benjamin F, 2012, Lancet, V380, P572, DOI 10.1016/S0140-6736(12)60312-2
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Willer Cristen J, 2013, Nat Genet, V45, P1274, DOI 10.1038/ng.2797
Williams DM, 2019, AM J CLIN NUTR, V109, P90, DOI 10.1093/ajcn/nqy225
Wium-Andersen MK, 2015, INT J EPIDEMIOL, V44, P526, DOI 10.1093/ije/dyu220
World Health Organization, 2019, INT STAT CLASS DIS R
Xu SJ, 2019, INT J EPIDEMIOL, V48, P899, DOI 10.1093/ije/dyz070
Youngman LD, 2000, CIRCULATION, V102, P31
Zhang CA, 2015, HUM MOL GENET, V24, P5356, DOI 10.1093/hmg/ddv252
Zheng Jie, 2017, Curr Epidemiol Rep, V4, P330, DOI 10.1007/s40471-017-0128-6
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 56
TC 15
Z9 17
U1 7
U2 38
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0944-1344
EI 1614-7499
J9 ENVIRON SCI POLLUT R
JI Environ. Sci. Pollut. Res.
PD JAN
PY 2022
VL 29
IS 4
BP 5827
EP 5839
DI 10.1007/s11356-021-15939-3
EA AUG 2021
PG 13
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA YH3ZR
UT WOS:000687964300009
PM 34431050
DA 2024-09-05
ER
PT C
AU Chatzopoulos, S
Deligiannis, P
Vergoulis, T
Kanellos, I
Tryfonopoulos, C
Dalamagas, T
AF Chatzopoulos, Serafeim
Deligiannis, Panagiotis
Vergoulis, Thanasis
Kanellos, Ilias
Tryfonopoulos, Christos
Dalamagas, Theodore
BE Doucet, A
Isaac, A
Golub, K
Aalberg, T
Jatowt, A
TI SciTo Trends: Visualising Scientific Topic Trends
SO DIGITAL LIBRARIES FOR OPEN KNOWLEDGE, TPDL 2019
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 23rd International Conference on Theory and Practice of Digital
Libraries (TPDL)
CY SEP 09-12, 2019
CL Oslo Metropolitan Univ, Oslo, NORWAY
HO Oslo Metropolitan Univ
DE Information retrieval; Scientific impact; Topic modeling
AB Monitoring trends in scientific disciplines is a common task for researchers and other professionals in the broad research and academic community, like research and innovation policy makers and research fund managers. We demonstrate SciTo, a powerful tool that assists in the monitoring of trends in scientific disciplines. SciTo supports keyword-based search for the identification of scientific topics of interest and comparison of interesting topics to each other in terms of their popularity inside the academic community.
C1 [Chatzopoulos, Serafeim; Deligiannis, Panagiotis; Tryfonopoulos, Christos] Univ Peloponnese, Dept Informat & Tel Tions, Tripoli 22100, Greece.
[Chatzopoulos, Serafeim; Vergoulis, Thanasis; Kanellos, Ilias; Dalamagas, Theodore] IMSI Athena Res & Innovat Ctr, Athens 15125, Greece.
[Kanellos, Ilias] NTUA, Sch Elect & Comp Engn, Athens 15780, Greece.
C3 University of Peloponnese; National Technical University of Athens
RP Vergoulis, T (corresponding author), IMSI Athena Res & Innovat Ctr, Athens 15125, Greece.
EM schatz@athenarc.gr; cst11017@uop.gr; vergoulis@athenarc.gr;
ilias.kanellos@athenarc.gr; trifon@uop.gr; dalamag@athenarc.gr
RI Dalamagas, Theodore/ABE-9542-2020; Tryfonopoulos,
Christos/AAL-8960-2021; Tryfonopoulos, Christos/HKW-5651-2023;
Vergoulis, Thanasis/GSO-2837-2022
OI Dalamagas, Theodore/0000-0002-5002-7901; Vergoulis,
Thanasis/0000-0003-0555-4128; Tryfonopoulos,
Christos/0000-0003-0640-9088; Chatzopoulos,
Serafeim/0000-0003-1714-5225; Kanellos, Ilias/0000-0003-2146-3795
FU Operational Programme "Competitiveness, Entrepreneurship and Innovation"
(NSRF) [MIS 5002437/3]; European Union (European Regional Development
Fund)
FX We acknowledge support of this work by the project "Moving from Big Data
Management to Data Science" (MIS 5002437/3) which is implemented under
the Action "Re-inforcement of the Research and Innovation
Infrastructure", funded by the Operational Programme "Competitiveness,
Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by
Greece and the European Union (European Regional Development Fund).
CR Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Ghosh R., 2011, 2011 IEEE International Conference on Data Mining Workshops, P373, DOI 10.1109/ICDMW.2011.183
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Wu J, 2015, AI MAG, V36, P35, DOI 10.1609/aimag.v36i3.2601
NR 5
TC 1
Z9 1
U1 0
U2 3
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-30760-8; 978-3-030-30759-2
J9 LECT NOTES COMPUT SC
PY 2019
VL 11799
BP 393
EP 396
DI 10.1007/978-3-030-30760-8_41
PG 4
WC Information Science & Library Science
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Information Science & Library Science
GA BP4BL
UT WOS:000550576600041
DA 2024-09-05
ER
PT J
AU Keramatfar, A
Amirkhani, H
AF Keramatfar, Abdalsamad
Amirkhani, Hossein
TI Bibliometrics of sentiment analysis literature
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
DE Bibliometrics; keyword analysis; opinion mining; sentiment analysis;
Twitter
ID SOCIAL MEDIA; MARKET PREDICTION; FEATURES; WEB; COLLABORATION; OPINIONS;
SCIENCE; TWITTER; SYSTEM; MOOD
AB This article provides a bibliometric study of the sentiment analysis literature based on Web of Science (WoS) until the end of 2016 to evaluate current research trends, quantitatively and qualitatively. We concentrate on the analysis of scientific documents, distribution of subject categories, languages of documents and languages that have been more investigated in sentiment analysis, most prolific and impactful authors and institutions, venues of publications and their geographic distribution, most cited and hot documents, trends of keywords and future works. Our investigations demonstrate that the most frequent subject categories in this field are computer science, engineering, telecommunications, linguistics, operations research and management science, information science and library science, business and economics, automation and control systems, robotics and social sciences. In addition, the most active venue of publication in this field is Lecture Notes in Computer Science (LNCS). The United States, China and Singapore have the most prolific or impactful institutions. A keyword analysis demonstrates that sentiment analysis is a more accepted term than opinion mining. Twitter is the most used social network for sentiment analysis and Support Vector Machine (SVM) is the most used classification method. We also present the most cited and hot documents in this field and authors' suggestions for future works.
C1 [Keramatfar, Abdalsamad; Amirkhani, Hossein] Univ Qom, Tehran, Iran.
C3 University of Qom
RP Keramatfar, A (corresponding author), Univ Qom, Tehran, Iran.
EM keramatfar.a.s@gmail.com
RI Keramatfar, Abdalsamad/AAH-7414-2019; Keramatfar, Abdalsamad/D-7117-2015
OI Keramatfar, Abdalsamad/0000-0001-6826-4692; Amirkhani,
Hossein/0000-0002-8679-0634
CR Abbasi Ahmed, 2008, ACM Transactions on Information Systems, V26, DOI 10.1145/1361684.1361685
Akehurst G, 2009, SERV BUS, V3, P51, DOI 10.1007/s11628-008-0054-2
Ambika P, 2016, INT C RES ADV INT NA
Annalingam A, 2014, SPRINGERPLUS, V3, DOI 10.1186/2193-1801-3-140
Appel O, 2015, ACTA POLYTECH HUNG, V12, P87, DOI 10.12700/APH.12.3.2015.3.6
Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370
Bae Y, 2012, J AM SOC INF SCI TEC, V63, P2521, DOI 10.1002/asi.22768
Baek H, 2012, INT J ELECTRON COMM, V17, P99, DOI 10.2753/JEC1086-4415170204
Banerjee H, 2017, 2017 8 ANN IND AUT E
Banshal SK, 2015, ANNU IEEE IND CONF
Bhat SY, 2013, WIRES DATA MIN KNOWL, V3, P408, DOI 10.1002/widm.1105
Bifet A, 2010, INT C DISC SCI KYOT
Biyani P, 2014, KNOWL-BASED SYST, V69, P170, DOI 10.1016/j.knosys.2014.04.048
Boiy E, 2009, INFORM RETRIEVAL, V12, P526, DOI 10.1007/s10791-008-9070-z
Bornmann L, 2005, SCIENTOMETRICS, V65, P391, DOI 10.1007/s11192-005-0281-4
Cambria E., 2012, Sentic Computing: Techniques, Tools, and Applications
Cambria E., 2015, SENTIC COMPUTING COM, DOI [10.1007/978-3-319-23654-4, DOI 10.1007/978-3-319-23654-4]
Cambria E, 2017, SOCIO AFFECT COMPUT, V5, P1, DOI 10.1007/978-3-319-55394-8_1
Cambria E, 2013, IEEE INTELL SYST, V28, P15, DOI 10.1109/MIS.2013.30
Ceron A, 2016, NEW MEDIA SOC, V18, P1935, DOI 10.1177/1461444815571915
Chae B, 2015, INT J PROD ECON, V165, P247, DOI 10.1016/j.ijpe.2014.12.037
Chaturvedi I, 2017, BASIC TASKS SENTIMEN, DOI [10.1007/978-1-4614-7163-9_110159-1, DOI 10.1007/978-1-4614-7163-9_110159-1]
Chi PS, 2017, SCIENTOMETRICS, V112, P403, DOI 10.1007/s11192-017-2356-4
Ding Y, 2010, J INF SCI, V36, P335, DOI 10.1177/0165551510365295
Estévez-Ortiz FJ, 2016, PROF INFORM, V25, P851, DOI 10.3145/epi.2016.nov.02
Esuli A, 2007, Evaluation, V17, P1
Feldman R, 2013, COMMUN ACM, V56, P82, DOI 10.1145/2436256.2436274
Fernández-Gavilanes M, 2016, EXPERT SYST APPL, V58, P57, DOI 10.1016/j.eswa.2016.03.031
Garrard WC, 2017, DEV TOOLS ANAL MESSA
Ghiassi M, 2013, EXPERT SYST APPL, V40, P6266, DOI 10.1016/j.eswa.2013.05.057
Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188
He W, 2015, INFORM MANAGE-AMSTER, V52, P801, DOI 10.1016/j.im.2015.04.006
Heimerl F, 2014, P ANN HICSS, P1833, DOI 10.1109/HICSS.2014.231
Huang W, 2016, WEB INTELL, V14, P211, DOI 10.3233/WEB-160340
Ibáñez A, 2013, SCIENTOMETRICS, V95, P689, DOI 10.1007/s11192-012-0883-6
Indurkhya N, 2015, WIRES DATA MIN KNOWL, V5, P155, DOI 10.1002/widm.1154
Jiang HC, 2016, ENVIRON IMPACT ASSES, V61, P38, DOI 10.1016/j.eiar.2016.06.004
Li M, 2016, J INF SCI, V43, P725
Li N, 2010, DECIS SUPPORT SYST, V48, P354, DOI 10.1016/j.dss.2009.09.003
Li Q, 2014, INFORM SCIENCES, V278, P826, DOI 10.1016/j.ins.2014.03.096
Li Y, 2017, COGN COMPUT, V9, P843, DOI 10.1007/s12559-017-9492-2
Lin CL, 2011, 2011 5 INT C NEW TRE
Lippi M, 2016, EXPERT SYST APPL, V65, P292, DOI 10.1016/j.eswa.2016.08.050
Liu B, 2015, SENTIMENT ANALYSIS: MINING OPINIONS, SENTIMENTS, AND EMOTIONS, P1
Liu FL, 2016, SCIENTOMETRICS, V106, P751, DOI 10.1007/s11192-015-1789-x
Lokker C, 2008, BMJ-BRIT MED J, V336, P655, DOI 10.1136/bmj.39482.526713.BE
Mattern F, 2008, BIBLIOMETRIC EVALUAT
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Moraes R, 2013, EXPERT SYST APPL, V40, P621, DOI 10.1016/j.eswa.2012.07.059
Mostafa MM, 2013, EXPERT SYST APPL, V40, P4241, DOI 10.1016/j.eswa.2013.01.019
Nassirtoussi AK, 2015, EXPERT SYST APPL, V42, P306, DOI 10.1016/j.eswa.2014.08.004
Nassirtoussi AK, 2014, EXPERT SYST APPL, V41, P7653, DOI 10.1016/j.eswa.2014.06.009
Nasukawa T., 2003, Proceedings of the International Conference on Knowledge Capture - K-CAP'03, P70, DOI [DOI 10.1145/945645.945658, 10.1145/945645.945658]
Nourmohammadi H, 2016, COLLABORATION SCI TE
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
Persson O, 2008, INT SOC SCIENTOMETR, V4, P8
Prabowo R, 2009, J INFORMETR, V3, P143, DOI 10.1016/j.joi.2009.01.003
Qiu GA, 2011, COMPUT LINGUIST, V37, P9, DOI 10.1162/coli_a_00034
Rafie M, 2016, SCI EVALUATION
Ravi K, 2015, KNOWL-BASED SYST, V89, P14, DOI 10.1016/j.knosys.2015.06.015
Rodrigues RG, 2016, INT J MED INFORM, V85, P80, DOI 10.1016/j.ijmedinf.2015.09.007
Sammut C., 2017, ENCY MACHINE LEARNIN, Vsecond, DOI DOI 10.1007/978-1-4899-7687-1
Schouten K, 2016, IEEE T KNOWL DATA EN, V28, P813, DOI 10.1109/TKDE.2015.2485209
SCImago Research Group, 2008, DESCR SCIM J RANK IN
Smr P, 2006, P 3 INT WORDNET C S
Sobkowicz P, 2012, GOV INFORM Q, V29, P470, DOI 10.1016/j.giq.2012.06.005
Strapparava C, 2008, APPLIED COMPUTING 2008, VOLS 1-3, P1556
Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049
Tan SB, 2008, EXPERT SYST APPL, V34, P2622, DOI 10.1016/j.eswa.2007.05.028
Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662
Thelwall M, 2010, J AM SOC INF SCI TEC, V61, P190, DOI 10.1002/asi.21180
Thet TT, 2010, J INF SCI, V36, P823, DOI 10.1177/0165551510388123
Nguyen TH, 2015, EXPERT SYST APPL, V42, P9603, DOI 10.1016/j.eswa.2015.07.052
Tumasjan A, 2011, SOC SCI COMPUT REV, V29, P402, DOI 10.1177/0894439310386557
van Dam Joost W., MARINE ENZYMES BIOTE, V112, P427, DOI [10.1016/j.marpolbul.2016.07.015, DOI 10.1016/BS.AFNR.2016.12.003, DOI 10.1016/J.IJINFOMGT.2016.03.015]
Wang Y, 2015, 2015 IEEE INT C DAT
Warriner AB, 2013, BEHAV RES METHODS, V45, P1191, DOI 10.3758/s13428-012-0314-x
Wilson T, 2009, COMPUT LINGUIST, V35, P399, DOI 10.1162/coli.08-012-R1-06-90
Yang K., 2006, Proc. Am. Soc. Inf. Sci. Technol, V43, P1, DOI DOI 10.1002/MEET.14504301185
[杨立公 Yang Ligong], 2013, [计算机应用, Journal of Computer Applications], V33, P1574
Yao J, 2007, 2007 GRC 2007 IEEE I
Yi J, 2003, 2003 ICDM 2003 3 IEE
Yu Y, 2013, DECIS SUPPORT SYST, V55, P919, DOI 10.1016/j.dss.2012.12.028
NR 83
TC 43
Z9 44
U1 6
U2 167
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PD FEB
PY 2019
VL 45
IS 1
BP 3
EP 15
DI 10.1177/0165551518761013
PG 13
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA HG4KY
UT WOS:000454945400001
DA 2024-09-05
ER
PT C
AU Zhang, Q
Liu, TN
AF Zhang, Qian
Liu, Tongna
BE Mahadevan, V
Jianhong, Z
TI Research on Performance Evaluation of Project Management Based on SVM
and Wavelet Neural Network
SO 2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING
(ICCAE 2010), VOL 2
SE International Conference on Computer and Automation Engineering
LA English
DT Proceedings Paper
CT 2nd International Conference on Computer and Automation Engineering
(ICCAE)
CY FEB 26-28, 2010
CL Singapore, SINGAPORE
DE SVM; Project Management; Performance Evaluation; Neural Network
AB The principle and step of performance evaluation of project management based on SVM and wavelet neural network are studied. The index system of performance evaluation of project management is set up. Then we built up the evaluation model on SVM and wavelet neural network. Finally, take some samples of project for an example, we carry on this model to instance. It can take a preferably evaluation, so that it is a viable method.
C1 [Zhang, Qian] North China Elect Power Univ, Dept Econ Management, Baoding 071000, Hebei, Peoples R China.
[Liu, Tongna] North China Elect Power Univ, Dept Elect & Commun Engn, Baoding, Hebei, Peoples R China.
C3 North China Electric Power University; North China Electric Power
University
RP Zhang, Q (corresponding author), North China Elect Power Univ, Dept Econ Management, Baoding 071000, Hebei, Peoples R China.
EM hdzhq@yeah.net; hdltn@yeah.net
FU Hebei Natural Science Fund [G2009001410]
FX This research was supported by Hebei Natural Science Fund. (G2009001410)
CR [Anonymous], 2000, THESIS
[Anonymous], 2000, 17th International Conference on Machine Learning
Meinard M, 2005, P ACM SIGGRAPH, V24, P677
Russell S, 2002, ARFIFICIAL INTELLIGE
Webb GI, 2000, MACH LEARN, V40, P159, DOI 10.1023/A:1007659514849
ZHANG GL, 2002, FUZZY CONTROL APPL M
Zhu Jing, 1995, THEORY FUZZY CONTROL
NR 7
TC 17
Z9 17
U1 0
U2 5
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2154-4352
BN 978-1-4244-5569-0
J9 INT CONF COMPUT AUTO
PY 2010
BP 91
EP 94
DI 10.1109/ICCAE.2010.5451393
PG 4
WC Automation & Control Systems; Computer Science, Theory & Methods;
Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Computer Science; Engineering
GA BH0ZA
UT WOS:000397218200021
DA 2024-09-05
ER
PT J
AU Saeed-Ul Hassan
Safder, I
Akram, A
Kamiran, F
AF Saeed-Ul Hassan
Safder, Iqra
Akram, Anam
Kamiran, Faisal
TI A novel machine-learning approach to measuring scientific knowledge
flows using citation context analysis
SO SCIENTOMETRICS
LA English
DT Article
DE Knowledge flows; Machine learning; Citation context classification;
Influential citations; Citation analysis
ID INFORMATION-SCIENCE; PATENT CITATIONS; INSTITUTIONS; SPECIALTY;
DIFFUSION; SPACE; US
AB We measure the knowledge flows between countries by analysing publication and citation data, arguing that not all citations are equally important. Therefore, in contrast to existing techniques that utilize absolute citation counts to quantify knowledge flows between different entities, our model employs a citation context analysis technique, using a machine-learning approach to distinguish between important and non-important citations. We use 14 novel features (including context-based, cue words-based and text-based) to train a Support Vector Machine (SVM) and Random Forest classifier on an annotated dataset of 20,527 publications downloaded from the Association for Computational Linguistics anthology (http://allenai.org/data.html). Our machine-learning models outperform existing state-of-the-art citation context approaches, with the SVM model reaching up to 61% and the Random Forest model up to a very encouraging 90% Precision-Recall Area Under the Curve, with 10-fold cross-validation. Finally, we present a case study to explain our deployed method for datasets of PLoS ONE full-text publications in the field of Computer and Information Sciences. Our results show that a significant volume of knowledge flows from the United States, based on important citations, are consumed by the international scientific community. Of the total knowledge flow from China, we find a relatively smaller proportion (only 4.11%) falling into the category of knowledge flow based on important citations, while The Netherlands and Germany show the highest proportions of knowledge flows based on important citations, at 9.06 and 7.35% respectively. Among the institutions, interestingly, the findings show that at the University of Malaya more than 10% of the knowledge produced falls into the category of important. We believe that such analyses are helpful to understand the dynamics of the relevant knowledge flows across nations and institutions.
C1 [Saeed-Ul Hassan; Safder, Iqra; Akram, Anam; Kamiran, Faisal] Informat Technol Univ, 346-B,Ferozepur Rd, Lahore 54700, Pakistan.
RP Saeed-Ul Hassan (corresponding author), Informat Technol Univ, 346-B,Ferozepur Rd, Lahore 54700, Pakistan.
EM saeedulhassan@gmail.com
RI Safder, Iqra/JXN-8069-2024; Hassan, Saeed-Ul/G-1889-2016
OI Hassan, Saeed-Ul/0000-0002-6509-9190
CR BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404
BORGMAN CL, 1992, J AM SOC INFORM SCI, V43, P397, DOI 10.1002/(SICI)1097-4571(199207)43:6<397::AID-ASI1>3.0.CO;2-M
Börner K, 2006, SCIENTOMETRICS, V68, P415, DOI 10.1007/s11192-006-0120-2
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403
Garzone M. A., 1997, THESIS
Guevara MR, 2016, SCIENTOMETRICS, V109, P1695, DOI 10.1007/s11192-016-2125-9
Hagel J., 2010, DELOITTE CTR EDGE, V2
Hassan S. U., 2017, JOINT INT C DIG LIB
Hassan SU, 2015, SCIENTOMETRICS, V103, P33, DOI 10.1007/s11192-015-1528-3
Hassan SU, 2013, SCIENTOMETRICS, V94, P163, DOI 10.1007/s11192-012-0786-6
Hassan SU, 2015, ISSI
Hicks D, 2001, RES POLICY, V30, P681, DOI 10.1016/S0048-7333(00)00147-5
Hu AGZ, 2003, INT J IND ORGAN, V21, P849, DOI 10.1016/S0167-7187(03)00035-3
Hu ZG, 2013, J INFORMETR, V7, P887, DOI 10.1016/j.joi.2013.08.005
Ingwersen P., 2000, WEB KNOWLEDGE FESTSC
JAFFE AB, 1993, Q J ECON, V108, P577, DOI 10.2307/2118401
Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001
Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P1709, DOI 10.1002/asi.21052
Liu SB, 2012, SCIENTOMETRICS, V91, P495, DOI 10.1007/s11192-011-0575-7
Liu X, 2014, J NANOPART RES, V16, DOI 10.1007/s11051-014-2613-x
Lockett A, 2005, J MANAGE INQUIRY, V14, P139, DOI 10.1177/1056492605276645
Luo XF, 2010, NEW GENERAT COMPUT, V28, P113, DOI 10.1007/s00354-009-0078-8
Luo XF, 2009, CONCURR COMP-PRACT E, V21, P2018, DOI 10.1002/cpe.1460
LUUKKONEN T, 1992, SCIENTOMETRICS, V24, P297, DOI 10.1007/BF02017913
Mete Mahendra V., 1996, ANN LIB SCI DOCUM, V43, P11
MEYER M., 2002, ECON SYST RES, V14, P323, DOI [10.1080/0953531022000024824, DOI 10.1080/0953531022000024824]
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
OPPENHEIM C, 1978, J AM SOC INFORM SCI, V29, P225, DOI 10.1002/asi.4630290504
Patel P, 1998, 111998 IDEA
Ponomariov B, 2014, RES POLICY, V43, P588, DOI 10.1016/j.respol.2013.09.002
Ribeiro LC, 2014, SCIENTOMETRICS, V101, P61, DOI 10.1007/s11192-014-1351-2
Rosvall M, 2008, P NATL ACAD SCI USA, V105, P1118, DOI 10.1073/pnas.0706851105
Saeed-Ul Hassan, 2017, PRO INT CONF SCI INF, P322
SCHOTT T, 1994, SOC SCI RES, V23, P23, DOI 10.1006/ssre.1994.1002
SMALL H, 1986, J AM SOC INFORM SCI, V37, P97, DOI 10.1002/asi.4630370302
STIGLER SM, 1994, STAT SCI, V9, P94, DOI 10.1214/ss/1177010655
Suykens JAK, 1999, NEURAL PROCESS LETT, V9, P293, DOI 10.1023/A:1018628609742
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Valenzuela M., 2015, 29 AAAI C ART INT
Yan EJ, 2016, J ASSOC INF SCI TECH, V67, P2223, DOI 10.1002/asi.23541
Yan E, 2015, J ASSOC INF SCI TECH, V66, P2357, DOI 10.1002/asi.23324
Yan E, 2013, J INFORMETR, V7, P249, DOI 10.1016/j.joi.2012.11.008
Yan EJ, 2011, J AM SOC INF SCI TEC, V62, P1498, DOI 10.1002/asi.21556
Yang SL, 2015, J INFORMETR, V9, P208, DOI 10.1016/j.joi.2015.01.001
Zhang Q., 2013, APS M ABSTRACTS, V1, P28001
Zhuge H, 1997, INFORM SOFTWARE TECH, V39, P463, DOI 10.1016/S0950-5849(96)00008-0
Zhuge H, 2011, ARTIF INTELL, V175, P988, DOI 10.1016/j.artint.2010.09.009
Zhuge H, 2009, IEEE T KNOWL DATA EN, V21, P785, DOI 10.1109/TKDE.2008.141
Ziman J.M., 1968, Public knowledge: An essay concerning the social dimension of science, V519
NR 50
TC 44
Z9 51
U1 10
U2 120
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD AUG
PY 2018
VL 116
IS 2
BP 973
EP 996
DI 10.1007/s11192-018-2767-x
PG 24
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA GP1SS
UT WOS:000440597800015
DA 2024-09-05
ER
PT J
AU Xu, HL
Ge, SL
Yuan, F
AF Xu, Hailing
Ge, Shilun
Yuan, Feng
TI Research on the Mechanism of Influence of Game Competition Mode on
Online Learning Performance
SO BEHAVIORAL SCIENCES
LA English
DT Article
DE online learning; learning performance; competition; gamification;
curriculum platform
ID TO-STUDENT CONNECTEDNESS; GAMIFICATION; MOTIVATION; CLASSROOM
AB With the rapid development of information technology and the influence of the COVID-19 pandemic, online learning has become an important supplement to the teaching organization form of basic education and higher education. In order to increase user stickiness and improve learning performance, gamification elements are widely introduced into online learning situations. However, scholars have drawn different conclusions on the impact of game-based competition on online learning performance. This study is based on field theory and constructivist learning theory. Taking the online interaction of the curriculum platform as the situation, psychological capital as the intermediary variable and connected classroom atmosphere as the adjustment variable, this paper constructs an interaction model between game competition and online learning performance and discusses in depth the intermediary effect of psychological capital and the adjustment effect of a connected classroom atmosphere. The results show that game-based competition has a significant positive effect on learning performance, and the effect of direct competition is better than that of indirect competition; the self-efficacy dimension of psychological capital plays an intermediary role between direct competition and learning performance, and the resilience dimension plays an intermediary role between competition and learning performance; and a connected classroom atmosphere plays a regulating role in the dimensions of game competition, knowledge mastery and knowledge innovation.
C1 [Xu, Hailing] Jiangsu Univ Sci & Technol, Acad Affairs Off, Zhenjiang 212003, Jiangsu, Peoples R China.
[Xu, Hailing; Ge, Shilun] Jiangsu Univ Sci & Technol, Sch Econ & Management, Zhenjiang 212003, Jiangsu, Peoples R China.
[Yuan, Feng] Jiangsu Univ Sci & Technol, Grad Sch, Zhenjiang 212003, Jiangsu, Peoples R China.
C3 Jiangsu University of Science & Technology; Jiangsu University of
Science & Technology; Jiangsu University of Science & Technology
RP Xu, HL (corresponding author), Jiangsu Univ Sci & Technol, Acad Affairs Off, Zhenjiang 212003, Jiangsu, Peoples R China.; Xu, HL (corresponding author), Jiangsu Univ Sci & Technol, Sch Econ & Management, Zhenjiang 212003, Jiangsu, Peoples R China.
EM xhl@just.edu.cn; jzgsl@jzerp.com; yfjuster1979@163.com
FU Humanities and Social Sciences Project of Ministry of Education
[21JDSZ3091]; Jiangsu Higher Education Reform Research Project
[2021JSJG365]; Philosophy and Social Sciences Project of Universities in
Jiangsu Province [2021SJZDA169, 2021SJA2102]
FX Humanities and Social Sciences Project of Ministry of Education
(21JDSZ3091); Jiangsu Higher Education Reform Research Project
(2021JSJG365); Philosophy and Social Sciences Project of Universities in
Jiangsu Province (2021SJZDA169 and 2021SJA2102).
CR Agrawal S, 2021, BEHAV SCI-BASEL, V11, DOI 10.3390/bs11110145
Anderson C, 2015, PSYCHOL BULL, V141, P574, DOI 10.1037/a0038781
Avey JB, 2011, HUM RESOUR DEV Q, V22, P127, DOI 10.1002/hrdq.20070
Ibáñez MB, 2014, COMPUT EDUC, V71, P1, DOI 10.1016/j.compedu.2013.09.004
Burguillo JC, 2010, COMPUT EDUC, V55, P566, DOI 10.1016/j.compedu.2010.02.018
Cagiltay NE, 2015, COMPUT EDUC, V87, P35, DOI 10.1016/j.compedu.2015.04.001
Cheng G., 2020, J MANAG SCI CHINA, V23, P16
Cheong C., 2013, PACIS, P156
Christy KR, 2014, COMPUT EDUC, V78, P66, DOI 10.1016/j.compedu.2014.05.005
CNNIC (China Internet Network Information Center), 2021, The 47th Statistical Report on China's Internet Development
de-Marcos L, 2014, COMPUT EDUC, V75, P82, DOI 10.1016/j.compedu.2014.01.012
Gu JH., 2018, NANKAI BUS REV NT, V21, P107
Hanus MD, 2015, COMPUT EDUC, V80, P152, DOI 10.1016/j.compedu.2014.08.019
Peris FJSI, 2015, EDUC KNOWL SOC, V16, P13, DOI 10.14201/eks20151621315
Li S., 2020, Open Education Research, P99, DOI [10.13966/j.cnki.kfjyyj.2020.03.011, DOI 10.13966/J.CNKI.KFJYYJ.2020.03.011]
Li X., 2020, RES REPRESENTATION E
Naugle K.A., 2000, EDUCATION, V121, P135
Ortega-Arranz A, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103639
Hernández-Ramos JP, 2020, EDUC KNOWL SOC, V21, DOI 10.14201/eks.22910
Pan J., 2015, RES RELATIONSHIP MOO
Rajeev P, 2009, CURR SCI INDIA, V96, P272
Rice JW, 2012, INT J GAMING COMPUT-, V4, P81, DOI 10.4018/jgcms.2012100106
Sarmiento B.R., 2021, J MEDIA ED, V12, P53, DOI DOI 10.36253/ME-10262
Sidelinger RJ, 2011, COMMUN EDUC, V60, P340, DOI 10.1080/03634523.2011.554991
Sidelinger RJ, 2010, COMMUN EDUC, V59, P165, DOI 10.1080/03634520903390867
Su CH, 2015, J COMPUT ASSIST LEAR, V31, P268, DOI 10.1111/jcal.12088
Sun T., 2017, DISTANCE ED CHINA, V10, P55
Wang W, 2019, BEHAV INFORM TECHNOL, V38, P621, DOI 10.1080/0144929X.2018.1549595
Yue X., 2020, RES RELATIONSHIP PSY
Zhang H., 2013, J MANAG WORLD, V10, P170
NR 30
TC 5
Z9 5
U1 7
U2 81
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-328X
J9 BEHAV SCI-BASEL
JI Behav. Sci.
PD JUL
PY 2022
VL 12
IS 7
AR 225
DI 10.3390/bs12070225
PG 16
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA 3G8KI
UT WOS:000831596400001
PM 35877295
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Özköse, H
Ozyurt, O
Ayaz, A
AF Ozkose, Hakan
Ozyurt, Ozcan
Ayaz, Ahmet
TI Management Information Systems Research: A Topic Modeling Based
Bibliometric Analysis
SO JOURNAL OF COMPUTER INFORMATION SYSTEMS
LA English
DT Article
DE Management information systems; topic modeling; bibliometric analysis;
research trends
ID COVID-19; POINTS; WORK; MIS
AB Management information systems (MIS) have an interdisciplinary structure. Naturally, it develops and changes with the influence of other fields. This study tries to analyze MIS through academic studies on this topic. In this context, the analysis included 25304 articles published in the Scopus database from 2016 to 2021. Then, the performance analysis, part of bibliometric analysis, was used to measure the research productivity and impact of authors, institutions, countries, and journals. This way, the field's most influential authors, institutions, countries, and journals were determined. Afterward, the articles were gathered under 15 categories with topic modeling. These categories were examined on an annual basis, and more detailed results were tried to be revealed. This study both revealed the primary lines of the MIS field and ended up being a guide for researchers about the topics they can focus on in the future.
C1 [Ozkose, Hakan] Bartin Univ, Dept Management Informat Syst, Bartin, Turkey.
[Ozyurt, Ozcan] Karadeniz Tech Univ, Dept Software Engn, Trabzon, Turkey.
[Ayaz, Ahmet] Karadeniz Tech Univ, Digital Transformat Off, Trabzon, Turkey.
C3 Bartin University; Karadeniz Technical University; Karadeniz Technical
University
RP Ayaz, A (corresponding author), Karadeniz Tech Univ, Digital Transformat Off, Trabzon, Turkey.
EM ahmetayaz@ktu.edu.tr
RI Ayaz, Ahmet/JBJ-2146-2023; ÖZYURT, Özcan/AAG-4556-2019; Özköse,
Hakan/HLX-2774-2023; Ayaz, Ahmet/ABF-5870-2021
OI ÖZYURT, Özcan/0000-0002-0047-6813; Özköse, Hakan/0000-0002-4628-3056;
Ayaz, Ahmet/0000-0003-1405-0546
CR Abid M., 2008, OPERATION RES MANAGE
Aday S, 2020, FOOD QUAL SAF-OXFORD, V4, P167, DOI 10.1093/fqsafe/fyaa024
Adeoti-Adekeye WB., 1997, LIBR REV, V46, P318
Aggarwal C.C., 2012, Mining Text Data, P1, DOI DOI 10.1007/978-1-4614-3223-4_1
ARGYRIS C, 1971, MANAGE SCI B-APPL, V17, pB275
Barbier EB, 2020, WORLD DEV, V135, DOI 10.1016/j.worlddev.2020.105082
Basile LJ, 2023, TECHNOVATION, V120, DOI 10.1016/j.technovation.2022.102482
Baskerville RL, 2002, MIS QUART, V26, P1, DOI 10.2307/4132338
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boyle MJ., 2022, WHAT IS FINANCE EC
Can GF, 2023, IEEE T ENG MANAGE, V70, P3587, DOI 10.1109/TEM.2021.3100795
Chen K., 2011, REV TECHNOLOGY ACCEP
CHEON MJ, 1992, DATA BASE, V23, P21, DOI 10.1145/141342.141355
CULNAN MJ, 1986, MIS QUART, V10, P289, DOI 10.2307/249263
CULNAN MJ, 1987, MIS QUART, V11, P341, DOI 10.2307/248680
CULNAN MJ, 1986, MANAGE SCI, V32, P156, DOI 10.1287/mnsc.32.2.156
Damar M., 2021, INT J MANAG INF SYST, V5, P194, DOI [10.33461/uybisbbd.1011767, DOI 10.33461/UYBISBBD.1011767]
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Du HS, 2017, ONLINE INFORM REV, V41, P454, DOI 10.1108/OIR-05-2017-0142
FARHOOMAND AF, 1987, DATA BASE, V18, P48, DOI 10.1145/1017816.1017821
Fell R., 2005, Proceedings of the International Conference on Landslide Risk Management, Vancouver, Canada, P3
Girard J., 2015, ONLINE J APPL KNOWLE, V3
Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1
Holsapple CW, 2008, J ORG COMP ELECT COM, V18, P333, DOI 10.1080/10919390802453617
Hsu WCJ, 2021, DECIS SUPPORT SYST, V141, DOI 10.1016/j.dss.2020.113447
Hu YN, 2014, MACH LEARN, V95, P423, DOI 10.1007/s10994-013-5413-0
Kang J, 2019, J KOREAN ACAD NURS, V49, P736, DOI 10.4040/jkan.2019.49.6.736
Keeble BR., 1988, BRUNDTLAND REPORT OU
Laudon KennethC., 2014, Management Information Systems: Managing the Digital Firm, V13th
Opoku D., 2020, Humanities, V5, P151, DOI [10.20448/801.51.151.168, DOI 10.20448/801.51.151.168]
Özköse H, 2017, GAZI U J SCI, V30, P356
Ozyurt O, 2023, EDUC INF TECHNOL, V28, P3557, DOI 10.1007/s10639-022-11325-9
Ozyurt O, 2022, EDUC INF TECHNOL, V27, P11025, DOI 10.1007/s10639-022-11071-y
PANPATTE Suraj., 2019, The International Journal of Business Management and Technology, V3, P73
Power D.J., 2002, Decision Support Systems: Concepts and Resources for Managers
Pujari A.K., 2001, Data Mining Techniques
Risley C, 2020, J LIBR ADM, V60, P653, DOI 10.1080/01930826.2020.1773716
Rume T, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04965
Seo SN, 2017, BEHAVIORAL ECONOMICS OF CLIMATE CHANGE: ADAPTATION BEHAVIORS, GLOBAL PUBLIC GOODS, BREAKTHROUGH TECHNOLOGIES, AND POLICY-MAKING, P139, DOI 10.1016/B978-0-12-811874-0.00005-2
Shaker RR, 2015, APPL GEOGR, V63, P304, DOI 10.1016/j.apgeog.2015.07.009
Shiferaw A., 1997, COGNITIVE TECHNIQUES
Stevens G. C., 1989, International Journal of Physical Distribution & Materials Management, V19, P3, DOI 10.1108/EUM0000000000329
Tönnissen S, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.05.009
Van HGE, 2021, J ASIAN FINANC ECON, V8, P303, DOI 10.13106/jafeb.2021.vol8.no5.0303
Wang J, 2018, IND MANAGE DATA SYST, V118, P2, DOI 10.1108/IMDS-12-2016-0540
Wong LW, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.08.005
Wu KJ, 2016, IND MANAGE DATA SYST, V116, P777, DOI 10.1108/IMDS-08-2015-0327
NR 47
TC 7
Z9 7
U1 8
U2 50
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0887-4417
EI 2380-2057
J9 J COMPUT INFORM SYST
JI J. Comput. Inf. Syst.
PD SEP 3
PY 2023
VL 63
IS 5
BP 1166
EP 1182
DI 10.1080/08874417.2022.2132429
EA OCT 2022
PG 17
WC Computer Science, Information Systems
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA U2VV9
UT WOS:000869520900001
DA 2024-09-05
ER
PT J
AU Williams, K
Berman, G
Michalska, S
AF Williams, Kate
Berman, Glen
Michalska, Sandra
TI Investigating hybridity in artificial intelligence research
SO BIG DATA & SOCIETY
LA English
DT Article
DE Artificial intelligence; hybridity; knowledge production; research
value; bibliometrics
ID INSTITUTIONAL LOGICS; RESEARCH IMPACT; ALTMETRICS; INDUSTRY; PATENT
AB Research in the global field of artificial intelligence is increasingly hybrid in orientation. Researchers are beholden to the requirements of multiple intersecting spheres, such as scholarly, public, and commercial, each with their own language and logic. Relatedly, collaboration across disciplinary, sector and national borders is increasingly expected, or required. Using a dataset of 93,482 artificial intelligence publications, this article operationalises scholarly, public, and commercial spheres through citations, news mentions, and patent mentions, respectively. High performing publications (99th percentile) for each metric were separated into eight categories of influence. These comprised four blended categories of influence (news, patents and citations; news and patents; news and citations; patents and citations) and three single categories of influence (citations; news; patents), in addition to the 'Other' category of non-high performing publications. The article develops and applies two components of a new hybridity lens: evaluative hybridity and generative hybridity. Using multinomial logistic regression, selected aspects of knowledge production - research context, focus, artefacts, and collaborative configurations - were examined. The results elucidate key characteristics of knowledge production in the artificial intelligence field and demonstrate the utility of the proposed lens.
C1 [Williams, Kate] Univ Melbourne, Sch Social & Polit Sci, Melbourne, Vic, Australia.
[Berman, Glen] Australian Natl Univ, Sch Engn, Canberra, ACT, Australia.
[Michalska, Sandra] Kings Coll London, Policy Inst, London, England.
[Williams, Kate] Univ Melbourne, Sch Social & Polit Sci, 420 John Medley Bldg, Melbourne, Vic 3010, Australia.
C3 University of Melbourne; Australian National University; University of
London; King's College London; University of Melbourne
RP Williams, K (corresponding author), Univ Melbourne, Sch Social & Polit Sci, 420 John Medley Bldg, Melbourne, Vic 3010, Australia.
EM kate.williams@unimelb.edu.au
OI Berman, Glen/0000-0003-3249-0190
FU Economic and Social Research Council [ES/V004123/1]; ESRC [ES/V004123/1]
Funding Source: UKRI
FX The author(s) disclosed receipt of the following financial support
forthe research, authorship, and/or publication of this article: This
workwas supported by the Economic and Social Research Council grant
ES/V004123/1, awarded to Kate Williams and Jonathan Grant.
CR Abadi HHN, 2020, IEEE ACCESS, V8, P183448, DOI 10.1109/ACCESS.2020.3029231
Abadi HHN, 2020, IEEE ACCESS, V8, P81633, DOI 10.1109/ACCESS.2020.2988815
Abbas A, 2014, WORLD PAT INF, V37, P3, DOI 10.1016/j.wpi.2013.12.006
Adler N, 2009, RES POLICY, V38, P1136, DOI 10.1016/j.respol.2009.05.001
Ahmed N, 2020, Arxiv, DOI arXiv:2010.15581
Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575
Albert M, 2003, HIGH EDUC, V45, P147, DOI 10.1023/A:1022428802287
Baruffaldi S., 2020, OECD Science, Technology and Industry Working Papers, V2020/05, DOI [10.1787/5f65ff7--en, DOI 10.1787/5F65FF7--EN]
Bastow S., 2014, The Impact of the Social Sciences: How Academics and Their Research Make a Difference
Battilana J., 2017, The SAGE handbook of organizational institutionalism, V2, P128, DOI [10.4135/9781446280669.n6, DOI 10.4135/9781446280669.N6]
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Brennen JS, 2022, JOURNALISM, V23, P22, DOI 10.1177/1464884920947535
Bughin J., 2017, McKinsey Quarterly
Chuan CH, 2019, AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P339, DOI 10.1145/3306618.3314285
Cockburn IM, 2018, 24449 NBER
Crespo M, 2007, HIGH EDUC, V54, P61, DOI 10.1007/s10734-006-9046-0
Echterholter A., 2021, PREPRINT, DOI [10.33767/osf.io/28pnx, DOI 10.33767/OSF.IO/28PNX]
Enders J., 2004, Higher Education Policy, V17, P135
Fast E, 2017, AAAI CONF ARTIF INTE, P963
Fournier-Tombs E, 2021, BIG DATA SOC, V8, DOI 10.1177/20539517211039493
Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5
Gargiulo F, 2022, Arxiv, DOI [arXiv:2212.12263, 10.48550/arXiv.2212.12263, DOI 10.48550/ARXIV.2212.12263]
Gumpenberger C, 2016, SCIENTOMETRICS, V108, P977, DOI 10.1007/s11192-016-1991-5
Hagendorff T, 2023, AI SOC, V38, P35, DOI 10.1007/s00146-021-01284-z
Hammarfelt B, 2014, SCIENTOMETRICS, V101, P1419, DOI 10.1007/s11192-014-1261-3
Haney BS., 2020, SSRN ELECT J, DOI [10.2139/ssrn.3570254, DOI 10.2139/SSRN.3570254]
Haustein S, 2014, SCIENTOMETRICS, V101, P1145, DOI 10.1007/s11192-013-1221-3
Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2
Jurowetzki R, 2021, Arxiv, DOI [arXiv:2102.01648, 10.48550/arXiv.2102.01648, DOI 10.48550/ARXIV.2102.01648]
Kazuyuki M., 2020, SCI TECHNOLOGY COEVO
Klinger J., 2020, Social Science Research Network, DOI DOI 10.2139/SSRN.3698698
LAWANI SM, 1981, LIBRI, V31, P294
Li X, 2021, J INF SCI, V47, P161, DOI 10.1177/0165551519877049
Luitse D, 2021, BIG DATA SOC, V8, DOI 10.1177/20539517211047734
Mikolajczak P, 2020, VOLUNTAS, V31, P472, DOI 10.1007/s11266-020-00195-9
Mirowski P, 2018, SOC STUD SCI, V48, P171, DOI 10.1177/0306312718772086
Motohashi K., 2018, UNDERSTANDING AI DRI
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Ortega JL., 2019, J ALTMETRICS, V2, P4, DOI DOI 10.29024/JOA.14
Roemer R.C., 2015, MEANINGFUL METRICS 2
Samoili S, 2021, AI Watch, Defining Artificial Intelligence 2.0
Saran Samir, 2018, PURSUIT AUTONOMY NAT
Borg JS, 2021, BIG DATA SOC, V8, DOI 10.1177/20539517211040197
Siebert M., 2018, TECHNICAL BACKGROUND
STAR SL, 1989, SOC STUD SCI, V19, P387, DOI 10.1177/030631289019003001
Stark David., 2011, The Sense of Dissonance
Strubell E, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P3645
Thornton P.H., 2012, The Institutional Logics Perspective: A New Approach to Culture, Structure, and Process
Thornton PH, 1999, AM J SOCIOL, V105, P801, DOI 10.1086/210361
Wang AL, 2019, Arxiv, DOI arXiv:1804.07461
Williams K, 2022, SCI PUBL POLICY, V49, P518, DOI 10.1093/scipol/scac004
Williams K, 2020, RES EVALUAT, V29, P191, DOI 10.1093/reseval/rvaa001
Ylijoki OH, 2003, HIGH EDUC, V45, P307, DOI 10.1023/A:1022667923715
Zhang BB, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P187, DOI 10.1145/3375627.3375827
Zhao SX, 2018, SCIENTOMETRICS, V115, P153, DOI 10.1007/s11192-018-2662-5
NR 55
TC 3
Z9 3
U1 8
U2 28
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 2053-9517
J9 BIG DATA SOC
JI Big Data Soc.
PD JUL
PY 2023
VL 10
IS 2
AR 20539517231180577
DI 10.1177/20539517231180577
PG 17
WC Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Social Sciences - Other Topics
GA L5MG1
UT WOS:001023699400001
OA gold
DA 2024-09-05
ER
PT C
AU Zhang, ZY
Xie, X
AF Zhang, Zhenyu
Xie, Xiaoyao
BE Salem, MA
ElHadidi, MT
TI Intelligent cognitive radio: Research on learning and evaluation of CR
based on neural network
SO MEDIA CONVERGENCE: MOVING TO THE NEXT GENERATION
LA English
DT Proceedings Paper
CT ITI 5th International Conference on Information and Communications
Technology
CY DEC 16-18, 2007
CL Cairo, EGYPT
DE cognitive radio; artificial intelligence; neural network; cognitive
radio engine; genetic algorithms
AB This paper introduces the research of cognitive engine and application of artificial intelligence techniques in cognitive radio. The limitation of CR engine based on GA is analyzed, propose for improvement is proposed. The decision maker of CR engine should consider both the changeable factors and the unchangeable factors such as cost, bandwidth, signal rate and ARQ. Based on Neural Network, the method of evaluating and learning best decision is proposed. Several key architectural issues for cognitive radio engine based on Neural Network are discussed, including knowledge base information model and learning model Neural Network design.
C1 [Zhang, Zhenyu] Guizhoi Univ, Inst Comp Sci, Guizhoi, Peoples R China.
[Xie, Xiaoyao] Guizhou Normal Univ, Comp Sci Guizhou, Key Lab Informat, Guiyang 550002, Peoples R China.
C3 Guizhou Normal University
RP Zhang, ZY (corresponding author), Guizhoi Univ, Inst Comp Sci, Guizhoi, Peoples R China.
EM zhangzy3@vip.sina.com; xyx@gznu.edu.cn
FU International Cooperate Science Foundation of GuiZhou Province (China)
FX This work was supported by the International Cooperate Science
Foundation of GuiZhou Province (China).
CR [Anonymous], 2004, THESIS VIRGINIA POLY
BOSTAIN CW, 2004, P INT S ADV RAD TECH
Haykin S., 2004, Neural Networks - A Comprehensive Foundation, V2, P41, DOI DOI 10.1017/S0269888998214044
MITCHELL T, 1989, ANNU REV COMPUT SCI, V4, P417
MITOLA J, THESIS ROYAL I TECHN
Mitola J. III, 1999, 1999 IEEE International Workshop on Mobile Multimedia Communications (MoMuC'99) (Cat. No.99EX384), P3, DOI 10.1109/MOMUC.1999.819467
Narazaki H., 1993, IEEE Transactions on Fuzzy Systems, V1, P125, DOI 10.1109/91.227385
NEEL J, 2006, COGNITIVE RADIO NETW
NEEL J, 2006, SDRFORUM WORKSH COGN
Neel J.O., 2006, ANAL DESIGN COGNITIV
Negnevitsky M., 2002, Artificial Intelligence - A Guide to Intelligence Systems, V1st
RIESER CJ, 2004, IN PRESS IEEE MILCOM
Wakuya H, 2001, NEURAL NETWORKS, V14, P1307, DOI 10.1016/S0893-6080(01)00087-9
Wasserman P.D., 1989, Neural Computing: Theory and Practice
YU TC, 2004, J ZHEJIANG U, V38
NR 15
TC 20
Z9 21
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4244-1430-7
PY 2007
BP 33
EP 37
PG 5
WC Computer Science, Hardware & Architecture; Computer Science, Information
Systems; Computer Science, Theory & Methods; Information Science &
Library Science; Social Issues
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science; Social Issues
GA BHM92
UT WOS:000254392000006
DA 2024-09-05
ER
PT J
AU Vinkenburg, CJ
Ossenkop, C
Schiffbaenker, H
AF Vinkenburg, Claartje J.
Ossenkop, Carolin
Schiffbaenker, Helene
TI Selling science: optimizing the research funding evaluation and decision
process
SO EQUALITY DIVERSITY AND INCLUSION
LA English
DT Article
DE Research funding; Panel evaluation; Decision making; Bias mitigation;
Discretion elimination; Process optimization; Inclusion; Selling science
ID LINGUISTIC ANALYSIS; GENDER
AB Purpose In this contribution to EDI's professional insights, the authors develop practical and evidence-based recommendations that are developed for bias mitigation, discretion elimination and process optimization in panel evaluations and decisions in research funding. An analysis is made of how the expectation of "selling science" adds layers of complexity to the evaluation and decision process. The insights are relevant for optimization of similar processes, including publication, recruitment and selection, tenure and promotion. Design/methodology/approach The recommendations are informed by experiences and evidence from commissioned projects with European research funding organizations. The authors distinguish between three aspects of the evaluation process: written applications, enacted performance and group dynamics. Vignettes are provided to set the stage for the analysis of how bias and (lack of) fit to an ideal image makes it easier for some than for others to be funded. Findings In research funding decisions, (over)selling science is expected but creates shifting standards for evaluation, resulting in a narrow band of acceptable behavior for applicants. In the authors' recommendations, research funding organizations, evaluators and panel chairs will find practical ideas and levers for process optimization, standardization and customization, in terms of awareness, accountability, biased language, criteria, structure and time. Originality/value Showing how "selling science" in research funding adds to the cumulative disadvantage of bias, the authors offer design specifications for interventions to mitigate the negative effects of bias on evaluations and decisions, improve selection habits, eliminate discretion and create a more inclusive process.
C1 [Ossenkop, Carolin] Connectify, Wijchen, Netherlands.
[Ossenkop, Carolin] Radboud Univ Nijmegen, Inst Management Res, Nijmegen, Netherlands.
[Schiffbaenker, Helene] Joanneum Res Forsch Gesell MbH, Graz, Austria.
C3 Radboud University Nijmegen
EM c.j.vinkenburg@gmail.com
RI ; Vinkenburg, Claartje/F-1664-2013
OI Ossenkop, Carolin/0000-0002-2139-9984; Vinkenburg,
Claartje/0000-0002-4607-7287
CR Bickmore W, 2018, NATURE, V562, P192, DOI 10.1038/d41586-018-06979-w
Biernat M, 2020, PERS SOC PSYCHOL B, V46, P140, DOI 10.1177/0146167219845921
Bleijenbergh IL, 2012, EQUAL DIVERS INCL, V32, P22, DOI 10.1108/02610151311305597
Bloch C, 2014, MINERVA, V52, P77, DOI 10.1007/s11024-014-9247-0
Bol T, 2018, P NATL ACAD SCI USA, V115, P4887, DOI 10.1073/pnas.1719557115
Correll SJ, 2020, AM SOCIOL REV, V85, P1022, DOI 10.1177/0003122420962080
Fox MF., 2017, Handbook of Science and Technology Studies, V4, P701
Heilman M.E., 2015, Handbook of gendered careers in management: Getting in, getting on, getting out, P90, DOI [DOI 10.4337/9781782547709.00014, 10.4337/9781782547709.00014]
Herschberg C., 2019, THESIS RADBOUD U
Kaatz A, 2015, ACAD MED, V90, P69, DOI 10.1097/ACM.0000000000000442
King EB, 2018, J MANAGE, V44, P843, DOI 10.1177/0149206317743553
Leslie SJ, 2015, SCIENCE, V347, P262, DOI 10.1126/science.1261375
Madera JM, 2019, J BUS PSYCHOL, V34, P287, DOI 10.1007/s10869-018-9541-1
Malmström M, 2017, ENTREP THEORY PRACT, V41, P833, DOI 10.1111/etap.12275
Markowitz DM, 2019, J LANG SOC PSYCHOL, V38, P264, DOI 10.1177/0261927X18824859
Régner I, 2019, NAT HUM BEHAV, V3, P1171, DOI 10.1038/s41562-019-0686-3
Rivera LA, 2017, AM SOCIOL REV, V82, P1111, DOI 10.1177/0003122417739294
van den Besselaar P, 2018, SCIENTOMETRICS, V117, P313, DOI 10.1007/s11192-018-2848-x
van Veelen R., 2020, British Journal of Social Psychology, V2021, P1, DOI DOI 10.31234/OSF.IO/C3K56
Vinkenburg CJ, 2017, J APPL BEHAV SCI, V53, P212, DOI 10.1177/0021886317703292
Vinkenburg CJ, 2014, GROUP ORGAN MANAGE, V39, P33, DOI 10.1177/1059601113492846
White-Lewis DK, 2020, J HIGH EDUC-UK, V91, P833, DOI 10.1080/00221546.2020.1775058
NR 22
TC 2
Z9 2
U1 0
U2 8
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 2040-7149
EI 2040-7157
J9 EQUAL DIVERS INCL
JI Equal. Divers. Incl.
PD OCT 27
PY 2021
VL 41
IS 9
BP 1
EP 14
DI 10.1108/EDI-01-2021-0028
EA OCT 2021
PG 14
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA 0D9YO
UT WOS:000711609600001
OA hybrid, Green Submitted
DA 2024-09-05
ER
PT J
AU Engström, A
Pittino, D
Mohlin, A
Johansson, A
Mirzaei, NE
AF Engstrom, Annika
Pittino, Daniel
Mohlin, Alice
Johansson, Anette
Mirzaei, Nina Edh
TI Artificial intelligence and work transformations: integrating
sensemaking and workplace learning perspectives
SO INFORMATION TECHNOLOGY & PEOPLE
LA English
DT Article; Early Access
DE Action research; Sensemaking; Socio-technical theory; Organizational
learning; Collaboration; Organizational change; Management practices
ID INFORMATION-TECHNOLOGY; USER ACCEPTANCE; FOCUS GROUP; FUTURE; FRAMEWORK;
INSIGHTS; LEVEL
AB PurposeThe purpose of this study is to explore the process of initial sensemaking that organizational members activate when they reflect on AI adoption in their work settings, and how the perceived features of AI technologies trigger sensemaking processes which in turn have the potential to influence workplace learning modes and trajectories.Design/methodology/approachWe adopted an explorative qualitative and interactive approach to capture free fantasies and imaginative ideas of AI among people within the industry. We adopt a conceptual perspective that combines theories on initial sensemaking and workplace learning as a theoretical lens to analyze data collected during 23 focus groups held at four large Swedish manufacturing companies. The data were analyzed using the Gioia method.FindingsTwo aggregated dimensions were defined and led to the development of an integrated conceptualization of the initial sensemaking of AI technology adoption. Specifically, sensemaking triggered by abstract features of AI technology mainly pointed to an exploitative learning path. Sensemaking triggered by concrete features of the technology mainly pointed to explorative paths, where socio-technical processes appear to be crucial in the process of AI adoption.Originality/valueThis is one of the first studies that attempts to explore and conceptualize how organizations make sense of prospective workplace learning in the context of AI adoption.
C1 [Engstrom, Annika; Mohlin, Alice; Johansson, Anette; Mirzaei, Nina Edh] Jonkoping Univ, Sch Engn, Jonkoping, Sweden.
[Pittino, Daniel] Jonkoping Univ, Jonkoping Int Business Sch, Jonkoping, Sweden.
[Pittino, Daniel] Univ Udine, DMIF, Udine, Italy.
C3 Jonkoping University; Jonkoping University; University of Udine
RP Engström, A (corresponding author), Jonkoping Univ, Sch Engn, Jonkoping, Sweden.
EM annika.engstrom@ju.se
FU Knowledge Intensive Product Realization SPARK at Joenkoeping University,
Sweden [20200223]
FX The authors acknowledge the Knowledge Foundation, Joenkoeping
University, and the industrial partners for funding the research and
education environment on Knowledge Intensive Product Realization SPARK
at Joenkoeping University, Sweden. Project: AFAIR (No: 20200223).
CR Akundi A, 2022, APPL SYST INNOV, V5, DOI 10.3390/asi5010027
Balarezo JD, 2023, MANAGE LEARN, DOI 10.1177/13505076231210635
Bednar PM, 2020, INFORM SYST FRONT, V22, P281, DOI 10.1007/s10796-019-09921-1
Belanger France, 2012, Australasian Journal of Information Systems, V17, P109
Berente N., 2021, MIS QUART, V45, P1433, DOI [DOI 10.25300/MISQ/2021/16274, DOI 10.25300/MISQ/2021/16565]
Boyd JA, 2019, FUTURES, V111, P104, DOI 10.1016/j.futures.2019.06.002
Bryman A., 2006, Qualitative Research, V6, P97, DOI [10.1177/1468794106058877, DOI 10.1177/1468794106058877]
Canhoto AI, 2020, BUS HORIZONS, V63, P183, DOI 10.1016/j.bushor.2019.11.003
Cheikh-Ammar M, 2018, EUR J INFORM SYST, V27, P278, DOI 10.1080/0960085X.2018.1436025
Ciborra C.U., 1997, Scandinavian Journal of Information Systems, V9, P67
Colville I, 2016, MANAGE LEARN, V47, P3, DOI 10.1177/1350507615616542
Crossan MM, 1999, ACAD MANAGE REV, V24, P522, DOI 10.2307/259140
Cyr J, 2016, SOCIOL METHOD RES, V45, P231, DOI 10.1177/0049124115570065
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
Denscombe M., 2017, EBOOK: The Good Research Guide: For Small-Scale Social Research Projects
Dietzmann C., 2022, P 55 HAW INT C SYST, P5923
Edmondson A., 2012, Innovate, and Compete in the Knowledge Economy
Ellstrom P.E., 2006, Learning, P33
Ellström PE, 2020, J MANUF TECHNOL MANA, V31, P1517, DOI 10.1108/JMTM-09-2018-0304
Farjoun M, 2010, ACAD MANAGE REV, V35, P202, DOI 10.5465/AMR.2010.48463331
Ganzin M, 2020, ORGAN STUD, V41, P77, DOI 10.1177/0170840618819035
GIOIA DA, 1994, ORGAN SCI, V5, P363, DOI 10.1287/orsc.5.3.363
Gioia DA, 2013, ORGAN RES METHODS, V16, P15, DOI 10.1177/1094428112452151
Goto M, 2022, J PROF ORGAN, V9, P77, DOI 10.1093/jpo/joab022
Griffith TL, 1999, ACAD MANAGE REV, V24, P472, DOI 10.2307/259137
Henfridsson O., 2000, ACCOUNTING MANAGEMEN, V10, P33, DOI [10.1016/s0959-8022(99)00012-0, DOI 10.1016/S0959-8022(99)00012-0]
Hyo-Jeong Kim, 2009, International Journal of Accounting Information Systems, V10, P214, DOI 10.1016/j.accinf.2009.09.001
Jarrahi Mohammad Hossein, 2023, Journal of Business Strategy, P126, DOI 10.1108/JBS-11-2021-0182
Jarrahi MH, 2018, BUS HORIZONS, V61, P577, DOI 10.1016/j.bushor.2018.03.007
Kaplan S, 2013, ORGAN SCI, V24, P965, DOI 10.1287/orsc.1120.0792
Konlechner S, 2019, HUM RELAT, V72, P706, DOI 10.1177/0018726718773157
Lindgren S., 2020, Journal of Digital Social Research, V2, P1
Lunt P, 1996, J COMMUN, V46, P79, DOI 10.1111/j.1460-2466.1996.tb01475.x
Maitlis S, 2005, ACAD MANAGE J, V48, P21, DOI 10.2307/20159639
Maitlis S, 2014, ACAD MANAG ANN, V8, P57, DOI 10.1080/19416520.2014.873177
Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045
Malloch M., 2010, SAGE HDB WORKPLACE L
March JG, 1991, ORGAN SCI, V2, P71, DOI 10.1287/orsc.2.1.71
Markova I., 2007, DIALOGUE FOCUS GROUP
Meijerink J, 2023, HUM RESOUR MANAGE R, V33, DOI 10.1016/j.hrmr.2021.100876
Misra SK, 2023, TECHNOL FORECAST SOC, V194, DOI 10.1016/j.techfore.2023.122721
Nadkarni S, 2007, ORGAN SCI, V18, P688, DOI 10.1287/orsc.1070.0268
Nahavandi S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11164371
Nyumba TO, 2018, METHODS ECOL EVOL, V9, P20, DOI 10.1111/2041-210X.12860
Randhawa K, 2021, J PROD INNOVAT MANAG, V38, P668, DOI 10.1111/jpim.12599
Richter I, 1998, MANAGE LEARN, V29, P299, DOI 10.1177/1350507698293003
Sagodi A., 2023, ECIS 2023 Research Papers, V390
Santana M, 2020, EUR MANAG J, V38, P846, DOI 10.1016/j.emj.2020.04.010
Sawyer S, 2023, INFORM TECHNOL PEOPL, V36, P1, DOI 10.1108/ITP-12-2020-0857
Schwandt DR, 2005, ACAD MANAG LEARN EDU, V4, P176, DOI 10.5465/AMLE.2005.17268565
Sony M, 2020, PROD PLAN CONTROL, V31, P799, DOI 10.1080/09537287.2019.1691278
Stigliani I, 2012, ACAD MANAGE J, V55, P1232, DOI 10.5465/amj.2010.0890
Thomas JB, 2001, ORGAN SCI, V12, P331, DOI 10.1287/orsc.12.3.331.10105
Trist EL, 1951, HUM RELAT, V4, P3, DOI 10.1177/001872675100400101
van Giffen B, 2022, J BUS RES, V144, P93, DOI 10.1016/j.jbusres.2022.01.076
Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540
Vuori N, 2023, J MANAGE STUD, V60, P1341, DOI 10.1111/joms.12891
Weick, 1995, SENSEMAKING ORG
Wiesböck F, 2020, ELECTRON MARK, V30, P75, DOI 10.1007/s12525-019-00364-9
Wijnhoven F, 2022, INFORM SYST FRONT, V24, P731, DOI 10.1007/s10796-021-10206-9
Wilkinson S., 1998, International Journal of Social Research Methodology Theory and Practice, V1, P181, DOI [10.1080/13645579.1998.10846874, DOI 10.1080/13645579.1998.10846874]
Zammuto RF, 2007, ORGAN SCI, V18, P749, DOI 10.1287/orsc.1070.0307
NR 62
TC 0
Z9 0
U1 4
U2 4
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 0959-3845
EI 1758-5813
J9 INFORM TECHNOL PEOPL
JI Inf. Technol. People
PD 2024 JUL 15
PY 2024
DI 10.1108/ITP-01-2023-0048
EA JUL 2024
PG 21
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA YF1E0
UT WOS:001266970800001
DA 2024-09-05
ER
PT J
AU Sahran, F
Altarturi, HHM
Anuar, NB
Bouras, CJ
Liu, YM
Zhang, Z
Meng, Y
AF Sahran, Firdaus
Altarturi, Hamza H. M.
Anuar, Nor Badrul
Bouras, Christos J.
Liu, Yiming
Zhang, Zhi
Meng, Yue
TI Exploring the Landscape of AI-SDN: A Comprehensive Bibliometric Analysis
and Future Perspectives
SO ELECTRONICS
LA English
DT Article
DE artificial intelligence; Software-Defined Networking; bibliometrics;
machine learning; data visualization
ID SOFTWARE-DEFINED NETWORKING; INTRUSION DETECTION; FRAMEWORK; SCIENCE
AB The rising influence of artificial intelligence (AI) enables widespread adoption of the technology in every aspect of computing, including Software-Defined Networking (SDN). Technological adoption leads to the convergence of AI and SDN, producing solutions that overcome limitations present in traditional networking architecture. Although numerous review articles discuss the convergence of these technologies, there is a lack of bibliometric trace in this field, which is important for identifying trends, new niches, and future directions. Therefore, this study aims to fill the gap by presenting a thorough bibliometric analysis of AI-related SDN studies, referred to as AI-SDN. The study begins by identifying 474 unique documents in the Web of Science (WoS) database published from 2009 until recently. The study uses bibliometric analysis to identify the general information, countries, authorship, and content of the selected articles, thereby providing insights into the geographical and institutional landscape shaping AI-SDN research. The findings provide a robust roadmap for further investigation in this field, including the background and taxonomy of the AI-SDN field. Finally, the article discusses several challenges and the future of AI-SDN in academic research.
C1 [Sahran, Firdaus; Altarturi, Hamza H. M.; Anuar, Nor Badrul] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia.
C3 Universiti Malaya
RP Anuar, NB (corresponding author), Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia.
EM firdaussahran@um.edu.my; hamza.altarturi@um.edu.my; badrul@um.edu.my
RI Yiming, Liu/GYJ-8249-2022; wang, yi/HOF-6668-2023
OI Sahran, Firdaus/0000-0002-3470-0086
CR Aldoseri A, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13127082
Alhilali AH, 2023, INTERNET THINGS-NETH, V22, DOI 10.1016/j.iot.2023.100814
Ali M, 2020, IEEEAAIA DIGIT AVION, DOI 10.1109/dasc50938.2020.9256597
Ali TE, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13053183
Altarturi HHM, 2020, CHILD YOUTH SERV REV, V116, DOI 10.1016/j.childyouth.2020.105134
Alvizu R, 2017, J OPT COMMUN NETW, V9, pD19, DOI 10.1364/JOCN.9.000D19
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Bagaa M, 2020, IEEE ACCESS, V8, P114066, DOI 10.1109/ACCESS.2020.2996214
Bahashwan AA, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23094441
Bakhshi T, 2017, INT CONF FRONT INFO, P23, DOI 10.1109/FIT.2017.00012
Bakhshi T, 2016, J COMPUT NETW COMMUN, V2016, DOI 10.1155/2016/2048302
Belgaum MR, 2022, CMC-COMPUT MATER CON, V70, P251, DOI 10.32604/cmc.2022.018211
Boero L, 2017, 2017 29TH INTERNATIONAL TELETRAFFIC CONGRESS (ITC 29), VOL 3, P25, DOI [10.1109/JTC29.147, 10.23919/ITC.2017.8065806]
Bornmann L, 2016, J INFORMETR, V10, P875, DOI 10.1016/j.joi.2016.07.002
Bouacida N, 2017, IEEE ICC
Bouzidi E, 2019, IEEE GLOB COMM CONF, DOI 10.1109/globecom38437.2019.9013221
Budhraja KK, 2017, IEEE INT CONF CLOUD, P761, DOI 10.1109/CLOUD.2017.109
Chan KY, 2018, I C INF COMM TECH CO, P396, DOI 10.1109/ICTC.2018.8539715
Changhe Yu, 2018, Procedia Computer Science, V131, P1209, DOI 10.1016/j.procs.2018.04.331
Chen C, 2022, WIREL COMMUN MOB COM, V2022, DOI 10.1155/2022/5124960
Chen JY, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23010429
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Cranford N., How SDN Can Benefit Healthcare
Della Corte V, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11216114
Greene Kate., 2009, TR10: Software-Defined Networking"
Hark R, 2019, 2019 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (IEEE NFV-SDN), DOI 10.1109/nfv-sdn47374.2019.9040030
Heigl M, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10172160
Jefferson J., 2021, Libr. Philos. Pract
Jiang JF, 2023, DIGIT COMMUN NETW, V9, P1351, DOI 10.1016/j.dcan.2022.07.001
Khan N, 2023, J KING SAUD UNIV-COM, V35, P176, DOI 10.1016/j.jksuci.2023.02.001
Ko KM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13179488
Koskinen J, 2008, NORD J PSYCHIAT, V62, P136, DOI 10.1080/08039480801961667
Kumar S, 2020, 2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020), P602, DOI [10.1109/ICOIN48656.2020.9016529, 10.1109/icoin48656.2020.9016529]
Latah M., 2016, INDIAN J SCI TECHNOL, V9, P1, DOI [10.17485/ijst/2016/v9i44/89812, DOI 10.17485/ijst/2016/v9i44/89812]
Latah M, 2019, IET NETW, V8, P79, DOI 10.1049/iet-net.2018.5082
Latah M, 2018, IET NETW, V7, P453, DOI 10.1049/iet-net.2018.5080
Lin YH, 2021, J SYST ARCHITECT, V116, DOI 10.1016/j.sysarc.2021.102141
Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678
Ma XH, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14020195
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Muhamedyev RI, 2018, ANN LIBR INF STUD, V65, P62, DOI 10.56042/alis.v65i1.18656
Naeem F, 2023, IEEE COMMUN MAG, V61, P88, DOI 10.1109/MCOM.001.2200533
Naibaho Lamhot, 2023, 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), P513, DOI 10.1109/ICACITE57410.2023.10182618
Nisar K, 2020, INTERNET THINGS-NETH, V12, DOI 10.1016/j.iot.2020.100289
Nuage Networks, SDN in Finance & Banking
Rahman A, 2022, CLUSTER COMPUT, V25, P2351, DOI 10.1007/s10586-021-03367-4
Rahouti M, 2021, IEEE ACCESS, V9, P12083, DOI 10.1109/ACCESS.2020.3047996
Sacco A, 2020, PROCEEDINGS OF THE 2020 6TH IEEE CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2020): BRIDGING THE GAP BETWEEN AI AND NETWORK SOFTWARIZATION, P150, DOI [10.1109/NetSoft48620.2020.9165506, 10.1109/netsoft48620.2020.9165506]
Savi M, 2018, OPT SWITCH NETW, V30, P71, DOI 10.1016/j.osn.2018.06.005
Setiawan Sumadi F.D., 2022, IAES Int. J. Artif. Intell. IJ-AI, V11, P1094, DOI [10.11591/ijai.v11.i3.pp1094-1100, DOI 10.11591/IJAI.V11.I3.PP1094-1100]
Srinivasan SM, 2018, 2018 IEEE 6TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD (FICLOUD 2018), P25, DOI 10.1109/FiCloud.2018.00012
Thormundsson B., Artificial Intelligence (AI) Market Size Worldwide in 2021 with a Forecast until 2030
Uddin R, 2022, INT CONF WIREL SPAC, P71, DOI [10.1109/WiSEE49342.2022.9926943, 10.1109/WISEE49342.2022.9926943]
Wang P, 2016, P IEEE I C SERV COMP, P760, DOI 10.1109/SCC.2016.133
Wijethilaka S, 2021, IEEE COMMUN SURV TUT, V23, P957, DOI 10.1109/COMST.2021.3067807
Wu YJ, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10186564
Xing ZY, 2023, FRONT INFORM TECH EL, V24, P844, DOI 10.1631/FITEE.2200507
Yang CP, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22218222
Yenduri G., Proceedings of the Proceedings of the 24th International Conference on Distributed Computing and Networking, Kharagpur, India, 4-7 January 2023, P402
Yoo Y, 2023, 2023 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING, CCGRID, P273, DOI 10.1109/CCGRID57682.2023.00034
Zhang X, 2016, BEHAV INFORM TECHNOL, V35, P1130, DOI 10.1080/0144929X.2016.1212403
Zhong J, 2016, 2016 3RD MEC INTERNATIONAL CONFERENCE ON BIG DATA AND SMART CITY (ICBDSC), P23
NR 62
TC 0
Z9 0
U1 13
U2 16
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2079-9292
J9 ELECTRONICS-SWITZ
JI Electronics
PD JAN
PY 2024
VL 13
IS 1
AR 26
DI 10.3390/electronics13010026
PG 33
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Physics
GA EM3J5
UT WOS:001139301200001
OA gold
DA 2024-09-05
ER
PT J
AU Della Corte, D
Morris, CJ
Billings, WM
Stern, J
Jarrett, AJ
Hedelius, B
Bennion, A
AF Della Corte, Dennis
Morris, Connor J.
Billings, Wendy M.
Stern, Jacob
Jarrett, Austin J.
Hedelius, Bryce
Bennion, Adam
TI Training undergraduate research assistants with an outcome-oriented and
skill-based mentoring strategy
SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY
LA English
DT Article
DE mentoring; undergraduates; CASP; protein structure prediction; deep
learning
AB Effective mentoring of undergraduate students is a growing requirement for the promotion of faculty at many universities. It is often challenging for young investigators to define a successful mentoring strategy, partially due to the absence of a broadly accepted definition of what mentoring should entail. To overcome this, an outcome-oriented mentoring framework was developed and used with more than 25 students over three years. It was found that a systematic mentoring approach can help students quickly realize their scientific potential and result in meaningful contributions to science. This report especially shows how the Critical Assessment of Protein Structure Prediction (CASP14) challenge was used to amplify student research efforts. As a result of this challenge, multiple publications, presentations and scholarships were awarded to the participating students. The mentoring framework continues to see much success in allowing undergraduate students, including students from under-represented groups, to foster scientific talent and make meaningful contributions to the scientific community.
C1 [Della Corte, Dennis; Morris, Connor J.; Billings, Wendy M.; Stern, Jacob; Jarrett, Austin J.; Hedelius, Bryce; Bennion, Adam] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA.
C3 Brigham Young University
RP Della Corte, D; Bennion, A (corresponding author), Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA.
EM dennis.dellacorte@byu.edu; adam_bennion@byu.edu
OI Della Corte, Dennis/0000-0002-8884-9724; Bennion,
Adam/0000-0003-2524-7360; Jarrett, Austin/0000-0001-8522-0309
FU College of Physical and Mathematical Sciences at BYU
FX DDC thanks the College of Physical and Mathematical Sciences at BYU for
start-up and undergraduate funds. All authors thank the Office of
Research Computing at BYU for access to compute resources. Author
contributions are as follows. DDC developed the strategy and mentored
the students. CM, WMB and BH prepared and executed the CASP experiment.
JS and AJ contributed to the CASP conference and related publications.
AB performed the postexperiment interviews and analysis. All authors
contributed to the writing of this article.
CR ADLER PA, 1995, CONTEMP SOCIOL, V24, P420, DOI 10.2307/2076552
[Anonymous], 2019, BIORXIV
Billings WM, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-87524-0
Boutros PC, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0462-7
Gannon JM, 2012, EDUC TRAIN, V54, P440, DOI 10.1108/00400911211254244
Gee K. L, 2019, P M ACOUST, V39
Gee K.L., 2017, Acoustics Today, V13, P27
Gershenfeld S, 2014, REV EDUC RES, V84, P365, DOI 10.3102/0034654313520512
González C, 2001, SCIENCE, V293, P1624, DOI 10.1126/science.1062714
Goodman-Wilson M, 2021, MENTOR TUTOR, V29, P328, DOI 10.1080/13611267.2021.1927439
Haeger H, 2016, CBE-LIFE SCI EDUC, V15, DOI 10.1187/cbe.16-01-0016
Johnson WB, 2015, MENTOR TUTOR, V23, P441, DOI 10.1080/13611267.2015.1126167
Kettler T., 2021, SPECIALIZED SCH HIGH, P177
Kinch LN, 2021, PROTEINS, V89, P1618, DOI 10.1002/prot.26202
Koch C., 2000, COUNC UNDERGRAD RES, V19, P172
Kryshtafovych A, 2021, PROTEINS, V89, P1987, DOI 10.1002/prot.26231
Marshall M, 2021, MENTOR TUTOR, V29, P89, DOI 10.1080/13611267.2021.1899587
Maxwell JosephA., 2013, Qualitative Research Design: An Interactive Approach, P1
Mello LV, 2021, FEBS OPEN BIO, V11, P1524, DOI 10.1002/2211-5463.13158
Mello LV, 2017, HIGH EDUC PEDAGOG, V2, P43, DOI 10.1080/23752696.2017.1339287
Morales DX, 2021, STUD HIGH EDUC, V46, P423, DOI 10.1080/03075079.2019.1639041
Morris C. J., 2020, CASP14 VIRT C
Morris C. J., 2020, CASP14 VIRT S
Morris C. J., 2021, ASBMB PDB50 S
Pereira J, 2021, PROTEINS, V89, P1687, DOI 10.1002/prot.26171
Stern J, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222312835
Trosset C., 2018, CHANG MAG HIGH LEARN, V50, P47
NR 27
TC 0
Z9 0
U1 1
U2 3
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 2059-7983
J9 ACTA CRYSTALLOGR D
JI Acta Crystallogr. Sect. D-Struct. Biol.
PD AUG 1
PY 2022
VL 78
BP 936
EP 944
DI 10.1107/S2059798322005861
PN 8
PG 9
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 3O7WU
UT WOS:000837045300002
PM 35916219
OA hybrid, Green Published
DA 2024-09-05
ER
PT C
AU Mohamed, B
AF Mohamed, Bahaaeldin
BE Chova, LG
Martinez, AL
Torres, IC
TI RESEARCH FOR SILLY BILLY: TECHNICAL COLLEGES' STUDENTS CONDUCT A
SCIENTIFIC RESEARCH
SO 9TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES
(EDULEARN17)
SE EDULEARN Proceedings
LA English
DT Proceedings Paper
CT 9th International Conference on Education and New Learning Technologies
(EDULEARN)
CY JUL 03-05, 2017
CL Barcelona, SPAIN
DE Conducting research; Digital research; e-Science; communication;
collaboration; learning evaluation; Social online learning;
Research-based learning; Academic writing; Research methodology;
teaching to conduct research
ID ATTITUDES
AB The purpose of this study is to create a new framework to help the Saudi Technical College students to conduct a first piece of research mainly, the bachelor's thesis. The research proposed a framework in helping students to understand not only resource referencing, data collection, data analysis and problem solving but the academic writing and project management as well. The data were collected from Saudi Bachelor students at Technical Trainer College in Riyadh, Kingdom of Saudi Arabia. Students were asked to conduct a bachelor's thesis within 3 months in order for them to obtain their Bachelor's Degree in Engineering. The researcher conducted an experiment to test the impact of the proposed framework on students' learning and attitudes towards research. The proposed framework consists of 7 weekly lectures and individuals' consultation face to face and online. The students were asked to fill out a survey expressing their attitudes towards the program. In addition, the researcher conducted a brainstorming within the focused group to investigate qualitative data. The results indicate not only a positive attitude among students for learning academic writing and research methodology, but a reduced number of falsifications and acquisition of plagiarism.
C1 [Mohamed, Bahaaeldin] Lincoln Coll Int Riyadh, Res Methodol & Vocat Pedag, Bachelor Thesis, Riyadh, Saudi Arabia.
RP Mohamed, B (corresponding author), Lincoln Coll Int Riyadh, Res Methodol & Vocat Pedag, Bachelor Thesis, Riyadh, Saudi Arabia.
FU Lincoln College International in Saudi Arabia
FX This research was supported by Lincoln College International in Saudi
Arabia. The researcher would like to give his deepest appreciation to
Mr. Riccy Longden, the Vice Dean and the Bachelor Thesis Committee Head
for his trust and support. The researcher would also like to show his
gratitude to Dr. Garry Sharkey, the Head of English and Education
Enterprise (EEE) department and the Bachelor's Thesis Committee support
team for his trust and support. The researcher also appreciates Mr.
Gavin Jenkins, the General Coordinator and Bachelor's Thesis Committee
support team for the assistance and support.
CR Al-Harbi K.A., 2011, Computing and Informatics, V9, P31, DOI DOI 10.1016/J.ACI.2010.03.002
Al-Zubaidi KO, 2012, PROCD SOC BEHV, V66, P46, DOI 10.1016/j.sbspro.2012.11.246
Alothman M, 2017, COMPUT EDUC, V110, P127, DOI 10.1016/j.compedu.2017.02.010
[Anonymous], 2016, Al Arabiya
Bagozzi R. P., 1988, EVALUATION STRUCTURA, DOI [10.1007/BF02723327, DOI 10.1007/BF02723327, 10.1007/Bf02723327]
Cigdem H, 2016, COMPUT HUM BEHAV, V61, P522, DOI 10.1016/j.chb.2016.03.070
Gerçek E, 2016, NURS EDUC TODAY, V46, P50, DOI 10.1016/j.nedt.2016.08.015
Gray Peter., 2015, FREE LEARN WHY UNLEA
Hulland J, 1999, STRATEGIC MANAGE J, V20, P195, DOI 10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7
Keib C, 2017, NURSE ED TODAY
Khan MA, 2014, PROCD SOC BEHV, V112, P702, DOI 10.1016/j.sbspro.2014.01.1220
Lipton B.H, 2008, BIOL BELIEVE UNLEASI
Mohamed B, 2013, ESCIENCE 2 NETW C 11
Mohamed B, 2011, THESIS
Mohamed B., 2013, 2 ESCIENCE NETW C DR
Mohamed B, 2015, INT C ED RES INN ICE
Mohamed B, 2013, 15 GEN ONL RES C GOR
Parkinson J, 2017, ENGL SPECIF PURP, V46, P29, DOI 10.1016/j.esp.2016.12.003
Ringle C.M., 2015, SMARTPLS 3
Simmons A., 2007, Whoever tells the best story wins: How to use your own stories to communicate with power and impact
Wong K.K.-K., 2013, MARKETING B, V24, P1, DOI DOI 10.1108/EBR-10-2013-0128
Xu D, 2013, ECON EDUC REV, V37, P46, DOI 10.1016/j.econedurev.2013.08.001
NR 22
TC 0
Z9 0
U1 0
U2 1
PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT
PI VALENICA
PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN
SN 2340-1117
BN 978-84-697-3777-4
J9 EDULEARN PROC
PY 2017
BP 8985
EP 8995
PG 11
WC Education & Educational Research; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BO0RJ
UT WOS:000493048104014
DA 2024-09-05
ER
PT C
AU Xiao, T
Liu, GH
Xu, GP
Li, Y
Cheng, XZ
Xu, LX
Cheng, C
Zhou, SY
AF Xiao, Tian
Liu, Guanghai
Xu, Guoping
Li, Yi
Cheng, Xinzhou
Xu, Lexi
Cheng, Chen
Zhou, Shiyu
GP IEEE
TI Research on Coverage Ability Assessment of High and Low Frequency based
on Machine Learning
SO 2021 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION
TECHNOLOGIES FOR DISASTER MANAGEMENT (ICT-DM)
LA English
DT Proceedings Paper
CT International Conference on Information and Communication Technologies
for Disaster Management (ICT-DM)
CY DEC 03-05, 2021
CL Hangzhou, PEOPLES R CHINA
DE Coverage Ability; Propagation Model; Machine Learning
AB With the rapid construction of 5G network in China, how to guide reasonable network planning and construction through accurate network coverage ability assessment, and build a 5G high-low-frequency hybrid network with low cost and high efficiency, has become an important topic urgently needed to be studied by telecommunication suppliers. Firstly, the propagation models applicable to 2.1G and 3.5G are studied and theoretically calculated. Next, reasonable suggestions are put forward for the problems existed in the calibration for traditional Propagation Model, and the accuracy of the propagation model is improved by adopting the machine learning algorithm and model. Finally, based on outfield test results, the propagation model calibrations for 3.5G and 2.1G bands are conducted, and reasonable suggestions are put forward for 5G high and low frequency hybrid networking scheme.
C1 [Xiao, Tian; Liu, Guanghai; Li, Yi; Cheng, Xinzhou; Xu, Lexi; Cheng, Chen; Zhou, Shiyu] China United Network Commun Corp, Res Inst, Beijing, Peoples R China.
[Xu, Guoping] China United Network Commun Grp Co Ltd, Beijing, Peoples R China.
C3 China United Network Communications Limited; China United Network
Communications Limited
RP Xiao, T (corresponding author), China United Network Commun Corp, Res Inst, Beijing, Peoples R China.
EM xiaot6@chinaunicom.cn; liugh124@chinaunicom.cn; xugp5@chinaunicom.cn;
liy360@chinaunicom.cn; chengxz11@chinaunicom.cn; xulx29@chinaunicom.cn;
chengc40@chinaunicom.cn; zhousy60@chinaunicom.cn
RI zhang, luyu/JJC-4227-2023; Xu, Lexi/ABT-2601-2022; LI,
Xiang-Yang/JZE-0275-2024; cheng, cheng/JBR-8359-2023
OI Xu, Lexi/0000-0003-4338-7252;
FU Ministry of Industry and Information Technology of P.R.China
FX This work was supported in partially by Ministry of Industry and
Information Technology of P.R.China -Big data industry development pilot
demonstration project: Integrated heterogeneous data and deep learning
based civil big data innovative application and pilot demonstration, 5G
big data cross industry heterogeneous integration innovation application
pilot demonstration.
CR 3GPP RAN-1, 2018, 36873 3GPP RAN1 TR
[Anonymous], 2019, 38866 3GPP TR
Chao K., 2017, P ICSINC SEPT CHONGQ, P389
Chao K., 2015, P ICSINC OCT BEIJ CH
Cheng XZ, 2016, SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, P385
Eiza M., 2020, SUSTAINABLE EC SMART
Eiza M.H., 2020, Toward Sustainable and Economic Smart Mobility: Shaping the Future of Smart Cities
Gao J., 2015, PROC ICSINC
Gao J, 2016, 2016 16TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), P246, DOI 10.1109/ISCIT.2016.7751630
Jia J, 2013, P IEEE VTC JUN DRESD, P1
Lexi Xu, 2019, 2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS), P756, DOI 10.1109/IUCC/DSCI/SmartCNS.2019.00155
Lexi Xu, 2010, Proceedings of the 2010 IEEE 10th International Conference on Computer and Information Technology (CIT 2010), P791, DOI 10.1109/CIT.2010.151
Liu YW, 2018, IEEE WIREL COMMUN, V25, P17, DOI 10.1109/MWC.2018.1700080
Simonsson A, 2017, IEEE VTS VEH TECHNOL
Tan FT, 2020, PROC CVPR IEEE, P647, DOI 10.1109/CVPR42600.2020.00073
Wang Y., 2015, PROC ICSINC
Xing HL, 2016, LECT NOTES COMPUT SC, V9787, P34, DOI 10.1007/978-3-319-42108-7_3
Xu L., 2018, P ICSINC, P237
Xu L., 2020, P ICSINC SEPT RIZH C, P1000
Xu LX, 2019, 2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), P1521, DOI 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00274
Xu LX, 2017, INT J DISTRIB SYST T, V8, P27, DOI 10.4018/IJDST.2017040103
Xu LX, 2014, 2014 IEEE 25TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATION (PIMRC), P1597, DOI 10.1109/PIMRC.2014.7136423
Xu LX, 2016, 2016 16TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), P263, DOI 10.1109/ISCIT.2016.7751633
Xu LX, 2016, SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS, P249
Xu LX, 2011, PROCEEDINGS OF 2011 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY AND APPLICATION, ICCTA2011, P306, DOI 10.1049/cp.2011.0680
Xu Lexi, 2012, P EUR WIR POZN POL, P1
Yong Zhang, 2019, 2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS), P611, DOI 10.1109/IUCC/DSCI/SmartCNS.2019.00128
Yongsheng Chi, 2019, 2019 IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS), P621, DOI 10.1109/IUCC/DSCI/SmartCNS.2019.00130
Zhang D., 2017, IEEE T COMMUN, V65
Zhu H, 2019, PROC CVPR IEEE, P4486, DOI 10.1109/CVPR.2019.00462
Zhu H, 2018, PROC CVPR IEEE, P4450, DOI 10.1109/CVPR.2018.00468
Zhu H, 2017, IEEE T CIRC SYST VID, V27, P760, DOI 10.1109/TCSVT.2016.2596118
Zhu H, 2017, FRONT COMPUT SCI-CHI, V11, P175, DOI 10.1007/s11704-016-5520-8
NR 33
TC 0
Z9 0
U1 0
U2 4
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-3285-6
PY 2021
BP 86
EP 92
DI 10.1109/ICT-DM52643.2021.9664166
PG 7
WC Computer Science, Information Systems; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BT7HR
UT WOS:000848659700014
DA 2024-09-05
ER
PT J
AU Ali, Z
Qi, GL
Muhammad, K
Bhattacharyya, S
Ullah, I
Abro, W
AF Ali, Zafar
Qi, Guilin
Muhammad, Khan
Bhattacharyya, Siddhartha
Ullah, Irfan
Abro, Waheed
TI Citation recommendation employing heterogeneous bibliographic network
embedding
SO NEURAL COMPUTING & APPLICATIONS
LA English
DT Article
DE Recommender systems; Citation recommendations; Network embedding; Deep
learning; Network sparsity
ID GRAPH
AB The massive number of research articles on the Web makes it troublesome for researchers to identify related works that could meet their preferences and interests. Consequently, various network representation learning-based models have been proposed to produce citation recommendations. Nevertheless, these models do not exploit semantic relations and contextual information between the objects of bibliographic papers' networks, which can result in inadequate citation recommendations. Moreover, existing citation recommendation methods face problems such as lack of personalization, cold-start, and network sparsity. To mitigate such problems and produce individualized citation recommendations, we propose a heterogeneous network embedding model that jointly learns node representations by exploiting semantics corresponding to the author, time, context, field of study, citations, and topics. Compared to baseline models, the results produced by the proposed model over the DBLP datasets prove 10% and 12% improvement on mean average precision (MAP) and normalized discounted cumulative gain (nDCG@10) metrics, respectively. Also, the effectiveness of our model is analyzed on the cold-start papers and network sparsity problems, where it gains 12% and 9% better MAP and recall@10 scores, respectively.
C1 [Ali, Zafar; Qi, Guilin; Abro, Waheed] Southeast Univ, Sch Comp Sci & Engn, Nanjing, Peoples R China.
[Muhammad, Khan] Sejong Univ, Dept Software, Visual Analyt Knowledge Lab VIS2KNOW Lab, Seoul 143747, South Korea.
[Bhattacharyya, Siddhartha] Rajnagar Mahavidyalaya, Birbhum, India.
[Ullah, Irfan] Shaheed Benazir Bhutto Univ, Dept Comp Sci, Sheringal, Pakistan.
C3 Southeast University - China; Sejong University
RP Ali, Z (corresponding author), Southeast Univ, Sch Comp Sci & Engn, Nanjing, Peoples R China.; Muhammad, K (corresponding author), Sejong Univ, Dept Software, Visual Analyt Knowledge Lab VIS2KNOW Lab, Seoul 143747, South Korea.
EM zafarali@seu.edu.cn; khan.muhammad@ieee.org
RI Ullah, Irfan/C-9213-2014; Muhammad, Khan/L-9059-2016; Zhang,
Yihao/JGM-3514-2023; Khan, Muhammad/IXN-8470-2023; Ullah,
Irfan/CAA-4310-2022; Cheng, Yuan/JKJ-0794-2023; Wang,
Peilin/JWP-6008-2024; Ali, Zafar/D-7320-2017
OI Ullah, Irfan/0000-0003-0693-5467; Muhammad, Khan/0000-0003-4055-7412;
Ullah, Irfan/0000-0003-0693-5467; Ullah, Irfan/0000-0003-3961-888X;
Muhammad, Khan/0000-0002-5302-1150; Ali, Zafar/0000-0002-6404-645X
CR Abro WA, 2019, IEEE IJCNN, DOI 10.1109/ijcnn.2019.8852246
Achakulvisut T, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0158423
Ali Z, 2021, EXPERT SYST APPL, V180, DOI 10.1016/j.eswa.2021.114888
Ali Z, 2021, 2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), DOI 10.1109/CISS50987.2021.9400311
Ali Z, 2020, EXPERT SYST APPL, V162, DOI 10.1016/j.eswa.2020.113790
Ali Z, 2020, ARTIF INTELL REV, V53, P5217, DOI 10.1007/s10462-020-09819-4
Ali Z, 2016, INTERNATIONAL CONFERENCE ON INFORMATICS AND SYSTEMS (INFOS 2016), P68, DOI 10.1145/2908446.2908481
Aliannejadi M., 2019, IEEE T KNOWL DATA EN, P1
Amami M, 2016, LECT NOTES COMPUT SC, V9612, P200, DOI 10.1007/978-3-319-41754-7_17
[Anonymous], 2013, P 7 ACM C REC SYST R, DOI DOI 10.1145/2507157.2507212
Ayala-Gómez F, 2018, J INTELL FUZZY SYST, V34, P3089, DOI 10.3233/JIFS-169493
Bansal T, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P107, DOI 10.1145/2959100.2959180
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Bhagavatula C., 2018, Long Papers, V1, P238, DOI DOI 10.18653/V1/N18-1022
Cai XY, 2019, IEEE ACCESS, V7, P457, DOI 10.1109/ACCESS.2018.2885507
Cai XY, 2018, AAAI CONF ARTIF INTE, P5747
Cai XY, 2018, IEEE T NEUR NET LEAR, V29, P6026, DOI 10.1109/TNNLS.2018.2817245
Chakraborty T, 2015, PROC INT CONF DATA, P555, DOI 10.1109/ICDE.2015.7113314
Chen J, 2019, IEEE INT CON MULTI, P31, DOI 10.1109/ICME.2019.00014
Christoforidis G, 2021, KNOWL INF SYST, V63, P791, DOI 10.1007/s10115-020-01541-5
Covington P, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P191, DOI 10.1145/2959100.2959190
Cui P, 2019, IEEE T KNOWL DATA EN, V31, P833, DOI 10.1109/TKDE.2018.2849727
Du ZX, 2019, LECT NOTES ARTIF INT, V11052, P675, DOI 10.1007/978-3-030-10928-8_40
Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730
Galke L, 2018, PROCEEDINGS OF THE 26TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'18), P197, DOI 10.1145/3209219.3209236
Ganguly S, 2017, LECT NOTES COMPUT SC, V10193, P383, DOI 10.1007/978-3-319-56608-5_30
Gazdar A, 2020, KNOWL-BASED SYST, V188, DOI 10.1016/j.knosys.2019.105058
Goyal P, 2018, KNOWL-BASED SYST, V151, P78, DOI 10.1016/j.knosys.2018.03.022
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Gu WR, 2016, NEURAL COMPUT APPL, V27, P1263, DOI 10.1007/s00521-015-1932-x
Gupta S, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1267, DOI 10.1145/3041021.3053062
Huang T, 2020, NAT FOOD, V1, DOI 10.1038/s43016-020-0066-1
Huang WY, 2015, AAAI CONF ARTIF INTE, P2404
Khusro S., 2016, Information Science and Applications (ICISA) 2016, P1179, DOI DOI 10.1007/978-981-10-0557-2_112
Kim SB, 2017, DECIS SUPPORT SYST
Kobayashi Y, 2018, ACM-IEEE J CONF DIG, P243, DOI 10.1145/3197026.3197059
Kong XJ, 2021, IEEE T EMERG TOP COM, V9, P226, DOI 10.1109/TETC.2018.2830698
Kunaver M, 2017, KNOWL-BASED SYST, V123, P154, DOI 10.1016/j.knosys.2017.02.009
Li BT, 2020, NEURAL COMPUT APPL, V32, P16647, DOI 10.1007/s00521-020-04908-5
Lops P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P73, DOI 10.1007/978-0-387-85820-3_3
Martin A, 2020, IEEE C EVOL COMPUTAT, DOI 10.1109/ICLO48556.2020.9285922
Martin A, 2020, APPL SOFT COMPUT, V90, DOI 10.1016/j.asoc.2020.106144
Mikolov Tomas, 2013, NIPS NIPS, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Muhammad K, 2021, SCIENTOMETRICS, P1
Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325
Pradhan T, 2020, KNOWL-BASED SYST, V204, DOI 10.1016/j.knosys.2020.106181
Le Q, 2014, PR MACH LEARN RES, V32, P1188
Ribeiro LFR, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P385, DOI 10.1145/3097983.3098061
Sugiyama K, 2013, ACM-IEEE J CONF DIG, P153
Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093
Walek B, 2020, EXPERT SYST APPL, V158, DOI 10.1016/j.eswa.2020.113452
Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480
Wang H, 2015, IEEE T KNOWL DATA EN, V27, P1343, DOI 10.1109/TKDE.2014.2365789
Wang J, 2020, NEUROCOMPUTING, V410, P103, DOI 10.1016/j.neucom.2020.05.047
Weld, 2020, P 58 ANN M ASS COMP, P1
Yang LB, 2018, IEEE ACCESS, V6, P59618, DOI 10.1109/ACCESS.2018.2872730
Yin J, 2017, LECT NOTES COMPUT SC, V10367, P285, DOI 10.1007/978-3-319-63564-4_23
Zhao J, 2016, 2016 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS), DOI 10.1109/ICSSSM.2016.7538614
NR 58
TC 16
Z9 17
U1 2
U2 38
PU SPRINGER LONDON LTD
PI LONDON
PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND
SN 0941-0643
EI 1433-3058
J9 NEURAL COMPUT APPL
JI Neural Comput. Appl.
PD JUL
PY 2022
VL 34
IS 13
SI SI
BP 10229
EP 10242
DI 10.1007/s00521-021-06135-y
EA AUG 2021
PG 14
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 2J4QQ
UT WOS:000690716700002
DA 2024-09-05
ER
PT C
AU Liu, YL
Molenaar, M
Jiao, LM
Liu, YF
AF Liu, YL
Molenaar, M
Jiao, LM
Liu, YF
BE Owe, M
DUrso, G
Moreno, JF
Calera, A
TI Research on land evaluation based on fuzzy neural network
SO REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY V
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Remote Sensing for Agriculture, Ecosystems and Hydrology V
CY SEP 08-10, 2003
CL Barcelona, SPAIN
DE land suitability evaluation; fuzzy neural networks (FNN); fuzzy system
AB This paper focuses on application of artificial neural networks (ANN) in land suitability evaluation. There are some problems in applying fuzzy system to land suitability evaluation such as self-adjusting ability of the membership functions and rules of fuzzy evaluation system. In this paper, the model of fuzzy neural network is designed for land suitability evaluation. This model is the result of integrated fuzzy system and artificial neural network. This fuzzy neural network model has five layers. The learning algorithm of the model has been designed based on the principle of error back propagation of neural networks. The learning strategy, algorithm and efficiency of the model have been tested and the results of test are satisfied.
C1 Wuhan Univ, Sch Resource & Environm, Wuhan 430079, Peoples R China.
C3 Wuhan University
RP Wuhan Univ, Sch Resource & Environm, Wuhan 430079, Peoples R China.
EM yaolin@itc.nl; molenaar@itc.nl
CR [Anonymous], 1990, IEEE T NEURAL NETWOR
Benitez JM, 1997, IEEE T NEURAL NETWOR, V8, P1156, DOI 10.1109/72.623216
EMMERSON MD, 1993, IEEE T NEURAL NETWOR, V4, P788, DOI 10.1109/72.248456
JANG JSR, 1993, IEEE T NEURAL NETWOR, V4, P156, DOI 10.1109/72.182710
JIAO LM, 2002, THESIS WUHAN U
Kasabov NK, 1996, FUZZY SET SYST, V82, P135, DOI 10.1016/0165-0114(95)00300-2
LIU JF, 1995, FULLERENE SCI TECHN, V3, P45
Mao Jianxu, 2001, TECHNOLOGY APPL REMO, V3, P62
Pican N, 1996, IEEE EXPERT, V11, P22, DOI 10.1109/64.482953
SARTORI MA, 1991, IEEE T NEURAL NETWOR, V2, P467, DOI 10.1109/72.88168
SPERDUTI A, 1993, NEURAL NETWORKS, V6, P365, DOI 10.1016/0893-6080(93)90004-G
SUDKAMP T, 1994, IEEE T SYST MAN CYB, V24, P332, DOI 10.1109/21.281432
Systems F.R., 2002, GEO-SPAT INF SCI, V5, P55, DOI DOI 10.1007/BF02863495
Tang Shiwei, 2002, J DAQIN PETROLEUM CO, V6, P48
Zhao Xiang, 2001, Control Theory & Applications, V18, P395
Zhou CS, 1997, PHYS REV E, V55, P2580, DOI 10.1103/PhysRevE.55.2580
NR 16
TC 2
Z9 3
U1 0
U2 4
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
EI 1996-756X
BN 0-8194-5115-0
J9 PROC SPIE
PY 2004
VL 5232
BP 565
EP 574
DI 10.1117/12.510895
PG 10
WC Agriculture, Multidisciplinary; Environmental Sciences; Remote Sensing;
Water Resources
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Agriculture; Environmental Sciences & Ecology; Remote Sensing; Water
Resources
GA BY77H
UT WOS:000189459600056
DA 2024-09-05
ER
PT J
AU Williams, K
Michalska, S
Cohen, E
Szomszor, M
Grant, J
AF Williams, Kate
Michalska, Sandra
Cohen, Eliel
Szomszor, Martin
Grant, Jonathan
TI Exploring the application of machine learning to expert evaluation of
research impact
SO PLOS ONE
LA English
DT Article
ID REF 2014; READABILITY
AB The objective of this study is to investigate the application of machine learning techniques to the large-scale human expert evaluation of the impact of academic research. Using publicly available impact case study data from the UK's Research Excellence Framework (2014), we trained five machine learning models on a range of qualitative and quantitative features, including institution, discipline, narrative style (explicit and implicit), and bibliometric and policy indicators. Our work makes two key contributions. Based on the accuracy metric in predicting high- and low-scoring impact case studies, it shows that machine learning models are able to process information to make decisions that resemble those of expert evaluators. It also provides insights into the characteristics of impact case studies that would be favoured if a machine learning approach was applied for their automated assessment. The results of the experiments showed strong influence of institutional context, selected metrics of narrative style, as well as the uptake of research by policy and academic audiences. Overall, the study demonstrates promise for a shift from descriptive to predictive analysis, but suggests caution around the use of machine learning for the assessment of impact case studies.
C1 [Williams, Kate] Univ Melbourne, Sch Social & Polit Sci, Melbourne, Vic, Australia.
[Michalska, Sandra; Cohen, Eliel] Kings Coll London, Policy Inst, London, England.
[Szomszor, Martin] Elect Data Solut, London, England.
[Grant, Jonathan] Different Angles, Cambridge, England.
C3 University of Melbourne; University of London; King's College London
RP Williams, K (corresponding author), Univ Melbourne, Sch Social & Polit Sci, Melbourne, Vic, Australia.
EM kate.williams@unimelb.edu.au
RI Szomszor, Martin/N-9188-2018
OI Cohen, Eliel/0000-0002-7064-4552
FU UK Economic and Social Research Council (ESRC) [ES/V004123/1]; ESRC
[ES/V004123/1] Funding Source: UKRI
FX KW & JG. ES/V004123/1 UK Economic and Social Research Council (ESRC)
https://www.ukri.org/councils/esrc/ The funder had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
CR Adams J., 2015, DIGITAL RES REPORTS
[Anonymous], 2022, REF IMP
Arras L, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181142
Balbuena LD, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0207919
Bonaccorsi A, 2021, SCIENTOMETRICS, V126, P1745, DOI 10.1007/s11192-020-03803-z
Boswell C, 2017, PALGR COMMUN, V3, DOI 10.1057/s41599-017-0042-z
Brook L, 2018, J ART MANAG LAW SOC, V48, P57, DOI 10.1080/10632921.2017.1386148
Casnici N., J ASS INFORM SCI TEC, V68, P1763
Chauvin A, 2015, BMC MED, V13, DOI 10.1186/s12916-015-0395-3
Chipman HA, 2010, ANN APPL STAT, V4, P266, DOI 10.1214/09-AOAS285
Chowdhury G, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156978
Coutinho E, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0179289
Cui ZH, 2018, IEEE T IND INFORM, V14, P3187, DOI 10.1109/TII.2018.2822680
Curry S, 2022, REF 2021 METRIC TIDE
Dale E, 1948, EDUC RES BULL, V27, P37
Farla Kristine, 2015, REF Accountability Review: Costs, Benefits and Burden'
Flesch R, 1948, J APPL PSYCHOL, V32, P221, DOI 10.1037/h0057532
Fry E, 2002, READ TEACH, V56, P286
Gandomi A, 2015, INT J INFORM MANAGE, V35, P137, DOI 10.1016/j.ijinfomgt.2014.10.007
Gimenez C., 2005, RES METHODOLOGIES SU, P315
Grant J., 2015, The Nature, Scale and Beneficiaries of Research Impact: An Initial Analysis of the Research Excellence Framework (REF) 2014 Impact Case Studies'
Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120
Harris T.L., 1995, The literacy dictionary: The vocabulary of reading and writing
Hughes T, 2019, STUD HIGH EDUC, V44, P628, DOI 10.1080/03075079.2017.1393059
Joachims T., 2002, LEARNING CLASSIFY TE, P668
Jordan K, 2018, IMPACT SOCIAL SCI BL
Kecman V, 2005, STUD FUZZ SOFT COMP, V177, P1
Kelly D, 2016, J RES NURS, V21, P256, DOI 10.1177/1744987116646153
Kim S., 2020, DEEP LEARNING R FRAN, P123
Kincaid J.P., 1975, Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel
Kinne J, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0249071
Lasker SP., 2018, BANGLADESH J BIOETH, V9
Lilleberg J, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P136, DOI 10.1109/ICCI-CC.2015.7259377
Lipton Z. C., 2018, Queue, V16, P31, DOI DOI 10.1145/3236386.3241340
Lotriet CJ, 2012, AUSTRALAS MED J, V5, P26, DOI 10.4066/AMJ.2012.1165
Manville C., 2015, PREPARING IMPACT SUB
Marcella R, 2016, J INF SCI, V42, P369, DOI 10.1177/0165551516636291
Mayumi Oshiro Thais, 2012, Machine Learning and Data Mining in Pattern Recognition. Proceedings 8th International Conference, MLDM 2012, P154, DOI 10.1007/978-3-642-31537-4_13
McGarity TO., 1994, High Technology Law Journal, V9, P1
MCLAUGHLIN GH, 1969, J READING, V12, P639
Medvedeva M, 2023, ARTIF INTELL LAW, V31, P195, DOI 10.1007/s10506-021-09306-3
Nelson APK, 2022, PATTERNS, V3, DOI 10.1016/j.patter.2022.100508
Nelson APK, 2022, PATTERNS
Oancea A, 2013, EUR EDUC RES J, V12, P242, DOI 10.2304/eerj.2013.12.2.242
Priem J, 2022, Arxiv, DOI [arXiv:2205.01833, DOI 10.48550/ARXIV.2205.01833, 10.48550/arXiv.2205.01833]
Reddick Gavin, 2021, F1000Res, V10, P1291, DOI 10.12688/f1000research.74374.3
Reichard B, 2020, PALGR COMMUN, V6, DOI 10.1057/s41599-020-0394-7
Research England, REF2021 REF 2021
Sirikulviriya N, 2011, INT PROC COMPUT SCI, V6, P194
Slyder JB, 2011, SCIENTOMETRICS, V89, P955, DOI 10.1007/s11192-011-0467-x
Smith E A, 1967, AMRL TR, P1
Smith K. E., 2020, IMPACT AGENDA CONTRO
Szomszor M, 2022, Arxiv, DOI [arXiv:2201.07643, 10.1162/qss_a_00204]
Tennant Jonathan P, 2017, F1000Res, V6, P1151, DOI 10.12688/f1000research.12037.2
Terämä E, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0168533
Tickell A., 2021, REV RES BUREAUCRACY
Tomkins A, 2017, P NATL ACAD SCI USA, V114, P12708, DOI 10.1073/pnas.1707323114
Varghese Arun, 2020, Environment Systems & Decisions, V40, P465, DOI 10.1007/s10669-020-09763-2
Venkataraman GR, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0234647
Weis JW, 2021, NAT BIOTECHNOL, V39, P1300, DOI 10.1038/s41587-021-00907-6
Williams K, 2018, RES EVALUAT, V27, P93, DOI 10.1093/reseval/rvx042
Wilsdon James., 2015, METRIC TIDE INDEPEND
Wroblewska MN, 2019, 01 ENRESSH
Yoo TK, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231322
Yuan WZ, 2021, Arxiv, DOI arXiv:2102.00176
Zielinski B, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0234806
NR 66
TC 1
Z9 1
U1 1
U2 5
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD AUG 3
PY 2023
VL 18
IS 8
AR e0288469
DI 10.1371/journal.pone.0288469
PG 18
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA O4DI4
UT WOS:001043333000039
PM 37535633
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Gao, XY
Wu, Q
Liu, YY
Yang, RL
AF Gao, Xingyu
Wu, Qiang
Liu, Yuanyuan
Yang, Ruilu
TI Pasteur's quadrant in AI: do patent-cited papers have higher scientific
impact?
SO SCIENTOMETRICS
LA English
DT Article
DE Artificial intelligence; Pasteur's quadrant; Patent citation; Scientific
citation; Usage count
ID CITATION COUNTS; COMPUTER-SCIENCE; H-INDEX; PUBLICATIONS; TECHNOLOGY;
INNOVATION; KNOWLEDGE; TIME; DETERMINANTS; RESEARCHERS
AB In scientific research, basic research that is both curiosity-driven and use-inspired is known as Pasteur's Quadrant. The research on the impact and attention of Pasteur's Quadrant is an essential research topic in academia. In view of the many milestone breakthroughs that Artificial Intelligence (AI) has brought to humanity, this paper delves into Pasteur's Quadrant in AI through the citation of papers by patents. We empirically analyse the scientific impact of 3322 patent-cited papers and 6587 non-patent-cited papers published from 1999 to 2013, where scientific impact is measured by scientific citations and usage counts. Our main results show that patent-cited papers have a stronger scientific impact than non-patent-cited papers, and this impact is further enhanced in conference publications than in journal publications. Further, the relationship between the multidimensional characteristics of patent citations and scientific impact is investigated in terms of patent-cited papers. We find an inverted U-shaped relationship between the intensity of a paper's patent citations and its scientific citations, as well as between the breadth of a paper's patent citations and its scientific citations. In addition, the patent citation lag of a paper negatively relates to its scientific impact.
C1 [Gao, Xingyu; Wu, Qiang; Liu, Yuanyuan; Yang, Ruilu] Univ Sci & Technol China, Sch Management, 96 Jinzhai Rd, Hefei 230026, Peoples R China.
C3 Chinese Academy of Sciences; University of Science & Technology of
China, CAS
RP Wu, Q (corresponding author), Univ Sci & Technol China, Sch Management, 96 Jinzhai Rd, Hefei 230026, Peoples R China.
EM qiangwu@ustc.edu.cn
OI Gao, Xingyu/0000-0002-0905-3227; Wu, Qiang/0000-0002-1308-1669
FU National Natural Science Foundation of China [71874173, 72374188];
National Natural Science Foundation of China [FSSF-A-230204]; Featured
Social Science Fund of the University of Science and Technology of China
FX This research was supported by the National Natural Science Foundation
of China (Grant No. 71874173 and 72374188) and the Featured Social
Science Fund of the University of Science and Technology of China
(FSSF-A-230204). We would like to thank the editor and anonymous
reviewers for their constructive comments and suggestions, which helped
us to improve the paper.
CR Ahmadpoor M, 2017, SCIENCE, V357, P583, DOI 10.1126/science.aam9527
Angori G, 2024, J TECHNOL TRANSFER, V49, P609, DOI 10.1007/s10961-023-10001-5
[Anonymous], 2010, Commun ACM, DOI [10.1145/1839676.1839701, DOI 10.1145/1839676.1839701]
Archibugi D., 1992, SCI PUBL POLICY, V19, P357, DOI [DOI 10.1093/SPP/19.6.357, 10.1016/j.intacc.2008.06.004, DOI 10.1016/J.INTACC.2008.06.004]
Arthur W. B., 2009, The Nature of Technology: What It Is and How It Evolves, DOI DOI 10.20396/RBI.V8I2.8648990
Bol T, 2018, P NATL ACAD SCI USA, V115, P4887, DOI 10.1073/pnas.1719557115
Börner K, 2018, P NATL ACAD SCI USA, V115, P12573, DOI 10.1073/pnas.1818750115
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004
Bush Vannevar, 1945, Science: The Endless FrontierA Report to the President by Vannevar Bush, Director of the Office of Scientific Research and Development, July 1945, DOI DOI 10.2307/3625196
Callaert J, 2006, SCIENTOMETRICS, V69, P3, DOI 10.1007/s11192-006-0135-8
Chakraborty T, 2018, SCIENTOMETRICS, V114, P1011, DOI 10.1007/s11192-017-2628-z
Chen CM, 2012, J AM SOC INF SCI TEC, V63, P431, DOI 10.1002/asi.21694
COLLINS P, 1988, RES POLICY, V17, P65, DOI 10.1016/0048-7333(88)90022-4
COZZENS SE, 1989, SCIENTOMETRICS, V15, P437, DOI 10.1007/BF02017064
Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806
Ding CG, 2017, J INFORMETR, V11, P244, DOI 10.1016/j.joi.2016.12.004
Donner P, 2020, SCIENTOMETRICS, V124, P1411, DOI 10.1007/s11192-020-03516-3
Drivas K, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.103951
Du J, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101017
Duy J, 2006, J ACAD LIBR, V32, P512, DOI 10.1016/j.acalib.2006.05.005
Eckmann M, 2012, SCIENTOMETRICS, V90, P617, DOI 10.1007/s11192-011-0527-2
Finardi U, 2011, SCIENTOMETRICS, V89, P37, DOI 10.1007/s11192-011-0443-5
Fortnow L, 2009, COMMUN ACM, V52, P33, DOI 10.1145/1536616.1536631
Frank MR, 2019, NAT MACH INTELL, V1, P79, DOI 10.1038/s42256-019-0024-5
Fukuzawa N, 2016, SCIENTOMETRICS, V106, P629, DOI 10.1007/s11192-015-1795-z
Gazni A, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101276
Gazni A, 2019, SCIENTOMETRICS, V120, P1411, DOI 10.1007/s11192-019-03161-5
Geuna A, 2006, RES POLICY, V35, P790, DOI 10.1016/j.respol.2006.04.005
Glänzel W, 2011, SCIENTOMETRICS, V86, P505, DOI 10.1007/s11192-010-0269-6
Gu TT, 2022, APPL ARTIF INTELL, V36, DOI 10.1080/08839514.2022.2080336
Haans RFJ, 2016, STRATEGIC MANAGE J, V37, P1177, DOI 10.1002/smj.2399
Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953
Hicks D., 2000, Science and Public Policy, V27, P310, DOI [10.3152/147154300781781805, DOI 10.3152/147154300781781805]
Hu XJ, 2015, SCIENTOMETRICS, V102, P1401, DOI 10.1007/s11192-014-1464-7
Huang MH, 2015, J INFORMETR, V9, P237, DOI 10.1016/j.joi.2015.02.001
Jefferson OA, 2018, NAT BIOTECHNOL, V36, P31, DOI 10.1038/nbt.4049
Jin T, 2021, SCIENTOMETRICS, V126, P8471, DOI 10.1007/s11192-021-04112-9
Ke Q, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.104071
Ke Q, 2018, J INFORMETR, V12, P706, DOI 10.1016/j.joi.2018.06.010
Kuhn T.S., 1962, The structure of scientific revolutions
Larivière V, 2010, J AM SOC INF SCI TEC, V61, P424, DOI 10.1002/asi.21232
Lind JT, 2010, OXFORD B ECON STAT, V72, P109, DOI 10.1111/j.1468-0084.2009.00569.x
Lu XF, 2012, MOD LANG J, V96, P190, DOI 10.1111/j.1540-4781.2011.01232.x
Mammola S, 2022, SCIENTOMETRICS, V127, P4123, DOI 10.1007/s11192-022-04421-7
Manjunath A, 2021, NAT BIOTECHNOL, V39, P678, DOI 10.1038/s41587-021-00940-5
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
Meyer M, 2002, SCIENTOMETRICS, V54, P193, DOI 10.1023/A:1016057727209
Meyer M, 2010, SCIENTOMETRICS, V85, P527, DOI 10.1007/s11192-009-0154-3
Mingers J, 2012, INFORM PROCESS MANAG, V48, P234, DOI 10.1016/j.ipm.2011.03.009
Montesi M, 2008, J AM SOC INF SCI TEC, V59, P816, DOI 10.1002/asi.20805
Nelson RR., 1993, National innovation systems, DOI [10.1093/oso/9780195076165.001.0001, DOI 10.1093/OSO/9780195076165.001.0001]
Ning LT, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104406
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
Papazoglou ME, 2018, RES POLICY, V47, P1713, DOI 10.1016/j.respol.2018.06.006
Park HW, 2009, SCIENTOMETRICS, V81, P811, DOI 10.1007/s11192-008-2224-3
Park MS, 2023, J ASSOC INF SCI TECH, V74, P846, DOI 10.1002/asi.24760
Poege F, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aay7323
Qi YS, 2018, SCIENTOMETRICS, V115, P893, DOI 10.1007/s11192-018-2693-y
Qian YF, 2017, SCIENTOMETRICS, V110, P1351, DOI 10.1007/s11192-016-2235-4
ROSENBERG N, 1994, RES POLICY, V23, P323, DOI 10.1016/0048-7333(94)90042-6
Salimi N, 2015, TECHNOVATION, V41-42, P51, DOI 10.1016/j.technovation.2015.03.007
Sanberg PR, 2014, P NATL ACAD SCI USA, V111, P6542, DOI 10.1073/pnas.1404094111
Schmoch U, 2019, SCIENTOMETRICS, V118, P1141, DOI 10.1007/s11192-018-03002-x
Shaw J, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104610
Shneiderman B, 2018, P NATL ACAD SCI USA, V115, P12590, DOI 10.1073/pnas.1802918115
SPENCE M, 1973, Q J ECON, V87, P355, DOI 10.2307/1882010
Stokes Donald E, 1997, Pasteur's quadrant: Basic science and technological innovation
Tahamtan Iman, 2016, Scientometrics, V107, P1195, DOI 10.1007/s11192-016-1889-2
Tijssen RJW, 2000, SCIENTOMETRICS, V47, P389
Tijssen RJW, 2018, RES POLICY, V47, P1626, DOI 10.1016/j.respol.2018.05.010
Toole A, 2020, INVENTING AI TRACING
Van Looy B, 2004, RES POLICY, V33, P425, DOI 10.1016/j.respol.2003.09.004
Van Looy B, 2006, RES POLICY, V35, P596, DOI 10.1016/j.respol.2006.02.003
van Raan AFJ, 2018, SCIENTOMETRICS, V114, P701, DOI 10.1007/s11192-017-2603-8
van Raan AFJ, 2017, SCIENTOMETRICS, V110, P1123, DOI 10.1007/s11192-016-2215-8
Van-Raan AFJ., 2004, HDB QUANTITATIVE SCI, P19, DOI [DOI 10.1007/1-4020-2755-9_2, DOI 10.1007/1-4020-2755-92]
Veugelers R, 2019, RES POLICY, V48, P1362, DOI 10.1016/j.respol.2019.01.019
Vrettas G, 2015, J ASSOC INF SCI TECH, V66, P2674, DOI 10.1002/asi.23349
Wang J, 2014, J INFORMETR, V8, P329, DOI 10.1016/j.joi.2014.01.006
Wang YZ, 2022, SCIENTOMETRICS, V127, P3793, DOI 10.1007/s11192-022-04444-0
Zhang GJ, 2017, SCIENTOMETRICS, V111, P1287, DOI 10.1007/s11192-017-2357-3
Zhang X, 2019, SCIENTOMETRICS, V119, P1311, DOI 10.1007/s11192-019-03088-x
Zong QJ, 2019, SCIENTOMETRICS, V119, P1715, DOI 10.1007/s11192-019-03108-w
NR 84
TC 1
Z9 1
U1 36
U2 49
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD FEB
PY 2024
VL 129
IS 2
BP 909
EP 932
DI 10.1007/s11192-023-04925-w
EA JAN 2024
PG 24
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA HK8Z0
UT WOS:001137293300001
DA 2024-09-05
ER
PT J
AU Nicholson, JM
Mordaunt, M
Lopez, P
Uppala, A
Rosati, D
Rodrigues, NP
Grabitz, P
Rife, SC
AF Nicholson, Josh M.
Mordaunt, Milo
Lopez, Patrice
Uppala, Ashish
Rosati, Domenic
Rodrigues, Neves P.
Grabitz, Peter
Rife, Sean C.
TI scite: A smart citation index that displays the context of citations and
classifies their intent using deep learning
SO QUANTITATIVE SCIENCE STUDIES
LA English
DT Article
DE bibliometrics; citations; evaluation; machine learning; publishing;
scientometrics
ID INCREASED AMYGDALA; ASSOCIATION; ACTIVATION; ANXIETY; SCIENCE; FACES
AB Citation indices are tools used by the academic community for research and research evaluation that aggregate scientific literature output and measure impact by collating citation counts. Citation indices help measure the interconnections between scientific papers but fall short because they fail to communicate contextual information about a citation. The use of citations in research evaluation without consideration of context can be problematic because a citation that presents contrasting evidence to a paper is treated the same as a citation that presents supporting evidence. To solve this problem, we have used machine learning, traditional document ingestion methods, and a network of researchers to develop a "smart citation index" called scite, which categorizes citations based on context. Scite shows how a citation was used by displaying the surrounding textual context from the citing paper and a classification from our deep learning model that indicates whether the statement provides supporting or contrasting evidence for a referenced work, or simply mentions it. Scite has been developed by analyzing over 25 million full-text scientific articles and currently has a database of more than 880 million classified citation statements. Here we describe how scite works and how it can be used to further research and research evaluation.
C1 [Nicholson, Josh M.; Mordaunt, Milo; Uppala, Ashish; Rosati, Domenic; Rodrigues, Neves P.; Grabitz, Peter; Rife, Sean C.] Scite, Brooklyn, NY 11211 USA.
[Lopez, Patrice] Sci Miner, Naves, France.
[Grabitz, Peter] Charite Univ Med Berlin, Berlin, Germany.
[Rife, Sean C.] Murray State Univ, Murray, KY 42071 USA.
C3 Berlin Institute of Health; Free University of Berlin; Humboldt
University of Berlin; Charite Universitatsmedizin Berlin; Murray State
University
RP Nicholson, JM (corresponding author), Scite, Brooklyn, NY 11211 USA.
EM josh@scite.al
OI Rosati, Domenic/0000-0003-2666-7615; Rife, Sean/0000-0002-6748-0841;
Grabitz, Peter/0000-0001-5658-2482; Mordaunt, Milo/0000-0001-5395-4252;
Nicholson, Joshua/0000-0002-1111-1828
FU NIDA grant [4R44DA050155-02]
FX This work was supported by NIDA grant 4R44DA050155-02.
CR [Anonymous], 2014, U CAMBRIDGE COMPUTER
[Anonymous], 2018, P C N AM CHAPT ASS C, DOI [DOI 10.18653/V1/N18-1202, 10.18653/v1/N18-1202]
Athar A., 2011, P ACL 2011 STUD SESS, P81
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Bird Steven, 2009, Natural language processing with python
Bordignon F, 2020, SCIENTOMETRICS, V124, P1225, DOI 10.1007/s11192-020-03536-z
Ciancarini Paolo, 2014, The Semantic Web: Trends and Challenges. 11th International Conference (ESWC 2014). Proceedings: LNCS 8465, P580, DOI 10.1007/978-3-319-07443-6_39
Cohan A, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P3586
Constantin A., 2014, Automatic Structure and Keyphrase Analysis of Scientific Publications
Devlin J., 2018, ARXIV
Else H, 2018, NATURE, V560, P290, DOI 10.1038/d41586-018-05968-3
Fujiwara T, 2015, J BIOMED SEMANT, V6, DOI 10.1186/s13326-015-0037-x
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Garfield E, 1959, COMMUNICATION
Greenberg SA, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b2680
Halevi G, 2018, Journal of Altmetrics, V1, P2, DOI DOI 10.29024/JOA.1
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Honnibal M., 2018, DOI 10.5281/ZENODO.1212304
Johnson JM, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0192-5
Landhuis E, 2016, NATURE, V535, P457, DOI 10.1038/nj7612-457a
Lehman J., 2005, W ENCY AM LAW, V9, P162
Letrud K, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0222213
Leung PTM, 2017, NEW ENGL J MED, V376, P2194, DOI 10.1056/NEJMc1700150
Lo K., 2020, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, P4969, DOI [DOI 10.18653/V1/2020.ACL-MAIN.447, 10.18653/v1/2020.acl-main.447]
Lopez P., 2020, GROBID
Lopez P., 2020, PUB2TEI
Lopez P., 2020, DELFT
Lopez P., 2020, BIBLIO GLUTTON
Murray D, 2019, PRO INT CONF SCI INF, P2370
Nakayama H.etal, 2018, DOCCANO TEXT ANNOTAT
Nicholson JM, 2021, FEBS J, V288, P4242, DOI 10.1111/febs.15608
Nicholson JM, 2015, ELIFE, V4, DOI 10.7554/eLife.05068
Nizzoli L, 2019, PROCEEDINGS OF THE 11TH ACM CONFERENCE ON WEB SCIENCE (WEBSCI'19), P203, DOI 10.1145/3292522.3326050
Peroni S, 2020, QUANT SCI STUD, V1, P428, DOI 10.1162/qss_a_00023
Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001
Phan KL, 2006, BIOL PSYCHIAT, V59, P424, DOI 10.1016/j.biopsych.2005.08.012
Piwowar H., 2019, bioRxiv, P795310, DOI DOI 10.1101/795310
PLOS, 2015, RICH CIT
PORTER J, 1980, NEW ENGL J MED, V302, P123
Pride D, 2019, ACM-IEEE J CONF DIG, P329, DOI 10.1109/JCDL.2019.00055
Schneider J, 2020, SCIENTOMETRICS, V125, P2877, DOI 10.1007/s11192-020-03631-1
Stein MB, 2002, ARCH GEN PSYCHIAT, V59, P1027, DOI 10.1001/archpsyc.59.11.1027
Stein MB, 2007, AM J PSYCHIAT, V164, P318, DOI 10.1176/appi.ajp.164.2.318
Suelzer EM, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.15552
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Tkaczyk D, 2018, ACM-IEEE J CONF DIG, P99, DOI 10.1145/3197026.3197048
Viganó C, 2018, MOL BIOL CELL, V29, P1031, DOI 10.1091/mbc.E17-10-0577
Volanakis A, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-24571-0
Wakefield AJ, 1998, LANCET, V351, P637, DOI 10.1016/S0140-6736(97)11096-0
Wang Lucy Lu, 2020, arXiv
Ware M., 2015, STM REPORT OVERVIEW, P181
Yan EJ, 2020, QUANT SCI STUD, V1, P664, DOI 10.1162/qss_a_00040
Yousif A, 2019, ARTIF INTELL REV, V52, P1805, DOI 10.1007/s10462-017-9597-8
NR 56
TC 40
Z9 43
U1 4
U2 37
PU MIT PRESS
PI CAMBRIDGE
PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA
EI 2641-3337
J9 QUANT SCI STUD
JI Quant. Sci. Stud.
PD NOV 5
PY 2021
VL 2
IS 3
BP 882
EP 898
DI 10.1162/qss_a_00146
PG 17
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA XQ8PQ
UT WOS:000731804900003
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Yee, JY
Tsai, CJ
Hsu, TY
Lin, JY
Cheng, PC
AF Yee, Jen-Yuan
Tsai, Cheng-Jung
Hsu, Tien-Yu
Lin, Jung-Yi
Cheng, Pei-Cheng
TI FEATURE SELECTION AND CLASSIFICATION INTEGRATED METHOD FOR IDENTIFYING
CITED TEXT SPANS FOR CITANCES ON IMBALANCED DATA
SO MALAYSIAN JOURNAL OF COMPUTER SCIENCE
LA English
DT Article
DE Citation analysis; cited text spans identification; feature selection;
classification; class imbalance; performance evaluation; scientific
paper summarization
AB Recent studies in scientific paper summarization have explored a new form of structured summary for a reference paper by grouping all cited and citing sentences together by facet. This involves three main tasks: (1) identifying cited text spans for citances (i.e., citing sentences), (2) classifying their discourse facets, and (3) generating a structured summary from the cited text spans and citances. This paper focuses on the first task, and approaches the task as binary classification to distinguish relevant pairs of citances and reference sentences from irrelevant pairs. We propose a new method that integrates feature selection and classification techniques to enhance classification performance. The proposed method investigates combinations of six feature selection methods (chi(2)-Statistics, Information Gain, Gain Ratio, Relief-F, Significance Attribute Evaluation, and Symmetrical Uncertainty), and five classification algorithms (k-Nearest Neighbors, Decision Tree, Support Vector Machine, Naive Bayes, and Random Forest). Additionally, to address imbalanced data during training, we apply SMOTE (Synthetic Minority Over sampling Technique) to introduce synthetic biases towards the minority. Experiments are conducted using the CLSciSumm corpora to compare the effect of feature selection applied to classification. The results reveal the benefits of feature selection in significantly boosting performance of F-1 score metric, and show that our method is competitive to the state-of-the-art methods in the CL-SciSumm evaluations.
C1 [Yee, Jen-Yuan] Natl Museum Nat Sci, Visitor Serv, Dept Operat, Collect & Informat Management, Taichung 40453, Taiwan.
[Tsai, Cheng-Jung] Natl Changhua Univ Educ, Grad Inst Stat & Informat Sci, Changhua 50007, Taiwan.
[Hsu, Tien-Yu] Natl Museum Nat Sci, Dept Sci Educ, Taichung 40453, Taiwan.
[Lin, Jung-Yi] Hon Hai Precis IndCo Ltd Foxconn, IP Affairs Div, Taipei 11492, Taiwan.
[Cheng, Pei-Cheng] Chien Hsin Univ Sci & Technol, Dept Informat Management, Taoyuan 32097, Taiwan.
C3 National Changhua University of Education; Chien Hsin University of
Science & Technology
RP Yee, JY (corresponding author), Natl Museum Nat Sci, Visitor Serv, Dept Operat, Collect & Informat Management, Taichung 40453, Taiwan.
EM jenyuan@nmns.edu.tw; cjtsai@cc.ncue.edu.tw; dan@nmns.edu.tw;
jungyilin@gmail.com; pccheng@uch.edu.tw
CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500
Abu-Jbara Amjad., 2012, NAACL-HLT, P80
AbuRa'ed A., 2017, P 2 JOINT WORKSH BIB
AbuRaed A., 2018, P 3 JOINT WORKSH BIB, V2132, P150
AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1007/BF00153759
Ahmad A, 2005, PATTERN RECOGN LETT, V26, P43, DOI 10.1016/j.patrec.2004.08.015
Bartlett P, 1999, ADVANCES IN KERNEL METHODS, P43
Baruah G., 2018, BIRNDL SIGIR, V2132, P134
Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
Cao Z, 2016, P JOINT WORKSH BIBL, P132
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Cohan Arman, 2015, P 2015 C EMP METH NA, P390, DOI [DOI 10.18653/V1/D15-1045, 10.18653/v1/D15-1045]
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Debnath D, 2018, BIRNDL SIGIR, P164
Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707
Felber T., 2017, P 3 COMP LING SCI SU, P67
Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616
Hall M., 2009, SIGKDD EXPLORATIONS, V11, P10, DOI DOI 10.1145/1656274.1656278
Hoang C. D. V., 2010, P COLING 10 23 INT C, P427
Hunt E. B., 1966, EXPT INDUCTION
Jaidka K., 2016, P JOINT WORKSH BIBLI, P93
Jaidka Kokil, 2013, P 14 EUROPEAN WORKSH, P125
John G. H., 1995, Uncertainty in Artificial Intelligence. Proceedings of the Eleventh Conference (1995), P338
Karimi S., 2017, P 3 COMP LING SCI SU, P73
KIRA K, 1992, MACHINE LEARNING /, P249
Klampfl Stefan., 2016, BIRNDL at JCDL, P122
Kononenko I., 1994, Machine Learning: ECML-94. European Conference on Machine Learning. Proceedings, P171
Kuncheva LI, 2007, PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, P390
Lauscher A, 2017, CEUR WORKSHOP P RWTH, P33
Li L., 2017, P 2 JOINT WORKSH BIB
Li L, 2016, P JOINT WORKSH BIBL, P156
Li L., 2018, BIRNDL SIGIR CEUR WO, V2132, P84
Lippman D., 2017, MATH IN SOC
Liu H, 1995, PROC INT C TOOLS ART, P388, DOI 10.1109/TAI.1995.479783
Ma S., 2017, P 2 JOINT WORKSH BIB
Malenfant B., 2016, P JOINT WORKSHOP BIB, P146
MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748
Mohammad S., 2009, P HUMAN LANGUAGE TEC, P584
Mora LuisMiguel Garcia., 2016, The Politics of the Second Slavery, P113
Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81
Nomoto T., 2016, P JOINT WORKSH BIBL, P168
Pramanick A., 2017, P 3 COMP LING SCI SU, P94
Prasad Animesh, 2017, BIRNDL SIGIR, P26
Press W. H., 2002, Numerical recipes in C++
Qazvinian V, 2008, P 22 INT C COMP LING, V1, P689, DOI DOI 10.3115/1599081.1599168
Qazvinian V, 2013, J ARTIF INTELL RES, V46, P165, DOI 10.1613/jair.3732
Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555
Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877
Quinlan Ross., 1992, C4.5: Programs for Machine Learning
Seiffert Chris, 2008, 2008 IEEE International Conference on Data Mining Workshops, P46, DOI 10.1109/ICDMW.2008.119
Teufel S, 2002, COMPUT LINGUIST, V28, P409, DOI 10.1162/089120102762671936
Wang P., 2018, BIRNDL SIGIR, P102
Yeh JY, 2019, J INF SCI ENG, V35, P61, DOI 10.6688/JISE.201901_35(1).0004
Zhang D., 2017, P 2 JOINT WORKSH BIB
NR 54
TC 0
Z9 0
U1 0
U2 6
PU UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH
PI KUALA LUMPUR
PA UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH, KUALA LUMPUR,
50603, MALAYSIA
SN 0127-9084
J9 MALAYS J COMPUT SCI
JI Malayas. J. Comput. Sci.
PY 2021
VL 34
IS 4
BP 355
EP 373
DI 10.22452/mjcs.vol34no4.3
PG 19
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA WS2WM
UT WOS:000715047500003
OA Bronze
DA 2024-09-05
ER
PT J
AU Ashraf, QM
Tahir, M
Habaebi, MH
Isoaho, J
AF Ashraf, Qazi Mamoon
Tahir, Mohammad
Habaebi, Mohamed Hadi
Isoaho, Jouni
TI Toward Autonomic Internet of Things: Recent Advances, Evaluation
Criteria, and Future Research Directions
SO IEEE INTERNET OF THINGS JOURNAL
LA English
DT Article
DE Artificial intelligence (AI); autonomic comput-ing; blockchain; edge
computing; Internet of Things (IoT); machine learning (ML); self-*
paradigm
ID MOBILE EDGE; RESOURCE-MANAGEMENT; IOT; CHALLENGES; SECURITY;
INTELLIGENCE; MECHANISMS; PARADIGM; SYSTEMS; CLOUD
AB With the rise of the Internet of Things (IoT), tiny devices capable of computation and data transmission are being deployed across various technological domains. Due to the wide deployment of these devices, manual setup and management are infeasible and inefficient. To address this inefficiency, intelligent procedures must be established to enable autonomy that allows devices and networks to operate efficiently with minimal human intervention. In the traditional client-server paradigm, autonomic computing has been proven effective in minimizing user intervention in computer systems management and will benefit IoT networks. However, IoT networks tend to be heterogeneous, distributed, and resource constrained, mandating the need for new approaches to implement autonomic principles compared to traditional approaches. We begin by introducing the basic principles of autonomic computing and its significance in IoT. We then discuss the self-* paradigm and monitor, analyze, plan, and execute (MAPE) loop from an IoT perspective, followed by recent works in IoT and key enabling technologies for enabling autonomic properties in IoT. Based on the self-* paradigm and MAPE loop analysis from the existing literature, we propose a set of qualitative characteristics for evaluating the autonomy of the IoT network. Finally, we provide a comprehensive list of challenges associated with achieving autonomic IoT and directions for future research.
C1 [Ashraf, Qazi Mamoon] Telekom Malaysia Res & Dev, Dept Res & Innovat, Cyberjaya 63000, Malaysia.
[Tahir, Mohammad; Isoaho, Jouni] Univ Turku, Dept Comp, Turku 20014, Finland.
[Habaebi, Mohamed Hadi] Int Islamic Univ Malaysia, Dept Elect & Comp Engn, Kuala Lumpur 53100, Malaysia.
C3 University of Turku; International Islamic University Malaysia
RP Tahir, M (corresponding author), Univ Turku, Dept Comp, Turku 20014, Finland.
EM mamoon@tmrnd.com.my; tahir.mohammad@utu.fi; habaebi@iium.edu.my;
jisoaho@utu.fi
RI Tahir, Mohammad/ABA-8684-2020; Habaebi, Mohamed Hadi/P-2128-2017
OI Tahir, Mohammad/0000-0002-6273-4603; Habaebi, Mohamed
Hadi/0000-0002-2263-0850; Isoaho, Jouni/0000-0002-5789-3992
CR Agrawal N, 2021, T EMERG TELECOMMUN T, V32, DOI 10.1002/ett.4349
Akgül ÖU, 2016, COMPUT COMMUN, V74, P52, DOI 10.1016/j.comcom.2014.07.004
Al-Kaseem BR, 2017, IEEE INTERNET THINGS, V4, P1787, DOI 10.1109/JIOT.2017.2704921
Al-Shara Z, 2018, FUTURE GENER COMP SY, V86, P339, DOI 10.1016/j.future.2018.03.039
Alam MGR, 2019, FUTURE GENER COMP SY, V90, P149, DOI 10.1016/j.future.2018.07.050
Ammar M, 2018, J INF SECUR APPL, V38, P8, DOI 10.1016/j.jisa.2017.11.002
[Anonymous], 2012, P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M P 1 ACM MCC WORKSH M
[Anonymous], 2013, Managing and mining sensor data, DOI [DOI 10.1007/978-1-4614-6309-2_12, 10.1007/978-1-4614-6309-2_12]
Arcaini P, 2015, 2015 IEEE/ACM 10TH INTERNATIONAL SYMPOSIUM ON SOFTWARE ENGINEERING FOR ADAPTIVE AND SELF-MANAGING SYSTEMS, P13, DOI 10.1109/SEAMS.2015.10
Ashraf Q. M, 2017, AM J DATA MINING KNO, V2, P69
Ashraf Q.M., 2014, INT C CONTR ENG INF
Ashraf QM, 2015, J NETW COMPUT APPL, V49, P112, DOI 10.1016/j.jnca.2014.11.011
Aslanpour MS, 2020, INTERNET THINGS-NETH, V12, DOI 10.1016/j.iot.2020.100273
Atzori L, 2010, COMPUT NETW, V54, P2787, DOI 10.1016/j.comnet.2010.05.010
Azimi I, 2017, ACM T EMBED COMPUT S, V16, DOI 10.1145/3126501
Babaoglu Ozalp., 2005, Self-star properties in complex information systems: conceptual and practical foundations, V3460
Bajaj K, 2022, COMPLEX INTELL SYST, V8, P3641, DOI 10.1007/s40747-021-00434-6
Barbuto V, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7010044
Behzadan V, 2017, L N INST COMP SCI SO, V212, P74, DOI 10.1007/978-3-319-67540-4_7
Benzaïd C, 2022, IEEE NETWORK, V36, P165, DOI 10.1109/MNET.104.2100495
Berns A, 2009, INT CONF SELF SELF, P10, DOI 10.1109/SASO.2009.25
Domingo MC, 2012, J NETW COMPUT APPL, V35, P1879, DOI 10.1016/j.jnca.2012.07.012
Chen BT, 2018, IEEE COMMUN MAG, V56, P103, DOI 10.1109/MCOM.2018.1701231
Chen JN, 2019, IEEE INTERNET THINGS, V6, P7011, DOI 10.1109/JIOT.2019.2913162
Chen N, 2019, IEEE COMMUN MAG, V57, P91, DOI 10.1109/MCOM.001.1900094
Chen Q, 2014, IEEE INTERNET THINGS, V1, P446, DOI 10.1109/JIOT.2014.2349899
Chun I, 2010, INT CONF ADV COMMUN, P1009
Colakovic A, 2018, COMPUT NETW, V144, P17, DOI 10.1016/j.comnet.2018.07.017
Dai WB, 2017, IEEE T IND INFORM, V13, P725, DOI 10.1109/TII.2016.2595401
Dawod A, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22041344
Dehraj P, 2021, J SUPERCOMPUT, V77, P388, DOI 10.1007/s11227-020-03268-0
Dobson S, 2006, ACM T AUTON ADAP SYS, V1, P223, DOI 10.1145/1186778.1186782
Dressler F, 2008, COMPUT COMMUN, V31, P3018, DOI 10.1016/j.comcom.2008.02.001
Edwards C. P., 2005, U.S. Patent, Patent No. [6870816B1, 6870816]
Elgendy IA, 2019, FUTURE GENER COMP SY, V100, P531, DOI 10.1016/j.future.2019.05.037
Etemadi M, 2020, COMPUT COMMUN, V161, P109, DOI 10.1016/j.comcom.2020.07.028
Fizza K, 2023, IEEE COMMUN SURV TUT, V25, P567, DOI 10.1109/COMST.2022.3205377
Gatouillat A, 2018, LECT NOTES COMPUT SC, V10797, P93, DOI 10.1007/978-3-319-91764-1_8
Ghobaei-Arani M, 2022, EXPERT SYST APPL, V200, DOI 10.1016/j.eswa.2022.117012
Ghobaei-Arani M, 2018, FUTURE GENER COMP SY, V78, P191, DOI 10.1016/j.future.2017.02.022
Gill SS, 2022, INTERNET THINGS-NETH, V19, DOI 10.1016/j.iot.2022.100514
Huebscher MC, 2008, ACM COMPUT SURV, V40, DOI 10.1145/1380584.1380585
Jaleel A, 2022, ICT EXPRESS, V8, P507, DOI 10.1016/j.icte.2021.10.010
Jazayeri F, 2021, J AMB INTEL HUM COMP, V12, P8265, DOI 10.1007/s12652-020-02561-3
Kang B, 2017, IEEE T MULTI-SCALE C, V3, P206, DOI 10.1109/TMSCS.2017.2705683
Kayal P, 2019, I S WORLD WIREL MOBI, DOI 10.1109/wowmom.2019.8792989
Kephart JO, 2003, COMPUTER, V36, P41, DOI 10.1109/MC.2003.1160055
Keshavarzi A, 2019, IEEE DES TEST, V36, P41, DOI 10.1109/MDAT.2019.2899075
Koehler J., 2003, RZ3487 IBM RES ZUR R
Lalanda P, 2013, AUTONOMIC COMPUTING
Lee E, 2018, INFORM SOFTWARE TECH, V93, P200, DOI 10.1016/j.infsof.2017.09.008
Lei L, 2020, IEEE COMMUN SURV TUT, V22, P1722, DOI 10.1109/COMST.2020.2988367
Lu YL, 2020, IEEE T IND INFORM, V16, P4177, DOI 10.1109/TII.2019.2942190
Lucas-Estañ MC, 2019, IEEE T IND INFORM, V15, P5052, DOI 10.1109/TII.2019.2898173
Ma HD, 2011, J COMPUT SCI TECH-CH, V26, P919, DOI 10.1007/s11390-011-1189-5
Maati B., 2020, J AMBIENT INTELL HUM, P1
Mahmud R., 2018, INTERNET EVERYTHING, P103, DOI DOI 10.1007/978-981-10-5861-5_5
Marchal S, 2019, IEEE J SEL AREA COMM, V37, P1402, DOI 10.1109/JSAC.2019.2904364
Miorandi D, 2012, AD HOC NETW, V10, P1497, DOI 10.1016/j.adhoc.2012.02.016
Mitola J, 2009, P IEEE, V97, P626, DOI 10.1109/JPROC.2009.2013012
Zarca AM, 2019, IEEE INTERNET THINGS, V6, P8005, DOI 10.1109/JIOT.2019.2904123
Mukhandi M., 2022, P IEEE 19 ANN CONSUM, P433
Ngu AH, 2017, IEEE INTERNET THINGS, V4, P1, DOI 10.1109/JIOT.2016.2615180
Ochoa-Aday L, 2018, SYMMETRY-BASEL, V10, DOI 10.3390/sym10050163
Ou QH, 2012, 2012 THIRD FTRA INTERNATIONAL CONFERENCE ON MOBILE, UBIQUITOUS, AND INTELLIGENT COMPUTING (MUSIC), P96, DOI 10.1109/MUSIC.2012.24
Ouedraogo CA, 2018, 2018 4TH IEEE CONFERENCE ON NETWORK SOFTWARIZATION AND WORKSHOPS (NETSOFT), P323, DOI 10.1109/NETSOFT.2018.8459955
Palattella MR, 2013, IEEE COMMUN SURV TUT, V15, P1389, DOI 10.1109/SURV.2012.111412.00158
Poor R., 2003, ACM Queue, V1, P52, DOI 10.1145/846057.864027
Qiu XY, 2019, IEEE T VEH TECHNOL, V68, P8050, DOI 10.1109/TVT.2019.2924015
Ramakrishnan Berbers Arun Kishore., 2013, 10th International Conference on Autonomic Computing ({ICAC} 13), P213
Ray PP, 2018, J KING SAUD UNIV-COM, V30, P291, DOI 10.1016/j.jksuci.2016.10.003
Riker A, 2022, INT J COMMUN SYST, V35, DOI 10.1002/dac.5200
Sahni Y, 2017, IEEE ACCESS, V5, P16441, DOI 10.1109/ACCESS.2017.2739804
Sampaio HV, 2021, COMPUT ELECTR ENG, V93, DOI 10.1016/j.compeleceng.2021.107246
Sari RF, 2021, INFORMATION, V12, DOI 10.3390/info12080292
Sarma S., 2017, IND INTELLIGENCE AIS
Savaglio C., 2019, 2019 28th International Conference on Computer Communication and Networks (ICCCN), P1
Savaglio C, 2015, LECT NOTES COMPUT SC, V9258, P39, DOI 10.1007/978-3-319-23237-9_5
Semasinghe P, 2017, IEEE COMMUN MAG, V55, P121, DOI 10.1109/MCOM.2017.1600568CM
Sezer OB, 2018, IEEE INTERNET THINGS, V5, P1, DOI 10.1109/JIOT.2017.2773600
Sfar AR, 2018, DIGIT COMMUN NETW, V4, P118, DOI 10.1016/j.dcan.2017.04.003
Sheng ZG, 2013, IEEE WIREL COMMUN, V20, P91, DOI 10.1109/MWC.2013.6704479
Shi WS, 2016, IEEE INTERNET THINGS, V3, P637, DOI 10.1109/JIOT.2016.2579198
Shi WB, 2015, PEER PEER NETW APPL, V8, P881, DOI 10.1007/s12083-014-0249-3
Sittón-Candanedo I, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9010048
Slabicki M, 2018, IEEE IFIP NETW OPER
Sood K, 2016, IEEE INTERNET THINGS, V3, P453, DOI 10.1109/JIOT.2015.2480421
Steiner J., 2014, 3672437 US DEP EN LU
Sterritt Roy, 2010, Proceedings of the 2010 7th IEEE International Conference and Workshops on Engineering of Autonomic and Autonomous Systems (EASe 2010), P119, DOI 10.1109/EASe.2010.29
Tadakamalla U, 2022, IEEE T CLOUD COMPUT, V10, P2334, DOI 10.1109/TCC.2021.3064629
Tahir M., P IEEE INT C DEP AUT
Nguyen TD, 2019, INT CON DISTR COMP S, P756, DOI 10.1109/ICDCS.2019.00080
Truszkowski WF, 2006, IEEE T SYST MAN CY C, V36, P279, DOI 10.1109/TSMCC.2006.871600
Turber Stefanie, 2014, Advancing the Impact of Design Science: Moving from Theory to Practice. 9th International Conference, DESRIST 2014. Proceedings: LNCS 8463, P17, DOI 10.1007/978-3-319-06701-8_2
Tynan R, 2007, IEEE INT C NETW SENS, P7, DOI 10.1109/ICNSC.2007.372924
Vassev E., 2013, SELF ORG EMBEDDED RE, P151
Veena P., 2015, IBM Inst. Business Value, V17
Vermesan O., 2017, COGNITIVE HYPERCONNE, P79
Wang JD, 2021, IEEE T EMERG TOP COM, V9, P1529, DOI 10.1109/TETC.2019.2902661
Xiaoyang Zhu, 2017, 2017 International Conference on Cloud and Autonomic Computing (ICCAC), P69, DOI 10.1109/ICCAC.2017.14
Xu LD, 2014, IEEE T IND INFORM, V10, P2233, DOI 10.1109/TII.2014.2300753
Xue M, 2022, IEEE T SERV COMPUT, V15, P640, DOI 10.1109/TSC.2021.3116597
Zarca AM, 2020, IEEE J SEL AREA COMM, V38, P1262, DOI 10.1109/JSAC.2020.2986621
Zhao Y, 2021, IEEE INTERNET THINGS, V8, P1817, DOI 10.1109/JIOT.2020.3017377
Zheng JC, 2015, IEEE COMMUN MAG, V53, P150, DOI 10.1109/MCOM.2015.7321985
Zhu J, 2018, IEEE INTERNET THINGS, V5, P2375, DOI 10.1109/JIOT.2017.2759728
NR 106
TC 3
Z9 3
U1 3
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2327-4662
J9 IEEE INTERNET THINGS
JI IEEE Internet Things J.
PD AUG 15
PY 2023
VL 10
IS 16
BP 14725
EP 14748
DI 10.1109/JIOT.2023.3285359
PG 24
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA O7WQ3
UT WOS:001045875700042
OA hybrid
DA 2024-09-05
ER
PT J
AU Borah, A
Skiera, B
AF Borah, Abhishek
Skiera, Bernd
TI Marketing and investor behavior: Insights, introspections, and
indications
SO INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING
LA English
DT Article
DE Marketing-finance; Firm value; Historical analysis; Citation analysis;
Topic modelling; Latent dirichlet allocation
AB This article introduces three exemplary articles that speak to novel, current, and important issues in marketing and investor behavior. One proposes a novel measure of quality using warranties, another examines the context of common ownership, and another provides a sweeping review of the marketing-finance interface. In addition to introducing these articles in the special section, we examine the major topics and their impact in a quartercentury of research on the marketing-finance interface encompassing 373 articles. We identify ten major topics from which the topic stock performance had the highest coverage (19%). The remaining nine topics are covered roughly equally. The topic with the highest average number of citations is marketing spending followed by new products & innovations. We also identify an increasing number of articles over the last quarter-century that underlines the importance of the research on the marketing-finance interface. Finally, we put forward opportunities for the future of marketing-finance interface fusing novel data sources with decisive firm value outcomes. (C) 2021 Elsevier B.V. All rights reserved.
C1 [Borah, Abhishek] INSEAD, Mkt Area, Europe Campus Blvd Constance, F-77305 Fontainebleau, France.
[Skiera, Bernd] Goethe Univ Frankfurt Main, Fac Econ & Business, Dept Mkt, Theodor W Adorno Pl 4, D-60629 Frankfurt, Germany.
C3 INSEAD Business School; Goethe University Frankfurt
RP Borah, A (corresponding author), INSEAD, Mkt Area, Europe Campus Blvd Constance, F-77305 Fontainebleau, France.
EM abhishek.borah@insead.edu; skiera@wiwi.uni-frankfurt.de
RI Skiera, Bernd/B-6978-2013
CR Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Borah A., 2018, SSRN Electronic Journal, P146, DOI [10.2139/ssrn.3129115, DOI 10.2139/SSRN.3129115]
Edeling A, 2021, INT J RES MARK, V38
Healey J, 2021, INT J RES MARK, V38
Kireyev P, 2020, INFINITE RARE VALUAT
Kurt D, 2021, INT J RES MARK, V38
Liaukonyte J, 2021, MANAGEMENT SCI, DOI [10.1287/mnsc.2021.4003, DOI 10.1287/MNSC.2021.4003]
Mai F, 2018, J MANAGE INFORM SYST, V35, P19, DOI 10.1080/07421222.2018.1440774
Srinivasan S, 2009, J MARKETING RES, V46, P293, DOI 10.1509/jmkr.46.3.293
Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413
NR 10
TC 4
Z9 5
U1 6
U2 17
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0167-8116
EI 1873-8001
J9 INT J RES MARK
JI Int. J. Res. Mark.
PD DEC
PY 2021
VL 38
IS 4
BP 811
EP 816
DI 10.1016/j.ijresmar.2021.09.011
EA DEC 2021
PG 6
WC Business
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA YY9HM
UT WOS:000755095900003
OA hybrid
DA 2024-09-05
ER
PT J
AU Yun, GW
Lee, KM
Choi, HH
AF Yun, Gawon
Lee, Kewman M.
Choi, Hailey Hyunjin
TI Empowering Student Learning Through Artificial Intelligence: A
Bibliometric Analysis
SO JOURNAL OF EDUCATIONAL COMPUTING RESEARCH
LA English
DT Article; Early Access
DE artificial intelligence; student learning; education; bibliometric
analysis
ID EDUCATION; CHATGPT; MODELS
AB Scholarly interest in artificial intelligence (AI) has surged as researchers delve into its transformative impact on various aspects of our lives. AI poses both benefits and challenges, particularly in the context of educators' endeavors to comprehend the intricacies of students' learning processes. Although the use of AI to enhance and assist student learning is relatively new, the exponential growth of scholarly attention and publications in AI and student learning in recent years underscores the compelling necessity for further inquiry. Investigating this area is crucial for understanding the emerging trends in this research domain. This study aims to provide insights into the burgeoning research trajectories on AI from a student learning perspective. Using a bibliometric approach, this study examined 663 scholarly articles pertaining to the interface between AI and student learning published between 1961 and 2024. Our findings reveal four major thematic areas including AI in education and educational technology, AI-driven learning environments, essential AI enablers, and human learning and highlight promising avenues at this intersection.
C1 [Yun, Gawon] Missouri State Univ, Coll Business, Springfield, MO USA.
[Lee, Kewman M.; Choi, Hailey Hyunjin] Missouri State Univ, Coll Educ, 901 S Natl Ave Hill Hall 307, Springfield, MO 65897 USA.
C3 Missouri State University; Missouri State University
RP Choi, HH (corresponding author), Missouri State Univ, Coll Educ, 901 S Natl Ave Hill Hall 307, Springfield, MO 65897 USA.
EM hchoi@missouristate.edu
CR Afzaal M, 2024, TECHNOL KNOWL LEARN, V29, P331, DOI 10.1007/s10758-023-09650-0
Aguillo IF, 2012, SCIENTOMETRICS, V91, P343, DOI 10.1007/s11192-011-0582-8
Albdrani RN, 2023, INT J ADV COMPUT SC, V14, P1208
AlRyalat SAS, 2019, JOVE-J VIS EXP, DOI 10.3791/58494
Andriessen J., 1999, International Journal of Artificial Intelligence in Education, V10, P130
Nguyen A, 2023, EDUC INF TECHNOL, V28, P4221, DOI 10.1007/s10639-022-11316-w
Anhong Guo, 2020, ACM SIGACCESS Accessibility and Computing, DOI 10.1145/3386296.3386298
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Ausin MS, 2023, INT J ARTIF INTELL E, V33, P1031, DOI 10.1007/s40593-022-00312-3
Bearman M, 2023, HIGH EDUC, V86, P369, DOI 10.1007/s10734-022-00937-2
Bielsa S., 2016, PLEURA, V3, p237399751664655, DOI [10.1177/2373997516646555, DOI 10.1177/2373997516646555]
Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
BUDD JM, 1988, RES HIGH EDUC, V28, P180, DOI 10.1007/BF00992890
Bumann EE, 2024, J DENT, V140, DOI 10.1016/j.jdent.2023.104779
Camacho D., 2008, Advances in E-Learning: Experiences and Methodologies, P149, DOI DOI 10.4018/978-1-59904-756-0.CH009
Cao Q., 2022, Journal of Engineering Science Technology Review, V15, P227, DOI [10.25103/jestr.153.25, DOI 10.25103/JESTR.153.25]
Chai CS, 2021, EDUC TECHNOL SOC, V24, P89
Chang CC, 2023, INTERACT LEARN ENVIR, V31, P5995, DOI 10.1080/10494820.2022.2027457
Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233
Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510
Chen S, 2023, IEEE T COMPUT SOC SY, V10, P220, DOI 10.1109/TCSS.2021.3132957
Chen XM, 2023, SYSTEMS-BASEL, V11, DOI 10.3390/systems11110548
Chen Z, 2023, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.910677
Cheng KH, 2022, ETR&D-EDUC TECH RES, V70, P169, DOI 10.1007/s11423-021-10070-z
Chiu T. K. F., 2023, Computers and Education: Artificial Intelligence, V4, P100118, DOI DOI 10.1016/J.CAEAI.2022.100118
Chiu TKF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2253861
Chu HB, 2024, J MANUF SYST, V73, P287, DOI 10.1016/j.jmsy.2024.02.008
Crompton H, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00392-8
Cuevas-Nunez M, 2023, J DENT EDUC, V87, P1735, DOI 10.1002/jdd.13375
Cui X, 2024, SOFT COMPUT, V28, P3533, DOI 10.1007/s00500-023-09618-3
Della Corte V, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11216114
Dervis H, 2019, J SCIENTOMETR RES, V8, P156, DOI 10.5530/jscires.8.3.32
Ding Y., 2023, Computer-Aided Design and Applications, V20, P113, DOI [10.14733/cadaps.2023.S10.113-123, DOI 10.14733/CADAPS.2023.S10.113-123]
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003
Fan XY, 2022, COMPUT ELECTR ENG, V100, DOI 10.1016/j.compeleceng.2022.107957
Farooq R, 2023, VINE J INF KNOWL MAN, V53, P1178, DOI 10.1108/VJIKMS-06-2021-0089
Fleuret F, 2011, P NATL ACAD SCI USA, V108, P17621, DOI 10.1073/pnas.1109168108
GENNARI JH, 1989, ARTIF INTELL, V40, P11, DOI 10.1016/0004-3702(89)90046-5
Gibson BR, 2013, TOP COGN SCI, V5, P132, DOI 10.1111/tops.12010
Grewal P., 2014, IOSR J. Comput. Eng., V16, P9, DOI DOI 10.9790/0661-16210913
Gupta S, 2024, MULTIMED TOOLS APPL, DOI 10.1007/s11042-023-18021-x
Hebebci MT, 2021, INT J TECHNOL EDUC, V4, P796, DOI 10.46328/ijte.199
Hmoud M, 2024, INFORMATION, V15, DOI 10.3390/info15010033
Holmes W, 2022, EUR J EDUC, V57, P542, DOI 10.1111/ejed.12533
Hopcan S, 2023, INTERACT LEARN ENVIR, V31, P7335, DOI 10.1080/10494820.2022.2067186
Huang AYQ, 2023, COMPUT EDUC, V194, DOI 10.1016/j.compedu.2022.104684
Huang C, 2020, EDUC REV, V72, P281, DOI 10.1080/00131911.2019.1566212
Jamil F, 2023, EXPERT SYST APPL, V231, DOI 10.1016/j.eswa.2023.120640
Jia K, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.795039
Jiao PC, 2022, ARTIF INTELL REV, V55, P6321, DOI 10.1007/s10462-022-10155-y
Joy J, 2019, J ENABLING TECHNOL, V13, P173, DOI 10.1108/JET-03-2019-0014
Kelly S, 2023, TELEMAT INFORM, V77, DOI 10.1016/j.tele.2022.101925
Kim K., 2024, Education and Information Technologies, V23, P1, DOI [10.1080/17483107.2024.2393701, DOI 10.1080/17483107.2024.2393701]
Kim M, 2024, TECHTRENDS, V68, P37, DOI 10.1007/s11528-023-00899-x
Koon VY, 2023, INTERACT LEARN ENVIR, V31, P7122, DOI 10.1080/10494820.2022.2061010
Lee CS, 2020, INT J UNCERTAIN FUZZ, V28, P1023, DOI 10.1142/S0218488520500440
Lee MJ, 2024, J COMPUT CIVIL ENG, V38, DOI 10.1061/JCCEE5.CPENG-5632
Li KC, 2023, INTERACT TECHNOL SMA, DOI 10.1108/ITSE-01-2023-0007
Li X, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19148733
Liao XF, 2024, BRIT J EDUC TECHNOL, V55, DOI 10.1111/bjet.13424
Lin KC, 2023, IEEE T LEARN TECHNOL, V16, P780, DOI 10.1109/TLT.2023.3292215
Malacina I, 2022, INT J PROD ECON, V251, DOI 10.1016/j.ijpe.2022.108540
Maulidiya D, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2024.e26191
Mishra D, 2018, ANN OPER RES, V270, P313, DOI 10.1007/s10479-016-2236-y
Mohammad AS, 2023, MATHEMATICS-BASEL, V11, DOI 10.3390/math11143153
Mouta A, 2024, EDUC INF TECHNOL, V29, P10473, DOI 10.1007/s10639-023-12229-y
Muoz S. A. S., 2023, Przestrzen Spoleczna, V23, P1
Murtaza M, 2022, IEEE ACCESS, V10, P81323, DOI 10.1109/ACCESS.2022.3193938
Nguyen T. T. K., 2023, International Journal of Evaluation and Research in Education, V12, P2387, DOI [10.11591/ijere.v12i4.26623, DOI 10.11591/IJERE.V12I4.26623]
Ni Qin, 2024, IEEE Transactions on Artificial Intelligence, V5, P2422, DOI 10.1109/TAI.2023.3320118
Niemi H, 2021, J PAC RIM PSYCHOL, V15, DOI 10.1177/18344909211038105
Orrù G, 2023, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1199350
Phillips TM, 2023, INT J ARTIF INTELL E, V33, P635, DOI 10.1007/s40593-022-00295-1
Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8
Press G., 2022, What happened to AI in 2022?
Rivas-Posada E, 2024, NEURAL COMPUT APPL, DOI 10.1007/s00521-024-09549-6
Savitha R, 2012, NEURAL NETWORKS, V32, P209, DOI 10.1016/j.neunet.2012.02.015
Seo K, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00292-9
Shen C., 2023, Computer-Aided Design and Applications, V20, P106, DOI [10.14733/cadaps.2023.S5.106-115, DOI 10.14733/CADAPS.2023.S5.106-115]
Shi LZ, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2282804
Shi SJ, 2024, ASIA PAC J EDUC, V44, P112, DOI 10.1080/02188791.2024.2305161
Siemens G., 2022, Computers and Education: Artificial Intelligence, V3, P100107, DOI DOI 10.1016/J.CAEAI.2022.100107
SIMMONS AB, 1988, IEEE J OCEANIC ENG, V13, P14, DOI 10.1109/48.551
Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2
Talan T., 2021, International Journal of Research in Education and Science, V7, P822, DOI [DOI 10.46328/IJRES.2409, 10.46328/ijres.2409]
Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001
Tossell CC, 2024, IEEE T LEARN TECHNOL, V17, P1069, DOI 10.1109/TLT.2024.3355015
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Wang F, 2023, EVOL INTELL, V16, P1461, DOI 10.1007/s12065-022-00733-y
Wang YK, 2023, J COMPUT METHODS SCI, V23, P663, DOI 10.3233/JCM-226630
Wangoo D. P., 2021, Artificial Intelligence and Speech Technology, P427
Webb ME, 2021, ETR&D-EDUC TECH RES, V69, P2109, DOI 10.1007/s11423-020-09858-2
Wu R, 2024, BRIT J EDUC TECHNOL, V55, DOI 10.1111/bjet.13334
Xia ZC, 2024, IEEE T LEARN TECHNOL, V17, P32, DOI 10.1109/TLT.2023.3301011
Xie C., 2023, Computer-Aided Design and Applications, V20, P168, DOI [10.14733/cadaps.2023.S5.168-179, DOI 10.14733/CADAPS.2023.S5.168-179]
Xiong Y, 2023, EDUC INF TECHNOL, DOI 10.1007/s10639-023-12058-z
Yakdan S., 2023, Seminars in Spine Surgery, V35, P101048, DOI [10.1016/j.semss.2023.101048, DOI 10.1016/J.SEMSS.2023.101048]
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
Zhang Y., 2024, Applied Mathematics and Nonlinear Sciences, V9, P8, DOI [10.2478/amns.2023.2.01319, DOI 10.2478/AMNS.2023.2.01319]
Zhong L, 2023, J CLOUD COMPUT-ADV S, V12, DOI 10.1186/s13677-023-00426-6
Zhou Y., 2024, Applied Mathematics and Nonlinear Sciences, V9, P28, DOI [10.2478/amns.2023.2.01486, DOI 10.2478/AMNS.2023.2.01486]
Zimmerman BJ, 2002, THEOR PRACT, V41, P64, DOI 10.1207/s15430421tip4102_2
Zirar A, 2023, REV EDUC-US, V11, DOI 10.1002/rev3.3433
NR 106
TC 0
Z9 0
U1 0
U2 0
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0735-6331
EI 1541-4140
J9 J EDUC COMPUT RES
JI J. Educ. Comput. Res.
PD 2024 AUG 28
PY 2024
DI 10.1177/07356331241278636
EA AUG 2024
PG 34
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA E0S4D
UT WOS:001300188900001
DA 2024-09-05
ER
PT J
AU Zhang, Y
Wu, MJ
Tian, GY
Zhang, GQ
Lu, J
AF Zhang, Yi
Wu, Mengjia
Tian, George Yijun
Zhang, Guangquan
Lu, Jie
TI Ethics and privacy of artificial intelligence: Understandings from
bibliometrics
SO KNOWLEDGE-BASED SYSTEMS
LA English
DT Article
DE Artificial intelligence; Ethics; Privacy; Bibliometrics; Topic analysis
ID TOPIC EXTRACTION; TECHNOLOGY; AI; METHODOLOGY; SCIENCE
AB Artificial intelligence (AI) and its broad applications are disruptively transforming the daily lives of human beings and a discussion of the ethical and privacy issues surrounding AI is a topic of growing interest, not only among academics but also the general public This review identifies the key entities (i.e., leading research institutions and their affiliated countries/regions, core research journals, and communities) that contribute to the research on the ethical and privacy issues in relation to AI and their intersections using co-occurrence analysis. Topic analyses profile the topical landscape of AI ethics using a topical hierarchical tree and the changing interest of society in AI ethics over time through scientific evolutionary pathways. We also paired 15 selected AI techniques with 17 major ethical issues and identify emerging ethical issues from a core set of the most recent articles published in Nature, Science, and Proceedings of the National Science Academy of the United States. These insights bridging the knowledge base of AI techniques and ethical issues in the literature, are of interest to the AI community and audiences in science policy, technology management, and public administration. (C) 2021 Elsevier B.V. All rights reserved.
C1 [Zhang, Yi; Wu, Mengjia; Zhang, Guangquan; Lu, Jie] Univ Technol Sydney, Australian Artificial Intelligence Inst, Fac Engn & Informat Technol, Sydney, NSW, Australia.
[Tian, George Yijun] Univ Technol Sydney, Fac Law, Sydney, NSW, Australia.
C3 University of Technology Sydney; University of Technology Sydney
RP Zhang, Y (corresponding author), Univ Technol Sydney, Australian Artificial Intelligence Inst, Fac Engn & Informat Technol, Sydney, NSW, Australia.
EM yi.zhang@uts.edu.au; mengjia.wu@student.uts.edu.au;
yijun.tian@uts.edu.au; guangquan.zhang@uts.edu.au; jie.lu@uts.edu.au
RI Wu, Mengjia/AFU-9852-2022; Zhang, Yi/AAT-6945-2021; Lu, Jie/S-3581-2016;
Zhang, Guangquan/G-2553-2017
OI Wu, Mengjia/0000-0003-3956-7808; Zhang, Yi/0000-0002-7731-0301; Tian,
George/0000-0003-4472-5428; Lu, Jie/0000-0003-0690-4732; Zhang,
Guangquan/0000-0003-3960-0583
FU Australian Research Council [DE190100994]; Australian Research Council
[DE190100994] Funding Source: Australian Research Council
FX This work is supported by the Australian Research Council under
Discovery Early Career Researcher Award DE190100994.
CR [Anonymous], 2019, ETH AL DES PRIOR HUM
Attfield R., 2012, ETHICS OVERVIEW
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Baumann D, 2017, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2017/11/007
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2004, ADV NEUR IN, V16, P17
Bonnefon JF, 2016, SCIENCE, V352, P1573, DOI 10.1126/science.aaf2654
Bossmann J., 2020, WORLD EC FORUM
Cath C, 2018, SCI ENG ETHICS, V24, P505, DOI 10.1007/s11948-017-9901-7
Cetindamar D, 2020, THUNDERBIRD INT BUS, V62, P457, DOI 10.1002/tie.22158
Collins FS, 2015, NEW ENGL J MED, V372, P793, DOI 10.1056/NEJMp1500523
Drew L, 2019, NATURE, V571, pS19, DOI 10.1038/d41586-019-02214-2
Floridi Luciano, 2018, Philosophy & Technology, V31, P317, DOI [DOI 10.1007/S13347-018-0325-3, 10.1007/s13347-018-0325-3]
Grace K, 2018, J ARTIF INTELL RES, V62, P729, DOI 10.1613/jair.1.11222
Guo JF, 2016, TECHNOL FORECAST SOC, V105, P27, DOI 10.1016/j.techfore.2016.01.028
Hagendorff T, 2020, MIND MACH, V30, P99, DOI 10.1007/s11023-020-09517-8
Harper R., 2006, Inside the smart home
Hossain MS, 2020, IEEE NETWORK, V34, P126, DOI 10.1109/MNET.011.2000458
Huang L, 2019, PATHOBIOLOGY, V86, P111, DOI 10.1159/000493013
Huq AZ, 2020, VA LAW REV, V106, P611
Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2
Kalluri P, 2020, NATURE, V583, P169, DOI 10.1038/d41586-020-02003-2
Kerry C. F., 2020, Protecting privacy in an AI-driven world
King TC, 2020, SCI ENG ETHICS, V26, P89, DOI 10.1007/s11948-018-00081-0
Krzywinski M, 2009, GENOME RES, V19, P1639, DOI 10.1101/gr.092759.109
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Mittelstadt, 2019, ARXIV190606668
Muller V. C., 2020, STANFORD ENCY PHILOS
Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103
Price D. J. d. S., 1963, Little Science, Big Science
Price WN, 2019, JAMA-J AM MED ASSOC, V322, P1765, DOI 10.1001/jama.2019.15064
PRITCHARD A, 1969, J DOC, V25, P348
Tian G. Y, 2016, WISCONSIN INT LAW J, V34, P367
Velden T, 2017, SCIENTOMETRICS, V111, P1169, DOI 10.1007/s11192-017-2306-1
Wallach W., 2008, Moral Machines: Teaching Robots Right fromWrong
Walter A, 2017, P NATL ACAD SCI USA, V114, P6148, DOI 10.1073/pnas.1707462114
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Webber BL, 2015, P NATL ACAD SCI USA, V112, P10565, DOI 10.1073/pnas.1514258112
Wu M., 2021, P 18 INT C SCI INF
Wu M., 2020, TECHNOL FORECAST SOC
Yan EJ, 2014, J INFORMETR, V8, P295, DOI 10.1016/j.joi.2014.01.008
Yi Zhang, 2018, Proceedings of the Association for Information Science and Technology, V55, DOI 10.1002/pra2.2018.14505501065
Zhang Y., 2020, QUANTITATIVE SCI STU
Zhang Y., 2020, TOPIC EVOLUTION DISR, DOI [10.2139/ssrn.3675020, DOI 10.2139/SSRN.3675020]
Zhang Y, 2021, IEEE T ENG MANAGE, V68, P1259, DOI 10.1109/TEM.2020.2974761
Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004
Zhang Y, 2017, KNOWL-BASED SYST, V133, P255, DOI 10.1016/j.knosys.2017.07.011
Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814
Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015
Zhang Y, 2014, SCIENTOMETRICS, V101, P1375, DOI 10.1007/s11192-014-1262-2
Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019
Zhang Y, 2013, TECHNOL ANAL STRATEG, V25, P707, DOI 10.1080/09537325.2013.803064
NR 52
TC 29
Z9 29
U1 30
U2 209
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0950-7051
EI 1872-7409
J9 KNOWL-BASED SYST
JI Knowledge-Based Syst.
PD JUN 21
PY 2021
VL 222
AR 106994
DI 10.1016/j.knosys.2021.106994
EA APR 2021
PG 14
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA RS5ZQ
UT WOS:000643857400001
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Shueb, S
Gul, S
Hussain, A
AF Shueb, Sheikh
Gul, Sumeer
Hussain, Aabid
TI Are Pay-Walled Doors of Access Open During the Pandemic? Analysing the
Open-Access Landscape of COVID-19 Research
SO JOURNAL OF SCHOLARLY PUBLISHING
LA English
DT Article
DE altmetrics; bibliometrics; big data analytics; indexing databases;
information retrieval; open access; predatory publishers; scholarly
communication; scientometrics; sentiment analysis; social media
AB Open access (OA) to research results is indispensable for knowing more about COVID-19 and ways to contain it. The study investigates the OA status of the research output on COVID-19 using the Web of Science. The results show that about 85 per cent of the publications are available as OA, which shows a decline over time. Almost an equal proportion of articles are funded and non-funded, with the Department of Health and Human Services and the National Institutes of Health, both in the United States, as the leading sponsors. Although the United States and China were the top contributors, Sweden and the Netherlands share the highest percentage of OA articles. Among publishers, Elsevier, Springer Nature, the Multidisciplinary Publishing Institute, and Wiley were the leading OA publishers, and universities mainly dominated OA research on COVID-19. This study will be helpful for researchers and policymakers to identify the leading contributors to OA research during public health emergencies of international concern.
C1 [Shueb, Sheikh] Islamic Univ Sci & Technol, Rumi Lib, Awantipora, Jammu & Kashmir, India.
[Gul, Sumeer] Univ Kashmir, Dept Lib & Informat Sci, Jammu, Jammu & Kashmir, India.
[Hussain, Aabid] Film Div, Directorate Informat & Publ Relat, Jammu, Jammu & Kashmir, India.
C3 University of Kashmir
RP Shueb, S (corresponding author), Islamic Univ Sci & Technol, Rumi Lib, Awantipora, Jammu & Kashmir, India.
EM shkhshb@gmail.com
RI Gul, Sumeer/H-8253-2012; Shueb, Sheikh/AAT-9257-2021
OI Shueb, Sheikh/0000-0002-4323-4363; Gul, Sumeer/0000-0002-0258-1182
CR [Anonymous], 2022, Open Access Information for Journal Authors
[Anonymous], 2013, Recommendations for the conduct, reporting, editing, and publication of scholarly work in medical journals
[Anonymous], 2022, Coronavirus: COVID-19 Variants Detected in Peru
Apuzzo M, 2020, New York Times, P14
Arrizabalaga Olatz, 2020, F1000Research, P9, DOI [10.12688/fl1000research.24136.2, DOI 10.12688/FL1000RESEARCH.24136.2]
Belli S, 2020, SCIENTOMETRICS, V124, P2661, DOI 10.1007/s11192-020-03590-7
Bose Priyom, 2022, News Medical Life Sciences7 July
Capocasa M, 2022, INFORM RES, V27, DOI 10.47989/irpaper929
Cheng X, 2022, J INF SCI, V48, P304, DOI 10.1177/0165551520954674
Clarivate, 2023, Open Access
European Council, 2020, JOINT STAT MEMB EUR
Fan JC, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00477
Feng X, 2021, LIBR HI TECH, V39, P722, DOI 10.1108/LHT-06-2020-0141
Greaves S., 2020, Publisher Collaboration to Keep COVID Research Moving
JSTOR, 2022, Free Access to Selected COVID-19-Related Articles
Lee JJ, 2021, HIGH EDUC, V81, P949, DOI 10.1007/s10734-020-00589-0
Malekpour MR, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0258064
Nane GF, 2023, SCIENTOMETRICS, V128, P345, DOI 10.1007/s11192-022-04536-x
National Institutes of Health Office of Data Strategy, 2020, Open-Access Data and Computational Resources to Address COVID-19
Osborne R, 2015, ONLINE INFORM REV, V39, P637, DOI 10.1108/OIR-03-2015-0083
Raman R, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13147555
Shueb S, 2022, LIBR HI TECH, V40, P421, DOI 10.1108/LHT-04-2021-0136
Teixeira da Silva JA, 2021, SCIENTOMETRICS, V126, P831, DOI 10.1007/s11192-020-03675-3
UNESCO, Open Access to Facilitate Research and Information on COVID-19
Vincent-Lamarre P, 2016, J ASSOC INF SCI TECH, V67, P2815, DOI 10.1002/asi.23601
Xia S, 2020, SIGNAL TRANSDUCT TAR, V5, DOI 10.1038/s41392-020-0184-0
Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235
NR 27
TC 0
Z9 0
U1 5
U2 5
PU UNIV TORONTO PRESS INC
PI TORONTO
PA JOURNALS DIVISION, 5201 DUFFERIN ST, DOWNSVIEW, TORONTO, ON M3H 5T8,
CANADA
SN 1198-9742
EI 1710-1166
J9 J SCHOLARLY PUBL
JI J. Sch. Publ.
PD JAN 1
PY 2024
VL 55
IS 1
BP 54
EP 83
DI 10.3138/jsp-2023-0005
PG 30
WC Humanities, Multidisciplinary; Information Science & Library Science
WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Arts & Humanities - Other Topics; Information Science & Library Science
GA RC6D1
UT WOS:001225502100001
DA 2024-09-05
ER
PT J
AU Rivest, M
Vignola-Gagné, E
Archambault, É
AF Rivest, Maxime
Vignola-Gagne, Etienne
Archambault, Eric
TI Article-level classification of scientific publications: A comparison of
deep learning, direct citation and bibliographic coupling
SO PLOS ONE
LA English
DT Article
AB Classification schemes for scientific activity and publications underpin a large swath of research evaluation practices at the organizational, governmental, and national levels. Several research classifications are currently in use, and they require continuous work as new classification techniques becomes available and as new research topics emerge. Convolutional neural networks, a subset of "deep learning" approaches, have recently offered novel and highly performant methods for classifying voluminous corpora of text. This article benchmarks a deep learning classification technique on more than 40 million scientific articles and on tens of thousands of scholarly journals. The comparison is performed against bibliographic coupling-, direct citation-, and manual-based classifications-the established and most widely used approaches in the field of bibliometrics, and by extension, in many science and innovation policy activities such as grant competition management. The results reveal that the performance of this first iteration of a deep learning approach is equivalent to the graph-based bibliometric approaches. All methods presented are also on par with manual classification. Somewhat surprisingly, no machine learning approaches were found to clearly outperform the simple label propagation approach that is direct citation. In conclusion, deep learning is promising because it performed just as well as the other approaches but has more flexibility to be further improved. For example, a deep neural network incorporating information from the citation network is likely to hold the key to an even better classification algorithm.
C1 [Rivest, Maxime; Vignola-Gagne, Etienne; Archambault, Eric] Sci Metrix Inc, Montreal, PQ, Canada.
[Rivest, Maxime; Vignola-Gagne, Etienne; Archambault, Eric] Elsevier BV, Amsterdam, Netherlands.
[Archambault, Eric] 1Science, Montreal, PQ, Canada.
C3 Reed Elsevier; Elsevier
RP Rivest, M (corresponding author), Sci Metrix Inc, Montreal, PQ, Canada.; Rivest, M (corresponding author), Elsevier BV, Amsterdam, Netherlands.
EM maxime.rivest@science-metrix.com
RI Archambault, Eric JA/G-5808-2019
OI Archambault, Eric JA/0000-0002-4422-1054; Vignola-Gagne,
Etienne/0000-0002-4948-4363; Rivest, Maxime/0000-0002-1196-4679
FU Elsevier BV
FX The funder, Elsevier BV and its daughter company Science-Metrix Inc.,
1science, provided support in the form of salaries for authors MR, EVG,
EA, but did not have any additional role in the study design, data
collection and analysis, decision to publish, or preparation of the
manuscript. The specific roles of these authors are articulated in the
`author contributions' section.
CR Archambault É, 2011, PRO INT CONF SCI INF, P66
BAKER DB, 1980, J CHEM INF COMP SCI, V20, P193, DOI 10.1021/ci60024a001
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Börner K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039464
Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Dworkin JD, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0216146
Elsevier, SCOPUS DOCUMENT SEAR
Elsevier, 1FINDR
Gläser J, 2017, SCIENTOMETRICS, V111, P981, DOI 10.1007/s11192-017-2296-z
Glänzel W, 2017, SCIENTOMETRICS, V111, P1071, DOI 10.1007/s11192-017-2301-6
Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384
Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734
Larivière V, 2009, J AM SOC INF SCI TEC, V60, P858, DOI 10.1002/asi.21011
Nentidis A, 2020, OVERVIEW BIOASQ 8A 8
Pfeiffer R., 1968, HIST CLASSICAL SCHOL
Schneider JW, 2015, SCIENTOMETRICS, V102, P411, DOI 10.1007/s11192-014-1251-5
Shu F, 2019, J INFORMETR, V13, P202, DOI 10.1016/j.joi.2018.12.005
Sjögårde P, 2020, QUANT SCI STUD, V1, P207, DOI 10.1162/qss_a_00004
Sjögårde P, 2018, J INFORMETR, V12, P133, DOI 10.1016/j.joi.2017.12.006
Slater WJ., 1989, PHOENIX, V43, P111
Subelj L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154404
Tsatsaronis G, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/s12859-015-0564-6
Velden T, 2017, SCIENTOMETRICS, V111, P1169, DOI 10.1007/s11192-017-2306-1
Waltman L., 2018, SPRINGER HDB SCI TEC, P281
Waltman L, 2015, J INFORMETR, V9, P872, DOI 10.1016/j.joi.2015.08.001
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748
Yu DJ, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0187164
Zhang X, 2015, ADV NEUR IN, V28
NR 29
TC 18
Z9 20
U1 0
U2 22
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD MAY 11
PY 2021
VL 16
IS 5
AR e0251493
DI 10.1371/journal.pone.0251493
PG 18
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics
GA SW6LY
UT WOS:000664626600046
PM 33974653
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Wang, N
Guo, JL
Zhang, J
Fan, Y
AF Wang, Ning
Guo, Jinling
Zhang, Jian
Fan, Yu
TI Comparing eco-civilization theory and practice: Big-data evidence from
China
SO JOURNAL OF CLEANER PRODUCTION
LA English
DT Article
DE Eco-civilization; Bibliometric analysis; Latent Dirichlet Allocation
(LDA); Big data; Difference analysis
ID ECOLOGICAL CIVILIZATION; BEAUTIFUL CHINA; YELLOW-RIVER; CITY; TRENDS
AB Constructing an eco-civilization is crucial in achieving green, low-carbon development, and thus bridging the gap between theory and practice is imperative to better promote urban ecological transformation. At present, there are inconsistencies and imbalances between theoretical research and practical efforts to achieve an eco-civilization. This paper uses bibliometric analysis and Latent Dirichlet Allocation to analyze China's progress towards an eco-civilization at the theoretical and practical levels. The 'theory' is analyzed using 632 articles, while the 'practice' is analyzed using 100 eco-civilization pilot zone reports. The two are compared, with results showing: First: from 2015 onwards, the theory is moving in an interdisciplinary direction, with seven themes focusing on macro topics. Second: eco-civilization construction projects have multiple overlapping themes, and the growing connection between energy consumption, economic growth and environmental impacts driven by significant projects is the key to improving the level of regional ecological development. Third: the theory and practice are similar in that both are concerned with environmental protection, ecological education, and ecotourism. However, eco-civilization construction projects lack forward-looking and dynamic development tracking of low-carbon research. Finally: the paper proposes that dynamic evaluation and project tracking methods should be applied to monitor critical indicators to achieve a solid link between the theory and practice during eco-construction projects. This paper also proposes academia should do more research on townships and other micro level phenomena to promote climate change and energy revolution in the construction of a Chinese eco-civilization.
C1 [Wang, Ning; Zhang, Jian; Fan, Yu] Beijing Informat Sci & Technol Univ, Beijing 100192, Peoples R China.
[Wang, Ning; Zhang, Jian] Beijing Int Sci & Technol Cooperat Base Intelligen, Beijing 100192, Peoples R China.
[Wang, Ning; Zhang, Jian] Beijing Key Lab Big Data Decis Making Green Dev, Beijing 100192, Peoples R China.
[Guo, Jinling] China Univ Min & Technol Beijing, Beijing 100083, Peoples R China.
C3 Beijing Information Science & Technology University; China University of
Mining & Technology
RP Zhang, J (corresponding author), Beijing Informat Sci & Technol Univ, Beijing 100192, Peoples R China.
EM zhangjian@bistu.edu.cn
OI Wang, Ning/0000-0002-6155-212X
FU National Natural Science Foundationof China; [72204027]
FX Acknowledgments This work was supported by the National Natural Science
Foundationof China (72204027) . We would like to thank the anonymous
reviewers for their valuable suggestions. The contents of this paper
reflect the views of the authors and do not necessarily indicate
acceptance by the sponsors.
CR Black PF, 2014, REV SCI TECH OIE, V33, P465, DOI 10.20506/rst.33.2.2293
[曹静 Cao Jing], 2018, [系统工程学报, Journal of Systems Engineering], V33, P698
CCCPC (Central Committee of the Communist Party of China), 2015, B STATE COUNCIL PEOP, P5
Chai JX, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12218845
Chang IS, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11174661
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen MX, 2020, J GEOGR SCI, V30, P705, DOI 10.1007/s11442-020-1751-6
Cheng C, 2019, SCI TOTAL ENVIRON, V685, P1255, DOI 10.1016/j.scitotenv.2019.03.200
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
de Jong M, 2016, J CLEAN PROD, V134, P31, DOI 10.1016/j.jclepro.2016.03.083
de Jong M, 2015, J CLEAN PROD, V109, P25, DOI 10.1016/j.jclepro.2015.02.004
de Jong M, 2013, J CLEAN PROD, V57, P209, DOI 10.1016/j.jclepro.2013.06.036
DeBoom MJ, 2020, ANN AM ASSOC GEOGR, V111, P900, DOI 10.1080/24694452.2020.1843995
Dobbs C, 2019, URBAN ECOSYST, V22, P173, DOI 10.1007/s11252-018-0805-3
Dong F, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17155334
Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039
Feng JM, 2006, ENVIRON MONIT ASSESS, V122, P125, DOI 10.1007/s10661-005-9169-2
Griffiths S, 2020, ENERGY RES SOC SCI, V62, DOI 10.1016/j.erss.2019.101368
Hansen MH, 2018, GLOBAL ENVIRON CHANG, V53, P195, DOI 10.1016/j.gloenvcha.2018.09.014
Hansen MH, 2018, CHINA QUART, V234, P320, DOI 10.1017/S0305741017001394
Hassan AM, 2015, LAND USE POLICY, V48, P199, DOI 10.1016/j.landusepol.2015.04.029
He CS, 2005, WATER INT, V30, P261, DOI 10.1080/02508060508691865
Liu HB, 2019, J CLEAN PROD, V214, P195, DOI 10.1016/j.jclepro.2018.12.046
Liu T, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11185048
Lu X, 2020, ENGINEERING-PRC, V6, P1423, DOI 10.1016/j.eng.2020.03.014
Marinelli M, 2018, J CHIN POLIT SCI, V23, P365, DOI 10.1007/s11366-018-9538-7
Meng FX, 2021, SCI TOTAL ENVIRON, V755, DOI 10.1016/j.scitotenv.2020.142633
Mi LY, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19010388
Motoh H, 2013, ACTA HISTRIAE, V21, P651
Naustdalslid J, 2014, INT J SUST DEV WORLD, V21, P303, DOI 10.1080/13504509.2014.914599
NDRC (National Development and Reform Commission, 2020, NOT NAT DEV REF COMM
Noyons ECM, 1999, J AM SOC INFORM SCI, V50, P115, DOI 10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.3.CO;2-A
PARK ST, 2020, PERS UBIQUIT COMPUT, V1, P1
Peng T, 2021, ENVIRON SCI POLLUT R, V28, P6941, DOI 10.1007/s11356-020-11020-7
Qu QZ, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8121267
Rao CJ, 2021, INT J FUZZY SYST, V23, P369, DOI 10.1007/s40815-020-00975-x
Rapoport E, 2014, GEOGR COMPASS, V8, P137, DOI 10.1111/gec3.12113
Raza MY, 2020, SCI TOTAL ENVIRON, V730, DOI 10.1016/j.scitotenv.2020.139000
Schönfeld M, 2012, UNIVERSITAS-TAIWAN, V39, P69
Tian P, 2021, ECOL INDIC, V123, DOI 10.1016/j.ecolind.2021.107351
UN (United Nations) Department of Economic and Social Affairs Population Division, 2019, STESASERA420
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang HM, 2020, RESOUR CONSERV RECY, V163, DOI 10.1016/j.resconrec.2020.105070
Wang R, 2020, J CLEAN PROD, V243, DOI 10.1016/j.jclepro.2019.118464
Weaver D, 2020, ANN TOURISM RES, V81, DOI 10.1016/j.annals.2020.102890
Zuo ZL, 2021, ECOL INDIC, V127, DOI 10.1016/j.ecolind.2021.107789
NR 46
TC 13
Z9 13
U1 9
U2 57
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0959-6526
EI 1879-1786
J9 J CLEAN PROD
JI J. Clean Prod.
PD DEC 20
PY 2022
VL 380
AR 134754
DI 10.1016/j.jclepro.2022.134754
EA NOV 2022
PN 1
PG 10
WC Green & Sustainable Science & Technology; Engineering, Environmental;
Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics; Engineering; Environmental Sciences
& Ecology
GA 6F5KC
UT WOS:000884098500002
DA 2024-09-05
ER
PT J
AU Mertala, P
López-Pernas, S
Vartiainen, H
Saqr, M
Tedre, M
AF Mertala, Pekka
Lopez-Pernas, Sonsoles
Vartiainen, Henriikka
Saqr, Mohammed
Tedre, Matti
TI Digital natives in the scientific literature: A topic modeling approach
SO COMPUTERS IN HUMAN BEHAVIOR
LA English
DT Article
DE Digital natives; Bibliometrics; Structured topic modeling; Digital
immigrants
ID HEALTH INFORMATION-SEEKING; AUGMENTED REALITY; NET GENERATION; SOCIAL
MEDIA; STUDENTS; ONLINE; IMMIGRANTS; EDUCATION; MYTH; CAPACITY
AB The term "digital natives" was introduced in 2001 to describe a generation that has grown up surrounded by technology and the internet. The accompanying claims of a new way of thinking among digital natives were influential in shaping educational policy. Still, they were challenged by research that found no evidence of generation-wide cognitive changes in learners. Yet, the digital natives narrative persists in popular media and the education discourse. This study set out to investigate the reasons for the persistence of the digital native myth. It analyzed the metadata from 1886 articles related to the term between 2001 and 2022 using bibliometric methods and structural topic modeling. The results show that the concept of "digital native" is still both warmly embraced and fiercely criticized by scholars mostly from western and high income countries, and the volume of research on the topic is growing. However, the results suggest that what appears as the persistence of the idea is actually evolution and complete reinvention: The way the "digital native" concept is operationalized has shifted over time through a series of (metaphorical) mutations. The concept of digital native is one (albeit a highly successful) mutation of the generational gap discourse dating back to the early 1900s. While the initial digital native literature relied on Prensky's unvalidated claims and waned upon facing empirical challenges, subsequent versions have sought more nuanced interpretations. Notably, a burgeoning third mutation now co-opts the "digital native" terminology for diverse purposes, often completely decoupled from the foundational literature and its critiques. This study explains the concept's persistence as dynamic evolution of the digital native discourse in contemporary academic and public spheres.
C1 [Mertala, Pekka] Univ Jyvaskyla, Fac Educ & Psychol, PL 35, Jyvaskyla 40014, Finland.
[Lopez-Pernas, Sonsoles; Saqr, Mohammed; Tedre, Matti] Univ Eastern Finland, Sch Comp, Joensuu 80100, Finland.
[Vartiainen, Henriikka] Univ Eastern Finland, Sch Appl Educ Sci & Teacher Educ, Joensuu 80100, Finland.
C3 University of Jyvaskyla; University of Eastern Finland; University of
Eastern Finland
RP Mertala, P (corresponding author), Univ Jyvaskyla, Fac Educ & Psychol, PL 35, Jyvaskyla 40014, Finland.
EM pekka.o.mertala@jyu.fi; sonsoles.lopez@uef.fi;
henriikka.vartiainen@uef.fi; mohammed.saqr@uef.fi; matti.tedre@uef.fi
RI Saqr, Mohammed/AAH-2520-2020; López-Pernas, Sonsoles/M-7375-2019
OI Saqr, Mohammed/0000-0001-5881-3109; López-Pernas,
Sonsoles/0000-0002-9621-1392
CR Adams D, 2018, MALAYS J LEARN INSTR, V15, P227
Agárdi I, 2022, ELECTRON COMMER RES, DOI 10.1007/s10660-022-09537-9
Alkhattabi M, 2017, INT J EMERG TECHNOL, V12, P91, DOI 10.3991/ijet.v12i02.6158
Ames M.G., 2013, P 2013 C COMPUTER SU, P1487, DOI DOI 10.1145/2441776.2441945
[Anonymous], 2010, Curriculum, technology & transformation for an unknown future
[Anonymous], 2011, The net generation and digital natives: Implications for higher education
[Anonymous], 2001, On the Horizon, DOI [DOI 10.1108/10748120110424816, 10.1108/10748120110424843, 10.1108/10748120110424816]
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Banaji S, 2011, DECONSTRUCTING DIGITAL NATIVES: YOUNG PEOPLE, TECHNOLOGY, AND THE NEW LITERACIES, P49
Batsell J., 2012, Electronic News, V6, P111
BENGTSON VL, 1970, YOUTH SOC, V2, P7, DOI 10.1177/0044118X7000200102
Bennett S, 2010, J COMPUT ASSIST LEAR, V26, P321, DOI 10.1111/j.1365-2729.2010.00360.x
Bennett S, 2008, BRIT J EDUC TECHNOL, V39, P775, DOI 10.1111/j.1467-8535.2007.00793.x
Berns A, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-2971-1
Bittman M, 2011, AUST J EDUC, V55, P161, DOI 10.1177/000494411105500206
Braccini A. M., 2013, Organizational change and information systems: Working and living together in new ways, P11
Braccini A.M., 2016, LECT NOTES INFORM SY, P103
Burch VRF, 2019, TOTAL QUAL MANAG BUS, V30, P320, DOI 10.1080/14783363.2017.1303330
Chan CKY, 2023, Arxiv, DOI arXiv:2305.02878
Colasante T, 2022, AM PSYCHOL, V77, P186, DOI 10.1037/amp0000708
Comer DR, 2015, J EDUC BUS, V90, P145, DOI 10.1080/08832323.2015.1007906
Coovert SA, 2015, COMPUT HUM BEHAV, V53, P289, DOI 10.1016/j.chb.2015.07.021
Corrin L, 2010, LEARN MEDIA TECHNOL, V35, P387, DOI 10.1080/17439884.2010.531024
Cozma R., 2019, Journalism and Mass Communication Educator, V74, P306
Dastane O., 2023, FIIB BUS REV
De Bruyckere Pedro P. A. K., 2015, Urban myths about learning and education
Depura K, 2012, 2012 THIRD INTERNATIONAL CONFERENCE ON SERVICES IN EMERGING MARKETS (ICSEM), P153, DOI 10.1109/ICSEM.2012.29
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Eliot L., 2022, Forbes Magazine June, 12
Enyon R., 2020, Education in the Digital Age: Healthy and Happy Children, DOI DOI 10.1787/2DAC420B-EN
Evans C, 2020, HUM BEHAV EMERG TECH, V2, P269, DOI 10.1002/hbe2.196
Flores JFF, 2015, DIGIT EDUC REV, P40
Gandini A, 2021, MEDIA CULT SOC, V43, P369, DOI 10.1177/0163443720948018
Guran Adriana-Mihaela, 2020, EASEAI 2020: Proceedings of the 2nd ACM SIGSOFT International Workshop on Education through Advanced Software Engineering and Artificial Intelligence, P20, DOI 10.1145/3412453.3423197
Haluza D, 2017, HEALTH COMMUN, V32, P1342, DOI 10.1080/10410236.2016.1220044
Harvey F, 2011, CARTOGR GEOGR INF SC, V38, P269, DOI 10.1559/1523040638269
Herrero R, 2019, INTERNET INTERV, V16, P43, DOI 10.1016/j.invent.2018.03.005
Hoffmann CP, 2014, J MANAGE INFORM SYST, V31, P138, DOI 10.1080/07421222.2014.995538
Hsiao Y, 2018, NEW MEDIA SOC, V20, P3457, DOI 10.1177/1461444817749519
Huang RH, 2014, LECT N EDUC TECHNOL, P3, DOI 10.1007/978-3-642-38291-8_1
Hubbard P, 2013, CALICO J, V30, P163, DOI 10.11139/cj.30.2.163-178
Jones C, 2010, LEARN MEDIA TECHNOL, V35, P365, DOI 10.1080/17439884.2010.531278
Judd T, 2018, AUSTRALAS J EDUC TEC, V34, P99, DOI 10.14742/ajet.3821
Keil FC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067777
Kennedy G, 2010, J COMPUT ASSIST LEAR, V26, P332, DOI 10.1111/j.1365-2729.2010.00371.x
Kennedy G., 2008, ANN C AUSTR SOC COMP, P484
Kennedy G., 2006, Faculty of Education-Papers
Kennedy GE, 2008, AUSTRALAS J EDUC TEC, V24, P108
Kirschner PA, 2017, TEACH TEACH EDUC, V67, P135, DOI 10.1016/j.tate.2017.06.001
Kiryakova G, 2018, TEM J, V7, P556, DOI 10.18421/TEM73-11
Kopalle PK, 2020, J ACAD MARKET SCI, V48, P114, DOI 10.1007/s11747-019-00694-2
Kraus S, 2022, REV MANAG SCI, V16, P2577, DOI 10.1007/s11846-022-00588-8
Kulkarni Anushka., 2017, Journal of Content, Community Communication, V6, P13, DOI DOI 10.2139/SSRN.3501366
Laru J, 2015, IEEE T LEARN TECHNOL, V8, P69, DOI 10.1109/TLT.2014.2360862
Lim WM, 2022, SERV IND J, V42, P481, DOI 10.1080/02642069.2022.2047941
Lim WM, 2024, Glob Bus Organ Excell, V43, P17, DOI [DOI 10.1002/JOE.22229, 10.1002/joe.22229]
Livingstone S., 2019, Children's data and privacy online: Growing up in a digital age. An evidence review
Lopez-Pernas S., 2023, Past, present and future of computing education research
Madhavan K, 2014, CAMBRIDGE HANDBOOK OF ENGINEERING EDUCATION RESEARCH, P633
Mäntymäki M, 2014, INT J INFORM MANAGE, V34, P210, DOI 10.1016/j.ijinfomgt.2013.12.010
Margaryan A, 2011, COMPUT EDUC, V56, P429, DOI 10.1016/j.compedu.2010.09.004
Mayer JH, 2012, BUS INFORM SYST ENG+, V4, P331, DOI 10.1007/s12599-012-0233-5
McGloin R, 2016, COMMUN RES REP, V33, P370, DOI 10.1080/08824096.2016.1224169
MEAD M, 1969, SCIENCE, V164, P135, DOI 10.1126/science.164.3876.135
Mertala P, 2024, LEARN MEDIA TECHNOL, V49, P216, DOI 10.1080/17439884.2022.2141253
Mertala P, 2021, LEARN MEDIA TECHNOL, V46, P230, DOI 10.1080/17439884.2021.1868501
Mertala P, 2020, LEARN MEDIA TECHNOL, V45, P179, DOI 10.1080/17439884.2020.1696362
Miglino O, 2014, J E-LEARN KNOWL SOC, V10, P89
Mills KA, 2010, J ADOLESC ADULT LIT, V54, P35, DOI 10.1598/JAAL.54.1.4
Montagni I, 2018, JMIR MHEALTH UHEALTH, V6, DOI 10.2196/mhealth.9131
Mozelius P, 2015, PROC EUR CONF ELEARN, P417
Mozelius P, 2014, PROC EUR CONF GAME, P415
Musa S.M., 2022, International Journal of Trend in Scientific Research and Development (IJTSRD), V6, P939
Nash C, 2018, LECT NOTES COMPUT SC, V10766, P207, DOI 10.1007/978-3-319-78105-1_25
Naszay M, 2018, INFORM HEALTH SOC CA, V43, P390, DOI 10.1080/17538157.2017.1399131
Nezami S., 2021, International security management: New solutions to complexity, P255
Nikou Shahrokh, 2020, Sustainable Digital Communities. 15th International Conference, iConference 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12051), P343, DOI 10.1007/978-3-030-43687-2_27
Nikou S., 2020, ECIS 2019 PROCEESING
Noronha-sousa Dulce, 2022, Perspectives and Trends in Education and Technology: Selected Papers from ICITED 2021. Smart Innovation, Systems and Technologies (256), P973, DOI 10.1007/978-981-16-5063-5_80
O'Bannon BW, 2014, COMPUT EDUC, V74, P15, DOI 10.1016/j.compedu.2014.01.006
O'Neil C., 2016, WEAPONS MATH DESTRUC
Oblinger Diana G., 2005, Educating the net generation, V272
Ohme J, 2019, INFORM COMMUN SOC, V22, P1903, DOI 10.1080/1369118X.2018.1469657
Ohme J, 2019, J INF TECHNOL POLITI, V16, P119, DOI 10.1080/19331681.2019.1613279
Olsen S, 2012, VOLTA REV, V112, P267, DOI 10.17955/tvr.112.3.m.702
Palmgren-Neuvonen L, 2015, SCAND J EDUC RES, V59, P255, DOI 10.1080/00313831.2014.996599
Parmenter D., 2019, CIO Dive June 24
Porat E, 2018, COMPUT EDUC, V126, P23, DOI 10.1016/j.compedu.2018.06.030
Radin J, 2017, OSIRIS, V32, P43, DOI 10.1086/693853
Reid L, 2023, NURS REP, V13, P573, DOI 10.3390/nursrep13020052
Rich M, 2014, JAMA PEDIATR, V168, P404, DOI 10.1001/jamapediatrics.2014.55
Richard JE, 2013, J MARKET MANAG-UK, V29, P698, DOI 10.1080/0267257X.2013.770051
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Roberts S., 2017, Stm: R package for structural topic models. R Package Version 0.6.
Roberts-Holmes G, 2014, EARLY CHILD DEV CARE, V184, P1, DOI 10.1080/03004430.2013.772991
Robinson M, 2008, LIBR MANAGE, V29, P67, DOI 10.1108/01435120810844658
Rohm A, 2013, J RES INTERACT MARK, V7, P295, DOI 10.1108/JRIM-01-2013-0009
Rosas SR, 2017, QUAL QUANT, V51, P1403, DOI 10.1007/s11135-016-0340-3
Rosen L.D., 2010, REWIRED UNDERSTANDIN
Salajan FD, 2010, COMPUT EDUC, V55, P1393, DOI 10.1016/j.compedu.2010.06.017
Selwyn N, 2015, DISCOURSE AND DIGITAL PRACTICES: DOING DISCOURSE ANALYSIS IN THE DIGITAL AGE, P226
Selwyn N, 2009, ASLIB PROC, V61, P364, DOI 10.1108/00012530910973776
Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5
Sixto-García J, 2020, COMMUN SOC-SPAIN, V33, P187, DOI 10.15581/003.33.3.187-199
Smith E.E., 2012, CANADIAN J LEARNING, V38, P1
Smith V., 2012, Toni morrison: Writing the moral imagination, P1
Stoilova M, 2020, MEDIA COMMUN-LISBON, V8, P197, DOI 10.17645/mac.v8i4.3407
Tandoc EC, 2018, NEW MEDIA SOC, V20, P1679, DOI 10.1177/1461444817702398
Tao Donghua, 2017, JMIR Hum Factors, V4, pe25, DOI 10.2196/humanfactors.6455
Tapscott D, 1999, EDUC LEADERSHIP, V56, P6
Tapscott D., 2008, Grown up digital: How the net generation is changing your world
Teo T, 2013, COMPUT EDUC, V67, P51, DOI 10.1016/j.compedu.2013.02.012
Thomas M, 2011, DECONSTRUCTING DIGITAL NATIVES: YOUNG PEOPLE, TECHNOLOGY, AND THE NEW LITERACIES, P1
Thompson P, 2015, EDUC INF TECHNOL, V20, P467, DOI 10.1007/s10639-013-9295-3
Ting YL, 2015, INTERNET HIGH EDUC, V26, P25, DOI 10.1016/j.iheduc.2015.04.004
Twenge Jean M., 2017, iGen: Why today's super-connected kids are growing up less rebellious, more tolerant, less happy-And completely unprepared for adulthood (and what this means for the rest of us), DOI DOI 10.2307/2930152
van Houwelingen CTM, 2017, J NURS EDUC, V56, P717, DOI 10.3928/01484834-20171120-03
Vázquez-Herrero J, 2019, SOC MEDIA SOC, V5, DOI 10.1177/2056305119888657
Veen W, 2007, CERI NEW MILL LEARN
Vitvitskaya O., 2022, Academic Journal of Interdisciplinary Studies, V11, P38, DOI [DOI 10.36941/AJIS-2022-0066, 10.36941/ajis-2022-0066]
Vodanovich S, 2010, INFORM SYST RES, V21, P711, DOI 10.1287/isre.1100.0324
Waycott J., 2007, Faculty of Education-Papers
Waycott J, 2010, COMPUT EDUC, V54, P1202, DOI 10.1016/j.compedu.2009.11.006
Williamson B, 2021, CRIT STUD EDUC, V62, P50, DOI 10.1080/17508487.2020.1737556
Wilson ML, 2022, J RES TECHNOL EDUC, V54, P249, DOI 10.1080/15391523.2020.1846146
Wyld DC, 2010, MANAG RES REV, V33, P529, DOI 10.1108/01409171011050181
Yang JF, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105593
Zevenbergen R, 2008, AUST J EARLY CHILD, V33, P37, DOI 10.1177/183693910803300107
NR 129
TC 1
Z9 1
U1 12
U2 19
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0747-5632
EI 1873-7692
J9 COMPUT HUM BEHAV
JI Comput. Hum. Behav.
PD MAR
PY 2024
VL 152
AR 108076
DI 10.1016/j.chb.2023.108076
EA DEC 2023
PG 12
WC Psychology, Multidisciplinary; Psychology, Experimental
WE Social Science Citation Index (SSCI)
SC Psychology
GA EE8O4
UT WOS:001137337500001
OA Green Published, hybrid
DA 2024-09-05
ER
PT J
AU Pérez, CP
Perdomo, B
AF Perez, Carlos Perez
Perdomo, Bexi
TI Artificial Intelligence in Communication: A Biblio- metric Review in Web
of Science
SO INVESTIGACION BIBLIOTECOLOGICA
LA English
DT Article
DE Bibliometrics; Artificial Intelligence; Communication; Scientometrics
ID BIG DATA; RISE
AB The accelerated increase of scientific production on Ar - tificial Intelligence requires investigating trends and orienting researchers on new research areas. The study aimed to analyze the scientific production of AI in com - munications. A bibliometric review was performed in the Web of Science database using a five -phase methodology and different bibliometric techniques. We analyzed 994 papers published between 2013 and 2023 and recurred to RS tudio, Bibliometrix, Microsoft Excel and IBM SPSS for the analysis and visualization processes. The United States of America stands out as the country with higher publication rates and it must be said that there is no Latin American representation among the top ten countries with higher publishing production. The thematic analysis shows gaps and emerging topics that contribute to build scientific evidence on AI in communications. In conclu - sion, the article shows an increasing trend in the produc - tion of this topic and that AI from the human perspec - tive seems to be the focus of study in communications. New studies are needed to fill the observed gaps and to strengthen both the driving and basic topics.
C1 [Perez, Carlos Perez] Ctr Invest Innovac Desarrollo & Gest CIIDEG SAC, Lima, Peru.
[Perdomo, Bexi] Univ Ciencias & Artes Amer Latina UCAL, Ctr Invest Creat, Lima, Peru.
RP Pérez, CP (corresponding author), Ctr Invest Innovac Desarrollo & Gest CIIDEG SAC, Lima, Peru.
EM Carlosperez100@gmail.com; bjperdomod@crear.ucal.edu.pe
RI Pérez Pérez, Carlos/JPA-2212-2023
OI Pérez Pérez, Carlos/0000-0001-8425-1875
CR Ahn J, 2022, J BUS RES, V141, P50, DOI 10.1016/j.jbusres.2021.12.007
Alqahtani M. M., 2023, International Journal of Data and Network Science, V7, P695, DOI [https://doi.org/10.5267/j.ijdns.2023.3.002, DOI 10.5267/J.IJDNS.2023.3.002]
Bawack RE, 2022, ELECTRON MARK, V32, P297, DOI 10.1007/s12525-022-00537-z
Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018
Brennen JS, 2022, JOURNALISM, V23, P22, DOI 10.1177/1464884920947535
Bucher T, 2017, INFORM COMMUN SOC, V20, P30, DOI 10.1080/1369118X.2016.1154086
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Cuervo Sanchez Carlos Antonio, 2021, ADResearch Esic. Revista Internacional de Investigacion en Comunicacion, V24, P26
Diakopoulos N., 2019, Automating the News: How Algorithms Are Rewriting the Media
Ding X, 2022, ELECTRON COMMER RES, V22, P787, DOI 10.1007/s10660-020-09410-7
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Elish MC, 2018, COMMUN MONOGR, V85, P57, DOI 10.1080/03637751.2017.1375130
Gonzalez-Esteban Elsa, 2023, Daimon. Revista Internacional de Filosofia, V90, P131, DOI [10.6018/daimon.557391, DOI 10.6018/DAIMON.557391]
Guzman AL, 2020, NEW MEDIA SOC, V22, P70, DOI 10.1177/1461444819858691
Hajkowicz S, 2023, TECHNOL SOC, V74, DOI 10.1016/j.techsoc.2023.102260
Helberger N, 2019, DIGIT JOURNAL, V7, P993, DOI 10.1080/21670811.2019.1623700
Hepp A, 2020, MEDIA CULT SOC, V42, P1410, DOI 10.1177/0163443720916412
Ho A, 2018, J COMMUN, V68, P712, DOI 10.1093/joc/jqy026
Karaboga T, 2020, CONNECTIST, P169, DOI 10.26650/CONNECTIST2020-0083
Kietzmann J, 2018, J ADVERTISING RES, V58, P263, DOI 10.2501/JAR-2018-035
Laor T, 2022, ONLINE INFORM REV, V46, P40, DOI 10.1108/OIR-07-2020-0324
Lawelai H, 2023, TEM J, V12, P798, DOI 10.18421/TEM122-24
Lewis SC, 2019, J MASS COMMUN Q, V96, P673, DOI 10.1177/1077699019859901
Lim S, 2022, Arxiv, DOI [arXiv:2212.07507, 10.48550/ARXIV.2212.07507, DOI 10.48550/ARXIV.2212.07507]
Magrani E, 2019, INTERNET POLICY REV, V8, DOI 10.14763/2019.3.1420
Mari Saenz Victor, 2023, Transinformacao, V35, P1
Mayta-Tovalino F., 2024, Educacin Mdica, V25, P100873, DOI [10.1016/j.edumed.2023.100873, DOI 10.1016/J.EDUMED.2023.100873]
McCornack SA, 2014, J LANG SOC PSYCHOL, V33, P348, DOI 10.1177/0261927X14534656
Montero-Díaz J, 2018, COMUNICAR, V26, P81, DOI 10.3916/C55-2018-08
Oppegaard B, 2013, MOB MEDIA COMMUN, V1, P356, DOI 10.1177/2050157913496421
Ouzzani M, 2016, SYST REV-LONDON, V5, DOI 10.1186/s13643-016-0384-4
Ozcinar M, 2021, ONLINE J COMMUN MEDI, V11, DOI 10.30935/ojcmt/11084
Perdomo Bexi, 2023, Contratexto, P171, DOI 10.26439/contratexto2023.n40.6181
Perdomo B, 2022, INVESTIG BIBLIOTECOL, V36, P135, DOI 10.22201/iibi.24488321xe.2022.93.58650
Peter J, 2018, MEDIA COMMUN-LISBON, V6, P73, DOI 10.17645/mac.v6i3.1596
Prahani BK, 2023, TEM J, V12, P918, DOI 10.18421/TEM122-38
Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012
Prieto-Gutierrez Juan-Jose, 2023, Human Technology, V19, P149, DOI [10.14254/1795-6889.2023.19-2.1, DOI 10.14254/1795-6889.2023.19-2.1]
Rangel C, 2022, REV MEDITERR COMUN, V13, P17, DOI 10.14198/MEDCOM.20749
Ricaurte P, 2022, MEDIA CULT SOC, V44, P726, DOI 10.1177/01634437221099612
Sanchez-Holgado P, 2021, DOXA COMUN, P235, DOI 10.31921/doxacom.n33a1126
Santandreu-Calonge D, 2023, PROF INFORM, V32, DOI 10.3145/epi.2023.mar.19
Saurwein F, 2023, NEW MEDIA SOC, DOI 10.1177/14614448231203310
Smith N, 2019, INFORM COMMUN SOC, V22, P1310, DOI 10.1080/1369118X.2017.1418406
Soto-Sanfiel MT, 2022, JOURNALISM STUD, V23, P1197, DOI 10.1080/1461670X.2022.2075786
Sundar SS, 2020, J COMPUT-MEDIAT COMM, V25, P74, DOI 10.1093/jcmc/zmz026
Vaccari C, 2020, SOC MEDIA SOC, V6, DOI 10.1177/2056305120903408
Wang Y, 2021, PUBLIC RELAT REV, V47, DOI 10.1016/j.pubrev.2021.102081
Zupic Ivan, 2013, ACAD MANAGEMENT ANN, V2013, DOI [10.5465/ambpp.2013.13426abstract, DOI 10.5465/AMBPP.2013.13426ABSTRACT]
NR 49
TC 0
Z9 0
U1 5
U2 5
PU UNIV NACIONAL AUTONOMA MEXICO
PI MEXICO CITY
PA CIUDAD UNIV, CENTRO UNIV BIBLIOTECOLOGICAS, TORRE II HUMANIDADES, PISO
11, 12 & 13, MEXICO CITY, CP 04510, MEXICO
SN 0187-358X
EI 2448-8321
J9 INVESTIG BIBLIOTECOL
JI Investig. Bibliotecol.
PD APR-JUN
PY 2024
VL 38
IS 99
BP 165
EP 185
DI 10.22201/iibi.24488321xe.2024.99.58882
PG 21
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA PZ1U9
UT WOS:001217817300001
OA gold
DA 2024-09-05
ER
PT J
AU Khalid, N
AF Khalid, Nadeem
TI Artificial intelligence learning and entrepreneurial performance among
university students: evidence from malaysian higher educational
institutions
SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS
LA English
DT Article
DE Artificial intelligence learning; higher educational institutions;
strategic entrepreneurship; government funding; entrepreneurial
orientation; performance; entrepreneurial attitude
ID STRATEGIC ENTREPRENEURSHIP; FIRM PERFORMANCE; EXPLOITATION; ORIENTATION;
EXPLORATION; AMBIDEXTERITY; OPPORTUNITIES; INFORMATION; TECHNOLOGY;
NETWORKS
AB Artificial intelligence learning at higher educational institutions is one of the emerging concepts having vital importance to promote entrepreneurship activities among the university students. However, Malaysian Universities are lacking with the artificial intelligence learning activities. The objective of the study is to examine the role of artificial intelligence learning to promote entrepreneurship performance with the help of entrepreneurial orientation and strategic entrepreneurship. Moreover, the moderating role of government funding and attitude towards entrepreneurship is also examined. To achieve the objective of this study, a survey was carried out among the Malaysian universities. 500 questionnaires were distributed among the universities and data were collected from the teaching staff. After collection of data, it was analysed with the help of Partial Least Square (PLS)-Structural Equation Modeling (SEM). It is concluded that artificial intelligence learning is most significant to promote entrepreneurial performance among university students. Entrepreneurial orientation and strategic entrepreneurship play a key role to transfer the positive effect of artificial intelligence learning on entrepreneurial performance. Additionally, government funding and attitude towards entrepreneurship also has significant role.
C1 [Khalid, Nadeem] KIMEP Univ, Alma Ata, Kazakhstan.
C3 KIMEP University
RP Khalid, N (corresponding author), KIMEP Univ, Alma Ata, Kazakhstan.
EM nadeem.k@kimep.kz
OI Khalid, Nadeem/0009-0004-2300-6760
CR Adedoyin O., 2017, GLOB J SOC SCI STUD, V3, P13
Adelakun OJ, 2019, J AGRIC EXT, V23, P13, DOI 10.4314/jae.v23i1.2
Adewale A.A., 2016, American Journal of Social Sciences and Humanities, V1, P10
AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T
Alhawiti M., 2017, Journal of education and e-Learning research, V4, P15
Anderson R.B., 2003, ABORIGINAL ENTREPREN, P141
Anyi E. M. E., 2017, INT J EDUC TECH LEAR, V1, P11
Arzubiaga U, 2018, INT ENTREP MANAG J, V14, P217, DOI 10.1007/s11365-017-0473-4
Autio E., 2001, Enterprise Innovation Management Studies, V2, P145, DOI DOI 10.1080/14632440110094632
Caruana A, 2002, SERV IND J, V22, P43, DOI 10.1080/714005076
Centobelli P., 2019, MANAGEMENT DECISION
Chin WW, 1998, QUANT METH SER, P295
Cockerill M., 2018, International Journal of Education and Practice, V6, P14, DOI [10.18488/journal.61.2018.61.14.27, DOI 10.18488/JOURNAL.61.2018.61.14.27]
Comfrey A., 1992, A first course in factor analysis
Dayan M, 2016, J BUS IND MARK, V31, P668, DOI 10.1108/JBIM-02-2015-0023
Ebert T., 2018, BIG DATA ARTIFICIAL
Eghbal M.M., 2018, J ENTREPRENEURSHIP D, V11, P1
Fei R, 2019, DESTECH TRANS SOC
FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312
Garg V, 2016, RSC ADV, V6, P26216, DOI 10.1039/c5ra25575a
Ghazali Z., 2012, ASIAN SOCIAL SCI, V9, P1
Griffis StanelyE., 2003, J BUS LOGIST, V24, P237, DOI 10.1002/j.2158-1592.2003.tb00053.x
Gualandris J, 2018, INT J OPER PROD MAN, V38, P667, DOI 10.1108/IJOPM-03-2017-0162
Gupta P.K., 2019, USE MODERN TECHNOLOG, P173
Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130
Hasnah H. Noor, 2014, FACTORS INFLUENCING
Hitt MA, 2001, STRATEGIC MANAGE J, V22, P479, DOI 10.1002/smj.196
Ito T., 2016, J INNOVATION ENTREPR, V5, P1, DOI [10.1186/s13731-016-0037-9, DOI 10.1186/S13731-016-0037-9]
Jahanshahi Asghar Afshar, 2011, Journal of Technology Management & Innovation, V6, P66
Jakob E.A., J VOCATIONAL BEHAV, V112, P431
Jansen S, 2015, INT J MANAG EDUC, V13, P170, DOI 10.1016/j.ijme.2015.03.001
Jayakumar R., 2016, AMER J EDUC LEARN, V1, P45
Jufri M., 2018, J ENTREPRENEURSHIP E
Kallmuenzer A, 2018, REV MANAG SCI, V12, P855, DOI 10.1007/s11846-017-0231-6
Karlsen A., 2019, ENTREPRENEURIAL DISC
Kgagara M.R., 2011, An assessment of the attitude towards entrepreneurship among higher education students in Sedibeng district
Khaksar SMS, 2011, AFR J BUS MANAGE, V5, P5152
Kropp F, 2006, INT MARKET REV, V23, P504, DOI 10.1108/02651330610703427
Laureiro-Martínez D, 2015, STRATEGIC MANAGE J, V36, P319, DOI 10.1002/smj.2221
Lugo J.E., 2017, ASME 2017 INT DES EN
March JG, 1991, ORGAN SCI, V2, P71, DOI 10.1287/orsc.2.1.71
Maritz A., 2016, INT J ORG INNOVATION, V8
Martin SL, 2016, J BUS RES, V69, P2040, DOI 10.1016/j.jbusres.2015.10.149
Mustafa MJ, 2016, J ENTREP EMERG ECON, V8, P162, DOI 10.1108/JEEE-10-2015-0058
Muthuselvi L., 2017, INT J EMERGING TREND, V1, P68
Negash E., 2012, INVESTIGATION HIGHER
Nye BD, 2015, INT J ARTIF INTELL E, V25, P177, DOI 10.1007/s40593-014-0028-6
Parida V, 2016, INT ENTREP MANAG J, V12, P1147, DOI 10.1007/s11365-016-0387-6
Pathak S, 2016, J TECHNOL TRANSFER, V41, P506, DOI 10.1007/s10961-015-9423-x
Paul M., 2014, INT J PUBLIC POLICY, V1, P26
Petridou E, 2009, GEND MANAG, V24, P286, DOI 10.1108/17542410910961569
PIHIE ZAL, 2011, INT J BUSINESS SOCIA, V29, DOI DOI 10.1016/J.SBSPRO.2011.11.340
Redford D.T. Trigo., 2007, The Silicon Valley Review of Global Entrepreneurship Research, V3, P19
Schindehutte M, 2009, ENTREP THEORY PRACT, V33, P241, DOI 10.1111/j.1540-6520.2008.00288.x
Sharma R., 2004, Journal of Higher Education Policy and Management, V26, P109
Shields Justin, 2018, J MARSHALL L REV, V51, P279
Shirokova G, 2013, CRIT PERSPECT INT BU, V9, P173, DOI 10.1108/17422041311299941
Shukri BakarM., 2014, ADV MANAGEMENT APPL, V4, P109
Soni N., 2019, Journal of Business Research, P1
Sumo R, 2016, INT J OPER PROD MAN, V36, P1482, DOI 10.1108/IJOPM-05-2015-0305
Tabaro C., 2018, INT J ED PRACTICE, V6, DOI DOI 10.18488/JOURNAL.61.2018.62.64.75
van Doom S, 2017, LONG RANGE PLANN, V50, P134, DOI 10.1016/j.lrp.2016.06.003
Vasilchenko E, 2011, J INT MARKETING, V19, P88, DOI 10.1509/jim.10.0134
Venkataramani S., 2017, 2017 26 INT C PAR AR
Yanga J.Y., 2016, ASIAN J ED TRAINING, V2, P53
Zhang L, 2017, CURR OPIN GREEN SUST, V3, P17, DOI 10.1016/j.cogsc.2016.11.003
NR 66
TC 16
Z9 16
U1 14
U2 64
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 1064-1246
EI 1875-8967
J9 J INTELL FUZZY SYST
JI J. Intell. Fuzzy Syst.
PY 2020
VL 39
IS 4
BP 5417
EP 5435
DI 10.3233/JIFS-189026
PG 19
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA OH1HF
UT WOS:000582322000059
DA 2024-09-05
ER
PT J
AU Rokach, L
AF Rokach, Lior
TI Applying the Publication Power Approach to Artificial Intelligence
Journals
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE bibliographic records
ID AUTHOR-AFFILIATION-INDEX; IMPACT FACTOR; SCIENTIFIC JOURNALS; H-INDEX;
QUALITY; MANAGEMENT; BUSINESS; SYSTEMS; RANKINGS
AB This study evaluates the utility of a publication power approach (PPA) for assessing the quality of journals in the field of artificial intelligence. PPA is compared with the Thomson-Reuters Institute for Scientific Information (TR) 5-year and 2-year impact factors and with expert opinion. The ranking produced by the method under study is only partially correlated with citation-based measures (TR), but exhibits close agreement with expert survey rankings. A simple average of TR and power rankings results in a new ranking that is highly correlated with the expert survey rankings. This evidence suggests that power ranking can contribute to evaluating artificial intelligence journals.
C1 Ben Gurion Univ Negev, Dept Informat Syst Engn, IL-84105 Beer Sheva, Israel.
C3 Ben Gurion University
RP Rokach, L (corresponding author), Ben Gurion Univ Negev, Dept Informat Syst Engn, POB 653, IL-84105 Beer Sheva, Israel.
EM liorrk@bgu.ac.il
RI Rokach, Lior/F-8247-2010
CR Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181
Agrawal VK, 2011, PROD OPER MANAG, V20, P280, DOI 10.1111/J.1937-5956.2010.01212.X
[Anonymous], 2007, COLL RES LIBR NEWS, DOI DOI 10.5860/CRLN.68.5.7804
Antelman K, 2004, COLL RES LIBR, V65, P372, DOI 10.5860/crl.65.5.372
Burke R, 2002, USER MODEL USER-ADAP, V12, P331, DOI 10.1023/A:1021240730564
Calver MC, 2009, SCIENTOMETRICS, V81, P611, DOI 10.1007/s11192-008-2229-y
Cheng CH, 1996, AI MAG, V17, P87
Cook WD, 2010, ACCOUNT PERSPECT, V9, P217, DOI 10.1111/j.1911-3838.2010.00011.x
Cronin B, 2008, J AM SOC INF SCI TEC, V59, P1861, DOI 10.1002/asi.20895
Elkins MR, 2010, SCIENTOMETRICS, V85, P81, DOI 10.1007/s11192-010-0262-0
Gallivan MJ, 2007, EUR J INFORM SYST, V16, P36, DOI 10.1057/palgrave.ejis.3000667
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Gorman MF., 2005, MANUFACTURING SERVIC, V7, P3, DOI [DOI 10.1287/MS0M.1040.0062, 10.1287/msom.1040.0062]
Harless D., 1998, REVISION J LIS UNPUB
Harnad S., 2008, ETHICS SCI ENV POLIT, V8
Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953
Hodge DR, 2011, RES SOCIAL WORK PRAC, V21, P222, DOI 10.1177/1049731510369141
Holsapple CW, 2008, J AM SOC INF SCI TEC, V59, P166, DOI 10.1002/asi.20679
Holsapple CW, 2010, OMEGA-INT J MANAGE S, V38, P167, DOI 10.1016/j.omega.2009.08.002
Holsapple CW, 2009, J AM SOC INF SCI TEC, V60, P318, DOI 10.1002/asi.20986
Lowry PB, 2007, IEEE T PROF COMMUN, V50, P352, DOI 10.1109/TPC.2007.908733
MCALLISTER PR, 1980, J AM SOC INFORM SCI, V31, P147, DOI 10.1002/asi.4630310304
Olson JE, 2005, INTERFACES, V35, P323, DOI 10.1287/inte.1050.0149
Rokach L, 2011, J AM SOC INF SCI TEC, V62, P2456, DOI 10.1002/asi.21638
Rokach L, 2009, COMPUT STAT DATA AN, V53, P1015, DOI 10.1016/j.csda.2008.12.001
Rousseau R, 1999, SCIENTOMETRICS, V44, P521, DOI 10.1007/BF02458493
Saha S, 2003, J MED LIBR ASSOC, V91, P42
Schloegl C, 2004, J AM SOC INF SCI TEC, V55, P1155, DOI 10.1002/asi.20070
Seglen P. O., 2006, WHY IMPACT FACTOR J
Seglen PO, 1997, BRIT MED J, V314, P498
Serenko A., 2011, INVESTIGATING INFORM, DOI [10.1002/cjas.214, DOI 10.1002/CJAS.214]
Serenko A, 2011, J INFORMETR, V5, P629, DOI 10.1016/j.joi.2011.06.002
Serenko A, 2011, J INFORMETR, V5, P219, DOI 10.1016/j.joi.2010.07.005
Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001
Serenko A, 2009, J KNOWL MANAG, V13, P4, DOI 10.1108/13673270910931125
Sevinc A, 2004, SWISS MED WKLY, V134, P410
Tahai A, 1999, STRATEGIC MANAGE J, V20, P279
Truex D, 2009, J ASSOC INF SYST, V10, P560
NR 38
TC 6
Z9 7
U1 0
U2 16
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1532-2882
J9 J AM SOC INF SCI TEC
JI J. Am. Soc. Inf. Sci. Technol.
PD JUN
PY 2012
VL 63
IS 6
BP 1270
EP 1277
DI 10.1002/asi.22616
PG 8
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 943OO
UT WOS:000304133900014
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Chakraborti, N
AF Chakraborti, Nirupam
TI Critical Assessment 3: The unique contributions of multi-objective
evolutionary and genetic algorithms in materials research
SO MATERIALS SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Genetic algorithms; Multi-objective optimisation; Materials design and
processing; Reviews; Critical assessments
ID ZN-COATED FE; NEURAL-NETWORK; MATERIALS SCIENCE; OPTIMAL-DESIGN;
OPTIMIZATION; MODEL; PART; SIMULATION
AB The current state of the art of materials research using multi-objective genetic and evolutionary algorithms is briefly presented with critical analyses. The basic concepts of multi-objective optimisation and Pareto optimality are explained in simple terms and the advantages of an evolutionary approach are emphasised. Current materials related research in this area is summarised, focusing on the achievements to date and the specific needs for further improvement.
C1 Indian Inst Technol, Kharagpur 721302, W Bengal, India.
C3 Indian Institute of Technology System (IIT System); Indian Institute of
Technology (IIT) - Kharagpur
RP Chakraborti, N (corresponding author), Indian Inst Technol, Kharagpur 721302, W Bengal, India.
EM nchakrab@iitkgp.ac.in
RI Chakraborti, Nirupam/C-7082-2011; Chakraborti, Nirupam/HDN-8793-2022
CR Agarwal A, 2010, IRONMAK STEELMAK, V37, P353, DOI 10.1179/030192310X12683075004672
[Anonymous], 2007, EVOLUTIONARY ALGORIT
[Anonymous], 2001, Multi-objective optimization using evolutionary algorithms
Bag S, 2009, MATER MANUF PROCESS, V24, P384, DOI 10.1080/10426910802679915
Bansal A, 2013, MATER MANUF PROCESS, V28, P733, DOI 10.1080/10426914.2013.763961
Bhattacharya B, 2009, COMP MATER SCI, V46, P821, DOI 10.1016/j.commatsci.2009.04.023
Bigi G, 2004, APPL MATH LETT, V17, P1285, DOI 10.1016/j.aml.2003.10.011
Chakraborti N, 2004, INT MATER REV, V49, P246, DOI 10.1179/095066004225021909
Chakraborti N, 2014, SURF ENG, V30, P79, DOI 10.1179/1743294413Y.0000000219
Chakraborti N., 2013, INFORM MAT SCI ENG, P71
CHAKRABORTI N, 2006, HDB RES NATURE INSPI
Coello CAC, 2009, MATER MANUF PROCESS, V24, P119, DOI 10.1080/10426910802609110
Datta S, 2013, INT MATER REV, V58, P475, DOI 10.1179/1743280413Y.0000000021
Datta S, 2013, MATER MANUF PROCESS, V28, P741, DOI 10.1080/10426914.2013.773020
Dulikravich GS, 2008, MODEL SIMUL MATER SC, V16, DOI 10.1088/0965-0393/16/7/075010
Farina M, 2002, 2002 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY PROCEEDINGS, P233, DOI 10.1109/NAFIPS.2002.1018061
Ganguly S, 2013, MATER MANUF PROCESS, V28, P726, DOI 10.1080/10426914.2012.736660
Ghosh A., 2012, J ASTM Int(Mater Perform Charact), V1
Giri BK, 2013, MATER MANUF PROCESS, V28, P776, DOI 10.1080/10426914.2013.763953
Giri BK, 2013, APPL SOFT COMPUT, V13, P2613, DOI 10.1016/j.asoc.2012.11.025
Gujarathi AM, 2013, MATER MANUF PROCESS, V28, P803, DOI 10.1080/10426914.2012.746706
Hariharan K, 2014, STEEL RES INT, V85, P1597, DOI 10.1002/srin.201300471
Hariharan K, 2014, METALL MATER TRANS A, V45A, P2704, DOI 10.1007/s11661-014-2274-5
HILL R, 1948, PROC R SOC LON SER-A, V193, P281, DOI 10.1098/rspa.1948.0045
Jha R, 2014, STEEL RES INT, V85, P219, DOI 10.1002/srin.201300074
Kant A, 2013, NEURAL COMPUT APPL, V23, pS231, DOI 10.1007/s00521-013-1344-8
Kotas P, 2012, MATER SCI TECH-LOND, V28, P911, DOI 10.1179/1743284712Y.0000000026
Kovacic M, 2013, MATER MANUF PROCESS, V28, P783, DOI 10.1080/10426914.2012.718475
Kumar A, 2012, STEEL RES INT, V83, P169, DOI 10.1002/srin.201100189
Li YM, 2013, MATER MANUF PROCESS, V28, P761, DOI 10.1080/10426914.2013.792433
Lotov AV, 2005, APPL MATH MODEL, V29, P653, DOI 10.1016/j.apm.2004.10.009
Miettinen K, 2012, NONLINEAR MULTIOBJEC, V12
Mitra K, 2008, INT MATER REV, V53, P275, DOI 10.1179/174328008X348174
Mitra K, 2013, MATER MANUF PROCESS, V28, P768, DOI 10.1080/10426914.2012.736668
Mitra K, 2010, CHEM ENG J, V162, P322, DOI 10.1016/j.cej.2010.05.004
Mondal DN, 2011, HYDROMETALLURGY, V107, P112, DOI 10.1016/j.hydromet.2011.02.008
Nandan R, 2008, PROG MATER SCI, V53, P980, DOI 10.1016/j.pmatsci.2008.05.001
Nandan R, 2005, MATER MANUF PROCESS, V20, P459, DOI 10.1081/AMP-200053462
Nandi AK, 2013, MATER MANUF PROCESS, V28, P753, DOI 10.1080/10426914.2013.773022
Nandi AK, 2012, APPL SOFT COMPUT, V12, P28, DOI 10.1016/j.asoc.2011.08.059
Nishimoto K, 2003, SCI TECHNOL WELD JOI, V8, P29, DOI 10.1179/136217103225008946
Palani PK, 2006, MATER SCI TECH-LOND, V22, P1193, DOI 10.1179/174328406X118294
Paszkowicz W, 2013, MATER MANUF PROCESS, V28, P708, DOI 10.1080/10426914.2012.746707
Pettersson F, 2007, APPL SOFT COMPUT, V7, P387, DOI 10.1016/j.asoc.2005.09.001
Rajak P, 2012, COMP MATER SCI, V62, P266, DOI 10.1016/j.commatsci.2012.05.002
Rajak P, 2011, COMP MATER SCI, V50, P2502, DOI 10.1016/j.commatsci.2011.03.034
Saxén H, 2006, COMPUT CHEM ENG, V30, P1038, DOI 10.1016/j.compchemeng.2006.01.007
Sharma TK, 2013, MATER MANUF PROCESS, V28, P788, DOI 10.1080/10426914.2012.736650
Sinha A, 2013, MATER DESIGN, V46, P227, DOI 10.1016/j.matdes.2012.10.023
Sun XM, 2013, MATER MANUF PROCESS, V28, P823, DOI 10.1080/10426914.2012.736657
Tancret F, 2013, MODEL SIMUL MATER SC, V21, DOI 10.1088/0965-0393/21/4/045013
Tancret F, 2012, MODEL SIMUL MATER SC, V20, DOI 10.1088/0965-0393/20/4/045012
Tutum CC, 2011, SCI TECHNOL WELD JOI, V16, P318, DOI 10.1179/1362171811Y.0000000011
Tutum CC, 2013, MATER MANUF PROCESS, V28, P816, DOI 10.1080/10426914.2012.736654
Ulutan D, 2013, MATER MANUF PROCESS, V28, P835, DOI 10.1080/10426914.2012.718474
Zhang Q, 2012, SCI TECHNOL WELD JOI, V17, P681, DOI 10.1179/1362171812Y.0000000062
NR 56
TC 33
Z9 34
U1 0
U2 22
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 0267-0836
EI 1743-2847
J9 MATER SCI TECH-LOND
JI Mater. Sci. Technol.
PD SEP
PY 2014
VL 30
IS 11
BP 1259
EP 1262
DI 10.1179/1743284714Y.0000000578
PG 4
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Materials Science; Metallurgy & Metallurgical Engineering
GA AQ9WU
UT WOS:000343209500001
DA 2024-09-05
ER
PT J
AU SPROW, FB
AF SPROW, FB
TI EVALUATION OF RESEARCH EXPENDITURES USING TRIANGULAR DISTRIBUTION
FUNCTIONS AND MONTE CARLO METHODS
SO INDUSTRIAL AND ENGINEERING CHEMISTRY
LA English
DT Article
CR BIERMAN H, 1966, CAPITAL BUDGETING DE
GRUBBS FE, 1962, OPER RES, V10, P912, DOI 10.1287/opre.10.6.912
Hertz D.A., 1964, HARVARD BUSINESS JAN, P95
HESS SW, 1963, CHEMICAL ENGINEER 42
MACCRIMMON KR, 1964, OPER RES, V12, P16, DOI 10.1287/opre.12.1.16
VANSLYKE RM, 1963, OPER RES, V11, P839, DOI 10.1287/opre.11.5.839
1959, C208011 INT BUS MACH
1955, MILLION RANDOM DIGIT
NR 8
TC 16
Z9 17
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0019-7866
J9 IND ENG CHEM
PY 1967
VL 59
IS 7
BP 35
EP &
DI 10.1021/ie50691a009
PG 0
WC Chemistry, Applied
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Chemistry
GA 94973
UT WOS:A19679497300007
DA 2024-09-05
ER
PT J
AU Stepanov, VK
Madzhumder, MS
Begunova, DD
AF Stepanov, V. K.
Madzhumder, M. Sh.
Begunova, D. D.
TI Exploring the Potential of Applying the Artificial Intelligence Language
Model ChatGPT-3.5 in Library and Bibliographic Activities
SO SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING
LA English
DT Article
DE library processes; artificial intelligence; benchmarking; enhancement of
library work efficiency; ChatGPT-3.5
AB An experiment on the use of the artificial intelligence model ChatGPT-3.5 to perform typical tasks in the field of library and bibliographic activities as well as similar tasks of virtual reference services in several federal libraries in the Russian Federation is described. The strong and weak aspects of the language model were identified. The results of the experiment demonstrate that ChatGPT even in its current version 3.5 is well suited to perform a number of information processes with the necessary supervision and control by a qualified library specialist.
C1 [Stepanov, V. K.] Russian Acad Sci INION RAN, Inst Sci Informat Social Sci, Moscow, Russia.
[Stepanov, V. K.; Madzhumder, M. Sh.; Begunova, D. D.] Moscow State Linguist Univ, Informat & Analyt Act Dept, Moscow, Russia.
C3 Russian Academy of Sciences; Institute of Scientific Information on
Social Sciences of the Russian Academy of Sciences; Moscow State
Linguistic University
RP Stepanov, VK (corresponding author), Russian Acad Sci INION RAN, Inst Sci Informat Social Sci, Moscow, Russia.; Stepanov, VK (corresponding author), Moscow State Linguist Univ, Informat & Analyt Act Dept, Moscow, Russia.
EM stepanov@vadimstepanov.ru; mmadzhumder@gmail.com; dbegunova01@gmail.com
RI Stepanov, Vadim K./HNR-6340-2023
OI Stepanov, Vadim K./0000-0002-3439-9537
CR Achiam OJ, 2023, Arxiv, DOI [arXiv:2303.08774, DOI 10.48550/ARXIV.2303.08774]
[Anonymous], AI in focus: Artificial intelligence and libraries
[Anonymous], And there are clouds in the sky
Introducing ChatGPT, OpenAI
Mizintseva M.F., 2020, The COVID-19 Pandemic. Biology and Economy
NR 5
TC 1
Z9 1
U1 35
U2 72
PU PLEIADES PUBLISHING INC
PI NEW YORK
PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES
SN 0147-6882
EI 1934-8118
J9 SCI TECH INF PROCESS
JI Sci. Tech. Inf. Process.
PD SEP
PY 2023
VL 50
IS 3
BP 166
EP 175
DI 10.3103/S0147688223030036
PG 10
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA W7HT8
UT WOS:001093305800002
DA 2024-09-05
ER
PT J
AU Prabowo, H
Ikhsan, RB
Yuniarty, Y
AF Prabowo, Hartiwi
Ikhsan, Ridho Bramulya
Yuniarty, Yuniarty
TI Student performance in online learning higher education: A preliminary
research
SO FRONTIERS IN EDUCATION
LA English
DT Article
DE overall quality; course quality; e-learning technology; online learning;
student engagement; student and institutional factors; instructor
characteristics; student performance
ID HIGH-SCHOOL-STUDENTS; CONTINUANCE INTENTION; INSTRUCTIONAL-DESIGN;
ACCEPTANCE; PERCEPTIONS; ENGAGEMENT; EXTENSION; MODEL; TTF
AB The impact of student performance is the focus of online learning because it can determine the success of students and higher education institutions to get good ratings and public trust. This study explores comprehensively the factors that can affect the impact of student performance in online learning. An empirical model of the impact of student performance has been developed from the literature review and previous research. The test of reliability and validity of the empirical model was evaluated through linguist reviews and statistically tested with construct reliability coefficients and confirmatory factor analysis (CFA). Overall, the results of this study prove that the structural model with second-order measurements produces a good fit, while the structural model with first-order measurements shows a poor fit.
C1 [Prabowo, Hartiwi; Ikhsan, Ridho Bramulya; Yuniarty, Yuniarty] Bina Nusantara Univ, Dept Management, Binus Online Learning, Jakarta, Indonesia.
C3 Universitas Bina Nusantara
RP Ikhsan, RB (corresponding author), Bina Nusantara Univ, Dept Management, Binus Online Learning, Jakarta, Indonesia.
EM ridho.bramulya.i@binus.ac.id
RI Ikhsan, Ridho Bramulya/AAA-3716-2019
OI Ikhsan, Ridho Bramulya/0000-0002-1499-3264
FU [3481/LL3/KR/2021]
FX Funding This work was supported by "Model Evaluasi Pembelajaran Daring
Dalam Menilai Kualitas Sistem Pendidikan Tinggi Di Indonesia" (contract
number: 3481/LL3/KR/2021 and contract date: 12 July 2021).
CR Al-Adwan AS, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13169453
Aldholay A, 2018, INT J INF LEARN TECH, V35, P285, DOI 10.1108/IJILT-11-2017-0116
Almaiah Mohammed Amin, 2019, Education and Information Technologies, V24, P885, DOI 10.1007/s10639-018-9810-7
Ameri A, 2020, EDUC INF TECHNOL, V25, P419, DOI 10.1007/s10639-019-09965-5
Archambault L, 2022, EDUC PSYCHOL-US, V57, P178, DOI 10.1080/00461520.2022.2051513
Arghode V, 2018, EUR J TRAIN DEV, V42, P366, DOI 10.1108/EJTD-12-2017-0110
Bailey DR, 2022, EDUC INF TECHNOL, V27, P7679, DOI 10.1007/s10639-022-10949-1
Bandura A., 2010, Corsini encyclopedia of psychology, V4th, P1, DOI DOI 10.1002/9780470479216.CORPSY0836/ABSTRACT
Barczyk CC, 2017, AM J DISTANCE EDUC, V31, P173, DOI 10.1080/08923647.2017.1316151
Bashir A, 2021, FRONT EDUC, V6, DOI 10.3389/feduc.2021.711619
Basir M, 2021, INT J EDUC MANAG, V35, P1277, DOI 10.1108/IJEM-12-2020-0563
Bokolo A, 2020, J RES TECHNOL EDUC, V52, P37, DOI 10.1080/15391523.2019.1675203
Bower M, 2019, BRIT J EDUC TECHNOL, V50, P1035, DOI 10.1111/bjet.12771
Büchele S, 2021, ASSESS EVAL HIGH EDU, V46, P132, DOI 10.1080/02602938.2020.1754330
Caruana A, 2016, J MARKET EDUC, V38, P107, DOI 10.1177/0273475316652442
Chakraborty P, 2021, HUM BEHAV EMERG TECH, V3, P357, DOI 10.1002/hbe2.240
Daouk Z, 2016, J APPL RES HIGH EDUC, V8, P360, DOI 10.1108/JARHE-05-2015-0037
Debattista M, 2018, INT J INF LEARN TECH, V35, P93, DOI 10.1108/IJILT-09-2017-0092
DeLone W. H., 2016, FDN TRENDS INFORM SY, V1, P1, DOI [10.1561/2900000005, DOI 10.1561/2900000005]
Duchatelet D, 2019, HIGH EDUC RES DEV, V38, P733, DOI 10.1080/07294360.2019.1581143
Fauzi MA, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09433
Gatignon H., 2010, Confirmatory Factor Analysis in Statistical analysis of management data, DOI [10.1007/978-1-4419-1270-1_4, DOI 10.1007/978-1-4419-1270-1_4, 10.1007/978-1-4419-1270-14]
George D., 2020, IBM SPSS STAT 26 STE, DOI DOI 10.4324/9780429056765
Glassman M, 2021, COMPUT EDUC OPEN, V2, DOI 10.1016/j.caeo.2021.100031
Gonzalez T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239490
Gopal R, 2021, EDUC INF TECHNOL, V26, P6923, DOI 10.1007/s10639-021-10523-1
Hadullo K, 2018, INT REV RES OPEN DIS, V19, P138
Hair J.F., 2009, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Vseventh
Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203
Halonen Raija, 2010, International Journal of Information Systems and Social Change, V1, P36, DOI 10.4018/jissc.2010040103
Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8
Ho LA, 2010, INTERNET RES, V20, P55, DOI 10.1108/10662241011020833
Hodges C. B., 2020, DIFFERENCE EMERGENCY
Hu M, 2016, FIFTH INTERNATIONAL CONFERENCE ON EDUCATIONAL INNOVATION THROUGH TECHNOLOGY (EITT 2016), P122, DOI 10.1109/EITT.2016.31
Hulland J, 2018, J ACAD MARKET SCI, V46, P92, DOI 10.1007/s11747-017-0532-y
Ikhsan RB, 2019, PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON NEW MEDIA STUDIES (CONMEDIA 2019), P68, DOI [10.1109/conmedia46929.2019.8981813, 10.1109/CONMEDIA46929.2019.8981813]
Isaac O., 2017, SCI INT, V29, P737
Isaac O., 2017, RES J APPL SCI, V12, P205
Isaac O., 2017, Asian Journal of Information Technology, V16, P100
Isaac O, 2017, INT J INF LEARN TECH, V34, P210, DOI 10.1108/IJILT-11-2016-0051
Jaggars SS, 2016, COMPUT EDUC, V95, P270, DOI 10.1016/j.compedu.2016.01.014
Jimenez-Bucarey C, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132111960
Kemp A, 2019, BRIT J EDUC TECHNOL, V50, P2394, DOI 10.1111/bjet.12833
Kim C, 2015, EDUC TECHNOL SOC, V18, P261
Kim D, 2021, COMPUT EDUC, V166, DOI 10.1016/j.compedu.2021.104171
Kim S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13126734
Kissi PS, 2018, ETR&D-EDUC TECH RES, V66, P1547, DOI 10.1007/s11423-018-9623-9
Kline R.B., 2015, Principles and practice of structural equation modeling
Lee E, 2015, TECHTRENDS, V59, P54, DOI 10.1007/s11528-015-0871-9
Legon R., 2017, The changing landscape of online education (CHLOE): Quality Matters Eduventures survey of chief online officers
Maheshwari G, 2021, EDUC TRAIN, V63, P1138, DOI 10.1108/ET-02-2021-0074
McAvoy P, 2022, STUD HIGH EDUC, V47, P1761, DOI 10.1080/03075079.2021.1960302
Mensink PJ, 2020, BRIT J EDUC TECHNOL, V51, P10, DOI 10.1111/bjet.12752
METROPOLIS N, 1949, J AM STAT ASSOC, V44, P335, DOI 10.2307/2280232
Muir T, 2019, DISTANCE EDUC, V40, P262, DOI 10.1080/01587919.2019.1600367
Narad A, 2016, RUPKATHA J INTERDISC, V8, P12, DOI 10.21659/rupkatha.v8n2.02
Patricia Aguilera-Hermida A, 2020, Int J Educ Res Open, V1, P100011, DOI 10.1016/j.ijedro.2020.100011
Paul R., 2019, Services Marketing Quarterly, V40, P245, DOI [DOI 10.1080/15332969.2019.1630177, 10.1080/15332969.2019]
Preaux J, 2023, TELEMED E-HEALTH, V29, P156, DOI 10.1089/tmj.2022.0089
Rahman MHA, 2021, J COMPUT ASSIST LEAR, V37, P1513, DOI 10.1111/jcal.12535
Ralston-Berg P., 2014, Internet Learning, DOI DOI 10.18278/IL.3.1.9
Roca JC, 2006, INT J HUM-COMPUT ST, V64, P683, DOI 10.1016/j.ijhcs.2006.01.003
Rohde F, 2021, ENERGY RES SOC SCI, V74, DOI 10.1016/j.erss.2021.101974
Roque-Hernández RV, 2023, INTERACT LEARN ENVIR, V31, P2841, DOI 10.1080/10494820.2021.1912112
Scharf P., 2017, IMPORTANCE COURSE QU
Seaman J.E., 2018, Grade Increase: Tracking Distance Education in the United States
Semeshkina M., 2021, FORBES
Sheppard M, 2019, EDUC INF TECHNOL, V24, P3205, DOI 10.1007/s10639-019-09916-0
Singh S, 2020, J COMMUNITY PSYCHOL, V48, P1660, DOI 10.1002/jcop.22362
Sullivan T.J., 2021, P 2021 ASEE VIRTUAL
Sweta S, 2021, Modern approach to educational data mining and its applications. SpringerBriefs in Applied Sciences and Technology, DOI [10.1007/978-981-33-4681-9_1, DOI 10.1007/978-981-33-4681-9_1]
Tarhini A, 2015, BRIT J EDUC TECHNOL, V46, P739, DOI 10.1111/bjet.12169
Thongsri N, 2019, BEHAV INFORM TECHNOL, V38, P1243, DOI 10.1080/0144929X.2019.1581259
West S. G., 2012, Handbook of Structural Equation Modeling, P209, DOI DOI 10.1002/9780470024737
Wilde N, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0158-x
Wu B, 2017, COMPUT HUM BEHAV, V67, P221, DOI 10.1016/j.chb.2016.10.028
Xavier M, 2021, INT REV RES OPEN DIS, V22, P72
Yadegaridehkordi E, 2020, EDUC INF TECHNOL, V25, P791, DOI 10.1007/s10639-019-09993-1
Yakubu MN, 2019, INFORM DEV, V35, P492, DOI 10.1177/0266666918765907
Zhou T, 2010, COMPUT HUM BEHAV, V26, P760, DOI 10.1016/j.chb.2010.01.013
Zimmerman T, 2017, INT REV RES OPEN DIS, V18, P25
Montesdioca GPZ, 2015, COMPUT SECUR, V48, P267, DOI 10.1016/j.cose.2014.10.015
NR 82
TC 0
Z9 0
U1 3
U2 23
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2504-284X
J9 FRONT EDUC
JI Front. Educ.
PD NOV 3
PY 2022
VL 7
AR 916721
DI 10.3389/feduc.2022.916721
PG 16
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA 6H8WE
UT WOS:000885711500001
OA gold
DA 2024-09-05
ER
PT J
AU Hoppe, TA
Arabi, S
Hutchins, BI
AF Hoppe, Travis A.
Arabi, Salsabil
Hutchins, B. Ian
TI Predicting substantive biomedical citations without full text
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE science policy; machine learning; citation analysis; artificial
intelligence; bench to bedside translation
ID PREPRINTS
AB Insights from biomedical citation networks can be used to identify promising avenues for accelerating research and its downstream bench-to-bedside translation. Citation analy-sis generally assumes that each citation documents substantive knowledge transfer that informed the conception, design, or execution of the main experiments. Citations may exist for other reasons. In this paper, we take advantage of late-stage citations added during peer review because these are less likely to represent substantive knowledge flow. Using a large, comprehensive feature set of open access data, we train a predictive model to identify late-stage citations. The model relies only on the title, abstract, and citations to previous articles but not the full-text or future citations patterns, making it suitable for publications as soon as they are released, or those behind a paywall (the vast majority). We find that high prediction scores identify late-stage citations that were likely added during the peer review process as well as those more likely to be rhetorical, such as journal self-citations added during review. Our model conversely gives low prediction scores to early-stage citations and citation classes that are known to represent substantive knowledge transfer. Using this model, we find that US federally funded biomedical research publications represent 30% of the predicted early-stage (and more likely to be substantive) knowledge transfer from basic studies to clinical research, even though these comprise only 10% of the literature. This is a threefold overrepresentation in this important type of knowledge flow.
C1 [Hoppe, Travis A.] CDCP, Off Director, Natl Ctr Hlth Stat, Hyattsville, MD 20782 USA.
[Arabi, Salsabil; Hutchins, B. Ian] Univ Wisconsin Madison, Informat Sch, Sch Comp Data & Informat Sci, Coll Letters & Sci, Madison, WI 53706 USA.
C3 Centers for Disease Control & Prevention - USA; CDC National Center for
Health Statistics (NCHS); University of Wisconsin System; University of
Wisconsin Madison
RP Hutchins, BI (corresponding author), Univ Wisconsin Madison, Informat Sch, Sch Comp Data & Informat Sci, Coll Letters & Sci, Madison, WI 53706 USA.
EM bihutchins@wisc.edu
OI Hutchins, B. Ian/0000-0001-7657-552X; Hoppe, Travis/0000-0002-4694-3050
FU Office of the Vice Chancellor for Research and Graduate Education at the
University of Wisconsin-Madison; Wisconsin Alumni Research Foundation
FX B.I.H. is funded through the Office of the Vice Chancellor for Research
and Graduate Education at the University of Wisconsin-Madison and
through funding from the Wisconsin Alumni Research Foundation.
Disclaimer: This work was performed prior to T.A.H. joining the Centers
for Disease Control and Prevention and should not be considered a
research product of that agency.
CR Akbaritabar A, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101258
[Anonymous], 2015, iCite
Bianchi F, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101316
Boyack KW, 2018, J INFORMETR, V12, P59, DOI 10.1016/j.joi.2017.11.005
Bravo G, 2018, J INFORMETR, V12, P101, DOI 10.1016/j.joi.2017.12.002
Brierley L, 2022, PLOS BIOL, V20, DOI 10.1371/journal.pbio.3001285
BROOKS TA, 1986, J AM SOC INFORM SCI, V37, P34
CANO V, 1989, J AM SOC INFORM SCI, V40, P284, DOI 10.1002/(SICI)1097-4571(198907)40:4<284::AID-ASI10>3.0.CO;2-Z
Carneiro CFD, 2020, RES INTEGR PEER REV, V5, DOI 10.1186/s41073-020-00101-3
Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112
Chen LY, 2022, J ASSOC INF SCI TECH, V73, P671, DOI 10.1002/asi.24569
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Cohan A, 2020, Arxiv, DOI arXiv:2004.07180
Collins F., 2021, NIHWide Strategic Plan, Fiscal Years 2021-2025
Collins F. S., 2017, Testimony on the Implementation of the 21st Century Cures Act: Progress and the Path Forward for Medical Innovation
Collins FS., 2016, Nih-wide strategic plan, fiscal years 2016-2020: Turning discovery into health
Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256
Distributed Deep Machine Learning Community, 2016, XGBoost: EXtreme gradient boosting in GitHub
Flatt JW, 2017, PUBLICATIONS, V5, DOI 10.3390/publications5030020
Fu Yuanxi, 2020, Proc ACM/IEEE Joint Conf Digit Libr, V2020, P217, DOI 10.1145/3383583.3398514
Fujiwara T, 2015, J BIOMED SEMANT, V6, DOI 10.1186/s13326-015-0037-x
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
Hoppe TA, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aaw7238
Hutchins B. I., iCite database snapshots (NIH Open Citation Collection), DOI [10.35092/yhjc.c.4586573, DOI 10.35092/YHJC.C.4586573]
Hutchins BI, 2021, QUANT SCI STUD, V2, P433, DOI 10.1162/qss_c_00138
Hutchins BI, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000416
Hutchins BI, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000385
Hutchins BI, 2017, PLOS BIOL, V15, DOI 10.1371/journal.pbio.2003552
Hutchins BI, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002541
Itani D, 2022, J CLIN EPIDEMIOL, V149, P146, DOI 10.1016/j.jclinepi.2022.06.008
Jefferson OA, 2018, NAT BIOTECHNOL, V36, P31, DOI 10.1038/nbt.4049
Jinek M, 2012, SCIENCE, V337, P816, DOI 10.1126/science.1225829
Kim YH, 2020, SCIENTOMETRICS, V125, P2349, DOI 10.1007/s11192-020-03668-2
Klein M, 2019, INT J DIGIT LIBRARIE, V20, P335, DOI 10.1007/s00799-018-0234-1
Lin J, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-46
McGuinness LA, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0250887
Mishra S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195773
Moravcsik M. J., 1985, Soc. Behav. Sci., V18
Muppidi S., 2021, 2021 INNOVATIONS POW, P1
National Institutes of Health, 2021, ExPORTER
National Library of Medicine, 2020, Download MEDLINE/PubMed data
Nelson L., 2022, The Lancet Global Health, V10, pe1684
Nicholson DN, 2022, PLOS BIOL, V20, DOI 10.1371/journal.pbio.3001470
Oikonomidi T, 2020, BMC MED, V18, DOI 10.1186/s12916-020-01880-8
Peroni S, 2020, QUANT SCI STUD, V1, P428, DOI 10.1162/qss_a_00023
Pride D, 2017, PRO INT CONF SCI INF, P1357
Santangelo GM, 2017, MOL BIOL CELL, V28, P1401, DOI 10.1091/mbc.E16-01-0037
Shaffer C, 2022, NAT BIOTECHNOL, V40, P445, DOI 10.1038/d41587-022-00004-2
Shaner NC, 2004, NAT BIOTECHNOL, V22, P1567, DOI 10.1038/nbt1037
Shi XT, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2021.2110
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
Takahashi K, 2006, CELL, V126, P663, DOI 10.1016/j.cell.2006.07.024
Teplitskiy M, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104484
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808
Wan XJ, 2014, J ASSOC INF SCI TECH, V65, P1929, DOI 10.1002/asi.23083
Wang YJ, 2021, INT J INFECT DIS, V104, P1, DOI 10.1016/j.ijid.2020.12.040
Weber GM, 2013, J TRANSL MED, V11, DOI 10.1186/1479-5876-11-126
Wilhite AW, 2012, SCIENCE, V335, P542, DOI 10.1126/science.1212540
Williams RS, 2015, CELL, V163, P21, DOI 10.1016/j.cell.2015.09.007
Yu JY, 2007, SCIENCE, V318, P1917, DOI 10.1126/science.1151526
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 63
TC 1
Z9 1
U1 6
U2 11
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
EI 1091-6490
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUL 25
PY 2023
VL 120
IS 30
AR e2213697120
DI 10.1073/pnas.2213697120
PG 11
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA U2WO5
UT WOS:001083458500002
PM 37463199
OA hybrid, Green Published
DA 2024-09-05
ER
PT J
AU Halepoto, H
Gong, T
Noor, S
Memon, H
AF Halepoto, Habiba
Gong, Tao
Noor, Saleha
Memon, Hafeezullah
TI Bibliometric Analysis of Artificial Intelligence in Textiles
SO MATERIALS
LA English
DT Article
DE bibliometric analysis; textiles; research trend; artificial
intelligence; Web of Science
ID FABRIC DEFECT DETECTION
AB Generally, comprehensive documents are needed to provide the research community with relevant details of any research direction. This study conducted the first descriptive bibliometric analysis to examine the most influential journals, institutions, and countries in the field of artificial intelligence in textiles. Furthermore, bibliometric mapping analysis was also used to examine diverse research topics of artificial intelligence in textiles. VOSviewer was used to process 996 articles retrieved from Web of Science-Core Collection from 2007 to 2020. The results show that China and the United States have the largest number of publications, while Donghua University and Jiangnan University have the highest output. These three themes have also appeared in textile artificial intelligence publications and played a significant role in the textile structure, textile inspection, and textile clothing production. The authors believe that this research will unfold new research domains for researchers in computer science, electronics, material science, imaging science, and optics and will benefit academic and industrial circles.
C1 [Halepoto, Habiba; Gong, Tao] Donghua Univ, Engn Res Ctr Digitized Text & Fash Technol, Shanghai 201620, Peoples R China.
[Gong, Tao] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China.
[Noor, Saleha] East China Sci & Technol Univ, Sch Informat Sci & Engn, Shanghai 200237, Peoples R China.
[Memon, Hafeezullah] Zhejiang Sci Tech Univ, Coll Text Sci & Engn, Hangzhou 310018, Peoples R China.
C3 Donghua University; Donghua University; Zhejiang Sci-Tech University
RP Gong, T (corresponding author), Donghua Univ, Engn Res Ctr Digitized Text & Fash Technol, Shanghai 201620, Peoples R China.; Gong, T (corresponding author), Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China.
EM 317111@mail.dhu.edu.cn; taogong@dhu.edu.cn; saleha.noor@yahoo.com;
hm@zstu.edu.cn
RI Memon, Hafeezullah/K-7126-2015
OI Memon, Hafeezullah/0000-0001-5985-5394; Gong, Tao/0000-0003-0248-9404;
Halepoto, Habiba/0000-0003-1045-6530
FU National Natural Science Foundation of China [61673007]; Research Fund
for International Scientists [RFIS-52150410416]; National Natural
Science Foundation of China; Research Startup grant of ZSTU [20202294-Y]
FX This work was supported by the National Natural Science Foundation of
China (No. 61673007), Research Fund for International Scientists
(RFIS-52150410416), National Natural Science Foundation of China, and
the Research Startup grant of ZSTU (20202294-Y).
CR Abolafia MY, 2010, ORGAN STUD, V31, P349, DOI 10.1177/0170840609357380
Baier-Fuentes H, 2019, INT ENTREP MANAG J, V15, P385, DOI 10.1007/s11365-017-0487-y
Bowman S, 2018, MOLECULES, V23, DOI 10.3390/molecules23030547
Cai YC, 2018, ACS NANO, V12, P56, DOI 10.1021/acsnano.7b06251
Chen ZY, 2015, 2015 12TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON), P524, DOI 10.1109/SAHCN.2015.7338354
Croeser S., 2019, THEORIES PARENTING T, P423
Ding H, 2020, IEEE-ASME T MECH, V25, P2143, DOI 10.1109/TMECH.2020.3022983
Dobkin BH, 2011, NEUROREHAB NEURAL RE, V25, P788, DOI 10.1177/1545968311425908
Dong K, 2020, ADV MATER, V32, DOI 10.1002/adma.201902549
Dutta S, 2020, P IEEE, V108, P1219, DOI 10.1109/JPROC.2020.2986362
Flores-Sosa M, 2022, INT J FINANC ECON, V27, P1419, DOI 10.1002/ijfe.2223
Gahegan M, 2020, INT J GEOGR INF SCI, V34, P1, DOI 10.1080/13658816.2019.1652304
Gao T., 2022, ADV TEXTILE TECHNOLO, V30, P197
Geng DY, 2020, ENVIRON SCI POLLUT R, V27, P29824, DOI 10.1007/s11356-020-09283-1
Giri C, 2019, IEEE ACCESS, V7, P95376, DOI 10.1109/ACCESS.2019.2928979
Huang SY, 2019, IEEE I CONF COMP VIS, P2010, DOI 10.1109/ICCV.2019.00210
Huang ZB, 2019, IOP C SER EARTH ENV, V252, DOI 10.1088/1755-1315/252/3/032103
Jacobsen BN, 2022, INFORM COMMUN SOC, V25, P1082, DOI 10.1080/1369118X.2020.1834603
Jamali N, 2011, IEEE T ROBOT, V27, P508, DOI 10.1109/TRO.2011.2127110
Kara K, 2019, PROC VLDB ENDOW, V12, P1818, DOI 10.14778/3352063.3352074
Kumar A, 2008, IEEE T IND ELECTRON, V55, P348, DOI 10.1109/TIE.1930.896476
Lemasle B, 2020, ASTRON ASTROPHYS, V641, DOI 10.1051/0004-6361/202038277
Leung K, 2019, IEEE INT VEH SYM, P185, DOI 10.1109/IVS.2019.8814167
[李细珍 Li Xizhen], 2020, [丝绸, Journal of Silk], V57, P25
Li ZQ, 2021, J TEXT I, V112, P1472, DOI 10.1080/00405000.2020.1824434
Lis A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12103987
Lu JB, 2013, PROC CVPR IEEE, P1854, DOI 10.1109/CVPR.2013.242
Mair M, 2021, QUAL RES, V21, P341, DOI 10.1177/1468794120975988
Martínez-López FJ, 2020, IND MARKET MANAG, V84, P19, DOI 10.1016/j.indmarman.2019.07.014
Mas-Tur A, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11164367
Min L., 2021, ADV TEXT TECHNOL, V29, P62, DOI [10.19398/j.att.202011002, DOI 10.19398/J.ATT.202011002]
Morfino V, 2020, SOFT COMPUT, V24, P7417, DOI 10.1007/s00500-019-04366-9
Ngan HYT, 2011, IMAGE VISION COMPUT, V29, P442, DOI 10.1016/j.imavis.2011.02.002
Niu ZJ, 2019, IEEE T SERV COMPUT, V12, P865, DOI 10.1109/TSC.2016.2635133
Noor S, 2020, LECT NOTES COMPUT SC, V12274, P341, DOI 10.1007/978-3-030-55130-8_30
Patel AJ, 2010, COMPOS PART A-APPL S, V41, P360, DOI 10.1016/j.compositesa.2009.11.002
[彭梅 Peng Mei], 2021, [丝绸, Journal of Silk], V58, P53
Phon-Amnuaisuk S, 2009, LECT NOTES COMPUT SC, V5484, P547, DOI 10.1007/978-3-642-01129-0_61
Poblet M, 2020, INT J COMMONS, V14, P481, DOI 10.5334/ijc.1029
Schmitt J, 2008, MOBILE NETW APPL, V13, P583, DOI 10.1007/s11036-008-0095-8
Shah SHH, 2021, IRAN J PUBLIC HEALTH, V50, P2283, DOI 10.18502/ijph.v50i11.7584
Shyamasundar L.B., 2019, P 2019 PHD C ETH DRI, P1
Siddiqui M.Q., 2020, Cotton Science and Processing Technology: Gene, Ginning, Garment and Green Recycling, P99, DOI [10.1007/978-981-15-9169-3_6, DOI 10.1007/978-981-15-9169-3_6]
Tasdemir K, 2009, IEEE T NEURAL NETWOR, V20, P549, DOI 10.1109/TNN.2008.2005409
Tian M, 2019, TEXT RES J, V89, P3203, DOI 10.1177/0040517518809044
Verma R, 2021, APPL MATH MODEL, V89, P1177, DOI 10.1016/j.apm.2020.07.004
[王丹书 Wang Danshu], 2021, [丝绸, Journal of Silk], V58, P27
Wang H., 2020, COTTON SCI PROCESSIN, P547
Wang H, 2019, INT J POLYM SCI, V2019, DOI 10.1155/2019/8732520
Wang XW, 2016, SCIENTOMETRICS, V109, P917, DOI 10.1007/s11192-016-2093-0
Wijayapala U.G.S., 2022, TEXTILE FASHION ED I, P119, DOI DOI 10.1007/978-981-16-8854-6_7
Xiang F., 2022, ADV TEXT TECHNOL, V30, P9, DOI [10.19398/j.att.20201100, DOI 10.19398/J.ATT.20201100]
Xu S. B., 2022, Adv. Textile Technol., V30, P48
Yan XT, 2022, TRAFFIC INJ PREV, V23, P321, DOI 10.1080/15389588.2022.2072491
[杨奎浪 Yang Kuilang], 2021, [丝绸, Journal of Silk], V58, P48
Yanmeng W., 2022, ADV TEXT TECHNOL, V30, P41, DOI [10.19398/j.att.202103006, DOI 10.19398/J.ATT.202103006]
[张建新 Zhang Jianxin], 2021, [丝绸, Journal of Silk], V58, P62
Zheng WJ, 2019, PROC INT CONF PARAL, DOI 10.1145/3337821.3337868
NR 58
TC 15
Z9 15
U1 16
U2 70
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1996-1944
J9 MATERIALS
JI Materials
PD APR
PY 2022
VL 15
IS 8
AR 2910
DI 10.3390/ma15082910
PG 14
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering;
Physics
GA 0Q7GA
UT WOS:000785081100001
PM 35454603
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Yigitcanlar, T
Senadheera, S
Marasinghe, R
Bibri, SE
Sanchez, T
Cugurullo, F
Sieber, R
AF Yigitcanlar, Tan
Senadheera, Sajani
Marasinghe, Raveena
Bibri, Simon Elias
Sanchez, Thomas
Cugurullo, Federico
Sieber, Renee
TI Artificial intelligence and the local government: A five-decade
scientometric analysis on the evolution, state-of-the-art, and emerging
trends
SO CITIES
LA English
DT Article
DE Artificial intelligence (AI); GeoAI; Local government; Municipality;
Technology adoption; Smart city
ID EXPERT SYSTEMS; SMART; TECHNOLOGY; CHALLENGES; PREDICTION; MANAGEMENT
AB In recent years, the rapid advancement of artificial intelligence (AI) technologies has significantly impacted various sectors, including public governance at the local level. However, there exists a limited understanding of the overarching narrative surrounding the adoption of AI in local governments and its future. Therefore, this study aims to provide a comprehensive overview of the evolution, current state-of-the-art, and emerging trends in the adoption of AI in local government. A comprehensive scientometric analysis was conducted on a dataset comprising 7112 relevant literature records retrieved from the Scopus database in October 2023, spanning over the last five decades. The study findings revealed the following key insights: (a) exponential technological advancements over the last decades ushered in an era of AI adoption by local governments; (b) the primary purposes of AI adoption in local governments include decision support, automation, prediction, and service delivery; (c) the main areas of AI adoption in local governments encompass planning, analytics, security, surveillance, energy, and modelling; and (d) under-researched but critical research areas include ethics of and public participation in AI adoption in local governments. This study informs research, policy, and practice by offering a comprehensive understanding of the literature on AI applications in local governments, providing valuable insights for stakeholders and decision-makers.
C1 [Yigitcanlar, Tan] Queensland Univ Technol, Sch Architecture & Built Environm, City 4 0 Lab, 2 George St, Brisbane, Qld 4000, Australia.
[Senadheera, Sajani; Marasinghe, Raveena] Queensland Univ Technol, Sch Architecture & Built Environm, City 4 0 Lab, Brisbane, Australia.
[Bibri, Simon Elias] Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn, Lausanne, Switzerland.
[Sanchez, Thomas] Texas A&M Univ, Dept Landscape Architecture & Urban Planning, College Stn, TX USA.
[Cugurullo, Federico] Trinity Coll Dublin, Sch Nat Sci, Dublin, Ireland.
[Sieber, Renee] McGill Univ, Dept Geog, Montreal, PQ, Canada.
C3 Queensland University of Technology (QUT); Queensland University of
Technology (QUT); Swiss Federal Institutes of Technology Domain; Ecole
Polytechnique Federale de Lausanne; Texas A&M University System; Texas
A&M University College Station; Trinity College Dublin; McGill
University
RP Yigitcanlar, T (corresponding author), Queensland Univ Technol, Sch Architecture & Built Environm, City 4 0 Lab, 2 George St, Brisbane, Qld 4000, Australia.
EM tan.yigitcanlar@qut.edu.au; sajanisuwanka.senadheera@hdr.qut.edu.au;
raveena.pelige@hdr.qut.edu.au; simon.bibri@epfl.ch; twsanchez@tamu.edu;
cugurulf@tcd.ie; renee.sieber@mcgill.ca
RI Yigitcanlar, Tan/J-1142-2012
OI Yigitcanlar, Tan/0000-0001-7262-7118; Cugurullo,
Federico/0000-0002-0625-8868
FU Australian Research Council Discovery Grant Scheme [DP220101255]
FX This research was funded by the Australian Research Council Discovery
Grant Scheme, grant number DP220101255.
CR Abramo G, 2018, J INFORMETR, V12, P590, DOI 10.1016/j.joi.2018.05.001
Ahmed ST, 2023, IEEE INTERNET THINGS, V10, P11497, DOI 10.1109/JIOT.2023.3243235
Allam Z, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14095275
Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032
Alquwayzani A., 2023, MOBILE COMPUTING SUS, P45, DOI [10.1007/978-981-99-0835-6_4, DOI 10.1007/978-981-99-0835-6_4]
Androutsopoulou A, 2019, GOV INFORM Q, V36, P358, DOI 10.1016/j.giq.2018.10.001
[Anonymous], 2018, Int. J. Adv. Sci. Eng. Inf. Technol, DOI DOI 10.18517/IJASEIT.8.1.4954
Ansell C, 2018, J PUBL ADM RES THEOR, V28, P16, DOI 10.1093/jopart/mux030
Ansell C, 2020, PUBLIC ADMIN, V98, P261, DOI 10.1111/padm.12636
Arya M, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12040894
Awan FM, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20010322
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Barroca J., 2023, Forbes
Barrow O., 2023, Fiscal Note
Benefo EO., 2022, AI and Ethics, DOI DOI 10.1007/S43681-021-00124-6
Bibri S., 2024, Environmental Science and Ecotechnology
Bibri S., 2024, Sustainable Cities and Society
Bibri S., 2015, The human face of ambient intelligence. Atlantis ambient and pervasive intelligence, V9, DOI [10.2991/978-94-6239-130-7_8, DOI 10.2991/978-94-6239-130-7_8]
Bibri SE, 2024, ENVIRON SCI ECOTECH, V19, DOI 10.1016/j.ese.2023.100330
Bibri SE, 2023, SMART CITIES-BASEL, V6, P1345, DOI 10.3390/smartcities6030065
Bibri Simon Elias, 2023, Energy Inform, V6, P9, DOI 10.1186/s42162-023-00259-2
Bora A., 2019, Challenges of fake news: Mis-information, dis-information, mal-information in an increasingly-networked human world, P71
Brand D., 2022, eJournal of eDemocracy and Open Government, V14, P1, DOI [10.29379/jedem.v14i1.678, DOI 10.29379/JEDEM.V14I1.678]
Brandusescu A., 2022, AI in the city: Building meaningful civic engagement and public trust
Burgess Matt, 2023, This Algorithm Could Ruin Your Life' Wired
Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227
Carrasco M., 2023, Generative AI for the public sector: From opportunities to value
Chang-Silva Roberto, 2023, Chemosphere, V335, P139071, DOI 10.1016/j.chemosphere.2023.139071
Chinese Academy of Sciences, 2024, Chinese Academy of Sciences
Corea F., 2018, Forbes
Cugurullo F., 2024, AI and Ethics, DOI [10.1007/s43681-024-00476-9, DOI 10.1007/S43681-024-00476-9]
Cugurullo F., 2024, Artificial intelligence and the city: Urbanistic perspectives on AI
D'Amico G, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20164391
Dargan S, 2020, ARCH COMPUT METHOD E, V27, P1071, DOI 10.1007/s11831-019-09344-w
Dinakaran RK, 2020, ADV INTELL SYST COMP, V1038, P588, DOI 10.1007/978-3-030-29513-4_43
Dogru N, 2018, 2018 15TH LEARNING AND TECHNOLOGY CONFERENCE (L&T), P40, DOI 10.1109/LT.2018.8368509
Dubey S, 2020, PROCEDIA COMPUT SCI, V167, P1950, DOI 10.1016/j.procs.2020.03.222
Duggal N., 2023, Simplilearn
Fedchenkov P, 2018, LECT NOTES COMPUT SC, V11118, P33, DOI 10.1007/978-3-030-01168-0_4
Fuller A, 2020, IEEE ACCESS, V8, P108952, DOI 10.1109/ACCESS.2020.2998358
Ghosh D, 2016, P 17 INT DIG GOV RES, DOI [10.1145/2912160.2912205, DOI 10.1145/2912160.2912205]
Giannini F, 2022, 2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), P1048, DOI 10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927840
GOH ATC, 1994, ROBOT CIM-INT MANUF, V11, P213, DOI 10.1016/0736-5845(94)90036-1
Gong ZY, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11226424
Grieve P., 2023, Deep learning vs. machine learning
Grinev AV, 2020, IOP CONF SER-MAT SCI, V940, DOI 10.1088/1757-899X/940/1/012149
Guthier B, 2015, 2015 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), P630, DOI 10.1109/ICCNC.2015.7069418
Haque M., 2022, EAI Endorsed Transactions on AI and Robotics, V1, P15
Harris B., 1993, J PLAN EDUC RES, V12, P184, DOI [10.1177/0739456X9301200302, DOI 10.1177/0739456X9301200302]
Haveri A, 2023, INT REV ADM SCI, V89, P3, DOI 10.1177/00208523211005855
HEIKKILA EJ, 1992, J AM PLANN ASSOC, V58, P72, DOI 10.1080/01944369208975536
Helmond A, 2019, INTERNET HIST, V3, P123, DOI 10.1080/24701475.2019.1593667
Herath H. M. K. K. M. B., 2022, International Journal of Information Management Data Insights, V2, DOI [DOI 10.1016/J.JJIMEI.2022.100076, 10.1016/j.jjimei.2022.100076]
Hodo E, 2016, 2016 INTERNATIONAL SYMPOSIUM ON NETWORKS, COMPUTERS AND COMMUNICATIONS (ISNCC)
Hodorog A, 2022, SUSTAIN CITIES SOC, V85, DOI 10.1016/j.scs.2022.104026
Hossain S., 2023, Local government cybersecurity landscape: A systematic review and conceptual framework
Huang CJ, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18072220
Huang YT, 2023, J TRANSP ENG B-PAVE, V149, DOI 10.1061/JPEODX.PVENG-1194
Ingwersen P, 2018, SCIENTOMETRICS, V117, P1205, DOI 10.1007/s11192-018-2901-9
Ippolito A, 2020, PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS), VOL 1, P452, DOI 10.5220/0009564704520459
Ishengoma FR, 2022, DIGIT POLICY REGUL G, V24, P449, DOI 10.1108/DPRG-06-2022-0067
Issar S, 2022, SOCIOL COMPASS, V16, DOI 10.1111/soc4.12955
Jagatheesaperumal SK, 2023, COMPUT URBAN SCI, V3, DOI 10.1007/s43762-023-00104-y
Janiesch C, 2021, ELECTRON MARK, V31, P685, DOI 10.1007/s12525-021-00475-2
Jiang S, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22207814
Kapoor C., 2023, 2023 IEEE INT C PERV, P154, DOI [10.1109/PerComWorkshops56833.2023.10150374, DOI 10.1109/PERCOMWORKSHOPS56833.2023.10150374]
Kumar P, 2023, MULTIMED TOOLS APPL, V82, P38249, DOI 10.1007/s11042-023-15136-z
LAUT PR, 1988, LANDSCAPE URBAN PLAN, V15, P303, DOI 10.1016/0169-2046(88)90054-0
Lefoane M., 2021, P 5 INT C FUT NETW D, P195
Lepelaar M, 2022, J SENS ACTUAT NETW, V11, DOI 10.3390/jsan11010007
Li WD, 2023, SMART CITIES-BASEL, V6, P1996, DOI 10.3390/smartcities6040093
Lorenz L, 2021, INFORM POLITY, V26, P71, DOI 10.3233/IP-200279
Lourenço V, 2018, IEEE IJCNN
Mackey DC, 1999, SPINAL DRUG DELIVERY, P1
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
Madan R, 2023, GOV INFORM Q, V40, DOI 10.1016/j.giq.2022.101774
Mahdavinejad MS, 2018, DIGIT COMMUN NETW, V4, P161, DOI 10.1016/j.dcan.2017.10.002
Mai G, 2022, P 30 INT C ADV GEOGR, P1
Marasinghe R, 2024, SUSTAIN CITIES SOC, V100, DOI 10.1016/j.scs.2023.105047
Mellit A, 2010, SOL ENERGY, V84, P807, DOI 10.1016/j.solener.2010.02.006
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
Minor J., 2004, Paste Magazine
Mishra C., 2017, IAES Int. J. Artif. Intell., V6, P66, DOI [10.11591/ijai.v6.i2.pp66-73, 10.3390/ma14247625]
Mortaheb R, 2023, J URBAN MANAG, V12, P4, DOI 10.1016/j.jum.2022.08.001
Moselhi O., 2000, J INFRASTRUCT SYST, P97, DOI DOI 10.1061/(ASCE)1076-0342(2000)6:3(97)
Mugari I, 2021, SOC SCI-BASEL, V10, DOI 10.3390/socsci10060234
Nagy AM, 2018, PERVASIVE MOB COMPUT, V50, P148, DOI 10.1016/j.pmcj.2018.07.004
O'Dwyer E, 2019, APPL ENERG, V237, P581, DOI 10.1016/j.apenergy.2019.01.024
Olnes S, 2017, GOV INFORM Q, V34, P355, DOI 10.1016/j.giq.2017.09.007
Ozmen M, 2021, PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), P1152, DOI 10.1109/ICICT50816.2021.9358666
Palmini O., 2023, Discover Artificial Intelligence, V3, P15, DOI [DOI 10.1007/S44163-023-00060-W, 10.1007/s44163-023-00060-w]
Podoletz L, 2023, AI SOC, V38, P1067, DOI 10.1007/s00146-022-01435-w
Pott LP, 2021, ISPRS J PHOTOGRAMM, V176, P196, DOI 10.1016/j.isprsjprs.2021.04.015
Regona M, 2024, SUSTAIN CITIES SOC, V108, DOI 10.1016/j.scs.2024.105499
Regona M, 2023, BUILDINGS-BASEL, V13, DOI 10.3390/buildings13092346
Salim MM, 2021, APPL SOFT COMPUT, V113, DOI 10.1016/j.asoc.2021.107859
Samak T, 2023, ROBOTICS, V12, DOI 10.3390/robotics12030077
Sanchez TW, 2023, INT J URBAN SCI, V27, P179, DOI 10.1080/12265934.2022.2102538
SANGYUN H, 1989, J AM PLANN ASSOC, V55, P296
Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x
Schwalbert RA, 2020, AGR FOREST METEOROL, V284, DOI 10.1016/j.agrformet.2019.107886
Setiawan A, 2022, ECONOMIES, V10, DOI 10.3390/economies10120323
Shaamala A, 2024, SUSTAIN CITIES SOC, V101, DOI 10.1016/j.scs.2024.105182
Shaikh PW, 2022, IEEE T INTELL TRANSP, V23, P48, DOI 10.1109/TITS.2020.3014296
Sieber R, 2024, PUBLIC UNDERST SCI, V33, P634, DOI 10.1177/09636625231219853
Smuha Nathalie A., 2021, Law, Innovation and Technology, V13, P57, DOI 10.1080/17579961.2021.1898300
Soe RM, 2018, GOV INFORM Q, V35, P323, DOI 10.1016/j.giq.2017.11.010
Son TH, 2023, SUSTAIN CITIES SOC, V94, DOI 10.1016/j.scs.2023.104562
Springer, 2024, Lecture Notes in Computer Science (LNCS)
Tang JQ, 2022, CITIES, V129, DOI 10.1016/j.cities.2022.103833
Tian YX, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), P153, DOI 10.1109/SmartCity.2015.63
Ullah Z, 2023, SUSTAIN CITIES SOC, V97, DOI 10.1016/j.scs.2023.104697
UNESCO, 2021, UNESCO Science Report
van Eck N. J., 2012, VOSviewer manual
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Noordt C, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2022.101714
Vogl TM, 2020, PUBLIC ADMIN REV, V80, P946, DOI 10.1111/puar.13286
VOSviewer, 2024, VOSviewer
Walker J., 2017, Azure government Chatbot reduces email by 50%
Walker RM, 2015, J PUBL ADM RES THEOR, V25, P101, DOI 10.1093/jopart/mut038
Wu WJ, 2022, LANDSCAPE URBAN PLAN, V224, DOI 10.1016/j.landurbplan.2022.104428
Xing J, 2023, T GIS, V27, P626, DOI 10.1111/tgis.13045
Xu Y, 2024, J URBAN TECHNOL, DOI 10.1080/10630732.2023.2292823
Yang BY, 2021, ENVIRON HEALTH PERSP, V129, DOI 10.1289/EHP8429
Yanxu Zheng, 2015, 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), P1, DOI 10.1109/ISSNIP.2015.7106902
Yao HX, 2018, AAAI CONF ARTIF INTE, P2588
Yeon H, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-32326-9
Yigitcanlar T., 2021, J Open Innov Technol Market Complex, V7, P71, DOI DOI 10.3390/JOITMC7010071
Yigitcanlar T, 2023, GOV INFORM Q, V40, DOI 10.1016/j.giq.2023.101833
Yigitcanlar T, 2023, AI SOC, V38, P1135, DOI 10.1007/s00146-022-01450-x
Yigitcanlar T, 2022, CITIES, V120, DOI 10.1016/j.cities.2021.103434
Yigitcanlar T, 2020, ENERGIES, V13, DOI 10.3390/en13061473
Yigitcanlar T, 2016, J URBAN TECHNOL, V23, P115, DOI 10.1080/10630732.2015.1090198
Zeng JC, 2023, COMPUT COMMUN, V208, P29, DOI 10.1016/j.comcom.2023.05.021
NR 134
TC 1
Z9 1
U1 9
U2 9
PU ELSEVIER SCI LTD
PI London
PA 125 London Wall, London, ENGLAND
SN 0264-2751
EI 1873-6084
J9 CITIES
JI Cities
PD SEP
PY 2024
VL 152
AR 105151
DI 10.1016/j.cities.2024.105151
EA JUN 2024
PG 21
WC Urban Studies
WE Social Science Citation Index (SSCI)
SC Urban Studies
GA WV6X2
UT WOS:001257697800001
OA hybrid
DA 2024-09-05
ER
PT J
AU Chen, HS
Jin, QQ
Wang, XM
Xiong, F
AF Chen, Hongshu
Jin, Qianqian
Wang, Ximeng
Xiong, Fei
TI Profiling academic-industrial collaborations in bibliometric-enhanced
topic networks: A case study on digitalization research
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Topic networks; Topic vectorization; Topic modeling; Word2Vec;
Academic-industrial collaboration
ID KNOWLEDGE NETWORKS; TECHNOLOGY; FIELD; TRANSFORMATION; EVOLUTION;
SCIENCE
AB Collaborations between industry and academia provide a key pathway for innovation and serve as a stimulus for basic and applied research. The collaborative innovations of the two communities are embedded in both the collaborative networks of these organizations and the knowledge networks established by coupling among knowledge elements in the collaborative content. However, existing studies on academic-industrial collabora-tions have mainly been concerned with analyzing these interactions at the institutional level. To fill the gap of profiling collaborative content and to inspire related studies, this paper provides a bibliometric-enhanced method of mapping topic networks and measuring the semantic structures of academic-industrial collabora-tion. Via this method, topics can be extracted, vectorized, and correlated to construct a bibliometric-enhanced topic network as a representation of the collaborative content generated by these partnerships. Examining the structural properties of the topic network can provide comprehensive insights for future academic-industrial research collaborations. To showcase these insights, we conducted a case study involving both articles and patents in the field of digitalization. As the case study shows, the method provided in this paper can serve as a tool for cooperative research planning, innovation management, and problem-solving in a given target area of research.
C1 [Chen, Hongshu; Jin, Qianqian] Beijing Inst Technol, Sch Management & Econ, Beijing, Peoples R China.
[Wang, Ximeng] Postal Savings Bank China, Cyber Finance Dept, Beijing, Peoples R China.
[Xiong, Fei] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing, Peoples R China.
C3 Beijing Institute of Technology; Beijing Jiaotong University
RP Chen, HS (corresponding author), Beijing Inst Technol, Sch Management & Econ, Beijing, Peoples R China.
EM hongshu.chen@bit.edu.cn
RI Chen, Hongshu/O-2926-2017
OI Chen, Hongshu/0000-0002-0893-1817; Wang, Ximeng/0000-0002-2445-6737
FU National Natural Science Foundation of China [72004009, 61872033];
Beijing Institute of Technology Research Fund Program for Young Scholars
and Beijing Nova Program under the Beijing Municipal Science &
Technology Commission [Z201100006820015]
FX This work was supported by: the National Natural Science Foundation of
China under Grant Nos. 72004009 and 61872033; the Beijing Institute of
Technology Research Fund Program for Young Scholars and Beijing Nova
Program (Z201100006820015) under the Beijing Municipal Science &
Technology Commission.
CR Akhtar P, 2019, R&D MANAGE, V49, P7, DOI 10.1111/radm.12253
[Anonymous], 2015, Transactions of the Association for Computational Linguistics, DOI [DOI 10.1186/1472-6947-15-S2-S2.ARXIV:1103.0398, DOI 10.1162/TACLA00134, DOI 10.1162/TACL_A_00134]
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Cao JC, 2013, PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 6
Chang SH, 2017, TECHNOL FORECAST SOC, V118, P107, DOI 10.1016/j.techfore.2017.02.006
Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003
Chen HS, 2021, IEEE T ENG MANAGE, V68, P1232, DOI 10.1109/TEM.2019.2903115
Chen HS, 2015, PORTL INT CONF MANAG, P2049, DOI 10.1109/PICMET.2015.7273098
De Battisti F, 2015, SCIENTOMETRICS, V103, P413, DOI 10.1007/s11192-015-1554-1
Fan X, 2015, SCIENTOMETRICS, V104, P489, DOI 10.1007/s11192-015-1618-2
Firth J.R., 1957, Studies in Linguistic Analysis
Giunta A, 2016, J TECHNOL TRANSFER, V41, P818, DOI 10.1007/s10961-015-9402-2
Greiner-Petter A, 2020, SCIENTOMETRICS, V125, P3017, DOI 10.1007/s11192-020-03502-9
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Guan JC, 2017, J INFORMETR, V11, P407, DOI 10.1016/j.joi.2017.02.007
Guan JC, 2016, RES POLICY, V45, P97, DOI 10.1016/j.respol.2015.08.002
Heinrich Gregor, 2005, TECHNICAL REPORT
Hellsten I, 2020, J ASSOC INF SCI TECH, V71, P3, DOI 10.1002/asi.24207
Hess T, 2016, MIS Q EXEC, V15, P123
Huang AH, 2018, MANAGE SCI, V64, P2833, DOI 10.1287/mnsc.2017.2751
Huang MH, 2015, SCIENTOMETRICS, V105, P1301, DOI 10.1007/s11192-015-1748-6
Jung S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101040
Khan S., 2016, Leadership in the digital age - A study on the effects of digitalisation on top management leadership
Kong XJ, 2019, J NETW COMPUT APPL, V132, P86, DOI 10.1016/j.jnca.2019.01.029
Lamba M, 2019, SCIENTOMETRICS, V120, P477, DOI 10.1007/s11192-019-03137-5
Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4
Lee Y., 2000, J TECHNOL TRANSFER, V25, P111, DOI [10.1023/A:1007895322042, DOI 10.1023/A:1007895322042, 10.1023/A]
Lee YY, 2020, J ASSOC INF SCI TECH, V71, P657, DOI 10.1002/asi.24289
Lin JY, 2017, TECHNOL FORECAST SOC, V123, P216, DOI 10.1016/j.techfore.2016.03.016
MAGAZINIK A, 2019, 2019 PORTLAND INT C, P1
Mao CF, 2020, TECHNOL FORECAST SOC, V151, DOI 10.1016/j.techfore.2019.119746
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Nsanzumuhire SU, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120861
Perkmann M, 2011, R&D MANAGE, V41, P202, DOI 10.1111/j.1467-9310.2011.00637.x
PETERS HPF, 1993, RES POLICY, V22, P23, DOI 10.1016/0048-7333(93)90031-C
Phelps C, 2012, J MANAGE, V38, P1115, DOI 10.1177/0149206311432640
Le Q, 2014, PR MACH LEARN RES, V32, P1188
Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
Roth C, 2010, SOC NETWORKS, V32, P16, DOI 10.1016/j.socnet.2009.04.005
Skute Igors, 2019, Journal of Technology Transfer, V44, P916, DOI 10.1007/s10961-017-9637-1
Song B, 2019, TECHNOL FORECAST SOC, V138, P115, DOI 10.1016/j.techfore.2018.08.013
Sousa MJ, 2019, FUTURE GENER COMP SY, V91, P327, DOI 10.1016/j.future.2018.08.048
SUOMINEN A, 2019, IEEE T ENG MANAGE
Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596
Teixeira AAC, 2012, SCIENTOMETRICS, V93, P719, DOI 10.1007/s11192-012-0823-5
Wang CH, 2014, TECHNOL FORECAST SOC, V81, P331, DOI 10.1016/j.techfore.2013.04.008
Wang YD, 2016, SCIENTOMETRICS, V106, P1037, DOI 10.1007/s11192-015-1818-9
Wang YD, 2015, SCIENTOMETRICS, V103, P725, DOI 10.1007/s11192-015-1552-3
Wasserman S., 1994, Social Network Analysis
Woltmann SL, 2018, SCIENTOMETRICS, V117, P449, DOI 10.1007/s11192-018-2849-9
Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004
Zhao RY, 2019, SCIENTOMETRICS, V121, P323, DOI 10.1007/s11192-019-03182-0
NR 53
TC 18
Z9 18
U1 14
U2 99
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD FEB
PY 2022
VL 175
AR 121402
DI 10.1016/j.techfore.2021.121402
EA DEC 2021
PG 12
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA XN3NS
UT WOS:000729415700003
DA 2024-09-05
ER
PT C
AU Wang, W
Liu, XT
AF Wang Wei
Liu Xi-tao
BE Zhu, XN
TI Research on the Performance Evaluation of Government Portal Based on
Public Satisfaction Degree
SO PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON PUBLIC ADMINISTRATION
(5TH), VOL II
LA English
DT Proceedings Paper
CT 5th International Conference on Public Administration
CY OCT 23-25, 2009
CL UESTC, Sch Polit Sci & Public Adm, Chengdu, PEOPLES R CHINA
HO UESTC, Sch Polit Sci & Public Adm
DE Government portal; Performance evaluation; Public satisfaction degree;
Principal component analysis
AB In order to promote the openness of government affairs, improve public services and the effectiveness of administration, we must pay attention to the development of government portal. According to the analysis of government portal characteristics, this paper forms an appraisal index system of government portal website, based on public satisfaction, and then designs a questionnaire used for data collection. Besides this paper uses principal component analysis and regression equation studies public satisfaction to government portal. Finally this paper suggests the mainly solution to improve the public satisfaction degree of government portal, that is increase the awareness of service and government websites establishment, improve the efficiency of the government online website and enhance the interactive capabilities of the public.
C1 [Wang Wei; Liu Xi-tao] Harbin Univ Commerce, Sch Publ Finance & Management, Harbin 150028, Peoples R China.
C3 Harbin University of Commerce
CR Kantner L., 1997, Proceedings of the 15th annual international conference on Computer documentation, P153, DOI [10.1145/263367.263388, DOI 10.1145/263367.263388]
LI JH, 2005, SCI RES
LIU, 2008, COMPUTER MODERNIZATI
LIU Y, 2003, CONT FINANCE EC, P57
MATT C, 2007, XIANGTAN U NATURAL S, P46
OLIVE M, 1994, NEUROPEDIATRICS, V25, P48, DOI 10.1055/s-2008-1071583
OLIVER RL, 1981, J RETAILING, V57, P25
SHI JL, 2003, INFORM TECHNOLOGY EC, V13, P216
TONG Y, 2007, J OFFICE AUTOMATION
Wang Liming, 2005, E GOVT, P15
WANG Y, 2007, INFORM SCI, P1496
Wen J.B., 2007, GOVT WORK REPORT
XU Y, 2008, LIB FORUM
YANG DX, CHINAS E GOVT PORTAL
YANG XF, 2009, INTELLIGENCE MAGAZIN, P3
Yu C., 2007, SPSS STAT ANAL
ZHAI LN, 2008, G2B PORTAL OUR LOCAL, P6
ZHANG XY, 2008, KNOWLEDGE LIB INFORM, P14
ZHAO JQ, 2007, CHINESE ADM
ZHOU W, 2007, GROUP EC RES, P257
NR 20
TC 0
Z9 0
U1 0
U2 2
PU UNIV ELECTRONIC SCIENCE & TECHNOLOGY CHINA PRESS
PI CHENGDU
PA UESTC PRESS, CHENGDU, 610054, PEOPLES R CHINA
BN 978-7-5647-0139-0
PY 2009
BP 633
EP 640
PG 8
WC Public Administration
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Public Administration
GA BMV79
UT WOS:000273673900092
DA 2024-09-05
ER
PT J
AU Edelmann, A
Moody, J
Light, R
AF Edelmann, Achim
Moody, James
Light, Ryan
TI Disparate foundations of scientists' policy positions on contentious
biomedical research
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE science-public relations; opinion formation; biomedical research; topic
modeling; collaboration networks
ID AIRBORNE TRANSMISSION; SOCIAL-INFLUENCE; DECISION-MAKING;
INFLUENZA-VIRUS; ADVICE; SCIENCE
AB What drives scientists' position taking on matters where empirical answers are unavailable or contradictory? We examined the contentious debate on whether to limit experiments involving the creation of potentially pandemic pathogens. Hundreds of scientists, including Nobel laureates, have signed petitions on the debate, providing unique insights into how scientists take a public stand on important scientific policies. Using 19,257 papers published by participants, we reconstructed their collaboration networks and research specializations. Although we found significant peer associations overall, those opposing "gain-of-function" research are more sensitive to peers than are proponents. Conversely, specializing in fields directly related to gain-of-function research (immunology, virology) predicts public support better than specializing in fields related to potential pathogenic risks (such as public health) predicts opposition. These findings suggest that different social processes might drive support compared with opposition. Supporters are embedded in a tight-knit scholarly community that is likely both more familiar with and trusting of the relevant risk mitigation practices. Opponents, on the other hand, are embedded in a looser federation of widely varying academic specializations with cognate knowledge of disease and epidemics that seems to draw more heavily on peers. Understanding how scientists' social embeddedness shapes the policy actions they take is important for helping sides interpret each other's position accurately, avoiding echo-chamber effects, and protecting the role of scientific expertise in social policy.
C1 [Edelmann, Achim] Univ Bern, Inst Sociol, CH-3012 Bern, Switzerland.
[Edelmann, Achim; Moody, James] Duke Univ, Duke Network Anal Ctr, Durham, NC 27708 USA.
[Moody, James] Duke Univ, Dept Sociol, Durham, NC 27708 USA.
[Moody, James] King Abdulaziz Univ, Jeddah 21589, Saudi Arabia.
[Light, Ryan] Univ Oregon, Dept Sociol, Eugene, OR 97403 USA.
C3 University of Bern; Duke University; Duke University; King Abdulaziz
University; University of Oregon
RP Edelmann, A (corresponding author), Univ Bern, Inst Sociol, CH-3012 Bern, Switzerland.; Edelmann, A (corresponding author), Duke Univ, Duke Network Anal Ctr, Durham, NC 27708 USA.
EM achim.edelmann@gmail.com
RI Light, Ryan/AAA-1684-2019
OI Edelmann, Achim/0000-0001-8293-674X; Light, Ryan/0000-0002-1508-154X
FU James S. McDonnell Foundation Complexity Scholars award; NIH [HD075712]
FX We thank participants in the Duke Network Analysis Center Seminar Series
and Katharina V. Koelle for valuable input on earlier drafts, the editor
and two anonymous reviewers for their careful reading of our manuscript
and constructive comments, as well as Faculty of 1000 for providing us
with a list of their members. We acknowledge partial support from the
James S. McDonnell Foundation Complexity Scholars award and from an NIH
Grant (HD075712).
CR Abelson R. P., 1968, Theories of Cognitive Consistency: A Sourcebook
[Anonymous], US DEP HLTH HUMAN SE
[Anonymous], SCI SCI POSITION STA
[Anonymous], 2009, EPISTEMIC CULTURES S
[Anonymous], SCI NOW
[Anonymous], SCI NOW
[Anonymous], PUBLIC PAPERS PRESID
[Anonymous], 2013, LAB LIFE CONSTRUCTIO, DOI DOI 10.1515/9781400820412
[Anonymous], CAMBRIDGE WORKING GR
[Anonymous], BIOL CHOOSE SIDES SA
[Anonymous], 2013, SCIENCE, DOI DOI 10.1126/science.1235140
[Anonymous], 1957, Selective Exposure Theory
Azoulay P, 2017, AM J SOCIOL, V122, P1223, DOI 10.1086/689890
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bonaccio S, 2006, ORGAN BEHAV HUM DEC, V101, P127, DOI 10.1016/j.obhdp.2006.07.001
Bond RM, 2012, NATURE, V489, P295, DOI 10.1038/nature11421
Bourdieu P., 2004, POLITY
Casadevall A, 2014, MBIO, V5, DOI 10.1128/mBio.01730-14
Cetina Karin Knorr, 1981, MANUFACTURE KNOWLEDG
COLLINS HM, 1974, SCI STUD, V4, P165, DOI 10.1177/030631277400400203
Crane D., 1972, Invisible colleges. Diffusion of knowledge in scientific communities
Evans JA, 2010, AM J SOCIOL, V116, P389, DOI 10.1086/653834
Fouchier RAM, 2012, SCIENCE, V335, P400, DOI [10.1126/science.335.6067.400, 10.1126/science.1219412]
Frickel S, 2005, AM SOCIOL REV, V70, P204, DOI 10.1177/000312240507000202
Friedkin NoahE., 2011, Structural Analysis in the Social Sciences
Gauchat G, 2015, SOC FORCES, V94, P723, DOI 10.1093/sf/sov040
GIERYN TF, 1983, AM SOCIOL REV, V48, P781, DOI 10.2307/2095325
Habermas Jurgen, 1985, THEORY COMMUNICATIVE, V2
Harvey N, 1997, ORGAN BEHAV HUM DEC, V70, P117, DOI 10.1006/obhd.1997.2697
Herfst S, 2012, SCIENCE, V336, P1534, DOI 10.1126/science.1213362
Herfst S, 2012, J INFECT DIS, V205, P1628, DOI 10.1093/infdis/jis257
Imai M, 2012, NATURE, V486, P420, DOI 10.1038/nature10831
Irwin Alan., 2003, Misunderstanding Science?: The Public Reconstruction of Science and Technology
Shwed U, 2010, AM SOCIOL REV, V75, P817, DOI 10.1177/0003122410388488
Steglich C, 2010, SOCIOL METHODOL, V40, P329, DOI 10.1111/j.1467-9531.2010.01225.x
Sutton TC, 2014, J VIROL, V88, P6623, DOI 10.1128/JVI.02765-13
Watanabe T, 2014, CELL HOST MICROBE, V15, P692, DOI 10.1016/j.chom.2014.05.006
Yaniv I, 2000, ORGAN BEHAV HUM DEC, V83, P260, DOI 10.1006/obhd.2000.2909
Yaniv I, 2004, ORGAN BEHAV HUM DEC, V93, P1, DOI 10.1016/j.obhdp.2003.08.002
Zaraket H, 2013, J VIROL, V87, P4826, DOI 10.1128/JVI.03110-12
NR 40
TC 15
Z9 15
U1 1
U2 13
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
EI 1091-6490
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 13
PY 2017
VL 114
IS 24
BP 6262
EP 6267
DI 10.1073/pnas.1613580114
PG 6
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics
GA EX4BV
UT WOS:000403179300045
PM 28559310
OA Green Published, Bronze
DA 2024-09-05
ER
PT J
AU Li, XL
Long, YJ
Fan, MX
Chen, Y
AF Li, Xueling
Long, Yujie
Fan, Meixi
Chen, Yong
TI Drilling down artificial intelligence in entrepreneurial management: A
bibliometric perspective
SO SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE
LA English
DT Article
DE artificial intelligence; bibliometrics; entrepreneurial management;
knowledge mapping
ID PERFORMANCE; SCIENCE; IMPACT; AI; TECHNOLOGY; KNOWLEDGE; FRAMEWORK;
INTERNET; SYSTEMS; SERVICE
AB Artificial intelligence (AI) has been adopted in entrepreneurial practices and generates huge economic benefits. It creates a number of digital start-ups and changes the way in which entrepreneurial research and practice interact. Existing studies on the cross-field of AI and entrepreneurial management are scattered. Accordingly, this paper conducts a comprehensive and systematic review of existing studies on AI in entrepreneurial management by applying VOSviewer, a knowledge graph tool, based on the data obtained from the Web of Science. The study standardizes and analyses prominent research topics, interprets research hotspots and points out directions for further research.
C1 [Li, Xueling; Long, Yujie; Fan, Meixi] Jilin Univ, Sch Business & Management, 2699 Qianjin St, Changchun 130015, Peoples R China.
[Chen, Yong] Texas A&M Int Univ, Sch Business, Laredo, TX USA.
C3 Jilin University; Texas A&M University System; Texas A&M International
University
RP Long, YJ (corresponding author), Jilin Univ, Sch Business & Management, 2699 Qianjin St, Changchun 130015, Peoples R China.
EM jlulyj@163.com
OI Long, Yujie/0000-0001-7307-5773
FU National Natural Science Foundation of China [71872068,
72091310-72091315]; Social Science Foundation of Jilin Province
[2020A06]; 2021 Jilin University "New Liberal Arts" Innovation Team
Project; Postgraduate Education and Teaching Reform Project of Jilin
University [2021JGZ11]; School-based Application Project of Jilin
University [2020XGZX07]; Postgraduate Innovation Research Program of
Jilin University [101832020CX053]
FX National Natural Science Foundation of China, Grant/Award Numbers:
71872068, 72091310-72091315; Social Science Foundation of Jilin
Province, Grant/Award Number: 2020A06; 2021 Jilin University "New
Liberal Arts" Innovation Team Project; Postgraduate Education and
Teaching Reform Project of Jilin University, Grant/Award Number:
2021JGZ11; School-based Application Project of Jilin University,
Grant/Award Number: 2020XGZX07; Postgraduate Innovation Research Program
of Jilin University, Grant/Award Number: 101832020CX053
CR Akgün AA, 2010, TIJDSCHR ECON SOC GE, V101, P538, DOI 10.1111/j.1467-9663.2010.00630.x
Akman E, 2020, J MANAG ANAL, V7, P231, DOI 10.1080/23270012.2020.1731719
Akter S, 2022, ANN OPER RES, V308, P7, DOI 10.1007/s10479-020-03620-w
Analytics C., 2017, Web of Science Core Collection, Citation database
Aquilani B, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12218943
Bandara R, 2020, ELECTRON MARK, V30, P629, DOI 10.1007/s12525-019-00375-6
Basri W, 2020, INT J COMPUT INT SYS, V13, P142, DOI 10.2991/ijcis.d.200127.002
Batova M, 2021, J IND INTEGR MANAG, V06, P15, DOI 10.1142/S2424862220500256
Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3
Brown TE, 2017, BUS HORIZONS, V60, P819, DOI 10.1016/j.bushor.2017.07.008
Cai HM, 2018, ENTERP INF SYST-UK, V12, P1239, DOI 10.1080/17517575.2018.1442933
Cai YJ, 2020, INT J PROD ECON, V229, DOI 10.1016/j.ijpe.2020.107729
Chen H, 2021, J MANAG ANAL, V8, P36, DOI 10.1080/23270012.2020.1852895
Chen H, 2022, J MANAG ANAL, V9, P17, DOI 10.1080/23270012.2021.1980445
Chong AYL, 2014, EXPERT SYST APPL, V41, P221, DOI 10.1016/j.eswa.2013.07.023
Coad A, 2020, SMALL BUS ECON, V55, P541, DOI 10.1007/s11187-019-00203-3
Denton DK, 1997, INT J TECHNOL MANAGE, V14, P249, DOI 10.1504/IJTM.1997.001716
Duan L, 2012, IEEE T IND INFORM, V8, P679, DOI 10.1109/TII.2012.2188804
Eckhardt JT, 2003, J MANAGE, V29, P333, DOI 10.1177/014920630302900304
Faheem M, 2021, J IND INF INTEGR, V24, DOI 10.1016/j.jii.2021.100236
Fossen FM, 2021, J BUS RES, V125, P548, DOI 10.1016/j.jbusres.2019.09.019
Garbuio M, 2019, CALIF MANAGE REV, V61, P59, DOI 10.1177/0008125618811931
Garfield E, 2006, INT J EPIDEMIOL, V35, P1123, DOI 10.1093/ije/dyl189
Gashenko IV, 2020, J INTELLECT CAP, V21, P531, DOI 10.1108/JIC-11-2019-0275
Ghobakhloo M, 2019, J IND INF INTEGR, V16, DOI 10.1016/j.jii.2019.100107
GORDON WL, 1987, J SYST MANAGE, V38, P24
Gunning D, 2016, AI MAG, V37, P5, DOI 10.1609/aimag.v37i2.2624
Hämäläinen E, 2019, J IND INF INTEGR, V16, DOI 10.1016/j.jii.2019.100105
Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014
Huang BM, 2019, ENTERP INF SYST-UK, V13, P132, DOI 10.1080/17517575.2018.1493145
Huang CX, 2019, FUTURE GENER COMP SY, V101, P197, DOI 10.1016/j.future.2019.05.075
Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459
Iandolo F, 2021, SYST RES BEHAV SCI, V38, P738, DOI 10.1002/sres.2731
Iansiti M, 2020, HARVARD BUS REV, V98, P59
Ilie C, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11082384
Ingaldi M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11184830
Jarrahi MH, 2018, BUS HORIZONS, V61, P577, DOI 10.1016/j.bushor.2018.03.007
Jiang YX, 2009, SYST RES BEHAV SCI, V26, P661, DOI 10.1002/sres.967
Jin BE, 2020, BUS HORIZONS, V63, P301, DOI 10.1016/j.bushor.2020.01.004
Kalia P, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2020.106608
Kaminski JC, 2020, SMALL BUS ECON, V55, P627, DOI 10.1007/s11187-019-00218-w
Kang Y, 2020, J MANAG ANAL, V7, P139, DOI 10.1080/23270012.2020.1756939
Lei JS, 2019, J IND INTEGR MANAG, V4, DOI 10.1142/S2424862219500088
Li FC, 2012, EXPERT SYST APPL, V39, P12213, DOI 10.1016/j.eswa.2012.04.055
Li HX, 2003, EXPERT SYST, V20, P60, DOI 10.1111/1468-0394.00226
Li SC, 2018, J IND INF INTEGR, V10, P1, DOI 10.1016/j.jii.2018.01.005
Li SC, 2013, IEEE T IND INFORM, V9, P2177, DOI 10.1109/TII.2012.2189222
Liebregts W, 2020, SMALL BUS ECON, V55, P589, DOI 10.1007/s11187-019-00205-1
Lin SJ, 2019, J INTELL FUZZY SYST, V37, P1893, DOI 10.3233/JIFS-179251
Lu Y, 2018, J IND INTEGR MANAG, V3, DOI 10.1142/S242486221850015X
Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365
Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006
Mariani M, 2020, TOUR REV, V75, P299, DOI 10.1108/TR-06-2019-0259
Masurel E, 2002, GROWTH CHANGE, V33, P238, DOI 10.1111/0017-4815.00189
Miao ZY, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.01615
Momtaz PP, 2021, STRATEGIC MANAGE J, V42, P558, DOI 10.1002/smj.3235
Munoko I, 2020, J BUS ETHICS, V167, P209, DOI 10.1007/s10551-019-04407-1
Norinder U, 2022, J MANAG ANAL, V9, P1, DOI 10.1080/23270012.2022.2031324
Obschonka M, 2020, SMALL BUS ECON, V55, P529, DOI 10.1007/s11187-019-00202-4
Omoteso K, 2012, EXPERT SYST APPL, V39, P8490, DOI 10.1016/j.eswa.2012.01.098
Palmié M, 2020, TECHNOL FORECAST SOC, V151, DOI 10.1016/j.techfore.2019.119779
Paschen J, 2019, J BUS IND MARK, V34, P1410, DOI 10.1108/JBIM-10-2018-0295
Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006
Popkova EG, 2020, J INTELLECT CAP, V21, P565, DOI 10.1108/JIC-09-2019-0224
Prüfer J, 2020, SMALL BUS ECON, V55, P651, DOI 10.1007/s11187-019-00208-y
QINGZHI Z, 2018, J IND INTEGR MANAG, V3
Reis C, 2020, J BUS RES, V117, P232, DOI 10.1016/j.jbusres.2020.05.053
Roberge J, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720919968
Samet RH, 2011, FUTURES, V43, P831, DOI 10.1016/j.futures.2011.05.025
Santos AI., 2017, The Sun Shines on Europe: Transparency of Financial Relationships in the Healthcare Sector
Shi ZZ, 2007, DECIS SUPPORT SYST, V42, P2016, DOI 10.1016/j.dss.2004.11.006
Tan A., 2007, 13 ANN FUELS LUBES A
Tan WA, 2008, IEEE T SYST MAN CY C, V38, P745, DOI 10.1109/TSMCC.2008.2001571
Townsend D M., 2019, Journal of Business Venturing Insights, V11, pe00126, DOI DOI 10.1016/J.JBVI.2019.E00126
Tung K, 2019, J MANAG ANAL, V6, P390, DOI 10.1080/23270012.2019.1671242
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vanhala M, 2020, J BUS RES, V106, P46, DOI 10.1016/j.jbusres.2019.09.009
Vidgen R, 2020, EUR J OPER RES, V281, P491, DOI 10.1016/j.ejor.2019.04.036
Viriyasitavat W, 2019, IEEE INTERNET THINGS, V6, P8155, DOI 10.1109/JIOT.2019.2925825
Waltman L, 2015, J INFORMETR, V9, P872, DOI 10.1016/j.joi.2015.08.001
Wang P, 2010, EXPERT SYST APPL, V37, P1071, DOI 10.1016/j.eswa.2009.06.104
Wang XL, 2021, J MANAG ANAL, V8, P351, DOI 10.1080/23270012.2021.1961318
Warner KSR, 2019, LONG RANGE PLANN, V52, P326, DOI 10.1016/j.lrp.2018.12.001
Wilson-Nash C, 2020, EUR J MARKETING, V54, P2621, DOI 10.1108/EJM-07-2019-0555
Wolfert S, 2017, AGR SYST, V153, P69, DOI 10.1016/j.agsy.2017.01.023
Wong LW, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.08.005
Xie XF, 2019, INT ENTREP MANAG J, V15, P503, DOI 10.1007/s11365-019-00562-z
Xu L, 2005, INT J PROD RES, V43, P2397, DOI 10.1080/00207540500047259
Xu L.D., 2021, Systems Research and Behavioral Science, V38, P187, DOI 10.1002/sres.2776
Xu LD., 2014, ENTERPRISE INTEGRATI
Xu LD, 2020, J IND INF INTEGR, V17, DOI 10.1016/j.jii.2020.100128
Da Xu L, 2013, SYST RES BEHAV SCI, V30, P211, DOI 10.1002/sres.2186
Xu LD, 2011, IEEE T IND INFORM, V7, P630, DOI 10.1109/TII.2011.2167156
Xu S, 2020, INT J CONTEMP HOSP M, V32, P2217, DOI 10.1108/IJCHM-05-2019-0505
Yuan RX, 2010, INFORM SYST FRONT, V12, P149, DOI 10.1007/s10796-008-9131-2
Zeng L, 2012, INFORM TECHNOL MANAG, V13, P297, DOI 10.1007/s10799-012-0123-z
Zhang CM, 2021, J IND INF INTEGR, V23, DOI 10.1016/j.jii.2021.100224
Zhang CM, 2020, J IND INTEGR MANAG, V5, P165, DOI 10.1142/S2424862219500192
Zhang SX, 2020, SMALL BUS ECON, V55, P607, DOI 10.1007/s11187-019-00217-x
Zhao R, 2019, MECH SYST SIGNAL PR, V115, P213, DOI 10.1016/j.ymssp.2018.05.050
Zhou SM, 2003, EXPERT SYST, V20, P163, DOI 10.1111/1468-0394.00240
Zhou SM, 2001, KNOWL-BASED SYST, V14, P243, DOI 10.1016/S0950-7051(01)00102-2
NR 103
TC 2
Z9 2
U1 16
U2 106
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1092-7026
EI 1099-1743
J9 SYST RES BEHAV SCI
JI Syst. Res. Behav. Sci.
PD MAY
PY 2022
VL 39
IS 3
SI SI
BP 379
EP 396
DI 10.1002/sres.2855
EA JUN 2022
PG 18
WC Management; Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Business & Economics; Social Sciences - Other Topics
GA 2P0YQ
UT WOS:000804474900001
DA 2024-09-05
ER
PT C
AU Parra-Domínguez, J
Manzano, S
De la Prieta, F
Prieto, J
AF Parra-Dominguez, Javier
Manzano, Sergio
De la Prieta, Fernando
Prieto, Javier
BE Omatu, S
Mehmood, R
Sitek, P
Cicerone, S
Rodriguez, S
TI The Importance of Classifying Artificial Intelligence as a Digital
Asset. A Bibliometric Study.
SO 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND ARTIFICIAL
INTELLIGENCE
SE Lecture Notes in Networks and Systems
LA English
DT Proceedings Paper
CT 19th International Symposium on Distributed Computing and Artificial
Intelligence
CY JUL 13-15, 2022
CL L'Aquila, ITALY
DE Digital assets; Artificial intelligence; Bibliometrics
ID BLOCKCHAIN; PRODUCTIVITY
AB The importance of Artificial Intelligence technology is manifested in the advancement of society. However, there is a growing need for the economic and business support that Artificial Intelligence can offer to be considered in its involvement as a digital asset. The motivation of this paper is precise to reflect the importance for academia of the concept of Artificial Intelligence as a digital asset since its capacity to generate intangible value for companies will make them more competitive. The main result is that Artificial Intelligence represents a significant percentage of the studies on digital assets, but not the other way around; this shows that most writings published so far have addressed the issue by focusing more on the technical aspect of the study (understood as the development of IT systems or solutions, for example). All shows the concern of the scientific community for the technological progress of the link between Artificial Intelligence and digital assets, but not in the sense of progress towards greater valuation of entities and organisations in economic and financial terms, which will make companies more competitive in their access to financing, for example. All of the above is refuted by the conceptualisation of current work, which works from the point of view of the advancement of artificial intelligence in specific areas of the company, such as marketing or finance, or sectors such as manufacturing, but not from an aggregate point of view as presented here.
C1 [Parra-Dominguez, Javier; Manzano, Sergio; De la Prieta, Fernando; Prieto, Javier] Univ Salamanca, BISITE Res Grp, Salamanca, Spain.
[Parra-Dominguez, Javier; Manzano, Sergio; De la Prieta, Fernando; Prieto, Javier] IoT Digital Innovat Hub, Valladolid, Spain.
[Prieto, Javier] AIR Inst, Deep Tech Lab, Valladolid, Spain.
C3 University of Salamanca
RP Manzano, S (corresponding author), Univ Salamanca, BISITE Res Grp, Salamanca, Spain.; Manzano, S (corresponding author), IoT Digital Innovat Hub, Valladolid, Spain.
EM javierparra@usal.es; smanzano@usal.es; fer@usal.es; javierp@usal.es
RI Parra, Javier/ABE-5866-2021; Prieto, Javier/H-3704-2015; De la Prieta,
Fernando/H-4738-2015
OI Parra, Javier/0000-0002-1088-9152; Prieto, Javier/0000-0001-8175-2201;
De la Prieta, Fernando/0000-0002-8239-5020
FU European Regional Development Fund (ERDF) through the Interreg
Spain-Portugal V -A Program (POCTEP) [0677_DISRUPTIVE_2_E]
FX This work has been partially supported by the European Regional
Development Fund (ERDF) through the Interreg Spain-Portugal V -A Program
(POCTEP) under gran 0677_DISRUPTIVE_2_E (Intensifying the activity of
Digital Innovation Hubs within the PocTep region to boost the
development of disruptive and last generation ICTs through cross-border
cooperation).
CR Abrishambaf O, 2017, ENERGIES, V10, DOI 10.3390/en10060806
Agrawal D, 2020, ADCAIJ-ADV DISTRIB C, V9, P91, DOI 10.14201/ADCAIJ20209291105
Ahmad P, 2021, ADCAIJ-ADV DISTRIB C, V10, P197, DOI 10.14201/ADCAIJ2021102197208
[Anonymous], 2013, P 2013 WORKSHOP LIVI
[Anonymous], 2019, C BUS LAW REV, V443
Belanche D, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102585
Bertrand Sebastien, 2021, Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1242), P201, DOI 10.1007/978-3-030-53829-3_21
Blanke T, 2014, CHANDOS INF PROF SER, P1
Capel E.H., 2015, BERKELEY TECHNOLOGY, V30, P1211
Casado-Vara R, 2018, BLOCKSYS'18: PROCEEDINGS OF THE 1ST BLOCKCHAIN-ENABLED NETWORKED SENSOR SYSTEMS, P19, DOI 10.1145/3282278.3282282
Schmidt WC, 2020, ADCAIJ-ADV DISTRIB C, V9, P51, DOI 10.14201/ADCAIJ2020915159
Chen G, 2019, J ADVERTISING, V48, P347, DOI 10.1080/00913367.2019.1654421
Cock Vasquez S., 2016, THESIS U EAFIT
Corchado JM, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21010236
Corrado C, 2021, OXFORD REV ECON POL, V37, P435, DOI 10.1093/oxrep/grab018
Dhamija P, 2020, TQM J, V32, P869, DOI 10.1108/TQM-10-2019-0243
Gazafroudi AS, 2019, IET RENEW POWER GEN, V13, P952, DOI 10.1049/iet-rpg.2018.6023
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Han RY, 2021, IND MANAGE DATA SYST, V121, P2467, DOI 10.1108/IMDS-05-2021-0300
Harish AR, 2021, COMPUT IND ENG, V151, DOI 10.1016/j.cie.2020.107001
Hernandez-Nieves Elena., 2020, DISTRIBUTED COMPUTIN, P303, DOI DOI 10.1007/978-3-030-53036-5_33
Iotti Eleonora, 2021, Distributed Computing and Artificial Intelligence, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1237), P60, DOI 10.1007/978-3-030-53036-5_7
Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003
Khan R, 2021, ADCAIJ-ADV DISTRIB C, V10, P281, DOI 10.14201/ADCAIJ2021103281291
Kumar S., 2020, Libr. Philos. Pract., V2020, P1
La Rosa A., 2016, Correspondencias & Analisis, V6, P47, DOI [10.24265/cian.2016.n6.03, DOI 10.24265/CIAN.2016.N6.03]
Li TC, 2019, INFORM FUSION, V51, P233, DOI 10.1016/j.inffus.2019.02.009
Loukanova Roussanka, 2021, Distributed Computing and Artificial Intelligence, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1237), P321, DOI 10.1007/978-3-030-53036-5_35
Mezquita Yeray, 2021, Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1242), P189, DOI 10.1007/978-3-030-53829-3_20
Mezquita Y, 2022, LOG J IGPL, V30, P1017, DOI 10.1093/jigpal/jzac010
Miric M, 2019, RES POLICY, V48, DOI 10.1016/j.respol.2019.01.012
Nielsen Izabela, 2021, Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1242), P5, DOI 10.1007/978-3-030-53829-3_1
Pérez-Pons ME, 2020, ADCAIJ-ADV DISTRIB C, V9, P47, DOI 10.14201/ADCAIJ2020944754
Plaza-Hernandez Marta, 2021, Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference. Advances in Intelligent Systems and Computing (AISC 1242), P215, DOI 10.1007/978-3-030-53829-3_24
Queiroz J, 2020, ADCAIJ-ADV DISTRIB C, V9, P31, DOI 10.14201/ADCAIJ2020943145
Ramo DE, 2012, J MED INTERNET RES, V14, DOI 10.2196/jmir.1878
Riahi Y, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114702
Rodgers S, 2021, J ADVERTISING, V50, P1, DOI 10.1080/00913367.2020.1868233
Roseiro P, 2020, ADCAIJ-ADV DISTRIB C, V9, P95, DOI 10.14201/ADCAIJ20209495106
Sifah EB, 2018, J SUPERCOMPUT, V74, P4945, DOI 10.1007/s11227-018-2308-7
Toygar A., 2013, J. Int. Technol. Inf. Manag, V22, P7
Vakratsas D, 2020, J ADVERTISING, V50, P39, DOI 10.1080/00913367.2020.1843090
Yigitcanlar T., 2020, Journal of Open Innovation: Technology, Market, and Complexity, V6, P187, DOI DOI 10.3390/JOITMC6040187
NR 43
TC 0
Z9 0
U1 2
U2 10
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2367-3370
EI 2367-3389
BN 978-3-031-20858-4; 978-3-031-20859-1
J9 LECT NOTE NETW SYST
PY 2023
VL 583
BP 154
EP 164
DI 10.1007/978-3-031-20859-1_16
PG 11
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BU6TO
UT WOS:000929025600016
DA 2024-09-05
ER
PT J
AU de Stefano, E
Santos, MPD
Balassiano, R
AF de Stefano, Ercilia
de Sequeira Santos, Marcio Peixoto
Balassiano, Ronaldo
TI Development of a software for metric studies of transportation
engineering journals
SO SCIENTOMETRICS
LA English
DT Article
DE Scientometrics; Informetrics; Bibliometrics; Artificial intelligence;
Natural language processing; Transportation engineering
AB This study intends to describe the development and results of a software designed to analyze millions of articles in the area of Transportation Engineering. This tool intends to support Transportation Planning activities by providing additional information about trends, references and technologies. In order to develop this software, techniques from scientometrics, bibliometrics and informetrics were employed with the support of tools from Computer Science, such as Artificial Intelligence, Data Mining and Natural Language Processing. The result of this study is a structured database that allows browsing the change of interest in different topics along the years in areas related to Transportation Engineering. When analyzing a given area, the database is capable of identifying which authors published works in that area, allowing the identification of specialists and related papers. In addition, the software responsible for creating this database is capable of performing the same analysis in academic corpora of other areas of study.
C1 [de Stefano, Ercilia; de Sequeira Santos, Marcio Peixoto; Balassiano, Ronaldo] COPPE UFRJ, Transportat Engn Program PET, Rio De Janeiro, Brazil.
C3 Universidade Federal do Rio de Janeiro
RP de Stefano, E (corresponding author), COPPE UFRJ, Transportat Engn Program PET, Rio De Janeiro, Brazil.
EM ercilia@pet.coppe.ufrj.br; marcio@pet.coppe.ufrj.br;
ronaldo@pet.coppe.ufrj.br
CR Aggarwal N, 2012, ADV ENG SOFTW, V47, P164, DOI 10.1016/j.advengsoft.2011.12.013
Aizawa A, 2003, INFORM PROCESS MANAG, V39, P45, DOI 10.1016/S0306-4573(02)00021-3
[Anonymous], 2001, CHALLENGE SCIENTOMET
Björneborn L, 2004, J AM SOC INF SCI TEC, V55, P1216, DOI 10.1002/asi.20077
Brin S., 2001, TECHNICAL REPORT
Furlan B, 2013, DECIS SUPPORT SYST, V55, P710, DOI 10.1016/j.dss.2013.02.002
Garfield E., 2000, USE J CITATION REPOR
He W, 2013, INT J INFORM MANAGE, V33, P464, DOI 10.1016/j.ijinfomgt.2013.01.001
Hong TP, 2013, APPL INTELL, V38, P502, DOI 10.1007/s10489-012-0377-5
Jacomy M., 2009, 3 INT AAAI C WEBL SO
Jurish B., 2013, JLCL, V28, P61
Leskovec J, 2014, MINING OF MASSIVE DATASETS, 2ND EDITION, P1
Leydesdorff L., 2013, SCIENTOMETRICS SCH I
Markscheffel B., 2011, ONTOLOGY BASED VISUA
Princeton University, 2015, WORDNET
Sage AP., 1990, Concise Encyclopedia of Information Processing in Systems [18]
Silva J. A. D., 2001, CIENTOMETRIA METRICA, DOI [10.1590/S0103-863X2001000200002, DOI 10.1590/S0103-863X2001000200002]
Spinak E., 1996, Diccionario Enciclopedico de Bibliometria, Cienciometria e Informetria
Tague-Sutcliffe J., 1992, INTRO INFORMETRICS
Van Noorden R, 2014, GLOBAL SCI OUTPUT DO
Yue X., 2012, INT WORKSH INF EL EN
NR 21
TC 3
Z9 3
U1 0
U2 53
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2016
VL 109
IS 3
BP 1579
EP 1591
DI 10.1007/s11192-016-2152-6
PG 13
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA EE1JA
UT WOS:000389336100010
DA 2024-09-05
ER
PT C
AU Scanlon, E
O'Shea, T
McAndrew, P
AF Scanlon, Eileen
O'Shea, Tim
McAndrew, Patrick
GP Assoc Comp Machinery
TI Learning in the Open: A Research Agenda for MOOCs
SO CSCW'17: COMPANION OF THE 2017 ACM CONFERENCE ON COMPUTER SUPPORTED
COOPERATIVE WORK AND SOCIAL COMPUTING
LA English
DT Proceedings Paper
CT ACM Conference on Computer Supported Cooperative Work and Social
Computing (CSCW)
CY FEB 25-MAR 01, 2017
CL Portland, OR
DE collaboration; distance learning; online learning; research agenda;
evidence hub
AB The development of online distance learning and the early years of the recent MOOC phenomenon leads to a mix of lessons from experience and emergent findings from studies in new contexts that require further reflection and research. Seven issues are identified from this combination each of which require attention to allow evidence-based practice in MOOC design and development. Some preliminary hypotheses are presented and an approach to interrogating evidence to develop and evaluate these hypotheses by the construction of an Evidence Hub is proposed as a next step to this work in progress.
C1 [Scanlon, Eileen; McAndrew, Patrick] IET Open Univ, Milton Keynes MK7 6AA, Bucks, England.
[O'Shea, Tim] Univ Edinburgh, Edinburgh EH8 9YL, Midlothian, Scotland.
C3 University of Edinburgh
RP Scanlon, E (corresponding author), IET Open Univ, Milton Keynes MK7 6AA, Bucks, England.
EM eileen.scanlon@open.ac.uk; principal@ed.ac.uk; IET-Director@open.ac.uk
CR [Anonymous], 2013, 3 INT C LEARN AN KNO
Ferguson R., 2016, MOOCs: What the Open University research tells us
Ferguson Rebecca, 2014, MOOC SUPPORT STRUCTU
Jordan K, 2014, INT REV RES OPEN DIS, V15, DOI 10.19173/irrodl.v15i1.1651
McAndrew P, 2013, SCIENCE, V342, P1450, DOI 10.1126/science.1239686
McAndrew Patrick, 2013, OPEN ED RESOURCES IN, P65
McAuley B., 2010, The MOOC model for digital practice
Papathoma Tina, 2015, Design for Teaching and Learning in a Networked World. 10th European Conference on Technology-Enhanced Learning, EC-TEL 2015. Proceedings: LNCS 9307, P617, DOI 10.1007/978-3-319-24258-3_72
Ross S., 1995, OPEN SCI DISTANCE TE
Sharples M, 2016, LECT NOTES COMPUT SC, V9891, P490, DOI 10.1007/978-3-319-45153-4_48
Siemens G., 2012, WHAT IS THEORY UNDER
NR 11
TC 0
Z9 0
U1 0
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-4688-7
PY 2017
BP 303
EP 306
DI 10.1145/3022198.3026323
PG 4
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Social Sciences, Interdisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Social Sciences - Other Topics
GA BL7JF
UT WOS:000455085000075
DA 2024-09-05
ER
PT J
AU Saeed, MA
Al Qunayeer, HS
AF Saeed, Murad Abdu
Al Qunayeer, Huda Suleiman
TI Can we engage postgraduates in active research methodology learning?
Challenges, strategies and evaluation of learning
SO INTERNATIONAL JOURNAL OF RESEARCH & METHOD IN EDUCATION
LA English
DT Article
DE Research methodology; active learning; postgraduates; challenges;
evaluation of learning
ID TEACHING-RESEARCH METHODS; STUDENTS; PEDAGOGY; SCIENCE
AB Due to the complex nature of research methodology courses, the current study focused on implementing the active teaching and learning approach to a postgraduate research method course in a Malaysian university over an academic semester. A qualitative analysis of observations, instructor-learner interactional exchanges, students' drafts of tasks and pre-course and focus group discussion was performed. The findings revealed three types of challenges: student-oriented challenges, subject-matter-related challenges and instructor-oriented challenges. Three main pedagogical strategies: instructional scaffolding, peer scaffolding and engaging the postgraduates in drafting their tasks were employed as a response to these challenges. Although the active teaching and learning practices resulted into students' enhancement of the assigned research methodology tasks and positive research learning experience, such practices were time and effort-consuming. Therefore, future research will need to examine the applicability of our active teaching and learning approach to research methodology courses in different contexts.
C1 [Saeed, Murad Abdu] Qassim Univ, Unaizah Coll Sci & Arts, Qasim, Saudi Arabia.
[Al Qunayeer, Huda Suleiman] Qassim Univ, Unaizah Coll Sci & Arts, Dept English, Qasim, Saudi Arabia.
C3 Qassim University; Qassim University
RP Saeed, MA (corresponding author), Qassim Univ, Unaizah Coll Sci & Arts, Qasim, Saudi Arabia.
EM muradsaeed16@yahoo.com
RI Saeed, Murad Abdu/R-7669-2017
OI Saeed, Murad Abdu/0000-0003-2933-7929
CR An H, 2009, COMPUT EDUC, V53, P749, DOI 10.1016/j.compedu.2009.04.015
[Anonymous], 2005, J U TEACHING LEARNIN
Ball C., 2006, INT J TEACHING LEARN, V17, P147, DOI DOI 10.5430/IJHE.V7N2P175
Benson A., 2003, Active Learning in Higher Education, V4, P39, DOI DOI 10.1177/1469787403004001004
Braguglia K.H., 2012, American Journal of Business Education, V5, P347
Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA]
Llamas JMC, 2011, INT J SOC RES METHOD, V14, P77, DOI 10.1080/13645579.2010.492136
Earley MA, 2014, TEACH HIGH EDUC, V19, P242, DOI 10.1080/13562517.2013.860105
Edwards D., 2004, J FURTH HIGHER EDUC, V28, P195
Ellis R. A., 2016, REV EDUC, V4, P49
Engbers TA, 2016, TEACH PUBLIC ADMIN, V34, P270, DOI 10.1177/0144739416640850
Faust JL., 1998, Journal onExcellence in College Teaching, V9, P3, DOI [10.5926/arepj1962.47.029, DOI 10.5926/AREPJ1962.47.029]
Gibbons P, 2003, TESOL QUART, V37, P247, DOI 10.2307/3588504
Greenwald M., 2006, Communication Disorder Quarterly, V27, P173, DOI [10.1177/15257401060270030501, DOI 10.1177/15257401060270030501]
Howard C, 2015, INT J SOC RES METHOD, V18, P511, DOI 10.1080/13645579.2015.1062625
Hudson B, 2006, BRIT J EDUC TECHNOL, V37, P577, DOI 10.1111/j.1467-8535.2006.00553.x
Jakeman RC, 2017, TEACH HIGH EDUC, V22, P207, DOI 10.1080/13562517.2016.1237494
Keenan K, 2012, J GEOGR, V111, P224, DOI 10.1080/00221341.2011.653651
Kilburn D, 2014, BRIT J EDUC STUD, V62, P191, DOI 10.1080/00071005.2014.918576
Kothari C. R., 2004, Research Methodology
Lewthwaite S, 2016, BRIT J EDUC STUD, V64, P413, DOI 10.1080/00071005.2016.1197882
Lundahl BW, 2008, J TEACH SOC WORK, V28, P273, DOI 10.1080/08841230802179373
Lyster R., 2002, International Journal of Educational Research, V37, P237
Murtonen M, 2015, TEACH HIGH EDUC, V20, P684, DOI 10.1080/13562517.2015.1072152
Nind M, 2018, INT J RES METHOD EDU, V41, P398, DOI 10.1080/1743727X.2018.1427057
Nind M, 2018, INT J INCLUSIVE EDUC, V22, P74, DOI 10.1080/13603116.2017.1355413
Roman TA, 2018, INT J RES METHOD EDU, V41, P447, DOI 10.1080/1743727X.2018.1452199
Vandiver D.M., 2010, Active Learning in Higher Education, V11, P31, DOI DOI 10.1177/1469787409355877
Vygotsky LS, 1978, Mind in Society: Development of Higher Psychological Processes, DOI [DOI 10.2307/J.CTVJF9VZ4, 10.2307/j.ctvjf9vz4]
Wagner C, 2011, STUD HIGH EDUC, V36, P75, DOI 10.1080/03075070903452594
Woo Y., 2007, Internet and Higher Education, V10, P15, DOI 10.1016/j.iheduc.2006.10.005
Yao CW, 2019, J FURTH HIGHER EDUC, V43, P959, DOI 10.1080/0309877X.2018.1429583
NR 32
TC 4
Z9 4
U1 1
U2 9
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1743-727X
EI 1743-7288
J9 INT J RES METHOD EDU
JI Int. J. Res. Method Educ.
PD JAN 1
PY 2021
VL 44
IS 1
BP 3
EP 19
DI 10.1080/1743727X.2020.1728526
EA FEB 2020
PG 17
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA PW9WL
UT WOS:000514976200001
DA 2024-09-05
ER
PT C
AU Sayce, S
AF Sayce, Susan
BE Remenyi, D
TI Managing the Fear Factor (or how a Mini-Viva Assessment can Improve the
Process of Learning for International Students)
SO ECRM 2007: 6TH EUROPEAN CONFERENCE ON RESEARCH METHODOLOGY FOR BUSINESS
AND MANAGEMENT STUDIES
LA English
DT Proceedings Paper
CT 6th European Conference on Research Methodology for Business and
Management Studies (ECRM)
CY JUL 09-10, 2007
CL Univ Nova Lisboa, Lisbon, PORTUGAL
HO Univ Nova Lisboa
DE International students; research methods; mini-viva; deep learning;
assessment
ID EDUCATION
AB This paper is about an exploration of international business student's learning through the use of mini-vivas as a form of assessment. It also includes an investigation of the meaning of a mini-viva for students who have a wide range of nationalities. Pedagogical research has indicated that using this form of summative assessment for large cohorts of international students maybe problematic (Carless 2002). However, experimentation with this model of assessment with MA business students in research methods has indicated that mini-vivas can enhance and consolidate the learning potential of international students. So in effect this paper is also about explaining why this has happened in relation to student's learning.
C1 [Sayce, Susan] Bournemouth Univ, Bournemouth, Dorset, England.
C3 Bournemouth University
EM ssayce@bournemouth.ac.uk
CR Ashcroft K, 2002, MANAGING TEACHING LE
Berg B., 2004, Qualitative research methods for the social sciences, DOI DOI 10.2307/1317652
Boud D., 1995, Assessment for learning in higher education
Brooks I., 2003, Organisational Behaviour, V2nd
Bryman Alan., 2003, Social Research Methods, V4th
Carless D., 2002, Assessment and Evaluation in Higher Education, V27, P353, DOI [https://doi.org/10.1080/0260293022000001364, DOI 10.1080/0260293022000001364]
Case J, 2004, STUD HIGH EDUC, V29, P605, DOI 10.1080/0307507042000261571
Collis J., 2003, BUSINESS RES
ENTWISTLE NJ, 1991, HIGH EDUC, V22, P205, DOI 10.1007/BF00132288
Flick U., 2009, INTRO QUALITATIVE RE, DOI DOI 10.1287/ORSC.13.6.618.493
Greer L., 2001, Assessment and Evaluation in Higher Education, V26, P127, DOI [https://doi.org/10.1080/02602930020018962, DOI 10.1080/02602930020018962]
James D., 2000, Assessment: Social Practice and Social Product
Leathwood C, 2006, HIGH EDUC, V52, P611, DOI 10.1007/s10734-005-2414-3
Mehta R., 2005, J. Macromol. Sci. Part C Polym. Rev, V45, P325, DOI DOI 10.1080/02602930500099102
Prosser M., 1999, UNDERSTANDING LEARNI
Ramsden P., 2003, Learning to Teach in Higher Education, V2nd, DOI DOI 10.1080/03075079312331382498
Rust C., 1998, IMPROVING STUDENT LE
Trigwell K, 1999, HIGH EDUC, V37, P57, DOI 10.1023/A:1003548313194
Yorke M, 2003, HIGH EDUC, V45, P477, DOI 10.1023/A:1023967026413
NR 19
TC 0
Z9 0
U1 0
U2 1
PU ACAD CONFERENCES LTD
PI NR READING
PA CURTIS FARM, KIDMORE END, NR READING, RG4 9AY, ENGLAND
BN 978-1-905305-50-6
PY 2007
BP 275
EP 282
PG 8
WC Business; Management
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics
GA BYT73
UT WOS:000300195700030
DA 2024-09-05
ER
PT J
AU Shaikh, AR
Alhoori, H
Sun, MY
AF Shaikh, Abdul Rahman
Alhoori, Hamed
Sun, Maoyuan
TI YouTube and science: models for research impact
SO SCIENTOMETRICS
LA English
DT Article
DE Social media; YouTube; Societal impact; Research impact; Science of
science; MetaScience; Machine learning; Altmetrics; Scientometrics;
Scholarly communication
ID ALTMETRICS
AB Video communication has been rapidly increasing over the past decade, with YouTube providing a medium where users can post, discover, share, and react to videos. There has also been an increase in the number of videos citing research articles, especially since it has become relatively commonplace for academic conferences to require video submissions. However, the relationship between research articles and YouTube videos is not clear, and the purpose of the present paper is to address this issue. We created new datasets using YouTube videos and mentions of research articles on various online platforms. We found that most of the articles cited in the videos are related to medicine and biochemistry. We analyzed these datasets through statistical techniques and visualization, and built machine learning models to predict (1) whether a research article is cited in videos, (2) whether a research article cited in a video achieves a level of popularity, and (3) whether a video citing a research article becomes popular. The best models achieved F1 scores between 80% and 94%. According to our results, research articles mentioned in more tweets and news coverage have a higher chance of receiving video citations. We also found that video views are important for predicting citations and increasing research articles' popularity and public engagement with science.
C1 [Shaikh, Abdul Rahman; Alhoori, Hamed; Sun, Maoyuan] Northern Illinois Univ, De Kalb, IL 60115 USA.
C3 Northern Illinois University
RP Shaikh, AR (corresponding author), Northern Illinois Univ, De Kalb, IL 60115 USA.
EM ashaikh2@niu.edu; alhoori@niu.edu; smaoyuan@niu.edu
RI Rahman, Abdul/KBD-0934-2024
OI Alhoori, Hamed/0000-0002-4733-6586; Shaikh, Abdul
Rahman/0000-0002-6046-4638; Sun, Maoyuan/0000-0002-0990-2620
FU NSF; Research and Artistry Opportunity Grant from Northern Illinois
University; [SMA-2022443]; [IIS-2002082]
FX AcknowledgementsThis research is supported in part by NSF Grants
SMA-2022443, IIS-2002082, and the Research and Artistry Opportunity
Grant from Northern Illinois University.
CR AAO, 2021, VID SUBM INSTR AAO
Agazio J, 2009, NURS EDUC, V34, P23, DOI 10.1097/01.NNE.0000343403.13234.a2
Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128
Alexa, 2021, Alexa-top sites
[Anonymous], 2012, P 21 INT C WORLD WID, DOI DOI 10.1145/2187836.2187870
[Anonymous], 2015, Incentives and Performance
Beehler, 2020, GOING VIRAL TAKING Y
Bonifati A., 2020, HOLDING C ONLINE LIV
Borghol Y., 2012, Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, P1186, DOI [DOI 10.1145/2339530.2339717, 10.1145/2339530.2339717]
Bornmann L, 2019, J INFORMETR, V13, P325, DOI 10.1016/j.joi.2019.01.008
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
CHI, 2021, TECHN REQ GUID VID C
Chtouki Y., 2012, 2012 INT C INF TECHN, P1, DOI [DOI 10.1109/ITHET.2012.6246045, 10.1109/ITHET.2012.6246045]
Falk MT, 2021, SCIENTOMETRICS, V126, P707, DOI 10.1007/s11192-020-03754-5
Figueiredo F, 2014, 32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), P979, DOI 10.1145/2556288.2557285
Freeman C., 2020, PROC ACM HUM COMPUT, V4
Freeman C, 2019, ACM-IEEE J CONF DIG, P301, DOI 10.1109/JCDL.2019.00050
Hemminger BM, 2014, J ASSOC INF SCI TECH, V65, P2278, DOI 10.1002/asi.23124
Hovden R, 2013, J AM SOC INF SCI TEC, V64, P2326, DOI 10.1002/asi.22936
Jaffar AA, 2012, ANAT SCI EDUC, V5, P158, DOI 10.1002/ase.1268
Johnston ANB, 2018, NURSE EDUC PRACT, V31, P151, DOI 10.1016/j.nepr.2018.06.002
June S., 2014, Internal Education Studies, V7, P56, DOI [10.5539/ies.v7n8p56, DOI 10.5539/IES.V7N8P56]
Khan GF, 2014, INTERNET RES, V24, P629, DOI 10.1108/IntR-05-2013-0085
Kousha K, 2022, SCIENTOMETRICS, V127, P3489, DOI 10.1007/s11192-022-04398-3
Liu MJ, 2022, J ASSOC INF SCI TECH, V73, P1065, DOI 10.1002/asi.24612
Ma CS, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P467, DOI 10.1145/3132847.3132997
Madathil KC, 2015, HEALTH INFORM J, V21, P173, DOI 10.1177/1460458213512220
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Pinto H., 2013, P 6 ACM INT C WEB SE, P365, DOI DOI 10.1145/2433396.2433443
Price M., 2020, COVID 19 FORCES C ON
Rodriguez, 2021, YOUTUBE IS SOCIAL ME
Shahzad M, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101288
Shahzad M, 2022, J DATA INFO SCI, V7, P97, DOI 10.2478/jdis-2022-0003
Shaikh A.R, 2022, 2022 IEEE VIS C
Shaikh AR, 2019, ACM-IEEE J CONF DIG, P400, DOI 10.1109/JCDL.2019.00089
Snelson C, 2012, BRIT J EDUC TECHNOL, V43, P119, DOI 10.1111/j.1467-8535.2010.01168.x
Suciu, 2021, YOUTUBE REMAINS MOST
Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2
Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833
Sun M., 2021, IEEE T VIS COMPUT GR, V28, P4741
Sun MY, 2022, IEEE T VIS COMPUT GR, V28, P54, DOI 10.1109/TVCG.2021.3114801
Susarla A, 2012, INFORM SYST RES, V23, P23, DOI 10.1287/isre.1100.0339
TechPostPlus, 2019, YOUT VID CAT LIST
Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008
Trzcinski T, 2017, IEEE T MULTIMEDIA, V19, P2561, DOI 10.1109/TMM.2017.2695439
Welbourne DJ, 2016, PUBLIC UNDERST SCI, V25, P706, DOI 10.1177/0963662515572068
Xie L., 2015, 9 INT AAAI C WEB SOC
YouTube, 2021, PRESS YOUT
NR 48
TC 6
Z9 7
U1 6
U2 38
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD FEB
PY 2023
VL 128
IS 2
BP 933
EP 955
DI 10.1007/s11192-022-04574-5
EA DEC 2022
PG 23
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 8W6QB
UT WOS:000895039100004
PM 36530773
OA Green Published, Bronze
DA 2024-09-05
ER
PT J
AU Singh, N
AF Singh, Nitin
TI Big data technology: developments in current research and emerging
landscape
SO ENTERPRISE INFORMATION SYSTEMS
LA English
DT Article
DE Big data; analytics; research themes; principal component analysis;
citation analysis; co-citation analysis
ID DATA ANALYTICS; INFORMATION-SYSTEMS; BUSINESS ANALYTICS; CITATION
ANALYSIS; OPPORTUNITIES; CHALLENGES; COCITATION; IMPACT
AB In this study, big data studies (01/2015-6/2018) are reviewed and several highly cited papers are identified, which indicates a growing interest in the area of big data. The papers and proceedings from international peer-reviewed journals and ranked conferences were reviewed. We employed Principal component analysis and citation and co-citation analysis to identify themes of research emanating from these studies. Citation and co-citation analysis reveals that there is cross-functional nature of big data research, which permeates different business sectors and is influenced by themes in engineering and information management.
C1 [Singh, Nitin] IIM, Kashipur, India.
C3 Indian Institute of Management (IIM System); Indian Institute of
Management Kashipur
RP Singh, N (corresponding author), IIM, Kashipur, India.
EM nitin.singh@iimkashipur.ac.in
RI SINGH, NITIN/JEO-5380-2023
CR Ahmad F., 2016, ENTERPRISE INFORM SY, V11, P1352
Ahmed MS, 2015, IEEE ST CONF RES DEV, P32, DOI 10.1109/SCORED.2015.7449348
[Anonymous], 2011, BIG DATA NEXT FRONTI
[Anonymous], 2015, COMMUNICATIONS ASS I
[Anonymous], HARVARD BUSINESS REV
[Anonymous], 2015, PRINCIPAL COMPONENT
Babiceanu RF, 2016, COMPUT IND, V81, P128, DOI 10.1016/j.compind.2016.02.004
Back B.-H., 2017, ACM INT C BIG DAT RE, P12, DOI [10.2460/ajvr.78.1.12, DOI 10.2460/AJVR.78.1.12]
Baesens B., 2014, MIS Quarterly, V38, P629
Baesens B, 2017, MIT SLOAN MANAGE REV, V58, P20
Baughman AK, 2016, INTERFACES, V46, P33, DOI 10.1287/inte.2015.0820
Baumann P, 2017, IEEE INT CONF BIG DA, P67, DOI 10.1109/BigData.2017.8257912
Baumann P, 2016, INT J DIGIT EARTH, V9, P3, DOI 10.1080/17538947.2014.1003106
Benbernou S, 2017, IEEE INT CONF BIG DA, P74, DOI 10.1109/BigData.2017.8257913
Bhimani A, 2015, J INF TECHNOL-UK, V30, P66, DOI 10.1057/jit.2014.29
Bichler M, 2017, BUS INFORM SYST ENG+, V59, P77, DOI 10.1007/s12599-016-0461-1
Blei D, 2017, COMMUN ACM, V60, P24, DOI 10.1145/3079064
Brynjolfsson E., 2015, MIS Q, V40, P941, DOI DOI 10.25300/MISQ/2016/40.4.07
Chai S, 2017, MIT SLOAN MANAGE REV, V58, P57
Chen CLP, 2014, INFORM SCIENCES, V275, P314, DOI 10.1016/j.ins.2014.01.015
de Almeida PDC, 2015, IEEE INT CONGR BIG, P268, DOI 10.1109/BigDataCongress.2015.45
Constantiou ID, 2015, J INF TECHNOL-UK, V30, P44, DOI 10.1057/jit.2014.17
Date S, 2016, COMMUN ACM, V59, P44, DOI 10.1145/2909493
Demirkan H., 2015, CAIS, V37, P35, DOI DOI 10.17705/1CAIS.03735
Desouza KC, 2017, ADMIN SOC, V49, P1043, DOI 10.1177/0095399714555751
Elshater Y, 2015, IEEE INT CONGR BIG, P174, DOI 10.1109/BigDataCongress.2015.33
Emmanuel I., 2016, INT C BIG DAT ADV WI
Fitzgerald M., 2015, ENHANCING INTUITION
GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Gartner, 2017, HYP CYCL DAT MAN
Gates M., 2015, IEEE INT C BIG DAT S
Ghose A, 2016, MIS QUART, V40, P889, DOI 10.25300/MISQ/2016/40.4.05
Ghosh J, 2016, J GLOB INF TECH MAN, V19, P217, DOI 10.1080/1097198X.2016.1249667
Holden G, 2016, RES TECHNOL MANAGE, V59, P22, DOI 10.1080/08956308.2016.1208044
Holmes A., 2014, Hadoop in practice
Hong J, 2016, IEEE INT CONGR BIG, P9, DOI 10.1109/BigDataCongress.2016.11
IDC, 2017, DOUBL DIG GROWTH FOR
Itoh M., 2015, IEEE INT C BIG DAT
Jollife I.T., 2002, Principal component analysis
KAISER HF, 1974, PSYCHOMETRIKA, V39, P31, DOI 10.1007/BF02291575
Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1
Kallinikos J, 2015, J INF TECHNOL-UK, V30, P70, DOI 10.1057/jit.2014.36
Ketter W, 2016, MIS QUART, V40, P1057, DOI 10.25300/MISQ/2016/40.4.12
King JL, 2015, COMMUN ACM, V58, P31, DOI 10.1145/2723675
Kiron D., 2017, MIT SLOAN MANAGE REV, V58
Kugler L, 2016, COMMUN ACM, V59, P15, DOI 10.1145/2911975
Madhavji NH, 2015, 2015 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON BIG DATA SOFTWARE ENGINEERING, P11, DOI 10.1109/BIGDSE.2015.10
Markham SK, 2015, RES TECHNOL MANAGE, V58, P30, DOI 10.5437/08956308X5802291
Markus ML, 2015, J INF TECHNOL-UK, V30, P58, DOI 10.1057/jit.2014.28
Martens D, 2016, MIS QUART, V40, P869, DOI 10.25300/MISQ/2016/40.4.04
Menon S, 2016, MIS QUART, V40, P963, DOI 10.25300/MISQ/2016/40.4.08
Metcalf J, 2016, BIG DATA SOC, V3, DOI 10.1177/2053951716650211
Metcalf J, 2016, COMMUN ACM, V59, P31, DOI 10.1145/2935882
Mishra D, 2017, BUS PROCESS MANAG J, V23, P555, DOI 10.1108/BPMJ-10-2015-0149
Mohan A, 2016, IEEE INT CONGR BIG, P52, DOI 10.1109/BigDataCongress.2016.15
Nadal S, 2017, INFORM SOFTWARE TECH, V90, P75, DOI 10.1016/j.infsof.2017.06.001
Nair R, 2015, COMMUN ACM, V58, P104, DOI 10.1145/2688072
Ng CK, 2018, ENTERP INF SYST-UK, V12, P820, DOI 10.1080/17517575.2018.1464666
Osvaldo SS, 2017, INFORM SOFTWARE TECH, V92, P30, DOI 10.1016/j.infsof.2017.07.006
Palvia P., 2003, COMMUN ASS INF SYST, V11, P288
Palvia P, 2007, INFORM MANAGE-AMSTER, V44, P1, DOI 10.1016/j.im.2006.10.002
Pham H, 2016, PROBAB UNCERTAIN QUA, V1, DOI 10.1186/s41546-016-0008-x
Phillips-Wren G, 2015, COMMUN ASSOC INF SYS, V37, P448
Pilkington A, 2009, J OPER MANAG, V27, P185, DOI 10.1016/j.jom.2008.08.001
Qazi R.U. R., 2016, The International Technology Management Review, V6, P50, DOI DOI 10.2991/ITMR.2016.6.2.3
Ransbotham S., 2015, MIT Sloan Management Review, V56, P1
Reed DA, 2015, COMMUN ACM, V58, P56, DOI 10.1145/2699414
Saboo AR, 2016, MIS QUART, V40, P911, DOI 10.25300/MISQ/2016/40.4.06
Sahay S, 2016, COMMUN ASSOC INF SYS, V39, P419, DOI 10.17705/1CAIS.03920
Seref B., 2016, INT C BIG DAT ADV WI
Shiau WL, 2016, ENTERP INF SYST-UK, V10, P815, DOI 10.1080/17517575.2015.1019570
Shim JP, 2016, COMMUN ACM, V59, P84, DOI 10.1145/2786752
Simmhan Y, 2013, COMPUT SCI ENG, V15, P38, DOI 10.1109/MCSE.2013.39
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Turel O, 2016, COMMUN ASSOC INF SYS, V39, P96, DOI 10.17705/1CAIS.03906
Villanustre F, 2015, 2015 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON BIG DATA SOFTWARE ENGINEERING, P1, DOI 10.1109/BIGDSE.2015.8
Wang NX, 2016, DECIS SUPPORT SYST, V86, P35, DOI 10.1016/j.dss.2016.03.006
Winig L., 2017, MIT SLOAN MANAGE REV, V58
Woerner SL, 2015, J INF TECHNOL-UK, V30, P60, DOI 10.1057/jit.2014.31
XU LD, 2018, ENTERPRISE INFORM SY, V13, P148, DOI DOI 10.1080/17517575.2018.1442934
Yahav I., 2015, MIS Q, V40, P819
Yan Z, 2017, ACM INT C BIG DAT RE, P18
Yang JJ, 2015, COMPUT IND, V69, P3, DOI 10.1016/j.compind.2015.01.012
Yang X., 2015, IEEE C BIG DAT SANT
Yoo Y, 2015, J INF TECHNOL-UK, V30, P63, DOI 10.1057/jit.2014.30
Zaharia M, 2016, COMMUN ACM, V59, P56, DOI 10.1145/2934664
Zuboff S, 2015, J INF TECHNOL-UK, V30, P75, DOI 10.1057/jit.2015.5
NR 88
TC 18
Z9 18
U1 4
U2 34
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 1751-7575
EI 1751-7583
J9 ENTERP INF SYST-UK
JI Enterp. Inf. Syst.
PD JUL 3
PY 2019
VL 13
IS 6
BP 801
EP 831
DI 10.1080/17517575.2019.1612098
PG 31
WC Computer Science, Information Systems
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA IL0BG
UT WOS:000476960400002
DA 2024-09-05
ER
PT J
AU Zhang, J
AF Zhang, Jing
TI Research on Sentiment Analysis and Satisfaction Evaluation of Online
Teaching in Universities During Epidemic Prevention
SO FRONTIERS IN PSYCHOLOGY
LA English
DT Article
DE sentiment analysis; online teaching; satisfaction evaluation; fuzzy
Bayesian theory; evaluation index system of online teaching
AB Sentiment analysis of online and offline integrated teaching in universities is being paid more and more attention. Many universities have carried out online teaching activities. However, due to the lack of face-to-face teaching, the lack of emotional communication is the key problem affecting the quality of online teaching. We analyze the relations from the perspectives of the change of teaching mode, the reconstruction of teacher-student relationship, and the transmission of emotional attitude of teachers and students in this paper. Then based on the Bayesian network (BN) theory, the satisfaction of online teaching can be evaluated from the aspects of emotion analysis, learning investment, and teaching interaction. Further, some suggestions are put forward to improve the satisfaction of online teaching.
C1 [Zhang, Jing] Wuxi Inst Technol, Sch Mech Technol, Wuxi, Jiangsu, Peoples R China.
C3 Wuxi Institute of Technology
RP Zhang, J (corresponding author), Wuxi Inst Technol, Sch Mech Technol, Wuxi, Jiangsu, Peoples R China.
EM zhangjing@wxit.edu.cn
FU Jiangsu Province education system party building research key project
[2019JSJYDJ01018]; Jiangsu University philosophy and social science
research project [2019SJB281, 2021SJB1394]; Jiangsu Social Science
Application Research Project [21SZB-013]
FX This work was supported in part by the Jiangsu Province education system
party building research key project (Grant No. 2019JSJYDJ01018); the
Jiangsu University philosophy and social science research project (Grant
Nos. 2019SJB281 and 2021SJB1394); the Jiangsu Social Science Application
Research Project (Special Topic of Ideological and Political Education
in Colleges): (Grant No. 21SZB-013).
CR Guo R.R., 2020, J COMMUN U CHINA SCI, V27, P48
Li Li, 2021, J MICROCOMPUT APPL, V37, P45
Liu L., 2019, APPL RES COMPUT, V36, P1619
Nie Y, 2008, J GUANGDONG POLYTECH, V1, P96
Wang B.H., 2021, RES AUDIO VIS ED, V4, P101
Zhang D.M., 2019, Modernization of Education, V6, P175
Zhou T.H., 2020, WIREL INTERNET TECHN, V9, P115
NR 7
TC 2
Z9 2
U1 0
U2 83
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-1078
J9 FRONT PSYCHOL
JI Front. Psychol.
PD OCT 18
PY 2021
VL 12
AR 738776
DI 10.3389/fpsyg.2021.738776
PG 7
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA WS6EB
UT WOS:000715270900001
PM 34733212
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Pandey, AK
Chakraborty, A
Khandal, V
AF Pandey, Ajay Kumar
Chakraborty, Arnab
Khandal, Vijay
TI Scientometric Study of Research on AI & ML Application in Defence
Technology and Military Operations
SO DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY
LA English
DT Article
DE Scientometrics; Artificial intelligence; Machine learning; Defence
technology; Military operations; Research trend
AB Application of AI and machine learning in different domains of defence system in increasing rapidly to bring automation and to facilitate all the benefits of modern technologies in military. This article conducts a scientometric analysis on articles that are on application of Ai and Ml in military equipment, military intelligence, cyber security, decision making, military operations, defence medical systems etc. This study has executed a search query on Web of Science for identifying peer reviewed current resources that are contributing to the application of modern technologies in military systems. With extensive query and filtering this study has identified 417 articles with in the period of 1991 to 2023. With analysing all the data, it determines that a lot of varied research is there on the defence system that promotes use of modern technologies in development of weapon, conducting strategic military operation, prioritising military society etc. Prioritising legal and ethical parameters. This study has also highlighted legal, and security concerns surrounding using autonomous systems in military applications. The authorship pattern, document types, country production over time, and most cited countries have also been studied. Bradford's scattering law was applied to identify the core journals, and Lotka's law to check authors' productivity patterns.
C1 [Pandey, Ajay Kumar] DRDO Armament Res & Dev Estab ARDE, Pune 411021, India.
[Chakraborty, Arnab] Indian Inst Trop Meteorol, Pune 411021, India.
[Khandal, Vijay] Rashtrasant Tukadoji Maharaj Nagpur Univ, Nagpur 440033, India.
C3 Ministry of Earth Sciences (MoES) - India; Indian Institute of Tropical
Meteorology (IITM); Rashtrasant Tukadoji Maharaj Nagpur University
RP Pandey, AK (corresponding author), DRDO Armament Res & Dev Estab ARDE, Pune 411021, India.
EM akpandey.arde@gov.in
OI , Arnab Chakraborty/0009-0000-1423-6610
CR Chadegani AA, 2013, Arxiv, DOI [arXiv:1305.0377, DOI 10.5539/ASS.V9N5P18]
Bartneck C., 2021, An introduction to ethics in robotics and AI, P93
BROOKES BC, 1977, J DOC, V33, P180, DOI 10.1108/eb026641
Cioffi R, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10082897
Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081
Ha QP, 2019, AUTOMAT CONSTR, V107, DOI 10.1016/j.autcon.2019.102934
Hallaq B., 2017, EUR C INF WARF SEC E, P153
Jiang S, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22207814
Johnson M., 2021, Glob. J. Flex. Syst. Manag., V22, P197, DOI [10.1007/s40171-021-00272-y, DOI 10.1007/S40171-021-00272-Y]
Morgan Forrest E., 2020, Military applications of artificial intelligence: Ethical concerns in an uncertain world Report, DOI [10.7249/RR3139-1, DOI 10.7249/RR3139-1]
Nassehi A, 2022, Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology, P317, DOI DOI 10.1016/B978-0-12-823657-4.00002-6
Rasch R, 2003, IEEE INTELL SYST, V18, P18, DOI 10.1109/MIS.2003.1217624
Rickli JM, 2021, Clinical Neurotechnology Meets Artificial Intelligence: Advances in Neuroethics, P197
Rodríguez JV, 2022, WIRES DATA MIN KNOWL, V12, DOI 10.1002/widm.1476
Svenmarck P., 2018, P NATO BIG DAT ART I, P1
Szabadfldi I., 2021, Land Forces Academy Review, V26, P157, DOI 10.2478/raft-2021-0022
Tsaramirsis G, 2022, J SENSORS, V2022, DOI 10.1155/2022/5023011
Ullah Z, 2020, COMPUT NETW, V182, DOI 10.1016/j.comnet.2020.107478
NR 18
TC 0
Z9 0
U1 5
U2 5
PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE
PI DELHI
PA METCALFE HOUSE, DELHI 110054, INDIA
SN 0974-0643
EI 0976-4658
J9 DESIDOC J LIB INF TE
JI DESIDOC J. Lib. Inf. Technol.
PD MAR
PY 2024
VL 44
IS 2
BP 61
EP 68
DI 10.14429/djlit.44.2.19496
PG 8
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA NW7G9
UT WOS:001203551800008
OA gold
DA 2024-09-05
ER
PT J
AU Zhang, GT
Du, YH
Zhu, XB
Liu, XL
AF Zhang, Guoting
Du, Yonghao
Zhu, Xiaobin
Liu, Xiaolu
TI Hybrid Operator and Strengthened Diversity Improving for Multimodal
Multi-Objective Optimization: Electronic Supplementary Material
SO TSINGHUA SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Sensitivity; Topology; Particle swarm optimization; Optimization; Open
Access; Benchmark testing
RI Liu, Xiaolu/P-1404-2019
CR Yue CT, 2018, IEEE T EVOLUT COMPUT, V22, P805, DOI 10.1109/TEVC.2017.2754271
NR 1
TC 0
Z9 0
U1 0
U2 0
PU TSINGHUA UNIV PRESS
PI BEIJING
PA B605D, XUE YAN BUILDING, BEIJING, 100084, PEOPLES R CHINA
SN 1007-0214
EI 1878-7606
J9 TSINGHUA SCI TECHNOL
JI Tsinghua Sci. Technol.
PD OCT
PY 2024
VL 29
IS 5
BP 1
EP 4
PG 4
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Engineering, Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA PP6N7
UT WOS:001215322000005
DA 2024-09-05
ER
PT J
AU Luo, ZL
Shao, XF
Ma, XC
AF Luo, Zhilin
Shao, Xuefeng
Ma, Xiaochun
TI Enhancing Learners' Performance in Contest Through Knowledge Mapping
Algorithm: The Roles of Artificial Intelligence and Blockchain in
Scoring and Data Integrity
SO JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING
LA English
DT Article
DE Artificial Intelligence; Blockchain; Contest Research; End User; Learner
Performance; Learning Motivation; Vocational Education
ID ACADEMIC-PERFORMANCE; EXTRINSIC MOTIVATIONS; LANGUAGE; ENGLISH;
ACHIEVEMENT; EXPECTANCY; ANXIETY
AB The fairness of vocational contest scoring is key to generating reliable competency assessments. This study examined the performance impact of the motivation of English-as-a-foreign-language learners in contests with vocabulary knowledge antecedents in the contexts of artificial intelligence (AI) and blockchain (BC). The sample comprised 185 participants of an oral English contest at higher vocational institution in China. AI-powered scoring of learners' contest performance and a survey were used to collect data. The findings revealed that learners' intrinsic drive was the main positive factor, outweighing their extrinsic motivation, and that AI and BC increased the trustworthiness and integrity of contest records, thus providing new opportunities to build learner trust and form psychological incentives. This study enriches foreign language motivation theory in the context of contest research and highlights the importance of using AI and BC to enhance the scoring accuracy and credibility of contests as authoritative evaluation instruments in vocational education.
C1 [Luo, Zhilin] Chongqing Ind Polytech Coll, Gen Educ Sch, Chongqing, Peoples R China.
[Shao, Xuefeng] Univ Newcastle, Management, Callaghan, Australia.
[Ma, Xiaochun] Chongqing Coll Elect Engn, Gen Educ Sch, Chongqing, Peoples R China.
[Ma, Xiaochun] Chongqing Coll Elect Engn, Gen Educ Sch, Chongqing 400030, Peoples R China.
[Shao, Xuefeng] Univ Newcastle, Newcastle, NSW 2300, Australia.
C3 Chongqing Industry Polytechnic College; University of Newcastle;
Chongqing College of Electronic Engineering; Chongqing College of
Electronic Engineering; University of Newcastle
RP Ma, XC (corresponding author), Chongqing Coll Elect Engn, Gen Educ Sch, Chongqing 400030, Peoples R China.; Shao, XF (corresponding author), Univ Newcastle, Newcastle, NSW 2300, Australia.
EM david.shao@newcastle.edu.au; maxiaochun@cqcet.edu.cn
RI Luo, Zhilin/IXD-8511-2023
OI Luo, Zhilin/0000-0003-4352-1984; Shao, Xuefeng/0000-0002-4267-9600
FU Hubei Education Science Planning 2022 Annual general project: Research
on the deep integration mode and practice Path of "Five-dimensional
Integration", Production and Education in applicationoriented
undergraduate colleges [2022GB088]
FX Hubei Education Science Planning 2022 Annual general project: Research
on the deep integration mode and practice Path of "Five-dimensional
Integration", Production and Education in applicationoriented
undergraduate colleges (2022GB088). Funding for this research was
covered by the author(s) of the article.
CR Idowu AI, 2014, J NEW APPROACHES EDU, V3, P93, DOI 10.7821/naer.3.2.93-99
Adamma O.N., 2018, Online Submission, V2, P52, DOI [10.35706/sjme.v2i2.1322, DOI 10.5281/ZENODO.1405857]
Al-Hoorie AH, 2020, SAGE OPEN, V10, DOI 10.1177/2158244020945702
Anwar A. S., 2022, International Journal of Artificial Intelegence Research, V6, DOI [10.29099/ijair.v6i1.258, DOI 10.29099/IJAIR.V6I1.258]
Astuti E. S., 2020, Journey: Journal of English Language and Pedagogy, V3, P52, DOI [10.33503/journey.v3i1.705, DOI 10.33503/JOURNEY.V3I1.705]
Atkinson JW., 1974, MOTIVATION ACHIEVEME, P193
Azeez N. A., 2021, Journal of Cyber Security and Mobility, V10, P745, DOI [10.13052/jcsm2245-1439.1046, DOI 10.13052/JCSM2245-1439.1046]
Becirovic S, 2017, EUR J CONTEMP EDUC, V6, P210, DOI 10.13187/ejced.2017.2.210
Bodkyn C., 2015, The Caribbean Teaching Scholar, V5, P79
Bolifaar A. H., 2020, Ayer Journal, V27, P143
BRUNSTEIN JC, 1993, J PERS SOC PSYCHOL, V65, P1061, DOI 10.1037/0022-3514.65.5.1061
Chang X., 2015, English Square: Academy Research, P113
Chowdhury S, 2022, INT J CHEM REACT ENG, V20, P237, DOI 10.1515/ijcre-2020-0230
Deckers L., 2005, MOTIVATION BIOL PSYC, V2nd, DOI [DOI 10.4324/9781315178615, 10.4324/9781315178615]
Di Gangi PM, 2017, J ORGAN END USER COM, V29, P68, DOI 10.4018/JOEUC.2017070104
Dogan ME, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13053056
Dörnyei Z, 2003, LANG LEARN, V53, P3, DOI 10.1111/1467-9922.53222
Dornyei Z., 2005, The psychology of the language learner: Individual differences in second language acquisition, DOI [10.4324/9781410613349, DOI 10.4324/9781410613349]
Elborolosy S.A.M., 2020, English Language Teaching, V13, P83, DOI [10.5539/elt.v13n9p83, DOI 10.5539/ELT.V13N9P83]
Elbow Peter., 1997, New Directions for Teaching and Learning, V69, P127
Fabisiak L, 2018, J ORGAN END USER COM, V30, P1, DOI 10.4018/JOEUC.2018100101
Fernet C, 2013, CAN PSYCHOL, V54, P72, DOI 10.1037/a0031058
Friedman BA, 2009, J COLL STUD RETENT-R, V11, P227, DOI 10.2190/CS.11.2.d
Gao YH., 2003, Modern Foreign Languages, V26, P28
GARDNER RC, 1959, CAN J PSYCHOLOGY, V13, P266, DOI 10.1037/h0083787
Guo Y., 2019, Journal of Radio and Television University, P120, DOI [10.16161/j.issn.1008-0597.2019.02.018, DOI 10.16161/J.ISSN.1008-0597.2019.02.018]
Han Y, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa42
Handoko E, 2019, INT REV RES OPEN DIS, V20, P39
Hart W, 2013, J EXP SOC PSYCHOL, V49, P922, DOI 10.1016/j.jesp.2013.05.002
Hernández-Orallo J, 2017, ARTIF INTELL REV, V48, P397, DOI 10.1007/s10462-016-9505-7
Hwang GJ, 2017, COMPUT EDUC, V106, P26, DOI 10.1016/j.compedu.2016.11.010
JAMIESON DW, 1987, J EDUC PSYCHOL, V79, P461, DOI 10.1037/0022-0663.79.4.461
Jawahar I. M., 2001, Journal of End User Computing, V13, P40, DOI 10.4018/joeuc.2001040104
Jiang C., 2018, Foreign Language Teaching, P37
Jin H., 2013, Foreign Language Research, P127
Jin H., 2016, Heilongjiang Researches on Higher Education, P125
Kim B, 2009, COMPUT EDUC, V52, P800, DOI 10.1016/j.compedu.2008.12.004
Kizil AS, 2018, COMPUT ASSIST LANG L, V31, P599, DOI 10.1080/09588221.2018.1428201
Lai E.R., 2011, MOTIVATION LIT REV R
Leong L.M., 2017, INT J RES ENGLISH ED, V2, P34, DOI [10.18869/acadpub.ijree.2.1.34, DOI 10.18869/ACADPUB.IJREE.2.1.34]
Li J., 2015, Foreign Language World, P34
Li R, 2021, COMPUT ASSIST LANG L, V34, P483, DOI 10.1080/09588221.2019.1619585
Liu C., 2014, Studies in Literature and Language, V9, P51
Liu F, 2020, LEARN MOTIV, V72, DOI 10.1016/j.lmot.2020.101675
Liu MH, 2011, EDUC RES INT, V2011, DOI 10.1155/2011/493167
Liu W, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17072304
Lu J., 2010, China Journal of Health Psychology, V18, P885
Mahankali S., 2020, Blockchain Technology Applications in Education, DOI [https://doi.org/10.4018/978-1-5225-9478-9.ch014, DOI 10.4018/978-1-5225-9478-9.CH014]
Matsuda S., 2004, SYSTEM, V32, P21, DOI DOI 10.1016/J.SYSTEM.2003.08.002
Menggo S., 2018, Journal of Psychology and Instruction, V2, P70, DOI 10.23887/jpai.v2i2.15979
Min Y., 2015, Chinese Vocational and Technical Education, P89
Moneta GB, 2002, J COLL STUDENT DEV, V43, P664
Mozumder M. A. I., 2023, 2023 25 INT C ADV CO
Niyifasha P., 2019, Doctoral dissertation
Noguera PA, 2003, URBAN EDUC, V38, P431, DOI 10.1177/0042085903038004005
Nurhidayah A., 2008, Doctoral dissertation
NYE SM, 1991, J AM DIET ASSOC, V91, P912
Qian DD, 2020, ROUT HANDB LINGUIST, P66
Quijano Zavala G. G., 2017, Doctoral dissertation
Rahman S., 2005, ASIAN EFL J, V7, P29
Ryan RM, 2000, CONTEMP EDUC PSYCHOL, V25, P54, DOI 10.1006/ceps.1999.1020
Saadati Z, 2023, INTERACT LEARN ENVIR, V31, P3148, DOI 10.1080/10494820.2021.1920429
Schippers MC, 2020, CONTEMP EDUC PSYCHOL, V60, DOI 10.1016/j.cedpsych.2019.101823
Schmidt R., 1996, Working Papers
Shi Y., 2000, Foreign Language Teaching Abroad, P8
Singh I., 2020, Journal of Green Engineering, V10, P7479
Singh K., 2011, International Journal of Educational Planning Administration, V1, P161
Syakur A., 2020, Britain International of Linguistics Arts and Education (BIoLAE) Journal, V2, P467, DOI [10.33258/biolae.v2i1.216, DOI 10.33258/BIOLAE.V2I1.216]
Tao W., 1981, People's Education, P57
Taylor G, 2014, CONTEMP EDUC PSYCHOL, V39, P342, DOI 10.1016/j.cedpsych.2014.08.002
Wang F., 2008, North American Journal of Psychology, V10, P633
Wang H., 2021, Overseas English, P249
Wen L., 2021, Overseas English, P272
Williams M., 2001, MOTIVATION 2 LANGUAG, P171
Wu ZX, 2022, J GLOB INF MANAG, V30, DOI 10.4018/JGIM.20220701.oa1
Yang JC, 2018, EDUC TECHNOL SOC, V21, P174
Yu FY, 2011, COMPUT EDUC, V57, P2167, DOI 10.1016/j.compedu.2011.05.012
Yuan R. E., 2007, Chinese Adult Education, P93, DOI [10.3969/j.issn.1004-6577.2007.22.057, DOI 10.3969/J.ISSN.1004-6577.2007.22.057]
Zhang X., 2015, Foreign Language World, P80
Zhang X, 2018, J POWER SOURCES, V376, P191, DOI 10.1016/j.jpowsour.2017.11.068
Zhang Y., 2019, 2019 3 INT C EC MANA
Zhao Y., 2023, 2023 IEEE 6 EURASIAN
Zhu Z., 2010, Shandong Foreign Languages Teaching Journal, V31, P108, DOI [10.3969/j.issn.1002-2643.2010.02.020, DOI 10.3969/J.ISSN.1002-2643.2010.02.020]
김미숙, 2018, [Philosophy of Movement : Journal of the Korean Society for the Philosophy of Sport, Dance & Martial Arts, 움직임의 철학 : 한국체육철학회지], V26, P111, DOI 10.31694/PM.2018.09.26.3.009
NR 84
TC 0
Z9 0
U1 20
U2 20
PU IGI GLOBAL
PI HERSHEY
PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA
SN 1546-2234
EI 1546-5012
J9 J ORGAN END USER COM
JI J. Organ. End User Comput.
PY 2024
VL 36
IS 1
AR 336277
DI 10.4018/JOEUC.336277
PG 21
WC Computer Science, Information Systems; Information Science & Library
Science; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science; Business &
Economics
GA II1V4
UT WOS:001165615200004
OA gold
DA 2024-09-05
ER
PT J
AU Yaniasih, Y
Budi, I
AF Yaniasih, Yaniasih
Budi, Indra
TI Systematic Design and Evaluation of a Citation Function Classification
Scheme in Indonesian Journals
SO PUBLICATIONS
LA English
DT Article
DE citation function; classification scheme; annotator agreement; machine
learning; deep learning
ID REFERENCES; CONTEXT
AB Classifying citations according to function has many benefits when it comes to information retrieval tasks, scholarly communication studies, and ranking metric developments. Many citation function classification schemes have been proposed, but most of them have not been systematically designed for an extensive literature-based compilation process. Many schemes were also not evaluated properly before being used for classification experiments utilizing large datasets. This paper aimed to build and evaluate new citation function categories based upon sufficient scientific evidence. A total of 2153 citation sentences were collected from Indonesian journal articles for our dataset. To identify the new categories, a literature survey was conducted, analyses and groupings of category meanings were carried out, and then categories were selected based on the dataset's characteristics and the purpose of the classification. The evaluation used five criteria: coherence, ease, utility, balance, and coverage. Fleiss' kappa and automatic classification metrics using machine learning and deep learning algorithms were used to assess the criteria. These methods resulted in five citation function categories. The scheme's coherence and ease of use were quite good, as indicated by an inter-annotator agreement value of 0.659 and a Long Short-Term Memory (LSTM) F1-score of 0.93. According to the balance and coverage criteria, the scheme still needs to be improved. This research data was limited to journals in food science published in Indonesia. Future research will involve classifying the citation function using a massive dataset collected from various scientific fields and published from some representative countries, as well as applying improved annotation schemes and deep learning methods.
C1 [Yaniasih, Yaniasih; Budi, Indra] Univ Indonesia, Fac Comp Sci, Depok 16424, Indonesia.
[Yaniasih, Yaniasih] Indonesian Inst Sci LIPI, Res Ctr Informat, Bandung 40135, Indonesia.
C3 University of Indonesia; National Research & Innovation Agency of
Indonesia (BRIN); Indonesian Institute of Sciences (LIPI)
RP Budi, I (corresponding author), Univ Indonesia, Fac Comp Sci, Depok 16424, Indonesia.
EM yaniasih@ui.ac.id; indra@cs.ui.ac.id
OI Yaniasih, Yaniasih/0000-0002-3389-6742; Budi, Indra/0000-0002-2107-6552
FU Universitas Indonesia [BA-733/UN2.RST/PPM.00.03.01/2020]
FX This study was supported by research grants from Universitas Indonesia
(Hibah Publikasi Doktoral Tahun 2021 and Publikasi Terindeks
International (PUTI) Doktor 2020 No: BA-733/UN2.RST/PPM.00.03.01/2020).
CR Abu-Jbara A., 2013, NAACL, P596
Ahmad R, 2017, IEEE ACCESS, V5, P5819, DOI 10.1109/ACCESS.2017.2689925
Bakhti K., 2019, P 2018 INT C CONTR A, P43
Bertin M., 2014, P 1 WORKSH BIBL ENH, V1567, P14
Bertin M, 2016, J ASSOC INF SCI TECH, V67, P164, DOI 10.1002/asi.23367
Boldrini Ester, 2009, Proceedings of the 2009 International Conference on Data Mining. DMIN 2009, P491
CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403
Cohan A, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P3586
Ferrod R, 2019, LECT NOTES COMPUT SC, V11503, P101, DOI 10.1007/978-3-030-21348-0_7
Hernández-Alvarez M, 2017, NAT LANG ENG, V23, P561, DOI 10.1017/S1351324916000346
Hussain SJ, 2019, INT J ADV COMPUT SC, V10, P209
Ibanez M.P.V., 2014, C P 28 AS PAC C LANG, P234
Jurgens David., 2016, CoRR
Khan AM, 2019, IEEE ACCESS, V7, P137090, DOI 10.1109/ACCESS.2019.2942322
Krippendorff K., 2018, CONTENT ANAL INTRO I
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Lane H., 2019, Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python
Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62
Lukman L, 2018, SCI ED, V5, P135, DOI 10.6087/kcse.138
Maricic S, 1998, J AM SOC INFORM SCI, V49, P530, DOI 10.1002/(SICI)1097-4571(19980501)49:6<530::AID-ASI5>3.0.CO;2-U
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Nanba H., 2000, ADV CLASSIFICATION R, V11, P117, DOI [DOI 10.7152/ACRO.V11I1.12774, DOI 10.7152/ACR0.V11I1.12774]
Neuendorf KA., 2017, CONTENT ANAL GUIDEBO, P1, DOI [DOI 10.4135/9781071802878, 10.4135/9781071802878]
Ovrelid L., 2009, P 12 C EUR CHAPT ACL, P630
Palmer Alexis, 2020, Journal for Language Technology and Computational Linguistics, V34, P1
Perier-Camby J., 2019, CEUR WORKSHOP PROC, P125
Rachman Ghoziyah Haitan, 2019, 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), P347, DOI 10.1109/ICITISEE48480.2019.9003736
Ramyachitra D., 2014, International Journal of Computing and Business Research (IJCBR), V5, P1, DOI DOI 10.18533/IJBSR.V4I4.470
Ritz J, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P2137
Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x
Su X, 2019, ACM-IEEE J CONF DIG, P394, DOI 10.1109/JCDL.2019.00122
S┬u┬aghdha D.O., 2007, P 4 CORP LING C CL 0, P1
Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2
Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612]
Yousif A, 2019, NEUROCOMPUTING, V335, P195, DOI 10.1016/j.neucom.2019.01.021
Zhao H., 2020, P EMNLP IJCNLP HONG, P5206
Zhao H, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P1041, DOI 10.1145/3331184.3331348
NR 37
TC 1
Z9 1
U1 1
U2 4
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2304-6775
J9 PUBLICATIONS
JI Publications
PD SEP
PY 2021
VL 9
IS 3
AR 27
DI 10.3390/publications9030027
PG 14
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA UZ2MO
UT WOS:000702044600001
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Jadhav, MS
Dhas, J
Joshi, D
Jadhavrao, N
Kadam, S
AF Jadhav, Madhumita Satish
Dhas, Jyoti
Joshi, Deepali
Jadhavrao, Namrata
Kadam, Sayali
TI Citation Clustering for Identifying Research Contribution
SO JOURNAL OF COMPUTERS
LA English
DT Article
DE Leacock-Chodorow similarity vector; WordNet; hierarchical clustering
ID QUALITY; SCIENCE
AB The h-index is an index that measures productivity and citation impact of the published work but it has been criticized because it does not consider context of citation and reason behind citation. This indicates that there is a need for an improved h-index by a new approach which includes important citations received by a paper instead of the whole list of citations. Citation classification is an emerging area of research that categorizes citations based on the purpose behind the citation.
To perform citation classification there is need of a standard set of classes called as classification scheme. Such standard scheme is not available so we aim to generate a citation classification scheme automatically i.e. by using hierarchical clustering. The clustering is performed by using similarity vectors. The main contribution of this research is to generate similarity distance matrix of keywords and verbs extracted from the citation sentences with the help of WordNet.
C1 [Jadhav, Madhumita Satish; Dhas, Jyoti; Joshi, Deepali; Jadhavrao, Namrata; Kadam, Sayali] Vishwakarma Inst Technol, Dept Comp, Pune, Maharashtra, India.
RP Jadhav, MS (corresponding author), Vishwakarma Inst Technol, Dept Comp, Pune, Maharashtra, India.
EM mitujadhav@gmail.com
RI Joshi, Deepali Jayant/ACG-9456-2022
OI Joshi, Deepali Jayant/0000-0002-8832-9294
CR [Anonymous], 1988, ALGORITHMS CLUSTERIN
Dong C., 2011, P 5 INT JOINT C NAT, P623
Fellbaum C., 1998, SER LANGUAGE SPEECH
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jain AK, 1999, ACM COMPUT SURV, V31, P264, DOI 10.1145/331499.331504
Lawrence PA, 2007, CURR BIOL, V17, pR583, DOI 10.1016/j.cub.2007.06.014
Leacock Claudia., 1998, COMBINING LOCAL CONT, P305
LINDSEY D, 1989, SCIENTOMETRICS, V15, P189, DOI 10.1007/BF02017198
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
NR 9
TC 0
Z9 0
U1 0
U2 4
PU ACAD PUBL
PI OULU
PA PO BOX 40, OULU, 90571, FINLAND
SN 1796-203X
J9 J COMPUT
JI J. Comput.
PD NOV
PY 2015
VL 10
IS 6
BP 406
EP 411
DI 10.17706/jcp.10.6.406-411
PG 6
WC Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA CY4UP
UT WOS:000366404400006
OA gold
DA 2024-09-05
ER
PT J
AU Galgani, F
Compton, P
Hoffmann, A
AF Galgani, Filippo
Compton, Paul
Hoffmann, Achim
TI LEXA: Building knowledge bases for automatic legal citation
classification
SO EXPERT SYSTEMS WITH APPLICATIONS
LA English
DT Article
DE Knowledge acquisition; Natural language processing; Citation analysis;
Legal documents
ID DOCUMENT MANAGEMENT; ACQUISITION; INFORMATION; SYSTEMS
AB This paper presents a new approach to building legal citation classification systems. Our approach is based on Ripple-down Rules (RDA), an efficient knowledge acquisition methodology. The main contributions of the paper (over existing expert-systems approaches) are extensions to the traditional RDR approach introducing new automatic methods to assist in the creation of rules: using the available dataset to provide performance estimates and relevant examples, automatically suggesting and validating synonyms, re-using exceptions in different portions of the knowledge base. We compare our system LEXA with baseline machine learning techniques. LEXA obtains better results both in clean and noisy subsets of our corpus. Compared to machine learning approaches, LEXA also has other advantages such as supporting continuous extension of the rule base, and the opportunity to proceed without an annotated data set and to validate class labels while building rules. Crown Copyright (C) 2015 Published by Elsevier Ltd. All rights reserved.
C1 [Galgani, Filippo; Compton, Paul; Hoffmann, Achim] Univ New S Wales, Sch Engn & Comp Sci, Sydney, NSW 2052, Australia.
C3 University of New South Wales Sydney
RP Galgani, F (corresponding author), Univ New S Wales, Sch Engn & Comp Sci, Sydney, NSW 2052, Australia.
EM galganif@cse.unsw.edu.au; compton@cse.unsw.edu.au; achim@cse.unsw.edu.au
RI Galgani, Filippo/C-7003-2011
OI Compton, Paul/0000-0002-7282-8814
CR Angheluta, 2003, P 9 INT C ART INT LA, P142
[Anonymous], VALIDATION VERIFICAT
[Anonymous], 2009, P ICAIL 2009, DOI DOI 10.1145/1568234.1568246
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], 2009, P HUM LANG TECHN 200, DOI DOI 10.3115/1620754.1620839
[Anonymous], 2008, P ACL 08 HLT
Athar A., 2011, P ACL 2011 STUD SESS, P81
Bird Steven, 2009, Natural language processing with python
Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001
COMPTON P, 1990, LECT NOTES ARTIF INT, V406, P292
Compton P., 2011, Proceedings of Sixth International Conference on Knowledge, P49
Conrad J. G., 2001, Proceedings of the 2001 ACM CIKM. Tenth International Conference on Information and Knowledge Management, P287, DOI 10.1145/502585.502634
Cunningham H, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P168
de Maat E, 2006, FRONT ARTIF INTEL AP, V152, P41
Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256
EDWARDS G, 1993, PATHOLOGY, V25, P27, DOI 10.3109/00313029309068898
Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707
Farzindar A, 2009, LECT NOTES COMPUT SC, V5549, P64, DOI 10.1007/978-3-642-01818-3_9
Galgani F., 2012, 13 INT C INT TEXT PR, P415
Galgani F, 2015, INFORM PROCESS MANAG, V51, P1, DOI 10.1016/j.ipm.2014.08.001
Galgani F, 2014, INT J HUM-COMPUT ST, V72, P584, DOI 10.1016/j.ijhcs.2014.03.002
Galgani F, 2010, LECT NOTES ARTIF INT, V6464, P445, DOI 10.1007/978-3-642-17432-2_45
GOTTI F, 2008, AMTA 2008 8 C ASS MA, P1
Greenleaf G., 1995, J LAW INFORM SCI, V6, P49
Hachey B, 2006, ARTIF INTELL LAW, V14, P305, DOI 10.1007/s10506-007-9039-z
Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278
Ho V, 2003, IEEE/WIC INTERNATIONAL CONFERENCE ON INTELLIGENT AGENT TECHNOLOGY, PROCEEDINGS, P67
Hoffmann A., 2003, P 2 INT C KNOWL CAPT, P28
Kaplan D., 2009, Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries (NLPIR4DL), P88
Kim M, 2006, INT J HUM-COMPUT ST, V64, P15, DOI 10.1016/j.ijhcs.2005.06.006
Kim M, 2004, INT J HUM-COMPUT ST, V60, P201, DOI 10.1016/j.ijhcs.2003.10.004
Kim M. H, 2011, P 6 INT C KNOWL CAPT, P105, DOI DOI 10.1145/1999676.1999696
Krzywicki A, 2009, LECT NOTES ARTIF INT, V5866, P250, DOI 10.1007/978-3-642-10439-8_26
Martínez-González M, 2005, LECT NOTES COMPUT SC, V3776, P218
Menzies T, 1999, INT J HUM-COMPUT ST, V51, P715, DOI 10.1006/ijhc.1999.0336
MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748
Moens M.-F., 2001, Artificial Intelligence and Law, V9, P29, DOI 10.1023/A:1011297104922
Moens MF, 2007, INFORM PROCESS MANAG, V43, P1748, DOI 10.1016/j.ipm.2007.01.005
Mowbray A., 2009, FREE ACCESS QUALITY, P285
Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81
Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926
Palmirani M., 2003, PROC 9 INT C ARTIFIC, P105
Peters W, 2007, ARTIF INTELL LAW, V15, P117, DOI 10.1007/s10506-007-9034-4
Pham SB, 2004, LECT NOTES ARTIF INT, V3336, P292
Pham SB, 2003, LECT NOTES ARTIF INT, V2903, P759
Piao SS., 2007, International Workshop on Computational Semantics (IWCS), P366
PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814
Posner R. A., 1999, 83 U CHIC LAW SCH JM
Qazvinian V., 2010, P 23 INT C COMP LING, P895
Qazvinian V, 2008, P 22 INT C COMP LING, V1, P689, DOI DOI 10.3115/1599081.1599168
Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555
Rennie JD. M., 1973, Proceedings of the Twentieth International Conference on Machine Learning (ICML)-2003), V20, P616, DOI [10.1186/1477-3155-8-16, DOI 10.1186/1477-3155-8-16]
Richards D, 2009, KNOWL ENG REV, V24, P159, DOI 10.1017/S0269888909000241
Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113
Ritchie Anna., 2006, Proceedings of the Workshop on How Can Computational Linguistics Improve Information Retrieval? CLIIR'06, P25, DOI DOI 10.3115/1629808.1629813
Roth D., 2009, P 13 C COMP NAT LANG, P66
Ruiz-Sánchez JM, 2003, EXPERT SYST APPL, V25, P77, DOI 10.1016/S0957-4174(03)00008-3
Schreiber AT, 1996, INT J HUM-COMPUT ST, V44, P275, DOI 10.1006/ijhc.1996.0015
Shadbolt N, 1999, INT J HUM-COMPUT ST, V51, P729, DOI 10.1006/ijhe.1999.0327
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Valencia-García R, 2004, EXPERT SYST APPL, V26, P291, DOI 10.1016/j.eswa.2003.09.001
van Opijnen M, 2010, FRONT ARTIF INTEL AP, V223, P97, DOI 10.3233/978-1-60750-682-9-97
Xu H, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P613, DOI 10.1109/ICDMW.2014.26
Xu H, 2010, LECT NOTES ARTIF INT, V6232, P165
Yousfi-Monod M, 2010, LECT NOTES ARTIF INT, V6085, P51
Zacharias V, 2008, LECT NOTES COMPUT SC, V5321, P6, DOI 10.1007/978-3-540-88808-6_4
Zhang P., 2007, Proceedings of the 11th international conference on Artificial intelligence and law, P123, DOI DOI 10.1145/1276318.1276342
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
[No title captured]
[No title captured]
[No title captured]
[No title captured]
NR 72
TC 15
Z9 19
U1 0
U2 36
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0957-4174
EI 1873-6793
J9 EXPERT SYST APPL
JI Expert Syst. Appl.
PD OCT
PY 2015
VL 42
IS 17-18
BP 6391
EP 6407
DI 10.1016/j.eswa.2015.04.022
PG 17
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Operations Research & Management Science
GA CK3NE
UT WOS:000356122000011
DA 2024-09-05
ER
PT C
AU Han, Y
Guo, C
Fang, ZY
Chen, FX
AF Han, Yu
Guo, Cheng
Fang, Zhengyun
Chen, Fengxian
BE Liu, J
Liu, Y
TI Voltage Overrun Evaluation and Prediction Research Based on
Combinatorial Weighting and CNN-GRU
SO 2023 2ND ASIAN CONFERENCE ON FRONTIERS OF POWER AND ENERGY, ACFPE
LA English
DT Proceedings Paper
CT 2nd Asian Conference on Frontiers of Power and Energy (ACFPE)
CY OCT 20-22, 2023
CL Chengdu, PEOPLES R CHINA
DE Voltage overrun; Combinatorial assignment; Convolutional neural network;
Gated recurrent unit; Comprehensive evaluation; Predictive warning
AB Aiming at the problem of assessing the severity of voltage overrun in distribution networks, a voltage overrun assessment and prediction and warning method based on combinatorial assignment and the CNN-GRU model is proposed. Firstly, a new type of voltage overrun assessment index considering the influence of user density is selected, the subjective and objective weights are optimized and coordinated based on the theory of combinatorial assignment, and the regional division of monitoring points is used to give appropriate weight correction from the perspective of voltage propagation to establish the voltage deviation severity assessment level and determine the voltage deviation severity degree of assessment samples; the data features are extracted based on the assessment results after the overrun assessment of the data; then the data features are extracted through the gating network (CNN), and the data features are extracted through the gating network (CNN). (CNN) for the extraction of data features, and then through the gated recirculation unit (GRU) for the prediction and judgment of the voltage overrun problem in the next time period and timely warning; finally, some of the measured voltage data in a certain area are analyzed as an example to verify the effectiveness of the assessment level system and prediction and warning model
C1 [Han, Yu] Kunming Univ Sci & Technol, Sch Mech & Elect Engn, Kunming, Yunnan, Peoples R China.
[Guo, Cheng] Kunming Univ Sci & Technol, Sch Elect Power Engn, Kunming, Yunnan, Peoples R China.
[Fang, Zhengyun] Kunming Univ Sci & Technol, Sch Land & Resources Engn, Kunming, Yunnan, Peoples R China.
[Chen, Fengxian] Yunnan Power Grid Co Ltd, Qujing Power Supply Bur, Qujing, Peoples R China.
C3 Kunming University of Science & Technology; Kunming University of
Science & Technology; Kunming University of Science & Technology; China
Southern Power Grid
RP Han, Y (corresponding author), Kunming Univ Sci & Technol, Sch Mech & Elect Engn, Kunming, Yunnan, Peoples R China.
EM 1512497432@qq.com; gc325@126.com; 57592715@qq.com; 690704018@qq.com
FU Yunnan Major Scientific and Technological Projects [202202AG050002];
Special project of Yunnan Provincial Joint Fund [202201BE070001-15]
FX The authors would like to acknowledge the support of Yunnan Major
Scientific and Technological Projects (grant NO. 202202AG050002);
Special project of Yunnan Provincial Joint Fund(202201BE070001-15).
CR CHEN Haihua, 2023, Journal of Power Supply., P1
Duan Xiangxi, 2020, Electronic Measurement Technology., V43, P81
FENG Yuqi, 2022, China Electric Power., V55, P163
He Chunguang, 2022, Journal of Electric Power Science and Technology, V37, P161
Jiao Zhan, 2021, Science, Technology and Engineering., V21, P14769
Li Jinyou, 2022, Journal of Solar Energy., V43, P340
Liu Wei-Lin, 2017, Thermal limit and voltage overrun solution based on online network topology optimization
Zou Wenjun, 2022, Urban Rail Transportation Research., V25, P70
NR 8
TC 0
Z9 0
U1 1
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 979-8-3503-0389-6
PY 2023
BP 94
EP 98
DI 10.1109/ACFPE59335.2023.10455120
PG 5
WC Computer Science, Artificial Intelligence; Energy & Fuels; Engineering,
Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Energy & Fuels; Engineering
GA BW6SH
UT WOS:001181159800017
DA 2024-09-05
ER
PT S
AU Atibuni, DZ
AF Atibuni, Dennis Zami
BE Cross, M
Long, C
Ndlovu, S
Nyoni, P
TI 'Assessment for Learning' over 'Assessment of Learning' A Quest for
Mastery Rather Than Performance Orientation in Postgraduate Research
Degrees
SO TRANSFORMATIVE CURRICULA, PEDAGOGIES AND EPISTEMOLOGIES: Teaching and
Learning in Diverse Higher Education Contexts
SE African Higher Education-Developments and Perspectives
LA English
DT Article; Book Chapter
DE assessment of learning; assessment for learning; deep learning; surface
learning; mastery orientation; performance orientation
ID MOTIVATION; GOALS; STUDENTS; SELF
AB At higher education, students are terminally assessed through a research output that demonstrates their originality, creativity, innovativeness, and contribution to knowledge and problem solving in society. However, the research assessment process, unlike the traditional pencil-and-paper and other performance assessments which are thoroughly proctored by the examiner, is one that is loosely structured. Depending on whether the student engrosses in undertaking research as an assessment by mastery orientation or performance orientation or both will determine whether the research process serves as an assessment for learning rather than assessment of learning. In this chapter it is argued using a critical review of literature that postgraduate students who use mastery orientation in carrying out their research will pursue a deep learning of both the theoretical and practical demands of the research process, in which case what is learned is enduring. Hence research as a terminal assessment will serve as an assessment for learning. On the other hand, students engaged in research through performance orientation are likely to engage in surface learning; taking ethical shortcuts in the pursuit and just wanting the work done, presented, and passed. In this case, what is learned from the research process is not enduring, and hence the process serves as assessment of learning for a short while. It is recommended among others that institutional policies and faculty practices regarding research conduct should engender deep learning through mastery orientation as opposed to surface learning through performance orientation so as to foster research as an assessment for learning rather than assessment of learning.
CR Acton C., 2014, Engaging students in quantitative research methods: An evaluation of assessment for learning strategies on an undergraduate social research methods module
AMES C, 1992, J EDUC PSYCHOL, V84, P261, DOI 10.1037/0022-0663.84.3.261
[Anonymous], 2001, Criteria and guidelines for assessment of NQF registered unit standards and qualifications
Aronson J., 2005, HDB COMPETENCE MOTIV, P436
Atibuni D. Z., 2018, Journal of Educational Assessment in Africa, V12, P32
Atibuni D. Z., 2017, International Journal of Educational Policy Research and Review, V4, P19
BANDURA A, 1978, J COMMUN, V28, P12, DOI 10.1111/j.1460-2466.1978.tb01621.x
Dweck C.S., 2000, SELF THEORIES THEIR
Dweck C.S., 1996, IMPLICIT THEORIES OR
Dweck C.S., 2005, HDB COMPETENCE MOTIV, P122
DWECK CS, 1988, PSYCHOL REV, V95, P256, DOI 10.1037/0033-295X.95.2.256
Elliot A.J., 2005, Handbook of Competence and Motivation, DOI DOI 10.1037/0022-0167.51.1.115
Elliot AJ, 1996, J PERS SOC PSYCHOL, V70, P461, DOI 10.1037/0022-3514.70.3.461
Frascati Manual, 2015, The measurement of scientific, technological and innovation activities: Guidelines for collecting and reporting data on research and experimental development
Geuna A, 2003, MINERVA, V41, P277, DOI 10.1023/B:MINE.0000005155.70870.bd
Harackiewicz JM, 2002, J EDUC PSYCHOL, V94, P638, DOI 10.1037//0022-0663.94.3.638
Heyman GD, 1998, CHILD DEV, V69, P391, DOI 10.1111/j.1467-8624.1998.tb06197.x
Hodges K, 1990, Child and Adolescent Functional Assessment Scale (CAFAS), P7
HODSON D, 1992, INT J SCI EDUC, V14, P541, DOI 10.1080/0950069920140506
Hong YY, 1999, J PERS SOC PSYCHOL, V77, P588, DOI 10.1037/0022-3514.77.3.588
Kolb D. A., 1984, EXPERIENTIAL LEARNIN
Midgley C, 2001, J EDUC PSYCHOL, V93, P77, DOI 10.1037//0022-0663.93.1.77
Murtagh L, 2012, Reflective Learning and Teaching in Primary Schools, V107
Nicol DJ, 2006, STUD HIGH EDUC, V31, P199, DOI 10.1080/03075070600572090
Organisation for Economic Co-operation and Development (OECD), 2008, Assessment for learning formative assessment
Richardson V, 2003, TEACH COLL REC, V105, P1623, DOI 10.1046/j.1467-9620.2003.00303.x
Sadler D.R., 1998, Assessment In Education, V5, P77, DOI [10.1080/0969595980050104, DOI 10.1080/0969595980050104]
Scriven M., 1991, Evaluation thesaurus, V4
Soltani J. L., 2007, PhD dissertation
Stokking K, 2004, BRIT EDUC RES J, V30, P93, DOI 10.1080/01411920310001629983
Van Tilburg P. A., 2000, Tijdschrift voor Didactiek der Beta-wetenschappen, V17, P60
Weidman JC, 2003, RES HIGH EDUC, V44, P641, DOI 10.1023/A:1026123508335
WEINER B, 1972, REV EDUC RES, V42, P203, DOI 10.3102/00346543042002203
Weiner B., 2005, Handbook of competence and motivation, P73
NR 34
TC 0
Z9 0
U1 1
U2 1
PU BRILL
PI LEIDEN
PA PO BOX 9000, 2300 PA LEIDEN, NETHERLANDS
SN 2666-2663
BN 978-90-04-46842-9; 978-90-04-46844-3; 978-90-04-46843-6
J9 AFRICA HIGH ED-DEVEL
PY 2021
VL 11
BP 194
EP 213
DI 10.1163/9789004468443_011
PG 20
WC Education & Educational Research; Social Issues; Social Sciences,
Interdisciplinary
WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH)
SC Education & Educational Research; Social Issues; Social Sciences - Other
Topics
GA BV8GF
UT WOS:001077070100012
DA 2024-09-05
ER
PT J
AU Rahman, QM
Corke, P
Dayoub, F
AF Rahman, Quazi Marufur
Corke, Peter
Dayoub, Feras
TI Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey
of Emerging Trends
SO IEEE ACCESS
LA English
DT Article
DE Monitoring; Robots; Predictive models; Market research; Task analysis;
Training; Safety; Machine learning; performance evaluation; reliability;
robot learning
AB As deep learning continues to dominate all state-of-the-art computer vision tasks, it is increasingly becoming an essential building block for robotic perception. This raises important questions concerning the safety and reliability of learning-based perception systems. There is an established field that studies safety certification and convergence guarantees of complex software systems at design-time. However, the unknown future deployment environments of an autonomous system and the complexity of learning-based perception make the generalization of design-time verification to run-time problematic. In the face of this challenge, more attention is starting to focus on run-time monitoring of performance and reliability of perception systems with several trends emerging in the literature in the face of this challenge. This paper attempts to identify these trends and summarize the various approaches to the topic.
C1 [Rahman, Quazi Marufur; Corke, Peter; Dayoub, Feras] Queensland Univ Technol, ARC Ctr Excellence Robot Vis, Brisbane, Qld 4000, Australia.
C3 Queensland University of Technology (QUT); Australian Centre for Robotic
Vision
RP Rahman, QM (corresponding author), Queensland Univ Technol, ARC Ctr Excellence Robot Vis, Brisbane, Qld 4000, Australia.
EM quazi.rahman@qut.edu.au
RI Corke, Peter/C-6770-2009
OI Corke, Peter/0000-0001-6650-367X; Rahman, Quazi
Marufur/0000-0001-6538-0225; Dayoub, Feras/0000-0002-4234-7374
FU Australian Research Council (ARC) Centre of Excellence for Robotic
Vision [CE140100016]; QUT Centre for Robotics
FX This work was supported in part by the Australian Research Council (ARC)
Centre of Excellence for Robotic Vision under Grant CE140100016, and in
part by the QUT Centre for Robotics.
CR Abdar M., 2020, ARXIV201106225
[Anonymous], 2019, IEEE INT C INT ROBOT
[Anonymous], 2019, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2019.00463
[Anonymous], 2017, Advances in Neural Information Processing Systems
Antonante P., 2020, P 2021 IEEERSJ INT C
Cai FY, 2020, ACM IEEE INT CONF CY, P174, DOI 10.1109/ICCPS48487.2020.00024
Che T., 2019, ARXIV191107421
Chen LC, 2018, IEEE T PATTERN ANAL, V40, P834, DOI 10.1109/TPAMI.2017.2699184
Cheng CH, 2019, DES AUT TEST EUROPE, P300, DOI [10.23919/DATE.2019.8714971, 10.23919/date.2019.8714971]
Chow C. K., 1957, IRE Trans. Electron. Comput., V6, P247, DOI [DOI 10.1109/TEC.1957.5222035, 10.1109/TEC.1957.5222035]
CHOW CK, 1970, IEEE T INFORM THEORY, V16, P41, DOI 10.1109/TIT.1970.1054406
Churchill W, 2015, IEEE INT CONF ROBOT, P4238, DOI 10.1109/ICRA.2015.7139783
Codevilla F, 2018, IEEE INT CONF ROBOT, P4693
Corbiere C., 2019, P ADV NEUR INF PROC, V32, P2898
Cortes C., 2016, NIPS, P1660
Cortes C, 2016, LECT NOTES ARTIF INT, V9925, P67, DOI 10.1007/978-3-319-46379-7_5
Costante G, 2020, IEEE T ROBOT, V36, P1738, DOI 10.1109/TRO.2020.3001674
Daftry S, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P1743, DOI 10.1109/IROS.2016.7759279
Dequaire J, 2016, IEEE INT CONF ROBOT, P795, DOI 10.1109/ICRA.2016.7487209
Feng D., 2020, ARXIV201110671
Feng D, 2018, IEEE INT C INTELL TR, P3266, DOI 10.1109/ITSC.2018.8569814
Fumera G, 2002, LECT NOTES COMPUT SC, V2388, P68
Gal Y, 2016, PR MACH LEARN RES, V48
Gal Yarin, 2016, UNCERTAINTY DEEP LEA, V1
Geifman Y., 2017, Advances in neural information processing systems
Grimmett H, 2016, INT J ROBOT RES, V35, P743, DOI 10.1177/0278364915587924
Gupta A., 2020, ARXIV200505451
Gurau C, 2018, INT J ROBOT RES, V37, P981, DOI 10.1177/0278364917730603
Hall D, 2018, COMPUT ELECTRON AGR, V148, P107, DOI 10.1016/j.compag.2018.02.023
Harakeh A, 2020, IEEE INT CONF ROBOT, P87, DOI [10.1109/ICRA40945.2020.9196544, 10.1109/icra40945.2020.9196544]
Hawke J., 2015, P FSR, P173
Hecker S., 2018, P IEEE INT VEH S IV, P1792
HELLMAN ME, 1970, IEEE T SYST SCI CYB, VSSC6, P179, DOI 10.1109/TSSC.1970.300339
Hendrycks D., 2017, ARXIV161002136
Henne M., 2020, P SAFEAI, V2560, P83
Henzinger T. A., 2019, ARXIV191109032
Huang XW, 2020, COMPUT SCI REV, V37, DOI 10.1016/j.cosrev.2020.100270
Hubschneider C, 2019, IEEE INT C INTELL TR, P1511, DOI [10.1109/ITSC.2019.8917207, 10.1109/itsc.2019.8917207]
Jafarzadeh M., 2020, ARXIV201105506
Jammalamadaka N, 2012, LECT NOTES COMPUT SC, V7574, P114, DOI 10.1007/978-3-642-33712-3_9
Kendall A, 2017, NEURAL INFORM PROCES, P3581
Lakshminarayanan B., 2017, P NIPS, P1
Liu L, 2020, INT J COMPUT VISION, V128, P261, DOI 10.1007/s11263-019-01247-4
Maag K, 2020, PROC INT C TOOLS ART, P502, DOI 10.1109/ICTAI50040.2020.00084
MACKAY DJC, 1992, NEURAL COMPUT, V4, P448, DOI 10.1162/neco.1992.4.3.448
Masana M., 2018, P BRIT MACHINE VISIO
Michelmore R., 2018, Evaluating Uncertainty Quantification in End-to-End Autonomous Driving Control
Miller Dimity, 2019, 2019 International Conference on Robotics and Automation (ICRA), P2348, DOI 10.1109/ICRA.2019.8793821
Mohseni S., 2019, ARXIV190507679
Nitsch J., 2020, ARXIV201101413
Ovadia Y., 2019, Proceedings of the Advances in Neural Information Processing Systems
Phan B., 2019, P SAFECOMP WORKSH, P378
Rabanser Stephan, 2018, ARXIV181011953
Rabiee S., 2020, ARXIV200802760
Rabiee S., 2019, ARXIV190301028
Rahman QM, 2021, IEEE WINT CONF APPL, P152, DOI 10.1109/WACVW52041.2021.00021
Rahman Quazi Marufur, 2020, ARXIV201107750
Ramanagopal MS, 2018, IEEE ROBOT AUTOM LET, V3, P3860, DOI 10.1109/LRA.2018.2857402
Recht B, 2019, PR MACH LEARN RES, V97
Richter C, 2017, ROBOTICS: SCIENCE AND SYSTEMS XIII
Robinson R, 2018, LECT NOTES COMPUT SC, V11073, P578, DOI 10.1007/978-3-030-00937-3_66
Rottmann M., 2020, PREDICTION ERROR MET, P1
Ruff L., 2020, ARXIV200911732
Sa I, 2017, IEEE ROBOT AUTOM LET, V2, P765, DOI 10.1109/LRA.2017.2651952
Saxena D. M., 2017, P IEEE INT C ROB AUT, P5824
Schubert M., 2020, ARXIV201001695
Shafaei Alireza, 2018, ARXIV180904729
Shafer G, 2008, J MACH LEARN RES, V9, P371
Shao Z., P WORKSH ART INT SAF, V2020, P1
Sünderhauf N, 2016, IEEE INT CONF ROBOT, P5729, DOI 10.1109/ICRA.2016.7487796
Tan M., 2019, P 2020 IEEE CVF C CO, P6105
Tian JJ, 2020, IEEE INT CONF ROBOT, P5716, DOI [10.1109/ICRA40945.2020.9197266, 10.1109/icra40945.2020.9197266]
Valindria VV, 2017, IEEE T MED IMAGING, V36, P1597, DOI 10.1109/TMI.2017.2665165
Wang Pei, 2018, P EUR C COMP VIS ECC, P36
Yang H, 2015, PROC CVPR IEEE, P4685, DOI 10.1109/CVPR.2015.7299100
Zhang P, 2014, PROC CVPR IEEE, P3566, DOI 10.1109/CVPR.2014.456
Zhao C., 2020, SCI CHINA TECHNOL SC, V63, P1
Zhou W, 2020, IEEE T INTELL TRANSP, V21, P1951, DOI 10.1109/TITS.2019.2909066
NR 78
TC 26
Z9 26
U1 0
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2021
VL 9
BP 20067
EP 20075
DI 10.1109/ACCESS.2021.3055015
PG 9
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA QC7VN
UT WOS:000615041000001
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Yu, ZG
AF Yu, Zhonggen
TI Visualizing Artificial Intelligence Used in Education Over Two Decades
SO JOURNAL OF INFORMATION TECHNOLOGY RESEARCH
LA English
DT Article
DE Artificial Intelligence; Bibliometric Evaluation; Cluster; Education;
Taxonomy
ID ENTREPRENEURSHIP EDUCATION; COCITATION ANALYSIS; LEARNING COMPANION;
PERSPECTIVES; PERFORMANCE; JOURNALS; SYSTEM; IMPACT; FIELD
AB With the rapid development of computer science, use of artificial intelligence (AI) in education has caught much attention across the world although it is still a young field with many under-explored research elements. Through visualizing study with bibliometric evaluation and taxonomy of the literature using both VOSviewer and CiteSpace, this study provided references for readers in terms of cluster mapping on the basis of keywords, bibliographic coupling of countries, cluster mapping on the basis of co-citations, citation counts, bursts, betweenness centrality, and sigma. Researchers could also take the findings of this study into serious consideration when they set about researching effectiveness, efficiency, or usefulness of AI in education. Future research into use of AI in education will most likely need interdisciplinary cooperation between computer science, statistics, education, cognition, and robotics.
C1 [Yu, Zhonggen] Beijing Language & Culture Univ, Dept English Studies, Fac Foreign Studies, Beijing, Peoples R China.
C3 Beijing Language & Culture University
RP Yu, ZG (corresponding author), Beijing Language & Culture Univ, Dept English Studies, Fac Foreign Studies, Beijing, Peoples R China.
RI Yu, Zhonggen/AAE-5514-2020; Yu, Zhonggen/AAJ-3063-2020
OI Yu, Zhonggen/0000-0002-3873-980X; Yu, Zhonggen/0000-0002-3873-980X
FU Chinese national fund for the humanities and social sciences (Chinese
Academic translation) [17WSS005]; MOOCs of Beijing Language and Culture
University (Important) "An introduction to Linguistics" in 2019
[MOOC201902]; Beijing Language and Culture University; research and
reform fund of the "Undergraduate Teaching Reform and Innovation
Project" of Beijing higher education in 2020-innovative "multilingual +"
excellent talent training system
FX We would like to extend our gratitude to those who contributed to this
work and the funds that supported this research: Chinese national fund
for the humanities and social sciences (Chinese Academic translation)
(17WSS005); MOOCs of Beijing Language and Culture University (Important)
"An introduction to Linguistics" in 2019 (MOOC201902); An online and
offline hybrid course "Introduction to Linguistics" of Beijing Language
and Culture University in 2020; The research and reform fund of the
"Undergraduate Teaching Reform and Innovation Project" of Beijing higher
education in 2020-innovative "multilingual +" excellent talent training
system.
CR Aleven V, 2003, ARTIF INTELL, V150, P183, DOI 10.1016/S0004-3702(03)00105-X
[Anonymous], 1974, Essays of an Information Scientist
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Calo MR, 2011, ARTIF INTELL, V175, P940, DOI 10.1016/j.artint.2010.11.025
Chen CM, 2009, J INFORMETR, V3, P191, DOI 10.1016/j.joi.2009.03.004
Chou CY, 2003, COMPUT EDUC, V40, P255, DOI 10.1016/S0360-1315(02)00130-6
CORNELIUS R, 1986, ACS SYM SER, V306, P125, DOI 10.1021/bk-1986-0306.ch011
Dimiduk DM, 2018, INTEGR MATER MANUF I, V7, P157, DOI 10.1007/s40192-018-0117-8
Fellnhofer K, 2019, EDUC RES REV-NETH, V27, P28, DOI 10.1016/j.edurev.2018.10.002
Franceschet M, 2010, SCIENTOMETRICS, V83, P243, DOI 10.1007/s11192-009-0021-2
Gadanidis G, 2017, INT J INF LEARN TECH, V34, P133, DOI 10.1108/IJILT-09-2016-0048
García P, 2007, COMPUT EDUC, V49, P794, DOI 10.1016/j.compedu.2005.11.017
Gulson KN, 2017, RES EDUC, V98, P14, DOI 10.1177/0034523717723385
Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Hsieh SW, 2013, EURASIA J MATH SCI T, V9, P337, DOI 10.12973/eurasia.2013.943a
Hsieh SW, 2011, EDUC TECHNOL SOC, V14, P161
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Kakouris A., 2016, Journal of Global Entrepreneurship Research, V6
Kayser K, 2009, FOLIA HISTOCHEM CYTO, V47, P355, DOI 10.2478/v10042-009-0087-y
Kleinberg J. M., 2002, P 8 ACM SIGKDD INT C, P91, DOI DOI 10.1145/775047.775061
Labhart N, 2012, J UNIVERS COMPUT SCI, V18, P2542
Leydesdorff L, 2005, J AM SOC INF SCI TEC, V56, P769, DOI 10.1002/asi.20130
Linnaeus C., 1758, SYSTEM NATURE 3 KING
Lynn LA, 2019, PATIENT SAF SURG, V13, DOI 10.1186/s13037-019-0188-2
MCCAIN KW, 1990, J AM SOC INFORM SCI, V41, P433, DOI 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q
Meskó B, 2018, BMC HEALTH SERV RES, V18, DOI 10.1186/s12913-018-3359-4
Nederhof AJ, 2006, SCIENTOMETRICS, V66, P81, DOI 10.1007/s11192-006-0007-2
Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659
Nourbakhsh IR, 1999, ARTIF INTELL, V114, P95, DOI 10.1016/S0004-3702(99)00027-2
Petersen K, 2008, P 12 INT C EV ASS SO, V12, P1, DOI DOI 10.14236/EWIC/EASE2008.8
Pittaway L, 2007, INT SMALL BUS J, V25, P479, DOI 10.1177/0266242607080656
Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3
Timms MJ, 2016, INT J ARTIF INTELL E, V26, P701, DOI 10.1007/s40593-016-0095-y
Ting DSW, 2019, BRIT J OPHTHALMOL, V103, P167, DOI 10.1136/bjophthalmol-2018-313173
Van Eck N.J., 2018, VOSviewer Manual
van Eck N.J., 2011, Text mining and visualization using VOSviewer, DOI DOI 10.48550/ARXIV.1109.2058
Wartman SA, 2018, ACAD MED, V93, P1107, DOI 10.1097/ACM.0000000000002044
Wen J, 2018, ADV INTELL SYST, V613, P289, DOI 10.1007/978-3-319-60744-3_31
Yoon DM, 2015, IEEE ACCESS, V3, P793, DOI 10.1109/ACCESS.2015.2442680
Zhao YX, 2017, AGRO FOOD IND HI TEC, V28, P683
Zheng XH, 2017, AGRO FOOD IND HI TEC, V28, P555
NR 43
TC 20
Z9 20
U1 14
U2 124
PU IGI GLOBAL
PI HERSHEY
PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA
SN 1938-7857
EI 1938-7865
J9 J INF TECHNOL RES
JI J. Inf. Technol. Res.
PD OCT-DEC
PY 2020
VL 13
IS 4
BP 32
EP 46
DI 10.4018/JITR.2020100103
PG 15
WC Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA OH4QC
UT WOS:000582557600003
DA 2024-09-05
ER
PT C
AU Song, XM
Xiong, T
AF Song, Xinmeng
Xiong, Ting
GP IEEE
TI A Survey of Published Literature on Conversational Artificial
Intelligence
SO 2021 7TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM 2021)
LA English
DT Proceedings Paper
CT 7th International Conference on Information Management (ICIM)
CY MAR 27-29, 2021
CL Imperial Coll London, S Kensington Campus, London, ENGLAND
HO Imperial Coll London, S Kensington Campus
DE conversational artificial intelligence; literature review;
scientometrics; CiteSpace
ID EMERGING TRENDS
AB Conversational artificial intelligence (AI), as a rapidly emerging technology, has made a huge impact in the fields of e-commerce, education, entertainment, health, journalism and productivity, and thus arousing the interest of governments, businesses and research institutions. Therefore, it is necessary to generate an overview of the recent developments in the field in order to plan further study effectively. To achieve the goal, we analyze the conversational AI literature between 2015 and 2020 with CiteSpace, which is used for the systematic evaluation of the knowledge structures. Based on the results of the analysis, we find the following insights: (1) The evolution of conversational AI research involves many categories while two major disciplines-computer science and ergonomics-lead the way. (2) The current research can be divided into two research areas: underlying technology architecture and smart scene applications. By using multiple complementary scientometric methods, our study visually presents the research history, current research hotspots and emerging trends in the field of conversational AI, to further promote its technology and application research.
C1 [Song, Xinmeng; Xiong, Ting] Sichuan Univ, Sch Publ Adm, Chengdu, Peoples R China.
C3 Sichuan University
RP Song, XM (corresponding author), Sichuan Univ, Sch Publ Adm, Chengdu, Peoples R China.
EM songxinmeng@stu.scu.edu.cn; xiongting@stu.scu.edu.cn
CR Adam M, 2021, PROD PLAN CONTROL, V32, P443, DOI 10.1080/09537287.2020.1742375
Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
El-Zein M, 2019, CANCER EPIDEM BIOMAR, V28, P1134, DOI 10.1158/1055-9965.EPI-18-1338
Gao JF, 2019, FOUND TRENDS INF RET, V13, P127, DOI 10.1561/1500000074
Hauser-Ulrich S, 2020, JMIR MHEALTH UHEALTH, V8, DOI 10.2196/15806
Kerly A, 2007, KNOWL-BASED SYST, V20, P177, DOI 10.1016/j.knosys.2006.11.014
Kim J, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9183908
Piau A, 2019, INT J MED INFORM, V128, P18, DOI 10.1016/j.ijmedinf.2019.05.013
Qiu LY, 2010, INT J HUM-COMPUT ST, V68, P669, DOI 10.1016/j.ijhcs.2010.05.005
Roca S, 2020, J BIOMED INFORM, V102, DOI 10.1016/j.jbi.2019.103305
Zarouali B, 2018, BEHAV INFORM TECHNOL, V37, P502, DOI 10.1080/0144929X.2018.1458903
Zhou L, 2021, INF SYST E-BUS MANAG, V19, P757, DOI 10.1007/s10257-020-00461-9
NR 13
TC 3
Z9 3
U1 2
U2 33
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-4380-7
PY 2021
BP 113
EP 117
DI 10.1109/ICIM52229.2021.9417135
PG 5
WC Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BR8WH
UT WOS:000674460200021
DA 2024-09-05
ER
PT J
AU Gyory, JT
Kotovsky, K
Cagan, J
AF Gyory, Joshua T.
Kotovsky, Kenneth
Cagan, Jonathan
TI The Influence of Process Management: Uncovering the Impact of Real-Time
Managerial Interventions via a Topic Modeling Approach
SO JOURNAL OF MECHANICAL DESIGN
LA English
DT Article
DE cognitive-based design; design representation; design teams; topic
modeling; process management
ID DESIGN
AB Computationally studying team discourse can provide valuable, real-time insights into the state of design teams and design cognition during problem-solving. The particular experimental design, adopted from previous work by the authors, places one of the design team conditions under the guidance of a human process manager. In that work, teams under this process management outperformed the unmanaged teams in terms of their design performance. This opens the opportunity to not only model design discourse during problem-solving, but more critically, to explore process manager interventions and their impact on design cognition. Utilizing this experimental framework, a topic model is trained on the discourse of human designers of both managed and unmanaged teams collaboratively solving a conceptual engineering design task. Results show that the two team conditions significantly differ in a number of the extracted topics and, in particular, those topics that most pertain to the manager interventions. A dynamic look during the design process reveals that the largest differences between the managed and unmanaged teams occur during the latter half of problem-solving. Furthermore, a before and after analysis of the topic-motivated interventions reveals that the process manager interventions significantly shift the topic mixture of the team members' discourse immediately after intervening. Taken together, these results from this work not only corroborate the effect of the process manager interventions on design team discourse and cognition but provide promise for the computational detection and facilitation of design interventions based on real-time, discourse data.
C1 [Gyory, Joshua T.; Cagan, Jonathan] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA.
[Kotovsky, Kenneth] Carnegie Mellon Univ, Dept Psychol, Pittsburgh, PA 15213 USA.
C3 Carnegie Mellon University; Carnegie Mellon University
RP Cagan, J (corresponding author), Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA.
EM jgyory@andrew.cmu.edu; kotovsky@cmu.edu; cagan@cmu.edu
OI Gyory, Joshua/0000-0001-9946-4179; Cagan, Jonathan/0000-0002-3935-9219
FU Air Force Office of Scientific Research (AFOSR) [FA9550-18-0088]
FX This work was supported by the Air Force Office of Scientific Research
(AFOSR) under Grant No. FA9550-18-0088. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the sponsors. A
previous version of this paper was published in the proceedings of the
2020 ASME IDETC Design Theory and Methodology Conference.
CR Agogué M, 2014, J CREATIVE BEHAV, V48, P1, DOI 10.1002/jocb.37
Ahmed F., 2016, INT DES ENG TECHN C, V50190
Ahmed F, 2018, DES SCI, V4, DOI 10.1017/dsj.2018.5
AlSumait L, 2008, IEEE DATA MINING, P3, DOI 10.1109/ICDM.2008.140
[Anonymous], 2014, Handbook of mixed membership models and their applications
Asuncion A., 2009, C UNC ART INT UAI QU, P27, DOI DOI 10.1080/10807030390248483
Ball Z, 2020, J MECH DESIGN, V142, DOI 10.1115/1.4048455
Bhowmik T, 2015, REQUIR ENG, V20, P253, DOI 10.1007/s00766-015-0226-2
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DavidM., 2006, P ICML
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bull LJ, 2019, DESIGN STUD, V65, P35, DOI 10.1016/j.destud.2019.10.003
Crain SP., 2012, MINING TEXT DATA, P129, DOI [DOI 10.1007/978-1-4614-3223-4_52,4, DOI 10.1007/978-1-4614-3223-4_5]
Cross Nigel, 2001, DESIGN KNOWING LEARN, P79, DOI DOI 10.1016/B978-008043868-9/50005-X
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
den Otter A, 2007, ENG CONSTR ARCHIT MA, V14, P408, DOI 10.1108/09699980710780728
Dong A, 2005, DESIGN STUD, V26, P445, DOI 10.1016/j.destud.2004.10.003
Dong A, 2004, J MECH DESIGN, V126, P378, DOI 10.1115/1.1711818
Dong A, 2013, DESIGN STUD, V34, P1, DOI 10.1016/j.destud.2012.05.003
Foulds J, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P446
Fu K, 2013, J MECH DESIGN, V135, DOI 10.1115/1.4023484
Fu K, 2013, J MECH DESIGN, V135, DOI 10.1115/1.4023158
Fu K, 2010, J MECH DESIGN, V132, DOI 10.1115/1.4002202
Goucher-Lambert K, 2020, J MECH DESIGN, V142, DOI 10.1115/1.4046077
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Gyory J.T., 2018, INT C ON DES COMP CO
Gyory JT, 2018, PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2018, VOL 7
Gyory JT, 2019, RES ENG DES, V30, P85, DOI 10.1007/s00163-018-00303-3
Handler A., 2016, P 2016 EMNLP WORKSHO, P114
Heinrich Gregor, 2005, TECHNICAL REPORT
Hey J, 2008, INT J ENG EDUC, V24, P283
Hoffman MD, 2013, J MACH LEARN RES, V14, P1303
Hofmann Thomas, 2017, ACM SIGIR Forum, V51, P211, DOI 10.1145/3130348.3130370
Huang L, 2017, 2017 24TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE WORKSHOPS (APSECW), P71, DOI 10.1109/APSECW.2017.11
Isaksen S.G., 2013, FACILITATING CREATIV
Joung J, 2021, J MECH DESIGN, V143, DOI 10.1115/1.4048960
Juan Ramos, 2003, Using TF-IDF to determine word relevance in document queries, V242, P29
Kapoor R, 2018, MEASUREMENT, V126, P134, DOI 10.1016/j.measurement.2018.05.053
Kim T.Y., 2010, SCIS ISIS
KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694
Linsey JS, 2012, J MECH DESIGN, V134, DOI 10.1115/1.4006145
Liu Y, 2015, AAAI CONF ARTIF INTE, P2418
Lloyd P., 1995, DESIGN STUD, V16, P237, DOI DOI 10.1016/0142-694X(94)00011-2
Loper E., 2004, P ACL 2004 INT POST
Martin M.J., 2004, P HUMAN LANGUAGE TEC, P97
Mehrotra R, 2013, SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, P889
Merriam-Webster M.W.S.C., 1977, DICTIONARY
Mohr JW, 2013, POETICS, V41, P545, DOI 10.1016/j.poetic.2013.10.001
Newman D., 2010, P HUM LANG TECHN ANN, P100
Newman D, 2010, J WEB SEMANT, V8, P169, DOI 10.1016/j.websem.2010.03.005
Nguyen V.-A., 2012, P ASS COMPUTATIONAL, P78
Nijstad BA, 2006, PERS SOC PSYCHOL REV, V10, P186, DOI 10.1207/s15327957pspr1003_1
Pérez-Cruz F, 2008, IEEE INT SYMP INFO, P1666, DOI 10.1109/ISIT.2008.4595271
Pujara J., 2012, NIPS WORKSH BIG LEAR, V128
Purver M, 2006, COLING/ACL 2006, VOLS 1 AND 2, PROCEEDINGS OF THE CONFERENCE, P17
Rosa K.D., 2011, P ACM SIGIR SWSM
Rosen-Zvi Michal., 2004, UAI
Shlens J., 2014, arXiv
Song BY, 2017, DES SCI, V3, DOI 10.1017/dsj.2017.27
Stempfe J., 2002, DESIGN STUD, V23, P473, DOI [10.1016/S0142- 694X(02)00004-2, DOI 10.1016/S0142-694X(02)00004-2]
Suryadi D, 2019, J MECH DESIGN, V141, DOI 10.1115/1.4044523
Teh YW, 2007, ADV NEURAL INFORM PR, P1353, DOI DOI 10.7551/MITPRESS/7503.003.0174
Yilmaz S, 2010, 11TH INTERNATIONAL DESIGN CONFERENCE (DESIGN 2010), VOL 1-3, P1007
NR 64
TC 6
Z9 6
U1 1
U2 3
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 1050-0472
EI 1528-9001
J9 J MECH DESIGN
JI J. Mech. Des.
PD NOV 1
PY 2021
VL 143
IS 11
AR 111401
DI 10.1115/1.4050748
PG 12
WC Engineering, Mechanical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA UZ8RJ
UT WOS:000702466200011
OA Bronze
DA 2024-09-05
ER
PT J
AU Haga, WJ
Zviran, M
AF Haga, W. J.
Zviran, M.
TI Information systems effectiveness: research designs for causal inference
SO INFORMATION SYSTEMS JOURNAL
LA English
DT Article
DE effectiveness; effectiveness measurement; productivity; productivity
assessment; research design; validity
AB This paper examines the capacity of the research designs of 37 empirical studies of information systems (IS) effectiveness to provide a basis for the development of theories about behaviour related to IS effectiveness. The power of each study to support causal inference was evaluated in terms of (a) its handling of the time dimension, (b) its ability to weigh differences and (c) its resistance to internal validity threats that pose alternative explanations for its reported findings. Of the reviewed studies, 29.7% could account for the time dimension, 32.4% employed a comparison group and 16.2% were not susceptible to any internal validity threats. Only 13.5% of the studies combined an accounting for the time dimension with the use of a comparison group. Of these, however, only 5.4% were also invulnerable to internal validity threats. The research designs of nearly 95% of these published studies were deficient in supporting causal inference. In those studies, suggestions that one variable was causally related to another variable could not be substantiated. Encouragement for the future capacity of IS effectiveness research to support causal inference was found in a trend towards the use of quasiexperimental designs. Recommendations are made regarding ways to increase the inferential capacity of research designs employed in the study of IS effectiveness.
C1 [Haga, W. J.; Zviran, M.] Naval Postgrad Sch, Dept Syst Management, Monterey, CA 93943 USA.
C3 United States Department of Defense; United States Navy; Naval
Postgraduate School
RP Haga, WJ (corresponding author), Naval Postgrad Sch, Dept Syst Management, Monterey, CA 93943 USA.
CR ALAVI M, 1989, PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS, P363, DOI 10.1145/75034.75065
ALDAG RJ, 1986, DECISION SCI, V17, P572, DOI 10.1111/j.1540-5915.1986.tb00243.x
Altmeyer A.S., 1981, PUBLIC PRODUCTIVITY, V5, P16
Amovick G. N., 1978, INFORM PROCESSING MA, V14, P369
[Anonymous], SLOAN MANAGEMENT REV
[Anonymous], 1961, The Structure of Science: Problems in the Logic of Scientific Explanation
[Anonymous], 1950, PHILOS SCI METHOD
BAILEY JE, 1983, MANAGE SCI, V29, P530, DOI 10.1287/mnsc.29.5.530
Ball L. D., 1980, PUBLIC PRODUCTIVITY, V4, P51
Ball L, 1982, MIS QUART, V6, P19, DOI 10.2307/248752
Barkin S. R., 1977, Information and Management, V1, P35, DOI 10.1016/0378-7206(77)90007-6
Baroudi J. J., 1988, Journal of Management Information Systems, V4, P44
BAROUDI JJ, 1989, MIS QUART, V13, P87, DOI 10.2307/248704
BAROUDI JJ, 1986, COMMUN ACM, V29, P232, DOI 10.1145/5666.5669
BEARMAN TC, 1985, J AM SOC INFORM SCI, V36, P369, DOI 10.1002/asi.4630360605
Blalock H., 1964, CAUSAL INFERENCES NO, P9
BORKO H, 1983, INFORM PROCESS MANAG, V19, P203, DOI 10.1016/0306-4573(83)90017-1
BOWEN W, 1986, FORTUNE 0526, P20
BRANCHEAU JC, 1987, MIS QUART, V11, P23, DOI 10.2307/248822
Bruwer P. J. S., 1984, INFORM MANAGE, V1, P6347
Calista D. J., 1985, PUBLIC PRODUCTIVITY, V9, P121
Campbell D.T., 1966, Experimental and quasi-experimental designs for research
CAMPBELL DT, 1975, COMP POLIT STUD, V8, P178, DOI 10.1177/001041407500800204
CARLSON ED, 1974, MANAGE INFORM, V3, P57
Chandler JS, 1982, MIS QUART, V6, P61, DOI 10.2307/248755
Chervany N. L., 1970, DECISION SCI, V1, P296
Coleman R. J., 1972, J SYST MANAGE, V23, P13
COLTON KW, 1973, SLOAN MANAGE REV, V14, P75
CRON WL, 1983, INFORM MANAGE, V6, P171, DOI 10.1016/0378-7206(83)90034-4
Cronan T. P., 1990, Journal of Management Information Systems, V6, P21
Decker J. E., 1985, PUBLIC PRODUCTIVITY, V9, P213
Denzin N. K., 1968, PREPRINT
Denzin N.K., 1989, RES ACT, V3rd
DICKSON GW, 1977, MANAGE SCI, V23, P913, DOI 10.1287/mnsc.23.9.913
DICKSON GW, 1984, MIS QUART, V8, P135, DOI 10.2307/248662
DOMINICK WD, 1987, INFORM PROCESS MANAG, V23, P7, DOI 10.1016/0306-4573(87)90034-3
DURAND DE, 1987, INFORM MANAGE, V13, P111, DOI 10.1016/0378-7206(87)90018-8
Edelman F, 1981, MIS QUART, V5, P1, DOI 10.2307/249287
EDSTROM A, 1977, HUM RELAT, V30, P589, DOI 10.1177/001872677703000702
Eichesen D. R., 1978, J AM SOC INFORM SCI, V29, P56
Englander V., 1985, PUBLIC PRODUCTIVITY, V9, P271
EOYANG CK, 1977, BEHAV SCI, V22, P53, DOI 10.1002/bs.3830220109
EPSTEIN BJ, 1982, OMEGA-INT J MANAGE S, V10, P249, DOI 10.1016/0305-0483(82)90095-0
FRANZ CR, 1986, DECISION SCI, V17, P329, DOI 10.1111/j.1540-5915.1986.tb00230.x
FRANZ CR, 1986, MIS QUART, V10, P29, DOI 10.2307/248877
Fuerst W. L., 1982, Decision Sciences, V13, P554, DOI 10.1111/j.1540-5915.1982.tb01182.x
GALLAGHER CA, 1974, ACAD MANAGE J, V17, P46, DOI 10.5465/254770
GALLUPE RB, 1988, MIS QUART, V12, P277, DOI 10.2307/248853
Ginzberg M. J., 1982, DATA BASE FAL, P19
GINZBERG M.J., 1980, Accounting Organizations and Society, V5, P369, DOI [10.1016/0361-3682(80)90036-7, DOI 10.1016/0361-3682(80)90036-7]
GINZBERG MJ, 1981, MANAGE SCI, V27, P459, DOI 10.1287/mnsc.27.4.459
GINZBERG MJ, 1978, INTERFACES, V8, P59, DOI 10.1287/inte.8.4.59
Gremillion L. L., 1985, Journal of Management Information Systems, V2, P5
HABERMAN P, 1963, J CLIN PSYCHOL, V19, P245, DOI 10.1002/1097-4679(196304)19:2<245::AID-JCLP2270190235>3.0.CO;2-P
Haga W. J., 1993, DEFENSE ANAL, V9, P197
Hall P. G., 1976, MANAGEMENT DATAMATIC, V5, P262
HAMILTON S, 1983, DATA BASE, V14, P3, DOI 10.1145/1040676.1040677
Hamilton S., 1982, Information and Management, V5, P339, DOI 10.1016/0378-7206(82)90033-7
HARTOG C, 1986, MIS QUART, V10, P351, DOI 10.2307/249189
HILL T, 1987, J APPL PSYCHOL, V72, P307, DOI 10.1037/0021-9010.72.2.307
HOGUE JT, 1985, INFORM MANAGE, V8, P205, DOI 10.1016/0378-7206(85)90017-5
Homans GeorgeC., 1964, Handbook of Modern Sociology, P951
Hummel R. P., 1989, AM SOC PUBL ADM ANN
IVES B, 1984, MANAGE SCI, V30, P586, DOI 10.1287/mnsc.30.5.586
JARVENPAA SL, 1985, MIS QUART, V9, P141, DOI 10.2307/249115
KAPSALES P, 1986, J SYST MANAGE, V37, P7
KEIM RT, 1982, J SYST MANAGE, V33, P20
KING JL, 1978, COMPUT SURV, V10, P19, DOI 10.1145/356715.356718
King W.R., 1978, MIS Quarterly, V2, P43
King W.R., 1983, DECISION SCI, V14, P34, DOI [DOI 10.1111/J.1540-5915.1983.TB00167.X, 10.1111/j.1540-5915.1983.tb00167.x]
KLEIJNEN JPC, 1979, OMEGA-INT J MANAGE S, V7, P539, DOI 10.1016/0305-0483(79)90072-0
LaPlante A., 1988, INFOWORLD, P5
Larcker D.F., 1980, DECISION SCI, V11, P121, DOI DOI 10.1111/J.1540-5915.1980.TB01130.X
LAY PMW, 1985, J SYST MANAGE, V36, P30
LINCOLN T, 1986, INFORM MANAGE, V11, P25, DOI 10.1016/0378-7206(86)90073-X
Linson D. D., 1988, THESIS NAVAL POSTGRA
Lucas H., 1975, ACCOUNTING REV L, P735
Lucas H. C. Jr., 1978, Decision Sciences, V9, P68, DOI 10.1111/j.1540-5915.1978.tb01367.x
LUCAS HC, 1975, MANAGE SCI B-APPL, V21, P908, DOI 10.1287/mnsc.21.8.908
LUCAS HC, 1974, MANAGE INFORM, V3, P207
MAGGIOLINI P, 1986, INFORM MANAGE, V10, P75, DOI 10.1016/0378-7206(86)90049-2
Maginnis N. B., 1980, COMPUTERWORLD, P197
MANSOUR AH, 1980, ACAD MANAGE J, V23, P521, DOI 10.5465/255516
MARKUS ML, 1983, HUM RELAT, V36, P203, DOI 10.1177/001872678303600301
MARSDEN JR, 1988, INFORM MANAGE, V14, P75, DOI 10.1016/0378-7206(88)90051-1
MARTIN MP, 1986, J SYST MANAGE, V37, P7
Mason A., 1984, PUBLIC PRODUCTIVITY, V8, P70
Mason R. O., 1978, Information and Management, V1, P219, DOI 10.1016/0378-7206(78)90028-9
MASON RO, 1973, MANAGE SCI, V19, P475, DOI 10.1287/mnsc.19.5.475
Matlin G, 1979, MIS QUART, V3, P5, DOI 10.2307/248786
MICK CK, 1980, J AM SOC INFORM SCI, V31, P347, DOI 10.1002/asi.4630310506
MILLER J, 1987, MIS QUART, V11, P107, DOI 10.2307/248832
MONEY A, 1988, MIS QUART, V12, P223, DOI 10.2307/248847
MONTAZEMI AR, 1988, MIS QUART, V12, P239, DOI 10.2307/248849
Neumann S., 1979, Information and Management, V2, P271, DOI 10.1016/0378-7206(79)90025-9
Nolan RL, 1980, MIS QUART, V4, P1, DOI 10.2307/249333
Popper K., 1968, LOGIC SCI DISOVERY
Pournelle J., 1987, INFOWORLD, P57
POWERS RF, 1973, CALIF MANAGE REV, V15, P147, DOI 10.2307/41164448
RADECKI T, 1976, INFORM PROCESS MANAG, V12, P319, DOI 10.1016/0306-4573(76)90050-9
Raghunathan T.S., 1987, OMEGA, V16, P85
Rescher N., 1970, SCI EXPLANATION, P32
Roach S., 1990, BUS WEEK, P202
ROBEY D, 1978, INTERFACES, V8, P70, DOI 10.1287/inte.8.2.70
ROBEY D, 1979, ACAD MANAGE J, V22, P527, DOI 10.5465/255742
ROUSE WB, 1987, INFORM PROCESS MANAG, V23, P593, DOI 10.1016/0306-4573(87)90063-X
SCHEWE CD, 1976, ACAD MANAGE J, V19, P577, DOI 10.5465/255792
SNITKIN SR, 1986, INFORM MANAGE-AMSTER, V10, P83, DOI 10.1016/0378-7206(86)90050-9
SOERGEL D, 1976, J AM SOC INFORM SCI, V27, P256, DOI 10.1002/asi.4630270411
SRINIVASAN A, 1985, MIS QUART, V9, P243, DOI 10.2307/248951
STRASSMANN PA, 1976, HARVARD BUS REV, V54, P133
STRASSMANN PA, 1985, DATAMATION, V31, P82
SULLIVAN RS, 1985, INTERFACES, V15, P46, DOI 10.1287/inte.15.5.46
SWANSON EB, 1974, MANAGE SCI B-APPL, V21, P178, DOI 10.1287/mnsc.21.2.178
TAIT P, 1988, MIS QUART, V12, P91, DOI 10.2307/248809
THARP MO, 1976, MANAGE DATAMAT, V5, P231
TORONTO RS, 1975, BEHAV SCI, V20, P145, DOI 10.1002/bs.3830200302
TRICE AW, 1988, DATA BASE, V19, P33, DOI 10.1145/65766.65771
Vitalari N.P., 1985, RES METHODS INFORM S, P243
Vogel D.R., 1984, DATA BASE, V15, P3
Worthley J.A., 1980, Public Productivity Review, V4, P10
NR 121
TC 4
Z9 6
U1 2
U2 11
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1350-1917
EI 1365-2575
J9 INFORM SYST J
JI Inf. Syst. J.
PD APR
PY 1994
VL 4
IS 2
BP 141
EP 166
DI 10.1111/j.1365-2575.1994.tb00048.x
PG 26
WC Information Science & Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA V34KM
UT WOS:000209085300005
DA 2024-09-05
ER
PT J
AU Ballestar, MT
Doncel, LM
Sainz, J
Ortigosa-Blanch, A
AF Teresa Ballestar, Maria
Miguel Doncel, Luis
Sainz, Jorge
Ortigosa-Blanch, Arturo
TI A novel machine learning approach for evaluation of public policies: An
application in relation to the performance of university researchers
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Research evaluation; Machine learning; Longitudinal clustering;
Incentive-based policies
ID FINANCIAL INCENTIVES; PREDICTION; PRODUCTIVITY; VALIDATION; SCIENCE;
IMPACT; TENURE; STATE
AB Research has become the main reference point for academic life in modern universities. Research incentives have been a controversial issue, because of the difficulty of identifying who are the main beneficiaries and what are the long-term effects. Still, new policies including financial incentives have been adopted to increase the research output at all possible levels. Little literature has been devoted to the response to those incentives. To bridge this gap, we carry out our analysis with data of a six years program developed in Madrid (Spain). Instead of using a traditional econometric approach, we design a machine learning multilevel model to discover on whom, when, and for how long those policies have an effect. The empirical model consists of an automated nested longitudinal clustering (ANLC) performed in two stages. Firstly, it performs a stratification of academics, and secondly, it performs a longitudinal segmentation for each group. The second part considers the researchers' sociodemographic, academic information and the evolution of their performance over time in the form of the annual percentage variation of their marks over the period. The new methodology, whose robustness is tested with a multilayer perceptron artificial neural network with a back-propagation learning algorithm, shows that tenure track researchers present a better response to incentives than tenured researches, and also that gender plays an important role in academia.
These discoveries are relevant to administrations and universities for understanding the productivity of academics working under long-term incentive-based programs, the drawbacks and the inequalities for maximizing the generation of knowledge.
C1 [Teresa Ballestar, Maria; Ortigosa-Blanch, Arturo] ESIC Business & Mkt Sch, Barcelona, Spain.
[Miguel Doncel, Luis; Sainz, Jorge] Univ Rey Juan Carlos, Mostoles, Spain.
[Sainz, Jorge] Univ Bath, Bath, Avon, England.
C3 ESIC; ESIC Business & Marketing School; Universidad Rey Juan Carlos;
University of Bath
RP Ballestar, MT (corresponding author), ESIC Business & Mkt Sch, Barcelona, Spain.
EM mariateresa.ballestar@esic.edu; luismiguel.doncel@urjc.es;
js3189@bath.ac.uk; arturo.ortigosa@esic.edu
RI SAINZ, JORGE/AAG-5379-2021; Sainz, jorge/AGW-3813-2022; Doncel-Pedrera,
Luis/H-4711-2015
OI SAINZ, JORGE/0000-0001-8491-3154; Ortigosa-Blanch,
Arturo/0000-0002-8332-4195; Doncel-Pedrera, Luis/0000-0002-0156-8058;
Ballestar de las Heras, Maria Teresa/0000-0001-8526-7561
CR Aghion P, 2010, ECON POLICY, P7
Anderson K, 2009, INST CHEM E, P170
Anderson S., 1980, Statistical Methods for Comparative Studies
[Anonymous], 2017, MULTILEVEL ANAL TECH
[Anonymous], REV MANAG SCI
[Anonymous], SPSS 13 0 STAT PROCE
[Anonymous], STERN REV RES EXCELL
[Anonymous], 2015, ICTACT J SOFT COMPUT
[Anonymous], 2013, APPL LOGISTIC REGRES
[Anonymous], 2009, Finding groups in data: an introduction to cluster analysis
Athey S, 2017, J ECON PERSPECT, V31, P3, DOI 10.1257/jep.31.2.3
Athey S, 2017, SCIENCE, V355, P483, DOI 10.1126/science.aal4321
Auranen O, 2010, RES POLICY, V39, P822, DOI 10.1016/j.respol.2010.03.003
Austin PC, 2004, STAT MED, V23, P1159, DOI 10.1002/sim.1687
Austin PC, 2011, MULTIVAR BEHAV RES, V46, P119, DOI 10.1080/00273171.2011.540480
Ballestar M.T., 2018, EC IND, P47
Batterbury S, 2008, POLICY FUTURES EDUC, V6, P286, DOI 10.2304/pfie.2008.6.3.286
Camerer CF, 1999, J RISK UNCERTAINTY, V19, P7, DOI 10.1023/A:1007850605129
Chait R., 2009, The questions of tenure
Chalfin A, 2016, AM ECON REV, V106, P124, DOI 10.1257/aer.p20161029
Chambers CD, 2015, CORTEX, V66, pA1, DOI 10.1016/j.cortex.2015.03.022
COCHRAN WG, 1968, BIOMETRICS, V24, P295, DOI 10.2307/2528036
Cvecic I, 2018, ECON RES-EKON ISTRAZ, V31, P2060, DOI 10.1080/1331677X.2018.1480970
Dnes A, 2005, ECON INQ, V43, P831, DOI 10.1093/ei/cbi061
Dobbin F, 2007, ANNU REV SOCIOL, V33, P449, DOI 10.1146/annurev.soc.33.090106.142507
Dolnicar S., 2002, FACULTY COMMERCE PAP, V10, P1
Easterly W, 1997, Q J ECON, V112, P1203, DOI 10.1162/003355300555466
Edwards MA, 2017, ENVIRON ENG SCI, V34, P51, DOI 10.1089/ees.2016.0223
Epstein N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0184543
Formann A.K., 1984, Die Latent-Class-Analyse: Einfuhrung in Theorie und Anwendung
Frank KA, 2000, SOCIOL METHOD RES, V29, P147, DOI 10.1177/0049124100029002001
Heggeseth B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0131443
Hicks D, 2012, RES POLICY, V41, P251, DOI 10.1016/j.respol.2011.09.007
Hu XF, 2009, REMOTE SENS ENVIRON, V113, P2089, DOI 10.1016/j.rse.2009.05.014
Jaffe AB, 2005, ECOL ECON, V54, P164, DOI 10.1016/j.ecolecon.2004.12.027
Jenkins GD, 1998, J APPL PSYCHOL, V83, P777, DOI 10.1037/0021-9010.83.5.777
Jones BL, 2007, SOCIOL METHOD RES, V35, P542, DOI 10.1177/0049124106292364
Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x
Kavzoglu T, 2003, INT J REMOTE SENS, V24, P4907, DOI 10.1080/0143116031000114851
Kleinberg J, 2018, Q J ECON, V133, P237, DOI 10.1093/qje/qjx032
Kleinberg J, 2015, AM ECON REV, V105, P491, DOI 10.1257/aer.p20151023
LaConte S, 2005, NEUROIMAGE, V26, P317, DOI 10.1016/j.neuroimage.2005.01.048
Lakens D, 2018, NAT HUM BEHAV, V2, P168, DOI 10.1038/s41562-018-0311-x
Mjolsness E, 2001, SCIENCE, V293, P2051, DOI 10.1126/science.293.5537.2051
Musselin C, 2005, HIGH EDUC, V49, P135, DOI 10.1007/s10734-004-2918-2
Pers TH, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006287
Pontille D, 2010, RES EVALUAT, V19, P347, DOI 10.3152/095820210X12809191250889
Pourhoseingholi Mohamad Amin, 2012, Gastroenterol Hepatol Bed Bench, V5, P79
Rauber M, 2008, GER ECON REV, V9, P431, DOI 10.1111/j.1468-0475.2008.00448.x
Rothstein B, 2005, WORLD POLIT, V58, P41, DOI 10.1353/wp.2006.0022
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Taylor J, 2011, BRIT J MANAGE, V22, P202, DOI 10.1111/j.1467-8551.2010.00722.x
Ballestar MT, 2018, J BUS RES, V88, P407, DOI 10.1016/j.jbusres.2017.11.047
Tietze S, 2018, EUR J INT MANAG, V12, P28, DOI 10.1504/EJIM.2018.10009384
Wagstaff K, 2004, ST CLASS DAT ANAL, P649
Wang DS, 2019, ECON RES-EKON ISTRAZ, V32, P1, DOI 10.1080/1331677X.2018.1546123
Wang J, 2018, RES POLICY, V47, P1070, DOI 10.1016/j.respol.2018.03.014
Wright PM, 2002, J MANAGE, V28, P247, DOI 10.1177/014920630202800302
Yu H, 2014, LECT NOTES ARTIF INT, V8818, P765, DOI 10.1007/978-3-319-11740-9_70
NR 59
TC 20
Z9 20
U1 3
U2 47
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD DEC
PY 2019
VL 149
AR 119756
DI 10.1016/j.techfore.2019.119756
PG 9
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA JU8TU
UT WOS:000501943200021
DA 2024-09-05
ER
PT J
AU LoPresto, MC
Slater, TF
AF LoPresto, Michael C.
Slater, Timothy F.
TI A New Comparison Of Active Learning Strategies To Traditional Lectures
For Teaching College Astronomy
SO JOURNAL OF ASTRONOMY AND EARTH SCIENCES EDUCATION
LA English
DT Article
DE Astronomy Education Research; Active Learning; Lecture-Tutorials;
Visual-Assessments; Formative Assessment
AB Although traditional lectures are still the dominant form of undergraduate instruction, there have been relatively few studies comparing various learner-centered and active learning teaching strategies to one another in order to guide professors in making informed instructional decisions. To study the impact of different active learning approaches, pre-test to posttest learning gains for students receiving instruction on introductory astronomy solar system topics through a combination of collaborative learning activities and formative assessment-driven activities were compared to the gains of students being taught the same topics by traditional lectures only. After traditional lectures, students improved from a pre-test score of 42% (n=144) to 49% (n=49). After lecture tutorials and classroom voting response systems improvement was to 73% (n=72) Using a multiple-group comparison approach, similar earning gains were also observed when using visual-assessment and tutorial activities. Moreover, data from a Likert-style attitude survey of 264 undergraduates showed that, although they did not report a clear preference for one instructional mode over the other, the majority of students believed that the active and collaborative nature of the activities helped them learn. The results of this study add weight to the notion that most modern pedagogies are superior to traditional lecture, and that although the relative impacts of particular pedagogies are mostly indistinguishable from one another, they are all are better than traditional lecture alone.
C1 [LoPresto, Michael C.] Henry Ford Coll, Dearborn, MI 48128 USA.
[LoPresto, Michael C.] Henry Ford Coll, Introductory Phys & Astron, Dearborn, MI USA.
[LoPresto, Michael C.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Slater, Timothy F.] Univ Wyoming, Sci Educ, Laramie, WY 82071 USA.
C3 University of Michigan System; University of Michigan; University of
Wyoming
RP LoPresto, MC (corresponding author), Henry Ford Coll, Dearborn, MI 48128 USA.
EM lopresto@hfcc.edu; tslater@uwyo.edu
FU NASA/JPL Center for Astronomy Education (CAE) at the University of
Arizona; University of Michigan Department of Astronomy - University's
Third Century Initiative; NSF [AST-1514835]
FX This work was supported in part by the NASA/JPL Center for Astronomy
Education (CAE) at the University of Arizona as part of the
Collaboration of Astronomy Teaching Scholars (CATS) project, Solar
System Concept Inventory (SSCI) & Solar System Lecture-Tutorials Project
and a through a Post-Doctoral Fellowship in the University of Michigan
Department of Astronomy funded by University's Third Century Initiative
and NSF grant AST-1514835.
CR Alexander W. R., 2004, ASTRON ED REV, V3, P178
[Anonymous], 1997, Peer Instruction - A User's Manual
[Anonymous], 2002, ASTRONOMY ED REV, V1, P1
[Anonymous], 2012, Discipline-based education research
[Anonymous], 1999, How people learn
Bok D., 2009, Our underachieving colleges: A candid look at how much students learn and why they should be learning more
Bonwell C., 1991, Active Learning: Creating Excitement in the Classroom, V1
Bransford J.D., 2005, How students learn: History, mathematics, and science in the classroom
Brogt Erik, 2007, Astronomy Education Review, V6, P50, DOI 10.3847/AER2007005
Chickering A.W., 1999, New Directions for Teaching and Learning, V80, P75, DOI [10.1002/tl.8006, DOI 10.1002/TL.8006]
Duncan D, 2007, CLICKERS ASTRONOMY C
Duncan D., 2006, ASTRONOMY ED REV, V5, P70
Fairweather J., 2008, Linking evidence and promising practices in science, technology, engineering, and mathematics (STEM) undergraduate education: A status report for the National Academies National Research Council Board of Science Education
Gokhale A.A., 1995, Journal of Technology Education, V7
Green P., 2003, Peer Instruction for Astronomy
Hake RR, 1998, AM J PHYS, V66, P64, DOI 10.1119/1.18809
James Mark C., 2008, Astronomy Education Review, V7, DOI 10.3847/AER2008004
Keeley P., 2012, UNCOVERING STUDENT I
Kober N., 2015, Reaching students: What research says about effective instruction in undergraduate science and engineering
Lasry N., 2008, PHYS TEACH, V46, P242
Lasry N, 2008, AM J PHYS, V76, P1066, DOI 10.1119/1.2978182
LoPresto Michael C., 2010, Physics Education, V45, P196, DOI 10.1088/0031-9120/45/2/012
LoPresto M. C., 2012, THESIS
LoPresto M. C., 2010, ASTRONOMY ED REV, V9, P1
Mazur E, 2009, SCIENCE, V323, P50, DOI 10.1126/science.1168927
Michael C., 2010, PHYS TEACH, V48, P296
NAP, 2007, RIS GATH STORM EN EM
Nielsen N., 2011, Promising practices in undergraduate science, technology, engineering, and mathematics education: A summary of two workshops
Prather E.E., 2012, Lecture-Tutorials for Introductory Astronomy
Prather E.E., 2009, Astronomy Education Review, V8
Prather E.E., 2004, Astronomy Education Review, V3, P122, DOI [10.3847/AER2004019, DOI 10.3847/AER2004019]
Prather E. E., 2009, LECT TUTORIALS
Prather EE, 2009, PHYS TODAY, V62, P41, DOI 10.1063/1.3248478
Prather EE, 2009, AM J PHYS, V77, P320, DOI 10.1119/1.3065023
Slater S.J., 2015, Conducting Astronomy Education Research, V2nd
Slater StephanieJ., 2015, Discipline-Based Education Research: A Guide for Scientists
Slater T. F., 2013, ASTROLRNER JAN
Slater T. F., 2003, LEARNER CENTERED AST
Slater T.F., 2010, The Physics Teacher, V48, P618, DOI DOI 10.1119/1.3517037
Weimer M., 2002, LEARNER CTR TEACHING
NR 40
TC 13
Z9 29
U1 0
U2 3
PU CLUTE INT
PI LITTLETON
PA 6901 S PIERCE STR, STE 301, LITTLETON, CO 80128 USA
SN 2374-6246
EI 2374-6254
J9 J ASTRON EARTH SCI E
JI J. Astron. Earth Sci. Educ.
PD JUN
PY 2016
VL 3
IS 1
BP 59
EP 75
DI 10.19030/jaese.v3i1.9685
PG 17
WC Education, Scientific Disciplines
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA FF2ZF
UT WOS:000408764600004
OA gold
DA 2024-09-05
ER
PT C
AU Wang, Y
Kanagavelu, R
Wei, QS
Yang, YC
Liu, Y
AF Wang, Yuan
Kanagavelu, Renuga
Wei, Qingsong
Yang, Yechao
Liu, Yong
BE Bakas, S
Crimi, A
Baid, U
Malec, S
Pytlarz, M
Baheti, B
Zenk, M
Dorent, R
TI Model Aggregation for Federated Learning Considering Non-IID and
Imbalanced Data Distribution
SO BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN
INJURIES, BRAINLES 2022, PT II
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 8th International Workshop on Brain Lesion - Glioma, Multiple Sclerosis,
Stroke and Traumatic Brain Injuries (BrainLes)
CY SEP 18-22, 2022
CL Singapore, SINGAPORE
DE Federated Learning; Multi-institutional Collaboration; Medical Imaging;
Brain Tumor Segmentation
AB With the ever increasing importance and requirements to ensure data privacy, federated learning emerges as an promising technology for training deep learning models without having hospitals to share the raw data. MICCAI Federated Tumor Segmentation Challenge 2021 is the first international challenge on federated learning to strengthen the understanding of real-world challenges and create practical solutions in the related area. In the challenge of this year, we proposed a series of new aggregation strategies towards improving the learning performance in the context of non-IID and imbalanced data distribution. We also designed a simple collaborator selection scheme to shorten the training time while achieving a good level of model performance for brain tumor segmentation.
C1 [Wang, Yuan; Kanagavelu, Renuga; Wei, Qingsong; Yang, Yechao; Liu, Yong] Inst High Performance Comp, Singapore, Singapore.
C3 Agency for Science Technology & Research (A*STAR); A*STAR - Institute of
High Performance Computing (IHPC)
RP Wang, Y (corresponding author), Inst High Performance Comp, Singapore, Singapore.
EM wang_yuan@ihpc.a-star.edu.sg; renuga_k@ihpc.a-star.edu.sg;
wei_qingsong@ihpc.a-star.edu.sg; yang_yechao@ihpc.a-star.edu.sg;
liuyong@ihpc.a-star.edu.sg
CR Baid U, 2021, Arxiv, DOI [arXiv:2107.02314, 10.48550/arXiv.2107.02314, 10.48550/ARXIV.2107.02314]
Chen M, 2020, IEEE T CLOUD COMPUT, V8, P1274, DOI 10.1109/TCC.2016.2617382
cnbc, Modern Medicine
FeTS, 2022, Challenge
Guo PF, 2021, PROC CVPR IEEE, P2423, DOI [10.1109/cvpr46437.2021.00245, 10.1109/CVPR46437.2021.00245]
Hsu TMH, 2019, Arxiv, DOI arXiv:1909.06335
Karargyris A, 2021, Arxiv, DOI [arXiv:2110.01406, DOI 10.48550/ARXIV.2110.01406]
Li WQ, 2019, LECT NOTES COMPUT SC, V11861, P133, DOI 10.1007/978-3-030-32692-0_16
Li X., 2019, INT C LEARNING REPRE
McMahan HB, 2017, PR MACH LEARN RES, V54, P1273
Pati S, 2021, Arxiv, DOI arXiv:2105.05874
psnet, Diagnostic Errors
Reina GA., 2021, arXiv
Sheller MJ, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-69250-1
Sheller MJ, 2019, LECT NOTES COMPUT SC, V11383, P92, DOI 10.1007/978-3-030-11723-8_9
Tresp V, 2016, P IEEE, V104, P2180, DOI 10.1109/JPROC.2016.2615052
Yi LP, 2020, LECT NOTES COMPUT SC, V12396, P761, DOI 10.1007/978-3-030-61609-0_60
NR 17
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-44152-3; 978-3-031-44153-0
J9 LECT NOTES COMPUT SC
PY 2023
VL 14092
BP 196
EP 208
DI 10.1007/978-3-031-44153-0_19
PG 13
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Radiology, Nuclear Medicine & Medical
Imaging
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Radiology, Nuclear Medicine & Medical Imaging
GA BW8RG
UT WOS:001206018200019
DA 2024-09-05
ER
PT J
AU Han, N
Wen, YY
Wang, BW
Huang, F
Liu, XQ
Li, LY
Zhu, TS
AF Han, Nuo
Wen, Yeye
Wang, Bowen
Huang, Feng
Liu, Xiaoqian
Li, Linyan
Zhu, Tingshao
TI Developing a machine learning-based instrument for subjective well-being
assessment on Weibo and its psychological significance: An evaluative
and interpretive research
SO APPLIED PSYCHOLOGY-HEALTH AND WELL BEING
LA English
DT Article; Early Access
DE domain knowledge; life satisfaction; machine learning; social media;
subjective well-being; Weibo
ID AFFECT SCHEDULE PANAS; SOCIAL MEDIA; PERSONALITY; FACEBOOK; TWITTER;
HAPPINESS; VALIDITY; REFLECT; CULTURE; EVENTS
AB Demystifying machine learning (ML) approaches through the synergy of psychology and artificial intelligence can achieve a balance between predictive and explanatory power in model development while enhancing rigor in validation and reporting standards. Accordingly, this study aimed to bridge this research gap by developing a subjective well-being (SWB) prediction model on Weibo, serving as a psychological assessment instrument and explaining the model construction based on psychological knowledge. The model establishment involved the collection of SWB scores and posts from 1,427 valid Weibo users. Multiple machine learning algorithms were employed to train the model and fine-tune its parameters. The optimal model was selected by comparing its criterion validity and split-half reliability performance. Furthermore, SHAP values were calculated to rank the importance of features, which were then used for model interpretation. The criterion validity for the three dimensions of SWB ranged from 0.50 to 0.52 (P < 0.001), and the split-half reliability ranged from 0.94 to 0.96 (P < 0.001). The identified relevant features were related to four main aspects: cultural values, emotions, morality, and time and space. This study expands the application scope of SWB-related psychological theories from a data-driven perspective and provides a theoretical reference for further well-being prediction.
C1 [Han, Nuo] Beijing Normal Univ, Fac Arts & Sci, Dept Psychol, Zhuhai, Peoples R China.
[Han, Nuo; Li, Linyan] City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China.
[Wen, Yeye] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing, Peoples R China.
[Wang, Bowen] Helmholtz Ctr Potsdam, GFZ German Res Ctr Geosci, Potsdam, Germany.
[Huang, Feng; Liu, Xiaoqian; Zhu, Tingshao] Chinese Acad Sci, Inst Psychol, CAS Key Lab Behav Sci, Beijing, Peoples R China.
[Huang, Feng; Zhu, Tingshao] Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China.
[Li, Linyan] City Univ Hong Kong, Jockey Club Coll Vet Med & Life Sci, Dept Infect Dis & Publ Hlth, Hong Kong, Peoples R China.
C3 Beijing Normal University; City University of Hong Kong; Chinese Academy
of Sciences; University of Chinese Academy of Sciences, CAS; Helmholtz
Association; Helmholtz-Center Potsdam GFZ German Research Center for
Geosciences; Chinese Academy of Sciences; Institute of Psychology, CAS;
Chinese Academy of Sciences; University of Chinese Academy of Sciences,
CAS; City University of Hong Kong
RP Zhu, TS (corresponding author), Chinese Acad Sci, Inst Psychol, 16 Lincui Rd, Beijing, Peoples R China.; Li, LY (corresponding author), City Univ Hong Kong, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China.
EM linyanli@cityu.edu.hk; tszhu@psych.ac.cn
RI Wang, Bowen/GZN-1670-2022; Han, Nuo/GYU-5016-2022
OI Wang, Bowen/0000-0002-0975-1412; Han, Nuo/0000-0002-8090-4581; Wen,
Yeye/0000-0001-6009-2101; HUANG, Feng/0000-0003-2156-0915; Li,
Linyan/0000-0001-5736-2115; Zhu, Tingshao/0000-0003-0020-3812
FX We sincerely thank all participants and staff who participated in this
study.
CR Back MD, 2010, PSYCHOL SCI, V21, P372, DOI 10.1177/0956797609360756
Blome C., 2016, Measuring change in subjective wellbeing: Methods to quantify recall bias and recalibration response shift
Brunswik E., 2001, The essential brunswik: Beginnings, explications, applications, DOI [10.1093/oso/9780195130133.003.0016, DOI 10.1093/OSO/9780195130133.003.0016]
Chancellor S, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0233-7
Chen NH, 2023, LECT NOTES ARTIF INT, V13714, P241, DOI 10.1007/978-3-031-26390-3_15
Chiang I.C. A., 2015, Reliability and validity of measurement
Chua LW, 2015, J YOUTH ADOLESCENCE, V44, P2028, DOI 10.1007/s10964-014-0230-8
Crawford JR, 2004, BRIT J CLIN PSYCHOL, V43, P245, DOI 10.1348/0144665031752934
Cui P, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18189795
Curren R, 2020, J MORAL EDUC, V49, P295, DOI 10.1080/03057240.2020.1793744
Das KV, 2020, PUBLIC HEALTH REV, V41, DOI 10.1186/s40985-020-00142-5
de Carvalho HW, 2013, REV BRAS PSIQUIATR, V35, P169, DOI 10.1590/1516-4446-2012-0957
Della Longa L, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.795283
Diener E, 2003, ANNU REV PSYCHOL, V54, P403, DOI 10.1146/annurev.psych.54.101601.145056
DIENER E, 1984, PSYCHOL BULL, V95, P542, DOI 10.1037/0033-2909.95.3.542
DIENER E, 1985, J PERS ASSESS, V49, P71, DOI 10.1207/s15327752jpa4901_13
Diener Ed., 2009, OXFORD HDB POSITIVE, P187
Dolan P, 2008, J ECON PSYCHOL, V29, P94, DOI 10.1016/j.joep.2007.09.001
[董颖红 Dong Yinghong], 2015, [心理科学, Journal of Psychological Science], V38, P1141
Eid M., 2008, SCI SUBJECTIVE WELL
FURNHAM A, 1986, PERS INDIV DIFFER, V7, P385, DOI 10.1016/0191-8869(86)90014-0
Gao R., Developing simplified Chinese psychological linguistic analysis dictionary for microblog, P10
Graham J, 2009, J PERS SOC PSYCHOL, V96, P1029, DOI 10.1037/a0015141
Hamamura T, 2015, J CROSS CULT PSYCHOL, V46, P930, DOI 10.1177/0022022115592968
Han N, 2023, FRONT PSYCHIATRY, V14, DOI 10.3389/fpsyt.2023.1052844
Han N, 2023, J MED INTERNET RES, V25, DOI 10.2196/41823
HEADEY B, 1984, SOC INDIC RES, V15, P203, DOI 10.1007/BF00668671
Hofman JM, 2021, NATURE, V595, P181, DOI 10.1038/s41586-021-03659-0
Hofstede G., 2003, CULTURES CONSEQUENCE
Humboldt S.V., 2017, Review of European Studies, V9, P10, DOI DOI 10.5539/RES.V9N2P10
Jaidka K, 2020, P NATL ACAD SCI USA, V117, P10165, DOI 10.1073/pnas.1906364117
Kline R. B., 2023, PRINCIPLES PRACTICE
Kosinski M, 2015, AM PSYCHOL, V70, P543, DOI 10.1037/a0039210
Lin XL, 2016, COMPUT HUM BEHAV, V65, P576, DOI 10.1016/j.chb.2016.04.032
Liu P, 2015, CYBERPSYCH BEH SOC N, V18, P373, DOI 10.1089/cyber.2015.0022
Lundberg SM, 2017, ADV NEUR IN, V30
Lundberg SM, 2020, NAT MACH INTELL, V2, P56, DOI 10.1038/s42256-019-0138-9
Lundberg SM, 2018, NAT BIOMED ENG, V2, P749, DOI 10.1038/s41551-018-0304-0
Ogihara Y, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00135
Oishi S, 2004, J PERS SOC PSYCHOL, V86, P460, DOI 10.1037/0022-3514.86.3.460
Orrù G, 2020, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02970
Paliwal S., 2019, International Journal of Current Research and Review, V11, P17, DOI [10.31782/IJCRR.2019.11403, DOI 10.31782/IJCRR.2019.11403]
Parry DA, 2022, CURR OPIN PSYCHOL, V45, DOI 10.1016/j.copsyc.2021.11.005
Pavot W., 2008, J F POSITIVE PSYCHOL, V3, P137, DOI [10.1080/17439760701756946, DOI 10.1080/17439760701756946]
Pennebaker J. W., 2013, The Oxford handbook of health psychology, P417
Phillips J, 2017, J EXP PSYCHOL GEN, V146, P165, DOI 10.1037/xge0000252
Qiu L., 2008, CHINESE J APPL PSYCH, V3, P249
Qiu L, 2012, J RES PERS, V46, P710, DOI 10.1016/j.jrp.2012.08.008
Ren X., 2017, Journal of Inner Mongolia Normal University (PhilosophySocial Science), V46, P59, DOI [10.3969/j.issn.1001-7623.2017.06.011, DOI 10.3969/J.ISSN.1001-7623.2017.06.011]
Ryan R., 2009, Social Psychology, V84, P848
Ryan RM, 2001, ANNU REV PSYCHOL, V52, P141, DOI 10.1146/annurev.psych.52.1.141
Ryan RM, 2000, AM PSYCHOL, V55, P68, DOI 10.1037/0003-066X.55.1.68
Schober P, 2018, ANESTH ANALG, V126, P1763, DOI 10.1213/ANE.0000000000002864
Simm J, 2014, IEICE T INF SYST, VE97D, P1677, DOI 10.1587/transinf.E97.D.1677
Tausczik YR, 2010, J LANG SOC PSYCHOL, V29, P24, DOI 10.1177/0261927X09351676
Tov W., 2013, The Encyclopedia of Cross-Cultural Psychology, First Edition, P1, DOI [10.1002/9781118339893.wbeccp518, DOI 10.1002/9781118339893.WBECCP518]
Uban AS, 2021, FUTURE GENER COMP SY, V124, P480, DOI 10.1016/j.future.2021.05.032
Vaish A, 2008, PSYCHOL BULL, V134, P383, DOI 10.1037/0033-2909.134.3.383
VanderWeele TJ, 2017, P NATL ACAD SCI USA, V114, P8148, DOI 10.1073/pnas.1702996114
Weidong Z., 2004, Psychological Science (China)
Wu S., 2019, The Chinese version of moral foundations dictionary: A brief introduction and pilot analysis
Xiong CQ., 2009, China Journal of Health Psychology, V17, P948, DOI [10.13342/j.cnki.cjhp.2009.08.026, DOI 10.13342/J.CNKI.CJHP.2009.08.026]
Xu ZZ, 2021, SOC SCI MED, V283, DOI 10.1016/j.socscimed.2021.114176
Yarkoni T, 2017, PERSPECT PSYCHOL SCI, V12, P1100, DOI 10.1177/1745691617693393
Zhang Y, 2018, EMERG MARK FINANC TR, V54, P792, DOI 10.1080/1540496X.2017.1321984
NR 65
TC 0
Z9 0
U1 1
U2 1
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1758-0846
EI 1758-0854
J9 APPL PSYCHOL-HLTH WE
JI Appl. Psychol.-Health Well Being
PD 2024 AUG 21
PY 2024
DI 10.1111/aphw.12590
EA AUG 2024
PG 20
WC Psychology, Applied
WE Social Science Citation Index (SSCI)
SC Psychology
GA D3R9F
UT WOS:001295402200001
PM 39168488
DA 2024-09-05
ER
PT J
AU Kurtz, JB
Lourie, MA
Holman, EE
Grob, KL
Monrad, SU
AF Kurtz, Josh B.
Lourie, Michael A.
Holman, Elizabeth E.
Grob, Karri L.
Monrad, Seetha U.
TI Creating assessments as an active learning strategy: what are students'
perceptions? A mixed methods study
SO MEDICAL EDUCATION ONLINE
LA English
DT Article
DE Qualitative research methods; quantitative research methods; curriculum
development; evaluation; active learning; multiple-choice questions
ID MULTIPLE-CHOICE QUESTIONS; MEDICAL-EDUCATION; GENERATION
AB Background: Teaching students how to create assessments, such as those involving multiple-choice questions (MCQs), has the potential to be a useful active learning strategy. In order to optimize students' learning, it is essential to understand how they engage with such activities. Objective: To explore medical students' perceptions of how completing rigorous MCQ training and subsequently writing MCQs affects their learning. Design: In this mixed methods exploratory qualitative study, eighteen second-year medical students, trained in MCQ-writing best practices, collaboratively generated a question bank. Subsequently, the authors conducted focus groups with eight students to probe impressions of the process and the effect on learning. Responses partially informed a survey consisting of open-ended and Likert rating scale questions that the remaining ten students completed. Focus group and survey data from the eighteen participants were iteratively coded and categorized into themes related to perceptions of training and of collaborative MCQ writing. Results: Medical students felt that training in MCQ construction affected their appreciation for MCQ examinations and their test-taking strategy. They perceived that writing MCQs required more problem-solving and content-integration compared to their preferred study strategies. Specifically, generating plausible distractors required the most critical reasoning to make subtle distinctions between diagnoses and treatments. Additionally, collaborating with other students was beneficial in providing exposure to different learning and question-writing approaches. Conclusions: Completing MCQ-writing training increases appreciation for MCQ assessments. Writing MCQs requires medical students to make conceptual connections, distinguish between diagnostic and therapeutic options, and learn from colleagues, but requires extensive time and knowledge base.
C1 [Kurtz, Josh B.; Lourie, Michael A.; Holman, Elizabeth E.; Grob, Karri L.; Monrad, Seetha U.] Univ Michigan, Med Sch, Div Rheumatol, Dept Internal Med, Ann Arbor, MI 48109 USA.
C3 University of Michigan System; University of Michigan
RP Monrad, SU (corresponding author), Univ Michigan, Med Sch, Taubman Hlth Sci Lib 6125, 1135 Catherine St, Ann Arbor, MI 48109 USA.
EM seetha@med.umich.edu
OI Monrad, Seetha/0000-0002-3374-2989; Kurtz, Joshua/0000-0001-7528-1722
FU Whitaker fund grant at the University of Michigan; Summer Biological
Research Program at the University of Michigan Medical School; Whitaker
Fund - Institutional Grant
FX This study was funded by the Whitaker fund grant at the University of
Michigan and the Summer Biological Research Program at the University of
Michigan Medical School; Whitaker Fund - Institutional Grant [(none)];
CR [Anonymous], 2015, RES MED ED
[Anonymous], 2003, HDB MIXED METHODS SO
Baerheim A, 2003, MED EDUC, V37, P734, DOI 10.1046/j.1365-2923.2003.01578.x
Bobby Z, 2012, BIOCHEM MOL BIOL EDU, V40, P169, DOI 10.1002/bmb.20611
Bottomley S., 2001, BIOCH MOL BIOL ED, V5, P352
Cobb P., 1998, MIND CULT ACT, V5, P187, DOI DOI 10.1207/s15327884mca0503_4
Coderre S, 2009, MED TEACH, V31, P359, DOI 10.1080/01421590802225770
Creswell J. W., 2013, RES DESIGN QUALITATI
DIJKSTRA W, 1983, QUAL QUANT, V17, P179, DOI 10.1007/BF00167582
FOOS PW, 1994, J EDUC PSYCHOL, V86, P567, DOI 10.1037/0022-0663.86.4.567
Gonzalez-Cabezas C, 2015, J DENT EDUC, V79, P1295
Gooi ACC, 2015, MED TEACH, V37, P892, DOI 10.3109/0142159X.2014.970624
Graffam B, 2007, MED TEACH, V29, P38, DOI 10.1080/01421590601176398
Grainger R, 2018, BMC MED EDUC, V18, DOI 10.1186/s12909-018-1312-1
Harris BHL, 2015, TEACH LEARN MED, V27, P182, DOI 10.1080/10401334.2015.1011651
Hilliard RI, 2009, TEACH LEARN MED, V7, P201
Hudson SL, 2018, AM J PHARM EDUC, V82, DOI 10.5688/ajpe6315
Hutchinson D., 2013, Creative Education, V4, P117, DOI DOI 10.4236/CE.2013.47A2014
JACOBY LL, 1978, J VERB LEARN VERB BE, V17, P649, DOI 10.1016/S0022-5371(78)90393-6
Jobs A, 2013, BMC MED EDUC, V13, DOI 10.1186/1472-6920-13-89
Johnson RB, 2007, J MIX METHOD RES, V1, P112, DOI 10.1177/1558689806298224
Kennedy TJT, 2006, MED EDUC, V40, P101, DOI 10.1111/j.1365-2929.2005.02378.x
Mavis BE, 2001, TEACH LEARN MED, V13, P74, DOI 10.1207/S15328015TLM1302_1
MORSE JM, 1991, NURS RES, V40, P120
Nowell LS, 2017, INT J QUAL METH, V16, DOI 10.1177/1609406917733847
Nwosu A, 2013, CLIN TEACH, V10, P151, DOI 10.1111/j.1743-498X.2012.00632.x
Palmer E, 2006, ANN ACAD MED SINGAP, V35, P604
Papinczak T, 2012, ASSESS EVAL HIGH EDU, V37, P439, DOI 10.1080/02602938.2010.538666
PITTENGER AL, 2011, AM J PHARM EDUC, V75, P1
Radley A, 1996, SOCIOL HEALTH ILL, V18, P220, DOI 10.1111/1467-9566.ep10934984
Rajendiren S., 2014, J CONT MED ED, V2, P123
Rosenshine B, 1996, REV EDUC RES, V66, P181, DOI 10.3102/00346543066002181
Schifferdecker KE, 2009, MED EDUC, V43, P637, DOI 10.1111/j.1365-2923.2009.03386.x
Shakurnia Abdolhussein, 2018, J Adv Med Educ Prof, V6, P70
Temple B., 1998, International Journal of Social Research Methodology, V1, P205
Walsh J, 2016, CLIN TEACH, V13, P352, DOI 10.1111/tct.12445
WONG BYL, 1985, REV EDUC RES, V55, P227, DOI 10.3102/00346543055002227
NR 37
TC 18
Z9 20
U1 1
U2 7
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 1087-2981
J9 MED EDUC ONLINE
JI Med. Educ. Online
PD JAN 1
PY 2019
VL 24
IS 1
AR 1630239
DI 10.1080/10872981.2019.1630239
PG 10
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA IF5VE
UT WOS:000473149700001
PM 31248355
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Liang, Y
Tan, JW
Xie, ZS
Chen, ZT
Lin, DQ
Yang, ZH
AF Liang, Yong
Tan, Junwen
Xie, Zhisong
Chen, Zetao
Lin, Daoqian
Yang, Zhenhao
TI Research on Convolutional Neural Network Inference Acceleration and
Performance Optimization for Edge Intelligence
SO SENSORS
LA English
DT Article
DE FPGA; HLS; edge intelligence; deep learning; heterogeneous computing
ID DNN INFERENCE; ARCHITECTURE
AB In recent years, edge intelligence (EI) has emerged, combining edge computing with AI, and specifically deep learning, to run AI algorithms directly on edge devices. In practical applications, EI faces challenges related to computational power, power consumption, size, and cost, with the primary challenge being the trade-off between computational power and power consumption. This has rendered traditional computing platforms unsustainable, making heterogeneous parallel computing platforms a crucial pathway for implementing EI. In our research, we leveraged the Xilinx Zynq 7000 heterogeneous computing platform, employed high-level synthesis (HLS) for design, and implemented two different accelerators for LeNet-5 using loop unrolling and pipelining optimization techniques. The experimental results show that when running at a clock speed of 100 MHz, the PIPELINE accelerator, compared to the UNROLL accelerator, experiences an 8.09% increase in power consumption but speeds up by 14.972 times, making the PIPELINE accelerator superior in performance. Compared to the CPU, the PIPELINE accelerator reduces power consumption by 91.37% and speeds up by 70.387 times, while compared to the GPU, it reduces power consumption by 93.35%. This study provides two different optimization schemes for edge intelligence applications through design and experimentation and demonstrates the impact of different quantization methods on FPGA resource consumption. These experimental results can provide a reference for practical applications, thereby providing a reference hardware acceleration scheme for edge intelligence applications.
C1 [Liang, Yong; Tan, Junwen] Guilin Univ Technol, Educ Dept Guangxi Zhuang, Key Lab Adv Mfg & Automat Technol, Guilin 541006, Peoples R China.
[Liang, Yong; Tan, Junwen; Xie, Zhisong; Chen, Zetao; Lin, Daoqian; Yang, Zhenhao] Guilin Univ Technol, Coll Mech & Control Engn, Guilin 541006, Peoples R China.
C3 Guilin University of Technology; Guilin University of Technology
RP Tan, JW (corresponding author), Guilin Univ Technol, Educ Dept Guangxi Zhuang, Key Lab Adv Mfg & Automat Technol, Guilin 541006, Peoples R China.; Tan, JW (corresponding author), Guilin Univ Technol, Coll Mech & Control Engn, Guilin 541006, Peoples R China.
EM void414@163.com; 2120211120@glut.edu.cn; xiezs1972@163.com;
chenzetao2021@163.com; lindq1997@163.com; 19950909667@163.com
RI Tan, Junwen/ISA-4718-2023
OI Liang, Yong/0000-0001-6021-2791
FU Science and Technology Program of Guangxi, China
FX No Statement Available
CR Ahmad A, 2019, DES AUT TEST EUROPE, P1106, DOI [10.23919/date.2019.8715272, 10.23919/DATE.2019.8715272]
Ajili MT, 2022, IEEE ACCESS, V10, P9603, DOI 10.1109/ACCESS.2022.3144977
Bao C, 2020, IEEE ACCESS, V8, P94307, DOI 10.1109/ACCESS.2020.2995330
Benardos PG, 2007, ENG APPL ARTIF INTEL, V20, P365, DOI 10.1016/j.engappai.2006.06.005
Bi QF, 2019, AM J EPIDEMIOL, V188, P2222, DOI 10.1093/aje/kwz189
Bjerge K, 2021, MICROPROCESS MICROSY, V87, DOI 10.1016/j.micpro.2021.104363
Chen K, 2018, IEEE T CIRC SYST VID, V28, P3377, DOI 10.1109/TCSVT.2017.2757061
Chetlur S, 2014, Arxiv, DOI arXiv:1410.0759
Ghaderzadeh M, 2022, SCI PROGRAMMING-NETH, V2022, DOI 10.1155/2022/4801671
Guan YJ, 2017, ANN IEEE SYM FIELD P, P152, DOI 10.1109/FCCM.2017.25
Guo XT, 2023, OPTIK, V281, DOI 10.1016/j.ijleo.2023.170809
Herkle A, 2020, IEEE INT SYMP CIRC S, DOI [10.1109/ISCAS45731.2020.9180678, 10.1109/ISCAS45731.2020.9181272]
Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647
Hu X., 2021, Int. Core J. Eng, V7, P195
Huang KY, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21144634
Jiang JF, 2022, IEEE T CIRCUITS-II, V69, P2947, DOI 10.1109/TCSII.2022.3167022
Kaijie Wei, 2020, 2020 Eighth International Symposium on Computing and Networking (CANDAR), P228, DOI 10.1109/CANDAR51075.2020.00039
Lammie C, 2019, IEEE ACCESS, V7, P51171, DOI 10.1109/ACCESS.2019.2911709
Li E, 2018, MECOMM'18: PROCEEDINGS OF THE 2018 WORKSHOP ON MOBILE EDGE COMMUNICATIONS, P31, DOI 10.1145/3229556.3229562
Li Z., 2017, PloS one, P12
Liang Y, 2020, IEEE T COMPUT AID D, V39, P857, DOI 10.1109/TCAD.2019.2897701
Liu Z, 2017, IEEE I CONF COMP VIS, P2755, DOI 10.1109/ICCV.2017.298
Ma NN, 2018, LECT NOTES COMPUT SC, V11218, P122, DOI 10.1007/978-3-030-01264-9_8
Medus LD, 2019, IEEE ACCESS, V7, P76084, DOI 10.1109/ACCESS.2019.2920885
Nannipieri P., 2022, P 2022 IEEE AEROSPAC, P1
Park SS, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (ICDSP 2018), P161, DOI 10.1145/3193025.3193041
Podili A, 2017, IEEE INT CONF ASAP, P11, DOI 10.1109/ASAP.2017.7995253
Qijing Huang, 2021, FPGA '21: The 2021 ACM/SIGDA International Symposium on Field-Programmable, P206, DOI 10.1145/3431920.3439295
Qin HT, 2020, PROC CVPR IEEE, P2247, DOI 10.1109/CVPR42600.2020.00232
Qiu JT, 2016, PROCEEDINGS OF THE 2016 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA'16), P26, DOI 10.1145/2847263.2847265
Rajabi M, 2023, BIOMED SIGNAL PROCES, V85, DOI 10.1016/j.bspc.2023.105042
Rajabi M, 2021, SENS IMAGING, V22, DOI 10.1007/s11220-021-00364-0
Slam W, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23229096
Tang Zhen-tao, 2017, Control Theory & Applications, V34, P1529, DOI 10.7641/CTA.2017.70808
Venkat A, 2014, CONF PROC INT SYMP C, P121, DOI 10.1109/ISCA.2014.6853218
Wang XF, 2020, IEEE COMMUN SURV TUT, V22, P869, DOI 10.1109/COMST.2020.2970550
Wang XF, 2019, IEEE NETWORK, V33, P156, DOI 10.1109/MNET.2019.1800286
Yu GY, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23229242
Zeng LK, 2021, IEEE ACM T NETWORK, V29, P595, DOI 10.1109/TNET.2020.3042320
Zhai JQ, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23042208
Zhang C, 2016, I SYMPOS LOW POWER E, P326, DOI 10.1145/2934583.2934644
Zhang JF, 2019, SYMP VLSI CIRCUITS, pC306, DOI 10.23919/VLSIC.2019.8778193
Zhang WT, 2021, IEEE T VEH TECHNOL, V70, P7605, DOI 10.1109/TVT.2021.3068255
Zhang XF, 2018, ANN IEEE SYM FIELD P, P210, DOI 10.1109/FCCM.2018.00044
Zulberti L., 2023, Authorea Prepr, DOI [10.36227/techrxiv.24100671.v1, DOI 10.36227/TECHRXIV.24100671.V1]
NR 45
TC 0
Z9 0
U1 5
U2 11
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1424-8220
J9 SENSORS-BASEL
JI Sensors
PD JAN
PY 2024
VL 24
IS 1
AR 240
DI 10.3390/s24010240
PG 16
WC Chemistry, Analytical; Engineering, Electrical & Electronic; Instruments
& Instrumentation
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Engineering; Instruments & Instrumentation
GA ER0L4
UT WOS:001140531900001
PM 38203102
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Rüdiger, MS
Antons, D
Salge, TO
AF Ruediger, Matthias Sebastian
Antons, David
Salge, Torsten-Oliver
TI The explanatory power of citations: a new approach to unpacking impact
in science
SO SCIENTOMETRICS
LA English
DT Article
DE Citation analysis; Content-based citation analysis; Topic modeling;
Information systems
ID INFORMATION-TECHNOLOGY; SCIENTIFIC ARTICLES; USER ACCEPTANCE; COUNTS
MEASURE; REFERENCES; CLASSICS; SECURITY; CONTEXT
AB Citation analysis has been applied to map the landscape of scientific disciplines and to assess the impact of publications. However, it is limited in that it assumes all citations to be of equal weight. Doing away with this assumption could make such studies even more insightful. Current developments in this regard focus on the evaluation of the syntactic and semantic qualities of the text that surrounds citations. Still lacking, however, are computational techniques to unpack the thematic context in which citations appear. It is against this backdrop that we propose a text clustering approach to derive contextual aspects of individual citations and the relationship between cited and citing work in an automated and scalable fashion. The method reveals a focal publication's absorption and use within the scientific community. It can also facilitate impact assessments at all levels. In addition to analyzing individual publications, the method can also be extended to creating impact profiles for authors, institutions, disciplines, and regions. We illustrate our results based on a large corpus of full-text articles from the field of Information systems (IS) with the help of exemplary visualizations. In addition, we provide a case study, the scientific impact of the Technology acceptance model. This way, we not only show the usefulness of our method in comparison to existing techniques but also enhance the understanding of the field by providing an in-depth analysis of the absorption of a key IS theoretical base.
C1 [Ruediger, Matthias Sebastian; Antons, David; Salge, Torsten-Oliver] Rhein Westfal TH Aachen, Inst Technol & Innovat Management, Aachen, Germany.
C3 RWTH Aachen University
RP Rüdiger, MS (corresponding author), Rhein Westfal TH Aachen, Inst Technol & Innovat Management, Aachen, Germany.
EM ruediger@time.rwth-aachen.de; antons@time.rwth-aachen.de;
salge@time.rwth-aachen.de
OI Rudiger, Matthias/0000-0002-7086-1370
FU Federal Ministry of Education and Research (BMBF) Germany [01PU17020]
FX Open Access funding enabled and organized by Projekt DEAL. This work was
supported by Federal Ministry of Education and Research (BMBF) Germany,
Grant No. 01PU17020.
CR AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T
Ajzen I., 1980, UNDERSTANDING ATTITU, DOI DOI 10.1007/978-3-642-69746-3_2
AMSTERDAMSKA O, 1989, SCIENTOMETRICS, V15, P449, DOI 10.1007/BF02017065
Ang S, 1998, MIS QUART, V22, P535, DOI 10.2307/249554
Angrosh M., 2010, Proceedings of the 10th annual joint conference on Digital libraries, P293, DOI [DOI 10.1145/1816123.1816168, DOI 10.1145/1816123.1816168.1816168]
[Anonymous], 2003, Proceedings of Advances in Neural Information Processing Systems
[Anonymous], 1984, The citation process: The role and significance of citations in scientific communication
Baldi S, 1998, AM SOCIOL REV, V63, P829, DOI 10.2307/2657504
Bertin M, 2008, P 21 INT FLOR ART IN, P456
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Bouma G., 2009, From Form to Meaning. Processing Texts Automatically. Proceedings of the Biennial GSCL Conference. Ed. by, P31
Boyack KW, 2018, J INFORMETR, V12, P59, DOI 10.1016/j.joi.2017.11.005
BROOKS TA, 1985, J AM SOC INFORM SCI, V36, P223, DOI 10.1002/asi.4630360402
Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H
Chaney A., 2021, P INT AAAI C WEB SOC, V6, P419
CHANG J., 2009, Advances in Neural Information Processing Systems, V22, P288
Chen Y, 2019, KNOWL-BASED SYST, V163, P1, DOI 10.1016/j.knosys.2018.08.011
Chuang J., 2014, ADV NEURAL INFORM PR, P1
Chuang J, 2012, PROCEEDINGS OF THE INTERNATIONAL WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES, P74, DOI 10.1145/2254556.2254572
CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403
Davis F. D., 1985, TECHNOLOGY ACCEPTANC
DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982
De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics
Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256
Ding Y, 2013, J INFORMETR, V7, P583, DOI 10.1016/j.joi.2013.03.003
Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231
GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189
Gefen D., 2000, COMMUN ASSOC INF SYS, V4, P1, DOI DOI 10.17705/1CAIS.00407
Gefen D, 2005, COMMUN ASSOC INF SYS, V16, P91, DOI 10.17705/1CAIS.01605
Gläser J, 2017, SCIENTOMETRICS, V111, P981, DOI 10.1007/s11192-017-2296-z
Grover V, 2012, J ASSOC INF SYST, V13, P254
Han J, 2012, MOR KAUF D, P1
HERLACH G, 1978, J AM SOC INFORM SCI, V29, P308, DOI 10.1002/asi.4630290608
Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388
Hindle A, 2013, EMPIR SOFTW ENG, V18, P1125, DOI 10.1007/s10664-012-9209-9
Hu ZG, 2013, J INFORMETR, V7, P887, DOI 10.1016/j.joi.2013.08.005
Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443
Karahanna E, 1999, INFORM MANAGE-AMSTER, V35, P237, DOI 10.1016/S0378-7206(98)00096-2
Karahanna E, 1999, MIS QUART, V23, P183, DOI 10.2307/249751
Koh C, 2004, INFORM SYST RES, V15, P356, DOI 10.1287/isre.1040.0035
Lee DD, 2001, ADV NEUR IN, V13, P556
Leydesdorff Loet., 2012, ARXIV12084566
Liu XZ, 2013, J AM SOC INF SCI TEC, V64, P1852, DOI 10.1002/asi.22883
Maricic S, 1998, J AM SOC INFORM SCI, V49, P530, DOI 10.1002/(SICI)1097-4571(19980501)49:6<530::AID-ASI5>3.0.CO;2-U
Mei QZ, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P490
Merton R. K., 1973, The sociology of science: theoretical and empirical investigations
Moravcsik MichaelJ., 1973, RES POLICY, V2, P266, DOI [DOI 10.1016/0048-7333(73)90006-1, 10.1016/0048-7333(73)90006-1]
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Mortenson MJ, 2016, INT J INFORM MANAGE, V36, P1248, DOI 10.1016/j.ijinfomgt.2016.07.007
Nolasco D, 2016, P ANN HICSS, P358, DOI 10.1109/HICSS.2016.51
Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472
Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113
SALTON G, 1975, COMMUN ACM, V18, P613, DOI 10.1145/361219.361220
SHNEIDERMAN B, 1992, ACM T GRAPHIC, V11, P92, DOI 10.1145/102377.115768
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Straub D., 2004, Commun. Assoc. Inf. Syst., V13, P24, DOI [DOI 10.17705/1CAIS.01324, 10.17705/1CAIS.01324]
Straub DW, 1990, INFORM SYST RES, V1, P255, DOI 10.1287/isre.1.3.255
STRAUB DW, 1989, MIS QUART, V13, P147, DOI 10.2307/248922
Straub DW, 1998, MIS QUART, V22, P441, DOI 10.2307/249551
Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Tkaczyk D, 2018, ACM-IEEE J CONF DIG, P99, DOI 10.1145/3197026.3197048
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540
VINKLER P, 1987, SCIENTOMETRICS, V12, P47, DOI 10.1007/BF02016689
Voos H., 1976, The Journal of Academic Librarianship, V1, P19
Walstrom KA, 2000, INFORM MANAGE, V38, P59, DOI 10.1016/S0378-7206(00)00054-9
Whitley EA, 2007, INFORM MANAGE-AMSTER, V44, P441, DOI 10.1016/j.im.2007.04.004
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 71
TC 6
Z9 7
U1 2
U2 30
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2021
VL 126
IS 12
BP 9779
EP 9809
DI 10.1007/s11192-021-04103-w
EA AUG 2021
PG 31
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA XF4WA
UT WOS:000681571100001
OA hybrid
DA 2024-09-05
ER
PT J
AU Maphosa, V
Maphosa, M
AF Maphosa, Vusumuzi
Maphosa, Mfowabo
TI Artificial intelligence in higher education: a bibliometric analysis and
topic modeling approach
SO APPLIED ARTIFICIAL INTELLIGENCE
LA English
DT Article
ID BIG DATA; ANALYTICS; STUDENTS; INDEX
AB Artificial intelligence (AI) has brought unprecedented growth and productivity in every socioeconomic sector. AI adoption in education is transformational through reduced teacher workload, individualized learning, intelligent tutors, profiling and prediction, high-precision education, collaboration, and learner tracking. This paper highlights the trajectory of AI research in higher education (HE) through bibliometric analysis and topic modeling approaches. We used the PRISMA guidelines to select 304 articles published in the Scopus database between 2012 and 2021. VOSviewer was used for visualization and text-mining to identify hotspots in the field. Latent Dirichlet Allocation analysis reveals distinct topics in the dynamic relationship between AI and HE. Only 9.6% of AI research in HE was achieved in the first seven years, with the last three years contributing 90.4%. China, the United States, Russia and the United Kingdom dominated publications. Four themes emerged - data as the catalyst, the development of AI, the adoption of AI in HE and emerging trends and the future of AI in HE. Topic modeling on the abstracts revealed the 10 most frequent topics and the top 30 most salient terms. This research contributes to the literature by synthesizing AI adoption opportunities in HE, topic modeling and future research areas.
C1 [Maphosa, Vusumuzi] Natl Univ Sci & Technol, Dept Informat & Commun Technol Serv, Bulawayo, Zimbabwe.
[Maphosa, Mfowabo] Univ Pretoria, Fac Engn Built Environm & Informat Technol, Pretoria, South Africa.
C3 National University of Science & Technology - Zimbabwe; University of
Pretoria
RP Maphosa, V (corresponding author), Natl Univ Sci & Technol, Dept Informat & Commun Technol Serv, Bulawayo, Zimbabwe.
EM vusumuzi.maphosa@nust.ac.zw
RI ; Maphosa, Vusumuzi/HGU-1754-2022
OI Maphosa, Mfowabo/0000-0003-3702-6821; Maphosa,
Vusumuzi/0000-0002-2595-3890
CR Abbas J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11061683
Akgun Selin, 2022, AI Ethics, V2, P431, DOI 10.1007/s43681-021-00096-7
Aldowah H, 2019, TELEMAT INFORM, V37, P13, DOI 10.1016/j.tele.2019.01.007
Almohammadi K, 2017, J ARTIF INTELL SOFT, V7, P47, DOI 10.1515/jaiscr-2017-0004
Azer SA, 2013, MED TEACH, V35, P433, DOI 10.3109/0142159X.2013.775413
Bahadir E, 2016, EDUC SCI-THEOR PRACT, V16, P943, DOI 10.12738/estp.2016.3.0214
Bertoli-Barsotti L, 2017, SCIENTOMETRICS, V111, P1415, DOI 10.1007/s11192-017-2351-9
Bhardwaj D, 2019, J CLIN DIAGN RES, V13, pZE1, DOI 10.7860/JCDR/2019/38035.12453
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609
Bowdre P., 2020, Journal of Education Social Policy, V7, P22, DOI [10.30845/jesp.v7n3p3, DOI 10.30845/JESP.V7N3P3]
Chatterjee S, 2020, EDUC INF TECHNOL, V25, P3443, DOI 10.1007/s10639-020-10159-7
Chaudhry Muhammad Ali, 2022, AI Ethics, V2, P157, DOI 10.1007/s43681-021-00074-z
Christie M, 2017, EUR J ENG EDUC, V42, P5, DOI 10.1080/03043797.2016.1254160
Daniel B, 2015, BRIT J EDUC TECHNOL, V46, P904, DOI 10.1111/bjet.12230
Daniel B, 2019, BRIT J EDUC TECHNOL, V50, P101, DOI 10.1111/bjet.12595
Daws R., 2019, ABI research: USA reclaims the top spot from China for AI investments. (ABI research)
Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626
Elbadrawy A, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P183, DOI 10.1145/2959100.2959133
Ellis L, 2019, BRIT J RADIOL, V92, DOI 10.1259/bjr.20190779
Gobert J.D., 2012, Journal of Educational Data Mining, V4, P104
Greenhow C, 2020, TEACH COLL REC, V122
Herr H, 2015, NEW SCI, V227, P24
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Holmes W, 2018, LECT NOTES ARTIF INT, V10948, P551
Huang AYQ, 2020, INTERACT LEARN ENVIR, V28, P206, DOI 10.1080/10494820.2019.1636086
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Khosravi H., 2022, COMPUTERS ED ARTIFIC, V3, P100074, DOI 10.1016/j.caeai.2022.100074
Klasnja-Milicevic A, 2017, COMPUT APPL ENG EDUC, V25, P1066, DOI 10.1002/cae.21844
Kumar D.N.M., 2019, J. Artif. Intell. Capsul. Netw., V1, P1
Lang C., 2017, The handbook of learning analytics, DOI [10.18608/hla17, DOI 10.18608/HLA17]
Laurillard D., 2002, Rethinking university teaching: A conversational framework for the effective use of learning technologies, DOI [10.4324/9781315012940, DOI 10.4324/9781315012940]
Lazer D, 2014, SCIENCE, V343, P1203, DOI 10.1126/science.1248506
Lu HM, 2018, MOBILE NETW APPL, V23, P368, DOI 10.1007/s11036-017-0932-8
Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365
Luan H, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.580820
Maphosa M., 2021, INT C ART INT BIG DA, P1
Maphosa M., 2020, P 2 INT C INT INN CO, P1, DOI [10.1145/3415088.3415096, DOI 10.1145/3415088.3415096]
Maphosa M, 2020, INT J ADV COMPUT SC, V11, P287
Maphosa V., 2023, 2023 INT C ART INT B, P1
Mislevy R.J., 2020, Handbook of automated scoring, P403
Moro S, 2015, EXPERT SYST APPL, V42, P1314, DOI 10.1016/j.eswa.2014.09.024
Mou X., 2019, Artificial intelligence: Investment trends and selected industry uses
Naqvi A., 2020, Artificial intelligence for audit, forensic accounting, and valuation: A strategic perspective, DOI [10.1002/9781119601906, DOI 10.1002/9781119601906]
Nguyen Thai-Nghe, 2011, 2011 Proceedings of 3rd International Conference on Computer Supported Education (CSEDU 2011), P69
Page MJ, 2021, J CLIN EPIDEMIOL, V134, P178, DOI 10.1016/j.jclinepi.2021.03.001
Pardo A, 2014, BRIT J EDUC TECHNOL, V45, P438, DOI 10.1111/bjet.12152
Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8
Regan PM, 2019, ETHICS INF TECHNOL, V21, P167, DOI 10.1007/s10676-018-9492-2
Riahi Youssra., 2018, International Journal of Research and Engineering, P524, DOI [10.21276/ijre.2018.5.9.5, DOI 10.21276/IJRE.2018.5.9.5]
Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3
Seo K, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00292-9
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862
Steele G.E., 2018, NEW DIR HIGHER EDUC, V184, P59
Tsai SC, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00186-2
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Weber, 2019, Horizon Report 2019 Higher Education Edition
Williamson Ben., 2019, Postdigital Science and Education, V1, P65, DOI DOI 10.1007/S42438-018-0008-5
Xu B, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/9919401
Yu ZG, 2020, J INF TECHNOL RES, V13, P32, DOI 10.4018/JITR.2020100103
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zemel Rich, 2013, JMLR WORKSHOP C P, P325
Zhang K., 2021, Computers and Education: Artificial Intelligence, V2, P100025, DOI [DOI 10.1016/J.CAEAI.2021.100025, 10.1016/j.caeai.2021.100025, https://doi.org/10.1016/j.caeai.2021.100025]
Zhang YP, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.698490
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 68
TC 7
Z9 7
U1 29
U2 79
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0883-9514
EI 1087-6545
J9 APPL ARTIF INTELL
JI Appl. Artif. Intell.
PD DEC 31
PY 2023
VL 37
IS 1
AR 2261730
DI 10.1080/08839514.2023.2261730
PG 23
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA U6IU4
UT WOS:001085827700001
OA gold
DA 2024-09-05
ER
PT J
AU Sonni, AF
Putri, VCC
Irwanto, I
AF Sonni, Alem Febri
Putri, Vinanda Cinta Cendekia
Irwanto, Irwanto
TI Bibliometric and Content Analysis of the Scientific Work on Artificial
Intelligence in Journalism
SO JOURNALISM AND MEDIA
LA English
DT Article
DE artificial intelligence; journalism; bibliometric; news; Scopus
AB This paper presents a comprehensive bibliometric review of the development of artificial intelligence (AI) in journalism based on the analysis of 331 articles indexed in the Scopus database between 2019 and 2023. This research combines bibliometric approaches and quantitative content analysis to provide an in-depth conceptual and structural overview of the field. In addition to descriptive measures, co-citation and co-word analyses are also presented to reveal patterns and trends in AI- and journalism-related research. The results show a significant increase in the number of articles published each year, with the largest contributions coming from the United States, Spain, and the United Kingdom, serving as the most productive countries. Terms such as "fake news", "algorithms", and "automated journalism" frequently appear in the reviewed articles, reflecting the main topics of concern in this field. Furthermore, ethical aspects of journalism were highlighted in every discussion, indicating a new paradigm that needs to be considered for the future development of journalism studies and professionalism.
C1 [Sonni, Alem Febri; Putri, Vinanda Cinta Cendekia] Hasanuddin Univ, Fac Social & Polit Sci, Commun Studies, Makassar 90245, Indonesia.
[Irwanto, Irwanto] Bina Nusantara Univ, Sch Design, Film Dept, Jakarta 15143, Indonesia.
C3 Universitas Hasanuddin; Universitas Bina Nusantara
RP Sonni, AF (corresponding author), Hasanuddin Univ, Fac Social & Polit Sci, Commun Studies, Makassar 90245, Indonesia.
EM alemfebris@unhas.ac.id; vinanda.cinta@gmail.com; irwanto001@binus.ac.id
RI Sonni, Alem Febri/GOV-6689-2022; Irwanto, Irwanto/KFQ-9741-2024
OI Sonni, Alem Febri/0000-0002-6785-5033; Irwanto,
Irwanto/0000-0003-0474-5141
CR [Anonymous], 2010, Mass communication theory
Chen Q, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102370
Cobley P, 2013, HANDB COMMUN SCI, V1, P1, DOI 10.1515/9783110240450
Das R, 2022, IIM KOZHIKODE SOC MA, V11, P146, DOI 10.1177/22779752211027382
de-Lima-Santos MF, 2022, JOURNAL MEDIA, V3, P13, DOI 10.3390/journalmedia3010002
Deuze M., 2004, JOURNALISM STUD, V5, P139, DOI [10.1080/1461670042000211131, DOI 10.1080/1461670042000211131]
Di Domenico G, 2021, J BUS RES, V124, P329, DOI 10.1016/j.jbusres.2020.11.037
Diakopoulos N, 2019, DIGIT JOURNAL, V7, P1180, DOI 10.1080/21670811.2019.1682938
Díaz-Campo J, 2015, TELEMAT INFORM, V32, P735, DOI 10.1016/j.tele.2015.03.004
Dorr KN, 2017, DIGIT JOURNAL, V5, P404, DOI 10.1080/21670811.2016.1167612
Doyle Gillian., 2013, Understanding Media Economics, V2nd
Garibay OO, 2023, INT J HUM-COMPUT INT, DOI 10.1080/10447318.2022.2153320
Graefe A., 2016, Guide to Automated Journalism, DOI DOI 10.7916/D80G3XDJ
Grzybowski A, 2024, CLIN DERMATOL, V42, P221, DOI 10.1016/j.clindermatol.2023.12.016
Helberger N, 2019, DIGIT JOURNAL, V7, P993, DOI 10.1080/21670811.2019.1623700
Holt K, 2019, DIGIT JOURNAL, V7, P860, DOI 10.1080/21670811.2019.1625715
Horska Kateryna., 2020, Science and Education a New Dimension, VVIII, P26, DOI [10.31174/send-hs2020-231viii39-06, DOI 10.31174/SEND-HS2020-231VIII39-06]
Ireton C., 2018, Journalism, Fake News, and Disinformation
Karlsson M, 2019, JOURNALISM STUD, V20, P1184, DOI 10.1080/1461670X.2018.1499436
Kieslich K, 2022, BIG DATA SOC, V9, DOI 10.1177/20539517221092956
Kng Lucy., 2024, Strategic Management in the Media: From Theory to Practice, DOI [10.4135/9781446280003, DOI 10.4135/9781446280003]
Kotenidis E, 2021, JOURNAL MEDIA, V2, P244, DOI 10.3390/journalmedia2020014
Kovach B., 2021, The elements of journalism, V4th ed.
Lazer DMJ, 2018, SCIENCE, V359, P1094, DOI 10.1126/science.aao2998
Lewis SC, 2019, DIGIT JOURNAL, V7, P409, DOI 10.1080/21670811.2019.1577147
Martin K, 2019, J BUS ETHICS, V160, P835, DOI 10.1007/s10551-018-3921-3
Martnez Garca Luisa del Carmen., 2023, Comunicacao e Sociedade, V44, P1, DOI [10.17231/COMSOC.44(2023).4751, DOI 10.17231/COMSOC.44(2023).4751]
Mejia Cristian, 2021, Front Res Metr Anal, V6, P742311, DOI 10.3389/frma.2021.742311
Moed HF, 2009, ARCH IMMUNOL THER EX, V57, P13, DOI 10.1007/s00005-009-0001-5
Napoli P.M., 2011, Audience evolution: new technologies and the transformation of media audiences
Nasir J. A., 2021, IJIM Data Insights, V1, DOI [10.1016/j.jjimei.2020.100007, DOI 10.1016/J.JJIMEI.2020.100007]
Newman N., 2019, Journalism, media and technology trends and predictions
Newman N., 2024, Journalism, Media, and Technology Trends and Predictions 2024
Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577
Putri Vinanda Cinta Cendekia., 2023, Ketika Cadar Jadi Alat Persuasi: Strategi Beauty Influencer di era Digital
Rudolph J., 2023, Journal of Applied Learning and Teaching, V6, P342, DOI [10.37074/jalt.2023.6.1.9, DOI 10.37074/JALT.2023.6.1.23, DOI 10.37074/JALT.2023.6.1.9]
Shin D, 2021, INT J HUM-COMPUT ST, V146, DOI 10.1016/j.ijhcs.2020.102551
Silberring J, 2019, WIL SER MASS SPECTR, P1
Trattner C., 2021, AI Ethics, V2, P585, DOI [DOI 10.1007/S43681-021-00126-4, 10.1007/S43681-021-00126-4]
Vaccari C, 2020, SOC MEDIA SOC, V6, DOI 10.1177/2056305120903408
Volberda HW, 2021, LONG RANGE PLANN, V54, DOI 10.1016/j.lrp.2021.102110
Wang Yongming., 2021, International Journal of Librarianship, V6, P105, DOI [10.23974/ijol.2021.vol6.1.195, DOI 10.23974/IJOL.2021.VOL6.1.195]
Weikmann T, 2023, DIGIT JOURNAL, DOI 10.1080/21670811.2023.2194665
Witschge T., 2016, The Sage Handbook of Digital Journalism
Xiaocui Wang, 2021, Journal of Physics: Conference Series, V1757, DOI 10.1088/1742-6596/1757/1/012062
NR 45
TC 0
Z9 0
U1 1
U2 1
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2673-5172
J9 JOURNAL MEDIA
JI Journal. Media
PD JUN
PY 2024
VL 5
IS 2
BP 787
EP 798
DI 10.3390/journalmedia5020051
PG 12
WC Communication
WE Emerging Sources Citation Index (ESCI)
SC Communication
GA WO9C2
UT WOS:001255924600001
OA gold
DA 2024-09-05
ER
PT J
AU Al-Jaishi, AA
Taljaard, M
Al-Jaishi, MD
Abdullah, SS
Thabane, L
Devereaux, PJ
Dixon, SN
Garg, AX
AF Al-Jaishi, Ahmed A.
Taljaard, Monica
Al-Jaishi, Melissa D.
Abdullah, Sheikh S.
Thabane, Lehana
Devereaux, P. J.
Dixon, Stephanie N.
Garg, Amit X.
TI Machine learning algorithms to identify cluster randomized trials from
MEDLINE and EMBASE
SO SYSTEMATIC REVIEWS
LA English
DT Article
DE Cluster randomized controlled trial; Machine learning; Bibliographic
databases; Sensitivity and specificity; Prediction
ID PRAGMATIC TRIALS
AB Background: Cluster randomized trials (CRTs) are becoming an increasingly important design. However, authors of CRTs do not always adhere to requirements to explicitly identify the design as cluster randomized in titles and abstracts, making retrieval from bibliographic databases difficult. Machine learning algorithms may improve their identification and retrieval. Therefore, we aimed to develop machine learning algorithms that accurately determine whether a bibliographic citation is a CRT report.
Methods: We trained, internally validated, and externally validated two convolutional neural networks and one support vector machine (SVM) algorithm to predict whether a citation is a CRT report or not. We exclusively used the information in an article citation, including the title, abstract, keywords, and subject headings. The algorithms' output was a probability from 0 to 1. We assessed algorithm performance using the area under the receiver operating characteristic (AUC) curves. Each algorithm's performance was evaluated individually and together as an ensemble. We randomly selected 5000 from 87,633 citations to train and internally validate our algorithms. Of the 5000 selected citations, 589 (12%) were confirmed CRT reports. We then externally validated our algorithms on an independent set of 1916 randomized trial citations, with 665 (35%) confirmed CRT reports.
Results: In internal validation, the ensemble algorithm discriminated best for identifying CRT reports with an AUC of 98.6% (95% confidence interval: 97.8%, 99.4%), sensitivity of 97.7% (94.3%, 100%), and specificity of 85.0% (81.8%, 88.1%). In external validation, the ensemble algorithm had an AUC of 97.8% (97.0%, 98.5%), sensitivity of 97.6% (96.4%, 98.6%), and specificity of 78.2% (75.9%, 80.4%)). All three individual algorithms performed well, but less so than the ensemble.
Conclusions: We successfully developed high-performance algorithms that identified whether a citation was a CRT report with high sensitivity and moderately high specificity. We provide open-source software to facilitate the use of our algorithms in practice.
C1 [Al-Jaishi, Ahmed A.; Dixon, Stephanie N.; Garg, Amit X.] Lawson Hlth Res Inst, 800 Commissioners Rd E, London, ON, Canada.
[Taljaard, Monica] Univ Ottawa, Ottawa Hosp Res Inst, Sch Epidemiol & Publ Hlth, Clin Epidemiol Program, 501 Smyth Rd, Ottawa, ON, Canada.
[Al-Jaishi, Melissa D.] London Hlth Sci Ctr, 800 Commissioners Rd E, London, ON, Canada.
[Abdullah, Sheikh S.] Western Univ, Dept Comp Sci, 1151 Richmond St, Richmond, ON, Canada.
[Thabane, Lehana; Devereaux, P. J.] McMaster Univ, Dept Hlth Res Methods Evidence & Impact, 1280 Main St W, Hamilton, ON, Canada.
C3 Western University (University of Western Ontario); University of
Ottawa; Ottawa Hospital Research Institute; London Health Sciences
Centre; McMaster University
RP Al-Jaishi, AA (corresponding author), Lawson Hlth Res Inst, 800 Commissioners Rd E, London, ON, Canada.
EM Ahmed.AlJaishi@lhsc.on.ca
RI Taljaard, Monica/AFJ-8820-2022
OI Taljaard, Monica/0000-0002-3978-8961; Al-Jaishi,
Ahmed/0000-0003-0376-2214
FU Allied Health Doctoral Fellowship from the Kidney Foundation of Canada;
CIHR Doctoral Award; McMaster University Michael DeGroote Scholarship;
Canadian Institutes of Health Research (CIHR) [MYG-151209]; Dr. Adam
Linton Chair in Kidney Health Analytics; CIHR
FX Ahmed Al-Jaishi was supported by the Allied Health Doctoral Fellowship
from the Kidney Foundation of Canada, CIHR Doctoral Award, and McMaster
University Michael DeGroote Scholarship. Stephanie Dixon's research is
supported through a SPOR Innovative Clinical Trial Multi-Year Grant
(Grant number: MYG-151209) from the Canadian Institutes of Health
Research (CIHR). Amit Garg was supported by the Dr. Adam Linton Chair in
Kidney Health Analytics and a Clinician Investigator Award from the
CIHR. The funders had no role in study design, data collection and
analysis, decision to publish, or manuscript preparation.
CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
Ajmera Yamini, 2021, Perspect Clin Res, V12, P66, DOI 10.4103/picr.PICR_138_20
Al-Jaishi AA, 2020, TRIALS, V21, DOI 10.1186/s13063-020-04657-9
[Anonymous], 2020, US
Awasthi S, 2013, LANCET, V381, P1469, DOI 10.1016/S0140-6736(12)62125-4
Beel J, 2016, INT J DIGIT LIBRARIE, V17, P305, DOI 10.1007/s00799-015-0156-0
Bergstra James, 2015, Computational Science and Discovery, V8, DOI 10.1088/1749-4699/8/1/014008
Bergstra J., 2013, PROC 30 INT C INT C, V28, pI
Bergstra J., 2011, 25 ANN C NEUR INF PR, P2546, DOI DOI 10.5555/2986459.2986743
Bojanowski P., 2017, Transactions of the Association for Computational Linguistics, V5, P135, DOI [DOI 10.1162/TACLA00051, 10.1162/tacl_a_00051, DOI 10.1162/TACL_A_00051]
Buda M, 2018, NEURAL NETWORKS, V106, P249, DOI 10.1016/j.neunet.2018.07.011
Buitinck Lars, 2013, ECML PKDD WORKSH LAN, P108, DOI DOI 10.48550/ARXIV.1309.0238
Campbell MK, 2012, BMJ-BRIT MED J, V345, DOI 10.1136/bmj.e5661
Chollet F., 2015, Keras
Cohen AM, 2015, J AM MED INFORM ASSN, V22, P707, DOI 10.1093/jamia/ocu025
Devlin J, 2018, Google AI Blog
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Dietterich TG, 2000, LECT NOTES COMPUT SC, V1857, P1, DOI 10.1007/3-540-45014-9_1
Dron L, 2021, LANCET GLOB HEALTH, V9, pE701, DOI 10.1016/S2214-109X(20)30541-6
Eldridge S., 2012, PRACTICAL GUIDE CLUS, DOI [10.1002/9781119966241, DOI 10.1002/9781119966241]
Hayes RJ, 2009, INTERD STAT, P1, DOI 10.1201/9781584888178
Hemming K, 2019, J CLIN EPIDEMIOL, V107, P77, DOI 10.1016/j.jclinepi.2018.11.017
Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55
Kessler JS, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017): SYSTEM DEMONSTRATIONS, P85, DOI 10.18653/v1/P17-4015
Kim Y, 2014, IEEE ASME INT C ADV, P1747, DOI 10.1109/AIM.2014.6878336
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Marshall IJ, 2018, RES SYNTH METHODS, V9, P602, DOI 10.1002/jrsm.1287
McKinney W, 2010, P 9 PYTH SCI C, V445, P51, DOI DOI 10.25080/MAJORA-92BF1922-00A.SCIPY
Mikolov T., 2013, ARXIV
Muller AC, 2017, INTRO PYTHON LEARNIN
Nicholls SG, 2021, J CLIN EPIDEMIOL, V137, P45, DOI 10.1016/j.jclinepi.2021.03.021
Oliphant T. E., 2015, Guide to NumPy, V2nd
OSSU, 2020, OUR IMP ONT SUPP UN
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Raschka S., 2015, Python Machine Learning
Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
Robin X, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-77
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
Taljaard M, 2020, J CLIN EPIDEMIOL, V124, P75, DOI 10.1016/j.jclinepi.2020.05.003
Taljaard M, 2020, CLIN TRIALS, V17, P253, DOI 10.1177/1740774519896799
Taljaard M, 2010, BMC MED RES METHODOL, V10, DOI 10.1186/1471-2288-10-15
The pandas development team, 2020, PAND DEV PAND
Wallace BC, 2017, J AM MED INFORM ASSN, V24, P1165, DOI 10.1093/jamia/ocx053
Wang J, 2019, dissertation
Waters E, 2011, BMC PUBLIC HEALTH, V11, DOI 10.1186/1471-2458-11-34
WHO, VIT SUPPL INF CHILDR
Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738
Zhang Ye, 2015, ARXIV PREPRINT ARXIV
NR 49
TC 0
Z9 0
U1 0
U2 0
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 2046-4053
J9 SYST REV-LONDON
JI Syst. Rev.
PD OCT 25
PY 2022
VL 11
IS 1
AR 229
DI 10.1186/s13643-022-02082-4
PG 10
WC Medicine, General & Internal
WE Science Citation Index Expanded (SCI-EXPANDED)
SC General & Internal Medicine
GA 5N7NZ
UT WOS:000871976500001
PM 36284336
OA gold, Green Published, Green Submitted
DA 2024-09-05
ER
PT J
AU Burstein, J
Elliot, N
Molloy, H
AF Burstein, Jill
Elliot, Norbert
Molloy, Hillary
TI Informing Automated Writing Evaluation Using the Lens of Genre: Two
Studies
SO CALICO JOURNAL
LA English
DT Article
DE AUTOMATED WRITING EVALUATION; NATURAL LANGUAGE PROCESSING; WRITING
RESEARCH
ID HIGH-SCHOOL; UNIVERSITY; STUDENTS
AB Genre serves as a useful lens to investigate the range of evidence derived from automated writing evaluation ( AWE). To support construct-relevant systems used for writing instruction and assessment, two investigations were conducted that focused on postsecondary writing requirements and faculty perceptions of student writing proficiency. Survey research is described from a national study and a second site study at American University, a 4-year private university in Washington, DC, to illustrate writing requirements and perceptions of writing proficiency in school and workplace settings. A mixed-methods analysis of faculty focus groups in the site study afforded more detailed discussions that were used to understand student writing support needs. Through the lens of genre, study results illustrated how the role of AWE might be expanded and aligned with instruction in four-year postsecondary institutions.
C1 [Burstein, Jill; Molloy, Hillary] Educ Testing Serv, Princeton, NJ 08541 USA.
[Elliot, Norbert] New Jersey Inst Technol, Newark, NJ 07102 USA.
C3 Educational Testing Service (ETS); New Jersey Institute of Technology
RP Burstein, J (corresponding author), Educ Testing Serv, Princeton, NJ 08541 USA.
EM jburstein@ets.org
CR [Anonymous], 25 INT C COMP LING C
[Anonymous], DIALOGUE DISCOURSE
[Anonymous], P 1 WORKSH MET NLP A
[Anonymous], RHETORIC LITERATE AC
[Anonymous], COORD SESS ANN M NAT
[Anonymous], RESITUATING WRITING
[Anonymous], CRIS COR PREP STUD C
[Anonymous], RR1437 ETS
[Anonymous], J HIGHER ED
[Anonymous], 2014, American psychological association, & national council on measurement in education. Standards for educational and psychological testing
[Anonymous], COMM COR STAT STAND
[Anonymous], ENGLISH J
[Anonymous], 2012, The nations report card: Writing 2011 [html]
[Anonymous], FRAM INF LIT HIGH ED
[Anonymous], RR1105 ED TEST SERV
Applebee A., 1984, CONTEXTS LEARNING WR
APPLEBEE AN, 1981, ENGL J, V70, P78, DOI 10.2307/817387
APPLEMAN D, 1993, COLL COMPOS COMMUN, V44, P191, DOI 10.2307/358838
Banks A, 2015, COLL COMPOS COMMUN, V67, P267
Bazerman Charles., 1991, TEXTUAL DYNAMICS PRO
Beck SW, 2009, J LIT RES, V41, P228, DOI 10.1080/10862960902908483
Bridgeman B., 1984, WRIT COMMUN, V1, P247
Britton J., 1992, Language and learning: The importance of speech in children's development, V2nd
Britton James., 1975, DEV WRITING ABILITIE, P11
Casner-Lotto J., 2006, Are They Really Ready to Work? Employers' Perspectives on the Basic Knowledge and Applied Skills of New Entrants to the 21st Century U.S. Workforce: Partnership for 21st Century Skills
Coppola NW, 2010, TECH COMMUN-STC, V57, P11
Cotos E, 2011, CALICO J, V28, P420, DOI 10.11139/cj.28.2.420-459
Council of Writing Program Administrators, 2014, Writing Program Administration, V38, P142
Crusius TimothyW., 1989, DISCOURSE CRITIQUE S
EBLEN C, 1983, RES TEACH ENGL, V17, P343
ELLIOT N, 1991, J TECH WRIT COMMUN, V21, P411, DOI 10.2190/HL9K-3WL3-NNVK-UP2D
Ferris DR, 2014, ASSESS WRIT, V19, P6, DOI 10.1016/j.asw.2013.09.004
Gardner S, 2013, APPL LINGUIST, V34, P25, DOI 10.1093/applin/ams024
Gere AR, 2013, COLL COMPOS COMMUN, V64, P605
Graham S, 2007, J EDUC PSYCHOL, V99, P445, DOI 10.1037/0022-0663.99.3.445
Harris Jeanette., 1985, Writing Program Administration, V8, P7
Heath S., 1993, Theory and Practice in the Teaching of Writing, P105
HERRINGTON AJ, 1985, RES TEACH ENGL, V19, P331
HOROWITZ DM, 1986, TESOL QUART, V20, P445, DOI 10.2307/3586294
Jenkins S., 1993, ENGL SPECIF PURP, V12, P51
Kane MT, 2013, J EDUC MEAS, V50, P1, DOI 10.1111/jedm.12000
Kiuhara SA, 2009, J EDUC PSYCHOL, V101, P136, DOI 10.1037/a0013097
Klebanov BB, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P247
Klebanov Beata Beigman, 2013, Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), P1148
Krueger R. A., 2000, FOCUS GROUPS PRACTIC
Melzer D., 2009, College Composition and Communication, V61, pW240
Melzer Dan., 2014, Assignments across the Curriculum: A National Study of College Writing
Miller C R., 1994, Rhetorical Community: the Cultural Basis of Genre, P67
MILLER CR, 1984, Q J SPEECH, V70, P151, DOI 10.1080/00335638409383686
Odell L., 1983, Research on Writing, P220
Pellegrino J.W., 2012, Education for life and work: Developing transferable knowledge and skills in the 21st century
Pimentel S., 2013, College and career readiness standards for adult education
ROSE M, 1983, COLL ENGL, V45, P109, DOI 10.2307/377219
Shermis M., 2016, Handbook of writing research, P395
Song Y., 2014, Proceedings of the First Workshop on Argumentation Mining, P69
Thrift Nigel., 2005, Knowing Capitalism
Wardle E, 2009, COLL COMPOS COMMUN, V60, P765
NR 57
TC 19
Z9 20
U1 1
U2 14
PU EQUINOX PUBLISHING LTD
PI SHEFFIELD
PA 415, THE WORKSTATION, 15 PATERNOSTER ROW, SHEFFIELD, S1 2BX, ENGLAND
SN 2056-9017
J9 CALICO J
JI CALICO J.
PY 2016
VL 33
IS 1
BP 117
EP 141
DI 10.1558/cj.v33i1.26374
PG 25
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA ER8CR
UT WOS:000399044800007
DA 2024-09-05
ER
PT J
AU Arnesen, K
Walters, S
Borup, J
Barbour, MK
AF Arnesen, Karen
Walters, Shea
Borup, Jered
Barbour, Michael K.
TI Irrelevant, Overlooked, or Lost? Trends in 20 Years of Uncited and
Low-cited K-12 Online Learning Articles
SO ONLINE LEARNING
LA English
DT Article
DE distance education; telelearning; e-learning; K-12 online learning;
virtual school; cyber school; citation analysis; journal analysis
ID DISTANCE EDUCATION; SCIENCE; SCHOOLS
AB In this study, we analyzed a subset of uncited or low-cited articles from the data reported in Arnesen, Hveem, Short, West, and Barbour (2019), who examined the trends in K-12 online learning articles from 1994 to 2016. We identified 62 articles that had 5 or fewer citations, and analyzed them for trends in authorship, publication outlets, dates of publication, and topics that could help explain their low citation numbers. We also analyzed topics to see what contribution they might have made and can still make to the field of K-12 online learning. We found that the majority of these articles had been published in many different, less well-known journals. We also found that these articles may have attracted fewer readers because they addressed topics that seemed to have a narrow focus, often outside of the U.S. The articles were also authored by both well-known researchers in the field, as well as a number of one-time authors. What we did not find were articles that were uninteresting, poorly researched, or irrelevant. Many of the articles described and discussed programs that grappled with and overcame some of the same challenges online learning still faces today: issues of interaction, community, technology, management, etc. Some of the early articles gave interesting insights into the history of K-12 online learning, especially as it involved rural learners and programs. Others addressed less mainstream but still interesting topics such as librarians in online learning, cross-border AP history classes, policies that helped or hindered the growth of online learning, and practical considerations of cost and access.
C1 [Arnesen, Karen] Brigham Young Univ, Provo, UT 84602 USA.
[Walters, Shea; Borup, Jered] George Mason Univ, Fairfax, VA 22030 USA.
[Barbour, Michael K.] Touro Univ Calif, Vallejo, CA USA.
C3 Brigham Young University; George Mason University; Touro University
California
RP Arnesen, K (corresponding author), Brigham Young Univ, Provo, UT 84602 USA.
RI Barbour, Michael/F-9514-2011
OI Barbour, Michael/0000-0001-9037-3350
CR [Anonymous], 2011, Educ. Technol.
[Anonymous], 2015, INT REV RES OPEN DIS
[Anonymous], 2016, ED TECHNOLOGY
Arnesen KT, 2019, DISTANCE EDUC, V40, P32, DOI 10.1080/01587919.2018.1553566
Barbour M, 2005, BRIT J EDUC TECHNOL, V36, P1055, DOI 10.1111/j.1467-8535.2005.00574.x
Barbour M., 2011, Education In Rural Australia, V21, P1, DOI DOI 10.3316/IELAPA.183958620656095
Barbour M., 2018, HDB RES K 12 ONLINE, V2nd, P21, DOI 10.1184/R1/6686813.v1
Barbour M. K., 2013, MORNING WATCH, V41, P66
Barbour M. K., 2003, J ILLINOIS COUNCIL S, V63, P25
Barbour M.K., 2007, Distance Learning, V4, P7
Barbour M. K., 2001, OHIO COUNCIL SOCIAL, V37, P18
Barbour M. K., 2002, INT ELECT J LEADERSH, V6
Barbour M, 2013, QUAL REP, V18
Barbour MK, 2009, COMPUT EDUC, V52, P402, DOI 10.1016/j.compedu.2008.09.009
Beck D, 2015, TECHTRENDS, V59, P77, DOI 10.1007/s11528-015-0856-8
Benson G., 1998, HIGH SCH MAGAZINE, V6, P42
Burgess-Watkins K., 2011, Distance Learning, V8, P1
Carr-Chellman A. A., 2015, E LEARN MAGAZINE
Cavanaugh C., 2015, Journal of Online Learning Research, V1, P9
Cavanaugh C., 2008, REV MEXICANA BACHILL, V1
Clark T., 2018, HDB RES K 12 ONLINE, P121
Coy K., 2014, INT J DYSLEXIA, V40, P17
Curtis H., 2015, J ONLINE LEARNING RE, V1, P163
Davis N. E., 2012, COMPUTERS NZ SCH, V24, P70
Furey D., 2005, THE MORNING WATCH, V32
Gill B., 2015, Inside online charter schools
Goss M.W., 2011, Distance Learning, V8, P41
Greer D., 2013, Journal of Education, V193, P41, DOI DOI 10.1177/002205741319300205
Greer D L., 2014, Journal of American Academy of Special Education Professionals, P150
HAMILTON DP, 1990, SCIENCE, V250, P1331, DOI 10.1126/science.2255902
Haughey M., 1999, OPEN ED RES, V2/3, P13
Hu M., 2019, Journal of Online Learning Research, V5, P123
Jeurissen M., 2015, J OPEN FLEXIBLE DIST, V19
Kane J., 2004, FLORIDA J HLTH PHYS, V42, P8
Kirby D, 2010, CAN J CAREER DEV, V9, P4
Kirschner PA, 2013, EDUC PSYCHOL-US, V48, P169, DOI 10.1080/00461520.2013.804395
Li Y, 2018, ASIA-PAC J CHEM ENG, V13, P1, DOI DOI 10.1109/bigmm.2018.8499097
Lim Byungro, 2008, [Multimedia-Assisted Language Learning, 멀티미디어 언어교육], V11, P9
Lin C H., 2015, Journal of Online Learning Research, V1, P275
Lokey-Vega A., 2018, Handbook of research on K-12 online and blended learning, V2nd, P65
Lowes S., 2018, Handbook of research on K-12 online and blended learning, V2nd, P91
Lowes S., 2015, J. Learn. Anal, V2, P169, DOI [DOI 10.18608/JLA.2015.22.13, 10.18608/jla.2015.22.13]
Lowes S., 2014, HDB RES K 12 ONLINE, P83
Lueken M., 2015, J ONLINE LEARNING RE, V1, P305
Mann Bryan, 2014, International Journal of Cyber Ethics in Education, V3, P39, DOI 10.4018/ijcee.2014040104
McAuley A., 1998, TECHNOS, V7, P11
McWatters G., 1997, J DISTANCE ED, V12, P277
Molnar A., 2019, VIRTUAL SCH US 2019
Murphy E., 2008, E-Learning, V5, P384, DOI DOI 10.2304/ELEA.2008.5.4.384
Pettyjohn T., 2014, NCPEA ED LEADERSHIP, V1
Piwowar H, 2018, PEERJ, V6, DOI 10.7717/peerj.4375
Rice M., 2018, Handbook of research on K-12 online and blended learning, P189, DOI DOI 10.1184/R1/6686813
RUSSELL G, 2003, WELSH J ED, V12, P40
Russell G, 2006, AUST J EDUC, V50, P140, DOI 10.1177/000494410605000204
Ryan T. G., 2009, TURKISH ONLINE J DIS, V20
Sakar A.N., 2011, TURKISH ONLINE J DIS, V12
Shafer-Mayse D., 2015, Journal of Online Learning Research, V1, P337
Smith SJ, 2014, OPEN LEARN, V29, P222, DOI 10.1080/02680513.2014.992402
STEVENS AJ, 1995, MECHATRONICS, V5, P1, DOI 10.1016/0957-4158(94)00043-Q
Stevens K., 2000, GEOCARREFOUR REV GEO, V75, P87, DOI 10.3406/geoca.2000.2458
Stevens K., 2002, INNOVATION J, V8
Stevens K., 2001, J DISTANCE LEARNING, V6, P45
Stevens K., 1997, THE MORNING WATCH, V25
Stevens K, 2009, RURAL SOC, V19, P118, DOI 10.5172/rsj.19.2.118
TAINER JA, 1991, SCIENCE, V251, P1408, DOI 10.1126/science.2006414
Tysinger P.D., 2013, School Psychology Forum, V7, P76
Van Noorden R, 2017, NATURE, V552, P162, DOI 10.1038/d41586-017-08404-0
Wang Y., 2014, International Journal of Educational Reform, V23, P294
Zawacki-Richter O, 2009, INT REV RES OPEN DIS, V10, P21, DOI 10.19173/irrodl.v10i6.741
NR 69
TC 4
Z9 8
U1 2
U2 11
PU ONLINE LEARNING CONSORTIUM
PI NEWBURYPORT
PA PO BOX 1238, NEWBURYPORT, MA 01950 USA
SN 2472-5749
EI 2472-5730
J9 ONLINE LEARN
JI Online Learn.
PD JUN
PY 2020
VL 24
IS 2
BP 187
EP 206
DI 10.24059/olj.v24i2.2080
PG 20
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA LU8QU
UT WOS:000538014200012
OA gold
DA 2024-09-05
ER
PT J
AU Ribeiro, GAS
Barbosa, RM
Reis, MD
Costa, NL
AF Ribeiro, Guilherme Alberto Sousa
Barbosa, Rommel Melgaco
da Cunha Reis, Marcio
Costa, Nattane Luiza
TI From bibliometrics to text mining: exploring feature selection methods
in microarray research
SO COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION
LA English
DT Article; Early Access
DE Bibliometric; Feature selection; Microarray; Text mining
ID MACHINE; CLASSIFICATION; BUSINESS; DATASETS; MODEL; TOOL
AB Text mining (TM) is a technique that aims to extract knowledge from unstructured data sources by transforming them into structured data. TM algorithms can be used to detect hidden patterns in large amounts of data, including bibliometric data. Feature selection has been used to reduce the high dimensionality and complexity of computational problems, including microarray data that have a large number of features. In this context, this study aims to use text mining to discover trends in the use of feature selection techniques on microarray data based on bibliometric data such as titles, abstracts, and keywords. A total of 1448 studies published in journals indexed in the Web of Science database were collected to perform a bibliometric and TM analysis. One of the main goals of this study was to determine the patterns related to the roles of medical and machine learning methods. The results demonstrated the trends between microarray and other medical/biological topics, and machine learning techniques such as feature selection and classification, including the identification of commonly used databases and algorithms. Colon, lung, and breast were the most commonly studied cancers identified using microarray data and feature selection techniques. In addition, SVM was frequently used for dimensionality reduction and classification tasks. Despite the insightful results based on text mining, more studies are needed to investigate the performance, strength, and weakness of different types of feature selectors to microarray data.
C1 [Ribeiro, Guilherme Alberto Sousa; Barbosa, Rommel Melgaco] Univ Fed Goias, Inst Informat, Samambaia Campus, BR-74690900 Goiania, Go, Brazil.
[Ribeiro, Guilherme Alberto Sousa; da Cunha Reis, Marcio] Fed Inst Goias IFG, Studies & Res Sci & Technol Grp GCITE, Goiania, Go, Brazil.
[Barbosa, Rommel Melgaco; da Cunha Reis, Marcio] Hosp Israelita Albert Einstein, Image Ctr, Sao Paulo, SP, Brazil.
[Costa, Nattane Luiza] Fed Inst Goiano, Urutai, Go, Brazil.
C3 Universidade Federal de Goias; Instituto Federal de Goias (IFG);
Hospital Israelita Albert Einstein; Instituto Federal Goiano
RP Ribeiro, GAS (corresponding author), Univ Fed Goias, Inst Informat, Samambaia Campus, BR-74690900 Goiania, Go, Brazil.
EM guilherme.ufma@gmail.com
OI Sousa Ribeiro, Guilherme Alberto/0000-0002-2230-9573
CR Aggarwal C.C., 2015, Mining text data
Alhenawi E, 2022, COMPUT BIOL MED, V140, DOI 10.1016/j.compbiomed.2021.105051
Alonso-Betanzos A, 2019, METHODS MOL BIOL, V1986, P65, DOI 10.1007/978-1-4939-9442-7_4
Ananiadou S, 2006, TRENDS BIOTECHNOL, V24, P571, DOI 10.1016/j.tibtech.2006.10.002
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Benchimol J, 2022, MACH LEARN APPL, V8, DOI 10.1016/j.mlwa.2022.100286
Bessonov K, 2016, GENET EPIDEMIOL, V40, P767, DOI 10.1002/gepi.22017
Blum AL, 1997, ARTIF INTELL, V97, P245, DOI 10.1016/S0004-3702(97)00063-5
Bolón-Canedo V, 2014, INFORM SCIENCES, V282, P111, DOI 10.1016/j.ins.2014.05.042
Bremer EG, 2004, LECT NOTES ARTIF INT, V3303, P84
Cao KAL, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-253
Chandrashekar G, 2014, COMPUT ELECTR ENG, V40, P16, DOI 10.1016/j.compeleceng.2013.11.024
Chaudhuri A, 2022, KNOWL-BASED SYST, V236, DOI 10.1016/j.knosys.2021.107804
Chen X, 2009, PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION IN COMMUNICATION, P124, DOI 10.1109/ICASID.2009.5276941
Chiang D Y, 2001, Bioinformatics, V17 Suppl 1, pS49
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Ding C, 2003, PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, P523, DOI 10.1109/CSB.2003.1227396
Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234
Donthu N, 2021, PSYCHOL MARKET, V38, P834, DOI 10.1002/mar.21472
Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039
dos Santos BS, 2019, COMPUT IND ENG, V138, DOI 10.1016/j.cie.2019.106120
Dudoit S, 2002, J AM STAT ASSOC, V97, P77, DOI 10.1198/016214502753479248
El Kafrawy P, 2021, IEEE ACCESS, V9, P155353, DOI 10.1109/ACCESS.2021.3123090
Faro A, 2012, BRIEF BIOINFORM, V13, P61, DOI 10.1093/bib/bbr018
Feinerer I, 2008, J STAT SOFTW, V25, P1
Feldman R., 2007, TEXT MINING HDB ADV
Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616
Huang CL, 2009, EXPERT SYST APPL, V36, P1529, DOI 10.1016/j.eswa.2007.11.062
Huynh-Thu VA, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012776
Jiang XM, 2018, LECT NOTES ARTIF INT, V11012, P772, DOI 10.1007/978-3-319-97304-3_59
Karim Shahiratul A. Abd, 2021, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/1997/1/012017
Khan MA, 2021, J BUS RES, V125, P295, DOI 10.1016/j.jbusres.2020.12.015
Königstorfer F, 2020, J BEHAV EXP FINANC, V27, DOI 10.1016/j.jbef.2020.100352
Kumar V, 2019, NEURAL COMPUT APPL, V31, P3647, DOI 10.1007/s00521-017-3321-0
Lazar C, 2012, IEEE ACM T COMPUT BI, V9, P1106, DOI 10.1109/TCBB.2012.33
Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682
Li JY, 2019, J VIS COMMUN IMAGE R, V64, DOI 10.1016/j.jvcir.2019.102605
Li T, 2004, BIOINFORMATICS, V20, P2429, DOI 10.1093/bioinformatics/bth267
Liang YY, 2017, ENG APPL ARTIF INTEL, V62, P96, DOI 10.1016/j.engappai.2017.03.009
Liu H., 2012, FEATURE SELECTION KN, V454
Liu Q, 2017, COMPUT BIOL MED, V91, P103, DOI 10.1016/j.compbiomed.2017.10.008
Lockhart DJ, 1996, NAT BIOTECHNOL, V14, P1675, DOI 10.1038/nbt1296-1675
Manning Christopher D., 2008, Introduction to Information Retrieval
Manoharan Sharanya, 2022, Methods Mol Biol, V2496, P41, DOI 10.1007/978-1-0716-2305-3_3
Mhlanga D, 2020, INT J FINANC STUD, V8, DOI 10.3390/ijfs8030045
Natarajan J., 2013, ISRN Computational Biology, V2013, P1, DOI [10.1155/2013/159135, DOI 10.1155/2013/159135]
Natarajan J, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-373
Onan A, 2023, EXPERT SYST APPL, V232, DOI 10.1016/j.eswa.2023.120908
Onan A, 2021, IEEE ACCESS, V9, P7701, DOI 10.1109/ACCESS.2021.3049734
Onan A, 2019, IEEE ACCESS, V7, P145614, DOI 10.1109/ACCESS.2019.2945911
Onan A, 2021, CONCURR COMP-PRACT E, V33, DOI 10.1002/cpe.5909
Onan A, 2021, COMPUT APPL ENG EDUC, V29, P572, DOI 10.1002/cae.22253
Onan A, 2020, COMPUT APPL ENG EDUC, V28, P117, DOI 10.1002/cae.22179
Onan A, 2018, COMPUT MATH METHOD M, V2018, DOI 10.1155/2018/2497471
Onan A, 2018, J INF SCI, V44, P28, DOI 10.1177/0165551516677911
Papacharalampous G, 2022, Arxiv, DOI arXiv:2206.08998
PRITCHARD A, 1969, J DOC, V25, P348
R Core Team, 2023, R LANG ENV STAT COMP
Remeseiro B, 2019, COMPUT BIOL MED, V112, DOI 10.1016/j.compbiomed.2019.103375
SCHENA M, 1995, SCIENCE, V270, P467, DOI 10.1126/science.270.5235.467
Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283
Song QB, 2013, IEEE T KNOWL DATA EN, V25, P1, DOI 10.1109/TKDE.2011.181
Spasic I, 2014, INT J MED INFORM, V83, P605, DOI 10.1016/j.ijmedinf.2014.06.009
Sun L, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1468-4
Sun WC, 2018, J HEALTHC ENG, V2018, DOI 10.1155/2018/4302425
Tang EK, 2005, Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, P9
Teschendorff AE, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-8-r157
Trieu HL, 2022, BIOINFORMATICS, V38, P872, DOI 10.1093/bioinformatics/btab702
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Verma S, 2020, J BUS RES, V118, P253, DOI 10.1016/j.jbusres.2020.06.057
Wang AG, 2022, COMPUT BIOL MED, V142, DOI 10.1016/j.compbiomed.2021.105208
Wang JL, 2014, IEEE T KNOWL DATA EN, V26, P698, DOI 10.1109/TKDE.2013.32
Wang R, 2009, INT CONF DAT MIN WOR, P400, DOI 10.1109/ICDMW.2009.25
Wang Y, 2005, COMPUT BIOL CHEM, V29, P37, DOI 10.1016/j.compbiolchem.2004.11.001
Wang YH, 2004, 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, P497
Wang Z, 2009, NAT REV GENET, V10, P57, DOI 10.1038/nrg2484
Weston J, 2001, ADV NEUR IN, V13, P668
Xie JY, 2016, LECT NOTES ARTIF INT, V9773, P116, DOI 10.1007/978-3-319-42297-8_12
Yang PY, 2010, CURR BIOINFORM, V5, P296, DOI 10.2174/157489310794072508
Yuan XH, 2020, IEEE ACCESS, V8, P22672, DOI 10.1109/ACCESS.2020.2969293
Zagoruiko N., 2006, P 5 TH INT C BIOINFO, P16
Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994
Zhang Y, 2017, KNOWL-BASED SYST, V133, P255, DOI 10.1016/j.knosys.2017.07.011
Xuan Z, 2017, PATTERN RECOGN, V63, P56, DOI 10.1016/j.patcog.2016.09.007
Zia A, 2022, J PERS MED, V12, DOI 10.3390/jpm12091359
NR 85
TC 0
Z9 0
U1 8
U2 8
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0361-0918
EI 1532-4141
J9 COMMUN STAT-SIMUL C
JI Commun. Stat.-Simul. Comput.
PD 2024 MAR 25
PY 2024
DI 10.1080/03610918.2024.2331083
EA MAR 2024
PG 17
WC Statistics & Probability
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematics
GA MQ1D9
UT WOS:001194992900001
DA 2024-09-05
ER
PT C
AU Zhang, CT
Zhang, HX
Yuan, DF
Zhang, MG
AF Zhang, Chuanting
Zhang, Haixia
Yuan, Dongfeng
Zhang, Minggao
BE Liu, X
Qiu, T
Guo, B
Lu, K
Ning, Z
Dong, M
Li, Y
TI Deep Learning Based Link Prediction with Social Pattern and External
Attribute Knowledge in Bibliographic Networks
SO 2016 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND
IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER,
PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA)
LA English
DT Proceedings Paper
CT 9th IEEE Int Conf on Internet of Things / 12th IEEE Int Conf on Green
Comp and Communicat / 9th IEEE Int Conf on Cyber, Phys, and Social Comp
/ IEEE Int Conf on Smart Data
CY DEC 16-19, 2016
CL Chengdu, PEOPLES R CHINA
AB The problem of predicting links for information entities is an important task in network analysis. In this regard, link prediction between authors in bibliographic networks has attracted much attention. However, most of these works only center around exploiting network topology features to do prediction, and other factors affecting link formation are rarely considered. In this paper, we introduce two kinds of novel features based on social pattern and external attribute knowledge (SPEAK), then integrate the SPEAK features and topological features into a deep learning framework using deep neural networks (DNNs). We present the performance based on a real world academic social network from AMiner. Experimental results demonstrate that the SPEAK features can significantly boost the link prediction performance especially when potential links span large geodesic distance. In addition, these features are helpful in understanding the mechanisms behind the link formation.
C1 [Zhang, Chuanting; Zhang, Haixia; Yuan, Dongfeng; Zhang, Minggao] Shandong Univ, Shandong Prov Key Lab Wireless Commun Technol, Jinan 250100, Peoples R China.
C3 Shandong University
RP Zhang, CT (corresponding author), Shandong Univ, Shandong Prov Key Lab Wireless Commun Technol, Jinan 250100, Peoples R China.
EM chuanting.zhang@gmail.com; haixia.zhang@sdu.edu.cn; dfyuan@sdu.edu.cn
RI Zhang, Chuanting/AAD-4183-2020
FU Special Project for Independent Innovation and Achievement
Transformation of Shandong Province [2013ZHZX2C0102, 2014ZZCX03401]
FX The work presented in this paper was supported in part by the Special
Project for Independent Innovation and Achievement Transformation of
Shandong Province (2013ZHZX2C0102, 2014ZZCX03401).
CR AlHasan M., 2006, P SDM 06 WORKSH LINK
[Anonymous], 2005, ACM SIGKDD EXPLOR NE
[Anonymous], 2010, KDD
Backstrom L., 2011, WSDM, P635
Dong YX, 2012, IEEE DATA MINING, P181, DOI 10.1109/ICDM.2012.140
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Han X, 2015, IEEE ICC, P1250, DOI 10.1109/ICC.2015.7248494
Hinton G, 2012, IEEE SIGNAL PROC MAG, V29, P82, DOI 10.1109/MSP.2012.2205597
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Li X., 2014, Proceedings of the 2014 SIAM international conference on data mining, P289, DOI DOI 10.1137/1.9781611973440.33
Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591
Liu F, 2015, ENTROPY-SWITZ, V17, P2140, DOI 10.3390/e17042140
Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Wang P, 2015, SCI CHINA INFORM SCI, V58, DOI 10.1007/s11432-014-5237-y
NR 15
TC 7
Z9 7
U1 1
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-5090-5880-8
PY 2016
BP 815
EP 821
DI 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.170
PG 7
WC Computer Science, Theory & Methods; Green & Sustainable Science &
Technology; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Science & Technology - Other Topics;
Telecommunications
GA BS5HS
UT WOS:000730823200143
DA 2024-09-05
ER
PT C
AU Omotayo, AH
Gamal, M
Ehab, E
Dovonon, G
Akinjobi, Z
Lukman, I
Turki, H
Abdien, M
Tondji, I
Oppong, A
Pimi, Y
Gamal, K
Roya
Siam, M
AF Omotayo, Abdul-Hakeem
Gamal, Mai
Ehab, Eman
Dovonon, Gbetondji
Akinjobi, Zainab
Lukman, Ismaila
Turki, Houcemeddine
Abdien, Mahmod
Tondji, Idriss
Oppong, Abigail
Pimi, Yvan
Gamal, Karim
Roya
Siam, Mennatullah
GP ACM
TI Towards a Better Understanding of the Computer Vision Research Community
in Africa
SO PROCEEDINGS OF 2023 ACM CONFERENCE ON EQUITY AND ACCESS IN ALGORITHMS,
MECHANISMS, AND OPTIMIZATION, EAAMO 2023
LA English
DT Proceedings Paper
CT ACM Conference on Equity and Access in Algorithms, Mechanisms, and
Optimization (EAAMO)
CY OCT 30-NOV 01, 2023
CL Boston Univ, Boston, MA
HO Boston Univ
DE computer vision; participatory approach; bibliometric study
ID BIBLIOMETRIC ANALYSIS; SCIENCE; HEALTH; BIAS
AB Computer vision is a broad field of study that encompasses different tasks (e.g., object detection, semantic segmentation, 3D reconstruction). Although computer vision is relevant to the African communities in various applications, yet computer vision research is under-explored in the continent and constructs only 0.06% of top-tier publications in the last ten years. In this paper, our goal is to have a better understanding of the computer vision research conducted in Africa and provide pointers on whether there is equity in research or not. We do this through an empirical analysis of the African computer vision publications that are Scopus indexed, where we collect around 63,000 publications over the period 2012-2022. We first study the opportunities available for African institutions to publish in top-tier computer vision venues. We show that African publishing trends in top-tier venues over the years do not exhibit consistent growth, unlike other continents such as North America or Asia. Moreover, we study all computer vision publications beyond top-tier venues in different African regions to find that mainly Northern and Southern Africa are publishing in computer vision with 68.5% and 15.9% of publications, resp. Nonetheless, we highlight that both Eastern and Western Africa are exhibiting a promising increase with the last two years closing the gap with Southern Africa. Additionally, we study the collaboration patterns in these publications to find that most of these exhibit international collaborations rather than African ones. We also show that most of these publications include an African author that is a key contributor as the first or last author. Finally, we present the most recurring keywords in computer vision publications per African region. In summary, our analysis reveals that African researchers are key contributors to African research, yet there exists multiple barriers to publish in top-tier venues and establish African collaborations. Additionally, the question on whether there is an alignment between the current computer vision topics published in Africa and the most urgent needs in African communities remains unanswered. In this work we took the first step of documenting per-region published topics and we leave it for future work to investigate the latter question. This work is part of a community based effort that is focused on improving the computer vision research in Africa, where we question whether researchers across the different regions have access to equal opportunities to lead their research or not.
C1 [Omotayo, Abdul-Hakeem] Univ Calif Davis, Davis, CA 95616 USA.
[Gamal, Mai] German Univ Cairo, Cairo, Egypt.
[Ehab, Eman] Nile Univ, Giza, Egypt.
[Dovonon, Gbetondji] UCL, London, England.
[Akinjobi, Zainab] New Mexicos State Univ, Las Cruces, NM USA.
[Lukman, Ismaila] Univ Angers, Angers, France.
[Turki, Houcemeddine] Univ Sfax, Sfax, Tunisia.
[Abdien, Mahmod; Gamal, Karim] Queens Univ, Kingston, ON, Canada.
[Tondji, Idriss; Pimi, Yvan] African Masters Machine Intelligence AMMI AIMS, Mbour Thies, Senegal.
[Oppong, Abigail] Ashesi Univ, Berekuso, Ghana.
[Roya] Grassroots, Comp Vis Africa, Kampala, Uganda.
[Siam, Mennatullah] Ontario Tech Univ, Oshawa, ON, Canada.
C3 University of California System; University of California Davis;
Egyptian Knowledge Bank (EKB); German University in Cairo; Egyptian
Knowledge Bank (EKB); Nile University; University of London; University
College London; Universite d'Angers; Universite de Sfax; Queens
University - Canada
RP Roya (corresponding author), Grassroots, Comp Vis Africa, Kampala, Uganda.
EM ormorteey@gmail.com; mai.tharwat@guc.edu.eg; e.ehab@nu.edu.eg;
gbetondji.dovonon.22@ucl.ac.uk; akinzayn@gmail.com;
ismailukman@gmail.com; turkiabdelwaheb@hotmail.fr; 21mmah@queensu.ca;
itondji@aimsammi.org; abigoppong@gmail.com; ypimi@aimsammi.org;
21kgmm@queensu.ca; roya.cv4africa@gmail.com;
mennatullah.siam@ontariotechu.ca
RI Turki, Houcemeddine/J-8929-2013; Omotayo, Abdul-Hakeem/KDP-2885-2024
OI Turki, Houcemeddine/0000-0003-3492-2014; Omotayo,
Abdul-Hakeem/0009-0009-4558-0356
CR African Development Bank Group, African Countries
Bender EM, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P610, DOI 10.1145/3442188.3445922
Bin Jin, 2017, PROC CVPR IEEE, P1705, DOI 10.1109/CVPR.2017.185
Birhane A, 2020, Arxiv, DOI [arXiv:2009.14258, DOI 10.48550/ARXIV.2009.14258]
Bommasani Rishi, 2021, On the opportunities and risks of foundation models
Bondi E, 2021, AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P425, DOI 10.1145/3461702.3462612
Buolamwini J, 2018, PMLR, P77
Chen H, 2020, IEEE ACCESS, V8, P155417, DOI 10.1109/ACCESS.2020.3019336
Currin Christopher Brian, 2023, 2023 ICLR 1 WORKSH M
De-Arteaga M, 2018, ACM TRANS MANAG INF, V9, DOI 10.1145/3210548
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
Doaemo W, 2020, LAND-BASEL, V9, DOI 10.3390/land9090282
Fielding Ezra, 2022, P INT C EL COMP EN T, P1
Google Scholar, Most cited computer vision researchers
Grauman K, 2022, PROC CVPR IEEE, P18973, DOI 10.1109/CVPR52688.2022.01842
Guleid FH, 2021, BMJ GLOB HEALTH, V6, DOI 10.1136/bmjgh-2021-005690
Hamed MSG, 2020, SOL ENERGY, V195, P310, DOI 10.1016/j.solener.2019.11.068
Iqbal U, 2023, WATER ENVIRON J, V37, P373, DOI 10.1111/wej.12845
Jun H, 2022, MEDICINE, V101, DOI 10.1097/MD.0000000000028614
Kalluri P, 2020, NATURE, V583, P169, DOI 10.1038/d41586-020-02003-2
Khamparia A, 2020, SUSTAIN COMPUT-INFOR, V28, DOI 10.1016/j.suscom.2019.07.003
Kinyanjui N. M, 2020, INT C MED IM COMP CO, P320
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Lewis Jason Edward, 2020, Indigenous protocol and artificial intelligence position paper
Manescu Petru, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12265), P226, DOI 10.1007/978-3-030-59722-1_22
McCoy JT, 2018, IFAC PAPERSONLINE, V51, P141, DOI 10.1016/j.ifacol.2018.09.406
Mehrabi N, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3457607
Mhlambi Sabelo, 2020, Carr Center Discussion Paper
Mohamed Shakir, 2020, Philosophy Technology, V33, P659, DOI DOI 10.1007/S13347-020-00405-8
Musa TH, 2022, AFR HEALTH SCI, V22, P704, DOI 10.4314/ahs.v22i2.80
Nakasi R, 2020, IEEE COMPUT SOC CONF, P4238, DOI 10.1109/CVPRW50498.2020.00500
Obermeyer Z, 2019, SCIENCE, V366, P447, DOI 10.1126/science.aax2342
Pouris A, 2014, SCIENTOMETRICS, V98, P2169, DOI 10.1007/s11192-013-1156-8
Roshanitabrizi P, 2022, LECT NOTES COMPUT SC, V13431, P602, DOI 10.1007/978-3-031-16431-6_57
Sefala Raesetje, 2021, P C NEUR INF PROC SY
Shirley R, 2021, MON NOT R ASTRON SOC, V507, P129, DOI 10.1093/mnras/stab1526
Sirko W, 2021, Arxiv, DOI [arXiv:2107.12283, DOI 10.48550/ARXIV.2107.12283]
Sirohi A., 2020, Communications in Computer and Information Science, P487, DOI [DOI 10.1007/978-981-16-3660-8_46, 10.1007/978-981-16-3660-8_46]
Sooryamoorthy R, 2021, J SCIENTOMETR RES, V10, P366, DOI 10.5530/jscires.10.3.54
Su NM, 2021, PROC CVPR IEEE, P9287, DOI 10.1109/CVPR46437.2021.00917
Sweeney L, 2013, COMMUN ACM, V56, P44, DOI 10.1145/2447976.2447990
Szeliski R., 2022, Computer vision: algorithms and applications
Tlili A, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0262615
Tomkins A, 2017, P NATL ACAD SCI USA, V114, P12708, DOI 10.1073/pnas.1707323114
Turki Houcemeddine, 2023, Machine Learning for Healthcare: A Bibliometric Study of Contributions from Africa
Whittaker Meredith, 2019, AI Now Institute, P8
Young M, 2018, PERSPECT MED EDUC, V7, P182, DOI 10.1007/s40037-018-0433-x
NR 47
TC 0
Z9 0
U1 0
U2 0
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 979-8-4007-0381-2
PY 2023
AR 1
DI 10.1145/3617694.3623221
PG 12
WC Computer Science, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Social Sciences, Interdisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Mathematical Methods In Social Sciences; Social
Sciences - Other Topics
GA BW2SD
UT WOS:001124266900001
OA Green Submitted
DA 2024-09-05
ER
PT C
AU Dogan, RI
Wilbur, WJ
Comeau, DC
AF Dogan, Rezarta Islamaj
Wilbur, W. John
Comeau, Donald C.
BE Calzolari, N
Choukri, K
Declerck, T
Loftsson, H
Maegaard, B
Mariani, J
Moreno, A
Odijk, J
Piperidis, S
TI BioC and Simplified Use of the PMC Open Access Dataset for Biomedical
Text Mining
SO LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND
EVALUATION
LA English
DT Proceedings Paper
CT 9th International Conference on Language Resources and Evaluation (LREC)
CY MAY 26-31, 2014
CL Reykjavik, ICELAND
DE interoperability; PubMed Central; biomedical natural language
processing; BioC; annotations
ID INFORMATION EXTRACTION; FULL-TEXT
AB High quality easily-accessible resources are crucial for developing reliable applications in the health and biomedical domain. At the same time, interoperability, broad use, and reuse are vital considerations when developing useful systems. As a response, BioC has recently been put forward as a convenient XML format to share text documents and annotations, and as an accompanying input/output library to promote interoperability of data and tools. The BioC approach allows a large number of different textual annotations to be represented, and permits developers to more easily and efficiently share training data, supportive software modules and produced results. Here we give a brief overview of BioC resources. We also present the BioC-PMC dataset as a new resource, which contains all the articles available from the PubMed Central Open Access collection conveniently packaged in the BioC format. We show how this valuable resource can be easily used for text-mining tasks. Code and data are available for download at the BioC site: http://bioc.sourceforge.net.
C1 [Dogan, Rezarta Islamaj; Wilbur, W. John; Comeau, Donald C.] Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA.
C3 National Institutes of Health (NIH) - USA; NIH National Library of
Medicine (NLM)
RP Dogan, RI (corresponding author), Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA.
EM Rezarta.Islamaj@nih.gov; wilbur@ncbi.nlm.nih.gov;
comeau@ncbi.nlm.nih.gov
CR [Anonymous], 2003, P 41 ANN M ASS COMP
Arighi CN, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-S8-S1
Blaschke C, 2001, COMP FUNCT GENOM, V2, P196, DOI 10.1002/cfg.91
Cohen AM, 2005, BRIEF BIOINFORM, V6, P57, DOI 10.1093/bib/6.1.57
Comeau D.C., 2013, P 4 BIOCREATIVE CHAL, P38
Corney DPA, 2004, BIOINFORMATICS, V20, P3206, DOI 10.1093/bioinformatics/bth386
Divoli A, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009619
Dogan R.I., 2014, J BIOMED INFORM
Dogan R.L, 2013, P 4 BIOCREATIVE CHAL, P23
Hearst MA, 2007, BIOINFORMATICS, V23, P2196, DOI 10.1093/bioinformatics/btm301
Hirschman L, 2005, BMC BIOINFORMATICS, V6, DOI 10.1186/1471-2105-6-S1-S1
Hirschman L, 2012, DATABASE-OXFORD, DOI 10.1093/database/bas020
Jimeno Yepes A.M.N., 2013, P BIOCREATIVE 4 WORK, V1, P46
Khare R., 2013, P 4 BIOCREATIVE CHAL, V1, P10
Krallinger M, 2008, GENOME BIOL, V9, DOI 10.1186/gb-2008-9-S2-S1
Kuo CJ, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-S15-S7
Lai P., 2013, P 4 BIOCREATIVE CHAL, P54
Liu W., 2013, P 4 BIOCREATIVE CHAL, P31
Peng Yifan., 2013, Proceedings of the BioCreative IV Challenge Evaluation Workshop, P5
Rak R., 2013, P 4 BIOCREATIVE CHAL, V1, P61
Rinaldi F, 2013, P P 4 BIOCREATIVE CH, V1, P2
Schwartz Ariel S, 2003, Pac Symp Biocomput, P451
Shah PK, 2003, BMC BIOINFORMATICS, V4, DOI 10.1186/1471-2105-4-20
Smith L, 2004, BIOINFORMATICS, V20, P2320, DOI 10.1093/bioinformatics/bth227
Sohn S, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-402
Wei CH, 2013, NUCLEIC ACIDS RES, V41, pW518, DOI 10.1093/nar/gkt441
Wu CH, 2012, DATABASE-OXFORD, DOI 10.1093/database/bas049
Yeganova L, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-S3-S6
Yu H, 2003, BIOINFORMATICS, V19, pi340, DOI 10.1093/bioinformatics/btg1047
NR 29
TC 0
Z9 0
U1 0
U2 1
PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA
PI PARIS
PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE
BN 978-2-9517408-8-4
PY 2014
PG 8
WC Linguistics; Language & Linguistics
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Linguistics
GA BC8FH
UT WOS:000355611000008
DA 2024-09-05
ER
PT C
AU Marshall, GC
Jay, C
Freitas, A
AF Marshall, Guy Clarke
Jay, Caroline
Freitas, Andre
BE Basu, A
Stapleton, G
Linker, S
Legg, C
Manalo, E
Viana, P
TI Number and Quality of Diagrams in Scholarly Publications is Associated
with Number of Citations
SO DIAGRAMMATIC REPRESENTATION AND INFERENCE, DIAGRAMS 2021
SE Lecture Notes in Artificial Intelligence
LA English
DT Proceedings Paper
CT 12th International Conference on the Theory and Application of Diagrams
(Diagrams)
CY SEP 28-30, 2021
CL ELECTR NETWORK
DE Neural networks; Scholarly diagrams; Corpus analysis; Bibliometrics;
Graphicacy
AB Diagrams are often used in scholarly communication. We analyse a corpus of diagrams found in scholarly computational linguistics conference proceedings (ACL 2017), and find inclusion of a system diagram to be correlated with higher numbers of citations after three years. Inclusion of more than three diagrams in this 8-page limit conference was found to correlate with a lower citation count. Focusing on neural network system diagrams, we find a correlation between highly cited papers and "good diagramming practice" quantified by level of compliance with a set of diagramming guidelines. This study suggests that diagrams may be a useful source of quality data for predicting citations, and that "graphicacy" is a key skill for scholars with insufficient support at present.
C1 [Marshall, Guy Clarke; Jay, Caroline; Freitas, Andre] Univ Manchester, Dept Comp Sci, Manchester, Lancs, England.
[Freitas, Andre] Idiap Res Inst, Martigny, Switzerland.
C3 University of Manchester
RP Marshall, GC (corresponding author), Univ Manchester, Dept Comp Sci, Manchester, Lancs, England.
EM guy.marshall@postgrad.manchester.ac.uk; caroline.jay@manchester.ac.uk;
andre.freitas@manchester.ac.uk
RI Freitas, Andre/AAT-9885-2020
OI Freitas, Andre/0000-0002-4430-4837; Jay, Caroline/0000-0002-6080-1382
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Ainsworth SE, 2021, CURR DIR PSYCHOL SCI, V30, P61, DOI 10.1177/0963721420979582
Clark C, 2016, ACM-IEEE J CONF DIG, P143, DOI 10.1145/2910896.2910904
Divvala S., 2016, PDFFIGURES 2 0 READM
Fan J. E., 2015, Translational Issues in Psychological Science, V1, P170, DOI DOI 10.1037/TPS0000037
Gwet KL, 2014, Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement among raters, V4th
Jay C., 2021, STAT PAP RETH WE SHA
Kan M.Y., 2017, ACCEPTED PAPERS DEMO
Lechner VE, 2020, LECT NOTES ARTIF INT, V12169, P110, DOI 10.1007/978-3-030-54249-8_9
Lee PS, 2018, IEEE T BIG DATA, V4, P117, DOI 10.1109/TBDATA.2017.2689038
Marshall G., **DATA OBJECT**, DOI 10.6084/m9.figshare.14812959
Marshall G., 2020, ARXIV PREPRINT ARXIV
Marshall Guy Clarke, 2021, Diagrammatic Representation and Inference: 12th International Conference, Diagrams 2021, Proceedings. Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence (12909), P480, DOI 10.1007/978-3-030-86062-2_49
Marshall G.C., ARXIV PREPRINT ARXIV
Olah C., 2015, Understanding LSTM networks, 2015
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Roy A, 2020, IEEE IMAGE PROC, P2581, DOI 10.1109/ICIP40778.2020.9191234
Wickham H., 2016, GGPLOT2, DOI DOI 10.1007/978-3-319-24277-4
Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831
Yang Sean T., 2019, 2019 International Conference on Document Analysis and Recognition (ICDAR). Proceedings, P1063, DOI 10.1109/ICDAR.2019.00173
NR 20
TC 2
Z9 2
U1 0
U2 3
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2945-9133
EI 1611-3349
BN 978-3-030-86062-2; 978-3-030-86061-5
J9 LECT NOTES ARTIF INT
PY 2021
VL 12909
BP 512
EP 519
DI 10.1007/978-3-030-86062-2_52
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Software
Engineering; Mathematics, Applied; Logic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Mathematics; Science & Technology - Other Topics
GA BS3IM
UT WOS:000711901600052
DA 2024-09-05
ER
PT C
AU Olensky, M
AF Olensky, Marlies
BE Gorraiz, J
Schiebel, E
Gumpenberger, C
Horlesberger, M
Moed, H
TI ACCURACY ASSESSMENT FOR BIBLIOGRAPHIC DATA
SO 14TH INTERNATIONAL SOCIETY OF SCIENTOMETRICS AND INFORMETRICS CONFERENCE
(ISSI)
SE Proceedings of the International Conference on Scientometrics and
Informetrics
LA English
DT Proceedings Paper
CT 14th International-Society-of-Scientometrics-and-Informetrics Conference
(ISSI)
CY JUL 15-20, 2013
CL Vienna, AUSTRIA
C1 Humboldt Univ, Berlin Sch Lib & Informat Sci, D-10099 Berlin, Germany.
C3 Humboldt University of Berlin
RP Olensky, M (corresponding author), Humboldt Univ, Berlin Sch Lib & Informat Sci, Unter Linden 6, D-10099 Berlin, Germany.
EM marlies.olensky@ibi.hu-berlin.de
OI Kirchner (Olensky), Marlies/0000-0002-4727-8531
CR [Anonymous], 1997, Data Quality for the Information Age
Batini C., 2008, International Journal of Innovative Computing and Applications, V1, P205, DOI 10.1109/icdim.2007.369236
Hildebrandt A. L., 2008, REFERENCE CITATION E
Larsen B., 2008, ERROR RATES ERROR TY
Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677
MOED HF, 1989, J INFORM SCI, V15, P95, DOI 10.1177/016555158901500205
Olensky M., 2012, P 17 INT C SCI TECHN, P628
NR 7
TC 2
Z9 2
U1 0
U2 3
PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI
PI LEUVEN
PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN,
B-3000, BELGIUM
SN 2175-1935
BN 978-3-200-03135-7
J9 PRO INT CONF SCI INF
PY 2013
BP 1850
EP 1853
PG 4
WC Information Science & Library Science
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Information Science & Library Science
GA BC6IG
UT WOS:000353961700146
DA 2024-09-05
ER
PT J
AU Malkin, A
Rehfeldt, RA
Shayter, AM
AF Malkin, Albert
Rehfeldt, Ruth Anne
Shayter, Ashley M.
TI An Investigation of the Efficacy of Asynchronous Discussion on Students'
Performance in an Online Research Method Course
SO BEHAVIOR ANALYSIS IN PRACTICE
LA English
DT Article
DE Teaching behavior analysis; Online learning; Asynchronous discussion;
Active learning
ID SATISFACTION
AB Online instruction has become increasingly a commonplace in higher education, broadly and within the field of behavior analysis. Given the increased availability of online instruction, it is important to establish how learning outcomes are influenced by various teaching methods, in order to effectively train the next generation of behavior analysts. This study used a between-group design to evaluate the use of asynchronous online class discussion. Results indicate greater group mean performance on quizzes for students who were required to participate in asynchronous discussion as a component of instruction.Demonstration of the effectiveness of a typical component of online instructionProcedures can be used to evaluate instructional methods in behavior analytic courseworkAsynchronous online discussion is a promising component of online courseworkActive learning pedagogy is more effective when compared with passive learning pedagogy
C1 [Malkin, Albert; Rehfeldt, Ruth Anne; Shayter, Ashley M.] Southern Illinois Univ, Behav Anal & Therapy Program, Carbondale, IL 62901 USA.
C3 Southern Illinois University System; Southern Illinois University
RP Malkin, A (corresponding author), Southern Illinois Univ, Behav Anal & Therapy Program, Carbondale, IL 62901 USA.
EM amalkin@siu.edu
RI Malkin, Albert/AAB-1492-2021
OI Malkin, Albert/0000-0002-8652-6390
CR Austin J.L., 2000, HDB APPL BEHAV ANAL, P449
Behavior Analyst Certification Board, 2016, APPR U TRAIN
Coppola NW, 2002, J MANAGE INFORM SYST, V18, P169, DOI 10.1080/07421222.2002.11045703
Driscoll A, 2012, TEACH SOCIOL, V40, P312, DOI 10.1177/0092055X12446624
Jorczak R. L., 2014, J ASYNCHRONOUS LEARN, V18
Ocker RJ, 1999, GROUP DECIS NEGOT, V8, P427, DOI 10.1023/A:1008621827601
Querol B.I. D., 2015, Scholarship of Teaching and Learning in Psychology, V1, P390, DOI DOI 10.1037/STL0000048
Roll-Pettersson L., 2010, European Journal of Behavior Analysis, V11, P247
Williams L.W., 2012, The Behavior Analyst Today, V13, P12, DOI [DOI 10.1037/H0100713, 10.1037/h0100713]
NR 9
TC 19
Z9 33
U1 0
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1998-1929
EI 2196-8934
J9 BEHAV ANAL PRACT
JI Behav. Anal. Pract.
PD SEP
PY 2018
VL 11
IS 3
SI SI
BP 274
EP 278
DI 10.1007/s40617-016-0157-5
PG 5
WC Psychology, Clinical
WE Emerging Sources Citation Index (ESCI)
SC Psychology
GA GW7HQ
UT WOS:000447138100016
PM 30363852
OA Green Published
DA 2024-09-05
ER
PT J
AU Carrasco, RC
Serrano, A
Castillo-Buergo, R
AF Carrasco, Rafael C.
Serrano, Aureo
Castillo-Buergo, Reydi
TI A parser for authority control of author names in bibliographic records
SO INFORMATION PROCESSING & MANAGEMENT
LA English
DT Article
DE Digital libraries; Cataloguing standards; Natural language processing
ID DISAMBIGUATION
AB Bibliographic collections in traditional libraries often compile records from distributed sources where variable criteria have been applied to the normalization of the data. Furthermore, the source records often follow classical standards, such as MARC21, where a strict normalization of author names is not enforced. The identification of equivalent records in large catalogues is therefore required, for example, when migrating the data to new repositories which apply modern specifications for cataloguing, such as the FRBR and RDA standards. An open-source tool has been implemented to assist authority control in bibliographic catalogues when external features (such as the citations found in scientific articles) are not available for the disambiguation of creator names. This tool is based on similarity measures between the variants of author names combined with a parser which interprets the dates and periods associated with the creator. An efficient data structure (the unigram frequency vector trie) has been used to accelerate the identification of variants. The algorithms employed and the attribute grammar are described in detail and their implementation is distributed as an open-source resource to allow for an easier uptake. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Carrasco, Rafael C.; Serrano, Aureo] Univ Alicante, Dept Lenguajes & Sistemas Informat, Alicante, Spain.
[Castillo-Buergo, Reydi] Univ Agr La Habana, Dept Computac, Havana, Cuba.
C3 Universitat d'Alacant
RP Carrasco, RC (corresponding author), Univ Alicante, Dept Lenguajes & Sistemas Informat, Alicante, Spain.
EM carrasco@ua.es
RI Carrasco, Rafael C/JWP-5402-2024
OI Carrasco, Rafael C./0000-0002-4726-9694
FU Spanish Government [TIN2012-32615]
FX This work has been partially supported by the Spanish Government through
Project TIN2012-32615.
CR [Anonymous], CATALOGING CLASSIFIC
[Anonymous], 2011, Journal of Information and Data Management
[Anonymous], RES DESCR ACC RDA
[Anonymous], MARC 21 FORM BIBL DA
[Anonymous], D LIB MAGAZINE
Boytsov L., 2011, J. Exp. Algorithmics (JEA), V16, p1.1, DOI DOI 10.1145/1963190.1963191
Chavez-Aragon Alberto, 2009, Proceedings of the Tenth Mexican International Conference on Computer Science (ENC 2009), P176, DOI 10.1109/ENC.2009.38
Cohen W.W., 2003, IIWeb, P73
Cota RG, 2010, J AM SOC INF SCI TEC, V61, P1853, DOI 10.1002/asi.21363
de Sompel H.V., 2004, D-Lib Magazine, V10
Ferreira AA, 2014, J ASSOC INF SCI TECH, V65, P1257, DOI 10.1002/asi.22992
Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040
Han H., 2005, P 2005 ACM S APPL CO, P1065, DOI [10.1145/1066677.1066920, DOI 10.1145/1066677.1066920]
Hickey Thomas B., 2014, D-Lib Magazine, V20, P1, DOI 10.1045/july2014-hickey
Lee D, 2007, INT J DIGIT LIBRARIE, V6, P313, DOI 10.1007/s00799-007-0014-9
Levenshtein V. I., 1966, Soviet Physics Doklady, V10, P707
Monge A.E., 1997, PROC ACM SIGMOD DMKD, P23
Navarro G, 2001, ACM COMPUT SURV, V33, P31, DOI 10.1145/375360.375365
Cardona PAN, 2015, CUAD ACT, P154
Rozenberg G., 1997, Handbook of Formal Languages, VI
Santana AF, 2015, INT J DIGIT LIBRARIE, V16, P229, DOI 10.1007/s00799-015-0158-y
Snyman M. M. M., 2000, ACM 2000. Digital Libraries. Proceedings of the Fifth ACM Conference on Digital Libraries, P185, DOI 10.1145/336597.336660
Tang J, 2012, IEEE T KNOWL DATA EN, V24, P975, DOI 10.1109/TKDE.2011.13
Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304
WAGNER RA, 1974, J ACM, V21, P168, DOI 10.1145/321796.321811
Warner J.W., 2001, Proceedings of the ACM/IEEE Joint Conference on Digital Libraries, P21
NR 26
TC 2
Z9 3
U1 2
U2 29
PU ELSEVIER SCI LTD
PI London
PA 125 London Wall, London, ENGLAND
SN 0306-4573
EI 1873-5371
J9 INFORM PROCESS MANAG
JI Inf. Process. Manage.
PD SEP
PY 2016
VL 52
IS 5
BP 753
EP 764
DI 10.1016/j.ipm.2016.02.002
PG 12
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA DT5RP
UT WOS:000381540600003
DA 2024-09-05
ER
PT J
AU Harnal, S
Sharma, G
Malik, S
Kaur, G
Khurana, S
Kaur, P
Simaiya, S
Bagga, D
AF Harnal, Shilpi
Sharma, Gaurav
Malik, Swati
Kaur, Gagandeep
Khurana, Savita
Kaur, Prabhjot
Simaiya, Sarita
Bagga, Deepak
TI Bibliometric Mapping of Trends, Applications and Challenges of
Artificial Intelligence in Smart Cities
SO EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS
LA English
DT Article
DE Artificial Intelligence; Education; Smart cities; Science mapping; Text
mining; Data analysis; Artificial Intelligence Trends; Artificial
Intelligence Survey; Artificial Intelligence Applications; Artificial
Intelligence challenges; Health care; Traffic management; E-governance;
Surveillance; Environment; Water management; Energy management; Garbage
management; Mobility
ID ENERGY-SYSTEMS; BIG DATA; IOT; EDGE; ENVIRONMENTS; CONSUMPTION; INTERNET
AB INTRODUCTION: The continued growth of urbanization presents new challenges. This, in turn, will lead to pressure for sustainable environment initiatives, with demands for more and better infrastructure in the diminishing space available and improved quality of life for city dwellers at a more affordable cost. Smart Cities are part of the solution to the growing challenges of urbanization. The adoption of new technologies like artificial intelligence (AI) is transforming cities, making them smarter, faster, and predicting opportunities for improvement.
OBJECTIVES: This study is conducting a detailed bibliometric survey to investigate the applications and trends of Artificial Intelligence research for different areas of smart cities and emphasizing the potential effects and challenges of AI adaptation in smart cities over the past 30.5 years.
METHODS: For this study, the Scopus database was used to collect a total of 1925 documents published between 1991-2021 (July). The bibliometric analysis includes document types, subject categorization, document growth, as well as top contributing sources, countries, authors, and funding sponsors. It also analyses keywords, abstracts, titles, and characteristics of most cited documents.
RESULTS: The analyzed findings of this research study reflect not only the significance of AI technology for various applications within numerous sectors in the smart city but also major obstacles in AI research for various sectors of smart cities.
CONCLUSION: The research demonstrates that AI has the ability to construct today's and tomorrow's smart cities, but that each region's potentials, conditions, and circumstances must be addressed in order to achieve a smooth internet city development.
C1 [Harnal, Shilpi; Malik, Swati; Kaur, Gagandeep; Kaur, Prabhjot; Simaiya, Sarita] Chitkara Univ, Inst Engn & Technol, Rajpura, Punjab, India.
[Sharma, Gaurav; Khurana, Savita] Seth Jai Parkash Mukand Lal Inst Engn & Technol, Radaur, India.
[Bagga, Deepak] SafeXplore, Yamunanagar, Haryana, India.
C3 Chitkara University, Punjab
RP Harnal, S (corresponding author), Chitkara Univ, Inst Engn & Technol, Rajpura, Punjab, India.
EM shilpi13n@gmail.com
RI Harnal, Shilpi/JVM-8172-2024; Kaur, Prabhjot/JXN-0073-2024
OI Harnal, Shilpi/0000-0002-7692-2349; khurana, savita/0000-0002-8657-0017;
Malik, Swati/0000-0002-3125-4332; Kaur, Prabhjot/0000-0002-3539-0622;
Kaur, Gagandeep/0000-0003-1897-034X; SIMAIYA,
SARITA/0000-0001-7686-8496; sharma, gaurav/0000-0002-9306-4227
CR Ahmad K., 2020, Developing Future Human-Centered Smart Cities: Critical Analysis of Smart City Security, Interpretability, and Ethical Challenges
Al-Hader Mahmoud, 2009, Proceedings of the 2009 First International Conference on Computational Intelligence, Modelling and Simulation. CSSim 2009 Information Getting Started, P93, DOI 10.1109/CSSim.2009.34
Alam F, 2016, PROCEDIA COMPUT SCI, V98, P437, DOI 10.1016/j.procs.2016.09.068
Alam F, 2017, IEEE ACCESS, V5, P9533, DOI 10.1109/ACCESS.2017.2697839
Alawadhi Suha, 2012, Electronic Government. Proceedings of the 11th IFIP WG 8.5 International Conference, EGOV 2012, P40, DOI 10.1007/978-3-642-33489-4_4
Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032
[Anonymous], 2021, DYNAMIC URBAN PLANNI
Bose BK, 2017, P IEEE, V105, P2262, DOI 10.1109/JPROC.2017.2756596
Braun T, 2018, SUSTAIN CITIES SOC, V39, P499, DOI 10.1016/j.scs.2018.02.039
Chamoso P, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/3086854
CHO K, 2019, 2019 IEEE INT C CONS, P1, DOI DOI 10.1109/ICCE.2019.8662045
De Paz JF, 2016, INFORM SCIENCES, V372, P241, DOI 10.1016/j.ins.2016.08.045
Diro AA, 2018, FUTURE GENER COMP SY, V82, P761, DOI 10.1016/j.future.2017.08.043
Eltoweissy M., 2010, INT C AD HOC NETW, P1
Farzaneh H, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11020763
Fernández J, 2013, SENSORS-BASEL, V13, P7414, DOI 10.3390/s130607414
Garlík B, 2017, NEURAL NETW WORLD, V27, P415, DOI 10.14311/NNW.2017.27.023
Ge YF, 2022, VLDB J, V31, P957, DOI 10.1007/s00778-021-00718-w
Heng T.M., 1993, Technology Analysis & Strategic Management, V5, P187
Idowu S, 2016, ENERG BUILDINGS, V133, P478, DOI 10.1016/j.enbuild.2016.09.068
IEEE, 2014, SMART HOM SMART CIT
IEEE, 2018, Artificial intelligence framework for smart city microgrids: State of the art, challenges, and opportunities
IEEE, 2015, Predicting short-term traffic flow by long shortterm memory recurrent neural network
IEEE, 2015, PARK AV PRED SENS CA
IEEE, 2001, Developing GIS-supported location -based services, P2
IOP Publishing, 2021, Smart City Development Innovation Strategy and Challenges for the Government of Jember Regency, P717
IOP Publishing, 2021, Artificial Intelligence and Human Resources: A Challenge in Implementing Artificial Intelligence in Village Government, P717
Iqbal R, 2019, IEEE NETWORK, V33, P23, DOI 10.1109/MNET.2019.1800459
Jan F, 2021, WATER-SUI, V13, DOI 10.3390/w13131729
Kalinin M, 2021, MACHINES, V9, DOI 10.3390/machines9040078
Komninos N, 2011, INTELL BUILD INT, V3, P172, DOI 10.1080/17508975.2011.579339
Liu Y, 2019, IEEE NETWORK, V33, P111, DOI 10.1109/MNET.2019.1800254
Medvedev A, 2015, LECT NOTES COMPUT SC, V9247, P104, DOI 10.1007/978-3-319-23126-6_10
Mishra AM, 2022, J PLANT DIS PROTECT, V129, P593, DOI 10.1007/s41348-022-00595-7
Mohammadi M, 2018, IEEE COMMUN MAG, V56, P94, DOI 10.1109/MCOM.2018.1700298
Morley J, 2020, SOC SCI MED, V260, DOI 10.1016/j.socscimed.2020.113172
Multidisciplinary Digital Publishing Institute, 2020, On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management, P8
O'Dwyer E, 2019, APPL ENERG, V237, P581, DOI 10.1016/j.apenergy.2019.01.024
O'Grady M, 2012, SCIENCE, V335, P1581, DOI 10.1126/science.1217637
Patel P, 2017, IEEE INTELL SYST, V32, P64, DOI 10.1109/MIS.2017.3711653
Radu LD, 2020, SMART CITIES-BASEL, V3, P1022, DOI 10.3390/smartcities3030051
Rahman A, 2018, APPL ENERG, V212, P372, DOI 10.1016/j.apenergy.2017.12.051
Reddy S, 2020, J AM MED INFORM ASSN, V27, P491, DOI 10.1093/jamia/ocz192
Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3
SARKI R., 2022, EAI ENDORSED T SCALA, pe15
Serey J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122410249
Shi JD, 2020, ADV MATER, V32, DOI 10.1002/adma.201901958
Singh R., 2020, EAI ENDORSED T SCALA, V8, pe2
Sivanathan A, 2019, IEEE T MOBILE COMPUT, V18, P1745, DOI 10.1109/TMC.2018.2866249
Sohn K, 2020, TELEMAT INFORM, V47, DOI 10.1016/j.tele.2019.101324
Springer, 2001, LITTL BOX GLOC NETW
Ullah Z, 2020, COMPUT COMMUN, V154, P313, DOI 10.1016/j.comcom.2020.02.069
Wang LD, 2021, ARTIF INTELL REV, V54, P469, DOI 10.1007/s10462-020-09853-2
Wang PZ, 2019, SCI TOTAL ENVIRON, V693, DOI 10.1016/j.scitotenv.2019.07.246
Wang XF, 2020, IEEE COMMUN SURV TUT, V22, P869, DOI 10.1109/COMST.2020.2970550
Yigitcanlar T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208548
Yigitcanlar T, 2020, ENERGIES, V13, DOI 10.3390/en13061473
NR 57
TC 1
Z9 1
U1 5
U2 22
PU INST COMPUTER SCIENCES, SOCIAL INFORMATICS & TELECOMMUNICATIONS ENG-ICST
PI GHENT
PA BEGIJNHOFLAAN 93, GHENT, 90000, BELGIUM
SN 2032-9407
J9 EAI ENDORSED TRANS S
JI EAI Endorsed Trans. Scalable Inform. Syst.
PY 2022
VL 9
IS 4
AR e8
DI 10.4108/eetsis.vi.489
EA JUN 2022
PG 21
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA DL9V8
UT WOS:000846907900001
OA gold
DA 2024-09-05
ER
PT J
AU Cruz-Jesus, F
Castelli, M
Oliveira, T
Mendes, R
Nunes, C
Sa-Velho, M
Rosa-Louro, A
AF Cruz-Jesus, Frederico
Castelli, Mauro
Oliveira, Tiago
Mendes, Ricardo
Nunes, Catarina
Sa-Velho, Mafalda
Rosa-Louro, Ana
TI Using artificial intelligence methods to assess academic achievement in
public high schools of a European Union country
SO HELIYON
LA English
DT Article
DE Education; Applied computing; Information systems; Data analysis;
Evaluation in education; Teaching research; Achievement; Education
reform; Quantitative research; Artificial intelligence; Data science
ID PARENTAL INVOLVEMENT; STUDENT-ACHIEVEMENT; CLASS-SIZE;
GENDER-DIFFERENCES; INTERNET USE; DATA-DRIVEN; PERFORMANCE; ANALYTICS;
TEACHERS; GROWTH
AB Understanding academic achievement (AA) is one of the most global challenges, as there is evidence that it is deeply intertwined with economic development, employment, and countries' wellbeing. However, the research conducted on this topic grounds in traditional (statistical) methods employed in survey (sample) data. This paper presents a novel approach, using state-of-the-art artificial intelligence (AI) techniques to predict the academic achievement of virtually every public high school student in Portugal, i.e., 110,627 students in the academic year of 2014/2015. Different AI and non-Al methods are developed and compared in terms of performance Moreover, important insights to policymakers are addressed.
C1 [Cruz-Jesus, Frederico; Castelli, Mauro; Oliveira, Tiago; Mendes, Ricardo; Nunes, Catarina; Sa-Velho, Mafalda; Rosa-Louro, Ana] Univ Nova Lisboa, NOVA Informat Management Sch NOVA IMS, Campus Campolide, P-1070312 Lisbon, Portugal.
C3 Universidade Nova de Lisboa
RP Cruz-Jesus, F (corresponding author), Univ Nova Lisboa, NOVA Informat Management Sch NOVA IMS, Campus Campolide, P-1070312 Lisbon, Portugal.
EM fjesus@novaims.unl.pt
RI Castelli, Mauro/O-8809-2019; Oliveira, Tiago/B-4090-2011; Oliveira,
Tiago/GSD-3675-2022; Castelli, Mauro/U-5599-2017
OI Oliveira, Tiago/0000-0001-6523-0809; Costa-Mendes,
Ricardo/0000-0002-9259-4576; Cruz-Jesus, Frederico/0000-0002-4446-5980;
Castelli, Mauro/0000-0002-8793-1451
FU national funds through FCT (Fundacao para a Ciencia e a Tecnologia)
[DSAIPA/DS/0032/2018 (DS4AA)]; Fundação para a Ciência e a Tecnologia
[DSAIPA/DS/0032/2018] Funding Source: FCT
FX This work was partially supported by national funds through FCT
(Fundacao para a Ciencia e a Tecnologia) under project
DSAIPA/DS/0032/2018 (DS4AA).
CR Ahmed Z, 2019, INT J MANAG EDUC-OXF, V17, P286, DOI 10.1016/j.ijme.2019.04.003
[Anonymous], 2014, DATA CLASSIFICATION
[Anonymous], 2016, Pattern Recognition and Machine Learning, Softcover Reprint of the Original 1st ed., Information Science and Statistics
Archibald S., 2006, Peabody Journal of Education, V81, P23, DOI [DOI 10.1207/S15327930PJE8104_2, 10.1207/s15327930pje8104_2]
AVERY PG, 1993, J TEACH EDUC, V44, P27, DOI 10.1177/0022487193044001005
Barnett R.R., 2002, EDUC ECON, V10, P291, DOI [10.1080/09645290210127516, DOI 10.1080/09645290210127516]
Batista Gustavo EAPA, 2004, ACM SIGKDD Explorations Newsletter
Bosworth R, 2014, EDUC ECON, V22, P141, DOI 10.1080/09645292.2011.568698
Breiman L., 1984, CLASSIFICATION REGRE, DOI DOI 10.1201/9781315139470
Brunner M, 2013, INTELLIGENCE, V41, P378, DOI 10.1016/j.intell.2013.05.009
Caison AL, 2007, RES HIGH EDUC, V48, P435, DOI 10.1007/s11162-006-9032-5
Caro D.H., 2009, CAN J EDUC, V32, P558
Castelli M., 2019, ENCY BIOINFORMATICS, P342
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Choi Y, 2018, ANN OPER RES, V270, P75, DOI 10.1007/s10479-016-2281-6
Codjoe H.M., 2007, CAN J EDUC, V30, P137, DOI DOI 10.2307/20466629
Coleman J, 1966, EQUALITY ED OPPORTUN, P666
Côrte-Real N, 2019, J BUS RES, V97, P160, DOI 10.1016/j.jbusres.2018.12.072
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964
Croninger RG, 2007, ECON EDUC REV, V26, P312, DOI 10.1016/j.econedurev.2005.05.008
Delen D, 2018, J BUS RES, V90, P186, DOI 10.1016/j.jbusres.2018.05.013
Delen D, 2010, DECIS SUPPORT SYST, V49, P498, DOI 10.1016/j.dss.2010.06.003
Dosilovic FK, 2018, 2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P210, DOI 10.23919/MIPRO.2018.8400040
Driessen G, 2005, BRIT EDUC RES J, V31, P509, DOI 10.1080/01411920500148713
Dronkers J, 2012, EUR EDUC RES J, V11, P11, DOI 10.2304/eerj.2012.11.1.11
Dunn KE, 2013, J EXP EDUC, V81, P222, DOI 10.1080/00220973.2012.699899
Erevelles S, 2016, J BUS RES, V69, P897, DOI 10.1016/j.jbusres.2015.07.001
European Commission, 2017, EARL SCH LEAV
Fan XT, 2001, EDUC PSYCHOL REV, V13, P1, DOI 10.1023/A:1009048817385
Fan XT, 2001, J EXP EDUC, V70, P27, DOI 10.1080/00220970109599497
Geurts P, 2006, MACH LEARN, V63, P3, DOI 10.1007/s10994-006-6226-1
Ghasemaghaei M, 2019, J BUS RES, V104, P69, DOI 10.1016/j.jbusres.2019.07.006
Greenwald R, 1996, REV EDUC RES, V66, P361, DOI 10.2307/1170528
Hanushek EA, 2000, AM ECON REV, V90, P1184, DOI 10.1257/aer.90.5.1184
Hanushek EA, 2012, J DEV ECON, V99, P497, DOI 10.1016/j.jdeveco.2012.06.004
Hartas D, 2011, BRIT EDUC RES J, V37, P893, DOI 10.1080/01411926.2010.506945
Hastie T., 2017, MATH INTELL
Hattie JAC, 2009, VISIBLE LEARNING: A SYNTHESIS OF OVER 800 META-ANALYSES RELATING TO ACHIEVEMENT, P1
Haykin S., 1994, Neural networks: a comprehensive foundation
History of neural networks, 2015, SPRINGERBRIEFS APPL
Hodis FA, 2015, BRIT EDUC RES J, V41, P1125, DOI 10.1002/berj.3189
Hoxby CM, 2000, Q J ECON, V115, P1239, DOI 10.1162/003355300555060
Huang CJ, 2018, COMPUT EDUC, V119, P76, DOI 10.1016/j.compedu.2017.12.010
Huang S, 2013, COMPUT EDUC, V61, P133, DOI 10.1016/j.compedu.2012.08.015
Jackson LA, 2006, DEV PSYCHOL, V42, P429, DOI 10.1037/0012-1649.42.3.429
Jayanthi S.V., 2014, AM J ED RES, V2, P752, DOI DOI 10.12691/EDUCATION-2-9-8
Jeynes WH, 2007, URBAN EDUC, V42, P82, DOI 10.1177/0042085906293818
Kleinberg EM, 1996, ANN STAT, V24, P2319
Krassel KF, 2014, EDUC ECON, V22, P412, DOI 10.1080/09645292.2014.902428
Kubey RW, 2001, J COMMUN, V51, P366, DOI 10.1093/joc/51.2.366
Kutaka TS, 2017, J TEACH EDUC, V68, P140, DOI 10.1177/0022487116687551
Lee CL, 2015, PAC RIM PROP RES J, V21, P3, DOI 10.1080/14445921.2015.1026128
Lee H., 2007, J NEGRO EDUC, V76, P154
Lee JS, 2006, AM EDUC RES J, V43, P193, DOI 10.3102/00028312043002193
Lei J, 2007, COMPUT EDUC, V49, P284, DOI 10.1016/j.compedu.2005.06.013
Leithwood K, 2009, REV EDUC RES, V79, P464, DOI 10.3102/0034654308326158
Ma Y, 2012, ENSEMBLE MACHINE LEARNING: METHODS AND APPLICATIONS, P1, DOI 10.1007/978-1-4419-9326-7
Marks GN, 2006, EDUC RES EVAL, V12, P105, DOI 10.1080/13803610600587040
Mensah FK, 2010, BRIT EDUC RES J, V36, P239, DOI 10.1080/01411920902802198
Miguéis VL, 2018, DECIS SUPPORT SYST, V115, P36, DOI 10.1016/j.dss.2018.09.001
Noell GH, 2019, J TEACH EDUC, V70, P128, DOI 10.1177/0022487118800708
Olson J.F., 2008, TIMSS 2007 Technical Report, DOI [10.1787/9789264130852-en, DOI 10.1787/9789264130852-EN]
Otani M, 2019, INT J EDUC RES, V94, P168, DOI 10.1016/j.ijer.2019.01.005
Patterson MM, 2011, SEX ROLES, V65, P737, DOI 10.1007/s11199-010-9904-1
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Preece A, 2018, INTELL SYST ACCOUNT, V25, P63, DOI 10.1002/isaf.1422
Ribeiro M.T., 2016, WHY SHOULD TRUST YOU, DOI DOI 10.1145/2939672.2939778
Rivkin SG, 2005, ECONOMETRICA, V73, P417, DOI 10.1111/j.1468-0262.2005.00584.x
Sagi O, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1249
Scherer R, 2019, COMPUT EDUC, V138, P13, DOI 10.1016/j.compedu.2019.04.011
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Sirin SR, 2005, REV EDUC RES, V75, P417, DOI 10.3102/00346543075003417
Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001
Steinmayr R, 2008, EUR J PERSONALITY, V22, P185, DOI 10.1002/per.676
Steinmayr R, 2010, EUR J PERSONALITY, V24, P535, DOI 10.1002/per.755
Tomek I., 1976, IEEE T SYST MAN CYB
Sánchez EMT, 2019, INT J EDUC RES, V96, P111, DOI 10.1016/j.ijer.2019.06.002
van der Scheer EA, 2018, J TEACH EDUC, V69, P307, DOI 10.1177/0022487117704170
Vigdor JL, 2014, ECON INQ, V52, P1103, DOI 10.1111/ecin.12089
Wakefield J, 2020, COMPUT EDUC, V144, DOI 10.1016/j.compedu.2019.103694
Wally-Dima L., 2013, International Education Studies, V6, P13, DOI [DOI 10.5539/IES.V6N10P13, https://doi.org/10.5539/ies.v6n10p13]
Weerakkody V, 2017, INFORM SYST FRONT, V19, P285, DOI 10.1007/s10796-016-9679-1
Wilder S, 2014, EDUC REV, V66, P377, DOI 10.1080/00131911.2013.780009
Wössmann L, 2006, EUR ECON REV, V50, P695, DOI 10.1016/j.euroecorev.2004.11.005
Yagci A, 2019, EDUC INF TECHNOL, V24, P2741, DOI 10.1007/s10639-019-09885-4
NR 86
TC 32
Z9 34
U1 12
U2 49
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
EI 2405-8440
J9 HELIYON
JI Heliyon
PD JUN
PY 2020
VL 6
IS 6
AR e04081
DI 10.1016/j.heliyon.2020.e04081
PG 11
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA NW9XK
UT WOS:000575372400009
PM 32551378
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Li, X
Chen, HC
Dang, Y
Lin, YL
Larson, CA
Roco, MC
AF Li, Xin
Chen, Hsinchun
Dang, Yan
Lin, Yiling
Larson, Catherine A.
Roco, Mihail C.
TI A longitudinal analysis of nanotechnology literature: 1976-2004
SO JOURNAL OF NANOPARTICLE RESEARCH
LA English
DT Article
DE Bibliographic analysis; Citation analysis; Information visualization;
Self-organizing maps; Nanoscale science and engineering; Nanotechnology
papers; Research and development (R&D); Technological innovation
ID TECHNOLOGY; INTERDISCIPLINARITY; COLLABORATION; INSTITUTION;
NANOSCIENCE; PATTERNS; COUNTRY; SCIENCE; FIELD; USPTO
AB Nanotechnology research and applications have experienced rapid growth in recent years. We assessed the status of nanotechnology research worldwide by applying bibliographic, content map, and citation network analysis to a data set of about 200,000 nanotechnology papers published in the Thomson Science Citation Index Expanded database (SCI) from 1976 to 2004. This longitudinal study shows a quasi-exponential growth of nanotechnology articles with an average annual growth rate of 20.7% after 1991. The United States had the largest contribution of nanotechnology research and China and Korea had the fastest growth rates. The largest institutional contributions were from the Chinese Academy of Sciences and the Russian Academy of Sciences. The high-impact papers generally described tools, theories, technologies, perspectives, and over-views of nanotechnology. From the top 20 institutions, based on the average number of paper citations in 1976-2004, 17 were in the Unites States, 2 in France and I in Germany. Content map analysis identified the evolution of the major topics researched from 1976 to 2004, including investigative tools, physical phenomena, and experiment environments. Both the country citation network and the institution citation network had relatively high clustering, indicating the existence of citation communities in the two networks, and specific patterns in forming citation communities. The United States, Germany, Japan, and China were major citation centers in nanotechnology research with close inter-citation relationships.
C1 [Li, Xin; Chen, Hsinchun; Dang, Yan; Lin, Yiling; Larson, Catherine A.] Univ Arizona, Artificial Intelligence Lab, Dept Management Informat Syst, Eller Coll Management, Tucson, AZ 85721 USA.
[Roco, Mihail C.] Natl Sci Fdn, Arlington, VA 22230 USA.
C3 University of Arizona; National Science Foundation (NSF)
RP Li, X (corresponding author), Univ Arizona, Artificial Intelligence Lab, Dept Management Informat Syst, Eller Coll Management, Tucson, AZ 85721 USA.
EM xinli@email.arizona.edu; mroco@nsf.gov
RI ; Li, Xin/K-8045-2015
OI Lin, Yi-Ling/0000-0003-0004-1278; Li, Xin/0000-0002-0041-3134
FU National Science Foundation (NSF); Directorate for Engineering, NSF;
[CMMI-0549663]; [CMMI-0533749]
FX This research was supported by the following awards: National Science
Foundation (NSF), "Mapping Nanotechnology Development Based on the ISI
Literature-Citation Database,"CMMI-0549663 and "Mapping Nanotechnology
Development,"CMMI-0533749. The last coauthor was supported by the
Directorate for Engineering, NSF. The literature data was purchased from
Thomson ISI and we thank them for their support.
CR Braun T, 1997, SCIENTOMETRICS, V38, P321, DOI 10.1007/BF02457417
Chen HC, 1996, J VIS COMMUN IMAGE R, V7, P88, DOI 10.1006/jvci.1996.0008
Chen HC, 2008, NAT NANOTECHNOL, V3, P123, DOI 10.1038/nnano.2008.51
Gansner ER, 2000, SOFTWARE PRACT EXPER, V30, P1203, DOI 10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
Huang Z, 2004, J NANOPART RES, V6, P325, DOI 10.1007/s11051-004-4117-6
Huang Z, 2003, J NANOPART RES, V5, P333, DOI 10.1023/A:1025556800994
Hullmann A, 2006, NAT NANOTECHNOL, V1, P81, DOI 10.1038/nnano.2006.110
Karki M.M.S., 1997, WORLD PAT INF, V19, P269, DOI DOI 10.1016/S0172-2190(97)00033-1
Kostoff RN, 2006, J NANOPART RES, V8, P301, DOI 10.1007/s11051-005-9035-8
Kostoff RN, 2006, J NANOPART RES, V8, P193, DOI 10.1007/s11051-005-9034-9
Li X, 2007, J NANOPART RES, V9, P977, DOI 10.1007/s11051-007-9273-z
Li X, 2007, J NANOPART RES, V9, P337, DOI 10.1007/s11051-006-9194-2
Meyer M, 1998, SCIENTOMETRICS, V42, P195, DOI 10.1007/BF02458355
Meyer MS, 2001, SCIENTOMETRICS, V51, P163, DOI 10.1023/A:1010572914033
Ong TH, 2005, DECIS SUPPORT SYST, V39, P583, DOI 10.1016/j.dss.2004.03.008
Oppenheim C, 2000, ASIST MON SER, P405
PORTER AL, 1995, FORESIGHT UPDATE, V21, P4
Roco M.C., 2000, NANOTECHNOLOGY RES D
Roco MC, 2005, J NANOPART RES, V7, P707, DOI 10.1007/s11051-005-3141-5
Schummer J, 2004, SCIENTOMETRICS, V59, P425, DOI 10.1023/B:SCIE.0000018542.71314.38
TOLLE K, 2000, J AM SOC INFORM SCI, V51, P518
NR 21
TC 29
Z9 35
U1 0
U2 24
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1388-0764
EI 1572-896X
J9 J NANOPART RES
JI J. Nanopart. Res.
PY 2008
VL 10
SU 1
BP 3
EP 22
DI 10.1007/s11051-008-9473-1
PG 20
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 404QA
UT WOS:000263166900002
DA 2024-09-05
ER
PT J
AU Dao, SD
Abhary, K
Marian, R
AF Dao, Son Duy
Abhary, Kazem
Marian, Romeo
TI A bibliometric analysis of Genetic Algorithms throughout the history
SO COMPUTERS & INDUSTRIAL ENGINEERING
LA English
DT Article
DE Genetic algorithms; Bibliometric analysis; Publication statistics;
Survey
ID SELECTION; DESIGN
AB In this article, a bibliometric analysis of Genetic Algorithms (GA) throughout the history is conducted. A big picture of publications associated with GA is created. A number of dominant statistics of GA publications by years, research fields, document types, source titles, countries, institutions and authors are provided herein. In addition, some insights as well as future perspectives of publications associated with GA are discussed. (C) 2017 Elsevier Ltd. All rights reserved.
C1 [Dao, Son Duy; Abhary, Kazem; Marian, Romeo] Univ South Australia, Sch Engn, Room M2-14,Bldg M,Mawson Lakes Campus, Toki, Gifu 5095, Japan.
RP Dao, SD (corresponding author), Univ South Australia, Sch Engn, Room M2-14,Bldg M,Mawson Lakes Campus, Toki, Gifu 5095, Japan.
EM son.dao@mymail.unisa.edu.au
RI Dao, Son Duy/D-8696-2012; Abhary, Kazem/F-3976-2013
OI Dao, Son Duy/0000-0002-5253-6398;
CR Aguilar-Rivera R, 2015, EXPERT SYST APPL, V42, P7684, DOI 10.1016/j.eswa.2015.06.001
Chang PC, 2007, APPL SOFT COMPUT, V7, P800, DOI 10.1016/j.asoc.2006.02.002
Chen JC, 2002, INT J ADV MANUF TECH, V20, P163, DOI 10.1007/s001700200140
Cheng BW, 2007, EXPERT SYST APPL, V32, P415, DOI 10.1016/j.eswa.2005.12.002
Dao SD, 2015, LECT NOTES ENG COMP, P455
Dao SD, 2014, EXPERT SYST APPL, V41, P6701, DOI 10.1016/j.eswa.2014.04.030
Fahimnia Behnam, 2008, WSEAS Transactions on Business and Economics, V5, P52
Hyun CJ, 1998, COMPUT OPER RES, V25, P675, DOI 10.1016/S0305-0548(98)00026-4
Lee K, 2012, EXPERT SYST APPL, V39, P12975, DOI 10.1016/j.eswa.2012.05.057
Ren QDEJ, 2012, COMPUT OPER RES, V39, P2291, DOI 10.1016/j.cor.2011.12.005
Scopus, 2015, AB SCOP
Stern H, 2006, EUR J OPER RES, V175, P1890, DOI 10.1016/j.ejor.2005.02.078
Su W, 2015, COMPUT IND ENG, V84, P32, DOI 10.1016/j.cie.2015.01.015
Tang PH, 2013, APPL SOFT COMPUT, V13, P600, DOI 10.1016/j.asoc.2012.08.035
TTP, 2015, ADV MAT RES
TTP, 2015, APPL MECH MAT
Wang L, 2002, INT J ADV MANUF TECH, V20, P72, DOI 10.1007/s001700200126
Wang YM, 2009, INT J ADV MANUF TECH, V44, P977, DOI 10.1007/s00170-008-1898-2
Wu XD, 2007, EUR J OPER RES, V181, P156, DOI 10.1016/j.ejor.2006.05.035
Zhou W, 2011, INT J ADV MANUF TECH, V52, P715, DOI 10.1007/s00170-010-2738-8
NR 20
TC 51
Z9 52
U1 3
U2 29
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-8352
EI 1879-0550
J9 COMPUT IND ENG
JI Comput. Ind. Eng.
PD AUG
PY 2017
VL 110
BP 395
EP 403
DI 10.1016/j.cie.2017.06.009
PG 9
WC Computer Science, Interdisciplinary Applications; Engineering,
Industrial
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA FD6SE
UT WOS:000407657400035
DA 2024-09-05
ER
PT J
AU Marques, PC
Reis, J
Santos, R
AF Marques, P. Carmona
Reis, Joao
Santos, Ricardo
TI Artificial Intelligence and Disruptive Technologies in Service Systems:
A Bibliometric Analysis
SO INTERNATIONAL JOURNAL OF INNOVATION AND TECHNOLOGY MANAGEMENT
LA English
DT Article
DE Artificial intelligence; service systems; bibliometric analysis; smart
services
ID USER ACCEPTANCE; INTERNET; THINGS; SMART; FUTURE; IOT; MANAGEMENT;
KNOWLEDGE; PARADIGM; CITIES
AB Artificial intelligence (AI) is being used in our daily lives, in all situations and in particular those concerning service systems. However, there is an absence of the ability of the conceptual structure, thematic structure, intellectual structure, and research trends of AI and disruptive technologies in service systems. The main purpose of this study was to carry out a bibliometric analysis of the scientific production of AI and disruptive technologies in service systems based on Elsevier's Scopus database. To do so, keywords were chosen and then data outputs such as the number of published documents, top authors and citations, top journals, countries, and affiliations with the highest number of productions, and network analysis using R-based "biblioshiny" software. The main results showed the growing interest in the subject in the last five years, pointed out current themes and research trends, and revealed the intellectual structure of the field, namely the importance of smart services, cloud computing, and smart sustainable cities. The number of articles for this study reached 1,323, the growth rate has increased in the last five years and the main sources have been reported. China, South Korea and the USA were the leading countries on the subject, and the top 10 authors of influence showed. The word cloud and word growth were presented, as well as the co-citation clusters and co-occurrence network revealed important aspects, and finally the thematic map and the thematic evolution of the subject showed the important concepts. It is hoped that this research will supply future directions for researchers in the area while highlighting the potential of quantitative methods.
C1 [Marques, P. Carmona; Reis, Joao] Lusofona Univ, Ind Engn & Management, Fac Engn, P-1749024 Lisbon, Portugal.
[Marques, P. Carmona] Inst Politecn Lisboa, Inst Super Engn Lisboa ISEL, P-1959007 Lisbon, Portugal.
[Santos, Ricardo] Univ Aveiro, Competitiveness Governance & Publ Policy GOVCOPP U, P-3810193 Aveiro, Portugal.
C3 Lusofona University; Polytechnic Institute of Lisbon; Universidade de
Aveiro
RP Marques, PC (corresponding author), Lusofona Univ, Ind Engn & Management, Fac Engn, P-1749024 Lisbon, Portugal.; Marques, PC (corresponding author), Inst Politecn Lisboa, Inst Super Engn Lisboa ISEL, P-1959007 Lisbon, Portugal.
EM p4803@ulusofona.pt
RI Marques, Pedro/H-3387-2013; Santos, Ricardo/KUD-2638-2024; dos Reis,
João Carlos Gonçalves/L-6686-2017
OI Marques, Pedro/0000-0003-4891-1754; dos Reis, João Carlos
Gonçalves/0000-0002-8504-0065
CR Agrawal R, 2022, BUS STRATEG ENVIRON, V31, P559, DOI 10.1002/bse.2910
Allmendinger G, 2005, HARVARD BUS REV, V83, P131
Aria M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063643
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Baines TS, 2009, J MANUF TECHNOL MANA, V20, P547, DOI 10.1108/17410380910960984
Bandyopadhyay D, 2011, WIRELESS PERS COMMUN, V58, P49, DOI 10.1007/s11277-011-0288-5
Benhamaid S, 2022, J NETW COMPUT APPL, V198, DOI 10.1016/j.jnca.2021.103257
Bibri Simon Elias, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0091-6
Bibri SE, 2017, SUSTAIN CITIES SOC, V31, P183, DOI 10.1016/j.scs.2017.02.016
Cardoso J., 2015, Fundamentals of service systems
Chauhan C, 2022, TECHNOL FORECAST SOC, V177, DOI 10.1016/j.techfore.2022.121508
Chettri L, 2020, IEEE INTERNET THINGS, V7, P16, DOI 10.1109/JIOT.2019.2948888
COELHO H, 1982, INFORM SYST, V7, P163, DOI 10.1016/0306-4379(82)90027-8
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dzogbewu TC, 2022, MANUF REV, V9, DOI 10.1051/mfreview/2021032
Flavián C, 2022, J SERV MANAGE, V33, P293, DOI 10.1108/JOSM-10-2020-0378
Friedman A, 2015, ROM STAT REV, P69
Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010
Hettiarachchi BD, 2022, OPER MANAGE RES, V15, P858, DOI 10.1007/s12063-022-00275-7
Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459
JARVELIN K, 1982, J INFORM SCI, V5, P79, DOI 10.1177/016555158200500204
Kantaros A, 2022, APPL SYST INNOV, V5, DOI 10.3390/asi5010007
Kitchin R, 2014, GEOJOURNAL, V79, P1, DOI 10.1007/s10708-013-9516-8
Leal B, 2010, INTERNET OF THINGS-BOOK, P3, DOI 10.1007/978-1-4419-1674-7_1
MCCAIN KW, 1990, J AM SOC INFORM SCI, V41, P433, DOI 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q
Moiceanu G, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22041388
Neuhuttler Jens, 2020, Advances in the Human Side of Service Engineering. Proceedings of the AHFE 2020 Virtual Conference on The Human Side of Service Engineering. Advances in Intelligent Systems and Computing (AISC 1208), P212, DOI 10.1007/978-3-030-51057-2_30
Ng ICL, 2017, INT J RES MARK, V34, P3, DOI 10.1016/j.ijresmar.2016.11.003
Ostrom AL, 2015, J SERV RES-US, V18, P127, DOI 10.1177/1094670515576315
Page MJ, 2021, PLOS MED, V18, DOI 10.1371/journal.pmed.1003583
Porter ME, 2014, HARVARD BUS REV, V92, P64
Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397
Reis Joao, 2020, Trends and Innovations in Information Systems and Technologies. Advances in Intelligent Systems and Computing (AISC 1159), P222, DOI 10.1007/978-3-030-45688-7_23
Reis J, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12168328
Shi HZ, 2014, IEEE COMMUN SURV TUT, V16, P5, DOI 10.1109/SURV.2013.050113.00015
Singh PK, 2022, COMPUT ELECTR ENG, V100, DOI 10.1016/j.compeleceng.2022.107912
Souri A, 2022, T EMERG TELECOMMUN T, V33, DOI 10.1002/ett.3736
Tao F, 2017, IEEE ACCESS, V5, P20418, DOI 10.1109/ACCESS.2017.2756069
Tao F, 2014, IEEE T IND INFORM, V10, P1435, DOI 10.1109/TII.2014.2306383
Tran-Dang H, 2022, IETE TECH REV, V39, P93, DOI 10.1080/02564602.2020.1827308
Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375
Valinejadshoubi M, 2022, J FACIL MANAG, V20, P385, DOI 10.1108/JFM-08-2020-0055
Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540
Wu QH, 2014, IEEE INTERNET THINGS, V1, P129, DOI 10.1109/JIOT.2014.2311513
Xiao L, 2018, IEEE SIGNAL PROC MAG, V35, P41, DOI 10.1109/MSP.2018.2825478
Yan Z, 2014, J NETW COMPUT APPL, V42, P120, DOI 10.1016/j.jnca.2014.01.014
Zhou XK, 2022, IEEE INTERNET THINGS, V9, P9310, DOI 10.1109/JIOT.2021.3130434
Zimmerman J., 2014, ENCY HUMAN COMPUTER
NR 50
TC 0
Z9 0
U1 6
U2 15
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0219-8770
EI 1793-6950
J9 INT J INNOV TECHNOL
JI Int. J. Innov. Technol. Manag.
PD NOV
PY 2023
VL 20
IS 07
DI 10.1142/S0219877023300033
EA JUN 2023
PG 33
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA W1KX4
UT WOS:001013913000002
DA 2024-09-05
ER
PT J
AU Huang, CQ
Zhang, Q
AF Huang, Cuiqing
Zhang, Qiang
TI Research on Music Emotion Recognition Model of Deep Learning Based on
Musical Stage Effect
SO SCIENTIFIC PROGRAMMING
LA English
DT Article
ID FRIGHT
AB The change of life style of the times has also prompted the reform of many art forms (including musicals). Nowadays, the audience can not only enjoy the wonderful performances of offline musicals but also feel the charm of musicals online. However, how to bring the emotional integrity of musicals to the audience is a technical problem. In this paper, the deep learning music emotion recognition model based on musical stage effect is studied. Firstly, there is little difference between the emotional results identified by the CRNN model test and the actual feelings of people, and the coincidence degree of emotional responses is as high as 95.68%. Secondly, the final recognition rate of the model is 98.33%, and the final average accuracy rate is as high as 93.22%. Finally, compared with other methods on CASIA emotion set, the CRNN-AttGRU has only 71.77% and 71.60% of WAR and UAR, and only this model has the highest recognition degree. This model also needs to update iteration and use other learning methods to learn at different levels so as to make this model widely used and bring more perfect enjoyment to the audience.
C1 [Huang, Cuiqing; Zhang, Qiang] Chengdu Univ, China ASEAN Coll Arts, Sch Mus & Dance, Chengdu 610106, Sichuan, Peoples R China.
C3 Chengdu University
RP Zhang, Q (corresponding author), Chengdu Univ, China ASEAN Coll Arts, Sch Mus & Dance, Chengdu 610106, Sichuan, Peoples R China.
EM huangcuiqing1234@163.com; zhangqiang01@cdu.edu.cn
FU key project of Curriculum Ideological and Political Research of Chengdu
University [2021KCSZ01]
FX This research was supported by the phased achievement of the Hidden
Infiltration of Red Culture in Instrumental Music Teaching (2021KCSZ01)
and the key project of Curriculum Ideological and Political Research of
Chengdu University in 2021.
CR [Anonymous], 2003, International Journal of Sustainability in Higher Education
박소영, 2010, [Journal of the Korea Institute Of Information and Communication Engineering, 한국정보통신학회논문지], V14, P1557
Chunjun Zheng, 2021, Journal of Physics: Conference Series, V1873, DOI 10.1088/1742-6596/1873/1/012092
Diaz-Perez A.H., P 2006 IEEE INT C AC
Diaz-Perez AH, 2007, J COMPUT, V2, P40
FREDRIKSON M, 1992, BIOL PSYCHOL, V33, P51, DOI 10.1016/0301-0511(92)90005-F
Kim J, 2008, IEEE T PATTERN ANAL, V30, P2067, DOI 10.1109/TPAMI.2008.26
Levine S, 2018, INT J ROBOT RES, V37, P421, DOI 10.1177/0278364917710318
Li C, 2016, NEUROCOMPUTING, V178, P103, DOI 10.1016/j.neucom.2015.07.112
Lin YP, 2010, IEEE T BIO-MED ENG, V57, P1798, DOI 10.1109/TBME.2010.2048568
Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005
LYU Y, 2021, J INTELL FUZZY SYST, P1
Mengyao Chen, 2019, Journal of Physics: Conference Series, V1237, DOI 10.1088/1742-6596/1237/5/052020
Neoh SC, 2015, APPL SOFT COMPUT, V34, P72, DOI 10.1016/j.asoc.2015.05.006
Panda R, 2020, IEEE T AFFECT COMPUT, V11, P614, DOI 10.1109/TAFFC.2018.2820691
Pandeya YR, 2021, MULTIMED TOOLS APPL, V80, P2887, DOI 10.1007/s11042-020-08836-3
Patel AD, 2008, BEHAV BRAIN SCI, V31, P589, DOI 10.1017/S0140525X0800544X
Sarkar R, 2020, MULTIMED TOOLS APPL, V79, P765, DOI 10.1007/s11042-019-08192-x
Studer R, 2011, INT ARCH OCC ENV HEA, V84, P761, DOI 10.1007/s00420-010-0608-1
Takehara T, 2016, Q J EXP PSYCHOL, V69, P1508, DOI 10.1080/17470218.2015.1086393
Ulukaya S, 2014, DIGIT SIGNAL PROCESS, V32, P11, DOI 10.1016/j.dsp.2014.05.013
Wong JJ, 2009, EXPERT SYST APPL, V36, P804, DOI 10.1016/j.eswa.2007.10.030
Xu K, 2021, SCI PROGRAMMING-NETH, V2021, DOI 10.1155/2021/2348494
Zhang T, 2015, 2015 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, P524, DOI 10.1109/ChinaSIP.2015.7230458
Zhou J, 2015, NAT METHODS, V12, P931, DOI [10.1038/NMETH.3547, 10.1038/nmeth.3547]
NR 25
TC 1
Z9 1
U1 0
U2 8
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1058-9244
EI 1875-919X
J9 SCI PROGRAMMING-NETH
JI Sci. Program.
PD OCT 26
PY 2021
VL 2021
AR 3807666
DI 10.1155/2021/3807666
PG 10
WC Computer Science, Software Engineering
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA WW1LF
UT WOS:000717686300006
OA gold
DA 2024-09-05
ER
PT C
AU Tan, L
Chen, YL
Yang, RH
Lai, L
AF Tan, Lin
Chen, Yali
Yang, Runhan
Lai, Li
GP Assoc Comp Machinery
TI Empirical Research on the Effect of Collaborative Learning in Blended
Learning Mode Based on KNN Algorithm
SO ICIET 2020: 2020 8TH INTERNATIONAL CONFERENCE ON INFORMATION AND
EDUCATION TECHNOLOGY
LA English
DT Proceedings Paper
CT 8th International Conference on Information and Education Technology
(ICIET)
CY MAR 28-30, 2020
CL ELECTR NETWORK
DE Blended Learning; Collaborative Learning; KNN algorithm
ID CRITICAL THINKING
AB The quality of collaborative learning is one of the essential factors that determine the quality of teaching. Therefore, it is a significant work for educators to explore scientific and reasonable grouping methods. In this paper, first we design a Blended Learning mode in which there are a variety of online and offline learning activities. The quantified learning behavior information becomes the original data and basis for grouping. Then we combined KNN (k-Nearest Neighbor) algorithm and grouping principle to implement grouping for the pilot class. Finally, the effect of this grouping method is demonstrated by comparing the final examination results and analyzing the number of students who have finished the preview. The results show that the class with the new grouping method has achieved good performance in the final examination.
C1 [Tan, Lin; Chen, Yali; Yang, Runhan; Lai, Li] Southwest Petr Univ, Sch Sci, Chengdu, Sichuan, Peoples R China.
C3 Southwest Petroleum University
RP Tan, L (corresponding author), Southwest Petr Univ, Sch Sci, Chengdu, Sichuan, Peoples R China.
EM 673233182@qq.com; 21620285@qq.com; 1930858707@qq.com; laili_swpu@126.com
RI Liu, Shao/JFK-0166-2023
CR Barker R, 2002, BUS WEEK, P85
Bodemer D, 2011, COMPUT HUM BEHAV, V27, P1043, DOI 10.1016/j.chb.2010.07.014
COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964
Davis HC, 2007, BRIT J EDUC TECHNOL, V38, P817, DOI 10.1111/j.1467-8535.2007.00756.x
Earle A., 2002, J INTERACTIVE MEDIA, V2002
Goodyear VA, 2015, PHYS EDUC SPORT PEDA, V20, P186, DOI 10.1080/17408989.2013.817012
Graham C.R., 2007, Blended learning: Research perspectives, P83
Guldberg K, 2007, EDUC TECHNOL SOC, V10, P61
Heimbuch S, 2018, INT J COMP-SUPP COLL, V13, P331, DOI 10.1007/s11412-018-9283-0
Kirschner PA, 2013, EDUC PSYCHOL-US, V48, P169, DOI 10.1080/00461520.2013.804395
Law N, 2018, INT J COMP-SUPP COLL, V13, P131, DOI 10.1007/s11412-018-9280-3
Norberg A, 2011, HORIZON, V19, P207, DOI 10.1108/10748121111163913
Olsen J, 2005, J POLITICAL SCI EDUC, V1, P323, DOI 10.1080/15512160500261186
Pithers RT, 2000, EDUC RES-UK, V42, P237, DOI 10.1080/001318800440579
Salmon G.Y., 2004, E-moderating: The key to teaching and learning online, V2nd
Stahl G, 2017, INT J COMP-SUPP COLL, V12, P113, DOI 10.1007/s11412-017-9251-0
NR 16
TC 0
Z9 0
U1 0
U2 4
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-7705-8
PY 2020
BP 48
EP 52
DI 10.1145/3395245.3395251
PG 5
WC Computer Science, Information Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BR0KK
UT WOS:000629453900009
DA 2024-09-05
ER
PT J
AU Gordon, S
Li, Z
Marthinsen, J
AF Gordon, Steven
Li, Zhi
Marthinsen, John
TI A deep analysis of the economics and finance research on
cryptocurrencies
SO ECONOMICS LETTERS
LA English
DT Article
DE Cryptocurrency; Topic modeling; Bibliographic analysis
AB Growth in academic research on cryptocurrencies has paralleled crypto-markets' development. Still unknown are the research areas receiving the greatest attention, remaining relatively unexplored, and changing significantly. This article uses semantic topic analysis of top-journal publications to address these questions.(c) 2023 Elsevier B.V. All rights reserved.
C1 [Gordon, Steven; Li, Zhi; Marthinsen, John] Babson Coll, Babson Pk, MA 02457 USA.
C3 Babson College
RP Gordon, S (corresponding author), Babson Coll, Babson Pk, MA 02457 USA.
EM gordon@babson.edu; zli@babson.edu; marthinsen@babson.edu
OI Marthinsen, John/0000-0001-7288-7569; Gordon, Steven/0000-0002-9015-2547
CR Akyildirim E, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103643
Briola A, 2023, FINANC RES LETT, V51, DOI 10.1016/j.frl.2022.103358
CoinMarketCap, 2023, ABOUT US
Halaburda H., 2023, W30923 NAT BUR EC RE
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858
NR 6
TC 0
Z9 0
U1 0
U2 3
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0165-1765
EI 1873-7374
J9 ECON LETT
JI Econ. Lett.
PD JUL
PY 2023
VL 228
AR 111136
DI 10.1016/j.econlet.2023.111136
EA MAY 2023
PG 4
WC Economics
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA J1SF6
UT WOS:001007472200001
DA 2024-09-05
ER
PT J
AU Schultz, SK
Slater, TF
AF Schultz, Sara K.
Slater, Timothy F.
TI Use Of Formative Assessment-Based Active Learning By Astronomy Educators
Teaching In Live Planetarium Learning Environments
SO JOURNAL OF ASTRONOMY AND EARTH SCIENCES EDUCATION
LA English
DT Article
DE Discipline-Based Astronomy Education Research; Planetarium Education;
Active Learning; Formative Assessment
AB Planetariums were created to teach astronomy by simulating motions of the star-filled night sky; however, simply having a virtual reality facility to immerse learners beneath a projected night sky in and of itself is insufficient to automatically ensure student learning occurs. Modern teaching strategies, like active learning, have consistently shown to move students toward deeper understanding in classrooms; yet, active learning approaches seem to be only rarely observed in planetariums. Use of Ruiz-Primo and Furtak's (2006) coding scheme to define and analyze formative assessment conversations between classroom teachers and students reveals that unless teachers are formally taught how to use formative assessment-based active learning, such approaches are largely absent in classrooms studied. The goal of this 2-phase study was to evaluate the nature of active learning-based formative assessment conversation cycles in the planetarium. The first phase systematically analyzes 26 recordings of live planetarium programs to describe and document presence of active learning teaching strategies. The second phase conducts interviews to determine rewards and barriers to using formative assessment-based active learning in the planetarium. Analysis suggests scant evidence of complete formative assessment conversation cycles, despite that varying degrees of interactivity between the planetarium lecturer and the audience do exist. It is not that planetarians don't ask questions, but responses rarely serve to systematically guide instructional decisions aligned with modern pedagogy. Moreover, these planetarians hold a wide range of definitions of what constitutes active learning and often view their primary responsibility as inspiration rather than education, lending explanatory power to why active learning is largely absent.
C1 [Schultz, Sara K.] Minnesota State Univ, Moorhead, MN 56563 USA.
[Slater, Timothy F.] Univ Wyoming, Excellence Higher Educ Endowed Chair Sci Educ, Laramie, WY 82071 USA.
C3 Minnesota State Colleges & Universities; Minnesota State University
Moorhead; University of Wyoming
RP Schultz, SK (corresponding author), Minnesota State Univ, Moorhead, MN 56563 USA.
EM sarakschultz@gmail.com
CR Abbatantuono B.P., 1995, PLANETARIAN, V24, P14
Ausubel D., 1968, ED PSYCHOL COGNITIVE
Ball D.L., 2007, Educational Researcher, V36, P529, DOI [https://doi.org/10.3102/0013189X07312896, DOI 10.3102/0013189X07312896]
Bell B, 2001, SCI EDUC, V85, P536, DOI 10.1002/sce.1022.abs
Bell B., 2000, Improving science education: The contribution of research p, P48
Bishop J. E., 1980, THESIS U AKRON
Black P., 1993, STUD SCI EDUC, V21, P49, DOI DOI 10.1080/03057269308560014
Bonwell C., 1991, Active Learning: Creating Excitement in the Classroom, V1
Chandler M. A., 2010, WASHINGTONPOSTCOM
Creswell J., 2009, Research design: qualitative, quantitative, and mixed methods approaches, V3rd
Dewey J., 1938, KAPPA DELTA PI LECT
Duschl R. A., 2003, EVERYDAY ASSESSMENT, P41, DOI DOI 10.2505/9781935155706
Duschl R.A. Gitomer., 1997, EDUC ASSESS, V4, P37, DOI [10.1207/s15326977ea0401_2, DOI 10.1207/S15326977EA0401_2]
Francis G.E., 1998, The Physics Teacher, V36, P488
Lemke, 1990, TALKING SCI LANGUAGE
Neece M., 2013, American Astronomical Society Meeting Abstracts# 221, V221
Petersen M, 2018, TALLYING WORLDS PLAN
Plummer Julia D., 2013, Astronomy Education Review, V12, DOI 10.3847/AER2013004
Plummer J. D., 2010, ASTRONOMY ED REV, V9, DOI [10.3847/AER2009077, DOI 10.3847/AER2009077]
Plummer JD., 2015, Planetarian, V44, P8
Plummer JD, 2011, INT J SCI EDUC, V33, P1963, DOI 10.1080/09500693.2010.537707
Plummer JD, 2014, INT J SCI EDUC, V36, P1083, DOI 10.1080/09500693.2013.843211
Ruiz-Primo MA, 2007, J RES SCI TEACH, V44, P57, DOI 10.1002/tea.20163
Ruiz-Primo MA, 2006, EDUC ASSESS, V11, P205, DOI 10.1080/10627197.2006.9652991
Ruiz-Primo MariaAraceli., 2011, Educational Assessment, V37, P15, DOI [10.1016/j.stueduc.2011.04.003, DOI 10.1016/J.STUEDUC.2011.04.003]
Sandholtz J.H., 2011, Teacher Education Quarterly, V38, P27
Schultz S. K., 2020, THESIS U WYOMING
Schultz SK, 2020, J ASTRON EARTH SCI E, V7, P25
Shavelson RJ, 2008, APPL MEAS EDUC, V21, P295, DOI 10.1080/08957340802347647
Slater SJ, 2016, J ASTRON EARTH SCI E, V3, P125, DOI 10.19030/jaese.v3i2.9845
Slater SJ, 2014, J ASTRON EARTH SCI E, V1, P1
Slater StephanieJ., 2015, Discipline-Based Education Research: A Guide for Scientists
Slater T.F., 2020, Active Learning in College Science, P803
Slater T. F., 2006, B AM ASTRON SOC, V38, P98
Slater T. F, 2017, PLANETARIAN, V46, P32
Slater T.F., 2017, Research on Teaching Astronomy in the Planetarium
Small Kim J., 2010, Astronomy Education Review, V9, DOI 10.3847/AER2010016
Thomas G., 2017, How To Do Your Research Project: A Guide For Students, V2nd
Vygotsky L.S., 1987, Including the volume Thinking and speech
Wiggin G., 2005, UNDERSTANDING DESIGN, DOI DOI 10.14483/CALJ.V19N1.11490
Yang FY, 2018, RES SCI EDUC, V48, P325, DOI 10.1007/s11165-016-9570-6
NR 41
TC 0
Z9 0
U1 0
U2 3
PU CLUTE INT
PI LITTLETON
PA 6901 S PIERCE STR, STE 301, LITTLETON, CO 80128 USA
SN 2374-6246
EI 2374-6254
J9 J ASTRON EARTH SCI E
JI J. Astron. Earth Sci. Educ.
PD JUN
PY 2021
VL 8
IS 1
BP 27
EP 38
PG 12
WC Education, Scientific Disciplines
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA 1X5SN
UT WOS:000807513500003
DA 2024-09-05
ER
PT C
AU Wang, JY
Guo, YK
Fang, Y
Zhang, XY
AF Wang, Jin-Ying
Guo, Yu-Kun
Fang, Yin
Zhang, Xin-Ye
BE Hu, Q
TI Evaluation Research on Micro-blog Marketing Effect of 5A Scenic Spot in
China
SO PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE
AND MANAGEMENT INNOVATION
LA English
DT Proceedings Paper
CT International Conference on Management Science and Management Innovation
(MSMI)
CY JUN 14-15, 2014
CL Changsha, PEOPLES R CHINA
DE Micro-blog; Marketing effect; 5A Scenic Spot; Principal component
analysis (PCA)
AB In order to evaluate the micro-blog marketing effect of the 5A Scenic Spots in China scientifically and provide some constructive suggestions, the thesis establishes a kind of evaluation index system on the basis of the user coverage, micro-blog active degree, and the propagation force. With Sina micro-blog as a platform, we select the officially certificated micro-blogs of 74 5A Scenic Spots as data sources, and collect the related data. Using the principal component analysis (PCA), we find out the four principal factors which have great influences on the micro-blog marketing of scenic spots, i.e., the customers' attention to the resort, the scenic spots' emphasis on the micro-blog, the interaction between scenic spots and their fans, and the innovation degrees of scenic spots. Through analysis, the thesis classifies the official micro-blogs of these scenic spots: type I (wonderful), type II (fine), type III (ordinary), type IV (poor). The thesis also evaluates the basic situation of the 5A Scenic Spots in China and the shortcomings in micro-blogs' operation.
C1 [Wang, Jin-Ying; Guo, Yu-Kun; Fang, Yin; Zhang, Xin-Ye] Southwest Univ Nationalities, Inst Management, Chengdu, Sichuan, Peoples R China.
C3 Southwest Minzu University
RP Wang, JY (corresponding author), Southwest Univ Nationalities, Inst Management, Chengdu, Sichuan, Peoples R China.
EM 1039497813@qq.com; 77528934@qq.com; 362467183@qq.com; 248638743@qq.com
CR Du Zijian, 2011, ENTERPRISE MICROBLOG
Jianhua Xu, 2002, MATH METHOD MODERN G, P85
Jin Yongsheng, 2011, MANAGE SCI, V2, P71
Murdough Chris, 2009, J INTERACTIVE ADVERT, P94
Wang Lepeng, 2011, J INNER MONGOLIA SCI, V231, P31
Wiser Neal Mr., 2009, MARKET WATCH TECHNOL, P16
Zhang Wenyong, 2012, MODERN DECORATION, P187
NR 7
TC 1
Z9 1
U1 0
U2 5
PU ATLANTIS PRESS
PI PARIS
PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE
BN 978-94-6252-015-8
PY 2014
BP 479
EP 484
PG 6
WC Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Operations Research & Management Science
GA BB8BS
UT WOS:000346261200085
DA 2024-09-05
ER
PT C
AU Oliveira, LR
Fontes, R
Collus, J
Cerisier, JF
AF Oliveira, L. R.
Fontes, R.
Collus, J.
Cerisier, J. F.
BE Chova, LG
Martinez, AL
Torres, IC
TI VIDEO AND ONLINE LEARNING IN HIGHER EDUCATION: A BIBLIOMETRIC ANALYSIS
OF THE OPEN ACCESS SCIENTIFIC PRODUCTION, THROUGH WEB OF SCIENCE
SO 13TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE
(INTED2019)
SE INTED Proceedings
LA English
DT Proceedings Paper
CT 13th International Technology, Education and Development Conference
(INTED)
CY MAR 11-13, 2019
CL Valencia, SPAIN
DE Educational video; podcasting; MOOC; OCW; OER; university pedagogy;
online learning; online distance education; e-learning; bibliometric
review; web of science
AB Video is used, today and generally, as a preferential technology for the online broadcast of educational contents, in higher education. This exploratory bibliometric analysis surveys scientific publications written in English, in Open Access, in the field of Education, in the period between 2007 and 2017, considering the following topics: video, higher education, online learning, distance learning and MOOC. Three strings of searches have been used, in total, 96 publications have been identified, mainly articles in journals and respective affiliated authors, also primarily, to institutions of European countries.
C1 [Oliveira, L. R.; Collus, J.] Univ Minho, Braga, Portugal.
[Fontes, R.] Univ Vigo, Vigo, Spain.
[Cerisier, J. F.] Univ Poitiers, Poitiers, France.
C3 Universidade do Minho; Universidade de Vigo; Universite de Poitiers
RP Oliveira, LR (corresponding author), Univ Minho, Braga, Portugal.
RI Fontes, Rosa/GRS-0711-2022
FU CIEd-Research Centre on Education, Institute of Education, University of
Minho, Portugal, through national funds of FCT/MCTES-PT
[UID/CED/1661/2013, UID/CED/1661/2016]; FCT/MCTES-PT
[SFRH/BSAB/135571/2018]; Fundação para a Ciência e a Tecnologia
[SFRH/BSAB/135571/2018, UID/CED/1661/2016] Funding Source: FCT
FX This work is funded by CIEd-Research Centre on Education, projects
UID/CED/1661/2013 and UID/CED/1661/2016, Institute of Education,
University of Minho, Portugal, through national funds of FCT/MCTES-PT.
The first author is also funded by FCT/MCTES-PT, sabbatical grant
SFRH/BSAB/135571/2018 and hosted by Laboratoire TECHNE, University of
Poitiers, France.
CR Bufrem L., 2005, Ciencia da Informacao, V34, P9, DOI 10.1590/S0100-19652005000200002
Daniel J, 2012, J INTERACT MEDIA EDU, DOI 10.5334/2012-18
Downes S., 2012, RISE MOOCS
Hansch A., 2015, HIIG Discussion Paper Series
JOCE, 2002, EAC4602 JOCE DG
Lankshear C., 2008, New Literacies: Everyday Practices Classroom Learning, VSecond
Lattanzio L., 2003, MEDIA ED JAPON
Martins ACR, 2015, ICERI PROC, P1909
Oliveira L. R., 2009, AT 10 C INT GAL PORT, p[5570, 5570]
Oliveira L. R., 2002, P E LEARN 2002 WORLD, P2001
Oliveira L. R., 2013, 12 C INT GAL PORT PS, P6482
Peraya D., 2017, DISTANCES MEDIATIONS, DOI [10.4000/dms.1738, DOI 10.4000/DMS.1738]
Peraya D, 2016, INT J TECHNOL HIGH E, V13, P6
PRITCHARD A, 1969, J DOC, V25, P348
NR 14
TC 2
Z9 2
U1 3
U2 19
PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT
PI VALENICA
PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN
SN 2340-1079
BN 978-84-09-08619-1
J9 INTED PROC
PY 2019
BP 8562
EP 8567
DI 10.21125/inted.2019.2137
PG 6
WC Education & Educational Research; Psychology, Educational
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research; Psychology
GA BP1XC
UT WOS:000541042203099
DA 2024-09-05
ER
PT J
AU Chen, XL
Zou, D
Xie, HR
Cheng, GR
AF Chen, Xieling
Zou, Di
Xie, Haoran
Cheng, Gary
TI Twenty Years of Personalized Language Learning: Topic Modeling and
Knowledge Mapping
SO EDUCATIONAL TECHNOLOGY & SOCIETY
LA English
DT Article
DE Personalized language learning; Topic modeling; Knowledge mapping;
Bibliometrics; Precision education
ID VOCABULARY; ANALYTICS; SYSTEM
AB Personalized language learning (PLL), a popular approach to precision language education, plays an increasingly essential role in effective language education to meet diverse learner needs and expectations. Research on PLL has become an active sub-field of research on technology-enhanced language learning and artificial intelligence applications in education. Based on the PLL literature from the Web of Science and Scopus databases, this study identified trends and prominent research issues within the field from 2000 to 2019 using structural topic modeling and bibliometrics. Trend analysis of articles demonstrated increasing interest in PLL research. Journals such as Educational Technology & Society and Computers & Education had contributed much to PLL research. PLL associated closely with mobile learning, game-based learning, and online/web-based learning. Moreover, personalized feedback and recommendations were important issues in PLL. Additionally, there was an increasing interest in adopting learning analytics and artificial intelligence in PLL research. Results obtained could help practitioners and scholars better understand the trends and status of PLL research and become aware of the hot topics and future directions.
C1 [Chen, Xieling; Cheng, Gary] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Education University of Hong
Kong (EdUHK); Lingnan University
RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; hrxie2@gmail.com;
chengks@eduhk.hk
RI Xie, Haoran/AFS-3515-2022
OI Xie, Haoran/0000-0003-0965-3617; Cheng, Gary/0000-0002-5614-3348; PV,
THAYYIB/0000-0001-8929-0398; ZOU, Di/0000-0001-8435-9739
FU Faculty Research Fund of Lingnan University, Hong Kong [102041]; Lam Woo
Research Fund of Lingnan University, Hong Kong [LWI20011]; One-off
Special Fund from Central and Faculty Fund in Support of Research from
2019/20 to 2021/22 [MIT02/19-20]; Research Cluster Fund of The Education
University of Hong Kong, Hong Kong [RG 78/2019-2020R]; Interdisciplinary
Research Scheme of the Dean's Research Fund 2019-20 of The Education
University of Hong Kong, Hong Kong [FLASS/DRF/IDS-2]
FX This research was supported by the Faculty Research Fund (102041) and
the Lam Woo Research Fund (LWI20011) of Lingnan University, Hong Kong,
the One-off Special Fund from Central and Faculty Fund in Support of
Research from 2019/20 to 2021/22 (MIT02/19-20), the Research Cluster
Fund (RG 78/2019-2020R), and the Interdisciplinary Research Scheme of
the Dean's Research Fund 2019-20 (FLASS/DRF/IDS-2) of The Education
University of Hong Kong, Hong Kong.
CR Chen CM, 2016, INTERACT LEARN ENVIR, V24, P681, DOI 10.1080/10494820.2014.917107
Chen CM, 2010, INTERACT LEARN ENVIR, V18, P341, DOI 10.1080/10494820802602329
Chen MP, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103602
Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Chen X, 2021, AUTOPHAGY, V17, P2054, DOI 10.1080/15548627.2020.1810918
Cheng G, 2017, 25TH INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION (ICCE 2017), P884
Chrysafiadi K, 2013, IEEE T EDUC, V56, P385, DOI 10.1109/TE.2013.2243914
Connor CM, 2018, J SCHOOL PSYCHOL, V66, P97, DOI 10.1016/j.jsp.2017.04.005
Fang LT, 2018, EXPERT SYST, V35, DOI 10.1111/exsy.12244
Gelan A, 2018, COMPUT ASSIST LANG L, V31, P294, DOI 10.1080/09588221.2017.1418382
Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4
Haristiani N, 2019, J ENG SCI TECHNOL, V14, P3158
Harper F, 2018, LANG LEARN J, V46, P277, DOI 10.1080/09571736.2015.1061586
Hooshyar D, 2018, J COMPUT ASSIST LEAR, V34, P731, DOI 10.1111/jcal.12280
Hung STA, 2016, COMPUT EDUC, V98, P90, DOI 10.1016/j.compedu.2016.03.009
Ismail HM, 2016, IEEE INT CONF INNOV, P197
KRASHEN S, 1989, MOD LANG J, V73, P440, DOI 10.2307/326879
Lee A., 2016, THESIS
Lian AP, 2017, GEMA ONLINE J LANG S, V17, P1, DOI 10.17576/gema-2017-1704-01
Lu OHT, 2018, EDUC TECHNOL SOC, V21, P220
Ming Y, 2013, SPEECH COMMUN, V55, P71, DOI 10.1016/j.specom.2012.06.007
Pereira A, 2012, 2012 BRAZILIAN SYMPO, P134
Pérez-Paredes P, 2018, COMPUT ASSIST LANG L, V31, P522, DOI 10.1080/09588221.2017.1418754
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Schmid R, 2019, COMPUT EDUC, V136, P75, DOI 10.1016/j.compedu.2019.03.006
Tang XY, 2019, BRIT J MATH STAT PSY, V72, P108, DOI 10.1111/bmsp.12144
US Department of Education, 2017, REIMAGINING ROLE TEC
Wu TT, 2014, INFORM SCIENCES, V257, P248, DOI 10.1016/j.ins.2011.07.021
Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599
Xie HR, 2016, IEEE MULTIMEDIA, V23, P60, DOI 10.1109/MMUL.2015.91
Pham XL, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON EDUCATION AND E-LEARNING (ICEEL 2018), P16, DOI 10.1145/3291078.3291115
Yang S. J. H., 2019, P 27 INT C COMP ED K
Zhang L, 2020, EDUC RES REV-NETH, V31, DOI 10.1016/j.edurev.2020.100339
Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666
Zou D, 2018, EDUC TECHNOL SOC, V21, P233
NR 38
TC 53
Z9 54
U1 12
U2 66
PU INT FORUM EDUCATIONAL TECHNOLOGY & SOC-IFETS
PI DOULIU CITY
PA NATL YUNLIN UNIV SCIENCE & TECHNOLOGY, NO 123, SECTION 3, DAXUE RD,
DOULIU CITY, YUNLIN COUNTY, TAIWAN
SN 1176-3647
EI 1436-4522
J9 EDUC TECHNOL SOC
JI Educ. Technol. Soc.
PD JAN
PY 2021
VL 24
IS 1
BP 205
EP 222
PG 18
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA QQ5RX
UT WOS:000624582400016
DA 2024-09-05
ER
PT J
AU An, X
Sun, X
Xu, S
AF An, Xin
Sun, Xin
Xu, Shuo
TI Important citations identification with semi-supervised classification
model
SO SCIENTOMETRICS
LA English
DT Article
DE Important citation; Semi-supervised learning; Self-training;
Expert-labeled dataset; Author-labeled dataset
AB Given that citations are not equally important, various techniques have been presented to identify important citations on the basis of supervised machine learning models. However, only a small volume of instances have been annotated manually with the labels. To make full use of unlabeled instances and promote the identification performance, the semi-supervised self-training technique is utilized here to identify important citations in this work. After six groups of features are engineered, the SVM and RF models are chosen as the base classifiers for self-training strategy. Then two experiments based on two different types of datasets are conducted. The experiment on the expert-labeled dataset from one single discipline shows that the semi-supervised versions of SVM and RF models significantly improve the performance of the conventional supervised versions when unannotated samples under 75% and 95% confidence level are rejoined to the training set, respectively. The AUC-PR and AUC-ROC of SVM model are 0.8102 and 0.9622, and those of RF model reach 0.9248 and 0.9841, which outperform their counterparts and the benchmark methods in the literature. This demonstrates the effectiveness of our semi-supervised self-training strategy for important citation identification. Another experiment on the author-labeled dataset from multiple disciplines, semi-supervised learning models can perform better than their supervised learning counterparts in term of AUC-PR when the ratio of labeled instances is less than 20%. Compared to our first experiment, insufficient amount of instances from each discipline in our second experiment enables the performance of the models to be unsatisfactory.
C1 [An, Xin] Beijing Forestry Univ, Sch Econ & Management, Beijing 100083, Peoples R China.
[Sun, Xin] Inst Sci & Tech Informat China, Beijing 100038, Peoples R China.
[Xu, Shuo] Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China.
C3 Beijing Forestry University; Beijing University of Technology
RP An, X (corresponding author), Beijing Forestry Univ, Sch Econ & Management, Beijing 100083, Peoples R China.
EM anxin@bjfu.edu.cn; sunx@istic.ac.cn; xushuo@bjut.edu.cn
RI Xu, Shuo/KVY-0402-2024
OI Xu, Shuo/0000-0002-8602-1819
FU National Natural Science Foundation of China [72004012, 72074014]
FX The present study is an extended version of an article (An et al.,
2021b) presented at the first Workshop on AI + Informetrics at the
iConference 2021, 17 March, 2021. This research received the financial
support from the National Natural Science Foundation of China under
grant number 72004012 and 72074014.
CR Abu-Jbara A., 2013, NAACL, P596
Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492
An X., 2021, 1 WORKSH AI INF ICON
An X, 2023, J INF SCI, V49, P107, DOI 10.1177/0165551521991034
[Anonymous], 2008, Semi-Supervised Learning Literature Survey
[Anonymous], 2001, Proc. Int. Conf. Machine Learning (ICML'01)
Bennett KP, 1999, ADV NEUR IN, V11, P368
Blum A., 1998, Proceedings of the Eleventh Annual Conference on Computational Learning Theory, P92, DOI 10.1145/279943.279962
Chapelle O, 2008, J MACH LEARN RES, V9, P203
Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661
Davis J., 2006, P 23 INT C MACH LEAR, P233, DOI 10.1145/1143844.1143874
Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526
Dong C., 2011, P 5 INT JOINT C NAT, P623
GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189
Garfield E, 2006, INT J EPIDEMIOL, V35, P1123, DOI 10.1093/ije/dyl189
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
Hassannejad S., 2017, 2017 ACM IEEE JOINT, V14, P1, DOI [DOI 10.1109/JCDL.2017.7991558, 10.9734/ARRB/2017/27339]
He YL, 2011, INFORM PROCESS MANAG, V47, P606, DOI 10.1016/j.ipm.2010.11.003
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1
Joachims T, 1999, MACHINE LEARNING, PROCEEDINGS, P200
Lazaridis T, 2010, SCIENTOMETRICS, V82, P211, DOI 10.1007/s11192-009-0048-4
Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402
Li YQ, 2008, PATTERN RECOGN LETT, V29, P1285, DOI 10.1016/j.patrec.2008.01.030
Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x
Radoulov, 2008, THESIS U WATERLOO
Rosenberg C, 2005, WACV 2005: SEVENTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION, PROCEEDINGS, P29
Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x
Tanha J, 2017, INT J MACH LEARN CYB, V8, P355, DOI 10.1007/s13042-015-0328-7
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
van Engelen JE, 2020, MACH LEARN, V109, P373, DOI 10.1007/s10994-019-05855-6
Vapnik V.N, 1998, Statistical Learning Theory
Wang B, 2008, LECT NOTES ARTIF INT, V5032, P344
Wang MY, 2020, SCIENTOMETRICS, V125, P2109, DOI 10.1007/s11192-020-03677-1
Xu S, 2011, J INF COMPUT SCI, V8, P885, DOI DOI 10.1145/1390681.1390688
Xu S, 2007, ADV INTEL SYS RES, DOI 10.2991/iske.2007.13
Xu S, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100983
Yarowsky David, 1995, 33 ANN M ASS COMP LI, P189, DOI 10.3115/981658.981684
Zeng T, 2020, SCIENTOMETRICS, V124, P399, DOI 10.1007/s11192-020-03421-9
Zhang F., 2021, IEEE T GEOSCI ELECT, V60, P1
Zhu X., 2003, ICML, P912
Zhu X. J., 2005, SEMISUPERVISED LEARN
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 44
TC 6
Z9 6
U1 5
U2 35
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2022
VL 127
IS 11
BP 6533
EP 6555
DI 10.1007/s11192-021-04212-6
EA JAN 2022
PG 23
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 5U5FU
UT WOS:000744421100002
DA 2024-09-05
ER
PT C
AU Zhang, YY
Jiang, YR
Wu, Y
Su, J
AF Zhang, Yuyao
Jiang, Yuru
Wu, Yu
Su, Jing
BE Liu, M
Kit, C
Su, Q
TI A Research on the Generation Model and Evaluation Model of Chinese
Wu-Qing Couplets
SO CHINESE LEXICAL SEMANTICS (CLSW 2020)
SE Lecture Notes in Artificial Intelligence
LA English
DT Proceedings Paper
CT 21st Chinese Lexical Semantics Workshop (CLSW)
CY MAY 28-30, 2020
CL City Univ Hong Kong, Dept Linguist & Translat, ELECTR NETWORK
HO City Univ Hong Kong, Dept Linguist & Translat
DE Wu-Qing couplet; Transfer learning; Sequence to sequence
AB The Wu-Qing couplet is a unique form of expressions in couplets and an important part of Chinese traditional culture. It shows the profoundness and interesting features of Chinese. However, there is still no research on the automatic generation of Wu-Qing couplets because the corpus of Wu-Qing couplets is scarce and it cannot support the training process of deep learning. This paper proposes a sequence-to-sequence Wu-Qing couplet generation model based on the idea of transfer learning. At the same time, in order to further improve the effectiveness of the model, based on the characteristics of Wu-Qing couplets, such as coherence, rhythm change, and semantic separation, this paper proposes an evaluation model, which can reorder the output of the generation model for better results. Finally, a complete Chinese Wu-Qing couplet automatic generation system is constructed based on the generation model and the evaluation model.
C1 [Zhang, Yuyao; Jiang, Yuru; Wu, Yu; Su, Jing] Beijing Informat Sci & Technol Univ, Beijing, Peoples R China.
C3 Beijing Information Science & Technology University
RP Jiang, YR (corresponding author), Beijing Informat Sci & Technol Univ, Beijing, Peoples R China.
EM jiangyuru@bistu.edu.cn
RI Zhang, Yuyao/KEH-7175-2024
FU National Natural Science Foundation of China [61602044]; Beijing
Information Science and Technology University [5102010805]
FX Thiswork is supported by the National Natural Science Foundation of
China (Grant No. 61602044) and the funds for improving the quality of
personnel training in 2020 of Beijing Information Science and Technology
University (Grant No. 5102010805).
CR Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
Fan HS, 2019, LECT NOTES ARTIF INT, V11670, P314, DOI 10.1007/978-3-030-29908-8_25
Fei Y, 1999, THESIS I AUTOMATION
Hua B., 2005, XIAM U P CLSW 6 XIAM, P90
Jiang Long, 2008, PROC 22 INT C COMPUT, P377, DOI DOI 10.3115/1599081.1599129
Ott M., 2019, P NAACL HLT DEM
Sutskever I, 2014, ADV NEUR IN, V27
Tian Z, 2012, ZHONG HUA YING LIAN
Wu X, 2008, CHIN CULT, P28
Zhang K., 2009, J CHIN INF PROCESS, V23, P101
Zou Z, 2008, CHONGQING SOC SCI, P105
NR 11
TC 0
Z9 0
U1 0
U2 3
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2945-9133
EI 1611-3349
BN 978-3-030-81197-6; 978-3-030-81196-9
J9 LECT NOTES ARTIF INT
PY 2021
VL 12278
BP 536
EP 548
DI 10.1007/978-3-030-81197-6_46
PG 13
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Linguistics; Language & Linguistics
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Linguistics
GA BS4ZP
UT WOS:000724573500046
DA 2024-09-05
ER
PT J
AU Ozyurt, O
Ayaz, A
AF Ozyurt, Ozcan
Ayaz, Ahmet
TI Twenty-five years of education and information technologies: Insights
from a topic modeling based bibliometric analysis
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article
DE Topic modeling; Bibliometric analysis; Research themes and trends
ID ACCEPTANCE; DECADES; MANAGEMENT; KNOWLEDGE
AB Education and Information Technologies (EAIT) has been a leading journal in education & educational research since 1996. To celebrate its 25th anniversary and provide a comprehensive overview of the field, a topic modeling-based bibliometric analysis was conducted on the articles published in this journal. The study is constructed upon two methods, bibliometric analysis, and topic modeling. The study aims to find out the trends in publications and citations, prominent countries, affiliations and the status of authors, the prominent topics, and the thematic characteristics of these topics, as well as research interests and trends. The results show that the articles are grouped under the 21 topics. The top five most studied of them have been determined as "Technology acceptance", "Social network-based learning", "Teacher education", "Satisfaction of e-learning" and "E-learning". Finally, the acceleration results of each topic within itself and compared to other topics show that the most accelerated topic is "Gamification", while the most accelerated topic compared to other topics has been determined as "Technology acceptance". The general results of the study shed light on future studies in terms of determining the research interests and trends of publications in the field of educational technologies, EAIT.
C1 [Ozyurt, Ozcan] Karadeniz Tech Univ, OF Technol Fac, Dept Software Engn, Trabzon, Turkey.
[Ayaz, Ahmet] Karadeniz Tech Univ, Digital Transformat Off, Trabzon, Turkey.
C3 Karadeniz Technical University; Karadeniz Technical University
RP Ozyurt, O (corresponding author), Karadeniz Tech Univ, OF Technol Fac, Dept Software Engn, Trabzon, Turkey.
EM oozyurt@ktu.edu.tr; ahmetayaz@ktu.edu.tr
RI Ayaz, Ahmet/JBJ-2146-2023; ÖZYURT, Özcan/AAG-4556-2019; Ayaz,
Ahmet/ABF-5870-2021
OI ÖZYURT, Özcan/0000-0002-0047-6813; Ayaz, Ahmet/0000-0003-1405-0546
CR Aggarwal C.C., 2012, MINING TEXT DATA, P77, DOI 10.1007/978-1-4614-3223-4
AJZEN I, 1977, PSYCHOL BULL, V84, P888, DOI 10.1037/0033-2909.84.5.888
AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T
Akar SGM, 2019, EDUC INF TECHNOL, V24, P3415, DOI 10.1007/s10639-019-09933-z
Martínez MA, 2015, RES SOCIAL WORK PRAC, V25, P257, DOI 10.1177/1049731514522101
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Bardakci S, 2022, EDUC INF TECHNOL, V27, P4321, DOI 10.1007/s10639-021-10785-9
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boisvert L, 2000, INFORM SYST MANAGE, V17, P35, DOI 10.1201/1078/43190.17.1.20000101/31212.5
Bond M, 2019, BRIT J EDUC TECHNOL, V50, P12, DOI 10.1111/bjet.12730
Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907
Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Cook DA, 2010, MED EDUC, V44, P765, DOI 10.1111/j.1365-2923.2010.03723.x
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
De Mauro A, 2018, INFORM PROCESS MANAG, V54, P807, DOI 10.1016/j.ipm.2017.05.004
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039
Lívero FAD, 2021, EDUC INF TECHNOL, V26, P2125, DOI 10.1007/s10639-020-10350-w
Du HS, 2017, ONLINE INFORM REV, V41, P454, DOI 10.1108/OIR-05-2017-0142
Ekici M, 2021, EDUC INF TECHNOL, V26, P3327, DOI 10.1007/s10639-020-10394-y
Elmqaddem N, 2019, INT J EMERG TECHNOL, V14, P234, DOI 10.3991/ijet.v14i03.9289
Gaviria-Marin M, 2018, J KNOWL MANAG, V22, P1655, DOI 10.1108/JKM-10-2017-0497
Giray G, 2021, EDUC INF TECHNOL, V26, P6651, DOI 10.1007/s10639-021-10454-x
Google Scholar, 2021, GOOGL SCHOL METR
Granic A, 2019, BRIT J EDUC TECHNOL, V50, P2572, DOI 10.1111/bjet.12864
Gurcan F, 2023, INTERACT LEARN ENVIR, V31, P1007, DOI 10.1080/10494820.2020.1815795
Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1
Gurcan F, 2021, INT J HUM-COMPUT INT, V37, P267, DOI 10.1080/10447318.2020.1819668
Gurer MD, 2021, EDUC INF TECHNOL, V26, P4709, DOI 10.1007/s10639-021-10493-4
Hamid A. A., 2001, Internet and Higher Education, V4, P311, DOI 10.1016/S1096-7516(01)00072-0
Hu YN, 2014, MACH LEARN, V95, P423, DOI 10.1007/s10994-013-5413-0
Ifenthaler D, 2016, J RES TECHNOL EDUC, V48, P306, DOI 10.1080/15391523.2016.1215172
Kalogiannakis M, 2021, EDUC SCI, V11, DOI 10.3390/educsci11010022
Kang J, 2019, J KOREAN ACAD NURS, V49, P736, DOI 10.4040/jkan.2019.49.6.736
Keshava, 2008, INFORM STUDIES, V14
Kumar S, 2022, INT J BANK MARK, V40, P341, DOI 10.1108/IJBM-07-2021-0351
Kushairi N, 2021, EDUC INF TECHNOL, V26, P4401, DOI 10.1007/s10639-021-10457-8
Liu D, 2017, MIS QUART, V41, P1011
Luo ZN, 2022, EDUC INF TECHNOL, V27, P891, DOI 10.1007/s10639-021-10642-9
Manzano-León A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13042247
Merigó JM, 2019, SOFT COMPUT, V23, P1477, DOI 10.1007/s00500-018-3168-z
Moore GC, 1991, INFORM SYST RES, V2, P192, DOI 10.1287/isre.2.3.192
Moore JL, 2011, INTERNET HIGH EDUC, V14, P129, DOI 10.1016/j.iheduc.2010.10.001
Ofosu-Ampong Kingsley, 2020, Journal of Educational Technology Systems, V49, P113, DOI 10.1177/0047239520917629
Ofosu-Ampong K, 2020, EDUC INF TECHNOL, V25, P1723, DOI 10.1007/s10639-019-10057-7
Reddy P, 2021, EDUC INF TECHNOL, V26, P1505, DOI 10.1007/s10639-020-10320-2
Revythi A, 2019, EDUC INF TECHNOL, V24, P2341, DOI 10.1007/s10639-019-09869-4
Saleem AN, 2022, TECHNOL KNOWL LEARN, V27, P139, DOI 10.1007/s10758-020-09487-x
SCImago, 2021, Scimago journal & country rank
Scuotto V, 2013, J KNOWL ECON, V4, P293, DOI 10.1007/s13132-013-0155-6
Singh S, 2020, TECHNOL FORECAST SOC, V154, DOI 10.1016/j.techfore.2020.119963
Siyam N, 2019, EDUC INF TECHNOL, V24, P2035, DOI 10.1007/s10639-018-09859-y
Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002
Sorat Z, 2022, EDUC INF TECHNOL, V27, P2483, DOI 10.1007/s10639-021-10722-w
Tatnall A, 2022, EDUC INF TECHNOL, V27, P1359, DOI 10.1007/s10639-022-10917-9
Tekdal M, 2021, EDUC INF TECHNOL, V26, P6499, DOI 10.1007/s10639-021-10617-w
Troussas C, 2021, EDUC INF TECHNOL, V26, P4285, DOI 10.1007/s10639-021-10483-6
Van Eck N. J., 2021, MANUAL VOSVIEWER 161
Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540
Wing JM, 2006, COMMUN ACM, V49, P33, DOI 10.1145/1118178.1118215
Zawacki-Richter O, 2018, COMPUT EDUC, V122, P136, DOI 10.1016/j.compedu.2018.04.001
NR 62
TC 22
Z9 22
U1 6
U2 60
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD SEP
PY 2022
VL 27
IS 8
BP 11025
EP 11054
DI 10.1007/s10639-022-11071-y
EA APR 2022
PG 30
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA 5N0UV
UT WOS:000794835400002
PM 35502161
OA Bronze, Green Published
DA 2024-09-05
ER
PT J
AU Qin, Y
Irshad, A
AF Qin, Ying
Irshad, Azeem
TI Research on the evaluation method of English textbook readability based
on the TextCNN model and its application in teaching design
SO PEERJ COMPUTER SCIENCE
LA English
DT Article
DE English reading; Deep learning; TextCNN; Readability assessment
ID DIFFICULTY
AB English is a world language, and the ability to use English plays an important role in the improvement of college students' comprehensive quality and career development. However, quite a lot of Chinese college students feel that English learning is difficult; it is difficult to understand the learning materials, and they cannot effectively improve their English ability. This study uses a convolutional neural network to evaluate the readability of English reading materials. It provides students with English reading materials of suitable difficulty based on their English reading ability so as to improve the effect of English learning. Aiming at the high dispersion of students' English reading level, a text readability evaluation model for English reading textbooks based on deep learning is designed. First, the legibility dataset is constructed based on college English textbooks; second, the TextCNN text legibility evaluation model is constructed; finally, the model training is completed through parameter adjustment and optimization, and the evaluation accuracy rate on the self-built dataset reaches 90%. We use the text readability method based on TextCNN model to conduct experimental teaching, and divided the two groups into comparative experiments. The experimental results showed that the reading level and reading interest of students in the experimental group were significantly improved, which proved that the text readability evaluation method based on deep learning was scientific and effective. In addition, we will further expand the capacity of the English legibility dataset and invite more university classes and students to participate in comparative experiments to improve the generality of the model.
C1 [Qin, Ying] Wuzhou Univ, Sch Foreign Languages, Wuzhou, Peoples R China.
[Irshad, Azeem] Int Islamic Univ, Dept Comp Sci & Software Engn, Islamabad, Pakistan.
C3 Wuzhou University; International Islamic University, Pakistan
RP Qin, Y (corresponding author), Wuzhou Univ, Sch Foreign Languages, Wuzhou, Peoples R China.
EM qinying@gxuwz.edu.cn
FU Education and Teaching Reform Project of Guangxi Autonomous Region level
A "The Research and Practice of Smart Education Leading the New
Development of Universities' Smart Classroom Ecosystem of Business
English in the Post-Epidemic Era" [2022JGA341]; Key project of the "14th
Five-Year Plan" of Guangxi Education Science in 2022, "A Practical Study
on the Intelligent Classroom Teaching Model of English Subject Core
Literacy from Activity Theory" [2022ZJY1227]; Education and Teaching
Reform Project of Wuzhou University "New Development of Universities '
Smart Education Ecosystem Based on Smart Classrooms in the Post-Epidemic
Era" [Wyjg2021C001]
FX This work was supported by the Education and Teaching Reform Project of
Guangxi Autonomous Region level A "The Research and Practice of Smart
Education Leading the New Development of Universities' Smart Classroom
Ecosystem of Business English in the Post-Epidemic Era" (Project No.
2022JGA341) ; The key project of the "14th Five-Year Plan" of Guangxi
Education Science in 2022, "A Practical Study on the Intelligent
Classroom Teaching Model of English Subject Core Literacy from Activity
Theory" (Project No. 2022ZJY1227) ; and the Education and Teaching
Reform Project of Wuzhou University "New Development of Universities '
Smart Education Ecosystem Based on Smart Classrooms in the Post-Epidemic
Era" (Project No. Wyjg2021C001) . The funders had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
CR Chen X, 2023, Applied Mathematics and Nonlinear Sciences., V9, P427, DOI [10.2478/amns.2023.2.00427, DOI 10.2478/AMNS.2023.2.00427]
Common Core State Standards Initiative, 2020, Council of chief state school officers, national governors association center for best practices common core state standards for English language arts & literacy in history/social studies, science, and technical subjects
Dale E., 1949, ELEM ENGL, V26, P19, DOI DOI 10.1111/J.1467-9345.1968.TB00749.X
Dale E, 1948, EDUC RES BULL, V27, P37
EMBRETSON SE, 1987, APPL PSYCH MEAS, V11, P175, DOI 10.1177/014662168701100207
Erler L, 2012, SYSTEM, V40, P437, DOI 10.1016/j.system.2012.06.004
Flesch R, 1948, J APPL PSYCHOL, V32, P221, DOI 10.1037/h0057532
Fujinuma Y, 2021, P 15 WORKSH GRAPH BA
Gonzalez-Garduo AV, 2017, P 12 WORKSH INN US N
Goodman K. S., 1967, Journal of the Reading Specialist, V6, P126, DOI DOI 10.1080/19388076709556976
Gorin JS, 2006, APPL PSYCH MEAS, V30, P394, DOI 10.1177/0146621606288554
Green A, 2010, LANG TEST, V27, P191, DOI 10.1177/0265532209349471
GREGG KR, 1986, TESOL QUART, V20, P116, DOI 10.2307/3586393
Gunning Robert, 1952, The Technique of Clear Writing
Guthrie JT, 1987, Journal of Educational Psychology, V22, P279, DOI [10.1080/00461520.1987.9653053, DOI 10.1080/00461520.1987.9653053]
Howard MW, 2007, Handbook of latent semantic analysis
Jiang ZB, 2020, T ASSOC COMPUT LING, V8, P423, DOI 10.1162/tacl_a_00324
Martinc M, 2021, COMPUT LINGUIST, V47, P141, DOI [10.1162/COLI_a_00398, 10.1162/coli_a_00398]
McNamara DS, 2014, AUTOMATED EVALUATION OF TEXT AND DISCOURSE WITH COH-METRIX, P1, DOI 10.1017/CBO9780511894664
Mohammed HM, 2019, COMPUT INTEL NEUROSC, V2019, DOI 10.1155/2019/8718571
Mytkowicz P, 2014, J POSTSECOND EDUC DI, V27, P51
Ozuru Y, 2008, BEHAV RES METHODS, V40, P1001, DOI 10.3758/BRM.40.4.1001
Perera K., 1984, Children's writing and reading: Analyzing classroom language
Pili I, 2016, 26 INT C COMP LING
Pili I, 2018, P WORKSH LING COMPL
Rahimi M, 2009, READ WRIT, V22, P219, DOI 10.1007/s11145-008-9139-5
Sheorey R., 2001, SYSTEM, V29, P431, DOI [DOI 10.1016/S0346-251X(01)00039-2, 10.1016/S0346-251X, DOI 10.1016/S0346-251X]
Smith E A, 1967, AMRL TR, P1
Stajner S, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4096
Swanborn MSL, 2002, LANG LEARN, V52, P95, DOI 10.1111/1467-9922.00178
Tercanlioglu L, 2001, Reading Matrix An International Online Journal, V1
Tercanlioglu L, 2015, QUAL REP, V20, P286
Wang C., 2007, INVESTIGATING COGNIT
Wilkins HK, 2007, Reading comprehension strategies: theories, intervention, and technologies
Wyse D, 2005, Teaching English, language and literacy, P42
Xia M, 2016, P 11 WORKSH INN US N
Yüksel I, 2012, PROCD SOC BEHV, V31, P894, DOI 10.1016/j.sbspro.2011.12.164
Zawodniak J, 2017, Neofilolog, V49, P177, DOI [10.14746/n.2017.49.1.07, DOI 10.14746/N.2017.49.1.07]
NR 38
TC 0
Z9 0
U1 25
U2 25
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
EI 2376-5992
J9 PEERJ COMPUT SCI
JI PeerJ Comput. Sci.
PD FEB 29
PY 2024
VL 10
AR e1895
DI 10.7717/peerj-cs.1895
PG 21
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA JR6W8
UT WOS:001174942400006
PM 38435600
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Pluhacek, M
Kazikova, A
Viktorin, A
Kadavy, T
Senkerik, R
AF Pluhacek, Michal
Kazikova, Anezka
Viktorin, Adam
Kadavy, Tomas
Senkerik, Roman
TI Chaos in popular metaheuristic optimizers - a bibliographic analysis
SO JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS
LA English
DT Article
DE Evolutionary computing; chaos; metaheuristic; genetic algorithm;
differential evolution; particle swarm optimization
ID PARTICLE SWARM OPTIMIZATION; NON-WANDERING POINTS; CONTINUOUS-MAPS;
GRAPH MAPS; DENDRITES; ALGORITHM; DEPTH; DYNAMICS; DRIVEN; SETS
AB This paper presents an overview of the history and recent efforts in combining chaos theory and evolutionary computation techniques. Various algorithms from the evolutionary computation domain, also known as metaheuristic algorithms, have been successfully enhanced with chaotic components in the past. Numerous ways to incorporate chaos have been examined, and many impressive results have been reported. Implementations of discrete chaotic maps such as Lozi, Henon, and logistic map as generators of chaotic pseudo-random sequences for controlling evolution operators in metaheuristics have achieved significant popularity. In this survey, we focus on the research field itself and perform a bibliographical analysis to show how broad and active is nowadays the research field of chaos-enhanced metaheuristics and what are some of the most recent works published.
C1 [Pluhacek, Michal; Kazikova, Anezka; Viktorin, Adam; Kadavy, Tomas; Senkerik, Roman] Tomas Bata Univ Zlin, Fac Appl Informat, Nam TG Masaryka 5555, Zlin 76001, Czech Republic.
C3 Tomas Bata University Zlin
RP Pluhacek, M (corresponding author), Tomas Bata Univ Zlin, Fac Appl Informat, Nam TG Masaryka 5555, Zlin 76001, Czech Republic.
EM pluhacek@utb.cz
RI Šenkeřík, Roman/H-6353-2012; Pluhacek, Michal/AAF-3155-2019; Kadavy,
Tomas/A-6914-2018
OI Pluhacek, Michal/0000-0002-3692-2838; Kadavy, Tomas/0000-0002-3341-4336
FU Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2023/004]
FX This work was supported by the Internal Grant Agency of Tomas Bata
University under the Projects no. IGA/CebiaTech/2023/004, and further by
the resources of A.I.Lab at the Faculty of Applied Informatics, Tomas
Bata University in Zlin (ailab.fai.utb.cz).
CR Arora S, 2017, J INTELL FUZZY SYST, V32, P1079, DOI 10.3233/JIFS-16798
Banerjee PS, 2022, INNOV SYST SOFTW ENG, DOI 10.1007/s11334-022-00439-5
Caponetto R, 2003, IEEE T EVOLUT COMPUT, V7, P289, DOI 10.1109/TEVC.2003.810069
Chadli M, 2014, COMPUT MATH APPL, V68, P2142, DOI 10.1016/j.camwa.2013.01.013
Chen C., 2022, Front. Energy Res., V10, P1331
Chu HY, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12188977
Coelho LD, 2009, CHAOS SOLITON FRACT, V39, P510, DOI 10.1016/j.chaos.2007.01.093
Davendra D, 2010, COMPUT MATH APPL, V60, P1088, DOI 10.1016/j.camwa.2010.03.066
Determan J., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P2094, DOI 10.1109/CEC.1999.785533
Coelho LD, 2006, IEEE SYS MAN CYBERN, P3114, DOI 10.1109/ICSMC.2006.384594
Duan YX, 2022, IEEE ACCESS, V10, P29393, DOI 10.1109/ACCESS.2022.3158666
Gandomi AH, 2013, COMMUN NONLINEAR SCI, V18, P89, DOI 10.1016/j.cnsns.2012.06.009
Gandomi AH, 2014, J COMPUT SCI-NETH, V5, P224, DOI 10.1016/j.jocs.2013.10.002
Gao SC, 2021, IEEE T SYST MAN CY-S, V51, P3954, DOI 10.1109/TSMC.2019.2956121
Gharehchopogh FS, 2022, EVOL INTELL, V15, P1777, DOI 10.1007/s12065-021-00590-1
Kaur G, 2018, J COMPUT DES ENG, V5, P275, DOI 10.1016/j.jcde.2017.12.006
Li JJ, 2021, J MAR SCI ENG, V9, DOI 10.3390/jmse9101080
Liu B, 2005, CHAOS SOLITON FRACT, V25, P1261, DOI 10.1016/j.chaos.2004.11.095
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Luo RJ, 2021, APPL SOFT COMPUT, V101, DOI 10.1016/j.asoc.2020.107058
Mohamed K, 2012, INT J AUTOM COMPUT, V9, P331, DOI 10.1007/s11633-012-0652-2
Molina D, 2020, COGN COMPUT, V12, P897, DOI 10.1007/s12559-020-09730-8
Özdemir MT, 2021, INT J HYDROGEN ENERG, V46, P16465, DOI 10.1016/j.ijhydene.2020.12.203
Pan PY, 2021, ENERGY REP, V7, P531, DOI 10.1016/j.egyr.2021.08.009
Pluhacek M, 2015, SWARM EVOL COMPUT, V25, P29, DOI 10.1016/j.swevo.2015.10.008
Pluhacek M, 2014, SOFT COMPUT, V18, P631, DOI 10.1007/s00500-014-1222-z
Poojitha SN, 2022, STOCH ENV RES RISK A, V36, P3377, DOI 10.1007/s00477-022-02200-7
Sayed GI, 2019, APPL INTELL, V49, P188, DOI 10.1007/s10489-018-1261-8
Sörensen K, 2015, INT T OPER RES, V22, P3, DOI 10.1111/itor.12001
Sprott Julien Clinton, 2003, Chaos and time-series analysis, V69
Teymori S, 2021, INT J COMPUT APPL T, V67, P263, DOI 10.1504/IJCAT.2021.121537
Viktorin A, 2016, IEEE C EVOL COMPUTAT, P4797, DOI 10.1109/CEC.2016.7744404
Wolpert D. H., 1997, IEEE Transactions on Evolutionary Computation, V1, P67, DOI 10.1109/4235.585893
Yin LY, 2021, J AMB INTEL HUM COMP, DOI 10.1007/s12652-020-02611-w
Zhang P, 2021, INT J CONTROL AUTOM, V19, P3511, DOI 10.1007/s12555-020-0553-z
NR 35
TC 3
Z9 3
U1 7
U2 15
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 1023-6198
EI 1563-5120
J9 J DIFFER EQU APPL
JI J. Differ. Equ. Appl.
PD DEC 2
PY 2023
VL 29
IS 9-12
SI SI
DI 10.1080/10236198.2023.2203779
EA APR 2023
PG 16
WC Mathematics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematics
GA EY6P8
UT WOS:000974831300001
DA 2024-09-05
ER
PT J
AU Barbieri, N
Bonchi, F
Manco, G
AF Barbieri, Nicola
Bonchi, Francesco
Manco, Giuseppe
TI Topic-aware social influence propagation models
SO KNOWLEDGE AND INFORMATION SYSTEMS
LA English
DT Article
DE Social influence; Topic modeling; Topic-aware propagation model; Viral
marketing
AB The study of influence-driven propagations in social networks and its exploitation for viral marketing purposes has recently received a large deal of attention. However, regardless of the fact that users authoritativeness, expertise, trust and influence are evidently topic-dependent, the research on social influence has surprisingly largely overlooked this aspect. In this article, we study social influence from a topic modeling perspective. We introduce novel topic-aware influence-driven propagation models that, as we show in our experiments, are more accurate in describing real-world cascades than the standard (i.e., topic-blind) propagation models studied in the literature. In particular, we first propose simple topic-aware extensions of the well-known Independent Cascade and Linear Threshold models. However, these propagation models have a very large number of parameters which could lead to overfitting. Therefore, we propose a different approach explicitly modeling authoritativeness, influence and relevance under a topic-aware perspective. Instead of considering user-to-user influence, the proposed model focuses on user authoritativeness and interests in a topic, leading to a drastic reduction in the number of parameters of the model. We devise methods to learn the parameters of the models from a data set of past propagations. Our experimentation confirms the high accuracy of the proposed models and learning schemes.
C1 [Barbieri, Nicola; Bonchi, Francesco] Yahoo Res, Web Min Res Grp, Barcelona, Spain.
[Manco, Giuseppe] ICAR CNR, Cosenza, Italy.
C3 Yahoo! Inc; Yahoo! Inc Spain; Consiglio Nazionale delle Ricerche (CNR);
Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR-CNR)
RP Bonchi, F (corresponding author), Yahoo Res, Web Min Res Grp, Barcelona, Spain.
EM barbieri@yahoo-inc.com; bonchi@yahoo-inc.com; manco@icar.cnr.it
RI Manco, Giuseppe/O-2428-2015; Manco, Giuseppe/KDN-6515-2024
OI Manco, Giuseppe/0000-0001-9672-3833; Manco, Giuseppe/0000-0001-9672-3833
FU Torres Quevedo Program of the Spanish Ministry of Science and
Innovation; European Union [270239]
FX This research was partially supported by the Torres Quevedo Program of
the Spanish Ministry of Science and Innovation and partially funded by
the European Union 7th Framework Programme (FP7/2007-2013) under Grant
No. 270239 (ARCOMEM).
CR [Anonymous], 2010, P 16 ACM SIGKDD INT
[Anonymous], VIEW EM ALGORITHM JU
[Anonymous], 2010, MODELING RELATIONSHI
[Anonymous], 2001, P 7 ACM SIGKDD INT C
[Anonymous], 2007, P 16 INT C WORLD WID
[Anonymous], KDD'03, DOI DOI 10.1145/956750.956769
[Anonymous], P 15 ACM SIGKDD INT
[Anonymous], 2007, INT C KNOWLEDGE DISC
Bakshy E, 2011, P 4 INT C WEB SEARCH
Barbieri N, 2012, P IEEE INT C DAT MIN
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blei DM, 2011, COMMUNICATIONS ACM
Bonchi F., 2011, IEEE Intelligent Informatics Bulletin, V12, P8
Chen YC, 2012, KNOWL INF SYST, V33, P577, DOI 10.1007/s10115-012-0540-7
DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1, DOI 10.1111/j.2517-6161.1977.tb01600.x
Goyal A, 2010, 3 ACM INT C WEB SEAR
Goyal A, 2011, PROC VLDB ENDOW, V5, P73, DOI 10.14778/2047485.2047492
Hofmann T., 1999, P UNC ART INT UAI
Ienco D, 2010, P SIASP WORKSH ICDM
Kimura M, 2006, LECT NOTES ARTIF INT, V4213, P259
Lin X, 2011, P IEEE INT C DAT MIN
Liu L, 2010, P 19 ACM C INF KNOWL
Mathioudakis M, 2011, P 17 ACM SIGKDD INT
McCallum A, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P662
NEMHAUSER GL, 1978, MATH PROGRAM, V14, P265, DOI 10.1007/BF01588971
Richardson Matthew, 2002, P 8 ACM SIGKDD INT C
Saito K., 2008, P 12 INT C KNOWL BAS
Saito K, 2012, KNOWL INF SYST, V30, P613, DOI 10.1007/s10115-011-0396-2
Steyvers M., 2006, LATENT SEMANTIC ANAL
Weng J, 2010, P 3 INT C WEB SEARCH
NR 30
TC 145
Z9 164
U1 1
U2 33
PU SPRINGER LONDON LTD
PI LONDON
PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND
SN 0219-1377
EI 0219-3116
J9 KNOWL INF SYST
JI Knowl. Inf. Syst.
PD DEC
PY 2013
VL 37
IS 3
BP 555
EP 584
DI 10.1007/s10115-013-0646-6
PG 30
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 251NL
UT WOS:000326936100003
DA 2024-09-05
ER
PT J
AU Lang, W
AF Lang, Wang
TI Research on College English Teaching Quality Assessment Method Based on
K-Means Clustering Algorithm
SO MATHEMATICAL PROBLEMS IN ENGINEERING
LA English
DT Article
AB The evaluation of college teachers' teaching ability is very important. Currently, the indicators for evaluating the quality of college English teaching are unclear and insufficient. This paper evaluates the quality of university classroom teaching from two aspects: students' learning effect and teachers' teaching work. This paper employs the K-means algorithm to analyze the relationship between the indicators in the evaluation model and teachers' teaching ability, Snds out the speciSc factors that affect teaching activities, and guides the implementation of teachers' teaching work. At the same time, the K-means model is used to evaluate students' learning effect, identify the relationship between the indicators in the model and teachers' teaching ability, and Snd out the speciSc factors that affect teachers to guide the implementation of teachers' teaching work. Experiments show that the method proposed in this paper can solve the problem that the evaluation indicators of traditional evaluation methods are not clear and insufficient and can be better applied to teaching evaluation.
C1 [Lang, Wang] Jingdezhen Ceram Univ, Sch Int Studies, Jingdezhen 333403, Jiangxi, Peoples R China.
C3 Jingdezhen Ceramic Institute
RP Lang, W (corresponding author), Jingdezhen Ceram Univ, Sch Int Studies, Jingdezhen 333403, Jiangxi, Peoples R China.
EM 005301@jcu.edu.cn
CR Chernova S., 2006, P WORKSHOP MODELING
Hongyan Sang, 2021, ICASIT 2021: 2021 International Conference on Aviation Safety and Information Technology, P138, DOI 10.1145/3510858.3510909
Lee ISK, 2004, ENG APPL ARTIF INTEL, V17, P577, DOI 10.1016/j.engappai.2004.08.005
Li P., 2018, P INT C APPL TECHNIQ, P1210
LIN CS, 1995, IEEE T NEURAL NETWOR, V6, P642, DOI 10.1109/72.377969
Liufang Yi, 2021, 2021 IEEE 21st Annual Wireless and Microwave Technology Conference (WAMICON), P1015, DOI 10.1109/TOCS53301.2021.9688932
MIRCHANDANI G, 1989, IEEE T CIRCUITS SYST, V36, P661, DOI 10.1109/31.31313
Moore A., 1993, ADV NEURAL INFORM PR, V6
Qingling Meng, 2021, 2021 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE), P299, DOI 10.1109/ISAIEE55071.2021.00079
Sangita O, 2011, COMM COM INF SC, V125, P108
Smith AJ, 2002, NEURAL NETWORKS, V15, P1107, DOI 10.1016/S0893-6080(02)00083-7
Tang J., 2021, P EAI INT C, P282
Vamvoudakis KG, 2014, INT J ROBUST NONLIN, V24, P2686, DOI 10.1002/rnc.3018
Xi SM, 2015, ADV SOC SCI EDUC HUM, V15, P175
Xu Y., 2021, P EAI INT C, P506
Zhen C, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/5554444
NR 16
TC 2
Z9 2
U1 3
U2 19
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1024-123X
EI 1563-5147
J9 MATH PROBL ENG
JI Math. Probl. Eng.
PD AUG 8
PY 2022
VL 2022
AR 4134827
DI 10.1155/2022/4134827
PG 8
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Mathematics
GA 6A4EJ
UT WOS:000880609500009
OA gold
DA 2024-09-05
ER
PT J
AU Lawelai, H
Iswanto, I
Raharja, NM
AF Lawelai, Herman
Iswanto, Iswanto
Raharja, Nia Maharani
TI Use of Artificial Intelligence in Public Services: A Bibliometric
Analysis and Visualization
SO TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS
LA English
DT Article
DE artificial intelligence; public services; bibliometric; vosviewer;
Scopus publications
ID SMART; AI
AB The aim of this research is to survey the current state of research related to the utilization of AI in public services as indexed by Scopus. VOSviewer is used in this research to assess keywords from 183 articles. Furthermore, the Scopus database search results analysis visualizes the characteristics and trends of journals, authors, and subjects connected to the application of artificial intelligence in public service research. Based on the results of this study, it is possible that AI could assist in making cities more intelligent by improving the quality of life for citizens and enhancing the efficiency of their access to public goods and services. It surpasses benchmark models in predicted accuracy because of its more transparent and modifiable model structure. By strategically designing and deploying AI-based technology, traditional public services may be turned into intelligent services. This study contributes to the formation of more relevant research by serving as a reference for future researchers in identifying the position of contribution to the creation of more relevant research.
C1 [Lawelai, Herman] Univ Muhammadiyah Buton, Dept Govt Studies, Betoambari St, Baubau City 93724, Indonesia.
[Iswanto, Iswanto] Univ Muhammadiyah Yogyakarta, Dept Engineer Profess Program, Brawijaya St, Yogyakarta City 55183, Indonesia.
[Raharja, Nia Maharani] UIN Sunan Kalijaga Yogyakarta, Dept Informat Engn, Laksda Adisucipto St, Yogyakarta City 55281, Indonesia.
[Lawelai, Herman] Univ Muhammadiyah Buton, Dept Govt Studies, Betoambari St, Baubau City 93724, Indonesia.
C3 Universitas Muhammadiyah Buton; Universitas Muhammadiyah Yogyakarta;
Sunan Kalijaga State Islamic University; Universitas Muhammadiyah Buton
RP Lawelai, H (corresponding author), Univ Muhammadiyah Buton, Dept Govt Studies, Betoambari St, Baubau City 93724, Indonesia.
EM herman.lawelai@umbuton.ac.id
RI Lawelai, Herman/AAQ-8062-2021
OI Lawelai, Herman/0000-0002-7266-4557
CR Alahmari N, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063313
Anastasiadou M, 2021, TRANSFORM GOV-PEOPLE, V15, P512, DOI 10.1108/TG-03-2020-0045
Arabeyyat OS, 2018, INT J ELECTRON SECUR, V10, P228, DOI 10.1504/IJESDF.2018.10013062
Argyroudis SA, 2022, CLIM RISK MANAG, V35, DOI 10.1016/j.crm.2021.100387
Assenmacher D, 2020, SOC MEDIA SOC, V6, DOI 10.1177/2056305120939264
Azzutti A, 2022, COMPUT LAW SECUR REV, V45, DOI 10.1016/j.clsr.2022.105690
Bin Zikria Y, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10103626
Cao GH, 2018, ELECTRON LIBR, V36, P811, DOI 10.1108/EL-11-2017-0248
Chen C, 2015, IEEE TRANS COMPUT SO, V2, P65, DOI 10.1109/TCSS.2016.2516039
Chen T, 2021, GOV INFORM Q, V38, DOI 10.1016/j.giq.2020.101520
de Sousa WG, 2019, GOV INFORM Q, V36, DOI 10.1016/j.giq.2019.07.004
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Fan B, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102131
Galetsi P, 2022, SOC SCI MED, V301, DOI 10.1016/j.socscimed.2022.114973
Gesk TS, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2022.101704
Hoffman DA, 2020, J LAW BIOSCI, V7, DOI 10.1093/jlb/lsaa043
James A, 2022, CRIT SOC POLICY, V42, P22, DOI 10.1177/0261018320985463
Kankanhalli A, 2019, GOV INFORM Q, V36, P304, DOI 10.1016/j.giq.2019.02.003
Kuziemski M, 2020, TELECOMMUN POLICY, V44, DOI 10.1016/j.telpol.2020.101976
Lawelai H., 2022, STUDIES MEDIA COMMUN, V10, P105, DOI [10.11114/smc.v10i2.5603, DOI 10.11114/SMC.V10I2.5603]
Martinez-Gil J, 2022, J INF KNOWL MANAG, V21, DOI 10.1142/S0219649222500435
McKelvey F, 2019, CAN J COMMUN, V44, P43, DOI 10.22230/cjc.2019v44n2a3509
Mercader-Moyano P, 2021, SUSTAIN CITIES SOC, V73, DOI 10.1016/j.scs.2021.103082
Nissim G, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101732
Nurmandi A, 2021, COMM COM INF SC, V1499, P472, DOI 10.1007/978-3-030-90179-0_60
Patulny R, 2020, EMOTION SOC, V2, P79, DOI 10.1332/263168919X15750193136130
Popkova EG, 2022, SOCIO-ECON PLAN SCI, V80, DOI 10.1016/j.seps.2021.101039
Radu LD, 2020, SMART CITIES-BASEL, V3, P1022, DOI 10.3390/smartcities3030051
Sarvari PA, 2016, KYBERNETES, V45, P1129, DOI 10.1108/K-07-2015-0180
Singh S, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102364
Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5
Strielkowski W., 2022, SUSTAINABILITY-BASEL, V14
Subandi Y., 2022, P 1 INT C DEM SOC TR
van Noordt C, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2022.101714
van Noordt C, 2022, SOC SCI COMPUT REV, V40, P426, DOI 10.1177/0894439320980449
van Veenstra AF, 2021, TRANSFORM GOV-PEOPLE, V15, P396, DOI 10.1108/TG-09-2019-0095
Wamba SF, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.102064
Wilson C, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2021.101652
Wimmer M.A., 2020, eJournal of eDemocracy and Open Government, V12, P87, DOI DOI 10.29379/JEDEM.V12I1.594
Yang SY, 2022, SAFETY SCI, V147, DOI 10.1016/j.ssci.2021.105623
Zhang XJ, 2022, J TRANSP GEOGR, V100, DOI 10.1016/j.jtrangeo.2022.103310
NR 41
TC 1
Z9 1
U1 4
U2 14
PU UIKTEN - ASSOC INFORMATION COMMUNICATION TECHNOLOGY EDUCATION & SCIENCE
PI NOVI PAZAR
PA HILMA ROZAJCA 15, NOVI PAZAR, 36300, SERBIA
SN 2217-8309
EI 2217-8333
J9 TEM J
JI TEM J.
PD MAY
PY 2023
VL 12
IS 2
BP 798
EP 807
DI 10.18421/TEM122-24
PG 10
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA I6PD4
UT WOS:001003974800024
OA gold
DA 2024-09-05
ER
PT J
AU Kajikawa, Y
Abe, K
Noda, S
AF Kajikawa, Yuya
Abe, Koji
Noda, Suguru
TI Filling the gap between researchers studying different materials and
different methods: a proposal for structured keywords
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
DE structured keywords; bibliographic approach; natural language
processing; ontology
ID LITERATURE-BASED DISCOVERY; RESEARCH-AND-DEVELOPMENT; KNOWLEDGE
MANAGEMENT; FISH OIL; ONTOLOGIES; INFORMATION; PRINCIPLES; ABSTRACTS;
RAYNAUDS; SUPPORT
AB Scientific publications written in natural language still play a central role as our knowledge source. However, due to the flood of publications, obtaining a comprehensive view even on a topic of limited scope, from a stack of publications is becoming an arduous task. Examples are presented from our recent experiences in the materials science field, where information is not shared among researchers studying different materials and different methods. To overcome the limitation, we propose a structured keywords method to reinforce the functionality of a future e-library.
C1 Univ Tokyo, Sch Engn, Inst Engn Innovat, Bunkyo Ku, Tokyo 1138656, Japan.
Univ Tokyo, Intelligent Modelling Lab, Tokyo, Japan.
Univ Tokyo, Grad Sch Engn, Dept Chem Syst Engn, Tokyo, Japan.
C3 University of Tokyo; University of Tokyo; University of Tokyo
RP Kajikawa, Y (corresponding author), Univ Tokyo, Sch Engn, Inst Engn Innovat, Bunkyo Ku, 2-11-16 Yayoi, Tokyo 1138656, Japan.
EM kaji@biz-model.t.u-tokyo.ac.jp
RI Noda, Suguru/C-1365-2008; Kajikawa, Yuya/C-1996-2015
OI Noda, Suguru/0000-0002-7305-5307; Kajikawa, Yuya/0000-0003-3577-5167
CR [Anonymous], 1978, ROLE PERCEPT VISUAL
Blair DC, 2002, J AM SOC INF SCI TEC, V53, P1019, DOI 10.1002/asi.10113
Burnett K, 1999, J AM SOC INFORM SCI, V50, P1209, DOI 10.1002/(SICI)1097-4571(1999)50:13<1209::AID-ASI6>3.0.CO;2-Y
Chandrasekaran B, 1999, IEEE INTELL SYST APP, V14, P20, DOI 10.1109/5254.747902
Chen GT, 2003, RAIRO-OPER RES, V37, P179, DOI 10.1051/ro:2003020
Cheng H, 2003, J CRYST GROWTH, V254, P46, DOI 10.1016/S0022-0248(03)01176-X
COLE S, 2000, WEB KNOWLEDGE FESTSC
de Bruijn B, 2002, INT J MED INFORM, V67, P7, DOI 10.1016/S1386-5056(02)00050-3
Ding Y, 2002, J INFORM SCI, V28, P375, DOI 10.1177/016555150202800503
Ding Y, 2001, J INFORM SCI, V27, P377, DOI 10.1177/016555150102700603
Ding Y, 2002, J INFORM SCI, V28, P123, DOI 10.1177/0165551024234020
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Gordon MD, 1996, J AM SOC INFORM SCI, V47, P116, DOI 10.1002/(SICI)1097-4571(199602)47:2<116::AID-ASI3>3.0.CO;2-1
Gruber TR, 1995, INT J HUM-COMPUT ST, V43, P907, DOI 10.1006/ijhc.1995.1081
Guarino N, 1997, INT J HUM-COMPUT ST, V46, P293, DOI 10.1006/ijhc.1996.0091
HARTER SP, 1993, J AM SOC INFORM SCI, V44, P543, DOI 10.1002/(SICI)1097-4571(199310)44:9<543::AID-ASI4>3.0.CO;2-F
Hartley J, 2004, J MED LIBR ASSOC, V92, P368
Hartley J, 2003, J INFORM SCI, V29, P433, DOI 10.1177/01655515030295008
Hartley J, 2000, B MED LIBR ASSOC, V88, P332
HARTMANN H, 1991, J MATER SCI, V26, P4917, DOI 10.1007/BF00549871
HIX CF, 1958, PYS LAWS EFFECTS
HULL R, 1987, COMPUT SURV, V19, P201, DOI 10.1145/45072.45073
Kajikawa Y, 2004, CHEM VAPOR DEPOS, V10, P221, DOI 10.1002/cvde.200306285
Kajikawa Y, 2003, J VAC SCI TECHNOL A, V21, P1943, DOI 10.1116/1.1619414
KAMADA T, 1989, INFORM PROCESS LETT, V31, P7, DOI 10.1016/0020-0190(89)90102-6
Klahr D, 1999, PSYCHOL BULL, V125, P524, DOI 10.1037/0033-2909.125.5.524
Kostoff RN, 2002, J INF SCI, V28, P257
Kostoff RN, 2001, TECHNOL FORECAST SOC, V68, P223, DOI 10.1016/S0040-1625(01)00133-0
KOSTOFF RN, 2003, 417220 DTIC ADA
Langley P, 2000, INT J HUM-COMPUT ST, V53, P393, DOI 10.1006/ijhc.2000.0396
Li TQ, 2002, J VAC SCI TECHNOL A, V20, P583, DOI 10.1116/1.1458944
Mabe MA, 2002, ASLIB PROC, V54, P149, DOI 10.1108/00012530210441692
MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
McInerney C, 2002, J AM SOC INF SCI TEC, V53, P1009, DOI 10.1002/asi.10109
Murray-Rust P, 1999, J CHEM INF COMP SCI, V39, P928, DOI 10.1021/ci990052b
Murray-Rust P., 2002, DATA SCI J, V1, P128
Murray-Rust P., 2002, Data Science Journal, V1, P84, DOI [DOI 10.2481/DSJ.1.84, 10.2481/dsj.1.84]
Olson GB, 2000, SCIENCE, V288, P993, DOI 10.1126/science.288.5468.993
Olson GB, 1997, SCIENCE, V277, P1237, DOI 10.1126/science.277.5330.1237
Ono T, 2001, BIOINFORMATICS, V17, P155, DOI 10.1093/bioinformatics/17.2.155
Ozawa M, 2003, PHYS REV A, V67, DOI 10.1103/PhysRevA.67.042105
Pin-Shan Chen P., 1976, ACM Transactions on Database Systems, V1, P9, DOI 10.1145/320434.320440
Price D. J. d. S., 1963, Little Science, Big Science
PRICE DJD, 1965, SCIENCE, V149, P510
RAVI KV, 1992, J MATER RES, V7, P384, DOI 10.1557/JMR.1992.0384
Rzhetsky A, 2004, J BIOMED INFORM, V37, P43, DOI 10.1016/j.jbi.2003.10.001
Shamsfard M, 2004, INT J HUM-COMPUT ST, V60, P17, DOI 10.1016/j.ijhcs.2003.08.001
Smalheiser NR, 1998, COMPUT METH PROG BIO, V57, P149, DOI 10.1016/S0169-2607(98)00033-9
SWANSON DR, 1986, PERSPECT BIOL MED, V30, P7
SWANSON DR, 1987, J AM SOC INFORM SCI, V38, P228, DOI 10.1002/(SICI)1097-4571(198707)38:4<228::AID-ASI2>3.0.CO;2-G
Toyoda T, 2004, BIOINFORMATICS, V20, P1759, DOI 10.1093/bioinformatics/bth165
Uschold M, 1998, KNOWL ENG REV, V13, P5, DOI 10.1017/S0269888998001040
Valdés-Pérez RE, 1999, ARTIF INTELL, V107, P335, DOI 10.1016/S0004-3702(98)00116-7
van der Vet P, 2000, LECT NOTES COMPUT SC, V1905, P205
van der Vet PE, 1998, IEEE T KNOWL DATA EN, V10, P513, DOI 10.1109/69.706054
Weeber M, 2001, J AM SOC INF SCI TEC, V52, P548, DOI 10.1002/asi.1104
White M.A., 1999, Properties of Materials
Wiener N., 1945, PHILOS SCI, V12, P316, DOI DOI 10.1086/286874
Yamaguchi Y, 2001, J NANOPART RES, V3, P105, DOI 10.1023/A:1017934502911
Yandell MD, 2002, NAT REV GENET, V3, P601, DOI 10.1038/nrg861
Ziman J, 2001, SCI ENG ETHICS, V7, P165, DOI 10.1007/s11948-001-0038-2
2003, NASDA
NR 63
TC 26
Z9 27
U1 0
U2 26
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PY 2006
VL 32
IS 6
BP 511
EP 524
DI 10.1177/0165551506067125
PG 14
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 126GE
UT WOS:000243499800002
DA 2024-09-05
ER
PT C
AU Chi, DAW
Huang, YY
AF Chi, Dianwei
Huang, Yinyin
GP IEEE
TI Research on Application of Online Teaching Performance Prediction Based
on Data Mining Algorithm
SO 2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER
ENGINEERING (ICCECE)
LA English
DT Proceedings Paper
CT IEEE International Conference on Consumer Electronics and Computer
Engineering (ICCECE)
CY JAN 15-17, 2021
CL Guangzhou, PEOPLES R CHINA
DE performance warning; naive bayes; software programming; classification
AB The application of data mining in teaching has entered the stage of development, During the epidemic, colleges and universities have accumulated a lane amount of online teaching statistical data. These data can he used to establish a classification model for predicting student performance. In this paper, the Naive Bayes algorithm is improved to wise the problem of underflosw when the data feature values are too large. The student performance prediction classification model is constructed, and the classification efficiency and accuracy are improved to a certain extent. The improved model is used to predict and warn the performance in the mid-term stage to prevent The phenomenon of a large proportion of missing subjects, thereby ensuring the quality of students' learning throughout the semester.
C1 [Chi, Dianwei] Shandong Vocat Univ Foreign Affairs, Coll Informat & Control Engn, Weihai, Peoples R China.
[Huang, Yinyin] WKW Automot Parts Co Ltd, South Taishan Rd, Beijing, Peoples R China.
RP Chi, DAW (corresponding author), Shandong Vocat Univ Foreign Affairs, Coll Informat & Control Engn, Weihai, Peoples R China.
EM dianwei.chi@163.com; miaomiao6983@163.com
CR Ahn J, 2016, INT CONF BIG DATA, P239, DOI 10.1109/BIGCOMP.2016.7425919
Berend D, 2015, J MACH LEARN RES, V16, P1519
Chen Lingping, 2019, INFORM COMPUTER THEO, P66
Dong LJ, 2016, ROCK MECH ROCK ENG, V49, P183, DOI 10.1007/s00603-015-0733-y
Dou J, 2018, MODERN INFORMATIONN, V2, P108
Du Ting, 2016, RES APPL NAIVE BAYES
Hu Zhiqi, 2019, SOFTWARE, V040, P115
Knight JM, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/s12859-014-0401-3
Lulu Dong, 2014, RES IMPLEMENTATION C
Ren Shichao, 2019, COMPUTER SYSTEM APPL, V28, P135
Su Xujun, 2019, COMPUTER APPL SOFTWA, V36
Wang Dedong, 2019, COMPUTER PROGRAMMING, P94
[王海鹃 WANG Hai-juan], 2010, [计算机工程与设计, Computer Engineering and Design], V31, P1149
Wei Huijian, 2014, RES NAIVE BAYES CLAS
Wu Bei, 2019, RES APPL PERFORMANCE
Zheng Lixiang, 2020, ELECT PRODUCT RELIAB, V38, P49
NR 16
TC 1
Z9 1
U1 1
U2 10
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-8319-0
PY 2021
BP 394
EP 397
DI 10.1109/ICCECE51280.2021.9342597
PG 4
WC Computer Science, Interdisciplinary Applications; Engineering,
Electrical & Electronic; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering; Telecommunications
GA BS0AM
UT WOS:000680655600075
DA 2024-09-05
ER
PT J
AU Rodrigues, M
Silva, R
Borges, AP
Franco, M
Oliveira, C
AF Rodrigues, Margarida
Silva, Rui
Borges, Ana Pinto
Franco, Mario
Oliveira, Cidalia
TI Artificial intelligence: threat or asset to academic integrity? A
bibliometric analysis
SO KYBERNETES
LA English
DT Article; Early Access
DE Artificial intelligence; Academic integrity; Plagiarism; Dishonesty;
Students
ID ENGINEERING STUDENTS; CONTEXTUAL INFLUENCES; COCITATION ANALYSIS;
DISHONESTY; PLAGIARISM; PERCEPTIONS; ENVIRONMENTS; MISCONDUCT;
EDUCATION; BEHAVIOR
AB Purpose- This study aims to address a systematic literature review (SLR) using bibliometrics on the relationship between academic integrity and artificial intelligence (AI), to bridge the scattering of literature on this topic, given the challenge and opportunity for the educational and academic community. Design/methodology/approach- This review highlights the enormous social influence of COVID-19 by mapping the extensive yet distinct and fragmented literature in AI and academic integrity fields. Based on 163 publications from the Web of Science, this paper offers a framework summarising the balance between AI and academic integrity. Findings- With the rapid advancement of technology, AI tools have exponentially developed that threaten to destroy students' academic integrity in higher education. Despite this significant interest, there is a dearth of academic literature on how AI can help in academic integrity. Therefore, this paper distinguishes two significant thematical patterns: academic integrity and negative predictors of academic integrity. Practical implications-This study also presents several contributions by showing that tools associated with AI can act as detectors of students who plagiarise. That is, they can be useful in identifying students with fraudulent behaviour. Therefore, it will require a combined effort of public, private academic and educational institutions and the society with affordable policies. Originality/value- This study proposes a new, innovative framework summarising the balance between AI and academic integrity.
C1 [Rodrigues, Margarida] Inst Europeu Estudos Super Fafe, CEFAGE UBI Res Ctr, Covilha, Portugal.
[Silva, Rui] Univ Tras Os Montes & Alto Douro, CETRAD Res Ctr, Vila Real, Portugal.
[Borges, Ana Pinto] ISAG, Res Ctr Business Sci & Tourism CICET, Porto, Portugal.
[Franco, Mario] Univ Beira Interior, CEFAGE UBI Res Ctr, Dept Management & Econ, Covilha, Portugal.
[Oliveira, Cidalia] Univ Portucalense, REMIT, Braga, Portugal.
[Oliveira, Cidalia] Univ Minho, Braga, Portugal.
C3 University of Tras-os-Montes & Alto Douro; Universidade da Beira
Interior; Universidade Portucalense Infante D. Henrique; Universidade do
Minho
RP Franco, M (corresponding author), Univ Beira Interior, CEFAGE UBI Res Ctr, Dept Management & Econ, Covilha, Portugal.
EM mfranco@ubi.pt
RI Franco, Mário/ABG-1980-2021; Oliveira, Cidália/AAV-3204-2020; Pinto
Borges, Ana/AAO-9585-2020
OI Franco, Mário/0000-0001-7818-0206; Oliveira,
Cidália/0000-0002-3512-6151; Pinto Borges, Ana/0000-0002-4942-079X
FU National Funds of the FCT - Portuguese Foundation for Science and
Technology [UIDB/04007/2020, UIDB/05105/2020, UIDB/04630/2020,
UI/BD/151029/2021, UIDB/04011/2020, UIDB/04630/2022,
CEECINST/00127/2018/CP1501/CT0010]
FX The authors are grateful to the journal's anonymous referees for their
extremely useful suggestions to improve the quality of the paper. The
authors gratefully acknowledge financial support from National Funds of
the FCT - Portuguese Foundation for Science and Technology within the
project UIDB/04007/2020, UIDB/05105/2020, UIDB/04630/2020,
UI/BD/151029/2021, UIDB/04011/2020
(https://doi.org/10.54499/UIDB/04011/2020), UIDB/04630/2022 and by
CEECINST/00127/2018/CP1501/CT0010.
CR Abd-Elaal ES, 2022, EUR J ENG EDUC, V47, P725, DOI 10.1080/03043797.2022.2046709
Abdulrahman M, 2017, MED EDUC ONLINE, V22, DOI 10.1080/10872981.2017.1372669
Ahsan K, 2022, ASSESS EVAL HIGH EDU, V47, P523, DOI 10.1080/02602938.2021.1931660
AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T
Akçapinar G, 2015, COMPUT EDUC, V87, P123, DOI 10.1016/j.compedu.2015.04.007
Albuquerque F., 2008, Revista Da CTOC, V104, P53
Alessio HM, 2021, FRONT EDUC, V6, DOI 10.3389/feduc.2021.629220
Alessio HM, 2017, ONLINE LEARN, V21, P146
Alin P, 2020, INT J EDUC INTEGR, V16, DOI 10.1007/s40979-020-00056-4
Amrane-Cooper L, 2021, OPEN PRAX, V13, P378, DOI 10.51944/openpraxis.13.4.461
Aplin-Snider C, 2021, NURS EDUC TODAY, V107, DOI 10.1016/j.nedt.2021.105099
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Awasthi S, 2019, DESIDOC J LIB INF TE, V39, P94, DOI 10.14429/djlit.39.2.13622
Awosoga O, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-021-00090-w
Babu TA, 2011, MED TEACH, V33, P759, DOI 10.3109/0142159X.2011.576717
Bandara W., 2011, INFORM SYST J, V1, P1, DOI DOI 10.4018/JESMA.2010100105
Bastos M.I., 2021, Disaster Management and Human Health Risk VII : Reducing Risk, Improving Outcomes, V207, P135, DOI [10.2495/DMAN210111, DOI 10.2495/DMAN210111]
Beck V, 2014, ACT LEARN HIGH EDUC, V15, P65, DOI 10.1177/1469787413514646
Becker S., 2012, UNDERSTANDING RES SO
Birks M, 2018, NURS EDUC TODAY, V65, P96, DOI 10.1016/j.nedt.2018.02.040
Blau I, 2017, COMPUT HUM BEHAV, V73, P629, DOI 10.1016/j.chb.2017.03.074
Bloomfield JG, 2021, NURS EDUC TODAY, V100, DOI 10.1016/j.nedt.2021.104794
Bowers W.J., 1964, STUDENT DISHONESTY I
Bretag T, 2019, STUD HIGH EDUC, V44, P1837, DOI 10.1080/03075079.2018.1462788
Bretag T, 2014, STUD HIGH EDUC, V39, P1150, DOI 10.1080/03075079.2013.777406
Brimble M, 2005, AUST EDUC RES, V32, P19, DOI 10.1007/BF03216825
Brown T, 2018, NURS EDUC TODAY, V70, P13, DOI 10.1016/j.nedt.2018.08.005
Burgason KA, 2019, INNOV HIGH EDUC, V44, P203, DOI 10.1007/s10755-019-9457-3
Carpenter DD, 2006, J ENG EDUC, V95, P181, DOI 10.1002/j.2168-9830.2006.tb00891.x
Chala WD, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-020-00069-z
Chapman DW, 2016, STUD HIGH EDUC, V41, P247, DOI 10.1080/03075079.2014.927854
Chertok IRA, 2014, NURS EDUC TODAY, V34, P1324, DOI 10.1016/j.nedt.2013.06.002
Cowls J, 2021, NAT MACH INTELL, V3, P111, DOI 10.1038/s42256-021-00296-0
Currie W, 2017, INT J EDUC INTEGR, V13, DOI 10.1007/s40979-017-0017-2
Cutri J, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-021-00074-w
Daffin LW, 2018, ONLINE LEARN, V22, P131, DOI 10.24059/olj.v22i1.1079
Dannhoferová J, 2022, J EFFIC RESPONSIB ED, V15, P10, DOI 10.7160/eriesj.2022.150102
De Maio C, 2019, ISS EDUC RES, V29, P1131
Dervis H, 2019, J SCIENTOMETR RES, V8, P156, DOI 10.5530/jscires.8.3.32
Devine CA, 2018, NURS EDUC TODAY, V60, P133, DOI 10.1016/j.nedt.2017.10.005
Diekhoff GM, 1996, RES HIGH EDUC, V37, P487, DOI 10.1007/BF01730111
DiPaulo D, 2022, INT J EDUC INTEGR, V18, DOI 10.1007/s40979-021-00097-3
Dixon Z, 2021, ONLINE LEARN, V25, P249, DOI 10.24059/olj.v25i3.2422
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Eaton SE, 2018, INT J EDUC INTEGR, V14, DOI 10.1007/s40979-018-0028-7
Echchakoui S, 2020, J MARK ANAL, V8, P165, DOI 10.1057/s41270-020-00081-9
Ekundayo TC, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0207655
Elzubeir MA, 2003, MED EDUC, V37, P589, DOI 10.1046/j.1365-2923.2003.01552.x
Eret E, 2014, ASSESS EVAL HIGH EDU, V39, P1002, DOI 10.1080/02602938.2014.880776
Erguvan ID, 2022, INT J EDUC INTEGR, V18, DOI 10.1007/s40979-022-00120-1
Evans JM, 2022, ACAD MANAG LEARN EDU, V21, P580, DOI 10.5465/amle.2020.0557
Fan D, 2022, INT J MANAG REV, V24, P171, DOI 10.1111/ijmr.12291
Farahat A, 2022, INT J EDUC INTEGR, V18, DOI 10.1007/s40979-021-00095-5
FELIPE Bruno., 2017, Revista do Curso de Direito da Universidade Estacio de Sa, V20, n, P150, DOI DOI 10.5935/2448-0517.20170007
Ferguson SL, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2022.100677
Ferrer J, 2022, HIGH EDUC, V83, P317, DOI 10.1007/s10734-020-00657-5
Foltynek T, 2018, INT J EDUC INTEGR, V14, DOI 10.1007/s40979-018-0027-8
FRANKLYNSTOKES A, 1995, STUD HIGH EDUC, V20, P159, DOI 10.1080/03075079512331381673
Gallant TB, 2007, REV HIGH EDUC, V30, P391
Gamage SHPW, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-021-00323-x
Gao S., 2023, SearchRxiv, V2023, DOI [10.1079/searchrxiv.2023.00120, DOI 10.1079/SEARCHRXIV.2023.00120]
Gar?eld E., 1979, pdf
Geissdoerfer M, 2017, J CLEAN PROD, V143, P757, DOI 10.1016/j.jclepro.2016.12.048
Gmür M, 2003, SCIENTOMETRICS, V57, P27, DOI 10.1023/A:1023619503005
Golan Maureen S., 2020, Environment Systems & Decisions, V40, P222, DOI 10.1007/s10669-020-09777-w
Gomez O.D.C., 2008, Acesso, V13
Gracio M.C. C., 2016, Encontros Bibli: Revista eletronica de Biblioteconomia e Ciencia da Informacao, V21, P82, DOI [DOI 10.5007/15182924.2016V21N47P82, 10.5007/1518-2924.2016v21n47p82, DOI 10.5007/1518-2924.2016V21N47P82]
Guangul FM, 2020, EDUC ASSESS EVAL ACC, V32, P519, DOI 10.1007/s11092-020-09340-w
Paredes SG, 2021, DISTANCE EDUC, V42, P200, DOI 10.1080/01587919.2021.1910495
Guerrero-Dib JG, 2020, INT J EDUC INTEGR, V16, DOI 10.1007/s40979-020-0051-3
Gullifer JM, 2014, STUD HIGH EDUC, V39, P1202, DOI 10.1080/03075079.2013.777412
Gusenbauer M, 2020, RES SYNTH METHODS, V11, P181, DOI 10.1002/jrsm.1378
Harding TS, 2004, SCI ENG ETHICS, V10, P311
Harper MG, 2006, NURS EDUC TODAY, V26, P672, DOI 10.1016/j.nedt.2006.07.012
Hilliger I, 2022, J COMPUT ASSIST LEAR, V38, P1507, DOI 10.1111/jcal.12755
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Holden OL, 2021, FRONT EDUC, V6, DOI 10.3389/feduc.2021.639814
Hudd SS, 2009, J HIGH EDUC-UK, V80, P146, DOI 10.1353/jhe.0.0039
Jargalsaikhan B E., 2019, Molecules, V9, P148
Jeong YK, 2014, J INFORMETR, V8, P197, DOI 10.1016/j.joi.2013.12.001
Jia JY, 2022, INTERACT TECHNOL SMA, V19, P112, DOI 10.1108/ITSE-12-2020-0246
Johnson C, 2022, INT J EDUC INTEGR, V18, DOI 10.1007/s40979-022-00104-1
Kampa RK, 2020, DESIDOC J LIB INF TE, V40, P369, DOI 10.14429/djlit.40.6.16036
Karim NSA, 2009, COMPUT EDUC, V53, P86, DOI 10.1016/j.compedu.2009.01.001
Kascáková E, 2022, J TEACH ENGL SPECIF, V10, P201, DOI 10.22190/JTESAP2202201K
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Keener TA, 2019, BMC MED EDUC, V19, DOI 10.1186/s12909-019-1645-4
Khalil M, 2022, J COMPUT ASSIST LEAR, V38, P1589, DOI 10.1111/jcal.12713
Khan ZR, 2022, INT J EDUC INTEGR, V18, DOI 10.1007/s40979-022-00118-9
Kraus S, 2021, SAGE OPEN, V11, DOI 10.1177/21582440211047576
Lancaster T, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-021-00070-0
Lauritzen J, 2023, AGING MENT HEALTH, V27, P343, DOI 10.1080/13607863.2022.2046699
Levine J, 2018, ASSESS EVAL HIGH EDU, V43, P1094, DOI 10.1080/02602938.2018.1434127
Lim WM, 2022, SERV IND J, V42, P481, DOI 10.1080/02642069.2022.2047941
Luck JA, 2022, HIGH EDUC RES DEV, V41, P1152, DOI 10.1080/07294360.2021.1890697
Lucky A, 2019, J SCI EDUC TECHNOL, V28, P414, DOI 10.1007/s10956-019-9770-8
Macfarlane B, 2014, STUD HIGH EDUC, V39, P339, DOI 10.1080/03075079.2012.709495
Marengo A., 2023, The educational value of artificial intelligence in higher education: a ten-year systematic literature review
Martins R.H., 2022, Internet Latent Corpus Journal, V12, P127
Maryon T, 2022, EDUC SCI, V12, DOI 10.3390/educsci12120901
McCabe DL, 1999, J HIGH EDUC, V70, P211, DOI 10.2307/2649128
MCCABE DL, 1993, J HIGH EDUC, V64, P522, DOI 10.2307/2959991
McCabe DL, 2002, RES HIGH EDUC, V43, P357, DOI 10.1023/A:1014893102151
McCabe DL, 2001, J HIGH EDUC-UK, V72, P29, DOI 10.2307/2649132
McCabe DL, 1997, RES HIGH EDUC, V38, P379, DOI 10.1023/A:1024954224675
McCabe DL, 2008, RES HIGH EDUC, V49, P451, DOI 10.1007/s11162-008-9092-9
McCabe DL, 2006, ACAD MANAG LEARN EDU, V5, P294, DOI 10.5465/AMLE.2006.22697018
Mentzer J.T., 1995, No Title, V16, P231
Miller AD, 2017, THEOR PRACT, V56, P121, DOI 10.1080/00405841.2017.1283574
Miller A, 2011, J EXP EDUC, V79, P169, DOI 10.1080/00220970903567830
Möller A, 2023, J FURTH HIGHER EDUC, V47, P338, DOI 10.1080/0309877X.2022.2130195
Mulisa F, 2021, COGENT EDUC, V8, DOI 10.1080/2331186X.2021.1935408
Newton P, 2016, ASSESS EVAL HIGH EDU, V41, P482, DOI 10.1080/02602938.2015.1024199
Nonis S., 2001, J EDUC BUS, V77, P69, DOI DOI 10.1080/08832320109599052
OCONNOR DO, 1981, LIBR TRENDS, V30, P9
Olofsson H, 2017, RES SYNTH METHODS, V8, P275, DOI 10.1002/jrsm.1237
Ottaway K, 2017, ADV PHYSIOL EDUC, V41, P368, DOI 10.1152/advan.00103.2016
Ouzzani M, 2016, SYST REV-LONDON, V5, DOI 10.1186/s13643-016-0384-4
Özcan M, 2019, BMC MED EDUC, V19, DOI 10.1186/s12909-019-1865-7
Paesano A, 2023, INT J ORGAN ANAL, V31, P1694, DOI 10.1108/IJOA-09-2020-2421
Palmatier RW, 2018, J ACAD MARKET SCI, V46, P1, DOI 10.1007/s11747-017-0563-4
Park C., 2003, Assessment and Evaluation in Higher Education, V28, P471, DOI [DOI 10.1080/02602930301677, https://doi.org/10.1080/02602930301677, 10.1080/02602930301677]
Park EJ, 2013, NURS EDUC TODAY, V33, P346, DOI 10.1016/j.nedt.2012.12.015
Pedro E, 2018, J INTELLECT CAP, V19, P407, DOI 10.1108/JIC-11-2016-0118
Peters MDJ, 2022, JBI EVID SYNTH, V20, P953, DOI 10.11124/JBIES-21-00242
Piteira M., 2019, 14 IBERIAN C INFORM
Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8
Powell WW, 1996, ADMIN SCI QUART, V41, P116, DOI 10.2307/2393988
Prasad S, 2005, INFORM MANAGE-AMSTER, V42, P1137, DOI 10.1016/j.im.2005.01.003
Qaderi A, 2016, INT J DIGIT SOC, V7, P1165, DOI 10.20533/ijds.2040.2570.2016.0142
Quinlan K.M., 2008, New Directions for Evaluation, P61, DOI [DOI 10.1002/EV.261, 10.1002/ev]
Ramírez-Noriega A, 2018, COMPUT INFORM, V37, P509, DOI 10.4149/cai_2018_2_509
Ramos R, 2020, EDUC SCI, V10, DOI 10.3390/educsci10120351
Reedy A, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-021-00075-9
Rodrigues M, 2023, INT J ORGAN ANAL, V31, P3413, DOI 10.1108/IJOA-05-2022-3293
Rodrigues M, 2022, J FAM BUS MANAG, V12, P780, DOI 10.1108/JFBM-12-2020-0116
Rowland S, 2018, ASSESS EVAL HIGH EDU, V43, P652, DOI 10.1080/02602938.2017.1391948
Rowley J., 2004, Management research news, V27, P31, DOI [10.1108/01409170410784185, DOI 10.1108/01409170410784185]
Royal KD, 2018, J VET MED EDUC, V45, P43, DOI 10.3138/jvme.0816-126r2
Seaton KA, 2019, INT J MATH EDUC SCI, V50, P1063, DOI 10.1080/0020739X.2019.1640399
Seeland J, 2022, INT J MATH EDUC SCI, V53, P673, DOI 10.1080/0020739X.2021.1981472
Seuring S, 2008, J CLEAN PROD, V16, P1699, DOI 10.1016/j.jclepro.2008.04.020
Seuring S, 2012, SUPPLY CHAIN MANAG, V17, P544, DOI 10.1108/13598541211258609
Small H., 1973, pdf
Snyder H, 2019, J BUS RES, V104, P333, DOI 10.1016/j.jbusres.2019.07.039
Sotiriadou P, 2020, STUD HIGH EDUC, V45, P2132, DOI 10.1080/03075079.2019.1582015
Spens K. M., 2006, International Journal of Physical Distribution & Logistics Management, V36, P374, DOI 10.1108/09600030610676259
Stanley D. S., 2019, INT J BUSINESS CONTI, V9, P350, DOI [https://doi.org/10.1504/ijbcrm.2019.102608, DOI 10.1504/IJBCRM.2019.102608]
Stephens JM, 2017, THEOR PRACT, V56, P111, DOI 10.1080/00405841.2017.1283571
Stephens JM, 2016, INT J EDUC INTEGR, V12, DOI 10.1007/s40979-016-0010-1
Stoesz BM, 2022, EDUC POLICY, V36, P1529, DOI 10.1177/0895904820983032
Stoesz BM, 2018, INT J EDUC INTEGR, V14, DOI 10.1007/s40979-018-0030-0
Surahman E, 2022, J COMPUT ASSIST LEAR, V38, P1535, DOI 10.1111/jcal.12708
Tabsh SW, 2017, QUAL ASSUR EDUC, V25, P378, DOI 10.1108/QAE-03-2017-0005
Tabsh SW, 2015, INT J ENG EDUC, V31, P1334
Tambe P, 2019, CALIF MANAGE REV, V61, P15, DOI 10.1177/0008125619867910
Tatum H, 2017, THEOR PRACT, V56, P129, DOI 10.1080/00405841.2017.1308175
Teodorescu D, 2009, HIGH EDUC, V57, P267, DOI 10.1007/s10734-008-9143-3
Tiong JJL, 2018, BMC MED EDUC, V18, DOI 10.1186/s12909-018-1274-3
Tomasev N, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-15871-z
Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375
Treinta FT., 2013, Production, V24, P508, DOI [DOI 10.1590/S0103-65132013005000078>.ACESSOEM24DEJUNHODE2021, 10.1590/S0103-65132013005000078, DOI 10.1590/S0103-65132013005000078]
Tsai NW, 2016, J EDUC BUS, V91, P387, DOI 10.1080/08832323.2016.1238808
U-World, 2021, Inteligencia artificial: qual sera o futuro da educacao
Uzun AM, 2020, COMPUT EDUC, V144, DOI 10.1016/j.compedu.2019.103700
van Eck NJ, 2008, J INFORMETR, V2, P263, DOI 10.1016/j.joi.2008.09.004
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vieira TI, 2023, CLIN ORAL INVEST, V27, P943, DOI 10.1007/s00784-022-04856-5
Walsh LL, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-021-00089-3
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Wasserman S., 1994, Social network analysis: Methods and applications, V1, P116, DOI DOI 10.1525/AE.1997.24.1.219
White H.D., 1981, Grif?th, B.C.
White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W
Whitley BE, 1998, RES HIGH EDUC, V39, P235, DOI 10.1023/A:1018724900565
Yang SC, 2017, ASIA PAC EDUC REV, V18, P385, DOI 10.1007/s12564-017-9497-2
Zhang YX, 2018, ASSESS EVAL HIGH EDU, V43, P812, DOI 10.1080/02602938.2017.1411467
Zhao L, 2022, EDUC RES REV-NETH, V36, DOI 10.1016/j.edurev.2022.100455
Zinchenko V, 2021, REV ROMANEASCA PENTR, V13, P81, DOI 10.18662/rrem/13.1/361
Zyoud SH, 2017, SUBST ABUSE TREAT PR, V12, DOI 10.1186/s13011-017-0090-9
NR 179
TC 1
Z9 1
U1 35
U2 44
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 0368-492X
EI 1758-7883
J9 KYBERNETES
JI Kybernetes
PD 2024 JAN 29
PY 2024
DI 10.1108/K-09-2023-1666
EA JAN 2024
PG 32
WC Computer Science, Cybernetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA GG3H1
UT WOS:001151468600001
DA 2024-09-05
ER
PT C
AU Qing, Z
Edara, P
AF Qing, Zhu
Edara, Praveen
GP IEEE Comp Soc
TI Human Vision vs. Computer Vision: A Readability Study in a Virtual
Reality Environment
SO 2022 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES ABSTRACTS
AND WORKSHOPS (VRW 2022)
LA English
DT Proceedings Paper
CT IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR)
CY MAR 12-16, 2022
CL ELECTR NETWORK
DE Text readability; Evaluation methods; Computer vision; Transportation;
Road sign readability; User study; Human factors; Human-centered
computing; Visualization; Visualization design and evaluation methods;
Applied computing; Operations research; Transportation
AB Text plays an important role in conveying information to users in a virtual reality (VR) environment. Both VR software and hardware are evolving rapidly to improve text display quality. However, evaluation of text readability still relies on human participants. In this study, cloud computer vision was used to evaluate text readability in VR. Human subjects were recruited to test the same text scenarios. The cloud computer vision-based approach produced results that were consistent with human vision-based recognition. The use of computer vision to automate text readability evaluation could significantly reduce the overall effort and time in developing readable text in VR.
C1 [Qing, Zhu; Edara, Praveen] Univ Missouri, Columbia, MO 65211 USA.
C3 University of Missouri System; University of Missouri Columbia
RP Qing, Z (corresponding author), Univ Missouri, Columbia, MO 65211 USA.
EM zqing@missouri.edu; edarap@missouri.edu
OI Qing, Zhu/0000-0002-3219-6971
CR [Anonymous], 2021, VISION AI DERIVE HNA
[Anonymous], PRICING CLOUD VISION
[Anonymous], 2021, VR VISIBILITY EXPT
[Anonymous], BEST PRACTICES RIFT
[Anonymous], 2009, Manual on uniform traffic control devices for streets and highways, P1
Blackman S., 2013, Beginning 3D Game Development with Unity 4: All-in-one, multi-platform game development (Technology in Action), V2nd
Borges M, 2018, IEEE INT C INT ROBOT, P2610, DOI 10.1109/IROS.2018.8593707
Bowman DA, 2007, COMPUTER, V40, P36, DOI 10.1109/MC.2007.257
Chu Peter, 2014, VR design: Transitioning from a 2d to 3d design paradigm
Dingler T, 2018, CHI 2018: EXTENDED ABSTRACTS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3170427.3188695
Dittrich Elisabeth, 2013, Virtual Augmented and Mixed Reality. Designing and Developing Augmented and Virtual Environments. 5th International Conference, VAMR 2013 Held as Part of HCI International 2013. Proceedings: LNCS 7936, P149, DOI 10.1007/978-3-642-39405-8_18
Freina L, 2015, ELEARN SOFTW EDUC, P133, DOI 10.12753/2066-026X-15-020
Grout Cameron., 2015, P 15 NZ C HUMAN COMP, P9, DOI DOI 10.1145/2808047.2808055
HAWK SR, 1991, IEEE T ENG MANAGE, V38, P316, DOI 10.1109/17.97438
International Sign Association, 2007, SIGNLINE, V51, P1
Jackson S., 2015, UNITY 3D UI ESSENTIA
Janai J, 2020, FOUND TRENDS COMPUT, V12, P1, DOI 10.1561/0600000079
Jiang H, 2017, INT CONF ELECTRO INF, P350, DOI 10.1109/EIT.2017.8053384
Khor WS, 2016, ANN TRANSL MED, V4, DOI 10.21037/atm.2016.12.23
Kujala S, 2003, BEHAV INFORM TECHNOL, V22, P1, DOI [10.1080/01449290301782, 10.1080/0144929021000055530]
Larson E, 2004, J NURS SCHOLARSHIP, V36, P260, DOI 10.1111/j.1547-5069.2004.04047.x
Long SB, 2021, INT J COMPUT VISION, V129, DOI 10.1007/s11263-020-01369-0
McKenzie C, 2017, Designing screen interfaces for VR (Google I/O '17)
Mehrfard A, 2021, COMP M BIO BIO E-IV, V9, P233, DOI 10.1080/21681163.2020.1835559
Motamedi A, 2017, ADV ENG INFORM, V32, P248, DOI 10.1016/j.aei.2017.03.005
Slater M, 2016, FRONT ROBOT AI, V3, DOI 10.3389/frobt.2016.00074
Solum H.H., 2019, Readability in Virtual reality, an investigation into displaying text in a virtual environment
U. Technologies, UN MAN TEXT MESH
VR Best Practice, VR BEST PRACT
Ziefle M, 1998, HUM FACTORS, V40, P554, DOI 10.1518/001872098779649355
NR 30
TC 0
Z9 1
U1 1
U2 9
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
BN 978-1-6654-8402-2
PY 2022
BP 61
EP 64
DI 10.1109/VRW55335.2022.00023
PG 4
WC Computer Science, Artificial Intelligence; Computer Science,
Cybernetics; Computer Science, Software Engineering
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BT2FN
UT WOS:000808111800016
DA 2024-09-05
ER
PT J
AU Mistrano, A
AF Mistrano, Al
TI Practitioner research regarding independent learning in sixth-form
education within eight Bedfordshire schools
SO TEACHER DEVELOPMENT
LA English
DT Article
DE practitioner research; independent learning; deep learning; performance
management; monitoring learning
AB The aim of this study was to conduct research about independent learning in post-16 education in order to assist the author, a teacher and senior leader, with developing college-wide improvement strategies. The research consisted of observations and surveys of teachers and students at eight schools in Bedfordshire in order to investigate the extent to which students and teachers work towards the creation of deep learning, in the sense defined, discussed and developed by Adey, Entwistle, Dibdin and DeakinCrick. The results point to students juggling between deep and surface learning strategies in conjunction with mixed messages from teachers and institutional practices. Conclusions drawn include the recognition that teachers, with the support of senior managers, need to take greater control of the discourse of performance management in order that the rush for examination success does not prove detrimental to the progress of young people.
C1 [Mistrano, Al] Samuel Whitbread Community Coll, Shefford, England.
RP Mistrano, A (corresponding author), Samuel Whitbread Community Coll, Shefford, England.
EM amistrano@swcc.beds.sch.uk
CR Adey P., 1999, Learning styles strategies: a review of research
Adey P., 1994, REALLY RAISING STAND
[Anonymous], 1988, LEARNING STRATEGIES, DOI DOI 10.1007/978-1-4899-2118-5_2
[Anonymous], TIMES HIGHER ED SUPP
Coleman M., 1999, PRACTITIONER RES ED, P83
Deakin-Crick R., 2006, LEARNING POWER PRACT
Department for Education and Skills, 2007, PART 16 18 YEAR OLDS
Department for Education and Skills, 2004, PED IN PRACT
Dibdin John, 2004, SAIL PROJECT STRATEG
Dweck C.S., 1999, SELF THEORIES
Harlen W., 2002, Research Evidence in Education Library
Joyce B., 2002, MODELS LEARNING TOOL, V2nd
Leat David, 2004, THINKING GEOGRAPHY
Office for Standards in Education, 2006, HDB INSP SCH
Office for Standards in Education, 2007, COND INSP GUID INSP
Wilson A., 2007, KNOWLEDGE POWER PART
NR 16
TC 0
Z9 2
U1 0
U2 0
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1366-4530
EI 1747-5120
J9 TEACH DEV
JI Teach. Dev.
PY 2008
VL 12
IS 3
BP 165
EP 177
DI 10.1080/13664530802259198
PG 13
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA V94HK
UT WOS:000213119900001
DA 2024-09-05
ER
PT J
AU Lamers, WS
Boyack, K
Larivière, V
Sugimoto, CR
van Eck, NJ
Waltman, L
Murray, D
AF Lamers, Wout S.
Boyack, Kevin
Lariviere, Vincent
Sugimoto, Cassidy R.
van Eck, Nees Jan
Waltman, Ludo
Murray, Dakota
TI Investigating disagreement in the scientific literature
SO ELIFE
LA English
DT Article
DE meta-research; disagreement; citation analysis; natural language
processing; metascience; None
ID CONSENSUS; CITATIONS; SCIENCE
AB Disagreement is essential to scientific progress but the extent of disagreement in science, its evolution over time, and the fields in which it happens remain poorly understood. Here we report the development of an approach based on cue phrases that can identify instances of disagreement in scientific articles. These instances are sentences in an article that cite other articles. Applying this approach to a collection of more than four million English-language articles published between 2000 and 2015 period, we determine the level of disagreement in five broad fields within the scientific literature (biomedical and health sciences; life and earth sciences; mathematics and computer science; physical sciences and engineering; and social sciences and humanities) and 817 meso-level fields. Overall, the level of disagreement is highest in the social sciences and humanities, and lowest in mathematics and computer science. However, there is considerable heterogeneity across the meso-level fields, revealing the importance of local disciplinary cultures and the epistemic characteristics of disagreement. Analysis at the level of individual articles reveals notable episodes of disagreement in science, and illustrates how methodological artifacts can confound analyses of scientific texts.
C1 [Lamers, Wout S.; van Eck, Nees Jan; Waltman, Ludo] Leiden Univ, Ctr Sci & Technol Studies, Leiden, Netherlands.
[Boyack, Kevin] SciTech Strategies Inc, Albuquerque, NM USA.
[Lariviere, Vincent] Univ Montreal, Ecole Bibliothecon & Sci Informat, Montreal, PQ, Canada.
[Sugimoto, Cassidy R.] Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA.
[Murray, Dakota] Indiana Univ, Sch Informat Comp & Engn, Bloomington, IN 47405 USA.
C3 Leiden University - Excl LUMC; Leiden University; Universite de
Montreal; University System of Georgia; Georgia Institute of Technology;
Indiana University System; Indiana University Bloomington
RP Lamers, WS (corresponding author), Leiden Univ, Ctr Sci & Technol Studies, Leiden, Netherlands.; Murray, D (corresponding author), Indiana Univ, Sch Informat Comp & Engn, Bloomington, IN 47405 USA.
EM w.s.lamers@cwts.leidenuniv.nl; dakmurra@iu.edu
RI Sugimoto, Cassidy R/AAV-2705-2021; Waltman, Ludo/B-5561-2008; van Eck,
Nees Jan/B-6042-2008
OI Sugimoto, Cassidy R/0000-0001-8608-3203; Waltman,
Ludo/0000-0001-8249-1752; van Eck, Nees Jan/0000-0001-8448-4521
FU Air Force Office of Scientific Research [FA9550-19-1-039]; Canada
Research Chairs
FX Air Force Office of Scientific Research FA9550-19-1-039 Dakota Murray;
Canada Research Chairs Vincent Lariviere; The funders had no role in
study design, data collection and interpretation, or the decision to
submit the work for publication.
CR [Anonymous], 2016, NAT METHODS, V13, P185
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.5148058
[Anonymous], 2017, GRAVITYS KISS DETECT
[Anonymous], 1996, STRUCTURE SCI REVOLU, DOI [DOI 10.7208/CHICAGO/9780226458106.001.0001, 10.7208/chicago/9780226458106.001.0001]
Balietti S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118747
Baron MG, 2017, NATURE, V543, P501, DOI 10.1038/nature21700
Bertin M, 2016, SCIENTOMETRICS, V109, P1417, DOI 10.1007/s11192-016-2134-8
BIGLAN A, 1973, J APPL PSYCHOL, V57, P195, DOI 10.1037/h0034701
Bornmann L, 2020, SCIENTOMETRICS, V122, P1051, DOI 10.1007/s11192-019-03326-2
Boyack KW, 2018, J INFORMETR, V12, P59, DOI 10.1016/j.joi.2017.11.005
Bruggeman J, 2012, AM SOCIOL REV, V77, P1050, DOI 10.1177/0003122412463574
Castelvecchi D, 2020, NATURE, V583, P500, DOI 10.1038/d41586-020-02126-6
Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112
Chen CM, 2018, J INFORMETR, V12, P158, DOI 10.1016/j.joi.2017.12.004
COLE S, 1988, AM SOCIOL REV, V53, P152, DOI 10.2307/2095740
COLE S, 1983, AM J SOCIOL, V89, P111, DOI 10.1086/227835
Comte A, 1856, POSITIVE PHILOS A CO
de Cetina TC, 1999, INT J GYNECOL OBSTET, V64, P71
Debat P, 2003, PRECAMBRIAN RES, V123, P47, DOI 10.1016/S0301-9268(03)00046-9
Dieckmann NF, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0211269
Doody O, 2012, Nurse Educ Pract, V12, P232, DOI 10.1016/j.nepr.2012.03.002
Evans ED, 2016, SOCIOL SCI, V3, P757, DOI 10.15195/v3.a32
Fanelli D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066938
Fanelli D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010068
French BM, 2010, EARTH-SCI REV, V98, P123, DOI 10.1016/j.earscirev.2009.10.009
HARGENS LL, 1988, AM SOCIOL REV, V53, P139, DOI 10.2307/2095739
He J., 2018, Frontiers in Research Metrics and Analytics, V3, P27, DOI DOI 10.3389/FRMA.2018.00027
Hui Yang, 2012, 2012 IEEE 20th International Requirements Engineering Conference (RE 2012), P11, DOI 10.1109/RE.2012.6345795
Hyland K., 1998, HEDGING SCI RES ARTI
Kalter H, 2003, NEUROTOXICOL TERATOL, V25, P131, DOI 10.1016/S0892-0362(03)00010-2
Kitcher P., 1995, The Advancement of Science: Science Without Legend, DOI [10.1093/0195096533.001.0001, DOI 10.1093/0195096533.001.0001]
Lamont M., 2010, How professors think. Inside the curious world of academic judgement, DOI DOI 10.4159/9780674054158
Langer MC, 2017, NATURE, V551, pE1, DOI 10.1038/nature24011
Lariviere Vincent, 2013, Nature, V504, P211
Latour B., 1987, Science in Action
Millan MJ, 2006, PHARMACOL THERAPEUT, V110, P135, DOI 10.1016/j.pharmthera.2005.11.006
Miranda R, 2018, J INFORMETR, V12, P1015, DOI 10.1016/j.joi.2018.08.006
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Munro S, 2003, CELL, V115, P377, DOI 10.1016/S0092-8674(03)00882-1
Murphy K, 2009, NEUROIMAGE, V44, P893, DOI 10.1016/j.neuroimage.2008.09.036
Murray D, 2021, sci-text-disagreement swh:1:rev:b361157a9cfeb536ca255422280e154855b4e9a3 Software Heritage
Nicholson JM, 2021, bioRxiv, DOI [10.1101/2021.03.15.435418, DOI 10.1101/2021.03.15.435418]
Nicolaisen J, 2012, J INFORMETR, V6, P276, DOI 10.1016/j.joi.2011.08.001
Oreskes N., 2011, Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming
Popper K., 1963, Readings in the Philosophy of Science, P33, DOI [https://doi.org/10.1063/1.3050617, DOI 10.1063/1.3050617]
Radicchi F, 2012, SCI REP-UK, V2, DOI 10.1038/srep00815
Rife SC, 2021, LEARN PUBL, V34, P454, DOI 10.1002/leap.1379
Sarewitz D, 2011, NATURE, V478, P7, DOI 10.1038/478007a
Shapin S., 2011, Leviathan and the air-pump, DOI [10.1515/9781400838493, DOI 10.1515/9781400838493]
Shwed U, 2012, AM SOCIOL REV, V77, P1064, DOI 10.1177/0003122412463018
Shwed U, 2010, AM SOCIOL REV, V75, P817, DOI 10.1177/0003122410388488
Small H, 2019, SCIENTOMETRICS, V118, P1079, DOI 10.1007/s11192-019-03016-z
Small H, 2018, J INFORMETR, V12, P461, DOI 10.1016/j.joi.2018.03.007
Small H, 2017, J INFORMETR, V11, P46, DOI 10.1016/j.joi.2016.11.001
Smolin L., 2007, The trouble with physics: The Rise of String Theory, the Fall of a Science, and What Comes Next
Szarvas G, 2012, COMPUT LINGUIST, V38, P335, DOI 10.1162/COLI_a_00098
Tannen D, 2002, J PRAGMATICS, V34, P1651, DOI 10.1016/S0378-2166(02)00079-6
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Traag VA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41695-z
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Whitley R., 2000, The Intellectual and Social Organization of the Sciences
Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099
NR 63
TC 22
Z9 22
U1 3
U2 32
PU eLIFE SCIENCES PUBL LTD
PI CAMBRIDGE
PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND
SN 2050-084X
J9 ELIFE
JI eLife
PD DEC 24
PY 2021
VL 10
AR e72737
DI 10.7554/eLife.72737; 10.7554/eLife.72737.sa1; 10.7554/eLife.72737.sa2
PG 20
WC Biology
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Life Sciences & Biomedicine - Other Topics
GA XV0WA
UT WOS:000734672100001
PM 34951588
OA Green Published, Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Schochet, PZ
AF Schochet, Peter Z.
TI Estimators for Clustered Education RCTs Using the Neyman Model for
Causal Inference
SO JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS
LA English
DT Article
DE Statistics; experimental design; program evaluation; research
methodology
AB This article examines the estimation of two-stage clustered designs for education randomized control trials (RCTs) using the nonparametric Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for the study population (the finite-population model) or randomly selected from a vaguely defined universe (the super-population model). Both approaches allow for heterogeneity of treatment effects. Appropriate estimation methods and asymptotic moments are discussed for each model using simple differences-in-means estimators and those that include baseline covariates. An empirical application using a large-scale education RCT shows that the choice of the finite- or super-population approach can matter. Thus, the choice of framework and sensitivity analyses should be specified and justified in the analysis protocols.
C1 Math Policy Res Inc, Princeton, NJ 08543 USA.
C3 Mathematica
RP Schochet, PZ (corresponding author), Math Policy Res Inc, POB 2393, Princeton, NJ 08543 USA.
EM pschochet@mathematica-mpr.com
CR Agodini R., 2009, ACHIEVEMENT EFFECTS
[Anonymous], 1998, Design and Analysis of Group-Randomized Trials
[Anonymous], 2003, Analysis of Panel Data, DOI DOI 10.1017/CBO9780511754203
BALTAGI BH, 1994, J ECONOMETRICS, V62, P67, DOI 10.1016/0304-4076(94)90017-5
Bryk A. S., 1992, HIERARCHICAL LINEAR
De Leeuw Jan., 2008, HDB MULTILEVEL ANAL, DOI 10.1007/978-0-387-73186-5
Fieuws S, 2007, STAT METHODS MED RES, V16, P387, DOI 10.1177/0962280206075305
Freedman DA, 2008, ADV APPL MATH, V40, P180, DOI 10.1016/j.aam.2006.12.003
Gail MH, 1996, STAT MED, V15, P1069, DOI 10.1002/(SICI)1097-0258(19960615)15:11<1069::AID-SIM220>3.0.CO;2-Q
Hajek J., 1960, Publication of the Mathematical Institute of the Hungarian Academy of Sciences, V3, P361
HARVILLE DA, 1977, J AM STAT ASSOC, V72, P320, DOI 10.2307/2286796
HOGLUND T, 1978, SCAND J STAT, V5, P69
HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064
Imai K, 2009, STAT SCI, V24, P29, DOI 10.1214/08-STS274
LAIRD NM, 1982, BIOMETRICS, V38, P963, DOI 10.2307/2529876
LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.1093/biomet/73.1.13
Neyman J.S., 1923, Statistical Science, V10, P1, DOI DOI 10.1214/SS/1177012031
Pfeffermann D, 1998, J ROY STAT SOC B, V60, P23, DOI 10.1111/1467-9868.00106
RAO CR, 1972, J AM STAT ASSOC, V67, P112, DOI 10.2307/2284708
Raudenbush S. W., 2002, HIERARCHICAL LINEAR
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
Rubin D.B., 1977, J. Educ. Stat., V2, P1, DOI DOI 10.3102/10769986002001001
RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350
RUBIN DB, 1980, J AM STAT ASSOC, V75, P591, DOI 10.2307/2287653
Schochet PZ, 2008, J EDUC BEHAV STAT, V33, P62, DOI 10.3102/1076998607302714
Schochet PZ, 2010, J STAT PLAN INFER, V140, P246, DOI 10.1016/j.jspi.2009.07.008
Small DS, 2008, J AM STAT ASSOC, V103, P271, DOI 10.1198/016214507000000897
SWAMY PAV, 1972, ECONOMETRICA, V40, P261, DOI 10.2307/1909405
Tate RL, 2007, J EXP EDUC, V75, P317, DOI 10.3200/JEXE.75.4.317-338
Thum YM, 1997, J EDUC BEHAV STAT, V22, P77, DOI 10.3102/10769986022001077
Wooldridge JM, 2010, ECONOMETRIC ANALYSIS OF CROSS SECTION AND PANEL DATA, 2ND EDITION, P3
Yang L, 2001, AM STAT, V55, P314, DOI 10.1198/000313001753272466
NR 32
TC 21
Z9 22
U1 0
U2 4
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1076-9986
EI 1935-1054
J9 J EDUC BEHAV STAT
JI J. Educ. Behav. Stat.
PD JUN
PY 2013
VL 38
IS 3
BP 219
EP 238
DI 10.3102/1076998611432176
PG 20
WC Education & Educational Research; Social Sciences, Mathematical Methods;
Psychology, Mathematical
WE Social Science Citation Index (SSCI)
SC Education & Educational Research; Mathematical Methods In Social
Sciences; Psychology
GA 298CX
UT WOS:000330302700001
DA 2024-09-05
ER
PT C
AU Hao, YH
Li, WB
AF Hao, Yunhong
Li, Wenbo
BE Chen, J
Xu, QR
Wu, XB
TI Research on the comprehensive evaluation of firms' technology innovation
ability based on neural network
SO ISMOT'07: Proceedings of the Fifth International Symposium on Management
of Technology, Vols 1 and 2: MANAGING TOTAL INNOVATION AND OPEN
INNOVATION IN THE 21ST CENTURY
LA English
DT Proceedings Paper
CT 5th International Symposium on Management of Technology
CY JUN 01-03, 2007
CL Hangzhou, PEOPLES R CHINA
DE neural networks; back propagation algorithm; technology innovation
ability; comprehensive evaluation
AB Nowadays, technology innovation is a fundamental determinant of value creation in enterprises and economic growth. Therefore, the comprehensive evaluation of technology innovation ability has become a significant concern both for enterprises and governments. The artificial neural network (ANN) is a technique that is studied heavily and used in applications for engineering and scientific fields for various purposes ranging from control systems to urban planning. Its generalization powers have not only received admiration from the engineering and scientific fields, but in recent years, many innovation researchers are taking an interest in the application of artificial neural networks. In this paper, we propose a comprehensive evaluation method based on the neural networks, applying the artificial neural network to the comprehensive evaluation of technology innovation ability is a breakthrough in concept and technology. The paper is organized as follows. The first section is introduction. The second section constructs the evaluation index system of firms' technology innovation ability. The third section is the basic model, and first, it introduces some basis elements and concepts to the readers that are central to understand the approach. The fourth section, using survey data on some firms, the neural networks are trained to provide some intelligent decisions, and the simulation results demonstrate that the method performs well in the evaluation of innovation. ability. Last, it contains some concluding comments.
C1 Zhejiang Gongshang Univ, Sch Business Adm, Hangzhou 310018, Zhejiang, Peoples R China.
C3 Zhejiang Gongshang University
RP Hao, YH (corresponding author), Zhejiang Gongshang Univ, Sch Business Adm, Hangzhou 310018, Zhejiang, Peoples R China.
RI li, wenbo/GZM-8930-2022; li, wenbo/JAC-7955-2023
CR [Anonymous], 1987, IEEE ASP MAGAZINE, DOI DOI 10.1109/MASSP.1987.1165576
DEJONG JPJ, 2001, DETERMINANTS INNOVAT
Feng S, 1999, EXPERT SYST APPL, V16, P21, DOI 10.1016/S0957-4174(98)00028-1
Haykin S.S., 1995, Neural networks. A comprehensive foundation
SOLOW RM, 1956, Q J ECON, V70, P65, DOI 10.2307/1884513
Tidd J., 2020, MANAGING INNOVATION
NR 6
TC 0
Z9 0
U1 0
U2 0
PU ZHEJIANG UNIV PRESS
PI HANGZHOU
PA YUGU ROAD 20,, HANGZHOU, ZHEJIANG 310027, PEOPLES R CHINA
BN 978-7-89490-375-4
PY 2007
BP 413
EP 416
PG 4
WC Management; Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics; Operations Research & Management Science
GA BGL01
UT WOS:000248091800085
DA 2024-09-05
ER
PT J
AU Calderon, K
Serrano, N
Blanco, C
Gutierrez, I
AF Calderon, Kevin
Serrano, Nicolas
Blanco, Carmen
Gutierrez, Inigo
TI Automated and continuous assessment implementation in a programming
course
SO COMPUTER APPLICATIONS IN ENGINEERING EDUCATION
LA English
DT Article
DE automated assessment tool; continuous assessment; deep learning;
design-based research; programming subject
ID DESIGN SCIENCE RESEARCH; EDUCATION; IMPACT; TOOL
AB Continuous assessment is an assessment methodology whose objective is to assess students on an ongoing basis. However, designing, organizing, correcting, and evaluating continuous assessment increases the workload of teachers. Moreover, this methodology may not promote deep learning if it is not implemented properly. In this study, we implemented continuous assessment in an undergraduate programming subject using an automated assessment tool to reduce the workload of professors. We used design-based research (DBR) to implement a prototype of assessment methodology which includes an automated assessment tool developed by our research group. DBR provides us with a scientific background for this implementation through an iterative process in which we progressively come to assess all the activities that students perform in the course. In the different iterations of this process, we have collected students' final and project grades, and their opinions through surveys about the assessments we have implemented. These results allow us to demonstrate that the performance of at least two types of students improves after the implementation of continuous assessment, while at the same time, the depth of learning in the class is not affected. We have also found that students are more motivated and committed to the course when continuous assessment is used as they prefer automated assessment over the traditional exercises. In addition, the implementation of the continuous assessment has shown us some unexpected outcomes about flexibility in methodology design, collection of large amounts of data from the learning process, and students acquiring useful skills for programming. In reality, this can result in students gaining deeper knowledge if they are confronted with a greater number of situations during this time in which they test their knowledge.
C1 [Calderon, Kevin; Serrano, Nicolas; Blanco, Carmen; Gutierrez, Inigo] Univ Navarra, TECNUN Sch Engn, Pamplona, Spain.
[Calderon, Kevin] Paseo de Manuel Lardizabal,N 13, Donostia San Sebastian 20018, Spain.
C3 University of Navarra
RP Calderon, K (corresponding author), Paseo de Manuel Lardizabal,N 13, Donostia San Sebastian 20018, Spain.
EM kcalderon@unav.es
RI Blanco, Carmen/AAA-5446-2019; Serrano, Nicolas/V-7304-2017
OI Blanco, Carmen/0000-0001-6907-5367; Calderon Maceda,
Kevin/0000-0001-8743-5063
CR Bloxham S., 2007, Developing Effective Assessment in Higher Education: a practical guide
Calderon K., 2023, J UNIV TEACH LEARN P, V19
Carless D., 2006, How assessment supports learning: Learning-oriented assessment in action
Carstensen AK, 2019, EUR J ENG EDUC, V44, P85, DOI 10.1080/03043797.2018.1498459
Cole JS, 2012, EUR J ENG EDUC, V37, P508, DOI 10.1080/03043797.2012.719002
Draper SW, 2009, BRIT J EDUC TECHNOL, V40, P285, DOI 10.1111/j.1467-8535.2008.00920.x
Edstrom K., 2003, STUDENT INVOLVEMENT
Ferreira Deller James, 2017, Journal of Educational Technology & Society, V20, P182
Gibbs G., 2005, LEARNING TEACHING HI, P3, DOI DOI 10.1007/978-3-8348-9837-1
Gikandi JW, 2011, COMPUT EDUC, V57, P2333, DOI 10.1016/j.compedu.2011.06.004
Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625
Heywood J, 2005, ENGINEERING EDUCATION: RESEARCH AND DEVELOPMENT IN CURRICULUM AND INSTRUCTION, P1, DOI 10.1002/0471744697
Jordan S.E., 2009, Practitioner Research in Higher Education, V3, P11
Laakso MJ, 2018, EDUC INF TECHNOL, V23, P1655, DOI 10.1007/s10639-017-9659-1
Leung SF, 2008, NURS EDUC TODAY, V28, P711, DOI 10.1016/j.nedt.2007.11.004
March ST, 2008, MIS QUART, V32, P725
Martin-Carrasco F. J., 2014, 6th International Conference on Computer-Supported Education (CSEDU 2014). Proceedings, P103
Mazur E, 2009, SCIENCE, V323, P50, DOI 10.1126/science.1168927
Misut M, 2017, INT J EMERG TECHNOL, V12, P175, DOI 10.3991/ijet.v12i04.6608
Montolio D, 2015, MULTIDISCIP J EDUC S, V2, P128, DOI 10.4995/muse.2015.3447
Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302
Perez-Martinez J. E., 2009, P RES ENG ED S PALM
Pietikainen R. S., 2016, CONTINUOUS ASSESSMEN
Reina-Paz M. D., 2014, J INT ED RES, V10, P61, DOI DOI 10.19030/JIER.V10I1.5.8460
Restrepo-Calle F, 2019, COMPUT APPL ENG EDUC, V27, P80, DOI 10.1002/cae.22058
Sangwin C., 2013, Computer-aided assessment of mathematics
Serrano N., 2021, P 17 INT CDIO C
Serrano N, 2018, 4TH INTERNATIONAL CONFERENCE ON HIGHER EDUCATION ADVANCES (HEAD'18), P987, DOI 10.4995/HEAd18.2018.8132
TAN CM, 1992, HIGH EDUC, V23, P255, DOI 10.1007/BF00145016
Thambusamy R., 2021, Eur. J. Soc. Behav. Sci, V30, P63, DOI [10.15405/ejsbs.289, DOI 10.15405/EJSBS.289]
Trotter E., 2006, ASSESS EVAL HIGH EDU, V31, P505, DOI [10.1080/02602930600679506, DOI 10.1080/02602930600679506]
van Aken JE, 2005, BRIT J MANAGE, V16, P19, DOI 10.1111/j.1467-8551.2005.00437.x
NR 32
TC 0
Z9 0
U1 4
U2 9
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1061-3773
EI 1099-0542
J9 COMPUT APPL ENG EDUC
JI Comput. Appl. Eng. Educ.
PD JAN
PY 2024
VL 32
IS 1
DI 10.1002/cae.22681
EA SEP 2023
PG 14
WC Computer Science, Interdisciplinary Applications; Education, Scientific
Disciplines; Engineering, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Education & Educational Research; Engineering
GA FA5I4
UT WOS:001074661100001
OA Green Published, hybrid
DA 2024-09-05
ER
PT J
AU Castro, C
Leiva, V
Garrido, D
Huerta, M
Minatogawa, V
AF Castro, Cecilia
Leiva, Victor
Garrido, Diego
Huerta, Mauricio
Minatogawa, Vinicius
TI Blockchain in clinical trials: Bibliometric and network studies of
applications, challenges, and future prospects based on data analytics
SO COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
LA English
DT Article
DE Artificial intelligence; Bibliometry; Blockchain technology; Data
management; Interdisciplinary research; Latent Dirichlet allocation;
Network analysis; PRISMA methodology
ID TOOL
AB This study conducts a comprehensive analysis on the usage of the blockchain technology in clinical trials, based on a curated corpus of 107 scientific articles from the year 2016 through the first quarter of 2024. Utilizing a methodological framework that integrates bibliometric analysis, network analysis, thematic mapping, and latent Dirichlet allocation, the study explores the terrain and prospective developments within this usage based on data analytics. Through a meticulous examination of the analyzed articles, the present study identifies seven key thematic areas, highlighting the diverse applications and interdisciplinary nature of blockchain in clinical trials. Our findings reveal blockchain capability to enhance data management, participant consent processes, as well as overall trial transparency, efficiency, and security. Additionally, the investigation discloses the emerging synergy between blockchain and advanced technologies, such as artificial intelligence and federated learning, proposing innovative directions for improving clinical research methodologies. Our study underscores the collaborative efforts in dealing with the complexities of integrating blockchain into the areas of clinical trials and healthcare, delineating the transformative potential of blockchain technology in revolutionizing these areas by addressing challenges and promoting practices of efficient, secure, and transparent research. The delineated themes and networks of collaboration provide a blueprint for future inquiry, showing the importance of empirical research to narrow the gap between theoretical promise and practical implementation.
C1 [Castro, Cecilia] Univ Minho, Ctr Math, Braga, Portugal.
[Leiva, Victor; Garrido, Diego; Huerta, Mauricio] Pontificia Univ Catolica Valparaiso, Escuela Ingn Ind, Valparaiso, Chile.
[Minatogawa, Vinicius] Pontificia Univ Catolica Valparaiso, Escuela Ingn Construcc & Transporte, Valparaiso, Chile.
C3 Universidade do Minho; Pontificia Universidad Catolica de Valparaiso;
Pontificia Universidad Catolica de Valparaiso
RP Leiva, V (corresponding author), Pontificia Univ Catolica Valparaiso, Escuela Ingn Ind, Valparaiso, Chile.
EM victorleivasanchez@gmail.com
RI Leiva, Victor/AAM-7834-2021; Costa e Castro, Cecilia Maria
Vasconcelos/ACU-7420-2022
OI Leiva, Victor/0000-0003-4755-3270; Costa e Castro, Cecilia Maria
Vasconcelos/0000-0001-9897-8186
FU Chilean funds from the Vice-rectorate for Research; Creation, and
Innovation (VINCI) of the Pontificia Universidad Catolica de Valparaiso
[039.470/2024]; Portuguese funds through the CMAT-Research Centre of
Mathematics of University of Minho, Portugal [UIDB/00013/2020,
UIDP/00013/2020]
FX This research was partially supported by Chilean funds from the
Vice-rectorate for Research, Creation, and Innovation (VINCI) of the
Pontificia Universidad Catolica de Valparaiso, within project grant
number 039.470/2024 (Victor Leiva) ; and by Portuguese funds through the
CMAT-Research Centre of Mathematics of University of Minho, Portugal,
within projects UIDB/00013/2020
(https://doi.org/10.54499/UIDB/00013/2020) and UIDP/00013/2020
(https://doi.org/10.54499/UIDP/00013/2020) (Cecilia Castro) . The
authors would also like to thank the Editors and reviewers for their
constructive comments, which led to improvements in the presentation of
the article.
CR Abbas Asad, 2024, Personal and Ubiquitous Computing, V28, P59, DOI 10.1007/s00779-021-01583-8
Akbar MA, 2024, J SOFTW-EVOL PROC, V36, DOI 10.1002/smr.2629
Akbar MA, 2022, J SOFTW-EVOL PROC, V34, DOI 10.1002/smr.2500
Albanese G, 2020, J AMB INTEL HUM COMP, V11, P4909, DOI 10.1007/s12652-020-01761-1
Albiol-Perarnau M, 2024, ATEN PRIM, V56, DOI 10.1016/j.aprim.2023.102848
Ali Z., 2023, Ind. J. Med. Health Sci., V1, P74
Aljaloud A, 2023, TECHNOLOGIES, V11, DOI 10.3390/technologies11040084
Alkady W, 2022, CHEMOMETR INTELL LAB, V224, DOI 10.1016/j.chemolab.2022.104535
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Aykroyd RG, 2019, TECHNOL FORECAST SOC, V144, P221, DOI 10.1016/j.techfore.2019.01.005
Azrour M., 2024, Blockchain and Machine Learning for IoT Security
Bandara E., 2022, J. Bank. Financ. Technol., V6, P43
Baysal MV, 2023, J SUPERCOMPUT, V79, P3112, DOI 10.1007/s11227-022-04772-1
Behfar SK, 2024, DATA POLICY, V6, DOI 10.1017/dap.2024.4
Benchoufi M, 2017, TRIALS, V18, DOI 10.1186/s13063-017-2035-z
Bendavid E, 2024, SCI ADV, V10, DOI 10.1126/sciadv.adn0671
Bennet D., 2024, ADI J. Recent Innov., V5, P192
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011
Chaouch H., 2024, Mathematics, V12, P2112
Charles WM, 2024, JMIR RES PROTOC, V13, DOI 10.2196/50339
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
David S., 2023, Unleashing the Potentials of Blockchain Technology for Healthcare Industries, P37
de Melo-Diogo M., 2023, Research Anthology on Convergence of Blockchain, Internet of Things, and Security, P607
de Oliveira HM, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22103743
Dhandapani PB, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11091478
Drosatos G, 2019, COMPUT STRUCT BIOTEC, V17, P229, DOI 10.1016/j.csbj.2019.01.010
Fatoum H, 2021, J MED INTERNET RES, V23, DOI 10.2196/19846
Ferretti S, 2024, SENSORS-BASEL, V24, DOI 10.3390/s24041270
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7
Gao YL, 2024, EXPERT SYST APPL, V245, DOI 10.1016/j.eswa.2023.122982
Ghadge A, 2023, INT J PROD RES, V61, P6633, DOI 10.1080/00207543.2022.2125595
Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grün B, 2011, J STAT SOFTW, V40, P1
Guduri M, 2024, IEEE T CONSUM ELECTR, V70, P2608, DOI 10.1109/TCE.2023.3315415
Hang L., 2022, Peer-to-Peer Netw. Appl., V16, P520
Hang L, 2022, IET COMMUN, V16, P2371, DOI 10.1049/cmu2.12488
Hannan S.A., 2023, International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET), V12, P64
Hirano T, 2020, J MED INTERNET RES, V22, DOI 10.2196/18938
Huh K.Y., 2021, J. Med. Internet Res., V9
Huh KY, 2022, CTS-CLIN TRANSL SCI, V15, P1257, DOI 10.1111/cts.13246
Jamil F, 2022, COMPUT IND ENG, V170, DOI 10.1016/j.cie.2022.108327
Krittanawong C, 2022, CAN J CARDIOL, V38, P185, DOI 10.1016/j.cjca.2021.11.011
Lahjouji M., 2023, J. Theor. Appl. Inf. Technol., V101, P952
Leiva V, 2024, CHIL J STAT, V15, P81, DOI 10.32372/chjs.15-01-05
Li H, 2022, J HEALTHC ENG, V2022, DOI 10.1155/2022/6111543
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Mahdi E, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21186319
Manchini C, 2023, INFORM SCIENCES, V627, P280, DOI 10.1016/j.ins.2022.10.076
Maslove David M, 2018, JMIR Med Inform, V6, pe11949, DOI 10.2196/11949
Mazucheli J, 2022, COMPUT METH PROG BIO, V221, DOI 10.1016/j.cmpb.2022.106816
Mendonca M.O., 2024, Signal Processing and Machine Learning Theory, P869
Miller M.K., 2024, The Social Science of the COVID-19 Pandemic: A Call to Action for Researchers
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Murzintcev Nikita., 2016, ldatuning: Tuning of the Latent Dirichlet Allocation Models Parameters
Nakamoto S., 2008, Technical Report, P1
NEWMAN M. E. J., 2010, Networks
Nor AKM, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21238020
Omar IA, 2021, ARAB J SCI ENG, V46, P3001, DOI 10.1007/s13369-020-04989-3
Omar IA, 2020, BMC MED RES METHODOL, V20, DOI 10.1186/s12874-020-01109-5
Padmanabhan R, 2021, COMPUT METH PROG BIO, V209, DOI 10.1016/j.cmpb.2021.106301
Palacios CA, 2021, ENTROPY-SWITZ, V23, DOI 10.3390/e23040485
Park JJH, 2021, LANCET GLOB HEALTH, V9, pE711, DOI 10.1016/S2214-109X(20)30542-8
Poly TN, 2023, COMPUT METH PROG BIO, V231, DOI 10.1016/j.cmpb.2023.107358
R Core Team, 2023, R LANG ENV STAT COMP
Rahman MZ, 2023, COMPUT BIOL MED, V154, DOI 10.1016/j.compbiomed.2023.106583
Ur Rahman MZ, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2023.e22454
Raj A, 2024, HEALTH SERV OUTCOME, V24, P112, DOI 10.1007/s10742-023-00306-1
Ramachandran M., 2023, Blockchain Healthc. Today, V6, P286
Rodríguez-Belenguer P, 2024, COMPUT METH PROG BIO, V246, DOI 10.1016/j.cmpb.2024.108011
Rojas F, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21155198
Sardar I, 2023, STOCH ENV RES RISK A, V37, P345, DOI 10.1007/s00477-022-02307-x
Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x
Selvarajan S, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-34354-x
Shukla N, 2020, COMPUT METH PROG BIO, V183, DOI 10.1016/j.cmpb.2019.105075
Tagde P, 2021, ENVIRON SCI POLLUT R, V28, P52810, DOI 10.1007/s11356-021-16223-0
Tang J, 2014, PR MACH LEARN RES, V32
Tanwar S, 2020, J INF SECUR APPL, V50, DOI 10.1016/j.jisa.2019.102407
Thacker P, 2021, BMJ-BRIT MED J, V375, DOI 10.1136/bmj.n2635
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wong DR, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08874-y
Wu Z, 2024, COMPUT METH PROG BIO, V247, DOI 10.1016/j.cmpb.2024.108106
Yu DJ, 2024, EXPERT SYST APPL, V246, DOI 10.1016/j.eswa.2024.123188
Zhang P, 2018, ADV COMPUT, V111, P1, DOI 10.1016/bs.adcom.2018.03.006
Zheng JF, 2024, SCI REP-UK, V14, DOI 10.1038/s41598-024-52274-2
Zhou Tianshu, 2024, Stud Health Technol Inform, V310, P1335, DOI 10.3233/SHTI231182
Zhuang Y, 2022, J MED INTERNET RES, V24, DOI 10.2196/36774
NR 92
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 0169-2607
EI 1872-7565
J9 COMPUT METH PROG BIO
JI Comput. Meth. Programs Biomed.
PD OCT
PY 2024
VL 255
AR 108321
DI 10.1016/j.cmpb.2024.108321
PG 20
WC Computer Science, Interdisciplinary Applications; Computer Science,
Theory & Methods; Engineering, Biomedical; Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Medical Informatics
GA A2F6P
UT WOS:001280744300001
PM 39053350
DA 2024-09-05
ER
PT C
AU Guo, FQ
Xiao, H
AF Guo, Fengqun
Xiao, Hui
BE Fei, M
Peng, C
Su, Z
Song, Y
Han, Q
TI Research on Visual Environment Evaluation System of Subway Station Space
SO COMPUTATIONAL INTELLIGENCE, NETWORKED SYSTEMS AND THEIR APPLICATIONS
SE Communications in Computer and Information Science
LA English
DT Proceedings Paper
CT International Conference of Life System Modeling and Simulation (LSMS) /
International Conference on Intelligent Computing for Sustainable Energy
and Environment (ICSEE)
CY SEP 20-23, 2014
CL Shanghai, PEOPLES R CHINA
DE LED lighting; visual environment; evaluation system; particle swarm
optimization
AB Based on the energy crisis, LED with its energy-saving and environmental friendly is gradually used to the subway station space lighting. But now, there are little materials about the visual environment evaluation for semiconductor lighting, so that the use of LED lighting lacks theoretical basis and data support. So, in order to promote the LED lighting in subway station space, it's very important to evaluate the visual environment. Therefore, the core of this paper was to build a theoretical model to evaluate the visual environment of subway station space using Particle Swarm Optimization. Firstly, chose 16 evaluation indexes which were fit for the subway station visual environment evaluation and got the initial judgment matrix through pair wise comparison, after that, established the non-linear consistency correction model. Finally, used Particle Swarm Optimization to calculate the judgment matrix with better consistency and the corresponding index weight, and constructed the theoretical model.
C1 [Guo, Fengqun; Xiao, Hui] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China.
C3 Tongji University
RP Guo, FQ (corresponding author), Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China.
CR Ding B., 2010, SYSTEM ENG
Du Y., 2011, MULTIATTRIBUTE PROBL
Kennedy J, 1997, PROCEEDINGS OF 1997 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '97), P303, DOI 10.1109/ICEC.1997.592326
Liu S., 2011, RES FUZZY COMPREHENS
Lu WZ, 2003, NEUROCOMPUTING, V51, P387, DOI 10.1016/S0925-2312(02)00623-9
Yin D. W., 2011, RES AERO ENGINE MODE
Zhang Y., 2005, RES LIGHTING ENV QUA
NR 7
TC 1
Z9 1
U1 1
U2 5
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 1865-0929
BN 978-3-662-45260-8
J9 COMM COM INF SC
PY 2014
VL 462
BP 169
EP 179
PG 11
WC Computer Science, Artificial Intelligence; Robotics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Robotics
GA BD3QP
UT WOS:000360077500018
DA 2024-09-05
ER
PT J
AU Cohan, A
Goharian, N
AF Cohan, Arman
Goharian, Nazli
TI Scientific document summarization via citation contextualization and
scientific discourse
SO INTERNATIONAL JOURNAL ON DIGITAL LIBRARIES
LA English
DT Article
DE Scientific document summarization; Text summarization; Citation
analysis; Natural language processing
ID MODELS
AB The rapid growth of scientific literature has made it difficult for the researchers to quickly learn about the developments in their respective fields. Scientific summarization addresses this challenge by providing summaries of the important contributions of scientific papers. We present a framework for scientific summarization which takes advantage of the citations and the scientific discourse structure. Citation texts often lack the evidence and context to support the content of the cited paper and are even sometimes inaccurate. We first address the problem of inaccuracy of the citation texts by finding the relevant context from the cited paper. We propose three approaches for contextualizing citations which are based on query reformulation, word embeddings, and supervised learning. We then train a model to identify the discourse facets for each citation. We finally propose a method for summarizing scientific papers by leveraging the faceted citations and their corresponding contexts. We evaluate our proposed method on two scientific summarization datasets in the biomedical and computational linguistics domains. Extensive evaluation results show that our methods can improve over the state of the art by large margins.
C1 [Cohan, Arman; Goharian, Nazli] Georgetown Univ, Informat Retrieval Lab, Dept Comp Sci, Washington, DC 20057 USA.
C3 Georgetown University
RP Cohan, A (corresponding author), Georgetown Univ, Informat Retrieval Lab, Dept Comp Sci, Washington, DC 20057 USA.
EM arman@ir.cs.georgetown.edu; nazli@ir.cs.georgetown.edu
OI Cohan, Arman/0000-0002-8954-2724
CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500
Abu-Jbara A., 2013, NAACL, P596
Abu-Jbara Amjad., 2012, NAACL-HLT, P80
[Anonymous], 2014, CoRR
[Anonymous], 2008, P 31 ANN INT ACM SIG
[Anonymous], 2002, Proceedings of the the Association for Computational Linguistics (ACL) Workshop on Automatic Summarization, DOI DOI 10.3115/1118162.1118163
[Anonymous], 2016, NAACL, DOI 10.18653/v1/N16-1018
Atanassova I, 2016, J DOC, V72, P636, DOI 10.1108/JDOC-09-2015-0111
Bengio Y, 2001, ADV NEUR IN, V13, P932
Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50
Berg -Kirkpatrick T., 2011, Proc. of the 49th Annual Meeting of the Association for Computational Linguistics (ACL-HLT 2011), P481
Bertin M, 2016, J ASSOC INF SCI TECH, V67, P164, DOI 10.1002/asi.23367
Bodenreider O, 2004, NUCLEIC ACIDS RES, V32, pD267, DOI 10.1093/nar/gkh061
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Cao Guihong, 2008, P SIGIR 2008, P243, DOI DOI 10.1145/1390334.1390377
Cao Z, 2016, P JOINT WORKSH BIBL, P132
Carbonell J., 1998, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P335, DOI 10.1145/290941.291025
Celikyilmaz A, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P815
Chakraborty T., 2016, P 2016 C EMPIRICAL M, P1348, DOI DOI 10.18653/V1/D16-1142
Chakraborty T, 2016, LECT NOTES ARTIF INT, V9652, P528, DOI 10.1007/978-3-319-31750-2_42
Chali Y, 2012, NAT LANG ENG, V18, P109, DOI 10.1017/S1351324911000167
Chopra Sumit, 2016, P 2016 C N AM CHAPT P 2016 C N AM CHAPT P 2016 C N AM CHAPT P 2016 C N AM CHAPT P 2016 C N AM CHAPT P 2016 C N AM CHAPT, P93
Clarke J, 2008, J ARTIF INTELL RES, V31, P399, DOI 10.1613/jair.2433
Cohan A, 2015, NAACL, P1042, DOI [DOI 10.3115/V1/N15-1110, 10.3115/v1/N15-1110]
Cohan A, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1133, DOI 10.1145/3077136.3080740
Cohan Arman, 2015, P 2015 C EMP METH NA, P390, DOI [DOI 10.18653/V1/D15-1045, 10.18653/v1/D15-1045]
Conroy J. M., 2011, P 4 TEXT ANAL C
Conroy JohnM., 2015, Proceedings of NAACL-HLT, P186
Durrett Greg, 2016, P ACL
Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707
Erkan G, 2004, J ARTIF INTELL RES, V22, P457, DOI 10.1613/jair.1523
Faruqui Manaal, 2015, P 2015 C N AM CHAPT, P1606, DOI [DOI 10.3115/V1/N15-1184, 10.3115/v1/N15-1184]
Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337
Guo SB, 2010, SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, P833
Harris ZS, 1954, WORD, V10, P146, DOI 10.1080/00437956.1954.11659520
Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388
Hersh W, 2009, INFORM RETRIEVAL, V12, P1, DOI 10.1007/s10791-008-9076-6
Hill F, 2015, COMPUT LINGUIST, V41, P665, DOI 10.1162/COLI_a_00237
Hulth A, 2003, PROCEEDINGS OF THE 2003 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P216
Huston S, 2010, SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, P291
Jaidka K., 2016, P JOINT WORKSH BIBL
Jha Rahul., 2015, Ann Arbor, V1001, P48109
Jian FH, 2016, SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P733, DOI 10.1145/2911451.2914750
Jones K. S., 2000, Information Processing & Management, V36, P809, DOI 10.1016/S0306-4573(00)00016-9
Jurgens David., 2016, CoRR
Kataria S., 2010, AAAI
Klampfl Stefan., 2016, BIRNDL at JCDL, P122
Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760
Li L, 2016, P JOINT WORKSH BIBL, P156
Lin C., 2004, TEXT SUMMARIZATION B, P74
Lin J., 2010, Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT '10, P305
Lipscomb CE, 2000, B MED LIBR ASSOC, V88, P265
Maat H. P., 2012, P WORKSH DET STRUCT, P47
Mihalcea R., 2004, Proceedings of the ACL 2004 on Interactive poster and demonstration sessions, P20, DOI DOI 10.3115/1219044.1219064
Mikolov T., 2013, ARXIV
MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748
Mora LuisMiguel Garcia., 2016, The Politics of the Second Slavery, P113
Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81
Nomoto T., 2016, P JOINT WORKSH BIBL, P168
Page L., 1999, The PageRank citation ranking: bringing order to the web
Paul MichaelJ., 2010, EMNLP, P66
Ponte J.M., 1998, Research and Development in Information Retrieval, P275, DOI DOI 10.1145/290941.291008
Qazvinian V, 2008, P 22 INT C COMP LING, V1, P689, DOI DOI 10.3115/1599081.1599168
Qazvinian V, 2013, J ARTIF INTELL RES, V46, P165, DOI 10.1613/jair.3732
Qazvinian V, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P555
Robertson Stephen, 2009, Foundations and Trends in Information Retrieval, V3, P333, DOI 10.1561/1500000019
Rush AlexanderM., 2015, P C EMP METH NAT LAN
Saggion Horacio., 2016, Proceedings of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL); 2016 June 23; Newark, P175, DOI DOI 10.1007/978-94-017-2388-6_4
Snomed CT, 2011, SYSTEMATIZED NOMENCL
Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162]
SPARCKJONES K, 1972, J DOC, V28, P11, DOI 10.1108/eb026526
Steinberger J., 2004, P ISIM, V04, P93
Teufel S, 2002, COMPUT LINGUIST, V28, P409, DOI 10.1162/089120102762671936
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Vanderwende L, 2007, INFORM PROCESS MANAG, V43, P1606, DOI 10.1016/j.ipm.2007.01.023
Wang S., 2012, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2, ACL '12, P90
Yihong Gong, 2001, SIGIR Forum, P19
Zhai CX, 2004, ACM T INFORM SYST, V22, P179, DOI 10.1145/984321.984322
NR 78
TC 45
Z9 48
U1 0
U2 11
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1432-5012
EI 1432-1300
J9 INT J DIGIT LIBRARIE
JI Int. J. Digit. Llibraries
PD SEP
PY 2018
VL 19
IS 2-3
SI SI
BP 287
EP 303
DI 10.1007/s00799-017-0216-8
PG 17
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA GQ5QB
UT WOS:000441741300014
DA 2024-09-05
ER
PT J
AU Yang, LQ
Wang, P
Wang, J
AF Yang, Liqiang
Wang, Pan
Wang, Jie
TI Research on evaluation model for vehicle interior sound quality based on
an optimized BiLSTM using genetic algorithm
SO MECHANICAL SYSTEMS AND SIGNAL PROCESSING
LA English
DT Article
DE Sound quality; Vehicle interior noise; Evaluation model; Bidirectional
long short-term memory; Genetic algorithm
ID PREDICTION; NOISE; TRANSFORM
AB Interior sound quality strongly affects passengers' physiological and psychological perceptions. Therefore, it is important to evaluate vehicle interior sound quality. Compared with assessing by humans, the artificial intelligent-based evaluation model can acquire an evaluation efficiently. However, this type of models determines initial learnable parameters at random before training, which is easy to cause final trained model to trap in local optima. This paper proposes an evaluation model based on an optimized bidirectional long short-term memory using genetic algorithm. Firstly, interior noise measurement and subjective evaluation are completed. Secondly, to obtain the time-frequency information in line with human auditory perception, log-mel spectrum is used to preprocess the noise. Thirdly, the evaluation model is constructed, which consists of two bidirectional long short-term memory layers, two fully connected layers and one Softmax output unit. Next, to avoid model trapping in local optima, initial learnable parameters are optimized using genetic algorithm. After optimization, average fitness and best fitness decreased by 6.5136% and 1.4415%, respectively. The training accuracy is 95.79%. The validation accuracy is 93.15%. The testing accuracy is 93.33%. Only two samples are misclassified in the confusion matrix of testing stage. These suggest that genetic algorithm can greatly enhance the model's performance by optimizing initial learnable parameters. The evaluation obtained by the optimized model is very close to human subjective evaluation.
C1 [Yang, Liqiang; Wang, Pan] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China.
[Wang, Jie] Zuoyebang Educ Technol Beijing Co Ltd, Beijing 100085, Peoples R China.
C3 Chongqing University
RP Wang, P (corresponding author), Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China.
EM yangliqiang@cqu.edu.cn; wangpan@cqu.edu.cn; wangj996@foxmail.com
CR Chen PS, 2022, APPL ACOUST, V185, DOI 10.1016/j.apacoust.2021.108411
Chicco D, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.623
Edelmann D, 2021, STAT PROBABIL LETT, V169, DOI 10.1016/j.spl.2020.108960
Feng TP, 2019, APPL ACOUST, V154, P99, DOI 10.1016/j.apacoust.2019.04.028
Gao YH, 2016, J VIBROENG, V18, P595
Huang HB, 2019, MECH SYST SIGNAL PR, V124, P439, DOI 10.1016/j.ymssp.2019.01.053
Huang HB, 2019, MECH SYST SIGNAL PR, V120, P98, DOI 10.1016/j.ymssp.2018.09.035
Huang HB, 2016, APPL ACOUST, V113, P149, DOI 10.1016/j.apacoust.2016.06.021
Huang HB, 2021, MECH SYST SIGNAL PR, V148, DOI 10.1016/j.ymssp.2020.107170
[黄海波 Huang Haibo], 2017, [振动与冲击, Journal of Vibration and Shock], V36, P130
Huang XR, 2020, EXPERT SYST APPL, V160, DOI 10.1016/j.eswa.2020.113657
Kasuya E, 2019, ECOL RES, V34, P235, DOI 10.1111/1440-1703.1011
Katoch S, 2021, MULTIMED TOOLS APPL, V80, P8091, DOI 10.1007/s11042-020-10139-6
Liang DJ, 2018, IEEE ACCESS, V6, P58774, DOI 10.1109/ACCESS.2018.2872698
[刘哲 Liu Zhe], 2021, [汽车工程, Automotive Engineering], V43, P1858
Lu WJ, 2021, NEURAL COMPUT APPL, V33, P4741, DOI 10.1007/s00521-020-05532-z
Lu Y, 2021, NEURAL COMPUT APPL, V33, P8201, DOI 10.1007/s00521-020-04934-3
[马志远 Ma Zhiyuan], 2019, [噪声与振动控制, Noise and Vibration Control], V39, P122
Pan J, 2020, FLUCT NOISE LETT, V19, DOI 10.1142/S0219477520500315
Pourseiedrezaei M, 2021, ARCH ACOUST, V46, P55, DOI 10.24425/aoa.2021.136560
Pourseiedrezaei M, 2019, ARCH ACOUST, V44, P561, DOI 10.24425/aoa.2019.129271
Purwins H., 2019, IEEE J-STSP, P1
Qian K, 2021, APPL ACOUST, V173, DOI 10.1016/j.apacoust.2020.107684
Qian K, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10165567
Rong G, 2022, P I MECH ENG D-J AUT, V236, P1246, DOI 10.1177/09544070211034313
Song XD, 2022, SCI PROGRAMMING-NETH, V2022, DOI 10.1155/2022/8686785
Wang XJ, 2023, SAE INT J VEH DYN ST, V7, P153, DOI 10.4271/10-07-02-0010
Wang YQ, 2022, APPL ACOUST, V195, DOI 10.1016/j.apacoust.2022.108857
Xu ZM, 2018, APPL ACOUST, V130, P43, DOI 10.1016/j.apacoust.2017.08.019
[杨易 Yang Yi], 2021, [机械工程学报, Journal of Mechanical Engineering], V57, P241
[曾发林 Zeng Falin], 2019, [振动与冲击, Journal of Vibration and Shock], V38, P74
Zha YF, 2023, SAE INT J VEH DYN ST, V7, P221, DOI 10.4271/10-07-02-0014
Zhang EL, 2016, MEAS SCI TECHNOL, V27, DOI 10.1088/0957-0233/27/1/015801
Zhang Junhong, 2019, Journal of Tianjin University (Science and Technology), V52, P150, DOI 10.11784/tdxbz201804013
Zhang JH, 2019, APPL ACOUST, V145, P27, DOI 10.1016/j.apacoust.2018.09.015
NR 35
TC 2
Z9 2
U1 7
U2 18
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0888-3270
EI 1096-1216
J9 MECH SYST SIGNAL PR
JI Mech. Syst. Signal Proc.
PD DEC 1
PY 2023
VL 204
AR 110827
DI 10.1016/j.ymssp.2023.110827
EA OCT 2023
PG 15
WC Engineering, Mechanical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA W4BO1
UT WOS:001091096900001
DA 2024-09-05
ER
PT J
AU Han, YJ
Park, SY
Park, SB
AF Han, Yong-Jin
Park, Se-Young
Park, Seong-Bae
TI A single-directional influence topic model using call and proximity logs
simultaneously
SO SOFT COMPUTING
LA English
DT Article; Proceedings Paper
CT 12th International Conference on Advances in Mobile Computing and
Multimedia (MoMM)
CY DEC 08-10, 2014
CL Kaohsiung, TAIWAN
DE Social interaction pattern; Call; Proximity; Topic model; Latent
Dirichlet allocation
AB Understanding social interactions is one of the key factors in the development of context-aware ubiquitous applications. Identifying interaction patterns sensed by a mobile device is one possible way for understanding social interactions. Most previous studies on this problem have employed call and proximity logs to represent social interactions. Because these interactions can be characterized by topics, the studies have applied topic models based on latent Dirichlet allocation (LDA) to identifying interaction patterns from social interactions. However, these previous studies regarded calls and proximities as independent interaction types. As a result, they lost the information obtainable when calls and proximities were analyzed simultaneously. This paper proposes a topic-based method that simultaneously considers calls and proximities, allowing interaction patterns to be identified from a mobile log. For this purpose, the proposed method regards calls and proximities as a homogeneous information type that are drawn from the same temporal space expressed by the same distribution, but with different parameters. From the observation that the number of proximities in a mobile log usually overwhelms that of calls and the proximities are observed regularly, the proposed method models a single-directional influence from proximities to calls, where both call and proximity are modeled by LDA. The experiments with three different data sets from the Massachusetts Institute of Technology's Reality Mining project show that the proposed method outperforms the method that considers calls and proximities independently; this proves the plausibility of the proposed method.
C1 [Han, Yong-Jin; Park, Se-Young; Park, Seong-Bae] Kyungpook Natl Univ, Sch Comp Sci & Engn, Daegu, South Korea.
C3 Kyungpook National University (KNU)
RP Park, SB (corresponding author), Kyungpook Natl Univ, Sch Comp Sci & Engn, Daegu, South Korea.
EM yjhan@sejong.knu.ac.kr; sbpark@sejong.knu.ac.kr; sypark@sejong.knu.ac.kr
RI Park, Young/D-6811-2013
FU BK21 Plus project (SW Human Resource Development Program for Supporting
Smart Life) - Ministry of Education, School of Computer Science and
Engineering, Kyungpook National University, Korea [21A20131600005]
FX This study was supported by the BK21 Plus project (SW Human Resource
Development Program for Supporting Smart Life) funded by the Ministry of
Education, School of Computer Science and Engineering, Kyungpook
National University, Korea (21A20131600005).
CR Aharony N, 2011, PERVASIVE MOB COMPUT, V7, P643, DOI 10.1016/j.pmcj.2011.09.004
Behmardi B, 2012, IEEE T SIGNAL PROCES, V60, P5146, DOI 10.1109/TSP.2012.2208634
Black M, 2003, SOFT COMPUT, V8, P102, DOI 10.1007/S00500-002-0250-2
Blei D, 2010, IEEE SIGNAL PROC MAG, V27, P55, DOI 10.1109/MSP.2010.938079
Blei David M, 2003, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, P127
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Dong W., 2011, P 10 INT C MOBILE UB, P134, DOI [DOI 10.1145/2107596.2107613, 10.1145/2107596.2107613]
Eagle N, 2006, PERS UBIQUIT COMPUT, V10, P255, DOI 10.1007/s00779-005-0046-3
Eagle N, 2009, P NATL ACAD SCI USA, V106, P15274, DOI 10.1073/pnas.0900282106
Farrahi K, 2010, IEEE J-STSP, V4, P746, DOI 10.1109/JSTSP.2010.2049513
Gómez-Lopera JF, 2000, J MATH IMAGING VIS, V13, P35, DOI 10.1023/A:1008325607354
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Han YJ, 2014, 2014 PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2014), P399, DOI 10.1109/ASONAM.2014.6921617
Jung JJ, 2009, EXPERT SYST APPL, V36, P11950, DOI 10.1016/j.eswa.2009.03.067
Madan A, 2010, P AAAI SPRING S HUM, P43
Madan A, 2012, IEEE PERVAS COMPUT, V11, P36, DOI 10.1109/MPRV.2011.79
Mimno David M., 2009, Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2, P880
Minka T., 2000, Estimating a dirichlet distribution
Mollenhorst G, 2008, SOC NETWORKS, V30, P60, DOI 10.1016/j.socnet.2007.07.003
Putthividhya D, 2010, PROC CVPR IEEE, P3408, DOI 10.1109/CVPR.2010.5540000
Singh V. K., 2013, Human, V2, P99
Huynh T, 2008, PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING (UBICOMP 2008), P10
Do TMT, 2013, PERS UBIQUIT COMPUT, V17, P413, DOI 10.1007/s00779-011-0489-7
Xing Wei, 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P178
Zheng JC, 2013, UBICOMP'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, P721, DOI 10.1145/2493432.2493512
NR 25
TC 1
Z9 1
U1 0
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1432-7643
EI 1433-7479
J9 SOFT COMPUT
JI Soft Comput.
PD AUG
PY 2017
VL 21
IS 15
BP 4179
EP 4195
DI 10.1007/s00500-015-1898-8
PG 17
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA FA5RL
UT WOS:000405501100003
DA 2024-09-05
ER
PT C
AU Koksalmis, E
Koksalmis, GH
AF Koksalmis, Emrah
Koksalmis, Gulsah Hancerliogullari
GP IEEE
TI Artificial Intelligence in Air and Space Technologies: A Scientometric
Analysis
SO 2023 10TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN AIR AND SPACE
TECHNOLOGIES, RAST
LA English
DT Proceedings Paper
CT 10th International Conference on Recent Advances in Air and Space
Technologies (RAST)
CY JUN 07-09, 2023
CL Istanbul, TURKEY
DE artificial intelligence; air and space technologies; aerospace;
bibliometric analysis; scientometric analysis; publication trends
AB The aim of this paper is to conduct a bibliometric analysis and evaluate publication trends of research papers related to artificial intelligence in air and space technologies for the last 50 years. The data was obtained from Scopus' database. The keyword for the search was "artificial intelligence" "aerospace". This paper seeks to identify top publishing authors, universities, countries, and reference articles to highlight collaboration between authors, institutions, and countries in the region, and to gain insight into research topics that scholars have been working on recently. Moreover, distribution of publications according to their languages, document types, and research areas are evaluated. Articles from 1975 to 2023 were considered, and a total of 1,111 artificial intelligence in air and space technologies-related publications were discovered. There were five main document types in artificial intelligence in air and space technologies related publications and conference paper and article were mostly used among all document types. The United States was found to be the most productive country and English was the most frequently used language among all publications. Furthermore, engineering is the main distribution channel, and it is followed by computer science and physics and astronomy as the top popular research areas.
C1 [Koksalmis, Emrah] Natl Def Univ, Dept Ind Engn, Istanbul, Turkiye.
[Koksalmis, Gulsah Hancerliogullari] Istanbul Tech Univ, Dept Ind Engn, Istanbul, Turkiye.
C3 Istanbul Technical University
RP Koksalmis, E (corresponding author), Natl Def Univ, Dept Ind Engn, Istanbul, Turkiye.
EM ekoksalmis@hho.msu.edu.tr; ghancerliogullari@itu.edu.tr
CR Blasch E., 2022, 2022 IEEE AEROSPACE, P1
de Dalmau J., 2010, CCIA, P5
Erickson J.D., 1985, Artificial Intelligence-NASA
Hong-Ming Chen, 2020, 2020 International Conference on Pervasive Artificial Intelligence (ICPAI), P276, DOI 10.1109/ICPAI51961.2020.00059
Insaurralde C.C., 2020, 2020 AIAAIEEE 39 DIG, P1
Izzo D, 2019, ASTRODYNAMICS-CHINA, V3, P285, DOI 10.1007/s42064-019-0066-9
NR 6
TC 0
Z9 0
U1 2
U2 4
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 979-8-3503-2302-3
PY 2023
DI 10.1109/RAST57548.2023.10197660
PG 4
WC Engineering, Aerospace; Remote Sensing
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Remote Sensing
GA BV6BY
UT WOS:001055074600008
DA 2024-09-05
ER
PT J
AU Boukhers, Z
Asundi, NB
AF Boukhers, Zeyd
Asundi, Nagaraj Bahubali
TI Deep author name disambiguation using DBLP data
SO INTERNATIONAL JOURNAL ON DIGITAL LIBRARIES
LA English
DT Article; Early Access
DE Author name disambiguation; Entity linkage; Bibliographic data; Neural
networks; Classification; DBLP
AB In the academic world, the number of scientists grows every year and so does the number of authors sharing the same names. Consequently, it is challenging to assign newly published papers to their respective authors. Therefore, author name ambiguity is considered a critical open problem in digital libraries. This paper proposes an author name disambiguation approach that links author names to their real-world entities by leveraging their co-authors and domain of research. To this end, we use data collected from the DBLP repository that contains more than 5 million bibliographic records authored by around 2.6 million co-authors. Our approach first groups authors who share the same last names and same first name initials. The author within each group is identified by capturing the relation with his/her co-authors and area of research, represented by the titles of the validated publications of the corresponding author. To this end, we train a neural network model that learns from the representations of the co-authors and titles. We validated the effectiveness of our approach by conducting extensive experiments on a large dataset.
C1 [Boukhers, Zeyd] Univ Koblenz Landau, Inst Web Sci & Technol WeST, Univ str 1, D-56070 Koblenz, Germany.
[Boukhers, Zeyd; Asundi, Nagaraj Bahubali] Fraunhofer Inst Appl Informat Technol, Dept Data Sci & Artificial Intelligence FIT, Schloss Birlinghoven 1, D-53757 St Augustin, Germany.
C3 University of Koblenz & Landau; Fraunhofer Gesellschaft
RP Boukhers, Z (corresponding author), Univ Koblenz Landau, Inst Web Sci & Technol WeST, Univ str 1, D-56070 Koblenz, Germany.; Boukhers, Z (corresponding author), Fraunhofer Inst Appl Informat Technol, Dept Data Sci & Artificial Intelligence FIT, Schloss Birlinghoven 1, D-53757 St Augustin, Germany.
EM zeyd.boukhers@fit.fraunhofer.de;
nagaraj.bahubali.asundi@fit.fraunhofer.de
RI Boukhers, Zeyd/HZL-0733-2023
OI Boukhers, Zeyd/0000-0001-9778-9164; Asundi, Nagaraj
Bahubali/0000-0002-1044-7047
FU Projekt DEAL
FX Open Access funding enabled and organized by Projekt DEAL.
CR [Anonymous], 2010, P 10 ANN JOINT C DIG, DOI 10.1145/1816123.1816130
Arif T, 2014, INT CONF CONTEMP, P135, DOI 10.1109/IC3.2014.6897162
Baglioni M., 2021, RADIO SCI, V20, P66
Boukhers Z, 2022, LECT NOTES COMPUT SC, V13541, P201, DOI 10.1007/978-3-031-16802-4_16
Cao KS, 2016, Arxiv, DOI arXiv:1606.02601
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Ebraheem M, 2018, PROC VLDB ENDOW, V11, P1454, DOI 10.14778/3236187.3236198
Fan X., 2011, J DATA INF QUAL, V2, P10, DOI [DOI 10.1145/1891879.1891883, 10.1145/1891879.1891883]
Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040
Foxcroft J, 2019, LECT NOTES ARTIF INT, V11489, P505, DOI 10.1007/978-3-030-18305-9_52
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Han H, 2004, ACM-IEEE J CONF DIG, P296, DOI 10.1145/996350.996419
Han XP, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P765
Hermansson L, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1037, DOI 10.1145/2505515.2505565
Hoffart Johannes, 2011, EMNLP, P782, DOI DOI 10.3115/V1/D11-1072
Hourrane O, 2018, COMM COM INF SC, V872, P185, DOI 10.1007/978-3-319-96292-4_15
Tran HN, 2014, LECT NOTES COMPUT SC, V8397, P123, DOI 10.1007/978-3-319-05476-6_13
Hussain I, 2017, KNOWL ENG REV, V32, DOI 10.1017/S0269888917000182
Kai-Hsiang Yang, 2011, 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies, P335, DOI 10.1109/WI-IAT.2011.181
Khabsa Madian, 2014, 2014 IEEE International Conference on Big Data (Big Data), P41, DOI 10.1109/BigData.2014.7004487
Khabsa M, 2015, PROCEEDINGS OF THE 15TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL'15), P37, DOI 10.1145/2756406.2756915
Kim K., 2020, P 1 WORKSHOP SCHOLAR, P72
Kim K, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2018), P265, DOI 10.1109/ICWS.2018.00041
Kuang Da, 2012, SDM, P106, DOI DOI 10.1137/1.9781611972825.10
Li JY, 2013, PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ENERGY, P1
Liu WL, 2014, J ASSOC INF SCI TECH, V65, P765, DOI 10.1002/asi.23063
Louppe G, 2016, COMM COM INF SC, V649, P272, DOI 10.1007/978-3-319-45880-9_21
Müller MC, 2017, LECT NOTES COMPUT SC, V10450, P300, DOI 10.1007/978-3-319-67008-9_24
Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732
Qian Y., 2011, Proceedings of the 20th ACM international conference on Information and knowledge management, P1241, DOI 10.1145/2063576.2063756
Qian YA, 2015, INFORM RETRIEVAL J, V18, P379, DOI 10.1007/s10791-015-9261-3
Tang J, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1165, DOI 10.1145/2783258.2783307
Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093
Wu H, 2014, SCIENTOMETRICS, V101, P1955, DOI 10.1007/s11192-014-1283-x
Xiaoling Sun, 2011, Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and IEEE Third International Conference on Social Computing (PASSAT/SocialCom 2011), P568, DOI 10.1109/PASSAT/SocialCom.2011.43
Xu J, 2018, CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1735, DOI 10.1145/3269206.3269272
Zhang BC, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1239, DOI 10.1145/3132847.3132873
Zhang BC, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1341, DOI 10.1145/2983323.2983714
Zhang YT, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1002, DOI 10.1145/3219819.3219859
NR 39
TC 0
Z9 0
U1 1
U2 13
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1432-5012
EI 1432-1300
J9 INT J DIGIT LIBRARIE
JI Int. J. Digit. Llibraries
PD 2023 MAY 4
PY 2023
DI 10.1007/s00799-023-00361-6
EA MAY 2023
PG 11
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA F3JJ7
UT WOS:000981337900001
OA hybrid
DA 2024-09-05
ER
PT J
AU Aliya
Liu, S
Zhang, DN
Cao, YF
Sun, JY
Jiang, S
Liu, Y
AF Aliya, Shi
Liu, Shi
Zhang, Danni
Cao, Yufa
Sun, Jinyuan
Jiang, Shui
Liu, Yuan
TI Research on the Evaluation of Baijiu Flavor Quality Based on Intelligent
Sensory Technology Combined with Machine Learning
SO CHEMOSENSORS
LA English
DT Article
DE Baijiu; flavor evaluation; intelligent sensory; machine learning
AB Baijiu, one of the world's six major distilled spirits, has an extremely rich flavor profile, which increases the complexity of its flavor quality evaluation. This study employed an electronic nose (E-nose) and electronic tongue (E-tongue) to detect 42 types of strong-aroma Baijiu. Linear discriminant analysis (LDA) was performed based on the different production origins, alcohol content, and grades. Twelve trained Baijiu evaluators participated in the quantitative descriptive analysis (QDA) of the Baijiu samples. By integrating characteristic values from the intelligent sensory detection data and combining them with the human sensory evaluation results, machine learning was used to establish a multi-submodel-based flavor quality prediction model and classification model for Baijiu. The results showed that different Baijiu samples could be well distinguished, with a prediction model R2 of 0.9994 and classification model accuracy of 100%. This study provides support for the establishment of a flavor quality evaluation system for Baijiu.
C1 [Jiang, Shui; Liu, Yuan] Shanghai Jiao Tong Univ, Sch Agr & Biol, Dept Food Sci & Technol, Shanghai 200240, Peoples R China.
[Aliya, Shi; Liu, Shi; Cao, Yufa] Suqian Prod Qual Supervis & Testing Inst, Suqian 223800, Peoples R China.
[Zhang, Danni] Shanghai Jiao Tong Univ, Instrumental Anal Ctr, Shanghai 200240, Peoples R China.
[Sun, Jinyuan] Beijing Technol & Business Univ, China Food Flavor & Nutr Hlth Innovat Ctr, Beijing 102401, Peoples R China.
[Liu, Yuan] Ningxia Univ, Sch Food Sci & Engn, Yinchuan 750021, Peoples R China.
C3 Shanghai Jiao Tong University; Shanghai Jiao Tong University; Beijing
Technology & Business University; Ningxia University
RP Liu, Y (corresponding author), Shanghai Jiao Tong Univ, Sch Agr & Biol, Dept Food Sci & Technol, Shanghai 200240, Peoples R China.; Liu, S (corresponding author), Suqian Prod Qual Supervis & Testing Inst, Suqian 223800, Peoples R China.; Sun, JY (corresponding author), Beijing Technol & Business Univ, China Food Flavor & Nutr Hlth Innovat Ctr, Beijing 102401, Peoples R China.; Liu, Y (corresponding author), Ningxia Univ, Sch Food Sci & Engn, Yinchuan 750021, Peoples R China.
EM aly122150910101@sjtu.edu.cn; liushisqzj@163.com;
dannizhang2019@sjtu.edu.cn; qcyf@163.com; sunjinyuan@btbu.edu.cn;
jiangshui@sjtu.edu.cn; y_liu@sjtu.edu.cn
RI ; Liu, Yuan/J-4453-2012
OI Sun, Jinyuan/0000-0001-6717-9787; Liu, Yuan/0000-0003-1420-0276
FU Suqian Sci Tech Program [L202205, L202305]; Open Project of the China
Food Flavor and Nutrition Health Innovation Center [CFC2023B-007]
FX This work was supported by the Suqian Sci & Tech Program (Grant No.
L202205 and No. L202305) and the Open Project of the China Food Flavor
and Nutrition Health Innovation Center (CFC2023B-007).
CR Abi-Rizk H, 2023, ANAL METHODS-UK, V15, P5410, DOI 10.1039/d3ay01132a
Al-Hooti HS, 2024, FOODS, V13, DOI 10.3390/foods13030428
Aunsa-Ard W, 2022, INT CONF KNOWL SMART, P147, DOI 10.1109/KST53302.2022.9729071
Carrillo JK, 2023, CHEMOSENSORS, V11, DOI 10.3390/chemosensors11070354
Celdran AC, 2022, AGRONOMY-BASEL, V12, DOI 10.3390/agronomy12112627
Geana EI, 2020, CHEMOSENSORS, V8, DOI 10.3390/chemosensors8030059
He X, 2021, FOOD CHEM, V337, DOI 10.1016/j.foodchem.2020.128002
He YX, 2021, FOOD RES INT, V147, DOI 10.1016/j.foodres.2021.110493
Hong JX, 2021, RSC ADV, V11, P34262, DOI 10.1039/d1ra90161c
Hou QC, 2024, FOOD RES INT, V184, DOI 10.1016/j.foodres.2024.114257
Huang Y, 2022, INT J FOOD PROP, V25, P885, DOI 10.1080/10942912.2022.2066123
Ji HZ, 2023, TRENDS FOOD SCI TECH, V138, P738, DOI 10.1016/j.tifs.2023.07.012
Jung HH, 2023, ACS APPL MATER INTER, V15, P46041, DOI 10.1021/acsami.3c09684
Li HH, 2023, FOODS, V12, DOI 10.3390/foods12061238
Li Q, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17020272
Li T, 2023, J FOOD COMPOS ANAL, V122, DOI 10.1016/j.jfca.2023.105479
Liang ER, 2024, J AM SOC BREW CHEM, V82, P271, DOI 10.1080/03610470.2023.2253704
Muoz-Castells R., 2024, J. Sci. Food Agric, V1, P2, DOI [10.1002/jsfa.13178, DOI 10.1002/JSFA.13178]
Qin D, 2023, FOOD SCI HUM WELL, V12, P79, DOI 10.1016/j.fshw.2022.07.025
Robbiani S, 2023, CHEMOSENSORS, V11, DOI 10.3390/chemosensors11100514
Song XB, 2020, J AGR FOOD CHEM, V68, P7946, DOI 10.1021/acs.jafc.0c04170
Sun YL, 2021, FOODS, V10, DOI 10.3390/foods10112843
Tian XJ, 2019, J FOOD QUALITY, DOI 10.1155/2019/4342509
Wang AL, 2022, FOOD SCI TECH-BRAZIL, V42, DOI 10.1590/fst.54622
Wang A, 2022, FOOD PACKAGING SHELF, V31, DOI 10.1016/j.fpsl.2021.100773
Wang GN, 2022, J AGR FOOD CHEM, V70, P13987, DOI 10.1021/acs.jafc.2c04321
Wang J, 2021, FOOD CHEM, V347, DOI 10.1016/j.foodchem.2021.129028
Wang JS, 2022, J FOOD COMPOS ANAL, V109, DOI 10.1016/j.jfca.2022.104499
Wu F, 2024, FOODS, V13, DOI 10.3390/foods13050681
Wu JH, 2023, FRONT NUTR, V10, DOI 10.3389/fnut.2023.1132527
Wu YS, 2023, FOODS, V12, DOI 10.3390/foods12163087
Xu ML, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-06958-7
Xu YQ, 2022, FOOD CHEM, V369, DOI 10.1016/j.foodchem.2021.130920
Zhang L, 2019, IEEE T CYBERNETICS, V49, P947, DOI 10.1109/TCYB.2018.2789889
Zhang SS, 2021, IEEE SENS J, V21, P16170, DOI 10.1109/JSEN.2021.3075703
Zheng WB, 2022, MEASUREMENT, V205, DOI 10.1016/j.measurement.2022.112150
NR 36
TC 0
Z9 0
U1 4
U2 4
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-9040
J9 CHEMOSENSORS
JI Chemosensors
PD JUL
PY 2024
VL 12
IS 7
AR 125
DI 10.3390/chemosensors12070125
PG 15
WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Electrochemistry; Instruments & Instrumentation
GA ZQ3D4
UT WOS:001276712500001
OA gold
DA 2024-09-05
ER
PT J
AU Mustafa, G
Usman, M
Afzal, MT
Shahid, A
Koubaa, A
AF Mustafa, Ghulam
Usman, Muhammad
Afzal, Muhammad Tanvir
Shahid, Abdul
Koubaa, Anis
TI A Comprehensive Evaluation of Metadata-Based Features to Classify
Research Paper's Topics
SO IEEE ACCESS
LA English
DT Article
DE Metadata; Computer science; Deep learning; Tools; Support vector
machines; Licenses; Libraries; Research paper classification;
Word2Vector (W2V); metadata; association of computing machinery (ACM);
k-nearest neighbor's (KNN); decision tree (DT); random forest (RF); term
frequency (TF); term frequency and inverse document frequency (TFIDF);
bag of word (BOW)
ID CLASSIFICATION; NOISE
AB The existing plethora of document classification techniques exploits different data sources either from the content or metadata of research articles. Various journal publishers like Springer, Elsevier, IEEE, etc., do not provide open access to the content of research articles, whereas metadata is freely available there. Metadata like title, keyword, and abstract can serve as a better alternative to the content in various scenarios. In the current literature, researchers have assessed the role of some of the metadata individually. We believe that the collective contribution of metadata parameters can play a significant role in classifying research papers. This paper presents a comprehensive evaluation of the role of metadata, individually as well as in combinations to achieve the objective of research paper classification. Moreover, we have classified the research articles into ACM hierarchy root categories (e.g. general literature, hardware, software, etc.). In this comprehensive evaluation, we have assessed all the possible combinations of metadata features against different classifiers such as Random Forest, K Nearest Neighbor, and Decision Tree. The results of this research reveal that the title & keywords combination outperforms other combinations with an F-measure score of 0.88.
C1 [Mustafa, Ghulam] Capital Univ Sci & Technol, Dept Comp Sci, Islamabad 46000, Pakistan.
[Usman, Muhammad] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Islamabad 44000, Pakistan.
[Afzal, Muhammad Tanvir] Namal Inst Mianwali, Dept Comp Sci, Mianwali 42250, Pakistan.
[Shahid, Abdul] Kohat Univ Sci & Technol, Inst Comp, Kohat 26000, Pakistan.
[Koubaa, Anis] Prince Sultan Univ, Robot & Internet Things Lab, Riyadh 12435, Saudi Arabia.
[Koubaa, Anis] Polytech Inst Porto, CISTER INESC TEC, P-4200 Porto, Portugal.
C3 Capital University of Science & Technology; Kohat University of Science
& Technology; Prince Sultan University; Instituto Politecnico do Porto;
INESC TEC
RP Shahid, A (corresponding author), Kohat Univ Sci & Technol, Inst Comp, Kohat 26000, Pakistan.
EM ashahid@kust.edu.pk
RI Afzal, Muhammad/D-3741-2019; Mustafa, Ghulam/JPY-1274-2023; Koubaa,
Anis/T-7414-2018
OI Afzal, Muhammad/0000-0002-7851-2327; Mustafa,
Ghulam/0000-0002-0354-8229; Koubaa, Anis/0000-0003-3787-7423; Usman,
Muhammad/0000-0002-6154-6256; Afzal, Muhammad Tanvir/0000-0002-9765-8815
FU Prince Sultan University
FX The authors would like to acknowledge the support of Prince Sultan
University for paying the Article Processing Charges (APC) of this
publication.
CR Abreu J, 2019, LECT NOTES COMPUT SC, V11731, P396, DOI 10.1007/978-3-030-30493-5_39
[Anonymous], 2013, INT C LEARNING REPRE
Asim M. N., 2019, P INT C DOC AN REC I, P1390
Asim MN, 2021, NEURAL COMPUT APPL, V33, P5437, DOI 10.1007/s00521-020-05321-8
Balys V, 2010, INFORMATICA-LITHUAN, V21, P471
Beel Joeran., 2013, P INT WORKSH REPR RE, P15, DOI 10.1145/2532508.2532512
Chekima K, 2012, 2012 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2012), P386, DOI 10.1109/ICCSCE.2012.6487176
Chernyak E, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P429, DOI 10.1145/2684822.2697032
COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964
Cunningham S. J., 1995, Proceedings. 1995. Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, P243, DOI 10.1109/ANNES.1995.499481
Devi SA, 2020, INT J ADV COMPUT SC, V11, P364
Dey A. Ujjal, ARXIV190510622
Flynn P. K, 2014, INT J SOFTCOMPUT, V2, P1
Flynn P. K., 2014, DOCUMENT CLASSIFICAT
Godbole S, 2004, LECT NOTES ARTIF INT, V3056, P22
Hamer RM, 2009, AM J PSYCHIAT, V166, P639, DOI 10.1176/appi.ajp.2009.09040458
Jiang S., ARXIV210614269
Kadhim AI, 2019, ARTIF INTELL REV, V52, P273, DOI 10.1007/s10462-018-09677-1
Karman R. N., 2008, INT J SOFTCOMPUT, V3, P58
Khor KC, 2006, LECT NOTES ARTIF INT, V4293, P1027
KIM JO, 1977, SOCIOL METHOD RES, V6, P215, DOI 10.1177/004912417700600206
Luo XY, 2021, ALEX ENG J, V60, P3401, DOI 10.1016/j.aej.2021.02.009
MALHOTRA NK, 1987, J MARKETING RES, V24, P74, DOI 10.2307/3151755
Nanba H., 2011, ADV CLASSIFICATION R, V11, P117, DOI DOI 10.7152/acro.v11i1.12774
Nguyen H. N. L., 2015, P IEEE 27 INT C TOOL, P169
Pan Y. Z. C. Q., 2019, WIRELESS COMMUN MOBI, V19, P61
Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x
Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877
Rahman S, 2021, P INT C MACH INT DAT, P507
Rodrigues F, 2009, P 14 PORT C ART INT, V5, P553
Sajid NA, 2021, J INF KNOWL MANAG, V20, DOI 10.1142/S0219649221500040
Sajid NA, 2016, J NATL SCI FOUND SRI, V44, P155, DOI 10.4038/jnsfsr.v44i2.7996
Sajid Naseer Ahmed, 2011, P INT C MAN EM DIG E, P220, DOI [10.1145/2077489.2077531, DOI 10.1145/2077489.2077531]
Santos G. D., 2008, THESIS I POLITECNICO
Taheriyan M., 2011, Proceedings of the 2011 workshop on Knowledge discovery, modeling and simulation, P39, DOI [DOI 10.1145/2023568.2023579, 10.1145/2023568.2023579]
Tang B, 2016, IEEE T KNOWL DATA EN, V28, P1602, DOI 10.1109/TKDE.2016.2522427
Tin Kam Ho, 1995, Proceedings of the Third International Conference on Document Analysis and Recognition, P278, DOI 10.1109/ICDAR.1995.598994
Wang T, 2007, CAN CON EL COMP EN, P792
Wolff W, 2000, P ISI, P145
Wu XD, 2008, IEEE T SYST MAN CY A, V38, P917, DOI 10.1109/TSMCA.2008.923034
Xiao L., 2018, P 11 INT S COMP INT, V1, P81
Zhang B, 2004, P 13 ACM C INF KNOWL, P162
Zhou T., 2016, THESIS U WINDSOR WIN
Zhu XQ, 2004, ARTIF INTELL REV, V22, P177, DOI 10.1007/s10462-004-0751-8
Zong W, 2015, INT J PROD ECON, V165, P215, DOI 10.1016/j.ijpe.2014.12.035
NR 45
TC 3
Z9 3
U1 1
U2 27
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2021
VL 9
BP 133500
EP 133509
DI 10.1109/ACCESS.2021.3115148
PG 10
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA WC2MQ
UT WOS:000704096400001
OA gold
DA 2024-09-05
ER
PT J
AU Park, S
Ceulemans, E
Van Deun, K
AF Park, S.
Ceulemans, E.
Van Deun, K.
TI A critical assessment of sparse PCA (research): why (one should
acknowledge that) weights are not loadings
SO BEHAVIOR RESEARCH METHODS
LA English
DT Article
DE Sparse principal component analysis; Principal component analysis;
Exploratory data analysis; Dimension reduction; Sparse weights; Sparse
loadings
ID PRINCIPAL COMPONENT ANALYSIS; VARIABLE SELECTION; POWER METHOD;
CONSISTENCY; MATRIX; MODEL; APPROXIMATION; EIGENVALUE; ROTATION
AB Principal component analysis (PCA) is an important tool for analyzing large collections of variables. It functions both as a pre-processing tool to summarize many variables into components and as a method to reveal structure in data. Different coefficients play a central role in these two uses. One focuses on the weights when the goal is summarization, while one inspects the loadings if the goal is to reveal structure. It is well known that the solutions to the two approaches can be found by singular value decomposition; weights, loadings, and right singular vectors are mathematically equivalent. What is often overlooked, is that they are no longer equivalent in the setting of sparse PCA methods which induce zeros either in the weights or the loadings. The lack of awareness for this difference has led to questionable research practices in sparse PCA. First, in simulation studies data is generated mostly based only on structures with sparse singular vectors or sparse loadings, neglecting the structure with sparse weights. Second, reported results represent local optima as the iterative routines are often initiated with the right singular vectors. In this paper we critically re-assess sparse PCA methods by also including data generating schemes characterized by sparse weights and different initialization strategies. The results show that relying on commonly used data generating models can lead to over-optimistic conclusions. They also highlight the impact of choice between sparse weights versus sparse loadings methods and the initialization strategies. The practical consequences of this choice are illustrated with empirical datasets.
C1 [Park, S.; Van Deun, K.] Tilburg Univ, Methods & Stat, Tilburg, Netherlands.
[Ceulemans, E.] Katholieke Univ Leuven, Psychol & Educ Sci, Leuven, Belgium.
C3 Tilburg University; KU Leuven
RP Park, S (corresponding author), Tilburg Univ, Methods & Stat, Tilburg, Netherlands.
EM s.park_1@tilburguniversity.edu
RI Ceulemans, Eva/AAQ-6617-2020
OI Ceulemans, Eva/0000-0002-7611-4683
FU Netherlands Organisation for Scientific Research [NWO-VIDI 452.16.012]
FX AcknowledgementsThis research was funded by a personal grant from the
Netherlands Organisation for Scientific Research [NWO-VIDI 452.16.012]
awarded to Katrijn Van Deun. The funder did not have any additional role
in the study design, data collection and analysis, decision to publish,
or preparation of the manuscript. We thank the anonymous reviewers for
providing their valuable comments and suggestions on improving the
manuscript.
CR Abdi H, 2010, WIRES COMPUT STAT, V2, P433, DOI 10.1002/wics.101
Adachi K, 2016, COMPUTATION STAT, V31, P1403, DOI 10.1007/s00180-015-0608-4
[Anonymous], 1993, Least squares optimization in multivariate analysis
[Anonymous], 1947, Multiple factor analysis
Aspremont L.E, 2005, ADV NEURAL INFORM PR, P41
Bro R, 2008, ANAL BIOANAL CHEM, V390, P1241, DOI 10.1007/s00216-007-1790-1
CADIMA J, 1995, J APPL STAT, V22, P203, DOI 10.1080/757584614
Camacho J, 2021, CHEMOMETR INTELL LAB, V208, DOI 10.1016/j.chemolab.2020.104212
Camacho J, 2020, CHEMOMETR INTELL LAB, V196, DOI 10.1016/j.chemolab.2019.103907
CARROLL JB, 1957, SCIENCE, V126, P1114, DOI 10.1126/science.126.3283.1114
Chamberlain G., 1982, ARBITRAGE FACTOR STR, DOI [10.3386/w0996, DOI 10.3386/W0996]
Costa P. T., 1992, REVISED NEO PERSONAL
Croux C, 2013, TECHNOMETRICS, V55, P202, DOI 10.1080/00401706.2012.727746
de Schipper NC, 2021, J CHEMOMETR, V35, DOI 10.1002/cem.3289
de Schipper NC, 2018, Z PSYCHOL, V226, P212, DOI 10.1027/2151-2604/a000341
Dolan CV, 2009, STRUCT EQU MODELING, V16, P295, DOI 10.1080/10705510902751416
Eckart C, 1936, PSYCHOMETRIKA, V1, P211, DOI 10.1007/BF02288367
Efron B, 2004, ANN STAT, V32, P407, DOI 10.1214/009053604000000067
Epskamp S, 2012, J STAT SOFTW, V48, P1, DOI 10.18637/jss.v048.i04
Erichson NB, 2020, SIAM J APPL MATH, V80, P977, DOI 10.1137/18M1211350
Fan JQ, 2013, J ROY STAT SOC B, V75, P603, DOI 10.1111/rssb.12016
Fokkema M, 2017, EUR J PSYCHOL ASSESS, V33, P399, DOI 10.1027/1015-5759/a000460
FORD JK, 1986, PERS PSYCHOL, V39, P291, DOI 10.1111/j.1744-6570.1986.tb00583.x
GABRIEL KR, 1978, J R STAT SOC B, V40, P186
GABRIEL KR, 1971, BIOMETRIKA, V58, P453, DOI 10.1093/biomet/58.3.453
Goldberg L.R., 1999, PERSONALITY PSYCHOL, V7, P7, DOI DOI 10.1016/J.JRP.2014.05.003
Gu ZG, 2016, CHEMOMETR INTELL LAB, V158, P187, DOI 10.1016/j.chemolab.2016.07.013
GUAN Y., 2009, Artificial Intelligence and Statistics, P185
Guerra-Urzola R, 2021, PSYCHOMETRIKA, V86, P893, DOI [10.1007/s11336-021-09773-2, 10.31095/podium.2021.39.1]
Guo JA, 2010, J COMPUT GRAPH STAT, V19, P930, DOI 10.1198/jcgs.2010.08127
Hastie T., 2009, The Elements of Statistical Learning
Hauser RM, 1997, SOCIOL METHODOL, V27, P177, DOI 10.1111/1467-9531.271028
Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325
Hotelling H, 1936, PSYCHOMETRIKA, V1, P27, DOI 10.1007/BF02287921
Hu ZF, 2016, IEEE T NEUR NET LEAR, V27, P875, DOI 10.1109/TNNLS.2015.2427451
Hwang H, 2021, PSYCHOL METHODS, V26, P273, DOI 10.1037/met0000336
IBM Corp, 2018, IBM SPSS statistics for windows (version 26.0) computer software
Iyer VR, 1999, SCIENCE, V283, P83, DOI 10.1126/science.283.5398.83
Jarvis CB, 2003, J CONSUM RES, V30, P199, DOI 10.1086/376806
Jia JZ, 2010, STAT SINICA, V20, P595
Johnson J.A, 2018, MEASURING 30 FACETS
Johnson JA, 2014, J RES PERS, V51, P78, DOI 10.1016/j.jrp.2014.05.003
Johnstone IM, 2009, J AM STAT ASSOC, V104, P682, DOI 10.1198/jasa.2009.0121
Johnstone IM, 2001, ANN STAT, V29, P295, DOI 10.1214/aos/1009210544
Jolliffe IT, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2015.0202
Jolliffe IT, 2003, J COMPUT GRAPH STAT, V12, P531, DOI 10.1198/1061860032148
Jolliffe IT, 2002, Principal Component Analysis, V2nd
Journée M, 2010, J MACH LEARN RES, V11, P517
KAISER HF, 1958, PSYCHOMETRIKA, V23, P187, DOI 10.1007/BF02289233
Khan Z, 2015, IEEE T IMAGE PROCESS, V24, P4934, DOI 10.1109/TIP.2015.2472280
Kruskal W., 1978, International encyclopedia of statistics
Lorenzo-Seva U., 2006, METHODOLOGY-EUR, V2, P57, DOI DOI 10.1027/1614-2241.2.2.57
Lu ZS, 2012, MATH PROGRAM, V135, P149, DOI 10.1007/s10107-011-0452-4
Ma ZM, 2013, ANN STAT, V41, P772, DOI 10.1214/13-AOS1097
McCrae R.R., 2008, EMPIRICAL THEORETICA
Nishimura Y, 2007, HUM MOL GENET, V16, P1682, DOI 10.1093/hmg/ddm116
Rasmussen MA, 2012, CHEMOMETR INTELL LAB, V119, P21, DOI 10.1016/j.chemolab.2012.10.003
Romdhani H, 2015, GENET EPIDEMIOL, V39, P101, DOI 10.1002/gepi.21872
Shen D, 2016, J MACH LEARN RES, V17
Shen D, 2013, J MULTIVARIATE ANAL, V115, P317, DOI 10.1016/j.jmva.2012.10.007
Shen HP, 2008, J MULTIVARIATE ANAL, V99, P1015, DOI 10.1016/j.jmva.2007.06.007
TENBERGE JMF, 1986, MULTIVAR BEHAV RES, V21, P29, DOI 10.1207/s15327906mbr2101_2
Thomson S, 2018, NPJ SCI LEARN, V3, DOI 10.1038/s41539-018-0022-0
Thurstone L.L., 1933, The theory of multiple factors
Tipping ME, 1999, J R STAT SOC B, V61, P611, DOI 10.1111/1467-9868.00196
Trendafilov NT, 2015, PSYCHOMETRIKA, V80, P776, DOI 10.1007/s11336-014-9416-y
Trendafilov NT, 2014, COMPUTATION STAT, V29, P431, DOI 10.1007/s00180-013-0434-5
Van Deun K, 2019, CHEMOMETR INTELL LAB, V195, DOI 10.1016/j.chemolab.2019.103875
Van Deun K, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-448
Wang WC, 2017, ANN STAT, V45, P1342, DOI 10.1214/16-AOS1487
Whittle P, 1952, SKAND AKTUARIETIDSKR, V35, P223
Witten DM, 2009, BIOSTATISTICS, V10, P515, DOI 10.1093/biostatistics/kxp008
WOLD S, 1987, CHEMOMETR INTELL LAB, V2, P37, DOI 10.1016/0169-7439(87)80084-9
Xiaoshuang S., 2013, ADV ARTIFICIAL INTEL, P148
Yuan XT, 2013, J MACH LEARN RES, V14, P899
Zou H, 2005, J R STAT SOC B, V67, P301, DOI 10.1111/j.1467-9868.2005.00503.x
Zou H, 2006, J COMPUT GRAPH STAT, V15, P265, DOI 10.1198/106186006X113430
Zou H, 2018, P IEEE, V106, P1311, DOI 10.1109/JPROC.2018.2846588
NR 78
TC 0
Z9 0
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1554-351X
EI 1554-3528
J9 BEHAV RES METHODS
JI Behav. Res. Methods
PD MAR
PY 2024
VL 56
IS 3
BP 1413
EP 1432
DI 10.3758/s13428-023-02099-0
EA AUG 2023
PG 20
WC Psychology, Mathematical; Psychology, Experimental
WE Social Science Citation Index (SSCI)
SC Psychology
GA WN8I1
UT WOS:001042482800001
PM 37540466
OA Green Published, hybrid
DA 2024-09-05
ER
PT J
AU Sienkiewicz, J
Altmann, EG
AF Sienkiewicz, Julian
Altmann, Eduardo G.
TI Impact of lexical and sentiment factors on the popularity of scientific
papers
SO ROYAL SOCIETY OPEN SCIENCE
LA English
DT Article
DE citation analysis; sentiment analysis; quantile regression
ID CITATION IMPACT
AB We investigate how textual properties of scientific papers relate to the number of citations they receive. Our main finding is that correlations are nonlinear and affect differently the most cited and typical papers. For instance, we find that, in most journals, short titles correlate positively with citations only for the most cited papers, whereas for typical papers, the correlation is usually negative. Our analysis of six different factors, calculated both at the title and abstract level of 4.3 million papers in over 1500 journals, reveals the number of authors, and the length and complexity of the abstract, as having the strongest (positive) influence on the number of citations.
C1 [Sienkiewicz, Julian; Altmann, Eduardo G.] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany.
C3 Max Planck Society
RP Sienkiewicz, J (corresponding author), Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany.
EM julas@if.pw.edu.pl
RI Sienkiewicz, Julian/AAB-4900-2020; Altmann, Eduardo/A-3320-2009;
Altmann, Eduardo G./ABD-2012-2020
OI Sienkiewicz, Julian/0000-0003-2097-1499; Altmann,
Eduardo/0000-0002-1932-3710; Altmann, Eduardo G./0000-0002-1932-3710
CR Bollen J, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0006022, 10.1371/journal.pone.0004803]
Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112
Chavalarias D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054847
Chawla, 2021, BRIEF PAPERS SHORTER, DOI [10.1126/science.aad1669, DOI 10.1126/SCIENCE.AAD1669]
Chmiel A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022207
Choloniewski J, 2014, ACTA PHYS POL A, V127, P21
Davino C, 2014, WILEY SER PROBAB ST, P1, DOI 10.1002/9781118752685
Deng B., 2015, Nature, DOI [10.1038/nature.2015.18246, DOI 10.1038/NATURE.2015.18246]
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806
Dodds PS, 2015, P NATL ACAD SCI USA, V112, P2389, DOI 10.1073/pnas.1411678112
Garcia D, 2012, EPJ DATA SCI, V1, DOI 10.1140/epjds3
Gerlach M, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/11/113010
Gunning Robert, 1952, The Technique of Clear Writing
Herdan G., 1960, LANGUAGE CHOICE CHAN
KOENKER R, 1978, ECONOMETRICA, V46, P33, DOI 10.2307/1913643
Koenker R., 2015, quantreg: Quantile Regression
Kuhn T, 2014, PHYS REV X, V4, DOI 10.1103/PhysRevX.4.041036
Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266
Milkman KL, 2014, P NATL ACAD SCI USA, V111, P13642, DOI 10.1073/pnas.1317511111
Miotto JM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111506
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
Paiva CE, 2012, CLINICS, V67, P509
Perc M, 2013, SCI REP-UK, V3, DOI 10.1038/srep01720
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Rostami F, 2014, SCIENTOMETRICS, V98, P2007, DOI 10.1007/s11192-013-1118-1
RUSSELL JA, 1980, J PERS SOC PSYCHOL, V39, P1161, DOI 10.1037/h0077714
Scharnhorst A, 2012, UNDERSTING COMPLE, DOI [10.1007/978-3-642-23068-4, DOI 10.1007/978-3-642-23068-4]
Sienkiewicz J, 2013, ADV COMPLEX SYST, V16, DOI 10.1142/S0219525913500264
Sinatra R, 2015, NAT PHYS, V11, P791, DOI 10.1038/nphys3494
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
van Wesel M, 2014, SCIENTOMETRICS, V98, P1601, DOI 10.1007/s11192-013-1154-x
Warriner AB, 2013, BEHAV RES METHODS, V45, P1191, DOI 10.3758/s13428-012-0314-x
Yik M, 2011, EMOTION, V11, P705, DOI 10.1037/a0023980
Yu B., 2013, ASIST 13 P 76 ASIS T
NR 35
TC 17
Z9 18
U1 0
U2 50
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 2054-5703
J9 ROY SOC OPEN SCI
JI R. Soc. Open Sci.
PD JUN
PY 2016
VL 3
IS 6
AR 160140
DI 10.1098/rsos.160140
PG 10
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics
GA DR9RF
UT WOS:000380233100013
PM 27429773
OA Green Published, Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Yu, Y
Ren, JS
Zhang, Q
Yang, WM
Jiao, ZW
AF Yu, Yuan
Ren, Jinsheng
Zhang, Qi
Yang, Weimin
Jiao, Zhiwei
TI Research on Tire Marking Point Completeness Evaluation Based on K-Means
Clustering Image Segmentation
SO SENSORS
LA English
DT Article
DE machine vision; tire marking point; completeness; image segmentation
ID VISION
AB The tire marking points of dynamic balance and uniformity play a crucial guiding role in tire installation. Incomplete marking points block the recognition of tire marking points, and then affect the installation of tires. It is usually necessary to evaluate the marking point completeness during the quality inspection of finished tires. In order to meet the high-precision requirements of the evaluation of tire marking point completeness in the smart factories, the K-means clustering algorithm is introduced to segment the image of marking points in this paper. The pixels within the contour of the marking point are weighted to calculate the marking point completeness on the basis of the image segmentation. The completeness is rated and evaluated by completeness calculation. The experimental results show that the accuracy of the marking point completeness ratings is 95%, and the accuracy of the marking point evaluations is 99%. The proposed method has an important guiding significance of practice to evaluate the tire marking point completeness during the tire quality inspection based on machine vision.
C1 [Yu, Yuan; Ren, Jinsheng; Zhang, Qi; Yang, Weimin; Jiao, Zhiwei] Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China.
C3 Beijing University of Chemical Technology
RP Jiao, ZW (corresponding author), Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China.
EM yuyuanjd@263.net; renjs630@163.com; zhangq0618@163.com;
yangwm@mail.buct.edu.cn; jiaozw@mail.buct.edu.cn
RI Yang, Wei/GWV-4107-2022; Yang, Wei/JBJ-1928-2023; Yang,
Wei/HIA-0360-2022
OI Yu, Yuan/0000-0001-7087-9223
FU Shandong Major Scientific and Technological Innovation Project
(Intelligent manufacturing technology and equipment for electromagnetic
induction heating and direct pressure vulcanization of tire with
ultra-high performance) [12874]
FX This research paper was funded by Shandong Major Scientific and
Technological Innovation Project (Intelligent manufacturing technology
and equipment for electromagnetic induction heating and direct pressure
vulcanization of tire with ultra-high performance. No. 12874).
CR Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
Bridgestone Corporation, 2000, Japan Patent, Patent No. 6144033
Chao H., 2018, THESIS
[陈宁 Chen Ning], 2016, [西南交通大学学报, Journal of Southwest Jiaotong University], V51, P645
Chu Qi-chao, 2017, Instrument Technique and Sensor, P67
Dias AP, 2015, INT J QUAL RES, V9, P27
Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
[《中国公路学报》编辑部 Editorial Department of China Journal of], 2017, [中国公路学报, China Journal of Highway and Transport], V30, P1
Feng DM, 2015, SENSORS-BASEL, V15, P16557, DOI 10.3390/s150716557
Honghua L., 2007, J JINGGANGSHAN U NAT, V28, P51
Jing P., 2015, MACH DES MANUF, V12, P163
MacQueen James, 1967, 5 BERK S MATH STAT P, P281
Micro-Epsilon, INSP SYST TIR IND
Qi Z., 2020, THESIS
SICK Sensor Inteligence, POW IM PROC ADD QUAL
Wang Yao-nan, 2015, Control Theory & Applications, V32, P273, DOI 10.7641/CTA.2015.40169
Yong W., 2014, J E CHINA U SCI TECH, V40, P520
Yuan Xiao-cui, 2016, Optics and Precision Engineering, V24, P1772, DOI 10.3788/OPE.20162407.1772
Zhou Ji, 2015, China Mechanical Engineering, V26, P2273, DOI 10.3969/j.issn.1004-132X.2015.17.001
NR 19
TC 4
Z9 4
U1 0
U2 16
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1424-8220
J9 SENSORS-BASEL
JI Sensors
PD SEP
PY 2020
VL 20
IS 17
AR 4687
DI 10.3390/s20174687
PG 16
WC Chemistry, Analytical; Engineering, Electrical & Electronic; Instruments
& Instrumentation
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Engineering; Instruments & Instrumentation
GA NP1OZ
UT WOS:000569951900001
PM 32825149
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Chen, CY
Lin, ML
AF Chen, CY
Lin, ML
BE Qi, JM
Cui, JP
TI Research on the performance of SVM with Fourier-Kernel function and
application on regression
SO ICEMI 2005: CONFERENCE PROCEEDINGS OF THE SEVENTH INTERNATIONAL
CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL 3
LA English
DT Proceedings Paper
CT 7th International Conference on Electronic Measurement and Instruments
CY AUG 16-18, 2005
CL Beijing, PEOPLES R CHINA
DE SVM; Fourier kernel; regression
AB Contrast to traditional methods, Support Vector Machine (SVM) has better performance on generalization. It has widely applications on pattern recognition.. but less on regression now. And the common choice of kernel function is Radial Basis Function, so few Studies on other special kernels. In this paper, the performance of SVM based on Fourier kernel is studied which aims at the regression in signal processing problems, and the influence of parameter q on performance of SVM is analyzed. A conclusion is drawn that the integral of Fourier kernel in one period is a constant and the concept of equivalent kernel function width is proposed. At last, Simulation verifies that SVM based on Fourier kernel has better performance than the one,based on RBF kernel in the field of signal processing.
C1 Harbin Inst Technol, Harbin 150001, Peoples R China.
C3 Harbin Institute of Technology
RP Harbin Inst Technol, Harbin 150001, Peoples R China.
CR BOSER B, 1922, P 5 ANN ACM WORKSH C, P144
Cortes C., 1995, THESIS U ROCHESTER
Gunn S.R, 1998, ISIS TECH REP, P5
Joachims T, 1999, ADVANCES IN KERNEL METHODS, P169
Platt JC, 1999, ADVANCES IN KERNEL METHODS, P185
Vapnik Vladimir N., 1995, The nature of statistical learning theory
YAN H, 2001, RELATION BETWEEN SUP, V41, P77
NR 7
TC 0
Z9 0
U1 0
U2 0
PU INTERNATIONAL ACADEMIC PUBLISHERS LTD
PI HONG KONG
PA UNIT 1205, 12 FLOOR, SINO PLAZA, 255 GLOUCESTER ROAD, HONG KONG 00000,
CAUSEWAY BAY, PEOPLES R CHINA
BN 7-5062-7443-4
PY 2005
BP 671
EP 675
PG 5
WC Engineering, Electrical & Electronic; Instruments & Instrumentation
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Instruments & Instrumentation
GA BDR67
UT WOS:000235120400143
DA 2024-09-05
ER
PT J
AU Sengöz, A
Orhun, BN
Konyalilar, N
AF Sengoz, Ayse
Orhun, Beste Nisa
Konyalilar, Nil
TI A holistic approach to artificial intelligence-related research in the
transportation system: bibliometric analysis
SO WORLDWIDE HOSPITALITY AND TOURISM THEMES
LA English
DT Article
DE Artificial intelligence; Transportation; Bibliometric analysis;
VOSviewer; Tourism
AB Purpose Developments regarding the use of artificial intelligence (AI) in transportation systems, one of the important stakeholders of tourism, are remarkable. However, no review thus far has provided a comprehensive overview of research on AI in transportation systems.Design/methodology/approach To fill this gap, this study uses the VOSviewer software to present a bibliometric review of the current scientific literature in the field of AI-related tourism research. The theme of AI in transportation systems was explored in the Web of Science database.Findings The original search yielded 642 documents, which were then filtered by parameters. For publications related to AI in transportation systems, the most cited documents, leading authors, productive countries, co-occurrence analysis of keywords and bibliographic matching of documents were examined. This report shows that there has been a recent increase in research on AI in transport systems. However, there is only one study on tourism. The country that contributed the most is China with 298 studies. The most used keyword in the documents was intelligent transportation system.Originality/value The bibliometric analysis of the existing work provided a valuable and seminal reference for researchers and practitioners in AI-related in transportation system.
C1 [Sengoz, Ayse] Akdeniz Univ, Antalya, Turkiye.
[Orhun, Beste Nisa] Van Yuzuncu Yil Univ, Van, Turkiye.
[Konyalilar, Nil] Istanbul Topkapi Univ, Istanbul, Turkiye.
C3 Akdeniz University; Yuzuncu Yil University; Istanbul Topkapi University
RP Sengöz, A (corresponding author), Akdeniz Univ, Antalya, Turkiye.
EM aysesengoz@akdeniz.edu.tr
RI SENGOZ, Ayse/IAQ-7228-2023
OI SENGOZ, Ayse/0000-0002-0311-9141; ORHUN, Beste Nisa/0000-0001-5578-2546
CR Abduljabbar R, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11010189
Alqahtani H, 2024, ENG APPL ARTIF INTEL, V129, DOI 10.1016/j.engappai.2023.107667
Ardito L, 2019, CURR ISSUES TOUR, V22, P1805, DOI 10.1080/13683500.2019.1612860
Arslan K., 2020, Bat Anadolu Eitim Bilimleri Dergisi, V11, P71
Bar-Ilan J, 2008, J INFORMETR, V2, P1, DOI 10.1016/j.joi.2007.11.001
Bharadiya J, 2023, Am J Comput Eng, V6, P34, DOI DOI 10.47672/AJCE.1487
Bornmann L, 2014, ONLINE INFORM REV, V38, P43, DOI 10.1108/OIR-12-2012-0214
Dogan S., 2024, KARADENIZ TURIZM ARA, V2, P51
Ercan F., 2020, OPUS INT J SOC RESEA, V16, P5230, DOI 10.26466/opus.780017
Ezell S., 2010, Intelligent Transportation Systems
Franklin RS, 2018, POPULATION LOSS: THE ROLE OF TRANSPORTATION AND OTHER ISSUES, VOL 2, P1, DOI 10.1016/bs.atpp.2018.09.008
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Han X, 2024, IEEE T INTELL VEHICL, V9, P39, DOI 10.1109/TIV.2023.3349324
Hanaa SM, 2024, J HOSP TOUR INSIGHTS, V7, P76, DOI 10.1108/JHTI-08-2022-0369
Huang MH, 2021, J ACAD MARKET SCI, V49, P30, DOI 10.1007/s11747-020-00749-9
Huertas A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131910953
Ivanov S., 2017, Revista Turismo & Desenvolvimento, P1501
Kelly J., 2007, Journal of Travel Research, V45, P297, DOI 10.1177/0047287506292700
Kontogianni A, 2020, ARRAY-NY, V6, DOI 10.1016/j.array.2020.100020
Koroniotis N, 2020, IEEE ACCESS, V8, P209802, DOI 10.1109/ACCESS.2020.3036728
Kurcer D., 2023, TURIZM VE DESTINASYO, P179
Machin M, 2018, IEEE WIREL COMMUNN, P332, DOI 10.1109/WCNCW.2018.8369029
Narbay S., 2023, SAKARYA U HUKUK FAKU, V11, P49, DOI [10.56701/shd.1328031, DOI 10.56701/SHD.1328031]
Orbașli A., 2004, Tourism and transport: issues and agenda for the new millennium, P93, DOI 10.1016/B978-0-08-044172-6.50012-1
Pazar S., 2020, J SCI TECHNOLENG RES, V1, P31
Pehlivan E., 2010, THESIS ISTANBUL TU I
Ramos A. L., 2012, INT J MODELING OPTIM, P274, DOI DOI 10.7763/IJMO.2012.V2.126
Sterne J., 2017, Artificial Intelligence for Marketing Practical Applications
Telang S., 2021, Secur. Priv. Appl. Smart City Dev., P171, DOI 10.1007/978-3-030-53149-29
Ugur Cilkara E., 2023, PAZARLAMAYA YENI BIR, P135
Ullah Z, 2023, SUSTAIN CITIES SOC, V97, DOI 10.1016/j.scs.2023.104697
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
NR 32
TC 0
Z9 0
U1 6
U2 6
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 1755-4217
EI 1755-4225
J9 WORLDW HOSP TOUR THE
JI Worldw. Hosp. Tour. Themes
PD MAY 30
PY 2024
VL 16
IS 2
SI SI
BP 138
EP 149
DI 10.1108/WHATT-03-2024-0059
EA APR 2024
PG 12
WC Hospitality, Leisure, Sport & Tourism
WE Emerging Sources Citation Index (ESCI)
SC Social Sciences - Other Topics
GA SC3L8
UT WOS:001199471200001
DA 2024-09-05
ER
PT J
AU Djogbenou, R
Adjiwanou, V
Lardoux, S
AF Djogbenou, Robert
Adjiwanou, Visseho
Lardoux, Solene
TI Exploring Sixty-Two Years of Research on Immigrants' Integration Using
Structural Topic Modeling-Based Bibliometric Analysis
SO JOURNAL OF INTERNATIONAL MIGRATION AND INTEGRATION
LA English
DT Article; Early Access
DE Immigration; Immigrants' integration; Ethnic diversity; Topic modeling;
Bibliometric analysis
ID ENGAGEMENT; EARNINGS; SCIENCE; HEALTH; YOUTH
AB The research on immigrant integration is a dynamic interdisciplinary domain with rich and diverse literature. Considering the numerous studies in this domain, it is valuable to provide a comprehensive mapping to understand the research landscape resource and facilitate collaborations. This article combines Structural Topic modeling with bibliometric analysis to identify key research topics on immigrant integration. Applying these methods to 70890 abstracts published between 1960 and 2022, we identified 30 key research topics. We also tracked their prevalence over time, correlations and distributions within institutions and countries, funding effects, and countries' collaborations. The results indicate that the most discussed topics are integration theory, economic integration, education, residential segregation, integration policy, language, religious diversity, cultural participation, identity & belonging, racism & discrimination, political participation, health & welfare, research methods, demographic issues, gender & violence. Moreover, some of these topics were highly prominent in earlier periods and nearly non-existent in later years, while others emerged only recently. Specific topics maintained consistent significance over time. Analyses of correlations and trends reveal clusters of topics and diverse distributions across countries and research institutions. The implications of these results can benefit researchers, helping them better understand the current state of research and design future research projects. The finding could also help stakeholders in migration and integration governance and funding agencies to guide policies regarding the integration of immigrants.
C1 [Djogbenou, Robert; Lardoux, Solene] Univ Montreal, Dept Demog, Montreal, PQ H3C 3J7, Canada.
[Adjiwanou, Visseho] Univ Quebec & Montreal, Dept Sociol, Montreal, PQ H2L 2C4, Canada.
C3 Universite de Montreal; University of Quebec; University of Quebec
Montreal
RP Djogbenou, R (corresponding author), Univ Montreal, Dept Demog, Montreal, PQ H3C 3J7, Canada.
EM yao.robert.djogbenou@umontreal.ca
CR Ager A, 2008, J REFUG STUD, V21, P166, DOI 10.1093/jrs/fen016
Agrawal SK, 2019, J INT MIGR INTEGR, V20, P941, DOI 10.1007/s12134-018-0640-7
Alba R, 2015, STRANGERS NO MORE: IMMIGRATION AND THE CHALLENGES OF INTEGRATION IN NORTH AMERICA AND WESTERN EUROPE, P1
Alburez-Gutierrez D, 2021, POPUL DEV REV, V47, P997, DOI 10.1111/padr.12436
Atceken K., 2023, Journal of Identity and Migration Studies, V17, P67
Bakewell O, 2008, J REFUG STUD, V21, P432, DOI 10.1093/jrs/fen042
Bekteshi V, 2020, ETHNIC HEALTH, V25, P897, DOI 10.1080/13557858.2018.1469733
Ben Morrison T, 2012, J IMMIGR MINOR HEALT, V14, P968, DOI 10.1007/s10903-012-9632-4
Bilodeau A, 2017, POLIT SCI, V69, P122, DOI 10.1080/00323187.2017.1332955
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Brzozowski Jan, 2019, International Journal of Entrepreneurship and Innovation Management, V23, P584
Cedillo YE, 2021, J IMMIGR MINOR HEALT, V23, P35, DOI 10.1007/s10903-020-01012-7
Chen XL, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13094859
Chen XL, 2020, COGN COMPUT, V12, P1097, DOI 10.1007/s12559-020-09745-1
Chen XL, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231192
Chen Y, 2015, HABITAT INT, V49, P419, DOI 10.1016/j.habitatint.2015.06.014
Cruz E. P., 2016, Revista Eletronica de Negocios Internacionais (Internext), V11, P78
Daenekindt S, 2020, HIGH EDUC, V80, P571, DOI 10.1007/s10734-020-00500-x
Demie F, 2018, J MULTILING MULTICUL, V39, P210, DOI 10.1080/01434632.2017.1348508
Drouhot LG, 2023, J ETHN MIGR STUD, V49, P389, DOI 10.1080/1369183X.2022.2100542
Erhard L, 2022, EUR SOCIOL REV, V38, P629, DOI 10.1093/esr/jcab063
Feliciano C, 2005, ETHNIC RACIAL STUD, V28, P1087, DOI 10.1080/01419870500224406
Frenette M, 2005, INT MIGR REV, V39, P228
Galandini S, 2019, J INT MIGR INTEGR, V20, P685, DOI 10.1007/s12134-018-0626-5
Gao HC, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19159729
Garces-Mascarenas B., 2016, Integration Processes and Policies in Europe, P1
Goodman S, 2019, EUR J SOC PSYCHOL, V49, P1456, DOI 10.1002/ejsp.2595
Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028
Haberfeld Y, 2011, INT J COMP SOCIOL, V52, P6, DOI 10.1177/0020715210377157
Hajdinjak S., 2020, COMPUTATIONAL CONFLI, P83, DOI DOI 10.1007/978-3-030-29333-8_5
Kajikawa Y, 2007, SUSTAIN SCI, V2, P221, DOI 10.1007/s11625-007-0027-8
Kashyap R, 2023, RES HBK SOC, P48
Kaufmann L, 2021, INT J INTERCULT REL, V84, P52, DOI 10.1016/j.ijintrel.2021.06.010
Kelling C, 2023, J ETHN MIGR STUD, V49, P492, DOI 10.1080/1369183X.2022.2100551
Khattab N, 2016, J ETHN MIGR STUD, V42, P1774, DOI 10.1080/1369183X.2016.1166040
Laurentsyeva N., 2017, Intereconomics, V52, P285, DOI DOI 10.1007/S10272-017-0691-6
Lenard PT, 2015, J INT MIGR INTEGR, V16, P119, DOI 10.1007/s12134-014-0328-6
Li MY, 2019, J CROSS CULT PSYCHOL, V50, P763, DOI 10.1177/0022022119846558
Lindstedt NC, 2019, SOC CURR, V6, P307, DOI 10.1177/2329496519846505
Malaterre C, 2019, HOPOS, V9, P215, DOI 10.1086/704372
Martinovic B, 2016, INT J INTERCULT REL, V52, P1, DOI 10.1016/j.ijintrel.2016.02.005
McAvay H, 2018, DEMOGRAPHY, V55, P1507, DOI 10.1007/s13524-018-0689-0
Meissner F, 2015, ETHNIC RACIAL STUD, V38, P541, DOI 10.1080/01419870.2015.980295
Miranda-González A, 2020, EPJ DATA SCI, V9, DOI 10.1140/epjds/s13688-020-00252-9
Mostafa Mohamed M, 2022, Qual Quant, P1, DOI 10.1007/s11135-022-01548-w
O'Mara-Eves A, 2015, SYST REV-LONDON, V4, DOI 10.1186/2046-4053-4-5
Penninx Rinus., 2016, IMISCOE RES SERIES, P11, DOI [DOI 10.1007/978-3-319-21674-4_2, https://doi.org/10.1007/978-3-319-21674-42]
Peters MDJ, 2015, INT J EVID-BASED HEA, V13, P141, DOI 10.1097/XEB.0000000000000050
Phillimore J, 2008, J REFUG STUD, V21, P305, DOI 10.1093/jrs/fen025
Pisarevskaya A, 2020, MIGR STUD, V8, P455, DOI 10.1093/migration/mnz031
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Roberts ME, 2016, Computational Social Science: Discovery and Prediction, P51, DOI DOI 10.1017/CBO9781316257340.004
Rodriguez Maria Y., 2020, Journal of Technology in Human Services, V38, P54, DOI 10.1080/15228835.2019.1616350
Rodríguez-García D, 2015, ANN AM ACAD POLIT SS, V662, P8, DOI 10.1177/0002716215601397
Salazar MD, 2016, INT J MULTICULT EDUC, V18, P88, DOI 10.18251/ijme.v18i1.1082
Salehi R, 2010, J IMMIGR MINOR HEALT, V12, P788, DOI 10.1007/s10903-009-9247-6
Schwemmer C, 2020, SOCIOLOGY, V54, P3, DOI 10.1177/0038038519853146
Sharma A, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102316
Shuangyun Y., 2020, Journal of Ethnic and Cultural Studies, V7, P17, DOI [10.29333/ejecs/370, DOI 10.29333/EJECS/370]
Smith R, 2019, J INT MIGR INTEGR, V20, P851, DOI 10.1007/s12134-018-0634-5
Subbotin A, 2021, SCIENTOMETRICS, V126, P7875, DOI 10.1007/s11192-021-04091-x
Sweileh WM, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-018-5689-x
Szlovak P, 2017, ETHNIC RACIAL STUD, V40, P851, DOI 10.1080/01419870.2016.1259489
Tates K., 2016, Integration processes and policies in Europe, P91, DOI DOI 10.1007/978-3-319-21674-4_6
Thornton MC, 2012, J BLACK STUD, V43, P749, DOI 10.1177/0021934712456549
Tran V., 2015, Obo in Sociology
Vargas ED, 2016, SOCIOL RACE ETHNIC, V2, P498, DOI 10.1177/2332649215623789
Vertovec S, 2007, ETHNIC RACIAL STUD, V30, P1024, DOI 10.1080/01419870701599465
Wang SH, 2016, BMC PUBLIC HEALTH, V16, DOI 10.1186/s12889-016-2932-1
Zhao X., 2021, arXiv, DOI DOI 10.48550/ARXIV.2104.12380
NR 70
TC 0
Z9 0
U1 2
U2 2
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1488-3473
EI 1874-6365
J9 J INT MIGR INTEGR
JI J. Int. Migr. Integr.
PD 2024 APR 3
PY 2024
DI 10.1007/s12134-024-01139-8
EA APR 2024
PG 28
WC Demography
WE Emerging Sources Citation Index (ESCI)
SC Demography
GA MV2L6
UT WOS:001196345000002
DA 2024-09-05
ER
PT C
AU Luo, FH
Zheng, H
Erdt, M
Raamkumar, AS
Theng, YL
AF Luo, Feiheng
Zheng, Han
Erdt, Mojisola
Raamkumar, Aravind Sesagiri
Theng, Yin-Leng
BE Erdt, M
Raamkumar, AS
Rasmussen, E
Theng, YL
TI A Comparative Investigation on Citation Counts and Altmetrics Between
Papers Authored by Top Universities and Companies in the Research Field
of Artificial Intelligence
SO ALTMETRICS FOR RESEARCH OUTPUTS MEASUREMENT AND SCHOLARLY INFORMATION
MANAGEMENT
SE Communications in Computer and Information Science
LA English
DT Proceedings Paper
CT International Workshop on Altmetrics for Research Outputs Measurement
and Scholarly Information Management (AROSIM)
CY JAN 26, 2018
CL Nanyang Technol Univ Singapore, Wee Kim Wee Sch Commun & Informat,
Singapore, SINGAPORE
HO Nanyang Technol Univ Singapore, Wee Kim Wee Sch Commun & Informat
DE Citation analysis; Altmetrics; Industrial research; Academic research
ID NEURAL-NETWORKS
AB Artificial Intelligence is currently a popular research field. With the development of deep learning techniques, researchers in this area have achieved impressive results in a variety of tasks. In this initial study, we explored scientific papers in Artificial Intelligence, making comparisons between papers authored by the top universities and companies from the dual perspectives of bibliometrics and altmetrics. We selected publication venues according to the venue rankings provided by Google Scholar and Scopus, and retrieved related papers along with their citation counts from Scopus. Altmetrics such as Altmetric Attention Scores and Mendeley reader counts were collected from Altmetric.com and PlumX. Top universities and companies were identified, and the retrieved papers were classified into three groups accordingly: university-authored papers, company-authored papers, and co-authored papers. Comparative results showed that university-authored papers received slightly higher citation counts than company-authored papers, while company-authored papers gained considerably more attention online. In addition, when we focused on the most impactful papers, i.e., the papers with the highest numbers of citation counts, and the papers with the largest amount of online attention, companies seemed to make a larger contribution by publishing more impactful papers than universities.
C1 [Luo, Feiheng; Zheng, Han; Erdt, Mojisola; Raamkumar, Aravind Sesagiri; Theng, Yin-Leng] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore 637718, Singapore.
C3 Nanyang Technological University
RP Raamkumar, AS (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore 637718, Singapore.
EM fhluo@ntu.edu.sg; zhenghan@ntu.edu.sg; mojisola.erdt@ntu.edu.sg;
aravind0002@ntu.edu.sg; tyltheng@ntu.edu.sg
RI Zheng, Han/AAD-6949-2020; Sesagiri Raamkumar, Aravind/G-9502-2017
OI Zheng, Han/0000-0003-4032-4299; Sesagiri Raamkumar,
Aravind/0000-0001-7200-7787
FU National Research Foundation, Prime Minister's Office, Singapore under
its Science of Research, Innovation and Enterprise programme (SRIE)
[NRF2014-NRF-SRIE001-019]
FX This research is supported by the National Research Foundation, Prime
Minister's Office, Singapore under its Science of Research, Innovation
and Enterprise programme (SRIE Award No. NRF2014-NRF-SRIE001-019). We
also thank Altmetric.com for providing access to Fetch API.
CR [Anonymous], 2016, European conference on computer vision, DOI [DOI 10.1007/978-3-319-46493-0_38, 10.1007/978-3-319-46493-0_38]
[Anonymous], 2015, NIPS 2015
Cho K., 2014, P 2014 C EMPIRICAL M, V1406, P1078, DOI DOI 10.3115/V1/D14-1179
Erdt M, 2016, SCIENTOMETRICS, V109, P1117, DOI 10.1007/s11192-016-2077-0
Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961
Vaswani A, 2017, ARXIV
NR 10
TC 1
Z9 1
U1 0
U2 9
PU SPRINGER-VERLAG SINGAPORE PTE LTD
PI SINGAPORE
PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
SN 1865-0929
EI 1865-0937
BN 978-981-13-1053-9; 978-981-13-1052-2
J9 COMM COM INF SC
PY 2018
VL 856
BP 105
EP 114
DI 10.1007/978-981-13-1053-9_9
PG 10
WC Computer Science, Information Systems; Computer Science, Theory &
Methods; Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BP2HH
UT WOS:000542570100009
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Yahia, Y
Lopes, JC
Lopes, RP
AF Yahia, Youssef
Lopes, Julio Castro
Lopes, Rui Pedro
TI Computer Vision Algorithms for 3D Object Recognition and Orientation: A
Bibliometric Study
SO ELECTRONICS
LA English
DT Article
DE 3D object; object detection; object orientation; bibliometric analysis
ID NETWORK
AB This paper consists of a bibliometric study that covers the topic of 3D object detection from 2022 until the present day. It employs various analysis approaches that shed light on the leading authors, affiliations, and countries within this research domain alongside the main themes of interest related to it. The findings revealed that China is the leading country in this domain given the fact that it is responsible for most of the scientific literature as well as being a host for the most productive universities and authors in terms of the number of publications. China is also responsible for initiating a significant number of collaborations with various nations around the world. The most basic theme related to this field is deep learning, along with autonomous driving, point cloud, robotics, and LiDAR. The work also includes an in-depth review that underlines some of the latest frameworks that took on various challenges regarding this topic, the improvement of object detection from point clouds, and training end-to-end fusion methods using both camera and LiDAR sensors, to name a few.
C1 [Yahia, Youssef; Lopes, Julio Castro; Lopes, Rui Pedro] Inst Politecn Braganca, Res Ctr Digitalizat & Intelligent Robot CeDRI, P-5300252 Braganca, Portugal.
C3 Instituto Politecnico de Braganca
RP Yahia, Y (corresponding author), Inst Politecn Braganca, Res Ctr Digitalizat & Intelligent Robot CeDRI, P-5300252 Braganca, Portugal.
EM youssefyahia@ipb.pt; juliolopes@ipb.pt; rlopes@ipb.pt
RI Al-obaidi, Abdullah Thair/P-8487-2017; Lopes, Rui Pedro/A-1947-2010
OI Al-obaidi, Abdullah Thair/0000-0002-9971-5895; Lopes, Rui
Pedro/0000-0002-9170-5078; Castro Lopes, Julio/0000-0003-3354-8956; bel
haj yahia, youssef/0009-0009-4880-6218
FU Foundation for Science and Technology (FCT, Portugal) [UIDB/05757/2020,
UIDP/05757/2020, LA/P/0007/2021]
FX This research was funded by the Foundation for Science and Technology
(FCT, Portugal) for financial support through national funds FCT/MCTES
(PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC
(LA/P/0007/2021).
CR Aghaei Chadegani A., 2013, Asian Social Science, V9, P18, DOI [10.5539/ass.v9n5p18, DOI 10.5539/ASS.V9N5P18]
Beacco A, 2023, VISUAL COMPUT, V39, P5421, DOI 10.1007/s00371-022-02669-x
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Chen G, 2016, J INFORMETR, V10, P212, DOI 10.1016/j.joi.2016.01.006
Chen H, 2020, IEEE ACCESS, V8, P155417, DOI 10.1109/ACCESS.2020.3019336
Chen WY, 2022, NEUROCOMPUTING, V494, P23, DOI 10.1016/j.neucom.2022.04.075
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z
He KM, 2015, Arxiv, DOI arXiv:1512.03385
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Khan U, 2024, LIBR HI TECH, V42, P180, DOI 10.1108/LHT-10-2021-0351
Khare A, 2022, J BUS RES, V150, P567, DOI 10.1016/j.jbusres.2022.06.039
Li X, 2022, LECT NOTES COMPUT SC, V13698, P691, DOI 10.1007/978-3-031-19839-7_40
Lin TY, 2018, Arxiv, DOI arXiv:1708.02002
Liu WX, 2021, IEEE ACCESS, V9, P156799, DOI 10.1109/ACCESS.2021.3129782
Lohia A., 2021, Library Philosophy and Practice, V4910, P34
Mahmoud A, 2023, IEEE WINT CONF APPL, P663, DOI 10.1109/WACV56688.2023.00073
Mousavian A, 2017, Arxiv, DOI [arXiv:1612.00496, 10.48550/ARXIV.1612.00496, DOI 10.48550/ARXIV.1612.00496]
Okoli C., 2010, A guide to conducting a systematic literature review of information systems research, DOI DOI 10.2139/SSRN.1954824
Ran XC, 2023, ARTIF INTELL REV, V56, P8219, DOI 10.1007/s10462-022-10366-3
Redmon J, 2016, Arxiv, DOI [arXiv:1506.02640, 10.48550/arXiv.1506.02640]
Ren SQ, 2016, Arxiv, DOI [arXiv:1506.01497, 10.1109/TPAMI.2016.2577031]
Ruan Hao, 2023, 2022 IEEE International Conference on Cyborg and Bionic Systems (CBS), P190, DOI 10.1109/CBS55922.2023.10115327
Sheikhahmadi A, 2015, PHYSICA A, V436, P833, DOI 10.1016/j.physa.2015.04.035
Shi YF, 2023, IEEE T PATTERN ANAL, V45, P4882, DOI 10.1109/TPAMI.2022.3186876
Vieira ES, 2009, SCIENTOMETRICS, V81, P587, DOI 10.1007/s11192-009-2178-0
Wen MY, 2023, MATHEMATICS-BASEL, V11, DOI 10.3390/math11020403
Yang L, 2023, IEEE T CIRC SYST VID, V33, P6832, DOI 10.1109/TCSVT.2023.3270728
[章毓晋 Zhang Yujin], 2023, [中国图象图形学报, Journal of Image and Graphics], V28, P879
NR 29
TC 1
Z9 1
U1 2
U2 4
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2079-9292
J9 ELECTRONICS-SWITZ
JI Electronics
PD OCT
PY 2023
VL 12
IS 20
AR 4218
DI 10.3390/electronics12204218
PG 16
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Physics
GA W2JL4
UT WOS:001089943900001
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Corvi, JO
McKitrick, A
Fernández, JM
Fuenteslópez, CV
Gelpí, JL
Ginebra, MP
Capella-Gutierrez, S
Hakimi, O
AF Corvi, Javier O.
McKitrick, Austin
Fernandez, Jose M.
Fuenteslopez, Carla V.
Gelpi, Josep L.
Ginebra, Maria-Pau
Capella-Gutierrez, Salvador
Hakimi, Osnat
TI DEBBIE: The Open Access Database of Experimental Scaffolds and
Biomaterials Built Using an Automated Text Mining Pipeline
SO ADVANCED HEALTHCARE MATERIALS
LA English
DT Article
DE biomaterials; databases; natural language processing; text mining;
tissue scaffolds
AB Biomaterials research output has experienced an exponential increase over the last three decades. The majority of research is published in the form of scientific articles and is therefore available as unstructured text, making it a challenging input for computational processing. Computational tools are becoming essential to overcome this information overload. Among them, text mining systems present an attractive option for the automated extraction of information from text documents into structured datasets. This work presents the first automated system for biomaterial related information extraction from the National Library of Medicine's premier bibliographic database (MEDLINE) research abstracts into a searchable database. The system is a text mining pipeline that periodically retrieves abstracts from PubMed and identifies research and clinical studies of biomaterials. Thereafter, the pipeline identifies sixteen concept types of interest in the abstract using the Biomaterials Annotator, a tool for biomaterials Named Entity Recognition (NER). These concepts of interest, along with the abstract and relevant metadata are then deposited in DEBBIE, the Database of Experimental Biomaterials and their Biological Effect. DEBBIE is accessible through a web application that provides keyword searches and displays results in an intuitive and meaningful manner, aiming to facilitate an efficient mapping and organization of biomaterials information.
C1 [Corvi, Javier O.; McKitrick, Austin; Fernandez, Jose M.; Capella-Gutierrez, Salvador] Barcelona Supercomp Ctr BSC, Barcelona 08034, Spain.
[Fuenteslopez, Carla V.] Univ Oxford, Inst Biomed Engn, Botnar Res Ctr, Oxford OX3 7LD, England.
[Gelpi, Josep L.] Univ Barcelona, Dept Biochem & Mol Biol, Barcelona 08014, Spain.
[Ginebra, Maria-Pau] Tech Univ Catalonia, Dept Mat Sci & Engn, Barcelona 08222, Spain.
[Hakimi, Osnat] Univ Int Catalunya, Fac Med & Hlth Sci, Barcelona 08017, Spain.
C3 Universitat Politecnica de Catalunya; Barcelona Supercomputer Center
(BSC-CNS); University of Oxford; University of Barcelona; Universitat
Politecnica de Catalunya; Universitat Internacional de Catalunya (UIC)
RP Capella-Gutierrez, S (corresponding author), Barcelona Supercomp Ctr BSC, Barcelona 08034, Spain.; Hakimi, O (corresponding author), Univ Int Catalunya, Fac Med & Hlth Sci, Barcelona 08017, Spain.
EM salvador.capella@bsc.es; Osnat@aMoon.fund
RI Ginebra, Maria-Pau/J-8149-2017; Capella-Gutierrez, Salvador/H-5053-2015;
Fernandez Gonzalez, Jose Maria/N-5920-2014
OI Ginebra, Maria-Pau/0000-0002-4700-5621; Corvi,
Javier/0000-0003-3241-3400; Capella-Gutierrez,
Salvador/0000-0002-0309-604X; Hakimi, Osnat/0000-0002-8839-4846;
Fuenteslopez, Carla Veronica/0000-0003-1469-2629; Fernandez Gonzalez,
Jose Maria/0000-0002-4806-5140
FU Innovative Medicines Initiative two Joint Undertaking [777365];
eTRANSAFE (Innovative Medicines Initiative) [777365]; eTRANSAFE
(European Union's Horizon 2020 research and innovation programme);
eTRANSAFE (EFPIA); European Union Horizon 2020 programme under the Marie
Sklodowska-Curie [751277]; MSCA; Bosch-Aymerich fellowship; INB
[PT17/0009/0001 - ISCIII-SGEFI / ERDF]; Generalitat de~Catalunya; Marie
Curie Actions (MSCA) [751277] Funding Source: Marie Curie Actions (MSCA)
FX J.C. was partly supported by eTRANSAFE (received funding from the
Innovative Medicines Initiative two Joint Undertaking under grant
agreement no 777365 and support from the European Union's Horizon 2020
research and innovation programme and EFPIA). This project had received
funding from the European Union Horizon 2020 programme under the Marie
Sklodowska-Curie grant agreement DEBBIE (project number: 751277). O.H.
was funded through an MSCA and a Bosch-Aymerich fellowship. J-M.F,
S.C-G, and J-L.P. were partly supported by INB Grant (PT17/0009/0001 -
ISCIII-SGEFI / ERDF). M-P.G. acknowledges the ICREA Academia Award from
Generalitat de & nbsp;Catalunya.
CR Alsentzer E, 2019, P 2 CLIN NATURAL LAN, P72, DOI 10.18653/v1/W19-1909
[Anonymous], 2022, FDA MED DEV DAT
[Anonymous], 2022, INT ASM MED MAT DAT
Barupal DK, 2019, ENVIRON HEALTH PERSP, V127, DOI 10.1289/EHP4713
Benson DA, 2017, NUCLEIC ACIDS RES, V45, pD37, DOI [10.1093/nar/gks1195, 10.1093/nar/gkp1024, 10.1093/nar/gkl986, 10.1093/nar/gkx1094, 10.1093/nar/gkw1070, 10.1093/nar/gkn723, 10.1093/nar/gkg057, 10.1093/nar/gkr1202, 10.1093/nar/gkq1079]
Bodenreider O, 2004, NUCLEIC ACIDS RES, V32, pD267, DOI 10.1093/nar/gkh061
Browaeys H, 2007, CLIN IMPLANT DENT R, V9, P166, DOI 10.1111/j.1708-8208.2007.00050.x
Cho YJ, 2019, BMC BIOINFORMATICS, V20, DOI 10.1186/s12859-019-3321-4
Corvi Javier, 2021, P 2 WORKSH SCHOL DOC, P36
Cunningham H, 2013, PLOS COMPUT BIOL, V9, DOI 10.1371/journal.pcbi.1002854
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Gaulton A, 2017, NUCLEIC ACIDS RES, V45, pD945, DOI 10.1093/nar/gkw1074
Golbeck Jennifer., 2003, J WEB SEMANT, V1, P75, DOI [DOI 10.1016/J.WEBSEM.2003.07.007, 10.1016/j.websem.2003.07.007]
Hakimi O, 2020, NAT REV MATER, V5, P553, DOI 10.1038/s41578-020-0215-z
Hakimi O, 2020, ADV FUNCT MATER, V30, DOI 10.1002/adfm.201909910
Hastings J, 2016, NUCLEIC ACIDS RES, V44, pD1214, DOI 10.1093/nar/gkv1031
Hebels DGAJ, 2017, BIOMATERIALS, V149, P88, DOI 10.1016/j.biomaterials.2017.10.008
Hirschman Lynette, 2012, Database (Oxford), V2012, pbas020, DOI 10.1093/database/bas020
Isayev O, 2019, NATURE, V571, P42, DOI 10.1038/d41586-019-01978-x
Kaewphan S., 2018, DATABASE, V2018, P96
Kerner J, 2021, ACTA BIOMATER, V130, P54, DOI 10.1016/j.actbio.2021.05.053
Kiliç S, 2016, DATABASE-OXFORD, DOI 10.1093/database/baw055
Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682
Lin YT, 2021, BMC BIOINFORMATICS, V22, DOI 10.1186/s12859-021-04285-3
Locke RC, 2023, ADV HEALTHC MATER, V12, DOI 10.1002/adhm.202202591
Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010
Michalopoulos G, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P1744
Mungall CJ, 2012, GENOME BIOL, V13, DOI 10.1186/gb-2012-13-1-r5
Pei ZR, 2023, NAT COMMUN, V14, DOI 10.1038/s41467-022-35766-5
Rigden DJ, 2019, NUCLEIC ACIDS RES, V47, pD1, DOI 10.1093/nar/gky1267
Roychowdhury D., 2021, DATABASE-OXFORD, V2021, DOI DOI 10.1093/DATABASE/BAAB031
Sanh V., ARXIV 2019
Subia B., 2012, J TISSUE ENG REGEN M, V5, P59
Suwardi A, 2022, ADV MATER, V34, DOI 10.1002/adma.202102703
Tawfik NS, 2018, DATABASE-OXFORD, DOI 10.1093/database/bay020
Dang TH, 2018, BIOINFORMATICS, V34, P3539, DOI 10.1093/bioinformatics/bty356
Vasina EN, 2009, LAB CHIP, V9, P891, DOI 10.1039/b813475h
Williams D.F., 1987, DEFINITIONS BIOMATER
Yang X, 2018, BMC BIOINFORMATICS, V19, DOI 10.1186/s12859-018-2526-2
NR 39
TC 4
Z9 4
U1 0
U2 10
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2192-2640
EI 2192-2659
J9 ADV HEALTHC MATER
JI Adv. Healthc. Mater.
PD OCT 6
PY 2023
VL 12
IS 25
DI 10.1002/adhm.202300150
EA AUG 2023
PG 13
WC Engineering, Biomedical; Nanoscience & Nanotechnology; Materials
Science, Biomaterials
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Science & Technology - Other Topics; Materials Science
GA IT7I6
UT WOS:001045313100001
PM 37563883
DA 2024-09-05
ER
PT J
AU Abbas, NN
Ahmed, T
Shah, SHU
Omar, M
Park, HW
AF Abbas, Naveed Naeem
Ahmed, Tanveer
Shah, Syed Habib Ullah
Omar, Muhammad
Park, Han Woo
TI Investigating the applications of artificial intelligence in cyber
security
SO SCIENTOMETRICS
LA English
DT Article
DE Artificial intelligence; Cyber security; Scientometric; Visualization;
Emerging trend; Research hotspot
AB Artificial Intelligence (AI) provides instant insights to pierce through the noise of thousands of daily security alerts. The recent literature focuses on AI's application to cyber security but lacks visual analysis of AI applications. Structural changes have been observed in cyber security since the emergence of AI. This study promotes the development of theory about AI in cyber security, helps researchers establish research directions, and provides a reference that enterprises and governments can use to plan AI applications in the cyber security industry. Many countries, institutions and authors are densely connected through collaboration and citation networks. Artificial neural networks, an AI technique, gave birth to today's research on cloud cyber security. Many research hotspots such as those on face recognition and deep neural networks for speech recognition may create future hotspots on emerging technology, such as on artificial intelligence systems for security. This study visualizes the structural changes, hotspots and emerging trends in AI studies. Five evaluation factors are used to judge the hotspots and trends of this domain and a heat map is used to identify the areas of the world that are generating research on AI applications in cyber security. This study is the first to provide an overall perspective of hotspots and trends in the research on AI in the cyber security domain.
C1 [Abbas, Naveed Naeem; Shah, Syed Habib Ullah; Omar, Muhammad] Islamia Univ Bahawalpur, Dept Comp Sci & IT, Bahawalpur, Pakistan.
[Abbas, Naveed Naeem] H 39-A Jamal E Sarwar Colony, Chowk Churratah, Dera Ghazi Khan, Pakistan.
[Ahmed, Tanveer] COMSATS Univ, Dept Comp Sci, Islamabad, Pakistan.
[Shah, Syed Habib Ullah] H 2147,Block 18, Coll Chowk, Dera Ghazi Khan, Pakistan.
[Park, Han Woo] Yeungnam Univ, Interdisciplinary Program Digital Convergence Bus, Dept Media & Commun, 214-1 Dae Dong, Gyongsan 712749, Gyeongsangbuk D, South Korea.
C3 Islamia University of Bahawalpur; COMSATS University Islamabad (CUI);
Yeungnam University
RP Omar, M (corresponding author), Islamia Univ Bahawalpur, Dept Comp Sci & IT, Bahawalpur, Pakistan.; Park, HW (corresponding author), Yeungnam Univ, Interdisciplinary Program Digital Convergence Bus, Dept Media & Commun, 214-1 Dae Dong, Gyongsan 712749, Gyeongsangbuk D, South Korea.
EM naveednaeemabbas@gmail.com; tanveerahmed@comsats.edu.pk;
syedhabib7779@gmail.com; m.omar.nazeer@gmail.com; hanpark@ynu.ac.kr
RI Park, Han Woo/F-4051-2011; Abbas, Naveed/JAV-9478-2023
OI Park, Han Woo/0000-0002-1378-2473; Abbas, Naveed/0000-0003-1204-250X;
omar, muhammad/0000-0002-7071-5760
CR Aghion P., 2018, The Economics of Artificial Intelligence: an Agenda, P237, DOI [DOI 10.7208/CHICAGO/9780226613475.003, DOI 10.3386/W23928]
[Anonymous], 2012, International Journal of Information Security Science
Byres E., 2004, P VDE K, V116, P213
Chen C., 2013, J AM SOC INFORM SCI
Chen C., 2016, HOW TO USE CITESPACE
Chen CM, 2014, EXPERT OPIN ORPHAN D, V2, P709, DOI 10.1517/21678707.2014.920251
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen HC, 2012, MIS QUART, V36, P1165
Dilek S., 2015, International Journal of Artificial Intelligence Applications (IJAIA), V6, DOI DOI 10.5121/IJAIA.2015.6102
Fei-Yue Wang, 2017, IEEE/CAA Journal of Automatica Sinica, V4, P577, DOI 10.1109/JAS.2017.7510598
Gautam P., 2019, J CONT E ASIA, V18, P7, DOI DOI 10.17477/JCEA.2019.18.1.007
Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014
Holmberg K, 2018, SCIENTOMETRICS, V117, P603, DOI 10.1007/s11192-018-2874-8
Imran M, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P159, DOI 10.1145/2567948.2577034
Jha S, 2016, JAMA-J AM MED ASSOC, V316, P2353, DOI 10.1001/jama.2016.17438
Jin YR, 2019, MULTIMED TOOLS APPL, V78, P1289, DOI 10.1007/s11042-018-6172-5
Kim HJ, 2016, J INFORMETR, V10, P954, DOI 10.1016/j.joi.2016.07.007
Li J., 2018, J CONT E ASIA, V17, P237
Li S, 2013, Proc of Assoc for Info, V50, P1, DOI [10.1002/meet.14505001037, DOI 10.1002/MEET.14505001037]
Litman T., 2015, AUTONOMOUS VEHICLE I, P36, DOI DOI 10.1613/JAIR.301
Liu SB, 2014, SCIENTOMETRICS, V101, P1293, DOI 10.1007/s11192-014-1233-7
Loebbecke C, 2015, J STRATEGIC INF SYST, V24, P149, DOI 10.1016/j.jsis.2015.08.002
Machine P., DATAMINING PRACTICAL
Malav A., 2017, International Journal of Engineering and Technology, V9, DOI DOI 10.21817/IJET/2017/V9I4/170904101
Ofli F, 2016, BIG DATA-US, V4, P47, DOI 10.1089/big.2014.0064
Omar M, 2017, SCIENTOMETRICS, V113, P1269, DOI 10.1007/s11192-017-2534-4
Pannu A., 2015, ARTIF INTELL, V4, P79, DOI DOI 10.1155/2009/251652
Park HJ, 2018, QUAL QUANT, V52, P2815, DOI [10.1007/s11135-018-0711-z, DOI 10.1007/S11135-018-0711-Z, DOI 10.1007/s11135-018-0711-z]
Park Hyo Chan., 2018, Quality Quantity, V53, P935, DOI DOI 10.1007/S11135-018-0797-3
Parkes DC, 2015, SCIENCE, V349, P267, DOI 10.1126/science.aaa8403
Ramchurn SD, 2016, J ARTIF INTELL RES, V57, P661, DOI 10.1613/jair.5098
Reed JR, 2009, BREAST CANCER RES, V11, DOI 10.1186/bcr2246
Saridakis G, 2016, TECHNOL FORECAST SOC, V102, P320, DOI 10.1016/j.techfore.2015.08.012
SMALL H, 1980, SCIENTOMETRICS, V2, P277, DOI 10.1007/BF02016349
Su HN, 2010, SCIENTOMETRICS, V85, P65, DOI 10.1007/s11192-010-0259-8
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wong PC, 2011, IEEE COMPUT GRAPH, V31, P18, DOI 10.1109/MCG.2011.72
Zhou ZH, 2003, IEEE T INF TECHNOL B, V7, P37, DOI 10.1109/TITB.2003.808498
NR 38
TC 19
Z9 21
U1 18
U2 175
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2019
VL 121
IS 2
BP 1189
EP 1211
DI 10.1007/s11192-019-03222-9
PG 23
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA JF2FJ
UT WOS:000491201000025
DA 2024-09-05
ER
PT J
AU Heradio, R
Fernandez-Amoros, D
Cerrada, C
Cobo, MJ
AF Heradio, Ruben
Fernandez-Amoros, David
Cerrada, Cristina
Cobo, Manuel J.
TI Group Decision-Making Based on Artificial Intelligence: A Bibliometric
Analysis
SO MATHEMATICS
LA English
DT Article
DE group decision-making; consensus decision-making; artificial
intelligence; bibliometrics; science mapping
ID CO-WORD ANALYSIS; CONSENSUS MODEL; ALLOCATION; NETWORK; INFORMATION;
SELECTION; MAKERS
AB Decisions concerning crucial and complicated problems are seldom made by a single person. Instead, they require the cooperation of a group of experts in which each participant has their own individual opinions, motivations, background, and interests regarding the existing alternatives. In the last 30 years, much research has been undertaken to provide automated assistance to reach a consensual solution supported by most of the group members. Artificial intelligence techniques are commonly applied to tackle critical group decision-making difficulties. For instance, experts' preferences are often vague and imprecise; hence, their opinions are combined using fuzzy linguistic approaches. This paper reports a bibliometric analysis of the ample literature published in this regard. In particular, our analysis: (i) shows the impact and upswing publication trend on this topic; (ii) identifies the most productive authors, institutions, and countries; (iii) discusses authors' and journals' productivity patterns; and (iv) recognizes the most relevant research topics and how the interest on them has evolved over the years.
C1 [Heradio, Ruben; Fernandez-Amoros, David; Cerrada, Cristina] Univ Nacl Educ Distancia UNED, Dept Comp Syst & Software Engn, Madrid 28040, Spain.
[Cobo, Manuel J.] Univ Cadiz, Dept Comp Sci & Engn, Cadiz 11519, Spain.
C3 Universidad Nacional de Educacion a Distancia (UNED); Universidad de
Cadiz
RP Heradio, R; Fernandez-Amoros, D; Cerrada, C (corresponding author), Univ Nacl Educ Distancia UNED, Dept Comp Syst & Software Engn, Madrid 28040, Spain.; Cobo, MJ (corresponding author), Univ Cadiz, Dept Comp Sci & Engn, Cadiz 11519, Spain.
EM rheradio@issi.uned.es; david@issi.uned.es; ccerrada01@gmail.com;
manueljesus.cobo@uca.es
RI Fernandez-Amoros, David/ABG-7972-2020; Cobo Martín, Manuel
Jesús/C-5581-2011; Heradio, Ruben/D-3675-2013
OI Fernandez-Amoros, David/0000-0003-3758-0195; Cobo Martín, Manuel
Jesús/0000-0001-6575-803X; Heradio, Ruben/0000-0002-7131-0482
FU Spanish Ministry of Science, Innovation and Universities
[DPI2016-77677-P, PID2019-105381GA-I00 (iScience)]; Community of Madrid,
under the research network CAM [RoboCity2030 S2013/MIT-2748]
FX This work has been supported by (i) the Spanish Ministry of Science,
Innovation and Universities, under grants with reference DPI2016-77677-P
and PID2019-105381GA-I00 (iScience), and (ii) the Community of Madrid,
under the research network CAM RoboCity2030 S2013/MIT-2748.
CR Aggarwal M, 2017, KNOWL-BASED SYST, V119, P1, DOI 10.1016/j.knosys.2016.09.031
Alonso S, 2013, APPL SOFT COMPUT, V13, P149, DOI 10.1016/j.asoc.2012.08.009
[Anonymous], 1977, CURR COMMENTS
[Anonymous], 1990, Introduction to informetrics: Quantitative methods in library, Documentation and Information Science
[Anonymous], 1934, Engineering, DOI [10.1177/016555158501000, DOI 10.1177/016555158501000]
[Anonymous], 2009, MEASURING ACAD RES U
BELLMAN RE, 1970, MANAGE SCI B-APPL, V17, pB141
BONACICH P, 1972, J MATH SOCIOL, V2, P113, DOI 10.1080/0022250X.1972.9989806
Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
Cabrerizo FJ, 2018, EXPERT SYST APPL, V99, P83, DOI 10.1016/j.eswa.2018.01.030
Cahlik T, 2000, SCIENTOMETRICS, V49, P373, DOI 10.1023/A:1010581421990
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Chen CT, 2000, FUZZY SET SYST, V114, P1, DOI 10.1016/S0165-0114(97)00377-1
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F
Deveci M, 2020, J ENVIRON MANAGE, V270, DOI 10.1016/j.jenvman.2020.110916
Dong YC, 2014, KNOWL-BASED SYST, V58, P45, DOI 10.1016/j.knosys.2013.09.021
Erdogmus S, 2006, RENEW SUST ENERG REV, V10, P269, DOI 10.1016/j.rser.2004.09.003
Ertugrul I, 2011, GROUP DECIS NEGOT, V20, P725, DOI 10.1007/s10726-010-9219-1
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Govindan K, 2016, ANN OPER RES, V238, P243, DOI 10.1007/s10479-015-2004-4
He TT, 2019, MATHEMATICS-BASEL, V7, DOI 10.3390/math7121149
Heradio R., 2020, HAW INT C SYST SCI H, P1747
Heradio R, 2016, COMPUT EDUC, V98, P14, DOI 10.1016/j.compedu.2016.03.010
Heradio R, 2016, INFORM SOFTWARE TECH, V72, P1, DOI 10.1016/j.infsof.2015.11.004
Heradio R, 2013, INT J INFORM MANAGE, V33, P642, DOI 10.1016/j.ijinfomgt.2013.04.001
Herrera F, 1996, FUZZY SET SYST, V78, P73, DOI 10.1016/0165-0114(95)00107-7
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
HUBER GP, 1984, MIS QUART, V8, P195, DOI 10.2307/248666
Cabrerizo FJ, 2014, FUZZY SET SYST, V255, P115, DOI 10.1016/j.fss.2014.03.016
KACPRZYK J, 1992, FUZZY SET SYST, V49, P21, DOI 10.1016/0165-0114(92)90107-F
Kandylas V, 2010, ACM T KNOWL DISCOV D, V4, DOI 10.1145/1754428.1754430
Kitchenham B.A., 2007, GUIDELINES PERFORMIN
Koczy LT, 2019, COMPLEXITY, DOI 10.1155/2019/7606715
LAW J, 1988, SCIENTOMETRICS, V14, P251, DOI 10.1007/BF02020078
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Liu BS, 2014, INFORM FUSION, V18, P119, DOI 10.1016/j.inffus.2013.06.004
López-Robles JR, 2019, INT J INFORM MANAGE, V48, P22, DOI 10.1016/j.ijinfomgt.2019.01.013
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Lü JH, 2008, 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, P1060, DOI 10.1109/WCICA.2008.4593068
Martínez MA, 2014, SCIENTOMETRICS, V98, P1971, DOI 10.1007/s11192-013-1155-9
Moed HF, 2009, ARCH IMMUNOL THER EX, V57, P13, DOI 10.1007/s00005-009-0001-5
Moral-Munoz JA, 2019, INTEGR CANCER THER, V18, DOI 10.1177/1534735419846401
Morente-Molinera JA, 2019, INFORM SCIENCES, V476, P222, DOI 10.1016/j.ins.2018.10.022
Noyons ECM, 1999, SCIENTOMETRICS, V46, P591, DOI 10.1007/BF02459614
Pamucar D, 2020, ENG APPL ARTIF INTEL, V93, DOI 10.1016/j.engappai.2020.103703
Petersen K, 2015, INFORM SOFTWARE TECH, V64, P1, DOI 10.1016/j.infsof.2015.03.007
Posner RichardA., 2001, PUBLIC INTELLECTUALS
Quesada F.J., 2015, USING COMPUTING WORD, P97, DOI DOI 10.1007/978-3-319-16829-6_5
Singh RK, 2013, ENG APPL ARTIF INTEL, V26, P122, DOI 10.1016/j.engappai.2012.03.013
Sugimoto C.R., 2018, Measuring research: What everyone needs to know, DOI DOI 10.1093/WENTK/9780190640118.001.0001
TURNER WA, 1991, SCIENTOMETRICS, V22, P139, DOI 10.1007/BF02019279
Vahdani B, 2013, ENG APPL ARTIF INTEL, V26, P779, DOI 10.1016/j.engappai.2012.11.005
van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075
Wohlin C, 2013, J SYST SOFTWARE, V86, P2594, DOI 10.1016/j.jss.2013.04.076
Xu Y, 2017, APPL SOFT COMPUT, V58, P265, DOI 10.1016/j.asoc.2017.04.068
YAGER RR, 1988, IEEE T SYST MAN CYB, V18, P183, DOI 10.1109/21.87068
Zhu JJ, 2016, GROUP DECIS NEGOT, V25, P325, DOI 10.1007/s10726-015-9444-8
Zuheros C., 2019, P AL TUR C DEC SUPP
NR 61
TC 7
Z9 7
U1 3
U2 42
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-7390
J9 MATHEMATICS-BASEL
JI Mathematics
PD SEP
PY 2020
VL 8
IS 9
AR 1566
DI 10.3390/math8091566
PG 20
WC Mathematics
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Mathematics
GA OF7XA
UT WOS:000581414200001
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Meyers, SD
Azevedo, L
Luther, ME
AF Meyers, Steven D.
Azevedo, Laura
Luther, Mark E.
TI A Scopus-based bibliometric study of maritime research involving the
Automatic Identification System
SO TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES
LA English
DT Article
DE Automatic Identification System; Maritime data; Artificial intelligence;
Maritime policy; Scientific collaboration; Research trends
ID ARTIFICIAL-INTELLIGENCE; AIS DATA; TIME; COLLABORATION; TRAJECTORIES;
PREDICTION; LOGISTICS; NETWORKS; PATTERNS; SCIENCE
AB Vessel traffic records from the Automatic Identification System (AIS) are a useful source of information for maritime data analytics, and of training data for maritime artificial intelligence systems. Researchers utilizing these data are developing the foundations for operational maritime tools essential to economic expansion and security. The global growth and distribution of this research effort from 1997 to 2019 was examined through a bibliometric study of 817 Scopus-listed publications. Indications of both collaboration and accelerating competition were found by examining the number of publications and authors, national and institutional affiliations of the authors, and number of citations received. Prior to 2003 about 1-5 publications per year appeared in the literature. The annual number of publications has doubled roughly every 5 years since the mid-2000s, reaching 140 in 2019. About 82% of publications were by authors based in a single country. Overall, authors affiliated with China contributed to 27% of all publications, followed by the US (9%) and Italy (8%). Authors from EU countries, taken collectively, were most common (37%). From 2016 to 2019 the number of authors from China quadrupled, and the number of publications with at least one China-affiliated author quintupled, producing about 39% of all publications in that time period. Some policy questions arising from this study are presented, and the need for continuing international collaboration and cooperative development are discussed.
C1 [Meyers, Steven D.; Azevedo, Laura; Luther, Mark E.] Univ S Florida, Coll Marine Sci, Ctr Maritime & Port Studies, St Petersburg, FL 33701 USA.
C3 State University System of Florida; University of South Florida
RP Meyers, SD (corresponding author), Univ S Florida, Coll Marine Sci, Ctr Maritime & Port Studies, St Petersburg, FL 33701 USA.
EM smeyers@usf.edu
RI Meyers, Steven/I-9170-2014
OI Meyers, Steven/0000-0003-1592-9050; C Azevedo, Laura/0000-0002-6732-8612
FU Southeast Coastal Ocean Observing Regional Association [IOOS.16 (028)
USF.ML.OBS.1]; Gulf of Mexico Coastal Ocean Observing System
[02-S160275]; Greater Tampa Bay Marine Advisory Council-PORTS, Inc.
[2500-1066-00]; Tampa Bay Estuary Program [6911]; USF College of Marine
Science Von Rosenstiel Fellowship
FX This effort received partial support from the Southeast Coastal Ocean
Observing Regional Association (Sub Award #IOOS.16 (028) USF.ML.OBS.1) ,
the Gulf of Mexico Coastal Ocean Observing System (Award #02-S160275) ,
the Greater Tampa Bay Marine Advisory Council-PORTS, Inc. (Award
#2500-1066-00) and the Tampa Bay Estuary Program (PO#6911) .
https://marinecadastre.gov/ais/Author L.A. was supported by the USF
College of Marine Science Von Rosenstiel Fellowship. USF librarian
Theresa Burress helped with the initial Scopus search. Undergraduate
researchers Ayden Muellier and Ste-fanie Barbulescu assisted with the
Scopus search, and undergraduate assistant Gerald Meyers created the
network figures.
CR Abbasi A, 2011, SCIENTOMETRICS, V89, P687, DOI 10.1007/s11192-011-0463-1
Agarwala N, 2021, Aust. Jo. Marit. Ocean Affairs, P1
Alonso JM, 2018, COMM COM INF SC, V853, P3, DOI 10.1007/978-3-319-91473-2_1
[Anonymous], 2018, Science engineering indicators 2018: Higher education in science and engineering
Archibugi D, 2018, TECHNOL FORECAST SOC, V127, P97, DOI 10.1016/j.techfore.2017.05.022
Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360
Batty E, 2018, LECT NOTES COMPUT SC, V10731, P22, DOI 10.1007/978-3-319-73521-4_2
Blanchard JMF, 2017, GEOPOLITICS, V22, P223, DOI 10.1080/14650045.2017.1291503
BLOCH E, 1987, INTERDISCIPL SCI REV, V12, P101
Chen LS, 2018, J ADV TRANSPORT, DOI 10.1155/2018/6471625
Chen P., 2018, Int. J. Performability Eng., V14
Creech JA, 2003, J NAVIGATION, V56, P31, DOI 10.1017/S0373463302002072
Davarzani H, 2016, TRANSPORT RES D-TR E, V48, P473, DOI 10.1016/j.trd.2015.07.007
Demsar U, 2010, INT J GEOGR INF SCI, V24, P1527, DOI 10.1080/13658816.2010.511223
Di Tommaso M.R., 2020, Innovation and Research Excellence: China in the International Scientific Scenario, The Globalization of China's Health Industry: Industrial Policies. International Networks and Company Choices, P141
Dobrkovic A, 2016, LECT NOTES LOGISTICS, P281, DOI 10.1007/978-3-319-22288-2_16
Fan LX, 2018, HANDBOOK OF INTERNATIONAL TRADE AND TRANSPORTATION, P518
Filipiak Dominik, 2018, Scientific Journal of Polish Naval Academy, V215, P5, DOI 10.2478/sjpna-2018-0024
Garrison W.L., 1965, A Prolegomenon to the Forecasting of Transportation Development, P137
Grault L.B.C., 2020, The Belt and Road Initiative, P255
Hasegawa K., 2001, 7th IEEE International Conference on Methods and Models in Automation and Robotics, P632
ITU, 2019, United Nations Activities on Artificial Intelligence (AI) Report of the International Telecommunications Union online
ITU, 2010, M Series, P146
Jahn C, 2018, LECT NOTES LOGISTICS, P172, DOI 10.1007/978-3-319-74225-0_23
Jilani G, 2021, QUAL QUANT METHODS L, V10, P129
Killick R, 2012, J AM STAT ASSOC, V107, P1590, DOI 10.1080/01621459.2012.737745
Lau YY, 2017, MARIT POLICY MANAG, V44, P667, DOI 10.1080/03088839.2017.1311425
Lee HB, 2018, COMPUT OPER RES, V98, P330, DOI 10.1016/j.cor.2017.06.005
Lim GJ, 2018, ANN OPER RES, V271, P765, DOI 10.1007/s10479-018-2768-4
Liu B, 2015, Maritime Traffic Anomaly Detection from Ais Satellite Data in Near Port Regions, Computer Science, P91
LUUKKONEN T, 1993, SCIENTOMETRICS, V28, P15, DOI 10.1007/BF02016282
Martin, 2019, 2018 National Economic Impact of the U.S. Coastal Port System.
Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002
Miailhe N., 2018, POLIT ETRANGERE, V2018, P105, DOI DOI 10.3917/PE.183.0105
Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731
Murk D.W., 1999, P MAR SAF COUNC
Nguyen CM, 2020, SCIENTOMETRICS, V124, P1279, DOI 10.1007/s11192-020-03507-4
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Oh Jae-Yong, 2018, [Journal of Korean Navigation and Port Reserch, 한국항해항만학회지], V42, P277, DOI 10.5394/KINPR.2018.42.4.277
Pallotta G, 2013, ENTROPY-SWITZ, V15, P2218, DOI 10.3390/e15062218
Ristic B, 2008, 2008 11 INT C INF FU, P40
Robards MD, 2016, B MAR SCI, V92, P75, DOI 10.5343/bms.2015.1034
Rong H, 2019, OCEAN ENG, V182, P499, DOI 10.1016/j.oceaneng.2019.04.024
Shelmerdine RL, 2015, MAR POLICY, V54, P17, DOI 10.1016/j.marpol.2014.12.010
Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010
Sidibé A, 2017, J NAVIGATION, V70, P847, DOI 10.1017/S0373463317000066
Silveira PAM, 2013, J NAVIGATION, V66, P879, DOI 10.1017/S0373463313000519
SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105
Svanberg M, 2019, MAR POLICY, V106, DOI 10.1016/j.marpol.2019.103520
Tai Ming Cheung, 2018, Journal of Cyber Policy, V3, P313, DOI 10.1080/23738871.2018.1556720
Tobin S., 2019, Inf. Serv. Use, P1
van Raan AFJ., 1993, Res Eval, V3, P151, DOI [10.1093/rev/3.3.151, DOI 10.1093/REV/3.3.151]
Vuletic T, 2017, J IND INF INTEGR, V8, P22, DOI 10.1016/j.jii.2017.05.002
Wamba SF, 2019, LECT NOTES COMPUT SC, V11701, P255, DOI 10.1007/978-3-030-29374-1_21
Wang Y, 2013, SAFETY SCI, V57, P187, DOI 10.1016/j.ssci.2013.02.006
Wu F, 2020, NAT MACH INTELL, V2, P312, DOI 10.1038/s42256-020-0183-4
Wu L, 2017, J NAVIGATION, V70, P67, DOI 10.1017/S0373463316000345
Xin XR, 2019, OCEAN ENG, V180, P279, DOI 10.1016/j.oceaneng.2019.03.052
Yang D, 2019, TRANSPORT REV, V39, P755, DOI 10.1080/01441647.2019.1649315
Zhang SK, 2018, OCEAN ENG, V155, P240, DOI 10.1016/j.oceaneng.2018.02.060
Zhou Y, 2019, TRANSPORT RES C-EMER, V105, P323, DOI 10.1016/j.trc.2019.06.004
Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8
NR 62
TC 10
Z9 10
U1 3
U2 4
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2590-1982
J9 TRANSP RES INTERDISC
JI Transp. Res. Interdiscip. Perspect.
PD JUN
PY 2021
VL 10
AR 100387
DI 10.1016/j.trip.2021.100387
PG 10
WC Transportation
WE Emerging Sources Citation Index (ESCI)
SC Transportation
GA W1GY9
UT WOS:001089193200010
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Arencibia-Jorge, R
Vega-Almeida, RL
Jiménez-Andrade, JL
Carrillo-Calvet, H
AF Arencibia-Jorge, Ricardo
Lidia Vega-Almeida, Rosa
Luis Jimenez-Andrade, Jose
Carrillo-Calvet, Humberto
TI Evolutionary stages and multidisciplinary nature of artificial
intelligence research
SO SCIENTOMETRICS
LA English
DT Article
DE Artificial intelligence; Scientific production; Multidisciplinarity;
Bibliometric indicators; Thematic dispersion index
ID SCIENTIFIC DISCIPLINE; SCIENCE FIELDS; INTERDISCIPLINARITY; INDICATORS;
DIVERSITY; DOMAIN; MAPS; TECHNOLOGY; KNOWLEDGE; INDEXES
AB This paper analyzed the growth and multidisciplinary nature of Artificial Intelligence research during the last 60 years. Web of Science coverage since 1960 was considered, and a descriptive research was performed. A top-down approach using Web of Science subject categories as a proxy to measure multidisciplinarity was developed. Bibliometric indicators based on the core of subject categories involving articles and citing articles related to this area were applied. The data analysis within a historical and epistemological perspective allowed to identify three main evolutionary stages: an emergence period (1960-1979), based on foundational literature from 1950s; a re-emergence and consolidation period (1980-2009), involving a "paradigmatic" phase of development and first industrial approach; and a period of re-configuration of the discipline as a technoscience (2010-2019), where an explosion of solutions for productive systems, wide collaboration networks and multidisciplinary research projects were observed. The multidisciplinary dynamics of the field was analyzed using a Thematic Dispersion Index. This indicator clearly described the transition from the consolidation stage to the re-configuration of the field, finding application in a wide diversity of scientific and technological domains. The results demonstrated that epistemic changes and qualitative leaps in Artificial Intelligence research have been associated to variations in multidisciplinarity patterns.
C1 [Arencibia-Jorge, Ricardo] Univ Nacl Autonoma Mexico, Complex Sci Ctr C3, Mexico City 04510, DF, Mexico.
[Lidia Vega-Almeida, Rosa] BioCubaFarma, Empresa Tecnol Informac ETI, Havana, Cuba.
[Luis Jimenez-Andrade, Jose] Univ Nacl Autonoma Mexico, Fac Sci, Mexico City 04510, DF, Mexico.
[Carrillo-Calvet, Humberto] Univ Nacl Autonoma Mexico, Fac Sci, Complex Sci Ctr C3, Mexico City 04510, DF, Mexico.
C3 Universidad Nacional Autonoma de Mexico; Universidad Nacional Autonoma
de Mexico; Universidad Nacional Autonoma de Mexico
RP Arencibia-Jorge, R (corresponding author), Univ Nacl Autonoma Mexico, Complex Sci Ctr C3, Mexico City 04510, DF, Mexico.
EM ricardo.arencibia@c3.unam.mx; vegaalmeida.rosa@gmail.com;
jlja@ciencias.unam.mx; humberto.carrillo@c3.unam.mx
RI Vega-Almeida, Rosa Lidia/KDP-2481-2024; CARRILLO CALVET,
HUMBERTO/ITW-2657-2023; Carrillo Calvet, Humberto/E-2265-2012;
Jiménez-Andrade, José-Luis Luis Jiménez/T-1666-2018; Arencibia-Jorge,
Ricardo/AAK-3567-2020
OI Vega-Almeida, Rosa Lidia/0000-0003-4203-6207; Carrillo Calvet,
Humberto/0000-0003-3659-6769; Jiménez-Andrade, José-Luis Luis
Jiménez/0000-0003-3453-7159; Arencibia-Jorge,
Ricardo/0000-0001-8907-2454
FU program "Scientometrics, Complexity, and Science of Science", at the
Complexity Science Center of the National Autonomous University of
Mexico (UNAM)
FX This research was supported by the program "Scientometrics, Complexity,
and Science of Science", at the Complexity Science Center of the
National Autonomous University of Mexico (UNAM). We would like to thank
Dr. Javier Garcia-Garcia for reviewing an earlier version of this
article.
CR Abbas NN, 2019, SCIENTOMETRICS, V121, P1189, DOI 10.1007/s11192-019-03222-9
Alejo-Machado OJ, 2015, SCIENTOMETRICS, V102, P1669, DOI 10.1007/s11192-014-1467-4
Alvargonzález D, 2011, INT STUD PHILOS SCI, V25, P387, DOI 10.1080/02698595.2011.623366
[Anonymous], 2008, IEEE Intelligent Systems, DOI DOI 10.1109/MIS.2008.20
Arencibia-Jorge, 2020, IBEROAMERICAN J SCI, V1, DOI DOI 10.47909/IJSMC.13
Arencibia-Jorge R, 2021, PRO INT CONF SCI INF, P1439
Tran BX, 2019, J MED INTERNET RES, V21, DOI 10.2196/15511
Bache K, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P23
Baier-Fuentes H, 2018, INT J INTERACT MULTI, V5, P9, DOI 10.9781/ijimai.2018.12.003
Baker T., 2019, ED REBOOTED EXPLORIN
Bar-Ilan J, 2010, SCIENTOMETRICS, V83, P809, DOI 10.1007/s11192-009-0145-4
Baum SD., 2020, PHILOS TECHNOLOGY, DOI 10.1007/s13347-020-00416-5
Bhattacharya S, 2019, J SCIENTOMETR RES, V8, pS85, DOI 10.5530/jscires.8.2.26
Bobadilla J, 2019, REV ESP DOC CIENT, V42, DOI 10.3989/redc.2019.1.1583
Bordons M, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P437, DOI 10.1007/1-4020-2755-9_20
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Bostrom N, 2014, CAMBRIDGE HANDBOOK OF ARTIFICIAL INTELLIGENCE, P316
Carley S, 2012, SCIENTOMETRICS, V90, P407, DOI 10.1007/s11192-011-0528-1
Carusi C, 2020, SCIENTOMETRICS, V122, P867, DOI 10.1007/s11192-019-03309-3
Channell DavidF., 2017, A History of Technoscience: Erasing the Boundaries Between Science and Technology
Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006
Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100
Chen XL, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231192
Chiarello F, 2019, CERNE, V25, P140, DOI 10.1590/01047760201925022626
Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081
Devyatkin DA, 2017, SCI TECH INF PROCESS, V44, P253, DOI 10.3103/S0147688217040086
Fiala D, 2017, PUBLICATIONS, V5, DOI 10.3390/publications5040023
Fiala D, 2015, ASLIB J INFORM MANAG, V67, P526, DOI 10.1108/AJIM-02-2015-0027
Gao J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236574
Garner J, 2018, J DATA INFO SCI, V3, P54, DOI 10.2478/jdis-2018-0004
Garner J, 2014, SCIENTOMETRICS, V100, P687, DOI 10.1007/s11192-014-1316-5
Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087
Gonsalves Tad., 2019, Advanced methodologies and technologies in artificial intelligence, computer simulation, and human-computer interaction, P168, DOI 10.4018/978-1-5225-7368-5.ch014
Gupta BM, 2018, DESIDOC J LIB INF TE, V38, P416, DOI 10.14429/djlit.38.6.12309
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Hjorland B, 2002, J AM SOC INF SCI TEC, V53, P257, DOI 10.1002/asi.10042
HJORLAND B, 1995, J AM SOC INFORM SCI, V46, P400, DOI 10.1002/(SICI)1097-4571(199507)46:6<400::AID-ASI2>3.0.CO;2-Y
Ivancheva LE, 2001, J AM SOC INF SCI TEC, V52, P1100, DOI 10.1002/asi.1176
Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004
Katz JS., 1995, P 5 BIENN C INT SOC, P105
Kaul V, 2020, GASTROINTEST ENDOSC, V92, P807, DOI 10.1016/j.gie.2020.06.040
Klavans R, 2011, J AM SOC INF SCI TEC, V62, P1, DOI 10.1002/asi.21444
KUHN T.S., 1971, ESTRUCTURA REVOLUCIO
Kulakli A, 2020, INT J ONLINE BIOMED, V16, P31, DOI 10.3991/ijoe.v16i02.12617
Lei YF, 2019, J PHYS CONF SER, V1168, DOI 10.1088/1742-6596/1168/2/022027
Leinster T, 2012, ECOLOGY, V93, P477, DOI 10.1890/10-2402.1
Lewis J, 2020, DES ISSUES, V36, P30, DOI 10.1162/desi_a_00573
Leydesdorff L, 2007, J AM SOC INF SCI TEC, V58, P1303, DOI 10.1002/asi.20614
Leydesdorff L, 2016, J ASSOC INF SCI TECH, V67, P707, DOI 10.1002/asi.23408
Leydesdorff L, 2015, J ASSOC INF SCI TECH, V66, P1001, DOI 10.1002/asi.23243
Leydesdorff L, 2013, SCIENTOMETRICS, V94, P589, DOI 10.1007/s11192-012-0784-8
Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P348, DOI 10.1002/asi.20967
Liu JY, 2018, IEEE ACCESS, V6, P34403, DOI 10.1109/ACCESS.2018.2819688
Meyers PJ., 2020, J COMPUTING SCI COLL, V36, P53, DOI [DOI 10.5555/3447065.3447072, 10.5555/3447065.3447072]
MOED HF, 1995, SCIENTOMETRICS, V33, P381, DOI 10.1007/BF02017338
Morillo F, 2001, SCIENTOMETRICS, V51, P203, DOI 10.1023/A:1010529114941
Morin E., 2017, Reinventar la educacion: Abrir caminos a la metamorfosis de la humanidad
Moschini U, 2020, SCIENTOMETRICS, V125, P1145, DOI 10.1007/s11192-020-03481-x
Moya-Anegon F, 2004, SCIENTOMETRICS, V61, P129, DOI 10.1023/B:SCIE.0000037368.31217.34
Mugabushaka AM, 2016, SCIENTOMETRICS, V107, P593, DOI 10.1007/s11192-016-1865-x
Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Pei Wang, 2019, Journal of Artificial General Intelligence, V10, P1, DOI 10.2478/jagi-2019-0002
Porter A.L., 2013, AM ED RES ASS ANN M
Porter AL, 2007, SCIENTOMETRICS, V72, P117, DOI 10.1007/s11192-007-1700-5
Porter AL, 2009, SCIENTOMETRICS, V81, P719, DOI 10.1007/s11192-008-2197-2
Porter AL, 2008, RES EVALUAT, V17, P273, DOI 10.3152/095820208X364553
Price D. J. d. S., 1963, Little Science, Big Science
Pudovkin AI, 2002, J AM SOC INF SCI TEC, V53, P1113, DOI 10.1002/asi.10153
Qian Y, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101047
Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y
RAO CR, 1982, THEOR POPUL BIOL, V21, P24, DOI 10.1016/0040-5809(82)90004-1
Rokach L, 2013, J AM SOC INF SCI TEC, V64, P1951, DOI 10.1002/asi.22887
Ruiz-Castillo J, 2015, J INFORMETR, V9, P102, DOI 10.1016/j.joi.2014.11.010
Savaget P, 2019, SCI PUBL POLICY, V46, P369, DOI 10.1093/scipol/scy064
SCHUBERT A, 1989, SCIENTOMETRICS, V16, P3, DOI 10.1007/BF02093234
Schwab K., 2017, 4 IND REVOLUTION
Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001
Serna A., 2017, DESARROLLO INNOVACIO
Shi Y, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e02997
Shneider AM, 2009, TRENDS BIOCHEM SCI, V34, P217, DOI 10.1016/j.tibs.2009.02.002
Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010
Stirling A, 2007, J R SOC INTERFACE, V4, P707, DOI 10.1098/rsif.2007.0213
Tabah AN, 1999, ANNU REV INFORM SCI, V34, P249
Thomas J, 2016, COMPLEXITY, V21, P207, DOI 10.1002/cplx.21799
Tolcheev VO, 2019, AUTOMAT DOC MATH LIN, V53, P103, DOI 10.3103/S000510551903004X
Tseng CY, 2013, INNOV-ORGAN MANAG, V15, P463, DOI 10.5172/impp.2013.15.4.463
van den Besselaar P, 1996, J AM SOC INFORM SCI, V47, P415, DOI 10.1002/(SICI)1097-4571(199606)47:6<415::AID-ASI3>3.0.CO;2-Y
Vega-Almeida, 2010, CIENCIA INFORM PARAD
Villalba Gómez Jairo Andrés, 2016, Divers.: Perspect. Psicol., V12, P137, DOI 10.15332/s1794-9998.2016.0001.10
Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748
Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001
West E, 2019, AM J ROENTGENOL, V213, P1204, DOI 10.2214/AJR.19.21346
Yu DJ, 2019, APPL INTELL, V49, P449, DOI 10.1007/s10489-018-1278-z
Zhang X, 2019, SCIENTOMETRICS, V119, P1311, DOI 10.1007/s11192-019-03088-x
Zhang Y, 2017, KNOWL-BASED SYST, V133, P255, DOI 10.1016/j.knosys.2017.07.011
Zhao L, 2020, PROCESS SAF ENVIRON, V133, P169, DOI 10.1016/j.psep.2019.11.014
NR 98
TC 3
Z9 3
U1 13
U2 50
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD SEP
PY 2022
VL 127
IS 9
BP 5139
EP 5158
DI 10.1007/s11192-022-04477-5
EA AUG 2022
PG 20
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 4L1UW
UT WOS:000841043900001
DA 2024-09-05
ER
PT J
AU Chen, XL
Tao, XH
Wang, FL
Xie, HR
AF Chen, Xieling
Tao, Xiaohui
Wang, Fu Lee
Xie, Haoran
TI Global research on artificial intelligence-enhanced human
electroencephalogram analysis
SO NEURAL COMPUTING & APPLICATIONS
LA English
DT Article
DE Artificial intelligence technologies; Human brain; Electroencephalogram;
Bibliometrics; Research topics; Visualization
ID EPILEPTIC SEIZURE DETECTION; EMPIRICAL MODE DECOMPOSITION; DISCRETE
WAVELET TRANSFORM; EEG SIGNAL CLASSIFICATION; FEATURE-EXTRACTION;
EMOTION RECOGNITION; NEURAL-NETWORKS; FEATURE-SELECTION; AUTOMATED
IDENTIFICATION; FRONTOTEMPORAL DEMENTIA
AB The application of artificial intelligence (AI) technologies in assisting human electroencephalogram (EEG) analysis has become an active scientific field. This study aims to present a comprehensive review of the research field of AI-enhanced human EEG analysis. Using bibliometrics and topic modeling, research articles concerning AI-enhanced human EEG analysis collected from the Web of Science database during the period 2009-2018 were analyzed. After examining 2053 research articles published around the world, it was found that the annual number of articles had significantly grown from 78 to 468, with the USA and China being the most influential and prolific. The results of the keyword analysis showed that "electroencephalogram," "brain-computer interface," "classification," "support vector machine," "electroencephalography," and "signal" were the most frequently used. The results of topic modeling and evolution analyses highlighted several important issues, including epileptic seizure detection, brain-machine interface, EEG classification, mental disorders, emotion, and alcoholism and anesthesia. The findings suggest that such visualization and analysis of the research articles could provide a comprehensive overview of the field for communities of practice and inquiry worldwide.
C1 [Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Tai Po, Hong Kong, Peoples R China.
[Tao, Xiaohui] Univ Southern Queensland, Sch Sci, Toowoomba, Qld, Australia.
[Wang, Fu Lee] Open Univ Hong Kong, Sch Sci & Technol, Ho Man Tin, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Tuen Mun, Hong Kong, Peoples R China.
C3 Education University of Hong Kong (EdUHK); University of Southern
Queensland; Hong Kong Metropolitan University; Lingnan University
RP Wang, FL (corresponding author), Open Univ Hong Kong, Sch Sci & Technol, Ho Man Tin, Hong Kong, Peoples R China.
EM xielingchen0708@gmail.com; Xiaohui.Tao@usq.edu.au; pwang@ouhk.edu.hk;
hrxie2@gmail.com
RI Wang, Fu Lee/AAD-9782-2021; Xie, Haoran/AFS-3515-2022; tao,
xiaohui/KCK-2677-2024; Tao, Xiaohui/JKI-2330-2023
OI Wang, Fu Lee/0000-0002-3976-0053; Xie, Haoran/0000-0003-0965-3617; PV,
THAYYIB/0000-0001-8929-0398
FU HKIBS Research Seed Fund 2019/20 [190-009]; Research Seed Fund [102367];
LEO Dr David P. Chan Institute of Data Science of Lingnan University,
Hong Kong
FX This work was supported by the HKIBS Research Seed Fund 2019/20
(190-009), the Research Seed Fund (102367), and LEO Dr David P. Chan
Institute of Data Science of Lingnan University, Hong Kong.
CR Acar E, 2011, CHEMOMETR INTELL LAB, V106, P41, DOI 10.1016/j.chemolab.2010.08.004
Acharya UR, 2018, COMPUT METH PROG BIO, V161, P103, DOI 10.1016/j.cmpb.2018.04.012
Acharya UR, 2013, INT J NEURAL SYST, V23, DOI 10.1142/S0129065713500093
Acharya UR, 2012, BIOMED SIGNAL PROCES, V7, P401, DOI 10.1016/j.bspc.2011.07.007
Acharya UR, 2011, INT J NEURAL SYST, V21, P199, DOI 10.1142/S0129065711002808
Acharya R, 2010, INT J NEURAL SYST, V20, P509, DOI 10.1142/S0129065710002589
Ahmad MA, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/638036
Ahmadlou M, 2010, CLIN EEG NEUROSCI, V41, P1, DOI 10.1177/155005941004100103
Alam SMS, 2013, IEEE J BIOMED HEALTH, V17, P312, DOI 10.1109/JBHI.2012.2237409
Alickovic E, 2018, IEEE T INSTRUM MEAS, V67, P1258, DOI 10.1109/TIM.2018.2799059
Alickovic E, 2018, BIOMED SIGNAL PROCES, V39, P94, DOI 10.1016/j.bspc.2017.07.022
Amorim P, 2017, EXPERT SYST APPL, V67, P140, DOI 10.1016/j.eswa.2016.09.037
Andersson CA, 2000, CHEMOMETR INTELL LAB, V52, P1, DOI 10.1016/S0169-7439(00)00071-X
Andrzejak RG, 2012, PHYS REV E, V86, DOI 10.1103/PhysRevE.86.046206
Andrzejak RG, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.061907
Ang KK, 2012, FRONT NEUROSCI-SWITZ, V6, DOI 10.3389/fnins.2012.00039
Ang KK, 2012, PATTERN RECOGN, V45, P2137, DOI 10.1016/j.patcog.2011.04.018
[Anonymous], 1984, Distributed representations
Antelis JM, 2018, BIOMED SIGNAL PROCES, V44, P12, DOI 10.1016/j.bspc.2018.03.010
ARBIB MA, 1975, ANN BIOMED ENG, V3, P238, DOI 10.1007/BF02390972
Arunkumar N, 2017, PATTERN RECOGN LETT, V94, P112, DOI 10.1016/j.patrec.2017.05.007
Arvaneh M, 2011, IEEE T BIO-MED ENG, V58, P1865, DOI 10.1109/TBME.2011.2131142
Atkinson J, 2016, EXPERT SYST APPL, V47, P35, DOI 10.1016/j.eswa.2015.10.049
Awais M, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17091991
Bader B.W., 2010, MATLAB tensor toolbox version 2.4
Bai XJ, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0216392
Bajaj V, 2012, IEEE T INF TECHNOL B, V16, P1135, DOI 10.1109/TITB.2011.2181403
Bandarabadi M, 2015, CLIN NEUROPHYSIOL, V126, P237, DOI 10.1016/j.clinph.2014.05.022
Bascil MS, 2016, AUSTRALAS PHYS ENG S, V39, P665, DOI 10.1007/s13246-016-0462-x
Becerra-Sánchez P, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20205881
Benwell CSY, 2020, NEUROBIOL AGING, V85, P83, DOI 10.1016/j.neurobiolaging.2019.10.004
Bhattacharyya A, 2017, IEEE T BIO-MED ENG, V64, P2003, DOI 10.1109/TBME.2017.2650259
Bhattacharyya A, 2018, NEURAL COMPUT APPL, V29, P47, DOI 10.1007/s00521-016-2646-4
Bhattacharyya S, 2015, ROBOT AUTON SYST, V68, P104, DOI 10.1016/j.robot.2015.01.007
Blabe CH, 2015, J NEURAL ENG, V12, DOI 10.1088/1741-2560/12/4/043002
Blankertz B, 2004, IEEE T BIO-MED ENG, V51, P1044, DOI 10.1109/TBME.2004.826692
Blankertz B, 2006, IEEE T NEUR SYS REH, V14, P153, DOI 10.1109/TNSRE.2006.875642
Blankertz B, 2010, NEUROIMAGE, V51, P1303, DOI 10.1016/j.neuroimage.2010.03.022
Bocharov AV, 2017, NEUROPHYSIOL CLIN, V47, P225, DOI 10.1016/j.neucli.2017.01.009
Bosl William., 2011, BMC Medicine, V9
Brett M., 2002, NEUROIMAGE, V16, P2, DOI DOI 10.1016/S1053-8119(02)90010-8
Brunner C, 2007, PATTERN RECOGN LETT, V28, P957, DOI 10.1016/j.patrec.2007.01.002
Cai LH, 2020, FRONT NEUROSCI-SWITZ, V14, DOI 10.3389/fnins.2020.00051
Cecotti H, 2011, IEEE T PATTERN ANAL, V33, P433, DOI 10.1109/TPAMI.2010.125
Chai RF, 2017, IEEE J BIOMED HEALTH, V21, P715, DOI 10.1109/JBHI.2016.2532354
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Chang WW, 2020, EXPERT SYST APPL, V158, DOI 10.1016/j.eswa.2020.113448
Chen J, 2015, APPL SOFT COMPUT, V30, P663, DOI 10.1016/j.asoc.2015.01.007
Chen SJ, 2016, COMPUT METH PROG BIO, V137, P77, DOI 10.1016/j.cmpb.2016.08.024
Chen SF, 2018, NEURAL COMPUT APPL, V29, P857, DOI 10.1007/s00521-016-2594-z
Chen X, 2019, INT WORKSH HUM BRAIN, P69
CHEN XD, 2020, APPL SCI BASEL, V10
Chen XL, 2020, COGN COMPUT, V12, P1097, DOI 10.1007/s12559-020-09745-1
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chen XL, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231192
Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1
Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4
Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0692-9
CHEN XL, 2018, BMC MED INFORM DE S1, V18
Chi MT, 2015, IEEE T VIS COMPUT GR, V21, P1415, DOI 10.1109/TVCG.2015.2440241
CHURCHLAND PS, 1988, SCIENCE, V242, P741, DOI 10.1126/science.3055294
Cicalese PA, 2020, J NEUROSCI METH, V336, DOI 10.1016/j.jneumeth.2020.108618
Conradi J., 2009, Int J Bioelectromagnetism Volume, V11, P65
Coskun M, 2015, J MED SYST, V39, DOI 10.1007/s10916-014-0173-3
Craig A, 2006, BIOL PSYCHOL, V72, P78, DOI 10.1016/j.biopsycho.2005.07.005
Craig A, 2012, PSYCHOPHYSIOLOGY, V49, P574, DOI 10.1111/j.1469-8986.2011.01329.x
Dai GH, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/ab405f
De Carvalho Ana Maria., 1998, World Wide Web, V1, P221
De Clercq W, 2006, IEEE T BIO-MED ENG, V53, P2583, DOI 10.1109/TBME.2006.879459
de Haan W, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-101
Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009
Dominguez EC, 2020, NEURAL COMPUT APPL, V32, P10143, DOI 10.1007/s00521-019-04544-8
Dornhege G, 2004, IEEE T BIO-MED ENG, V51, P993, DOI 10.1109/TBME.2004.827088
Dottori M, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04204-8
Duncan D, 2018, DISCRETE CONT DYN-B, V23, P161, DOI 10.3934/dcdsb.2018010
Dunlavy D. M., 2010, SAND20101422 SAND NA
Fan Z, 2020, NEURAL COMPUT APPL, V32, P1927, DOI 10.1007/s00521-019-04495-0
Farahat A, 2019, J NEURAL ENG, V16, DOI 10.1088/1741-2552/ab3bb4
Farina FR, 2020, NEUROIMAGE, V215, DOI 10.1016/j.neuroimage.2020.116795
Faust O, 2014, J MECH MED BIOL, V14, DOI 10.1142/S0219519414500353
Frank MJ, 2015, J NEUROSCI, V35, P485, DOI 10.1523/JNEUROSCI.2036-14.2015
Fu K, 2014, BIOMED SIGNAL PROCES, V13, P15, DOI 10.1016/j.bspc.2014.03.007
Fürbass F, 2020, CLIN NEUROPHYSIOL, V131, P1174, DOI 10.1016/j.clinph.2020.02.032
Gandhi T, 2011, NEUROCOMPUTING, V74, P3051, DOI 10.1016/j.neucom.2011.04.029
Gao ZK, 2017, INT J NEURAL SYST, V27, DOI 10.1142/S0129065717500058
Gao ZK, 2016, SCI REP-UK, V6, DOI 10.1038/srep35622
Gao ZK, 2020, NEUROCOMPUTING, V380, P225, DOI 10.1016/j.neucom.2019.10.096
Garn H, 2017, J NEURAL TRANSM, V124, P569, DOI 10.1007/s00702-017-1699-6
Ghaderyan P, 2014, J NEUROSCI METH, V232, P134, DOI 10.1016/j.jneumeth.2014.05.019
Gimenez E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10020391
Goh SK, 2018, IEEE T NEUR SYS REH, V26, P1858, DOI 10.1109/TNSRE.2018.2864119
Goldberger AL, 2000, CIRCULATION, V101, pE215, DOI 10.1161/01.CIR.101.23.e215
Graetz S, 2019, EXP BRAIN RES, V237, P573, DOI 10.1007/s00221-018-5439-4
Griebling J, 2010, J CHILD NEUROL, V25, P856, DOI 10.1177/0883073809351313
Guo L, 2011, EXPERT SYST APPL, V38, P10425, DOI 10.1016/j.eswa.2011.02.118
Guo L, 2010, J NEUROSCI METH, V193, P156, DOI 10.1016/j.jneumeth.2010.08.030
Guo L, 2010, J NEUROSCI METH, V191, P101, DOI 10.1016/j.jneumeth.2010.05.020
Guo YM, 2016, NEUROCOMPUTING, V187, P27, DOI 10.1016/j.neucom.2015.09.116
Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278
Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4
Hassabis D, 2017, NEURON, V95, P245, DOI 10.1016/j.neuron.2017.06.011
Hassan AR, 2016, COMPUT METH PROG BIO, V136, P65, DOI 10.1016/j.cmpb.2016.08.013
Hassan AR, 2016, BIOCYBERN BIOMED ENG, V36, P248, DOI 10.1016/j.bbe.2015.11.001
Hassan SU, 2014, SCIENTOMETRICS, V99, P549, DOI 10.1007/s11192-013-1193-3
Heimerl F, 2014, P ANN HICSS, P1833, DOI 10.1109/HICSS.2014.231
Hemanth D. Jude, 2020, Journal of Artificial Intelligence and Systems, V2, P1, DOI [10.33969/AIS.2020.21001, DOI 10.33969/AIS.2020.21001]
Hernández-Rojas LG, 2020, IEEE ACCESS, V8, P119728, DOI 10.1109/ACCESS.2020.3005600
Hirsch JE, 2014, INT J CLIN HLTH PSYC, V14, P161, DOI 10.1016/S1697-2600(14)70050-X
Hong J, 2017, J INTELL FUZZY SYST, V33, P3355, DOI 10.3233/JIFS-162104
Hooda N, 2020, IETE TECH REV, V37, P315, DOI 10.1080/02564602.2019.1620138
HOPFIELD JJ, 1982, P NATL ACAD SCI-BIOL, V79, P2554, DOI 10.1073/pnas.79.8.2554
Hou YM, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/ab4af6
Hsu WC, 2017, INT J FUZZY SYST, V19, P566, DOI 10.1007/s40815-016-0259-9
Hsu WY, 2014, CLIN EEG NEUROSCI, V45, P163, DOI 10.1177/1550059413491559
Hu R, 2020, WORLD WIDE WEB, V23, P1441, DOI 10.1007/s11280-019-00746-1
Hu SY, 2013, IET INTELL TRANSP SY, V7, P105, DOI 10.1049/iet-its.2012.0045
Huang JR, 2013, ENTROPY-SWITZ, V15, P3325, DOI 10.3390/e15093325
Hunyadi B, 2015, NEUROIMAGE, V113, P329, DOI 10.1016/j.neuroimage.2015.03.011
Ieracitano C, 2020, NEURAL NETWORKS, V123, P176, DOI 10.1016/j.neunet.2019.12.006
Jafarifarmand A, 2013, NEUROCOMPUTING, V103, P222, DOI 10.1016/j.neucom.2012.09.024
Jaiswal AK, 2017, BIOMED SIGNAL PROCES, V34, P81, DOI 10.1016/j.bspc.2017.01.005
Jana GC, 2020, PROCEDIA COMPUT SCI, V167, P403, DOI 10.1016/j.procs.2020.03.248
Jeong JH, 2020, IEEE ACCESS, V8, P66941, DOI 10.1109/ACCESS.2020.2983182
Jeong JH, 2020, IEEE T NEUR SYS REH, V28, P1226, DOI 10.1109/TNSRE.2020.2981659
Joshi V, 2014, BIOMED SIGNAL PROCES, V9, P1, DOI 10.1016/j.bspc.2013.08.006
Jumphoo T, 2019, COGN SYST RES, V58, P375, DOI 10.1016/j.cogsys.2019.09.002
Kara Y., 2017, Int. J. Secondary Metabolite, V4, P142, DOI [10.21448/ijsm.309538, DOI 10.21448/IJSM.309538]
Kasabov N, 2018, ACM INT CONF PR SER, V1641, P1, DOI 10.1145/3274005.3274006
Kaur B, 2019, NEURAL COMPUT APPL, V31, P5887, DOI 10.1007/s00521-018-3397-1
Kaya Y, 2014, APPL MATH COMPUT, V243, P209, DOI 10.1016/j.amc.2014.05.128
KENDALL K, 1975, J PHYS D APPL PHYS, V8, P1449, DOI 10.1088/0022-3727/8/13/005
Khalaf A, 2020, HYBRID EEG FTCD BRAI, P295, DOI [10.1007/978-3-030-34784-0_15, DOI 10.1007/978-3-030-34784-0_15]
Khan KA, 2020, EXPERT SYST APPL, V140, DOI 10.1016/j.eswa.2019.112895
Khushaba RN, 2013, FUZZY SET SYST, V221, P90, DOI 10.1016/j.fss.2012.12.003
Klatt J, 2012, EPILEPSIA, V53, P1669, DOI 10.1111/j.1528-1167.2012.03564.x
Kocak M, 2019, SCIENTOMETRICS, V121, P1339, DOI 10.1007/s11192-019-03259-w
Koelstra S, 2012, IEEE T AFFECT COMPUT, V3, P18, DOI 10.1109/T-AFFC.2011.15
Kose U, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8091613
Kovacs Peter., 2012, INT J ADV TELECOMMUN, V1, P67
Kumar SU, 2017, NEURAL COMPUT APPL, V28, P3239, DOI 10.1007/s00521-016-2236-5
Kumar S, 2017, COMPUT BIOL MED, V91, P231, DOI 10.1016/j.compbiomed.2017.10.025
Kumar Y, 2014, SIGNAL IMAGE VIDEO P, V8, P1323, DOI 10.1007/s11760-012-0362-9
Kumar Y, 2014, NEUROCOMPUTING, V133, P271, DOI 10.1016/j.neucom.2013.11.009
KWON J, 2020, PLOS ONE, V15
Langkvist M., 2012, ADV ARTIFICIAL NEURA, V2012, P5, DOI DOI 10.1155/2012/107046
Lawhern VJ, 2018, J NEURAL ENG, V15, DOI 10.1088/1741-2552/aace8c
Lee EJ, 2017, J STROKE, V19, P277, DOI 10.5853/jos.2017.02054
Leeb R, 2008, BCI COMPETITION 4
Leeb R, 2007, IEEE T NEUR SYS REH, V15, P473, DOI 10.1109/TNSRE.2007.906956
Li G, 2015, SENSORS-BASEL, V15, P20873, DOI 10.3390/s150820873
Li T, 2014, J NEUROSCI METH, V224, P26, DOI 10.1016/j.jneumeth.2013.11.015
Li X, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00162
Liang ZH, 2018, PHYSIOL MEAS, V39, DOI 10.1088/1361-6579/aab4d0
Lin YP, 2010, IEEE T BIO-MED ENG, V57, P1798, DOI 10.1109/TBME.2010.2048568
Liu D, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00560
Liu YJ, 2018, IEEE T AFFECT COMPUT, V9, P550, DOI 10.1109/TAFFC.2017.2660485
Lucas C, 2015, POLIT ANAL, V23, P254, DOI 10.1093/pan/mpu019
Luo J, 2016, COMPUT BIOL MED, V75, P45, DOI 10.1016/j.compbiomed.2016.03.004
Luo W, 2020, FRONT BEHAV NEUROSCI, V14, DOI 10.3389/fnbeh.2020.00002
Mammone N, 2020, NEURAL NETWORKS, V124, P357, DOI 10.1016/j.neunet.2020.01.027
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Martínez-Miranda J, 2005, COMPUT HUM BEHAV, V21, P323, DOI 10.1016/j.chb.2004.02.010
Martis RJ, 2012, INT J NEURAL SYST, V22, DOI 10.1142/S012906571250027X
Maziero D, 2018, BRAIN TOPOGR, V31, P322, DOI 10.1007/s10548-017-0598-3
MCCULLOCH WS, 1943, B MATH BIOPHYS, V5, P115, DOI DOI 10.1007/BF02478259
MENG JY, 2020, SENSORS BASEL, V20
Metin SZ, 2018, CLIN EEG NEUROSCI, V49, P171, DOI 10.1177/1550059417750914
Meyer D., 2015, Misc Functions of the Department of Statistics, Probability Theory Group
Mikkelsen KB, 2017, BIOMED ENG ONLINE, V16, DOI 10.1186/s12938-017-0400-5
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Misiti M., 2004, MATHWORK WEBSITE, V1, P1
Mora-Sanchez A, 2020, COGN NEURODYNAMICS, V14, P301, DOI 10.1007/s11571-020-09573-x
Muhammad G, 2018, IEEE ACCESS, V6, P45372, DOI 10.1109/ACCESS.2018.2859267
Mumtaz W, 2016, KNOWL-BASED SYST, V105, P48, DOI 10.1016/j.knosys.2016.04.026
Nahmias DO, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-70569-y
Narang A, 2018, J INTELL FUZZY SYST, V34, P1669, DOI 10.3233/JIFS-169460
Naseer A, 2020, NEURAL COMPUT APPL, V32, P839, DOI 10.1007/s00521-019-04069-0
Ng EP, 2012, J MECH MED BIOL, V12, DOI 10.1142/S0219519412400283
Nunes TM, 2014, NEUROCOMPUTING, V136, P103, DOI 10.1016/j.neucom.2014.01.020
O'Sullivan Shane, 2019, Brain Inform, V6, P3, DOI 10.1186/s40708-019-0096-3
Orhan U, 2011, EXPERT SYST APPL, V38, P13475, DOI 10.1016/j.eswa.2011.04.149
Park SH, 2017, IEEE SENS J, V17, P2977, DOI 10.1109/JSEN.2017.2671842
Park Y, 2011, EPILEPSIA, V52, P1761, DOI 10.1111/j.1528-1167.2011.03138.x
Patidar S, 2017, BIOMED SIGNAL PROCES, V34, P74, DOI 10.1016/j.bspc.2017.01.001
Pedreira C, 2014, NEUROIMAGE, V99, P461, DOI 10.1016/j.neuroimage.2014.05.009
Peker M, 2015, J MED SYST, V39, DOI 10.1007/s10916-015-0197-3
Peng BH, 2018, J CLEAN PROD, V197, P1177, DOI 10.1016/j.jclepro.2018.06.283
Peters BO, 1998, NEURAL NETWORKS, V11, P1429, DOI 10.1016/S0893-6080(98)00060-4
Petrantonakis PC, 2010, IEEE T INF TECHNOL B, V14, P186, DOI 10.1109/TITB.2009.2034649
Pourmotabbed H, 2020, HUM BRAIN MAPP, V41, P2964, DOI 10.1002/hbm.24990
Powell M., 1978, LECT NOTES MATH, V630, P144, DOI DOI 10.1007/BFB0067703
Powell M. J. D., 1979, Third International Symposium on Computing Methods in Applied Sciences and Engineering, P62
Raghu S, 2020, NEURAL NETWORKS, V124, P202, DOI 10.1016/j.neunet.2020.01.017
Rahman MA, 2020, EGYPT INFORM J, V21, P23, DOI 10.1016/j.eij.2019.10.002
Rahman MM, 2020, GEOTECH RES, V7, P1, DOI 10.1680/jgere.2020.7.1.1
Razavipour F, 2014, ARAB J SCI ENG, V39, P7049, DOI 10.1007/s13369-014-1242-0
Razzak I, 2019, IEEE J TRANSL ENG HE, V7, DOI 10.1109/JTEHM.2019.2942017
Razzak I, 2020, NEURAL NETWORKS, V121, P441, DOI 10.1016/j.neunet.2019.08.030
Ren H, 2017, BIOMED RES-INDIA, V28, P3151
Riaz F, 2016, IEEE T NEUR SYS REH, V24, P28, DOI 10.1109/TNSRE.2015.2441835
Rivet B, 2009, IEEE T BIO-MED ENG, V56, P2035, DOI 10.1109/TBME.2009.2012869
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Roberts Margaret E., 2014, Journal of Statistical Software, V10, P1, DOI [DOI 10.18637/JSS.V000.I00, 10.18637/jss.v091.i02]
Rodrigues D, 2016, EXPERT SYST APPL, V62, P81, DOI 10.1016/j.eswa.2016.06.006
Sairamya NJ, 2018, AUSTRALAS PHYS ENG S, V41, P1029, DOI 10.1007/s13246-018-0697-9
Samiee K, 2015, IEEE T BIO-MED ENG, V62, P541, DOI 10.1109/TBME.2014.2360101
Schirrmeister RT, 2017, HUM BRAIN MAPP, V38, P5391, DOI 10.1002/hbm.23730
Schlögl A, 2008, COMPUTER, V41, P44, DOI 10.1109/MC.2008.407
SCHWARZ A, 2020, J NEURAL ENG, V17
Seifpour S, 2018, EXPERT SYST APPL, V104, P277, DOI 10.1016/j.eswa.2018.03.020
Sen B, 2014, J MED SYST, V38, DOI 10.1007/s10916-014-0018-0
Shahsavar Y, 2018, AUSTRALAS PHYS ENG S, V41, P973, DOI 10.1007/s13246-018-0696-x
Shapshak P, 2018, BIOINFORMATION, V14, P38, DOI 10.6026/97320630014038
Sharma M, 2018, APPL INTELL, V48, P1368, DOI 10.1007/s10489-017-1042-9
Sharma M, 2017, J MECH MED BIOL, V17, DOI 10.1142/S0219519417400036
Sharma M, 2017, PATTERN RECOGN LETT, V94, P172, DOI 10.1016/j.patrec.2017.03.023
Sharma M, 2017, KNOWL-BASED SYST, V118, P217, DOI 10.1016/j.knosys.2016.11.024
Sharma R, 2015, ENTROPY-SWITZ, V17, P5218, DOI 10.3390/e17085218
Sharma R, 2015, ENTROPY-SWITZ, V17, P669, DOI 10.3390/e17020669
Sharma R, 2015, EXPERT SYST APPL, V42, P1106, DOI 10.1016/j.eswa.2014.08.030
Shin J, 2020, FRONT NEUROSCI-SWITZ, V14, DOI 10.3389/fnins.2020.00168
Shoeb A.H., 2009, Application of machine learning to epileptic seizure onset detection and treatment
Silva V, 2007, INT J ONLINE ENG, V3
Siuly, 2014, COMPUT METH PROG BIO, V113, P767, DOI [10.1016/j.cmpb.2013.17.070, 10.1016/j.cmpb.2013.12.020]
Soleymani M, 2012, IEEE T AFFECT COMPUT, V3, P211, DOI 10.1109/T-AFFC.2011.37
Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002
Song YD, 2012, J NEUROSCI METH, V210, P132, DOI 10.1016/j.jneumeth.2012.07.003
Spüler M, 2018, J NEUROENG REHABIL, V15, DOI 10.1186/s12984-018-0438-z
Sriraam N, 2018, AUSTRALAS PHYS ENG S, V41, P1047, DOI 10.1007/s13246-018-0694-z
Stam CJ, 2009, BRAIN, V132, P213, DOI 10.1093/brain/awn262
Stuart J., 2020, Artificial intelligence: A modern approach, V4th
Subasi A, 2010, EXPERT SYST APPL, V37, P8659, DOI 10.1016/j.eswa.2010.06.065
Suk HI, 2013, IEEE T PATTERN ANAL, V35, P286, DOI 10.1109/TPAMI.2012.69
Sun GH, 2021, J NEUROSCI METH, V347, DOI 10.1016/j.jneumeth.2020.108964
Tait LW, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-58557-8
Tang ZC, 2017, OPTIK, V130, P11, DOI 10.1016/j.ijleo.2016.10.117
Tangermann M, 2012, FRONT NEUROSCI-SWITZ, V6, DOI 10.3389/fnins.2012.00055
Taran S, 2018, IET SCI MEAS TECHNOL, V12, P343, DOI 10.1049/iet-smt.2017.0232
Thammasan N, 2016, IEICE T INF SYST, VE99D, P1234, DOI 10.1587/transinf.2015EDP7251
Tiwari AK, 2017, IEEE J BIOMED HEALTH, V21, P888, DOI 10.1109/JBHI.2016.2589971
Tomioka R, 2010, NEUROIMAGE, V49, P415, DOI 10.1016/j.neuroimage.2009.07.045
Townsend G, 2010, CLIN NEUROPHYSIOL, V121, P1109, DOI 10.1016/j.clinph.2010.01.030
Tzallas AT, 2009, IEEE T INF TECHNOL B, V13, P703, DOI 10.1109/TITB.2009.2017939
ULLMAN S, 1986, ANNU REV NEUROSCI, V9, P1
van Gerven M., 2017, Frontiers in Computational Neuroscience, V11
Varatharajah Y, 2018, J NEURAL ENG, V15, DOI 10.1088/1741-2552/aac960
Verma N, 2010, IEEE J SOLID-ST CIRC, V45, P804, DOI 10.1109/JSSC.2010.2042245
Vidaurre C, 2011, IEEE T BIO-MED ENG, V58, P587, DOI 10.1109/TBME.2010.2093133
Wang BY, 2012, COMPUT ELECTR ENG, V38, P35, DOI 10.1016/j.compeleceng.2011.07.008
Wang K, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/ab598f
Wang LB, 2012, NEUROIMAGE, V61, P931, DOI 10.1016/j.neuroimage.2012.03.080
Wang MS, 2016, INT J AUTO TECH-KOR, V17, P165, DOI 10.1007/s12239-016-0016-y
Wang SH, 2016, PROG ELECTROMAGN RES, V156, P105
Wang XW, 2014, NEUROCOMPUTING, V129, P94, DOI 10.1016/j.neucom.2013.06.046
Wang YJ, 2009, LECT NOTES ARTIF INT, V5638, P437, DOI 10.1007/978-3-642-02812-0_52
Wang YD, 2020, COMPUT MATH METHOD M, V2020, DOI 10.1155/2020/7574531
Wang YF, 2020, WORLD WIDE WEB, V23, P421, DOI 10.1007/s11280-019-00745-2
Wang ZY, 2021, COGN COMPUT, V13, P34, DOI 10.1007/s12559-019-09708-1
Waytowich N, 2018, J NEURAL ENG, V15, DOI 10.1088/1741-2552/aae5d8
Webb CA, 2016, NEUROPSYCHOPHARMACOL, V41, P454, DOI 10.1038/npp.2015.165
Wen D, 2020, NEURAL NETWORKS, V124, P373, DOI 10.1016/j.neunet.2020.01.025
Wolff MJ, 2020, J NEUROSCI, V40, P671, DOI 10.1523/JNEUROSCI.1194-19.2019
Wu H, 2019, FRONT NEUROSCI-SWITZ, V13, DOI 10.3389/fnins.2019.01275
Xu R, 2014, IEEE T BIO-MED ENG, V61, P288, DOI 10.1109/TBME.2013.2294203
Xu ZL, 2020, FRONT NEUROSCI-SWITZ, V14, DOI 10.3389/fnins.2020.00014
Yanagisawa T, 2011, J NEUROSURG, V114, P1715, DOI 10.3171/2011.1.JNS101421
Yin Z, 2020, EXPERT SYST APPL, V162, DOI 10.1016/j.eswa.2020.113768
Yuvaraj R, 2018, NEURAL COMPUT APPL, V30, P1225, DOI 10.1007/s00521-016-2756-z
Zeng H, 2018, COGN NEURODYNAMICS, V12, P597, DOI 10.1007/s11571-018-9496-y
Zhang BT, 2018, COMPUT MATH METHOD M, V2018, DOI 10.1155/2018/6534041
Zhang Y, 2018, EXPERT SYST APPL, V96, P302, DOI 10.1016/j.eswa.2017.12.015
Zhang Y, 2017, INT J NEURAL SYST, V27, DOI 10.1142/S0129065716500325
Zhang Y, 2015, J NEUROSCI METH, V255, P85, DOI 10.1016/j.jneumeth.2015.08.004
Zhang ZQ, 2013, IEEE T ELECTRON DEV, V60, P221, DOI 10.1109/TED.2012.2228197
Zheng QQ, 2018, NEUROCOMPUTING, V275, P869, DOI 10.1016/j.neucom.2017.09.030
Zheng WL, 2015, IEEE T AUTON MENT DE, V7, P162, DOI 10.1109/TAMD.2015.2431497
Zheng X, 2020, BIOMED SIGNAL PROCES, V56, DOI 10.1016/j.bspc.2019.101730
Zhong SZ, 2016, J CLEAN PROD, V139, P122, DOI 10.1016/j.jclepro.2016.08.039
Zhou YQ, 2020, NAT HUM BEHAV, V4, P69, DOI 10.1038/s41562-019-0743-y
Zhu GH, 2014, IEEE J BIOMED HEALTH, V18, P1813, DOI 10.1109/JBHI.2014.2303991
Zubarev I, 2019, NEUROIMAGE, V197, P425, DOI 10.1016/j.neuroimage.2019.04.068
NR 282
TC 26
Z9 31
U1 7
U2 86
PU SPRINGER LONDON LTD
PI LONDON
PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND
SN 0941-0643
EI 1433-3058
J9 NEURAL COMPUT APPL
JI Neural Comput. Appl.
PD JUL
PY 2022
VL 34
IS 14
SI SI
BP 11295
EP 11333
DI 10.1007/s00521-020-05588-x
EA JAN 2021
PG 39
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 2Y7TS
UT WOS:000605918300007
DA 2024-09-05
ER
PT J
AU Chen, XL
Zou, D
Xie, HR
AF Chen, Xieling
Zou, Di
Xie, Haoran
TI A decade of learning analytics: Structural topic modeling based
bibliometric analysis
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article
DE Learning analytics; Research topics; Topic evolution; Structural topic
modeling; Social network analysis
ID HIGHER-EDUCATION; PERFORMANCE; CLASSIFICATION; TECHNOLOGIES;
SATISFACTION; CHALLENGES; PACKAGE; SYSTEMS
AB Learning analytics (LA) has become an increasingly active field focusing on leveraging learning process data to understand and improve teaching and learning. With the explosive growth in the number of studies concerning LA, it is significant to investigate its research status and trends, particularly the thematic structure. Based on 3900 LA articles published during the past decade, this study explores answers to questions such as "what research topics were the LA community interested in?" and "how did such research topics evolve?" by adopting structural topic modeling and bibliometrics. Major publication sources, countries/regions, institutions, and scientific collaborations were examined and visualized. Based on the analyses, we present suggestions for future LA research and discussions about important topics in the field. It is worth highlighting LA combining various innovative technologies (e.g., visual dashboards, neural networks, multimodal technologies, and open learner models) to support classroom orchestration, personalized recommendation/feedback, self-regulated learning in flipped classrooms, interaction in game-based and social learning. This work is useful in providing an overview of LA research, revealing the trends in LA practices, and suggesting future research directions.
C1 [Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Ping Rd, Hong Kong, Peoples R China.
[Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, 10 Ping Rd, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Education University of Hong
Kong (EdUHK); Lingnan University
RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, 10 Ping Rd, Hong Kong, Peoples R China.
EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; hrxie2@gmail.com
RI Xie, Haoran/AFS-3515-2022; Xie, Haoran/AAW-8845-2020
OI Xie, Haoran/0000-0003-0965-3617; PV, THAYYIB/0000-0001-8929-0398; ZOU,
Di/0000-0001-8435-9739
CR Agrawal D, 2014, J INDIAN BUS RES, V6, P332, DOI 10.1108/JIBR-09-2014-0062
Agudo-Peregrina AF, 2014, COMPUT HUM BEHAV, V31, P542, DOI 10.1016/j.chb.2013.05.031
Aldowah H, 2019, TELEMAT INFORM, V37, P13, DOI 10.1016/j.tele.2019.01.007
Aljohani Naif Radi, 2013, 2013 Seventh International Conference on Next-Generation Mobile Apps, Services and Technologies (NGMAST), P262, DOI 10.1109/NGMAST.2013.54
Alonso-Fernández C, 2020, J COMPUT ASSIST LEAR, V36, P350, DOI 10.1111/jcal.12405
Alonso-Fernández C, 2019, COMPUT EDUC, V141, DOI 10.1016/j.compedu.2019.103612
Alonso-Fernández C, 2019, LECT NOTES COMPUT SC, V11385, P287, DOI 10.1007/978-3-030-11548-7_27
Andres JMAL, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P383, DOI 10.1145/3303772.3303807
[Anonymous], 2015, P 5 INT C LEARN AN K
Arnold K. E., 2012, P 2 INT C LEARN AN K, P2, DOI [10.1145/2330601.2330666, DOI 10.1145/2330601.2330666]
Avella JT, 2016, ONLINE LEARN, V20, P13
Azcona D, 2018, PROC FRONT EDUC CONF
Berland M, 2015, INT J COMP-SUPP COLL, V10, P425, DOI 10.1007/s11412-015-9217-z
Bosch N., 2016, IJCAI, P4125
Bull S, 2016, LAK '16 CONFERENCE PROCEEDINGS: THE SIXTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE,, P30, DOI 10.1145/2883851.2883853
Bull S, 2016, RECALL, V28, P147, DOI 10.1017/S0958344015000282
Cagliero L, 2019, IEEE ACCESS, V7, P22729, DOI 10.1109/ACCESS.2019.2899655
Chen BD, 2017, INTERACT LEARN ENVIR, V25, P162, DOI 10.1080/10494820.2016.1276081
Chen GL, 2020, LAK20: THE TENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P544, DOI 10.1145/3375462.3375500
Chen XL, 2022, EDUC TECHNOL SOC, V25, P28
Chen XL, 2021, LANG LEARN TECHNOL, V25, P151
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chiu M. M., 2014, J LEARNING ANAL, V1, P61, DOI DOI 10.18608/JLA.2014.13.5
Conijn Rianne, 2017, IEEE Transactions on Learning Technologies, V10, P17, DOI 10.1109/TLT.2016.2616312
Corrin L., 2015, P 5 INT C LEARN AN K, P430, DOI [DOI 10.1145/2723576.2723662, 10.1145/2723576.2723662]
Daghan G, 2022, EDUC INF TECHNOL, V27, P5179, DOI 10.1007/s10639-021-10762-2
Daud A, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P415, DOI 10.1145/3041021.3054164
Dillenbourg P, 2013, COMPUT EDUC, V69, P485, DOI 10.1016/j.compedu.2013.04.013
Doleck T, 2020, EDUC INF TECHNOL, V25, P1951, DOI 10.1007/s10639-019-10068-4
Du X, 2021, BEHAV INFORM TECHNOL, V40, P49, DOI 10.1080/0144929X.2019.1669712
Ez-zaouia M, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), P429, DOI 10.1145/3027385.3027434
Ferguson R., 2013, Proceedings of the Third International Conference on Learning Analytics and Knowledge, P85, DOI DOI 10.1145/2460296.2460313
Garrick R., 2018, 2018 ASEE ANN C EXP
Gasevic D, 2016, INTERNET HIGH EDUC, V28, P68, DOI 10.1016/j.iheduc.2015.10.002
Gedrimiene E, 2020, SCAND J EDUC RES, V64, P1105, DOI 10.1080/00313831.2019.1649718
Guerra J, 2016, PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES (IUI'16), P152, DOI 10.1145/2856767.2856784
Hao TY, 2020, J EDUC COMPUT RES, V58, P1311, DOI 10.1177/0735633120940956
Hayashi Y, 2019, LECT NOTES ARTIF INT, V11626, P100, DOI 10.1007/978-3-030-23207-8_19
Hilliger I, 2020, BRIT J EDUC TECHNOL, V51, P915, DOI 10.1111/bjet.12933
Holmes M, 2018, IEEE T LEARN TECHNOL, V11, P5, DOI 10.1109/TLT.2017.2754497
Hooshyar D, 2020, COMPUT EDUC, V154, DOI 10.1016/j.compedu.2020.103878
Jiang WJ, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P36, DOI 10.1145/3303772.3303814
Jivet I, 2018, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'18): TOWARDS USER-CENTRED LEARNING ANALYTICS, P31, DOI 10.1145/3170358.3170421
Juhanák L, 2019, COMPUT HUM BEHAV, V92, P496, DOI 10.1016/j.chb.2017.12.015
Kárpáti A, 2009, RECALL, V21, P139, DOI 10.1017/S0958344009000160
KENDALL K, 1975, J PHYS D APPL PHYS, V8, P1449, DOI 10.1088/0022-3727/8/13/005
Kim J, 2016, ASIA PAC EDUC REV, V17, P13, DOI 10.1007/s12564-015-9403-8
Kizilcec R. F., 2013, P 3 INT C LEARN AN K, P170, DOI [10.1145/2460296.2460330, DOI 10.1145/2460296.2460330]
Larmuseau C, 2018, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'18): TOWARDS USER-CENTRED LEARNING ANALYTICS, P171, DOI 10.1145/3170358.3170363
Lin CJ, 2018, EDUC TECHNOL SOC, V21, P205
Liu CX, 2021, ASIA PAC EDUC REV, V22, P515, DOI 10.1007/s12564-021-09692-y
Liu Z, 2019, INTERACT LEARN ENVIR, V27, P598, DOI 10.1080/10494820.2019.1610449
Lodge J.M., 2018, Learning analytics in the classroom, P45, DOI [https://doi.org/10.4324/9781351113038-4, DOI 10.4324/9781351113038-4]
Long Phil, 2011, EDUCAUSE Review, V46, P31
Lonn S., 2012, Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, P184, DOI [https://doi.org/10.1145/2330601.2330647, DOI 10.1145/2330601.2330647]
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Martinez-Maldonado R, 2019, INT J COMP-SUPP COLL, V14, P383, DOI 10.1007/s11412-019-09308-z
Martinez-Maldonado R, 2016, LAK '16 CONFERENCE PROCEEDINGS: THE SIXTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE,, P124, DOI 10.1145/2883851.2883873
Montgomery AP, 2019, BRIT J EDUC TECHNOL, V50, P114, DOI 10.1111/bjet.12590
Mouri K., 2015, INT S EM TECHN ED, P480
Niemann K, 2015, IEEE T LEARN TECHNOL, V8, P274, DOI 10.1109/TLT.2014.2379261
Papousek J, 2016, LAK '16 CONFERENCE PROCEEDINGS: THE SIXTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE,, P134, DOI 10.1145/2883851.2883884
Pardo A, 2019, BRIT J EDUC TECHNOL, V50, P128, DOI 10.1111/bjet.12592
Paredes W.C., 2012, Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, P34, DOI DOI 10.1145/2330601.2330617
Peddycord-Liu ZX, 2018, LECT NOTES ARTIF INT, V10947, P436, DOI 10.1007/978-3-319-93843-1_32
Perez-Colado IJ, 2017, LECT NOTES COMPUT SC, V10473, P51, DOI 10.1007/978-3-319-66733-1_6
Perez-Colado VM, 2018, IEEE GLOB ENG EDUC C, P1192, DOI 10.1109/EDUCON.2018.8363365
Pesare E, 2015, J VISUAL LANG COMPUT, V31, P252, DOI 10.1016/j.jvlc.2015.10.021
Pursel BK, 2016, J COMPUT ASSIST LEAR, V32, P202, DOI 10.1111/jcal.12131
Rienties B, 2016, COMPUT HUM BEHAV, V60, P333, DOI 10.1016/j.chb.2016.02.074
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Rodríguez-Triana MJ, 2017, INT J TECHNOL ENHANC, V9, P126, DOI 10.1504/IJTEL.2017.10005147
Ruiz-Calleja A, 2019, J LEARN ANAL, V6, P120, DOI 10.18608/jla.2019.62.9
Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858
Schwarz BB, 2018, INT J COMP-SUPP COLL, V13, P189, DOI 10.1007/s11412-018-9276-z
Silva JCS, 2018, INT J INF COMMUN TEC, V14, P91, DOI 10.4018/IJICTE.2018070108
Siadaty M., 2012, P 2 INT C LEARN AN K, P115, DOI 10.1145/2330601.2330632
Siemens G., 2012, LAK 12 P 2 INT C LEA, P252, DOI [https://doi.org/10.1145/2330601.2330661, 10.1145/2330601.2330661]
Sonnenwald DH, 2007, ANNU REV INFORM SCI, V41, P643, DOI 10.1002/aris.2007.1440410121
Sun F, 2020, INT PSYCHOGERIATR, V32, P217, DOI 10.1017/S1041610219000528
Tabaa Y, 2013, INT J ADV COMPUT SC, V4, P113
Tamura Kaori, 2019, Cross-Cultural Design. Culture and Society. 11th International Conference, CCD 2019 Held as Part of the 21st HCI International Conference, HCII 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11577), P469, DOI 10.1007/978-3-030-22580-3_35
Tempelaar DT, 2015, COMPUT HUM BEHAV, V47, P157, DOI 10.1016/j.chb.2014.05.038
Tibaná-Herrera G, 2018, SCIENTOMETRICS, V114, P675, DOI 10.1007/s11192-017-2592-7
Trinarningsih W, 2021, COGENT BUS MANAG, V8, DOI 10.1080/23311975.2021.1994104
Tsai YS, 2020, COMPUT EDUC, V155, DOI 10.1016/j.compedu.2020.103933
Van Alphen Erik., 2016, Conference on Human Factors in Computing Systems - Proceedings 07-12-May-, P2334, DOI DOI 10.1145/2851581.2892524
Viberg O, 2018, COMPUT HUM BEHAV, V89, P98, DOI 10.1016/j.chb.2018.07.027
Vidal JC, 2018, KNOWL-BASED SYST, V155, P22, DOI 10.1016/j.knosys.2018.04.035
Villano R, 2018, HIGH EDUC, V76, P903, DOI 10.1007/s10734-018-0249-y
West D, 2020, AUSTRALAS J EDUC TEC, V36, P60, DOI 10.14742/ajet.4653
Wise A., 2014, Journal of Learning Analytics, V1, P48, DOI DOI 10.18608/JLA.2014.12.4
Wong BTM, 2018, INTERACT TECHNOL SMA, V15, P132, DOI 10.1108/ITSE-12-2017-0065
Xing WL, 2018, COMPUT EDUC, V126, P388, DOI 10.1016/j.compedu.2018.08.010
Xing WL, 2016, COMPUT HUM BEHAV, V58, P119, DOI 10.1016/j.chb.2015.12.007
Yan WF, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P180, DOI 10.1145/3303772.3303836
Yang TY, 2017, IEEE J-STSP, V11, P716, DOI 10.1109/JSTSP.2017.2700227
You JW, 2016, INTERNET HIGH EDUC, V29, P23, DOI 10.1016/j.iheduc.2015.11.003
Zhang JZ, 2018, BEHAV INFORM TECHNOL, V37, P1142, DOI 10.1080/0144929X.2018.1529198
Zhao T, 2012, J MACH LEARN RES, V13, P1059
Zhu GX, 2019, USER MODEL USER-ADAP, V29, P789, DOI 10.1007/s11257-019-09241-8
NR 103
TC 13
Z9 13
U1 12
U2 88
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD SEP
PY 2022
VL 27
IS 8
BP 10517
EP 10561
DI 10.1007/s10639-022-11046-z
EA APR 2022
PG 45
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA 5N0UV
UT WOS:000784393100001
DA 2024-09-05
ER
PT J
AU Ogrean, C
AF Ogrean, Claudia
TI Interplays Between Artificial Intelligence and Sustainability in
Business/Management. A Bibliometric Analysis
SO STUDIES IN BUSINESS AND ECONOMICS
LA English
DT Article
DE artificial intelligence; bibliometric analysis; business/management;
sustainability; twin transition.
ID BIG DATA; DIGITAL TRANSFORMATION; CIRCULAR ECONOMY; SUPPLY CHAIN; SMART;
MANAGEMENT; BLOCKCHAIN; BUSINESS; FUTURE; CHALLENGES
AB The paper aims to identify the main research (threads and) trends and evaluate the relationships between (and the impact of) the publications/articles investigating the interplays between artificial intelligence (AI) and sustainability against a business or management related context. To reach this objective, 863 articles from Web of Science Core Collection were analyzed, using VOSviewer as a bibliometric tool. Performance analysis was employed to mainly explore the interest and popularity of the topic, assess the main interest areas and fields of both the sources and the publications, determine the most relevant SDGs for the topic, and identify the most popular journals hosting articles in the analyzed field. Science mapping was carried out to identify the most influential articles in the field, understand the antecedent topics/ideas (in the fields of AI and sustainability, respectively) contributing to the emergence of a new interest area at the intersection between AI and sustainability, appraise the current developments in the analyzed interest area, and discover new trends / areas for future research.
C1 [Ogrean, Claudia] Lucian Blaga Univ Sibiu, Sibiu, Romania.
C3 Lucian Blaga University of Sibiu
RP Ogrean, C (corresponding author), Lucian Blaga Univ Sibiu, Sibiu, Romania.
RI Zenn, Sebastian/KQU-0681-2024
FU Ministry of Research, Innovation and Digitization; [28PFE / 30.12.2021]
FX This work is supported by the Ministry of Research, Innovation and
Digitization through Program 1 -Development of the national
research-development system, Subprogram 1.2 -Institutional
performance-Projects for financing excellence in RDI, contract no. 28PFE
/ 30.12.2021.
CR Ahad MA, 2020, SUSTAIN CITIES SOC, V61, DOI 10.1016/j.scs.2020.102301
Alcácer V, 2019, ENG SCI TECHNOL, V22, P899, DOI 10.1016/j.jestch.2019.01.006
Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032
Almansour M, 2022, TECHNOL SOC, V71, DOI 10.1016/j.techsoc.2022.102135
Alsamhi SH, 2019, IEEE ACCESS, V7, P128125, DOI 10.1109/ACCESS.2019.2934998
Alsamhi SH, 2022, IEEE T GREEN COMMUN, V6, P295, DOI 10.1109/TGCN.2021.3132561
Bag S, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120420
BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108
Baryannis G, 2019, INT J PROD RES, V57, P2179, DOI 10.1080/00207543.2018.1530476
Bechtsis D, 2022, INT J PROD RES, V60, P4397, DOI 10.1080/00207543.2021.1957506
Behl A, 2022, J BUS RES, V148, P378, DOI 10.1016/j.jbusres.2022.05.009
Ben-Daya M, 2019, INT J PROD RES, V57, P4719, DOI 10.1080/00207543.2017.1402140
Cenamor J, 2017, INT J PROD ECON, V192, P54, DOI 10.1016/j.ijpe.2016.12.033
Chang KH, 2022, MATH PROBL ENG, V2022, DOI 10.1155/2022/9802892
Chatterjee S, 2022, J BUS RES, V153, P46, DOI 10.1016/j.jbusres.2022.08.019
Cugurullo F, 2020, FRONT SUSTAIN CITIES, V2, DOI 10.3389/frsc.2020.00038
D'Amato D, 2017, J CLEAN PROD, V168, P716, DOI 10.1016/j.jclepro.2017.09.053
D'Amico G, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20164391
Denicolai S, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120650
Di Vaio A, 2020, J BUS RES, V121, P283, DOI 10.1016/j.jbusres.2020.08.019
Dincer I, 2018, INT J HYDROGEN ENERG, V43, P8579, DOI 10.1016/j.ijhydene.2018.03.120
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021
Dwivedi YK, 2022, INT J INFORM MANAGE, V63, DOI 10.1016/j.ijinfomgt.2021.102456
Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002
Ellili NOD, 2024, ENVIRON DEV SUSTAIN, V26, P9923, DOI 10.1007/s10668-023-03067-6
European Commission, 2019, The European Green Deal
European Commission, 2020, Shaping Europe's Digital Future
European Commission. Joint Research Centre, 2022, Towards a green & digital future: Key requirements for successful twin transitions in the European Union, DOI [10.2760/977331, DOI 10.2760/977331]
European Parliament, 2023, What is artificial intelligence and how is it used?
Foresti R, 2020, ENGINEERING-PRC, V6, P835, DOI 10.1016/j.eng.2019.11.014
FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312
Fouquet R, 2022, ENERGY RES SOC SCI, V91, DOI 10.1016/j.erss.2022.102736
Frank AG, 2019, INT J PROD ECON, V210, P15, DOI 10.1016/j.ijpe.2019.01.004
Gandia RM, 2019, TRANSPORT REV, V39, P9, DOI 10.1080/01441647.2018.1518937
Grabowska S, 2022, SCIENTOMETRICS, V127, P3117, DOI 10.1007/s11192-022-04370-1
Guo YM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133606
Hagberg J, 2016, INT J RETAIL DISTRIB, V44, P694, DOI 10.1108/IJRDM-09-2015-0140
Ingram J, 2022, LAND USE POLICY, V114, DOI 10.1016/j.landusepol.2021.105962
Ismagilova E, 2019, INT J INFORM MANAGE, V47, P88, DOI 10.1016/j.ijinfomgt.2019.01.004
Jarrahi MH, 2018, BUS HORIZONS, V61, P577, DOI 10.1016/j.bushor.2018.03.007
Jia Q, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11205596
Jiang YY, 2020, INT J CONTEMP HOSP M, V32, P2563, DOI 10.1108/IJCHM-03-2020-0237
Kasaraneni H., 2022, Ann. Data. Sci, DOI [10.1007/s40745-022-00438-0, DOI 10.1007/S40745-022-00438-0]
KhosrowPour M, 2018, ENCYCLOPEDIA OF INFORMATION SCIENCE AND TECHNOLOGY, 4TH EDITION, P1, DOI 10.4018/978-1-5225-2255-3
Kirby A, 2023, PUBLICATIONS, V11, DOI 10.3390/publications11010010
Kristoffersen E, 2020, J BUS RES, V120, P241, DOI 10.1016/j.jbusres.2020.07.044
Kumar S, 2022, BENCHMARKING, V29, P1640, DOI 10.1108/BIJ-02-2021-0086
Lang V., 2021, DIGITAL FLUENCY, P1, DOI DOI 10.1007/978-1-4842-6774-5_1
Leal W, 2023, ENVIRON DEV SUSTAIN, V25, P4957, DOI 10.1007/s10668-022-02252-3
Liu Z, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13042090
Jabbour ABLD, 2018, ANN OPER RES, V270, P273, DOI 10.1007/s10479-018-2772-8
Nayal K, 2022, BUS STRATEG ENVIRON, V31, P1058, DOI 10.1002/bse.2935
Nishant R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102104
Odugbesan JA, 2023, J KNOWL MANAG, V27, P696, DOI 10.1108/JKM-08-2021-0601
Ogbeibu S, 2022, J INTELLECT CAP, V23, P27, DOI 10.1108/JIC-01-2021-0016
Ogrean C, 2021, STUD BUS ECON-ROM, V16, P282, DOI 10.2478/sbe-2021-0040
Palomares I, 2021, APPL INTELL, V51, P6497, DOI 10.1007/s10489-021-02264-y
Pappas IO, 2018, INF SYST E-BUS MANAG, V16, P479, DOI 10.1007/s10257-018-0377-z
Parida V, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11020391
Pizzi S, 2020, J CLEAN PROD, V276, DOI 10.1016/j.jclepro.2020.124033
Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879
Queiroz MM, 2019, INT J INFORM MANAGE, V46, P70, DOI 10.1016/j.ijinfomgt.2018.11.021
Rachinger M, 2019, J MANUF TECHNOL MANA, V30, P1143, DOI 10.1108/JMTM-01-2018-0020
Rahmati O, 2018, J HYDROL, V565, P248, DOI 10.1016/j.jhydrol.2018.08.027
Rajput S, 2019, INT J INFORM MANAGE, V49, P98, DOI 10.1016/j.ijinfomgt.2019.03.002
Ranerup A, 2019, GOV INFORM Q, V36, DOI 10.1016/j.giq.2019.05.004
Rejeb A, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14010083
Sanchez-Pinto LN, 2018, CHEST, V154, P1239, DOI 10.1016/j.chest.2018.04.037
Schmidpeter R., 2023, Responsible Artificial Intelligence: Challenges for Sustainable Management, DOI [10.1007/978-3-031-09245-9, DOI 10.1007/978-3-031-09245-9]
Serrano W, 2018, SMART CITIES-BASEL, V1, P134, DOI 10.3390/smartcities1010008
Sharifi A, 2021, ECOL INDIC, V121, DOI 10.1016/j.ecolind.2020.107102
Singh S, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102364
Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z
Pham TT, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236661
Tripathi V, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14127452
Tseng ML, 2021, J IND PROD ENG, V38, P581, DOI 10.1080/21681015.2021.1950227
Tsolakis N, 2023, ANN OPER RES, V327, P157, DOI 10.1007/s10479-022-04785-2
UNGA, 2015, TRANSF OUR WORLD 203
United Nations World Commission on Environment and Development, 1987, Our common future
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Van Eck NJ., 2023, VOSviewer Manual. Manual for VOSviewer version 1.6.20
van Wynsberghe A., 2021, AI and Ethics, V1, P3, DOI [10.1007/s43681-021-00043-6, DOI 10.1007/S43681-021-00043-6]
Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y
Wang JX, 2021, COMPUT IND ENG, V155, DOI 10.1016/j.cie.2021.107174
Wong LW, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.08.005
Xiang XJ, 2021, ENVIRON IMPACT ASSES, V86, DOI 10.1016/j.eiar.2020.106515
Yang YF, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142214971
Zhao JC, 2023, EUR BUS ORGAN LAW RE, V24, P1, DOI 10.1007/s40804-022-00262-2
Zhao L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236648
Zijia Wang, 2020, IOP Conference Series: Materials Science and Engineering, V806, DOI 10.1088/1757-899X/806/1/012039
NR 91
TC 2
Z9 2
U1 18
U2 28
PU SCIENDO
PI WARSAW
PA BOGUMILA ZUGA 32A, WARSAW, MAZOVIA, POLAND
SN 1842-4120
EI 2344-5416
J9 STUD BUS ECON-ROM
JI Stud. Bus. Econ.
PD AUG 1
PY 2023
VL 18
IS 2
BP 336
EP 357
DI 10.2478/sbe-2023-0041
PG 22
WC Economics
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA S2YD9
UT WOS:001069869700021
OA gold
DA 2024-09-05
ER
PT J
AU Rojek, M
Kufel, J
Bielówka, M
Mitrega, A
Kaczynska, D
Czogalik, L
Kondol, D
Palkij, K
Mielcarska, S
Bartnikowska, W
AF Rojek, Marcin
Kufel, Jakub
Bielowka, Michal
Mitrega, Adam
Kaczynska, Dominika
Czogalik, Lukasz
Kondol, Dominika
Palkij, Kacper
Mielcarska, Sylwia
Bartnikowska, Wiktoria
TI Exploring the performance of ChatGPT3.5 in addressing dermatological
queries: a research investigation into AI capabilities
SO PRZEGLAD DERMATOLOGICZNY
LA English
DT Article
DE medical education; artificial intelligence; dermatology; venereology;
ChatGPT-3.5
ID ARTIFICIAL-INTELLIGENCE
AB Introduction: In the 21 st century's era of rapid technological advancement, ChatGPT-3.5, an artificial intelligence (AI) language model, is scrutinized for its application in dermatology. Using 119 questions from the National Specialist Examination (PES), we assess ChatGPT-3.5's performance by comparing it to human skills and addressing ethical implications. Objective: Our primary aim is to evaluate ChatGPT-3.5's proficiency in responding to 119 dermatology questions from the PES. The study emphasizes ethical considerations and compares the model's knowledge and skills to those of human dermatologists. Material and methods: Utilizing the 2023 PES question database, questions were categorized by Bloom's taxonomy and thematic content. ChatGPT-3.5, version of 3 August 2023, answered 119 questions in five sessions, allowing for a probabilistic evaluation. Statistical analyses, conducted using R Studio, assessed correctness, confidence, and dif - ficulty. Results: ChatGPT-3.5 achieved a 49.58% correct response rate, below the 60% passing threshold. No significant differences in difficulty or correlations between difficulty and certainty were observed. Varied per - formance across question types highlighted strengths and weaknesses. Despite suboptimal results, ChatGPT-3.5's differential performance offers insights, suggesting future improvements. The study advocates for ongoing research into AI integration in dermatology, envisioning a promising role for AI in assisting dermatologists. Conclusions: Ethical considerations are crucial for effective AI intro - duction, minimizing errors, and enhancing dermatological healthcare quality, fostering optimism for AI's evolving role in dermatology.
C1 [Rojek, Marcin; Bielowka, Michal; Mitrega, Adam; Kaczynska, Dominika; Czogalik, Lukasz] Med Univ Siles, Dept Radiol & Nucl Med, Students Sci Assoc Comp Anal & Artificial Intellig, Katowice, Poland.
[Kufel, Jakub] Med Univ Silesia, Dept Radiodiagnost Intervent Radiol & Nucl Med, Katowice, Poland.
[Kufel, Jakub] Med Univ Siles, Dept Radiol & Nucl Med, Katowice, Poland.
[Kondol, Dominika; Palkij, Kacper] Multispecialty Dist Hosp SA Dr B Hager Pyskowicka, Tarnowskie Gory, Poland.
[Mielcarska, Sylwia] Med Univ Siles, Fac Med Sci Zabrze, Dept Med & Mol Biol, Katowice, Poland.
[Bartnikowska, Wiktoria] Med Univ Siles, Fac Med Sci Katowice, Katowice, Poland.
C3 Medical University Silesia; Medical University Silesia; Medical
University Silesia; Medical University Silesia; Medical University
Silesia
RP Bielówka, M (corresponding author), Med Univ Siles, Dept Radiol & Nucl Med, Students Sci Assoc Comp Anal & Artificial Intellig, Katowice, Poland.
CR [Anonymous], Centrum Egzaminow Medycznych Internet
[Anonymous], 2023, S4 wyniki jesiennego naboru na specjalizacje. Hitem m.in. radiologia, dermatologia i psychiatria
[Anonymous], Introducing GPTs Internet
[Anonymous], 2023, Centrum Egzaminow Medycznych
[Anonymous], Introducing ChatGPT Internet
Fishman EK, 2023, CAN ASSOC RADIOL J, V74, P622, DOI 10.1177/08465371231174817
Foreland M., 2010, Emerging Perspectives on Learning, Teaching, and Technology Internet
Joly-Chevrier M, 2023, J CUTAN MED SURG, V27, P409, DOI 10.1177/12034754231188437
Kufel J, 2023, POL J RADIOL, V88, pE430, DOI 10.5114/pjr.2023.131215
Lewandowski M, 2023, CLIN EXP DERMATOL, V49, P686, DOI 10.1093/ced/llad255
Passby L, 2023, CLIN EXP DERMATOL, V49, P722, DOI 10.1093/ced/llad197
Patel S, 2021, CLIN DERMATOL, V39, P667, DOI 10.1016/j.clindermatol.2021.03.012
Porter E, 2023, J EUR ACAD DERMATOL, V37, pE943, DOI 10.1111/jdv.19174
Wilczek N, 2021, Med Og Nauk Zdr, V27, P213
Young AT, 2020, J INVEST DERMATOL, V140, P1504, DOI 10.1016/j.jid.2020.02.026
NR 15
TC 0
Z9 0
U1 1
U2 1
PU TERMEDIA PUBLISHING HOUSE LTD
PI POZNAN
PA KLEEBERGA 2, POZNAN, 61-615, POLAND
SN 0033-2526
EI 2084-9893
J9 PRZ DERMATOL
JI Prz. Dermatol.
PY 2024
VL 111
IS 1
BP 26
EP 30
DI 10.5114/dr.2024.140796
PG 5
WC Dermatology
WE Emerging Sources Citation Index (ESCI)
SC Dermatology
GA XT4O5
UT WOS:001263918000003
OA gold
DA 2024-09-05
ER
PT J
AU Durmusoglu, A
AF Durmusoglu, Alptekin
TI A pre-assessment of past research on the topic of environmental-friendly
electronics
SO JOURNAL OF CLEANER PRODUCTION
LA English
DT Article
DE Text mining; Environmental-friendly electronic; Technology forecasting;
Bibliometrics; Singular value decomposition; K-means clustering
ID TEXT; TECHNOLOGY; EVOLUTION; TRENDS
AB Environmental-friendly products, processes, tools, methods and etc ... have been under the interest of both industry and academy. However, this interest has not been analyzed systematically for the academic studies. On the other hand, bibliometric analyses have been a widely used approach to measure and to analyze the interest of academic world on a certain topic. In this regard, this study intends to provide insight about the research on environmental-friendly electronic using the related literatures from the Thomson Reuters Web of Knowledge database during the period of 1980-2016. This study consists of two parts. In the first part, 7288 academic papers having the "environmental" and "electronic" phrases on "Title", "Abstract" or "Keywords" were retrieved and analyzed using bibliometric analysis methodology. These two adjectives has been selected on purpose since current studies on textual analysis indicate that phrase building most frequently starts after adjectives. In the second part of this work, Singular Value Decomposition (SVD) method, concept extraction and k-means clustering method was performed to gain more insight about the textual structure of the retrieved articles. Findings indicate that, approximately one third of publications were written by the authors addressing USA. It is also clarified that the topic was not in the agenda of researchers between 1980 and 1990. The number of publications on the area had significantly increased and had reached its peak in 2014. Text mining results showed that, the most important research focus was on "life-cycle" that was followed by "e-waste, sensor, recycling and solder" respectively. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Durmusoglu, Alptekin] Gaziantep Univ, Dept Ind Engn, TR-27310 Gaziantep, Turkey.
C3 Gaziantep University
RP Durmusoglu, A (corresponding author), Gaziantep Univ, Dept Ind Engn, TR-27310 Gaziantep, Turkey.
EM durmusoglu@gantep.edu.tr
RI , alptekind/J-8067-2019
OI , alptekind/0000-0001-9800-5747
CR Altaweel M, 2012, COMPUT ENVIRON URBAN, V36, P599, DOI 10.1016/j.compenvurbsys.2012.03.004
Bergman J., 2014, PRACTICAL MULTIVARIA
Boussalis C, 2016, GLOBAL ENVIRON CHANG, V36, P89, DOI 10.1016/j.gloenvcha.2015.12.001
Cerrito P, 2009, TEXT MINING TECHNIQU
Daim T, 2012, WORLD PAT INF, V34, P37, DOI 10.1016/j.wpi.2011.11.001
Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Delen D, 2008, EXPERT SYST APPL, V34, P1707, DOI 10.1016/j.eswa.2007.01.035
Dhillon I, 2004, SURVEY OF TEXT MINING, P73
Dragos CM, 2013, SCI TOTAL ENVIRON, V449, P184, DOI 10.1016/j.scitotenv.2013.01.057
Du HB, 2015, J CLEAN PROD, V103, P104, DOI 10.1016/j.jclepro.2014.05.094
Du HB, 2013, ENERG EFFIC, V6, P177, DOI 10.1007/s12053-012-9171-9
Eisa H., 2012, INT J PHYS SCI, V7
Garechana G, 2012, WASTE MANAGE, V32, P1069, DOI 10.1016/j.wasman.2012.01.017
GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306
Gungor A, 1999, COMPUT IND ENG, V36, P811, DOI 10.1016/S0360-8352(99)00167-9
Hatzivassiloglou V., 2000, EFFECTS ADJECTIVE OR, VI, P299
Hildén M, 2011, J CLEAN PROD, V19, P1798, DOI 10.1016/j.jclepro.2011.05.004
Jiang HC, 2016, ECOL INDIC, V60, P693, DOI 10.1016/j.ecolind.2015.08.007
Jin G, 2015, ADV ENG INFORM, V29, P126, DOI 10.1016/j.aei.2014.11.001
Johler W, 2002, ELECTRICAL CONTACTS-2002: PROCEEDINGS OF THE FORTY-EIGHTH IEEE HOLM CONFERENCE ON ELECTRICAL CONTACTS, P43, DOI 10.1109/HOLM.2002.1040821
Jourclan Z, 2008, INFORM SYST MANAGE, V25, P121, DOI 10.1080/10580530801941512
Kilbourne W, 2008, J BUS RES, V61, P885, DOI 10.1016/j.jbusres.2007.09.016
Kim GJ, 2015, J SCI IND RES INDIA, V74, P265
Klinov P., 2013, 4 C KESW 2013 ST PET
Kostka G., 2014, 2487614 SSRN ID
Li W, 2015, ENVIRON IMPACT ASSES, V50, P158, DOI 10.1016/j.eiar.2014.09.012
Liew WT, 2014, COMPUT IND, V65, P393, DOI 10.1016/j.compind.2014.01.004
Liu GF, 2013, SCIENTOMETRICS, V94, P1037, DOI 10.1007/s11192-012-0782-x
Lundgren M. K., 2012, The Global Impact of E-waste: Addressing the Challenge
MacQueen James, 1967, 5 BERK S MATH STAT P, P281
Miner G, 2012, PRACTICAL TEXT MINING AND STATISTICAL ANALYSIS FOR NON-STRUCTURED TEXT DATA APPLICATIONS, P1
Murray F, 2002, RES POLICY, V31, P1389, DOI 10.1016/S0048-7333(02)00070-7
Norton M., 2000, ASIST MONOGRAPH SERI
Qiu H, 2009, SCIENTOMETRICS, V81, P601, DOI 10.1007/s11192-008-2207-4
Rosell M., 2004, ICON 2004 IND
Song M, 2013, EXPERT SYST APPL, V40, P3722, DOI 10.1016/j.eswa.2012.12.078
Su MY, 2011, J NETW COMPUT APPL, V34, P722, DOI 10.1016/j.jnca.2010.10.009
Sumathy K L., 2013, International Journal of Computer Applications, V80, P29, DOI DOI 10.5120/13851-1685
Sunikka A, 2012, EXPERT SYST APPL, V39, P10049, DOI 10.1016/j.eswa.2012.02.042
Tobey JA, 1996, WORLD ECON, V19, P63, DOI 10.1111/j.1467-9701.1996.tb00664.x
Tseng ML, 2013, J CLEAN PROD, V40, P71, DOI 10.1016/j.jclepro.2011.10.009
Tseng YH, 2007, INFORM PROCESS MANAG, V43, P1216, DOI 10.1016/j.ipm.2006.11.011
U.S. Environmental Protection Agency, GREENH GAS INV REP
Uguz H, 2011, KNOWL-BASED SYST, V24, P1024, DOI 10.1016/j.knosys.2011.04.014
Valipour M, 2014, ARCH AGRON SOIL SCI, V60, P1625, DOI 10.1080/03650340.2014.905676
Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6
Wiebe JM, 2000, SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), P735
Yoon B., 2004, The Journal of High Technology Management Research, V15, P37, DOI DOI 10.1016/J.HITECH.2003.09.003
NR 49
TC 18
Z9 18
U1 1
U2 64
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0959-6526
EI 1879-1786
J9 J CLEAN PROD
JI J. Clean Prod.
PD AUG 15
PY 2016
VL 129
BP 305
EP 314
DI 10.1016/j.jclepro.2016.04.068
PG 10
WC Green & Sustainable Science & Technology; Engineering, Environmental;
Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Engineering; Environmental Sciences
& Ecology
GA DP0MM
UT WOS:000378183900029
DA 2024-09-05
ER
PT C
AU Cheung, SKS
AF Cheung, Simon K. S.
BE Li, R
Cheung, SKS
Iwasaki, C
Kwok, LF
Kageto, M
TI Implication on Perceived Usefulness of Open Educational Resources After
a Rapid Switch to Online Learning Mode
SO BLENDED LEARNING: RE-THINKING AND RE-DEFINING THE LEARNING PROCESS, ICBL
2021
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 14th International Conference on Blended Learning (ICBL)
CY AUG 10-13, 2021
CL Nihon Fukushi Univ, ELECTR NETWORK
HO Nihon Fukushi Univ
DE Open educational resources; Open courseware; Online courses; Open access
e-books; Learning tools; Online learning; Learning effectiveness
AB Evolved as open courseware, open online courses and tutorials, open access e-books and open source learning tools, open educational resources or OER are generally perceived as useful resources by university students. Over the last year, many higher education institutions have rapidly switched their usual classroom-based learning to online learning in order to accommodate the social distancing requirements arising from the outbreak of COVID-19. This paper investigates the implication on the students' perceived usefulness of OER after the switch to online learning. Based on two identical surveys conducted in a university in Hong Kong before and after the change, it is revealed that the students' perceived usefulness was generally increased, where the increase in perceived usefulness was more significant on open online complete courses, online tutorials, and open access e-books than other types of OER. It is also revealed that the students have become more aware of the shortcomings of OER, especially on accuracy and comprehensiveness. OER, especially open online courses, tutorials, and open access textbooks, are perceived to be useful for students to accommodate a rapid shift to online learning mode.
C1 [Cheung, Simon K. S.] Open Univ Hong Kong, Homantin, Kowloon, Good Shepherd St, Hong Kong, Peoples R China.
C3 Hong Kong Metropolitan University
RP Cheung, SKS (corresponding author), Open Univ Hong Kong, Homantin, Kowloon, Good Shepherd St, Hong Kong, Peoples R China.
EM kscheung@ouhk.edu.hk
RI Cheung, Simon K.S./AAC-4241-2022
OI Cheung, Simon K.S./0000-0002-7323-0961
CR [Anonymous], 2007, Giving knowledge for free: The emergence of open educational resources
[Anonymous], 2021, WEBS OPENCOURSEWARE
[Anonymous], 2021, WEBS GOOGL ED
[Anonymous], 2021, WEBS WIK
Belikov O., 2020, INT J OPEN ED RESOUR, V3, P77, DOI [10.18278/ijoer.3.2.6, DOI 10.18278/IJOER.3.2.6]
Blomgren C, 2018, INT REV RES OPEN DIS, V19, P55
Cheung K. S., 2013, KNOWLEDGE SHARING TE, P26
Cheung Simon K. S., 2015, International Journal of Services and Standards, V10, P225
Cheung S.K.S, 2019, Communications in Computer and Information Science, P146, DOI [10.1007/978-981-13-9895-7_13, DOI 10.1007/978-981-13-9895-7_13]
Cheung SKS, 2020, LECT NOTES COMPUT SC, V12218, P114, DOI 10.1007/978-3-030-51968-1_10
Cheung SKS, 2018, LECT NOTES COMPUT SC, V10949, P357, DOI 10.1007/978-3-319-94505-7_29
Cheung SKS, 2017, LECT NOTES COMPUT SC, V10309, P389, DOI 10.1007/978-3-319-59360-9_34
Hewlett Foundation, 2021, RICH GLOB LANDSC OV
Miao F., 2016, Open educational resources: policy, costs, transformation
Murphy J., 2021, OPEN ED RESOURCES QU
Ostashewski N., 2017, P E LEARN WORLD C E, P644
Tang HT, 2020, INT REV RES OPEN DIS, V21, P211
Tuomi I, 2013, EUR J EDUC, V48, P58, DOI 10.1111/ejed.12019
NR 18
TC 5
Z9 5
U1 1
U2 7
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-80504-3; 978-3-030-80503-6
J9 LECT NOTES COMPUT SC
PY 2021
VL 12830
BP 298
EP 308
DI 10.1007/978-3-030-80504-3_25
PG 11
WC Computer Science, Software Engineering; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BS8LB
UT WOS:000773457100025
DA 2024-09-05
ER
PT C
AU Gogoglou, A
Manolopoulos, Y
AF Gogoglou, Antonia
Manolopoulos, Yannis
BE Nguyen, NT
Papadopoulos, GA
Jedrzejowicz, P
Trawinski, B
Vossen, G
TI Predicting the Evolution of Scientific Output
SO COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2017, PT I
SE Lecture Notes in Artificial Intelligence
LA English
DT Proceedings Paper
CT 9th International Conference on Computational Collective Intelligence
(ICCCI)
CY SEP 27-29, 2017
CL Nicosia, CYPRUS
DE Scientometrics; Bibliographic data; Predictive modeling
ID SLEEPING BEAUTIES; LINK PREDICTION; NETWORKS; IMPACT; INDEX
AB Various efforts have been made to quantify scientific impact and identify the mechanisms that influence its future evolution. The first step is the identification of what constitutes scholarly impact and how it is measured. In this direction, various approaches focus on future citation count or h-index prediction at author or publication level, on fitting the distribution of citation accumulation or accurately identifying award winners, upcoming hot research topics or academic rising stars. A plethora of features have been contemplated as possible influential factors and assorted machine-learning methodologies have been adopted to ensure timely and accurate estimations. Here, we provide an overview of the field challenges, as well as a taxonomy of the existing approaches to identify the open issues that are yet to be addressed.
C1 [Gogoglou, Antonia; Manolopoulos, Yannis] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece.
C3 Aristotle University of Thessaloniki
RP Gogoglou, A (corresponding author), Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece.
EM agogoglou@csd.auth.gr; manolopo@csd.auth.gr
RI Manolopoulos, Yannis/AAI-7767-2020
CR Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
[Anonymous], 2012, PLOS ONE, DOI [DOI 10.1371/JOURNAL.PONE.0049246, DOI 10.1371/journal.pone.0112520]
[Anonymous], 2009, Proc. of the 9th SIAM International Conference on Data Mining
Borner K, 2005, COMPLEXITY, V10, P57, DOI 10.1002/cplx.20078
Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005
Bornmann L, 2011, J INFORMETR, V5, P346, DOI 10.1016/j.joi.2011.01.006
Brizan DG, 2016, SCIENTOMETRICS, V108, P183, DOI 10.1007/s11192-016-1950-1
Cao XY, 2016, J INFORMETR, V10, P471, DOI 10.1016/j.joi.2016.02.006
Chakraborty T, 2015, COMMUN ACM, V58, P82, DOI 10.1145/2701412
Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190
Chaudhuri S, 2011, COMMUN ACM, V54, P88, DOI 10.1145/1978542.1978562
Davletov F., 2014, P 23 ACM INT C CONFE, P491, DOI [DOI 10.1145/2661829, 10.1145/2661829.2662066, 10.1145/2661829]
Garner J, 2014, SCIENTOMETRICS, V100, P687, DOI 10.1007/s11192-014-1316-5
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jing Z, 2016, CHIN CONTR CONF, P211, DOI 10.1109/ChiCC.2016.7553085
Jones BF, 2011, P NATL ACAD SCI USA, V108, P18910, DOI 10.1073/pnas.1102895108
Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112
Klimek P, 2016, SCIENTOMETRICS, V107, P1265, DOI 10.1007/s11192-016-1926-1
Laurance WF, 2013, BIOSCIENCE, V63, P817, DOI 10.1525/bio.2013.63.10.9
Li J, 2014, J INFORMETR, V8, P493, DOI 10.1016/j.joi.2014.04.002
Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027
McNamara Daniel, 2013, Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2013 International Workshops: DMApps, DANTH, QIMIE, BDM, CDA, CloudSD. Revised Selected Papers: LNCS 7867, P14, DOI 10.1007/978-3-642-40319-4_2
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
Nezhadbiglari M, 2016, ACM-IEEE J CONF DIG, P181, DOI 10.1145/2910896.2910905
Penner O, 2013, PHYS TODAY, V66, P8, DOI 10.1063/PT.3.1928
Pobiedina N, 2016, APPL INTELL, V44, P252, DOI 10.1007/s10489-015-0657-y
Pradhan D, 2016, PROCEEDINGS OF THE 2016 ACM WEB SCIENCE CONFERENCE (WEBSCI'16), P318, DOI 10.1145/2908131.2908185
PRICE DJD, 1965, SCIENCE, V149, P510
Revesz PZ, 2014, PROCEEDINGS OF THE 18TH INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM (IDEAS14), P9, DOI 10.1145/2628194.2628210
Revesz PZ, 2015, P 19 INT DAT ENG APP, P1, DOI DOI 10.1145/2790755.2790763
Schreiber M, 2013, J INFORMETR, V7, P325, DOI 10.1016/j.joi.2013.01.001
Sidiropoulos A, 2005, SIGMOD REC, V34, P54, DOI 10.1145/1107499.1107506
Sidiropoulos A, 2016, J INFORMETR, V10, P789, DOI 10.1016/j.joi.2016.04.009
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1
Vieira ES, 2014, J INFORMETR, V8, P390, DOI 10.1016/j.joi.2014.01.012
Wang S., 2016, IEEE PHOTONIC TECH L, V28, P1
Way S. F, 2016, ABS161208228 CORR
Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3
Xiao Shuai, 2016, Ijcai, P2676, DOI [DOI 10.1109/SCEECS57921.2023.10061818, DOI 10.1145/3123266.3123277]
Yuxiao Dong, 2016, IEEE Transactions on Big Data, V2, P18, DOI 10.1109/TBDATA.2016.2521657
NR 41
TC 2
Z9 2
U1 0
U2 6
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-319-67074-4; 978-3-319-67073-7
J9 LECT NOTES ARTIF INT
PY 2017
VL 10448
BP 244
EP 254
DI 10.1007/978-3-319-67074-4_24
PG 11
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BL9II
UT WOS:000457470500024
DA 2024-09-05
ER
PT J
AU Liu, XH
Glänzel, W
De Moor, B
AF Liu, Xinhai
Glanzel, Wolfgang
De Moor, Bart
TI Optimal and hierarchical clustering of large-scale hybrid networks for
scientific mapping
SO SCIENTOMETRICS
LA English
DT Article; Proceedings Paper
CT 13th International Conference on Scientometrics and Informetrics
CY JUL 04-07, 2011
CL Univ Zululand, Durban, SOUTH AFRICA
HO Univ Zululand
DE Optimal and hierarchical clustering; Text mining; Bibliometric analysis;
Modularity optimization; Network analysis
ID COMMUNITY STRUCTURE; COMBINED COCITATION; WORD ANALYSIS; INFORMATION;
SCIENCE
AB Previous studies have shown that hybrid clustering methods based on textual and citation information outperforms clustering methods that use only one of these components. However, former methods focus on the vector space model. In this paper we apply a hybrid clustering method which is based on the graph model to map the Web of Science database in the mirror of the journals covered by the database. Compared with former hybrid clustering strategies, our method is very fast and even achieves better clustering accuracy. In addition, it detects the number of clusters automatically and provides a top-down hierarchical analysis, which fits in with the practical application. We quantitatively and qualitatively asses the added value of such an integrated analysis and we investigate whether the clustering outcome provides an appropriate representation of the field structure by comparing with a text-only or citation-only clustering and with another hybrid method based on linear combination of distance matrices. Our dataset consists of about 8,000 journals published in the period 2002-2006. The cognitive analysis, including the ranked journals, term annotation and the visualization of cluster structure demonstrates the efficiency of our strategy.
C1 [Liu, Xinhai] Peoples Bank China, Credit Reference Ctr, Dept Postdoctoral Res, Beijing 100800, Peoples R China.
[Liu, Xinhai] Peoples Bank China, Financial Res Inst, Dept Postdoctoral Res, Beijing 100800, Peoples R China.
[Glanzel, Wolfgang] Katholieke Univ Leuven, Dept MSI, Ctr R&D Monitoring ECOOM, B-3000 Louvain, Belgium.
[Glanzel, Wolfgang] Hungarian Acad Sci, IRPS, Budapest, Hungary.
[De Moor, Bart] Katholieke Univ Leuven, ESAT SCD, B-3001 Louvain, Belgium.
[De Moor, Bart] Katholieke Univ Leuven, KU Leuven IBBT Future Hlth Dept, B-3001 Louvain, Belgium.
C3 People's Bank of China; People's Bank of China; KU Leuven; Hungarian
Academy of Sciences; KU Leuven; KU Leuven
RP Liu, XH (corresponding author), Peoples Bank China, Credit Reference Ctr, Dept Postdoctoral Res, Chengfangjie 32, Beijing 100800, Peoples R China.
EM xinhai.liu@yahoo.com
RI Glanzel, Wolfgang/AAE-4395-2021; Glanzel, Wolfgang/A-6280-2008
OI Glanzel, Wolfgang/0000-0001-7529-5198
CR [Anonymous], 2004, Lucene in Action
[Anonymous], 2010, tech. report
Baeza-Yates R., 1999, MODERN INFORM RETRIE
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I
BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P252, DOI 10.1002/(SICI)1097-4571(199105)42:4<252::AID-ASI2>3.0.CO;2-G
Calado P, 2006, J AM SOC INF SCI TEC, V57, P208, DOI 10.1002/asi.20266
Calado P, 2003, ACM T INFORM SYST, V21, P42, DOI 10.1145/635484.635486
Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
Glenisson P, 2005, INFORM PROCESS MANAG, V41, P1548, DOI 10.1016/j.ipm.2005.03.021
He X, 2002, COMPUT STAT DATA AN, V41, P19, DOI 10.1016/S0167-9473(02)00070-1
HUBERT L, 1985, J CLASSIF, V2, P193, DOI 10.1007/BF01908075
Jaccard P., 1901, B SOC VAUD SCI NAT, V37, P547, DOI DOI 10.5169/SEALS-266450
Jain A.K., 1988, Algorithms for Clustering Data
Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011
Janssens F., 2006, INT C MULTIDISCIPLIN, P615
Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7
Janssens F, 2006, INFORM PROCESS MANAG, V42, P1614, DOI 10.1016/j.ipm.2006.03.025
Janssens F, 2009, INFORM PROCESS MANAG, V45, P683, DOI 10.1016/j.ipm.2009.06.003
Joachims T., 2001, Proceedings of 18th International Conference on Machine Learning, P250
Krings G, 2009, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2009/07/L07003
Lambiotte R, 2009, J INFORMETR, V3, P180, DOI 10.1016/j.joi.2009.03.007
Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P348, DOI 10.1002/asi.20967
Liu XH, 2011, PRO INT CONF SCI INF, P485
Luxburg U, 2007, STAT COMPUT, V17, P395, DOI DOI 10.1007/S11222-007-9033-Z
Modha D. S., 2000, ACM 2000 Hypertext. Proceedings of the Eleventh ACM Conference on Hypertext and Hypermedia, P143, DOI 10.1145/336296.336351
Mullins N.C., 1988, Handbook of quantitative studies of science and technology, P81
Newman MEJ, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.036104
Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103
Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113
Porter M., 2009, NOT AM MATH SOC, V56, P1082, DOI DOI 10.1103/PHYSREVE.69.066133
Salton G., 1986, Introduction to Modern Information Retrieval
SNIZEK WE, 1991, SCIENTOMETRICS, V20, P25, DOI 10.1007/BF02018141
Strehl A, 2002, EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, P93, DOI 10.1162/153244303321897735
Wang YG, 2002, PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, P499, DOI 10.1145/584792.584875
Zhang L, 2010, J INFORMETR, V4, P185, DOI 10.1016/j.joi.2009.11.005
NR 37
TC 16
Z9 16
U1 0
U2 53
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD MAY
PY 2012
VL 91
IS 2
BP 473
EP 493
DI 10.1007/s11192-011-0600-x
PG 21
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Information Science & Library Science
GA 921LD
UT WOS:000302478200013
DA 2024-09-05
ER
PT J
AU Hren, D
Pina, DG
Norman, CR
Marusic, A
AF Hren, Darko
Pina, David G.
Norman, Christopher R.
Marusic, Ana
TI What makes or breaks competitive research proposals? A mixed-methods
analysis of research grant evaluation reports
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE European Commission; Machine learning; Marie Curie Actions; Peer review
outcome; Qualitive analysis; Research grants
ID LINGUISTIC ANALYSIS; DECISION-MAKING; NEGATIVITY BIAS; PEER; REVIEWERS
AB The evaluation of grant proposals is an essential aspect of competitive research funding. Funding bodies and agencies rely in many instances on external peer reviewers for grant assessment. Most of the research available is about quantitative aspects of this assessment, and there is little evidence from qualitative studies. We used a combination of machine learning and qualitative analysis methods to analyse the reviewers' comments in evaluation reports from 3667 grant applications to the Initial Training Networks (ITN) of the Marie Curie Actions under the Seventh Framework Programme (FP7). Our results show that the reviewers' comments for each evaluation criterion were aligned with the Action's prespecified criteria and that the evaluation outcome was more influenced by the proposals' weaknesses than by their strengths.
C1 [Hren, Darko] Univ Split, Fac Humanities & Social Sci, Dept Psychol, Split, Croatia.
[Pina, David G.] European Commiss, European Res Execut Agcy, Brussels, Belgium.
[Norman, Christopher R.] Sciome LLC, Res Triangle Pk, NC USA.
[Marusic, Ana] Univ Split, Sch Med, Dept Res Biomed & Hlth, Split, Croatia.
[Marusic, Ana] Univ Split, Sch Med, Ctr Evidence Based Med, Split, Croatia.
C3 University of Split; University of Split; University of Split
RP Marusic, A (corresponding author), Univ Split, Sch Med, Dept Res Biomed & Hlth, Split, Croatia.; Marusic, A (corresponding author), Univ Split, Sch Med, Ctr Evidence Based Med, Split, Croatia.
EM ana.marusic@mefst.hr
RI Marusic, Ana/E-7683-2013; Hren, Darko/H-1819-2017
OI Marusic, Ana/0000-0001-6272-0917; Hren, Darko/0000-0001-6465-6568; Pina,
David/0000-0002-4930-748X
FU Croatian Science Foundation "Professionalism in Health -Decision making
in practice and research" (ProDeM) [IP-2019-04-4882]
FX This study was funded by the Croatian Science Foundation
"Professionalism in Health -Decision making in practice and research"
(ProDeM) under Grant agreement No. IP-2019-04-4882. The funder had no
role in the design of this study, its execution, analyses,
interpretation of the data, or decision to submit results.
CR Altman D.G., 2000, STAT CONFIDENCE
[Anonymous], 2001, Applied logistic regression analysis
Ausloos M, 2016, SCIENTOMETRICS, V106, P347, DOI 10.1007/s11192-015-1704-5
Ayoubi C, 2019, RES POLICY, V48, P84, DOI 10.1016/j.respol.2018.07.021
Bayindir EE, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100981
Bornmann L, 2012, SCIENTOMETRICS, V91, P843, DOI 10.1007/s11192-011-0569-5
Buljan I, 2020, ELIFE, V9, DOI 10.7554/eLife.53249
Cacioppo JT, 2014, BEHAV BRAIN SCI, V37, P309, DOI 10.1017/S0140525X13002537
Demicheli V, 2007, COCHRANE DB SYST REV, DOI 10.1002/14651858.MR000003.pub2
Dziezyc M, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021101243
Feliciani T, 2019, SCIENTOMETRICS, V121, P555, DOI 10.1007/s11192-019-03205-w
Gallo SA, 2021, SCI ENG ETHICS, V27, DOI 10.1007/s11948-021-00295-9
Ghosal T, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P1120
Glonti K, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2019-033421
Glonti K, 2019, BMC MED, V17, DOI 10.1186/s12916-019-1347-0
Grimaldo F, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0193148
Gyorffy B, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101050
Han J, 2012, MOR KAUF D, P1
Johnston R, 2018, QUAL QUANT, V52, P1957, DOI 10.1007/s11135-017-0584-6
Kaatz A, 2015, ACAD MED, V90, P69, DOI 10.1097/ACM.0000000000000442
Landauer TK, 1998, DISCOURSE PROCESS, V25, P259, DOI 10.1080/01638539809545028
Landauer TK, 1997, PSYCHOL REV, V104, P211, DOI 10.1037/0033-295X.104.2.211
Luo JW, 2022, QUANT SCI STUD, V2, P1271, DOI 10.1162/qss_a_00156
Ma L, 2022, SCI PUBL POLICY, V49, P289, DOI 10.1093/scipol/scab080
MacQueen James, 1967, 5 BERK S MATH STAT P, P281
Magua W, 2017, J WOMENS HEALTH, V26, P560, DOI 10.1089/jwh.2016.6021
Mahmic-Kaknjo M, 2021, ACCOUNT RES, V28, P297, DOI 10.1080/08989621.2020.1822170
Marsh HW, 2008, AM PSYCHOL, V63, P160, DOI 10.1037/0003-066X.63.3.160
Marsh HW, 2009, REV EDUC RES, V79, P1290, DOI 10.3102/0034654309334143
Morgan MG, 2014, P NATL ACAD SCI USA, V111, P7176, DOI 10.1073/pnas.1319946111
Pina DG, 2021, ELIFE, V10, DOI 10.7554/eLife.59338
Pina DG, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130753
Qin C., 2021, P 18 INT C SCIENTOME
Rashidi K, 2020, ONLINE INFORM REV, V44, P1327, DOI 10.1108/OIR-02-2020-0073
Research Executive Agency, 2012, GUID APPL MAR CUR AC
Rozin P, 2001, PERS SOC PSYCHOL REV, V5, P296, DOI 10.1207/S15327957PSPR0504_2
SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136
Seeber M, 2022, J ASSOC INF SCI TECH, V73, P1106, DOI 10.1002/asi.24617
Sewell M., 2007, Principal Component Analysis'
Thelwall M, 2020, ONLINE INFORM REV, V44, P1057, DOI 10.1108/OIR-11-2019-0347
Tohalino JAV, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101260
Tricco AC, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0169718
van den Besselaar P, 2018, SCIENTOMETRICS, V117, P313, DOI 10.1007/s11192-018-2848-x
Wang K, 2018, ACM/SIGIR PROCEEDINGS 2018, P175, DOI 10.1145/3209978.3210056
NR 44
TC 4
Z9 4
U1 9
U2 29
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD MAY
PY 2022
VL 16
IS 2
AR 101289
DI 10.1016/j.joi.2022.101289
EA APR 2022
PG 17
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 2S3GW
UT WOS:000821684900009
OA hybrid
DA 2024-09-05
ER
PT J
AU Grecov, P
Prasanna, AN
Ackermann, K
Campbell, S
Scott, D
Lubman, DI
Bergmeir, C
AF Grecov, Priscila
Prasanna, Ankitha Nandipura
Ackermann, Klaus
Campbell, Sam
Scott, Debbie
Lubman, Dan I.
Bergmeir, Christoph
TI Probabilistic Causal Effect Estimation With Global Neural Network
Forecasting Models
SO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
LA English
DT Article
DE Time series analysis; Predictive models; Forecasting; Biological system
modeling; Probabilistic logic; Estimation; Market research; Causal
effect; counterfactual analysis; global time series forecasting; neural
networks (NNs); probabilistic forecasting
ID SERIES; DIFFERENCE; INFERENCE
AB We introduce a novel method to estimate the causal effects of an intervention over multiple treated units by combining the techniques of probabilistic forecasting with global forecasting methods using deep learning (DL) models. Considering the counterfactual and synthetic approach for policy evaluation, we recast the causal effect estimation problem as a counterfactual prediction outcome of the treated units in the absence of the treatment. Nevertheless, in contrast to estimating only the counterfactual time series outcome, our work differs from conventional methods by proposing to estimate the counterfactual time series probability distribution based on the past preintervention set of treated and untreated time series. We rely on time series properties and forecasting methods, with shared parameters, applied to stacked univariate time series for causal identification. This article presents DeepProbCP, a framework for producing accurate quantile probabilistic forecasts for the counterfactual outcome, based on training a global autoregressive recurrent neural network model with conditional quantile functions on a large set of related time series. The output of the proposed method is the counterfactual outcome as the spline-based representation of the counterfactual distribution. We demonstrate how this probabilistic methodology added to the global DL technique to forecast the counterfactual trend and distribution outcomes overcomes many challenges faced by the baseline approaches to the policy evaluation problem. Oftentimes, some target interventions affect only the tails or the variance of the treated units' distribution rather than the mean or median, which is usual for skewed or heavy-tailed distributions. Under this scenario, the classical causal effect models based on counterfactual predictions are not capable of accurately capturing or even seeing policy effects. By means of empirical evaluations of synthetic and real-world datasets, we show that our framework delivers more accurate forecasts than the state-of-the-art models, depicting, in which quantiles, the intervention most affected the treated units, unlike the conventional counterfactual inference methods based on nonprobabilistic approaches.
C1 [Grecov, Priscila; Prasanna, Ankitha Nandipura; Bergmeir, Christoph] Monash Univ, Dept Data Sci & Artificial Intelligence, Melbourne, Vic 3800, Australia.
[Ackermann, Klaus] Monash Univ, Dept Econometr & Business Stat, Melbourne, Vic 3800, Australia.
[Campbell, Sam; Scott, Debbie; Lubman, Dan I.] Monash Univ, Eastern Hlth & Eastern Hlth Clin Sch, Turning Point, Melbourne, Vic 3800, Australia.
C3 Monash University; Monash University; Monash University; Turning Point
Alcohol & Drug Centre - Australia
RP Grecov, P (corresponding author), Monash Univ, Dept Data Sci & Artificial Intelligence, Melbourne, Vic 3800, Australia.
EM priscila.grecov@monash.edu
RI Scott, Debbie/KHU-0258-2024; Bergmeir, Christoph/Q-9911-2019
OI Bergmeir, Christoph/0000-0002-3665-9021; Grecov,
Priscila/0000-0001-6131-0238; Ackermann, Klaus/0000-0001-7693-8538
FU Australian Research Council [DE190100045]; Monash University Graduate
Research Funding; MASSIVE High Performance Computing Facility,
Australia; Australian Research Council [DE190100045] Funding Source:
Australian Research Council
FX This work was supported in part by the Australian Research Council under
Grant DE190100045, in part by the Monash University Graduate Research
Funding, and in part by the MASSIVE High Performance Computing Facility,
Australia.
CR Abadie A, 2010, J AM STAT ASSOC, V105, P493, DOI 10.1198/jasa.2009.ap08746
Alexandrov A., ARXIV190605264, V2019
[Anonymous], 2021, UNIVARIATESPLINE
Athey S, 2006, ECONOMETRICA, V74, P431, DOI 10.1111/j.1468-0262.2006.00668.x
Athey S, 2021, J AM STAT ASSOC, V116, P1716, DOI 10.1080/01621459.2021.1891924
Athey S, 2017, J ECON PERSPECT, V31, P3, DOI 10.1257/jep.31.2.3
Bandara K., 2020, 2020 IEEE INT C POW, P1, DOI DOI 10.1109/IJCNN48605.2020.9206787
Bandara K, 2021, IEEE T NEUR NET LEAR, V32, P1586, DOI 10.1109/TNNLS.2020.2985720
Bandara K, 2020, EXPERT SYST APPL, V140, DOI 10.1016/j.eswa.2019.112896
Box G. E. P., 1970, Time series analysis, forecasting and control
Brodersen, 2014, CAUSALIMPACT R PACKA
Brodersen KH, 2015, ANN APPL STAT, V9, P247, DOI 10.1214/14-AOAS788
Carvalho C, 2018, J ECONOMETRICS, V207, P352, DOI 10.1016/j.jeconom.2018.07.005
Chernozhukov V, 2021, J AM STAT ASSOC, V116, P1849, DOI 10.1080/01621459.2021.1920957
Conley TG, 2011, REV ECON STAT, V93, P113, DOI 10.1162/REST_a_00049
Di Narzo A. F., 2020, TSDYN NONLINEAR TIME
Doudchenko N., 2016, Balancing, regression, difference-in-differences and synthetic control methods: A synthesis, DOI DOI 10.3386/W22791
Farrell, 2018, ARXIV
Ferman B., 2016, 86495 REPEC ARCH
Firat E. Hanifi, 2017, MATH STAT, V5, P33, DOI [10.13189/ms.2017.050105, DOI 10.13189/ms.2017.050105]
Gasthaus J, 2019, PR MACH LEARN RES, V89
Gneiting T, 2014, ANNU REV STAT APPL, V1, P125, DOI 10.1146/annurev-statistics-062713-085831
Gneiting T, 2011, INT J FORECASTING, V27, P197, DOI 10.1016/j.ijforecast.2009.12.015
Gobillon L, 2016, REV ECON STAT, V98, P535, DOI 10.1162/REST_a_00537
Grecov P, 2021, LECT NOTES ARTIF INT, V12713, P282, DOI 10.1007/978-3-030-75765-6_23
Hartford J, 2017, PR MACH LEARN RES, V70
Hewamalage Hansika, 2021, International Journal of Forecasting, V37, P388, DOI 10.1016/j.ijforecast.2020.06.008
Hewamalage H, 2022, PATTERN RECOGN, V124, DOI 10.1016/j.patcog.2021.108441
HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064
Hyndman R., 2020, forecast: Forecasting functions for time series and linear models
Hyndman RJ, 2008, SPRINGER SER STAT, P3
I. The MathWorks, 1994, SIM VAR MOD COND RES
Januschowski T, 2020, INT J FORECASTING, V36, P167, DOI 10.1016/j.ijforecast.2019.05.008
Lim B, 2018, ADV NEUR IN, V31
Lubman, 2020, PLOS ONE, V15
Montero-Manso P, 2021, INT J FORECASTING, V37, P1632, DOI 10.1016/j.ijforecast.2021.03.004
Poulos, 2017, ARXIV
RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350
Runge C., 1901, Zeitschrift fur Mathematik und Physik, V46, P224
Salinas D, 2020, INT J FORECASTING, V36, P1181, DOI 10.1016/j.ijforecast.2019.07.001
Shalit U, 2017, PR MACH LEARN RES, V70
Shi C, 2019, ADV NEUR IN, V32
Smyl S, 2020, INT J FORECASTING, V36, P75, DOI 10.1016/j.ijforecast.2019.03.017
Steinkraus A, 2019, ECON BULL, V39, P2778
Stigler S. M., 1975, B INT STAT I, V46, P332
Wen Ruofeng, 2017, ARXIV
Wen YX, 2020, IEEE T NEUR NET LEAR, V31, P1134, DOI 10.1109/TNNLS.2019.2918795
Zeng Y, 2023, IEEE T NEUR NET LEAR, V34, P2234, DOI 10.1109/TNNLS.2021.3106111
NR 48
TC 2
Z9 2
U1 4
U2 18
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2162-237X
EI 2162-2388
J9 IEEE T NEUR NET LEAR
JI IEEE Trans. Neural Netw. Learn. Syst.
PD APR
PY 2024
VL 35
IS 4
BP 4999
EP 5013
DI 10.1109/TNNLS.2022.3190984
EA JUL 2022
PG 15
WC Computer Science, Artificial Intelligence; Computer Science, Hardware &
Architecture; Computer Science, Theory & Methods; Engineering,
Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA NB2Q3
UT WOS:000829191700001
PM 35853064
DA 2024-09-05
ER
PT J
AU Ruiz-Real, JL
Uribe-Toril, J
Torres, JA
De Pablo, J
AF Luis Ruiz-Real, Jose
Uribe-Toril, Juan
Antonio Torres, Jose
De Pablo, Jaime
TI ARTIFICIAL INTELLIGENCE IN BUSINESS AND ECONOMICS RESEARCH: TRENDS AND
FUTURE
SO JOURNAL OF BUSINESS ECONOMICS AND MANAGEMENT
LA English
DT Article
DE artificial intelligence; business; economics; bibliometrics; research
trends; decision-making
ID EXTREME LEARNING-MACHINE; NEURAL-NETWORKS; KNOWLEDGE; INNOVATION;
RESPONSES; SCIENCE; INDEXES; SYSTEMS; DESIGN; EXPERT
AB Artificial Intelligence is a disruptive technology developed during the 20th century, which has undergone an accelerated evolution, underpinning solutions to complex problems in the business world. Neural Networks, Machine Learning, or Deep Learning are concepts currently associated with terms such as digital marketing, decision making, industry 4.0 and business digital transformation. Interest in this technology will increase as the competitive advantages of the use of Artificial Intelligence by economic entities is realised. The aim of this research is to analyse the state-of-the-art research of Artificial Intelligence in business. To this end, a bibliometric analysis has been implement using the Web of Science and Scopus online databases. By using a fractional counting method, this paper identifies 11 clusters and the most frequent terms used in Artificial Intelligence research. The present study identifies the main trends in research on Artificial Intelligence in business and proposes future lines of inquiry.
C1 [Luis Ruiz-Real, Jose; Uribe-Toril, Juan; De Pablo, Jaime] Univ Almeria, Fac Econ & Business, Almeria, Spain.
[Antonio Torres, Jose] Univ Almeria, Dept Comp Sci, Almeria, Spain.
C3 Universidad de Almeria; Universidad de Almeria
RP Uribe-Toril, J (corresponding author), Univ Almeria, Fac Econ & Business, Almeria, Spain.
EM juribe@ual.es
RI de Pablo Valenciano, Jaime/T-1455-2019; Silva, Flavio/JTT-2763-2023;
Uribe-Toril, Juan/W-8568-2018; DE+PABLO+VALENCIANO, JAIME/ABA-6206-2021
OI de Pablo Valenciano, Jaime/0000-0002-9451-8956; Uribe-Toril,
Juan/0000-0002-0227-801X;
CR Aghaei Chadegani A., 2013, Asian Social Science, V9, P18, DOI [10.5539/ass.v9n5p18, DOI 10.5539/ASS.V9N5P18]
ALTMAN EI, 1994, J BANK FINANC, V18, P505, DOI 10.1016/0378-4266(94)90007-8
[Anonymous], CITATION ANAL RES EV
[Anonymous], MIT SLOAN MANAGEMENT
Bakkalbasi Nisa, 2006, Biomed Digit Libr, V3, P7, DOI 10.1186/1742-5581-3-7
Burkhalter B., 1963, OPER RES, V11, P39
Callan J. P., 1992, DEXA 92. Database and Expert Systems Applications. Proceedings of the International Conference, P78
Cavalcante RC, 2016, EXPERT SYST APPL, V55, P194, DOI 10.1016/j.eswa.2016.02.006
Chan FTS, 2000, INT J PROD ECON, V65, P73, DOI 10.1016/S0925-5273(99)00091-2
Cho V, 2003, TOURISM MANAGE, V24, P323, DOI 10.1016/S0261-5177(02)00068-7
Choi JJ, 2019, INT FINANC REV, V20, P3, DOI 10.1108/S1569-376720190000020003
Chopra K, 2019, INT J RETAIL DISTRIB, V47, P331, DOI 10.1108/IJRDM-11-2018-0251
Choy KL, 2005, KNOWL-BASED SYST, V18, P1, DOI 10.1016/j.knosys.2004.05.003
Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004
Das SR, 2007, MANAGE SCI, V53, P1375, DOI 10.1287/mnsc.1070.0704
Demirkan H, 2013, DECIS SUPPORT SYST, V55, P412, DOI 10.1016/j.dss.2012.05.048
Fedra K., 1994, APPL GEOGRAPHIC INFO, P297
Furner J, 2014, BEYOND BIBLIOMETRICS: HARNESSING MULTIDIMENSIONAL INDICATORS OF SCHOLARLY IMPACT, P85
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Goodman D., 2005, The Charleston Advisor, V6, P5, DOI DOI 10.3846/1611-1699.2009.10.233-240
Guz AN, 2009, INT APPL MECH+, V45, P351, DOI 10.1007/s10778-009-0189-4
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Huang Z, 2004, DECIS SUPPORT SYST, V37, P543, DOI 10.1016/S0167-9236(03)00086-1
Ince H, 2009, J BUS ECON MANAG, V10, P233, DOI 10.3846/1611-1699.2009.10.233-240
Jan MN, 2019, J BUS ECON MANAG, V20, P168, DOI 10.3846/jbem.2019.8250
Karimova F., 2016, Eur. Sci. J., V12, P75, DOI 10.19044/esj.2016.v12n34p75
Kozma RB, 1997, J RES SCI TEACH, V34, P949, DOI 10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
Kumar BS, 2016, KNOWL-BASED SYST, V114, P128, DOI 10.1016/j.knosys.2016.10.003
KUSIAK A, 1988, EUR J OPER RES, V34, P113, DOI 10.1016/0377-2217(88)90346-3
Lebailly L., 1987, APPROX REASONING INT, P125, DOI 10.1016/B978-0-08-034335-8.50015-5
LeBaron B, 1999, J ECON DYN CONTROL, V23, P1487, DOI 10.1016/S0165-1889(98)00081-5
Lee LDW, 2020, EUR J MARKETING, V54, P615, DOI 10.1108/EJM-02-2019-0219
Lee YK, 2018, INT J GRID DISTRIB, V11, P11, DOI 10.14257/ijgdc.2018.11.7.02
Li BH, 2017, FRONT INFORM TECH EL, V18, P86, DOI 10.1631/FITEE.1601885
Lin WY, 2012, IEEE T SYST MAN CY C, V42, P421, DOI 10.1109/TSMCC.2011.2170420
Luo H, 2013, INT J PROD ECON, V146, P423, DOI 10.1016/j.ijpe.2013.01.028
Maknickiene N, 2013, J BUS ECON MANAG, V14, P403, DOI 10.3846/16111699.2012.729532
Marinchak CLM, 2018, ENCYCLOPEDIA OF INFORMATION SCIENCE AND TECHNOLOGY, 4TH EDITION, P5748, DOI 10.4018/978-1-5225-2255-3.ch499
McCarthy J., 1960, Programs with common sense, P300
MILES RE, 1986, CALIF MANAGE REV, V28, P62, DOI 10.2307/41165202
Morikawa M., 2016, EFFECTS ARTIFICIAL I
Mutasa S, 2020, CLIN IMAG, V65, P96, DOI 10.1016/j.clinimag.2020.04.025
MYLOPOULOS J, 1990, ACM T INFORM SYST, V8, P325, DOI 10.1145/102675.102676
Nicholson JK, 1999, XENOBIOTICA, V29, P1181, DOI 10.1080/004982599238047
Patel VL, 2009, ARTIF INTELL MED, V46, P5, DOI 10.1016/j.artmed.2008.07.017
Plastino Eduardo, 2018, Strategy & Leadership, V46, P16, DOI 10.1108/SL-11-2017-0106
Ramakrishna S, 2020, SCI TECHNOL SOC, V25, P505, DOI 10.1177/0971721820912918
Rampersad G, 2020, J BUS RES, V116, P68, DOI 10.1016/j.jbusres.2020.05.019
Rozinat A, 2008, INFORM SYST, V33, P64, DOI 10.1016/j.is.2007.07.001
Sabherwal R, 2001, INFORM SYST RES, V12, P11, DOI 10.1287/isre.12.1.11.9714
Sheta Alaa F., 2015, International Journal of Advanced Research in Artificial Intelligence, V4, P55
Soltani-Fesaghandis G, 2018, INT FOOD AGRIBUS MAN, V21, P847, DOI 10.22434/IFAMR2017.0033
Stalidis G, 2015, PROCD SOC BEHV, V175, P106, DOI 10.1016/j.sbspro.2015.01.1180
Sun ZL, 2008, DECIS SUPPORT SYST, V46, P411, DOI 10.1016/j.dss.2008.07.009
Swaminathan JM, 1998, DECISION SCI, V29, P607, DOI 10.1111/j.1540-5915.1998.tb01356.x
TAGUESUTCLIFFE J, 1992, INFORM PROCESS MANAG, V28, P1, DOI 10.1016/0306-4573(92)90087-G
TAM KY, 1992, MANAGE SCI, V38, P926, DOI 10.1287/mnsc.38.7.926
Traag VA, 2011, PHYS REV E, V84, DOI 10.1103/PhysRevE.84.016114
Trafalis TB, 2000, IEEE IJCNN, P348, DOI 10.1109/IJCNN.2000.859420
van Assen M, 2020, EUR J RADIOL, V129, DOI 10.1016/j.ejrad.2020.109083
Van Eck N.J., 2015, VOSviewer Manual. Man
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Raan A., 2014, Bibliometrics Use and Abuse in the Review of Research Performance, V87, P17
Waaijer CJF, 2011, SCIENTOMETRICS, V86, P99, DOI 10.1007/s11192-010-0205-9
Wagner C, 2006, INF RESOUR MANAG J, V19, P70, DOI 10.4018/irmj.2006010104
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748
Weng B, 2018, APPL SOFT COMPUT, V71, P685, DOI 10.1016/j.asoc.2018.07.024
West J, 2016, COMPUT SECUR, V57, P47, DOI [10.1016/j.cose.2015.09.005, 10.1007/978-3-319-16507-3_4]
WILSON RL, 1994, DECIS SUPPORT SYST, V11, P545, DOI 10.1016/0167-9236(94)90024-8
Wirth N, 2018, INT J MARKET RES, V60, P435, DOI 10.1177/1470785318776841
Wong KKL, 2020, FUTURE GENER COMP SY, V110, P802, DOI 10.1016/j.future.2019.09.047
Xing FZ, 2018, ARTIF INTELL REV, V50, P49, DOI 10.1007/s10462-017-9588-9
Yu Q, 2014, NEUROCOMPUTING, V128, P296, DOI 10.1016/j.neucom.2013.01.063
Zatorski R. J., 1970, Australian Computer Journal, V2, P173
NR 75
TC 38
Z9 40
U1 62
U2 376
PU VILNIUS GEDIMINAS TECH UNIV
PI VILNIUS
PA SAULETEKIO AL 11, VILNIUS, LT-10223, LITHUANIA
SN 1611-1699
EI 2029-4433
J9 J BUS ECON MANAG
JI J. Bus. Econ. Manag.
PY 2021
VL 22
IS 1
BP 98
EP 117
DI 10.3846/jbem.2020.13641
PG 20
WC Business; Economics
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA QB2AQ
UT WOS:000613944700006
OA gold
DA 2024-09-05
ER
PT C
AU Khan, A
Koh, RGL
Hassan, S
Liu, T
Tucci, V
Kumbhare, D
Doyle, TE
AF Khan, Asif
Koh, Ryan G. L.
Hassan, Samah
Liu, Theodore
Tucci, Victoria
Kumbhare, Dinesh
Doyle, Thomas E.
GP IEEE
TI STAR-ML: A Rapid Screening Tool for Assessing Reporting of Machine
Learning in Research
SO 2022 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING
(CCECE)
SE Canadian Conference on Electrical and Computer Engineering
LA English
DT Proceedings Paper
CT Canadian Conference on Electrical and Computer Engineering (CCECE)
CY SEP 18-20, 2022
CL Halifax, CANADA
DE machine learning; screening tool; reporting assessment; quality scoring;
checklist; research methodology; literature review
AB Literature review provides researchers with an overview of the field and when presented as a systematic assessment, it summarizes state-of-the-art information and identifies knowledge gaps. While there are many tools for assessing quality and risk-of-bias within studies, there is currently no generalized tool for evaluating the transparency, reproducibility, and correctness of machine learning (ML) reporting in the literature. This study proposes a new tool (Screening Tool for Assessing Reporting of Machine Learning; STAR-ML) that can be used to screen articles for a systematic or scoping review focusing on the reporting of the ML algorithm. This paper describes the development of the tool to assess the quality of ML research reporting and how it can be applied to improve the literature review methodology. The tool was tested and updated using three independent raters on 15 studies. The inter-rater reliability and the time used to review an article were evaluated. The current version of STAR-ML has a very high inter-rater reliability of 0.923, and the average time to screen an article was 4.73 minutes. This new tool will allow for filtering ML-related papers that can be included in a systematic or scoping review by ensuring transparent, reproducible, and correct screening of research for inclusion in the review article.
C1 [Khan, Asif; Doyle, Thomas E.] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada.
[Koh, Ryan G. L.; Hassan, Samah; Kumbhare, Dinesh] Toronto Rehabil Inst UHN, KITE, Toronto, ON, Canada.
[Liu, Theodore] McMaster Univ, Fac Engn, Hamilton, ON, Canada.
[Tucci, Victoria] McMaster Univ, Fac Hlth Sci, Hamilton, ON, Canada.
[Doyle, Thomas E.] McMaster Univ, Sch Biomed Engn, Hamilton, ON, Canada.
[Doyle, Thomas E.] Vector Inst Artificial Intelligence, Toronto, ON, Canada.
C3 McMaster University; University of Toronto; University Health Network
Toronto; Toronto Rehabilitation Institute; McMaster University; McMaster
University; McMaster University; Vector Institute for Artificial
Intelligence
RP Khan, A (corresponding author), McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada.
EM khanm382@mcmaster.ca; ryan.koh@uhn.ca; samah.hassam@uhn.ca;
liu102@mcmaster.ca; tucciv1@mcmaster.ca; dinesh.kumbhare@uhn.ca;
doylet@mcmaster.ca
RI Hassan, Samah/ABA-6467-2021; Hassan, Samah/CAA-2067-2022; Izquierdo,
Mikel/A-4894-2010
OI Izquierdo, Mikel/0000-0002-1506-4272; Doyle, Thomas/0000-0003-1059-110X;
Liu, Theodore/0000-0001-7334-8129; Khan, Md Asif/0000-0001-8395-347X
FU Canadian Department of National Defence IDEaS [CFPMN2-17]; Department of
Electrical and Computer Engineering at McMaster University, Canada
FX This work was funded and supported by the Canadian Department of
National Defence IDEaS under award number CFPMN2-17 and the Department
of Electrical and Computer Engineering at McMaster University, Canada.
CR [Anonymous], 2019, STAT TUTORIALS SOFTW
[Anonymous], 1991, Practical statistics for medical research, DOI 10.2307/2532320
Bayat S, 2021, ALZHEIMERS RES THER, V13, DOI 10.1186/s13195-021-00852-1
Behr M, 2019, J ULTRAS MED, V38, P2119, DOI 10.1002/jum.14909
Bossuyt P.M., 2003, ANN INTERN MED, V138, pW
Bullock J, 2019, PROC SPIE, V10953, DOI 10.1117/12.2512451
Chowdhury GG, 2003, ANNU REV INFORM SCI, V37, P51, DOI 10.1002/aris.1440370103
COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104
Crowston K, 2012, INT J SOC RES METHOD, V15, P523, DOI 10.1080/13645579.2011.625764
Fleiss J. L., 2003, STAT METHODS RATES P, V9
FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619
Fradi M, 2022, BIOMED SIGNAL PROCES, V71, DOI 10.1016/j.bspc.2021.103123
Geng QC, 2018, SCI CHINA INFORM SCI, V61, DOI 10.1007/s11432-017-9189-6
Geron A., 2019, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
Higgins JPT, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d5928
Janssens ACJW, 2011, PLOS MED, V8, DOI 10.1371/journal.pmed.1000420
Jayakumar S, 2022, NPJ DIGIT MED, V5, DOI 10.1038/s41746-021-00544-y
Koh RGL, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/ab4ac4
Koh RGL, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-47450-8
Kumar A, 2017, IEEE J BIOMED HEALTH, V21, P31, DOI 10.1109/JBHI.2016.2635663
Liberati A, 2009, PLOS MED, V6, DOI [10.1371/journal.pmed.1000100, 10.7326/0003-4819-151-4-200908180-00136]
Likitlersuang J, 2019, J NEUROENG REHABIL, V16, DOI 10.1186/s12984-019-0557-1
Moller AM, 2016, BRIT J ANAESTH, V117, P428, DOI 10.1093/bja/aew264
Moons KGM, 2014, PLOS MED, V11, DOI 10.1371/journal.pmed.1001744
Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160]
Raghavendra U, 2018, FUTURE GENER COMP SY, V85, P184, DOI 10.1016/j.future.2018.03.023
Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707
Sauerbrei W, 2018, JNCI-J NATL CANCER I, V110, P803, DOI 10.1093/jnci/djy088
Schulz KF, 2010, BMJ-BRIT MED J, V340, DOI [10.1136/bmj.c332, 10.4103/0976-500X.72352, 10.1016/j.ijsu.2011.09.004, 10.1136/bmj.c869, 10.1186/1741-7015-8-18, 10.1016/j.jclinepi.2010.02.005]
von Elm E, 2007, PLOS MED, V4, P1623, DOI [10.1016/S0140-6736(07)61602-X, 10.1371/journal.pmed.0040297]
Whiting Penny, 2003, BMC Med Res Methodol, V3, P25, DOI 10.1186/1471-2288-3-25
Whiting PF, 2011, ANN INTERN MED, V155, P529, DOI 10.7326/0003-4819-155-8-201110180-00009
NR 32
TC 1
Z9 1
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 0840-7789
BN 978-1-6654-8432-9
J9 CAN CON EL COMP EN
PY 2022
BP 336
EP 341
DI 10.1109/CCECE49351.2022.9918312
PG 6
WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BU7ZN
UT WOS:000945894600046
DA 2024-09-05
ER
PT C
AU Xiao, TT
Han, P
Hong, B
Dong, Z
AF Xiao, Tiantian
Han, Pu
Hong, Bo
Dong, Ze
GP IEEE
TI Research on The Effect of Selection of Objective Function on
Optimization Results
SO 2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA)
LA English
DT Proceedings Paper
CT 11th World Congress on Intelligent Control and Automation
CY JUN 29-JUL 04, 2014
CL Shenyang, PEOPLES R CHINA
DE Particle Swarm Optimization algorithm; Objective function; Parameter
optimization
AB In this paper, based on Particle Swarm Optimization (PSO) algorithm to observe the different optimization results by changing the objective function. By comparing indicators of various types of objective function, clearly showing its intuitive respective advantages and disadvantages. Herein we can derived from the comprehensive objective function is a relatively good target function, stability, accuracy and rapidity performance can better meet the requirements of people.
C1 [Xiao, Tiantian; Han, Pu; Hong, Bo; Dong, Ze] North China Elect Power Univ, Hebei Engn Res Ctr Simulat & Optimized Control Po, Dept Automat, Baoding 071003, Peoples R China.
C3 North China Electric Power University
RP Xiao, TT (corresponding author), North China Elect Power Univ, Hebei Engn Res Ctr Simulat & Optimized Control Po, Dept Automat, Baoding 071003, Peoples R China.
EM smilesweetsweet@163.com
CR Han P., 2007, CONTROL SYSTEM DIGIT
Han P., 1993, N CHINA U ELECT POWE, V20, P50
Han P., 2013, INTELLIGENT CONTROL
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
Liu N., 2002, PARAMETER OPTIMIZATI
Zhang J., 2001, COMPUTER SIMULATION, V27, P191
NR 6
TC 0
Z9 0
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4799-5825-2
PY 2014
BP 4988
EP 4990
PG 3
WC Automation & Control Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems
GA BG9CY
UT WOS:000393066205003
DA 2024-09-05
ER
PT J
AU Matrix, S
AF Matrix, Sidneyeve
TI Teaching with Infographics: Practicing New Digital Competencies and
Visual Literacies
SO JOURNAL OF PEDAGOGIC DEVELOPMENT
LA English
DT Article
DE online learning; communications; graphic design; Internet research;
peerto-peer collaboration; teaching
AB This position paper examines the use of infographics as a teaching assignment in the online college classroom. It argues for the benefits of adopting this type of creative assignment for teaching and learning, and considers the pedagogic and technical challenges that may arise in doing so. Data and insights are drawn from two case studies, both from the communications field, one online class and a blended one, taught at two different institutions. The paper demonstrates how incorporating a research-based graphic design assignment into coursework challenges and encourages students' visual digital literacies. The paper includes practical insights and identifies best practices emerging from the authors' classroom experience with the infographic assignment, and from student feedback. The paper suggests that this kind of creative assignment requires students to practice exactly those digital competencies required to participate in an increasingly visual digital culture.
C1 [Matrix, Sidneyeve] Queens Univ, Kingston, ON, Canada.
[Matrix, Sidneyeve] Jaigris Hodson Ryerson Univ, Toronto, ON, Canada.
C3 Queens University - Canada
RP Matrix, S (corresponding author), Queens Univ, Kingston, ON, Canada.
EM sidney.eve@queensu.ca
OI Hodson, Jaigris/0000-0002-2235-3718
CR [Anonymous], 2012, POWER INFOGRAPHICS U
Chong Alan, 2012, PROF COMM C IPEC 201, P1, DOI DOI 10.1109/IPCC.2012.6408633
Conner M, 2013, REF SERV REV, V41, P91, DOI 10.1108/00907321311300901
Danis M. F., 1993, ED361724 VIS PED VER
David A., 2010, Online Journal of Distance Learning Administration, V8
Felder R.M., 2000, LEARNING STYLES STRA
Hattwig D, 2013, PORTAL-LIBR ACAD, V13, P61, DOI 10.1353/pla.2013.0008
Hawk TF, 2007, DECIS SCI-J INNOV ED, V5, P1, DOI 10.1111/j.1540-4609.2007.00125.x
Hixon E., 2010, Online Journal of Distance Learning Administration, V13
Kay RH, 2012, COMPUT HUM BEHAV, V28, P820, DOI 10.1016/j.chb.2012.01.011
Kern E., 2013, 3 TRUTHS VISUAL WEB
Krauss J., 2012, Infographics: More than words can say. Learning and leading with technology
Lambert J., 2008, CONT ISSUES TECHNOLO, V8, P264
Lankow J., 2012, INFOGRAPHICS POWER V
Lee SWY, 2011, INT J SCI EDUC, V33, P1893, DOI 10.1080/09500693.2010.536998
Metros SE, 2008, THEOR PRACT, V47, P102, DOI 10.1080/00405840801992264
Mitchell W.J.T., 2002, Journal of Visual Culture, V1, DOI DOI 10.1177/147041290200100202
Mocek E., 2012, Society for Information Technology Teacher Education International Conference, V2012, P2977
Olson, 2013, 12 INT C INT DES CHI, P380, DOI DOI 10.1145/2485760.2485803
Osterman M., 2013, 149 SFERC
Pasternack S., 1990, Newspaper Research Journal, V11, P28, DOI DOI 10.1177/073953299001100204
Rainie Lee., 2012, Photos and Videos as Social Currency Online
Rockenbach B, 2008, ART DOC, V27, P26, DOI 10.1086/adx.27.2.27949492
Stroupe C, 2000, COLL ENGL, V62, P607, DOI 10.2307/378964
Thomas E., 2008, College Teaching, V56, P23, DOI DOI 10.3200/CTCH.56.1.23-27
Verma S., 2013, RISE VISUAL WEB YOUR
Walter E., 2013, RISE VISUAL SOCIAL M
Wilkes Gilbert., 2013, Professional Communication Conference (IPCC), P1
NR 28
TC 30
Z9 44
U1 1
U2 9
PU UNIV BEDFORDSHIRE, CENTRE LEARNING EXCELLENCE
PI BEDS
PA UNIVERSITY SQ, LUTON, BEDS, LU1 3JU, ENGLAND
SN 2047-3257
EI 2047-3265
J9 J PEDAGOG DEV
JI J. Pedagog. Dev.
PD JUL
PY 2014
VL 4
IS 2
BP 17
EP 27
PG 11
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA V5B4R
UT WOS:000219455600002
DA 2024-09-05
ER
PT J
AU Koopmann, T
Stubbemann, M
Kapa, M
Paris, M
Buenstorf, G
Hanika, T
Hotho, A
Jäschke, R
Stumme, G
AF Koopmann, Tobias
Stubbemann, Maximilian
Kapa, Matthias
Paris, Michael
Buenstorf, Guido
Hanika, Tom
Hotho, Andreas
Jaeschke, Robert
Stumme, Gerd
TI Proximity dimensions and the emergence of collaboration: a HypTrails
study on German AI research
SO SCIENTOMETRICS
LA English
DT Article
DE Dimensions of proximity; Co-authorships; Co-inventorships; Embedding
techniques; Collaboration
ID KNOWLEDGE; INNOVATION; NETWORKS; SPILLOVERS; GEOGRAPHY; INDUSTRY
AB Creation and exchange of knowledge depends on collaboration. Recent work has suggested that the emergence of collaboration frequently relies on geographic proximity. However, being co-located tends to be associated with other dimensions of proximity, such as social ties or a shared organizational environment. To account for such factors, multiple dimensions of proximity have been proposed, including cognitive, institutional, organizational, social and geographical proximity. Since they strongly interrelate, disentangling these dimensions and their respective impact on collaboration is challenging. To address this issue, we propose various methods for measuring different dimensions of proximity. We then present an approach to compare and rank them with respect to the extent to which they indicate co-publications and co-inventions. We adapt the HypTrails approach, which was originally developed to explain human navigation, to co-author and co-inventor graphs. We evaluate this approach on a subset of the German research community, specifically academic authors and inventors active in research on artificial intelligence (AI). We find that social proximity and cognitive proximity are more important for the emergence of collaboration than geographic proximity.
C1 [Koopmann, Tobias; Hotho, Andreas] Univ Wurzburg, Data Sci Chair, Wurzburg, Germany.
[Stubbemann, Maximilian; Jaeschke, Robert; Stumme, Gerd] L3S Res Ctr, Hannover, Germany.
[Kapa, Matthias; Buenstorf, Guido] Univ Kassel, INCHER, Kassel, Germany.
[Kapa, Matthias; Buenstorf, Guido] Univ Kassel, Inst Econ, Kassel, Germany.
[Paris, Michael; Jaeschke, Robert] Humboldt Univ, Berlin, Germany.
[Buenstorf, Guido] Univ Gothenburg, Innovat & Entrepreneurship Unit, Gothenburg, Sweden.
[Hanika, Tom] Univ Kassel, Knowledge & Data Engn Grp, Kassel, Germany.
C3 University of Wurzburg; Leibniz University Hannover; Universitat Kassel;
Universitat Kassel; Humboldt University of Berlin; University of
Gothenburg; Universitat Kassel
RP Koopmann, T (corresponding author), Univ Wurzburg, Data Sci Chair, Wurzburg, Germany.
EM koopmann@informatik.uni-wuerzburg.de; stubbemann@13s.de;
kapa@incher.uni-kassel.de; michael.paris@hu-berlin.de;
buenstorf@uni-kassel.de; hanika@cs.uni-kassel.de;
hotho@informatik.uni-wuerzburg.de; robert.jaeschke@hu-berlin.de;
stumme@13s.de
RI Koopmann, Tobias/JKJ-5457-2023
OI Paris, Michael/0000-0003-2077-6984; Hanika, Tom/0000-0002-4918-6374;
Koopmann, Tobias/0000-0002-7736-9864
FU German Federal Ministry of Education and Research(BMBF) [01PU17012A-D]
FX Open Access funding enabled and organized by Projekt DEAL. This work is
funded by the German Federal Ministry of Education and Research(BMBF)
under grant numbers 01PU17012A-D.
CR Aghion P, 2008, RAND J ECON, V39, P617, DOI 10.1111/j.1756-2171.2008.00031.x
Ammar W., 2018, P 2018 C N AM CHAPT, V3, P84, DOI [DOI 10.18653/V1/N18-3011, 10.18653/v1/N18-3011]
Audretsch DB, 1996, AM ECON REV, V86, P630
Balland PA, 2012, REG STUD, V46, P741, DOI 10.1080/00343404.2010.529121
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Bode, 2019, J ECON GEOGR, pLBZ023
Boschma RA, 2005, REG STUD, V39, P61, DOI 10.1080/0034340052000320887
Breschi S, 2009, J ECON GEOGR, V9, P439, DOI 10.1093/jeg/lbp008
Broekel T, 2012, J ECON GEOGR, V12, P409, DOI 10.1093/jeg/lbr010
Buenstorf G, 2010, J URBAN ECON, V68, P103, DOI 10.1016/j.jue.2010.03.005
Burris V, 2004, AM SOCIOL REV, V69, P239, DOI 10.1177/000312240406900205
Catalini C, 2018, MANAGE SCI, V64, P4348, DOI 10.1287/mnsc.2017.2798
Crescenzi R, 2016, RES POLICY, V45, P177, DOI 10.1016/j.respol.2015.07.003
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Delgado M, 2010, J ECON GEOGR, V10, P495, DOI 10.1093/jeg/lbq010
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Edquist C., 1996, Institutions and organizations in systems of innovation
Espin-Noboa Lisette, 2017, Appl Netw Sci, V2, P16, DOI 10.1007/s41109-017-0036-1
Foltz PW, 1996, BEHAV RES METH INSTR, V28, P197, DOI 10.3758/BF03204765
Foltz PW, 1998, DISCOURSE PROCESS, V25, P285, DOI 10.1080/01638539809545029
Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257
Gore SM., 1987, MRC NEWS, V35, P19
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Hardeman S, 2015, SCI PUBL POLICY, V42, P530, DOI 10.1093/scipol/scu070
Hautala J, 2011, J KNOWL MANAG, V15, P601, DOI 10.1108/13673271111151983
Heinisch D, 2016, ECON INNOV NEW TECH, V25, P553, DOI 10.1080/10438599.2015.1081333
Heinisch DP, 2018, SCIENTOMETRICS, V117, P351, DOI 10.1007/s11192-018-2840-5
Heinze T, 2009, RES POLICY, V38, P610, DOI 10.1016/j.respol.2009.01.014
Hirv T, 2018, J SCIENTOMETR RES, V7, P181, DOI 10.5530/jscires.7.3.29
Hoekman J, 2010, RES POLICY, V39, P662, DOI 10.1016/j.respol.2010.01.012
JAFFE AB, 1993, Q J ECON, V108, P577, DOI 10.2307/2118401
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
Katz Leo, 1953, PSYCHOMETRIKA, V18, P39
Kersting, 2019, CORR ABS190309516
Koopmann T, 2019, PROCEEDINGS OF THE 30TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA (HT '19), P143, DOI 10.1145/3342220.3343650
Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760
Lee DD, 1999, NATURE, V401, P788, DOI 10.1038/44565
Lee DD, 2001, ADV NEUR IN, V13, P556
Lee JH, 2009, INFORM PROCESS MANAG, V45, P20, DOI 10.1016/j.ipm.2008.06.002
Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359
Ley M, 2009, PROC VLDB ENDOW, V2, P1493, DOI 10.14778/1687553.1687577
Liu JY, 2018, SCIENTOMETRICS, V116, P161, DOI 10.1007/s11192-018-2762-2
Manning C.D., 2008, Introduction to information retrieval, DOI DOI 10.1017/CBO9780511809071
Marshall A, 1890, PRINCIPLES EC
Mikolov T., 2013, ArXiv13013781 Cs, P1
Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100
Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132]
Niebler T, 2016, KUNSTL INTELL, V30, P163, DOI 10.1007/s13218-015-0417-5
Niebler T, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P2311, DOI 10.1145/2983323.2983686
Nooteboom B., 2000, LEARNING INNOVATION, DOI [10.1093/acprof:oso/9780199241002.001.0001, DOI 10.1093/ACPROF:OSO/9780199241002.001.0001]
Ou MD, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1105, DOI 10.1145/2939672.2939751
Paris, 2020, SUMMARY GAW
Perkmann M, 2013, RES POLICY, V42, P423, DOI 10.1016/j.respol.2012.09.007
Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732
Polanyi, 1967, TACIT DIMENSION
Pond R, 2007, PAP REG SCI, V86, P423, DOI 10.1111/j.1435-5957.2007.00126.x
Singer P, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1003, DOI 10.1145/2736277.2741080
Sinoara RA, 2019, KNOWL-BASED SYST, V163, P955, DOI 10.1016/j.knosys.2018.10.026
Sparck-Jones K, 2004, J DOC, V60, P493, DOI [10.1108/00220410410560573, 10.1108/eb026526]
Stern S, 2004, MANAGE SCI, V50, P835, DOI 10.1287/mnsc.1040.0241
Stubbemann, 2020, GERMAN INT NETWORK D
Tarasconi, 2014, CRIOS PATSTAT DATABA
Vaswani A, 2017, ADV NEUR IN, V30
Watts DJ., 2003, 6 DEGREES SCI CONNEC
Werker C, 2019, J EVOL ECON, V29, P697, DOI 10.1007/s00191-019-00605-2
Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099
Xu, 2003, SIGIR 03, P267
Xu XJ, 2016, IEEE T INTELL TRANSP, V17, P2238, DOI 10.1109/TITS.2016.2519038
NR 68
TC 4
Z9 4
U1 3
U2 35
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2021
VL 126
IS 12
BP 9847
EP 9868
DI 10.1007/s11192-021-03922-1
EA MAR 2021
PG 22
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA XF4WA
UT WOS:000630848600008
OA hybrid, Green Published
DA 2024-09-05
ER
PT J
AU Genkina, D
AF Genkina, Dina
TI Don't Start a Career as an AI Prompt Engineer AI will Take Your Job
SO IEEE SPECTRUM
LA English
DT Article
DE Engineering profession; Chatbots; Internet; Artificial intelligence;
Employment; Career development; Market research; Mathematical models;
Kirk field collapse effect
AB Since ChatGPT dropped in the fall of 2022, everyone and their donkey has tried their hand at prompt engineering-finding a clever way to phrase their query to a large language model (LLM) or AI art or video generator to get the best results (or sidestep protections). The Internet is replete with prompt-engineering guides, cheat sheets, and advice threads to help you get the most out of an LLM.
NR 0
TC 0
Z9 0
U1 7
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9235
EI 1939-9340
J9 IEEE SPECTRUM
JI IEEE Spectr.
PD MAY
PY 2024
VL 61
IS 5
BP 30
EP 34
DI 10.1109/MSPEC.2024.10523015
PG 5
WC Engineering, Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA WE2L1
UT WOS:001253126000009
DA 2024-09-05
ER
PT C
AU Yu, LY
AF Yu, Lingyun
GP IEEE
TI Application Research of SVM-based Mining Algorithm in Evaluation of
College English Teaching
SO 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA &
SMART CITY (ICITBS)
LA English
DT Proceedings Paper
CT International Conference on Intelligent Transportation, Big Data & Smart
City (ICITBS)
CY DEC 17-18, 2016
CL Changsha, PEOPLES R CHINA
DE evaluation; English teaching; SVM; data mining
AB It is a problem of obtaining fair, accurate and fast evaluation of teacher in education and teaching, which is also an important premise of modern management in colleges. There exist some disadvantages as being subjective, poor accuracy and complex operation in traditional schemes. We proposed an improved method by combining data mining algorithm and the evaluation indicators of English teachers. SVM is used to classify the sample data. Then we attain the training model through training the sample data in the evaluation system and take the intelligent evaluation and analysis on the prediction data with the training model. Our method is testified to have advantage in comprehensive performance and application value by experiments.
C1 [Yu, Lingyun] Sias Int Univ, Sch Foreign Languages, Xinzheng 451150, Peoples R China.
RP Yu, LY (corresponding author), Sias Int Univ, Sch Foreign Languages, Xinzheng 451150, Peoples R China.
EM 709740726@qq.com
CR Jing Yang, 2011, Information Technology Journal, V10, P2140, DOI 10.3923/itj.2011.2140.2146
Sela Y, 2011, IEEE T BIO-MED ENG, V58, P2574, DOI 10.1109/TBME.2011.2159501
Wan Hongxin, 2012, SOURCE INT REV COMPU, V7, P3710
Yun Teng, 2013, Information Technology Journal, V12, P3764, DOI 10.3923/itj.2013.3764.3768
Zou Xiaowei, 2015, INT J HYBRID INFORM, V8, P509
NR 5
TC 1
Z9 1
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-5090-6061-0
PY 2017
BP 73
EP 76
DI 10.1109/ICITBS.2016.124
PG 4
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BJ7EQ
UT WOS:000427175000018
DA 2024-09-05
ER
PT C
AU Magalhaes, GV
Vieira, JPA
Santos, RLD
Barbosa, JLN
Neto, PDD
Moura, RS
AF Magalhaes Junior, Gilvan Veras
Albuquerque Vieira, Joao Paulo
de Sales Santos, Roney Lira
Nascimento Barbosa, Jardeson Leandro
dos Santos Neto, Pedro de Alcantara
Moura, Raimundo Santos
GP IEEE
TI A Study of the Influence of Textual Features in Learning Medical Prior
Authorization
SO 2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS
(CBMS)
SE IEEE International Symposium on Computer-Based Medical Systems
LA English
DT Proceedings Paper
CT 32nd IEEE International Symposium on Computer-Based Medical Systems
(IEEE CBMS)
CY JUN 05-07, 2019
CL Inst Maimonides Investigac Biomedica Cordoba, Cordoba, SPAIN
HO Inst Maimonides Investigac Biomedica Cordoba
DE Text Mining; Natural Language Processing; Machine Learning; Medical
Prior Authorization; Health Insurance; Health Plan
AB In Brazil, a current health problem is the low capacity of meeting an increasing demand for medical services. As a result, some people have resorted to supplementary health care, which involves the operation of private health plans and health insurance. However, many health maintenance organizations (HMO) face financial difficulties due to unnecessary procedures, fraud or abuses in the use of health services. In order to avoid unnecessary expenses, the HMO began to use a mechanism called prior authorization, where a prior analysis of each user's need is made to authorize or deny the required requests. This work aims to study the influence of the use of textual features in automatic prior authorization evaluation, by using Text Mining, Natural Language Processing and Machine Learning techniques. Experiments were performed using several machine learning algorithms combined with textual features, increasing the performance of the automatic prior authorization. Results indicate not only the textual features influence to the evaluation of the automatic prior authorization process but also improved the prediction of the classifiers.
C1 [Magalhaes Junior, Gilvan Veras; Nascimento Barbosa, Jardeson Leandro; dos Santos Neto, Pedro de Alcantara] Infoway eHlth Co, Teresina, Brazil.
[Magalhaes Junior, Gilvan Veras; Albuquerque Vieira, Joao Paulo; Nascimento Barbosa, Jardeson Leandro; dos Santos Neto, Pedro de Alcantara] Univ Fed Piaui, Teresina, Brazil.
[de Sales Santos, Roney Lira] Univ Sao Paulo, Sao Carlos, SP, Brazil.
[Moura, Raimundo Santos] Univ Fed Piaui, Dept Comp, Teresina, Brazil.
C3 Universidade Federal do Piaui; Universidade de Sao Paulo; Universidade
Federal do Piaui
RP Magalhaes, GV (corresponding author), Infoway eHlth Co, Teresina, Brazil.; Magalhaes, GV (corresponding author), Univ Fed Piaui, Teresina, Brazil.
EM gilvanvmj@gmail.com; joaopauloalbu@gmail.com; roneysantos@usp.br;
jardeson@infoway-pi.com.br; pasn@ufpi.edu.br; rsm@ufpi.edu.br
RI Neto, Pedro Santos/JXY-0805-2024; Veras, Gilvan/HLW-3131-2023
FU CNPq
FX [5th] Researcher scholarship - DT Level 2, sponsored by CNPq
CR Aljumah A. A., 2013, J KING SAUD U COMPUT, V25
Ambert KH, 2009, J AM MED INFORM ASSN, V16, P590, DOI 10.1197/jamia.M3095
[Anonymous], 2008, P 14 ACM SIGKDD INT
Bertaglia T. F. C., 2016, P 2 WORKSH NOIS US G
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Cassimiro J. C., 2017, 2017 INT JOINT C NEU
Chang J., 2009, P 22 INT C NEUR INF
COE J., 2012, INT J APPL ENG RES, V7
Cohen AM, 2006, J AM MED INFORM ASSN, V13, P206, DOI 10.1197/jamia.M1929
de Araujo F. H. D., 2015, IEEE LATIN AM T, V13
de Araujo F. H. Duarte, 2014, DESCOBERTA CONHECIME
Feldman R., 2006, TEXT MINING HDB
Fuchs N. E., 2010, CONTR NAT LANG WORKS, V5972
GEMAN S, 1984, IEEE T PATTERN ANAL, V6, P721, DOI 10.1109/TPAMI.1984.4767596
Graham B, 2018, IEEE ACCESS, V6, P10458, DOI 10.1109/ACCESS.2018.2808843
Griffiths T. L., 2004, P NATL ACAD SCI S1, V101
Hastie T., 2009, Springer series in statistics
Hong WS, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201016
Huang Y, 2005, J AM MED INFORM ASSN, V12, P275, DOI 10.1197/jamia.M1695
Karystianis G, 2014, J BIOMED SEMANT, V5, DOI 10.1186/2041-1480-5-22
Kose I, 2015, APPL SOFT COMPUT, V36, P283, DOI 10.1016/j.asoc.2015.07.018
Lu X., 2006, J AM MED INFORM ASS, V13
Lucini FR, 2017, INT J MED INFORM, V100, P1, DOI 10.1016/j.ijmedinf.2017.01.001
Masetic Z., 2016, COMPUTER METHODS PRO, V130
Mitchell Thomas M., 1997, Machine learning. McGraw Hill series in computer science, V1
Morid M. A., 2016, J BIOMEDICAL INFORM, V60
Peck J. S., 2012, ACAD EMERGENCY MED, V19
Perez J., 2018, COMPUTER METHODS PRO, V164
Rajaraman Anand, 2011, Data Mining
Spasic I, 2014, INT J MED INFORM, V83, P605, DOI 10.1016/j.ijmedinf.2014.06.009
Sun Y., 2011, ACAD EMERGENCY MED, V18
Wellner B, 2007, J AM MED INFORM ASSN, V14, P564, DOI 10.1197/jamia.M2435
Yang H, 2009, J AM MED INFORM ASSN, V16, P596, DOI 10.1197/jamia.M3096
NR 33
TC 1
Z9 2
U1 1
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2372-9198
BN 978-1-7281-2286-1
J9 COMP MED SY
PY 2019
BP 56
EP 61
DI 10.1109/CBMS.2019.00021
PG 6
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Engineering, Biomedical
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BO1SY
UT WOS:000502356600012
DA 2024-09-05
ER
PT J
AU Nica, I
Delcea, C
Chirita, N
AF Nica, Ionut
Delcea, Camelia
Chirita, Nora
TI Mathematical Patterns in Fuzzy Logic and Artificial Intelligence for
Financial Analysis: A Bibliometric Study
SO MATHEMATICS
LA English
DT Article
DE fuzzy logic; financial management; artificial intelligence; bibliometric
analysis
ID SYSTEMS; SETS
AB In this study, we explored the dynamic field of fuzzy logic and artificial intelligence (AI) in financial analysis from 1990 to 2023. Utilizing the bibliometrix package in RStudio and data from the Web of Science, we focused on identifying mathematical models and the evolving role of fuzzy information granulation in this domain. The research addresses the urgent need to understand the development and impact of fuzzy logic and AI within the broader scope of evolving technological and analytical methodologies, particularly concentrating on their application in financial and banking contexts. The bibliometric analysis involved an extensive review of the literature published during this period. We examined key metrics such as the annual growth rate, international collaboration, and average citations per document, which highlighted the field's expansion and collaborative nature. The results revealed a significant annual growth rate of 19.54%, international collaboration of 21.16%, and an average citation per document of 25.52. Major journals such as IEEE Transactions on Fuzzy Systems, Fuzzy Sets and Systems, the Journal of Intelligent & Fuzzy Systems, and Information Sciences emerged as significant contributors, aligning with Bradford's Law's Zone 1. Notably, post-2020, IEEE Transactions on Fuzzy Systems showed a substantial increase in publications. A significant finding was the high citation rate of seminal research on fuzzy information granulation, emphasizing its mathematical importance and practical relevance in financial analysis. Keywords like "design", "model", "algorithm", "optimization", "stabilization", and terms such as "fuzzy logic controller", "adaptive fuzzy controller", and "fuzzy logic approach" were prevalent. The Countries' Collaboration World Map indicated a strong pattern of global interconnections, suggesting a robust framework of international collaboration. Our study highlights the escalating influence of fuzzy logic and AI in financial analysis, marked by a growth in research outputs and global collaborations. It underscores the crucial role of fuzzy information granulation as a mathematical model and sets the stage for further investigation into how fuzzy logic and AI-driven models are transforming financial and banking analysis practices worldwide.
C1 [Nica, Ionut; Delcea, Camelia; Chirita, Nora] Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 0105552, Romania.
C3 Bucharest University of Economic Studies
RP Delcea, C (corresponding author), Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 0105552, Romania.
EM ionut.nica@csie.ase.ro; camelia.delcea@csie.ase.ro;
nora.chirita@csie.ase.ro
RI Nica, Ionut/ABA-4243-2021; Delcea, Camelia/C-4343-2011
OI Nica, Ionut/0000-0003-2118-3654; Delcea, Camelia/0000-0003-3589-1969;
Chirita, Nora/0009-0005-6633-9466
CR Abbas AF, 2022, COGENT BUS MANAG, V9, DOI 10.1080/23311975.2021.2016556
Ahmed IE, 2023, ARTIF INTELL REV, V56, P13873, DOI 10.1007/s10462-023-10473-9
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Bakir M, 2022, J AIR TRANSP MANAG, V104, DOI 10.1016/j.jairtraman.2022.102273
Bar-Ilan J., 2018, Front Res Metr Anal, V3, P6, DOI DOI 10.3389/FRMA.2018.00006
Blanco-Mesa F., 2016, P 2016 ANN C N AM FU, P1
Çaglayan N, 2024, DISCRETE DYN NAT SOC, V2024, DOI 10.1155/2024/7305880
Castelló-Sirvent F, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10081322
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Costea A, 2014, PROC ECON FINANC, V10, P4, DOI 10.1016/S2212-5671(14)00271-8
Delcea C, 2023, KYBERNETES, DOI 10.1108/K-08-2023-1416
DESILVA CW, 1995, FUZZY SET SYST, V70, P223, DOI 10.1016/0165-0114(94)00219-W
Díaz Córdova Jaime Fabián, 2017, Contad. Adm, V62, P1670, DOI 10.1016/j.cya.2017.09.001
Domenteanu A, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app132312693
Dubois D, 2003, ARTIF INTELL-AMST, V148, P1, DOI 10.1016/S0004-3702(03)00118-8
European Central Bank, Digital Financial Inclusion
GOGUEN JA, 1969, SYNTHESE, V19, P325, DOI 10.1007/BF00485654
Ionescu S, 2024, ALGORITHMS, V17, DOI 10.3390/a17010021
ISI Web of Science, KeyWords Plus Generation, Creation, and Changes
Kablan Abdalla, 2010, 2010 International Conference on Financial Theory and Engineering (ICFTE), P57, DOI 10.1109/ICFTE.2010.5499424
Karnik NN, 1999, IEEE T FUZZY SYST, V7, P643, DOI 10.1109/91.811231
Keshavarz-Fathi M, 2023, J ACAD LIBR, V49, DOI 10.1016/j.acalib.2023.102714
Klir G.J., 2003, Encyclopedia of Information Systems, P511
Ko H, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11010141
Lasfeto DB, 2023, J EDUC COMPUT RES, V60, P2081, DOI 10.1177/07356331221094249
Liang QL, 2000, IEEE T FUZZY SYST, V8, P535, DOI 10.1109/91.873577
Liu F, 2023, SCIENTOMETRICS, V128, P853, DOI 10.1007/s11192-022-04540-1
Liu WS, 2019, SCIENTOMETRICS, V121, P1815, DOI 10.1007/s11192-019-03238-1
Mendel JM, 2006, IEEE T FUZZY SYST, V14, P808, DOI 10.1109/TFUZZ.2006.879986
Mendel JM, 2002, IEEE T FUZZY SYST, V10, P117, DOI 10.1109/91.995115
Mhlanga D, 2020, INT J FINANC STUD, V8, DOI 10.3390/ijfs8030045
Modak NM, 2019, TRANSPORT RES A-POL, V120, P188, DOI 10.1016/j.tra.2018.11.015
Nguyen AT, 2019, IEEE COMPUT INTELL M, V14, P56, DOI 10.1109/MCI.2018.2881644
Ordoobadi SM, 2008, IND MANAGE DATA SYST, V108, P928, DOI 10.1108/02635570810898008
Palomero L, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12146894
Peng XD, 2020, TECHNOL ECON DEV ECO, V26, P695, DOI 10.3846/tede.2020.11920
Pradhan SK, 2009, APPL SOFT COMPUT, V9, P290, DOI 10.1016/j.asoc.2008.04.008
Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012
Rosario A.T., 2023, Businesses, V3, P402, DOI [10.3390/businesses3030025, DOI 10.3390/BUSINESSES3030025]
Sandu A, 2023, INFORMATION, V14, DOI 10.3390/info14120659
Seoni S, 2023, COMPUT BIOL MED, V165, DOI 10.1016/j.compbiomed.2023.107441
Shukla AK, 2020, ENG APPL ARTIF INTEL, V92, DOI 10.1016/j.engappai.2020.103625
Srivastava RK, 2022, MATER TODAY-PROC, V51, P1878, DOI 10.1016/j.matpr.2021.10.097
Szmidt E, 2000, FUZZY SET SYST, V114, P505, DOI 10.1016/S0165-0114(98)00244-9
Takahashi A, 2021, ENG APPL ARTIF INTEL, V100, DOI 10.1016/j.engappai.2021.104154
TANAKA K, 1992, FUZZY SET SYST, V45, P135, DOI 10.1016/0165-0114(92)90113-I
Tiwari R., 2020, Procedia Comput. Sci, V173, P149, DOI [DOI 10.1016/J.PROCS.2020.06.019, 10.1016/j.procs.2020.06.019]
Tuan HD, 2001, IEEE T FUZZY SYST, V9, P324, DOI 10.1109/91.919253
Unvan YA, 2020, GAZI U J SCI, V33, P904, DOI 10.35378/gujs.730294
Visser M, 2021, QUANT SCI STUD, V2, P20, DOI [10.1162/qss_a_00112, 10.1162/qes_a_00112]
Wang H., 2023, Math. Probl. Eng, V2023, P5926162, DOI [10.1155/2023/5926162, DOI 10.1155/2023/5926162]
webofscience.clarivate, WoS Web of Science
webofscience.help.clarivate, WoS Document Types
Yager RR, 2017, IEEE T FUZZY SYST, V25, P1222, DOI 10.1109/TFUZZ.2016.2604005
Yang N, 2022, WIREL COMMUN MOB COM, V2022, DOI 10.1155/2022/7596094
Zadeh LA, 1997, FUZZY SET SYST, V90, P111, DOI 10.1016/S0165-0114(97)00077-8
Zadmirzaei M, 2024, SOFT COMPUT, V28, P565, DOI 10.1007/s00500-023-08300-y
Zhang YP, 2023, INFORM FUSION, V92, P350, DOI 10.1016/j.inffus.2022.12.014
Zimmermann HJ, 2010, WIRES COMPUT STAT, V2, P317, DOI 10.1002/wics.82
Zimmermann HJ., 1996, Fuzzy set theory - and its applications, DOI DOI 10.1007/978-94-015-8702-0
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 63
TC 1
Z9 1
U1 8
U2 8
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-7390
J9 MATHEMATICS-BASEL
JI Mathematics
PD MAR
PY 2024
VL 12
IS 5
AR 782
DI 10.3390/math12050782
PG 35
WC Mathematics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematics
GA KO0E1
UT WOS:001180780800001
OA gold
DA 2024-09-05
ER
PT J
AU Dai, T
Yan, WJ
Zhang, KQ
Qiu, C
Zhao, XM
Pan, SR
AF Dai, Tao
Yan, Wenjun
Zhang, Kaiqi
Qiu, Chen
Zhao, Xiangmo
Pan, Shirui
TI Gated relational stacked denoising autoencoder with localized author
embedding for global citation recommendation
SO EXPERT SYSTEMS WITH APPLICATIONS
LA English
DT Article
DE Global citation recommendation; Stacked denoising autoencoder; Topic
model; Machine learning; Deep learning
AB Citation recommendation is an effective and efficient way to facilitate authors finding desired references. This paper presents a novel neural network based model, called gated relational probabilistic stacked denoising autoencoder with localized author (GRSLA) embedding, for global citation recommendation task. Our model is comprised of two modules with different neural network architecture. For each citing and cited papers, we use a gated paper embedding module, which is extended from probabilistic stacked denoising autoencoder (PSDAE) by adding gated units, to obtain their paper vectors. The added gated units are able to utilize text information of cited paper to refine the vector representation of citing paper in multiple semantic levels. For an author in papers, we first apply topic model to obtain his/her semantic neighbors, and then use a localized author embedding (LAE) module to excavate author vector representation from semantic and explicit neighbors. Unlike most graph convolutional network (GCN) based methods, the LAE module is able to avoid computing global Laplacian in whole graph by taking limited neighbors. Moreover, the LAE module can also be stacked to absorb more neighbors, which makes our model have high extendibility. Based on the generation process of GRSLA, we also derive a learning algorithm of our model by maximum a posteriori (MAP) estimation. We conduct experiments on the AAN, DBLP and CORD-19 datasets, and the results show that GRSLA model works well than previous global citation recommendation methods.
C1 [Dai, Tao; Yan, Wenjun; Zhang, Kaiqi] Changan Univ, Sch Econ & Management, Xian 710064, Shaanxi, Peoples R China.
[Zhao, Xiangmo] Changan Univ, Sch Informat Engn, Xian 710064, Shaanxi, Peoples R China.
[Qiu, Chen] Walmart Inc, Sams Club Innovat Ctr, Dallas, TX 75202 USA.
[Pan, Shirui] Monash Univ, Fac Informat Technol, Melbourne, Vic, Australia.
C3 Chang'an University; Chang'an University; Wal-Mart Stores Inc; Monash
University
RP Yan, WJ (corresponding author), Changan Univ, Sch Econ & Management, Xian 710064, Shaanxi, Peoples R China.
EM daitao@chd.edu.cn; ywj@chd.edu.cn; kaiqizhang@chd.edu.cn;
chen.qiu@ymail.com; xmzhao@chd.edu.cn; Shirui.Pan@monash.edu
RI Qiu, Chen/P-9429-2017; Pan, Shirui/K-6763-2018; Zhang, Kai/HWQ-4396-2023
OI Pan, Shirui/0000-0003-0794-527X;
FU Natural Science Foundation in Shaanxi Province of China [2019JQ-531,
2021JQ-289]; Social Science in Shaanxi Province of China [2020R007];
Major Theoretical and Practical Problems Research Project of Social
Science in Shaanxi Province of China [2020Z357]; Fundamental Research
Funds for the Central Universities, CHD [300102231302]
FX This work was partially support by the Natural Science Foundation in
Shaanxi Province of China (Project No. 2019JQ-531; No. 2021JQ-289) ,
Social Science in Shaanxi Province of China (Project No. 2020R007) , the
Major Theoretical and Practical Problems Research Project of Social
Science in Shaanxi Province of China (Project No. 2020Z357) and the
Fundamental Research Funds for the Central Universities, CHD (Project
No. 300102231302).
CR Ali Z, 2020, EXPERT SYST APPL, V162, DOI 10.1016/j.eswa.2020.113790
[Anonymous], 2016, CBRECSYS RECSYS
[Anonymous], 2008, Proceedings of the 17th international conference on World Wide Web
[Anonymous], 2005, WWW '05
[Anonymous], 2010, Proceedings of the 10th Joint Conference on Digital Libraries, DOI DOI 10.1145/1816123.1816129
Bhagavatula C., 2018, Long Papers, V1, P238, DOI DOI 10.18653/V1/N18-1022
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bollacker K. D., 1998, Proceedings of the Second International Conference on Autonomous Agents, P116, DOI 10.1145/280765.280786
Cai XY, 2019, IEEE ACCESS, V7, P457, DOI 10.1109/ACCESS.2018.2885507
Cai XY, 2018, AAAI CONF ARTIF INTE, P5747
Cai XY, 2018, IEEE T NEUR NET LEAR, V29, P6026, DOI 10.1109/TNNLS.2018.2817245
Chen X, 2019, SCIENTOMETRICS, V121, P937, DOI 10.1007/s11192-019-03225-6
Cohn D, 2001, ADV NEUR IN, V13, P430
Dai T, 2020, IEEE-ACM T AUDIO SPE, V28, P553, DOI 10.1109/TASLP.2019.2949925
Devlin J., 2018, ARXIV
Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730
Erosheva E, 2004, P NATL ACAD SCI USA, V101, P5220, DOI 10.1073/pnas.0307760101
Eto M, 2019, INFORM PROCESS MANAG, V56, DOI 10.1016/j.ipm.2019.05.007
Gori M, 2006, 2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS), P778, DOI 10.1109/WI.2006.149
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Habib R, 2019, SCIENTOMETRICS, V119, P643, DOI 10.1007/s11192-019-03053-8
Han JL, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P2384
Hassan Hebatallah A Mohamed, 2019, P ACM RECSYS 2019 LA, P6
Herbrich R, 2000, ADV NEUR IN, P115
Jardine James, 2014, P 14 C EUR CHAPT ASS, P501
Jeong C, 2020, SCIENTOMETRICS, V124, P1907, DOI 10.1007/s11192-020-03561-y
Kanakia A, 2019, WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), P2893, DOI 10.1145/3308558.3313700
Khadka A, 2020, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), P2231
Kieu B.T., 2020, ARXIV PREPRINT ARXIV
Kong XJ, 2021, IEEE T EMERG TOP COM, V9, P226, DOI 10.1109/TETC.2018.2830698
Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760
Liu XM, 2005, INFORM PROCESS MANAG, V41, P1462, DOI 10.1016/j.ipm.2005.03.012
McNee SM, 2002, P 2002 ACM C COMP SU, P116, DOI DOI 10.1145/587078.587096
Meng FQ, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1509
Nallapati R. M., 2008, P 14 ACM SIGKDD INT, P542, DOI DOI 10.1145/1401890.1401957
Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732
Purushotham Sanjay, 2012, ICML, P759
Puschmann D, 2018, IEEE SYST J, V12, P1755, DOI 10.1109/JSYST.2017.2723818
Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2
Ren X, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P821, DOI 10.1145/2623330.2623630
Robertson S. E., 1994, SIGIR '94. Proceedings of the Seventeenth Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, P232
Sharma R, 2017, LECT NOTES COMPUT SC, V10597, P687, DOI 10.1007/978-3-319-69900-4_87
Son J, 2018, DECIS SUPPORT SYST, V105, P24, DOI 10.1016/j.dss.2017.10.011
Strohman Trevor, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P705, DOI 10.1145/1277741.1277868
Sun JS, 2018, J INF SCI, V44, P696, DOI 10.1177/0165551517728449
Sunt YZ, 2011, PROC VLDB ENDOW, V4, P992
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Vincent P., 2008, ICML, P1096, DOI [DOI 10.1145/1390156.1390294, 10.1145/1390156.1390294]
Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480
Wang H, 2017, AAAI CONF ARTIF INTE, P2688
Wang H, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1235, DOI 10.1145/2783258.2783273
Wang H, 2015, AAAI CONF ARTIF INTE, P3052
Wang H, 2015, IEEE T KNOWL DATA EN, V27, P1343, DOI 10.1109/TKDE.2014.2365789
Wang Lucy Lu, 2020, arXiv
Yang CX, 2009, ACM-IEEE J CONF DIG, P203
Zhang Y, 2020, IEEE ACCESS, V8, P115865, DOI 10.1109/ACCESS.2020.3004599
NR 56
TC 9
Z9 9
U1 2
U2 26
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0957-4174
EI 1873-6793
J9 EXPERT SYST APPL
JI Expert Syst. Appl.
PD DEC 1
PY 2021
VL 184
AR 115359
DI 10.1016/j.eswa.2021.115359
EA JUN 2021
PG 18
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Operations Research & Management Science
GA WI0YM
UT WOS:000708093400002
DA 2024-09-05
ER
PT J
AU Bhanage, DA
Pawar, AV
AF Bhanage, Deepali Arun
Pawar, Ambika Vishal
TI Bibliometric survey of IT Infrastructure Management to Avoid Failure
Conditions
SO INFORMATION DISCOVERY AND DELIVERY
LA English
DT Article
DE Bibliometric analysis; Failure prediction; Deep learning; Machine
learning; Log analysis; System log
AB Purpose The purpose of this paper is to present the bibliometric study of articles IT Infrastructure Management to Avoid Failure Conditions. As in today's era of IT Industries, IT infrastructure management plays a crucial role. As a result, substantial research is going on to improve the reliability and availability of assets in IT infrastructure.
Design/methodology/approach The paper analyzes and focuses the results acquired from articles accessed from Scopus for the past 15 years by examining in terms of frequently used keywords, the amount of work done in different countries and year-wise progression of the research, prolific authors, article citation frequencies, etc. Tools such as Gephi, Word Cloud, BiblioShiny, GPS visualizer, etc. are used for bibliometric analysis.
Findings The study comes out with maximum publications of IT infrastructure management from conferences and journals. Anomaly detection, log analysis and learning system are the most frequently used keywords in the publications. Significant research has been done in the USA, followed by China under the area of Computer Science with an increase in publication since 2018.
Originality/value This paper provides an accurate idea about the amount of work done in different countries and year-wise progression of the research. This bibliometric analysis will be useful for beginners to conduct a literature survey using appropriate literature available on the Scopus database.
C1 [Bhanage, Deepali Arun; Pawar, Ambika Vishal] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune, Maharashtra, India.
C3 Symbiosis International University; Symbiosis Institute of Technology
(SIT)
RP Pawar, AV (corresponding author), Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune, Maharashtra, India.
EM deepali.bhanage.phd2019@sitpune.edu.in; ambikap@sitpune.edu.in
RI B, Deepali/AEU-3127-2022; Institute of Technology, Symbiosis Institute
of Technology Symbiosis/AAC-5693-2019
OI B, Deepali/0000-0001-6022-4565;
CR [Anonymous], 2018, P WORKSH BIG DAT AN
Aussel N, 2018, I S MOD ANAL SIM COM, P237, DOI 10.1109/MASCOTS.2018.00031
Basak J, 2016, ACM T STORAGE, V12, DOI 10.1145/2846101
Chen CW, 2012, 2012 NINTH EUROPEAN DEPENDABLE COMPUTING CONFERENCE (EDCC 2012), P94, DOI 10.1109/EDCC.2012.14
Chuah E, 2019, J PARALLEL DISTR COM, V132, P95, DOI 10.1016/j.jpdc.2019.05.013
Chuah E, 2017, INT C HIGH PERFORM, P317, DOI 10.1109/HiPC.2017.00044
Fu XY, 2014, IEEE INT C CL COMP, P103, DOI 10.1109/CLUSTER.2014.6968768
Gainaru A, 2012, INT CONF HIGH PERFOR
Huang L., 2010, CASCON 10 PROC C CTR, P313
Jain S, 2009, 16TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC), PROCEEDINGS, P254, DOI 10.1109/HIPC.2009.5433202
Otomo K, 2019, IEICE T INF SYST, VE102D, P1644, DOI 10.1587/transinf.2018OFP0007
Pecchia A, 2020, KNOWL-BASED SYST, V189, DOI 10.1016/j.knosys.2019.105054
Qiang W., 2014, IMPROVING LOG BASED, P446
Saadatfar H, 2012, NEW GENERAT COMPUT, V30, P73, DOI 10.1007/s00354-012-0105-z
Trausan-Matu S., 2011, MANAGING LARGE SCALE, P1
Wang J, 2017, IBM J RES DEV, V61, DOI 10.1147/JRD.2017.2648298
Wang MY, 2018, 2018 4TH INTERNATIONAL CONFERENCE ON FRONTIERS OF SIGNAL PROCESSING (ICFSP 2018), P140, DOI 10.1109/ICFSP.2018.8552075
Zhang X, 2019, ESEC/FSE'2019: PROCEEDINGS OF THE 2019 27TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, P807, DOI 10.1145/3338906.3338931
Ziming Zheng, 2010, 2010 International Conference on Dependable Systems and Networks Workshops (DSN-W), P15, DOI 10.1109/DSNW.2010.5542627
Zou DQ, 2016, J COMPUT SCI TECH-CH, V31, P1038, DOI 10.1007/s11390-016-1678-7
NR 20
TC 8
Z9 8
U1 0
U2 21
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 2398-6247
J9 INF DISCOV DELIV
JI Inf. Discov. Deliv.
PY 2021
VL 49
IS 1
BP 45
EP 56
DI 10.1108/IDD-06-2020-0060]
PG 12
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA RF9OI
UT WOS:000635166800005
DA 2024-09-05
ER
PT C
AU Zelenkov, Y
AF Zelenkov, Yuri
BE Uden, L
Ting, IH
Corchado, JM
TI The Topics Dynamics in Knowledge Management Research
SO KNOWLEDGE MANAGEMENT IN ORGANIZATIONS, KMO 2019
SE Communications in Computer and Information Science
LA English
DT Proceedings Paper
CT 14th International Conference on Knowledge Management in Organizations
(KMO) - Synergistic Role of Knowledge Management in Organization
CY JUL 15-18, 2019
CL Univ Salamanca, Zamora, SPAIN
HO Univ Salamanca
DE Knowledge management; Bibliometrics; Topic modeling; LDA
ID TRENDS; PERFORMANCE; THEMES
AB The intellectual structure of an academic discipline can be viewed as a set of interacting topics evolving over time. Dynamics of those topics i.e. changes in their popularity and impact is the subject of special attention because it reflects a shift in actual researchers' interest. This paper analyzes topics of knowledge management (KM) on the base of the topic modeling technique (namely Latent Dirichlet Allocation). Studying the flow of academic publications in 7 leading journals in 2010-2018, we identified 8 topics that concern different aspects of knowledge management science. Three topics, what focus on the social aspects of knowledge management (namely the context supporting knowledge transfer, the employees' incentives to share knowledge, and innovation), grow in terms of popularity and impact. Opposite, popularity and impact of topics, which focus on the practice of the knowledge management and organizational learning also as on the impact of intellectual capital on performance, decline. It is consistent with the opinion of other researchers that in the contemporary flow of scientific publication role of KM is identified more as a social process than a management engineering method.
C1 [Zelenkov, Yuri] Natl Res Univ Higher Sch Econ, Moscow, Russia.
C3 HSE University (National Research University Higher School of Economics)
RP Zelenkov, Y (corresponding author), Natl Res Univ Higher Sch Econ, Moscow, Russia.
EM yuri.zelenkov@gmail.com
RI Zelenkov, Yuri/S-1331-2016
OI Zelenkov, Yuri/0000-0002-2248-1023
CR Akhavan P, 2016, SCIENTOMETRICS, V107, P1249, DOI 10.1007/s11192-016-1938-x
[Anonymous], 2015, ARXIV151005154
Argote L, 2011, ORGAN SCI, V22, P1123, DOI 10.1287/orsc.1100.0621
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Cauwelier P, 2016, LEARN ORGAN, V23, P458, DOI 10.1108/TLO-05-2016-0029
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Dam HK, 2016, LECT NOTES ARTIF INT, V9862, P216, DOI 10.1007/978-3-319-44832-9_13
Dwivedi YK, 2011, INFORM SYST MANAGE, V28, P43, DOI 10.1080/10580530.2011.536112
Gaviria-Marin M, 2019, TECHNOL FORECAST SOC, V140, P194, DOI 10.1016/j.techfore.2018.07.006
Heisig P, 2016, J KNOWL MANAG, V20, P1169, DOI 10.1108/JKM-12-2015-0521
Inkinen H, 2015, J INTELLECT CAP, V16, P518, DOI 10.1108/JIC-01-2015-0002
Kamukama N, 2011, J INTELLECT CAP, V12, P152, DOI 10.1108/14691931111097953
Lambe P, 2011, J KNOWL MANAG, V15, P175, DOI 10.1108/13673271111119646
Lee MR, 2012, KNOWL-BASED SYST, V28, P47, DOI 10.1016/j.knosys.2011.11.016
Mann GS, 2006, OPENING INFORMATION HORIZONS, P65
Massaro M, 2015, J KNOWL MANAG, V19, P530, DOI 10.1108/JKM-11-2014-0466
McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861]
Minonne C, 2012, KNOWL PROCESS MANAG, V19, P111, DOI 10.1002/kpm.1388
Nobre FS, 2011, INT J KNOWL MANAG, V7, P86, DOI 10.4018/jkm.2011040105
Rutten W, 2016, J KNOWL MANAG, V20, P199, DOI 10.1108/JKM-10-2015-0391
Serenko A, 2017, J KNOWL MANAG, V21, P675, DOI 10.1108/JKM-11-2016-0490
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Syed S, 2017, PR INT CONF DATA SC, P165, DOI 10.1109/DSAA.2017.61
Tzortzaki AM, 2014, KNOWL PROCESS MANAG, V21, P29, DOI 10.1002/kpm.1429
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang CF, 2011, J KNOWL MANAG, V15, P802, DOI 10.1108/13673271111174339
Wang P, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030682
Zéghal D, 2010, J INTELLECT CAP, V11, P39, DOI 10.1108/14691931011013325
NR 30
TC 2
Z9 2
U1 2
U2 6
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 1865-0929
EI 1865-0937
BN 978-3-030-21451-7; 978-3-030-21450-0
J9 COMM COM INF SC
PY 2019
VL 1027
BP 324
EP 335
DI 10.1007/978-3-030-21451-7_28
PG 12
WC Computer Science, Theory & Methods; Operations Research & Management
Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Operations Research & Management Science
GA BP5RT
UT WOS:000558101000028
DA 2024-09-05
ER
PT J
AU Jung, S
Yoon, WC
AF Jung, Sukhwan
Yoon, Wan Chul
TI An alternative topic model based on Common Interest Authors for topic
evolution analysis
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Topic modeling; Bibliographic network; Topic evolution; Scientometric
ID MULTILAYER GRAPHS; COMMUNITY DETECTION; SCIENCE; TRENDS
AB y Topic modeling methods aim to extract semantic topics from unstructured documents, and topic evolution is one of its branches seeking to analyze how temporal topics in a set of documents evolve and has shown successful identification of content transitions within static topics over time; yet, the inherent limitations of topic modeling methods inhibit traditional topic evolution methods from highlighting topical correlations between different, dynamic topics. The authors propose an alternative topic modeling method conscious of the topical correlation in the academic domain by introducing the notion of the common interest authors (CIA(1)), defining a topic as a set of shared common research interests of a researcher group. Publication records related to the Human Computer Interaction field were extracted from the Microsoft Academic Graph dataset, with virtual reality as the target field of research. The result showed that the proposed alternative topic modeling is capable of successfully model coherent topics regardless of the topic size with only the meta-data of the document set, indicating that the alternative approach is not only capable of allowing topic correlation analysis during the topic evolution but also able to generate coherent topics at the same time. (C) 2020 Published by Elsevier Ltd.
C1 [Jung, Sukhwan] Univ S Alabama, Dept Comp Sci, 307 N Univ Blvd, Mobile, AL 36688 USA.
[Yoon, Wan Chul] Korea Adv Inst Sci & Technol, Dept Knowledge Serv Engn, 291 Daehak Ro, Daejeon 34141, South Korea.
C3 University of South Alabama; Korea Advanced Institute of Science &
Technology (KAIST)
RP Yoon, WC (corresponding author), Korea Adv Inst Sci & Technol, Dept Knowledge Serv Engn, 291 Daehak Ro, Daejeon 34141, South Korea.
EM shjung@southalabama.edu
RI Jung, Suk hwan/HIK-1039-2022; Yoon, Wan Chul/C-1982-2011
CR Amancio DR, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136076
[Anonymous], 2012, REV VALDOTAINE HIST
[Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076
[Anonymous], 1998, P DARPA BROADC NEWS
[Anonymous], 2011, Proceedings of the 17th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining
Ausloos M., 2012, ARXIV12071614PHYSICS
Batagelj V, 2013, SCIENTOMETRICS, V96, P845, DOI 10.1007/s11192-012-0940-1
Blei D, 2006, P 23 INT C MACH LEAR, P113
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bongers A, 2014, TECHNOL FORECAST SOC, V87, P125, DOI 10.1016/j.techfore.2013.12.007
Borner K, 2005, COMPLEXITY, V10, P57, DOI 10.1002/cplx.20078
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Cancho RFI, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.051915
Castano S, 2017, FUTURE GENER COMP SY, V68, P391, DOI 10.1016/j.future.2016.07.005
Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003
Chen C., 2019, AAAI, V33, P3371
de Arruda HF, 2016, CHAOS, V26, DOI 10.1063/1.4954215
Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008
Dong XW, 2014, IEEE T SIGNAL PROCES, V62, P905, DOI 10.1109/TSP.2013.2295553
Dong XW, 2012, IEEE T SIGNAL PROCES, V60, P5820, DOI 10.1109/TSP.2012.2212886
Fiscus JG, 2002, KLUW S INF, V12, P17
Gaul WG, 2017, ADV DATA ANAL CLASSI, V11, P159, DOI 10.1007/s11634-016-0241-2
Guo Z, 2014, IEEE T KNOWL DATA EN, V26, P780, DOI 10.1109/TKDE.2013.56
Hoffman Matthew, 2010, ADV NEURAL INFORM PR, P856
Hopcroft J, 2004, P NATL ACAD SCI USA, V101, P5249, DOI 10.1073/pnas.0307750100
Huan J, 2003, THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P549
Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8
Jo Yookyung., 2011, P 20 INT C WORLD WID, P257, DOI DOI 10.1145/1963405.1963444
Kay L, 2014, J ASSOC INF SCI TECH, V65, P2432, DOI 10.1002/asi.23146
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Kim J, 2015, SIGMOD REC, V44, P37, DOI 10.1145/2854006.2854013
Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314
Levy O., NEURAL WORD EMBEDDIN, P9
Li MN, 2017, J INF SCI, V43, P725, DOI 10.1177/0165551516661914
Liu YB, 2008, J COMPUT SCI TECH-CH, V23, P112, DOI 10.1007/s11390-008-9115-1
Louppe G, 2016, COMM COM INF SC, V649, P272, DOI 10.1007/978-3-319-45880-9_21
Martin S, 2011, PROC SPIE, V7868, DOI 10.1117/12.871402
Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895
Menenberg M, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P3509, DOI 10.1109/BigData.2016.7841014
Mikolov T., 2013, ARXIV
Mikolov T., DISTRIBUTED REPRESEN, P9
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Mucha PJ, 2010, SCIENCE, V328, P876, DOI 10.1126/science.1184819
Newman D., 2010, P HUM LANG TECHN ANN, P100
Newman NC, 2014, J ENG TECHNOL MANAGE, V32, P97, DOI 10.1016/j.jengtecman.2013.09.001
Paul S, 2016, ELECTRON J STAT, V10, P3807, DOI 10.1214/16-EJS1211
PORTER AL, 1995, TECHNOL FORECAST SOC, V49, P237, DOI 10.1016/0040-1625(95)00022-3
Resnik P, 1999, J ARTIF INTELL RES, V11, P95, DOI 10.1613/jair.514
Rocklin M, 2013, INTERNET MATH, V9, P82, DOI 10.1080/15427951.2012.678191
Rosen-Zvi Michal., 2004, UAI
Schramm T., 2017, C LEARNING THEORY
Segev Aviv, 2009, International Journal of Information Systems for Crisis Response and Management, V1, P16, DOI 10.4018/jiscrm.2009040102
Segev A, 2015, IEEE T SERV COMPUT, V8, P903, DOI 10.1109/TSC.2014.2338855
Shiga M, 2012, IEEE T KNOWL DATA EN, V24, P577, DOI 10.1109/TKDE.2010.272
Sidiropoulos ND, 2017, IEEE T SIGNAL PROCES, V65, P3551, DOI 10.1109/TSP.2017.2690524
Silva FN, 2016, J INFORMETR, V10, P487, DOI 10.1016/j.joi.2016.03.008
Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424, DOI [DOI 10.4324/9780203936399.CH21, 10.4324/9780203936399.ch21, DOI 10.1371/JOURNAL.PONE.0073791]
Strotmann A, 2012, J AM SOC INF SCI TEC, V63, P1820, DOI 10.1002/asi.22695
Tang W, 2009, IEEE DATA MINING, P1016, DOI 10.1109/ICDM.2009.125
Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304
Wang W, 2017, COMM COM INF SC, V768, P18, DOI 10.1007/978-981-10-6893-5_2
Wang Xuerui., P 12 ACM SIGKDD INT, P424
White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W
Yan EJ, 2012, J AM SOC INF SCI TEC, V63, P1313, DOI 10.1002/asi.22680
Zhang ZY, 2013, KNOWL INF SYST, V34, P243, DOI 10.1007/s10115-011-0460-y
Zhong S, 2005, NEURAL NETWORKS, V18, P790, DOI 10.1016/j.neunet.2005.06.008
NR 66
TC 27
Z9 31
U1 2
U2 98
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD AUG
PY 2020
VL 14
IS 3
AR 101040
DI 10.1016/j.joi.2020.101040
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA NN5JF
UT WOS:000568824100005
DA 2024-09-05
ER
PT C
AU Knop, S
Merchel, R
Poeppelbuss, J
AF Knop, Sebastian
Merchel, Robin
Poeppelbuss, Jens
BE Huang, GQ
Qu, T
Thurer, M
Xu, S
Khalgui, M
TI Author Collaboration in Ten Years of IPS2: A Bibliometric
Analysis
SO 11TH CIRP CONFERENCE ON INDUSTRIAL PRODUCT-SERVICE SYSTEMS
SE Procedia CIRP
LA English
DT Proceedings Paper
CT 11th CIRP Conference on Industrial Product-Service Systems
CY MAY 29-31, 2019
CL PEOPLES R CHINA
DE Author Collaboration; Industrial Product-Service Systems; Bibliometric
Analysis; Machine Learning; Random Forests
ID WEIGHTED KAPPA; SERVITIZATION
AB This paper investigates author collaboration at the Conference on Industrial Product-Service Systems (IPS2). Previous work showed that there is only a loose collaboration between authors from different countries in the field of Product-Service System research. This study aims to extend and refine these findings by also taking the authors' disciplines and affiliations into account. We analyze 694 articles written by a total of 1,131 authors using both bibliometric analysis and a machine learning technique. We identify collaboration patterns that illustrate how researcher communities collaborate within their country, either on countrywide or regional level. Furthermore, the authors' disciplines also influence their tendency to collaborate with authors from other disciplines. We conclude that a shared cultural background, language, and discipline promote the collaboration of authors from the IPS2 community. (C) 2019 The Authors. Published by Elsevier B.V.
C1 [Knop, Sebastian; Merchel, Robin; Poeppelbuss, Jens] Ruhr Univ Bochum, Ind Sales & Serv Engn, Univ Str 150, D-44801 Bochum, Germany.
C3 Ruhr University Bochum
RP Knop, S (corresponding author), Ruhr Univ Bochum, Ind Sales & Serv Engn, Univ Str 150, D-44801 Bochum, Germany.
EM sebastian.knop@isse.rub.de
OI Poeppelbuss, Jens/0000-0003-4960-7818; Knop,
Sebastian/0000-0002-9187-9254
CR [Anonymous], 2001, P 7 INT C CONCURRENT
Galvao GDA, 2018, PROC CIRP, V73, P79, DOI 10.1016/j.procir.2018.04.011
Beuren FH, 2013, J CLEAN PROD, V47, P222, DOI 10.1016/j.jclepro.2012.12.028
Beverungen D, 2017, WIRTSCH 2017 P
Bhattacharyya S, 2011, DECIS SUPPORT SYST, V50, P602, DOI 10.1016/j.dss.2010.08.008
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Boulesteix AL, 2012, WIRES DATA MIN KNOWL, V2, P493, DOI 10.1002/widm.1072
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Cagliero L, 2018, SCIENTOMETRICS, V116, P1273, DOI 10.1007/s11192-018-2737-3
Chipidza W., 2016, INT C INF SYST ICIS
COHEN J, 1968, PSYCHOL BULL, V70, P213, DOI 10.1037/h0026256
Doja A, 2014, BMC MED EDUC, V14, DOI 10.1186/s12909-014-0243-8
FLEISS JL, 1973, EDUC PSYCHOL MEAS, V33, P613, DOI 10.1177/001316447303300309
Franceschet M, 2010, J INFORMETR, V4, P540, DOI 10.1016/j.joi.2010.06.003
Goedkoop MJ, ECOLOGICAL EC BASICS
Jagadishwari V., 2017, P 2017 IEEE 2 INT C, P1
Knop S, 2017, INT C INF SYST ICIS
Kuhn M, 2008, J STAT SOFTW, V28, P1, DOI 10.18637/jss.v028.i05
Labatut V., 2011, Journal of Convergence Information Technology, DOI 10.4156/jcit.vol6.issue11.32
Liang LM, 2002, SCIENTOMETRICS, V54, P473, DOI 10.1023/A:1016042718548
Loh WY, 2011, WIRES DATA MIN KNOWL, V1, P14, DOI 10.1002/widm.8
Martín-Peña ML, 2017, J ENG TECHNOL MANAGE, V43, P83, DOI 10.1016/j.jengtecman.2017.01.005
Meier H, 2010, CIRP ANN-MANUF TECHN, V59, P607, DOI 10.1016/j.cirp.2010.05.004
Mendes GHS, 2015, PRODUCT SERVICE SYST, V7, P291
Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695
Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103
Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113
Oliveira MG, 2015, PROC CIRP, V30, P114, DOI 10.1016/j.procir.2015.02.139
Pilkington A, 2017, IN C IND ENG ENG MAN, P1154, DOI 10.1109/IEEM.2017.8290073
Rabetino R, 2018, INT J OPER PROD MAN, V38, P350, DOI 10.1108/IJOPM-03-2017-0175
Speybroeck N, 2012, INT J PUBLIC HEALTH, V57, P243, DOI 10.1007/s00038-011-0315-z
Tuli KR, 2007, J MARKETING, V71, P1, DOI 10.1509/jmkg.71.3.1
Vandermerwe S., 1988, EUROPEAN MANAGEMENT, V6, P314, DOI [10.1016/0263-2373(88)90033-3, DOI 10.1016/0263-2373(88)90033-3]
NR 33
TC 0
Z9 0
U1 1
U2 4
PU ELSEVIER
PI AMSTERDAM
PA Radarweg 29, PO Box 211, AMSTERDAM, NETHERLANDS
SN 2212-8271
J9 PROC CIRP
PY 2019
VL 83
BP 22
EP 27
DI 10.1016/j.procir.2019.03.092
PG 6
WC Engineering, Industrial
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering
GA BP8WE
UT WOS:000568146700004
OA gold
DA 2024-09-05
ER
PT J
AU Li, JZ
Liu, ZX
Zhou, JH
AF Li, Jizhen
Liu, Zixu
Zhou, Jianghua
TI How to become the chosen one in the artificial intelligence market: the
evidence from China
SO INTERNATIONAL JOURNAL OF TECHNOLOGY MANAGEMENT
LA English
DT Article
DE artificial intelligence market; small and medium-sized enterprises;
SMEs; innovation performance; social investment; institutional
intermediaries; public funding; Innofund; signalling effects; China
ID RESEARCH-AND-DEVELOPMENT; DEVELOPMENT SUBSIDIES; ENTREPRENEURIAL FIRMS;
PUBLIC SUPPORT; POLITICAL TIES; INNOVATION; PERFORMANCE; INVESTMENT;
STRATEGIES; LEGITIMACY
AB This study aims to explore how firms' innovation performance is related to their possibility of receiving public support, and the boundary conditions of this relationship. Specifically, we focus on the firms in the Chinese artificial intelligence (AI) market, and study a specific public support, namely, Innofund. The results suggest that a firm's innovation performance has an inverted U-shaped effect on its probability of receiving Innofund. The effect, moreover, is moderated by whether a firm has received social investment, that is, the relationship between innovation performance and the probability of receiving funding is flattened by the receipt of social investment. Besides, a firm's ties to institutional intermediaries further strengthen the moderating effect of social investment. The findings carry implications for future research and technology policy.
C1 [Li, Jizhen; Liu, Zixu] Tsinghua Univ, Res Ctr Competit Dynam & Innovat Strategy, Sch Econ & Management, Beijing 100084, Peoples R China.
[Zhou, Jianghua] Beijing Normal Univ, Business Sch, Beijing 100875, Peoples R China.
C3 Tsinghua University; Beijing Normal University
RP Zhou, JH (corresponding author), Beijing Normal Univ, Business Sch, Beijing 100875, Peoples R China.
EM lijzh@sem.tsinghua.edu.cn; liuzx.18@sem.tsinghua.edu.cn;
zhoujh@bnu.edu.cn
RI zhou, jiang/KZQ-3297-2024; LI, Jizhen/A-7113-2018
OI LI, Jizhen/0000-0003-1940-5633
FU National Natural Science Foundation of China [71772103, 71772014]; MOE
Project of Key Research Institute of Humanities and Social Sciences at
Universities [16JJD630005]
FX This paper is supported by National Natural Science Foundation of China
(Project Nos. 71772103; 71772014) and MOE Project of Key Research
Institute of Humanities and Social Sciences at Universities
(16JJD630005).
CR Acs ZJ, 2002, RES POLICY, V31, P1069, DOI 10.1016/S0048-7333(01)00184-6
Ahlstrom D, 2008, J WORLD BUS, V43, P385, DOI 10.1016/j.jwb.2008.03.001
Almus M, 2003, J BUS ECON STAT, V21, P226, DOI 10.1198/073500103288618918
Armanios DE, 2017, STRATEGIC MANAGE J, V38, P1373, DOI 10.1002/smj.2575
Arnoldi J, 2015, MANAGE ORGAN REV, V11, P217, DOI 10.1017/mor.2015.14
Becker B, 2015, J ECON SURV, V29, P917, DOI 10.1111/joes.12074
Bronzini R, 2016, RES POLICY, V45, P442, DOI 10.1016/j.respol.2015.10.008
Chapman G, 2018, TECHNOVATION, V69, P28, DOI 10.1016/j.technovation.2017.10.004
Chen J, 2018, RES POLICY, V47, P108, DOI 10.1016/j.respol.2017.10.004
Clausen Tommy H., 2009, Structural Change and Economic Dynamics, V20, P239, DOI 10.1016/j.strueco.2009.09.004
Daugherty PR, 2019, MIT SLOAN MANAGE REV, V60, P10
Dimos C, 2016, RES POLICY, V45, P797, DOI 10.1016/j.respol.2016.01.002
Djupdal K, 2015, INT SMALL BUS J, V33, P148, DOI 10.1177/0266242613486688
Dorigo M, 2006, IEEE COMPUT INTELL M, V1, P28, DOI 10.1109/MCI.2006.329691
Du XQ, 2016, MANAGE ORGAN REV, V12, P103, DOI 10.1017/mor.2015.40
Guo D, 2016, RES POLICY, V45, P1129, DOI 10.1016/j.respol.2016.03.002
Hallen BL, 2012, ACAD MANAGE J, V55, P35, DOI 10.5465/amj.2009.0620
Hottenrott H, 2017, RES POLICY, V46, P1118, DOI 10.1016/j.respol.2017.04.004
Hsu YG, 2003, R&D MANAGE, V33, P539, DOI 10.1111/1467-9310.00315
Huang CC, 2008, OMEGA-INT J MANAGE S, V36, P1038, DOI 10.1016/j.omega.2006.05.003
Karaboga D, 2014, ARTIF INTELL REV, V42, P21, DOI 10.1007/s10462-012-9328-0
Kleer R, 2010, RES POLICY, V39, P1361, DOI 10.1016/j.respol.2010.08.001
Marino M, 2016, RES POLICY, V45, P1715, DOI 10.1016/j.respol.2016.04.009
ORAL M, 1991, MANAGE SCI, V37, P871, DOI 10.1287/mnsc.37.7.871
Peng MW, 2003, ACAD MANAGE REV, V28, P275, DOI 10.5465/AMR.2003.9416341
Podolny JM, 2001, AM J SOCIOL, V107, P33, DOI 10.1086/323038
Radas S, 2015, TECHNOVATION, V38, P15, DOI 10.1016/j.technovation.2014.08.002
Rahwan I, 2009, ARGUMENTATION IN ARTIFICIAL INTELLIGENCE, P1, DOI 10.1007/978-0-387-98197-0
Rao RS, 2008, J MARKETING, V72, P58, DOI 10.1509/jmkg.72.4.58
Sheng SB, 2011, J MARKETING, V75, P1, DOI 10.1509/jmkg.75.1.1
Shrivastava P, 2016, INT J TECHNOL MANAGE, V70, P76, DOI 10.1504/IJTM.2016.074672
Soh PH, 2004, ACAD MANAGE J, V47, P907
Terry H.P., 2016, AI MACHINE LEARNING
TOOTHMAKER LE, 1994, J OPER RES SOC, V45, P119
Wu AH, 2017, TECHNOL FORECAST SOC, V117, P339, DOI 10.1016/j.techfore.2016.08.033
Yan JZ, 2018, STRATEGIC MANAGE J, V39, P2152, DOI 10.1002/smj.2908
Zhou J., 2018, ASIA PACIFIC J MANAG
NR 37
TC 3
Z9 3
U1 3
U2 42
PU INDERSCIENCE ENTERPRISES LTD
PI GENEVA
PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215
GENEVA, SWITZERLAND
SN 0267-5730
EI 1741-5276
J9 INT J TECHNOL MANAGE
JI Int. J. Technol. Manage.
PY 2020
VL 84
IS 1-2
SI SI
BP 8
EP 24
PG 17
WC Engineering, Multidisciplinary; Management; Operations Research &
Management Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Engineering; Business & Economics; Operations Research & Management
Science
GA PS3BF
UT WOS:000607800400001
DA 2024-09-05
ER
PT J
AU Wong, LH
Park, H
Looi, CK
AF Wong, Lung-Hsiang
Park, Hyejin
Looi, Chee-Kit
TI From hype to insight: Exploring ChatGPT's early footprint in education
via altmetrics and bibliometrics
SO JOURNAL OF COMPUTER ASSISTED LEARNING
LA English
DT Article
DE AI in education; altmetrics; bibliometrics; ChatGPT in education;
probing publication deluge; research impact
ID IMPACT
AB Background: The emergence of ChatGPT in the education literature represents a transformative phase in educational technology research, marked by a surge in publications driven by initial research interest in new topics and media hype. While these publications highlight ChatGPT's potential in education, concerns arise regarding their quality, methodology, and uniqueness. Objective: Our study employs unconventional methods by combining altmetrics and bibliometrics to explore ChatGPT in education comprehensively. Methods: Two scholarly databases, Web of Science and Altmetric, were adopted to retrieve publications with citations and those mentioned on social media, respectively. We used a search query, "ChatGPT," and set the publication date between November 30th, 2022, and August 31st, 2023. Both datasets were within the education-related domains. Through a filtering process, we identified three publication categories: 49 papers with both altmetrics and citations, 60 with altmetrics only, and 66 with citations only. Descriptive statistical analysis was conducted on all three lists of papers, further dividing the entire collection into three distinct periods. All the selected papers underwent detailed coding regarding open access, paper types, subject domains, and learner levels. Furthermore, we analysed the keywords occurring and visualized clusters of the co-occurring keywords. Results and Conclusions: An intriguing finding is the significant correlation between media/social media mentions and academic citations in ChatGPT in education papers, underscoring the transformative potential of ChatGPT and the urgency of its incorporation into practice. Our keyword analysis also reveals distinctions between the themes of the papers that received both mentions and citations and those that received only citations but no mentions. Additionally, we noticed a limitation that authors' choice of keywords might be influenced by individual subjective judgements, potentially skewing results in thematic analysis based solely on author-assigned keywords such as keyword co-occurrence analysis. Henceforth, we advocate for developing a standardized keyword taxonomy in the educational technology field and integrating Large Language Models to enhance keyword analysis in altmetric and bibliometric tools. This study reveals that ChatGPT in education literature is evolving from rapid publication to rigorous research.
C1 [Wong, Lung-Hsiang] Nanyang Technol Univ, Natl Inst Educ, Singapore, Singapore.
[Park, Hyejin] Korea Inst Sci & Technol Informat, Daejeon, South Korea.
[Looi, Chee-Kit] Educ Univ Hong Kong, Dept Curriculum & Instruct, Hong Kong, Peoples R China.
[Park, Hyejin] Korea Inst Sci & Technol Informat, 245 Daehak Ro, Daejeon 34141, South Korea.
C3 Nanyang Technological University; National Institute of Education (NIE)
Singapore; Korea Institute of Science & Technology Information (KISTI);
Education University of Hong Kong (EdUHK); Korea Institute of Science &
Technology Information (KISTI)
RP Park, H (corresponding author), Korea Inst Sci & Technol Informat, 245 Daehak Ro, Daejeon 34141, South Korea.
EM hpark7@kisti.re.kr
OI Park, Hyejin/0000-0001-9695-8456; Looi, Chee-Kit/0000-0001-9905-2713;
Wong, Lung-Hsiang/0000-0002-0402-9199
CR Adiguzel T, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13152
Altmetric, 2023, IS ALTM ATT SCOR CAL
Altmetric, 2023, DON ALTM ATT SCOR
[Anonymous], 2015, Journal of Eastern Europe Research in Business Economics, DOI DOI 10.5171/2015.169472
Arif TB, 2023, MED EDUC ONLINE, V28, DOI 10.1080/10872981.2023.2181052
Bahroun Z, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151712983
Bar-Ilan Judit, 2018, Proceedings of the Association for Information Science and Technology, V55, DOI 10.1002/pra2.2018.14505501073
Bommineni V. L., 2023, PERFORMANCE CHATGPT
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Cañas-Guerrero I, 2013, EUR J AGRON, V50, P19, DOI 10.1016/j.eja.2013.05.002
Castello-Sirvent F., 2023, P 15 INT C ED NEW LE
Corder G.W., 2009, NONPARAMETRIC STAT N
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148
COURTIAL JP, 1994, SCIENTOMETRICS, V31, P251, DOI 10.1007/BF02016875
Eysenbach Gunther, 2023, JMIR Med Educ, V9, pe46885, DOI 10.2196/46885
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Fang ZC, 2022, SCIENTOMETRICS, V127, P4523, DOI 10.1007/s11192-022-04468-6
Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846
Garfield E, 1996, BRIT MED J, V313, P411, DOI 10.1136/bmj.313.7054.411
Garfield E., 1963, SCI CITATION INDEX S
Garfield E, 1979, CITATION INDEXING IT
Gaviria-Marin M, 2018, J KNOWL MANAG, V22, P1655, DOI 10.1108/JKM-10-2017-0497
Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312
Girard C, 2013, J COMPUT ASSIST LEAR, V29, P207, DOI 10.1111/j.1365-2729.2012.00489.x
Grassini S, 2023, EDUC SCI, V13, DOI 10.3390/educsci13070692
Heimans S, 2023, ASIA-PAC J TEACH EDU, V51, P105, DOI 10.1080/1359866X.2023.2189368
Hepp A., 2023, HUMAN MACHINE COMMUN, V6, P4
Holmberg K.J., 2015, Altmetrics for information professionals: Past, present and future
Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342
Huang Y., 2023, AI ED CHINA IMAGININ
Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1
Hwang G. J., 2022, Computers and Education: Artificial Intelligence, DOI [DOI 10.1016/J.CAEAI.2022.100082, 10.1016/j.caeai.2022.100082]
Imran M, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13605
Ipek Z. H., 2023, Educational Process International Journal, V12, DOI [10.22521/edupij.2023.123.2, DOI 10.22521/EDUPIJ.2023.123.2]
Jabeen M., 2015, INT INF LIBR REV, V47, P71, DOI [10.1080/10572317.2015.1113602, DOI 10.1080/10572317.2015.1113602]
Jahic I., 2023, P EDMEDIA INN LEARN
Jeon J, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204343
Karanatsiou D, 2017, PERFORM MEAS METR, V18, P16, DOI 10.1108/PMM-08-2016-0036
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Khosravi H., 2023, CHATBOTS CHATGPT BIB
Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790
Lin S. M., 2023, INT C INN TECHN LEAR
Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410
Megahed FM, 2024, QUAL ENG, V36, P287, DOI 10.1080/08982112.2023.2206479
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
Mogavi R. H., 2023, EXPLORING USER PERSP
Montenegro-Rueda M, 2023, COMPUTERS, V12, DOI 10.3390/computers12080153
Nov O, 2023, JMIR MED EDUC, V9, DOI 10.2196/46939
O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537
Ortega JL, 2020, SCIENTOMETRICS, V122, P555, DOI 10.1007/s11192-019-03299-2
Park H, 2021, PROF INFORM, V30, DOI 10.3145/epi.2021.mar.14
Park H, 2021, J DATA INFO SCI, V6, P116, DOI 10.2478/jdis-2021-0001
Park Hyo Chan., 2018, Quality Quantity, V53, P935, DOI DOI 10.1007/S11135-018-0797-3
Payne N, 2008, J INF SCI, V34, P3, DOI 10.1177/0165551507079417
Perera P., 2023, INT J RES INNOVATION, V7, P306, DOI [10.47772/ijriss.2023.7623, DOI 10.47772/IJRISS.2023.7623]
Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07
Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a
Pradana M, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2243134
Rajaraman V, 2023, RESONANCE, V28, P889, DOI 10.1007/s12045-023-1620-6
Raman R., 2023, EARLY RES TRENDS CAH, DOI [10.21203/rs.3.rs-2768211/v1, DOI 10.21203/RS.3.RS-2768211/V1]
Rogers, 2003, DIFFUSION INNOVATION
Rudolph J., 2023, Journal of Applied Learning and Teaching, V6
Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x
Schijven MP, 2023, SIMULAT GAMING, V54, P147, DOI 10.1177/10468781231152682
Shi YL, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133716
Su HN, 2010, SCIENTOMETRICS, V85, P65, DOI 10.1007/s11192-010-0259-8
Syamili C, 2017, COLLNET J SCIENTOMET, V11, P103, DOI 10.1080/09737766.2016.1260815
Thelwall M, 2018, COMM COM INF SC, V856, P11, DOI 10.1007/978-981-13-1053-9_2
Thurzo A, 2023, EDUC SCI, V13, DOI 10.3390/educsci13020150
Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x
van Eck N J., 2023, VOSviewer manual
Vargas-Murillo A. R., 2023, International Journal of Learning Teaching and Educational Research, V22, P122, DOI [DOI 10.26803/IJLTER.22.7.7, 10.26803/ijlter.22.7.72, DOI 10.26803/IJLTER.22.7.72]
VOSViewer, 2023, VOSVIEWER MANUAL
Zhang LW, 2018, SCIENTOMETRICS, V117, P495, DOI 10.1007/s11192-018-2876-6
NR 75
TC 0
Z9 0
U1 43
U2 43
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0266-4909
EI 1365-2729
J9 J COMPUT ASSIST LEAR
JI J. Comput. Assist. Learn.
PD AUG
PY 2024
VL 40
IS 4
BP 1428
EP 1446
DI 10.1111/jcal.12962
EA FEB 2024
PG 19
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA ZD1B9
UT WOS:001174528300001
DA 2024-09-05
ER
PT J
AU Fu, CB
Luo, HG
Liang, XJ
Yu, SQ
AF Fu, Chenbo
Luo, Haogeng
Liang, Xuejiao
Yu, Shanqing
TI The profit and risk in the interdisciplinary behavior
SO FRONTIERS IN PHYSICS
LA English
DT Article
DE interdisciplinary behavior; scientific influence; large and small
disciplines; interdisciplinary distance; causal inference
ID PROPENSITY SCORE; SCIENCE; IMPACT; DIVERSITY
AB Evaluating the influence of interdisciplinary research is important to the development of science. This work considers the large and small disciplines, calculates the interdisciplinary distance, and analyzes the influence of interdisciplinary behavior and interdisciplinary distance in the academic network. The results show that the risk of interdisciplinary behavior in the large discipline is more significant than the benefits. The peer in the small disciplines will tend to agree with the results of the small discipline across the large discipline. We further confirmed this conclusion by utilizing PSM-DID. The analysis between interdisciplinary distance and scientists' influence shows that certain risks will accompany any distance between disciplines. However, there still exists a "Sweet Spot " which could bring significant rewards. Overall, this work provides a feasible approach to studying and understanding interdisciplinary behaviors in science.
C1 [Fu, Chenbo; Luo, Haogeng; Liang, Xuejiao; Yu, Shanqing] Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou, Peoples R China.
[Fu, Chenbo; Luo, Haogeng; Liang, Xuejiao; Yu, Shanqing] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou, Peoples R China.
C3 Zhejiang University of Technology; Zhejiang University of Technology
RP Fu, CB; Yu, SQ (corresponding author), Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou, Peoples R China.; Fu, CB; Yu, SQ (corresponding author), Zhejiang Univ Technol, Coll Informat Engn, Hangzhou, Peoples R China.
EM cbfu@zjut.edu.cn; yushanqing@zjut.edu.cn
FU National Natural Science Foundation of China [62103374]; Basic Public
Welfare Research Project of Zhejiang Province [LGF20F020016]
FX Funding This work was supported by the National Natural Science
Foundation of China under Grant (62103374) and the Basic Public Welfare
Research Project of Zhejiang Province under Grant (LGF20F020016).
CR Abadie A, 2005, REV ECON STUD, V72, P1, DOI 10.1111/0034-6527.00321
Allen L, 2014, NATURE, V508, P312, DOI 10.1038/508312a
Amjad T, 2020, SCIENTOMETRICS, V122, P915, DOI 10.1007/s11192-019-03334-2
Barge JK, 2008, J APPL COMMUN RES, V36, P251, DOI 10.1080/00909880802172277
Bromham L, 2016, NATURE, V534, P684, DOI 10.1038/nature18315
Butun Ertan, 2017, 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P952, DOI 10.1145/3110025.3110160
Chang YW, 2012, J AM SOC INF SCI TEC, V63, P22, DOI 10.1002/asi.21649
Dai XY, 2015, TECHNOL FORECAST SOC, V90, P410, DOI 10.1016/j.techfore.2014.04.014
Darrat A., 1999, INT ECON J, V13, P19, DOI DOI 10.1080/10168739900000002
de Montjoye YA, 2014, SCI REP-UK, V4, DOI 10.1038/srep05277
Ding Y, 2016, Measuring scholarly impact
Doyle WR, 2011, ECON EDUC REV, V30, P191, DOI 10.1016/j.econedurev.2010.08.004
Fiore SM, 2008, SMALL GR RES, V39, P251, DOI 10.1177/1046496408317797
Frodeman R., 2017, The Oxford handbook of interdisciplinarity
Fronczak A, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-09118-8
Fu CB, 2022, IEEE T COMPUT SOC SY, V9, P807, DOI 10.1109/TCSS.2021.3105381
Fu CB, 2020, IEEE T NETW SCI ENG, V7, P1607, DOI 10.1109/TNSE.2019.2942341
Fu CB, 2018, IEEE T KNOWL DATA EN, V30, P1507, DOI 10.1109/TKDE.2018.2801854
Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366
Gaff J.G., 1997, HDB UNDERGRADUATE CU
Gibbons M., 1997, The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies
GRANGER CWJ, 1969, ECONOMETRICA, V37, P424, DOI 10.2307/1912791
Hammarfelt B, 2011, SCIENTOMETRICS, V86, P705, DOI 10.1007/s11192-010-0314-5
Hirano K., 2004, Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, V226164, P73
HODGE SE, 1981, SCIENCE, V213, P950
Hsiao, 2022, ANAL PANEL DATA
IMBENS GW, 1994, ECONOMETRICA, V62, P467, DOI 10.2307/2951620
Jia T, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0078
Kennedy D, 2003, SCIENCE, V301, P733, DOI 10.1126/science.301.5634.733
Larivière V, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122565
Larivière V, 2010, J AM SOC INF SCI TEC, V61, P126, DOI 10.1002/asi.21226
Leahey E, 2017, ADMIN SCI QUART, V62, P105, DOI 10.1177/0001839216665364
Levitt JM, 2008, J AM SOC INF SCI TEC, V59, P1973, DOI 10.1002/asi.20914
Li Y, 2021, DECIS SUPPORT SYST, V146, DOI 10.1016/j.dss.2021.113546
Liu XY, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2022.103253
Lyall C, 2013, SCI PUBL POLICY, V40, P62, DOI 10.1093/scipol/scs121
Madumal P, 2020, AAAI CONF ARTIF INTE, V34, P2493
Matthews NE, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-54331-7
McCaffrey DF, 2013, STAT MED, V32, P3388, DOI 10.1002/sim.5753
Mercorio F, 2021, IEEE T EMERG TOP COM, V9, P1987, DOI 10.1109/TETC.2019.2952765
Mo X, 2023, INFORM SCIENCES, V623, P311, DOI 10.1016/j.ins.2022.12.059
Molaei S, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-27385-2
PORTER AL, 1985, SCIENTOMETRICS, V8, P161, DOI 10.1007/BF02016934
Porter AL, 2006, RES EVALUAT, V15, P187, DOI 10.3152/147154406781775841
Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105
Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y
Read EK, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1291
Repko A. F., 2020, INTERDISCIPLINARY RE
Rinia EJ, 2002, SCIENTOMETRICS, V53, P241, DOI 10.1023/A:1014856625623
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
Schwab P, 2019, AAAI CONF ARTIF INTE, P4846
Shakibian H, 2017, SCI REP-UK, V7, DOI 10.1038/srep44981
Siudem G, 2020, P NATL ACAD SCI USA, V117, P13896, DOI 10.1073/pnas.2001064117
Stirling A, 2007, J R SOC INTERFACE, V4, P707, DOI 10.1098/rsif.2007.0213
Stokols D, 2008, AM J PREV MED, V35, pS96, DOI 10.1016/j.amepre.2008.05.003
Sun Y., 2021, Interdisciplinary researchers attain better performance in funding
Sunahara AS, 2021, PHYS REV RES, V3, DOI 10.1103/PhysRevResearch.3.033158
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
THISTLETHWAITE DL, 1960, J EDUC PSYCHOL, V51, P309, DOI 10.1037/h0044319
Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474
Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004
Wan LT, 2022, IEEE T COMPUT SOC SY, V9, P1715, DOI 10.1109/TCSS.2022.3161305
Wang J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127298
Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021
Wang RW, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-55399-x
Weiner B., 1976, REV RES ED, V4, P179, DOI DOI 10.2307/1167116
WEINGART P., 2000, PRACTISING INTERDISC
Woelert P, 2013, HIGH EDUC, V66, P755, DOI 10.1007/s10734-013-9634-8
Yao LY, 2021, ACM T KNOWL DISCOV D, V15, DOI 10.1145/3444944
Yegros-Yegros A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135095
Zhang L, 2018, SCIENTOMETRICS, V117, P271, DOI 10.1007/s11192-018-2853-0
NR 71
TC 1
Z9 1
U1 10
U2 28
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 2296-424X
J9 FRONT PHYS-LAUSANNE
JI Front. Physics
PD JAN 19
PY 2023
VL 11
AR 1107446
DI 10.3389/fphy.2023.1107446
PG 10
WC Physics, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physics
GA 8L8OA
UT WOS:000924038100001
OA gold
DA 2024-09-05
ER
PT J
AU Yazi, FS
Vong, WT
Raman, V
Then, PHH
Lunia, MJ
AF Yazi, Fatin Syafiqah
Vong, Wan-Tze
Raman, Valliappan
Then, Patrick Hang Hui
Lunia, Mukulraj J.
TI AN EXPERIMENTAL EVALUATION OF DEEP NEURAL NETWORK MODEL PERFORMANCE FOR
THE RECOGNITION OF CONTRADICTORY MEDICAL RESEARCH CLAIMS USING SMALL AND
MEDIUM-SIZED CORPORA
SO MALAYSIAN JOURNAL OF COMPUTER SCIENCE
LA English
DT Article
DE Evidence-based medicine; contradiction detection; medical literature;
deep neural network; deep learning
AB Corpora come in various shapes and sizes and play an essential role in facilitating Natural Language Processing (NLP) tasks. However, the availability of corpora specialized for Evidence-Based Medicine (EBM) related tasks is limited. The study is aimed to discover how the size of a corpus influence the performance of our Deep Neural Network (DNN) model developed for contradiction detection in medical literature. We explored the potential of the EBM Summarizer corpus by Molla and Santiago-Martinez, a medium-sized corpus to be used with our contradiction detection model. The dataset preparation involves the filtering of open-ended questions, duplicates of claims, and vague claims. As a result, two datasets were created with the claim input represented by sniptext in one dataset and longtext in the other. Experiments were conducted with varying numbers of hidden layers and units of the model using different datasets. The performance of the DNN model was recorded and compared with the result of using a small-sized corpus. It was found that the DNN model performance did not improve even after it was trained with a larger dataset derived from the medium-sized corpus. The factors may include the limitation of the DNN model itself and the quality of the datasets.
C1 [Yazi, Fatin Syafiqah; Vong, Wan-Tze; Raman, Valliappan; Then, Patrick Hang Hui] Swinburne Univ Technol, Fac Engn Comp & Sci, Kuching 93350, Malaysia.
[Lunia, Mukulraj J.] Sri Krishna Coll Informat Technol, Dept Informat Technol, Coimbatore, Tamil Nadu, India.
C3 Swinburne University of Technology Sarawak; Swinburne University of
Technology
RP Yazi, FS (corresponding author), Swinburne Univ Technol, Fac Engn Comp & Sci, Kuching 93350, Malaysia.
EM fyazi@swinburne.edu.my; wvong@swinburne.edu.my; vraman@swinburne.edu.my;
pthen@swinburne.edu.my; mukul_lunia99@outlook.com
RI mo, mo/JRW-0535-2023; raman, Valliappan/E-6393-2018
OI raman, Valliappan/0000-0002-9363-2319
CR Alamri A. D., 2016, The detection of contradictory claims in biomedical abstracts
Alamri A, 2016, J BIOMED SEMANT, V7, DOI 10.1186/s13326-016-0083-z
Bavani E. S., 2016, P COLING 2016 26 INT, P513
Cohn C., 2020, COLL COMPUT DIGIT ME
Dai ZH, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2978
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Ezen-Can A., 2020, A comparison of lstm and bert for small corpus
Gauch R., 2008, It's great! Oops, no it isn't: Why clinical research can't guarantee the right medical answers
GUYAT GH, 1993, JAMA-J AM MED ASSOC, V270, P2096, DOI 10.1001/jama.270.17.2096
Kim JD, 2003, BIOINFORMATICS, V19, pi180, DOI 10.1093/bioinformatics/btg1023
Kim T, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), P2528
Molla D., 2011, Proceedings of the Australasian Language Technology Association Workshop 2011, P86
Mollá D, 2016, LANG RESOUR EVAL, V50, P705, DOI 10.1007/s10579-015-9327-2
Nye B, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P197
Ohta T., 2002, P 2 INT C HUM LANG T, P82
Prasad V, 2013, MAYO CLIN PROC, V88, P790, DOI 10.1016/j.mayocp.2013.05.012
Richardson W S, 1995, ACP J Club, V123, pA12
Rosemblat G, 2019, J BIOMED INFORM, V98, DOI 10.1016/j.jbi.2019.103275
Sackett DL, 1996, BRIT MED J, V312, P71, DOI 10.1136/bmj.312.7023.71
Sarafraz F., 2012, Finding conflicting statements in the biomedical literature
Sarker A., 2020, LIGHT WEIGHT TEXT SU, DOI [10.1101/2020.05.22.20110742v1, DOI 10.1101/2020.05.22.20110742V1]
Song X., 2020, LINEAR TIME WORDPIEC
Tawfik N. S., 2018, International Conference on Machine Learning and Data Mining in Pattern Recognition, P138
Tawfik NS, 2019, LECT NOTES COMPUT SC, V11608, P368, DOI 10.1007/978-3-030-23281-8_32
Usha S., 2020, J CRIT REV, V7, P1047
Vincze V, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-S11-S9
Yazi Fatin Syafiqah, 2021, 2021 Fifth International Conference on Information Retrieval and Knowledge Management (CAMP), P116, DOI 10.1109/CAMP51653.2021.9498061
NR 27
TC 1
Z9 1
U1 4
U2 8
PU UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH
PI KUALA LUMPUR
PA UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH, KUALA LUMPUR,
50603, MALAYSIA
SN 0127-9084
J9 MALAYS J COMPUT SCI
JI Malayas. J. Comput. Sci.
PY 2021
SI SI
BP 68
EP 77
DI 10.22452/mjcs.sp2021no2.5
PG 10
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA YQ8SY
UT WOS:000749575900005
OA Bronze
DA 2024-09-05
ER
PT J
AU Cen, H
Huang, DL
Liu, Q
Zong, ZL
Tang, AP
AF Cen, Hang
Huang, Delong
Liu, Qiang
Zong, Zhongling
Tang, Aiping
TI Application Research on Risk Assessment of Municipal Pipeline Network
Based on Random Forest Machine Learning Algorithm
SO WATER
LA English
DT Article
DE machine learning; random forest; municipal pipeline network; monitoring
data; risk assessment
ID SOLID PARTICLE EROSION; NEURAL-NETWORK; WATER; PREDICTION; FAILURE;
CLASSIFICATION; PERFORMANCE; REGRESSION; LOCATION; SYSTEM
AB Urban municipal water supply is an important part of underground pipelines, and their scale continues to expand. Due to the continuous improvement in the quality and quantity of data available for pipeline systems in recent years, traditional pipeline network risk assessment cannot cope with the improvement of various monitoring methods. Therefore, this paper proposes a machine learning-based risk assessment method for municipal pipe network operation and maintenance and builds a model example based on the data of a pipeline network base in a park in Suzhou. We optimized the random forest learning model, compared it with other centralized learning methods, and finally evaluated the model's learning effect. Finally, the risk probability associated with each pipe segment sample was obtained, the risk factors affecting the pipe segment's failure were determined, and their relevance and importance ranking was established. The results showed that the most influential factors are pipe material, soil properties, service life, and the number of past failures. The random forest algorithm demonstrated better prediction accuracy and robustness on the dataset.
C1 [Cen, Hang; Huang, Delong; Zong, Zhongling] Jiangsu Ocean Univ, Sch Civil & Ocean Engn, Lianyungang 222005, Peoples R China.
[Liu, Qiang; Tang, Aiping] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China.
C3 Jiangsu Ocean University; Harbin Institute of Technology
RP Huang, DL (corresponding author), Jiangsu Ocean Univ, Sch Civil & Ocean Engn, Lianyungang 222005, Peoples R China.
EM cen1364570502@gmail.com; huang06080601@163.com; qiangliu_hit@163.com;
jouzongzhl@jou.edu.cn; tangap@hit.edu.cn
FU National Natural Science Foundation of China [41672287, 51778197];
Hainan Province Key R&D Program (Social Development) Project of China
[ZDYF2022SHFZ089]; Jiangsu Province Key R&D Program (Social Development)
Project of China [BE2021681]
FX This research was supported by the National Natural Science Foundation
of China (No. 41672287, 51778197), the Hainan Province Key R&D Program
(Social Development) Project of China (No. ZDYF2022SHFZ089). and the
Jiangsu Province Key R&D Program (Social Development) Project of China
(No. BE2021681). The supports are gratefully acknowledged.
CR Bakker M, 2014, J HYDROINFORM, V16, P1194, DOI 10.2166/hydro.2014.120
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Chen JF, 2021, NAT HAZARDS, V107, P2671, DOI 10.1007/s11069-021-04630-y
Christodoulou S, 2009, COMPUT ENVIRON URBAN, V33, P138, DOI 10.1016/j.compenvurbsys.2008.12.001
Colombo AF, 2009, J HYDRO-ENVIRON RES, V2, P212, DOI 10.1016/j.jher.2009.02.003
Creaco E, 2019, WATER RES, V161, P517, DOI 10.1016/j.watres.2019.06.025
de Oliveira DP, 2011, ADV ENG INFORM, V25, P380, DOI 10.1016/j.aei.2010.09.001
Rodríguez JD, 2010, IEEE T PATTERN ANAL, V32, P569, DOI 10.1109/TPAMI.2009.187
Fares H, 2010, J PIPELINE SYST ENG, V1, P53, DOI 10.1061/(ASCE)PS.1949-1204.0000037
Hodge VJ, 2015, IEEE T INTELL TRANSP, V16, P1088, DOI 10.1109/TITS.2014.2366512
Hu X, 2021, J CLEAN PROD, V278, DOI 10.1016/j.jclepro.2020.123611
Jafar R, 2010, MATH COMPUT MODEL, V51, P1170, DOI 10.1016/j.mcm.2009.12.033
Kabir G, 2015, EUR J OPER RES, V240, P220, DOI 10.1016/j.ejor.2014.06.033
Kang J, 2018, IEEE T IND ELECTRON, V65, P4279, DOI 10.1109/TIE.2017.2764861
Kohavi R., 1995, IJCAI-95. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, P1137
Li J., 2010, J CATASTROPHOLOGY, V25, P4
Li R, 2015, WATER SCI TECH-W SUP, V15, P429, DOI 10.2166/ws.2014.131
Liu J, 2019, APPL SOFT COMPUT, V75, P702, DOI 10.1016/j.asoc.2018.11.045
[骆正山 Luo Zhengshan], 2020, [表面技术, Surface Technology], V49, P269
Lyu ZQ, 2022, MATERIALS, V15, DOI 10.3390/ma15041477
Morgenthaler S, 2009, WIRES COMPUT STAT, V1, DOI 10.1002/wics.2
Mounce S. R., 2003, Information Fusion, V4, P217, DOI 10.1016/S1566-2535(03)00034-4
Mounce SR, 2010, J WATER RES PLAN MAN, V136, P309, DOI 10.1061/(ASCE)WR.1943-5452.0000030
Mounce SR, 2002, WATER SCI TECHNOL, V45, P237, DOI 10.2166/wst.2002.0595
Page PR, 2019, J WATER SUPPLY RES T, V68, P20, DOI 10.2166/aqua.2018.074
Pu YY, 2019, TUNN UNDERGR SP TECH, V90, P12, DOI 10.1016/j.tust.2019.04.019
PUDAR RS, 1992, J HYDRAUL ENG-ASCE, V118, P1031, DOI 10.1061/(ASCE)0733-9429(1992)118:7(1031)
Ren Y., 2022, OPEN ACCESS LIB J, V9, P1, DOI [10.4236/oalib.1109503, DOI 10.4236/OALIB.1109503]
Romano M, 2013, J HYDROINFORM, V15, P634, DOI 10.2166/hydro.2013.094
Sattar AMA, 2019, NEURAL COMPUT APPL, V31, P157, DOI 10.1007/s00521-017-2987-7
Sattar AMA, 2016, WATER RESOUR MANAG, V30, P1635, DOI 10.1007/s11269-016-1241-x
Shi F, 2020, SUSTAIN CITIES SOC, V55, DOI 10.1016/j.scs.2019.102012
Shirzad A, 2014, KSCE J CIV ENG, V18, P941
Shojaie EF, 2023, WEAR, V522, DOI 10.1016/j.wear.2023.204688
Tang K, 2019, RELIAB ENG SYST SAFE, V186, P24, DOI 10.1016/j.ress.2019.02.001
Tao T., 2016, WATER TECHNOL, V10, P11
Vu HL, 2022, J ENVIRON MANAGE, V311, DOI 10.1016/j.jenvman.2022.114869
Wong TT, 2015, PATTERN RECOGN, V48, P2839, DOI 10.1016/j.patcog.2015.03.009
Wu S., 2017, URBAN GEOTECH INVEST, V06, P50
Wu YP, 2017, URBAN WATER J, V14, P972, DOI 10.1080/1573062X.2017.1279191
Yamijala S, 2009, RELIAB ENG SYST SAFE, V94, P282, DOI 10.1016/j.ress.2008.03.011
Yang H., 2012, WATER WASTEWATER ENG, V48, P471
Zahedi P, 2018, POWDER TECHNOL, V338, P983, DOI 10.1016/j.powtec.2018.07.055
Zheng W., 2017, URBAN CONSTR THEORY, V3, P236
Zhou B., 2019, ARCHIT ENG DES MANAG, V25, P1
Zhou X, 2019, WATER RES, V166, DOI 10.1016/j.watres.2019.115058
NR 46
TC 2
Z9 2
U1 21
U2 50
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2073-4441
J9 WATER-SUI
JI Water
PD MAY 22
PY 2023
VL 15
IS 10
AR 1964
DI 10.3390/w15101964
PG 17
WC Environmental Sciences; Water Resources
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Water Resources
GA H6WY3
UT WOS:000997354000001
OA gold
DA 2024-09-05
ER
PT J
AU Pandey, S
Verma, MK
Shukla, R
AF Pandey, Shriram
Verma, Manoj Kumar
Shukla, Ravi
TI A Scientometric Analysis of Scientific Productivity of Artificial
Intelligence Research in India
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Scientometrics; Artificial Intelligence; Collaboration Coefficient;
Collaborative Index; Relative Growth Rate
ID OUTPUT
AB The study presents a scientometric analsyis of publications related to 'Artificial Intelligence' research in India during 2009-2018. In today's ICT driven world, artificial intelligence has taken up some tasks of our daily life to make it easier. As a consequence, extensive research is going on "Artificial Intelligence" to find out it's potential in knowledge development. The paper analyses the bibliographic data retrived from Scopus database extracted with a suitable search query. The study was conducted taking the chronological growth of research publications, relative growth rate, doubling time, scientometric profile of authors, document type of publications, source profile, keyword analysis, institution wise distribution of publications, funding agency wise distribution. The analysis was conducted using the MS-Excel. The study reveals that a maximum number of publications are in the form of conference procedings and articles. Artificial Intelligence, Learning system, algorithms, data mining are the keywords with maximum number of occurences. The findings of the study implies India need become more competitive with the world leaders in artificial intelligence research. To get more return from AI applications, the stakeholders are required to play a catalytic role to build and strengthen research capacity in the nation by paving quality research environment, adequate funding, research incentives, and development of IT infrastructure.
C1 [Pandey, Shriram] Banaras Hindu Univ, Dept Lib & Informat Sci, Varanasi, Uttar Pradesh, India.
[Verma, Manoj Kumar; Shukla, Ravi] Mizoram Univ, Dept Lib & Informat Sci, Aizawl 796001, Mizoram, India.
C3 Banaras Hindu University (BHU); Mizoram University
RP Verma, MK (corresponding author), Mizoram Univ, Dept Lib & Informat Sci, Aizawl 796001, Mizoram, India.
EM manojdlis@mzu.edu.in
RI Verma, Manoj Kumar/ABE-4906-2020; Pandey, Shri Ram/HNS-6652-2023
OI Pandey, Shri Ram/0000-0002-1690-6603; Shukla, Dr.
Ravi/0000-0002-8569-1722
CR Aayog Niti, 2018, National Strategy for Artificial Intelligence
Bhattacharjee KK, 2019, IN C IND ENG ENG MAN, P916, DOI [10.1109/IEEM44572.2019.8978798, 10.1109/ieem44572.2019.8978798]
Engqvist L, 2008, TRENDS ECOL EVOL, V23, P250, DOI 10.1016/j.tree.2008.01.009
Grant MJ, 2009, HEALTH INFO LIBR J, V26, P91, DOI 10.1111/j.1471-1842.2009.00848.x
Gupta BM, 2018, DESIDOC J LIB INF TE, V38, P416, DOI 10.14429/djlit.38.6.12309
Kumar RS, 2015, SCIENTOMETRICS, V105, P921, DOI 10.1007/s11192-015-1710-7
Mahapatra M., 1985, Proceedings of the 15th IASLIC Conference, Bangalore, P61
Moller AM, 2016, BRIT J ANAESTH, V117, P428, DOI 10.1093/bja/aew264
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Shrivastava Rishabh, 2016, Science & Technology Libraries, V35, P136, DOI 10.1080/0194262X.2016.1181023
Shukla R, 2019, COLLNET J SCIENTOMET, V13, P91, DOI 10.1080/09737766.2018.1550044
Wu HY, 2021, FRONT PHARMACOL, V12, DOI 10.3389/fphar.2021.646626
Zeinoun P, 2020, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.00182
NR 13
TC 2
Z9 2
U1 2
U2 13
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD MAY-AUG
PY 2021
VL 10
IS 2
BP 245
EP 250
DI 10.5530/jscires.10.2.38
PG 6
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA WK3EL
UT WOS:000709612000011
OA hybrid
DA 2024-09-05
ER
PT J
AU Varsha, PS
Akter, S
Kumar, A
Gochhait, S
Patagundi, B
AF Varsha, P. S.
Akter, Shahriar
Kumar, Amit
Gochhait, Saikat
Patagundi, Basanna
TI The Impact of Artificial Intelligence on Branding: A Bibliometric
Analysis (1982-2019)
SO JOURNAL OF GLOBAL INFORMATION MANAGEMENT
LA English
DT Article
DE Artificial Intelligence; Bibliometric Analysis; Branding; Chatbot;
Neural Network; VOS Viewer
ID SOCIAL-MEDIA; NEURAL-NETWORKS; BIG DATA; BUSINESS; CHAIN; INDUSTRY;
USER; AI; ENVIRONMENTS; MOTIVATIONS
AB Understanding the growth paths of artificial intelligence (AI) and its impact on branding is extremely pertinent of technology-driven marketing. This explorative research covers a complete bibliometric analysis of the impact of AI on branding. The sample for this research included all 117 articles from the period of 1982-2019 in the Scopus database. A bibliometric study was conducted using co-occurrence, citation analysis and co-citation analysis. The empirical analysis investigates the value propositions of AI on branding. The study revealed the nine clusters of co-occurrence: Social Media Analytics and Brand Equity; Neural Networks and Brand Choice; Chat Bots-Brand Intimacy; Twitter, Facebook, Instagram-Luxury Brands; Interactive Agent-Brand Love and User Choice; Algorithm Recommendations and E-Brand Experience; User-Generated Content-Brand Sustainability; Brand Intelligence Analytics; and Digital Innovations and Brand Excellence. The findings also identify four clusters of citation analysis-Social Media Analysis and Brand Photos, Network Analysis and E-Commerce, Hybrid Simulating Modelling, and Real-time Knowledge-Based Systems-and four clusters of co-citation analysis: B2B Technology Brands, AI Fostered E-Brands, Information Cascades and Online Brand Ratings, and Voice Assistants-Brand Eureka Moments. Overall, the study presents the patterns of convergence and divergence of themes, narrowing to the specific topic, and multidisciplinary engagement in research, thus offering the recent insights in the field of AI on branding.
C1 [Varsha, P. S.; Patagundi, Basanna] Cambridge Inst Technol, Bangalore, Karnataka, India.
[Akter, Shahriar] Univ Wollongong, Digital Mkt Analyt & Innovat, Sch Management & Mkt, Wollongong, NSW, Australia.
[Kumar, Amit] Univ Newcastle, Newcastle Business Sch, Callaghan, NSW, Australia.
[Gochhait, Saikat] Symbiosis Int Univ Deemed, Symbiosis Inst Digital & Telecom Management, Pune, Maharashtra, India.
C3 University of Wollongong; University of Newcastle; Symbiosis
International University; Symbiosis Institute of Digital & Telecom
Management (SIDTM)
RP Varsha, PS (corresponding author), Cambridge Inst Technol, Bangalore, Karnataka, India.
RI Kumar, Amit/GQA-4556-2022; Akter, Shahriar/S-2888-2019; Gochhait,
Saikat/G-2182-2014; Gochhait (Honoris Causa), Saikat/AAP-4107-2021
OI Kumar, Amit/0000-0001-5883-6693; Akter, Shahriar/0000-0002-2050-9985;
Gochhait (Honoris Causa), Saikat/0000-0003-4583-9208; Kumar,
Amit/0000-0002-8367-9981; PS, Varsha/0000-0002-2194-0363
CR Aaker D.A., 1991, N. Y., V28, P35, DOI DOI 10.1177/002224379703400304
Aaker JL, 1997, J MARKETING RES, V34, P347, DOI 10.2307/3151897
Abbate T, 2019, J BUS IND MARK, V34, P1434, DOI 10.1108/JBIM-09-2018-0276
Afrasiabi RadA., 2011, Journal of Information Systems Applied Research, V4, P63
Agrawal D, 1996, J RETAILING, V72, P383, DOI 10.1016/S0022-4359(96)90020-2
Ali I, 2019, INT J PHYS DISTR LOG, V49, P793, DOI 10.1108/IJPDLM-02-2019-0038
Amershi B, 2020, AI SOC, V35, P417, DOI 10.1007/s00146-019-00885-z
[Anonymous], 2017, DIGITAL REVOLUTIONS
[Anonymous], 2019, eMarketer
Araibi Nedia, 2016, Vietnam Journal of Computer Science, V3, P47, DOI 10.1007/s40595-015-0054-9
Arnould EJ, 2005, J CONSUM RES, V31, P868, DOI 10.1086/426626
Balakrishnan A., 2004, Manufacturing & Service Operations Management, V6, P163, DOI 10.1287/msom.1030.0031
Batacharia B, 1999, SPRING INT SER ENG C, V511, P205
Batra Gaurav, 2018, Tech. Rep
Boden C, 2006, LECT NOTES COMPUT SC, V4326, P370
Boyack K, 2017, SCIENTOMETRICS, V111, P1223, DOI 10.1007/s11192-017-2307-0
Brodie RJ, 2013, J BUS RES, V66, P105, DOI 10.1016/j.jbusres.2011.07.029
Campbell C, 2020, BUS HORIZONS, V63, P227, DOI 10.1016/j.bushor.2019.12.002
Caviggioli F, 2019, INT J PROD ECON, V208, P254, DOI 10.1016/j.ijpe.2018.11.022
Chandan A., 2019, IJRAR J., V6, P44
Chandra Y, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0190228
Chaudhuri S., 2018, NEXT BIG THREAT CONS
Chen HC, 2012, MIS QUART, V36, P1165
Chen Y, 2020, INF SYST E-BUS MANAG, V18, P837, DOI 10.1007/s10257-019-00401-2
Colby KM, 1999, SPRING INT SER ENG C, V511, P9
Colicev A, 2018, J MARKETING, V82, P37, DOI 10.1509/jm.16.0055
Colladon AF, 2020, INT J FORECASTING, V36, P414, DOI 10.1016/j.ijforecast.2019.05.013
Colladon AF, 2020, TOUR MANAG PERSPECT, V33, DOI 10.1016/j.tmp.2019.100588
Colladon AF, 2018, J BUS RES, V88, P150, DOI 10.1016/j.jbusres.2018.03.026
Columbus Louis., 2019, 10 Charts That Will Change Your Perspective Of AI
Comendador Benilda Eleonor V., 2015, Journal of Automation and Control Engineering, V3, P137, DOI 10.12720/joace.3.2.137-140
Conick Hal, 2017, Mark News, V51, P26
Cornwell T., 2020, Sponsorship in marketing: Effective partnerships in sports, arts and events, V2nd, DOI [10.4324/9780429325106, DOI 10.4324/9780429325106]
Cross R, 2019, MIT SLOAN MANAGE REV, V61, P20
Cuayáhuitl H, 2019, NEUROCOMPUTING, V366, P118, DOI 10.1016/j.neucom.2019.08.007
Culotta A, 2016, MARKET SCI, V35, P343, DOI 10.1287/mksc.2015.0968
Dabirian A, 2017, BUS HORIZONS, V60, P197, DOI 10.1016/j.bushor.2016.11.005
Dale R, 2016, NAT LANG ENG, V22, P811, DOI 10.1017/S1351324916000243
Daskou S., 2003, J RELATIONSHIP MARKE, V2, P85
Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0
Davenport TH, 2018, HARVARD BUS REV, V96, P108
De Bruyn A, 2020, J INTERACT MARK, V51, P91, DOI 10.1016/j.intmar.2020.04.007
De Jesus A., 2018, AUGMENTED REALITY SH
De Pessemier T, 2016, MULTIMED TOOLS APPL, V75, P3323, DOI 10.1007/s11042-014-2437-9
Decker R, 2010, INT J RES MARK, V27, P293, DOI 10.1016/j.ijresmar.2010.09.001
Dewan S, 2017, INFORM SYST RES, V28, P117, DOI 10.1287/isre.2016.0654
DOMINGOS Pedro, 2015, The master algorithm: how the quest for the ultimate learning machine will remake our world
Dong Han, 2019, 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), P118, DOI 10.1109/MLBDBI48998.2019.00029
Dumaine B., 2020, BEZONOMICS AMAZON IS
Erdogmus IE, 2012, PROCD SOC BEHV, V58, P1353, DOI 10.1016/j.sbspro.2012.09.1119
Etlinger S., 2017, ALTIMETER GROUP RES, P1
Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003
Fetscherin M, 2015, J BUS RES, V68, P380, DOI 10.1016/j.jbusres.2014.06.010
Fish KE, 2004, J BUS RES, V57, P79, DOI 10.1016/S0148-2963(02)00287-4
Galloway Scott., 2017, 4 HIDDEN DNA AMAZON
Gentsch P., 2019, MARKETING SALES SERV, P3, DOI [10.1007/978-3-319-89957-2_1, DOI 10.1007/978-3-319-89957-2_1]
Girasa R., 2020, Artificial intelligence as a Disruptive Technology: Economic Transformation and Government Regulation, P23, DOI [10.1007/978-3-030-35975-12, DOI 10.1007/978-3-030-35975-12]
Goh KY, 2013, INFORM SYST RES, V24, P88, DOI 10.1287/isre.1120.0469
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
Gu YF, 2019, J MODEL MANAG, V15, P459, DOI 10.1108/JM2-02-2019-0039
Guo ZX, 2011, TEXT RES J, V81, P1871, DOI 10.1177/0040517511411968
Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685
Hosanagar K., 2020, HUMANS GUIDE MACHINE
Hutter K, 2013, J PROD BRAND MANAG, V22, P342, DOI 10.1108/JPBM-05-2013-0299
Kaiser C, 2020, J BUS RES, V117, P707, DOI 10.1016/j.jbusres.2019.09.017
Kapidzic S, 2013, CYBERPSYCH BEH SOC N, V16, P14, DOI 10.1089/cyber.2012.0143
Kar R., 2016, ARXIV161103799
Kaya T, 2010, INT J COMPUT INT SYS, V3, P674, DOI 10.1080/18756891.2010.9727732
KELLER K.L., 2016, AMS Review, V6, P1
Keller KL, 2006, MARKET SCI, V25, P740, DOI 10.1287/mksc.1050.0153
Keller KL, 2020, INT J ADVERT, V39, P448, DOI 10.1080/02650487.2019.1710973
KELLER KL, 1993, J MARKETING, V57, P1, DOI 10.2307/1252054
Khanra S, 2020, ENTERP INF SYST-UK, V14, P737, DOI 10.1080/17517575.2020.1734241
Kim J, 2020, J GLOB SCHOLARS MARK, V30, P319, DOI 10.1080/21639159.2020.1775491
Kiss C, 2008, DECIS SUPPORT SYST, V46, P233, DOI 10.1016/j.dss.2008.06.007
KOHLI AK, 1990, J MARKETING, V54, P1, DOI 10.2307/1251866
Kreutzer RT., 2020, UNDERSTANDING ARTIFI, P167
Krishnan A., 2019, STYLESNAP WILL CHANG
Kuksov D, 2013, MARKET SCI, V32, P294, DOI 10.1287/mksc.1120.0753
Kumar A, 2016, J MARKETING, V80, P7, DOI 10.1509/jm.14.0249
Kumar V, 2016, J ACAD MARKET SCI, V44, P24, DOI 10.1007/s11747-015-0426-9
Kumar V., 2020, J BUSINESS RES
Labrecque LI, 2014, J INTERACT MARK, V28, P134, DOI 10.1016/j.intmar.2013.12.003
Lee D, 2018, MANAGE SCI, V64, P5105, DOI 10.1287/mnsc.2017.2902
Lee YJ, 2015, MANAGE SCI, V61, P2241, DOI 10.1287/mnsc.2014.2082
Li L, 2018, TECHNOL FORECAST SOC, V135, P66, DOI 10.1016/j.techfore.2017.05.028
Li MN, 2018, TECHNOL FORECAST SOC, V129, P285, DOI 10.1016/j.techfore.2017.09.032
Li XT, 2018, MIS QUART, V42, P1331, DOI 10.25300/MISQ/2018/14108
Liang TP, 2011, INT J ELECTRON COMM, V16, P5, DOI 10.2753/JEC1086-4415160201
Limaheluw C., 2020, THESIS
Lipsman A, 2012, J ADVERTISING RES, V52, P40, DOI 10.2501/JAR-52-1-040-052
Liu KX, 2018, SPR SER FASH BUS, P257, DOI 10.1007/978-981-13-0080-6_13
Lokman A. S., 2010, J COMPUTATIONAL SCI, V6, P1199
Luo GH, 2016, SCI REP-UK, V6, P1, DOI [10.1038/s41598-016-0027-y, 10.1038/srep35231, 10.1038/srep37473]
Luo XM, 2013, J MANAGE INFORM SYST, V30, P213, DOI 10.2753/MIS0742-1222300208
Ma LY, 2020, INT J RES MARK, V37, P481, DOI 10.1016/j.ijresmar.2020.04.005
Marinchak Christina McDowell, 2018, International Journal of E-Entrepreneurship and Innovation, V8, P14, DOI 10.4018/IJEEI.2018070102
Mayrhofer M, 2020, INT J ADVERT, V39, P166, DOI 10.1080/02650487.2019.1596447
Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006
Muhuri PK, 2019, ENG APPL ARTIF INTEL, V78, P218, DOI 10.1016/j.engappai.2018.11.007
Muntinga DG, 2011, INT J ADVERT, V30, P13, DOI 10.2501/IJA-30-1-013-046
Nagel M., 2019, EXPLORING DIGITAL IN
Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713
OECD, 2020, The Digitalisation of Science, Technology and Innovation: Key Developments and Policies
Olenski S., 2019, WAYS BRANDS SHOULD U
Parasuraman A, 2000, J ACAD MARKET SCI, V28, P168, DOI 10.1177/0092070300281015
Paschen J, 2020, J PROD BRAND MANAG, V29, P223, DOI 10.1108/JPBM-12-2018-2179
Paschen J, 2019, J BUS IND MARK, V34, P1410, DOI 10.1108/JBIM-10-2018-0295
Poria S, 2014, KNOWL-BASED SYST, V69, P45, DOI 10.1016/j.knosys.2014.05.005
Pramanik S, 2017, SOC NETW ANAL MIN, V7, DOI 10.1007/s13278-017-0462-1
Qiao C., 2019, 2019 4 INT C SOC SCI
Qiu LF, 2015, J MANAGE INFORM SYST, V32, P78, DOI 10.1080/07421222.2015.1138368
Rai A, 2019, MIS QUART, V43, pIII
Rajagopal A, 2020, INNOVATION, TECHNOLOGY, AND MARKET ECOSYSTEMS: MANAGING INDUSTRIAL GROWTH IN EMERGING MARKETS, P307
Ratchford BT, 2019, REV MARKET RES, V16, P35, DOI 10.1108/S1548-643520190000016005
Rautrao M. R. R., 2020, STUDIES INDIAN PLACE, V40, P1658
Ren SY, 2018, SPR SER FASH BUS, P9, DOI 10.1007/978-981-13-0080-6_2
Sarkar A, 2016, ASIA PAC J MARKET LO, V28, P180, DOI 10.1108/APJML-06-2015-0095
Schmitt B, 2012, J CONSUM PSYCHOL, V22, P7, DOI 10.1016/j.jcps.2011.09.005
Schultz D.E., 2015, Journal of Marketing Communications, V21, P340, DOI DOI 10.1080/13527266.2013.821227
Shang R, 2020, ELECTRON COMMER R A, V39, DOI 10.1016/j.elerap.2019.100893
Shankar V, 2018, J RETAILING, V94, pVI, DOI 10.1016/S0022-4359(18)30076-9
Shawar B. A., 2007, Ldv forum
Simms K., 2019, VOICE ASSISTANTS COU
Simoski B, 2019, INT CONF PER COMP, P198, DOI 10.1145/3329189.3329205
Smith AN, 2012, J INTERACT MARK, V26, P102, DOI 10.1016/j.intmar.2012.01.002
Srinivasan S, 2016, J ACAD MARKET SCI, V44, P440, DOI 10.1007/s11747-015-0431-z
Stephen AT, 2010, J MARKETING RES, V47, P215, DOI 10.1509/jmkr.47.2.215
Stone M, 2020, BOTTOM LINE, V33, P183, DOI 10.1108/BL-03-2020-0022
Sung Y, 2018, INT J ADVERT, V37, P14, DOI 10.1080/02650487.2017.1368859
Suri V.K., 2017, Global Sourcing, P81
Sze V, 2017, P IEEE, V105, P2295, DOI 10.1109/JPROC.2017.2761740
Tang CY, 2015, MARKET LETT, V26, P67, DOI 10.1007/s11002-013-9268-8
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Oorschot JAWH, 2018, TECHNOL FORECAST SOC, V134, P1, DOI 10.1016/j.techfore.2018.04.032
Waid B., 2018, AI ENABLED PERSONALI
Wang Y., 2020, P 53 HAW INTERNATION
Wen B, 2017, J ASSOC INF SCI TECH, V68, P724, DOI 10.1002/asi.23696
West A., 2018, The Business Management Review, V9, P321, DOI [https://doi.org/10.15341/jbe(2155-7950)/10.09.2018/005, DOI 10.15341/JBE(2155-7950)/10.09.2018/005]
Xu AB, 2017, PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), P3506, DOI 10.1145/3025453.3025496
Xu XH, 2018, INT J PROD ECON, V204, P160, DOI 10.1016/j.ijpe.2018.08.003
Yadav MS, 2014, J MARKETING, V78, P20, DOI 10.1509/jm.12.0020
Yoganarasimhan H., 2014, SEARCH PERSONA UNPUB
Zeng F., 2019, INT C APPL TECHN CYB, P1857
Zhang K, 2017, ELECTRON COMMER R A, V23, P45, DOI 10.1016/j.elerap.2017.04.001
Zhang KP, 2016, MIS QUART, V40, P849, DOI 10.25300/MISQ/2016/40.4.03
NR 146
TC 30
Z9 32
U1 41
U2 288
PU IGI GLOBAL
PI HERSHEY
PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA
SN 1062-7375
EI 1533-7995
J9 J GLOB INF MANAG
JI J. Glob. Inf. Manag.
PD JUL-AUG
PY 2021
VL 29
IS 4
BP 221
EP 246
DI 10.4018/JGIM.20210701.oa10
PG 26
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA SA7KG
UT WOS:000649479400010
OA gold
DA 2024-09-05
ER
PT C
AU Makady, H
Liu, FJ
AF Makady, Heidi
Liu, Fanjue
BE Kurosu, M
TI The Status of Human-Machine Communication Research: A Decade of
Publication Trends Across Top-Ranking Journals
SO HUMAN-COMPUTER INTERACTION: THEORETICAL APPROACHES AND DESIGN METHODS,
PT I
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT Human Computer Interaction Thematic Area Conference Held as Part of the
24th International Conference on Human-Computer Interaction (HCII)
CY JUN 26-JUL 01, 2022
CL ELECTR NETWORK
DE Systematic review; Human-machine communication; LDA topic modeling;
Affiliation; Funding; Technology; Method; Theory; Research trends
ID RESPONSES
AB This study explores the trends in Human-Machine Communication (HMC) scholarship in the past decade. We examined 444 peer-reviewed empirical studies published between 2010 and 2021 across journals with highest impact factor according to Social Sciences Citation Index (SSCI). Through a systematic review, we looked at theoretical frameworks, methodological approaches, studied technologies, funding sources, and contributing countries in HMC studies. Using an LDA topic modeling on article abstracts, we further explore the top topic composition in the field and topic distribution across the journals in the past decade. Our analysis revealed diversity among contributing countries. The United States-led studies saw the highest share in HMC research, followed by Asia and Europe. Funding saw a dominant contribution from government and university. A diversity in thematic focus was observed with some topics' dominance among domain-specific journals. Significant differences among journals in terms of theory, method, investigated technology and contributing disciplinary affiliation were also found.
C1 [Makady, Heidi; Liu, Fanjue] Univ Florida, Gainesville, FL 32611 USA.
C3 State University System of Florida; University of Florida
RP Makady, H (corresponding author), Univ Florida, Gainesville, FL 32611 USA.
EM Makady.h@ufl.edu; fanjueliu@ufl.edu
RI Liu, Fanjue/JBS-1440-2023
OI Liu, Fanjue/0000-0001-5007-900X; Makady, Heidi/0000-0003-3083-6522
CR Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391
Auxier B., 2019, 10 tech-related trends that shaped the decade
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Borah P, 2017, NEW MEDIA SOC, V19, P616, DOI 10.1177/1461444815621512
Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011
Castro D., 2021, WHO IS WINNING AI RA, P106
Collum M, 2019, STATE UX RES 2019
Dautenhahn K, 2004, AGENT CULTURE, P45
Duke N.K., 2001, MULTIMETHODOLOGICAL, DOI [10.1080/10862960109548114, DOI 10.1080/10862960109548114]
ec.europa.eu, MAD EUR
Edwards A., 2018, Human-machine communication: Rethinking communication, technology, and ourselves, P29
elsevier.com, AI REPORT ARTIFICIAL
Fabbri A, 2018, AM J PUBLIC HEALTH, V108, pE9, DOI 10.2105/AJPH.2018.304677
Fortunati L., 2021, MOVING AHEAD HUMAN M
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Gunkel D.J., 2012, COMMUNICATION 1, V1, P1, DOI [DOI 10.7275/R5QJ7F7R, https://doi.org/10.7275/R5QJ7F7R]
Guo F, 2019, INT J HUM-COMPUT INT, V35, P1947, DOI 10.1080/10447318.2019.1587938
Guzman A., 2020, HUMAN MACHINE COMMUN, V1, P37, DOI [DOI 10.30658/HMC.1.3, 10.30658/hmc.1.3]
Guzman A.L., 2018, HUMAN MACHINE COMMUN
Guzman AL, 2020, NEW MEDIA SOC, V22, P70, DOI 10.1177/1461444819858691
Johanssen J., 2021, Human Machine Communication Journal (Print), V2, P173, DOI DOI 10.30658/HMC.2.9
Johnson C, 2019, Most Americans are wary of industry-funded research
journals.elsevier.com, COMPUT HUM BEHAV
Lewis SC, 2019, DIGIT JOURNAL, V7, P409, DOI 10.1080/21670811.2019.1577147
Lombard M., 1997, Journal of Computer-Mediated Communication, V3, pJCMC321, DOI [10.1111/j.1083-6101.1997.tb00072.x, DOI 10.1111/J.1083-6101.1997.TB00072.X, https://doi.org/10.1111/j.1083-6101.1997.tb00072.x]
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Nass C, 2000, J SOC ISSUES, V56, P81, DOI 10.1111/0022-4537.00153
Nielsen J., 2017, 100 YEAR VIEW USER E
Page MJ, 2021, INT J SURG, V88, DOI [10.1186/s13643-021-01626-4, 10.1016/j.jclinepi.2021.02.003, 10.1016/j.ijsu.2021.105906]
Palandrani P., 2020, A Decade of Change: How Tech Evolved in the 2010s and What's in Store for the 2020s. Global X ETFs
Panichella A, 2021, INFORM SOFTWARE TECH, V130, DOI 10.1016/j.infsof.2020.106411
Panichella A, 2013, PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013), P522, DOI 10.1109/ICSE.2013.6606598
Pavitt C, 2009, COMMUN Q, V57, P433, DOI 10.1080/01463370903320856
Picard RW, 2003, INT J HUM-COMPUT ST, V59, P55, DOI 10.1016/S1071-5819(03)00052-1
Schwarz C, 2018, STATA J, V18, P101, DOI 10.1177/1536867X1801800107
sgp.fas.org, GLOB RES DEV EXP FAC
Shibuya Y., 2022, MAPPING HCI RES METH
Smith RG, 2017, AI MAG, V38, P6, DOI 10.1609/aimag.v38i1.2709
Song H, 2020, J COMMUN, V70, P310, DOI 10.1093/joc/jqaa009
stars.library.ucf.edu, 2020, HUMAN MACHINE COMMUN
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Sundar S. S., 2008, DIGITAL MEDIA YOUTH, P73, DOI DOI 10.1162/DMAL.9780262562324.073
Sundar SS, 2000, COMMUN RES, V27, P683, DOI 10.1177/009365000027006001
Techleap.nl, NETHERLANDS EMERGING
Tomasello TK, 2010, NEW MEDIA SOC, V12, P531, DOI 10.1177/1461444809342762
Tong Tony W., 2021, Harvard Business Review
Wolk K, 2019, CYBERPSYCH BEH SOC N, V22, P151, DOI 10.1089/cyber.2018.0035
NR 47
TC 0
Z9 0
U1 3
U2 13
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-05311-5; 978-3-031-05310-8
J9 LECT NOTES COMPUT SC
PY 2022
VL 13302
BP 83
EP 103
DI 10.1007/978-3-031-05311-5_6
PG 21
WC Computer Science, Cybernetics; Computer Science, Theory & Methods;
Ergonomics
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Engineering
GA BU0OC
UT WOS:000870723000006
DA 2024-09-05
ER
PT J
AU Fernández, JMM
Moreno, JJG
Vergara-González, EP
Iglesias, GA
AF Mesa Fernandez, Jose Manuel
Gonzalez Moreno, Juan Jose
Vergara-Gonzalez, Eliseo P.
Alonso Iglesias, Guillermo
TI Bibliometric Analysis of the Application of Artificial Intelligence
Techniques to the Management of Innovation Projects
SO APPLIED SCIENCES-BASEL
LA English
DT Article
DE research; innovation; artificial intelligence; project management
AB Due to their specific characteristics, innovation projects are developed in contexts with great volatility, uncertainty, complexity, and even ambiguity. Project management has needed to adopt changes to ensure success in this type of project. Artificial intelligence (AI) techniques are being used in these changing environments to increase productivity. This work collected and analyzed those areas of technological innovation project management, such as risk management, costs, and deadlines, in which the application of artificial-intelligence techniques is having the greatest impact. With this objective, a search was carried out in the Scopus database including the three areas involved, that is, artificial intelligence, project management, and research and innovation. The resulting document set was analyzed using the co-word bibliographic method. Then, the results obtained were analyzed first from a global point of view and then specifically for each of the domains that the Project Management Institute (PMI) defines in project management. Some of the findings obtained indicate that sectors such as construction, software and product development, and systems such as knowledge management or decision-support systems have studied and applied the possibilities of artificial intelligence more intensively.
C1 [Mesa Fernandez, Jose Manuel; Gonzalez Moreno, Juan Jose; Vergara-Gonzalez, Eliseo P.; Alonso Iglesias, Guillermo] Univ Oviedo, Dept Min Exploitat & Prospecting, Project Engn Area, Independencia St 13, Oviedo 33004, Spain.
C3 University of Oviedo
RP Fernández, JMM (corresponding author), Univ Oviedo, Dept Min Exploitat & Prospecting, Project Engn Area, Independencia St 13, Oviedo 33004, Spain.
EM jmmesa@uniovi.es
RI Fernández, José Manuel Mesa/A-4994-2010
OI Fernández, José Manuel Mesa/0000-0002-0754-7426; Alonso Iglesias,
Guillermo/0000-0003-4282-0376
FU Regional Ministry of Science and Innovation; University of the
Principality of Asturias [AYUD/2021/50953]
FX This study was funded by the Regional Ministry of Science and Innovation
and the University of the Principality of Asturias (grant number
AYUD/2021/50953).
CR Afzal F, 2021, INT J MANAG PROJ BUS, V14, P300, DOI 10.1108/IJMPB-02-2019-0047
[Anonymous], Clarivate Web Of Science
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360
Bang S., 2022, Journal of Engineering, Project, and Production Management, V12, P224, DOI [10.32738/JEPPM-2022-0021, DOI 10.32738/JEPPM-2022-0021]
Bhukya R, 2022, EUR MANAG J, V40, P10, DOI 10.1016/j.emj.2021.04.001
Bianchini S, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104604
Chen HY, 2022, Z GEBURTSH NEONATOL, V226, P197, DOI 10.1055/a-1756-5518
Chenya L, 2022, IEEE ACCESS, V10, P72936, DOI 10.1109/ACCESS.2022.3189157
Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002
Eurostat, 2018, OSL MAN 2018
Ferreira Lorenzo G.L., 2014, REV CUBA CIENC INFOR, V8, P1
Chaparro XAF, 2019, REGE-REV GEST, V26, P212, DOI 10.1108/REGE-10-2018-0096
Fridgeirsson TV, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13042345
Galvez C, 2018, TRANSINFORMACAO, V30, P277, DOI 10.1590/2318-08892018000300001
Gao F, 2021, MICROSYST TECHNOL, V27, P1545, DOI 10.1007/s00542-019-04426-y
Gao H, 2022, MULTIMED TOOLS APPL, V81, P12973, DOI 10.1007/s11042-022-12208-4
Gómez-Marín N, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2022.100601
Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228
Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392
Hamid M, 2020, J INTELL FUZZY SYST, V38, P2635, DOI 10.3233/JIFS-179550
Han RY, 2021, IND MANAGE DATA SYST, V121, P2467, DOI 10.1108/IMDS-05-2021-0300
Havins Shannon R., 2020, IEEE Engineering Management Review, V48, P28, DOI 10.1109/EMR.2020.3007748
Herremans D, 2021, IEEE ACCESS, V9, P155826, DOI 10.1109/ACCESS.2021.3127548
Dam HK, 2019, 2019 IEEE/ACM 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: NEW IDEAS AND EMERGING RESULTS (ICSE-NIER 2019), P41, DOI 10.1109/ICSE-NIER.2019.00019
Huang YY, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019854644
Hussain T., 2017, P 2017 INT C COMP SC, P999
Ionescu VS, 2017, INT C INTELL COMP CO, P197, DOI 10.1109/ICCP.2017.8117004
Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004
Keding C, 2021, TECHNOL FORECAST SOC, V171, DOI 10.1016/j.techfore.2021.120970
Khalife M.A., 2021, Periodica Polytechnica Social and Management Sciences, V29, P70, DOI [10.3311/PPSO.15717, DOI 10.3311/PPSO.15717]
Lei YF, 2019, J PHYS CONF SER, V1168, DOI 10.1088/1742-6596/1168/2/022027
LingDa Zhao, 2011, 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC 2011), P822, DOI 10.1109/AIMSEC.2011.6010449
García JAL, 2017, INT J COMPUT INT SYS, V10, P320
Markopoulos E, 2020, ADV INTELL SYST, V965, P421, DOI 10.1007/978-3-030-20454-9_43
Martínez-López FJ, 2018, EUR J MARKETING, V52, P439, DOI 10.1108/EJM-11-2017-0853
Mascarenhas C, 2018, SCI PUBL POLICY, V45, P708, DOI 10.1093/scipol/scy003
McMillan L, 2022, ENG APPL ARTIF INTEL, V116, DOI 10.1016/j.engappai.2022.105472
Methlagl M, 2022, ISS EDUC RES, V32, P225
Miller GJ, 2022, LECT NOTES BUS INF P, V442, P65, DOI 10.1007/978-3-030-98997-2_4
Najdawi Anas, 2021, 2021 International Conference on Innovative Practices in Technology and Management (ICIPTM), P205, DOI 10.1109/ICIPTM52218.2021.9388357
Nassif AB, 2016, NEURAL COMPUT APPL, V27, P2369, DOI 10.1007/s00521-015-2127-1
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Park JY, 2018, DATA BRIEF, V17, P529, DOI 10.1016/j.dib.2018.01.033
PINO DIEZ Raul, 2001, Introduccion a la Inteligencia Artificial
Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012
Project Management Institute Project Management Institute, 2021, GUID PROJ MAN BOD KN
Rama SP, 2016, PROCEDIA COMPUT SCI, V85, P278, DOI 10.1016/j.procs.2016.05.234
Rao SS, 1999, J INTELL MANUF, V10, P231, DOI 10.1023/A:1008943723141
Relich M, 2021, IFAC PAPERSONLINE, V54, P1092, DOI 10.1016/j.ifacol.2021.08.128
Riahi Y, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114702
Saha V, 2020, BENCHMARKING, V27, P981, DOI 10.1108/BIJ-07-2019-0342
Salhab D., 2023, LECT NOTES CIV ENG, V247, P485, DOI [10.1007/978-981-19-0968-9_39, DOI 10.1007/978-981-19-0968-9_39]
scopus, Elsevier Scopus
Shao Z, 2022, EXPERT SYST APPL, V209, DOI 10.1016/j.eswa.2022.118221
Song J.E.H., INVESTIGATION EXISTE
Sousa ALR, 2022, IET SOFTW, V16, P14, DOI 10.1049/sfw2.12043
Sreerag R. S., 2022, International Journal of Management and Enterprise Development, V21, P198, DOI 10.1504/IJMED.2022.122101
van Eck N.J., VOSviewer-Visualizing Scientific Landscapes
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Wang ZY, 2012, SCIENTOMETRICS, V90, P855, DOI 10.1007/s11192-011-0563-y
Wauters M, 2017, EUR J OPER RES, V259, P1097, DOI 10.1016/j.ejor.2016.11.018
Yang CY, 2018, PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2018) / 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018), P185, DOI 10.1145/3297156.3297227
Yu DJ, 2018, CURR SCI INDIA, V114, P747, DOI 10.18520/cs/v114/i04/747-758
Zappi Daniela C., 2015, Rodriguésia, V66, P1085
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
Zhao L, 2020, PROCESS SAF ENVIRON, V133, P169, DOI 10.1016/j.psep.2019.11.014
NR 71
TC 3
Z9 3
U1 24
U2 81
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-3417
J9 APPL SCI-BASEL
JI Appl. Sci.-Basel
PD NOV
PY 2022
VL 12
IS 22
AR 11743
DI 10.3390/app122211743
PG 15
WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials
Science, Multidisciplinary; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Engineering; Materials Science; Physics
GA 6J8OV
UT WOS:000887078700001
OA gold
DA 2024-09-05
ER
PT J
AU Chen, XL
Zou, D
Xie, HR
Su, F
AF Chen, Xieling
Zou, Di
Xie, Haoran
Su, Fan
TI Twenty-five years of computer-assisted language learning: A topic
modeling analysis
SO LANGUAGE LEARNING & TECHNOLOGY
LA English
DT Article
DE Computer Assisted Language Learning; Structural Topic Modeling;
Bibliometrics; Mobile Assisted Language Learning
ID MEDIATED COMMUNICATION; TECHNOLOGIES; SLA; METAANALYSIS; PERFORMANCE;
CULTURE; IMPACT; SENSE; EFL; CMC
AB The advance of educational technologies and digital devices have made computer-assisted language learning (CALL) an active interdisciplinary field with increasing research potential and topic diversity. Questions like "what topics and technologies attract the interest of the CALL community?," "how have these topics and technologies evolved?," and "what is the future of CALL?" are key to understanding where the CALL field has been and where it is going. To help answer these questions, the present review combined structural topic modeling, the Mann-Kendall trend test, and hierarchical clustering with bibliometrics to investigate the research status, trends, and prominent issues in CALL from 1,295 articles over the past 25 years ending in 2020. Major findings revealed that Social Sciences Citation Indexed journals such as Computer Assisted Language Learning, Language Learning & Technology, and ReCALL contributed most to the field. Topics that drew the most interest included mobile-assisted language learning, project-based learning, and blended learning. Topics drawing increasing research interest include mobile-assisted language learning, seamless learning, wiki-based learning, and virtual world and virtual reality. Additionally, the development of mobile devices, games, and virtual worlds continuously promote research attention. Finally, the review showed that scholars and educators are integrating different technologies, such as the mixed use of mobile technology and glosses/annotations for vocabulary learning, and their application into various contexts; one such context being the integration of digital multimodal composing into blended project-based learning.
C1 [Chen, Xieling; Zou, Di; Su, Fan] Educ Univ Hong Kong, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Lingnan University
RP Zou, D (corresponding author), Educ Univ Hong Kong, Hong Kong, Peoples R China.
EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; hrxie2@gmail.com;
s1134959@s.eduhk.hk
RI Xie, Haoran/AFS-3515-2022
OI Xie, Haoran/0000-0003-0965-3617; ZOU, Di/0000-0001-8435-9739
FU Lingnan University [102489]; Education University of Hong Kong
[RG15/20-21R, KT16/20-21]
FX We are grateful for the anonymous reviewers' helpful comments and
suggestions on earlier drafts of this paper. This research was funded by
the Teaching Development Grant (102489) from Lingnan University, and the
Internal Research Grants (RG15/20-21R, KT16/20-21) from the Education
University of Hong Kong.
CR Acquah EO, 2020, COMPUT EDUC, V143, DOI 10.1016/j.compedu.2019.103667
Adolphs S, 2018, SYSTEM, V78, P173, DOI 10.1016/j.system.2018.07.014
Barrot JS, 2018, J COMPUT ASSIST LEAR, V34, P863, DOI 10.1111/jcal.12295
Bax S., 2003, System, V31, P13, DOI [DOI 10.1016/S0346-251X(02)00071-4, 10.1016/S0346-251X, DOI 10.1016/S0346-251X]
Beatty K., 2013, Teaching researching: Computer-assisted language learning
Bordeleau P., 2000, EUROCALL
Bull S, 2016, RECALL, V28, P147, DOI 10.1017/S0958344015000282
Chee KN, 2017, EDUC TECHNOL SOC, V20, P113
Chen CM, 2016, INTERACT LEARN ENVIR, V24, P681, DOI 10.1080/10494820.2014.917107
Chen JC, 2016, AUSTRALAS J EDUC TEC, V32, P1
Chen MP, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103602
Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907
Cho MH, 2021, STUD HIGH EDUC, V46, P509, DOI 10.1080/03075079.2019.1643303
Chun DM, 2016, LANG LEARN TECHNOL, V20, P98
Cushion CJ, 2019, EDUC REV, V71, P631, DOI 10.1080/00131911.2018.1457010
Egbert J., 2005, CALL Essentials: Principles and Practice in CALL Classrooms
Gamper J., 2002, Computer Assisted Language Learning, V15, P329, DOI 10.1076/call.15.4.329.8270
Gelan A, 2018, COMPUT ASSIST LANG L, V31, P294, DOI 10.1080/09588221.2017.1418382
Gillespie J, 2020, RECALL, V32, P127, DOI 10.1017/S0958344020000051
Gimeno-Sanz A, 2016, COMPUT ASSIST LANG L, V29, P1102, DOI 10.1080/09588221.2015.1103271
Godfroid A, 2017, LANG LEARN, V67, P819, DOI 10.1111/lang.12246
Godwin-Jones R, 2005, LANG LEARN TECHNOL, V9, P17
Golonka EM, 2014, COMPUT ASSIST LANG L, V27, P70, DOI 10.1080/09588221.2012.700315
Hafner CA, 2015, TESOL QUART, V49, P486, DOI 10.1002/tesq.238
Harrington M., 2001, System, V29, P15, DOI DOI 10.1016/S0346-251X(00)00043-9
Hubbard P., 2009, Computer Assisted Language Learning
Hung HT, 2018, COMPUT EDUC, V126, P89, DOI 10.1016/j.compedu.2018.07.001
Hwang GJ, 2019, INTERACT LEARN ENVIR, V27, P567, DOI 10.1080/10494820.2018.1486861
Jiang LJ, 2021, LANG TEACH RES, V25, P613, DOI 10.1177/1362168819864975
Lee L, 2014, RECALL, V26, P281, DOI 10.1017/S0958344014000111
Lee L, 2010, CALICO J, V27, P260, DOI 10.11139/cj.27.2.260-276
Lee SM, 2020, COMPUT ASSIST LANG L, V33, P936, DOI 10.1080/09588221.2019.1602545
Levy M, 1997, Computer-assisted language learning: Context and conceptualization
Levy M., 2005, COMPUT ASSIST LANG L, V18, P143, DOI DOI 10.1080/09588220500208884
Lin HF, 2014, LANG LEARN TECHNOL, V18, P120
Liu M, 2004, COMPUT HUM BEHAV, V20, P357, DOI 10.1016/S0747-5632(03)00052-9
Macaro E, 2012, LANG TEACHING, V45, P1, DOI 10.1017/S0261444811000395
Major L, 2018, EDUC INF TECHNOL, V23, P1995, DOI 10.1007/s10639-018-9701-y
Makarenkov V, 2019, ENG APPL ARTIF INTEL, V84, P1, DOI 10.1016/j.engappai.2019.05.003
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Min Liu, 2002, Journal of Research on Technology in Education, V34, P250
Mohsen MA, 2016, BRIT J EDUC TECHNOL, V47, P1232, DOI 10.1111/bjet.12305
Mohsen MA, 2011, RECALL, V23, P135, DOI 10.1017/S095834401100005X
Nagendrababu V, 2019, INT ENDOD J, V52, P181, DOI 10.1111/iej.12995
Nutta JW, 2002, FOREIGN LANG ANN, V35, P293, DOI 10.1111/j.1944-9720.2002.tb01855.x
Ortega L, 2017, CALICO J, V34, P285, DOI 10.1558/cj.33855
Paily M.U., 2013, International Forum of Teaching and Studies, V9, P39
Parmaxi Antigoni, 2017, Interactive Learning Environments, V25, P704, DOI 10.1080/10494820.2016.1172243
Parmaxi A, 2016, UNIVERSAL ACCESS INF, V15, P169, DOI 10.1007/s10209-015-0405-4
Plass JL, 2003, COMPUT HUM BEHAV, V19, P221, DOI 10.1016/S0747-5632(02)00015-8
Plowman L, 1996, BRIT J EDUC TECHNOL, V27, P92, DOI 10.1111/j.1467-8535.1996.tb00716.x
Reinhardt J, 2019, LANG TEACHING, V52, P1, DOI 10.1017/S0261444818000356
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Romero C, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1355
Saito H, 2004, FOREIGN LANG ANN, V37, P111, DOI 10.1111/j.1944-9720.2004.tb02178.x
Segers E, 2002, COMPUT EDUC, V39, P207, DOI 10.1016/S0360-1315(02)00034-9
Sharifi M, 2018, COMPUT ASSIST LANG L, V31, P413, DOI 10.1080/09588221.2017.1412325
Smith B, 2003, COMPUT HUM BEHAV, V19, P703, DOI 10.1016/S0747-5632(03)00011-6
Sung YT, 2015, EDUC RES REV-NETH, V16, P68, DOI 10.1016/j.edurev.2015.09.001
Svensson G, 2010, EUR J MARKETING, V44, P23, DOI 10.1108/03090561011008583
Swaffar J, 1997, MOD LANG J, V81, P175, DOI 10.2307/328785
Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599
Yang J., 2013, English Language Teaching, V6, P19, DOI DOI 10.5539/ELT.V6N7P19
Yang JC, 2018, EDUC TECHNOL SOC, V21, P174
Yang J, 2019, COMPUT ASSIST LANG L, V32, P366, DOI 10.1080/09588221.2018.1517125
Yang S. J. H., 2021, Computers and Education: Artificial Intelligence, V2, DOI [DOI 10.1016/J.CAEAI.2021.100008, 10.1016/j.caeai.2021.100008]
Yuan CH, 2020, COMPUT SIST, V24, P17, DOI [10.13053/CyS-24-1-3350, 10.13053/cys-24-1-3350]
Yuping Wang, 2001, CALICO Journal, V18, P539
Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P2790, DOI 10.1080/09588221.2021.1896555
Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666
Zurita G, 2005, EDUC TECHNOL SOC, V8, P149
NR 73
TC 36
Z9 38
U1 13
U2 88
PU UNIV HAWAII, NATL FOREIGN LANGUAGE RESOURCE CENTER
PI HONOLULU
PA 1859 EAST WEST RD, 106, HONOLULU, HI 96822 USA
SN 1094-3501
J9 LANG LEARN TECHNOL
JI Lang. Learn. Technol.
PD OCT
PY 2021
VL 25
IS 3
BP 151
EP 185
PG 35
WC Education & Educational Research; Linguistics
WE Social Science Citation Index (SSCI)
SC Education & Educational Research; Linguistics
GA WG0MM
UT WOS:000706693200012
DA 2024-09-05
ER
PT J
AU Aryadoust, V
AF Aryadoust, Vahid
TI The vexing problem of validity and the future of second language
assessment
SO LANGUAGE TESTING
LA English
DT Article
DE Artificial intelligence (AI); authenticity; interdisciplinary research;
language assessment; neuroscience; validity; validity arguments
AB Construct validity and building validity arguments are some of the main challenges facing the language assessment community. The notion of construct validity and validity arguments arose from research in psychological assessment and developed into the gold standard of validation/validity research in language assessment. At a theoretical level, construct validity and validity arguments conflate the scientific reasoning in assessment and policy matters of ethics. Thus, a test validator is expected to simultaneously serve the role of conducting scientific research and examining the consequential basis of assessments. I contend that validity investigations should be decoupled from the ethical and social aspects of assessment. In addition, the near-exclusive focus of empirical construct validity research on cognitive processing has not resulted in sufficient accuracy and replicability in predicting test takers' performance in real language use domains. Accordingly, I underscore the significance of prediction in validation, in contrast to explanation, and propose that the question to ask might not so much be about what a test measures as what type of methods and tools can better generate language use profiles. Finally, I suggest that interdisciplinary alliances with cognitive and computational neuroscience and artificial intelligence (AI) fields should be forged to meet the demands of language assessment in the 21st century.
C1 [Aryadoust, Vahid] Nanyang Technol Univ, Natl Inst Educ, Singapore, Singapore.
[Aryadoust, Vahid] Nanyang Technol Univ, Natl Inst Educ, Singapore 637616, Singapore.
C3 Nanyang Technological University; National Institute of Education (NIE)
Singapore; Nanyang Technological University; National Institute of
Education (NIE) Singapore
RP Aryadoust, V (corresponding author), Nanyang Technol Univ, Natl Inst Educ, Singapore 637616, Singapore.
EM Vahid.aryadoust@nie.edu.sg
RI Aryadoust, Vahid/AAJ-1764-2020
OI Aryadoust, Vahid/0000-0001-6960-2489
CR Aryadoust V, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.01941
Bachman L., 1996, LANGUAGE TESTING PRA
Borsboom D, 2016, ASSESS EDUC, V23, P281, DOI 10.1080/0969594X.2016.1141750
Buck G., 2001, Assessing Listening
CAMPBELL DT, 1959, PSYCHOL BULL, V56, P81, DOI 10.1037/h0046016
Chalhoub-Deville M., 2020, BRIT COUNCIL MONOGRA
Chapelle CA, 2021, CAM APPL L, P1, DOI 10.1017/9781108669849
CRONBACH LJ, 1955, PSYCHOL BULL, V52, P281, DOI 10.1037/h0040957
Davies A, 2005, HANDBOOK OF RESEARCH IN SECOND LANGUAGE TEACHING AND LEARNING, P795
Davies A, 2012, LANG TEST, V29, P37, DOI 10.1177/0265532211417213
Gruba P., 2019, SOCIAL PERSPECTIVES, P229
Hasrol B. S., 2022, RES METHODS APPL LIN, V1
Ioannidis JPA, 2005, PLOS MED, V2, P696, DOI 10.1371/journal.pmed.0020124
Kane M, 2004, APPL MEAS EDUC, V17, P221, DOI 10.1207/s15324818ame1703_1
KANE MT, 1992, PSYCHOL BULL, V112, P527, DOI 10.1037/0033-2909.112.3.527
LOEVINGER J, 1957, PSYCHOL REP, V3, P635, DOI 10.2466/PR0.3.7.635-694
MESSICK S, 1975, AM PSYCHOL, V30, P955, DOI 10.1037/0003-066X.30.10.955
Messick S., 1989, Educational Measurement, P13, DOI DOI 10.7203/RELIEVE.22.1.8248
Newton PE., 2014, Validity in educational psychological assessment
Toulmin S.E., 2003, USES ARGUMENT, DOI DOI 10.1017/CBO9780511840005
Verheij, 2006, ARGUMENTATION, P347
WHITELY SE, 1983, PSYCHOL BULL, V93, P179, DOI 10.1037/0033-2909.93.1.179
Yarkoni T, 2017, PERSPECT PSYCHOL SCI, V12, P1100, DOI 10.1177/1745691617693393
Zeleznikow J, 2006, ARGUMENTATION LIB, V10, P289, DOI 10.1007/978-1-4020-4938-5_19
NR 24
TC 7
Z9 7
U1 10
U2 25
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0265-5322
EI 1477-0946
J9 LANG TEST
JI Lang. Test.
PD JAN
PY 2023
VL 40
IS 1
BP 8
EP 14
DI 10.1177/02655322221125204
EA JAN 2023
PG 7
WC Linguistics; Language & Linguistics
WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Linguistics
GA 7W5MS
UT WOS:000911148000001
DA 2024-09-05
ER
PT J
AU Wang, PL
Su, J
AF Wang, Peiling
Su, Jing
TI Post-publication expert recommendations in faculty opinions
(F1000Prime): Recommended articles and citations
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Post-publication expert recommendations; Cognitive authorities; Citation
analysis; Sentiment analysis; F1000Prime; Faculty Opinions
AB A B S T R A C T This exploratory study of the post-publication expert recommendations (PPER) of biomedical articles in Faculty Opinions observed whether the recommended articles were cited differently from other articles in the same journal. The collected data include 830 research articles published in Cell, Nature Genetics, Nature Medicine , and PLoS Biology in 2010 and their 205,976 citations in Web of Science (WoS) from 2010 to 2019. Of the 830 articles, 417 were recommended in Faculty Opinions. A recommendation made by a Faculty Member (FM) includes a star rating and optional classification and commentary. For Nature Genetics, Nature Medicine , and PLoS Biology , the recommended articles (dataset.FM) were cited significantly more than other articles (dataset.other). Certain correlations were found between recommendation level and citedness, but a scaled mapping showed no linear relationship between the two measurements. The majority of the articles reached a citation peak two years after publication. The most assigned classification tags are New Finding, Interesting Hypothesis, Technical Advance, and Novel Drug Target. Sentiment analysis of the 118 recommendations of the 30 top articles found that FM ratings were correlated with sentiment intensity level. The repeated measures ANOVA did not show the Matthew effect of citations. Suggestions include refining Faculty Opinions' rating schema.
C1 [Wang, Peiling] Univ Tennessee, Sch Informat Sci, 1345 Circle Pk Dr, Knoxville, TN 37932 USA.
[Su, Jing] Vanderbilt Univ, Ctr Knowledge Management, Med Ctr, 3401 West End Ave, Nashville, TN 37203 USA.
C3 University of Tennessee System; University of Tennessee Knoxville;
Vanderbilt University
RP Wang, PL (corresponding author), Univ Tennessee, Sch Informat Sci, 1345 Circle Pk Dr, Knoxville, TN 37932 USA.
EM peilingw@utk.edu; jing.su@vumc.org
OI Wang, Peiling/0000-0003-4202-7570; Su, Jing/0000-0001-6699-6806
CR Allen L, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005910
[Anonymous], 1998, Hedging in scientific research articles, DOI DOI 10.1075/PBNS.54
Bornmann L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197133
Bornmann L, 2017, J ASSOC INF SCI TECH, V68, P1064, DOI 10.1002/asi.23729
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2415, DOI 10.1002/asi.23334
Bornmann L, 2015, J INFORMETR, V9, P419, DOI 10.1016/j.joi.2015.03.001
Bornmann L, 2015, J INFORMETR, V9, P477, DOI 10.1016/j.joi.2015.04.001
Drivas K, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.103951
Garfield E., 1989, CURR COMMENTS
Hyland K, 2008, ANNU REV INFORM SCI, V42, P297
Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112
Leydesdorff L, 1998, SCIENTOMETRICS, V43, P5, DOI 10.1007/BF02458391
Mohammadi E, 2013, SCIENTOMETRICS, V97, P383, DOI 10.1007/s11192-013-0993-9
National Science Foundation, 2019, NSB20206
Small H, 2019, PRO INT CONF SCI INF, P554
Thelwall M, 2020, ONLINE INFORM REV, V44, P1057, DOI 10.1108/OIR-11-2019-0347
Thor A, 2018, SCIENTOMETRICS, V116, P591, DOI 10.1007/s11192-018-2733-7
van Raan AFJ, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0223373
Waltman L, 2014, J ASSOC INF SCI TECH, V65, P433, DOI 10.1002/asi.23040
Wang P., 2005, P 2005 ASIST ANN M C, DOI [10.1002/meet.14504201202, DOI 10.1002/MEET.14504201202]
Wang PL, 2020, SCIENTOMETRICS, V122, P933, DOI 10.1007/s11192-019-03302-w
Wang PL, 1999, J AM SOC INFORM SCI, V50, P98
Wardle DA, 2010, IDEAS ECOL EVOL, V3, P11, DOI 10.4033/iee.2010.3.3.c
White HD, 2001, SCIENTOMETRICS, V51, P607, DOI 10.1023/A:1019607522125
Wolfram D, 2021, RES EVALUAT, V30, P314, DOI 10.1093/reseval/rvab005
NR 25
TC 2
Z9 2
U1 10
U2 38
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD AUG
PY 2021
VL 15
IS 3
AR 101174
DI 10.1016/j.joi.2021.101174
EA JUN 2021
PG 20
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA WB5JH
UT WOS:000703607500017
DA 2024-09-05
ER
PT J
AU Sripathi, KN
Moscarella, RA
Steele, M
Yoho, R
You, HYS
Prevost, LB
Urban-Lurain, M
Merrill, J
Haudek, KC
AF Sripathi, Kamali N. N.
Moscarella, Rosa A. A.
Steele, Matthew
Yoho, Rachel
You, Hyesun
Prevost, Luanna B. B.
Urban-Lurain, Mark
Merrill, John
Haudek, Kevin C. C.
TI Machine Learning Mixed Methods Text Analysis: An Illustration From
Automated Scoring Models of Student Writing in Biology Education
SO JOURNAL OF MIXED METHODS RESEARCH
LA English
DT Article
DE machine learning; predictive models; constructed response assessments;
biology assessment; biology education research
ID EXPLANATIONS
AB Assessing student knowledge based on their writing using traditional qualitative methods is time-consuming. To improve speed and consistency of text analysis, we present our mixed methods development of a machine learning predictive model to analyze student writing. Our approach involves two stages: first an exploratory sequential design, and second an iterative complex design. We first trained our predictive model using qualitative coding of categories (ideas) in student writing. We next revised our model based on feedback from instructor-users. The model itself highlighted categories in need of revision. The contribution to mixed methods research lies in our innovative use of the machine learning tool as a rapid, consistent additional coder, and a resource that can predict codes for new student writing.
C1 [Sripathi, Kamali N. N.] Univ Calif Davis, UC Davis Genome Ctr, Davis, CA USA.
[Moscarella, Rosa A. A.] Univ Massachusetts Amherst, Biol Dept, Amherst, MA USA.
[Steele, Matthew; Urban-Lurain, Mark] Michigan State Univ, CREATE STEM Inst, E Lansing, MI USA.
[Yoho, Rachel] George Mason Univ, Stearns Ctr Teaching & Learning, Fairfax, VA USA.
[You, Hyesun] Univ Iowa, Coll Educ, Iowa, LA USA.
[Prevost, Luanna B. B.] Univ S Florida, Dept Integrat Biol, Tampa, FL USA.
[Merrill, John] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI USA.
[Haudek, Kevin C. C.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI USA.
[Sripathi, Kamali N. N.] Univ Calif Davis, UC Davis Genome Ctr, Davis, CA 95616 USA.
C3 University of California System; University of California Davis;
University of Massachusetts System; University of Massachusetts Amherst;
Michigan State University; George Mason University; State University
System of Florida; University of South Florida; Michigan State
University; Michigan State University; University of California System;
University of California Davis
RP Sripathi, KN (corresponding author), Univ Calif Davis, UC Davis Genome Ctr, Davis, CA 95616 USA.
EM ksripathi@ucdavis.edu
RI Haudek, Kevin/AAU-9879-2021
OI Haudek, Kevin/0000-0003-1422-6038; Urban-Lurain,
Mark/0000-0002-2243-8252
FU National Science Foundation [DUE 1323162, 1347740]; Direct For Education
and Human Resources; Division Of Undergraduate Education [1347740]
Funding Source: National Science Foundation
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: We
gratefully acknowledge members of the Automated Analysis of Constructed
Response research group for helpful conversations. This material is
based upon work supported by the National Science Foundation (DUE
1323162 and 1347740).
CR American Association for the Advancement of Science, 2011, Final Report
[Anonymous], 2001, KNOWING WHAT STUDENT, V19, P48, DOI DOI 10.17226/10019
[Anonymous], 2008, International handbook of research on conceptual change
Bazeley P., 2018, INTEGRATING ANAL MIX, P253
Bazeley P., 2018, INTEGRATING ANAL MIX, P158
Bennett R. E., 1990, RR907 ED TEST SERV
BENNETT RE, 1993, CONSTRUCTION VERSUS CHOICE IN COGNITIVE MEASUREMENT : ISSUES IN CONSTRUCTED RESPONSE, PERFORMANCE TESTING, AND PORTFOLIO ASSESSMENT, P1
Bierema A, 2021, INT J RES METHOD EDU, V44, P395, DOI 10.1080/1743727X.2020.1804541
BIRENBAUM M, 1987, APPL PSYCH MEAS, V11, P385, DOI 10.1177/014662168701100404
Brew C., 2013, Handbook of automated essay evaluation: Current applications and new directions, P136
Burstein J., 2013, Handbook of automated essay evaluation: Current applications and new directions, P55
Caruana R., 2004, P 21 INT C MACH LEAR, P18
Chang T, 2021, J MIX METHOD RES, V15, P398, DOI 10.1177/15586898211021196
Chi M., 2011, INT J ARTIFICIAL INT, V21, P83, DOI [DOI 10.3233/JAI-2011-014, 10.3233/JAI-2011-014]
Chicco D, 2020, BMC GENOMICS, V21, DOI 10.1186/s12864-019-6413-7
Cresswell J.W., 2015, A Concise Introduction to Mixed Methods Research
Creswell J. W., 2018, Designing and conducting mixed methods research, V3rd
Crowston K, 2012, INT J SOC RES METHOD, V15, P523, DOI 10.1080/13645579.2011.625764
Derry SJ, 1996, EDUC PSYCHOL, V31, P163, DOI 10.1207/s15326985ep3103&4_2
Dewey J., 1948, Education and the Philosophic Mind
Donnelly DF, 2015, J SCI EDUC TECHNOL, V24, P861, DOI 10.1007/s10956-015-9569-1
Ferri C, 2009, PATTERN RECOGN LETT, V30, P27, DOI 10.1016/j.patrec.2008.08.010
Fetters MD, 2017, J MIX METHOD RES, V11, P291, DOI 10.1177/1558689817714066
Gerard L, 2019, INT J COMP-SUPP COLL, V14, P291, DOI 10.1007/s11412-019-09298-y
Given L., 2008, The SAGE Encyclopedia of Qualitative Research Methods, DOI [DOI 10.4135/9781412963909, 10.4135/9781412963909]
Guetterman TC, 2018, J MED INTERNET RES, V20, DOI 10.2196/jmir.9702
Ha MS, 2011, CBE-LIFE SCI EDUC, V10, P379, DOI 10.1187/cbe.11-08-0081
Hartley LM, 2012, BIOSCIENCE, V62, P488, DOI 10.1525/bio.2012.62.5.10
Haudek K. C., 2015, NAT ASS RES SCI TEAC
Hogan TP, 2007, APPL MEAS EDUC, V20, P427, DOI 10.1080/08957340701580736
James W., 1907, Pragmatism: A New Name for Some Old Ways of Thinking., DOI 10.1037/10851-000
Jescovitch LN, 2021, J SCI EDUC TECHNOL, V30, P150, DOI 10.1007/s10956-020-09858-0
Jurka TP, 2013, R J, V5, P6
Kliegr T., 2018, REV POSSIBLE EFFECTS
Kotsiantis SB, 2007, INFORM-J COMPUT INFO, V31, P249
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Large J, 2019, DATA MIN KNOWL DISC, V33, P1674, DOI 10.1007/s10618-019-00638-y
Lintean M., 2012, International Journal of Artificial Intelligence in Education, V21, P169, DOI [10.3233/JAI-2012-022, DOI 10.3233/JAI-2012-022]
Litman D, 2016, AAAI CONF ARTIF INTE, P4170
Liu OL, 2014, EDUC MEAS-ISSUES PRA, V33, P19, DOI 10.1111/emip.12028
Martinez ME, 1999, EDUC PSYCHOL-US, V34, P207, DOI 10.1207/s15326985ep3404_2
McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031
Moharreri K., 2014, EVOL EDUC OUTREACH, V7, P15, DOI DOI 10.1186/s12052-014-0015-2
Nehm RH, 2012, J SCI EDUC TECHNOL, V21, P183, DOI 10.1007/s10956-011-9300-9
Nehm RH, 2012, J SCI EDUC TECHNOL, V21, P56, DOI 10.1007/s10956-011-9282-7
Noyes K, 2020, J CHEM EDUC, V97, P3923, DOI 10.1021/acs.jchemed.0c00445
O'Halloran KL, 2018, J MIX METHOD RES, V12, P11, DOI 10.1177/1558689816651015
Powers DE, 2015, APPL MEAS EDUC, V28, P130, DOI 10.1080/08957347.2014.1002920
Renz SM, 2018, QUAL HEALTH RES, V28, P824, DOI 10.1177/1049732317753586
Rosenberg JM, 2021, J SCI EDUC TECHNOL, V30, P255, DOI 10.1007/s10956-020-09862-4
Shermis M. D., 1998, ANN M AM ED RES ASS
Shermis MarkD., 2013, HDB AUTOMATED ESSAY
Sieke SA, 2019, CBE-LIFE SCI EDUC, V18, DOI 10.1187/cbe.18-09-0173
Simkin MG, 2005, DECIS SCI-J INNOV ED, V3, P73, DOI 10.1111/j.1540-4609.2005.00053.x
Sripathi KN, 2019, CBE-LIFE SCI EDUC, V18, DOI 10.1187/cbe.18-11-0227
Stanger-Hall KF, 2012, CBE-LIFE SCI EDUC, V11, P294, DOI 10.1187/cbe.11-11-0100
The Carnegie Classification of Institutions of Higher Education, CARN CLASS
Uhl JD, 2021, CBE-LIFE SCI EDUC, V20, DOI 10.1187/cbe.20-06-0122
Urban-Lurain M., 2015, COMPUT ED J, V6, P65
Wallach H. M., 2006, P 23 INT C MACH LEAR, V23, P977, DOI [10.1145/1143844.1143967, DOI 10.1145/1143844.1143967]
Wilson Christopher D, 2006, CBE Life Sci Educ, V5, P323, DOI 10.1187/cbe.06-02-0142
Wulff P, 2022, J SCI EDUC TECHNOL, V31, P490, DOI 10.1007/s10956-022-09969-w
Zeng XD, 2014, SCI WORLD J, DOI 10.1155/2014/961747
Zhai XM, 2021, J SCI EDUC TECHNOL, V30, P361, DOI 10.1007/s10956-020-09875-z
Zhai XM, 2020, J RES SCI TEACH, V57, P1430, DOI 10.1002/tea.21658
Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757
NR 66
TC 5
Z9 5
U1 6
U2 17
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1558-6898
EI 1558-6901
J9 J MIX METHOD RES
JI J. Mix Methods Res.
PD JAN
PY 2024
VL 18
IS 1
BP 48
EP 70
DI 10.1177/15586898231153946
EA FEB 2023
PG 23
WC Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Social Sciences - Other Topics
GA AO0N2
UT WOS:000926059800001
DA 2024-09-05
ER
PT J
AU Hinojo-Lucena, FJ
Aznar-Díaz, I
Cáceres-Reche, MP
Romero-Rodríguez, JM
AF Hinojo-Lucena, Francisco-Javier
Aznar-Diaz, Inmaculada
Caceres-Reche, Maria-Pilar
Romero-Rodriguez, Jose-Maria
TI Artificial Intelligence in Higher Education: A Bibliometric Study on its
Impact in the Scientific Literature
SO EDUCATION SCIENCES
LA English
DT Article
DE artificial intelligence; emerging technologies; higher education;
bibliometric study
ID PHYSICAL-EDUCATION; INDICATORS; QUALITY; WEB; JCR
AB Artificial intelligence has experienced major developments in recent years and represents an emerging technology that will revolutionize the ways in which human beings live. This technology is already being introduced in the field of higher education, although many teachers are unaware of its scope and, above all, of what it consists of. Therefore, the purpose of this paper was to analyse the scientific production on artificial intelligence in higher education indexed in Web of Science and Scopus databases during 2007-2017. A bespoke methodology of bibliometric studies was used in the most relevant databases in social science. The sample was composed of 132 papers in total. From the results obtained, it was observed that there is a worldwide interest in the topic and that the literature on this subject is just at an incipient stage. We conclude that, although artificial intelligence is a reality, the scientific production about its application in higher education has not been consolidated.
C1 [Hinojo-Lucena, Francisco-Javier; Aznar-Diaz, Inmaculada; Caceres-Reche, Maria-Pilar; Romero-Rodriguez, Jose-Maria] Univ Granada, Dept Didact & Sch Org, E-18071 Granada, Spain.
C3 University of Granada
RP Romero-Rodríguez, JM (corresponding author), Univ Granada, Dept Didact & Sch Org, E-18071 Granada, Spain.
EM fhinojo@ugr.es; iaznar@ugr.es; caceres@ugr.es; romejo@ugr.es
RI HINOJO-LUCENA, FRANCISCO JAVIER/K-2517-2014; Romero-Rodríguez,
José-María/O-2233-2019; BUCCINI, FRANCESCA/HTM-4917-2023; RECHE, MARÍA
PILAR CÁCERES/AAE-4164-2020; AZNAR DIAZ, INMACULADA/K-2486-2014
OI Romero-Rodríguez, José-María/0000-0002-9284-8919; RECHE, MARÍA PILAR
CÁCERES/0000-0002-6323-8054; AZNAR DIAZ, INMACULADA/0000-0002-0018-1150
CR Díaz IA, 2018, EDUC KNOWL SOC, V19, P53, DOI 10.14201/eks20181935368
Becker S.A., 2017, NMC HORIZON REPORT 2
Benke K, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15122796
Christie M, 2017, EUR J ENG EDUC, V42, P5, DOI 10.1080/03043797.2016.1254160
de Solla Price DerekJ., 1986, Little science, big science- and beyond
Duart JM, 2017, REV ESP PEDAGOG, V75, P29, DOI 10.22550/REP75-1-2017-02
Ganzfried S, 2018, EDUC SCI, V8, DOI 10.3390/educsci8010036
García P, 2008, J COMPUT ASSIST LEAR, V24, P305, DOI 10.1111/j.1365-2729.2007.00262.x
Garrido A, 2012, EDUC SCI, V2, P22, DOI 10.3390/educ2010022
Gomes I, 2018, MOVIMENTO-PORTO ALEG, V24, P427, DOI 10.22456/1982-8918.73701
Gonzalez de Dios., 1997, Anales Espanoles de Pediatria: Publicacion Oficial de la Asociacion Espanola de Pediatria, V47, P235
Gutierrez-Braojos C., 2015, REV EDUC, V370, P121
Hernández-González V, 2013, EUR J HUM MOV, V30, P1
Ifenthaler D, 2014, TECHNOL KNOWL LEARN, V19, P241, DOI 10.1007/s10758-014-9224-6
Jara N.P., 2018, REV CUB INFORM CIENC, V29, P1
Leer R., 2013, International Journal of Organizational Innovation, V5, P14
Lemaignan S, 2017, ARTIF INTELL, V247, P45, DOI 10.1016/j.artint.2016.07.002
Leon R, 2017, INNOVA Research Journal, V2, P412, DOI [10.33890/innova.v2.n8.1.2017.399, DOI 10.33890/INNOVA.V2.N8.1.2017.399]
López-Meneses E, 2015, COMUNICAR, V22, P73, DOI 10.3916/C44-2015-08
McLaren BM, 2011, COMPUT EDUC, V56, P574, DOI 10.1016/j.compedu.2010.09.019
Moridis CN, 2009, COMPUT EDUC, V53, P644, DOI 10.1016/j.compedu.2009.04.002
Reverter Masià Joaquim, 2013, Perspect. ciênc. inf., V18, P3, DOI 10.1590/S1413-99362013000300002
Rivers K, 2017, INT J ARTIF INTELL E, V27, P37, DOI 10.1007/s40593-015-0070-z
Rose R., 2016, INTELLIGENCE UNLEASH
Rousseau B., 2000, Cybermetrics, V4
Sanchez Vila E.M., 2007, InteligenciaArtificial. Revista Iberoamericana de InteligenciaArtificial, V11, P7
Santos W. dos, 2018, Movimento, V24, P9, DOI [10.22456/1982-8918.63067, DOI 10.22456/1982-8918.63067]
Soledad C., 2004, RELIEVE, V10, P3
Trujillo J. M., 2009, REV IBEROAMERICANA E, V11, P63
Urrútia G, 2010, MED CLIN-BARCELONA, V135, P507, DOI 10.1016/j.medcli.2010.01.015
NR 30
TC 96
Z9 97
U1 24
U2 127
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-7102
J9 EDUC SCI
JI Educ. Sci.
PD MAR 8
PY 2019
VL 9
IS 1
AR 51
DI 10.3390/educsci9010051
PG 9
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA HS9DZ
UT WOS:000464169300002
OA Green Submitted, Green Published, gold
DA 2024-09-05
ER
PT J
AU Su, K
Peng, ZS
Zhu, D
Liu, RQ
Wang, Q
Cao, R
He, J
AF Su, Kai
Peng, Zhongshan
Zhu, Dan
Liu, Ruiqian
Wang, Qin
Cao, Rong
He, Jun
TI Water quality evaluation based on water quality index and multiple
linear regression: A research on Hanyuan Lake in southern Sichuan
Province, China
SO WATER ENVIRONMENT RESEARCH
LA English
DT Article
DE Hanyuan Lake; multiple linear regression; water quality evaluation;
water quality index (WQI)
AB This study aims to understand the changes in the water quality of Hanyuan Lake and to show these changes over time. In this study, monthly sampling was conducted at three sampling sites in Hanyuan Lake, and water samples were measured for water quality indicators in the laboratory according to the methods specified in the Environmental Quality Standards for Surface Water (GB3838-2002). Based on the monitoring data from January to December 2019, the WQI comprehensive evaluation method was used to conduct multiple linear stepwise regression analysis, extract key indicators, and establish the WQI(min) model. The results show that according to the WQI comprehensive evaluation method, the WQI values of Hanyuan Lake are all above 90, and the grade is excellent. The overall water quality of Hanyuan Lake is excellent, and most of the water quality indexes reach the Class I standard in the Environmental Quality Standards for Surface Water (GB3838-2002). WQI(min1) (R-2 = 0.86, p < 0.001, PE = 4.28) as the best WQI(min) model. In this study, a model with fewer parameters was established by multiple linear regression method, which is conducive to better monitoring of water quality at monitoring stations while saving costs. Practitioner Points According to the WQI comprehensive evaluation method, the WQI values of Hanyuan Lake are all above 90, the rating is excellent. From January 2019 to September 2020, the monthly change trend of each section is roughly the same, showing a trend of first decreasing, then rising, then decreasing, and finally rising and flattening. The WQI(min) model was developed to completely describe the change in the water body.
C1 [Su, Kai; Peng, Zhongshan; Zhu, Dan; Liu, Ruiqian; Wang, Qin; Cao, Rong] Southwest Jiaotong Univ, Sch Environm Sci & Engn, Chengdu 611756, Peoples R China.
[He, Jun] Hanyuan Ecol Environm Monitoring Stn Yaan, Yaan, Peoples R China.
C3 Southwest Jiaotong University
RP Su, K (corresponding author), Southwest Jiaotong Univ, Sch Environm Sci & Engn, Chengdu 611756, Peoples R China.
EM ksu@swjtu.edu.cn
RI He, jun/LCW-1246-2024
OI Su, Kai/0000-0002-6291-3628
FU Sichuan Science and Technology Program; [2021YFS0284]
FX This work was supported by Sichuan Science and Technology Program
(2021YFS0284).
CR Babayan G, 2023, ENVIRON PROCESS, V10, DOI 10.1007/s40710-023-00668-1
Cichon M, 2017, ENVIRON SOCIO-ECON S, V5, P87, DOI 10.1515/environ-2017-0024
Das CR, 2023, WATER AIR SOIL POLL, V234, DOI 10.1007/s11270-023-06342-4
[花瑞祥 Hua Ruixiang], 2016, [南水北调与水利科技, South-to-North Water Transfers and Water Science & Technology], V14, P183
Hwang JH, 2020, WATER-SUI, V12, DOI 10.3390/w12092346
Jun H., 2022, Environmental Protection and Technology, V06, P28
Keith DJ, 2023, ENVIRON MONIT ASSESS, V195, DOI 10.1007/s10661-023-11830-5
Koçer MAT, 2014, ECOL INDIC, V36, P672, DOI 10.1016/j.ecolind.2013.09.034
Li Jie., 2022, Influence of Hanyuan Lake reservoir onLand use/cover and climate change in reservoir area
Li RR, 2016, J ENVIRON SCI-CHINA, V50, P87, DOI 10.1016/j.jes.2016.03.030
Li Y, 2024, NAT COMMUN, V15, DOI 10.1038/s41467-024-45061-0
[刘琦 Liu Qi], 2019, [生态学报, Acta Ecologica Sinica], V39, P7538
Liu Zhi-qi, 2022, Huanjing Kexue, V43, P5073, DOI 10.13227/j.hjkx.202111079
Luo Guilin, 2021, Huanjing Huaxue-Environmental Chemistry, V40, P2073, DOI 10.7524/j.issn.0254-6108.2020100301
Nong XZ, 2020, WATER RES, V178, DOI 10.1016/j.watres.2020.115781
Pengkun S., 2022, Water Resources and Power, V09, P86, DOI [10.20040/j.cnki.1000-7709.2022.20220422, DOI 10.20040/J.CNKI.1000-7709.2022.20220422]
Pesce SF, 2000, WATER RES, V34, P2915, DOI 10.1016/S0043-1354(00)00036-1
Poul N., 2023, International Journal of Environment and Climate Change, V11, P202
Sener S, 2017, SCI TOTAL ENVIRON, V584, P131, DOI 10.1016/j.scitotenv.2017.01.102
Tao Zhang, 2021, E3S Web of Conferences, V237, DOI 10.1051/e3sconf/202123701027
Wang S., 2016, Environmental Protection, V44, P15, DOI [10.14026/j.cnki.0253-9705.2016.18.003, DOI 10.14026/J.CNKI.0253-9705.2016.18.003, DOI 10.14026/J.CNKI.0253-97052016.18.003]
Wu T, 2021, ECOL INDIC, V126, DOI 10.1016/j.ecolind.2021.107714
Wu ZS, 2018, SCI TOTAL ENVIRON, V612, P914, DOI 10.1016/j.scitotenv.2017.08.293
[辛志远 Xin Zhiyuan], 2020, [水土保持学报, Journal of Soil and Water Conservation], V34, P181
Yi Q, 2012, PROCEDIA ENVIRON SCI, V13, P43, DOI 10.1016/j.proenv.2012.01.004
Yu T., 2023, Sichuan Environment, V03, P123, DOI [10.14034/j.cnki.schj.2023.03.018, DOI 10.14034/J.CNKI.SCHJ.2023.03.018]
Zhao L., 2021, The Administration and Technique of Environmental Monitoring, V04, P30, DOI [10.19501/j.cnki.1006-2009.2021.04.007, DOI 10.19501/J.CNKI.1006-2009.2021.04.007]
NR 27
TC 0
Z9 0
U1 12
U2 12
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1061-4303
EI 1554-7531
J9 WATER ENVIRON RES
JI Water Environ. Res.
PD JUN
PY 2024
VL 96
IS 6
AR e11055
DI 10.1002/wer.11055
PG 12
WC Engineering, Environmental; Environmental Sciences; Limnology; Water
Resources
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Environmental Sciences & Ecology; Marine & Freshwater
Biology; Water Resources
GA SC9Q2
UT WOS:001232380400001
PM 38804065
DA 2024-09-05
ER
PT C
AU Zhang, L
Bai, XZ
Chen, YJ
Wang, T
Hu, FH
Li, MZ
Peng, J
AF Zhang Lin
Bai Xingzhong
Chen Yajun
Wang Ting
Hu Fei-hu
Li Mingzhu
Peng Jian
GP IEEE
TI Research on Power Market User Credit Evaluation Based on K-Means
Clustering and Contour Coefficient
SO 2020 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION
ENGINEERING (RCAE 2020)
LA English
DT Proceedings Paper
CT 3rd International Conference on Robotics, Control and Automation
Engineering (RCAE)
CY NOV 05-08, 2020
CL Chongqing, PEOPLES R CHINA
DE component; power market; power user credit evaluation; k-means;
silhouette coefficient; power market
AB Power market trading centers establish and improve the market member's credit system can regulate the market order, reduce transaction costs and prevent economic risk. As the credit evaluation system of most of the domestic power market trading center is still being improved, the design of the evaluation system at this stage must consider the practicability. Based on the actual business data of S Province Power market trading Center, this paper designs the credit evaluation index system of power users which including 11 indexes from the aspects of basic information, market behavior, payment ability and credit record, collects the relevant index data of power users. Evaluate the credit of power users based on K-means Clustering and Silhouette Coefficient method. The credit rating of power users is divided into three grades and four types. The credit evaluation method proposed in this paper is simple and easy to use, easy to understand, and the division results are consistent with the actual situation of most users. It shows that the proposed evaluation index system, clustering algorithm and clustering effect evaluation method are practical.
C1 [Zhang Lin; Bai Xingzhong; Chen Yajun] State Grid Shaanxi Elect Power Co Econ Res Inst, Xian, Peoples R China.
[Wang Ting] State Grid Beijing Elect Power Co, Maintenance Branch, Beijing, Peoples R China.
[Hu Fei-hu; Li Mingzhu] Xi An Jiao Tong Univ, Sch Elect Engn, Xian, Peoples R China.
[Peng Jian] State Grid Xintong Yili Technol Co Ltd, Xian, Peoples R China.
C3 State Grid Corporation of China; Xi'an Jiaotong University
RP Hu, FH (corresponding author), Xi An Jiao Tong Univ, Sch Elect Engn, Xian, Peoples R China.
EM zhanglin1116@139.com; baixingzhong@sn.sgcc.com.cn; junya_chen@163.com;
xjtuwangting@163.com; hufeihu@mail.xjtu.edu.cn;
limingzhu@stu.xjtu.edu.cn; 13799375384@139.com
RI WANG, TING/ACE-5023-2022
OI WANG, TING/0000-0003-2481-2890
FU National Natural Science Foundation of China [61174154]; Fundamental
Research Fund for the Central Universities [xjj2016004]
FX This work is supported by the National Natural Science Foundation of
China (No. 61174154) and Fundamental Research Fund for the Central
Universities (No. xjj2016004).
CR Chen Xiaodong, 2016, AUTOMATION POWER SYS, V42, P98
Credit system construction of the national energy administration, EN IND IMPL OP 2016
DENTON M, 2018, IEEE TRANSACTION POW, P494
Liu Jun, 2018, PRICE THEORY PRACTIC, P71
Ren Baorui., 2011, MODERN ELECT POWER, V28, P90
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Saroj Kavita, 2016, INT J COMPUTER SCI E, V6, P279
Tian Lin, 2019, CHINA SO POWER GRID, V13, P50
Wang Yuping, 2018, POWER DEMAND SIDE MA, V20, P52
[徐宏 Xu Hong], 2020, [电网技术, Power System Technology], V44, P2582
Zhang Yunlei, 2018, CHINA ELECT POWER, V51, P128
Zou Yunfeng, 2019, POWER DEMAND SIDE MA, V21, P37
NR 12
TC 0
Z9 0
U1 2
U2 6
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-8638-2
PY 2020
BP 64
EP 68
DI 10.1109/rcae51546.2020.9294725
PG 5
WC Automation & Control Systems; Engineering, Mechanical; Robotics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Engineering; Robotics
GA BT8HO
UT WOS:000853363700012
DA 2024-09-05
ER
PT C
AU Müller, MC
Bannister, A
Reitz, F
AF Mueller, Mark-Christoph
Bannister, Adam
Reitz, Florian
BE Doucet, A
Isaac, A
Golub, K
Aalberg, T
Jatowt, A
TI Off-the-shelf Semantic Author Name Disambiguation for Bibliographic Data
Bases
SO DIGITAL LIBRARIES FOR OPEN KNOWLEDGE, TPDL 2019
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 23rd International Conference on Theory and Practice of Digital
Libraries (TPDL)
CY SEP 09-12, 2019
CL Oslo Metropolitan Univ, Oslo, NORWAY
HO Oslo Metropolitan Univ
DE Author name disambiguation; Semantic similarity; Word embeddings; API;
Open source software
AB The demo presents a minimalist, off-the-shelf AND tool which provides a fundamental AND operation, the comparison of two publications with ambiguous authors, as an easily accessible HTTP interface. The tool implements this operation using standard AND functionality, but puts particular emphasis on advanced methods from natural language processing (NLP) for comparing publication title semantics.
C1 [Mueller, Mark-Christoph] Heidelberg Inst Theoret Studies gGmbH, Heidelberg, Germany.
[Bannister, Adam] FIZ Karlsruhe, Math Dept, Berlin, Germany.
[Reitz, Florian] Schloss Dagstuhl LZI, Wadern, Germany.
C3 Heidelberg Institute for Theoretical Studies; FIZ Karlsruhe - Leibniz
Institut fur Informationsinfrastruktur
RP Müller, MC (corresponding author), Heidelberg Inst Theoret Studies gGmbH, Heidelberg, Germany.
EM mark-christoph.mueller@h-its.org; adam.bannister@fiz-karlsruhe.de;
florian.reitz@dagstuhl.de
RI Reitz, Florian/N-8934-2019
OI Reitz, Florian/0000-0001-6114-3388; Muller,
Mark-Christoph/0000-0001-5639-7682; Bannister, Adam/0000-0002-8849-1152
FU Leibniz Association [SAW-2015-LZI-2]; Klaus Tschira Foundation
FX The work described in this paper was conducted in the project SCAD
-Scalable Author Disambiguation, funded in part by the Leibniz
Association (grant SAW-2015-LZI-2), and in part by the Klaus Tschira
Foundation.
CR Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040
Hussain Ijaz, 2017, KNOWL ENG REV, V32, P1
Kang IS, 2011, INFORM PROCESS MANAG, V47, P452, DOI 10.1016/j.ipm.2010.10.001
Khabsa Madian, 2014, 2014 IEEE International Conference on Big Data (Big Data), P41, DOI 10.1109/BigData.2014.7004487
Kim K, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2018), P265, DOI 10.1109/ICWS.2018.00041
Müller MC, 2018, ACM-IEEE J CONF DIG, P367, DOI 10.1145/3197026.3203912
Müller MC, 2017, LECT NOTES COMPUT SC, V10450, P300, DOI 10.1007/978-3-319-67008-9_24
Müller MC, 2017, SCIENTOMETRICS, V111, P1467, DOI 10.1007/s11192-017-2363-5
Muller M.-C., 2019, RELATIONS, P34
Strube M., 2018, COLING SYSTEM DEMONS, P53
NR 10
TC 0
Z9 0
U1 0
U2 2
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-30760-8; 978-3-030-30759-2
J9 LECT NOTES COMPUT SC
PY 2019
VL 11799
BP 397
EP 400
DI 10.1007/978-3-030-30760-8_42
PG 4
WC Information Science & Library Science
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Information Science & Library Science
GA BP4BL
UT WOS:000550576600042
DA 2024-09-05
ER
PT J
AU Saeed-Ul Hassan
Aljohani, NR
Idrees, N
Sarwar, R
Nawaz, R
Martínez-Cámara, E
Ventura, S
Herrera, F
AF Saeed-Ul Hassan
Aljohani, Naif R.
Idrees, Nimra
Sarwar, Raheem
Nawaz, Raheel
Martinez-Camara, Eugenio
Ventura, Sebastian
Herrera, Francisco
TI Predicting literature's early impact with sentiment analysis in Twitter
SO KNOWLEDGE-BASED SYSTEMS
LA English
DT Article
DE Altmetrics; Twitter; Sentiment analysis; User category; Predicting
citations
ID RESEARCH EXCELLENCE; TWEETS LINKING; ALTMETRICS; AGREEMENT
AB Traditional bibliometric techniques gauge the impact of research through quantitative indices based on the citations data. However, due to the lag time involved in the citation-based indices, it may take years to comprehend the full impact of an article. This paper seeks to measure the early impact of research articles through the sentiments expressed in tweets about them. We claim that cited articles in either positive or neutral tweets have a more significant impact than those not cited at all or cited in negative tweets. We used the SentiStrength tool and improved it by incorporating new opinion-bearing words into its sentiment lexicon pertaining to scientific domains. Then, we classified the sentiment of 6,482,260 tweets linked to 1,083,535 publications covered by Altmetric.com. Using positive and negative tweets as an independent variable, and the citation count as the dependent variable, linear regression analysis showed a weak positive prediction of high citation counts across 16 broad disciplines in Scopus. Introducing an additional indicator to the regression model, i.e. 'number of unique Twitter users', improved the adjusted R-squared value of regression analysis in several disciplines. Overall, an encouraging positive correlation between tweet sentiments and citation counts showed that Twitter-based opinion may be exploited as a complementary predictor of literatures early impact. (C) 2019 Elsevier B.V. All rights reserved.
C1 [Saeed-Ul Hassan; Idrees, Nimra; Sarwar, Raheem] Informat Technol Univ, 346-B,Ferozepur Rd, Lahore, Pakistan.
[Aljohani, Naif R.; Ventura, Sebastian; Herrera, Francisco] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia.
[Nawaz, Raheel] Manchester Metropolitan Univ, Dept Operat Technol Events & Hospitality Manageme, Manchester, Lancs, England.
[Martinez-Camara, Eugenio; Herrera, Francisco] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, E-18071 Granada, Spain.
[Ventura, Sebastian] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Cordoba 14071, Spain.
C3 King Abdulaziz University; Manchester Metropolitan University;
University of Granada; University of Granada
RP Martínez-Cámara, E (corresponding author), Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, E-18071 Granada, Spain.
EM saeed-ul-hassan@itu.edu.pk; nraljohani@kau.edu.sa;
nimraidrees@yahoo.com; raheem.bwl@gmail.com; r.nawaz@mmu.ac.uk;
emcamara@decsai.ugr.es; sventura@uco.es; herrera@decsai.ugr.es
RI Martínez Cámara, Eugenio/C-5539-2014; Aljohani, Naif R/S-1109-2017;
Ventura, Sebastian/A-7753-2008; Nawaz, Raheel/AAX-5293-2021; Hassan,
Saeed-Ul/G-1889-2016
OI Martínez Cámara, Eugenio/0000-0002-5279-8355; Ventura,
Sebastian/0000-0003-4216-6378; Nawaz, Raheel/0000-0001-9588-0052;
/0000-0002-0640-807X; Hassan, Saeed-Ul/0000-0002-6509-9190
FU Spanish Ministry of Science and Technology [TIN2017-89517-P,
T1N2017-83445-P]; Fondo Europeo de Desarrollo Regional (FEDER); NRPU
from Higher Education Commission of Pakistan [6857]; Juan de la Cierva
Formacion Programme of the Spanish government [FJCI-2016-28353]
FX We should like to thank Altmetric.com for granting us access to their
dataset for research purposes. This work was partially supported by the
Spanish Ministry of Science and Technology under the projects
TIN2017-89517-P and T1N2017-83445-P and a grant from the Fondo Europeo
de Desarrollo Regional (FEDER). Saeed Ul Hassan was supported by NRPU
Grant #6857, received from Higher Education Commission of Pakistan.
Eugenio Martinez Camara was supported by the Juan de la Cierva Formacion
Programme (FJCI-2016-28353) of the Spanish government.
CR Ananiadou Sophia, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P318, DOI 10.1007/978-3-642-37256-8_27
[Anonymous], METRICS 2011
[Anonymous], [No title captured]
Batista-Navarro Riza Theresa, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P559, DOI 10.1007/978-3-642-37247-6_45
Bonaccorsi A, 2017, J INFORMETR, V11, P435, DOI 10.1016/j.joi.2017.02.003
Bonaccorsi A, 2017, SCIENTOMETRICS, V110, P217, DOI 10.1007/s11192-016-2180-2
Bornmann L, 2019, J INFORMETR, V13, P325, DOI 10.1016/j.joi.2019.01.008
COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
Didegah F, 2018, J ASSOC INF SCI TECH, V69, P832, DOI 10.1002/asi.23934
Dragoni M, 2019, COGN COMPUT, V11, P469, DOI 10.1007/s12559-019-9625-x
Federici M., 2016, Series Title: Communications in Computer and Information Science, P141
Fenner M, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001687
Friedrich N, 2015, PRO INT CONF SCI INF, P107
Haddawy P, 2017, J INFORMETR, V11, P389, DOI 10.1016/j.joi.2017.02.004
Hassan SU, 2016, SCI PUBL POLICY, V43, P690, DOI 10.1093/scipol/scv072
Hassan SU, 2015, SCIENTOMETRICS, V103, P33, DOI 10.1007/s11192-015-1528-3
Hassan SU, 2012, SCIENTOMETRICS, V91, P1035, DOI 10.1007/s11192-012-0665-1
Hassan S, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE (ICSA 2017), P1, DOI 10.1109/ICSA.2017.32
Haustein S, 2016, J ASSOC INF SCI TECH, V67, P232, DOI 10.1002/asi.23456
Haustein S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120495
Holmberg Kim, 2014, Scientometrics, V101, P1027, DOI 10.1007/s11192-014-1229-3
Jahangir M, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P722, DOI 10.1109/IntelliSys.2017.8324209
Kim HJ, 2018, INFORM SCIENCES, V432, P185, DOI 10.1016/j.ins.2017.12.004
Konkiel S, 2016, PALGR COMMUN, V2, DOI 10.1057/palcomms.2016.57
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11
Liu XZ, 2017, SCIENTOMETRICS, V111, P349, DOI 10.1007/s11192-017-2279-0
Nuzzolese AG, 2019, SCIENTOMETRICS, V118, P539, DOI 10.1007/s11192-018-2988-z
Qiu JT, 2019, INFORM SCIENCES, V489, P274, DOI 10.1016/j.ins.2019.03.041
Ravenscroft J, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173152
Shardlow M, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0639-1
Thelwall M., 2013, Cybermetrics, V17
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662
Thompson P, 2017, LANG RESOUR EVAL, V51, P409, DOI 10.1007/s10579-016-9344-9
Waheed H, 2018, BEHAV INFORM TECHNOL, V37, P941, DOI 10.1080/0144929X.2018.1467967
Yu HQ, 2017, SCIENTOMETRICS, V111, P267, DOI 10.1007/s11192-017-2251-z
Zhu DH, 2013, SCIENTOMETRICS, V97, P435, DOI 10.1007/s11192-013-1019-3
Zhu J, 2014, SCIENTOMETRICS, V101, P429, DOI 10.1007/s11192-014-1389-1
NR 40
TC 41
Z9 40
U1 3
U2 47
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29a, 1043 NX AMSTERDAM, NETHERLANDS
SN 0950-7051
EI 1872-7409
J9 KNOWL-BASED SYST
JI Knowledge-Based Syst.
PD MAR 15
PY 2020
VL 192
AR 105383
DI 10.1016/j.knosys.2019.105383
PG 10
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA KT9MF
UT WOS:000519335400040
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Gao, DK
Haverly, A
Mittal, S
Wu, JM
Chen, JD
AF Gao, Di Kevin
Haverly, Andrew
Mittal, Sudip
Wu, Jiming
Chen, Jingdao
TI AI Ethics: A Bibliometric Analysis, Critical Issues, and Key Gaps
SO INTERNATIONAL JOURNAL OF BUSINESS ANALYTICS
LA English
DT Article
DE AI Ethics; AI Identification; Artificial Intelligence Ethics;
Bibliometric Analysis; Human-Like Machine; Large Ethics Model (LEM);
Literature Review; Machine-Like Human
AB Artificial intelligence (AI) ethics has emerged as a burgeoning yet pivotal area of scholarly research. This study conducts a comprehensive bibliometric analysis of the AI ethics literature over the past two decades. The analysis reveals a discernible tripartite progression, characterized by an incubation phase, followed by a subsequent phase focused on imbuing AI with human-like attributes, culminating in a third phase emphasizing the development of human-centric AI systems. After that, they present seven key AI ethics issues, encompassing the Collingridge dilemma, the AI status debate, challenges associated with AI transparency and explainability, privacy protection complications, considerations of justice and fairness, concerns about algocracy and human enfeeblement, and the issue of superintelligence. Finally, they identify two notable research gaps in AI ethics regarding the large ethics model (LEM) and AI identification and extend an invitation for further scholarly research.
C1 [Gao, Di Kevin; Wu, Jiming] Calif State Univ East Bay, Hayward, CA 94542 USA.
[Haverly, Andrew; Mittal, Sudip; Chen, Jingdao] Mississippi State Univ, Mississippi State, MS USA.
C3 California State University System; California State University East
Bay; Mississippi State University
RP Gao, DK (corresponding author), Calif State Univ East Bay, Hayward, CA 94542 USA.
OI Gao, Di Kevin/0009-0008-7391-5208
FU National Science Foundation (NSF) [2246920]
FX The work reported herein was supported by the National Science
Foundation (NSF) (Award #2246920) . Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF.
CR Ackerman E., 2017, IEEE SpectrumAugust 4
Akter T, 2022, ACM T ACCESS COMPUT, V15, DOI 10.1145/3506857
Allen C, 2006, IEEE INTELL SYST, V21, P12, DOI 10.1109/MIS.2006.83
Altman S., 2023, Governance of superintelligence
Anderson M., 2005, ASS ADV ART INT FALL
Aneesh A., 2002, 7 INT SUMM AC TECHN
Ashok M, 2022, INT J INFORM MANAGE, V62, DOI 10.1016/j.ijinfomgt.2021.102433
Bertino E, 2019, ACM J DATA INF QUAL, V11, DOI 10.1145/3312750
Boesl DBO, 2019, IEEE INT CONF INTELL, P143, DOI 10.1109/INES46365.2019.9109458
Bostroms R., 2014, Superintelligence: Paths, dangers, strategies
Bryson JJ, 2010, Close Engagements with Artificial Companions: Key social, psychological, ethical and design issues, P63, DOI [10.1075/nlp.8.11bry, DOI 10.1075/NLP.8.11BRY]
Bryson JJ, 2018, ETHICS INF TECHNOL, V20, P15, DOI 10.1007/s10676-018-9448-6
Buolamwini Joy., 2018, Proceedings of the 1st Conference on Fairness, Accountability and Transparency, V81, P77
Chalmers DJ, 2010, J CONSCIOUSNESS STUD, V17, P7
Cho A., 2016, Science, DOI [10.1126/science.aae0281, DOI 10.1126/SCIENCE.AAE0281]
Cornell, 2021, Legislation | wex | us law | lii / legal information institute
Danaher J., 2016, Philosophy and Technology, V29, P245, DOI [10.1007/s13347-015-0211-1, DOI 10.1007/S13347-015-0211-1]
Danaher J, 2020, SCI ENG ETHICS, V26, P2023, DOI 10.1007/s11948-019-00119-x
Daniels Jessie, 2019, Advancing racial literacy in tech
Dartmouth, 1956, DARTM WORKSH
Dotan T., 2023, The Wall Street JournalApril 13
Fingas J., 2019, EngadgetDecember 5
Fitch A., 2023, The Wall Street JournalJune 13
Flint J., 2023, The Wall Street JournalJuly 14
Floridi L., 2006, Ethics and Information Technology, V8, P109, DOI 10.1007/s10676-006-9121-3
Floridi L., 2005, Ethics and Information Technology, V7, P185, DOI 10.1007/s10676-006-0001-7
Floridi L., 2019, Philosophy Technology, V32, P185, DOI DOI 10.1007/S13347-019-00354-X
Floridi L., 2006, Computers & Society, V36, P21, DOI [https://doi.org/10.1145/1195716.1195719, DOI 10.1145/1195716.1195719, 10.1145/1195716.1195719]
Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5
Gershgorn D., 2018, QuartzJune 18
Good I. J., 1966, Speculations concerning the first ultraintelligent machine, DOI [10.1016/S0065-2458(08)60418-0, DOI 10.1016/S0065-2458(08)60418-0]
Guo W, 2021, AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P122, DOI 10.1145/3461702.3462536
Gurman M., 2023, BloombergJuly 19
Hale M., 2011, The New York TimesFebruary 8
Hao K., 2023, The Wall Street JournalJune 17
Hu K., 2023, Reuters May 23
Illia L, 2023, BUS ETHICS ENV RESP, V32, P201, DOI 10.1111/beer.12479
Jensen T., 2023, NBC Bay AreaSeptember 4
Kiela D, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P4110
Kim TW, 2022, BUS ETHICS Q, V32, P75, DOI 10.1017/beq.2021.3
Konrad A., 2023, Forbes
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Kruppa M., 2022, The Wall Street JournalJuly 22
LaBrie R. C., 2019, AM C INF SYST 2019
Langer M, 2023, HUM RESOUR MANAGE R, V33, DOI 10.1016/j.hrmr.2021.100881
Lardieri A., 2018, U.S. News World Report
Li YQ, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P624, DOI 10.1145/3442381.3449866
Lighthill James., 1973, Lighthill report: Artificial intelligence: A paper symposium
Lobo JL, 2023, 2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, P179, DOI 10.1109/CAI54212.2023.00085
Lock S., 2022, The GuardianDecember 5
Mac R., 2021, The New York Times
Markoff J., 2005, Behind artificial intelligence, a squadron of bright real people
Matthias A., 2004, Ethics and Information Technology, V6, P175, DOI 10.1007/s10676-004-3422-1
Mayne A. J., 1982, The Journal of the Operational Research Society, V33, P171, DOI [10.1057/jors.1982.168, DOI 10.1057/JORS.1982.168]
McCarthy J, 2007, WHAT IS ARTIFICIAL INTELLIGENCE?
McKinsey & Company, 2022, What are industry 4.0, the fourth industrial revolution, and 4IR?
Moor JH, 2006, IEEE INTELL SYST, V21, P18, DOI 10.1109/MIS.2006.80
Moran M, 2008, J ENDOUROL, V22, P1557, DOI 10.1089/end.2007.0106
Morley J, 2023, AI SOC, V38, P411, DOI 10.1007/s00146-021-01308-8
Mosakas K, 2021, AI SOC, V36, P429, DOI 10.1007/s00146-020-01002-1
Nolan B., 2023, Business InsiderMarch 28
Pagallo U, 2018, INFORMATION, V9, DOI 10.3390/info9090230
Pandey A, 2021, AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P822, DOI 10.1145/3461702.3462561
Patwardhan A, 2023, J PRIM CARE COMMUNIT, V14, DOI 10.1177/21501319231179559
Rességuier A, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720942541
Robbins S, 2019, MIND MACH, V29, P495, DOI 10.1007/s11023-019-09509-3
Ryan M, 2021, J INF COMMUN ETHICS, V19, P61, DOI 10.1108/JICES-12-2019-0138
Schuster T., 2022, IFIP Advances in Information and Communication Technology, V662, DOI [10.1007/978-3-031-14844, DOI 10.1007/978-3-031-14844]
Schwitzgebel E, 2015, MIDWEST STUD PHILOS, V39, P98, DOI 10.1111/misp.12032
Smolan S., 2016, VimeoFebruary 24
Sparrow R., 2007, J APPL PHILOS, V24, P62, DOI [10.1111/j.1468-5930.2007.00346.x, DOI 10.1111/J.1468-5930.2007.00346.X]
Stahl BC, 2018, IEEE SECUR PRIV, V16, P26, DOI 10.1109/MSP.2018.2701164
Sweeney L, 2013, COMMUN ACM, V56, P44, DOI 10.1145/2447976.2447990
Vallor S., 2015, Philosophy & Technology, V23, P107, DOI DOI 10.1007/S13347-014-0156-9
Veale M, 2017, BIG DATA SOC, V4, DOI 10.1177/2053951717743530
Ville V., 2019, P 3 SEM TECHN ETH, P2505
Wachter S., 2018, SSRN Electronic Journal, V31, DOI [DOI 10.2139/SSRN.3063289, 10.2139/ssrn.3063289]
Wallach W, 2010, TOP COGN SCI, V2, P454, DOI 10.1111/j.1756-8765.2010.01095.x
Winfield AFT, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2018.0085
Wittenstein, 2023, TIMEFebruary 9
Yampolskiy RV., 2015, ARTIFICIAL SUPERINTE, DOI [10.1201/b18612, DOI 10.1201/B18612]
NR 81
TC 0
Z9 0
U1 33
U2 33
PU IGI GLOBAL
PI HERSHEY
PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA
SN 2334-4547
EI 2334-4555
J9 INT J BUS ANAL
JI Int. J. Bus. Anal.
PY 2024
VL 11
IS 1
AR 338367
DI 10.4018/IJBAN.338367
PG 19
WC Business
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA IR6A2
UT WOS:001168083600001
OA gold
DA 2024-09-05
ER
PT J
AU Heibi, I
Peroni, S
AF Heibi, Ivan
Peroni, Silvio
TI A qualitative and quantitative analysis of open citations to retracted
articles: the Wakefield 1998 et al.'s case
SO SCIENTOMETRICS
LA English
DT Article
DE Citation analysis; Retraction; Topic modeling; Science of Science
AB In this article, we show the results of a quantitative and qualitative analysis of open citations on a popular and highly cited retracted paper: "Ileal-lymphoid-nodular hyperplasia, non-specific colitis and pervasive developmental disorder in children" by Wakefield et al., published in 1998. The main purpose of our study is to understand the behavior of the publications citing one retracted article and the characteristics of the citations the retracted article accumulated over time. Our analysis is based on a methodology which illustrates how we gathered the data, extracted the topics of the citing articles and visualized the results. The data and services used are all open and free to foster the reproducibility of the analysis. The outcomes concerned the analysis of the entities citing Wakefield et al.'s article and their related in-text citations. We observed a constant increasing number of citations in the last 20 years, accompanied with a constant increment in the percentage of those acknowledging its retraction. Citing articles have started either discussing or dealing with the retraction of Wakefield et al.'s article even before its full retraction happened in 2010. Articles in the social sciences domain citing the Wakefield et al.'s one were among those that have mostly discussed its retraction. In addition, when observing the in-text citations, we noticed that a large number of the citations received by Wakefield et al.'s article has focused on general discussions without recalling strictly medical details, especially after the full retraction. Medical studies did not hesitate in acknowledging the retraction of the Wakefield et al.'s article and often provided strong negative statements on it.
C1 [Heibi, Ivan; Peroni, Silvio] Univ Bologna, Res Ctr Open Scholarly Metadata, Dept Class Philol & Italian Studies, Bologna, Italy.
[Heibi, Ivan; Peroni, Silvio] Univ Bologna, Digital Humanities Adv Res Ctr DHArc, Dept Class Philol & Italian Studies, Bologna, Italy.
C3 University of Bologna; University of Bologna
RP Heibi, I (corresponding author), Univ Bologna, Res Ctr Open Scholarly Metadata, Dept Class Philol & Italian Studies, Bologna, Italy.; Heibi, I (corresponding author), Univ Bologna, Digital Humanities Adv Res Ctr DHArc, Dept Class Philol & Italian Studies, Bologna, Italy.
EM ivan.heibi2@unibo.it; silvio.peroni@unibo.it
RI Heibi, Ivan/AAZ-9145-2021; Heibi, Ivan/GQZ-8619-2022
OI Heibi, Ivan/0000-0001-5366-5194; Peroni, Silvio/0000-0003-0530-4305
FU Alma Mater Studiorum -Universita di Bologna within the CRUI-CARE
Agreement
FX Open access funding provided by Alma Mater Studiorum -Universita di
Bologna within the CRUI-CARE Agreement.
CR Azoulay P, 2017, RES POLICY, V46, P1552, DOI 10.1016/j.respol.2017.07.003
Bar-Ilan J, 2018, SCIENTOMETRICS, V116, P1771, DOI 10.1007/s11192-018-2802-y
Bar-Ilan J, 2017, SCIENTOMETRICS, V113, P547, DOI 10.1007/s11192-017-2242-0
Barbour V., 2009, Guidelines for retracting articles, DOI DOI 10.24318/COPE.2019.1.4
Berners-Lee T, 2001, SCI AM, V284, P34, DOI 10.1038/scientificamerican0501-34
Bizer C, 2009, INT J SEMANT WEB INF, V5, P1, DOI 10.4018/jswis.2009081901
Bolland MJ, 2022, ACCOUNT RES, V29, P18, DOI 10.1080/08989621.2021.1886933
Bordignon F, 2020, SCIENTOMETRICS, V124, P1225, DOI 10.1007/s11192-020-03536-z
Bornemann-Cimenti H, 2016, SCI ENG ETHICS, V22, P1063, DOI 10.1007/s11948-015-9680-y
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Bornmann L, 2020, SCIENTOMETRICS, V122, P1051, DOI 10.1007/s11192-019-03326-2
Chen CM, 2014, WILEY SER PROBAB ST, P217
Chen CM, 2014, J ASSOC INF SCI TECH, V65, P334, DOI 10.1002/asi.22968
Chen CM, 2013, J AM SOC INF SCI TEC, V64, P234, DOI 10.1002/asi.22755
Chuang J, 2012, PROCEEDINGS OF THE INTERNATIONAL WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES, P74, DOI 10.1145/2254556.2254572
Collier R, 2011, CAN MED ASSOC J, V183, pE385, DOI 10.1503/cmaj.109-3827
Crothers C, 2020, QUANT SCI STUD, V1, P675, DOI 10.1162/qss_a_00029
Daquino Marilena, 2020, The Semantic Web - ISWC 2020. 19th International Semantic Web Conference. Lecture Notes in Computer Science (LNCS 12507), P447, DOI 10.1007/978-3-030-62466-8_28
Feng LZ, 2020, SCIENTOMETRICS, V125, P1445, DOI 10.1007/s11192-020-03702-3
Ferri P., 2020, PUNTOORG INT J, V5, P135, DOI DOI 10.19245/25.05.PIJ.5.2.3
Han XY, 2020, SCIENTOMETRICS, V125, P2561, DOI 10.1007/s11192-020-03721-0
Heibi I., 2020, METHODOLOGY GATHERIN, DOI DOI 10.17504/PROTOCOLS.IO.BDC4I2YW
Heibi I., 2019, P 17 INT C SCI INF I
Heibi I, 2019, SCIENTOMETRICS, V121, P1213, DOI 10.1007/s11192-019-03217-6
Hendricks G, 2020, QUANT SCI STUD, V1, P414, DOI 10.1162/qss_a_00022
Jan R., 2018, CONTEXT ANAL TOP SEV, P1
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Lu SF, 2013, SCI REP-UK, V3, DOI 10.1038/srep03146
Luwel M., 2019, SCHON CASE ANAL IN T, DOI [10.31235/osf.io/c6mvs, DOI 10.31235/OSF.IO/C6MVS]
Lyu XZ, 2020, SCIENTOMETRICS, V123, P909, DOI 10.1007/s11192-020-03415-7
May C., 2019, ANAL LEMMATIZATION T
Meyer CA, 2011, LEARN PUBL, V24, P87, DOI 10.1087/20110202
Mongeon P, 2016, J ASSOC INF SCI TECH, V67, P535, DOI 10.1002/asi.23421
Mott A, 2019, J HEALTH SERV RES PO, V24, P44, DOI 10.1177/1355819618797965
Moylan EC, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2016-012047
Ojeda, 2018, APPL TEXT ANAL PYTHO
OpenCitations, 2020, COCI CSV DATASET ALL, DOI [DOI 10.6084/M9.FIGSHARE.6741422.V6, 10.6084/M9.FIGSHARE.6741422.V6, DOI 10.6084/M9.FIGSHARE.6741422.V3]
Peroni S., 2018, Open Citation: Definition, DOI [DOI 10.6084/M9.FIGSHARE.6683855.V1, 10.6084/m9.figshare.6683855.v1]
Peroni S, 2020, QUANT SCI STUD, V1, P428, DOI 10.1162/qss_a_00023
Peroni S, 2018, LECT NOTES COMPUT SC, V11137, P119, DOI 10.1007/978-3-030-00668-6_8
Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001
Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113
Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858
Schneider J, 2020, SCIENTOMETRICS, V125, P2877, DOI 10.1007/s11192-020-03631-1
Shuai X, 2017, J ASSOC INF SCI TECH, V68, P2225, DOI 10.1002/asi.23826
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Suelzer EM, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.15552
Suppe F, 1998, PHILOS SCI, V65, P381, DOI 10.1086/392651
Teixeira da Silva JA, 2017, SCIENTOMETRICS, V110, P1653, DOI 10.1007/s11192-016-2227-4
Truica CO, 2016, INT SYMP SYMB NUMERI, P307, DOI [10.1109/SYNASC.2016.055, 10.1109/SYNASC.2016.49]
van der Vet Paul E, 2016, Res Integr Peer Rev, V1, P3, DOI 10.1186/s41073-016-0008-5
Wakefield AJ, 1998, LANCET, V351, P637, DOI 10.1016/S0140-6736(97)11096-0
Zhang Y, 2021, SCIENTOMETRICS, V126, P4225, DOI 10.1007/s11192-021-03946-7
NR 53
TC 14
Z9 14
U1 7
U2 48
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD OCT
PY 2021
VL 126
IS 10
BP 8433
EP 8470
DI 10.1007/s11192-021-04097-5
EA AUG 2021
PG 38
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA UW2MR
UT WOS:000681571100002
PM 34376878
OA Green Published, hybrid
DA 2024-09-05
ER
PT J
AU Yu, LH
Yu, ZG
AF Yu, Liheng
Yu, Zhonggen
TI Qualitative and quantitative analyses of artificial intelligence ethics
in education using VOSviewer and CitNetExplorer
SO FRONTIERS IN PSYCHOLOGY
LA English
DT Article
DE artificial intelligence; ethics; bibliometric analysis; VOSviewer;
CitNetExplorer
AB The new decade has been witnessing the wide acceptance of artificial intelligence (AI) in education, followed by serious concerns about its ethics. This study examined the essence and principles of AI ethics used in education, as well as the bibliometric analysis of AI ethics for educational purposes. The clustering techniques of VOSviewer (n = 880) led the author to reveal the top 10 authors, sources, organizations, and countries in the research of AI ethics in education. The analysis of clustering solution through CitNetExplorer (n = 841) concluded that the essence of AI ethics for educational purposes included deontology, utilitarianism, and virtue, while the principles of AI ethics in education included transparency, justice, fairness, equity, non-maleficence, responsibility, and privacy. Future research could consider the influence of AI interpretability on AI ethics in education because the ability to interpret the AI decisions could help judge whether the decision is consistent with ethical criteria.
C1 [Yu, Liheng] Univ Birmingham, Sch Engn, Birmingham, England.
[Yu, Zhonggen] Beijing Language & Culture Univ, Fac Foreign Studies, Beijing, Peoples R China.
C3 University of Birmingham; Beijing Language & Culture University
RP Yu, ZG (corresponding author), Beijing Language & Culture Univ, Fac Foreign Studies, Beijing, Peoples R China.
EM 401373742@qq.com
RI liu, xinyu/IWD-6630-2023; Liu, Yuan/JFB-4766-2023; yan,
yan/JVN-1800-2024; zhang, xiang/JJD-7003-2023; liu, bing/JJD-5566-2023;
li, wl/JJC-0768-2023; Zhou, Yue/JHS-8791-2023; li, wei/IUQ-2973-2023;
Zhang, Han/JMR-0670-2023; Yang, Fei/JLM-3367-2023; sun,
chen/JCP-0396-2023; yang, rui/JHI-3328-2023; li, jiaxin/JNT-5073-2023;
Liu, Yixuan/JFJ-2820-2023; Zhu, Li/JTT-9093-2023; liu, xy/JEP-3175-2023;
wang, zhiwen/JDV-9990-2023; Yu, Zhonggen/AAE-5514-2020; li,
yansong/JXL-5023-2024; li, qing/JEF-9044-2023; li, jing/JEF-8436-2023;
Yang, Jie/JDM-6213-2023; WANG, YANG/JFA-8821-2023; zhang,
yan/JGL-8022-2023; Zhao, Yi/JFA-7988-2023; yang, li/JGM-1009-2023; Yu,
Zhonggen/AAJ-3063-2020; wang, KiKi/JFZ-3334-2023; Yuan,
Yu/KBQ-0606-2024; ZHOU, YUE/IZE-6277-2023; Wang, Yanlin/JGC-6782-2023;
zhang, xiao/JCN-8822-2023; Chen, Yu/JLL-0171-2023; li,
zhang/JHV-1750-2023; Chen, Xin/JDN-2017-2023; Wang, Guang/JFS-8374-2023;
WANG, HUI/JFA-9683-2023; liu, lin/JFK-3401-2023; liu,
jianyang/JXL-6273-2024; Zhang, Yun/JCN-7026-2023; yang,
yun/IZE-1092-2023; .., What/IXW-6776-2023; liu, lingling/IUQ-7478-2023;
李, 嘉馨/IWM-4023-2023; zhang, ly/JMB-7214-2023; Yan,
Miaochen/JLL-5061-2023
OI Yu, Zhonggen/0000-0002-3873-980X; Yang, Jie/0000-0002-3941-0053; Yu,
Zhonggen/0000-0002-3873-980X;
FU 2019 MOOC of Beijing Language and Culture University (Important)
"Introduction to Linguistics" [MOOC201902]; "Introduction to
Linguistics" of online and offline mixed courses in Beijing Language and
Culture University in 2020; Special fund of Beijing Co-construction
Project-Research and reform of the "Undergraduate Teaching Reform and
Innovation Project" of Beijing higher education in 2020-innovative
"multilingual +" excellent talent training system [202010032003];
research project of Graduate Students of Beijing Language and Culture
University "Xi Jinping: The Governance of China" [SJTS202108]
FX This work was supported by 2019 MOOC of Beijing Language and Culture
University (MOOC201902) (Important) "Introduction to Linguistics";
"Introduction to Linguistics" of online and offline mixed courses in
Beijing Language and Culture University in 2020; Special fund of Beijing
Co-construction Project-Research and reform of the "Undergraduate
Teaching Reform and Innovation Project" of Beijing higher education in
2020-innovative "multilingual +" excellent talent training system
(202010032003); The research project of Graduate Students of Beijing
Language and Culture University "Xi Jinping: The Governance of China"
(SJTS202108).
CR Agbese M., 2023, E INFORM SOFTW ENG J, V17, P230101, DOI [10.37190/e-inf230101, DOI 10.37190/E-INF230101]
[Anonymous], 2013, NW J TECHNOL INTELLE
Anscombe G. E. M., 2005, ANDREWES STUDIES PHI
Aristotle, 1999, Nichomachean Ethics, V2nd
Asimov Isaac, 1950, I ROBOT
Berry J.W., 1997, Handbook of Cross-cultural Psychology, P291, DOI DOI 10.1016/j.ijintrel.2005.07.013
Berry J. W., ACCULTURATION ADV TH, P17, DOI DOI 10.1037/10472-004
Bozkurt A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020800
Burton E, 2017, AI MAG, V38, P22, DOI 10.1609/aimag.v38i2.2731
Copp David., 2006, OXFORD HDB ETHICAL T
Dignum V, 2021, LOND REV EDUC, V19, DOI 10.14324/LRE.19.1.01
Dodigovic M., 2007, Language Awareness, V16, P99, DOI [10.2167/la416.0, DOI 10.2167/LA416.0]
Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5
Folstad A, 2021, COMPUTING, V103, P2915, DOI 10.1007/s00607-021-01016-7
Frankena William., 1963, ETHICS
Goksel N., 2019, Handbook of research on learning in the age of transhumanism, P224, DOI [10.4018/978-1-5225-8431-5.ch014, DOI 10.4018/978-1-5225-8431-5.CH014]
Hagendorff T, 2020, MIND MACH, V30, P99, DOI 10.1007/s11023-020-09517-8
Handelsman MM, 2005, PROF PSYCHOL-RES PR, V36, P59, DOI 10.1037/0735-7028.36.1.59
Holmes W., 2019, ARTIF INTELL, P1
Holmes W, 2022, INT J ARTIF INTELL E, V32, P504, DOI 10.1007/s40593-021-00239-1
Javed RT, 2022, J ARTIF INTELL RES, V73, P933
Jia HP, 2020, NATL SCI REV, V7, P1954, DOI 10.1093/nsr/nwaa255
Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2
John-Mathews JM, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121209
Kaur D, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3491209
Keathley-Herring H, 2016, SCIENTOMETRICS, V109, P927, DOI 10.1007/s11192-016-2096-x
Li XQ, 2007, DECIS SCI-J INNOV ED, V5, P311, DOI 10.1111/j.1540-4609.2007.00143.x
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Lin CH, 2021, EDUC TECHNOL SOC, V24, P224
MacIntyre A. C., 1984, After virtue: a study in moral theory
McGowan John., 1991, POSTMODERNISM ITS CR
Mittelstadt BD, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716679679
Ntoutsi E, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1356
Nye BD, 2016, INT J ARTIF INTELL E, V26, P756, DOI 10.1007/s40593-016-0098-8
Pedro F., 2019, ARTIFICIAL INTELLIGE
Pelczynski ZbigniewA., 1984, STATE CIVIL SOC STUD
Riyal ALM, 2019, J POLIT LAW, V12, P79, DOI 10.5539/jpl.v12n2p79
Schermer BW, 2011, COMPUT LAW SECUR REV, V27, P45, DOI 10.1016/j.clsr.2010.11.009
Siljander P., 2017, Schools in Transition: Linking Past, Present, and Future in Educational Practice
Tan C, 2020, CONNECT SCI, V32, P280, DOI 10.1080/09540091.2019.1709045
Turilli M, 2009, ETHICS INF TECHNOL, V11, P105, DOI 10.1007/s10676-009-9187-9
Tutt Andrew., 2016, SSRN Scholarly Paper
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Wel L., 2004, Ethics and Information Technology, V6, P129, DOI 10.1023/B:ETIN.0000047476.05912.3d
Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482
Wang Y, 2019, Wall Street J
Ye R., 2021, LECT NOTES ARTIF INT
Yu ZG, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14084388
Yu ZG, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063598
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhai XS, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/8812542
NR 54
TC 9
Z9 11
U1 55
U2 195
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-1078
J9 FRONT PSYCHOL
JI Front. Psychol.
PD MAR 9
PY 2023
VL 14
AR 1061778
DI 10.3389/fpsyg.2023.1061778
PG 14
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA A4WU4
UT WOS:000955152700001
PM 36968737
OA Green Published, gold
DA 2024-09-05
ER
PT C
AU Wamba, SF
Bawack, RE
Carillo, KDA
AF Wamba, Samuel Fosso
Bawack, Ransome Epie
Carillo, Kevin Daniel Andre
BE Pappas, IO
Mikalef, P
Dwivedi, YK
Jaccheri, L
Krogstie, J
Mantymaki, M
TI The State of Artificial Intelligence Research in the Context of National
Security: Bibliometric Analysis and Research Agenda
SO DIGITAL TRANSFORMATION FOR A SUSTAINABLE SOCIETY IN THE 21ST CENTURY
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 18th International-Federation-of-Information-Processing (IFIP) WG 6.11
International Conference on E-Business, E-Services, and E-Society (I3E)
CY SEP 18-20, 2019
CL Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept
Comp, Trondheim, NORWAY
HO Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept Comp
DE Artificial intelligence; National security; Military; Defense;
Bibliometrics
ID SYSTEMS; SUPPORT; SCIENCE
AB Artificial intelligence (AI) is a growing research topic in national security due to the growing need for peaceful and inclusive societies, as well as for the maintenance of strong institutions of justice. As e-societies continue to evolve due to the advancements made in information and communication technologies (ICT), AI has proven crucial to guarantee the development of security measures, especially against growing cyberthreats and cyberattacks. This relevance has been translated into an explosive growth of AI applications for the improvement of decision support systems, expert systems, robotics, surveillance, and military operations that aim at ensuring national security. However, there is no bibliometric research on AI in national security, especially one that highlights current debates on the topic. This paper presents an overview of research on AI and national security, with emphasis on the research focus areas and debates central to research on the topic. We analyzed 94 references collected from the Web of Science (WoS) Core Collection and used VOS viewer software to analyze them. Based on these analyses, we identified 7 focus areas and 8 debates on AI in national security. We also identified the state and evolution of research on the topic in terms of main journals, authors, institutions, and countries. Our findings help researchers and practitioners better understand the state of the art of AI research on national security, and guides future research and development projects on the topic.
C1 [Wamba, Samuel Fosso; Bawack, Ransome Epie; Carillo, Kevin Daniel Andre] Toulouse Business Sch, 20 Blvd Lascrosses, F-31068 Toulouse, France.
[Bawack, Ransome Epie] Toulouse 1 Univ Capitole, 2 Rue Doyen Gabriel Marty, F-31042 Toulouse, France.
C3 Universite Federale Toulouse Midi-Pyrenees (ComUE); Universite de
Toulouse; TBS Education
RP Bawack, RE (corresponding author), Toulouse Business Sch, 20 Blvd Lascrosses, F-31068 Toulouse, France.; Bawack, RE (corresponding author), Toulouse 1 Univ Capitole, 2 Rue Doyen Gabriel Marty, F-31042 Toulouse, France.
EM ransome.bawack@tsm-education.fr
RI Bawack, Ransome/H-6050-2018; Fosso Wamba, Samuel/AAB-4953-2019; Bawack,
Ransome/GLT-8064-2022
OI Fosso Wamba, Samuel/0000-0002-1073-058X; Bawack,
Ransome/0000-0002-5441-604X
CR Akgul A., 2015, ANKARA U SBF DERG, V45, P255
Alexandre R, 2016, J STRATEGIC INF SYST, V25, P75, DOI 10.1016/j.jsis.2016.01.002
[Anonymous], 2017, Artificial Intelligence and National Security'
Tran BX, 2019, J CLIN MED, V8, DOI 10.3390/jcm8030360
Cath C, 2018, SCI ENG ETHICS, V24, P505, DOI 10.1007/s11948-017-9901-7
Clopton ZD, 2016, U CHICAGO LAW REV, V83, P45
Corrall S, 2013, LIBR TRENDS, V61, P636, DOI 10.1353/lib.2013.0005
Cuellar MJ, 2016, J ASSOC INF SYST, V17, P1
DARGAM FCC, 1991, EUR J OPER RES, V55, P403, DOI 10.1016/0377-2217(91)90209-E
Garcia D, 2018, INT STUD REV, V20, P334, DOI 10.1093/isr/viy029
Garrigos-Simon Fernando J., 2018, Sustainability, V10, DOI 10.3390/su10061976
Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a
Hoadley D.S., 2018, Artificial intelligence and national security
Johnson J, 2019, DEF SECUR ANAL, V35, P147, DOI 10.1080/14751798.2019.1600800
Keesstra SD, 2016, SOIL-GERMANY, V2, P111, DOI 10.5194/soil-2-111-2016
KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501
Larsson S, 2019, Sustainable AI: An Inventory of the State of Knowledge of Ethical, Social, and Legal Challenges Related to Artificial Intelligence
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Segun O., 2014, UN CHRONICLE MAGAZIN
Stewart A., 2018, AIS T REPLICATION RE, V4, P12
Teo Y.-L., 2018, REGULATING ARTIFICIA
Van Eck N.J., 2017, VOSVIEWER VISUALIZIN, V12
WOOLSEY G, 1991, INTERFACES, V21, P2, DOI 10.1287/inte.21.4.2
NR 24
TC 1
Z9 1
U1 8
U2 27
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-29374-1; 978-3-030-29373-4
J9 LECT NOTES COMPUT SC
PY 2019
VL 11701
BP 255
EP 266
DI 10.1007/978-3-030-29374-1_21
PG 12
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BQ6GP
UT WOS:000611600800021
DA 2024-09-05
ER
PT J
AU Su, YY
Wang, SX
Li, Y
AF Su, Yingying
Wang, Shengxu
Li, Yi
TI Research on the improvement effect of machine learning and neural
network algorithms on the prediction of learning achievement
SO NEURAL COMPUTING & APPLICATIONS
LA English
DT Article
DE Machine learning; Neural network; Student performance; Prediction
ID PARAMETER-IDENTIFICATION; SEARCH; PATTERN; MODEL
AB In order to improve the effect of college student performance prediction, based on machine learning and neural network algorithms, this paper improves the traditional data processing algorithms and proposes a similarity calculation method for courses. Moreover, this paper uses cosine similarity to calculate the similarity of courses. Simultaneously, this paper proposes an improved hybrid multi-weight improvement algorithm to improve the cold start problem that cannot be solved by traditional algorithms. In addition, this paper combines the neural network structure to construct a model framework structure, sets the functional modules according to actual needs, and analyzes and predicts students' personal performance through student portraits. Finally, this paper designs experiments to analyze the effectiveness of the model proposed in this paper. From the experimental data, it can be seen that the model proposed in this paper basically meets the expected requirements.
C1 [Su, Yingying; Wang, Shengxu; Li, Yi] Shenyang Univ, Sch Mech Engn, Shenyang 110044, Liaoning, Peoples R China.
C3 Shenyang University
RP Su, YY (corresponding author), Shenyang Univ, Sch Mech Engn, Shenyang 110044, Liaoning, Peoples R China.
EM suyingying@syu.edu.cn
CR Beigi AM, 2018, SOL ENERGY, V171, P435, DOI 10.1016/j.solener.2018.06.092
Benson NF, 2016, J SCHOOL PSYCHOL, V58, P1, DOI 10.1016/j.jsp.2016.06.001
Brehm M, 2017, LABOUR ECON, V44, P133, DOI 10.1016/j.labeco.2016.12.008
Brown GTL, 2018, INTELLIGENCE, V69, P94, DOI 10.1016/j.intell.2018.05.006
Chen ZL, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11337-z
Chen ZH, 2014, ENERG CONVERS MANAGE, V78, P306, DOI 10.1016/j.enconman.2013.10.060
Dzeng RJ, 2016, SAFETY SCI, V82, P56, DOI 10.1016/j.ssci.2015.08.008
Gotmare A, 2015, EXPERT SYST APPL, V42, P2538, DOI 10.1016/j.eswa.2014.10.040
Ayala HVH, 2015, ENERGY, V93, P1515, DOI 10.1016/j.energy.2015.08.019
Kelly BS, 2016, RADIOLOGY, V280, P252, DOI 10.1148/radiol.2016150409
Kertesz-Farkas A, 2015, J PROTEOME RES, V14, P3027, DOI 10.1021/pr501173s
Klusmann U., 2016, Journal of Educational Psychology, DOI DOI 10.1037/EDU0000125
Koulayev S, 2014, RAND J ECON, V45, P553, DOI 10.1111/1756-2171.12062
Marsh HW, 2015, AM EDUC RES J, V52, P168, DOI 10.3102/0002831214549453
Mcgill RJ, 2016, PSYCHOL SCHOOLS, V53, P677, DOI 10.1002/pits.21940
Mohoric T, 2016, PSIHOLOGIJA, V49, P357, DOI 10.2298/PSI1604357M
Patwardhan AP, 2014, DIGIT SIGNAL PROCESS, V32, P156, DOI 10.1016/j.dsp.2014.05.008
Pinxten M, 2019, EUR J PSYCHOL EDUC, V34, P45, DOI 10.1007/s10212-017-0361-x
Rabiner DL, 2016, SCHOOL PSYCHOL REV, V45, P250, DOI 10.17105/SPR45-2.250-267
Varley JB, 2017, CHEM MATER, V29, P2568, DOI 10.1021/acs.chemmater.6b04663
Zhu XT, 2018, IEEE T IMAGE PROCESS, V27, P2286, DOI 10.1109/TIP.2017.2740564
Zimmerman BJ, 2014, CONTEMP EDUC PSYCHOL, V39, P145, DOI 10.1016/j.cedpsych.2014.03.004
NR 22
TC 6
Z9 6
U1 2
U2 37
PU SPRINGER LONDON LTD
PI LONDON
PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND
SN 0941-0643
EI 1433-3058
J9 NEURAL COMPUT APPL
JI Neural Comput. Appl.
PD JUN
PY 2022
VL 34
IS 12
SI SI
BP 9369
EP 9383
DI 10.1007/s00521-021-06333-8
EA JUL 2021
PG 15
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA 1H6NM
UT WOS:000675747400006
DA 2024-09-05
ER
PT C
AU Bose, A
Behzadan, V
Aguirre, C
Hsu, WH
AF Bose, Avishek
Behzadan, Vahid
Aguirre, Carlos
Hsu, William H.
BE Spezzano, F
Chen, W
Xiao, X
TI A Novel Approach for Detection and Ranking of Trendy and Emerging Cyber
Threat Events in Twitter Streams
SO PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN
SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2019)
LA English
DT Proceedings Paper
CT IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM)
CY AUG 27-30, 2019
CL Vancouver, CANADA
DE novelty detection; emerging topics; event detection; named entity
recognition; threat intelligence; user influence; tweet analysis
AB We present a new machine learning and text information extraction approach to detection of cyber threat events in Twitter that are novel (previously non-extant) and developing (marked by significance with respect to similarity with a previously detected event). While some existing approaches to event detection measure novelty and trendiness, typically as independent criteria and occasionally as a holistic measure, this work focuses on detecting both novel and developing events using an unsupervised machine learning approach. Furthermore, our proposed approach enables the ranking of cyber threat events based on an importance score by extracting the tweet terms that are characterized as named entities, keywords, or both. We also impute influence to users in order to assign a weighted score to noun phrases in proportion to user influence and the corresponding event scores for named entities and keywords. To evaluate the performance of our proposed approach, we measure the efficiency and detection error rate for events over a specified time interval, relative to human annotator ground truth.
C1 [Bose, Avishek; Behzadan, Vahid; Aguirre, Carlos; Hsu, William H.] Kansas State Univ, Dept Comp Sci, Manhattan, KS 66506 USA.
C3 Kansas State University
RP Bose, A (corresponding author), Kansas State Univ, Dept Comp Sci, Manhattan, KS 66506 USA.
EM abose@ksu.edu; behzadan@ksu.edu; caguirre97@ksu.edu; bhsu@ksu.edu
RI Bose, Avishek/KEH-4123-2024; Behzadan, Vahid/AAZ-5344-2020; Aguirre,
Carlos/B-7560-2014
OI Bose, Avishek/0000-0001-5936-3170; Behzadan, Vahid/0000-0002-6229-9365;
CR Behzadan V, 2018, IEEE INT CONF BIG DA, P5002, DOI 10.1109/BigData.2018.8622506
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Dabiri S, 2019, EXPERT SYST APPL, V118, P425, DOI 10.1016/j.eswa.2018.10.017
Edouard A., 2017, EVENT DETECTION ANAL
Ester Martin, 1996, P 2 INT C KNOWL DISC, P226
Ho Chung Wu, 2008, ACM Transactions on Information Systems, V26
Ifrim G., 2014, CEUR Workshop Proceedings, V1150, P33
JANG H, 2017, SOFT COMPUT, V21
Khandpur RP, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1049, DOI 10.1145/3132847.3132866
Le Sceller Q, 2017, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY (ARES 2017), DOI 10.1145/3098954.3098992
Li QZ, 2017, PROC INT CONF DATA, P1129, DOI 10.1109/ICDE.2017.157
Marcus A, 2011, 29TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P227
Mihalcea Rada, 2004, Textrank: bringing order into text, DOI DOI 10.3115/1219044.1219064
Mikolov T., 2013, Efficient estimation of word representations in vector space
Mittal S, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P860, DOI 10.1109/ASONAM.2016.7752338
Page L., 1999, The PageRank citation ranking: bringing order to the web
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Piper Andy., 2015, Potential adjustments to Streaming API sample volumes
Le Q, 2014, PR MACH LEARN RES, V32, P1188
Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
Ritter A, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P896, DOI 10.1145/2736277.2741083
Sapienza A, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P983, DOI 10.1145/3184558.3191528
NR 22
TC 10
Z9 14
U1 0
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 978-1-4503-6868-1
PY 2019
BP 871
EP 878
DI 10.1145/3341161.3344379
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BP5IK
UT WOS:000555683800149
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Moore, CL
Wang, NN
Johnson, J
Manyibe, EO
Washington, AL
Muhammad, A
AF Moore, Corey L.
Wang, Ningning
Johnson, Jean
Manyibe, Edward O.
Washington, Andre L.
Muhammad, Atashia
TI Return-to-Work Outcome Rates of African American Versus White Veterans
Served by State Vocational Rehabilitation Agencies: A Randomized
Split-Half Cross-Model Validation Research Design
SO REHABILITATION COUNSELING BULLETIN
LA English
DT Article
DE African American veterans; state vocational rehabilitation agencies;
RSA-911 data assessment and cross-validation research methods; minority
access and outcome rates
ID MULTIPLE-REGRESSION; DISABILITIES; PREDICTION; SERVICES
AB The purpose of this study was to identify disparities in successful return-to-work outcome rates based on race, gender, and level of educational attainment at closure among veterans with a signed Individualized Plan for Employment (IPE). A randomized split-half cross-model validation research design was used to develop and test a series of logistic regression models for goodness of fit across two samples (i.e., screening and calibration) of case records (N = 11,337) obtained from the national Fiscal Year (FY) 2013 Rehabilitation Services Administration (RSA)-911 database. The final predictive multinomial logistic regression model indicated that (a) the odds of White veterans successfully returning to work were nearly 11/2 times the odds of African American veterans returning to work and (b) African American female veterans had the lowest probability for successfully returning to work. Moreover, findings indicated that African American veterans' successful return-to-work rates in 5 of the 10 RSA regions were below the national benchmark. Recommendations for policy development and future research directions are presented.
C1 [Moore, Corey L.; Wang, Ningning; Johnson, Jean; Manyibe, Edward O.; Washington, Andre L.; Muhammad, Atashia] Langston Univ, LU RRTC Res & Capac Bldg,4205 N Lincoln Blvd, Oklahoma City, OK 73105 USA.
C3 Langston University
RP Moore, CL (corresponding author), Langston Univ, LU RRTC Res & Capac Bldg,4205 N Lincoln Blvd, Oklahoma City, OK 73105 USA.; Moore, CL (corresponding author), Delta Sigma Theta Sorority Inc, Oklahoma City, OK 73105 USA.
EM clmoore@langston.edu
RI Manyibe, Edward/KDN-0723-2024
OI Manyibe, Edward/0000-0002-4616-9798
FU Department of Education, NIDRR [H133B130023]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This
research was supported under a grant from the Department of Education,
NIDRR Grant H133B130023.
CR Allison P. D., 2012, Logistic regression using SAS
Alston R, 2014, MED CARE, V52, pS17, DOI 10.1097/MLR.0000000000000105
[Anonymous], HARPERS MAGAZINE JUL
[Anonymous], 2011, SAS STAT 9 3 US GUID
[Anonymous], 2008, INVISIBLE WOUNDS WAR
Atkins B.J., 2011, Improving vocational rehabilitation access and return to work and career outcomes among African American Wounded Warriors, Gulf War and Vietnam War era veterans with disabilities, P45
ATKINS BJ, 1980, J REHABIL, V46, P40
Bell GL, 2013, REHABIL RES POL EDUC, V27, P246, DOI 10.1891/2168-6653.27.4.246
BELLINI J, 1995, REHABIL COUNS BULL, V39, P151
Boutin D., 2011, J APPL REHABIL COUS, V42, P24
Burke HS, 2009, J REHABIL, V75, P5
Burnett SE, 2009, J POSTSECOND EDUC DI, V22, P53
Church TE, 2009, J POSTSECOND EDUC DI, V22, P43
Dohrenwend BP, 2007, J TRAUMA STRESS, V20, P449, DOI 10.1002/jts.20296
Faberman J., 2013, Economics Perspectives, V37, P1, DOI DOI 10.4119/IJCV-2791
Feist-Price S., 2011, Improving vocational rehabilitation access and return to work and career outcomes among African American Wounded Warriors, Gulf War and Vietnam War era veterans with disabilities, P26
FEISTPRICE S, 1995, REHABIL COUNS BULL, V39, P119
Fleming AR, 2013, REHABIL COUNS BULL, V56, P146, DOI 10.1177/0034355212459661
Frain MP, 2010, J REHABIL, V76, P13
Glover-Graf N.M., 2010, REHABILITATION ED, V24, P43
Graf N.M., 2011, Journal of Applied Rehabilitation Counseling, V42, P13
Grossman PD, 2009, J POSTSECOND EDUC DI, V22, P4
Hastie T., 2009, ELEMENTS STAT LEARNI, V2nd
Hillesheim C., 2013, Vocational Evaluation and Work Adjustment Association Journal, V40, P23
Hosmer W., 2000, Applied Logistic Regression, VSecond
Hsu C-W, 2003, PRACTICAL GUIDE SUPP
Huck S. W., 1996, RES STAT RES
Kromrey JD, 1996, J EXP EDUC, V64, P240, DOI 10.1080/00220973.1996.9943806
Leddy M, 2014, J REHABIL RES DEV, V51, P161, DOI 10.1682/JRRD.2013.01.0011
Lewis AN, 2007, J VOCAT REHABIL, V26, P89
Lindstrom LE, 2009, REHABIL COUNS BULL, V52, P189, DOI 10.1177/0034355208323946
London AS, 2011, J POVERTY, V15, P330, DOI 10.1080/10875549.2011.589259
Madaus JW, 2009, J POSTSECOND EDUC DI, V22, P10
Moore C.L., 2011, Barriers to VR service access and return to work outcomes among African American veterans: The need for evidence-based research and service strategies
Moore C.L., 2003, J APPL REHABIL COUS, V34, P25
Moore C.L., 2001, J APPL REHABIL COUS, V32, P15
Moore C.L., 2002, Journal of Applied Rehabilitation Counseling, V33, P13
Moore C.L., 2001, Journal of Applied Rehabilitation Counseling, V32, P31
Moore CL, 2002, REHABIL COUNS BULL, V45, P233, DOI 10.1177/00343552020450040601
Moore CL, 2001, REHABIL COUNS BULL, V44, P144, DOI 10.1177/003435520104400304
Moore CL., 2009, Journal of Applied Rehabilitation Counseling, V40, P3, DOI [10.1891/0047-2220.40.3.3, DOI 10.1891/0047-2220.40.3.3]
Moran S, 2013, J REHABIL, V79, P34
National Institute on Disability and Rehabilitation Research, 2009, FED REGISTER, V74, P2564
National Research Council, 2008, GULF WAR HLTH, V7
O'Connor MK, 2011, J REHABIL RES DEV, V48, P597, DOI 10.1682/JRRD.2010.06.0117
Pedhazur E.J., 1997, MULTIPLE REGRESSION
Pohlmann JT, 2003, OHIO J SCI, V103, P118
Schwartz A. C., 2005, PSYCHIAT SERVICES, V56
Shackelford AL, 2009, J POSTSECOND EDUC DI, V22, P36
Sheehan C.M., 2012, Duty, honor, country, disparity: Race/ethnicity difference in self-reported health and disability among veterans
Singh C.K., 2013, Journal of Military and Government Counseling, V1, P152
Steyerberg EW, 2001, J CLIN EPIDEMIOL, V54, P774, DOI 10.1016/S0895-4356(01)00341-9
Taylor JMG, 2008, CLIN CANCER RES, V14, P5977, DOI 10.1158/1078-0432.CCR-07-4534
Wilson KB, 2000, REHABIL COUNS BULL, V43, P97, DOI 10.1177/003435520004300205
NR 54
TC 4
Z9 12
U1 0
U2 14
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0034-3552
EI 1538-4853
J9 REHABIL COUNS BULL
JI Rehabil. Couns. Bull.
PD APR
PY 2016
VL 59
IS 3
BP 158
EP 171
DI 10.1177/0034355215579917
PG 14
WC Rehabilitation
WE Social Science Citation Index (SSCI)
SC Rehabilitation
GA DG7FG
UT WOS:000372249600004
DA 2024-09-05
ER
PT C
AU Tenório, K
Olari, V
Chikobava, M
Romeike, R
AF Tenorio, Kamilla
Olari, Viktoriya
Chikobava, Margarita
Romeike, Ralf
GP ACM
TI Artificial Intelligence Literacy Research Field: A Bibliometric Analysis
from 1989 to 2021
SO PROCEEDINGS OF THE 54TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE
EDUCATION, VOL 1, SIGCSE 2023
LA English
DT Proceedings Paper
CT 54th Annual ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE TS)
CY MAR 15-18, 2023
CL Toronto, CANADA
DE AI literacy; AI education; bibliometric analysis; secondary study
ID BIG DATA; CHALLENGES
AB Artificial Intelligence (AI) literacy is a rapidly evolving research field. Due to the broad scope of AI literacy-related publications, a comprehensive analysis of the field is needed in order to examine the main characteristics of the current scientific output. Based on it, we conducted a bibliometric analysis of the field where we investigated the publications' evolution over time, research constituents (authors, countries, institutions, publication venues), collaboration patterns, and emerging trends. The findings point out that the United States of America (USA), China, Spain, and Germany are the most contributing countries in the AI literacy field. Moreover, the organizations that most contribute to the AI literacy field are the Massachusetts Institute of Technology, the University of Eastern Finland, and the Georgia Institute of Technology. Furthermore, KI - Kunstliche Intelligenz, ACM Transactions on Computing Education and IEEE Access are the most disseminating journals, and FIE, AAAI, SIGCSE and CHI are the most disseminating conferences of AI literacy research. According to keywords co-occurrence analysis, machine learning, data, big data, deep learning, and ethics are the most addressed AI topics. Finally, based on the achieved results, this bibliometric analysis draws some conclusions regarding the AI literacy field and points out potential directions for future works.
C1 [Tenorio, Kamilla; Olari, Viktoriya; Romeike, Ralf] Free Univ Berlin, Berlin, Germany.
[Chikobava, Margarita] German Res Ctr Artificial Intelligence, Berlin, Germany.
C3 Free University of Berlin
RP Tenório, K (corresponding author), Free Univ Berlin, Berlin, Germany.
EM kamilla.tenorio@fu-berlin.de; viktoriya.olari@fu-berlin.de;
margarita.chikobava@dfki.de; ralf.romeike@fu-berlin.de
RI Chikobava, Margarita/JAD-2254-2023
OI Chikobava, Margarita/0000-0001-7692-6289; Olari,
Viktoriya/0000-0002-5113-6624; Romeike, Ralf/0000-0002-2941-4288;
Tenorio, Kamilla/0000-0002-8088-7507
FU German Federal Ministry of Education and Research (BMBF) [16DHBKI025]
FX The authors would like to thank the German Federal Ministry of Education
and Research (BMBF) for financial support as part of the project "ENKIS
-Establishment of sustainable AI-related courses for responsible
artificial intelligence at Freie Universitat Berlin" (funding code:
16DHBKI025) and the reviewers for the suggestions for improvement.
CR Alekseeva L, 2021, LABOUR ECON, V71, DOI 10.1016/j.labeco.2021.102002
[Anonymous], 2010, Commun ACM, DOI [10.1145/1839676.1839701, DOI 10.1145/1839676.1839701]
Boden MA., 2016, AI: Its nature and future
Borenstein Jason, 2021, AI Ethics, V1, P61, DOI 10.1007/s43681-020-00002-7
Claes A., 2020, The Journal of Media Literacy Education, V12, P17, DOI [DOI 10.23860/JMLE-2020-12-3-3, 10.23860/jmle-2020-12-3-3]
Djeki E, 2022, J COMPUT EDUC, V9, P727, DOI 10.1007/s40692-021-00218-4
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Druga S, 2022, PROCEEDINGS OF THE 27TH ACM CONFERENCE ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, ITICSE 2022, VOL 1, P96, DOI 10.1145/3502718.3524782
Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021
Francesconi E, 2022, ARTIF INTELL LAW, V30, P147, DOI 10.1007/s10506-022-09309-8
Garrett N, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P272, DOI 10.1145/3375627.3375868
Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925
Ho YS, 2020, COLLNET J SCIENTOMET, V14, P369, DOI 10.1080/09737766.2021.1918032
IBM, 2019, Technical Report
Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2
Kim J, 2019, J ASSOC INF SCI TECH, V70, P71, DOI 10.1002/asi.24079
Klinger Joel, 2020, A Narrowing of AI Research?, DOI [10.2139/ssrn.3698698, DOI 10.2139/SSRN.3698698]
Long DR, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376727
Marques LS, 2020, INFORM EDUC, V19, P283, DOI 10.15388/infedu.2020.14
McCarthy J., 1955, A proposal for the Dartmouth Summer Research Project on Artificial Intelligence
Meyer B, 2009, COMMUN ACM, V52, P31, DOI 10.1145/1498765.1498780
Mora L, 2017, J URBAN TECHNOL, V24, P3, DOI 10.1080/10630732.2017.1285123
Muthukrishnan N, 2020, NEUROIMAG CLIN N AM, V30, P393, DOI 10.1016/j.nic.2020.07.004
Naudé W, 2021, ECON INNOV NEW TECH, V30, P1, DOI 10.1080/10438599.2020.1839173
Ng D. T. K., 2021, Computers and Education: Artificial Intelligence, V2, P100041, DOI DOI 10.1016/J.CAEAI.2021.100041
Olari V, 2021, PROCEEDINGS OF THE 16TH WORKSHOP IN PRIMARY AND SECONDARY COMPUTING EDUCATION, WIPSCE 2021, DOI 10.1145/3481312.3481351
Ruhela Sonakshi, 2019, INT CONF COMPUT, DOI [10.1109/ICCCNT45670.2019.8944650, DOI 10.1109/icccnt45670.2019.8944650]
Russell S., 2009, Artificial Intelligence: A Modern Approach, V3rd
Savage N, 2020, NATURE, V588, pS102, DOI 10.1038/d41586-020-03409-8
Shen Y, 2021, COMPUT APPL ENG EDUC, V29, P329, DOI 10.1002/cae.22221
Skene L, 2007, PLOS MED, V4, P243, DOI 10.1371/journal.pmed.0040010
Tedre M, 2021, PROCEEDINGS OF 21ST KOLI CALLING CONFERENCE ON COMPUTING EDUCATION RESEARCH, KOLI CALLING 2021,, DOI 10.1145/3488042.3488053
Topol EJ, 2019, NAT MED, V25, P44, DOI 10.1038/s41591-018-0300-7
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
von Wangenheim CG, 2021, EDUC INF TECHNOL, V26, P5733, DOI 10.1007/s10639-021-10570-8
Zhang D., 2022, AI INDEX 2022 ANN RE
Zhou XF, 2020, Arxiv, DOI [arXiv:2009.10228, 10.48550/arXiv.2009.10228, DOI 10.48550/ARXIV.2009.10228]
Zhuang YT, 2017, FRONT INFORM TECH EL, V18, P3, DOI 10.1631/FITEE.1601883
NR 38
TC 9
Z9 9
U1 64
U2 76
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 978-1-4503-9431-4
PY 2023
BP 1083
EP 1089
DI 10.1145/3545945.3569874
PG 7
WC Computer Science, Theory & Methods; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Education & Educational Research
GA BW2KI
UT WOS:001117817800156
DA 2024-09-05
ER
PT J
AU Vasishta, P
Dhingra, N
Vasishta, S
AF Vasishta, Prihana
Dhingra, Navjyoti
Vasishta, Seema
TI Application of artificial intelligence in libraries: a bibliometric
analysis and visualisation of research activities
SO LIBRARY HI TECH
LA English
DT Article; Early Access
DE Artificial intelligence; Bibliometrics; Libraries; Scopus; Network
analysis; Cluster analysis
ID SMART; SYSTEM
AB PurposeThis research aims to analyse the current state of research on the application of Artificial Intelligence (AI) in libraries by examining document type, publication year, keywords, country and research methods. The overarching aim is to enrich the existing knowledge of AI-powered libraries by identifying the prevailing research gaps, providing direction for future research and deepening the understanding needed for effective policy development.Design/methodology/approachThis study used advanced tools such as bibliometric and network analysis, taking the existing literature from the SCOPUS database extending to the year 2022. This study analysed the application of AI in libraries by identifying and selecting relevant keywords, extracting the data from the database, processing the data using advanced bibliometric visualisation tools and presenting and discussing the results. For this comprehensive research, the search strategy was approved by a panel of computer scientists and librarians.FindingsThe majority of research concerning the application of AI in libraries has been conducted in the last three years, likely driven by the fourth industrial revolution. Results show that highly cited articles were published by Emerald Group Holdings Ltd. However, the application of AI in libraries is a developing field, and the study highlights the need for more research in areas such as Digital Humanities, Machine Learning, Robotics, Data Mining and Big Data in Academic Libraries.Research limitations/implicationsThis study has excluded papers written in languages other than English that address domains beyond libraries, such as medicine, health, education, science and technology.Practical implicationsThis article offers insight for managers and policymakers looking to implement AI in libraries. By identifying clusters and themes, the article would empower managers to plan ahead, mitigate potential drawbacks and seize opportunities for sustainable growth.Originality/valuePrevious studies on the application of AI in libraries have taken a broad approach, but this study narrows its focus to research published explicitly in Library and Information Science (LIS) journals. This makes it unique compared to previous research in the field.
C1 [Vasishta, Prihana] Punjab Engn Coll, Ctr Management & Humanities, Chandigarh, India.
[Dhingra, Navjyoti] Panjab Univ, Chandigarh, India.
[Vasishta, Seema] Punjab Engn Coll, Cent Lib, Chandigarh, India.
C3 Punjab Engineering College (Deemed University); Panjab University;
Punjab Engineering College (Deemed University)
RP Vasishta, P (corresponding author), Punjab Engn Coll, Ctr Management & Humanities, Chandigarh, India.
EM prihana.ubs@gmail.com
OI Vasishta, Prihana/0000-0002-3833-4992; Vasishta,
Seema/0000-0003-2764-1724
CR Allison D, 2012, LIBR HI TECH, V30, P95, DOI 10.1108/07378831211213238
Asemi A., 2018, Library Philosophy and Practice, V2, P22, DOI [10.22259/2637-5915.0201004, DOI 10.22259/2637-5915.0201004]
Asemi A, 2021, LIBR HI TECH, V39, P412, DOI 10.1108/LHT-02-2020-0038
Bakkalbasi N, 2015, LIBR MANAGE, V36, P208, DOI 10.1108/LM-09-2014-0109
Bischl B, 2016, ARTIF INTELL, V237, P41, DOI 10.1016/j.artint.2016.04.003
Borgohain DJ, 2024, LIBR HI TECH, V42, P149, DOI 10.1108/LHT-07-2022-0331
Cao GH, 2018, ELECTRON LIBR, V36, P811, DOI 10.1108/EL-11-2017-0248
Carneiro A., 2001, Journal of Knowledge Management, V5, P358, DOI 10.1108/EUM0000000006533
Chu HC, 2008, ELECTRON LIBR, V26, P303, DOI 10.1108/02640470810879464
CLN O.T.E., 2023, Library Philosophy and Practice, P1
Corke P., 2011, Robotics, vision and control: fundamental algorithms in MATLAB
Cox AM, 2019, J DOC, V75, P1432, DOI 10.1108/JD-12-2018-0211
Cox AM, 2019, LIBR HI TECH, V37, P418, DOI 10.1108/LHT-08-2018-0105
Di Vaio A, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121201
Dwivedi YK, 2013, INT J INFORM MANAGE, V33, P367, DOI 10.1016/j.ijinfomgt.2012.10.008
Fiorucci M, 2020, PATTERN RECOGN LETT, V133, P102, DOI 10.1016/j.patrec.2020.02.017
Gul S, 2019, ELECTRON LIBR, V37, P764, DOI 10.1108/EL-02-2019-0052
Harisanty D, 2024, LIBR HI TECH, V42, P809, DOI 10.1108/LHT-10-2021-0356
Herron Jennifer, 2017, Journal of Electronic Resources in Medical Libraries, V14, P139, DOI 10.1080/15424065.2017.1367633
Huang YH, 2024, LIBR HI TECH, V42, P885, DOI 10.1108/LHT-03-2022-0159
Kamada H., 2010, College and Research Libraries News, V71, P484, DOI [10.5860/crln.71.9.8441, DOI 10.5860/CRLN.71.9.8441]
Lakshmikant M., 2008, Automation and networking of libraries (electronic source): amanual of library management software and applications of computer technology in libraries
Lancaster F.W., 1997, Libraries for the New Millennium: Implications for Managers, P19
Mijwil M.M., 2022, Asian Journal of Applied Sciences, V10, DOI [10.24203/ajas.v10i1.6930, DOI 10.24203/AJAS.V10I1.6930]
Mogali S.S., 2014, BIL INT C INF TECHN
Okunlaya RO, 2022, LIBR HI TECH, V40, P1869, DOI 10.1108/LHT-07-2021-0242
Omame I. M., 2020, Managing and adapting library information services for future users, P120
Owolabi KA, 2022, LIBR MANAGE, V43, P296, DOI 10.1108/LM-11-2021-0104
Oyelude Adetoun A., 2021, Library Hi Tech News, V38, P1, DOI 10.1108/LHTN-10-2021-0079
Phillips D., 2017, Doctoral dissertation
Riahi Y, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114702
Rubin VL, 2010, LIBR HI TECH, V28, P496, DOI 10.1108/07378831011096196
Salman F.M., 2019, International Journal of Engineering and Information Systems (IJEAIS), V3, P1
Singh D.K., 1996, DESIDOC Journal of Library and Information Technology, V16, P9, DOI [10.14429/dbit.16.4.3272, DOI 10.14429/DBIT.16.4.3272]
Straub J, 2021, METHODSX, V8, DOI 10.1016/j.mex.2021.101477
Tella Adeyinka, 2022, Library Hi Tech News, P15, DOI 10.1108/LHTN-05-2022-0072
VICKERY A, 1987, INFORM PROCESS MANAG, V23, P99, DOI 10.1016/0306-4573(87)90052-5
Vijayakumar A., 2011, International Journal of Digital Library Services, V1, P144
Vijayakumar S., 2019, International Journal of Computer Sciences and Engineering, V7, P2347
Villani C., 2018, For a Meaningful Artificial Intelligence - Towards a French and European Strategy'
Vincze Joseph, 2017, Library Hi Tech News, V34, P5, DOI 10.1108/LHTN-03-2017-0016
Xu YJ, 2021, INNOVATION-AMSTERDAM, V2, DOI 10.1016/j.xinn.2021.100179
Yao F, 2015, LIBR HI TECH, V33, P245, DOI 10.1108/LHT-02-2015-0010
NR 43
TC 1
Z9 1
U1 82
U2 104
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 0737-8831
J9 LIBR HI TECH
JI Libr. Hi Tech
PD 2024 JAN 19
PY 2024
DI 10.1108/LHT-12-2023-0589
EA JAN 2024
PG 18
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA FA1F8
UT WOS:001142924300001
DA 2024-09-05
ER
PT J
AU Onan, A
AF Onan, Aytug
TI Two-Stage Topic Extraction Model for Bibliometric Data Analysis Based on
Word Embeddings and Clustering
SO IEEE ACCESS
LA English
DT Article
DE Topic extraction; machine learning; cluster analysis; text mining
ID SCIENCE; ENSEMBLE
AB Topic extraction is an essential task in bibliometric data analysis, data mining and knowledge discovery, which seeks to identify significant topics from text collections. The conventional topic extraction schemes require human intervention and involve also comprehensive pre-processing tasks to represent text collections in an appropriate way. In this paper, we present a two-stage framework for topic extraction from scientific literature. The presented scheme employs a two-staged procedure, where word embedding schemes have been utilized in conjunction with cluster analysis. To extract significant topics from text collections, we propose an improved word embedding scheme, which incorporates word vectors obtained by word2vec, POS2vec, word-position2vec and LDA2vec schemes. In the clustering phase, an improved clustering ensemble framework, which incorporates conventional clustering methods (i.e., k-means, k-modes, k-means CC, self-organizing maps and DIANA algorithm) by means of the iterative voting consensus, has been presented. In the empirical analysis, we analyze a corpus containing 160,424 abstracts of articles from various disciplines, including agricultural engineering, economics, engineering and computer science. In the experimental analysis, performance of the proposed scheme has been compared to conventional baseline clustering methods (such as, k-means, k-modes, and k-means CC), LDA-based topic modelling and conventional word embedding schemes. The empirical analysis reveals that ensemble word embedding scheme yields better predictive performance compared to the baseline word vectors for topic extraction. Ensemble clustering framework outperforms the baseline clustering methods. The results obtained by the proposed framework show an improvement in Jaccard coefficient, Folkes & Mallows measure and F1 score.
C1 [Onan, Aytug] Izmir Katip Celebi Univ, Comp Engn Dept, TR-35620 Izmir, Turkey.
C3 Izmir Katip Celebi University
RP Onan, A (corresponding author), Izmir Katip Celebi Univ, Comp Engn Dept, TR-35620 Izmir, Turkey.
EM aytug.onan@ikc.edu.tr
RI ONAN, Aytuğ/L-4613-2018
OI ONAN, Aytuğ/0000-0002-9434-5880
CR [Anonymous], 2007, SOC IND APPL MATH
[Anonymous], 2010, PYTHON TEXT PROCESSI
Bagheri A, 2014, J INF SCI, V40, P621, DOI 10.1177/0165551514538744
Bashir S, 2015, QUAL QUANT, V49, P2061, DOI 10.1007/s11135-014-0090-z
Boongoen T, 2018, COMPUT SCI REV, V28, P1, DOI 10.1016/j.cosrev.2018.01.003
Bougouin A., 2013, P 6 INT JOINT C NAT, P543
Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029
Butnaru AM, 2017, PROCEDIA COMPUT SCI, V112, P1783, DOI 10.1016/j.procs.2017.08.211
Caliskan A, 2017, SCIENCE, V356, DOI 10.1126/science.aal4230
Chipman H, 2006, BIOSTATISTICS, V7, P286, DOI 10.1093/biostatistics/kxj007
Curiskis SA, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.04.002
De Boom C, 2016, PATTERN RECOGN LETT, V80, P150, DOI 10.1016/j.patrec.2016.06.012
Deng L., 2014, Deep learning: Methods and applications (No. MSR-TR-2014-21), V7, P197, DOI [10.1561/, DOI 10.1561/2000000039, 10.1561/2000000039]
Ding WY, 2014, J ASSOC INF SCI TECH, V65, P2084, DOI 10.1002/asi.23134
Ekbal A., 2011, ACM Trans. Asian Lang. Inf. Process., V10, DOI [10.1145/1967293.1967296, DOI 10.1145/1967293.1967296]
Ferrara A, 2012, SCIENTOMETRICS, V93, P765, DOI 10.1007/s11192-012-0810-x
Gehring J., 2017, ICML, P6
Ghosh J, 2011, WIRES DATA MIN KNOWL, V1, P305, DOI 10.1002/widm.32
Glaab E., 2011, THESIS
Han J., 2006, DATA MINING CONCEPTS, P600
Hofmann Katja., 2009, CIKM, P1725
Hong Y., AUTOMATIC HILGHTER L
Huang Z., 1997, DMKD, V3, P34, DOI DOI 10.11108/1.8127REP=REP1TYPE=PDF
Ionescu RT, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P363
Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011
Kamkarhaghighi M, 2017, EXPERT SYST APPL, V90, P241, DOI 10.1016/j.eswa.2017.08.021
Kittler J, 1998, IEEE T PATTERN ANAL, V20, P226, DOI 10.1109/34.667881
Kohonen T., 2001, SELF ORG MAPS, DOI [DOI 10.1007/978-3-642-56927-2, 10.1007/978-3-642-56927-2]
Lauren P, 2018, NEUROCOMPUTING, V277, P129, DOI 10.1016/j.neucom.2017.01.117
Lilleberg J, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P136, DOI 10.1109/ICCI-CC.2015.7259377
Lu Qiang., 2011, Proc. of CIKM'11, P383
Maas A, 2011, P 49 ANN M ASS COMP
Mikolov T., 2013, ARXIV
Moody C. E., MIXING DIRICHLET TOP
Nguyen N, 2007, IEEE DATA MINING, P607, DOI 10.1109/ICDM.2007.73
Onan A, 2019, SCI PROGRAMMING-NETH, V2019, DOI 10.1155/2019/5901087
Onan A, 2017, INFORM PROCESS MANAG, V53, P814, DOI 10.1016/j.ipm.2017.02.008
Onan A, 2016, EXPERT SYST APPL, V57, P232, DOI 10.1016/j.eswa.2016.03.045
PETERS HPF, 1993, RES POLICY, V22, P23, DOI 10.1016/0048-7333(93)90031-C
Poria S., 2016, COLING, P1601
Le Q, 2014, PR MACH LEARN RES, V32, P1188
Ren HP, 2019, LECT NOTES COMPUT SC, V11446, P419, DOI 10.1007/978-3-030-18576-3_25
Rezaeinia SM, 2019, EXPERT SYST APPL, V117, P139, DOI 10.1016/j.eswa.2018.08.044
Rip A., 1988, HDB QUANTITATIVE STU, P253
Schmidt CW., 2019, ARXIV190209875
Socher Richard, 2013, Advances in neural information processing systems, P926
Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596
Tang DY, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1555
Ünlü R, 2019, EXPERT SYST APPL, V125, P33, DOI 10.1016/j.eswa.2019.01.074
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
Velden T, 2017, SCIENTOMETRICS, V111, P1169, DOI 10.1007/s11192-017-2306-1
Vesanto J, 2000, IEEE T NEURAL NETWOR, V11, P586, DOI 10.1109/72.846731
Wei C, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146672
Yang J., 2016, International Journal of Database Theory and Application, V9, P1, DOI DOI 10.1186/s13071-016-1880-z
Yang ZJ, 2016, ADV SOC SCI EDUC HUM, V64, P1480
Zhang Y., 2016, ARXIV151003820
Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004
Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015
Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019
NR 59
TC 193
Z9 193
U1 17
U2 86
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2019
VL 7
BP 145614
EP 145633
DI 10.1109/ACCESS.2019.2945911
PG 20
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA JQ2YJ
UT WOS:000498816000002
OA gold
HC Y
HP N
DA 2024-09-05
ER
PT J
AU Wang, KL
Dong, K
Wu, JC
Wu, J
AF Wang, Kaili
Dong, Ke
Wu, Jiachun
Wu, Jiang
TI Patterns of artificial intelligence policies in China: a nationwide
perspective
SO LIBRARY HI TECH
LA English
DT Article; Early Access
DE Artificial intelligence; Policy analysis; Bibliometrics; Policy
instruments; Policy diffusion; Policy patterns
ID DIFFUSION
AB PurposeThe purpose of this paper is to identify the historical trends and status of the national development of artificial intelligence (AI) from a nationwide perspective and to enable governments at different administrative levels to promote AI development through policymaking.Design/methodology/approachThis paper analyzed 248 Chinese AI policies (36 issued by the state agencies and 212 by the regional agencies). Policy bibliometrics, policy instruments and network analysis were used to reveal the AI policy patterns. Three aspects were analyzed: the spatiotemporal distribution of issued policies, the policy foci and instruments of policy contents and the cooperation and citation among policy-issuing agencies.FindingsResults indicate that Chinese AI development is still in the initial phase. During the policymaking processes, the state and regional policy foci have strong consistency; however, the coordination among state and regional agencies is supposed to be strengthened. According to the issuing time of AI policies, Chinese AI development is in accordance with the global situation and has witnessed unprecedented growth in the last five years. And the coastal provinces have issued more targeted policies than the middle and western provinces. Governments at the state and regional levels have emphasized familiar policy foci and played the role of policymakers, along with regional governments that also functioned as policy executors as well. According to the three-dimension instruments coding, the authors found an uneven structure of policy instruments at both levels. Furthermore, weak cooperation appears at the state level, while little cooperation is found among regional agencies. Regional governments cite state policies, thus leading to the formation of top-down diffusion, lacking bottom-up diffusion.Originality/valueThe paper contributes to the literature by characterizing policy patterns from both external attributes and semantic contents, thus revealing features of policy distribution, contents and agencies. What is more, this research analyzes Chinese AI policies from a nationwide perspective, which contributes to clarifying the overall status and multi-level relationships of policies. The findings also benefit the coordinated development of governments during further policymaking processes.
C1 [Wang, Kaili; Dong, Ke; Wu, Jiachun; Wu, Jiang] Wuhan Univ, Sch Informat Management, Wuhan, Peoples R China.
C3 Wuhan University
RP Wu, J (corresponding author), Wuhan Univ, Sch Informat Management, Wuhan, Peoples R China.
EM jiangw@whu.edu.cn
OI Wu, Jiang/0000-0002-3342-9757
FU This research was supported by the Key Projects of Philosophy and Social
Sciences Research, Ministry of Education (No. 20JZD024). [20JZD024]; Key
Projects of Philosophy and Social Sciences Research, Ministry of
Education
FX This research was supported by the Key Projects of Philosophy and Social
Sciences Research, Ministry of Education (No. 20JZD024).
CR Allision G.T., 1971, Essence of Decision
Ayan J., 2018, Plos One, V13, pe0205555
Bareis J, 2022, SCI TECHNOL HUM VAL, V47, P855, DOI 10.1177/01622439211030007
Borgohain DJ, 2024, LIBR HI TECH, V42, P149, DOI 10.1108/LHT-07-2022-0331
Brewer GarryD., 1983, FDN POLICY ANAL
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Carley S, 2011, ENERG ECON, V33, P1004, DOI 10.1016/j.eneco.2011.05.002
Chen MY, 2020, LIBR HI TECH, V38, P273, DOI 10.1108/LHT-06-2020-279
Chudnovsky M, 2019, LAT AM POLICY, V10, P120, DOI 10.1111/lamp.12158
Feng X, 2024, LIBR HI TECH, V42, P782, DOI 10.1108/LHT-06-2021-0189
Feng X, 2021, LIBR HI TECH, V39, P722, DOI 10.1108/LHT-06-2020-0141
GRAY V, 1973, AM POLIT SCI REV, V67, P1174, DOI 10.2307/1956539
Hood C., 1983, The Tools of Government
Howlett M., 2003, STUDYING PUBLIC POLI, DOI DOI 10.2307/2952394
Huang C., 2016, Quantitative research on policy literature
Huang C, 2020, HIGH EDUC POLICY, V33, P323, DOI 10.1057/s41307-018-0096-6
Huang C, 2018, SCIENTOMETRICS, V117, P1081, DOI 10.1007/s11192-018-2899-z
Huang C, 2015, SCIENTOMETRICS, V102, P1521, DOI 10.1007/s11192-014-1406-4
Hughes O., 2001, Public Management and Administration: An Introduction
Lai CF, 2021, LIBR HI TECH, V39, P380, DOI 10.1108/LHT-09-2019-0195
Lasswell H.D., 1950, POWER SOC FRAMEWORK
Lester J.P., 2004, Public Policy: An Evolutionary Approach
Li J., 2015, Journal of Public Management, V12, P138, DOI [10.16149/j.cnki.23-1523.2015.02.013, DOI 10.16149/J.CNKI.23-1523.2015.02.013_159]
Liu C, 2021, LIBR HI TECH, V39, P396, DOI 10.1108/LHT-12-2019-0252
Madhavan R, 2020, IEEE INTELL SYST, V35, P103, DOI 10.1109/MIS.2020.3019679
Marda V, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2018.0087
McKelvey F, 2019, CAN J COMMUN, V44, P43, DOI 10.22230/cjc.2019v44n2a3509
Motta MJ, 2018, REV POLICY RES, V35, P398, DOI 10.1111/ropr.12281
NEWMAN M. E. J., 2010, Networks
Ren T., 2017, Chinese Public Administration, P96
Roberts H, 2021, AI SOC, V36, P59, DOI 10.1007/s00146-020-00992-2
Rothwell Roy., 1985, REINDUSTRIALIZATION
SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007
Shirk S., 1993, POLITICAL LOGIC EC R
Sicilia MA, 2019, LIBR HI TECH, V37, P30, DOI 10.1108/LHT-12-2017-0276
Simmons BA, 2006, INT ORGAN, V60, P781, DOI 10.1017/S0020818306060267
Song W., 2019, Research on Science and Technology Management, V39, P192
State Council of China, 1998, Guangzhou Political News, V5, P7
Stix C, 2021, SCI ENG ETHICS, V27, DOI 10.1007/s11948-020-00277-3
Tang Z., 2019, Information Magazine, V38, P73
Tang Z., 2019, Information Magazine, V38, P49
Trencher G, 2020, ENERG POLICY, V142, DOI 10.1016/j.enpol.2020.111533
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
WALKER JL, 1969, AM POLIT SCI REV, V63, P880, DOI 10.2307/1954434
Wang YN, 2021, BUILD RES INF, V49, P216, DOI 10.1080/09613218.2020.1789444
Wolfers A, 1952, POLIT SCI QUART, V67, P481, DOI 10.2307/2145138
Wu J, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102562
Xiang JQ, 2021, INT REV ADM SCI, V87, P888, DOI 10.1177/0020852319877940
Xiao L., 2020, Electronic Commerce Research, P1
Yang C, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121188
Yang C, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120116
Yang C, 2017, J CHIN GOV, V2, P478, DOI 10.1080/23812346.2017.1384094
Yue X, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17072327
Zhang J, 2022, TECHNOL ANAL STRATEG, V34, P71, DOI 10.1080/09537325.2021.1885641
Zhang X., 2019, Information Work, V40, P44
Zhang XQ, 2019, SCIENTOMETRICS, V120, P129, DOI 10.1007/s11192-019-03105-z
Zhang YL, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010187
Zhou N, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12093629
Zhu XF, 2018, SOC SCI CHINA, V39, P78, DOI 10.1080/02529203.2018.1414390
NR 59
TC 2
Z9 2
U1 30
U2 65
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 0737-8831
J9 LIBR HI TECH
JI Libr. Hi Tech
PD 2023 SEP 15
PY 2023
DI 10.1108/LHT-04-2022-0168
EA SEP 2023
PG 31
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA T2MO7
UT WOS:001076377200001
DA 2024-09-05
ER
PT J
AU Wang, X
Bendle, NT
Mai, F
Cotte, J
AF Wang, Xin (Shane)
Bendle, Neil T.
Mai, Feng
Cotte, June
TI The Journal of Consumer Research at 40: A Historical Analysis
SO JOURNAL OF CONSUMER RESEARCH
LA English
DT Article
DE topic modeling; Journal of Consumer Research; historical analysis;
citation analysis
AB This article reviews 40 years of the Journal of Consumer Research (JCR). Using text mining, we uncover the key phrases associated with consumer research. We use a topic modeling procedure to uncover 16 topics that have been featured in the journal since its inception and to show the trends in topics over time. For example, we highlight the decline in family decision-making research and the flourishing of social identity and influence research since the journal's inception. A citation analysis shows which JCR articles have had the most impact and compares the topics in top-cited articles with all JCR journal articles. We show that methodological and consumer culture articles tend to be heavily cited. We conclude by investigating the scholars who have been the top contributors to the journal across the four decades of its existence. And to better understand which schools have contributed most to the knowledge of consumer research over this history, we provide an analysis of where these top-performing scholars were trained. Our approach shows that the JCR archives can be an excellent source of data for scholars trying to understand the complicated, challenging, and dynamic field of consumer research.
C1 [Wang, Xin (Shane); Bendle, Neil T.; Cotte, June] Univ Western Ontario, Ivey Business Sch, Mkt, London, ON N6G 0N1, Canada.
[Mai, Feng] Univ Cincinnati, Lindner Coll Business, Cincinnati, OH 45221 USA.
C3 Western University (University of Western Ontario); University System of
Ohio; University of Cincinnati
RP Wang, X (corresponding author), Univ Western Ontario, Ivey Business Sch, Mkt, 1255 Western Rd, London, ON N6G 0N1, Canada.
EM xwang@ivey.ca; nbendle@ivey.ca; maifg@mail.uc.edu; jcot-te@ivey.ca
RI Bendle, Neil/AAZ-6717-2021; , June Cotte/HKW-4643-2023
OI Bendle, Neil/0000-0002-8557-5983; Cotte, June/0000-0003-0770-8338; Mai,
Feng/0000-0001-6897-8935
CR [Anonymous], 2014, J CONSUMER RES
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Dahl D, 2014, J CONSUM RES, V41, pIII, DOI 10.1086/676452
Deighton J, 2007, J CONSUM RES, V34, P279, DOI 10.1086/522653
Dingus Rebecca, 2013, 2013 WHO WENT SURVEY
Fox Alexa, 2014, WHO WENT 2014 SURVEY
Frank RE, 1995, ADV CONSUM RES, V22, P486
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Huber J, 2014, J MARKETING RES, V51, P84, DOI 10.1509/jmr.51.1.02
KATONA G, 1974, J CONSUM RES, V1, P1, DOI 10.1086/208575
Mela CF, 2013, MARKET SCI, V32, P8, DOI 10.1287/mksc.1120.0764
NR 11
TC 69
Z9 75
U1 17
U2 179
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 0093-5301
EI 1537-5277
J9 J CONSUM RES
JI J. Consum. Res.
PD JUN
PY 2015
VL 42
IS 1
BP 5
EP 18
DI 10.1093/jcr/ucv009
PG 14
WC Business
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA CK9ZA
UT WOS:000356596900002
DA 2024-09-05
ER
PT J
AU Sarikoç, GÖ
AF Sarikoc, Gulhan Ozdogan
TI Artificial intelligence applications in the field of streamflow: a
bibliometric analysis of recent trends
SO HYDROLOGICAL SCIENCES JOURNAL
LA English
DT Article
DE artificial intelligence; streamflow; bibliometric; research trends;
Scopus; RStudio Bibliometrix
ID NEURAL-NETWORK; WATER-LEVEL; MODELS; PREDICTION; WAVELET; ALGORITHM;
MACHINE; FLOW; TOOL
AB In this study, a bibliometric analysis technique is used for performance analysis and science mapping of artificial intelligence (AI) applications in streamflow research. This paper examines the current trends in the literature using the Scopus database over the last 37 years. RStudio Bibliometrix software was used to analyse the titles, keywords, abstracts, and full texts of 3000 publications to identify trends in AI models, publication types, journals, citations, authors, countries, and regions. The highest frequency AI-related keyword is "artificial neural networks," which was used in a total of 25587 times. The most common publication type, at 82.1%, is journal articles, and the highest rate of country production is 25% for China. In recent years, streamflow research studies have significantly increased their use of AI applications.
[GRAPHICS]
.
C1 [Sarikoc, Gulhan Ozdogan] Amasya Univ, Suluova Vocat Sch, Dept Vegetable & Anim Prod, Amasya, Turkiye.
C3 Ministry of National Education - Turkey; Amasya University
RP Sarikoç, GÖ (corresponding author), Amasya Univ, Suluova Vocat Sch, Dept Vegetable & Anim Prod, Amasya, Turkiye.
EM ozdogan.gulhan@gmail.com
CR Adarnowski JF, 2008, J HYDROL, V353, P247, DOI 10.1016/j.jhydrol.2008.02.013
Adisa OM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166516
Adnan RM., 2017, AM SCI RES J ENG TEC, V29, P286, DOI DOI 10.1016/S0169-4332(03)00957-7
Afan HA, 2016, J HYDROL, V541, P902, DOI 10.1016/j.jhydrol.2016.07.048
Al-Adhaileh MH, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084259
Anctil F, 2004, J ENVIRON ENG SCI, V3, pS121, DOI [10.1139/s03-071, 10.1139/S03-071]
[Anonymous], 2009, Science of science (Sci2) tool
Apaydin H, 2021, J HYDROL, V600, DOI 10.1016/j.jhydrol.2021.126506
Arabameri A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12030475
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Baffaut C., 1989, 6 C COMP CIV ENG, P124
Baker HK, 2020, J BUS RES, V108, P232, DOI 10.1016/j.jbusres.2019.11.025
Bibliometrix, 2023, BIBLIOSHINY ONLINE
Buyukyildiz M, 2014, WATER RESOUR MANAG, V28, P4747, DOI 10.1007/s11269-014-0773-1
Chau KW, 2006, J HYDROL, V329, P363, DOI 10.1016/j.jhydrol.2006.02.025
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen KH, 2011, J INFORMETR, V5, P233, DOI 10.1016/j.joi.2010.10.007
Chen W, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10020425
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Daniel T.M., 1991, P INT HYDR WAT RES
Dawson CW, 2006, NEURAL NETWORKS, V19, P236, DOI 10.1016/j.neunet.2006.01.009
Dawson CW, 1998, HYDROLOG SCI J, V43, P47, DOI 10.1080/02626669809492102
Dawson CW, 2001, PROG PHYS GEOG, V25, P80, DOI 10.1177/030913330102500104
Delleur J.W., 1988, CRITICAL WATER ISSUE, P187
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Donthu N, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102307
Engman E.T., 1988, PLANNING NOW IRRIGAT, P242
Engman E.T., 1986, WATER FORUM 86 WORLD, P174
FRAME J D, 1977, Interciencia, V2, P143
Gorzen-Mitka I, 2023, ENERGIES, V16, DOI 10.3390/en16042024
Govindaraju RS, 2000, J HYDROL ENG, V5, P124
Guo QQ, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.933665
He ZB, 2014, J HYDROL, V509, P379, DOI 10.1016/j.jhydrol.2013.11.054
Herrera-Franco G, 2021, WATER-SUI, V13, DOI 10.3390/w13091283
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
HSU KL, 1995, WATER RESOUR RES, V31, P2517, DOI 10.1029/95WR01955
Hu XJ, 2009, SCIENTOMETRICS, V81, P475, DOI 10.1007/s11192-008-2202-9
Ibrahim KSMH, 2022, ALEX ENG J, V61, P279, DOI 10.1016/j.aej.2021.04.100
Jain A, 2007, APPL SOFT COMPUT, V7, P585, DOI 10.1016/j.asoc.2006.03.002
Jothiprakash V, 2012, J HYDROL, V450, P293, DOI 10.1016/j.jhydrol.2012.04.045
Katy B., 2005, ANN REV ENV SCI TECH
Kia MB, 2012, ENVIRON EARTH SCI, V67, P251, DOI 10.1007/s12665-011-1504-z
Kim T, 2021, J HYDROL, V598, DOI 10.1016/j.jhydrol.2021.126423
Kisi Ö, 2007, J HYDROL ENG, V12, P532, DOI 10.1061/(ASCE)1084-0699(2007)12:5(532)
Kratzert F, 2018, HYDROL EARTH SYST SC, V22, P6005, DOI 10.5194/hess-22-6005-2018
Kumar A., 2015, 10 INT CABLIBER 2015
Lin JY, 2006, HYDROLOG SCI J, V51, P599, DOI 10.1623/hysj.51.4.599
Luk KC, 2000, J HYDROL, V227, P56, DOI 10.1016/S0022-1694(99)00165-1
Maier HR, 2013, ENVIRON MODELL SOFTW, V43, P3, DOI 10.1016/j.envsoft.2013.02.004
Maksimovic C., 1989, HYDROCOMP 89
Maroufpoor S, 2020, J HYDROL, V588, DOI 10.1016/j.jhydrol.2020.125060
MCLEOD AI, 1977, BIOMETRIKA, V64, P531, DOI 10.2307/2345329
Mehdizadeh S, 2018, J HYDROL, V559, P794, DOI 10.1016/j.jhydrol.2018.02.060
Meshram SG, 2022, IJST-T CIV ENG, V46, P2393, DOI 10.1007/s40996-021-00696-7
Minns AW, 1996, HYDROLOG SCI J, V41, P399, DOI 10.1080/02626669609491511
Mohammadi B, 2021, ENVIRON SCI POLLUT R, V28, P65752, DOI 10.1007/s11356-021-15563-1
Morris SA, 2008, ANNU REV INFORM SCI, V42, P213
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Nourani V, 2014, J HYDROL, V514, P358, DOI 10.1016/j.jhydrol.2014.03.057
Nourani V, 2009, WATER RESOUR MANAG, V23, P2877, DOI 10.1007/s11269-009-9414-5
Özdogan-Sarikoç G, 2023, J HYDROL, V616, DOI 10.1016/j.jhydrol.2022.128766
Patel A, 2023, ENG APPL ARTIF INTEL, V123, DOI 10.1016/j.engappai.2023.106335
Persson O., 2009, CELEBRATING SCHOLARL, V5, P9
Phong TV, 2021, GROUNDWATER, V59, P745, DOI 10.1111/gwat.13094
Rahman SA, 2020, J HYDROL, V588, DOI 10.1016/j.jhydrol.2020.125056
Ramírez MCV, 2005, J HYDROL, V301, P146, DOI 10.1016/j.jhydrol.2004.06.028
Rotmans J, 1996, CLIMATIC CHANGE, V34, P327, DOI 10.1007/BF00139296
Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707
Sang YF, 2013, WATER RESOUR MANAG, V27, P2807, DOI 10.1007/s11269-013-0316-1
SCHUBERT A, 1986, SCIENTOMETRICS, V9, P281, DOI 10.1007/BF02017249
Seo Y, 2015, J HYDROL, V520, P224, DOI 10.1016/j.jhydrol.2014.11.050
Shamim MA, 2016, KSCE J CIV ENG, V20, P971, DOI 10.1007/s12205-015-0298-z
Shamseldin AY, 1997, J HYDROL, V199, P272, DOI 10.1016/S0022-1694(96)03330-6
Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010
Solomatine DP, 2003, HYDROLOG SCI J, V48, P399, DOI 10.1623/hysj.48.3.399.45291
Sudheer KP, 2002, HYDROL PROCESS, V16, P1325, DOI 10.1002/hyp.554
TAGUESUTCLIFFE J, 1992, INFORM PROCESS MANAG, V28, P1, DOI 10.1016/0306-4573(92)90087-G
Tao H, 2024, ENG APPL ARTIF INTEL, V129, DOI 10.1016/j.engappai.2023.107559
Taylor JG, 1996, NEURAL NETWORKS AND THEIR APPLICATIONS, P277
Tiyasha, 2020, J HYDROL, V585, DOI 10.1016/j.jhydrol.2020.124670
Todini E., 1992, FLOODS FLOOD MANAGEM
Tokar AS, 1999, J HYDROL ENG, V4, P232, DOI 10.1061/(ASCE)1084-0699(1999)4:3(232)
Toth E, 2000, J HYDROL, V239, P132, DOI 10.1016/S0022-1694(00)00344-9
van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vantagepoint, US
Vinio F., 1989, P INT C HYDR NIAG FA, P1770
Wang MH, 2011, DESALIN WATER TREAT, V28, P353, DOI 10.5004/dwt.2011.2412
Wang WC, 2009, J HYDROL, V374, P294, DOI 10.1016/j.jhydrol.2009.06.019
William J., 1986, WATER FORUM 86 WORLD, P158
Wu CL, 2011, J HYDROL, V399, P394, DOI 10.1016/j.jhydrol.2011.01.017
Wu CL, 2009, WATER RESOUR RES, V45, DOI 10.1029/2007WR006737
Yaseen ZM, 2015, J HYDROL, V530, P829, DOI 10.1016/j.jhydrol.2015.10.038
Yifru BA, 2024, SUSTAINABILITY-BASEL, V16, DOI 10.3390/su16041376
Zare F, 2017, J HYDROL, V552, P765, DOI 10.1016/j.jhydrol.2017.07.031
Zealand CM, 1999, J HYDROL, V214, P32, DOI 10.1016/S0022-1694(98)00242-X
Zhang D, 2018, J HYDROL, V565, P720, DOI 10.1016/j.jhydrol.2018.08.050
NR 97
TC 0
Z9 0
U1 2
U2 2
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 0262-6667
EI 2150-3435
J9 HYDROLOG SCI J
JI Hydrol. Sci. J.
PD JUL 3
PY 2024
VL 69
IS 9
BP 1141
EP 1157
DI 10.1080/02626667.2024.2356006
EA JUN 2024
PG 17
WC Water Resources
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Water Resources
GA ZJ7M4
UT WOS:001253039200001
DA 2024-09-05
ER
PT J
AU Bircan, T
Salah, AAA
AF Bircan, Tuba
Salah, Almila Alkim Akdag
TI A Bibliometric Analysis of the Use of Artificial Intelligence
Technologies for Social Sciences
SO MATHEMATICS
LA English
DT Article
DE big data; artificial intelligence; computational social science; social
sciences; bibliometrics
ID BIG DATA RESEARCH; WEB; COLLABORATION; COVERAGE; NETWORK
AB The use of Artificial Intelligence (AI) and Big Data analysis algorithms is complementary to theory-driven analysis approaches and becoming more popular also in social sciences. This paper describes the use of Big Data and computational approaches in social sciences by bibliometric analyses of articles indexed between 2015 and 2020 in Social Sciences Citation Index (SSCI) of the Web of Science repository. We have analysed especially the recent research direction called Computational Social Sciences (CSS) that bridges computer analytical approaches with social science challenges, generating new methodologies of Big Data and AI analytics for social sciences. The results indicate that AI and Big Data practices are not confined to CSS only and are diffused in a wide variety of disciplines under Social Sciences and are made use of in many main research lines as well. Thus, the anticipated overlap between the Social Sciences & AI specialization and CSS has yet to be crystallised. Moreover, the impact of computational social science studies is not permeated to social science citation networks yet. Lastly, we demonstrate that the AI and Big Data publications that appear under the SSCI index are more oriented towards computational studies than addressing social science concepts, concerns, and challenges.
C1 [Bircan, Tuba] Vrije Univ Brussel, Dept Sociol, Interface Demog, Pl Laan 5, B-1050 Brussels, Belgium.
[Salah, Almila Alkim Akdag] Univ Utrecht, Dept Informat & Comp Sci, Human Ctr Comp Grp, Buys Ballotgebouw BBG 422,Princetonpl 5, NL-3584 CM Utrecht, Netherlands.
C3 Vrije Universiteit Brussel; Utrecht University
RP Bircan, T (corresponding author), Vrije Univ Brussel, Dept Sociol, Interface Demog, Pl Laan 5, B-1050 Brussels, Belgium.
EM tuba.bircan@vub.be
OI Bircan, Tuba/0000-0003-1956-0545
FU European Commission; [870661]
FX This research is funded by the European Commission through the
Horizon2020 European project: "HumMingBird-Enhanced migration measures
from a multidimensional perspective" (GA: 870661).
CR Abdulhayoglu MA, 2018, SCIENTOMETRICS, V116, P1229, DOI 10.1007/s11192-017-2569-6
Alonso JM, 2020, INT J COMPUT INT SYS, V13, P974, DOI 10.2991/ijcis.d.200715.003
Alvesson M., 2017, Return to Meaning: A Social Science with Something to Say
Anastasopoulos LJ, 2019, J PUBL ADM RES THEOR, V29, P491, DOI 10.1093/jopart/muy060
Bircan T, 2021, HUM SOC SCI COMMUN, V8, DOI 10.1057/s41599-021-00910-x
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Brown B., 2011, Big data: The next frontier for innovation, competition, and productivity, P156, DOI DOI 10.1080/01443610903114527
Cath C, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2018.0080
Chang RM, 2014, DECIS SUPPORT SYST, V63, P67, DOI 10.1016/j.dss.2013.08.008
Cioffi-Revilla C, 2017, TEXTS COMPUT SCI, P35, DOI 10.1007/978-3-319-50131-4_2
de Neufville R, 2021, TECHNOL SOC, V66, DOI 10.1016/j.techsoc.2021.101649
Edelmann A, 2020, ANNU REV SOCIOL, V46, P61, DOI 10.1146/annurev-soc-121919-054621
*EUR COMM, 2016, EU DAT PROT REF BIG
Gefen A., 2021, Reflections on Artificial Intelligence for Humanity, P191
Glanzel W, 1996, SCIENTOMETRICS, V37, P195, DOI 10.1007/BF02093621
Glanzel W, 1999, INFORM PROCESS MANAG, V35, P31, DOI 10.1016/S0306-4573(98)00028-4
González-Bailón S, 2013, POLICY INTERNET, V5, P147, DOI 10.1002/1944-2866.POI328
Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120
Harford Tim, 2014, Significance, DOI [DOI 10.1111/J.1740-9713.2014.00778.X, 10.1111/j.1740-9713.2014.00778.x]
Heradio R, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8091566
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Hu HT, 2019, PRO INT CONF SCI INF, P2501
Hu JM, 2017, SCIENTOMETRICS, V112, P91, DOI 10.1007/s11192-017-2383-1
Iliadis A, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716674238
Jacomy M., 2009, 3 INT AAAI C WEBL SO
Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1
Kessler M.M., 1962, EXPT STUDY BIBLIO CO
Kitchin R, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714528481
Kitchin R, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716631130
Kong JD, 2022, AI and Society, P179
Kwon S, 2019, RES POLICY, V48, DOI 10.1016/j.respol.2019.103834
Lafuente-Lechuga M, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9202557
Laney D, 2001, 3D DATA MANAGEMENT C
Lazer D, 2009, SCIENCE, V323, P721, DOI 10.1126/science.1167742
Li YP, 2023, APPL MATH NONLIN SCI, V8, P319, DOI 10.2478/amns.2022.2.00013
Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018
Liao HC, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010166
Ligo AK, 2021, FRONT COMP SCI-SWITZ, V3, DOI 10.3389/fcomp.2021.653235
Marín-Marín JA, 2019, SOC SCI-BASEL, V8, DOI 10.3390/socsci8080223
MAYER-SCHONBERGER Viktor, 2013, Big Data: A Revolution That Will Transform How We Live, Work, and Think
Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007
Mishra D, 2018, ANN OPER RES, V270, P313, DOI 10.1007/s10479-016-2236-y
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Nobre GC, 2017, SCIENTOMETRICS, V111, P463, DOI 10.1007/s11192-017-2281-6
Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001
Peng YF, 2017, INFORM SYST FRONT, V19, P1329, DOI 10.1007/s10796-017-9771-1
Petticrew M, 2006, SYSTEMATIC REVIEWS IN THE SOCIAL SCIENCES: A PRACTICAL GUIDE, P1, DOI 10.1002/9780470754887
Raban DR, 2020, SCIENTOMETRICS, V122, P1563, DOI 10.1007/s11192-020-03371-2
Raban DR, 2011, INFORM COMMUN SOC, V14, P375, DOI 10.1080/1369118X.2010.542824
Rafols I, 2010, J AM SOC INF SCI TEC, V61, P1871, DOI 10.1002/asi.21368
Schroeder Ralph, 2020, Information, Communication & Society, V23, P1593, DOI 10.1080/1369118X.2019.1594334
Schroeder R, 2015, INFORM COMMUN SOC, V18, P1039, DOI 10.1080/1369118X.2015.1008538
Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010
Stahlschmidt S., 2020, Comparison of Web of Science, Scopus and Dimensions databases KB Forschungspoolprojekt 2020, P37
Thelwall M, 2021, J ASSOC INF SCI TECH, V72, P269, DOI 10.1002/asi.24401
UN Global Pulse, 2012, BIG DAT DEV OPP CHAL
Unver HA, 2022, SOC SCI-BASEL, V11, DOI 10.3390/socsci11090395
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Veltri GA, 2017, BIG DATA SOC, V4, DOI 10.1177/2053951717703997
Xiao XY, 2021, APPL MATH NONLIN SCI, V6, P535, DOI 10.2478/amns.2021.2.00103
Yang XF, 2022, APPL MATH NONLIN SCI, DOI 10.2478/amns.2022.2.0096
Yu D., 2019, J. Data. Infor. Manag, V1, P3, DOI [10.3390/su10010166, 10.1007/s42488-019-00001-2, DOI 10.1007/S42488-019-00001-2]
Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031
NR 64
TC 3
Z9 3
U1 19
U2 53
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-7390
J9 MATHEMATICS-BASEL
JI Mathematics
PD DEC
PY 2022
VL 10
IS 23
AR 4398
DI 10.3390/math10234398
PG 17
WC Mathematics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematics
GA 6Z7CO
UT WOS:000897930400001
OA Green Published, gold
DA 2024-09-05
ER
PT C
AU Anderson, DM
Lantz, PA
AF Anderson, D. Michael
Lantz, Penelope A.
BE Looi, CK
Jonassen, D
Ikeda, M
TI From Research and Development to Field Application: Collaboration
Between Laboratory and Service Organization For Online Professional
Education
SO TOWARDS SUSTAINABLE AND SCALABLE EDUCATIONAL INNOVATIONS INFORMED BY
LEARNING SCIENCES
SE Frontiers in Artificial Intelligence and Applications
LA English
DT Proceedings Paper
CT 13th International Conference on Computers in Education (ICCCE 2005)
CY DEC 08-30, 2005
CL Singapore, SINGAPORE
DE Online learning; nurse training; dementia care; development and
dissemination
ID DISEASE
AB Health Media Lab, an R & D firm, and The Alzheimer's Association, a large voluntary organization, are collaborating to create an online course to train supervisory nurses in dementia care staff supervision. This paper discusses this collaboration as an example of how researchers and service organizations can work toward mutually beneficial goals: the creation and evaluation of innovative educational materials, as well as their dissemination from laboratory to field use.
C1 [Anderson, D. Michael; Lantz, Penelope A.] Hlth Media Lab, Washington, DC USA.
EM dmichaela@healthmedialab.com
CR *ALZH ASS, 2004, LONG TERM CAR WORKF
[Anonymous], SUCCESSFUL COMMUNICA
[Anonymous], 2000, HLTH PEOPL 2010, V2nd
Brookmeyer R, 1998, AM J PUBLIC HEALTH, V88, P1337, DOI 10.2105/AJPH.88.9.1337
Hebert LE, 2003, ARCH NEUROL-CHICAGO, V60, P1119, DOI 10.1001/archneur.60.8.1119
Innes A., 2000, TRAINING DEV DEMENTI
NR 6
TC 0
Z9 0
U1 0
U2 3
PU I O S PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 0922-6389
BN 978-1-58603-573-0
J9 FR ART INT
PY 2005
VL 133
BP 605
EP 608
PG 4
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Education & Educational Research
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BPN21
UT WOS:000279364400077
DA 2024-09-05
ER
PT J
AU Haber, NA
Wieten, SE
Rohrer, JM
Arah, OA
Tennant, PWG
Stuart, EA
Murray, EJ
Pilleron, S
Lam, ST
Riederer, E
Howcutt, SJ
Simmons, AE
Leyrat, C
Schoenegger, P
Booman, A
Dufour, MSK
O'Donoghue, AL
Baglini, R
Do, S
Takashima, MD
Evans, TR
Rodriguez-Molina, D
Alsalti, TM
Dunleavy, DJ
Meyerowitz-Katz, G
Antonietti, A
Calvache, JA
Kelson, MJ
Salvia, MG
Parra, CO
Khalatbari-Soltani, S
McLinden, T
Chatton, A
Seiler, J
Steriu, A
Alshihayb, TS
Twardowski, SE
Dabravolskaj, J
Au, E
Hoopsick, RA
Suresh, S
Judd, N
Peña, S
Axfors, C
Khan, P
Aguirre, AER
Odo, NU
Schmid, I
Fox, MP
AF Haber, Noah A.
Wieten, Sarah E.
Rohrer, Julia M.
Arah, Onyebuchi A.
Tennant, Peter W. G.
Stuart, Elizabeth A.
Murray, Eleanor J.
Pilleron, Sophie
Lam, Sze Tung
Riederer, Emily
Howcutt, Sarah Jane
Simmons, Alison E.
Leyrat, Clemence
Schoenegger, Philipp
Booman, Anna
Dufour, Mi-Suk Kang
O'Donoghue, Ashley L.
Baglini, Rebekah
Do, Stefanie
Takashima, Mari De la Rosa
Evans, Thomas Rhys
Rodriguez-Molina, Daloha
Alsalti, Taym M.
Dunleavy, Daniel J.
Meyerowitz-Katz, Gideon
Antonietti, Alberto
Calvache, Jose A.
Kelson, Mark J.
Salvia, Meg G.
Parra, Camila Olarte
Khalatbari-Soltani, Saman
McLinden, Taylor
Chatton, Arthur
Seiler, Jessie
Steriu, Andreea
Alshihayb, Talal S.
Twardowski, Sarah E.
Dabravolskaj, Julia
Au, Eric
Hoopsick, Rachel A.
Suresh, Shashank
Judd, Nicholas
Pena, Sebastian
Axfors, Cathrine
Khan, Palwasha
Aguirre, Ariadne E. Rivera
Odo, Nnaemeka U.
Schmid, Ian
Fox, Matthew P.
TI Causal and Associational Language in Observational Health Research: A
Systematic Evaluation
SO AMERICAN JOURNAL OF EPIDEMIOLOGY
LA English
DT Article
DE association; causal inference; causal language; observational study
AB We estimated the degree to which language used in the high-profile medical/public health/epidemiology literature implied causality using language linking exposures to outcomes and action recommendations; examined disconnects between language and recommendations; identified the most common linking phrases; and estimated how strongly linking phrases imply causality. We searched for and screened 1,170 articles from 18 high-profile journals (65 per journal) published from 2010-2019. Based on written framing and systematic guidance, 3 reviewers rated the degree of causality implied in abstracts and full text for exposure/outcome linking language and action recommendations. Reviewers rated the causal implication of exposure/outcome linking language as none (no causal implication) in 13.8%, weak in 34.2%, moderate in 33.2%, and strong in 18.7% of abstracts. The implied causality of action recommendations was higher than the implied causality of linking sentences for 44.5% or commensurate for 40.3% of articles. The most common linking word in abstracts was "associate" (45.7%). Reviewers' ratings of linking word roots were highly heterogeneous; over half of reviewers rated "association" as having at least some causal implication. This research undercuts the assumption that avoiding "causal" words leads to clarity of interpretation in medical research.
C1 [Haber, Noah A.; Wieten, Sarah E.; Axfors, Cathrine] Stanford Univ, Meta Res Innovat Ctr Stanford METRICS, Stanford, CA 94305 USA.
[Rohrer, Julia M.] Univ Leipzig, Dept Psychol, Leipzig, Germany.
[Arah, Onyebuchi A.] Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA USA.
[Tennant, Peter W. G.] Univ Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England.
[Stuart, Elizabeth A.; Schmid, Ian] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD USA.
[Murray, Eleanor J.; Fox, Matthew P.] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA USA.
[Pilleron, Sophie] Univ Oxford, Big Data Inst, Nuffield Dept Populat Hlth, Oxford, England.
[Lam, Sze Tung] Natl Univ Singapore, Yong Loo Lin Sch Med, Singapore, Singapore.
[Riederer, Emily] Capital One, Chicago, IL USA.
[Howcutt, Sarah Jane] Oxford Brookes Univ, Fac Hlth & Life Sci, Psychol Hlth & Profess Dev, Oxford, England.
[Simmons, Alison E.] Univ Toronto, Dalla Lana Sch Publ Hlth, Div Epidemiol, Toronto, ON, Canada.
[Leyrat, Clemence] London Sch Hyg & Trop Med, Dept Med Stat, London, England.
[Schoenegger, Philipp] Univ St Andrews, Sch Econ & Finance, St Andrews, Fife, Scotland.
[Schoenegger, Philipp] Univ St Andrews, Sch Philosoph Anthropol & Film Studies, St Andrews, Fife, Scotland.
[Booman, Anna] Oregon Hlth & Sci Univ Portland State Univ Sch Pu, Epidemiol Dept, Portland, OR USA.
[Dufour, Mi-Suk Kang] Univ Calif Berkeley, Berkeley Publ Hlth, Berkeley, CA 94720 USA.
[O'Donoghue, Ashley L.] Beth Israel Deaconess Med Ctr, Ctr Healthcare Delivery Sci, Boston, MA 02215 USA.
[Baglini, Rebekah] Aarhus Univ, Interacting Minds Ctr Linguist Cognit Sci & Semio, Aarhus, Denmark.
[Do, Stefanie] Leibniz Inst Prevent Res & Epidemiol BIPS, Dept Epidemiol Methods & Etiol Res, Bremen, Germany.
[Takashima, Mari De la Rosa] Griffith Univ, Sch Med, Nathan, Qld, Australia.
[Evans, Thomas Rhys] Univ Greenwich, Sch Human Sci, London, England.
[Rodriguez-Molina, Daloha] Ludwig Maximilian Univ Munich, Inst & Clin Occupat Social & Environm Med Univ Ho, Occupat & Environm Epidemiol & NetTeaching Unit, Munich, Germany.
[Alsalti, Taym M.] Free Univ Berlin, Dept Educ & Psychol, Berlin, Germany.
[Dunleavy, Daniel J.] Florida State Univ, Ctr Translat Behav Sci, Tallahassee, FL 32306 USA.
[Meyerowitz-Katz, Gideon] Univ Wollongong, Sch Hlth & Soc, Wollongong, NSW, Australia.
[Antonietti, Alberto] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy.
[Calvache, Jose A.] Univ Cauca, Dept Anesthesiol, Cauca, Colombia.
[Kelson, Mark J.] Univ Exeter, Dept Math, Exeter, Devon, England.
[Salvia, Meg G.] Harvard Univ, Harvard TH Chan Sch Publ Hlth, Boston, MA 02115 USA.
[Parra, Camila Olarte] Univ Bath, Dept Math Sci, Bath, Avon, England.
[Khalatbari-Soltani, Saman; Au, Eric] Univ Sydney, Fac Med & Hlth, Sch Publ Hlth, Sydney, NSW, Australia.
[McLinden, Taylor] British Columbia Ctr Excellence HIV AIDS, Epidemiol & Populat Hlth Program, Vancouver, BC, Canada.
[Chatton, Arthur] Univ Nantes, UMR Inst Natl Sante & Rech Med 1246 SPHERE, Nantes, France.
[Chatton, Arthur] Univ Tours, Nantes, France.
[Seiler, Jessie] Washington Sch Publ Hlth, Seattle, WA USA.
[Steriu, Andreea] Carol Davila Univ Med & Pharm, Fac Med, Bucharest, Romania.
[Alshihayb, Talal S.] King Saud bin Abdulaziz Univ Hlth Sci, Coll Dent, Riyadh, Saudi Arabia.
[Twardowski, Sarah E.] McGill Univ, Epidemiol Biostat & Occupat Hlth, Montreal, PQ, Canada.
[Dabravolskaj, Julia] Univ Alberta, Sch Publ Hlth, Edmonton, AB, Canada.
[Hoopsick, Rachel A.] Univ Illinois, Dept Kinesiol & Community Hlth, Champaign, IL USA.
[Suresh, Shashank] Univ Pittsburgh, Med Ctr, Community Med, Pittsburgh, PA USA.
[Judd, Nicholas] Karolinska Inst, Dept Neurosci, Stockholm, Sweden.
[Pena, Sebastian] Finnish Inst Hlth & Welf, Helsinki, Finland.
[Khan, Palwasha] London Sch Hyg & Trop Med, Clin Res Dept, London, England.
[Aguirre, Ariadne E. Rivera] NYU, Grossman Sch Med, Dept Populat Hlth, Div Epidemiol, New York, NY USA.
[Odo, Nnaemeka U.] Exponent Inc, Ctr Hlth Sci, Oakland, CA USA.
[Fox, Matthew P.] Sch Publ Hlth, Dept Epidemiol, Boston, MA USA.
C3 Stanford University; Leipzig University; University of California
System; University of California Los Angeles; University of Leeds; Johns
Hopkins University; Johns Hopkins Bloomberg School of Public Health;
Boston University; University of Oxford; National University of
Singapore; Oxford Brookes University; University of Toronto; University
of London; London School of Hygiene & Tropical Medicine; University of
St Andrews; University of St Andrews; Oregon Health & Science
University; Portland State University; University of California System;
University of California Berkeley; Harvard University; Beth Israel
Deaconess Medical Center; Aarhus University; Leibniz Institute for
Prevention Research & Epidemiology (BIPS); Griffith University;
University of Greenwich; University of Munich; Free University of
Berlin; State University System of Florida; Florida State University;
University of Wollongong; Polytechnic University of Milan; Universidad
del Cauca; University of Exeter; Harvard University; Harvard T.H. Chan
School of Public Health; University of Bath; University of Sydney; B.C.
Centre for Excellence in HIV/AIDS; Nantes Universite; Universite de
Tours; Carol Davila University of Medicine & Pharmacy; King Saud Bin
Abdulaziz University for Health Sciences; McGill University; University
of Alberta; University of Illinois System; University of Illinois
Urbana-Champaign; Pennsylvania Commonwealth System of Higher Education
(PCSHE); University of Pittsburgh; Karolinska Institutet; University of
London; London School of Hygiene & Tropical Medicine; New York
University; Exponent
RP Haber, NA (corresponding author), 1265 Welch Rd, Palo Alto, CA 94305 USA.
EM noahhaber@gmail.com
RI Antonietti, Alberto/M-8981-2014; khan, Palwasha/GRS-4835-2022; Steriu,
Andreea/AAQ-5127-2021; Leyrat, Clémence/I-9413-2019; Evans, Thomas
Rhys/H-5874-2019; Chatton, Arthur/AAY-4349-2021; Baglini,
Rebekah/JQI-8521-2023; Hoopsick, Rachel/ABH-7046-2020; Pilleron,
Sophie/O-8136-2018; Arah, Onyebuchi/KZT-8718-2024; Booman,
Anna/IZD-6025-2023; Rohrer, Julia Marie/AEU-2491-2022;
Khalatbari-Soltani, Saman/M-7161-2014
OI Antonietti, Alberto/0000-0003-0388-6321; Steriu,
Andreea/0000-0002-2998-8644; Leyrat, Clémence/0000-0002-4097-4577;
Evans, Thomas Rhys/0000-0002-6670-0718; Chatton,
Arthur/0000-0002-0018-5899; Baglini, Rebekah/0000-0002-2836-5867;
Hoopsick, Rachel/0000-0001-5992-9007; Pilleron,
Sophie/0000-0001-7146-4740; Arah, Onyebuchi/0000-0002-9067-1697; Rohrer,
Julia Marie/0000-0001-8564-4523; Khan, Palwasha
Yousafzai/0000-0002-0873-8355; Haber, Noah/0000-0002-5672-1769;
Alshihayb, Talal/0000-0001-5750-4144; Khalatbari-Soltani,
Saman/0000-0001-8437-1906; Booman, Anna/0000-0002-8112-6929; Dunleavy,
Daniel/0000-0002-3597-7714; Simmons, Alison E./0000-0001-8780-9467;
Axfors, Cathrine/0000-0002-2706-1730; Schoenegger,
Philipp/0000-0001-9930-487X; Tennant, Peter/0000-0003-1555-069X;
Takashima, Mari/0000-0002-1167-9106; Lam, Sze Tung
Walter/0000-0001-6033-262X; Au, Eric/0000-0002-6089-5913
FU Arnold Ventures LLC (Houston, Texas); European Union's Horizon 2020
research and innovation program under the Marie Sklodowska-Curie grant
[842817]; Australian Research Council Centre of Excellence in Population
Aging Research [CE170100005]; National Institute of Mental Health
[T32MH122357, R01MH115487]; Bloomberg American Health Initiative;
National Institute of Biomedical Imaging and Bioengineering
[R01EB027650]; National Center for Advancing Translational Sciences UCLA
Clinical Translational Science Institute [UL1TR001881]; Marie Curie
Actions (MSCA) [842817] Funding Source: Marie Curie Actions (MSCA); MRC
[MR/T032448/1] Funding Source: UKRI
FX No funding was granted specifically for the support of this study. The
Meta-Research Innovation Center at Stanford University is supported by
Arnold Ventures LLC (Houston, Texas), formerly the Laura and John Arnold
Foundation. S.P. was funded by the European Union's Horizon 2020
research and innovation program under the Marie Sklodowska-Curie grant
(agreement no. 842817). S.K.-S. is supported by the Australian Research
Council Centre of Excellence in Population Aging Research (project
number CE170100005). I.S. is supported by the National Institute of
Mental Health (grant T32MH122357). E.A.S.'s time was supported by the
National Institute of Mental Health (grant R01MH115487) and the
Bloomberg American Health Initiative. A.L.O. is funded by a
philanthropic gift from Google.org outside of the submitted work. O.A.A.
is supported by the National Institute of Biomedical Imaging and
Bioengineering (grant R01EB027650), National Center for Advancing
Translational Sciences UCLA Clinical Translational Science Institute
(grant UL1TR001881), and a philanthropic gift from the Karen Toffler
Charity Trust. Data, data analysis code, and materials are available on
the Open Science Framework project https://osf.io/jtdaz/.; This work was
supported by many people who made contributions to this work. Turki
Althunian contributed to the screening process. Jess Rohmann contributed
to the piloting process. This work was additionally supported by
comments and contributions from Alyssa Bilinksi, Pascal Goldsetzer,
Caroline Blaine, Otto Kalliokoski, Eero Raittio, Tanya Colyer, Tim
Watkins, Alexander Breskin, Arindam Basu, Jessica L. Rohmann, Luke A
McGuinness, Todd Johnson, Mario Mali.cki, Sebastian Skejo, Scott Graham,
Michael Chaiton-Murray, John Edlund, Katelyn Smalley, Danielle Newby,
Anita Williams, Cord Phelps, Colleen Derkatch, Alexander Wolthon,
Pallavi Rohella, Damien Croteau-Chonka, Steven Goodman, and John
Ioannidis. Presented at the Annual Meeting of the Society for
Epidemiologic Research, June 14-17, 2022, Chicago, Illinois. A preprint
of this article has been published online. (Haber, NA, Wieten SE, Rohrer
JM, et al. Causal and Associational Language in Observational Health
Research: A Systematic Evaluation. medRxiv. 2021.
https://doi.org/10.1101/2021.08.25.21262631).All errors are the sole
responsibility of the authors, and no funders had any role in the
collection, analysis, and interpretation of data; in the writing of the
report; and in the decision to submit the article for publication. The
researchers were independent from funders, and all authors, external and
internal, had full access to all of the data (including statistical
reports and tables) in the study and can take responsibility for the
integrity of the data and the accuracy of the data analysis. Conflict of
interest: none declared.
CR Adams D., 1980, HITCHHIKERS GUIDE GA
Adams RC, 2019, BMC MED, V17, DOI 10.1186/s12916-019-1324-7
Adams RC, 2017, J EXP PSYCHOL-APPL, V23, P1, DOI 10.1037/xap0000100
Alvarez-Vargas D., 2020, PSYARXIV, DOI [10.31234/osf.io/nkf96, DOI 10.31234/OSF.IO/NKF96]
AMA Manual of Style Committee, 2020, AMA MANUAL STYLE GUI, DOI DOI 10.1093/JAMA/9780190246556.001.0001/MED-9780190246556
[Anonymous], Journal Citation Reports
Buhse S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196833
Chipperfield L, 2010, CURR MED RES OPIN, V26, P1968, DOI 10.1185/03007995.2010.499344
Cofield SS, 2010, OBESITY FACTS, V3, P353, DOI 10.1159/000322940
de Carvalho A, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.01500
Fantini D., EASYPUBMED SEARCH RE
Fox MP, 2020, AM J EPIDEMIOL, V189, P261, DOI 10.1093/aje/kwz233
Grosz MP, 2020, PERSPECT PSYCHOL SCI, V15, P1243, DOI 10.1177/1745691620921521
Haber N., DATA REPOSITORY PRER
Haber N., REV TOOL
Haber N, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196346
Hall MG, 2019, AM J PUBLIC HEALTH, V109, P1429, DOI 10.2105/AJPH.2019.305222
Han MA, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2020-038571
Haneef R, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140889
Hernán MA, 2018, AM J PUBLIC HEALTH, V108, P616, DOI 10.2105/AJPH.2018.304337
JAMA, INSTR AUTH
Kezios KL, 2021, EPIDEMIOL REV, V43, P4, DOI 10.1093/epirev/mxab008
Lundberg I, 2021, AM SOCIOL REV, V86, P532, DOI 10.1177/00031224211004187
National Library of Medicine, DOWNL MESH DAT
Parra CO, 2021, BMJ OPEN, V11, DOI 10.1136/bmjopen-2020-043339
Prasad V, 2013, J CLIN EPIDEMIOL, V66, P361, DOI 10.1016/j.jclinepi.2012.11.005
Ramspek CL, 2021, EUR J EPIDEMIOL, V36, P889, DOI 10.1007/s10654-021-00794-w
Savicky P, PSPEARMAN SPEARMANS
Schwitzer G, 2013, BMC MED INFORM DECIS, V13, DOI 10.1186/1472-6947-13-S3-S3
SciMago, J COUNTR RANK
Sumner P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0168217
Sumner P, 2014, BMJ-BRIT MED J, V349, DOI 10.1136/bmj.g7015
Tennant P.W.G., 2019, USE DIRECTED ACYCLIC, DOI [10.1101/2019.12.20.19015511, DOI 10.1101/2019.12.20.19015511]
Tennant PWG, 2021, EPIDEMIOLOGY, V32, pE2, DOI 10.1097/EDE.0000000000001258
Thapa DK, 2020, J ADV NURS, V76, P1285, DOI 10.1111/jan.14311
Varady NH, 2021, J BONE JOINT SURG AM, V103, DOI 10.2106/JBJS.20.01921
Venables WN, 2002, Modern Applied Statistics with S, V4th
Watkins T.R., 2019, Understanding uncertainty and bias to improve causal inference in health intervention research
NR 38
TC 19
Z9 19
U1 1
U2 7
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 0002-9262
EI 1476-6256
J9 AM J EPIDEMIOL
JI Am. J. Epidemiol.
PD NOV 19
PY 2022
VL 191
IS 12
BP 2084
EP 2097
DI 10.1093/aje/kwac137
EA AUG 2022
PG 14
WC Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Public, Environmental & Occupational Health
GA 8B3EP
UT WOS:000864758500001
PM 35925053
OA Green Submitted, Green Accepted, Green Published
DA 2024-09-05
ER
PT C
AU Jangid, N
Saha, S
Gupta, S
Rao, JM
AF Jangid, Neelam
Saha, Snehanshu
Gupta, Siddhant
Rao, Mukunda J.
BE Lee, G
TI Ranking of Journals in Science and Technology Domain: a Novel and
Computationally Lightweight Approach
SO INTERNATIONAL CONFERENCE ON FUTURE INFORMATION ENGINEERING (FIE 2014)
SE IERI Procedia
LA English
DT Proceedings Paper
CT International Conference on Future Information Engineering (FIE)
CY JUL 07-08, 2014
CL Beijing, PEOPLES R CHINA
DE Multiple linear regression; scientific journal; Journal influence score;
SCImago journal score; Quartile matching
AB In this paper, a regression analysis based method is proposed to calculate the Journal Influence Score. This Influence Score is used to measure the scientific influence of scholarly journals. Journal Influence Score is calculated by using various factors in a weighted manner. The Score is then compared with the SCImago Journal Score. The results show that the error is small between the existing and proposed methods, proving that the model is a feasible and effective way of calculating scientific impact of journals. (C) 2014 Published by Elsevier B.V.
C1 [Jangid, Neelam] Dept CSE, PESIT Bangalore South Campus, Bangalore 560100, Karnataka, India.
CBIMMC, Bangalore 560100, Karnataka, India.
Lib Informat Sci, Bangalore, Karnataka, India.
C3 PES University
RP Jangid, N (corresponding author), Dept CSE, PESIT Bangalore South Campus, Bangalore 560100, Karnataka, India.
EM neelu.jangid88@gmail.com; snehanshusaha@pes.edu; sidpro.pesit@gmail.com;
pesselibrarian@pes.edu
CR Abrizah A, 2013, SCIENTOMETRICS, V94, P721, DOI 10.1007/s11192-012-0813-7
[Anonymous], 2006, Google's PageRank and Beyond: The Science of Search Engine Rankings
Buela-Casal G, 2006, SCIENTOMETRICS, V67, P45, DOI 10.1556/Scient.67.2006.1.4
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Haddow G, 2010, SCIENTOMETRICS, V85, P471, DOI 10.1007/s11192-010-0198-4
Jain Raj, 2009, ART COMPUTER SYSTEM
Kao C, 2009, SCIENTOMETRICS, V81, P123, DOI 10.1007/s11192-009-2093-4
Svensson G, 2008, MARK INTELL PLAN, V26, P340, DOI 10.1108/02634500810879250
NR 8
TC 9
Z9 9
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2212-6678
J9 IERI PROC
PY 2014
VL 10
BP 57
EP 62
DI 10.1016/j.ieri.2014.09.091
PG 6
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BH1GM
UT WOS:000398020800009
OA hybrid
DA 2024-09-05
ER
PT J
AU Ludl, H
Schope, K
Mangelsdorf, I
AF Ludl, H
Schope, K
Mangelsdorf, I
TI Searching for information on toxicological data of chemical substances
in selected bibliographic databases - Selection of essential databases
for toxicological researches
SO CHEMOSPHERE
LA English
DT Article
DE bibliographic databases; literature research; toxicology; recall rates;
duplicates; quantitative analysis
AB By using information from printed and online database guides, 18 online bibliographic databases (ED), which cover literature on toxicology were selected from 5 hosts. A search for literature containing information on three selected chemicals was carried out with each of the databases, and the number of documents relevant to toxicology found in them was compared by computer-assisted analysis. Some databases yielded very little information pertinent to toxicology, while others provided a considerable amount, In addition, the databases contained numerous duplicates (references common to more than one database). Most of the relevant documents could be obtained using only 8 of the 18 BDs selected. These databases are: Biosis Previews (BIOSIS), Chemical Abstracts (CA), Chemical Safety Newsbase (CSNB), Excerpta Medica (EMBASE), National Institute for Occupational Safety and Health (NIOSH), Scisearch, Toxicology Information Online (TOXLINE) and the former Toxicology Literature (TOXLIT).
C1 FRAUNHOFER INST TOXICOL & AEROSOL RES,D-30625 HANNOVER,GERMANY.
C3 Fraunhofer Gesellschaft
RP Ludl, H (corresponding author), GSF FORSCHUNGSZENTRUM UNWELT & GESUNDHEIT GMBH,INST TOXIKOL,INGOLSTADTER LANDSTR 1,D-85758 OBERSCHLEISSHEIM,GERMANY.
CR GREIM H, 1993, CHEMOSPHERE, V26, P1653, DOI 10.1016/0045-6535(93)90110-Q
LUDL H, 1995, CHEMOSPHERE, V31, P2611, DOI 10.1016/0045-6535(95)00134-T
SCHON N, 1992, Z UMWELTCHEM OKOTOX, V4, P343
SCHON N, 1991, UMWELTCHEM OKOTOX, V3, P183
SCHULTEHILLEN J, 1991, DATENBANKFUHRER NATU
1991, DATA SHEETS
1989, BENUTZERHANDBUCH TOX
1987, DIRECTORY ONLINE DAT, V6
1993, DIALOG DATABASE CATA
1991, GRUNDDATENSATZ DINOS
1991, SEARCHING DIALOG COM
1991, BIOM INF SEM
1991, GRIPS KOMMANDOSPRACH
1990, MEMOKARTEM DTSCH I M
1991, GUIDE COMMANDS
1991, GRUNDDATENSATZ DIMET
1986, BENUTZERHANDBUCH CHE
1991, GRUNDDATENSATZ KAMPF
NR 18
TC 15
Z9 15
U1 0
U2 2
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB
SN 0045-6535
J9 CHEMOSPHERE
JI Chemosphere
PD MAR
PY 1996
VL 32
IS 5
BP 867
EP 880
DI 10.1016/0045-6535(96)00012-4
PG 14
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA UA156
UT WOS:A1996UA15600007
PM 8867141
DA 2024-09-05
ER
PT C
AU Cicco, G
AF Cicco, Gina
BE Chova, LG
Martinez, AL
Torres, IC
TI ONLINE LEARNING EXPERIENCES OF COUNSELORS-IN-TRAINING: IMPLICATIONS FOR
ONLINE COURSE DESIGN, ASSESSMENT, AND RESEARCH
SO 7TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE
(INTED2013)
SE INTED Proceedings
LA English
DT Proceedings Paper
CT 7th International Technology, Education and Development Conference
(INTED)
CY MAR 04-06, 2013
CL Valencia, SPAIN
DE Counselor education; counselor preparation; learning styles; online
counseling skills instruction; online courses; online learning
experiences; online skills assessment; virtual classroom
AB The global expansion of online programs and course offerings in graduate education points to the need for researchers to examine the effectiveness of diverse pedagogical methods in the virtual learning environment as well as the corresponding assessment practices employed to confirm students' mastery of learning objectives (Glassmeyer, Dibbs, & Jensen, 2011; Meyers, 2008). Various studies have been conducted to measure the levels of student engagement and relationship-building within the virtual classroom and to identify the student learning styles that are most frequently accommodated in this setting (Cicco, 2009; Trepal, Haberstroh, Duffey, & Evans, 2007). This paper summarizes the findings based on a recent research investigation of the online learning experiences and perceptions of graduate students enrolled in a counselor preparation program in New York. The study design and methodology will be described, with an emphasis on the specific recommendations provided by the 53 student participants for improvement of online counseling courses. The instruction and assessment of counseling skills and techniques within the context of online courses continue to raise questions and concerns for counselor educators as they recognize the inherent differences between the in-class and online instructional environments. The emphasis on the practice, development, and evaluation of basic and complex interpersonal skills within counselor education programs has traditionally been experienced through live interaction among faculty, students, site supervisors, and clinical associates. Converting this rigorous communication experience to the virtual classroom may pose special challenges for counselor educators, particularly in appropriately planning experiences that allow students to participate in live practice exercises and to receive immediate feedback and opportunities for self-and peer-evaluation. Examples of such activities include role-playing, mock counseling sessions, and reflective journal writing (Ivey, Ivey, & Zalaquett, 2010). Instructional designers have provided several recommendations for the enhancement of online instruction, such as integration of synchronous methods and media, yet the ethical concerns of accurately assessing the preparedness of counseling professionals who will serve at times the most vulnerable client populations remain an issue of concern and controversy (Cicco, 2011; Scheuermann, 2010). This paper will elaborate on specific student reflections of their online learning experiences and the corresponding indications for online course design, planning, and instruction that allow students to receive rich and diverse counselor preparation exercises. Recommendations for the provision of formative and summative assessment throughout online courses will be discussed (Reiner & Arnold, 2010). In conclusion, the implications of this exploratory study for future empirical investigation on this important area of research will be addressed.
C1 [Cicco, Gina] St Johns Univ, Jamaica, NY 11439 USA.
C3 Saint John's University
EM ciccog@stjohns.edu
CR Andrade H, 2007, EDUC LEADERSHIP, V65, P60
Ash K., 2011, Education Digest, V76, P32
Bernstein D., 2005, Academe, V91, P37, DOI DOI 10.2307/40253429
Cicco G., 2012, I MANAGERS J SCH ED, V8
Cicco G., 2011, I MANAGERS J ED TECH, V8, P9
Cicco G., 2009, International Journal on ELearning, V8, P161
Cobia D. C, 2007, DEV EFFECTIVE ACCOUN
Dahir CA, 2009, J COUNS DEV, V87, P3, DOI 10.1002/j.1556-6678.2009.tb00542.x
Dunn R., 2003, SYNTHESIS DUNN DUNN
Fearing Arleen, 2005, Medsurg Nurs, V14, P383
Fraenkel JR., 2006, DESIGN EVALUATE RES
Glassmeyer D.M., 2011, Quarterly Review of Distance Education, V12, P23
Granberg C, 2010, EUR J TEACH EDUC, V33, P309, DOI 10.1080/02619761003767882
Ivey A E., 2010, International interviewing and counseling: facilitating client development in a multicultural society, V7th
Meyers S.A., 2008, College Teaching, V56, P219, DOI DOI 10.3200/CTCH.56.4.219-224
Reiner C.M., 2010, ASSESSMENT UPDATE, V22, P8
Scheuermann M., 2010, ONLINE CLASSROOM JAN, P1
Trepal H, 2007, COUNS EDUC SUPERV, V46, P266, DOI 10.1002/j.1556-6978.2007.tb00031.x
NR 18
TC 0
Z9 0
U1 0
U2 7
PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT
PI VALENICA
PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN
SN 2340-1079
BN 978-84-616-2661-8
J9 INTED PROC
PY 2013
BP 293
EP 300
PG 8
WC Education & Educational Research
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BB8IX
UT WOS:000346699800043
DA 2024-09-05
ER
PT J
AU Trabelsi, Z
Parambil, MMA
AF Trabelsi, Zouheir
Parambil, Medha Mohan Ambali
TI A bibliometric study on recent trends in artificial intelligence-based
suspicious activity recognition
SO SECURITY JOURNAL
LA English
DT Article
DE Artificial intelligence; Suspicious activity; Behavioral research;
Security systems; Bibliometric analysis
AB Recent years have seen a dramatic increase in the use of artificial intelligence (AI) in suspicious activity recognition (SAR). To better understand the research work and recent trends in AI-based SAR, the paper carries out a bibliometric study to analyze the publications based on the recent developments and contributions of authors, publication source, country, and institutions, identifying the most productive items, and the partnership among each. The search on the Scopus database retrieved 1713 documents related to AI-based SAR. In this study, all document types from Scopus were included in the analysis. VOSviewer was used to perform coupling, cluster, and co-citation network analysis to identify research hotspots, while bibliometrix was used to generate keyword analysis, including word clouds, word dynamics, theme trends, and Sankey diagrams, to understand the evolution and future direction of the research field. This paper contributes valuable insights for researchers and audiences worldwide regarding emerging research areas.
C1 [Trabelsi, Zouheir; Parambil, Medha Mohan Ambali] United Arab Emirates Univ UAEU, Dept Informat Syst & Secur, Coll IT, Al Ain, U Arab Emirates.
RP Trabelsi, Z (corresponding author), United Arab Emirates Univ UAEU, Dept Informat Syst & Secur, Coll IT, Al Ain, U Arab Emirates.
EM trabelsi@uaeu.ac.ae; medhamohanap@uaeu.ac.ae
OI , Medha Mohan Ambali Parambil/0000-0002-9336-2902
FU UAE University UPAR Research Grant Program [31T122, 12T002]
FX The work was supported by UAE University UPAR Research Grant Program
under Grants 31T122 and 12T002.
CR [Anonymous], HOMELAND SECURITY
[Anonymous], 2002, Netdraw Network Visualization
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Cancino CA, 2017, COMPUT IND ENG, V113, P614, DOI 10.1016/j.cie.2017.08.033
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Elsevier, INF AN CO EMP KNOWL
Guz AN, 2009, INT APPL MECH+, V45, P351, DOI 10.1007/s10778-009-0189-4
Kakadiya Rutvik, 2019, 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). Proceedings, P201, DOI 10.1109/ICECA.2019.8822186
Kim JS, 2021, EURASIP J IMAGE VIDE, V2021, DOI 10.1186/s13640-021-00576-0
Kumar Rajesh, 2017, ARTIF INTELL REV, V50, P283
Nguyen MT, 2021, METHODSX, V8, DOI 10.1016/j.mex.2021.101472
Nicholls J, 2021, IEEE ACCESS, V9, P163965, DOI 10.1109/ACCESS.2021.3134076
Persson O., 2009, CELEBRATING SCHOLARL, V5, P9
Salamone F, 2018, ENRGY PROCED, V148, P798, DOI 10.1016/j.egypro.2018.08.130
sciencedirect, SCIENCEDIRECT COM SC
Sharma Ochin, 2019, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), P72, DOI 10.1109/COMITCon.2019.8862453
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Verma KK, 2021, INT J INTERACT MULTI, V7, P44, DOI 10.9781/ijimai.2021.08.008
webofscience, DOC SEARCH WEB SCI C
Wikipedia, PHISH
Wikipedia, COOCC NETW
Yu DJ, 2019, APPL INTELL, V49, P449, DOI 10.1007/s10489-018-1278-z
NR 22
TC 0
Z9 0
U1 2
U2 9
PU PALGRAVE MACMILLAN LTD
PI BASINGSTOKE
PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND
SN 0955-1662
EI 1743-4645
J9 SECUR J
JI Secur. J.
PD JUN
PY 2024
VL 37
IS 2
BP 399
EP 424
DI 10.1057/s41284-023-00382-5
EA MAY 2023
PG 26
WC Criminology & Penology
WE Social Science Citation Index (SSCI)
SC Criminology & Penology
GA UT7N8
UT WOS:000995746200001
DA 2024-09-05
ER
PT J
AU Yuan, XM
Pan, PP
AF Yuan, Xiuming
Pan, Peipei
TI Research on the Evaluation Model of Dance Movement Recognition and
Automatic Generation Based on Long Short-Term Memory
SO MATHEMATICAL PROBLEMS IN ENGINEERING
LA English
DT Article
ID HUMAN MOTION CAPTURE
AB With the development of random image processing technology and in-depth learning, it is possible to recognize human movements, but it is difficult to recognize and evaluate dance movements automatically in artistic expression and emotional classification. Aiming at the problems of low efficiency, low accuracy, and unsatisfactory evaluation in dance motion recognition, this paper proposes a long short-term memory (LSTM) model based on deep learning to recognize dance motion and automatically generate corresponding features. This paper first introduces the related deep learning model recognition methods and describes the related research background. Secondly, the method of identifying dance movements is identified concretely, and the process of identifying concretely is given. Finally, through the comparison of different dance movements through experiments, it shows that there are obvious advantages in the accuracy of action recognition, error rate, similarity, and model evaluation method.
C1 [Yuan, Xiuming] St Paul Univ Manila, Coll Mus, Manila 1004, Philippines.
[Pan, Peipei] Liaocheng Univ, Acad Mus & Dance, Liaocheng 252000, Peoples R China.
C3 Liaocheng University
RP Pan, PP (corresponding author), Liaocheng Univ, Acad Mus & Dance, Liaocheng 252000, Peoples R China.
EM 13047458974@163.com; panpeipei@lcu.edu.cn
CR Asahina W., P SIGGRAPH AS ACM NO, P928, DOI [10.1145/2820926.2820935, DOI 10.1145/2820926.2820935]
Baek S., 2013, P 2013 INT C SPORT S
Cao Z, 2017, PROC CVPR IEEE, P1302, DOI 10.1109/CVPR.2017.143
Chan C, 2019, IEEE I CONF COMP VIS, P5932, DOI 10.1109/ICCV.2019.00603
Chen GB, 2021, ENTERP INF SYST-UK, V15, P935, DOI 10.1080/17517575.2020.1720828
Chen LL, 2019, PROC CVPR IEEE, P7824, DOI 10.1109/CVPR.2019.00802
Duarte A, 2019, INT CONF ACOUST SPEE, P8633, DOI 10.1109/icassp.2019.8682970
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622
Graves A, 2005, NEURAL NETWORKS, V18, P602, DOI 10.1016/j.neunet.2005.06.042
Guo H, 2014, COMM COM INF SC, V483, P426
Huang G., 2017, COMPUTER APPL RES, V34, P392
Ju-Hwan Seo, 2013, 2013 IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), P204, DOI 10.1109/ROMAN.2013.6628446
Li B, 2021, DANCENET3D MUSIC BAS, V12, P1873
Li X., 2017, COMPUTER APPL RES, V34, P7
Lv P, 2008, ELECT TECHNOLOGY, V37, P18
Moeslund TB, 2006, COMPUT VIS IMAGE UND, V104, P90, DOI 10.1016/j.cviu.2006.08.002
Ning X, 2018, IEEE T IMAGE PROCESS, V27, P2575, DOI 10.1109/TIP.2018.2806229
Ofli F, 2012, IEEE T MULTIMEDIA, V14, P747, DOI 10.1109/TMM.2011.2181492
Ren X., 2019, MUSIC ORIENTED DANCE
Shlizerman E, 2018, PROC CVPR IEEE, P7574, DOI 10.1109/CVPR.2018.00790
Sun GX, 2021, MATH PROBL ENG, V2021, DOI 10.1155/2021/5535843
Vondrick C, 2016, 30 C NEURAL INFORM P, V29
Wang Y., 2005, P 2005 INT C MACHINE, DOI [10.1109/icmlc.2005.1527515, DOI 10.1109/ICMLC.2005.1527515]
Zhang XY, 2019, J PHYS CONF SER, V1229, DOI 10.1088/1742-6596/1229/1/012031
Zhuang W., 2020, MUSIC2DANCE MUSIC DR
NR 25
TC 0
Z9 0
U1 2
U2 14
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1024-123X
EI 1563-5147
J9 MATH PROBL ENG
JI Math. Probl. Eng.
PD APR 28
PY 2022
VL 2022
AR 6405903
DI 10.1155/2022/6405903
PG 10
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Mathematics
GA 1G2PZ
UT WOS:000795696400023
OA gold
DA 2024-09-05
ER
PT J
AU Ivanova, M
Grosseck, G
Holotescu, C
AF Ivanova, Malinka
Grosseck, Gabriela
Holotescu, Carmen
TI Unveiling Insights: A Bibliometric Analysis of Artificial Intelligence
in Teaching
SO INFORMATICS-BASEL
LA English
DT Article
DE artificial intelligence; teaching; intelligent environment; learning
analytics; large language models; ChatGPT
ID EDUCATION
AB The penetration of intelligent applications in education is rapidly increasing, posing a number of questions of a different nature to the educational community. This paper is coming to analyze and outline the influence of artificial intelligence (AI) on teaching practice which is an essential problem considering its growing utilization and pervasion on a global scale. A bibliometric approach is applied to outdraw the "big picture" considering gathered bibliographic data from scientific databases Scopus and Web of Science. Data on relevant publications matching the query "artificial intelligence and teaching" over the past 5 years have been researched and processed through Biblioshiny in R environment in order to establish a descriptive structure of the scientific production, to determine the impact of scientific publications, to trace collaboration patterns and to identify key research areas and emerging trends. The results point out the growth in scientific production lately that is an indicator of increased interest in the investigated topic by researchers who mainly work in collaborative teams as some of them are from different countries and institutions. The identified key research areas include techniques used in educational applications, such as artificial intelligence, machine learning, and deep learning. Additionally, there is a focus on applicable technologies like ChatGPT, learning analytics, and virtual reality. The research also explores the context of application for these techniques and technologies in various educational settings, including teaching, higher education, active learning, e-learning, and online learning. Based on our findings, the trending research topics can be encapsulated by terms such as ChatGPT, chatbots, AI, generative AI, machine learning, emotion recognition, large language models, convolutional neural networks, and decision theory. These findings offer valuable insights into the current landscape of research interests in the field.
C1 [Ivanova, Malinka] Tech Univ Sofia, Fac Appl Math & Informat, Dept Informat, Blvd Kl Ohridski 8, Sofia 1797, Bulgaria.
[Grosseck, Gabriela] West Univ Timisoara, Fac Sociol & Psychol, Dept Psychol, 4 Bd Vasile Parvan, Timisoara 300223, Romania.
[Holotescu, Carmen] Ioan Slavici Univ Timisoara, Fac Engn, Dept Informat Technol, 144 Str Paunescu Podeanu, Timisoara 300569, Romania.
C3 Technical University Sofia; West University of Timisoara; Ioan Slavici
University
RP Ivanova, M (corresponding author), Tech Univ Sofia, Fac Appl Math & Informat, Dept Informat, Blvd Kl Ohridski 8, Sofia 1797, Bulgaria.
EM m_ivanova@tu-sofia.bg; gabriela.grosseck@e-uvt.ro;
carmen.holotescu@islavici.ro
RI Ivanova, Malinka/AAE-1774-2019
OI Ivanova, Malinka/0000-0002-8474-6226
FU Bulgarian FNI fund
FX No Statement Available
CR AlRyalat SAS, 2019, JOVE-J VIS EXP, DOI 10.3791/58494
[Anonymous], 2023, Artificial intelligence and future of teaching and learning; Insights and recommendations
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Barrington NM, 2023, MED SCI-BASEL, V11, DOI 10.3390/medsci11030061
Barros A, 2023, MANAGE LEARN, V54, P597, DOI 10.1177/13505076231201445
Bittencourt II, 2023, INT J ARTIF INTELL E, DOI 10.1007/s40593-023-00357-y
Brock JKU, 2019, CALIF MANAGE REV, V61, P110, DOI 10.1177/1536504219865226
Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233
Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510
Chiu T. K. F., 2023, Computers and Education: Artificial Intelligence, V4, P100118, DOI DOI 10.1016/J.CAEAI.2022.100118
Crompton H, 2024, J RES TECHNOL EDUC, V56, P248, DOI 10.1080/15391523.2022.2121344
Dai Yun, 2023, Procedia CIRP, P84, DOI 10.1016/j.procir.2023.05.002
Dempere J, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1206936
Dijkhuis TB, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18020623
Dogan ME, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13053056
Dutta S., 2024, Communication Technology and Gender Violence, P109
Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642
Escalante J, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00425-2
Farhat F, 2024, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1270749
Farrelly T, 2023, EDUC SCI, V13, DOI 10.3390/educsci13111109
Fraumann G., arXiv
Ghotbi N, 2023, ASIAN BIOETHICS REV, V15, P417, DOI 10.1007/s41649-022-00237-y
Grosseck G, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11216136
Habib S., 2024, Journal of Creativity, V34, DOI [10.1016/j.yjoc.2023.100072, DOI 10.1016/J.YJOC.2023.100072]
Hashimoto DA, 2018, ANN SURG, V268, P70, DOI 10.1097/SLA.0000000000002693
Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001]
Kaiss W., 2023, Int. J. Emerg. Technol. Learn, V18, P250, DOI [10.3991/ijet.v18i13.39329, DOI 10.3991/IJET.V18I13.39329]
Karakose T., 2023, Educational Process International Journal, V12, DOI [10.22521/edupij.2023.124.1, DOI 10.22521/EDUPIJ.2023.124.1]
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Kong ZY, 2023, DIGIT CHEM ENG, V9, DOI 10.1016/j.dche.2023.100126
Li KC, 2023, INTERACT TECHNOL SMA, DOI 10.1108/ITSE-01-2023-0007
Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348
Liang YC, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00273-7
Luo JH, 2024, ASSESS EVAL HIGH EDU, V49, P651, DOI 10.1080/02602938.2024.2309963
Maphosa V, 2023, APPL ARTIF INTELL, V37, DOI 10.1080/08839514.2023.2261730
Markauskaite L., 2022, Computers and Education: Artificial Intelligence, V3, P100056, DOI [DOI 10.1016/J.CAEAI.2022.100056, 10.1016/j.caeai]
Mersni A., 2023, P ACM WOMENCOURAGE 2
Nassar R., 2023, The Power of Empathy in AI: Balancing Artificial Intelligence with Emotional Intelligence
Nguyen T. T. K., 2023, International Journal of Evaluation and Research in Education, V12, P2387, DOI [10.11591/ijere.v12i4.26623, DOI 10.11591/IJERE.V12I4.26623]
Nja CO, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00261-x
Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160]
Perry A, 2023, NAT HUM BEHAV, V7, P1808, DOI 10.1038/s41562-023-01675-w
Polat H, 2024, INT J TECHNOL EDUC, V7, P59, DOI 10.46328/ijte.606
Popenici S., 2023, Educatia, V21, P92, DOI [10.24193/ed21.2023.26.11, DOI 10.24193/ED21.2023.26.11]
Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012
PRISMA, TRANSPARENT REPORTIN
Sajja R, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00412-7
Schuengel C, 2023, J CHILD PSYCHOL PSYC, V64, P1261, DOI 10.1111/jcpp.13860
Shams R.A., 2023, AI ETHICS, DOI DOI 10.1007/S43681-023-00362-W
Sit C, 2020, INSIGHTS IMAGING, V11, DOI 10.1186/s13244-019-0830-7
Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862
Talan T., 2021, International Journal of Research in Education and Science, V7, P822, DOI [DOI 10.46328/IJRES.2409, 10.46328/ijres.2409]
Toyokawa Y, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00286-2
Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
NR 56
TC 2
Z9 2
U1 35
U2 35
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-9709
J9 INFORMATICS-BASEL
JI Informatics-Basel
PD MAR
PY 2024
VL 11
IS 1
AR 10
DI 10.3390/informatics11010010
PG 21
WC Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA MG5J0
UT WOS:001192482500001
OA gold
DA 2024-09-05
ER
PT J
AU Eckmann, M
Rocha, A
Wainer, J
AF Eckmann, Michael
Rocha, Anderson
Wainer, Jacques
TI Relationship between high-quality journals and conferences in computer
vision
SO SCIENTOMETRICS
LA English
DT Article
DE Computer science; Computer vision; Publishing; Journal papers;
Conference proceedings; Author survey; Bibliometrics
AB In computer science, as opposed to many other disciplines, papers published in conference and workshop proceedings count as formal publications when evaluating the scholarship of an academic. We consider the relationship between high quality journals and conferences in the computer vision (CV) subfield of computer science. We determined that 30% of papers in the top-3 CV journals base their work on top-3 conference papers by the same authors (which we call priors (See "Methods" section for the definition of a prior)). Journal papers with priors are significantly more cited than journal papers without priors. Also the priors themselves are cited more than other papers from the conferences. For a period of 3-5 years after the journal paper publication, the priors receive more citations than the follow-up journal paper. After that period, the journal paper starts receiving most of the citations. Furthermore, we found that having the prior conference paper did not make it any easier (faster) to publish in a journal. We also surveyed journal authors and based on their answers and the priors analysis, we discovered that authors seem to be divided into different groups depending on their preferred method of publication.
C1 [Eckmann, Michael] Skidmore Coll, Saratoga Springs, NY 12866 USA.
[Rocha, Anderson; Wainer, Jacques] Univ Estadual Campinas, Campinas, SP, Brazil.
C3 Skidmore College; Universidade Estadual de Campinas
RP Eckmann, M (corresponding author), Skidmore Coll, 815 N Broadway, Saratoga Springs, NY 12866 USA.
EM meckmann@skidmore.edu; rocha@ic.unicamp.br; wainer@ic.unicamp.br
RI Wainer, Jacques/B-4241-2012; Wainer, Jacques/AAQ-6029-2021;
Rocha-Buelvas, Anderson Iván/KHU-9621-2024
OI Wainer, Jacques/0000-0001-5201-1244; Wainer,
Jacques/0000-0001-5201-1244;
CR [Anonymous], 2010, Commun ACM, DOI [10.1145/1839676.1839701, DOI 10.1145/1839676.1839701]
Franceschet M, 2010, Commun. ACM, V53, P129, DOI [10.1145/1859204.1859234, DOI 10.1145/1859204.1859234]
Franceschet M, 2011, J INFORMETR, V5, P275, DOI 10.1016/j.joi.2010.12.002
Franceschet M, 2011, INFORM PROCESS MANAG, V47, P117, DOI 10.1016/j.ipm.2010.03.003
Goodrum AA, 2001, INFORM PROCESS MANAG, V37, P661, DOI 10.1016/S0306-4573(00)00047-9
Kling R, 1999, J AM SOC INFORM SCI, V50, P890, DOI 10.1002/(SICI)1097-4571(1999)50:10<890::AID-ASI6>3.0.CO;2-8
Martins WS, 2010, SCIENTOMETRICS, V83, P133, DOI 10.1007/s11192-009-0078-y
Montesi M, 2008, J AM SOC INF SCI TEC, V59, P816, DOI 10.1002/asi.20805
Shamir Lior., 2010, Sch. Res. Commun, V1, DOI [10.22230/src.2010v1n2a25, DOI 10.22230/SRC.2010V1N2A25]
Stringer MJ, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001683
Wainer J, 2011, INFORM PROCESS MANAG, V47, P135, DOI 10.1016/j.ipm.2010.07.002
NR 11
TC 29
Z9 31
U1 2
U2 53
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD FEB
PY 2012
VL 90
IS 2
BP 617
EP 630
DI 10.1007/s11192-011-0527-2
PG 14
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 876DZ
UT WOS:000299088900017
DA 2024-09-05
ER
PT J
AU Davidovitch, N
Eckhaus, E
AF Davidovitch, Nitza
Eckhaus, Eyal
TI EFFECT OF FACULTY ON RESEARCH COOPERATION AND PUBLICATION: EMPLOYING
NATURAL LANGUAGE PROCESSING
SO ECONOMICS & SOCIOLOGY
LA English
DT Article
DE academic conference; gender; faculty; academia
AB This study continues a series of studies on the effectiveness of scientific conferences. This topic has not been sufficiently investigated although it receives large funds, assuming that these conferences have added value for staff members' academic-professional development. Predicated on questionnaires filled by 96 academic staff members from 17 different departments, we found that when choosing conferences to attend, the type of faculty affect the search for cooperation. Moreover, staff members from the Faculty of Natural Sciences attribute more significance to conferences that result in publications than staff members from the Faculty of Health. The Faculty of Engineering creates negative mediation in the correlation between gender and cooperation. Namely, the Faculty of Engineering does not urge cooperation and even has a negative effect, but its effect is evident mainly among men. This finding complements prior research findings showing that women are more inclined to cooperation (Eckhaus & Davidovitch, 2018a). The current findings show that the inclination to cooperation is not related only to gender issues rather the faculty has an effect as well. The current findings might have a contribution to the significance of the faculty as an influential factor of conferences on cooperation - and in fact on the professional development of staff members.
C1 [Davidovitch, Nitza; Eckhaus, Eyal] Ariel Univ, Ariel, Israel.
C3 Ariel University
RP Davidovitch, N (corresponding author), Ariel Univ, Ariel, Israel.
EM d.nitza@ariel.ac.il; eyde@ariel.ac.il
RI Eckhaus, Eyal/AAX-2557-2020
OI Eckhaus, Eyal/0000-0002-1815-0045; Davidovitch,
Nitza/0000-0001-7273-903X
CR Brainerd CJ, 2013, TOP COGN SCI, V5, P773, DOI 10.1111/tops.12039
Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227
Davidovitch N., 2018, Higher Education Studies, V8, P92, DOI [https://doi.org/10.5539/hes.v8n2p92, DOI 10.5539/HES.V8N2P92]
Davidovitch N, 2014, AM INT J CONT RES, V4, P131
Davidovitch N, 2011, J FURTH HIGH EDUC, V35, P355, DOI 10.1080/0309877X.2011.569012
Eckhaus E, 2018, EUROPEAN J ED RES, V7
Eckhaus E., 2016, Journal of Leadership, Accountability and Ethics, V13, P90
Eckhaus E, 2018, RISK MANAGEMENT, DOI [10.1057/s41283-41018-40037-41280, DOI 10.1057/S41283-41018-40037-41280]
Eckhaus E., 2017, Academy of Strategic Management Journal, V16, P19
Eckhaus E., 2018, INT J ED METHODOLOGY, V4, P45, DOI DOI 10.12973/IJEM.4.1.45
Eckhaus E, 2019, J GENDER STUD, V28, P97, DOI 10.1080/09589236.2017.1411789
Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9
Majid N, 2012, PROCD SOC BEHV, V59, P394, DOI 10.1016/j.sbspro.2012.09.292
Ryu E, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.00081
Suzuki M, 2008, PHYS SIMPLE PENDULUM, P1
Veloutsou C., 2015, Tourismos, V10, P101
Wilson CS, 2008, J AM SOC INF SCI TEC, V59, P1393, DOI 10.1002/asi.20812
NR 17
TC 2
Z9 3
U1 1
U2 2
PU CENTER SOCIOLOGICAL RESEARCH
PI SZCZECIN
PA MICKIEWICZA STR, 64, SZCZECIN, 71-101, POLAND
SN 2071-789X
EI 2306-3459
J9 ECON SOCIOL
JI Econ. Sociol.
PY 2018
VL 11
IS 4
BP 173
EP 180
DI 10.14254/2071-789X.2018/11-4/11
PG 8
WC Economics
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA HJ2WF
UT WOS:000457030400011
OA gold
DA 2024-09-05
ER
PT J
AU Cobelli, N
Blasi, S
AF Cobelli, Nicola
Blasi, Silvia
TI Combining topic modeling and bibliometric analysis to understand the
evolution of technological innovation adoption in the healthcare
industry
SO EUROPEAN JOURNAL OF INNOVATION MANAGEMENT
LA English
DT Article
DE Digital transformation; Healthcare management; Bibliometric analysis;
Topic modeling; UTAUT; UTAUT2
ID DEVELOPING-COUNTRY; INFORMATION-TECHNOLOGY; CONSUMER ACCEPTANCE; MOBILE
BANKING; SUPPLY CHAIN; SERVICES; EXTENSION; UTAUT; INTENTION; COHERENCE
AB PurposeThis paper explores the Adoption of Technological Innovation (ATI) in the healthcare industry. It investigates how the literature has evolved, and what are the emerging innovation dimensions in the healthcare industry adoption studies.Design/methodology/approachWe followed a mixed-method approach combining bibliometric methods and topic modeling, with 57 papers being deeply analyzed.FindingsOur results identify three latent topics. The first one is related to the digitalization in healthcare with a specific focus on the COVID-19 pandemic. The second one groups up the word combinations dealing with the research models and their constructs. The third one refers to the healthcare systems/professionals and their resistance to ATI.Research limitations/implicationsThe study's sample selection focused on scientific journals included in the Academic Journal Guide and in the FT Research Rank. However, the paper identifies trends that offer managerial insights for stakeholders in the healthcare industry.Practical implicationsATI has the potential to revolutionize the health service delivery system and to decentralize services traditionally provided in hospitals or medical centers. All this would contribute to a reduction in waiting lists and the provision of proximity services.Originality/valueThe originality of the paper lies in the combination of two methods: bibliometric analysis and topic modeling. This approach allowed us to understand the ATI evolutions in the healthcare industry.
C1 [Cobelli, Nicola] Univ Verona, Dept Management, Verona, Italy.
C3 University of Verona
RP Cobelli, N (corresponding author), Univ Verona, Dept Management, Verona, Italy.
EM nicola.cobelli@univr.it
RI Cobelli, Nicola/AAI-7592-2021
OI Cobelli, Nicola/0000-0001-6710-6510
CR Agarwal R, 1998, INFORM SYST RES, V9, P204, DOI 10.1287/isre.9.2.204
Aggelidis VP, 2009, INT J MED INFORM, V78, P115, DOI 10.1016/j.ijmedinf.2008.06.006
Agyei DD., 2020, J Inf Technol Manage, V12, P27
AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T
Alalwan AA, 2017, INT J INFORM MANAGE, V37, P99, DOI 10.1016/j.ijinfomgt.2017.01.002
Alalwan N, 2019, IEEE ACCESS, V7, P98725, DOI 10.1109/ACCESS.2019.2928142
Alam MZ, 2022, J MARK COMMUN, V28, P152, DOI 10.1080/13527266.2020.1848900
Alam MZ, 2020, INT J INFORM MANAGE, V50, P128, DOI 10.1016/j.ijinfomgt.2019.04.016
Alismaili S.N.R., 2021, A modified UTAUT model for hospital information systems geared towards motivating patient loyalty, P207, DOI [10.1007/978-3-030-70713-2_21, DOI 10.1007/978-3-030-70713-2_21]
AlQudah AA, 2022, IEEE T ENG MANAGE, DOI 10.1109/TEM.2022.3223520
Alshammari SH., 2020, Innovative Teaching and Learning Journal (ITLJ), V4, P12
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Aria R, 2018, COMPUT HUM BEHAV, V84, P162, DOI 10.1016/j.chb.2018.01.041
Badran MF, 2019, TELECOMMUN POLICY, V43, P576, DOI 10.1016/j.telpol.2019.01.003
Baudier P, 2023, TECHNOVATION, V120, DOI 10.1016/j.technovation.2022.102547
Baudier P, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120510
Baudier P, 2020, FUTURES, V122, DOI 10.1016/j.futures.2020.102595
Baudier P, 2020, TECHNOL FORECAST SOC, V153, DOI 10.1016/j.techfore.2018.06.043
Beh PK, 2021, BEHAV INFORM TECHNOL, V40, P282, DOI 10.1080/0144929X.2019.1685597
Ben Arfi W, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120688
Ben Arfi W, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120437
Bhandari G, 2012, BEHAV INFORM TECHNOL, V31, P275, DOI 10.1080/0144929X.2011.563798
Bianchi C, 2023, INFORM TECHNOL PEOPL, V36, P916, DOI 10.1108/ITP-01-2021-0049
Brem A, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120451
Calisto FM, 2022, INT J HUM-COMPUT ST, V168, DOI 10.1016/j.ijhcs.2022.102922
Cannavale C, 2022, EUR J INNOV MANAG, V25, P758, DOI 10.1108/EJIM-08-2021-0378
Chong AYL, 2022, INFORM MANAGE-AMSTER, V59, DOI 10.1016/j.im.2022.103604
Chong AYL, 2015, INT J PROD ECON, V159, P66, DOI 10.1016/j.ijpe.2014.09.034
Choudhury A, 2022, APPL ERGON, V101, DOI 10.1016/j.apergo.2022.103708
Ciasullo MV, 2021, EUR J INNOV MANAG, V25, P365, DOI 10.1108/EJIM-02-2021-0109
Compeau D, 1999, MIS QUART, V23, P145, DOI 10.2307/249749
Damberg S, 2022, INT J SPORT MARK SPO, V23, P369, DOI 10.1108/IJSMS-01-2021-0013
DAVIS FD, 1992, J APPL SOC PSYCHOL, V22, P1111, DOI 10.1111/j.1559-1816.1992.tb00945.x
Dhiman N, 2020, J INDIAN BUS RES, V12, P363, DOI 10.1108/JIBR-05-2018-0158
DODDS WB, 1991, J MARKETING RES, V28, P307, DOI 10.2307/3172866
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Duarte P, 2019, J BUS RES, V102, P140, DOI 10.1016/j.jbusres.2019.05.022
Dwivedi YK, 2016, GOV INFORM Q, V33, P174, DOI 10.1016/j.giq.2015.06.003
Engin M, 2019, INT J INNOV TECHNOL, V16, DOI 10.1142/S0219877019500433
Featherman MS, 2003, INT J HUM-COMPUT ST, V59, P451, DOI 10.1016/S1071-5819(03)00111-3
Federkeil G., 2012, An evaluation and critique of current rankings, P39, DOI [10.1007/978-94-007-3005-2_4, DOI 10.1007/978-94-007-3005-2_4]
Fishbein M., 1979, NEBRASKA S MOTIVATIO, V27, P65
Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519
Ghasemzadeh K, 2022, EUR J INNOV MANAG, V25, P656, DOI 10.1108/EJIM-04-2021-0181
Godfrey CM, 2023, JBI EVID SYNTH, V21, P6, DOI 10.11124/JBIES-21-00436
Grinin L, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121348
Gupta B, 2008, J STRATEGIC INF SYST, V17, P140, DOI 10.1016/j.jsis.2007.12.004
Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1
Hair JF, 2011, J MARKET THEORY PRAC, V19, P135, DOI 10.1080/10696679.2011.11046435
Hair JF, 2013, LONG RANGE PLANN, V46, P1, DOI 10.1016/j.lrp.2013.01.001
Hoque R, 2017, INT J MED INFORM, V101, P75, DOI 10.1016/j.ijmedinf.2017.02.002
Hsu CL, 2013, J MED SYST, V37, DOI 10.1007/s10916-013-9966-z
Hussain A, 2019, INT J INFORM MANAGE, V44, P76, DOI 10.1016/j.ijinfomgt.2018.09.016
Jang SH, 2016, TECHNOL FORECAST SOC, V113, P396, DOI 10.1016/j.techfore.2016.07.030
Jayaraman PP, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1350
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Kaur A., 2022, Business Perspectives and Research, V11, P63, DOI [10.1177/22785337221091017, DOI 10.1177/22785337221091017]
Khan IU, 2018, J GLOB INF MANAG, V26, P121, DOI 10.4018/JGIM.2018070109
Khan T, 2022, J PUBLIC AFF, V22, DOI 10.1002/pa.2685
Kherwa P., 2021, INT C INN COMP COMM, P289, DOI [10.1007/978-981-15-5148-2_26, DOI 10.1007/978-981-15-5148-2_26]
Kijsanayotin B, 2009, INT J MED INFORM, V78, P404, DOI 10.1016/j.ijmedinf.2008.12.005
Kim ED, 2023, BEHAV INFORM TECHNOL, V42, P2308, DOI 10.1080/0144929X.2022.2117081
Kim HW, 2007, DECIS SUPPORT SYST, V43, P111, DOI 10.1016/j.dss.2005.05.009
Kim SS, 2005, MANAGE SCI, V51, P741, DOI 10.1287/mnsc.1040.0326
Kohnke Anne, 2014, Journal of Technology Management & Innovation, V9, P29
Kunnapapdeelert Siwaporn, 2020, International Journal of Business Performance and Supply Chain Modelling, V11, P54
Lo A, 2019, J COMPUT INFORM SYST, V59, P319, DOI 10.1080/08874417.2017.1365666
Lu MP, 2024, J FINANC SERV MARK, V29, P33, DOI 10.1057/s41264-022-00182-9
de Azevedo FXM, 2023, ERGONOMICS, V66, P821, DOI 10.1080/00140139.2022.2127920
Maleka NH, 2024, J SCI TECHNOL POLICY, V15, P707, DOI 10.1108/JSTPM-08-2021-0126
Misra H, 2011, INFORM PROCESS MANAG, V47, P528, DOI 10.1016/j.ipm.2010.11.008
Moores TT, 2012, DECIS SUPPORT SYST, V53, P507, DOI 10.1016/j.dss.2012.04.014
Mukerjee HS, 2023, GLOB BUS REV, V24, P721, DOI 10.1177/0972150920908690
Mukhopadhyay S, 2019, INF COMPUT SECUR, V28, P97, DOI 10.1108/ICS-07-2019-0076
Mukred Adnan, 2017, International Journal of Business Information Systems, V24, P261
Nisha N, 2019, J GLOB INF MANAG, V27, P19, DOI 10.4018/JGIM.2019010102
O'Callaghan D, 2015, EXPERT SYST APPL, V42, P5645, DOI 10.1016/j.eswa.2015.02.055
Okumus B, 2018, INT J HOSP MANAG, V72, P67, DOI 10.1016/j.ijhm.2018.01.001
Pandey N., 2021, South Asian Journal of Business and Management Cases, V10, P35, DOI [10.1177/2277977921991915, DOI 10.1177/2277977921991915]
Pavlou PA, 2003, INT J ELECTRON COMM, V7, P101, DOI 10.1080/10864415.2003.11044275
Phichitchaisopa N, 2013, EXCLI J, V12, P413
Pietronudo MC, 2022, EUR J INNOV MANAG, V25, P867, DOI 10.1108/EJIM-07-2021-0327
Rahi S, 2021, ENTERP INF SYST-UK, V15, P769, DOI 10.1080/17517575.2020.1850872
Rogers Everett M., 1995, DIFFUSION INNOVATION, DOI DOI 10.1007/978-3-642-79868-9_2
Sabbir Md Mahiuddin, 2021, Health Mark Q, V38, P168, DOI 10.1080/07359683.2021.1986988
Sabbir MM, 2021, J SCI TECHNOL POLICY, V12, P666, DOI 10.1108/JSTPM-07-2020-0108
Schmitz A, 2022, COMPUT HUM BEHAV, V130, DOI 10.1016/j.chb.2022.107183
Sergueeva K, 2020, CAN J ADM SCI, V37, P45, DOI 10.1002/cjas.1547
Singh S, 2023, J GLOB MARK, V36, P93, DOI 10.1080/08911762.2022.2141167
Spooren W, 2010, CORPUS LINGUIST LING, V6, P241, DOI 10.1515/CLLT.2010.009
Sun YQ, 2013, J ELECTRON COMMER RE, V14, P183
Talukder MS, 2020, TECHNOL FORECAST SOC, V150, DOI 10.1016/j.techfore.2019.119793
Talukder MS, 2019, IND MANAGE DATA SYST, V119, P170, DOI 10.1108/IMDS-01-2018-0009
Tani M, 2022, EUR J INNOV MANAG, V25, P716, DOI 10.1108/EJIM-11-2021-0579
Taylor Shirley., 1995, INT J RES MARK, V12, P137, DOI DOI 10.1016/0167-8116(94)00019-K
Trkman M, 2023, GOV INFORM Q, V40, DOI 10.1016/j.giq.2022.101787
Tsao YC, 2024, INT J LOGIST-RES APP, V27, P129, DOI 10.1080/13675567.2022.2026903
Vargheese R, 2014, 2014 INTERNATIONAL CONFERENCE ON COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING (COLLABORATECOM), P475, DOI 10.4108/icst.collaboratecom.2014.257621
Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582
Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926
Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540
Venkatesh V, 2012, MIS QUART, V36, P157
Wang HL, 2020, INT J MED INFORM, V139, DOI 10.1016/j.ijmedinf.2020.104156
Weeger A, 2015, HEALTH SYST, V4, P64, DOI 10.1057/hs.2014.11
Wei XY, 2024, IEEE T ENG MANAGE, V71, P888, DOI 10.1109/TEM.2022.3140952
Williams MD, 2009, J INF TECHNOL, V24, P1, DOI 10.1057/jit.2008.30
Wu WQ, 2021, COMPUT HUM BEHAV, V122, DOI 10.1016/j.chb.2021.106840
Yousaf A, 2021, J RETAIL CONSUM SERV, V62, DOI 10.1016/j.jretconser.2021.102655
Zhao Y, 2018, INT J INFORM MANAGE, V43, P342, DOI 10.1016/j.ijinfomgt.2017.08.006
Zhou T, 2010, COMPUT HUM BEHAV, V26, P760, DOI 10.1016/j.chb.2010.01.013
NR 110
TC 2
Z9 2
U1 10
U2 10
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 1460-1060
EI 1758-7115
J9 EUR J INNOV MANAG
JI Eur. J. Innov. Manag.
PD FEB 13
PY 2024
VL 27
IS 9
BP 127
EP 149
DI 10.1108/EJIM-06-2023-0497
PG 23
WC Business; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA KG9O1
UT WOS:001178924800001
OA hybrid
DA 2024-09-05
ER
PT J
AU Färber, M
Tampakis, L
AF Faerber, Michael
Tampakis, Lazaros
TI Analyzing the impact of companies on AI research based on publications
SO SCIENTOMETRICS
LA English
DT Article
DE Artificial intelligence; Impact quantification; Company influence;
Industry-academia collaboration
ID CITATION ANALYSIS; ALTMETRICS; KNOWLEDGE
AB Artificial Intelligence (AI) is one of the most momentous technologies of our time. Thus, it is of major importance to know which stakeholders influence AI research. Besides researchers at universities and colleges, researchers in companies have hardly been considered in this context. In this article, we consider how the influence of companies on AI research can be made measurable on the basis of scientific publishing activities. We compare academic- and company-authored AI publications published in the last decade and use scientometric data from multiple scholarly databases to look for differences across these groups and to disclose the top contributing organizations. While the vast majority of publications is still produced by academia, we find that the citation count an individual publication receives is significantly higher when it is (co-)authored by a company. Furthermore, using a variety of altmetric indicators, we notice that publications with company participation receive considerably more attention online. Finally, we place our analysis results in a broader context and present targeted recommendations to safeguard a harmonious balance between academia and industry in the realm of AI research.
C1 [Faerber, Michael; Tampakis, Lazaros] Karlsruhe Inst Technol KIT, Inst AIFB, Karlsruhe, Germany.
C3 Helmholtz Association; Karlsruhe Institute of Technology
RP Färber, M (corresponding author), Karlsruhe Inst Technol KIT, Inst AIFB, Karlsruhe, Germany.
EM michael.faerber@kit.edu; lazaros.tampakis@student.kit.edu
RI Färber, Michael/AAA-4789-2021
OI Färber, Michael/0000-0001-5458-8645
FU Karlsruher Institut fr Technologie (KIT) (4220)
FX No Statement Available
CR Abdalla M, 2021, AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P287, DOI 10.1145/3461702.3462563
Ahmed N., 2020, ARXIV
Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575
Alom M.Z., 2018, arXiv
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Bornmann L, 2013, J INFORMETR, V7, P158, DOI 10.1016/j.joi.2012.10.001
Buchanan B., 2021, Truth, Lies, and Automation: How Language Models Could Change Disinformation, DOI DOI 10.51593/2021CA003
Cockburn IM., 2018, IMPACT ARTIFICIAL IN, DOI [10.3386/w24449, DOI 10.3386/W24449]
Dernis H., 2019, World Corporate Top R&D Investors: Shaping the Future of Technologies and of AI-A Joint JRC and OECD Report '
European Commission, 2019, COM2019168 FINAL
Färber M, 2019, LECT NOTES COMPUT SC, V11779, P113, DOI 10.1007/978-3-030-30796-7_8
Färber M, 2022, QUANT SCI STUD, V3, P51, DOI 10.1162/qss_a_00183
Fitzenberger B, 2014, GER ECON REV, V15, P287, DOI 10.1111/geer.12010
GIL Y., 2019, ARXIV
Hagendorff T, 2023, AI SOC, V38, P35, DOI 10.1007/s00146-021-01284-z
Hartmann P, 2020, ACAD MANAG DISCOV, V6, P359, DOI 10.5465/amd.2019.0043
Harzing AW, 2017, SCIENTOMETRICS, V110, P371, DOI 10.1007/s11192-016-2185-x
Hayter CS, 2019, RES POLICY, V48, P556, DOI 10.1016/j.respol.2018.09.009
Hooker S, 2021, COMMUN ACM, V64, P58, DOI 10.1145/3467017
Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8
Irani L, 2019, CONFERENCE COMPANION PUBLICATION OF THE 2019 COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW'19 COMPANION), P111, DOI 10.1145/3311957.3358610
Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2
Jumper J, 2021, NATURE, V596, P583, DOI 10.1038/s41586-021-03819-2
Jurowetzki R., 2021, ARXIV
Klinger J., 2020, ARXIV
Krieger B, 2021, SCIENTOMETRICS, V126, P9677, DOI 10.1007/s11192-021-04147-y
KRUSKAL WH, 1952, J AM STAT ASSOC, V47, P583, DOI 10.1080/01621459.1952.10483441
Kuhlman C, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3593, DOI 10.1145/3394486.3411074
Larivière V, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0202120
Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P1370, DOI 10.1002/asi.21534
Littman L.M., 2021, GATHERING STRENGTH G
Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006
MANN HB, 1947, ANN MATH STAT, V18, P50, DOI 10.1214/aoms/1177730491
Robinson-García N, 2014, PROF INFORM, V23, P359, DOI 10.3145/epi.2014.jul.03
Salajegheh M, 2019, INT J INFORM SCI MAN, V17, P59
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Smuha N. A., 2019, Comput. Law Rev. Internat., V20, P97, DOI DOI 10.9785/CRI-2019-200402
Spicer AJ, 2022, NAT BIOTECHNOL, V40, P1693, DOI 10.1038/s41587-022-01543-4
Tijssen RJW, 2004, RES POLICY, V33, P709, DOI 10.1016/j.respol.2003.11.002
Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y
Visser M, 2021, QUANT SCI STUD, V2, P20, DOI [10.1162/qss_a_00112, 10.1162/qes_a_00112]
Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021
Wilkinson Mark D, 2016, Sci Data, V3, P160018, DOI 10.1038/sdata.2016.18
Williams K, 2022, SCI PUBL POLICY, V49, P518, DOI 10.1093/scipol/scac004
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Yang J., 2019, P INT C ART INT INF, V2019, P1, DOI [DOI 10.1145/3371425.3371427, 10.1145/3371425.3371427]
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
Zhang D, 2021, ARXIV
Zhang X, 2019, SCIENTOMETRICS, V119, P1311, DOI 10.1007/s11192-019-03088-x
NR 49
TC 2
Z9 2
U1 8
U2 15
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 2024
VL 129
IS 1
BP 31
EP 63
DI 10.1007/s11192-023-04867-3
EA NOV 2023
PG 33
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA ES5M9
UT WOS:001122585100001
OA hybrid, Green Submitted
DA 2024-09-05
ER
PT C
AU Shinde, SV
Gawali, SZ
Thakore, DM
AF Shinde, Sachin V.
Gawali, Sangram Z.
Thakore, Devendrasingh M.
GP IEEE
TI MAS a scalable framework for research effort evaluation by unsupervised
machine learning-Hybrid plagiarism model
SO 2015 INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING (ICPC)
LA English
DT Proceedings Paper
CT International Conference on Pervasive Computing (ICPC)
CY JAN 08-10, 2015
CL Pune, INDIA
DE Document in Question; MAS; Inverted Index; Unsupervised Learning;
Sentence vector; Term Vector; Cosine similarity; Mapper; fork; join;
EMA; PMA; SMA; WEMA; WPMA; WSMA
AB In the era of web new information is upcoming day by day. Researches add their work for their research domains. Detecting of originality of research work is in hype. In Academic sector students researchers bring in innovative ideas, algorithms stating that their work outperforms prior research. They may implement NULL Hypothesis or alternative Hypothesis, detecting their effort is a challenge. By means of plagiarism detectors such academic efforts can be evaluated or graded. This reflects the essence of research in the field of Plagiarized content detection and grading. Some of our research issue highlights to technical scenario to design an algorithm which is adaptable to changing nature of dataset. The dataset grows, as new research work is added in due course of time. Data extraction from unstructured information is challenging, as no standard pattern is yet defined. Such patterns vary from research to research and are domain specific. A document in question i.e plagiarized or not? Is a join of one or more sentences that originate by the authors research or referenced from previous publications. Authors to prove originality use paraphrasing which may have semantic similarity, also some of the contents act as metaphor for upcoming research work. It is complex task point out such an activity.
Methodology states that a document in question is a join of sentences, whereas each sentence is a join of terms. Thus we conclude by fork and join operations; plagiarism detection is possible in effective way. Document in question is split to produce a sentence vector. A term vector is generated by forking sentence to terms for each sentence in sentence vector. Mapper is implemented that maps term to sentence and sentence to source document. To enhance the accuracy of the model a Multi Agent Based System MAS frame is recommended to adapt varying similarity functions. Achieve parallelism in system and adaptability of new similarity measures as well remove one which are not suitable any more to the task.
C1 [Shinde, Sachin V.] BVDUs Coll Engineeering, Informat Technol, Pune, Maharashtra, India.
[Gawali, Sangram Z.] BVDUs Coll Engineeering, Dept Informat Technol, Pune, Maharashtra, India.
[Thakore, Devendrasingh M.] BVDUs Coll Engineeering, Dept Comp Engn, Pune, Maharashtra, India.
C3 Bharati Vidyapeeth Deemed University; Bharati Vidyapeeth Deemed
University; Bharati Vidyapeeth Deemed University
RP Shinde, SV (corresponding author), BVDUs Coll Engineeering, Informat Technol, Pune, Maharashtra, India.
EM shinde_s_v@rediffmail.com; szgawali@bvucoep.edu.in;
dmthakore@bvucoep.edu.in
RI Shinde, Sachin Vidhyasagar/KFA-7996-2024; Thakore, Devendrasingh
M/K-7496-2017
OI Gawali, Sangram/0000-0002-8875-942X; Shinde, Sachin/0009-0007-9442-0186
CR Alzahrani Salha M., 2011, UNDERSTANDING PLAGIA
[Anonymous], 2001, ADAP COMP MACH LEARN
[Anonymous], 2003, INFORM THEORY INFERE
[Anonymous], 2013, INT J COMPUTER APPL
Bakhtiyari Kaveh, 2014, INT ED STUDIES, V7
Bellifemine Fabio, 2007, JADE SOFTWARE FRAMEW
Bhattacharjee Debotosh, 2013, PLAGIARISM DETECTION
Bin-Habtoor A., 2012, INT J COMPUTER THEOR, V4, P185, DOI DOI 10.7763/IJCTE.2012.V4.447
Brixtel R, 2010, IEEE INT WORK C SO, P77, DOI 10.1109/SCAM.2010.19
Budanitsky A., 2006, EVALUATING WORDNET B
Coward David F., 2000, MAKING DICT GUID LEX
Debole Franca, 2003, SAC2003
Eshaghi Marjan, 2013, INT J RECENT TECHNOL, V2
Juziuk J., 2012, DESIGN PATTERNS MULT
Luo Yuan, 2002, MULTIAGENT DECISION
PDFlib GmbH, 2002, TEXT EXTR TOOLK TET
Piramuthu S, 2004, EUR J OPER RES, V156, P483, DOI [10.1016/S0377-2217(02)00911-6, 10.1016/s0377-2217(02)00911-6]
Potthast M, 2011, LANG RESOUR EVAL, V45, P45, DOI 10.1007/s10579-009-9114-z
Qin Biao, 2009, DTU DECISION TREE UN
Santos Jr Eugene, 2010, LARGE SCALE DISTRIBU
Tian Z., 2013, DKISB DYNAMIC KEY IN
NR 21
TC 0
Z9 0
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4799-6272-3
PY 2015
PG 5
WC Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering
GA BF1LK
UT WOS:000380407300069
DA 2024-09-05
ER
PT J
AU Shackelford, GE
Kemp, L
Rhodes, C
Sundaram, L
OhÉigeartaigh, SS
Beard, S
Belfield, H
Weitzdörfer, J
Avin, S
Sorebo, D
Jones, EM
Hume, JB
Price, D
Pyle, D
Hurt, D
Stone, T
Watkins, H
Collas, L
Cade, BC
Johnson, TF
Freitas-Groff, Z
Denkenberger, D
Levot, M
Sutherland, WJ
AF Shackelford, Gorm E.
Kemp, Luke
Rhodes, Catherine
Sundaram, Lalitha
OhEigeartaigh, Sean S.
Beard, Simon
Belfield, Haydn
Weitzdorfer, Julius
Avin, Shahar
Sorebo, Dag
Jones, Elliot M.
Hume, John B.
Price, David
Pyle, David
Hurt, Daniel
Stone, Theodore
Watkins, Harry
Collas, Lydia
Cade, Bryony C.
Johnson, Thomas Frederick
Freitas-Groff, Zachary
Denkenberger, David
Levot, Michael
Sutherland, William J.
TI Accumulating evidence using crowdsourcing and machine learning: A living
bibliography about existential risk and global catastrophic risk
SO FUTURES
LA English
DT Article
DE Bibliographic databases; Crowdsourcing; Machine learning; Subject-wide
evidence synthesis; Systematic maps; Systematic reviews
AB The study of existential risk - the risk of human extinction or the collapse of human civilization - has only recently emerged as an integrated field of research, and yet an overwhelming volume of relevant research has already been published. To provide an evidence base for policy and risk analysis, this research should be systematically reviewed. In a systematic review, one of many time-consuming tasks is to read the titles and abstracts of research publications, to see if they meet the inclusion criteria. We show how this task can be shared between multiple people (using crowdsourcing) and partially automated (using machine learning), as methods of handling an overwhelming volume of research. We used these methods to create The Existential Risk Research Assessment (TERRA), which is a living bibliography of relevant publications that gets updated each month (www.x-risk.net ). We present the results from the first ten months of TERRA, in which 10,001 abstracts were screened by 51 participants. Several challenges need to be met before these methods can be used in systematic reviews. However, we suggest that collaborative and cumulative methods such as these will need to be used in systematic reviews as the volume of research increases.
C1 [Shackelford, Gorm E.; Kemp, Luke; Rhodes, Catherine; Sundaram, Lalitha; OhEigeartaigh, Sean S.; Beard, Simon; Belfield, Haydn; Weitzdorfer, Julius; Avin, Shahar; Sutherland, William J.] Univ Cambridge, CSER, Cambridge, England.
[Shackelford, Gorm E.; Kemp, Luke; Rhodes, Catherine; Sundaram, Lalitha; OhEigeartaigh, Sean S.; Sutherland, William J.] Univ Cambridge, Biosecur Res Initiat St Catharines BioRISC, St Catharines Coll, Cambridge, England.
[Shackelford, Gorm E.; Collas, Lydia; Sutherland, William J.] Univ Cambridge, Dept Zool, David Attenborough Bldg, Cambridge, England.
[Weitzdorfer, Julius] Harvard Univ, Belfer Ctr Sci & Int Affairs, Cambridge, MA 02138 USA.
[Sorebo, Dag] Grindstone Secur, Oslo, Norway.
[Jones, Elliot M.] Demos, London, England.
[Hume, John B.] Michigan State Univ, E Lansing, MI 48824 USA.
[Price, David] DebateGraph, London, England.
[Pyle, David] Univ Oxford, Dept Earth Sci, Oxford, England.
[Hurt, Daniel] Univ Cambridge, Cambridge, England.
[Stone, Theodore] Univ Amsterdam, Amsterdam, Netherlands.
[Watkins, Harry] Univ Sheffield, Dept Landscape, Sheffield, S Yorkshire, England.
[Watkins, Harry] St Andrews Bot Garden, St Andrews, Fife, Scotland.
[Johnson, Thomas Frederick] Univ Reading, Reading, Berks, England.
[Freitas-Groff, Zachary] Stanford Univ, Stanford, CA 94305 USA.
[Denkenberger, David] Univ Alaska, Fairbanks, AK 99701 USA.
[Denkenberger, David] GCRI, Fairbanks, AK USA.
[Denkenberger, David] Alliance Feed Earth Disasters ALLFED, Fairbanks, AK USA.
[Levot, Michael] NYU, New York, NY 10003 USA.
C3 University of Cambridge; University of Cambridge; University of
Cambridge; Harvard University; Michigan State University; University of
Oxford; University of Cambridge; University of Amsterdam; University of
Sheffield; University of Reading; Stanford University; University of
Alaska System; University of Alaska Fairbanks; New York University
RP Shackelford, GE (corresponding author), Univ Cambridge, CSER, Cambridge, England.; Shackelford, GE (corresponding author), Univ Cambridge, Biosecur Res Initiat St Catharines BioRISC, St Catharines Coll, Cambridge, England.; Shackelford, GE (corresponding author), Univ Cambridge, Dept Zool, David Attenborough Bldg, Cambridge, England.
EM gorm.shackelford@gmail.com
RI Avin, Shahar/H-9639-2019; Sutherland, William/B-1291-2013
OI Avin, Shahar/0000-0001-7859-1507; Sundaram, Lalitha/0000-0002-9595-9753;
Stone, Theodore/0000-0001-6385-161X; Groff, Zachary/0000-0003-4791-4494;
Watkins, Harry/0000-0002-4038-7145
FU Templeton World Charity Foundation; David and Claudia Harding Foundation
FX This project was made possible through the support of a grant from
Templeton World Charity Foundation. The opinions expressed in this
publication are those of the authors and do not necessarily reflect the
views of Templeton World Charity Foundation. Several of the authors were
also supported by the David and Claudia Harding Foundation. We thank our
funders, and we also thank Stuart Armstrong, Seth Baum, Sebastian
Farquhar, Nancy Ockendon, Martin Rees, Jens Steffensen, Phil Torres, and
all of the participants in TERRA.
CR [Anonymous], LA602 LOS AL LAB
Avin S, 2018, FUTURES, V102, P20, DOI 10.1016/j.futures.2018.02.001
Bostrom N., 2011, Global Catastrophic Risks
Bostrom N, 2002, J EVOLUTION TECH, V9
Bostrom N, 2013, GLOB POLICY, V4, P15, DOI 10.1111/1758-5899.12002
Brown AW, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100647
Brundage M., 2018, The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation
Crawley M.J., 2013, R BOOK
Denkenberger DC, 2018, INT J DISAST RISK RE, V27, P278, DOI 10.1016/j.ijdrr.2017.10.014
Donnelly CA, 2018, NATURE, V558, P361, DOI 10.1038/d41586-018-05414-4
Farquhar S., 2017, Global Priorities Project 2017
Geron A., 2019, Hands On Machine Learning With Scikit-Learn And Tensorflow
Haddaway NR, 2015, CONSERV BIOL, V29, P1596, DOI 10.1111/cobi.12541
McKinnon MC, 2015, NATURE, V528, P185, DOI 10.1038/528185a
Mortensen ML, 2017, RES SYNTH METHODS, V8, P366, DOI 10.1002/jrsm.1252
O'Mara-Eves A, 2015, SYST REV-LONDON, V4, DOI 10.1186/2046-4053-4-5
Pamlin D., 2015, Global Challenges: 12 Risks that threaten human civilization
Rees Martin., 2003, Our Final Century
Shackelford GE, 2019, FRONT SUSTAIN FOOD S, V3, DOI 10.3389/fsufs.2019.00083
Sutherland WJ, 2018, NATURE, V558, P364, DOI 10.1038/d41586-018-05472-8
Sutherland WJ, 2004, TRENDS ECOL EVOL, V19, P305, DOI 10.1016/j.tree.2004.03.018
Wallace BC, 2013, J COMP EFFECT RES, V2, P273, DOI [10.2217/cer.13.17, 10.2217/CER.13.17]
Westgate MJ, 2018, NAT ECOL EVOL, V2, P588, DOI 10.1038/s41559-018-0502-x
Wilson GrantS., 2013, VA. ENV'T L. J., V31, P307
[No title captured]
[No title captured]
[No title captured]
NR 27
TC 7
Z9 7
U1 1
U2 8
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0016-3287
EI 1873-6378
J9 FUTURES
JI Futures
PD FEB
PY 2020
VL 116
AR 102508
DI 10.1016/j.futures.2019.102508
PG 10
WC Economics; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA KM3AV
UT WOS:000513994800003
OA Green Submitted, hybrid
DA 2024-09-05
ER
PT J
AU Shukla, AK
Janmaijaya, M
Abraham, A
Muhuri, PK
AF Shukla, Amit K.
Janmaijaya, Manvendra
Abraham, Ajith
Muhuri, Pranab K.
TI Engineering applications of artificial intelligence: A bibliometric
analysis of 30 years (1988-2018)
SO ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
LA English
DT Article
DE Bibliometric study; Engineering applications of artificial intelligence;
Scientometric mapping; Web of science; VOSviewer
ID PARTICLE SWARM OPTIMIZATION; HYBRID NEURAL-NETWORK; OF-THE-ART; GENETIC
ALGORITHM; MULTIOBJECTIVE OPTIMIZATION; MODEL; DESIGN; SYSTEMS;
RECOGNITION; SIMULATION
AB The Engineering Applications of Artificial Intelligence (EAAI) is a journal of very high repute in the domain of Engineering and Computer Science. This paper gives a broad view of the publications in EAAI from 1988-2018, which are indexed in Web of Science (WoS) and Scopus. The main purpose of this research is to bring forward the prime impelling factors that bring about the EAAI publications and its citation structure. The publication and citation structure of EAAI is analyzed, which includes the distribution of publication over the years, citations per year and a bird's eye view of the citation structure. Then the co-citation analysis and over the year's trend of top keywords is given. The co-authorship networks and a geographic analysis of the sources is also provided. Further, a country-wise temporal and quantitative analysis of the publications is given along with the highly cited documents among the EAAI publications.
C1 [Shukla, Amit K.; Janmaijaya, Manvendra; Muhuri, Pranab K.] South Asian Univ, Dept Comp Sci, New Delhi 110021, India.
[Abraham, Ajith] Univ Pretoria, Dept Comp Sci, ZA-0002 Pretoria, South Africa.
[Abraham, Ajith] Machine Intelligence Res Labs MIR Labs, 3rd St,POB 2259, Auburn, WA 98071 USA.
C3 South Asian University (SAU); University of Pretoria
RP Muhuri, PK (corresponding author), South Asian Univ, Dept Comp Sci, New Delhi 110021, India.
EM pranabmuhuri@cs.sau.ac.in
RI Shukla, Amit k./AAX-5624-2021; MUHURI, PRANAB K./F-4301-2015; Abraham,
Ajith/A-1416-2008; Manvendra, Janmaijaya/JOK-0347-2023
OI MUHURI, PRANAB K./0000-0001-7122-7622; Abraham,
Ajith/0000-0002-0169-6738;
FU Department of Science and Technology, Government of India; South Asian
University, New Delhi, India
FX Authors are thankful to the anonymous reviewers for their valuable
comments which have helped them a lot in improving the paper
significantly. First author thankfully acknowledges the INSPIRE
fellowship received from the Department of Science and Technology,
Government of India. Second author is grateful to the South Asian
University, New Delhi, India for the financial support in the form of a
Ph.D. fellowship.
CR Abraham A., 2008, GEN EV COMP C GECCO, P1445
Abraham A., 2018, SCIENTOMETRIC STUDY
Alvarez-Betancourt Y, 2014, SCIENTOMETRICS, V101, P2003, DOI 10.1007/s11192-014-1336-1
Ballé P, 2000, ENG APPL ARTIF INTEL, V13, P695, DOI 10.1016/S0952-1976(00)00049-X
Bashyal S, 2008, ENG APPL ARTIF INTEL, V21, P1056, DOI 10.1016/j.engappai.2007.11.010
Bateni SM, 2007, ENG APPL ARTIF INTEL, V20, P401, DOI 10.1016/j.engappai.2006.06.012
Bauer B, 2005, ENG APPL ARTIF INTEL, V18, P141, DOI 10.1016/j.engappai.2004.11.016
Benardos PG, 2007, ENG APPL ARTIF INTEL, V20, P365, DOI 10.1016/j.engappai.2006.06.005
Bhatta SR, 1996, ENG APPL ARTIF INTEL, V9, P601, DOI 10.1016/S0952-1976(96)00055-3
Camacho D, 2006, ENG APPL ARTIF INTEL, V19, P179, DOI 10.1016/j.engappai.2005.07.002
Chau KW, 2004, ENG APPL ARTIF INTEL, V17, P11, DOI 10.1016/j.engappai.2003.11.007
Chen CM, 2008, DATA KNOWL ENG, V67, P234, DOI 10.1016/j.datak.2008.05.004
Chen HQ, 2015, RENEW SUST ENERG REV, V49, P12, DOI 10.1016/j.rser.2015.04.060
Chen XY, 2015, ENG APPL ARTIF INTEL, V46, P258, DOI 10.1016/j.engappai.2015.09.010
Cheng S, 2003, ENG APPL ARTIF INTEL, V16, P543, DOI 10.1016/S0952-1976(03)00069-1
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Cook DF, 2000, ENG APPL ARTIF INTEL, V13, P391, DOI 10.1016/S0952-1976(00)00021-X
Das S, 2012, ENG APPL ARTIF INTEL, V25, P430, DOI 10.1016/j.engappai.2011.10.004
De Silva LC, 2012, ENG APPL ARTIF INTEL, V25, P1313, DOI 10.1016/j.engappai.2012.05.002
Dharia A, 2003, ENG APPL ARTIF INTEL, V16, P607, DOI 10.1016/j.engappai.2003.09.011
Du HP, 2003, ENG APPL ARTIF INTEL, V16, P667, DOI 10.1016/j.engappai.2003.09.008
Du YX, 2012, CHINA ECON REV, V23, P743, DOI 10.1016/j.chieco.2012.04.009
Faruk DÖ, 2010, ENG APPL ARTIF INTEL, V23, P586, DOI 10.1016/j.engappai.2009.09.015
Fu TC, 2011, ENG APPL ARTIF INTEL, V24, P164, DOI 10.1016/j.engappai.2010.09.007
Gokceoglu C, 2004, ENG APPL ARTIF INTEL, V17, P61, DOI 10.1016/j.engappai.2003.11.006
He Q, 2007, ENG APPL ARTIF INTEL, V20, P89, DOI 10.1016/j.engappai.2006.03.003
HECK JL, 1986, ACCOUNT REV, V61, P735
Ho W, 2008, ENG APPL ARTIF INTEL, V21, P548, DOI 10.1016/j.engappai.2007.06.001
Kim HS, 2000, ENG APPL ARTIF INTEL, V13, P635, DOI 10.1016/S0952-1976(00)00045-2
Kuila P, 2014, ENG APPL ARTIF INTEL, V33, P127, DOI 10.1016/j.engappai.2014.04.009
Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027
Leitao P, 2009, ENG APPL ARTIF INTEL, V22, P979, DOI 10.1016/j.engappai.2008.09.005
Li XC, 2008, ENG APPL ARTIF INTEL, V21, P785, DOI 10.1016/j.engappai.2007.07.001
Ma HP, 2011, ENG APPL ARTIF INTEL, V24, P517, DOI 10.1016/j.engappai.2010.08.005
Manjarres D, 2013, ENG APPL ARTIF INTEL, V26, P1818, DOI 10.1016/j.engappai.2013.05.008
Margaliot M, 2001, ENG APPL ARTIF INTEL, V14, P183, DOI 10.1016/S0952-1976(00)00066-X
McFarlane D, 2003, ENG APPL ARTIF INTEL, V16, P365, DOI 10.1016/S0952-1976(03)00077-0
Menhaj MB, 2000, ENG APPL ARTIF INTEL, V13, P459, DOI 10.1016/S0952-1976(00)00026-9
Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006
Muhuri PK, 2019, ENG APPL ARTIF INTEL, V78, P218, DOI 10.1016/j.engappai.2018.11.007
Muhuri PK, 2018, APPL SOFT COMPUT, V69, P381, DOI 10.1016/j.asoc.2018.03.041
Muttil N, 2007, ENG APPL ARTIF INTEL, V20, P735, DOI 10.1016/j.engappai.2006.11.016
Naqvi S. H., 2005, International Information, Communication and Education, V24, P53
Negenborn RR, 2008, ENG APPL ARTIF INTEL, V21, P353, DOI 10.1016/j.engappai.2007.08.005
Niknam T, 2011, ENG APPL ARTIF INTEL, V24, P306, DOI 10.1016/j.engappai.2010.10.001
Niska H, 2004, ENG APPL ARTIF INTEL, V17, P159, DOI 10.1016/j.engappai.2004.02.002
Nourani V, 2009, ENG APPL ARTIF INTEL, V22, P466, DOI 10.1016/j.engappai.2008.09.003
Rao RV, 2013, ENG APPL ARTIF INTEL, V26, P524, DOI 10.1016/j.engappai.2012.06.007
Rao RV, 2013, ENG APPL ARTIF INTEL, V26, P430, DOI 10.1016/j.engappai.2012.02.016
Rashedi E, 2011, ENG APPL ARTIF INTEL, V24, P117, DOI 10.1016/j.engappai.2010.05.007
RENGASWAMY R, 1995, ENG APPL ARTIF INTEL, V8, P35, DOI 10.1016/0952-1976(94)00058-U
Samanta B, 2003, ENG APPL ARTIF INTEL, V16, P657, DOI 10.1016/j.engappai.2003.09.006
Sardiñas RQ, 2006, ENG APPL ARTIF INTEL, V19, P127, DOI 10.1016/j.engappai.2005.06.007
Shukla Amit K., 2018, International Journal of Embedded and Real-Time Communication Systems, V9, P66, DOI 10.4018/IJERTCS.2018010104
Stergiopoulou E, 2009, ENG APPL ARTIF INTEL, V22, P1141, DOI 10.1016/j.engappai.2009.03.008
Suryadevara NK, 2013, ENG APPL ARTIF INTEL, V26, P2641, DOI 10.1016/j.engappai.2013.08.004
Taormina R, 2012, ENG APPL ARTIF INTEL, V25, P1670, DOI 10.1016/j.engappai.2012.02.009
Ündey C, 2003, ENG APPL ARTIF INTEL, V16, P555, DOI 10.1016/j.engappai.2003.09.003
Uraikul V, 2007, ENG APPL ARTIF INTEL, V20, P115, DOI 10.1016/j.engappai.2006.07.002
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Van Fleet DD, 2006, J MANAGE, V32, P477, DOI 10.1177/0149206306286715
Weber P, 2012, ENG APPL ARTIF INTEL, V25, P671, DOI 10.1016/j.engappai.2010.06.002
Wu DR, 2006, ENG APPL ARTIF INTEL, V19, P829, DOI 10.1016/j.engappai.2005.12.011
Xiang W, 2008, ENG APPL ARTIF INTEL, V21, P73, DOI 10.1016/j.engappai.2007.03.008
Yataganbaba A, 2016, RENEW SUST ENERG REV, V59, P206, DOI 10.1016/j.rser.2015.12.357
Yeung LHW, 2004, ENG APPL ARTIF INTEL, V17, P169, DOI 10.1016/j.engappai.2004.02.003
Yildiz AR, 2013, ENG APPL ARTIF INTEL, V26, P327, DOI 10.1016/j.engappai.2012.05.014
Yu D., 2017, INFORM SCI
Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732
Zavadskas EK, 2014, ARCH CIV MECH ENG, V14, P519, DOI 10.1016/j.acme.2014.05.008
Zouggari A, 2012, ENG APPL ARTIF INTEL, V25, P507, DOI 10.1016/j.engappai.2011.10.012
NR 71
TC 86
Z9 88
U1 14
U2 110
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0952-1976
EI 1873-6769
J9 ENG APPL ARTIF INTEL
JI Eng. Appl. Artif. Intell.
PD OCT
PY 2019
VL 85
BP 517
EP 532
DI 10.1016/j.engappai.2019.06.010
PG 16
WC Automation & Control Systems; Computer Science, Artificial Intelligence;
Engineering, Multidisciplinary; Engineering, Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Automation & Control Systems; Computer Science; Engineering
GA JC0UC
UT WOS:000488994300042
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Gordon, SM
Edwards, JL
AF Gordon, Sue Marquis
Edwards, Jennifer Lynne
TI Enhancing student research through a virtual participatory action
research project: Student benefits and administrative challenges
SO ACTION RESEARCH
LA English
DT Article
DE doctoral studies; mentoring; online learning; participatory action
research; project administration; virtual collaboration
ID TEACHERS
AB Can graduate students in a distance learning environment gain meaningful research experience through a virtual participatory action research project? The answer is an emphatic 'yes.' The purpose of this article is twofold: to demonstrate how and to what extent graduate students can gain research experience through participation with alumni and faculty in an action research project, and to examine administrative issues arising from adhering to the democratic participatory action research process under virtual constraints. Project success is determined through documents produced by participants in the Faculty-Student Mentoring Project and from two focus group evaluations held via conference calls. The data demonstrated that the students and alumni increased their research skills, used their skills and knowledge in other courses and their dissertations, presented, and published. The university gained valuable information. The democratic participatory aspect of action research and the virtual environment created administrative challenges such as scheduling and workload issues. Recommendations include: screening volunteers to determine their levels of expertise and commitment; providing time for participants to get to know each other and the technology at the outset of the project; setting expectations for participation; sharing the project management; and anticipating more time for virtual than face-to-face research.
C1 [Gordon, Sue Marquis; Edwards, Jennifer Lynne] Fielding Grad Univ, Sch Educ Leadership, Santa Barbara, CA USA.
[Gordon, Sue Marquis; Edwards, Jennifer Lynne] Fielding Grad Univ, Change Doctoral Program, Santa Barbara, CA USA.
RP Edwards, JL (corresponding author), 3774 Mountainside Trail, Evergreen, CO 80439 USA.
EM jedwards@fielding.edu
RI Edwards, Jennifer/IAN-1163-2023
CR Aune B., 2002, Journal of Technology and Teacher Education, V10, P461
Burke L.A., 2002, College Teaching, V50, P129
Chen F., 2004, THESIS
Davis B. H., 2002, Journal of Technology and Teacher Education, V10, P101
Edwards J.L., 2006, ANN M AM ED RES ASS
Elmes-Cranhall J., 1992, ANN M SPEECH COMM AS
Fazio X, 2009, SCHOOL SCI MATH, V109, P95, DOI 10.1111/j.1949-8594.2009.tb17942.x
Glanz J., 1998, Action research: An educational leader's guide to school improvement
Gordon S. M., 2005, CREATING SUCCESSFUL, P9
Guteng SI, 2000, AM ANN DEAF, V145, P411, DOI 10.1353/aad.2012.0163
Hager M. J., 2003, ANN M AM ED RES ASS
Holly M., 2005, ACTION RES TEACHERS, V2nd
Hutchinson K. L., 1992, ANN M SPEECH COMM AS
Knowles MalcolmS., 1978, The Adult Learner: A Neglected Species, VSecond
Leech NL, 2007, SCHOOL PSYCHOL QUART, V22, P557, DOI 10.1037/1045-3830.22.4.557
Levin M., 2001, Handbook of action research: Participative inquiry and practice, P103
Lewin K, 1946, J SOC ISSUES, V2, P34, DOI 10.1111/j.1540-4560.1946.tb02295.x
Ludema, 2001, HDB ACTION RES, P189
Ludwig GS, 1999, J GEOGR, V98, P149, DOI 10.1080/00221349908978873
Matzat U, 2010, AM BEHAV SCI, V53, P1170, DOI 10.1177/0002764209356249
Maxwell L., 1995, ANN C INT COMM ASS I
McAllister D. A., 2006, CULMINATING EXPERI 1, V8
McCracken H., 2004, Online Journal of Distance Learning Administration, V7
McEwen L., 2002, THESIS
Palloff RenaM., 2010, HDB ONLINE LEARNING, P370
Pauleen DJ, 2003, J MANAGE INFORM SYST, V20, P227, DOI 10.1080/07421222.2003.11045771
Reason P., 2001, HDB ACTION RES PARTI
Reeves R. C., 2002, CURRENT PERSPECTIVES, P135
Saurino D. R., 2003, ANN M AM ED RES ASS
Scott D., 1997, 3 AUSTR WORLDWIDEWEB
Servan MJ, 2009, EDUC ACTION RES, V17, P373, DOI 10.1080/09650790903093466
Shapiro J.J., 2010, Handbook of Online Learning, P57
Smallwood S., 2004, CHRONICLE HIGHE 0101
Staniforth D., 2003, Educational Action Research, V11, P79
Stringer E., 1999, ACTION RES-LONDON, V2nd
Vygotsky LS, 1978, Mind in Society: Development of Higher Psychological Processes, DOI [DOI 10.2307/J.CTVJF9VZ4, 10.2307/j.ctvjf9vz4]
Walsh L., 2010, Collaborative working in higher education, P144
Yukawa J., 2005, THESIS
NR 38
TC 4
Z9 8
U1 1
U2 23
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1476-7503
EI 1741-2617
J9 ACTION RES-LONDON
JI Action Res.
PD JUN
PY 2012
VL 10
IS 2
BP 205
EP 220
DI 10.1177/1476750312439900
PG 16
WC Management; Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Business & Economics; Social Sciences - Other Topics
GA 951CJ
UT WOS:000304698000007
DA 2024-09-05
ER
PT J
AU Hancock, GRA
Troscianko, J
AF Hancock, George R. A.
Troscianko, Jolyon
TI CamoEvo: An open access toolbox for artificial camouflage evolution
experiments
SO EVOLUTION
LA English
DT Article
DE CamoEvo; camouflage; evolution; genetic algorithms; optimization;
selection
ID GENETIC ALGORITHMS; SELECTION; ECOLOGY
AB Camouflage research has long shaped our understanding of evolution by natural selection, and elucidating the mechanisms by which camouflage operates remains a key question in visual ecology. However, the vast diversity of color patterns found in animals and their backgrounds, combined with the scope for complex interactions with receiver vision, presents a fundamental challenge for investigating optimal camouflage strategies. Genetic algorithms (GAs) have provided a potential method for accounting for these interactions, but with limited accessibility. Here, we present CamoEvo, an open-access toolbox for investigating camouflage pattern optimization by using tailored GAs, animal and egg maculation theory, and artificial predation experiments. This system allows for camouflage evolution within the span of just 10-30 generations (similar to 1-2 min per generation), producing patterns that are both significantly harder to detect and that are optimized to their background. CamoEvo was built in ImageJ to allow for integration with an array of existing open access camouflage analysis tools. We provide guides for editing and adjusting the predation experiment and GA as well as an example experiment. The speed and flexibility of this toolbox makes it adaptable for a wide range of computer-based phenotype optimization experiments.
C1 [Hancock, George R. A.; Troscianko, Jolyon] Univ Exeter, Ctr Ecol & Conservat, Penryn TR10 9FE, England.
C3 University of Exeter
RP Hancock, GRA (corresponding author), Univ Exeter, Ctr Ecol & Conservat, Penryn TR10 9FE, England.
EM ghancockzoology@gmail.com
RI Hancock, George/HJH-0619-2022
OI Troscianko, Jolyon/0000-0001-9071-2594; Hancock,
George/0000-0002-8771-545X
FU NERC GW4+ studentship [NE/S007504/1]; NERC Independent Research
Fellowship [NE/P018084/1]; NERC [NE/P018084/1] Funding Source: UKRI
FX We are thankful to our two anonymous reviewers for their thorough
feedback and recommendations on the manuscript. GRAH was funded by an
NERC GW4+ studentship NE/S007504/1. JT was funded by an NERC Independent
Research Fellowship NE/P018084/1.
CR Allen WL, 2011, P ROY SOC B-BIOL SCI, V278, P1373, DOI 10.1098/rspb.2010.1734
ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x
Barnett JB, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0128
Bond AB, 2002, NATURE, V415, P609, DOI 10.1038/415609a
Bonney R, 2014, SCIENCE, V343, P1436, DOI 10.1126/science.1251554
Canniff L, 2018, JOVE-J VIS EXP, DOI 10.3791/57512
Caro Tim, 2005, pXIII
Caves EM, 2018, METHODS ECOL EVOL, V9, P793, DOI 10.1111/2041-210X.12911
Cavill R, 2005, GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, P1753
Chipperfield A.J., 1995, MATLAB GENETIC ALGOR
Cook LM, 2013, HEREDITY, V110, P207, DOI 10.1038/hdy.2012.92
Cuthill IC, 2019, J ZOOL, V308, P75, DOI 10.1111/jzo.12682
Cuthill IC, 2005, NATURE, V434, P72, DOI 10.1038/nature03312
Derigs U., 1999, META HEURISTICS ADV, P231
Egan J, 2016, SCI REP-UK, V6, DOI 10.1038/srep38274
ENDLER JA, 1981, BIOL J LINN SOC, V16, P25, DOI 10.1111/j.1095-8312.1981.tb01840.x
Fennell JG, 2021, EVOLUTION, V75, P614, DOI 10.1111/evo.14162
Fortin FA, 2012, J MACH LEARN RES, V13, P2171
Hamblin S, 2013, METHODS ECOL EVOL, V4, P184, DOI 10.1111/2041-210X.12000
Hanley D, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0087
Holland J., ADAPTATION NATURAL A
HOLLAND JH, 1992, SCI AM, V267, P66, DOI 10.1038/scientificamerican0792-66
Jebari K., 2013, Int. J. Emerg. Sci., V3, P333, DOI DOI 10.14355/ijes.2013.0305.05
Junger M., 1995, Handb. Oper. Res. Manag. Sci., V7, P225, DOI [10.1016/S0927-0507(05)80121-5, DOI 10.1016/S0927-0507(05)80121-5]
Katoch S, 2021, MULTIMED TOOLS APPL, V80, P8091, DOI 10.1007/s11042-020-10139-6
Kim J, 2019, GENET PROGRAM EVOL M, V20, P139, DOI 10.1007/s10710-018-9341-4
Kjernsmo K, 2020, CURR BIOL, V30, P551, DOI 10.1016/j.cub.2019.12.013
Kondo S, 2002, GENES CELLS, V7, P535, DOI 10.1046/j.1365-2443.2002.00543.x
Kumar R, 2012, ADV INTEL SOFT COMPU, V132, P39
LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x
Larghi O.P., 1988, P407
LAWRENCE ES, 1983, OIKOS, V40, P313, DOI 10.2307/3544597
Libelli S. M., 2000, Soft Computing, V4, P76, DOI 10.1007/s005000000042
MCCAMY CS, 1992, COLOR RES APPL, V17, P142, DOI 10.1002/col.5080170211
Merilaita S, 2003, EVOLUTION, V57, P1248
Michalis C, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0709
Mitchell M., 1998, An Introduction to Genetic Algorithms
Niu Y, 2021, CURR BIOL, V31, P446, DOI 10.1016/j.cub.2020.10.078
Orteu A, 2020, NAT REV GENET, V21, P461, DOI 10.1038/s41576-020-0234-z
PEARSON JE, 1993, SCIENCE, V261, P189, DOI 10.1126/science.261.5118.189
Pike TW, 2015, AVIAN BIOL RES, V8, P237, DOI 10.3184/175815515X14455297177037
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Ramírez-Delgado VH, 2020, ECOL EVOL, V10, P1401, DOI 10.1002/ece3.5995
REEVES CR, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P92
Renoult JP, 2017, BIOL REV, V92, P292, DOI 10.1111/brv.12230
Reynolds C, 2011, ARTIF LIFE, V17, P123, DOI 10.1162/artl_a_00023
Rowland HM, 2008, P ROY SOC B-BIOL SCI, V275, P2539, DOI 10.1098/rspb.2008.0812
San-Jose LM, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0337
Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089
Sharman RJ, 2019, I-PERCEPTION, V10, DOI 10.1177/2041669519877435
Sherratt TN, 2007, OIKOS, V116, P449, DOI 10.1111/j.0030-1299.2007.15521.x
Soni Nitasha., 2014, INT J COMPUTER SCI I, V5, P4519
Stevens M, 2009, PHILOS T R SOC B, V364, P423, DOI 10.1098/rstb.2008.0217
Talas L, 2020, METHODS ECOL EVOL, V11, P240, DOI 10.1111/2041-210X.13334
Thayer AH, 1918, SCI MON, V7, P481
Troscianko J, 2021, COMMUN BIOL, V4, DOI 10.1038/s42003-021-01817-8
Troscianko J, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.1386
Troscianko J, 2017, BEHAV ECOL, V28, P556, DOI 10.1093/beheco/arw185
Troscianko J, 2017, BMC EVOL BIOL, V17, DOI 10.1186/s12862-016-0854-2
Troscianko J, 2016, SCI REP-UK, V6, DOI 10.1038/srep19966
Troscianko J, 2015, METHODS ECOL EVOL, V6, P1320, DOI 10.1111/2041-210X.12439
Tsai MW, 2015, MATH PROBL ENG, V2015, DOI 10.1155/2015/906305
van den Berg C, 2020, METHODS ECOL EVOL, V11, P316, DOI 10.1111/2041-210X.13328
WHITLEY D, 1994, STAT COMPUT, V4, P65, DOI 10.1007/BF00175354
Wisocki PA, 2020, NAT ECOL EVOL, V4, P148, DOI 10.1038/s41559-019-1003-2
Yang XS, 2014, NATURE-INSPIRED OPTIMIZATION ALGORITHMS, P197, DOI 10.1016/B978-0-12-416743-8.00014-2
Zhai W, 1996, MATH COMPUT MODEL, V23, P131, DOI 10.1016/0895-7177(96)00068-4
NR 67
TC 3
Z9 3
U1 0
U2 14
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0014-3820
EI 1558-5646
J9 EVOLUTION
JI Evolution
PD MAY
PY 2022
VL 76
IS 5
BP 870
EP 882
DI 10.1111/evo.14476
EA MAR 2022
PG 13
WC Ecology; Evolutionary Biology; Genetics & Heredity
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Evolutionary Biology; Genetics &
Heredity
GA 1I8GU
UT WOS:000775653100001
PM 35313008
OA Green Published
DA 2024-09-05
ER
PT J
AU da Silva, MAD
Pereira, AC
Walmsley, AD
AF Dias da Silva, Marco Antonio
Pereira, Andresa Costa
Walmsley, Anthony Damien
TI The availability of open-access videos offered by dental schools
SO EUROPEAN JOURNAL OF DENTAL EDUCATION
LA English
DT Article
DE complimentary content; online learning; teaching
ID STUDENTS PERCEPTIONS; TECHNOLOGY; INFORMATION; ONLINE; CLIPS
AB Background The Internet has become an established learning tool in dental education where students can access online videos on a range of dental subjects. However, finding reliable peer-reviewed content is not straightforward. Aim To evaluate the video content offered by UK and Republic of Ireland (RoI) Dental Schools on their YouTube channels and public websites. Methods Free videos offered on UK and RoI Dental schools websites and YouTube channels were watched and set according to its purpose, as educational or non-educational. The number of views, length, category and date of publication were analysed. Results A total of 627 videos offered by dental courses were evaluated. Videos were available on 83% of the websites, but only 9% was educational content. Dental courses YouTube channels received more than 2.3 million views, but less than 5% of the material offered is educational. Instructional videos found on the websites (3.2 min) were shorter than those found on YouTube (8.5 min) (P = .03). The majority of the videos, provided by Universities, were not educational and focused on promoting the dental courses. Most websites have demonstrated a password-protected area where quality content may be offered. Conclusion Students wishing to watch instructional videos will find limited educational content provided by UK and RoI dental courses. Therefore, they are likely to access course-related material elsewhere on the Internet that may not be necessarily peer-reviewed.
C1 [Dias da Silva, Marco Antonio; Pereira, Andresa Costa; Walmsley, Anthony Damien] Univ Birmingham, Birmingham, W Midlands, England.
[Dias da Silva, Marco Antonio; Pereira, Andresa Costa] Univ Fed Campina Grande, Patos de Minas, Brazil.
C3 University of Birmingham; Universidade Federal de Campina Grande
RP da Silva, MAD (corresponding author), Univ Birmingham, Birmingham, W Midlands, England.
EM M.a.DiasdaSilva@bham.ac.uk
RI da Silva, Marco Antonio Dias/K-4730-2012
OI da Silva, Marco Antonio Dias/0000-0002-2774-4769; Walmsley, Anthony
Damien/0000-0003-4970-0764; Pereira, Andresa Costa/0000-0002-3654-6123
FU H2020 Marie Sklodowska-Curie Actions [748609]; Marie Curie Actions
(MSCA) [748609] Funding Source: Marie Curie Actions (MSCA)
FX H2020 Marie Sklodowska-Curie Actions, Grant/Award Number: 748609
CR Ahmad M, 2016, J DENT EDUC, V80, P128
Asiry MA, 2017, SAUDI DENT J, V29, P167, DOI 10.1016/j.sdentj.2017.03.005
Biddix JP, 2011, INTERNET HIGH EDUC, V14, P175, DOI 10.1016/j.iheduc.2011.01.003
Cox S, 2016, EUR J DENT EDUC, V20, P135, DOI 10.1111/eje.12151
Currie L, 2010, NEW LIB WORLD, V111, P113, DOI 10.1108/03074801011027628
da Silva MAD, 2019, BRIT DENT J, V226, P437, DOI 10.1038/s41415-019-0046-8
Davies BR, 2017, EUR J DENT EDUC, V21, P33, DOI 10.1111/eje.12175
Dhulipalla R, 2015, J INT SOC PREV COMMU, V5, P499, DOI 10.4103/2231-0762.170526
Eachempati P., 2016, Indian Journal of Pharmacology, V48, P25
Egge V, 2018, LIB GUIDES EVALUATIN
Hamdan AA, 2019, EUR J DENT EDUC, V23, P175, DOI 10.1111/eje.12417
Hegarty E, 2017, J ORTHOD, V44, P90, DOI 10.1080/14653125.2017.1319010
Johnston ANB, 2018, NURSE EDUC PRACT, V31, P151, DOI 10.1016/j.nepr.2018.06.002
K Anbarasi, 2016, Korean J Med Educ, V28, P333
Kenny KP, 2018, EUR J DENT EDUC, V22, pE57, DOI 10.1111/eje.12257
Li Tse Yan, 2015, JMIR Med Educ, V1, pe1
Miller CJ, 2015, J DENT EDUC, V79, P1452
Mohammadzadeh Akhlaghi Nahid, 2017, Iran Endod J, V12, P201, DOI 10.22037/iej.2017.39
Naseri Mandana, 2016, Iran Endod J, V11, P329
Nason K, 2016, INT ENDOD J, V49, P1194, DOI 10.1111/iej.12575
Parsons A, 2017, RES POST-COMPULS EDU, V22, P271, DOI 10.1080/13596748.2017.1314684
Schönwetter DJ, 2016, J DENT EDUC, V80, P141
Shah R, 2009, EUR J DENT EDUC, V13, P223, DOI 10.1111/j.1600-0579.2009.00579.x
Shigli K, 2017, J CLIN DIAGN RES, V11, pZC1, DOI 10.7860/JCDR/2017/27710.10301
Smith W, 2012, EUR J DENT EDUC, V16, P91, DOI 10.1111/j.1600-0579.2011.00724.x
Zandona AF, 2016, J DENT EDUC, V80, P1468
NR 26
TC 6
Z9 6
U1 1
U2 5
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1396-5883
EI 1600-0579
J9 EUR J DENT EDUC
JI Eur. J. Dent. Educ.
PD NOV
PY 2019
VL 23
IS 4
BP 522
EP 526
DI 10.1111/eje.12461
EA SEP 2019
PG 5
WC Dentistry, Oral Surgery & Medicine; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Dentistry, Oral Surgery & Medicine; Education & Educational Research
GA JH4DN
UT WOS:000484611100001
PM 31429507
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Yang, C
Huang, C
AF Yang, Chao
Huang, Cui
TI Quantitative mapping of the evolution of AI policy distribution, targets
and focuses over three decades in China
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Artificial intelligence (AI); China's policy; Bibliometrics; Policy
evolution; Policy documents
ID ARTIFICIAL-INTELLIGENCE; SCIENCE; CHALLENGES; FRAMEWORK
AB Artificial intelligence (AI) technology policy plays a critical role to steer its applications to broadly relevant endpoints, and contributes to critical governance of innovations by governments, industry and society at large. In this paper, we adopt a bibliometrics-based research framework to characterize the development and evolution of China's AI policy. The framework integrates bibliometric methods, semantic analysis, and network analysis for identifying core policy elements and their evolution in the AI policy process. Specifically, we first collect China's central-level AI-related policies and identify four stages of its evolution based on policy-issuing frequency, policy trends, and core policy issuing time nodes. We then identify the core policies, core institutions, and core policy targets in each stage. Then we explore the policy issuing trends, policy distribution changes, and evolution of policy targets. Finally, patterns and characteristics of the policy process are identified, and trends are predicted. We used the PKULaw database to collect the policy-relevant data on AI in China, and the time frame is from 1990 to 2019. Our findings and the reported quantitative map might usefully inform AI policy in China and elsewhere around the world. It could also help broader stakeholder engagement in policy discussions on AI technology, industry and society.
C1 [Yang, Chao; Huang, Cui] Zhejiang Univ, Sch Publ Affairs, Dept Informat Resource Management, Hangzhou 310058, Peoples R China.
C3 Zhejiang University
RP Huang, C (corresponding author), Zhejiang Univ, Sch Publ Affairs, Dept Informat Resource Management, Hangzhou 310058, Peoples R China.
EM huangcui@zju.edu.cn
OI Yang, Chao/0000-0002-0607-9552
FU Innovative Research Group Project of the National Natural Science
Foundation of China [71721002]; Excellent Youth Project of the National
Natural Science Foundation of China [71722002]; key Project of Humanties
and Social Sciences in Ministry of Education of China [18JZD056]; Youth
Foundation Project of Humanities and Social Sciences in Ministry of
Education of China [18YJC870022]; General Program of National Natural
Science Foundation of China [71673164]
FX We acknowledge support from the Innovative Research Group Project of the
National Natural Science Foundation of China (Grant No. 71721002) ,
Excellent Youth Project of the National Natural Science Foundation of
China (Grant No. 71722002) , The key Project of Humanties and Social
Sciences in Ministry of Education of China (Grant No. 18JZD056) , Youth
Foundation Project of Humanities and Social Sciences in Ministry of
Education of China (Grant No. 18YJC870022) , and the General Program of
National Natural Science Foundation of China (Grant No. 71673164) . The
findings and observations contained in this paper are those of the
authors and do not necessarily reflect the views of the supporters.
CR Al-Sayed R, 2019, PROCEEDINGS OF THE EUROPEAN CONFERENCE ON THE IMPACT OF ARTIFICIAL INTELLIGENCE AND ROBOTICS (ECIAIR 2019), P12, DOI 10.34190/ECIAIR.19.079
[Anonymous], 2017, IND STRATEGY BUILDIN
[Anonymous], 2016, CIV LAW RUL ROB
[Anonymous], 2005, Models and methods in social network analysis
Arenal A, 2020, TELECOMMUN POLICY, V44, DOI 10.1016/j.telpol.2020.101960
Bhatia A, 2006, DISCOURSE SOC, V17, P173, DOI 10.1177/0957926506058057
Biegel Bryan, 2016, NATL ARTIFICIAL INTE
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bornmann L, 2016, SCIENTOMETRICS, V109, P1477, DOI 10.1007/s11192-016-2115-y
Cath C, 2018, SCI ENG ETHICS, V24, P505, DOI 10.1007/s11948-017-9901-7
Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021
Gao J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236574
Hall W., 2017, Independent Report
Holdren J., 2016, NSTC Report
House of Commons Science and Technology Committee, 2016, ROBOTICS ARTIFICIAL
Huang C, 2015, SCIENTOMETRICS, V102, P1521, DOI 10.1007/s11192-014-1406-4
Huang C, 2014, SCIENTOMETRICS, V99, P689, DOI 10.1007/s11192-013-1199-x
Japan, 2019, AI STRAT 2019
Jordana J, 2005, INFORM SOC, V21, P341, DOI 10.1080/01972240500253509
Knox J, 2020, LEARN MEDIA TECHNOL, V45, P298, DOI 10.1080/17439884.2020.1754236
Lane D., 2014, RAS 2020 ROBOTICS AU
Laver M, 2003, AM POLIT SCI REV, V97, P311
McWilliam W, 2015, LAND USE POLICY, V47, P459, DOI 10.1016/j.landusepol.2015.05.006
O'Leary R., 2009, COLLABORATIVE PUBLIC
Provan KG, 2008, J PUBL ADM RES THEOR, V18, P229, DOI 10.1093/jopart/mum015
Ritter A, 2013, INT J DRUG POLICY, V24, P30, DOI 10.1016/j.drugpo.2012.02.005
Roberts I, 2006, INJURY PREV, V12, P320, DOI 10.1136/ip.2006.012849
SABATIER PA, 1988, POLICY SCI, V21, P129, DOI 10.1007/BF00136406
Sabatier Paul A., 2007, THEORIES POLICY PROC, P189, DOI DOI 10.4324/9780367274689-7
Saidi T, 2017, HEALTH RES POLICY SY, V15, DOI 10.1186/s12961-017-0203-y
Sarewitz D, 2015, NATURE, V522, P412, DOI 10.1038/522413a
Sarewitz D, 2011, NATURE, V478, P7, DOI 10.1038/478007a
Sclove R., 2020, J DGOV, P5
Sclove RichardE., 1995, DEMOCRACY TECHNOLOGY
SPARC, 2016, ROB 2020 MULT ROADM
Sun TQ, 2019, GOV INFORM Q, V36, P368, DOI 10.1016/j.giq.2018.09.008
Syam N, 2018, IND MARKET MANAG, V69, P135, DOI 10.1016/j.indmarman.2017.12.019
The State Council of the People's Republic of China, 2017, DEV PLAN NEW GEN ART
van Dijk T.A, 1997, DISCOURSE SOCIAL INT, V2
Wu F, 2020, NAT MACH INTELL, V2, P312, DOI 10.1038/s42256-020-0183-4
Yang C, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120116
NR 41
TC 33
Z9 35
U1 48
U2 287
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD JAN
PY 2022
VL 174
AR 121188
DI 10.1016/j.techfore.2021.121188
EA SEP 2021
PG 17
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA UY7AO
UT WOS:000701672300009
OA hybrid
DA 2024-09-05
ER
PT C
AU Teodorescu, HN
AF Teodorescu, Horia-Nicolai
BE Burileanu, C
Teodorescu, HN
TI How Central European countries fare in speech and language technology
research?
SO 2019 10TH INTERNATIONAL CONFERENCE ON SPEECH TECHNOLOGY AND
HUMAN-COMPUTER DIALOGUE (SPED)
LA English
DT Proceedings Paper
CT 10th International Conference on Speech Technology and Human-Computer
Dialogue (SpeD)
CY OCT 10-12, 2019
CL Timisoara, ROMANIA
DE NLP; speech technology; speech analysis; text analysis; artificial
intelligence; country performance; education; research; scientometry
ID FUZZY-LOGIC; SCIENCE
AB Speech and language technologies are parts of AI family of tools and methods that already have an economic impact; they are assumed to extend that impact in the near future. We analyze the contributions of several average and small central European countries to these fields in terms of papers published. We compare these contributions with those of France and Germany and establish relationships between the efficiency measured by scientific publications between subfields of speech and language technologies. We find that Czech Republic is more efficient in terms of papers per inhabitant even than Germany. Czech Republic excels too when the number of papers is divided by the population of tertiary education. Also, we find interesting strong and low correlations between subdomains.
C1 [Teodorescu, Horia-Nicolai] Romanian Acad, Iasi Branch, Inst Comp Sci, Bd Carol I 8, Iasi, Romania.
[Teodorescu, Horia-Nicolai] Gheorghe Asachi Tech Univ Iasi, 67 Bd D Mangeron, Iasi 70050, Romania.
C3 Romanian Academy of Sciences; GH Asachi Technical University
RP Teodorescu, HN (corresponding author), Romanian Acad, Iasi Branch, Inst Comp Sci, Bd Carol I 8, Iasi, Romania.; Teodorescu, HN (corresponding author), Gheorghe Asachi Tech Univ Iasi, 67 Bd D Mangeron, Iasi 70050, Romania.
RI Teodorescu, Horia-Nicolai L/C-3287-2008
CR [Anonymous], Population, Total
Gaskó N, 2016, SCIENTOMETRICS, V108, P613, DOI 10.1007/s11192-016-1968-4
Ives B, 2015, HIGH EDUC RES DEV, V34, P926, DOI 10.1080/07294360.2015.1011094
Korytkowski P, 2019, SCIENTOMETRICS, V119, P1519, DOI 10.1007/s11192-019-03092-1
Miroiu A, 2015, QUAL HIGH EDUC, V21, P189, DOI 10.1080/13538322.2015.1051794
Teodorescu H.N., 2019, ROMANIAN INFORM
Teodorescu H.N., 2018, ROMANIAN INFORM
Teodorescu H.N.L., 2018, P C 10 INT C EL COMP
Teodorescu H.N.L., CONTRIBUTIONS UNPUB
Teodorescu HNL, 2015, INT J COMPUT COMMUN, V10, P865
TEODORESCU HN, 1989, P IEEE EMBS, V11, P1618, DOI 10.1109/IEMBS.1989.96371
Teodorescu HN, 1998, IEEE ENG MED BIOL, V17, P34
TEODORESCU HN, 1993, FUZZY SET SYST, V59, P320
Teodorescu HN, 2018, ROM J INF SCI TECH, V21, P324
Vladutz G.E., 1989, STATUS CIVIL SCI E E
NR 15
TC 0
Z9 0
U1 1
U2 3
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-0984-8
PY 2019
DI 10.1109/sped.2019.8906637
PG 6
WC Computer Science, Artificial Intelligence; Computer Science,
Cybernetics; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BQ0ED
UT WOS:000571718700034
DA 2024-09-05
ER
PT C
AU Huang, R
Liu, XF
Zheng, X
AF Huang, Rui
Liu, Xiaofang
Zheng, Xiang
BE LuevanosRojas, A
Ilewicz, G
Jakobczak, DJ
Weller, K
TI Research on Performance Quality Prediction Method of Missile Based on
Grey Theory and SVM
SO PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON MODELLING,
SIMULATION AND APPLIED MATHEMATICS (MSAM 2018)
SE Advances in Intelligent Systems Research
LA English
DT Proceedings Paper
CT 3rd International Conference on Modelling, Simulation and Applied
Mathematics (MSAM)
CY JUL 22-23, 2018
CL Shanghai, PEOPLES R CHINA
DE grey theory; linear weighted; SVM; quality prediction
AB Accurately grasping the performance quality status of the missile is a prerequisite for ensuring the completion of the operational task. At present, in a real missile launch exercise, in order to ensure the success of the launch, the method of fist passing the test and then launching is usually adopted. This method can hardly meet the large-scale, high-volume and high-efficiency operational requirements in the future battlefield. In order to meet the future operational requirements, based on the past test data of the performance parameters of the missile and the information of daily management and stored, combined the information of actual missile launch results, this paper uses grey theory, linear weighted comprehensive evaluation and SVM to accurately predict the performance quality status of the missile, and provide technical support for operational decision-making.
C1 [Huang, Rui; Liu, Xiaofang; Zheng, Xiang] High Tech Inst Xian, Dept Management, Xian 710025, Shaanxi, Peoples R China.
C3 Rocket Force University of Engineering
RP Huang, R (corresponding author), High Tech Inst Xian, Dept Management, Xian 710025, Shaanxi, Peoples R China.
RI huang, rui/JYP-3898-2024
CR [Anonymous], 2012, APPL SCI TECHNOL
[Anonymous], GREY SYSTEMS THEORY
Deng Ju-long, 2002, FDN GREYTHEORY
Guo Chao, 2014, CHINA SAFETY SCI J, V24
[刘道文 Liu Daowen], 2012, [计算机应用与软件, Computer Applications and Software], V29, P185
Wang W., 2014, SUPPORT VECTOR MACHI
NR 6
TC 1
Z9 1
U1 0
U2 4
PU ATLANTIS PRESS
PI PARIS
PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE
SN 1951-6851
BN 978-94-6252-566-5
J9 ADV INTEL SYS RES
PY 2018
VL 160
BP 140
EP 145
PG 6
WC Mathematics, Applied
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Mathematics
GA BL7JB
UT WOS:000455077200031
DA 2024-09-05
ER
PT J
AU Piryani, R
Madhavi, D
Singh, VK
AF Piryani, R.
Madhavi, D.
Singh, V. K.
TI Analytical mapping of opinion mining and sentiment analysis research
during 2000-2015
SO INFORMATION PROCESSING & MANAGEMENT
LA English
DT Article
DE Affective computing; Opinion mining; Scientometrics; Sentiment analysis
ID ONLINE PRODUCT REVIEWS; SOCIAL MEDIA; SEMANTIC ORIENTATION;
FEATURE-EXTRACTION; POLARITY CLASSIFICATION; EMOTION RECOGNITION;
CHINESE REVIEWS; EXPRESSION RECOGNITION; CUSTOMER SATISFACTION;
UNSUPERVISED APPROACH
AB The new transformed read-write Web has resulted in a rapid growth of user generated content on the Web resulting into a huge volume of unstructured data. A substantial part of this data is unstructured text such as reviews and blogs. Opinion mining and sentiment analysis (OMSA) as a research discipline has emerged during last 15 years and provides a methodology to computationally process the unstructured data mainly to extract opinions and identify their sentiments. The relatively new but fast growing research discipline has changed a lot during these years. This paper presents a scientometric analysis of research work done on OMSA during 2000-2016. For the scientometric mapping, research publications indexed in Web of Science (WoS) database are used as input data. The publication data is analyzed computationally to identify year-wise publication pattern, rate of growth of publications, types of authorship of papers on OMSA, collaboration patterns in publications on OMSA, most productive countries, institutions, journals and authors, citation patterns and an year-wise citation reference network, and theme density plots and keyword bursts in OMSA publications during the period. A somewhat detailed manual analysis of the data is also performed to identify popular approaches (machine learning and lexicon-based) used in these publications, levels (document, sentence or aspect-level) of sentiment analysis work done and major application areas of OMSA. The paper presents a detailed analytical mapping of OMSA research work and charts the progress of discipline on various useful parameters. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Piryani, R.] South Asian Univ, Dept Comp Sci, New Delhi, India.
[Madhavi, D.] APJAKTU, Dept Comp Sci & Engn, Lucknow, Uttar Pradesh, India.
[Singh, V. K.] Banaras Hindu Univ, Dept Comp Sci, Varanasi, Uttar Pradesh, India.
C3 South Asian University (SAU); Dr. A.P.J. Abdul Kalam Technical
University (AKTU); Banaras Hindu University (BHU)
RP Singh, VK (corresponding author), Banaras Hindu Univ, Dept Comp Sci, Varanasi, Uttar Pradesh, India.
EM rajesh.piryani@gmail.com; madhavidevaraj@gmail.com; vivekks12@gmail.com
RI Piryani, Rajesh/AAF-8148-2020; Singh, Vivek Kumar/O-5699-2019;
Freienberg, Selina/AAV-8829-2021
OI Piryani, Rajesh/0000-0003-3374-0657; Singh, Vivek
Kumar/0000-0002-7348-6545;
FU Department of Science and Technology, Government of India
[INT/MEXICO/P-13/2012]; University Grants Commission India [41 -624/
2012(SR)]
FX This work was supported by research grants from Department of Science
and Technology, Government of India (Grant: INT/MEXICO/P-13/2012) and
University Grants Commission India (Grant: F. No. 41 -624/ 2012(SR)).
CR Abadi MK, 2015, IEEE T AFFECT COMPUT, V6, P209, DOI 10.1109/TAFFC.2015.2392932
Abbasi Ahmed, 2008, ACM Transactions on Information Systems, V26, DOI 10.1145/1361684.1361685
Abbasi A, 2008, IEEE T KNOWL DATA EN, V20, P1168, DOI 10.1109/TKDE.2008.51
Abbasi A, 2011, IEEE T KNOWL DATA EN, V23, P447, DOI 10.1109/TKDE.2010.110
Abdul-Mageed M, 2014, COMPUT SPEECH LANG, V28, P20, DOI 10.1016/j.csl.2013.03.001
Abrahams AS, 2012, DECIS SUPPORT SYST, V54, P87, DOI 10.1016/j.dss.2012.04.005
Agarwal B, 2015, COGN COMPUT, V7, P487, DOI 10.1007/s12559-014-9316-6
Agarwal B, 2015, COMPUT INTEL NEUROSC, V2015, DOI 10.1155/2015/715730
Agarwal B, 2014, IETE J RES, V60, P414, DOI 10.1080/03772063.2014.963172
Agrafioti F, 2012, IEEE T AFFECT COMPUT, V3, P102, DOI 10.1109/T-AFFC.2011.28
Aguwa CC, 2012, EXPERT SYST APPL, V39, P10112, DOI 10.1016/j.eswa.2012.02.071
Al-Rowaily K, 2015, DIGIT INVEST, V14, P53, DOI 10.1016/j.diin.2015.07.006
Al-Subaihin AS, 2014, SCI WORLD J, DOI 10.1155/2014/631394
Alemi F, 2014, QUAL MANAG HEALTH CA, V23, P10, DOI 10.1097/QMH.0000000000000014
Ali F, 2015, APPL INTELL, V42, P481, DOI 10.1007/s10489-014-0609-y
Alonso-Martín F, 2013, SENSORS-BASEL, V13, P15549, DOI 10.3390/s131115549
[Anonymous], J INFORM SCI
[Anonymous], J INFORM SCI
[Anonymous], 2015, SOCIAL NETWORK ANAL, DOI [DOI 10.1109/wcsp.2015.7340981, DOI 10.1117/1.JPE.5.057612]
[Anonymous], 2013, J ARTIFICIAL INTELLI
Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370
Arias M, 2013, ACM T INTEL SYST TEC, V5, DOI 10.1145/2542182.2542190
Arndt S, 2014, IEEE J-STSP, V8, P366, DOI 10.1109/JSTSP.2014.2313026
Bae Y, 2012, J AM SOC INF SCI TEC, V63, P2521, DOI 10.1002/asi.22768
Bagheri A, 2014, J INF SCI, V40, P621, DOI 10.1177/0165551514538744
Bagheri A, 2013, KNOWL-BASED SYST, V52, P201, DOI 10.1016/j.knosys.2013.08.011
Bai X, 2011, DECIS SUPPORT SYST, V50, P732, DOI 10.1016/j.dss.2010.08.024
Bailenson JN, 2008, INT J HUM-COMPUT ST, V66, P303, DOI 10.1016/j.ijhcs.2007.10.011
Bakhtiyari K, 2015, NEURAL COMPUT APPL, V26, P1277, DOI 10.1007/s00521-014-1790-y
Bakhtiyari K, 2014, NEURAL COMPUT APPL, V25, P1467, DOI 10.1007/s00521-014-1637-6
Balahur A, 2015, INFORM PROCESS MANAG, V51, P547, DOI 10.1016/j.ipm.2014.10.004
Balahur A, 2015, INFORM PROCESS MANAG, V51, P428, DOI 10.1016/j.ipm.2015.05.005
Balahur A, 2014, COMPUT SPEECH LANG, V28, P56, DOI 10.1016/j.csl.2013.03.004
Balahur A, 2012, DECIS SUPPORT SYST, V53, P742, DOI 10.1016/j.dss.2012.05.024
Balahur A, 2012, J INTELL INF SYST, V39, P375, DOI 10.1007/s10844-011-0194-z
Gómez AB, 2015, INT J INTERACT MULTI, V3, P25, DOI 10.9781/ijimai.2015.333
Basiri ME, 2014, J INF SCI, V40, P313, DOI 10.1177/0165551514522734
Baveye Y, 2015, IEEE T AFFECT COMPUT, V6, P43, DOI 10.1109/TAFFC.2015.2396531
Becker-Asano C, 2010, AUTON AGENT MULTI-AG, V20, P32, DOI 10.1007/s10458-009-9094-9
Ben Moussa M, 2013, COMPUT ANIMAT VIRT W, V24, P327, DOI 10.1002/cav.1515
Biyani P, 2014, KNOWL-BASED SYST, V69, P170, DOI 10.1016/j.knosys.2014.04.048
Boehner K, 2007, INT J HUM-COMPUT ST, V65, P275, DOI 10.1016/j.ijhcs.2006.11.016
Bohlouli M, 2015, J INF SCI, V41, P779, DOI 10.1177/0165551515602846
Boiy E, 2009, INFORM RETRIEVAL, V12, P526, DOI 10.1007/s10791-008-9070-z
Boldrini E, 2012, DATA MIN KNOWL DISC, V25, P603, DOI 10.1007/s10618-012-0259-9
Bollegala D, 2013, IEEE T KNOWL DATA EN, V25, P1719, DOI 10.1109/TKDE.2012.103
Bosco C, 2013, IEEE INTELL SYST, V28, P55, DOI 10.1109/MIS.2013.28
Bravo-Marquez F, 2014, KNOWL-BASED SYST, V69, P86, DOI 10.1016/j.knosys.2014.05.016
Breazeal C, 2002, AUTON ROBOT, V12, P83, DOI 10.1023/A:1013215010749
Broekens J, 2010, J AMB INTEL SMART EN, V2, P121, DOI 10.3233/AIS-2010-0065
Callejas Z, 2008, SPEECH COMMUN, V50, P416, DOI 10.1016/j.specom.2008.01.001
Calvo RA, 2013, COMPUT INTELL-US, V29, P527, DOI 10.1111/j.1467-8640.2012.00456.x
Cambria E, 2015, COGN COMPUT, V7, P183, DOI 10.1007/s12559-015-9325-0
Cambria E, 2014, IEEE INTELL SYST, V29, P44, DOI 10.1109/MIS.2012.118
Cambria E, 2013, BIOL INSPIR COGN ARC, V4, P41, DOI 10.1016/j.bica.2013.02.003
Cambria E, 2013, IEEE INTELL SYST, V28, P15, DOI 10.1109/MIS.2013.30
Cambria E, 2012, COGN COMPUT, V4, P477, DOI 10.1007/s12559-012-9145-4
Cambria E, 2012, EXPERT SYST APPL, V39, P10533, DOI 10.1016/j.eswa.2012.02.120
Cambria E, 2012, MULTIMED TOOLS APPL, V59, P557, DOI 10.1007/s11042-011-0815-0
Cañamero L, 2005, NEURAL NETWORKS, V18, P445, DOI 10.1016/j.neunet.2005.03.003
Canhoto AI, 2015, J MARKET MANAG-UK, V31, P1141, DOI 10.1080/0267257X.2015.1047466
Cao J., 2014, SCI WORLD J, V2014
Cao JP, 2014, IEEE T INTELL TRANSP, V15, P844, DOI 10.1109/TITS.2013.2291241
Cao Y., 2015, INT J ADV COMPUTER S, V6, DOI 10.14569/ijacsa.2015.060215
Cardie C., 2014, SENTIMENT ANAL OPINI
Carrillo-de-Albornoz J, 2013, J AM SOC INF SCI TEC, V64, P1618, DOI 10.1002/asi.22859
Casaburi L, 2015, J VISUAL LANG COMPUT, V27, P19, DOI 10.1016/j.jvlc.2015.01.001
Casoto P, 2008, J INTERNET TECHNOL, V9, P365
Ceron A, 2015, SOC SCI COMPUT REV, V33, P3, DOI 10.1177/0894439314521983
Ceron A, 2014, NEW MEDIA SOC, V16, P340, DOI 10.1177/1461444813480466
Chamlertwat W, 2012, J UNIVERS COMPUT SCI, V18, P973
Che WX, 2015, IEEE-ACM T AUDIO SPE, V23, P2111, DOI 10.1109/TASLP.2015.2443982
Chelaru S, 2013, ACM T WEB, V8, DOI 10.1145/2535525
Chen CC, 2012, IEEE T KNOWL DATA EN, V24, P1963, DOI 10.1109/TKDE.2011.177
Chen CL, 2013, J INF SCI ENG, V29, P743
Chen J, 2015, J AMB INTEL HUM COMP, V6, P541, DOI 10.1007/s12652-014-0237-8
Chen L, 2014, KNOWL-BASED SYST, V64, P44, DOI 10.1016/j.knosys.2014.03.020
Chen L, 2008, INTERACT COMPUT, V20, P17, DOI 10.1016/j.intcom.2007.06.003
Chen LS, 2011, J INFORMETR, V5, P313, DOI 10.1016/j.joi.2011.01.003
Chen ZY, 2015, J ASSOC INF SCI TECH, V66, P1913, DOI 10.1002/asi.23301
Cheng VC, 2014, IEEE T KNOWL DATA EN, V26, P2002, DOI 10.1109/TKDE.2013.175
Chenlo JM, 2014, INFORM SCIENCES, V280, P275, DOI 10.1016/j.ins.2014.05.009
Cheong M, 2011, INFORM SYST FRONT, V13, P45, DOI 10.1007/s10796-010-9273-x
Chew SW, 2012, IEEE T SYST MAN CY B, V42, P1006, DOI 10.1109/TSMCB.2012.2194485
Chiu C, 2015, CURR ISSUES TOUR, V18, P477, DOI 10.1080/13683500.2013.841656
Chmiel A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022207
Chmiel A, 2011, PHYSICA A, V390, P2936, DOI 10.1016/j.physa.2011.03.040
Cho H, 2014, KNOWL-BASED SYST, V71, P61, DOI 10.1016/j.knosys.2014.06.001
Choi D, 2014, COMPUT SCI INF SYST, V11, P157, DOI 10.2298/CSIS130205001C
Chung WY, 2012, EXPERT SYST APPL, V39, P11870, DOI 10.1016/j.eswa.2012.02.059
Clavel C, 2015, REV COGN LINGUIST, V13, P461, DOI 10.1075/rcl.13.2.08cla
Clavel C, 2013, LANG RESOUR EVAL, V47, P1089, DOI 10.1007/s10579-013-9224-5
Cruz FL, 2014, EXPERT SYST APPL, V41, P5984, DOI 10.1016/j.eswa.2014.04.005
Cruz FL, 2012, AI COMMUN, V25, P369, DOI 10.3233/AIC-2012-0519
Cruz FL, 2012, INFORM PROCESS MANAG, V48, P271, DOI 10.1016/j.ipm.2011.08.003
da Silva NFF, 2014, DECIS SUPPORT SYST, V66, P170, DOI 10.1016/j.dss.2014.07.003
Dai WH, 2015, INFORM MANAGE-AMSTER, V52, P777, DOI 10.1016/j.im.2015.02.003
Dang Y, 2010, IEEE INTELL SYST, V25, P46, DOI 10.1109/MIS.2009.105
Dayem AA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121610
Salas-Zárate MD, 2014, J INF SCI, V40, P749, DOI 10.1177/0165551514547842
Denecke K, 2015, ARTIF INTELL MED, V64, P17, DOI 10.1016/j.artmed.2015.03.006
Deng HB, 2014, STAT ANAL DATA MIN, V7, P308, DOI 10.1002/sam.11223
Deng JJ, 2015, ACM T INTERACT INTEL, V5, DOI 10.1145/2723575
Deng ZH, 2014, EXPERT SYST APPL, V41, P3506, DOI 10.1016/j.eswa.2013.10.056
Devitt A, 2013, LANG RESOUR EVAL, V47, P475, DOI 10.1007/s10579-013-9223-6
Dey L, 2009, INT J DOC ANAL RECOG, V12, P205, DOI 10.1007/s10032-009-0090-z
Di Caro L, 2013, COMPUT STAND INTER, V35, P442, DOI 10.1016/j.csi.2012.10.005
Dragoni M, 2015, COGN COMPUT, V7, P186, DOI 10.1007/s12559-014-9308-6
Driscoll B, 2015, CONTINUUM-J MEDIA CU, V29, P861, DOI 10.1080/10304312.2015.1040729
Du WF, 2010, EXPERT SYST APPL, V37, P5094, DOI 10.1016/j.eswa.2009.12.088
Dueñas-Fernández R, 2014, INFORM FUSION, V20, P129, DOI 10.1016/j.inffus.2014.01.006
Duric A, 2012, DECIS SUPPORT SYST, V53, P704, DOI 10.1016/j.dss.2012.05.023
Duwairi RM, 2015, J INTELL FUZZY SYST, V29, P107, DOI 10.3233/IFS-151574
Duwairi R, 2014, J INF SCI, V40, P501, DOI 10.1177/0165551514534143
Earnshaw RA, 2012, PHYSICA A, V391, P2401, DOI 10.1016/j.physa.2011.11.060
Efron M, 2006, KNOWL INF SYST, V9, P492, DOI 10.1007/s10115-005-0214-9
Eirinaki M, 2012, J COMPUT SYST SCI, V78, P1175, DOI 10.1016/j.jcss.2011.10.007
el Kaliouby R, 2006, ANN NY ACAD SCI, V1093, P228, DOI 10.1196/annals.1382.016
Fan TK, 2010, KNOWL INF SYST, V23, P321, DOI 10.1007/s10115-009-0222-2
Fang F, 2014, INFORMS J COMPUT, V26, P586, DOI 10.1287/ijoc.2013.0585
Fang L, 2015, J COMPUT SCI TECH-CH, V30, P903, DOI 10.1007/s11390-015-1569-3
Fang Q, 2015, IEEE T MULTIMEDIA, V17, P2281, DOI 10.1109/TMM.2015.2491019
Fattah MA, 2015, NEUROCOMPUTING, V167, P434, DOI 10.1016/j.neucom.2015.04.051
Feidakis M, 2013, J UNIVERS COMPUT SCI, V19, P1638
Feng S, 2011, COMPUT MATH APPL, V62, P2770, DOI 10.1016/j.camwa.2011.07.043
Feng S, 2011, KNOWL INF SYST, V27, P281, DOI 10.1007/s10115-010-0325-9
Fersini E, 2014, DECIS SUPPORT SYST, V68, P26, DOI 10.1016/j.dss.2014.10.004
Fink CR, 2011, J HOPKINS APL TECH D, V30, P22
Frank MR, 2013, SCI REP-UK, V3, DOI 10.1038/srep02625
Fu TJ, 2012, ACM T INFORM SYST, V30, DOI 10.1145/2382438.2382443
Fu XH, 2013, KNOWL-BASED SYST, V37, P186, DOI 10.1016/j.knosys.2012.08.003
Gangemi A, 2014, IEEE COMPUT INTELL M, V9, P20, DOI 10.1109/MCI.2013.2291688
García-Cumbreras MA, 2013, EXPERT SYST APPL, V40, P6758, DOI 10.1016/j.eswa.2013.06.049
García-Moya L, 2013, INFORM SYST FRONT, V15, P331, DOI 10.1007/s10796-012-9400-y
Ghazi D, 2014, COMPUT SPEECH LANG, V28, P76, DOI 10.1016/j.csl.2013.04.009
Ghiassi M, 2013, EXPERT SYST APPL, V40, P6266, DOI 10.1016/j.eswa.2013.05.057
Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188
Gîfu D, 2014, INT J COMPUT COMMUN, V9, P694, DOI 10.15837/ijccc.2014.6.1474
Godnov U., 2014, ROM J POLIT SCI, V14, P4
Gong SP, 2015, COMPUT INTEL NEUROSC, V2015, DOI 10.1155/2015/506905
González-Bailón S, 2015, ANN AM ACAD POLIT SS, V659, P95, DOI 10.1177/0002716215569192
Grassi M, 2011, COGN COMPUT, V3, P480, DOI 10.1007/s12559-011-9101-8
Greaves F, 2013, J MED INTERNET RES, V15, DOI 10.2196/jmir.2721
Groshek J, 2013, SOC SCI COMPUT REV, V31, P563, DOI 10.1177/0894439313490401
Grosse K, 2015, AI COMMUN, V28, P387, DOI 10.3233/AIC-140627
Gunter B, 2014, INT J MARKET RES, V56, P231, DOI 10.2501/IJMR-2014-014
Guo JL, 2013, CYBERNET SYST, V44, P379, DOI 10.1080/01969722.2013.789649
Habernal I, 2014, INFORM PROCESS MANAG, V50, P693, DOI 10.1016/j.ipm.2014.05.001
Hajek P, 2014, TECHNOL ECON DEV ECO, V20, P721, DOI 10.3846/20294913.2014.979456
Hajmohammadi MS, 2015, INFORM SCIENCES, V317, P67, DOI 10.1016/j.ins.2015.04.003
Hajmohammadi MS, 2014, ENG APPL ARTIF INTEL, V36, P195, DOI 10.1016/j.engappai.2014.07.020
Hajmohammadi MS, 2014, INFORM PROCESS MANAG, V50, P718, DOI 10.1016/j.ipm.2014.03.005
Hao MC, 2013, INFORM VISUAL, V12, P273, DOI 10.1177/1473871613481691
He YL, 2013, ACM T INTEL SYST TEC, V5, DOI 10.1145/2542182.2542188
He YL, 2011, INFORM PROCESS MANAG, V47, P606, DOI 10.1016/j.ipm.2010.11.003
Hidalgo-Muñoz AR, 2013, BIOMED SIGNAL PROCES, V8, P945, DOI 10.1016/j.bspc.2013.09.006
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hogenboom A, 2015, COMMUN ACM, V58, P69, DOI 10.1145/2699418
Hogenboom A, 2014, DECIS SUPPORT SYST, V62, P43, DOI 10.1016/j.dss.2014.03.004
Homburg C, 2015, J MARKETING RES, V52, P629, DOI 10.1509/jmr.11.0448
Hopper AM, 2015, J HEALTH ORGAN MANAG, V29, P221, DOI 10.1108/JHOM-12-2011-0129
Hosseini SA, 2010, J BIOL SYST, V18, P101, DOI 10.1142/S0218339010003640
Htay SS, 2013, SCI WORLD J, DOI 10.1155/2013/394758
Hu Y, 2005, LECT NOTES ARTIF INT, V3651, P1, DOI 10.1007/11562214_1
Hu Y, 2011, COMPUT SPEECH LANG, V25, P386, DOI 10.1016/j.csl.2010.07.004
Huang S., 2015, COMPUTATIONAL INTELL, V2015
Huang S, 2014, KNOWL-BASED SYST, V56, P191, DOI 10.1016/j.knosys.2013.11.009
Huang WT, 2008, APPL MATH COMPUT, V205, P668, DOI 10.1016/j.amc.2008.01.038
Hudlicka E, 2003, INT J HUM-COMPUT ST, V59, P1, DOI 10.1016/S1071-5819(03)00047-8
Hudlicka E, 2002, USER MODEL USER-ADAP, V12, P1, DOI 10.1023/A:1013337427135
Hung CL, 2013, IEEE INTELL SYST, V28, P47, DOI 10.1109/MIS.2013.1
Iftene A, 2012, INT J COMPUT COMMUN, V7, P857
Ishizuka M, 2006, NEW GENERAT COMPUT, V24, P97, DOI 10.1007/BF03037295
Jang HJ, 2013, EXPERT SYST APPL, V40, P7492, DOI 10.1016/j.eswa.2013.06.069
Jeong H, 2011, ETRI J, V33, P720, DOI 10.4218/etrij.11.0110.0627
Ji X, 2015, SOC NETW ANAL MIN, V5, DOI 10.1007/s13278-015-0253-5
Jiang F, 2015, J COMPUT SCI TECH-CH, V30, P1120, DOI 10.1007/s11390-015-1587-1
Jiang PL, 2012, CHINA COMMUN, V9, P28
Jing RZ, 2015, J ORG COMP ELECT COM, V25, P316, DOI 10.1080/10919392.2015.1058125
Johansson R, 2013, COMPUT LINGUIST, V39, DOI 10.1162/COLI_a_00141
Jurado F, 2015, J SYST SOFTWARE, V104, P82, DOI 10.1016/j.jss.2015.02.055
Justo R, 2014, KNOWL-BASED SYST, V69, P124, DOI 10.1016/j.knosys.2014.05.021
Kaiser C, 2011, KNOWL-BASED SYST, V24, P824, DOI 10.1016/j.knosys.2011.03.004
Kalaivani P, 2015, SCI PROGRAMMING-NETH, V2015, DOI 10.1155/2015/961454
Kalampokis E, 2013, INTERNET RES, V23, P544, DOI 10.1108/IntR-06-2012-0114
Kanayama H, 2012, NAT LANG ENG, V18, P83, DOI 10.1017/S1351324911000131
Kang D, 2014, EXPERT SYST APPL, V41, P1041, DOI 10.1016/j.eswa.2013.07.101
Kang H, 2012, EXPERT SYST APPL, V39, P6000, DOI 10.1016/j.eswa.2011.11.107
Kapur A, 2005, LECT NOTES COMPUT SC, V3784, P1
Katsimerou C, 2015, IEEE T AFFECT COMPUT, V6, P179, DOI 10.1109/TAFFC.2015.2397454
Katz G, 2015, KNOWL-BASED SYST, V84, P162, DOI 10.1016/j.knosys.2015.04.009
Kennedy A, 2006, COMPUT INTELL-US, V22, P110, DOI 10.1111/j.1467-8640.2006.00277.x
Kergosien E, 2014, INT J GEOGR INF SCI, V28, P739, DOI 10.1080/13658816.2013.872823
Khairnar J, 2015, INT J COMPUT SCI NET, V15, P90
Khan FH, 2014, DECIS SUPPORT SYST, V57, P245, DOI 10.1016/j.dss.2013.09.004
Khan FA, 2016, J NANOMATER, V2016, P1, DOI 10.1155/2016/8026843
Khoo CSG, 2012, ONLINE INFORM REV, V36, P858, DOI 10.1108/14684521211287936
Kim J, 2015, J KOREA TRADE, V19, P63
Kim K, 2014, PATTERN RECOGN, V47, P758, DOI 10.1016/j.patcog.2013.07.022
Kim Y., 2015, KSII T INTERNET INFO, V9
Kiritchenko S, 2014, J ARTIF INTELL RES, V50, P723, DOI 10.1613/jair.4272
Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314
Kobayashi N, 2006, LECT NOTES ARTIF INT, V4012, P470
Koelstra S, 2012, IEEE T AFFECT COMPUT, V3, P18, DOI 10.1109/T-AFFC.2011.15
Kolodyazhniy V, 2011, PSYCHOPHYSIOLOGY, V48, P908, DOI 10.1111/j.1469-8986.2010.01170.x
Kontopoulos E, 2013, EXPERT SYST APPL, V40, P4065, DOI 10.1016/j.eswa.2013.01.001
Koppel M, 2006, COMPUT INTELL-US, V22, P100, DOI 10.1111/j.1467-8640.2006.00276.x
Korenek P, 2014, WORLD WIDE WEB, V17, P847, DOI 10.1007/s11280-013-0247-z
Kranjc J, 2015, INFORM PROCESS MANAG, V51, P187, DOI 10.1016/j.ipm.2014.04.001
Krcadinac U, 2013, IEEE T AFFECT COMPUT, V4, P312, DOI 10.1109/T-AFFC.2013.18
Ku LW, 2007, J AM SOC INF SCI TEC, V58, P1838, DOI 10.1002/asi.20630
Landowska A, 2014, METROL MEAS SYST, V21, P381, DOI 10.2478/mms-2014-0049
Lau RYK, 2014, DECIS SUPPORT SYST, V65, P80, DOI 10.1016/j.dss.2014.05.005
Lau RYK, 2012, MIS QUART, V36, P1239
Lee AJT, 2014, DECIS SUPPORT SYST, V59, P250, DOI 10.1016/j.dss.2013.12.004
Lee CC, 2014, COMPUT SPEECH LANG, V28, P518, DOI 10.1016/j.csl.2012.06.006
Lee KJ, 2013, ETRI J, V35, P838, DOI 10.4218/etrij.13.0113.0093
Lek HH, 2014, INT J ARTIF INTELL T, V23, DOI 10.1142/S0218213014600197
Leong CK, 2012, EXPERT SYST APPL, V39, P2584, DOI 10.1016/j.eswa.2011.08.113
Leony D, 2013, J UNIVERS COMPUT SCI, V19, P2075
Leung CWK, 2011, WORLD WIDE WEB, V14, P187, DOI 10.1007/s11280-011-0117-5
Li D, 2010, INTELL DATA ANAL, V14, P31, DOI 10.3233/IDA-2010-0407
Li G, 2014, APPL INTELL, V40, P441, DOI 10.1007/s10489-013-0463-3
Li G, 2012, J INF SCI, V38, P127, DOI 10.1177/0165551511432670
Li N, 2010, DECIS SUPPORT SYST, V48, P354, DOI 10.1016/j.dss.2009.09.003
Li N, 2009, HUM ECOL RISK ASSESS, V15, P227, DOI 10.1080/10807030902761056
Li Q, 2014, INFORM SCIENCES, V278, P826, DOI 10.1016/j.ins.2014.03.096
Li Q, 2014, DECIS SUPPORT SYST, V61, P93, DOI 10.1016/j.dss.2014.01.013
Li ST, 2013, KNOWL-BASED SYST, V39, P23, DOI 10.1016/j.knosys.2012.10.005
Li SS, 2011, J COMPUT SCI TECH-CH, V26, P25, DOI 10.1007/s11390-011-9412-y
Li SK, 2012, J COMPUT SCI TECH-CH, V27, P635, DOI 10.1007/s11390-012-1250-z
Li WY, 2014, EXPERT SYST APPL, V41, P1742, DOI 10.1016/j.eswa.2013.08.073
Li XD, 2014, KNOWL-BASED SYST, V69, P14, DOI 10.1016/j.knosys.2014.04.022
Li XM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124672
Li Y, 2013, IEICE T INF SYST, VE96D, P2805, DOI 10.1587/transinf.E96.D.2805
Li YJ, 2011, INT J INF TECH DECIS, V10, P1097, DOI 10.1142/S0219622011004725
Li YM, 2014, INT J ELECTRON COMM, V19, P99, DOI 10.2753/JEC1086-4415190103
Liao WH, 2006, INT J HUM-COMPUT ST, V64, P847, DOI 10.1016/j.ijhcs.2006.04.001
Liau BY, 2014, IND MANAGE DATA SYST, V114, P1344, DOI 10.1108/IMDS-07-2014-0225
Lin CH, 2012, IEEE T KNOWL DATA EN, V24, P1134, DOI 10.1109/TKDE.2011.48
Lin HCK, 2014, BEHAV INFORM TECHNOL, V33, P104, DOI 10.1080/0144929X.2012.702356
Lin KC, 2013, LIBR HI TECH, V31, P294, DOI 10.1108/07378831311329068
Lindgren S, 2012, EUR J COMMUN, V27, P152, DOI 10.1177/0267323112443461
Lisetti C, 2003, INT J HUM-COMPUT ST, V59, P245, DOI 10.1016/S1071-5819(03)00051-X
Liu HY, 2013, ELECTRON COMMER R A, V12, P14, DOI 10.1016/j.elerap.2012.05.002
Liu J, 2005, LECT NOTES COMPUT SC, V3646, P216
Liu LZ, 2014, CHINA COMMUN, V11, P154, DOI 10.1109/CC.2014.6825268
Liu S., 2015, COMPUTATIONAL LINGUI
Liu SH, 2015, IEEE T KNOWL DATA EN, V27, P1696, DOI 10.1109/TKDE.2014.2382600
Liu SM, 2015, EXPERT SYST APPL, V42, P1083, DOI 10.1016/j.eswa.2014.08.036
Liu Y, 2013, WORLD WIDE WEB, V16, P477, DOI 10.1007/s11280-012-0179-z
Livingstone SR, 2007, DIGIT CREAT, V18, P43, DOI 10.1080/14626260701253606
Loia V, 2014, KNOWL-BASED SYST, V58, P75, DOI 10.1016/j.knosys.2013.09.024
Barbosa RRL, 2015, ASLIB J INFORM MANAG, V67, P392, DOI 10.1108/AJIM-01-2015-0004
Lu L, 2006, IEEE T AUDIO SPEECH, V14, P5, DOI 10.1109/TSA.2005.860344
Mahapatra M., 1985, Proceedings of the 15th IASLIC Conference, Bangalore, P61
Maks I, 2012, DECIS SUPPORT SYST, V53, P680, DOI 10.1016/j.dss.2012.05.025
Malandrakis N, 2013, IEEE T AUDIO SPEECH, V21, P2379, DOI 10.1109/TASL.2013.2277931
Malouf R, 2008, INTERNET RES, V18, P177, DOI 10.1108/10662240810862239
Man Y, 2014, J INTELL FUZZY SYST, V27, P2055, DOI 10.3233/IFS-141171
Mantovani F, 2006, CYBERPSYCHOL BEHAV, V9, P698
Mao X, 2012, IEICE T INF SYST, VE95D, P2741, DOI 10.1587/transinf.E95.D.2741
Mao X, 2010, IEICE T INF SYST, VE93D, P1282, DOI 10.1587/transinf.E93.D.1282
Marrese-Taylor E, 2014, EXPERT SYST APPL, V41, P7764, DOI 10.1016/j.eswa.2014.05.045
Martín-Valdivia MT, 2012, J UNIVERS COMPUT SCI, V18, P2319
Martínez-Cámara E, 2014, J INF SCI, V40, P538, DOI 10.1177/0165551514535710
Martínez-Cámara E, 2014, NAT LANG ENG, V20, P1, DOI 10.1017/S1351324912000332
Matsumoto S, 2005, LECT NOTES ARTIF INT, V3518, P301
Menendez C, 2014, INT J UNCERTAIN FUZZ, V22, P677, DOI 10.1142/S0218488514500342
Miao QL, 2010, J AM SOC INF SCI TEC, V61, P2288, DOI 10.1002/asi.21400
Mihalcea R, 2006, COMPUT INTELL-US, V22, P126, DOI 10.1111/j.1467-8640.2006.00278.x
Mishra MV, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068563
Mohammad SM, 2015, COMPUT INTELL-US, V31, P301, DOI 10.1111/coin.12024
Mohammad SM, 2013, COMPUT INTELL-US, V29, P436, DOI 10.1111/j.1467-8640.2012.00460.x
Mohammad SM, 2012, DECIS SUPPORT SYST, V53, P730, DOI 10.1016/j.dss.2012.05.030
Montejo-Ráez A, 2014, KNOWL-BASED SYST, V69, P134, DOI 10.1016/j.knosys.2014.05.007
Montejo-Ráez A, 2014, COMPUT SPEECH LANG, V28, P93, DOI 10.1016/j.csl.2013.04.001
Montoyo A, 2012, DECIS SUPPORT SYST, V53, P675, DOI 10.1016/j.dss.2012.05.022
Moraes R, 2013, EXPERT SYST APPL, V40, P621, DOI 10.1016/j.eswa.2012.07.059
Moreo A, 2012, EXPERT SYST APPL, V39, P9166, DOI 10.1016/j.eswa.2012.02.057
Morris ME, 2012, PROF PSYCHOL-RES PR, V43, P622, DOI 10.1037/a0029041
Morris RR, 2014, J POSIT PSYCHOL, V9, P509, DOI 10.1080/17439760.2014.913671
Mostafa MM, 2013, EXPERT SYST APPL, V40, P4241, DOI 10.1016/j.eswa.2013.01.019
Na J. C., 2009, J INFORM SCI
Na JC, 2005, LIBR COLLECT ACQUIS, V29, P180, DOI 10.1016/j.lcats.2005.04.007
Nahin AFMNH, 2014, BEHAV INFORM TECHNOL, V33, P987, DOI 10.1080/0144929X.2014.907343
Neviarouskaya A, 2015, COMPUT INTELL-US, V31, P256, DOI 10.1111/coin.12020
Neviarouskaya A, 2011, IEEE T AFFECT COMPUT, V2, P22, DOI 10.1109/T-AFFC.2011.1
Neviarouskaya A, 2011, NAT LANG ENG, V17, P95, DOI 10.1017/S1351324910000239
Noferesti S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124993
Novielli N, 2013, IEEE T AFFECT COMPUT, V4, P439, DOI 10.1109/T-AFFC.2013.20
Ogawa T, 2011, IEICE T INF SYST, VE94D, P578, DOI 10.1587/transinf.E94.D.578
Ojokoh BA, 2012, J WEB ENG, V11, P51
Oksanen A, 2015, J MED INTERNET RES, V17, DOI 10.2196/jmir.5007
Ortigosa A, 2014, COMPUT HUM BEHAV, V31, P527, DOI 10.1016/j.chb.2013.05.024
Ortigosa-Hernández J, 2012, NEUROCOMPUTING, V92, P98, DOI 10.1016/j.neucom.2012.01.030
Paltoglou G, 2012, ACM T INTEL SYST TEC, V3, DOI 10.1145/2337542.2337551
Paltoglou G, 2013, IEEE T AFFECT COMPUT, V4, P116, DOI 10.1109/T-AFFC.2012.36
Paltoglou G, 2013, IEEE T AFFECT COMPUT, V4, P106, DOI 10.1109/T-AFFC.2012.26
Pandarachalil R, 2015, COGN COMPUT, V7, P254, DOI 10.1007/s12559-014-9310-z
Pang B., 2006, Foundations and Trends in Information Retrieval, V1, P91, DOI DOI 10.1561/1500000011
Pantic M, 2003, P IEEE, V91, P1370, DOI 10.1109/JPROC.2003.817122
Park SJ, 2011, SOC SCI COMPUT REV, V29, P288, DOI 10.1177/0894439310382509
Pazienza M. T., 2011, ECECSR J, V3, P224
Peleja F, 2013, MULTIMEDIA SYST, V19, P543, DOI 10.1007/s00530-013-0310-8
Peñalver-Martinez I, 2014, EXPERT SYST APPL, V41, P5995, DOI 10.1016/j.eswa.2014.03.022
Perea-Ortega JM, 2013, J AM SOC INF SCI TEC, V64, P1864, DOI 10.1002/asi.22884
Petz G, 2014, INFORM PROCESS MANAG, V50, P899, DOI 10.1016/j.ipm.2014.07.005
Picard RW, 2009, PHILOS T R SOC B, V364, P3575, DOI 10.1098/rstb.2009.0143
Picard RW, 2001, IEEE T PATTERN ANAL, V23, P1175, DOI 10.1109/34.954607
Poria S, 2014, KNOWL-BASED SYST, V69, P108, DOI 10.1016/j.knosys.2014.06.011
Poria S, 2014, KNOWL-BASED SYST, V69, P45, DOI 10.1016/j.knosys.2014.05.005
Poria S, 2013, IEEE INTELL SYST, V28, P31, DOI 10.1109/MIS.2013.4
Prabhadevi S, 2015, J SCI IND RES INDIA, V74, P670
Prabowo R, 2009, J INFORMETR, V3, P143, DOI 10.1016/j.joi.2009.01.003
Ptaszynski M, 2014, COMPUT SPEECH LANG, V28, P38, DOI 10.1016/j.csl.2013.04.010
Ptaszynski M, 2013, EXPERT SYST APPL, V40, P168, DOI 10.1016/j.eswa.2012.07.025
Qazi A, 2014, SCI WORLD J, DOI 10.1155/2014/872929
Qi JY, 2015, INFORM MANAGE-AMSTER, V52, P859, DOI 10.1016/j.im.2015.06.002
Qiu GA, 2011, COMPUT LINGUIST, V37, P9, DOI 10.1162/coli_a_00034
Qiu GA, 2010, EXPERT SYST APPL, V37, P6182, DOI 10.1016/j.eswa.2010.02.109
Qiu LR, 2015, INT J GRID DISTRIB, V8, P165, DOI 10.14257/ijgdc.2015.8.5.16
Quan CQ, 2014, INFORM SCIENCES, V272, P16, DOI 10.1016/j.ins.2014.02.063
Rani P, 2007, ADV ENG INFORM, V21, P323, DOI 10.1016/j.aei.2006.11.009
Rao YH, 2014, NEURAL NETWORKS, V58, P29, DOI 10.1016/j.neunet.2014.05.007
Rao YH, 2014, WORLD WIDE WEB, V17, P723, DOI 10.1007/s11280-013-0221-9
Rao YH, 2014, INFORM SCIENCES, V266, P90, DOI 10.1016/j.ins.2013.12.059
Razavi AH, 2014, J INTELL INF SYST, V42, P393, DOI 10.1007/s10844-013-0273-4
Recupero DR, 2015, COGN COMPUT, V7, P211, DOI 10.1007/s12559-014-9302-z
Reisenzein R, 2013, IEEE T AFFECT COMPUT, V4, P246, DOI 10.1109/T-AFFC.2013.14
Ren FJ, 2012, INFORM TECHNOL MANAG, V13, P321, DOI 10.1007/s10799-012-0138-5
Ren Y, 2014, IEICE T INF SYST, VE97D, P790, DOI 10.1587/transinf.E97.D.790
Rill S, 2014, KNOWL-BASED SYST, V69, P24, DOI 10.1016/j.knosys.2014.05.008
Ring L, 2015, J MULTIMODAL USER IN, V9, P79, DOI 10.1007/s12193-014-0157-0
Robaldo L, 2013, COMPUT STAND INTER, V35, P454, DOI 10.1016/j.csi.2012.10.004
Rocha L, 2015, J WEB SEMANT, V34, P27, DOI 10.1016/j.websem.2015.05.006
Rodellar-Biarge V, 2015, EXPERT SYST, V32, P710, DOI 10.1111/exsy.12109
Rohrdantz C, 2012, ACM T INTEL SYST TEC, V3, DOI 10.1145/2089094.2089102
Rong WG, 2015, FRONT COMPUT SCI-CHI, V9, P171, DOI 10.1007/s11704-014-4085-7
Rong WG, 2014, J VISUAL LANG COMPUT, V25, P840, DOI 10.1016/j.jvlc.2014.09.005
Rosas VP, 2013, IEEE INTELL SYST, V28, P38, DOI 10.1109/MIS.2013.9
Saleh MR, 2011, EXPERT SYST APPL, V38, P14799, DOI 10.1016/j.eswa.2011.05.070
Rushdi-Saleh M, 2011, J AM SOC INF SCI TEC, V62, P2045, DOI 10.1002/asi.21598
Salter-Townshend M, 2014, ADV DATA ANAL CLASSI, V8, P85, DOI 10.1007/s11634-013-0150-6
Sarrafzadeh A, 2008, COMPUT HUM BEHAV, V24, P1342, DOI 10.1016/j.chb.2007.07.008
Sarvabhotla K, 2011, INFORM RETRIEVAL, V14, P337, DOI 10.1007/s10791-010-9161-5
Scheirer J, 2002, INTERACT COMPUT, V14, P93, DOI 10.1016/S0953-5438(01)00059-5
Schuller B, 2015, WIRES DATA MIN KNOWL, V5, P255, DOI 10.1002/widm.1159
Schuller B, 2011, IEEE T AFFECT COMPUT, V2, P192, DOI 10.1109/T-AFFC.2011.17
Schumaker RP, 2012, DECIS SUPPORT SYST, V53, P458, DOI 10.1016/j.dss.2012.03.001
Sengers P, 2008, PERS UBIQUIT COMPUT, V12, P347, DOI 10.1007/s00779-007-0161-4
Serrano-Guerrero J, 2015, INFORM SCIENCES, V311, P18, DOI 10.1016/j.ins.2015.03.040
Shah DV, 2015, ANN AM ACAD POLIT SS, V659, P225, DOI 10.1177/0002716215569220
Shen LP, 2008, INFORM SYST FRONT, V10, P461, DOI 10.1007/s10796-008-9104-5
Shi H. X., 2012, INFORM AN INT INTERD, V15
Shi HX, 2015, INTELL AUTOM SOFT CO, V21, P589, DOI 10.1080/10798587.2015.1012830
Shi W, 2015, J EXP THEOR ARTIF IN, V27, P423, DOI 10.1080/0952813X.2014.971443
Shi W, 2013, CONNECT SCI, V25, P161, DOI 10.1080/09540091.2013.851172
Si JF, 2014, WORLD WIDE WEB, V17, P1321, DOI 10.1007/s11280-013-0239-z
Smailovic J, 2014, INFORM SCIENCES, V285, P181, DOI 10.1016/j.ins.2014.04.034
Smeureanu I, 2011, AMFITEATRU ECON, V13, P28
Sobkowicz P, 2012, GOV INFORM Q, V29, P470, DOI 10.1016/j.giq.2012.06.005
Soleymani M, 2012, IEEE T AFFECT COMPUT, V3, P211, DOI 10.1109/T-AFFC.2011.37
Soleymani M, 2012, IEEE T AFFECT COMPUT, V3, P42, DOI 10.1109/T-AFFC.2011.25
Somprasertsri G, 2010, J UNIVERS COMPUT SCI, V16, P938
Stavrianou A, 2015, COMPUT INTELL-US, V31, P165, DOI 10.1111/coin.12021
Steinberger J, 2012, DECIS SUPPORT SYST, V53, P689, DOI 10.1016/j.dss.2012.05.029
Subrahmanian VS, 2008, IEEE INTELL SYST, V23, P43, DOI 10.1109/MIS.2008.57
Sun X, 2014, J INTELL FUZZY SYST, V27, P753, DOI 10.3233/IFS-131033
Sundberg J, 2011, IEEE T AFFECT COMPUT, V2, P162, DOI 10.1109/T-AFFC.2011.14
Syed AZ, 2014, ARTIF INTELL REV, V41, P535, DOI 10.1007/s10462-012-9322-6
Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049
Tan LKW, 2012, J COMPUT SCI TECH-CH, V27, P650, DOI 10.1007/s11390-012-1251-y
Tan SL, 2014, IEEE T KNOWL DATA EN, V26, P1158, DOI 10.1109/TKDE.2013.116
Tan SB, 2008, EXPERT SYST APPL, V34, P2622, DOI 10.1016/j.eswa.2007.05.028
Tan SB, 2011, EXPERT SYST APPL, V38, P12094, DOI 10.1016/j.eswa.2011.02.105
Tan SB, 2011, EXPERT SYST APPL, V38, P10524, DOI 10.1016/j.eswa.2011.02.106
Tang DY, 2015, IEEE-ACM T AUDIO SPE, V23, P1750, DOI 10.1109/TASLP.2015.2449071
Tang JY, 2013, TSINGHUA SCI TECHNOL, V18, P182, DOI 10.1109/TST.2013.6509101
Tawari A, 2013, IEEE T MULTIMEDIA, V15, P1543, DOI 10.1109/TMM.2013.2266635
Tawari A, 2010, IEEE T MULTIMEDIA, V12, P502, DOI 10.1109/TMM.2010.2058095
Thelwall M, 2013, J AM SOC INF SCI TEC, V64, P1608, DOI 10.1002/asi.22872
Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662
Nguyen TH, 2015, EXPERT SYST APPL, V42, P9603, DOI 10.1016/j.eswa.2015.07.052
Nguyen T, 2014, IEEE T AFFECT COMPUT, V5, P217, DOI 10.1109/TAFFC.2014.2315623
Trilla A, 2013, IEEE T AUDIO SPEECH, V21, P223, DOI 10.1109/TASL.2012.2217129
Tsai IH, 2010, J INTERNET TECHNOL, V11, P691
Tsytsarau M, 2012, DATA MIN KNOWL DISC, V24, P478, DOI 10.1007/s10618-011-0238-6
Tuch AN, 2011, IEEE T AFFECT COMPUT, V2, P230, DOI 10.1109/T-AFFC.2011.18
Tufis D, 2012, DECIS SUPPORT SYST, V53, P695, DOI 10.1016/j.dss.2012.05.026
Tumasjan A, 2011, SOC SCI COMPUT REV, V29, P402, DOI 10.1177/0894439310386557
Nguyen TT, 2014, ASLIB J INFORM MANAG, V66, P553, DOI 10.1108/AJIM-12-2013-0141
Valenza G, 2012, IEEE T AFFECT COMPUT, V3, P237, DOI 10.1109/T-AFFC.2011.30
Veltri G. A., 2012, PUBLIC UNDERSTANDING
Vilares D, 2015, J INF SCI, V41, P799, DOI 10.1177/0165551515598926
Vilares D, 2015, NAT LANG ENG, V21, P139, DOI 10.1017/S1351324913000181
Vinodhini G, 2014, MEASUREMENT, V55, P101, DOI 10.1016/j.measurement.2014.04.033
Vural AG, 2014, ACM T WEB, V8, DOI 10.1145/2644821
Wan XJ, 2011, COMPUT LINGUIST, V37, P587, DOI 10.1162/COLI_a_00061
Wang CB, 2013, IEEE T HUM-MACH SYST, V43, P620, DOI 10.1109/THMS.2013.2285047
Wang DD, 2013, EXPERT SYST APPL, V40, P27, DOI 10.1016/j.eswa.2012.05.070
Wang G, 2015, INFORM PROCESS MANAG, V51, P458, DOI 10.1016/j.ipm.2014.09.004
Wang G, 2014, DECIS SUPPORT SYST, V57, P77, DOI 10.1016/j.dss.2013.08.002
Wang GW, 2008, IEICE T INF SYST, VE91D, P1032, DOI 10.1093/ietisy/e91-d.4.1032
Wang HW, 2014, IND MANAGE DATA SYST, V114, P1301, DOI 10.1108/IMDS-05-2014-0159
Wang HW, 2014, J EXP THEOR ARTIF IN, V26, P13, DOI 10.1080/0952813X.2013.782352
Wang HW, 2013, J EXP THEOR ARTIF IN, V25, P425, DOI 10.1080/0952813X.2012.721139
Wang KX, 2015, IEEE T AFFECT COMPUT, V6, P69, DOI 10.1109/TAFFC.2015.2392101
Wang SG, 2013, KNOWL-BASED SYST, V37, P451, DOI 10.1016/j.knosys.2012.09.003
Wang SG, 2011, EXPERT SYST APPL, V38, P8696, DOI 10.1016/j.eswa.2011.01.077
Wang W., 2013, INT J DISTRIBUTED SE, V2013
Wang W, 2015, NEW REV HYPERMEDIA M, V21, P278, DOI 10.1080/13614568.2015.1074726
Wang W, 2015, J ENG TECHNOL SCI, V47, P104, DOI 10.5614/j.eng.technol.sci.2015.47.1.8
Wang X.D., 2014, J APPL MATH, V2014, P9, DOI DOI 10.1002/TEE.22017
Ward R, 2004, INTERACT COMPUT, V16, P879, DOI 10.1016/j.intcom.2004.08.002
Weichselbraun A, 2014, KNOWL-BASED SYST, V69, P78, DOI 10.1016/j.knosys.2014.04.039
Wen WH, 2010, SCI CHINA INFORM SCI, V53, P1774, DOI 10.1007/s11432-010-4001-1
Wiegand M, 2013, LANG RESOUR EVAL, V47, P1049, DOI 10.1007/s10579-013-9218-3
Wiley MT, 2014, J BIOMED INFORM, V49, P245, DOI 10.1016/j.jbi.2014.03.006
Wilhelm FH, 2007, PSYCHOPHYSIOLOGY, V44, pS110
Williams L, 2015, EXPERT SYST APPL, V42, P7375, DOI 10.1016/j.eswa.2015.05.039
Wilson T, 2009, COMPUT LINGUIST, V35, P399, DOI 10.1162/coli.08-012-R1-06-90
Wöllmer M, 2013, IEEE INTELL SYST, V28, P46, DOI 10.1109/MIS.2013.34
Wu CE, 2014, KNOWL-BASED SYST, V69, P100, DOI 10.1016/j.knosys.2014.04.043
Wu DD, 2014, IEEE T SYST MAN CY-S, V44, P1077, DOI 10.1109/TSMC.2013.2295353
Wu DR, 2010, IEEE T AFFECT COMPUT, V1, P109, DOI 10.1109/T-AFFC.2010.12
Wu HH, 2013, J INF SCI ENG, V29, P647
Wu JL, 2014, APPL SOFT COMPUT, V23, P39, DOI 10.1016/j.asoc.2014.06.010
Wu Q, 2011, EXPERT SYST APPL, V38, P14269, DOI 10.1016/j.eswa.2011.04.240
Wu W, 2013, IEEE T AUDIO SPEECH, V21, P260, DOI 10.1109/TASL.2012.2219525
Wu Y. F, 2009, INFORM AN INT INTERD, V12
Wu YC, 2014, IEEE T VIS COMPUT GR, V20, P1763, DOI 10.1109/TVCG.2014.2346920
Wu YC, 2010, IEEE T VIS COMPUT GR, V16, P1109, DOI 10.1109/TVCG.2010.183
Wu Y, 2013, CHINA COMMUN, V10, P125, DOI 10.1109/CC.2013.6633751
Wu ZY, 2014, NEURAL NETWORKS, V58, P14, DOI 10.1016/j.neunet.2014.05.019
Xia R, 2015, IEEE T KNOWL DATA EN, V27, P2120, DOI 10.1109/TKDE.2015.2407371
Xia R, 2013, IEEE INTELL SYST, V28, P10, DOI 10.1109/MIS.2013.27
Xia R, 2011, INFORM SCIENCES, V181, P1138, DOI 10.1016/j.ins.2010.11.023
Xiang N, 2011, COMPUT ANIMAT VIRT W, V22, P141, DOI 10.1002/cav.411
Xie SX, 2014, J CENT SOUTH UNIV, V21, P1376, DOI 10.1007/s11771-014-2075-4
Xu T, 2012, KNOWL-BASED SYST, V35, P279, DOI 10.1016/j.knosys.2012.04.011
Xu XK, 2013, CHINA COMMUN, V10, P25, DOI 10.1109/CC.2013.6488828
Yan GJ, 2014, COMPUT NETW, V75, P491, DOI 10.1016/j.comnet.2014.08.021
Yan JJ, 2013, ARCH ACOUST, V38, P465, DOI 10.2478/aoa-2013-0055
Yang CS, 2015, INF SYST E-BUS MANAG, V13, P403, DOI 10.1007/s10257-014-0266-z
Yang CC, 2011, IEEE T SYST MAN CY A, V41, P1144, DOI 10.1109/TSMCA.2011.2113334
Yang DQ, 2014, ACM T INTERNET TECHN, V14, DOI 10.1145/2677209
Yang DH, 2013, J INF SCI, V39, P429, DOI 10.1177/0165551513480308
Yang GL, 2006, LECT NOTES COMPUT SC, V4221, P251
Yang HL, 2015, INFORM SYST FRONT, V17, P1335, DOI 10.1007/s10796-014-9498-1
Yang JY, 2010, J INF SCI ENG, V26, P1973
Yang M, 2011, J HOMEL SECUR EMERG, V8, DOI 10.2202/1547-7355.1801
Yang ZK, 2014, NEUROCOMPUTING, V144, P138, DOI 10.1016/j.neucom.2014.05.055
Ye Q, 2009, EXPERT SYST APPL, V36, P6527, DOI 10.1016/j.eswa.2008.07.035
Yilmaz YS, 2013, INT J AD HOC UBIQ CO, V14, P16, DOI 10.1504/IJAHUC.2013.056271
Yong C, 2005, LECT NOTES COMPUT SC, V3784, P606
Yu L, 2009, INT J INNOV COMPUT I, V5, P4637
Yu LC, 2013, KNOWL-BASED SYST, V41, P89, DOI 10.1016/j.knosys.2013.01.001
Yu N, 2014, J ASSOC INF SCI TECH, V65, P2098, DOI 10.1002/asi.23111
Yu XH, 2012, IEEE T KNOWL DATA EN, V24, P720, DOI 10.1109/TKDE.2010.269
Zarri GP, 2014, NEURAL NETWORKS, V58, P82, DOI 10.1016/j.neunet.2014.05.010
Zavattaro SM, 2015, GOV INFORM Q, V32, P333, DOI 10.1016/j.giq.2015.03.003
Zeng ZH, 2008, IEEE T MULTIMEDIA, V10, P570, DOI 10.1109/TMM.2008.921737
Zeng ZH, 2007, IEEE T MULTIMEDIA, V9, P424, DOI 10.1109/TMM.2006.886310
Zha ZJ, 2014, IEEE T KNOWL DATA EN, V26, P1211, DOI 10.1109/TKDE.2013.136
Zhai ZW, 2011, EXPERT SYST APPL, V38, P9139, DOI 10.1016/j.eswa.2011.01.047
Zhan JM, 2009, EXPERT SYST APPL, V36, P2107, DOI 10.1016/j.eswa.2007.12.039
Zhang CL, 2009, J AM SOC INF SCI TEC, V60, P2474, DOI 10.1002/asi.21206
Zhang DW, 2015, EXPERT SYST APPL, V42, P1857, DOI 10.1016/j.eswa.2014.09.011
Zhang KP, 2014, NEURAL NETWORKS, V58, P60, DOI 10.1016/j.neunet.2014.04.005
Zhang L, 2010, IBM J RES DEV, V54, DOI 10.1147/JRD.2010.2069710
Zhang P, 2013, J INF SCI, V39, P815, DOI 10.1177/0165551513480330
Zhang WS, 2013, ACM T INTEL SYST TEC, V4, DOI 10.1145/2414425.2414434
Zhang WH, 2012, EXPERT SYST APPL, V39, P10283, DOI 10.1016/j.eswa.2012.02.166
Zhang Y, 2014, IEICE T INF SYST, VE97D, P2000, DOI 10.1587/transinf.E97.D.2000
Zhang Y, 2015, J COMPUT SCI TECH-CH, V30, P1109, DOI 10.1007/s11390-015-1586-2
Zhang YH, 2015, PATTERN RECOGN LETT, V65, P44, DOI 10.1016/j.patrec.2015.07.006
Zhang ZQ, 2011, EXPERT SYST APPL, V38, P7674, DOI 10.1016/j.eswa.2010.12.147
Zhao N, 2011, APPL MATH INFORM SCI, V5, P45
Zhao YY, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125084
Zheludev I, 2014, SCI REP-UK, V4, DOI 10.1038/srep04213
Zheng XL, 2014, KNOWL-BASED SYST, V61, P29, DOI 10.1016/j.knosys.2014.02.003
Zhou F, 2015, J MECH DESIGN, V137, DOI 10.1115/1.4030159
Zhou SS, 2014, NEUROCOMPUTING, V131, P312, DOI 10.1016/j.neucom.2013.10.011
Zhou SS, 2013, NEUROCOMPUTING, V120, P536, DOI 10.1016/j.neucom.2013.04.017
Zhou XJ, 2015, IEEE-ACM T AUDIO SPE, V23, P619, DOI 10.1109/TASLP.2015.2392381
Zhou XY, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111380
Zhu JB, 2011, IEEE T AFFECT COMPUT, V2, P37, DOI 10.1109/T-AFFC.2011.2
NR 488
TC 104
Z9 106
U1 3
U2 270
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-4573
EI 1873-5371
J9 INFORM PROCESS MANAG
JI Inf. Process. Manage.
PD JAN
PY 2017
VL 53
IS 1
BP 122
EP 150
DI 10.1016/j.ipm.2016.07.001
PG 29
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA EF7IW
UT WOS:000390504300008
DA 2024-09-05
ER
PT J
AU Bradley, C
Romane, L
AF Bradley, Cara
Romane, Leeanne
TI Changing the Tire Instead of Reinventing the Wheel: Customizing an
Existing Online Information Literacy Tutorial
SO COLLEGE & UNDERGRADUATE LIBRARIES
LA English
DT Article
DE Academic libraries; information literacy; online tutorial; active
learning; institutional collaboration; research skills; undergraduate
student
AB Information literacy instruction has become a core responsibility of many academic librarian positions in recent years. Online information literacy tutorials have gained increasing popularity among librarians struggling to keep up with the growing demand for this type of instruction. The availability of high-quality, open source tutorials has prompted some librarians to customize existing tutorials rather than build their own resource from scratch. This article provides an overview and checklist for librarians who are considering customization of an existing online tutorial as a means of meeting student information literacy needs.
C1 [Bradley, Cara] Univ Regina, Dr John Archer Lib, Regina, SK S4S 0A2, Canada.
[Romane, Leeanne] Saskatchewan Inst Appl Sci & Technol, Regina, SK S4P 3A3, Canada.
C3 University of Regina
RP Bradley, C (corresponding author), Univ Regina, Dr John Archer Lib, Regina, SK S4S 0A2, Canada.
EM bradleca@uregina.ca; lromane@library.uwaterloo.ca
OI Bradley, Cara/0000-0003-0934-9842
CR [Anonymous], 2000, INF LIT COMP STAND H
[Anonymous], 1989, PRES COMM INF LIT
[Anonymous], 2000, Don't make me think!: a common sense approach to Web usability
Bury S, 2005, REF SERV REV, V33, P54, DOI 10.1108/00907320510581388
Flatley R., 2006, LIB PHILOS PRACTICE, V8
Oakleaf M., 2004, SIMPLE STRATEGIES EF
University of Texas System Digital Library, 2004, AD YOUR TILT
NR 7
TC 5
Z9 5
U1 0
U2 2
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1069-1316
EI 1545-2530
J9 COLL UNDERGRAD LIBR
JI Coll. Undergrad. Libr.
PY 2007
VL 14
IS 4
BP 73
EP 86
DI 10.1080/10691310802128344
PG 14
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA VC3EC
UT WOS:000433667100007
DA 2024-09-05
ER
PT J
AU Rundle, AG
Bader, MDM
Branas, CC
Lovasi, GS
Mooney, SJ
Morrison, CN
Neckerman, KM
AF Rundle, Andrew G.
Bader, Michael D. M.
Branas, Charles C.
Lovasi, Gina S.
Mooney, Stephen J.
Morrison, Christopher N.
Neckerman, Kathryn M.
TI Causal Inference with Case-Only Studies in Injury Epidemiology Research
SO CURRENT EPIDEMIOLOGY REPORTS
LA English
DT Article
DE Study design; Case-only design; Injury research; Pedestrian injury;
Etiologic heterogeneity; Effect modification
ID GENE-ENVIRONMENT INTERACTION; PEDESTRIAN FATALITIES;
ALCOHOL-CONSUMPTION; UNITED-STATES; CASE-SERIES; ASSOCIATION; STRUCK;
RISK
AB Purpose of Review We review the application and limitations of two implementations of the "case-only design" in injury epidemiology with example analyses of Fatality Analysis Reporting System data. Recent Findings The term "case-only design" covers a variety of epidemiologic designs; here, two implementations of the design are reviewed: (1) studies to uncover etiological heterogeneity and (2) studies to measure exposure effect modification. These two designs produce results that require different interpretations and rely upon different assumptions. The key assumption of case-only designs for exposure effect modification, the more commonly used of the two designs, does not commonly hold for injuries and so results from studies using this design cannot be interpreted. Case-only designs to identify etiological heterogeneity in injury risk are interpretable but only when the case-series is conceptualized as arising from an underlying cohort. The results of studies using case-only designs are commonly misinterpreted in the injury literature.
C1 [Rundle, Andrew G.; Branas, Charles C.; Morrison, Christopher N.; Neckerman, Kathryn M.] Columbia Univ, Mailman Sch Publ Hlth, Dept Epidemiol, 722 West 168th St,Room 727, New York, NY 10032 USA.
[Bader, Michael D. M.] Johns Hopkins Univ, Dept Sociol, Baltimore, MD 21218 USA.
[Lovasi, Gina S.] Drexel Univ, Dept Epidemiol & Biostat, Philadelphia, PA 19104 USA.
[Mooney, Stephen J.] Univ Washington, Dept Epidemiol, Seattle, WA 98195 USA.
C3 Columbia University; Johns Hopkins University; Drexel University;
University of Washington; University of Washington Seattle
RP Rundle, AG (corresponding author), Columbia Univ, Mailman Sch Publ Hlth, Dept Epidemiol, 722 West 168th St,Room 727, New York, NY 10032 USA.
EM Agr3@cumc.columbia.edu
RI Bader, Michael D. M./F-3422-2010; Lovasi, Gina/C-2781-2009; Rundle,
Andrew/A-5282-2009
OI Lovasi, Gina/0000-0003-2613-9599; Morrison,
Christopher/0000-0001-6522-6420; Rundle, Andrew/0000-0003-0211-7707
FU National Institute on Alcohol Abuse and Alcoholism [K01AA026327];
National Library of Medicine [R00LM012868]
FX Drs. Rundle, Lovasi, Neckerman, Mooney, Branas, and Bader were supported
by a grant from the National Institute on Alcohol Abuse and Alcoholism
(R01AA028552); Dr. Morrison was supported by a grant from the National
Institute on Alcohol Abuse and Alcoholism (K01AA026327); Dr. Mooney was
also supported by a grant from the National Library of Medicine
(R00LM012868).
CR Azagba S, 2020, PREV MED, V132, DOI 10.1016/j.ypmed.2019.105975
Batouli G, 2020, ACCIDENT ANAL PREV, V148, DOI 10.1016/j.aap.2020.105782
BEGG CB, 1994, CANCER EPIDEM BIOMAR, V3, P173
Boone EM, 2018, TRAFFIC INJ PREV, V19, P270, DOI 10.1080/15389588.2017.1383604
Branas CC, 2011, SUBST USE MISUSE, V46, P1592, DOI 10.3109/10826084.2011.604371
Breslow NE, 1996, J AM STAT ASSOC, V91, P14, DOI 10.2307/2291379
Caetano R, 2020, ALCOHOL CLIN EXP RES, V44, P492, DOI 10.1111/acer.14251
Chen HQ, 2016, TRAFFIC INJ PREV, V17, P796, DOI 10.1080/15389588.2016.1168924
Cummings P, 1998, Inj Prev, V4, P54
De Silva DA, 2022, ARCH SUICIDE RES, V26, P1958, DOI 10.1080/13811118.2021.1965929
Dultz LA, 2011, J TRAUMA, V71, P1252, DOI 10.1097/TA.0b013e3182327c94
Eichelberger AH, 2018, J SAFETY RES, V65, P1, DOI 10.1016/j.jsr.2018.02.004
Gatto NM, 2004, INT J EPIDEMIOL, V33, P1014, DOI 10.1093/ije/dyh306
Gold KJ, 2013, GEN HOSP PSYCHIAT, V35, P45, DOI 10.1016/j.genhosppsych.2012.08.005
Graham LM, 2022, AM J PREV MED, V62, P529, DOI [10.1016/j.amepre.2021.09.018, 10.1016/j.amepre.2021.39.018]
Keyes KM, 2022, ALCOHOL RES-CURR REV, V42, DOI 10.35946/arcr.v42.1.02
Khoury MJ, 1996, AM J EPIDEMIOL, V144, P207
Knight MT, 2021, AM SURGEON, V87, P354, DOI 10.1177/0003134820947365
Kolves K, 2020, EPIDEMIOL PSYCH SCI, V29, DOI 10.1017/S2045796020000062
Krurnkamp R, 2008, INT J HYG ENVIR HEAL, V211, P163, DOI 10.1016/j.ijheh.2007.02.006
Lasota D, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17238995
Li GH, 2019, INJURY EPIDEMIOL, V6, DOI 10.1186/s40621-019-0187-x
Lira MC, 2020, AM J PREV MED, V58, P622, DOI 10.1016/j.amepre.2019.12.015
Marcus PM, 2000, CANCER EPIDEM BIOMAR, V9, P461
Morrison CN, 2021, J STUD ALCOHOL DRUGS, V82, P720
National Center for Statistics and Analysis, 812827 DOT HS NAT HI
Oram S, 2013, PSYCHIAT SERV, V64, P1006, DOI 10.1176/appi.ps.201200484
Ortiz N, 2017, J TRANSP HEALTH, V5, pS93, DOI 10.1016/j.jth.2017.05.250
Öström M, 2001, ACCIDENT ANAL PREV, V33, P173, DOI 10.1016/S0001-4575(00)00028-2
Patten M, 2022, J SURG RES, V270, P522, DOI 10.1016/j.jss.2021.08.029
Pawlowski W, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16081471
Plurad D, 2006, J AM COLL SURGEONS, V202, P919, DOI 10.1016/j.jamcollsurg.2006.02.024
Rudisill TM, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0227388
Smith GD, 2003, INT J EPIDEMIOL, V32, P1, DOI 10.1093/ije/dyg070
WACHOLDER S, 1992, AM J EPIDEMIOL, V135, P1019, DOI 10.1093/oxfordjournals.aje.a116396
Wacholder S, 1995, Stat Methods Med Res, V4, P293, DOI 10.1177/096228029500400403
Zhang ZF, 1995, ANN NY ACAD SCI, V768, P269, DOI 10.1111/j.1749-6632.1995.tb12138.x
NR 37
TC 0
Z9 0
U1 0
U2 2
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
EI 2196-2995
J9 CURR EPIDEMIOL REP
JI Curr. Epidemiol. Rep.
PD DEC
PY 2022
VL 9
IS 4
BP 223
EP 232
DI 10.1007/s40471-022-00306-8
EA SEP 2022
PG 10
WC Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Public, Environmental & Occupational Health
GA 6S5BQ
UT WOS:000863122000001
PM 37152190
OA Green Accepted, hybrid
DA 2024-09-05
ER
PT J
AU Khan, ZA
Zubair, S
Imran, K
Ahmad, R
Butt, SA
Chaudhary, NI
AF Khan, Zeshan Aslam
Zubair, Syed
Imran, Kashif
Ahmad, Rehan
Butt, Sharjeel Abid
Chaudhary, Naveed Ishtiaq
TI A New Users Rating-Trend Based Collaborative Denoising Auto-Encoder for
Top-N Recommender Systems
SO IEEE ACCESS
LA English
DT Article
DE Noise reduction; Collaboration; Recommender systems; Encoding; Market
research; Deep learning; Auto-encoders; collaborative filtering;
denoising; e-commerce; recommender systems; top-N recommendations
ID MATRIX FACTORIZATION; AUTOENCODER
AB To promote online businesses and sales, e-commerceindustry focuses to fulfill users demands by giving them top set ofrecommendations which are ranked through different ranking measures.Deep learning based auto-encoder models have further improved theperformance of recommender systems. Astate-of-the-art collaborative denoisingauto-encoder (CDAE) models user-item interactions as a corruptedversion of users rating inputs. However, this architecture stilllacks users ratings-trend information which is an important parameterto recommend top-N items to users. In this paper, buildingupon CDAE characteristics, we propose a novel users rating-trendbased collaborative denoising auto-encoder (UT-CDAE) whichdetermines user-item correlations by evaluating rating-trend(High or Low) of a user towards a set of items. This inclusion of ausers rating-trend provides additional regularization flexibilitywhich helps to predict improved top-N recommendations. Thecorrectness of the suggested method is verified through different rankingevaluation metrics i.e., (mean reciprocal rank, meanaverage precision and normalized discounted gain), for various inputcorruption values, learning rates and regularization parameters.Experiments on standard ML-100K and ML-1M datasets showthat suggested model has improved performance overstate-of-the-art denoising auto-encodermodels.
C1 [Khan, Zeshan Aslam; Zubair, Syed; Ahmad, Rehan; Butt, Sharjeel Abid; Chaudhary, Naveed Ishtiaq] Int Islamic Univ, Elect Engn Dept, Islamabad 44000, Pakistan.
[Imran, Kashif] NUST, Dept Elect Power Engn, US Pakistan Ctr Adv Studies Energy, Islamabad 44000, Pakistan.
C3 International Islamic University, Pakistan; National University of
Sciences & Technology - Pakistan
RP Khan, ZA (corresponding author), Int Islamic Univ, Elect Engn Dept, Islamabad 44000, Pakistan.
EM zeeshan.aslam@iiu.edu.pk
RI Chaudhary, Naveed/I-7754-2019; Butt, Sharjeel Abid/C-7011-2017
OI Chaudhary, Naveed Ishtiaq/0000-0002-9568-3216; Ahmad,
Rehan/0000-0002-0194-6653; Butt, Sharjeel Abid/0000-0002-3396-8224
CR Aggarwal Charu C., 2016, Em Recommender Systems: The Textbook, DOI [DOI 10.1007/978-3-319-29659-3_1, DOI 10.1007/978-3-319-29659-31]
[Anonymous], 2012, ARXIV12064683
[Anonymous], 2019, P 33TH AAAI C ARTIFI
Batmaz Z, 2019, ARTIF INTELL REV, V52, P1, DOI 10.1007/s10462-018-9654-y
Chae DK, 2019, IEEE ACCESS, V7, P37650, DOI 10.1109/ACCESS.2019.2905876
Chen MM, 2014, PR MACH LEARN RES, V32, P1476
Chin WS, 2015, ACM T INTEL SYST TEC, V6, DOI 10.1145/2668133
Dong X, 2017, AAAI CONF ARTIF INTE, P1309
Harper FM, 2016, ACM T INTERACT INTEL, V5, DOI 10.1145/2827872
He M, 2019, IEEE ACCESS, V7, P5707, DOI 10.1109/ACCESS.2018.2890293
Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647
Kabbur S, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P659
Kingma D. P., 2014, INT C LEARNING REPRE
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Li HM, 2018, IEEE ACCESS, V6, P25248, DOI 10.1109/ACCESS.2018.2828401
Li S, 2015, P 24 ACM INT C INF K, P811, DOI DOI 10.1145/2806416.2806527
Li XP, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P305, DOI 10.1145/3097983.3098077
Lin CY, 2018, IEEE ACCESS, V6, P21369, DOI 10.1109/ACCESS.2018.2819428
Luo X, 2013, KNOWL-BASED SYST, V37, P154, DOI 10.1016/j.knosys.2012.07.016
Luo X, 2012, KNOWL-BASED SYST, V27, P271, DOI 10.1016/j.knosys.2011.09.006
Mu RH, 2018, IEEE ACCESS, V6, DOI 10.1109/ACCESS.2018.2880197
Ouyang Y, 2014, AUTOENCODER BASED CO, P284
Pan YT, 2019, NEUROCOMPUTING, V332, P137, DOI 10.1016/j.neucom.2018.12.025
Rendle Steffen, 2012, P UNC ART INT
Sachdeva N., 2019, P 2018 WORLD WID WEB, V18, P689
Sedhain S, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P111, DOI 10.1145/2740908.2742726
Strub F., 2015, NIPS WORKSH MACH LEA, P1
Strub F., 2016, Proceedings of the 1st workshop on deep learning for recommender systems, P11, DOI DOI 10.1145/2988450.2988456
Takács G, 2009, J MACH LEARN RES, V10, P623
Tang JX, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P565, DOI 10.1145/3159652.3159656
Vincent P, 2010, J MACH LEARN RES, V11, P3371
Vincent Pascal, 2008, P 25 INT C MACHINE L, P1096, DOI [DOI 10.1145/1390156.1390294, 10.1145/1390156.1390294]
Wang H, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1235, DOI 10.1145/2783258.2783273
Wang H, 2015, AAAI CONF ARTIF INTE, P3052
Wu Y, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P153, DOI 10.1145/2835776.2835837
Yang SH, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P295
Ying H., 2016, COLLABORATIVE DEEP R, P555
Zhang LB, 2018, IEEE ACCESS, V6, P9454, DOI 10.1109/ACCESS.2018.2789866
Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029
NR 39
TC 9
Z9 11
U1 1
U2 4
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2019
VL 7
BP 141287
EP 141310
DI 10.1109/ACCESS.2019.2940603
PG 24
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA JN8QJ
UT WOS:000497156000093
OA gold
DA 2024-09-05
ER
PT J
AU Koh, RGL
Khan, MA
Rashidiani, S
Hassan, S
Tucci, V
Liu, T
Nesovic, K
Kumbhare, D
Doyle, TE
AF Koh, Ryan G. L.
Khan, Md Asif
Rashidiani, Sajjad
Hassan, Samah
Tucci, Victoria
Liu, Theodore
Nesovic, Karlo
Kumbhare, Dinesh
Doyle, Thomas E.
TI Check It Before You Wreck It: A Guide to STAR-ML for Screening Machine
Learning Reporting in Research
SO IEEE ACCESS
LA English
DT Article
DE Checklist; literature review; machine learning; quality scoring;
reporting assessment; research methodology; screening tool
ID CONVOLUTIONAL NEURAL-NETWORKS; CLASSIFICATION; TRENDS
AB Machine learning (ML) is a technique that learns to detect patterns and trends in data. However, the quality of reporting ML in research is often suboptimal, leading to inaccurate conclusions and hindering progress in the field, especially if disseminated in literature reviews that provide researchers with an overview of a field, current knowledge gaps, and future directions. While various tools are available to assess the quality and risk-of-bias of studies, there is currently no generalized tool for assessing the reporting quality of ML in the literature. To address this, this study presents a new screening tool called STAR-ML (Screening Tool for Assessing Reporting of Machine Learning), accompanied by a guide to using it. A pilot scoping review looking at ML in chronic pain was used to investigate the tool. The time it took to screen papers and how the selection of the threshold affected the papers included were explored. The tool provides researchers with a reliable and systematic way to evaluate the quality of reporting of ML studies and to make informed decisions about the inclusion of studies in scoping or systematic reviews. In addition, this study provides recommendations for authors on how to choose the threshold for inclusion and use the tool proficiently. Lastly, the STAR-ML tool can serve as a checklist for researchers seeking to develop or implement ML techniques effectively.
C1 [Koh, Ryan G. L.; Nesovic, Karlo; Kumbhare, Dinesh] Univ Hlth Network UHN, KITE Res Inst, Toronto Rehabil Inst, Toronto, ON M5G 2A2, Canada.
[Khan, Md Asif; Rashidiani, Sajjad; Liu, Theodore; Doyle, Thomas E.] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4L8, Canada.
[Hassan, Samah] UHN, Inst Educ Res TIER, Toronto, ON M5T 1V4, Canada.
[Tucci, Victoria] McMaster Univ, Fac Hlth Sci, Hamilton, ON L8S 4L8, Canada.
[Doyle, Thomas E.] McMaster Univ, Sch Biomed Engn, Hamilton, ON L8S 4L8, Canada.
[Doyle, Thomas E.] Vector Inst Artificial Intelligence, Toronto, ON M5G 1M1, Canada.
C3 University of Toronto; University Health Network Toronto; Toronto
Rehabilitation Institute; McMaster University; University of Toronto;
University Health Network Toronto; McMaster University; McMaster
University; Vector Institute for Artificial Intelligence
RP Koh, RGL (corresponding author), Univ Hlth Network UHN, KITE Res Inst, Toronto Rehabil Inst, Toronto, ON M5G 2A2, Canada.
EM ryan.koh@mail.utoronto.ca
RI Izquierdo, Mikel/A-4894-2010
OI Izquierdo, Mikel/0000-0002-1506-4272; Koh, Ryan/0000-0001-8662-1008;
Khan, Md Asif/0000-0001-8395-347X; Tucci, Victoria/0000-0002-2344-2560;
Hassan, Samah/0000-0003-2526-4515; Liu, Theodore/0000-0001-7334-8129;
Kumbhare, Dinesh/0000-0003-3889-7557; Doyle, Thomas/0000-0003-1059-110X;
Nesovic, Karlo/0000-0002-1520-954X
FU Canadian Department of National Defence IDEaS [CFPMN2-17]; Department of
Electrical and Computer Engineering, McMaster University, Hamilton, ON,
Canada
FX This work was supported in part by the Canadian Department of National
Defence IDEaS under Award CFPMN2-17; and in part by the Department of
Electrical and Computer Engineering, McMaster University, Hamilton, ON,
Canada.
CR Akter S, 2022, J BUS RES, V144, P201, DOI 10.1016/j.jbusres.2022.01.083
Alzubaidi L, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00444-8
[Anonymous], 2004, SIGKDD Explor. Newsl, DOI [10.1145/1007730.1007735, DOI 10.1145/1007730.1007735]
Arlot S, 2010, STAT SURV, V4, P40, DOI 10.1214/09-SS054
Bayat S, 2021, ALZHEIMERS RES THER, V13, DOI 10.1186/s13195-021-00852-1
Bossuyt P M., Ann. Internal Med., V138, pW1
Bracke P., 2019, Bank of England Working Paper No. 816, DOI DOI 10.2139/SSRN.3435104
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Cho JH, 2016, Arxiv, DOI [arXiv:1511.06348, DOI 10.48550/ARXIV.1511.06348, 10.48550/arXiv.1511.06348]
Cofone IN, 2019, HASTINGS LAW J, V70, P1389
Collins GS, 2021, BMJ OPEN, V11, DOI 10.1136/bmjopen-2020-048008
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.1016/j.eururo.2014.11.025, 10.1038/bjc.2014.639, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0697, 10.1002/bjs.9736, 10.7326/M14-0698, 10.1136/bmj.g7594, 10.1186/s12916-014-0241-z]
Dinga R., 2019, bioRxiv
Diptu N. A., 2018, P INT C INT SYST IS, P743
Dixon M. F., 2020, MACHINE LEARNING FIN, V1170
Dousty M., 2023, IEEE J. Biomed. Health 738 Informat., DOI [10.1109/JBHI.2023.3269692.739, DOI 10.1109/JBHI.2023.3269692.739]
Doyle T. E., 2022, arXiv
Engel J, 2013, TRAC-TREND ANAL CHEM, V50, P96, DOI 10.1016/j.trac.2013.04.015
Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056
Flach P, 2019, AAAI CONF ARTIF INTE, P9808
Franklin R., 2020, How Data Quality Impacts Machine 902 Learning-Precisely
Gan LR, 2020, TECHNOL FORECAST SOC, V153, DOI 10.1016/j.techfore.2020.119928
Geron A., 2019, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
Gibert K, 2016, AI COMMUN, V29, P627, DOI 10.3233/AIC-160710
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Grant MJ, 2009, HEALTH INFO LIBR J, V26, P91, DOI 10.1111/j.1471-1842.2009.00848.x
Gudivada V., 2017, Int. J. Adv. Softw., V10, P901
Hawkins DM, 2003, J CHEM INF COMP SCI, V43, P579, DOI 10.1021/ci025626i
Hellstr”m T, 2020, Arxiv, DOI arXiv:2004.00686
Higgins JPT, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d5928
Hodorog A, 2022, SUSTAIN CITIES SOC, V85, DOI 10.1016/j.scs.2022.104026
Hutter F, 2019, SPRING SER CHALLENGE, P1, DOI 10.1007/978-3-030-05318-5
Jain A, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3561, DOI 10.1145/3394486.3406477
Janssens ACJW, 2011, PLOS MED, V8, DOI 10.1371/journal.pmed.1000420
Jayakumar S, 2022, NPJ DIGIT MED, V5, DOI 10.1038/s41746-021-00544-y
Ji YT, 2023, ACM T INFORM SYST, V41, DOI 10.1145/3569930
Jiang T, 2020, BEHAV THER, V51, P675, DOI 10.1016/j.beth.2020.05.002
Jiménez-Grande D, 2022, GAIT POSTURE, V96, P81, DOI 10.1016/j.gaitpost.2022.05.015
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Kapoor S., 2022, arXiv
Kaufman S, 2012, ACM T KNOWL DISCOV D, V6, DOI 10.1145/2382577.2382579
Khailany B., 2020, P 751 ACM IEEE 2 WOR, P752
Khan M. A., 2022, P IEEE CAN C EL COMP, P856
Koh RGL, 2020, J NEURAL ENG, V17, DOI 10.1088/1741-2552/ab4ac4
Kotsiantis SB, 2007, INFORM-J COMPUT INFO, V31, P249
Lai V., 2019, P C FAIRN ACC TRANSP, P706
Lambin P, 2017, NAT REV CLIN ONCOL, V14, P749, DOI 10.1038/nrclinonc.2017.141
Leary H, 2018, TECHTRENDS, V62, P525, DOI 10.1007/s11528-018-0312-7
Li ZW, 2022, IEEE T NEUR NET LEAR, V33, P6999, DOI 10.1109/TNNLS.2021.3084827
Liberati A., BMJ, V339, pb2700, DOI DOI 10.1136/BMJ.B2700
Liu XX, 2020, LANCET DIGIT HEALTH, V2, pE537, DOI [10.1016/S2589-7500(20)30218-1, 10.1016/S2589-7500(20)30219-3, 10.1136/bmj.m3164]
Lones MA, 2024, Arxiv, DOI [arXiv:2108.02497, DOI 10.48550/ARXIV.2108.02497.E-PRINTS, DOI 10.48550/ARXIV.2108.02497]
Maleki F, 2020, NEUROIMAG CLIN N AM, V30, P433, DOI 10.1016/j.nic.2020.08.004
Mitchell T. M., 2007, Machine Learning, V1, P716
Moher D., 2011, Int. J. Surg., V10, P1
Moons KGM, 2014, PLOS MED, V11, DOI 10.1371/journal.pmed.1001744
Navarro CLA, 2021, BMJ-BRIT MED J, V375, DOI 10.1136/bmj.n2281
Nesovic K, 2021, IEEE ENG MED BIO, P4002, DOI 10.1109/EMBC46164.2021.9630261
Noble WS, 2006, NAT BIOTECHNOL, V24, P1565, DOI 10.1038/nbt1206-1565
Page MJ, 2021, INT J SURG, V88, DOI [10.1186/s13643-021-01626-4, 10.1016/j.jclinepi.2021.02.003, 10.1016/j.ijsu.2021.105906]
Panesar A, 2019, MACHINE LEARNING AI
Park S. J., 2017, IEEE 757 Trans. Very Large Scale Integr. (VLSI) Syst., V25, P759
Rahman QA, 2018, J MED INTERNET RES, V20, DOI 10.2196/12001
Raschka S, 2020, Arxiv, DOI [arXiv:1811.12808, DOI 10.48550/ARXIV.1811.12808]
Rauschenberger Maria, 2020, i-com: Journal of Interactive Media, V19, P215, DOI 10.1515/icom-2020-0018
Reich Y, 1999, ARTIF INTELL ENG, V13, P257, DOI 10.1016/S0954-1810(98)00021-1
Reich Y., 1997, Comput.-Aided Civil Infrastruct. Eng., V12, P767
Rivera S. C., 2020, Lancet Digit. Health, V2, P878
Sauerbrei W, 2018, JNCI-J NATL CANCER I, V110, P803, DOI 10.1093/jnci/djy088
Saxena A, 2017, NEUROCOMPUTING, V267, P664, DOI 10.1016/j.neucom.2017.06.053
Shen JY, 2019, JMIR MED INF, V7, DOI 10.2196/10010
Shi BH, 2022, IEEE T BIO-MED ENG, V69, P2256, DOI 10.1109/TBME.2022.3140258
Shmilovici A, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P231, DOI 10.1007/978-0-387-09823-4_12
Siau K., 2018, CUTTER BUSINESS TECH, V31, P47
Singh D, 2022, PATTERN RECOGN, V122, DOI 10.1016/j.patcog.2021.108307
Singh D, 2020, APPL SOFT COMPUT, V97, DOI 10.1016/j.asoc.2019.105524
Sounderajah V, 2021, BMJ OPEN, V11, DOI 10.1136/bmjopen-2020-047709
Sun YN, 2020, IEEE T CYBERNETICS, V50, P3840, DOI 10.1109/TCYB.2020.2983860
Sutton A, 2019, HEALTH INFO LIBR J, V36, P202, DOI 10.1111/hir.12276
Sutton RS, 2018, ADAPT COMPUT MACH LE, P1
Vabalas A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0224365
van Wyk F, 2017, 2017 IEEE-NIH HEALTHCARE INNOVATIONS AND POINT OF CARE TECHNOLOGIES (HI-POCT), P109, DOI 10.1109/HIC.2017.8227596
Vasey B, 2022, NAT MED, V28, P924, DOI 10.1038/s41591-022-01772-9
Vokinger KN, 2021, COMMUN MED-LONDON, V1, DOI 10.1038/s43856-021-00028-w
von Elm E, 2007, LANCET, V370, P1453, DOI 10.1016/S0140-6736(07)61602-X
Wadi M, 2021, J ELECTR ENG-SLOVAK, V72, P315, DOI 10.2478/jee-2021-0044
Whalen S, 2022, NAT REV GENET, V23, P169, DOI 10.1038/s41576-021-00434-9
Whiting Penny, 2003, BMC Med Res Methodol, V3, P25, DOI 10.1186/1471-2288-3-25
Whiting PF, 2011, ANN INTERN MED, V155, P529, DOI 10.7326/0003-4819-155-8-201110180-00009
Wu J, 2017, NATL KEY LAB NOVEL S, V5, P495, DOI [10.13140/RG.2.2.11572.17282, DOI 10.1007/978-3-642-28661-2-5]
Xu Rui, 2010, IEEE Rev Biomed Eng, V3, P120, DOI 10.1109/RBME.2010.2083647
Yagis E, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-01681-w
Yang Z., 2020, IEEE Trans. Knowl. Data Eng., V109, P373
Yu KH, 2018, NAT BIOMED ENG, V2, P719, DOI 10.1038/s41551-018-0305-z
Zhang D., 2003, Softw. Quality J., V11, P764
NR 95
TC 1
Z9 1
U1 0
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2023
VL 11
BP 101567
EP 101579
DI 10.1109/ACCESS.2023.3316019
PG 13
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA S5RA7
UT WOS:001071724700001
OA gold
DA 2024-09-05
ER
PT J
AU Hood, A
AF Hood, Alison
TI Whose responsibility is it? Encouraging student engagement in the
learning process
SO MUSIC EDUCATION RESEARCH
LA English
DT Article
DE action research; self-assessment; group work; student learning; student
confidence; deep learning
AB This article presents the results of an action research project that focused on giving students more sense of control and responsibility over their own learning by engaging them more fully in assessment and helping them to understand the principles underpinning assessment criteria. The course is a second-year music module with approximately 85 students. I formed the class into groups to grade model answers and compiled a list of what they believed the assessment criteria should be based on this experience. I then used this list to compile a self-assessment criteria sheet, which the students filled out themselves and attached with each subsequent assessment. When I completed my analysis of data from the first cycle of action research, I implemented the learning from that cycle into a second and third cycle of action. This involved re-evaluating my initial plans in light of my findings; building on what was successful and changing what was not, and refocusing my research. The findings were significant, as their assessment results improved dramatically. Involving students throughout the assessment process, from initially setting the criteria right through to self-assessing their work, improved their grades, reduced student passivity and increased their self-confidence.
C1 Natl Univ Ireland Maynooth, Dept Mus, Maynooth, Kildare, Ireland.
C3 Maynooth University
RP Hood, A (corresponding author), Natl Univ Ireland Maynooth, Dept Mus, Maynooth, Kildare, Ireland.
EM Alison.Hood@nuim.ie
OI Hood, Alison/0000-0001-5272-8325
CR [Anonymous], ASSESSMENT MATTERS H
Assessment Standards Knowledge exchange (ASKe). Centre of Excellence in Teaching and Learning (CETL) Resources, 1 2 3 LEAFL AD SOC C
Ballantyne R., 2002, Assessment Evaluation in Higher Education, V27, P427, DOI [https://doi.org/10.1080/0260293022000009302, DOI 10.1080/0260293022000009302]
Bawden R., 2000, Cybernetics Human Knowing, V7, P5
Bawden R.J., ATLAS CONCEPTUAL MAP
Bergee MJ, 2002, J RES MUSIC EDUC, V50, P256, DOI 10.2307/3345802
Blom D., 2004, BRIT J MUSIC EDUC, V21, P111
Brown G.T.L., 1997, Assessing Student Learning in Higher Education
Daniel R., 2004, BRIT J MUSIC EDUC, V21, P89, DOI DOI 10.1017/S0265051703005515
Elliott J., 1991, ACTION RES ED CHANGE
Farrell A., 2007, CASE STUDIES GOOD PR, P99
Hernandez R., 2007, CASE STUDIES GOOD PR, P85
Hunter D., 1999, BRIT J MUSIC EDUC, V16, P51, DOI [DOI 10.1017/S0265051799000145, 10.1017/S0265051799000145]
Lebler D, 2007, INT J MUSIC EDUC, V25, P205, DOI 10.1177/0255761407083575
McNiff Jean., 2004, YOU YOUR ACTION RES, V2d
Newstead Stephen., 2002, Psychology Learning Teaching, V2, P70, DOI DOI 10.2304/PLAT.2002.2.2.70
Price M., 2008, Brookes eJournal of Teaching and Learning, V2
Robinson C., 2006, J COLL CHARACTER, V7, P1
Rust C., 2005, Assessment and Evaluation in Higher Education, V30, P233
Searby M., 1997, Assessment and Evaluation in Higher Education, V22, P371, DOI DOI 10.1080/0260293970220402
NR 20
TC 3
Z9 5
U1 0
U2 13
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1461-3808
EI 1469-9893
J9 MUSIC EDUC RES
JI Music Educ. Res.
PY 2012
VL 14
IS 4
BP 457
EP 478
DI 10.1080/14613808.2012.703174
PG 22
WC Education & Educational Research; Music
WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Education & Educational Research; Music
GA 041AL
UT WOS:000311368500005
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Sharma, D
Kumar, R
Jung, KH
AF Sharma, Deepak
Kumar, Rajeev
Jung, Ki-Hyun
TI A Bibliometric Analysis of Convergence of Artificial Intelligence and
Blockchain for Edge of Things
SO JOURNAL OF GRID COMPUTING
LA English
DT Article
DE Bibliometric analysis; Artificial intelligence; Convergence; Blockchain;
Edge of things; EOT
ID SOCIAL NETWORK ANALYSIS; BIG DATA; INTERNET; TOURISM; CHALLENGES; IOT;
JOURNALS; SCIENCE
AB The convergence of Artificial Intelligence (AI) and Blockchain technologies has emerged as a powerful paradigm to address the challenges of data management, security, and privacy in the Edge of Things (EoTs) environment. This bibliometric analysis aims to explore the research landscape and trends surrounding the topic of convergence of AI and Blockchain for EoTs to gain insights into its development and potential implications. For this, research published during the past six years (2018-2023) in the Web of Science indexed sources has been considered as it has been a new field. VoSViewer-based full counting methodology has been used to analyze citation, co-citation, and co-authorship based collaborations among authors, organizations, countries, sources, and documents. The full counting method in VoSViewer involves considering all authors or sources with equal weight when calculating various bibliometric indicators. Co-occurrence, timeline, and burst detection analysis of keywords and published articles were also carried out to unravel significant research trends on the convergence of AI and Blockchain for EoTs. Our findings reveal a steady growth in research output, indicating the increasing importance and interest in AI-enabled Blockchain solutions for EoTs. Further, the analysis uncovered key influential researchers and institutions driving advancements in this domain, shedding light on potential collaborative networks and knowledge hubs. Additionally, the study examines the evolution of research themes over time, offering insights into emerging areas and future research directions. This bibliometric analysis contributes to the understanding of the state-of-the-art in convergence of AI and Blockchain for EoTs, highlighting the most influential works and identifying knowledge gaps. Researchers, industry practitioners, and policymakers can leverage these findings to inform their research strategies and decision-making processes, fostering innovation and advancements in this cutting-edge interdisciplinary field.
C1 [Sharma, Deepak] Christian Albrechts Univ Kiel, Dept Comp Sci, D-24118 Kiel, Schleswig Holst, Germany.
[Kumar, Rajeev] Delhi Technol Univ, Dept Comp Sci & Engn, Blockchain Technol Res Lab, New Delhi 110042, Delhi, India.
[Jung, Ki-Hyun] Andong Natl Univ, Dept Software Convergence, Andong 36729, Gyeongbuk, South Korea.
C3 University of Kiel; Delhi Technological University; Andong National
University
RP Kumar, R (corresponding author), Delhi Technol Univ, Dept Comp Sci & Engn, Blockchain Technol Res Lab, New Delhi 110042, Delhi, India.
EM rajeevkumar@dtu.ac.in
FU National Research Foundation of Korea
FX No Statement Available
CR Al-Fuqaha A, 2015, IEEE COMMUN SURV TUT, V17, P2347, DOI 10.1109/COMST.2015.2444095
Ali MS, 2019, IEEE COMMUN SURV TUT, V21, P1676, DOI 10.1109/COMST.2018.2886932
Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032
Andoni M, 2019, RENEW SUST ENERG REV, V100, P143, DOI 10.1016/j.rser.2018.10.014
Atzori L, 2010, COMPUT NETW, V54, P2787, DOI 10.1016/j.comnet.2010.05.010
Baggio R, 2008, P EUTO, P1
Benckendorff P, 2013, ANN TOURISM RES, V43, P121, DOI 10.1016/j.annals.2013.04.005
Benckendorff P, 2009, J HOSP TOUR MANAG, V16, P1, DOI 10.1375/jhtm.16.1.1
Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3
Castro M, 1999, USENIX ASSOCIATION PROCEEDINGS OF THE THIRD SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDI '99), P173, DOI 10.1145/571637.571640
Cheng CK, 2011, TOURISM MANAGE, V32, P53, DOI 10.1016/j.tourman.2009.11.004
Christidis K, 2016, IEEE ACCESS, V4, P2292, DOI 10.1109/ACCESS.2016.2566339
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Dai HN, 2019, IEEE INTERNET THINGS, V6, P8076, DOI 10.1109/JIOT.2019.2920987
Fernández-Caramés TM, 2018, IEEE ACCESS, V6, P32979, DOI 10.1109/ACCESS.2018.2842685
Fuller A, 2020, IEEE ACCESS, V8, P108952, DOI 10.1109/ACCESS.2020.2998358
Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010
Hu C, 2008, INT J HOSP MANAG, V27, P302, DOI 10.1016/j.ijhm.2007.01.002
Jamal T, 2008, TOURISM MANAGE, V29, P66, DOI 10.1016/j.tourman.2007.04.001
Jiang YW, 2019, CURR ISSUES TOUR, V22, P1925, DOI 10.1080/13683500.2017.1408574
Jin C., 2023, IEEE Access
Kang JW, 2019, IEEE INTERNET THINGS, V6, P10700, DOI 10.1109/JIOT.2019.2940820
Khan MA, 2018, FUTURE GENER COMP SY, V82, P395, DOI 10.1016/j.future.2017.11.022
Khan WZ, 2020, COMPUT ELECTR ENG, V81, DOI 10.1016/j.compeleceng.2019.106522
Klerkx L, 2019, NJAS-WAGEN J LIFE SC, V90-91, DOI 10.1016/j.njas.2019.100315
Lezoche M, 2020, COMPUT IND, V117, DOI 10.1016/j.compind.2020.103187
Li W., 2023, IEEE INTERNET THINGS
Lin J, 2017, IEEE INTERNET THINGS, V4, P1125, DOI 10.1109/JIOT.2017.2683200
Liu Y, 2021, IEEE T IND INFORM, V17, P4322, DOI 10.1109/TII.2020.3003910
Lu YL, 2020, IEEE T IND INFORM, V16, P4177, DOI 10.1109/TII.2019.2942190
Maddikunta PKR, 2022, J IND INF INTEGR, V26, DOI 10.1016/j.jii.2021.100257
McKercher B, 2008, TOURISM MANAGE, V29, P1226, DOI 10.1016/j.tourman.2008.03.003
McKercher B, 2006, TOURISM MANAGE, V27, P1235, DOI 10.1016/j.tourman.2005.06.008
Mohammadi M, 2018, IEEE COMMUN SURV TUT, V20, P2923, DOI 10.1109/COMST.2018.2844341
Qadri YA, 2020, IEEE COMMUN SURV TUT, V22, P1121, DOI 10.1109/COMST.2020.2973314
Reyna A, 2018, FUTURE GENER COMP SY, V88, P173, DOI 10.1016/j.future.2018.05.046
Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507
Sekhar R, 2021, APPL SYST INNOV, V4, DOI 10.3390/asi4040086
Sharma D, 2021, Metaheuristic algorithms in industry 4.0, P1
Shi WS, 2016, IEEE INTERNET THINGS, V3, P637, DOI 10.1109/JIOT.2016.2579198
Singh S, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102364
Singh SK, 2020, FUTURE GENER COMP SY, V110, P721, DOI 10.1016/j.future.2019.09.002
van Raan AFJ, 2005, MEAS-INTERDISCIP RES, V3, P50, DOI 10.1207/s15366359mea0301_7
Wang F., 2023, Blockchain-based lightweight message authentication for edge-assisted cross-domain industrial internet of things, DOI [10.1109/TDSC.2023.3285800, DOI 10.1109/TDSC.2023.3285800]
White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W
Wolfert S, 2017, AGR SYST, V153, P69, DOI 10.1016/j.agsy.2017.01.023
Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981
Yang RZ, 2019, IEEE COMMUN SURV TUT, V21, P1508, DOI 10.1109/COMST.2019.2894727
Ye Q, 2012, TOUR MANAG PERSPECT, V2-3, P55, DOI 10.1016/j.tmp.2012.03.002
Zhao Y, 2021, IEEE INTERNET THINGS, V8, P1817, DOI 10.1109/JIOT.2020.3017377
Zheng ZB, 2017, IEEE INT CONGR BIG, P557, DOI 10.1109/BigDataCongress.2017.85
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 52
TC 2
Z9 2
U1 6
U2 12
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1570-7873
EI 1572-9184
J9 J GRID COMPUT
JI J. Comput.
PD DEC
PY 2023
VL 21
IS 4
AR 79
DI 10.1007/s10723-023-09716-4
PG 35
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA AW8M3
UT WOS:001121578200003
DA 2024-09-05
ER
PT J
AU Hu, HT
Wang, DB
Deng, SH
AF Hu, Haotian
Wang, Dongbo
Deng, Sanhong
TI Global Collaboration in Artificial Intelligence: Bibliometrics and
Network Analysis from 1985 to 2019
SO JOURNAL OF DATA AND INFORMATION SCIENCE
LA English
DT Article
DE Artificial intelligence; International collaboration; Collaboration
pattern; Bibliometric analysis; Social network analysis
ID INFORMATION-SCIENCE; TRENDS
AB Purpose: This study aims to explore the trend and status of international collaboration in the field of artificial intelligence (AI) and to understand the hot topics, core groups, and major collaboration patterns in global AI research.
Design/methodology/approach: We selected 38,224 papers in the field of AI from 1985 to 2019 in the core collection database of Web of Science (WoS) and studied international collaboration from the perspectives of authors, institutions, and countries through bibliometric analysis and social network analysis.
Findings: The bibliometric results show that in the field of AI, the number of published papers is increasing every year, and 84.8% of them are cooperative papers. Collaboration with more than three authors, collaboration between two countries and collaboration within institutions are the three main levels of collaboration patterns. Through social network analysis, this study found that the US, the UK, France, and Spain led global collaboration research in the field of AI at the country level, while Vietnam, Saudi Arabia, and United Arab Emirates had a high degree of international participation. Collaboration at the institution level reflects obvious regional and economic characteristics. There are the Developing Countries Institution Collaboration Group led by Iran, China, and Vietnam, as well as the Developed Countries Institution Collaboration Group led by the US, Canada, the UK. Also, the Chinese Academy of Sciences (China) plays an important, pivotal role in connecting the these institutional collaboration groups.
Research limitations: First, participant contributions in international collaboration may have varied, but in our research they are viewed equally when building collaboration networks. Second, although the edge weight in the collaboration network is considered, it is only used to help reduce the network and does not reflect the strength of collaboration.
Originality/value: This work is the longest to date regarding international collaboration in the field of AI. This research explores the evolution, future trends, and major collaboration patterns of international collaboration in the field of AI over the past 35 years. It also reveals the leading countries, core groups, and characteristics of collaboration in the field of AI.
C1 [Hu, Haotian; Deng, Sanhong] Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China.
[Wang, Dongbo] Nanjing Agr Univ, Coll Informat & Technol, Nanjing 210095, Peoples R China.
[Hu, Haotian; Deng, Sanhong] Jiangsu Key Lab Data Engn & Knowledge Serv, Nanjing 210023, Peoples R China.
C3 Nanjing University; Nanjing Agricultural University
RP Wang, DB (corresponding author), Nanjing Agr Univ, Coll Informat & Technol, Nanjing 210095, Peoples R China.
EM hhtdlam@126.com; db.wang@njau.edu.cn; sanhong@inu.edu.cn
FU National Natural Science Foundation of China [71673143]; National Social
Science Foundation of China [19BTQ062]
FX We acknowledge the National Natural Science Foundation of China (Grant
No. 71673143) and the National Social Science Foundation of China (Grant
No. 19BTQ062) for thier financial support.
CR Cai YZ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11174633
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Dinic BM, 2021, CURR PSYCHOL, V40, P3206, DOI 10.1007/s12144-019-00250-9
Dogan G, 2020, J RELIG HEALTH, V59, P96, DOI 10.1007/s10943-019-00886-8
Frey CD, 2017, WORLD NEUROSURG, V108, P901, DOI 10.1016/j.wneu.2017.09.011
Gao F, 2021, MICROSYST TECHNOL, V27, P1545, DOI 10.1007/s00542-019-04426-y
Godoy D, 2015, SCIENTOMETRICS, V102, P1795, DOI 10.1007/s11192-014-1450-0
Hu HT, 2019, PRO INT CONF SCI INF, P2501
Koehler W, 2001, SCIENTOMETRICS, V51, P117, DOI 10.1023/A:1010516712215
Aleixandre-Tudó JL, 2019, RENEW ENERG, V139, P268, DOI 10.1016/j.renene.2019.02.079
Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Pan WW, 2019, SCIENTOMETRICS, V121, P1407, DOI 10.1007/s11192-019-03256-z
Pee LG, 2019, J ASSOC INF SCI TECH, V70, P351, DOI 10.1002/asi.24145
Peng XD, 2020, ARTIF INTELL REV, V53, P199, DOI 10.1007/s10462-018-9652-0
Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010
Sohn E, 2018, 2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P727, DOI 10.1109/ASONAM.2018.8508350
Tang K.Y., 2019, ASIA-PAC EDUC RES, P1
Tarazona-Alvarez B, 2019, HEAD FACE MED, V15, DOI 10.1186/s13005-019-0207-7
Tsay MY, 2011, SCIENTOMETRICS, V89, P591, DOI 10.1007/s11192-011-0460-4
Wu Y, 2015, INT J MENT HEALTH SY, V9, DOI 10.1186/1752-4458-9-2
NR 21
TC 10
Z9 11
U1 3
U2 47
PU SCIENDO
PI WARSAW
PA BOGUMILA ZUGA 32A, WARSAW, MAZOVIA, POLAND
SN 2096-157X
EI 2543-683X
J9 J DATA INFO SCI
JI J. Data Info. Sci.
PD NOV
PY 2020
VL 5
IS 4
BP 86
EP 115
DI 10.2478/jdis-2020-0027
PG 30
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA OZ6NJ
UT WOS:000595040100008
OA gold
DA 2024-09-05
ER
PT C
AU Yan, Z
Guo, WS
Zhong, YL
Sun, MS
AF Yan, Zhong
Guo Wensi
Zhong Yanling
Sun Maosheng
GP IEEE
TI Research on Big Data Intelligent Application Effect Evaluation Overall
Technology
SO 2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE &
SOFTWARE ENGINEERING (ICBASE 2020)
LA English
DT Proceedings Paper
CT International Conference on Big Data and Artificial Intelligence and
Software Engineering (ICBASE)
CY OCT 23-25, 2020
CL Chengdu, PEOPLES R CHINA
DE component; big data; artificial intelligence; digital simulation;
process customization
AB The big data intelligent application effect evaluation is aimed at panoramic, realistic, dynamic and quantitative displaying and analyzing the whole process and effect of big data intelligent application, and the main scene is the application of important points such as simulation deduction, simulation evaluation and situation analysis. By using the mature experience in the field of digital simulation evaluation, integrating the latest research achievements in the field of big data analysis and artificial intelligence, the overall technology route is creatively proposed with data integration scale, application modeling intelligent, process deduction customization, effect evaluation refined, situation display comprehensive. Research results will guide the prototype system construction.
C1 [Yan, Zhong; Guo Wensi; Zhong Yanling; Sun Maosheng] AMA, PLA, Inst Chem Def, Beijing, Peoples R China.
RP Guo, WS (corresponding author), AMA, PLA, Inst Chem Def, Beijing, Peoples R China.
EM yggong@pku.edu.cn
CR [陈静 Chen Jing], 2012, [模式识别与人工智能, Pattern Recognition and Artificial Intelligence], V25, P29
Jiang JH, 2020, L N INST COMP SCI SO, V300, P63, DOI 10.1007/978-3-030-38819-5_5
[吕红亮 Lyu Hongliang], 2020, [火力与指挥控制, Fire Control & Command Control], V45, P135
Mao L, 2020, JAMA NEUROL, V77, P683, DOI 10.1001/jamaneurol.2020.1127
WANG Jianmin, 2018, BIG DATA RES
WHO, 2012, GLOBAL TUBERCULOSIS REPORT 2012, P1
Zhao Xin-yi, 2019, Control Theory & Applications, V36, P1, DOI 10.7641/CTA.2018.80418
[郑娟 ZHENG Juan], 2007, [计算机仿真, Computer simulation], V24, P9
NR 8
TC 0
Z9 0
U1 1
U2 6
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-9619-0
PY 2020
BP 78
EP 81
DI 10.1109/ICBASE51474.2020.00024
PG 4
WC Computer Science, Artificial Intelligence; Computer Science, Software
Engineering; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BR8GI
UT WOS:000671885700018
DA 2024-09-05
ER
PT J
AU Khanfar, AA
Mavi, RK
Iranmanesh, M
Gengatharen, D
AF Khanfar, Ahmad A.
Mavi, Reza Kiani
Iranmanesh, Mohammad
Gengatharen, Denise
TI Determinants of artificial intelligence adoption: research themes and
future directions
SO INFORMATION TECHNOLOGY & MANAGEMENT
LA English
DT Article; Early Access
DE Artificial intelligence; Technology adoption; Adoption models; Keyword
analysis; Thematic analysis; Bibliometric analysis
ID ACCEPTANCE; CHALLENGES; EVOLUTION; NETWORK; SYSTEMS; TOOL
AB The adoption of artificial intelligence (AI) systems is on the rise owing to their many benefits. This study conducted a bibliometric analysis to identify (1) how the literature on AI adoption has evolved over the past few years, (2) key themes associated with AI adoption in the literature, and (3) the gaps in the literature. To achieve these objectives, we utilised the Biblioshiny of R-package bibliometric analysis tool to analyse the AI adoption literature. A total of 91 articles were reviewed and analysed in this study. Four major themes were identified: AI, machine learning, the unified theory of acceptance and use of technology (UTAUT) model and the technology acceptance model (TAM). Using a content analysis of the identified themes, the study gained additional insight into the studies on AI adoption. Previous studies have been limited to specific industries and systems, and adoption theories like the UTAUT and TAM have also been utilised to a limited extent. Directions for future studies were provided.
C1 [Khanfar, Ahmad A.; Mavi, Reza Kiani; Gengatharen, Denise] Edith Cowan Univ, Sch Business & Law, Joondalup, WA 6027, Australia.
[Iranmanesh, Mohammad] La Trobe Univ, La Trobe Business Sch, Melbourne, Vic 3086, Australia.
C3 Edith Cowan University; La Trobe University
RP Khanfar, AA (corresponding author), Edith Cowan Univ, Sch Business & Law, Joondalup, WA 6027, Australia.
EM a.khanfar@ecu.edu.au
FU CAUL and its Member Institutions
FX Open Access funding enabled and organized by CAUL and its Member
Institutions. This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.
CR Abdelwahed A.S., 2023, Int J Audit Account Stud, V5, P49
Abioye SO, 2021, J BUILD ENG, V44, DOI 10.1016/j.jobe.2021.103299
Agarwal A, 2023, FORESIGHT, V25, P67, DOI 10.1108/FS-10-2021-0199
Al Badi FK, 2022, VISION-INDIA, V26, P193, DOI 10.1177/0972262920988398
Alghamdi MI., 2020, Period Eng Nat Sci, V8, P2516
Alshare K.A., 2019, Journal of Systems and Information Technology, V21, P166, DOI [DOI 10.1108/JSIT-08-2018-0108, 10.1108/jsit-08-2018-0108]
Ameen N, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106548
[Anonymous], 1990, The process of technology innovation
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Bademosi F, 2021, J CONSTR ENG M, V147, DOI 10.1061/(ASCE)CO.1943-7862.0002103
Bailón-Moreno R, 2006, J AM SOC INF SCI TEC, V57, P949, DOI 10.1002/asi.20362
Baumgartner M, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11010145
Bedué P, 2022, J ENTERP INF MANAG, V35, P530, DOI 10.1108/JEIM-06-2020-0233
Beydoun G, 2019, INFORM SYST FRONT, V21, P485, DOI 10.1007/s10796-019-09925-x
Bitkina OV, 2020, HUM FACTOR ERGON MAN, V30, P282, DOI 10.1002/hfm.20839
Bröhl C, 2019, INT J SOC ROBOT, V11, P709, DOI 10.1007/s12369-019-00593-0
Brooks C, 2020, CAMB J REG ECON SOC, V13, P135, DOI 10.1093/cjres/rsz026
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Cao GM, 2021, TECHNOVATION, V106, DOI 10.1016/j.technovation.2021.102312
Chatterjee S, 2020, BOTTOM LINE, V33, P359, DOI 10.1108/BL-08-2020-0057
Chen H, 2021, J MANAG ANAL, V8, P36, DOI 10.1080/23270012.2020.1852895
Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002
Chocarro R, 2023, EDUC STUD-UK, V49, P295, DOI 10.1080/03055698.2020.1850426
Choudhury A, 2022, APPL ERGON, V101, DOI 10.1016/j.apergo.2022.103708
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Cornelissen L, 2022, JMIR FORM RES, V6, DOI 10.2196/33368
Loureiro SMC, 2021, J BUS RES, V129, P911, DOI 10.1016/j.jbusres.2020.11.001
Dabbous A, 2022, J ASIA BUS STUD, V16, P245, DOI 10.1108/JABS-09-2020-0372
Delgado JMD, 2019, J BUILD ENG, V26, DOI 10.1016/j.jobe.2019.100868
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dora M, 2022, INT J PROD RES, V60, P4621, DOI 10.1080/00207543.2021.1959665
Du YF, 2022, EDUC INF TECHNOL, V27, P9357, DOI 10.1007/s10639-022-11001-y
Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021
Foncubierta-Rodríguez A, 2014, MULTIMED TOOLS APPL, V69, P539, DOI 10.1007/s11042-012-1327-2
Fountain T, 2019, HARVARD BUS REV, V97, P62
Fukumura YE, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18041690
Ghandour A, 2021, TEM J, V10, P1581, DOI 10.18421/TEM104-12
Golightly D, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14042123
Grover P, 2022, ANN OPER RES, V308, P177, DOI 10.1007/s10479-020-03683-9
Gupta KP, 2020, J INF TECHNOL EDUC-R, V19, P693, DOI 10.28945/4640
Han J, 2020, ROBOTICS, V9, DOI 10.3390/robotics9020034
Harker Richard., 2016, An Introduction to the Work of Pierre Bourdieu: The Practice of Theory
Hradecky D, 2022, INT J INFORM MANAGE, V65, DOI 10.1016/j.ijinfomgt.2022.102497
Huang Z, 2022, ENG CONSTR ARCHIT MA, V29, P3664, DOI 10.1108/ECAM-03-2021-0267
Jöhnk J, 2021, BUS INFORM SYST ENG+, V63, P5, DOI 10.1007/s12599-020-00676-7
Kalyanaraman A, 2022, COMPUT ELECTRON AGR, V197, DOI 10.1016/j.compag.2022.106944
Kar S, 2021, INTELL SYST ACCOUNT, V28, P217, DOI 10.1002/isaf.1503
Kehayov M, 2022, PROCEDIA COMPUT SCI, V200, P1209, DOI 10.1016/j.procs.2022.01.321
Khanfar AAA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13147870
Kinkel S, 2022, TECHNOVATION, V110, DOI 10.1016/j.technovation.2021.102375
Königstorfer F, 2020, J BEHAV EXP FINANC, V27, DOI 10.1016/j.jbef.2020.100352
Kotb A, 2018, INT J AUDIT, V22, P464, DOI 10.1111/ijau.12132
Kumar S, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101737
Latikka R, 2019, COMPUT HUM BEHAV, V93, P157, DOI 10.1016/j.chb.2018.12.017
Leigh NG, 2022, IND INNOV, V29, P1025, DOI 10.1080/13662716.2021.2007757
Liker JK, 1997, J ENG TECHNOL MANAGE, V14, P147, DOI 10.1016/S0923-4748(97)00008-8
Maflahi N, 2016, J ASSOC INF SCI TECH, V67, P191, DOI 10.1002/asi.23369
Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045
Marangunic N, 2015, UNIVERSAL ACCESS INF, V14, P81, DOI 10.1007/s10209-014-0348-1
Marlina L, 2021, Libr Philos Pract, V4999
Mogaji E, 2022, INT J BANK MARK, V40, P1272, DOI 10.1108/IJBM-09-2021-0440
Neumann O, 2024, PUBLIC MANAG REV, V26, P114, DOI 10.1080/14719037.2022.2048685
Pan JX, 2019, INT J PROD RES, V57, P5801, DOI 10.1080/00207543.2018.1550272
Pan M, 2020, J CONSTR ENG M, V146, DOI 10.1061/(ASCE)CO.1943-7862.0001821
Pan M, 2019, J MANAGE ENG, V35, DOI 10.1061/(ASCE)ME.1943-5479.0000706
Pan Y, 2022, INT J HUM RESOUR MAN, V33, P1125, DOI 10.1080/09585192.2021.1879206
Park E, 2016, PROGRAM-ELECTRON LIB, V50, P354, DOI 10.1108/PROG-02-2016-0017
Pillai R, 2020, BENCHMARKING, V27, P2599, DOI 10.1108/BIJ-04-2020-0186
Pizam A, 2022, INT J HOSP MANAG, V102, DOI 10.1016/j.ijhm.2022.103139
Pradhananga P, 2021, J CONSTR ENG M, V147, DOI 10.1061/(ASCE)CO.1943-7862.0002007
Pramod D, 2022, BENCHMARKING, V29, P1562, DOI 10.1108/BIJ-01-2021-0033
Priya SS, 2023, FORESIGHT, V25, P20, DOI 10.1108/FS-09-2021-0181
Ransbotham S, 2017, MIT Sloan Manag Rev Cambridge, V59
Ransbotham S, 2021, MIT Sloan Manag Rev
Regona M., 2022, Journal of open innovation: Technology, Market, and Complexity, V8, P45, DOI [10.3390/joitmc8010045, DOI 10.3390/JOITMC8010045]
Sibbald M, 2024, J EVAL CLIN PRACT, V30, P3, DOI 10.1111/jep.13730
Siderska J, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13148020
Simoes AC, 2020, J ENG TECHNOL MANAGE, V57, DOI 10.1016/j.jengtecman.2020.101574
Singh RP, 2020, TRANSL VIS SCI TECHN, V9, DOI 10.1167/tvst.9.2.45
Turja T, 2019, INT J SOC ROBOT, V11, P679, DOI 10.1007/s12369-019-00526-x
Tyson MM, 2021, J EDUC ADMIN, V59, P271, DOI 10.1108/JEA-10-2020-0221
Van Phuoc N, 2022, ECONOMIES, V10, DOI 10.3390/economies10060129
Venkatesh V, 2012, MIS QUART, V36, P157
Vichitkraivin P, 2021, HEALTH TECHNOL-GER, V11, P139, DOI 10.1007/s12553-020-00489-4
Wang K, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131910983
Wang YY, 2021, INT J TECHNOL MANAGE, V87, P229, DOI 10.1504/IJTM.2021.120932
Wang YK, 2022, SOC SCI COMPUT REV, V40, P534, DOI 10.1177/0894439320980132
Wang YM, 2021, EDUC TECHNOL SOC, V24, P116
Westenberger Jens, 2022, Procedia Computer Science, P69, DOI 10.1016/j.procs.2021.11.074
Xu N, 2022, INT J SOC ROBOT, V14, P1043, DOI 10.1007/s12369-021-00850-1
Xu N, 2021, J MANAGE ORGAN, V27, P867, DOI 10.1017/jmo.2018.81
Yu XY, 2023, INFORM TECHNOL PEOPL, V36, P454, DOI 10.1108/ITP-04-2021-0254
NR 92
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1385-951X
EI 1573-7667
J9 INFORM TECHNOL MANAG
JI Inf. Technol. Manag.
PD 2024 AUG 23
PY 2024
DI 10.1007/s10799-024-00435-0
EA AUG 2024
PG 21
WC Information Science & Library Science; Management
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science; Business & Economics
GA D5L9N
UT WOS:001296606600002
OA hybrid
DA 2024-09-05
ER
PT J
AU Bonner, C
McKinn, S
Lau, A
Jansen, J
Doust, J
Trevena, L
McCaffery, K
AF Bonner, Carissa
McKinn, Shannon
Lau, Annie
Jansen, Jesse
Doust, Jenny
Trevena, Lyndal
McCaffery, Kirsten
TI Heuristics and biases in cardiovascular disease prevention: How can we
improve communication about risk, benefits and harms?
SO PATIENT EDUCATION AND COUNSELING
LA English
DT Article
DE Cardiovascular disease; Risk communication; Risk assessment; Risk
formats; Heuristics; Qualitative research
ID TOOL; INFORMATION
AB Objective: Cardiovascular disease (CVD) prevention guidelines recommend medication based on the probability of a heart attack/stroke in the next 5-10 years. However, heuristics and biases make risk communication challenging for doctors. This study explored how patients interpret personalised CVD risk results presented in varying formats and timeframes.
Methods: GPs recruited 25 patients with CVD risk factors and varying medication history. Participants were asked to 'think aloud' while using two CVD risk calculators that present probabilistic risk in different ways, within a semi-structured interview. Transcribed audio-recordings were coded using Framework Analysis.
Results: Key themes were: 1) numbers lack meaning without a reference point; 2) risk results need to be both credible and novel; 3) selective attention to intervention effects. Risk categories (low/moderate/high) provided meaningful context, but short-term risk results were not credible if they didn't match expectations. Colour-coded icon arrays showing the effect of age and interventions were seen as novel and motivating. Those on medication focused on benefits, while others focused on harms.
Conclusion: CVD risk formats need to be tailored to patient expectations and experiences in order to counteract heuristics and biases.
Practice implications: Doctors need access to multiple CVD risk formats to communicate effectively about CVD prevention. (C) 2017 Elsevier B.V. All rights reserved.
C1 [Bonner, Carissa; McKinn, Shannon; Jansen, Jesse; Trevena, Lyndal; McCaffery, Kirsten] Univ Sydney, Sydney Sch Publ Hlth, Sydney, NSW, Australia.
[Lau, Annie] Macquarie Univ, Australian Inst Hlth Innovat, Ctr Hlth Informat, Sydney, NSW, Australia.
[Doust, Jenny] Bond Univ, Fac Hlth Sci & Med, Robina, Australia.
C3 University of Sydney; Macquarie University; Bond University
RP Bonner, C (corresponding author), Univ Sydney, Edward Ford Bldg A27, Sydney, NSW 2006, Australia.
EM carissa.bonner@sydney.edu.au; shannon.mckinn@sydney.edu.au;
annie.lau@mq.edu.au; jesse.jansen@sydney.edu.au; jdoust@bond.edu.au;
lyndal.trevena@sydney.edu.au; kirsten.mccaffery@sydney.edu.au
RI McCaffery, Kirsten/K-7945-2019; Doust, Jenny/AGI-8773-2022; McKinn,
Shannon/AAW-7934-2020; Bonner, Carissa/AFL-3726-2022
OI McCaffery, Kirsten/0000-0003-2696-5006; Doust,
Jenny/0000-0002-4024-9308; McKinn, Shannon/0000-0001-6384-1745; Bonner,
Carissa/0000-0002-4797-6460; Lau, Annie Y.S./0000-0002-3028-4222
FU National Health and Medical Research Council (NHMRC) through the
Screening and Test Evaluation Program [633003]
FX The study was supported by the National Health and Medical Research
Council (NHMRC) through the Screening and Test Evaluation Program (No.
633003). The funders had no role in the design or conduct of the study;
in the collection, analysis, and interpretation of the data; or in the
preparation or approval of the manuscript.
CR ANDERSON KM, 1991, AM HEART J, V121, P293, DOI 10.1016/0002-8703(91)90861-B
[Anonymous], 2011, THINKING
[Anonymous], NICE CLINICAL GUIDEL
Barbour RS, 2001, BMJ-BRIT MED J, V322, P1115, DOI 10.1136/bmj.322.7294.1115
Bonner C, 2015, MED DECIS MAKING, V35, P967, DOI 10.1177/0272989X15597224
Bonner C, 2015, HEALTH PSYCHOL, V34, P253, DOI 10.1037/hea0000122
Bonner C, 2014, BMC FAM PRACT, V15, DOI 10.1186/1471-2296-15-106
Bonner C, 2014, J MED INTERNET RES, V16, P118, DOI 10.2196/jmir.3190
Bonner C, 2013, MED J AUSTRALIA, V199, P485, DOI 10.5694/mja13.10133
Bowen GA, 2008, QUAL RES, V8, P137, DOI 10.1177/1468794107085301
D'Agostino RB, 2008, CIRCULATION, V117, P743, DOI 10.1161/CIRCULATIONAHA.107.699579
Dillard AJ, 2011, ANN BEHAV MED, V42, P262, DOI 10.1007/s12160-011-9287-8
Doust J, 2012, AUST FAM PHYSICIAN, V41, P805
Fagerlin A, 2007, PATIENT EDUC COUNS, V69, P140, DOI 10.1016/j.pec.2007.08.008
Ferket BS, 2010, ARCH INTERN MED, V170, P27, DOI 10.1001/archinternmed.2009.434
Goff DC, 2014, J AM COLL CARDIOL, V63, P2935, DOI 10.1016/j.jacc.2013.11.005
Jackson R, 2005, LANCET, V365, P434, DOI 10.1016/S0140-6736(05)17833-7
Kuusela H, 2000, AM J PSYCHOL, V113, P387, DOI 10.2307/1423365
Lopez-Gonzalez AA, 2015, EUR J PREV CARDIOL, V22, P389, DOI 10.1177/2047487313518479
Marshall MN, 1996, FAM PRACT, V13, P522, DOI 10.1093/fampra/13.6.522
McCaffery KJ, 2010, MED DECIS MAKING, V30, P35, DOI 10.1177/0272989X09342279
Neuner-Jehle S, 2011, BMC FAM PRACT, V12, DOI 10.1186/1471-2296-12-15
New Zealand Guidelines Group, 2013, NEW ZEALAND PRIMARY
NNational Vascular Disease Prevention Alliance (NVDPA), 2009, GUIDELINES FOR THE A
NNational Vascular Disease Prevention Alliance (NVDPA), 2012, GUIDELINES FOR THE M
Oertelt-Prigione S, 2015, BMC MED, V13, DOI 10.1186/s12916-015-0304-9
Piepoli MF, 2016, EUR HEART J, V37, P2315, DOI 10.1093/eurheartj/ehw106
Polak L, 2015, BRIT J GEN PRACT, V65, pE264, DOI 10.3399/bjgp15X684433
Ritchie J., 2003, A Guide for Social Science Students Researchers, P219
Scott IA, 2017, MED J AUSTRALIA, V206, DOI 10.5694/mja16.00999
Shah AK, 2008, PSYCHOL BULL, V134, P207, DOI 10.1037/0033-2909.134.2.207
Sinayev A, 2015, MED DECIS MAKING, V35, P937, DOI 10.1177/0272989X15584922
Soureti A, 2010, EUR J CARDIOV PREV R, V17, P519, DOI 10.1097/HJR.0b013e328337ccd3
Trevena B. J., 2013, BMC MED INFORM DECIS, V13, pS7, DOI [10.1186/1472-6947-13-S2-S7, DOI 10.1186/1472-6947-13-S2-S7]
Ubel PA, 2010, PATIENT EDUC COUNS, V80, P158, DOI 10.1016/j.pec.2009.10.021
Waldron CA, 2011, PATIENT EDUC COUNS, V82, P169, DOI 10.1016/j.pec.2010.04.014
Zikmund-Fisher BJ, 2013, MED CARE RES REV, V70, p37S, DOI 10.1177/1077558712458541
NR 37
TC 16
Z9 19
U1 0
U2 12
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 0738-3991
J9 PATIENT EDUC COUNS
JI Patient Educ. Couns.
PD MAY
PY 2018
VL 101
IS 5
BP 843
EP 853
DI 10.1016/j.pec.2017.12.003
PG 11
WC Public, Environmental & Occupational Health; Social Sciences,
Interdisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Public, Environmental & Occupational Health; Social Sciences - Other
Topics
GA GD3ZH
UT WOS:000430441800010
PM 29269097
OA Green Submitted
DA 2024-09-05
ER
PT J
AU LUDL, H
SCHOPE, K
MANGELSDORF, I
AF LUDL, H
SCHOPE, K
MANGELSDORF, I
TI SEARCHING FOR INFORMATION ON CHEMICAL-SUBSTANCES IN SELECTED BIOMEDICAL
BIBLIOGRAPHIC DATABASES
SO CHEMOSPHERE
LA English
DT Article
DE BIBLIOGRAPHIC DATABASES; ONLINE RETRIEVAL; EVALUATION OF CHEMICALS;
CHEMICAL SUBSTANCES; CAS NUMBER; SUBSTANCE NAMES; RECALL; PRECISION
AB A method was developed which allows effective searching for information on chemical substances in databases. Several searches for chemicals in bibliographic databases were carried out to analyse the method of indexing chemical names. The recall rates of documents were compared to evaluate information resources as well as searching strategies. Recall rates of documents searched with the CAS Nos. were compared to those searched with substance name. It turned out that searching for substances is most specific and fastest with CAS Nos. They should always be used whenever possible. However, this is not sufficient in many BDs, making an additional search using chemical names necessary. Specific search options that have to be considered for each database are reported.
RP LUDL, H (corresponding author), GSF FORSCHUNGSZENTRUM UNWELT & GESUNDHEIT,INST TOXIKOL,INGOLSTADTER LANDSTR 1,D-85758 OBERSCHLEISSHEIM,GERMANY.
CR DOSZKOCS TE, 1976, J CHEM INF COMP SCI, V16, P131, DOI 10.1021/ci60007a003
GREIM H, 1993, CHEMOSPHERE, V26, P1653, DOI 10.1016/0045-6535(93)90110-Q
HARTER SP, 1986, E COMMUNICATION
HOECHST, 1991, GRUNDDATENSATZ DINOS
HOECHST, 1991, GRUNDDATENSATZ DIMET
HOECHST, 1991, GRUNDDATENSATZ KAMPF
HOECHST, 1991, GRUNDDATENSATZ CROTO
SCHON N, 1991, Z UMWELTCHEM OKOTOX, V3, P183
SCHON N, 1992, Z UMWELTCHEM OKOTOX, V4, P343
SCHULTEHILLEN J, 1991, DATENBANKFUHRER NATU
SCHULTHEISZ RJ, 1981, J AM SOC INFORM SCI, V11, P421
1991, DATA SHEETS
1991, BENUTZERHANDBUCH EMB
1991, BIOMEDICAL INFORMATI
1994, ECETOC30 TECHN REP
1991, BENUTZERHANDBUCH SCI
1991, DIMDI GRIPS0191 DTSC
1991, BIOSIS SEARCH GUIDE
1993, EMBASE USER MANUAL
1991, GRIPS KOMMANDOSPRACH
1991, GUIDE COMMANDS
1991, BENUTZERHANDBUCH MED
1986, BENUTZERHANDBUCH CHE
1990, MEMOKARTEN
NR 24
TC 4
Z9 4
U1 0
U2 0
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB
SN 0045-6535
J9 CHEMOSPHERE
JI Chemosphere
PD JUL
PY 1995
VL 31
IS 2
BP 2611
EP 2628
DI 10.1016/0045-6535(95)00134-T
PG 18
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA RL927
UT WOS:A1995RL92700004
PM 7663948
DA 2024-09-05
ER
PT C
AU Bioglio, L
Rho, V
Pensa, RG
AF Bioglio, Livio
Rho, Valentina
Pensa, Ruggero G.
BE Yamamoto, A
Kida, T
Uno, T
Kuboyama, T
TI Measuring the Inspiration Rate of Topics in Bibliographic Networks
SO DISCOVERY SCIENCE, DS 2017
SE Lecture Notes in Artificial Intelligence
LA English
DT Proceedings Paper
CT 20th International Conference on Discovery Science (DS)
CY OCT 15-17, 2017
CL Kyoto, JAPAN
DE Information diffusion; Topic modeling; Citation networks
AB Information diffusion is a widely-studied topic thanks to its applications to social media/network analysis, viral marketing campaigns, influence maximization and prediction. In bibliographic networks, for instance, an information diffusion process takes place when some authors, that publish papers in a given topic, influence some of their neighbors (coauthors, citing authors, collaborators) to publish papers in the same topic, and the latter influence their neighbors in their turn. This well-accepted definition, however, does not consider that influence in bibliographic networks is a complex phenomenon involving several scientific and cultural aspects. In fact, in scientific citation networks, influential topics are usually considered those ones that spread most rapidly in the network. Although this is generally a fact, this semantics does not consider that topics in bibliographic networks evolve continuously. In fact, knowledge, information and ideas are dynamic entities that acquire different meanings when passing from one person to another. Thus, in this paper, we propose a new definition of influence that captures the diffusion of inspiration within the network. We propose a measure of the inspiration rate called inspiration rank. Finally, we show the effectiveness of our measure in detecting the most inspiring topics in a citation network built upon a large bibliographic dataset.
C1 [Bioglio, Livio; Rho, Valentina; Pensa, Ruggero G.] Univ Turin, Dept Comp Sci, Turin, Italy.
C3 University of Turin
RP Pensa, RG (corresponding author), Univ Turin, Dept Comp Sci, Turin, Italy.
EM livio.bioglio@unito.it; valentina.rho@unito.it; ruggero.pensa@unito.it
RI Pensa, Ruggero G./B-5994-2011
OI Pensa, Ruggero G./0000-0001-5145-3438
FU project MIMOSA (MultIModal Ontology-driven query system for the
heterogeneous data of a SmArtcity, "Progetto di Ateneo Torino_call")
[2014_L2_157]
FX This work is partially funded by project MIMOSA (MultIModal
Ontology-driven query system for the heterogeneous data of a SmArtcity,
"Progetto di Ateneo Torino_call2014_L2_157", 2015-17).
CR [Anonymous], 2009, P 2009 SIAM INT C DA
[Anonymous], 2010, P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC
[Anonymous], 2004, INFORM DIFFUSION BLO, DOI DOI 10.1145/988672.988739
[Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076
[Anonymous], PHYS REV E 2
[Anonymous], P ICWSM 2010
[Anonymous], 2004, P 13 INT C WORLD WID, DOI DOI 10.1145/1046456.1046462
[Anonymous], 2003, P 9 ACM SIGKDD INT C
[Anonymous], P ICWSM 2009
Bakshy Eytan, 2012, P 21 INT C WORLD WID, P519
Barbieri N, 2013, KNOWL INF SYST, V37, P555, DOI 10.1007/s10115-013-0646-6
Boguslawski B, 2015, IEEE INT CONF VLSI, P116, DOI 10.1109/VLSI-SoC.2015.7314402
Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047
Coates Adam, 2013, P 30 INT C MACH LEAR, P1337
Cui P, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P185
DALEY DJ, 1964, NATURE, V204, P1118, DOI 10.1038/2041118a0
Goldenberg J, 2001, MARKET LETT, V12, P211, DOI 10.1023/A:1011122126881
Gui H., 2014, P 23 ACM INT C C INF, P649, DOI DOI 10.1145/2661829.2662000
Hethcote HW, 2000, SIAM REV, V42, P599, DOI 10.1137/S0036144500371907
Leskovec J., 2007, ACM Transactions on Knowledge Discovery from Data (TKDD), V1, P5
Rehurek R., 2010, LREC
Seo JS, 2015, IEEE INT CONF VLSI, P49, DOI 10.1109/VLSI-SoC.2015.7314390
Spearman C, 1904, AM J PSYCHOL, V15, P72, DOI 10.2307/1412159
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
NR 24
TC 3
Z9 3
U1 0
U2 2
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2945-9133
EI 1611-3349
BN 978-3-319-67786-6; 978-3-319-67785-9
J9 LECT NOTES ARTIF INT
PY 2017
VL 10558
BP 309
EP 323
DI 10.1007/978-3-319-67786-6_22
PG 15
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BK5YA
UT WOS:000439773400022
DA 2024-09-05
ER
PT J
AU Gálvez, RH
AF Galvez, Ramiro H.
TI Assessing author self-citation as a mechanism of relevant knowledge
diffusion
SO SCIENTOMETRICS
LA English
DT Article
DE Author self-citation; Latent Dirichlet allocation; Semantic
dissimilarity; Knowledge diffusion
ID INDEX; MACRO
AB Author self-citation is a practice that has been historically surrounded by controversy. Although the prevalence of self-citations in different scientific fields has been thoroughly analysed, there is a lack of large scale quantitative research focusing on its usefulness at guiding readers in finding new relevant scientific knowledge. In this work we empirically address this issue. Using as our main corpus the entire set of PLOS journals research articles, we train a topic discovery model able to capture semantic dissimilarity between pairs of articles. By dividing pairs of articles involved in intra-PLOS citations into self-citations (articles linked by a cite which share at least one author) and non-self-citations (articles linked by a cite which share no author), we observe the distribution of semantic dissimilarity between citing and cited papers in both groups. We find that the typical semantic distance between articles involved in self-citations is significantly smaller than the observed one for articles involved in non-self-citations. Additionally, we find that our results are not driven by the fact that authors tend to specialize in particular areas of research, make use of specific research methodologies or simply have particular styles of writing. Overall, assuming shared content as an indicator of relevance and pertinence of citations, our results indicate that self-citations are, in general, useful as a mechanism of knowledge diffusion.
C1 [Galvez, Ramiro H.] Univ Buenos Aires, Dept Comp, FCEyN, Buenos Aires, DF, Argentina.
C3 University of Buenos Aires
RP Gálvez, RH (corresponding author), Univ Buenos Aires, Dept Comp, FCEyN, Buenos Aires, DF, Argentina.
EM rgalvez@dc.uba.ar
CR Aksnes DW, 2003, SCIENTOMETRICS, V56, P235, DOI 10.1023/A:1021919228368
Anauati V, 2016, ECON INQ, V54, P1339, DOI 10.1111/ecin.12292
[Anonymous], 2003, Diffusion of Innovations
[Anonymous], D LIB MAGAZINE
[Anonymous], PLOS SUBJ AR THES
Ball P, 2005, NATURE, V436, P900, DOI 10.1038/436900a
Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5
Bird Steven, 2004, NLTK: The Natural Language Toolkit, P31
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Briet J, 2009, PHYS REV A, V79, DOI 10.1103/PhysRevA.79.052311
Cetina Karin Knorr, 1981, MANUFACTURE KNOWLEDG
Chamberlain S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122559
Eichstaedt JC, 2015, PSYCHOL SCI, V26, P159, DOI 10.1177/0956797614557867
Engqvist L, 2008, TRENDS ECOL EVOL, V23, P250, DOI 10.1016/j.tree.2008.01.009
Estabrooks CA, 2008, IMPLEMENT SCI, V3, DOI 10.1186/1748-5908-3-49
Fagerberg J, 2010, HBK ECON, V2, P833, DOI 10.1016/S0169-7218(10)02004-6
Glänzel W, 2004, SCIENTOMETRICS, V59, P281, DOI 10.1023/B:SCIE.0000018535.99885.e9
Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
HU D.J., 2009, LATENT DIRICHLET ALL
Hudson J, 2007, SCIENTOMETRICS, V71, P231, DOI 10.1007/s11192-007-1671-6
Hyland K, 2003, J AM SOC INF SCI TEC, V54, P251, DOI 10.1002/asi.10204
Kulkarni AV, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020885
LAWANI SM, 1982, J AM SOC INFORM SCI, V33, P281
Loria S., 2013, TextBlob: Simplified Text Processing - TextBlob 0.16.0 documentation
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
Maliniak D, 2013, INT ORGAN, V67, P889, DOI 10.1017/S0020818313000209
Merton R. K., 1974, SOCIOLOGY SCI THEORE
Motamed M, 2002, CLIN OTOLARYNGOL, V27, P318, DOI 10.1046/j.1365-2273.2002.00574.x
Park HW, 2005, SCIENTOMETRICS, V65, P3, DOI 10.1007/s11192-005-0257-4
Rehurek R., 2010, LREC
Schreiber M, 2007, EPL-EUROPHYS LETT, V78, DOI 10.1209/0295-5075/78/30002
SEGLEN PO, 1992, J AM SOC INFORM SCI, V43, P628, DOI 10.1002/(SICI)1097-4571(199210)43:9<628::AID-ASI5>3.0.CO;2-0
Snyder H, 1998, J INF SCI, V24, P431, DOI 10.1177/016555159802400606
TAGLIACOZZO R, 1977, J DOC, V33, P251, DOI 10.1108/eb026644
Yu G, 2010, SCIENTOMETRICS, V84, P81, DOI 10.1007/s11192-009-0090-2
NR 37
TC 14
Z9 14
U1 5
U2 64
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUN
PY 2017
VL 111
IS 3
BP 1801
EP 1812
DI 10.1007/s11192-017-2330-1
PG 12
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA EV4RE
UT WOS:000401747900028
DA 2024-09-05
ER
PT J
AU Chavez, MD
Ceballos, HG
Cantu-Ortiz, FJ
AF Chavez, Mario D.
Ceballos, Hector G.
Cantu-Ortiz, Francisco J.
TI A data analytics approach to contrast the performance of teaching (only)
vs. research professors
SO INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM
LA English
DT Article
DE Student Evaluation of Teaching (SET); Teaching Professor; Research
Professor; Data Science; ANOVA and Logistic Regression; Innovation in
Higher Education
ID STUDENT EVALUATION SCORES; HIGHER-EDUCATION; RATINGS
AB This research article presents a study to compare the teaching performance of teaching-only versus teaching-and-research professors at higher education institutions. It is a common belief that, generally, teaching professors outperform research professors in teaching-and-research universities according to student perceptions reflected in student surveys. This case study presents experimental evidence that shows this is not always the case and that, under certain circumstances, it can be the contrary. The case study is from Tecnologico de Monterrey (Tec), a teaching-and-research, private university in Mexico that has developed a research profile during the last two decades using a mix of teaching-only and teaching-and-research faculty members; during this time period, the university has had a growing ascendancy in world university rankings. Data from an institutional student survey called the ECOA was used. The data set contains more than 118,000 graduate and undergraduate courses for 5 semesters (January 2017 to May 2019). The results presented were derived from statistical to data mining methods, including Analysis of Variance and Logistic Regression, that were applied to this data set of more than nine thousand professors who taught those courses. The results show that teaching-and-research professors perform better or at least the same as teaching-only professors. The differences found in teaching with respect to attributes like professors' gender, age, and research level are also presented.
C1 [Chavez, Mario D.; Ceballos, Hector G.; Cantu-Ortiz, Francisco J.] Tecnol Monterrey, Sch Sci & Engn, Ave Eugenio Garza Sada 2501, Monterrey 64989, NL, Mexico.
C3 Tecnologico de Monterrey
RP Cantu-Ortiz, FJ (corresponding author), Tecnol Monterrey, Sch Sci & Engn, Ave Eugenio Garza Sada 2501, Monterrey 64989, NL, Mexico.
EM A00826797@itesm.mx; ceballos@tec.mx; fcantu@tec.mx
RI Ceballos, Hector G./AAC-3747-2022; Cantu-Ortiz, Francisco J./B-8457-2009
OI Ceballos, Hector G./0000-0002-2460-3442; Cantu-Ortiz, Francisco
J./0000-0002-2015-0562
CR Akella D, 2010, J MANAGE ORGAN, V16, P100, DOI 10.5172/jmo.16.1.100
[Anonymous], 2000, J DATA WAREHOUSING
[Anonymous], 2011, 50 IDEA
[Anonymous], 2010, STUD EDUC EVAL, DOI DOI 10.1016/J.STUEDUC.2011.02.001
[Anonymous], 2013, The framework for teaching evaluation instrument
Association for the Advancement of Artificial Intelligence, 2016, ART INT LIF 2030 100
Basow S.A., 2005, J PERS EVAL EDUC, V18, P91, DOI 10.1007/s11092-006-9001-8
Bragg D, 2019, ASSETS'19: THE 21ST INTERNATIONAL ACM SIGACCESS CONFERENCE ON COMPUTERS AND ACCESSIBILITY, P16, DOI 10.1145/3308561.3353774
Breslow L., 2013, RES PRACTICE ASSESSM, V8
Bridgstock R., 2019, HIGHER ED FUTURE GRA, P296, DOI [10.4337/9781788972611, DOI 10.4337/9781788972611]
Bucco Guilherme Brandelli, 2017, Gest. Prod., V24, P40, DOI 10.1590/0104-530x2133-15
Cantú FJ, 2009, J KNOWL MANAG, V13, P154, DOI 10.1108/13673270910931233
Cantu-Ortiz F, 2018, RES ANAL
Chaerani D., 2014, INT C ADV ED TECHN
Chapman P., 2000, SPSS, inc
Coffrin C., 2014, P 4 INT C LEARN AN K, P83
CRISP-DM, 2019, CROSS IND STAND PROC
Djurdjevic D., 2007, Swiss Journal of Economics and Statistics (SJES), V143, P365
Fowler G. A., 2013, WALL STREET J
Garcia N, 2017, 4 C INT INN ED MONT
Gruber T, 2010, J MARK HIGH EDUC, V20, P175, DOI 10.1080/08841241.2010.526356
Harper G, 2006, DRUG DISCOV TODAY, V11, P694, DOI 10.1016/j.drudis.2006.06.006
Hew KF, 2016, BRIT J EDUC TECHNOL, V47, P320, DOI 10.1111/bjet.12235
Jordan Katy, 2017, MOOC COMPLETION RATE
Kaplan AM, 2016, BUS HORIZONS, V59, P441, DOI 10.1016/j.bushor.2016.03.008
Lange Arthur M, 2017, INFORM TECHNOLOGY OR
Marshal Kim, 2013, RETHINKING TEACHER S
McPherson MA, 2009, EAST ECON J, V35, P37, DOI 10.1057/palgrave.eej.9050042
McPherson MA, 2007, SOC SCI QUART, V88, P868, DOI 10.1111/j.1540-6237.2007.00487.x
Provost F, 2015, DATA SCI BUSINESS WH
Salazar MC, 2019, LANGUAGE CULTURE TEA
Shirky C., 2013, CHRONICLE HIGHER ED
Smith SW, 2007, WOMEN STUD COMMUN, V30, P64, DOI 10.1080/07491409.2007.10162505
Spooren P, 2013, REV EDUC RES, V83, P598, DOI 10.3102/0034654313496870
Stack S, 2003, RES HIGH EDUC, V44, P539, DOI 10.1023/A:1025439224590
Tecnologico de Monterrey, 2019, ED MOD TECN MONT
Ting KF, 2000, RES HIGH EDUC, V41, P637, DOI 10.1023/A:1007075516271
Tsinidou M, 2010, QUAL ASSUR EDUC, V18, P227, DOI 10.1108/09684881011058669
Yousef Ahmed Mohamed Fahmy, 2014, 6th International Conference on Computer-Supported Education (CSEDU 2014). Proceedings, P9
NR 39
TC 1
Z9 1
U1 0
U2 11
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1955-2513
EI 1955-2505
J9 INT J INTERACT DES M
JI Int. J. Interact. Des. Manuf.-IJIDeM
PD DEC
PY 2020
VL 14
IS 4
BP 1577
EP 1592
DI 10.1007/s12008-020-00713-5
EA SEP 2020
PG 16
WC Engineering, Manufacturing
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA OQ9JH
UT WOS:000573412000001
DA 2024-09-05
ER
PT J
AU Ravindran, AC
Kokjohn, SL
AF Ravindran, Arun C.
Kokjohn, Sage L.
TI Evaluation of the sample size requirements of machine learning models
used in engine design and research
SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH
LA English
DT Article
DE Engine research; machine learning; Gaussian process regression; sample
size requirements; CDC; RCCI; DISI
ID GAUSSIAN PROCESS REGRESSION; OPTIMIZATION
AB Machine Learning (ML) techniques have been effectively used to learn the intricate relationships between variables that play a significant role in the field of engine design. However, there are two challenges to this approach - (1) Identifying ML regression models that could capture the trends of a response variable, given a non-parametric training set of relatively small size, with an acceptable accuracy and response time, and (2) identifying the size of the dataset, with respect to the input parameters, to be used for training and validation of the ML models. There is not enough information in the literature to reach a consensus on the sampling size to be used for an engine design problem that would yield an acceptable measure of goodness-of-fit. This is evident from the varied size of the training/validation data size used within the engine research community, as will be elaborated on in the following sections. The objective of this paper is to provide an insight into the sampling size required by the different ML models to achieve an acceptable fit between the model and the data, to be used in three types of engine design/optimization problems - (1) conventional diesel combustion (CDC) engine performance over a wide range of speed and load, (2) cold-start operation of a direct-injected spark-ignition (DISI) engine, and (3) high-load performance of a dual-fuel reactivity-controlled compression ignition (RCCI) engine.
C1 [Ravindran, Arun C.; Kokjohn, Sage L.] Univ Wisconsin, Dept Mech Engn, 1513 Univ Ave, Madison, WI 53706 USA.
C3 University of Wisconsin System; University of Wisconsin Madison
RP Ravindran, AC (corresponding author), Univ Wisconsin, Dept Mech Engn, 1513 Univ Ave, Madison, WI 53706 USA.
EM aravindran3@wisc.edu
OI C RAVINDRAN, ARUN/0000-0002-8841-9150
CR Alonso JM, 2007, IEEE T EVOLUT COMPUT, V11, P46, DOI 10.1109/TEVC.2006.876364
Amsden A.A., 1999, KIVA-3V, Release 2, Improvements to KIVA-3V
Anguita D., 2012, ESANN, P441
Badra J., 2019, INTERNAL COMBUSTION
Bertram AM., SAE INT
Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142
Clifton L, 2012, IEEE ENG MED BIO, P6161, DOI 10.1109/EMBC.2012.6347400
Costa M, 2014, ENRGY PROCED, V45, P711, DOI 10.1016/j.egypro.2014.01.076
Dürichen R, 2014, 2014 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI), P492, DOI 10.1109/BHI.2014.6864410
He Y., 2002, SAE TRANSACTIONS, P1532
Hultquist C, 2014, REMOTE SENS LETT, V5, P723, DOI 10.1080/2150704X.2014.963733
Kavuri C, 2020, INT J ENGINE RES, V21, P1251, DOI 10.1177/1468087418808949
Kodavasal J, 2018, J ENERG RESOUR-ASME, V140, DOI 10.1115/1.4040062
MATLAB, 2018, MATLAB 9 5 0 94444 R
Moiz AA, 2018, SAE INT J COMMER VEH, V11, P291, DOI 10.4271/2018-01-0190
Owoyele O, 2022, INT J ENGINE RES, V23, P1586, DOI 10.1177/14680874211023466
Owoyele O, 2021, APPL ENERG, V285, DOI 10.1016/j.apenergy.2021.116455
Pasolli L, 2010, IEEE GEOSCI REMOTE S, V7, P464, DOI 10.1109/LGRS.2009.2039191
Platt JC, 2002, ADV NEUR IN, V14, P1425
Rasmussen CE, 2004, LECT NOTES ARTIF INT, V3176, P63, DOI 10.1007/978-3-540-28650-9_4
Ravindran AC, 2021, ENERGY AI, V5, DOI 10.1016/j.egyai.2021.100072
Rezaei J, 2015, APPL ENERG, V138, P460, DOI 10.1016/j.apenergy.2014.10.088
Richards K.J., 2015, CONVERGE VERSION 23
Rychetsky M., 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), P969, DOI 10.1109/IJCNN.1999.831085
Wong KI, 2013, ENERGY, V55, P519, DOI 10.1016/j.energy.2013.03.057
Yu H, 2012, HDB NATURAL COMPUTIN, P479, DOI [DOI 10.1007/978-3-540-92910-9_15, 10.1007/978-3-540-92910-9_15, 10.1007/978-3-540-92910-9 15]
NR 26
TC 0
Z9 0
U1 1
U2 1
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1468-0874
EI 2041-3149
J9 INT J ENGINE RES
JI Int. J. Engine Res.
PD JUL
PY 2023
VL 24
IS 7
BP 2973
EP 2990
DI 10.1177/14680874221137185
EA NOV 2022
PG 18
WC Thermodynamics; Engineering, Mechanical; Transportation Science &
Technology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Thermodynamics; Engineering; Transportation
GA O6BN2
UT WOS:000890518800001
DA 2024-09-05
ER
PT C
AU Minglana, J
Tobias, RR
Roxas, RE
AF Minglana, Johanna
Tobias, Rogelio Ruzcko
Roxas, Rachel Edita
GP IEEE
TI Artificial Intelligence Applications in Quality Management System: A
Bibliometric Study
SO 2021 IEEE REGION 10 CONFERENCE (TENCON 2021)
LA English
DT Proceedings Paper
CT IEEE Region 10 Conference (TENCON)
CY DEC 07-10, 2021
CL Auckland, NEW ZEALAND
DE artificial intelligence; bibliometrics; ISO 9001:2015; Industry 4.0;
Quality 4.0; quality management system
AB This paper presents a systematic literature review and bibliometric analyses of publications in the field of Quality Management System (QMS) by authors who applied artificial intelligence (AI) in ISO 9001:2015 audits. Scopus-indexed papers that were published from 1998 to 2021 were evaluated based on the research publication metrics made available by Scopus. From the 142 extracted Scopus-indexed publications in September 2021, 109 or 76 percent of the publications remained after Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) procedure. Analyses and visualizations using VOSviewer reveal research productivity, affiliation and collaboration networks in various countries, and the corresponding relationship between research networks in the field of AI-enabled QMS. Findings reveal that QMS is leaning towards sustainability, big data, and applied technological innovations.
C1 [Minglana, Johanna; Tobias, Rogelio Ruzcko] Qual Management Off, Manila, Philippines.
[Minglana, Johanna] Natl Univ, Coll Educ Arts & Sci, Manila, Philippines.
[Tobias, Rogelio Ruzcko] Natl Univ, Coll Engn, Manila, Philippines.
[Roxas, Rachel Edita] Natl Univ, Coll Comp & Informat Technol, Manila, Philippines.
C3 National University Philippines; National University Philippines;
National University Philippines
RP Minglana, J (corresponding author), Qual Management Off, Manila, Philippines.; Minglana, J (corresponding author), Natl Univ, Coll Educ Arts & Sci, Manila, Philippines.
EM jgminglana@national-u.edu.ph; ruzcko@gmail.com;
reoroxas@national-u.edu.ph
CR Alejandrino Jonnel, 2020, 2020 IEEE Region 10 Conference (TENCON), P1340, DOI 10.1109/TENCON50793.2020.9293829
Ali MH, 2018, TRENDS FOOD SCI TECH, V71, P216, DOI 10.1016/j.tifs.2017.11.016
[Anonymous], 2019, International Journal of Recent Technology and Engineering, V8, P420, DOI DOI 10.35940/IJRTE.B1014.078219
Asif M, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120820
Atanassova Iana, 2019, Front Res Metr Anal, V4, P2, DOI 10.3389/frma.2019.00002
Barakhnin VB, 2018, J PHYS CONF SER, V1117, DOI 10.1088/1742-6596/1117/1/012001
Cabanac G, 2020, SCIENTOMETRICS, V125, P2835, DOI 10.1007/s11192-020-03763-4
Cabanac G, 2018, SCIENTOMETRICS, V116, P1225, DOI 10.1007/s11192-018-2861-0
Chen G, 2016, J INFORMETR, V10, P212, DOI 10.1016/j.joi.2016.01.006
Danilova KB, 2019, BUS PROCESS MANAG J, V25, P1377, DOI 10.1108/BPMJ-05-2017-0123
Forero D. V., 2020, QUALITY 4 0 HOW HAND, P1
Galata DL, 2021, EUR J PHARM SCI, V159, DOI 10.1016/j.ejps.2021.105717
Gorro K, 2017, INT CONF ASIAN LANG, P293, DOI 10.1109/IALP.2017.8300601
Hallinger P, 2019, REV EDUC RES, V89, P335, DOI 10.3102/0034654319830380
Jonczyk J. A., 2018, STUD LOGIC GRAMM RHE, V56, P143, DOI DOI 10.2478/SLGR-2018
Karthi S, 2012, TOTAL QUAL MANAG BUS, V23, P237, DOI 10.1080/14783363.2011.637803
Lam AJ, 2017, TENCON IEEE REGION, P2409, DOI 10.1109/TENCON.2017.8228265
Lauguico S. C., 2020, International Journal of Environmental Science and Development, V11, P442, DOI 10.18178/ijesd.2020.11.9.1288
Lauguico S, 2019, I C HUMANOID NANOTEC, DOI 10.1109/hnicem48295.2019.9072734
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Ligutom C, 2016, INT CONF ASIAN LANG, P362, DOI 10.1109/IALP.2016.7876006
Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678
Mao M., 2018, LNCS, V0943
Martín-Martín A, 2018, SCIENTOMETRICS, V114, P1251, DOI 10.1007/s11192-017-2587-4
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Oke S. A., 2007, International Journal of Productivity and Quality Management, V2, P81, DOI 10.1504/IJPQM.2007.011469
Orjuela A. Gongora, 2010, ORINOQUIA, V14, P121, DOI [10.22579/20112629.85, DOI 10.22579/20112629.85]
Ancheta JR, 2017, TENCON IEEE REGION, P723, DOI 10.1109/TENCON.2017.8227955
Ruzcko Tobias Rogelio, 2020, 2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech), P235, DOI 10.1109/LifeTech48969.2020.1570619208
Singh H., 2014, International Letters of Social and Humanistic Sciences, V12, P188, DOI DOI 10.18052/WWW.SCIPRESS.COM/ILSHS.32.188
Somasundaram M., 2020, PROCEDIA COMPUTER SC, V172, P438, DOI [https://doi.org/10.1016/j.procs.2020.05.096, DOI 10.1016/J.PROCS.2020.05.096]
Tobias R. R., 2020, 2020 IEEE REG 10 C
Tobias RR, 2020, IEEE RIVF INT CONF, P192, DOI 10.1109/rivf48685.2020.9140733
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
NR 35
TC 3
Z9 3
U1 6
U2 28
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-9532-5
PY 2021
BP 947
EP 952
DI 10.1109/TENCON54134.2021.9707340
PG 6
WC Computer Science, Artificial Intelligence; Computer Science, Software
Engineering; Engineering, Multidisciplinary; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering; Telecommunications
GA BT1OC
UT WOS:000799485900167
DA 2024-09-05
ER
PT J
AU Maroteau, G
An, JS
Murgier, J
Hulet, C
Ollivier, M
Ferreira, A
AF Maroteau, Gaelle
An, Jae-Sung
Murgier, Jerome
Hulet, Christophe
Ollivier, Matthieu
Ferreira, Alexandre
TI Evaluation of the impact of large language learning models on articles
submitted to Orthopaedics & Traumatology: Surgery & Research
(OTSR): A significant increase in the use of artificial intelligence
in 2023
SO ORTHOPAEDICS & TRAUMATOLOGY-SURGERY & RESEARCH
LA English
DT Article
DE Artificial intelligence; ChatGPT; Large language learning models;
Chatbot; Scientific article
AB Introduction: There has been an unprecedented rise is the use of artificial intelligence (AI) amongst med-ical fields. Recently, a dialogue agent called ChatGPT (Generative Pre-trained Transformer) has grown in popularity through its use of large language models (LLM) to clearly and precisely generate text on demand. However, the impact of AI on the creation of scientific articles is remains unknown. A retrospec-tive study was carried out with the aim of answering the following questions: identify the presence of text generated by LLM before and after the increased usage of ChatGPT in articles submitted in OTSR; deter-mine if the type of article, the year of submission, and the country of origin, influenced the proportion of text generated, at least in part by AI.Material and methods: A total of 390 English articles were submitted to OTSR in January, February and March 2022 (n = 204) and over the same months of 2023 (n = 186) were analyzed. All articles were ana-lyzed using the ZeroGPT tool, which provides an assumed rate of AI use expressed as a percentage. A comparison of the average rate of AI use was carried out between the articles submitted in 2022 and 2023. This comparison was repeated keeping only the articles with the highest percentage of suspected AI use (greater than 10 and 20%). A secondary analysis was carried out to identify risk factors for AI use.Results: The average percentage of suspected LLM use in the entire cohort was 11% +/- 6, with 160 articles (41.0%) having a suspected AI rate greater than 10% and 61 (15.6%) with an assumed AI rate greater than 20%. A comparison between articles submitted in 2022 and 2023 revealed a significant increase in the use of these tools after the launch of ChatGPT 3.5 (9.4% in 2022 and 12.6% in 2023 [p = 0.004]). The number of articles with suspected AI rates of greater than 10 and 20% were significantly higher in 2023: >10%: 71 articles (34.8%) versus 89 articles (47.8%) (p = 0.008) and >20%: 21 articles (10.3%) versus 40 articles (21.5%) (p = 0.002). A risk factor analysis for LLLM use, demonstrated that authors of Asian geographic origin, and the submission year 2023 were associated with a higher rate of suspected AI use. An AI rate >20% was associated to Asian geographical origin with an odds ratio of 1.79 (95% CI: 1.03-3.11) (p = 0.029), while the year of submission being 2023 had an odds ratio of 1.7 (95% CI: 1.1-2.5) (p = 0.02).Conclusion: This study highlights a significant increase in the use of LLM in the writing of articles sub-mitted to the OTSR journal after the launch of ChatGPT 3.5. The increasing use of these models raises questions about originality and plagiarism in scientific research. AI offers creative opportunities but also raises ethical and methodological challenges. Level of evidence: III; case control study.(c) 2023 Elsevier Masson SAS. All rights reserved.
C1 [Maroteau, Gaelle; Hulet, Christophe; Ferreira, Alexandre] Caen Univ Hosp, Dept Orthopaed & Traumatol, Unite Inserm Comete 1075, Ave Cote De Nacre, F-14000 Caen, France.
[An, Jae-Sung] Tokyo Med & Dent Univ, 1 Chome 5-45 Yushima, Bunkyo, Tokyo 1138510, Japan.
[Murgier, Jerome] Clin Aguilera, Serv Chirurg Orthoped, 21 Rue Estagnas, F-64200 Biarritz, France.
[Ollivier, Matthieu] St Marguer Hosp, Inst Movement & Locomot, Dept Orthopaed & Traumatol, BP 29,270 Blvd St Marguer, F-13274 Marseille, France.
[Ollivier, Matthieu] St Marguerite Hosp, AP HM, Dept Orthopaed & Traumatol, Aix Marseille Unit,Inst Locomot, Marseille, Brazil.
C3 CHU de Caen NORMANDIE; Universite de Caen Normandie; Tokyo Medical &
Dental University (TMDU); Aix-Marseille Universite; Assistance
Publique-Hopitaux de Marseille
RP Ferreira, A (corresponding author), Caen Univ Hosp, Dept Orthopaed & Traumatol, Unite Inserm Comete 1075, Ave Cote De Nacre, F-14000 Caen, France.
EM alexandreferreira0891@gmail.com
OI Maroteau, Gaelle/0000-0002-0923-7042; HULET,
Christophe/0000-0002-1011-6141; An, Jae-Sung/0009-0006-4975-2600;
Alexandre, FERREIRA/0000-0002-4624-3898
CR [Anonymous], 2022, ChatGPT: optimizing language models for dialogue
Bender Emily M., 2020, P 58 ANN M ASS COMP, P5185
Benhenneda R, 2023, Orthop Traumatol Surg Res, V109
Benhenneda R, 2023, Orthop Traumatol Surg Res, V109
Brown T., 2020, NEURIPS
Cahan P, 2023, STEM CELL REP, V18, P1, DOI 10.1016/j.stemcr.2022.12.009
Charles YP, 2023, ORTHOP TRAUMATOL-SUR, V109, DOI 10.1016/j.otsr.2022.103456
Coeffe T, 2023, GPT-3 et GPT-4: tout savoir sur les modeles d'OpenAI
Curtis GJ, 2016, HIGH EDUC RES DEV, V35, P1167, DOI 10.1080/07294360.2016.1161602
Gilat R, 2023, ARTHROSCOPY, V39, P1119, DOI 10.1016/j.arthro.2023.01.014
Graëff C, 2023, ORTHOP TRAUMATOL-SUR, V109, DOI 10.1016/j.otsr.2023.103564
Guy S, 2021, ORTHOP TRAUMATOL-SUR, V107, DOI 10.1016/j.otsr.2021.102837
Hovy D, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL) AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (IJCNLP), VOL 2, P483
Macdonald C, 2023, J GLOB HEALTH, V13, DOI 10.7189/jogh.13.01003
Ollivier M, 2023, KNEE SURG SPORT TR A, V31, P1190, DOI 10.1007/s00167-023-07372-5
Patel S, 2023, LANCET DIGIT HEALTH, V5, pE102, DOI 10.1016/S2589-7500(23)00023-7
Paulus P.B., 2003, Group Creativity: Innovation through Collaboration, P110, DOI [10.1093/acprof:oso/9780195147308.001.0001, DOI 10.1093/ACPROF:OSO/9780195147308.003.0006]
Posner RA, 2002, Am Acad Arts Sci
Radford A., 2019, LANGUAGE MODELS ARE
Runco MA, 2004, ANNU REV PSYCHOL, V55, P657, DOI 10.1146/annurev.psych.55.090902.141502
Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2
Simonton D, 2005, Choice Rev, V42, P42
Weaver CGW, 2021, CAN J CARDIOL, V37, P1156, DOI 10.1016/j.cjca.2021.03.003
NR 23
TC 4
Z9 4
U1 12
U2 14
PU ELSEVIER MASSON, CORP OFF
PI PARIS
PA 65 CAMILLE DESMOULINS CS50083 ISSY-LES-MOULINEAUX, 92442 PARIS, FRANCE
SN 1877-0568
J9 ORTHOP TRAUMATOL-SUR
JI Orthop. Traumatol.-Surg. Res.
PD DEC
PY 2023
VL 109
IS 8
AR 103720
DI 10.1016/j.otsr.2023.103720
EA NOV 2023
PG 6
WC Orthopedics; Surgery
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Orthopedics; Surgery
GA CV3W6
UT WOS:001127982300001
PM 37866509
DA 2024-09-05
ER
PT J
AU Song, XZR
Zhang, Y
Pan, R
Wang, HS
AF Song, Xizhuoran
Zhang, Yan
Pan, Rui
Wang, Hansheng
TI Link Prediction for Statistical Collaboration Networks Incorporating
Institutes and Research Interests
SO IEEE ACCESS
LA English
DT Article
DE Collaboration; Measurement; Machine learning; Finance; Predictive
models; Stochastic processes; Collaboration network; link prediction;
nodal attribute; similarity-based approach
ID SOCIAL NETWORK; RANDOM-WALK; EVOLUTION; COAUTHORSHIP; PATTERNS
AB An interesting application of the link prediction technique is detecting the potential new links in collaboration networks. In this study, we construct collaboration networks based on the co-authorship information of the papers published in 43 statistical journals from 2001 to 2018. We construct training and testing networks according to the timestamps of the papers and construct a classification dataset for link prediction. We calculate 20 similarity indices based on the training network to perform link prediction. Additionally, we consider nodal attributes (institutes and research interests) to develop two novel predictors called the same institute (SIN) and keywords match count (KMC). Several machine-learning classifiers including support vector machine, XGBoost and random forest are implemented to combine all predictors. After incorporating SIN and KMC, we observe that the area under the receiver operating characteristic curve values of all classifiers improved, indicating that SIN and KMC can significantly improve classification accuracy. Finally, we provide collaborative recommendations for researchers based on the proposed model.
C1 [Song, Xizhuoran; Pan, Rui] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 102206, Peoples R China.
[Zhang, Yan] Xiamen Univ, Sch Econ, Xiamen 361005, Peoples R China.
[Wang, Hansheng] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China.
C3 Central University of Finance & Economics; Xiamen University; Peking
University
RP Pan, R (corresponding author), Cent Univ Finance & Econ, Sch Stat & Math, Beijing 102206, Peoples R China.; Zhang, Y (corresponding author), Xiamen Univ, Sch Econ, Xiamen 361005, Peoples R China.
EM zhangyan_elyssa@163.com; panrui_cufe@126.com
OI Zhang, Yan/0000-0002-4081-5189
FU National Natural Science Foundation of China (NSFC) [11971504];
Disciplinary Funding of Central University of Finance and Economics;
Emerging Interdisciplinary Project of the Central University of Finance
and Economics; National Natural Science Foundation of China [11831008];
Open Research Fund of Key Laboratory of Advanced Theory and Application
in Statistics and Data Science [KLATASDS-MOE-ECNU-KLATASDS2101]
FX The work of Rui Pan was supported in part by the National Natural
Science Foundation of China (NSFC) under Grant 11971504, and in part by
the Disciplinary Funding of Central University of Finance and Economics,
and in part by the Emerging Interdisciplinary Project of the Central
University of Finance and Economics. The work of Hansheng Wang was
supported in part by the National Natural Science Foundation of China
under Grant 11831008, and in part by the Open Research Fund of Key
Laboratory of Advanced Theory and Application in Statistics and Data
Science under Grant KLATASDS-MOE-ECNU-KLATASDS2101.
CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1
Aggarwal C, 2014, ACM COMPUT SURV, V47, DOI 10.1145/2601412
AlHasan M., 2006, P SDM 06 WORKSH LINK
Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7
Barbieri N, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P1266, DOI 10.1145/2623330.2623733
Bhattacharyya P, 2011, SOC NETW ANAL MIN, V1, P143, DOI 10.1007/s13278-010-0006-4
Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
Bütün E, 2018, INFORM SCIENCES, V463, P152, DOI 10.1016/j.ins.2018.06.051
Chebotarev PY, 1997, AUTOMAT REM CONTR+, V58, P1505
Chen BL, 2018, IEEE ACCESS, V6, P28122, DOI 10.1109/ACCESS.2018.2838259
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113
da Silva AJN, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0271937
DILLON M, 1983, INFORM PROCESS MANAG, V19, P402, DOI 10.1016/0306-4573(83)90062-6
Fouss F, 2007, IEEE T KNOWL DATA EN, V19, P355, DOI 10.1109/TKDE.2007.46
Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799
Guns R, 2014, SCIENTOMETRICS, V101, P1461, DOI 10.1007/s11192-013-1228-9
Hâncean MG, 2021, SCIENTOMETRICS, V126, P201, DOI 10.1007/s11192-020-03746-5
Huang DY, 2020, J ORG COMP ELECT COM, V30, P169, DOI 10.1080/10919392.2020.1736466
Jaccard P., 1901, Distribution de la Flore Alpine: dans le Bassin des dranses et dans quelques regions voisines, V37, P547
James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1
Ji PS, 2022, J BUS ECON STAT, V40, P469, DOI 10.1080/07350015.2021.1978469
Ji PS, 2016, ANN APPL STAT, V10, P1779, DOI 10.1214/15-AOAS896
Karwa V, 2016, ANN APPL STAT, V10, P1827, DOI 10.1214/16-AOAS978
Katz Leo, 1953, PSYCHOMETRIKA, V18, P39
Kim J, 2019, SCIENTOMETRICS, V119, P687, DOI 10.1007/s11192-019-03055-6
Kumar A, 2020, PHYSICA A, V553, DOI 10.1016/j.physa.2020.124289
Lande D, 2020, WORLD WIDE WEB, V23, P2239, DOI 10.1007/s11280-019-00768-9
Leicht EA, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.026120
Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591
Liu WP, 2010, EPL-EUROPHYS LETT, V89, DOI 10.1209/0295-5075/89/58007
Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027
Lü LY, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.046122
Newman MEJ, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.025102
Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100
Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898
Chuan PM, 2018, APPL INTELL, V48, P2470, DOI 10.1007/s10489-017-1086-x
Ravasz E, 2002, SCIENCE, V297, P1551, DOI 10.1126/science.1073374
Singh CK, 2019, SCIENTOMETRICS, V118, P385, DOI 10.1007/s11192-018-02999-5
Sorensen T. A., 1948, A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and its Application to Analyses of the Vegetation on Danish Commons, V5, P1
Tomassini M, 2007, PHYSICA A, V385, P750, DOI 10.1016/j.physa.2007.07.028
Tong HH, 2006, IEEE DATA MINING, P613
Tuninetti M, 2021, EPJ DATA SCI, V10, DOI 10.1140/epjds/s13688-021-00282-x
Vital A, 2022, SCIENTOMETRICS, V127, P6011, DOI 10.1007/s11192-022-04484-6
Wang C, 2007, IEEE DATA MINING, P322, DOI 10.1109/ICDM.2007.108
Wang P, 2015, SCI CHINA INFORM SCI, V58, DOI 10.1007/s11432-014-5237-y
Yan EJ, 2014, J INFORMETR, V8, P295, DOI 10.1016/j.joi.2014.01.008
Yuliansyah H, 2020, IEEE ACCESS, V8, P183470, DOI 10.1109/ACCESS.2020.3029122
Zhou T, 2009, EUR PHYS J B, V71, P623, DOI 10.1140/epjb/e2009-00335-8
Zhu YX, 2012, PHYSICA A, V391, P5769, DOI 10.1016/j.physa.2012.06.003
NR 50
TC 1
Z9 1
U1 5
U2 20
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2022
VL 10
BP 104954
EP 104965
DI 10.1109/ACCESS.2022.3210129
PG 12
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA 5F6QU
UT WOS:000866438900001
OA gold
DA 2024-09-05
ER
PT J
AU Catalini, C
Lacetera, N
Oettl, A
AF Catalini, Christian
Lacetera, Nicola
Oettl, Alexander
TI The incidence and role of negative citations in science
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE social studies of science; citation analysis; bibliometric techniques;
natural-language processing; negative citations
ID KNOWLEDGE
AB Citations to previous literature are extensively used to measure the quality and diffusion of knowledge. However, we know little about the different ways in which a study can be cited; in particular, are papers cited to point out their merits or their flaws? We elaborated a methodology to characterize "negative" citations using bibliometric data and natural language processing. We found that negative citations concerned higher-quality papers, were focused on a study's findings rather than theories or methods, and originated from scholars who were closer to the authors of the focal paper in terms of discipline and social distance, but not geographically. Receiving a negative citation was also associated with a slightly faster decline in citations to the paper in the long run.
C1 [Catalini, Christian] MIT, MIT Sloan Sch Management, Cambridge, MA 02142 USA.
[Lacetera, Nicola] Univ Toronto, Inst Management & Innovat, Mississauga, ON L5L 1C6, Canada.
[Oettl, Alexander] Georgia Inst Technol, Scheller Coll Business, Atlanta, GA 30308 USA.
C3 Massachusetts Institute of Technology (MIT); University of Toronto;
University Toronto Mississauga; University System of Georgia; Georgia
Institute of Technology
RP Oettl, A (corresponding author), Georgia Inst Technol, Scheller Coll Business, Atlanta, GA 30308 USA.
EM Alexander.Oettl@scheller.gatech.edu
RI Oettl, Alex/AFN-9082-2022
OI Oettl, Alex/0000-0001-8908-4674; Lacetera, Nicola/0000-0002-3191-8792
CR Agrawal A, 2008, AM ECON REV, V98, P1578, DOI 10.1257/aer.98.4.1578
[Anonymous], 2014, GUARDIAN
[Anonymous], 1962, The Structure of Scientific Revolutions
ARROW KJ, 1969, AM ECON REV, V59, P29
Azoulay P., 2012, 18499 NBER
Breschi S, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P613
Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227
Campanario JM, 2000, NATURE, V408, P288, DOI 10.1038/35042753
Cowan R, 2004, J ECON DYN CONTROL, V28, P1557, DOI 10.1016/j.jedc.2003.04.002
DASGUPTA P, 1994, RES POLICY, V23, P487
Fleming L, 2007, ORGAN SCI, V18, P938, DOI 10.1287/orsc.1070.0289
Furman JL, 2012, RES POLICY, V41, P276, DOI 10.1016/j.respol.2011.11.001
Gittelman M, 2003, MANAGE SCI, V49, P366, DOI 10.1287/mnsc.49.4.366.14420
Hall BH, 2005, RAND J ECON, V36, P16
Harhoff D, 1999, REV ECON STAT, V81, P511, DOI 10.1162/003465399558265
Iacus SM, 2012, POLIT ANAL, V20, P1, DOI 10.1093/pan/mpr013
Lu SF, 2013, SCI REP-UK, V3, DOI 10.1038/srep03146
MERTON RK, 1957, AM SOCIOL REV, V22, P635, DOI 10.2307/2089193
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
Narin F, 1997, RES POLICY, V26, P317, DOI 10.1016/S0048-7333(97)00013-9
Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100
PHELPS ES, 1966, REV ECON STUD, V33, P133, DOI 10.2307/2974437
Popper K., 2005, LOGIC SCI DISCOVERY
ROMER PM, 1990, J POLIT ECON, V98, pS71, DOI 10.1086/261725
Sherwood S, 2011, PHYS TODAY, V64, P39, DOI 10.1063/PT.3.1295
Singh J, 2005, MANAGE SCI, V51, P756, DOI 10.1287/mnsc.1040.0349
Stephan PE, 2010, HDB EC INNOVATION, P217
TRAJTENBERG M, 1990, RAND J ECON, V21, P172, DOI 10.2307/2555502
NR 28
TC 108
Z9 118
U1 1
U2 47
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD NOV 10
PY 2015
VL 112
IS 45
BP 13823
EP 13826
DI 10.1073/pnas.1502280112
PG 4
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics
GA CV7QY
UT WOS:000364470300045
PM 26504239
OA Green Published, Bronze
DA 2024-09-05
ER
PT J
AU Acosta-Angulo, B
Diaz-Angulo, J
Lara-Ramos, J
Torres-Palma, R
Martínez-Pachón, D
Moncayo-Lasso, A
Machuca-Martínez, F
AF Acosta-Angulo, Bryan
Diaz-Angulo, Jennyfer
Lara-Ramos, Jose
Torres-Palma, Ricardo
Martinez-Pachon, Diana
Moncayo-Lasso, Alejandro
Machuca-Martinez, Fiderman
TI Analysis of the Applications of Particle Swarm Optimization and Genetic
Algorithms on Reaction Kinetics: A Prospective Study for Advanced
Oxidation Processes
SO CHEMELECTROCHEM
LA English
DT Article
DE Bibliometrics; Electrochemistry; Forecasting; Kinetics; Photocatalysis
ID ELECTROCHEMICAL ADVANCED OXIDATION; MONTE-CARLO-SIMULATION;
ELECTRO-FENTON PROCESS; WASTE-WATER; ORGANIC POLLUTANTS; PHOTOCATALYTIC
DEGRADATION; NUMERICAL-SIMULATION; PARAMETER-ESTIMATION;
REACTION-MECHANISM; UV/H2O2 OXIDATION
AB A bibliometric analysis of the Scopus database was implemented to assess the spread of two types of evolutionary algorithms (EAs), genetic algorithms (GA) and particle swarm optimization (PSO), on the study of reaction kinetics. Particular attention was given to applications for advanced oxidation processes (AOPs). The collaborations between countries and authors, as well as the keywords co-occurrences, were investigated. Finally, the Gompertz and Logistic Substitution models (LSM) were employed to forecast future scenarios. It was observed that GA methods were the preferred algorithms for reaction kinetic studies, and the USA was the most influential country in terms of collaboration, followed by China. On the other hand, there was still poor collaboration for most countries; this was also observed for authors' collaboration. In addition, literature concerning AOPs was still scarce. The forecasting suggested growth for implementing evolutionary algorithms, especially for the PSO, increasing its popularity regarding GA methods.
C1 [Acosta-Angulo, Bryan; Lara-Ramos, Jose; Machuca-Martinez, Fiderman] Univ Valle, Grp Invest Proc Avanzados Tratamientos Quim & Bio, Escuela Ingn Quim, Valle Del Cauca, Colombia.
[Diaz-Angulo, Jennyfer] GITAM, Res & Technol Dev Water Treatment Proc Modelling, Cauca, Colombia.
[Torres-Palma, Ricardo] Univ Antioquia, Grp Invest Remediac Ambiental & Biocatalisis GIRA, Inst Chem, Fac Exact & Nat Sci, Antioquia, Colombia.
[Martinez-Pachon, Diana; Moncayo-Lasso, Alejandro] Univ Antonio Narino, Grp Invest Ciencias Biol & Quim, Fac Sci, Bogota, Colombia.
C3 Universidad del Valle; Universidad de Antioquia; Universidad Antonio
Narino
RP Acosta-Angulo, B; Machuca-Martínez, F (corresponding author), Univ Valle, Grp Invest Proc Avanzados Tratamientos Quim & Bio, Escuela Ingn Quim, Valle Del Cauca, Colombia.
EM bryan.acosta@correounivalle.edu.co;
fiderman.machuca@correounivalle.edu.co
RI Martínez-Pachón, Diana/ADC-9239-2022; Machuca-Martinez,
Fiderman/G-2373-2017
OI Martínez-Pachón, Diana/0000-0001-5496-273X; Machuca-Martinez,
Fiderman/0000-0002-4553-3957; Acosta Angulo, Bryan
Enrique/0000-0002-3048-6684; Lara Ramos, Jose
Antonio/0000-0001-6324-5150
FU MINCIENCIAS COLOMBIA (COLCIENCIAS) [80740-173-2021, 111585269594]
FX The authors gratefully acknowledge MINCIENCIAS COLOMBIA (before known as
COLCIENCIAS) for funding through the program PRO-CEC-AGUA contract
80740-173-2021 with code 111585269594.
CR Ab Wahab MN, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122827
Acosta-Angulo B, 2021, WATER-SUI, V13, DOI 10.3390/w13121670
Acosta-Herazo R, 2020, CHEM ENG J, V395, DOI 10.1016/j.cej.2020.125065
Akach J, 2018, CHEM ENG RES DES, V129, P248, DOI 10.1016/j.cherd.2017.11.021
Alves Da Silva A.P., 2007, MODERN HEURISTIC OPT, P25
Ameta R, 2018, ADVANCED OXIDATION PROCESSES FOR WASTEWATER TREATMENT: EMERGING GREEN CHEMICAL TECHNOLOGY, P49, DOI 10.1016/B978-0-12-810499-6.00003-6
Anglada A, 2011, WATER RES, V45, P828, DOI 10.1016/j.watres.2010.09.017
Anglada A, 2010, J HAZARD MATER, V181, P729, DOI 10.1016/j.jhazmat.2010.05.073
[Anonymous], 2013, Evolutionary Optimization Algorithms: Biologically-Inspired and Population-Based Approaches in Computer Intelligence
[Anonymous], SELECTIVE PHOTOCATAL, DOI [10.2202/1542-6580.1500/html, DOI 10.2202/1542-6580.1500/HTML]
[Anonymous], 2005, Genetic algorithms. Search methodologies: Introductory tutorials in optimization and decision support techniques, DOI DOI 10.1007/0-387-28356-04
Assareh E, 2012, ENERG SOURCE PART B, V7, P411, DOI 10.1080/15567240903394265
Babuponnusami A, 2014, J ENVIRON CHEM ENG, V2, P557, DOI 10.1016/j.jece.2013.10.011
Badar A.Q.H., 2021, EVOLUTIONARY OPTIMIZ, V1st, P273, DOI [10.1201/9781003206477, DOI 10.1201/9781003206477]
Bahnemann D, 2004, SOL ENERGY, V77, P445, DOI 10.1016/j.solener.2004.03.031
Basavarajappa PS, 2020, INT J HYDROGEN ENERG, V45, P7764, DOI 10.1016/j.ijhydene.2019.07.241
Beltran F.J., 2003, OZONE REACTION KINET, DOI DOI 10.1201/9780203509173
Brender J., 2006, em Handbook of Evaluation Methods for Health Informatics, P73, DOI [10.1016/B978-012370464-1.50007-1, DOI 10.1016/B978-012370464-1.50007-1]
Brillas E, 2022, SEP PURIF TECHNOL, V284, DOI 10.1016/j.seppur.2021.120290
Brillas E, 2009, CHEM REV, V109, P6570, DOI 10.1021/cr900136g
Brucato A, 2006, AICHE J, V52, P3882, DOI 10.1002/aic.10984
Buhler R.E., 2002, J PHYS CHEM-US, V88, P2560
Reina AC, 2015, APPL CATAL B-ENVIRON, V166, P295, DOI 10.1016/j.apcatb.2014.11.023
Cabrera-Reina A, 2021, SCI TOTAL ENVIRON, V800, DOI 10.1016/j.scitotenv.2021.149653
Cañizares P, 2004, IND ENG CHEM RES, V43, P1915, DOI 10.1021/ie0341294
Casado C, 2021, CHEM ENG J, V403, DOI 10.1016/j.cej.2020.126335
Chang YC, 2018, COMBUST FLAME, V194, P15, DOI 10.1016/j.combustflame.2018.04.012
Changrani R, 1999, AICHE J, V45, P1085, DOI 10.1002/aic.690450516
Chen WH, 2021, ENERG CONVERS MANAGE, V238, DOI 10.1016/j.enconman.2021.114116
Chen WL, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.104470
Cheng S, 2018, COMPLEX INTELL SYST, V4, P227, DOI 10.1007/s40747-018-0071-2
Colina-Márquez J, 2009, ENVIRON SCI TECHNOL, V43, P8953, DOI 10.1021/es902004b
da Silva SW, 2019, J ELECTROANAL CHEM, V832, P112, DOI 10.1016/j.jelechem.2018.10.049
da Silva SW, 2021, CURR POLLUT REP, V7, P146, DOI 10.1007/s40726-021-00176-6
da Silva SW, 2019, J ELECTROANAL CHEM, V844, P27, DOI 10.1016/j.jelechem.2019.05.011
De Lasa H. I., 2005, PHOTOCATAL REACT ENG, DOI DOI 10.1007/0-387-27591-6_8
De los M., 2019, TOP CURR CHEM, V377, P1
Diaz-Angulo J., 2021, NANOSTRUCTURED PHOTO, P331, DOI DOI 10.1016/B978-0-12-823007-7.00002-X
Diaz-Angulo J, 2019, PHOTOCH PHOTOBIO SCI, V18, P897, DOI 10.1039/c8pp00270c
Dillert R, 2013, PHYS CHEM CHEM PHYS, V15, P20876, DOI 10.1039/c3cp54469a
Ding YM, 2019, ENERGY, V176, P582, DOI 10.1016/j.energy.2019.04.030
Dominguez S, 2016, J IND ENG CHEM, V37, P237, DOI 10.1016/j.jiec.2016.03.031
Dorantes-Landa DN, 2020, J CHEM TECHNOL BIOT, V95, P1936, DOI 10.1002/jctb.6394
Du QX, 2022, SURF INTERFACES, V28, DOI 10.1016/j.surfin.2021.101647
Duan YH, 2021, WATER RES X, V13, DOI 10.1016/j.wroa.2021.100127
Echardt J, 2009, WATER SCI TECHNOL, V60, P2227, DOI 10.2166/wst.2009.676
Elliott L, 2003, COMBUST SCI TECHNOL, V175, P619, DOI 10.1080/00102200302389
Elliott L, 2003, IND ENG CHEM RES, V42, P1215, DOI 10.1021/ie020501o
Elliott L, 2004, PROG ENERG COMBUST, V30, P297, DOI 10.1016/j.pecs.2004.02.002
Enikeev MR, 2020, CHEM ENG J, V383, DOI 10.1016/j.cej.2019.123131
Estahbanati MRK, 2020, CHEM ENG J, V382, DOI 10.1016/j.cej.2019.122732
Estahbanati MRK, 2019, AICHE J, V65, DOI 10.1002/aic.16724
Fateh T, 2014, FIRE SAFETY J, V64, P36, DOI 10.1016/j.firesaf.2014.01.007
Fateh T, 2013, FIRE SAFETY J, V58, P25, DOI 10.1016/j.firesaf.2013.01.019
Fateh T, 2016, J ANAL APPL PYROL, V120, P423, DOI 10.1016/j.jaap.2016.06.014
Feng WJ, 2019, SCI TOTAL ENVIRON, V646, P1440, DOI 10.1016/j.scitotenv.2018.07.307
Fenton H. J. H., 1894, Journalof the Chemical Society, Transactions, V65, P899, DOI [10.1039/ct8946500899, DOI 10.1039/CT8946500899]
Ferre-Aracil J, 2013, OZONE-SCI ENG, V35, P423, DOI 10.1080/01919512.2013.815104
Ferreira M, 2021, NEW J CHEM, V45, P12622, DOI 10.1039/d1nj01117k
Figueredo M, 2021, WATER RES, V206, DOI 10.1016/j.watres.2021.117727
Galvan B, 2003, PARALLEL COMPUTATIONAL FLUID DYNAMICS: NEW FRONTIERS AND MULTI-DISCIPLINARY APPLICATIONS, PROCEEDINGS, P573, DOI 10.1016/B978-044450680-1/50072-3
Gan JQ, 2016, REV SCI INSTRUM, V87, DOI 10.1063/1.4941941
Ganiyu SO, 2018, CHEMOSPHERE, V211, P998, DOI 10.1016/j.chemosphere.2018.08.044
Ghaheri Ali, 2015, Oman Med J, V30, P406, DOI 10.5001/omj.2015.82
Gharbani P, 2008, INT J ENVIRON SCI TE, V5, P495, DOI 10.1007/BF03326046
Gome A, 2023, INT J ENVIRON SCI TE, V20, P2087, DOI 10.1007/s13762-022-03915-4
Gompertz B., 1825, Philos. Trans. Royal Soc. London, V115, P513, DOI DOI 10.1098/RSTL.1825.0026
Gong YS, 2022, ENVIRON POLLUT, V299, DOI 10.1016/j.envpol.2022.118871
Gosselin L, 2009, INT J HEAT MASS TRAN, V52, P2169, DOI 10.1016/j.ijheatmasstransfer.2008.11.015
Gray N.F., 2014, Microbiology of Waterborne Diseases: Microbiological Aspects and Risks, VSecond, P599, DOI [10.1016/B978-0-12-415846-7.00033-0, DOI 10.1016/B978-0-12-415846-7.00033-0]
Hansen DL, 2011, ANALYZING SOCIAL MEDIA NETWORKS WITH NODEXL: INSIGHTS FROM A CONNECTED WORLD, P69, DOI 10.1016/B978-0-12-382229-1.00005-9
Harris SD, 2000, COMPUT METHOD APPL M, V190, P1065, DOI 10.1016/S0045-7825(99)00466-1
Hasan DB, 2014, SCI WORLD J, DOI 10.1155/2014/252491
Hautaniemi M., 2008, [No title captured], V20, DOI [10.1080/01919519808547265, DOI 10.1080/01919519808547265]
He Y, 2021, SCI TOTAL ENVIRON, V785, DOI 10.1016/j.scitotenv.2021.147328
Heracleous E, 2006, J CATAL, V237, P175, DOI 10.1016/j.jcat.2005.11.003
Ho SY, 2004, IEEE T EVOLUT COMPUT, V8, P522, DOI 10.1109/TEVC.2004.835176
Hong SW, 2015, INT J CHEM KINET, V47, P489, DOI 10.1002/kin.20926
Houssein EH, 2021, SWARM EVOL COMPUT, V63, DOI 10.1016/j.swevo.2021.100868
Huang YF, 2018, ENVIRON SCI-WAT RES, V4, P1662, DOI [10.1039/c8ew00407b, 10.1039/C8EW00407B]
Irshad M, 2022, RSC ADV, V12, P7009, DOI 10.1039/d1ra08185c
Ismail AM, 2017, BIOSYSTEMS, V162, P81, DOI 10.1016/j.biosystems.2017.09.013
Izadifar M, 2006, J SUPERCRIT FLUID, V38, P37, DOI 10.1016/j.supflu.2005.11.012
Jayathilake M, 2021, FUEL, V305, DOI 10.1016/j.fuel.2021.121498
Jiang ST, 2022, SURF INTERFACES, V30, DOI 10.1016/j.surfin.2022.101843
Jin F, 2021, CHEM ENG SCI, V229, DOI 10.1016/j.ces.2020.116144
Kadi MA, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e02146
Kanakaraju D, 2018, J ENVIRON MANAGE, V219, P189, DOI 10.1016/j.jenvman.2018.04.103
Kang N, 2002, CHEMOSPHERE, V47, P915, DOI 10.1016/S0045-6535(02)00067-X
Katoch S, 2021, MULTIMED TOOLS APPL, V80, P8091, DOI 10.1007/s11042-020-10139-6
Kaur R, 2021, BIOINTERFACE RES APP, V11, P9071, DOI 10.33263/BRIAC112.90719084
Kavitha V, 2005, WATER RES, V39, P3062, DOI 10.1016/j.watres.2005.05.011
Kennedy J., PR ICNN95 INT C NEUR, V4, P1942
Khaksar SAN, 2021, REACT KINET MECH CAT, V132, P1075, DOI 10.1007/s11144-021-01955-4
Kittrell J., 1970, ADVANCES CHEMICAL EN, V8, P97, DOI [10.1016/S0065-2377(08)60184-2, DOI 10.1016/S0065-2377(08)60184-2]
Kubo D, 2018, J CLEAN PROD, V203, P685, DOI 10.1016/j.jclepro.2018.08.231
Kucharavy D., 2011, Procedia Eng, V9, P402, DOI [DOI 10.1016/J.PROENG.2011.03.129, 10.1016/j.proeng.2011.03.129]
Kwon BG, 1999, WATER RES, V33, P2110, DOI 10.1016/S0043-1354(98)00428-X
LAIRD AK, 1964, BRIT J CANCER, V18, P490, DOI 10.1038/bjc.1964.55
Lara-Ramos JA, 2020, TOP CATAL, V63, P1361, DOI 10.1007/s11244-020-01316-w
Lara-Ramos JA, 2019, PHOTOCH PHOTOBIO SCI, V18, P920, DOI 10.1039/c8pp00308d
Leardi R, 2007, J CHROMATOGR A, V1158, P226, DOI 10.1016/j.chroma.2007.04.025
LEE JC, 1987, TECHNOL FORECAST SOC, V31, P61, DOI 10.1016/0040-1625(87)90023-0
LEGRINI O, 1993, CHEM REV, V93, P671, DOI 10.1021/cr00018a003
Li XY, 2022, J ENVIRON MANAGE, V308, DOI 10.1016/j.jenvman.2022.114664
Li YS, 2015, CHIN AUTOM CONGR, P988, DOI 10.1109/CAC.2015.7382642
Liang DH, 2021, SCI TOTAL ENVIRON, V753, DOI 10.1016/j.scitotenv.2020.141809
Lin YY, 2021, BIORESOURCE TECHNOL, V319, DOI 10.1016/j.biortech.2020.124145
Liu DQ, 2017, J CLEAN PROD, V164, P1093, DOI 10.1016/j.jclepro.2017.07.040
Liu DQ, 2016, J CLEAN PROD, V133, P994, DOI 10.1016/j.jclepro.2016.06.023
Lopes ES, 2020, CELLULOSE, V27, P5641, DOI 10.1007/s10570-020-03183-w
Lovato M, 2019, ENVIRON SCI POLLUT R, V26, P4474, DOI 10.1007/s11356-018-1710-2
Lu H, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031556
Lu XY, 2021, COMBUST FLAME, V230, DOI 10.1016/j.combustflame.2021.111417
Luo MH, 2021, WATER SCI TECHNOL, V83, P1217, DOI 10.2166/wst.2021.063
Machuca-Martínez F, 2016, RSC ENERGY ENVIRON S, P388
Mahmood A, 2021, J ENVIRON CHEM ENG, V9, DOI 10.1016/j.jece.2021.105069
Majumder A, 2021, J ENVIRON CHEM ENG, V9, DOI 10.1016/j.jece.2020.104812
Makeham W.M., 1873, J Inst Actuar, V17, P305, DOI DOI 10.1017/S2046167400044268
Mao GZ, 2021, ENVIRON POLLUT, V275, DOI 10.1016/j.envpol.2020.115785
Mao L, 2020, JAMA NEUROL, V77, P683, DOI 10.1001/jamaneurol.2020.1127
Mao YB, 2021, COMBUST FLAME, V229, DOI 10.1016/j.combustflame.2021.111401
Mathon B, 2021, CHEMOSPHERE, V262, DOI 10.1016/j.chemosphere.2020.127969
Matyszczak G, 2021, WATER SCI TECHNOL, V84, P3227, DOI 10.2166/wst.2021.407
Meijide J, 2017, CHEMOSPHERE, V185, P726, DOI 10.1016/j.chemosphere.2017.07.067
Méndez-Arriaga F, 2009, WATER RES, V43, P3984, DOI 10.1016/j.watres.2009.06.059
Meng ZY, 2016, IEEE C EVOL COMPUTAT, P4082, DOI 10.1109/CEC.2016.7744308
Zacarías SM, 2010, J PHOTOCH PHOTOBIO A, V214, P171, DOI 10.1016/j.jphotochem.2010.06.021
Meyer PS, 1999, TECHNOL FORECAST SOC, V61, P247, DOI 10.1016/S0040-1625(99)00021-9
Miklos DB, 2018, WATER RES, V139, P118, DOI 10.1016/j.watres.2018.03.042
Misal SN, 2020, J HAZARD MATER, V384, DOI 10.1016/j.jhazmat.2019.121420
Moctezuma E, 2012, J HAZARD MATER, V243, P130, DOI 10.1016/j.jhazmat.2012.10.010
Moreira Jesus, 2013, International Journal of Chemical Reactor Engineering, V11, P641, DOI 10.1515/ijcre-2012-0003
Nikzad M., 2012, International Journal of Computer Applications in Technology, V56, DOI DOI 10.5120/8859-2818
Nkwachukwu OV, 2021, FRONT CHEM, V9, DOI 10.3389/fchem.2021.634630
Nosaka Y, 2017, CHEM REV, V117, P11302, DOI 10.1021/acs.chemrev.7b00161
Ortiz-Marin AD, 2022, REACT KINET MECH CAT, V135, P639, DOI 10.1007/s11144-021-02152-z
Otálvaro-Marín HL, 2014, INT J PHOTOENERGY, V2014, DOI 10.1155/2014/930439
Otte E., 2016, [No title captured], V28, DOI [10.1177/016555150202800601, DOI 10.1177/016555150202800601]
Pocostales JP, 2012, CHEM ENG J, V183, P395, DOI 10.1016/j.cej.2011.12.020
Palmatier RW, 2018, J ACAD MARKET SCI, V46, P1, DOI 10.1007/s11747-017-0563-4
Palos R, 2022, FUEL, V316, DOI 10.1016/j.fuel.2022.123341
Pandis PK, 2022, CHEMENGINEERING, V6, DOI 10.3390/chemengineering6010008
Pelletier GJ, 2006, ENVIRON MODELL SOFTW, V21, P419, DOI 10.1016/j.envsoft.2005.07.002
Pérez-Morales J, 2021, FUEL, V287, DOI 10.1016/j.fuel.2020.119510
Polcaro AM, 1997, IND ENG CHEM RES, V36, P1791, DOI 10.1021/ie960557g
Poto S, 2022, CHEM ENG J, V435, DOI 10.1016/j.cej.2022.134946
Qin XF, 2021, CHINESE J CHEM ENG, V33, P139, DOI 10.1016/j.cjche.2020.06.011
Rabahi A, 2019, ENVIRON SCI POLLUT R, V26, P19035, DOI 10.1007/s11356-018-2954-6
Radha KV, 2018, ADVANCED OXIDATION PROCESSES FOR WASTEWATER TREATMENT: EMERGING GREEN CHEMICAL TECHNOLOGY, P359, DOI 10.1016/B978-0-12-810499-6.00011-5
Rahmani AR, 2019, ECOTOX ENVIRON SAFE, V168, P120, DOI 10.1016/j.ecoenv.2018.10.069
Raoof M, 2021, REACT KINET MECH CAT, V134, P331, DOI 10.1007/s11144-021-02069-7
Rein G, 2006, COMBUST FLAME, V146, P95, DOI 10.1016/j.combustflame.2006.04.013
Rey A, 2011, CHEM ENG J, V174, P134, DOI 10.1016/j.cej.2011.08.061
Rivas J, 2009, CHEMOSPHERE, V76, P651, DOI 10.1016/j.chemosphere.2009.04.028
Rivera FF, 2021, CHEM ENG SCI, V239, DOI 10.1016/j.ces.2021.116622
Rollin JA, 2015, P NATL ACAD SCI USA, V112, P4964, DOI 10.1073/pnas.1417719112
Ruiz-Rosero J, 2019, SCIENTOMETRICS, V121, P1165, DOI 10.1007/s11192-019-03213-w
Russo D, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11031042
Russo D, 2019, CHEM ENG J, V376, DOI 10.1016/j.cej.2018.11.078
Sadia M, 2021, J KING SAUD UNIV SCI, V33, DOI 10.1016/j.jksus.2020.101312
Safari H, 2014, TRANSPORT POROUS MED, V101, P477, DOI 10.1007/s11242-013-0255-6
Safiullina L.F., 2021, COMPUT RES MODEL, V13, P1045
Schneider J., 2016, Photocatalysis
Scott F.H., 2005, Elements of Chemical Reaction Engineering
Sirés I, 2014, ENVIRON SCI POLLUT R, V21, P8336, DOI 10.1007/s11356-014-2783-1
Slowik A, 2020, NEURAL COMPUT APPL, V32, P12363, DOI 10.1007/s00521-020-04832-8
Sonu K, 2021, ENVIRON SCI POLLUT R, V28, P48742, DOI 10.1007/s11356-021-13863-0
Sparks D.L., 2003, Environmental Soil Chemistry, V2nd, P207, DOI [DOI 10.1016/8978-012656446-4/50007-4, 10.1016/b978-012656446-4/50007-4, DOI 10.1016/B978-012656446-4/50007-4]
Spasiano D, 2016, J HAZARD MATER, V318, P515, DOI 10.1016/j.jhazmat.2016.07.034
Spiess Andrej-Nikolai, 2010, BMC Pharmacology, V10, P6, DOI 10.1186/1471-2210-10-6
Staehelin J., 2002, J PHYS CHEM-US, V88, P5999
Steven LS., 2013, New and future developments in catalysis: activation of carbon dioxide, capitulo 5
Sudar M, 2018, J BIOTECHNOL, V268, P71, DOI 10.1016/j.jbiotec.2018.01.013
Tahir M.B., 2020, Nanomaterials for Photocatalysis, P65, DOI [DOI 10.1016/B978-0-12-821192-2.00005-X, 10.1016/B978-0-12-821192-2.00005-X]
Tjorve KMC, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0178691
TOMIYASU H, 1985, INORG CHEM, V24, P2962, DOI 10.1021/ic00213a018
Trigueros DEG, 2010, PROCESS BIOCHEM, V45, P1355, DOI 10.1016/j.procbio.2010.05.007
Tsuchiya M, 2001, J PHYS CHEM A, V105, P4052, DOI 10.1021/jp004439p
Uskov SI, 2020, ENERGIES, V13, DOI 10.3390/en13133393
Valades-Pelayo PJ, 2014, CHEM ENG SCI, V107, P123, DOI 10.1016/j.ces.2013.12.013
van Riel NAW, 2006, BRIEF BIOINFORM, V7, P364, DOI 10.1093/bib/bbl040
Verma S, 2021, CERAM INT, V47, P34751, DOI 10.1016/j.ceramint.2021.09.014
Vidal E, 2015, PHOTOCH PHOTOBIO SCI, V14, P366, DOI 10.1039/c4pp00248b
Vijayasekaran B, 2004, CHEM BIOCHEM ENG Q, V18, P337
Waltman L, 2011, J EVOL ECON, V21, P737, DOI 10.1007/s00191-010-0177-1
Wang H, 2020, J CLEAN PROD, V265, DOI 10.1016/j.jclepro.2020.121722
Wang J., 2017, J ADV OXID TECHNOL, P20, DOI [10.1515/JAOTS-2016-0191/MACHINEREADABLECITATION/RIS, DOI 10.1515/JAOTS-2016-0191/MACHINEREADABLECITATION/RIS]
Wang Jian-long, 2020, Chemical Engineering Journal, V401, DOI 10.1016/j.cej.2020.126158
Wang LX, 2001, KOREAN J CHEM ENG, V18, P652, DOI 10.1007/BF02706382
Wang Y, 2022, CHEMOSPHERE, V293, DOI 10.1016/j.chemosphere.2022.133614
Wu GL, 2020, CHEM ENG SCI, V214, DOI 10.1016/j.ces.2019.115446
Xu R, 2018, COMBUST FLAME, V193, P520, DOI 10.1016/j.combustflame.2018.03.021
Yan ZF, 2022, CHINESE J CHEM ENG, V41, P49, DOI 10.1016/j.cjche.2021.08.023
Yang XG, 2018, ACS APPL ENERG MATER, V1, P6657, DOI 10.1021/acsaem.8b01345
Yang XT, 2021, CHEMOSPHERE, V283, DOI 10.1016/j.chemosphere.2021.131217
Yen SW, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084246
Youssef Z, 2018, DYES PIGMENTS, V159, P49, DOI 10.1016/j.dyepig.2018.06.002
Yu GF, 2020, ENVIRON SCI TECHNOL, V54, P5931, DOI 10.1021/acs.est.0c00575
Zahedi S., 2021, TOP CATAL, V1, P1
Zalazar CS, 2007, WATER SCI TECHNOL, V55, P31, DOI 10.2166/wst.2007.377
Zelinski DW, 2018, WATER AIR SOIL POLL, V229, DOI 10.1007/s11270-018-3856-4
Zhang JL, 2022, RSC ADV, V12, P1904, DOI 10.1039/d1ra07814c
Zhao Q., 2022, LECT NOTES ELECT ENG, V791, P1645
Zhou SQ, 2018, J HAZARD MATER, V346, P73, DOI 10.1016/j.jhazmat.2017.12.023
NR 205
TC 3
Z9 3
U1 3
U2 19
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 2196-0216
J9 CHEMELECTROCHEM
JI ChemElectroChem
PD JUL 14
PY 2022
VL 9
IS 13
AR e202200229
DI 10.1002/celc.202200229
EA JUN 2022
PG 15
WC Electrochemistry
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Electrochemistry
GA 2P8OJ
UT WOS:000808198800001
DA 2024-09-05
ER
PT J
AU De Paoli, S
AF De Paoli, Stefano
TI Performing an Inductive Thematic Analysis of Semi-Structured Interviews
With a Large Language Model: An Exploration and Provocation on the
Limits of the Approach
SO SOCIAL SCIENCE COMPUTER REVIEW
LA English
DT Article
DE large language models; thematic analysis; qualitative research; human-
AI collaboration
AB Large Language Models (LLMs) have emerged as powerful generative Artificial Intelligence solutions. This paper presents results and reflections of an experiment done with the LLM GPT 3.5-Turbo to perform an inductive Thematic Analysis (TA). Previous research has worked on conducting deductive analysis. Thematic Analysis is a qualitative method for analysis commonly used in social sciences and it is based on interpretations by the human analyst(s) and the identification of explicit and latent meanings in qualitative data. The paper presents the motivations for attempting this analysis; it reflects on how the six phases to a TA proposed by Braun and Clarke can partially be reproduced with the LLM and it reflects on what are the model's outputs. The paper uses two datasets of open access semi-structured interviews, previously analysed by other researchers. The first dataset contains interviews with videogame players, and the second is a dataset of interviews with lecturers teaching data science in a University. This paper used the analyses previously conducted on these datasets to compare with the results produced by the LLM. The results show that the model can infer most of the main themes from previous research. This shows that using LLMs to perform an inductive TA is viable and offers a good degree of validity. The discussion offers some recommendations for working with LLMs in qualitative analysis.
C1 [De Paoli, Stefano] Abertay Univ, Digital Soc, Dundee, Scotland.
[De Paoli, Stefano] Abertay Univ, Sociol Div, Bell St, Dundee DD1 1HG, Scotland.
C3 University of Abertay Dundee; University of Abertay Dundee
RP De Paoli, S (corresponding author), Abertay Univ, Sociol Div, Bell St, Dundee DD1 1HG, Scotland.
EM s.depaoli@abertay.ac.uk
OI De Paoli, Stefano/0000-0003-1120-4773
CR Baden C, 2022, COMMUN METHODS MEAS, V16, P1, DOI 10.1080/19312458.2021.2015574
Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7
Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA]
Curty R., 2022, TEACHING UNDERGRADUA, DOI [10.25349/D9402J, DOI 10.25349/D9402J]
Curty R., 2021, TEACHING UNDERGRADUA
Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662
Flick U., 2018, SAGE HDB QUALITATIVE, DOI [DOI 10.4135/9781526416070, 10.4135/9781526416070.n4, DOI 10.4135/9781526416070.N4]
Floridi L., 2023, Philosophy & Technology, V36, DOI [10.1007/s13347-023-00621-y, DOI 10.1007/S13347-023-00621-Y]
Gao J., 2023, COLLABCODER GPT POWE, DOI DOI 10.48550/ARXIV.2304.07366
Gauthier Robert P., 2022, Proceedings of the ACM on Human-Computer Interaction, V6, DOI 10.1145/3492844
George A Shaji, 2023, Partners Universal International Innovation Journal, V1, P9, DOI DOI 10.5281/ZENODO.7644359
Hao S., 2023, REASONING LANGUAGE M, DOI DOI 10.48550/ARXIV.2305.14992
Hassani H, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7020062
Jiang Jialun Aaron, 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3449168
Kurniadi D., 2023, JURNAL NASIONAL PEND, V12, DOI [10.23887/janapati.v12i1.59746, DOI 10.23887/JANAPATI.V12I1.59746]
Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410
Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750
Nelson LK, 2020, SOCIOL METHOD RES, V49, P3, DOI 10.1177/0049124117729703
Nowell LS, 2017, INT J QUAL METH, V16, DOI 10.1177/1609406917733847
Peres R, 2023, INT J RES MARK, V40, P269, DOI 10.1016/j.ijresmar.2023.03.001
Persico D., 2017, D2 3 REPORT INTERVIE
Persico D., 2017, D21 SYSTEMATIC REV M
Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783
Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5
Renz SM, 2018, QUAL HEALTH RES, V28, P824, DOI 10.1177/1049732317753586
Richards KAR, 2018, J TEACH PHYS EDUC, V37, P225, DOI 10.1123/jtpe.2017-0084
SALLAM M, 2023, HEALTHCARE-BASEL, V11, DOI DOI 10.3390/HEALTHCARE11060887
Sanmarchi F., 2023, MEDRXIV, DOI [10.1101/2023.02.06.23285514, DOI 10.1101/2023.02.06.23285514]
Schiavone W., 2023, CAN CHATGPT REPLACE
Wei Jason, 2022, Emergent abilities of large language models
Xiao Ziang, 2023, COMP P 28 INT C INT, P75, DOI [DOI 10.1145/3581754.3584136, 10.1145/3581754.3584136]
Zhou Y, 2022, Large language models are human-level prompt engineers
NR 32
TC 4
Z9 4
U1 33
U2 37
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0894-4393
EI 1552-8286
J9 SOC SCI COMPUT REV
JI Soc. Sci. Comput. Rev.
PD AUG
PY 2024
VL 42
IS 4
BP 997
EP 1019
DI 10.1177/08944393231220483
EA DEC 2023
PG 23
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science; Social Sciences, Interdisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science; Social Sciences
- Other Topics
GA A2P3C
UT WOS:001116391300001
OA Green Published, hybrid
DA 2024-09-05
ER
PT J
AU Mahalakshmi, GS
Siva, R
Sendhilkumar, S
AF MAHALAKSHMI, G. S.
SIVA, R.
SENDHILKUMAR, S.
TI On the Expressive Power of Scientific Manuscripts
SO IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING
LA English
DT Article
DE Machine learning; Bibliometrics; Semantics; Text mining; Measurement;
Indexes; Analytical models; Citation analysis; semantic analysis;
citation quality; machine learning; text mining; availability index;
article metrics; deep learning; expressive power
AB Every research manuscript is appreciated in the form of citations. Citations are expected to carry the essence of the underlying base paper by some rhetorical means. However, this is not true in reality. Citation manipulations are equally possible which shall be identified using research semantics. This paper discusses machine learning based approaches for analyzing research citations with the aim of finding quality research citations. On analyzing the semantics of the research manuscript and the respective citations, this paper proposes various metrics for citation quality analysis including deep cite, raw expressive power, expressive power and normalized expressive power.
C1 [MAHALAKSHMI, G. S.; SENDHILKUMAR, S.] Anna Univ, Dept Comp Sci & Engn, Coll Engn Guindy Campus, Chennai 600025, TN, India.
[SIVA, R.] KCG Coll Technol, Dept Comp Sci & Engn, Chennai 600097, TN, India.
C3 Anna University; Anna University Chennai; College of Engineering Guindy
RP Mahalakshmi, GS (corresponding author), Anna Univ, Dept Comp Sci & Engn, Coll Engn Guindy Campus, Chennai 600025, TN, India.
EM gsmaha@annauniv.edu; sivavb6@gmail.com; thamaraikumar@annauniv.edu
RI Selvaradjou, Sendhilkumar/AIF-2078-2022; R, SIVA/ABE-6532-2021
OI Selvaradjou, Sendhilkumar/0000-0001-6006-1866; R,
SIVA/0000-0002-2006-8753; Antony, Betina/0000-0002-0491-6214
FU Ministry of Electronics & Information Technology, Government of India
[VISPHD-MEITY-2959]
FX This Publication is an outcome of the R&D work undertaken in the project
under the Visvesvaraya Ph.D. Scheme (awarded to Dr. S. Sendhilkumar,
Unique Awardee Number: VISPHD-MEITY-2959) of Ministry of Electronics &
Information Technology, Government of India, being implemented by
Digital India Corporation (formerly Media Lab Asia).
CR Alberts B, 2013, SCIENCE, V340, P787, DOI 10.1126/science.1240319
Balaji A., 2017, J COMPUT THEORETICAL, V14, P2905
Blei D.M., 2006, P 23 INT C MACHINE L, P113, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859, 10.1145/1143844.114385]
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Card D, 2017, ARXIV PREPRINT ARXIV, V1
Chien JT, 2018, IEEE T PATTERN ANAL, V40, P318, DOI 10.1109/TPAMI.2017.2677439
De Sordi JO, 2017, J INFORMETR, V11, P483, DOI 10.1016/j.joi.2017.02.012
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hu XJ, 2016, J INFORMETR, V10, P1079, DOI 10.1016/j.joi.2016.10.002
Islam Sk Minhazul, 2012, IEEE Trans Syst Man Cybern B Cybern, V42, P482, DOI 10.1109/TSMCB.2011.2167966
Kataria Saurabh., 2011, Intl. Joint Conf. on Artificial Intelligence (IJCAI), P2274, DOI DOI 10.5591/978-1-57735-516-8/IJCAI11-379
Kim HJ, 2016, J INFORMETR, V10, P954, DOI 10.1016/j.joi.2016.07.007
Klahold A, 2014, IEEE INTELL SYST, V29, P40, DOI 10.1109/MIS.2013.120
Lu C, 2017, SCIENTOMETRICS, V112, P927, DOI 10.1007/s11192-017-2398-7
Mahalakshmi GS, 2019, IEEE T SUST COMPUT, V4, P4, DOI 10.1109/TSUSC.2018.2829196
Mahalakshmi G. S., 2017, P INT C SMART INN CO, P411
Mahalakshmi G. S., 2017, COMPUTATIONAL VISION
Mahalakshmi G. S., 2009, HDB RES TEXT WEB MIN, P483
Min C, 2016, J INFORMETR, V10, P1153, DOI 10.1016/j.joi.2016.10.001
Onodera N, 2016, J INFORMETR, V10, P981, DOI 10.1016/j.joi.2016.07.001
Pride D., 2017, P 16 INT SOC SCIENT
Rosen-Zvi M, 2010, ACM T INFORM SYST, V28, DOI 10.1145/1658377.1658381
Rousseau R, 2017, J INFORMETR, V11, P583, DOI 10.1016/j.joi.2017.03.001
Saha S, 2003, J MED LIBR ASSOC, V91, P42
Seglen PO, 1997, BRIT MED J, V314, P498
Siva R., 2017, INT J CONTROL THEORY, V10, P585
Siva S. S R, 2016, ASIAN J INF TECHNOL, V15, P1964
Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004
Wang J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127298
Wong M, 2018, J CHOICE MODEL, V29, P152, DOI 10.1016/j.jocm.2017.11.003
Wouters P., 2015, METRIC TIDE REPORT I
Yin JH, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P233, DOI 10.1145/2623330.2623715
NR 35
TC 4
Z9 4
U1 0
U2 9
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-6750
J9 IEEE T EMERG TOP COM
JI IEEE Trans. Emerg. Top. Comput.
PD JAN 1
PY 2021
VL 9
IS 1
BP 269
EP 279
DI 10.1109/TETC.2018.2870179
PG 11
WC Computer Science, Information Systems; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Telecommunications
GA QW8QH
UT WOS:000628912400025
OA Bronze
DA 2024-09-05
ER
PT J
AU Lee, CH
Liu, CL
Trappey, AJC
Mo, JPT
Desouza, KC
AF Lee, Ching-Hung
Liu, Chien-Liang
Trappey, Amy J. C.
Mo, John P. T.
Desouza, Kevin C.
TI Understanding digital transformation in advanced manufacturing and
engineering: A bibliometric analysis, topic modeling and research trend
discovery
SO ADVANCED ENGINEERING INFORMATICS
LA English
DT Article
DE Digital transformation; Advanced manufacturing and engineering;
Bibliometric analysis; Topic modeling; Systematic review
ID INDUSTRY 4.0; BIG DATA; SUPPLY CHAIN; INNOVATION; SERVICE; CONSTRUCTION;
TECHNOLOGIES; ARCHITECTURE; LOGISTICS; KNOWLEDGE
AB Digital transformation (DT) is the process of combining digital technologies with sound business models to generate great value for enterprises. DT intertwines with customer requirements, domain knowledge, and theoretical and empirical insights for value propagations. Studies of DT are growing rapidly and heterogeneously, covering the aspects of product design, engineering, production, and life-cycle management due to the fast and market-driven industrial development under Industry 4.0. Our work addresses the challenge of understanding DT trends by presenting a machine learning (ML) approach for topic modeling to review and analyze advanced DT technology research and development. A systematic review process is developed based on the comprehensive DT in manufacturing systems and engineering literature (i.e., 99 articles). Six dominant topics are identified, namely smart factory, sustainability and product-service systems, construction digital transformation, public infrastructure-centric digital transformation, techno-centric digital transformation, and business modelcentric digital transformation. The study also contributes to adopting and demonstrating the ML-based topic modeling for intelligent and systematic bibliometric analysis, particularly for unveiling advanced engineering research trends through domain literature.
C1 [Lee, Ching-Hung] Xi An Jiao Tong Univ, Sch Publ Policy & Adm, Xian 710049, Peoples R China.
[Liu, Chien-Liang] Natl Yang Ming Chiao Tung Univ, Dept Ind Engn & Management, Hsinchu 300093, Taiwan.
[Trappey, Amy J. C.] Natl Tsing Hua Univ, Dept Ind Engn & Engn Management, Hsinchu 300044, Taiwan.
[Mo, John P. T.] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia.
[Desouza, Kevin C.] Queensland Univ Technol, QUT Business Sch, Brisbane, Qld 4001, Australia.
C3 Xi'an Jiaotong University; National Yang Ming Chiao Tung University;
National Tsing Hua University; Royal Melbourne Institute of Technology
(RMIT); Queensland University of Technology (QUT)
RP Liu, CL (corresponding author), Natl Yang Ming Chiao Tung Univ, Dept Ind Engn & Management, Hsinchu 300093, Taiwan.
EM leechinghung@xjtu.edu.cn; clliu@nycu.edu.tw; trappey@ie.nthu.edu.tw;
john.mo@rmit.edu.au; kevin.desouza@qut.edu.au
RI Silva, Flavio/JTT-2763-2023; Trappey, Amy/KWV-0368-2024; Lee,
Ching-Hung/IQV-9761-2023
OI Trappey, Amy/0000-0001-7651-7012; Lee, Ching-Hung/0000-0002-4093-556X;
Desouza, Kevin/0000-0002-4734-3081; Liu, Chien-Liang/0000-0002-2724-7199
CR Abou-foul M, 2021, PROD PLAN CONTROL, V32, P975, DOI 10.1080/09537287.2020.1780508
Aghimien DO, 2020, ENG CONSTR ARCHIT MA, V27, P3171, DOI 10.1108/ECAM-11-2019-0602
Aheleroff S, 2021, ADV ENG INFORM, V47, DOI 10.1016/j.aei.2020.101225
Al-Sai ZA, 2020, IEEE ACCESS, V8, P118940, DOI 10.1109/ACCESS.2020.3005461
Alos-Simo L, 2017, IND MANAGE DATA SYST, V117, P382, DOI 10.1108/IMDS-01-2016-0038
[Anonymous], 2010, P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC P ADV NEUR INF PROC
Avila-Gutiérrez MJ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11226490
Beier G, 2020, J CLEAN PROD, V259, DOI 10.1016/j.jclepro.2020.120856
Belingheri P, 2019, INT J TECHNOL MANAGE, V80, P1, DOI 10.1504/IJTM.2019.099773
Bharadwaj A, 2013, MIS QUART, V37, P471, DOI 10.25300/MISQ/2013/37:2.3
Bhargava R, 2016, ANNU REV BIOMED ENG, V18, P387, DOI 10.1146/annurev-bioeng-112415-114722
Björkdahl J, 2020, CALIF MANAGE REV, V62, P17, DOI 10.1177/0008125620920349
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bonanomi M.M., 2019, ENG CONSTR ARCHITECT
Borangiu T, 2019, COMPUT IND, V108, P150, DOI 10.1016/j.compind.2019.01.006
Bordeleau FE, 2020, PROD PLAN CONTROL, V31, P173, DOI 10.1080/09537287.2019.1631458
Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3
Boton C, 2021, ARCH COMPUT METHOD E, V28, P2331, DOI 10.1007/s11831-020-09457-7
Castelo-Branco I, 2019, COMPUT IND, V107, P22, DOI 10.1016/j.compind.2019.01.007
Chen Y.-Y.K., 2016, Internet Research
Chong S, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10113960
Chu YZ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11215946
Colli M, 2019, ANNU REV CONTROL, V48, P165, DOI 10.1016/j.arcontrol.2019.06.001
Craveiro F, 2019, AUTOMAT CONSTR, V103, P251, DOI 10.1016/j.autcon.2019.03.011
Cresnar R, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20123469
Culot G, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120092
Darko A, 2020, AUTOMAT CONSTR, V112, DOI 10.1016/j.autcon.2020.103081
Demeter K, 2021, J MANUF TECHNOL MANA, V32, P820, DOI 10.1108/JMTM-06-2019-0226
Dengler K, 2018, TECHNOL FORECAST SOC, V137, P304, DOI 10.1016/j.techfore.2018.09.024
Denner MS, 2018, BUS INFORM SYST ENG+, V60, P331, DOI 10.1007/s12599-017-0509-x
Enes J, 2018, J GRID COMPUT, V16, P587, DOI 10.1007/s10723-018-9460-4
Fanea-Ivanovici M, 2020, IEEE ACCESS, V8, P37988, DOI 10.1109/ACCESS.2020.2975542
Frank AG, 2019, TECHNOL FORECAST SOC, V141, P341, DOI 10.1016/j.techfore.2019.01.014
Frank AG, 2019, INT J PROD ECON, V210, P15, DOI 10.1016/j.ijpe.2019.01.004
Furr N, 2019, HARVARD BUS REV, V97, P94
Garfield E, 2006, INT J EPIDEMIOL, V35, P1123, DOI 10.1093/ije/dyl189
Ghobakhloo M., 2019, J MANUFACTURING TECH
Ghobakhloo M, 2020, J CLEAN PROD, V252, DOI 10.1016/j.jclepro.2019.119869
Gimpel H., 2018, Journal of Information Technology Theory and Application, V19, P31
Gölzer P, 2017, PROD PLAN CONTROL, V28, P1332, DOI 10.1080/09537287.2017.1375148
Greif T, 2020, COMPUT IND, V121, DOI 10.1016/j.compind.2020.103264
Hackius N, 2020, IEEE ACCESS, V8, P34993, DOI 10.1109/ACCESS.2020.2974622
Hartley JL, 2019, BUS HORIZONS, V62, P707, DOI 10.1016/j.bushor.2019.07.006
Herceg IV, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12104208
Hess T, 2016, MIS Q EXEC, V15, P123
Hetemi E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12093893
Horváth D, 2019, TECHNOL FORECAST SOC, V146, P119, DOI 10.1016/j.techfore.2019.05.021
Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266
Jacobi C, 2016, DIGIT JOURNAL, V4, P89, DOI 10.1080/21670811.2015.1093271
Avila-Gutiérrez MJ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12051889
Kar AK, 2019, INFORM SYST FRONT, V21, P495, DOI 10.1007/s10796-019-09930-0
Ku CC, 2020, COMPUT IND ENG, V142, DOI 10.1016/j.cie.2020.106297
Lasi H, 2014, BUS INFORM SYST ENG+, V6, P239, DOI 10.1007/s12599-014-0334-4
Lee CH, 2019, COMPUT IND ENG, V135, P275, DOI 10.1016/j.cie.2019.06.001
Lee CH, 2019, ADV ENG INFORM, V40, P154, DOI 10.1016/j.aei.2019.04.006
Lee HT, 2019, INT J PR ENG MAN-GT, V6, P809, DOI 10.1007/s40684-019-00113-5
Li AAS, 2019, IEEE SYS MAN CYBERN, P1360, DOI 10.1109/SMC.2019.8914555
Li J, 2019, AUTOMAT CONSTR, V102, P288, DOI 10.1016/j.autcon.2019.02.005
Li X, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12030936
Lo CK, 2021, ADV ENG INFORM, V48, DOI 10.1016/j.aei.2021.101297
Louridas P, 2013, IEEE SOFTWARE, V30, P33, DOI 10.1109/MS.2013.125
Lowry P., 2004, J ASSOC INF SYST, V5, P29, DOI DOI 10.17705/1JAIS.00045
Maghawry A, 2020, INT J COMPUT INT SYS, V13, P223, DOI 10.2991/ijcis.d.200214.001
Majchrzak A., 2016, MIS Q, V40, P267, DOI [DOI 10.25300/MISQ/2016/40:2.03, 10.25300/MISQ/2016/40:2.03]
Margherita EG, 2023, INFORM SYST FRONT, V25, P995, DOI 10.1007/s10796-020-10047-y
Martín CA, 2018, COMPLEXITY, DOI 10.1155/2018/7408431
Raya AM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12135322
Martyn-St James Marrissa, 2021, Systematic approaches to a successful literature review
Mian SH, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12156100
Miklosik A, 2020, IEEE ACCESS, V8, P101284, DOI 10.1109/ACCESS.2020.2998754
Mourtzis D, 2020, INT J ADV MANUF TECH, V106, P4945, DOI 10.1007/s00170-019-04746-3
Müller JM, 2018, TECHNOL FORECAST SOC, V132, P2, DOI 10.1016/j.techfore.2017.12.019
Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044
Na W, 2018, IEEE INTERNET THINGS, V5, P3661, DOI 10.1109/JIOT.2018.2865756
Nikolenko SI, 2017, J INF SCI, V43, P88, DOI 10.1177/0165551515617393
Ning G., 2008, Patent No. [201001091-Y, 201001091]
Ordieres-Meré J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12041460
Osterrieder P, 2020, INT J PROD ECON, V221, DOI 10.1016/j.ijpe.2019.08.011
Papadonikolaki E, 2018, J MANAGE ENG, V34, DOI 10.1061/(ASCE)ME.1943-5479.0000644
Park ST, 2020, J AMB INTEL HUM COMP, V11, P1405, DOI 10.1007/s12652-018-0998-6
Perez-Castillo R, 2019, ENTERP INF SYST-UK, V13, P675, DOI 10.1080/17517575.2019.1590859
Pfouga A, 2018, J COMPUT DES ENG, V5, P54, DOI 10.1016/j.jcde.2017.11.002
Phang TCH, 2020, J CONSTR ENG M, V146, DOI 10.1061/(ASCE)CO.1943-7862.0001773
Piccione PM, 2019, CHEM ENG RES DES, V147, P668, DOI 10.1016/j.cherd.2019.05.046
Power B, 2018, IEEE CLOUD COMPUT, V5, P27, DOI 10.1109/MCC.2018.032591613
Rodríguez M, 2019, IEEE SOFTWARE, V36, P13, DOI 10.1109/MS.2018.2883354
Romero M, 2020, COMPUT IND, V120, DOI 10.1016/j.compind.2020.103224
Ruh William, 2018, IEEE Internet of Things Magazine, V1, P20, DOI 10.1109/IOTM.2018.1700031
Santos RC, 2020, J MANUF TECHNOL MANA, V31, P1023, DOI 10.1108/JMTM-09-2018-0284
Saul CJ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030752
Savastano M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11030891
Schallmo D, 2017, INT J INNOV MANAG, V21, DOI 10.1142/S136391961740014X
Schön EM, 2020, IEEE ACCESS, V8, P129763, DOI 10.1109/ACCESS.2020.3009101
Steinwandter V, 2019, DRUG DISCOV TODAY, V24, P1795, DOI 10.1016/j.drudis.2019.06.005
Stentoft J, 2021, PROD PLAN CONTROL, V32, P811, DOI 10.1080/09537287.2020.1768318
Szalavetz A, 2019, TECHNOL FORECAST SOC, V145, P384, DOI 10.1016/j.techfore.2018.06.027
Tiefenbeck V, 2017, NAT ENERGY, V2, DOI 10.1038/nenergy.2017.85
Tortorella GL, 2020, INT J PROD ECON, V219, P284, DOI 10.1016/j.ijpe.2019.06.023
Trantopoulos K, 2017, MIS QUART, V41, P287, DOI 10.25300/MISQ/2017/41.1.15
Trappey CV, 2016, INT J TECHNOL MANAGE, V70, P25, DOI 10.1504/IJTM.2016.074647
Trovao J.P., 2020, IEEE VEH TECHNOL MAG, V15
Trstenjak M, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12155878
Ukko J, 2019, J CLEAN PROD, V236, DOI 10.1016/j.jclepro.2019.117626
Vial G, 2019, J STRATEGIC INF SYST, V28, P118, DOI 10.1016/j.jsis.2019.01.003
Villalonga A, 2020, IEEE T IND INFORM, V16, P5975, DOI 10.1109/TII.2020.2971057
Villela K, 2019, IEEE SOFTWARE, V36, P8, DOI 10.1109/MS.2018.2883876
Wan JF, 2019, IEEE T IND INFORM, V15, P507, DOI 10.1109/TII.2018.2843811
Wang YH, 2017, ADV ENG INFORM, V33, P300, DOI 10.1016/j.aei.2016.11.006
Westerman G, 2019, MIT SLOAN MANAGE REV, V60, P59
Woodhead R, 2018, AUTOMAT CONSTR, V93, P35, DOI 10.1016/j.autcon.2018.05.004
Xu LD, 2018, INT J PROD RES, V56, P2941, DOI 10.1080/00207543.2018.1444806
Xu ZH, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12052041
Yang S., 2019, Model -driven enterprise digital platform, has management layer provided with system configuration module, system maintenance module and access control management module to perform enterprise characteristics customization operation, Patent No. [110427184-A, 110427184]
Yao H., 2008, Patent No. [101249396-A, 101249396]
Yao H., 2008, Patent No. [100577272-C, 100577272]
Yassine A, 2017, IEEE ACCESS, V5, P13131, DOI 10.1109/ACCESS.2017.2719921
Yigitcanlar T, 2018, CITIES, V81, P145, DOI 10.1016/j.cities.2018.04.003
Zangiacomi A, 2020, PROD PLAN CONTROL, V31, P143, DOI 10.1080/09537287.2019.1631468
Zeltser R, 2019, SCI INNOV, V15, P34, DOI 10.15407/scine15.05.034
Zeng J., 2018, Patent No. [110059873-A, 110059873]
Zhao L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236648
Zheng P, 2019, ADV ENG INFORM, V42, DOI 10.1016/j.aei.2019.100973
NR 122
TC 54
Z9 57
U1 32
U2 285
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1474-0346
EI 1873-5320
J9 ADV ENG INFORM
JI Adv. Eng. Inform.
PD OCT
PY 2021
VL 50
AR 101428
DI 10.1016/j.aei.2021.101428
EA OCT 2021
PG 17
WC Computer Science, Artificial Intelligence; Engineering,
Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering
GA WN2YT
UT WOS:000711640000003
DA 2024-09-05
ER
PT J
AU Ngaile, G
Wang, J
Gau, JT
AF Ngaile, Gracious
Wang, Jyhwen
Gau, Jenn-Terng
TI Challenges in teaching modern manufacturing technologies
SO EUROPEAN JOURNAL OF ENGINEERING EDUCATION
LA English
DT Article
DE manufacturing education; collaboration; active learning; technical
skills; advanced manufacturing; engineering education research
ID FUSED DEPOSITION; DESIGN
AB Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in executing various projects. Lectures are developed to contain materials featuring advanced manufacturing technologies, R&D trends in manufacturing. Pre- and post-surveys were conducted by an external evaluator to assess the impact of the course on increase in student's knowledge of manufacturing; increase students' preparedness and confidence in effective communication and; increase students' interest in pursuing additional academic studies and/or a career path in manufacturing and high technology. The surveyed data indicate that the students perceived significant gains in manufacturing knowledge and preparedness in effective communication. The study also shows that implementation of a collaborative course within multiple institutions requires a robust and collective communication platform.
C1 [Ngaile, Gracious] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA.
[Wang, Jyhwen] Texas A&M Univ, Dept Engn Technol & Ind Distribut, College Stn, TX USA.
[Gau, Jenn-Terng] No Illinois Univ, Dept Mech Engn, De Kalb, IL 60115 USA.
C3 North Carolina State University; Texas A&M University System; Texas A&M
University College Station; Northern Illinois University
RP Gau, JT (corresponding author), No Illinois Univ, Dept Mech Engn, De Kalb, IL 60115 USA.
EM jgau@niu.edu
OI Wang, Jyhwen/0000-0001-9016-0566
FU National Science Foundation [0941042, 0941045, 0941079]; Direct For
Education and Human Resources; Division Of Undergraduate Education
[0941079, 0941042] Funding Source: National Science Foundation; Direct
For Education and Human Resources; Division Of Undergraduate Education
[0941045] Funding Source: National Science Foundation
FX The authors would like to acknowledge the National Science Foundation
through which this work was funded [award number 0941042, 0941045, and
0941079].
CR Agarwala MK, 1996, RAPID PROTOTYPING J, V2, P4, DOI 10.1108/13552549610732034
Altan T., 2003, P INT C NEW DEV BULK
AMP, 2012, AMP STEER COMM BAS D
[Anonymous], 2005, CIRP ANN-MANUF TECHN, DOI DOI 10.1016/S0007-8506(07)60021-3
[Anonymous], MAN AM COMPR STRAT A
Axinte DA, 2008, J MATER PROCESS TECH, V204, P357, DOI 10.1016/j.jmatprotec.2007.11.057
Brooks S. H., 2012, BUSINESS XPANSION J
Bruce R., 2003, MODERN MAT MANUFACTU
Cheng K., 2005, E MANUFACTURING FUND
Deisenroth M., 1996, 1996 ASEE ANN C P SE
Engel U, 2002, J MATER PROCESS TECH, V125, P35, DOI 10.1016/S0924-0136(02)00415-6
Groover MP, 2006, FUNDAMENTALS MODERN
Gunasekaran A, 2001, INT J COMP INTEG M, V14, P212, DOI 10.1080/09511920150216332
Hung WNP, 2005, J MANUF SYST, V24, P153, DOI 10.1016/S0278-6125(06)80003-8
Hurt P., 2012, EATON POWER BUSINESS
Kalpakjian S., 2009, MANUFACTURING ENG TE, V6
Kohne L., 2012, COLLABORATIVE RES MO
Kurita T, 2006, INT J MACH TOOL MANU, V46, P1311, DOI 10.1016/j.ijmachtools.2005.10.013
Lean Sigma Institute, 2012, LEAN PROD SYST
Leitao P, 2009, ENG APPL ARTIF INTEL, V22, P979, DOI 10.1016/j.engappai.2008.09.005
Morrison T., 2011, SKILL GAP US MANUFAC
Nagalingam SV, 2008, ROBOT CIM-INT MANUF, V24, P332, DOI 10.1016/j.rcim.2007.01.002
Rajurkar KP, 2006, CIRP ANN-MANUF TECHN, V55, P643, DOI 10.1016/j.cirp.2006.10.002
Rodríguez JF, 2001, RAPID PROTOTYPING J, V7, P148, DOI 10.1108/13552540110395547
Samant AN, 2009, J EUR CERAM SOC, V29, P969, DOI 10.1016/j.jeurceramsoc.2008.11.010
Shivanand H. K., 2008, P WORLD C ENG LOND, V2, P2
Smith S, 2007, CIRP ANN-MANUF TECHN, V56, P281, DOI 10.1016/j.cirp.2007.05.065
So HJ, 2008, COMPUT EDUC, V51, P318, DOI 10.1016/j.compedu.2007.05.009
Stacey E., 1999, J DISTANCE ED, V14, P14
Sun S, 2010, INT J MACH TOOL MANU, V50, P663, DOI 10.1016/j.ijmachtools.2010.04.008
Sutherland J, 1993, 1993 ASEE ANN C P SE, P120
Yao YL, 2005, INT J ENG EDUC, V21, P546
Zarrugh M. Y., 2002, P 2002 AM SOC ENG ED
Zhang SH, 2004, J MATER PROCESS TECH, V151, P237, DOI [10.1016/j.jmatprotec.2004.04.054, 10.1016/j.matprotec.2004.04.054]
Zhang XR, 2006, INT J ENG EDUC, V22, P343
Ziemian CW, 2008, INT J ENG EDUC, V24, P199
NR 36
TC 3
Z9 4
U1 0
U2 9
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 0304-3797
EI 1469-5898
J9 EUR J ENG EDUC
JI Eur. J. Eng. Educ.
PD JUL 4
PY 2015
VL 40
IS 4
BP 432
EP 449
DI 10.1080/03043797.2014.1001814
PG 18
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA CK6OU
UT WOS:000356348200006
DA 2024-09-05
ER
PT J
AU Fanton, M
Mota, HR
Araújo, CDB
da Silva, MS
Canuto, R
AF Fanton, Marcos
Mota, Hugo Ribeiro
Araujo, Carolina de Melo Bomfim
da Silva, Mitieli Seixas
Canuto, Raquel
TI Philosophical research in Brazil: A structural topic modeling approach
with a focus on temporal and gender trends
SO METAPHILOSOPHY
LA English
DT Article
DE gender gap; Latin American philosophy; metaphilosophy; scientometrics;
structural topic modeling
AB This paper employs structural topic modeling (STM) to describe the academic philosophy landscape in Brazil. Based on a public national database, a corpus consisting of 12,515 abstracts of monographs defended in philosophy graduate programs between 1991 and 2021 was compiled. The final STM model identified 74 meaningful research topics, clustered into 7 thematic categories. This study discusses the prevalence of the most significant topics and categories, their trends across three decades, and their (positive or negative) association with the supervisor's gender. Results show the first empirical evidence that Brazilian philosophical research exhibits a greater focus on philosophers than on specific themes or problems. Moreover, by visualizing the variations in topic prevalence over time, it was possible to track the rise or decline of the major interest categories and topics. Finally, results also show which topics are more influenced or less influenced by gender.
C1 [Fanton, Marcos; da Silva, Mitieli Seixas] Fed Univ St Maria, Dept Philosophy, 1000 Roraima Ave, BR-97105900 Santa Maria, Rio Grande do S, Brazil.
[Mota, Hugo Ribeiro] Univ Oslo, Dept Philosophy Class Hist Art & Ideas, Oslo, Norway.
[Araujo, Carolina de Melo Bomfim] Univ Fed Rio de Janeiro, Dept Philosophy, Rio De Janeiro, Brazil.
[Canuto, Raquel] Univ Fed Rio Grande do Norte, Dept Nutr, Natal, Brazil.
C3 University of Oslo; Universidade Federal do Rio de Janeiro; Universidade
Federal do Rio Grande do Norte
RP Fanton, M (corresponding author), Fed Univ St Maria, Dept Philosophy, 1000 Roraima Ave, BR-97105900 Santa Maria, Rio Grande do S, Brazil.
EM marcos.fanton@ufsm.br
OI Ribeiro Mota, Hugo/0000-0001-9010-1064
FU Fundacao Carlos Chagas de Apoio a Pesquisa do Estado do Rio de Janeiro
(FAPERJ) [E-26-201.027/2021]
FX Many thanks to Camila Palhares Barbosa for her thoughtful comments, as
well as to Michael Baumtrog for proofreading our manuscript. We are also
grateful to Otto Bohlmann for his meticulous editorial feedback and
textual review. This research received funds from Fundacao Carlos Chagas
de Apoio a Pesquisa do Estado do Rio de Janeiro (FAPERJ), process
E-26-201.027/2021.
CR AcevedoZapata Daniela., 2023, WOMEN PHILOS EC TECH, P295, DOI DOI 10.1515/9783111051802-027
Alcoff Linda Martin, 2013, Proceedings and Addresses of the American Philosophical Association, V87, P16
Arajo Carolina., 2019, CADERNOS FILOSOFIA A, V24, P13
Arantes Paulo., 2021, DEPARTAMENTO FRANCS
Arantes Paulo., 1994, FOLHA SO PAULO
Beebee, 2021, PHILOS MAGAZINE
Bystranowski P, 2022, BIOETHICS, V36, P902, DOI 10.1111/bioe.13087
Cabrera Jlio., 2013, DIRIO FILSOFO NO BRA
Camargo Slvio., 2012, DEBATE, V7, P126
Canadian Philosophical Association, 2018, REPORT CANADIAN PHIL
Candido Marcia Rangel, 2021, Bras. political sci. rev., V15, pe0002, DOI 10.1590/1981-3821202100030002
Canhada Jlio., 2020, DISCURSO HISTRIA FIL
CAPES, 2022, COORDENAO APERFEIOAM
Carvalho Thales., 2024, BRAZ POLIT SCI REV, V18, no. 1, pe0003143
Churchill R, 2022, ACM COMPUT SURV, V54, DOI 10.1145/3507900
Correa Roberta Pires, 2022, Int J Educ Res Open, V3, P100185, DOI 10.1016/j.ijedro.2022.100185
Domingues Ivan., 2017, FILOSOFIA NO BRASIL
Fleck Amaro., 2019, EDUCAO FILOSOFIA, V33, P1
Goddard E, 2021, WOMEN STUD INT FORUM, V86, DOI 10.1016/j.wsif.2021.102479
Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004
Grimmer Justin., 2022, TEXT DATA NEW FRAMEW
Haslanger Sally., 2008, Hypatia: A Journal of Feminist Philosophy, V23, P210, DOI DOI 10.1111/J.1527-2001.2008.TB01195.X
Hassoun N, 2022, ETHICS, V132, P680, DOI 10.1086/718075
Hu N, 2019, TOURISM MANAGE, V72, P417, DOI 10.1016/j.tourman.2019.01.002
Jennings CD, 2022, METAPHILOSOPHY, V53, P100, DOI 10.1111/meta.12527
Kntges Thomas., 2020, DIGITAL CLASSICS ONL, V6, P1
Lindstedt NC, 2019, SOC CURR, V6, P307, DOI 10.1177/2329496519846505
Malaterre C, 2019, BIOL PHILOS, V35, DOI 10.1007/s10539-019-9729-4
Malaterre C, 2019, HOPOS, V9, P215, DOI 10.1086/704372
Margutti Paulo., 2013, HISTRIA FILOSOFIA BR
Margutti Paulo., 2020, HISTRIA FILOSOFIA BR
Marques Lcio A., 2023, FORMAS FILOSOFIA BRA
Marton Scarlett, 2016, Cad. Nietzsche, V37, P11, DOI 10.1590/2316-82422016v3703sm
McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861]
Meireles Fernando., 2021, GENDERBR PREDICT GEN
Moreira Fernando S., 2023, EDUCAO FILOSOFIA, V37, P429
Moreira Fernando S., 2018, ESTUDOS NIETZSCHE, V9, P120
Mostafa Mohamed M, 2022, Qual Quant, P1, DOI 10.1007/s11135-022-01548-w
Nuccetelli Susana., 2020, INTRO LATIN AM PHILO
Nuccetelli Susana., 2013, A Companion to Latin American Philosophy, V1st
Pereira Oswaldo P., 1999, DISSENSOREVISTA DE E, Vno. 2, P131
Peruzzo Lo., 2023, REV FILOS AURORA, V35, P1
Pugliese Nastassja., 2019, QUE NOS FAZ PENSAR, V28, P402
Pugliese Nastassja., 2020, REV PHILIA, V2, P418
Repa Luiz., 2011, CAD CRH, V24, P245
Ribeiro Daniella B., 2023, ARGUMENTUM, V15, P72
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Sampaio Evaldo., 2023, AURORA, V35, P1
Schofield A., 2016, Transactions of the Association for Computational Linguistics, V4, P287, DOI [DOI 10.1162/TACLA00099, 10.1162/tacla00099]
Schwitzgebel E., 2017, Public Affairs Quarterly, V31, P83, DOI DOI 10.2307/44732784
Schwitzgebel Eric., 2021, PHILOS MAGAZINE
Seabra MR, 2023, METAPHILOSOPHY, V54, P106, DOI 10.1111/meta.12608
Silvio Romero, 1878, PHILOSOPHIA NO BRASI
Taecharungroj V, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7010035
Weatherson Brian., 2022, HIST PHILOS J VOLUME
Weston SJ, 2023, ADV METH PRACT PSYCH, V6, DOI 10.1177/25152459231160105
Wilhelm I, 2018, PHILOS STUD, V175, P1441, DOI 10.1007/s11098-017-0919-0
Wuensch Ana Mrian A., 2015, PROBLEMATA, V6, P113
NR 59
TC 0
Z9 0
U1 0
U2 0
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0026-1068
EI 1467-9973
J9 METAPHILOSOPHY
JI Metaphilosophy
PD JUL
PY 2024
VL 55
IS 3
BP 457
EP 501
DI 10.1111/meta.12700
EA JUL 2024
PG 45
WC Philosophy
WE Arts & Humanities Citation Index (A&HCI)
SC Philosophy
GA A1F9Q
UT WOS:001274087100001
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Wilson, J
Pollard, B
Aiken, JM
Caballero, MD
Lewandowski, HJ
AF Wilson, Joseph
Pollard, Benjamin
Aiken, John M.
Caballero, Marcos D.
Lewandowski, H. J.
TI Classification of open-ended responses to a research-based assessment
using natural language processing
SO PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH
LA English
DT Article
AB Surveys have long been used in physics education research to understand student reasoning and inform course improvements. However, to make analysis of large sets of responses practical, most surveys use a closed-response format with a small set of potential responses. Open-ended formats, such as written free response, can provide deeper insights into student thinking, but take much longer to analyze, especially with a large number of responses. Here, we explore natural language processing as a computational solution to this problem. We create a machine learning model that can take student responses from the Physics Measurement Questionnaire as input, and output a categorization of student reasoning based on different reasoning paradigms. Our model yields classifications with the same level of agreement as that between two humans categorizing the data, but can be done by a computer, and thus can be scaled for large datasets. In this work, we describe the algorithms and methodologies used to create, train, and test our natural language processing system. We also present the results of the analysis and discuss the utility of these approaches for analyzing open-response data in education research.
C1 [Wilson, Joseph; Pollard, Benjamin; Lewandowski, H. J.] Univ Colorado Boulder, Dept Phys, Boulder, CO 80309 USA.
[Wilson, Joseph; Lewandowski, H. J.] NIST, JILA, Boulder, CO 80309 USA.
[Pollard, Benjamin] Worcester Polytech Inst, Dept Phys, Worcester, MA 01609 USA.
[Aiken, John M.] Univ Oslo, Njord Ctr, Dept Geosci, N-0316 Oslo, Norway.
[Aiken, John M.] Univ Oslo, Njord Ctr, Dept Phys, N-0316 Oslo, Norway.
[Aiken, John M.; Caballero, Marcos D.] Univ Oslo, Ctr Comp Sci Educ, N-0316 Oslo, Norway.
[Aiken, John M.; Caballero, Marcos D.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway.
[Caballero, Marcos D.] Michigan State Univ, Dept Phys & Astron, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA.
[Caballero, Marcos D.] Michigan State Univ, CREATE, STEM Inst, E Lansing, MI 48824 USA.
C3 University of Colorado System; University of Colorado Boulder; National
Institute of Standards & Technology (NIST) - USA; Worcester Polytechnic
Institute; University of Oslo; University of Oslo; University of Oslo;
University of Oslo; Michigan State University; Michigan State University
RP Lewandowski, HJ (corresponding author), Univ Colorado Boulder, Dept Phys, Boulder, CO 80309 USA.; Lewandowski, HJ (corresponding author), NIST, JILA, Boulder, CO 80309 USA.
EM lewandoh@colorado.edu
OI Caballero, Marcos/0000-0003-0717-4583; Pollard,
Benjamin/0000-0002-5109-6415
FU National Science Foundation [PHY-1734006]; Michigan State's
LappanPhilips Foundation; INTPART project of the Research Council of
Norway [288125]; Olav Thon Foundation; Norwegian Agency for
International Cooperation and Quality Enhancement in Higher Education
(DIKU)
FX We acknowledge Rajarshi Basak for valuable input and mentorship
regarding NLP and machine learning. We acknowledge Robert Hobbs for
producing the human-coded dataset that was central to this work. This
work was supported by the National Science Foundation (Grant No.
PHY-1734006) and by Michigan State's LappanPhilips Foundation. This
project has received support from the INTPART project of the Research
Council of Norway (Grant No. 288125), the Olav Thon Foundation, and the
Norwegian Agency for International Cooperation and Quality Enhancement
in Higher Education (DIKU), which supports the Center for Computing in
Science Education. The initial idea for this project was suggested by B.
P.; further discussions around the idea occurred with H. J. L. and with
J. M. A., J. W. wrote all of the code and performed all of the analysis,
with the joint mentorship of B. P., J. M. A., M. D. C., and H. J. L., B.
P. acted as the "second human" coder for interrater reliability
comparison. J. W. wrote the initial drafts of this manuscript, which was
finished by B. P. and H. J. L. All authors contributed to editing of the
manuscript.
CR Aiken JM, 2021, PHYS REV PHYS EDUC R, V17, DOI 10.1103/PhysRevPhysEducRes.17.020104
Aiken JM, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0242334
Allie S, 1998, INT J SCI EDUC, V20, P447, DOI 10.1080/0950069980200405
Amigud A, 2020, STUD HIGH EDUC, V45, P692, DOI 10.1080/03075079.2018.1564258
[Anonymous], 1999, Foundations of statistical natural language processing
Bajaj Richa, 2018, Procedia Computer Science, V132, P834, DOI 10.1016/j.procs.2018.05.095
Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit
Buffler A, 2001, INT J SCI EDUC, V23, P1137, DOI 10.1080/09500690110039567
Buffler A., 2003, P 4 C EUROPEAN SCI E, V09, P19
Campbell B., 2005, AJRMSTE, V1
Cohen J., 1977, STAT POWER ANAL BEHA
Ding L, 2019, PHYS REV PHYS EDUC R, V15, DOI 10.1103/PhysRevPhysEducRes.15.020101
Fawcett T., 2004, Machine Learning, V31, P1
Feinerer I., 2020, tm: Text mining package
Goel E., 2017, International Journal of Advanced Research in Computer Science and Software Engineering, V7, P251, DOI DOI 10.23956/IJARCSSE/V7I1/01113
Hastie T., 2009, Springer series in statistics
Kagklis V., 2015, European Journal of Open, Distance and E-Learning, V18, DOI [10.1515/eurodl-2015-0014, DOI 10.1515/EURODL-2015-0014]
Kataria A., 2013, International Journal of Emerging Technology and Advanced Engineering, V3, P354
Lewandowski HJ, 2017, PHYS EDUC RES CONF, P244, DOI 10.1119/perc.2017.pr.056
Lewandowski H. J., 2020, P 2020 PHYS ED RES C
Lewandowski H. J., 2018, P 2018 PHYS ED RES C
Lubben F, 2001, SCI EDUC, V85, P311, DOI 10.1002/sce.1012
Madsen A, 2019, AM J PHYS, V87, P350, DOI 10.1119/1.5094139
Madsen A, 2017, PHYS TEACH, V55, P530, DOI 10.1119/1.5011826
Madsen A, 2017, AM J PHYS, V85, P245, DOI 10.1119/1.4977416
Mooney R. J., arXiv
Nehm RH, 2008, J RES SCI TEACH, V45, P1131, DOI 10.1002/tea.20251
Nehm RH, 2012, J SCI EDUC TECHNOL, V21, P56, DOI 10.1007/s10956-011-9282-7
Nehm RH, 2010, J RES SCI TEACH, V47, P358, DOI 10.1002/tea.20330
Nicholson S., 2020, Roster of physics departments with enrollment and degree data
Odden TOB, 2021, SCI EDUC, V105, P653, DOI 10.1002/sce.21623
Odden TOB, 2020, PHYS REV PHYS EDUC R, V16, DOI 10.1103/PhysRevPhysEducRes.16.010142
Pollard B., 2019, P 2019 PHYS ED RES C
Pollard B, 2021, PHYS REV PHYS EDUC R, V17, DOI 10.1103/PhysRevPhysEducRes.17.010133
Pollard B, 2020, PHYS REV PHYS EDUC R, V16, DOI 10.1103/PhysRevPhysEducRes.16.020160
Pollard B, 2017, PHYS EDUC RES CONF, P312, DOI 10.1119/perc.2017.pr.073
Ramos Juan., 2003, USING TF IDF DETERMI, V242, P29, DOI DOI 10.15804/TNER.2015.42.4.03
Rifkin R, 2004, J MACH LEARN RES, V5, P101
Salehi F, 2019, Arxiv, DOI [arXiv:1906.03761, DOI 10.48550/ARXIV.1906.03761]
Ullmann TD, 2019, INT J ARTIF INTELL E, V29, P217, DOI 10.1007/s40593-019-00174-2
Volkwyn TS, 2008, PHYS REV SPEC TOP-PH, V4, DOI 10.1103/PhysRevSTPER.4.010108
White S.Tesfaye., 2014, HIGH SCH PHYS COURSE
WILBUR WJ, 1992, J INF SCI, V18, P45, DOI 10.1177/016555159201800106
Wilson J. R., 2020, NLP PMQ Classification Notebooks
Wulff P, 2021, J SCI EDUC TECHNOL, V30, P1, DOI 10.1007/s10956-020-09865-1
Young NT, 2019, PHYS REV PHYS EDUC R, V15, DOI 10.1103/PhysRevPhysEducRes.15.010114
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
NR 47
TC 13
Z9 13
U1 7
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9896
J9 PHYS REV PHYS EDUC R
JI Phys. Rev. Phys. Educ. Res.
PD JUN 2
PY 2022
VL 18
IS 1
AR 010141
DI 10.1103/PhysRevPhysEducRes.18.010141
PG 16
WC Education & Educational Research; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Education & Educational Research
GA VN2GZ
UT WOS:001135789700002
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Shen, XH
Wang, GS
Wang, Y
AF Shen, Xiaohong
Wang, Gaoshan
Wang, Yue
TI The Influence of Research Reports on Stock Returns: The Mediating Effect
of Machine-Learning-Based Investor Sentiment
SO DISCRETE DYNAMICS IN NATURE AND SOCIETY
LA English
DT Article
ID PATTERN-RECOGNITION; MARKET-REACTIONS; SOCIAL MEDIA; NEWS;
PREDICTABILITY
AB This paper investigates whether and how the research reports issued by securities companies affect stock returns from the perspective of investor sentiment in China. By collecting research reports and investor comments from a popular Chinese investor community, i.e., East Money, we derive two indices that represent the information contained in research reports: one is the attention of research reports and the other is the average stock rating given by research reports; then we develop an investor sentiment indicator using the machine learning method. Based on behavioral finance theory, we hypothesize that research reports have a significant effect on stock returns and investor sentiment plays a mediating role in it. The empirical analysis results confirm the above hypotheses. Specifically, the average stock rating given by research reports can better predict future stock returns, and investor sentiment plays a partial mediating role in the relationship between stock rating and stock returns.
C1 [Shen, Xiaohong] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, 7366 Erhuan Dong Rd, Jinan 250014, Peoples R China.
[Wang, Gaoshan; Wang, Yue] Shandong Univ Finance & Econ, Sch Management Sci & Engn, 7366 Erhuan Dong Rd, Jinan 250014, Peoples R China.
[Wang, Gaoshan] Shandong Univ Finance & Econ, Inst Digital Econ, 7366 Erhuan Dong Rd, Jinan 250014, Peoples R China.
C3 Shandong University of Finance & Economics; Shandong University of
Finance & Economics; Shandong University of Finance & Economics
RP Wang, GS (corresponding author), Shandong Univ Finance & Econ, Sch Management Sci & Engn, 7366 Erhuan Dong Rd, Jinan 250014, Peoples R China.; Wang, GS (corresponding author), Shandong Univ Finance & Econ, Inst Digital Econ, 7366 Erhuan Dong Rd, Jinan 250014, Peoples R China.
EM gaoshanwang@126.com
RI Cai, Lin/C-3286-2016
OI Cai, Lin/0000-0002-1093-4865; Wang, Gaoshan/0000-0002-5140-8378
CR Al-Nasseri A, 2021, INT REV FINANC ANAL, V78, DOI 10.1016/j.irfa.2021.101910
Allen DE, 2019, APPL ECON, V51, P3212, DOI 10.1080/00036846.2018.1564115
Alomari M, 2021, Q REV ECON FINANC, V82, P280, DOI 10.1016/j.qref.2021.09.013
Anand A, 2021, INT REV ECON FINANC, V75, P161, DOI 10.1016/j.iref.2021.04.005
Arévalo R, 2017, EXPERT SYST APPL, V81, P177, DOI 10.1016/j.eswa.2017.03.028
Audrino F, 2020, INT J FORECASTING, V36, P334, DOI 10.1016/j.ijforecast.2019.05.010
Azar PD, 2016, J PORTFOLIO MANAGE, V42, P123, DOI 10.3905/jpm.2016.42.5.123
Baker M, 2006, J FINANC, V61, P1645, DOI 10.1111/j.1540-6261.2006.00885.x
Barniv R, 2023, J BEHAV FINANC, V24, P147, DOI 10.1080/15427560.2021.1949715
Behrendt S, 2018, J BANK FINANC, V96, P355, DOI 10.1016/j.jbankfin.2018.09.016
Bhardwaj A, 2019, INT REV FINANC ANAL, V63, P40, DOI 10.1016/j.irfa.2019.02.001
Birz G, 2022, FINANC MANAGE, V51, P169, DOI 10.1111/fima.12355
Birz G, 2017, J ECON PSYCHOL, V61, P87, DOI 10.1016/j.joep.2017.03.002
Blau BM, 2019, J BEHAV FINANC, V20, P19, DOI 10.1080/15427560.2018.1431887
Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007
Boukes M, 2020, COMMUN METHODS MEAS, V14, P83, DOI 10.1080/19312458.2019.1671966
Bouteska A, 2022, J MANAG GOV, V26, P1213, DOI 10.1007/s10997-021-09594-6
Bu Q, 2023, J BEHAV FINANC, V24, P161, DOI 10.1080/15427560.2021.1949718
Cervelló-Royo R, 2015, EXPERT SYST APPL, V42, P5963, DOI 10.1016/j.eswa.2015.03.017
Chan CY, 2014, N AM J ECON FINANC, V28, P273, DOI 10.1016/j.najef.2014.03.004
Chen SH, 2022, EMERG MARK FINANC TR, V58, P625, DOI 10.1080/1540496X.2020.1825936
Chen W. Y., 2021, ACCOUNT FINANC
Chen Y, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa43
Chun J, 2021, J BEHAV FINANC, V22, P480, DOI 10.1080/15427560.2020.1821686
Cookson JA, 2020, J FINANC, V75, P173, DOI 10.1111/jofi.12852
Dahmene M, 2021, INT REV ECON FINANC, V71, P676, DOI 10.1016/j.iref.2020.10.002
Dong YS, 2021, J ACCOUNT ECON, V71, DOI 10.1016/j.jacceco.2021.101400
Duan YJ, 2021, RES INT BUS FINANC, V58, DOI 10.1016/j.ribaf.2021.101432
El Ouadghiri I, 2021, ECOL ECON, V180, DOI 10.1016/j.ecolecon.2020.106836
Engle RF, 2021, J FINANC ECONOMET, V19, P1, DOI 10.1093/jjfinec/nbaa038
FAMA EF, 1970, J FINANC, V25, P383, DOI 10.2307/2325486
Fang XM, 2014, EMERG MARK FINANC TR, V50, P158, DOI 10.2753/REE1540-496X5003S309
Gan BQ, 2020, INT REV FINANC ANAL, V67, DOI 10.1016/j.irfa.2019.101390
Gao B, 2020, INT REV ECON FINANC, V69, P48, DOI 10.1016/j.iref.2020.03.010
Gao X, 2021, EUR FINANC MANAG, V27, P899, DOI 10.1111/eufm.12292
Glasserman P, 2019, J FINANC QUANT ANAL, V54, P1937, DOI 10.1017/S0022109019000127
Gu C, 2021, J FUTURES MARKETS, V41, P1412, DOI 10.1002/fut.22219
Gu C, 2020, J BANK FINANC, V121, DOI 10.1016/j.jbankfin.2020.105969
Guo L, 2020, J FINANC ECON, V137, P204, DOI 10.1016/j.jfineco.2020.01.002
Hao J, 2021, INT REV FINANC ANAL, V74, DOI 10.1016/j.irfa.2021.101675
Heston SL, 2017, FINANC ANAL J, V73, P67, DOI 10.2469/faj.v73.n3.3
Hsieh WLG, 2021, PAC-BASIN FINANC J, V65, DOI 10.1016/j.pacfin.2020.101492
Huang CX, 2022, EMERG MARK FINANC TR, V58, P681, DOI 10.1080/1540496X.2020.1835637
Huang T, 2022, ACCOUNT FINANC, V62, P1107, DOI 10.1111/acfi.12819
Ishigami S, 2018, J INT FINANC MARK I, V52, P134, DOI 10.1016/j.intfin.2017.09.014
Jiang H, 2021, J FINANC ECON, V141, P573, DOI 10.1016/j.jfineco.2021.04.003
Jiao PR, 2020, J ECON BEHAV ORGAN, V176, P63, DOI 10.1016/j.jebo.2020.03.002
Khedr Ayman E., 2017, International Journal of Intelligent Systems and Applications, V9, P22, DOI 10.5815/ijisa.2017.07.03
Kim B, 2021, N AM J ECON FINANC, V55, DOI 10.1016/j.najef.2020.101287
Kim K, 2021, INT REV FINANC ANAL, V77, DOI 10.1016/j.irfa.2021.101835
Kim K, 2021, RES INT BUS FINANC, V56, DOI 10.1016/j.ribaf.2020.101376
Kim K, 2019, INVEST ANAL J, V48, P89, DOI 10.1080/10293523.2019.1614758
Kim SH, 2014, J ECON BEHAV ORGAN, V107, P708, DOI 10.1016/j.jebo.2014.04.015
Kong DM, 2021, J EMPIR FINANC, V62, P234, DOI 10.1016/j.jempfin.2021.04.001
Leone AJ, 2019, ACCOUNT REV, V94, P337, DOI 10.2308/accr-52396
Li CC, 2020, PAC-BASIN FINANC J, V60, DOI 10.1016/j.pacfin.2020.101293
Li JF, 2021, INT J FINANC ECON, V26, P1695, DOI 10.1002/ijfe.1872
Li XD, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102212
Li YL, 2020, INT J FORECASTING, V36, P1541, DOI 10.1016/j.ijforecast.2020.05.001
Li YZ, 2021, ENERG ECON, V95, DOI 10.1016/j.eneco.2021.105140
Lien D, 2020, ASIA-PAC J FINANC ST, V49, P772, DOI 10.1111/ajfs.12313
Löffler G, 2021, J BANK FINANC, V133, DOI 10.1016/j.jbankfin.2021.106256
Lutz B, 2020, EXPERT SYST APPL, V148, DOI 10.1016/j.eswa.2020.113223
Lv Y. Z., APPL ECON LETT, V2021
Marty T, 2020, ACCOUNT FINANC, V60, P1385, DOI 10.1111/acfi.12466
Narayan PK, 2019, ENERG ECON, V83, P430, DOI 10.1016/j.eneco.2019.07.022
Narayan PK, 2017, PAC-BASIN FINANC J, V42, P24, DOI 10.1016/j.pacfin.2015.12.009
Peress J, 2020, J FINANC, V75, P1083, DOI 10.1111/jofi.12863
Qadan M, 2016, J EMPIR FINANC, V38, P62, DOI 10.1016/j.jempfin.2016.05.007
Qiao HS, 2020, EMERG MARK FINANC TR, V56, P613, DOI 10.1080/1540496X.2019.1686974
Rapp A., 2019, Journal of Capital Markets Studies, V3, P6
Renault T, 2017, J BANK FINANC, V84, P25, DOI 10.1016/j.jbankfin.2017.07.002
Schnaubelt M, 2020, J ECON DYN CONTROL, V114, DOI 10.1016/j.jedc.2020.103895
Schumaker RP, 2012, DECIS SUPPORT SYST, V53, P458, DOI 10.1016/j.dss.2012.03.001
Selin DT, 2021, J BEHAV FINANC, V22, P221, DOI 10.1080/15427560.2020.1772261
Shi J, 2022, INT J FINANC ECON, V27, P1309, DOI 10.1002/ijfe.2216
Shu HC, 2015, J BEHAV FINANC, V16, P206, DOI 10.1080/15427560.2015.1064930
Song HL, 2020, SCI PROGRAMMING-NETH, V2020, DOI 10.1155/2020/8894757
Strauss N, 2019, JOURNALISM, V20, P274, DOI 10.1177/1464884917753556
Strauss N, 2018, COMMUN RES, V45, P1054, DOI 10.1177/0093650217705528
Su Z, 2019, EMERG MARK FINANC TR, V55, P2949, DOI 10.1080/1540496X.2018.1562898
Sul HK, 2017, DECISION SCI, V48, P454, DOI 10.1111/deci.12229
Sun LC, 2016, J BANK FINANC, V73, P147, DOI 10.1016/j.jbankfin.2016.09.010
Sun Y, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103181
Sun Yunchuan, 2021, Pers Ubiquitous Comput, V25, P587, DOI 10.1007/s00779-021-01542-3
Tetlock PC, 2007, J FINANC, V62, P1139, DOI 10.1111/j.1540-6261.2007.01232.x
Tetlock PC, 2014, ANNU REV FINANC ECON, V6, P365, DOI 10.1146/annurev-financial-110613-034449
Tsukioka Y, 2018, INT REV ECON FINANC, V56, P205, DOI 10.1016/j.iref.2017.10.025
van Atteveldt W, 2021, COMMUN METHODS MEAS, V15, P121, DOI 10.1080/19312458.2020.1869198
van der Meer TGLA, 2018, COMMUNICATIONS-GER, V43, P5, DOI 10.1515/commun-2017-0027
Vukovic DB, 2021, INT J FINANC ECON, V26, P3134, DOI 10.1002/ijfe.1954
Wan XC, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-82338-6
Wu GGR, 2019, ASIA PAC MANAG REV, V24, P54, DOI 10.1016/j.apmrv.2018.01.003
Xu YY, 2022, INT J FINANC ECON, V27, P2073, DOI 10.1002/ijfe.2260
Xu YA, 2023, INT J FINANC ECON, V28, P1063, DOI 10.1002/ijfe.2463
Yang W, 2017, FINANC RES LETT, V22, P1, DOI 10.1016/j.frl.2017.05.001
Yin YG, 2018, J BEHAV FINANC, V19, P16, DOI 10.1080/15427560.2017.1366493
Zhang ST, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.758967
Zhang WG, 2021, J FORECASTING, V40, P1479, DOI 10.1002/for.2777
NR 99
TC 1
Z9 1
U1 4
U2 58
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1026-0226
EI 1607-887X
J9 DISCRETE DYN NAT SOC
JI Discrete Dyn. Nat. Soc.
PD DEC 31
PY 2021
VL 2021
AR 5049179
DI 10.1155/2021/5049179
PG 14
WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Mathematics; Science & Technology - Other Topics
GA 0I1SN
UT WOS:000779206100004
OA gold
DA 2024-09-05
ER
PT C
AU Kobayashi, Y
Shimbo, M
Matsumoto, Y
AF Kobayashi, Yuta
Shimbo, Masashi
Matsumoto, Yuji
GP Assoc Comp Machinery
TI Citation Recommendation Using Distributed Representation of Discourse
Facets in Scientific Articles
SO JCDL'18: PROCEEDINGS OF THE 18TH ACM/IEEE JOINT CONFERENCE ON DIGITAL
LIBRARIES
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 18th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL)
CY JUN 03-07, 2018
CL Univ N Texas Coll Informat, Fort Worth, TX
HO Univ N Texas Coll Informat
DE Scientific article; representation learning; natural language
processing; discourse facet; co-citation analysis
ID INFORMATIVE ABSTRACTS
AB Scientific articles usually follow a common pattern of discourse, and their contents can be divided into several facets, such as objective, method, and result. We examine the efficacy of using these discourse facets for citation recommendation. A method for learning multi-vector representations of scientific articles is proposed, in which each vector encodes a discourse facet present in an article. With each facet represented as a separate vector, the similarity of articles can be measured not in their entirety, but facet by facet. The proposed representation method is tested on a new citation recommendation task called context-based co-citation recommendation. This task calls for the evaluation of article similarity in terms of citation contexts, wherein facets help to abstract and generalize the diversity of contexts. The experimental results show that the facet-based representation outperforms the standard monolithic representation of articles.
C1 [Kobayashi, Yuta; Shimbo, Masashi; Matsumoto, Yuji] Nara Inst Sci & Technol, Nara, Japan.
C3 Nara Institute of Science & Technology
RP Kobayashi, Y (corresponding author), Nara Inst Sci & Technol, Nara, Japan.
EM kobayashi.yuta.kp1@is.naist.jp; shimbo@is.naist.jp; matsu@is.naist.jp
FU JST CREST, Japan [JPMJCR1513]
FX This work was partly supported by JST CREST Grant Number JPMJCR1513,
Japan.
CR [Anonymous], 2014, TEXT AN C 2014 BIOM
[Anonymous], 2016, T ASSOC COMPUT LING, DOI DOI 10.1162/TACL_A_00051
[Anonymous], 2015, WORKSHOPS 20 9 AAAI
[Anonymous], 2014, P INT C INT C MACH L
[Anonymous], 2012, P COLING 2012
[Anonymous], 2014, P C EMP METH NAT LAN
[Anonymous], 2014, PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD PROC 20 ACM SIGKDD, DOI [DOI 10.1145/2623330.2623732, 10.1145/2623330.2623732]
[Anonymous], 2017, P ACL
Athar A., 2011, P ACL 2011 STUD SESS, P81
Bahdanau D., 2014, P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R P 3 INT C LEARNING R
Bengio Y, 2003, J MACH LEARN RES, V3, P1137, DOI 10.1162/153244303322533223
Case Donald O., 2000, J ASSOC INF SCI TECH, V51, P7
Duma D, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P358
Elkan C., 2008, SIGKDD, P213, DOI 10.1145/1401890.1401920
Eto M., 2012, P 5 ACM WORKSH RES A, P7, DOI DOI 10.1145/2390116.2390121
Gipp B, 2009, PRO INT CONF SCI INF, V2, P571
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Guo Yufan., 2010, Proceedings of the 2010 Workshop on Biomedical Natural Language Processing, P99, DOI DOI 10.5555/1869961.1869974
HAYNES RB, 1990, ANN INTERN MED, V113, P69, DOI 10.7326/0003-4819-113-1-69
Jaidka K., 2017, BIRNDL SIGIR, P1
Jaidka K, 2018, INT J DIGIT LIBRARIE, V19, P163, DOI 10.1007/s00799-017-0221-y
Järvelin K, 2002, ACM T INFORM SYST, V20, P422, DOI 10.1145/582415.582418
Jurgens David., 2016, CoRR
Kafkas S, 2015, J BIOMED SEMANT, V6, DOI 10.1186/2041-1480-6-1
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
MULROW CD, 1988, ANN INTERN MED, V108, P613, DOI 10.7326/0003-4819-108-4-613
Munkhdalai Tsendsuren., 2016, P 7 INT WORKSHOP HLT, P69, DOI [DOI 10.18653/V1/W16-6109, 10.18653/v1/W16-6109]
Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926
Rush A. M., 2015, arXiv preprint arXiv: 1509. 00685,, DOI DOI 10.18653/V1/D15-1044
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Sugiyama K, 2015, INT J DIGIT LIBRARIE, V16, P91, DOI 10.1007/s00799-014-0122-2
Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093
Teufel S, 2002, COMPUT LINGUIST, V28, P409, DOI 10.1162/089120102762671936
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
U. S. National Library of Medicine, 2015, STRUCT ABSTR MEDLINE
NR 35
TC 27
Z9 29
U1 0
U2 7
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
SN 2575-7865
EI 2575-8152
BN 978-1-4503-5178-2
J9 ACM-IEEE J CONF DIG
PY 2018
BP 243
EP 251
DI 10.1145/3197026.3197059
PG 9
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BL9RX
UT WOS:000458178700035
DA 2024-09-05
ER
PT J
AU Chi, ZY
Zhang, S
Wang, Y
Yang, L
Yang, YM
Li, XW
AF Chi, Zhenyu
Zhang, Song
Wang, Yang
Yang, Lin
Yang, Yimin
Li, Xuwen
TI Research of gestational diabetes mellitus risk evaluation method
SO TECHNOLOGY AND HEALTH CARE
LA English
DT Article; Proceedings Paper
CT 4th International Conference on Biomedical Engineering and Biotechnology
(iCBEB)
CY AUG 18-21, 2015
CL Shanghai, PEOPLES R CHINA
DE Gestational diabetes mellitus; logistic regression; risk factors
AB BACKGROUND: Gestational diabetes mellitus (GDM) is not easily detected. The difficulty in detecting GDM is largely due to the late onset of clinical symptoms as well as the various complications that result from GDM [1].
OBJECTIVE: GDM greatly influences both mother and child. Therefore, the purpose of this study was to reduce the morbidity of GDM.
METHODS: In this study, risk factors that influence GDM were selected through statistical analysis. Multivariable logistic regression analysis was used to obtain the regression equation and Odds Ratio (OR) value. The risk score of each factor was obtained according to the OR value.
RESULTS: The score of every pregnant woman could be very intuitively used to show the risk of getting GDM.
CONCLUSION: Through the above methods, a comprehensive risk evaluation method of detecting GDM was developed.
C1 [Chi, Zhenyu; Zhang, Song; Yang, Lin; Yang, Yimin; Li, Xuwen] Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing, Peoples R China.
[Wang, Yang] Shenzhen Huada Gene Res Inst, Shenzhen, Peoples R China.
C3 Beijing University of Technology
RP Yang, L (corresponding author), 100 Pingleyuan, Beijing, Peoples R China.
EM yanglin@bjut.edu.cn
RI Li, Zilong/JEZ-8642-2023
CR Albert Reece E., 2009, LANCET
Anne Vambergue, 2013, GESTATIONAL DIABETES
Bennett W.L., 2012, J WOMENS HLTH
Colagiuri S., 2011, DIABETES CARE
Hedderson M.M., 2009, DIABETES
Hedderson MM., 2008, Diabetes Care
Hod M., 1996, ACTA OBSTET GYNECOLO
Ilknur Inegol Gumus, 2010, TURKISH J MED SCI
Kerenyi Z., 1996, DIABETOLOGIA
Leanne Bellamy, 2009, LANCET
Metzger B.E., 2007, DIABETES CARE
Phaloprakarn C., 2009, EUROPEAN J OBSTET GY
Qiu C.F., 2011, AM J EPIDEMIOLOGY
Qiu C.F., 2004, AM J OBSTET GYNETETR
Rc K., 1995, AM J OBSTET GYNETETR
Solomon C.G., 1996, DIABETES CARE
Solomon C.G., 1997, JAMA J AM MED ASS
Tarim E., 2004, INT J OBSTET GYNETET
Teh W.T., 2011, AUSTR NZ J OBSTET GY
NR 19
TC 2
Z9 2
U1 0
U2 9
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 0928-7329
EI 1878-7401
J9 TECHNOL HEALTH CARE
JI Technol. Health Care
PY 2016
VL 24
SU 2
BP S499
EP S503
DI 10.3233/THC-161174
PG 5
WC Health Care Sciences & Services; Engineering, Biomedical
WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S)
SC Health Care Sciences & Services; Engineering
GA DQ6ZD
UT WOS:000379355100010
PM 27163310
OA Bronze
DA 2024-09-05
ER
PT J
AU Ma, HL
Ismail, L
Han, WJ
AF Ma, Huiling
Ismail, Lilliati
Han, Weijing
TI A bibliometric analysis of artificial intelligence in language teaching
and learning (1990-2023): evolution, trends and future directions
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article; Early Access
DE Artificial intelligence; Language learning; Language teaching;
Bibliometric analysis
ID CHATBOT; TECHNOLOGY; IMPACT; BOTS
AB The advancement and application of Artificial Intelligence (AI) has introduced innovative changes in language learning and teaching. In particular, the widespread utilization of various chatbots as foreign language learning partners showcases their remarkable potential contribution to the field. Nevertheless, there are currently few studies that encompass extensive and holistic reviews and analyses of the relevant literature during this period. The study employs bibliometric analysis and a systematic review of representative research to present trends, the current status and future directions of AI research in language teaching and learning, providing language educators, policymakers, and research scholars with visually accessible and comprehensive insights. Results indicate that the field is in its early stages of development, growing rapidly with significant research potential. The study identified the most productive and influential sources, institutions, authors and countries and provided a summary for the most representative papers in the research field. Through keyword analysis, the study delineates the evolutionary progression of AI in the domain of language teaching and learning across different time periods, identifies prevailing research trends and proposes future research directions. Results indicate that influential research in this realm predominantly focuses on refining technological solutions and conducting empirical studies on AI applications in language teaching and learning. This highlights significant interest in the effectiveness of AI in language education and its implementation methods. However, research on the application of AI in language education is still in its infancy. Therefore, the study advocates for increased empirical research on AI's specific applications in language listening, speaking, reading, and writing, as well as the development of more effective pedagogical approaches. Furthermore, the findings reveal a lack of attention given to various concerns and challenges associated with AI utilization in language teaching and learning, such as concerns regarding academic integrity, content authenticity, potential bias, privacy and security issues, and environmental concerns. At present, there is a lack of suitable solutions or regulatory frameworks proposed to address these concerns adequately.
C1 [Ma, Huiling] Coll Arts & Sci Kunming, Kunming 650000, Yunnan, Peoples R China.
[Ma, Huiling; Ismail, Lilliati; Han, Weijing] UPM Univ Putra Malaysia, Fak Pengajian Pendidikan, Seri Kembangan 43400, Selangor, Malaysia.
[Han, Weijing] Yunnan Technol & Business Univ, Kunming 650000, Yunnan, Peoples R China.
RP Ma, HL (corresponding author), Coll Arts & Sci Kunming, Kunming 650000, Yunnan, Peoples R China.; Ma, HL (corresponding author), UPM Univ Putra Malaysia, Fak Pengajian Pendidikan, Seri Kembangan 43400, Selangor, Malaysia.
EM mahuiling00@gmail.com; lilliati@upm.edu.my; 303679843@qq.com
CR Agarwal A, 2016, ASIAN J ANDROL, V18, P296, DOI 10.4103/1008-682X.171582
Belda-Medina J, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12178427
Chen CH, 2022, EDUC TECHNOL SOC, V25, P1
Chen HL, 2020, J EDUC COMPUT RES, V58, P1161, DOI 10.1177/0735633120929622
Chen XL, 2021, IEEE INT CONF ADV LE, P241, DOI 10.1109/ICALT52272.2021.00079
Chodorow M, 2010, LANG TEST, V27, P419, DOI 10.1177/0265532210364391
Chowdhary K., 2020, Fundamentals of artificial intelligence, P603, DOI 10.1007/978-81-322-3972-7_19
COUGHLIN JM, 1990, FR REV, V63, P560
Delaherche E, 2012, IEEE T AFFECT COMPUT, V3, P349, DOI 10.1109/T-AFFC.2012.12
Dergaa I, 2023, BIOL SPORT, V40, P615, DOI 10.5114/biolsport.2023.125623
Dizon G, 2020, LANG LEARN TECHNOL, V24, P16
Fatih Karatas, 2024, Education and Information Technologies, DOI [10.1007/s10639-024-12574-6, DOI 10.1007/S10639-024-12574-6]
Fryer L, 2006, LANG LEARN TECHNOL, V10, P8
Fryer LK, 2020, LANG LEARN TECHNOL, V24, P8
Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023
Fryer LK, 2017, COMPUT HUM BEHAV, V75, P461, DOI 10.1016/j.chb.2017.05.045
Gibney E, 2022, NATURE, V607, P648, DOI 10.1038/d41586-022-01983-7
Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610
Huang XY, 2023, EDUC TECHNOL SOC, V26, P112, DOI 10.30191/ETS.202301_26(1).0009
Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001]
Jaakkola H., 2020, 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), P548, DOI 10.23919/MIPRO48935.2020.9245329
Ji H, 2023, J RES TECHNOL EDUC, V55, P48, DOI 10.1080/15391523.2022.2142873
Jia JY, 2009, KNOWL-BASED SYST, V22, P249, DOI 10.1016/j.knosys.2008.09.001
Johnson W., 2010, INT J ARTIFICIAL INT, V20, P175, DOI [DOI 10.3233/JAI-2010-0006, 10.3233/JAI-2010-0006]
Johnson WL, 2005, FRONT ARTIF INTEL AP, V125, P306
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Kerly A, 2008, KNOWL-BASED SYST, V21, P238, DOI 10.1016/j.knosys.2007.11.015
Kessler G, 2018, FOREIGN LANG ANN, V51, P205, DOI 10.1111/flan.12318
Kim J, 2022, EDUC INF TECHNOL, V27, P6069, DOI 10.1007/s10639-021-10831-6
Kirkpatrick Keith., 2023, Commun. ACM, V66, P17, DOI [10.1145/3603746, DOI 10.1145/3603746]
Kohnke L, 2023, RELC J, V54, P537, DOI 10.1177/00336882231162868
Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348
Lu XX, 2019, BIG DATA-US, V7, P121, DOI 10.1089/big.2018.0151
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07
Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025
Ruan S, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300587
Salmon PM, 2023, HUM FACTOR ERGON MAN, V33, P366, DOI 10.1002/hfm.20996
Settles B, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1848
Sharadgah TA, 2022, J INF TECHNOL EDUC-R, V21, P337, DOI 10.28945/4999
Sindermann C, 2021, KUNSTL INTELL, V35, P109, DOI 10.1007/s13218-020-00689-0
Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862
Sun ZM, 2021, COMPUT INTELL-US, V37, P1166, DOI 10.1111/coin.12351
Tai TY, 2023, INTERACT LEARN ENVIR, V31, P1485, DOI 10.1080/10494820.2020.1841801
Troussas C, 2013, SPRINGERPLUS, V2, DOI 10.1186/2193-1801-2-387
WEIZENBAUM J, 1966, COMMUN ACM, V9, P36, DOI 10.1145/357980.357991
Yan D, 2023, EDUC INF TECHNOL, V28, P13943, DOI 10.1007/s10639-023-11742-4
Yang HZ, 2024, EDUC INF TECHNOL, V29, P3837, DOI 10.1007/s10639-023-11991-3
Yang HZ, 2022, AUSTRALAS J EDUC TEC, V38, P180, DOI 10.14742/ajet.7492
Yang H, 2022, RECALL, V34, P327, DOI 10.1017/S0958344022000039
Yang S. J. H., 2021, Computers and Education: Artificial Intelligence, V2, DOI [DOI 10.1016/J.CAEAI.2021.100008, 10.1016/j.caeai.2021.100008]
NR 51
TC 0
Z9 0
U1 34
U2 34
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD 2024 JUN 22
PY 2024
DI 10.1007/s10639-024-12848-z
EA JUN 2024
PG 25
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA UZ4U1
UT WOS:001251881400002
DA 2024-09-05
ER
PT J
AU Zhang, GJ
Liang, YK
Wei, FF
AF Zhang, Guijie
Liang, Yikai
Wei, Fangfang
TI Combining Bibliometric and Social Network Analysis to Understand the
Scholarly Publications on Artificial Intelligence
SO JOURNAL OF SCHOLARLY PUBLISHING
LA English
DT Article
DE scholarly publications; artificial intelligence; bibliometric analysis;
social network analysis; correlation analysis
ID CO-AUTHORSHIP NETWORKS
AB This article aims to conduct a comprehensive study employing bibliometric and social network analysis to explore scholarly publications in artificial intelligence (AI). A co-authorship network analysis of countries/regions and institutions, a thematic analysis based on the co-occurrence of keywords, and a Spearman rank correlation test of social network analysis are conducted using VOSviewer and SPSS, respectively. According to the research power analysis, the United States and China are the most significant contributors to the relevant publications and hold dominant positions in the co-authorship network. Universities play a crucial role in promoting and carrying out relevant research. AI has been increasingly applied to address new problems and challenges in various fields in recent years. The Spearman rank correlation analysis indicates that research performance in AI is significantly and positively correlated with social network indicators. This article reveals a systematic picture of the research landscape of AI, which can provide a potential guide for future research.
C1 [Zhang, Guijie; Liang, Yikai] Shandong Univ Finance & Econ, Sch Management Sci & Engn, Jinan, Peoples R China.
[Wei, Fangfang] Univ Jinan, Business Sch, Jinan, Peoples R China.
C3 Shandong University of Finance & Economics; University of Jinan
RP Wei, FF (corresponding author), Univ Jinan, Business Sch, Jinan, Peoples R China.
EM zgjzxmtx@163.com; yikailiang@qq.com; weifftju@163.com
OI Zhang, Guijie/0000-0002-7847-5431; Liang, Yikai/0000-0002-8696-4446
FU National Social Science Foundation of China [22BGL271]; Humanities and
Social Science Foundation of the Ministry of Education of China
[22YJC630198]; Natural Science Foundation of Shandong Province
[ZR2022MG086, ZR2023MG025]
FX This study was supported by the National Social Science Foundation of
China (No. 22BGL271), the Humanities and Social Science Foundation of
the Ministry of Education of China (No. 22YJC630198), and Natural
Science Foundation of Shandong Province (No. ZR2022MG086 and
ZR2023MG025).
CR Baehr M, 2020, J SCHOLARLY PUBL, V51, P234, DOI 10.3138/jsp.51.4.03
Baker HK, 2020, J BUS RES, V108, P232, DOI 10.1016/j.jbusres.2019.11.025
BONACICH P, 1972, J MATH SOCIOL, V2, P113, DOI 10.1080/0022250X.1972.9989806
Bordons M, 2015, J INFORMETR, V9, P135, DOI 10.1016/j.joi.2014.12.001
Borgohain DJ, 2024, LIBR HI TECH, V42, P149, DOI 10.1108/LHT-07-2022-0331
Chen WH, 2021, IEEE ACCESS, V9, P77811, DOI 10.1109/ACCESS.2021.3082908
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002
FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7
Gamble A, 2020, ASLIB J INFORM MANAG, V72, P509, DOI 10.1108/AJIM-11-2019-0316
Garechana G, 2015, J ASSOC INF SCI TECH, V66, P1431, DOI 10.1002/asi.23264
Harrison TM, 2022, SOC SCI COMPUT REV, V40, P494, DOI 10.1177/0894439320980122
Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014
Johnson KW, 2018, J AM COLL CARDIOL, V71, P2668, DOI 10.1016/j.jacc.2018.03.521
Khullar D, 2021, J AM MED INFORM ASSN, V28, P1574, DOI 10.1093/jamia/ocab055
Lee PC, 2010, INNOV-MANAG POLICY P, V12, P26, DOI 10.5172/impp.12.1.26
Li EY, 2013, RES POLICY, V42, P1515, DOI 10.1016/j.respol.2013.06.012
Lin MT, 2020, CHINA COMMUN, V17, P58, DOI 10.23919/JCC.2020.03.006
Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006
Modak NM, 2019, TRANSPORT RES A-POL, V120, P188, DOI 10.1016/j.tra.2018.11.015
Ngwenya S, 2022, SCIENTOMETRICS, V127, P3911, DOI 10.1007/s11192-022-04435-1
Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006
Popping R, 2003, SOC SCI INFORM, V42, P91, DOI 10.1177/0539018403042001798
Ramzy M, 2024, LIBR HI TECH, V42, P227, DOI 10.1108/LHT-02-2022-0100
Taber E, 2020, J SCHOLARLY PUBL, V51, P263, DOI 10.3138/jsp.51.4.06
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
Wang XF, 2015, IEEE ACCESS, V3, P1379, DOI 10.1109/ACCESS.2015.2467174
Wang YM, 2020, J SCHOLARLY PUBL, V51, P273, DOI 10.3138/jsp.51.4.08
Wei FF, 2020, ELECTRON LIBR, V38, P493, DOI 10.1108/EL-12-2019-0279
Zhang GJ, 2022, ELECTRON LIBR, V40, P160, DOI 10.1108/EL-11-2021-0204
Zhang GJ, 2022, LEARN PUBL, V35, P92, DOI 10.1002/leap.1423
Zhang GJ, 2019, SCIENTOMETRICS, V118, P721, DOI 10.1007/s11192-019-03005-2
NR 32
TC 1
Z9 1
U1 10
U2 39
PU UNIV TORONTO PRESS INC
PI TORONTO
PA JOURNALS DIVISION, 5201 DUFFERIN ST, DOWNSVIEW, TORONTO, ON M3H 5T8,
CANADA
SN 1198-9742
EI 1710-1166
J9 J SCHOLARLY PUBL
JI J. Sch. Publ.
PD OCT 1
PY 2023
VL 54
IS 4
BP 552
EP 568
DI 10.3138/jsp-2022-0070
EA JUL 2023
PG 17
WC Humanities, Multidisciplinary; Information Science & Library Science
WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Arts & Humanities - Other Topics; Information Science & Library Science
GA W6BV3
UT WOS:001036212700001
DA 2024-09-05
ER
PT C
AU Bharathwaj, SK
Na, JC
Sangeetha, B
Sarathkumar, E
AF Bharathwaj, Sampathkumar Kuppan
Na, Jin-Cheon
Sangeetha, Babu
Sarathkumar, Eswaran
BE Jatowt, A
Maeda, A
Syn, SY
TI Sentiment Analysis of Tweets Mentioning Research Articles in Medicine
and Psychiatry Disciplines
SO DIGITAL LIBRARIES AT THE CROSSROADS OF DIGITAL INFORMATION FOR THE
FUTURE, ICADL 2019
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 21st International Conference on Asia-Pacific Digital Libraries (ICADL)
CY NOV 04-07, 2019
CL Kuala Lumpur, MALAYSIA
DE Altmetrics; Twitter; Medicine; Psychiatry; Sentiment analysis; Text
classification
AB Recently altmetrics (short for alternative metrics) are gaining popularity among researchers to identify the impact of scholarly publications among the general public. Although altmetrics have been widely used nowadays, there has been a limited number of studies analyzing users' sentiments towards these scholarly publications on social media platforms. In this paper, we analyzed and compared user sentiments (positive, negative and neutral) towards scholarly publications in Medicine and Psychiatry domains by analyzing user-generated content (tweets) on Twitter. We explored various machine learning algorithms, and constructed the best model with Support Vector Machine (SVM) which gave an accuracy of 91.6%.
C1 [Bharathwaj, Sampathkumar Kuppan; Na, Jin-Cheon; Sangeetha, Babu; Sarathkumar, Eswaran] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore.
C3 Nanyang Technological University
RP Na, JC (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore.
EM bharathw001@e.ntu.edu.sg; tjcna@ntu.edu.sg; sangeeth006@e.ntu.edu.sg;
sarathku002@e.ntu.edu.sg
OI Na, Jin-Cheon/0000-0002-2211-9382
CR [Anonymous], ALT METR IN PHAS 1 W
Arredondo L., 2018, STUDY ALTMETRICS USI
Na JC, 2015, LECT NOTES COMPUT SC, V9469, P197, DOI 10.1007/978-3-319-27974-9_20
Raamkumar AS, 2018, LECT NOTES COMPUT SC, V11279, P71, DOI 10.1007/978-3-030-04257-8_7
NR 4
TC 1
Z9 1
U1 0
U2 2
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-34058-2; 978-3-030-34057-5
J9 LECT NOTES COMPUT SC
PY 2019
VL 11853
BP 303
EP 307
DI 10.1007/978-3-030-34058-2_29
PG 5
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods; Information Science &
Library Science; Imaging Science & Photographic Technology
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science; Imaging Science
& Photographic Technology
GA BQ3BB
UT WOS:000583740100029
DA 2024-09-05
ER
PT C
AU Gonzalez-Aragon, T
Castro-Godinez, J
AF Gonzalez-Aragon, Tomas
Castro-Godinez, Jorge
GP IEEE
TI Improving Performance of Error-Tolerant Applications: A Case Study of
Approximations on an Off-the-Shelf Neural Accelerator
SO V JORNADAS COSTARRICENSES DE INVESTIGACION EN COMPUTACION E INFORMATICA
(JOCICI 2021)
LA English
DT Proceedings Paper
CT 5th Costa Rican Conference on Research in Computing and Informatics
(JoCICI)
CY OCT 25-29, 2021
CL San Jose, COSTA RICA
DE Approximate computing; deep learning; neural accelerator; edge computing
AB Trending workloads and applications are leading many of the new advances in computer architecture and design paradigms. For instance, deep learning applications are transforming the way we do computing. On one hand, specific architectures are currently commercialized as neural processing units, specialized hardware accelerators for these types of applications, achieving significant performance improvements. On the other hand, design paradigms, such as approximate computing, exploit existing inherent tolerance to imprecise computations in these applications to reduce their computation complexity and produce energy-efficient implementations. Relevant available approximations are limited to the software layer to improve the performance of deep learning applications when using an off-the-shelf specialized accelerator alongside edge computing platforms. In this work, we present a case study of performance improvement by introducing approximate computing techniques to three deep learning classification applications. Our test platform is a Raspberry Pi 4, as edge computing device, and a Movidius Myriad X, as neural accelerator. Our experimental results show that using a mixture of approximate techniques can achieve a performance improvement from 20x to 48x with no accuracy degradation for a compute-intensive classification application.
C1 [Gonzalez-Aragon, Tomas] Intel Costa Rica, Heredia, Costa Rica.
[Castro-Godinez, Jorge] Inst Tecnol Costa Rica TEC, Cartago, Costa Rica.
C3 Instituto Tecnologico de Costa Rica
RP Gonzalez-Aragon, T (corresponding author), Intel Costa Rica, Heredia, Costa Rica.
EM tomas.gonzalez.aragon@intel.com; jocastro@tec.ac.cr
FU Instituto Tecnologico de Costa Rica
FX This work was supported by the Instituto Tecnologico de Costa Rica.
CR [Anonymous], OpenVINO toolkit
[Anonymous], Intel Neural Compute Stick 2
[Anonymous], MYRIAD 10 PRODUCT BR
Castro-Godinez J., 2020, 2020 INT C COMPILERS
Castro-Godínez J, 2020, ICCAD-IEEE ACM INT, DOI 10.1145/3400302.3415732
Castro-Godínez J, 2018, DES AUT TEST EUROPE, P1027, DOI 10.23919/DATE.2018.8342163
Chowdhury P., 2021, P 2021 GREAT LAK S V, P359, DOI DOI 10.1145/3453688.3461498
Han S, 2015, ADV NEUR IN, V28
Intel, INT IM CLASS DAT
Jackson Z., Free spoken digit dataset
Oltean M., FRUIT IMAGES DATASET
Shafique M., 2016, 53ND DESIGN AUTOMATI
Singh R, PRUNING DEEP NEURAL
Theis TN, 2017, COMPUT SCI ENG, V19, P41, DOI 10.1109/MCSE.2017.29
Wang C.-F., A Basic Introduction to Separable Convolutions
NR 15
TC 0
Z9 0
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-9832-6
PY 2021
DI 10.1109/JoCICI54528.2021.9794353
PG 6
WC Computer Science, Interdisciplinary Applications; Computer Science,
Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BT9IY
UT WOS:000861163300011
DA 2024-09-05
ER
PT C
AU Batanovic, V
AF Batanovic, Vuk
GP IEEE
TI Semantic Similarity and Sentiment Analysis of Short Texts in Serbian
SO 2021 29TH TELECOMMUNICATIONS FORUM (TELFOR)
LA English
DT Proceedings Paper
CT 29th Telecommunications Forum (TELFOR)
CY NOV 23-24, 2021
CL ELECTR NETWORK
DE open access datasets; semantic textual similarity; sentiment
classification; Serbian language
AB This paper presents an overview of the open access datasets in Serbian that have been manually annotated for the tasks of semantic textual similarity and short-text sentiment classification. In addition, it describes several kinds of statistical models that have been trained and evaluated on these datasets and discusses their results.
C1 [Batanovic, Vuk] Univ Belgrade, Sch Elect Engn, Innovat Ctr, Bul Kralja Aleksandra 73, Belgrade 11120, Serbia.
C3 University of Belgrade
RP Batanovic, V (corresponding author), Univ Belgrade, Sch Elect Engn, Innovat Ctr, Bul Kralja Aleksandra 73, Belgrade 11120, Serbia.
EM vuk.batanovic@ic.etf.bg.ac.rs
RI Batanović, Vuk/AAD-8365-2021
OI Batanović, Vuk/0000-0003-2639-9091
FU Science Fund of the Republic of Serbia [6526093, AI - AVANTES]
FX This work was partially supported by the Science Fund of the Republic of
Serbia, grant no. 6526093, AI - AVANTES.
CR Agirre E., 2013, SEMEVAL
Agirre Eneko, 2015, P 9 INT WORKSHOP SEM, P252
[Anonymous], 2013, 1 INT C LEARN REPR I
[Anonymous], 2016, SEMEVAL 2016 10 INT
[Anonymous], 2005, P WORKSHOP EMPIRICAL, DOI [10.3115/1631862.1631865, DOI 10.3115/1631862.1631865]
[Anonymous], 2012, SEM 2012 1 JOINT C L
Batanovic V., 2011, 2011 19th Telecommunications Forum Telfor (TELFOR), P1249, DOI 10.1109/TELFOR.2011.6143778
Batanovic V., 2020, THESIS U BELGRADE
Batanovic V., 2020, P 2020 APPL FREE SOF, DOI [10.5281/zenodo.4113229, DOI 10.5281/ZENODO.4113229]
Batanovic V, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P1370
Batanovic V, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0242050
Batanovic V, 2016, LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P2688
Batanovic V, 2015, COMPUT SCI INF SYST, V12, P1, DOI 10.2298/CSIS131127082B
Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001
Bommasani Rishi, 2021, On the opportunities and risks of foundation models
Cer D., 2017, SEMEVAL ACL, P1, DOI DOI 10.18653/V1/S17-2001
Clark K, 2020, INFORM SYST RES, DOI 10.48550/arXiv.2003.10555
Devlin J., 2018, ARXIV
Fan RE, 2008, J MACH LEARN RES, V9, P1871
Furlan B, 2013, DECIS SUPPORT SYST, V55, P710, DOI 10.1016/j.dss.2013.02.002
Islam A., 2008, ACM Transactions on Knowledge Discovery from Data (TKDD), V2, p10:1
Krippendorff K., 2018, CONTENT ANAL INTRO I
Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11
Liu XD, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4487
Ljajic A, 2019, COMPUT SCI INF SYST, V16, P289, DOI 10.2298/CSIS180122013L
Ljubesic N, 2007, The Future of Information Sciences (INFuture 2007): Digital information and heritage, P313
Ljubesic N., 2021, P 8 BSNLP WORKSH BAL, P37
Ljubesic Nikola, 2014, P 9 WEB CORP WORKSH, P29, DOI DOI 10.3115/V1/W14-0405
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
Mozetic I, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0155036
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
Rennie Jason D.M., 2003, Proceedings, Twentieth International Conference on Machine Learning, V2
Vaswani A, 2017, ADV NEUR IN, V30
Wang S., 2012, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2, ACL '12, P90
Wiebe J, 2014, P 8 INT WORKSH SEM E, P81, DOI [10.3115/v1/S14-2010, DOI 10.3115/V1/S14-2010]
Wolf T, 2020, Arxiv, DOI arXiv:1910.03771
NR 37
TC 2
Z9 2
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-2585-8
PY 2021
DI 10.1109/TELFOR52709.2021.9653390
PG 7
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering; Telecommunications
GA BT5TR
UT WOS:000838086600149
DA 2024-09-05
ER
PT J
AU Yang, QL
Zhang, WD
Zhao, CH
AF Yang, Qingliang
Zhang, Wendong
Zhao, Chaohui
TI Research on Torque Performance of Marine Hybrid Excitation Synchronous
Motors Based on PSO Optimization of Magnetic Permeability Structure
SO JOURNAL OF MARINE SCIENCE AND ENGINEERING
LA English
DT Article
DE hybrid excitation machine; particle swarm optimization; multi-objective
optimization
ID DESIGN; OPERATION; DRIVE
AB The rotor magnetic shunt structure hybrid excitation synchronous motor (RMS-HESM) has been widely used in marine propulsion due to its advantages of low loss and high efficiency. The objective of this paper is to improve the output torque capability of the hybrid excitation motor with a rotor magnetic shunt structure by conducting a multi-objective optimization design for the magnetic permeability structure. The first step involved establishing a mathematical analytical model of average torque and torque ripple based on the fundamental principle of motor magnetization. Next, the parameters of the magnetic permeability structure were designed and analyzed using the finite element simulation method. The impact of the variations in the parameters of the magnetic permeability structure on motor torque and no-load back electromotive force was examined. Additionally, a sensitivity analysis was performed on the design variables of the magnetic permeability structure, leading to the determination of optimization parameters based on the obtained results. The adaptive inertia weight-based particle swarm algorithm (PSO) was employed to conduct a multi-objective optimization design analysis. A comparative analysis on the average torque, torque ripple, and no-load back electromotive force of the motor before and after optimization was performed using the Maxwell and Workbench and Optislong joint simulation tools. This enhancement significantly improves the torque performance of the marine motor while simultaneously optimizing the no-load back electromotive force.
C1 [Yang, Qingliang] Shanghai Dianji Univ, Coll Mech Engn, Shanghai 201306, Peoples R China.
[Yang, Qingliang] Shanghai Maritime Univ, Logist Engn Coll, Shanghai 201306, Peoples R China.
[Zhang, Wendong; Zhao, Chaohui] Shanghai Dianji Univ, Coll Elect Engn, Shanghai 201306, Peoples R China.
C3 Shanghai Dianji University; Shanghai Maritime University; Shanghai
Dianji University
RP Zhao, CH (corresponding author), Shanghai Dianji Univ, Coll Elect Engn, Shanghai 201306, Peoples R China.
EM yangql@sdju.edu.cn; zhaoch@sdju.edu.cn
CR Afinowi IAA, 2015, IEEE T MAGN, V51, DOI 10.1109/TMAG.2015.2446951
Ahumada C, 2022, IEEE ENER CONV, DOI 10.1109/ECCE50734.2022.9947717
Bernardeschi C, 2020, LECT NOTES COMPUT SC, V12226, P3, DOI 10.1007/978-3-030-57506-9_1
Cha J, 2023, IEEE T APPL SUPERCON, V33, DOI 10.1109/TASC.2023.3245057
Chen Yunyun, 2023, 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers), P1, DOI 10.1109/INTERMAGShortPapers58606.2023.10228217
Contò C, 2022, MACHINES, V10, DOI 10.3390/machines10100869
Dini P, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10232954
Fan DY, 2021, IEEE T IND ELECTRON, V68, P10534, DOI 10.1109/TIE.2020.3039207
Gaussens B, 2014, IEEE T IND ELECTRON, V61, P2976, DOI 10.1109/TIE.2013.2281152
Hijikata H, 2018, IEEE T POWER ELECTR, V33, P6887, DOI 10.1109/TPEL.2017.2751581
Husain I, 2021, P IEEE, V109, P1039, DOI 10.1109/JPROC.2020.3046112
Jiang JW, 2016, IET ELECTR SYST TRAN, V6, P126, DOI 10.1049/iet-est.2015.0021
Kanapara A.J., 2020, P 2020 21 NAT POW SY, P1
Lee SG, 2020, IEEE T ENERGY CONVER, V35, P2076, DOI 10.1109/TEC.2020.2999127
Lee W, 2018, IEEE T TRANSP ELECTR, V4, P684, DOI 10.1109/TTE.2018.2853994
Li J, 2019, IEEE T MAGN, V55, DOI 10.1109/TMAG.2019.2893637
Liu JZ, 2022, IEEE T VEH TECHNOL, V71, P3648, DOI 10.1109/TVT.2022.3141732
Mörée G, 2022, ENERGIES, V15, DOI 10.3390/en15197254
Ou HY, 2019, J MAR SCI ENG, V7, DOI 10.3390/jmse7070236
Pierpaolo D., 2020, Applications in Electronics Pervading Industry, VVolume 627
Seo SW, 2020, IEEE T APPL SUPERCON, V30, DOI 10.1109/TASC.2020.2990827
Sun YS, 2023, ENERGIES, V16, DOI 10.3390/en16124588
Wang C., 2021, China Sci. Pap, V16, P906
Wang C., 2021, Chin. J. Electr. Eng, V41, P7476
Wu Shengnan, 2022, CES Transactions on Electrical Machines and Systems, V6, P188, DOI 10.30941/CESTEMS.2022.00025
Yang QL, 2022, ENERGY REP, V8, P476, DOI 10.1016/j.egyr.2022.05.227
Zhang Z.R., 2020, Chin. J. Electr. Eng, V40, P7834
Zhang ZR, 2008, IEEE T MAGN, V44, P2174, DOI 10.1109/TMAG.2008.2000513
Zheng SY, 2022, IEEE T IND ELECTRON, V69, P3428, DOI 10.1109/TIE.2021.3073311
Zhu Z. Q., 2019, CES Transactions on Electrical Machines and Systems, V3, P233, DOI 10.30941/CESTEMS.2019.00032
Zou D., 2021, Small Spec. Electr. Mach, V49, P11
NR 31
TC 0
Z9 0
U1 2
U2 2
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2077-1312
J9 J MAR SCI ENG
JI J. Mar. Sci. Eng.
PD JUL
PY 2024
VL 12
IS 7
AR 1064
DI 10.3390/jmse12071064
PG 18
WC Engineering, Marine; Engineering, Ocean; Oceanography
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Oceanography
GA ZS4V1
UT WOS:001277277100001
OA gold
DA 2024-09-05
ER
PT J
AU Kaur, M
Saini, M
AF Kaur, Manpreet
Saini, Munish
TI Role of Artificial Intelligence in the crime prediction and pattern
analysis studies published over the last decade: a scientometric
analysis
SO ARTIFICIAL INTELLIGENCE REVIEW
LA English
DT Article
DE Artificial Intelligence; Scientometrics; Crime prediction; Crime pattern
analysis; Bibliometrics
ID PREVENTION
AB Crime is the intentional commission of an act usually suspected as socially detrimental and specifically defined, forbidden, and punishable under criminal law. Developing a society that is less susceptible to criminal acts makes crime prediction and pattern analysis (CPPA) a paramount topic for academic research interest. With the innovation in technology and rapid expansion of Artificial Intelligence (AI), the research in the field of CPPA has evolved radically to predict crime efficiently. While the number of publications is expanding substantially, we believe there is a dearth of thorough scientometric analysis for this topic. This work intends to analyze research conducted in the last decade using Scopus data and a scientometric technique, emphasizing citation trends and intriguing journals, nations, institutions, their collaborations, authors, and co-authorship networks in CPPA research. Furthermore, three field plots have been staged to visualize numerous associations between country, journal, keyword, and author. Besides, a comprehensive keyword analysis is carried out to visualize the CPPA research carried out with AI amalgamation. A total of five clusters have been identified depicting several AI methods used by the researchers in CPPA and the evolution of research trends over time from various perspectives.
C1 [Kaur, Manpreet; Saini, Munish] Guru Nanak Dev Univ, Dept Comp Engn & Technol, Amritsar, Punjab, India.
C3 Guru Nanak Dev University
RP Kaur, M (corresponding author), Guru Nanak Dev Univ, Dept Comp Engn & Technol, Amritsar, Punjab, India.
EM manpreet.csersh@gndu.ac.in; munish.cet@gndu.ac.in
RI Kaur, Manpreet/CAH-3123-2022; Saini, Munish/J-4196-2016
OI Kaur, Manpreet/0000-0002-7680-3075; Saini, Munish/0000-0003-4129-2591
CR Aboujaoude E, 2015, J ADOLESCENT HEALTH, V57, P10, DOI 10.1016/j.jadohealth.2015.04.011
Adeyemi IR, 2013, INT J DIGIT CRIME FO, V5, P1, DOI 10.4018/jdcf.2013010101
Adeyemi RA, 2021, SPAT STAT-NETH, V41, DOI 10.1016/j.spasta.2020.100485
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Basilio MP, 2022, J MODEL MANAG, V17, P1372, DOI 10.1108/JM2-10-2020-0268
Basilio MP, 2021, J MODEL MANAG, V16, P1185, DOI 10.1108/JM2-05-2020-0122
Basilio MP, 2020, J MODEL MANAG, V15, P849, DOI 10.1108/JM2-10-2018-0166
Basson I, 2021, SCIENTOMETRICS, V126, P459, DOI 10.1007/s11192-020-03734-9
Birks D, 2012, CRIMINOLOGY, V50, P221, DOI 10.1111/j.1745-9125.2011.00258.x
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Campedelli GM, 2021, J COMPUT SOC SCI, V4, P503, DOI 10.1007/s42001-020-00082-9
Ceccato V, 2023, EUR J CRIMINOL, V20, P486, DOI 10.1177/14773708211013299
Chiodi SI, 2016, J PLACE MANAG DEV, V9, P137, DOI 10.1108/JPMD-09-2015-0037
Chun SA, 2019, PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH (DGO2019): GOVERNANCE IN THE AGE OF ARTIFICIAL INTELLIGENCE, P512, DOI 10.1145/3325112.3328221
Dakalbab F., 2022, Social Sciences Humanities Open, V6, DOI [10.1016/j.ssaho.2022.100342, DOI 10.1016/J.SSAHO.2022.100342]
Diaz-Garcia JA, 2023, ARTIF INTELL REV, V56, P1175, DOI 10.1007/s10462-022-10196-3
Gandapur MQ, 2022, IMAGE VISION COMPUT, V123, DOI 10.1016/j.imavis.2022.104467
Gerber MS, 2014, DECIS SUPPORT SYST, V61, P115, DOI 10.1016/j.dss.2014.02.003
Ghosh D, 2016, P 17 INT DIG GOV RES, DOI [10.1145/2912160.2912205, DOI 10.1145/2912160.2912205]
Guiyun Zhou, 2012, 2012 International Conference on Computational Problem-Solving (ICCP), P147, DOI 10.1109/ICCPS.2012.6384228
Hart T, 2014, POLICING, V37, P305, DOI 10.1108/PIJPSM-04-2013-0039
Humayun M, 2020, ARAB J SCI ENG, V45, P3171, DOI 10.1007/s13369-019-04319-2
Jenga Karabo, 2023, Journal of Ambient Intelligence and Humanized Computing, P2887, DOI 10.1007/s12652-023-04530-y
Kaur A, 2020, EARTH SCI INFORM, V13, P1, DOI 10.1007/s12145-019-00408-w
Kaur M, 2023, 2023 14 INT C COMP C, P1, DOI [10.1109/ICCCNT56998.2023.10308090, DOI 10.1109/ICCCNT56998.2023.10308090]
Kaur M, 2023, EDUC INF TECHNOL, V28, P581, DOI 10.1007/s10639-022-11168-4
[李海林 Li Hailin], 2022, [科研管理, Science Research Management], V43, P176
Li ST, 2010, EXPERT SYST APPL, V37, P7108, DOI 10.1016/j.eswa.2010.03.004
Lin YL, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7080298
Malleson N, 2010, COMPUT ENVIRON URBAN, V34, P236, DOI 10.1016/j.compenvurbsys.2009.10.005
Mandalapu V, 2023, IEEE ACCESS, V11, P60153, DOI 10.1109/ACCESS.2023.3286344
Manu E., 2021, Secondary research methods in the built environment, DOI [10.1201/9781003000532, DOI 10.1201/9781003000532]
Martín-Martín A, 2021, SCIENTOMETRICS, V126, P871, DOI 10.1007/s11192-020-03690-4
McAfee, 2020, ABOUT US
Ministry of Home Affairs, 2022, Crime in India 2022
Mondal S, 2022, GEOJOURNAL, V87, P5287, DOI 10.1007/s10708-022-10573-z
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044
Pareek P, 2021, ARTIF INTELL REV, V54, P2259, DOI 10.1007/s10462-020-09904-8
Piza EL, 2019, CRIMINOL PUBLIC POL, V18, P135, DOI 10.1111/1745-9133.12419
Reyns BW, 2024, JUSTICE Q, V41, P218, DOI 10.1080/07418825.2023.2188066
Roser M, 2019, Homicides
Roy S, 2023, PROF GEOGR, V75, P882, DOI 10.1080/00330124.2023.2223250
Sanders CB, 2017, CRIME LAW SOCIAL CH, V68, P1, DOI 10.1007/s10611-016-9678-7
Shah N, 2021, VIS COMPUT IND BIOME, V4, DOI 10.1186/s42492-021-00075-z
Solomon A, 2022, EXPERT SYST APPL, V199, DOI 10.1016/j.eswa.2022.117042
Sood SK, 2022, ACM T INTERNET TECHN, V22, DOI 10.1145/3564783
Sood SK, 2022, COMPUT ELECTR ENG, V101, DOI 10.1016/j.compeleceng.2022.107948
Sood SK, 2024, IEEE T ENG MANAGE, V71, P671, DOI 10.1109/TEM.2021.3134128
Sood SK, 2021, ARTIF INTELL REV, V54, P6309, DOI 10.1007/s10462-021-09980-4
Sood SK, 2021, NAT HAZARDS, V106, P2863, DOI 10.1007/s11069-021-04512-3
Thakkar A, 2022, ARTIF INTELL REV, V55, P453, DOI 10.1007/s10462-021-10037-9
van der Wagen W, 2015, BRIT J CRIMINOL, V55, P578, DOI 10.1093/bjc/azv009
van Dijk J, 2022, J QUANT CRIMINOL, V38, P793, DOI 10.1007/s10940-021-09501-0
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Walczak S, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.587943
Wang ZH, 2022, J SAF SCI RESIL, V3, P115, DOI 10.1016/j.jnlssr.2021.08.007
Ward T, 2019, PSYCHOL CRIME LAW, V25, P709, DOI 10.1080/1068316X.2019.1572754
Wheeler AP, 2021, J QUANT CRIMINOL, V37, P445, DOI 10.1007/s10940-020-09457-7
Wikström POH, 2022, ANNU REV CRIMINOL, V5, P179, DOI 10.1146/annurev-criminol-030920-091320
Williams ML, 2017, BRIT J CRIMINOL, V57, P320, DOI 10.1093/bjc/azw031
Zantalis F, 2019, FUTURE INTERNET, V11, DOI 10.3390/fi11040094
Zhu Q, 2022, INFORM MANAGE-AMSTER, V59, DOI 10.1016/j.im.2019.103247
NR 63
TC 0
Z9 0
U1 2
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0269-2821
EI 1573-7462
J9 ARTIF INTELL REV
JI Artif. Intell. Rev.
PD JUL 11
PY 2024
VL 57
IS 8
AR 202
DI 10.1007/s10462-024-10823-1
PG 35
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA YN6G5
UT WOS:001269200500003
OA hybrid
DA 2024-09-05
ER
PT J
AU Foran, DJ
Chen, WJ
Kurc, T
Gupta, R
Kaczmarzyk, JR
Torre-Healy, LA
Bremer, E
Ajjarapu, S
Do, N
Harris, G
Stroup, A
Durbin, E
Saltz, JH
AF Foran, David J.
Chen, Wenjin
Kurc, Tahsin
Gupta, Rajarshi
Kaczmarzyk, Jakub Roman
Torre-Healy, Luke Austin
Bremer, Erich
Ajjarapu, Samuel
Do, Nhan
Harris, Gerald
Stroup, Antoinette
Durbin, Eric
Saltz, Joel H.
TI An Intelligent Search & Retrieval System (IRIS) and Clinical and
Research Repository for Decision Support Based on Machine Learning and
Joint Kernel-based Supervised Hashing
SO CANCER INFORMATICS
LA English
DT Article
DE Multi-modal clinical research data warehouse; content based retrieval;
decision support; machine learning; adaptable extraction; transform and
load interface; large-scale multi-site collaboration
AB Large-scale, multi-site collaboration is becoming indispensable for a wide range of research and clinical activities in oncology. To facilitate the next generation of advances in cancer biology, precision oncology and the population sciences it will be necessary to develop and implement data management and analytic tools that empower investigators to reliably and objectively detect, characterize and chronicle the phenotypic and genomic changes that occur during the transformation from the benign to cancerous state and throughout the course of disease progression. To facilitate these efforts it is incumbent upon the informatics community to establish the workflows and architectures that automate the aggregation and organization of a growing range and number of clinical data types and modalities ranging from new molecular and laboratory tests to sophisticated diagnostic imaging studies. In an attempt to meet those challenges, leading health care centers across the country are making steep investments to establish enterprise-wide, data warehouses. A significant limitation of many data warehouses, however, is that they are designed to support only alphanumeric information. In contrast to those traditional designs, the system that we have developed supports automated collection and mining of multimodal data including genomics, digital pathology and radiology images. In this paper, our team describes the design, development and implementation of a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide actionable insight into the underlying characteristics of the tumor environment that would not be revealed using standard methods and tools. The System features a flexible Extract, Transform and Load (ETL) interface that enables it to adapt to aggregate data originating from different clinical and research sources depending on the specific EHR and other data sources utilized at a given deployment site.
C1 [Foran, David J.; Chen, Wenjin] Rutgers Canc Inst New Jersey, Ctr Biomed Informat, New Brunswick, NJ USA.
[Kurc, Tahsin; Gupta, Rajarshi; Bremer, Erich; Saltz, Joel H.] SUNY Stony Brook, Dept Biomed Informat, Stony Brook, NY USA.
[Kaczmarzyk, Jakub Roman; Torre-Healy, Luke Austin] SUNY Stony Brook, Renaissance Sch Med, Stony Brook, NY USA.
[Ajjarapu, Samuel; Do, Nhan] VA Healthcare Syst, Jama Plain Campus, Boston, MA USA.
[Harris, Gerald; Stroup, Antoinette] Rutgers Canc Inst New Jersey, New Jersey State Canc Registry, New Brunswick, NJ USA.
[Durbin, Eric] Markey Canc Ctr, Kentucky Canc Registry, Lexington, KY USA.
[Foran, David J.] Rutgers Canc Inst New Jersey, Biomed Informat, 195 Little Albany St, New Brunswick, NJ 08903 USA.
C3 Rutgers University System; Rutgers University New Brunswick; Rutgers
University Biomedical & Health Sciences; Rutgers Cancer Institute of New
Jersey; State University of New York (SUNY) System; State University of
New York (SUNY) Stony Brook; State University of New York (SUNY) System;
State University of New York (SUNY) Stony Brook; Stony Brook University
Hospital; Rutgers University System; Rutgers University New Brunswick;
Rutgers University Biomedical & Health Sciences; Rutgers Cancer
Institute of New Jersey; Rutgers University System; Rutgers University
New Brunswick; Rutgers University Biomedical & Health Sciences; Rutgers
Cancer Institute of New Jersey
RP Foran, DJ (corresponding author), Rutgers Canc Inst New Jersey, Biomed Informat, 195 Little Albany St, New Brunswick, NJ 08903 USA.
EM foran@cinj.rutgers.edu
OI Torre-Healy, Luke/0000-0002-9513-4620; ajjarapu,
samuel/0000-0002-0066-6086
CR Coudray N, 2018, NAT MED, V24, P1559, DOI 10.1038/s41591-018-0177-5
Foran David J, 2022, J Pathol Inform, V13, P5, DOI 10.4103/jpi.jpi_31_21
Foran DJ., 2017, Cancer Inform, V16, P1
Hirshfield KM, 2016, ONCOLOGIST, V21, P1315, DOI 10.1634/theoncologist.2016-0049
Le H, 2020, AM J PATHOL, V190, P1491, DOI 10.1016/j.ajpath.2020.03.012
Payne PRO., 2021, Biomedical Informatics: Computer Applications in Health Care and Biomedicine, P913
Platt JE, 2020, J MED INTERNET RES, V22, DOI 10.2196/17026
Ren J, 2018, J MED IMAGING, V5, DOI 10.1117/1.JMI.5.4.047501
Vanguri RS, 2022, NAT CANCER, V3, P1151, DOI 10.1038/s43018-022-00416-8
Yoshida H, 2021, WORLD J GASTROENTERO, V27, P2818, DOI 10.3748/wjg.v27.i21.2818
Zaldana F., 2018, Presented at the Newport, Rhode Island
NR 11
TC 0
Z9 0
U1 1
U2 1
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
EI 1176-9351
J9 CANCER INFORM
JI Cancer Inform.
PY 2024
VL 23
AR 11769351231223806
DI 10.1177/11769351231223806
PG 6
WC Oncology; Mathematical & Computational Biology
WE Emerging Sources Citation Index (ESCI)
SC Oncology; Mathematical & Computational Biology
GA GZ4U9
UT WOS:001156498400001
PM 38322427
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Greenwood, CR
Thiemann-Bourque, K
Walker, D
Buzhardt, J
Gilkerson, J
AF Greenwood, Charles R.
Thiemann-Bourque, Kathy
Walker, Dale
Buzhardt, Jay
Gilkerson, Jill
TI Assessing Children's Home Language Environments Using Automatic Speech
Recognition Technology
SO COMMUNICATION DISORDERS QUARTERLY
LA English
DT Article
DE language acquisition/development; language assessment; research
methodology; applied research; technology
AB The purpose of this research was to replicate and extend some of the findings of Hart and Risley using automatic speech processing instead of human transcription of language samples. The long-term goal of this work is to make the current approach to speech processing possible by researchers and clinicians working on a daily basis with families and young children. Twelve hour-long, digital audio recordings were obtained repeatedly in the homes of middle to upper SES families for a sample of typically developing infants and toddlers (N = 30). These recordings were processed automatically using a measurement framework based on the work of Hart and Risley. Like Hart and Risley, the current findings indicated vast differences in individual children's home language environments (i.e., adult word count), children's vocalizations, and conversational turns. Automated processing compared favorably to the original Hart and Risley estimates that were based on transcription. Adding to Hart and Risley's findings were new descriptions of patterns of daily talk and relationships to widely used outcome measures, among others. Implications for research and practice are discussed.
C1 [Greenwood, Charles R.] Univ Kansas, Kansas City, KS USA.
[Thiemann-Bourque, Kathy; Walker, Dale; Buzhardt, Jay] Univ Kansas, Life Span Inst, Kansas City, KS USA.
[Gilkerson, Jill] LENA Fdn, Boulder, CO USA.
C3 University of Kansas; University of Kansas
RP Greenwood, CR (corresponding author), Juniper Gardens Childrens Project, 650 Minnesota Ave,2nd Floor, Kansas City, KS 66101 USA.
EM greenwood@ku.edu
RI Buzhardt, Jay/ACD-4708-2022
OI Bourque, Kathy/0000-0002-0672-5761; Greenwood,
Charles/0000-0002-6274-3075; Walker, Dale/0000-0001-9692-1151
CR [Anonymous], 2009, LTR052 LENA FDN
Bayley N, 2006, Bayley scales of infant and toddler development technical manual, V3rd
Christakis DA, 2009, ARCH PEDIAT ADOL MED, V163, P554, DOI 10.1001/archpediatrics.2009.61
Gilkerson J., 2009, LENA NATURAL LANGUAG
Gilkerson J., 2008, Technical Report LTR-06-2
Greenwood C. R., 2008, DIV EARL CHILDH C MI
Hansen J. L., 2008, LANGUAGE ASSESSMENT
HART B, 1978, EDUC URBAN SOC, V10, P407, DOI 10.1177/001312457801000402
HART B, 1992, DEV PSYCHOL, V28, P1096, DOI 10.1037/0012-1649.28.6.1096
Hart B., 1999, SOCIAL WORLD CHILDRE
Hart B., 1989, Education and Treatment of Children, V12, P347
Hart B, 1995, Meaningful Differences in the Everyday Experience of Young American Children
Hart Betty, 2003, American Education, P4
Infoture Inc., 2008, CHILD LANG DEV S DEP
Lena Foundation, 2009, LENA PROS
Miller P., 2009, LENA FDN CASE STUDY
Montgomery J., 2008, LANGUAGE ASSESSMENT
Oetting JB., 2009, ASHA LEADER, V14, P20, DOI DOI 10.1044/LEADER.FTR3.14062009.20
Oller D. K., 2008, LANGUAGE ASSESSMENT
STAR Reading, 2007, UND REL VAL
Warren S., 2009, Journal of Autism Developmental Disorders, P1
Warren S.F., 2005, HDB RES METHODS DEV, P249, DOI DOI 10.1002/9780470756676.CH13
Xu D, 2008, LTR042 LENA FDN
Zimmerman I.L., 2002, PRESCHOOL LANGUAGE S, VFourth
NR 24
TC 106
Z9 129
U1 0
U2 18
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1525-7401
J9 COMM DISORD Q
JI Comm. Disord. Q.
PD FEB
PY 2011
VL 32
IS 2
BP 83
EP 92
DI 10.1177/1525740110367826
PG 10
WC Linguistics; Rehabilitation
WE Social Science Citation Index (SSCI)
SC Linguistics; Rehabilitation
GA V28NU
UT WOS:000208688300004
DA 2024-09-05
ER
PT J
AU Huang, XY
Zou, D
Cheng, G
Chen, XL
Xie, HR
AF Huang, Xinyi
Zou, Di
Cheng, Gary
Chen, Xieling
Xie, Haoran
TI Trends, Research Issues and Applications of Artificial Intelligence in
Language Education
SO EDUCATIONAL TECHNOLOGY & SOCIETY
LA English
DT Article
DE Artificial Intelligence; Language Education; Bibliometric Analysis;
Automated Writing Evaluation; Intelligent Tutoring System
ID FOREIGN-LANGUAGE; LEARNING-SYSTEM; ENGLISH; FUTURE; AI
AB Artificial Intelligence (AI) plays an increasingly important role in language education; however, the trends, research issues, and applications of AI in language learning remain largely under-investigated. Accordingly, the present paper, using bibliometric analysis, investigates these issues via a review of 516 papers published between 2000 and 2019, focusing on how AI was integrated into language education. Findings revealed that the frequency of studies on AI-enhanced language education increased over the period. The USA and Arizona State University were the most active country and institution, respectively. The 10 most popular topics were: (1) automated writing evaluation; (2) intelligent tutoring systems (ITS) for reading and writing; (3) automated error detection; (4) computer-mediated communication; (5) personalized systems for language learning; (6) natural language and vocabulary learning; (7) web resources and web-based systems for language learning; (8) ITS for writing in English for specific purposes; (9) intelligent tutoring and assessment systems for pronunciation and speech training; and (10) affective states and emotions. The results also indicated that AI was frequently used to assist students in learning writing, reading, vocabulary, grammar, speaking, and listening. Natural language processing, automated speech recognition, and learner profiling were commonly applied to develop automated writing evaluation, personalized learning, and intelligent tutoring systems.
C1 [Huang, Xinyi; Cheng, Gary; Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Education University of Hong
Kong (EdUHK); Lingnan University
RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
EM hxinyi@eduhk.hk; dizoudaisy@gmail.com; chengks@eduhk.hk;
xielingchen0708@gmail.com; hrxie2@gmail.com
RI Xie, Haoran/AFS-3515-2022; Huang, Xinyi/AFI-7092-2022; Xie,
Haoran/AAW-8845-2020
OI Xie, Haoran/0000-0003-0965-3617; Huang, Xinyi/0000-0001-9777-7905; ZOU,
Di/0000-0001-8435-9739
FU Education University of Hong Kong and the Dean's Research Fund of The
Education University of Hong Kong [RG 78/2019-2020R, IDS-22020]; Lingnan
University, Hong Kong [DB21A9, LWI20011]
FX An abstract entitled ?Artificial Intelligence in Language Education?
based on this paper was presented at the International Conference on
Education and Artificial Intelligence 2020, The Education University of
Hong Kong, 9-11 November 2020, Hong Kong. Gary Cheng?s work in this
research is supported by the Research Cluster Fund (RG 78/2019-2020R) of
The Education University of Hong Kong and the Dean's Research Fund
2019/20 (IDS-22020) of The Education University of Hong Kong. Haoran
Xie?s work in this research is supported by the Faculty Research Fund
(DB21A9) and the Lam Woo Research Fund (LWI20011) of Lingnan University,
Hong Kong.
CR Alexopoulou T, 2017, LANG LEARN, V67, P180, DOI 10.1111/lang.12232
Ali Zuraina, 2020, IOP Conference Series: Materials Science and Engineering, V769, DOI 10.1088/1757-899X/769/1/012043
[Anonymous], 2010, Journal of Technology, Language, and Assessment
Ayedoun E, 2019, INT J ARTIF INTELL E, V29, P29, DOI 10.1007/s40593-018-0171-6
Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16152699
Calvo RA, 2011, IEEE T LEARN TECHNOL, V4, P88, DOI 10.1109/TLT.2010.43
Chao C. J., 2012, WORKSHOP P 20 INT C, P58
Chen CM, 2006, IEEE SYS MAN CYBERN, P4898, DOI 10.1109/ICSMC.2006.385081
Chen CM, 2010, INTERACT LEARN ENVIR, V18, P341, DOI 10.1080/10494820802602329
Chen MP, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103602
Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002
Chen X., 2018, EMERGING TECHNOLOGIE, P169
Chen X., 2020, Comput Educ Artif Intell, V1, DOI DOI 10.1016/J.CAEAI.2020.100005
Chen XL, 2022, EDUC TECHNOL SOC, V25, P28
Chen XL, 2021, LANG LEARN TECHNOL, V25, P151
Chen XL, 2021, EDUC TECHNOL SOC, V24, P205
Chen XL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00239-6
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907
Dey A, 2018, FRONT ROBOT AI, V5, DOI 10.3389/frobt.2018.00037
Fu QK, 2024, COMPUT ASSIST LANG L, V37, P179, DOI 10.1080/09588221.2022.2033787
Gamper J., 2002, Computer Assisted Language Learning, V15, P329, DOI 10.1076/call.15.4.329.8270
Gierl MJ, 2014, MED EDUC, V48, P950, DOI 10.1111/medu.12517
Gong Y, 2018, ASIA-PAC EDUC RES, V27, P277, DOI 10.1007/s40299-018-0385-2
Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004
Heil CR., 2016, The EuroCALL Review, V24, P32, DOI [10.4995/eurocall.2016.6402, DOI 10.4995/EUROCALL.2016.6402, https://doi.org/10.4995/eurocall.2016.6402]
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Hirsch JE, 2014, INT J CLIN HLTH PSYC, V14, P161, DOI 10.1016/S1697-2600(14)70050-X
Huang AYQ, 2020, INTERACT LEARN ENVIR, V28, P206, DOI 10.1080/10494820.2019.1636086
Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001]
Johnson AM, 2017, LECT NOTES ARTIF INT, V10331, P125, DOI 10.1007/978-3-319-61425-0_11
Johnson WL, 2007, FRONT ARTIF INTEL AP, V158, P67
Johnson WL, 2005, FRONT ARTIF INTEL AP, V125, P306
Khatun Na., 2016, J ED LEARNING, V5, P122, DOI 10.5539/jel.v5n3p122
Kyle K, 2018, MOD LANG J, V102, P333, DOI 10.1111/modl.12468
Lee K., 2015, CRITICAL CALL P 2015, P362, DOI [10.14705/rpnet.2015.000359, DOI 10.14705/RPNET.2015.000359]
Lin CC, 2017, EDUC TECHNOL SOC, V20, P148
Luan H, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.580820
McNamara DS, 2015, ASSESS WRIT, V23, P35, DOI 10.1016/j.asw.2014.09.002
McNamara DS, 2013, BEHAV RES METHODS, V45, P499, DOI 10.3758/s13428-012-0258-1
Mirzaei M.S., 2018, Future-proof CALL: Lang. Learn. as Exploration and Encounters-short papers from EUROCALL, P207
Organisation for Economic Co-operation and Developmen (OECD), 2019, ARTIF INTELL, DOI [10.1787/eedfee77-en, DOI 10.1787/EEDFEE77-EN]
Pandarova I, 2019, INT J ARTIF INTELL E, V29, P342, DOI 10.1007/s40593-019-00180-4
Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Roscoe RD, 2013, J EDUC PSYCHOL, V105, P1010, DOI 10.1037/a0032340
Shadiev R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020524
Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2
Stockwell Glenn, 2007, Computer Assisted Language Learning, V20, P365, DOI 10.1080/09588220701745817
Su F, 2022, COMPUT ASSIST LANG L, V35, P1754, DOI 10.1080/09588221.2020.1831545
Svensson G, 2010, EUR J MARKETING, V44, P23, DOI 10.1108/03090561011008583
Vajjala S, 2018, INT J ARTIF INTELL E, V28, P79, DOI 10.1007/s40593-017-0142-3
van den Berghe R, 2019, REV EDUC RES, V89, P259, DOI 10.3102/0034654318821286
Wang CP, 2020, COMPUT ASSIST LANG L, V33, P891, DOI 10.1080/09588221.2019.1598444
Wang Fei, 2019, Yearb Med Inform, V28, P16, DOI 10.1055/s-0039-1677908
Wijekumar K, 2017, J EDUC PSYCHOL, V109, P741, DOI 10.1037/edu0000168
Yang S. J. H., 2021, Computers and Education: Artificial Intelligence, V2, DOI [DOI 10.1016/J.CAEAI.2021.100008, 10.1016/j.caeai.2021.100008]
Yang SJH, 2021, EDUC TECHNOL SOC, V24, P105
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhang K., 2021, P COMPUTERS ED ARTIF, V2, DOI [10.1016/j.caeai.2021.100025, DOI 10.1016/J.CAEAI.2021.100025]
Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666
Zou D, 2022, COMPUT ASSIST LANG L, V35, P1811, DOI 10.1080/09588221.2020.1839502
Zou D, 2021, COMPUT ASSIST LANG L, V34, P751, DOI 10.1080/09588221.2019.1640745
Zou D, 2018, KNOWL MANAG E-LEARN, V10, P426
NR 64
TC 50
Z9 51
U1 241
U2 602
PU INT FORUM EDUCATIONAL TECHNOLOGY & SOC, NATL TAIWAN NORMAL UNIV
PI Taipei City
PA No.162, Sec. 1, Heping E. Rd., Da-an Dist, Taipei City, TAIWAN
SN 1176-3647
EI 1436-4522
J9 EDUC TECHNOL SOC
JI Educ. Technol. Soc.
PD JAN
PY 2023
VL 26
IS 1
BP 112
EP 131
DI 10.30191/ETS.202301_26(1).0009
PG 20
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA 7Q6QP
UT WOS:000909514000009
HC Y
HP N
DA 2024-09-05
ER
PT S
AU Earnshaw, R
AF Earnshaw, Rae
BA Earnshaw, R
Dill, J
Kasik, D
BF Earnshaw, R
Dill, J
Kasik, D
TI Data Science Institutes and Data Centers
SO DATA SCIENCE AND VISUAL COMPUTING
SE Advanced Information and Knowledge Processing
LA English
DT Article; Book Chapter
DE Infrastructure for data science; Interdisciplinary research
collaboration; Artificial intelligence; Machine learning; Data mining;
Statistical inference; Data management; Data visualization; Cultural
change; Reward models
AB Optimum ways of addressing large data volumes across a variety of disciplines have led to the formation of national and institutional Data Science Institutes and Centers. The objectives and functions of such institutes and centers are summarized. In reflecting the driver of national priority, they are able to attract academic support within their institutions to bring together interdisciplinary expertise to address a wide variety of datasets from disciplines such as astronomy, bioinformatics, engineering, science, medicine, social science, and the humanities. All are generating increasing volumes of data, often in real time, and require efficient and effective solutions. The opportunities and challenges of data science are presented. The processes of knowledge discovery in data science often require new methods and software, new organizational arrangements, and new skills in order to be effective. Data science centers and institutes provide a focus for the development and implementation of such new structures and arrangements for the development of appropriate facilities, with academic leadership and professional support. These are summarized and reviewed.
C1 [Earnshaw, Rae] Univ Bradford, Ctr Visual Comp, Fac Engn & Informat, Bradford, W Yorkshire, England.
[Earnshaw, Rae] Univ Durham, St Johns Coll, Durham, England.
[Earnshaw, Rae] Wrexham Glyndwr Univ, Fac Arts Sci & Technol, Wrexham, Wales.
C3 University of Bradford; Durham University
RP Earnshaw, R (corresponding author), Univ Bradford, Ctr Visual Comp, Fac Engn & Informat, Bradford, W Yorkshire, England.; Earnshaw, R (corresponding author), Univ Durham, St Johns Coll, Durham, England.; Earnshaw, R (corresponding author), Wrexham Glyndwr Univ, Fac Arts Sci & Technol, Wrexham, Wales.
RI Earnshaw, Rae A/G-8917-2013
CR Berman F., 2017, REALIZING POTENTIAL
Diamond I, 2015, MAKING MOST DATA DAT
Earnshaw R, 2017, SPRINGERBRIEF COMPUT, P21, DOI 10.1007/978-3-319-61409-0_3
Harvey C., 2017, BIG DATA CHALLENGES
Kitzes J., 2018, The Practice of Reproducible Research: Case Studies and Lessons from the DataIntensive Sciences
Nesta, 2015, TAL DAT REV
The Moore-Sloan Data Science Environments: New York University and the U. of W. UC Berkeley, 2018, CREAT I CHANG DAT SC
NR 7
TC 0
Z9 0
U1 1
U2 4
PU SPRINGER-VERLAG LONDON LTD
PI GODALMING
PA SWEETAPPLE HOUSE CATTESHALL RD FARNCOMBE, GODALMING GU7 1NH, SURREY,
ENGLAND
SN 1610-3947
BN 978-3-030-24367-8; 978-3-030-24366-1
J9 ADV INFORM KNOWL PRO
PY 2019
BP 93
EP 108
DI 10.1007/978-3-030-24367-8_7
D2 10.1007/978-3-030-24367-8
PG 16
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications
WE Book Citation Index – Science (BKCI-S)
SC Computer Science
GA BN8MA
UT WOS:000488075500009
DA 2024-09-05
ER
PT J
AU Segura-Robles, A
Parra-González, ME
Gallardo-Vigil, MA
AF Segura-Robles, Adrian
Elena Parra-Gonzalez, Maria
Angel Gallardo-Vigil, Miguel
TI Bibliometric and Collaborative Network Analysis on Active Methodologies
in Education
SO JOURNAL OF NEW APPROACHES IN EDUCATIONAL RESEARCH
LA English
DT Article
DE CITATION ANALYSIS; ACTIVE LEARNING; BIBLIOMETRICS; EDUCATION; ACTIVE
METHODOLOGIES
ID IMPACT; PUBLICATION; INFORMATION
AB Teachers have gradually been making more use of active methodologies at all educational levels, and some even carry out research in this area. The objective of this research was to develop a bibliometric study in order to gain an in-depth view of the scientific literature on active methodologies in education. An analysis of the classic descriptions of bibliometrics, co-authorship indexes and collaboration networks was carried out, using documents indexed by the Web of Science on active methodologies in education between 2009 and 2019. The final data corpus is composed of 513 documents. The results show that publications on this type of research are booming, demonstrating a growing interest in these kinds of studies in the short and medium term. English is the predominant language in these studies, as occurs in the general scientific literature. The results indicate a limited range of topics being studied currently and likely growth in coming years. Therefore, this category of research can be considered as a relevant field of study for the scientific community in the short and medium term.
C1 [Segura-Robles, Adrian; Elena Parra-Gonzalez, Maria; Angel Gallardo-Vigil, Miguel] Univ Granada, Dept Metodos Invest & Diagnost Educ, Granada, Spain.
C3 University of Granada
RP Segura-Robles, A (corresponding author), Fac Educ Econ & Tecnol Ceuta, C Cortadura Valle S-N, Ceuta 51001, Ceuta, Spain.
EM adrianseg@ugr.es
RI Gallardo-Vigil, MA/K-5954-2012; Segura, Adrián/B-4963-2019
OI Gallardo-Vigil, MA/0000-0002-5462-077X; Segura,
Adrián/0000-0003-0753-7129; Parra Gonzalez/0000-0002-6918-9126
CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
[Anonymous], 2020, SUSTAINABILITY BASEL, DOI DOI 10.3390/SU12020602
Arenas Loera Eva Paola, 2017, Alteridad, V12, P224
Arguimbau-Vivó L, 2013, REV ESP DOC CIENT, V36, DOI 10.3989/redc.2013.2.907
Arthur J, 2016, J INT COMP EDUC, V5, P59, DOI 10.14425/jice.2016.5.2.59
Azer SA, 2017, J DENT EDUC, V81, P458, DOI 10.21815/JDE.016.011
Bai SR, 2020, EDUC RES REV-NETH, V30, DOI 10.1016/j.edurev.2020.100322
Bakkum BW, 2017, J CHIPROPR EDUC, V31, P20, DOI 10.7899/JCE-14-21
Baneyx A, 2008, ARCH IMMUNOL THER EX, V56, P363, DOI 10.1007/s00005-008-0043-0
Beaudry C, 2016, RES POLICY, V45, P1790, DOI 10.1016/j.respol.2016.05.009
Bernal Gonzalez M.D.C., 2018, REV PANAM PEDAGOG, V25, P271
Biggs J., 2015, Calidad del aprendizaje universitario, V5A
BRADFORD SC, 1985, J INFORM SCI, V10, P176
Brewer Robin., 2013, Proceedings of the 12th International Conference on Interaction Design and Children, P388
Burganova R.I., 2018, SER SOC HUM SCI, V6, P102, DOI [10.32014/2018.2224-5294.40, DOI 10.32014/2018.2224-5294.40]
Soto MNC, 2020, ALTERIDAD, V15, P47
Cechetti NP, 2019, TELEMAT INFORM, V41, P126, DOI 10.1016/j.tele.2019.04.007
Coll C., 1997, Aprendizaje escolar y construccion del conocimiento
ContrerasGastelum Y. I., 2012, REV ESTILOS APRENDIZ, V5, P114
Davies I, 2016, ASIAN EDUC DEV STUD, V5, P20, DOI 10.1108/AEDS-05-2015-0015
Dios J. G. D., 2013, ACTA PEDIAT ESPANOLA, V69, P131
Parra-González ME, 2020, INT J EDUC RES INNOV, P166
Hamel RE, 2007, AILA REV, V20, P53, DOI 10.1075/aila.20.06ham
Flores C., 2018, ANALISIS BIBLIOMETRI, V25, DOI [10.20986/resed.2018.3627/2017, DOI 10.20986/RESED.2018.3627/2017]
Gomez-Lopez R., 2002, Publicaciones, V32, P261
González-Alvarez J, 2017, J INFORMETR, V11, P232, DOI 10.1016/j.joi.2016.12.007
Romero JFG, 2020, REV UNIV SOC, V12, P343
Avila-Toscano JH, 2018, REV ESP DOC CIENT, V41, DOI 10.3989/redc.2018.4.1547
Hidalgo Nina, 2018, Educación, V42, P438, DOI 10.15517/revedu.v42i2.27567
Noblejas CJ, 2014, INVESTIG BIBLIOTECOL, V28, P15
LARENAS SAN MARTÍN MARÍA EDITH, 2016, Cienc. enferm., V22, P7
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
March A.F., 2006, Educatio siglo, V24, P35
Marchesi A., 2018, DESARROLLO PSICOLOGI
MaseroMoreno I., 2016, ANALES ASEPUMA, V24, P1
MendezGarcia R. M., 2010, REV EDUC, V353, P299
Miguel S, 2007, INVESTIG BIBLIOTECOL, V21, P139
MOHER D, 2009, PLOS MED, V6
Morales Salas R E., 2017, Campus virtuales, V6, P67
Nielsen A., 2020, Retos, V37, P498, DOI DOI 10.47197/RETOS.V37I37.71026
Panos Castro J, 2017, Revista Electronica Interuniversitaria de Formacion Del Profesorado, V20, P33
Parra-Gonzalez M.A.E., 2019, Revista de Educacion, V5, P113, DOI DOI 10.4438/1988-592X-RE-2019-386-429
Parra-Gonzalez M.E., 2019, Revista Espacios, V40, P15
Pérez-López Isaac, 2017, Signo pensam., V36, P112, DOI 10.11144/Javeriana.syp36-70.fdfp
Price D. J. d. S., 1963, Little Science, Big Science
Reis A.C. B., 2017, Production, V27, DOI [10.1590/0103-6513.225816, DOI 10.1590/0103-6513.225816]
Reyes-Gonzalez L, 2016, SCIENTOMETRICS, V108, P1171, DOI 10.1007/s11192-016-2029-8
Rousseau R., 2018, Becoming metric-wise A bibliometric guide for researchers, DOI DOI 10.1016/B978-0-08-102474-4.00009-1
Silva Quiroz Juan, 2017, Innov. educ. (Méx. DF), V17, P117
Sinkovics N, 2016, INT MARKET REV, V33, P327, DOI 10.1108/IMR-10-2014-0341
Todeschini R., 2016, Handbook of bibliometric indicators: quantitative tools for studying and evaluating research
Xi NN, 2020, J BUS RES, V109, P449, DOI 10.1016/j.jbusres.2019.11.058
Yang L, 2017, INT J EMERG TECHNOL, V12, P178, DOI 10.3991/ijet.v12i06.7095
NR 54
TC 18
Z9 19
U1 3
U2 31
PU UNIV ALICANTE, GRUPO INVESTIGACION EDUTIC-ADEI
PI ALICANTE
PA CARRETERA SAN VICENTE RASPEIG, SAN VICENTE DEL RASPEIG, ALICANTE, 03690,
SPAIN
SN 2254-7339
J9 J NEW APPROACHES EDU
JI J. New Approaches Educ. Res.
PD JUL
PY 2020
VL 9
IS 2
BP 259
EP 274
DI 10.7821/naer.2020.7.575
PG 16
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA MO4AQ
UT WOS:000551471200008
OA gold
DA 2024-09-05
ER
PT J
AU Huang, XY
Zou, D
Cheng, GR
Chen, XL
Xie, HR
AF Huang, Xinyi
Zou, Di
Cheng, Gary
Chen, Xieling
Xie, Haoran
TI Trends, Research Issues and Applications of Artificial Intelligence in
Language Education
SO EDUCATIONAL TECHNOLOGY & SOCIETY
LA English
DT Article
DE Artificial Intelligence; Language education; Bibliometric analysis;
Automated writing evaluation; Intelligent Tutoring Systems
ID FOREIGN-LANGUAGE; LEARNING-SYSTEM; ENGLISH
AB Artificial Intelligence (AI) is playing an increasingly important role in language education; however, the trends, research issues and applications of AI in language learning remain largely underinvestigated. Accordingly, the present paper, using bibliometric analysis, investigates these issues via a review of 516 papers that were published between 2000 and 2019 focusing on how AI was integrated into language education. Findings revealed that the frequency of studies on AI-enhanced language education is increasing. We found the most active country and institution were the USA and Arizona State University respectively. The 10 most popular topics were: (1) automated writing evaluation; (2) intelligent tutoring systems (ITS) for reading and writing; (3) automated error detection; (4) computer-mediated communication; (5) personalized systems for language learning; (6) natural language and vocabulary learning; (7) web resources and web-based systems for language learning; (8) ITS for writing in English for specific purposes; (9) intelligent tutoring and assessment system for pronunciation and speech training; and (10) affective states and emotions. The results also indicated that AI has been frequently used to assist students in learning writing, reading, vocabulary and grammar learning, and speaking and listening. Natural language processing, automated speech recognition, and learner profiling were commonly applied to develop automated writing evaluation, personalized learning and intelligent tutoring systems.
C1 [Huang, Xinyi; Cheng, Gary; Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Education University of Hong
Kong (EdUHK); Lingnan University
RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
EM hxinyi@eduhk.hk; dizoudaisy@gmail.com; chengks@eduhk.hk;
xielingchen0708@gmail.com; hrxie2@gmail.com
RI Huang, Xinyi/AFI-7092-2022; Xie, Haoran/AFS-3515-2022
OI Huang, Xinyi/0000-0001-9777-7905; Xie, Haoran/0000-0003-0965-3617
FU Research Cluster Fund of The Education University of Hong Kong [RG
78/2019-2020R]; Education University of Hong Kong [IDS-2 2020]; Lingnan
University, Hong Kong [DB21A9, LWI20011]
FX An abstract entitled "Artificial Intelligence in Language Education"
based on this paper was presented at International Conference on
Education and Artificial Intelligence 2020, The Education University of
Hong Kong, 9-11 November 2020, Hong Kong. Gary Cheng's work in this
research is supported by the Research Cluster Fund (RG 78/2019-2020R) of
The Education University of Hong Kong and the Dean's Research Fund
2019/20 (IDS-2 2020) of The Education University of Hong Kong. Haoran
Xie's work in this research is supported by the Faculty Research Fund
(DB21A9) and the Lam Woo Research Fund (LWI20011) of Lingnan University,
Hong Kong.
CR Alexopoulou T, 2017, LANG LEARN, V67, P180, DOI 10.1111/lang.12232
Ayedoun E, 2019, INT J ARTIF INTELL E, V29, P29, DOI 10.1007/s40593-018-0171-6
Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16152699
Baker T., 2019, Educ-AI-tion Rebooted? Exploring the future of artificial intelligence in schools and colleges
Calvo RA, 2011, IEEE T LEARN TECHNOL, V4, P88, DOI 10.1109/TLT.2010.43
Chao C. J., 2012, WORKSHOP P 20 INT C, P58
Chen CM, 2006, IEEE SYS MAN CYBERN, P4898, DOI 10.1109/ICSMC.2006.385081
Chen CM, 2010, INTERACT LEARN ENVIR, V18, P341, DOI 10.1080/10494820802602329
Chen X., EDUC TECHNOL SOC, V24, P205
Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002
Chen X., 2020, Comput Educ Artif Intell, V1, DOI DOI 10.1016/J.CAEAI.2020.100005
Chen XL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00239-6
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907
Gamper J., 2002, Computer Assisted Language Learning, V15, P329, DOI 10.1076/call.15.4.329.8270
Ghazi-Saidi L, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00463
Gierl MJ, 2014, MED EDUC, V48, P950, DOI 10.1111/medu.12517
Gong Y, 2018, ASIA-PAC EDUC RES, V27, P277, DOI 10.1007/s40299-018-0385-2
Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004
Grimes D., 2010, J TECHNOLOGY LEARNIN, V8, P1
Hinojo-Lucena FJ, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010051
Hirsch JE, 2014, INT J CLIN HLTH PSYC, V14, P161, DOI 10.1016/S1697-2600(14)70050-X
Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001]
Hwang GJ, 2019, INTERACT LEARN ENVIR, V27, P567, DOI 10.1080/10494820.2018.1486861
Johnson AM, 2017, LECT NOTES ARTIF INT, V10331, P125, DOI 10.1007/978-3-319-61425-0_11
Johnson WL, 2007, FRONT ARTIF INTEL AP, V158, P67
Johnson WL, 2005, FRONT ARTIF INTEL AP, V125, P306
Khatun Na., 2016, J ED LEARNING, V5, P122, DOI 10.5539/jel.v5n3p122
Kyle K, 2018, MOD LANG J, V102, P333, DOI 10.1111/modl.12468
Lee K., 2015, CRITICAL CALL P 2015, P362, DOI [10.14705/rpnet.2015.000359, DOI 10.14705/RPNET.2015.000359]
Lin CC, 2017, EDUC TECHNOL SOC, V20, P148
McNamara DS, 2015, ASSESS WRIT, V23, P35, DOI 10.1016/j.asw.2014.09.002
McNamara DS, 2013, BEHAV RES METHODS, V45, P499, DOI 10.3758/s13428-012-0258-1
Mirzaei M.S., 2018, Future-proof CALL: Lang. Learn. as Exploration and Encounters-short papers from EUROCALL, P207
Nerbonne J., 2002, Handbook of Computational Linguistics, P670
OECD, 2019, ARTIF INTELL, DOI [10.1787/eedfee77-en, DOI 10.1787/EEDFEE77-EN]
Pandarova I, 2019, INT J ARTIF INTELL E, V29, P342, DOI 10.1007/s40593-019-00180-4
Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Roscoe RD, 2013, J EDUC PSYCHOL, V105, P1010, DOI 10.1037/a0032340
Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2
Stockwell Glenn, 2007, Computer Assisted Language Learning, V20, P365, DOI 10.1080/09588220701745817
Su F, 2022, COMPUT ASSIST LANG L, V35, P1754, DOI 10.1080/09588221.2020.1831545
Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001
Vajjala S, 2018, INT J ARTIF INTELL E, V28, P79, DOI 10.1007/s40593-017-0142-3
van den Berghe R, 2019, REV EDUC RES, V89, P259, DOI 10.3102/0034654318821286
Wang CP, 2020, COMPUT ASSIST LANG L, V33, P891, DOI 10.1080/09588221.2019.1598444
Wijekumar K, 2017, J EDUC PSYCHOL, V109, P741, DOI 10.1037/edu0000168
Woolf BP, 2013, AI MAG, V34, P66, DOI 10.1609/aimag.v34i4.2490
Xieling Chen, 2018, Emerging Technologies for Education. Third International Symposium, SETE 2018 Held in Conjunction with ICWL 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11284), P169, DOI 10.1007/978-3-030-03580-8_18
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666
Zou D, 2022, COMPUT ASSIST LANG L, V35, P1811, DOI 10.1080/09588221.2020.1839502
Zou D, 2021, COMPUT ASSIST LANG L, V34, P751, DOI 10.1080/09588221.2019.1640745
NR 54
TC 4
Z9 4
U1 40
U2 277
PU INT FORUM EDUCATIONAL TECHNOLOGY & SOC-IFETS
PI DOULIU CITY
PA NATL YUNLIN UNIV SCIENCE & TECHNOLOGY, NO 123, SECTION 3, DAXUE RD,
DOULIU CITY, YUNLIN COUNTY, TAIWAN
SN 1176-3647
EI 1436-4522
J9 EDUC TECHNOL SOC
JI Educ. Technol. Soc.
PD JUL
PY 2021
VL 24
IS 3
BP 238
EP 255
PG 18
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA TD7SR
UT WOS:000669522300017
DA 2024-09-05
ER
PT J
AU Kirkwood, S
Cree, V
Winterstein, D
Nuttgens, A
Sneddon, J
AF Kirkwood, Steve
Cree, Viviene
Winterstein, Daniel
Nuttgens, Alex
Sneddon, Jenni
TI Encountering #Feminism on Twitter: Reflections on a Research
Collaboration between Social Scientists and Computer Scientists
SO SOCIOLOGICAL RESEARCH ONLINE
LA English
DT Article
DE 'big data'; collaboration; feminism; machine learning; qualitative
analysis; social media; Twitter
ID WOMENS MOVEMENT; MEDIA
AB The growth of social media presents an unparalleled opportunity for the study of social change. However, the speed and scale of this growth presents challenges for social scientists, particularly those whose methodologies tend to rely on the qualitative analysis of data that are gathered firsthand. Alongside the growth of social media, companies have emerged which have developed tools for interrogating 'big data', although often unconnected from social scientists. It is self-evident that collaboration between social scientists and social media analysis companies offers the potential for developing methods for analysing social change on large scales, bringing together their respective expertise in technological innovations and knowledge of social science. What is less well known is how such a partnership might work in practice. This article presents an example of such a collaboration, highlighting the opportunities and challenges that arose in the context of an exploration of feminism on Twitter. As will be shown, machine-learning technologies allow the analysis of data on a scale that would be impossible for human analysts, yet such approaches also heighten challenges regarding the study of social change and communication.
C1 [Kirkwood, Steve] Univ Edinburgh, Social Work, Chrystal Macmillan Bldg,15a George Sq, Edinburgh EH8 9LD, Midlothian, Scotland.
[Cree, Viviene] Univ Edinburgh, Social Work Studies, Edinburgh, Midlothian, Scotland.
[Winterstein, Daniel; Nuttgens, Alex; Sneddon, Jenni] SoDash, Edinburgh, Midlothian, Scotland.
C3 University of Edinburgh; University of Edinburgh
RP Kirkwood, S (corresponding author), Univ Edinburgh, Social Work, Chrystal Macmillan Bldg,15a George Sq, Edinburgh EH8 9LD, Midlothian, Scotland.
EM s.kirkwood@ed.ac.uk
RI Kirkwood, Steve/I-1966-2019
OI Kirkwood, Steve/0000-0003-1508-0835; Cree, Viviene/0000-0002-9995-1820
FU University of Edinburgh School of Social and Political Science
FX We would like to thank the University of Edinburgh School of Social and
Political Science for the research grant that supported this project. We
would also like to thank the anonymous reviewers for their helpful
comments on an earlier version of this article.
CR [Anonymous], NY TIMES
Bagguley Paul., 2002, SOC MOVEMENT STUD, V1, P169, DOI DOI 10.1080/1474283022000010664
Banyard K., 2010, EQUALITY ILLUSION TR
Barbera P., How Social Media Reduces Mass Political Polarization
Barberá P, 2015, PSYCHOL SCI, V26, P1531, DOI 10.1177/0956797615594620
Barry A, 2008, ECON SOC, V37, P20, DOI 10.1080/03085140701760841
Bartlett J., 2014, Misogyny on twitter
Burnap P, 2015, POLICY INTERNET, V7, P223, DOI 10.1002/poi3.85
Chu Z, 2010, 26TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2010), P21
Cook J, 2014, CURR SOCIOL, V62, P975, DOI 10.1177/0011392114550008
Edwards A, 2013, INT J SOC RES METHOD, V16, P245, DOI 10.1080/13645579.2013.774185
Eynon R, 2011, SAGE HDB ONLINE RES, P19
Fan WG, 2014, COMMUN ACM, V57, P74, DOI 10.1145/2602574
Felt M, 2016, BIG DATA SOC, V3, DOI 10.1177/2053951716645828
Harrington S., 2013, J AUDIENCE RECEPTION, V10, P405, DOI DOI 10.1080/1369118X.2012.756053
Knappe H, 2014, EUR J WOMENS STUD, V21, P361, DOI 10.1177/1350506814541643
Leupold J, 4 WAVE FEMINISM
Mackay F., 2008, Women's Movements: Flourishing or in Abeyance?, P17
Moreno MA, 2013, CYBERPSYCH BEH SOC N, V16, P708, DOI 10.1089/cyber.2012.0334
Murthy D, 2012, SOCIOLOGY, V46, P1059, DOI 10.1177/0038038511422553
Nagler J, 2015, PS-POLIT SCI POLIT, V48, P84, DOI 10.1017/S1049096514001796
Nash K, 2002, EUR J WOMENS STUD, V9, P311, DOI 10.1177/1350506802009003377
Phillips R, 2014, SOC WORK EDUC, V33, P930, DOI 10.1080/02615479.2014.885007
Potter J., 2005, QUAL RES PSYCHOL, V2, P281, DOI DOI 10.1191/1478088705QP045OA
Procter R, 2013, INT J SOC RES METHOD, V16, P197, DOI 10.1080/13645579.2013.774172
Pruchniewska UM, 2016, FEM MEDIA STUD, V16, P737, DOI 10.1080/14680777.2016.1190045
Sloan L, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0115545
Sloan L, 2013, SOCIOL RES ONLINE, V18, DOI 10.5153/sro.3001
Tinati R, 2014, SOCIOLOGY, V48, P663, DOI 10.1177/0038038513511561
Urry J., 2000, SOCIOLOGY SOC
Vis F., 2015, The iconic image on social media: A rapid research response to the death of Aylan Kurdi
Winterstein D, 2011, MARK RECAPTURE ESTIM
Zelenkauskaite Asta, 2016, First Monday, V21, DOI 10.5210/fm.v21i5.6358
NR 33
TC 2
Z9 3
U1 1
U2 22
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1360-7804
J9 SOCIOL RES ONLINE
JI Sociol. Res. Online
PD DEC
PY 2018
VL 23
IS 4
BP 763
EP 779
DI 10.1177/1360780418781615
PG 17
WC Sociology
WE Social Science Citation Index (SSCI)
SC Sociology
GA HE2FJ
UT WOS:000453091200004
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Wulff, P
Buschhüter, D
Westphal, A
Mientus, L
Nowak, A
Borowski, A
AF Wulff, Peter
Buschhueter, David
Westphal, Andrea
Mientus, Lukas
Nowak, Anna
Borowski, Andreas
TI Bridging the Gap Between Qualitative and Quantitative Assessment in
Science Education Research with Machine Learning - A Case for Pretrained
Language Models-Based Clustering
SO JOURNAL OF SCIENCE EDUCATION AND TECHNOLOGY
LA English
DT Article
DE Attention to classroom events; Noticing; NLP; ML
ID AUTOMATED-ANALYSIS; UNREASONABLE EFFECTIVENESS; VIDEO; MATHEMATICS;
KNOWLEDGE
AB Science education researchers typically face a trade-off between more quantitatively oriented confirmatory testing of hypotheses, or more qualitatively oriented exploration of novel hypotheses. More recently, open-ended, constructed response items were used to combine both approaches and advance assessment of complex science-related skills and competencies. For example, research in assessing science teachers' noticing and attention to classroom events benefitted from more open-ended response formats because teachers can present their own accounts. Then, open-ended responses are typically analyzed with some form of content analysis. However, language is noisy, ambiguous, and unsegmented and thus open-ended, constructed responses are complex to analyze. Uncovering patterns in these responses would benefit from more principled and systematic analysis tools. Consequently, computer-based methods with the help of machine learning and natural language processing were argued to be promising means to enhance assessment of noticing skills with constructed response formats. In particular, pretrained language models recently advanced the study of linguistic phenomena and thus could well advance assessment of complex constructs through constructed response items. This study examines potentials and challenges of a pretrained language model-based clustering approach to assess preservice physics teachers' attention to classroom events as elicited through open-ended written descriptions. It was examined to what extent the clustering approach could identify meaningful patterns in the constructed responses, and in what ways textual organization of the responses could be analyzed with the clusters. Preservice physics teachers (N = 75) were instructed to describe a standardized, video-recorded teaching situation in physics. The clustering approach was used to group related sentences. Results indicate that the pretrained language model-based clustering approach yields well-interpretable, specific, and robust clusters, which could be mapped to physics-specific and more general contents. Furthermore, the clusters facilitate advanced analysis of the textual organization of the constructed responses. Hence, we argue that machine learning and natural language processing provide science education researchers means to combine exploratory capabilities of qualitative research methods with the systematicity of quantitative methods.
C1 [Wulff, Peter] Heidelberg Univ Educ, Phys Educ Res Grp, Heidelberg, Germany.
[Buschhueter, David; Mientus, Lukas; Nowak, Anna; Borowski, Andreas] Univ Potsdam, Phys Educ Res Grp, Potsdam, Germany.
[Westphal, Andrea] Univ Greifswald, Dept Educ Res, Greifswald, Germany.
C3 Ruprecht Karls University Heidelberg; University of Potsdam; Universitat
Greifswald
RP Wulff, P (corresponding author), Heidelberg Univ Educ, Phys Educ Res Grp, Heidelberg, Germany.
EM peter.wulff@ph-heidelberg.de
RI Wulff, Peter/GSI-9069-2022
OI Wulff, Peter/0000-0002-5471-7977; Mientus, Lukas/0000-0001-5344-4770
FU Projekt DEAL; Federal Ministry of Education and Research
FX Open Access funding enabled and organized by Projekt DEAL. This project
is part of the "Qualitatsoffensive Lehrerbildung", a joint initiative of
the Federal Government and the Lander which aims to improve the quality
of teacher training. The program is funded by the Federal Ministry of
Education and Research. The authors are responsible for the content of
this publication.
CR Angelov D., 2020, ARXIV
[Anonymous], 2017, Neural Network Methods for Natural Language Processing, DOI DOI 10.2200/S00762ED1V01Y201703HLT037
Arpaia P, 2021, NUCL INSTRUM METH A, V985, DOI 10.1016/j.nima.2020.164652
Baig MI, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00223-0
Barth-Cohen LA, 2018, J SCI TEACH EDUC, V29, P83, DOI 10.1080/1046560X.2018.1423837
Bhardwaj R., 2020, ARXIV
Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726
Brookes DT, 2009, PHYS REV SPEC TOP-PH, V5, DOI 10.1103/PhysRevSTPER.5.010110
Bruner J., 1983, CHILDS TALK LEARNING
Caliskan A, 2017, SCIENCE, V356, DOI 10.1126/science.aal4230
Campello R. J. G. B., 2013, PAKDD 2013, V7819, P160, DOI DOI 10.1007/978-3-642-37456-2_14
Carlson J., 2019, Repositioning Pedagogical Content Knowledge in Teachers' Knowledge for Teaching Science
Carpenter D, 2020, LECT NOTES ARTIF INT, V12163, P67, DOI 10.1007/978-3-030-52237-7_6
Chan KKH, 2021, STUD SCI EDUC, V57, P1, DOI 10.1080/03057267.2020.1755803
Clifton RA., 1993, AUTHORITY CLASSROOMS
Conway MA, 2009, NEUROPSYCHOLOGIA, V47, P2305, DOI 10.1016/j.neuropsychologia.2009.02.003
Crespo S., 2000, J MATH TEACH EDUC, V3, P155
Darling-Hammond L., 2000, Education Policy Analysis Archives, V8, P1, DOI DOI 10.14507/EPAA.V8N1.2000
Devlin J., 2018, ARXIV
FENSTERMACHER GD, 1994, REV RES EDUC, V20, P3, DOI 10.3102/0091732X020001003
Furtak EM, 2012, J RES SCI TEACH, V49, P1181, DOI 10.1002/tea.21054
Galvez SMN, 2020, AM EDUC RES J, V57, P612, DOI 10.3102/0002831219860511
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
Halevy A, 2009, IEEE INTELL SYST, V24, P8, DOI 10.1109/MIS.2009.36
Hammer D., 2006, SEEING SCI CHILDRENS
Hao K., 2019, MIT Technology Review
Hume A, 2009, HIGH EDUC RES DEV, V28, P247, DOI 10.1080/07294360902839859
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Jurafsky D, 2003, PROBABILISTIC LINGUISTICS, P39
Jurafsky D., 2014, SPEECH LANGUAGE PROC
Kahana Michael J., 2008, Psychology, V3
Kleinknecht M, 2016, TEACH TEACH EDUC, V59, P45, DOI 10.1016/j.tate.2016.05.020
Korthagen F.A. J., 1999, EUR J TEACH EDUC, V22, P191, DOI [10.1080/0261976899020191, DOI 10.1080/0261976899020191]
Krger, 2014, METHODEN NATURWISSEN
Kriegel HP, 2011, WIRES DATA MIN KNOWL, V1, P231, DOI 10.1002/widm.30
Krippendorff K, 2004, HUM COMMUN RES, V30, P411, DOI 10.1093/hcr/30.3.411
Krstovski K., 2018, CORR
Lamb R, 2021, J SCI EDUC TECHNOL, V30, P283, DOI 10.1007/s10956-020-09871-3
Levin DA, 2009, J TEACH EDUC, V60, P142, DOI 10.1177/0022487108330245
Luna MJ, 2018, J SCI TEACH EDUC, V29, P148, DOI 10.1080/1046560X.2018.1427418
Marsland S, 2009, CH CRC MACH LEARN PA, P1
Mena-Marcos J, 2013, EUR J TEACH EDUC, V36, P147, DOI 10.1080/02619768.2012.713933
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Mikolov Tomas, 2013, P WORKSHOP ICLR
Mitchell M., 2019, ARTIF INTELL
Nehm RH, 2012, J SCI EDUC TECHNOL, V21, P183, DOI 10.1007/s10956-011-9300-9
Odden TOB, 2021, SCI EDUC, V105, P653, DOI 10.1002/sce.21623
Odden TOB, 2020, PHYS REV PHYS EDUC R, V16, DOI 10.1103/PhysRevPhysEducRes.16.010142
Putnam R.T., 2000, Educational Researcher, V29, P4, DOI DOI 10.3102/0013189X029001004
Rauf IA., 2021, PHYS DATA SCI MACHIN, DOI [10.1201/9781003206743, DOI 10.1201/9781003206743]
Rosenberg JM, 2021, J SCI EDUC TECHNOL, V30, P255, DOI 10.1007/s10956-020-09862-4
Roth KJ, 2011, J RES SCI TEACH, V48, P117, DOI 10.1002/tea.20408
Ruder Sebastian, 2019, Neural transfer learning for natural language processing
RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0
Seidel T, 2014, AM EDUC RES J, V51, P739, DOI 10.3102/0002831214531321
Sherin B, 2013, J LEARN SCI, V22, P600, DOI 10.1080/10508406.2013.836654
Sherin MG, 2004, TEACH TEACH EDUC, V20, P163, DOI 10.1016/j.tate.2003.08.001
Sherin MG, 2009, J TEACH EDUC, V60, P20, DOI 10.1177/0022487108328155
Shulman LS, 2019, PROFESORADO, V23, P269, DOI 10.30827/profesorado.v23i3.11230
Singer JD, 2019, J RES EDUC EFF, V12, P570, DOI 10.1080/19345747.2019.1658835
Star JR, 2008, J MATH TEACH EDUC, V11, P107, DOI 10.1007/s10857-007-9063-7
Taher Pilehvar M., 2020, EMBEDDINGS NATURAL L
Talanquer V, 2015, J RES SCI TEACH, V52, P585, DOI 10.1002/tea.21209
Ullmann TD, 2019, INT J ARTIF INTELL E, V29, P217, DOI 10.1007/s40593-019-00174-2
Vanes E. A., 2002, Journal of Technology and Teacher Education, V10, P571
von Aufschnaiter C., 2019, HERAUSFORDERUNG LEHR, V2, DOI [10.4119/UNIBI/HLZ-144, DOI 10.4119/UNIBI/HLZ-144]
Wang C., 2020, Language models are open knowledge graphs
WIGNER EP, 1960, COMMUN PUR APPL MATH, V13, P1, DOI 10.1002/cpa.3160130102
Wilson C., 2019, Repositioning Pedagogical Content Knowledge in teachers Knowledge for Teaching Science, P289
Wulff P, 2023, INT J ARTIF INTELL E, V33, P439, DOI 10.1007/s40593-022-00290-6
Wulff P, 2021, J SCI EDUC TECHNOL, V30, P1, DOI 10.1007/s10956-020-09865-1
Xing WL, 2020, ETR&D-EDUC TECH RES, V68, P2185, DOI 10.1007/s11423-020-09761-w
Zehner F, 2016, EDUC PSYCHOL MEAS, V76, P280, DOI 10.1177/0013164415590022
Zhai XM, 2021, J SCI EDUC TECHNOL, V30, P139, DOI 10.1007/s10956-021-09901-8
Zhai XM, 2020, J RES SCI TEACH, V57, P1430, DOI 10.1002/tea.21658
Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757
Zhang X, 2021, AUTOPHAGY, V17, P1519, DOI 10.1080/15548627.2020.1840796
NR 77
TC 17
Z9 17
U1 7
U2 37
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1059-0145
EI 1573-1839
J9 J SCI EDUC TECHNOL
JI J. Sci. Educ. Technol.
PD AUG
PY 2022
VL 31
IS 4
BP 490
EP 513
DI 10.1007/s10956-022-09969-w
EA JUN 2022
PG 24
WC Education & Educational Research; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Education & Educational Research
GA 2O1JP
UT WOS:000804522900001
OA hybrid
DA 2024-09-05
ER
PT J
AU Sadeghian, A
Sundaram, L
Wang, DZ
Hamilton, WF
Branting, K
Pfeifer, C
AF Sadeghian, Ali
Sundaram, Laksshman
Wang, Daisy Zhe
Hamilton, William F.
Branting, Karl
Pfeifer, Craig
TI Automatic semantic edge labeling over legal citation graphs
SO ARTIFICIAL INTELLIGENCE AND LAW
LA English
DT Article
DE Legal citation graph; Semantics; Automatic citation analysis;
Conditional random fields; Word embeddings; Clustering
ID AGREEMENT
AB A large number of cross-references to various bodies of text are used in legal texts, each serving a different purpose. It is often necessary for authorities and companies to look into certain types of these citations. Yet, there is a lack of automatic tools to aid in this process. Recently, citation graphs have been used to improve the intelligibility of complex rule frameworks. We propose an algorithm that builds the citation graph from a document and automatically labels each edge according to its purpose. Our method uses the citing text only and thus works only on citations who's purpose can be uniquely identified by their surrounding text. This framework is then applied to the US code. This paper includes defining and evaluating a standard gold set of labels that cover a vast majority of citation types which appear in the "US Code'' but are still short enough for practical use. We also proposed a novel linear-chain conditional random field model that extracts the features required for labeling the citations from the surrounding text. We then analyzed the effectiveness of different clustering methods such as K-means and support vector machine to automatically label each citation with the corresponding label. Besides this, we talk about the practical difficulties of this task and give a comparison of human accuracy compared to our end-to-end algorithm.
C1 [Sadeghian, Ali; Sundaram, Laksshman; Wang, Daisy Zhe; Hamilton, William F.] Univ Florida, Gainesville, FL 32611 USA.
[Sundaram, Laksshman] Stanford Univ, Stanford, CA 94305 USA.
[Branting, Karl; Pfeifer, Craig] Mitre Corp, Mclean, VA USA.
C3 State University System of Florida; University of Florida; Stanford
University; MITRE Corporation
RP Sadeghian, A (corresponding author), Univ Florida, Gainesville, FL 32611 USA.
EM asadeghian@ufl.edu; lakss@stanford.edu; daisyw@ufl.edu;
hamiltonw@law.ufl.edu; lbranting@mitre.org; cpfeifer@mitre.org
RI Sadeghian, Ali/AAV-6773-2020
CR Adedjouma M, 2014, INT REQUIR ENG CONF, P63, DOI 10.1109/RE.2014.6912248
Alonso O, 2012, INFORM PROCESS MANAG, V48, P1053, DOI 10.1016/j.ipm.2012.01.004
[Anonymous], 2017, ARXIV170704960
Ashley K., 2014, PROC WORKSHOP FRONTI, P1
Association HLR, 1996, BLUEB UN SYST CIT
Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit
Branting LK, 2017, ARTIF INTELL LAW, V25, P5, DOI 10.1007/s10506-017-9193-x
Breaux T.D., 2007, RHAS 6
Cao Z, 2017, ARXIV170501217
COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104
de Maat E., 2009, FORMAL LINGUISTICS L, P225
de Maat E, 2006, FRONT ARTIF INTEL AP, V152, P41
Galgani F, 2010, LECT NOTES ARTIF INT, V6464, P445, DOI 10.1007/978-3-642-17432-2_45
Glaser B., 1967, DISCOV GROUNDED THEO, DOI [10.4324/9780203793206, DOI 10.4324/9780203793206]
Goldberg S, 2016, P NAACL HLT, P1208
Hamdaqa M, 2011, FUTURE GENER COMP SY, V27, P395, DOI 10.1016/j.future.2010.09.007
Hamdaqa M, 2009, PROCEEDINGS OF THE 2009 SIXTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, VOLS 1-3, P278, DOI 10.1109/ITNG.2009.161
HARRINGTON WG, 1984, LAW LIBR J, V77, P543
Jain A., 2017, arXiv:1705.09101
Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Maxwell JC, 2012, REQUIR ENG, V17, P99, DOI 10.1007/s00766-012-0152-5
Mikolov T., 2013, ARXIV
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Mollalo A, 2015, ZOONOSES PUBLIC HLTH, V62, P18, DOI 10.1111/zph.12109
Neale T., 2013, J. Open Access L, V1, P1
Tran OT, 2014, ARTIF INTELL LAW, V22, P29, DOI 10.1007/s10506-013-9149-8
Pollman T., 2000, ALWD CITATION MANUAL
Prakken H., 1993, Fourth International Conference on Artificial Intelligence and Law. Proceedings of the Conference, P1, DOI 10.1145/158976.158977
RISSLAND EL, 1988, AI MAG, V9, P45
Roitblat HL, 2010, J AM SOC INF SCI TEC, V61, P70, DOI 10.1002/asi.21233
Sadeghian A, 2016, LTDCA
Sadeghian A, 2015, INT CONF ACOUST SPEE, P2604, DOI 10.1109/ICASSP.2015.7178442
Sadeghian A, 2017, IEEE I CONF COMP VIS, P300, DOI 10.1109/ICCV.2017.41
Sutton Charles, 2006, Introduction to Statistical Relational Learning, V2
Winkels R, 2014, FRONT ARTIF INTEL AP, V271, P169, DOI 10.3233/978-1-61499-468-8-169
Zhang P., 2007, Proceedings of the 11th international conference on Artificial intelligence and law, P123, DOI DOI 10.1145/1276318.1276342
NR 37
TC 10
Z9 13
U1 0
U2 6
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0924-8463
EI 1572-8382
J9 ARTIF INTELL LAW
JI Artif. Intell. Law
PD JUN
PY 2018
VL 26
IS 2
SI SI
BP 127
EP 144
DI 10.1007/s10506-018-9217-1
PG 18
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Law
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Government & Law
GA GR5LE
UT WOS:000442672600003
DA 2024-09-05
ER
PT J
AU Liu, N
Shapira, P
Yue, XX
AF Liu, Na
Shapira, Philip
Yue, Xiaoxu
TI Tracking developments in artificial intelligence research: constructing
and applying a new search strategy
SO SCIENTOMETRICS
LA English
DT Article
DE Emerging technology; Artificial intelligence; Bibliometric analysis;
Search strategy; Research trends
ID SCIENTIFIC-RESEARCH; TECHNOLOGY; SCIENCE; EMERGENCE; AI
AB Artificial intelligence, as an emerging and multidisciplinary domain of research and innovation, has attracted growing attention in recent years. Delineating the domain composition of artificial intelligence is central to profiling and tracking its development and trajectories. This paper puts forward a bibliometric definition for artificial intelligence which can be readily applied, including by researchers, managers, and policy analysts. Our approach starts with benchmark records of artificial intelligence captured by using a core keyword and specialized journal search. We then extract candidate terms from high frequency keywords of benchmark records, refine keywords and complement with the subject category "artificial intelligence". We assess our search approach by comparing it with other three recent search strategies of artificial intelligence, using a common source of articles from the Web of Science. Using this source, we then profile patterns of growth and international diffusion of scientific research in artificial intelligence in recent years, identify top research sponsors in funding artificial intelligence and demonstrate how diverse disciplines contribute to the multidisciplinary development of artificial intelligence. We conclude with implications for search strategy development and suggestions of lines for further research.
C1 [Liu, Na] Shandong Technol & Business Univ, Sch Management, Yantai 264005, Peoples R China.
[Shapira, Philip] Univ Manchester, Alliance Manchester Business Sch, Manchester Inst Innovat Res, Manchester M13 9PL, Lancs, England.
[Shapira, Philip] Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA.
[Yue, Xiaoxu] Tsinghua Univ, Sch Publ Policy & Management, Beijing 100084, Peoples R China.
C3 Shandong Technology & Business University; University of Manchester;
Alliance Manchester Business School; University System of Georgia;
Georgia Institute of Technology; Tsinghua University
RP Shapira, P (corresponding author), Univ Manchester, Alliance Manchester Business Sch, Manchester Inst Innovat Res, Manchester M13 9PL, Lancs, England.; Shapira, P (corresponding author), Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA.
EM pshapira@manchester.ac.uk
RI Shapira, Philip/E-4638-2011
OI Shapira, Philip/0000-0003-2488-5985
FU National Natural Science Foundation of China [71702090]; Taishan
Scholars Program of Shandong Province [Tsqn201909149]; Biotechnology and
Biological Sciences Research Council [BB/M017702/1)]; Project on
Anticipating Transformative Innovations and their Implications: AI
innovation strategies in Canada and the UK (Partnership for the
Organization of Innovation and New Technologies, Social Sciences and
Humanities Research Council of Canada) [895-2018-1006]; BBSRC
[BB/M017702/1] Funding Source: UKRI
FX Na Liu acknowledges support for this research from the National Natural
Science Foundation of China (Grant No. 71702090) and the Taishan
Scholars Program of Shandong Province (Grant No. Tsqn201909149). Philip
Shapira acknowledges support for this research from the Biotechnology
and Biological Sciences Research Council (Grant No. BB/M017702/1)
(Manchester Synthetic Biology Research Centre for Fine and Speciality
Chemicals) and the Project on Anticipating Transformative Innovations
and their Implications: AI innovation strategies in Canada and the UK
(Partnership for the Organization of Innovation and New Technologies,
Social Sciences and Humanities Research Council of Canada, Grant No.
895-2018-1006). The authors appreciate comments on an earlier draft
received from Alan L. Porter.
CR Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9
AF, 2020, ACRONYM FINDER
AI HLEG, 2019, ETH GUID TRUSTW AI H
[Anonymous], 1998, Artificial intelligence: a new synthesis
[Anonymous], 2007, WHAT IS ARTIFICIAL I
[Anonymous], 2020, The SCImago Journal Country Rank
[Anonymous], 2019, Artificial Intelligence in Society
Appelbaum R. P., 2018, Innovation in China: Challenging the global science and technology system
Arora SK, 2013, SCIENTOMETRICS, V95, P351, DOI 10.1007/s11192-012-0903-6
Bohannon J, 2015, SCIENCE, V349, P252, DOI 10.1126/science.349.6245.252
Bornmann L, 2013, J INFORMETR, V7, P722, DOI 10.1016/j.joi.2013.05.002
Bornmann L, 2012, J INFORMETR, V6, P333, DOI 10.1016/j.joi.2011.11.006
Bozeman B., 2017, The strength in numbers: The new science of team science, DOI [10.2307/j.ctvc77bn7, DOI 10.2307/J.CTVC77BN7]
British Academy, 2020, IMP ART INT WORK EV
Buiten MC, 2019, EUR J RISK REGUL, V10, P41, DOI 10.1017/err.2019.8
Cath C, 2018, SCI ENG ETHICS, V24, P505, DOI 10.1007/s11948-017-9901-7
CBInsights, 2019, AI TRENDS WATCH 2019
CCF, 2019, CAT INT AC C PER
Chartrand G, 2017, RADIOGRAPHICS, V37, P2113, DOI 10.1148/rg.2017170077
Chen KH, 2019, RES POLICY, V48, P149, DOI 10.1016/j.respol.2018.08.005
Dang T.K, 2019, FORBES
Davenport TH, 2018, HARVARD BUS REV, V96, P108
EPIC, 2020, STAT ART INT POL
Feldstein S., 2019, The global expansion of Al surveillance
Gao J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236574
Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257
Glanzel W., 2019, Springer Handbook of Science and Technology Indicators
Guan JC, 2014, J NANOPART RES, V16, DOI 10.1007/s11051-014-2356-8
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Huang C, 2011, J TECHNOL TRANSFER, V36, P145, DOI 10.1007/s10961-009-9149-8
Huang Y, 2015, SCIENTOMETRICS, V105, P2005, DOI 10.1007/s11192-015-1638-y
Jackson P. C., 2019, INTRO ARTIFICIAL INT
Jakhar D, 2020, CLIN EXP DERMATOL, V45, P131, DOI 10.1111/ced.14029
Liu N, 2016, ENERG POLICY, V91, P220, DOI 10.1016/j.enpol.2016.01.020
Loucks J., 2019, Future in the balance? How countries are pursuing an AI advantage
McCarthy J., 1955, A proposal for the Dartmouth Summer Research Project on Artificial Intelligence
Mitomo H., 2020, TELECOMMUNICATIONS P, P181, DOI [10.1007/978-981-15-1033-5_10, DOI 10.1007/978-981-15-1033-5_10]
Mogoutov A, 2007, RES POLICY, V36, P893, DOI 10.1016/j.respol.2007.02.005
Molinari JF, 2008, SCIENTOMETRICS, V75, P163, DOI 10.1007/s11192-007-1853-2
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Morabit Yasmina EL, 2019, Journal of Information and Communication Convergence Engineering, V17, P21
Morgan Forrest E., 2020, Military applications of artificial intelligence: Ethical concerns in an uncertain world Report, DOI [10.7249/RR3139-1, DOI 10.7249/RR3139-1]
Muñoz-Écija T, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100976
OECD, 2018, OECD Going Digital Policy Note
Pei Wang, 2019, Journal of Artificial General Intelligence, V10, P1, DOI 10.2478/jagi-2019-0002
Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472
Roberts H, 2021, AI SOC, V36, P59, DOI 10.1007/s00146-020-00992-2
Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006
Shapira P, 2017, SCIENTOMETRICS, V112, P1439, DOI 10.1007/s11192-017-2452-5
Sombattheera C., 2012, MULTIDISCIPLINARY TR, DOI [10.1007/978-3-319-69456-6, DOI 10.1007/978-3-319-69456-6]
Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16122150
Uria-Recio P, 2019, DATA SCI
van Raan A, 2019, SPRINGER HBK, P237, DOI 10.1007/978-3-030-02511-3_10
Walch K., 2020, FORBES
Wang J, 2011, SCIENTOMETRICS, V87, P563, DOI 10.1007/s11192-011-0362-5
Wang ZN, 2019, J NANOPART RES, V21, DOI 10.1007/s11051-019-4627-x
Webb Amy., 2019, The big nine: How the tech titans their thinking machines could warp humanity
West D.M., 2018, How artificial intelligence is changing the world
WIPO, 2019, WIPO Technology Trends 2019: Artificial Intelligence
Zhang XY, 2019, INT J ADV MANUF TECH, V101, P2367, DOI 10.1007/s00170-018-3106-3
Zhou X, 2019, SCIENTOMETRICS, V121, P699, DOI 10.1007/s11192-019-03218-5
Zitt M, 2006, INFORM PROCESS MANAG, V42, P1513, DOI 10.1016/j.ipm.2006.03.016
NR 62
TC 25
Z9 28
U1 33
U2 229
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD APR
PY 2021
VL 126
IS 4
BP 3153
EP 3192
DI 10.1007/s11192-021-03868-4
EA FEB 2021
PG 40
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA RK9JQ
UT WOS:000621730600002
PM 34720254
OA Green Published, hybrid
DA 2024-09-05
ER
PT J
AU Jia, FL
Sun, DE
Looi, CK
AF Jia, Fenglin
Sun, Daner
Looi, Chee-kit
TI Artificial Intelligence in Science Education (2013-2023): Research
Trends in Ten Years
SO JOURNAL OF SCIENCE EDUCATION AND TECHNOLOGY
LA English
DT Article
DE Bibliometric literature review; Artificial Intelligence; Science
Education; Primary and Secondary Schools
ID SCHOOL STUDENTS; COMPUTATIONAL THINKING; DESIGN; SYSTEM; GAMIFICATION;
TECHNOLOGIES; GENERATION; FEEDBACK
AB The use of artificial intelligence has played an important role in science teaching and learning. The purpose of this study was to fill a gap in the current review of research on AI in science education (AISE) in the early stage of education by systematically reviewing existing research in this area. This systematic review examined the trends and research foci of AI in the science of early stages of education. This review study employed a bibliometric analysis and content analysis to examine the characteristics of 76 studies on Artificial Intelligence in Science Education (AISE) indexed in Web of Science and Scopus from 2013 to 2023. The analytical tool CiteSpace was utilized for the analysis. The study aimed to provide an overview of the development level of AISE and identify major research trends, keywords, research themes, high-impact journals, institutions, countries/regions, and the impact of AISE studies. The results, based on econometric analyses, indicate that AISE has experienced increasing influence over the past decade. Cluster and timeline analyses of the retrieved keywords revealed that AI in primary and secondary science education can be categorized into 11 main themes, and the chronology of their emergence was identified. Among the most prolific journals in this field are the International Journal of Social Robotics, Educational Technology Research and Development, and others. Furthermore, the analysis identified that institutions and countries/regions located primarily in the United States have made the most significant contributions to AISE research. To explore the learning outcomes and overall impact of AI technologies on learners in primary and secondary schools, content analysis was conducted, identifying five main categories of technology applications. This study provides valuable insights into the advancements and implications of AI in science education at the primary and secondary levels.
C1 [Jia, Fenglin; Looi, Chee-kit] Educ Univ Hong Kong, Dept Curriculum & Instruct, Hong Kong, Peoples R China.
[Sun, Daner] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Education University of Hong
Kong (EdUHK)
RP Sun, DE (corresponding author), Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
EM dsun@eduhk.hk
RI SUN, Daner/AAL-2567-2020; jia, fenglin/HNP-9112-2023; Looi,
Chee-Kit/ABG-9043-2021; Jia, fenglin/HZI-8900-2023
OI SUN, Daner/0000-0002-9813-6306; Jia, fenglin/0000-0002-6233-9873; Looi,
Chee-Kit/0000-0001-9905-2713
CR Akgun Selin, 2022, AI Ethics, V2, P431, DOI 10.1007/s43681-021-00096-7
Aktoprak A, 2022, THINK SKILLS CREAT, V44, DOI 10.1016/j.tsc.2022.101029
Alam A., 2022, 2022 INT C SUST COMP, P69, DOI 10.1109/icscds53736.2022.9760932
Aldabe I, 2014, IEEE T LEARN TECHNOL, V7, P375, DOI 10.1109/TLT.2014.2355831
Ali SS, 2021, IEEE T EMERG TOP COM, V9, P612, DOI 10.1109/TETC.2019.2915288
Almeda M., 2020, J. Educ. Data Mining, V12, P33, DOI DOI 10.5281/ZENODO.4008054
Amo D, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21010153
Avsec S, 2014, J SCI EDUC TECHNOL, V23, P692, DOI 10.1007/s10956-014-9496-6
Baidoo-Anu D., 2023, 4337484 SSRN
Bernstein D, 2022, ETR&D-EDUC TECH RES, V70, P119, DOI 10.1007/s11423-021-10061-0
Bertalanffy L.V., 1968, AKTEN 14 INTERNATION, V2, P335, DOI DOI 10.5840/WCP1419682120
Bertram C., 2021, Computers and Education: Artificial Intelligence, DOI [10.1016/j.caeai.2021.100038, DOI 10.1016/J.CAEAI.2021.100038]
Biehler R, 2021, TEACH STAT, V43, pS133, DOI 10.1111/test.12279
Casey JE, 2018, EDUC INF TECHNOL, V23, P1531, DOI 10.1007/s10639-017-9677-z
Çetinkaya A, 2020, ENG SCI TECHNOL, V23, P1301, DOI 10.1016/j.jestch.2020.07.005
Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006
Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507
Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100
Chen D., 1993, Journal of Science Education and Technology, V2, P447, DOI [DOI 10.1007/BF00694427, 10.1007/BF00694427]
Chen GH, 2017, COMPUT EDUC, V109, P162, DOI 10.1016/j.compedu.2017.03.001
Chen JY, 2020, J MED INTERNET RES, V22, DOI 10.2196/21476
Chen X., 2019, COMMUNICATIONS COMPU, V1072, DOI 10
Chen Y., 2015, Scientific Research, V33, P242, DOI [10.16192/j.cnki.1003-2053.2015.02.009, DOI 10.16192/J.CNKI.1003-2053.2015.02.009]
Cohen L., 2018, RES METHODS ED, V8th, DOI DOI 10.4324/9781315456539
Crawford M., 1974, ROMAN REPUBLICAN COI
Cutumisu M, 2017, INT J ARTIF INTELL E, V27, P419, DOI 10.1007/s40593-016-0137-5
Dede C, 2017, EDUC TECHNOL SOC, V20, P166
Dettweiler U, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.02235
Di Eugenio B., 2021, INTELLIGENT SUPPORT
Dobrev D., 2012, PREPRINT
Dolenc K, 2015, J BALT SCI EDUC, V14, P162
Dolenc K, 2015, COMPUT EDUC, V82, P354, DOI 10.1016/j.compedu.2014.12.010
Drack M, 2015, INT J GEN SYST, V44, P523, DOI 10.1080/03081079.2014.1000642
Drigas A. S., 2013, Revised Selected Papers, V4, P385
Eaton E., 2018, AI Matters, V3, P23
Gadanidis G, 2017, INT J INF LEARN TECH, V34, P133, DOI 10.1108/IJILT-09-2016-0048
Galvan JL., 2017, WRITING LIT REV GUID, V7th
Gkiolnta E, 2023, INT J DEV DISABIL, V69, P424, DOI 10.1080/20473869.2023.2194568
Körpeoglu SG, 2023, EDUC INF TECHNOL, V28, P2791, DOI 10.1007/s10639-022-11216-z
Gomoll A, 2018, INT J SOC ROBOT, V10, P309, DOI 10.1007/s12369-017-0454-3
Hagger MS, 2018, LEARN INDIVID DIFFER, V67, P232, DOI 10.1016/j.lindif.2018.09.002
Heintz F, 2021, KUNSTL INTELL, V35, P233, DOI 10.1007/s13218-021-00730-w
Holmes W, 2024, INT J ARTIF INTELL E, V34, P144, DOI 10.1007/s40593-023-00364-z
Hoorn JF, 2021, ROBOTICS, V10, DOI 10.3390/robotics10010016
Hwang G.-J., 2020, Computers and Education: Artificial Intelligence, V1, P100001, DOI [DOI 10.1016/J.CAEAI.2020.100001, 10.1016/j.caeai.2020.100001]
Jang J, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142215178
Jarvela S, 2023, COMPUT HUM BEHAV, V144, DOI 10.1016/j.chb.2023.107737
Jia K, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.795039
Jiang SY, 2023, RES SCI EDUC, V53, P425, DOI 10.1007/s11165-022-10061-x
Julià C, 2016, INT J TECHNOL DES ED, V26, P185, DOI 10.1007/s10798-015-9307-2
Kandlhofer M, 2021, KUNSTL INTELL, V35, P221, DOI 10.1007/s13218-021-00716-8
Kim J, 2020, INT J HUM-COMPUT INT, V36, P1902, DOI 10.1080/10447318.2020.1801227
Kitto H. D. F., 2014, FORM MEANING DRAMA S
Kok JN., 2009, ARTIF INTELL, V1, P1
Kong FW, 2020, INT J EMERG TECHNOL, V15, P238, DOI 10.3991/ijet.v15i13.15351
Kong S-C., 2021, Computers in Education: Artificial Intelligence, V2, DOI DOI 10.1016/J.CAEAI.2021.100026
Lee HS, 2021, J SCI EDUC TECHNOL, V30, P168, DOI 10.1007/s10956-020-09889-7
Lehman J., 2018, EURASIA J MATH SCI T, V14, P1, DOI DOI 10.29333/EJMSTE/94227
Li E, 2022, LECT NOTES ARTIF INT, V13336, P69, DOI 10.1007/978-3-031-05643-7_5
Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Liu TC, 2022, EDUC INF TECHNOL, V27, P6295, DOI 10.1007/s10639-021-10851-2
Lu WY, 2023, J LEARN ANAL, V10, P168, DOI 10.18608/jla.2023.7681
Luo FY, 2020, COMPUT EDUC, V146, DOI 10.1016/j.compedu.2019.103759
Magana AJ, 2019, J SCI EDUC TECHNOL, V28, P382, DOI 10.1007/s10956-019-09775-x
Malakul S, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00224-2
Martí-Parreño J, 2016, J COMPUT ASSIST LEAR, V32, P663, DOI 10.1111/jcal.12161
Martins RM, 2024, INT J ARTIF INTELL E, V34, P185, DOI 10.1007/s40593-022-00325-y
Mazov NA, 2020, SCI TECH INF PROCESS, V47, P221, DOI 10.3103/S0147688220040036
Min W, 2020, IEEE T LEARN TECHNOL, V13, P312, DOI 10.1109/TLT.2019.2922356
Nemiro J, 2017, J CREATIVE BEHAV, V51, P70, DOI 10.1002/jocb.87
Nguyen A, 2023, BRIT J EDUC TECHNOL, V54, P293, DOI 10.1111/bjet.13280
Niazi MA, 2016, COMPLEX ADAPT SYST M, V4, DOI 10.1186/s40294-016-0036-5
Noh J, 2020, ETR&D-EDUC TECH RES, V68, P463, DOI 10.1007/s11423-019-09708-w
Ouyang F, 2022, EDUC INF TECHNOL, V27, P7893, DOI 10.1007/s10639-022-10925-9
Park H, 2020, ONLINE LEARN, V24, P225, DOI 10.24059/olj.v24i2.2001
Pedro F., 2019, ARTIFICIAL INTELLIGE
Pei B., 2021, INTERACT LEARN ENVIR, P1
Pei Wang, 2019, Journal of Artificial General Intelligence, V10, P1, DOI 10.2478/jagi-2019-0002
Perrakis A, 2021, EMBO REP, V22, DOI 10.15252/embr.202154046
Petersen GB., 2021, Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, P1, DOI DOI 10.1145/3411764.3445760
Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025
Polyak ST, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.02029
Pou AV, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22103746
Pritchard Alan., 1969, STAT BIBLIO INTERIM
Rapoport A., 1986, GEN SYSTEM THEORY ES
Rawat KS, 2021, COMPUT APPL ENG EDUC, V29, P1324, DOI 10.1002/cae.22388
Rosi A, 2016, PUBLIC HEALTH, V140, P50, DOI 10.1016/j.puhe.2016.08.021
Rosvall M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008694
Sabharwal A., 2011, ARTIF INTELL
Saha SK, 2022, INTERACT LEARN ENVIR, V30, P215, DOI 10.1080/10494820.2019.1651743
Salas-Pilco SZ, 2020, BRIT J EDUC TECHNOL, V51, P1808, DOI 10.1111/bjet.12984
Segedy JR, 2013, ETR&D-EDUC TECH RES, V61, P71, DOI 10.1007/s11423-012-9275-0
Shiomi M, 2015, INT J SOC ROBOT, V7, P641, DOI 10.1007/s12369-015-0303-1
SIMMONS AB, 1988, IEEE J OCEANIC ENG, V13, P14, DOI 10.1109/48.551
Sisman B, 2021, INT J SOC ROBOT, V13, P379, DOI 10.1007/s12369-020-00646-9
Sisman B, 2019, INTERACT LEARN ENVIR, V27, P377, DOI 10.1080/10494820.2018.1474234
Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G
Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2
Su J., 2022, Computers and Education: Artificial Intelligence, V3, DOI DOI 10.1016/J.CAEAI.2022.100072
Su J., 2023, Comput. Educ, V4, DOI DOI 10.1016/J.CAEAI.2023.100124
Tan D Y., 2021, Computers and Education. Artificial Intelligence, V2, DOI DOI 10.1016/J.CAEAI.2021.100032
Tang L, 2023, DIGIT HEALTH, V9, DOI 10.1177/20552076231186064
Tedre M, 2021, IEEE ACCESS, V9, P110558, DOI 10.1109/ACCESS.2021.3097962
Topal AD, 2021, EDUC INF TECHNOL, V26, P6241, DOI 10.1007/s10639-021-10627-8
Touretzky D, 2019, AAAI CONF ARTIF INTE, P9795
Trinidad M, 2021, IEEE ACCESS, V9, P46505, DOI 10.1109/ACCESS.2021.3063986
Ücgül M, 2022, INT J TECHNOL DES ED, V32, P1679, DOI 10.1007/s10798-021-09673-7
von Bertalanffy, 1950, British Journal for the Philosophy of Science, V1, P134, DOI [DOI 10.1093/BJPS/I.2.134, 10.1093/bjps/L2.134]
Ward W, 2013, J EDUC PSYCHOL, V105, P1115, DOI 10.1037/a0031589
Witherspoon EB, 2018, J COMPUT ASSIST LEAR, V34, P115, DOI 10.1111/jcal.12219
Witherspoon EB, 2017, ACM T COMPUT EDUC, V18, DOI 10.1145/3104982
Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599
Xu WQ, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-022-00377-5
Xu YK, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.926301
Yin PY, 2016, UNIVERSAL ACCESS INF, V15, P315, DOI 10.1007/s10209-014-0390-z
Yueh HP, 2020, BRIT J EDUC TECHNOL, V51, P1884, DOI 10.1111/bjet.13016
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhai XM, 2022, J RES SCI TEACH, V59, P1765, DOI 10.1002/tea.21773
Zou D, 2022, EDUC INF TECHNOL, V27, P10585, DOI 10.1007/s10639-022-10991-z
Zulic H., 2019, INSAM J CONT MUSIC A, V1, P100, DOI DOI 10.51191/ISSN.2637-1898.2019.2.2.100
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 122
TC 8
Z9 8
U1 148
U2 268
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1059-0145
EI 1573-1839
J9 J SCI EDUC TECHNOL
JI J. Sci. Educ. Technol.
PD FEB
PY 2024
VL 33
IS 1
BP 94
EP 117
DI 10.1007/s10956-023-10077-6
EA OCT 2023
PG 24
WC Education & Educational Research; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Education & Educational Research
GA FV0J7
UT WOS:001079844000001
DA 2024-09-05
ER
PT J
AU Mutz, R
Daniel, HD
AF Mutz, Ruediger
Daniel, Hans-Dieter
TI The generalized propensity score methodology for estimating unbiased
journal impact factors
SO SCIENTOMETRICS
LA English
DT Article
DE Journal impact factor; Causal inference; Generalized propensity score;
Rubin Causal Model
ID CAUSAL INFERENCE; SUBCLASSIFICATION; BIAS; PUBLICATION; SCIENCE; DESIGN
AB The journal impact factor (JIF) proposed by Garfield in the year 1955 is one of the most commonly used and prominent citation-based indicators of the performance and significance of a scientific journal. The JIF is simple, reasonable, clearly defined, and comparable over time and, what is more, can be easily calculated from data provided by Thomson Reuters, but at the expense of serious technical and methodological flaws. The paper discusses one of the core problems: The JIF is affected by bias factors (e.g., document type) that have nothing to do with the prestige or quality of a journal. For solving this problem, we suggest using the generalized propensity score methodology based on the Rubin Causal Model. Citation data for papers of all journals in the ISI subject category "Microscopy" (Journal Citation Report) are used to illustrate the proposal.
C1 [Mutz, Ruediger; Daniel, Hans-Dieter] Swiss Fed Inst Technol, CH-8001 Zurich, Switzerland.
[Daniel, Hans-Dieter] Univ Zurich, Evaluat Off, CH-8001 Zurich, Switzerland.
C3 Swiss Federal Institutes of Technology Domain; ETH Zurich; University of
Zurich
RP Mutz, R (corresponding author), Swiss Fed Inst Technol, Muehlegasse 21, CH-8001 Zurich, Switzerland.
EM mutz@gess.ethz.ch
RI Mutz, Ruediger/A-2226-2009; Mutz, Rüdiger/AAA-9629-2021; Daniel,
Hans-Dieter/A-2419-2013
OI Mutz, Rüdiger/0000-0003-3345-6090;
CR Allison P. D., 2012, Logistic regression using SAS
[Anonymous], J ROYAL STAT SOC A
[Anonymous], J INFOMETRI IN PRESS
[Anonymous], 2009, Users Guide Version 9.2
Bornmann L., 2008, ETHICS SCI ENV POLIT, V8, P93, DOI [10.3354/esep00084, DOI 10.3354/ESEP00084]
BRAUN T, 1989, SCIENTOMETRICS, V15, P325, DOI 10.1007/BF02017057
COCHRAN WG, 1968, BIOMETRICS, V24, P295, DOI 10.2307/2528036
Fan X., 2001, SAS MONTE CARLO STUD
Feng P, 2012, STAT MED, V31, P681, DOI 10.1002/sim.4168
Garfield E, 1999, CAN MED ASSOC J, V161, P979
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806
Guo S., 2010, Propensity Score Analysis. Statistical Methods and Applications
Hirano K., 2004, Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, V226164, P73
HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064
Imai K, 2004, J AM STAT ASSOC, V99, P854, DOI 10.1198/016214504000001187
Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706
Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P217, DOI 10.1002/asi.21450
Lu B, 2011, AM STAT, V65, P21, DOI 10.1198/tast.2011.08294
MOED HF, 1995, J AM SOC INFORM SCI, V46, P461, DOI 10.1002/(SICI)1097-4571(199507)46:6<461::AID-ASI5>3.0.CO;2-G
Moed HF, 1999, SCIENTOMETRICS, V46, P575, DOI 10.1007/BF02459613
Neuhaus C, 2009, J AM SOC INF SCI TEC, V60, P176, DOI 10.1002/asi.20960
Rosenbaum PR, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-1213-8
ROSENBAUM PR, 1984, J AM STAT ASSOC, V79, P516, DOI 10.2307/2288398
Rubin D., 1977, J EDUC STAT, V2, P1, DOI DOI 10.3102/10769986002001001
Rubin DB, 2005, J AM STAT ASSOC, V100, P322, DOI 10.1198/016214504000001880
Rubin DB, 1996, BIOMETRICS, V52, P249, DOI 10.2307/2533160
Rubin DB, 2004, J EDUC BEHAV STAT, V29, P343, DOI 10.3102/10769986029003343
Rubin DB, 2006, MATCHED SAMPLING FOR CAUSAL EFFECTS, P1, DOI 10.2277/ 0521674360
RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350
Rubin DB, 2007, STAT MED, V26, P20, DOI 10.1002/sim.2739
Spreeuwenberg MD, 2010, MED CARE, V48, P166, DOI 10.1097/MLR.0b013e3181c1328f
TODOROV R, 1988, J INFORM SCI, V14, P47, DOI 10.1177/016555158801400106
Vanclay JK, 2012, SCIENTOMETRICS, V92, P211, DOI 10.1007/s11192-011-0561-0
Wang JX, 2001, PHARMACOEPIDEM DR S, V10, P105, DOI 10.1002/pds.572
Zanutto E, 2005, J EDUC BEHAV STAT, V30, P59, DOI 10.3102/10769986030001059
NR 37
TC 13
Z9 14
U1 1
U2 30
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD AUG
PY 2012
VL 92
IS 2
SI SI
BP 377
EP 390
DI 10.1007/s11192-012-0670-4
PG 14
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 975YF
UT WOS:000306547000015
OA Green Published
DA 2024-09-05
ER
PT J
AU Hoseini, FF
Mansouri, A
AF Hoseini, Fatemeh Fadavi
Mansouri, Ali
TI The Role of Articles in Science-Technology Relationship: A Topic
Analysis of Non-patent Literature (NPL) References
SO SERIALS REVIEW
LA English
DT Article
DE Citation analysis; nanotechnology; non-patent literature; patents; topic
modeling
ID PATENT CITATION ANALYSIS; INDUSTRY; INNOVATION; PUBLICATIONS;
NANOTECHNOLOGY; DOCUMENTS; LINKAGES; SEARCH; REAL
AB Patents with non-patent literature (NPL) references indicate how the link between science and technology interact. Using topic modeling, this paper investigated the thematic relationship between patents and their cited articles in the field of Nanotechnology. For this purpose, patents in the field of nanotechnology (IPC Class: B82) were obtained from the United States Patent and Trademark Office from 1985 to 2019. Then, NPL references listed in "Other References" section of the patents was extracted and abstract of the NPL references was retrieved from Scopus database. R software, topic modeling, and Latent Dirichlet Allocation algorithm were used to analyze the data. Results showed that most of the subclasses in Nanotechnology use few NPL references and are more dependent on patents. In total, NPL references account for only 36% of patent citations. The topics of the NPL references in this field (nanotechnology) belonged to six categories: Physics, Electricity, Chemistry, Cellular and Molecular Biology, Medicine, and Nanotechnology. Consequently, it seems that nanotechnology patents are more technology-driven, and a medium to low relationship exists between science and nanotechnology. The topic modeling of NPL references uncovered that nanotechnology patents have been more influenced by non-nano scientific.
C1 [Hoseini, Fatemeh Fadavi; Mansouri, Ali] Univ Isfahan, Dept Knowledge & Informat Sci, Esfahan, Iran.
C3 University of Isfahan
RP Mansouri, A (corresponding author), Univ Isfahan, Dept Knowledge & Informat Sci, Esfahan, Iran.
EM a.mansouri@edu.ui.ac.ir
RI Mansouri, Ali/HKN-4172-2023; Mansouri, Ali/ABH-9666-2020
OI Mansouri, Ali/0000-0003-4047-2697; Mansouri, Ali/0000-0003-4047-2697;
Fadavi Hoseini, Fateme/0000-0001-8371-8939
CR Akhtar N, 2019, ADV INTELL SYST, V839, P21, DOI 10.1007/978-981-13-1274-8_2
Alcácer J, 2009, RES POLICY, V38, P415, DOI 10.1016/j.respol.2008.12.001
[Anonymous], 1995, Measurement of Scientific and Technological Activities: Manual on the Measurement of Human Resources Devoted to ST - Canberra Manual, DOI DOI 10.1787/9789264065581-EN
Bayda S, 2020, MOLECULES, V25, DOI 10.3390/molecules25010112
Bittermann A, 2018, Z PSYCHOL, V226, P3, DOI 10.1027/2151-2604/a000318
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Braun T, 1997, SCIENTOMETRICS, V38, P321, DOI 10.1007/BF02457417
Breschi S, 2007, ECON INNOV NEW TECH, V16, P101, DOI 10.1080/10438590600982830
BROOKS H, 1994, RES POLICY, V23, P477, DOI 10.1016/0048-7333(94)01001-3
Callaert J, 2006, SCIENTOMETRICS, V69, P3, DOI 10.1007/s11192-006-0135-8
Carayannis Elias G., 2010, International Journal of Social Ecology and Sustainable Development, V1, P41, DOI 10.4018/jsesd.2010010105
Cassiman B, 2008, IND CORP CHANGE, V17, P611, DOI 10.1093/icc/dtn023
Chang YW, 2017, ELECTRON LIBR, V35, P152, DOI 10.1108/EL-10-2015-0195
Chen DZ, 2007, SCIENTOMETRICS, V71, P101, DOI 10.1007/s11192-007-1655-6
Cho TS, 2011, SCIENTOMETRICS, V89, P795, DOI 10.1007/s11192-011-0457-z
Du J, 2019, J INFORMETR, V13, P132, DOI 10.1016/j.joi.2018.12.004
Durack K. T., 2004, World Patent Information, V26, P131, DOI 10.1016/j.wpi.2003.11.001
Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4
Etzkowitz H, 2003, SOC SCI INFORM, V42, P293, DOI 10.1177/05390184030423002
Guerrero-Bote VP, 2019, PROF INFORM, V28, DOI 10.3145/epi.2019.jul.01
Hall BH, 2005, RAND J ECON, V36, P16
Han F, 2018, SCIENTOMETRICS, V116, P767, DOI 10.1007/s11192-018-2774-y
Harhoff D, 2003, RES POLICY, V32, P1343, DOI 10.1016/S0048-7333(02)00124-5
Hullmann A, 2003, SCIENTOMETRICS, V58, P507, DOI 10.1023/B:SCIE.0000006877.45467.a7
Jaffe AB, 2000, AM ECON REV, V90, P215, DOI 10.1257/aer.90.2.215
Jefferson OA, 2018, NAT BIOTECHNOL, V36, P31, DOI 10.1038/nbt.4049
Karki M.M.S., 1997, WORLD PAT INF, V19, P269, DOI DOI 10.1016/S0172-2190(97)00033-1
Ke Q, 2018, J INFORMETR, V12, P706, DOI 10.1016/j.joi.2018.06.010
Kim J, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8050474
Kosinski M, 2016, PSYCHOL METHODS, V21, P493, DOI 10.1037/met0000105
Kumari R, 2021, J INF SCI, V47, P658, DOI 10.1177/0165551519887878
Lee C, 2015, TECHNOL FORECAST SOC, V90, P355, DOI 10.1016/j.techfore.2014.05.010
Lee S, 2012, COMPUT IND ENG, V63, P564, DOI 10.1016/j.cie.2011.12.002
Leydesdorff L, 2004, J AM SOC INF SCI TEC, V55, P991, DOI 10.1002/asi.20045
Leydesdorff L, 2012, J KNOWL ECON, V3, P25, DOI 10.1007/s13132-011-0049-4
Li R, 2014, J ASSOC INF SCI TECH, V65, P1007, DOI 10.1002/asi.23054
Lin JY, 2020, SCIENTOMETRICS, V124, P1, DOI 10.1007/s11192-020-03436-2
Lu YH, 2020, SCIENTOMETRICS, V123, P813, DOI 10.1007/s11192-020-03385-w
Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754
Meyer M, 2000, SCIENTOMETRICS, V48, P151, DOI 10.1023/A:1005692621105
Michel J, 2001, SCIENTOMETRICS, V51, P185, DOI 10.1023/A:1010577030871
Nakagawa K, 2017, TECHNOL INNOV MANAG, V7, P38
Narin F., 2000, TECH LINE BACKGROUND
OECD, 2002, Frascati Manual 2002: Proposed Standard Practice for Surveys on Research and Experimental Development, DOI DOI 10.1787/9789955682684-LT
OECD Eurostat, 2005, The Measurement of Scientific and Technological Activities, Proposed Guidelines for Collecting and Interpreting Technological Innovation Data, V3rd, DOI [10.1787/9789264013100-en, DOI 10.1787/9789264013100-EN]
Ponweiser M., 2012, LATENT DIRICHLET ALL, P2
PRICE DJD, 1965, TECHNOL CULT, V6, P553
Qu Z, 2020, SCIENTOMETRICS, V124, P867, DOI 10.1007/s11192-020-03518-1
Rip A., 1992, TECHNOLOGICAL DEV SC, P231
SdA P, 2017, RAI REV ADM INOVACAO, V14, P301, DOI [10.1016/j.rai.2017.07.006, DOI 10.1016/J.RAI.2017.07.006]
Smith D, 2014, TECHNOL INNOV MANAG, P4
Smojver V, 2021, J KNOWL MANAG, V25, P433, DOI 10.1108/JKM-01-2020-0079
Sun XL, 2018, SCIENTOMETRICS, V116, P1735, DOI 10.1007/s11192-018-2836-1
Suominen A, 2017, TECHNOL FORECAST SOC, V115, P131, DOI 10.1016/j.techfore.2016.09.028
Tijssen RJW, 2001, RES POLICY, V30, P35, DOI 10.1016/S0048-7333(99)00080-3
Uzun A, 2006, SCIENTOMETRICS, V66, P551, DOI 10.1007/s11192-006-0040-1
Verbeek A, 2002, SCIENTOMETRICS, V54, P399, DOI 10.1023/A:1016034516731
Watanabe C, 2001, TECHNOVATION, V21, P783, DOI 10.1016/S0166-4972(01)00025-6
Xu HY, 2017, SCIENTOMETRICS, V111, P773, DOI 10.1007/s11192-017-2290-5
Xu HY, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101014
Xu S, 2019, J ASSOC INF SCI TECH, V70, P1026, DOI 10.1002/asi.24175
Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8
NR 62
TC 3
Z9 3
U1 9
U2 36
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0098-7913
EI 1879-095X
J9 SERIALS REV
JI Ser. Rev.
PY 2022
VL 48
IS 1-2
SI SI
BP 137
EP 150
DI 10.1080/00987913.2022.2127403
EA SEP 2022
PG 14
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA 8M2CW
UT WOS:000863366700001
DA 2024-09-05
ER
PT C
AU Ahmad, A
Bukhari, F
Malik, K
AF Ahmad, Asma
Bukhari, Faisal
Malik, Kamran
GP IEEE
TI Predicting Article Sentiment Analysis Impact in Twitter: A Case Study in
the Field of Information Sciences
SO 4TH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING (IC)2
LA English
DT Proceedings Paper
CT 4th International Conference on Innovative Computing (ICIC)
CY NOV 09-10, 2021
CL Univ Management & Technol, Lahore, PAKISTAN
HO Univ Management & Technol
DE Altmetrics; Twitter; Sentiment Analysis; Predicting Citations
ID RESEARCH EXCELLENCE; SOCIAL MEDIA; ALTMETRICS
AB T For a long time, the scholarly impact of a researcher has been evaluated by its citation count. But this method usually takes years to improve its impact rate. Twitter is one of the famous and rapidly growing microblogging platforms used in the context of "Altmetrics" as a solid alternative scale to identify quality research work. This research test whether Twitter sentiment is helpful to identify quality research work and there is a correlation between citation count and Altmetrics. We classified a small dataset of 6613 tweets into neutral, positive, and negative in information sciences. Our findings show that most of the sentiments of the tweets are neutral because of irrelevant discussion about the articles. Twitter comments do not provide important information about quality research papers except in exceptional cases. We cannot use tweets as a solid indicator to identify quality research work in the field of Information Sciences.
C1 [Ahmad, Asma; Bukhari, Faisal; Malik, Kamran] Univ Punjab, Fac Comp & Informat Technol, Dept Comp Sci, Lahore, Pakistan.
C3 University of Punjab
RP Ahmad, A (corresponding author), Univ Punjab, Fac Comp & Informat Technol, Dept Comp Sci, Lahore, Pakistan.
EM mscsf17m518@pucit.edu.pk; faisal.bukhari@pucit.edu.pk;
kamran.amlik@pucit.edu.pk
CR Alhoori H, 2014, ACM-IEEE J CONF DIG, P375, DOI 10.1109/JCDL.2014.6970193
[Anonymous], FETCH DET ART LEV ME
[Anonymous], 2011, ALTMETRICS MANIFESTO
Bonaccorsi A, 2017, J INFORMETR, V11, P435, DOI 10.1016/j.joi.2017.02.003
Bonaccorsi A, 2017, SCIENTOMETRICS, V110, P217, DOI 10.1007/s11192-016-2180-2
Bornmann L, 2019, J INFORMETR, V13, P325, DOI 10.1016/j.joi.2019.01.008
Didegah F, 2018, J ASSOC INF SCI TECH, V69, P832, DOI 10.1002/asi.23934
Emadi M, 2020, J INF SCI, V46, P226, DOI 10.1177/0165551519828627
Erdt M, 2016, SCIENTOMETRICS, V109, P1117, DOI 10.1007/s11192-016-2077-0
Erdt Mojisola, 2019, SCIENTOMETRICS, V109, P1
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Fenner M, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001687
Friedrich N., 2015, DO TWEETS SCI ARTICL
Friedrich N, 2015, PRO INT CONF SCI INF, P107
Haddawy P, 2017, J INFORMETR, V11, P389, DOI 10.1016/j.joi.2017.02.004
Hallgren Kevin A, 2012, Tutor Quant Methods Psychol, V8, P23
Hassan SU, 2012, SCIENTOMETRICS, V91, P1035, DOI 10.1007/s11192-012-0665-1
Haustein S, 2019, SPRINGER HBK, P729, DOI 10.1007/978-3-030-02511-3_28
Haustein S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120495
Imran M, 2018, P 23 INT C SCI TECHN
Nuzzolese AG, 2019, SCIENTOMETRICS, V118, P539, DOI 10.1007/s11192-018-2988-z
Priem J, 2011, METRICS S INFORMETRI
Priem J., 2011, METRICS 2011 S INFOR
Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551
Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x
Saeed-Ul-Hassan Uzair Ahmed, 2016, ARXIV PREPRINT ARXIV
Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y
Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833
Thelwall M., 2013, Cybermetrics, V17
Thelwall M., 2013, Tweeting links to academic articles
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662
Waheed H, 2018, BEHAV INFORM TECHNOL, V37, P941, DOI 10.1080/0144929X.2018.1467967
Wakeling S, 2020, J INF SCI, V46, P82, DOI 10.1177/0165551518819965
Wouters P, 2019, SPRINGER HBK, P687, DOI 10.1007/978-3-030-02511-3_26
Zhu J, 2014, SCIENTOMETRICS, V101, P429, DOI 10.1007/s11192-014-1389-1
NR 36
TC 0
Z9 0
U1 2
U2 3
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-0091-6
PY 2021
BP 488
EP 493
DI 10.1109/ICIC53490.2021.9692959
PG 6
WC Computer Science, Artificial Intelligence; Computer Science, Software
Engineering; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BT3XY
UT WOS:000824668100067
DA 2024-09-05
ER
PT J
AU Zhou, ZG
Shi, C
Hu, MX
Liu, YH
AF Zhou, Zhiguang
Shi, Chen
Hu, Miaoxin
Liu, Yuhua
TI Visual ranking of academic influence via paper citation
SO JOURNAL OF VISUAL LANGUAGES AND COMPUTING
LA English
DT Article
DE Visual analysis; Citation network; Word2vec model; PageRank model
ID SCHOLARLY DATA; VISUALIZATION; EXPLORATION; PAGERANK
AB With rapid growth of digital publishing, a great deal of document datum has been published online for a widely spread of knowledge innovations, which is an important resource for human survival and social development. However, it is a time-consuming and difficult task to conduct a high-efficiency access of valuable papers from an extremely large document database. A set of ranking techniques have been proposed to evaluate the influence of articles by counting the number and quality of citations, such as PageRank. In fact, the influence of an article does not merely depend on the account of citations, which is also highly related to the citation network. In this paper, we propose a visual analytics system for visual ranking of academic influence of articles, based on an insightful analysis of citation network. Firstly, a characterization of articles is established through word2vec model, based on an analogy between the articles in citation network and natural language processing (NPL) terms. Then, the difference between articles in the vectorized space is employed to optimize the PageRank model and achieve desired influence ranking results. A set of meaningful visual encodings are also designed to present the relationships among articles, such as the visualization of high-dimensional vectors and time-varying citation networks. At last, a visualization framework is implemented for visual ranking of academic influence of articles, with the ranking models and visual designs integrated. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in the evaluation of academic influence of articles.
C1 [Zhou, Zhiguang; Shi, Chen; Hu, Miaoxin; Liu, Yuhua] Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou, Zhejiang, Peoples R China.
C3 Zhejiang University of Finance & Economics
RP Liu, YH (corresponding author), Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou, Zhejiang, Peoples R China.
EM zhgzhou1983@163.com; ChenShi4066@163.com; humiaoxin@zufe.edu.cn;
liuyuhua@zufe.edu.cn
OI Shi, Chen/0000-0002-4615-4123
FU National Natural Science Foundation of China [61872314, 61802339];
Humanities and Social Sciences Foundation of Ministry of Education in
China [18YJC910017]; Natural Science Foundation of Zhejiang Province
[LY18F020024]; Open Project Program of the State Key Lab of CADAMP;CG of
Zhejiang University [A1806]; First Class Discipline of Zhejiang -A
(Zhejiang University of Finance and Economics Statistics)
FX The authors would like to thank the anonymous reviewers for their
valuable comments. This work was supported by the National Natural
Science Foundation of China (61872314, 61802339), the Humanities and
Social Sciences Foundation of Ministry of Education in China
(18YJC910017), the Natural Science Foundation of Zhejiang Province
(LY18F020024), the Open Project Program of the State Key Lab of CAD&CG
of Zhejiang University (A1806), and the First Class Discipline of
Zhejiang -A (Zhejiang University of Finance and Economics Statistics).
CR Abdelaal M., 2017, 2017 INT S BIG DAT V
[Anonymous], 2013, P AAAI C ART INT
[Anonymous], 2009, Proc. of the 9th SIAM International Conference on Data Mining
Berger M, 2017, IEEE T VIS COMPUT GR, V23, P691, DOI 10.1109/TVCG.2016.2598667
Blanco R, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P179, DOI 10.1145/2684822.2685317
Chen HD, 2015, IEEE T VIS COMPUT GR, V21, P1072, DOI 10.1109/TVCG.2015.2410278
Chen HD, 2014, IEEE T VIS COMPUT GR, V20, P1683, DOI 10.1109/TVCG.2014.2346594
Chen W, 2017, J VISUAL LANG COMPUT, V42, P76, DOI 10.1016/j.jvlc.2017.08.007
Chen ZT, 2017, VIS INFORM, V1, P132, DOI 10.1016/j.visinf.2017.11.002
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Evans JA, 2009, SCIENCE, V323, P1025, DOI 10.1126/science.1154562
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Gratzl S, 2013, IEEE T VIS COMPUT GR, V19, P2277, DOI 10.1109/TVCG.2013.173
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9
Isenberg P, 2017, IEEE T VIS COMPUT GR, V23, P2199, DOI 10.1109/TVCG.2016.2615308
Isenberg P, 2017, IEEE T VIS COMPUT GR, V23, P771, DOI 10.1109/TVCG.2016.2598827
Kidwell P, 2008, IEEE T VIS COMPUT GR, V14, P1356, DOI 10.1109/TVCG.2008.181
Lehmann S, 2006, NATURE, V444, P1003, DOI 10.1038/4441003a
Li DQ, 2018, VIS INFORM, V2, P136, DOI 10.1016/j.visinf.2018.04.011
Liu DY, 2017, IEEE T VIS COMPUT GR, V23, P1, DOI 10.1109/TVCG.2016.2598432
Liu JY, 2018, IEEE ACCESS, V6, P19205, DOI 10.1109/ACCESS.2018.2815030
Liu K, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6110321
Liu ZR, 2014, PROC INT C TOOLS ART, P493, DOI 10.1109/ICTAI.2014.80
Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006
Ma Y., 2016, INF SCI, V390, P54
Maslov S, 2008, J NEUROSCI, V28, P11103, DOI 10.1523/JNEUROSCI.0002-08.2008
Mikolov T., 2013, ARXIV
Mikolov T., 2013, Efficient estimation of word representations in vector space
Page L., 1999, The PageRank citation ranking: bringing order to the web
Seo J., 2005, Information Visualization, V4, P96, DOI 10.1057/palgrave.ivs.9500091
Shi CL, 2012, IEEE T VIS COMPUT GR, V18, P2669, DOI 10.1109/TVCG.2012.253
Shi Y, 2018, IEEE T VIS COMPUT GR, V24, P1918, DOI 10.1109/TVCG.2018.2816203
Su Z., 2014, 2014 INT C MULTISENS, P1
Turian J, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P384
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
Vuillemot R, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P2703, DOI 10.1145/2702123.2702237
Walker D., 2007, J STAT MECH-THEORY E, V6, P1
Wang XM, 2016, J COMPUT SCI TECH-CH, V31, P787, DOI 10.1007/s11390-016-1663-1
Weng D., 2018, CHI C, P1
Weng D., 2018, IEEE T VISUALIZATION
Wu YC, 2018, IEEE T VIS COMPUT GR, V24, P2758, DOI 10.1109/TVCG.2017.2764459
Wu YC, 2016, IEEE T MULTIMEDIA, V18, P2135, DOI 10.1109/TMM.2016.2614220
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
Xia JZ, 2018, IEEE T VIS COMPUT GR, V24, P236, DOI 10.1109/TVCG.2017.2744098
Xia JZ, 2017, J VISUAL LANG COMPUT, V41, P79, DOI 10.1016/j.jvlc.2017.05.003
Xia J, 2017, IEEE COMPUT GRAPH, V37, P42, DOI 10.1109/MCG.2017.21
Xie C., 2014, IEEE T VISUALIZATION, V20, P1749
Yan E, 2011, J AM SOC INF SCI TEC, V62, P467, DOI 10.1002/asi.21461
Zhang CT, 2013, SCI REP-UK, V3, DOI 10.1038/srep01023
Zhou FF, 2015, IEEE COMPUT GRAPH, V35, P42, DOI 10.1109/MCG.2015.97
NR 51
TC 14
Z9 16
U1 0
U2 41
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 1045-926X
EI 1095-8533
J9 J VISUAL LANG COMPUT
JI J. Vis. Lang. Comput.
PD OCT
PY 2018
VL 48
BP 134
EP 143
DI 10.1016/j.jvlc.2018.08.007
PG 10
WC Computer Science, Software Engineering
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA GY5NQ
UT WOS:000448625700016
DA 2024-09-05
ER
PT J
AU Romano, R
Davino, C
AF Romano, Rosaria
Davino, Cristina
TI Assessing scientific research activity evaluation models using
multivariate analysis
SO STATISTICS AND ITS INTERFACE
LA English
DT Article
DE Composite indicators; Stability; Analysis of variance; Principal
component analysis; Scientific research activity
ID INDICATORS
AB The authors of this paper propose a method, based both on confirmatory and exploratory data analysis, aiming to assess the variability arising from the Composite Indicators (CIs) construction process. This research refers to an evaluation exercise very important for universities: the assessment of scientific research. The aim of every evaluation system is to synthesize all the information collected at universities into a unique CI, which will allow comparison of performances or ranks of the objects under evaluation. Since the methodology adopted to construct the CI is just one possible solution among several acceptable alternatives, it is reasonable to wonder about the results from the other options. The proposed approach investigates the impact of the different sources of variability occurring in CIs construction, also taking into account the external information available for each statistical unit. The term CI variability is used in the meaning of CI stability and it refers to differences emerging among CIs obtained using different subjective choices to construct the CI. Furthermore, the stability of the results is assessed through a combination of graphical tools and resampling methods. An empirical analysis is provided to discuss the methodological proposal. The research refers to the 'University Planning and Evaluation 2007-2009' system, implemented by the Italian government to finance public universities.
C1 [Romano, Rosaria] Univ Calabria, Dept Econ Stat & Finance, I-87030 Commenda Di Rende, Italy.
[Davino, Cristina] Univ Macerata, Dept Polit Sci Commun & Int Relat, Macerata, Italy.
C3 University of Calabria; University of Macerata
RP Davino, C (corresponding author), Univ Macerata, Dept Polit Sci Commun & Int Relat, Macerata, Italy.
EM rosaria.romano@unical.it; cristina.davino@unimc.it
OI Romano, Rosaria/0000-0002-9708-1753
CR ADELMAN I, 1972, J DEV STUD, V8, P111, DOI 10.1080/00220387208421416
[Anonymous], 2008, 012008 RAE
[Anonymous], 2009, ELEMENTS STAT LEARNI, DOI DOI 10.1007/978-0-387-84858-7
Booysen F, 2002, SOC INDIC RES, V59, P115, DOI 10.1023/A:1016275505152
Davino C., 2013, SURVEY DATA COLLECTI, P45
Davino C., 2011, 32 U MAC
Davino C, 2011, STUD CLASS DATA ANAL, P29, DOI 10.1007/978-3-642-11363-5_4
Davino C, 2014, SOC INDIC RES, V119, P627, DOI 10.1007/s11205-013-0532-3
DREWNOWSKI J, 1972, J DEV STUD, V8, P77, DOI 10.1080/00220387208421413
Jacobs R, 2005, MED CARE, V43, P1177, DOI 10.1097/01.mlr.0000185692.72905.4a
Lebart L., 1997, Statistique Exploratoire Multidimensionnelle
Mardia K. V., 1978, MULTIVARIATE ANAL
Morineau A., 1984, B TECHNIQUE CTR STAT, V2, P1
Næs T, 2010, FOOD QUAL PREFER, V21, P368, DOI 10.1016/j.foodqual.2009.09.004
Roberts G., 2003, 200322 LOND HIGH ED
Saltelli A., 2008, Global sensitivity analysis. The primer
Saporta G., 1990, Probabilites: Analyse des Donnees et Statistique
NR 17
TC 1
Z9 1
U1 0
U2 9
PU INT PRESS BOSTON, INC
PI SOMERVILLE
PA PO BOX 43502, SOMERVILLE, MA 02143 USA
SN 1938-7989
EI 1938-7997
J9 STAT INTERFACE
JI Stat. Interface
PY 2016
VL 9
IS 3
BP 303
EP 313
DI 10.4310/SII.2016.v9.n3.a5
PG 11
WC Mathematical & Computational Biology; Mathematics, Interdisciplinary
Applications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematical & Computational Biology; Mathematics
GA DF4AV
UT WOS:000371290600005
DA 2024-09-05
ER
PT J
AU Nolasco, D
Oliveira, J
AF Nolasco, Diogo
Oliveira, Jonice
TI Mining social influence in science and vice-versa: A topic correlation
approach
SO INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT
LA English
DT Article
DE Topic modeling; Social networks; Science networks; Topic labeling;
Influence mining; Topic similarity
ID NETWORKS; MENDELEY; ADOPTION; TWITTER; TWEETS; IMPACT
AB There is no doubt that scientific discoveries have always brought changes to society. New technologies help solve social problems such as transportation and education, while research brings benefits such as curing diseases and improving food production. Despite the impacts caused by science and society on each other, this relationship is rarely studied and they are often seen as different universes. Previous literature focuses only on a single domain, detecting social demands or research fronts for example, without ever crossing the results for new insights. In this work, we create a system that is able to assess the relationship between social and scholar data using the topics discussed in social networks and research topics. We use the articles as science sensors and humans as social sensors via social networks. Topic modeling algorithms are used to extract and label social subjects and research themes and then topic correlation metrics are used to create links between them if they have a significant relationship. The proposed system is based on topic modeling, labeling and correlation from heterogeneous sources, so it can be used in a variety of scenarios. We make an evaluation of the approach using a large-scale Twitter corpus combined with a PubMed article corpus. In both of them, we work with data of the Zika epidemic in the world, as this scenario provides topics and discussions on both domains. Our work was capable of discovering links between various topics of different domains, which suggests that some of the relationships can be automatically inferred by the sensors. Results can open new opportunities for forecasting social behavior, assess community interest in a scientific subject or directing research to the population welfare.
C1 [Nolasco, Diogo] Univ Fed Rio de Janeiro, Programa Posgrad Informat, Av Athos,Silveira Ramos,274 Bl CCMN NCE, Rio De Janeiro, RJ, Brazil.
[Oliveira, Jonice] Univ Fed Rio de Janeiro, Dept Ciencia Comp, Av Athos,Silveira Ramos,274 Bl Room 1038 NCE, Rio De Janeiro, RJ, Brazil.
C3 Universidade Federal do Rio de Janeiro; Universidade Federal do Rio de
Janeiro
RP Nolasco, D (corresponding author), Univ Fed Rio de Janeiro, Programa Posgrad Informat, Av Athos,Silveira Ramos,274 Bl CCMN NCE, Rio De Janeiro, RJ, Brazil.
EM diogo.sousa@ppgi.ufrj.br; jonice@dcc.ufrj.br
RI Oliveira, Jonice/AAR-8798-2021
OI Oliveira, Jonice/0000-0002-2495-1463; Nolasco, Diogo/0000-0001-6125-0140
FU CAPES; CNPq; FAPERJ
FX The authors would like to thank CAPES, CNPq, and FAPERJ for supporting
this work.
CR [Anonymous], LANG TECHNOL
[Anonymous], 2010, TEXT MINING APPL THE, DOI DOI 10.1002/9780470689646.CH1
[Anonymous], 2016, MAPP SOC SCI RES ZIK
[Anonymous], COUNTING HOUSE MEASU
[Anonymous], P BIDU VLDB SHORT PA
[Anonymous], ZIKA VIRUS PODE SER
[Anonymous], 2018, NETWORKS
[Anonymous], P BIDU VLDB FULL PAP
[Anonymous], J CHEM INFORM MODELI
[Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076
[Anonymous], P BIDU VLDB SHORT PA
[Anonymous], P 10 ACM SIGKDD INT
[Anonymous], P 13 INT S INF PROC
[Anonymous], MEANING ALTMETRICS
[Anonymous], 2016, WHO DIRECTOR GEN SUM
[Anonymous], EXPERT SYSTEMS APPL
[Anonymous], 2009, WSDM
[Anonymous], SOC NETW
[Anonymous], 2016, BBC
[Anonymous], CONTEXTUALIZACAO INF
[Anonymous], WHO ZIK VIR RES AG
[Anonymous], P IEEE WIC ACM INT C
[Anonymous], P BIDU VLDB FULL PAP
[Anonymous], SITUACAO EPIDEMIOLOG
[Anonymous], MIDIA MEIO EMERGENCI
[Anonymous], PUBLISH POSTIDENTIFI
[Anonymous], 2007, ADV FUZZY CLUSTERING, DOI DOI 10.1002/9780470061190
[Anonymous], 2014, MACHINE LEARNING KNO
Antonacci G, 2017, J KNOWL MANAG, V21, P1218, DOI 10.1108/JKM-11-2016-0504
Badilescu-Buga E, 2013, INFORM PROCESS MANAG, V49, P902, DOI 10.1016/j.ipm.2013.02.001
Blei D, 2010, IEEE SIGNAL PROC MAG, V27, P55, DOI 10.1109/MSP.2010.938079
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boutellier R., 2008, MANAGING GLOBAL INNO, DOI [10.1007/978-3-540-68952-2, DOI 10.1007/978-3-540-68952-2]
Campos R, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), P193, DOI 10.1109/IRI.2018.00036
Chaney A., 2021, P INT AAAI C WEB SOC, V6, P419
Cinelli M, 2017, J COMPLEX NETW, V5, P694, DOI 10.1093/comnet/cnx002
Colladon AF, 2019, INT J INFORM MANAGE, V48, P254, DOI 10.1016/j.ijinfomgt.2018.09.009
Colladon AF, 2018, J BUS RES, V88, P150, DOI 10.1016/j.jbusres.2018.03.026
Colladon AF, 2017, INFORM PROCESS MANAG, V53, P1287, DOI 10.1016/j.ipm.2017.07.001
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
Gloor P, 2017, J BUS RES, V75, P67, DOI 10.1016/j.jbusres.2017.02.010
Gloor PA, 2017, COMPUT HUM BEHAV, V71, P343, DOI 10.1016/j.chb.2017.02.017
Haustein S, 2014, IT-INF TECHNOL, V56, P207, DOI 10.1515/itit-2014-1048
Hric D, 2016, PHYS REV X, V6, DOI 10.1103/PhysRevX.6.031038
Hughes AL, 2009, INT J EMERG MANAG, V6, P248, DOI 10.1504/IJEM.2009.031564
Jiang JC, 2017, INFORM PROCESS MANAG, V53, P1, DOI 10.1016/j.ipm.2016.06.003
Kim D, 2011, LECT NOTES COMPUT SC, V6609, P163, DOI 10.1007/978-3-642-19437-5_13
KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694
Lafferty J.D, 2009, Topic Models, P71, DOI [10.1145/1143844.1143859, DOI 10.1145/1143844.1143859]
Li W., 2006, ICML, P577, DOI [10.1145/1143844.1143917, 10.1145/]
Loach T.V., 2015, 15th International Society of Scientometrics and Informetrics Conference, V1, P6, DOI DOI 10.6084/M9.FIGSHARE.1461693
Maflahi N, 2016, J ASSOC INF SCI TECH, V67, P191, DOI 10.1002/asi.23369
Mann GS, 2006, OPENING INFORMATION HORIZONS, P65
Masuda N., 2016, A guide to temporal networks, DOI [10.1142/q0033, DOI 10.1142/Q0033]
Mohammadi E, 2015, J ASSOC INF SCI TECH, V66, P1832, DOI 10.1002/asi.23286
Maia LFMP, 2019, CAD SAUDE PUBLICA, V35, DOI [10.1590/0102-311X00220217, 10.1590/0102-311x00220217]
Nolasco D, 2019, FUTURE GENER COMP SY, V93, P290, DOI 10.1016/j.future.2018.09.008
Nolasco D, 2017, 2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, P820, DOI 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.139
Nolasco D, 2016, P ANN HICSS, P358, DOI 10.1109/HICSS.2016.51
Oliveira J, 2014, JMIR MHEALTH UHEALTH, V2, DOI 10.2196/mhealth.2543
Peel L, 2018, P NATL ACAD SCI USA, V115, P4057, DOI 10.1073/pnas.1713019115
Perianes-Rodríguez A, 2010, SCIENTOMETRICS, V82, P307, DOI 10.1007/s11192-009-0040-z
Ramage Daniel., 2009, EMNLP
Sakaki T., 2009, WWW2010
Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009
Shibata N, 2009, J AM SOC INF SCI TEC, V60, P571, DOI 10.1002/asi.20994
Sonnert G., 2002, IVORY BRIDGES CONNEC
Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424
Ströele V, 2011, J UNIVERS COMPUT SCI, V17, P1951
Takahashi B, 2015, COMPUT HUM BEHAV, V50, P392, DOI 10.1016/j.chb.2015.04.020
Verbeek A, 2002, SCIENTOMETRICS, V54, P399, DOI 10.1023/A:1016034516731
Wang D, 2014, PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN' 14), P35, DOI 10.1109/IPSN.2014.6846739
Zhao S., 2011, Human as real-time sensors of social and physical events: A case study of twitter and sports games. Technical report
NR 73
TC 9
Z9 9
U1 1
U2 33
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0268-4012
EI 1873-4707
J9 INT J INFORM MANAGE
JI Int. J. Inf. Manage.
PD APR
PY 2020
VL 51
AR 102017
DI 10.1016/j.ijinfomgt.2019.10.002
PG 14
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA KQ3OC
UT WOS:000516835200016
DA 2024-09-05
ER
PT J
AU Saheb, T
Saheb, T
Carpenter, DO
AF Saheb, Tahereh
Saheb, Tayebeh
Carpenter, David O.
TI Mapping research strands of ethics of artificial intelligence in
healthcare: A bibliometric and content analysis
SO COMPUTERS IN BIOLOGY AND MEDICINE
LA English
DT Article
DE Artificial intelligence; Healthcare; Robotics; Bibliometric analysis;
Content analysis; Network visualization; Ethics
ID CLINICAL IMAGING DATA; FINANCIAL BURDEN; CHALLENGES; DISEASE;
TECHNOLOGY; MANAGEMENT; ISSUES; FIELD; HOPE; BIAS
AB The growth of artificial intelligence in promoting healthcare is rapidly progressing. Notwithstanding its promising nature, however, AI in healthcare embodies certain ethical challenges as well. This research aims to delineate the most influential elements of scientific research on AI ethics in healthcare by conducting bibliometric, social network analysis, and cluster-based content analysis of scientific articles. Not only did the bibliometric analysis identify the most influential authors, countries, institutions, sources, and documents, but it also recognized four ethical concerns associated with 12 medical issues. These ethical categories are composed of normative, meta-ethics, epistemological and medical practice. The content analysis complemented this list of ethical categories and distinguished seven more ethical categories: ethics of relationships, medico-legal concerns, ethics of robots, ethics of ambient intelligence, patients' rights, physicians' rights, and ethics of predictive analytics. This analysis likewise identified 40 general research gaps in the literature and plausible future research strands. This analysis furthers conversations on the ethics of AI and associated emerging technologies such as nanotech and biotech in healthcare, hence, advances convergence research on the ethics of AI in healthcare. Practically, this research will provide a map for policymakers and AI engineers and scientists on what dimensions of AI-based medical interventions require stricter policies and guidelines and robust ethical design and development.
C1 [Saheb, Tahereh] Tarbiat Modares Univ, Management Studies Ctr, Tehran, Iran.
[Saheb, Tayebeh] Tarbiat Modares Univ, Fac Law, Tehran, Iran.
[Carpenter, David O.] SUNY Albany, Sch Publ Hlth, Inst Hlth & Environm, Albany, NY 12222 USA.
C3 Tarbiat Modares University; Tarbiat Modares University; State University
of New York (SUNY) System; State University of New York (SUNY) Albany
RP Saheb, T (corresponding author), Tarbiat Modares Univ, Management Studies Ctr, Tehran, Iran.
EM t.saheb@modares.ac.ir; t-saheb@modares.ac.ir; dcarpenter@albany.edu
RI Saheb, Tayebeh/ABY-9272-2022
OI Saheb, Tayebeh/0000-0002-2672-1776; Saheb, Tahereh/0000-0002-6426-609X;
Carpenter, David/0000-0003-4841-394X
CR Adams SJ, 2020, J AM COLL RADIOL, V17, P1034, DOI 10.1016/j.jacr.2020.01.007
Alexiou A, 2011, IFIP ADV INF COMM TE, V364, P297
Anderson Michael, 2019, AMA J Ethics, V21, pE125, DOI 10.1001/amajethics.2019.125
[Anonymous], 2020, ARTIFICIAL INTELLIGE, DOI [10.21203/RS.3.RS-29373/V2, DOI 10.21203/RS.3.RS-29373/V2]
Arga KY, 2020, OMICS, V24, P512, DOI 10.1089/omi.2020.0093
Arnold MH, 2021, J BIOETHIC INQ, V18, P121, DOI 10.1007/s11673-020-10080-1
Atreides Kyrtin, 2020, Biologically Inspired Cognitive Architectures 2019. Proceedings of the Tenth Annual Meeting of the BICA Society. Advances in Intelligent Systems and Computing (AISC 948), P28, DOI 10.1007/978-3-030-25719-4_5
Aulenkamp J, 2021, GMS J MED EDU, V38, DOI 10.3205/zma001476
Barrett M, 2019, EPMA J, V10, P445, DOI 10.1007/s13167-019-00188-9
Biller-Andorno N, 2022, J MED ETHICS, V48, P175, DOI 10.1136/medethics-2020-106786
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Canales C, 2020, ANESTH ANALG, V130, P1234, DOI 10.1213/ANE.0000000000004728
Cancila D., 2018, P R SHARPENING SCYTH, V2
Candello H, 2020, CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3334480.3375152
Cantarini P., 2020, REV JURIDICA, P261
Cao JS, 2021, WORLD J GASTROENTERO, V27, P1664, DOI 10.3748/wjg.v27.i16.1664
Carter SM, 2020, BREAST, V49, P25, DOI 10.1016/j.breast.2019.10.001
Cave S, 2019, AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, P331, DOI 10.1145/3306618.3314232
Cervantes S, 2020, COGN SYST RES, V64, P117, DOI 10.1016/j.cogsys.2020.08.010
Chan LL, 2020, CURR OPIN NEPHROL HY, V29, P319, DOI 10.1097/MNH.0000000000000604
Chapalain X, 2019, ANAESTH CRIT CARE PA, V38, P337, DOI 10.1016/j.accpm.2019.05.003
Chen IY, 2020, NAT MED, V26, P16, DOI 10.1038/s41591-019-0649-2
Chen Irene Y, 2019, AMA J Ethics, V21, pE167, DOI 10.1001/amajethics.2019.167
Clausen J, 2017, SCIENCE, V356, P1338, DOI 10.1126/science.aam7731
Costa Luciano da Fontoura, 2004, Genet Mol Res, V3, P564
Cui M, 2021, LAB INVEST, V101, P412, DOI 10.1038/s41374-020-00514-0
D'Antonoli TA, 2020, DIAGN INTERV RADIOL, V26, P504, DOI 10.5152/dir.2020.19279
Damiano L, 2020, HUMANA MENTE, V13, P181
Dan B, 2020, ANN PHYS REHABIL MED, V63, P389, DOI 10.1016/j.rehab.2019.03.002
DeCamp M, 2020, J AM MED INFORM ASSN, V27, P2020, DOI 10.1093/jamia/ocaa094
Delgosha M. Soltani, 2020, CONFIGURATIONAL IMPA
Delgosha MS, 2021, INFORM SYST FRONT, V23, P1317, DOI 10.1007/s10796-020-10029-0
Dhundass S, 2020, J NEURORADIOLOGY, V47, P278, DOI 10.1016/j.neurad.2019.02.011
Dignum V, 2021, LOND REV EDUC, V19, DOI 10.14324/LRE.19.1.01
Douglas DR, 2020, ANAEST INTENS CARE M, V21, P1
Doyle PR, 2021, 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES (IUI '21 COMPANION), P12, DOI 10.1145/3397482.3450706
Ebert DD, 2019, ADV EXP MED BIOL, V1192, P583, DOI 10.1007/978-981-32-9721-0_29
Fiske A, 2019, J MED INTERNET RES, V21, DOI 10.2196/13216
Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5
Fogliano Fernando, 2019, Lecture Notes in Computer Science, P325, DOI [10.1007/978-3-030-22219-2_25, DOI 10.1007/978-3-030-22219-2_25]
Folstad A., 2017, Interactions, V24, P38, DOI [DOI 10.1145/3085558, 10.1145/3085558]
Fonseca V, 2021, INT J HEALTH PLAN M, V36, P18, DOI 10.1002/hpm.3072
Garcia SA, 1996, J LEGAL MED, V17, P469, DOI 10.1080/01947649609511019
Gerke S, 2020, JAMA-J AM MED ASSOC, V323, P601, DOI 10.1001/jama.2019.21699
Gibbons ED, 2021, IEEE TECHNOL SOC MAG, V40, P25, DOI 10.1109/MTS.2021.3056295
Görges M, 2020, CURR OPIN ANESTHESIO, V33, P404, DOI 10.1097/ACO.0000000000000845
Grote T, 2020, J MED ETHICS, V46, P205, DOI 10.1136/medethics-2019-105586
Grzybowski A, 2020, EYE, V34, P451, DOI 10.1038/s41433-019-0566-0
Haque A, 2020, NATURE, V585, P193, DOI 10.1038/s41586-020-2669-y
Heinrichs B, 2020, HUM BRAIN MAPP, V41, P1435, DOI 10.1002/hbm.24886
Hernandez JPT, 2019, J MED INVESTIG, V66, P24, DOI 10.2152/jmi.66.24
Herzog C, 2021, SCI ENG ETHICS, V27, DOI 10.1007/s11948-021-00283-z
Hickman SE, 2021, BRIT J CANCER, V125, P15, DOI 10.1038/s41416-021-01333-w
Ho CWL, 2019, CLIN RADIOL, V74, P329, DOI 10.1016/j.crad.2019.02.005
Horvitz E, 2015, SCIENCE, V349, P253, DOI 10.1126/science.aac4520
Hosny A, 2019, SCIENCE, V366, P955, DOI 10.1126/science.aay5189
Ienca Marcello, 2020, AJOB Neurosci, V11, P77, DOI 10.1080/21507740.2020.1740352
Ienca M, 2019, ETHICS INF TECHNOL, V21, P267, DOI 10.1007/s10676-018-9453-9
Jagsi R, 2014, J CLIN ONCOL, V32, P1269, DOI 10.1200/JCO.2013.53.0956
Jongsma KR, 2020, BMC MED ETHICS, V21, DOI 10.1186/s12910-020-00524-z
Kotter E, 2021, EUR RADIOL, V31, P5, DOI 10.1007/s00330-020-07148-2
Kou YB, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300711
Krausova A., 2017, ROBOTS BIOL BRAINS A
Krupinski EA, 2020, RADIOLOGY, V295, P683, DOI 10.1148/radiol.2020200416
Laacke S, 2021, AM J BIOETHICS, V21, P4, DOI 10.1080/15265161.2020.1863515
Lamola MJ, 2022, AI SOC, V37, P131, DOI 10.1007/s00146-021-01191-3
Lara F, 2020, NEUROETHICS-NETH, V13, P275, DOI 10.1007/s12152-019-09401-y
Larson DB, 2020, RADIOLOGY, V295, P675, DOI 10.1148/radiol.2020192536
Lillywhite Aspen, 2021, Assist Technol, V33, P129, DOI 10.1080/10400435.2019.1593259
Lorenc T, 2015, J CONSCIOUSNESS STUD, V22, P194
Malakoff D, 2003, SCIENCE, V301, P27
Matuchansky C, 2019, M S-MED SCI, V35, P797, DOI 10.1051/medsci/2019158
McCradden MD, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2020-039798
McKinney SM, 2020, NATURE, V577, P89, DOI 10.1038/s41586-019-1799-6
Mello MM, 2020, SCIENCE, V368, P951, DOI 10.1126/science.abb9045
Morley J, 2020, SOC SCI MED, V260, DOI 10.1016/j.socscimed.2020.113172
Morley J, 2020, SCI ENG ETHICS, V26, P2141, DOI 10.1007/s11948-019-00165-5
Mouchabac S, 2021, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.622506
Neri E, 2020, RADIOL MED, V125, P517, DOI 10.1007/s11547-020-01135-9
Nordling L, 2019, NATURE, V573, pS103, DOI 10.1038/d41586-019-02872-2
O'Reilly-Shah VN, 2020, BRIT J ANAESTH, V125, P843, DOI 10.1016/j.bja.2020.07.040
O'Sullivan S, 2019, INT J MED ROBOT COMP, V15, DOI 10.1002/rcs.1968
Patel V, 2010, JAMA-J AM MED ASSOC, V303, P1976, DOI 10.1001/jama.2010.616
Pisu M, 2014, SUPPORT CARE CANCER, V22, P3045, DOI 10.1007/s00520-014-2298-9
Poldrack RA, 2008, CURR OPIN NEUROBIOL, V18, P223, DOI 10.1016/j.conb.2008.07.006
Politi MC, 2021, ONCOLOGIST, V26, pE142, DOI 10.1002/onco.13544
Pouloudi A., 2000, Journal of Intelligent Systems, V10, P451, DOI 10.1515/JISYS.2000.10.5-6.451
Qingquan J., 2020, 8 INT S PROJ MAN
Quinn TP, 2021, J AM MED INFORM ASSN, V28, P890, DOI 10.1093/jamia/ocaa268
Rajkomar A, 2018, ANN INTERN MED, V169, P866, DOI 10.7326/M18-1990
Reinbold P., 2021, SSRN ELECT J, DOI [10.2139/ssrn.3766259, DOI 10.2139/SSRN.3766259]
Saetra H.S., 2019, SSRN ELECT J, DOI [10.2139/ssrn.3494304, DOI 10.2139/SSRN.3494304]
Saheb T., ASIA PACI J INFOR SY, V31, P121
Saheb T., 2018, INT J HIGH PERFORM S, V8, P34, DOI [10.1504/IJHPSA.2018.094143, DOI 10.1504/IJHPSA.2018.094143]
Saheb T, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-020-00287-9
Saheb T, 2020, HEALTH TECHNOL-GER, V10, P1063, DOI 10.1007/s12553-020-00422-9
Saheb T, 2019, TELEMAT INFORM, V41, P70, DOI 10.1016/j.tele.2019.03.005
Saheb T, 2019, HEALTHC INFORM RES, V25, P61
Sartor G., 2020, Maastricht Journal of European and Comparative Law, V27, P705, DOI [10.1177/1023263X20981566, DOI 10.1177/1023263X20981566]
Satava RM, 2002, SURG ENDOSC, V16, P1403, DOI 10.1007/s00464-002-8587-2
Sechopoulos I, 2020, BREAST, V49, P254, DOI 10.1016/j.breast.2019.12.014
Sethi P., 2009, PERSPECT HLTH INF MA, V6
Shahbaz R, 2021, EUR J OPHTHALMOL, V31, P13, DOI 10.1177/1120672120934405
Shank DB, 2020, INT J HUM-COMPUT INT, V36, P1636, DOI 10.1080/10447318.2020.1768674
Shaw JA, 2021, INTENS CARE MED, V47, P157, DOI 10.1007/s00134-020-06277-y
Shen FX, 2020, NEURON, V105, P771, DOI 10.1016/j.neuron.2020.01.041
Shen JY, 2019, JMIR MED INF, V7, DOI 10.2196/10010
Shuaib A, 2020, INT J GEN MED, V13, P891, DOI 10.2147/IJGM.S268093
Singh A, 2020, J IMAGING, V6, DOI 10.3390/jimaging6060052
Singh JA, 2019, EMERG TOP LIFE SCI, V3, P741, DOI 10.1042/ETLS20190106
Sollini M, 2020, EUR J HYBRID IMAG, V4, DOI 10.1186/s41824-020-00094-8
Stahl BC, 2021, J BUS RES, V124, P374, DOI 10.1016/j.jbusres.2020.11.030
Stanfill Mary H, 2019, Yearb Med Inform, V28, P56, DOI 10.1055/s-0039-1677913
Starke G, 2021, PSYCHOL MED, V51, P2515, DOI 10.1017/S0033291720001683
Sullins J., 2014, ISB 2014 50 ANN CONV
Ting DSW, 2019, BRIT J OPHTHALMOL, V103, P167, DOI 10.1136/bjophthalmol-2018-313173
Uusitalo S, 2021, J EVAL CLIN PRACT, V27, P478, DOI 10.1111/jep.13485
van de Poel I, 2020, MIND MACH, V30, P385, DOI 10.1007/s11023-020-09537-4
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vasilakos AV, 2008, J COMPUT THEOR NANOS, V5, P2365, DOI 10.1166/jctn.2008.1204
Vollmer S, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.l6927
Wahl B, 2018, BMJ GLOB HEALTH, V3, DOI 10.1136/bmjgh-2018-000798
Wang YX, 2020, IEEE SYST MAN CYBERN, V6, P6, DOI 10.1109/MSMC.2018.2889502
Wang ZC, 2020, PR MACH LEARN RES, V133, P191, DOI 10.1109/CDS49703.2020.00045
Wangmo T, 2019, BMC MED ETHICS, V20, DOI 10.1186/s12910-019-0437-z
Weckert J, 2002, METAPHILOSOPHY, V33, P366, DOI 10.1111/1467-9973.00232
WEINBERG BH, 1974, INFORM STORAGE RET, V10, P189, DOI 10.1016/0020-0271(74)90058-8
Wheeler SB, 2018, J CLIN ONCOL, V36, P1695, DOI 10.1200/JCO.2017.77.6310
Wiltfang J, 2021, PSYCHIAT PRAX, V48, pS31, DOI 10.1055/a-1369-3133
Yalcin ÖN, 2018, BIOL INSPIR COGN ARC, V26, P20, DOI 10.1016/j.bica.2018.07.010
Yara O, 2021, EUR J SUSTAIN DEV, V10, P281, DOI 10.14207/ejsd.2021.v10n1p281
Yuste R, 2017, NATURE, V551, P159, DOI 10.1038/551159a
Ziesche S, 2020, 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY (AIVR 2020), P138, DOI 10.1109/AIVR50618.2020.00032
NR 133
TC 39
Z9 39
U1 21
U2 164
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0010-4825
EI 1879-0534
J9 COMPUT BIOL MED
JI Comput. Biol. Med.
PD AUG
PY 2021
VL 135
AR 104660
DI 10.1016/j.compbiomed.2021.104660
EA AUG 2021
PG 19
WC Biology; Computer Science, Interdisciplinary Applications; Engineering,
Biomedical; Mathematical & Computational Biology
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Life Sciences & Biomedicine - Other Topics; Computer Science;
Engineering; Mathematical & Computational Biology
GA UE4NL
UT WOS:000687867000001
PM 34346319
DA 2024-09-05
ER
PT J
AU Mardle, S
Pascoe, S
AF Mardle, S
Pascoe, S
TI Use of evolutionary methods for bioeconomic optimization models: an
application to fisheries
SO AGRICULTURAL SYSTEMS
LA English
DT Article
DE genetic algorithms; optimization; bioeconomic modeling; fisheries; open
access
AB Bioeconomic optimization models are regularly used in fisheries policy analysis. However, the use of these models has been restricted in fisheries,as in other similar fields, where there are a large number of non-linear interactions. In this paper, the basic features, advantages and disadvantages of the use of the evolutionary methods, specifically genetic algorithms, are discussed. A large non-linear model of the UK component of the English Channel fisheries is developed using genetic algorithms. The results are compared with those from a linearized version of the model solved using traditional optimization techniques. The results suggest that genetic algorithms may provide better solutions for large non-linear bioeconomic models thar cannot be solved using traditional techniques without the use of simplifying assumptions. (C) 2000 Elsevier Science Ltd. All rights reserved.
C1 Univ Portsmouth, Ctr Econ & Management Aquat Resources, Portsmouth PO4 8JF, Hants, England.
C3 University of Portsmouth
RP Mardle, S (corresponding author), Univ Portsmouth, Ctr Econ & Management Aquat Resources, Locksway Rd, Portsmouth PO4 8JF, Hants, England.
RI Pascoe, Sean/D-9710-2011
OI Pascoe, Sean/0000-0001-6581-2649
CR [Anonymous], 1954, Trans. IRE Prof. Group Circuit Theory
[Anonymous], 2003, Genetic programming IV: routine human-competitive machine intelligence
BAECK T, 1991, P 4 INT C GEN ALG TH, P92
Baeck T., 1992, A user's guide to genesys 1.0
Brooke A., 1992, GAMS: A Users Guide
BROWN BE, 1978, FISH B, V76, P851
CHENG AF, 1993, REMOTE SENSING REV, V8, P101
Clark C.W., 1990, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, V2nd
CLARK CW, 1979, J FISH RES BOARD CAN, V36, P1304, DOI 10.1139/f79-188
Coglan L., 1999, Agricultural and Resource Economics Review, V28, P219
Coppola G., 1998, Marine Resource Economics, V13, P37, DOI [10.1086/mre.13.1.42629217, DOI 10.1086/MRE.13.1.42629217]
Dann T., 1994, 9413 ABARE
DIABY S, 1996, MARINE RESOURCE EC, V11, P31
FROST H, 1993, BIOECONOMIC MODEL N
GEEN G, 1991, BUREAU RURAL RESOURC, V10, P129
Goldberg DE, 1989, Genetic Algorithms in Search, Optimization and Machine Learning, V1st
Gordon HS, 1954, J POLIT ECON, V62, P124, DOI 10.1086/257497
Hannesson R., 1993, BIOECONOMIC ANAL FIS
HAYNES J, 1988, 103 ABARE AGPS
HOLLAND J, 1975, ADAPTATION NATURAL A
Homans FR, 1997, J ENVIRON ECON MANAG, V32, P1, DOI 10.1006/jeem.1996.0947
Mardle S, 2000, ANN OPER RES, V94, P321, DOI 10.1023/A:1018977318860
MARDLE S, 1998, P 9 INT C INT I FISH, P180
Mardle S., 1999, COMPUTERS HIGHER ED, V13, P16
Mardle S. J., 2000, International Transactions in Operational Research, V7, P33, DOI 10.1111/j.1475-3995.2000.tb00183.x
MICHALEWICZ Z, 1996, GENETIC ALGORITHMS P
MURAWSKI SA, 1986, CAN J FISH AQUAT SCI, V43, P90, DOI 10.1139/f86-010
PASCOE S, 1992, 921 ABARE AGPS
PASCOE S, 1996, ECON J, V106, P264
PASCOE S, 1997, 44 CEMARE U PORTSM
PASCOE S, 1997, P112 CEMARE U PORTSM
PLACENTI V, 1992, MARINE RESOURCE EC, V7, P275
REID C, 1993, 9315 ABARE
SIEGEL RA, 1979, FISH B-NOAA, V77, P425
SINCLAIR SF, 1985, INCLUSION FISHERIES, P92
Tetard A, 1995, CATALOGUE INT ACTIVI
Vestergaard S, 1993, MARINE RESOURCE EC, V8, P345, DOI 10.1086/mre.8.4.42731366
Whitmarsh DJ, 1998, LAND ECON, V74, P422, DOI 10.2307/3147122
Williams H. P., 1994, MODEL BUILDING MATH
NR 39
TC 7
Z9 7
U1 0
U2 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0308-521X
J9 AGR SYST
JI Agric. Syst.
PD OCT
PY 2000
VL 66
IS 1
BP 33
EP 49
DI 10.1016/S0308-521X(00)00035-4
PG 17
WC Agriculture, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Agriculture
GA 371BR
UT WOS:000165158300003
DA 2024-09-05
ER
PT J
AU Heckman, JJ
Flyer, F
Loughlin, C
AF Heckman, James J.
Flyer, Fredrick
Loughlin, Colleen
TI An assessment of causal inference in smoking initiation research and a
framework for future research
SO ECONOMIC INQUIRY
LA English
DT Article; Proceedings Paper
CT 81st Annual Meeting of the Western-Economic-Association-International
CY JUN 29-JUL 02, 2006
CL San Diego, CA
ID CIGARETTE; SCHOOLCHILDREN; ONSET
AB Reliably identifying the causal factors underlying youth smoking initiation is an important part of developing effective smoking prevention programs and shaping other types of smoking-related policies. The establishment of reliable scientific evidence in support of a causal link between cigarette advertising and youth smoking initiation depends on both rich longitudinal data as well as careful empirical applications. We examine basic principles of empirical scientific investigation of potential causal relationships, discuss findings of recent research on causal factors of youth smoking, and evaluate evidence from the public health literature regarding the effects of cigarette advertising on youth smoking.
C1 [Heckman, James J.] Univ Chicago, Chicago, IL 60637 USA.
C3 University of Chicago
RP Heckman, JJ (corresponding author), Univ Chicago, 1126 E 59th St, Chicago, IL 60637 USA.
EM jjh@uchicago.edu; fflyer@lexecon.com; cloughlin@lexecon.com
CR ALEXANDER HM, 1983, INT J EPIDEMIOL, V12, P59, DOI 10.1093/ije/12.1.59
[Anonymous], 6541 NAT BUR EC RES
ARMSTRONG BK, 1990, MED J AUSTRALIA, V152, P117, DOI 10.5694/j.1326-5377.1990.tb125117.x
BECKER GS, 1994, AM ECON REV, V84, P396
BIENER L, 2000, AM J PUBLIC HEALTH, P90
Biglan A., 2004, Helping adolescents at risk: Prevention of multiple problems of youth
Bowles S, 2001, J ECON LIT, V39, P1137, DOI 10.1257/jel.39.4.1137
CHALOUPKA F, 1991, J POLIT ECON, V99, P722, DOI 10.1086/261776
CHALOUPKA FJ, 1999, 7047 NAT BUR EC RES
CHARLTON A, 1989, SOC SCI MED, V29, P813, DOI 10.1016/0277-9536(89)90080-4
Cunha F., 2006, Handbook of the economics of education, P697, DOI DOI 10.1016/S1574-0692(06)01012-9
DAVIDSON C, 1993, J LABOR ECON, V11, P575, DOI 10.1086/298308
Diaz E, 1998, MED CLIN-BARCELONA, V110, P334
Douglas S, 1998, ECON INQ, V36, P49, DOI 10.1111/j.1465-7295.1998.tb01695.x
Duffy M., 1996, INTJADVERT, V15, P1, DOI 10.1080/02650487.1996.11104630
Duffy Martyn., 1996, International Journal of Advertising, V15, P262
Freedman D, 1999, STAT SCI, V14, P243, DOI 10.1214/ss/1009212409
Freedman DA, 2004, EVALUATION REV, V28, P267, DOI 10.1177/0193841X04266432
Heckman JJ, 2006, J LABOR ECON, V24, P411, DOI 10.1086/504455
Heckman JJ, 2005, SOCIOL METHODOL, V35, P1, DOI 10.1111/j.0081-1750.2006.00164.x
Heckman JJ, 1998, AM ECON REV, V88, P381
Heckman JJ, 2001, AM ECON REV, V91, P145, DOI 10.1257/aer.91.2.145
Henneken CH., 1987, Epidemiology in Medicine
Knudsen EI, 2004, J COGNITIVE NEUROSCI, V16, P1412, DOI 10.1162/0898929042304796
LEWIT EM, 1981, J LAW ECON, V24, P545, DOI 10.1086/466999
Lewitt E M, 1982, J Health Econ, V1, P121
Lovato Chris., 2003, Cochrane Database of Systematic Reviews, DOI [DOI 10.1002/14651858.CD003439, 10.1002/14651858.CD003439]
Martin J.P., 2001, Swedish Economic Policy Review, V8, P9, DOI DOI 10.2139/ssrn.348621
MORRAL M, 2002, REASSESSING MARIJUAN
PACULA RL, 1998, W6348 NBER
Pierce JP, 1998, JAMA-J AM MED ASSOC, V279, P511, DOI 10.1001/jama.279.7.511
Pucci LG, 1999, PREV MED, V29, P313, DOI 10.1006/pmed.1999.0554
SAFFER, 2000, J HLTH EC, P1117
Sargent JD, 2000, PREV MED, V30, P320, DOI 10.1006/pmed.1999.0629
SUSSER M, 1991, AM J EPIDEMIOL, V133, P635, DOI 10.1093/oxfordjournals.aje.a115939
Turkheimer E, 2003, PSYCHOL SCI, V14, P623, DOI 10.1046/j.0956-7976.2003.psci_1475.x
While D, 1996, BRIT MED J, V313, P398
NR 37
TC 16
Z9 17
U1 1
U2 12
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0095-2583
EI 1465-7295
J9 ECON INQ
JI Econ. Inq.
PD JAN
PY 2008
VL 46
IS 1
BP 37
EP 44
DI 10.1111/j.1465-7295.2007.00078.x
PG 8
WC Economics
WE Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics
GA 279AJ
UT WOS:000254327100007
DA 2024-09-05
ER
PT J
AU Ionescu, S
Delcea, C
Chirita, N
Nica, I
AF Ionescu, Stefan
Delcea, Camelia
Chirita, Nora
Nica, Ionut
TI Exploring the Use of Artificial Intelligence in Agent-Based Modeling
Applications: A Bibliometric Study
SO ALGORITHMS
LA English
DT Article
DE bibliometric analysis; agent-based modelling; artificial intelligence;
complex systems; RStudio; VOSviewer; Bibliometrix
ID COMPLEX
AB This research provides a comprehensive analysis of the dynamic interplay between agent-based modeling (ABM) and artificial intelligence (AI) through a meticulous bibliometric study. This study reveals a substantial increase in scholarly interest, particularly post-2006, peaking in 2021 and 2022, indicating a contemporary surge in research on the synergy between AI and ABM. Temporal trends and fluctuations prompt questions about influencing factors, potentially linked to technological advancements or shifts in research focus. The sustained increase in citations per document per year underscores the field's impact, with the 2021 peak suggesting cumulative influence. Reference Publication Year Spectroscopy (RPYS) reveals historical patterns, and the recent decline prompts exploration into shifts in research focus. Lotka's law is reflected in the author's contributions, supported by Pareto analysis. Journal diversity signals extensive exploration of AI applications in ABM. Identifying impactful journals and clustering them per Bradford's Law provides insights for researchers. Global scientific production dominance and regional collaboration maps emphasize the worldwide landscape. Despite acknowledging limitations, such as citation lag and interdisciplinary challenges, our study offers a global perspective with implications for future research and as a resource in the evolving AI and ABM landscape.
C1 [Ionescu, Stefan; Delcea, Camelia; Chirita, Nora; Nica, Ionut] Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 0105552, Romania.
C3 Bucharest University of Economic Studies
RP Delcea, C (corresponding author), Bucharest Univ Econ Studies, Dept Econ Informat & Cybernet, Bucharest 0105552, Romania.
EM stefion09@gmail.com; camelia.delcea@csie.ase.ro;
nora.chirita@csie.ase.ro; ionut.nica@csie.ase.ro
RI Nica, Ionut/ABA-4243-2021; Delcea, Camelia/C-4343-2011
OI Nica, Ionut/0000-0003-2118-3654; Delcea, Camelia/0000-0003-3589-1969;
Ionescu, Stefan-Andrei/0000-0002-0469-3022; Chirita,
Nora/0009-0005-6633-9466
FU Bucharest University of Economic Studies
FX This paper was co-financed by the Bucharest University of Economic
Studies during the Ph.D. program.
CR Abdelwahab SI., 2023, Medicine in Novel Technology and Devices, V17, P100217, DOI [10.1016/J.MEDNTD.2023.100217, DOI 10.1016/J.MEDNTD.2023.100217, 10.1016/j.medntd.2023.100217]
An L, 2023, ENVIRON MODELL SOFTW, V166, DOI 10.1016/j.envsoft.2023.105713
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Badham J, 2018, HEALTH PLACE, V54, P170, DOI 10.1016/j.healthplace.2018.08.022
Bae JW, 2016, IEEE T SYST MAN CY-S, V46, P793, DOI 10.1109/TSMC.2015.2461178
Bagstad KJ, 2013, ECOSYST SERV, V4, P117, DOI 10.1016/j.ecoser.2012.07.012
Bankes SC, 2002, P NATL ACAD SCI USA, V99, P7263, DOI 10.1073/pnas.092081399
Bennett DA, 2006, INT J GEOGR INF SCI, V20, P1039, DOI 10.1080/13658810600830806
Bonabeau E, 2002, P NATL ACAD SCI USA, V99, P7280, DOI 10.1073/pnas.082080899
Bornmann L, 2013, J INFORMETR, V7, P84, DOI 10.1016/j.joi.2012.09.003
Brandon N, 2020, J EXPO SCI ENV EPID, V30, P184, DOI 10.1038/s41370-018-0052-y
Brock WA, 1998, J ECON DYN CONTROL, V22, P1235, DOI 10.1016/S0165-1889(98)00011-6
Bryson JJ, 2007, PHILOS T R SOC B, V362, P1685, DOI 10.1098/rstb.2007.2061
Chen SH, 2021, FRONT MICROBIOL, V12, DOI 10.3389/fmicb.2021.726409
Chen XL, 2023, EDUC TECHNOL SOC, V26, P171, DOI 10.30191/ETS.202301_26(1).0013
Chen Y, 2008, COMPUT OPER RES, V35, P776, DOI 10.1016/j.cor.2006.03.024
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Dehghanpour K, 2018, IEEE T SMART GRID, V9, P3465, DOI 10.1109/TSG.2016.2631453
Dehkordi MAE, 2023, JASSS-J ARTIF SOC S, V26, DOI 10.18564/jasss.5016
Delcea C., 2023, Series on Grey System
Delcea C, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13179815
Delcea C, 2023, KYBERNETES, DOI 10.1108/K-08-2023-1416
Delcea C, 2020, SAFETY SCI, V121, P414, DOI 10.1016/j.ssci.2019.09.026
Donner P, 2017, SCIENTOMETRICS, V113, P219, DOI 10.1007/s11192-017-2483-y
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Effendi Denti Nanda, 2021, Journal of Physics: Conference Series, V1796, DOI 10.1088/1742-6596/1796/1/012096
El Oubani A, 2022, BORSA ISTANB REV, V22, P699, DOI 10.1016/j.bir.2021.10.005
European Commission Joint Research Centre, 2020, AI Watch, Historical Evolution of Artificial Intelligence: Analysis of the Three Main Paradigm Shifts in AI
Fagiolo G., 2003, Structural Change and Economic Dynamics, V14, P237, DOI 10.1016/S0954-349X(03)00022-5
Fithian W, 2017, J MULTIVARIATE ANAL, V157, P87, DOI 10.1016/j.jmva.2017.02.009
Goralski MA, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100330
Guleria D, 2021, LIBR HI TECH, V39, P1001, DOI 10.1108/LHT-09-2020-0218
Hare M, 2004, MATH COMPUT SIMULAT, V64, P25, DOI 10.1016/S0378-4754(03)00118-6
Helbing D., 2012, SOCIAL SELF ORG, DOI [DOI 10.1007/978-3-642-24004-12, 10.1007/978-3-642-24004-1_2, DOI 10.1007/978-3-642-24004-1]
Hu Y, 2017, ADV WATER RESOUR, V109, P29, DOI 10.1016/j.advwatres.2017.08.009
Hunter E, 2022, ALGORITHMS, V15, DOI 10.3390/a15080270
Ionescu S, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151512037
Ionescu S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131810277
Kawamura M, 2000, J Oral Sci, V42, P75
Kemec A, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15043618
Kheybari S, 2019, OPSEARCH, V56, P539, DOI 10.1007/s12597-019-00365-4
Kirby A, 2023, PUBLICATIONS, V11, DOI 10.3390/publications11010010
Lamperti F, 2018, J ECON DYN CONTROL, V90, P366, DOI 10.1016/j.jedc.2018.03.011
Lättilä L, 2010, EXPERT SYST APPL, V37, P7969, DOI 10.1016/j.eswa.2010.04.039
Liu F, 2023, SCIENTOMETRICS, V128, P853, DOI 10.1007/s11192-022-04540-1
Liu WS, 2019, SCIENTOMETRICS, V121, P1815, DOI 10.1007/s11192-019-03238-1
Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365
Marshall DA, 2015, VALUE HEALTH, V18, P147, DOI 10.1016/j.jval.2015.01.006
Martins J, 2022, UNIVERSAL ACCESS INF, DOI 10.1007/s10209-022-00953-0
Marx W, 2014, J ASSOC INF SCI TECH, V65, P751, DOI 10.1002/asi.23089
Meng LC, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062384
Modak NM, 2019, TRANSPORT RES A-POL, V120, P188, DOI 10.1016/j.tra.2018.11.015
Moret-Bonillo V, 2015, PROG ARTIF INTELL, V3, P89, DOI 10.1007/s13748-014-0059-0
Mulet-Forteza C, 2018, J TRAVEL TOUR MARK, V35, P1201, DOI 10.1080/10548408.2018.1487368
Murugesan U., 2023, Decision Analytics Journal, V7, DOI DOI 10.1016/J.DAJOUR.2023.100249
Nica Ionu., 2021, Holistic Approach of Complex Adaptive Systems. Theory
O'Sullivan D, 2000, ENVIRON PLANN A, V32, P1409, DOI 10.1068/a32140
Paudel R, 2023, ALGORITHMS, V16, DOI 10.3390/a16070338
Platas-López A, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12030495
Rogers G, 2020, SCIENTOMETRICS, V125, P777, DOI 10.1007/s11192-020-03647-7
Romero E, 2023, PROG ARTIF INTELL, V12, P213, DOI 10.1007/s13748-023-00303-y
Sahu A, 2022, COLLECT CURATION, V41, P62, DOI 10.1108/CC-04-2021-0012
Sánchez JM, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e12005
Silva M.d.S.T., 2022, Context. Rev. Contemp. Econ. Gesto, V20, P54, DOI [10.19094/contextus.2022.72151, DOI 10.19094/CONTEXTUS.2022.72151]
Sivakumar N., 2022, FRONT SYST BIOL, V2, DOI [DOI 10.3389/FSYSB.2022.959665, 10.3389/fsysb.2022.959665]
Taghikhah F, 2022, J COMPUT SCI-NETH, V64, DOI 10.1016/j.jocs.2022.101854
Tay A., Using VOSviewer as a Bibliometric Mapping or Analysis Tool in Business, Management & Accounting
Tay A., Bibliometric Reviews in Business, Management & Accounting and the Tools Used
Teodorovic D, 2008, TRANSPORT RES C-EMER, V16, P651, DOI 10.1016/j.trc.2008.03.002
Turgut Y, 2023, SIMUL MODEL PRACT TH, V123, DOI 10.1016/j.simpat.2022.102707
Vosviewer, VOSviewer-Visualizing Scientific Landscapes
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
webofscience, WoS Document Types
WoS Web of Science, ABOUT US
Xu YJ, 2021, INNOVATION-AMSTERDAM, V2, DOI 10.1016/j.xinn.2021.100179
Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235
Zeigler B., 2009, Encyclopedia of complexity and system science, P344
Zhang W, 2023, IEEE T NEUR NET LEAR, V34, P2170, DOI 10.1109/TNNLS.2021.3106777
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 79
TC 5
Z9 5
U1 5
U2 8
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1999-4893
J9 ALGORITHMS
JI Algorithms
PD JAN
PY 2024
VL 17
IS 1
AR 21
DI 10.3390/a17010021
PG 38
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA FW8K1
UT WOS:001148979300001
OA gold
DA 2024-09-05
ER
PT J
AU Harder, VS
Stuart, EA
Anthony, JC
AF Harder, Valerie S.
Stuart, Elizabeth A.
Anthony, James C.
TI Propensity Score Techniques and the Assessment of Measured Covariate
Balance to Test Causal Associations in Psychological Research
SO PSYCHOLOGICAL METHODS
LA English
DT Article
DE observational studies; causal inference; standardized bias; cannabis
ID INFERENCE; BIAS; SUBCLASSIFICATION; SENSITIVITY; ADJUSTMENT; REGRESSION;
MODELS
AB There is considerable interest in using propensity score (PS) statistical techniques to address questions of causal inference in psychological research. Many PS techniques exist, yet few guidelines are available to aid applied researchers in their understanding, use, and evaluation. In this study, the authors give an overview of available techniques for PS estimation and PS application. They also provide a way to help compare PS techniques, using the resulting measured covariate balance as the criterion for selecting between techniques. The empirical example for this study involves the potential causal relationship linking early-onset cannabis problems and subsequent negative mental health outcomes and uses data from a prospective cohort study. PS techniques are described and evaluated on the basis of their ability to balance the distributions of measured potentially confounding covariates for individuals with and without early-onset cannabis problems. This article identifies the PS techniques that yield good statistical balance of the chosen measured covariates within the context of this particular research question and cohort.
C1 [Harder, Valerie S.] Univ Vermont, Coll Med, Dept Psychiat, Burlington, VT 05401 USA.
[Stuart, Elizabeth A.] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD USA.
[Stuart, Elizabeth A.] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA.
[Anthony, James C.] Michigan State Univ, Coll Human Med, Dept Epidemiol, E Lansing, MI 48824 USA.
C3 University of Vermont; Johns Hopkins University; Johns Hopkins Bloomberg
School of Public Health; Johns Hopkins University; Johns Hopkins
Bloomberg School of Public Health; Michigan State University; Michigan
State University College of Human Medicine
RP Harder, VS (corresponding author), Univ Vermont, Coll Med, Dept Psychiat, 1 S Prospect St, Burlington, VT 05401 USA.
EM vharder@uvm.edu
RI Anthony, Jim C/H-3637-2011
OI Anthony, Jim C/0000-0001-7176-0929; Stuart,
Elizabeth/0000-0002-9042-8611
CR American Psychiatric Association, 2013, Diagnostic and Statistical Manual of Mental Disorders: DSM-5, V5th, DOI [DOI 10.1176/APPI.BOOKS.9780890425596, 10.1176/APPI.BOOKS.9780890425596]
[Anonymous], 2005, STAT STAT SOFTW REL
[Anonymous], 2001, SAGE U PAPERS SERIES
[Anonymous], HLTH SERVICES OUTCOM
[Anonymous], 1990, Composite International Diagnostic Interview (CIDI)
Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142
Casella G., 2002, Statistical Inference.
COCHRAN WG, 1968, BIOMETRICS, V24, P295, DOI 10.2307/2528036
COCHRAN WG, 1973, SANKHYA SER A, V35, P417
D'Agostino R.B., 2001, Health Services Outcomes Research Methodology, V2, P291, DOI [DOI 10.1023/A:1020375413191, 10.1023/a:1020375413191]
D'Agostino RB, 2000, J AM STAT ASSOC, V95, P749, DOI 10.2307/2669455
Dehejia R., 1998, 6829 NBER
Dehejia RH, 1999, J AM STAT ASSOC, V94, P1053, DOI 10.2307/2669919
DIAMOND A, 2006, WP200635 I GOV STUD
Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451
Graham JW, 2009, ANNU REV PSYCHOL, V60, P549, DOI 10.1146/annurev.psych.58.110405.085530
Gu XS, 1993, Journal of Computational and Graphical Statistics, V2, P405, DOI DOI 10.1080/10618600.1993.10474623
Hansen B, 2009, OPTMATCH FUNCTIONS O
Hansen BB, 2004, J AM STAT ASSOC, V99, P609, DOI 10.1198/016214504000000647
HANSEN BB, 2008, INT C HLTH POL STAT, DOI DOI 10.1214/08-STS254
Hansen BB, 2008, STAT SCI, V23, P219, DOI 10.1214/08-STS254
Harder VS, 2008, AM J EPIDEMIOL, V168, P592, DOI 10.1093/aje/kwn184
Harrell FE, 2001, Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis
Haviland A, 2007, PSYCHOL METHODS, V12, P247, DOI 10.1037/1082-989X.12.3.247
Heckman JJ, 1998, REV ECON STUD, V65, P261, DOI 10.1111/1467-937X.00044
Hirano K, 2003, ECONOMETRICA, V71, P1161, DOI 10.1111/1468-0262.00442
Ho D.E., 2007, Matchlt: Nonparametric preprocessing for parametric causal inference
Ho DE, 2007, POLIT ANAL, V15, P199, DOI 10.1093/pan/mpl013
Ialongo NS, 2004, SUICIDE LIFE-THREAT, V34, P395, DOI 10.1521/suli.34.4.395.53743
Imai K, 2004, J AM STAT ASSOC, V99, P854, DOI 10.1198/016214504000001187
Imai K, 2008, J R STAT SOC A STAT, V171, P481, DOI 10.1111/j.1467-985X.2007.00527.x
Imbens GW, 2004, REV ECON STAT, V86, P4, DOI 10.1162/003465304323023651
Kellam S.G., 1992, PREVENTING ANTISOCIA, P162
Kellam SG, 1998, AM J PUBLIC HEALTH, V88, P1490, DOI 10.2105/AJPH.88.10.1490
KELLAM SG, 1991, AM J COMMUN PSYCHOL, V19, P563, DOI 10.1007/BF00937992
Kurth T, 2006, AM J EPIDEMIOL, V163, P262, DOI 10.1093/aje/kwj047
Lipsey MW, 2000, ANNU REV PSYCHOL, V51, P345, DOI 10.1146/annurev.psych.51.1.345
Lunceford JK, 2004, STAT MED, V23, P2937, DOI 10.1002/SIM.1903
Madigan D, 2004, ANN STAT, V32, P465
McCaffrey DF, 2004, PSYCHOL METHODS, V9, P403, DOI 10.1037/1082-989X.9.4.403
Morgan SL, 2007, ANAL METHOD SOC RES, P1, DOI 10.1017/CBO9780511804564
Potter F.A., 1990, P SURV RES METH SECT, P225
Potter F.J., 1993, ASA P SECTION SURVEY, P758
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Qu YM, 2009, STAT MED, V28, P1402, DOI 10.1002/sim.3549
Reed PL, 2007, ARCH GEN PSYCHIAT, V64, P1435, DOI 10.1001/archpsyc.64.12.1435
Reed PL, 2006, AM J EPIDEMIOL, V163, P404, DOI 10.1093/aje/kwj064
RIDGEWAY G, 2007, GBM 1 6 3 PACKAGE MA
Ridgeway G., 1999, Comput. Sci. Stat., V31, P172
Ridgeway G., 2006, TWANG TOOLKIT WEIGHT
Robins J M., 1998, 1997 Proceedings of the Section on Bayesian Statistical Science, P1
Robins JM, 2000, EPIDEMIOLOGY, V11, P550, DOI 10.1097/00001648-200009000-00011
Robins JM, 2001, STAT SINICA, V11, P920
Robinson J. P., 2000, Mitteilungen der Bundesforschungsanstalt fur Forst- und Holzwirtschaft, Hamburg, P95
Rosenbaum, 2002, OBSERVATIONAL STUDIE, DOI DOI 10.1007/978-1-4757-3692-2_3
Rosenbaum PR, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-1213-8
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
ROSENBAUM PR, 1991, BIOMETRICS, V47, P87, DOI 10.2307/2532498
ROSENBAUM PR, 1984, J AM STAT ASSOC, V79, P516, DOI 10.2307/2288398
ROSENBAUM PR, 1985, AM STAT, V39, P33, DOI 10.2307/2683903
ROSENBAUM PR, 1983, J ROY STAT SOC B MET, V45, P212
Rubin D. B., 2001, Health Services and Outcomes Research Methodology, V2, P169, DOI [10.1023/A:1020363010465, DOI 10.1023/A:1020363010465, https://doi.org/10.1023/A:1020363010465]
Rubin DB, 1996, BIOMETRICS, V52, P249, DOI 10.2307/2533160
Rubin DB, 2004, PHARMACOEPIDEM DR S, V13, P855, DOI 10.1002/pds.968
Rubin DB, 2000, J AM STAT ASSOC, V95, P573, DOI 10.2307/2669400
Rubin DB, 2008, ANN APPL STAT, V2, P808, DOI 10.1214/08-AOAS187
*SAS I, 2004, SAS REL 9 COMP SOFTW
Schafer JL, 2008, PSYCHOL METHODS, V13, P279, DOI 10.1037/a0014268
Shadish WR, 2008, J AM STAT ASSOC, V103, P1334, DOI 10.1198/016214508000000733
Smith HL, 1997, SOCIOL METHODOL, V27, P325, DOI 10.1111/1467-9531.271030
SNEDECOR G W, 1980
STUART EA, STAT SCI IN PRESS
Stuart EA, 2008, DEV PSYCHOL, V44, P395, DOI 10.1037/0012-1649.44.2.395
Stuart ElizabethA., 2008, Best Practices in Quantitative Methods, P155, DOI [DOI 10.4135/9781412995627.D14, DOI 10.4135/9781412995627]
NR 74
TC 562
Z9 664
U1 1
U2 53
PU AMER PSYCHOLOGICAL ASSOC
PI WASHINGTON
PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA
SN 1082-989X
EI 1939-1463
J9 PSYCHOL METHODS
JI Psychol. Methods
PD SEP
PY 2010
VL 15
IS 3
BP 234
EP 249
DI 10.1037/a0019623
PG 16
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA 645LP
UT WOS:000281459600002
PM 20822250
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Okada, A
Sheehy, K
AF Okada, Alexandra
Sheehy, Kieron
TI Factors and Recommendations to Support Students' Enjoyment of Online
Learning With Fun: A Mixed Method Study During COVID-19
SO FRONTIERS IN EDUCATION
LA English
DT Article
DE COVID-19; online learning; fun; higher education; academic performance;
epistemic views; responsible research and innovation; recommendations
ID EPISTEMOLOGICAL BELIEFS; EPISTEMIC COGNITION; INDONESIAN TEACHERS;
CURRICULUM; CREATIVITY; EDUCATION; SCHOOL; GAMES
AB Understanding components that influence students' enjoyment of distance higher education is increasingly important to enhance academic performance and retention. Although there is a growing body of research about students' engagement with online learning, a research gap exists concerning whether fun affect students' enjoyment. A contributing factor to this situation is that the meaning of fun in learning is unclear, and its possible role is controversial. This research is original in examining students' views about fun and online learning, and influential components and connections. This study investigated the beliefs and attitudes of a sample of 551 distance education students including pre-services and in-service teachers, consultants and education professionals using a mixed-method approach. Quantitative and Qualitative data were generated through a self-reflective instrument during the COVID-19 pandemic. The findings revealed that 88.77% of participants valued fun in online learning; linked to well-being, motivation and performance. However, 16.66% mentioned that fun within online learning could take the focus off their studies and result in distraction or loss of time. Principal component analysis revealed three groups of students who found (1) fun relevant in socio-constructivist learning (2) no fun in traditional transmissive learning and (3) disturbing fun in constructivist learning. This study also provides key recommendations extracted from participants' views supported by consensual review for course teams, teaching staff and students to enhance online learning experiences with enjoyment and fun.
C1 [Okada, Alexandra; Sheehy, Kieron] Open Univ, Fac Wellbeing Educ & Language Studies, Rumpus Res Grp, Milton Keynes, Bucks, England.
C3 Open University - UK
RP Okada, A (corresponding author), Open Univ, Fac Wellbeing Educ & Language Studies, Rumpus Res Grp, Milton Keynes, Bucks, England.
EM ale.okada@open.ac.uk
OI Okada, Alexandra/0000-0003-1572-5605; Sheehy, Kieron/0000-0001-7623-8400
FU Open University UK
FX This study was funded by the Open University UK and is part of the
international project OLAF -Online Learning and Fun.
http://www.open.ac.uk/blogs/rumpus/index.php/projects/olaf/.
CR [Anonymous], 2003, Pedagogia da Autonomia: Saberes Necessarios a Pratica Educativa (26 edicao)
[Anonymous], 2000, PEDAGOGY FREEDOM ETH
[Anonymous], 2015, SYSTEMS MODEL CREATI, DOI DOI 10.1007/978-94-017-9085-7
[Anonymous], 2020, COVID-19 educational disruption and response
[Anonymous], 2005, A theory of fun for game design
Arnone MP, 2011, ETR&D-EDUC TECH RES, V59, P181, DOI 10.1007/s11423-011-9190-9
Beckman John., 2014, American Fun: Four Centuries of Joyous Revolt
Bisson C., 1996, J EXPT ED, V19, P108, DOI [https://doi.org/10.1177/105382599601900208, DOI 10.1177/105382599601900208, 10.1177/105382599601900208]
Blythe M., 2018, Funology 2: From Usability to Enjoyment, V2, P375, DOI DOI 10.1007/978-3-319-68213-6_24
Budiyanto, 2018, INT J INCLUSIVE EDUC, V22, P543, DOI 10.1080/13603116.2017.1390000
Budiyanto Sheehy K., 2019, MANUAL SIGN ACQUISIT
Chan KW, 2004, TEACH TEACH EDUC, V20, P817, DOI 10.1016/j.tate.2004.09.002
Chu SL, 2017, ENTERTAIN COMPUT, V18, P31, DOI 10.1016/j.entcom.2016.08.007
Cohen L., 2018, Research Methods in Education, DOI 10.4324/9781315456539-14
Cooperman L., 2014, OPEN ED RESOURCES SO
Crosnoe R, 2004, SOCIOL EDUC, V77, P60, DOI 10.1177/003804070407700103
Csikszentmihalyi M., 2020, FINDING FLOW PSYCHOL
de Freitas S, 2006, COMPUT EDUC, V46, P249, DOI 10.1016/j.compedu.2005.11.007
Dismore H, 2011, RES PAP EDUC, V26, P499, DOI 10.1080/02671522.2010.484866
Elton-Chalcraft S, 2015, EDUC 3-13, V43, P482, DOI 10.1080/03004279.2013.822904
Esteban-Millat I, 2014, COMPUT EDUC, V71, P111, DOI 10.1016/j.compedu.2013.09.012
Etymonline, DICION RIO ETIMOL GI
European Commision, 2013, OPT STRENGTH RESP RE
European Commission, 2020, Responsible Research and Innovation
Feldberg H.R., 2011, THESIS U WATERLOO WA
Feucht FC, 2017, EDUC PSYCHOL-US, V52, P234, DOI 10.1080/00461520.2017.1350180
Fine GA, 2017, SOCIOL THEOR, V35, P64, DOI 10.1177/0735275117692836
Fox E., 2013, OXFORD HDB HAPPINESS
Francis N., 2008, Leisure/Loisir, V32, P65, DOI 10.1080/14927713.2008.9651400
Freire P, 1967, PAPEL EDUCA O HUMANI
Freire P, 1984, A O CULTURAL LIBERDA, V7 Edn
Freire P, 2009, PEDAGOGIA ESPERAN A, V16
FREIRE Paulo., 1985, Pedagogia do oprimido, V2
Fu FL, 2009, COMPUT EDUC, V52, P101, DOI 10.1016/j.compedu.2008.07.004
Garn AC, 2006, J TEACH PHYS EDUC, V25, P281, DOI 10.1123/jtpe.25.3.281
Glaveanu VP, 2011, THINK SKILLS CREAT, V6, P122, DOI 10.1016/j.tsc.2011.03.002
Gortan A., 2007, ORGANIZACIJA, V40
Hardman M., 2000, EDUC PSYCHOL PRACT, V16, P349, DOI [DOI 10.1080/713666082, 10.1080/02667360020006417, DOI 10.1080/02667360020006417]
Harmston G.T., 2005, Sources of enjoyment in physical activity among children and adolescents
Higher Education Academy (HEA), 2015, FRAM STUD ACC RETENT
Hill CE, 1997, COUNS PSYCHOL, V25, P517, DOI 10.1177/0011000097254001
Iten N, 2016, BRIT J EDUC TECHNOL, V47, P151, DOI 10.1111/bjet.12226
Kimiecik JC, 1996, J SPORT EXERCISE PSY, V18, P247, DOI 10.1123/jsep.18.3.247
Knight S, 2017, COMPUT HUM BEHAV, V73, P507, DOI 10.1016/j.chb.2017.04.014
Lazzaro N, 2009, HUM FACTORS ERGON, P155
LEE J, 2013, AUSTR J TEACHER, V38, P119
Lesser L.M., 2013, J STAT EDUC, V21, P1
McManus I.C., 2010, Psychology, V1, P159, DOI [DOI 10.4236/PSYCH.2010.13021, 10.4236/psych.2010.13021]
Meneses J., 2020, DROPOUT ONLINE HIGHE
Okada A., 2020, Revista e-Curriculum, V18, P319
Okada A., 2020, DISTANCE ED STUDENTS
Okada A, 2018, J INTERACT MEDIA EDU, DOI 10.5334/jime.482
Organisation for Economic Co-operation and Development, 2013, TEACHING LEARNING IN
Organisation for Economic Co-operation and Development (OECD), 2010, TAL TECHN REP
Papert S., 2002, BANGOR DAILY NE 0710
Piaget J., 2008, PSYCHOL CHILD
Prouty D., 2002, Zip Lines: The Voicefor Adventure Education, V44, P6
Richardson JTE, 2013, EDUC RES REV-NETH, V9, P191, DOI 10.1016/j.edurev.2012.10.001
Rodriguez L, 2007, STUD HIGH EDUC, V32, P647, DOI 10.1080/03075070701573807
RRI-Tools, 2016, SELF REFLECTION TOOL
Sánchez-Franco MJ, 2014, COMPUT EDUC, V74, P81, DOI 10.1016/j.compedu.2014.02.001
Schmidhuber J, 2010, IEEE T AUTON MENT DE, V2, P230, DOI 10.1109/TAMD.2010.2056368
Schn D. A., 1987, Educating the reflexive practitioner
SCHOMMER M, 1990, J EDUC PSYCHOL, V82, P498, DOI 10.1037/0022-0663.82.3.498
Sheehy K, 2021, INT J DISABIL DEV ED, V68, P600, DOI 10.1080/1034912X.2019.1699647
Sheehy K, 2019, J INTELLECT DISABILI, V23, P39, DOI 10.1177/1744629517717613
Sheehy K, 2015, INT J DISABIL DEV ED, V62, P469, DOI 10.1080/1034912X.2015.1061109
Tavakol M, 2011, INT J MED EDUC, V2, P53, DOI 10.5116/ijme.4dfb.8dfd
Tews M.J., 2015, College Teaching, V63, P16, DOI DOI 10.1080/87567555.2014.972318
Tews MJ, 2017, J VOCAT BEHAV, V98, P46, DOI 10.1016/j.jvb.2016.09.006
Turner C., 2018, MAKING LESSONS FUN D
Ungar M., 2007, TOO SAFE THEIR OWN G
Virvou M, 2005, EDUC TECHNOL SOC, V8, P54
von Schomberg R., 2013, Responsible Innovation, P51, DOI [10.1002/9781118551424.ch3, DOI 10.1002/9781118551424.CH3]
Vygotsky LS, 1978, Mind in Society: Development of Higher Psychological Processes, DOI [DOI 10.2307/J.CTVJF9VZ4, 10.2307/j.ctvjf9vz4]
Whitton N, 2019, TEACH HIGH EDUC, V24, P1000, DOI 10.1080/13562517.2018.1541885
World Bank, 2020, How Does the COVID-19 Crisis Differ from Other Shocks to the Economy?
NR 77
TC 14
Z9 18
U1 1
U2 14
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2504-284X
J9 FRONT EDUC
JI Front. Educ.
PD DEC 11
PY 2020
VL 5
AR 584351
DI 10.3389/feduc.2020.584351
PG 18
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA TW9FT
UT WOS:000682696900001
OA Green Accepted, gold
DA 2024-09-05
ER
PT J
AU Song, P
Wang, X
AF Song, Pu
Wang, Xiang
TI A bibliometric analysis of worldwide educational artificial intelligence
research development in recent twenty years
SO ASIA PACIFIC EDUCATION REVIEW
LA English
DT Article
DE Bibliometric analysis; Educational artificial intelligence; Research
development; Relationship between humans and machines
ID COGNITIVE TUTOR; STUDENT; MANAGEMENT; TRENDS
AB Educational artificial intelligence (EAI) refers to the use of artificial intelligence (AI) to support personalized and automated feedback and guidance in the educational field. Inevitably, it serves as a more important part of the educational system in the coming years. However, novel development in this field has been inadequately reviewed and conceptualized in a visualized, objective and comprehensive way. In this view, a bibliometric analysis was conducted to obtain an overview of its trends from publication outputs, countries' cooperation, cluster analysis, and research evolution. Around 8660 Scopus-published articles from 2000 to 2019 were gathered for analysis using CiteSpace and Alluvial generator. In the study, a growing interest in EAI research and deepening cooperation among countries was first identified, entailing favorable conditions for promoting globalization in this aspect. Afterward, five core clusters were established for the intellectual structure of EAI, including intelligent tutoring system, learning system, student, labeled training data, and pedagogy. The development of EAI research was further conceptualized as follows: (a) technological foundation; (b) technological breakthrough; (c) intelligent application; and (d) symbiotic integration. Finally, three prospective directions for future EAI research were suggested.
C1 [Song, Pu; Wang, Xiang] Guizhou Educ Univ, Sch Educ Sci, Guiyang 550018, Guizhou, Peoples R China.
[Song, Pu; Wang, Xiang] Univ Putra Malaysia, Fac Educ Studies, Seri Kembangan, Malaysia.
[Wang, Xiang] Mahidol Univ, Ctr China & Globalizing Asia Studies, Salaya, Nakhon Pathom, Thailand.
C3 Guizhou Education University; Universiti Putra Malaysia; Mahidol
University
RP Wang, X (corresponding author), Guizhou Educ Univ, Sch Educ Sci, Guiyang 550018, Guizhou, Peoples R China.; Wang, X (corresponding author), Univ Putra Malaysia, Fac Educ Studies, Seri Kembangan, Malaysia.; Wang, X (corresponding author), Mahidol Univ, Ctr China & Globalizing Asia Studies, Salaya, Nakhon Pathom, Thailand.
EM 348634925@qq.com
RI Zhang, Yuqing/KSM-6924-2024
CR Aleven V., 2009, International Journal of Artificial Intelligence and Education, V19, P105
Aleven V, 2016, INT J ARTIF INTELL E, V26, P224, DOI 10.1007/s40593-015-0088-2
[Anonymous], J CLEANER PRODUCTION
Anthony G., 1996, Educ. Stud. Math, V31, P349, DOI DOI 10.1007/BF00369153
Baker R. S., 2009, Journal of educational Data Mining, V1, P3, DOI DOI 10.5281/ZENODO.3554657
Barrow L, 2009, AM ECON J-ECON POLIC, V1, P52, DOI 10.1257/pol.1.1.52
Bean C, 2011, ENGAGING IDEAS PROFE
Boulay du B., 2010, International Journal of Artificial Intelligence in Education, V20, P197, DOI [10.3233/JAI-2010-0007, DOI 10.3233/JAI-2010-0007, 10.5555/1971783.1971784, DOI 10.5555/1971783.1971784]
Boveja R, 2008, J INTERACTIVE LEA S1, V19, P185
Brodley CE, 1999, J ARTIF INTELL RES, V11, P131, DOI 10.1613/jair.606
Brophy S, 2008, J ENG EDUC, V97, P369, DOI 10.1002/j.2168-9830.2008.tb00985.x
Chaplin E, 2018, ADV AUTISM, V4, P1, DOI 10.1108/AIA-12-2017-0025
Chen CM, 2007, LECT NOTES COMPUT SC, V4564, P265
Chen CM, 2007, EXPERT SYST APPL, V33, P6, DOI 10.1016/j.eswa.2006.04.025
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen YX, 2004, J MACH LEARN RES, V5, P913
Conati C, 2009, USER MODEL USER-ADAP, V19, P267, DOI 10.1007/s11257-009-9062-8
Dalpé R, 2002, SCIENTOMETRICS, V55, P189, DOI 10.1023/A:1019663607103
Diattara A, 2016, LECT NOTES COMPUT SC, V9891, P575, DOI 10.1007/978-3-319-45153-4_66
Drigas AS, 2013, COMMUNICATIONS COMPU
Dutton T., 2018, MEDIUM
Felder RM, 2005, J ENG EDUC, V94, P57, DOI 10.1002/j.2168-9830.2005.tb00829.x
Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111
García-Lillo F, 2016, INT J HOSP MANAG, V52, P121, DOI 10.1016/j.ijhm.2015.10.007
Guilherme A, 2019, AI SOC, V34, P47, DOI 10.1007/s00146-017-0693-8
Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278
Han JH, 2019, PROC INT CONF EDU IN, P153, DOI 10.1109/EITT.2019.00037
Herreid C. F., 2013, Journal of College Science Teaching, V42, P62, DOI DOI 10.4108/EL.1.3.E1
Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527
Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126
Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889
Johns J., 2006, NAT C AI
Kai L, 2018, OPEN ED RES, V24, P11
Kamimura R, 2003, CONNECT SCI, V15, P117, DOI 10.1080/09540090310001611136
Kandlhofer M, 2016, PROC FRONT EDUC CONF
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Kurzweil Ray., 1999, AGE SPIRITUAL MACHIN
Laurent P, 2018, PLANS AI DO WE STAND
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Mason GS, 2013, IEEE T EDUC, V56, P430, DOI 10.1109/TE.2013.2249066
Mayer RE, 2009, CONTEMP EDUC PSYCHOL, V34, P51, DOI 10.1016/j.cedpsych.2008.04.002
Miyazoe T, 2010, SYSTEM, V38, P185, DOI 10.1016/j.system.2010.03.006
Pane JF, 2014, EDUC EVAL POLICY AN, V36, P127, DOI 10.3102/0162373713507480
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Richardson M, 2006, MACH LEARN, V62, P107, DOI 10.1007/s10994-006-5833-1
Ritter S, 2007, PSYCHON B REV, V14, P249, DOI 10.3758/BF03194060
Roll I, 2011, LEARN INSTR, V21, P280
Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3
Romero C, 2007, EXPERT SYST APPL, V33, P135, DOI 10.1016/j.eswa.2006.04.005
Rosvall M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008694
Sales A, 2019, ETHICAL ECON, V57, P3, DOI 10.1007/978-3-030-15407-3_1
Shiffrin RM, 2004, P NATL ACAD SCI USA, V101, P5183, DOI 10.1073/pnas.0307852100
Sonnenwald DH, 2007, ANNU REV INFORM SCI, V41, P643, DOI 10.1002/aris.2007.1440410121
Strayer J. F., 2012, LEARNING ENVIRON RES, V15, P171, DOI [10.1007/s10984-012-9108-4, DOI 10.1007/S10984-012-9108-4]
VanLehn K, 2011, EDUC PSYCHOL-US, V46, P197, DOI 10.1080/00461520.2011.611369
Varner LK, 2013, J WRIT RES, V5, P35, DOI 10.17239/jowr-2013.05.01.2
Walker E, 2014, INT J ARTIF INTELL E, V24, P33, DOI 10.1007/s40593-013-0001-9
Wang XB., 2017, J TROP BIOL, V8, P1, DOI DOI 10.15886/J.CNKI.RDSWXB.2017.01.001
Wu XD, 2008, KNOWL INF SYST, V14, P1, DOI 10.1007/s10115-007-0114-2
Zhu WW, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051510
NR 60
TC 49
Z9 50
U1 18
U2 186
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1598-1037
EI 1876-407X
J9 ASIA PAC EDUC REV
JI Asia Pac. Educ. Rev.
PD SEP
PY 2020
VL 21
IS 3
BP 473
EP 486
DI 10.1007/s12564-020-09640-2
EA AUG 2020
PG 14
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA ND3YO
UT WOS:000557313400001
OA Bronze
DA 2024-09-05
ER
PT J
AU Shi, C
Wang, HX
Chen, BJ
Liu, YH
Zhou, ZG
AF Shi, Chen
Wang, Haoxuan
Chen, Binjie
Liu, Yuhua
Zhou, Zhiguang
TI Visual Analysis of Citation Context-Based Article Influence Ranking
SO IEEE ACCESS
LA English
DT Article
DE Influence ranking; visualization; visual analysis; citation network;
word2vec
ID HETEROGENEOUS ACADEMIC NETWORKS; SCHOLARLY DATA; VISUALIZATION;
EXPLORATION; ANALYTICS; PAPER
AB Article influence ranking is an effective way to reduce information redundancy and improve the efficiency of article retrieval. A large number of ranking models for network items have been employed for the ranking of article influence, such as PageRank and Spamming-resistant Expertise Analysis and Ranking. However, the effectiveness of article influence ranking based on the models of PageRank and SPEAR declines with the rapid growth of academic datasets, because of the increasing complexity of citation network. In order to take a rich set of contextual structures of citation context into consideration, we propose a visualization system VAIR for the citation context-based article influence ranking. Firstly, the word2vec model, a renowned technique in the field of natural language processing, is applied to transform articles into vectorized representations according to citation context. Then, a novel citation context-based article influence ranking model is designed according to the complex relationships quantified in a semantic vectorised space. Several visual designs are implemented, allowing users to perceive and compare the ranking results visually and intuitively. A set of user-friendly interactions are provided in the visualization framework, enabling users to explore the desirable article influence and obtain deep insights into the ranking model. Moreover, a series of case studies and comparison experiments are carried out based on real-world datasets, which further demonstrate the effectiveness of our algorithm for article influence ranking.
C1 [Shi, Chen; Wang, Haoxuan; Chen, Binjie; Liu, Yuhua; Zhou, Zhiguang] Zhejiang Univ Finance & Econ, Informat Sch, Hangzhou 310018, Zhejiang, Peoples R China.
[Zhou, Zhiguang] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Zhejiang, Peoples R China.
C3 Zhejiang University of Finance & Economics; Zhejiang University
RP Zhou, ZG (corresponding author), Zhejiang Univ Finance & Econ, Informat Sch, Hangzhou 310018, Zhejiang, Peoples R China.; Zhou, ZG (corresponding author), Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Zhejiang, Peoples R China.
EM zhgzhou1983@163.com
FU National Natural Science Foundation of China [61872314, 61802339];
Humanities and Social Sciences Foundation of Ministry of Education in
China [18YJC910017]; Natural Science Foundation of Zhejiang Province
[LY18F020024]; Major Humanities and Social Sciences Research Projects in
Colleges of Zhejiang Province [2018QN021]; Open Project Program of the
State Key Laboratory of CADAMP;CG of Zhejiang University [A1806]; First
Class Discipline of Zhejiang-A (Zhejiang University of Finance and
Economics-Statistics)
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 61872314 and Grant 61802339, in part by
the Humanities and Social Sciences Foundation of Ministry of Education
in China under Grant 18YJC910017, in part by the Natural Science
Foundation of Zhejiang Province under Grant LY18F020024, in part by the
Major Humanities and Social Sciences Research Projects in Colleges of
Zhejiang Province under Grant 2018QN021, in part by the Open Project
Program of the State Key Laboratory of CAD& CG of Zhejiang University
under Grant A1806, and in part by the First Class Discipline of
Zhejiang-A (Zhejiang University of Finance and Economics-Statistics).
CR Abdelrahem M, 2017, 2017 IEEE INTERNATIONAL SYMPOSIUM ON PREDICTIVE CONTROL OF ELECTRICAL DRIVES AND POWER ELECTRONICS (PRECEDE), P1, DOI [10.1109/ULTSYM.2017.8092427, 10.1063/1.4975416, 10.1109/PRECEDE.2017.8071099]
[Anonymous], 2012, CIKM
Berger M, 2017, IEEE T VIS COMPUT GR, V23, P691, DOI 10.1109/TVCG.2016.2598667
Biglu MH, 2008, SCIENTOMETRICS, V74, P453, DOI 10.1007/s11192-007-1815-8
Blanco R, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P179, DOI 10.1145/2684822.2685317
Chen HD, 2014, IEEE T VIS COMPUT GR, V20, P1683, DOI 10.1109/TVCG.2014.2346594
Chen W, 2019, IEEE T VIS COMPUT GR, V25, P555, DOI 10.1109/TVCG.2018.2865139
Chen ZT, 2017, VIS INFORM, V1, P132, DOI 10.1016/j.visinf.2017.11.002
Di T., 2018, IEEE T VIS COMPUT GR, V25, P459
Egghe L, 2006, SCIENTOMETRICS, V69, P121, DOI 10.1007/s11192-006-0143-8
Evans JA, 2009, SCIENCE, V323, P1025, DOI 10.1126/science.1154562
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Gratzl S, 2013, IEEE T VIS COMPUT GR, V19, P2277, DOI 10.1109/TVCG.2013.173
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Hassan S., 2009, P SIAM INT C DAT MIN, P533
Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9
Isenberg P, 2017, IEEE T VIS COMPUT GR, V23, P2199, DOI 10.1109/TVCG.2016.2615308
Kidwell P, 2008, IEEE T VIS COMPUT GR, V14, P1356, DOI 10.1109/TVCG.2008.181
Lehmann S, 2006, NATURE, V444, P1003, DOI 10.1038/4441003a
Liu DY, 2017, IEEE T VIS COMPUT GR, V23, P1, DOI 10.1109/TVCG.2016.2598432
Liu JY, 2018, IEEE ACCESS, V6, P19205, DOI 10.1109/ACCESS.2018.2815030
Liu K, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6110321
Liu ZR, 2014, PROC INT C TOOLS ART, P493, DOI 10.1109/ICTAI.2014.80
Ma JB, 2009, ISBIM: 2008 INTERNATIONAL SEMINAR ON BUSINESS AND INFORMATION MANAGEMENT, VOL 2, P285, DOI 10.1109/ISBIM.2008.156
Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Noll MG, 2009, PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P612, DOI 10.1145/1571941.1572046
Page L., 1994, STANFORD DIGIT LIB W, V9, P1
Seo J., 2005, Information Visualization, V4, P96, DOI 10.1057/palgrave.ivs.9500091
Shi CL, 2012, IEEE T VIS COMPUT GR, V18, P2669, DOI 10.1109/TVCG.2012.253
Su Zhan., 2014, OFC 2014, P1
Tomas T., 2013, COMPUT SCI
Turian J, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P384
Vuillemot R, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P2703, DOI 10.1145/2702123.2702237
Walker D., 2007, J STAT MECH-THEORY E, V6, P1
Wan XJ, 2014, J ASSOC INF SCI TECH, V65, P1929, DOI 10.1002/asi.23083
Wang Y., 2013, P AAAI C ART INT, P1
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
Xia J, 2017, IEEE COMPUT GRAPH, V37, P42, DOI 10.1109/MCG.2017.21
Xie C, 2014, IEEE T VIS COMPUT GR, V20, P1743, DOI 10.1109/TVCG.2014.2346913
Yan E, 2011, J AM SOC INF SCI TEC, V62, P467, DOI 10.1002/asi.21461
Zhang CM, 2013, SCI REP-UK, V3, DOI 10.1038/srep01503
Zhang F, 2018, ACM-IEEE J CONF DIG, P127, DOI 10.1145/3197026.3197070
Zhou ZG, 2018, J VISUAL LANG COMPUT, V48, P134, DOI 10.1016/j.jvlc.2018.08.007
Zhou ZG, 2019, IEEE T VIS COMPUT GR, V25, P43, DOI 10.1109/TVCG.2018.2864503
Zhou ZG, 2017, IEEE COMPUT GRAPH, V37, P98, DOI 10.1109/MCG.2017.3621228
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 47
TC 3
Z9 4
U1 1
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2019
VL 7
BP 113853
EP 113866
DI 10.1109/ACCESS.2019.2932051
PG 14
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA IT6YK
UT WOS:000483022100039
OA gold
DA 2024-09-05
ER
PT J
AU Kyebambe, MN
Cheng, G
Huang, YQ
He, CH
Zhang, ZY
AF Kyebambe, Moses Ntanda
Cheng, Ge
Huang, Yunqing
He, Chunhui
Zhang, Zhenyu
TI Forecasting emerging technologies: A supervised learning approach
through patent analysis
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Technology forecasting; Industrial technology roadmap; R & D planning;
Patent analysis; Citation analysis
ID SCIENCE-AND-TECHNOLOGY; CITATION; KNOWLEDGE; NETWORKS; CLUSTERS; TOOL
AB Both private and public enterprises have great interest in prior knowledge of emerging technologies to enable them make strategic investments. Technology forecasting offers a relevant opportunity in this direction and is currently a hot upcoming area of research. However, accurate forecasting of emerging technologies is still problematic mainly due to absence labeled historical data to use in training of learners. Previous studies have approached the technological forecasting problem through unsupervised learning methods and, as such, are missing out on potential benefits of supervised learning approaches such as full automation. In this study, we propose a novel algorithm to automatically label data and then use the labeled data to train learners to forecast emerging technologies. As a case study, we used patent citation data provided by the United States Patent and Trademark Office to test and evaluate the proposed algorithm. The algorithm uses advanced patent citation techniques to derive useful predictors from patent citation data with a result of forecasting new technologies at least a year before they emerge. Our evaluation reveals that our proposed algorithm can retrieve as high as 70% of emerging technologies in a given year with high precision.
C1 [Kyebambe, Moses Ntanda; Huang, Yunqing; He, Chunhui; Zhang, Zhenyu] Xiangtan Univ, Dept Math & Computat Sci, Xiangtan, Hunan, Peoples R China.
[Cheng, Ge] Xiangtan Univ, Coll Informat Engn, Xiangtan, Hunan, Peoples R China.
C3 Xiangtan University; Xiangtan University
RP Cheng, G (corresponding author), Xiangtan Univ, Coll Informat Engn, Xiangtan, Hunan, Peoples R China.
EM mntanda@cis.mak.ac.ug; chengge@xtu.edu.cn; huangyq@xtu.edu.cn;
zhenyuzhang@smail.xtu.edu.cn
RI zhang, zhenyu/HOA-8440-2023; zhang, jinlu/KEE-9374-2024; Huang,
YQ/JOK-7580-2023; He, chunhui/GWR-3689-2022
OI He, chunhui/0000-0003-1505-1620
CR ALBERT MB, 1991, RES POLICY, V20, P251, DOI 10.1016/0048-7333(91)90055-U
Alcácer J, 2006, REV ECON STAT, V88, P774, DOI 10.1162/rest.88.4.774
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Breitzman A, 2015, RES POLICY, V44, P195, DOI 10.1016/j.respol.2014.06.006
Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309
Érdi P, 2013, SCIENTOMETRICS, V95, P225, DOI 10.1007/s11192-012-0796-4
Ester Martin, 1996, P 2 INT C KNOWL DISC, P226
Fleming L, 2004, STRATEGIC MANAGE J, V25, P909, DOI 10.1002/smj.384
Fleming L, 2001, MANAGE SCI, V47, P117, DOI 10.1287/mnsc.47.1.117.10671
Fleming L., 2006, SSRN ELECT J
Furukawa T, 2015, TECHNOL FORECAST SOC, V91, P280, DOI 10.1016/j.techfore.2014.03.013
Garfield E., 1979, HUMANITIES
Ittipanuvat V, 2014, J ENG TECHNOL MANAGE, V32, P160, DOI 10.1016/j.jengtecman.2013.05.006
Karvonen M, 2013, TECHNOL FORECAST SOC, V80, P1094, DOI 10.1016/j.techfore.2012.05.006
Kayal AA, 1999, IEEE T ENG MANAGE, V46, P127, DOI 10.1109/17.759138
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Klavans R, 2017, J ASSOC INF SCI TECH, V68, P984, DOI 10.1002/asi.23734
Lai KK, 2005, INFORM PROCESS MANAG, V41, P313, DOI 10.1016/j.ipm.2003.11.004
Lampe R, 2012, REV ECON STAT, V94, P320, DOI 10.1162/REST_a_00159
Michel J, 2001, SCIENTOMETRICS, V51, P185, DOI 10.1023/A:1010577030871
Moed H.F, 2005, CIT ANAL RES EVAL, P323
Moore K.A, 2004, WORTHLESS PATENTS
Newman M. E. J., 2018, Network: An introduction, V2nd, DOI 10.1093/acprof:oso/9780199206650.001.0001
Park G, 2006, J SCI IND RES INDIA, V65, P121
Park H, 2013, EXPERT SYST APPL, V40, P736, DOI 10.1016/j.eswa.2012.08.008
PRICE DJD, 1965, SCIENCE, V149, P510
Rotolo D., 2015, SPRU WORK PAP SER, P1, DOI DOI 10.1016/J.RESP0L.2015.06.006
Seung-wook C., 2014, FORECASTING PROMISIN
Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009
Shibata N, 2010, TECHNOL FORECAST SOC, V77, P1147, DOI 10.1016/j.techfore.2010.03.008
Shibata N, 2009, J AM SOC INF SCI TEC, V60, P571, DOI 10.1002/asi.20994
Smalheiser NR, 2001, TECHNOVATION, V21, P689, DOI 10.1016/S0166-4972(01)00048-7
Small H., 1973, J AM SOC INF SCI
Sorenson O, 2006, RES POLICY, V35, P994, DOI 10.1016/j.respol.2006.05.002
SWANSON DR, 1987, J AM SOC INFORM SCI, V38, P228, DOI 10.1002/(SICI)1097-4571(198707)38:4<228::AID-ASI2>3.0.CO;2-G
Tang Jie., 2012, P 18 ACM SIGKDD INT, P1366, DOI DOI 10.1145/2339530.2339741
Tseng YH, 2007, INFORM PROCESS MANAG, V43, P1216, DOI 10.1016/j.ipm.2006.11.011
Valverde S., 2014, COMPLEXITY ENG COMPE, V2014, P1
Wong CY, 2015, J INFORMETR, V9, P90, DOI 10.1016/j.joi.2014.11.006
Yoon J, 2011, SCIENTOMETRICS, V88, P213, DOI 10.1007/s11192-011-0383-0
NR 41
TC 84
Z9 92
U1 7
U2 187
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD DEC
PY 2017
VL 125
BP 236
EP 244
DI 10.1016/j.techfore.2017.08.002
PG 9
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA FL3FY
UT WOS:000414109500020
DA 2024-09-05
ER
PT J
AU Jia, QF
Wang, XF
Zhou, RY
Ma, BX
Fei, FQ
Han, H
AF Jia, Qianfang
Wang, Xiaofang
Zhou, Rongyi
Ma, Bingxiang
Fei, Fangqin
Han, Hui
TI Systematic bibliometric and visualized analysis of research hotspots and
trends in artificial intelligence in autism spectrum disorder
SO FRONTIERS IN NEUROINFORMATICS
LA English
DT Article
DE artificial intelligence; autism spectrum disorder; data visualization;
bibliometric; CiteSpace; VOSviewer
AB BackgroundArtificial intelligence (AI) has been the subject of studies in autism spectrum disorder (ASD) and may affect its identification, diagnosis, intervention, and other medical practices in the future. Although previous studies have used bibliometric techniques to analyze and investigate AI, there has been little research on the adoption of AI in ASD. This study aimed to explore the broad applications and research frontiers of AI used in ASD.MethodsCitation data were retrieved from the Web of Science Core Collection (WoSCC) database to assess the extent to which AI is used in ASD. CiteSpace.5.8. R3 and VOSviewer, two online tools for literature metrology analysis, were used to analyze the data.ResultsA total of 776 publications from 291 countries and regions were analyzed; of these, 256 publications were from the United States and 173 publications were from China, and England had the largest centrality of 0.33; Stanford University had the highest H-index of 17; and the largest cluster label of co-cited references was machine learning. In addition, keywords with a high number of occurrences in this field were autism spectrum disorder (295), children (255), classification (156) and diagnosis (77). The burst keywords from 2021 to 2023 were infants and feature selection, and from 2022 to 2023, the burst keyword was corpus callosum.ConclusionThis research provides a systematic analysis of the literature concerning AI used in ASD, presenting an overall demonstration in this field. In this area, the United States and China have the largest number of publications, England has the greatest influence, and Stanford University is the most influential. In addition, the research on AI used in ASD mostly focuses on classification and diagnosis, and "infants, feature selection, and corpus callosum are at the forefront, providing directions for future research. However, the use of AI technologies to identify ASD will require further research.
C1 [Jia, Qianfang; Wang, Xiaofang] Hebei Univ Chinese Med, Shijiazhuang, Peoples R China.
[Zhou, Rongyi; Ma, Bingxiang] Henan Univ Chinese Med, Affiliated Hosp 1, Childrens Brain Dis Diag Treatment & Rehabil Ctr, Zhengzhou, Peoples R China.
[Zhou, Rongyi; Ma, Bingxiang] Henan Univ Chinese Med, Sch Pediat Med, Zhengzhou, Peoples R China.
[Fei, Fangqin; Han, Hui] Huzhou Univ, Peoples Hosp Huzhou 1, Dept Nursing, Huzhou, Peoples R China.
C3 Hebei University of Chinese Medicine; Henan University of Traditional
Chinese Medicine; Henan University of Traditional Chinese Medicine;
Huzhou University
RP Ma, BX (corresponding author), Henan Univ Chinese Med, Affiliated Hosp 1, Childrens Brain Dis Diag Treatment & Rehabil Ctr, Zhengzhou, Peoples R China.; Ma, BX (corresponding author), Henan Univ Chinese Med, Sch Pediat Med, Zhengzhou, Peoples R China.; Fei, FQ; Han, H (corresponding author), Huzhou Univ, Peoples Hosp Huzhou 1, Dept Nursing, Huzhou, Peoples R China.
EM mbx1963@126.com; feifangqin@139.com; hanhui30@126.com
RI wang, xiaofang/HRD-7918-2023
OI wang, xiaofang/0000-0002-2457-3474
FU The 2023 Special Project for Scientific Research on the Creation of
"Double-First-Class"Chinese Medicine in Henan Province
[HSRP-DFCTCM-2023-3-06]; Construction Project of Chinese Medicine
Discipline of Specialized Backbone Disciplines in Henan Province
[STG-ZYX03-202129]; Construction Project of Chinese Medicine Discipline
of Characteristic Disciplines in Henan Province [STG-ZYXKY-2020023]
FX This study was supported by the 2023 Special Project for Scientific
Research on the Creation of "Double-First-Class"Chinese Medicine in
Henan Province (HSRP-DFCTCM-2023-3-06), Construction Project of Chinese
Medicine Discipline of Specialized Backbone Disciplines in Henan
Province (STG-ZYX03-202129) and Construction Project of Chinese Medicine
Discipline of Characteristic Disciplines in Henan Province
(STG-ZYXKY-2020023).
CR Ahammed MS, 2021, FRONT NEUROINFORM, V15, DOI 10.3389/fninf.2021.635657
Ahmadlou M, 2012, J NEUROSCI METH, V211, P203, DOI 10.1016/j.jneumeth.2012.08.020
Ahmed IA, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11040530
Alabdulkareem A, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22030944
Alvari G, 2021, J CLIN MED, V10, DOI 10.3390/jcm10081776
Barua PD, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031192
Bi XA, 2022, COMPUT J, V65, P251, DOI 10.1093/comjnl/bxaa023
Bilgen I, 2020, J NEUROSCI METH, V343, DOI 10.1016/j.jneumeth.2020.108799
Bosl W, 2011, BMC MED, V9, DOI 10.1186/1741-7015-9-18
Dekhil O, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0206351
Duan YM, 2022, FRONT HUM NEUROSCI, V15, DOI 10.3389/fnhum.2021.765517
Emerson RW, 2017, SCI TRANSL MED, V9, DOI 10.1126/scitranslmed.aag2882
Martínez-González AE, 2023, REV J AUTISM DEV DIS, V10, P630, DOI 10.1007/s40489-022-00313-x
Graham SF, 2020, METABOLOMICS, V16, DOI 10.1007/s11306-020-01685-z
Hamet P, 2017, METABOLISM, V69, pS36, DOI 10.1016/j.metabol.2017.01.011
Haputhanthri D, 2020, INT J AUTOM COMPUT, V17, P837, DOI 10.1007/s11633-020-1231-6
Haque MM, 2021, JMIR MED INF, V9, DOI 10.2196/29242
Hazlett HC, 2017, NATURE, V542, P348, DOI 10.1038/nature21369
Heinsfeld AS, 2018, NEUROIMAGE-CLIN, V17, P16, DOI 10.1016/j.nicl.2017.08.017
Jiang MM, 2023, FRONT PSYCHIATRY, V14, DOI 10.3389/fpsyt.2023.1096769
Kanhirakadavath MR, 2022, DIAGNOSTICS, V12, DOI 10.3390/diagnostics12020518
Kaul V, 2020, GASTROINTEST ENDOSC, V92, P807, DOI 10.1016/j.gie.2020.06.040
Kimura R, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-50250-9
Krishnan A, 2016, NAT NEUROSCI, V19, P1454, DOI 10.1038/nn.4353
Kulkarni S, 2020, ACAD RADIOL, V27, P62, DOI 10.1016/j.acra.2019.10.001
Li YA, 2022, FRONT PEDIATR, V10, DOI 10.3389/fped.2022.972809
Lin Y, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.500064
Lu A, 2021, BRAIN SCI, V11, DOI 10.3390/brainsci11111446
Lu Y, 2022, DIS MARKERS, V2022, DOI 10.1155/2022/3372217
Mertz L, 2021, IEEE PULSE, V12, P6, DOI 10.1109/MPULS.2021.3113092
Moradi E, 2017, NEUROIMAGE, V144, P128, DOI 10.1016/j.neuroimage.2016.09.049
PAN Y, 2021, CHINESE J ELECTRON, V30, P793, DOI 10.1049/cje.2021.06.002
Pietrucci D, 2022, BIOMEDICINES, V10, DOI 10.3390/biomedicines10082028
Plitt M, 2015, NEUROIMAGE-CLIN, V7, P359, DOI 10.1016/j.nicl.2014.12.013
Reddy S, 2022, LANCET DIGIT HEALTH, V4, DOI 10.1016/S2589-7500(22)00029-2
Shahamiri SR, 2022, TECHNOL HEALTH CARE, V30, P605, DOI 10.3233/THC-213032
Shahamiri SR, 2020, COGN COMPUT, V12, P766, DOI 10.1007/s12559-020-09743-3
Sharif H, 2022, APPL ARTIF INTELL, V36, DOI 10.1080/08839514.2021.2004655
Spera G, 2019, FRONT PSYCHIATRY, V10, DOI 10.3389/fpsyt.2019.00620
Tang HT, 2023, FRONT NEUROL, V14, DOI 10.3389/fneur.2023.1203375
Vabalas A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0224365
van den Berk-smeekens I, 2022, EUR CHILD ADOLES PSY, V31, P1871, DOI 10.1007/s00787-021-01804-8
Volkmar FR, 2013, MOL AUTISM, V4, DOI 10.1186/2040-2392-4-13
Wall DP, 2012, TRANSL PSYCHIAT, V2, DOI 10.1038/tp.2012.10
Yahata N, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11254
Yamagata B, 2019, BRAIN IMAGING BEHAV, V13, P1689, DOI 10.1007/s11682-018-9973-2
Zhang HJ, 2023, J PROTEOMICS, V278, DOI 10.1016/j.jprot.2023.104872
Zhou J, 2019, NAT GENET, V51, P973, DOI 10.1038/s41588-019-0420-0
NR 48
TC 0
Z9 0
U1 13
U2 24
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 1662-5196
J9 FRONT NEUROINFORM
JI Front. Neuroinformatics
PD DEC 6
PY 2023
VL 17
AR 1310400
DI 10.3389/fninf.2023.1310400
PG 11
WC Mathematical & Computational Biology; Neurosciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematical & Computational Biology; Neurosciences & Neurology
GA CY4G9
UT WOS:001128774000001
PM 38125308
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Wang, N
Li, SQ
Wang, CH
Zhao, L
AF Wang, Nan
Li, Suqi
Wang, Chenhui
Zhao, Li
TI Current Status and Emerging Trends of Generative Artificial Intelligence
Technology: A Bibliometric Analysis
SO JOURNAL OF INTERNET TECHNOLOGY
LA English
DT Article
DE Generative artificial intelligence; ChatGPT; Generative adversarial
network; Biblioshiny; Web of Science
AB With the widespread application of ChatGPT (Chat Generative Pre -trained Transformer), its superordinate concept, generative artificial intelligence (Gen AI), has received increasing attention from researchers. The current study attempted to explore the current status and emerging trends of Gen AI technology research by visualizing the relevant published articles using the Biblioshiny tool. A total of 1,902 academic articles in the Web of Science (WOS) database published between 2014-2022 were analyzed. Annual publications, most productive journals and countries, co-authors, co-occurring keywords, document co -citations, and emerging trends of Gen AI research were analyzed. The following are the main findings of the study: the current status of Gen AI research is reflected in the following aspects: (1) the volume of documents produced is increasing year on year; (2) the publication of practical applications such as ChatGPT has brought a high level of interest to related research exploring the application of Gen AI in various research fields, such as education, medicine, drug discovery, and so on; and (3) two influential co -citation clusters have been formed. The emerging trends of the application of Gen AI research are also summarized as follows: (1) Gen AI has powerful technical advantages; (2) the application of Gen AI has great potential in the field of medicine, education and so on for the future; and (3) the updating and development of relevant technologies will always be the focus of Gen AI research.
C1 [Wang, Nan; Li, Suqi; Wang, Chenhui; Zhao, Li] Nanjing Normal Univ, Sch Educ Sci, Nanjing, Peoples R China.
C3 Nanjing Normal University
RP Zhao, L (corresponding author), Nanjing Normal Univ, Sch Educ Sci, Nanjing, Peoples R China.
EM 220612032@njnu.edu.cn; 210602145@njnu.edu.cn; 210602154@njnu.edu.cn;
li.zhao@njnu.edu.cn
FU National Social Science Fund of China "From Representation to
Generation: A Study of the Symbolic Logic of Online Educational
Resources" [BCA200093]
FX This research was supported by National Social Science Fund of China
"From Representation to Generation: A Study of the Symbolic Logic of
Online Educational Resources" (No. BCA200093) .
CR Alattab AA, 2022, J NANOELECTRON OPTOE, V17, P1577, DOI 10.1166/jno.2022.3355
[Anonymous], 2023, NATURE, V613, P612, DOI 10.1038/d41586-023-00191-1
Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106
Burlina P, 2021, TRANSL VIS SCI TECHN, V10, DOI 10.1167/tvst.10.2.13
Chatterjee J, 2023, PATTERNS, V4, DOI 10.1016/j.patter.2022.100676
Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y
Dencik L, 2022, INTERNET POLICY REV, V11, DOI 10.14763/2022.1.1615
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622
Gupta R, 2021, MOL DIVERS, V25, P1315, DOI 10.1007/s11030-021-10217-3
He W, 2022, INT REV RES OPEN DIS, V23, P25
Hu WJ, 2021, J INTERNET TECHNOL, V22, P765, DOI 10.53106/160792642021072204005
Huang HB, 2019, INT J COMPUT VISION, V127, P763, DOI 10.1007/s11263-019-01154-8
Kushwaha AK, 2024, INFORM SYST FRONT, V26, P857, DOI 10.1007/s10796-021-10184-y
Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790
Lim WM, 2022, PSYCHOL MARKET, V39, P1129, DOI 10.1002/mar.21654
Lundervold AS, 2019, Z MED PHYS, V29, P102, DOI 10.1016/j.zemedi.2018.11.002
McCarthy J, 2007, ARTIF INTELL, V171, P1174, DOI 10.1016/j.artint.2007.10.009
O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537
OpenAI, 2023, About us
Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577
Peres R, 2023, INT J RES MARK, V40, P269, DOI 10.1016/j.ijresmar.2023.03.001
Shang HP, 2022, COMPUT ELECTR ENG, V100, DOI 10.1016/j.compeleceng.2022.107811
Vaswani A, 2017, ADV NEUR IN, V30
Victor BG, 2023, RES SOCIAL WORK PRAC, V33, P511, DOI 10.1177/10497315231166125
Wang JR, 2020, P I MECH ENG D-J AUT, V234, P2719, DOI 10.1177/0954407020923258
Xue ZX, 2020, IET IMAGE PROCESS, V14, P709, DOI 10.1049/iet-ipr.2019.0869
Zeng B, 2020, J INTERNET TECHNOL, V21, P1517, DOI 10.3966/160792642020092105024
Zhu YH, 2019, J COMPUT PHYS, V394, P56, DOI 10.1016/j.jcp.2019.05.024
NR 29
TC 0
Z9 0
U1 19
U2 19
PU LIBRARY & INFORMATION CENTER, NAT DONG HWA UNIV
PI HUALIEN
PA LIBRARY & INFORMATION CENTER, NAT DONG HWA UNIV, HUALIEN, 00000, TAIWAN
SN 1607-9264
EI 2079-4029
J9 J INTERNET TECHNOL
JI J. Internet Technol.
PD MAY
PY 2024
VL 25
IS 3
BP 477
EP 485
DI 10.53106/160792642024052503013
PG 9
WC Computer Science, Information Systems; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Telecommunications
GA SY2U3
UT WOS:001237953600013
DA 2024-09-05
ER
PT C
AU James, M
Palakkat, V
Jones, GJF
AF James, Mathew
Palakkat, Vikas
Jones, Gareth J. F.
GP IEEE
TI Identifying Influential Citations in Scientific Papers
SO 2023 31ST IRISH CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COGNITIVE
SCIENCE, AICS
LA English
DT Proceedings Paper
CT 31st Irish Conference on Artificial Intelligence and Cognitive Science
(AICS)
CY DEC 07-08, 2023
CL Letterkenny, IRELAND
DE citation influence; citation classification; sentiment analysis;
citation analysis
AB The research described in academic papers builds on related existing work. This previous work can be considered as influential if it is used or extended in the current study or non-influential if it is only cited as background material. This study aims to identify influential citations, in particular examining the impact of sentiment associated with citations on citation influence. Our work leverages a set of statistical, contextual and metadata-based features to provide an assessment of the influence of cited works on the current work. Our findings show that sentiment analysis significantly enhances citation classification.
C1 [James, Mathew; Palakkat, Vikas; Jones, Gareth J. F.] Dublin City Univ, Sch Comp, Dublin, Ireland.
[Jones, Gareth J. F.] Dublin City Univ, ADAPT Ctr, Dublin, Ireland.
C3 Dublin City University; Dublin City University
RP James, M (corresponding author), Dublin City Univ, Sch Comp, Dublin, Ireland.
EM mathew.james2@mail.dcu.ie; vikas.palakkat2@mail.dcu.ie;
gareth.jones@dcu.ie
CR Athar A., 2011, P ACL 2011 STUD SESS, P81
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Benesty J, 2009, SPRINGER TOP SIGN PR, V2, P1, DOI 10.1007/978-3-642-00296-0
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Cohan A, 2019, Arxiv, DOI arXiv:1904.01608
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Davis J., 2006, P 23 INT C MACH LEAR, P233, DOI 10.1145/1143844.1143874
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Hassan S.U., 2017, 2017 ACMIEEE JOINT C, P1
Huang H., 2021, Scientometrics, P1
Kim IC, 2015, 2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), P488
Kim TK, 2015, KOREAN J ANESTHESIOL, V68, P540, DOI 10.4097/kjae.2015.68.6.540
Leung KM, 2007, NAIVE BAYESIAN CLASS, P123
Lewis M, 2019, Arxiv, DOI arXiv:1910.13461
Sidorov G, 2014, COMPUT SIST, V18, P491
Thor A, 2016, J INFORMETR, V10, P503, DOI 10.1016/j.joi.2016.02.005
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
Yang ZL, 2019, ADV NEUR IN, V32
NR 19
TC 0
Z9 0
U1 1
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 979-8-3503-6021-9
PY 2023
DI 10.1109/AICS60730.2023.10470500
PG 4
WC Behavioral Sciences; Computer Science, Artificial Intelligence
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Behavioral Sciences; Computer Science
GA BW7SN
UT WOS:001195949100005
DA 2024-09-05
ER
PT J
AU Chen, YJ
Zheng, N
AF Chen, Yanjie
Zheng, Na
TI AI based research on exploration and innovation of development direction
of piano performance teaching in university
SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS
LA English
DT Article
DE AI; Piano teaching; new media
AB This paper investigates the cognition status of information piano education for teachers and students in a university, which mainly includes a summary of the piano teaching status in a university and make an analysis and summary of the investigation results. In addition, this paper puts forward the direction of the network information reform and construction for piano majors in Colleges and universities, mainly including three aspects, that is, taking piano "micro class" teaching to arm traditional classroom teaching, using the new media to build a networked piano learning environment, and building the piano teaching "MOOC" platform.
C1 [Chen, Yanjie] West Anhui Univ, Sch Art, Luan, Anhui, Peoples R China.
[Zheng, Na] Shanghai Donghai Vocat & Tech Coll, Sch Educ, Shanghai, Peoples R China.
C3 West Anhui University
RP Chen, YJ (corresponding author), West Anhui Univ, Sch Art, Luan, Anhui, Peoples R China.
EM chen.yanjie@aol.com
CR Ahilan A, 2019, IEEE ACCESS, V7, P89570, DOI 10.1109/ACCESS.2019.2891632
Allen R, 2013, PSYCHOL MUSIC, V41, P75, DOI 10.1177/0305735611415750
Anbarasan M, 2020, COMPUT COMMUN, V150, P150, DOI 10.1016/j.comcom.2019.11.022
Bautista A, 2012, ESTUD PSICOL-MADRID, V33, P79, DOI 10.1174/021093912799803872
Brenner B, 2013, J RES MUSIC EDUC, V61, P80, DOI 10.1177/0022429412474826
Brown RM, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00320
Elhoseny M, 2017, J INTELL FUZZY SYST, V33, P2305, DOI 10.3233/JIFS-17348
Furuya Shinichi, 2013, BMC Neurosci, V14, P133, DOI 10.1186/1471-2202-14-133
Furuya S, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00173
Goebl W, 2014, J ACOUST SOC AM, V136, P2839, DOI 10.1121/1.4896461
Goebl W, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0050901
HERROJO RM, 2014, FRONT PSYCHOL, V5, P1030
Karthik, INT J PARALLEL PROG
Kawase S, 2014, ATTEN PERCEPT PSYCHO, V76, P527, DOI 10.3758/s13414-013-0568-0
Son L, 2020, IEEE INTELL SYST, V35, P6, DOI 10.1109/MIS.2019.2938441
Prathik A., 2018, J COMPUTATIONAL THEO, V15, P2769, DOI [10.1166/jctn.2018.7537, DOI 10.1166/JCTN.2018.7537]
NR 16
TC 7
Z9 7
U1 5
U2 19
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 1064-1246
EI 1875-8967
J9 J INTELL FUZZY SYST
JI J. Intell. Fuzzy Syst.
PY 2021
VL 40
IS 2
BP 3681
EP 3687
DI 10.3233/JIFS-189402
PG 7
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA QH1ZP
UT WOS:000618076700172
DA 2024-09-05
ER
PT J
AU GEAR, AE
GILLESPI.JS
ALLEN, JM
AF GEAR, AE
GILLESPI.JS
ALLEN, JM
TI APPLICATIONS OF DECISION TREES TO EVALUATION OF APPLIED RESEARCH
PROJECTS
SO JOURNAL OF MANAGEMENT STUDIES
LA English
DT Article
C1 MANCHESTER BUSINESS SCH,MANCHESTER M15 6PB,ENGLAND.
C3 University of Manchester
CR [Anonymous], DECISION ANALYSIS
BEATTIE CJ, 1968, P NATO C
BELL DC, RDHRZ UK CEGB RD DEP
GEAR AE, 1970, P I MANAGEMENT SCIEN
GREEN PE, APPLIED STATISTICS, V15, P173
HESPOS RF, 1965, MANAGE SCI, V11, P244, DOI DOI 10.1287/MNSC.11.10.B244
HESS SW, 1962, IRE T ENGINEERING MA, VEM 9, P170
LOCKETT AG, 1970, J MANAGEMENT STUDIES, V7
MAGEE JF, 1964, HARVARD BUSINESS REV, V42, P157
NR 9
TC 2
Z9 2
U1 0
U2 2
PU BLACKWELL PUBL LTD
PI OXFORD
PA 108 COWLEY RD, OXFORD OX4 1JF, OXON, ENGLAND
SN 0022-2380
J9 J MANAGE STUD
JI J. Manage. Stud.
PY 1972
VL 9
IS 2
BP 172
EP 181
DI 10.1111/j.1467-6486.1972.tb00548.x
PG 10
WC Business; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA M9990
UT WOS:A1972M999000004
DA 2024-09-05
ER
PT C
AU Liu, DW
Liu, HM
Tao, XC
Lu, C
AF Liu Da-wei
Liu Hong-mei
Tao Xiao-chuang
Lu Chen
BE Lee, G
TI Research on Performance Degradation Assessment for Hydraulic Servo
System Based on Fault Observer and SOM Network
SO 2012 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION TECHNOLOGY AND
MANAGEMENT SCIENCE & ENGINEERING (FITMSE 2012)
SE Lecture Notes in Information Technology
LA English
DT Proceedings Paper
CT International Conference on Future Information Technology and Management
Science and Engineering (FITMSE 2012)
CY APR 12-13, 2012
CL HONG KONG
DE fault observer; feature extraction; SOM; performance degradation
assessment
AB Many researches on condition monitoring and fault diagnosis for hydraulic servo system have been carried on, but there are few researches on performance degradation assessment. As well as, there is no suitable method for performance degradation assessment of hydraulic servo system. So a novel method based on fault observer and SOM (Self-organizing Map) network is presented to assess the performance degradation of hydraulic servo system. The fault observer is adopted to generate residual error which can be used to assess the health state of hydraulic servo system. The feature of residual error is extracted in time domain, and then the feature vector is input into the SOM network to realize the performance degradation assessment. Finally, a simulation case is used to validate the effectiveness of the proposed method in accessing the performance degradation of hydraulic servo system.
C1 [Liu Da-wei; Liu Hong-mei; Tao Xiao-chuang; Lu Chen] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China.
C3 Beihang University
RP Liu, DW (corresponding author), Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China.
EM zy1014114@dse.buaa.edu.cn; liuhongmei@buaa.edu.cn;
taoxiaochuang1988@163.com; luchen@buaa.edu.cn
RI Lu, Chen/B-6310-2016; Liu, Dawei/AAD-3130-2019
FU National Nature Science Foundation of China [61074083, 50705005,
51105019]; Technology Foundation Program of National Defense
[Z132010B004]
FX This research is supported by the National Nature Science Foundation of
China (Grant No.61074083, No.50705005 and No.51105019), as well as the
Technology Foundation Program of National Defense (Grant
No.Z132010B004).
CR Guo Hong, 2007, Acta Aeronautica et Astronautica Sinica, V28, P620
Jinqiu Hu, 2011, 2011 Seventh International Conference on Natural Computation (ICNC 2011), P561, DOI 10.1109/ICNC.2011.6021914
Liao L, 2010, EXPERT SYST APPL, V37, P240, DOI 10.1016/j.eswa.2009.05.004
Liu Hong-mei, 2006, Chinese Journal of Aeronautics, V19, P346, DOI 10.1016/S1000-9361(11)60339-7
Ming Tingtao, 2008, China Mechanical Engineering, V19, P1527
Park TG, 2000, IEE P-CONTR THEOR AP, V147, P501, DOI 10.1049/ip-cta:20000639
NR 6
TC 0
Z9 0
U1 0
U2 0
PU INFORMATION ENGINEERING RESEARCH INST, USA
PI NEWARK
PA 100 CONTINENTAL DR, NEWARK, DE 19713 USA
SN 2070-1918
BN 978-1-61275-012-5
J9 LECT NOTE INFORMTECH
PY 2012
VL 14
BP 89
EP 94
PG 6
WC Computer Science, Information Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BG9MP
UT WOS:000393447400015
DA 2024-09-05
ER
PT J
AU Aytac, E
Fombona-Pascual, A
Lado, JJ
Quismondo, EG
Palma, J
Khayet, M
AF Aytac, Ersin
Fombona-Pascual, Alba
Lado, Julio J.
Quismondo, Enrique Garcia
Palma, Jesus
Khayet, Mohamed
TI Faradaic deionization technology: Insights from bibliometric, data
mining and machine learning approaches
SO DESALINATION
LA English
DT Article
DE Biblioshiny; BIRCH clustering algorithm; Faradaic deionization; ISOMAP
dimensionality reduction; SBERT; Text mining
ID MEMBRANE CAPACITIVE DEIONIZATION; ACTIVATED CARBON ELECTRODES;
METAL-OXIDE COATINGS; LONG-TERM STABILITY; WASTE-WATER; DESALINATION
PERFORMANCE; NICKEL HEXACYANOFERRATE; BRACKISH-WATER;
ENERGY-CONSUMPTION; SELECTIVE REMOVAL
AB Faradaic deionization (FDI) is an emerging water treatment technology based on electrodes able to remove ionic species from water by charge transfer reactions. It is a young and promising technology that has attracted much attention due to its large capacity to store ions and the high selectivity of the faradaic electrode materials. This study reviews published papers on FDI from different angles: data mining, bibliometric and machine learning. Metrics such as annual growth rate, most important journals, relevant authors, collaborations maps, sentiment and subjectivity analysis, similarity and clustering analysis were performed. The results indicated that the strong interest in FDI really started in 2016, China is the most active country in FDI, and Desalination is the most important journal publishing FDI articles. The word cloud method showed that the most preferred adopted words are deionization, capacitive, electrode, material. Sentiment analysis results indicated that most of the researchers are optimistic about FDI technology. The title similarity method revealed that FDI researchers were successful in proposing unique and appropriate titles. The clustering approach stressed that FDI literature is concentrated on electrode material production, desalination application, lithium recovery and comparison with CDI.
C1 [Aytac, Ersin] Zonguldak Bulent Ecevit Univ, Dept Environm Engn, TR-67100 Zonguldak, Turkiye.
[Aytac, Ersin; Khayet, Mohamed] Univ Complutense Madrid, Fac Phys, Dept Struct Matter Thermal Phys & Elect, Avda Complutense s-n, Madrid 28040, Spain.
[Aytac, Ersin; Fombona-Pascual, Alba; Lado, Julio J.; Quismondo, Enrique Garcia; Palma, Jesus] IMDEA Energy Inst, Electrochem Proc Unit, Ave Ramon De La Sagra 3, Mostoles 28935, Madrid, Spain.
[Khayet, Mohamed] IMDEA Water Inst, Madrid Inst Adv Studies Water, Calle Punto Net N 4, Madrid 28805, Spain.
C3 Zonguldak Bulent Ecevit University; Complutense University of Madrid;
IMDEA Energy; IMDEA Water Institute
RP Khayet, M (corresponding author), Univ Complutense Madrid, Fac Phys, Dept Struct Matter Thermal Phys & Elect, Avda Complutense s-n, Madrid 28040, Spain.
EM khayetm@fis.ucm.es
RI Khayet, Mohamed/L-3814-2014; Palma, Jesus/G-6914-2015
OI Palma, Jesus/0000-0003-1022-0165; Aytac, Ersin/0000-0002-7124-4438
FU Scientific and Technological Research Council of Turkey (TUBITAK) at the
University Complutense of Madrid (UCM) [2020-T1/AMB-19799]; Talento's
program of the Community of Madrid; [1059B191900618]
FX The basis of the graphical abstract was created with OpenAI's
text-to-image-generation architecture, DALL-E 2. Upon generating the
draft image, the Authors edited the image, and they took the ultimate
responsibility for the content. The Authors would like to acknowledge
OpenAI for their contribution to this article. Dr. Ersin Aytac would
like to express his acknowledgment for the postdoctoral grant received
from the Scientific and Technological Research Council of Turkey
(TUBITAK) at the University Complutense of Madrid (UCM) with grant
number 1059B191900618. Alba Fombona-Pascual and Julio J. Lado would like
to thank the Talento's program of the Community of Madrid, which
involves the project SELECTVALUE (2020-T1/AMB-19799).
CR Abu Khalla S, 2022, ENVIRON SCI TECHNOL, V56, P1413, DOI 10.1021/acs.est.1c07288
Ahn D, 2023, J IND ENG CHEM, V118, P147, DOI 10.1016/j.jiec.2022.10.053
Ahn J, 2020, DESALINATION, V476, DOI 10.1016/j.desal.2019.114216
Ahuja V, 2017, PROCEDIA COMPUT SCI, V122, P17, DOI 10.1016/j.procs.2017.11.336
Al Hamoud A, 2022, J KING SAUD UNIV-COM, V34, P7974, DOI 10.1016/j.jksuci.2022.07.014
Alkhadra M.A., CHEM REV
Anderson MA, 2010, ELECTROCHIM ACTA, V55, P3845, DOI 10.1016/j.electacta.2010.02.012
[Anonymous], 2015, NORMALIZED INT COLLA
Anowar F, 2021, COMPUT SCI REV, V40, DOI 10.1016/j.cosrev.2021.100378
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arnold S, 2021, J MATER CHEM A, V9, P585, DOI 10.1039/d0ta09806j
Atlas I, 2020, J ELECTROCHEM SOC, V167, DOI 10.1149/1945-7111/abb709
Avraham E, 2008, J PHYS CHEM C, V112, P7385, DOI 10.1021/jp711706z
Ayta E., 2022, EUR J SUSTAIN DEV RE, V6, P2542, DOI [10.21601/ejosdr/12167, DOI 10.21601/EJOSDR/12167]
Aytac E., 2021, Fen Ve Muhendislik Bilimleri Dergisi, V21, P958, DOI [10.35414/akufemubid.870649, DOI 10.35414/AKUFEMUBID.870649]
Aytac E, 2023, DESALINATION, V553, DOI 10.1016/j.desal.2023.116482
Aytaç E, 2022, ENVIRON ENG MANAG J, V21, P671
Aytaç E, 2021, ADCAIJ-ADV DISTRIB C, V10, P33, DOI 10.14201/ADCAIJ20211013347
Aytaç E, 2020, INT SOIL WATER CONSE, V8, P321, DOI 10.1016/j.iswcr.2020.05.002
Bales C, 2023, DESALINATION, V557, DOI 10.1016/j.desal.2023.116595
Bales C, 2021, DESALINATION, V502, DOI 10.1016/j.desal.2020.114913
Bales C, 2019, DESALINATION, V453, P37, DOI 10.1016/j.desal.2018.12.001
Bamakan SMH, 2021, BLOCKCHAIN-RES APPL, V2, DOI 10.1016/j.bcra.2021.100019
Bao Y., SMALL
Barcelos KM, 2021, ELECTROCHIM ACTA, V388, DOI 10.1016/j.electacta.2021.138631
Battistel A, 2020, ADV MATER, V32, DOI 10.1002/adma.201905440
Baudino L, 2022, ADV SCI, V9, DOI 10.1002/advs.202201380
Besli MM, 2021, DESALINATION, V517, DOI 10.1016/j.desal.2021.115218
Bibal A., 2021, ARRAY, V11
Biesheuvel PM, 2011, J COLLOID INTERF SCI, V360, P239, DOI 10.1016/j.jcis.2011.04.049
Biesheuvel PM, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.031502
Biesheuvel PM, 2010, J MEMBRANE SCI, V346, P256, DOI 10.1016/j.memsci.2009.09.043
Biesheuvel PM, 2009, J PHYS CHEM C, V113, P5636, DOI 10.1021/jp809644s
Blair J.W., 1960, SALINE WATER CONVERS, V27, P206, DOI DOI 10.1021/BA-1960-0027.CH020
Bo Z, 2022, ENERGY STORAGE MATER, V50, P395, DOI 10.1016/j.ensm.2022.05.042
Borg A, 2020, EXPERT SYST APPL, V162, DOI 10.1016/j.eswa.2020.113746
Bretas VPG, 2021, J BUS RES, V133, P51, DOI 10.1016/j.jbusres.2021.04.067
Cai YM, 2021, DESALINATION, V520, DOI 10.1016/j.desal.2021.115325
Cai YM, 2016, J ELECTROANAL CHEM, V768, P72, DOI 10.1016/j.jelechem.2016.02.041
Calvo EJ, 2019, CURR OPIN ELECTROCHE, V15, P102, DOI 10.1016/j.coelec.2019.04.010
Cao YY, 2023, DESALINATION, V551, DOI 10.1016/j.desal.2023.116409
Castro A.P., 2022, APPL SOFT COMPUT, V124
Cerón MR, 2020, ACS APPL MATER INTER, V12, P42644, DOI 10.1021/acsami.0c07903
Çetinkaya AY, 2020, ENVIRON MONIT ASSESS, V192, DOI 10.1007/s10661-020-08501-0
Cetinkaya AY, 2019, WATER AIR SOIL POLL, V230, DOI 10.1007/s11270-019-4203-0
Chen FM, 2020, CHEM ENG J, V401, DOI 10.1016/j.cej.2020.126111
Chen FM, 2017, ENERG ENVIRON SCI, V10, P2081, DOI 10.1039/c7ee00855d
Chen F, 2017, NANOSCALE, V9, P10101, DOI 10.1039/c7nr01861d
Chen L, 2018, DESALINATION, V439, P93, DOI 10.1016/j.desal.2018.04.012
Chen R, 2020, ENVIRON SCI-WAT RES, V6, P258, DOI [10.1039/C9EW00945K, 10.1039/c9ew00945k]
Chen TH, 2022, RESOUR CONSERV RECY, V177, DOI 10.1016/j.resconrec.2021.106012
Chen WT, 2023, CHEM ENG J, V451, DOI 10.1016/j.cej.2022.139071
Chen YW, 2019, APPL ENERG, V252, DOI 10.1016/j.apenergy.2019.113417
Chen ZQ, 2023, SEP PURIF TECHNOL, V315, DOI 10.1016/j.seppur.2023.123628
Chen ZQ, 2023, CHEM ENG J, V452, DOI 10.1016/j.cej.2022.139451
Chen ZQ, 2022, DESALINATION, V528, DOI 10.1016/j.desal.2022.115616
Cheng YT, 2019, RSC ADV, V9, P24401, DOI 10.1039/c9ra04426d
Choi J, 2019, DESALINATION, V449, P118, DOI 10.1016/j.desal.2018.10.013
Chu ML, 2022, CHEMOSPHERE, V307, DOI 10.1016/j.chemosphere.2022.136024
Chung ST, 2022, ACS SUSTAIN CHEM ENG, V10, P15777, DOI 10.1021/acssuschemeng.2c04546
Cohen I, 2015, ELECTROCHIM ACTA, V153, P106, DOI 10.1016/j.electacta.2014.12.007
Cohen I, 2013, ELECTROCHIM ACTA, V106, P91, DOI 10.1016/j.electacta.2013.05.029
Dai JH, 2020, CHEMSUSCHEM, V13, P2792, DOI 10.1002/cssc.202000188
Ding ZB, 2022, CHEM ENG J, V430, DOI 10.1016/j.cej.2021.133161
Ding ZB, 2019, DESALINATION, V468, DOI 10.1016/j.desal.2019.114078
Dlugolecki P, 2013, ENVIRON SCI TECHNOL, V47, P4904, DOI 10.1021/es3053202
Dorji P, 2022, CHEMOSPHERE, V287, DOI 10.1016/j.chemosphere.2021.132169
Du JX, 2023, ENVIRON CHEM LETT, V21, P885, DOI 10.1007/s10311-023-01561-x
Du JX, 2023, J HAZARD MATER, V442, DOI 10.1016/j.jhazmat.2022.130023
Duan F, 2015, DESALINATION, V376, P17, DOI 10.1016/j.desal.2015.08.009
EGGHE L, 1993, MATH COMPUT MODEL, V18, P63, DOI 10.1016/0895-7177(93)90143-M
Elimelech M., 2021, ENERG ENVIRON SCI, V14, P2494
Elisadiki J, 2020, J ELECTROANAL CHEM, V878, DOI 10.1016/j.jelechem.2020.114588
Elshenawy LM, 2021, PROG NUCL ENERG, V142, DOI 10.1016/j.pnucene.2021.103990
Faheem M, 2023, DESALINATION, V551, DOI 10.1016/j.desal.2023.116435
Farmer J.C., 1995, Capacitive, deionization with carbon aerogel electrodes: Carbonate, sulfate, and phosphate
Ferreira R, 2016, COMPUT SPEECH LANG, V39, P1, DOI 10.1016/j.csl.2016.01.003
Fombona-Pascual A, 2023, CHEM ENG J, V461, DOI 10.1016/j.cej.2023.142001
Freire JMA, 2021, SEP PURIF TECHNOL, V273, DOI 10.1016/j.seppur.2021.118977
Gamaethiralalage JG, 2021, ENERG ENVIRON SCI, V14, P1095, DOI [10.1039/d0ee03145c, 10.1039/D0EE03145C]
Gao F, 2022, ACS APPL MATER INTER, DOI 10.1021/acsami.2c06248
Gao X, 2017, ELECTROCHIM ACTA, V233, P249, DOI 10.1016/j.electacta.2017.03.021
Gao X, 2016, DESALINATION, V399, P16, DOI 10.1016/j.desal.2016.08.006
Gao X, 2016, WATER RES, V92, P275, DOI 10.1016/j.watres.2016.01.048
García-Quismondo E, 2016, ENVIRON SCI TECHNOL, V50, P6053, DOI 10.1021/acs.est.5b05379
García-Quismondo E, 2013, PHYS CHEM CHEM PHYS, V15, P7648, DOI [10.1039/c3cp50514f, 10.1039/C3CP50919B]
Geng C, 2022, J ELECTROANAL CHEM, V914, DOI 10.1016/j.jelechem.2022.116298
Ghimire U, 2021, DESALINATION, V503, DOI 10.1016/j.desal.2020.114929
Gong A, 2021, DESALINATION, V505, DOI 10.1016/j.desal.2021.114997
Guha A., 2022, TRANSPORT RES C-EMER, V142
Guo JQ, 2022, DESALINATION, V528, DOI 10.1016/j.desal.2022.115622
Guo L, 2017, NANOSCALE, V9, P13305, DOI 10.1039/c7nr03579a
Guyes EN, 2021, NPJ CLEAN WATER, V4, DOI 10.1038/s41545-021-00109-2
Han LC, 2013, ELECTROCHIM ACTA, V90, P573, DOI 10.1016/j.electacta.2012.11.069
Hand S, 2019, ENVIRON SCI TECHNOL, V53, P13353, DOI 10.1021/acs.est.9b04347
Hassanvand A, 2018, WATER RES, V131, P100, DOI 10.1016/j.watres.2017.12.015
Hawks SA, 2019, ENVIRON SCI TECHNOL, V53, P10863, DOI 10.1021/acs.est.9b01374
He T, 2022, NEUROPHARMACOLOGY, V218, DOI 10.1016/j.neuropharm.2022.109207
Hou CH, 2013, DESALINATION, V314, P124, DOI 10.1016/j.desal.2012.12.029
Hou SJ, 2018, CHEM ENG J, V337, P398, DOI 10.1016/j.cej.2017.12.120
Hsu CC, 2020, DESALINATION, V481, DOI 10.1016/j.desal.2020.114362
Huang HY, 2023, CHEM ENG J, V457, DOI 10.1016/j.cej.2023.141373
Huang X, 2017, ENVIRON SCI-WAT RES, V3, P875, DOI [10.1039/c7ew00138j, 10.1039/C7EW00138J]
Huang XK, 2019, ENVIRON SCI-NANO, V6, P3225, DOI [10.1039/c9en00730j, 10.1039/C9EN00730J]
Huang YX, 2019, DESALINATION, V451, P241, DOI 10.1016/j.desal.2018.02.006
Huang Z, 2016, J HAZARD MATER, V302, P323, DOI 10.1016/j.jhazmat.2015.09.064
Huang ZH, 2017, J MATER CHEM A, V5, P470, DOI 10.1039/c6ta06733f
Huber JC, 1998, INFORM PROCESS MANAG, V34, P471, DOI 10.1016/S0306-4573(98)00013-2
Jeon SI, 2013, ENERG ENVIRON SCI, V6, P1471, DOI 10.1039/c3ee24443a
Ji WW, 2022, CHEM ENG J, V427, DOI 10.1016/j.cej.2021.130807
Jones E, 2019, SCI TOTAL ENVIRON, V657, P1343, DOI 10.1016/j.scitotenv.2018.12.076
Juchen PT, 2022, CHEM ENG J, V429, DOI 10.1016/j.cej.2021.132209
Kalfa A, 2020, CHEMOSPHERE, V241, DOI 10.1016/j.chemosphere.2019.125003
Kang JS, 2022, ENVIRON SCI TECHNOL, V56, P12602, DOI 10.1021/acs.est.2c03913
Kashina M, 2020, PROCEDIA COMPUT SCI, V178, P284, DOI 10.1016/j.procs.2020.11.030
Kassavin MH, 2022, CURR PROBL DIAGN RAD, V51, P478, DOI 10.1067/j.cpradiol.2021.08.002
Khalla SA, 2019, DESALINATION, V467, P257, DOI 10.1016/j.desal.2019.04.031
Khayet M, 2022, DESALINATION, V543, DOI 10.1016/j.desal.2022.116095
Kim B, 2020, J POWER SOURCES, V448, DOI 10.1016/j.jpowsour.2019.227384
Kim H, 2023, DESALINATION, V549, DOI 10.1016/j.desal.2022.116350
Kim K, 2021, ISCIENCE, V24, DOI 10.1016/j.isci.2021.102374
Kim N, 2021, DESALINATION, V503, DOI 10.1016/j.desal.2021.114950
Kim N, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10020683
Kim N, 2020, DESALINATION, V479, DOI 10.1016/j.desal.2020.114315
Kim N, 2019, ACS SUSTAIN CHEM ENG, V7, P16182, DOI 10.1021/acssuschemeng.9b03121
Kim S, 2016, ELECTROCHIM ACTA, V203, P265, DOI 10.1016/j.electacta.2016.04.056
Kim S, 2019, ENVIRON SCI-PROC IMP, V21, P667, DOI 10.1039/c8em00498f
Kim S, 2018, ENVIRON SCI-WAT RES, V4, P175, DOI 10.1039/c7ew00454k
Kim T, 2017, ENVIRON SCI TECH LET, V4, P444, DOI 10.1021/acs.estlett.7b00392
Kim Y, 2023, DESALINATION, V550, DOI 10.1016/j.desal.2023.116406
Kong H, 2019, ENERGY TECHNOL-GER, V7, DOI 10.1002/ente.201900835
Kong WQ, 2023, DESALINATION, V553, DOI 10.1016/j.desal.2023.116452
Koseoglu MA, 2022, J HOSP TOUR MANAG, V52, P316, DOI 10.1016/j.jhtm.2022.07.002
Kumar S, 2021, J BUS RES, V134, P275, DOI 10.1016/j.jbusres.2021.05.041
Kyaw HH, 2020, J HAZARD MATER, V385, DOI 10.1016/j.jhazmat.2019.121565
Lado JJ, 2021, DESALINATION, V501, DOI 10.1016/j.desal.2020.114912
Lado JJ, 2019, ACS SUSTAIN CHEM ENG, V7, P18992, DOI 10.1021/acssuschemeng.9b04504
Lado JJ, 2017, J ANAL APPL PYROL, V126, P143, DOI 10.1016/j.jaap.2017.06.014
Lado JJ, 2017, SEP PURIF TECHNOL, V183, P145, DOI 10.1016/j.seppur.2017.03.071
Lado JJ, 2016, J ANAL APPL PYROL, V120, P389, DOI 10.1016/j.jaap.2016.06.009
Lado JJ, 2015, J ENVIRON CHEM ENG, V3, P2358, DOI 10.1016/j.jece.2015.08.025
Landon J, 2019, CURR OPIN CHEM ENG, V25, P1, DOI 10.1016/j.coche.2019.06.006
Lang A., 2022, INFORM SYST, V108
Laxman K, 2015, DESALINATION, V362, P126, DOI 10.1016/j.desal.2015.02.010
Lee JB, 2006, DESALINATION, V196, P125, DOI 10.1016/j.desal.2006.01.011
Lee J, 2018, ACS SUSTAIN CHEM ENG, V6, P10815, DOI 10.1021/acssuschemeng.8b02123
Lee J, 2017, ACS OMEGA, V2, P1653, DOI 10.1021/acsomega.6b00526
Lee J, 2014, ENERG ENVIRON SCI, V7, P3683, DOI 10.1039/c4ee02378a
Lee J, 2013, PHYS CHEM CHEM PHYS, V15, P7690, DOI 10.1039/c3cp50919b
Lee J, 2021, DESALINATION, V515, DOI 10.1016/j.desal.2021.115188
Lee J, 2019, J MATER CHEM A, V7, P4175, DOI 10.1039/c8ta10087j
Lee J, 2018, CHEMSUSCHEM, V11, P3460, DOI 10.1002/cssc.201801538
Lee J, 2017, CHEMSUSCHEM, V10, P3611, DOI 10.1002/cssc.201701215
Leelawat N, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e10894
Leong ZY, 2019, ACS APPL MATER INTER, V11, P13176, DOI 10.1021/acsami.8b20880
Li B, 2022, DESALINATION, V539, DOI 10.1016/j.desal.2022.115955
Li BF, 2022, J MATER CHEM A, V10, P24905, DOI 10.1039/d2ta07929a
Li DP, 2020, DESALINATION, V482, DOI 10.1016/j.desal.2020.114374
Li Q, 2020, ADV SCI, V7, DOI 10.1002/advs.202002213
Li YJ, 2022, ENVIRON RES, V212, DOI 10.1016/j.envres.2022.113331
Li YQ, 2020, DESALINATION, V481, DOI 10.1016/j.desal.2020.114379
Liang MJ, 2022, RENEW SUST ENERG REV, V155, DOI 10.1016/j.rser.2021.111864
Liang P, 2013, WATER RES, V47, P2523, DOI 10.1016/j.watres.2013.02.037
Lipson AL, 2016, J POWER SOURCES, V325, P646, DOI 10.1016/j.jpowsour.2016.06.019
Liu LY, 2021, DESALINATION, V498, DOI 10.1016/j.desal.2020.114794
Liu PY, 2017, J MATER CHEM A, V5, P13907, DOI 10.1039/c7ta02653f
Liu QC, 2018, PHYSICA A, V506, P532, DOI 10.1016/j.physa.2018.04.031
Liu WA, 2023, MECH SYST SIGNAL PR, V184, DOI 10.1016/j.ymssp.2022.109724
Liu XT, 2021, ACS ES&T ENG, V1, P261, DOI 10.1021/acsestengg.0c00094
Liu XT, 2020, ENVIRON SCI TECHNOL, V54, P15516, DOI 10.1021/acs.est.0c06549
Liu YH, 2020, MICROPOR MESOPOR MAT, V303, DOI 10.1016/j.micromeso.2020.110303
Liu Y, 2021, ACS NANO, V15, P13924, DOI 10.1021/acsnano.1c03417
Liu Y, 2015, RSC ADV, V5, P15205, DOI 10.1039/c4ra14447c
Liu ZZ, 2021, GLOB CHALL, V5, DOI 10.1002/gch2.202000054
Liu ZZ, 2020, ENVIRON SCI-WAT RES, V6, P283, DOI 10.1039/c9ew00939f
Lorbeer B, 2018, BIG DATA RES, V11, P44, DOI 10.1016/j.bdr.2017.09.002
Loria S., 2018, Textblob documentation
Lu D, 2017, DESALINATION, V424, P53, DOI 10.1016/j.desal.2017.09.026
Ma JX, 2016, ENVIRON SCI TECHNOL, V50, P13495, DOI 10.1021/acs.est.6b03424
Marengo D, 2022, PSYCHIAT RES, V316, DOI 10.1016/j.psychres.2022.114753
Massimo A., 2017, BIBLIOSHINY BIBLIOME
Massimo A., 2022, BRIEF INTRO BIBLIOME
McClelland S, 2019, REP PRACT ONCOL RADI, V24, P294, DOI 10.1016/j.rpor.2019.03.005
Metzger M, 2020, ENERG ENVIRON SCI, V13, P1544, DOI [10.1039/D0EE00725K, 10.1039/d0ee00725k]
Mohandass G, 2021, ACS EST ENG, V1, P1678, DOI 10.1021/acsestengg.1c00266
Monshizadeh M, 2022, J NETW COMPUT APPL, V207, DOI 10.1016/j.jnca.2022.103513
Mousset E, 2022, CURR OPIN ELECTROCHE, V35, DOI 10.1016/j.coelec.2022.101105
Mukherjee D, 2022, J BUS RES, V148, P101, DOI 10.1016/j.jbusres.2022.04.042
Muller M., 2022, PROCEDIA CIRP, V107, P179
Tran NAT, 2022, APPL SURF SCI, V579, DOI 10.1016/j.apsusc.2021.152154
Nie CY, 2012, J ELECTROANAL CHEM, V666, P85, DOI 10.1016/j.jelechem.2011.12.006
OECD, 2009, OECD SCI TECHNOLOGY
Oliveira KSGC, 2023, CHEM ENG J, V457, DOI 10.1016/j.cej.2022.141059
Omosebi A, 2020, ENVIRON SCI-WAT RES, V6, P321, DOI [10.1039/c9ew00797k, 10.1039/C9EW00797K]
Orange_Data_Mining_Tool, 1996, DIST WIDG
Oren Y, 2008, DESALINATION, V228, P10, DOI 10.1016/j.desal.2007.08.005
Oyarzun DI, 2018, WATER RES X, V1, DOI 10.1016/j.wroa.2018.100008
Pan J, 2021, PATTERN RECOGN LETT, V151, P88, DOI 10.1016/j.patrec.2021.08.004
Pang TT, 2022, DESALINATION, V527, DOI 10.1016/j.desal.2022.115562
Pasta M, 2012, NANO LETT, V12, P839, DOI 10.1021/nl203889e
Pastushok O, 2019, CHEM ENG J, V375, DOI 10.1016/j.cej.2019.121943
Pattle S., 2021, OR SURG OR MED OR PA, V132, P33
Peng Z, 2013, APPL SURF SCI, V282, P965, DOI 10.1016/j.apsusc.2013.06.107
Perez-Antolin D, 2022, DESALINATION, V533, DOI 10.1016/j.desal.2022.115764
Petukhova A, 2022, SOFTWAREX, V19, DOI 10.1016/j.softx.2022.101122
Poirier J., 2015, BENEFITS INT COAUTHO
Porada S, 2014, J MATER CHEM A, V2, P9313, DOI 10.1039/c4ta01783h
Porada S, 2013, PROG MATER SCI, V58, P1388, DOI 10.1016/j.pmatsci.2013.03.005
Porada S, 2017, ELECTROCHIM ACTA, V255, P369, DOI 10.1016/j.electacta.2017.09.137
Porada S, 2015, CHEMSUSCHEM, V8, P1867, DOI [10.1002/cssc.201500696, 10.1002/cssc.201500166]
Pothanamkandathil V, 2022, ENVIRON SCI-WAT RES, V8, P1489, DOI [10.1039/d2ew00188h, 10.1039/D2EW00188H]
Pothanamkandathil V, 2020, ENVIRON SCI TECHNOL, V54, P3653, DOI 10.1021/acs.est.9b07311
Prakash R., 2022, INT J INFORM MANAGE, V2
Ramalingam K, 2021, ACS SUSTAIN CHEM ENG, V9, P12779, DOI 10.1021/acssuschemeng.1c03263
Reimers N., 2019, arXiv
Said IA, 2022, CHEM ENG PROCESS, V178, DOI 10.1016/j.cep.2022.109030
Santos C, 2022, CURR OPIN ELECTROCHE, V35, DOI 10.1016/j.coelec.2022.101089
Santos C, 2021, CARBON, V176, P390, DOI 10.1016/j.carbon.2021.01.148
Santos C, 2020, ELECTROCHIM ACTA, V330, DOI 10.1016/j.electacta.2019.135216
Santos C, 2018, J MATER CHEM A, V6, P10898, DOI 10.1039/c8ta01128a
Sayed DM, 2021, SEP PURIF TECHNOL, V266, DOI 10.1016/j.seppur.2021.118597
Sayed ET, 2021, CHEMOSPHERE, V275, DOI 10.1016/j.chemosphere.2021.130001
Sebti E., 2021, ENERG ENVIRON SCI, DOI [10.1039/D0EE03321A,EnergyEnviron.Sci.14(, DOI 10.1039/D0EE03321A,ENERGYENVIRON.SCI.14]
Semeraro F., 2023, ROBOT CIM-INT MANUF, V79
Seo SJ, 2010, WATER RES, V44, P2267, DOI 10.1016/j.watres.2009.10.020
Shi L, 2022, ENVIRON SCI TECHNOL, V56, P8932, DOI 10.1021/acs.est.2c01586
Shi L, 2022, CHEM ENG J, V435, DOI 10.1016/j.cej.2022.135001
Shi L, 2021, ENVIRON SCI TECHNOL, V55, P5412, DOI 10.1021/acs.est.0c08629
Shi WH, 2021, ACS APPL MATER INTER, V13, P21149, DOI 10.1021/acsami.1c00089
Shiu HY, 2019, DESALINATION, V468, DOI 10.1016/j.desal.2019.114087
Shocron AN, 2022, ENVIRON SCI TECH LET, V9, P889, DOI 10.1021/acs.estlett.2c00551
Shrivastava A, 2022, ACS APPL MATER INTER, V14, P30672, DOI 10.1021/acsami.2c03261
Silambarasan K, 2019, ENERGY TECHNOL-GER, V7, DOI 10.1002/ente.201800601
Silva AP, 2021, SEP PURIF TECHNOL, V271, DOI 10.1016/j.seppur.2021.118872
Singh K, 2020, DESALINATION, V496, DOI 10.1016/j.desal.2020.114647
Singh K, 2019, DESALINATION, V455, P115, DOI 10.1016/j.desal.2018.12.015
Singh K, 2020, DESALINATION, V481, DOI 10.1016/j.desal.2020.114346
Singh KN., 2022, INT J INF MANAG DATA, V2, P100061, DOI DOI 10.1016/J.JJIMEI.2022.100061
Smith KC, 2016, J ELECTROCHEM SOC, V163, pA530, DOI 10.1149/2.0761603jes
Srimuk P, 2020, NAT REV MATER, V5, P517, DOI 10.1038/s41578-020-0193-1
Srimuk P, 2017, J MATER CHEM A, V5, P15640, DOI 10.1039/c7ta03120c
Srimuk P, 2016, J MATER CHEM A, V4, P18265, DOI 10.1039/c6ta07833h
Sriramulu D, 2019, RSC ADV, V9, P14884, DOI 10.1039/c9ra01872g
Sriramulu D, 2019, NANOSCALE, V11, P5896, DOI 10.1039/c8nr09119f
Sufiani O, 2019, J ELECTROANAL CHEM, V848, DOI 10.1016/j.jelechem.2019.113328
Sun JQ, 2023, ENVIRON RES, V218, DOI 10.1016/j.envres.2022.114987
Sun Y, 2022, CHEM ENG J, V443, DOI 10.1016/j.cej.2022.136542
Sun Y, 2021, SEP PURIF TECHNOL, V256, DOI 10.1016/j.seppur.2020.117807
Suss ME, 2015, ENERG ENVIRON SCI, V8, P2296, DOI [10.1039/C5EE00519A, 10.1039/c5ee00519a]
Suss ME, 2018, JOULE, V2, P10, DOI 10.1016/j.joule.2017.12.010
Sussz ME, 2017, J ELECTROCHEM SOC, V164, pE270, DOI 10.1149/2.1201709jes
Taha MM, 2023, DESALINATION, V546, DOI 10.1016/j.desal.2022.116219
Taha MM, 2021, DESALINATION, V511, DOI 10.1016/j.desal.2021.115099
Tan C, 2018, WATER RES, V147, P276, DOI 10.1016/j.watres.2018.09.056
Tang J, 2022, J POLYM SCI, V60, P3035, DOI 10.1002/pol.20220169
Tang KX, 2019, J MATER CHEM A, V7, P26693, DOI 10.1039/c9ta08663c
Tang WW, 2017, WATER RES, V121, P302, DOI 10.1016/j.watres.2017.05.046
Tang WW, 2017, WATER RES, V120, P229, DOI 10.1016/j.watres.2017.05.009
Tang WW, 2016, WATER RES, V99, P112, DOI 10.1016/j.watres.2016.04.047
Tang WW, 2015, WATER RES, V84, P342, DOI 10.1016/j.watres.2015.08.012
Thakur D., 2011, P ATLANTA C SCI INNO, P1
Torkamanzadeh M, 2020, ACS APPL MATER INTER, V12, P26013, DOI 10.1021/acsami.0c05975
Tullu MS, 2019, SAUDI J ANAESTH, V13, P12, DOI 10.4103/sja.SJA_685_18
Uwayid R, 2022, WATER RES, V210, DOI 10.1016/j.watres.2021.117959
Uwayid R, 2021, CARBON, V173, P1105, DOI 10.1016/j.carbon.2020.11.045
Vafakhah S, 2020, DESALINATION, V493, DOI 10.1016/j.desal.2020.114662
Wang HY, 2019, CARBON, V153, P12, DOI 10.1016/j.carbon.2019.06.066
Wang JP, 2020, INFORMATION, V11, DOI 10.3390/info11090421
Wang J, 2022, CITIES, V129, DOI 10.1016/j.cities.2022.103925
Wang K, 2022, CHEM ENG J, V433, DOI 10.1016/j.cej.2021.133578
Wang K, 2022, DESALINATION, V522, DOI 10.1016/j.desal.2021.115420
Wang K, 2022, J COLLOID INTERF SCI, V608, P2752, DOI 10.1016/j.jcis.2021.11.006
Wang L, 2021, CURR OPIN ELECTROCHE, V29, DOI 10.1016/j.coelec.2021.100758
Wang RY, 2015, ADV ENERGY MATER, V5, DOI 10.1002/aenm.201401869
Wang RH, 2022, J MATER CHEM A, V10, P6414, DOI 10.1039/d1ta10783f
Wang RZ, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09319
Wang SY, 2021, DESALINATION, V520, DOI 10.1016/j.desal.2021.115341
Wang SY, 2020, ACS APPL MATER INTER, V12, P44049, DOI 10.1021/acsami.0c12421
Wang SY, 2019, ENVIRON SCI-NANO, V6, P2379, DOI 10.1039/c9en00545e
Wang SY, 2019, ENVIRON SCI TECHNOL, V53, P6292, DOI 10.1021/acs.est.9b00662
Wang SF, 2020, MATER TODAY COMMUN, V23, DOI 10.1016/j.mtcomm.2020.100904
Wang XN, 2022, J AFFECT DISORDERS, V317, P107, DOI 10.1016/j.jad.2022.08.054
Wang XR, 2022, ACS APPL MATER INTER, V14, P53150, DOI 10.1021/acsami.2c14999
Wang Y, 2023, INFORM SYST, V111, DOI 10.1016/j.is.2022.102124
Wang Y, 2020, CHEM ENG J, V392, DOI 10.1016/j.cej.2019.123698
Wang YN, 2023, ENVIRON TECHNOL INNO, V29, DOI 10.1016/j.eti.2022.102972
Welgemoed TJ, 2005, DESALINATION, V183, P327, DOI 10.1016/j.desal.2005.02.054
Wouters JJ, 2018, J ELECTROCHEM SOC, V165, pE148, DOI 10.1149/2.0271805jes
Wouters JJ, 2016, J ELECTROCHEM SOC, V163, pA2733, DOI 10.1149/2.0911613jes
Wouters JJ, 2013, ELECTROCHIM ACTA, V112, P763, DOI 10.1016/j.electacta.2013.08.170
Wu L, 2022, WATER RES, V221, DOI 10.1016/j.watres.2022.118822
Wu TT, 2018, ENVIRON SCI TECH LET, V5, P98, DOI 10.1021/acs.estlett.7b00540
Xie P., 2013, ARXIV
Xie RX, 2023, ENERGY MATER ADV, V4, DOI 10.34133/energymatadv.0009
Xing WL, 2020, DESALINATION, V482, DOI 10.1016/j.desal.2020.114390
Xu DC, 2020, ACS APPL MATER INTER, V12, P57671, DOI 10.1021/acsami.0c15413
Xu LM, 2023, J COLLOID INTERF SCI, V630, P372, DOI 10.1016/j.jcis.2022.10.140
Xu P, 2008, WATER RES, V42, P2605, DOI 10.1016/j.watres.2008.01.011
Yang F, 2021, WATER RES, V200, DOI 10.1016/j.watres.2021.117222
Yoon H, 2019, SEP PURIF TECHNOL, V215, P190, DOI 10.1016/j.seppur.2018.12.071
Yoon H, 2017, DESALINATION, V422, P42, DOI 10.1016/j.desal.2017.08.010
Younes H, 2022, ENVIRON TECHNOL INNO, V28, DOI 10.1016/j.eti.2022.102858
Yu F, 2019, J MATER CHEM A, V7, P15999, DOI 10.1039/c9ta01264h
Yu TH, 2016, DESALINATION, V399, P53, DOI 10.1016/j.desal.2016.08.007
Yue ZS, 2019, DESALINATION, V449, P69, DOI 10.1016/j.desal.2018.10.018
Zafra MC, 2014, ELECTROCHIM ACTA, V135, P208, DOI 10.1016/j.electacta.2014.04.182
Zavahir S, 2021, DESALINATION, V500, DOI 10.1016/j.desal.2020.114883
Zhang BJ, 2022, CHEM ENG J, V435, DOI 10.1016/j.cej.2022.134959
Zhang CY, 2021, ENVIRON SCI TECHNOL, V55, P4243, DOI 10.1021/acs.est.0c06552
Zhang CY, 2018, WATER RES, V128, P314, DOI 10.1016/j.watres.2017.10.024
Zhang J, 2020, SEP PURIF TECHNOL, V237, DOI 10.1016/j.seppur.2019.116322
Zhang P, 2021, J MATER CHEM A, V9, P22913, DOI 10.1039/d1ta06094e
Zhang QY, 2020, J MATER CHEM A, V8, P15417, DOI 10.1039/d0ta03727c
Zhang XD, 2020, ENVIRON SCI-WAT RES, V6, P243, DOI [10.1039/c9ew00835g, 10.1039/C9EW00835G]
Zhao JX, 2022, ADV SCI, V9, DOI 10.1002/advs.202201678
Zhao R, 2013, WATER RES, V47, P1941, DOI 10.1016/j.watres.2013.01.025
Zhao R, 2012, J COLLOID INTERF SCI, V384, P38, DOI 10.1016/j.jcis.2012.06.022
Zhao YJ, 2013, DESALINATION, V324, P127, DOI 10.1016/j.desal.2013.06.009
Zhao YB, 2021, ACS SUSTAIN CHEM ENG, V9, P2496, DOI 10.1021/acssuschemeng.0c07823
Zhao YB, 2019, ENVIRON SCI-NANO, V6, P3091, DOI 10.1039/c9en00759h
Zhou F, 2018, SEP PURIF TECHNOL, V191, P322, DOI 10.1016/j.seppur.2017.09.058
Zhou RJ, 2020, DESALINATION, V478, DOI 10.1016/j.desal.2019.114301
Zhou RX, 2022, PATTERN RECOGN, V124, DOI 10.1016/j.patcog.2021.108450
Zhu EH, 2019, SEP PURIF TECHNOL, V215, P454, DOI 10.1016/j.seppur.2019.01.004
Zornitta RL, 2022, SEP PURIF TECHNOL, V290, DOI 10.1016/j.seppur.2022.120807
Zornitta RL, 2017, CARBON, V123, P318, DOI 10.1016/j.carbon.2017.07.071
Zornitta RL, 2018, CHEMSUSCHEM, V11, P2101, DOI 10.1002/cssc.201800689
Zuo YQ, 2023, CHEM ENG J, V463, DOI 10.1016/j.cej.2023.142332
NR 328
TC 9
Z9 9
U1 22
U2 61
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0011-9164
EI 1873-4464
J9 DESALINATION
JI Desalination
PD OCT 1
PY 2023
VL 563
AR 116715
DI 10.1016/j.desal.2023.116715
EA JUN 2023
PG 24
WC Engineering, Chemical; Water Resources
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Water Resources
GA K2ZW5
UT WOS:001015182800001
OA hybrid
DA 2024-09-05
ER
PT J
AU Vieira, C
Ortega-Alvarez, JD
Magana, AJ
Boutin, M
AF Vieira, Camilo
Ortega-Alvarez, Juan D.
Magana, Alejandra J.
Boutin, Mireille
TI Beyond analytics: Using computer-aided methods in educational research
to extend qualitative data analysis
SO COMPUTER APPLICATIONS IN ENGINEERING EDUCATION
LA English
DT Article; Early Access
DE assessment triangle; clustering algorithms; computer-aided methods; data
analysis; education research; machine learning; qualitative methods;
visualization
ID COMPUTATIONAL THINKING; ASSESSMENT TRIANGLE; SCIENCE; CONCEPTIONS;
DEVELOP
AB This study proposes and demonstrates how computer-aided methods can be used to extend qualitative data analysis by quantifying qualitative data, and then through exploration, categorization, grouping, and validation. Computer-aided approaches to inquiry have gained important ground in educational research, mostly through data analytics and large data set processing. We argue that qualitative data analysis methods can also be supported and extended by computer-aided methods. In particular, we posit that computing capacities rationally applied can expand the innate human ability to recognize patterns and group qualitative information based on similarities. We propose a principled approach to using machine learning in qualitative education research based on the three interrelated elements of the assessment triangle: cognition, observation, and interpretation. Through the lens of the assessment triangle, the study presents three examples of qualitative studies in engineering education that have used computer-aided methods for visualization and grouping. The first study focuses on characterizing students' written explanations of programming code, using tile plots and hierarchical clustering with binary distances to identify the different approaches that students used to self-explain. The second study looks into students' modeling and simulation process and elicits the types of knowledge that they used in each step through a think-aloud protocol. For this purpose, we used a bubble plot and a k-means clustering algorithm. The third and final study explores engineering faculty's conceptions of teaching, using data from semi-structured interviews. We grouped these conceptions based on coding similarities, using Jaccard's similarity coefficient, and visualized them using a treemap. We conclude this manuscript by discussing some implications for engineering education qualitative research.
C1 [Vieira, Camilo] Univ Norte, Dept Educ, Barranquilla 080020, Colombia.
[Ortega-Alvarez, Juan D.] Virginia Tech, Dept Engn Educ, Blacksburg, VA USA.
[Ortega-Alvarez, Juan D.] Univ EAFIT, Escuela Ciencias Aplicadas & Ingn, Medellin, Colombia.
[Magana, Alejandra J.] Purdue Univ, Dept Comp & Informat Technol, W Lafayette, IN USA.
[Magana, Alejandra J.] Purdue Univ, Sch Engn Educ, W Lafayette, IN USA.
[Boutin, Mireille] Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands.
[Boutin, Mireille] Purdue Univ, Dept Math, W Lafayette, IN USA.
C3 Universidad del Norte Colombia; Virginia Polytechnic Institute & State
University; Universidad EAFIT; Purdue University System; Purdue
University; Purdue University System; Purdue University; Eindhoven
University of Technology; Purdue University System; Purdue University
RP Vieira, C (corresponding author), Univ Norte, Dept Educ, Barranquilla 080020, Colombia.
EM cvieira@uninorte.edu.co
RI Ortega-Alvarez, Juan David/AAN-1404-2020
OI Ortega-Alvarez, Juan David/0000-0001-6110-0791; Magana,
Alejandra/0000-0001-6117-7502; Boutin, Mireille/0000-0002-0837-6577
FU National Science Foundation [DGE-2219271, EEC-1826099]; U.S. National
Science Foundation
FX This research was supported in part by the U.S. National Science
Foundation under awards No. DGE-2219271 and EEC-1826099. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.
CR [Anonymous], 2002, Scientific research in education: Committee on scientific principles for education research
Arboleda M., 2023, 2023 IEEE Front. Education Conference FIE, P1, DOI [10.1109/FIE58773.2023.10343043, DOI 10.1109/FIE58773.2023.10343043]
Atkinson RK, 2000, REV EDUC RES, V70, P181, DOI 10.3102/00346543070002181
Bakharia A, 2016, PROCEEDINGS OF THE THIRD (2016) ACM CONFERENCE ON LEARNING @ SCALE (L@S 2016), P253, DOI 10.1145/2876034.2893427
Berdanier C., 2020, PROC FRONT EDUC CONF, P1, DOI DOI 10.1109/fie44824.2020.9274115
Bessler L., 2023, Visual Data insights using SAS ODS graphics: a guide to communicationeffective data visualization, P263, DOI [10.1007/978-1-4842-8609-87, DOI 10.1007/978-1-4842-8609-87]
Chiuand J. L., 2014, Applying science of learning in education: Infusing psychological science into the curriculum, P91
Clarke V, 2013, PSYCHOLOGIST, V26, P120
Evergreen Stephanie D.H., 2019, Effective data visualization: The right chart for the right data
Everitt BS., 2011, CLUSTER ANAL, V5, DOI DOI 10.1002/9780470977811
Gillies M., 2022, ArXiv, V2210
Glaser R.J., 2001, Knowing what students know: the science and design of educational assessment
Ikotun AM, 2023, INFORM SCIENCES, V622, P178, DOI 10.1016/j.ins.2022.11.139
Klasnja-Milicevic A, 2017, COMPUT APPL ENG EDUC, V25, P1066, DOI 10.1002/cae.21844
Kleinheksel AJ, 2020, AM J PHARM EDUC, V84, P127, DOI 10.5688/ajpe7113
Kochmar E, 2020, LECT NOTES ARTIF INT, V12164, P140, DOI 10.1007/978-3-030-52240-7_26
Kong N, 2010, IEEE T VIS COMPUT GR, V16, P990, DOI 10.1109/TVCG.2010.186
Lyon EG, 2011, J SCI TEACH EDUC, V22, P417, DOI 10.1007/s10972-011-9241-4
Magana A. J., 2018, 2018 IEEE Front. Educ. Conf. (FIE), P1
Magana AJ, 2019, J ENG EDUC, V108, P276, DOI 10.1002/jee.20264
Marion S.F., 2006, Educational Measurement: Issues Practice, V25, P47
National Academies of Sciences Engineering Medicine, 2016, Promising practices for strengthening the regional STEM workforce development ecosystem
Niwattanakul Suphakit, 2013, IMECS 2013 Proceedings of International Multiconference of Engineers and Computer Scientists, P380
Ortega-Alvarez J.D., 2019, Conceptions of teaching among Colombian engineering faculty: An exploratory study [PhD Thesis]. Purdue University Graduate School
Pellegrino JW, 2020, EDUC MEAS-ISSUES PRA, V39, P81, DOI 10.1111/emip.12372
Picciano AG., 2012, Journal of Asynchronous Learning Networks, V16, P9, DOI DOI 10.24059/OLJ.V16I3.267
PRATT DD, 1992, ADULT EDUC QUART, V42, P203, DOI 10.1177/074171369204200401
SAMUELOWICZ K, 1992, HIGH EDUC, V24, P93, DOI 10.1007/BF00138620
Shavelson R., 2003, Evaluating new approaches to assessing learning
Shiflet AB., 2014, Introduction to Computational Science: Modeling and Simulation for the Sciences
Streveler RA, 2011, INT J ENG EDUC, V27, P968
Tamasauskas D, 2012, 2012 12TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS (HIS), P421, DOI 10.1109/HIS.2012.6421371
Taub R, 2015, COMPUT EDUC, V87, P10, DOI 10.1016/j.compedu.2015.03.013
van den Haak M, 2003, BEHAV INFORM TECHNOL, V22, P339, DOI 10.1080/0044929031000
Vieira C., 2017, 2017 IEEE Front. Educ. Conf. FIE, P1, DOI [10.1109/FIE.2017.8190592, DOI 10.1109/FIE.2017.8190592]
Vieira C, 2023, EDUC TECHNOL SOC, V26, P155, DOI 10.30191/ETS.202307_26(3).0012
Vieira C, 2019, PROC FRONT EDUC CONF, DOI 10.1109/fie43999.2019.9028599
Vieira C, 2019, COGNITION INSTRUCT, V37, P201, DOI 10.1080/07370008.2018.1539738
Vieira C, 2018, COMPUT APPL ENG EDUC, V26, P1903, DOI 10.1002/cae.22025
Vieira C, 2018, COMPUT APPL ENG EDUC, V26, P1020, DOI 10.1002/cae.21953
Vieira C, 2018, COMPUT EDUC, V122, P119, DOI 10.1016/j.compedu.2018.03.018
Vieira C, 2017, ACM T COMPUT EDUC, V17, DOI 10.1145/3058751
Wing JM, 2016, COMMUN ACM, V59, P10, DOI 10.1145/2933410
Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757
NR 44
TC 0
Z9 0
U1 3
U2 3
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1061-3773
EI 1099-0542
J9 COMPUT APPL ENG EDUC
JI Comput. Appl. Eng. Educ.
PD 2024 MAY 23
PY 2024
DI 10.1002/cae.22749
EA MAY 2024
PG 15
WC Computer Science, Interdisciplinary Applications; Education, Scientific
Disciplines; Engineering, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Education & Educational Research; Engineering
GA RR4W7
UT WOS:001229386200001
DA 2024-09-05
ER
PT C
AU Fan, G
Peng, W
Sun, S
Li, PW
AF Fan, Ge
Peng, Wei
Sun, Shan
Li, Peiwen
BE Yingying, S
Guiran, C
Zhen, L
TI A Research on National Sustainability Evaluation Model
SO PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LOGISTICS, ENGINEERING,
MANAGEMENT AND COMPUTER SCIENCE (LEMCS 2015)
SE Advances in Intelligent Systems Research
LA English
DT Proceedings Paper
CT International Conference on Logistics Engineering, Management and
Computer Science (LEMCS)
CY JUL 29-31, 2015
CL Shenyang, PEOPLES R CHINA
DE mechine learning; k-means; logistic regression; neural network;
sustainability
AB By applying an objective method to evaluate its sustainability, a certain country could make proper plans and policies for further development. However, subjective and complicated problems have been found in the current methods and index systems. Therefore, researchers set up a composite model that it can evaluate the sustainability for a certain country in a more objective way, in comparison with other methods. Researchers propose a method for evaluating sustainability for a certain country, which solves problems concerning strong subjectivity and complicity in current models. Researchers choose 17 representative core indicators based on the index system of UNCSD and divide them into two catalogues -- Nature Indicators and Operate Indicators. First, Means Clustering Algorithm of k-means (an unsupervised learning method) divides the data into three categories. Then, researchers obtain those indicators, using regression analysis, and build an objective evaluation model. When researchers make policies for a country to allocate resources reasonably, researchers maximize the improvement of the ability of sustainable development based on "along the gradient direction ascend the fastest". In this paper, researchers conduct simulations experiment, using data of 96 countries in the World Bank. After analyzing the deviations and sensitivity of the model, the theoretical results are verified experimentally.
C1 [Fan, Ge; Peng, Wei] Sichuan Agr Univ, Dept Business, Chengdu, Peoples R China.
[Sun, Shan] Hunan Univ Commerce, Dept Econ & Trade, Changsha, Peoples R China.
[Li, Peiwen] Donghua Univ, Dept Mech Engn, Shanghai, Peoples R China.
C3 Sichuan Agricultural University; Hunan University of Technology &
Business; Donghua University
RP Peng, W (corresponding author), Sichuan Agr Univ, Dept Business, Chengdu, Peoples R China.
EM fange1122@gmail.com; pw7@163.com; sunshan920813@gmail.com;
lipeiwen@me.com
RI Fan, Ge/GXM-8675-2022
OI Fan, Ge/0000-0001-5653-1626
CR [Anonymous], 2012, Living Planet Report 2012 - On the Road to Rio+20
[Anonymous], IND SUST DEV FRAM ME
BURTON I, 1987, ENVIRONMENT, V29, P25, DOI 10.1080/00139157.1987.9928891
Costanza R., 1998, VALUE WORLDS ECOSYST, VV. O'Neill, and J. Paruelo
Fernando R, 2012, CORP GOV-INT J BUS S, V12, P579, DOI 10.1108/14720701211267883
Hails Chris., 2006, LIVING PLANET REPORT
Hard P., 1997, MEASURING SUSTAINABL, P1
Hardi P., 1997, Assessing sustainable development- principles in practice
Leape Jim P., 2008, LIVING PLANET REPORT
Loh J., 2000, Living Planet Report 2000, WWF International
Loh J., 2002, LIVING PLANET REPORT
Mieg HA, 2012, SUSTAINABILITY-BASEL, V4, P17, DOI 10.3390/su4010017
Serageldin I., 1998, Evaluation and Development: the institutional dimension, V1, P203
Serageldin I, 2013, TECHNOVATION, V33, P105, DOI 10.1016/j.technovation.2013.03.005
Singh RK, 2012, ECOL INDIC, V15, P281, DOI 10.1016/j.ecolind.2011.01.007
Warhurst A., 2002, Mining, Minerals and Sustainable Development [MMSD] project report
*WWF, 2004, LIV PLAN REP 2004
NR 17
TC 0
Z9 0
U1 0
U2 11
PU ATLANTIS PRESS
PI PARIS
PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE
SN 1951-6851
BN 978-94-6252-102-5
J9 ADV INTEL SYS RES
PY 2015
VL 117
BP 524
EP 529
PG 6
WC Computer Science, Artificial Intelligence; Management; Operations
Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Business & Economics; Operations Research & Management
Science
GA BE5OK
UT WOS:000373107000100
DA 2024-09-05
ER
PT C
AU Yang, W
Lyu, S
Hou, M
Huang, C
AF Yang, W.
Lyu, S.
Hou, M.
Huang, C.
BE Weng, CH
He, Y
TI Research on the Transmission Performance of Multi-layer Simulated Mural
Surface by Imaging Spectrum
SO INTERNATIONAL CONFERENCE ON ENVIRONMENTAL REMOTE SENSING AND BIG DATA
(ERSBD 2021)
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT International Conference on Environmental Remote Sensing and Big Data
(ERSBD)
CY OCT 29-31, 2021
CL Wuhan, PEOPLES R CHINA
DE Hyperspectral Imaging; Information Enhancement; Normalized Difference
Index; Principal Component Analysis
AB Some ancient murals were found to be repainted on the surface of the original murals to form multi-layer murals. The patterns on the original layer are of great significance for studying the social and cultural behavior in that time. The hyperspectral imaging covers the visible and near-infrared bands, which has advantages for the information extraction of multi-layer murals. Therefore, a method to study the transmission performance of hyperspectral imaging on multi-layer simulated mural samples is proposed. By making mural samples, the mineral pigment painted on the surface is covered with 0-11 different layers of lime water. Then the samples were collected with hyperspectral images, and the method of principal component analysis and band calculation were used to analyze the enhancement effect of the mural patterns covered by different layers of lime water. The results show that hyperspectral imaging has certain transmittance to the interior of the mural and can enhance internal pigment information. The research results can support the information extraction of multi-layer murals to some extent.
C1 [Yang, W.; Lyu, S.; Hou, M.] Beijing Univ Civil Engn & Architecture, Sch Geomat & Urban Spatial Informat, 15 Yongyuan Rd, Beijing 102616, Peoples R China.
[Huang, C.] Tsinghua Unigrp, 7 Zhichun Rd, Beijing, Peoples R China.
C3 Beijing University of Civil Engineering & Architecture
RP Hou, M (corresponding author), Beijing Univ Civil Engn & Architecture, Sch Geomat & Urban Spatial Informat, 15 Yongyuan Rd, Beijing 102616, Peoples R China.
EM 2108570020095@stu.bucea.edu.cn; lvshuqiang@bucea.edu.cn;
houmiaole@bucea.edu.cn; 18510083275@163.com
CR [Anonymous], 2011, HYPERSPECTRAL REMOTE
Burger J, 2005, J CHEMOMETR, V19, P355, DOI 10.1002/cem.938
Cucci C, 2020, MICROCHEM J, V158, DOI 10.1016/j.microc.2020.105082
Hou ML, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9173591
[侯妙乐 Hou Miaole], 2014, [测绘科学, Science of Surveying and Mapping], V39, P89
Huang M, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16040441
Li DP, 2018, SPECTROSC SPECT ANAL, V38, P2612, DOI 10.3964/j.issn.1000-0593(2018)08-2612-05
Lin S. S., 2021, FOREST RESOURCES MAN, P96
Liu C, 2017, SPECTROSC SPECT ANAL, V37, P3103, DOI 10.3964/j.issn.1000-0593(2017)10-3103-05
Wu TX, 2017, APPL SPECTROSC, V71, P977, DOI 10.1177/0003702816660724
Xu WZ, 2017, SPECTROSC SPECT ANAL, V37, P3235, DOI 10.3964/j.issn.1000-0593(2017)10-3235-07
ZHANG Chenfeng, 2017, GEOGRAPHIC INFORM WO, V24, P119
NR 12
TC 0
Z9 0
U1 5
U2 12
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
EI 1996-756X
BN 978-1-5106-5135-7; 978-1-5106-5134-0
J9 PROC SPIE
PY 2021
VL 12129
AR 1212906
DI 10.1117/12.2625588
PG 6
WC Engineering, Electrical & Electronic; Optics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Optics
GA BT1FE
UT WOS:000797324200005
DA 2024-09-05
ER
PT J
AU Roessger, KM
Greenleaf, A
Hoggan, C
AF Roessger, Kevin M.
Greenleaf, Arie
Hoggan, Chad
TI Using data collection apps and single-case designs to research
transformative learning in adults
SO JOURNAL OF ADULT AND CONTINUING EDUCATION
LA English
DT Article
DE Transformative learning research; data collection apps; single-case
design; causal inference; outcome research
ID INTERPERSONAL SENSITIVITY; INVENTORY; SCALE; SELF
AB To overcome situational hurdles when researching transformative learning in adults, we outline a research approach using single-case research designs and smartphone data collection apps. This approach allows researchers to better understand learners' current lived experiences and determine the effects of transformative learning interventions on demonstrable outcomes. We first discuss data collection apps and their features. We then describe how they can be integrated into single-case research designs to make causal inferences about a learning intervention's effects when limited by researcher access and learner retrospective reporting. Design controls for internal validity threats and visual and statistical data analysis are then discussed. Throughout, we highlight applications to transformative learning and conclude by discussing the approach's potential limitations.
C1 [Roessger, Kevin M.] Univ Arkansas, Fayetteville, AR 72701 USA.
[Greenleaf, Arie] Seattle Univ, Seattle, WA 98122 USA.
[Hoggan, Chad] North Carolina State Univ, Raleigh, NC USA.
C3 University of Arkansas System; University of Arkansas Fayetteville;
Seattle University; North Carolina State University
RP Roessger, KM (corresponding author), Univ Arkansas, Coll Educ & Hlth Profess, Grad 102, Fayetteville, AR 72701 USA.
EM kmroessg@uark.edu
RI Greenleaf, Arie/HKE-8316-2023; Hoggan, Chad/AAL-7109-2021
OI Hoggan, Chad/0000-0001-7759-591X; Roessger, Kevin/0000-0001-6600-4731
CR [Anonymous], 2014, Flow and the Foundations of Positive Psychology: The Collected Works of Mihaly Csikszentmihalyi, DOI [DOI 10.1007/978-94-017-9088-8, 10.1007/978-94-017-9088-8_3, 10.1007/978-94-017-9088-8]
[Anonymous], 2011, ANAL COVARIANCE ALTE
[Anonymous], 2005, SCI WELL BEING
[Anonymous], GUARDIAN
[Anonymous], 2010, SINGLE CASE RES DESI
Auerbach C., 2014, SSD for R: An R package for analyzing single-subject data
Briere J, 2002, ASSESSMENT, V9, P230, DOI 10.1177/1073191102009003002
Butcher J.N., 1989, MINNESOTA MULTIPHASI
Campbell J.M., 2010, Single subject research methodology in behavioral sciences, P417
Carney DR, 2003, EMOTION, V3, P194, DOI 10.1037/1528-3542.3.2.194
Collect, 2015, US COLL SURV MON TRA
Comings J.P., 2003, ESTABLISHING EVIDENC
Coryn C.L. S., 2011, Really new directions in evaluation: Young evaluator's perspectives, P31, DOI DOI 10.1002/EV.375
Cranton P., 2000, LEARNING TRANSFORMAT, P181
Flury JM, 2007, SELF IDENTITY, V6, P281, DOI 10.1080/15298860601033208
Foster L.H., 2010, COUNSELING OUTCOME R, V1, P30, DOI DOI 10.1177/2150137810387130
Gast D.L., 2014, Single case research method: Applications in special education and behavior sciences, P251, DOI DOI 10.4324/9780203521892
GIS Cloud, 2016, GIS CLOUD IS NEXT GE
Greenleaf AT, 2017, J HUMANIST COUNS, V56, P86, DOI 10.1002/johc.12046
Gunnlaugson O, 2011, J TRANSFORM EDUC, V9, P3, DOI 10.1177/1541344610397034
Harb GC, 2002, BEHAV RES THER, V40, P961, DOI 10.1016/S0005-7967(01)00125-5
Hektner Joel M., 2011, Experience Sampling Method
Hoggan Chad., 2009, CREATIVE EXPRESSION
Hoggan CD, 2016, ADULT EDUC QUART, V66, P57, DOI 10.1177/0741713615611216
Illeris K., 2009, Contemporary theories of learning: learning theorists -- in their own words
iSurvey, 2016, ISURVEY OFFL SURV DA
JACKSON LA, 1989, J PERS ASSESS, V53, P353, DOI 10.1207/s15327752jpa5302_12
Kahneman Daniel., 2011, Thinking, fast and slow
Kaleba K, 2017, TRUMP FISCAL YEAR 20
Kazdin AE, 2008, AM PSYCHOL, V63, P146, DOI 10.1037/0003-066X.63.3.146
Kirk R, 2004, SAGE ENCY SOCIAL SCI, P619
Konrath S., 2014, PLOS ONE, V9, P8, DOI DOI 10.1371/J0URNAL.P0NE.0103469
Kratochwill T. R., 2010, Single-case designs technical documentation
Lovasz N, 2013, NEW IDEAS PSYCHOL, V31, P22, DOI 10.1016/j.newideapsych.2011.02.005
McDavid J.C., 2013, PROGRAM EVALUATION P
MetricWire, 2015, RES WHER YOU AR
Morgan D.L., 2009, Single case research methods for the behavioral and health sciences
Pew Research Center, 2015, MOB FACT SHEET
QuickTapSurvey, 2016, CAPT DAT AN EV OFFL
Redelmeier DA, 1996, PAIN, V66, P3, DOI 10.1016/0304-3959(96)02994-6
Richards S., 2014, Single Subject Research: Applications in Educational and Clinical Settings
Robbins S, 2016, INT TRANSF LEARN C T
Salthouse TA, 2009, NEUROBIOL AGING, V30, P507, DOI 10.1016/j.neurobiolaging.2008.09.023
Schreiber CA, 2000, J EXP PSYCHOL GEN, V129, P27, DOI 10.1037//0096-3445.129.1.27
Scott S.M., 1997, New Directions for Adult Learning and Continuing Education, V74, P41, DOI DOI 10.1002/ACE.7405
SCRUGGS TE, 1987, REM SPEC EDUC, V8, P24, DOI 10.1177/074193258700800206
Shadish Cook Campbell, 2002, Experimental and quasi-experimental designs for generalized causal inference
Sharpe JP, 1998, PERS INDIV DIFFER, V24, P457, DOI 10.1016/S0191-8869(97)00193-1
Sienko R.M, 2011, THESIS
Stangor Charles, 2015, RES METHODS BEHAV SC, Vffth
Tawney J.W., 1984, Single subject research in special education
Torneke N., 2010, LEARNING RFT INTRO R
Wright R.J., 2014, Research methods for counseling: An introduction
NR 53
TC 5
Z9 8
U1 0
U2 0
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1477-9714
EI 1479-7194
J9 J ADULT CONTIN EDUC
JI J. Adult Contin. Educ.
PD NOV
PY 2017
VL 23
IS 2
BP 206
EP 225
DI 10.1177/1477971417732070
PG 20
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA GW9SK
UT WOS:000447339700006
DA 2024-09-05
ER
PT J
AU Finlay, JM
Davila, H
Whipple, MO
McCreedy, EM
Jutkowitz, E
Jensen, A
Kane, RA
AF Finlay, Jessica M.
Davila, Heather
Whipple, Mary O.
McCreedy, Ellen M.
Jutkowitz, Eric
Jensen, Anne
Kane, Rosalie A.
TI What we learned through asking about evidence: A model for
interdisciplinary student engagement
SO GERONTOLOGY & GERIATRICS EDUCATION
LA English
DT Article
DE Graduate training; interdisciplinary collaboration; active learning;
gerontology students; professional development; research in aging
ID PERFORMANCE; PROGRAM; CARE
AB Traditional university learning modalities of lectures and examinations do not prepare students fully for the evolving and complex world of gerontology and geriatrics. Students involved in more active, self-directed learning can develop a wider breadth of knowledge and perform better on practical examinations. This article describes the Evidence in Aging (EIA) study as a model of active learning with the aim of preparing students to be effective interdisciplinary researchers, educators, and leaders in aging. We focus particularly on the experiences and reflections of graduate students who collaborated with faculty mentors on study design, data collection, and analysis. Students acquired new methodological skills, gained exposure to diverse disciplines, built interdisciplinary understanding, and cultivated professional development. The EIA study is a model for innovative student engagement and collaboration, interactive learning, and critical scholarly development. Lessons learned can be applied to a range of collaborative research projects in gerontology and geriatrics education.
C1 [Finlay, Jessica M.] Univ Minnesota, Dept Geog Environm & Soc, 414 Social Sci,267 19th Ave S, Minneapolis, MN 55455 USA.
[Davila, Heather] Univ Minnesota, Coll Educ & Human Dev, Evaluat Studies, Minneapolis, MN USA.
[Whipple, Mary O.] Univ Minnesota, Sch Nursing, Minneapolis, MN 55455 USA.
[McCreedy, Ellen M.] Brown Univ, Sch Publ Hlth, Ctr Gerontol & Healthcare Res, Providence, RI 02912 USA.
[Jutkowitz, Eric] Brown Univ, Sch Publ Hlth, Dept Hlth Serv Policy & Practice, Providence, RI 02912 USA.
[Jensen, Anne] Univ Minnesota, Carlson Sch Management, Sch Publ Hlth, Minneapolis, MN 55455 USA.
[Jensen, Anne] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA.
[Kane, Rosalie A.] Univ Minnesota, Sch Publ Hlth, Hlth Policy & Management, Minneapolis, MN USA.
C3 University of Minnesota System; University of Minnesota Twin Cities;
University of Minnesota System; University of Minnesota Twin Cities;
University of Minnesota System; University of Minnesota Twin Cities;
Brown University; Brown University; University of Minnesota System;
University of Minnesota Twin Cities; University of Minnesota System;
University of Minnesota Twin Cities; University of Minnesota System;
University of Minnesota Twin Cities
RP Finlay, JM (corresponding author), Univ Minnesota, Dept Geog Environm & Soc, 414 Social Sci,267 19th Ave S, Minneapolis, MN 55455 USA.
EM finla039@umn.edu
RI Whipple, Mary/AAK-3954-2020
OI Whipple, Mary/0000-0001-7073-3224; Finlay, Jessica/0000-0003-3427-8003;
Davila, Heather/0000-0003-1832-7901
FU University of Minnesota Graduate School
FX The authors are indebted to Robert L. Kane, MD, who was a tireless
advocate for critical learning and staunch supporter of emerging
gerontologists. We are also grateful to the University of Minnesota
Graduate School for providing startup funds to create the Aging Studies
Interdisciplinary Graduate Group.
CR [Anonymous], 2013, National Journal of Physiology, Pharmacy and Pharmacology
[Anonymous], 2000, How People Learn: Brain, Mind, Experience and School: Expanded Edition
Barczi S, 2016, J AM GERIATR SOC, V64, pS178
Bass SA, 2013, GERONTOLOGIST, V53, P534, DOI 10.1093/geront/gnt031
Borrego M, 2010, REV HIGH EDUC, V34, P61
Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA]
Busby-Whitehead J, 2016, GENERATIONS, V40, P122
Davies M., 2007, INTERDISCIPLINARY HI
Detlor B, 2012, EDUC INFORM, V29, P147, DOI 10.3233/EFI-2012-0924
Ferraro KF, 2007, J GERONTOL B-PSYCHOL, V62, pS2, DOI 10.1093/geronb/62.1.S2
Finlay J, 2016, GERONTOLOGIST, V56, P485
Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111
Fulmer T, 2005, J AGING HEALTH, V17, P443, DOI 10.1177/0898264305277962
Fulmer Terry, 2003, Gerontol Geriatr Educ, V24, P3
Gardner SK, 2013, SUSTAIN SCI, V8, P241, DOI 10.1007/s11625-012-0182-4
Hanappi D, 2015, LONGITUD LIFE COURSE, V6, P59, DOI 10.14301/llcs.v6i1.302
Ivanitskaya L., 2002, INNOV HIGH EDUC, V27, P95, DOI [10.1023/A:1021105309984, DOI 10.1023/A:1021105309984]
KAHANA E, 1990, EDUC GERONTOL, V16, P497, DOI 10.1080/0380127900160506
Kane R, 2016, GERONTOLOGIST, V56, P485
Keen MF, 1996, TEACH SOCIOL, V24, P166, DOI 10.2307/1318807
Kember D, 2005, STUD HIGH EDUC, V30, P155, DOI 10.1080/03075070500043127
Kurpinski K, 2014, SCI TRANSL MED, V6, DOI 10.1126/scitranslmed.3006858
Larson EL, 2011, CTS-CLIN TRANSL SCI, V4, P38, DOI 10.1111/j.1752-8062.2010.00258.x
Longmore MA, 1996, TEACH SOCIOL, V24, P84, DOI 10.2307/1318901
Marshall C., 2014, DESIGNING QUALITATIV
McKenzie G, 2017, GERONTOL GERIATR EDU, V38, P232, DOI 10.1080/02701960.2015.1127809
Michael J, 2006, ADV PHYSIOL EDUC, V30, P159, DOI 10.1152/advan.00053.2006
Morreale M, 2012, ACAD PSYCHIATR, V36, P223, DOI 10.1176/appi.ap.10070097
Palincsar AS, 1998, ANNU REV PSYCHOL, V49, P345, DOI 10.1146/annurev.psych.49.1.345
Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x
Repko A.F., 2008, INTERDISCIPLINARY RE
Reuben DB, 2004, J AM GERIATR SOC, V52, P1000, DOI 10.1111/j.1532-5415.2004.52272.x
Roehl A., 2013, Journal of family Consumer Sciences, V105, P44, DOI [10.14307/JFCS105.2.12, DOI 10.14307/JFCS105.2.12]
Rotgans JI, 2011, LEARN INSTR, V21, P58, DOI 10.1016/j.learninstruc.2009.11.001
Schultz D, 2011, ACAD MED, V86, P1318, DOI 10.1097/ACM.0b013e31822c4c18
Solberg LB, 2015, J AM GERIATR SOC, V63, P997, DOI 10.1111/jgs.13394
Spelt EJH, 2009, EDUC PSYCHOL REV, V21, P365, DOI 10.1007/s10648-009-9113-z
Trojanowski JQ, 2012, ALZHEIMERS DEMENT, V8, P564, DOI 10.1016/j.jalz.2011.08.005
WINN S, 1995, STUD HIGH EDUC, V20, P203, DOI 10.1080/03075079512331381703
Yoder JD, 2005, TEACH PSYCHOL, V32, P91, DOI 10.1207/s15328023top3202_2
NR 40
TC 4
Z9 6
U1 2
U2 17
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0270-1960
EI 1545-3847
J9 GERONTOL GERIATR EDU
JI Gerontol. Geriatr. Educ.
PY 2019
VL 40
IS 1
SI SI
BP 90
EP 104
DI 10.1080/02701960.2018.1428578
PG 15
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA IA8WW
UT WOS:000469840300008
PM 29364792
OA Green Accepted
DA 2024-09-05
ER
PT C
AU Viet, NT
Kravets, AG
AF Viet, Nguyen Thanh
Kravets, Alla G.
BE Dwivedi, RK
Saxena, AK
Parygin, D
Ather, D
Yadav, V
TI Analyzing Recent Research Trends of Computer Science from Academic
Open-access Digital Library
SO PROCEEDINGS OF THE 2019 8TH INTERNATIONAL CONFERENCE ON SYSTEM MODELING
& ADVANCEMENT IN RESEARCH TRENDS (SMART-2019)
LA English
DT Proceedings Paper
CT 8th International Conference on System Modeling and Advancement in
Research Trends (SMART)
CY NOV 22-23, 2019
CL Moradabad, INDIA
DE Digital Library; Data Mining; Data Crawling; Trend Prediction; Topic
Modeling
AB The wider utilization of information and web technologies, database technologies, development of internet infrastructure has led to the evolution of digital libraries. In particular, digital libraries serve enormous number of various users and play an essential role as repositories and source of investigation and intelligence. With the emergence of IoT (Internet of Things) and different academic open-access digital libraries, the automatic extraction of advantageous knowledge from text data has been more and more a significant subject of research in data mining. In this paper, we perform web scraping system, statistical analyses from the arXiv repository and discuss the results of analyzing recent research trends in this academic open-access digital library.
C1 [Viet, Nguyen Thanh; Kravets, Alla G.] Volgograd State Tech Univ, Volgograd, Russia.
C3 Volgograd State Technical University
RP Viet, NT (corresponding author), Volgograd State Tech Univ, Volgograd, Russia.
EM vietqn1987@gmail.com; agk@gde.ru
RI Nguyễn, Thành Việt/HOH-4310-2023; Kravets, Alla/HGE-9499-2022; Kravets,
Alla/JAC-9586-2023
OI Kravets, Alla/0000-0003-1675-8652; Nguyen, Thanh
Viet/0000-0003-3805-5958
FU Russian Fund of Basic Research [19-07-01200]
FX This work was supported by Russian Fund of Basic Research (grant No.
19-07-01200).
CR Chauhan N, 2018, PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART), P44, DOI 10.1109/SYSMART.2018.8746945
Clement Colin B., 2019, CORR
Kravets A.G., 2013, WORLD APPL SCI J, V24, P98
Kravets A.G., 2018, 2018 9 INT C INF INT
Kravets A, 2017, COMM COM INF SC, V754, P37, DOI 10.1007/978-3-319-65551-2_3
Manocha P, 2018, PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART), P280, DOI 10.1109/SYSMART.2018.8746928
Zhang Mei, 2011, J COMPUTERS, V6
NR 7
TC 1
Z9 1
U1 1
U2 4
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-3245-7
PY 2019
BP 31
EP 36
DI 10.1109/smart46866.2019.9117215
PG 6
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BQ6EE
UT WOS:000610825300008
DA 2024-09-05
ER
PT J
AU Lu, YY
Chen, ZZ
Chen, R
Shi, YW
Zheng, QY
AF Lu, Yuanyuan
Chen, Zengzhao
Chen, Rong
Shi, Yawen
Zheng, Qiuyu
TI Research on the Application Framework of Intelligent Technologies to
Promote Teachers' Classroom Teaching Behavior Evaluation
SO FRONTIERS OF EDUCATION IN CHINA
LA English
DT Article
DE artificial intelligence (AI); teachers' classroom teaching behavior
evaluation; teaching behavior recognition; speech emotion recognition
AB With the advantages of real-time analysis and visual evaluation results, intelligent technology-enabled teaching behavior evaluation has gradually become a powerful means to help teachers adjust teaching behaviors and improve teaching quality. However, at present, the evaluation of intelligent teachers' behaviors is still in the preliminary exploration stage, and the application research is not deep enough. This paper analyzes the application of intelligent technology in the evaluation of teachers' classroom teaching behaviors from the perspectives of evaluation data, methods, and results. Voice print recognition technology is used to recognize the teachers' identities and track the speech in the classroom videos, and the videos are segmented. Then, the evaluation framework of teachers' classroom teaching behaviors is constructed using three dimensions of emotion, posture, and position preference. Finally, evaluation results are presented to teachers in a more intuitive and easy - to-understand visual way, to help teachers reflect on teaching. This paper aims to promote the transformation of teachers' classroom teaching behavior evaluation toward an intelligent, efficient, and sustainable direction through current research.
C1 [Lu, Yuanyuan; Chen, Zengzhao; Chen, Rong; Shi, Yawen; Zheng, Qiuyu] Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.
[Lu, Yuanyuan] Wuhan Coll, Sch Informat Engn, Wuhan 430212, Peoples R China.
C3 Central China Normal University; Wuhan College
RP Lu, YY (corresponding author), Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China.; Lu, YY (corresponding author), Wuhan Coll, Sch Informat Engn, Wuhan 430212, Peoples R China.
CR Ashwin TS, 2020, EDUC INF TECHNOL, V25, P1387, DOI 10.1007/s10639-019-10004-6
Blikstein P., 2016, J. Learn. Anal., V3, P220, DOI DOI 10.18608/JLA.2016.32.11
Chen S., 2020, Unpublished doctoral dissertation
Luo Z., 2018, Modern Educational Technology, P38
Luo Z., 2021, Modern Educational Technology, P76
Ministry of Education. (MoE), 2021, The circular of the Ministry of Education to implement the second pilot work of AI-driven teacher building action
Reynolds DA, 2000, DIGIT SIGNAL PROCESS, V10, P19, DOI 10.1006/dspr.1999.0361
Safsouf Y., 2021, P 8 ACM C LEARN, P347
Sun Z., 2020, China Educational Technology, P15
Wu L., 2021, China Electro-Chem. Educ., P94
Yang J., 2019, China Educational Technology, P74
Yang J., 2020, China Educational Technology, P22
Zhang D. J., 2015, Educational psychology, V3rd
Zhang L., 2021, Modern Distance Education Research, P13
NR 14
TC 0
Z9 0
U1 8
U2 13
PU HIGHER EDUCATION PRESS
PI BEIJING
PA CHAOYANG DIST, 4, HUIXINDONGJIE, FUSHENG BLDG, BEIJING 100029, PEOPLES R
CHINA
SN 1673-341X
EI 1673-3533
J9 FRONT EDUC CHINA
JI Front. Educ. China
PD JUN
PY 2023
VL 18
IS 2
BP 171
EP 186
DI 10.3868/s110-008-023-0012-8
PG 16
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA DO8V1
UT WOS:001133096100006
DA 2024-09-05
ER
PT J
AU Su, M
Peng, H
Li, SF
AF Su, Miao
Peng, Hui
Li, Shaofan
TI A visualized bibliometric analysis of mapping research trends of machine
learning in engineering (MLE)
SO EXPERT SYSTEMS WITH APPLICATIONS
LA English
DT Article
DE Artificial intelligence; Engineering; Bibliometric analysis; VOSviewer;
Research hotspots
ID SUPPORT VECTOR MACHINES; NEURAL-NETWORK; FEATURE-SELECTION; REGRESSION;
ALGORITHM; MODEL; INTELLIGENCE; PREDICTION; FAILURE; ENSEMBLE
AB In this work, we conducted a visualized bibliometric analysis to map the research trends of machine learning in engineering (MLE) based on articles indexed in the Web of Science Core Collection published between 2000 and 2019. The research distributions, knowledge bases, research hotspots, and research frontiers for MLE studies are revealed by using VOSviewer software and visualization technology. The growth of the literature related to MLE averaged 24.3% in the past two decades. A total of 3057 peer-reviewed papers from 96 countries published in 1299 different journals were identified. The USA was the most productive country, with 23.73% of the overall articles and 32.25% of the overall citations. The most active research organization was MIT, with 41 publications and 1079 citations, and the Journal of Machine Learning Research had the largest number of citations in the field of MLE. In particular, our findings indicate that the research issues of "random forests", "support vector machine", "extreme learning machine", "deep learning", "statistical learning theory", and "Python machine learning" formed the knowledge bases of MLE from 2000 to 2019, while the research hotspots focused on applications of machine learning benchmark algorithms. Burst detection analysis results showed that more burst keywords emerged and had a higher frequency of change after 2010. This study provides an insight view of the overall research trends of MLE and may help researchers better understand this research field and predict its dynamic directions.
C1 [Su, Miao; Peng, Hui] Changsha Univ Sci & Technol, Sch Civil Engn, Changsha 410114, Hunan, Peoples R China.
[Su, Miao; Li, Shaofan] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.
C3 Changsha University of Science & Technology; University of California
System; University of California Berkeley
RP Li, SF (corresponding author), Univ Calif Berkeley, 783 Davis Hall, Berkeley, CA 94720 USA.
EM sumiao@csust.edu.cn; shaofan@berkeley.edu
RI Li, Shaofan/G-8082-2011
OI Li, Shaofan/0000-0002-6950-1474
FU National Natural Science Foundation of China [51808056]; Research
Project of Hunan Provincial Department of Education [19B012]; Hunan
Provincial Natural Science Foundation of China [2020JJ5583]; China
Scholarship Council [201808430232]
FX This work was conducted in the University of California, Berkeley. Dr.
Su is supported by the National Natural Science Foundation of China
(Grant No.51808056) , the Research Project of Hunan Provincial
Department of Education (Grant NO. 19B012) , the Hunan Provincial
Natural Science Foundation of China (Grant No. 2020JJ5583) , and the
China Scholarship Council (Grant No.201808430232) .
CR Abdeljaber O, 2017, J SOUND VIB, V388, P154, DOI 10.1016/j.jsv.2016.10.043
Adeli H, 2009, NEURAL NETWORKS, V22, P1018, DOI 10.1016/j.neunet.2009.05.003
Alejo-Machado OJ, 2015, SCIENTOMETRICS, V102, P1669, DOI 10.1007/s11192-014-1467-4
Alpaydin E, 2014, ADAPT COMPUT MACH LE, P1
Anifowose FA, 2015, J NAT GAS SCI ENG, V26, P1561, DOI 10.1016/j.jngse.2015.02.012
[Anonymous], MACHINE LEARNING
[Anonymous], 2016, Pattern Recognition and Machine Learning, Softcover Reprint of the Original 1st ed., Information Science and Statistics
Badnjevic A, 2019, BIOMED SIGNAL PROCES, V54, DOI 10.1016/j.bspc.2019.101629
Baghban A, 2016, APPL THERM ENG, V93, P1043, DOI 10.1016/j.applthermaleng.2015.10.056
Bassa Z, 2016, J APPL REMOTE SENS, V10, DOI 10.1117/1.JRS.10.015017
Benkedjouh T, 2015, J INTELL MANUF, V26, P213, DOI 10.1007/s10845-013-0774-6
Boudry C, 2018, OCUL SURF, V16, P173, DOI 10.1016/j.jtos.2017.10.002
Brunton SL, 2016, P NATL ACAD SCI USA, V113, P3932, DOI 10.1073/pnas.1517384113
Cao FX, 2018, J APPL REMOTE SENS, V12, DOI 10.1117/1.JRS.12.035003
Cao JW, 2019, MULTIMED TOOLS APPL, V78, P29021, DOI 10.1007/s11042-018-6295-8
Padierna LC, 2017, STUD COMPUT INTELL, V667, P787, DOI 10.1007/978-3-319-47054-2_53
Chang C. C., 2011, ACM T INTEL SYST TEC, V2, P1, DOI DOI 10.1145/1961189.1961199
Chen GR, 2019, COMPUT MECH, V64, P435, DOI 10.1007/s00466-019-01706-2
Chou JS, 2015, COMPUT-AIDED CIV INF, V30, P715, DOI 10.1111/mice.12121
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Cox T, 2020, ADV THEOR SIMUL, V3, DOI 10.1002/adts.201900190
de Wilde P, 2014, AUTOMAT CONSTR, V41, P40, DOI 10.1016/j.autcon.2014.02.009
Deo RC, 2016, STOCH ENV RES RISK A, V30, P1769, DOI 10.1007/s00477-015-1153-y
Deo RC, 2015, ATMOS RES, V161, P65, DOI 10.1016/j.atmosres.2015.03.018
Dietterich TG, 1997, AI MAG, V18, P97
Vu DT, 2016, STRUCT INFRASTRUCT E, V12, P1153, DOI 10.1080/15732479.2015.1086386
Egghe L, 2002, SCIENTOMETRICS, V55, P349, DOI 10.1023/A:1020458612014
Ghesu FC, 2019, IEEE T PATTERN ANAL, V41, P176, DOI 10.1109/TPAMI.2017.2782687
Ghiassi M, 2013, EXPERT SYST APPL, V40, P6266, DOI 10.1016/j.eswa.2013.05.057
Goh ATC, 2007, COMPUT GEOTECH, V34, P410, DOI 10.1016/j.compgeo.2007.06.001
Golilarz NA, 2019, IEEE ACCESS, V7, P149398, DOI 10.1109/ACCESS.2019.2945596
Guo ZW, 2009, CHINESE J AERONAUT, V22, P160, DOI 10.1016/S1000-9361(08)60082-5
Han T, 2018, T I MEAS CONTROL, V40, P2681, DOI 10.1177/0142331217708242
Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527
Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126
Janmaijaya M, 2018, PUBLICATIONS-BASEL, V6, DOI 10.3390/publications6030032
Janssens O, 2016, J SOUND VIB, V377, P331, DOI 10.1016/j.jsv.2016.05.027
Kang F, 2017, STRUCT CONTROL HLTH, V24, DOI 10.1002/stc.1997
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Lary DJ, 2016, GEOSCI FRONT, V7, P3, DOI 10.1016/j.gsf.2015.07.003
Li MN, 2017, TECHNOL ANAL STRATEG, V29, P655, DOI 10.1080/09537325.2016.1220518
Liang TP, 2018, EXPERT SYST APPL, V111, P2, DOI 10.1016/j.eswa.2018.05.018
Lin L, 2017, EXPERT SYST APPL, V83, P164, DOI 10.1016/j.eswa.2017.04.013
Liu ZB, 2014, NAT HAZARDS, V73, P787, DOI 10.1007/s11069-014-1106-7
Liu ZJ, 2017, BMC MED INFORM DECIS, V17, DOI 10.1186/s12911-017-0468-7
Lozano S, 2019, SCIENTOMETRICS, V120, P609, DOI 10.1007/s11192-019-03132-w
Lu C, 2017, SIGNAL PROCESS, V130, P377, DOI 10.1016/j.sigpro.2016.07.028
Lu HP, 2011, PATTERN RECOGN, V44, P1540, DOI 10.1016/j.patcog.2011.01.004
Luo XG, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-51941-z
Lyu C, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1868-5
Moazenzadeh R, 2018, ENG APPL COMP FLUID, V12, P584, DOI 10.1080/19942060.2018.1482476
Moura MD, 2011, RELIAB ENG SYST SAFE, V96, P1527, DOI 10.1016/j.ress.2011.06.006
Naji S, 2016, ENERGY, V97, P506, DOI 10.1016/j.energy.2015.11.037
Ordóñez FJ, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16010115
Pan H, 2019, J AEROSPACE ENG, V32, DOI 10.1061/(ASCE)AS.1943-5525.0000978
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Ping Q, 2017, J ASSOC INF SCI TECH, V68, P1234, DOI 10.1002/asi.23770
Qin FW, 2014, J ZHEJIANG U-SCI C, V15, P91, DOI 10.1631/jzus.C1300185
Ren SF, 2018, CMES-COMP MODEL ENG, V117, P287, DOI 10.31614/cmes.2018.04697
Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707
Rzhetsky A, 2004, J BIOMED INFORM, V37, P43, DOI 10.1016/j.jbi.2003.10.001
Schwartz MP, 2015, P NATL ACAD SCI USA, V112, P12516, DOI 10.1073/pnas.1516645112
Shkurin A, 2017, BIOMED ENG ONLINE, V16, DOI 10.1186/s12938-017-0357-4
Son H, 2012, J COMPUT CIVIL ENG, V26, P421, DOI 10.1061/(ASCE)CP.1943-5487.0000141
Su M, 2021, ENG FRACT MECH, V247, DOI 10.1016/j.engfracmech.2021.107643
Su M, 2021, CONSTR BUILD MATER, V270, DOI 10.1016/j.conbuildmat.2020.121456
Tamilselvan P, 2013, RELIAB ENG SYST SAFE, V115, P124, DOI 10.1016/j.ress.2013.02.022
Theobald Oliver., 2018, Machine Learning for Absolute Beginners: A Plain English Introduction
Tibshirani R., 2001, The Elements of Statistical Learning
Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16122150
Unanue IJ, 2017, J BIOMED INFORM, V76, P102, DOI 10.1016/j.jbi.2017.11.007
Van Eck N.J., 2019, VOSviewer manual
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vapnik V., 2013, Theory, DOI DOI 10.1007/978-1-4757-2440-0
Vapnik Vladimir, 1998, STAT LEARNING THEORY, V3
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Wang J, 2020, J MED INTERNET RES, V22, DOI 10.2196/16816
Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9
Wang SP, 2015, PATTERN RECOGN, V48, P10, DOI 10.1016/j.patcog.2014.08.004
Wang WJ, 2003, ENG COMPUTATION, V20, P192, DOI 10.1108/02644400310465317
Wang YX, 2019, ENERGIES, V12, DOI 10.3390/en12244674
Wernick MN, 2010, IEEE SIGNAL PROC MAG, V27, P25, DOI 10.1109/MSP.2010.936730
Wu CH, 2004, IEEE T INTELL TRANSP, V5, P276, DOI 10.1109/TITS.2004.837813
Xu ZS, 2019, INT J MACH LEARN CYB, V10, P2375, DOI 10.1007/s13042-018-0875-9
Yaseen ZM, 2019, J HYDROL, V569, P387, DOI 10.1016/j.jhydrol.2018.11.069
Yeung AWK, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00120
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
Zhao FK, 2019, PEERJ, V7, DOI 10.7717/peerj.7603
Zou X, 2018, ACCIDENT ANAL PREV, V118, P131, DOI 10.1016/j.aap.2018.06.010
NR 90
TC 30
Z9 32
U1 5
U2 70
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0957-4174
EI 1873-6793
J9 EXPERT SYST APPL
JI Expert Syst. Appl.
PD DEC 30
PY 2021
VL 186
AR 115728
DI 10.1016/j.eswa.2021.115728
EA AUG 2021
PG 11
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Operations Research & Management Science
GA WC6EQ
UT WOS:000704349700008
DA 2024-09-05
ER
PT J
AU Ihsan, I
Qadir, MA
AF Ihsan, Imran
Qadir, Muhammad Abdul
TI CCRO: Citation's Context & Reasons Ontology
SO IEEE ACCESS
LA English
DT Article
DE Citation ontology; citation graphs; citation analysis; ontology
development; natural language processing; computational linguistics
ID CLASSIFICATION; SCIENCES
AB Research papers can be visualized as a networked information space that contains a collection of information entities, inter-connected by directed links, commonly known as citation graph. There is a possibility to enrich the citation graph with meaningful relations using semantic tags. We have discovered and evaluated more than 150 citations' reasons from the existing published literature to be represented as citation tags. Many of these reasons have overlapped and diffused meanings. Annotating such a large volume of citation graphs with citation's reasons manually is nearly impossible, giving rise to a need to discover the citation's reasons automatically with high accuracy. The first step towards this is developing a minimal set of citation's context and reasons that are disjoint in nature. It would be a great help to the reasoning system if these reasons are represented in a formal way in the form of an ontology. By adopting a well-defined scientific methodology to formulate an ontology of citation reasons, we have reduced 150 reasons into only eight disjoint reasons, using an iterative process of sentiment analysis, collaborative meanings, and experts' opinions. Based on our findings and experiments, we have proposed a citation's context and reasons ontology (CCRO) that provides abstract conceptualization required to organize citations' relations. CCRO has been verified, validated, and assessed by using the well-defined procedures and tools proposed in the literature for ontology evaluation. The results show that the proposed ontology is concise, complete, and consistent. For the instantiation and mapping of ontology classes on real data, we have developed a mapping graph among the verbs with predicative complements in the English Language, the verbs extracted from the selected corpus using the NLP and CCRO classes. Using this mapping graph, the mapping of ontology classes in each citation's sentiment is explained with a complete mapping on the selected dataset.
C1 [Ihsan, Imran; Qadir, Muhammad Abdul] Capital Univ Sci & Technol, Ctr Res Data Sci Semant & Scientometr, Dept Comp Sci, Islamabad 45750, Pakistan.
C3 Capital University of Science & Technology
RP Ihsan, I (corresponding author), Capital Univ Sci & Technol, Ctr Res Data Sci Semant & Scientometr, Dept Comp Sci, Islamabad 45750, Pakistan.
EM iimranihsan@gmail.com
RI ihsan, imran/AAZ-6236-2021; ihsan, imran/ABA-7494-2021
OI ihsan, imran/0000-0002-3447-4576; Qadir, Muhammad
Abdul/0000-0003-4634-9016
CR Angrosh M., 2010, Proceedings of the 10th annual joint conference on Digital libraries, P293, DOI [DOI 10.1145/1816123.1816168, DOI 10.1145/1816123.1816168.1816168]
[Anonymous], 2005, P 43 ANN M ASS COMP, DOI DOI 10.3115/1219840.1219885
[Anonymous], 2014, SIZE GOOGLE SCHOLAR
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
Athar A., 2014, UCAMCLTR856, P114
Athar A., 2011, P ACL 2011 STUD SESS, P81
Berners-Lee T, 2001, SCI AM, V284, P34, DOI 10.1038/scientificamerican0501-34
Butt B. H., 2015, P CEUR WORKSH JAN, V1384, P1
CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403
Ciancarini Paolo, 2014, The Semantic Web: Trends and Challenges. 11th International Conference (ESWC 2014). Proceedings: LNCS 8465, P580, DOI 10.1007/978-3-319-07443-6_39
Ciccarese P, 2008, J BIOMED INFORM, V41, P739, DOI 10.1016/j.jbi.2008.04.010
Constantin A, 2016, SEMANT WEB, V7, P167, DOI 10.3233/SW-150177
COZZENS SE, 1985, SOC STUD SCI, V15, P127, DOI 10.1177/030631285015001005
Di Iorio A., 2014, CEUR WORKSHOP P, V1155, P41
Dong C., 2011, P 5 INT JOINT C NAT, P623
Fahad M, 2008, ICEIS 2008: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL ISAS-2, P253
Fernandez-Lopez M., 2010, ONTOLOGICAL ENG EXAM
FROST CO, 1979, LIBR QUART, V49, P399
Garfield E, 1996, LIBR QUART, V66, P449, DOI 10.1086/602912
Glimm B, 2014, J AUTOM REASONING, V53, P245, DOI 10.1007/s10817-014-9305-1
Hernandez M., 2014, P 1 WORKSH ARG MIN B, P102
Ihsan I., 2019, CORPORUM J CORPUS LI, V1, P1
Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443
Jochim C., 2012, P COLING 2012, P1343
Jorg B., 2008, Formal ontology in information systems, P31
Kazi P. A. H., 2015, P IEEE INT C COMP CO, P1
Kim IC, 2015, 2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), P488
Levin B., 1993, English verb classes and alternations: A preliminary investigation
Li X., 2013, Proceedings of Recent Advances in Natural Language Processing, P402
LIPETZ BA, 1965, AM DOC, V16, P81, DOI 10.1002/asi.5090160207
Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010
MCCAIN KW, 1989, SCIENTOMETRICS, V17, P127, DOI 10.1007/BF02017729
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Motik B., 2012, 20121211 W3C
OPPENHEIM C, 1980, J AM SOC INFORM SCI, V31, P219, DOI 10.1002/asi.4630310316
PERITZ BC, 1983, SCIENTOMETRICS, V5, P303, DOI 10.1007/BF02147226
Peroni S, 2012, J WEB SEMANT, V17, P33, DOI 10.1016/j.websem.2012.08.001
Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2
Shekarpour S., 2017, CEVO COMPREHENSIVE E
Shum S. B., 2010, SEMANT WEB, P1
SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111
Tandon N., 2012, P 35 GERMAN C ARTIFI, P98
Taskin Z, 2018, SCIENTOMETRICS, V114, P335, DOI 10.1007/s11192-017-2560-2
Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612]
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Tillett Barbara, 2005, The Australian Library Journal, V54, P24, DOI 10.1080/00049670.2005.10721710
Valenzuela Marco, 2015, P AAAI WORKSH SCHOL, P6
Xiaojun Wan, 2014, Journal of the Association for Information Science and Technology, V65, P1929, DOI 10.1002/asi.23083
Xu HB, 2013, BMC COMPLEM ALTERN M, V13, DOI 10.1186/1472-6882-13-239
Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334
Young NS, 2008, PLOS MED, V5, P1418, DOI 10.1371/journal.pmed.0050201
Yu Bei., 2013, P 76 ASIST ANN M CLO, P1, DOI [10.1002/meet.14505001084, DOI 10.1002/MEET.14505001084]
Zhang G, 2013, J AM SOC INF SCI TEC, V64, P1490, DOI 10.1002/asi.22850
NR 53
TC 8
Z9 8
U1 1
U2 27
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2019
VL 7
BP 30423
EP 30436
DI 10.1109/ACCESS.2019.2903450
PG 14
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA HR7EJ
UT WOS:000463314800001
OA gold
DA 2024-09-05
ER
PT J
AU Brizan, DG
Gallagher, K
Jahangir, A
Brown, T
AF Brizan, David Guy
Gallagher, Kevin
Jahangir, Arnab
Brown, Theodore
TI Predicting citation patterns: defining and determining influence
SO SCIENTOMETRICS
LA English
DT Article
DE Citation analysis; Bibliometrics; Big data; Machine learning
ID ARTICLE; INDEX
AB Definitions for influence in bibliometrics are surveyed and expanded upon in this work. On data composed of the union of DBLP and CiteSeer (x) , approximately 6 million publications, a relatively small number of features are developed to describe the set, including loyalty and community longevity, two novel features. These features are successfully used to predict the influential set of papers in a series of machine learning experiments. The most predictive features are highlighted and discussed.
C1 [Brizan, David Guy; Brown, Theodore] CUNY, Dept Comp Sci, 365 Fifth Ave, New York, NY 10016 USA.
[Brizan, David Guy; Brown, Theodore] CUNY, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USA.
[Gallagher, Kevin] NYU, Tandon Sch Engn, Dept Comp Sci, 6 MetroTech Ctr, Brooklyn, NY 11201 USA.
[Jahangir, Arnab] CUNY Hunter Coll, Dept Comp Sci, 695 Pk Ave, New York, NY 10065 USA.
C3 City University of New York (CUNY) System; City University of New York
(CUNY) System; New York University; New York University Tandon School of
Engineering; City University of New York (CUNY) System; Hunter College
(CUNY)
RP Brizan, DG (corresponding author), CUNY, Dept Comp Sci, 365 Fifth Ave, New York, NY 10016 USA.; Brizan, DG (corresponding author), CUNY, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USA.
EM dbrizan@gradcenter.cuny.edu
RI Gallagher, Kevin/GLS-0906-2022
OI Gallagher, Kevin/0000-0002-2714-7841
FU National Science Foundation [CNS-0958379, CNS-0855217, ACI-1126113];
City University of New York High Performance Computing Center at the
College of Staten Island
FX This research was supported, in part, under National Science Foundation
Grants CNS-0958379, CNS-0855217, ACI-1126113 and the City University of
New York High Performance Computing Center at the College of Staten
Island. The authors also acknowledge the Office of Information
Technology at The Graduate Center, CUNY for providing database and
server resources that have contributed to the research results reported
within this paper. URL: http://it.gc.cuny.edu/.
CR [Anonymous], 2000, KDD WORKSH TEXT MIN
Bollacker K. D., 1998, Proceedings of the Second International Conference on Autonomous Agents, P116, DOI 10.1145/280765.280786
Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Giles C. L., 1998, Digital 98 Libraries. Third ACM Conference on Digital Libraries, P89, DOI 10.1145/276675.276685
Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278
Haslam N, 2008, SCIENTOMETRICS, V76, P169, DOI 10.1007/s11192-007-1892-8
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Judge TA, 2007, ACAD MANAGE J, V50, P491
Ley M., 2002, String Processing and Information Retrieval. 9th International Symposium, SPIRE 2002. Proceedings (Lecture Notes in Computer Science Vol.2476), P1
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002
Newman MEJ, 2009, EPL-EUROPHYS LETT, V86, DOI 10.1209/0295-5075/86/68001
Prathap G, 2006, CURR SCI INDIA, V91, P1439
PRICE DJD, 1965, SCIENCE, V149, P510
ROSSITER MW, 1993, SOC STUD SCI, V23, P325, DOI 10.1177/030631293023002004
Schubert A, 2009, SCIENTOMETRICS, V78, P375, DOI 10.1007/s11192-008-2218-1
Sher IH, 1965, P C SPONS OFF NAV RE, P135
Shi X., 2009, ARXIV09052636
Tscharntke T, 2007, PLOS BIOL, V5, P13, DOI 10.1371/journal.pbio.0050018
van Dalen HP, 2001, SCIENTOMETRICS, V50, P455, DOI 10.1023/A:1010510831718
van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1
NR 25
TC 13
Z9 13
U1 1
U2 38
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUL
PY 2016
VL 108
IS 1
BP 183
EP 200
DI 10.1007/s11192-016-1950-1
PG 18
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA DP8WB
UT WOS:000378777500009
DA 2024-09-05
ER
PT J
AU Kaur, M
Kumar, A
Mittal, AK
AF Kaur, Manpreet
Kumar, Amit
Mittal, Anil Kumar
TI Mapping the knowledge structure of artificial neural network research in
the stock market: a bibliometric analysis and future research pathways
SO BENCHMARKING-AN INTERNATIONAL JOURNAL
LA English
DT Article; Early Access
DE Neural networks; Bibliometric; Stock market; Forecasting
ID DATA MINING TECHNIQUES; EARLY WARNING SYSTEM; FINANCIAL DISTRESS;
BANKRUPTCY PREDICTION; PRICE INDEX; VOLATILITY; DEEP; INTEGRATION;
COMPANIES; MODELS
AB Purpose - In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered considerable attention from researchers worldwide. The present study aims to synthesize the research field concerning ANN applications in the stock market to a) systematically map the research trends, key contributors, scientific collaborations, and knowledge structure, and b) uncover the challenges and future research areas in the field. Design/methodology/approach - To provide a comprehensive appraisal of the extant literature, the study adopted the mixed approach of quantitative (bibliometric analysis) and qualitative (intensive review of influential articles) assessment to analyse 1,483 articles published in the Scopus and Web of Science indexed journals during 1992-2022. The bibliographic data was processed and analysed using VOSviewer and R software. Findings - The results revealed the proliferation of articles since 2018, with China as the dominant country, Wang J as the most prolific author, "Expert Systems with Applications" as the leading journal, "computer science" as the dominant subject area, and "stock price forecasting" as the predominantly explored research theme in the field. Furthermore, "portfolio optimization", "sentiment analysis", "algorithmic trading", and "crisis prediction" are found as recently emerged research areas. Originality/value - To the best of the authors' knowledge, the current study is a novel attempt that holistically assesses the existing literature on ANN applications throughout the entire domain of stock market. The main contribution of the current study lies in discussing the challenges along with the viable methodological solutions and providing application area-wise knowledge gaps for future studies.
C1 [Kaur, Manpreet; Kumar, Amit; Mittal, Anil Kumar] Kurukshetra Univ, Univ Sch Management, Kurukshetra, Haryana, India.
C3 Kurukshetra University
RP Kaur, M (corresponding author), Kurukshetra Univ, Univ Sch Management, Kurukshetra, Haryana, India.
EM manpreetkaur27oct@gmail.com
RI Kaur, Manpreet/HJZ-4398-2023
OI Kumar Mittal, Anil/0009-0007-3096-6008; Kumar, Amit/0000-0002-3055-1810;
Kaur, Manpreet/0000-0001-8299-9986
CR Agbo FJ, 2021, SMART LEARN ENVIRON, V8, DOI 10.1186/s40561-020-00145-4
Alizadeh M, 2011, INT J INTELL SYST, V26, P99, DOI 10.1002/int.20456
Anjaria M, 2014, SOC NETW ANAL MIN, V4, DOI 10.1007/s13278-014-0181-9
Aparicio G, 2023, MANAG REV Q, V73, P317, DOI 10.1007/s11301-021-00241-w
Bhattarai JK, 2021, GLOB BUS REV, DOI 10.1177/09721509211016818
Bisoi Ranjeeta, 2015, International Journal of Information and Decision Sciences, V7, P166, DOI 10.1504/IJIDS.2015.068757
Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007
Boyacioglu MA, 2010, EXPERT SYST APPL, V37, P7908, DOI 10.1016/j.eswa.2010.04.045
Bucci A, 2020, J FINANC ECONOMET, V18, P502, DOI 10.1093/jjfinec/nbaa008
Cebral-Loureda M, 2023, PHILOS ETHICS HUM ME, V18, DOI 10.1186/s13010-023-00147-3
Center for Data Innovation, 2017, How governments are preparing for artificial intelligence
Chang PC, 2009, IEEE T SYST MAN CY C, V39, P80, DOI 10.1109/TSMCC.2008.2007255
Chatzis SP, 2018, EXPERT SYST APPL, V112, P353, DOI 10.1016/j.eswa.2018.06.032
Chen WS, 2009, EXPERT SYST APPL, V36, P4075, DOI 10.1016/j.eswa.2008.03.020
Chhajer P., 2021, Decision An alytics Journal, V2, DOI [DOI 10.1016/J.DAJOUR.2021.100015, 10.1016/j.dajour.2021.100015]
Chiappini H, 2023, SUSTAIN ACCOUNT MANA, V14, P232, DOI 10.1108/SAMPJ-09-2022-0471
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Echchakoui S, 2020, J MARK ANAL, V8, P165, DOI 10.1057/s41270-020-00081-9
European Commission, 2020, WHIT PAP ART INT EUR
Fernández-Rodríguez F, 2000, ECON LETT, V69, P89, DOI 10.1016/S0165-1765(00)00270-6
Fuchs F, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12041952
Geng RB, 2015, EUR J OPER RES, V241, P236, DOI 10.1016/j.ejor.2014.08.016
Gnanendra M., 2022, Vision: The Journal of Business Perspective, DOI [10.1177/09722629221106251, DOI 10.1177/09722629221106251]
Goykhman M, 2018, PHYSICA A, V492, P1729, DOI 10.1016/j.physa.2017.11.093
Gunawardana Kennedy Degaulle, 2021, International Journal of Sociotechnology and Knowledge Development, V13, P48, DOI 10.4018/IJSKD.2021040104
Guresen E, 2011, EXPERT SYST APPL, V38, P10389, DOI 10.1016/j.eswa.2011.02.068
Hadavandi E, 2010, KNOWL-BASED SYST, V23, P800, DOI 10.1016/j.knosys.2010.05.004
Henrique BM, 2019, EXPERT SYST APPL, V124, P226, DOI 10.1016/j.eswa.2019.01.012
Hosaka T, 2019, EXPERT SYST APPL, V117, P287, DOI 10.1016/j.eswa.2018.09.039
Jiang WW, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115537
Jin ZG, 2020, NEURAL COMPUT APPL, V32, P9713, DOI 10.1007/s00521-019-04504-2
Jing N, 2021, EXPERT SYST APPL, V178, DOI 10.1016/j.eswa.2021.115019
Kara Y, 2011, EXPERT SYST APPL, V38, P5311, DOI 10.1016/j.eswa.2010.10.027
Karanasos M, 2001, J TIME SER ANAL, V22, P555, DOI 10.1111/1467-9892.00241
Kim DH, 2009, EXPERT SYST, V26, P260, DOI 10.1111/j.1468-0394.2009.00485.x
Kim HY, 2018, EXPERT SYST APPL, V103, P25, DOI 10.1016/j.eswa.2018.03.002
Ko PC, 2008, EXPERT SYST APPL, V35, P330, DOI 10.1016/j.eswa.2007.07.031
Kristjanpoller W, 2014, EXPERT SYST APPL, V41, P2437, DOI 10.1016/j.eswa.2013.09.043
Kumar D, 2022, MATER TODAY-PROC, V49, P3187, DOI 10.1016/j.matpr.2020.11.399
Kumbure MM, 2022, EXPERT SYST APPL, V197, DOI 10.1016/j.eswa.2022.116659
Kuo RJ, 2001, FUZZY SET SYST, V118, P21, DOI 10.1016/S0165-0114(98)00399-6
Kwak Y, 2021, EXPERT SYST APPL, V183, DOI 10.1016/j.eswa.2021.115298
Li GF, 2022, COMPUT INTEL NEUROSC, V2022, DOI 10.1155/2022/4874516
Ma YL, 2021, EXPERT SYST APPL, V165, DOI 10.1016/j.eswa.2020.113973
Ma YL, 2020, IEEE ACCESS, V8, P115393, DOI 10.1109/ACCESS.2020.3003819
Maknickiene N, 2018, EQUILIBRIUM, V13, P7, DOI 10.24136/eq.2018.001
Naik N, 2021, IEEE ACCESS, V9, P86230, DOI 10.1109/ACCESS.2021.3088999
Nasir M.L., 2000, Journal of Applied Accounting Research, V5, P30, DOI [10.1108/96754260080001017, DOI 10.1108/96754260080001017]
Nenortaite J, 2004, LECT NOTES COMPUT SC, V3039, P843
OECD, 2019, ARTIF INTELL, DOI [10.1787/eedfee77-en, DOI 10.1787/EEDFEE77-EN]
Panda MM., 2021, Mater. Today: Proc.
Patel J, 2015, EXPERT SYST APPL, V42, P2162, DOI 10.1016/j.eswa.2014.10.031
Patel J, 2015, EXPERT SYST APPL, V42, P259, DOI 10.1016/j.eswa.2014.07.040
Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397
Roh TH, 2007, EXPERT SYST APPL, V33, P916, DOI 10.1016/j.eswa.2006.08.001
Salehi M, 2016, INT J LAW MANAG, V58, P545, DOI 10.1108/IJLMA-05-2015-0023
Salehi M, 2016, INT J LAW MANAG, V58, P216, DOI 10.1108/IJLMA-06-2015-0028
Samitas A, 2020, INT REV FINANC ANAL, V71, DOI 10.1016/j.irfa.2020.101507
Sang C., 2019, The Journal of Finance and Data Science, V5, P1, DOI DOI 10.1016/J.JFDS.2018.10.003
Seo M, 2019, FLUCT NOISE LETT, V18, DOI 10.1142/S0219477519500068
Sezer OB, 2018, APPL SOFT COMPUT, V70, P525, DOI 10.1016/j.asoc.2018.04.024
Sohangir S, 2018, J BIG DATA-GER, V5, DOI 10.1186/s40537-017-0111-6
Stoean C, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0223593
Su JB, 2021, ENTROPY-SWITZ, V23, DOI 10.3390/e23091151
Sun J., 2013, Recent Patents on Computer Science, V6, P47, DOI 10.2174/2213275911306010007
Thakkar A, 2021, EXPERT SYST APPL, V177, DOI 10.1016/j.eswa.2021.114800
Troiano L, 2018, IEEE T IND INFORM, V14, P3226, DOI 10.1109/TII.2018.2811377
Vella V, 2014, NEUROCOMPUTING, V141, P170, DOI 10.1016/j.neucom.2014.03.026
Wang F, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/6641298
Wang WY, 2020, EXPERT SYST APPL, V143, DOI 10.1016/j.eswa.2019.113042
Wang YL, 2021, INFORM SCIENCES, V547, P1066, DOI 10.1016/j.ins.2020.09.031
Wu DS, 2022, DECIS SUPPORT SYST, V159, DOI 10.1016/j.dss.2022.113814
Wu ST, 2022, CONNECT SCI, V34, P44, DOI 10.1080/09540091.2021.1940101
Yaman I, 2021, EXPERT SYST APPL, V169, DOI 10.1016/j.eswa.2020.114517
Yan DW, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8081275
Yoon WJ, 2014, DIGIT SIGNAL PROCESS, V29, P35, DOI 10.1016/j.dsp.2013.09.011
Zhang JZ, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115561
Zhang YD, 2009, EXPERT SYST APPL, V36, P8849, DOI 10.1016/j.eswa.2008.11.028
NR 78
TC 0
Z9 0
U1 1
U2 1
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 1463-5771
EI 1758-4094
J9 BENCHMARKING
JI Benchmarking
PD 2024 MAR 7
PY 2024
DI 10.1108/BIJ-06-2023-0373
EA MAR 2024
PG 30
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA KH9I1
UT WOS:001179182800001
DA 2024-09-05
ER
PT J
AU Cheng, SY
Zhang, JC
Wang, GX
Zhou, Z
Du, J
Wang, LJ
Li, N
Wang, JY
AF Cheng, Shiyuan
Zhang, Jianchen
Wang, Guangxia
Zhou, Zheng
Du, Jin
Wang, Lijun
Li, Ning
Wang, Jiayao
TI Cartography and Neural Networks: A Scientometric Analysis Based on
CiteSpace
SO ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION
LA English
DT Article
DE cartography; neural network; CiteSpace; visual analysis; knowledge
mapping
ID FUZZY COGNITIVE MAPS; LANDSLIDE SUSCEPTIBILITY ASSESSMENT; SUPPORT
VECTOR MACHINE; SOIL ORGANIC-CARBON; FREQUENCY RATIO;
LOGISTIC-REGRESSION; EMERGING TRENDS; DECISION TREE; MODELS;
CLASSIFICATION
AB Propelled by emerging technologies such as artificial intelligence and deep learning, the essence and scope of cartography have significantly expanded. The rapid progress in neuroscience has raised high expectations for related disciplines, furnishing theoretical support for revealing and deepening the essence of maps. In this study, CiteSpace was used to examine the confluence of cartography and neural networks over the past decade (2013-2023), thus revealing the prevailing research trends and cutting-edge investigations in the field of machine learning and its application in mapping. In addition, this analysis included the systematic categorization of knowledge clusters arising from the fusion of cartography and neural networks, which was followed by the discernment of pivotal clusters in the field of knowledge mapping. Crucially, this study diligently identified the critical studies (milestones) that have made significant contributions to the development of these elucidated clusters. Timeline analysis was used to track these studies' origins, evolution, and current status. Finally, we constructed collaborative networks among the contributing authors, journals, institutions, and countries. This mapping aids in identifying and visualizing the primary contributing factors of the evolution of knowledge mapping encompassing cartography and neural networks, thus facilitating interdisciplinary and multidisciplinary research and investigations.
C1 [Cheng, Shiyuan; Zhang, Jianchen; Wang, Guangxia; Zhou, Zheng; Wang, Lijun; Li, Ning; Wang, Jiayao] Henan Univ, Coll Geog & Environm Sci, Kaifeng 475004, Peoples R China.
[Cheng, Shiyuan; Zhang, Jianchen; Wang, Guangxia; Zhou, Zheng; Wang, Lijun; Li, Ning; Wang, Jiayao] Henan Univ, Henan Ind Technol Acad Spatial Temporal Big Data, Zhengzhou 450046, Peoples R China.
[Cheng, Shiyuan; Zhang, Jianchen; Wang, Guangxia; Zhou, Zheng; Wang, Lijun; Li, Ning; Wang, Jiayao] Henan Univ, Key Lab Geospatial Technol Middle & Lower Yellow R, Minist Educ, Kaifeng 475004, Peoples R China.
[Cheng, Shiyuan; Zhang, Jianchen; Wang, Guangxia; Zhou, Zheng; Wang, Lijun; Li, Ning; Wang, Jiayao] Henan Univ, Henan Technol Innovat Ctr Spatio Temporal Big Data, Zhengzhou 450046, Peoples R China.
[Du, Jin] Henan Univ, Key Res Inst Yellow River Civilizat & Sustainable, Kaifeng 475001, Peoples R China.
[Du, Jin] Henan Urban Planning Inst & Corp, Zhengzhou 450053, Peoples R China.
C3 Henan University; Henan University; Henan University; Henan University;
Henan University
RP Wang, JY (corresponding author), Henan Univ, Coll Geog & Environm Sci, Kaifeng 475004, Peoples R China.; Wang, JY (corresponding author), Henan Univ, Henan Ind Technol Acad Spatial Temporal Big Data, Zhengzhou 450046, Peoples R China.; Wang, JY (corresponding author), Henan Univ, Key Lab Geospatial Technol Middle & Lower Yellow R, Minist Educ, Kaifeng 475004, Peoples R China.; Wang, JY (corresponding author), Henan Univ, Henan Technol Innovat Ctr Spatio Temporal Big Data, Zhengzhou 450046, Peoples R China.
EM shiyuan.cheng@henu.edu.cn; jczhang@vip.henu.edu.cn; wgx@henu.edu.cn;
zzeduphd@henu.edu.cn; dujin@henu.edu.cn; henuwlj@henu.edu.cn;
lining@henu.edu.cn; wjy@henu.edu.cn
OI Zhang, Jianchen/0000-0002-0093-0940
FU National Natural Science Foundation of China [U21A2014]; Natural Science
Foundation of Henan Province [232300420436, 232300420432]; Open Fund of
Key Laboratory of Urban Land Resources Monitoring and Simulation,
Ministry of Natural Resources [KF-2022-07-020]; Key Laboratory of
Geospatial Technology for Middle and Lower Yellow River Regions (Henan
University) and the Ministry of Education open project [GTYR202203];
Henan Collaborative Innovation Center of Geo-Information Technology for
Smart Central Plains [2023C001]; Science and Technology Development
Project of Henan Province [242102210175]
FX This work was supported by the National Natural Science Foundation of
China under grant [number U21A2014]; the Natural Science Foundation of
Henan Province under grant [number 232300420436, 232300420432]; the Open
Fund of Key Laboratory of Urban Land Resources Monitoring and
Simulation, Ministry of Natural Resources under grant [number
KF-2022-07-020]; the Key Laboratory of Geospatial Technology for Middle
and Lower Yellow River Regions (Henan University) and the Ministry of
Education open project under grant [number GTYR202203]; Henan
Collaborative Innovation Center of Geo-Information Technology for Smart
Central Plains under grant [number 2023C001]; and the Science and
Technology Development Project of Henan Province under grant [number
242102210175].
CR Abdollahi A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12091444
Aditian A, 2018, GEOMORPHOLOGY, V318, P101, DOI 10.1016/j.geomorph.2018.06.006
[艾廷华 Al Tinghua], 2021, [测绘学报, Acta Geodetica et Cartographica Sinica], V50, P1170
Badrinarayanan V, 2017, IEEE T PATTERN ANAL, V39, P2481, DOI 10.1109/TPAMI.2016.2644615
Bakhtavar E, 2021, J CLEAN PROD, V283, DOI 10.1016/j.jclepro.2020.124562
Behrens T, 2005, J PLANT NUTR SOIL SC, V168, P21, DOI 10.1002/jpln.200421414
Bermudez-Contreras E, 2020, FRONT COMPUT NEUROSC, V14, DOI 10.3389/fncom.2020.00063
Bertin J., 1983, Ann. Assoc. Am. Geogr, V10, P10438353
Bottini R, 2020, TRENDS COGN SCI, V24, P606, DOI 10.1016/j.tics.2020.05.008
Brungard CW, 2015, GEODERMA, V239, P68, DOI 10.1016/j.geoderma.2014.09.019
Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006
Chen CM, 2014, EXPERT OPIN BIOL TH, V14, P1295, DOI 10.1517/14712598.2014.920813
Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen LCE, 2018, LECT NOTES COMPUT SC, V11211, P833, DOI 10.1007/978-3-030-01234-2_49
Chen W, 2019, CATENA, V172, P212, DOI 10.1016/j.catena.2018.08.025
Cheng BY, 2013, GISCI REMOTE SENS, V50, P527, DOI 10.1080/15481603.2013.823748
Chi YX, 2016, IEEE T FUZZY SYST, V24, P71, DOI 10.1109/TFUZZ.2015.2426314
Clarke KC, 2019, CARTOGR GEOGR INF SC, V46, P196, DOI 10.1080/15230406.2019.1571441
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Courtial A, 2023, INT J GEOGR INF SCI, V37, P499, DOI 10.1080/13658816.2022.2123488
Crawford-Welch S., 1992, International Journal of Hospitality Management, V11, P155, DOI 10.1016/0278-4319(92)90008-J
Cui X.P.M., 2017, How is CiteSpace Used and Cited in the Literature? An Analysis of the Articles Published in English and Chinese Core Journals
Dai A, 2017, PROC CVPR IEEE, P6545, DOI 10.1109/CVPR.2017.693
Das Papiya, 2020, 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), P339, DOI 10.1109/ICRITO48877.2020.9197899
Devkota KC, 2013, NAT HAZARDS, V65, P135, DOI 10.1007/s11069-012-0347-6
Bui DT, 2012, MATH PROBL ENG, V2012, DOI 10.1155/2012/974638
Dodge S, 2017, PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, P358, DOI 10.23919/MVA.2017.7986875
Dong WH, 2018, ISPRS INT J GEO-INF, V7, DOI 10.3390/ijgi7090337
Du JW, 2022, CARTOGR GEOGR INF SC, V49, P313, DOI 10.1080/15230406.2021.2013944
Du JW, 2022, GEOCARTO INT, V37, P4158, DOI 10.1080/10106049.2021.1878288
Duan W., 2018, P AUTOCARTO MAD WI U
en A., 2012, P 9 INT S SURF MOD G, P23
Felix G, 2019, ARTIF INTELL REV, V52, P1707, DOI 10.1007/s10462-017-9575-1
Feng Y, 2019, ISPRS INT J GEO-INF, V8, DOI 10.3390/ijgi8060258
Froelich W, 2017, NEUROCOMPUTING, V232, P83, DOI 10.1016/j.neucom.2016.11.059
Gao RB, 2020, ENG APPL ARTIF INTEL, V96, DOI 10.1016/j.engappai.2020.103978
Balboa JLG, 2008, GEOINFORMATICA, V12, P289, DOI 10.1007/s10707-007-0026-z
Griffin A.L., 2017, International Journal of Cartography, V3, P1, DOI [10.1080/23729333.2017.1316466, DOI 10.1080/23729333.2017.1316466]
Grossberg S, 2020, FRONT NEUROINFORM, V14, DOI 10.3389/fninf.2020.00004
Grubesic TH, 2008, INT REGIONAL SCI REV, V31, P88, DOI 10.1177/0160017607308679
Guangying W., 2021, Sci. Surv. Mapp, V46, P10
[郭仁忠 Guo Renzhong], 2021, [测绘地理信息, Journal of Geomatics], V46, P9
Haeri SAS, 2019, J CLEAN PROD, V221, P768, DOI 10.1016/j.jclepro.2019.02.193
Hart C., 2018, DOING LIT REV RELEAS
[何海威 He Haiwei], 2016, [测绘科学技术学报, Journal of Geomatics Science and Technology], V33, P623
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
He SW, 2012, GEOMORPHOLOGY, V171, P30, DOI 10.1016/j.geomorph.2012.04.024
Helbich M, 2013, CARTOGR GEOGR INF SC, V40, P326, DOI 10.1080/15230406.2013.779780
Hong HY, 2016, GEOMORPHOLOGY, V259, P105, DOI 10.1016/j.geomorph.2016.02.012
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
Huang FM, 2020, CATENA, V191, DOI 10.1016/j.catena.2020.104580
Huang FM, 2020, LANDSLIDES, V17, P217, DOI 10.1007/s10346-019-01274-9
Huang FM, 2018, GEOMAT NAT HAZ RISK, V9, P919, DOI 10.1080/19475705.2018.1482963
Huang X, 2020, INT GEOSCI REMOTE SE, P6758, DOI 10.1109/IGARSS39084.2020.9323669
Huang Y, 2018, CATENA, V165, P520, DOI 10.1016/j.catena.2018.03.003
Jaderberg M, 2015, ADV NEUR IN, V28
Jafari A, 2013, GEOMORPHOLOGY, V201, P86, DOI 10.1016/j.geomorph.2013.06.010
Janowicz K, 2020, INT J GEOGR INF SCI, V34, P625, DOI 10.1080/13658816.2019.1684500
Javan FD, 2021, ISPRS J PHOTOGRAMM, V171, P101, DOI 10.1016/j.isprsjprs.2020.11.001
Jenny B, 2021, IEEE T VIS COMPUT GR, V27, P1225, DOI 10.1109/TVCG.2020.3030456
Jiang B., 2004, Transactions in GIS, V8, P335, DOI DOI 10.1111/J.1467-9671.2004.00186.X
Kang YH, 2019, INT J CARTOGRAPHY, V5, P115, DOI 10.1080/23729333.2019.1615729
Kavzoglu T, 2014, LANDSLIDES, V11, P425, DOI 10.1007/s10346-013-0391-7
Konen M., 2010, Joint Board of Geospatial Information Societies (JB GIS)
KOSKO B, 1986, INT J MAN MACH STUD, V24, P65, DOI 10.1016/S0020-7373(86)80040-2
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Kuras A, 2021, REMOTE SENS-BASEL, V13, DOI 10.3390/rs13173393
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Leng S., 2016, The Geographical Sciences during 1986-2015: From the Classics to the Frontiers
Li CM, 2020, T GIS, V24, P1756, DOI 10.1111/tgis.12681
Li HF, 2019, 2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2019), P322, DOI 10.1109/BigDataService.2019.00057
Li WW, 2020, INT J GEOGR INF SCI, V34, P637, DOI 10.1080/13658816.2018.1542697
Li XJ, 2017, INT J HOSP MANAG, V60, P77, DOI 10.1016/j.ijhm.2016.10.006
Lin GF, 2017, ENG GEOL, V224, P62, DOI 10.1016/j.enggeo.2017.05.009
Lin T.-Y., 2017, ICCV, DOI [DOI 10.1109/CVPR.2017.106, 10.1109/CVPR.2017.106]
Liu C, 2017, IEEE I CONF COMP VIS, P2214, DOI 10.1109/ICCV.2017.241
Liu K., 2017, Research on Intelligent Selection of Road Network Automatic Generalization Based on Kernel-Based Machine Learning
Liu PH, 2020, KNOWL-BASED SYST, V203, DOI 10.1016/j.knosys.2020.106081
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
Lu Xin, 2012, Proc ACM Int Conf Multimed, V2012, P229, DOI 10.1145/2393347.2393384
Ma J, 2009, ANATOLIA, V20, P62, DOI 10.1080/13032917.2009.10518895
Ma L, 2019, ISPRS J PHOTOGRAMM, V152, P166, DOI 10.1016/j.isprsjprs.2019.04.015
Matin SS, 2022, GEOCARTO INT, V37, P6186, DOI 10.1080/10106049.2021.1933213
[孟立秋 Meng Liqiu], 2017, [测绘学报, Acta Geodetica et Cartographica Sinica], V46, P1637
Moonjun R, 2010, PROGR SOIL SCI, V2, P151, DOI 10.1007/978-90-481-8863-5_13
Musa A, 2022, SCHIZOPHR, V8, DOI 10.1038/s41537-022-00247-7
Nápoles G, 2018, NEURAL NETWORKS, V97, P19, DOI 10.1016/j.neunet.2017.08.007
Nápoles G, 2017, INT J APPROX REASON, V85, P79, DOI 10.1016/j.ijar.2017.03.011
Nápoles G, 2016, INFORM SCIENCES, V349, P154, DOI 10.1016/j.ins.2016.02.040
Papageorgiou EI, 2016, IEEE INT FUZZY SYST, P1523, DOI 10.1109/FUZZ-IEEE.2016.7737871
Park I, 2014, INT J REMOTE SENS, V35, P6089, DOI 10.1080/01431161.2014.943326
Pashaei M, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12060959
Poczeta K, 2015, ACSIS-ANN COMPUT SCI, V5, P547, DOI 10.15439/2015F296
Pourghasemi HR, 2012, CATENA, V97, P71, DOI 10.1016/j.catena.2012.05.005
Pradhan B, 2013, COMPUT GEOSCI-UK, V51, P350, DOI 10.1016/j.cageo.2012.08.023
Pradhan B, 2010, ENVIRON MODELL SOFTW, V25, P747, DOI 10.1016/j.envsoft.2009.10.016
Pradhan B, 2009, INT J PHYS SCI, V4, P1
Qin FL, 2021, WATER-SUI, V13, DOI 10.3390/w13020174
Reichstein M, 2019, NATURE, V566, P195, DOI 10.1038/s41586-019-0912-1
Rousi E, 2014, J MAPS, V10, P232, DOI 10.1080/17445647.2013.862747
Samarasinghe S, 2013, ENVIRON MODELL SOFTW, V39, P188, DOI 10.1016/j.envsoft.2012.06.008
Schnürer R, 2021, CARTOGR J, V58, P50, DOI 10.1080/00087041.2020.1738112
Sen A, 2014, CARTOGR GEOGR INF SC, V41, P151, DOI 10.1080/15230406.2013.877231
Sester M., 2008, Self-Organising Maps: Applications in Geographic Information Science, P107
Sester Monika., 2018, ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-4, VXLII-4, P565, DOI [DOI 10.5194/ISPRS-ARCHIVES-XLII-4-565-2018, https://doi.org/10.5194/isprs-archives-XLII-4-565-2018]
Shi H., 2022, Prog. Geogr, V41, P13
Song HJ, 2010, NEURAL NETWORKS, V23, P1264, DOI 10.1016/j.neunet.2010.08.003
Song HJ, 2010, IEEE T FUZZY SYST, V18, P233, DOI 10.1109/TFUZZ.2009.2038371
Song YQ, 2012, COMPUT GEOSCI-UK, V42, P189, DOI 10.1016/j.cageo.2011.09.011
Speel P.H., 1999, KNOWLEDGE MAPPING IN
Summerfield C, 2020, PROG NEUROBIOL, V184, DOI 10.1016/j.pneurobio.2019.101717
Sun YG, 2016, T GIS, V20, P585, DOI 10.1111/tgis.12165
Taghizadeh-Mehrjardi R, 2016, GEODERMA, V266, P98, DOI 10.1016/j.geoderma.2015.12.003
Talukdar S, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12071135
Tang HJ, 2018, IEEE T COGN DEV SYST, V10, P751, DOI 10.1109/TCDS.2017.2776965
Taravat A, 2017, J MAPS, V13, P24, DOI 10.1080/17445647.2017.1305300
Touya G, 2019, INT J CARTOGRAPHY, V5, P142, DOI 10.1080/23729333.2019.1613071
Vakhshoori V, 2016, GEOMAT NAT HAZ RISK, V7, P1731, DOI 10.1080/19475705.2016.1144655
Wang CW, 2023, IEEE T GEOSCI REMOTE, V61, DOI 10.1109/TGRS.2023.3284478
Wang J., 2014, Principles and Methods of Cartography-2
Wang J., 2006, Principles and Methods of Cartography
[王家耀 Wang Jiayao], 2022, [测绘学报, Acta Geodetica et Cartographica Sinica], V51, P829
[王家耀 Wang Jiayao], 2017, [测绘学报, Acta Geodetica et Cartographica Sinica], V46, P1226
[王荣 Wang Rong], 2021, [测绘科学, Science of Surveying and Mapping], V46, P167
Wang YX, 2015, LECT NOTES GEOINF CA, P189, DOI 10.1007/978-3-319-17738-0_14
Wang YQ, 2020, ACM COMPUT SURV, V53, DOI 10.1145/3386252
Wang YH, 2017, COGN NEURODYNAMICS, V11, P99, DOI 10.1007/s11571-016-9412-2
[王征 Wang Zheng], 2017, [南京师大学报. 自然科学版, Journal of Nanjing Normal University. Natural Science], V40, P74
Webster J, 2002, MIS QUART, V26, pXIII
Wei FW, 2015, PROF GEOGR, V67, P374, DOI 10.1080/00330124.2014.983588
Were K, 2015, ECOL INDIC, V52, P394, DOI 10.1016/j.ecolind.2014.12.028
Woo SH, 2018, LECT NOTES COMPUT SC, V11211, P3, DOI 10.1007/978-3-030-01234-2_1
Xi DP, 2023, CARTOGR GEOGR INF SC, V50, P465, DOI 10.1080/15230406.2023.2172081
Xiao TY, 2024, CARTOGR GEOGR INF SC, V51, P20, DOI 10.1080/15230406.2023.2187886
Xie YQ, 2020, INT J GEOGR INF SCI, V34, P777, DOI 10.1080/13658816.2019.1624761
Xu YX, 2022, FRONT EARTH SCI-PRC, V16, P352, DOI 10.1007/s11707-021-0884-y
Yan CD, 2022, CARTOGR J, V59, P187, DOI 10.1080/00087041.2021.2006390
Yan W., 2018, Geospat. Inf, V16, P5
Yan XF, 2024, CARTOGR GEOGR INF SC, V51, P79, DOI 10.1080/15230406.2023.2218106
Yan XF, 2021, INT J GEOGR INF SCI, V35, P490, DOI 10.1080/13658816.2020.1768260
Yan XF, 2019, ISPRS J PHOTOGRAMM, V150, P259, DOI 10.1016/j.isprsjprs.2019.02.010
Yang M, 2022, INT J APPL EARTH OBS, V108, DOI 10.1016/j.jag.2022.102753
Yu WH, 2022, T GIS, V26, P2302, DOI 10.1111/tgis.12965
Yuan KX, 2020, KNOWL-BASED SYST, V206, DOI 10.1016/j.knosys.2020.106359
Zhao R, 2020, CARTOGR GEOGR INF SC, V47, P400, DOI 10.1080/15230406.2020.1757512
Zhao SC, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P47, DOI 10.1145/2647868.2654930
[钟耳顺 Zhong Ershun], 2022, [武汉大学学报. 信息科学版, Geomatics and Information Science of Wuhan University], V47, P1988
Zhou Q, 2014, CARTOGR J, V51, P38, DOI 10.1179/1743277413Y.0000000042
Ziran Z, 2018, LECT NOTES ARTIF INT, V11081, P383, DOI 10.1007/978-3-319-99978-4_30
NR 150
TC 0
Z9 0
U1 9
U2 9
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2220-9964
J9 ISPRS INT J GEO-INF
JI ISPRS Int. J. Geo-Inf.
PD JUN
PY 2024
VL 13
IS 6
AR 178
DI 10.3390/ijgi13060178
PG 31
WC Computer Science, Information Systems; Geography, Physical; Remote
Sensing
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Physical Geography; Remote Sensing
GA WO4M6
UT WOS:001255805000001
OA gold
DA 2024-09-05
ER
PT J
AU Fu, LD
Aphinyanaphongs, Y
Aliferis, CF
AF Fu, Lawrence D.
Aphinyanaphongs, Yindalon
Aliferis, Constantin F.
TI Computer models for identifying instrumental citations in the biomedical
literature
SO SCIENTOMETRICS
LA English
DT Article
DE Bibliometrics; Citation analysis; Machine learning; Information
retrieval
ID TEXT CATEGORIZATION; AGREEMENT; COUNTS
AB The most popular method for evaluating the quality of a scientific publication is citation count. This metric assumes that a citation is a positive indicator of the quality of the cited work. This assumption is not always true since citations serve many purposes. As a result, citation count is an indirect and imprecise measure of impact. If instrumental citations could be reliably distinguished from non-instrumental ones, this would readily improve the performance of existing citation-based metrics by excluding the non-instrumental citations. A citation was operationally defined as instrumental if either of the following was true: the hypothesis of the citing work was motivated by the cited work, or the citing work could not have been executed without the cited work. This work investigated the feasibility of developing computer models for automatically classifying citations as instrumental or non-instrumental. Instrumental citations were manually labeled, and machine learning models were trained on a combination of content and bibliometric features. The experimental results indicate that models based on content and bibliometric features are able to automatically classify instrumental citations with high predictivity (AUC = 0.86). Additional experiments using independent hold out data and prospective validation show that the models are generalizeable and can handle unseen cases. This work demonstrates that it is feasible to train computer models to automatically identify instrumental citations.
C1 [Fu, Lawrence D.; Aphinyanaphongs, Yindalon] NYU Med Ctr, Ctr Hlth Informat & Bioinformat, Dept Med, New York, NY 10016 USA.
[Aliferis, Constantin F.] NYU Med Ctr, Ctr Hlth Informat & Bioinformat, Dept Pathol, New York, NY 10016 USA.
C3 New York University; New York University
RP Fu, LD (corresponding author), NYU Med Ctr, Ctr Hlth Informat & Bioinformat, Dept Med, 227 E 30th St,7th Floor, New York, NY 10016 USA.
EM lawrence.fu@nyumc.org
OI Aphinyanaphongs, Yin/0000-0001-8605-5392
FU [R56 LM007948-04A1]; [1UL1RR029893]
FX The authors gratefully acknowledge support from R56 LM007948-04A1 and
1UL1RR029893.
CR Aliferis CF, 2006, CANCER INFORM, V2, P133
Aliferis CF, 2010, J MACH LEARN RES, V11, P171
Aphinyanaphongs Y, 2005, J AM MED INFORM ASSN, V12, P207, DOI 10.1197/jamia.M1641
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104
Cronin B, 1998, SCIENTOMETRICS, V43, P45, DOI 10.1007/BF02458393
EGASHIRA K, 1993, NEW ENGL J MED, V328, P1659, DOI 10.1056/NEJM199306103282302
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Garfield E., 1977, ESSAYS INFORM SCI, V1, P84
HECHT SS, 1993, NEW ENGL J MED, V329, P1543, DOI 10.1056/NEJM199311183292105
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Leopold E, 2002, MACH LEARN, V46, P423, DOI 10.1023/A:1012491419635
MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604
Mercer R. E., 2004, 2004 JOINT C HUM LAN
Nicolaisen J, 2003, P ASIST ANNU, V40, P12
Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472
PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814
Seglen PO, 1998, ACTA ORTHOP SCAND, V69, P224, DOI 10.3109/17453679809000920
Teufel S., 2006, P EMNLP
NR 20
TC 4
Z9 4
U1 0
U2 25
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2013
VL 97
IS 3
BP 871
EP 882
DI 10.1007/s11192-013-0983-y
PG 12
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 255DP
UT WOS:000327219900020
DA 2024-09-05
ER
PT J
AU Chan, M
Hu, PF
Mak, MKF
AF Chan, Michael
Hu, Panfeng
K. F. Mak, Macau
TI Mediation Analysis and Warranted Inferences in Media and Communication
Research: Examining Research Design in Communication Journals From 1996
to 2017
SO JOURNALISM & MASS COMMUNICATION QUARTERLY
LA English
DT Article
DE mediation analysis; indirect effect; research design; causal inference;
content analysis
ID SOCIAL IDENTITY; NEWS; SELF; EXPOSURE; INFORMATION; ATTITUDES; BELIEFS;
INGROUP; HEALTH; ROLES
AB The number of studies employing mediation analysis has increased exponentially in the past two decades. Focusing on research design, this study examines 387 articles in theJournal of Communication,Human Communication Research,Communication Research,Journalism & Mass Communication Quarterly, andMedia Psychologybetween 1996 and 2017. Findings show that while most studies report statistically significant indirect effects, they are inadequate to make causal inferences. Authors also often infer that they uncovered the "true" mediator(s) while alternative models and mediators are rarely acknowledged. Future studies should pay more attention to the role of research design and its implications for making causal inferences.
C1 [Chan, Michael; Hu, Panfeng] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China.
[K. F. Mak, Macau] Univ Wisconsin, Sch Journalism & Mass Commun, Madison, WI 53706 USA.
C3 Chinese University of Hong Kong; University of Wisconsin System;
University of Wisconsin Madison
RP Chan, M (corresponding author), Chinese Univ Hong Kong, Sch Journalism & Commun, New Asia Coll, Shatin, Humanities Bldg, Hong Kong, Peoples R China.
EM mcmchan@cuhk.edu.hk
RI Mak, Macau K. F./ABC-3688-2022; Chan, Michael/A-9477-2013
OI Mak, Macau K. F./0000-0003-0819-1107; Hu, Panfeng/0000-0002-7820-2214;
Chan, Michael/0000-0001-9911-593X
CR [Anonymous], 2016, COMMUN RES, DOI DOI 10.1177/0093650214555180
Appel M, 2019, POETICS, V77, DOI 10.1016/j.poetic.2019.101385
Arroyo A, 2014, HUM COMMUN RES, V40, P463, DOI 10.1111/hcre.12036
Balmas M, 2014, COMMUN RES, V41, P430, DOI 10.1177/0093650212453600
Bartsch A, 2014, J COMMUN, V64, P369, DOI 10.1111/jcom.12095
Bélanger JJ, 2019, J PERS, V87, P1234, DOI 10.1111/jopy.12470
Bolin JH, 2014, J EDUC MEAS, V51, P335, DOI 10.1111/jedm.12050
Boukes M, 2015, J COMMUN, V65, P721, DOI 10.1111/jcom.12173
Bullock HE, 1994, STRUCT EQU MODELING, V1, P253, DOI 10.1080/10705519409539977
Bullock J.G., 2011, Cambridge handbook of experimental political science, P508, DOI [DOI 10.1017/CB09780511921452.035, 10.1017/cbo9780511921452.035, DOI 10.1017/CBO9780511921452.035]
Bullock JG, 2010, J PERS SOC PSYCHOL, V98, P550, DOI 10.1037/a0018933
Chan M, 2018, MASS COMMUN SOC, V21, P1, DOI 10.1080/15205436.2017.1358819
Chan M, 2017, NEW MEDIA SOC, V19, P2003, DOI 10.1177/1461444816653190
Chia SC, 2010, COMMUN RES, V37, P400, DOI 10.1177/0093650210362463
de Graaf A, 2014, HUM COMMUN RES, V40, P73, DOI 10.1111/hcre.12015
Dienlin T, 2021, J COMMUN, V71, P1, DOI 10.1093/joc/jqz052
Fiedler K, 2018, J EXP SOC PSYCHOL, V75, P95, DOI 10.1016/j.jesp.2017.11.008
Fiedler K, 2011, J EXP SOC PSYCHOL, V47, P1231, DOI 10.1016/j.jesp.2011.05.007
Gabbiadini A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0152121
Gunther AC, 1998, COMMUN RES, V25, P486, DOI 10.1177/009365098025005002
Harwood J, 2016, J COMMUN, V66, P937, DOI 10.1111/jcom.12261
Hayes AF, 2007, COMMUN METHODS MEAS, V1, P77, DOI 10.1080/19312450709336664
Holbert RL, 2020, COMMUN THEOR, V30, P227, DOI 10.1093/ct/qtz006
Holbert RL, 2004, J MASS COMMUN Q, V81, P343, DOI 10.1177/107769900408100208
Holbert RL, 2003, J BROADCAST ELECTRON, V47, P556, DOI 10.1207/s15506878jobem4704_5
Hutchens MJ, 2016, J MASS COMMUN Q, V93, P1073, DOI 10.1177/1077699016654439
Imai K, 2010, STAT SCI, V25, P51, DOI 10.1214/10-STS321
Johnson BK, 2016, J COMMUN, V66, P386, DOI 10.1111/jcom.12228
Kam JA, 2011, J COMMUN, V61, DOI 10.1111/j.1460-2466.2011.01552.x
Kline RB, 2015, BASIC APPL SOC PSYCH, V37, P202, DOI 10.1080/01973533.2015.1049349
Knobloch-Westerwick S, 2017, J COMMUN, V67, P54, DOI 10.1111/jcom.12271
Lecheler S, 2015, J MASS COMMUN Q, V92, P812, DOI 10.1177/1077699015596338
Martinot D, 2002, PERS SOC PSYCHOL B, V28, P1586, DOI 10.1177/014616702237585
Mathieu JE, 2008, ORGAN RES METHODS, V11, P203, DOI 10.1177/1094428107310089
McGregor I, 2008, J EXP SOC PSYCHOL, V44, P1395, DOI 10.1016/j.jesp.2008.06.001
Mellado C, 2020, J MASS COMMUN Q, V97, P333, DOI 10.1177/1077699020917204
Men LR, 2017, J MASS COMMUN Q, V94, P81, DOI 10.1177/1077699016674187
Morgan M, 2017, J COMMUN, V67, P424, DOI 10.1111/jcom.12297
Neuman WR, 2011, COMMUN THEOR, V21, P169, DOI 10.1111/j.1468-2885.2011.01381.x
Paek HJ, 2007, COMMUN RES, V34, P407, DOI 10.1177/0093650207302785
Palomares NA, 2013, HUM COMMUN RES, V39, P74, DOI 10.1111/j.1468-2958.2012.01439.x
Pirlott AG, 2016, J EXP SOC PSYCHOL, V66, P29, DOI 10.1016/j.jesp.2015.09.012
Pogge G, 2020, J EXP SOC PSYCHOL, V87, DOI 10.1016/j.jesp.2019.103914
Powell TE, 2015, J COMMUN, V65, P997, DOI 10.1111/jcom.12184
Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879
Preacher KJ, 2007, MULTIVAR BEHAV RES, V42, P185, DOI 10.1080/00273170701341316
Saleem M, 2017, COMMUN RES, V44, P841, DOI 10.1177/0093650215619214
Saylors R, 2021, ORGAN RES METHODS, V24, P616, DOI 10.1177/1094428119893452
Schmuck D, 2017, J COMMUN, V67, P610, DOI 10.1111/jcom.12313
Shah DV, 2007, J COMMUN, V57, P676, DOI 10.1111/j.1460-2466.2007.00363.x
Shehata A, 2019, COMMUN RES, V46, P1055, DOI 10.1177/0093650217714360
Slater MD, 2007, COMMUN RES, V34, P355, DOI 10.1177/0093650207302783
Slater MD, 2012, COMMUN METHODS MEAS, V6, P215, DOI 10.1080/19312458.2012.732626
Smith ER, 2012, J PERS SOC PSYCHOL, V102, P1, DOI 10.1037/a0026676
Sotirovic M, 2001, POLIT COMMUN, V18, P273, DOI 10.1080/10584600152400347
Spencer SJ, 2005, J PERS SOC PSYCHOL, V89, P845, DOI 10.1037/0022-3514.89.6.845
Stone-Romero EF, 2008, ORGAN RES METHODS, V11, P326, DOI 10.1177/1094428107300342
Theiss JA, 2014, COMMUN RES, V41, P27, DOI 10.1177/0093650211429285
Valkenburg PM, 2016, ANNU REV PSYCHOL, V67, P315, DOI 10.1146/annurev-psych-122414-033608
van Oosten JMF, 2015, COMMUN RES, V42, P986, DOI 10.1177/0093650214565893
Walter N, 2018, J COMMUN, V68, P424, DOI 10.1093/joc/jqx015
Wojcieszak M, 2018, HUM COMMUN RES, V44, P247, DOI 10.1093/hcr/hqx010
Yanovitzky Itzhak., 2009, The SAGE Handbook of Media Processes and Effects, P35
NR 63
TC 32
Z9 36
U1 6
U2 35
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1077-6990
EI 2161-430X
J9 J MASS COMMUN Q
JI Journal. Mass Commun. Q.
PD JUN
PY 2022
VL 99
IS 2
BP 463
EP 486
AR 1077699020961519
DI 10.1177/1077699020961519
EA OCT 2020
PG 24
WC Communication
WE Social Science Citation Index (SSCI)
SC Communication
GA 1X6BS
UT WOS:000575512500001
DA 2024-09-05
ER
PT J
AU Thakral, S
Kamra, V
AF Thakral, Shruti
Kamra, Vishal
TI Self-service technologies: A bibliometric analysis
SO INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING
LA English
DT Article; Early Access
DE Self-service technology; SSTs; bibliometric analyses; bibliographic
coupling; topic modeling
ID CUSTOMER SATISFACTION; QUALITY; ANTHROPOMORPHISM; ENTREPRENEURSHIP;
LOYALTY; TRUST
AB In this paper, we applied bibliometric methods to analyze the field of self-service technology (SST). Our goal was to identify the most impactful publications and journals, comprehend the key topics studied as well as the emerging trends and forecast future research trends in this domain. The Scopus database was used to extract 490 documents related to SST between 2000 and 2023. Our analyses include the most cited papers, sources of publications, bibliographic coupling, and topic modeling. As the body of literature continues to expand, we identified the most influential source "Journal of Service Marketing" which holds a prominent position in this area. The citation analysis revealed the highly influential papers that have made significant contributions to their respective fields. Notably, Meuter [Meuter, ML, AL Ostrom, RI Roundtree and MJ Bitner (2000). Self-Service Technologies: Understanding Customer Satisfaction with Technology-Based Service Encounters] in the realm of SST emerged as the most frequently cited paper, exerting substantial influence in academic literature. We applied bibliometric coupling in this field, which resulted in the discovery of seven clusters in SST. These clusters shed light on various aspects associated with these topics, offering valuable insights. The findings of this research offer valuable insights to study researchers by bringing clarity to this research field. Finally, the study presents the implications and recommendations for researchers. The findings of this paper offer valuable insights to study researchers by bringing clarity to the fields of the study.
C1 [Thakral, Shruti] Amity Univ, Amity Coll Commerce & Finance, Noida, Uttar Pradesh, India.
[Kamra, Vishal] Amity Univ, Amity Sch Business, Noida, Uttar Pradesh, India.
C3 Amity University Noida; Amity University Noida
RP Thakral, S (corresponding author), Amity Univ, Amity Coll Commerce & Finance, Noida, Uttar Pradesh, India.
EM thakralshruti98@gmail.com; vishalkamra@ymail.com
OI shruti, thakral/0009-0004-1598-2788
CR Alhouti S, 2021, J BUS RES, V124, P240, DOI 10.1016/j.jbusres.2020.11.047
Ammari Bahri N, 2021, Consumer Responses to the Failure of Self-Service Banking Technology: Moderating Role of Failure Stability
Annamdevula S, 2016, J MODEL MANAG, V11, P488, DOI 10.1108/JM2-01-2014-0010
[Anonymous], 1996, International Journal of Research in Marketing, DOI [DOI 10.1016/0167-8116%2895%2900027-5, DOI 10.1016/0167-8116(95)00027-5]
BATESON JEG, 1985, J RETAILING, V61, P49
Bitner MJ, 2010, SERV SCI RES INNOV S, P197, DOI 10.1007/978-1-4419-1628-0_10
Bitner MJ, 2002, ACAD MANAGE EXEC, V16, P96, DOI 10.5465/AME.2002.8951333
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Burnham Judy F, 2006, Biomed Digit Libr, V3, P1
Cardella GM, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.01557
Castro D, 2010, International Journal of Electronic Finance, V9, P170, DOI [10.1504/IJEF.2019.099003, DOI 10.1504/IJEF.2019.099003]
Castro D., 2010, SSRN Electronic Journal, DOI [DOI 10.2139/SSRN.1590982, https://doi.org/10.2139/ssrn.1590982]
Curran JM, 2007, J MARKET THEORY PRAC, V15, P283, DOI 10.2753/MTP1069-6679150401
Curran JamesM., 2005, J SERV MARK, V19, P103, DOI [10.1108/08876040510591411, DOI 10.1108/08876040510591411]
De Leon MV, 2020, COGENT BUS MANAG, V7, DOI 10.1080/23311975.2020.1794241
Demoulin NTM, 2016, INT J RETAIL DISTRIB, V44, P540, DOI 10.1108/IJRDM-08-2015-0122
Di Mascio R, 2016, AMS Review, V6, P79, DOI [10.1007/S13162-016-0076-1, DOI 10.1007/S13162-016-0076-1]
Dimitriadis S, 2011, INT J BANK MARK, V29, P5, DOI 10.1108/02652321111101356
Ding X, 2022, ELECTRON COMMER RES, V22, P787, DOI 10.1007/s10660-020-09410-7
Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z
Evanschitzky H, 2015, J PROD INNOVAT MANAG, V32, P459, DOI 10.1111/jpim.12241
Fan AL, 2020, J HOSP MARKET MANAG, V29, P269, DOI 10.1080/19368623.2019.1639095
Fan A, 2016, J SERV MARK, V30, P713, DOI 10.1108/JSM-07-2015-0225
Fleming DE, 2012, Services Marketing Quarterly, V33, P330, DOI [10.1080/15332969.2012.715050, DOI 10.1080/15332969.2012.715050]
Forrester Research, 2017, Top Trends for Customer Service in 2017: Operations Become Smarter and More Strategic
Galdolage BS, 2024, INT J EMERG MARK, V19, P2366, DOI 10.1108/IJOEM-01-2022-0078
Galdolage BS, 2021, FIIB BUS REV, V10, P276, DOI 10.1177/23197145211022016
Ivan Z, 2015, Bibliometric Methods in Management and Organization
Kaushik AK, 2015, TOUR MANAG PERSPECT, V16, P278, DOI 10.1016/j.tmp.2015.09.002
Lee B, 2018, J HOSP MARKET MANAG, V27, P61, DOI 10.1080/19368623.2017.1337539
Lee HJ, 2013, J RETAIL CONSUM SERV, V20, P51, DOI 10.1016/j.jretconser.2012.10.005
Lee HJ, 2009, MANAG SERV QUAL, V19, P687, DOI 10.1108/09604520911005071
Lin JSC, 2011, MANAG SERV QUAL, V21, P424, DOI 10.1108/09604521111146289
Ma H, 2024, CURR ISSUES TOUR, V27, P142, DOI 10.1080/13683500.2023.2173056
MARTYN J, 1964, J DOC, V20, P236, DOI 10.1108/eb026352
Meuter ML, 2000, J MARKETING, V64, P50, DOI 10.1509/jmkg.64.3.50.18024
Nilsson Elin, 2021, Services Marketing Quarterly, V42, P57, DOI 10.1080/15332969.2021.1947085
Orel FD, 2014, J RETAIL CONSUM SERV, V21, P118, DOI 10.1016/j.jretconser.2013.07.002
Ostrom AL, 2019, Customer Acceptance of AI in Service Encounters: Understanding Antecedents and Consequences, P77, DOI [10.1007/978-3-319-98512-1_5, DOI 10.1007/978-3-319-98512-1_5]
Park JS, 2021, J FASH MARK MANAG, V25, P371, DOI 10.1108/JFMM-09-2019-0221
Podsakoff PM, 2005, STRATEGIC MANAGE J, V26, P473, DOI 10.1002/smj.454
Servantie V, 2016, J INT ENTREP, V14, P168, DOI 10.1007/s10843-015-0162-8
Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030
Shin H, 2022, J STRATEG MARK, V30, P723, DOI 10.1080/0965254X.2020.1841269
Svensson G, 2006, INT J SERV IND MANAG, V17, P245, DOI 10.1108/09564230610667096
Vallaster C, 2019, J BUS RES, V99, P226, DOI 10.1016/j.jbusres.2019.02.050
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
NR 47
TC 0
Z9 0
U1 0
U2 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 2424-7863
EI 2424-7944
J9 INT J FINANC ENG
JI Int. J. Financ. Eng.
PD 2024 JUL 24
PY 2024
DI 10.1142/S2424786324420076
EA JUL 2024
PG 20
WC Business, Finance
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA ZK9B2
UT WOS:001275299500001
DA 2024-09-05
ER
PT J
AU Sadowski, A
Sadowski, M
Engelseth, P
Galar, Z
Skowron-Grabowska, B
AF Sadowski, Adam
Sadowski, Michal
Engelseth, Per
Galar, Zbigniew
Skowron-Grabowska, Beata
TI Using neural networks to examine trending keywords in Inventory Control
SO PRODUCTION ENGINEERING ARCHIVES
LA English
DT Article
DE Inventory control; Neural network; GAT; Bibliometric analysis; Keywords
ID OF-THE-ART; ROUTING PROBLEM; MANAGEMENT; STATE; COORDINATION;
INTEGRATION
AB Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.
C1 [Sadowski, Adam] Univ Lodz, Fac Management, Ul Matejki 22-26, PL-90237 Lodz, Poland.
[Sadowski, Michal] Jagiellonian Univ, Fac Math & Comp Sci, 6 Prof Stanislawa Lojasiewicza, PL-30348 Krakow, Poland.
[Engelseth, Per] UiT Arctic Univ Norway, Tromso Univ, Tromso Sch Business & Econ, Narvik Campus,Lodve Langes Gate 2, N-8514 Narvik, Norway.
[Galar, Zbigniew] Bayer, Al Jerozolimskie 158, PL-02326 Warsaw, Poland.
[Skowron-Grabowska, Beata] Czestochowa Tech Univ, Fac Management, Ul Armii Krajowej 19b, PL-42200 Czestochowa, Poland.
C3 University of Lodz; Jagiellonian University; UiT The Arctic University
of Tromso; Bayer AG; Technical University Czestochowa
RP Sadowski, A (corresponding author), Univ Lodz, Fac Management, Ul Matejki 22-26, PL-90237 Lodz, Poland.
EM adam.sadowski@uni.lodz.pl; sadowskimichal95@gmail.com;
per.engelseth@uit.no; zbigniew.galar@gmail.com;
b.skowron-grabowska@pcz.pl
OI Sadowski, Adam/0000-0002-8608-5118; Sadowski,
Michal/0000-0003-3482-9733; Galar, Zbigniew/0000-0003-2629-0512
CR Aas K, 2021, ARTIF INTELL, V298, DOI 10.1016/j.artint.2021.103502
An S., 2006, Frontiers of Forestry in China, V1, P394, DOI [10.1007/s11461-006-0043-3, DOI 10.1007/S11461-006-0043-3]
Battini D, 2014, INT J PROD ECON, V149, P145, DOI 10.1016/j.ijpe.2013.06.026
Ben-Daya M, 2019, INT J PROD RES, V57, P4719, DOI 10.1080/00207543.2017.1402140
Benjaafar S, 2013, IEEE T AUTOM SCI ENG, V10, P99, DOI 10.1109/TASE.2012.2203304
Botalb A, 2018, 2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEM (ICIAS 2018) / WORLD ENGINEERING, SCIENCE & TECHNOLOGY CONGRESS (ESTCON)
Cachon GP, 2000, MANAGE SCI, V46, P1032, DOI 10.1287/mnsc.46.8.1032.12029
Cachon GP, 2005, MANAGE SCI, V51, P30, DOI 10.1287/mnsc.1040.0215
Chen LJ, 2017, INT J PROD ECON, V194, P73, DOI 10.1016/j.ijpe.2017.04.005
Coelho LC, 2014, TRANSPORT SCI, V48, P1, DOI 10.1287/trsc.2013.0472
Costantino F, 2014, COMPUT IND ENG, V76, P292, DOI 10.1016/j.cie.2014.08.006
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Durach CF, 2017, J SUPPLY CHAIN MANAG, V53, P67, DOI 10.1111/jscm.12145
Durach CF, 2015, INT J PHYS DISTR LOG, V45, P118, DOI 10.1108/IJPDLM-05-2013-0133
Elmaghraby W, 2003, MANAGE SCI, V49, P1287, DOI 10.1287/mnsc.49.10.1287.17315
Eroglu C, 2011, J OPER MANAG, V29, P356, DOI 10.1016/j.jom.2010.05.002
Frohlich MT, 2001, J OPER MANAG, V19, P185, DOI 10.1016/S0272-6963(00)00055-3
GALLEGO G, 1994, MANAGE SCI, V40, P999, DOI 10.1287/mnsc.40.8.999
Gallino S, 2017, MANAGE SCI, V63, P2813, DOI 10.1287/mnsc.2016.2479
GARDNER ES, 1985, J FORECASTING, V4, P1, DOI 10.1002/for.3980040103
Gardner ES, 2006, INT J FORECASTING, V22, P637, DOI 10.1016/j.ijforecast.2006.03.005
Gordon V, 2002, EUR J OPER RES, V139, P1, DOI 10.1016/S0377-2217(01)00181-3
Grodzinski N, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0256997
Guide VDR, 1997, EUR J OPER RES, V102, P1, DOI 10.1016/S0377-2217(97)00155-0
Hiassat A, 2017, J MANUF SYST, V42, P93, DOI 10.1016/j.jmsy.2016.10.004
Hire S., 2020, Library Philosophy and Practice, P1
Hou Y., 2019, INT C LEARN REPR
Hua GW, 2011, INT J PROD ECON, V132, P178, DOI 10.1016/j.ijpe.2011.03.024
Kapuscinski R., 1996, Introduction, V1, P1
Kotsiantis SB, 2013, ARTIF INTELL REV, V39, P261, DOI 10.1007/s10462-011-9272-4
Krishna Bhargavi Y., 2019, International Journal of Recent Technology and Engineering, V8, P3933, DOI [10.35940/ijrte.C5141.098319, DOI 10.35940/IJRTE.C5141.098319]
Liu L, 2020, J PARALLEL DISTR COM, V145, P1, DOI 10.1016/j.jpdc.2020.05.014
Lockett A, 2005, RES POLICY, V34, P1043, DOI 10.1016/j.respol.2005.05.006
Lu W, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102594
Lundberg SM, 2017, ADV NEUR IN, V30
Mazur M., 2018, Prod. Eng. Arch, V21, P36, DOI [10.30657/pea.2018.21.08, DOI 10.30657/PEA.2018.21.08]
Mee A, 2021, KNOWL-BASED SYST, V228, DOI 10.1016/j.knosys.2021.107238
Metters R., 1997, Journal of Operations Management, V15, P89, DOI 10.1016/S0272-6963(96)00098-8
Patil A., 2022, Word Significance Analysis in Documents for Information Retrieval by LSA and TF-IDF using Kubeflow BT-Expert Clouds and Applications
Popovic D, 2012, EXPERT SYST APPL, V39, P13390, DOI 10.1016/j.eswa.2012.05.064
Rani R, 2021, EXPERT SYST APPL, V186, DOI 10.1016/j.eswa.2021.115867
Raviv T, 2013, IIE TRANS, V45, P1077, DOI 10.1080/0740817X.2013.770186
Richey RG, 2020, J BUS LOGIST, V41, P90, DOI 10.1111/jbl.12251
Soman CA, 2004, INT J PROD ECON, V90, P223, DOI 10.1016/S0925-5273(02)00376-6
Taleizadeh AA, 2015, INT J PROD ECON, V159, P285, DOI 10.1016/j.ijpe.2014.09.009
Vaswani A, 2017, ADV NEUR IN, V30
Voltolini R, 2018, ADV TRANSDISCIPL ENG, V7, P381, DOI 10.3233/978-1-61499-898-3-381
Woo YB, 2021, COMPUT IND ENG, V160, DOI 10.1016/j.cie.2021.107558
Wu JW, 2021, INT SYM PERFORM ANAL, P118, DOI 10.1109/ISPASS51385.2021.00029
Xu XH, 2018, INT J PROD ECON, V204, P160, DOI 10.1016/j.ijpe.2018.08.003
Zhao QH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101235
NR 51
TC 0
Z9 0
U1 1
U2 4
PU WALTER DE GRUYTER GMBH
PI BERLIN
PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
SN 2353-5156
EI 2353-7779
J9 PROD ENG ARCH
JI Prod. Eng. Arch.
PD DEC 1
PY 2023
VL 29
IS 4
BP 474
EP 489
DI 10.30657/pea.2023.29.52
PG 16
WC Engineering, Industrial; Materials Science, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Engineering; Materials Science
GA W9KB2
UT WOS:001094733600013
OA gold
DA 2024-09-05
ER
PT J
AU Arora, N
Gupta, M
Dharwal, M
Agarwal, N
AF Arora, Nidhi
Gupta, Manisha
Dharwal, Mridul
Agarwal, Nimmi
TI Luxury adapts to artificial intelligence & digital transformation - A
case study of Burberry
SO JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
LA English
DT Article
DE Artificial intelligence; Bibliometric analysis; Case study; Digital
transformation; e-commerce; Luxury market; Technology
AB In the realm of luxury brands, the era of digital world and digital integration has seen a fundamental transformation. High-end clothing firms are demonstrating a strong interest in understanding digitalization in order to provide customers with an omni-channel buying experience. In this study, the main goal is to investigate the usage of Artificial Intelligence and its applications by luxury labels, as well as the impact that this technology has on the brand's performance in the market. Based on a case study, this article examines how luxury major retailers such as Burberry have successfully implemented an online strategy by repositioning themselves in fear of missing high-end customers and thus attempting to solve the existing trade between uniqueness and magnitude of economic system. Findings within the paper have been derived from a systematic bibliometric analysis which has taken into consideration a significant number of relevant publications such as conference proceedings and scholarly articles, as well as case studies of major global luxury fashion firms, among many other things. As the first study of its sort, this article will be useful to industry professionals in building their digital solutions; for scholars and academicians, the study will provide an ability to look at the issue in the context of consumer and technological innovation.
C1 [Arora, Nidhi; Gupta, Manisha] Sharda Univ, Sharda Sch Business Studies, Greater Noida, Uttar Pradesh, India.
[Dharwal, Mridul] Sharda Univ, Dept Econ & Int Business, Greater Noida, Uttar Pradesh, India.
[Agarwal, Nimmi] Sharda Univ, Sharda Sch Business Studies, Greater Noida, Uttar Pradesh, India.
C3 Sharda University; Sharda University; Sharda University
RP Arora, N (corresponding author), Sharda Univ, Sharda Sch Business Studies, Greater Noida, Uttar Pradesh, India.
EM nidhiarora30@outlook.com; manisha.gupta1@sharda.ac.in;
mriduldharwal22@gmail.com; Nimmi.agarwal@sharda.ac.in
RI Gupta, Dr Manisha/AFP-7155-2022
OI Gupta, Dr Manisha/0000-0001-9326-0183
CR Alcouffe J, 2020, RESPONSIBLE MAR 0530
[Anonymous], 2017, Forbes
Chaffey D., 2013, SMART INSIGHT B 0216
Chen YL, 2020, IEEE TETCI, V4, P369, DOI 10.1109/TETCI.2019.2916051
Cheng Y, 2020, J CONTING CRISIS MAN, V28, P339, DOI 10.1111/1468-5973.12319
Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0
Godey B, 2016, J BUS RES, V69, P5833, DOI 10.1016/j.jbusres.2016.04.181
Kietzmann J, 2020, BUS HORIZONS, V63, P131, DOI 10.1016/j.bushor.2019.11.005
Marinchak Christina McDowell, 2018, International Journal of E-Entrepreneurship and Innovation, V8, P14, DOI 10.4018/IJEEI.2018070102
Marr B, 2017, Forbes
ODDONE S., 2019, TECHEDGE 0216
Qiao C., 2019, 2019 4 INT C SOCIAL
Roig-Tierno N, 2017, J INNOV KNOWL, V2, P15, DOI 10.1016/j.jik.2016.12.002
Sangar K., 2012, GUCCI SOCIAL MEDIA M
NR 14
TC 0
Z9 0
U1 6
U2 19
PU TARU PUBLICATIONS
PI NEW DELHI
PA G-159, PUSHKAR ENCLAVE, PASHCHIM VIHAR, NEW DELHI, 110 063, INDIA
SN 0252-2667
EI 2169-0103
J9 J INFORM OPTIM SCI
JI J. Inform. Optim. Science
PY 2023
VL 44
IS 1
SI SI
BP 41
EP 52
DI 10.47974/JIOS-1294
PG 12
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA M8ON3
UT WOS:001032755000005
DA 2024-09-05
ER
PT J
AU Choi, J
Dekkers, OM
le Cessie, S
AF Choi, Jungyeon
Dekkers, Olaf M.
le Cessie, Saskia
TI Tying research question and analytical strategy when variables are
affected by medication use
SO PHARMACOEPIDEMIOLOGY AND DRUG SAFETY
LA English
DT Article
DE causal inference; estimand; medication effect; research question;
well-defined question
ID IMMORTAL TIME BIAS; LONGITUDINAL DATA; CAUSAL INFERENCE; TARGET TRIAL;
THERAPY; OBESITY; MODELS
AB Ill-defined research questions could be particularly problematic in an epidemiological setting where measurements fluctuate over time due to intercurrent events, such as medication use. When a research question fails to specify how medication use should be handled methodologically, arbitrary decisions may be made during the analysis phase, which likely leads to a mismatch between the intended question and the performed analysis. The mismatch can result in vastly different or meaningless interpretations of estimated effects. Thus, a research question such as "what is the effect of X on Y? " requires further elaboration, and it should consider whether and how medication use has affected the measurements of interest. In our study, we will discuss how well-defined questions can be formulated when medication use is involved in observational studies. We will distinguish between a situation where an exposure is affected by medication use and where the outcome of interest is affected by medication use. For each setting, we will give examples of different research questions that could be asked depending on how medication use is considered in the estimand and discuss methodological considerations under each question.
C1 [Choi, Jungyeon] Leiden Univ, Med Ctr, Dept Clin Epidemiol, Leiden, Netherlands.
[Dekkers, Olaf M.] Leiden Univ, Med Ctr, Dept Clin Epidemiol, Dept Endocrinol & Metab, Leiden, Netherlands.
[le Cessie, Saskia] Leiden Univ, Med Ctr, Dept Clin Epidemiol, Dept Biomed Data Sci, Leiden, Netherlands.
[Choi, Jungyeon] Leiden Univ, Med Ctr, Dept Clin Epidemiol, Albinusdreef 2, C7-P, NL-2333 Leiden, Netherlands.
C3 Leiden University - Excl LUMC; Leiden University; Leiden University
Medical Center (LUMC); Leiden University - Excl LUMC; Leiden University;
Leiden University Medical Center (LUMC); Leiden University; Leiden
University Medical Center (LUMC); Leiden University - Excl LUMC; Leiden
University; Leiden University Medical Center (LUMC); Leiden University -
Excl LUMC
RP Choi, J (corresponding author), Leiden Univ, Med Ctr, Dept Clin Epidemiol, Albinusdreef 2, C7-P, NL-2333 Leiden, Netherlands.
EM j.choi@lumc.nl
RI le+Cessie, Saskia/HGC-8966-2022
OI le Cessie, Saskia/0000-0003-2154-4923; Dekkers,
Olaf/0000-0002-1333-7580; Choi, Jungyeon/0000-0002-1914-3488
CR Bragge P, 2010, INJURY, V41, P3, DOI 10.1016/j.injury.2010.04.016
Cain LE, 2009, STAT MED, V28, P1725, DOI 10.1002/sim.3585
Choi J., MEDRXIV, DOI [10.1101/2022.04.23.22273899, DOI 10.1101/2022.04.23.22273899]
Choi J, 2022, PHARMACOEPIDEM DR S, V31, P739, DOI 10.1002/pds.5437
Cole SR, 2009, EPIDEMIOLOGY, V20, P3, DOI 10.1097/EDE.0b013e31818ef366
García-Albéniz X, 2017, EUR J EPIDEMIOL, V32, P495, DOI 10.1007/s10654-017-0287-2
Glymour C, 2014, EPIDEMIOLOGY, V25, P488, DOI 10.1097/EDE.0000000000000122
Goetghebeur E, 2020, STAT MED, V39, P4922, DOI 10.1002/sim.8741
Hernán MA, 2008, INT J OBESITY, V32, pS8, DOI 10.1038/ijo.2008.82
Hernán MA, 2004, EPIDEMIOLOGY, V15, P615, DOI 10.1097/01.ede.0000135174.63482.43
Hernan MA, 2020, Causal Inference: What if
Hernán MA, 2017, AM J EPIDEMIOL, V185, P1048, DOI 10.1093/aje/kwx077
Hernán MA, 2016, J CLIN EPIDEMIOL, V79, P70, DOI 10.1016/j.jclinepi.2016.04.014
ICH E9, 1998, STAT PRINC CLIN TRIA
ICH E9 (R1), 2020, ADD EST SENS AN CLIN
Kurland BF, 2005, BIOSTATISTICS, V6, P241, DOI 10.1093/biostatistics/kxi006
Kurland BF, 2009, STAT SCI, V24, P211, DOI 10.1214/09-STS293
Labrecque JA, 2017, EUR J EPIDEMIOL, V32, P473, DOI 10.1007/s10654-017-0293-4
Lévesque LE, 2010, BRIT MED J, V340, DOI 10.1136/bmj.b5087
Maldonado G, 2002, INT J EPIDEMIOL, V31, P422, DOI 10.1093/ije/31.2.422
Mansournia MA, 2017, BMJ-BRIT MED J, V359, DOI 10.1136/bmj.j4587
Robins JM, 2000, EPIDEMIOLOGY, V11, P550, DOI 10.1097/00001648-200009000-00011
Spieker AJ, 2018, STAT METHODS MED RES, V27, P2279, DOI 10.1177/0962280216680240
Spieker AJ, 2015, PHARMACOEPIDEM DR S, V24, P1286, DOI 10.1002/pds.3876
Suissa S, 2008, AM J EPIDEMIOL, V167, P492, DOI 10.1093/aje/kwm324
Tanamas SK, 2017, J DIABETES COMPLICAT, V31, P693, DOI [10.1016/jjdiacomp.2016.12.013, 10.1016/j.jdiacomp.2016.12.013]
Thabane L, 2009, CAN J ANAESTH, V56, P71, DOI 10.1007/s12630-008-9007-4
Tobin MD, 2005, STAT MED, V24, P2911, DOI 10.1002/sim.2165
van Geloven N, 2020, EUR J EPIDEMIOL, V35, P619, DOI 10.1007/s10654-020-00636-1
Vandenbroucke JP, 2007, ANN INTERN MED, V147, pW163, DOI 10.7326/0003-4819-147-8-200710160-00010-w1
Vandenbroucke JP, 2016, INT J EPIDEMIOL, V45, P1776, DOI 10.1093/ije/dyv341
VanderWeele TJ, 2018, EPIDEMIOLOGY, V29, pE24, DOI 10.1097/EDE.0000000000000823
White IR, 2003, STAT MED, V22, P1083, DOI 10.1002/sim.1408
Yang WY, 2010, DIABETES RES CLIN PR, V88, pS3, DOI 10.1016/S0168-8227(10)70002-4
Young JG, 2020, STAT MED, V39, P1199, DOI 10.1002/sim.8471
NR 35
TC 1
Z9 1
U1 0
U2 0
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1053-8569
EI 1099-1557
J9 PHARMACOEPIDEM DR S
JI Pharmacoepidemiol. Drug Saf.
PD JUN
PY 2023
VL 32
IS 6
BP 661
EP 670
DI 10.1002/pds.5599
EA FEB 2023
PG 10
WC Public, Environmental & Occupational Health; Pharmacology & Pharmacy
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Public, Environmental & Occupational Health; Pharmacology & Pharmacy
GA E5EE9
UT WOS:000933182000001
PM 36738180
OA hybrid
DA 2024-09-05
ER
PT J
AU Zheng, LL
Cao, SY
Ding, TQ
Tian, J
Sun, JH
AF Zheng, Lili
Cao, Shiyu
Ding, Tongqiang
Tian, Jian
Sun, Jinghang
TI Research on Active Safety Situation of Road Passenger Transportation
Enterprises: Evaluation, Prediction, and Analysis
SO ENTROPY
LA English
DT Article
DE transportation enterprises; active safety situation; factor analysis;
time series; model selection; statistical computing; feature selection;
statistical inference
ID TRAFFIC ACCIDENTS; TIME-SERIES; RISK; SLEEPINESS; IMPACT
AB The road passenger transportation enterprise is a complex system, requiring a clear understanding of their active safety situation (ASS), trends, and influencing factors. This facilitates transportation authorities to promptly receive signals and take effective measures. Through exploratory factor analysis and confirmatory factor analysis, we delved into potential factors for evaluating ASS and extracted an ASS index. To predict obtaining a higher ASS information rate, we compared multiple time series models, including GRU (gated recurrent unit), LSTM (long short-term memory), ARIMA, Prophet, Conv_LSTM, and TCN (temporal convolutional network). This paper proposed the WDA-DBN (water drop algorithm-Deep Belief Network) model and employed DEEPSHAP to identify factors with higher ASS information content. TCN and GRU performed well in the prediction. Compared to the other models, WDA-DBN exhibited the best performance in terms of MSE and MAE. Overall, deep learning models outperform econometric models in terms of information processing. The total time spent processing alarms positively influences ASS, while variables such as fatigue driving occurrences, abnormal driving occurrences, and nighttime driving alarm occurrences have a negative impact on ASS.
C1 [Zheng, Lili; Cao, Shiyu; Ding, Tongqiang; Sun, Jinghang] Jilin Univ, Transportat Coll, Changchun 130022, Peoples R China.
[Tian, Jian] China Acad Transportat Sci, Beijing 100029, Peoples R China.
C3 Jilin University; China Academy of Transportation Sciences
RP Ding, TQ (corresponding author), Jilin Univ, Transportat Coll, Changchun 130022, Peoples R China.
EM lilizheng@jlu.edu.cn; caosy22@mails.jlu.edu.cn; dingtq@jlu.edu.cn;
tianjian@motcats.ac.cn; jhsun22@mails.jlu.edu.cn
OI Tong qiang, Ding/0000-0002-2212-961X
FU National Key R&D Program of China [2021YFC3001500]; Graduate
InnovationFund of Jilin University [2024CX214]
FX This research was funded by the National Key R&D Program of China grant
number 2021YFC3001500 and the Graduate InnovationFund of Jilin
University grant number 2024CX214.
CR Agency X.N, Special Major Road Traffic Accident Investigation Report, P9
[Anonymous], 1970, Time Series Analysis: Forecasting and Control, DOI 10.1080/01621459.1970.10481180
Antoniou C, 2013, ACCIDENT ANAL PREV, V60, P268, DOI 10.1016/j.aap.2013.02.039
Ayuso M, 2010, ACCIDENT ANAL PREV, V42, P709, DOI 10.1016/j.aap.2009.10.020
Bai SJ, 2018, Arxiv, DOI arXiv:1803.01271
Bao J, 2019, ACCIDENT ANAL PREV, V122, P239, DOI 10.1016/j.aap.2018.10.015
Barba L, 2014, SCI WORLD J, DOI 10.1155/2014/152375
Borghetti F., 2021, Int. J. Transp. Dev. Integr, V5, P278, DOI [10.2495/TDI-V5-N3-278-290, DOI 10.2495/TDI-V5-N3-278-290]
Bucsuhazy K., 2020, Transportation Research Procedia, V45, P555, DOI [DOI 10.1016/J.TRPRO.2020.03.057, 10.1016/j.trpro.2020.03.057]
Calabrese CG, 2023, J SAFETY RES, V87, P481, DOI 10.1016/j.jsr.2023.09.001
Cendales B, 2023, SAFETY SCI, V158, DOI 10.1016/j.ssci.2022.105996
Chen H, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-31384-3
Chen ZJ, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21175767
Cho K., 2014, P 2014 C EMP METH NA, P1724
Choudhary P, 2022, TRANSPORT RES F-TRAF, V86, P296, DOI 10.1016/j.trf.2022.03.001
Commandeur JJF, 2013, ACCIDENT ANAL PREV, V60, P424, DOI 10.1016/j.aap.2012.11.006
Crizzle AM, 2017, J TRANSP HEALTH, V7, P90, DOI 10.1016/j.jth.2017.05.359
de Gelder E, 2021, IEEE ACCESS, V9, P168953, DOI 10.1109/ACCESS.2021.3136585
de Zarzà I, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23229225
Ding TQ, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15043520
Doecke SD, 2018, TRAFFIC INJ PREV, V19, P404, DOI 10.1080/15389588.2017.1422601
Dong Q, 2013, APPL MECH MATER, V409-410, P1330, DOI 10.4028/www.scientific.net/AMM.409-410.1330
ecfr, U.S. Government Printing Office Title 49-Transportation
EsoNews, Major Accidents Involving Buses Worldwide, 2020-2021
Farmer CM, 2010, TRAFFIC INJ PREV, V11, P466, DOI 10.1080/15389588.2010.494191
Fernando ZT, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P1005, DOI 10.1145/3331184.3331312
Gajamannage K, 2023, EXPERT SYST APPL, V223, DOI 10.1016/j.eswa.2023.119879
Getahun KA, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00493-z
Gnardellis C, 2008, TRANSPORT RES F-TRAF, V11, P270, DOI 10.1016/j.trf.2008.01.002
Gomes H, 2023, J SAFETY RES, V86, P30, DOI 10.1016/j.jsr.2023.06.005
Hangoma P, 2021, BMJ GLOB HEALTH, V6, DOI 10.1136/bmjgh-2021-005481
Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Katrakazas C, 2021, J SAFETY RES, V78, P189, DOI 10.1016/j.jsr.2021.04.007
Lee ML, 2016, P NATL ACAD SCI USA, V113, P176, DOI 10.1073/pnas.1510383112
Leoni L, 2024, SAFETY SCI, V170, DOI 10.1016/j.ssci.2023.106363
Li J, 2021, SAFETY SCI, V134, DOI 10.1016/j.ssci.2020.105093
Lu JY, 2013, J SAFETY RES, V45, P65, DOI 10.1016/j.jsr.2013.01.009
Makridakis S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194889
Malin F, 2019, ACCIDENT ANAL PREV, V122, P181, DOI 10.1016/j.aap.2018.10.014
Meister S, 2021, COMPOS PART B-ENG, V224, DOI 10.1016/j.compositesb.2021.109160
Minderhoud MM, 2001, ACCIDENT ANAL PREV, V33, P89, DOI 10.1016/S0001-4575(00)00019-1
Moradi A, 2019, TRANSPORT RES F-TRAF, V65, P620, DOI 10.1016/j.trf.2018.09.013
Mwale M, 2023, ACCIDENT ANAL PREV, V186, DOI 10.1016/j.aap.2023.107048
Nassiri H, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e14481
Parsa AB, 2020, ACCIDENT ANAL PREV, V136, DOI 10.1016/j.aap.2019.105405
Rabbani MBA, 2021, ARAB J SCI ENG, V46, P11113, DOI 10.1007/s13369-021-05650-3
Rahman MA, 2023, J SAFETY RES, V84, P167, DOI 10.1016/j.jsr.2022.10.017
Ratnasingam S, 2023, ENTROPY-SWITZ, V25, DOI 10.3390/e25091250
Ren QQ, 2023, EXPERT SYST APPL, V227, DOI 10.1016/j.eswa.2023.120203
Sayed T, 2016, ACCIDENT ANAL PREV, V95, P172, DOI 10.1016/j.aap.2016.07.012
Shen JJ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12239888
Sheng YK, 2022, ENTROPY-SWITZ, V24, DOI 10.3390/e24101462
Shi XJ, 2015, ADV NEUR IN, V28
Shrestha N., 2021, Am. J. Appl. Math. Stat., V9, P4, DOI [DOI 10.12691/AJAMS-9-1-2, 10.12691/ajams-9-1-2]
Sohaee N, 2024, SAFETY, V10, DOI 10.3390/safety10010011
Taylor SJ, 2018, AM STAT, V72, P37, DOI 10.1080/00031305.2017.1380080
Treiblmaier H, 2010, INFORM MANAGE-AMSTER, V47, P197, DOI 10.1016/j.im.2010.02.002
Uguz S, 2022, TEH VJESN, V29, P2083, DOI 10.17559/TV-20220225141756
Useche SA, 2021, TRANSPORT RES F-TRAF, V82, P190, DOI 10.1016/j.trf.2021.08.013
Wu J, 2014, COMPUT INTEL NEUROSC, V2014, DOI 10.1155/2014/571058
Xia HZ, 2024, ENTROPY-SWITZ, V26, DOI 10.3390/e26010091
Yaman TT, 2022, J INTELL FUZZY SYST, V42, P575, DOI 10.3233/JIFS-219213
Yousefzadeh-Chabok S, 2016, ARCH TRAUMA RES, V5, DOI 10.5812/atr.36570
Zeller R, 2020, TRANSPORT RES F-TRAF, V74, P15, DOI 10.1016/j.trf.2020.08.001
Zhang CG, 2024, ENTROPY-SWITZ, V26, DOI 10.3390/e26010007
Zhang GN, 2016, ACCIDENT ANAL PREV, V87, P34, DOI 10.1016/j.aap.2015.10.033
Zhang GN, 2013, ACCIDENT ANAL PREV, V59, P18, DOI 10.1016/j.aap.2013.05.004
Zheng LL, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10224354
NR 69
TC 0
Z9 0
U1 6
U2 6
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1099-4300
J9 ENTROPY-SWITZ
JI Entropy
PD JUN
PY 2024
VL 26
IS 6
AR 434
DI 10.3390/e26060434
PG 27
WC Physics, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physics
GA WR7W7
UT WOS:001256676300001
PM 38920443
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Gong, R
Yang, P
Li, SJ
AF Gong, Rui
Yang, Ping
Li, Shijin
GP IEEE
TI Research on teaching quality evaluation model of online courses in
Colleges and Universities
SO 2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION
CONTROL CONFERENCE (IAEAC)
SE IEEE Advanced Information Technology Electronic and Automation Control
Conference-IAEAC
LA English
DT Proceedings Paper
CT 6th IEEE Advanced Information Technology, Electronic and Automation
Control Conference (IEEE IAEAC)
CY OCT 03-05, 2022
CL Beijing, PEOPLES R CHINA
DE Keywords Evaluation Model; D D Evaluating Indicator; Deep learning
Model; Text classification and recognition
AB Through the research on the classification of knowledge points of online courses, the current online teaching quality evaluation has some problems, such as unscientific evaluation index weight, imperfect evaluation system and so on, The deep learning model is applied to the research of text and image classification and recognition of online course evaluation indicators. By collecting the latest research results of big data analysis model for teaching quality evaluation of relevant online courses, By mapping big data models to research objectives, Using the analytic hierarchy process to preliminarily determine the weight index. At last, The big data analysis model is proposed to be applied to the online course evaluation system structure and the online course evaluation index system.
C1 [Gong, Rui] Informat & Traff Dept Yunnan Business Informat En, Kunming, Yunnan, Peoples R China.
[Yang, Ping] Power China Kunming Engn Corp Ltd, Kunming, Yunnan, Peoples R China.
[Li, Shijin] Yunnan Univ Finance & Econ, Off Acad Affairs, Kunming, Yunnan, Peoples R China.
[Li, Shijin] Kunming Univ Sci & Technol, Fac Management & Econ, Kunming, Yunnan, Peoples R China.
C3 Yunnan University of Finance & Economics; Kunming University of Science
& Technology
RP Li, SJ (corresponding author), Yunnan Univ Finance & Econ, Off Acad Affairs, Kunming, Yunnan, Peoples R China.; Li, SJ (corresponding author), Kunming Univ Sci & Technol, Fac Management & Econ, Kunming, Yunnan, Peoples R China.
EM grkm1988@l63.com; ypgr19870920@l63.com; shijin_lee@ynufe.edu.cn
RI li, shijin/HZL-6982-2023; Gong, Rui/JYO-4823-2024
FU Scientific research fund project of Yunnan Provincial Department of
Education [2021J0593]
FX This work was supported by Scientific research fund project of Yunnan
Provincial Department of Education (2021J0593)-Research on teaching
quality evaluation system of online courses in University.
CR Chen Chunlian, 2020, CHINESE SCI PAPERS, V15, P137
Chen JF, 2015, APPL SOFT COMPUT, V28, P100, DOI 10.1016/j.asoc.2014.11.050
Feng Yingying, 2013, Computer Engineering and Applications, V49, P235, DOI 10.3778/j.issn.1002-8331.1210-0311
Gong Y., 2019, Educational Modernization, V6, P64
Guo XuePing, 2018, J HUBEI CORRES U, V31, P129
Li Cuifeng, 2020, J ZHEJIANG VOCATIONA, V19, P34
Shijin Li, 2021, 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI), P1130, DOI 10.1109/CISAI54367.2021.00224
Wang Huijun, 2020, E ED RES, V41, P89
Zhao XF, 2014, J INTELL FUZZY SYST, V26, P3049, DOI 10.3233/IFS-130970
Zhao XinRui, 2019, RES HIGHER ENG ED, P190
NR 10
TC 0
Z9 0
U1 0
U2 15
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2689-663X
EI 2689-6621
BN 978-1-6654-5864-1
J9 ADV INF TECHNOL ELEC
PY 2022
BP 1217
EP 1221
DI 10.1109/IAEAC54830.2022.9929986
PG 5
WC Automation & Control Systems; Computer Science, Information Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Computer Science
GA BU2JX
UT WOS:000885103500227
DA 2024-09-05
ER
PT J
AU Song, S
Li, SG
Zhang, TJ
Ma, L
Zhang, L
Pan, SB
AF Song, Shuang
Li, Shugang
Zhang, Tianjun
Ma, Li
Zhang, Lei
Pan, Shaobo
TI Research on time series characteristics of the gas drainage evaluation
index based on lasso regression
SO SCIENTIFIC REPORTS
LA English
DT Article
AB The evaluation of the coal mine gas drainage effect is affected by many factors, such as flow rate, wind speed, drainage negative pressure, concentration, and temperature. This paper starts from actual coal mine production monitoring data and based on the lasso regression algorithm, features selection of multiple parameters of the preprocessed gas concentration time series to construct gas concentration feature selection based on the algorithm. The three-time smoothing index method is used to fill in the missing values. Aiming at the problem of different dimensions in the gas concentration time series, the MinMaxScaler method is used to normalize the data. The lasso regression algorithm is used to perform feature selection on the multivariable gas concentration time series, and the gas concentration time series selected by the lasso feature and the gas concentration time series without feature selection are input. The performance of the ANN algorithm for gas concentration prediction is compared and analyzed. The optimal a value and L1 norm are selected based on the grid search method to determine the strong explanatory gas concentration time series feature set of the working face, and an experimental comparison of the gas concentration prediction results before and after the lasso feature selection is performed. We verify the effectiveness of the algorithm.
C1 [Song, Shuang; Zhang, Lei] Xian Univ Sci & Technol, Coll Energy, 58 Yanta Middle Rd, Xian 710054, Shaanxi, Peoples R China.
[Li, Shugang; Zhang, Tianjun] Xian Univ Sci & Technol, Coll Safety Sci & Engn, 58 Yanta Middle Rd, Xian 710054, Shaanxi, Peoples R China.
[Ma, Li; Pan, Shaobo] Xian Univ Sci & Technol, Coll Commun & Informat Engn, Xian 710054, Peoples R China.
C3 Xi'an University of Science & Technology; Xi'an University of Science &
Technology; Xi'an University of Science & Technology
RP Song, S (corresponding author), Xian Univ Sci & Technol, Coll Energy, 58 Yanta Middle Rd, Xian 710054, Shaanxi, Peoples R China.; Zhang, TJ (corresponding author), Xian Univ Sci & Technol, Coll Safety Sci & Engn, 58 Yanta Middle Rd, Xian 710054, Shaanxi, Peoples R China.
EM songshuang@xust.edu.cn; tianjun_zhang@126.com
FU National Natural Science Foundation of China [52104215, 51734007,
51804248]
FX This research was funded by "National Natural Science Foundation of
China" Grant Nos. 52104215, 51734007, and 51804248.
CR Boukhalfa G, 2019, J CENT SOUTH UNIV, V26, P1886, DOI 10.1007/s11771-019-4142-3
Fayed HA, 2019, APPL SOFT COMPUT, V80, P202, DOI 10.1016/j.asoc.2019.03.037
Han T. T., 2014, INDUS MIN AUTO, V3, P28
Ma XL, 2016, J ROBOT, V2016, DOI 10.1155/2016/6858970
Shi H, 2019, GENOMICS, V111, P1839, DOI 10.1016/j.ygeno.2018.12.007
Sun JL, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-54519-x
Wang J. R., 2015, MOD MING, V31, P21
[王鹏 Wang Peng], 2019, [煤炭科学技术, Coal Science and Technology], V47, P141
[吴海波 Wu Haibo], 2017, [中国安全生产科学技术, Journal of Safety Science and Technology], V13, P84
Wu X, 2014, MATH PROBL ENG, V2014, DOI 10.1155/2014/858260
Wu Y., 2018, COAL TECHNOL, V5, P173
Yang Guanci, 2018, Journal of Huazhong University of Science and Technology (Natural Science Edition), V46, P122, DOI 10.13245/j.hust.180723
[杨丽 Yang Li], 2016, [中国矿业大学学报. 自然科学版, Journal of China University of Mining & Technology], V45, P455
Yang ZC, 2015, INT J MIN SCI TECHNO, V25, P1045, DOI 10.1016/j.ijmst.2015.09.025
Zhang TJ, 2019, ENERGIES, V12, DOI 10.3390/en12010161
Zhao L., 2017, COAL MINE MACH, V38, P178
Zhao Xiaoqiang, 2019, Journal of Frontiers of Computer Science and Technology, V13, P858, DOI 10.3778/j.issn.1673-9418.1809020
Zhao Y. Q., 2020, COMPUT STAT DATA AN, V12, P142
Zhao Z. X., 2017, AUTO INSTRUM, V4, P144
NR 19
TC 2
Z9 2
U1 5
U2 44
PU NATURE PORTFOLIO
PI BERLIN
PA HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD OCT 18
PY 2021
VL 11
IS 1
AR 20593
DI 10.1038/s41598-021-00210-z
PG 11
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA YE8IG
UT WOS:000741362500004
PM 34663859
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Chen, JC
Cheng, SR
Liu, YT
Wang, HS
AF Chen, Juei-Chao
Cheng, Shuenn-Ren
Liu, Ya-Tzu
Wang, Hsu-Sheng
TI RESEARCH ON THE FORECAST OF INTERNATIONAL EQUITY FUND PERFORMANCE
SO INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL
LA English
DT Article
DE Classification; Data mining; Intelligent data analysis; Logistic
regression
ID MUTUAL FUNDS; INVESTMENT PERFORMANCE; SELECTION; RETURNS; MARKET
AB The purpose of this study is to establish a fund performance classification model that can forecast the probability of positive or negative return of the funds. The positive/negative return of fund performance considered by this study is the return of the ith fund subtracted by the risk free interest rate. A positive value represents a favorable fund performance while a negative value represents the otherwise. In. statistical analysis, correlation analysis was firstly used to search for the possible important factors of mutual fund performance. These factors provide a CHAID of Intelligence Data Analysis to ensure which important factors could possibly influence the fund's return on equity. With the interactions among important factors as independent variables, logistic regression was used to establish the classification model. Also, using the same regression method, another classification model was established with the important factors as the independent variables. The results discovered that the total correct classification rates of CHAID-logistic regression model are greater than the total correct classification rates of logistic regression model. The forecasted results can provide investors with more information about investments selection.
C1 [Chen, Juei-Chao; Liu, Ya-Tzu] Fu Jen Catholic Univ, Inst Appl Stat, Taipei, Taiwan.
[Cheng, Shuenn-Ren] Cheng Shin Univ, Dept Business Adm, Kaohsiung, Taiwan.
[Wang, Hsu-Sheng] Chung Hua Univ, Inst Technol Management, Hsinchu, Taiwan.
C3 Fu Jen Catholic University; Chung Hua University
RP Chen, JC (corresponding author), Fu Jen Catholic Univ, Inst Appl Stat, Taipei, Taiwan.
EM 006884@mail.fju.edu.tw; tommy@csu.edu.tw; ya_122@hotmail.com;
r92620@ms36.hinet.net
CR Ahmed P, 2001, J BANK FINANC, V25, P1187, DOI 10.1016/S0378-4266(00)00129-1
Alexakis C., 2005, International Review of Financial Analysis, V14, P559
[Anonymous], 1996, APPL MULTIVARIATE TE
Avramov D, 2006, J FINANC ECON, V81, P339, DOI 10.1016/j.jfineco.2005.05.010
Barber BM, 2005, J BUS, V78, P2095, DOI 10.1086/497042
Black F., 1972, CAPITAL ASSET PRICIN
Carhart MM, 1997, J FINANC, V52, P57, DOI 10.2307/2329556
Cesari R, 2002, J BANK FINANC, V26, P99, DOI 10.1016/S0378-4266(00)00174-6
CICCOTELLO C.S., 1996, Financial Services Review, V5, P1, DOI DOI 10.1016/
DALENIUS T, 1959, J AM STAT ASSOC, V54, P88, DOI 10.2307/2282141
Droms W.G., 2001, Global Finance Journal, V12, P237, DOI 10.1016/S1044-0283(01)00030-8
Droms WG, 1996, Q REV ECON FINANC, V36, P347, DOI 10.1016/S1062-9769(96)90020-4
Faff R., 2006, PACIFIC BASIN FINANC, V14, P231
FAMA EF, 1993, J FINANC ECON, V33, P3, DOI 10.1016/0304-405X(93)90023-5
GALLAGHER D., 2004, Journal of Multinational Financial Management, V14, P81
GRINBLATT M, 1994, J FINANC QUANT ANAL, V29, P419, DOI 10.2307/2331338
HENRIKSSON RD, 1981, J BUS, V54, P513, DOI 10.1086/296144
Huang DY, 2006, J STAT PLAN INFER, V136, P2020, DOI 10.1016/j.jspi.2005.08.038
Indro Daniel., 1999, FINANC ANAL J, V55, P74, DOI [10.2469/faj.v55.n3.2274, DOI 10.2469/FAJ.V55.N3.2274]
JENSEN MC, 1968, J FINANC, V23, P389, DOI 10.2307/2325404
Kanagawa S, 2008, INT J INNOV COMPUT I, V4, P2523
Kass GV, 1980, APPL STAT, V29, P119, DOI DOI 10.2307/2986296
Markowitz H, 1952, J FINANC, V7, P77, DOI 10.1111/j.1540-6261.1952.tb01525.x
Mohanan S, 2006, GLOBAL BUSINESS EC R, V8, P280, DOI DOI 10.1504/GBER.2006.010138
Pástor L, 2002, J FINANC ECON, V63, P351, DOI 10.1016/S0304-405X(02)00065-X
SHARPE WF, 1966, J BUS, V39, P119, DOI 10.1086/294846
Shinkai K, 2008, INT J INNOV COMPUT I, V4, P2581
Shu P.G., 2002, PAC-BASIN FINANC J, V10, P583
TREYNOR JL, 1966, HARVARD BUS REV, V44, P131
TREYNOR JL, 1965, HARVARD BUS REV, V43, P63
Volkman D., 1995, Journal of Financial Research, V18, P415
Zhu HB, 2008, INT J INNOV COMPUT I, V4, P2483
Zou KQ, 2008, INT J INNOV COMPUT I, V4, P1627
NR 33
TC 1
Z9 1
U1 0
U2 2
PU ICIC INTERNATIONAL
PI KUMAMOTO
PA TOKAI UNIV, 9-1-1, TOROKU, KUMAMOTO, 862-8652, JAPAN
SN 1349-4198
EI 1349-418X
J9 INT J INNOV COMPUT I
JI Int. J. Innov. Comp. Inf. Control
PD JUN
PY 2009
VL 5
IS 6
BP 1515
EP 1525
PG 11
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA 492UL
UT WOS:000269685400006
DA 2024-09-05
ER
PT J
AU Oyewola, DO
Dada, EG
AF Oyewola, David Opeoluwa
Dada, Emmanuel Gbenga
TI Exploring machine learning: a scientometrics approach using bibliometrix
and VOSviewer
SO SN APPLIED SCIENCES
LA English
DT Article
DE Bibliometrix; VOSviewer; Coupling; Machine learning; Scientometrics
ID SEGMENTATION
AB Machine Learning has found application in solving complex problems in different fields of human endeavors such as intelligent gaming, automated transportation, cyborg technology, environmental protection, enhanced health care, innovation in banking and home security, and smart homes. This research is motivated by the need to explore the global structure of machine learning to ascertain the level of bibliographic coupling, collaboration among research institutions, co-authorship network of countries, and sources coupling in publications on machine learning techniques. The Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) was applied to clustering prediction of authors dominance ranking in this paper. Publications related to machine learning were retrieved and extracted from the Dimensions database with no language restrictions. Bibliometrix was employed in computation and visualization to extract bibliographic information and perform a descriptive analysis. VOSviewer (version 1.6.16) tool was used to construct and visualize structure map of source coupling networks of researchers and co-authorship. About 10,814 research papers on machine learning published from 2010 to 2020 were retrieved for the research. Experimental results showed that the highest degree of betweenness centrality was obtained from cluster 3 with 153.86 from the University of California and Harvard University with 24.70. In cluster 1, the national university of Singapore has the highest degree betweenness of 91.72. Also, in cluster 5, the University of Cambridge (52.24) and imperial college London (4.52) having the highest betweenness centrality manifesting that he could control the collaborative relationship and that they possessed and controlled a large number of research resources. Findings revealed that this work has the potential to provide valuable guidance for new perspectives and future research work in the rapidly developing field of machine learning.
C1 [Oyewola, David Opeoluwa] Fed Univ Kashere, Fac Sci, Dept Math & Comp Sci, PMB 0182, Gombe, Nigeria.
[Dada, Emmanuel Gbenga] Univ Maiduguri, Fac Sci, Dept Math Sci, Maiduguri, Nigeria.
RP Oyewola, DO (corresponding author), Fed Univ Kashere, Fac Sci, Dept Math & Comp Sci, PMB 0182, Gombe, Nigeria.
EM davidakaprof01@yahoo.com; gbengadada@unimaid.edu.ng
RI Dada, Dr. Emmanuel Gbenga/CAA-0153-2022; DADA, EMMANUEL
GBENGA/AAV-2728-2021
OI DADA, EMMANUEL GBENGA/0000-0002-1132-5447; oyewola,
david/0000-0001-9638-8764
CR Abd-Alrazaq A, 2021, J MED INTERNET RES, V23, DOI 10.2196/23703
Abualigah L, 2021, PROCESSES, V9, DOI 10.3390/pr9071155
Abualigah L, 2021, COMPUT METHOD APPL M, V376, DOI 10.1016/j.cma.2020.113609
[Anonymous], 2013, Machine Learning: An Artificial Intelligence Approach
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Aristovnik A, 2020, BIBLIOMETRIC ANAL CO, DOI [10.20944/preprints202006.0299.v1, DOI 10.20944/PREPRINTS202006.0299.V1]
Babenko B, 2011, IEEE T PATTERN ANAL, V33, P1619, DOI 10.1109/TPAMI.2010.226
Barnich O, 2011, IEEE T IMAGE PROCESS, V20, P1709, DOI 10.1109/TIP.2010.2101613
Cai D, 2011, IEEE T PATTERN ANAL, V33, P1548, DOI 10.1109/TPAMI.2010.231
Cao M, 2011, J OPER MANAG, V29, P163, DOI 10.1016/j.jom.2010.12.008
Colavizza G, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0244839
Crisci C, 2012, ECOL MODEL, V240, P113, DOI 10.1016/j.ecolmodel.2012.03.001
Dada EG, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01802
López ID, 2017, LECT NOTES COMPUT SC, V10405, P45, DOI 10.1007/978-3-319-62395-5_4
Decencière E, 2013, IRBM, V34, P196, DOI 10.1016/j.irbm.2013.01.010
Dervis H, 2019, J SCIENTOMETR RES, V8, P156, DOI 10.5530/jscires.8.3.32
Digital Science, 2018, Dimensions [Software]
Doanvo A, 2020, MACHINE LEARNING MAP, DOI [10.1101/2020.06.11.145425, DOI 10.1101/2020.06.11.145425]
Dong M., 2020, UNDERSTAND RES HOTSP, V2020, DOI [10.1101/2020.03.26.20044164, DOI 10.1101/2020.03.26.20044164, 10.1101/2020.03.26.20044164.]
Plazas JE, 2017, LECT NOTES COMPUT SC, V10405, P60, DOI 10.1007/978-3-319-62395-5_5
García-Sánchez P, 2019, PROCEDIA COMPUT SCI, V162, P737, DOI 10.1016/j.procs.2019.12.045
Goferman S, 2012, IEEE T PATTERN ANAL, V34, P1915, DOI 10.1109/TPAMI.2011.272
Graveley BR, 2011, NATURE, V471, P473, DOI 10.1038/nature09715
Guerrero-Bote Vicente P, 2020, Front Res Metr Anal, V5, P593494, DOI 10.3389/frma.2020.593494
Haghani M, 2020, SAFETY SCI, V129, DOI 10.1016/j.ssci.2020.104806
Herzog C, 2020, QUANT SCI STUD, V1, P387, DOI 10.1162/qss_a_00020
Ibanez A, 2015, MACHINE LEARNING SCI
Klein JJ, 2021, ACS OMEGA, V6, P3186, DOI 10.1021/acsomega.0c05591
Le BP, 2020, VISUALISING COVID 19
Liu CY, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00091
Malzer C, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21103410
Mao XJ, 2020, MEDICINE, V99, DOI 10.1097/MD.0000000000020137
Martín-Martín A, 2021, SCIENTOMETRICS, V126, P871, DOI 10.1007/s11192-020-03690-4
Oostenveld R, 2011, COMPUT INTEL NEUROSC, V2011, DOI 10.1155/2011/156869
Oyewola D.O., 2021, J ROBOT CONTROL, V2, P103
Reich D, 2010, NATURE, V468, P1053, DOI 10.1038/nature09710
Rincon-Patino J, 2018, F1000Research, V7, P1240
Roy S, 2010, SCIENCE, V330, P1787, DOI 10.1126/science.1198374
Saha S, 2019, J SCIENTOMETRIC RES, V8
Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283
Shulaev V, 2011, NAT GENET, V43, P109, DOI 10.1038/ng.740
Sinclair C., 1999, Proceedings 15th Annual Computer Security Applications Conference (ACSAC'99), P371, DOI 10.1109/CSAC.1999.816048
Smeureanu I, 2013, J BUS ECON MANAG, V14, P923, DOI 10.3846/16111699.2012.749807
Sra S, 2012, OPTIMIZATION FOR MACHINE LEARNING, P1
Srinivasa G, 2019, J SCIENTOMETR RES, V8, pS39, DOI 10.5530/jscires.8.2.23
Suharso P, 2021, J PHYS C SER, V176
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Waltman L, 2013, EUR PHYS J B, V86, DOI 10.1140/epjb/e2013-40829-0
NR 48
TC 37
Z9 39
U1 17
U2 108
PU SPRINGER INT PUBL AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2523-3963
EI 2523-3971
J9 SN APPL SCI
JI SN Appl. Sci.
PD MAY
PY 2022
VL 4
IS 5
AR 143
DI 10.1007/s42452-022-05027-7
PG 18
WC Multidisciplinary Sciences
WE Emerging Sources Citation Index (ESCI)
SC Science & Technology - Other Topics
GA 0K9PC
UT WOS:000781118000003
PM 35434524
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Hu, ZW
Lu, LF
Liu, GJ
Jin, Y
Zhao, L
AF Hu Ziwei
Lu Lifeng
Liu Guojun
Jin Yi
Zhao Liang
BE Cao, J
Wang, J
Liu, W
Xie, K
TI Research on Adaptability Evaluation Method of New Communication
Technology Applied to Energy Internet Communication Network
SO 2017 FIRST IEEE INTERNATIONAL CONFERENCE ON ENERGY INTERNET (ICEI 2017)
LA English
DT Proceedings Paper
CT 1st IEEE International Conference on Energy Internet (ICEI)
CY APR 17-21, 2017
CL Beijing, PEOPLES R CHINA
DE principal component analysis; analytic hierarchy process; Energy
Internet; evaluation method
AB Electricity is the major energy form of energy internet and the smart grid is the carrier. Compared with the traditional power grid, it puts forward higher requirements for communication. Introduction of new communication technology will effectively improve the performance of energy internet communication network, but how to evaluate the adaptability of new communication technologies is a key problem to be solved in the process of the development of energy internet communication network. The adaptability to the energy internet communication network should consider the development level of the regional power grid, the economy and other factors, and not only based on the single index, so we proposed an index system considered from four aspects: safety, economy, maturity and effectiveness. In addition, the evaluation method of the adaptability should be objective and reflect the intention and strategy of the evaluation subject. Based on these, an evaluation method of adaptability based on principal component analysis and analytic hierarchy process is proposed which focuses on the process of assessment and implementation plan. An example shows the proposed evaluation method by comparing the adaptability of PTN, POTN and enhanced MSTP. And the result demonstrates that POTN is more suitable for the communication network of energy internet.
C1 [Hu Ziwei; Lu Lifeng; Liu Guojun] Global Energy Interconnect Res Inst, Beijing 102209, Peoples R China.
[Jin Yi] State Grid Jiangsu Elect Power Co, Nanjing 210024, Jiangsu, Peoples R China.
[Zhao Liang] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China.
C3 State Grid Corporation of China; Beijing University of Posts &
Telecommunications
RP Hu, ZW (corresponding author), Global Energy Interconnect Res Inst, Beijing 102209, Peoples R China.
EM huziwei@geiri.sgcc.com.cn
RI Zhao, Liang/GLS-6320-2022
OI Zhao, Liang/0000-0003-1503-4708
FU State Grid RD project [SGRIXTKJ [2015]241]
FX This work was supported in part by State Grid R&D project (grant No.
SGRIXTKJ [2015]241).
CR [Anonymous], 2008, ICS Glossary, P6
Chen T Y, 2016, STUDY OPTICAL COMMUN
GENG Liang, 2015, APPL ELECT TECHNIQUE, V41, P152
Hu R, 2015, RES SMART GRID CYBER
Ilic D, 2014, 3 INT C SMART GRIDS, P3
Jian S, 2014, 2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), P1743, DOI 10.1109/POWERCON.2014.6993564
Jolliffe IT, 2002, Principal Component Analysis, V2nd
Kazzaz MM, 2015, IEEE INT CONF MO, P423, DOI [10.1109/MobServ.2015.64, 10.1109/MS.2015.64]
Liu CN, 2015, INT CONF INSTR MEAS, P1, DOI 10.1109/IMCCC.2015.7
Liu Z., 2010, SMART GRID KNOWLEDGE
LUO Pengcheng, 2000, MINI-MICRO SYST, V21, P1073
Miao X, 2012, RES RELIABILITY ASSE, V8562, P1
SU Yuke, 2014, INFORM COMMUNICATION, P197
Sun Qiang, 2011, Proceedings of the CSU-EPSA, V23, P105
Vermesan O, 2011, INTERNET ENERGY CONN, P33
Wang Bin, 2011, Automation of Electric Power Systems, V35, P1
Weichenberg GE, 2003, FOURTH INTERNATIONAL WORKSHOP ON DESIGN OF RELIABLE COMMUNICATION NETWORKS - (DRCN 2003), PROCEEDINGS, P263, DOI 10.1109/DRCN.2003.1275365
XING Ningzhe, 2007, TELECOMMUNICATIONS E, V26, P26
[严太山 Yan Taishan], 2016, [电网技术, Power System Technology], V40, P105
YAN Yang, 2012, ELECT AGE, P38
YE Fei, 2014, ADAPTABILITY RES SDN
YE Yicheng, 2006, SYSTEM COMPREHENSIVE, P36
[易于 Yi Yu], 2012, [中国电力, Electric Power], V45, P23
Yuan Jin-sha, 2009, High Voltage Engineering, V35, P960
Zeng Y, 2011, TELECOMMUNICATIONS E
Zeng Ying, 2014, J COMPUTER APPL, P21
ZHANG Hongmin, 2016, SHANDONG IND TECHNOL, P155
Zhao ZY, 2010, INT J COMPUT MATH, V87, P3209, DOI 10.1080/00207160902974404
ZHOU Jing, 2015, TELECOMMUNICATIONS S, V31, P148
NR 29
TC 1
Z9 1
U1 0
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-5090-5759-7
PY 2017
BP 250
EP 255
DI 10.1109/ICEI.2017.51
PG 6
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Energy & Fuels; Engineering, Electrical
& Electronic; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Energy & Fuels; Engineering; Telecommunications
GA BI2CZ
UT WOS:000408549200044
DA 2024-09-05
ER
PT J
AU Kumar, S
Lim, WM
Sivarajah, U
Kaur, J
AF Kumar, Satish
Lim, Weng Marc
Sivarajah, Uthayasankar
Kaur, Jaspreet
TI Artificial Intelligence and Blockchain Integration in Business: Trends
from a Bibliometric-Content Analysis
SO INFORMATION SYSTEMS FRONTIERS
LA English
DT Article
DE Artificial intelligence; Blockchain; Business; Fourth industrial
revolution; IR 4.0; Integration; Trends
ID INDUSTRIAL IOT; AI; ADOPTION; SYSTEMS; ARCHITECTURE; MANAGEMENT;
FRAMEWORK
AB Artificial intelligence (AI) and blockchain are the two disruptive technologies emerging from the Fourth Industrial Revolution (IR4.0) that have introduced radical shifts in the industry. The amalgamation of AI and blockchain holds tremendous potential to create new business models enabled through digitalization. Although research on the application and convergence of AI and blockchain exists, our understanding of the utility of its integration for business remains fragmented. To address this gap, this study aims to characterize the applications and benefits of integrated AI and blockchain platforms across different verticals of business. Using bibliometric analysis, this study reveals the most influential articles on the subject based on their publications, citations, and importance in the intellectual network. Using content analysis, this study sheds light on the subject's intellectual structure, which is underpinned by four major thematic clusters focusing on supply chains, healthcare, secure transactions, and finance and accounting. The study concludes with 10 application areas in business that can benefit from these technologies.
C1 [Kumar, Satish; Kaur, Jaspreet] Malaviya Natl Inst Technol, Dept Management Studies, Jaipur 302017, Rajasthan, India.
[Kumar, Satish; Lim, Weng Marc] Swinburne Univ Technol, Fac Business Design & Arts, Jalan Simpang Tiga, Sarawak 93350, Malaysia.
[Lim, Weng Marc] Swinburne Univ Technol, Sch Business Law & Entrepreneurship, John St, Hawthorn, Vic 3122, Australia.
[Sivarajah, Uthayasankar] Univ Bradford, Fac Management Law & Social Sci, Sch Management, Richmond Rd, Bradford BD7 1DP, W Yorkshire, England.
C3 National Institute of Technology (NIT System); Malaviya National
Institute of Technology Jaipur; Swinburne University of Technology;
Swinburne University of Technology Sarawak; Swinburne University of
Technology; University of Bradford
RP Kumar, S (corresponding author), Malaviya Natl Inst Technol, Dept Management Studies, Jaipur 302017, Rajasthan, India.; Kumar, S (corresponding author), Swinburne Univ Technol, Fac Business Design & Arts, Jalan Simpang Tiga, Sarawak 93350, Malaysia.
EM skumar.dms@mnit.ac.in; lim@wengmarc.com; u.sivarajah@bradford.ac.uk;
2019RBM9076@mnit.ac.in
RI Sivarajah, Uthayasankar/AAU-7065-2020; Lim, Weng Marc/I-1723-2019; Kaur,
Jaspreet/HSG-1500-2023; Kumar, Satish/E-2103-2018; Kaur,
Jaspreet/HSG-1545-2023; Kumar, Satish/M-8694-2017
OI Sivarajah, Uthayasankar/0000-0002-6401-540X; Lim, Weng
Marc/0000-0001-7196-1923; Kumar, Satish/0000-0001-6788-0952; Kaur,
Jaspreet/0000-0003-0118-5900; Kumar, Satish/0000-0001-5200-1476; Kaur,
Jaspreet/0000-0001-6369-2428
FU CAUL
FX Open Access funding enabled and organized by CAUL and its Member
Institutions
CR Abdullah S, 2020, ACAD RADIOL, V27, P47, DOI 10.1016/j.acra.2019.06.025
Agarwal Y., 2020, GLOBAL BUSINESS ORG, V39, P20, DOI DOI 10.1002/JOE.21981
Alagu Vignesh A, 2019, INT J ENG ADV TECHNO, V9, P2249
Alahakoon D, 2023, INFORM SYST FRONT, V25, P221, DOI 10.1007/s10796-020-10056-x
Alnafrah I., 2019, International Journal of Intellectual Property Management, V9, P120, DOI [10.1504/IJIPM.2019.100207, DOI 10.1504/IJIPM.2019.100207]
Alonso RS, 2020, AD HOC NETW, V98, DOI 10.1016/j.adhoc.2019.102047
Angelis J, 2019, BUS HORIZONS, V62, P307, DOI 10.1016/j.bushor.2018.12.001
Arachchige PCM, 2020, IEEE T IND INFORM, V16, P6092, DOI 10.1109/TII.2020.2974555
Badre Adrien, 2020, IISE Transactions on Healthcare Systems Engineering, V10, P99, DOI 10.1080/24725579.2019.1680582
Barbano, 2017, HEIF INT IBM WORK CO
Barnett J, 2018, COMPUT J, V61, P399, DOI 10.1093/comjnl/bxx103
Bartol T, 2014, SCIENTOMETRICS, V98, P1491, DOI 10.1007/s11192-013-1148-8
BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680
Bruner CM, 2020, CAMB LAW J, V79, P431, DOI 10.1017/S0008197320000756
Chen Y, 2022, INFORM SYST FRONT, DOI 10.1007/s10796-022-10248-7
Christodoulou P, 2020, 2020 SECOND INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA), P135, DOI 10.1109/BCCA50787.2020.9274460
Comerio N, 2019, TOURISM ECON, V25, P109, DOI 10.1177/1354816618793762
Daley, 2019, TASTIER COFFEE HURRI
Ballell TRDLH, 2017, UNIF LAW REV, V22, P693, DOI 10.1093/ulr/unx049
Dhieb N, 2020, IEEE ACCESS, V8, P58546, DOI 10.1109/ACCESS.2020.2983300
Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002
Dinh TN, 2018, COMPUTER, V51, P48, DOI 10.1109/MC.2018.3620971
Donthu N, 2021, J BUS RES, V135, P758, DOI 10.1016/j.jbusres.2021.07.015
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Donthu N, 2021, PSYCHOL MARKET, V38, P834, DOI 10.1002/mar.21472
Ehrenberg AJ, 2020, INFORM SYST FRONT, V22, P29, DOI 10.1007/s10796-019-09946-6
Fusco A, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17197167
Ghaleb TA, 2022, INFORM SYST FRONT, V24, P1601, DOI 10.1007/s10796-021-10157-1
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Gupta R, 2020, IEEE ACCESS, V8, P24746, DOI 10.1109/ACCESS.2020.2970576
Han L, 2021, INFORM SYST FRONT, DOI 10.1007/s10796-021-10173-1
Hsu PF, 2022, INFORM SYST FRONT, V24, P177, DOI 10.1007/s10796-020-10049-w
Irwin ASM, 2018, J MONEY LAUND CONTRO, V21, P297, DOI 10.1108/JMLC-07-2017-0031
Jain V, 2019, J DISCRET MATH SCI C, V22, P191, DOI 10.1080/09720529.2019.1582867
Karafiloski E, 2017, 17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, P763, DOI 10.1109/EUROCON.2017.8011213
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Kim SK, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9050763
Klinker K, 2020, INFORM SYST FRONT, V22, P1419, DOI 10.1007/s10796-019-09937-7
Kumar, 2019, INTEGRATION BLOCKCHA
Kumar S, 2021, J BUS RES, V134, P275, DOI 10.1016/j.jbusres.2021.05.041
Kumar S, 2021, BUS STRATEG ENVIRON, V30, P3454, DOI 10.1002/bse.2813
Kumar S, 2021, ELECTRON COMMER RES, V21, P1, DOI 10.1007/s10660-021-09464-1
La Paz A, 2020, INFORM SYST J, V30, P431, DOI 10.1111/isj.12260
Lee J, 2019, MANUF LETT, V20, P34, DOI 10.1016/j.mfglet.2019.05.003
Li XF, 2020, INFORM SYST FRONT, V22, P17, DOI 10.1007/s10796-019-09966-2
Li Z, 2020, INT J PROD RES, V58, P7399, DOI 10.1080/00207543.2020.1740342
Li Z, 2019, IEEE T IND INFORM, V15, P3642, DOI 10.1109/TII.2019.2900987
Lim W.M., 2019, Modern Applied Science, V13, P105, DOI DOI 10.5539/MAS.V13N9P105
Lim WM, 2022, SERV IND J, V42, P481, DOI 10.1080/02642069.2022.2047941
Lim WM, 2022, PSYCHOL MARKET, V39, P1129, DOI 10.1002/mar.21654
Lim WM, 2022, J BUS RES, V140, P439, DOI 10.1016/j.jbusres.2021.11.014
Liu CH, 2019, IEEE T IND INFORM, V15, P3516, DOI 10.1109/TII.2018.2890203
Liu MT, 2019, IEEE T IND INFORM, V15, P3559, DOI 10.1109/TII.2019.2897805
Liu YM, 2020, IEEE COMMUN SURV TUT, V22, P1392, DOI 10.1109/COMST.2020.2975911
Lu Y, 2017, J IND INTEGR MANAG, V2, DOI 10.1142/S2424862217500142
Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045
Mamoshina Polina, 2018, Oncotarget, V9, P5665, DOI 10.18632/oncotarget.22345
Mao DH, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15081627
Mayer C., 2019, J AIRPORT MANAGEMENT, V13, P335
Mcmahon P, 2020, IEEE ACCESS, V8, P15543, DOI 10.1109/ACCESS.2020.2967436
Moll J, 2019, BRIT ACCOUNT REV, V51, DOI 10.1016/j.bar.2019.04.002
Mukherjee D, 2021, MANAGE INT REV, V61, P599, DOI 10.1007/s11575-021-00454-x
Nakamoto S., 2008, Bitcoin: A peer-to-peer electronic cash system, DOI DOI 10.1007/S10838-008-9062-0
Narayanan S., 2021, AMCIS 2021 P
Omohundro S., 2014, Al Matters, V1, P19, DOI DOI 10.1145/2685328.2685334
Pandl KD, 2020, IEEE ACCESS, V8, P57075, DOI 10.1109/ACCESS.2020.2981447
Paul J, 2021, INT J CONSUM STUD, DOI 10.1111/ijcs.12695
PRITCHARD A, 1969, J DOC, V25, P348
Qian JP, 2020, TRENDS FOOD SCI TECH, V99, P402, DOI 10.1016/j.tifs.2020.03.025
Ragot S, 2020, WORLD PAT INF, V62, DOI 10.1016/j.wpi.2020.101966
Rodríguez-Espíndola O, 2020, INT J PROD RES, V58, P4610, DOI 10.1080/00207543.2020.1761565
Roszkowska P, 2021, J ACCOUNT ORGAN CHAN, V17, P164, DOI 10.1108/JAOC-09-2019-0098
Rubin E, 2022, ORGAN DYN, V51, DOI 10.1016/j.orgdyn.2021.100857
Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507
Sandner P, 2020, FRONT BLOCKCHAIN, V3, DOI 10.3389/fbloc.2020.522600
Siala H, 2022, SOC SCI MED, V296, DOI 10.1016/j.socscimed.2022.114782
Singh SK, 2020, FUTURE GENER COMP SY, V110, P721, DOI 10.1016/j.future.2019.09.002
Soleymani F, 2020, EXPERT SYST APPL, V156, DOI 10.1016/j.eswa.2020.113456
Subic, 2020, BLOCKCHAIN IND, V4, P1
Tanwar S, 2020, IEEE ACCESS, V8, P474, DOI 10.1109/ACCESS.2019.2961372
Tian ZG, 2021, INT J PROD RES, V59, P2229, DOI 10.1080/00207543.2020.1809733
Uddin MA, 2020, HEALTH INFORM J, V26, P3009, DOI 10.1177/1460458220957486
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wamba SF, 2023, INFORM SYST FRONT, V25, P2123, DOI 10.1007/s10796-021-10142-8
Wang Z, 2020, J DYN SYST-T ASME, V142, DOI 10.1115/1.4045360
WEINBERG BH, 1974, INFORM STORAGE RET, V10, P189, DOI 10.1016/0020-0271(74)90058-8
Yi HB, 2019, SAFETY SCI, V120, P6, DOI 10.1016/j.ssci.2019.06.025
Yin HHS, 2019, J MANAGE INFORM SYST, V36, P37, DOI 10.1080/07421222.2018.1550550
Yong BB, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.10.009
Zhang CY, 2021, INT J COMPUT INTEG M, V34, P709, DOI 10.1080/0951192X.2019.1699256
Zhao YQ, 2019, INFORM SCIENCES, V478, P449, DOI 10.1016/j.ins.2018.11.028
Zheng XL, 2019, FRONT INFORM TECH EL, V20, P914, DOI 10.1631/FITEE.1700822
Zheng ZB, 2017, IEEE INT CONGR BIG, P557, DOI 10.1109/BigDataCongress.2017.85
Zhu XY, 2021, IEEE ICC, DOI 10.1109/ICC42927.2021.9500421
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 95
TC 61
Z9 62
U1 23
U2 64
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1387-3326
EI 1572-9419
J9 INFORM SYST FRONT
JI Inf. Syst. Front.
PD APR
PY 2023
VL 25
IS 2
SI SI
BP 871
EP 896
DI 10.1007/s10796-022-10279-0
EA APR 2022
PG 26
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA F6LR2
UT WOS:000781734200001
PM 35431617
OA Green Published, hybrid
DA 2024-09-05
ER
PT J
AU Duan, SY
Zhao, Y
AF Duan, Siyu
Zhao, Yang
TI Knowledge graph analysis of artificial intelligence application research
in nursing field based on visualization technology
SO ALEXANDRIA ENGINEERING JOURNAL
LA English
DT Article
DE Nursing; Artificial intelligence; Bibliometrics; Visual analysis;
CiteSpace; Map of knowledge
ID BIBLIOMETRIC ANALYSIS; EMERGING TRENDS
AB In order to assess the research status, hot issues of artificial intelligence in nursing to pro-vide reference for scholars. This work conduct a quantitative analysis on related literature in WOS from 2011 to 2022 by mathematical and statistical methods, including publication trend, journals, author, institution, national and regional, keyword, literature co-citation. The hotspots and trends were revealed. The results showed that: (1) scholars' attention to it showed a steady increasing. (2) There were 20 journals published more than 6 papers, published 205 papers, that's 30.83 % of the total, Journal of Healthcare Engineering published the most papers, that's 8.78 %. (2) Kendrick Cato, Lisiane Pruinelli published the most papers, that's 2.95 %, which have strong cooperation. (3) Harvard Medical School, Columbia University and University of Minnesota published 114 papers, that's 8.21 % of the total, were the core unit, Harvard Med Sch, Columbia Univ and Univ Penn had strong cooperation. (4) The United States, China, Japan, Australia and United Kingdom are the top five countries for publishing papers, that's 80.3 % of the total. The cooperation degree of the each are 0.51, 0.36, 0.07, 0.04, and 0.06. (6) "electronic health record", "risk prediction" and "supervised machine learning" are current research hotspots. & COPY; 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/).
C1 [Duan, Siyu; Zhao, Yang] Panzhihua Univ, Sch Hlth & Wellness, Panzhihua 617000, Peoples R China.
C3 Panzhihua University
RP Zhao, Y (corresponding author), Panzhihua Univ, Sch Hlth & Wellness, Panzhihua 617000, Peoples R China.
EM zhaoyang@pzhu.edu.cn
CR [Anonymous], 2017, INF RES INT ELECT J
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen Z, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12122132
De Silva K, 2021, COMPUT BIOL MED, V132, DOI 10.1016/j.compbiomed.2021.104305
Dong JY, 2020, J ADV NURS, V76, P2955, DOI 10.1111/jan.14489
Feng W., 2022, TOURISM FORUM, V15, P31
Guo LZ, 2020, GASTROENTEROL NURS, V43, P232, DOI 10.1097/SGA.0000000000000457
Ho KF, 2021, COMPUT METH PROG BIO, V207, DOI 10.1016/j.cmpb.2021.106128
Hu C., 2019, J GUANGZHOU U TRADIT, V36, P752
Jiang JX, 2023, FRONT AGING NEUROSCI, V15, DOI 10.3389/fnagi.2023.999594
Karakose T., 2023, FRONT PSYCHOL, V14
Kim Teng Lua, 1992, Journal of Information Processing, V15, P10
Kwon JY, 2019, CIN-COMPUT INFORM NU, V37, P203, DOI 10.1097/CIN.0000000000000508
Li C., 2019, CHIN NURS RES, V33, P1309
Li Q, 2021, J HEALTHC ENG, V2021, DOI 10.1155/2021/3998830
Li QY, 2022, J HEALTHC ENG, V2022, DOI 10.1155/2022/1796485
Li Y., 2021, J NURS SCI, V36, P98
Liang WZ, 2020, GEOFLUIDS, V2020, DOI 10.1155/2020/8763283
Liu YL, 2018, MATH PROBL ENG, V2018, DOI 10.1155/2018/3757580
Liu YJ, 2023, SCAND J CARING SCI, V37, P384, DOI 10.1111/scs.13118
Çinar IÖ, 2020, INT J NURS PRACT, V26, DOI 10.1111/ijn.12845
Rajendran SS, 2021, BIOSCI BIOTECH RES C, V14, P435, DOI 10.21786/bbrc/14.1/62
Ronquillo CE, 2021, J ADV NURS, V77, P3707, DOI 10.1111/jan.14855
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Tao SY, 2022, FRONT CARDIOVASC MED, V9, DOI 10.3389/fcvm.2022.891428
Teng Y., 2022, WIREL COMMUN MOB COM, V2022
Van Raan A F, 2014, Advances in Bibliometric Analysis: Research Performance Assessment and Science Mapping, V87, P17
Wang JX, 2022, FRONT NEUROL, V13, DOI 10.3389/fneur.2022.816031
Wang YY, 2022, NEUROPSYCH DIS TREAT, V18, P2107, DOI 10.2147/NDT.S378372
Wang Z., 2018, CHIN NURS RES, V32, P2066
Waqas A, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0235385
Wu N, 2022, J MULTIDISCIP HEALTH, V15, P2363, DOI 10.2147/JMDH.S363741
Yang WM, 2022, FRONT CARDIOVASC MED, V9, DOI 10.3389/fcvm.2022.935073
Zhang Q, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.890773
Zheng JZ, 2021, QUANT IMAG MED SURG, V11, P1854, DOI 10.21037/qims-20-729
Zinina A, 2023, COGN SYST RES, V77, P110, DOI 10.1016/j.cogsys.2022.10.007
NR 38
TC 2
Z9 2
U1 13
U2 36
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1110-0168
EI 2090-2670
J9 ALEX ENG J
JI Alex. Eng. J.
PD AUG 1
PY 2023
VL 76
BP 651
EP 667
DI 10.1016/j.aej.2023.06.072
EA JUN 2023
PG 17
WC Engineering, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA M4KT2
UT WOS:001029917100001
OA gold
DA 2024-09-05
ER
PT J
AU Radanliev, P
De Roure, D
Maple, C
Santos, O
AF Radanliev, Petar
De Roure, David
Maple, Carsten
Santos, Omar
TI Forecasts on Future Evolution of Artificial Intelligence and Intelligent
Systems
SO IEEE ACCESS
LA English
DT Article
DE Artificial intelligence; COVID-19; Medical services; Internet of Things;
Bibliometrics; Ethics; Codes; Artificial intelligence; intelligent
systems; future evolution; Covid-19
AB The field of artificial intelligence has gained a significant attention in the media. Some counties claim to be the leaders in the field, other countries claim to be winning in the race for leadership in artificial intelligence. This article conducts a statistical (i.e., bibliometric) analysis of research data records on artificial intelligence by year, country, language, and organisation. The results are clearly in favour of the USA on a national level, and English is clearly the dominant language for disseminating results. But in terms of leading organisation in the field of artificial intelligence creates more confusing result - e.g., between the Chinese Academy of Sciences and the University of California - in the leadership race. The forecasts from this study on future evolution of artificial intelligence is that it is unlikely that (in the next 60 years) AI 'superintelligence' would trigger a catastrophic event for humanity.
C1 [Radanliev, Petar; De Roure, David] Univ Oxford, Oxford E Res Ctr, Dept Engn Sci, Oxford OX1 2JD, England.
[Maple, Carsten] Univ Warwick, WMG Cyber Secur Ctr, Coventry CV4 7AL, W Midlands, England.
[Santos, Omar] Cisco Res Ctr, Res Triangle Pk, NC 27709 USA.
C3 University of Oxford; University of Warwick; Cisco Systems Inc
RP Radanliev, P (corresponding author), Univ Oxford, Oxford E Res Ctr, Dept Engn Sci, Oxford OX1 2JD, England.
EM petar.radanliev@oerc.ox.ac.uk
RI Radanliev, Petar/L-7509-2015
OI Radanliev, Petar/0000-0001-5629-6857; Maple, Carsten/0000-0002-4715-212X
FU Engineering and Physical Sciences Research Council (EPSRC)
[EP/S035362/1]; Cisco Research Centre [CG1525381]; EPSRC [EP/V056883/1,
EP/S021779/1, EP/R007195/1] Funding Source: UKRI; SPF [EP/S035362/1]
Funding Source: UKRI
FX This work was supported in part by the Engineering and Physical Sciences
Research Council (EPSRC) under Grant EP/S035362/1, and in part by the
Cisco Research Centre under Grant CG1525381.
CR Adrien B., 2021, ARTIF INTELL REV, V54, P3849
Ahmad R, 2021, INTERNET THINGS-NETH, V14, DOI 10.1016/j.iot.2021.100365
Ayvaz S, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114598
Blackwell AF, 2021, INTERDISCIPL SCI REV, V46, P198, DOI 10.1080/03080188.2020.1840226
Chandrasekar V., 2021, ADV INTELLIGENT SYST, V1184, P540
Cui ZH, 2021, IEEE INTERNET THINGS, V8, P12540, DOI 10.1109/JIOT.2021.3056578
Dhamija P, 2020, TQM J, V32, P869, DOI 10.1108/TQM-10-2019-0243
Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228
Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392
Hansen EB, 2021, J MANUF SYST, V58, P362, DOI 10.1016/j.jmsy.2020.08.009
Huang SG, 2021, INT J BIOL SCI, V17, P1581, DOI 10.7150/ijbs.58855
Hwang GJ, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060584
Javaid Mohd, 2021, J Oral Biol Craniofac Res, V11, P209, DOI 10.1016/j.jobcr.2021.01.015
Kumar D. P., 2021, Agricultural Informatics, P67, DOI DOI 10.1002/9781119769231.CH4
Niu WJ, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102686
Pan Y, 2021, AUTOMAT CONSTR, V122, DOI 10.1016/j.autcon.2020.103517
Qinxia H, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/6616279
Raisch S, 2021, ACAD MANAGE REV, V46, P192, DOI 10.5465/amr.2018.0072
Roberts H, 2021, AI SOC, V36, P59, DOI 10.1007/s00146-020-00992-2
Rohit R., 2021, INVESTIGATING CORREL, P71
Shastri BJ, 2021, NAT PHOTONICS, V15, P102, DOI 10.1038/s41566-020-00754-y
Wiafe I, 2020, IEEE ACCESS, V8, P146598, DOI 10.1109/ACCESS.2020.3013145
NR 22
TC 16
Z9 16
U1 9
U2 70
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2022
VL 10
BP 45280
EP 45288
DI 10.1109/ACCESS.2022.3169580
PG 9
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA 0Z0NQ
UT WOS:000790778100001
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Fijacko, N
Creber, RM
Abella, BS
Kocbek, P
Metlicar, S
Greif, R
Stiglic, G
AF Fijacko, Nino
Creber, Ruth Masterson
Abella, Benjamin S.
Kocbek, Primoz
Metlicar, Spela
Greif, Robert
Stiglic, Gregor
TI Using generative artificial intelligence in bibliometric analysis: 10
years of research trends from the European Resuscitation Congresses
SO RESUSCITATION PLUS
LA English
DT Article
DE Emergency medicine; European Resuscitation Council; Congress;
Bibliometrics analysis; Generative artificial intelligence
ID COUNCIL GUIDELINES; CARDIAC-ARREST; EMERGENCY
AB Aims: The aim of this study is to use generative artificial intelligence to perform bibliometric analysis on abstracts published at European Resuscitation Council (ERC) annual scientific congress and define trends in ERC guidelines topics over the last decade. Methods: In this bibliometric analysis, the WebHarvy software (SysNucleus, India) was used to download data from the Resuscitation journal's website through the technique of web scraping. Next, the Chat Generative Pre-trained Transformer 4 (ChatGPT-4) application programming interface (Open AI, USA) was used to implement the multinomial classification of abstract titles following the ERC 2021 guidelines topics. Results: From 2012 to 2022 a total of 2491 abstracts have been published at ERC congresses. Published abstracts ranged from 88 (in 2020) to 368 (in 2015). On average, the most common ERC guidelines topics were Adult basic life support (50.1%), followed by Adult advanced life support (41.5%), while Newborn resuscitation and support of transition of infants at birth (2.1%) was the least common topic. The findings also highlight that the Basic Life Support and Adult Advanced Life Support ERC guidelines topics have the strongest co-occurrence to all ERC guidelines topics, where the Newborn resuscitation and support of transition of infants at birth (2.1%; 52/2491) ERC guidelines topic has the weakest co-occurrence. Conclusion: This study demonstrates the capabilities of generative artificial intelligence in the bibliometric analysis of abstract titles using the example of resuscitation medicine research over the last decade at ERC conferences using large language models.
C1 [Fijacko, Nino; Kocbek, Primoz; Metlicar, Spela; Stiglic, Gregor] Univ Maribor, Fac Hlth Sci, Maribor 3000, Slovenia.
[Fijacko, Nino; Greif, Robert] ERC Res Net, Niels, Belgium.
[Fijacko, Nino] Univ Maribor, Med Ctr, Maribor, Slovenia.
[Creber, Ruth Masterson] Columbia Univ, Sch Nursing, New York, NY USA.
[Abella, Benjamin S.] Univ Penn, Ctr Resuscitat Sci, Philadelphia, PA USA.
[Abella, Benjamin S.] Univ Penn, Dept Emergency Med, Philadelphia, PA USA.
[Kocbek, Primoz] Univ Ljubljana, Fac Med, Ljubljana, Slovenia.
[Metlicar, Spela] Univ Clin Ctr Ljubljana, Med Dispatch Ctr Maribor, Ljubljana, Slovenia.
[Greif, Robert] Univ Bern, Bern, Switzerland.
[Greif, Robert] Sigmund Freud Univ Vienna, Sch Med, Vienna, Austria.
[Greif, Robert] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor, Slovenia.
[Stiglic, Gregor] Univ Edinburgh, Usher Inst, Edinburgh, Scotland.
C3 University of Maribor; University of Maribor; Columbia University;
University of Pennsylvania; University of Pennsylvania; University of
Ljubljana; University Medical Centre Ljubljana; University of Bern;
University of Maribor; University of Edinburgh
RP Fijacko, N (corresponding author), Univ Maribor, Fac Hlth Sci, Maribor 3000, Slovenia.
EM nino.fijacko@um.si
OI Metlicar, Spela/0009-0007-4051-1736
FU Slovenian Research Agency [ARRS P2-0057, ARRS N3-0307, ARRS
BI-US/22-24-138, C3330-22-953012]; National Institutes of Health
[R01HL161458, R01NS123639, R01HL152021]; Department of Defense; Becton
Dickinson; Zoll; Stryker; Patient-Centered Outcomes Research Insti tute
(PCORI)
FX Nino Fija & ccaron;ko, Primo & zcaron; Kocbek, and Gregor Stiglic are
supported by Slovenian Research Agency grants ARRS P2-0057, ARRS
N3-0307, ARRS BI-US/22-24-138, NextGenerationEU and MVZI
(C3330-22-953012) . Benjamin S. Abella has received research funding
from the National Institutes of Health, the Department of Defense, and
Becton Dickinson. He has served as a paid consultant to Becton
Dickinson, Zoll and Stryker. He holds equity in MDAlly and VOCHealth.
Ruth Masterson Creber receives research funding from the National
Institutes of Health (R01HL161458, R01NS123639, R01HL152021) and the
Patient-Centered Outcomes Research Insti tute (PCORI) .
CR [Anonymous], Generative Pre-trained Transformer 4 (GPT-4) application programming interface
Arif TB, 2023, MED EDUC ONLINE, V28, DOI 10.1080/10872981.2023.2181052
Barbic D, 2016, ACAD EMERG MED, V23, P251, DOI 10.1111/acem.12898
Choudhri AF, 2015, RADIOGRAPHICS, V35, P736, DOI 10.1148/rg.2015140036
Farhat F, 2023, COGENT ENG, V10, DOI 10.1080/23311916.2023.2222988
Gräsner JT, 2021, RESUSCITATION, V161, P61, DOI 10.1016/j.resuscitation.2021.02.007
Greif R, 2021, RESUSCITATION, V161, P388, DOI 10.1016/j.resuscitation.2021.02.016
HOLMBERG S, 1992, RESUSCITATION, V24, P103, DOI 10.1016/0300-9572(92)90015-5
Jia TY, 2020, MED SCI MONITOR, V26, DOI 10.12659/MSM.926815
Kirtania DK, 2023, ChatGPT as a tool for bibliometrics analysis: interview with ChatGPT, DOI [10.2139/ssrn.4391794, DOI 10.2139/SSRN.4391794]
Kleesiek J, 2023, J NUCL MED, V64, P701, DOI 10.2967/jnumed.123.265687
Lott C, 2021, RESUSCITATION, V161, P152, DOI 10.1016/j.resuscitation.2021.02.011
Madar J, 2021, RESUSCITATION, V161, P291, DOI 10.1016/j.resuscitation.2021.02.014
Mentzelopoulos SD, 2021, RESUSCITATION, V161, P408, DOI 10.1016/j.resuscitation.2021.02.017
Nakaya Y, 2023, EUR HEART J-DIGIT HL, V4, P141, DOI 10.1093/ehjdh/ztad026
Nolan JP, 2021, RESUSCITATION, V161, P220, DOI 10.1016/j.resuscitation.2021.02.012
Nolan JP, 2010, RESUSCITATION, V81, P1219, DOI 10.1016/j.resuscitation.2010.08.021
Olasveengen TM, 2021, RESUSCITATION, V161, P98, DOI 10.1016/j.resuscitation.2021.02.009
Perkins GD, 2021, RESUSCITATION, V161, P1, DOI 10.1016/j.resuscitation.2021.02.003
PRITCHARD A, 1969, J DOC, V25, P348
R Foundation for Statistical Computing, US
Rodrigues SP, 2014, BMJ OPEN, V4, DOI 10.1136/bmjopen-2013-004468
Semeraro F, 2021, RESUSCITATION, V161, P80, DOI 10.1016/j.resuscitation.2021.02.008
Soar J, 2021, RESUSCITATION, V161, P115, DOI 10.1016/j.resuscitation.2021.02.010
Van de Voorde P, 2021, RESUSCITATION, V161, P327, DOI 10.1016/j.resuscitation.2021.02.015
webhome, about Us
Xu L, 2021, AM J TRANSL RES, V13, P1109
Zideman DA, 2021, RESUSCITATION, V161, P270, DOI 10.1016/j.resuscitation.2021.02.013
NR 28
TC 1
Z9 1
U1 4
U2 4
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2666-5204
J9 RESUSC PLUS
JI Resusc. Plus
PD JUN
PY 2024
VL 18
AR 100584
DI 10.1016/j.resplu.2024.100584
EA FEB 2024
PG 5
WC Critical Care Medicine; Emergency Medicine
WE Emerging Sources Citation Index (ESCI)
SC General & Internal Medicine; Emergency Medicine
GA MG0W0
UT WOS:001192365400001
PM 38420596
OA hybrid
DA 2024-09-05
ER
PT J
AU Bioglio, L
Rho, V
Pensa, RG
AF Bioglio, Livio
Rho, Valentina
Pensa, Ruggero G.
TI Ranking by inspiration: a network science approach
SO MACHINE LEARNING
LA English
DT Article
DE Information diffusion; Bibliographic indexes; Citation networks; Topic
modeling
ID INDEX
AB Contagion processes have been widely studied in epidemiology and life science in general, but their implications are largely tangible in other research areas, such as in network science and computational social science. Contagion models, in particular, have proven helpful in the study of information diffusion, a very topical issue thanks to its applications to social media/network analysis, viral marketing campaigns, influence maximization and prediction. In bibliographic networks, for instance, an information diffusion process takes place when some authors, that publish papers in a given topic, influence some of their neighbors (coauthors, citing authors, collaborators) to publish papers in the same topic, and the latter influence their neighbors in their turn. This well-accepted definition, however, does not consider that influence in bibliographic networks is a complex phenomenon involving several scientific and cultural aspects. In fact, in scientific citation networks, influential topics are usually considered those ones that spread most rapidly in the network. Although this is generally a fact, this semantics does not consider that topics in bibliographic networks evolve continuously. In fact, knowledge, information and ideas are dynamic entities that acquire different meanings when passing from one person to another. Thus, in this paper, we propose a new definition of influence that captures the diffusion of inspiration within the network. We call it inspiration score, and show its effectiveness in detecting the most inspiring topics, authors, papers and venues in a citation network built upon two large bibliographic datasets. We show that the inspiration score can be used as an alternative or complementary bibliographic index in academic ranking applications.
C1 [Bioglio, Livio; Rho, Valentina; Pensa, Ruggero G.] Univ Turin, Dept Comp Sci, Turin, Italy.
C3 University of Turin
RP Bioglio, L (corresponding author), Univ Turin, Dept Comp Sci, Turin, Italy.
EM livio.bioglio@unito.it; valentina.rho@unito.it; ruggero.pensa@unito.it
RI Pensa, Ruggero G./B-5994-2011
OI Pensa, Ruggero G./0000-0001-5145-3438
CR [Anonymous], 1973, Mathematical Models and Applications, with Emphasis on Social, Life, and Management Sciences
[Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076
[Anonymous], 2004, P 13 INT C WORLD WID, DOI DOI 10.1145/1046456.1046462
[Anonymous], P ICWSM 2009
Aral S, 2018, NAT HUM BEHAV, V2, P375, DOI 10.1038/s41562-018-0346-z
Bakshy E., 2012, P 21 INT C WORLD WID, P519, DOI DOI 10.1145/2187836.2187907
Barbieri N, 2013, KNOWL INF SYST, V37, P555, DOI 10.1007/s10115-013-0646-6
Bioglio L, 2017, LECT NOTES ARTIF INT, V10558, P309, DOI 10.1007/978-3-319-67786-6_22
Boguslawski B, 2015, IEEE INT CONF VLSI, P116, DOI 10.1109/VLSI-SoC.2015.7314402
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806
Britton T, 2010, MATH BIOSCI, V225, P24, DOI 10.1016/j.mbs.2010.01.006
Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047
Cialdini R.B., 1998, Social Influence, Social Norms, Conformity and Compliance, VVolume 2, P151
Coates Adam, 2013, P 30 INT C MACH LEAR, P1337
Cui P, 2011, PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), P185
DALEY DJ, 1964, NATURE, V204, P1118, DOI 10.1038/2041118a0
Dorogovtsev SN, 2015, NAT PHYS, V11, P882, DOI 10.1038/nphys3533
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Gohr Andrll., 2009, SDM, P859, DOI DOI 10.1137/1.9781611972795.74
Goldenberg J, 2001, MARKET LETT, V12, P211, DOI 10.1023/A:1011122126881
Gui H., 2014, P 23 ACM INT C C INF, P649, DOI DOI 10.1145/2661829.2662000
Hethcote HW, 2000, SIAM REV, V42, P599, DOI 10.1137/S0036144500371907
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hoffman Matthew D., 2010, Adv. Neural Inf. Process. Syst. (NIPS), DOI DOI 10.5555/2997189.2997285
Ke XY, 2018, INT CONF MANAGE DATA, P1097, DOI 10.1145/3183713.3199670
Keeling M., 2008, MODELING INFECT DIS, DOI DOI 10.1086/591197
Kempe David, 2003, Theory Comput., P137, DOI DOI 10.1145/956750.956769
Kim M, 2018, J ASSOC INF SCI TECH, V69, P329, DOI 10.1002/asi.23960
Leskovec J., 2007, ACM Transactions on Knowledge Discovery from Data (TKDD), V1, P5
Moreno Y, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066130
Nekovee M., 2008, ABS08071458 CORR
Radicchi F, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.056103
Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
Rogers, 2003, DIFFUSION INNOVATION
Senanayake U, 2014, PROCEDIA COMPUT SCI, V29, P465, DOI 10.1016/j.procs.2014.05.042
Seo JS, 2015, IEEE INT CONF VLSI, P49, DOI 10.1109/VLSI-SoC.2015.7314390
SMIRNOV N, 1948, ANN MATH STAT, V19, P279, DOI 10.1214/aoms/1177730256
SUDBURY A, 1985, J APPL PROBAB, V22, P443, DOI 10.2307/3213787
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Teixeira da Silva JA, 2017, SCIENTOMETRICS, V111, P553, DOI 10.1007/s11192-017-2250-0
Wang YH, 2017, PROC VLDB ENDOW, V10, P805, DOI 10.14778/3067421.3067429
Yang J, 2010, RESEARCH PROGRESS IN PAPER INDUSTRY AND BIOREFINERY (4TH ISETPP), VOLS 1-3, P1012
Yang Shuang-Hong, 2013, ICML
Zanette DH, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.041908
Zhou J, 2007, PHYS LETT A, V368, P458, DOI 10.1016/j.physleta.2007.01.094
NR 46
TC 4
Z9 4
U1 0
U2 6
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0885-6125
EI 1573-0565
J9 MACH LEARN
JI Mach. Learn.
PD JUN
PY 2020
VL 109
IS 6
BP 1205
EP 1229
DI 10.1007/s10994-019-05828-9
PG 25
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA MB1CR
UT WOS:000542345400004
OA Green Submitted, Bronze
DA 2024-09-05
ER
PT J
AU Nicolas, G
Bai, XCZ
Fiske, ST
AF Nicolas, Gandalf
Bai, Xuechunzi
Fiske, Susan T.
TI Exploring Research-Methods Blogs in Psychology: Who Posts What About
Whom, and With What Effect?
SO PERSPECTIVES ON PSYCHOLOGICAL SCIENCE
LA English
DT Article
DE research methods; blogs; social media; natural language processing;
replicability
ID GENDER-DIFFERENCES
AB During the methods crisis in psychology and other sciences, much discussion developed online in forums such as blogs and other social media. Hence, this increasingly popular channel of scientific discussion itself needs to be explored to inform current controversies, record the historical moment, improve methods communication, and address equity issues. Who posts what about whom, and with what effect? Does a particular generation or gender contribute more than another? Do blogs focus narrowly on methods, or do they cover a range of issues? How do they discuss individual researchers, and how do readers respond? What are some impacts? Web-scraping and text-analysis techniques provide a snapshot characterizing 41 current research-methods blogs in psychology. Bloggers mostly represented psychology's traditional leaderships' demographic categories: primarily male, mid- to late career, associated with American institutions, White, and with established citation counts. As methods blogs, their posts mainly concern statistics, replication (particularly statistical power), and research findings. The few posts that mentioned individual researchers substantially focused on replication issues; they received more views, social-media impact, comments, and citations. Male individual researchers were mentioned much more often than female researchers. Further data can inform perspectives about these new channels of scientific communication, with the shared aim of improving scientific practices.
C1 [Nicolas, Gandalf; Bai, Xuechunzi; Fiske, Susan T.] Princeton Univ, Dept Psychol, 330 Peretsman Scully Hall, Princeton, NJ 08540 USA.
C3 Princeton University
RP Nicolas, G (corresponding author), Princeton Univ, Dept Psychol, 330 Peretsman Scully Hall, Princeton, NJ 08540 USA.
EM gnf@princeton.edu
OI Nicolas, Gandalf/0000-0001-8215-1758
CR [Anonymous], 2017, R LANG ENV STAT COMP
[Anonymous], 2014, RES EXC FRAM
Barr DJ, 2013, J MEM LANG, V68, P255, DOI 10.1016/j.jml.2012.11.001
Bem DJ, 2011, J PERS SOC PSYCHOL, V100, P407, DOI 10.1037/a0021524
Bhattacharjee Y., 2013, The New York Times Magazine
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Burrelli J, 2008, PUBLICATION NSF
Cikara M, 2012, J SOC ISSUES, V68, P263, DOI 10.1111/j.1540-4560.2012.01748.x
DEUTSCH M, 1976, PERS SOC PSYCHOL B, V2, P134, DOI 10.1177/014616727600200214
Diener E., 2014, ARCHIVES SCI. PSYCHOL, V2, P20, DOI DOI 10.1037/ARC0000006
EAGLY AH, 1991, J PERS SOC PSYCHOL, V60, P685, DOI 10.1037/0022-3514.60.5.685
Eagly AH, 2016, PERSPECT PSYCHOL SCI, V11, P899, DOI 10.1177/1745691616663918
Elsesser K., 2018, FORBES 0403
Enders CK, 2007, PSYCHOL METHODS, V12, P121, DOI 10.1037/1082-989X.12.2.121
Engber D., 2017, SLATE
FEINGOLD A, 1994, PSYCHOL BULL, V116, P429, DOI 10.1037/0033-2909.116.3.429
FISKE DW, 1990, AM PSYCHOL, V45, P591, DOI 10.1037/0003-066X.45.5.591
Fiske S.T., 2016, APS OBSERVER, V29, P5
GREENWALD AG, 1976, J PERS SOC PSYCHOL, V33, P54, DOI 10.1037/h0078641
Griffiths TL, 2007, PSYCHOL REV, V114, P211, DOI 10.1037/0033-295X.114.2.211
Klaiman S., 2017, PROMOTING OPEN CRITI
Lakens D., 2017, 5 REASONS BLOG POSTS
Ledgerwood A, 2017, Observer, V30, P18
Munafò MR, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-016-0021
National Science Foundation, 2015, TABL 9 24 SCI ENG HL
Nelson LD, 2018, ANNU REV PSYCHOL, V69, P511, DOI 10.1146/annurev-psych-122216-011836
PsychBrief, 2017, IMPROVING PSYCHOL ME
PsychBrief, PSYCHOL METHODS BLOG
ROSENTHAL R, 1979, PSYCHOL BULL, V86, P638, DOI 10.1037/0033-2909.86.3.638
Sabeti P., 2018, BOSTON GLOBE
Shrout PE, 2018, ANNU REV PSYCHOL, V69, P487, DOI 10.1146/annurev-psych-122216-011845
SMITH RJ, 1978, PERS SOC PSYCHOL B, V4, P173, DOI 10.1177/014616727800400137
Weinstein Y, 2017, PERSPECT PSYCHOL SCI, V12, P1171, DOI 10.1177/1745691617712266
West T., 2017, SPSP CLIMATE SURVEY
NR 34
TC 8
Z9 10
U1 0
U2 12
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1745-6916
EI 1745-6924
J9 PERSPECT PSYCHOL SCI
JI Perspect. Psychol. Sci.
PD JUL
PY 2019
VL 14
IS 4
BP 691
EP 704
DI 10.1177/1745691619835216
PG 14
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA IH1HT
UT WOS:000474242600012
PM 31199886
DA 2024-09-05
ER
PT J
AU Abdulkadiroglu, A
Angrist, JD
Narita, Y
Pathak, PA
AF Abdulkadiroglu, Atila
Angrist, Joshua D.
Narita, Yusuke
Pathak, Parag A.
TI Research Design Meets Market Design: Using Centralized Assignment for
Impact Evaluation
SO ECONOMETRICA
LA English
DT Article
DE Causal inference; propensity score; instrumental variables; unified
enrollment; charter schools
ID SCHOOL-CHOICE; PROPENSITY SCORE; SERIAL DICTATORSHIP; COLLEGE
ADMISSIONS; BOSTON; ACHIEVEMENT; LOTTERIES; QUALITY; IDENTIFICATION;
DISCONTINUITY
AB A growing number of school districts use centralized assignment mechanisms to allocate school seats in a manner that reflects student preferences and school priorities. Many of these assignment schemes use lotteries to ration seats when schools are oversubscribed. The resulting random assignment opens the door to credible quasi-experimental research designs for the evaluation of school effectiveness. Yet the question of how best to separate the lottery-generated randomization integral to such designs from non-random preferences and priorities remains open. This paper develops easily-implemented empirical strategies that fully exploit the random assignment embedded in a wide class of mechanisms, while also revealing why seats are randomized at one school but not another. We use these methods to evaluate charter schools in Denver, one of a growing number of districts that combine charter and traditional public schools in a unified assignment system. The resulting estimates show large achievement gains from charter school attendance. Our approach generates efficiency gains over ad hoc methods, such as those that focus on schools ranked first, while also identifying a more representative average causal effect. We also show how to use centralized assignment mechanisms to identify causal effects in models with multiple school sectors.
C1 [Abdulkadiroglu, Atila] Duke Univ, Dept Econ, Durham, NC 27706 USA.
[Abdulkadiroglu, Atila; Angrist, Joshua D.; Pathak, Parag A.] NBER, Cambridge, MA 02138 USA.
[Angrist, Joshua D.; Pathak, Parag A.] MIT, Dept Econ, Cambridge, MA 02139 USA.
[Narita, Yusuke] Yale Univ, Dept Econ, New Haven, CT 06520 USA.
[Narita, Yusuke] Yale Univ, Cowles Fdn, New Haven, CT 06520 USA.
C3 Duke University; National Bureau of Economic Research; Massachusetts
Institute of Technology (MIT); Yale University; Yale University
RP Abdulkadiroglu, A (corresponding author), Duke Univ, Dept Econ, Durham, NC 27706 USA.; Abdulkadiroglu, A (corresponding author), NBER, Cambridge, MA 02138 USA.
EM atila.abdulkadiroglu@duke.edu; angrist@mit.edu; yusuke.narita@yale.edu;
ppathak@mit.edu
RI Angrist, Josh/ADL-8782-2022
FU Laura and John Arnold Foundation; National Science Foundation
[SES-1056325, SES-1426541]; Direct For Social, Behav & Economic Scie;
Divn Of Social and Economic Sciences [1056325] Funding Source: National
Science Foundation
FX We thank Alisha Chiarelli, Brian Eschbacher, Van Schoales, and the staff
at Denver Public Schools for answering our questions and facilitating
access to data. Nikhil Agarwal, Isaiah Andrews, Eduardo Azevedo, Gary
Chamberlain, Victor Chernozhukov, Dean Eckles, Jerry Hausman, Peter
Hull, Hide Ichimura, Guido Imbens, Rafael Lalive, Edward Lazear, Jacob
Leshno, Anna Mikuscheva, Paul Rosenbaum, Chris Walters, and seminar
participants at Harvard, SOLE, Stanford University, MIT, Duke
University, the Fall 2015 NBER market design meeting, Kyoto, Osaka, and
Tokyo provided helpful feedback. We are especially indebted to Mayara
Felix, Ye Ji Kee, and Ignacio Rodriguez for expert research assistance
and to MIT SEII program managers Annice Correia and Eryn Heying for
invaluable administrative support. We gratefully acknowledge funding
from the Laura and John Arnold Foundation and the National Science
Foundation (under awards SES-1056325 and SES-1426541). Data from Denver
Public Schools were made available to us through the Institute for
Innovation in Public School Choice. Abdulkadiroglu and Pathak are
Scientific Advisory Board members of the Institute for Innovation in
Public School Choice. Angrist's daughter teaches at a Boston charter
school.
CR Abadie A, 2003, J ECONOMETRICS, V113, P231, DOI 10.1016/S0304-4076(02)00201-4
Abadie A, 2002, J AM STAT ASSOC, V97, P284, DOI 10.1198/016214502753479419
Abadie A, 2016, ECONOMETRICA, V84, P781, DOI 10.3982/ECTA11293
Abadie Alberto, 2014, 20325 NBER
Abdulkadiroglu A, 2003, AM ECON REV, V93, P729, DOI 10.1257/000282803322157061
Abdulkadiroglu A, 1998, ECONOMETRICA, V66, P689, DOI 10.2307/2998580
Abdulkadiroglu A, 2017, AM ECON REV, V107, P240, DOI 10.1257/aer.p20171111
Abdulkadiroglu A, 2016, AM ECON REV, V106, P1878, DOI 10.1257/aer.20150479
Abdulkadiroglu A, 2015, AM ECON J-MICROECON, V7, P1, DOI 10.1257/mic.20120027
Abdulkadiroglu A, 2014, ECONOMETRICA, V82, P137, DOI 10.3982/ECTA10266
Abdulkadiroglu A, 2011, Q J ECON, V126, P699, DOI 10.1093/qje/qjr017
Abdulkadirolu A., 2017, ECONOMETRICA S, V85
Abdulkadirolu A., 2015, TECHNICAL REPORT
Abdulkadirolu A., 2013, 19576 NBER
Abdulkadirolu A., 2006, 11965 NBER
Agarwal N., 2015, WORKING PAPER
Angrist J, 2004, REV ECON STAT, V86, P58, DOI 10.1162/003465304323023679
Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P1
Angrist JD, 2017, Q J ECON, V132, P871, DOI 10.1093/qje/qjx001
Angrist JD, 2016, J LABOR ECON, V34, P275, DOI 10.1086/683665
Angrist JD, 2013, AM ECON J-APPL ECON, V5, P1, DOI 10.1257/app.5.4.1
Angrist JD, 2012, J POLICY ANAL MANAG, V31, P837, DOI 10.1002/pam.21647
[Anonymous], 2014, EC J
[Anonymous], 2022, Testing Statistical Hypotheses, DOI DOI 10.1007/978-3-030-70578-7
[Anonymous], 2002, OBSERVATIONAL STUDIE
Ashlagi I, 2017, J POLIT ECON, V125, P69, DOI 10.1086/689869
Azevedo EM, 2016, J POLIT ECON, V124, P1235, DOI 10.1086/687476
Balinski M, 1999, J ECON THEORY, V84, P73, DOI 10.1006/jeth.1998.2469
Behaghel Luc, 2013, 7447 IZA
Blackwell M, 2017, J AM STAT ASSOC, V112, P590, DOI 10.1080/01621459.2016.1246363
Bloom HS, 2014, J POLICY ANAL MANAG, V33, P290, DOI 10.1002/pam.21748
Budish E, 2011, J POLIT ECON, V119, P1061, DOI 10.1086/664613
Calsamiglia Caterina, 2014, WORKING PAPER
Che YK, 2010, ECONOMETRICA, V78, P1625, DOI 10.3982/ECTA8354
Chen Y, 2017, J POLIT ECON, V125, P99, DOI 10.1086/689773
Cohodes S., 2016, 6 SEII
Connors S., 2013, INNOVATION SCH DPS Y
Cullen JB, 2006, ECONOMETRICA, V74, P1191, DOI 10.1111/j.1468-0262.2006.00702.x
Dehejia RH, 1999, J AM STAT ASSOC, V94, P1053, DOI 10.2307/2669919
Deming DJ, 2014, AM ECON REV, V104, P991, DOI 10.1257/aer.104.3.991
Deming DJ, 2011, Q J ECON, V126, P2063, DOI 10.1093/qje/qjr036
desHaan M., 2015, WORKING PAPER
Dobbie W, 2014, AM ECON J-APPL ECON, V6, P58, DOI 10.1257/app.6.3.58
Dobbie W, 2011, AM ECON J-APPL ECON, V3, P158, DOI 10.1257/app.3.3.158
Dur U., 2014, 18981 NBER
Ergin H, 2006, J PUBLIC ECON, V90, P215, DOI 10.1016/j.jpubeco.2005.02.002
Froelich M, 2007, J ECONOMETRICS, V139, P35, DOI 10.1016/j.jeconom.2006.06.004
GALE D, 1962, AM MATH MON, V69, P9, DOI 10.2307/2312726
Gleason PM, 2014, EDUC FINANC POLICY, V9, P36, DOI 10.1162/EDFP_a_00119
Hahn JY, 1998, ECONOMETRICA, V66, P315, DOI 10.2307/2998560
Hastings Justine S, 2009, WORKING PAPER
Hirano K, 2003, ECONOMETRICA, V71, P1161, DOI 10.1111/1468-0262.00442
Hong H, 2010, QUANT ECON, V1, P279, DOI 10.3982/QE43
Hoxby C., 2009, WORKING PAPER
Hull P. D., 2016, WORKING PAPER
Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706
Imbens GW, 2015, CAUSAL INFERENCE FOR STATISTICS, SOCIAL, AND BIOMEDICAL SCIENCES: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139025751
IMBENS GW, 1994, ECONOMETRICA, V62, P467, DOI 10.2307/2951620
Jackson CK, 2010, ECON J, V120, P1399, DOI 10.1111/j.1468-0297.2010.02371.x
Kesten O, 2015, THEOR ECON, V10, P543, DOI 10.3982/TE1558
Kojima F, 2009, AM ECON REV, V99, P608, DOI 10.1257/aer.99.3.608
Lee Sang Yoon, 2014, WORKING PAPER
Lucas AM, 2014, AM ECON J-APPL ECON, V6, P234, DOI 10.1257/app.6.3.234
Moulin HJ, 2003, FAIR DIVISION AND COLLECTIVE WELFARE, P1
NEWEY WK, 1990, ECONOMETRICA, V58, P809, DOI 10.2307/2938351
Okui R, 2012, STAT SINICA, V22, P173, DOI 10.5705/ss.2009.265
Pathak P. A., 2016, WORKING PAPER
Pathak PA, 2008, AM ECON REV, V98, P1636, DOI 10.1257/aer.98.4.1636
Pathak PA, 2013, AM ECON REV, V103, P80, DOI 10.1257/aer.103.1.80
Pathak PA, 2011, THEOR ECON, V6, P1, DOI 10.3982/TE816
Pop-Eleches C, 2013, AM ECON REV, V103, P1289, DOI 10.1257/aer.103.4.1289
Robins J., 2000, P AM STAT ASS SECT B
ROSENBAUM PR, 1987, J AM STAT ASSOC, V82, P387, DOI 10.2307/2289440
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
Roth AE, 1990, ECONOMETRIC SOC MONO, DOI [10.1017/CCOL052139015X, DOI 10.1017/CCOL052139015X]
Shao J., 1995, SPRINGER SERIES STAT, DOI [10.1007/978-1-4612-0795-5, DOI 10.1007/978-1-4612-0795-5]
Shapley L, 1974, J. Math. Econom, V1, P23
Shapley L.S., 2016, CONTRIBUTIONS THEORY, P307, DOI 10.1515/9781400881970-018
Sonmez, 2016, 22109 NBER
Svensson LG, 1999, SOC CHOICE WELFARE, V16, P557, DOI 10.1007/s003550050160
Teh B.R., 2010, Student achievement in New York City middle schools affiliated with Achievement First and Uncommon Schools
van der Vaart Aad W., 1998, Asymptotic statistics. Cambridge series in statistical and probabilistic mathematics, DOI 10.1017/CBO9780511802256
Yang S, 2016, BIOMETRICS, V72, P1055, DOI 10.1111/biom.12505
NR 84
TC 52
Z9 80
U1 4
U2 51
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0012-9682
EI 1468-0262
J9 ECONOMETRICA
JI Econometrica
PD SEP
PY 2017
VL 85
IS 5
BP 1373
EP 1432
DI 10.3982/ECTA13925
PG 60
WC Economics; Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Statistics & Probability
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Mathematics; Mathematical Methods In Social
Sciences
GA FI6NA
UT WOS:000412112000002
OA Green Submitted, Green Published, Bronze
DA 2024-09-05
ER
PT J
AU Rose, RA
Cosgrove, JA
Lee, BR
AF Rose, Roderick A.
Cosgrove, John A.
Lee, Bethany R.
TI Directed Acyclic Graphs in Social Work Research and Evaluation: A Primer
SO JOURNAL OF THE SOCIETY FOR SOCIAL WORK AND RESEARCH
LA English
DT Article
DE directed acyclic graph; causal inference; confounding; quasi-experiment;
observational data
ID CAUSAL INFERENCE; TOOL
AB Social work aspires to change social outcomes through policy and practice. Thus, researchers often use quantitative analysis to understand how social phenomena or policy and practice interventions change outcomes, but these causal questions cannot be answered using statistical association only. Directed acyclic graphs (DAGs), also called causal graphs, are a framework for representing assumptions about the causal relations between variables, imbuing statistical associations with causal meaning. This visual language may be more accessible than a math-based approach. We provide social work researchers with clear guidelines for using DAGs. First, we synthesize the current DAG literature and show how many statistical phenomena are represented in DAGs. Second, we describe an ordered process for building a DAG around a causal question about the impact of a treatment on an outcome. Third, we introduce a structured process called "clock and grid" for specifying the confounders that must be accounted for to estimate the unbiased causal effect. Throughout, we use working examples of social work evaluation scenarios to facilitate understanding of these concepts. We argue that DAGs represent an end-to-end conceptual framework for curating subject area knowledge that can advance social work research by informing design and analysis.
C1 [Rose, Roderick A.; Lee, Bethany R.] Univ Maryland, Sch Social Work, College Pk, MD USA.
[Cosgrove, John A.] Westat Corp, Rockville, MD USA.
[Rose, Roderick A.] 525 West Redwood St, Baltimore, MD 21201 USA.
C3 University System of Maryland; University of Maryland College Park;
Westat
RP Rose, RA (corresponding author), 525 West Redwood St, Baltimore, MD 21201 USA.
EM rrose@ssw.umaryland.edu
CR Ahn H, 2018, RES SOCIAL WORK PRAC, V28, P952, DOI 10.1177/1049731516666328
ANDERSEN RM, 1995, J HEALTH SOC BEHAV, V36, P1, DOI 10.2307/2137284
Austin AE, 2019, CHILD ABUSE NEGLECT, V91, P78, DOI 10.1016/j.chiabu.2019.02.011
Bareinboim E, 2014, AAAI CONF ARTIF INTE, P2410
Cosgrove JA, 2024, J SOC SOC WORK RES, V15, P5, DOI 10.1086/719038
Elwert F, 2014, ANNU REV SOCIOL, V40, P31, DOI 10.1146/annurev-soc-071913-043455
Foster EM, 2010, DEV PSYCHOL, V46, P1454, DOI 10.1037/a0020204
Greenland S, 1999, EPIDEMIOLOGY, V10, P37, DOI 10.1097/00001648-199901000-00008
Lanier P, 2022, CHILD ADOLESC SOC WO, V39, P303, DOI 10.1007/s10560-021-00758-9
Lewis M. A., 2015, J APPL QUANTITATIVE, V10, P60
Morgan SL, 2007, ANAL METHOD SOC RES, P1, DOI 10.1017/CBO9780511804564
Pearl Judea, 2009, Causality: Models, reasoning, and inference, V2
Robst J, 2012, COMMUNITY MENT HLT J, V48, P284, DOI 10.1007/s10597-011-9438-1
Rose R. A., 2024, DAGS PRIMER RESOURCE
Shrier I, 2008, BMC MED RES METHODOL, V8, DOI 10.1186/1471-2288-8-70
Stone S, 2014, RES SOCIAL WORK PRAC, V24, P552, DOI 10.1177/1049731514541214
Textor J, 2011, EPIDEMIOLOGY, V22, P745, DOI 10.1097/EDE.0b013e318225c2be
NR 17
TC 0
Z9 0
U1 0
U2 0
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA
SN 2334-2315
EI 1948-822X
J9 J SOC SOC WORK RES
JI J. Soc. Soc. Work Res.
PD JUN 1
PY 2024
VL 15
IS 2
BP 391
EP 415
DI 10.1086/723606
EA JUN 2024
PG 25
WC Social Work
WE Social Science Citation Index (SSCI)
SC Social Work
GA XZ6L9
UT WOS:001243418600001
DA 2024-09-05
ER
PT J
AU Ezugwu, AE
Shukla, AK
Nath, R
Akinyelu, AA
Agushaka, JO
Chiroma, H
Muhuri, PK
AF Ezugwu, Absalom E.
Shukla, Amit K.
Nath, Rahul
Akinyelu, Andronicus A.
Agushaka, Jeffery O.
Chiroma, Haruna
Muhuri, Pranab K.
TI Metaheuristics: a comprehensive overview and classification along with
bibliometric analysis
SO ARTIFICIAL INTELLIGENCE REVIEW
LA English
DT Article
DE Metaheuristics; Bibliometric; Inspirational source; Classification;
Taxonomy; Application areas
ID HEURISTIC OPTIMIZATION ALGORITHM; NUMERICAL FUNCTION OPTIMIZATION;
SYMBIOTIC ORGANISMS SEARCH; NATURE-INSPIRED ALGORITHM; GLOBAL
OPTIMIZATION; SWARM-INTELLIGENCE; EVOLUTIONARY ALGORITHM; EFFICIENT
ALGORITHM; DESIGN; COLONY
AB Research in metaheuristics for global optimization problems are currently experiencing an overload of wide range of available metaheuristic-based solution approaches. Since the commencement of the first set of classical metaheuristic algorithms namely genetic, particle swarm optimization, ant colony optimization, simulated annealing and tabu search in the early 70s to late 90s, several new advancements have been recorded with an exponential growth in the novel proposals of new generation metaheuristic algorithms. Because these algorithms are neither entirely judged based on their performance values nor according to the useful insight they may provide, but rather the attention is given to the novelty of the processes they purportedly models, these area of study will continue to periodically see the arrival of several new similar techniques in the future. However, there is an obvious reason to keep track of the progressions of these algorithms by collating their general algorithmic profiles in terms of design inspirational source, classification based on swarm or evolutionary search concept, existing variation from the original design, and application areas. In this paper, we present a relatively new taxonomic classification list of both classical and new generation sets of metaheuristic algorithms available in the literature, with the aim of providing an easily accessible collection of popular optimization tools for the global optimization research community who are at the forefront in utilizing these tools for solving complex and difficult real-world problems. Furthermore, we also examined the bibliometric analysis of this field of metaheuristic for the last 30 years.
C1 [Ezugwu, Absalom E.; Agushaka, Jeffery O.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, King Edward Rd, ZA-3201 Pietermaritzburg, South Africa.
[Shukla, Amit K.; Nath, Rahul; Muhuri, Pranab K.] South Asian Univ, Dept Comp Sci, New Delhi 110021, India.
[Akinyelu, Andronicus A.] Univ Free State, Dept Comp Sci & Informat, ZA-9301 Bloemfontein, South Africa.
[Chiroma, Haruna] Natl Yunlin Univ Sci & Technol, Dept Comp Sci & Informat Engn, Yuanlin, Taiwan.
[Shukla, Amit K.] Univ Jyvaskyla, Fac Informat Technol, Box 35 Agora, Jyvaskyla 40014, Finland.
C3 University of Kwazulu Natal; South Asian University (SAU); University of
the Free State; National Yunlin University Science & Technology;
University of Jyvaskyla
RP Shukla, AK (corresponding author), South Asian Univ, Dept Comp Sci, New Delhi 110021, India.; Shukla, AK (corresponding author), Univ Jyvaskyla, Fac Informat Technol, Box 35 Agora, Jyvaskyla 40014, Finland.
EM amitkshukla@live.com
RI Shukla, Amit k./AAX-5624-2021; Ezugwu, Absalom El-Shamir/HTN-9866-2023;
Agushaka, Ovre Jeffrey/AEI-6796-2022; MUHURI, PRANAB K./F-4301-2015;
Haruna, Ph.D Chiroma/O-2934-2013; Ezugwu, Absalom
El-Shamir/AIE-3466-2022
OI Ezugwu, Absalom El-Shamir/0000-0002-3721-3400; Agushaka, Ovre
Jeffrey/0000-0001-8742-7522; MUHURI, PRANAB K./0000-0001-7122-7622;
Ezugwu, Absalom El-Shamir/0000-0002-3721-3400
CR Abbass HA, 2001, IEEE C EVOL COMPUTAT, P207, DOI 10.1109/CEC.2001.934391
Abdechiri M, 2013, APPL SOFT COMPUT, V13, P2932, DOI 10.1016/j.asoc.2012.03.068
Abedinia O, 2016, COMPLEXITY, V21, P97, DOI 10.1002/cplx.21634
Abedinpourshotorban H, 2016, SWARM EVOL COMPUT, V26, P8, DOI 10.1016/j.swevo.2015.07.002
Adham MT, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON EVOLVABLE SYSTEMS (ICES), P149, DOI 10.1109/ICES.2014.7008734
Ahmadi-Javid A, 2011, IEEE C EVOL COMPUTAT, P2586
Ahrari A, 2010, APPL SOFT COMPUT, V10, P1132, DOI 10.1016/j.asoc.2009.11.032
Al-Obaidi ATS, 2017, INT J PERCEPT COGN C, V3
Alatas B, 2011, EXPERT SYST APPL, V38, P13170, DOI 10.1016/j.eswa.2011.04.126
Alauddin M, 2016, 2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), P79, DOI 10.1109/ICEEOT.2016.7754783
Almonacid B, 2019, NAT COMPUT, V18, P351, DOI 10.1007/s11047-018-9675-0
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
Alsattar HA, 2020, ARTIF INTELL REV, V53, P2237, DOI 10.1007/s10462-019-09732-5
Amirbagheri K, 2019, CLEAN TECHNOL ENVIR, V21, P3, DOI 10.1007/s10098-018-1624-1
ANANDARAMAN C, 2012, JURNAL TEKNIK IND, V14, P1, DOI DOI 10.9744/JTI.14.1.1-12
Anita, 2019, SWARM EVOL COMPUT, V48, P93, DOI 10.1016/j.swevo.2019.03.013
[Anonymous], 2000, P GECCO00 LAS VEG NV
[Anonymous], 2017, TREE PHYSL OPTIMIZAT
Mora-Gutiérrez RA, 2014, ARTIF INTELL REV, V41, P301, DOI 10.1007/s10462-011-9309-8
Ardjmand E, 2012, LECT NOTES COMPUT SC, V7331, P233, DOI 10.1007/978-3-642-30976-2_28
Arnaout, 2014, WORM OPTIMIZATION NO, P2499
Arnold DV, 2002, IEEE T EVOLUT COMPUT, V6, P30, DOI [10.1109/4235.985690, 10.1023/A:1015059928466]
Arora S, 2019, SOFT COMPUT, V23, P715, DOI 10.1007/s00500-018-3102-4
Askari, 2012, INTELLIGENT GRAVITAT, P98
Askari Q, 2020, KNOWL-BASED SYST, V195, DOI 10.1016/j.knosys.2020.105709
Askarzadeh A, 2016, COMPUT STRUCT, V169, P1, DOI 10.1016/j.compstruc.2016.03.001
Askarzadeh A, 2014, COMMUN NONLINEAR SCI, V19, P1213, DOI 10.1016/j.cnsns.2013.08.027
Atashpaz-Gargari E, 2007, IEEE C EVOL COMPUTAT, P4661, DOI 10.1109/cec.2007.4425083
Bader J, 2011, EVOL COMPUT, V19, P45, DOI 10.1162/EVCO_a_00009
Bansal JC, 2014, MEMET COMPUT, V6, P31, DOI 10.1007/s12293-013-0128-0
BastosFilho, 2008, NOVEL SEARCH ALGORIT, P2646
Bayraktar Z, 2010, 2010 IEEE INT S ANTE
Beiranvand H, 2015, INT J COMPUT INTELL, V14, DOI 10.1142/S1469026815500170
Birbil SI, 2003, J GLOBAL OPTIM, V25, P263, DOI 10.1023/A:1022452626305
BISHOP JM, 1989, IEE CONF PUBL, P329
Biyanto TR, 2017, PROCEDIA COMPUT SCI, V124, P151, DOI 10.1016/j.procs.2017.12.141
Biyanto TR, 2016, LECT NOTES COMPUT SC, V9712, P39, DOI 10.1007/978-3-319-41000-5_4
Biyanto TR, 2017, RAIN WATER OPTIMIZAT
Bodaghi Mohammad., 2019, IRAN J COMPUTER SCI, V2, P23, DOI [DOI 10.1007/S42044-018-0025-2, 10.1007/s42044-018-0025-2]
Borji A, 2007, LECT NOTES ARTIF INT, V4827, P61
Bozorg-Haddad O, 2006, WATER RESOUR MANAG, V20, P661, DOI 10.1007/s11269-005-9001-3
Brabazon A, 2016, SOFT COMPUT, V20, P525, DOI 10.1007/s00500-014-1520-5
BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680
Brownlee J., 2011, Clever algorithms: nature-inspired programming recipes
Cai W, 2008, International Conference on Intelligent Computation Technology and Automation, Vol 1, Proceedings, P1194, DOI 10.1109/ICICTA.2008.416
Cai XJ, 2012, SENSOR LETT, V10, P1653, DOI 10.1166/sl.2012.2608
Canayaz M, 2016, APPL INTELL, V44, P362, DOI 10.1007/s10489-015-0706-6
Cao JL, 2012, LECT NOTES COMPUT SC, V7331, P29, DOI 10.1007/978-3-642-30976-2_4
Ceschia S, 2011, J SCHEDULING, V14, P601, DOI 10.1007/s10951-010-0213-x
Chen, 2010, DISCRETE DYN NAT SOC
Chen CC, 2015, IEEE SYS MAN CYBERN, P1595, DOI 10.1109/SMC.2015.282
Chen S, 2009, IEEE C EVOL COMPUTAT, P1745, DOI 10.1109/CEC.2009.4983152
Chen TG, 2009, INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, P864, DOI 10.1109/CSO.2009.183
Cheng L, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8030329
Cheng MY, 2014, COMPUT STRUCT, V139, P98, DOI 10.1016/j.compstruc.2014.03.007
Cheraghalipour A, 2018, ENG APPL ARTIF INTEL, V72, P393, DOI 10.1016/j.engappai.2018.04.021
Chu SC, 2006, LECT NOTES ARTIF INT, V4099, P854
Chuang CL, 2007, IEEE C EVOL COMPUTAT, P3157, DOI 10.1109/CEC.2007.4424875
Civicioglu P, 2013, APPL MATH COMPUT, V219, P8121, DOI 10.1016/j.amc.2013.02.017
Civicioglu P, 2013, INFORM SCIENCES, V229, P58, DOI 10.1016/j.ins.2012.11.013
Civicioglu P, 2012, COMPUT GEOSCI-UK, V46, P229, DOI 10.1016/j.cageo.2011.12.011
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
COLORNI A, 1992, FROM ANIM ANIMAT, P134
Comellas F, 2009, WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), P811
Cortés P, 2008, COMPUT OPER RES, V35, P2840, DOI 10.1016/j.cor.2006.12.018
Covic N, 2020, IEEE ACCESS, V8, P53883, DOI 10.1109/ACCESS.2020.2981196
Cuevas E, 2015, INT J BIO-INSPIR COM, V7, P402, DOI 10.1504/IJBIC.2015.073178
Cuevas E, 2012, DISCRETE DYN NAT SOC, V2012, DOI 10.1155/2012/638275
Cuevas E, 2013, EXPERT SYST APPL, V40, P6374, DOI 10.1016/j.eswa.2013.05.041
Cuevas E, 2012, INFORM SCIENCES, V182, P40, DOI 10.1016/j.ins.2010.12.024
Cui XH, 2006, J SYST ARCHITECT, V52, P505, DOI 10.1016/j.sysarc.2006.02.003
Cui ZH, 2013, ELSEV INSIGHT, P351, DOI 10.1016/B978-0-12-405163-8.00016-8
Dai CH, 2006, 2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, P225, DOI 10.1109/ICCIAS.2006.294126
Dasgupta D, 2003, IEEE C EVOL COMPUTAT, P123, DOI 10.1109/CEC.2003.1299565
Daskin A, 2011, MOL PHYS, V109, P761, DOI 10.1080/00268976.2011.552444
de Melo VV, 2014, GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P895, DOI 10.1145/2576768.2598264
Deb K, 2002, IEEE T EVOLUT COMPUT, V6, P182, DOI 10.1109/4235.996017
Deb S, 2015, 2015 TENTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT (ICDIM), P249, DOI 10.1109/ICDIM.2015.7381893
Del Ser J., 2019, Foreword: New theoretical insights and practical applications of bio-inspired computation approaches
Dhiman G, 2018, KNOWL-BASED SYST, V159, P20, DOI 10.1016/j.knosys.2018.06.001
Dhiman G, 2017, ADV ENG SOFTW, V114, P48, DOI 10.1016/j.advengsoft.2017.05.014
Dogan B, 2015, INFORM SCIENCES, V293, P125, DOI 10.1016/j.ins.2014.08.053
Dokeroglu T, 2019, COMPUT IND ENG, V137, DOI 10.1016/j.cie.2019.106040
Dorigo M, 2006, IEEE COMPUT INTELL M, V1, P28, DOI 10.1109/MCI.2006.329691
Du HF, 2006, LECT NOTES COMPUT SC, V4222, P264
Duan H., 2014, International journal of intelligent computing and cybernetics
DUAN QY, 1993, J OPTIMIZ THEORY APP, V76, P501, DOI 10.1007/BF00939380
DUECK G, 1993, J COMPUT PHYS, V104, P86, DOI 10.1006/jcph.1993.1010
Duman E, 2012, INFORM SCIENCES, V217, P65, DOI 10.1016/j.ins.2012.06.032
Eberhart R, 1995, P 6 INT S MICR HUM S, P39, DOI DOI 10.1109/MHS.1995.494215
Ebrahimi A, 2016, J NAT GAS SCI ENG, V29, P211, DOI 10.1016/j.jngse.2016.01.001
Eesa AS, 2015, EXPERT SYST APPL, V42, P2670, DOI 10.1016/j.eswa.2014.11.009
Eita MA, 2010, RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXVI, P195, DOI 10.1007/978-1-84882-983-1_14
El-Dosuky, 2012, ARXIV PREPRINT ARXIV
Erol OK, 2006, ADV ENG SOFTW, V37, P106, DOI 10.1016/j.advengsoft.2005.04.005
Eskandar H, 2012, COMPUT STRUCT, V110, P151, DOI 10.1016/j.compstruc.2012.07.010
Eusuff MM, 2003, J WATER RES PLAN MAN, V129, P210, DOI 10.1061/(ASCE)0733-9496(2003)129:3(210)
Ezugwu AE, 2020, NEURAL COMPUT APPL, V32, P6207, DOI 10.1007/s00521-019-04132-w
Ezugwu AE, 2019, EXPERT SYST APPL, V119, P184, DOI 10.1016/j.eswa.2018.10.045
Farasat A, 2010, APPL SOFT COMPUT, V10, P1284, DOI 10.1016/j.asoc.2010.05.011
Fard AF, 2016, IEEE INT C IND ENG, P33
Felipe D, 2014, 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P873, DOI 10.1109/CEC.2014.6900556
Feng X, 2016, COMPUT INTELL-US, V32, P284, DOI 10.1111/coin.12053
Ferreira C., 2001, Complex Systems, V13, P87
Findik O, 2015, TURK J ELECTR ENG CO, V23, P2225, DOI 10.3906/elk-1307-123
Fister, 2013, ARXIV PREPRINT ARXIV
Formato RA, 2007, PROG ELECTROMAGN RES, V77, P425, DOI 10.2528/PIER07082403
Franceschini F, 2010, EUR J OPER RES, V203, P494, DOI 10.1016/j.ejor.2009.08.001
Gandomi AH, 2014, ISA T, V53, P1168, DOI 10.1016/j.isatra.2014.03.018
Gandomi AH, 2012, COMMUN NONLINEAR SCI, V17, P4831, DOI 10.1016/j.cnsns.2012.05.010
Gao, 2018, NOVEL METAHEURISTIC
Geem ZW, 2001, SIMULATION, V76, P60, DOI 10.1177/003754970107600201
Ghaemi M, 2014, EXPERT SYST APPL, V41, P6676, DOI 10.1016/j.eswa.2014.05.009
Gheraibia Y., 2013, RECENT TRENDS APPL A, P222, DOI DOI 10.1007/978-3-642-38577-3_23
Ghorbani N, 2014, APPL SOFT COMPUT, V19, P177, DOI 10.1016/j.asoc.2014.02.006
GLOVER F, 1986, COMPUT OPER RES, V13, P533, DOI 10.1016/0305-0548(86)90048-1
Glover F., 1977, DECIS SCI, V8, P156, DOI [DOI 10.1111/J.1540-5915.1977.TB01074.X, 10.1111/j.1540-5915.1977.tb01074.x]
Greensmith J, 2005, LECT NOTES COMPUT SC, V3627, P153
Hajiaghaei-Keshteli M, 2014, APPL SOFT COMPUT, V25, P184, DOI 10.1016/j.asoc.2014.09.034
Hansen N, 2003, EVOL COMPUT, V11, P1, DOI 10.1162/106365603321828970
Harifi S, 2019, EVOL INTELL, V12, P211, DOI 10.1007/s12065-019-00212-x
Hatamlou A, 2014, PROG ARTIF INTELL, V2, P167, DOI 10.1007/s13748-014-0046-5
Hatamlou A, 2013, INFORM SCIENCES, V222, P175, DOI 10.1016/j.ins.2012.08.023
Havens T C., 2008, Roach Infestation Optimization, P1
He S, 2006, IEEE C EVOL COMPUTAT, P1257
He XX, 2015, 2015 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL NETWORKS AND INTELLIGENT SYSTEMS (INISCOM), P157, DOI 10.4108/icst.iniscom.2015.258990
Hedayatzadeh Ramin, 2010, 2010 18th Iranian Conference on Electrical Engineering (ICEE), P553, DOI 10.1109/IRANIANCEE.2010.5507009
Heidari AA, 2019, FUTURE GENER COMP SY, V97, P849, DOI 10.1016/j.future.2019.02.028
Hernández H, 2012, SWARM INTELL-US, V6, P117, DOI 10.1007/s11721-012-0067-2
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Nguyen HT, 2012, INT C PATT RECOG, P987
Holland J.H., 1962, Journal of the ACM, V9, P297
Holland J.H., 1978, SIGART Bull, P313, DOI [DOI 10.1016/B978-0-12-737550-2.50020-8, DOI 10.1145/1045343.1045373]
Hosseini, 2017, J APPL COMPUT MATH, V6, P2
Hsiao YT, 2005, IEEE SYS MAN CYBERN, P2323
Huan TT, 2017, NEURAL COMPUT APPL, V28, pS845, DOI 10.1007/s00521-016-2379-4
Huang GQ, 2016, SWARM EVOL COMPUT, V27, P31, DOI 10.1016/j.swevo.2015.09.007
IBRAHIM MK, 2016, IRAQI J ELECT ELECT, V12, P167, DOI DOI 10.37917/IJEEE.12.2.7
IORDACHE S, 2010, P 12 ANN C GEN EV CO, P225, DOI DOI 10.1145/1830483.1830526
Irizarry R, 2004, EVOL COMPUT, V12, P435, DOI 10.1162/1063656043138897
Ishibuchi H, 2015, GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P695, DOI 10.1145/2739480.2754792
Jahani E, 2018, APPL SOFT COMPUT, V62, P987, DOI 10.1016/j.asoc.2017.09.035
Jain M, 2019, SWARM EVOL COMPUT, V44, P148, DOI 10.1016/j.swevo.2018.02.013
Janmaijaya M, 2018, PUBLICATIONS-BASEL, V6, DOI 10.3390/publications6030032
Javidy B, 2015, APPL SOFT COMPUT, V32, P72, DOI 10.1016/j.asoc.2015.03.035
Jin, 2010, NATURE INSPIRED EVOL, P1643
Jung SH, 2003, ELECTRON LETT, V39, P575, DOI 10.1049/el:20030383
Kaboli SHA, 2017, J COMPUT SCI-NETH, V19, P31, DOI 10.1016/j.jocs.2016.12.010
Kadioglu S, 2009, LECT NOTES COMPUT SC, V5732, P486, DOI 10.1007/978-3-642-04244-7_39
Kallioras NA, 2018, ADV ENG SOFTW, V121, P147, DOI 10.1016/j.advengsoft.2018.04.007
Karaboga D., 2005, An Idea Based On Honey Bee Swarm for Numerical Optimization, P1, DOI DOI 10.4236/JSS.2015.36009
Karaboga D, 2007, J GLOBAL OPTIM, V39, P459, DOI 10.1007/s10898-007-9149-x
Karci A, 2006, LECT NOTES COMPUT SC, V4224, P386
Kashan AH, 2009, 2009 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION, P43, DOI 10.1109/SoCPaR.2009.21
Kashan AH, 2015, COMPUT OPER RES, V55, P99, DOI 10.1016/j.cor.2014.10.011
Kashan AH, 2014, APPL SOFT COMPUT, V16, P171, DOI 10.1016/j.asoc.2013.12.005
Kaveh A, 2020, STRUCTURES, V25, P520, DOI 10.1016/j.istruc.2020.03.033
Kaveh A, 2017, ADV ENG SOFTW, V110, P69, DOI 10.1016/j.advengsoft.2017.03.014
Kaveh A, 2017, SCI IRAN, V24, P551, DOI 10.24200/sci.2017.2417
Kaveh A, 2016, COMPUT STRUCT, V167, P69, DOI 10.1016/j.compstruc.2016.01.008
Kaveh A, 2014, COMPUT STRUCT, V139, P18, DOI 10.1016/j.compstruc.2014.04.005
Kaveh A, 2013, ADV ENG SOFTW, V59, P53, DOI 10.1016/j.advengsoft.2013.03.004
Kaveh A, 2012, COMPUT STRUCT, V112, P283, DOI 10.1016/j.compstruc.2012.09.003
Kaveh A, 2010, ACTA MECH, V213, P267, DOI 10.1007/s00707-009-0270-4
Kaveh A., 2016, Int. J. Optim. Civ. Eng, V6, P469
Kaveh A, 2020, ENG COMPUTATION, V37, P2357, DOI 10.1108/EC-10-2019-0481
Kazikova, 2017, PROPOSAL NEW SWARM O, P146
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
Kiran MS, 2015, EXPERT SYST APPL, V42, P6686, DOI 10.1016/j.eswa.2015.04.055
KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671
Klein, 2018, CHEETAH BASED OPTIMI
Klein CE, 2018, MEERKATS INSPIRED AL
Koohi SZ, 2019, IEEE ACCESS, V7, P5383, DOI 10.1109/ACCESS.2018.2882568
Krishnanand K. N., 2009, Swarm Intelligence, V3, P87, DOI 10.1007/s11721-008-0021-5
Kumar A, 2017, IEEE C EVOL COMPUTAT, P1835, DOI 10.1109/CEC.2017.7969524
Labbi Y, 2016, INT J ELEC POWER, V79, P298, DOI 10.1016/j.ijepes.2016.01.028
Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027
Lam AYS, 2010, IEEE T EVOLUT COMPUT, V14, P381, DOI 10.1109/TEVC.2009.2033580
Li MD, 2016, ADV ENG SOFTW, V92, P65, DOI 10.1016/j.advengsoft.2015.11.004
Li MD, 2016, APPL SOFT COMPUT, V39, P199, DOI 10.1016/j.asoc.2015.11.015
Li XT, 2014, NEURAL COMPUT APPL, V24, P1867, DOI 10.1007/s00521-013-1433-8
[李晓磊 Li Xiaolei], 2002, [系统工程理论与实践, Systems Engineering-Theory & Practice], V22, P32
Liang YC, 2016, ENG OPTIMIZ, V48, P73, DOI 10.1080/0305215X.2014.994868
Liu CG, 2011, CHINESE J ELECTRON, V20, P212
Luo FJ, 2016, IEEE C EVOL COMPUTAT, P94, DOI 10.1109/CEC.2016.7743783
Mahmoodabadi M. J., 2018, Future Computing and Informatics Journal, V3, P191, DOI 10.1016/j.fcij.2018.03.002
Mandal S, 2018, SADHANA-ACAD P ENG S, V43, DOI 10.1007/s12046-017-0780-z
Mehrabian AR, 2006, ECOL INFORM, V1, P355, DOI 10.1016/j.ecoinf.2006.07.003
Melvix JSML, 2014, IEEE INT ADV COMPUT, P1157, DOI 10.1109/IAdCC.2014.6779490
Meng XB, 2016, J EXP THEOR ARTIF IN, V28, P673, DOI 10.1080/0952813X.2015.1042530
Meng XB, 2014, LECT NOTES COMPUT SC, V8794, P86, DOI 10.1007/978-3-319-11857-4_10
Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006
Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859
Merrikh-Bayat, 2014, ARXIV PREPRINT ARXIV
Merrikh-Bayat F, 2015, APPL SOFT COMPUT, V33, P292, DOI 10.1016/j.asoc.2015.04.048
Meyers R.A., 2009, Encyclopedia of Complexity and Systems Science
Milani A, 2012, AI COMMUN, V25, P157, DOI 10.3233/AIC-2012-0526
Min H, 2011, DESIGN ANAL GROUP ES
Minhas FUA, 2011, APPL SOFT COMPUT, V11, P4614, DOI 10.1016/j.asoc.2011.07.020
Mirjalili S, 2017, ADV ENG SOFTW, V114, P163, DOI 10.1016/j.advengsoft.2017.07.002
Mirjalili S, 2016, ADV ENG SOFTW, V95, P51, DOI 10.1016/j.advengsoft.2016.01.008
Mirjalili S, 2016, KNOWL-BASED SYST, V96, P120, DOI 10.1016/j.knosys.2015.12.022
Mirjalili S, 2015, KNOWL-BASED SYST, V89, P228, DOI 10.1016/j.knosys.2015.07.006
Mirjalili S, 2016, NEURAL COMPUT APPL, V27, P495, DOI 10.1007/s00521-015-1870-7
Mirjalili S, 2015, ADV ENG SOFTW, V83, P80, DOI 10.1016/j.advengsoft.2015.01.010
Mirjalili S, 2014, ADV ENG SOFTW, V69, P46, DOI 10.1016/j.advengsoft.2013.12.007
Mitchell M., 1998, An Introduction to Genetic Algorithms
Mladenovic N, 1997, COMPUT OPER RES, V24, P1097, DOI 10.1016/S0305-0548(97)00031-2
Mo HW, 2013, 2013 IEEE SYMPOSIUM ON SWARM INTELLIGENCE (SIS), P240, DOI 10.1109/SIS.2013.6615185
Moein S, 2014, INFORM SCIENCES, V275, P127, DOI 10.1016/j.ins.2014.02.026
Moghdani R, 2018, APPL SOFT COMPUT, V64, P161, DOI 10.1016/j.asoc.2017.11.043
Monismith DR, 2008, 2008 IEEE SWARM INTELLIGENCE SYMPOSIUM, P130
Montiel O, 2007, INFORM SCIENCES, V177, P2075, DOI 10.1016/j.ins.2006.09.012
Moosavi SHS, 2017, ENG APPL ARTIF INTEL, V60, P1, DOI 10.1016/j.engappai.2017.01.006
Mozaffari A, 2012, INT J BIO-INSPIR COM, V4, P286, DOI 10.1504/IJBIC.2012.049889
Mucherino A, 2007, AIP CONF PROC, V953, P162, DOI 10.1063/1.2817338
Muhuri PK, 2019, ENG APPL ARTIF INTEL, V78, P218, DOI 10.1016/j.engappai.2018.11.007
Muhuri PK, 2018, APPL SOFT COMPUT, V69, P381, DOI 10.1016/j.asoc.2018.03.041
Müller SD, 2002, IEEE T EVOLUT COMPUT, V6, P16, DOI 10.1109/4235.985689
Murase H, 1999, CONTROL APPLICATIONS & ERGONOMICS IN AGRICULTURE, P19
Murata T, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, P289, DOI 10.1109/ICEC.1995.489161
Nara K., 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028), P503, DOI 10.1109/ICSMC.1999.816603
Neshat M, 2013, NEURAL COMPUT APPL, V23, P429, DOI 10.1007/s00521-012-0939-9
Niu B, 2012, DISCRETE DYN NAT SOC, V2012, DOI 10.1155/2012/698057
Numaoka, 1996, BACTERIAL EVOLUTION, P139
Nyberg K., 2012, Flow analysis of Apache wingsuit
Odili JB, 2015, PROCEDIA COMPUT SCI, V76, P443, DOI 10.1016/j.procs.2015.12.291
Oftadeh, 2009, 2009 5 INT C SOFT CO, P1, DOI DOI 10.1109/ICSCCW.2009.5379451
Omidvar R, 2015, 2015 FOURTEENTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (MICAI), P101, DOI 10.1109/MICAI.2015.22
Osaba E, 2014, APPL INTELL, V41, P145, DOI 10.1007/s10489-013-0512-y
Pan WT, 2012, KNOWL-BASED SYST, V26, P69, DOI 10.1016/j.knosys.2011.07.001
Parpinelli R. S., 2011, 2011 Third World Congress on Nature and Biologically Inspired Computing (NaBIC 2011), P466, DOI 10.1109/NaBIC.2011.6089631
Passino KM, 2002, IEEE CONTR SYST MAG, V22, P52, DOI 10.1109/MCS.2002.1004010
Patel VK, 2015, INFORM SCIENCES, V324, P217, DOI 10.1016/j.ins.2015.06.044
Pattnaik SS, 2013, APPL SOFT COMPUT, V13, P628, DOI 10.1016/j.asoc.2012.07.010
Pedroso JP, 2007, LECT NOTES COMPUT SC, V4638, P217
Pham D. T., 2005, BEES ALGORITHM, P1
Pinto P, 2005, SPRING COMP SCI, P264, DOI 10.1007/3-211-27389-1_63
Premaratne U, 2009, 2009 INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, P279, DOI 10.1109/ICIINFS.2009.5429852
PRITCHARD A, 1969, J DOC, V25, P348
Punnathanam V, 2016, ENG APPL ARTIF INTEL, V54, P62, DOI 10.1016/j.engappai.2016.04.004
Puris A, 2012, SOFT COMPUT, V16, P511, DOI 10.1007/s00500-011-0753-9
Purnomo HD, 2013, META-HEURISTICS OPTIMIZATION ALGORITHMS IN ENGINEERING, BUSINESS, ECONOMICS, AND FINANCE, P386, DOI 10.4018/978-1-4666-2086-5.ch013
Quijano Nicanor, 2007, 2007 American Control Conference, P3383, DOI 10.1109/ACC.2007.4282167
Rabanal P, 2007, LECT NOTES COMPUT SC, V4618, P163
Radcliffe N. J., 1994, Evolutionary Computing. AISB Workshop. Selected Papers, P1
Rahmani R, 2014, APPL MATH COMPUT, V248, P287, DOI 10.1016/j.amc.2014.09.102
Rajabioun R, 2011, APPL SOFT COMPUT, V11, P5508, DOI 10.1016/j.asoc.2011.05.008
Rajakumar BR, 2012, PROC TECH, V1, P126, DOI 10.1016/j.protcy.2012.10.016
Rajpurohit Jitendra, 2017, International Journal of Computer Information Systems and Industrial Management Applications, V9, P181
Rao RV, 2011, COMPUT AIDED DESIGN, V43, P303, DOI 10.1016/j.cad.2010.12.015
Raouf Osama Abdel, 2017, International Journal of Operational Research, V28, P143
Rashedi E, 2009, INFORM SCIENCES, V179, P2232, DOI 10.1016/j.ins.2009.03.004
Ray T, 2003, IEEE T EVOLUT COMPUT, V7, P386, DOI 10.1109/TEVC.2003.814902
Razmjooy N, 2016, J CONTROL AUTOM ELEC, V27, P419, DOI 10.1007/s40313-016-0242-6
Reynolds R. G., 1994, Third Annual Conference on Evolutionary Programming, P131
Rosenberg L, 2016, AAAI CONF ARTIF INTE, P4381
Rui Tang, 2012, 2012 Seventh International Conference on Digital Information Management (ICDIM 2012), P165, DOI 10.1109/ICDIM.2012.6360147
Saadi Y, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0144371
Sacco WF, 2005, NEW STOCHASTIC OPTIM
Sadollah A, 2012, COMPUT STRUCT, V102, P49, DOI 10.1016/j.compstruc.2012.03.013
Salcedo-Sanz S, 2014, ScientificWorldJournal, V2014, P739768, DOI 10.1155/2014/739768
Salgotra R, 2019, NEURAL COMPUT APPL, V31, P8837, DOI 10.1007/s00521-019-04464-7
Salhi, 2011, NATURE INSPIRED OPTI
Salih SQ, 2020, NEURAL COMPUT APPL, V32, P10359, DOI 10.1007/s00521-019-04575-1
Salimi H, 2015, KNOWL-BASED SYST, V75, P1, DOI 10.1016/j.knosys.2014.07.025
Saremi S, 2017, ADV ENG SOFTW, V105, P30, DOI 10.1016/j.advengsoft.2017.01.004
Savsani P, 2016, APPL MATH MODEL, V40, P3951, DOI 10.1016/j.apm.2015.10.040
Shah-Hosseini H, 2011, INT J COMPUT SCI ENG, V6, P132, DOI 10.1504/IJCSE.2011.041221
Shah-Hosseini H, 2009, INT J BIO-INSPIR COM, V1, P71, DOI 10.1504/IJBIC.2009.022775
Shah-Hosseini H, 2007, IEEE C EVOL COMPUTAT, P3226
Shareef H, 2015, APPL SOFT COMPUT, V36, P315, DOI 10.1016/j.asoc.2015.07.028
Sharma A., 2010, Proceedings 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI 2010), P281, DOI 10.1109/CINTI.2010.5672231
Shehadeh HA, 2018, PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND BROADBAND NETWORKING (ICCBN 2018), P53, DOI 10.1145/3193092.3193100
Shehadeh HA, 2018, ENERGIES, V11, DOI 10.3390/en11010097
Shen JH, 2009, INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, P918, DOI 10.1109/CSO.2009.485
Shi YH, 2015, ADV COMPU INTELL ROB, P1, DOI 10.4018/978-1-4666-6328-2.ch001
Shi YH, 2011, LECT NOTES COMPUT SC, V6728, P303, DOI 10.1007/978-3-642-21515-5_36
Shukla Amit K., 2018, International Journal of Embedded and Real-Time Communication Systems, V9, P66, DOI 10.4018/IJERTCS.2018010104
Shukla AK, 2020, IEEE COMPUT INTELL M, V15, P89, DOI 10.1109/MCI.2019.2954669
Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010
Simon D, 2008, IEEE T EVOLUT COMPUT, V12, P702, DOI 10.1109/TEVC.2008.919004
Singh PR, 2019, APPL SOFT COMPUT, V84, DOI 10.1016/j.asoc.2019.105723
Sörensen K, 2015, INT T OPER RES, V22, P3, DOI 10.1111/itor.12001
Storn R, 1997, J GLOBAL OPTIM, V11, P341, DOI 10.1023/A:1008202821328
Su MC, 2009, PATTERN RECOGN, V42, P2764, DOI 10.1016/j.patcog.2009.03.020
Su SB, 2007, I C WIREL COMM NETW, P6421
Subashini P, 2017, ADV INTELL SYST, V517, P285, DOI 10.1007/978-981-10-3174-8_25
SUBRAMANIAN C, 2013, INT J SOFT COMPUT, V8, P163
Sun YA, 2019, IEEE T EVOLUT COMPUT, V23, P173, DOI 10.1109/TEVC.2018.2791283
SUR C, 2013, 9 INT C COMP INF TEC, P227, DOI [DOI 10.1007/978-3-642-37371-826, DOI 10.1007/978-3-642-37371-8_26]
Taherdangkoo Mohammad, 2011, Bio-Inspired Computing and Applications. 7th International Conference on Intelligent Computing, ICIC 2011.Revised Selected Papers, P394, DOI 10.1007/978-3-642-24553-4_52
Taherdangkoo M, 2013, SWARM EVOL COMPUT, V10, P1, DOI 10.1016/j.swevo.2013.01.001
Taillard ÉD, 2002, OPERAT RES COMP SCI, V15, P613
Tamura K, 2011, J ADV COMPUT INTELL, V15, P1116, DOI 10.20965/jaciii.2011.p1116
Tan Y, 2010, LECT NOTES COMPUT SC, V6145, P355
Tang DY, 2015, APPL SOFT COMPUT, V36, P670, DOI 10.1016/j.asoc.2015.07.045
Tang WJ, 2007, IEEE C EVOL COMPUTAT, P1207, DOI 10.1109/CEC.2007.4424607
Tanggong Chen, 2012, Journal of Software, V7, P651, DOI 10.4304/jsw.7.3.651-656
Tayarani MHN, 2008, IEEE C EVOL COMPUTAT, P2659, DOI 10.1109/CEC.2008.4631155
Tilahun SL, 2015, INT J INF TECH DECIS, V14, P1331, DOI 10.1142/S021962201450031X
Torres-Jimenez J, 2014, APPL METAHEURISTICS
Trianni A, 2018, ENERG EFFIC, V11, P1917, DOI 10.1007/s12053-018-9762-1
Tzanetos A, 2017, COMM COM INF SC, V744, P417, DOI 10.1007/978-3-319-65172-9_35
Uymaz SA, 2015, APPL SOFT COMPUT, V31, P153, DOI 10.1016/j.asoc.2015.03.003
Wang, 2013, SCI WORLD J
Wang GG, 2019, NEURAL COMPUT APPL, V31, P1995, DOI 10.1007/s00521-015-1923-y
Wang GG, 2018, INT J BIO-INSPIR COM, V12, P1, DOI 10.1504/IJBIC.2015.10004283
Wang G, 2016, AEROSP CONF PROC, DOI 10.1109/ICSSSM.2016.7538573
Wedyan A, 2017, J OPTIM, V2017, DOI 10.1155/2017/3828420
Weise T, 2009, GLOBAL OPTIMIZATION
Wolpert D. H., 1997, IEEE Transactions on Evolutionary Computation, V1, P67, DOI 10.1109/4235.585893
Xavier AE, 2016, J HEURISTICS, V22, P649, DOI 10.1007/s10732-014-9268-8
Xiaoming Zhang, 2010, Proceedings 2010 IEEE Youth Conference on Information, Computing and Telecommunications (YC-ICT 2010), P271, DOI 10.1109/YCICT.2010.5713097
Xie LP, 2009, WOR CONG NAT BIOL, P1320
Xie XF, 2002, 2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, P779, DOI 10.1109/ICMLC.2002.1174487
Xin-She Yang, 2012, Unconventional Computation and Natural Computation. Proceedings of the 11th International Conference, UCNC 2012, P240, DOI 10.1007/978-3-642-32894-7_27
Xing B., 2014, Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms, V62, DOI DOI 10.1007/978-3-319-03404-1
Xu YC, 2010, LECT NOTES COMPUT SC, V6466, P583, DOI 10.1007/978-3-642-17563-3_68
Yampolskiy RV, 2011, INT J BIO-INSPIR COM, V3, P358, DOI 10.1504/IJBIC.2011.043624
Yan GW, 2013, INT J COMPUT INTELL, V12, DOI 10.1142/S1469026813500028
Yang, 2018, ARXIV PREPRINT ARXIV
Yang FC, 2007, J IND PROD ENG, V24, P475, DOI 10.1080/10170660709509062
Yang SQ, 2009, PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL I, P124, DOI 10.1109/GCIS.2009.464
Yang X.-S., 2010, Nature-inspired Metaheuristic Algorithms
Yang XS, 2018, STUD COMPUT INTELL, V744, P1, DOI 10.1007/978-3-319-67669-2_1
Yang XS, 2009, WOR CONG NAT BIOL, P210, DOI 10.1109/nabic.2009.5393690
Yang XS, 2010, STUD COMPUT INTELL, V284, P101
Yang XS, 2010, STUD COMPUT INTELL, V284, P65, DOI 10.1007/978-3-642-12538-6_6
Yang XS, 2009, LECT NOTES COMPUT SC, V5792, P169, DOI 10.1007/978-3-642-04944-6_14
Yazdani M, 2016, J COMPUT DES ENG, V3, P24, DOI 10.1016/j.jcde.2015.06.003
Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732
Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031
Yu DJ, 2015, APPL SOFT COMPUT, V32, P189, DOI 10.1016/j.asoc.2015.03.027
Yuan Y, 2014, GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P661, DOI 10.1145/2576768.2598342
Zavadskas EK, 2014, ARCH CIV MECH ENG, V14, P519, DOI 10.1016/j.acme.2014.05.008
Zelinka I, 2004, STUD FUZZ SOFT COMP, V141, P167
Zhang JH, 2018, APPL MATH MODEL, V63, P464, DOI 10.1016/j.apm.2018.06.036
Zhang LMY, 2009, 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, P318, DOI 10.1109/ICICISYS.2009.5357838
Zhang QF, 2007, IEEE T EVOLUT COMPUT, V11, P712, DOI 10.1109/TEVC.2007.892759
Zhang QY, 2017, NEUROCOMPUTING, V221, P123, DOI 10.1016/j.neucom.2016.09.068
Zhang XX, 2008, 2008 THIRD INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION AND RESTRUCTURING AND POWER TECHNOLOGIES, VOLS 1-6, P2856
Zhao HC, 2010, NOTICE RETRACTION CO, V6, pV6
Zhao J, 2020, NEURAL COMPUT APPL, V32, P9777, DOI 10.1007/s00521-019-04510-4
Zheng YJ, 2015, COMPUT OPER RES, V55, P1, DOI 10.1016/j.cor.2014.10.008
Zheng YJ, 2014, COMPUT OPER RES, V50, P115, DOI 10.1016/j.cor.2014.04.013
Zhu GY, 2017, APPL SOFT COMPUT, V51, P294, DOI 10.1016/j.asoc.2016.11.047
Zitzler E., 2001, object Object, DOI [10.3929/ethz-a-004284029, DOI 10.3929/ETHZ-A-004284029]
Zongyuan, 2003, J S CHINA U TECHNOLO, V3
Zungeru AM, 2012, J NETW COMPUT APPL, V35, P1901, DOI 10.1016/j.jnca.2012.07.014
NR 350
TC 118
Z9 122
U1 11
U2 62
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0269-2821
EI 1573-7462
J9 ARTIF INTELL REV
JI Artif. Intell. Rev.
PD AUG
PY 2021
VL 54
IS 6
BP 4237
EP 4316
DI 10.1007/s10462-020-09952-0
EA MAR 2021
PG 80
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA TS9CN
UT WOS:000629094800001
DA 2024-09-05
ER
PT J
AU Vartiainen, H
Vuojärvi, H
Saramäki, K
Eriksson, M
Ratinen, I
Torssonen, P
Vanninen, P
Pöllänen, S
AF Vartiainen, Henriikka
Vuojarvi, Hanna
Saramaki, Kaija
Eriksson, Miikka
Ratinen, Ilkka
Torssonen, Piritta
Vanninen, Petteri
Pollanen, Sinikka
TI Cross-boundary collaboration and knowledge creation in an online higher
education course
SO BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY
LA English
DT Article
DE cross-boundary collaboration; design-based research; higher education;
knowledge creation; online learning; pedagogical development
AB This study investigated an international, inter-university and multidisciplinary online course with the aim of helping higher education students develop competencies for solving complex problems in collaboration with their peers and stakeholders. The course design was informed by the knowledge creation framework and ideas about cross-boundary collaboration. We attempted to enrich perspectives on knowledge creation by investigating how higher education students (N = 42) from different fields of study and from 17 different nationalities perceived, built and regulated cross-boundary collaboration in the pursuit of real-life problems presented by companies or non-governmental organisations. Drawing on data from 11 in-depth group interviews and team reports of students who had completed this course, we showed the kinds of activities the students considered relevant for cross-boundary collaboration and knowledge creation online. Given this extended context for knowledge creation, the study contributes to the pedagogical development of online learning in higher education.
C1 [Vartiainen, Henriikka; Eriksson, Miikka; Pollanen, Sinikka] Univ Eastern Finland UEF, Sch Appl Educ Sci & Teacher Educ, POB 111, FI-80101 Joensuu, Finland.
[Vuojarvi, Hanna; Ratinen, Ilkka] Univ Lapland, Fac Educ, Rovaniemi, Finland.
[Saramaki, Kaija] Karelia Univ Appl Sci, Energy & Environm Technol, Joensuu, Finland.
[Torssonen, Piritta] Univ Eastern Finland, Sch Forest Sci, Joensuu, Finland.
[Vanninen, Petteri] Nat Resources Inst Finland Savonlinna, Savonlinna, Finland.
C3 University of Eastern Finland; University of Lapland; Karelia University
of Applied Sciences; University of Eastern Finland; Natural Resources
Institute Finland (Luke)
RP Vartiainen, H (corresponding author), Univ Eastern Finland UEF, Sch Appl Educ Sci & Teacher Educ, POB 111, FI-80101 Joensuu, Finland.
EM henriikka.vartiainen@uef.fi
OI Ratinen, Ilkka/0000-0001-7977-062X; Pollanen,
Sinikka/0000-0002-0570-6032
FU Ministry of Education and Culture in Finland [2018--20];
[OKM/262/523/2017]
FX The study presented here is a part of the research activities of the
DigiCampus project (2018--20), which is funded by the Ministry of
Education and Culture in Finland (Grant no. OKM/262/523/2017)
CR Anderson T, 2012, EDUC RESEARCHER, V41, P16, DOI 10.3102/0013189X11428813
[Anonymous], 2003, Educational Researcher, DOI DOI 10.3102/0013189X032001005
[Anonymous], 2007, Educause Learning Initiative: Advancing Learning Through IT Innovation
BARRIBALL KL, 1994, J ADV NURS, V19, P328
Bereiter C., 2002, ED MIND KNOWLEDGE AG
Bielaczyc K, 2013, J LEARN SCI, V22, P258, DOI 10.1080/10508406.2012.691925
Binkley M., 2010, Assessment and Teaching of 21st Century Skills Project Draft White Papers
Damsa C, 2019, BRIT J EDUC TECHNOL, V50, P2075, DOI 10.1111/bjet.12855
Damsa CI, 2010, J LEARN SCI, V19, P143, DOI 10.1080/10508401003708381
Denning P. J., 2019, Computational thinking
Edmondson AC, 2018, HUM RESOUR MANAGE R, V28, P347, DOI 10.1016/j.hrmr.2017.03.002
Häkkinen P, 2012, INTERNET HIGH EDUC, V15, P231, DOI 10.1016/j.iheduc.2011.09.001
Hammer D, 2014, J LEARN SCI, V23, P37, DOI 10.1080/10508406.2013.802652
Hennessy S, 2011, J COMPUT ASSIST LEAR, V27, P463, DOI 10.1111/j.1365-2729.2011.00416.x
Hennessy S., 1999, International Journal of Technology and Design Education, V9, P1, DOI DOI 10.1023/A:1008855526312
Jackson N.J., 2011, Learning for a complex world: A lifewide concept of learning, education and personal development
Järvelä S, 2013, EDUC PSYCHOL-US, V48, P25, DOI 10.1080/00461520.2012.748006
Krajcik JS, 2006, CAMB HANDB PSYCHOL, P317
Lehtinen E, 2014, SPRINGER INT HBK ED, P199, DOI 10.1007/978-94-017-8902-8_8
Markauskaite L, 2017, PROF PRACT-BASED LEA, V14, P1, DOI 10.1007/978-94-007-4369-4
Markauskaite L, 2020, RES PAP EDUC, V35, P105, DOI 10.1080/02671522.2019.1677762
Muukkonen H., 2010, RES PRACT TECH ENHAN, V5, P73, DOI [10.1142/S1793206810000827, DOI 10.1142/S1793206810000827]
Paavola S., 2005, Science Education, V14, P535, DOI [DOI 10.1007/S11191-004-5157-0, 10.1007/s11191-004-5157-0]
Seitamaa-Hakkarainen Pirita, 2012, Design and Technology Education (An International Journal), V17, P54
Shenton K., 2004, Education for Information, V22, P63, DOI DOI 10.3233/EFI-2004-22201
Stahl G., 2006, Group cognition: Computer support for building collaborative knowledge
Sun SYH, 2020, AUSTRALAS J EDUC TEC, V36, P13, DOI 10.14742/ajet.5102
Vartiainen H, 2018, AERA OPEN, V4, DOI 10.1177/2332858418799694
Veltman ME, 2019, J EDUC WORK, V32, P135, DOI 10.1080/13639080.2019.1610165
Vuojarvi H., 2019, INT J LEARNING TEACH, V18, P30, DOI [10.26803/ijlter.18.13.3, DOI 10.26803/IJLTER.18.13.3]
NR 30
TC 8
Z9 8
U1 6
U2 41
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0007-1013
EI 1467-8535
J9 BRIT J EDUC TECHNOL
JI Br. J. Educ. Technol.
PD SEP
PY 2022
VL 53
IS 5
BP 1304
EP 1320
DI 10.1111/bjet.13186
EA FEB 2022
PG 17
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA 4N4RT
UT WOS:000751823000001
OA hybrid
DA 2024-09-05
ER
PT J
AU Sonk, M
Tunger, D
AF Sonk, Matthias
Tunger, Dirk
TI Trend mining with Orange - using topic modeling in futures research with
the example of urban mobility
SO EUROPEAN JOURNAL OF FUTURES RESEARCH
LA English
DT Article
DE Text mining; Topic modeling; Bibliometric analysis; Trend mining; Mixed
methods; Urban mobility; Flexible mobility
AB Today, assumptions about probable future developments (at least as far as they make use of quantifiable scientific methods and are not pure speculation) are generally based on data from the past. An interesting way to analyze the future through this type of data is text mining or individual methods out of the spectrum of text mining, such as topic modeling. Topic Modeling itself is a combination of quantitative and qualitative methodology and is based on the full spectrum of social science methodology. Therefore, the method is an interesting way for futures research to analyze futures. This publication addresses the question of how a combination of different methods can contribute to trend monitoring or trend mining. For this purpose, a set of scientific publications was first generated with the help of a search query in the Web of Science (WoS), which is the basis for all evaluations and statements and topics. In essence, the method considered here should be more fully integrated into the scientific practice of futures research because it can make a valuable contribution to estimating future development based on past development.
C1 [Sonk, Matthias] Free Univ Berlin, Berlin, Germany.
[Tunger, Dirk] Forschungszentrum Julich, Inst Informat Management, Fac Informat Sci & Commun Studies, Ctr Excellence Anal Studies Strategy,TH Koln & Pro, Julich, Germany.
C3 Free University of Berlin; Helmholtz Association; Research Center Julich
RP Sonk, M (corresponding author), Free Univ Berlin, Berlin, Germany.
EM m.sonk@fu-berlin.de
FU Freie Universitt Berlin (1008)
FX Not applicable.
CR Ball R, 2006, SCIENTOMETRICS, V66, P561, DOI 10.1007/s11192-006-0041-0
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Demsar J, 2013, J MACH LEARN RES, V14, P2349
Dwivedi YK, 2011, INFORM SYST MANAGE, V28, P43, DOI 10.1080/10580530.2011.536112
Erzurumlu SS, 2020, TECHNOL FORECAST SOC, V156, DOI 10.1016/j.techfore.2020.120041
GARFIELD E, 1964, SCIENCE, V144, P649, DOI 10.1126/science.144.3619.649
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Gokhberg L, 2020, FUTURES, V115, DOI 10.1016/j.futures.2019.102476
Holopainen M, 2012, FUTURES, V44, P198, DOI 10.1016/j.futures.2011.10.002
Kayser V, 2017, TECHNOL FORECAST SOC, V116, P208, DOI 10.1016/j.techfore.2016.10.017
Lee M, 2022, TECHNOL FORECAST SOC, V180, DOI 10.1016/j.techfore.2022.121718
Leutzbach W, 2000, Das Problem mit der Zukunft: wie sicher sind Voraussagen?
Lim C, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120893
Ma TT, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121159
Madsen DO, 2023, 15 years of research on Google Trends. A bibliometric review and future research directions
Moro A, 2020, FUTURES, V117, DOI 10.1016/j.futures.2020.102511
Murphy J., 2006, Technische Analyse Der Finanzmarkte: Grundlagen, Strategien, Methoden, Anwendungen
Rosa AB, 2021, FUTURES, V129, DOI 10.1016/j.futures.2021.102733
Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582
NR 20
TC 0
Z9 0
U1 5
U2 5
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 2195-4194
EI 2195-2248
J9 EUR J FUTURES RES
JI Eur. J. Futures Res.
PD MAR 11
PY 2024
VL 12
IS 1
AR 6
DI 10.1186/s40309-024-00229-1
PG 7
WC Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Social Sciences - Other Topics
GA KL9R4
UT WOS:001180244400001
OA gold
DA 2024-09-05
ER
PT J
AU Zengul, FD
Oner, N
Byrd, JD
Savage, A
AF Zengul, Ferhat D.
Oner, Nurettin
Byrd, James D.
Savage, Arline
TI Revealing Research Themes and Trends in 30 Top-ranking Accounting
Journals: A Text-mining Approach
SO ABACUS-A JOURNAL OF ACCOUNTING FINANCE AND BUSINESS STUDIES
LA English
DT Article
DE Text mining; Natural language processing; Accounting research; Research
themes; Research trends
ID EXECUTIVE-COMPENSATION; PERFORMANCE; DISCLOSURE; ANALYSTS; AUDITOR;
DETERMINANTS; REFLECTIONS; INVESTMENT; UNIVERSAL; PRIVATE
AB This study reveals themes and trends in accounting research over the past 20 years by utilizing natural language processing and text-mining techniques. We generated a corpus consisting of over 40,000 articles through multiple searches in EBSCOhost Business Source Premier, Scopus, and ScienceDirect to gather data from 30 highly ranked (A* and A) journals that were listed and categorized by the Australian Business Deans Council (ABDC) as the top accounting journals. Based upon predetermined inclusion and exclusion criteria, we eliminated 24,474 non-empirical articles and those with no abstracts, resulting in 16,449 abstracts. The text-mining analyses reveal 15 distinct clusters, with five clusters showing downward trends, six trending upward, and four maintaining stability. The downward trending clusters are: (1) capital markets; (2) financial reporting; (3) accounting education, careers, and diversity; (4) earnings/markets; and (5) accounting history and capitalism. Trending upward are: (1) critical accounting; (2) auditing; (3) corporate governance; (4) corporate social responsibility; (5) debt financing; and (6) financial markets and forecasting. Stable clusters are: (1) managerial accounting; (2) international accounting standards; (3) taxation; and (4) governmental accounting. This study introduces an innovative method for discerning themes and trends in accounting research and offers a guide to neophyte accounting faculty for determining publishing outlets for research. In utilizing our findings to drill down and provide more detailed knowledge, it also serves as a reference point for future text-mining studies.
C1 [Zengul, Ferhat D.; Oner, Nurettin; Byrd, James D.; Savage, Arline] Univ Alabama Birmingham, Birmingham, AL 35294 USA.
C3 University of Alabama System; University of Alabama Birmingham
RP Zengul, FD (corresponding author), Univ Alabama Birmingham, Birmingham, AL 35294 USA.
EM ferhat@uab.edu
RI Zengul, Ferhat Devrim/AFK-8074-2022; oner, nurettin/IQU-7736-2023
OI Zengul, Ferhat Devrim/0000-0002-8454-1335; Byrd,
James/0000-0003-4916-3372; oner, nurettin/0000-0002-4761-7863
CR Abdallah AAN, 2012, INT J ACCOUNT, V47, P168, DOI 10.1016/j.intacc.2012.03.002
*ABDC, 2018, AUSTR BUS DEANS COUN, V2016, P2016
Abdi H., 2003, Encyclopedia for Research Methods for the Social Sciences, V6, P792
*ACCOUNTINGCOACH, 2018, ACC COACH TERM LIST, DOI DOI 10.1111/J.1467-629X.2009.00316.X
Alles MG, 2015, ACCOUNT HORIZ, V29, P439, DOI 10.2308/acch-51067
[Anonymous], 1999, J BUS FINAN ACCOUNT
[Anonymous], 2016, CRIT PERSPECT ACCOUN, DOI DOI 10.1016/j.cpa.2016.01.001
[Anonymous], 1999, J BUS FINAN ACCOUNT, DOI DOI 10.2308/ACCH-51023
Armstrong P, 2015, CRIT PERSPECT ACCOUN, V27, P29, DOI 10.1016/j.cpa.2013.10.009
Bach C, 2016, REV ACCOUNT STUD, V21, P1149, DOI 10.1007/s11142-016-9358-y
Baker R.C., 2005, ACCOUNT AUDIT ACCOUN, V18, P690
Ballester M., 2003, EUR ACCOUNT REV, V12, P605, DOI [DOI 10.1080/09638180310001628437, 10.1080/09638180310001628437]
Barone GJ, 2009, J ACCOUNT AUDIT FINA, V24, P385, DOI 10.1177/0148558X0902400304
BATHKE AW, 2004, J ACCOUNT AUDIT FINA, V19, P463, DOI DOI 10.2308/JFIR-51329
Begley J, 2002, CONTEMP ACCOUNT RES, V19, P1
Ben-Amar W, 2006, J BUS FINAN ACCOUNT, V33, P517, DOI 10.1111/j.1468-5957.2006.00613.x
Benson K, 2015, AUST J MANAGE, V40, P36, DOI 10.1177/0312896214565121
Bharath ST, 2008, ACCOUNT REV, V83, P1, DOI 10.2308/accr.2008.83.1.1
Black EL, 2017, J INT ACCOUNT RES, V16, P1, DOI 10.2308/jiar-10571
Bonner S.E., 2000, J MANAGEMENT ACCOUNT, V12, P19, DOI [10.2308/jmar.2000.12.1.19, DOI 10.2308/JMAR.2000.12.1.19]
Bonner SE, 2007, J ACCOUNT RES, V45, P481, DOI 10.1111/j.1475-679X.2007.00245.x
Bronson SN, 2017, CONTEMP ACCOUNT RES, V34, P83, DOI 10.1111/1911-3846.12238
Brown-Liburd H, 2015, ACCOUNT HORIZ, V29, P451, DOI 10.2308/acch-51023
Bryer R., 2012, CRIT PERSPECT ACCOUN, V23, P511
Bryer RA, 2000, ACCOUNT ORG SOC, V25, P327, DOI 10.1016/S0361-3682(99)00033-1
Bryer R, 2013, CRIT PERSPECT ACCOUN, V24, P273, DOI 10.1016/j.cpa.2012.09.002
Bryer R, 2013, CRIT PERSPECT ACCOUN, V24, P572, DOI 10.1016/j.cpa.2012.09.004
Burney LL, 2009, ACCOUNT ORG SOC, V34, P305, DOI 10.1016/j.aos.2008.11.002
Bushman RM, 2017, J ACCOUNT RES, V55, P115, DOI 10.1111/1475-679X.12131
Bushman RM, 2010, J ACCOUNT RES, V48, P921, DOI 10.1111/j.1475-679X.2010.00384.x
Callahan C.M., 1998, Contemporary Accounting Research, V15, P419, DOI DOI 10.2308/ACCH-50498
Carnegie GD, 2017, ACCOUNT AUDIT ACCOUN, V30, P1642, DOI 10.1108/AAAJ-12-2016-2804
Chakraborty V, 2014, INT J ACCOUNT INF SY, V15, P122, DOI 10.1016/j.accinf.2014.01.001
Chang WC, 2016, ABACUS, V52, P286, DOI 10.1111/abac.12077
Cho CH, 2007, ACCOUNT ORG SOC, V32, P639, DOI 10.1016/j.aos.2006.09.009
Cho CH, 2012, ACCOUNT AUDIT ACCOUN, V25, P486, DOI 10.1108/09513571211209617
Chung J., 2001, The British Accounting Review, V33, P307, DOI 10.1006/bare.2001.0163
Colson RH, 2009, J ACCOUNT PUBLIC POL, V28, P51, DOI 10.1016/j.jaccpubpol.2008.11.003
Currie G, 2015, ACCOUNT AUDIT ACCOUN, V28, P1291, DOI 10.1108/AAAJ-12-2014-1889
Dalton DW, 2016, ISS ACCOUNT EDUC, V31, P235, DOI 10.2308/iace-50979
De Waegenaere A, 2008, CONTEMP ACCOUNT RES, V25, P1045, DOI 10.1506/car.25.4.4
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Delen D, 2008, EXPERT SYST APPL, V34, P1707, DOI 10.1016/j.eswa.2007.01.035
Delen D, 2012, PRACTICAL TEXT MINING AND STATISTICAL ANALYSIS FOR NON-STRUCTURED TEXT DATA APPLICATIONS, P375, DOI 10.1016/B978-0-12-386979-1.00016-5
Dikolli SS, 2009, J MANAG ACOUNT RES, V21, P125, DOI 10.2308/jmar.2009.21.1.125
Dyreng SD, 2009, J ACCOUNT RES, V47, P1283, DOI 10.1111/j.1475-679X.2009.00346.x
Elshandidy T, 2018, J ACCOUNT LIT, V40, P54, DOI 10.1016/j.acclit.2017.12.001
Evangelopoulos N, 2012, EUR J INFORM SYST, V21, P70, DOI 10.1057/ejis.2010.61
*FASB, 2018, FASB ACC STAND COD M
Ferguson C, 2011, ACCOUNT FINANC, V51, P235, DOI 10.1111/j.1467-629X.2010.00393.x
Finnerty J.D., 2002, Accounting Horizons, V16, P95
Fisher IE, 2016, INTELL SYST ACCOUNT, V23, P157, DOI 10.1002/isaf.1386
Fisher JG, 2006, ACCOUNT ORG SOC, V31, P511, DOI 10.1016/j.aos.2005.12.008
Frantz P, 2013, J BUS FINAN ACCOUNT, V40, P1184, DOI 10.1111/jbfa.12041
Gallhofer S, 2015, ACCOUNT AUDIT ACCOUN, V28, P846, DOI 10.1108/AAAJ-08-2013-1451
Gallhofer S, 2011, ACCOUNT AUDIT ACCOUN, V24, P440, DOI 10.1108/09513571111133054
Gammie E, 2013, BRIT ACCOUNT REV, V45, P83, DOI 10.1016/j.bar.2013.03.005
Gao L, 2017, J ACCOUNT LIT, V38, P1, DOI 10.1016/j.acclit.2017.05.001
Geiger MA, 2003, AUDITING-J PRACT TH, V22, P53, DOI 10.2308/aud.2003.22.2.53
Gillette A.B., 1999, CONTEMP ACCOUNT RES, V16, P437
Grafton J, 2011, MANAGE ACCOUNT RES, V22, P242, DOI 10.1016/j.mar.2011.06.001
Griffin PA, 2015, ACCOUNT HORIZ, V29, P377, DOI 10.2308/acch-51066
Guan J, 2018, J INF SYST, V32, P67, DOI 10.2308/isys-51625
Guffey DM, 2017, J MANAG ACOUNT RES, V29, P93, DOI 10.2308/jmar-51592
Guthrie J, 2017, ACCOUNT AUDIT ACCOUN, V30, P2, DOI 10.1108/AAAJ-11-2016-2781
Harzing A-W, 2022, Journal Quality List
Haw IM, 2014, CONTEMP ACCOUNT RES, V31, P1220, DOI 10.1111/1911-3846.12064
Heimerl F, 2014, P ANN HICSS, P1833, DOI 10.1109/HICSS.2014.231
Hodder LD, 2014, ACCOUNT ORG SOC, V39, P117, DOI 10.1016/j.aos.2013.10.002
Hodge G, 2018, FINANC ACCOUNT MANAG, V34, P3, DOI 10.1111/faam.12132
Hofmann T, 2001, MACH LEARN, V42, P177, DOI 10.1023/A:1007617005950
Hutchison PD, 2018, INT J ACCOUNT INF SY, V31, P83, DOI 10.1016/j.accinf.2018.09.003
HYLTON DP, 1962, ACCOUNT REV, V37, P22
Jaafar A, 2015, INT J ACCOUNT, V50, P435, DOI 10.1016/j.intacc.2015.10.005
Jacob J, 2008, J ACCOUNT AUDIT FINA, V23, P23, DOI 10.1177/0148558X0802300104
Jennings R, 2013, ACCOUNT HORIZ, V27, P51, DOI 10.2308/acch-50278
KAO A, 2007, NATURAL LANGUAGE PRO, DOI DOI 10.1111/1911-3846.12238
Keskek S, 2017, J BUS FINAN ACCOUNT, V44, P780, DOI 10.1111/jbfa.12234
Kilfoyle E, 2015, ACCOUNT AUDIT ACCOUN, V28, P551, DOI 10.1108/AAAJ-04-2014-1687
Kim YM, 2018, HEALTH INFORM J, V24, P432, DOI 10.1177/1460458216678443
Krahel JP, 2015, ACCOUNT HORIZ, V29, P409, DOI 10.2308/acch-51065
Kurunmäki L, 2011, MANAGE ACCOUNT RES, V22, P220, DOI 10.1016/j.mar.2010.08.004
Landauer TK, 1998, DISCOURSE PROCESS, V25, P259, DOI 10.1080/01638539809545028
Landauer TK, 1997, PSYCHOL REV, V104, P211, DOI 10.1037/0033-295X.104.2.211
Larson MP, 2017, ISS ACCOUNT EDUC, V32, P41, DOI 10.2308/iace-51750
LAUER TK, 2004, P NATL ACAD SCI USA, V101, P5214, DOI DOI 10.1073/pnas.0400341101
Liesen A, 2015, ACCOUNT AUDIT ACCOUN, V28, P1047, DOI 10.1108/AAAJ-12-2013-1547
Lindberg DL, 2003, AUDITING-J PRACT TH, V22, P127, DOI 10.2308/aud.2003.22.1.127
Linnenluecke MK, 2017, ABACUS, V53, P159, DOI 10.1111/abac.12107
Liu Q, 2016, J EMERG TECHNOL ACCO, V13, P89, DOI 10.2308/jeta-10512
Loughran T, 2016, J ACCOUNT RES, V54, P1187, DOI 10.1111/1475-679X.12123
Malsch B, 2011, ACCOUNT AUDIT ACCOUN, V24, P194, DOI 10.1108/09513571111100681
Mangena M., 2005, ACCOUNT BUS RES, V35, P327, DOI DOI 10.1080/00014788.2005.9729998
MARONEY J, 2008, BR ACCOUNT REV, V40, P103, DOI DOI 10.1016/J.BAR.2008.01.001
Martin X, 2015, J ACCOUNT ECON, V59, P80, DOI 10.1016/j.jacceco.2014.09.006
Massaro M, 2016, ACCOUNT AUDIT ACCOUN, V29, P767, DOI 10.1108/AAAJ-01-2015-1939
MINER G, 2012, PRACTICAL TEXT MININ, DOI DOI 10.1016/B978-0-12-386979-1.00016-5
Modell S, 2017, CRIT PERSPECT ACCOUN, V42, P20, DOI 10.1016/j.cpa.2016.03.001
MohammadRezaei F, 2016, INT J AUDIT, V20, P87, DOI 10.1111/ijau.12059
Morey L, 1948, ACCOUNT REV, V23, P227
Mynatt P.G., 1997, CRIT PERSPECT ACCOUN, V8, P657, DOI DOI 10.1006/CPAC.1997.0161
Ndubizu G.A., 2003, INT J ACCOUNT, V38, P397, DOI DOI 10.1016/J.INTACC.2003.09.010
Nelson I.T., 2002, Issues in Accounting Education, V17, P269, DOI [DOI 10.2308/IACE.2002.17.3.269, 10.2308/iace.2002.17.3.269]
O'Dwyer B., 2005, Eur Account Rev, V14, P759, DOI DOI 10.1080/09638180500104766
O'Dwyer B., 2005, Accounting, Auditing and Accountability Journal, V18, P14, DOI DOI 10.1108/09513570510584647
Obermann J, 2018, J ACCOUNT LIT, V40, P116, DOI 10.1016/j.acclit.2018.02.001
Oler DK, 2016, ISS ACCOUNT EDUC, V31, P219, DOI 10.2308/iace-50748
Ozaydin Bunyamin, 2017, Mhealth, V3, P53, DOI 10.21037/mhealth.2017.12.02
Paterson JS, 2011, CONTEMP ACCOUNT RES, V28, P1510, DOI 10.1111/j.1911-3846.2010.01060.x
Pinello AS, 2008, CONTEMP ACCOUNT RES, V25, P891, DOI 10.1506/car.25.3.9
Qi D. D., 2000, Journal of Accounting Auditing Finance, V15, P141
QINGLIANG T, 1999, INT J ACCOUNT, V34, P173, DOI DOI 10.1016/J.BAR.2013.03.005
Rego SO, 2003, CONTEMP ACCOUNT RES, V20, P805, DOI 10.1506/VANN-B7UB-GMFA-9E6W
Richardson AW, 2012, EUR ACCOUNT REV, V21, P373, DOI 10.1080/09638180.2011.558298
Rizzotti D, 2013, INT J ACCOUNT, V48, P84, DOI 10.1016/j.intacc.2013.01.007
Russell S, 2017, ACCOUNT AUDIT ACCOUN, V30, P1426, DOI 10.1108/AAAJ-07-2017-3010
*SAS, 2019, NATURAL LANGUAGE PRO, DOI DOI 10.2308/ACCH-51066
Sinha P., 1997, CONTEMP ACCOUNT RES, V14, P1, DOI DOI 10.1111/CARE.1997.14.ISSUE-1
Tanyi PN, 2015, AUDITING-J PRACT TH, V34, P59, DOI 10.2308/ajpt-50929
Tse S.Y., 1999, ContemporaiyAccounting Research, V16, P347
Vasarhelyi MA, 2015, ACCOUNT HORIZ, V29, P381, DOI 10.2308/acch-51071
Warren JD, 2015, ACCOUNT HORIZ, V29, P397, DOI 10.2308/acch-51069
Webb KA, 2008, INT J ACCOUNT, V43, P219, DOI 10.1016/j.intacc.2008.06.001
Yoon K, 2015, ACCOUNT HORIZ, V29, P431, DOI 10.2308/acch-51076
Zengul F.D., 2019, AM J NEPHROL, P1
ZHAI C, 2016, TEXT DATA MANAGEMENT, DOI DOI 10.1016/J.ACCINF.2018.09.003
Zhang J, 2015, ACCOUNT HORIZ, V29, P469, DOI 10.2308/acch-51070
NR 127
TC 10
Z9 10
U1 2
U2 59
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0001-3072
EI 1467-6281
J9 ABACUS
JI Abacus
PD SEP
PY 2021
VL 57
IS 3
BP 468
EP 501
DI 10.1111/abac.12214
EA MAR 2021
PG 34
WC Business, Finance
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA US4AX
UT WOS:000623661800001
DA 2024-09-05
ER
PT C
AU Lin, SJ
Chen, JL
Tsai, YC
Chang, PC
Yang, CS
AF Lin, Shou-Jen
Chen, Jui-Le
Tsai, Yu-Chen
Chang, Ping-Chun
Yang, Chu-Sing
BE Wang, JF
Lau, R
TI Gesture Identification Research and Applications in Evaluation Systems
SO ADVANCES IN WEB-BASED LEARNING - ICWL 2013
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 12th International Conference on Advances in Web-Based Learning (ICWL)
CY OCT 06-09, 2013
CL TAIWAN
DE Gesture identification; human-computer interaction; computer vision
ID SUBTRACTION
AB By introducing computer-assisted identification technique into the evaluation system design for elementary and junior high schools, the users gestures, acquired through cameras, are transformed into effective interactive information, which is further applied to the digital evaluation system. Such a new-styled interactive method is expected to enhance the communication model between the learners and the information system. Without touching any interactive devices, the users can communicate with the system through gestures, from which the messages are determined and compared through image processing to further control the system interaction. The integration with an evaluation system could promote the education popularity.
C1 [Lin, Shou-Jen; Chen, Jui-Le; Tsai, Yu-Chen; Chang, Ping-Chun; Yang, Chu-Sing] Natl Cheng Kung Univ, Inst Comp & Commun Engn, Tainan 70101, Taiwan.
C3 National Cheng Kung University
RP Lin, SJ (corresponding author), Natl Cheng Kung Univ, Inst Comp & Commun Engn, Tainan 70101, Taiwan.
EM lsr@tn.edu.tw; reler.chen@gmail.com; celia@tn.edu.tw;
moneyhomeya@gmail.com; csyang@ee.ncku.edu.tw
CR [Anonymous], 2001, PROC CVPR IEEE
[Anonymous], EROSION DILATION REL
Bradski G., 2008, Learning OpenCV: Computer Vision in C++ with the OpenCVLibrary
Chang P.-l., 2008, AUTOMATIC EXTENDING
Elgammal A., 2000, P EUR C COMP VIS, P751, DOI DOI 10.1007/3-540-45053-X_48
Gonzalez R., 2005, WOODS DIGITAL IMAGE, P420
HORPRASERT T, 1999, STAT APPROACH REAL T
Huang C.-J., 2008, DESIGN REALIZATION I
Hummel R.A., 1975, COMPUT VISION GRAPH, V4, P209
Jain AK., 1989, FUNDAMENTALS DIGITAL
Johnstone J.K., 2007, J COMPUTING SCI COLL, V23, P103
Juang CF, 2009, IEEE T SYST MAN CY A, V39, P119, DOI 10.1109/TSMCA.2009.2008397
Kim K, 2004, IEEE IMAGE PROC, P3061
Kovac J., 2003, HUMAN SKIN COLOR CLU, P1441
Lienhart R, 2002, IEEE IMAGE PROC, P900
Lin S.-R., 2009, TANET 2009 GLOB IPV6
Lindeberg T, 1996, PROC CVPR IEEE, P465, DOI 10.1109/CVPR.1996.517113
Lipton A.J., 1998, MOVING TARGET CLASSI, P3
P Papageorgiou C., 1998, A general framework for object detection
Piccardi M, 2004, IEEE SYS MAN CYBERN, P3099, DOI 10.1109/ICSMC.2004.1400815
Rosenfeld A, 2000, COMPUT VIS IMAGE UND, V78, P222, DOI 10.1006/cviu.2000.0835
TESAURO G, 1992, MACH LEARN, V8, P257, DOI 10.1007/BF00992697
TESAURO G, 1995, COMMUN ACM, V38, P58, DOI 10.1145/203330.203343
Umbaugh SE., 2005, COMPUTER IMAGING DIG
Yoon K, 2008, PROCEEDINGS OF NINTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING, P535, DOI 10.1109/SNPD.2008.162
NR 25
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 978-3-642-41174-8; 978-3-642-41175-5
J9 LECT NOTES COMPUT SC
PY 2013
VL 8167
BP 21
EP 30
PG 10
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BB0OX
UT WOS:000340556100003
DA 2024-09-05
ER
PT J
AU Ghosh, D
AF Ghosh, Debashis
TI Relaxed covariate overlap and margin-based causal effect estimation
SO STATISTICS IN MEDICINE
LA English
DT Article
DE average causal effect; comparative effectiveness research; convex
optimization; counterfactual; covariate balance; support vector machines
ID PROPENSITY SCORE; MATCHING METHODS; INFERENCE; SELECTION; BALANCE
AB In most nonrandomized observational studies, differences between treatment groups may arise not only due to the treatment but also because of the effect of confounders. Therefore, causal inference regarding the treatment effect is not as straightforward as in a randomized trial. To adjust for confounding due to measured covariates, a variety of methods based on the potential outcomes framework are used to estimate average treatment effects. One of the key assumptions is treatment positivity, which states that the probability of treatment is bounded away from zero and one for any possible combination of the confounders. Methods for performing causal inference when this assumption is violated are relatively limited. In this article, we discuss a new balance-related condition involving the convex hulls of treatment groups, which I term relaxed covariate overlap. An advantage of this concept is that it can be linked to a concept from machine learning, termed the margin. Introduction of relaxed covariate overlap leads to an approach in which one can perform causal inference in a three-step manner. The methodology is illustrated with two examples.
C1 [Ghosh, Debashis] Univ Colorado, Dept Biostat & Informat, Sch Publ Hlth, Aurora, CO 80045 USA.
C3 Colorado School of Public Health; University of Colorado System;
University of Colorado Anschutz Medical Campus
RP Ghosh, D (corresponding author), Univ Colorado, Dept Biostat & Informat, Sch Publ Hlth, Aurora, CO 80045 USA.
EM debashis.ghosh@ucdenver.edu
RI Ghosh, Debashis/KZT-8916-2024
OI Ghosh, Debashis/0000-0001-6618-1316
FU Data Science to Patient Value (D2V) Initiative from University of
Colorado
FX Data Science to Patient Value (D2V) Initiative from University of
Colorado
CR [Anonymous], STAT SCI
[Anonymous], 1993, Encyclopedia of Mathematics and its Applications
[Anonymous], P AM STAT ASS SECT B
Bi JB, 2003, NEUROCOMPUTING, V55, P79, DOI 10.1016/S0925-2312(03)00380-1
Chan KCG, 2016, J R STAT SOC B, V78, P673, DOI 10.1111/rssb.12129
CHAZELLE B, 1993, DISCRETE COMPUT GEOM, V10, P377, DOI 10.1007/BF02573985
Cristianini N., 2000, Support Vector Machines and other kernel-based learning methods
Crump RK, 2009, BIOMETRIKA, V96, P187, DOI 10.1093/biomet/asn055
D'Amour A., 2017, Overlap in observational studies with high-dimensional covariates
Diamond A, 2013, REV ECON STAT, V95, P932, DOI 10.1162/REST_a_00318
Fisher JO, 2002, AM J CLIN NUTR, V76, P226, DOI 10.1093/ajcn/76.1.226
Ghosh D, 2015, STAT MED, V34, P1645, DOI 10.1002/sim.6433
Grnbaum B., 2003, Graduate Texts in Mathematics, V221
Gruber S, 2010, INT J BIOSTAT, V6, DOI 10.2202/1557-4679.1182
Hansen BB, 2004, J AM STAT ASSOC, V99, P609, DOI 10.1198/016214504000000647
Ho DE, 2007, POLIT ANAL, V15, P199, DOI 10.1093/pan/mpl013
Iacus SM, 2011, J AM STAT ASSOC, V106, P345, DOI 10.1198/jasa.2011.tm09599
Imai K, 2004, J AM STAT ASSOC, V99, P854, DOI 10.1198/016214504000001187
Imai K, 2014, J R STAT SOC B, V76, P243, DOI 10.1111/rssb.12027
Imbens GW, 2000, BIOMETRIKA, V87, P706, DOI 10.1093/biomet/87.3.706
Imbens GW, 2015, CAUSAL INFERENCE FOR STATISTICS, SOCIAL, AND BIOMEDICAL SCIENCES: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139025751
Lee JD, 2016, ANN STAT, V44, P907, DOI 10.1214/15-AOS1371
Lunceford JK, 2004, STAT MED, V23, P2937, DOI 10.1002/SIM.1903
Luo W, 2017, BIOMETRIKA, V104, P51, DOI 10.1093/biomet/asw068
Mangasarian OL, 1994, Nonlinear Programming
Petersen ML, 2012, STAT METHODS MED RES, V21, P31, DOI 10.1177/0962280210386207
Platt RW, 2012, EUR J EPIDEMIOL, V27, P77, DOI 10.1007/s10654-011-9637-7
Ratkovic M., 2014, Balancing within the margin: Causal effect estimation with support vector machines
Ridgeway G., 1999, Comput. Sci. Stat., V31, P172
Robins JM, 1997, STAT MED, V16, P285, DOI 10.1002/(SICI)1097-0258(19970215)16:3<285::AID-SIM535>3.0.CO;2-#
Rose S, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-1-4419-9782-1
Rosenbaum PR, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-1213-8
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
RUBIN DB, 1991, BIOMETRICS, V47, P1213, DOI 10.2307/2532381
RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350
Rubin DB, 2007, STAT MED, V26, P20, DOI 10.1002/sim.2739
Shinohara ET, 2008, INT J RADIAT ONCOL, V72, P1495, DOI 10.1016/j.ijrobp.2008.03.018
Stuart EA, 2010, STAT SCI, V25, P1, DOI 10.1214/09-STS313
Traskin M, 2011, STAT BIOSCI, V3, P94, DOI 10.1007/s12561-011-9036-3
Vapnik Vladimir N., 1995, The nature of statistical learning theory
Wahba G., 1990, SPLINE MODELS OBSERV
Zhu YY, 2016, J ROY STAT SOC C, V65, P115, DOI 10.1111/rssc.12109
Zhu YY, 2015, J CAUSAL INFERENCE, V3, P25, DOI 10.1515/jci-2014-0022
Zubizarreta JR, 2015, J AM STAT ASSOC, V110, P910, DOI 10.1080/01621459.2015.1023805
NR 44
TC 4
Z9 6
U1 0
U2 7
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0277-6715
EI 1097-0258
J9 STAT MED
JI Stat. Med.
PD DEC 10
PY 2018
VL 37
IS 28
BP 4252
EP 4265
DI 10.1002/sim.7919
PG 14
WC Mathematical & Computational Biology; Public, Environmental &
Occupational Health; Medical Informatics; Medicine, Research &
Experimental; Statistics & Probability
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematical & Computational Biology; Public, Environmental &
Occupational Health; Medical Informatics; Research & Experimental
Medicine; Mathematics
GA HA2KR
UT WOS:000450067800011
PM 30168168
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Givi, ME
Saberi, MK
Talafidaryani, M
Abdolhamid, M
Nikandish, R
Fattahi, A
AF Esmaeili Givi, Mohammadreza
Saberi, Mohammad Karim
Talafidaryani, Mojtaba
Abdolhamid, Mahdi
Nikandish, Rahim
Fattahi, Abbas
TI Assessment of the history and trends of "The Journal of Intellectual
Capital": a bibliometrics, altmetrics and text mining analysis
SO JOURNAL OF INTELLECTUAL CAPITAL
LA English
DT Article
DE Intellectual capital; Intellectual structure; Bibliometric analysis;
Altmetric analysis; LDA; Topic modeling; JIC
ID KNOWLEDGE MANAGEMENT; INTANGIBLE ASSETS; BIG DATA; BUSINESS PERFORMANCE;
EMPIRICAL-EVIDENCE; SOCIAL NETWORKS; MODERATING ROLE; IMPACT;
INNOVATION; FIRMS
AB Purpose The Journal of Intellectual Capital (JIC) celebrated its 20th anniversary in 2020. Therefore, the present study aims to provide a general overview of the history and key trends in this journal during 2000-2019. Design/methodology/approach Two types of citation and textual data during a 20-year journal period were retrieved from the Scopus database. The citation structures and contents were explored based on a combination of bibliometric analysis, altmetric analysis and text mining. The journal themes and trends of their changes were analyzed through citation bursts, mapping and topic modeling. To make a better comparison, the text mining process for the topic modeling of the IC field was performed in addition to the topic modeling of JIC. Findings Bibliometric analysis indicated that JIC has experienced a remarkable growth in terms of the number of publications and citations over the last 20 years. The results indicated that JIC plays a significant role among IC researchers. Additionally, a large number of researchers, institutes and countries have made contributions to this journal and cited its research papers. Altmetric analysis showed that JIC has been shared in different social media such as Twitter, Facebook, Wikipedia, Mendeley, Citeulike, news and blogs. Text mining abstract of JIC articles indicated that "measurement," "financial performance" and "IC reporting" have the relative prevalence with increasing trends over the past 20 years. In addition, "research trends" and "national and international studies" had a stable trend with low thematic share. Research limitations/implications The findings have important implications for the JIC editorial team in order to make informed decisions about the further development of JIC as well as for IC researchers and practitioners to make more valuable contributions to the journal. Originality/value Using bibliometric analysis, altmetric analysis and text mining, this study provided a systematic and comprehensive analysis of JIC. The simultaneous use of these methods provides an interesting, unique and suitable capacity to analyze the journals by considering their various aspects.
C1 [Esmaeili Givi, Mohammadreza] Univ Tehran, Dept Publ Adm, Fac Management, Tehran, Iran.
[Saberi, Mohammad Karim] Hamadan Univ Med Sci, Dept Med Lib & Informat Sci, Sch Paramed, Hamadan, Hamadan, Iran.
[Talafidaryani, Mojtaba] Univ Tehran, Fac Management, Tehran, Iran.
[Abdolhamid, Mahdi] Iran Univ Sci & Technol, Sch Management Econ & Progress Engn, Dept Management & Philosophy Sci & Technol, Tehran, Iran.
[Nikandish, Rahim] Univ Tehran, Fac Management, Tehran, Iran.
[Fattahi, Abbas] Hamadan Univ Med Sci, Student Res Comm, Hamadan, Hamadan, Iran.
C3 University of Tehran; Hamadan University of Medical Sciences; University
of Tehran; Iran University Science & Technology; University of Tehran;
Hamadan University of Medical Sciences
RP Saberi, MK (corresponding author), Hamadan Univ Med Sci, Dept Med Lib & Informat Sci, Sch Paramed, Hamadan, Hamadan, Iran.
EM s.givi@ut.ac.ir; mohamadsaberi@gmail.com; mojtabatalafi@ut.ac.ir;
Mahdi_Abdolhamid@iust.ac.ir; nikandishrahim@ut.ac.ir;
abbasumsha@gmail.com
RI fattahi, abbas/ADG-0979-2022; Saberi, Mohammad Karim/W-3331-2017;
Abdolhamid, Mahdi/C-7444-2018
OI fattahi, abbas/0000-0002-8017-2069; Esmaeili Givi,
Mohammadreza/0000-0002-9452-3616; Saberi, Mohammad
Karim/0000-0002-2471-0408; Abdolhamid, Mahdi/0000-0003-4118-4937
FU Vice-chancellor for Research and Technology, Hamadan University of
Medical Sciences [9903061309]
FX The study was funded by Vice-chancellor for Research and Technology,
Hamadan University of Medical Sciences (No. 9903061309).
CR Abhayawansa S, 2018, ACCOUNT AUDIT ACCOUN, V31, P950, DOI 10.1108/AAAJ-03-2017-2873
Abhayawansa S, 2016, J ACCOUNT ORGAN CHAN, V12, P434, DOI 10.1108/JAOC-05-2014-0027
Ahmed SS, 2019, J INTELLECT CAP, V21, P23, DOI 10.1108/JIC-11-2018-0199
Aitouche S, 2018, 2018 3RD INTERNATIONAL CONFERENCE ON PATTERN ANALYSIS AND INTELLIGENT SYSTEMS (PAIS), P67
Aitouchi S., 2018, P INT C IND ENG OP M, P3166
Alfonzo P.M., 2014, Online Journal Of Nursing Informatics, V18, P3
Alhassan AL, 2016, MANAGE DECIS, V54, P589, DOI 10.1108/MD-01-2015-0025
Alotaibi KO, 2016, INT J DISCL GOV, V13, P364, DOI 10.1057/jdg.2016.2
Altmetric, 2021, ALTMETRIC DISCOVER A
Leal GPA, 2014, J BUS RES, V67, P882, DOI 10.1016/j.jbusres.2013.07.007
Andrade-Valbuena NA, 2019, WORLD J ENTREP MANAG, V15, P45, DOI 10.1108/WJEMSD-08-2017-0048
[Anonymous], 2003, Journal of Intellectual Capital, DOI [DOI 10.1108/14691930310487806, 10.1108/14691930310487806]
Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300
Appio FP, 2016, SCIENTOMETRICS, V108, P355, DOI 10.1007/s11192-016-1955-9
Appio FP, 2014, SCIENTOMETRICS, V101, P623, DOI 10.1007/s11192-014-1329-0
Ardito L, 2019, MANAGE DECIS, V57, P1993, DOI 10.1108/MD-07-2018-0754
Aubert JE, 2008, J INTELLECT CAP, V9, P178, DOI 10.1108/14691930810870292
Babbar H., 2019, J. Comput. Theor. Nanosci., V16, P4236
Bamel U, 2022, J INTELLECT CAP, V23, P375, DOI 10.1108/JIC-05-2020-0142
Barrena-Martínez J, 2020, J BUS RES, V112, P261, DOI 10.1016/j.jbusres.2019.10.029
Bellucci M, 2021, J INTELLECT CAP, V22, P744, DOI 10.1108/JIC-10-2019-0239
Berraies S, 2019, J INTELLECT CAP, V20, P426, DOI 10.1108/JIC-02-2019-0030
Bisogno M, 2018, J INTELLECT CAP, V19, P10, DOI 10.1108/JIC-10-2017-0133
Blanco-Alcántara D, 2019, MANAGE DECIS, V57, P2653, DOI 10.1108/MD-12-2017-1238
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boekestein B, 2006, J INTELLECT CAP, V7, P241, DOI 10.1108/14691930610661881
Bonits, 2012, AMCIS P
Bontis N., 2002, J INTELLECT CAP, V3, P223, DOI DOI 10.1108/14691930210435589
Bontis N., 2000, J INTELLECT CAP, V1, P85, DOI [10.1108/14691930010324188, DOI 10.1108/14691930010324188]
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Bronzetti G, 2013, J INTELLECT CAP, V14, P246, DOI 10.1108/14691931311323878
Buznik VM, 2004, J STRUCT CHEM+, V45, P1096, DOI 10.1007/s10947-005-0100-z
Cabrilo S, 2020, EUR MANAG REV, V17, P835, DOI 10.1111/emre.12396
Caldana A, 2019, BRAZ TECHN S, P451
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen H., 2001, KNOWLEDGE MANAGEMENT
Chen MC, 2005, J INTELLECT CAP, V6, P159, DOI 10.1108/14691930510592771
Chu PY, 2006, TECHNOL FORECAST SOC, V73, P886, DOI 10.1016/j.techfore.2005.11.001
Cinquini L, 2012, J INTELLECT CAP, V13, P531, DOI 10.1108/14691931211276124
Cunha L, 2015, PROC EUR CONF INTELL, P53
Darroch J., 2002, J INTELLECT CAP, V3, P210, DOI DOI 10.1108/14691930210435570
de Antonio Jiménez Angélica, 2007, Comp. y Sist., V10, P333
De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics
de Frutos-Belizón J, 2019, J INTELLECT CAP, V20, P306, DOI 10.1108/JIC-09-2018-0152
De Santis F, 2018, MEDITARI ACCOUNT RES, V26, P361, DOI 10.1108/MEDAR-10-2017-0222
Del Giudice M, 2014, J KNOWL MANAG, V18, P841, DOI 10.1108/JKM-06-2014-0264
Delgado-Verde M, 2015, INT J TECHNOL MANAGE, V69, P117, DOI 10.1504/IJTM.2015.071551
Jordao RVD, 2017, J INTELLECT CAP, V18, P667, DOI 10.1108/JIC-11-2016-0120
Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039
Dost M, 2016, J INTELLECT CAP, V17, P675, DOI 10.1108/JIC-04-2016-0047
Duarte J, 2007, REV FINANC STUD, V20, P769, DOI 10.1093/rfs/hhl026
Dumay J, 2017, J INTELLECT CAP, V18, P29, DOI 10.1108/JIC-10-2016-0102
Dumay J, 2016, J INTELLECT CAP, V17, P168, DOI 10.1108/JIC-08-2015-0072
Dumay J, 2014, J INTELLECT CAP, V15, P2, DOI 10.1108/JIC-09-2013-0098
Dumay J, 2013, J INTELLECT CAP, V14, P5, DOI 10.1108/14691931311288986
Dumay J, 2013, J INTELLECT CAP, V14, P10, DOI 10.1108/14691931311288995
Dzenopoljac V, 2017, J INTELLECT CAP, V18, P884, DOI 10.1108/JIC-01-2017-0014
Edvinsson L, 2013, J INTELLECT CAP, V14, P163, DOI 10.1108/14691931311289075
Elsevier, 2021, About Scopus
Fagerberg J, 2012, RES POLICY, V41, P1132, DOI 10.1016/j.respol.2012.03.008
Foss, 2013, HDB EC ORG
Foss Nicolai J., 2010, International Journal of Strategic Change Management, V2, P93, DOI 10.1504/IJSCM.2010.034409
García-Meca E, 2010, EUR ACCOUNT REV, V19, P603, DOI 10.1080/09638180.2010.496979
Garfield E, 2004, J INF SCI, V30, P119, DOI 10.1177/0165551504042802
Gaviria-Marin M, 2018, J KNOWL MANAG, V22, P1655, DOI 10.1108/JKM-10-2017-0497
Giuliani M, 2016, J INTELLECT CAP, V17, P590, DOI 10.1108/JIC-08-2015-0071
Glnzel W., 2003, Bibliometrics as a research field: A course on theory and application of bibliometric indicators
Greco F, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.04.007
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grimaldi M, 2018, J INTELLECT CAP, V19, P272, DOI 10.1108/JIC-01-2017-0019
Guan J, 2019, INT J PROD RES, V57, P4654, DOI 10.1080/00207543.2017.1296979
Guthrie J., 2004, Journal of Intellectual Capital, V5, P282, DOI [10.1108/14691930410533704, DOI 10.1108/14691930410533704]
Guthrie J, 2012, BRIT ACCOUNT REV, V44, P68, DOI 10.1016/j.bar.2012.03.004
Hajiheydari N, 2019, FORESIGHT, V21, P654, DOI 10.1108/FS-01-2019-0002
Haris M, 2018, PAC BUS REV INT, V11, P66
Haunschild R, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0160393
Haustein S, 2014, SCIENTOMETRICS, V101, P1145, DOI 10.1007/s11192-013-1221-3
Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101
Heinelt H., 2018, HDB PARTICIPATORY GO
Hurley CO, 2018, ENTREP REGION DEV, V30, P1027, DOI 10.1080/08985626.2018.1515822
Hussinki H, 2017, J INTELLECT CAP, V18, P904, DOI 10.1108/JIC-11-2016-0116
Hvidsten AKN, 2016, DALHOUS J INTERDISCI, V12, DOI 10.5931/djim.v12.i1.6442
Irtaimeh, 2018, INT J MANAG STUD, V24, P1
Janmaijaya M, 2018, PUBLICATIONS-BASEL, V6, DOI 10.3390/publications6030032
Jardon CM, 2015, KNOWL MAN RES PRACT, V13, P486, DOI 10.1057/kmrp.2014.4
JCR, 2020, J CITATION REPORTS
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194
JIC, 2021, J INTELLECT CAP
JIC, 2019, J INTELLECT CAP
Boj JJ, 2014, DECIS SUPPORT SYST, V68, P98, DOI 10.1016/j.dss.2014.10.002
Kim SH, 2014, J INTELLECT CAP, V15, P65, DOI 10.1108/JIC-04-2013-0048
Kokkinakis Dimitrios, 2012, P 3 WORKSH BUILD EV, P40
Kokol P, 2021, HEALTH INFO LIBR J, V38, P125, DOI 10.1111/hir.12295
Koruna SM, 2004, INT J TECHNOL MANAGE, V27, P241, DOI 10.1504/IJTM.2004.003954
Krausert A, 2018, HUM RESOUR MANAGE-US, V57, P97, DOI 10.1002/hrm.21841
KWON Y, 2017, 28 EUR REG ITS X PAS, P1, DOI DOI 10.1109/ISGT.2017.8085965
Leal C, 2019, PROC EUR CONF INTELL, P163
Leal C, 2017, PROC EUR CONF INTELL, P171
Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4
Lee IC, 2017, J INTELLECT CAP, V18, P807, DOI 10.1108/JIC-11-2016-0117
Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012
Lin C.Y.Y., 2013, MANAGE REV, V32, P1
Lin CYY, 2021, J INTELLECT CAP, V22, P439, DOI 10.1108/JIC-03-2020-0082
Lin CYY, 2018, J INTELLECT CAP, V19, P498, DOI 10.1108/JIC-12-2016-0146
Lin SC, 2005, J INTELLECT CAP, V6, P191, DOI 10.1108/14691930510592799
Lin YM, 2015, INT REV ECON FINANC, V37, P208, DOI 10.1016/j.iref.2014.11.024
Lönnqvist A, 2009, KNOWL MAN RES PRACT, V7, P308, DOI 10.1057/kmrp.2009.22
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Low M, 2015, J INTELLECT CAP, V16, P779, DOI 10.1108/JIC-03-2015-0022
Lundberg J, 2006, SCIENTOMETRICS, V66, P183, DOI 10.1007/s11192-006-0013-4
Maerz SF., 2020, COMPUTATIONAL CONFLI, P43, DOI [DOI 10.1007/978-3-030-29333-8_3, 10.1007/978-3-030-29333-8_3]
Makarov PY, 2016, Upravlenets, P50
Manning P, 2010, J KNOWL MANAG, V14, P83, DOI 10.1108/13673271011015589
Martínez-López FJ, 2018, EUR J MARKETING, V52, P439, DOI 10.1108/EJM-11-2017-0853
Marzo G, 2016, J INTELLECT CAP, V17, P27, DOI 10.1108/JIC-09-2015-0075
Matos F, 2019, PROC EUR CONF INTELL, P186
Valenzuela L, 2017, J BUS IND MARK, V32, P1, DOI 10.1108/JBIM-04-2016-0079
McCracken M, 2018, ACCOUNT FORUM, V42, P130, DOI 10.1016/j.accfor.2017.11.001
Mokhtari H., 2019, WEBOLOGY, V16, P166
Molodchik MA, 2019, J INTELLECT CAP, V20, P335, DOI 10.1108/JIC-10-2018-0190
Molodchik MA, 2014, J INTELLECT CAP, V15, P206, DOI 10.1108/JIC-08-2013-0091
Morkunas VJ, 2019, J PUBLIC AFF, V19, DOI 10.1002/pa.1833
Nadeem M, 2017, PAC ACCOUNT REV, V29, P590, DOI 10.1108/PAR-08-2016-0080
Nassirtoussi AK, 2014, EXPERT SYST APPL, V41, P7653, DOI 10.1016/j.eswa.2014.06.009
Nejjari Z, 2020, BUS MANAGE ED, V18, P106, DOI 10.3846/bme.2020.12237
Nimtrakoon S, 2015, J INTELLECT CAP, V16, P587, DOI 10.1108/JIC-09-2014-0104
Osinski M, 2017, J INTELLECT CAP, V18, P470, DOI 10.1108/JIC-12-2016-0138
Özköse H, 2017, GAZI U J SCI, V30, P356
Parshakov P, 2018, J INTELLECT CAP, V19, P96, DOI 10.1108/JIC-01-2017-0011
Pedro E, 2019, J INTELLECT CAP, V20, P355, DOI 10.1108/JIC-07-2018-0117
Pedro E, 2018, MANAGE DECIS, V56, P2502, DOI 10.1108/MD-08-2017-0807
Pedro E, 2018, J INTELLECT CAP, V19, P407, DOI 10.1108/JIC-11-2016-0118
Petty R., 2000, J INTELLECT CAP, V1, P155, DOI [DOI 10.1108/14691930010348731, 10.1108/14691930010348731]
Picot-Coupey K, 2018, INT J RETAIL DISTRIB, V46, P915, DOI 10.1108/IJRDM-08-2016-0139
Polo Francisca Castilla, 2007, International Journal of Accounting, Auditing and Performance Evaluation, V4, P360, DOI 10.1504/IJAAPE.2007.017084
PRITCHARD A, 1969, J DOC, V25, P348
Prylypko SM, 2019, FINANC CREDIT ACT, V4, P536
Qurashi LA, 2020, INT J LEARN INTELL C, V17, P61, DOI 10.1504/IJLIC.2020.105324
Rahman Md. Musfiqur, 2016, [The Journal of Industrial Distribution & Business, 산경연구논집], V7, P5
Ratia M, 2018, MEDITARI ACCOUNT RES, V26, P531, DOI 10.1108/MEDAR-08-2017-0200
Restrepo G, 2017, J MATH CHEM, V55, P1589, DOI 10.1007/s10910-017-0747-7
Rodríguez-Muñiz M, 2015, AM J CULT SOCIOL, V3, P89, DOI 10.1057/ajcs.2014.16
Rodríguez-Ruiz O, 2009, MANAG RES, V7, P203, DOI 10.2753/JMR1536-5433070303
Romanelli JP, 2018, ECOL ENG, V120, P311, DOI 10.1016/j.ecoleng.2018.06.015
Romanelli M, 2018, MEDITARI ACCOUNT RES, V26, P483, DOI 10.1108/MEDAR-10-2017-0225
Rooney J, 2016, BRIT ACCOUNT REV, V48, P1, DOI 10.1016/j.bar.2015.07.002
Rzhetsky A, 2008, CELL, V134, P9, DOI 10.1016/j.cell.2008.06.029
Saenz J, 2017, EUR J INT MANAG, V11, P129, DOI 10.1504/EJIM.2017.10003246
Santos BP., 2018, Revista Producao E Desenvolvimento, V4, P111, DOI DOI 10.32358/RPD.2018.V4.316
Sardo F, 2018, J INTELLECT CAP, V19, P747, DOI 10.1108/JIC-07-2017-0099
Scarlett L, 2016, FRONT ECOL ENVIRON, V14, P116, DOI 10.1002/fee.1247
Secundo G, 2018, J INTELLECT CAP, V19, P157, DOI 10.1108/JIC-11-2016-0113
Secundo G, 2017, TECHNOL FORECAST SOC, V123, P229, DOI 10.1016/j.techfore.2016.12.013
Secundo G, 2017, J INTELLECT CAP, V18, P242, DOI 10.1108/JIC-10-2016-0097
Seetharaman A., 2004, Journal of Intellectual Capital, V5, P131, DOI DOI 10.1108/14691930410512969
Seleim AAS, 2011, J INTELLECT CAP, V12, P586, DOI 10.1108/14691931111181742
Serenko Alexander, 2009, International Journal of Business Governance and Ethics, V4, P390, DOI 10.1504/IJBGE.2009.023790
Serenko A, 2017, J KNOWL MANAG, V21, P675, DOI 10.1108/JKM-11-2016-0490
Serenko A, 2013, J INTELLECT CAP, V14, P476, DOI 10.1108/JIC-11-2012-0099
Serenko A, 2009, J INTELLECT CAP, V10, P8, DOI 10.1108/14691930910922860
Serenko A, 2010, J KNOWL MANAG, V14, P3, DOI 10.1108/13673271011015534
Shamim S, 2019, INT J HUM RESOUR MAN, V30, P2387, DOI 10.1080/09585192.2017.1323772
Sharabati AAA, 2016, INT J BUS PERFORM MA, V17, P428, DOI 10.1504/IJBPM.2016.079278
SJR, 2020, SCI J RANKINGS
Soo C, 2017, HUM RESOUR MANAGE-US, V56, P431, DOI 10.1002/hrm.21783
Su HY, 2013, SUPPLY CHAIN MANAG, V18, P178, DOI 10.1108/13598541311318818
Subbanarasimha, 2001, J INTELLECT CAP, V2, P9
Sullivan Jr P. H., 2000, J ACCOUNTING LIT, V1, P328, DOI DOI 10.1108/14691930010359234
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Sveiby K.E., 2001, J INTELLECT CAP, V2, P344, DOI DOI 10.1108/14691930110409651
Talafidaryani M., 2021, Business Information Review, V38, P79
Talafidaryani M, 2021, MANAG RES REV, V44, P236, DOI 10.1108/MRR-03-2020-0139
Tan HP, 2008, J INTELLECT CAP, V9, P585, DOI 10.1108/14691930810913177
Tang M, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051655
Tarus DK, 2015, J AFR BUS, V16, P48, DOI 10.1080/15228916.2015.1061284
Thanuskodi S., 2010, LIB PHILOS PRACTICE, V18, P12
Tlili M, 2019, J INTELLECT CAP, V20, P642, DOI 10.1108/JIC-02-2019-0034
Turner N, 2015, INT J PROJ MANAG, V33, P177, DOI 10.1016/j.ijproman.2014.05.002
Tymoshenko A, 2017, FINANC CREDIT ACT, V1, P345, DOI 10.18371/fcaptp.v1i22.110071
Vale J, 2017, J KNOWL MANAG, V21, P1183, DOI 10.1108/JKM-01-2017-0043
van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075
VANDEVIJVER F, 1995, J CROSS CULT PSYCHOL, V26, P591, DOI 10.1177/002202219502600604
Vishnu S, 2014, J INTELLECT CAP, V15, P83, DOI 10.1108/JIC-04-2013-0049
Wang MC, 2015, J BUS ETHICS, V130, P223, DOI 10.1007/s10551-014-2339-9
Weiss A.D., 2001, TOPOGRAPHIC POSITION
WERNERFELT B, 1984, STRATEGIC MANAGE J, V5, P171, DOI 10.1002/smj.4250050207
Willett P, 2007, J MOL GRAPH MODEL, V26, P602, DOI 10.1016/j.jmgm.2007.03.008
Xu J, 2019, J INTELLECT CAP, V20, P488, DOI 10.1108/JIC-04-2018-0074
Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031
Zhang P, 2015, RENEW SUST ENERG REV, V48, P88, DOI 10.1016/j.rser.2015.03.093
NR 192
TC 3
Z9 3
U1 6
U2 71
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 1469-1930
EI 1758-7468
J9 J INTELLECT CAP
JI J. Intellect. Cap.
PD MAY 26
PY 2022
VL 23
IS 4
BP 864
EP 912
DI 10.1108/JIC-02-2020-0057
EA APR 2021
PG 49
WC Business; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA 1M1TC
UT WOS:000644797200001
DA 2024-09-05
ER
PT J
AU Spyroglou, O
Yildirim, C
Koumpis, A
AF Spyroglou, Odysseas
Yildirim, Cagri
Koumpis, Adamantios
TI Use of AI to Help Researchers Improve their Research Funding Capacities,
Relevance, and Performance
SO INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING
LA English
DT Article; Proceedings Paper
CT 3rd IEEE International Conference on Transdisciplinary Artificial
Intelligence (TransAI) / 4th IEEE International Conference on Artificial
Intelligence for Industries (IEEEAI4I)
CY 2021
CL ELECTR NETWORK
DE Research management; Horizon Europe; research fundraising;
transdisciplinary AI; ethics
AB Researchers and scientists face globally, and parallel to their core research activities, increased pressure to successfully lead or participate in fundraising activities. The field has been experiencing fierce competition with success rates of proposals falling dramatically down, while the complexity of the funding instruments and the need for acquiring a wide understanding of issues related to impacts, research priorities in connection to wider national and transnational (e.g. EU-wide) policy aspects, increase discomfort levels for the individual researchers and scientists. In this paper, we suggest the use of transdisciplinary AI tools to support (semi-)- automation of several steps of the application and proposal preparation processes.
C1 [Spyroglou, Odysseas] Int Dev Ireland, Dublin, Ireland.
[Yildirim, Cagri] TUBITAK Turkish Sci & Technol Res Council, Ankara, Turkey.
[Koumpis, Adamantios] Rhein Westfal TH Aachen, Lehrstuhl Informat 5, Aachen, Germany.
C3 RWTH Aachen University
RP Spyroglou, O (corresponding author), Int Dev Ireland, Dublin, Ireland.
EM o.spyroglou@idi.ie; cagri.yildirim@tubitak.gov.tr;
koumpis@dbis.rwth-aachen.de
RI Koumpis, Adamantios/HNP-1175-2023
OI Koumpis, Adamantios/0000-0003-2661-7749; Spyroglou,
Odysseas/0000-0002-1885-4392
CR [Anonymous], 2021, NATURE, V595, P150, DOI 10.1038/d41586-021-01823-0
[Anonymous], 2016, 2016 ICML WORKSH HUM
Christian B., 2016, Algorithms to live by: The computer science of human decisions
Contexity, 2021, SCI FUND EXPL RES FU
European Commission, 2015, HOR 2020 1 RES
European Commission, 2021, HOR EUR INV SHAP FUT
European Commission, 2018, COM2018237 EUR COMM
Kearns Michael, 2019, The Ethical Algorithm: The Science of Socially Aware Algorithm Design
Koh PW, 2017, PR MACH LEARN RES, V70
Labuschagne L, 2021, J RES MANAG ADM, V1, P1
Lakkaraju H, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1675, DOI 10.1145/2939672.2939874
Reardon S, 2021, NATURE, V595, P321, DOI 10.1038/d41586-021-01829-8
Ribeiro MT, 2018, AAAI CONF ARTIF INTE, P1527
Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778
Woolston Chris, 2021, Nature, DOI 10.1038/d41586-021-01548-0
Woolston C, 2020, NATURE, V588, P181, DOI 10.1038/d41586-020-03381-3
Woolston C, 2020, NATURE, V587, P689, DOI 10.1038/d41586-020-03235-y
Zhang XZ, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P226, DOI 10.1145/3292500.3330898
Zweig K. A., 2019, ALGORITHMUS HAT KEIN
NR 19
TC 0
Z9 0
U1 3
U2 10
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 1793-351X
EI 1793-7108
J9 INT J SEMANT COMPUT
JI Int. J. Semant. Comput.
PD MAR
PY 2022
VL 16
IS 01
BP 93
EP 106
DI 10.1142/S1793351X22400050
PG 14
WC Computer Science, Artificial Intelligence
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA 0U0DX
UT WOS:000787331400006
DA 2024-09-05
ER
PT J
AU Hadhiatma, A
Azhari, A
Suyanto, Y
AF Hadhiatma, Agung
Azhari, Azhari
Suyanto, Yohanes
TI A Scientific Paper Recommendation Framework Based on Multi-Topic
Communities and Modified PageRank
SO IEEE ACCESS
LA English
DT Article
DE Feature extraction; Filtering; Semantics; Recommender systems; Neural
networks; Data mining; Collaborative filtering; Citation analysis;
Ranking (statistics); Citation recommendation; academic citation
network; serendipitous perspectives; multi-topic community; personalized
PageRank
ID MEASURING ACADEMIC INFLUENCE; SERENDIPITY; SYSTEMS
AB Personalized PageRank is a variant of PageRank, widely developed for citation recommendation. However, the personalized PageRank that works with a vast amount and rich scholarly data still results in information overload. Sometimes, junior scholars still need help to arrange queries quickly because of limited domain knowledge. Senior researchers need reference papers regarding a similar topic they intend to search for and related topics as a new insight. In this research, scientific citation recommendation aims to find the most influential papers with similar and related topics. Related topic papers in serendipitous perspectives are reference papers that are novel, diversified and unexpected to a user. The unexpectedness of recommended papers can be papers with different topics to queries but still relevant. To accomplish these challenges, we propose a framework of scientific citation recommendation with serendipitous perspectives. The framework includes feature extraction of an academic citation network, selection of multi-topic communities, and ranking papers in the selected multi-topic communities by modified PageRank. Papers in the chosen communities tend to link to similar and related papers. Modified PageRank is an extension of personalized PageRank, which works on multi-topic communities and manuscript queries. The experiments reveal that the proposed models outperform some models of personalized PageRank and some models of Content-Based Filtering. The multi-topic communities-based models work more effectively than the baselines if they run in a large dataset since the topic communities become more cohesive.
C1 [Hadhiatma, Agung] Sanata Dharma Univ, Fac Sci & Technol, Dept Informat, Yogyakarta 55282, Indonesia.
[Hadhiatma, Agung; Azhari, Azhari; Suyanto, Yohanes] Univ Gadjah Mada, Fac Math & Nat Sci, Dept Comp Sci & Elect, Yogyakarta 55281, Indonesia.
C3 Gadjah Mada University
RP Azhari, A (corresponding author), Univ Gadjah Mada, Fac Math & Nat Sci, Dept Comp Sci & Elect, Yogyakarta 55281, Indonesia.
EM arisn@ugm.ac.id
RI Suyanto, Yohanes/AFU-0693-2022
OI Suyanto, Yohanes/0000-0003-1670-8620; Hadhiatma,
Agung/0009-0002-8952-3045
CR Ali Z, 2020, ARTIF INTELL REV, V53, P5217, DOI 10.1007/s10462-020-09819-4
Amami M, 2016, LECT NOTES COMPUT SC, V9612, P200, DOI 10.1007/978-3-319-41754-7_17
[Anonymous], 2013, P AAAI C ART INT
Beck B., 2018, SOCARXIV, DOI [10.31235/osf.io/me8zd.[50]X, DOI 10.31235/OSF.IO/ME8ZD.[50]X]
Bhagavatula C., 2018, Long Papers, V1, P238, DOI DOI 10.18653/V1/N18-1022
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Cai XY, 2019, IEEE ACCESS, V7, P457, DOI 10.1109/ACCESS.2018.2885507
Cai XY, 2018, IEEE T NEUR NET LEAR, V29, P6026, DOI 10.1109/TNNLS.2018.2817245
Chandrasekaran K, 2008, LECT NOTES COMPUT SC, V5149, P83, DOI 10.1007/978-3-540-70987-9_11
Dai T, 2019, IEEE ACCESS, V7, P1706, DOI 10.1109/ACCESS.2018.2884981
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Ding Y, 2011, J AM SOC INF SCI TEC, V62, P449, DOI 10.1002/asi.21467
Dunaiski M, 2019, J INFORMETR, V13, P270, DOI 10.1016/j.joi.2019.01.003
Feng Xia, 2016, IEEE Transactions on Big Data, V2, P101, DOI 10.1109/TBDATA.2016.2555318
Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799
Hatakenaka S, 2012, IEEE INT S WEB SYST, P97, DOI 10.1109/WSE.2012.6320539
Hernando A, 2016, KNOWL-BASED SYST, V97, P188, DOI 10.1016/j.knosys.2015.12.018
Jardine James, 2014, P 14 C EUR CHAPT ASS, P501
Jeong C, 2019, Arxiv, DOI arXiv:1903.06464
Kang Z, 2016, AAAI CONF ARTIF INTE, P179
Kazemi B., 2017, PREDICTIVE MODEL BAS, P1
Kotkov D, 2020, COMPUTING, V102, P393, DOI 10.1007/s00607-018-0687-5
Kotkov D, 2016, KNOWL-BASED SYST, V111, P180, DOI 10.1016/j.knosys.2016.08.014
Lamurias A, 2019, BMC BIOINFORMATICS, V20, DOI 10.1186/s12859-019-3157-y
Li X, 2013, DECIS SUPPORT SYST, V54, P880, DOI 10.1016/j.dss.2012.09.019
Lops P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P73, DOI 10.1007/978-0-387-85820-3_3
Luo X, 2015, IEEE T IND INFORM, V11, P946, DOI 10.1109/TII.2015.2443723
McNee SM, 2002, P 2002 ACM C COMP SU, P116, DOI DOI 10.1145/587078.587096
Mu DJ, 2018, IEEE ACCESS, V6, P3107, DOI 10.1109/ACCESS.2017.2787179
Page L., 1999, The PageRank citation ranking: bringing order to the web
Park H, 2017, IEEE INT CONF BIG DA, P756, DOI 10.1109/BigData.2017.8257991
Park S, 2019, IEEE ACCESS, V7, P163049, DOI 10.1109/ACCESS.2019.2952653
Le Q, 2014, PR MACH LEARN RES, V32, P1188
Ren ZM, 2019, PHYSICA A, V513, P325, DOI 10.1016/j.physa.2018.09.001
Roul RK, 2021, INT J DATA SCI ANAL, V11, P37, DOI 10.1007/s41060-020-00232-2
Schein A. I., 2002, Proceedings of SIGIR 2002. Twenty-Fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P253, DOI 10.1145/564376.564421
Shaojie Qiao, 2010, Proceedings 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2010), P390, DOI 10.1109/ISKE.2010.5680842
Shi C, 2017, IEEE T KNOWL DATA EN, V29, P17, DOI 10.1109/TKDE.2016.2598561
Sugiyama Kazunari., 2015, SIGWEB Newsl. Winter, p4:1, DOI [10.1145/2719943.2719947, DOI 10.1145/2719943.2719947]
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Tang J, 2008, IEEE DATA MINING, P1055, DOI 10.1109/ICDM.2008.71
Tang TY, 2009, IEEE INTERNET COMPUT, V13, P34, DOI 10.1109/MIC.2009.73
Tao M., 2020, P ART INT SEC 6 INT, VVolume 6, P571
Wei YC, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/8825947
Xia F, 2020, IEEE TETCI, V4, P95, DOI 10.1109/TETCI.2019.2952908
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
Xia F, 2014, IEEE T EMERG TOP COM, V2, P364, DOI 10.1109/TETC.2014.2356505
Xie WL, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1325, DOI 10.1145/2783258.2783278
Yang J., 2009, ADV DATA WEB MANAGEM, V5446
Yang LB, 2018, IEEE ACCESS, V6, P59618, DOI 10.1109/ACCESS.2018.2872730
Zhang YJ, 2018, SCIENTOMETRICS, V114, P1345, DOI 10.1007/s11192-017-2626-1
Zhang Y, 2019, J INFORMETR, V13, P616, DOI 10.1016/j.joi.2019.03.013
Zhao F, 2019, SCIENTOMETRICS, V118, P1119, DOI 10.1007/s11192-019-03010-5
Zhou XK, 2021, IEEE T EMERG TOP COM, V9, P246, DOI 10.1109/TETC.2018.2860051
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 55
TC 1
Z9 3
U1 7
U2 19
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2023
VL 11
BP 25303
EP 25317
DI 10.1109/ACCESS.2023.3251189
PG 15
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA A3CL9
UT WOS:000953944100001
OA gold
DA 2024-09-05
ER
PT J
AU Wei, CL
Li, J
Shi, DB
AF Wei, Chunli
Li, Jiang
Shi, Dongbo
TI Quantifying revolutionary discoveries: Evidence from Nobel prize-winning
papers
SO INFORMATION PROCESSING & MANAGEMENT
LA English
DT Article
DE Revolutionary research; CD index; Citation count; Nobel prize-winning
papers; Multivariate linear regression
ID CITATION ANALYSIS; H-INDEX; SCIENCE; IMPACT; JOURNALS; IDENTIFICATION;
INSTITUTIONS; RESEARCHERS; PERFORMANCE; CREATIVITY
AB Numerous metrics have been developed to identify revolutionary science which is crucial for advancing science. However, these metrics have rarely successfully identified revolutionary dis-coveries. We propose a two-dimension metric to quantify revolutionary discoveries by combining the consolidation-or-destabilization (CD) index with the citation count. To verify the validity of the metric, we utilize multivariate linear regression to investigate the differences in the CD indices and citations between 164 Nobel prize-winning papers from 1976 to 2016 (i.e., revolu-tionary science) and 9,034 counterparts that are similar to the Nobel prize-winning papers in terms of bibliographic information. We find that our proposed metric successfully shows a sig-nificant and distinct difference between the Nobel prize-winning papers and their counterparts in that the former receive around 880 more citations and 0.07 higher CD indices than the latter. The reliability of our proposed measure is robust.
C1 [Wei, Chunli; Li, Jiang] Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China.
[Shi, Dongbo] Shanghai Jiao Tong Univ, Sch Int & Publ Affairs, Shanghai 200230, Peoples R China.
C3 Nanjing University; Shanghai Jiao Tong University
RP Li, J (corresponding author), Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China.; Shi, DB (corresponding author), Shanghai Jiao Tong Univ, Sch Int & Publ Affairs, Shanghai 200230, Peoples R China.
EM lijiang@nju.edu.cn; shidongbo@sjtu.edu.cn
RI Shi, Dongbo/ISU-4223-2023; Li, Jiang/JHV-1585-2023; Li,
Jiang/Z-1709-2019
OI Li, Jiang/0000-0001-5769-8647
CR Abramo G, 2016, SCIENTOMETRICS, V109, P1711, DOI 10.1007/s11192-016-2143-7
Abramo G, 2011, SCIENTOMETRICS, V87, P499, DOI 10.1007/s11192-011-0352-7
Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575
AMABILE TM, 1982, J PERS SOC PSYCHOL, V43, P997, DOI 10.1037/0022-3514.43.5.997
Antonakis J, 2008, J AM SOC INF SCI TEC, V59, P956, DOI 10.1002/asi.20802
Aziz NA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059814
Azoulay P, 2019, NATURE, V566, P330, DOI 10.1038/d41586-019-00350-3
Bar-Ilan J, 2006, INFORM PROCESS MANAG, V42, P1553, DOI 10.1016/j.ipm.2006.03.019
Baregheh A, 2009, MANAGE DECIS, V47, P1323, DOI 10.1108/00251740910984578
Bornmann L, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101159
Bornmann L, 2020, SCIENTOMETRICS, V123, P1149, DOI 10.1007/s11192-020-03406-8
Bornmann L, 2019, PROF INFORM, V28, DOI 10.3145/epi.2019.mar.07
Bornmann L, 2014, RES EVALUAT, V23, P166, DOI 10.1093/reseval/rvu002
Bornmann L, 2011, J INFORMETR, V5, P228, DOI 10.1016/j.joi.2010.10.009
Bower J.L., 1996, Journal of Product Innovation Management, V1, P75
Cao LK, 2022, SOCIOL COMPASS, V16, DOI 10.1111/soc4.13043
Casadevall A, 2016, MBIO, V7, DOI 10.1128/mBio.01902-16
Casadevall A, 2016, MBIO, V7, DOI 10.1128/mBio.00158-16
Chan HF, 2016, CESIFO ECON STUD, V62, P170, DOI 10.1093/cesifo/ifv010
Chan HF, 2012, ECON BULL, V32, P3365
Chan HF, 2014, RES EVALUAT, V23, P210, DOI 10.1093/reseval/rvu011
Chan HF, 2013, NATURE, V500, P29, DOI 10.1038/500029c
Chan KC, 2009, ACCOUNT FINANC, V49, P59, DOI 10.1111/j.1467-629X.2007.00254.x
Charlton BG, 2007, MED HYPOTHESES, V68, P931, DOI 10.1016/j.mehy.2006.12.006
Chen JY, 2021, RES POLICY, V50, DOI 10.1016/j.respol.2020.104115
Christensen CM, 2015, HARVARD BUS REV, V93, P44
Cohen IB., 1985, Revolution in science
COLE S, 1970, AM J SOCIOL, V76, P286, DOI 10.1086/224934
Cooper JR., 1998, MANAGE DECIS, V36, P493, DOI [10.1108/00251749810232565, DOI 10.1108/00251749810232565]
Costas R, 2010, SCIENTOMETRICS, V82, P517, DOI 10.1007/s11192-010-0187-7
Dan Y, 2008, PORTL INT CONF MANAG, P402, DOI 10.1109/PICMET.2008.4599648
Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626
Fagerberg J., 2004, OXFORD HDB INNOVATIO, P1, DOI [10.1093/oxfordhb/9780199286805.001.0001, DOI 10.1093/OXFORDHB/9780199286805.001.0001]
Fleming L, 2001, MANAGE SCI, V47, P117, DOI 10.1287/mnsc.47.1.117.10671
Forgeard MJC, 2013, PSYCHOL AESTHET CREA, V7, P245, DOI 10.1037/a0031223
Fortunato S., 2018, SCIENCE, P359
Frandsen TF, 2013, J AM SOC INF SCI TEC, V64, P437, DOI 10.1002/asi.22785
Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366
Gao X, 2012, SCIENTOMETRICS, V90, P749, DOI 10.1007/s11192-011-0554-z
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Govindarajan V, 2006, J PROD INNOVAT MANAG, V23, P12, DOI 10.1111/j.1540-5885.2005.00176.x
Harzing AW, 2013, SCIENTOMETRICS, V94, P1057, DOI 10.1007/s11192-012-0777-7
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jiang S, 2019, SCIENTOMETRICS, V121, P1599, DOI 10.1007/s11192-019-03242-5
Kauffman S., 1996, Investigations: The Nature of Autonomous Agents and the Worlds They Mutually Create
Kline S., 1986, OVERVIEW INNOVATION, DOI DOI 10.1108/14601069810368485
Koestler Arthur., 1964, The Act of Creation
Kuhn T, 1970, The Structure of Scientific Revolutions, V2nd, DOI [10.7208/chicago/9780226458106.001.0001, DOI 10.7208/CHICAGO/9780226458106.001.0001]
Latour B., 1987, Science in Action
Laudel G, 2014, RES POLICY, V43, P1204, DOI 10.1016/j.respol.2014.02.006
Lee YN, 2015, RES POLICY, V44, P684, DOI 10.1016/j.respol.2014.10.007
Leydesdorff L, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101219
Leydesdorff L, 2021, PROF INFORM, V30, DOI 10.3145/epi.2021.ene.21
Li JC, 2019, SCI DATA, V6, DOI 10.1038/s41597-019-0033-6
Lievers WB, 2012, INFORM PROCESS MANAG, V48, P1116, DOI 10.1016/j.ipm.2012.01.009
Lin YL, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101234
Lyu DQ, 2021, SCIENTOMETRICS, V126, P287, DOI 10.1007/s11192-020-03757-2
Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006
Min C, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2020.102428
Mingers J, 2012, INFORM PROCESS MANAG, V48, P234, DOI 10.1016/j.ipm.2011.03.009
NSB (National Science Board), 2007, ENH SUPP TRANSF RES
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
Patel VM, 2013, MED PRIN PRACT, V22, P178, DOI 10.1159/000341756
Ponomarev IV, 2014, SCIENTOMETRICS, V100, P755, DOI 10.1007/s11192-014-1320-9
Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017
Rodríguez-Navarro A, 2011, J DOC, V67, P582, DOI 10.1108/00220411111145007
Rosenbloom JL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138176
Rosenkopf L, 2011, ORGAN SCI, V22, P1297, DOI 10.1287/orsc.1100.0637
Ruan XM, 2021, TECHNOL FORECAST SOC, V172, DOI 10.1016/j.techfore.2021.121071
Savov P, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102168
Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009
Schreiber M, 2013, SCIENTOMETRICS, V97, P821, DOI 10.1007/s11192-013-0984-x
Schumpeter, 1942, Capitalism, Socialism and Democracy
Shimogawa S, 2012, PHYS REV E, V85, DOI 10.1103/PhysRevE.85.056121
Shinohara K, 2010, COMPUT ECON, V35, P51, DOI 10.1007/s10614-009-9191-5
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
Staudt J, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0200597
Sugimoto CR, 2021, NATURE, V593, P30, DOI 10.1038/d41586-021-01169-7
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
THOMPSON VA, 1965, ADMIN SCI QUART, V10, P1, DOI 10.2307/2391646
Tijssen RJW, 2002, SCIENTOMETRICS, V54, P381, DOI 10.1023/A:1016082432660
TOULMIN S, 1970, DOES DISTINCTION NOR
Usher AbbotP., 1954, A History of Mechanical Invention
Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474
van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1
Vinkler P, 2010, CHANDOS INF PROF SER, P1
Wagner CS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134164
Walters GD, 2006, SCIENTOMETRICS, V69, P499, DOI 10.1007/s11192-006-0166-1
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Waltman L, 2013, SCIENTOMETRICS, V96, P699, DOI 10.1007/s11192-012-0913-4
Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006
Wang MY, 2012, SCIENTOMETRICS, V93, P635, DOI 10.1007/s11192-012-0766-x
Weitzman ML, 1998, Q J ECON, V113, P331, DOI 10.1162/003355398555595
Winnink JJ, 2015, SCIENTOMETRICS, V102, P113, DOI 10.1007/s11192-014-1451-z
Wu LF, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101290
Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9
Xu HY, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102862
Zairi M., 1994, Total Quality Management, V5, P27
Zhou LX, 2022, INFORM SCIENCES, V596, P460, DOI 10.1016/j.ins.2022.03.038
Zhou LX, 2022, J AMB INTEL HUM COMP, DOI 10.1007/s12652-021-03664-1
NR 100
TC 6
Z9 7
U1 30
U2 135
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-4573
EI 1873-5371
J9 INFORM PROCESS MANAG
JI Inf. Process. Manage.
PD MAY
PY 2023
VL 60
IS 3
AR 103252
DI 10.1016/j.ipm.2022.103252
EA JAN 2023
PG 16
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 8A0AE
UT WOS:000915910600001
DA 2024-09-05
ER
PT J
AU Ling, NH
Chen, CJ
Teh, CS
John, DS
Ch'ng, LC
Lay, YF
AF Ling, Nie Hui
Chen, Chwen Jen
Teh, Chee Siong
John, Dexter Sigan
Ch'ng, Looi Chin
Lay, Yoon Fah
TI Global Trends of Educational Data Mining in Online Learning
SO INTERNATIONAL JOURNAL OF TECHNOLOGY IN EDUCATION
LA English
DT Article
DE Educational data mining; Online learning; Bibliometric analysis; Global
trends
ID PREDICTING STUDENT PERFORMANCE; ACADEMIC-PERFORMANCE; ANALYTICS; SYSTEM
AB Educational data mining (EDM) in online learning involves data mining techniques to analyze data from online environments to gain insights into student behavior, performance, and engagement. This study explored EDM in online learning publication trends and focuses. It involved a bibliometric analysis of 615 scholarly works related to EDM in online learning as recorded in Scopus, the largest peer-reviewed citation database, on February 1, 2023. The study examined EDM in online learning publications regarding its evolution and distribution, key focus areas, impact and performance, and prominent authors and collaborations in the last decade, in which the timespan is the period from 2012 to 2022. This bibliometric analysis shows that EDM in online learning is a dynamic area of scientific research as related publications grow steadily throughout the years and involve worldwide collaborations. The study reveals current research trends, offering valuable insights for future researchers to guide their investigations in this field.
C1 [Ling, Nie Hui; Chen, Chwen Jen; Teh, Chee Siong; John, Dexter Sigan] Univ Malaysia Sarawak, Sarawak 94300, Malaysia.
[Ch'ng, Looi Chin] Univ Teknol MARA Sarawak, Jalan Meranek, Sarawak 94300, Malaysia.
[Lay, Yoon Fah] Univ Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia.
C3 University of Malaysia Sarawak; Universiti Malaysia Sabah
RP Chen, CJ (corresponding author), Univ Malaysia Sarawak, Sarawak 94300, Malaysia.
EM cjchen@unimas.my
OI John, Dexter/0000-0003-4096-101X; Lay, Yoon Fah/0000-0002-5219-6696
FU Universiti Malaysia Sarawak through the Malaysia Comprehensive
University Network Grant Scheme [GL/F04/MCUN/20/2020]
FX The author acknowledges the support provided by Universiti Malaysia
Sarawak through the Malaysia Comprehensive University Network Grant
Scheme [GL/F04/MCUN/20/2020].
CR Abana EC, 2019, INT J ADV COMPUT SC, V10, P285
Abdous M, 2012, EDUC TECHNOL SOC, V15, P77
Abhirami K, 2022, COMPUT SYST SCI ENG, V40, P1127, DOI 10.32604/csse.2022.020013
Abu Amrieh E, 2015, 2015 IEEE JORDAN CONFERENCE ON APPLIED ELECTRICAL ENGINEERING AND COMPUTING TECHNOLOGIES (AEECT)
Adejo OW, 2018, J APPL RES HIGH EDUC, V10, P61, DOI 10.1108/JARHE-09-2017-0113
Adeniji B., 2019, Doctoral thesis
Aher SB, 2013, KNOWL-BASED SYST, V51, P1, DOI 10.1016/j.knosys.2013.04.015
Ahmi A., 2021, Bibliometric Analysis for Beginners - A starter guide to begin with a bibliometric study
Bakhshinategh B, 2018, EDUC INF TECHNOL, V23, P537, DOI 10.1007/s10639-017-9616-z
Bharara S, 2018, EDUC INF TECHNOL, V23, P957, DOI 10.1007/s10639-017-9645-7
Bienkowski M., 2012, Enhancing teaching and learning through educational data mining and learning analytics: An issue brief
Burgos C, 2018, COMPUT ELECTR ENG, V66, P541, DOI 10.1016/j.compeleceng.2017.03.005
Cerezo R, 2016, COMPUT EDUC, V96, P42, DOI 10.1016/j.compedu.2016.02.006
Chang YC, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12073562
del Blanco A, 2013, IEEE GLOB ENG EDUC C, P1255, DOI 10.1109/EduCon.2013.6530268
Dondorf T, 2019, ICERI PROC, P6957
Dormezil S., 2019, EDM WORKSHOPS, P17
Dutti A, 2017, IEEE ACCESS, V5, P15991, DOI 10.1109/ACCESS.2017.2654247
Elbadrawy A, 2016, COMPUTER, V49, P61, DOI 10.1109/MC.2016.119
Estacio R.R., 2017, Asian Assoc. Open Univ. J, V12, P52, DOI [10.1108/AAOUJ-01-2017-0016, DOI 10.1108/AAOUJ-01-2017-0016]
Fernández A, 2012, ADV INTELL SYST, V173, P35
Hasan R, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10113894
Helal S, 2018, KNOWL-BASED SYST, V161, P134, DOI 10.1016/j.knosys.2018.07.042
Hu YH, 2014, COMPUT HUM BEHAV, V36, P469, DOI 10.1016/j.chb.2014.04.002
Huebner RA., 2013, Research, V19, P1
Ichou RP, 2018, AUSTRALAS MARK J, V26, P116, DOI 10.1016/j.ausmj.2018.05.007
Juhanák L, 2019, COMPUT HUM BEHAV, V92, P496, DOI 10.1016/j.chb.2017.12.015
Kabakchieva D, 2013, CYBERN INF TECHNOL, V13, P61, DOI 10.2478/cait-2013-0006
Krouska A., 2016, EFFECT PREPROCESSING, DOI [10.1109/IISA.2016.7785373, DOI 10.1109/IISA.2016.7785373]
Lara JA, 2014, COMPUT EDUC, V72, P23, DOI 10.1016/j.compedu.2013.10.009
Lee JE, 2021, COMPUT EDUC, V162, DOI 10.1016/j.compedu.2020.104084
Ortigosa A, 2014, COMPUT HUM BEHAV, V31, P527, DOI 10.1016/j.chb.2013.05.024
Papamitsiou Z, 2014, EDUC TECHNOL SOC, V17, P49
Park Y, 2016, INTERNET HIGH EDUC, V29, P1, DOI 10.1016/j.iheduc.2015.11.001
Raj NS, 2022, J COMPUT EDUC, V9, P113, DOI 10.1007/s40692-021-00199-4
Real EM, 2020, PROC FRONT EDUC CONF
Realinho V, 2022, DATA, V7, DOI 10.3390/data7110146
Romero C, 2007, EXPERT SYST APPL, V33, P135, DOI 10.1016/j.eswa.2006.04.005
Romero C, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1355
Romero C, 2013, COMPUT APPL ENG EDUC, V21, P135, DOI 10.1002/cae.20456
Salloum Said A., 2020, Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). Advances in Intelligent Systems and Computing (AISC 1153), P92, DOI 10.1007/978-3-030-44289-7_9
Schwendimann BA, 2017, IEEE T LEARN TECHNOL, V10, P30, DOI 10.1109/TLT.2016.2599522
Slater J.J., 2010, Collaboration in education
Tawfeeq N., 2022, Indonesian Journal of Electrical Engineering and Computer Science, V28, P1037
Usov Segey, 2020, ICEMT 2020: 2020 4th International Conference on Education and Multimedia Technology, P31, DOI 10.1145/3416797.3416835
Wahid R, 2020, INT REV RES OPEN DIS, V21, P292
Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235
Zhang YQ, 2020, INT J EMERG TECHNOL, V15, P102, DOI 10.3991/ijet.v15i20.15915
NR 48
TC 0
Z9 0
U1 3
U2 5
PU INT SOC TECHNOLOGY EDUCATION & SCIENCE-ISTES
PI MONUMENT
PA 19723 LINDENMERE DR, MONUMENT, COLORADO, UNITED STATES
EI 2689-2758
J9 INT J TECHNOL EDUC
JI Int. J. Technol. Educ.
PY 2023
VL 6
IS 4
BP 656
EP 680
DI 10.46328/ijte.558
PG 25
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA W4GY6
UT WOS:001091237800007
OA gold
DA 2024-09-05
ER
PT J
AU Dutta, D
Aruchamy, S
Mandal, S
Sen, S
AF Dutta, Debeshi
Aruchamy, Srinivasan
Mandal, Soumen
Sen, Soumen
TI Poststroke Grasp Ability Assessment Using an Intelligent Data Glove
Based on Action Research Arm Test: Development, Algorithms, and
Experiments
SO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
LA English
DT Article
DE Stroke (medical condition); Instruments; Force sensors; Medical
services; Data gloves; Accelerometers; Thumb; ARAT; data glove;
poststroke rehabilitation; ROC; SVC
ID REHABILITATION OUTCOMES; BLOCK TEST; STROKE; IMPAIRMENT; CLASSIFICATION;
PERFORMANCE; DISABILITY; NETWORKS; MOVEMENT; BOX
AB Growing impact of poststroke upper extremity (UE) functional limitations entails newer dimensions in assessment methodologies. This has compelled researchers to think way beyond traditional stroke assessment scales during the out-patient rehabilitation phase. In concurrence with this, sensor-driven quantitative evaluation of poststroke UE functional limitations has become a fertile field of research. Here, we have emphasized an instrumented wearable for systematic monitoring of stroke patients with right-hemiparesis for evaluating their grasp abilities deploying intelligent algorithms. An instrumented glove housing 6 flex sensors, 3 force sensors, and a motion processing unit was developed to administer 19 activities of Action Research Arm Test (ARAT) while experimenting on 20 voluntarily participating subjects. After necessary signal conditioning, meaningful features were extracted, and subsequently the most appropriate ones were selected using the ReliefF algorithm. An optimally tuned support vector classifier was employed to classify patients with different degrees of disability and an accuracy of 92% was achieved supported by a high area under the receiver operating characteristic score. Furthermore, selected features could provide additional information that revealed the causes of grasp limitations. This would assist physicians in planning more effective poststroke rehabilitation strategies. Results of the one-way ANOVA test conducted on actual and predicted ARAT scores of the subjects indicated remarkable prospects of the proposed glove-based method in poststroke grasp ability assessment and rehabilitation.
C1 [Dutta, Debeshi] Acad Sci & Innovat Res AcSIR, Chennai, Tamil Nadu, India.
[Aruchamy, Srinivasan; Mandal, Soumen] CSIR Cent Mech Engn Res Inst, Durgapur, India.
[Sen, Soumen] CSIR Cent Mech Engn Res Inst, Robot & Automat Grp, Durgapur 713209, W Bengal, India.
C3 Academy of Scientific & Innovative Research (AcSIR); Council of
Scientific & Industrial Research (CSIR) - India; CSIR - Central
Mechanical Engineering Research Institute (CMERI); Council of Scientific
& Industrial Research (CSIR) - India; CSIR - Central Mechanical
Engineering Research Institute (CMERI)
RP Sen, S (corresponding author), CSIR Cent Mech Engn Res Inst, Robot & Automat Grp, Durgapur 713209, W Bengal, India.
EM soumen_sen@cmeri.res.in
RI MANDAL, SOUMEN/AAS-9672-2020
OI MANDAL, SOUMEN/0000-0002-7353-0067; Aruchamy,
Srinivasan/0000-0001-7942-2377; Sen, Soumen/0000-0003-4906-7727
FU CSIR-Central Mechanical Engineering Research Institute; Department of
Science and Technology, Govt. of India
FX This work was supported in part by CSIR-Central Mechanical Engineering
Research Institute and Department of Science and Technology, Govt. of
India, under Project `Indo-Korean joint network center on robotics'-Node
3, under Grant INT/KOREA/JNC/Robotics dated April 12, 2018.
CR Ahlgren P, 2003, J AM SOC INF SCI TEC, V54, P550, DOI 10.1002/asi.10242
Airaksinen M, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-019-56862-5
AlMahamdy M, 2014, PROCEDIA COMPUT SCI, V37, P325, DOI 10.1016/j.procs.2014.08.048
[Anonymous], BJU INT
Aqueveque P., 2017, Physical Disabilities-Therapeutic Implications, P95
Banerjee TK, 2016, ANN INDIAN ACAD NEUR, V19, P1, DOI 10.4103/0972-2327.168631
BROMBA MUA, 1981, ANAL CHEM, V53, P1583, DOI 10.1021/ac00234a011
Del Din S, 2011, IEEE ENG MED BIO, P5839, DOI 10.1109/IEMBS.2011.6091444
Dutta D., 2020, P INT C COMP EL COMM, P1
Dutta D, 2017, BIOCYBERN BIOMED ENG, V37, P44, DOI 10.1016/j.bbe.2016.09.005
El-Gohary M, 2012, IEEE T BIO-MED ENG, V59, P2635, DOI 10.1109/TBME.2012.2208750
Feigin VL, 2009, LANCET NEUROL, V8, P355, DOI 10.1016/S1474-4422(09)70025-0
Franck JA, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0214651
Fridolfsson J, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19092186
FUGLMEYER AR, 1975, SCAND J REHABIL MED, V7, P13
GOWLAND C, 1993, STROKE, V24, P58, DOI 10.1161/01.STR.24.1.58
Gyllensten IC, 2011, IEEE T BIO-MED ENG, V58, P2656, DOI 10.1109/TBME.2011.2160723
Harrison JK, 2013, CLIN INTERV AGING, V8, P201, DOI 10.2147/CIA.S32405
Hester T., 2006, BSN 2006. International Workshop on Wearable and Implantable Body Sensor Networks
Hogan N, 2009, J MOTOR BEHAV, V41, P529, DOI 10.3200/35-09-004-RC
Kenry, 2016, MICROSYST NANOENG, V2, DOI 10.1038/micronano.2016.43
King RC, 2017, MED ENG PHYS, V42, P1, DOI 10.1016/j.medengphy.2016.12.011
Kononenko I, 1997, APPL INTELL, V7, P39, DOI 10.1023/A:1008280620621
Kotsiantis SB, 2006, ARTIF INTELL REV, V26, P159, DOI 10.1007/S10462-007-9052-3
Krishnamurthi RV, 2013, LANCET GLOB HEALTH, V1, pE259, DOI 10.1016/S2214-109X(13)70089-5
Kristensen HK, 2016, DISABIL REHABIL, V38, P2564, DOI 10.3109/09638288.2016.1138550
Kwakkel G, 2004, STROKE, V35, P2529, DOI 10.1161/01.STR.0000143153.76460.7d
Lang CE, 2013, J HAND THER, V26, P104, DOI 10.1016/j.jht.2012.06.005
Langhorne P, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD000197.pub3
Lee H, 2015, J KOREAN MED SCI, V30, pS139, DOI 10.3346/jkms.2015.30.S2.S139
Lee S, 2018, IEEE T NEUR SYS REH, V26, P125, DOI 10.1109/TNSRE.2017.2755667
Lee SI, 2021, IEEE T BIO-MED ENG, V68, P1871, DOI 10.1109/TBME.2020.3027853
Lemmens RJM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096414
Lin BS, 2017, IEEE T NEUR SYS REH, V25, P2204, DOI 10.1109/TNSRE.2017.2720727
Lin SB, 2015, IEEE T NEUR NET LEAR, V26, P21, DOI 10.1109/TNNLS.2014.2336665
LYLE RC, 1981, INT J REHABIL RES, V4, P483, DOI 10.1097/00004356-198112000-00001
Maceira-Elvira P, 2019, J NEUROENG REHABIL, V16, DOI 10.1186/s12984-019-0612-y
MATHIOWETZ V, 1985, AM J OCCUP THER, V39, P386, DOI 10.5014/ajot.39.6.386
Matthews JohnA., 2014, ENCY ENV CHANGE
Morrison M., 1985, U.S. Patent, Patent No. [4711125A, 4711125]
Narai E, 2016, J GERIATR PHYS THER, V39, P171, DOI 10.1519/JPT.0000000000000067
Noorkoiv M, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-144
Oubre B, 2020, IEEE T NEUR SYS REH, V28, P601, DOI 10.1109/TNSRE.2020.2966950
Pandian JD, 2013, J STROKE, V15, P128
Panwar M, 2019, IEEE T BIO-MED ENG, V66, P3026, DOI 10.1109/TBME.2019.2899927
Patel S, 2012, J NEUROENG REHABIL, V9, DOI 10.1186/1743-0003-9-21
Patel S, 2010, IEEE ENG MED BIO, P6858, DOI 10.1109/IEMBS.2010.5626446
Patel S, 2010, P IEEE, V98, P450, DOI 10.1109/JPROC.2009.2038727
Noi PT, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18010018
PINCUS SM, 1992, COMMUN STAT THEORY, V21, P3061, DOI 10.1080/03610929208830963
Platz T, 2005, CLIN REHABIL, V19, P404, DOI 10.1191/0269215505cr832oa
Prange-Lasonder GB, 2017, INT C REHAB ROBOT, P1401, DOI 10.1109/ICORR.2017.8009444
Preatoni E, 2020, FRONT BIOENG BIOTECH, V8, DOI 10.3389/fbioe.2020.00664
Press W. H., 1990, COMPUT PHYS, V4, P669, DOI DOI 10.1063/1.4822961
Qiu H, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34671-6
Rauch A, 2008, EUR J PHYS REHAB MED, V44, P329
Salazar AJ, 2014, TOP STROKE REHABIL, V21, P12, DOI 10.1310/tsr2101-12
Smale S, 2007, C MO AP C M, P157
Statnikov A, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-319
Urbanowicz RJ, 2018, J BIOMED INFORM, V85, P189, DOI 10.1016/j.jbi.2018.07.014
Uusitalo L, 2007, ECOL MODEL, V203, P312, DOI 10.1016/j.ecolmodel.2006.11.033
van Ommeren AL, 2019, IEEE T NEUR SYS REH, V27, P2128, DOI 10.1109/TNSRE.2019.2939202
Wittmann F, 2016, J NEUROENG REHABIL, V13, DOI 10.1186/s12984-016-0182-1
Yamashita R, 2018, INSIGHTS IMAGING, V9, P611, DOI 10.1007/s13244-018-0639-9
Young RP, 1997, HUM MOVEMENT SCI, V16, P677, DOI 10.1016/S0167-9457(97)00010-9
Yozbatiran N, 2008, NEUROREHAB NEURAL RE, V22, P78, DOI 10.1177/1545968307305353
Yu L, 2016, COMPUT METH PROG BIO, V128, P100, DOI 10.1016/j.cmpb.2016.02.012
Yu L, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16020202
[Yue Shihong 岳士弘], 2003, Applied Mathematics. Series B, A Journal of Chinese Universities, V18, P332, DOI 10.1007/s11766-003-0059-5
Zhang Z, 2016, IEEE T BIO-MED ENG, V63, P859, DOI 10.1109/TBME.2015.2477095
Zhu PZ, 2018, ENTROPY-SWITZ, V20, DOI 10.3390/e20050377
NR 71
TC 13
Z9 14
U1 9
U2 36
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9294
EI 1558-2531
J9 IEEE T BIO-MED ENG
JI IEEE Trans. Biomed. Eng.
PD FEB
PY 2022
VL 69
IS 2
BP 945
EP 954
DI 10.1109/TBME.2021.3110432
PG 10
WC Engineering, Biomedical
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Engineering
GA YK9HO
UT WOS:000745515000045
PM 34495824
DA 2024-09-05
ER
PT S
AU Rafik, M
AF Rafik, Meriem
BE Roumate, F
TI Artificial Intelligence and the Changing Roles in the Field of Higher
Education and Scientific Research
SO ARTIFICIAL INTELLIGENCE IN HIGHER EDUCATION AND SCIENTIFIC RESEARCH:
Future Development
SE Bridging Human and Machine- Future Education with Intelligence
LA English
DT Article; Book Chapter
DE Higher education; Scientific research; Bibliometric analysis; Academic
world; Artificial intelligence; Pedagogy
AB The university as we know it today is going to die. Indeed, we are now seeing the chaos that precedes any change. The influence of new players, such as artificial intelligence, is incompatible with a university that is an essential element of the contemporary industrial, financial, and ideological apparatus (Deneault in La mediocratie. Lux Editeur, Canada, 2015). The revolution of the academic world is imperative, given that the relations between academia and knowledge reflect the evolution of societies. As a result, we will have to guide innovation, which in itself holds no particular moral value. Innovation is as good as what we decide to do with it. However, the absence of a social project prevents us from creating a transversal policy in the economic, social, and cultural fields. This is why the new university that we are going to invent will allow us to take up the immense challenge of serving us in a world soon to be saturated with artificial intelligence. The objective of this research is to analyze the addition of digital technology to the world of conservative universities and to propose an optimal way of orienting scientific research and higher education represented by professor-researchers, to adapt to a digital future that is certainly approaching. This article is organized into three main sections. The first section will expose the changes in the profession of academic professors in both their informational and financial capacities; the second section will focus on the changes in the profession of researchers, also in their informational and financial capacities; and the last section will offer some suggestions to optimize the profession of researchers and professors in the context of their interaction with artificial intelligence.
C1 [Rafik, Meriem] Univ Hassan 2, Casablanca, Morocco.
C3 Hassan II University of Casablanca
RP Rafik, M (corresponding author), Univ Hassan 2, Casablanca, Morocco.
EM miryame108@gmail.com
OI Rafik, Meriem/0009-0007-3985-6083
CR Alexandre L., 2017, La Guerre des Intelligences: comment l'intelligence artificielle va revolutionner l'education
Angell M., 1986, The New England Journal of Medicine, V104
Champagne P., 2004, Pierre Bourdieu. Mouvements d'une pensee
Chandler A. D., 1977, The Visible Hand-The Managerial Revolution in American Business
Coursin R., 2020, Possibles, Automne, P8
Cuillandre H., 2020, Apres l'intelligence artificielle et la robotisation. Remettre l'humain au coeur du monde
Deneault A., 2015, La mediocratie
Dieuaide P., 2003, Le capitalisme cognitif. Un nouveau systeme historique d'accumulation, P02
Dufort P., 2020, Decentrer notre pratique universitaire de la recherche, P69
Dufort P., 2020, The Innovation Journal: The Public Sector Innovation Journal, V25
Engwall L., 2007, Politiques Et Gestion De L'enseignement Superieur, P97
Ford M., 2020, Possibles, Automne, P79
Hedges Chris., 2009, Empire of Illusion: The End of Literacy and the Triumph of Spectacle
hooks b., 1994, Teaching to Transgress: Education as the Practice of Freedom, V1st, P224
Kalestsky A., 2010, Courrier International, P23
Ketele J.-M. D., 2020, Revue internationale d'education, P205
Mills C.Wright., 1951, WHITE COLLAR AM MIDD
Neptune N., 2015, ANALYSE BIBLIOMETRIQUE: UNE AIDE POUR L'EVALUATION DES UNITES DE RECHERCHE
Roc J.-C., 2020, POSSIBLES AUTOMNE, P48
Said E., 1996, De l'intellectuel et du pouvoir, Vessais
Schimanski L. A., 2018, The Evaluation of Scholarship in Academic Promotion and Tenure Processes: Past, Present, and Future
Schumpeter J.A., 1939, Business cycles
Very P., 2019, Intelligence artificielle et recherche en gestion, P131
NR 23
TC 1
Z9 1
U1 1
U2 1
PU SPRINGER-VERLAG SINGAPORE PTE LTD
PI SINGAPORE
PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
SN 2662-5342
BN 978-981-19-8643-7; 978-981-19-8641-3; 978-981-19-8640-6
J9 Bridging Human and M
PY 2023
BP 35
EP 46
DI 10.1007/978-981-19-8641-3_3
D2 10.1007/978-981-19-8641-3
PG 12
WC Computer Science, Artificial Intelligence; Education & Educational
Research
WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH); Book Citation Index – Science (BKCI-S)
SC Computer Science; Education & Educational Research
GA BW5CA
UT WOS:001158874300004
DA 2024-09-05
ER
PT C
AU Hu, JL
Nian, ZY
Wang, XL
AF Hu, Jili
Nian, Zhiyuan
Wang, Xinle
BE Kocaoglu, DF
Anderson, TR
Kozanoglu, DC
Niwa, K
Steenhuis, HJ
TI Research on Financial Performance Evaluation on Artificial Intelligence
Listed Companies in China Based on DEA Method
SO 2019 PORTLAND INTERNATIONAL CONFERENCE ON MANAGEMENT OF ENGINEERING AND
TECHNOLOGY (PICMET)
SE Portland International Conference on Management of Engineering and
Technology
LA English
DT Proceedings Paper
CT Portland International Conference on Management of Engineering and
Technology (PICMET)
CY AUG 25-29, 2019
CL Portland, OR
ID EFFICIENCY
AB China's Artificial Intelligence (Al) industry has developed rapidly in recent years, with the State Council of China releasing a roadmap in July 2017 with a goal of creating a domestic industry worth 1 trillion Yuan and becoming a global Al powerhouse by 2030. This study evaluates the listed companies in China's Al industry from the perspective of financial performance and analyzes the development status of China's Al industry from a macro perspective. This study selects the more objective and appropriate DEA analysis as the evaluation method according to the characteristics of the Al industry. On the basis of summarizing the development status of the Al industry and Al listed companies, an empirical analysis is carried out. In the data sample, 34 Al listed companies in China's Shanghai and Shenzhen stock markets were selected, and the DEA model with output-orientation model was used to analyze the standard data. The result shows that in the different stock board the efficiency presents different development trends and distribution status.
C1 [Hu, Jili; Nian, Zhiyuan; Wang, Xinle] Jilin Univ, Sch Econ, JLU, Changchun, Peoples R China.
C3 Jilin University
RP Hu, JL (corresponding author), Jilin Univ, Sch Econ, JLU, Changchun, Peoples R China.
FU Jilin University project 'China High-tech Industry Innovation Efficiency
Research' [2017ZZ046]
FX This research was supported by Dr. Tim Anderson from Department of
Engineering and Technology Management (ETM) at Portland State
University, who provided insight and expertise that greatly assisted the
research, and with the help of his book Data Envelopment Analysis Using
R'. This research was funded by the Jilin University project 'China
High-tech Industry Innovation Efficiency Research' (project code:
2017ZZ046).
CR [Anonymous], 2018, XINHUA NET 0424
Becsky Nagy P., 2014, ANN U ORADEA EC SCI, P820
Bowlin W.F., 1998, J COST ANAL, V15, P3
Camanho AS, 2005, EUR J OPER RES, V161, P432, DOI 10.1016/j.ejor.2003.07.018
CHARNES A, 1978, EUR J OPER RES, V2, P429, DOI 10.1016/0377-2217(78)90138-8
Chen XG, 2005, CHINA ECON REV, V16, P229, DOI 10.1016/j.chieco.2005.02.001
Edirisinghe NCP, 2007, J BANK FINANC, V31, P3311, DOI 10.1016/j.jbankfin.2007.04.008
Gershgorn Dave, 2018, AI NEW SPACE RACE HE
Johnes J, 2006, EUR J OPER RES, V174, P443, DOI 10.1016/j.ejor.2005.02.044
Lim D.J., 2014, ANDERSON IMPROVING F
Metz Cade, 2018, CHINA MARCHES FORWAR
Shafer SM, 2000, OMEGA-INT J MANAGE S, V28, P125, DOI 10.1016/S0305-0483(99)00039-0
Wall LD, 2018, J ECON BUS, V100, P55, DOI 10.1016/j.jeconbus.2018.05.003
Wright SA, 2018, BUS HORIZONS, V61, P823, DOI 10.1016/j.bushor.2018.07.001
NR 14
TC 1
Z9 1
U1 0
U2 3
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2159-5100
BN 978-1-890843-40-3
J9 PORTL INT CONF MANAG
PY 2019
DI 10.23919/picmet.2019.8893931
PG 6
WC Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering
GA BO5RJ
UT WOS:000518681200155
DA 2024-09-05
ER
PT J
AU Li, HX
Di, HX
Li, J
Tian, SC
AF Li Hongxia
Di Hongxi
Li Jian
Tian Shuicheng
TI Research on the application of the improved genetic algorithm in the
electroencephalogram-based mental workload evaluation for miners
SO JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY
LA English
DT Article
DE Genetic algorithm; particle swarm optimization; improved genetic
algorithm; mental workload; electroencephalogram
AB Electroencephalogram is the electrical phenomena in the cerebral cortex or the scalp surface due to the electrophysiological activity of brain cells. Electroencephalogram has great theoretical and practical significance in measuring mental workload of people. More precise electroencephalographic is a precondition to study mental workload of miners. In this article, based on the actual situation of the electroencephalographic measurement of miners, the particle swarm optimization is introduced to improve the standard genetic algorithm, and put forward a combined method integrating the genetic algorithm with particle swarm optimization for achieving electroencephalogram-based measures of miners' mental workload. Moreover, the MATLAB simulation platform is used for simulation testing. Testing results prove the effectiveness of the combined method.
C1 [Li Hongxia; Di Hongxi] Xian Univ Sci & Technol, Sch Management, Xian, Shaanxi, Peoples R China.
[Li Hongxia; Di Hongxi; Tian Shuicheng] Xian Univ Sci & Technol, Sch Energy Engn, Xian, Shaanxi, Peoples R China.
[Li Hongxia; Di Hongxi; Tian Shuicheng] Xian Univ Sci & Technol, Key Lab Western Mine Exploitat & Hazard Prevent, Xian, Shaanxi, Peoples R China.
[Li Jian] Shanxi Prov AuditOff, Xian, Shaanxi, Peoples R China.
C3 Xi'an University of Science & Technology; Xi'an University of Science &
Technology; Xi'an University of Science & Technology
RP Li, HX (corresponding author), Xian Univ Sci & Technol, Sch Management, Xian, Shaanxi, Peoples R China.
EM hongxidi@sohu.com
FU National Natural Science Foundation of China [71271169, 71273208];
Doctoral Program Foundation [20126121110004, 20116121110002]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: National
Natural Science Foundation of China (71271169, 71273208) and The
Doctoral Program Foundation (20126121110004, 20116121110002).
CR Cinaz B, 2013, PERS UBIQUIT COMPUT, V17, P229, DOI 10.1007/s00779-011-0466-1
Cui SQ, 2014, PR ELECTROMAGN RES S, P1364
Dong YJ, 2013, SCI TECHNOLOGY ENG, V13, P3305
Ebrahimi T, 2003, IEEE SIGNAL PROC MAG, V20, P14, DOI 10.1109/MSP.2003.1166626
Evstigneev AL, 2008, INT J PSYCHOPHYSIOL, V69, P299, DOI 10.1016/j.ijpsycho.2008.05.292
Feng ZM, 2014, COMPUT TECHNOL DEV, V24, P35
Giraudet L, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118556
He L, 2013, NEUROCOMPUTING, V121, P423, DOI 10.1016/j.neucom.2013.05.005
Herff C, 2014, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00935
Jianqiao Liao, 1995, J SYSTEM ENG, V10, P119
Käthner I, 2014, BIOL PSYCHOL, V102, P118, DOI 10.1016/j.biopsycho.2014.07.014
Kai H, 2013, MATH PROBL ENG, V2013, P289
Karakis R., 2013, RECENT PAT BIOMED EN, V6, P188
Krzeszowski T, 2013, LECT NOTES COMPUT SC, P147
Magee R, 2015, ANN IEEE SYST CONF, P230, DOI 10.1109/SYSCON.2015.7116757
Merabti H., 2014, 2014 IEEE 27 CAN C E, P1
Noel JB, 2005, COMPUT OPER RES, V32, P2713, DOI 10.1016/j.cor.2004.03.022
Rejer I., 2013, J THEORETICAL APPL C, V7, P72
Su YW, 2014, LECT NOTES ELECTR EN, V293, P1031, DOI 10.1007/978-3-319-04573-3_126
[王斐 Wang Fei], 2014, [仪器仪表学报, Chinese Journal of Scientific Instrument], V35, P398
[王福旺 Wang Fuwang], 2013, [仪器仪表学报, Chinese Journal of Scientific Instrument], V34, P1146
Wang X., 2002, Genetic Algorithm: Theory, Application, and Software Implementation, V1st
Young MS, 2015, ERGONOMICS, V58, P1, DOI 10.1080/00140139.2014.956151
[赵丽 Zhao Li], 2014, [电子测量与仪器学报, Journal of Electronic Measurement and Instrument], V28, P625
Zhou Xiaojun, 2014, [自动化学报, Acta Automatica Sinica], V40, P1339
NR 25
TC 2
Z9 2
U1 0
U2 4
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1748-3018
EI 1748-3026
J9 J ALGORITHMS COMPUT
JI J. Algorithms Comput. Technol.
PD SEP
PY 2016
VL 10
IS 3
SI SI
BP 198
EP 207
DI 10.1177/1748301816649071
PG 10
WC Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA FJ4HF
UT WOS:000412696900008
OA gold
DA 2024-09-05
ER
PT J
AU Shrivastava, R
Mahajan, P
AF Shrivastava, Rishabh
Mahajan, Preeti
TI Influence of social networking sites on scholarly communication: A study
using literature in Artificial Intelligence
SO JOURNAL OF LIBRARIANSHIP AND INFORMATION SCIENCE
LA English
DT Article
DE Altmetrics; artificial intelligence; online reference managers;
scholarly communication; social networking sites
ID CITATION COUNTS; MENDELEY; INFORMATION; INDICATORS; ALTMETRICS; SERVICES
AB With the advent of Web 2.0 tools and especially social media, researchers are increasingly active on the Web. This has resulted in a transformation in the scholarly communication process through which researchers share and bookmark research works in online platforms. In the present study, the influence of social networking sites on the field of Artificial Intelligence research was studied. The study analysed the influence of social networking sites on both conference papers and journal articles, as in a field like Artificial Intelligence both channels of research dissemination play important roles. The top 100 cited journal articles and conference papers in Artificial Intelligence published in 2009 and 2013 were analysed for their presence on social networking sites and online reference managers. It was found that amongst social networking sites, Mendeley had the greatest influence on research in Artificial Intelligence. Mendeley played the most remarkable role in transforming scholarly communication with the highest coverage of both journal articles and conference papers for both the years 2009 and 2013. It was found that the influence of social networking sites was greater for journal articles than conference papers, the latter still having a lower average Mendeley readership. The highest correlation between citation counts and Mendeley readership was found for journal articles published in 2009, followed by journal articles published in 2013, conference papers published in 2009 and conference papers published in 2013. The average Mendeley readership was also higher for journal articles than for conference papers. Mendeley readership was also found to be higher for journal articles and conference papers published earlier in time, indicating that research works published earlier in time were more popular in social networking sites and online reference managers.
C1 [Shrivastava, Rishabh; Mahajan, Preeti] Panjab Univ, Dept Lib & Informat Sci, Chandigarh 160014, India.
C3 Panjab University
RP Shrivastava, R (corresponding author), Panjab Univ, Dept Lib & Informat Sci, Chandigarh 160014, India.
EM rishabh3@outlook.com
RI Mahajan, Preeti/N-2176-2016
OI Shrivastava, Rishabh/0000-0003-3466-2590
CR Allen HG, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068914
Andersen P., 2007, WHAT IS WEB 20 IDEAS
[Anonymous], 2007, COMMUNICATIONS STRAT
Bar-Ilan J., 2012, P 17 INT C SCI TECHN, P98
Barjak F, 2006, J AM SOC INF SCI TEC, V57, P1350, DOI 10.1002/asi.20454
Boyd DM, 2007, J COMPUT-MEDIAT COMM, V13, P210, DOI 10.1111/j.1083-6101.2007.00393.x
Collins E., 2010, PUBL NETW WORLD TRAN, P271
Collins J., 2010, LIB MEDIA CONNECTION, V29, P24
Davidson LA, 2005, INT J TOXICOL, V24, P25, DOI 10.1080/10915810590921351
Galligan F, 2013, SERIALS REV, V39, P56, DOI 10.1016/j.serrev.2013.01.003
Haustein S, 2015, ASLIB J INFORM MANAG, V67, P246, DOI 10.1108/AJIM-03-2015-0047
Haustein S, 2014, BEYOND BIBLIOMETRICS: HARNESSING MULTIDIMENSIONAL INDICATORS OF SCHOLARLY IMPACT, P327
Hicks A, 2011, COLLAB LIBRARIANSH, V3, P10
Houghton J., 2009, Economics implications of alternative scholarly publishing models: Exploring the costs and benefit: A report to the Joint Information Systems Committee
Kalogirou SA, 2003, PROG ENERG COMBUST, V29, P515, DOI 10.1016/S0360-1285(03)00058-3
Li XM, 2012, SCIENTOMETRICS, V91, P461, DOI 10.1007/s11192-011-0580-x
Ortega JL, 2015, J INFORMETR, V9, P39, DOI 10.1016/j.joi.2014.11.004
MacMillan D, 2012, LIBR MANAGE, V33, P561, DOI 10.1108/01435121211279902
Maflahi N, 2016, J ASSOC INF SCI TECH, V67, P191, DOI 10.1002/asi.23369
Mohammadi E, 2016, J ASSOC INF SCI TECH, V67, P1198, DOI 10.1002/asi.23477
Mohammadi E, 2015, J ASSOC INF SCI TECH, V66, P1832, DOI 10.1002/asi.23286
Mohammadi E, 2014, J ASSOC INF SCI TECH, V65, P1627, DOI 10.1002/asi.23071
Nentwich M., 2014, Opening Science, P107, DOI [DOI 10.1007/978-3-319-00026-8_7, 10.1007/978-3-319-00026-8_7]
Priem J., 2010, ALTMETRICS MANIFESTO
Priem J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048753
Reher S, 2010, ONLINE, V34, P34
Rodgers E.P., 2013, A look at altmetrics and its growing significance to research libraries
Russell S, 1995, ARTIFICIAL INTELLIGE
Sauer IM, 2005, ARTIF ORGANS, V29, P82, DOI 10.1111/j.1525-1594.2004.29005.x
Schlögl C, 2014, SCIENTOMETRICS, V101, P1113, DOI 10.1007/s11192-014-1365-9
Shehata A, 2015, LIBR REV, V64, P428, DOI 10.1108/LR-09-2014-0102
Shrivastava Rishabh, 2016, Science & Technology Libraries, V35, P136, DOI 10.1080/0194262X.2016.1181023
Shrivastava R, 2016, NEW LIB WORLD, V117, P229, DOI 10.1108/NLW-09-2015-0064
Stewart J, 2013, NEW MEDIA SOC, V15, P413, DOI 10.1177/1461444812465141
Thelwall M, 2017, J LIBR INF SCI, V49, P144, DOI 10.1177/0961000615594867
Thelwall M, 2016, ASLIB J INFORM MANAG, V68, P2, DOI 10.1108/AJIM-09-2015-0146
Thelwall M, 2016, J ASSOC INF SCI TECH, V67, P1962, DOI 10.1002/asi.23501
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
NR 38
TC 3
Z9 3
U1 4
U2 33
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0961-0006
EI 1741-6477
J9 J LIBR INF SCI
JI J. Libr. Inf. Sci.
PD SEP
PY 2021
VL 53
IS 3
BP 522
EP 529
DI 10.1177/0961000616678309
PG 8
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA UK0SM
UT WOS:000691685200013
DA 2024-09-05
ER
PT J
AU Wang, DS
AF Wang, Dongsheng
TI Research on raw water quality assessment oriented to drinking water
treatment based on the SVM model
SO WATER SCIENCE AND TECHNOLOGY-WATER SUPPLY
LA English
DT Article
DE chemical dosing process; drinking water treatment; raw water quality
assessment; SVM
ID PARTICLE SWARM OPTIMIZATION; OXIDATION; SHALLOW; FATE; LAKE
AB Raw water quality variation has a great effect on drinking water treatment. To improve the adaptivity of drinking water treatment and stabilize the quality of treated water, a raw water quality assessment method, which is based upon the support vector machine (SVM), is developed in this study. Compared to existing raw water quality assessment methods, the assessment method studied herein is oriented to drinking water treatment and can directly be used for the control of the chemical (alum and ozone) dosing process. To this end, based upon the productive experiences and the analysis of the operating data of water supply, a raw water quality assessment standard oriented to drinking water treatment is proposed. A raw water quality model is set up to assess the raw water quality based upon the SVM technique. Based upon the raw water quality assessment results, a feedforward-feedback control scheme has been designed for the chemical dosing process control of drinking water treatment. Thus, the chemical dosage can be adjusted in time to cope with raw water quality variations and hence, the quality of the treated water is stabilized. Experimental results demonstrate the improved effectiveness of the proposed method of raw water quality assessment and the feedforward-feedback control scheme.
C1 [Wang, Dongsheng] Nanjing Univ Posts & Telecommun, Sch Automat, Nanjing 210003, Jiangsu, Peoples R China.
C3 Nanjing University of Posts & Telecommunications
RP Wang, DS (corresponding author), Nanjing Univ Posts & Telecommun, Sch Automat, Nanjing 210003, Jiangsu, Peoples R China.
EM wangdongsheng@njupt.edu.cn
FU Natural Science Foundation of Jiangsu Province [BK20150841]; NUPTSF
[NY214019, NY214078]
FX This work was supported by Natural Science Foundation of Jiangsu
Province (Grant No. BK20150841), NUPTSF (Grant No. NY214019) and NUPTSF
(Grant No. NY214078).
CR Benson Y., 2006, THESIS
[闭乐鹏 BI Lepeng], 2006, [北京理工大学学报, Journal of beijing institute of technology], V26, P143
Bray M, 2004, J HYDROINFORM, V6, P265, DOI 10.2166/hydro.2004.0020
Chu HB, 2013, J AGR SCI TECH-IRAN, V15, P343
CROMPHOUT J, 2005, TRIBUNE EAU, V58, P15
Delpla I, 2011, WATER SCI TECHNOL, V63, P227, DOI 10.2166/wst.2011.038
Ding S., 2010, INTEL INF MANAGE, V2, P354
Dormido-Canto S., 2004, REV SCI INSTRUMENTS, V75, P4254
Gadgil A, 1998, ANNU REV ENERG ENV, V23, P253, DOI 10.1146/annurev.energy.23.1.253
Ghumman AR, 2011, ENVIRON MONIT ASSESS, V180, P115, DOI 10.1007/s10661-010-1776-x
Hamzah N., 2007, THESIS
Jurado A, 2012, SCI TOTAL ENVIRON, V440, P82, DOI 10.1016/j.scitotenv.2012.08.029
Kalyani S, 2011, IEEE T SYST MAN CY C, V41, P753, DOI 10.1109/TSMCC.2010.2091630
Kannan S, 2004, ELECTR POW SYST RES, V70, P203, DOI 10.1016/j.epsr.2003.12.009
Khajeh A, 2011, IND ENG CHEM RES, V50, P11337, DOI 10.1021/ie2004708
Lian Z., 2012, OPTICAL TECHNIQUE, V552, P459
Lin SW, 2008, EXPERT SYST APPL, V35, P1817, DOI 10.1016/j.eswa.2007.08.088
Liu GH, 2010, EXPERT SYST APPL, V37, P2708, DOI 10.1016/j.eswa.2009.08.008
Liu ZQ, 2014, J ENVIRON ENG, V140, DOI 10.1061/(ASCE)EE.1943-7870.0000735
Mehta S. S., 2007, IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), P527, DOI 10.1049/ic:20070668
Pal M, 2010, IEEE T GEOSCI REMOTE, V48, P2297, DOI 10.1109/TGRS.2009.2039484
Parashar C, 2008, ENVIRON MONIT ASSESS, V140, P119, DOI 10.1007/s10661-007-9853-5
Ren Y, 2010, J COMPUT, V5, P1160, DOI 10.4304/jcp.5.8.1160-1168
Ribeiro AR, 2015, ENVIRON INT, V75, P33, DOI 10.1016/j.envint.2014.10.027
Ross S.L., 1977, Water Pollution Control Federation, V76, P113
Sallanko J, 2013, OZONE-SCI ENG, V35, P86, DOI 10.1080/01919512.2013.758567
Scholkopf B., 1995, KDD-95 Proceedings. First International Conference on Knowledge Discovery and Data Mining, P252
Schulz C.R., 1992, Surface Water Treatment for Communities in Developing Countries
Singh KP, 2005, ANAL CHIM ACTA, V538, P355, DOI 10.1016/j.aca.2005.02.006
Sobsey MD, 2008, ENVIRON SCI TECHNOL, V42, P4261, DOI 10.1021/es702746n
Stepien DK, 2014, WATER RES, V48, P406, DOI 10.1016/j.watres.2013.09.057
Tan J, 2012, J COMPUT, V7, P19, DOI 10.4304/jcp.7.1.19-29
Vapnik Vladimir N., 1995, The nature of statistical learning theory
Vega M, 1998, WATER RES, V32, P3581, DOI 10.1016/S0043-1354(98)00138-9
WANG LIPO., 2005, ADV INFO KNOW PROC
Wenk J, 2013, ENVIRON SCI TECHNOL, V47, P11147, DOI 10.1021/es402516b
Zhou F, 2007, ENVIRON MONIT ASSESS, V132, P1, DOI 10.1007/s10661-006-9497-x
Zhu GW, 2007, HYDROBIOLOGIA, V581, P53, DOI 10.1007/s10750-006-0519-z
Zhu GW, 2005, CHINESE SCI BULL, V50, P577, DOI 10.1360/04wd0083
NR 39
TC 7
Z9 7
U1 7
U2 41
PU IWA PUBLISHING
PI LONDON
PA ALLIANCE HOUSE, 12 CAXTON ST, LONDON SW1H0QS, ENGLAND
SN 1606-9749
J9 WATER SCI TECH-W SUP
JI Water Sci. Technol.-Water Supply
PD JUN
PY 2016
VL 16
IS 3
BP 746
EP 755
DI 10.2166/ws.2015.186
PG 10
WC Engineering, Environmental; Environmental Sciences; Water Resources
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Environmental Sciences & Ecology; Water Resources
GA DO5GR
UT WOS:000377812100018
DA 2024-09-05
ER
PT J
AU Zhang, X
Umeanowai, KO
AF Zhang, Xia
Umeanowai, Kingsley Obiajulu
TI Exploring the transformative influence of artificial intelligence in EFL
context: A comprehensive bibliometric analysis
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article; Early Access
DE Bibliometric analysis; Artificial intelligence; English as a foreign
language; EFL learners' writing skills; VOSviewer visualization
ID EDUCATION
AB This comprehensive bibliometric analysis examines the dynamic impact and influence of artificial intelligence (AI) within the domain of English as a Foreign Language (EFL) from 2013 to 2023. By analysing 3,300 documents from the Web of Science database, the study reveals a positive trend in AI integration, with notable growth attributed to various transformative factors such as the COVID-19 pandemic and increased academic funding. The result analysis identifies leading contributors, top authors, sources, and publishers, revealing China, the United States, and the United Kingdom as influential contributors. The co-occurrence analysis of keywords unveils five clusters representing trends in AI-enhanced language learning, spanning educational technology, EFL teaching factors, learner motivation, and assessment strategies. The study also highlights AI's impact on improving EFL writing skills through tools such as Chatgpt, Grammarly, and Quilbot. However, the study acknowledges limitations in database selection and language constraints. The findings offer valuable insights for researchers, educators, and policymakers, guiding interdisciplinary collaboration and innovative pedagogical approaches.
C1 [Zhang, Xia] Xinyang Agr & Forestry Univ, Dept Foreign language, Xinyang, Peoples R China.
[Umeanowai, Kingsley Obiajulu] Zhengzhou Univ, Foreign Language Dept, Zhengzhou, Peoples R China.
C3 Xinyang Agriculture & Forestry University; Zhengzhou University
RP Umeanowai, KO (corresponding author), Zhengzhou Univ, Foreign Language Dept, Zhengzhou, Peoples R China.
EM xiahui1107@163.com; macleyscp@gmail.com
FU the Higher Education and Teaching Reform Research and Practice Project
of Henan Province; Xinyang Agriculture and Forestry University
FX We would like to express our sincere gratitude to Xinyang Agriculture
and Forestry University for its financial support, which made this
research possible. We also extend our appreciation to the researchers
and educators whose work laid the foundation for this study.DAS:The data
supporting the findings of this article are available upon request from
the corresponding author for researchers who meet the access criteria.
CR Agarwal C, 2019, EDUC INF TECHNOL, V24, P3731, DOI 10.1007/s10639-019-09955-7
Alenizi MAK, 2023, INNOEDUCA, V9, P5, DOI 10.24310/innoeduca.2023.v9i2.16774
Alyasin A, 2023, TEM J, V12, P1593, DOI 10.18421/TEM123-41
Amutuhaire T, 2022, PUBLISH RES Q, V38, P281, DOI 10.1007/s12109-022-09879-0
Banihashem SK, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100803
Baskara F. X. R., 2023, INT C LANG LANG LANG, P105
Deeva G, 2021, COMPUT EDUC, V162, DOI 10.1016/j.compedu.2020.104094
Gasevic D., 2023, Comput. Educ. Artif. Intell., V4, DOI [10.1016/j.caeai.2023.100130, DOI 10.1016/J.CAEAI.2023.100130]
Ikramunnisa E., 2022, Celt: A Journal of Culture English Language Teaching Literature, V22, P259, DOI [10.24167/celt.v22i2.4718, DOI 10.24167/CELT.V22I2.4718]
Jaleniauskien E., 2023, Sustainable Multilingualism, V23, P159, DOI [10.2478/sm-2023-0017, DOI 10.2478/SM-2023-0017]
Jiang RH, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1049401
Karsenti T., 2020, Education and Self Development, V15, P76, DOI [10.26907/esd15.3.07, DOI 10.26907/ESD15.3.07]
Kawinkoonlasate P., 2020, English Language Teaching, V13, P15, DOI DOI 10.5539/ELT.V13N12P15
Kim Hea-Suk, 2021, [Korean Journal of English Language and Linguistics, 영어학], V21, P712
Lameras P, 2022, INFORMATION, V13, DOI 10.3390/info13010014
Li Q., 2020, Computers & Education, V156
Liu XH, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12050701
Luckin R., 2022, Computers and Education: Artificial Intelligence, V3, P100076, DOI DOI 10.1016/J.CAEAI.2022.100076
Maphosa V, 2023, APPL ARTIF INTELL, V37, DOI 10.1080/08839514.2023.2261730
Maxliyo M., 2023, Innovations in Technology and Science Education, V2, P1519
Michel-Villarreal R, 2023, EDUC SCI, V13, DOI 10.3390/educsci13090856
Naikade K., 2020, PalArchs Journal of Archaeology of Egypt/Egyptology, V17, P4205
Ng DTK, 2023, ETR&D-EDUC TECH RES, V71, P137, DOI 10.1007/s11423-023-10203-6
Ouyang F., 2021, Computers Education: Artificial Intelligence, V2, P100020, DOI [10.1016/j.caeai.2021.100020, DOI 10.1016/J.CAEAI.2021.100020]
Pedro F., 2019, ARTIFICIAL INTELLIGE
Prahani BK, 2022, INT J EMERG TECHNOL, V17, P169, DOI 10.3991/ijet.v17i08.29833
Qazi AG, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040385
Tahir A., 2023, Linguistic Forum-A Journal of Linguistics, V5, P50
Voss E, 2023, LANG ASSESS Q, V20, P520, DOI 10.1080/15434303.2023.2288256
Wang XH, 2024, COMPUT ASSIST LANG L, V37, P814, DOI 10.1080/09588221.2022.2056203
Xu B., 2022, P INT SCI C, V1, P572
Zhang D., 2019, IEEE Access, V7, P13310
NR 32
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD 2024 AUG 13
PY 2024
DI 10.1007/s10639-024-12937-z
EA AUG 2024
PG 16
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA D0T4R
UT WOS:001293394800004
OA hybrid
DA 2024-09-05
ER
PT J
AU Acar, S
AF Acar, Selcuk
TI Creativity Assessment, Research, and Practice in the Age of Artificial
Intelligence
SO CREATIVITY RESEARCH JOURNAL
LA English
DT Article; Early Access
ID DIVERGENT THINKING; ORIGINALITY
AB Measurement tools and approaches have played a vital role in advancing creativity research, similar to their role in other scientific disciplines. Precise measurement is crucial for accurate hypothesis testing and comparing different theories. Recently, the field of creativity has reached a significant milestone with advancements in artificial intelligence (AI). AI has the potential to revolutionize creativity assessment methods, offering cost reduction, automation capabilities, and improved reliability compared to human raters. This advancement in measurement precision facilitated by AI can accelerate progress in creativity research. In this paper, I summarize the historical progression of advances in automated creativity assessment methods, present key findings from my recent and current collaborative research efforts and discuss the potential next steps of AI-related developments. Finally, I explore how these developments can support educational practices such as differentiation, enrichment, and identification of gifted and talented students.
C1 [Acar, Selcuk] Univ North Texas, Denton, TX 76203 USA.
[Acar, Selcuk] Univ North Texas, Dept Educ Psychol, Matthews Hall 304E,1300 W Highland St, Denton, TX 76203 USA.
C3 University of North Texas System; University of North Texas Denton;
University of North Texas System; University of North Texas Denton
RP Acar, S (corresponding author), Univ North Texas, Dept Educ Psychol, Matthews Hall 304E,1300 W Highland St, Denton, TX 76203 USA.
EM selcuk.acar@unt.edu
FU Institute of Education Sciences [R305A200519]
FX The work was supported by the Institute of Education Sciences
[R305A200519].
CR Acar S., 2023, A comparison of supervised and unsupervised learning methods in automated scoring of figural tests of creativity
Acar S., 2023, Measuring original thinking in elementary school development and validation of a computational psychometric approach
Acar S, 2023, J CREATIVE BEHAV, V57, P138, DOI 10.1002/jocb.568
Acar S, 2021, GIFTED CHILD QUART, DOI 10.1177/00169862211061874
Acar S, 2021, GIFTED CHILD QUART, V65, P354, DOI 10.1177/00169862211012964
Acar S, 2014, CREATIVITY RES J, V26, P229, DOI 10.1080/10400419.2014.901095
Acara S, 2019, THINK SKILLS CREAT, V33, DOI 10.1016/j.tsc.2019.100574
AMABILE TM, 1982, J PERS SOC PSYCHOL, V43, P997, DOI 10.1037/0022-3514.43.5.997
Barbot B, 2019, PSYCHOL AESTHET CREA, V13, P233, DOI 10.1037/aca0000233
Beaty RE, 2022, CREATIVITY RES J, V34, P245, DOI 10.1080/10400419.2022.2025720
Boden Margaret, 2004, The creative mind: myths and mechanisms, DOI DOI 10.4324/9780203508527
Bower J., 2023, Journal of Advanced Academics
Buczak P, 2023, J CREATIVE BEHAV, V57, P17, DOI 10.1002/jocb.559
Corazza GE, 2016, CREATIVITY RES J, V28, P258, DOI 10.1080/10400419.2016.1195627
Covington MA, 2009, PROCEEDINGS OF THE IEEE SOUTHEASTCON 2009, TECHNICAL PROCEEDINGS, P201
Crammond B., 1999, Investigating creativity in youth, P307
Cropley DH, 2022, PSYCHOL AESTHET CREA, DOI 10.1037/aca0000510
de Chantal PL, 2023, PSYCHOL AESTHET CREA, DOI 10.1037/aca0000592
Dumas D, 2023, J CREATIVE BEHAV, V57, P419, DOI 10.1002/jocb.588
Dumas D, 2021, PSYCHOL AESTHET CREA, V15, P645, DOI 10.1037/aca0000319
Dumas D, 2014, THINK SKILLS CREAT, V14, P56, DOI 10.1016/j.tsc.2014.09.003
Forster EA., 2009, P 31 ANN C COGN SCI, P602
Gla veanu., 2019, CAMBRIDGE HDB CREATI, P9, DOI DOI 10.1017/9781316979839
Guilford JP, 1950, AM PSYCHOL, V5, P444, DOI 10.1037/h0063487
Gutkowsli G., 2018, CreateSpace, DOI [10.1002/jocb.240, DOI 10.1002/JOCB.240]
Khanafer M, 2020, IEEE INSTRU MEAS MAG, V23, P10, DOI 10.1109/mim.2020.9200875
Learned-Miller E.G., 2014, Introduction to Supervised Learning
Organisciak P, 2023, THINK SKILLS CREAT, V49, DOI 10.1016/j.tsc.2023.101356
Organisciak P, 2023, INFORM LEARN SCI, V124, P25, DOI 10.1108/ILS-06-2022-0082
Patterson J. D., 2022, AuDrA: An automated drawing assessment platform for evaluating creativity
Paulus D.H., 1970, Computer simulation of human ratings of creativity. Final report
Popper K., 2005, LOGIC SCI DISCOVERY
Runco M.A., 2017, J GENIUS EMINENCE, V2, P26, DOI [10.18536/jge.2017.04.02.01.03, DOI 10.18536/JGE.2017.04.02.01.03]
RUNCO MA, 1993, GIFTED CHILD QUART, V37, P16, DOI 10.1177/001698629303700103
Runco MA, 2023, CREATIVITY RES J, DOI 10.1080/10400419.2023.2257977
Runco MA, 2012, CREATIVITY RES J, V24, P66, DOI 10.1080/10400419.2012.652929
Runco Mark A., 2023, Journal of Creativity, V33, DOI [DOI 10.1016/J.YJOC.2023.100063, https://doi.org/10.1016/j.yjoc.2023.100063]
Sadler-Smith E, 2022, J CREATIVE BEHAV, V56, P296, DOI 10.1002/jocb.530
Simonton D.K., 1984, Genius, creativity, and leadership
Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162]
Stein MI, 1953, J PSYCHOL, V36, P311, DOI 10.1080/00223980.1953.9712897
Tomlinson CA, 2003, J EDUC GIFTED, V27, P119, DOI 10.1177/016235320302700203
Torrance Ellis Paul, 1966, Torrance tests of creative thinking: Normstechnical manual
NR 43
TC 2
Z9 2
U1 39
U2 71
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1040-0419
EI 1532-6934
J9 CREATIVITY RES J
JI Creativ. Res. J.
PD 2023 OCT 27
PY 2023
DI 10.1080/10400419.2023.2271749
EA OCT 2023
PG 7
WC Psychology, Educational; Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA W3DM5
UT WOS:001090467100001
DA 2024-09-05
ER
PT C
AU Kim, IC
Thoma, GR
AF Kim, In Cheol
Thoma, George R.
GP IEEE
TI Automated Classification of Author's Sentiments in Citation Using
Machine Learning Techniques: A Preliminary Study
SO 2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND
COMPUTATIONAL BIOLOGY (CIBCB)
LA English
DT Proceedings Paper
CT IEEE Conference on Computational Intelligence in Bioinformatics and
Computational Biology CIBCB
CY AUG 12-15, 2015
CL Honolulu, HI
DE Citation analysis; author's sentiments; "Comment-on"; support vector
machine; n-grams word statistics; MEDLINE
AB Scientific papers generally include citations to external sources such as journal articles, books, or Web links to refer to works that are related in an important way to the research. The reason for the citation appears within the sentences surrounding the citation tag in the body text, and represents the relationship between the citation and cited works as supportive, contrastive, corrective, etc. This could be an important clue for researchers seeking relevant previous work or approaches for a certain research purpose. We propose to develop an automated method to identify the citing author's sentiments toward the cited external sources expressed in citation sentences using machine-learning techniques and linguistic cues. As a preliminary study, this paper presents a support vector machine (SVM)-based text categorization technique to classify the author's sentiments specifically toward Comment-on (CON) articles. CON, a MEDLINE citation field, indicates previously published articles commented on by authors of a given article expressing possibly complimentary or contradictory opinions. An SVM with a radial basis kernel function (RBF) is implemented, and Input feature vectors for the SVM are created based on n-grams word statistics representing the distribution of words in CON sentences. Experiments conducted on a set of CON sentences collected from 414 different online biomedical journal titles show that the SVM with a RBF yields the best result for an input feature vector combining uni-gram and bi-gram word statistics.
C1 [Kim, In Cheol; Thoma, George R.] Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, 8600 Rockville Pike, Bethesda, MD 20894 USA.
C3 National Institutes of Health (NIH) - USA; NIH National Library of
Medicine (NLM)
RP Kim, IC (corresponding author), Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, 8600 Rockville Pike, Bethesda, MD 20894 USA.
CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500
Abu-Jbara A., 2013, NAACL, P596
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
Galavotti L, 2000, LECT NOTES COMPUT SC, V1923, P59
Giles C. L., 1998, Digital 98 Libraries. Third ACM Conference on Digital Libraries, P89, DOI 10.1145/276675.276685
Godbole N., 2007, P 9 INT C WEBL SOC M
Kim I., 2012, P INT C ART INT LAS, P431
Kim I., 2014, P 2014 IEEE INT C SY, P2006
Kim IC, 2011, PROC SPIE, V7874, DOI 10.1117/12.873023
Mercer R.E., 2004, BioLink workshop in conjunction with NAACL/HLT, P77
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704
Schäfer U, 2010, IEEE INT C SEMANT CO, P317, DOI 10.1109/ICSC.2010.40
Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283
Shum B, 1998, INTERFACES BRIT HCI, V39, P16
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Thoma G. R., 2008, AUTOMATION ACCELERAT
Yu Bei., 2013, P 76 ASIST ANN M CLO, P1, DOI [10.1002/meet.14505001084, DOI 10.1002/MEET.14505001084]
NR 20
TC 4
Z9 4
U1 0
U2 4
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4799-6926-5
PY 2015
BP 488
EP 494
PG 7
WC Computer Science, Information Systems; Mathematical & Computational
Biology
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Mathematical & Computational Biology
GA BF1SY
UT WOS:000380434200049
DA 2024-09-05
ER
PT J
AU TUHRIM, S
HOROWITZ, DR
SACHER, M
GODBOLD, JH
AF TUHRIM, S
HOROWITZ, DR
SACHER, M
GODBOLD, JH
TI VALIDATION AND COMPARISON OF MODELS PREDICTING SURVIVAL FOLLOWING
INTRACEREBRAL HEMORRHAGE
SO CRITICAL CARE MEDICINE
LA English
DT Article
DE HEMORRHAGE, INTRACEREBRAL; LOGISTIC REGRESSION; PROGNOSIS; STROKE;
OUTCOMES RESEARCH; PATIENT OUTCOME ASSESSMENT; NEUROLOGIC EMERGENCIES;
CRITICAL ILLNESS
ID SUBARACHNOID HEMORRHAGE; INTRACRANIAL-PRESSURE; CEREBRAL-HEMORRHAGE;
STROKE; OUTCOMES; RATES
AB Objective: To compare the performance of two previously reported logistic regression models using data independent from those data used to derive the models.
Design: Prospective.
Setting Acute stroke unit of a tertiary care hospital.
Patients: One hundred twenty-nine patients with supratentorial intracerebral hemorrhage.
Measurements and Main Results: Model 1 contains the initial Glasgow Coma Scale score, hemorrhage size, and pulse pressure. The more complex model 2 includes, in addition to those three variables, the presence or absence of intraventricular hemorrhage and a term representing the interaction of intraventricular hemorrhage and Glasgow Coma Scale score. The areas under the receiver operating characteristic curves generated for each model were statistically indistinguishable.
Conclusions: Model 1 predicts 30-day patient status as well as the more complex model 2. Model 1 provides a valid, easy-to-use means of categorizing supratentorial intracerebral hemorrhage patients in terms of their probability of survival.
C1 MT SINAI SCH MED,DEPT NEUROL,NEW YORK,NY.
MT SINAI SCH MED,DEPT RADIOL,NEW YORK,NY.
MT SINAI SCH MED,DEPT COMMUNITY MED,NEW YORK,NY.
C3 Icahn School of Medicine at Mount Sinai; Icahn School of Medicine at
Mount Sinai; Icahn School of Medicine at Mount Sinai
FU NINDS NIH HHS [NS 27924, NS 29762] Funding Source: Medline
CR ALBERTS MJ, 1992, STROKE, V23, P352, DOI 10.1161/01.STR.23.3.352
BAMFORD J, 1990, J NEUROL NEUROSUR PS, V53, P16, DOI 10.1136/jnnp.53.1.16
BRODERICK JP, 1992, NEW ENGL J MED, V326, P733, DOI 10.1056/NEJM199203123261103
BRODERICK JP, 1993, STROKE, V24, P1761
BRODERICK JP, 1993, J NEUROSURG, V78, P188, DOI 10.3171/jns.1993.78.2.0188
BRODERICK JP, 1989, STROKE, V20, P577, DOI 10.1161/01.STR.20.5.577
BRODERICK JP, 1993, STROKE, V24, P987, DOI 10.1161/01.STR.24.7.987
Cushing H, 1902, AM J MED SCI, V124, P375, DOI 10.1097/00000441-190209000-00001
DAVERAT P, 1991, STROKE, V22, P1, DOI 10.1161/01.STR.22.1.1
DIXON AA, 1985, CAN J NEUROL SCI, V12, P267, DOI 10.1017/S0317167100047144
FIDLAY JM, 1993, NEUROSURGERY, V32, P941
FITCH W, 1977, J NEUROL NEUROSUR PS, V40, P833, DOI 10.1136/jnnp.40.9.833
FOGELHOLM R, 1992, J NEUROL NEUROSUR PS, V55, P546, DOI 10.1136/jnnp.55.7.546
FOULKES MA, 1988, STROKE, V19, P547, DOI 10.1161/01.STR.19.5.547
GIROUD M, 1991, J NEUROL NEUROSUR PS, V54, P595, DOI 10.1136/jnnp.54.7.595
HANLEY JA, 1983, RADIOLOGY, V148, P839, DOI 10.1148/radiology.148.3.6878708
HANLEY JA, 1982, RADIOLOGY, V143, P29, DOI 10.1148/radiology.143.1.7063747
LISK DR, 1994, NEUROLOGY, V44, P133, DOI 10.1212/WNL.44.1.133
LONGSTRETH WT, 1991, STROKE, V22, P955, DOI 10.1161/str.22.7.1853418
LONGSTRETH WT, 1989, ANN NEUROL, V26, P105, DOI 10.1002/ana.410260119
LONGSTRETH WT, 1993, STROKE, V24, P1761, DOI 10.1161/str.24.11.8236355
LUSTED LB, 1971, NEW ENGL J MED, V284, P416, DOI 10.1056/NEJM197102252840805
PORTENOY RK, 1987, J NEUROL NEUROSUR PS, V50, P976, DOI 10.1136/jnnp.50.8.976
ROPPER AH, 1984, ARCH NEUROL-CHICAGO, V41, P725, DOI 10.1001/archneur.1984.04050180047016
SENANT J, 1988, REV NEUROL-FRANCE, V144, P279
TODO T, 1991, J NEUROSURG, V74, P81, DOI 10.3171/jns.1991.74.1.0081
TUHRIM S, 1988, ANN NEUROL, V24, P258, DOI 10.1002/ana.410240213
TUHRIM S, 1991, ANN NEUROL, V29, P658, DOI 10.1002/ana.410290614
TUHRIM S, 1994, INTRCEREBRAL HEMORRH, P233
YOUNG WB, 1990, NEUROLOGY, V40, P616, DOI 10.1212/WNL.40.4.616
NR 30
TC 113
Z9 122
U1 0
U2 1
PU WILLIAMS & WILKINS
PI BALTIMORE
PA 351 WEST CAMDEN ST, BALTIMORE, MD 21201-2436
SN 0090-3493
J9 CRIT CARE MED
JI Crit. Care Med.
PD MAY
PY 1995
VL 23
IS 5
BP 950
EP 954
DI 10.1097/00003246-199505000-00026
PG 5
WC Critical Care Medicine
WE Science Citation Index Expanded (SCI-EXPANDED)
SC General & Internal Medicine
GA QX807
UT WOS:A1995QX80700026
PM 7736756
DA 2024-09-05
ER
PT J
AU Donner, P
AF Donner, Paul
TI Enhanced self-citation detection by fuzzy author name matching and
complementary error estimates
SO JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE bibliometrics; author productivity; heuristics
ID MACRO
AB In this article I investigate the shortcomings of exact string match-based author self-citation detection methods. The contributions of this study are twofold. First, I apply a fuzzy string matching algorithm for self-citation detection and benchmark this approach and other common methods of exclusively author name-based self-citation detection against a manually curated ground truth sample. Near full recall can be achieved with the proposed method while incurring only negligible precision loss. Second, I report some important observations from the results about the extent of latent self-citations and their characteristics and give an example of the effect of improved self-citation detection on the document level self-citation rate of real data.
C1 [Donner, Paul] Inst Res Informat & Qual Assurance iFQ, Schutzenstr 6a, D-10117 Berlin, Germany.
RP Donner, P (corresponding author), Inst Res Informat & Qual Assurance iFQ, Schutzenstr 6a, D-10117 Berlin, Germany.
EM donner@forschungsinfo.de
RI Donner, Paul/AAT-7081-2020
OI Donner, Paul/0000-0001-5737-8483
FU Bundesministerium fur Forschung und Bildung (BMBF) [01PQ08004A]
FX Bundesministerium fur Forschung und Bildung (BMBF), Project 01PQ08004A,
"Kompetenzzentrum Bibliometrie fur die deutsche Wissenschaft".
CR Aksnes DW, 2003, SCIENTOMETRICS, V56, P235, DOI 10.1023/A:1021919228368
Aragon A. M, 2013, SCI REPORTS, V3, P1
Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5
DiCiccio TJ, 1996, STAT SCI, V11, P189
Feitelson DG, 2004, INFORM RES, V9
Glänzel W, 2004, SCIENTOMETRICS, V61, P395, DOI 10.1023/B:SCIE.0000045117.13348.b1
Glänzel W, 2004, SCIENTOMETRICS, V59, P281, DOI 10.1023/B:SCIE.0000018535.99885.e9
Glänzel W, 2004, SCIENTOMETRICS, V59, P63, DOI 10.1023/B:SCIE.0000013299.38210.74
Levenshtein V. I., 1966, Soviet Physics Doklady, V10, P707
MOED HF, 1989, J INFORM SCI, V15, P95, DOI 10.1177/016555158901500205
Schreiber M, 2007, EPL-EUROPHYS LETT, V78, DOI 10.1209/0295-5075/78/30002
Snyder H, 1998, J INF SCI, V24, P431, DOI 10.1177/016555159802400606
Strotmann A., 2008, J AM SOC INFORM SCI, V63, P1820
Winkler W. E, 1990, P SECTION SURVEY RES, DOI DOI 10.1007/978-1-4612-2856-1_101
NR 14
TC 4
Z9 4
U1 0
U2 28
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2330-1635
EI 2330-1643
J9 J ASSOC INF SCI TECH
PD MAR
PY 2016
VL 67
IS 3
BP 662
EP 670
DI 10.1002/asi.23399
PG 9
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA DD9OQ
UT WOS:000370255700013
DA 2024-09-05
ER
PT J
AU Xu, ZY
Liu, HJ
AF Xu, Zeyu
Liu, Haijiang
TI Research on the DCT vehicle starting process evaluation based on LSTM
neural network with attention mechanism
SO JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
LA English
DT Article; Early Access
DE Attention mechanism; DCT vehicle; Dual-clutch transmission; Drivability;
Evaluation; LSTM; Starting process
AB Currently, with the advancement of dual-clutch transmission (DCT) control systems and vehicle performance, it is necessary to develop better objective evaluation methods for DCT vehicles. The starting process is a critical element affecting the driving and riding experience of DCT vehicles. Therefore, it is crucial to establish and improve a starting process evaluation model for the objective evaluation to DCT vehicles and optimization to DCT control strategies. This paper proposes a new method to evaluate the DCT vehicle starting process objectively. The method analyzes and models the time-series signals of the driving data using the LSTM neural network and uses the attention mechanism to improve the evaluation performance and enhance the interpretability of the evaluation results. Taking the dynamic performance evaluation as an example, the evaluation results indicate that the proposed model is better than the conventional methods, showing notable efficacy and preponderance.
C1 [Xu, Zeyu; Liu, Haijiang] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China.
C3 Tongji University
RP Xu, ZY (corresponding author), Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China.
EM xuzeyu@tongji.edu.cn
FU National Natural Science Foundation of China [U1764259]
FX This work was supported by the National Natural Science Foundation of
China (No. U1764259).
CR Asadzadehkaljahi M., 2023, Artificial Intelligence and Applications
Awujoola O. J., 2022, Artificial Intelligence and Applications, V2, DOI [10.47852/bonviewAIA2202412, DOI 10.47852/BONVIEWAIA2202412]
Böke TA, 2023, P I MECH ENG D-J AUT, V237, P706, DOI 10.1177/09544070221080362
Cao H, 2023, Artificial Intelligence and Applications, V1, P106
Chen K, 2021, P I MECH ENG D-J AUT, V235, P3530, DOI 10.1177/09544070211012563
Fatima N, 2020, ADCAIJ-ADV DISTRIB C, V9, P79, DOI 10.14201/ADCAIJ2020927990
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Huang W., 2019, SAE Technical Paper
Huang W, 2019, J VIB CONTROL, V25, P2274, DOI 10.1177/1077546319852487
Huang W, 2019, J VIB CONTROL, V25, P739, DOI 10.1177/1077546318795527
Hüsken M, 2003, NEUROCOMPUTING, V50, P223, DOI 10.1016/S0925-2312(01)00706-8
Jiang MW, 2023, ADV ENG INFORM, V58, DOI 10.1016/j.aei.2023.102158
Khan J, 2023, CAAI T INTELL TECHNO, V8, P1124, DOI 10.1049/cit2.12148
Kingma D. P., 2014, INT C LEARNING REPRE
Kun X, 2021, PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), P278, DOI 10.1109/CMMNO53328.2021.9467533
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Lei Y., 2018, SAE Technical Paper
Li L, 2016, P I MECH ENG D-J AUT, V230, P1417, DOI 10.1177/0954407015611294
Limeros SC, 2024, CAAI T INTELL TECHNO, V9, P557, DOI 10.1049/cit2.12244
Liu YG, 2019, IEEE VEHICLE POWER, DOI 10.1109/vppc46532.2019.8952563
[秦大同 Qin Datong], 2010, [机械工程学报, Chinese Journal of Mechanical Engineering], V46, P121
Schoeggl P., 2000, SAE 2000 WORLD C
Sun W, 2012, ADV MATER RES-SWITZ, V490-495, P86, DOI 10.4028/www.scientific.net/AMR.490-495.86
Tang S, 2023, CAAI T INTELL TECHNO, DOI 10.1049/cit2.12228
Wang M., 2024, P I MECH ENG D-J AUT, V238
Wang YP, 2021, SHOCK VIB, V2021, DOI 10.1155/2021/6615920
Xu ZY, 2023, P I MECH ENG D-J AUT, V237, P2928, DOI 10.1177/09544070221115292
Zhang JS, 2000, CHINESE PHYS LETT, V17, P88, DOI 10.1088/0256-307X/17/2/004
Zhao Y, 2019, IEEE INT C BIOINFORM, P610, DOI [10.1109/bibm47256.2019.8983068, 10.1109/BIBM47256.2019.8983068]
Zhou CL, 2023, CAAI T INTELL TECHNO, V8, P1237, DOI 10.1049/cit2.12226
Zhou W, 2023, P I MECH ENG D-J AUT, V237, P607, DOI 10.1177/09544070221084759
Zhou W, 2020, MATH PROBL ENG, V2020, DOI 10.1155/2020/2061083
NR 32
TC 0
Z9 0
U1 1
U2 1
PU KOREAN SOC MECHANICAL ENGINEERS
PI SEOUL
PA KSTC NEW BLD. 7TH FLOOR, 635-4 YEOKSAM-DONG KANGNAM-KU, SEOUL 135-703,
SOUTH KOREA
SN 1738-494X
EI 1976-3824
J9 J MECH SCI TECHNOL
JI J. Mech. Sci. Technol.
PD 2024 AUG 21
PY 2024
DI 10.1007/s12206-024-0811-8
EA AUG 2024
PG 14
WC Engineering, Mechanical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA D4C6H
UT WOS:001295682800002
DA 2024-09-05
ER
PT J
AU Qayyum, F
Jamil, H
Jamil, F
Kim, D
AF Qayyum, Faiza
Jamil, Harun
Jamil, Faisal
Kim, Do-Hyeun
TI Towards Potential Content-Based Features Evaluation to Tackle Meaningful
Citations
SO SYMMETRY-BASEL
LA English
DT Article
DE citation analysis; citation classification; binary classification;
random forest; kernel logistic regression
ID H-INDEX; QUALITY; REASONS
AB The scientific community has presented various citation classification models to refute the concept of pure quantitative citation analysis systems wherein all citations are treated equally. However, a small number of benchmark datasets exist, which makes the asymmetric citation data-driven modeling quite complex. These models classify citations for varying reasons, mostly harnessing metadata and content-based features derived from research papers. Presently, researchers are more inclined toward binary citation classification with the belief that exploiting the datasets of incomplete nature in the best possible way is adequate to address the issue. We argue that contemporary ML citation classification models overlook essential aspects while selecting the appropriate features that hinder elutriating the asymmetric citation data. This study presents a novel binary citation classification model exploiting a list of potential natural language processing (NLP) based features. Machine learning classifiers, including SVM, KLR, and RF, are harnessed to classify citations into important and non-important classes. The evaluation is performed using two benchmark data sets containing a corpus of around 953 paper-citation pairs annotated by the citing authors and domain experts. The study outcomes exhibit that the proposed model outperformed the contemporary approaches by attaining a precision of 0.88.
C1 [Qayyum, Faiza; Jamil, Faisal; Kim, Do-Hyeun] Jeju Natl Univ, Dept Comp Engn, Jeju Si 63243, South Korea.
[Jamil, Harun] Jeju Natl Univ, Dept Elect Engn, Jeju Si 63243, South Korea.
[Kim, Do-Hyeun] Jeju Natl Univ, Res Ctr Adv Technol, Jeju Si 63243, South Korea.
C3 Jeju National University; Jeju National University; Jeju National
University
RP Kim, D (corresponding author), Jeju Natl Univ, Dept Comp Engn, Jeju Si 63243, South Korea.; Kim, D (corresponding author), Jeju Natl Univ, Res Ctr Adv Technol, Jeju Si 63243, South Korea.
EM harunjamil@hotmail.com
RI Jamil, Faisal/GSO-1371-2022; Jamil, Faisal/JHU-4465-2023
OI Jamil, Faisal/0000-0003-1994-6907; Qayyum, Faiza/0000-0001-9597-2387
FU National Research Foundation of Korea (NRF) - Ministry of Science, ICT
[2019M3F2A1073387]; Institute for Information & communications
Technology Planning & Evaluation (IITP) - Korea government (MSIT)
[2018-0-01456]
FX This research was supported by Energy Cloud R & D Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT (2019M3F2A1073387),and this research was supported by
Institute for Information & communications Technology Plan-ning &
Evaluation (IITP) grant funded by the Korea government (MSIT)
(No.2018-0-01456, AutoMaTa:Autonomous Management framework based on
artificial intelligent Technology for adaptive and disposable IoT). Any
correspondence related to this paper should be addressed to Dohyeun Kim.
CR Abu-Jbara A., 2011, P 49 ANN M ASS COMP, P500
Ahmed I, 2020, IEEE ACCESS, V8, P129359, DOI 10.1109/ACCESS.2020.3009021
Ali A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21134527
[Anonymous], 1968, Public Knowledge: An Essay Concerning the Social Dimension of Science
Ayaz S, 2016, SCIENTOMETRICS, V109, P1511, DOI 10.1007/s11192-016-2122-z
BROOKS TA, 1985, J AM SOC INFORM SCI, V36, P223, DOI 10.1002/asi.4630360402
Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H
Finney B., 1979, The reference characteristics of scientific texts
GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189
Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337
Ghani R, 2019, SCIENTOMETRICS, V118, P809, DOI 10.1007/s11192-019-03007-0
Hashmi AM, 2020, IPSI BDG TRANS INTER, V16, P60
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Imran, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131810057
INHABER H, 1976, SOC STUD SCI, V6, P33, DOI 10.1177/030631277600600102
Jamil F, 2021, CMC-COMPUT MATER CON, V69, P2513, DOI 10.32604/cmc.2021.018809
Jamil F, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21051640
Jochim C., 2012, P COLING 2012, P1343
Mazloumian A, 2013, SCI REP-UK, V3, DOI 10.1038/srep01167
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926
Nazir S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228885
OPPENHEIM C, 1978, J AM SOC INFORM SCI, V29, P225, DOI 10.1002/asi.4630290504
PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814
Pride D, 2017, LECT NOTES COMPUT SC, V10450, P572, DOI 10.1007/978-3-319-67008-9_48
Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x
Smith A.T., 2002, The correlation between RAE ratings and citation counts in psychology
SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111
Tandon N., 2012, P 35 GERMAN C ARTIFI, P98
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 33
TC 4
Z9 4
U1 2
U2 12
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2073-8994
J9 SYMMETRY-BASEL
JI Symmetry-Basel
PD OCT
PY 2021
VL 13
IS 10
AR 1973
DI 10.3390/sym13101973
PG 19
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics
GA WR9DK
UT WOS:000714793200001
OA gold
DA 2024-09-05
ER
PT J
AU Bayer, P
Kennedy, R
Yang, J
Urpelainen, J
AF Bayer, Patrick
Kennedy, Ryan
Yang, Joonseok
Urpelainen, Johannes
TI The need for impact evaluation in electricity access research
SO ENERGY POLICY
LA English
DT Article
DE Impact evaluation; Electricity access; Observational and experimental
methods; Causal inference; Sustainable development
ID RURAL ELECTRIFICATION; WELFARE IMPACTS; PANEL-DATA; EMPLOYMENT;
FERTILITY; BENEFITS; QUALITY; ENERGY
AB Universal household electrification is a key component of the United Nations Sustainable Development Goals, but the evidence base for social and economic impacts of electricity access remains unclear. Here we report results from a systematic review of impact evaluations of household electrification based on five key outcome measures. We only find 31 studies that conduct statistical hypothesis tests to assess impacts. Among these, seven draw on a randomized experiment designed for causal inference. The randomized experimental studies generate fewer positive results than observational or quasi-experimental studies, such as correlational, instrumental variable, and difference-in-differences designs. These results call for a reassessment of what we know about the impacts of household electrification. They also call for major investment in impact evaluation of electricity access using randomized controlled trials, with a particular focus on when and how energy access interventions can furnish large benefits to their intended beneficiaries. Large-scale impact evaluations using experimental methods will require close collaboration between policymakers and researchers.
C1 [Bayer, Patrick] Univ Strathclyde, Sch Govt & Publ Policy, McCance Bldg,16 Richmond St, Glasgow G1 1QX, Lanark, Scotland.
[Kennedy, Ryan] Univ Houston, Dept Polit Sci, Philip Guthrie Hoffman Hall,3551 Cullen Blvd, Houston, TX 77204 USA.
[Yang, Joonseok] Univ Calif Irvine, Dept Polit Sci, 4124 Social Sci Plaza A, Irvine, CA 92617 USA.
[Urpelainen, Johannes] Johns Hopkins Univ, Sch Adv Int Studies, 1619 Massachusetts Ave NW, Washington, DC 20036 USA.
C3 University of Strathclyde; University of Houston System; University of
Houston; University of California System; University of California
Irvine; Johns Hopkins University
RP Bayer, P (corresponding author), Univ Strathclyde, Sch Govt & Publ Policy, McCance Bldg,16 Richmond St, Glasgow G1 1QX, Lanark, Scotland.
EM patrick.bayer@strath.ac.uk; rkennedy@uh.edu; joonsey1@uci.edu;
johannes.u@jhu.edu
OI Bayer, Patrick/0000-0003-1731-1270
CR Aevarsdottir Anna Margret, 2017, E89302TZA1 IGC
Agoramoorthy G, 2009, HUM ECOL, V37, P513, DOI 10.1007/s10745-009-9224-7
Aklin M, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1602153
Aklin Michael., 2018, Escaping the Energy Poverty Trap: When and How Governments Power the Lives of the Poor
Akpan U, 2013, ENERGY SUSTAIN DEV, V17, P504, DOI 10.1016/j.esd.2013.06.004
Alkon M, 2016, ENERGY SUSTAIN DEV, V35, P25, DOI 10.1016/j.esd.2016.08.003
Angrist JD, 2010, J ECON PERSPECT, V24, P3, DOI 10.1257/jep.24.2.3
[Anonymous], 2008, Cochrane handbook for systematic reviews of interventions
Bastakoti B.P., 2006, Energy for Sustainable Development, V10, P26, DOI [DOI 10.1016/S0973-0826(08)60541-4, 10.1016/S0973-0826, DOI 10.1016/S0973-0826]
Bensch G, 2012, ENERG POLICY, V40, P186, DOI 10.1016/j.enpol.2011.09.034
Bernard T, 2012, WORLD BANK RES OBSER, V27, P33, DOI 10.1093/wbro/lkq008
Bos K, 2018, ENERGY SUSTAIN DEV, V44, P64, DOI 10.1016/j.esd.2018.02.007
Burlig Fiona, 2016, Energy Institute at Haas Working Paper 268
Chakravorty U, 2014, J ECON BEHAV ORGAN, V107, P228, DOI 10.1016/j.jebo.2014.04.011
Cook CynthiaC., 2005, Assessing the impact of transport and energy infrastructure on poverty reduction
Deaton A, 2018, SOC SCI MED, V210, P2, DOI 10.1016/j.socscimed.2017.12.005
Dinkelman T, 2011, AM ECON REV, V101, P3078, DOI 10.1257/aer.101.7.3078
Gertler PJ, 2011, IMPACT EVALUATION IN PRACTICE, P1, DOI 10.1596/978-0-8213-8541-8
Grimm M, 2015, DEMOGRAPHY, V52, P1773, DOI 10.1007/s13524-015-0420-3
Grogan L, 2016, J HUM CAPITAL, V10, P109, DOI 10.1086/684580
Hamburger D, 2019, ENERGY RES SOC SCI, V58, DOI 10.1016/j.erss.2019.101236
IEA, 2017, Energy Access Outlook2017 From Poverty to Prosperity: World Energy Ootlook Special Report
Kanagawa M, 2008, ENERG POLICY, V36, P2016, DOI 10.1016/j.enpol.2008.01.041
Khandker S., 2009, Handbook on impact evaluation, DOI DOI 10.1596/978-0-8213-8028-4
Khandker SR, 2013, ECON DEV CULT CHANGE, V61, P659, DOI 10.1086/669262
Khandker SR, 2012, ENERG J, V33, P187, DOI 10.5547/ISSN0195-6574-EJ-Vol33-No1-7
Khandker ShahidurR., 2014, Surge in Solar-Powered Homes, DOI [10.1596/978-1-4648-0374-1, DOI 10.1596/978-1-4648-0374-1]
Kudo Yuya, 2017, WORLD BANK EC REV
Lambert JG, 2014, ENERG POLICY, V64, P153, DOI 10.1016/j.enpol.2013.07.001
Lee K., 2018, WORKING PAPER
Lenz L, 2017, WORLD DEV, V89, P88, DOI 10.1016/j.worlddev.2016.08.003
Lipscomb M, 2013, AM ECON J-APPL ECON, V5, P200, DOI 10.1257/app.5.2.200
Malakar Y, 2018, ENERG POLICY, V114, P492, DOI 10.1016/j.enpol.2017.12.047
Niu SW, 2013, INT J ELEC POWER, V53, P338, DOI 10.1016/j.ijepes.2013.05.024
Ostrom E, 1999, SCIENCE, V284, P278, DOI 10.1126/science.284.5412.278
Peters J, 2019, ENERG POLICY, V132, P27, DOI 10.1016/j.enpol.2019.05.016
Peters J, 2018, WORLD BANK RES OBSER, V33, P34, DOI 10.1093/wbro/lkx005
Peters J, 2016, J DEV EFFECT, V8, P327, DOI 10.1080/19439342.2016.1178320
Peters J, 2011, WORLD DEV, V39, P773, DOI 10.1016/j.worlddev.2010.09.015
Pritchett L, 2015, AM ECON REV, V105, P471, DOI 10.1257/aer.p20151016
Rao ND, 2013, ENERG POLICY, V57, P532, DOI 10.1016/j.enpol.2013.02.025
Ravallion M, 2001, WORLD BANK ECON REV, V15, P115, DOI 10.1093/wber/15.1.115
Ravallion M, 2018, 492 CTR GLOB DEV
Rud JP, 2012, J DEV ECON, V97, P352, DOI 10.1016/j.jdeveco.2011.06.010
SE4ALL, 2017, WHY WAIT SEIZ EN ACC
Tasciotti L, 2017, ENERG POLICY, V101, P310, DOI 10.1016/j.enpol.2016.10.028
UNDP UN Environment, 2018, PREP SUPP SGG7 REV U
van de Walle D, 2017, WORLD BANK ECON REV, V31, P385, DOI 10.1093/wber/lhv057
NR 48
TC 22
Z9 24
U1 3
U2 25
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0301-4215
EI 1873-6777
J9 ENERG POLICY
JI Energy Policy
PD FEB
PY 2020
VL 137
AR 111099
DI 10.1016/j.enpol.2019.111099
PG 9
WC Economics; Energy & Fuels; Environmental Sciences; Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Energy & Fuels; Environmental Sciences & Ecology
GA KO3HQ
UT WOS:000515439900044
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Ginde, G
Saha, S
Mathur, A
Venkatagiri, S
Vadakkepat, S
Narasimhamurthy, A
Sagar, BSD
AF Ginde, Gouri
Saha, Snehanshu
Mathur, Archana
Venkatagiri, Sukrit
Vadakkepat, Sujith
Narasimhamurthy, Anand
Sagar, B. S. Daya
TI ScientoBASE: a framework and model for computing scholastic indicators
of non-local influence of journals via native data acquisition
algorithms
SO SCIENTOMETRICS
LA English
DT Article
DE Journal Influence Score; Journal Internationality Modeling Index (JIMI);
Web scraping; Feature extraction; Cobb-Douglas production function;
Convex optimization; Supervised learning; Non-Local Influence Quotient
(NLIQ); Source-Normalized Impact per Paper (SNIP); Other Citation
Quotient (OCQ)
ID IMPACT
AB Defining and measuring internationality as a function of influence diffusion of scientific journals is an open problem. There exists no metric to rank journals based on the extent or scale of internationality. Measuring internationality is qualitative, vague, open to interpretation and is limited by vested interests. With the tremendous increase in the number of journals in various fields and the unflinching desire of academics across the globe to publish in "international'' journals, it has become an absolute necessity to evaluate, rank and categorize journals based on internationality. Authors, in the current work have defined internationality as a measure of influence that transcends across geographic boundaries. There are concerns raised by the authors about unethical practices reflected in the process of journal publication whereby scholarly influence of a select few are artificially boosted, primarily by resorting to editorial maneuvers. To counter the impact of such tactics, authors have come up with a new method that defines and measures internationality by eliminating such local effects when computing the influence of journals. A new metric, Non-Local Influence Quotient is proposed as one such parameter for internationality computation along with another novel metric, Other-Citation Quotient as the complement of the ratio of self-citation and total citation. In addition, SNIP and international collaboration ratio are used as two other parameters. As these journal parameters are not readily available in one place, algorithms to scrape these metrics are written and documented as a part of the current manuscript. Cobb-Douglas production function is utilized as a model to compute Journal Internationality Modeling Index. Current work elucidates the metric acquisition algorithms while delivering arguments in favor of the suitability of the proposed model. Acquired data is corroborated by different supervised learning techniques. As part of future work, the authors present a bigger picture, Reputation and Global Influence Score, that will be computed to facilitate the formation of clusters of journals of high, moderate and low internationality.
C1 [Ginde, Gouri; Saha, Snehanshu; Mathur, Archana; Venkatagiri, Sukrit; Vadakkepat, Sujith] PESIT South Campus, Dept Comp Sci & Engn, Bangalore, Karnataka, India.
[Narasimhamurthy, Anand] BITS Pilani, Dept Comp Sci, Hyderabad Campus, Hyderabad, Andhra Pradesh, India.
[Sagar, B. S. Daya] Indian Stat Inst, Syst Sci & Informat Unit, Bangalore, Karnataka, India.
C3 PES University; Birla Institute of Technology & Science Pilani (BITS
Pilani); Indian Statistical Institute; Indian Statistical Institute
Bangalore
RP Venkatagiri, S (corresponding author), PESIT South Campus, Dept Comp Sci & Engn, Bangalore, Karnataka, India.
EM gouri.ginde@gmail.com; snehanshusaha@pes.edu; 95sukrit@gmail.com
RI Sagar, BS Daya/A-2654-2012; Saha, Snehanshu/R-1028-2018
OI Sagar, BS Daya/0000-0002-6140-8742; Mathur, Archana/0000-0003-4522-6890;
Saha, Snehanshu/0000-0002-8458-604X
CR Abrizah A, 2013, SCIENTOMETRICS, V94, P721, DOI 10.1007/s11192-012-0813-7
[Anonymous], 2014, CITES INSIGHTS
Battese GE, 1997, J PROD ANAL, V8, P395, DOI 10.1023/A:1007736025686
Beall J, 2012, NATURE, V489, P179, DOI 10.1038/489179a
Bhattacharjee Y, 2011, SCIENCE, V334, P1344, DOI 10.1126/science.334.6061.1344
Buchandiran G, 2011, EXPLORATORY STUDY IN
Buela-Casal G, 2006, SCIENTOMETRICS, V67, P45, DOI 10.1556/Scient.67.2006.1.4
Changa Chia-Lin, 2013, MATH COMPUT SIMULAT, V93
Das AK, 2014, J SCIENTOMETR RES, V3, P82, DOI 10.4103/2320-0057.145622
Douglas P. H., 1928, AM EC REV S, V18
Ginde G., 2015, P 4 NAT C I SCIENT S
Gingras Y., 2014, ABUSES RES EVALUATIO
Haddow G, 2010, SCIENTOMETRICS, V85, P471, DOI 10.1007/s11192-010-0198-4
Harzing A.W., 2007, Publish or perish
Heilig L, 2014, IEEE TRANS CLOUD COM, V2, P266, DOI 10.1109/TCC.2014.2321168
Jangid N., 2015, COMPUTING P IN PRESS
Jangid N, 2014, IERI PROC, V10, P57, DOI 10.1016/j.ieri.2014.09.091
Kao C, 2009, SCIENTOMETRICS, V81, P123, DOI 10.1007/s11192-009-2093-4
Liping Y., 2009, J INFORMETR, V3, P304
Moed H. F., 2010, J INFORMETRICS, V4
Nejati A., 2014, J SCIENTOMETRIC RES, V3
Saha S., 2015, P 4 NAT C I SCIENT S
Saha S., 2016, ARXIV160403215
Saha S, 2016, J CLOUD COMPUT-ADV S, V5, DOI 10.1186/s13677-015-0050-8
TAN B., 2008, Cobb Douglas Production Function
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Waltman L., 2013, J INFORMETR, V7
Zupanc GKH, 2014, J COMP PHYSIOL A, V200, P113, DOI 10.1007/s00359-013-0863-1
NR 28
TC 17
Z9 17
U1 0
U2 20
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD SEP
PY 2016
VL 108
IS 3
BP 1479
EP 1529
DI 10.1007/s11192-016-2006-2
PG 51
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA DV4SA
UT WOS:000382914200027
DA 2024-09-05
ER
PT C
AU Zhai, MJ
Cong, H
Feng, FZ
Wu, SJ
AF Zhai, MeiJie
Cong, Hua
Feng, FuZhou
Wu, ShouJun
BE Liu, D
Wang, S
Liao, H
Zhang, B
Miao, Q
Peng, Y
TI Research on Screening Method of Performance Index of PHM System for
Armored Vehicles
SO 2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN)
SE Prognostics and System Health Management Conference
LA English
DT Proceedings Paper
CT 2017 Prognostics and System Health Management Conference (PHM-Harbin)
CY JUL 09-12, 2017
CL Harbin, PEOPLES R CHINA
DE Armored vehicles; PHM system; Performance metrics; Principal Component
Analysis (PCA); index screening
AB The comprehensive index system is a prerequisite and basis for ensuring the scientific performance of the product performance evaluation, so, the screening of the index is the necessary link in the construction of the index system. The paper regards the armored vehicle PHM system as a special product, aiming at the problem that the redundancy of the primary index set of the armored vehicle PHM system performance index system is high and the targeting is not strong. This paper uses Principal Component Analysis (PCA) to select the index, and then analysis of correlation between indicators and obtain the final optimal results. Finally, factor analysis is used to verify the feasibility and scientificity of the method, which lays a foundation for further evaluating the performance of PHM system.
C1 [Zhai, MeiJie; Cong, Hua; Feng, FuZhou; Wu, ShouJun] Acad Armored Force Engn, Dept Mech Engn, Beijing, Peoples R China.
C3 Academy of Armored Forces Engineering - China
RP Zhai, MJ (corresponding author), Acad Armored Force Engn, Dept Mech Engn, Beijing, Peoples R China.
EM 18222785009@163.com; fengfuzhou@tsinghua.org.cn
CR DU J. H., 2012, J N U CHINA, P81
Li G. Z., 2014, PRINCIPAL COMPONENTS, P230
Lu X. T., 2009, COOPERATIVE EC TECHN, P54
SHI Y., 2011, CHINA BUSINESS, P103
Yang Y., 2006, STAT DECISION, P17
ZHANG H., 2013, J SHANDONG I FINANCE, P52
Zhang Y. W., 2012, RES CONSTRUCTION PRO
NR 7
TC 4
Z9 4
U1 1
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2166-5656
BN 978-1-5386-0370-3
J9 PROGNOST SYST HEALT
PY 2017
BP 1133
EP 1140
PG 8
WC Engineering, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering
GA BJ6MY
UT WOS:000426864600182
DA 2024-09-05
ER
PT C
AU Jung, S
Datta, R
Segev, A
AF Jung, Sukhwan
Datta, Rituparna
Segev, Aviv
BE Wu, XT
Jermaine, C
Xiong, L
Hu, XH
Kotevska, O
Lu, SY
Xu, WJ
Aluru, S
Zhai, CX
Al-Masri, E
Chen, ZY
Saltz, J
TI An Automatic Classification of the Primary and the Corresponding Authors
in Research Articles
SO 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)
SE IEEE International Conference on Big Data
LA English
DT Proceedings Paper
CT 8th IEEE International Conference on Big Data (Big Data)
CY DEC 10-13, 2020
CL ELECTR NETWORK
DE Byline Analysis; Machine Learning; Author Credit Measure; Citation
Analysis; Scientometrics
ID K-NEAREST NEIGHBOR; CONSEQUENCES; PUBLICATIONS
AB Researchers often rely on the byline order in a publication to estimate relative contributions made by its authors, an assumption on which existing author contribution measures are based. This byline-based approach is, however, incompatible with the alphabetical author ordering, a practice still employed by many research fields. Manually requesting authors to state their contributions can overcome the limitation of the existing methods. Such approaches, however, require resource-intensive data acquisition and preprocessing, rendering them ungeneralizable to existing bodies of bibliographic records. The present paper proposed a possibility of order-independent automatic author contribution measure by focusing on distinguishing the main contributors from the rest of the authors using machine learning algorithms, bypassing the limitation of both the byline-based numerical author contribution methods and ungeneralizable manual approaches. The experiment validated the proposed approach by successfully classifying both the primary and the corresponding authors shown as the first and the last author without utilizing byline orders. The Random Forest classifier showed the best performances, successfully classifying the first author, the last author, and both with the accuracy of 0.90, 0.89, and 0.76 respectively.
C1 [Jung, Sukhwan; Datta, Rituparna; Segev, Aviv] Univ S Alabama, Dept Comp Sci, Mobile, AL 36688 USA.
C3 University of South Alabama
RP Jung, S (corresponding author), Univ S Alabama, Dept Comp Sci, Mobile, AL 36688 USA.
EM shjung@southalabama.edu; rdatta@southalabama.edu; segev@southalabama.edu
RI Segev, Aviv/C-2060-2011; Jung, Suk hwan/HIK-1039-2022
CR [Anonymous], 2016, HDB BIBLIOMETRIC IND, DOI DOI 10.1002/ANIE.201608447
[Anonymous], MACHINE LEARNING
[Anonymous], VET WORLD
Assimakis N, 2010, SCIENTOMETRICS, V85, P415, DOI 10.1007/s11192-010-0255-z
Boyer Stephane, 2017, Res Integr Peer Rev, V2, P18, DOI 10.1186/s41073-017-0042-y
BUCKLAND ST, 1993, J APPL ECOL, V30, P478, DOI 10.2307/2404188
BURRELL Q, 1995, J AM SOC INFORM SCI, V46, P97, DOI 10.1002/(SICI)1097-4571(199503)46:2<97::AID-ASI3>3.0.CO;2-L
Cramer J.S., 2002, The Origins of Logistic Regression, DOI 10.2139/ssrn.360300
Egghe L, 2000, J AM SOC INFORM SCI, V51, P145, DOI 10.1002/(SICI)1097-4571(2000)51:2<145::AID-ASI6>3.0.CO;2-9
Gadomer L, 2019, SOFT COMPUT, V23, P3741, DOI 10.1007/s00500-018-3036-x
Griffis JC, 2016, J NEUROSCI METH, V257, P97, DOI 10.1016/j.jneumeth.2015.09.019
Herrmannova D., ANAL MICROSOFT ACAD
HODGE SE, 1981, SCIENCE, V213, P950
Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8
Jabbar MA, 2013, PROC TECH, V10, P85, DOI 10.1016/j.protcy.2013.12.340
Joyce J., 2003, Bayes theorem
Jung S., 2019, 2019 IEEE INT C BIG
Klecka W., 2003, DISCRIMINANT ANAL
LINDSEY D, 1980, SOC STUD SCI, V10, P145, DOI 10.1177/030631278001000202
Lou WC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086703
Mitra S, 2002, IEEE T SYST MAN CY C, V32, P328, DOI 10.1109/TSMCC.2002.806060
Selvi ST, 2017, INT CONF ADV COMPU, P7, DOI 10.1109/ICoAC.2017.7951736
Song Yan-Yan, 2015, Shanghai Arch Psychiatry, V27, P130, DOI 10.11919/j.issn.1002-0829.215044
Sylvester EVA, 2018, EVOL APPL, V11, P153, DOI 10.1111/eva.12524
Tan SB, 2005, EXPERT SYST APPL, V28, P667, DOI 10.1016/j.eswa.2004.12.023
VANDENBOSCH R, 1977, ANNU REV NUCL PART S, V27, P1, DOI 10.1146/annurev.ns.27.120177.000245
VanHooydonk G, 1997, J AM SOC INFORM SCI, V48, P944, DOI 10.1002/(SICI)1097-4571(199710)48:10<944::AID-ASI8>3.0.CO;2-1
Waltman L, 2012, J INFORMETR, V6, P700, DOI 10.1016/j.joi.2012.07.008
Wetcher-Hendricks D., 2011, ANAL QUANTITATIVE DA
Zhang CT, 2009, EMBO REP, V10, P416, DOI 10.1038/embor.2009.74
Zhang JQ, 2004, 18TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 1 (LONG PAPERS), PROCEEDINGS, P562
ZUCKERMAN HA, 1968, AM J SOCIOL, V74, P276, DOI 10.1086/224641
Zulfikar W. B., 2017, 2017 5 INT C CYB IT, DOI [10.1109/CITSM.2017.8089231, DOI 10.1109/CITSM.2017.8089231]
NR 33
TC 0
Z9 0
U1 1
U2 5
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2639-1589
BN 978-1-7281-6251-5
J9 IEEE INT CONF BIG DA
PY 2020
BP 4604
EP 4612
DI 10.1109/BigData50022.2020.9378455
PG 9
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BR6NZ
UT WOS:000662554704084
DA 2024-09-05
ER
PT J
AU Slater, A
AF Slater, Avery
TI Phantoms of Citation: AI and the Death of the Author-Function
SO POETICS TODAY
LA English
DT Article
DE author- function; large language models (LLMs); citation; hallucination;
artificial intelligence
ID CHATGPT
C1 [Slater, Avery] Univ Toronto, Toronto, ON, Canada.
C3 University of Toronto
RP Slater, A (corresponding author), Univ Toronto, Toronto, ON, Canada.
CR Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179
[Anonymous], 2023, NATURE, V613, P612, DOI 10.1038/d41586-023-00191-1
Baker Simon., 1999, Technical Report TR- 99-32
Barthes Roland., 1989, RUSTLE LANGUAGEI, P49
Brender TD, 2023, JAMA INTERN MED, V183, P1177, DOI 10.1001/jamainternmed.2023.3875
Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02
Day T, 2023, PROF GEOGR, V75, P1024, DOI 10.1080/00330124.2023.2190373
DERRIDA J, 1995, DIACRITICS, V25, P9, DOI 10.2307/465144
Doshi RH, 2023, AM J BIOETHICS, V23, P6, DOI 10.1080/15265161.2023.2180110
Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1
Foucault Michel., 1998, The Essential Works of Foucault, 1954-1984, Vol. 2: Aesthetics, Method, V2, P205
Goddard J, 2023, AM J MED, V136, P1059, DOI 10.1016/j.amjmed.2023.06.012
Hatem R, 2023, JAMA INTERN MED, V183, P1177, DOI 10.1001/jamainternmed.2023.4231
Ji ZW, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3571730
Kendrick Curtis L., 2023, Scholarly KitchenJanuary 26
Kung Tiffany H, 2023, PLOS Digit Health, V2, pe0000198, DOI 10.1371/journal.pdig.0000198
Leffer Lauren, 2023, Gizmodo
Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750
McMichael Jonathan, 2023, SMU Libraries
Milmo D., 2023, GUARDIAN 0202
Mollick Ethan, 2022, Harvard Business Review
Mollman Steve, 2022, Yahoo!
Rozear Hannah, 2023, Duke University Library NewsMarch 9
Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z
Teubner T, 2023, BUS INFORM SYST ENG+, V65, P95, DOI 10.1007/s12599-023-00795-x
Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879
NR 26
TC 0
Z9 0
U1 0
U2 0
PU DUKE UNIV PRESS
PI DURHAM
PA 905 W MAIN ST, STE 18-B, DURHAM, NC 27701 USA
SN 0333-5372
J9 POETICS TODAY
JI Poetics Today
PD JUN 1
PY 2024
VL 45
IS 2
DI 10.1215/03335372-11092818
PG 9
WC Literature
WE Arts & Humanities Citation Index (A&HCI)
SC Literature
GA UO7O2
UT WOS:001249066600005
DA 2024-09-05
ER
PT J
AU Mohebbi, A
Douzandegan, Y
AF Mohebbi, Alireza
Douzandegan, Yousef
TI Linear Regression Analysis of Title Word Count and Article Time Cited
using R
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Scientometric; Article Time Cited; Title Word Count; Linear Regression;
R statistic
ID NUMBER
AB There is a common idea, that title variables like article title length would influence article citations. The aim of the present study was to investigating possible relationship between size of article title and number of article citations by minimizing scientometric variable biases. A dataset containing similar to 100,000 virological literatures was obtained from Web of Science InCiteTM database from 1997 to 2016. Variables, Title size (TWC), Year (YoP), Source (JS), and Publisher were selected. In addition number of times article is cited ` Time Cited' (TC) was retrieved from Web of Science InCiteTM. Linear regression analysis was performed between variables and TC using R for a possible prediction model for TC. Result has shown a robust standard error corrected linear regression with only 30.6% power of predictability. Furthermore, it was found that TC, YoP, and JS have meaningful potential in the linear model. Moreover, TC is negatively correlated with YoP, JS, and positively with TWC. As a result, size of article title, years passed since publication and the journal in which article accepted are good but not sufficient predictor of article citations. In addition, article is a multi-characteristic subject and other predictors can be supposed. However, we think that finding an efficient statistical linear predication model for TC, by increase of articles citation, is overwhelming.
C1 [Mohebbi, Alireza; Douzandegan, Yousef] Golestan Univ Med Sci, Sch Med, Student Res Comm, Gorgan, Iran.
C3 Golestan University of Medical Sciences
RP Mohebbi, A (corresponding author), Golestan Univ Med Sci, Sch Med, Student Res Comm, Gorgan, Iran.
EM Mohebbi-a@goums.ac.ir
RI Mohebbi, Alireza/M-5769-2016
OI Mohebbi, Alireza/0000-0003-2489-585X
CR Aleixandre-Benavent R, 2014, SCIENTOMETRICS, V101, P781, DOI 10.1007/s11192-014-1296-5
Austin PC, 2015, J CLIN EPIDEMIOL, V68, P627, DOI 10.1016/j.jclinepi.2014.12.014
Fox J., 2016, 'car'
Fumani MRFQ, 2015, ANN LIBR INF STUD, V62, P126
Ginestet C, 2011, J ROY STAT SOC A, V174, P245, DOI 10.1111/j.1467-985X.2010.00676_9.x
Habibzadeh F, 2010, CROAT MED J, V51, P165, DOI 10.3325/cmj.2010.51.165
Harrell F.E., 2013, Hmisc: Harrell Miscellaneous. R package version 3.10-1.1. Available from
Harrell F.E.J., 2013, R Package version 3.6-3
Hothorn T, PACKAGE LMTEST TESTI, V6
Jacques Thomas S, 2010, JRSM Short Rep, V1, P2, DOI 10.1258/shorts.2009.100020
Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z
Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266
Paiva CE, 2012, CLINICS, V67, P509
NR 13
TC 1
Z9 1
U1 0
U2 7
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD JAN-APR
PY 2017
VL 6
IS 1
BP 15
EP 22
DI 10.5530/jscires.6.1.3
PG 8
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA FI2WM
UT WOS:000411810300003
OA Green Submitted, hybrid
DA 2024-09-05
ER
PT J
AU MOREAU, DR
DOMINICK, WD
AF MOREAU, DR
DOMINICK, WD
TI OBJECT-ORIENTED GRAPHICAL INFORMATION-SYSTEMS - RESEARCH PLAN AND
EVALUATION METRICS
SO JOURNAL OF SYSTEMS AND SOFTWARE
LA English
DT Article
C1 UNIV SW LOUISIANA,CTR ADV COMP STUDIES,LAFAYETTE,LA 70504.
C3 University of Louisiana Lafayette
CR BOBROW D, 1986, SEP C OBJ OR PROGR S, P17
Card S.K., 1983, The Psychology of Human-Computer Interaction", P23
Cox B.J., 1986, OBJECT ORIENTED PROG
DOMINICK WD, 1986, ANNOTATED INDEX USL
FLOYD RW, 1978, COMMUN ACM, V22, P455
Goldberg A., 1984, INTERACTIVE PROGRAMM, P141
HENDLER JA, 1986, 19TH HAW INT C SYST, P117
HOARE CAR, 1985, COMMUNICATING SEQUEN, P23
ISHIKAWA Y, 1986, SEP P OOPSLA 86 PORT, P232
KAHN K, 1986, SEP ACM C OBJ OR PRO, P242
MAIER D, 1985, DATA BASE ENG, V8, P58
NIERSTRASZ OM, 1985, DATA BASE ENG, V8, P49
RAEDER G, 1985, IEEE COMPUT, V18, P11
REISS SP, 1986, UNPUB OBJECT ORIENTE
SCHAFFERT C, 1986, SEP P ACM C OBJ OR P, P9
SMITH RG, 1986, OBJECT ORIENTED SUBS
SNYDER A, 1986, SEP P ACM C OBJ OR P, P38
SNYDER A, 1985, COMMONG LISP OBJECTS
STROM R, 1983, JUN ACM SIG PLAN S L, P77
Stroustrup B., 1986, C PROGRAMMING LANGUA, P1
TEITELMAN W, 1984, INTERACTIVE PROGRAMM, P83
TOURETZKY DS, 1986, MATH INHERITANCE SYS, P139
WINOGRAD T, 1984, INTERACTIVE PROGRAMM, P3
NR 23
TC 17
Z9 17
U1 0
U2 0
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010
SN 0164-1212
J9 J SYST SOFTWARE
JI J. Syst. Softw.
PD JUL
PY 1989
VL 10
IS 1
BP 23
EP 28
DI 10.1016/0164-1212(89)90059-9
PG 6
WC Computer Science, Software Engineering; Computer Science, Theory &
Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA AK083
UT WOS:A1989AK08300004
DA 2024-09-05
ER
PT C
AU Bilal Zoric, A
Miloloza, I
Pejic Bach, M
AF Bilal Zoric, Alisa
Miloloza, Ivan
Pejic Bach, Mirjana
BE Erceg, A
Pozega, Z
TI NEURAL NETWORKS FOR STUDENT PERFORMANCE IN HIGHER EDUCATION: PRELIMINARY
BIBLIOMETRIC ANALYSIS
SO INTERDISCIPLINARY MANAGEMENT RESEARCH XVIII (IMR 2022)
SE Interdisciplinary Management Research-Interdisziplinare
Managementforschung
LA English
DT Proceedings Paper
CT 18th Conference on Interdisciplinary Management Research (IMR)
CY MAY 05-07, 2022
CL Opatija, CROATIA
DE neural network; higher education; educational data mining; student
performance
ID FUZZY INFERENCE SYSTEM; COST
AB Neural networks or artificial neural networks are a branch of machine learning, a technology based on brain and nervous system studies. Thanks to the fast-technological changes, growing computing power, advanced algorithms, and widely available digital data, the application of neural networks has spread tremendously in many fields of study, from health and medicine, accounting, finance, engineering, manufacturing, and marketing to natural language processing and robotics, wherever the analysis of big sets of data is needed. This paper focuses on using neural networks in higher educational institutions for student performance analysis and prediction, intending to investigate these researches' bibliometric and topical characteristics published in scientific papers. We have searched the indexing service Scopus to track the papers that present the applications of neural networks in higher education in the last five years. The research has been investigated based on the bibliometric characteristics (authors, publications, institutions, funding) as well as the topics of the research. The presented analysis is preliminary and can be relevant for future in-depth research on the applications of neural networks for the analysis of student performance in higher education.
C1 [Bilal Zoric, Alisa] Univ Appl Sci Baltazar Zapresic, Zapresic, Croatia.
[Miloloza, Ivan] Josip Juraj Strossmayer Univ Osijek, Fac Dent Med & Hlth Osijek, Osijek, Croatia.
[Pejic Bach, Mirjana] Univ Zagreb, Fac Econ & Business Zagreb, Zagreb, Croatia.
C3 University of JJ Strossmayer Osijek; University of Zagreb
RP Bilal Zoric, A (corresponding author), Univ Appl Sci Baltazar Zapresic, Zapresic, Croatia.
EM abilal@bak.hr; ivan.miloloza@fdmz.hr; mpejic@net.efzg.hr
CR Abiodun OI, 2018, HELIYON, V4, DOI 10.1016/j.heliyon.2018.e00938
Abraham A., 2005, FUZZY SYSTEMS ENG TH, P53, DOI DOI 10.1007/11339366_3
Ahuja R, 2019, ADV INTELL SYST, V741, P897, DOI 10.1007/978-981-13-0761-4_85
Ali M. M., 2013, INT J COMPUTER SCI M, V2
[Anonymous], 2013, P 2013 C EMPIRICAL M
Avella JT, 2016, ONLINE LEARN, V20, P13
Chen J. F., 2014, INT J INFORM MANAGEM, V25, P371
Chen JF, 2014, J INTELL FUZZY SYST, V27, P2551, DOI 10.3233/IFS-141229
Deuja R, 2018, PROCEEDINGS ON 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS), P77, DOI 10.1109/CCCS.2018.8586809
Devasia T, 2016, PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA MINING AND ADVANCED COMPUTING (SAPIENCE), P91, DOI 10.1109/SAPIENCE.2016.7684167
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dutti A, 2017, IEEE ACCESS, V5, P15991, DOI 10.1109/ACCESS.2017.2654247
Galati F, 2019, COMPUT IND, V109, P100, DOI 10.1016/j.compind.2019.04.018
Hamoud AK, 2018, INT J INTERACT MULTI, V5, P26, DOI 10.9781/ijimai.2018.02.004
Hashim Ali Salah, 2020, IOP Conference Series: Materials Science and Engineering, V928, DOI 10.1088/1757-899X/928/3/032019
Hassan H, 2019, COMM COM INF SC, V1000, P221, DOI 10.1007/978-3-030-20257-6_19
Hooshyar D, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22010012
Karazi S.M., 2019, STAT NUMERICAL APPRO
Klose M., 2020, STAT NUMERICAL APPRO
Kurniadi Dede, 2021, ICIC Express Letters, Part B: Applications, V12, P883, DOI 10.24507/icicelb.12.10.883
Son LH, 2019, APPL INTELL, V49, P172, DOI 10.1007/s10489-018-1262-7
Li S., 2021, COMPLEXITY
Li SP, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/9958203
Lotfi E, 2016, ENG ECON, V61, P144, DOI 10.1080/0013791X.2015.1104568
Maitra Sandhya, 2018, 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). Proceedings, P1158, DOI 10.1109/ICACCCN.2018.8748869
McGaw B., 2010, International encyclopedia of education, V3rd
Bezerra LNM, 2019, J INF TECHNOL RES, V12, P154, DOI 10.4018/JITR.2019070109
Mengash HA, 2020, IEEE ACCESS, V8, P55462, DOI 10.1109/ACCESS.2020.2981905
Moro S, 2019, J BUS RES, V103, P275, DOI 10.1016/j.jbusres.2019.01.053
Network E. N., 2018, ITS 2018 WORKSHOP P, P55
Obla S, 2020, IEEE ACCESS, V8, P153098, DOI 10.1109/ACCESS.2020.3017436
Okewu E, 2021, APPL ARTIF INTELL, V35, P983, DOI 10.1080/08839514.2021.1922847
Panapakidis IP, 2017, ENERGY, V118, P231, DOI 10.1016/j.energy.2016.12.033
Pardo A, 2014, BRIT J EDUC TECHNOL, V45, P438, DOI 10.1111/bjet.12152
Prasad K, 2016, ATMOS ENVIRON, V128, P246, DOI 10.1016/j.atmosenv.2016.01.007
Pu HT, 2021, NEURAL COMPUT APPL, V33, P637, DOI 10.1007/s00521-020-05045-9
Quang Hung Do, 2013, WSEAS Transactions on Information Science and Applications, V10, P396
Raza SH, 2021, FRONT APPL MATH STAT, V7, DOI 10.3389/fams.2021.620080
Rezakazemi M, 2019, J MOL LIQ, V274, P470, DOI 10.1016/j.molliq.2018.11.017
Rohana T, 2021, BUANA INFORM TECHNOL, V2, P31
Romero C, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1355
Rostampour Nima, 2018, J Med Signals Sens, V8, P25
Santos R, 2023, TOUR PLAN DEV, V20, P636, DOI 10.1080/21568316.2021.1953121
Sengupta Subhabrata, 2021, Proceedings of International Conference on Computational Intelligence, Data Science and Cloud Computing. IEM-ICDC 2020. Lecture Notes on Data Engineering and Communications Technologies (LNDECT 62), P231, DOI 10.1007/978-981-33-4968-1_19
Silva C, 2017, ADV INTELL SYST, V520, P87, DOI 10.1007/978-3-319-46568-5_9
Socher Richard, 2011, ICML
Srisaeng P, 2015, AVIATION, V19, P150, DOI 10.3846/16487788.2015.1104806
Sutskever I, 2014, ADV NEUR IN, V27
Tsiakmaki M, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10062145
Cazarez RLU, 2018, IEEE LAT AM T, V16, P2053
Ulloa-Cazarez RL, 2021, IEEE LAT AM T, V19, P98, DOI 10.1109/TLA.2021.9423852
Walia N., 2015, Int J Comput Appl, V123, P13, DOI [DOI 10.5120/IJCA2015905635, 10.5120/ijca2015905635]
Willamette, 2014, COMP BRAIN BRAIN INF
Wu YC, 2018, WIRELESS PERS COMMUN, V102, P1645, DOI 10.1007/s11277-017-5224-x
XiaoWang Xunqiang, 2021, IEEE T BIG DATA
Yang F, 2018, COMPUT EDUC, V123, P97, DOI 10.1016/j.compedu.2018.04.006
Yusof M. H. M., 2021, 2021 INT C TECHNOLOG, P1
Zhang Z, 2020, MECH ADV MATER STRUC, V27, P3, DOI 10.1080/15376494.2018.1444216
Zoric A. B., 2019, P EC SOCIAL DEV BOOK, P1
NR 59
TC 0
Z9 0
U1 0
U2 1
PU JOSIP JURAJ STROSSMAYER UNIV OSIJEK
PI OSIJEK
PA UNIV APPLIED SCIENCES, FAC ECONOMIC OSIJEK, HOCHSCHULE PFORZHEIM, TRG
SV, TROJSTVA 3, OSIJEK, 31000, CROATIA
SN 1847-0408
J9 INTERDISC MANAG RES
PY 2022
BP 762
EP 781
PG 20
WC Business, Finance; Management
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics
GA BT5VO
UT WOS:000838680600041
DA 2024-09-05
ER
PT J
AU Das, RM
Jv, M
AF Das, Runu Mani
J.v., Madhusudan
TI Analysing the Community of Inquiry Model in the Context of Online
Learning: A Bibliometric Study
SO TECHTRENDS
LA English
DT Article
DE Community of inquiry; Online learning; Bibliometric analysis
AB This paper presents a bibliometric analysis of the community of inquiry model in online learning. The study focuses on identifying the most trending topics, most impact authors, most relevant sources, most relevant countries and most cited articles in the community of inquiry online learning model. Another aim is to understand the literature's factorial analysis, co-occurrence mapping and productivity mapping and the importance of the community of inquiry model in online teaching and learning. A total of 405 studies published between 2015 and 2022 extracted from the Web of Science Core Collection for the study. The results show the extent of growth of research studies in the community of inquiry model. The analysis revealed trends of productive authors and journals, and also identified the top country in terms of publishing articles. It includes a deeper understanding of the intellectual structure and conceptual evolution of the CoI model. Future research should explore advanced bibliometric mapping for CoI dynamics and the factors influencing learner engagement within the community of inquiry model, the role of teaching, cognitive and social presences, and strategies to strengthen the three presences in online learning. The study will help educators and researchers to identify the trends in relation to the community of inquiry framework.
C1 [Das, Runu Mani; J.v., Madhusudan] Univ Hyderabad, Dept Educ & Educ Technol, Hyderabad, India.
C3 University of Hyderabad
RP Das, RM (corresponding author), Univ Hyderabad, Dept Educ & Educ Technol, Hyderabad, India.
EM runumanidas123@gmail.com
OI Jv, Madhusudan/0000-0002-6582-0152
CR Anderson T., 2001, JALN, V5
Arbaugh JB, 2008, INTERNET HIGH EDUC, V11, P133, DOI 10.1016/j.iheduc.2008.06.003
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Velasco CAB, 2011, CUAD ECON DIR EMPRES, V14, P78, DOI 10.1016/j.cede.2011.02.004
Danvila-del-valle I., 2019, HUMAN RESOURCES TRAI
Durán-Sánchez A, 2018, RELIGIONS, V9, DOI 10.3390/rel9090249
Garrison D. R., 1999, Internet and Higher Education, V2, P87, DOI 10.1016/S1096-7516(00)00016-6
Garrison DR, 2010, INTERNET HIGH EDUC, V13, P31, DOI 10.1016/j.iheduc.2009.10.002
Garrison D.R., 2007, The Internet and Higher Education, V10, P157, DOI [DOI 10.1016/J.IHEDUC.2007.04.001, 10.1016/j.iheduc.2007.04.001]
Garrison DR, 2005, AM J DISTANCE EDUC, V19, P133, DOI 10.1207/s15389286ajde1903_2
Gasevic D, 2014, INT REV RES OPEN DIS, V15, P134
Heradio R, 2016, COMPUT EDUC, V98, P14, DOI 10.1016/j.compedu.2016.03.010
Hodges C. B., 2020, DIFFERENCE EMERGENCY
Ke FF, 2010, COMPUT EDUC, V55, P808, DOI 10.1016/j.compedu.2010.03.013
Lee SJ, 2011, INTERNET HIGH EDUC, V14, P158, DOI 10.1016/j.iheduc.2011.04.001
Oliver R, 2003, INTERACT LEARN ENVIR, V11, P111, DOI 10.1076/ilee.11.2.111.14136
Ozdemir MA, 2021, TOUR MANAG STUD, V17, P21, DOI 10.18089/tms.2021.170302
Rojas-Sánchez MA, 2023, EDUC INF TECHNOL, V28, P155, DOI 10.1007/s10639-022-11167-5
Shea P, 2010, COMPUT EDUC, V55, P1721, DOI 10.1016/j.compedu.2010.07.017
Vaughan ND, 2013, ISS ONLINE EDUC, P1
Xie HL, 2020, LAND-BASEL, V9, DOI 10.3390/land9010028
Yu ZG, 2022, EDUC INF TECHNOL, V27, P11669, DOI 10.1007/s10639-022-11081-w
NR 22
TC 0
Z9 0
U1 7
U2 7
PU SPRINGER INT PUBL AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 8756-3894
EI 1559-7075
J9 TECHTRENDS
JI TechTrends
PD MAY
PY 2024
VL 68
IS 3
SI SI
BP 435
EP 447
DI 10.1007/s11528-024-00943-4
EA MAR 2024
PG 13
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA SD4A5
UT WOS:001186105500001
DA 2024-09-05
ER
PT J
AU Victor, BG
Perron, BE
Sokol, RL
Fedina, L
Ryan, JP
AF Victor, Bryan G.
Perron, Brian E.
Sokol, Rebeccah L.
Fedina, Lisa
Ryan, Joseph P.
TI Automated Identification of Domestic Violence in Written Child Welfare
Records: Leveraging Text Mining and Machine Learning to Enhance Social
Work Research and Evaluation
SO JOURNAL OF THE SOCIETY FOR SOCIAL WORK AND RESEARCH
LA English
DT Article
DE text mining; machine learning; data science; domestic violence; child
welfare
ID TEST-RETEST RELIABILITY; ABUSE; MALTREATMENT; FAMILIES; SERVICES;
NEGLECT
AB Objective: Child welfare agencies often lack information about the front-end service needs of the families they serve. Thus, the current study tests the feasibility of text mining and machine learning procedures for identifying problems related to domestic violence documented in child welfare investigation summaries. Method: We labeled child welfare investigation summaries (N = 1,402) for the presence or absence of an active domestic violence service need. Labeled documents were then used to develop text mining and machine learning models and test their accuracy and reliability. Results: Machine learning models achieved greater than 90% accuracy when compared with human coders. Fleiss kappa estimates of coding reliability between the top-performing model and human reviewers exceeded .80, indicating that our model could support human reviewers to complete this coding task. Conclusion: Results provide strong evidence that text mining and machine learning procedures can be a cost-effective solution for extracting meaningful insights from text data. Although unsuitable for case-level predictive analytics, insights derived from these procedures can be particularly useful for investigating the prevalence, temporal trends, and geographic distribution of domestic violence-related needs in the child welfare system. These methods could substantially enhance the use of text data in social work research and evaluation.
C1 [Victor, Bryan G.; Sokol, Rebeccah L.] Wayne State Univ, Sch Social Work, 5447 Woodward Ave, Detroit, MI 48202 USA.
[Perron, Brian E.; Fedina, Lisa; Ryan, Joseph P.] Univ Michigan, Sch Social Work, Ann Arbor, MI 48109 USA.
[Perron, Brian E.; Ryan, Joseph P.] Univ Michigan, Child & Adolescent DataLab, Ann Arbor, MI 48109 USA.
C3 Wayne State University; University of Michigan System; University of
Michigan; University of Michigan System; University of Michigan
RP Victor, BG (corresponding author), Wayne State Univ, Sch Social Work, 5447 Woodward Ave, Detroit, MI 48202 USA.
EM bvictor@wayne.edu
RI Victor, Bryan/T-8349-2019; Perron, Brian E./AFW-1605-2022
OI Victor, Bryan/0000-0002-2092-912X; Sokol, Rebeccah/0000-0003-3892-2337
FU Casey Family Programs; Michigan Department of Health and Human Services
FX We would like to thank Cristina Garbacea from the Department of Computer
Science and Engineering at the University of Michigan-Ann Arbor for her
methodological guidance on data science methods. This study was
supported by a grant from Casey Family Programs and the Michigan
Department of Health and Human Services.
CR Aggarwal C.C., 2012, MINING TEXT DATA, P77, DOI 10.1007/978-1-4614-3223-4
Alpaydin E, 2009, Introduction to machine learning
Amrit C, 2017, EXPERT SYST APPL, V88, P402, DOI 10.1016/j.eswa.2017.06.035
Barth RP, 2009, FUTURE CHILD, V19, P95, DOI 10.1353/foc.0.0031
Carnochan S, 2019, J PUBLIC CHILD WELF, V13, P419, DOI 10.1080/15548732.2018.1509040
Casanueva C, 2014, CHILD ABUSE NEGLECT, V38, P1683, DOI 10.1016/j.chiabu.2014.05.013
Castillo Alfred, 2014, Advancing the Impact of Design Science: Moving from Theory to Practice. 9th International Conference, DESRIST 2014. Proceedings: LNCS 8463, P312, DOI 10.1007/978-3-319-06701-8_21
de Haan, 2015, GRAND CHALLENGES SOC
Ekstrom J.A., 2008, 9th Annual International Conference on Digital Government Research (dg.o 2008), P53
Fattori M., 2003, World Patent Information, V25, P335, DOI [DOI 10.1016/S0172-2190(03)00113-3, 10.1016/S0172-2190(03)00113-3]
Fedina L., 2017, Journal of Human Trafficking, V3, P21, DOI [10.1080/23322705.2017.1280316, DOI 10.1080/23322705.2017.1280316]
Fedina L, 2019, J INTERPERS VIOLENCE, V34, P2653, DOI 10.1177/0886260516662306
Gibbs DA, 2018, CHILD YOUTH SERV REV, V88, P1, DOI 10.1016/j.childyouth.2018.02.045
Han J, 2012, MOR KAUF D, P1
Henry C, 2018, CHILD ABUSE NEGLECT, V86, P79, DOI 10.1016/j.chiabu.2018.08.018
Henry C, 2014, CHILD WELFARE, V93, P7
Holden GW, 2003, CLIN CHILD FAM PSYCH, V6, P151, DOI 10.1023/A:1024906315255
James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1
Kohl PL, 2005, CHILD YOUTH SERV REV, V27, P1203, DOI 10.1016/j.childyouth.2005.04.005
Krallinger M, 2005, DRUG DISCOV TODAY, V10, P439, DOI 10.1016/S1359-6446(05)03376-3
Kulkarni S. J., 2016, GRAND CHALLENGES SOC
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Lawson J, 2019, CHILD YOUTH SERV REV, V98, P32, DOI 10.1016/j.childyouth.2018.12.017
Lee SJ, 2013, CHILD YOUTH SERV REV, V35, P634, DOI 10.1016/j.childyouth.2013.01.004
Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11
Marsh JC, 2006, CHILD YOUTH SERV REV, V28, P1074, DOI 10.1016/j.childyouth.2005.10.012
Michigan Department of Health and Human Services, 2016, CHILD PROTECTIVE SER
Mumtaz F, 2018, BIOMED PHARMACOTHER, V105, P1205, DOI 10.1016/j.biopha.2018.05.086
Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P27
Naughton CM, 2020, J INTERPERS VIOLENCE, V35, P3102, DOI 10.1177/0886260517706763
Ogbonnaya I.N., 2013, Journal of the Society for Social Work and Research, V4, P198, DOI DOI 10.5243/JSSWR.2013.14
Okech D, 2018, J EVID-INFORM SOC WO, V15, P102, DOI 10.1080/23761407.2017.1415177
Perron BE, 2022, J SOC WORK EDUC, V58, P193, DOI 10.1080/10437797.2020.1764891
Perron BE, 2019, CHILD ABUSE NEGLECT, V98, DOI 10.1016/j.chiabu.2019.104180
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Provalis Research, 2014, WORDST US GUID
Provalis Research, 2018, WORDST CONT AN TEXT
Regier DA, 2013, AM J PSYCHIAT, V170, P59, DOI 10.1176/appi.ajp.2012.12070999
Shearer C., 2000, J DATA WAREHOUSING, V5, P13
SIMON HA, 1956, PSYCHOL REV, V63, P129, DOI 10.1037/h0042769
Straus MA, 1996, J FAM ISSUES, V17, P283, DOI 10.1177/019251396017003001
Studer R, 1998, DATA KNOWL ENG, V25, P161, DOI 10.1016/S0169-023X(97)00056-6
Taylor S, 2019, J PUBLIC CHILD WELF, V13, P325, DOI 10.1080/15548732.2018.1500967
Vega EM, 2007, J FAM VIOLENCE, V22, P703, DOI 10.1007/s10896-007-9118-7
Victor BG, 2019, CHILD MALTREATMENT, V24, P299, DOI 10.1177/1077559519843605
Victor BG, 2016, CHILD YOUTH SERV REV, V70, P112, DOI 10.1016/j.childyouth.2016.09.015
Weiss S.M., 2010, Text Mining: Predictive Methods for Analyzing Unstructured Information, DOI 10.1007/978-0-387-34555-0
Witten IH, 2011, MOR KAUF D, P1
Zhou Y, 2016, J SOFTW-EVOL PROC, V28, P150, DOI 10.1002/smr.1770
NR 49
TC 11
Z9 11
U1 4
U2 20
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA
SN 2334-2315
EI 1948-822X
J9 J SOC SOC WORK RES
JI J. Soc. Soc. Work Res.
PD DEC 1
PY 2021
VL 12
IS 4
BP 631
EP 655
DI 10.1086/712734
EA DEC 2021
PG 25
WC Social Work
WE Social Science Citation Index (SSCI)
SC Social Work
GA XT0MX
UT WOS:000712780300001
DA 2024-09-05
ER
PT J
AU Ozyurt, H
Ozyurt, O
Mishra, D
AF Ozyurt, Hacer
Ozyurt, Ozcan
Mishra, Deepti
TI Exploring the Evolution of Educational Serious Games Research: A Topic
Modeling Perspective
SO IEEE ACCESS
LA English
DT Article
DE Games; Education; Analytical models; Reviews; Systematics;
Bibliometrics; Training; Data science; Serious games; Data science
applications in education; research trend; serious games; topic modeling
ID VIRTUAL-REALITY; DESIGN
AB This study aims to reveal the dominant research interests and models in serious games research using topic modeling analysis. The dataset of this study covers a comprehensive collection of 2676 articles from the past to the end of 2022, indexed in the Scopus database. The study begins by presenting descriptive attributes of the articles, including their publication years, subject areas, and the journals in which they are published. Subsequently, employing topic modeling analysis, a form of unsupervised machine learning, the study identifies concealed themes, research interests, and tendencies within the literature. The findings indicate a notable surge in publications in this domain, particularly post-2009 and 2019. Furthermore, the study identifies eleven primary topics dominating the literature, with notable emphasis on "Training of STEM-related fields," "Programming learning," and "Medical education". To gauge the dynamics within these topics, the study calculates accelerations both within individual topics and in comparison to others over time. Remarkably, "Child and adolescent health" emerges as the topic with the highest self-acceleration, while "Medical education" stands out for its acceleration in comparison to other topics. In sum, the outcomes of this study, which provides a comprehensive overview of the serious games field, are anticipated to yield valuable insights for understanding the current landscape, guiding future research endeavors, and shaping the trajectory of this field.
C1 [Ozyurt, Hacer; Ozyurt, Ozcan] Karadeniz Tech Univ, Fac Technol, Dept Software Engn, TR-61830 Trabzon, Turkiye.
[Mishra, Deepti] Norwegian Univ Sci & Technol, Dept Comp Sci IDI, Educ Technol Lab, N-2815 Gjovik, Norway.
C3 Karadeniz Technical University; Norwegian University of Science &
Technology (NTNU)
RP Mishra, D (corresponding author), Norwegian Univ Sci & Technol, Dept Comp Sci IDI, Educ Technol Lab, N-2815 Gjovik, Norway.
EM deepti.mishra@ntnu.no
OI OZYURT, OZCAN/0000-0002-0047-6813
FU Norwegian University of Science and Technology, Gjvik, Norway
FX No Statement Available
CR Abd-Alrazaq A, 2022, JMIR SERIOUS GAMES, V10, DOI 10.2196/32331
Abraham O, 2020, JMIR SERIOUS GAMES, V8, DOI 10.2196/16096
Aggarwal C., 2013, Mining text data
Almeida F., 2019, Contemp. Educ. Technol, V10, P120, DOI DOI 10.30935/CET.554469
Alonso-Fernández C, 2020, J COMPUT ASSIST LEAR, V36, P350, DOI 10.1111/jcal.12405
Andrew L, 2023, EDUC INF TECHNOL, V28, P5519, DOI 10.1007/s10639-022-11414-9
Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7
Ayaz A, 2023, IEEE ACCESS, V11, P119676, DOI 10.1109/ACCESS.2023.3326444
Bano S, 2023, J KING SAUD UNIV-COM, V35, DOI 10.1016/j.jksuci.2023.101739
Barros C, 2020, EDUC INF TECHNOL, V25, P1497, DOI 10.1007/s10639-019-09990-4
Bernecker K, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106542
Blei D, 2010, IEEE SIGNAL PROC MAG, V27, P55, DOI 10.1109/MSP.2010.938079
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boyle EA, 2012, COMPUT HUM BEHAV, V28, P771, DOI 10.1016/j.chb.2011.11.020
Buyukozturk E., 2017, Bilimselarastirma yontemleri
Calabor M S., 2019, Journal of Accounting Education, V46, P43, DOI DOI 10.1016/J.JACCEDU.2018.12.004
Charrouf Y, 2019, EDUC INF TECHNOL, V24, P3841, DOI 10.1007/s10639-019-09958-4
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Cheng MT, 2017, BRIT J EDUC TECHNOL, V48, P246, DOI 10.1111/bjet.12386
Cheng MT, 2015, J COMPUT EDUC, V2, P353, DOI 10.1007/s40692-015-0039-9
Ciftci S., 2018, Journal of Education and Training Studies, V6, P18, DOI [10.11114/jets.v6i2.2840, DOI 10.11114/JETS.V6I2.2840]
Clark D. B., 2009, P NAT AC SCI LEARN S
Coghlan A, 2020, J HOSP TOUR MANAG, V42, P258, DOI 10.1016/j.jhtm.2020.01.010
Connolly TM, 2012, COMPUT EDUC, V59, P661, DOI 10.1016/j.compedu.2012.03.004
Cowley B, 2014, EDUC TECHNOL SOC, V17, P3
Cowley B, 2013, COMPUT EDUC, V60, P299, DOI 10.1016/j.compedu.2012.07.014
Crookall D, 2010, SIMULAT GAMING, V41, P898, DOI 10.1177/1046878110390784
Darwesh A., 2016, International Journal Of Engineering And Computer Science, V4, P15229
De Gloria A, 2014, INT J SERIOUS GAMES, V1, DOI 10.17083/ijsg.v1i1.11
De Mauro A, 2018, INFORM PROCESS MANAG, V54, P807, DOI 10.1016/j.ipm.2017.05.004
Din ZU, 2019, SAFETY SCI, V115, P176, DOI 10.1016/j.ssci.2019.02.005
Eftimova A. M., 2021, J. Emerg. Comput. Technol., V1, P21
Ekin CC, 2023, COMPUT EDUC, V194, DOI 10.1016/j.compedu.2022.104700
Feng ZA, 2020, ADV ENG INFORM, V46, DOI 10.1016/j.aei.2020.101134
Feng ZN, 2021, J COMPUT ASSIST LEAR, V37, P542, DOI 10.1111/jcal.12507
Ferro LS, 2021, IEEE T LEARN TECHNOL, V14, P723, DOI 10.1109/TLT.2022.3143519
Francillette Y, 2021, ENTERTAIN COMPUT, V37, DOI 10.1016/j.entcom.2020.100396
García-Redondo P, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16142480
Gentry SV, 2019, J MED INTERNET RES, V21, DOI 10.2196/12994
Graafland M, 2012, BRIT J SURG, V99, P1322, DOI 10.1002/bjs.8819
Hallinger P, 2020, J CLEAN PROD, V256, DOI 10.1016/j.jclepro.2020.120358
Harta S, 2020, COMPUT SECUR, V95, DOI 10.1016/j.cose.2020.101827
Haruna H, 2019, INFORM LEARN SCI, V120, P723, DOI 10.1108/ILS-07-2019-0066
Holtz BE, 2018, GAMES HEALTH J, V7, P291, DOI 10.1089/g4h.2018.0024
Kang J, 2019, J KOREAN ACAD NURS, V49, P736, DOI 10.4040/jkan.2019.49.6.736
Khalid S, 2021, IEEE ACCESS, V9, P120210, DOI 10.1109/ACCESS.2021.3107939
Kroustalli C, 2021, EDUC INF TECHNOL, V26, P6069, DOI 10.1007/s10639-021-10596-y
Lagro J, 2014, J AM MED DIR ASSOC, V15, DOI 10.1016/j.jamda.2014.04.011
Laine TH, 2020, IEEE T LEARN TECHNOL, V13, P804, DOI 10.1109/TLT.2020.3018503
Liang ZP, 2019, IEEE ACCESS, V7, P118639, DOI 10.1109/ACCESS.2019.2934990
Liarokapis P., 2017, Multimodalserious games technologies for cultural heritage,'' inMixed RealityGamification for Cultural Heritage, P371
Liu GW, 2019, CONSTR INNOV-ENGL, V19, P343, DOI 10.1108/CI-03-2018-0013
Lovreglio R, 2018, ADV ENG INFORM, V38, P670, DOI 10.1016/j.aei.2018.08.018
Mabey B., 2018, PyLDAvis Documentation
Miljanovic MA, 2018, LECT NOTES COMPUT SC, V11243, P204, DOI 10.1007/978-3-030-02762-9_21
Min A, 2022, NURS EDUC TODAY, V108, DOI 10.1016/j.nedt.2021.105178
Naul E, 2020, J EDUC COMPUT RES, V58, P687, DOI 10.1177/0735633119859904
Nazry NNM, 2017, COMPUT HUM BEHAV, V73, P596, DOI 10.1016/j.chb.2017.03.040
Özköse H, 2023, J COMPUT INFORM SYST, V63, P1166, DOI 10.1080/08874417.2022.2132429
Ozyurt O, 2022, EDUC INF TECHNOL, V27, P11025, DOI 10.1007/s10639-022-11071-y
Prabhakaran S., ''Topic modeling with gensim (Python)
Rahouti A, 2021, FIRE TECHNOL, V57, P3041, DOI 10.1007/s10694-021-01098-x
Ritterfeld M. Cody, 2009, Serious Games: Mechanisms andEffects
Rodríguez LR, 2023, EDUC INF TECHNOL, V28, P2909, DOI 10.1007/s10639-022-11279-y
Rosenthal S, 2022, COMPUT EDUC, V182, DOI 10.1016/j.compedu.2022.104480
Scopus, 2022, Content Coverage
Sharifzadeh N, 2020, JMIR SERIOUS GAMES, V8, DOI 10.2196/13459
Shi YR, 2015, INT J COMPUT GAMES T, V2015, DOI 10.1155/2015/549684
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Tanner C, 2022, COMPUT EDUC, V178, DOI 10.1016/j.compedu.2021.104381
Urgo M, 2022, CIRP J MANUF SCI TEC, V36, P172, DOI 10.1016/j.cirpj.2021.11.006
Vieira C, 2021, JMIR SERIOUS GAMES, V9, DOI 10.2196/20066
Wang R, 2016, SIMUL HEALTHC, V11, P41, DOI 10.1097/SIH.0000000000000118
Wang Y, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.896974
Xinogalos S, 2021, INT J SERIOUS GAMES, V8, P67, DOI 10.17083/ijsg.v8i2.425
Yasin A, 2019, IET SOFTW, V13, P159, DOI 10.1049/iet-sen.2018.5095
Yin B, 2022, EDUC INF TECHNOL, V27, P12689, DOI 10.1007/s10639-022-11118-0
Yu ZG, 2019, INT J COMPUT GAMES T, V2019, DOI 10.1155/2019/4797032
Yu ZG, 2018, COMPUT EDUC, V127, P214, DOI 10.1016/j.compedu.2018.07.014
Yung R, 2019, CURR ISSUES TOUR, V22, P2056, DOI 10.1080/13683500.2017.1417359
Zyda M, 2005, COMPUTER, V38, P25, DOI 10.1109/MC.2005.297
NR 81
TC 0
Z9 0
U1 4
U2 4
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2024
VL 12
BP 81827
EP 81841
DI 10.1109/ACCESS.2024.3411094
PG 15
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA UL3E9
UT WOS:001248167600001
OA gold
DA 2024-09-05
ER
PT J
AU Yeh, DY
Cheng, CH
Yio, HW
AF Yeh, Duen-Yian
Cheng, Ching-Hsue
Yio, Hwei-Wun
TI Empirical research of the principal component analysis and ordered
weighted averaging integrated evaluation model on software projects
SO CYBERNETICS AND SYSTEMS
LA English
DT Article
ID AGGREGATION OPERATORS
AB With the restrictions of time and cost, the complexity of software project development implies that the software industry cannot develop high quality products to satisfy the customers' needs. The evaluation of software development cannot only assist the deciders with the prediction of feasibility and the impact of benefits in advance, but also offer excellent help for the improvement and developing strategy of management after software project is developed. This research proposed a principal component analysis (PCA) and ordered weighted averaging (OWA) integrated evaluation model to overcome the complexity adhered in appropriately evaluating the development of software projects. The distinguishing characteristic of this model lies in integrating the respective advantages of PCA and OWA operators to appropriately evaluate the development of software projects.
In this model, a well-designed questionnaire was used to express the experts' opinions on the development of software projects with respect to each criterion. The amount of evaluation results was reduced by means of PCA with the aim at cutting down the number of criteria but the accumulated variance of the original ones was preserved. OWA was used to flexibly obtain the weights of resultant criteria under the consideration of information requirement. In empirical validation, three software projects belonging to one famous hospital in Taiwan were selected as the targets to examine the appropriateness of this model. A comparison was taken to reveal the superiority of this model. As expected, the model was more effective with the increased complexity the evaluation of software project development.
C1 Transworld Inst Technol, Dept Informat Management, Yunlin 640, Taiwan.
Natl Yunlin Univ Sci & Technol, Dept Informat Management, Yunlin, Taiwan.
C3 National Yunlin University Science & Technology
RP Yeh, DY (corresponding author), Transworld Inst Technol, Dept Informat Management, 1221,Zheng Nan Rd, Yunlin 640, Taiwan.
EM yeh@tit.edu.tw
RI Cheng, Ching-Hsue/D-1785-2012
OI Cheng, Ching-Hsue/0000-0002-5509-6965
CR [Anonymous], P 22 ANN IEEE ASI C
Boehm B.W., 1988, IEEE COMPUTER, V21, P61
CHENG CH, 2005, IN PRESS SOFT COMPUT
Fullér R, 2001, FUZZY SET SYST, V124, P53, DOI 10.1016/S0165-0114(01)00007-0
Hotelling H, 1933, J EDUC PSYCHOL, V24, P498, DOI 10.1037/h0070888
Humphrey W.S., 1989, MANAGING SOFTWARE PR
Jiang JJ, 2004, INFORM MANAGE-AMSTER, V41, P279, DOI 10.1016/S0378-7206(03)00052-1
Krishnan MS, 2000, MANAGE SCI, V46, P745, DOI 10.1287/mnsc.46.6.745.11941
Lee M, 1999, EUR J OPER RES, V118, P375, DOI 10.1016/S0377-2217(98)00320-8
Li EY, 2002, TOTAL QUAL MANAGE, V13, P701, DOI 10.1080/0954412022000002081
Pearson K, 1901, PHILOS MAG, V2, P559, DOI 10.1080/14786440109462720
Rainer A, 2003, J SYST SOFTWARE, V66, P7, DOI 10.1016/S0164-1212(02)00059-6
Smolíková R, 2002, FUZZY SET SYST, V131, P23, DOI 10.1016/S0165-0114(01)00252-4
Wilson DN, 2001, J SYST SOFTWARE, V59, P135, DOI 10.1016/S0164-1212(01)00057-7
YAGER RR, 1988, IEEE T SYST MAN CYB, V18, P183, DOI 10.1109/21.87068
YAGER RR, 1993, FUZZY SET SYST, V59, P125, DOI 10.1016/0165-0114(93)90194-M
NR 16
TC 5
Z9 6
U1 1
U2 3
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA
SN 0196-9722
J9 CYBERNET SYST
JI Cybern. Syst.
PY 2007
VL 38
IS 3
BP 289
EP 303
DI 10.1080/01969720601187347
PG 15
WC Computer Science, Cybernetics
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA 145CJ
UT WOS:000244842600004
DA 2024-09-05
ER
PT C
AU Hamou-Lhadj, W
Nayrolles, M
AF Hamou-Lhadj, Wahab
Nayrolles, Mathieu
GP IEEE
TI A Project on Software Defect Prevention at Commit-Time: A Success Story
of University-Industry Research Collaboration
SO PROCEEDINGS 2018 IEEE/ACM 5TH INTERNATIONAL WORKSHOP ON SOFTWARE
ENGINEERING RESEARCH AND INDUSTRIAL PRACTICE (SER&IP)
LA English
DT Proceedings Paper
CT 5th ACM/IEEE International Workshop on Software Engineering Research and
Industrial Practice
CY MAY 29, 2018
CL Gothenburg, SWEDEN
DE University-Industry Research Project; Bug Prevention at CommitTime;
Machine Learning; Software Maintenance and Evolution
AB In this talk, we describe a research collaboration project between Concordia University and Ubisoft. The project consists of investigating techniques for defect prevention at commit-time for increased software quality. The outcome of this project is a tool called CLEVER (Combining Levels of Bug Prevention and Resolution techniques) that uses machine learning to automatically detect coding defects as programmers write code. The main novelty of CLEVER is that it relies on code matching techniques to detect coding mistakes based on a database of historical code defects found in multiple related projects. The tool also proposes fixes based on known patterns.
C1 [Hamou-Lhadj, Wahab] Concordia Univ, ECE, Montreal, PQ, Canada.
[Nayrolles, Mathieu] Ubisoft, La Forge Res Lab, Montreal, PQ, Canada.
C3 Concordia University - Canada; Ubisoft Entertainment
RP Hamou-Lhadj, W (corresponding author), Concordia Univ, ECE, Montreal, PQ, Canada.
EM wahab.hamou-lhadj@concordia.ca; mathieu.nayrolles@ubisoft.com
RI Nayrolles, Mathieu/AAM-5981-2020
FU Natural Science and Engineering Research Council of Canada (NSERC)
FX We thank the teams at Ubisoft for their participation in this project,
and acknowledge the role of the Natural Science and Engineering Research
Council of Canada (NSERC) for funding partly this project.
CR Cordy JR, 2011, CONF PROC INT SYMP C, P219, DOI 10.1109/ICPC.2011.26
Kamei Y, 2013, IEEE T SOFTWARE ENG, V39, P757, DOI 10.1109/TSE.2012.70
Newman M., 2002, SOFTWARE ERRORS COST
Rosen C, 2015, 2015 10TH JOINT MEETING OF THE EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND THE ACM SIGSOFT SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING (ESEC/FSE 2015) PROCEEDINGS, P966, DOI 10.1145/2786805.2803183
NR 4
TC 0
Z9 0
U1 0
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4503-5744-9
PY 2018
BP 24
EP 25
DI 10.1145/3195546.3206423
PG 2
WC Computer Science, Software Engineering
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BL7CY
UT WOS:000454852900006
DA 2024-09-05
ER
PT J
AU Choi, S
Seo, J
AF Choi, Soyoung
Seo, JooYoung
TI An Exploratory Study of the Research on Caregiver Depression: Using
Bibliometrics and LDA Topic Modeling
SO ISSUES IN MENTAL HEALTH NURSING
LA English
DT Article
ID SCIENCE; ANXIETY; BURDEN; TRENDS; WELL; TOOL; WEB
AB Purpose: The purpose of this paper is to provide readers with a comprehensive overview of scholarly work on the depression of caregivers using bibliometrics and text mining.Methods: A total of 426 articles published between 2000 and 2018 were retrieved from the Clarivate Analytics Web of Science, and then, computer-aided bibliometric analysis as well as Latent Dirichlet Allocation (LDA) topic modeling were conducted on the collection of the data.Results: Descriptive statistics on the increasing number of publications, network analysis of scientific collaboration between countries, word co-occurrence analysis, conceptual structure, and six latent topics (k = 6) identified are discussed.Conclusions: Preventing or managing depression among caregivers is a growing field with the highest priority for the aging population. In the future, collaborating between countries and reflecting cultural backgrounds in caregiver depression research are needed. This study is expected to contribute to the field of psychological distress of caregivers in looking a big picture of the current position through data-driven analysis and moving forward towards a better direction.
C1 [Choi, Soyoung] Penn State Univ, Coll Nursing, University Pk, PA 16802 USA.
[Seo, JooYoung] Penn State Univ, Learning Design & Technol, University Pk, PA 16802 USA.
C3 Pennsylvania Commonwealth System of Higher Education (PCSHE);
Pennsylvania State University; Pennsylvania State University -
University Park; Pennsylvania Commonwealth System of Higher Education
(PCSHE); Pennsylvania State University; Pennsylvania State University -
University Park
RP Choi, S (corresponding author), 307A Nursing Sci Bldg, University Pk, PA 16802 USA.
EM sxc940@psu.edu
CR Adelman RD, 2014, JAMA-J AM MED ASSOC, V311, P1052, DOI 10.1001/jama.2014.304
[Anonymous], 2002, WHO DEF PALL CAR
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Bartol T, 2015, J NAT FIBERS, V12, P531, DOI 10.1080/15440478.2014.972000
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Chai YC, 2018, INT J SOC PSYCHIATR, V64, P578, DOI 10.1177/0020764018792585
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Cheng ST, 2017, CURR PSYCHIAT REP, V19, DOI 10.1007/s11920-017-0818-2
Cho G, 2019, PSYCHIAT INVEST, V16, P262, DOI 10.30773/pi.2018.12.21.2
Choi EK, 2016, PSYCHO-ONCOLOGY, V25, P544, DOI 10.1002/pon.3962
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Ennis N, 2013, NEUROPSYCHOL REHABIL, V23, P1, DOI 10.1080/09602011.2012.712871
Feinerer I., 2018, tm: Text Mining Package: A framework for text mining applications within R
Fiala D, 2017, PUBLICATIONS, V5, DOI 10.3390/publications5040023
Fu F, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00834
Grover S, 2015, ASIAN J PSYCHIATR, V13, P1, DOI 10.1016/j.ajp.2015.02.003
Guntuku SC, 2017, CURR OPIN BEHAV SCI, V18, P43, DOI 10.1016/j.cobeha.2017.07.005
Haddad Mark, 2017, Nurs Stand, V31, P55, DOI 10.7748/ns.2017.e10830
Haines KJ, 2015, CRIT CARE MED, V43, P1112, DOI 10.1097/CCM.0000000000000865
Hammond T, 2014, QUAL LIFE RES, V23, P1535, DOI 10.1007/s11136-013-0577-4
Huang ZX, 2015, J BIOMED INFORM, V58, P28, DOI 10.1016/j.jbi.2015.09.005
Hung JL, 2012, BRIT J EDUC TECHNOL, V43, P5, DOI 10.1111/j.1467-8535.2010.01144.x
Jui-Long Hung, 2012, Journal of Computing in Higher Education, V24, P1, DOI 10.1007/s12528-011-9044-9
Kho ME, 2012, J CLIN EPIDEMIOL, V65, P1010, DOI 10.1016/j.jclinepi.2012.03.009
Kua ZJ, 2018, J GERIATR PSYCH NEUR, V31, P227, DOI 10.1177/0891988718788641
Kuriakose RK, 2017, INT OPHTHALMOL, V37, P767, DOI 10.1007/s10792-016-0296-2
Larivière V, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127502
Lim S, 2017, J BIOMED INFORM, V66, P82, DOI 10.1016/j.jbi.2016.12.007
Park S, 2015, J KOREAN ACAD NURS, V45, P627, DOI 10.4040/jkan.2015.45.5.627
Persson O., 2009, CELEBRATING SCHOLARL, V5, P9
Poole S, 2016, J BIOMED INFORM, V59, P276, DOI 10.1016/j.jbi.2015.12.010
Rapaport MH, 2005, AM J PSYCHIAT, V162, P1171, DOI 10.1176/appi.ajp.162.6.1171
Rinker T. R, 2018, QDAP BRIDGING GAP QU
Robinson D., 2018, TIDYTEXT TEXT MINING
TEAM S., 2009, Science of Science (Sci2) Tool
Tuithof M, 2015, BMC PSYCHIATRY, V15, DOI 10.1186/s12888-015-0406-0
van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Yu CH, 2011, QUAL REP, V16, P730
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 43
TC 9
Z9 9
U1 7
U2 48
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0161-2840
EI 1096-4673
J9 ISSUES MENT HEALTH N
JI Issues Ment. Health Nurs.
PD JUL 2
PY 2020
VL 41
IS 7
SI SI
BP 592
EP 601
DI 10.1080/01612840.2019.1705944
PG 10
WC Nursing; Psychiatry
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Nursing; Psychiatry
GA ME7BE
UT WOS:000544807700006
PM 32286089
DA 2024-09-05
ER
PT C
AU Teufel, S
AF Teufel, S
BE Shanahan, JG
Qu, Y
Wiebe, J
TI Argumentative zoning for improved citation indexing
SO COMPUTING ATTITUDE AND AFFECT IN TEXT: THEORY AND APPLICATIONS
SE Information Retrieval Series
LA English
DT Proceedings Paper
CT Symposium on Computing Attitude and Affect in Text
CY MAR, 2004
CL Stanford Univ, Stanford, CA
HO Stanford Univ
DE citation analysis; sentiment; machine learning; automatic summarisation
AB We address the problem of automatically classifying academic citations in scientific articles according to author affect. There are many ways how a citation might fit into the overall argumentation of the article: as part of the solution, as rival approach or as flawed approach that justifies the current research. Our motivation for this work is to improve citation indexing. The method we use for this task is machine learning from indicators of affect (such as "we follow X in assuming that... ", or "in contrast to Y, our system solves this problem") and of presentation of ownership of ideas (such as "We present a new methodfor... ", or "They claim that... "). Some of these features are borrowed from Argumentative Zoning (Teufel and Moens, 2002), a technique for determining the rhetorical status of each sentence in a scientific article. These features include the type of subject of the sentence, the citation type, the semantic class of main verb, and a list of indicator phrases. Evaluation will be both intrinsic and extrinsic, involving the measurement of human agreement on the task and a comparison of human and automatic evaluation, as well as a comparison of task-performance with our system versus task performance with a standard citation indexer (CiteSeer, Lawrence et al., 1999).
C1 Univ Cambridge, Comp Lab, Cambridge CB1 3PY, England.
C3 University of Cambridge
RP Teufel, S (corresponding author), Univ Cambridge, Comp Lab, JJ Thomson Ave, Cambridge CB1 3PY, England.
EM Simone.Teufel@cam.ac.uk
CR [Anonymous], P 3 ACM C DIG LIB
[Anonymous], 2002, P 2002 C EMP METH NA
[Anonymous], 1988, Non parametric Statistics for the Behavioral Sciences
Ge N, 1998, 6 WORKSH VER LARG CO
KUPIEC J, 1995, P 18 ANN INT C RES D
LAWRENCE S, 1999, IEEE COMPUTER, V32
LEWIS D, 1991, SPEECH NATURAL LANGU
MYERS G, 1992, J PRAGMATICS, V17
NANBA, 1999, P IJCAI 99
SHUM S, 1998, INTERFACE BRIT HCI G, V39
SWALES J, 1990, GENRE ANAL ENGLISH A, pCH7
Teufel S., 2002, COMPUTATIONAL LINGUI, V28
TEUFEL S, 1999, P 9 M EUR CHAPT ASS
TEUFEL S, 2001, P NAACL 01 WORKSH AU
Weinstock Melvin., 1971, ENCY LIB INFORM SCI, V5
Wiebe Janyce M., 1994, COMPUTATIONAL LINGUI, V20
NR 16
TC 6
Z9 7
U1 2
U2 11
PU SPRINGER
PI DORDRECHT
PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 1387-5264
BN 1-4020-4026-1
J9 INFORM RETRIEVAL SER
PY 2006
VL 20
BP 159
EP 169
PG 11
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BDW67
UT WOS:000235869100013
DA 2024-09-05
ER
PT C
AU Lamiya, K
Mohan, A
AF Lamiya, K.
Mohan, Anuraj
BE Sa, PK
Bakshi, S
Hatzilygeroudis, IK
Sahoo, MN
TI A Document Similarity Computation Method Based on Word Embedding and
Citation Analysis
SO RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 3
SE Advances in Intelligent Systems and Computing
LA English
DT Proceedings Paper
CT 5th International Conference on Advanced Computing, Networking, and
Informatics (ICACNI)
CY JUN 01-03, 2017
CL Natl Inst Technol Goa, Dept Comp Sci & Engn, Goa, INDIA
HO Natl Inst Technol Goa, Dept Comp Sci & Engn
DE Citation network; Word embedding; Word mover's distance; Word2vec
AB Document similarity is one among the most significant problems in knowledge discovery and information retrieval. Most of the works in document similarity only focus on textual content of the documents. However, these similarity measures do not provide an accurate measure. An alternative is to incorporate citation information into similarity measure. The content of a document can be improved by considering the content of cited documents, which is the key behind this alternative. In this work, citation network analysis is used to expand the content of citing document by including the information given in cited documents. The next issue is the representation of documents. A commonly used document representation is bag-of-words model. But it does not capture the meaning or semantics of the text as well as the ordering of the words. Hence, this proposed work uses word embedding representation. Word embedding represents a word as a dense vector with low dimensionality. Word2vec model is used to generate word embedding which can capture contextual similarity between words. The similarity between documents is measured using word mover's distance, which is based on the word embedding representation of words. The proposed work takes advantage of both textual similarity and contextual similarity. Experiments showed that the proposed method provides better results compared to other state-of-the-art methods.
C1 [Lamiya, K.; Mohan, Anuraj] NSS Coll Engn, Dept Comp Sci & Engn, Palakkad, Kerala, India.
C3 NSS College of Engineering Palakkad
RP Lamiya, K (corresponding author), NSS Coll Engn, Dept Comp Sci & Engn, Palakkad, Kerala, India.
EM lamiyalami04@gmail.com
RI Mohan, Anuraj/HLV-9215-2023; Mohan, Anuraj/ABB-6154-2021; Mohan,
Anuraj/JCE-1702-2023
OI Mohan, Anuraj/0000-0002-1044-9368; Mohan, Anuraj/0000-0002-1044-9368
CR [Anonymous], 2002, P 8 ACM SIGKDD INT C, DOI DOI 10.1145/775047.775126
Barrn-Cedeno A., 2009, P ICON 2009, P29
Bengio Y, 2003, J MACH LEARN RES, V3, P1137, DOI 10.1162/153244303322533223
Chikhi NF, 2008, PROC INT C TOOLS ART, P211, DOI 10.1109/ICTAI.2008.136
Collobert R., 2008, P 25 INT C MACH LEAR, V25, P160, DOI DOI 10.1145/1390156.1390177
Hamedani M.R., 2013, Proceedings of the 2013 Research in Adaptive and Convergent Systems, RACS'13, P111
Kusner MJ, 2015, PR MACH LEARN RES, V37, P957
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
Pele O, 2009, IEEE I CONF COMP VIS, P460, DOI 10.1109/ICCV.2009.5459199
Rong X, 2014, Comput. Sci.
Yoon S.-H., 2011, Proceedings of the 20th International Conference Companion on World Wide Web, P169
Zhao Peixiang, 2009, P 18 ACM C INF KNOWL
NR 12
TC 0
Z9 0
U1 1
U2 4
PU SPRINGER-VERLAG SINGAPORE PTE LTD
PI SINGAPORE
PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
SN 2194-5357
EI 2194-5365
BN 978-981-10-8633-5; 978-981-10-8632-8
J9 ADV INTELL SYST COMP
PY 2018
VL 709
BP 161
EP 168
DI 10.1007/978-981-10-8633-5_17
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Hardware &
Architecture; Computer Science, Information Systems; Computer Science,
Software Engineering; Computer Science, Theory & Methods; Engineering,
Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BQ4EY
UT WOS:000589275800017
DA 2024-09-05
ER
PT C
AU Yang, X
AF Yang, X.
GP Destech Publicat Inc
TI Research on Project Risk Evaluation Method Based on Bayesian Networks
SO INTERNATIONAL CONFERENCE ON ADVANCED EDUCATIONAL TECHNOLOGY AND
INFORMATION ENGINEERING (AETIE 2015)
LA English
DT Proceedings Paper
CT International Conference on Advanced Educational Technology and
Information Engineering (AETIE)
CY MAY 17-18, 2015
CL Beijing, PEOPLES R CHINA
DE IT project; risk management; Bayesian network
AB This paper identifies the risk factors and constructs risk management model based on the Bayesian network for IT project, and makes relevant evaluation on risk factors of IT project based on this model. Through the application on an IT project, the evaluation method could evaluate effectively the IT project risks and could provide us a new way to manage the risk of IT project.
C1 TUT, Zhonghuan Informat Technol Coll, Econ & Management Dept, Tianjin, Peoples R China.
RP Yang, X (corresponding author), TUT, Zhonghuan Informat Technol Coll, Econ & Management Dept, Tianjin, Peoples R China.
CR Bannerman P.L., 2010, J SYST SOFTWARE, P2118
Chaos, 2005, PROJECT FAILURE SUCC
Cooper G., 1992, MACH LEARN, V122, P309
Fan Min, 2009, Computer Engineering and Applications, V45, P226, DOI 10.3778/j.issn.1002-8331.2009.21.065
Fei Xiaoyan, 2010, CHINA MANAGEMENT INF, V24, P69
HECKERMAN D, 1995, MACH LEARN, V20, P197, DOI 10.1007/BF00994016
Lin Wang, 2009, OCEAN U CHINA, P40
Lu Xinyuan, 2005, J MANAGE, V2, P527
Min Fan, 2009, COMPUTER ENG APPL, V45, P241
Wang Yanjun, 2010, CHINAS MANUFACTURING, V39, P63
Yan Chao, 2009, PROJECT MANAGEMENT T, P507
Yang Lin, 2009, BUSINESS EC, P97
NR 12
TC 0
Z9 0
U1 0
U2 1
PU DESTECH PUBLICATIONS, INC
PI LANCASTER
PA 439 DUKE STREET, LANCASTER, PA 17602-4967 USA
BN 978-1-60595-245-1
PY 2015
BP 1017
EP 1023
PG 7
WC Computer Science, Information Systems; Operations Research & Management
Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Operations Research & Management Science
GA BD5UU
UT WOS:000361831300139
DA 2024-09-05
ER
PT J
AU Huang, SQ
Yang, B
Yan, SL
Rousseau, R
AF Huang, Shuiqing
Yang, Bo
Yan, Sulan
Rousseau, Ronald
TI Institution name disambiguation for research assessment
SO SCIENTOMETRICS
LA English
DT Article
DE Institution name disambiguation (IND); Rule-based system; Artificial
intelligence; Informetrics
AB Research evaluation is a necessity for management of academic units (scientists, research groups, departments, institutes, universities) and for government decision making in science and technology. Yet, wrong conclusions may be drawn due to errors in assignments of authors to institutions. To improve existing techniques of institution name disambiguation (IND) based on word similarity or editing distance, a rule-based algorithm is proposed in this study. One-to-many relationships between an institution and many variant names under which it is referred to in bylines of publications are recognized with the aid of statistical methods and specific rules. The performance of the rule based IND algorithm is evaluated on large datasets in four fields. These experimental results demonstrate that the precision of the algorithm is high. Yet, recall should be improved.
C1 [Huang, Shuiqing; Yang, Bo; Yan, Sulan] Nanjing Agr Univ, Coll Informat Sci & Technol, Nanjing 210095, Jiangsu, Peoples R China.
[Rousseau, Ronald] UA, Inst Educ & Informat Sci, IBW, B-2000 Antwerp, Belgium.
[Rousseau, Ronald] Katholieke Univ Leuven, B-3000 Louvain, Belgium.
C3 Nanjing Agricultural University; University of Antwerp; KU Leuven
RP Yang, B (corresponding author), Nanjing Agr Univ, Coll Informat Sci & Technol, Nanjing 210095, Jiangsu, Peoples R China.
EM mail.boyang@gmail.com
FU National Social Science Fund of China [13CTQ031]
FX We would like to thank Qiuru Peng, Hui Lin, Xueqin Jiang, and Zengli She
from the college of information science and technology for their work on
data verification. The authors are supported by Grant No. 13CTQ031 of
the National Social Science Fund of China.
CR Abramo G, 2011, J INFORMETR, V5, P618, DOI 10.1016/j.joi.2011.06.001
[Anonymous], 1990, Introduction to informetrics: Quantitative methods in library, Documentation and Information Science
[Anonymous], 1901, B SOCIETE VAUDOISEDE
[Anonymous], SCI PUBLIC POLICY
Bollegala D, 2012, COMPUT INTELL-US, V28, P398, DOI 10.1111/j.1467-8640.2012.00449.x
Cota RG, 2010, J AM SOC INF SCI TEC, V61, P1853, DOI 10.1002/asi.21363
Csajbók E, 2007, SCIENTOMETRICS, V73, P91, DOI 10.1007/s11192-007-1859-9
D'Angelo CA, 2011, J AM SOC INF SCI TEC, V62, P257, DOI 10.1002/asi.21460
De Bruin R., 1990, Informetrics 89/90. Selection of papers submitted for the 2nd International Conference on Bibliometrics, Scientometrics. 5-7 July 1989 icinde ss, P65
French JC, 2000, J AM SOC INFORM SCI, V51, P774, DOI 10.1002/(SICI)1097-4571(2000)51:8<774::AID-ASI90>3.0.CO;2-P
Galvez C, 2007, SCIENTOMETRICS, V70, P3, DOI 10.1007/s11192-007-0101-0
Galvez C, 2006, SCIENTOMETRICS, V69, P323, DOI 10.1007/s11192-006-0156-3
Jiang Y, 2011, J AM SOC INF SCI TEC, V62, P1029, DOI 10.1002/asi.21538
Kim S, 2013, J AM SOC INF SCI TEC, V64, P86, DOI 10.1002/asi.22781
Levenshtein V. I., 1966, Soviet Physics Doklady, V10, P707
Levin M, 2012, J AM SOC INF SCI TEC, V63, P1030, DOI 10.1002/asi.22621
Morillo F, 2013, SCIENTOMETRICS, V94, P207, DOI 10.1007/s11192-012-0733-6
Onodera N, 2011, J AM SOC INF SCI TEC, V62, P677, DOI 10.1002/asi.21491
Pereira DA, 2011, J AM SOC INF SCI TEC, V62, P919, DOI 10.1002/asi.21518
Praal F., 2013, P 18 INT C SCI TECHN, P284
Richardson G, 2010, LECT NOTES COMPUT SC, V6273, P498, DOI 10.1007/978-3-642-15464-5_66
Smalheiser NR, 2009, ANNU REV INFORM SCI, V43, P287
Strotmann A, 2012, J AM SOC INF SCI TEC, V63, P1820, DOI 10.1002/asi.22695
Tang J, 2012, IEEE T KNOWL DATA EN, V24, P975, DOI 10.1109/TKDE.2011.13
Taskin Z, 2013, PROCD SOC BEHV, V73, P544, DOI 10.1016/j.sbspro.2013.02.089
Torvik VI, 2005, J AM SOC INF SCI TEC, V56, P140, DOI 10.1002/asi.20105
Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6
Yang KH, 2008, LECT NOTES COMPUT SC, V5173, P185
NR 28
TC 25
Z9 29
U1 3
U2 96
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUN
PY 2014
VL 99
IS 3
BP 823
EP 838
DI 10.1007/s11192-013-1214-2
PG 16
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA AH1TW
UT WOS:000335905000011
DA 2024-09-05
ER
PT J
AU Greenland, S
AF Greenland, Sander
TI For and Against Methodologies: Some Perspectives on Recent Causal and
Statistical Inference Debates
SO EUROPEAN JOURNAL OF EPIDEMIOLOGY
LA English
DT Article
DE Bias; Causal inference; Causation; Counterfactuals; Potential outcomes;
Effect estimation; Hypothesis testing; Intervention analysis; Modeling;
Significance testing; Research synthesis; Statistical inference
ID P-VALUES; LUNG-CANCER; CONFIDENCE-INTERVALS; SIGNIFICANCE TESTS;
EPIDEMIOLOGY; REGRESSION; RACE; BIAS; COUNTERFACTUALS; IDENTIFIABILITY
AB I present an overview of two methods controversies that are central to analysis and inference: That surrounding causal modeling as reflected in the "causal inference" movement, and that surrounding null bias in statistical methods as applied to causal questions. Human factors have expanded what might otherwise have been narrow technical discussions into broad philosophical debates. There seem to be misconceptions about the requirements and capabilities of formal methods, especially in notions that certain assumptions or models (such as potential-outcome models) are necessary or sufficient for valid inference. I argue that, once these misconceptions are removed, most elements of the opposing views can be reconciled. The chief problem of causal inference then becomes one of how to teach sound use of formal methods (such as causal modeling, statistical inference, and sensitivity analysis), and how to apply them without generating the overconfidence and misinterpretations that have ruined so many statistical practices.
C1 [Greenland, Sander] Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA 90095 USA.
[Greenland, Sander] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA.
C3 University of California System; University of California Los Angeles;
University of California System; University of California Los Angeles
RP Greenland, S (corresponding author), Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA 90095 USA.; Greenland, S (corresponding author), Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA.
EM lesdomes@ucla.edu
CR Aalen OO, 2016, STAT METHODS MED RES, V25, P2294, DOI 10.1177/0962280213520436
[Anonymous], 1908, BIOMETRIKA, V6, P1
[Anonymous], 2008, Modern Epidemiology
[Anonymous], 1996, Time's Arrow and Archimedes' Point: New Directions for the Physics of Time
[Anonymous], EMERG THEMES EPIDEMI
[Anonymous], 1995, Killing time
[Anonymous], 2009, Wall Street Journal
[Anonymous], 1978, Specification searches: Ad hoc inference with nonexperimental data
[Anonymous], 2000, Statistics with confidence
[Anonymous], INT J EPIDE IN PRESS
[Anonymous], INT J EPIDE IN PRESS
[Anonymous], 2011, CAUSALITY PSYCHOPATH
[Anonymous], CAUSAL INFE IN PRESS
[Anonymous], INT J EPIDE IN PRESS
[Anonymous], J SOCIOECON
Baggerly K, 2015, CANC LETT, V41, P1
BANCROFT TA, 1977, INT STAT REV, V45, P117
Belluz J., 2016, The 7 biggest problems facing science, according to the 270 scientist
BOX GEP, 1980, J ROY STAT SOC A STA, V143, P383, DOI 10.2307/2982063
Box GEP, 1990, STAT SCI, V5, P448, DOI DOI 10.1214/SS/1177012024
Breslow NE, 2003, BIOMETRICS, V59, P1, DOI 10.1111/1541-0420.00001
Broadbent A, 2016, INT J EPIDE IN PRESS
BROSS IDJ, 1967, J CHRON DIS, V20, P487, DOI 10.1016/0021-9681(67)90080-X
Chiolero A., 2016, INT J EPIDE IN PRESS
CORNFIELD J, 1959, JNCI-J NATL CANCER I, V22, P173
COX DR, 1958, ANN MATH STAT, V29, P357, DOI 10.1214/aoms/1177706618
Dawid A. Philip, 2008, J MACHINE LEARNING R, V6, P59
Dawid AP, 2000, J AM STAT ASSOC, V95, P407, DOI 10.2307/2669377
DAWID AP, 1982, J AM STAT ASSOC, V77, P605, DOI 10.2307/2287720
Discacciati A, 2015, STATA J, V15, P712, DOI 10.1177/1536867X1501500306
Dunning T, 2008, POLIT RES QUART, V61, P282, DOI 10.1177/1065912907306470
Ellis G, 2014, NATURE, V516, P321, DOI 10.1038/516321a
Farsides T, 2016, PSYCHOLOGIST, V29, P368
Feyerabend P., 1975, Against the Method
Flanders WD, 2011, ANN EPIDEMIOL, V21, P698, DOI 10.1016/j.annepidem.2011.05.002
FLEISS JL, 1986, AM J PUBLIC HEALTH, V76, P1033, DOI 10.2105/AJPH.76.8.1033-a
FLEISS JL, 1986, AM J PUBLIC HEALTH, V76, P559, DOI 10.2105/AJPH.76.5.559
Freedman D.A., 1988, MODEL UNCERTAINTY IT, P1, DOI DOI 10.1007/978-3-642-61564-1_1
FREEDMAN DA, 1987, J EDUC STAT, V12, P101, DOI 10.3102/10769986012002101
Galea S, 2013, AM J EPIDEMIOL, V178, P1185, DOI 10.1093/aje/kwt172
Gelman A., 2011, AM J SOCIOL, V117, P955, DOI [10.1086/662659, DOI 10.1086/662659]
Gelman A., 2014, Chance, V27, P51, DOI DOI 10.1080/09332480.2014.890872
Gelman A, 2006, AM STAT, V60, P328, DOI 10.1198/000313006X152649
Gelman A, 2014, AM SCI, V102, P460, DOI 10.1511/2014.111.460
Gelman Andrew, 2013, Br J Math Stat Psychol, V66, P8, DOI 10.1111/j.2044-8317.2011.02037.x
Gelman A, 2013, EPIDEMIOLOGY, V24, P69, DOI 10.1097/EDE.0b013e31827886f7
George Stephen L, 2015, Clin Investig (Lond), V5, P161, DOI 10.4155/cli.14.116
Gigerenzer G, 1998, BEHAV BRAIN SCI, V21, P199, DOI 10.1017/S0140525X98281167
Gigerenzer G, 2015, J MANAGE, V41, P421, DOI 10.1177/0149206314547522
Gill RD, 2014, STAT SCI, V29, P512, DOI 10.1214/14-STS490
Gilovich T, 2002, HEURISTICS BIASES PS
Glass TA, 2013, ANNU REV PUBL HEALTH, V34, P61, DOI 10.1146/annurev-publhealth-031811-124606
GLYMOUR C, 1986, J AM STAT ASSOC, V81, P964, DOI 10.2307/2289067
Glymour C, 2014, EPIDEMIOLOGY, V25, P488, DOI 10.1097/EDE.0000000000000122
Glymour M., 2008, Modern Epidemiology, Vthird, P183
Goodman SN, 2005, CLIN TRIALS, V2, P282, DOI 10.1191/1740774505cn098oa
GOODMAN SN, 1988, AM J PUBLIC HEALTH, V78, P1568, DOI 10.2105/AJPH.78.12.1568
GOODMAN SN, 1993, AM J EPIDEMIOL, V137, P485, DOI 10.1093/oxfordjournals.aje.a116700
GREENHOUSE SW, 1980, AM J EPIDEMIOL, V112, P269, DOI 10.1093/oxfordjournals.aje.a112993
GREENLAND S, 1980, INT J EPIDEMIOL, V9, P361, DOI 10.1093/ije/9.4.361
Greenland S, 1999, EPIDEMIOLOGY, V10, P37, DOI 10.1097/00001648-199901000-00008
Greenland S, 2002, INT J EPIDEMIOL, V31, P1030, DOI 10.1093/ije/31.5.1030
GREENLAND S, 1991, EPIDEMIOLOGY, V2, P387, DOI 10.1097/00001648-199109000-00015
Greenland S, 1990, Epidemiology, V1, P421, DOI 10.1097/00001648-199011000-00003
GREENLAND S, 1986, INT J EPIDEMIOL, V15, P413, DOI 10.1093/ije/15.3.413
GREENLAND S, 1988, AM J EPIDEMIOL, V128, P1182
Greenland S., 2017, EUR J EPIDE IN PRESS, V32
Greenland S., 2010, STAT SCI, V25, P158, DOI DOI 10.1214/10-STS308A
Greenland S., 2012, CAUSAL INFERENCE STA, P43
Greenland S., 2016, AM STAT S10, V70
Greenland S., 2010, HEURISTICS PROBABILI, P365, DOI DOI 10.1007/S10654-018-0396-6
Greenland S., 2017, AM J EPIDEM IN PRESS
Greenland S., 2008, MODERN EPIDEMIOLOGY, P328
Greenland S, 2016, EUR J EPIDEMIOL, V31, P337, DOI 10.1007/s10654-016-0149-3
Greenland S, 2015, EUR J EPIDEMIOL, V30, P1101, DOI 10.1007/s10654-015-9995-7
Greenland S, 2015, STAT MED, V34, P3133, DOI 10.1002/sim.6537
Greenland S, 2013, EPIDEMIOLOGY, V24, P73, DOI 10.1097/EDE.0b013e3182785a49
Greenland S, 2012, J EPIDEMIOL COMMUN H, V66, P967, DOI 10.1136/jech-2011-200459
Greenland S, 2012, ANN EPIDEMIOL, V22, P364, DOI 10.1016/j.annepidem.2012.02.007
Greenland S, 2011, PREV MED, V53, P225, DOI 10.1016/j.ypmed.2011.08.010
Greenland S, 2009, STAT SCI, V24, P195, DOI 10.1214/09-STS291
Greenland S, 2009, CLIN TRIALS, V6, P42, DOI 10.1177/1740774509103251
Greenland Sander., 1998, 1997 Proceedings of the Biometrics Section American Statistica Association, P19
Greenwood, 1924, LANCET, V2, P153
Gustafson P, 2006, BIOMETRICS, V62, P760, DOI 10.1111/j.1541-0420.2005.00510.x
Gustafson P, 2014, EPIDEMIOLOGY, V25, P910, DOI 10.1097/EDE.0000000000000179
Gustafson P, 2009, STAT SCI, V24, P328, DOI 10.1214/09-STS305
Gustafson P, 2010, INT J BIOSTAT, V6, DOI 10.2202/1557-4679.1206
Hall JB, 1924, LANCET, V2, P151
Hernán MA, 2008, INT J OBESITY, V32, pS8, DOI 10.1038/ijo.2008.82
Hernán MA, 2005, AM J EPIDEMIOL, V162, P618, DOI 10.1093/aje/kwi255
Hernán MA, 2016, ANN EPIDEMIOL, V26, P674, DOI 10.1016/j.annepidem.2016.08.016
Hernán MA, 2011, INT J EPIDEMIOL, V40, P780, DOI 10.1093/ije/dyr041
HILL AB, 1965, P ROY SOC MED, V58, P295, DOI 10.1177/003591576505800503
Höfler M, 2005, EMERG THEMES EPIDEMI, V2, DOI 10.1186/1742-7622-2-11
HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064
Hume David., 1999, An Enquiry Concerning Human Understanding
Ioannidis JPA, 2008, EPIDEMIOLOGY, V19, P640, DOI 10.1097/EDE.0b013e31818131e7
Kaufman JS, 2016, ANN EPIDEMIOL, V26, P683, DOI 10.1016/j.annepidem.2016.08.018
Kaufman JS, 2014, EPIDEMIOLOGY, V25, P485, DOI 10.1097/EDE.0000000000000117
Keyes K, 2015, ANN EPIDEMIOL, V25, P305, DOI 10.1016/j.annepidem.2015.01.016
King G, 2007, INT STUD QUART, V51, P183, DOI 10.1111/j.1468-2478.2007.00445.x
Krieger N, 2016, INT J EPIDE IN PRESS
LACHENBRUCH PA, 1987, AM J PUBLIC HEALTH, V77, P237, DOI 10.2105/AJPH.77.2.237-a
Lash T.L., 2009, Applying Quantitative Bias Analysis to Epidemiologic Data
Lash TL, 2007, EPIDEMIOLOGY, V18, P67, DOI 10.1097/01.ede.0000249522.75868.16
LEAMER EE, 1985, AM ECON REV, V75, P308
Lewis D, 1973, The Journal of Philosophy, V70, P556, DOI [10.2307/2025310, DOI 10.2307/2025310]
Little RJ, 2006, AM STAT, V60, P213, DOI 10.1198/000313006X117837
Maclure M, 2001, EPIDEMIOLOGY, V12, P114, DOI 10.1097/00001648-200101000-00019
MacMahon B, 1967, PREVENTIVE MED
Maldonado G, 2002, INT J EPIDEMIOL, V31, P435, DOI 10.1093/ije/31.2.435
Maldonado G, 2016, ANN EPIDEMIOL, V26, P681, DOI 10.1016/j.annepidem.2016.08.017
Maldonado G, 2013, ANN EPIDEMIOL, V23, P743, DOI 10.1016/j.annepidem.2013.09.001
Mansournia MA, 2017, EPIDEMIOLOGY, V28, P54, DOI 10.1097/EDE.0000000000000564
Mill JS, 1843, SYSTEM LOGIC, P1956
Morabia A, 2015, ANNU REV PUBL HEALTH, V36, P69, DOI 10.1146/annurev-publhealth-031914-122403
Naimi A., 2016, CURR EPIDEMIOL REP, V3, P92
Naimi AI, 2014, INT J EPIDEMIOL, V43, P1656, DOI 10.1093/ije/dyu107
NEWMAN TB, 1988, AM J EPIDEMIOL, V128, P1181
NEYMAN J, 1977, SYNTHESE, V36, P97, DOI 10.1007/BF00485695
Neyman J., 1923, ANN AGR SCI-CAIRO, V51
Pearce N, 2017, INT J EPIDE IN PRESS, V46
Pearl J, 1995, BIOMETRIKA, V82, P669, DOI 10.2307/2337329
Pearl J, 2015, SOCIOL METHOD RES, V44, P149, DOI 10.1177/0049124114562614
Pearl J, 2010, EPIDEMIOLOGY, V21, P872, DOI 10.1097/EDE.0b013e3181f5d3fd
Pearl Judea, 2009, Causality: Models, reasoning, and inference, V2
Phillips CV, 2006, EMERG THEMES EPIDEMI, V3, DOI 10.1186/1742-7622-3-5
Phillips Carl V, 2004, Epidemiol Perspect Innov, V1, P3, DOI 10.1186/1742-5573-1-3
Phillips CV, 2003, EPIDEMIOLOGY, V14, P459, DOI 10.1097/01.ede.0000072106.65262.ae
Poole C, 1997, AM STAT, V51, P112, DOI 10.2307/2685398
Poole C, 2001, EPIDEMIOLOGY, V12, P291, DOI 10.1097/00001648-200105000-00005
POOLE C, 1987, AM J PUBLIC HEALTH, V77, P195, DOI 10.2105/AJPH.77.2.195
Porta M, 2016, EUR J EPIDEMIOL, V31, P535, DOI 10.1007/s10654-016-0181-3
Porta M, 2015, EUR J EPIDEMIOL, V30, P1079, DOI 10.1007/s10654-015-0068-8
Rhodes E., 2016, PSYCHOLOGIST
RICHARDSON T., 2013, Working Paper
ROBINS J, 1987, J CHRON DIS, V40, pS139, DOI 10.1016/S0021-9681(87)80018-8
Robins JM, 2015, SCAND J STAT, V42, P329, DOI 10.1111/sjos.12089
ROBINS JM, 1992, EPIDEMIOLOGY, V3, P143, DOI 10.1097/00001648-199203000-00013
Robins JM, 2003, BIOMETRIKA, V90, P491, DOI 10.1093/biomet/90.3.491
Robins JM, 1999, COMPUTATION, CAUSATION, AND DISCOVERY, P305
Robins JM, 2000, J AM STAT ASSOC, V95, P431, DOI 10.2307/2669381
Romer P, 2016, AM ECONOMIS IN PRESS
ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41
ROTHMAN KJ, 1976, AM J EPIDEMIOL, V104, P587, DOI 10.1093/oxfordjournals.aje.a112335
ROTHMAN KJ, 1978, NEW ENGL J MED, V299, P1362
ROTHMAN KJ, 1986, ANN INTERN MED, V105, P445, DOI 10.7326/0003-4819-105-3-445
Rouen TA, 1987, AJPH, V77, P237
Rubin D. B., 1990, Statistical Science, V5, P472, DOI DOI 10.1214/SS/1177012031
RUBIN DB, 1991, BIOMETRICS, V47, P1213, DOI 10.2307/2532381
RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350
Schooling C, 2016, INT J EPIDE IN PRESS
Schwartz S, 2017, ANN EPIDEMI IN PRESS, V27
Schwartz S, 2016, ANN EPIDEMIOL, V26, P669, DOI 10.1016/j.annepidem.2016.03.013
Seliger C, 2016, EUR J EPIDEMIOL, V31, P947, DOI 10.1007/s10654-016-0145-7
Sellke T, 2001, AM STAT, V55, P62, DOI 10.1198/000313001300339950
Senn S, 2001, J Epidemiol Biostat, V6, P193, DOI 10.1080/135952201753172953
Senn S, 2002, STAT MED, V21, P2437, DOI 10.1002/sim.1072
Shafer G, 2002, INT J EPIDEMIOL, V31, P434, DOI 10.1093/ije/31.2.434
SIMON HA, 1966, PHILOS SCI, V33, P323, DOI 10.1086/288105
Spirtes P., 2001, CAUSATION PREDICTION
STALLONES RA, 1980, ANNU REV PUBL HEALTH, V1, P69, DOI 10.1146/annurev.pu.01.050180.000441
Stalnaker Robert C, 1968, Studies in Logical Theory, P41, DOI DOI 10.1007/978-94-009-9117-0_2
STOLLEY PD, 1991, AM J EPIDEMIOL, V133, P416, DOI 10.1093/oxfordjournals.aje.a115904
Sullivan SG, 2014, INT J EPIDEMIOL, V43, P1667, DOI 10.1093/ije/dyu189
SUSSER M, 1977, AM J EPIDEMIOL, V105, P1
SUSSER M, 1991, AM J EPIDEMIOL, V133, P635, DOI 10.1093/oxfordjournals.aje.a115939
Taleb NN, 2007, The Black Swan: The Impact of the Highly Improbable
TUKEY JW, 1962, ANN MATH STAT, V33, P1, DOI 10.1214/aoms/1177704711
Tukey JW., 1954, STATISTICS MATH BIOL
Vandenbroucke JP, 2009, INT J EPIDEMIOL, V38, P1193, DOI 10.1093/ije/dyp292
Vandenbroucke JP, 2016, INT J EPIDE IN PRESS
VanderWeele T.J., 2012, Causality: Statistical Perspectives and Applications, P101
VanderWeele TJ., 2016, J R STAT SOC B, V78, P995
VanderWeele TJ, 2016, INT J EPIDEMIOL, V45, P1904, DOI 10.1093/ije/dyw277
VanderWeele TJ, 2014, EPIDEMIOLOGY, V25, P473, DOI 10.1097/EDE.0000000000000105
VanderWeele TJ, 2012, STAT SINICA, V22, P379, DOI 10.5705/ss.2008.186
Wagenmakers EJ, 2007, PSYCHON B REV, V14, P779, DOI 10.3758/BF03194105
WALKER AM, 1986, AM J PUBLIC HEALTH, V76, P1033, DOI 10.2105/AJPH.76.8.1033
WALKER AM, 1986, AM J PUBLIC HEALTH, V76, P556, DOI 10.2105/AJPH.76.5.556
Wasserstein RL, 2016, AM STAT, V70, P129
Welch BL, 1937, BIOMETRIKA, V29, P21, DOI 10.1093/biomet/29.1-2.21
WILK MB, 1955, BIOMETRIKA, V42, P70, DOI 10.1093/biomet/42.1-2.70
Wright S, 1920, J AGRIC RES, V20, P0557
YATES F, 1951, J AM STAT ASSOC, V46, P19, DOI 10.2307/2280090
NR 186
TC 49
Z9 51
U1 0
U2 39
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0393-2990
EI 1573-7284
J9 EUR J EPIDEMIOL
JI Eur. J. Epidemiol.
PD JAN
PY 2017
VL 32
IS 1
BP 3
EP 20
DI 10.1007/s10654-017-0230-6
PG 18
WC Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Public, Environmental & Occupational Health
GA EM1ZI
UT WOS:000395115600002
PM 28220361
DA 2024-09-05
ER
PT J
AU Pei, ZG
AF Pei, Zhonggui
TI Framework design based on data-driven for evaluating the efficiency of
group collaboration in scientific research teams
SO JOURNAL OF SUPERCOMPUTING
LA English
DT Article
DE Data driven; Group collaboration; Indicator construction; Machine
learning; Adaptive enhancement algorithm; Tenfold cross; Hyperparameter
AB This paper presents a data-driven framework for evaluating collaboration efficiency within scientific research teams. The framework introduces a team efficiency evaluation system consisting of 40 specific indicators, which are analyzed and modeled using statistical methods. The adaptive enhancement algorithm model achieves the highest accuracy, recall, and F1 values, with scores of 0.852, 0.530, and 0.620, respectively. These findings demonstrate the feasibility of the proposed data-driven research team collaboration model, offering theoretical support for enhancing the effectiveness of group collaboration. Moreover, the study is significant for further research on group collaboration in diverse fields.
C1 [Pei, Zhonggui] Changzhou Vocat Inst Engn, Off Ind & Educ Integrat, Changzhou 213000, Peoples R China.
C3 Changzhou Vocational Institute of Engineering
RP Pei, ZG (corresponding author), Changzhou Vocat Inst Engn, Off Ind & Educ Integrat, Changzhou 213000, Peoples R China.
EM zgpei2023@126.com
CR Ab Wahab NJ., 2023, J TECHNO SOC, V15, P34, DOI [10.30880/jts.2023.15.01.003, DOI 10.30880/JTS.2023.15.01.003]
Anvari AT, 2023, ENG STRUCT, V276, DOI 10.1016/j.engstruct.2022.115292
Ashok R., 2022, MATH STAT ENG APPL, V71, P8918, DOI [10.17762/msea.v71i4.1607, DOI 10.17762/MSEA.V71I4.1607]
Assavakamhaenghan N, 2022, AUTOMAT SOFTW ENG, V29, DOI 10.1007/s10515-022-00357-7
Beraldi P, 2020, DECIS ECON FINANC, V43, P519, DOI 10.1007/s10203-020-00295-7
Cicekdagi HI, 2023, NAT HAZARDS, V119, P1315, DOI 10.1007/s11069-023-06164-x
del Barrio-Tellado MJ, 2020, NONPROFIT MANAG LEAD, V31, P129, DOI 10.1002/nml.21411
Ghaith M, 2020, J HYDROL ENG, V25, DOI 10.1061/(ASCE)HE.1943-5584.0001866
Guo Y., 2022, Journal of Pest Science, V96, P1, DOI [10.47852/bonviewJCCE2202192, DOI 10.47852/BONVIEWJCCE2202192]
Hassanpour H, 2022, IND ENG CHEM RES, V61, P3075, DOI 10.1021/acs.iecr.1c04339
Hu B, 2020, INT J CONTIN ENG EDU, V30, P445, DOI 10.1504/IJCEELL.2020.110921
Jablonsky J, 2022, CENT EUR J OPER RES, V30, P479, DOI 10.1007/s10100-021-00775-0
Jiang TT, 2021, ENVIRON SCI POLLUT R, V28, P47588, DOI 10.1007/s11356-021-13997-1
Krleza D, 2021, MACH LEARN, V110, P139, DOI 10.1007/s10994-020-05905-4
Kumaran Sunitha, 2022, International Journal of Project Organisation and Management, P204, DOI 10.1504/IJPOM.2022.124131
Liang YZ, 2020, INT J LOW-CARBON TEC, V15, P356, DOI 10.1093/ijlct/ctz084
Lin QZ, 2020, STRUCT MULTIDISCIP O, V62, P2131, DOI 10.1007/s00158-020-02602-7
Ma SQ, 2021, PROD OPER MANAG, V30, P1427, DOI 10.1111/poms.13329
Mach M, 2022, APPL PSYCHOL-INT REV, V71, P662, DOI 10.1111/apps.12342
Minniakhmetov I, 2022, MATH GEOSCI, V54, P23, DOI 10.1007/s11004-021-09943-z
Mondal S, 2023, TQM J, V35, P183, DOI 10.1108/TQM-12-2020-0303
Nepomuceno Thyago Celso Cavalcante, 2023, International Journal of Operational Research, P505, DOI 10.1504/IJOR.2023.129960
Salamatova VY, 2020, RUSS J NUMER ANAL M, V35, P163, DOI 10.1515/rnam-2020-0013
Shui ZY, 2023, IEEE T IND ELECTRON, V70, P1521, DOI 10.1109/TIE.2022.3157980
Sima J., 2023, AUC KINANTH, V59, P29, DOI [10.14712/23366052.2023.3, DOI 10.14712/23366052.2023.3]
Wu PY, 2022, ANN OPER RES, V309, P325, DOI 10.1007/s10479-021-04194-x
Wu YQ, 2020, WATER SUPPLY, V20, P2284, DOI 10.2166/ws.2020.134
Yekta HA, 2023, NAV RES LOG, V70, P72, DOI 10.1002/nav.22084
Yu L., 2022, HIGHLIGHT ENG TECHNO, V35, P127
Zang YB, 2022, OPT EXPRESS, V30, P46626, DOI 10.1364/OE.472981
NR 30
TC 0
Z9 0
U1 4
U2 9
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0920-8542
EI 1573-0484
J9 J SUPERCOMPUT
JI J. Supercomput.
PD MAY
PY 2024
VL 80
IS 7
BP 10148
EP 10171
DI 10.1007/s11227-023-05815-x
EA DEC 2023
PG 24
WC Computer Science, Hardware & Architecture; Computer Science, Theory &
Methods; Engineering, Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA PX0X9
UT WOS:001127073000001
DA 2024-09-05
ER
PT J
AU Coccia, M
AF Coccia, Mario
TI A Taxonomy of Public Research Bodies: A Systemic Approach1
SO PROMETHEUS
LA English
DT Article
DE public research sector; public research laboratory; research evaluation;
cluster analysis; principal component analysis; type of research
institutes; research policy
ID RESEARCH-AND-DEVELOPMENT; DEVELOPMENT PERFORMANCE; INNOVATION; MODELS
AB Nowadays the governments of industrialised countries, in the presence of reduced public resources, have to assign clear objectives to public research laboratories to increase the competitiveness of firms. The purpose of this article is to analyse the public research bodies of the National Research Council of Italy in order to pinpoint the main typologies operating in the national system of innovation (NSI). This research shows four main types of research institutes as drivers of NSI. The results can supply useful information to policy makers on the behaviour of these structures and on their strengths and weaknesses.
C1 [Coccia, Mario] Natl Res Council Italy, Ceris, Turin, Italy.
C3 Consiglio Nazionale delle Ricerche (CNR)
RP Coccia, M (corresponding author), Politecn Torino, Econ, Turin, Italy.
RI Coccia, Mario/F-9793-2015
OI Coccia, Mario/0000-0003-1957-6731
CR [Anonymous], 1990, PERFORMANCE INDICATO
[Anonymous], 1939, CLUSTER ANAL
[Anonymous], 1985, REP STEER COMM EFF S
Arrow K.J., 1962, Economic Welfare and the Allocation of Resources for Invention
Back R. K., 1998, DATA ANAL BRIEFBOOK
BALL R, 1994, HIGH EDUC, V27, P417, DOI 10.1007/BF01384902
Balthasar A, 2000, TECHNOVATION, V20, P523, DOI 10.1016/S0166-4972(99)00180-7
Beer S., 1973, AZIENDA COME SISTEMA
Coccia M, 2004, R&D MANAGE, V34, P267, DOI 10.1111/j.1467-9310.2004.00338.x
Coccia M, 2002, TECHNOVATION, V22, P291, DOI 10.1016/S0166-4972(01)00018-9
Coccia M, 2001, R&D MANAGE, V31, P453, DOI 10.1111/1467-9310.00231
Coccia M., 2001, International Journal of Human Resources Development and Management, V1, P268, DOI [10.1504/ IJHRDM.2001.001010, DOI 10.1504/IJHRDM.2001.001010, 10.1504/IJHRDM.2001.001010]
Cyert R. M., 1963, A behavioral theory of the firm
Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4
Gardin O., 2002, INT ASS OFF STAT C O
Grigorovici DM, 2004, GLOBAL ECONOMY AND DIGITAL SOCIETY, P169
HARE P, 1992, OXFORD REV ECON POL, V8, P48, DOI 10.1093/oxrep/8.2.48
Hargreaves A., 1992, NATL SYSTEMS INNOVAT, P1, DOI DOI 10.7135/UPO9781843318903
HARRIS G, 1994, HIGH EDUC, V27, P191, DOI 10.1007/BF01384088
Hart O., 1985, ADV EC THEORY
KAISER HF, 1958, PSYCHOMETRIKA, V23, P187, DOI 10.1007/BF02289233
KUIPERS A, 2002, INT ASS OFF STAT C O
LEVINTHAL D, 1988, J ECON BEHAV ORGAN, V9, P153, DOI 10.1016/0167-2681(88)90071-6
Lundvall B. A., 1993, I FRAMEWORKS MARK EC
Luwel M, 1999, R&D MANAGE, V29, P133, DOI 10.1111/1467-9310.00124
Menou M., 1995, INFORM PROCESSING MA, V31
METCALFE JS, 1999, CONOSCENZA TECNOLOGI
OCONNELL MJ, 1974, COMPUT PHYS COMMUN, V8, P49, DOI 10.1016/0010-4655(74)90084-8
Polanyi Michael., 1996, TACIT DIMENSION
Radner R., 1987, INFORM INCENTIVES EC
Senker J., 2001, C CONT EUR SOC RES B
Varian H., 1990, MICROECONOMICS ANAL
WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307/2282967
NR 33
TC 29
Z9 30
U1 0
U2 0
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0810-9028
EI 1470-1030
J9 PROMETHEUS
JI Prometheus
PY 2005
VL 23
IS 1
BP 63
EP 82
DI 10.1080/0810902042000331322
PG 20
WC Social Sciences, Interdisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Social Sciences - Other Topics
GA V60GW
UT WOS:000210820100004
DA 2024-09-05
ER
PT J
AU Murillo, AP
Yoon, A
AF Murillo, Angela P.
Yoon, Ayoung
TI A study of emerging trends in digital preservation literature: An
analysis of journal articles presented in course syllabi
SO JOURNAL OF LIBRARIANSHIP AND INFORMATION SCIENCE
LA English
DT Article
DE Digital preservation; digital preservation education; syllabi analysis;
citation analysis; topic modeling
ID INSTITUTIONAL REPOSITORIES; LIBRARY; EDUCATION; SCIENCE; SCHOOLS
AB The field of digital preservation education is evolving due to the rapid developments in the digital preservation field, and as educators and researchers respond to these developments. One way to understand trends in education is through the examination of course syllabi and through the assigned course readings, as instructors often utilize and integrate core and seminal literature in these courses. This study aims to understand the emerging topics and trends in digital preservation education through the examination of these course readings. This study examines these topics and trends through an analysis of the literature assigned digital preservation courses at North American ALA (American Library Association)-accredited Master's in Library and Information Science programs through bibliometric analysis, topic modeling, and visual analysis of the citation data.
C1 [Murillo, Angela P.; Yoon, Ayoung] Indiana Univ Purdue Univ, Indianapolis, IN 46202 USA.
C3 Purdue University System; Purdue University
RP Murillo, AP (corresponding author), Indiana Univ Purdue Univ, Indianapolis, IN 46202 USA.
EM apmurill@iu.edu
RI Murillo, Angela/V-2705-2018
OI Murillo, Angela/0000-0002-7213-7335
CR AKERS K, 2013, INT J DIGITAL CURATI, V0008
American Library Association, 2008, DEF DIG PRES
[Anonymous], 2014, MEASURING SCHOLARLY
Bers T.H., 2000, ASSESSMENT UPDATE, V12, P4
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
Brown C., 2014, ARCH RECORDKEEPING T
Brown G, 2008, INT J DIGITAL CURATI, V3, P74
Caplan P, 2005, LIBR TRENDS, V54, P111, DOI 10.1353/lib.2006.0002
Centre for Science and Technology Studies Leiden University The Netherlands, 2018, VOSVIEWER VIS SCI LA
CHAN LM, 1987, CATALOGING CLASSIFIC, V7, P131
Conway, 2014, PRESERVATION DIGITAL, V43, P2
Conway P, 2011, ARCH SCI-NETHERLANDS, V11, P293, DOI 10.1007/s10502-011-9155-0
Costello K, 2010, P ICONFERENCE 2010 I
Cragin MH, 2010, PHILOS T R SOC A, V368, P4023, DOI 10.1098/rsta.2010.0165
Croft KF, 2011, LIBR RESOUR TECH SER, V50, P274
de Moya-Anegón F, 2007, J AM SOC INF SCI TEC, V58, P2167, DOI 10.1002/asi.20683
DigCurV, 2013, DIGCURV SKILLS DIG C
Digital Curation Centre, 2020, DCC
Digital Preservation Coalition, 2008, DIGITAL PRESERVATION
Drees B, 2018, OPT QUANT ELECTRON, V50, DOI 10.1007/s11082-018-1327-1
Garnar M, 2016, J INTELLECTUAL FREED, V1, P6
Gelernter J., 2011, The International Journal of Digital Curation, V6, P70
Gladney, 2007, D LIB MAGAZINE, V13
Goodwin A, 2018, ASSESS EVAL HIGH EDU, V43, P855, DOI 10.1080/02602938.2017.1412397
Gracy KF, 2012, LIBR RESOUR TECH SER, V56, P25, DOI 10.5860/lrts.56n1.25
Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763
Harris-Pierce RL, 2012, NEW LIB WORLD, V113, P598, DOI 10.1108/03074801211282957
Hrycaj PL, 2006, COLL RES LIBR, V67, P525, DOI 10.5860/crl.67.6.525
Hudgins A, 2011, PROVENANCE J SOC GEO, V29, P31
Irwin R., 2002, Journal of Education for Library and Information Science, V43, P175, DOI 10.2307/40323978
Jacobsen T, 2013, ARCH SCI-NETHERLANDS, V13, P217, DOI 10.1007/s10502-013-9199-4
Li C, 2010, J ZHEJIANG U-SCI C, V11, P872, DOI 10.1631/jzus.C1001006
Library of Congress, 2002, PLAN NAT DIG INF INF
LOWE MA, 1989, EDUC INFORM, V7, P365
Lynch CA, 2003, PORTAL-LIBR ACAD, V3, P327, DOI 10.1353/pla.2003.0039
Maybee C, 2015, J ACAD LIBR, V41, P369, DOI 10.1016/j.acalib.2015.05.009
McNally P., J EDUC LIBR INF SCI
Natale F, 2012, SCIENTOMETRICS, V90, P983, DOI 10.1007/s11192-011-0562-z
Nicholson S, 2005, J MED LIBR ASSOC, V93, P61
POMERANTZ J, 2006, D LIB MAGAZINE, V12
Ross, 2004, D LIB MAGAZINE, V10
Society of American Archivists, 2020, AUTHENTICITY
Stanny C, 2015, ASSESS EVAL HIGH EDU, V40, P898, DOI 10.1080/02602938.2014.956684
The Stanford Natural Language Processing Group, STANFORD TOPIC MODEL
Tibbo HelenR., 2015, International Journal of Digital Curation, P144, DOI DOI 10.2218/IJDC.V10I1.352
Timakum T, 2020, J LIBR INF SCI, V52, P345, DOI 10.1177/0961000618793977
Trace CiaranB., 2012, The Reference Librarian, V53, P76
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Westell M, 2006, LIBR HI TECH, V24, P211, DOI 10.1108/07378830610669583
White GW, 2005, J BUS FINANC LIBR, V10, P3, DOI 10.1300/J109v10n02_02
Wilson J., 2010, ARIADNE WEB PRINT MA, V30, P6
Worthington B, 2017, J EDUC LIBR INF SCI, V58, P202
Yang S, 2015, P ASS INFORM SCI TEC, V52, P1
Yoon, 2020, DATA STUDY EMERGING
Zhu X, 2015, P 12 INT C DIG PRES
NR 56
TC 2
Z9 2
U1 3
U2 34
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0961-0006
EI 1741-6477
J9 J LIBR INF SCI
JI J. Libr. Inf. Sci.
PD DEC
PY 2021
VL 53
IS 4
BP 615
EP 629
AR 0961000620967714
DI 10.1177/0961000620967714
EA SEP 2021
PG 15
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA WL1LC
UT WOS:000691986500001
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Ren, ZD
Yang, K
Dong, W
AF Ren, Zhongda
Yang, Kun
Dong, Wen
TI Spatial Analysis and Risk Assessment Model Research of Arthritis Based
on Risk Factors: China, 2011, 2013 and 2015
SO IEEE ACCESS
LA English
DT Article
DE Arthritis; Correlation; Analytical models; Diseases; Logistics; Risk
management; Graphical models; Middle-aged and older adults; arthritis;
spatial analysis; risk factors; logistic regression modeling; random
forest modelling; risk assessment
ID RHEUMATOID-ARTHRITIS; FUNCTIONAL-DISABILITY; UNITED-STATES; DEPRESSION;
PREVALENCE; ASSOCIATIONS; RESOLUTION; DISEASE; OBESITY; HEALTH
AB Arthritis is a public health issue that is of global concern. Arthritis is one of the chronic diseases with a high incidence of middle-aged and older adults. The patients have paid a heavy price for this and caused a substantial economic burden on society. In this study, we used spatial autocorrelation, spatial cluster analysis, multiple logistic regression, and random forest models to analyze the spatial distribution and possible risk factors for arthritis in elderly Chinese and assess arthritis risk. Global spatial autocorrelation analysis and significance test results show that Moran's I of arthritis spatial autocorrelation in 2011, 2013, and 2015 are statistically significant, so there is significant spatial autocorrelation three years. The results of local spatial autocorrelation and spatial clustering analysis show that the aggregation areas of arthritis patients are mainly in the southwest, northwest, and central China. Multivariate logistic regression analysis showed that gender, age, education level, Body Mass Index (BMI), Center for Epidemiologic Studies Depression Scale score (CES-D), altitude, region, weather temperature, hypertension, lung, liver, heart, stroke, digestive, and kidney disease were all arthritis affects factors (P < 0.05). Compared with the multi-factor Logistic regression model, the random forest model better assesses performance and higher fit. The fitting accuracy is 82.2% in the random forest model, which is better than the multi-factor Logistic regression model (66.6%). According to the assessment risk map generated by the random forest model, Northeast, Southwest, Northwest, South, and Central are high-risk areas for arthritis. These results provide benchmark data for the control and prevention of arthritis diseases.
C1 [Ren, Zhongda] Yunnan Normal Univ, Sch Comp Sci & Technol, Kunming 650500, Yunnan, Peoples R China.
[Ren, Zhongda; Yang, Kun; Dong, Wen] Yunnan Normal Univ, Minist Educ, Engn Res Ctr GIS Technol Western China, Kunming 650500, Yunnan, Peoples R China.
[Yang, Kun; Dong, Wen] Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China.
C3 Yunnan Normal University; Yunnan Normal University; Yunnan Normal
University
RP Yang, K; Dong, W (corresponding author), Yunnan Normal Univ, Minist Educ, Engn Res Ctr GIS Technol Western China, Kunming 650500, Yunnan, Peoples R China.; Yang, K; Dong, W (corresponding author), Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China.
EM kmdcynu@163.com; dong_wen121@163.com
RI Yang, Kun/ISA-1094-2023
OI Yang, Kun/0000-0003-1335-3449; Ren, ZhongDa/0000-0002-1046-2220
FU National Natural Science Foundation of China [41661087]
FX This work was supported by the National Natural Science Foundation of
China under Grant 41661087.
CR Ahmed H, 2020, FUTURE GENER COMP SY, V111, P714, DOI 10.1016/j.future.2019.09.056
Anselin L, 2006, GEOGR ANAL, V38, P5, DOI 10.1111/j.0016-7363.2005.00671.x
ANSELIN L, 1995, GEOGR ANAL, V27, P93, DOI 10.1111/j.1538-4632.1995.tb00338.x
Ascough JC, 2008, ECOL MODEL, V219, P383, DOI 10.1016/j.ecolmodel.2008.07.015
Barbour KE, 2017, MMWR-MORBID MORTAL W, V66, P246, DOI 10.15585/mmwr.mm6609e1
Barbour KE, 2016, MMWR-MORBID MORTAL W, V65, P489, DOI 10.15585/mmwr.mm6519a2
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
Cai QX, 2020, DIABETES CARE, V43, P1392, DOI 10.2337/dc20-0576
Cai YA, 2019, J MED VIROL, V91, P337, DOI 10.1002/jmv.25293
Casanova R, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163942
Fu LY, 2018, MOD RHEUMATOL, V28, P249, DOI 10.1080/14397595.2017.1307711
Gong GL, 2016, NURS RES, V65, P55, DOI 10.1097/NNR.0000000000000137
Goossens J, 2019, CLIN EXP RHEUMATOL, V37, P49
Guo GK, 2016, HEALTH QUAL LIFE OUT, V14, DOI 10.1186/s12955-016-0550-3
He MF, 2019, J AFFECT DISORDERS, V242, P135, DOI 10.1016/j.jad.2018.08.060
Hitchon CA, 2020, ARTHRIT CARE RES, V72, P1130, DOI 10.1002/acr.24011
Jiang LY, 2016, INT J RHEUM DIS, V19, P1244, DOI 10.1111/1756-185X.12895
Jiang X, 2015, ARTHRITIS RES THER, V17, DOI 10.1186/s13075-015-0836-6
Kamruzzaman AKM, 2020, CLIN RHEUMATOL, V39, P1315, DOI 10.1007/s10067-019-04859-w
Koch J, 2019, HYDROL EARTH SYST SC, V23, P4603, DOI 10.5194/hess-23-4603-2019
Kuang-Nana F., 2011, STATS INF FORUM
Lahouar A, 2017, RENEW ENERG, V109, P529, DOI 10.1016/j.renene.2017.03.064
Lawrence RC, 2008, ARTHRITIS RHEUM, V58, P26, DOI 10.1002/art.23176
Li CW, 2015, RHEUMATOLOGY, V54, P697, DOI 10.1093/rheumatology/keu391
Li XX, 2014, BMC PUBLIC HEALTH, V14, DOI 10.1186/1471-2458-14-257
Li YR, 2019, PSYCHOL HEALTH MED, V24, P1277, DOI 10.1080/13548506.2019.1622748
Li YR, 2018, PSYCHOL HEALTH MED, V23, P952, DOI 10.1080/13548506.2018.1434314
Lu MC, 2016, SCI REP-UK, V6, DOI 10.1038/srep20647
Luo HQ, 2020, BMC PUBLIC HEALTH, V20, DOI 10.1186/s12889-020-08899-9
Martins-Melo FR, 2015, EMERG INFECT DIS, V21, P1820, DOI 10.3201/eid2110.141438
McWilliams DF, 2016, RHEUMATOLOGY, V55, P1477, DOI 10.1093/rheumatology/kew197
MOORE ID, 1991, HYDROL PROCESS, V5, P3, DOI 10.1002/hyp.3360050103
Nakamura T, 2010, CLIN RHEUMATOL, V29, P1395, DOI 10.1007/s10067-010-1469-4
Olaru L, 2017, CLIN RHEUMATOL, V36, P2835, DOI 10.1007/s10067-017-3856-6
Prasad R, 2018, GEODERMA, V330, P136, DOI 10.1016/j.geoderma.2018.05.035
Rao HX, 2016, INFECT DIS POVERTY, V5, DOI 10.1186/s40249-016-0139-4
Rao YS, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15040768
Shinan-Altman S, 2020, QUAL LIFE RES, V29, P403, DOI 10.1007/s11136-019-02315-5
Sun XS, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16234701
Tie X-J., 2018, CHIN J TISSUE ENG RE, V22, P650
Wang L, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110861
Wu XR, 2017, BMC INFECT DIS, V17, DOI 10.1186/s12879-017-2742-9
Xiang B, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11050508
Yao H, 2020, ATMOS RES, V244, DOI 10.1016/j.atmosres.2020.105093
Yelin E., 2007, Morbidity and Mortality Weekly Report, V56, P4
Zhao SP, 2015, CLIN RHEUMATOL, V34, P845, DOI 10.1007/s10067-015-2896-z
Zhou B, 2020, COMPLEMENT THER CLIN, V39, DOI 10.1016/j.ctcp.2020.101088
Zhu B, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15040661
Zou K, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180376
NR 49
TC 2
Z9 2
U1 6
U2 32
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2020
VL 8
BP 206406
EP 206417
DI 10.1109/ACCESS.2020.3037912
PG 12
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA OZ6JF
UT WOS:000595029300001
OA gold
DA 2024-09-05
ER
PT J
AU Ng, DTK
Ching, ACH
Law, SW
AF Ng, Davy Tsz Kit
Ching, Anthony Chun Hin
Law, Sau Wai
TI Online learning in management education amid the pandemic: A
bibliometric and content analysis
SO INTERNATIONAL JOURNAL OF MANAGEMENT EDUCATION
LA English
DT Article
DE Management education; Online learning; COVID; Information systems;
Bibliometric analysis
ID TEACHER INPUT; BUSINESS; COVID-19; PERSPECTIVE; CHALLENGES; COMMUNITY;
FUTURE
AB The COVID-19 pandemic (2020-2022) had triggered a global crisis which led to the suspension of colleges and universities. Management educators had digitally transformed their teaching to new modalities with digital technologies and adapted to technological solutions. The management students had experienced different online modes of learning and adjusted their methods to the new reality of content delivery. This study aims to discuss opportunities and challenges for management education and facilitate further investigation into the emerging trends on online learning by analyzing the characteristics of management education research and examining the most frequent research themes from 2020 to 2022. A bibliometric analysis is used to review 920 papers retrieved from the Scopus database for exploring key research themes of management education and online learning. The findings revealed that the publications are concentrated in developed countries while European countries had accounted for the largest proportion of the listed publications. Five sub themes are identified for receiving the most scholarly attention, such as pedagogy, technology, assessment methods, learning outcomes or skills, and challenges. After all, the bibliometric and thematic findings identified pivotal theoretical contributions, including fields of online or blended learning and management education converge, to extend the existing online learning theories.
C1 [Ching, Anthony Chun Hin] Univ Hong Kong, Fac Educ, Hong Kong, Peoples R China.
[Law, Sau Wai] Bangor Univ, Business Sch, Bangor, England.
[Ng, Davy Tsz Kit] Hong Kong Shue Yan Univ, Law & Business Dept, Hong Kong, Peoples R China.
[Ng, Davy Tsz Kit] Univ Hong Kong, Fac Educ, Hong Kong Special Adm Reg China, Hong Kong, Peoples R China.
C3 University of Hong Kong; Bangor University; Hong Kong Shue Yan
University; University of Hong Kong
RP Ng, DTK (corresponding author), Univ Hong Kong, Fac Educ, Hong Kong Special Adm Reg China, Hong Kong, Peoples R China.
EM davyngtk@connect.hku.hk; anthonychingchunhin@gmail.com
RI Ng, Tsz Kit Davy/ADD-3433-2022
OI Ng, Tsz Kit Davy/0000-0002-2380-7814; Law, Sau Wai/0000-0002-5231-2845
CR Afzal F., 2022, PROJECT LEADERSHIP S, V3
Aggarwal D., 2022, Management and Labour Studies
Aguinis H, 2020, MANAG RES, V18, P421, DOI 10.1108/MRJIAM-06-2020-1053
Akyol Z, 2011, BRIT J EDUC TECHNOL, V42, P233, DOI 10.1111/j.1467-8535.2009.01029.x
Allen D. E., 2011, New Directions for Teaching & Learning, V128, P21, DOI [DOI 10.1002/TL.465, 10.1002/tl.465]
Allen SJ, 2022, J MANAG EDUC, V46, P252, DOI 10.1177/10525629211008645
Allen SJ, 2020, J MANAG EDUC, V44, P362, DOI 10.1177/1052562920903077
Alm K, 2021, INT J SUST HIGHER ED, V22, P1450, DOI 10.1108/IJSHE-10-2020-0417
Almeida J, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2019.100318
[Anonymous], 1995, Bull World Health Organ, V73, P135
Arbaugh JB, 2009, INTERNET HIGH EDUC, V12, P71, DOI 10.1016/j.iheduc.2009.06.006
Archambault LM, 2010, COMPUT EDUC, V55, P1656, DOI 10.1016/j.compedu.2010.07.009
Arici F, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103647
Bacon DR, 2022, J MARKET EDUC, V44, P6, DOI 10.1177/02734753211003934
Bhuwandeep, 2023, J EDUC BUS, V98, P68, DOI 10.1080/08832323.2022.2045556
Billiot T, 2021, J INT EDUC BUS, V14, P130, DOI 10.1108/JIEB-04-2020-0033
Bonk CJ, 2015, EDUC TECHNOL SOC, V18, P349
Boudry C, 2015, EUR J OPHTHALMOL, V25, P357, DOI 10.5301/ejo.5000556
Brammer S, 2020, ACAD MANAGE PERSPECT, V34, P493, DOI 10.5465/amp.2019.0053
Caza A, 2015, INT J MANAG EDUC-OXF, V13, P75, DOI 10.1016/j.ijme.2015.01.006
Chai CS, 2011, COMPUT EDUC, V57, P1184, DOI 10.1016/j.compedu.2011.01.007
Chan L., 2022, Applied Artificial Intelligence in Business: Concepts and Cases, P265
Chang CY, 2023, INTERACT LEARN ENVIR, V31, P6678, DOI 10.1080/10494820.2022.2043385
Chen MRA, 2023, INTERACT LEARN ENVIR, V31, P2411, DOI 10.1080/10494820.2021.1888755
Chia-Chi Yang, 2006, Internet and Higher Education, V9, P277, DOI 10.1016/j.iheduc.2006.08.002
Chick RC, 2020, J SURG EDUC, V77, P729, DOI 10.1016/j.jsurg.2020.03.018
Chiu MC, 2024, INTERACT LEARN ENVIR, V32, P1834, DOI 10.1080/10494820.2022.2129392
Chiu TKF, 2021, ASIA-PAC EDUC RES, V30, P187, DOI 10.1007/s40299-021-00566-w
Chiu TKF, 2022, J RES TECHNOL EDUC, V54, pS14, DOI 10.1080/15391523.2021.1891998
Chu SKW, 2013, J LIBR INF SCI, V45, P64, DOI 10.1177/0961000611434361
Coraiola D. M., 2022, Research Handbook on Strategic Entrepreneurship, P125
Costigan RD, 2020, J MANAG EDUC, V44, P129, DOI 10.1177/1052562919890895
Cullen JG, 2017, J BUS ETHICS, V145, P429, DOI 10.1007/s10551-015-2838-3
Darley WK, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100504
Datta Pratim, 2021, Journal of Information Technology Teaching Cases, P81, DOI 10.1177/2043886921994821
Demuyakor J, 2020, ONLINE J COMMUN MEDI, V10, DOI 10.29333/ojcmt/8286
Dhawan Shivangi, 2020, Journal of Educational Technology Systems, V49, P5, DOI 10.1177/0047239520934018
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Donthu N, 2020, J BUS RES, V117, P284, DOI 10.1016/j.jbusres.2020.06.008
Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039
Drennan J, 2005, J EDUC RES, V98, P331, DOI 10.3200/JOER.98.6.331-338
Durrani UK, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2021.100595
Dust Scott B, 2020, New Dir Stud Leadersh, V2020, P73, DOI 10.1002/yd.20370
Dwivedi YK, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102211
Dyck B., 2021, Patent No. 13505076211045498
Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z
English MC, 2013, INTERDIS J PROBL-BAS, V7, P128, DOI 10.7771/1541-5015.1339
Ersoy-Babula AI, 2018, INT J MANAG EDUC-OXF, V16, P321, DOI 10.1016/j.ijme.2018.04.007
Fang JW, 2022, INTERACT LEARN ENVIR, V30, P1351, DOI 10.1080/10494820.2019.1703011
Fellenz M. R., 2022, FUTURE MANAGEMENT ED, P3, DOI [10.4324/9781003095903-2/may-live-interesting-times-considering-futuremanagement-education-martin-fellenz-mairead-brady-sabine-hoidn, DOI 10.4324/9781003095903-2/MAY-LIVE-INTERESTING-TIMES-CONSIDERING-FUTUREMANAGEMENT-EDUCATION-MARTIN-FELLENZ-MAIREAD-BRADY-SABINE-HOIDN]
Fernando M, 2020, J INT EDUC BUS, V13, P275, DOI 10.1108/JIEB-04-2020-0027
Garaus C, 2016, ACAD MANAG LEARN EDU, V15, P45, DOI 10.5465/amle.2012.0284
Garrison DR, 2010, INTERNET HIGH EDUC, V13, P5, DOI 10.1016/j.iheduc.2009.10.003
Gegenfurtner A, 2019, EDUC RES REV-NETH, V28, DOI 10.1016/j.edurev.2019.100293
Graham CR, 2011, COMPUT EDUC, V57, P1953, DOI 10.1016/j.compedu.2011.04.010
Greenberg D, 2020, ACAD MANAG LEARN EDU, V19, P123, DOI 10.5465/amle.2020.0247
Hao XN, 2022, NURS EDUC TODAY, V108, DOI 10.1016/j.nedt.2021.105183
Hashim MAM, 2022, EDUC INF TECHNOL, V27, P3171, DOI 10.1007/s10639-021-10739-1
Haski-Leventhal D, 2022, J BUS ETHICS, V176, P17, DOI 10.1007/s10551-020-04593-3
Haverila M, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100558
Hofer SI, 2021, COMPUT HUM BEHAV, V121, DOI 10.1016/j.chb.2021.106789
Hope C, 2021, TECH COLOPROCTOL, V25, P505, DOI 10.1007/s10151-020-02404-5
Huang C, 2020, EDUC REV, V72, P281, DOI 10.1080/00131911.2019.1566212
Hwang GJ, 2019, INTERACT LEARN ENVIR, V27, P567, DOI 10.1080/10494820.2018.1486861
Hwang M, 2017, INT J MANAG EDUC-OXF, V15, P60, DOI 10.1016/j.ijme.2017.01.004
Ibrahim SE, 2021, AFR J MANAGE, V7, P13, DOI 10.1080/23322373.2021.1878807
Igwe PA, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2019.05.001
Iivari N, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102183
Jääskä E, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13158204
Javadizadeh B, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2021.100594
Jindal-Snape D., 2016, Multi-dimensional transitions of international students to higher education
Kakouris A., 2021, Entrepreneurship Education and Pedagogy, V4, P396, DOI DOI 10.1177/2515127420916740
Kang D, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2022.100678
Kaushik Meenakshi, 2020, European Journal of Business and Management, V12, P1, DOI DOI 10.7176/EJBM/12-15-02
Khanna M, 2024, J MARK HIGH EDUC, V34, P116, DOI 10.1080/08841241.2021.1966158
Kirkpatrick N, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2020.100384
Klarin A, 2021, INT BUS REV, V30, DOI 10.1016/j.ibusrev.2021.101833
Klein VB, 2021, KNOWL PROCESS MANAG, V28, P117, DOI 10.1002/kpm.1660
Krishnamurthy S, 2020, J BUS RES, V117, P1, DOI 10.1016/j.jbusres.2020.05.034
Laasch O, 2020, J BUS ETHICS, V161, P253, DOI 10.1007/s10551-019-04214-8
Li X., 2022, ASIA PAC J EDUC, V42, P211, DOI DOI 10.1080/02188791.2020.1766417
Martínez-Jiménez R, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2020.100422
McCormick A.C., 2013, HIGHER ED HDB THEORY, V28, P47, DOI [DOI 10.1007/978-94-007-5836-02, 10.1007/978-94-007-5836-0_2, DOI 10.1007/978-94-007-5836-0_2]
McCray J, 2021, INT J TRAIN DEV, V25, P200, DOI 10.1111/ijtd.12215
Menon D, 2022, J HOSP LEIS SPORT TO, V30, DOI 10.1016/j.jhlste.2021.100360
Mitchell C., 2021, Marketing Education Review, V31, P294, DOI [DOI 10.1080/10528008.2021.1936561, https://doi.org/10.1080/10528008.2021.1936561]
Molthan-Hill P, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100328
Moorhouse BL, 2021, RELC J, V52, P359, DOI 10.1177/00336882211053052
Moser C, 2022, ACAD MANAG LEARN EDU, V21, P139, DOI 10.5465/amle.2020.0287
Mousa M, 2021, J MANAG DEV, V40, P105, DOI 10.1108/JMD-10-2020-0316
Ng D. T. K., 2023, ACM T INTERNET TECHN, P1
Ng D. T. K., 2021, Computers and Education: Artificial Intelligence, V2, P100041, DOI DOI 10.1016/J.CAEAI.2021.100041
Ng DTK, 2023, EDUC INF TECHNOL, V28, P8445, DOI 10.1007/s10639-022-11491-w
Ng T. K., 2020, J INF TECHNOL EDUC-R
Ngoasong MZ, 2022, J MANAG EDUC, V46, P622, DOI 10.1177/10525629211047168
Panadero E, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00422
Panigrahi S. S., 2022, INCLUSIVE BUSINESSES, P311
Park M, 2021, J HOSP TOUR EDUC, V33, P176, DOI 10.1080/10963758.2021.1907198
Perusso A, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2021.100596
Petkova AP, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100538
Polonsky MJ, 2012, J MARKET THEORY PRAC, V20, P243, DOI 10.2753/MTP1069-6679200301
Post LS, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103596
Pucciarelli F, 2022, J GLOB RESPONSIB, V13, P7, DOI 10.1108/JGR-12-2020-0111
Rajaram K., 2021, EVIDENCE BASED TEACH, P249
Rogaten J, 2019, ASSESS EVAL HIGH EDU, V44, P321, DOI 10.1080/02602938.2018.1504277
Roldan M, 2022, J MANAG EDUC, V46, P685, DOI 10.1177/10525629211056077
Romero-Frías E, 2023, INTERACT LEARN ENVIR, V31, P480, DOI 10.1080/10494820.2020.1799020
Rovai AP, 2009, INTERNET HIGH EDUC, V12, P7, DOI 10.1016/j.iheduc.2008.10.002
Rummel N, 2005, J LEARN SCI, V14, P201, DOI 10.1207/s15327809jls1402_2
Scaringella L, 2022, INFORM MANAGE-AMSTER, V59, DOI 10.1016/j.im.2021.103573
Schulz D, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2019.100335
Senko C, 2011, EDUC PSYCHOL-US, V46, P26, DOI 10.1080/00461520.2011.538646
Shahrill M, 2021, INT J EDUC MANAG, V35, P700, DOI 10.1108/IJEM-07-2020-0347
Sharipov F. F., 2021, DIGITAL POTENTIAL EC
Shea P, 2012, COMPUT EDUC, V59, P316, DOI 10.1016/j.compedu.2012.01.011
Sheng J, 2021, BRIT J MANAGE, V32, P1164, DOI 10.1111/1467-8551.12441
Sholihin M, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2020-100428
Singh S, 2021, J MARK HIGH EDUC, V31, P280, DOI 10.1080/08841241.2020.1825029
Sollosy M, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2022.100720
Sriharan A., 2021, ACAD MANAGEMENT P, V2021, P13492, DOI [10.5465/AMBPP.2021.13492abstract, DOI 10.5465/AMBPP.2021.13492ABSTRACT]
Su JH, 2022, EDUC SCI, V12, DOI 10.3390/educsci12050331
Tandon Anushree, 2021, International Journal of Business and Globalisation, V28, P388, DOI 10.1504/IJBG.2021.117353
Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001
Teras Marko., 2020, Postdigital Science and Education, V2, P863, DOI [10.1007/s42438-020-00164-x, DOI 10.1007/S42438-020-00164-X]
Thompson K., 2021, INT J HIGHER ED, V10, P42
Trotta D, 2018, 2018 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY AND MANAGEMENT (ICITM 2018), P113, DOI 10.1109/ICITM.2018.8333930
Tuzlukaya S, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2022.100616
Vaismoradi M, 2016, Theme development in qualitative content analysis and thematic analysis, DOI [DOI 10.5430/JNEP.V6N5P100, 10.5430/ jnep.v6n5p100]
Vieregger C, 2020, J EDUC BUS, V95, P335, DOI 10.1080/08832323.2019.1646700
Vig S, 2021, STRATEG CHANG, V30, P145, DOI 10.1002/jsc.2398
Votto A.M., 2021, International Journal of Information Management Data Insights, V1, P100, DOI DOI 10.1016/J.JJIMEI.2021.100047
Wei ML, 2021, J MANAG EDUC, V45, P65, DOI 10.1177/1052562920959391
Whitaker J, 2016, ACAD MANAG LEARN EDU, V15, P345, DOI 10.5465/amle.2013.0021
Williams RL, 2004, EDUC RES-UK, V46, P229, DOI 10.1080/0013188042000277304
Xu JJ, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100550
Zhang X, 2021, STUD HIGH EDUC, V46, P1603, DOI 10.1080/03075079.2019.1698531
Zhang Y, 2016, J RES SCI TEACH, V53, P7, DOI 10.1002/tea.21295
Zulfiqar S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041838
NR 138
TC 11
Z9 11
U1 15
U2 35
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1472-8117
EI 2352-3565
J9 INT J MANAG EDUC-OXF
JI Int. J. Manag. Educ.
PD JUL
PY 2023
VL 21
IS 2
AR 100796
DI 10.1016/j.ijme.2023.100796
EA MAR 2023
PG 18
WC Business; Education & Educational Research; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics; Education & Educational Research
GA C5DQ2
UT WOS:000962121800001
OA Bronze
DA 2024-09-05
ER
PT C
AU Wong, W
Tomov, S
Dongarra, J
AF Wong, Kwai
Tomov, Stanimire
Dongarra, Jack
BE Weiland, M
Juckeland, G
Alam, S
Jagode, H
TI Hands-On Research and Training in High Performance Data Sciences, Data
Analytics, and Machine Learning for Emerging Environments
SO HIGH PERFORMANCE COMPUTING: ISC HIGH PERFORMANCE 2019 INTERNATIONAL
WORKSHOPS
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 34th International Conference on High Performance Computing (ISC High
Performance)
CY JUN 16-20, 2019
CL Frankfurt, GERMANY
DE Computational science; Educational outreach; Research Experiences for
Undergraduates; Data analytics; Machine learning (ML); Hands-on
experiences and education; HPC
AB This paper describes a hands-on Research Experiences for Computational Science, Engineering, and Mathematics (RECSEM) program in high-performance data sciences, data analytics, and machine learning on emerging computer architectures. RECSEM is a Research Experiences for Undergraduates (REU) site program supported by the USA National Science Foundation. This site program at the University of Tennessee (UTK) directs a group of ten undergraduate students to explore, as well as contribute to the emergent interdisciplinary computational science models and state-of-the-art HPC techniques via a number of cohesive compute and data intensive applications in which numerical linear algebra is the fundamental building block.
C1 [Wong, Kwai; Tomov, Stanimire; Dongarra, Jack] Univ Tennessee, Knoxville, TN 37996 USA.
[Dongarra, Jack] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
C3 University of Tennessee System; University of Tennessee Knoxville;
United States Department of Energy (DOE); Oak Ridge National Laboratory
RP Tomov, S (corresponding author), Univ Tennessee, Knoxville, TN 37996 USA.
EM kwong@utk.edu; tomov@icl.utk.edu; dongarra@icl.utk.edu
RI Dongarra, Jack/G-4199-2019
OI Dongarra, Jack/0000-0003-3247-1782; Tomov, Stanimire/0000-0002-5937-7959
FU National Science Foundation (NSF), through NSF REU Award [1262937,
1659502]; University of Tennessee, Knoxville (UTK); National Institute
for Computational Sciences (NICS); National Science Foundation
[ACI-1548562]; XSEDE education allocation award [TG-ASC170031]; Office
of Advanced Cyberinfrastructure (OAC); Direct For Computer & Info Scie &
Enginr [1659502] Funding Source: National Science Foundation; Office of
Advanced Cyberinfrastructure (OAC); Direct For Computer & Info Scie &
Enginr [1262937] Funding Source: National Science Foundation
FX This work was conducted at the Joint Institute for Computational
Sciences (JICS), sponsored by the National Science Foundation (NSF),
through NSF REU Award #1262937 and #1659502, with additional Support
from the University of Tennessee, Knoxville (UTK), and the National
Institute for Computational Sciences (NICS). This work used the Extreme
Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number ACI-1548562.
Computational Resources are available through a XSEDE education
allocation award TG-ASC170031.
CR Betancourt F., 2019, PRACTICE EXPERIENCE
Cheng L, 2018, OXID MED CELL LONGEV, V2018, DOI 10.1155/2018/9482018
Cheng X., 2018, ACCELERATING 2D FFT
Ng L, 2019, MAGMADNN 2018 SUMMER
Ng Lucien, 2017, MAGMA DNN 2017 SUMME
Nichols D., 2019, PRACTICE EXPERIENCE
Nichols D., 2019, ISC HIGH PERFORMANCE
Sorna A, 2018, 2018 IEEE 25TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING WORKSHOPS (HIPCW), P3, DOI [10.1109/HiPCW.2018.00009, 10.1109/HiPCW.2018.8634417]
Tomov S, 2010, PARALLEL COMPUT, V36, P232, DOI 10.1016/j.parco.2009.12.005
Towns J, 2014, COMPUT SCI ENG, V16, P62, DOI 10.1109/MCSE.2014.80
NR 10
TC 0
Z9 0
U1 0
U2 1
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-34356-9; 978-3-030-34355-2
J9 LECT NOTES COMPUT SC
PY 2020
VL 11887
BP 643
EP 655
DI 10.1007/978-3-030-34356-9_49
PG 13
WC Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BQ6PM
UT WOS:000612971700049
DA 2024-09-05
ER
PT J
AU Liu, L
Tang, J
Han, JW
Yang, SQ
AF Liu, Lu
Tang, Jie
Han, Jiawei
Yang, Shiqiang
TI Learning influence from heterogeneous social networks
SO DATA MINING AND KNOWLEDGE DISCOVERY
LA English
DT Article
DE Social influence analysis; Social network analysis; Influence
propagation; Topic modeling
ID CENTRALITY
AB Influence is a complex and subtle force that governs social dynamics and user behaviors. Understanding how users influence each other can benefit various applications, e.g., viral marketing, recommendation, information retrieval and etc. While prior work has mainly focused on qualitative aspect, in this article, we present our research in quantitatively learning influence between users in heterogeneous networks. We propose a generative graphical model which leverages both heterogeneous link information and textual content associated with each user in the network to mine topic-level influence strength. Based on the learned direct influence, we further study the influence propagation and aggregation mechanisms: conservative and non-conservative propagations to derive the indirect influence. We apply the discovered influence to user behavior prediction in four different genres of social networks: Twitter, Digg, Renren, and Citation. Qualitatively, our approach can discover some interesting influence patterns from these heterogeneous networks. Quantitatively, the learned influence strength greatly improves the accuracy of user behavior prediction.
C1 [Liu, Lu] Capital Med Univ, Beijing, Peoples R China.
[Tang, Jie; Yang, Shiqiang] Tsinghua Univ, Beijing 100084, Peoples R China.
[Han, Jiawei] Univ Illinois, Urbana, IL 61801 USA.
C3 Capital Medical University; Tsinghua University; University of Illinois
System; University of Illinois Urbana-Champaign
RP Liu, L (corresponding author), Capital Med Univ, Beijing, Peoples R China.
EM lu-liu@mails.tsinghua.edu.cn
RI yang, shiqiang/AAH-5484-2019; Edgar, William D/J-8792-2013; tang,
jie/KIE-8633-2024
OI Edgar, William D/0000-0002-7996-9273;
FU National Natural Science Foundation of China [61103065, 61073073,
61035004, 61003097, 60933013]; U.S. National Science Foundation
[IIS-09-05215]; U.S. Army Research Laboratory [W911NF-09-2-0053]
FX The work was supported in part by the National Natural Science
Foundation of China under grants 61103065, 61073073, 61035004, 61003097
and 60933013, and by the U.S. National Science Foundation under grant
IIS-09-05215 and the U.S. Army Research Laboratory under Cooperative
Agreement Number W911NF-09-2-0053 (NS-CTA).
CR Anagnostopoulos A., 2008, P 14 ACM SIGKDD INT, P7, DOI [10.1145/1401890.1401897, DOI 10.1145/1401890.1401897]
[Anonymous], 1999, SIDLWP19990120 STANF
[Anonymous], 2012, WSDM 12
[Anonymous], WORKSH MULT DAT MIN
[Anonymous], 2007, 16 INT C WORLD WID W
[Anonymous], 2010, WSDM 10
[Anonymous], SIGIR 11
[Anonymous], NATURE
[Anonymous], CIKM 11
[Anonymous], 2004, INFORM DIFFUSION BLO, DOI DOI 10.1145/988672.988739
[Anonymous], 2008, P 14 ACM SIGKDD INT
[Anonymous], 1992, NETWORKS ORG
[Anonymous], KDD 10
[Anonymous], 2003, P 9 ACM SIGKDD INT C
[Anonymous], 2002, Proceedings of the 11th international conference on World Wide Web, DOI [DOI 10.1145/511446.511513, 10.1145/511446.511513]
[Anonymous], EDBT 09
[Anonymous], KDD 10
[Anonymous], 2000, C UNCERTAINTY ARTIFI
[Anonymous], 2010, ICML
[Anonymous], 2008, P 14 ACM SIGKDD INT, DOI [10.1145, DOI 10.1145/1401890.1402012]
BONACICH P, 1972, J MATH SOCIOL, V2, P113, DOI 10.1080/0022250X.1972.9989806
BONACICH P, 1987, AM J SOCIOL, V92, P1170, DOI 10.1086/228631
Bonacich P, 2001, SOC NETWORKS, V23, P191, DOI 10.1016/S0378-8733(01)00038-7
Chang J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P169
Crandall DavidJ., 2008, KDD, P160
Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526
Domingos P., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P57, DOI 10.1145/502512.502525
Fowler JH, 2008, BMJ-BRIT MED J, V337, DOI 10.1136/bmj.a2338
GRANOVETTER MS, 1973, AM J SOCIOL, V78, P1360, DOI 10.1086/225469
Guha R., 2004, P 13 INT C WORLD WID, P403, DOI DOI 10.1145/988672.988727
Jeh G., 2002, Proceedings of the 11th International Conference on World Wide Web, P271
Katz Leo, 1953, PSYCHOMETRIKA, V18, P39
Kelman H. C., 1958, Journal of Conflict Resolution, P51, DOI [10.1177/002200275800200106, DOI 10.1177/002200275800200106]
KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501
Kiss C, 2008, DECIS SUPPORT SYST, V46, P233, DOI 10.1016/j.dss.2008.06.007
La Fond Timothy., 2010, Proceedings of the 19th International Conference on World Wide Web, WWW '10, P601
Liben-Nowell D, 2008, P NATL ACAD SCI USA, V105, P4633, DOI 10.1073/pnas.0708471105
Liu Lu., 2010, CIKM
Iribarren JL, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.038702
Nallapati R. M., 2008, P 14 ACM SIGKDD INT, P542, DOI DOI 10.1145/1401890.1401957
Richardson M., 2002, KDD 2002, P61, DOI DOI 10.1145/775047.775057
Scripps J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P747
Singla P., 2008, Proceedings of the 17th international conference on World Wide Web, WWW '08, P655, DOI DOI 10.1145/1367497.1367586
Sun YZ, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P797
Tan Chenhao., 2010, SIGKDD, P1049
Tang J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P807
Tang L., 2009, KDD, P817
Xiang R., 2010, Proceedings of the 19th international conference on World wide web, P981, DOI [10.1145/1772690.1772790, DOI 10.1145/1772690.1772790]
Yang TB, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P927
Zheleva E, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1007
NR 50
TC 67
Z9 86
U1 2
U2 84
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1384-5810
EI 1573-756X
J9 DATA MIN KNOWL DISC
JI Data Min. Knowl. Discov.
PD NOV
PY 2012
VL 25
IS 3
SI SI
BP 511
EP 544
DI 10.1007/s10618-012-0252-3
PG 34
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA 992GL
UT WOS:000307763500005
DA 2024-09-05
ER
PT J
AU Huang, L
Ladikas, M
Schippl, J
He, GX
Hahn, J
AF Huang, Lei
Ladikas, Miltos
Schippl, Jens
He, Guangxi
Hahn, Julia
TI Knowledge mapping of an artificial intelligence application scenario: A
bibliometric analysis of the basic research of data-driven autonomous
vehicles
SO TECHNOLOGY IN SOCIETY
LA English
DT Article
DE Artificial intelligence; Autonomous vehicles; Application scenarios;
Bibliometrics; Basic research; Knowledge mapping
ID INNOVATION; DYNAMICS; SCIENCE; TRENDS; IMPACT; TRUST
AB With the rapid development and maturation of basic research in related fields such as deep learning and convolutional neural networks, artificial intelligence (AI) has become a policy hotspot of high interest in all major economies. Furthermore, the governance of application scenarios has become one of the important topics of AI governance policy research. The practice of AI governance policy depends on a change in the paradigm of relevant governance policy research theories, and there is an urgent need to empirically analyze the structural characteristics of the knowledge evolution of AI application scenarios. This study conducts a bibliometric analysis of the basic research trends in autonomous vehicles, which is one of the most important application scenarios of AI. The study empirically analyzes the relevant literature data from the Science Citation Index Expanded (SCI-Expanded) and Social Sciences Citation Index (SSCI) databases of Web of Science, based on both technical and social dimensions through the knowledge mapping analysis tools in Bibliometrix (in R environment). Based on the empirical analysis, the results show that the basic research on autonomous vehicles is characterized by strong data-driven innovation under the influence of AI. The fusion of AI and basic research on autonomous vehicles has become a major driver of knowledge innovation in this domain while there is a lack of the integration of social science research.
C1 [Huang, Lei; He, Guangxi] Chinese Acad Sci & Technol Dev, Beijing 100038, Peoples R China.
[Huang, Lei; Schippl, Jens] Karlsruhe Inst Technol, Inst Technol Assessment & Syst Anal, D-76021 Karlsruhe, Germany.
[Ladikas, Miltos; Hahn, Julia] Karlsruhe Inst Technol, Inst Technol Assessment & Syst Anal, D-10437 Berlin, Germany.
[Huang, Lei] Yuyuantan South Rd 8th, Beijing 100038, Peoples R China.
C3 Helmholtz Association; Karlsruhe Institute of Technology; Helmholtz
Association; Karlsruhe Institute of Technology
RP Huang, L (corresponding author), Yuyuantan South Rd 8th, Beijing 100038, Peoples R China.
EM lei.huang7601@foxmail.com; miltos.ladikas@kit.edu; jens.schippl@kit.edu;
hegx@casted.org.cn; julia.hahn@kit.edu
RI Wang, Yuhan/KGL-5855-2024; wang, wang/KGW-2828-2024; wang,
yue/KDO-9209-2024; Liu, Chang/KGL-6678-2024; Wang, YuHan/KGY-2933-2024;
Sun, Yue/KHU-8159-2024; Li, Hongbo/KHV-4191-2024
OI Li, Hongbo/0000-0003-4495-0756; Huang, Lei/0000-0003-0989-5392
FU Helmholtz [2020025]; OCPC [2020025]
FX Supported by the International Postdoctoral Exchange
Fellowship Program between Helmholtz and OCPC (Grant No. 2020025) .
CR Gontijo MCA, 2021, REV GEN INF DOC, V31, P719, DOI 10.5209/rgid.79465
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arulkumaran K, 2017, IEEE SIGNAL PROC MAG, V34, P26, DOI 10.1109/MSP.2017.2743240
Baker N., 2018, Brochure on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence
Barfield W, 2018, RESEARCH HANDBOOK ON THE LAW OF ARTIFICIAL INTELLIGENCE, P1, DOI 10.4337/9781786439055
Birudavolu S, 2018, Business Innovation and ICT Strategies
Carroll J.M., 2019, Making Use-Scenario-Based Design of Human-Computer Interactions
Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309
Chen XL, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2022.103113
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Collingridge David, 1980, The Social Control of Technology
Confalonieri R, 2021, WIRES DATA MIN KNOWL, V11, DOI 10.1002/widm.1391
Cui YS, 2020, ROBOT CIM-INT MANUF, V62, DOI 10.1016/j.rcim.2019.101861
Dubber M. D., The Oxford handbook of ethics of AI, DOI DOI 10.1093/OXFORDHB/9780190067397.001.0001
Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002
Firlej M, 2021, REGUL GOV, V15, P1071, DOI 10.1111/rego.12344
Fleischer T, 2022, IEEE INT VEH SYM, P1268, DOI 10.1109/IV51971.2022.9827210
Floridi L, 2018, MIND MACH, V28, P689, DOI 10.1007/s11023-018-9482-5
Fraedrich E, 2015, EUR J FUTURES RES, V3, DOI 10.1007/s40309-015-0067-8
Fuenfschilling L, 2014, RES POLICY, V43, P772, DOI 10.1016/j.respol.2013.10.010
Fujii H, 2018, ECON ANAL POLICY, V58, P60, DOI 10.1016/j.eap.2017.12.006
Gandia RM, 2019, TRANSPORT REV, V39, P9, DOI 10.1080/01441647.2018.1518937
Geels FW, 2004, RES POLICY, V33, P897, DOI 10.1016/j.respol.2004.01.015
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622
Gorwa R, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951719897945
Grigorescu S, 2020, J FIELD ROBOT, V37, P362, DOI 10.1002/rob.21918
Guilera G, 2013, SCIENTOMETRICS, V94, P943, DOI 10.1007/s11192-012-0761-2
Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014
Hu HT, 2020, J DATA INFO SCI, V5, P86, DOI 10.2478/jdis-2020-0027
Huang L., 2021, Compet. Regul. Netw. Ind., V22, P189
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Khogali HO, 2023, TECHNOL SOC, V73, DOI 10.1016/j.techsoc.2023.102232
Kraus S, 2022, REV MANAG SCI, V16, P2577, DOI 10.1007/s11846-022-00588-8
Legêne MF, 2020, J SIMUL, V14, P295, DOI 10.1080/17477778.2020.1806747
Leitner G, 2021, J INTELL INF SYST, V57, P419, DOI 10.1007/s10844-021-00691-4
Li J, 2018, AUTOMOTIVE INNOV, V1, P2, DOI 10.1007/s42154-018-0009-9
Loan FA, 2021, COLLNET J SCIENTOMET, V15, P27, DOI 10.1080/09737766.2021.1938742
Ma YF, 2020, IEEE-CAA J AUTOMATIC, V7, P315, DOI 10.1109/JAS.2020.1003021
Marquis P, 2020, A Guided Tour of Artificial Intelligence Research: Volume II: AI Algorithms, VII
Marquis P., 2020, A Guided Tour of Artificial Intelligence Research: Volume III: Interfaces and Applications of Artificial Intelligence, VIII
Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677
Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007
Nordhoff S, 2018, J ADV TRANSPORT, DOI 10.1155/2018/5382192
OECD, 2019, ARTIF INTELL, DOI [10.1787/eedfee77-en, DOI 10.1787/EEDFEE77-EN]
Paschen U, 2020, BUS HORIZONS, V63, P147, DOI 10.1016/j.bushor.2019.10.004
Petzold N, 2019, CREAT INNOV MANAG, V28, P157, DOI 10.1111/caim.12313
Pisoni G, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2023.103273
Reddy S, 2020, J AM MED INFORM ASSN, V27, P491, DOI 10.1093/jamia/ocz192
Schippl J, VORTRAG GEHALTEN EUR
Schippl J, 2022, TRANSP RES INTERDISC, V14, DOI 10.1016/j.trip.2022.100587
Schwarting W, 2019, P NATL ACAD SCI USA, V116, P24972, DOI 10.1073/pnas.1820676116
Sgurev V, 2021, Advances in Intelligent Systems Research and Innovation
Shadrin SS, 2017, J ADV TRANSPORT, DOI 10.1155/2017/2492765
Smith B.W., 2015, Automated and Autonomous Driving: Regulation Under Uncertainty
Stahl BC, 2022, INT J INFORM MANAGE, V62, DOI 10.1016/j.ijinfomgt.2021.102441
Stilgoe J, 2018, SOC STUD SCI, V48, P25, DOI 10.1177/0306312717741687
Taeihagh A, 2021, REGUL GOV, V15, P1009, DOI 10.1111/rego.12392
Tan SY, 2021, GOV INFORM Q, V38, DOI 10.1016/j.giq.2020.101546
Tekic Z, 2023, TECHNOL SOC, V73, DOI 10.1016/j.techsoc.2023.102254
Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482
Yang C, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121188
Yi ZG, 2021, TRANSPORT RES D-TR E, V95, DOI 10.1016/j.trd.2021.102822
Zekos G.I, 2021, Artificial Intelligence Governance, Economics and Law of Artificial Intelligence: Finance, Economic Impacts, Risk Management and Governance, P117
Zeng FG, 2023, TECHNOL SOC, V73, DOI 10.1016/j.techsoc.2023.102234
Zhang TR, 2020, TRANSPORT RES C-EMER, V112, P220, DOI 10.1016/j.trc.2020.01.027
Zhang Y, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106994
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 67
TC 4
Z9 4
U1 17
U2 19
PU ELSEVIER SCI LTD
PI London
PA 125 London Wall, London, ENGLAND
SN 0160-791X
EI 1879-3274
J9 TECHNOL SOC
JI Technol. Soc.
PD NOV
PY 2023
VL 75
AR 102360
DI 10.1016/j.techsoc.2023.102360
EA OCT 2023
PG 12
WC Social Issues; Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Social Issues; Social Sciences - Other Topics
GA FS9T1
UT WOS:001147968900001
DA 2024-09-05
ER
PT J
AU Ke, ZT
Ji, PS
Jin, JS
Li, WS
AF Ke, Zheng Tracy
Ji, Pengsheng
Jin, Jiashun
Li, Wanshan
TI Recent Advances in Text Analysis
SO ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION
LA English
DT Article
DE BERT; journal ranking; knowledge graph; neural network; SCORE; Stigler's
model; Topic-SCORE; topic weight
ID MODELS; STATISTICS
AB Text analysis is an interesting research area in data science and has various applications, such as in artificial intelligence, biomedical research, and engineering. We review popular methods for text analysis, ranging from topic modeling to the recent neural language models. In particular, we review Topic-SCORE, a statistical approach to topic modeling, and discuss how to use it to analyze the Multi-Attribute Data Set on Statisticians (MADStat), a data set on statistical publications that we collected and cleaned. The application of Topic-SCORE and other methods to MADStat leads to interesting findings. For example, we identified 11 representative topics in statistics. For each journal, the evolution of topic weights over time can be visualized, and these results are used to analyze the trends in statistical research. In particular, we propose a new statistical model for ranking the citation impacts of 11 topics, and we also build a cross-topic citation graph to illustrate how research results on different topics spread to one another. The results on MADStat provide a data-driven picture of the statistical research from 1975 to 2015, from a text analysis perspective.
C1 [Ke, Zheng Tracy] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA.
[Ji, Pengsheng] Univ Georgia, Dept Stat, Athens, GA USA.
[Jin, Jiashun; Li, Wanshan] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA USA.
C3 Harvard University; University System of Georgia; University of Georgia;
Carnegie Mellon University
RP Ke, ZT (corresponding author), Harvard Univ, Dept Stat, Cambridge, MA 02138 USA.
EM zke@fas.harvard.edu
RI Ji, Pengsheng/E-2634-2013
OI Ji, Pengsheng/0000-0003-1439-5819
FU National Science Foundation (NSF) CAREER grant [DMS-1943902]; NSF
[DMS-2015469]
FX Z.T.K. was partially supported by National Science Foundation (NSF)
CAREER grant DMS-1943902. J.J. was partially supported by NSF grant
DMS-2015469. Z.T.K. thanks Russell Kunes and Xiao-Li Meng for helpful
discussions.
CR [Anonymous], 2014, P COLING 2014 25 INT
Arora S, 2012, ANN IEEE SYMP FOUND, P1, DOI 10.1109/FOCS.2012.49
Arora Sanjeev, 2013, International Conference on Machine Learning
AZZALINI A, 1985, SCAND J STAT, V12, P171
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x
Bing X, 2020, BERNOULLI, V26, P1765, DOI 10.3150/19-BEJ1166
Blei D., 2007, Advances in Neural Information Processing Systems, V20, DOI DOI 10.5555/2981562.2981578
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Cai TT, 2023, J. R. Stat. Soc. Ser. B
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1, DOI 10.1111/j.2517-6161.1977.tb01600.x
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Donoho D, 2004, ADV NEUR IN, V16, P1141
Donoho D, 2017, J COMPUT GRAPH STAT, V26, P745, DOI 10.1080/10618600.2017.1384734
Donoho D, 2015, STAT SCI, V30, P1, DOI 10.1214/14-STS506
DONOHO DL, 1994, BIOMETRIKA, V81, P425, DOI 10.1093/biomet/81.3.425
Efron B, 2004, ANN STAT, V32, P407, DOI 10.1214/009053604000000067
Fagan J. L., 1988, Experiments in automatic phrase indexing for document retrieval: A comparison of syntactic and nonsyntactic methods
GELFAND AE, 1990, J AM STAT ASSOC, V85, P398, DOI 10.2307/2289776
Gillis N, 2014, IEEE T PATTERN ANAL, V36, P698, DOI 10.1109/TPAMI.2013.226
Harman DK., 1993, 1 TEXT RETR C TREC 1
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
Horn R. A., 1991, Matrix analysis
HUBERT L, 1985, J CLASSIF, V2, P193, DOI 10.1007/BF01908075
Ji PS, 2022, J BUS ECON STAT, V40, P469, DOI 10.1080/07350015.2021.1978469
Jin J, 2023, J. Econom
Jin J., 2018, Proc. Mach. Learn. Res., P2333
Jin JS, 2021, ANN STAT, V49, P3408, DOI 10.1214/21-AOS2089
Jin JS, 2015, ANN STAT, V43, P57, DOI 10.1214/14-AOS1265
Kalchbrenner N, 2014, Arxiv, DOI [arXiv:1404.2188, 10.48550/arXiv.1404.2188]
Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112
Ke ZT, 2023, STAT-US, V12, DOI 10.1002/sta4.545
Ke ZT, 2024, J AM STAT ASSOC, V119, P434, DOI 10.1080/01621459.2022.2123813
Ke ZT, 2019, NBERWork. Pap. 26186
Kolar M, 2016, ANN APPL STAT, V10, P1835, DOI 10.1214/16-AOAS896D
Lee DD, 1999, NATURE, V401, P788, DOI 10.1038/44565
Lee J, 2020, BIOINFORMATICS, V36, P1234, DOI 10.1093/bioinformatics/btz682
LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.1093/biomet/73.1.13
Mei Q, 2001, CIKM 20 P 29 ACM INT
Mikolov T, 2013, Arxiv, DOI [arXiv:1301.3781, 10.48550/arXiv.1301.3781, DOI 10.48550/ARXIV.1301.3781]
Otter DW, 2021, IEEE T NEUR NET LEAR, V32, P604, DOI 10.1109/TNNLS.2020.2979670
Radford A., 2018, OPENAI
Rahali A, 2023, AI-BASEL, V4, P54, DOI 10.3390/ai4010004
Shi F, 2015, SOC NETWORKS, V43, P73, DOI 10.1016/j.socnet.2015.02.006
STIGLER SM, 1994, STAT SCI, V9, P94, DOI 10.1214/ss/1177010655
Taddy M., 2012, Artificial intelligence and statistics, P1184
Tibshirani R, 2011, J R STAT SOC B, V73, P273, DOI 10.1111/j.1467-9868.2011.00771.x
Varin C, 2016, J ROY STAT SOC A, V179, P1, DOI 10.1111/rssa.12124
Vaswani A, 2017, ADV NEUR IN, V30
Wallach H.M., 2006, Proc. 23rd Int. Conf. Mach. Learn, P977984, DOI DOI 10.1145/1143844.1143967
Wu RJ, 2023, J AM STAT ASSOC, V118, P1849, DOI 10.1080/01621459.2021.2018329
Zhu YK, 2015, IEEE I CONF COMP VIS, P19, DOI 10.1109/ICCV.2015.11
NR 54
TC 1
Z9 1
U1 1
U2 1
PU ANNUAL REVIEWS
PI PALO ALTO
PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA
SN 2326-8298
EI 2326-831X
J9 ANNU REV STAT APPL
JI Annu. Rev. Stat. Application
PY 2024
VL 11
BP 347
EP 372
DI 10.1146/annurev-statistics-040522-022138
PG 26
WC Mathematics, Interdisciplinary Applications; Statistics & Probability
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematics
GA TC5R4
UT WOS:001239078200015
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Zhu, CQ
Huang, DL
Zuo, B
AF Zhu, Chengquan
Huang, Donglin
Zuo, Bin
TI The influence of AI robot threats on right-wing authoritarianism and the
mitigating role of human uniqueness
SO CURRENT PSYCHOLOGY
LA English
DT Article; Early Access
DE Artificial intelligence; Perceived threats; Right-wing authoritarianism;
Sense of control
ID COMPENSATORY CONTROL; SOCIAL IDENTITY; ANTHROPOMORPHISM; PERCEPTION;
GOVERNMENT; ATTITUDES; SUPPORT; BELIEF; RISK; VIEW
AB The social implications of powerful Artificially Intelligent (AI) robots, specifically regarding the potential loss of sense of control they bring about, remain incompletely understood. This study investigated the relationship between people's perceptions of AI robots and their right-wing authoritarianism (RWA) through two studies (N = 2056, Mage=35.37, SDage=10.85). Study 1 revealed that when participants were exposed to advanced (mindful) AI robots they reported heightened levels of threat perception. This perceived threat engendered a sentiment of control erosion. Consequently, individuals exhibited heightened support for RWA as a means to regain the sense of control. Although RWA is considered to have adaptive significance, it may also bring many negative social impacts. Study 2 found that accentuating human uniqueness can mitigate perceptions of threat and reinstate a sense of control. This strategy appeared efficacious in curbing RWA inclinations. The inexorable integration of AI robots into society underscores the urgency of comprehending their potential societal implications.
C1 [Zhu, Chengquan; Zuo, Bin] Sun Yat Sen Univ, Dept Psychol, Guangzhou, Guangdong, Peoples R China.
[Huang, Donglin] Xinxiang Inst Engn, Dept Student Affairs Off, Xinxiang, Henan, Peoples R China.
C3 Sun Yat Sen University
RP Zuo, B (corresponding author), Sun Yat Sen Univ, Dept Psychol, Guangzhou, Guangdong, Peoples R China.
EM zuobin@mail.sysu.edu.cn
FX DAS:Due to the protection of participants' privacy, the data that
support the findings of this study are available from the corresponding
author only upon reasonable request.
CR Adler NE, 2000, HEALTH PSYCHOL, V19, P586, DOI 10.1037/0278-6133.19.6.586
Athanasiou A, 2017, BIOMED RES INT, V2017, DOI 10.1155/2017/5708937
Bigman YE, 2023, J EXP PSYCHOL GEN, V152, P4, DOI 10.1037/xge0001250
Bizumic B, 2018, J SOC POLIT PSYCHOL, V6, P129, DOI 10.5964/jspp.v6i1.835
Blut M, 2021, J ACAD MARKET SCI, V49, P632, DOI 10.1007/s11747-020-00762-y
Bonnefon JF, 2024, ANNU REV PSYCHOL, V75, P653, DOI 10.1146/annurev-psych-030123-113559
Bonnefon JF, 2016, SCIENCE, V352, P1573, DOI 10.1126/science.aaf2654
Brandt MJ, 2015, SOC PSYCHOL PERS SCI, V6, P219, DOI 10.1177/1948550614552728
Broadbent E, 2009, INT J SOC ROBOT, V1, P319, DOI 10.1007/s12369-009-0030-6
Brubaker R, 2017, ETHNIC RACIAL STUD, V40, P1191, DOI 10.1080/01419870.2017.1294700
Clarke R, 2019, COMPUT LAW SECUR REV, V35, P423, DOI 10.1016/j.clsr.2019.04.006
Cohen J., 1977, STAT POWER ANAL BEHA
Dang JN, 2022, COMPUT HUM BEHAV, V134, DOI 10.1016/j.chb.2022.107300
Dang JN, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2020.106612
de Graaf MMA, 2013, ROBOT AUTON SYST, V61, P1476, DOI 10.1016/j.robot.2013.07.007
Douglas BD, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0279720
Dweck CS, 2019, PERSPECT PSYCHOL SCI, V14, P481, DOI 10.1177/1745691618804166
Edwards C, 2019, COMPUT HUM BEHAV, V90, P357, DOI 10.1016/j.chb.2018.08.027
Epley N, 2007, PSYCHOL REV, V114, P864, DOI 10.1037/0033-295X.114.4.864
Eyal P, 2022, BEHAV RES METHODS, V54, P1643, DOI 10.3758/s13428-021-01694-3
Friesen JP, 2014, J PERS SOC PSYCHOL, V106, P590, DOI 10.1037/a0035620
Fromm Erich., 1994, ESCAPE FREEDOM
Geraci RM, 2006, THEOL SCI, V4, P229, DOI 10.1080/14746700600952993
Goode C., 2014, J SOC POLIT PSYCHOL, V2, P313, DOI DOI 10.5964/JSPP.V2I1.372
Gray HM, 2007, SCIENCE, V315, P619, DOI 10.1126/science.1134475
Gray K, 2012, COGNITION, V125, P125, DOI 10.1016/j.cognition.2012.06.007
Greenaway KH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071327
Infurna FJ, 2014, HEALTH PSYCHOL, V33, P85, DOI 10.1037/a0030208
Jackson JC, 2020, AM PSYCHOL, V75, P969, DOI 10.1037/amp0000582
Jedinger A, 2020, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02895
Kaplan Frederic, 2004, International Journal of Humanoid Robotics, V1, P465, DOI [DOI 10.1142/S0219843604000289, 10.1142/S0219843604000289]
Kay AC, 2008, J PERS SOC PSYCHOL, V95, P18, DOI 10.1037/0022-3514.95.1.18
Kay AC, 2013, J SOC ISSUES, V69, P564, DOI 10.1111/josi.12029
Kay AC, 2010, J PERS SOC PSYCHOL, V99, P725, DOI 10.1037/a0021140
Kossowska M, 2011, BRIT J PSYCHOL, V102, P245, DOI 10.1348/000712610X517262
Kuo I. H., 2009, RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication, P214, DOI 10.1109/ROMAN.2009.5326292
Lachman ME, 1998, J PERS SOC PSYCHOL, V74, P763, DOI 10.1037/0022-3514.74.3.763
Landau MJ, 2015, PSYCHOL BULL, V141, P694, DOI 10.1037/a0038703
MacDorman KF, 2009, AI SOC, V23, P485, DOI 10.1007/s00146-008-0181-2
Millet K, 2023, COMPUT HUM BEHAV, V143, DOI 10.1016/j.chb.2023.107707
Oliveira R, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106547
Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5
Richardson JTE, 2011, EDUC RES REV-NETH, V6, P135, DOI 10.1016/j.edurev.2010.12.001
Roesler Eileen, 2020, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, V64, P107, DOI 10.1177/1071181320641028
Savela N, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2020.106585
Schmitt B, 2020, MARKET LETT, V31, P3, DOI 10.1007/s11002-019-09499-3
Schönbrodt FD, 2013, J RES PERS, V47, P609, DOI 10.1016/j.jrp.2013.05.009
Shepherd S, 2011, J EXP SOC PSYCHOL, V47, P949, DOI 10.1016/j.jesp.2011.03.026
Stea JN, 2012, SOC SCI J, V49, P528, DOI 10.1016/j.soscij.2012.05.001
Stein JP, 2019, COMPUT HUM BEHAV, V95, P73, DOI 10.1016/j.chb.2019.01.021
Stephan W.G., 2002, From prejudice to intergroup emotions, P191, DOI [10.1002/9781444303117.ch5, DOI 10.1002/9781444303117.CH5]
STEPHAN WG, 1985, J SOC ISSUES, V41, P157, DOI 10.1111/j.1540-4560.1985.tb01134.x
Taddeo M, 2018, SCIENCE, V361, P751, DOI 10.1126/science.aat5991
TAJFEL H, 1974, SOC SCI INFORM, V13, P65, DOI 10.1177/053901847401300204
Tajfel H., 1978, DIFFERENTATION GROUP, P61
Turiano NA, 2014, HEALTH PSYCHOL, V33, P883, DOI 10.1037/hea0000022
Uscinski JE., 2014, American Conspiracy Theories, DOI [10.1093/acprof:oso/9780199351800.001.0001, DOI 10.1093/ACPROF:OSO/9780199351800.001.0001]
Van Prooijen JW, 2015, APPL COGNITIVE PSYCH, V29, P753, DOI 10.1002/acp.3161
Markovic MV, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.622571
Waytz A, 2014, J EXP SOC PSYCHOL, V52, P113, DOI 10.1016/j.jesp.2014.01.005
Whitson JA, 2008, SCIENCE, V322, P115, DOI 10.1126/science.1159845
Williams KD, 2007, ANNU REV PSYCHOL, V58, P425, DOI 10.1146/annurev.psych.58.110405.085641
Womick J, 2019, J PERS, V87, P1056, DOI 10.1111/jopy.12457
Yam KC, 2021, COMPUT HUM BEHAV, V125, DOI 10.1016/j.chb.2021.106945
Yin M, 2024, COMPUT HUM BEHAV, V150, DOI 10.1016/j.chb.2023.107987
Yogeeswaran K, 2016, J HUM-ROBOT INTERACT, V5, P29, DOI 10.5898/JHRI.5.2.Yogeeswaran
Zlotowski J, 2017, INT J HUM-COMPUT ST, V100, P48, DOI 10.1016/j.ijhcs.2016.12.008
NR 67
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1046-1310
EI 1936-4733
J9 CURR PSYCHOL
JI Curr. Psychol.
PD 2024 AUG 9
PY 2024
DI 10.1007/s12144-024-06347-0
EA AUG 2024
PG 12
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA C2B6H
UT WOS:001287465400001
DA 2024-09-05
ER
PT C
AU Chantaranimi, K
Sugunsil, P
Natwichai, J
AF Chantaranimi, Kittayaporn
Sugunsil, Prompong
Natwichai, Juggapong
BE Barolli, L
Chen, HC
Miwa, H
TI An Approach to Enhance Academic Ranking Prediction with Augmented Social
Perception Data
SO ADVANCES IN INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS
(INCOS-2021)
SE Lecture Notes in Networks and Systems
LA English
DT Proceedings Paper
CT 13th International Conference on Intelligent Networking and
Collaborative Systems (INCoS)
CY SEP 01-03, 2021
CL Asia Univ, Taichung, TAIWAN
HO Asia Univ
DE Social perception data; Machine learning; Citation prediction;
Altmetrics; Correlation; SciVal
AB Academic ranking prediction are indicators that have significant influences on the decision-making process of stakeholders of universities. In addition, we are in digital age with a pandemic situation, social media and technology have revolutionized the way scholars reach and disseminate academic outputs. Thus, the ranking consideration should be adjusted by augmented social perception data, e.g. Altmetrics. In this study, dataset of 1,752,494 research outputs from Altmetric.com and Scival.com which published between 2015-2020 are analyzed. This study assesses whether there are relationships between various scholarly output's social perception data and citations. Moreover, various machine learning models are constructed to predict the citations. Results show weak to moderate positive correlation between social perception data and citation. We have found that the outperforming prediction model is Random Forest regression. The finding in our study suggested that social perception data should be considered to enhance academic ranking prediction in conjunction with related features.
C1 [Chantaranimi, Kittayaporn] Chiang Mai Univ, Fac Engn, Data Sci Consortium, Chiang Mai, Thailand.
[Sugunsil, Prompong] Chiang Mai Univ, Coll Art Media & Technol, Chiang Mai, Thailand.
[Natwichai, Juggapong] Chiang Mai Univ, Fac Engn, Dept Comp Engn, Chiang Mai, Thailand.
C3 Chiang Mai University; Chiang Mai University; Chiang Mai University
RP Chantaranimi, K (corresponding author), Chiang Mai Univ, Fac Engn, Data Sci Consortium, Chiang Mai, Thailand.
EM kittayaporn_c@cmu.ac.th; prompong.sugunsil@cmu.ac.th;
juggapong@eng.cmu.ac.th
RI Natwichai, Juggapong/HTO-0073-2023
OI Natwichai, Juggapong/0000-0001-6220-2589
CR Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128
Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Banshal SK, 2021, ONLINE INFORM REV, V45, P517, DOI 10.1108/OIR-11-2019-0364
Barbic D, 2016, ACAD EMERG MED, V23, P251, DOI 10.1111/acem.12898
Huang WY, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194962
Lehane DJ, 2021, J INTENSIVE CARE SOC, V22, P60, DOI 10.1177/1751143720903240
Meschede C, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12114461
Priem J., 2010, Altmetrics: A manifesto
QS Quacquarelli Symonds Limited, QS WORLD U RANK SUBJ
Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008
United Nations, Take action for sustainable development goals
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
NR 13
TC 1
Z9 1
U1 3
U2 9
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2367-3370
EI 2367-3389
BN 978-3-030-84910-8; 978-3-030-84909-2
J9 LECT NOTE NETW SYST
PY 2022
VL 312
BP 84
EP 95
DI 10.1007/978-3-030-84910-8_9
PG 12
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Interdisciplinary Applications; Computer
Science, Theory & Methods; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BS2NO
UT WOS:000704003000009
DA 2024-09-05
ER
PT J
AU Solorio, T
AF Solorio, Thamar
TI Survey on Emerging Research on the Use of Natural Language Processing in
Clinical Language Assessment of Children
SO LANGUAGE AND LINGUISTICS COMPASS
LA English
DT Article
ID NONWORD REPETITION; IMPAIRMENT; MEMORY; SLI
AB In the last decade, we have seen emerging research exploring the use of natural language processing (NLP) techniques for assisting in the identification of clinical conditions that affect language. One of these clinical conditions is language impairment, a disorder identified by delayed or disordered language patterns in an individual with normal intelligence with no neurological or other physiological conditions. In this article, we present a survey of this emerging line of research, which for the most part has focused on the task of discriminating the clinical from the non-clinical group by posing the task as an automated classification problem. The focus of this survey is on the types of features recent research has explored. We also discuss the many interesting open questions that this research has yet to explore.
C1 [Solorio, Thamar] Univ Alabama Birmingham, Dept Comp & Informat Sci, 1300 Univ Blvd, Birmingham, AL 35294 USA.
C3 University of Alabama System; University of Alabama Birmingham
RP Solorio, T (corresponding author), Univ Alabama Birmingham, Dept Comp & Informat Sci, 1300 Univ Blvd, Birmingham, AL 35294 USA.
EM solorio@cis.uab.edu
OI Solorio, Thamar/0000-0002-3541-9405
FU NSF [1018124]; Direct For Computer & Info Scie & Enginr; Div Of
Information & Intelligent Systems [1018124] Funding Source: National
Science Foundation
FX The author would like to thank the reviewers for the very constructive
feedback received. Many thanks to Aquiles Iglesias, Yang Liu and Manuel
Montes y Gomez for meaningful discussions and comments on previous
versions of the paper. The author's research is currently supported by
NSF grant No. 1018124.
CR [Anonymous], 2018, Speech and Language Processing 3rd edition draft
Bishop DVM, 1996, J CHILD PSYCHOL PSYC, V37, P391, DOI 10.1111/j.1469-7610.1996.tb01420.x
Boston MF, 2008, J EYE MOVEMENT RES, V2
Botting N., 2002, CHILD LANG TEACH THE, V18, P1, DOI [https://doi.org/10.1191/0265659002ct224oa, DOI 10.1191/0265659002CT224OA]
Campbell T, 1997, J SPEECH LANG HEAR R, V40, P519, DOI 10.1044/jslhr.4003.519
Clegg J, 2005, J CHILD PSYCHOL PSYC, V46, P128, DOI 10.1111/j.1469-7610.2004.00342.x
COLEMAN M, 1975, J APPL PSYCHOL, V60, P283, DOI 10.1037/h0076540
Dollaghan C, 1998, J SPEECH LANG HEAR R, V41, P1136, DOI 10.1044/jslhr.4105.1136
Dollaghan C., 2008, DIAGNOSIS SPECIFIC L
Drolet BC, 2011, TRANSL RES, V157, P1, DOI 10.1016/j.trsl.2010.10.002
Dunn L. M., 1997, PEABODY PICTURE VOCA
Frazier Lyn., 1985, Syntactic complexity., Natural language parsing: Psychological, computational
Gabani K., 2009, North American Chapter of the Association for Computational Linguistics, P46
Gabani K, 2011, ARTIF INTELL MED, V53, P161, DOI 10.1016/j.artmed.2011.08.001
GATHERCOLE SE, 1990, J MEM LANG, V29, P336, DOI 10.1016/0749-596X(90)90004-J
GAULIN CA, 1994, PERCEPT MOTOR SKILL, V79, P55, DOI 10.2466/pms.1994.79.1.55
Gunning Robert, 1952, The Technique of Clear Writing
Hassanali K., 2013, BEHAV RES METHODS, V45
Hassanali K., 2012, 13 ANN C INT SPEECH, DOI DOI 10.21437/INTERSPEECH.2012-321
Hassanali K.-n., 2011, Proceedings of the Sixth Workshop on Innovative Use of NLP for Building Educational Applications, P87
Kincaid J.P., 1975, Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel
Kjelgaard MM, 2001, LANG COGNITIVE PROC, V16, P287, DOI 10.1080/01690960042000058
Le X, 2011, LIT LINGUIST COMPUT, V26, P435, DOI 10.1093/llc/fqr013
Levy R, 2008, COGNITION, V106, P1126, DOI 10.1016/j.cognition.2007.05.006
MacWhinney B., 2000, The CHILDES Project: Tools for analysing talk, V3rd Edition
Marchman VA, 1999, J SPEECH LANG HEAR R, V42, P206, DOI 10.1044/jslhr.4201.206
Marcus M.P., 1993, Computational Linguistics, V19, P313
Mayer M., 1969, FROG ARE YOU
Mayer M., 1967, BOY DOG FROG
MCLAUGHLIN GH, 1969, J READING, V12, P639
MILLER JF, 1983, SYSTEMATIC ANAL LANG
Pakhomov S, 2011, BEHAV RES METHODS, V43, P136, DOI 10.3758/s13428-010-0037-9
Pakhomov SVS, 2010, COGN BEHAV NEUROL, V23, P165, DOI 10.1097/WNN.0b013e3181c5dde3
Pakhomov SVS, 2010, J NEUROLINGUIST, V23, P127, DOI 10.1016/j.jneuroling.2009.12.001
Petersen SE, 2009, COMPUT SPEECH LANG, V23, P89, DOI 10.1016/j.csl.2008.04.003
Plante E., 1994, LANG SPEECH HEAR SER, V25, P15, DOI DOI 10.1044/0161-1461.2501.15
Prud'hommeaux E.T., 2011, Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics, P88
Redmond SM, 2004, CLIN LINGUIST PHONET, V18, P107, DOI 10.1080/02699200310001611612
Roark B, 2001, COMPUT LINGUIST, V27, P249, DOI 10.1162/089120101750300526
Roark B., 2007, P 2 INT C TECHN AG I
Roark B, 2011, IEEE T AUDIO SPEECH, V19, P2081, DOI 10.1109/TASL.2011.2112351
Roark Brian, 2007, Biological, translational, and clinical language processing, P1, DOI 10.3115/1572392.1572394
Roark Brian, 2009, P 2009 C EMPIRICAL M, P324
ROSENBERG S, 1987, APPL PSYCHOLINGUIST, V8, P19, DOI 10.1017/S0142716400000047
Sahakian S., 2012, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2, V2, P95
Semel E., 2003, Clinical Evaluation of Language Fundamentals
Simkin Z, 2001, INT J LANG COMM DIS, V36, P395
Solorio T, 2011, NAT LANG ENG, V17, P367, DOI 10.1017/S1351324910000252
Solorio T., 2008, Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing, P116
Thomas C, 2005, 2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATIONS, VOLS 1-4, CONFERENCE PROCEEDINGS, P1569
Tomblin JB, 1997, J SPEECH LANG HEAR R, V40, P1245, DOI 10.1044/jslhr.4006.1245
U.S. Census Bureau, 2010, LANG US US 2007
Wechsler D., 1991, WECHSLER INTELLIGENC
Williams K. T., 2007, Expressive Vocabulary Test-2 (EVT-2)
YNGVE VICTOR H., 1960, PROC AMER PHIL SOC, V104, P444
NR 55
TC 1
Z9 2
U1 0
U2 0
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1749-818X
J9 LANG LINGUIST COMPAS
JI Lang. Linguist. Compass
PD DEC
PY 2013
VL 7
IS 12
BP 633
EP 646
DI 10.1111/lnc3.12054
PG 14
WC Language & Linguistics
WE Emerging Sources Citation Index (ESCI)
SC Linguistics
GA V11CB
UT WOS:000214255200002
DA 2024-09-05
ER
PT J
AU Lalande, L
Bourguignon, L
Carlier, C
Ducher, M
AF Lalande, Laure
Bourguignon, Laurent
Carlier, Chloe
Ducher, Michel
TI Bayesian networks: a new method for the modeling of bibliographic
knowledge
SO MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
LA English
DT Article
DE Bayesian network; Fall risk; Geriatrics
ID RISK-ASSESSMENT TOOL; FALL-RISK; OLDER-ADULTS; ELDERLY-PATIENTS;
INJURIOUS FALLS; SCREENING TOOL; MEDICATION USE; PREDICTION; COMMUNITY;
PEOPLE
AB Falls in geriatry are associated with important morbidity, mortality and high healthcare costs. Because of the large number of variables related to the risk of falling, determining patients at risk is a difficult challenge. The aim of this work was to validate a tool to detect patients with high risk of fall using only bibliographic knowledge. Thirty articles corresponding to 160 studies were used to modelize fall risk. A retrospective case-control cohort including 288 patients (88 +/- A 7 years) and a prospective cohort including 106 patients (89 +/- A 6 years) from two geriatric hospitals were used to validate the performances of our model. We identified 26 variables associated with an increased risk of fall. These variables were split into illnesses, medications, and environment. The combination of the three associated scores gives a global fall score. The sensitivity and the specificity were 31.4, 81.6, 38.5, and 90 %, respectively, for the retrospective and the prospective cohort. The performances of the model are similar to results observed with already existing prediction tools using model adjustment to data from numerous cohort studies. This work demonstrates that knowledge from the literature can be synthesized with Bayesian networks.
C1 [Lalande, Laure; Bourguignon, Laurent; Carlier, Chloe; Ducher, Michel] Hosp Civils Lyon, Grp Hosp Geriatrie, F-69340 Francheville, France.
C3 CHU Lyon
RP Ducher, M (corresponding author), Hosp Civils Lyon, Grp Hosp Geriatrie, Serv Pharm 40 Ave La Table de Pierre, F-69340 Francheville, France.
EM michel.ducher@chu-lyon.fr
CR Allan LM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005521
[Anonymous], 2007, Encyclopedia of Statistics in Quality Reliability
Baranzini F, 2009, BMC HEALTH SERV RES, V9, DOI 10.1186/1472-6963-9-228
Bongue B, 2011, J CLIN EPIDEMIOL, V64, P1152, DOI 10.1016/j.jclinepi.2010.12.014
Burnside ES, 2009, RADIOLOGY, V251, P663, DOI 10.1148/radiol.2513081346
Cuaya G, 2012, MED BIOL ENG COMPUT
Cumming RG, 1998, DRUG AGING, V12, P43, DOI 10.2165/00002512-199812010-00005
Daal JO, 2005, NETH J MED, V63, P91
Darowski A, 2009, DRUG AGING, V26, P381, DOI 10.2165/00002512-200926050-00002
Demura S, 2011, ARCH GERONTOL GERIAT
Do Minh N, 2003, IEEE SIGNAL PROCESS, P115
Edmonson D, 2011, J PSYCHOSOC NURS MEN, V49, P29, DOI 10.3928/02793695-20101202-03
Ensrud KE, 2002, J AM GERIATR SOC, V50, P1629, DOI 10.1046/j.1532-5415.2002.50453.x
Fonad E, 2008, J CLIN NURS, V17, P126, DOI 10.1111/j.1365-2702.2007.02005.x
Formiga F, 2008, BONE, V43, P941, DOI 10.1016/j.bone.2008.06.014
Forsberg JA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019956
French DD, 2006, CLIN THER, V28, P619, DOI 10.1016/j.clinthera.2006.04.011
Ganz DA, 2007, JAMA-J AM MED ASSOC, V297, P77, DOI 10.1001/jama.297.1.77
Gevaert O, 2006, HUM REPROD, V21, P1824, DOI 10.1093/humrep/del083
Kelly KD, 2003, AGE AGEING, V32, P503, DOI 10.1093/ageing/afg081
Koski K, 1996, AGE AGEING, V25, P29, DOI 10.1093/ageing/25.1.29
Marschollek M, 2011, BMC MED INFORM DECIS, V11, DOI 10.1186/1472-6947-11-48
Mets MAJ, 2010, SLEEP MED REV, V14, P259, DOI 10.1016/j.smrv.2009.10.008
Milisen K, 2007, J AM GERIATR SOC, V55, P725, DOI 10.1111/j.1532-5415.2007.01151.x
Muir SW, 2010, J GERIATR PHYS THER, V33, P165, DOI 10.1097/JPT.0b013e3181ff23cc
Naim P, 2007, ALGORITHMES
Oliver D, 2004, AGE AGEING, V33, P122, DOI 10.1093/ageing/afh017
Oliver D, 2008, AGE AGEING, V37, P621, DOI 10.1093/ageing/afn203
Pariente A, 2008, DRUG AGING, V25, P61, DOI 10.2165/00002512-200825010-00007
Sakai S, 2007, METHOD INFORM MED, V46, P723, DOI 10.3414/ME9066
Sanders David L, 2006, AMIA Annu Symp Proc, P1085
Schwartz AV, 2008, DIABETES CARE, V31, P391, DOI 10.2337/dc07-1152
Schwendimann R, 2006, AGE AGEING, V35, P311, DOI 10.1093/ageing/afj066
Scott V, 2007, AGE AGEING, V36, P130, DOI 10.1093/ageing/afl165
Sebastiani P, 2007, BLOOD, V110, P2727, DOI 10.1182/blood-2007-04-084921
Siegelmann HT, 2010, CHAOS, V20, DOI 10.1063/1.3491237
Societe francaise de geriatrie et gerontologie/HAS, 2009, REC BONN PRAT PROF E
Tanaka M, 2008, YAKUGAKU ZASSHI, V128, P1355, DOI 10.1248/yakushi.128.1355
Uusitalo L, 2007, ECOL MODEL, V203, P312, DOI 10.1016/j.ecolmodel.2006.11.033
Vitry AI, 2010, ARCH GERONTOL GERIAT, V50, pE1, DOI 10.1016/j.archger.2009.04.004
Walker PC, 2005, AM J HEALTH-SYST PH, V62, P2495, DOI 10.2146/ajhp050116
Waterhouse M, 2011, J HOSP INFECT, V78, P92, DOI 10.1016/j.jhin.2011.01.016
Webster J, 2008, AGE AGEING, V37, P702, DOI 10.1093/ageing/afn153
Woolcott JC, 2009, ARCH INTERN MED, V169, P1952, DOI 10.1001/archinternmed.2009.357
Zhao D, 2011, J BIOMED INFORM, V44, P859, DOI 10.1016/j.jbi.2011.05.004
NR 45
TC 10
Z9 10
U1 0
U2 18
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0140-0118
EI 1741-0444
J9 MED BIOL ENG COMPUT
JI Med. Biol. Eng. Comput.
PD JUN
PY 2013
VL 51
IS 6
BP 657
EP 664
DI 10.1007/s11517-013-1035-8
PG 8
WC Computer Science, Interdisciplinary Applications; Engineering,
Biomedical; Mathematical & Computational Biology; Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Mathematical & Computational Biology;
Medical Informatics
GA 142MB
UT WOS:000318800400005
PM 23334773
DA 2024-09-05
ER
PT C
AU Cavalcanti, DC
Prudêncio, RBC
Pradhan, SS
Shah, JY
Pietrobon, RS
AF Cavalcanti, Diana C.
Prudencio, Ricardo B. C.
Pradhan, Shreyasee S.
Shah, Jatin Y.
Pietrobon, Ricardo S.
GP IEEE
TI GOOD TO BE BAD? DISTINGUISHING BETWEEN POSITIVE AND NEGATIVE CITATIONS
IN SCIENTIFIC IMPACT
SO 2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL
INTELLIGENCE (ICTAI 2011)
SE Proceedings-International Conference on Tools With Artificial
Intelligence
LA English
DT Proceedings Paper
CT 23rd IEEE International Conference on Tools with Artificial Intelligence
(ICTAI)
CY NOV 07-09, 2011
CL Boca Raton, FL
DE Impact Factor; Sentiment Analysis; SentiWordNet; Spearman Ranking
Correlation
AB The impact of a publication is often measured by the number of citations it received, this number being taken as a proxy for the relevance of published work. However, a higher citation index does not necessarily mean that a publication necessarily had a positive feedback from citing authors, as a citation can represent a negative criticism. In order to overcome this limitation, we used sentiment analysis to rate citations as positive, neutral or negative. Adjectives are initially extracted from the citations, with the SentiWordNet lexicon being used to rate the degree of positivity and negativity for each adjective. Relevance scores were then computed to rank citations according to the sentiment expressed in the text corresponding to each citation. As expected for accurate information retrieval systems, higher precision rates were observed in the initial points of the curve. The SRC (0.6728) computed using number of raw citations is lower than the SRC (0.7397) observed by the ranking generated using sentiment scores (Table 3). Conclusion: This result indicates that child articles with higher values of relevance score were in general the ones expressing positive opinion about their parents. Therefore, the ranking generated by sentiment scores had an improved accuracy.
C1 [Cavalcanti, Diana C.; Prudencio, Ricardo B. C.] Univ Fed Pernambuco, Ctr Informat, UFPE, Recife, PE, Brazil.
[Pradhan, Shreyasee S.; Shah, Jatin Y.; Pietrobon, Ricardo S.] Duke Univ, Dept Surg, Res Grp, Durham, NC USA.
C3 Universidade Federal de Pernambuco; Duke University
RP Cavalcanti, DC (corresponding author), Univ Fed Pernambuco, Ctr Informat, UFPE, Recife, PE, Brazil.
EM dcc2@cin.ufpe.br; rbcp@cin.ufpe.br; sp133@duke.edu; jys4@duke.edu;
rpietro@duke.edu
RI Prudêncio, Ricardo BC/B-4632-2019; Shah, Jatin/B-6039-2011
OI Prudencio, Ricardo/0000-0001-7084-1233
CR [Anonymous], 2004, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics - ACL'04, DOI DOI 10.3115/1218955.1218990
[Anonymous], 2004, Mining and Summarizing Customer Reviews
Baeza-Yates Ricardo, 1999, MODERN INFORM RETRIE
Beineke P., 2004, P 12 ANN M ASS COMPU, P263, DOI DOI 10.3115/1218955.1218989
Boiy E, 2009, INFORM RETRIEVAL, V12, P526, DOI 10.1007/s10791-008-9070-z
Esuli Andrea., 2006, P 5 C LANG RES EV LR, P417
GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306
Grefenstette G., 2004, COUPLING NICHE BROWS
Harzing A.-W., 2008, Comparing the Google Scholar h-index with the ISI journal impact factor
Harzing A.W., 2008, GOOGLE SCHOLAR NEW D, V8, P61
Hatzivassiloglou V., 1997, Predicting the Semantic Orientation of Adjectives
Jenab Mazda, 2010, BMJ, V340, pb5500, DOI 10.1136/bmj.b5500
Jindal N., 2007, P INT C WORLD WID WE
Kim S., 2004, P 20 INT C COMP LING, V4, P1367, DOI DOI 10.3115/1220355.1220555
Liu B, 2010, CH CRC MACH LEARN PA, P627
Opthof T, 1997, CARDIOVASC RES, V33, P1, DOI 10.1016/S0008-6363(96)00215-5
Pang B., 2006, Foundations and Trends in Information Retrieval, V1, P91, DOI DOI 10.1561/1500000011
Rocker G, 2009, THORAX, V64, P910, DOI 10.1136/thx.2009.116699
Turney PD, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P417
veloso A., 2007, BRAZ S DAT, P332
Wanner F., 2009, P IUI 09 WORKSH VIS
Weale Andy R, 2004, BMC Med Res Methodol, V4, P14, DOI 10.1186/1471-2288-4-14
Wilson T., 2009, RECOGNIZING CONTEXTU
NR 23
TC 24
Z9 24
U1 0
U2 12
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
SN 1082-3409
BN 978-0-7695-4596-7
J9 PROC INT C TOOLS ART
PY 2011
BP 156
EP 162
DI 10.1109/ICTAI.2011.32
PG 7
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BYJ28
UT WOS:000299009900023
DA 2024-09-05
ER
PT J
AU Kim, EHJ
Jeong, YK
Kim, Y
Song, M
AF Kim, Erin H. J.
Jeong, Yoo Kyung
Kim, YongHwan
Song, Min
TI Exploring scientific trajectories of a large-scale dataset using
topic-integrated path extraction
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Citation analysis; Healthcare informatics; Longest path; Main path
analysis; Topic modeling
ID CITATION NETWORK ANALYSIS; KNOWLEDGE DIFFUSION PATH; HEALTH-CARE; MAIN
PATHS; SYSTEMS; INFORMATICS; PREFERENCES; FRAMEWORK; INTERNET; SUPPORT
AB Main path analysis (MPA) is the most widely accepted approach to tracing knowledge transfer in a research field. In this study, we extracted multiple longest paths from the multidisciplinary aca-demic field's citation network and integrating topic modeling to the extracted paths. We consider three main aspects of trajectory analysis when analyzing the represented documents through the extracted paths: emergence, authority, and topic dynamics. For path extraction, we adopt the longest path algorithm that consists of the following three steps: 1) topological sort, 2) edge re-laxation, and 3) multiple path extraction. For topic integration into multiple paths, we employ latent Dirichlet allocation (LDA) by utilizing the topic-document matrix that LDA derives to select an article's topic from the citation network, where each article is labeled with the topic that is assigned with the highest topical probability for that article. We conduct a series of experiments to examine the results on a dataset from the field of healthcare informatics that PubMed provides.
C1 [Kim, Erin H. J.] Kongju Natl Univ, Dept Lib & Informat Sci Educ, Coll Educ, Gongju 32588, South Korea.
[Jeong, Yoo Kyung] Hannam Univ, Dept Lib & Informat Sci, Daejeon 34430, South Korea.
[Kim, YongHwan] Cheongju Univ, Dept Lib & Informat Sci, Cheongju 28503, South Korea.
[Song, Min] Yonsei Univ, Dept Lib & Informat Sci, Seoul 03722, South Korea.
C3 Kongju National University; Hannam University; Cheongju University;
Yonsei University
RP Song, M (corresponding author), Yonsei Univ, Dept Lib & Informat Sci, Seoul 03722, South Korea.
EM erin.hj.kim@kongju.ac.kr; yk.jeong@hnu.kr; kimyonghwan@cju.ac.kr;
min.song@yonsei.ac.kr
RI Kim, Erin/GXN-3556-2022; song, min/KPA-7030-2024
OI Jeong, Yoo Kyung/0000-0002-6571-6478
FU Ministry of Education of the Republic of Korea; National Research
Foundation of Korea [NRF-2019S1A5A8033713]; Institute of Information and
Communications Technology Planning and Evaluation (IITP) - Korean
government (MSIT) (Artificial Intelligence Graduate School Program
(Yonsei University)) [2020-0-01361]
FX This work was supported by the Ministry of Education of the Republic of
Korea and the National Research Foundation of Korea
(NRF-2019S1A5A8033713) . This work was partly supported by the Institute
of Information and Communications Technology Planning and Evaluation
(IITP) grant funded by the Korean government (MSIT) (No. 2020-0-01361,
Artificial Intelligence Graduate School Program (Yonsei University) ) .
CR Bakken S, 2000, J AM MED INFORM ASSN, V7, P81, DOI 10.1136/jamia.2000.0070081
Batagelj V., 2003, ARXIV PREPRINT CS030
BERKI SE, 1977, MED CARE, V15, P95, DOI 10.1097/00005650-197702000-00001
Blair SJ, 2020, APPL INTELL, V50, P138, DOI 10.1007/s10489-019-01438-z
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Booske BC, 1999, HEALTH SERV RES, V34, P839
Brennan PF, 1998, J AM MED INFORM ASSN, V5, P257, DOI 10.1136/jamia.1998.0050257
Brughmans T, 2013, LIT LINGUIST COMPUT, V28, P538, DOI 10.1093/llc/fqt048
Calero-Medina C, 2008, J INFORMETR, V2, P272, DOI 10.1016/j.joi.2008.09.005
Cesnik B, 2010, STUD HEALTH TECHNOL, V151, P3, DOI 10.3233/978-1-60750-476-4-3
Chen L., 2014, EVOLVING INTELLECTUA, DOI 10.2139/ssrn.2498225
Chen LT, 2019, J ASSOC INF SYST, V20, P1023, DOI 10.17705/1jais.00561
Chen LC, 2020, J INTERNET TECHNOL, V21, P85, DOI 10.3966/160792642020012101009
Chuang TC, 2014, TOURISM MANAGE, V45, P49, DOI 10.1016/j.tourman.2014.03.016
Chute CG, 1998, J AM MED INFORM ASSN, V5, P503, DOI 10.1136/jamia.1998.0050503
Cimino JJ, 1998, METHOD INFORM MED, V37, P394
Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526
DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004
Effken JA, 2002, J AM MED INFORM ASSN, V9, pS120, DOI 10.1197/jamia.M1242
Elmacioglu E, 2005, SIGMOD REC, V34, P33, DOI 10.1145/1083784.1083791
Epicoco M, 2014, TECHNOL FORECAST SOC, V81, P388, DOI 10.1016/j.techfore.2013.03.006
GARFIELD E, 1979, SCIENTOMETRICS, V1, P359, DOI 10.1007/BF02019306
Garfield E, 2003, J AM SOC INF SCI TEC, V54, P400, DOI 10.1002/asi.10226
Harris MR, 2000, J AM MED INFORM ASSN, V7, P539, DOI 10.1136/jamia.2000.0070539
Henrique BM, 2019, EXPERT SYST APPL, V124, P226, DOI 10.1016/j.eswa.2019.01.012
HUMMON NP, 1989, SOC NETWORKS, V11, P39, DOI 10.1016/0378-8733(89)90017-8
Hung SC, 2014, SCIENTOMETRICS, V100, P97, DOI 10.1007/s11192-014-1276-9
Kim M, 2018, J ASSOC INF SCI TECH, V69, P329, DOI 10.1002/asi.23960
Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140
Kuan CH, 2020, SCIENTOMETRICS, V124, P775, DOI 10.1007/s11192-020-03468-8
Lathabai HH, 2018, SCIENTOMETRICS, V117, P1871, DOI 10.1007/s11192-018-2917-1
Liu JS, 2019, SCIENTOMETRICS, V119, P379, DOI 10.1007/s11192-019-03034-x
Liu JS, 2016, J ASSOC INF SCI TECH, V67, P465, DOI 10.1002/asi.23384
Liu JS, 2012, J AM SOC INF SCI TEC, V63, P528, DOI 10.1002/asi.21692
Lu LYY, 2013, SCIENTOMETRICS, V94, P225, DOI 10.1007/s11192-012-0744-3
Lucio-Arias D, 2008, J AM SOC INF SCI TEC, V59, P1948, DOI 10.1002/asi.20903
Martinelli A, 2014, J EVOL ECON, V24, P623, DOI 10.1007/s00191-014-0349-5
Martinelli A, 2012, RES POLICY, V41, P414, DOI 10.1016/j.respol.2011.10.012
MCGUIRE TG, 1981, MED CARE, V19, P172, DOI 10.1097/00005650-198102000-00005
Mettler T, 2012, HEALTH INFORM J, V18, P147, DOI 10.1177/1460458212452496
Miller RA, 2005, J AM MED INFORM ASSN, V12, P403, DOI 10.1197/jamia.M1830
MILLS R, 1976, MED CARE, V14, P603, DOI 10.1097/00005650-197607000-00005
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Mina A, 2007, RES POLICY, V36, P789, DOI 10.1016/j.respol.2006.12.007
Nadri H, 2017, J MED SYST, V41, DOI 10.1007/s10916-017-0794-4
Park H, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170895
Pauker S G, 1981, Med Decis Making, V1, P103, DOI 10.1177/0272989X8100100202
PENCHANSKY R, 1970, MED CARE, V8, P368, DOI 10.1097/00005650-197009000-00004
Raghupathi W, 2008, METHOD INFORM MED, V47, P435, DOI 10.3414/ME0516
Raghupathi W, 2010, INT J HEALTHC INF SY, V5, P20, DOI 10.4018/jhisi.2010100102
Sedgewick R., 2011, Algorithms, V4th
Sweeney J., 2017, ONLINE J NURSING INF, V21
Tu YN, 2016, J ASSOC INF SCI TECH, V67, P2016, DOI 10.1002/asi.23522
Vasiliauskaite V., 2020, SCI REP-UK, V10, P1
Verspagen B, 2007, ADV COMPLEX SYST, V10, P93, DOI 10.1142/S0219525907000945
Westberg EE, 1999, J AM MED INFORM ASSN, V6, P6, DOI 10.1136/jamia.1999.0060006
WOODWARD CA, 1985, MED CARE, V23, P1019, DOI 10.1097/00005650-198508000-00009
Xiao Y, 2014, J INFORMETR, V8, P594, DOI 10.1016/j.joi.2014.05.001
Yeo W, 2014, SCIENTOMETRICS, V98, P633, DOI 10.1007/s11192-013-1140-3
Yu DJ, 2020, SCIENTOMETRICS, V125, P471, DOI 10.1007/s11192-020-03650-y
NR 61
TC 9
Z9 10
U1 6
U2 39
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD FEB
PY 2022
VL 16
IS 1
AR 101242
DI 10.1016/j.joi.2021.101242
PG 18
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 1H0CB
UT WOS:000796212300006
DA 2024-09-05
ER
PT C
AU Azcona, D
Hsiao, IH
Smeaton, AF
AF Azcona, David
Hsiao, I-Han
Smeaton, Alan F.
BE Rose, CP
Martinez-Maldonado, R
Hoppe, HU
Luckin, R
Mavrikis, M
Porayska-Pomsta, K
McLaren, B
DuBoulay, B
TI Modelling Math Learning on an Open Access Intelligent Tutor
SO ARTIFICIAL INTELLIGENCE IN EDUCATION, PT II
SE Lecture Notes in Artificial Intelligence
LA English
DT Proceedings Paper
CT 19th International Conference on Artificial Intelligence in Education
(AIED)
CY JUN 27-30, 2018
CL London, ENGLAND
DE Machine learning; Intelligent Tutoring Systems; Social network analysis;
MOOC
AB This paper presents a methodology to analyze large amount of students' learning states on two math courses offered by Global Freshman Academy program at Arizona State University. These two courses utilised ALEKS (Assessment and Learning in Knowledge Spaces) Artificial Intelligence technology to facilitate massive open online learning. We explore social network analysis and unsupervised learning approaches (such as probabilistic graphical models) on these type of Intelligent Tutoring Systems to examine the potential of the embedding representations on students learning.
C1 [Azcona, David; Smeaton, Alan F.] Dublin City Univ, Insight Ctr Data Analyt, Dublin, Ireland.
[Hsiao, I-Han] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ USA.
C3 Dublin City University; Arizona State University; Arizona State
University-Tempe
RP Azcona, D (corresponding author), Dublin City Univ, Insight Ctr Data Analyt, Dublin, Ireland.
EM david.azcona@insight-centre.org
RI Smeaton, Alan/F-8974-2011
OI Smeaton, Alan/0000-0003-1028-8389
FU Irish Research Council; National Forum for the Enhancement of Teaching
and Learning in Ireland [GOIPG/2015/3497]; Science Foundation Ireland
[SFI/12/RC/2289]; Fulbright Ireland; Irish Research Council (IRC)
[GOIPG/2015/3497] Funding Source: Irish Research Council (IRC)
FX This research was supported by the Irish Research Council in association
with the National Forum for the Enhancement of Teaching and Learning in
Ireland under project number GOIPG/2015/3497, by Science Foundation
Ireland under grant SFI/12/RC/2289, and by Fulbright Ireland. The
authors are indebted to the Action Lab at EdPlus in Arizona State
University for their help.
CR Chen W., 2018, IEEE T LEARN TECHNOL, P1
Craig SD, 2013, COMPUT EDUC, V68, P495, DOI 10.1016/j.compedu.2013.06.010
Craig SD, 2011, LECT NOTES ARTIF INT, V6738, P435, DOI 10.1007/978-3-642-21869-9_61
Doignon J.P., 2013, KNOWLEDGE SPACES, P131, DOI [10. 1007/978- 3-642- 35329-1 8, DOI 10.1007/978-3-642-35329-18]
DOIGNON JP, 1985, INT J MAN MACH STUD, V23, P175, DOI 10.1016/S0020-7373(85)80031-6
Hsiao IH, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), P319, DOI 10.1145/3027385.3027415
Piech C, 2015, Arxiv, DOI arXiv:1505.05969
Piech Chris, 2012, SIGCSE 12, P153, DOI DOI 10.1145/2157136.2157182
NR 8
TC 2
Z9 2
U1 1
U2 2
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-319-93846-2; 978-3-319-93845-5
J9 LECT NOTES ARTIF INT
PY 2018
VL 10948
BP 36
EP 40
DI 10.1007/978-3-319-93846-2_7
PG 5
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Education & Educational Research
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BU1FH
UT WOS:000877310400007
DA 2024-09-05
ER
PT J
AU Ha, T
AF Ha, Taehyun
TI An explainable artificial-intelligence-based approach to investigating
factors that influence the citation of papers
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Bibliometrics; Citations; Machine learning; Big data; SHAP
ID CITED PAPERS; DETERMINANTS; DRIVERS; NUMBER
AB The number of citations is often used to estimate the impact of a study. Previous studies have investigated what factors of publications affect citations and how they affect citations. However, the findings of the studies were unable to reach a consensus because of the limited sample size, domain, and measurement. This study reviewed previous studies that addressed factors influencing citations and then identified 14 measurable factors. Approximately 33 million publications from the Scopus database were used to train and validate a CatBoost model. A SHAP framework was used to interpret the trained model by focusing on how salient factors affect the number of citations. The results showed that the year is a significant factor affecting the citation but not the priority factor. A publication source was presented as the most important factor contributing to the citation. Several implications and strategic approaches to maximizing the impact of a study were discussed.
C1 [Ha, Taehyun] Korea Inst Sci & Technol Informat, Future Technol Anal Ctr, 66 Hoegiro,Dongdaemun Gu, Seoul 02456, South Korea.
C3 Korea Institute of Science & Technology Information (KISTI)
RP Ha, T (corresponding author), Korea Inst Sci & Technol Informat, Future Technol Anal Ctr, 66 Hoegiro,Dongdaemun Gu, Seoul 02456, South Korea.
EM taehyunha@kisti.re.kr
RI Ha, Taehyun/KXQ-6446-2024
OI Ha, Taehyun/0000-0003-3143-666X
CR Bornmann L, 2016, J ASSOC INF SCI TECH, V67, P2274, DOI 10.1002/asi.23546
Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004
Chen SJ, 2015, J INFORMETR, V9, P1034, DOI 10.1016/j.joi.2015.09.003
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Filion Kristian B, 2008, Epidemiol Perspect Innov, V5, P3, DOI 10.1186/1742-5573-5-3
Gingras Y, 2018, SCIENTOMETRICS, V114, P517, DOI 10.1007/s11192-017-2593-6
Giri R, 2019, ASLIB J INFORM MANAG, V71, P90, DOI 10.1108/AJIM-07-2017-0170
Guo F, 2018, SCIENTOMETRICS, V116, P1531, DOI 10.1007/s11192-018-2805-8
Hasan S, 2021, SCIENTOMETRICS, V126, P7583, DOI 10.1007/s11192-021-04083-x
HEDGES LV, 1983, AM EDUC RES J, V20, P63, DOI 10.3102/00028312020001063
Ke GL, 2017, ADV NEUR IN, V30
Lee DH, 2019, SCIENTOMETRICS, V118, P281, DOI 10.1007/s11192-018-2943-z
Liskiewicz T, 2021, SCIENTOMETRICS, V126, P3321, DOI 10.1007/s11192-021-03870-w
Lundberg SM, 2017, ADV NEUR IN, V30
Lundberg SM, 2019, Arxiv, DOI [arXiv:1905.04610, DOI 10.48550/ARXIV.1905.04610, 10.48550/arXiv.1905.04610]
Mammola S, 2021, SCIENTOMETRICS, V126, P785, DOI 10.1007/s11192-020-03759-0
Meho LI, 2007, PHYS WORLD, V20, P32
Mingers J, 2010, EUR J OPER RES, V205, P422, DOI 10.1016/j.ejor.2009.12.008
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
Oravec CS, 2019, WORLD NEUROSURG, V130, pE82, DOI 10.1016/j.wneu.2019.05.226
Padial AA, 2010, SCIENTOMETRICS, V85, P1, DOI 10.1007/s11192-010-0231-7
Paduraru O., 2022, HEALTHCARE
PETERS HPF, 1994, J AM SOC INFORM SCI, V45, P39, DOI 10.1002/(SICI)1097-4571(199401)45:1<39::AID-ASI5>3.0.CO;2-Q
Pislyakov V, 2014, J ASSOC INF SCI TECH, V65, P2321, DOI 10.1002/asi.23093
Shen HQ, 2021, SCIENTOMETRICS, V126, P3443, DOI 10.1007/s11192-021-03888-0
Shwartz-Ziv R, 2022, INFORM FUSION, V81, P84, DOI 10.1016/j.inffus.2021.11.011
Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
Urlings MJE, 2021, J CLIN EPIDEMIOL, V132, P71, DOI 10.1016/j.jclinepi.2020.11.019
Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009
Dorogush AV, 2018, Arxiv, DOI arXiv:1810.11363
Ward IR, 2021, COMPUT METH PROG BIO, V212, DOI 10.1016/j.cmpb.2021.106415
Webster GD, 2009, EVOL PSYCHOL-US, V7, P348
Xie J, 2019, SCIENTOMETRICS, V119, P1429, DOI 10.1007/s11192-019-03094-z
Yaminfirooz Mousa, 2018, Acta Inform Med, V26, P10, DOI 10.5455/aim.2018.26.10-14
NR 35
TC 5
Z9 5
U1 10
U2 47
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD NOV
PY 2022
VL 184
AR 121974
DI 10.1016/j.techfore.2022.121974
EA AUG 2022
PG 9
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA 4Y2TL
UT WOS:000861382600002
DA 2024-09-05
ER
PT C
AU Quille, K
Nolan, K
AF Quille, Keith
Nolan, Keith
GP ACM
TI Predicting Success in CS1-An Open Access Data Project
SO PROCEEDINGS OF THE 53RD ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE
EDUCATION (SIGCSE 2022), VOL 2
LA English
DT Proceedings Paper
CT 53rd Annual ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE)
CY MAR 02-05, 2022
CL Providence, RI
DE EDM; Educational Data Mining; Metrics; Re-validation; Machine Learning
AB PreSS# is an online Machine Learning prediction model that aims to identify students at risk of failing or dropping out in an introductory programming course (typically called CS1). PreSS# has been developed over the past 16 years, where the model is capable of predicting at-risk students with an accuracy of approximate to 71%. There is, however, a need to re-validate the model using a larger international multi-jurisdictional multi-university data set, as up until now the data sets have been predominantly from a single jurisdiction. The goal of this study is to not only re-validate the model using a multijurisdictional data set, but, inline with a 2015 ITiCSE working group report's Grand Challenges, to openly publish the data set itself. This work timely to the CSEd community as other researchers can use this data to further their research, re-validate PreSS# and will be able to then contribute, by submitting their local PreSS# data sets to this global online repository.
C1 [Quille, Keith; Nolan, Keith] TU Dublin, Dublin, Ireland.
RP Quille, K (corresponding author), TU Dublin, Dublin, Ireland.
EM keith.quille@tudublin.ie; keith.nolan@tudublin.ie
OI Quille, Keith/0000-0002-1414-5142
CR Bergin S., 2005, SIGCSE Bulletin, V37, P411, DOI 10.1145/1047124.1047480
Ihantola P, 2016, PROCEEDINGS OF THE 2015 ITICSE CONFERENCE ON WORKING GROUP REPORTS (ITICSE-WGP'15), P41, DOI 10.1145/2858796.2858798
Quille K., 2015, INT C ENGUAGING PEDA, V10
Quille K, 2018, ITICSE'18: PROCEEDINGS OF THE 23RD ANNUAL ACM CONFERENCE ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, P15, DOI 10.1145/3197091.3197101
Quille K, 2019, COMPUT SCI EDUC, V29, P254, DOI 10.1080/08993408.2019.1612679
NR 5
TC 2
Z9 2
U1 0
U2 2
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 978-1-4503-9070-5
PY 2022
BP 1126
EP 1126
DI 10.1145/3478432.3499092
PG 1
WC Computer Science, Theory & Methods; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Education & Educational Research
GA BU8GR
UT WOS:000947124200080
DA 2024-09-05
ER
PT J
AU Amjad, T
Daud, A
AF Amjad, Tehmina
Daud, Ali
TI Indexing of authors according to their domain of expertise
SO MALAYSIAN JOURNAL OF LIBRARY & INFORMATION SCIENCE
LA English
DT Article
DE Indexing; Domain specific modeling; Topic modeling; Topic based ranking;
Citation analysis
ID H-INDEX; IMPACT; MODEL
AB Measuring the impact and productivity of an author is an important, yet a challenging task. Most of the existing methods for ranking or indexing of authors are based on simple parameters such as publication counts, citation counts and their combinations. These methods are topic independent, hence ignoring the intra-field differences. This study introduces a specific method for indexing of researchers to measure their productivity in a given field of interest, believing that an author can be interested in more than one fields and can have different level of expertise in all these fields. This paper proposes Domain Specific Index (DSI), a novel method for indexing of authors with respect to their fields of interest. Latent Dirichlet Allocation (LDA) is applied to capture the latent topics within text corpora. DSI calculates the standing of an author in all topics of his or her interest by considering topic based citations instead of using overall citations like traditional methods. The citations received by a multi-authored paper are divided among all its co-authors on the basis of their topic probability in that particular field. Results show that instead of giving credit of received citations equally to all co-authors of a paper, if a weight is given with respect to their level of interest in that field, more specific authors in that field will be ranked as top authors.
C1 [Amjad, Tehmina; Daud, Ali] Int Islamic Univ, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan.
[Daud, Ali] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia.
C3 International Islamic University, Pakistan; King Abdulaziz University
RP Amjad, T (corresponding author), Int Islamic Univ, Dept Comp Sci & Software Engn, Islamabad 44000, Pakistan.
EM tehminaamjad@iiu.edu.pk; ali.daud@iiu.edu.pk
RI Amjad, Tehmina/GLS-0209-2022; Daud, Ali/ABD-4485-2020; Daud,
Adil/T-3079-2019; Daud, Ali/G-6568-2017
OI Daud, Adil/0000-0002-6617-8421; Daud, Ali/0000-0002-8284-6354; Amjad,
Tehmina/0000-0003-1201-498X
FU Indigenous Ph.D. Fellowship Program of Higher Education Commission (HEC)
Pakistan
FX The work is supported by the Indigenous Ph.D. Fellowship Program of
Higher Education Commission (HEC) Pakistan.
CR Amjad T, 2016, INFORM PROCESS MANAG, V52, P374, DOI 10.1016/j.ipm.2015.12.001
Amjad T, 2015, SCIENTOMETRICS, V104, P313, DOI 10.1007/s11192-015-1601-y
Amjad TEHMINA., 2015, Mehran University Research Journal of Engineering Technology, V34, P103
Banerjee S, 2003, LECT NOTES COMPUT SC, V2588, P370
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806
Burrell QL, 2007, J INFORMETR, V1, P170, DOI 10.1016/j.joi.2007.01.003
Burrell QL, 2007, J INFORMETR, V1, P16, DOI 10.1016/j.joi.2006.07.001
Cabrerizo FJ, 2010, J INFORMETR, V4, P23, DOI 10.1016/j.joi.2009.06.005
Claro J, 2011, SCIENTOMETRICS, V86, P113, DOI 10.1007/s11192-010-0241-5
Daud A, 2013, 2013 16TH INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), P61, DOI 10.1109/INMIC.2013.6731325
Egghe L, 2008, INFORM PROCESS MANAG, V44, P770, DOI 10.1016/j.ipm.2007.05.003
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9
Katsaros D, 2009, J AM SOC INF SCI TEC, V60, P1051, DOI 10.1002/asi.21040
Ko YM, 2013, J INFORMETR, V7, P404, DOI 10.1016/j.joi.2013.01.002
Kosmulski M., 2006, ISSI NEWSLETTER, V2, P4, DOI [10.1177/01655515211014478, DOI 10.1177/01655515211014478]
Rousseau R, 2008, COLLNET J SCIENTOMET, V2, P1, DOI [10.1080/09737766.2008.10700835, 10.1080/09737766.2007.10700824]
SALTON G, 1975, COMMUN ACM, V18, P613, DOI 10.1145/361219.361220
Sekercioglu CH, 2008, SCIENCE, V322, P371, DOI 10.1126/science.322.5900.371a
Wan J, 2008, P WIS 2008 4 INT C W
Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3
NR 22
TC 17
Z9 18
U1 1
U2 21
PU UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH
PI KUALA LUMPUR
PA UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH, KUALA LUMPUR,
50603, MALAYSIA
SN 1394-6234
J9 MALAYS J LIBR INF SC
JI Malays. J. Libr. Sci.
PY 2017
VL 22
IS 1
BP 69
EP 82
DI 10.22452/mjlis.vol22no1.6
PG 14
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA EM5ZG
UT WOS:000395392000006
OA Bronze
DA 2024-09-05
ER
PT J
AU Lundberg, L
Boldt, M
Borg, A
Grahn, H
AF Lundberg, Lars
Boldt, Martin
Borg, Anton
Grahn, Hakan
TI Bibliometric Mining of Research Trends in Machine Learning
SO AI
LA English
DT Article
DE bibliometrics; geographic regions; machine learning; research
directions; research trends; Scopus database
ID REVIEWS; SYSTEM
AB We present a method, including tool support, for bibliometric mining of trends in large and dynamic research areas. The method is applied to the machine learning research area for the years 2013 to 2022. A total number of 398,782 documents from Scopus were analyzed. A taxonomy containing 26 research directions within machine learning was defined by four experts with the help of a Python program and existing taxonomies. The trends in terms of productivity, growth rate, and citations were analyzed for the research directions in the taxonomy. Our results show that the two directions, Applications and Algorithms, are the largest, and that the direction Convolutional Neural Networks is the one that grows the fastest and has the highest average number of citations per document. It also turns out that there is a clear correlation between the growth rate and the average number of citations per document, i.e., documents in fast-growing research directions have more citations. The trends for machine learning research in four geographic regions (North America, Europe, the BRICS countries, and The Rest of the World) were also analyzed. The number of documents during the time period considered is approximately the same for all regions. BRICS has the highest growth rate, and, on average, North America has the highest number of citations per document. Using our tool and method, we expect that one could perform a similar study in some other large and dynamic research area in a relatively short time.
C1 [Lundberg, Lars; Boldt, Martin; Borg, Anton; Grahn, Hakan] Blekinge Inst Technol, Dept Comp Sci, S-37179 Karlskrona, Sweden.
C3 Blekinge Institute Technology
RP Lundberg, L (corresponding author), Blekinge Inst Technol, Dept Comp Sci, S-37179 Karlskrona, Sweden.
EM lars.lundberg@bth.se; martin.boldt@bth.se; anton.borg@bth.se;
hakan.grahn@bth.se
OI Boldt, Martin/0000-0002-9316-4842; Borg, Anton/0000-0002-8929-7220
FU Knowledge Foundation in Sweden through the project "Green Clouds-Load
prediction and optimization in private cloud systems"
FX No Statement Available
CR Ahmed S, 2022, RES INT BUS FINANC, V61, DOI 10.1016/j.ribaf.2022.101646
Ajibade S.M., 2023, Int. J. Energy Econ. Policy, V13, P303, DOI 10.32479/ijeep.14832
Ajibade SSM, 2023, CLEAN TECHNOL-BASEL, V5, P497, DOI 10.3390/cleantechnol5020026
Amjad T, 2022, SCIENTOMETRICS, V127, P2773, DOI 10.1007/s11192-022-04344-3
Angarita-Zapata JS, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21248401
[Anonymous], 2022, Clarivate Analytics Research Fronts 2021
Bai Y, 2022, INT J REMOTE SENS, V43, P5534, DOI 10.1080/01431161.2021.1949069
Baminiwatta A, 2022, ASIAN J PSYCHIATR, V69, DOI 10.1016/j.ajp.2021.102986
Bidwe RV, 2022, BIG DATA COGN COMPUT, V6, DOI 10.3390/bdcc6020044
Biju A.K.V.N., 2023, Qual. Quant, P1
Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029
Chen K, 2023, NEUROSURG REV, V46, DOI 10.1007/s10143-023-01987-5
Delbrouck JB, 2022, PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P23
Diéguez-Santana K, 2023, COMPUT BIOL MED, V155, DOI 10.1016/j.compbiomed.2023.106638
Dindorf C, 2023, INT J ENV RES PUB HE, V20, DOI 10.3390/ijerph20010173
Dong YH, 2018, LECT NOTES COMPUT SC, V10931, P147, DOI 10.1007/978-3-319-96418-8_18
El-Alfy EM, 2020, TECHNOL ANAL STRATEG, V32, P984, DOI 10.1080/09537325.2020.1732912
Ezugwu AE, 2023, ARCH COMPUT METHOD E, V30, P4177, DOI 10.1007/s11831-023-09930-z
Feng CY, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.949366
Flach P, 2012, Machine learning: the art and science of algorithms that make sense of data, DOI [10.1017/CBO9780511973000, DOI 10.1017/CBO9780511973000]
Foreman DI., 2009, Nonparametric Statistics: A Step-by-Step Approach, V1, DOI 10.1002/9781118165881
García-Pineda V, 2023, INFORMATICS-BASEL, V10, DOI 10.3390/informatics10030073
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Gupta B. M., 2020, International Journal of Knowledge Content Development & Technology, V10, P29, DOI 10.5865/IJKCT.2020.10.4.029
Gutiérrez-Salcedo M, 2018, APPL INTELL, V48, P1275, DOI 10.1007/s10489-017-1105-y
Herrera-Viedma E, 2016, LECT NOTES ARTIF INT, V9799, P193, DOI 10.1007/978-3-319-42007-3_17
Jain S, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11213621
van Eck NJ, 2011, Arxiv, DOI arXiv:1109.2058
Jappe A, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231735
Kenger ON, 2023, NEURAL COMPUT APPL, V35, P5081, DOI 10.1007/s00521-023-08267-9
Keramatfar A, 2022, MACH LEARN APPL, V10, DOI 10.1016/j.mlwa.2022.100401
Khairi SSM, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10010010
Kitchenham B, 2009, INFORM SOFTWARE TECH, V51, P7, DOI 10.1016/j.infsof.2008.09.009
Li Y, 2020, INT J MACH LEARN CYB, V11, P2807, DOI 10.1007/s13042-020-01152-0
Lou TF, 2023, SYMMETRY-BASEL, V15, DOI 10.3390/sym15020325
Lundberg L, 2023, J BIG DATA-GER, V10, DOI 10.1186/s40537-023-00793-6
Ma L., 2023, P 37 C NEUR INF PROC
Markscheffel B, 2021, COLLNET J SCIENTOMET, V15, P365, DOI 10.1080/09737766.2021.1960220
Mazov NA, 2020, SCI TECH INF PROCESS, V47, P221, DOI 10.3103/S0147688220040036
MITCHELL T, 1989, ANNU REV COMPUT SCI, V4, P417
Norvig P.R., 2015, Intelligence SA. A Modern Approach
Pande Mandaar, 2020, Science & Technology Libraries, V39, P369, DOI 10.1080/0194262X.2020.1776193
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Rani M, 2015, KNOWL-BASED SYST, V90, P33, DOI 10.1016/j.knosys.2015.10.002
Robertson S, 2004, J DOC, V60, P503, DOI 10.1108/00220410410560582
Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263
ROSENBLATT F, 1960, P IRE, V48, P301, DOI 10.1109/JRPROC.1960.287598
Rosenblatt F., 1958, P S MECH THOUGHT PRO, VVolume I
SAMMET JE, 1982, COMMUN ACM, V25, P13, DOI 10.1145/358315.358322
Sanchez M.V.G., 2017, Investig. Bibl, V31, P293
Sharma B, 2013, SURGERY, V153, P493, DOI 10.1016/j.surg.2012.09.006
Shyam R., 2021, Journal of Advancements in Robotics, V8, P18
Speretta M., 2010, P 3 INT C HUM SYST I, DOI [10.1109/HSI.2010.5514510, DOI 10.1109/HSI.2010.5514510]
Su M, 2021, EXPERT SYST APPL, V186, DOI 10.1016/j.eswa.2021.115728
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
von Rueden L, 2023, IEEE T KNOWL DATA EN, V35, P614, DOI 10.1109/TKDE.2021.3079836
Wong D., 2018, Technical Services Quarterly, V35, P219, DOI [https://doi.org/10.1080/07317131.2018.1425352, DOI 10.1080/07317131.2018.1425352, 10.1080/07317131.2018.1425352]
Xu ZS, 2019, INT J MACH LEARN CYB, V10, P2375, DOI 10.1007/s13042-018-0875-9
Yu DJ, 2020, INT J MACH LEARN CYB, V11, P715, DOI 10.1007/s13042-019-01028-y
Zhang BJ, 2022, FRONT GENET, V13, DOI 10.3389/fgene.2022.951939
Zhang JM, 2023, FRONT ONCOL, V13, DOI 10.3389/fonc.2023.1082423
Zhang JZ, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115561
Zhang KC, 2023, J MULTIDISCIP HEALTH, V16, P2155, DOI 10.2147/JMDH.S420709
Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814
NR 64
TC 0
Z9 0
U1 5
U2 5
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2673-2688
J9 AI-BASEL
JI AI
PD MAR
PY 2024
VL 5
IS 1
BP 208
EP 236
DI 10.3390/ai5010012
PG 29
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA MC8C2
UT WOS:001191509100001
OA gold
DA 2024-09-05
ER
PT J
AU Figuerola, CG
Marco, FJG
Pinto, M
AF Figuerola, Carlos G.
Garcia Marco, Francisco Javier
Pinto, Maria
TI Mapping the evolution of library and information science (1978-2014)
using topic modeling on LISA
SO SCIENTOMETRICS
LA English
DT Article
DE Library and Information Science; LISA; LDA; Evolution; Bibliometric
studies
ID NORTH-AMERICAN LIBRARY; SEEKING BEHAVIOR; ABSTRACTS;
INTERDISCIPLINARITY; RETRIEVAL; FRAMEWORK; TRACKING; ARTICLES; HISTORY;
TRENDS
AB This paper offers an overview of the bibliometric study of the domain of library and information science (LIS), with the aim of giving a multidisciplinary perspective of the topical boundaries and the main areas and research tendencies. Based on a retrospective and selective search, we have obtained the bibliographical references (title and abstract) of academic production on LIS in the database LISA in the period 1978-2014, which runs to 92,705 documents. In the context of the statistical technique of topic modeling, we apply latent Dirichlet allocation, in order to identify the main topics and categories in the corpus of documents analyzed. The quantitative results reveal the existence of 19 important topics, which can be grouped together into four main areas: processes, information technology, library and specific areas of information application.
C1 [Figuerola, Carlos G.] Univ Salamanca, C Espejo S-N, Salamanca 37007, Spain.
[Garcia Marco, Francisco Javier] Univ Zaragoza, C Pedro Zerbuna 12, E-50009 Zaragoza, Spain.
[Pinto, Maria] Univ Granada, Campus Cartuja S-N, E-18071 Granada, Spain.
C3 University of Salamanca; University of Zaragoza; University of Granada
RP Figuerola, CG (corresponding author), Univ Salamanca, C Espejo S-N, Salamanca 37007, Spain.
EM figue@usal.es
RI Marco, Francisco Javier García/K-2316-2013; Figuerola, Carlos
G./N-1459-2018
OI Marco, Francisco Javier García/0000-0002-6241-4060; Figuerola, Carlos
G./0000-0001-6799-2874
CR Arun R, 2010, ADV KNOWLEDGE DISCOV
Aström F, 2002, COLIS4: EMERGING FRAMEWORKS AND METHODS, P185
Åström F, 2007, J AM SOC INF SCI TEC, V58, P947, DOI 10.1002/asi.20567
ATKINS SE, 1988, LIBR TRENDS, V36, P633
Bates MJ, 1999, J AM SOC INFORM SCI, V50, P1043, DOI 10.1002/(SICI)1097-4571(1999)50:12<1043::AID-ASI1>3.0.CO;2-X
Bates MJ., 2010, INFORMATION, V3, P2048
Bauer J, 2016, J ASSOC INF SCI TECH, V67, P3095, DOI 10.1002/asi.23568
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blessinger K, 2007, COLL RES LIBR, V68, P155, DOI 10.5860/crl.68.2.155
Blessinger K, 2010, LIBR INFORM SCI RES, V32, P156, DOI 10.1016/j.lisr.2009.12.007
Buckland M, 2012, J AM SOC INF SCI TEC, V63, P1, DOI 10.1002/asi.21656
Buckland MichaelK., 1998, HIST STUDIES INFORM, P272
Burke C, 2007, ANNU REV INFORM SCI, V41, P3, DOI 10.1002/aris.2007.1440410108
Chang J., 2009, AISTATS
Chang YL, 2009, INT CONF ACOUST SPEE, P1689, DOI 10.1109/ICASSP.2009.4959927
Chang YW, 2012, J AM SOC INF SCI TEC, V63, P22, DOI 10.1002/asi.21649
Choo ChunWei., 2002, Information Management for the Intelligent Organization: the Art of Scanning the Environment
Chua AYK, 2008, J AM SOC INF SCI TEC, V59, P2156, DOI 10.1002/asi.20929
CRONIN B, 1995, LIBRI, V45, P45, DOI 10.1515/libr.1995.45.1.45
Cronin B, 2008, J INF SCI, V34, P465, DOI 10.1177/0165551508088944
DERVIN B, 1986, ANNU REV INFORM SCI, V21, P3
Dillon A., 2005, Journal of Education for Library and Information Science, V46, P280, DOI 10.2307/40323908
Dillon A., 2007, INFORM RES, V12, P1
Ding Y, 2001, INFORM PROCESS MANAG, V37, P817, DOI 10.1016/S0306-4573(00)00051-0
Furner J, 2015, LIBR TRENDS, V63, P362, DOI 10.1353/lib.2015.0009
GILCHRIST A, 1971, ASLIB PROC, V23, P251, DOI 10.1108/eb050289
GILCHRIST A, 1969, ASLIB PROC, V21, P325, DOI 10.1108/eb050205
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
HARTER SP, 1992, J AM SOC INFORM SCI, V43, P583, DOI 10.1002/(SICI)1097-4571(199210)43:9<583::AID-ASI1>3.0.CO;2-O
Hawkins DT, 2003, J AM SOC INF SCI TEC, V54, P771, DOI 10.1002/asi.10275
Hawkins DT, 2001, J AM SOC INF SCI TEC, V52, P44, DOI 10.1002/1532-2890(2000)52:1<44::AID-ASI1057>3.0.CO;2-6
Hidayat E.Y., 2015, International Journal of Advances in Intelligent Informatics, V1, P132, DOI 10.26555/ijain.v1i3.43
Hjorland B, 2005, J DOC, V61, P130, DOI 10.1108/00220410510578050
HJORLAND B, 1995, J AM SOC INFORM SCI, V46, P400, DOI 10.1002/(SICI)1097-4571(199507)46:6<400::AID-ASI2>3.0.CO;2-Y
Hobbs R., 2009, J MEDIA LITERACY ED, V1, P1, DOI [DOI 10.23860/JMLE-1-1-1, https://doi.org/10.23860/jmle-1-1-1, 10.23860/jmle-1-1-1]
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
INGWERSEN P, 1992, LIBRI, V42, P99, DOI 10.1515/libr.1992.42.2.99
Janssens F, 2006, INFORM PROCESS MANAG, V42, P1614, DOI 10.1016/j.ipm.2006.03.025
Jiang Y., 2012, ACM Conference on Recommender Systems (RecSys), P241, DOI [10.1145/2365952.2366004, DOI 10.1145/2365952.2366004]
Julien H, 2011, LIBR INFORM SCI RES, V33, P19, DOI 10.1016/j.lisr.2010.07.014
Kellner D., 2005, Discourse: Studies in the Cultural Politics of Education, V26, P369, DOI 10.1080/01596300500200169
Kim SJ, 2006, LIBR INFORM SCI RES, V28, P548, DOI 10.1016/j.lisr.2006.03.018
Klavans R, 2011, J AM SOC INF SCI TEC, V62, P1, DOI 10.1002/asi.21444
Koufogiannakis D, 2004, J INFORM SCI, V30, P227, DOI 10.1177/0165551504044668
Landauer TK, 1998, DISCOURSE PROCESS, V25, P259, DOI 10.1080/01638539809545028
Lau J., 2007, Information literacy: An international state-of-the-art report
Lee YS, 2015, IEEE ICCE, P136, DOI 10.1109/ICCE-TW.2015.7216819
Levitt JM, 2009, SCIENTOMETRICS, V78, P45, DOI 10.1007/s11192-007-1927-1
Li F, 2015, J MED INTERNET RES, V17, DOI 10.2196/jmir.3326
Li W., 2006, ICML, P577, DOI [10.1145/1143844.1143917, 10.1145/]
Lipetz BA, 1999, J AM SOC INFORM SCI, V50, P994, DOI 10.1002/(SICI)1097-4571(1999)50:11<994::AID-ASI5>3.0.CO;2-U
Liu J., 2003, MISSISSIPPI LIB, V67, P110
Maskeri Girish, 2008, 1st India Software Engineering Conference. ISEC 2008, P113
McCallum A, 2007, J ARTIF INTELL RES, V30, P249, DOI 10.1613/jair.2229
McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit
MIKSA FL, 1985, J LIBR HIST PHILOS, V20, P157
Milojevic S, 2011, J AM SOC INF SCI TEC, V62, P1933, DOI 10.1002/asi.21602
Mukherjee B, 2009, SCIENTOMETRICS, V80, P167, DOI 10.1007/s11192-008-2055-2
Nallapati R., 2008, ICWSM
Newman D, 2006, LECT NOTES COMPUT SC, V3975, P93
Newman DJ, 2006, J AM SOC INF SCI TEC, V57, P753, DOI 10.1002/asi.20342
Nolin J, 2010, J DOC, V66, P7, DOI 10.1108/00220411011016344
Park T.K., 2010, D LIB MAGAZINE, V16
ProQuest, 2016, LIB INF SCI ABSTR LI
Rowley J, 1998, INT J INFORM MANAGE, V18, P359, DOI 10.1016/S0268-4012(98)00025-5
Saracevic T, 1999, J AM SOC INFORM SCI, V50, P1051, DOI 10.1002/(SICI)1097-4571(1999)50:12<1051::AID-ASI2>3.0.CO;2-Z
SARACEVIC T., 1995, Ciencia da Informacao, Brasilia, DF, V24, P36
Searing S. E., 2012, LIB COLLECTION DEV P, P88
Shawn G., 2012, J DIGITAL HUMANITIES, V2
Shera J., 1970, SOCIOLOGICAL FDN LIB
Sin S.C.J., 2011, J LIB INFORM STUDIES, V9, P27, DOI DOI 10.1002/ASI.21572
Smeaton A. F., 2002, SIGIR Forum, V36, P39, DOI 10.1145/792550.792556
Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435
Sugimoto CR, 2010, J INF SCI, V36, P481, DOI 10.1177/0165551510369992
Swain D. K., 2012, WEBOLOGY, V9, P51
UNESCO, 2013, GLOB MED INF LIT ASS
Vakkari P., 1994, ADV LIBRARIANSHIP, V18, P1, DOI DOI 10.1108/S0065-2830(1994)0000018003
Van Den Besselaar P, 2006, SCIENTOMETRICS, V68, P377, DOI 10.1007/s11192-006-0118-9
Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9
Webber S, 2003, J INFORM SCI, V29, P311, DOI 10.1177/01655515030294007
Weng J., 2010, P 3 ACM INT C WEB SE, P261, DOI [10.1145/1718487.1718520, DOI 10.1145/1718487.1718520]
WILSON TD, 1984, SOC SCI INFORM STUD, V4, P197, DOI 10.1016/0143-6236(84)90076-0
Zhang P, 2007, J AM SOC INF SCI TEC, V58, P1934, DOI 10.1002/asi.20660
Zhang P, 2013, J AM SOC INF SCI TEC, V64, P2468, DOI 10.1002/asi.22941
Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8
Zins C, 2007, J AM SOC INF SCI TEC, V58, P335, DOI 10.1002/asi.20507
NR 87
TC 68
Z9 78
U1 6
U2 196
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD SEP
PY 2017
VL 112
IS 3
BP 1507
EP 1535
DI 10.1007/s11192-017-2432-9
PG 29
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA FB9ZF
UT WOS:000406497200018
DA 2024-09-05
ER
PT J
AU Tüselmann, H
Sinkovics, RR
Pishchulov, G
AF Tueselmann, Heinz
Sinkovics, Rudolf R.
Pishchulov, Grigory
TI Towards a consolidation of worldwide journal rankings - A classification
using random forests and aggregate rating via data envelopment analysis
SO OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE
LA English
DT Article
DE Citation indices; Journal rankings; Journal lists; Research assessment;
Data envelopment analysis
ID MISSING VALUES; IMPACT FACTOR; DEA; QUALITY; MANAGEMENT; IMPUTATION;
EFFICIENCY; DISCRETE; BUSINESS; MODELS
AB The question of how to assess research outputs published in journals is now a global concern for academics. Numerous journal ratings and rankings exist, some featuring perceptual and peer-review-based journal ranks, some focusing on objective information related to citations, some using a combination of the two. This research consolidates existing journal rankings into an up-to-date and comprehensive list Existing approaches to determining journal rankings are significantly advanced with the application of a new classification approach, 'random forests', and data envelopment analysis. As a result, a fresh look at a publication's place in the global research community is offered. While our approach is applicable to all management and business journals, we specifically exemplify the relative position of 'operations research, management science, production and operations management' journals within the broader management field, as well as within their own subject domain. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
C1 [Tueselmann, Heinz] Manchester Metropolitan Univ, Sch Business, CIBI, Manchester M15 6BH, Lancs, England.
[Sinkovics, Rudolf R.] Univ Manchester, Manchester Business Sch, Ctr Comparat & Int Business Res CIBER, Manchester M15 6PB, Lancs, England.
[Sinkovics, Rudolf R.] Lappeenranta Univ Technol, Lappeenranta 53851, Finland.
[Pishchulov, Grigory] TU Dortmund Univ, Fac Business Econ & Social Sci, D-44227 Dortmund, Germany.
C3 Manchester Metropolitan University; University of Manchester;
Lappeenranta-Lahti University of Technology LUT; Dortmund University of
Technology
RP Sinkovics, RR (corresponding author), Univ Manchester, Manchester Business Sch, Ctr Comparat & Int Business Res CIBER, Booth St West, Manchester M15 6PB, Lancs, England.
EM h.tuselman@mmu.ac.uk; Rudolf.Sinkovics@manchester.ac.uk;
grigory.pishchulov@tu-dortmund.de
RI Sinkovics, Rudolf R./F-4092-2010; Pishchulov, Grigory/M-9405-2016
OI Sinkovics, Rudolf R./0000-0002-4471-5054; Pishchulov,
Grigory/0000-0001-8787-1869; Tuselmann, Heinz/0000-0001-6628-1675
FU Economic and Social Research Council (ESRC), UK [RES-075-25-0028];
Leverhulme Trust
FX We are grateful for comments received from participants of the session
"Learning: Methods and Algorithms II" at the 26th EURO-INFORMS
Conference on Operational Research in July 2013. We are also grateful to
Editor-in-Chief Professor Ben Lev and three anonymous reviewers for
constructive and highly insightful comments on the paper throughout the
review process. Financial support from the Economic and Social Research
Council (ESRC), UK, who funded part of Rudolf Sinkovics' time [Grant
number RES-075-25-0028], is gratefully acknowledged. We also appreciate
financial support from the Leverhulme Trust who funded the work of
Grigory Pishchulov on this paper during his Leverhulme Overseas
Fellowship at Manchester Metropolitan University.
CR Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181
Albers S, 2009, GER ECON REV, V10, P352, DOI 10.1111/j.1468-0475.2009.00483.x
[Anonymous], WORKING PAPER
[Anonymous], J CITATION REPORTS
[Anonymous], RANKINGS RESHAPING H
[Anonymous], ASIAN J BUSINESS RES
[Anonymous], ARXIV09124141V1
[Anonymous], MACHINE LEARNING
[Anonymous], CITATION COUNTS ARE
[Anonymous], PERSPEKTIVEN WIRTSCH
[Anonymous], 2008, BETRIEBSWIRTSCHAFT
Bancroft DRE, 1999, J BUS VENTURING, V14, P311, DOI 10.1016/S0883-9026(97)00084-0
Bauerly RJ, 2005, J ACAD MARKET SCI, V33, P313, DOI 10.1177/0092070304272052
Baum JAC, 2011, ORGANIZATION, V18, P449, DOI 10.1177/1350508411403531
Benati S, 2011, J CLASSIF, V28, P7, DOI 10.1007/s00357-011-9072-1
Bergstrom CT, 2008, J NEUROSCI, V28, P11433, DOI 10.1523/JNEUROSCI.0003-08.2008
Biau G, 2008, J MACH LEARN RES, V9, P2015
Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022
Bordons M, 2002, SCIENTOMETRICS, V53, P195, DOI 10.1023/A:1014800407876
Boström H, 2008, SEVENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, P121, DOI 10.1109/ICMLA.2008.107
Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726
Bruton GD, 2008, J MANAGE STUD, V45, P636, DOI 10.1111/j.1467-6486.2007.00758.x
CHARNES A, 1978, EUR J OPER RES, V2, P429, DOI 10.1016/0377-2217(78)90138-8
Clark T, 2007, J MANAGE STUD, V44, P612, DOI 10.1111/j.1467-6486.2007.00701.x
Cook WD, 2010, ACCOUNT PERSPECT, V9, P217, DOI 10.1111/j.1911-3838.2010.00011.x
Cook WD, 2014, OMEGA-INT J MANAGE S, V44, P1, DOI 10.1016/j.omega.2013.09.004
Cook WD, 1997, EUR J OPER RES, V98, P602, DOI 10.1016/S0377-2217(96)00069-0
Cooper WW, 2007, Data envelopment analysis. A comprehensive text with models, applications, references and DEA-solver software, VSecond, DOI DOI 10.1007/978-0-387-45283-8
Crookes PA, 2010, NURS EDUC TODAY, V30, P420, DOI 10.1016/j.nedt.2009.09.016
DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1, DOI 10.1111/j.2517-6161.1977.tb01600.x
Diskin A, 2007, PUBLIC CHOICE, V133, P25, DOI 10.1007/s11127-007-9212-7
DuBois FL, 2000, J INT BUS STUD, V31, P689, DOI 10.1057/palgrave.jibs.8490929
Durrant GB, 2009, INT J SOC RES METHOD, V12, P293, DOI 10.1080/13645570802394003
Farhangfar A, 2008, PATTERN RECOGN, V41, P3692, DOI 10.1016/j.patcog.2008.05.019
Farhangfar A, 2007, IEEE T SYST MAN CY A, V37, P692, DOI 10.1109/TSMCA.2007.902631
Foroughi AA, 2005, OMEGA-INT J MANAGE S, V33, P491, DOI 10.1016/j.omega.2004.07.013
Frey BS, 2010, J APPL ECON, V13, P1, DOI 10.1016/S1514-0326(10)60002-5
Gheyas IA, 2010, NEUROCOMPUTING, V73, P3039, DOI 10.1016/j.neucom.2010.06.021
Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806
Green RH, 1996, EUR J OPER RES, V90, P461, DOI 10.1016/0377-2217(95)00039-9
Halkos GE, 2011, SCIENTOMETRICS, V88, P979, DOI 10.1007/s11192-011-0421-y
Hapfelmeier A, 2012, COMPUT STAT DATA AN, V56, P1552, DOI 10.1016/j.csda.2011.09.024
Harzing A-W, 2022, Journal Quality List
Hashimoto A, 1997, EUR J OPER RES, V97, P600, DOI 10.1016/S0377-2217(96)00281-0
Hastie T., 2009, The Elements of Statistical Learning
Hult G.T., 2009, GlobalEDGE Business Review, V3, P1
Jones MJ, 1996, OMEGA-INT J MANAGE S, V24, P607, DOI 10.1016/0305-0483(96)00038-2
Kao C, 2008, SCIENTOMETRICS, V76, P95, DOI 10.1007/s11192-007-1895-5
Leydesdorff L, 2008, J AM SOC INF SCI TEC, V59, P278, DOI 10.1002/asi.20743
Lim TS, 2000, MACH LEARN, V40, P203, DOI 10.1023/A:1007608224229
Liu JS, 2013, OMEGA-INT J MANAGE S, V41, P893, DOI 10.1016/j.omega.2012.11.004
Liu JS, 2013, OMEGA-INT J MANAGE S, V41, P3, DOI 10.1016/j.omega.2010.12.006
Liu WB, 2011, OMEGA-INT J MANAGE S, V39, P472, DOI 10.1016/j.omega.2010.10.005
Llamazares B, 2009, EUR J OPER RES, V197, P714, DOI 10.1016/j.ejor.2008.06.031
Lovell CAK, 1999, EUR J OPER RES, V118, P46, DOI 10.1016/S0377-2217(98)00338-5
Meredith JR, 2011, OMEGA-INT J MANAGE S, V39, P435, DOI 10.1016/j.omega.2010.10.003
Mingers J, 2007, EUR J INFORM SYST, V16, P303, DOI 10.1057/palgrave.ejis.3000696
Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002
Morris H, 2009, MANAGE DECIS, V47, P1441, DOI 10.1108/00251740910995648
Niculescu-Mizil A., 2005, P 22 INT C MACH LEAR, P625
Nielsen SF, 2003, INT STAT REV, V71, P593
Noguchi H, 2002, J COMPUT APPL MATH, V146, P155, DOI 10.1016/S0377-0427(02)00425-9
Osborne Martin J., 1990, Bargaining and Markets
Park KS, 2011, J OPER RES SOC, V62, P1771, DOI 10.1057/jors.2010.155
Paul C, 2008, STAT METHOD APPL-GER, V17, P351, DOI 10.1007/s10260-007-0090-4
Rainer RK, 2005, COMMUN ACM, V48, P91, DOI 10.1145/1042091.1042096
Rowlinson M, 2011, ORGANIZATION, V18, P443, DOI 10.1177/1350508411403534
Schafer JL, 2002, PSYCHOL METHODS, V7, P147, DOI 10.1037//1082-989X.7.2.147
Steward MD, 2010, J MARKET EDUC, V32, P75, DOI 10.1177/0273475309344804
Strobl C, 2009, PSYCHOL METHODS, V14, P323, DOI 10.1037/a0016973
Theussl S, 2014, J BUS RES, V67, P998, DOI 10.1016/j.jbusres.2013.08.006
Tse ACB, 2001, J OPER RES SOC, V52, P1144, DOI 10.1057/palgrave.jors.2601203
Twala BETH, 2008, PATTERN RECOGN LETT, V29, P950, DOI 10.1016/j.patrec.2008.01.010
van Buuren S, 2007, STAT METHODS MED RES, V16, P219, DOI 10.1177/0962280206074463
Wang YM, 2010, INT J PROD ECON, V128, P332, DOI 10.1016/j.ijpe.2010.07.032
Whitley R, 2011, MINERVA, V49, P359, DOI 10.1007/s11024-011-9182-2
Willmott H, 2011, ORGANIZATION, V18, P429, DOI 10.1177/1350508411403532
Zhou DN, 2001, IEEE T ENG MANAGE, V48, P479, DOI 10.1109/17.969425
NR 78
TC 37
Z9 37
U1 0
U2 69
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0305-0483
EI 1873-5274
J9 OMEGA-INT J MANAGE S
JI Omega-Int. J. Manage. Sci.
PD MAR
PY 2015
VL 51
BP 11
EP 23
DI 10.1016/j.omega.2014.08.002
PG 13
WC Management; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Operations Research & Management Science
GA AW8ZX
UT WOS:000346548700002
OA Green Published, hybrid, Green Accepted
DA 2024-09-05
ER
PT J
AU Donlon, JJ
AF Donlon, James J.
TI The National Artificial Intelligence Research Institutes program and its
significance to a prosperous future
SO AI MAGAZINE
LA English
DT Article
AB The U.S. National Artificial Intelligence (AI) Research Institutes program is introduced, and its significance is discussed relative to the guiding national AI research and development strategy. The future of the program is also discussed, including, the strategic priorities guiding the potential for new AI Institutes of the future, initiatives for building a broader ecosystem to connect Institutes into a strongly interconnected network, and the building of new AI capacity and fostering partnerships in minority-serving institutions.
C1 [Donlon, James J.] Natl Sci Fdn, Alexandria, VA 22314 USA.
C3 National Science Foundation (NSF)
RP Donlon, JJ (corresponding author), Natl Sci Fdn, Alexandria, VA 22314 USA.
EM jdonlon@nsf.gov
FU National Science Foundation (NSF); NSF currently funds 20 Institutes;
U.S. government; NSF; U.S. Department of Education (ED) Institute of
Education Sciences (IES), U.S. Department of Homeland Security (DHS)
Science & Technology Directorate (ST); National Institute of Standards
and Technology (NIST), Department of Defense (DOD) Office of the Under
Secretary of Defense for Research and Engineering (OUSD); Accenture,
Amazon; IBM Corporation; Intel Corporation; U.S. Department of
Agriculture (USDA) National Institute of Food and Agriculture (NIFA); AI
Institutes program: Capital One Financial Corporation; Simons Foundation
FX The National Artificial Intelligence Research Institutes Program is a
joint government effort and multisector initiative in the U.S. led by
the National Science Foundation (NSF). NSF currently funds 20
Institutes, some of them with the support of other U.S. government
agencies and U.S. industrial partners, as will be seen throughout this
issue. NSF gratefully acknowledges the financial and intellectual
contributions of its funding partners in these Institutes: U.S.
Department of Education (ED) Institute of Education Sciences (IES), U.S.
Department of Homeland Security (DHS) Science & Technology Directorate
(S&T), National Institute of Standards and Technology (NIST), Department
of Defense (DOD) Office of the Under Secretary of Defense for Research
and Engineering (OUSD (R&E)), Accenture, Amazon, Google, IBM
Corporation, and Intel Corporation. In addition, under this program, the
U.S. Department of Agriculture (USDA) National Institute of Food and
Agriculture (NIFA) fully funds an additional five AI Institutes. NSF
also thanks the following new partners for joining in the current
solicitation in the AI Institutes program: Capital One Financial
Corporation and the Simons Foundation. The author thanks Dr. Michael
Littman, Division Director of the NSF Division of Information and
Intelligent Systems, for his leadership of NSF AI strategy and for his
thoughts on the alignment of current Institute activities to the
National AI R&D Strategic Plan.
CR AI Institutes Virtual Organization, ABOUT US
Donlon J, 2023, AI MAG, V44, P345, DOI 10.1002/aaai.12107
National Artificial Intelligence (AI) Research Institutes Accelerating Research, ABOUT US
nitrd, NAT ART INT RES DEV
nsf, 2022, EXP AI INN CAP BUILD
nsf, 2023, ABOUT US
nsf, NSF ANN 7 NEW NAT AR
NR 7
TC 0
Z9 0
U1 2
U2 2
PU AMER ASSOC ARTIFICIAL INTELL
PI MENLO PK
PA 445 BURGESS DRIVE, MENLO PK, CA 94025-3496 USA
SN 0738-4602
EI 2371-9621
J9 AI MAG
JI AI Mag.
PD MAR
PY 2024
VL 45
IS 1
SI SI
BP 6
EP 14
DI 10.1002/aaai.12153
EA FEB 2024
PG 9
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA LM0L4
UT WOS:001160649700001
OA hybrid
DA 2024-09-05
ER
PT J
AU Pinto, S
Albanese, F
Dorso, CO
Balenzuela, P
AF Pinto, Sebastian
Albanese, Federico
Dorso, Claudio O.
Balenzuela, Pablo
TI Quantifying time-dependent Media Agenda and public opinion by topic
modeling
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE Mass media influence; Opinion formation; Topic detection; Agenda-setting
ID NEWS; DYNAMICS
AB The mass media plays a fundamental role in the formation of public opinion, either by defining the topics of discussion or by making an emphasis on certain issues. Directly or indirectly, people get informed by consuming news from the media. Naturally, two questions appear: What are the dynamics of the agenda and how the people become interested in their different topics? These questions cannot be answered without proper quantitative measures of agenda dynamics and public attention. In this work we study the agenda of newspapers in comparison with public interests by performing topic detection over the news. We define Media Agenda as the distribution of topic's coverage by the newspapers and Public Agenda as the distribution of public interest in the same topic space. We measure agenda diversity as a function of time using the Shannon entropy and differences between agendas using the Jensen-Shannon distance. We found that the Public Agenda is less diverse than the Media Agenda, especially when there is a very attractive topic and the audience naturally focuses only on this one. Using the same methodology we detect coverage bias in newspapers. Finally, it was possible to identify a complex agenda-setting dynamics within a given topic where the least sold newspaper triggered a public debate via a positive feedback mechanism with social networks discussions which install the issue in the Media Agenda. (C) 2019 Elsevier B.V. All rights reserved.
C1 [Pinto, Sebastian; Dorso, Claudio O.; Balenzuela, Pablo] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Av Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina.
[Dorso, Claudio O.; Balenzuela, Pablo] Consejo Nacl Invest Cient & Tecn, Inst Fis Buenos Aires IFIBA, Av Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina.
[Albanese, Federico] Consejo Nacl Invest Cient & Tecn, Inst Invest Ciencias Comp ICC, Av Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina.
C3 University of Buenos Aires; Consejo Nacional de Investigaciones
Cientificas y Tecnicas (CONICET); University of Buenos Aires; Consejo
Nacional de Investigaciones Cientificas y Tecnicas (CONICET); University
of Buenos Aires
RP Pinto, S (corresponding author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Av Cantilo S-N,Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina.
EM spinto@df.uba.ar
OI Balenzuela, Pablo/0000-0002-8581-4892; Pinto,
Sebastian/0000-0002-0441-9285
FU UBACyT [20020130100582BA, PICT-201-0215]
FX We thank Dr. A. Chernomoretz, Dr. M. Otero, Dra. V. Semeshenko, and Dr.
M. Trevisan for bringing us a critical revision of the article. We
thanks funding from UBACyT 20020130100582BA and PICT-201-0215.
CR Ali A. E., ARXIV180105802
Althaus SL, 2002, COMMUN RES, V29, P180, DOI 10.1177/0093650202029002004
[Anonymous], P 10 INT WORKSHOP MU, DOI DOI 10.1145/1814245.1814249
Baumgartner FR, 2015, POLIT COMMUN, V32, P268, DOI 10.1080/10584609.2014.919974
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boydstun AE, 2014, POLICY STUD J, V42, P173, DOI 10.1111/psj.12055
Brians CL, 1996, AM J POLIT SCI, V40, P172, DOI 10.2307/2111699
Brun A, 2000, SPIRE 2000: SEVENTH INTERNATIONAL SYMPOSIUM ON STRING PROCESSING AND INFORMATION RETRIEVAL - PROCEEDINGS, P55, DOI 10.1109/SPIRE.2000.878180
González-Avella JC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051035
Coleman R, 2007, J MASS COMMUN Q, V84, P495, DOI 10.1177/107769900708400306
Crokidakis N, 2012, PHYSICA A, V391, P1729, DOI 10.1016/j.physa.2011.11.038
Dallmann A., 2015, Proceedings of the ACM Conference on Hypertext Social Media, P133, DOI DOI 10.1145/2700171.2791057
Elejalde E, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0193765
Fuglede B, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, P31
Gerber AS, 2009, AM ECON J-APPL ECON, V1, P35, DOI 10.1257/app.1.2.35
Günther E, 2016, DIGIT JOURNAL, V4, P75, DOI 10.1080/21670811.2015.1093270
Guggenheim L, 2015, ANN AM ACAD POLIT SS, V659, P207, DOI 10.1177/0002716215570549
Guo L, 2016, J MASS COMMUN Q, V93, P332, DOI 10.1177/1077699016639231
Hu X, 2016, PR IEEE I C PROGR IN, P248, DOI 10.1109/PIC.2016.7949504
Hua Y, 2003, PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT'2003, PROCEEDINGS, P268, DOI 10.1109/PDCAT.2003.1236303
Jacobi C, 2016, DIGIT JOURNAL, V4, P89, DOI 10.1080/21670811.2015.1093271
Kim EHJ, 2016, J INF SCI, V42, P763, DOI 10.1177/0165551515608733
Koziner N., 2013, GLOB MEDIA J, V10
Lazaridou K., B IEEE TCDL, V12
Lee DD, 1999, NATURE, V401, P788, DOI 10.1038/44565
Li WX, 2017, IEEE T MULTIMEDIA, V19, P367, DOI 10.1109/TMM.2016.2616279
Maaten LJP., 2008, J MACH LEARN RES, V9, P2579
Malik MM, 2016, DIGIT JOURNAL, V4, P955, DOI 10.1080/21670811.2015.1133249
McCombs M., 2005, Journalism Studies, V6, P543, DOI [DOI 10.1080/14616700500250438, 10.1080/14616700500250438]
MCCOMBS ME, 1972, PUBLIC OPIN QUART, V36, P176, DOI 10.1086/267990
Mitchelstein E, 2016, PALABRA CLAVE, V19, P1027, DOI 10.5294/pacla.2016.19.4.4
Mohr JW, 2013, POETICS, V41, P545, DOI 10.1016/j.poetic.2013.10.001
Moussaïd M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0084592
Natrella M., 2010, NIST SEMATECH E HDB
Neuman WR, 2014, J COMMUN, V64, P193, DOI 10.1111/jcom.12088
Newman D, 2006, LECT NOTES COMPUT SC, V3975, P93
Paul MJ, 2014, PLOS ONE, V9, DOI [10.1371/journal.pone.0103408, 10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117]
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Pinto S, 2016, PHYSICA A, V458, P378, DOI 10.1016/j.physa.2016.04.024
Po L., 2016, SEMANITIC KEYWORD BA, P62
Rodríguez AH, 2010, PHYS REV E, V82, DOI 10.1103/PhysRevE.82.016111
Sagarzazu I., 2017, REV CIENC POLITICA, V37
Soroka S., 2017, COMMUN RES
Törnberg A, 2016, DISCOURSE CONTEXT ME, V13, P132, DOI 10.1016/j.dcm.2016.04.003
Tukey J. W, 1977, Exploratory Data Analysis, V2
Wanta W, 2004, J MASS COMMUN Q, V81, P364, DOI 10.1177/107769900408100209
Xiang-Ying Dai, 2010, 2010 International Conference on Machine Learning and Cybernetics (ICMLC 2010), P3341, DOI 10.1109/ICMLC.2010.5580677
Zunino E., 2010, GLOB MEDIA J, V7
Zunino E, 2016, COMMUN SOC-SPAIN, V29, P235, DOI 10.15581/003.29.4.235-253
NR 49
TC 21
Z9 24
U1 3
U2 43
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0378-4371
EI 1873-2119
J9 PHYSICA A
JI Physica A
PD JUN 15
PY 2019
VL 524
BP 614
EP 624
DI 10.1016/j.physa.2019.04.108
PG 11
WC Physics, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Physics
GA IL0DK
UT WOS:000476966100049
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Ramya, GR
Sivakumar, PB
AF Ramya, G. R.
Bagavathi Sivakumar, P.
TI An incremental learning temporal influence model for identifying topical
influencers on Twitter dataset
SO SOCIAL NETWORK ANALYSIS AND MINING
LA English
DT Article
DE Sentiment analysis; Influential user; Weighted partition around medoids;
Artificial cooperative search; Fuzzy deep neural network; Incremental
learning logistic regression
AB Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals. The opinion of some people in social network influences the opinion behavior and thoughts of other people. They are known as influential user. In this article, both the sentiment analysis and identification of influential user are proposed. Initially, Twitter data are preprocessed by proposing weighted partition around medoids (WPAM) with artificial cooperative search (WPAM-ACS) which extracts topics from Twitter data through dynamic clustering (DC). For sentiment classification, NLP has been used in many works. The main issue of using NLP for sentiment classification is that many languages do not have the adequate resources to develop NLP models. So, a fuzzy deep neural network (FDNN) is proposed in this paper for sentiment classification, because FDNN effectively handles the uncertainties and noises in tweet data than other state of the arts. Emotional conformity is a metric that refers to how people from an emotional point of view agree with another person. It is given as additional input to FDNN along with the tweets for sentiment classification. Finally, influential users are detected by temporal influential model (TIM) formulated as likelihood function using incremental logistic regression (ILLR) in which user's opinion sequence is considered for identification of influential user. In the experimental results, sentiment analysis is evaluated in terms of precision, recall and F-measure and proved that the proposed DC-FDNN sentiment classification is better than fixed clustering and NLP (FC-NLP)-based sentiment classification. Influential user detection using TIM-ILLR on opinion sequences which are identified by DC-FDNN is evaluated in terms of accuracy and proved that TIM-ILLR is better than other methods such as maximum likelihood estimation (MLE), support vector regression (SVR) and logistic regression (LR).
C1 [Ramya, G. R.; Bagavathi Sivakumar, P.] Amrita Sch Engn, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India.
C3 Amrita Vishwa Vidyapeetham; Amrita Vishwa Vidyapeetham Coimbatore
RP Ramya, GR (corresponding author), Amrita Sch Engn, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India.
EM gr_ramya@cb.amrita.edu; pbsk@cb.amrita.edu
OI Saravanakumar GR, Ramya/0000-0001-8184-048X; P, Bagavathi
Sivakumar/0000-0002-3763-9583
CR Alharbi ASM, 2019, COGN SYST RES, V54, P50, DOI 10.1016/j.cogsys.2018.10.001
Araque O, 2017, EXPERT SYST APPL, V77, P236, DOI 10.1016/j.eswa.2017.02.002
Chaudhuri A, 2016, ADV INTELL SYST, V464, P249, DOI 10.1007/978-3-319-33625-1_23
Chen CY, 2017, IEEE INTELL SYST, V32, P28, DOI 10.1109/MIS.2017.43
Chong WY, 2014, PROCEEDINGS 2014 4TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE WITH APPLICATIONS IN ENGINEERING AND TECHNOLOGY ICAIET 2014, P212, DOI 10.1109/ICAIET.2014.43
Civicioglu P, 2013, INFORM SCIENCES, V229, P58, DOI 10.1016/j.ins.2012.11.013
de Amorim RC., 2012, HEID INT S INT DAT A, P35
Deng Y, 2017, IEEE T FUZZY SYST, V25, P1006, DOI 10.1109/TFUZZ.2016.2574915
Dhanya NM, 2018, L N COMPUT VIS BIOME, V28, P227, DOI 10.1007/978-3-319-71767-8_19
Do HH, 2019, EXPERT SYST APPL, V118, P272, DOI 10.1016/j.eswa.2018.10.003
Eliacik AB, 2018, EXPERT SYST APPL, V92, P403, DOI 10.1016/j.eswa.2017.10.006
Gang Li, 2010, Proceedings 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2010), P331, DOI 10.1109/ISKE.2010.5680859
Hasan A, 2018, MATH COMPUT APPL, V23, DOI 10.3390/mca23010011
Heikal M, 2018, PROCEDIA COMPUT SCI, V142, P114, DOI 10.1016/j.procs.2018.10.466
Kao LJ, 2016, IEEE INTCONF FUZZY T, P1
Kauer AU, 2016, EXPERT SYST APPL, V61, P282, DOI 10.1016/j.eswa.2016.05.038
Mohammadi A, 2018, SWARM EVOL COMPUT, V40, P158, DOI 10.1016/j.swevo.2018.02.003
Musto C, 2014, P 8 INT WORKSH INF F
Na Jin-Cheon, 2015, Journal of Information Management, V3, P6
Pandey AC, 2017, INFORM PROCESS MANAG, V53, P764, DOI 10.1016/j.ipm.2017.02.004
Shalini L., 2018, INT RES J ENG TECH, V5, P2074
Sun QD, 2016, INT J PATTERN RECOGN, V30, DOI 10.1142/S0218001416590151
Suzuki Y., 2015, Gastroenterology, V3, P37
Tang X, 2015, KNOWL-BASED SYST, V89, P681, DOI 10.1016/j.knosys.2015.09.008
Wagh Rasika, 2018, 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), P208, DOI 10.1109/ICECA.2018.8474783
Zhao JQ, 2018, IEEE ACCESS, V6, P23253, DOI 10.1109/ACCESS.2017.2776930
Zhao JQ, 2017, IEEE ACCESS, V5, P3008, DOI 10.1109/ACCESS.2017.2672680
NR 27
TC 5
Z9 5
U1 0
U2 12
PU SPRINGER WIEN
PI WIEN
PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA
SN 1869-5450
EI 1869-5469
J9 SOC NETW ANAL MIN
JI Soc. Netw. Anal. Min.
PD MAR 9
PY 2021
VL 11
IS 1
AR 27
DI 10.1007/s13278-021-00732-4
PG 16
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA QU7JU
UT WOS:000627456300001
DA 2024-09-05
ER
PT C
AU Li, YX
Chen, R
Wu, J
AF Li, Yuxin
Chen, Rui
Wu, Juan
GP Assoc Computing Machinery
TI Research Status, Hotspots and Trends of International AI-assisted Second
Language Learning
SO PROCEEDINGS OF 2023 6TH INTERNATIONAL CONFERENCE ON EDUCATIONAL
TECHNOLOGY MANAGEMENT, ICETM 2023
LA English
DT Proceedings Paper
CT 6th International Conference on Educational Technology Management
(ICETM)
CY NOV 03-05, 2023
CL S China Normal Univ, Guangzhou, PEOPLES R CHINA
HO S China Normal Univ
DE Artificial intelligence; Second language learning; Artificial
intelligence-assisted language learning; Bibliometric analysis; Visual
analysis
ID ENGLISH; TECHNOLOGIES; ELEMENTARY; COMPLEXITY; EDUCATION; TOOL
AB The widespread application of artificial intelligence has triggered important changes in second language learning. The study was conducted on 293 research articles cited in the Web of Science database from 2013 to 2022 using the Bibliometrix R-package and CiteSpace software. A comprehensive investigation and analysis in the field of international artificial intelligence-assisted second language learning in the past ten years was made in this study, specifically including the development trend, high-cited authors, high-yield regions, high-impact journals, core article topics and research hot topics. The study found that (1) the overall research in this field shows a booming trend; (2) the field has formed highly influential authors and countries and has formed a relatively concentrated core journal group; and (3) the core article topics focus on combination of corpus linguistics and computational linguistics. The research hotspots include the creation of second language learning situations, the development of multilingual skills, the accurate assessment and diagnosis of second language learning, and the automatic feedback system for second language learning. Based on the analysis of the research results, this paper sorts out the future research trends in this field, and provides reference and inspiration for the research and practice of second language learning.
C1 [Li, Yuxin; Chen, Rui] Beijing Normal Univ, Fac Educ, Sch Educ Technol, 19 XinJieKouWai St, Beijing, Peoples R China.
[Wu, Juan] Beijing Normal Univ, Adv Innovat Ctr Future Educ, Beishahe West 3rd Rd, Beijing, Peoples R China.
C3 Beijing Normal University; Beijing Normal University
RP Wu, J (corresponding author), Beijing Normal Univ, Adv Innovat Ctr Future Educ, Beishahe West 3rd Rd, Beijing, Peoples R China.
EM 202221010184@mail.bnu.edu.cn; 202121010188@mail.bnu.edu.cn;
wuj@bnu.edu.cn
OI Wu, Juan/0000-0001-5525-9026
FU Applied Study of Artificial Intelligence in Primary and Secondary School
Teaching and Learning [CGEA23009]; BeiJing Office for Education Sciences
Planning Project
FX This work was supported by the Applied Study of Artificial Intelligence
in Primary and Secondary School Teaching and Learning (grant number
CGEA23009), supported by BeiJing Office for Education Sciences Planning
Project.
CR Alexopoulou T, 2017, LANG LEARN, V67, P180, DOI 10.1111/lang.12232
[Anonymous], 2019, PERSP RETHINK REFORM, DOI DOI 10.1007/978-981-15-1104-2
Caruso M, 2019, INT J COMPUT-ASSIST, V9, P58, DOI 10.4018/IJCALLT.2019010104
Chassignol M, 2018, PROCEDIA COMPUT SCI, V136, P16, DOI 10.1016/j.procs.2018.08.233
Cheng X, 2021, MAR GEORESOUR GEOTEC, V39, P1015, DOI 10.1080/1064119X.2020.1795014
Chien YC, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.785752
Crossley SA, 2018, ASSESS WRIT, V38, P46, DOI 10.1016/j.asw.2018.06.004
Crossley SA, 2013, SYSTEM, V41, P965, DOI 10.1016/j.system.2013.08.002
Cui YX, 2021, INT J EMERG TECHNOL, V16, P94, DOI 10.3991/ijet.v16i12.23313
Divekar RR, 2022, COMPUT ASSIST LANG L, V35, P2332, DOI 10.1080/09588221.2021.1879162
Dizon G, 2020, LANG LEARN TECHNOL, V24, P16
Gao ML, 2022, INT J EMERG TECHNOL, V17, P140, DOI 10.3991/ijet.v17i08.30561
Golonka EM, 2014, COMPUT ASSIST LANG L, V27, P70, DOI 10.1080/09588221.2012.700315
He M. X., 2022, Technology Enhanced Foreign Language Education, P59
Hsu HL, 2023, INTERACT LEARN ENVIR, V31, P5732, DOI 10.1080/10494820.2021.2016864
Hsu MH, 2023, INTERACT LEARN ENVIR, V31, P4297, DOI 10.1080/10494820.2021.1960864
Hu J. H., 2023, Technology Enhanced Foreign Language Education, P3
Jeon J, 2023, COMPUT ASSIST LANG L, V36, P1338, DOI 10.1080/09588221.2021.1987272
Kourtali NE, 2023, COMPUT ASSIST LANG L, DOI 10.1080/09588221.2023.2171066
Kurdi MZ, 2019, LECT NOTES ARTIF INT, V11626, P148, DOI 10.1007/978-3-030-23207-8_28
Kyle K, 2018, MOD LANG J, V102, P333, DOI 10.1111/modl.12468
Lee H, 2020, LECT NOTES ARTIF INT, V12164, P157, DOI 10.1007/978-3-030-52240-7_29
Liang JC, 2023, INTERACT LEARN ENVIR, V31, P4270, DOI 10.1080/10494820.2021.1958348
Lin CC, 2017, EDUC TECHNOL SOC, V20, P148
Miaomiao Zhang, 2020, International Journal of Information and Education Technology, V10, P394, DOI 10.18178/ijiet.2020.10.5.1396
Murthy S, 2018, IEEE CONF TECHNOL ED, P1, DOI 10.1109/T4E.2018.00009
Nazari N, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e07014
Pufahl I, 2011, FOREIGN LANG ANN, V44, P258, DOI 10.1111/j.1944-9720.2011.01130.x
Qiu J, 2021, INT J CONTIN ENG EDU, V31, P170, DOI 10.1504/IJCEELL.2021.114359
Rachels JR, 2018, COMPUT ASSIST LANG L, V31, P72, DOI 10.1080/09588221.2017.1382536
Rzepka N, 2022, CSEDU: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION - VOL 2, P131, DOI 10.5220/0010969000003182
Strobl C, 2019, COMPUT EDUC, V131, P33, DOI 10.1016/j.compedu.2018.12.005
Tono Y, 2014, RECALL, V26, P147, DOI 10.1017/S095834401400007X
Watkins CP, 2019, LECT NOTES ARTIF INT, V11626, P226, DOI 10.1007/978-3-030-23207-8_42
Xu L.H., 2022, Technology Enhanced Foreign Language Education, P88
Xu XQ, 2023, AM J DISTANCE EDUC, V37, P185, DOI 10.1080/08923647.2022.2044663
NR 36
TC 0
Z9 0
U1 18
U2 18
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 979-8-4007-1667-6
PY 2023
BP 227
EP 234
DI 10.1145/3637907.3637978
PG 8
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BW5FK
UT WOS:001159769900033
DA 2024-09-05
ER
PT J
AU Rodrigues, D
Kreif, N
Lawrence-Jones, A
Barahona, M
Mayer, E
AF Rodrigues, Daniela
Kreif, Noemi
Lawrence-Jones, Anna
Barahona, Mauricio
Mayer, Erik
TI Reflection on modern methods: constructing directed acyclic graphs
(DAGs) with domain experts for health services research
SO INTERNATIONAL JOURNAL OF EPIDEMIOLOGY
LA English
DT Article
DE Causal inference; potential outcomes; directed acyclic graphs; policy
evaluation; health services research
ID OBSERVATIONAL RESEARCH; SENSITIVITY-ANALYSIS; CAUSAL INFERENCE;
KNOWLEDGE
AB Directed acyclic graphs (DAGs) are a useful tool to represent, in a graphical format, researchers' assumptions about the causal structure among variables while providing a rationale for the choice of confounding variables to adjust for. With origins in the field of probabilistic graphical modelling, DAGs are yet to be widely adopted in applied health research, where causal assumptions are frequently made for the purpose of evaluating health services initiatives. In this context, there is still limited practical guidance on how to construct and use DAGs. Some progress has recently been made in terms of building DAGs based on studies from the literature, but an area that has received less attention is how to create DAGs from information provided by domain experts, an approach of particular importance when there is limited published information about the intervention under study. This approach offers the opportunity for findings to be more robust and relevant to patients, carers and the public, and more likely to inform policy and clinical practice. This article draws lessons from a stakeholder workshop involving patients, health care professionals, researchers, commissioners and representatives from industry, whose objective was to draw DAGs for a complex intervention-online consultation, i.e. written exchange between the patient and health care professional using an online system-in the context of the English National Health Service. We provide some initial, practical guidance to those interested in engaging with domain experts to develop DAGs.
C1 [Rodrigues, Daniela; Lawrence-Jones, Anna; Mayer, Erik] Imperial Coll London, NIHR Imperial Patient Safety Translat Res Ctr, Inst Global Hlth Innovat Dept Surg & Canc, 10th Floor,Queen Elizabeth Queen Mother Wing QEQM, London W2 1NY, England.
[Kreif, Noemi] Univ York, Ctr Hlth Econ, York, N Yorkshire, England.
[Barahona, Mauricio] Imperial Coll London, Ctr Math Precis Healthcare, Dept Math, London, England.
C3 Imperial College London; University of York - UK; Imperial College
London
RP Rodrigues, D (corresponding author), Imperial Coll London, NIHR Imperial Patient Safety Translat Res Ctr, Inst Global Hlth Innovat Dept Surg & Canc, 10th Floor,Queen Elizabeth Queen Mother Wing QEQM, London W2 1NY, England.
EM d.rodrigues@imperial.ac.uk
RI Barahona, Mauricio/C-3638-2008; Mayer, Erik/A-6207-2013
OI Barahona, Mauricio/0000-0002-1089-5675; Lawrence-Jones,
Anna/0000-0002-7975-1346; Mayer, Erik/0000-0002-5509-4580; Kreif,
Noemi/0000-0001-9008-5690; Rodrigues, Daniela/0000-0002-5791-5573
FU National Institute for Health Research (NIHR) Imperial Patient Safety
Translational Research Centre [PSTRC-2016-004]; NIHR Imperial Biomedical
Research Centre [IS-BRC-1215-20013]; Engineering and Physical Sciences
Research Council (EPSRC) Centre for Mathematics of Precision Healthcare
[EP/N014529/1]; EPSRC [EP/N014529/1] Funding Source: UKRI
FX The research was funded by the National Institute for Health Research
(NIHR) Imperial Patient Safety Translational Research Centre
(PSTRC-2016-004) and supported by the NIHR Imperial Biomedical Research
Centre (IS-BRC-1215-20013) and the Engineering and Physical Sciences
Research Council (EPSRC) Centre for Mathematics of Precision Healthcare
(EP/N014529/1). The views expressed are those of the authors and not
necessarily those of the NHS, the NIHR or the Department of Health and
Social Care.
CR [Anonymous], 2004, Inference to the Best Explanation
Bakhai M, 2021, BMJ-BRIT MED J, V372, DOI 10.1136/bmj.n264
Breskin A, 2019, AM J EPIDEMIOL, V188, P1355, DOI 10.1093/aje/kwz060
Daniel RM, 2016, INT J EPIDEMIOL, V45, P1817, DOI 10.1093/ije/dyw227
Ding P, 2016, EPIDEMIOLOGY, V27, P368, DOI 10.1097/EDE.0000000000000457
Ferguson KD, 2020, INT J EPIDEMIOL, V49, P322, DOI 10.1093/ije/dyz150
Greenland S, 1999, EPIDEMIOLOGY, V10, P37, DOI 10.1097/00001648-199901000-00008
Greenland S, 2002, INT J EPIDEMIOL, V31, P1030, DOI 10.1093/ije/31.5.1030
Hernán MA, 2002, AM J EPIDEMIOL, V155, P176, DOI 10.1093/aje/155.2.176
Hernán MA, 2004, EPIDEMIOLOGY, V15, P615, DOI 10.1097/01.ede.0000135174.63482.43
Hernan MA., 2020, CAUSAL INFERENCE WHA, P75
Hernán MA, 2009, AM J EPIDEMIOL, V170, P959, DOI 10.1093/aje/kwp293
Hernn Miguel A., 2020, Causal inference: What if
HILL AB, 1965, P ROY SOC MED, V58, P295, DOI 10.1177/003591576505800503
HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064
IMBENS G, 2015, CAUSAL INFERENCE STA
Krieger N, 2016, INT J EPIDEMIOL, V45, P1852, DOI 10.1093/ije/dyw330
Lawlor DA, 2016, INT J EPIDEMIOL, V45, P1866, DOI 10.1093/ije/dyw314
Neuberg LG, 2003, ECONOMET THEOR, V19, P675, DOI 10.1017/S026646603004109
Neyman J.S., 1923, Statistical Science, V10, P1, DOI DOI 10.1214/SS/1177012031
Pearl J, 2016, J CAUSAL INFERENCE, V4, DOI 10.1515/jci-2016-0021
Robins JM, 2000, EPIDEMIOLOGY, V11, P550, DOI 10.1097/00001648-200009000-00011
Robins JM, 2001, EPIDEMIOLOGY, V12, P313, DOI 10.1097/00001648-200105000-00011
ROTHMAN KJ, 1976, AM J EPIDEMIOL, V104, P587, DOI 10.1093/oxfordjournals.aje.a112335
RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350
Sekhon J., 2008, OXFORD HDB POLITICAL
Tennant PWG, 2017, J EPIDEMIOL COMMUN H, V71, pA43, DOI 10.1136/jech-2017-SSMAbstracts.86
Tennant PWG, 2021, INT J EPIDEMIOL, V50, P620, DOI 10.1093/ije/dyaa213
Vandenbroucke JP, 2016, INT J EPIDEMIOL, V45, P1776, DOI 10.1093/ije/dyv341
VanderWeele TJ, 2017, ANN INTERN MED, V167, P268, DOI 10.7326/M16-2607
NR 30
TC 10
Z9 11
U1 2
U2 8
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0300-5771
EI 1464-3685
J9 INT J EPIDEMIOL
JI Int. J. Epidemiol.
PD AUG 10
PY 2022
VL 51
IS 4
BP 1339
EP 1348
DI 10.1093/ije/dyac135
EA JUN 2022
PG 10
WC Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Public, Environmental & Occupational Health
GA 3R3HX
UT WOS:000812338600001
PM 35713577
OA Green Published, hybrid
DA 2024-09-05
ER
PT J
AU Faupel-Badger, JM
Vogel, AL
Hussain, SF
Austin, CP
Hall, MD
Ness, E
Sanderson, P
Terse, PS
Xu, X
Balakrishnan, K
Patnaik, S
Marugan, JJ
Rudloff, U
Ferrer, M
AF Faupel-Badger, Jessica M.
Vogel, Amanda L.
Hussain, Shadab F.
Austin, Christopher P.
Hall, Matthew D.
Ness, Elizabeth
Sanderson, Philip
Terse, Pramod S.
Xu, Xin
Balakrishnan, Krishna
Patnaik, Samarjit
Marugan, Juan J.
Rudloff, Udo
Ferrer, Marc
TI Teaching principles of translational science to a broad scientific
audience using a case study approach: A pilot course from the National
Center for Advancing Translational Sciences
SO JOURNAL OF CLINICAL AND TRANSLATIONAL SCIENCE
LA English
DT Article
DE Education; research training; workforce; online learning; evaluation
AB There are numerous examples of translational science innovations addressing challenges in the translational process, accelerating progress along the translational spectrum, and generating solutions relevant to a wide range of human health needs. Examining these successes through an education lens can identify core principles and effective practices that lead to successful translational outcomes. The National Center for Advancing Translational Sciences (NCATS) is identifying and teaching these core principles and practices to a broad audience via online courses in translational science which teach from case studies of NCATS-led or supported research initiatives. In this paper, we share our approach to the design of these courses and offer a detailed description of our initial course, which focused on a preclinical drug discovery and development project spanning academic and government settings. Course participants were from a variety of career stages and institutions. Participants rated the course high in overall value to them and in providing a unique window into the translational science process. We share our model for course development as well as initial findings from the course evaluation with the goal of continuing to stimulate development of novel education activities teaching foundational principles in translational science to a broad audience.
C1 [Faupel-Badger, Jessica M.; Vogel, Amanda L.; Hussain, Shadab F.; Hall, Matthew D.; Sanderson, Philip; Terse, Pramod S.; Xu, Xin; Balakrishnan, Krishna; Patnaik, Samarjit; Marugan, Juan J.; Ferrer, Marc] NIH, Natl Ctr Adv Translat Sci, Bldg 10, Bethesda, MD 20892 USA.
[Austin, Christopher P.] Flagship Pioneering, Cambridge, MA USA.
[Ness, Elizabeth; Rudloff, Udo] NCI, NIH, Bethesda, MD 20892 USA.
C3 National Institutes of Health (NIH) - USA; NIH National Center for
Advancing Translational Sciences (NCATS); National Institutes of Health
(NIH) - USA; NIH National Cancer Institute (NCI)
RP Faupel-Badger, JM (corresponding author), Natl Ctr Adv Translat Sci, 6701 Democracy Blvd, Bethesda, MD 20892 USA.
EM badgerje@mail.nih.gov
RI Hall, Matthew D/B-2132-2010
OI Hussain, Shadab/0000-0003-3837-6225; Faupel-Badger,
Jessica/0000-0001-9729-3660
FU National Center for Advancing Translational Sciences (NCATS) Education
Branch at the National Institutes of Health; National Cancer Institute
[ZIABC011267] Funding Source: NIH RePORTER
FX Course development as supported by the National Center for Advancing
Translational Sciences (NCATS) Education Branch at the National
Institutes of Health.
CR Adamo JE, 2015, CTS-CLIN TRANSL SCI, V8, P615, DOI 10.1111/cts.12298
[Anonymous], FDN ADV ED SCI
[Anonymous], 2011, ADULT LEARNER
Austin CP, 2021, J CLIN TRANSL SCI, V5, DOI 10.1017/cts.2021.400
Austin CP, 2021, CTS-CLIN TRANSL SCI, V14, P1629, DOI 10.1111/cts.13055
Barnes L.B., 1994, TEACHING CASE METHOD
Begg MD, 2014, J INVEST MED, V62, P14, DOI 10.2310/JIM.0000000000000021
Boulware LE, 2022, NEW ENGL J MED, V386, P201, DOI 10.1056/NEJMp2112233
Brimacombe Kyle R, 2020, bioRxiv, DOI 10.1101/2020.06.04.135046
Brooks PJ, 2020, HUM GENE THER, V31, P1034, DOI 10.1089/hum.2020.259
Coussens NP, 2019, J PHARMACOL EXP THER, V371, P396, DOI 10.1124/jpet.119.259408
Dodson SE, 2021, J CLIN TRANSL SCI, V5, DOI 10.1017/cts.2020.514
Frankowski KJ, 2018, SCI TRANSL MED, V10, DOI 10.1126/scitranslmed.aap8307
Greenberg-Worisek AJ, 2019, ACAD MED, V94, P213, DOI 10.1097/ACM.0000000000002470
Haendel MA, 2021, J AM MED INFORM ASSN, V28, P427, DOI 10.1093/jamia/ocaa196
Low LA, 2021, NAT REV DRUG DISCOV, V20, P345, DOI 10.1038/s41573-020-0079-3
Meyers FJ, 2012, CTS-CLIN TRANSL SCI, V5, P132, DOI 10.1111/j.1752-8062.2011.00392.x
Naar S, 2018, HEALTH PSYCHOL, V37, P1081, DOI 10.1037/hea0000657
National Center for Advancing Translational Sciences, TRANSL SCI PRINC
National Institutes of Health, REQ INF RFI ENH CLIN
Sakamuru S, 2021, J CHEM INF MODEL, V61, P2675, DOI 10.1021/acs.jcim.1c00439
Sancheznieto F, 2021, J CLIN TRANSL SCI, V6, DOI 10.1017/cts.2021.884
Smyth SS, 2021, J CLIN TRANSL SCI, V6, DOI 10.1017/cts.2021.886
Sorkness CA, 2020, J CLIN TRANSL SCI, V4, P43, DOI 10.1017/cts.2019.424
The National Center for Advancing Translational Sciences, TRANSL SCI TRAIN ED
The National Center for Advancing Translational Sciences, CTS-CLIN TRANSL SCI
Vogel AL, 2022, EVALUATION ONLINE CA
NR 27
TC 3
Z9 3
U1 0
U2 0
PU CAMBRIDGE UNIV PRESS
PI CAMBRIDGE
PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND
EI 2059-8661
J9 J CLIN TRANSL SCI
JI J. Clin. Transl. Sci.
PD MAR 21
PY 2022
VL 6
IS 1
AR e66
DI 10.1017/cts.2022.374
PG 8
WC Medicine, Research & Experimental
WE Emerging Sources Citation Index (ESCI)
SC Research & Experimental Medicine
GA 1X3ZZ
UT WOS:000807397300001
PM 35754433
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Zhang, Z
Zhang, RX
Sun, JD
AF Zhang, Zhao
Zhang, Ruixin
Sun, Jiandong
TI Research on the Comprehensive Evaluation Method of Driving Behavior of
Mining Truck Drivers in an Open-Pit Mine
SO APPLIED SCIENCES-BASEL
LA English
DT Article
DE open-pit mine; mining truck; driving behavior evaluation; principal
component analysis
AB Trucking is an important production link in most open-pit mines, and its transportation cost accounts for more than 50% of the total production cost of open-pit mines. The quality of the driver's driving behavior plays a crucial role in the fine control of the production cost of transportation. Different from the previous evaluation studies of drivers' driving behavior in open-pit mines, which mainly took safety driving behavior index as a factor variable, this paper puts forward a comprehensive evaluation method of driving behavior of mining truck drivers, which takes both safety driving and transportation cost as factor variables. Taking the mining truck as the research object, firstly, a scientific and reasonable data collection scheme is established, and the data information characterizing the transport state of the mining truck is obtained through data collection and analysis. Secondly, the RKNN algorithm of time series prediction and the wavelet analysis method are used to achieve noise reduction and missing processing of the original data so as to obtain accurate sample data. Then, taking the principal component analysis method as the entry point, through constructing the principal component analysis theory model, the key index system representing safe driving behavior and transportation cost is established to realize the comprehensive evaluation of the driving behavior of mining truck drivers, and the evaluation system of "standard driving", "prudent driving" and "aggressive driving" of mining truck drivers is formulated. The results show that after noise reduction, the accuracy of mining car operation data can be improved by 7 similar to 12%, and the transportation cost can be reduced by about 5% after the driver's operation behavior is standardized.
C1 [Zhang, Zhao; Zhang, Ruixin] China Univ Min & Technol Beijing, Sch Energy & Min Engn, Beijing 100083, Peoples R China.
[Zhang, Ruixin; Sun, Jiandong] North China Inst Sci & Technol, Mine Safety Inst, Langfang 065201, Peoples R China.
[Sun, Jiandong] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China.
C3 China University of Mining & Technology; North China Institute Science &
Technology; China University of Mining & Technology
RP Zhang, Z (corresponding author), China Univ Min & Technol Beijing, Sch Energy & Min Engn, Beijing 100083, Peoples R China.
EM zhangzhao821@126.com; zhangrx139@163.com; sjd_xx@126.com
RI Zhang, Ruixin/LBI-2317-2024
OI Jiandong, Sun/0000-0002-2909-7956
FU basic scientific research service fee of central universities
[3142019007]
FX The work was supported by the basic scientific research service fee of
central universities(funding number: 3142019007).
CR Costa MA, 2023, VEHICLE SYST DYN, V61, P150, DOI 10.1080/00423114.2022.2039724
Denoeux T, 2008, STUD FUZZ SOFT COMP, V219, P737
Du M., 2015, Zhejiang For. Sci. Technol, V35, P47
He C., 2014, Open-Pit Min. Technol, V4, P1, DOI [10.13235/j.cnki.ltcm.2014.04.001, DOI 10.13235/J.CNKI.LTCM.2014.04.001]
Hurel J, 2013, VEHICLE SYST DYN, V51, P1422, DOI 10.1080/00423114.2013.804937
Kropiwnicki J, 2019, ENERGY, V182, P1045, DOI 10.1016/j.energy.2019.06.114
Li HL, 2021, MOL PAIN, V17, DOI 10.1177/1744806921990944
Li S., 1992, J. China Univ. Min. Technol, V21, P97
Li W., 2019, Automot. Pract. Technol, V45, P69
Li X., 2022, J. Coal Econ. Res, V42, P48
Liu L., 2019, Comput. Tech. Geophys. Geochem. Explor, V41, P674
Martyushev NV, 2023, MATHEMATICS-BASEL, V11, DOI 10.3390/math11030536
Mei B., 2020, J. New Technol. New Prod. China, V3, P124
Mohammad S., 2022, Cogent Bus. Manag, V9, P2034233
Pang Z., 2022, Research on Prediction of Coal and Gas Outburst with Missing Data
Song J., 2022, Mod. Ind. Econ. Inf. Technol, V12, P178
Wang G., 2008, Open Pit Min. Technol, V5, P2728
Wang G., 2022, Eng. Proc, V24, P2
Wang H., 2017, China Coal Ind, V8, P58
Wang LZ, 2023, INT J ENV RES PUB HE, V20, DOI 10.3390/ijerph20010496
Wang Y., 2017, Transp. Constr. Manag, V6, P76
Wu L.N., 2020, Master's Thesis
Xian Y., 2016, J. Mod. Food Sci. Technol, V32, P210
Xiong Zhongmin, 2021, Computer Engineering and Applications, V57, P27, DOI 10.3778/j.issn.1002-8331.2101-0187
Ye S., 2017, Electron. Test, V18, P60
Yun He, 2016, IAENG International Journal of Computer Science, V43, P356
Zarkadoula M, 2007, TRANSPORT RES D-TR E, V12, P449, DOI 10.1016/j.trd.2007.05.002
Zhang J., 2019, Research on Prediction of Tooth Degradation State Based on Principal Component Analysis
Zhang SC, 2012, J SYST SOFTWARE, V85, P2541, DOI 10.1016/j.jss.2012.05.073
Zhao H., 2016, China Min, V25, P12
Zhao Y., 2016, China Water Transp, V16, P228
Zhu J., 2019, J. Shandong Jiaotong Univ, V28, P8
Zhuang L., 2014, Silicon Val, V7, P170
NR 33
TC 1
Z9 1
U1 4
U2 13
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-3417
J9 APPL SCI-BASEL
JI Appl. Sci.-Basel
PD OCT
PY 2023
VL 13
IS 20
AR 11597
DI 10.3390/app132011597
PG 17
WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials
Science, Multidisciplinary; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Engineering; Materials Science; Physics
GA X6OH0
UT WOS:001099617500001
OA gold
DA 2024-09-05
ER
PT C
AU Hijazi, H
Couceiro, R
Castelhano, J
Cruz, J
Castelo-Branco, M
de Carvalho, P
Madeira, H
AF Hijazi, Haytham
Couceiro, Ricardo
Castelhano, Joao
Cruz, Jose
Castelo-Branco, Miguel
de Carvalho, Paulo
Madeira, Henrique
GP IEEE
TI Intelligent Biofeedback Comprehension Assessment: Theory, Research, and
Tools
SO 2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON
2022)
SE IEEE Mediterranean Electrotechnical Conference-MELECON
LA English
DT Proceedings Paper
CT 21st IEEE Mediterranean Electrotechnical Conference (IEEE MELECON)
CY JUN 14-16, 2022
CL Palermo, ITALY
DE Artificial Intelligence; Biofeedback; Cognitive Load; Code Review;
Content Comprehension
AB The present paper describes the use of nonintrusive biofeedback sensors (e.g., ECG) and eye-tracker to study the cognitive load (CL) associated with two mental tasks: a) content reading and comprehension b) code review. The paper addresses the theoretical underpinnings of the comprehension assessment included in content reading (for understanding) and code review evaluation using biofeedback sensors and Artificial Intelligence (AI) techniques. Moreover, it demonstrates the current research directions that the authors developed in evaluating these two tasks. Finally, the paper presents the design of one of the tools being developed to use biofeedback sensors and AI to evaluate the code review quality by assessing the code reviewer's comprehension and engagement level.
C1 [Hijazi, Haytham; Couceiro, Ricardo; Cruz, Jose; de Carvalho, Paulo; Madeira, Henrique] Univ Coimbra, CISUC, Coimbra, Portugal.
[Castelhano, Joao] Univ Coimbra, ICNAS, Coimbra, Portugal.
[Castelo-Branco, Miguel] Univ Coimbra, ICNAS CIBIT, Coimbra, Portugal.
C3 Universidade de Coimbra; Universidade de Coimbra; Universidade de
Coimbra
RP Hijazi, H (corresponding author), Univ Coimbra, CISUC, Coimbra, Portugal.
EM haytham@dei.uc.pt; rcouceir@dei.uc.pt; joaocastelhano@uc.pt;
jpcruz@student.dei.uc.pt; mcbranco@fmed.uc.pt; carvalho@dei.uc.pt;
henrique@dei.uc.pt
RI Castelhano, Joao/I-5090-2019; Hijazi, Haytham/AAZ-9425-2021;
Castelo-Branco, Miguel/F-3866-2019; Madeira, Henrique/M-9392-2013
OI Castelhano, Joao/0000-0002-8996-1515; Hijazi,
Haytham/0000-0002-4981-3649; Castelo-Branco, Miguel/0000-0003-4364-6373;
Madeira, Henrique/0000-0001-8146-4664
FU VALU3S ("Verification and Validation of Automated Systems' Safety and
Security") - ECSEL Joint Undertaking (JU) [876852]; FCT (Fundacao para a
Ciencia e Tecnologia), Portugal; BASE project [POCI - 01-0145 -
FEDER-031581]; Centro de Informatica e Sistemas da Universidade de
Coimbra (CISUC)
FX The authors would like to thank all volunteers who took part in the
controlled experiments. This study was partially supported by the VALU3S
("Verification and Validation of Automated Systems' Safety and
Security"), funded by the ECSEL Joint Undertaking (JU) under grant
agreement No 876852, and by national funds from partners, including FCT
(Fundacao para a Ciencia e Tecnologia), Portugal. The work was also
supported by the BASE project, POCI - 01-0145 - FEDER-031581, and also
partially supported by the Centro de Informatica e Sistemas da
Universidade de Coimbra (CISUC).
CR [Anonymous], 2017, THEORY APPL COGNITIV
Bacchelli A, 2013, PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013), P712, DOI 10.1109/ICSE.2013.6606617
Couceiro R, 2019, PROC INT SYMP SOFTW, P93, DOI 10.1109/ISSRE.2019.00019
Couceiro R, 2019, 2019 IEEE/ACM 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: NEW IDEAS AND EMERGING RESULTS (ICSE-NIER 2019), P37, DOI 10.1109/ICSE-NIER.2019.00018
Couceiro R, 2019, I C DEPEND SYS NETWO, P638, DOI 10.1109/DSN.2019.00069
Ferstl EC, 2007, NEUROSCI LETT, V427, P159, DOI 10.1016/j.neulet.2007.09.046
Fritz T, 2016, 2016 IEEE 23RD INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), VOL 5, P66, DOI 10.1109/SANER.2016.107
Fucci D, 2019, INT C PROGRAM COMPRE, P311, DOI 10.1109/ICPC.2019.00050
Gonçales LJ, 2021, INFORM SOFTWARE TECH, V136, DOI 10.1016/j.infsof.2021.106563
Hijazi H, 2021, PROC INT SYMP SOFTW, P476, DOI 10.1109/ISSRE52982.2021.00056
Hijazi H, 2021, IEEE ACCESS, V9, P28393, DOI 10.1109/ACCESS.2021.3058664
Huang AFQ, 2012, PROCEEDINGS 18TH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY & QUALITY IN DESIGN, P44
Hyrskykari A., 2006, Eyes in attentive interfaces: Experiences from creating iDict, a gaze-aware reading aid
Ishida T, 2019, 2019 IEEE/ACM 6TH INTERNATIONAL WORKSHOP ON EYE MOVEMENTS IN PROGRAMMING (EMIP 2019), P26, DOI 10.1109/EMIP.2019.00012
Molléri JS, 2019, PROCEEDINGS OF EASE 2019 - EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, P313, DOI 10.1145/3319008.3319357
Müller SC, 2016, PROC INT CONF SOFTW, P452, DOI 10.1145/2884781.2884803
Müller SC, 2015, 2015 IEEE/ACM 37TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, VOL 2, P887, DOI 10.1109/ICSE.2015.284
Peitek N, 2021, PROC INT CONF SOFTW, P524, DOI 10.1109/ICSE43902.2021.00056
Peitek N, 2018, EYE MOVEMENTS IN PROGRAMMING (EMIP 2018), DOI 10.1145/3216723.3216725
Reason J., 1991, HUMAN ERROR
Rigby Peter, 2012, IEEE Software
Sweller J, 2011, PSYCHOL LEARN MOTIV, V55, P37
Vertegaal R, 2003, COMMUN ACM, V46, P30, DOI 10.1145/636772.636794
Winter M, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20164561
Yuan Y., 2014, Fourth International Conference on Learning Analytics and Knowledge, P54
NR 25
TC 0
Z9 0
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2158-8481
BN 978-1-6654-4280-0
J9 IEEE MEDITERR ELECT
PY 2022
BP 414
EP 419
DI 10.1109/MELECON53508.2022.9843030
PG 6
WC Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering
GA BT8NR
UT WOS:000854091100072
DA 2024-09-05
ER
PT J
AU Jones, S
Alam, N
AF Jones, Stewart
Alam, Nurul
TI A machine learning analysis of citation impact among selected Pacific
Basin journals
SO ACCOUNTING AND FINANCE
LA English
DT Article
DE Machine learning; Citation impact; Pacific Basin accounting journals;
Fields of research; Research methodology
ID CORPORATE SOCIAL-RESPONSIBILITY; FINANCIAL-REPORTING STANDARDS;
ACCOUNTING RESEARCH; REAL-ESTATE; POLITICAL CONNECTIONS; DISCLOSURE
COMPLIANCE; EARNINGS DISCLOSURES; CAPITAL STRUCTURE; BOARD DIVERSITY;
AUDITOR CHOICE
AB This study uses a machine learning approach to identify and predict factors which influence citation impacts across five Pacific Basin journals: Abacus, Accounting & Finance, Australian Journal of Management, Australian Accounting Review and the Pacific Accounting Review from 2008 to 2018. The machine learning results indicate that citation impact is mostly influenced by: length of a journal article; the field of research (particularly environmental accounting), sample size; whether the sample is local or international; choice of research method (e.g., archival vs survey/interview); academic rank of the first author; institutional status of the first author; and number of authors of the article. The results may be useful for predicting future trends in citation impact as well as providing strategies for authors and editors to improve citation impact.
C1 [Jones, Stewart; Alam, Nurul] Univ Sydney, Discipline Accounting, Sch Business, Sydney, NSW, Australia.
C3 University of Sydney
RP Jones, S (corresponding author), Univ Sydney, Discipline Accounting, Sch Business, Sydney, NSW, Australia.
EM stewart.jones@sydney.edu.au
OI Jones, Stewart/0000-0003-1600-3030; Alam, Nurul/0000-0002-9956-2753
CR Abou-El-Sood H, 2017, PAC ACCOUNT REV, V29, P55, DOI 10.1108/PAR-04-2016-0050
Al-Maskati N, 2015, ACCOUNT FINANC, V55, P627, DOI 10.1111/acfi.12069
Alcock J, 2017, ABACUS, V53, P371, DOI 10.1111/abac.12113
Alcock J, 2017, ABACUS, V53, P273, DOI 10.1111/abac.12102
Appuhami R, 2017, AUST ACCOUNT REV, V27, P400, DOI 10.1111/auar.12170
Arthur N, 2017, AUST ACCOUNT REV, V27, P368, DOI 10.1111/auar.12150
Barker R, 2015, ABACUS, V51, P169, DOI 10.1111/abac.12049
Barth M, 2015, ABACUS, V51, P499, DOI 10.1111/abac.12057
Baum A, 2017, ABACUS, V53, P395, DOI 10.1111/abac.12114
Beck C, 2018, AUST J MANAGE, V43, P517, DOI 10.1177/0312896218771438
Beekes W, 2015, ACCOUNT FINANC, V55, P931, DOI 10.1111/acfi.12088
Benito B, 2015, AUST ACCOUNT REV, V25, P45, DOI 10.1111/auar.12071
Benson K, 2015, AUST J MANAGE, V40, P36, DOI 10.1177/0312896214565121
Bertomeu J, 2016, ABACUS, V52, P221, DOI 10.1111/abac.12076
Bhuiyan MBU, 2018, PAC ACCOUNT REV, V30, P199, DOI 10.1108/PAR-11-2016-0098
Black DE, 2016, ACCOUNT FINANC, V56, P9, DOI 10.1111/acfi.12186
Bond D, 2016, ACCOUNT FINANC, V56, P259, DOI 10.1111/acfi.12194
Bonner SE, 2006, ACCOUNT ORG SOC, V31, P663, DOI 10.1016/j.aos.2005.06.003
Boolaky PK, 2015, AUST ACCOUNT REV, V25, P292, DOI 10.1111/auar.12058
Bornholt G, 2017, ABACUS, V53, P513, DOI 10.1111/abac.12093
Bradbury M, 2015, PAC ACCOUNT REV, V27, P394, DOI 10.1108/PAR-02-2014-0007
Brown LD, 1996, ACCOUNT ORG SOC, V21, P723, DOI 10.1016/0361-3682(96)00012-8
BROWN LD, 1987, ACCOUNT ORG SOC, V12, P193, DOI 10.1016/0361-3682(87)90006-7
BROWN LD, 1985, J ACCOUNTING RES, V23, P84, DOI 10.2307/2490908
Bugeja M, 2017, AUST J MANAGE, V42, P183, DOI 10.1177/0312896215614630
Bugeja M, 2016, ACCOUNT FINANC, V56, P627, DOI 10.1111/acfi.12093
Caglio A, 2017, ABACUS, V53, P1, DOI 10.1111/abac.12098
Cai CX, 2018, ABACUS, V54, P79, DOI 10.1111/abac.12101
Cai SW, 2017, ABACUS, V53, P431, DOI 10.1111/abac.12118
Callen JL, 2016, ABACUS, V52, P5, DOI 10.1111/abac.12070
Capalbo F, 2018, ABACUS, V54, P210, DOI 10.1111/abac.12116
Capezio A, 2016, AUST J MANAGE, V41, P719, DOI 10.1177/0312896215579463
Carey PJ, 2015, PAC ACCOUNT REV, V27, P166, DOI 10.1108/PAR-04-2013-0020
Carson E, 2016, AUST ACCOUNT REV, V26, P226, DOI 10.1111/auar.12124
Carvalho C, 2016, AUST ACCOUNT REV, V26, P376, DOI 10.1111/auar.12129
Carvalho C, 2016, AUST ACCOUNT REV, V26, P4, DOI 10.1111/auar.12073
Chakraborty V, 2014, INT J ACCOUNT INF SY, V15, P122, DOI 10.1016/j.accinf.2014.01.001
Chan KC, 2009, ACCOUNT ORG SOC, V34, P875, DOI 10.1016/j.aos.2008.12.002
Chand P, 2015, AUST ACCOUNT REV, V25, P139, DOI 10.1111/auar.12067
Chapple L, 2015, ACCOUNT FINANC, V55, P965, DOI 10.1111/acfi.12071
Chen DQ, 2016, ABACUS, V52, P374, DOI 10.1111/abac.12080
Chen E, 2016, ACCOUNT FINANC, V56, P217, DOI 10.1111/acfi.12187
Chen JD, 2016, ABACUS, V52, P473, DOI 10.1111/abac.12081
Cheng CL, 2015, PAC ACCOUNT REV, V27, P441, DOI 10.1108/PAR-10-2013-0096
Cheung A, 2018, ACCOUNT FINANC, V58, P787, DOI 10.1111/acfi.12238
Cheung E, 2016, AUST ACCOUNT REV, V26, P162, DOI 10.1111/auar.12087
Chiu V, 2019, INT J ACCOUNT INF SY, V32, P24, DOI 10.1016/Laccinf.2018.11.003
Choi H, 2017, ACCOUNT FINANC, V57, P147, DOI 10.1111/acfi.12143
Choi YS, 2015, ACCOUNT FINANC, V55, P75, DOI 10.1111/acfi.12040
Chong VK, 2015, ACCOUNT FINANC, V55, P105, DOI 10.1111/acfi.12049
Christensen J, 2015, ACCOUNT FINANC, V55, P133, DOI 10.1111/acfi.12055
Christodoulou D, 2018, ABACUS, V54, P154, DOI 10.1111/abac.12121
Christodoulou D, 2016, ABACUS, V52, P176, DOI 10.1111/abac.12073
Chung D, 2015, ABACUS, V51, P437, DOI 10.1111/abac.12052
Clinch G, 2015, AUST J MANAGE, V40, P201, DOI 10.1177/0312896214529441
Clout VJ, 2016, ACCOUNT FINANC, V56, P1017, DOI 10.1111/acfi.12117
Cockcroft S, 2018, AUST ACCOUNT REV, V28, P323, DOI 10.1111/auar.12218
Cortese C, 2018, ABACUS, V54, P247, DOI 10.1111/abac.12137
Danielson MG, 2010, ADV ACCOUNT, V26, P195, DOI 10.1016/j.adiac.2010.05.001
de Villiers C, 2018, ACCOUNT FINANC, V58, P993, DOI 10.1111/acfi.12424
de Villiers C, 2017, ACCOUNT FINANC, V57, P937, DOI 10.1111/acfi.12246
Demski J.S., 2007, ACCOUNT HORIZ, V21, P153, DOI DOI 10.2308/ACCH.2007.21.2.153
Derfuss K, 2015, ABACUS, V51, P238, DOI 10.1111/abac.12046
Devi SS, 2015, AUST ACCOUNT REV, V25, P124, DOI 10.1111/auar.12048
Dollery B, 2017, AUST ACCOUNT REV, V27, P263, DOI 10.1111/auar.12163
Drew J, 2016, AUST ACCOUNT REV, V26, P122, DOI 10.1111/auar.12098
Drew J, 2015, AUST ACCOUNT REV, V25, P28, DOI 10.1111/auar.12072
Dyckman TR, 2016, ABACUS, V52, P319, DOI 10.1111/abac.12078
Dyckman TR, 2015, ABACUS, V51, P511, DOI 10.1111/abac.12058
Easton PD, 2016, ABACUS, V52, P35, DOI 10.1111/abac.12064
Efendi J, 2016, ABACUS, V52, P259, DOI 10.1111/abac.12079
Egan M, 2018, AUST ACCOUNT REV, V28, P356, DOI 10.1111/auar.12191
Evans L, 2015, ABACUS, V51, P1, DOI 10.1111/abac.12040
Fernandez-Feijoo B, 2015, AUST ACCOUNT REV, V25, P346, DOI 10.1111/auar.12104
Flesher DL, 2017, ABACUS, V53, P133, DOI 10.1111/abac.12099
Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451
García-Sánchez IM, 2018, AUST ACCOUNT REV, V28, P428, DOI 10.1111/auar.12199
García-Sánchez IM, 2018, AUST ACCOUNT REV, V28, P199, DOI 10.1111/auar.12172
Giedt JZ, 2018, ABACUS, V54, P181, DOI 10.1111/abac.12119
Gippel J, 2015, ABACUS, V51, P143, DOI 10.1111/abac.12048
Gray S, 2017, ACCOUNT FINANC, V57, P429, DOI 10.1111/acfi.12146
Grosse M, 2017, ACCOUNT FINANC, V57, P701, DOI 10.1111/acfi.12176
Guest R, 2017, ABACUS, V53, P304, DOI 10.1111/abac.12110
Habib A, 2017, ACCOUNT FINANC, V57, P465, DOI 10.1111/acfi.12141
Han JL, 2018, ACCOUNT FINANC, V58, P149, DOI 10.1111/acfi.12215
Harvey CR, 2017, J FINANC, V72, P1399, DOI 10.1111/jofi.12530
Hastie T., 2009, Springer series in statistics
HECK JL, 1986, ACCOUNT REV, V61, P735
Hellman N, 2016, ACCOUNT FINANC, V56, P113, DOI 10.1111/acfi.12189
Higgins S, 2016, ACCOUNT FINANC, V56, P165, DOI 10.1111/acfi.12190
Hossain S, 2018, ACCOUNT FINANC, V58, P1027, DOI 10.1111/acfi.12242
Islam MA, 2017, AUST ACCOUNT REV, V27, P34, DOI 10.1111/auar.12108
Jackson AB, 2018, ABACUS, V54, P136, DOI 10.1111/abac.12117
Jiang HY, 2015, ABACUS, V51, P279, DOI 10.1111/abac.12047
Jiang Y, 2018, ACCOUNT FINANC, V58, P1063, DOI 10.1111/acfi.12432
Jones S, 2017, ABACUS, V53, P299, DOI 10.1111/abac.12115
Jones S, 2017, REV ACCOUNT STUD, V22, P1366, DOI 10.1007/s11142-017-9407-1
Jones S, 2017, J BUS FINAN ACCOUNT, V44, P3, DOI 10.1111/jbfa.12218
Jones S, 2015, J BANK FINANC, V56, P72, DOI 10.1016/j.jbankfin.2015.02.006
Kabir R, 2017, PAC ACCOUNT REV, V29, P227, DOI 10.1108/PAR-10-2016-0091
Kajüter P, 2017, ABACUS, V53, P28, DOI 10.1111/abac.12105
Kaplan R. S., 2018, 19052 HARV BUS SCH A
Kerr J, 2015, PAC ACCOUNT REV, V27, P189, DOI 10.1108/PAR-08-2012-0034
Khlif H, 2017, AUST J MANAGE, V42, P376, DOI 10.1177/0312896216641475
Kim JH, 2018, ABACUS, V54, P524, DOI 10.1111/abac.12141
Kim MH, 2015, AUST J MANAGE, V40, P135, DOI 10.1177/0312896213514237
Krause J, 2017, ABACUS, V53, P240, DOI 10.1111/abac.12100
Lee JE, 2018, ACCOUNT FINANC, V58, P1201, DOI 10.1111/acfi.12241
Linnenluecke MK, 2017, ABACUS, V53, P159, DOI 10.1111/abac.12107
Linnenluecke MK, 2015, ACCOUNT FINANC, V55, P607, DOI 10.1111/acfi.12120
Liu Y, 2017, ACCOUNT FINANC, V57, P1071, DOI 10.1111/acfi.12207
Lobo GJ, 2017, ABACUS, V53, P59, DOI 10.1111/abac.12096
Lodhia S, 2017, AUST ACCOUNT REV, V27, P17, DOI 10.1111/auar.12143
Lowe A, 2005, ACCOUNT ORG SOC, V30, P81, DOI 10.1016/j.aos.2004.05.002
Lu YJ, 2015, PAC ACCOUNT REV, V27, P95, DOI 10.1108/PAR-10-2012-0053
Malone L, 2016, ACCOUNT FINANC, V56, P59, DOI 10.1111/acfi.12204
Mao J, 2016, ABACUS, V52, P441, DOI 10.1111/abac.12087
Marriott L, 2017, PAC ACCOUNT REV, V29, P573, DOI 10.1108/PAR-10-2016-0094
Martínez-Ferrero J, 2015, AUST ACCOUNT REV, V25, P359, DOI 10.1111/auar.12075
McMillan G. S., 2018, INT J BIBLIOMETRICS, V1, P147, DOI [10.1504/IJBBM.2018.092782, DOI 10.1504/IJBBM.2018.092782]
McNichols MF, 2018, ABACUS, V54, P227, DOI 10.1111/abac.12128
Merigó JM, 2017, AUST ACCOUNT REV, V27, P71, DOI 10.1111/auar.12109
Neck C, 2015, AUST J MANAGE, V40, P488, DOI 10.1177/0312896215578014
Nguyen TTM, 2017, PAC ACCOUNT REV, V29, P204, DOI 10.1108/PAR-07-2016-0070
Nobes CW, 2016, AUST ACCOUNT REV, V26, P284, DOI 10.1111/auar.12131
Ohlson, 2019, RES DATA ANAL CHOICE
Ohlson JA, 2015, ABACUS, V51, P525, DOI 10.1111/abac.12059
Palea V, 2017, AUST ACCOUNT REV, V27, P129, DOI 10.1111/auar.12115
Penman S, 2016, ABACUS, V52, P106, DOI 10.1111/abac.12067
Persson ME, 2018, ABACUS, V54, P36, DOI 10.1111/abac.12123
Pham HNA, 2017, PAC ACCOUNT REV, V29, P152, DOI 10.1108/PAR-08-2016-0077
Pickerd J, 2011, ISS ACCOUNT EDUC, V26, P471, DOI 10.2308/iace-50002
Qu X, 2018, ACCOUNT FINANC, V58, P503, DOI 10.1111/acfi.12223
Rainsbury L, 2015, PAC ACCOUNT REV, V27, P329, DOI 10.1108/PAR-12-2013-0108
Ram R, 2017, ABACUS, V53, P485, DOI 10.1111/abac.12122
Richards G, 2015, PAC ACCOUNT REV, V27, P282, DOI 10.1108/PAR-08-2013-0086
Russell M, 2017, ACCOUNT FINANC, V57, P211, DOI 10.1111/acfi.12154
Safari M, 2016, AUST ACCOUNT REV, V26, P66, DOI 10.1111/auar.12083
Schaltegger S, 2015, AUST ACCOUNT REV, V25, P328, DOI 10.1111/auar.12102
Sinclair R, 2016, PAC ACCOUNT REV, V28, P135, DOI 10.1108/PAR-01-2016-0005
Smith G., 1984, IMPACT SOURCES AUTHO
Stent W, 2017, ACCOUNT FINANC, V57, P255, DOI 10.1111/acfi.12145
Strydom M, 2017, AUST J MANAGE, V42, P404, DOI 10.1177/0312896216657579
Su S, 2015, PAC ACCOUNT REV, V27, P28, DOI 10.1108/PAR-06-2012-0022
Sultana N, 2015, ACCOUNT FINANC, V55, P279, DOI 10.1111/acfi.12042
Tan A, 2016, AUST ACCOUNT REV, V26, P45, DOI 10.1111/auar.12081
Tan BS, 2017, AUST ACCOUNT REV, V27, P220, DOI 10.1111/auar.12167
Tan DT, 2017, ACCOUNT FINANC, V57, P597, DOI 10.1111/acfi.12156
Tan KJK, 2017, ABACUS, V53, P319, DOI 10.1111/abac.12111
Tanima FA, 2015, PAC ACCOUNT REV, V27, P466, DOI 10.1108/PAR-05-2013-0049
Tran NH, 2017, PAC ACCOUNT REV, V29, P183, DOI 10.1108/PAR-07-2016-0066
Hoang TC, 2017, AUST ACCOUNT REV, V27, P146, DOI 10.1111/auar.12128
Tsunogaya N, 2015, PAC ACCOUNT REV, V27, P3, DOI 10.1108/PAR-11-2012-0056
Unda LA, 2015, ACCOUNT FINANC, V55, P353, DOI 10.1111/acfi.12114
Uyar A, 2016, AUST ACCOUNT REV, V26, P91, DOI 10.1111/auar.12090
Vafaei A, 2015, AUST ACCOUNT REV, V25, P413, DOI 10.1111/auar.12068
van der Spek M, 2017, ABACUS, V53, P349, DOI 10.1111/abac.12112
Vieira EFS, 2016, AUST ACCOUNT REV, V26, P190, DOI 10.1111/auar.12096
Wei Y, 2017, PAC ACCOUNT REV, V29, P356, DOI 10.1108/PAR-04-2016-0044
Whiting RH, 2015, ACCOUNT FINANC, V55, P575, DOI 10.1111/acfi.12066
Whittington G, 2015, ABACUS, V51, P549, DOI 10.1111/abac.12061
Xie YY, 2015, AUST ACCOUNT REV, V25, P204, DOI 10.1111/auar.12061
Xu S, 2015, AUST J MANAGE, V40, P245, DOI 10.1177/0312896213517894
Xu SC, 2017, ACCOUNT FINANC, V57, P907, DOI 10.1111/acfi.12171
Yuan QB, 2016, ACCOUNT FINANC, V56, P879, DOI 10.1111/acfi.12090
Zeff SA, 2019, ACCOUNT HIST J, V46, P33, DOI 10.2308/aahj-52537
Zhong YX, 2017, AUST ACCOUNT REV, V27, P195, DOI 10.1111/auar.12107
Zhou S, 2017, ABACUS, V53, P94, DOI 10.1111/abac.12104
NR 168
TC 7
Z9 8
U1 2
U2 30
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0810-5391
EI 1467-629X
J9 ACCOUNT FINANC
JI Account . Financ.
PD DEC
PY 2019
VL 59
IS 4
BP 2509
EP 2552
DI 10.1111/acfi.12584
EA NOV 2019
PG 44
WC Business, Finance
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA OI5XB
UT WOS:000499394100001
DA 2024-09-05
ER
PT C
AU Pektas, ST
AF Pektas, Sule Tasli
BE ACM
TI A Systematic Analysis of Machine Learning Studies in Education
SO PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY
AND COMPUTERS, ICETC 2023
LA English
DT Proceedings Paper
CT 15th International Conference on Education Technology and Computers
(ICETC)
CY SEP 26-28, 2023
CL Univ Barcelona, Barcelona, SPAIN
HO Univ Barcelona
DE Machine Learning; Education; Bibliometric Analysis; Keyword
Cooccurrence; Network
ID ANALYTICS
AB Machine learning has been transforming education and changing learning, teaching, and administration processes. However, studies analyzing the existing body of work and emerging research foci are lacking. To fill in the re-search gap, this paper presents a bibliometric analysis of articles on machine learning in education that were indexed byWeb of Science Core Citation In-dices from 1979 to 2023. The study investigates publication patterns (articles per year and journals) and key research areas. A keyword co-occurrence analysis was conducted to identify the clusters of keywords which often co-exist in articles. The analysis revealed six clusters which correspond to the main research themes: profiling and prediction, assessment, intelligent tutoring systems, MOOCs, natural language processing, and prediction in distance learning. It is discussed that the newly emerging and rapidly developing research area focuses merely on applications of the technology, while ethical, pedagogical, socio-cultural, and administrative is-sues regarding machine learning in education need further attention.
C1 [Pektas, Sule Tasli] OSTIM Tech Univ, Ankara, Turkiye.
C3 Ostim Technical University
RP Pektas, ST (corresponding author), OSTIM Tech Univ, Ankara, Turkiye.
EM sule.taslipektas@ostimteknik.edu.tr
RI Pektas, Sule Tasli/B-9453-2008
OI Pektas, Sule Tasli/0000-0003-0596-6405
CR Andris C, 2013, T GIS, V17, P41, DOI 10.1111/j.1467-9671.2012.01354.x
Babic ID, 2017, CROAT OPER RES REV, V8, P443, DOI 10.17535/crorr.2017.0028
Blikstein P, 2014, J LEARN SCI, V23, P561, DOI 10.1080/10508406.2014.954750
Cabada RZ, 2020, INTERACT LEARN ENVIR, V28, P1048, DOI 10.1080/10494820.2018.1558256
Cain W., 2023, P SOC INF TECHN TEAC, P1293
Cetintas S, 2010, IEEE T LEARN TECHNOL, V3, P228, DOI 10.1109/TLT.2009.44
Chen CH, 2021, AUSTRALAS J EDUC TEC, V37, P130, DOI 10.14742/ajet.6116
Çinar A, 2020, EDUC INF TECHNOL, V25, P3821, DOI 10.1007/s10639-020-10128-0
Demeter E, 2022, HIGH EDUC, V84, P589, DOI 10.1007/s10734-021-00790-9
Diodato VirgilP., 2013, Dictionary of Bibliometrics
Gutiérrez G, 2018, INT J COMB OPTIM PRO, V9, P26
Hart SA, 2016, MIND BRAIN EDUC, V10, P209, DOI 10.1111/mbe.12109
Hodeghatta Umesh R., 2023, Practical Business Analytics Using R and Python, P541
Hu YH, 2023, INTERACT LEARN ENVIR, DOI [10.1109/ICASSP49357.2023.10096615, 10.1080/10494820.2022.2160467]
Jo T., 2021, Machine Learning Foundations, DOI DOI 10.1007/978-3-030-65900-4
Kumar AP, 2024, INT J ARTIF INTELL E, V34, P332, DOI 10.1007/s40593-023-00333-6
Li S, 2021, COMPUT EDUC, V163, DOI 10.1016/j.compedu.2020.104114
Liu JY, 2018, IEEE ACCESS, V6, P19205, DOI 10.1109/ACCESS.2018.2815030
Liu LT, 2023, P NATL ACAD SCI USA, V120, DOI 10.1073/pnas.2204781120
Luan H, 2021, EDUC TECHNOL SOC, V24, P250
Malik Praveen, 2023, P 2023 INT C ART INT, P357, DOI [10.1109/aisc56616.2023.10085154, DOI 10.1109/AISC56616.2023.10085154]
Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1
Musso MF, 2020, HIGH EDUC, V80, P875, DOI 10.1007/s10734-020-00520-7
Nalimov V. V., 1989, SCIENTOMETRICS, V15, P33
Onan A, 2020, COMPUT APPL ENG EDUC, V28, P117, DOI 10.1002/cae.22179
Pan XL, 2023, INTERACT LEARN ENVIR, V31, P6869, DOI 10.1080/10494820.2022.2052110
Piramuthu S, 2005, IEEE T EDUC, V48, P750, DOI 10.1109/TE.2005.854574
Popenici Stefan A D, 2017, Res Pract Technol Enhanc Learn, V12, P22, DOI 10.1186/s41039-017-0062-8
Rajaraman V, 2014, RESONANCE, V19, P198, DOI 10.1007/s12045-014-0027-9
Ramalingam VV, 2018, J PHYS CONF SER, V1000, DOI 10.1088/1742-6596/1000/1/012030
Shetty B, 2019, Towards data science
Spikol D, 2018, J COMPUT ASSIST LEAR, V34, P366, DOI 10.1111/jcal.12263
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
NR 33
TC 0
Z9 0
U1 4
U2 4
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 979-8-4007-0911-1
PY 2023
BP 451
EP 455
DI 10.1145/3629296.3629368
PG 5
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BW5RO
UT WOS:001166851900069
DA 2024-09-05
ER
PT C
AU McCain, K
AF McCain, K
BE Ingwersen, P
Larsen, B
TI Explorations in bibliometric historiography: The (re)emergence of neural
networks, 1980-1991
SO ISSI 2005: Proceedings of the 10th International Conference of the
International Society for Scientometrics and Informetrics, Vols 1 and 2
LA English
DT Proceedings Paper
CT 10th International Conference of the
International-Society-for-Scientometrics-and-Informetrics
CY JUL 24-28, 2005
CL Stockholm, SWEDEN
ID COLLAGEN RESEARCH
C1 Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA 19104 USA.
C3 Drexel University
CR Garfield E, 2003, J AM SOC INF SCI TEC, V54, P400, DOI 10.1002/asi.10226
Jain AK, 1996, COMPUTER, V29, P31, DOI 10.1109/2.485891
MCCAIN KW, 1994, KNOWLEDGE, V15, P285, DOI 10.1177/107554709401500303
SMALL H, 1986, SCIENTOMETRICS, V10, P95, DOI 10.1007/BF02016863
SMALL HG, 1977, SOC STUD SCI, V7, P139, DOI 10.1177/030631277700700202
NR 5
TC 0
Z9 0
U1 0
U2 4
PU KAROLINSKA UNIV PRESS AB
PI STOCKHOLM
PA BOX 200, STOCKHOLM, SE-171 77, SWEDEN
BN 91-7140-339-6
PY 2005
BP 668
EP 668
PG 1
WC Computer Science, Information Systems; Information Science & Library
Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BDC93
UT WOS:000232759800090
DA 2024-09-05
ER
PT J
AU Kadiresan, N
Singson, M
Thiyagarajan, S
AF Kadiresan, N.
Singson, Mangkhollen
Thiyagarajan, S.
TI Examining the relationship between academic book citations and Goodreads
reader opinion and rating
SO ANNALS OF LIBRARY AND INFORMATION STUDIES
LA English
DT Article
DE Sentiment analysis; Web scraping; Citation analysis; Goodreads; Scopus;
Google Scholar
ID SOCIAL-SCIENCE; IMPACT; REVIEWS; RESEARCHERS; HUMANITIES
AB Although the traditional bibliometric citation database is an established academic impact assessment source, in this paper, we examine the role of social media impact on academic books. We identified the highly cited books in Scopus and compared the citations with ratings and reviews on the Goodreads website. R stat was used to extract the data from Goodreads website. We found that there is an uneven distribution of Goodreads rating and reviews. Social science books received the highest number of user's ratings, reviews and citations. The study finds that there is no relationship between citation counts and Goodreads ratings and reviews count in social science books. Although social science books generated the highest number of studies and engagement by the readers, there seems to be no evidence to suggest that this engagement results in an academic citation. Whereas, a correlation was observed between health science books citations and Goodreads overall rating, as with physical science book reviews and Google Scholar citation counts.
C1 [Kadiresan, N.; Singson, Mangkhollen] Pondicherry Univ, Dept Lib & Informat Sci, Pondicherry, India.
[Thiyagarajan, S.] Pondicherry Univ, Dept Int Business, Pondicherry, India.
C3 Pondicherry University; Pondicherry University
RP Thiyagarajan, S (corresponding author), Pondicherry Univ, Dept Int Business, Pondicherry, India.
EM nkadiresan1992@gmail.com; manglien@gmail.com; sthiyags@yahoo.com
OI Singson, Mangkhollen/0000-0001-7671-9335
CR Amudhavalli A, 2008, 4 INT C WEB INF SCI
Danell R, 2013, SCIENTOMETRICS, V94, P999, DOI 10.1007/s11192-012-0840-4
FOSTER CL, 1951, ED RES B, P64
Gander JP, 1999, RES HIGH EDUC, V40, P171, DOI 10.1023/A:1018782513285
Garfield, 1996, G7 CONS C THEOR PRAC
Gonzalez-Fernandez-Villavicencio N, 2019, Z KATALAN, V32, P143
Gorraiz J, 2014, SCIENTOMETRICS, V98, P841, DOI 10.1007/s11192-013-1176-4
Hancock KJ, 2013, INT STUD PERSPECT, V14, P507, DOI 10.1111/insp.12002
Hartley J, 2006, J AM SOC INF SCI TEC, V57, P1194, DOI 10.1002/asi.20399
Hicks D, 1999, SCIENTOMETRICS, V44, P193, DOI 10.1007/BF02457380
Huang MH, 2008, J AM SOC INF SCI TEC, V59, P1819, DOI 10.1002/asi.20885
Kong XJ, 2019, J INFORMETR, V13, P887, DOI 10.1016/j.joi.2019.07.005
Kousha K, 2007, LIBR INFORM SCI RES, V29, P495, DOI 10.1016/j.lisr.2007.05.003
Kousha K, 2017, J ASSOC INF SCI TECH, V68, P2004, DOI 10.1002/asi.23805
Kousha K, 2011, J AM SOC INF SCI TEC, V62, P2147, DOI 10.1002/asi.21608
Kousha K, 2010, J INFORMETR, V4, P124, DOI 10.1016/j.joi.2009.10.003
Kousha K, 2009, J AM SOC INF SCI TEC, V60, P1537, DOI 10.1002/asi.21085
Kovács B, 2014, ADMIN SCI QUART, V59, P1, DOI 10.1177/0001839214523602
Lindholm-Romantschuk Y, 1991, SCHOLARLY BOOK REVIE
Maity SK, 2018, IEEE SYMP COMP COMMU, P1101
NEDERHOF AJ, 1993, RES POLICY, V22, P353, DOI 10.1016/0048-7333(93)90005-3
Peñas CS, 2006, J INF SCI, V32, P480, DOI 10.1177/0165551506066058
Ruths, 2015, 9 INT AAAI C WEB SOC
Singson M, 2017, 11 INT CAL 2017, P219
SMALL HG, 1979, SCIENTOMETRICS, V1, P445, DOI 10.1007/BF02016661
SMITH LC, 1981, LIBR TRENDS, V30, P83
Sudhier Pillai K. G., 2007, ANN LIB INFORM STUDI, V54, P90
Tang R, 2008, COLL RES LIBR, V69, P356, DOI 10.5860/crl.69.4.356
Van den Brink M., 2006, Employee Relations, V28, P523, DOI DOI 10.1108/01425450610704470
Vaughan L, 2005, J AM SOC INF SCI TEC, V56, P1075, DOI 10.1002/asi.20199
Wang K, 2019, J INFORMETR, V13, P874, DOI 10.1016/j.joi.2019.07.003
Zhou QQ, 2016, SCIENTOMETRICS, V107, P1435, DOI 10.1007/s11192-016-1930-5
Zhu, 2013, MULTIDOCUMENT SUMMAR
Zuccala AA, 2015, ASLIB J INFORM MANAG, V67, P320, DOI 10.1108/AJIM-11-2014-0152
NR 34
TC 1
Z9 1
U1 2
U2 7
PU NATL INST SCIENCE COMMUNICATION-NISCAIR
PI NEW DELHI
PA DR K S KRISHNAN MARG, PUSA CAMPUS, NEW DELHI 110 012, INDIA
SN 0972-5423
EI 0975-2404
J9 ANN LIBR INF STUD
JI Ann. Libr. Inf. Stud.
PD DEC
PY 2020
VL 67
IS 4
BP 215
EP 221
DI 10.56042/alis.v67i4.32597
PG 7
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA PR0VD
UT WOS:000606955800002
OA gold
DA 2024-09-05
ER
PT C
AU Lynch, G
AF Lynch, Grace
BE Balcaen, P
TI Increasing Student Participation and Success in Online Education
SO PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON E-LEARNING
LA English
DT Proceedings Paper
CT 6th International Conference on e-Learning
CY JUN 27-28, 2011
CL Univ British Columbia Okanagan, Kelowna, CANADA
HO Univ British Columbia Okanagan
DE eLearning; online learning excellence; open access; student retention;
success
AB This short presentation will outline the work in progress for the establishment of a Centre of Online Learning Excellence (COLE) for the Open Universities Australia consortium and outcomes from initiatives to improve student participation and success through high quality learning environments. Open Universities Australia (OUA) provides access to 100 courses and 1000 units via twenty different Australian education providers and is Australia's fastest growing online education service with over 130,000 students having studied since its inception in 1993. By allowing potential candidates to make application to study without the provision of an entry score or previous study history, OUA endeavours to remove many of the barriers to university education such as distance, time and entry requirements. COLE is in a position to recommend, manage and evaluate for wider implementation trials across Providers in areas such as new assessment technologies, new ways of engaging with students and their mobile devices for learning and early alert systems for students at risk. OUA's history of harnessing expertise within its own community and in the general community provides a particularly advantageous position for providing forward-thinking, innovative and meaningful research and development. OUA has developed a strong understanding and solid expertise base in aspects relating to distance online: learning; teaching (pedagogical); delivery (educational technology); and instructional design issues. The five main areas of work that COLE undertakes are: ELearning research; educational and technological advice and consultancy; Professional Development; project management and educational design and educational design, development and production of units and resources.
C1 [Lynch, Grace] Open Univ Australia, Melbourne, Vic, Australia.
C3 Open Universities Australia
EM grace.lynch@open.edu.au
CR [Anonymous], 2009, ECONOMIST 1230
De Fazio T., 2007, THESIS MONASH U MELB
Herrington J., 2009, New technologies, new pedagogies: Mobile learning in higher education, P138, DOI DOI 10.11645/4.1.1478
Lea M.R., 2000, STUDENT WRITING HIGH, P32
LYNCH G, 2010, P WORLD C ED MULT HY, P2040
Lynch G., 2010, CURRICULUM TECHNOLOG
Shank P., 2010, LEARNING SOLUTI 0210
Templer A., 2010, AUSTRALIAN
NR 8
TC 0
Z9 3
U1 0
U2 13
PU ACAD CONFERENCES LTD
PI NR READING
PA CURTIS FARM, KIDMORE END, NR READING, RG4 9AY, ENGLAND
BN 978-1-908272-04-1
PY 2011
BP 500
EP 504
PG 5
WC Education & Educational Research
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BBT89
UT WOS:000308137800059
DA 2024-09-05
ER
PT C
AU Ramneet
Gupta, D
Madhukar, M
AF Ramneet
Gupta, Deepali
Madhukar, Mani
GP IEEE
TI Bibliometric Analysis of MOOC using Bibliometrix Package of R
SO PROCEEDINGS OF 2020 6TH IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE)
CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2020)
LA English
DT Proceedings Paper
CT 6th IEEE International Women in Engineering (WIE) Conference on
Electrical and Computer Engineering (WIECON-ECE)
CY DEC 26-27, 2020
CL Bhubaneswar, INDIA
DE MOOC; MOOCS; E-learning; Artificial Intelligence; Machine Learning
AB As a growing academic approach, MOOCs have gained widespread attention through academic courses. There are many MOOC platforms available like Udemy, Udacity, Coursera, Swayam, Khan Academy and EdX. All these platforms provide free as well as paid courses. These types of certifications help in boosting the career of the learners. A strong recommendation system is the need of the day for these types of platforms that will guide learners in selecting the appropriate course according to their levels. In this paper, 1511 journal articles have been selected through the Scopus database from 2012 to 2020. This study uses a bibliometric analysis method to visualize the knowledge network analysis with the help of the Biblioshiny tool of R software.
C1 [Ramneet; Gupta, Deepali] Chitkara Univ, Chitkara Univ Inst Engn & Technol, Chandigarh, Punjab, India.
[Madhukar, Mani] Univ Relat, IBM India Private Ltd, Greater Noida, India.
C3 Chitkara University, Punjab
RP Ramneet (corresponding author), Chitkara Univ, Chitkara Univ Inst Engn & Technol, Chandigarh, Punjab, India.
EM ramneet@chitkara.edu.in; deepali.gupta@chitkara.edu.in;
manimad9@in.ibm.com
RI Gupta, Deepali/HJY-4480-2023
OI Gupta, Deepali/0000-0002-3207-5248; , Dr. Ramneet/0000-0002-4066-5416
CR Ayodele TO., 2010, NEW ADV MACHINE LEAR, V3, P19, DOI DOI 10.5772/9385
Conache Maria, 2016, Informatica Economica, V20, P1, DOI 10.12948/issn14531305/20.2.2016.01
Ding MC, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P145, DOI 10.1145/3303772.3303794
Funieru LM, 2016, INFORM EC, V20
Gamage D, 2020, INT J EMERG TECHNOL, V15, P161, DOI 10.3991/ijet.v15i08.12493
Korableva O, 2019, 2019 INTERNATIONAL CONFERENCE ON BIG DATA AND EDUCATION (ICBDE 2019), P26, DOI 10.1145/3322134.3322139
Lebron D, 2015, PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COLLABORATION TECHNOLOGIES AND SYSTEMS, P167, DOI 10.1109/CTS.2015.7210417
Michael J, 2006, ADV PHYSIOL EDUC, V30, P159, DOI 10.1152/advan.00053.2006
Nawrot I, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1077, DOI 10.1145/2567948.2580054
Nieto Y, 2019, SOFT COMPUT, V23, P4145, DOI 10.1007/s00500-018-3064-6
Oztekin A, 2013, DECIS SUPPORT SYST, V56, P63, DOI 10.1016/j.dss.2013.05.003
Pelet J.-E., 2019, ADVANCED WEB APPL PR, P20, DOI DOI 10.4018/978-1-5225-7435-4.CH002
Ruipérez-Valiente JA, 2020, LAK20: THE TENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P518, DOI 10.1145/3375462.3375482
Saier MH, 2007, WATER AIR SOIL POLL, V181, P1, DOI 10.1007/s11270-007-9372-6
Sideris D, 2015, EDULEARN PROC, P5543
Sinha E., 2019, INT J ED DEV USING I, V15, P5
Uskov VL, 2019, IEEE GLOB ENG EDUC C, P1370, DOI [10.1109/educon.2019.8725237, 10.1109/EDUCON.2019.8725237]
Zhu J, 2017, EFFECTIVE FRAMEWORKS
NR 18
TC 0
Z9 0
U1 2
U2 31
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-1917-8
PY 2020
BP 169
EP 173
DI 10.1109/WIECON-ECE52138.2020.9397952
PG 5
WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BR8DZ
UT WOS:000671104100039
DA 2024-09-05
ER
PT C
AU Zhou, W
Wang, SK
Lao, DX
AF Zhou, Wei
Wang, Shuke
Lao, Danxue
GP IEEE
TI The field intersection of machine learning and intelligent decision
SO 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC
SE Chinese Control and Decision Conference
LA English
DT Proceedings Paper
CT 35th Chinese Control and Decision Conference (CCDC)
CY MAY 20-22, 2023
CL Yichang, PEOPLES R CHINA
DE machine learning; intelligent decision; bibliometric analysis;
development track
AB Machine learning is an important tool for intelligent decision, the effective combination of the two is the current research hotspot, but fewer scholars have analyzed their development context. This paper provides a comprehensive analysis of the whole context from a scientometric perspective, aiming to help researchers understand the development of the two fields as they collide, and thus create new research results. We retrieved 2,218 documents from the Web of Science (WoS) database from 1990 to 2021 and reveals the research hotspot and research frontiers of the subject in the main path longitudinal comparison of the main path of the four sub-periods, which teases the research direction and its evolution route in the two fields. It is found that the field shows a trend of machine learning algorithms moving from single to multiple directions, and the application areas of intelligent decision are gradually widening.
C1 [Zhou, Wei; Wang, Shuke; Lao, Danxue] Yunnan Univ Finance & Econ, Sch Finance, Kunming, Yunnan, Peoples R China.
C3 Yunnan University of Finance & Economics
RP Zhou, W (corresponding author), Yunnan Univ Finance & Econ, Sch Finance, Kunming, Yunnan, Peoples R China.
EM zw453@163.com; lynnwang_9@163.com; 15123668128@163.com
RI Wang, Shuke/AAH-4843-2021
FU Natural Science Foundation of China [72071176]; Philosophy and Social
Science Innovation Team Project of Yunnan Province [2022CX01]
FX This work was supported by the Natural Science Foundation of China (No.
72071176) and the Philosophy and Social Science Innovation Team Project
of Yunnan Province (No. 2022CX01)
CR AGhamdi M. A., ARABIAN J SCI ENG
Al-Omari M., J NETWORK SYSTEMS MA
AlHares EF. T., SYMMETRY
Ali M., AGR FOREST METEOROLO
Anandkumar A., ANN STAT
Ansari S., 2013, INT C INF SCI APPL I, P1, DOI DOI 10.1109/ICISA.2013.6579446
Borzemski L., CYBERNETICS SYSTEMS
Chen J. N. Chen. S. Y., IEEE INTERNET THINGS
Cheng M. Y., INT J INFORM TECHNOL
Cheng M. Y., AUTOMATION CONSTRUCT
Cui F., AUSTR ENV MONITORING
Cui L. Z., INT J MACHINE LEARNI
Famili A., J INTELLIGENT ROBOTI
Freedman R., P 20 ANN C COGN SCI
Gaham M, 2009, 2009 XXII INTERNATIONAL SYMPOSIUM ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES, P90
Goudarzi S., APPL SOFT COMPUTING
Hasan M. B., WIRELESS PERSONAL CO
Jamali M. R., NEURAL COMPUTING APP
Jiang C. X., IEEE WIRELESS COMMUN
Kaushik A. K., ACS APPL BIOMATERIAL
Khashman A., J INFORM SCI ENG
Khashman A., IEEE T NEURAL NETWOR
Khashman A., J MULTIPLE VALUED LO
Kim J. H., P 22 ANN C COGN SCI
Kouadio L., COMPUTERS ELECT AGR
Lei L., IEEE COMMUNICATIONS
Liang L., IEEE INTERNET THINGS
Liu M. Q., IEEE T IND INFORM
Mamseni T., GEODERMA
Marchesane M.G., ADV PRODUCTION MANAG
Mjolsness E., SCIENCE
Nakasuka S., T JAPAN SOC AERONAUT
Nogami J., CONTROL ENG PRACTICE
Pawlak Z., INFORM SCI
Priore P., COMPUTERS IND ENG
Qi Q, IEEE T VEHICULAR TEC
Sarker I. H., MOBILE NETWORKS APPL
Sarker I.H., J BIG DATA
Sarker IH, INTERNET OF THINGS
Sarker IH., SYMMETRY
Shan T., J DENT RES
Sharma A., IEEE ACCESS
Shaw M. J, DECISION SUPPORT SYS
Shaw M. J., IIE T
Shiue Y. R., IEEE ACCESS
Shiue Y. R., ROBOTICS COMPUTER IN
Sizilio G. R. M. A., BIOMEDICAL ENG ONLIN
Thomas G., INVESTIGATIVE OPHTHA
Wang G. Y., P SPIE
Wang G. Y., DATA MINING KNOWLEDG
Weckman G. R., J INTELLIGENT MANUFA
Yaseen Z. M., 2004, CHIN CONT DECIS CONF
Yu H., P SOC PHOT INSTR ENG
Zatwarnicki K., LECT NOTES COMPUTER
Zhang H. X., CYBERNETICS SYSTEMS
Zhang H. X., J INTELLIGENT FUZZY
Zhou X. K., IEEE ACM T COMPUTATI
NR 57
TC 0
Z9 0
U1 3
U2 3
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 1948-9439
BN 979-8-3503-3472-2
J9 CHIN CONT DECIS CONF
PY 2023
BP 3952
EP 3957
DI 10.1109/CCDC58219.2023.10327500
PG 6
WC Automation & Control Systems; Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Operations Research & Management Science
GA BW2HE
UT WOS:001116704304030
DA 2024-09-05
ER
PT J
AU Siemens, G
Matheos, K
AF Siemens, George
Matheos, Kathleen
TI Systemic Changes in Higher Education
SO IN EDUCATION
LA English
DT Article
DE higher education; freedom of learners; open access; online learning
AB A power shift is occurring in higher education, driven by two trends: (a) the increased freedom of learners to access, create, and re-create content; and (b) the opportunity for learners to interact with each other outside of a mediating agent. Information access and dialogue, previously under control of the educator, can now be readily fulfilled by learners. When the essential mandate of universities is buffeted by global, social/political, technological, and educational change pressures, questions about the future of universities become prominent. The integrated university faces numerous challenges, including a decoupling of research and teaching functions. Do we still need physical classrooms? Are courses effective when information is fluid across disciplines and subject to continual changes? What value does a university provide society when educational resources and processes are open and transparent?
C1 [Siemens, George] Athabasca Univ, Athabasca, AB, Canada.
[Matheos, Kathleen] Univ Manitoba, Winnipeg, MB, Canada.
C3 Athabasca University; University of Manitoba
RP Siemens, G (corresponding author), Athabasca Univ, Athabasca, AB, Canada.
RI Siemens, George/E-9682-2019
OI Siemens, George/0000-0002-9567-9794
CR Alderman C., 2009, The Bologna process for U.S. eyes: Re-learning higher education in the age of convergence
Allen E.I., 2008, Staying the course: Online education in the United States, 2008
[Anonymous], 2005, CAMBRIDGE HDB LEARNI
[Anonymous], 1962, The Structure of Scientific Revolutions
[Anonymous], 2008, DAILY
Archer W., 1999, CAN J UNIV CONTIN ED, V25, P13
Argyle A.W., 1974, The Classical Journal, V69, P348
Atkins D.E., 2007, A review of the open educational resources (OER) movement: Achievements, challenges, and new opportunities
Bates A.W., 2000, MANAGING TECHNOLOGIC
Bowman I., 1971, DESIGN SCHOLARSHIP
Boyer E. L., 1990, SCHOLARSHIP RECONSID
Boyer EL, 1996, QUEST, V48, P129, DOI 10.1080/00336297.1996.10484184
Canadian Council on Learning, 2008, STAT LEARN CAN LEARN
Carey K., 2009, WHAT COLL SHOULD LEA
Centre for Educational Research and Innovation, 2008, HIGH ED 2030, V1
Centre for Educational Research and Innovation, 2006, 4 FUT SCEN HIGH ED
Centre for Educational Research and Innovation, 2008, TRENDS SHAP ED
Christensen C.M., 2000, INNOVATORS DILEMMA N
Connectivity Scorecard, CAN CONN SCOR POP DE
Daniel J., 2006, TECTONIC SHIFT GLOBA
Daniel J., 2009, Breaking Higher Education's Iron Triangle: Access, Cost, and Quality
DAVID PA, 1990, AM ECON REV, V80, P355
Davis A., 2004, INT C OP DIST ED HON
Douglass J.A., 2008, COLL VS UNEMPLOYMENT
Downes S., 2009, FUTURE LEARNING 10 Y
ERSKINE A, 1995, GREECE ROME, V42, P38, DOI 10.1017/S0017383500025213
Eskelsen G., 2009, The digital economy fact book, V10th
Everett R., 2009, BUILDING BETTER FUTU
Frank D.J., 2006, RECONSTRUCTING U WOR
Freedman G., 2008, Unlocking the global education imperative: Core challenges and critical issues
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Gibbons M., 2002, GLOBALISATION WHAT I
Goldman L., 1996, DONS WORKERS OXFORD
Gourley B., 2008, SCHOLARSHIP DIGITAL
Halsall P., 1998, MODERN HIST SOURCEBO
Heller-Roazen D, 2002, OCTOBER, P133
Housewright R., 2008, Ithaka's 2006 studies of key stakeholders in the digital transformation in higher education
Keeling R., 2006, European Journal of Education, V41, P203, DOI [10.1111/j.1465-3435.2006.00256.x, DOI 10.1111/J.1465-3435.2006.00256.X]
Levine A., 2002, BARRIERS DISTANCE ED
Maes P., 2009, TED TALKS UNVEILING
MAKDISI G, 1989, J AM ORIENTAL SOC, V109, P175, DOI 10.2307/604423
Makdisi George., 1981, The Rise of Colleges: Institutions of Learning in Islam and the West
Martin Prosperity Institute, 2009, ONT CREAT AG
Mason M., 2008, Educational Philosophy and Theory, V40, P5, DOI DOI 10.1111/J.1469-5812.2007.00412.X
Matheos K., 2002, RETHINKING RESIDENCY
McFadden Allen B. M., 2007, REALIZING GLOBAL U 5, P3
McNeely I.F., 2008, Reinventing knowledge
Ogilvie BW, 2003, J HIST IDEAS, V64, P29, DOI 10.1353/jhi.2003.0015
Organisation for Economic Co-operation and Development, 2007, PART WEB US CREAT CO
Organization for Economic Co-operation and Development, 2008, FUT INT EC STAT PROF
Organization for Economic Co-operation and Development, AUSTR WORLD CLASS U
Panel on the Impact of Information Technology on the Future of the Research University National Research Council, 2002, PREP REV INF TECHN F
Poole D., 2005, Issues in higher education, P195
Rosenberg D, 2003, J HIST IDEAS, V64, P1, DOI 10.1353/jhi.2003.0017
Rothe J. P., 1986, DISTANCE ED CANADA, P4
Schumpeter, 1942, Capitalism, Socialism and Democracy
Schuster J., 2006, AM FACULTY RESTRUCTU, DOI 10.1353/book.3484
Seaborne K., 1986, DISTANCE ED CANADA, P37
Siemens G., 2008, CONNECTIVISM CONNECT
Siemens G., 2009, HDB EMERGING TECHNOL
Ten Brook A., 1875, American State Universities: Their Origin and Progress
Urvoy Dominique., 1991, IBN RUSHD AVERROES
van der Wende M.C., 2003, Journal of Studies in International Education, V7, P193, DOI [https://doi.org/10.1177/1028315303007002006, DOI 10.1177/1028315303007002006]
Wagner N, 2008, EDUC TECHNOL SOC, V11, P26
Weller M, 2009, HORIZON, V17, P181, DOI 10.1108/10748120910993204
Willis R., 1997, Higher education in transition, V4th
NR 66
TC 10
Z9 19
U1 0
U2 0
PU UNIV REGINA, FAC EDUCATION
PI REGINA
PA 3737 WASCANA PKWY, REGINA, SK S4S 0A2, CANADA
SN 1927-6117
J9 EDUCATION-CANADA
JI Education-Canada
PD SPR
PY 2010
VL 16
IS 1
SI SI
BP 3
EP 18
PN 2
PG 16
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA V4P1I
UT WOS:000219134900002
DA 2024-09-05
ER
PT J
AU COHEN, PR
HOWE, AE
AF COHEN, PR
HOWE, AE
TI HOW EVALUATION GUIDES AI RESEARCH
SO AI MAGAZINE
LA English
DT Article
RP COHEN, PR (corresponding author), UNIV MASSACHUSETTS,DEPT COMP & INFORMAT SCI,EXPTL KNOWLEDGE SYST LAB,AMHERST,MA 01003, USA.
CR AGRE PE, 1985, MIT297 TECHN REP WOR
[Anonymous], 1986, AI Magazine
Buchanan B.G., 1984, The MYCIN experiments of the Stanford heuristics programming project
BUCHANAN BG, 1987, KSL8703 STANF U DEP
CHAPMAN D, 1987, 1986 P WORKSH LOS AL, P411
COHEN PR, 1983, 8TH P INT JOINT C AR, P212
COHEN PR, 1988, IN PRESS IEEE T SYST
DECKER KS, 1988, TR8999 U MASS DEP CO
DEKLEER J, 1986, ARTIF INTELL, V28, P127, DOI 10.1016/0004-3702(86)90080-9
ERMAN LD, 1980, COMPUT SURV, V12, P213, DOI 10.1145/356810.356816
FORBUS K, 1988, 7TH P NAT C ART INT, P193
GASCHNIG J, 1983, BUILDING EXPERT SYST, P241
Geissman J.R., 1988, AI EXPERT, V1, P26
HOWE A, 1986, 8601 U MASS TECHN RE
HOWE A, 1986, J ARTIFICIAL INTELLI, V1, P23
LANGLEY P, 1987, RES PAPERS MACHINE L, V2, P195
LENAT DB, 1983, 3RD P NAT C ART INT, P236
LENAT DB, STANCS76570 STANF U
LENAT DB, 1987, 10TH P INT JOINT C A, P1173
LENAT DB, 1976, THESIS STANFORD U
LESSER VR, 1988, AI MAG, V9, P49
MITCHELL TM, 5TH P INT JOINT C AR, P305
NEWELL A, 1976, COMMUN ACM, V19, P113, DOI 10.1145/360018.360022
NEWELL A, 1975, 1974 IEEE S, P354
ORELUP MF, 1987, THESIS U MASSACHUSET
ROTHENBERG J, 1987, R3542DARPA RAND CORP
Shortliffe E., 2012, Computer-based medical consultations: MYCIN, VVolume 2
NR 27
TC 48
Z9 50
U1 0
U2 5
PU AMER ASSOC ARTIFICIAL INTELL
PI MENLO PK
PA 445 BURGESS DRIVE, MENLO PK, CA 94025-3496
SN 0738-4602
J9 AI MAG
JI AI Mag.
PD WIN
PY 1988
VL 9
IS 4
BP 35
EP 43
PG 9
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA R7330
UT WOS:A1988R733000003
DA 2024-09-05
ER
PT J
AU Prasad, KDV
Vaidya, R
Srinivas, K
Kumar, VA
AF Prasad, K. D. V.
Vaidya, Rajesh
Srinivas, K.
Kumar, V. Anil
TI Evaluation of the Factors Influencing the Performance Appraisal System
with Reference to Agriculture Research Sector, Hyderabad - A Multinomial
Logistic Regression Approach
SO PACIFIC BUSINESS REVIEW INTERNATIONAL
LA English
DT Article
DE Performance Appraisal; Agriculture; Regression
ID PERSPECTIVE
AB In this research study we reported the results on the factors influencing the performance appraisal system using multinomial logistic regression analysis with reference to Agriculture Reearch Sector employees in Hyderabad Metro, India. The data collected from one of the critical factor of HR practices under Performance Management System -the performance appraisal forms of 400 employees working in the agriculture sector consisting of from 300 men and 100 women employees. The seven independent factors Job knowledge, Skill level, Job execution, Initiative, Client orientation, Team work, Compliance to policies and practices one dependent factor outcome of the Performance Appraisal System (PAS) the Rating were measured. The descriptive analysis and multinomial logistic regression analysis carried out to arrive at the conclusions. To measure the reliability of the scale used for this study, and internal consistencies of the instrument performance appraisal form, the reliability statistics Cronbach's alpha (C-Alpha) and Split-half reliability estimated. The overall C-Alpha value is 0.89, and the C-Alpha values for all the factors ranged 0.83 to 0.88, whereas overall Spearman Brown Split-half measured at 0.84. The multinomial logistic regression analysis was performed to estimate the likelyhood odds ratios (ORs) to explain the factors associated outcome of the performance appraisal system Rating, a dependent variable. It can be observed from the relative log odds ratios significant negative influence of independent variables, Job Knowledge (OR, 0.404, 95% 0.168-0.972) Job skill (OR 0.126, 95% CI 0.053-0.296), Job execution (OR 0.105. 95% CI 0.039-0.280), Initiative (OR 0.307, 95% CI 0.134-0.705), Team Work (OR 0.284, 95% CI 0.129-0.624), and Compliance to Policies and Practices (OR 0.260, 95% CI 0.117) for dependent variable Rating Excellent and Job knowledge (OR 0.320, 95% CI 0.113-0.907), Job skill (OR 0.066, 95% CI 0.024-0.178), Job Execution (OR 0.036, 95% CI 0.012-0.111), Initiative (OR 0.170, 95% CI 0.064, -0.453), Team work (OR 0.142, 95% CI 0.057-0.356), Compliance to policies (OR 0.083, 95% CI 0.032-0.215) for Rating Good verses Outstanding as reference variable.
C1 [Prasad, K. D. V.] Rashtrasant Tukdoji Maharaj Nagpur Univ, Fac Commerce, Nagpur, Maharashtra, India.
[Vaidya, Rajesh] Shree Ramdeobaba Coll Engn & Management, Dept Management & Technol, Nagpur, Maharashtra, India.
[Srinivas, K.] ICRISAT Asia Program, Patancheru, Andhra Prades, India.
[Kumar, V. Anil] Int Crops Res Inst Semi Arid Trop, Biometr, Patancheru, Andhra Prades, India.
C3 Rashtrasant Tukadoji Maharaj Nagpur University; Shri Ramdeobaba College
of Engineering & Management; Rashtrasant Tukadoji Maharaj Nagpur
University; CGIAR; International Crops Research Institute for the
Semi-Arid-Tropics (ICRISAT)
RP Prasad, KDV (corresponding author), Rashtrasant Tukdoji Maharaj Nagpur Univ, Fac Commerce, Nagpur, Maharashtra, India.
RI PRASAD, KDV/AAF-7097-2019; Kumar, Anil/AAF-4031-2020; Vaidya, Rajesh
W/AAC-6790-2021
OI PRASAD, KDV/0000-0001-9921-476X; Vaidya, Rajesh W/0000-0002-7541-2187
CR Agresti A., 1996, An introduction to categorical data analysis
[Anonymous], ANAL BINARY DATA
[Anonymous], 2005, COMPENSATION BENEFIT
[Anonymous], 2016, IBM SPSS Statistics for Windows version 24.0
Armstrong Michael., 1977, A Handbook of Personnel Management Practice
BERTONE S, 1998, DEV EFFECTIVE CONSUL
Bohlander G., 2004, MANAGING HUMAN RESOU
Boswell W.R., 2000, HUM RESOUR DEV Q, V11, P283, DOI [10.1002/1532-1096(200023)11:3andlt;283::AID-HRDQ6andgt;3.0.CO;2-3, DOI 10.1002/1532-1096(200023)11:3ANDLT;283::AID-HRDQ6ANDGT;3.0.CO;2-3]
Cleveland J.N., 1992, Research in personnel and human resources management, V10, P121, DOI DOI 10.1177/0018726706064171
Coens A T., 2000, Abolishing performance appraisals
Cronbach LJ, 1951, PSYCHOMETRIKA, V16, P297
Dargham N. A. S., 2009, MAITR C FGM
Das SC, 2016, PAC BUS REV INT, V8, P1
DeNisi A., 2006, MANAGEMENT ORG REV
Desler G., 2008, HUMAN RESOURCE MANAG
Garavan T., 1997, Journal of Management Development, V16, P134, DOI DOI 10.1108/02621719710164300
Garvin D. A., 1998, MIT SLOAN MANAGEMENT
Gay L.R., 2009, Educational Research: Competencies for Analysis and Applications, V9th
Greenberg J., 1993, JUSTICE WORKPLACE AP, P79103
Haberman S.J., 1978, ANAL QUALITATIVE DAT, V1-2
Hensher D.A., 1981, APPL DISCRETE CHOICE
Hong E.N. C., 2012, International Journal of Business Research and Management, V3, P60
Hosmer W., 2000, Applied Logistic Regression, VSecond
Kaiser H. F., 1974, EDUC PSYCHOL MEAS, V35, P1
Longenecker C.O., 1992, Advanced Management Journal, V57, P18
Longenecker C.O., 1997, Career Development International, V2, P212
MasoudLotfizadeh, 2014, MALAYSIAN J PUBLIC H, V14, P79
McDowall A, 2004, PERS REV, V33, P8, DOI 10.1108/00483480410510606
Medlin B., 2013, J BUSINESS CASES APP, V7, P291
Menard S, 2000, AM STAT, V54, P17, DOI 10.2307/2685605
Mernard S., 1995, SAGE U PAPER SERIES, V07-106
NAGELKERKE NJD, 1991, BIOMETRIKA, V78, P691, DOI 10.1093/biomet/78.3.691
NOVICK MR, 1967, PSYCHOMETRIKA, V32, P1, DOI 10.1007/BF02289400
Ochoti G.N., 2012, International Journal of Business and Social Science, V3, P37
Pardo B., 2002, Computer Music Journal, V26, P27, DOI 10.1162/014892602760137167
Peng CYJ, 2002, J EDUC RES, V96, P3, DOI 10.1080/00220670209598786
Peng CYJ, 2001, AM J HEALTH BEHAV, V25, P278, DOI 10.5993/AJHB.25.3.15
Poornima V., 2015, International Journal of Science and Research, V4, P1169
Sateesh Kumar K, 2012, INT J ADV ENG TECHNO, V2, P410
SCHLESSELMAN JJ, 1981, CASE CONTROL STUDIES
Shrivastava A, 2011, INT J HUM RESOUR MAN, V22, P632, DOI 10.1080/09585192.2011.543639
Stephen E. B., 2014, INT J SCI RES MANAGE, V2, P1417
Suryawanshi A., 2015, INT J SCI RES PUBLIC, V5, P1
Tabachnick B.G., 2007, USING MULTIVARIATE S, VVolume 5, P481
Townley B, 1999, J MANAGE STUD, V36, P287, DOI 10.1111/1467-6486.00137
Vallance S, 1999, AUST J PUBL ADMIN, V58, P78, DOI 10.1111/1467-8500.00129
Yee C. C., 2009, WORLD ACAD SCI ENG T, V3, P2009
Zakaria N., 2012, J GLOBAL MANAGEMENT, V3, P74
NR 48
TC 0
Z9 0
U1 1
U2 2
PU PACIFIC INST MANAGEMENT
PI RAJASTHAN
PA PACIFIC HILLS, PRATAP NAGAR EXTENSION, AIR PORT RD, UDAIPUR, RAJASTHAN,
313 001, INDIA
SN 0974-438X
J9 PAC BUS REV INT
JI Pac. Bus. Rev. Int.
PD MAR
PY 2017
VL 9
IS 9
BP 7
EP 18
PG 12
WC Business
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA FY4DU
UT WOS:000426772600002
DA 2024-09-05
ER
PT C
AU Thijs, B
Zhang, L
Glänzel, W
AF Thijs, Bart
Zhang, Lin
Glanzel, Wolfgang
BE Gorraiz, J
Schiebel, E
Gumpenberger, C
Horlesberger, M
Moed, H
TI BIBLIOGRAPHIC COUPLING AND HIERARCHICAL CLUSTERING FOR THE VALIDATION
AND IMPROVEMENT OF SUBJECT-CLASSIFICATION SCHEMES
SO 14TH INTERNATIONAL SOCIETY OF SCIENTOMETRICS AND INFORMETRICS CONFERENCE
(ISSI)
SE Proceedings of the International Conference on Scientometrics and
Informetrics
LA English
DT Proceedings Paper
CT 14th International-Society-of-Scientometrics-and-Informetrics Conference
(ISSI)
CY JUL 15-20, 2013
CL Vienna, AUSTRIA
AB An attempt is made to apply bibliographic coupling to journal clustering of the complete Web of Science database. Since the sparseness of the underlying similarity matrix proved inappropriate for this exercise, second-order similarities have been used. Only 0.12% out of 8282 journals had to be removed from the classification as being singletons. The quality at three hierarchical levels with 6, 14 and 24 clusters substantiated the applicability of this method. Cluster labelling was made on the basis of the about 70 subfields of the Leuven-Budapest subject-classification scheme that also allowed the comparison with the existing two-level journal classification system developed in Leuven. The further comparison with the 22 field classification system of the Essential Science Indicators does, however, reveal larger deviations.
C1 [Thijs, Bart; Glanzel, Wolfgang] Katholieke Univ Leuven, ECOOM, Leuven, Belgium.
[Thijs, Bart; Glanzel, Wolfgang] Katholieke Univ Leuven, Dept MSI, Leuven, Belgium.
[Zhang, Lin] North China Univ Water Conservancy & Elect Power, Dept Management & Econ, Zhengzhou, Peoples R China.
[Glanzel, Wolfgang] Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Budapest, Hungary.
C3 KU Leuven; KU Leuven; North China University of Water Resources &
Electric Power; Hungarian Academy of Sciences
RP Thijs, B (corresponding author), Katholieke Univ Leuven, ECOOM, Leuven, Belgium.
EM bart.thijs@kuleuven.be; zhanglin_1117@126.com;
wolfgang.glanzel@kuleuven.be
RI Glanzel, Wolfgang/AAE-4395-2021; Zhang, Lin/M-3007-2017; Glanzel,
Wolfgang/A-6280-2008; Thijs, Bart CM/C-2995-2008
OI Zhang, Lin/0000-0003-0526-9677; Glanzel, Wolfgang/0000-0001-7529-5198;
CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003
[Anonymous], 1976, EVALUATIVE BIBLIOMET
Bassecoulard E, 1999, SCIENTOMETRICS, V44, P323, DOI 10.1007/BF02458483
GARFIELD E, 1998, 150 ANN M AAAS PHIL
Glänzel W, 2011, SCIENTOMETRICS, V88, P297, DOI 10.1007/s11192-011-0347-4
Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087
Glanzel W, 1996, SCIENTOMETRICS, V37, P195, DOI 10.1007/BF02093621
Jacomy M., 2009, 3 INT AAAI C WEBL SO
Janssens F., 2007, THESIS KU LEUVEN BEL
Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7
Janssens F, 2009, INFORM PROCESS MANAG, V45, P683, DOI 10.1016/j.ipm.2009.06.003
Jarneving B, 2005, THESIS U COLL BORAS
Leydesdorff L, 2004, J DOC, V60, P371, DOI 10.1108/00220410410548144
NARIN F, 1972, J AM SOC INFORM SCI, V23, P323, DOI 10.1002/asi.4630230508
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Sen S.K., 1983, Annals of library science and documentation, V30, P78
Thijs B, 2013, SCIENTOMETRICS, V96, P667, DOI 10.1007/s11192-012-0896-1
Zhang L, 2010, SCIENTOMETRICS, V82, P687, DOI 10.1007/s11192-010-0180-1
NR 18
TC 3
Z9 3
U1 0
U2 7
PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI
PI LEUVEN
PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN,
B-3000, BELGIUM
SN 2175-1935
BN 978-3-200-03135-7
J9 PRO INT CONF SCI INF
PY 2013
BP 237
EP 250
PG 14
WC Information Science & Library Science
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Information Science & Library Science
GA BC6IG
UT WOS:000353961700019
DA 2024-09-05
ER
PT J
AU Mitsunaga, TM
Garcia, BLN
Pereira, LBR
Costa, YCB
da Silva, RF
Delbem, ACB
dos Santos, MV
AF Mitsunaga, Thatiane Mendes
Garcia, Breno Luis Nery
Pereira, Ligia Beatriz Rizzanti
Costa, Yuri Campos Braga
da Silva, Roberto Fray
Delbem, Alexandre Claudio Botazzo
dos Santos, Marcos Veiga
TI Current Trends in Artificial Intelligence and Bovine Mastitis Research:
A Bibliometric Review Approach
SO ANIMALS
LA English
DT Article
DE mastitis; dairy cows; machine learning; detection; big data; milk
production
ID SUBCLINICAL MASTITIS; CLINICAL MASTITIS; NEURAL-NETWORK; DAIRY-CATTLE;
MILK; COWS; ASSOCIATIONS; FARMS; TOOL
AB Simple Summary Artificial intelligence has become essential for aiding in different knowledge domains by improving knowledge extraction from raw data and process automation. In dairy production, artificial intelligence offers promising applications in detecting and managing bovine mastitis, the most critical disease affecting the mammary gland in dairy cows, impacting milk production and profitability in dairy farms. This research evaluated the evolution of artificial intelligence applications in bovine mastitis between 2011 and 2021 using the Scopus database and the frequency of terms cited in titles, abstracts, and keywords. We selected the 62 papers that were the most relevant according to their citation index. Our results pointed out that the terms "machine learning" and "mastitis" were the most cited, with a significant increase between 2018 and 2021. There was an increase in artificial intelligence applications for bovine mastitis per country, showing applications primarily aimed at improving the current mastitis detection systems. The most cited model was artificial neural networks. We concluded that using artificial intelligence in bovine mastitis was related to mastitis detection as a vital tool to prevent this disease, considering its major impacts on dairy production and economic return.Abstract Mastitis, an important disease in dairy cows, causes significant losses in herd profitability. Accurate diagnosis is crucial for adequate control. Studies using artificial intelligence (AI) models to classify, identify, predict, and diagnose mastitis show promise in improving mastitis control. This bibliometric review aimed to evaluate AI and bovine mastitis terms in the most relevant Scopus-indexed papers from 2011 to 2021. Sixty-two documents were analyzed, revealing key terms, prominent researchers, relevant publications, main themes, and keyword clusters. "Mastitis" and "machine learning" were the most cited terms, with an increasing trend from 2018 to 2021. Other terms, such as "sensors" and "mastitis detection", also emerged. The United States was the most cited country and presented the largest collaboration network. Publications on mastitis and AI models notably increased from 2016 to 2021, indicating growing interest. However, few studies utilized AI for bovine mastitis detection, primarily employing artificial neural network models. This suggests a clear potential for further research in this area.
C1 [Mitsunaga, Thatiane Mendes] Univ Sao Paulo, Luiz Queiroz Coll Agr ESALQ, Av Padua Dias 11, BR-13418900 Piracicaba, SP, Brazil.
[Garcia, Breno Luis Nery; Pereira, Ligia Beatriz Rizzanti; dos Santos, Marcos Veiga] Univ Sao Paulo, Sch Vet Med & Anim Sci, BR-13635900 Pirassununga, SP, Brazil.
[Costa, Yuri Campos Braga] Sao Paulo State Technol Coll, BR-13469111 Americana, SP, Brazil.
[da Silva, Roberto Fray] Univ Sao Paulo, Luiz Queiroz Coll Agr ESALQ, Biosyst Engn Dept, Av Padua Dias 11, BR-13418900 Piracicaba, SP, Brazil.
[da Silva, Roberto Fray; Delbem, Alexandre Claudio Botazzo] Univ Sao Paulo, Ctr Artificial Intelligence C4AI, Av Prof Lucio Martins Rodrigues,370 Butanta, BR-05508020 Sao Paulo, SP, Brazil.
[Delbem, Alexandre Claudio Botazzo] Univ Sao Paulo, Inst Math & Comp Sci, BR-13560970 Sao Carlos, SP, Brazil.
C3 Universidade de Sao Paulo; Universidade de Sao Paulo; Universidade de
Sao Paulo; Universidade de Sao Paulo; Universidade de Sao Paulo
RP dos Santos, MV (corresponding author), Univ Sao Paulo, Sch Vet Med & Anim Sci, BR-13635900 Pirassununga, SP, Brazil.
EM thatiane.mitsunaga@usp.br; brenoluis.garcia@ucalgary.ca;
ligiarizzanti@usp.br; yuri.costa4@fatec.sp.gov.br;
roberto.fray.silva@gmail.com; acbd@icmc.usp.br; mveiga@usp.br
RI Santos, Marcos Veiga/D-6936-2012; Fray da Silva, Roberto/G-8929-2016
OI Santos, Marcos Veiga/0000-0002-4273-3494; Fray da Silva,
Roberto/0000-0002-9792-0553
FU Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil
(CAPES) [001]; Sao Paulo Research Foundation (FAPESP) [2021/05400-3,
2023/00286-3]; Vinnova [2023-00286] Funding Source: Vinnova; Forte
[2023-00286] Funding Source: Forte
FX This study was financed in part by the Coordenacao de Aperfeicoamento de
Pessoal de Nivel Superior-Brasil (CAPES)-finance code 001, and by Sao
Paulo Research Foundation (FAPESP), grants 2021/05400-3 and
2023/00286-3.
CR Aghamohammadi M, 2018, FRONT VET SCI, V5, DOI 10.3389/fvets.2018.00100
Alvarez LG, 2011, EPIDEMIOL INFECT, V139, P1863, DOI 10.1017/S0950268811000070
Ankinakatte S, 2013, COMPUT ELECTRON AGR, V99, P1, DOI 10.1016/j.compag.2013.08.024
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
AULDIST MJ, 1995, AUST J EXP AGR, V35, P427, DOI 10.1071/EA9950427
Bao J, 2022, J CLEAN PROD, V331, DOI 10.1016/j.jclepro.2021.129956
Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012
Silva GGBS, 2022, ANIMALS-BASEL, V12, DOI 10.3390/ani12192492
Bobbo T, 2023, J DAIRY SCI, V106, P1942, DOI 10.3168/jds.2022-22292
Britt JH, 2018, J DAIRY SCI, V101, P3722, DOI 10.3168/jds.2017-14025
Dhoble AS, 2019, COMPUT ELECTRON AGR, V162, P505, DOI 10.1016/j.compag.2019.04.029
Ebrahimi M, 2019, COMPUT BIOL MED, V114, DOI 10.1016/j.compbiomed.2019.103456
Ebrahimie E, 2018, J DAIRY RES, V85, P193, DOI [10.1017/S0022029918000249, 10.1017/s0022029918000249]
Ebrahimie E, 2018, COMPUT ELECTRON AGR, V147, P6, DOI 10.1016/j.compag.2018.02.003
Fadul-Pacheco L, 2021, INT DAIRY J, V119, DOI 10.1016/j.idairyj.2021.105051
FAO, 2022, Dairy Market ReviewEmerging Trends and Outlook 2022
Forsbäck L, 2010, ANIMAL, V4, P617, DOI 10.1017/S1751731109991467
Gonçalves JL, 2020, VET J, V262, DOI 10.1016/j.tvjl.2020.105473
Gonçalves JL, 2018, LIVEST SCI, V210, P25, DOI 10.1016/j.livsci.2018.01.016
Haykin S., 2004, Neural Networks - A Comprehensive Foundation, V2, P41, DOI DOI 10.1017/S0269888998214044
Heald CW, 2000, J DAIRY SCI, V83, P711, DOI 10.3168/jds.S0022-0302(00)74933-2
Hogeveen H, 2021, J DAIRY SCI, V104, P11317, DOI 10.3168/jds.2020-19097
Hyde RM, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-61126-8
Koltes JE, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.01197
Le Roux Y, 2003, VET RES, V34, P629, DOI 10.1051/vetres:2003021
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Melzer N, 2013, J DAIRY SCI, V96, P1521, DOI 10.3168/jds.2012-5743
Michie C, 2020, J DAIRY RES, V87, P20, DOI 10.1017/S0022029920000680
NIELEN M, 1995, PREV VET MED, V22, P15, DOI 10.1016/0167-5877(94)00405-8
Pol M, 2007, J DAIRY SCI, V90, P249, DOI 10.3168/jds.S0022-0302(07)72626-7
Post C, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20143863
Raboisson D, 2020, FRONT VET SCI, V7, DOI 10.3389/fvets.2020.00149
Razavi S, 2021, ENVIRON MODELL SOFTW, V144, DOI 10.1016/j.envsoft.2021.105159
Reksen O, 2006, J DAIRY SCI, V89, P2928, DOI 10.3168/jds.S0022-0302(06)72565-6
Ruegg PL, 2017, J DAIRY SCI, V100, P10381, DOI 10.3168/jds.2017-13023
Ruiz-Real JL, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111839
Ruiz-Rosero J, 2019, SCIENTOMETRICS, V121, P1165, DOI 10.1007/s11192-019-03213-w
Schabauer L, 2014, BMC VET RES, V10, DOI 10.1186/1746-6148-10-156
Shahinfar S, 2014, J DAIRY SCI, V97, P731, DOI 10.3168/jds.2013-6693
Sharifi S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191227
Slob N, 2021, PREV VET MED, V187, DOI 10.1016/j.prevetmed.2020.105237
Tang KL, 2017, LANCET PLANET HEALTH, V1, pE316, DOI 10.1016/S2542-5196(17)30141-9
van den Borne BHP, 2019, J DAIRY SCI, V102, P4441, DOI 10.3168/jds.2019-16254
van der Voort M, 2021, J DAIRY SCI, V104, P10449, DOI 10.3168/jds.2021-20311
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wolfert S, 2017, AGR SYST, V153, P69, DOI 10.1016/j.agsy.2017.01.023
Zins C, 2007, J AM SOC INF SCI TEC, V58, P479, DOI 10.1002/asi.20508
NR 47
TC 0
Z9 0
U1 5
U2 5
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2076-2615
J9 ANIMALS-BASEL
JI Animals
PD JUL
PY 2024
VL 14
IS 14
AR 2023
DI 10.3390/ani14142023
PG 19
WC Agriculture, Dairy & Animal Science; Veterinary Sciences; Zoology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Agriculture; Veterinary Sciences; Zoology
GA ZP4Z6
UT WOS:001276500200001
PM 39061485
OA gold
DA 2024-09-05
ER
PT C
AU Charnine, M
Klokov, A
Kochiev, L
Tishchenko, A
AF Charnine, Michael
Klokov, Alexey
Kochiev, Leon
Tishchenko, Alexey
BE Sourin, A
Rosenberger, C
Sourina, O
TI Research Trending Topic Prediction as Cognitive Enhancement
SO 2021 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW 2021)
LA English
DT Proceedings Paper
CT 20th International Conference on Cyberworlds (CW)
CY SEP 28-30, 2021
CL Caen, FRANCE
DE long-term prediction; research trending topics; decision tree; CatBoost;
scientific papers; dynamics of topic trends; Big Data; cognitive
enhancement
AB The Internet has been identified in human enhancement scholarship as a powerful cognitive enhancement technology. Using the Internet as an external memory system has overall benefits if we have the skills to efficiently navigate, evaluate, and compare online information. Long-term prediction of research trending topics is a form of cognitive enhancement because it helps to efficiently navigate, evaluate scientific articles, identify promising directions, and focus efforts in these directions. This paper presents the results of a method designed to realize long-term prediction of research trending topics. Meaningful topics were identified among the words included in the titles of scientific articles. The title is the most important element of a scientific article and the main indication of the article's subject and topic. We treated the title words, which occur several times in cited articles of the analyzed collection, as the research trending topics. The longevity of the citation trend growth was the target for the machine learning algorithms. The CatBoost machine learning method, which is one of the best implementations of decision trees, was used. We conducted experiments on a scientific dataset including 5 million publications of top conferences in artificial intelligence and data mining areas to demonstrate the effectiveness of the proposed model. The accuracy rate of three-year forecasts for a number of experiments from 1997 to 2014 was about 60%.
C1 [Charnine, Michael; Klokov, Alexey; Kochiev, Leon] Russian Acad Sci, FRC CSC, Inst Informat Problems, Moscow, Russia.
[Tishchenko, Alexey] Presidential Acad, RANEPA, Inst Appl Econ Res, Moscow, Russia.
C3 Federal Research Center "Computer Science & Control" of RAS; Institute
of Informatics Problems of Russian Academy of Sciences; Russian Academy
of Sciences; Russian Presidential Academy of National Economy & Public
Administration
RP Charnine, M (corresponding author), Russian Acad Sci, FRC CSC, Inst Informat Problems, Moscow, Russia.
EM mc@keywen.com; alexeyseti82@yandex.ru
OI Klokov, Alexey/0000-0003-3311-2933
FU Russian Foundation for Basic Research
FX This work is supported by Russian Foundation for Basic Research, grant
19-07-00857. We are grateful to the Russian Foundation for Basic
Research for financial support of our projects.
CR [Anonymous], 2016, AAAI WORKSH SCHOL BI
Chen Chengyao, P AAAI C ART INT, V32
Cognition, 2016, MIND MACH, V26, P407, DOI [10.1007/s11023-016-9404-3, DOI 10.1007/S11023-016-9404-3]
Heersmink R, 2016, MIND MACH, V26, P389, DOI 10.1007/s11023-016-9404-3
Hou J, 2019, COMPUT SCI REV, V34, DOI 10.1016/j.cosrev.2019.100197
Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z
Karakurt O., 2013, SCI RES J
Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895
Prabhakaran V, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1170
Prokhorenkova L., ARXIV PREPRINT ARXIV
Voinea C., SCI ENG ETHICS, V26
NR 11
TC 1
Z9 1
U1 1
U2 3
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-4065-3
PY 2021
BP 217
EP 220
DI 10.1109/CW52790.2021.00044
PG 4
WC Computer Science, Cybernetics; Computer Science, Interdisciplinary
Applications; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BS9SD
UT WOS:000783807600036
DA 2024-09-05
ER
PT J
AU Reiljan, J
Paltser, I
AF Reiljan, Janno
Paltser, Ingra
TI The influence of research and development policy: the case of Estonia in
the EU
SO EUROPEAN JOURNAL OF INNOVATION MANAGEMENT
LA English
DT Article
DE Estonia; Innovation performance; Principal component analysis; Multiple
regression modelling; R&D activities; R&D policy
ID DEVELOPMENT SUBSIDIES; PUBLIC SUBSIDIES; FEDERAL-SUPPORT; INNOVATION;
GROWTH; ADDITIONALITY; PRODUCTIVITY; COMPLEMENT; INVESTMENT; STIMULATE
AB Purpose - The purpose of this paper is to evaluate the international position of Estonia among the member states of the EU and countries closely associated with the EU, from the perspective of the effect of research and development (R&D) policy on innovation activities in the business sector.
Design/methodology/approach - Based on existing scientific research literature on the relationships between R&D policy and business sector R&D activities and innovation performance, a set of indicators describing R&D policymeasures was created for the business sector. Using principal component analysis (PCA) method, independent robust dimensions of R&D policy were brought out. After eliminating the problem ofmulticollinearity in R&D policy indicators, robustmultiple regressionmodels were conducted to present a comprehensive empirical description of the shaping of business sector R&D and innovation activities in the sample of investigated countries.
Findings - Based on the literature, the influences of R&D policy measures on business sector R&D activities and innovation performance were systemised; public R&D policy dimensions were empirically defined; the intensity of R&D policy influence on business sector R&D activities was estimated; the differences between real and prognostic values of business sector performance indicators in Estonia were calculated in order to characterise the efficiency of Estonian R&D policy and the influence of the socioeconomic environment.
Research limitations/implications - The lack of comparable data describing R&D policy and R&D activities and innovation performance in the business sector limits the comprehensiveness of the analysis (i.e. the number of analysed indicators).
Practical implications - The assessment and comparative analysis of the influence of R&D policy components on business sector R&D activities and innovation performance in different countries makes it possible to identify directions for increasing the efficiency of R&D policy under the specific influence of the socioeconomic environment, especially in new member states of the EU.
Originality/value - Using the PCA method significantly increased the robustness of the macroquantitative description of R&D policy dimensions. By combining the set of new synthetic R&D policy indicators created by the PCA with the multiple regression analysis method, a significant increase in the robustness of model coefficients (i.e. the assessments of influence intensity) was achieved. These robust models create the basis for reliable empirical assessment of the influence of R&D policy and a comparative analysis of the results.
C1 [Reiljan, Janno; Paltser, Ingra] Univ Tartu, Fac Econ & Business Adm, Tartu, Estonia.
C3 University of Tartu
RP Paltser, I (corresponding author), Univ Tartu, Fac Econ & Business Adm, Tartu, Estonia.
EM ingra.paltser@ut.ee
FU Ministry of Education and Research Foundation [SF0180037s08]
FX This paper is written with the support of the Ministry of Education and
Research Foundation Project No. SF0180037s08 "The path dependent model
of the innovation system: development and implementation in the case of
a small country".
CR Aerts K, 2008, RES POLICY, V37, P806, DOI 10.1016/j.respol.2008.01.011
Albors-Garrigos J, 2011, INT J INNOV MANAG, V15, P1297, DOI 10.1142/S136391961100374X
Almus M, 2003, J BUS ECON STAT, V21, P226, DOI 10.1198/073500103288618918
Alvarez-Pelaez MJ, 2005, EUR ECON REV, V49, P437, DOI 10.1016/S0014-2921(03)00045-X
Amoros J.E., 2014, Global entrepreneurship monitor, 2013 global report
[Anonymous], 2004, 456 ZEW
[Anonymous], 2007, INN GROWTH RAT INN S
[Anonymous], 2003, Economics of Innovation and New Technology, DOI [DOI 10.1080/10438590290004555, 10.1080/10438590290004555]
Archibald R. B., 2003, Public Finance Review, V31, P429, DOI [https://doi.org/10.1177/10911421030310040, DOI 10.1177/10911421030310040]
Arvanitis S, 2002, SMALL BUS ECON, V19, P321, DOI 10.1023/A:1019606131837
Bank of Estonia, 2013, INT INV POS
Bor YJ, 2010, ECON MODEL, V27, P171, DOI 10.1016/j.econmod.2009.08.007
Carboni OA, 2011, INT REV APPL ECON, V25, P419, DOI 10.1080/02692171.2010.529427
CARMICHAEL J, 1981, J FINANC, V36, P617, DOI 10.2307/2327522
Cerulli G, 2010, ECON REC, V86, P421, DOI 10.1111/j.1475-4932.2009.00615.x
Czarnitzki D, 2006, ECON TRANSIT, V14, P101, DOI 10.1111/j.1468-0351.2006.00236.x
Czarnitzki D., 2010, 10073 ZEW
Czarnitzki D, 2007, J APPL ECONOM, V22, P1347, DOI 10.1002/jae.992
David PA, 2000, RES POLICY, V29, P497, DOI 10.1016/S0048-7333(99)00087-6
Edler J, 2007, RES POLICY, V36, P949, DOI 10.1016/j.respol.2007.03.003
Falk M., 2004, WORKING PAPERS, V236
Freel MS, 2005, TECHNOVATION, V25, P123, DOI 10.1016/S0166-4972(03)00082-8
García-Quevedo J, 2004, KYKLOS, V57, P87, DOI 10.1111/j.0023-5962.2004.00244.x
González X, 2008, RES POLICY, V37, P371, DOI 10.1016/j.respol.2007.10.009
González X, 2005, RAND J ECON, V36, P930
Görg H, 2007, ECONOMICA, V74, P215, DOI 10.1111/j.1468-0335.2006.00547.x
Hall B, 2000, RES POLICY, V29, P449, DOI 10.1016/S0048-7333(99)00085-2
Hewitt-Dundas N., 2010, EUROPEAN PLANNING ST, V18, P108
HIGGINS RS, 1981, IEEE T ENG MANAGE, V28, P86, DOI 10.1109/TEM.1981.6447450
Hussinger K, 2008, J APPL ECONOMET, V23, P729, DOI 10.1002/jae.1016
Jones CI, 2000, J ECON GROWTH, V5, P65, DOI 10.1023/A:1009826304308
Jones CI, 1998, Q J ECON, V113, P1119, DOI 10.1162/003355398555856
Jones CI, 2005, HANDB ECON, V22, P1063
Kittel B, 2006, INT SOCIOL, V21, P647, DOI 10.1177/0268580906067835
Klette TJ, 2000, RES POLICY, V29, P471, DOI 10.1016/S0048-7333(99)00086-4
Lach S, 2002, J IND ECON, V50, P369, DOI 10.1111/1467-6451.00182
Lee CY, 2011, TECHNOVATION, V31, P256, DOI 10.1016/j.technovation.2011.01.006
LEVY DM, 1983, BELL J ECON, V14, P551, DOI 10.2307/3003656
LEYDEN DP, 1991, APPL ECON, V23, P1673, DOI 10.1080/00036849100000132
Luukkonen T, 2000, RES POLICY, V29, P711, DOI 10.1016/S0048-7333(99)00041-4
Mamatzakis EC, 2010, INT REV APPL ECON, V24, P483, DOI 10.1080/02692171.2010.483795
Mamuneas TP, 1996, J PUBLIC ECON, V63, P57, DOI 10.1016/S0047-2727(96)01588-5
MANSFIELD E, 1984, MANAGE SCI, V30, P562, DOI 10.1287/mnsc.30.5.562
OECD, 2001, SCI TECHN IND DRIV G
Porter M. E., 2002, WORLD COMPETITIVENES, P52
Reiljan J., 2014, MAJANDUSOTSUSTE ANAL
ROMER PM, 1990, J POLIT ECON, V98, pS71, DOI 10.1086/261725
Steger TM, 2005, SCAND J ECON, V107, P737, DOI 10.1111/j.1467-9442.2005.00426.x
Verbic M, 2011, PANOECONOMICUS, V58, P67, DOI 10.2298/PAN1101067V
Veugelers R, 1999, RES POLICY, V28, P63, DOI 10.1016/S0048-7333(98)00106-1
Wolff GB, 2008, RES POLICY, V37, P1403, DOI 10.1016/j.respol.2008.04.023
Wu YH, 2005, J POLICY ANAL MANAG, V24, P785, DOI 10.1002/pam.20138
NR 52
TC 0
Z9 0
U1 0
U2 13
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 1460-1060
EI 1758-7115
J9 EUR J INNOV MANAG
JI Eur. J. Innov. Manag.
PY 2015
VL 18
IS 3
BP 307
EP 329
DI 10.1108/EJIM-10-2013-0115
PG 23
WC Business; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA V79IN
UT WOS:000212108800002
DA 2024-09-05
ER
PT J
AU Yin, C
Xue, T
Huang, XG
Cheng, YH
Dadras, S
Dadras, O
AF Yin, Chun
Xue, Ting
Huang, Xuegang
Cheng, Yu-Hua
Dadras, Sara
Dadras, Odden
TI Research on Damages Evaluation Method With Multi-Objective Feature
Extraction Optimization Scheme for M/OD Impact Risk Assessment
SO IEEE ACCESS
LA English
DT Article
DE M/OD hypervelocity impact; impact risk assessment; damage evaluation;
multi-objective optimization; evolution analysis
ID HYPERVELOCITY IMPACT; SPACE; THERMOGRAPHY; ALGORITHM
AB As the number of space debris (also called meteoroid/orbital debris-M/OD) increases in recent years, the hypervelocity-impact (HVI) events of M/OD on spacecrafts have become one of the most main risks threatening human activity in space. For the automatical M/OD risk assessment, some effective nondestructive testing (NDT) methods are critical to realizing the evaluation of the HVI damages. In this paper, a novel HVI damage evaluation method based on the active infrared thermal wave image detection technology with multi-objective feature extraction optimization (MO-FEO) is proposed to achieve the quantitative evaluation of M/OD HVI damages. For the precise selection of representative temperature point in thermal infrared image data, the proposed MO-FEO method has the advantage not only of considering the difference among temperature points in different thermal temperature categories but also considering the correlation among temperature points of each thermal temperature category. The multi-objective feature extraction problem decomposed by Tchebycheff aggregation is used to seek the representative temperature points through an evolution process brought the selection pressure and fitness value. In addition to the MO-FEO frame, the variable step search and classification of temperature points are also implemented in the HVI damage evaluation strategy to improve efficiency. Some experimental results of infrared detection for the real M/OD HVI test articles are proposed to illustrate the effectiveness of the proposed method.
C1 [Yin, Chun; Xue, Ting; Cheng, Yu-Hua] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China.
[Huang, Xuegang] China Aerodynam Res & Dev Ctr, Hyperveloc Aerodynam Inst, Mianyang 621000, Sichuan, Peoples R China.
[Dadras, Sara; Dadras, Odden] Utah State Univ, Elect & Comp Engn Dept, Logan, UT 84321 USA.
C3 University of Electronic Science & Technology of China; Utah System of
Higher Education; Utah State University
RP Huang, XG (corresponding author), China Aerodynam Res & Dev Ctr, Hyperveloc Aerodynam Inst, Mianyang 621000, Sichuan, Peoples R China.
EM emei-126@126.com
RI Chen, YangQuan/A-2301-2008; Huang, Xuegang/O-2942-2019
OI Chen, YangQuan/0000-0002-7422-5988; Huang, Xuegang/0000-0002-9168-3040
FU National Basic Research Program of China [61873305, 61671109, U1830207];
Sichuan Science and Technology Plan Project [2018JY0410, 2019YJ0199]
FX This work was supported in part by the National Basic Research Program
of China under Grant 61873305, Grant 61671109, and Grant U1830207, and
in part by the Sichuan Science and Technology Plan Project under Grant
2018JY0410 and Grant 2019YJ0199.
CR Ahmad J, 2019, IEEE SENS J, V19, P735, DOI 10.1109/JSEN.2018.2877726
[Anonymous], 2012, NONLINEAR MULTIOBJEC
Balandin DV, 2017, AUTOMATICA, V84, P56, DOI 10.1016/j.automatica.2017.06.041
Cheng L, 2014, IEEE SENS J, V14, P1655, DOI 10.1109/JSEN.2014.2301168
Cheng YH, 2016, INT J APPL ELECTROM, V52, P443, DOI 10.3233/JAE-162045
Christiansen E, 2009, NASATM2009214785 NAS
Christiansen E. L., 2003, TP2003210788 NASA LB
Falsone A, 2017, IEEE T INTELL TRANSP, V18, P2657, DOI 10.1109/TITS.2017.2654511
Foudazi A, 2019, IEEE T INSTRUM MEAS, V68, P576, DOI 10.1109/TIM.2018.2843601
Gao B, 2016, IEEE T IND INFORM, V12, P371, DOI 10.1109/TII.2015.2492925
Helmy AK, 2016, APPL SOFT COMPUT, V40, P405, DOI 10.1016/j.asoc.2015.11.042
Huang J, 2018, 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), P394, DOI 10.1109/ICIVC.2018.8492845
Huang X., J AMB INTEL HUM COMP, DOI [10.1007/s12652-017-0671-5, DOI 10.1007/S12652-017-0671-5]
Huang XG, 2016, MATER DESIGN, V97, P473, DOI 10.1016/j.matdes.2016.02.126
Ishikawa M, 2013, INFRARED PHYS TECHN, V57, P42, DOI 10.1016/j.infrared.2012.11.009
Liou JC, 2006, SCIENCE, V311, P340, DOI 10.1126/science.1121337
Liu R., 2019, IEEE ACCESS, V16, P735
Ma XL, 2018, IEEE T EVOLUT COMPUT, V22, P226, DOI 10.1109/TEVC.2017.2704118
Maldague X, 2004, NDT&E INT, V37, P559, DOI 10.1016/j.ndteint.2004.03.003
Arellano-Quintana VM, 2018, IEEE ACCESS, V6, P69064, DOI 10.1109/ACCESS.2018.2878314
Maury T, 2019, SCI TOTAL ENVIRON, V667, P780, DOI 10.1016/j.scitotenv.2019.02.438
Rajic N, 2002, COMPOS STRUCT, V58, P521, DOI 10.1016/S0263-8223(02)00161-7
Shen YP, 2017, IEEE T IND ELECTRON, V64, P115, DOI 10.1109/TIE.2016.2598674
Silnikov MV, 2018, ACTA ASTRONAUT, V150, P56, DOI 10.1016/j.actaastro.2017.08.030
Vollmer M., 2017, INFRARED THERMAL IMA, DOI DOI 10.1002/9783527693306
Wei BS, 2019, IEEE ACCESS, V7, P36991, DOI 10.1109/ACCESS.2019.2904545
Zhang QF, 2007, IEEE T EVOLUT COMPUT, V11, P712, DOI 10.1109/TEVC.2007.892759
Zhang YL, 2016, IEEE T INTELL TRANSP, V17, P1189, DOI 10.1109/TITS.2015.2494686
Zhou XJ, 2018, IEEE ACCESS, V6, P36683, DOI 10.1109/ACCESS.2018.2847641
Zhu D, 2019, IEEE ACCESS, V7, P16787, DOI 10.1109/ACCESS.2018.2884813
Zhu PP, 2018, MECH SYST SIGNAL PR, V113, P5, DOI 10.1016/j.ymssp.2017.02.045
NR 31
TC 26
Z9 28
U1 1
U2 23
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2019
VL 7
BP 98530
EP 98545
DI 10.1109/ACCESS.2019.2930114
PG 16
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA IP8WF
UT WOS:000480326700029
OA gold
DA 2024-09-05
ER
PT J
AU Yu, ZG
Li, M
AF Yu, Zhonggen
Li, Ming
TI A bibliometric analysis of Community of Inquiry in online learning
contexts over twenty-five years
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article
DE Bibliometric analysis; Community of Inquiry; VOSviewer; CitNetExplorer;
Online learning
ID SELF-EFFICACY; COGNITIVE PRESENCE; TEACHING PRESENCE; FRAMEWORK;
CITNETEXPLORER; METACOGNITION; INSIGHTS; OUTCOMES
AB Since the outbreak of COVID-19, online learning has gained popularity among educators and learners, where Community of Inquiry (CoI) has caught researchers' attention. To bibliometrically analyze the framework of CoI over twenty-five years, we adopted both qualitative and quantitative research methods to examine the framework of CoI in online learning contexts. We concluded that teaching presence, social presence, cognitive presence, metacognition, and self-efficacy played important roles in the framework of CoI. This study also explored the top ten authors, sources, organizations, and countries using VOSviewer and established citation networks through the clustering techniques in CitNetExplorer. Future research could focus on how to motivate the educational institutes and educators to change their traditional educational methods and whether to include both metacognition and self-efficacy in the CoI framework.
C1 [Yu, Zhonggen; Li, Ming] Beijing Language & Culture Univ, Fac Foreign Studies, 15 Xueyuan Rd, Beijing 100083, Peoples R China.
C3 Beijing Language & Culture University
RP Yu, ZG; Li, M (corresponding author), Beijing Language & Culture Univ, Fac Foreign Studies, 15 Xueyuan Rd, Beijing 100083, Peoples R China.
EM 401373742@qq.com; 23743995@qq.com
RI Yu, Zhonggen/AAJ-3063-2020; Yu, Zhonggen/AAE-5514-2020
OI Yu, Zhonggen/0000-0002-3873-980X; Yu, Zhonggen/0000-0002-3873-980X
FU 2019 MOOC of Beijing Language and Culture University (Important)
"Introduction to Linguistics" [MOOC201902]; "Introduction to
Linguistics" of online and offline mixed courses in Beijing Language and
Culture University in 2020; Special fund of Beijing Coconstruction
Project-Research and reform of the "Undergraduate Teaching Reform and
Innovation Project" of Beijing higher education in 2020-innovative
"multilingual +" excellent talent training system [202010032003];
research project of Graduate Students of Beijing Language and Culture
University "Xi Jinping: The Governance of China" [SJTS202108]
FX This work is supported by 2019 MOOC of Beijing Language and Culture
University (MOOC201902) (Important) "Introduction to Linguistics";
"Introduction to Linguistics" of online and offline mixed courses in
Beijing Language and Culture University in 2020; Special fund of Beijing
Coconstruction Project-Research and reform of the "Undergraduate
Teaching Reform and Innovation Project" of Beijing higher education in
2020-innovative "multilingual +" excellent talent training system
(202010032003); The research project of Graduate Students of Beijing
Language and Culture University "Xi Jinping: The Governance of China"
(SJTS202108).
CR Aguilera-Hermida AP, 2021, EDUC INF TECHNOL, V26, P6823, DOI 10.1007/s10639-021-10473-8
Ahmad MI, 2022, SYST PRACT ACT RES, V35, P591, DOI 10.1007/s11213-021-09585-6
Akyol Z, 2011, INTERNET HIGH EDUC, V14, P183, DOI 10.1016/j.iheduc.2011.01.005
Arbaugh JB, 2008, INTERNET HIGH EDUC, V11, P133, DOI 10.1016/j.iheduc.2008.06.003
Artino Anthony R., 2009, Journal of Computing in Higher Education, V21, P146, DOI 10.1007/s12528-009-9020-9
Artino AR, 2012, INTERNET HIGH EDUC, V15, P170, DOI 10.1016/j.iheduc.2012.01.006
Bamoallem B, 2022, EDUC INF TECHNOL, V27, P157, DOI 10.1007/s10639-021-10660-7
BANDURA A, 1982, AM PSYCHOL, V37, P122, DOI 10.1037/0003-066X.37.2.122
BANDURA A, 1989, DEV PSYCHOL, V25, P729, DOI 10.1037/0012-1649.25.5.729
Bandura A, 1999, Self-efficacy: The exercise of control, V13, P158
Baroudi S, 2022, EDUC INF TECHNOL, V27, P8093, DOI 10.1007/s10639-022-10946-4
Brennan C, 2022, INTERNET HIGH EDUC, V52, DOI 10.1016/j.iheduc.2021.100830
Britner SL, 2006, J RES SCI TEACH, V43, P485, DOI 10.1002/tea.20131
Calaguas NP, 2022, EDUC INF TECHNOL, V27, P6233, DOI 10.1007/s10639-021-10871-y
Candy P.C., 1991, Self-direction for Lifelong Learning
Chan SL, 2021, NURS EDUC TODAY, V104, DOI 10.1016/j.nedt.2021.104985
Chen RH, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031785
Cho MH, 2017, INTERNET HIGH EDUC, V34, P10, DOI 10.1016/j.iheduc.2017.04.001
Delgado-García M, 2022, INNOV EDUC TEACH INT, V59, P564, DOI 10.1080/14703297.2021.1932557
Dempsey PR, 2019, ONLINE LEARN, V23, P62, DOI 10.24059/olj.v23i1.1419
Dewey J., 1933, How we think: A restatement of the relation of reflective thinking to the educative process
Doo MY, 2020, J COMPUT ASSIST LEAR, V36, P997, DOI 10.1111/jcal.12455
Ehrenberg RG, 2001, PSYCHOL SCI, P1, DOI 10.1111/1529-1006.003
Garrison DR, 2013, INTERNET HIGH EDUC, V17, P84, DOI 10.1016/j.iheduc.2012.11.005
Garrison D. R., 1999, Internet and Higher Education, V2, P87, DOI 10.1016/S1096-7516(00)00016-6
Garrison DR, 2010, INTERNET HIGH EDUC, V13, P31, DOI 10.1016/j.iheduc.2009.10.002
Garrison D.R., 2007, J ASYNCHRONOUS LEARN, V11, P61, DOI DOI 10.24059/OLJ.V11I1.1737
Garrison D.R., 2007, The Internet and Higher Education, V10, P157, DOI [DOI 10.1016/J.IHEDUC.2007.04.001, 10.1016/j.iheduc.2007.04.001]
Garrison D.R., 2001, AM J DISTANCE EDUC, V15, P7, DOI [DOI 10.1080/08923640109527071, https://doi.org/10.1080/08923640109527071]
Geng L, 2022, INT J EMERG TECHNOL, V17, P118, DOI 10.3991/ijet.v17i01.28719
Gutiérrez-Santiuste E, 2015, AUSTRALAS J EDUC TEC, V31, P349
Hayes S, 2021, J HOSP LEIS SPORT TO, V29, DOI 10.1016/j.jhlste.2021.100339
Heymann P, 2022, EDUC TRAIN, V64, P380, DOI 10.1108/ET-05-2021-0161
Hu WP, 2016, ROEPER REV, V38, P70, DOI 10.1080/02783193.2016.1150374
Ibert O, 2022, GLOBAL NETW, V22, P564, DOI 10.1111/glob.12355
Jimenez F, 2014, IEEE SYS MAN CYBERN, P2983, DOI 10.1109/SMC.2014.6974384
Kozan K, 2014, INTERNET HIGH EDUC, V23, P39, DOI 10.1016/j.iheduc.2014.06.002
Kozan K, 2014, INTERNET HIGH EDUC, V21, P68, DOI 10.1016/j.iheduc.2013.10.007
Lau YY, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.679197
Law KMY, 2019, COMPUT EDUC, V136, P1, DOI 10.1016/j.compedu.2019.02.021
Lee J, 2022, ONLINE LEARN, V26, P58, DOI 10.24059/olj.v26i1.3060
Lipman M., 2003, Thinking in Education, VSecond, DOI DOI 10.1017/CBO9780511840272
Norman E, 2019, REV GEN PSYCHOL, V23, P403, DOI 10.1177/1089268019883821
Pardales M., 2006, Educational Philosophy and Theory, V38, P299, DOI DOI 10.1111/J.1469-5812.2006.00196.X
Robbins SB, 2004, PSYCHOL BULL, V130, P261, DOI 10.1037/0033-2909.130.2.261
Sen-Akbulut M, 2022, TURK ONLINE J DISTAN, V23
Shea P, 2012, INTERNET HIGH EDUC, V15, P89, DOI 10.1016/j.iheduc.2011.08.002
Shea P, 2010, INT REV RES OPEN DIS, V11, P127, DOI 10.19173/irrodl.v11i3.915
Shea P, 2010, COMPUT EDUC, V55, P1721, DOI 10.1016/j.compedu.2010.07.017
Shea P, 2010, INTERNET HIGH EDUC, V13, P10, DOI 10.1016/j.iheduc.2009.11.002
Shea P, 2009, COMPUT EDUC, V52, P543, DOI 10.1016/j.compedu.2008.10.007
Stenbom S, 2018, INTERNET HIGH EDUC, V39, P22, DOI 10.1016/j.iheduc.2018.06.001
Stewart P.W., 2007, RESEARCHER, V21, P32
Szeto E, 2015, COMPUT EDUC, V81, P191, DOI 10.1016/j.compedu.2014.10.015
Tobias S., 2009, Handbook of metacognition in education
Topcu A, 2008, EDUC TECHNOL SOC, V11, P1
Um NH, 2021, SOC BEHAV PERSONAL, V49, DOI 10.2224/sbp.10397
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748
Wang XH, 2024, COMPUT ASSIST LANG L, V37, P814, DOI 10.1080/09588221.2022.2056203
Wei HC, 2020, DISTANCE EDUC, V41, P48, DOI 10.1080/01587919.2020.1724768
Williams KM, 2021, EDUC INF TECHNOL, V26, P5055, DOI 10.1007/s10639-021-10516-0
Wu XM, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19042245
Yang XT, 2021, J SCI EDUC TECHNOL, V30, P380, DOI 10.1007/s10956-020-09877-x
Young A., 2008, J SCHOLARSHIP TEACHI, V8, P1, DOI DOI 10.4236/PSYCH.2017.812125
Yu ZG, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063598
Yu ZG, 2021, INT J MOB BLENDED LE, V13, P63, DOI 10.4018/IJMBL.2021100104
Yu ZG, 2022, EDUC INF TECHNOL, V27, P2457, DOI 10.1007/s10639-021-10720-y
Yu ZG, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00252-3
Zhai XM, 2021, ETR&D-EDUC TECH RES, V69, P255, DOI 10.1007/s11423-020-09917-8
Zimmerman BJ, 2001, SELF-REGULATED LEARNING AND ACADEMIC ACHIEVEMENT, SECOND ED., P1
Zuo MZ, 2022, EDUC INF TECHNOL, V27, P4599, DOI 10.1007/s10639-021-10791-x
NR 75
TC 21
Z9 22
U1 15
U2 120
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD SEP
PY 2022
VL 27
IS 8
BP 11669
EP 11688
DI 10.1007/s10639-022-11081-w
EA MAY 2022
PG 20
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA 5N0UV
UT WOS:000797755100004
PM 35610978
OA Green Published, Bronze
DA 2024-09-05
ER
PT J
AU Cuxac, P
Lamirel, JC
Bonvallot, V
AF Cuxac, Pascal
Lamirel, Jean-Charles
Bonvallot, Valerie
TI Efficient supervised and semi-supervised approaches for affiliations
disambiguation
SO SCIENTOMETRICS
LA English
DT Article
DE Affiliation; Disambiguation; Data cleaning; Classification; Clustering;
Semi-supervised; Bibliographic databases; K-means; Naive bayes
ID UNIVERSITIES; INFORMATION; ADDRESSES; RANKING
AB The disambiguation of named entities is a challenge in many fields such as scientometrics, social networks, record linkage, citation analysis, semantic web...etc. The names ambiguities can arise from misspelling, typographical or OCR mistakes, abbreviations, omissions... Therefore, the search of names of persons or of organizations is difficult as soon as a single name might appear in many different forms. This paper proposes two approaches to disambiguate on the affiliations of authors of scientific papers in bibliographic databases: the first way considers that a training dataset is available, and uses a Naive Bayes model. The second way assumes that there is no learning resource, and uses a semi-supervised approach, mixing soft-clustering and Bayesian learning. The results are encouraging and the approach is already partially applied in a scientific survey department. However, our experiments also highlight that our approach has some limitations: it cannot process efficiently highly unbalanced data. Alternatives solutions are possible for future developments, particularly with the use of a recent clustering algorithm relying on feature maximization.
C1 [Cuxac, Pascal; Bonvallot, Valerie] INIST CNRS, Vandoeuvre Les Nancy, France.
[Lamirel, Jean-Charles] LORIA Synalp, Vandoeuvre Les Nancy, France.
C3 Centre National de la Recherche Scientifique (CNRS); Universite de
Lorraine
RP Cuxac, P (corresponding author), INIST CNRS, Vandoeuvre Les Nancy, France.
EM pascal.cuxac@inist.fr; jean-charles.lamirel@loria.fr;
valerie.bonvallot@inist.fr
RI cuxac, pascal/AAE-3002-2019
OI Cuxac, Pascal/0000-0002-6809-5654
CR Aswani N, 2006, LECT NOTES COMPUT SC, V4273, P329
Bilenko M, 2003, IEEE INTELL SYST, V18, P16, DOI 10.1109/MIS.2003.1234765
Bourke P, 1996, SCIENTOMETRICS, V35, P199, DOI 10.1007/BF02018478
Carayol Nicolas., 2009, Who's Who in Patents. A Bayesian approach
Churches Tim, 2002, BMC Med Inform Decis Mak, V2, P9, DOI 10.1186/1472-6947-2-9
Cleuziou G, 2008, INT C PATT RECOG, P563
De Bruin R. E., 1990, UNIFICATION ADDRESSE, V6578
DEBRUIN RE, 1993, SCIENTOMETRICS, V26, P65, DOI 10.1007/BF02016793
Domingos P., 1996, Machine Learning. Proceedings of the Thirteenth International Conference (ICML '96), P105
FELLEGI IP, 1969, J AM STAT ASSOC, V64, P1183, DOI 10.2307/2286061
French JC, 2000, J AM SOC INFORM SCI, V51, P774, DOI 10.1002/(SICI)1097-4571(2000)51:8<774::AID-ASI90>3.0.CO;2-P
Galvez C, 2006, SCIENTOMETRICS, V69, P323, DOI 10.1007/s11192-006-0156-3
Hand DJ, 2001, INT STAT REV, V69, P385, DOI 10.2307/1403452
Hood WW, 2003, SCIENTOMETRICS, V58, P587, DOI 10.1023/B:SCIE.0000006882.47115.c6
Huang J, 2006, LECT NOTES ARTIF INT, V4213, P536
Jiang Y, 2011, J AM SOC INF SCI TEC, V62, P1029, DOI 10.1002/asi.21538
Lamirel JC, 2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), P956, DOI 10.1109/IJCNN.2011.6033326
Lelu A., 1993, MODELES NEURONAUX AN, P6
Liu NC, 2005, SCIENTOMETRICS, V64, P101, DOI 10.1007/s11192-005-0241-z
MacQueen James, 1967, 5 BERK S MATH STAT P, P281
Moed HF, 2005, INFORM SCI KNOWL MAN, V9, P1, DOI 10.1007/1-4020-3714-7
Niu LF, 2012, PROCEDIA COMPUT SCI, V9, P1249, DOI 10.1016/j.procs.2012.04.136
Osareh F, 2000, SCIENTOMETRICS, V48, P427, DOI 10.1023/A:1005648723433
Rahm E., 2000, IEEE Data Eng. Bull, V23, P3
Sadinle M., 2012, ARXIV12053217
Sadinle M., 2010, APPROACHES MULTIPLE
Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6
Ventura S. L., 2012, SSRN ELIBRARY
Wang J, 2012, SCIENTOMETRICS, V93, P391, DOI 10.1007/s11192-012-0681-1
Zhou YL, 2010, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON COOPERATION AND PROMOTION OF INFORMATION RESOURCES IN SCIENCE AND TECHNOLOGY(COINFO 10), P358, DOI 10.1109/ICOIP.2010.21
ZITT M., 2008, Ethics Sci. Environ. Politics, V8, P49, DOI [DOI 10.3354/ESEP00092, 10.3354/esep00092]
NR 31
TC 18
Z9 22
U1 1
U2 63
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD OCT
PY 2013
VL 97
IS 1
BP 47
EP 58
DI 10.1007/s11192-013-1025-5
PG 12
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 216IL
UT WOS:000324275600005
DA 2024-09-05
ER
PT J
AU Ching, FTS
Cheah, TC
AF Ching, Felicia Tay Sue
Cheah, Tan Chye
TI SENTIMENT ANALYSIS OF 10-K REPORTS USING TERM FREQUENCY COMPARATIVE
APPROACH: A PRELIMINARY STUDY
SO INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION
LA English
DT Article
DE Textual content Evaluation; Phrase Rate of recurrence; 10K; Emotion
Evaluation; Economic Statement Research
ID INFORMATION
AB Monetary 10K reviews consist of helpful info with regard to visitors to aid choice within expense. Because of the wealthy content material associated with 10K information, this is a really tiresome job to undergo the 10K are accountable to discover required details with regard to evaluation plus investment decision. The objective of this particular research would be to create a way regarding examining the particular emotions inside 10-K reviews, via assessment associated with phrase rate of recurrence (TF). Within Phase one execution, the primary function includes carrying out the test utilizing the current strategy associated with evaluating a listing of emotion conditions contrary to the conditions included inside the 10-K statement, also called typically the "Bag associated with Words" technique. The 2nd phase regarding execution is to create phrase eq from the group of 2 10-K reviews, to ensure that TF evaluation can be carried out upon both of these studies. Period one implies that there can be misunderstandings in case belief ratings were to become examined in encounter worth. It is because the particular ratings failed to reveal a definite partnership around the overall performance from the companies analysed. Level two pointed out that this comparison strategy allows typically the decrit from the are accountable to realize 12 months about 12 months modifications much better, since the TF variations in many cases are a sign involving modifications inside business instructions or even functional choices in the past year. This particular research plays a role in present books in the supporting technique associated with examining the particular 10-K record, that make utilization of relative expression eq and offers a good setup arrange for experts in addition to traders via procedure for drill down into the particular 10-K textual content.
C1 [Ching, Felicia Tay Sue; Cheah, Tan Chye] Asia Pacific Univ Technol & Innovat, Kuala Lumpur, Malaysia.
C3 Asia Pacific University of Technology & Innovation
RP Ching, FTS (corresponding author), Asia Pacific Univ Technol & Innovat, Kuala Lumpur, Malaysia.
EM tanchyecheah@yandex.com; feliciataysueching@yandex.com
FU APU Teachers Study Give plan [APURDG/01/20 19]
FX This particular function has been backed from the APU Teachers Study
Give plan, task quantity: APURDG/01/20 19.
CR Dyer T, 2017, J ACCOUNT ECON, V64, P221, DOI 10.1016/j.jacceco.2017.07.002
Guo L., 2016, J. Finance Data Sci, V2, P153, DOI [DOI 10.1016/I.JFDS.2017.02.001, 10.1016/j.jfds.2017.02.001]
Hájek P, 2018, NEURAL COMPUT APPL, V29, P343, DOI 10.1007/s00521-017-3194-2
Huang K., 2011, SSRN ELECT J
Kang T, 2018, TELEMAT INFORM, V35, P370, DOI 10.1016/j.tele.2017.12.014
Lee B., 2018, J OPEN INNOV-TECHNOL, P4
Lev B, 2018, ACCOUNT BUS RES, V48, P465, DOI 10.1080/00014788.2018.1470138
Li F, 2010, J ACCOUNT RES, V48, P1049, DOI 10.1111/j.1475-679X.2010.00382.x
Liu Y, 2016, J EMERG TECHNOL ACCO, V13, P85, DOI 10.2308/jeta-51438
Lo K, 2017, J ACCOUNT ECON, V63, P1, DOI 10.1016/j.jacceco.2016.09.002
Loughran T., 2016, SSRN ELECT J
Loughran T, 2011, J FINANC, V66, P35, DOI 10.1111/j.1540-6261.2010.01625.x
Mayew WJ, 2015, ACCOUNT REV, V90, P1621, DOI 10.2308/accr-50983
Shayaa S, 2018, IEEE ACCESS, V6, P37807, DOI 10.1109/ACCESS.2018.2851311
Zeller T., 2012, Accounting Financial Studies Journal, V16, P1
NR 15
TC 0
Z9 0
U1 1
U2 1
PU ANADOLU UNIV
PI ESKISEHIR
PA INST FINE ARTS, ESKISEHIR, 26470, TURKEY
SN 1308-5581
J9 INT J EARLY CHILD SP
JI Int. J. Early Child. Spec. Educ.
PY 2022
VL 14
IS 3
BP 6425
EP 6434
DI 10.9756/INT-JECSE/V14I3.808
PG 10
WC Education, Special
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA 1U5KB
UT WOS:000805450400032
DA 2024-09-05
ER
PT J
AU Gu, TT
Qian, XM
Lou, PH
AF Gu, Tingting
Qian, Xiaoming
Lou, Peihuang
TI Research on Roundness Error Evaluation of Connecting Rod Journal in
Crankshaft Journal Synchronous Measurement
SO APPLIED SCIENCES-BASEL
LA English
DT Article
DE synchronous measurement; connecting rod journal; non-equal interval
sampling; particle swarm optimization; roundness error evaluation
AB Featured Application To solve the problem that the measurement data of connecting rod journal is not consistent with the measurement angle in the synchronous measurement of the crankshaft journal, improve the measurement accuracy. The crankshaft is the core part of an automobile engine, and the accuracy requirements of various shape and position errors are very high. On the basis of a synchronous measurement system, the connecting rod journal is deeply studied, including data processing and roundness evaluation. Firstly, according to the measuring processes of connecting rod journals, the real sampling angle distribution function was established, and the corresponding Gaussian weight function of each sampling angle was calculated. The weight function and the collected data corresponding to the angle were subjected to discrete cyclic convolution operation in the spatial domain to obtain the filtered effective circular contour data. Secondly, the particle swarm optimization algorithm was improved, and its inertia weight was set to decrease nonlinearly to speed up the convergence. A calculation process suitable for the evaluation of journal errors was designed. Then, the improved particle swarm optimization algorithm was used to evaluate the roundness of the corrected rod journal contour data. At last, through multiple measurement experiments, the feasibility and effectiveness of the synchronous measurement scheme and data processing method proposed in this paper are verified.
C1 [Gu, Tingting; Qian, Xiaoming; Lou, Peihuang] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, 29 Yudao St, Nanjing 210016, Peoples R China.
[Gu, Tingting] Nanjing Univ Aeronut & Astronaut, Jincheng Coll, 88 Hangjin Ave, Nanjing 211156, Peoples R China.
C3 Nanjing University of Aeronautics & Astronautics
RP Qian, XM; Lou, PH (corresponding author), Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, 29 Yudao St, Nanjing 210016, Peoples R China.
EM gutingting@nuaa.edu.cn; k.bamdad@westernsydney.edu.au;
meephlou@nuaa.edu.cn
OI Gu, Tingting/0000-0003-1484-4178
FU Key R&D Project of Jiangsu Province [BE20160034]
FX FundingThis research was funded by the Key R&D Project of Jiangsu
Province, grant number BE20160034.
CR Bamberger H, 2012, INT J ADV MANUF TECH, V60, P1039, DOI 10.1007/s00170-011-3660-4
CHETWYND DG, 1985, P I MECH ENG B-J ENG, V199, P93
Chiabert P, 2017, INT J ADV MANUF TECH, V92, P447, DOI 10.1007/s00170-017-0144-1
Cui W., 2020, RES KEY TECHNOLOGIES
Cui X., 2015, MACH DES MANUF, P90, DOI [10.19356/j.cnki.1001-3997.2015.04.024, DOI 10.19356/J.CNKI.1001-3997.2015.04.024]
Deng Y., 2017, THESIS SHANGHAI U SH
Du CL, 2014, MEASUREMENT, V52, P12, DOI 10.1016/j.measurement.2014.02.028
Fang Jianchao, 2016, Journal of Computer Applications, V36, P492, DOI 10.11772/j.issn.1001-9081.2016.02.0492
Kennedy J., 1995, 1995 IEEE International Conference on Neural Networks Proceedings (Cat. No.95CH35828), P1942, DOI 10.1109/ICNN.1995.488968
Kumar M., 2018, Int. J. Data Network Sci., V2, P63, DOI [10.5267/j.ijdns.2018.8.003, DOI 10.5267/J.IJDNS.2018.8.003]
Li Jing, 2019, Journal of Mechanical Engineering, V55, P222, DOI 10.3901/JME.2019.17.222
Liang W., 2013, THESIS SHANGHAI JIAO
Liu Q., 2019, MACH TOOL HYDRAUL, V47, P151, DOI [10.3969/j.issn.1001-3881.2019.10.035, DOI 10.3969/J.ISSN.1001-3881.2019.10.035]
Liu YP, 2019, INTELL AUTOM SOFT CO, V25, P767, DOI 10.31209/2019.100000080
[罗钧 Luo Jun], 2016, [机械工程学报, Journal of Mechanical Engineering], V52, P27
Pathak VK, 2017, J ADV MANUF SYST, V16, P205, DOI 10.1142/S0219686717500135
[钱晓明 Qian Xiaoming], 2020, [仪器仪表学报, Chinese Journal of Scientific Instrument], V41, P113
Srinivasu DS, 2017, INT J ADV MANUF TECH, V92, P2743, DOI 10.1007/s00170-017-0325-y
Tian Y., 2007, CHIN J SCI INSTRUM, P118
[杨泽青 Yang Zeqing], 2021, [计算机集成制造系统, Computer Integrated Manufacturing Systems], V27, P1629
Yu Hongxiang, 2014, Journal of Mechanical Engineering, V50, P199, DOI 10.3901/JME.2014.03.199
[俞红祥 Yu Hongxiang], 2012, [仪器仪表学报, Chinese Journal of Scientific Instrument], V33, P2249
Yu ZW, 2005, ENG FAIL ANAL, V12, P487, DOI 10.1016/j.engfailanal.2004.10.001
Zhang G., 2021, THESIS QINGDAO U SCI
Zhang H., 2015, Research on the use value of virtual game products
Zhao D., 2012, RES AUTOMATIC PRECIS
Zheng P, 2019, MEASUREMENT, V135, P886, DOI 10.1016/j.measurement.2018.12.046
NR 27
TC 2
Z9 2
U1 6
U2 29
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-3417
J9 APPL SCI-BASEL
JI Appl. Sci.-Basel
PD FEB
PY 2022
VL 12
IS 4
AR 2214
DI 10.3390/app12042214
PG 15
WC Chemistry, Multidisciplinary; Engineering, Multidisciplinary; Materials
Science, Multidisciplinary; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Engineering; Materials Science; Physics
GA ZR4LU
UT WOS:000767757400001
OA gold
DA 2024-09-05
ER
PT J
AU Avanesova, AA
Shamliyan, TA
AF Avanesova, Anna A.
Shamliyan, Tatyana A.
TI Comparative trends in research performance of the Russian universities
SO SCIENTOMETRICS
LA English
DT Article
DE Academic institutions; Productivity; Internationalization; Russian
Federation; Artificial intelligence
ID PUBLICATION ACTIVITY; SCIENCE; INSTITUTIONS; INNOVATION; CAPACITY;
STATE; CHINA
AB We analyzed comparative trends in research performance of the Russian institutions based on the quantitative and qualitative data available in the international SciVal, Scopus, web of science and the national Russian databases from 2012 to December 2017. Russian Federation represented 2.0% of the world population and 2% of the researchers while accounting to 2.2% of the world publications (14th place in the world scholarly output) with overall field-weighted citation impact of 0.75. Scholarly output of the Russian authors increased by 79%, field-weighted citation impact by 12% and outputs in top citation percentiles by 21% but without a statistically significant positive association between higher investment in research and development and the increase the national GDP. Scholarly output for the Russian publications in mathematics, physics and astronomy are among 5 top countries. However, field-weighted mass media impact, the number of citations per publication, citations per author and per publication, metrics of international collaboration and the academic-corporation collaboration and economic impact of the Russian research remain low. Routine analysis of the research performance and economic impact of R&D expenditure should be reflected in transparent distribution of state research funding. Legal aspects of the international research must be developed to ensure a complete integration of the Russian science into international research activities.
C1 [Avanesova, Anna A.] North Caucasian Fed Univ, Pushkina St 1, Stavropol 355009, Russia.
[Shamliyan, Tatyana A.] Elsevier, Evidence Based Med Ctr, Qual Assurance, 1600 JFK Blvd, Philadelphia, PA 19103 USA.
C3 North Caucasus Federal University; Reed Elsevier; Elsevier
RP Shamliyan, TA (corresponding author), Elsevier, Evidence Based Med Ctr, Qual Assurance, 1600 JFK Blvd, Philadelphia, PA 19103 USA.
EM annavanesova@yandex.ru; t.shamliyan@elsevier.com
RI Shamliyan, Tatyana/AAU-8323-2020
OI Avanesova, Anna/0000-0003-2472-9616
CR Abankina I, 2016, TECHNOL FORECAST SOC, V103, P228, DOI 10.1016/j.techfore.2015.10.007
Aldieri L, 2018, SOCIO-ECON PLAN SCI, V62, P13, DOI 10.1016/j.seps.2017.05.003
[Anonymous], BENCHMARKING SCIVAL
[Anonymous], EKON SOTS PEREMENY F
Asheim B., 2016, ADV THEORY PRACTICE
Bolotov V. A., 2014, VOPROSY OBRAZOVANIYA, V1, P241
Chen KH, 2020, TECHNOVATION, V94-95, DOI 10.1016/j.technovation.2017.10.005
Chmykhalo A, 2015, PROCD SOC BEHV, V166, P480, DOI 10.1016/j.sbspro.2014.12.559
Colledge L., 2014, SCIVAL METRICS GUIDE
Decree of the Government of the Russian Federation, 2013, MEAS STAT SUPP LEAD
Decree of the President of the Russian Federation, 2012, MEAS IMPL STAT POL F
Frenken K, 2017, J INFORMETR, V11, P859, DOI 10.1016/j.joi.2017.06.006
Galeev I. H., 2012, ED TECHNOLOGIES SOC, V15, P594
Gorin S.V., 2016, European Science Editing, V42, P60
Ivanov VV, 2014, HER RUSS ACAD SCI+, V84, P28, DOI 10.1134/S101933161401002X
Kirillova O. V., 2012, ED STUDIES, P148
Kulmala M, 2015, ATMOS CHEM PHYS, V15, P13085, DOI 10.5194/acp-15-13085-2015
Lane J, 2011, SCIENCE, V331, P678, DOI 10.1126/science.1201865
Li F. -. F, 2017, OPENING GOOGLE AI CH
Li J, 2017, INFORM PROCESS MANAG, V53, P1156, DOI 10.1016/j.ipm.2017.05.002
Li XB, 2011, WORLD DEV, V39, P1240, DOI 10.1016/j.worlddev.2010.05.011
Lyagushkina E., 2017, INTER NET J, V9
Macilwain C, 2010, NATURE, V465, P682, DOI 10.1038/465682a
Markusova VA, 2013, COLLNET J SCIENTOMET, V7, P217, DOI 10.1080/09737766.2013.832904
Meyer D., 2017, FORTUNE
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Nikolaev V., 2013, B SARATOV STATE LAW, V5, P6
O'Meara S, 2015, NATURE, V528, pS179, DOI 10.1038/528S179a
Pislyakov V, 2014, J ASSOC INF SCI TECH, V65, P2321, DOI 10.1002/asi.23093
Poldin O., 2017, ED STUDIES, V2, P10
Russian Academy of Science, 2013, M PRES RUSS AC SCI
Salter B, 2016, SCI TECHNOL HUM VAL, V41, P793, DOI 10.1177/0162243916631022
Schiermeier Q., 2010, RUSSIA BOOST U SCI
Sokolov D. V., 2014, J SCI INNOVATION ED, V15, P131
Tereshchenko D., 2017, EC ED, V3, P123
The Directive of the Government of the Russian Federation, 2012, PLAN MEAS DEV IMPR C
The Directive of the Government of the Russian Federation, 2013, COUNC INCR COMP LEAD
The Ministry of Education and Science of the Russian Federation, RUSS AC EXC PROJ
The UK's Department for Business E. I. S. B., 2017, INT COMP PERF UK RES
Turko T, 2016, SCIENTOMETRICS, V109, P769, DOI 10.1007/s11192-016-2060-9
Zemlin A. I., 2017, RUSSIAN MILITARY J, V1, P149
NR 41
TC 17
Z9 19
U1 3
U2 50
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD SEP
PY 2018
VL 116
IS 3
BP 2019
EP 2052
DI 10.1007/s11192-018-2807-6
PG 34
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA GQ8LT
UT WOS:000442007200028
DA 2024-09-05
ER
PT J
AU Weinberger, M
Zhitomirsky-Geffet, M
AF Weinberger, Maor
Zhitomirsky-Geffet, Maayan
TI Modeling a successful citation trajectory structure for scholar's impact
evaluation in Israeli academia
SO HELIYON
LA English
DT Article
DE Scholarly impact; Universal impact measures; Citation trajectory
structure; Logistic regression classifier; Web of Science; Google
Scholar
ID RESEARCH PRODUCTIVITY; GENDER-DIFFERENCES; CAREER; FACULTY; SCIENCE;
INDEX; UNIVERSALITY; PATTERNS; CHOICE
AB One of the main concerns of researchers and institutions is how to assess the future performance of scholars and identify their potential to become successful scientists. In this study, we model scholarly success in terms of the probability of a scholar belonging to a group of highly impactful scholars as determined by their citation trajectory structures. To this end, we developed a new set of impact measures based on a scholar's citation trajectory structure (rather than on absolute citation or h-index rates), that show a stable trend and scale for highly impactful scholars, independent of their field of study, seniority and citation index. These measures were then incorporated as influence factors into the logistic regression models and used as features for probabilistic classifiers based on these models to identify the successful scholars in the heterogeneous corpus of 400 of most and least cited professors from two Israeli universities. From the practical point of view, the study may yield useful insights and serve as an aid in making promotion decisions by institutions, as well as a self-assessment tool for researchers who strive to increase their academic influence and become leaders in their field.
C1 [Weinberger, Maor; Zhitomirsky-Geffet, Maayan] Bar Ilan Univ, Ramat Gan, Israel.
C3 Bar Ilan University
RP Weinberger, M (corresponding author), Bar Ilan Univ, Ramat Gan, Israel.
EM maor89@gmail.com
RI Weinberger, Maor/JGL-8627-2023
OI Weinberger, Maor/0000-0002-4943-1763
CR Abramo G, 2016, SCI PUBL POLICY, V43, P301, DOI 10.1093/scipol/scv037
Abramo G, 2009, SCIENTOMETRICS, V79, P517, DOI 10.1007/s11192-007-2046-8
Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9
Bjork S, 2014, SCIENTOMETRICS, V98, P185, DOI 10.1007/s11192-013-0989-5
BLACKBURN RT, 1978, SOCIOL EDUC, V51, P132, DOI 10.2307/2112245
Brizan DG, 2016, SCIENTOMETRICS, V108, P183, DOI 10.1007/s11192-016-1950-1
Campbell PG, 2011, J NEUROSURG, V115, P380, DOI 10.3171/2011.3.JNS101176
Clauset A, 2017, SCIENCE, V355, P477, DOI 10.1126/science.aal4217
Cooper T, 2019, INFORM RES, V24
Ding CG, 2017, J INFORMETR, V11, P244, DOI 10.1016/j.joi.2016.12.004
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Eloy JA, 2013, OTOLARYNG HEAD NECK, V148, P215, DOI 10.1177/0194599812466055
Feichtinger G, 2019, J ECON DYN CONTROL, V108, DOI 10.1016/j.jedc.2019.103752
Fenner T, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0200098
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Franceschini F, 2012, SCIENTOMETRICS, V92, P621, DOI 10.1007/s11192-011-0570-z
FULTON O, 1974, SOCIOL EDUC, V47, P29, DOI 10.2307/2112166
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Garfield E, 2009, J INFORMETR, V3, P173, DOI 10.1016/j.joi.2009.03.009
Gogoglou A, 2020, IEEE T BIG DATA, V6, P727, DOI 10.1109/TBDATA.2018.2884505
Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hou J, 2019, COMPUT SCI REV, V34, DOI 10.1016/j.cosrev.2019.100197
Kaur J, 2013, J INFORMETR, V7, P924, DOI 10.1016/j.joi.2013.09.002
Ke WM, 2013, SCIENTOMETRICS, V94, P981, DOI 10.1007/s11192-012-0787-5
Kelchtermans S., 2005, TOP RES PRODUCTIVITY, V576, P1, DOI [10.1089/dst.2013.0013, DOI 10.1089/DST.2013.0013]
Kyvik S, 1996, SCI TECHNOL HUM VAL, V21, P54, DOI 10.1177/016224399602100103
KYVIK S, 1990, HIGH EDUC, V19, P37, DOI 10.1007/BF00142022
Larivière V, 2011, SCIENTOMETRICS, V87, P483, DOI 10.1007/s11192-011-0369-y
Levene M, 2019, SCIENTOMETRICS, V120, P885, DOI 10.1007/s11192-019-03151-7
Li JC, 2020, J R SOC INTERFACE, V17, DOI 10.1098/rsif.2020.0135
Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880
Petersen AM, 2012, P NATL ACAD SCI USA, V109, P5213, DOI 10.1073/pnas.1121429109
Petersen AM, 2014, P NATL ACAD SCI USA, V111, P15316, DOI 10.1073/pnas.1323111111
Powers TL, 1998, J BUS RES, V42, P75, DOI 10.1016/S0148-2963(97)00099-4
Prathap G, 2006, CURR SCI INDIA, V91, P1439
Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105
Raj A, 2016, ACAD MED, V91, P1074, DOI 10.1097/ACM.0000000000001251
Reed DA, 2011, ACAD MED, V86, P43, DOI 10.1097/ACM.0b013e3181ff9ff2
Sabharwal M, 2013, J COMP POLICY ANAL, V15, P141, DOI 10.1080/13876988.2013.785149
Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x
Silva FN, 2020, QUANT SCI STUD, V1, P1298, DOI 10.1162/qss_a_00070
Simonton DK, 1997, PSYCHOL REV, V104, P66, DOI 10.1037/0033-295X.104.1.66
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
Smith GCS, 2014, AM J EPIDEMIOL, V180, P318, DOI 10.1093/aje/kwu140
Stack S, 2004, RES HIGH EDUC, V45, P891, DOI 10.1007/s11162-004-5953-z
Stephan PE., 1992, Striking the mother lode in science: The importance of age, place, and time
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678
WANNER RA, 1981, SOCIOL EDUC, V54, P238, DOI 10.2307/2112566
Way SF, 2017, P NATL ACAD SCI USA, V114, pE9216, DOI 10.1073/pnas.1702121114
Weihs L, 2017, ACM-IEEE J CONF DIG, P49
Weinberger M., 2020, ASS INFORM SCI TECHN
Weinberger M, 2021, SCIENTOMETRICS, V126, P2931, DOI 10.1007/s11192-020-03823-9
White CS, 2012, INT J PRODUCT PERFOR, V61, P584, DOI 10.1108/17410401211249175
Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3
Yair G, 2017, SCIENTOMETRICS, V113, P299, DOI 10.1007/s11192-017-2465-0
Yang G, 2012, J UROLOGY, V188, P1286, DOI 10.1016/j.juro.2012.06.022
NR 61
TC 1
Z9 1
U1 3
U2 6
PU CELL PRESS
PI CAMBRIDGE
PA 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA
EI 2405-8440
J9 HELIYON
JI Heliyon
PD MAY
PY 2023
VL 9
IS 5
AR e15673
DI 10.1016/j.heliyon.2023.e15673
EA APR 2023
PG 16
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA O2NV4
UT WOS:001042247800001
PM 37159699
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Guo, LF
Cui, YW
Wu, YM
Ma, JQ
AF Guo Lifang
Cui Yuwen
Wu Yamin
Ma Jiaqi
TI Research on the influence of relation embeddedness on innovation
performance of manufacturing supply chain alliances using expert fuzzy
rule -intermediary role of shared mental model
SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS
LA English
DT Article
DE Artificial Intelligence (AI); relation embeddedness; shared mental
model; innovation performance; structure equations; fuzzy rule
AB The innovation and development of manufacturing supply chain alliance is an important way for enterprises to meet the increasing market demand and maintain the competitive advantage. From the perspective of embeddedness, the research model of relation embeddedness on innovation performance of manufacturing supply chain was constructed based on AMOS. Shared mental model was selected as intermediary variable to study the influence of relation embeddedness, shared mental model and innovation performance of manufacturing supply chain alliances. Expert fuzzy rule based system is utilized for measuring the performance of manufacturing supply chain alliances. The conclusion shows that relation embeddedness is significantly positive shared mental model and innovation performance. Shared mental model is positively affects alliance innovation performance and plays a part of intermediary role between relational embedding and alliance innovation performance. Practice implicates that enhance the level of relation embeddedness can promote the formation of shared mental model and improve the innovation performance of manufacturing supply chain alliance.
C1 [Guo Lifang; Cui Yuwen; Wu Yamin; Ma Jiaqi] Taiyuan Univ Technol, Coll Econ & Management, Jinzhong 030600, Shanxi, Peoples R China.
C3 Taiyuan University of Technology
RP Guo, LF (corresponding author), Taiyuan Univ Technol, Coll Econ & Management, Jinzhong 030600, Shanxi, Peoples R China.
EM glfpapers@163.com
RI yang, yue/KCK-7870-2024
CR BalaAnand M, 2019, WIRELESS PERS COMMUN, V109, P777, DOI 10.1007/s11277-019-06590-w
Cannon-Bowers JA, 2001, J ORGAN BEHAV, V22, P195, DOI 10.1002/job.82
Cao Y., IEEE T IND INFORM
Diyun M., 2016, SCI SCI TECHNOLOGY M, V37, P152
Fantacci R, 2020, CAAI T INTELL TECHNO, V5, P15, DOI 10.1049/trit.2019.0049
Fawcett SE, 2012, BUS HORIZONS, V55, P163, DOI 10.1016/j.bushor.2011.11.004
Gulati R, 2000, STRATEGIC MANAGE J, V21, P203, DOI 10.1002/(SICI)1097-0266(200003)21:3<203::AID-SMJ102>3.0.CO;2-K
Guo S., ENTERP INF SYST-UK, P1
Guohong C., 2013, RES DEV MANAGEMENT, V25, P126
Hui L., 2010, IND ENG MANAGEMENT, V15, P7
Jean RJ, 2014, J PROD INNOVAT MANAG, V31, P98, DOI 10.1111/jpim.12082
Ke X., 2015, NANKAI MANAGEMENT RE, V18, P108
Khalaf OI, 2020, INT J E-COLLAB, V16, P16, DOI 10.4018/IJeC.2020010102
Khan M, 2016, INT J PROD ECON, V181, P208, DOI 10.1016/j.ijpe.2016.04.010
KLIMOSKI R, 1994, J MANAGE, V20, P403, DOI 10.1177/014920639402000206
Laursen K, 2006, STRATEGIC MANAGE J, V27, P131, DOI 10.1002/smj.507
Mengdan Y., 2015, NANKAI MANAGEMENT RE, V18, P39
Peterson E., 2000, GROUP PROCESSES INTE, V3, P296, DOI DOI 10.1177/1368430200033005
Schepers P, 2007, J BUS PSYCHOL, V21, P407, DOI 10.1007/s10869-006-9035-4
Uzzi B, 1997, ADMIN SCI QUART, V42, P35, DOI 10.2307/2393808
Youn S, 2012, INT J PROD ECON, V139, P237, DOI 10.1016/j.ijpe.2012.04.013
Yu F., 2018, SCI TECHNOLOGY MANAG, P98
NR 22
TC 0
Z9 0
U1 4
U2 27
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 1064-1246
EI 1875-8967
J9 J INTELL FUZZY SYST
JI J. Intell. Fuzzy Syst.
PY 2021
VL 40
IS 4
BP 8287
EP 8294
DI 10.3233/JIFS-189651
PG 8
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA RN7PP
UT WOS:000640545600050
DA 2024-09-05
ER
PT J
AU Stelson, EA
Bolenbaugh, M
Woods-Jaeger, B
Branch, C
Ramirez, M
AF Stelson, Elisabeth A.
Bolenbaugh, Mallory
Woods-Jaeger, Briana
Branch, Cassidy
Ramirez, Marizen
TI Identifying research Participation effects through qualitative methods:
Feedback from Research Engagement Consultants involved in a pediatric
mental health comparative effectiveness trial
SO SSM-QUALITATIVE RESEARCH IN HEALTH
LA English
DT Article
DE Research participation effects; Causal inference; Qualitative; Hawthorne
effect; Clinical trials; Community engagement
AB Research participation effects (RPEs)-effects due to study design rather than study intervention-have long been acknowledged as a research phenomenon. Identifying RPEs is crucial to understanding the true effects of an intervention and outcomes may change during dissemination. Few researchers systematically identify the potential role of RPEs on their research findings, despite recent calls to capture these effects. This study demonstrates the utility of using qualitative methodologies to detect RPEs in a clinical trial. Research Engagement Consultants (RECs) were parents and children (N1/419) who participated in a post-injury mental health trial in three Midwestern states. RECs were hired as part of the research team upon completion of their study participation. RECs participated in two semi-structured interviews detailing their experience in the study and their recovery process. Inter-coder reliability calculations were used iteratively to ensure coding consistency. Thematic analysis indicates that in addition to benefiting from the interventions being tested, RECs additionally reported benefitting from the study design in two primary ways: 1) contact with the research team provided social support; and 2) completion of specific data collection activities facilitated parent-child communication. Analysis of these interviews illustrates how embedding a qualitative evaluation process into clinical trials can help identify unintended RPEs and understand the potential effects of participating in the research process. Additionally, analysis of the qualitative data provides a quality improvement feedback loop to contextualize the results of the study; how the clinical trial environment may influence dissemination effectiveness; and how future research processes could potentially be strengthened. Trial registration number: NCT02323204.Trial registry: clinicaltrials.gov (US National Institutes of Health)
C1 [Stelson, Elisabeth A.] Harvard Univ, TH Chan Sch Publ Hlth, Dept Social & Behav Sci, 677 Huntington Ave, Boston, MA 02115 USA.
[Bolenbaugh, Mallory] Univ Iowa, Coll Educ, Dept Psychol & Quantitat Fdn, Iowa City, IA USA.
[Woods-Jaeger, Briana] Emory Univ, Rollins Sch Publ Hlth, Dept Behav Social & Hlth Educ Sci, Atlanta, GA USA.
[Stelson, Elisabeth A.; Bolenbaugh, Mallory; Branch, Cassidy; Ramirez, Marizen] Univ Iowa, Coll Publ Hlth, Dept Occupat & Environm Hlth, Iowa City, IA USA.
[Branch, Cassidy] Univ Iowa, Publ Policy Ctr, Iowa City, IA USA.
[Ramirez, Marizen] Univ Minnesota, Sch Publ Hlth, Div Environm Hlth Sci, Minneapolis, MN USA.
C3 Harvard University; Harvard T.H. Chan School of Public Health;
University of Iowa; Emory University; Rollins School Public Health;
University of Iowa; University of Iowa; University of Minnesota System;
University of Minnesota Twin Cities
RP Stelson, EA (corresponding author), Harvard Univ, TH Chan Sch Publ Hlth, Dept Social & Behav Sci, 677 Huntington Ave, Boston, MA 02115 USA.
EM estelson@g.harvard.edu
OI Stelson, Elisabeth/0000-0001-5176-2652
FU Patient-Centered Outcomes Research Institute (PCORI) Award
[CER-1306-02918]; National Cancer Institute of the National Institutes
of Health [R25CA057711, 2T32CA057711-26]; Harvard Univer-sity
FX This study was funded through a Patient-Centered Outcomes Research
Institute (PCORI) Award (CER-1306-02918) to Principal Investigator
Marizen Ramirez. The primary author was partially funded by the National
Cancer Institute of the National Institutes of Health (R25CA057711 and
2T32CA057711-26) , awarded to Harvard University. The funding
organizations had no role in the design and conduct of the study;
collection, management, analysis, and interpretation of the data;
preparation, review, or approval of the manuscript; or decision to
submit the manuscript for publication.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2667-3215
J9 SSM-QUAL RES HEALTH
JI SSM-Qual. Res. Health
PD DEC
PY 2021
VL 1
AR 100023
DI 10.1016/j.ssmqr.2021.100023
PG 8
WC Public, Environmental & Occupational Health; Social Sciences, Biomedical
WE Emerging Sources Citation Index (ESCI)
SC Public, Environmental & Occupational Health; Biomedical Social Sciences
GA ES8T3
UT WOS:001141014500026
OA gold
DA 2024-09-05
ER
PT J
AU Zhang, RS
AF Zhang, Ruoshi
TI Research and evaluation on students' emotional attachment to campus
landscape renewal coupling emotional attachment scale and public
sentiment analysis: a case study of the "Heart of Forest" in Beijing
Forestry University
SO FRONTIERS IN PSYCHOLOGY
LA English
DT Article
DE emotional attachment; campus landscape renewal; emotional attachment
scale; public sentiment analysis; Heart of Forest
ID BENEFITS; GREENSPACE; DESIGN
AB In the era of stock renewal, the construction of university campuses in China's first-tier cities has shifted from demolition and construction to renewal and upgrading, in which public landscape space is the main environment for students' daily life, learning and entertainment. Especially during the outbreak of the recent COVID-19 epidemic, it has become an important way for students to interact with nature and obtain emotional healing. In the existing studies, there is a lack of discussion on the correlation between the spatial characteristics of the updated campus landscape and students' emotional attachment, and there are few quantitative studies. Based on this, this paper takes the "Heart of Forest" landscape space as an example, and integrates multi-dimensional quantitative methods including emotional attachment scale and public semantic analysis to study and evaluate the characteristics of landscape space that affect students' emotional attachment. The results show that: (1) Overall, the landscape space renewal of the Heart of Forest provides students with positive emotional experiences and effectively enhances students' emotional attachment as well as sense of belonging to the campus. (2) Among them, the material characteristics of the site including nature-related elements, materials, structures play a positive role in promoting the vast majority of students in the process of establishing emotional attachment, which is particularly obvious for students majoring in landscape, architecture and urban planning. (3) Whether the public social space can effectively provide students with a good emotional experience is closely related to the frequency and purpose of students' use of the space. (4) The interactive characteristics such as changeability and playability fail to promote emotional attachment because of lacking of management and maintenance. The renewal and transformation of the "Heart of Forest" landscape space is generally successful in promoting students' emotional attachment, and provides a reference for the future campus landscape renewal design from different angles. In addition, the quantitative study of emotional attachment constructed in this paper coupled with multi-dimensional data provides a method for the evaluation of students' emotional experience of campus landscape.
C1 [Zhang, Ruoshi] Beijing Forestry Univ, Sch Landscape Architecture, Beijing, Peoples R China.
C3 Beijing Forestry University
RP Zhang, RS (corresponding author), Beijing Forestry Univ, Sch Landscape Architecture, Beijing, Peoples R China.
EM zhang_rs@bjfu.edu.cn
OI Zhang, Ruoshi/0000-0001-8610-9151
FU This work was supported by the National Natural Science Foundation of
China under Grant No. 52208005 and Beijing Social Science Foundation
under Grant No. 22GLC063. [52208005]; National Natural Science
Foundation of China [22GLC063]; Beijing Social Science Foundation
FX Thanks for Shujie Zhao's help with the scale measurement. Thanks for
Yang Song, Weiyue Duan, Zhikai Zheng, Yuling Liu for their help of
distributing and collecting scales. Thanks for Weiyue Duan and Zhikai
Zhao for their photography of the Heart of Forest.r This work was
supported by the National Natural Science Foundation of China under
Grant No. 52208005 and Beijing Social Science Foundation under Grant No.
22GLC063.
CR Adams PC, 2015, GEOGR REV, V105, P129, DOI 10.1111/j.1931-0846.2014.12061.x
Altman I., 1992, Place Attachment, DOI DOI 10.1007/978-1-4684-8753-4
Andre EK, 2017, J OUTDOOR RECREAT ED, V9, P15, DOI 10.18666/JOREL-2017-V9-I1-7491
[Anonymous], 2022, Qiangua's 2022 Xiaohongshu Active User Portrait Trend Report
Arnberger A, 2022, URBAN FOR URBAN GREE, V70, DOI 10.1016/j.ufug.2022.127531
Barbier G, 2011, SOCIAL NETWORK DATA ANALYTICS, P327
Birnbaum L, 2021, J RURAL STUD, V87, P189, DOI 10.1016/j.jrurstud.2021.09.015
Biswas R., 2020, Int. J. Creat. Res. Thoughts, V8
Brandisauskiene A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132111714
Brindley P, 2019, URBAN FOR URBAN GREE, V39, P45, DOI 10.1016/j.ufug.2019.01.015
Carmona M, 2019, J URBAN DES, V24, P1, DOI 10.1080/13574809.2018.1472523
Chakraborty K, 2020, IEEE T COMPUT SOC SY, V7, P450, DOI 10.1109/TCSS.2019.2956957
Ekkekakis P., 2013, The measurement of affect, mood, and emotion: A guide for health-behavioral research
[冯悦 Feng Yue], 2021, [中国园林, Chinese Landscape Architecture], V37, P31
Guo WH, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12101508
Guo X, 2022, BUILD ENVIRON, V223, DOI 10.1016/j.buildenv.2022.109449
Honold J, 2016, ENVIRON BEHAV, V48, P796, DOI 10.1177/0013916514568556
Jiang B, 2021, ENVIRON BEHAV, V53, P296, DOI 10.1177/0013916520947111
Jindal K., 2021, Mater Today: Proc
Kaplan R., 1989, The Experience of Nature: A Psychological Perspective
Kaplan R., 1998, PEOPLE MIND DESIGN M
KAPLAN S, 1995, J ENVIRON PSYCHOL, V15, P169, DOI 10.1016/0272-4944(95)90001-2
Kara B, 2013, PROCD SOC BEHV, V82, P288, DOI 10.1016/j.sbspro.2013.06.262
Kellert S.R., 1995, The Biophilia Hypothesis
Koga K, 2013, J PHYSIOL ANTHROPOL, V32, DOI 10.1186/1880-6805-32-7
Kong LQ, 2022, LANDSCAPE URBAN PLAN, V226, DOI 10.1016/j.landurbplan.2022.104482
Lai KY, 2020, CURR OPIN ENV SUST, V46, P27, DOI 10.1016/j.cosust.2020.08.008
Lau S, 2009, LANDSCAPE RES, V34, P55, DOI 10.1080/01426390801981720
Lee J, 2009, SCAND J FOREST RES, V24, P227, DOI 10.1080/02827580902903341
Lewicka M, 2011, J ENVIRON PSYCHOL, V31, P207, DOI 10.1016/j.jenvp.2010.10.001
Lin G., 2019, Chin. Landsc. Archit, V35, P63, DOI [10.19775/j.cla.2019.10.0063, DOI 10.19775/J.CLA.2019.10.0063]
Liu QY, 2020, LANDSCAPE URBAN PLAN, V197, DOI 10.1016/j.landurbplan.2020.103763
Liu SB, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.888295
MCPHERSON EG, 1992, LANDSCAPE URBAN PLAN, V22, P41
Ratcliffe E, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.570563
Rickard SC, 2021, LANDSCAPE RES, V46, P975, DOI 10.1080/01426397.2021.1928034
Rousseau S, 2020, ENVIRON RESOUR ECON, V76, P1149, DOI 10.1007/s10640-020-00445-w
Scannell L, 2013, ENVIRON BEHAV, V45, P60, DOI 10.1177/0013916511421196
Scannell L, 2017, J ENVIRON PSYCHOL, V51, P256, DOI 10.1016/j.jenvp.2017.04.001
Scannell L, 2010, J ENVIRON PSYCHOL, V30, P1, DOI 10.1016/j.jenvp.2009.09.006
Sim J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12218895
Sina Weibo, 2020, Annual Sina Weibo User Report 2020
Tuan Y.-F., 1979, PHILOS GEOGRAPHY THE, P387, DOI DOI 10.1007/978-94-009-9394-5_19
Van den Berg A., 2008, P 9 INT C PHYS ANTHR
van Leeuwen E, 2010, INT J AGR SUSTAIN, V8, P20, DOI 10.3763/ijas.2009.0466
Vella-Brodrick DA, 2022, EDUC PSYCHOL REV, V34, P1217, DOI 10.1007/s10648-022-09658-5
Wilkins E.J., 2020, Applied Environmental Education Communication, V19, P4, DOI DOI 10.1080/1533015X.2018.1486247
Williams D.R., 1989, Abstracts of the 1989 Leisure Research Symposium, P32
Xie J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12176751
Yan TK, 2023, BUILD ENVIRON, V233, DOI 10.1016/j.buildenv.2023.110130
Ye L, 2021, PUBLIC ADMIN DEVELOP, V41, P23, DOI 10.1002/pad.1903
Yi ZY, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9081460
You SX, 2022, J CLEAN PROD, V341, DOI 10.1016/j.jclepro.2022.130715
Yuanshuo X., 2023, J. Landsc. Res, V15
Zeng XT, 2022, FORESTS, V13, DOI 10.3390/f13060892
Zhang R., 2021, New Archit, V02, P62
Zhang RS, 2024, J ASIAN ARCHIT BUILD, V23, P57, DOI 10.1080/13467581.2023.2217884
Zhang RS, 2023, FRONT ARCHIT RES, V12, P175, DOI 10.1016/j.foar.2022.06.007
Zhu X, 2021, URBAN FOR URBAN GREE, V62, DOI 10.1016/j.ufug.2021.127133
NR 59
TC 2
Z9 2
U1 24
U2 40
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-1078
J9 FRONT PSYCHOL
JI Front. Psychol.
PD SEP 25
PY 2023
VL 14
AR 1250441
DI 10.3389/fpsyg.2023.1250441
PG 20
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA T4ZZ7
UT WOS:001078098800001
PM 37823071
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Men, KP
Cui, L
AF Men, Kepei
Cui, Lei
TI Research on Evaluation Models and Empirical Analysis of Earthquake
Disaster Losses in China
SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
LA English
DT Article
DE Earthquake Disaster; Economic Loss Rating; Grey Relation-Cluster
Analysis; Principal Component Analysis; Evaluation Models
ID GREAT EARTHQUAKES; NETWORK STRUCTURE; PREDICTION
AB Earthquake disasters occurred very frequently in China. As a result, to evaluate the losses has important social value and economic effect. This paper focuses on the assessment of economic losses of earthquake disasters which is divided into two parts: direct economic loss and indirect economic loss. First, the Kolmogorov-Smirnov (KS) test is used to determine the distribution of the earthquake losses per year in China, fitting the frequency of earthquake that happened per month in China. Second, the grey clustering method and principal component analysis (PCA) are applied, respectively, for direct economic loss rating and indirect economic loss rating. Finally, the economic loss generated by the earthquakes which happened from 2006 to 2009 in China is evaluated, and eight earthquakes are rated based on the comprehensive economic loss.
C1 [Men, Kepei; Cui, Lei] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China.
C3 Nanjing University of Information Science & Technology
RP Men, KP (corresponding author), Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China.
EM menkepei@gmail.com
CR [Anonymous], CHINA ENG SCI
[Anonymous], 1984, An Introduction to Multivariate Statistical Analysis
[Anonymous], J NATURAL DISASTERS
[Anonymous], RES GRAY MODEL EARTH
[Anonymous], 2012, Wiley Series in Probability and Statistics
[Anonymous], SYSTEMS ENG THEORY M
[Anonymous], RECENT DEV WORLD SEI
[Anonymous], 2007, CHIN STAT YB
[Anonymous], RES ALBUM PREDICTI 4
[Anonymous], J CATASTROPHOLOGY
[Anonymous], STAT DECISION MAKING
[Anonymous], PLACE VUNERABILITY T
[Anonymous], STAT DECISION MAKING
[Anonymous], WORLD EARTHQUAKE ENG
[Anonymous], CHINESE GEOPHYS 2010
[Anonymous], TECHNOL EARTHQUAKE P
Conover WJ., 1999, Practical Nonparametric Statistical, V350
[董奋义 Dong Fenyi], 2010, [农业系统科学与综合研究, System Sciences and Comprehensive Studies in Agriculture], V26, P478
Liu S. F., 2004, GREY SYSTEMS THEORY
[毛国敏 Mao Guomin], 2007, [地震学报, Acta Seismologica Sinica], V29, P426
Men KP, 2012, Z NATURFORSCH A, V67, P308, DOI 10.5560/ZNA.2012-0013
Men K, 2011, Z NATURFORSCH A, V66, P681, DOI 10.5560/ZNA.2011-0028
Men KP, 2011, Z NATURFORSCH A, V66, P363, DOI 10.1515/zna-2011-0513
[徐道一 XU Daoyi], 2011, [地质力学学报, Journal of Geomechanics], V17, P64
Zhao AX., 1993, J NAT DISASTERS, V2, P1, DOI DOI 10.13577/j.jnd.1993.0301
[郑通彦 Zheng Tongyan], 2010, [灾害学, Journal of Catastrophology], V25, P96
[郑通彦 Zheng Tongyan], 2010, [灾害学, Journal of Catastrophology], V25, P112
NR 27
TC 1
Z9 1
U1 0
U2 21
PU WALTER DE GRUYTER GMBH
PI BERLIN
PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
SN 0932-0784
EI 1865-7109
J9 Z NATURFORSCH A
JI Z. Naturfors. Sect. A-J. Phys. Sci.
PD OCT-NOV
PY 2012
VL 67
IS 10-11
BP 534
EP 544
DI 10.5560/ZNA.2012-0059
PG 11
WC Chemistry, Physical; Physics, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Physics
GA 063BQ
UT WOS:000312971200002
OA hybrid
DA 2024-09-05
ER
PT B
AU Thomas, J
AF Thomas, Julia
BA Thomas, J
BF Thomas, J
TI Searchability
SO NINETEENTH-CENTURY ILLUSTRATION AND THE DIGITAL: STUDIES IN WORD AND
IMAGE
SE Digital Nineteenth Century
LA English
DT Article; Book Chapter
DE Nineteenth century; Illustration; Digital; Computer vision; Keywording;
Bibliographic metadata
AB This chapter focuses on methods for making the content of illustrations searchable online, including computer vision, which offers the possibility of automated image retrieval, the use of textual metadata (bibliographic information, captions, and the words that accompany the illustration), and keywording. Thomas contends that these methods are not detached from the material that they promise to make searchable, but are deeply implicated in the relation between word and image that characterises illustration. The chapter analyses the ways in which the search mechanisms in digital illustration resources engage with this problematic relation between the textal and the visual, from issues surrounding the instability of the vocabulary used to describe the presence of illustrations in books, to questions of whether an illustration 'reflects' the text it accompanies.
C1 [Thomas, Julia] Cardiff Univ, Cardiff, S Glam, Wales.
C3 Cardiff University
RP Thomas, J (corresponding author), Cardiff Univ, Cardiff, S Glam, Wales.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU PALGRAVE
PI BASINGSTOKE
PA HOUNDMILLS, BASINGSTOKE RG21 6XS, ENGLAND
BN 978-3-319-58148-4; 978-3-319-58147-7
J9 DIG NINETEENTH CENT
PY 2017
BP 33
EP 64
DI 10.1007/978-3-319-58148-4_3
D2 10.1007/978-3-319-58148-4
PG 32
WC Humanities, Multidisciplinary; Information Science & Library Science
WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH)
SC Arts & Humanities - Other Topics; Information Science & Library Science
GA BK0FR
UT WOS:000430506600003
DA 2024-09-05
ER
PT J
AU Panigrahi, RR
Shrivastava, AK
Qureshi, KM
Mewada, BG
Alghamdi, SY
Almakayeel, N
Almuflih, AS
Qureshi, MRN
AF Panigrahi, Rashmi Ranjan
Shrivastava, Avinash K.
Qureshi, Karishma M.
Mewada, Bhavesh G.
Alghamdi, Saleh Yahya
Almakayeel, Naif
Almuflih, Ali Saeed
Qureshi, Mohamed Rafik N.
TI AI Chatbot Adoption in SMEs for Sustainable Manufacturing Supply Chain
Performance: A Mediational Research in an Emerging Country
SO SUSTAINABILITY
LA English
DT Article
DE artificial intelligence chatbot; emerging country; innovative
capability; small and medium enterprises; supply chain visibility;
sustainable supply chain performances; manufacturing sustainability
ID PLS-SEM; INDUSTRY 4.0; CAPABILITIES
AB AI chatbots (AICs) have the potential to increase the sustainability of a manufacturing supply chain (SC) through sales engagement and customer engagement to accomplish various activities related to logistics and SC in real time. Industry 4.0 (I4.0) has opened up several opportunities with internet-based technologies, along with challenges for small and medium enterprises (SMEs). SMEs are beginning to adopt such technologies for their competitive advantages and the required sustainability in the manufacturing supply chain. AICs may help in accomplishing supply chain visibility (SCV) to enhance sustainable supply chain performance (SSCP). Innovation capability (IC) is also due to disruptive technologies being adopted by SMEs. The present research investigates the role of AICs in SCV and IC, which lead to SSCP, by employing structural equation modeling (SEM). An empirical study based on dynamic capability (DC) theory was carried out using 246 responses, and later Smart PLS-4.0 was used for SEM. The analysis revealed that AICs positively influence SCV and IC to support SSCP. SCV and IC also partially mediate the relationship between the adoption of AICs and SSCP.
C1 [Panigrahi, Rashmi Ranjan] GITAM Deemed Univ, GITAM Sch Business, Visakhapatnam 530045, India.
[Shrivastava, Avinash K.] Int Management Inst Kolkata, Kolkata 700027, India.
[Qureshi, Karishma M.; Mewada, Bhavesh G.] Parul Univ, Parul Inst Technol, Dept Mech Engn, Waghodia 391760, India.
[Alghamdi, Saleh Yahya; Almakayeel, Naif; Almuflih, Ali Saeed; Qureshi, Mohamed Rafik N.] King Khalid Univ, Coll Engn, Dept Ind Engn, Abha, Saudi Arabia.
C3 Gandhi Institute of Technology & Management (GITAM); International
Management Institute (IMI) Kolkata; Parul University; King Khalid
University
RP Shrivastava, AK (corresponding author), Int Management Inst Kolkata, Kolkata 700027, India.
EM rashmipanigrahi090@gmail.com; kavinash1987@gmail.com; kariq18@gmail.com;
bmewada@paruluniversity.ac.in; syalghamdi@kku.edu.sa;
halmakaeel@kku.edu.sa; asalmuflih@kku.edu.sa; mrnoor@kku.edu.sa
RI Panigrahi, Dr. Rashmi Ranjan/AAM-5236-2020; Almuflih, Ali/KLC-8563-2024;
Mewada, Bhavesh/LCE-7475-2024; Almakayeel, Naif/ABA-4321-2022; Qureshi,
Prof.(Dr.) M. N./L-4688-2016
OI Panigrahi, Dr. Rashmi Ranjan/0000-0002-2199-293X; Almuflih,
Ali/0000-0001-5359-1519; Almakayeel, Naif/0000-0001-9461-5935; Qureshi,
Prof.(Dr.) M. N./0000-0002-9508-8724; QURESHI, KARISHMA
M/0000-0002-5843-2514; Almakayeel, Naif/0009-0008-8848-907X;
Shrivastava, Avinash K/0000-0001-7794-7129; Mewada,
Bhaveshkumar/0000-0003-0109-1795
FU We would like to express our gratitude to the Deanship of Scientific
Research, King Khalid University, Kingdom of Saudi Arabia for funding
this work, as well as to family, friends, and colleagues for their
constant inspiration and encouragement. The infras; Deanship of
Scientific Research, King Khalid University, Kingdom of Saudi Arabia;
Parul University; GITAM School of Business and International Management
Institute Kolkata
FX We would like to express our gratitude to the Deanship of Scientific
Research, King Khalid University, Kingdom of Saudi Arabia for funding
this work, as well as to family, friends, and colleagues for their
constant inspiration and encouragement. The infrastructure support
provided by Parul University, Vadodara, and GITAM School of Business and
International Management Institute Kolkata is greatly appreciated.
CR Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006
Jahanshahi AA, 2020, SUSTAIN DEV, V28, P781, DOI 10.1002/sd.2028
Al-Khatib AW, 2023, BUS PROCESS MANAG J, DOI 10.1108/BPMJ-03-2023-0198
Al-Shboul MA, 2023, SUPPLY CHAIN MANAG, V28, P909, DOI 10.1108/SCM-09-2022-0382
Alghamdi SY, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0290247
[Anonymous], 1986, Stat. Sci., DOI DOI 10.1214/SS/1177013815
Ashcroft S., 2023, How Might ChatGPT Help Supply Chains
Burian J., 2023, Does ChatGPT Offer Real Value to the Supply Chain?
Chen JS, 2021, INT J RETAIL DISTRIB, V49, P1512, DOI 10.1108/IJRDM-08-2020-0312
Chowdhury NA, 2020, BUS PROCESS MANAG J, V26, P1761, DOI 10.1108/BPMJ-08-2019-0323
Ciechanowski L, 2019, FUTURE GENER COMP SY, V92, P539, DOI 10.1016/j.future.2018.01.055
de Kervenoael R, 2020, TOURISM MANAGE, V78, DOI 10.1016/j.tourman.2019.104042
Del Giudice M, 2021, INT J LOGIST MANAG, V32, P337, DOI 10.1108/IJLM-03-2020-0119
Deloitte Chatbots, 2023, Riding the Next-Gen Technology Wave to Operational Success
Deng QN, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15021019
Faul F, 2009, BEHAV RES METHODS, V41, P1149, DOI 10.3758/BRM.41.4.1149
Fernando Y, 2018, BENCHMARKING, V25, P4009, DOI 10.1108/BIJ-07-2017-0194
FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312
Franke G, 2019, INTERNET RES, V29, P430, DOI 10.1108/IntR-12-2017-0515
Hair JF, 2020, J BUS RES, V109, P101, DOI 10.1016/j.jbusres.2019.11.069
Hair JF, 2019, EUR J MARKETING, V53, P566, DOI 10.1108/EJM-10-2018-0665
Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203
Hrouga M, 2024, INT J QUAL RELIAB MA, V41, P628, DOI 10.1108/IJQRM-07-2022-0221
Huq FA, 2016, J OPER MANAG, V46, P19, DOI 10.1016/j.jom.2016.07.005
Irfan M, 2021, VINE J INF KNOWL MAN, V51, P461, DOI 10.1108/VJIKMS-06-2019-0082
Jum'a L, 2023, MANAG RES REV, V46, P1315, DOI 10.1108/MRR-04-2022-0298
Karaarslan E., 2023, Acad Platform J Eng Smart Syst, V11, P118, DOI [DOI 10.21541/APJESS.1293702, DOI 10.2139/SSRN.4341500]
Khan SAR, 2023, BUS STRATEG ENVIRON, V32, P2022, DOI 10.1002/bse.3234
Lian JW, 2014, INT J INFORM MANAGE, V34, P28, DOI 10.1016/j.ijinfomgt.2013.09.004
Mikalef P, 2017, J BUS RES, V70, P1, DOI 10.1016/j.jbusres.2016.09.004
Morgan TR, 2018, INT J LOGIST MANAG, V29, P959, DOI 10.1108/IJLM-01-2017-0018
Mubarik MS, 2021, J CLEAN PROD, V292, DOI 10.1016/j.jclepro.2021.126058
Nunez V., 2023, CHAT GPT THINKS IT C
O'Marah K., 2023, ChatGPT and Supply Chain: the Good, the Bad, and the Ugly
Panigrahi RR, 2023, MEAS BUS EXCELL, V27, P1, DOI 10.1108/MBE-06-2021-0073
Pillai R, 2022, PROD PLAN CONTROL, V33, P1517, DOI 10.1080/09537287.2021.1882689
Piprani AZ, 2023, ENVIRON SCI POLLUT R, DOI 10.1007/s11356-023-28507-8
Potter R., 2023, How Can Logistics Companies Benefit with the Usage of ChatGPT?
Pukkila M., 2023, Exploring the Power of ChatGPT: an Opportunity for Supply Chain Transformation
Qalati SA, 2021, TECHNOL SOC, V64, DOI 10.1016/j.techsoc.2020.101513
Qureshi KM, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14159732
Qureshi KM, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15065528
Qureshi KM, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15053950
Qureshi MRNM, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141811296
Reddy S., 2023, How startups can leverage ChatGPT to optimize supply chain management
Richter N.F., 2023, PARTIAL LEAST SQUARE
Seuring S, 2008, J CLEAN PROD, V16, P1699, DOI 10.1016/j.jclepro.2008.04.020
Sharma S, 2024, IEEE T ENG MANAGE, V71, P1773, DOI 10.1109/TEM.2022.3203469
Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030
Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189
Sun YP, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100247
Tambuskar DP, 2024, KYBERNETES, V53, P1710, DOI 10.1108/K-07-2022-1057
Tariq MU, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.686624
Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z
Trappey AJC, 2022, J IND INF INTEGR, V26, DOI 10.1016/j.jii.2022.100331
Trivedi S., 2023, ChatGPT and its Role in Logistics Supply Chain Management, DOI 10.5281/ZENODO.7683000
Tseng ML, 2018, RESOUR CONSERV RECY, V131, P146, DOI 10.1016/j.resconrec.2017.12.028
Venkatesh VG, 2020, ROBOT CIM-INT MANUF, V63, DOI 10.1016/j.rcim.2019.101896
Wamba-Taguimdje SL, 2020, BUS PROCESS MANAG J, V26, P1893, DOI 10.1108/BPMJ-10-2019-0411
Wang CF, 2020, TECHNOVATION, V94-95, DOI 10.1016/j.technovation.2017.12.002
Yuen KF, 2021, TECHNOL ANAL STRATEG, V33, P505, DOI 10.1080/09537325.2020.1826423
Zhang LF, 2023, FRONT ENV SCI-SWITZ, V11, DOI 10.3389/fenvs.2023.1096349
NR 62
TC 12
Z9 12
U1 35
U2 38
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD SEP
PY 2023
VL 15
IS 18
AR 13743
DI 10.3390/su151813743
PG 18
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA FJ3E2
UT WOS:001145345400001
OA gold
DA 2024-09-05
ER
PT J
AU Tontodimamma, A
Nissi, E
Sarra, A
Fontanella, L
AF Tontodimamma, Alice
Nissi, Eugenia
Sarra, Annalina
Fontanella, Lara
TI Thirty years of research into hate speech: topics of interest and their
evolution
SO SCIENTOMETRICS
LA English
DT Article
DE Online hate speech; Bibliometrics analysis; Topic models; Latent
Dirichlet allocation
ID SCIENCE
AB The exponential growth of social media has brought with it an increasing propagation of hate speech and hate based propaganda. Hate speech is commonly defined as any communication that disparages a person or a group on the basis of some characteristics such as race, colour, ethnicity, gender, sexual orientation, nationality, religion. Online hate diffusion has now developed into a serious problem and this has led to a number of international initiatives being proposed, aimed at qualifying the problem and developing effective counter-measures. The aim of this paper is to analyse the knowledge structure of hate speech literature and the evolution of related topics. We apply co-word analysis methods to identify different topics treated in the field. The analysed database was downloaded from Scopus, focusing on a number of publications during the last thirty years. Topic and network analyses of literature showed that the main research topics can be divided into three areas: "general debate hate speech versus freedom of expression","hate-speech automatic detection and classification by machine-learning strategies", and "gendered hate speech and cyberbullying". The understanding of how research fronts interact led to stress the relevance of machine learning approaches to correctly assess hatred forms of online speech.
C1 [Tontodimamma, Alice] Univ G dAnnunzio, Dept Neurosci Imaging & Clin Sci, Chieti, Italy.
[Nissi, Eugenia] Univ G dAnnunzio, Dept Econ, Pescara, Italy.
[Sarra, Annalina; Fontanella, Lara] Univ G dAnnunzio, Dept Legal & Social Sci, Pescara, Italy.
C3 G d'Annunzio University of Chieti-Pescara; G d'Annunzio University of
Chieti-Pescara; G d'Annunzio University of Chieti-Pescara
RP Sarra, A (corresponding author), Univ G dAnnunzio, Dept Legal & Social Sci, Pescara, Italy.
EM alice.tontodimamma@unich.it; eugenia.nissi@unich.it; asarra@unich.it;
lara.fontanella@unich.it
RI Fontanella, Lara/AAF-1334-2020; nissi, eugenia/IQS-0004-2023
OI Fontanella, Lara/0000-0002-5441-0035; nissi,
eugenia/0000-0003-1943-0476; Sarra, Annalina/0000-0002-0974-0799
FU Universita degli Studi G. D'Annunzio Chieti Pescara within the CRUI-CARE
Agreement
FX Open access funding provided by Universita degli Studi G. D'Annunzio
Chieti Pescara within the CRUI-CARE Agreement. We are grateful to the
reviewers for their useful comments and suggestions which have
significantly improved the quality of the paper.
CR Alghamdi R, 2015, INT J ADV COMPUT SC, V6, P147
Arango A, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P45, DOI 10.1145/3331184.3331262
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Barua A, 2014, EMPIR SOFTW ENG, V19, P619, DOI 10.1007/s10664-012-9231-y
Beausoleil LE, 2019, BC!: Rev, V60, P2101
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Brettschneider C, 2013, NORTHWEST U LAW REV, V107, P603
Cohen-Almagor, 2019, 1 AMENDMENT STUDIES, V53, P41, DOI [10.1080/21689725.2019.1601579, DOI 10.1080/21689725.2019.1601579]
Cohen-Almagor R, 2016, PHILOS PUBLIC ISSUES, V6, P77
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133061
Fortuna P, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3232676
Gagliardone I., 2015, Countering online hate speech
Greenacre M, 2006, STAT SOC BEHAV SCI, P41
Greene AR, 2017, MOD LAW REV, V80, P746, DOI 10.1111/1468-2230.12283
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
MacAvaney S, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0221152
Matlab M., 2018, MATLAB
McPhee C, 2017, TECHNOL INNOV MANAG, V7, P5
Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695
Price D. J. d. S., 1963, Little Science, Big Science
Salminen J, 2019, PROCEEDINGS OF THE 2019 CONFERENCE ON HUMAN INFORMATION INTERACTION AND RETRIEVAL (CHIIR'19), P213, DOI 10.1145/3295750.3298954
Salminen J, 2018, 2018 FIFTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), P88, DOI 10.1109/SNAMS.2018.8554954
Schmidt A., 2017, P 5 INT WORKSH NAT L, P1, DOI DOI 10.18653/V1/W17-1101
Sellars A. F., 2016, Defining hate speech, P16, DOI [DOI 10.2139/SSRN.2882244, 10.2139/ssrn.2882244.]
Siegel AA, 2020, SSRC ANXIET DEMOCR, P56
Steyvers M, 2006, LATENT SEMANTIC ANAL
Strossen N., 2016, JL Pol'y, V25, P185
Strossen Nadine, 2018, Hate: Why We Should Resist It with Free Speech, Not Censorship
Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596
Waqas A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0222194
YAU C, 2014, SCIENTOMETRICS
Zhang JL, 2017, ADV INTEL SYS RES, V132, P300
NR 35
TC 46
Z9 50
U1 6
U2 69
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 2021
VL 126
IS 1
BP 157
EP 179
DI 10.1007/s11192-020-03737-6
EA OCT 2020
PG 23
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA PU7XL
UT WOS:000585801800001
OA hybrid
DA 2024-09-05
ER
PT J
AU Yelenov, A
Pak, AA
Ziyaden, AA
Akhmetov, I
Gelbukh, A
Gelbukh, I
AF Yelenov, Amir
Pak, Alexandr A.
Ziyaden, Atabay A.
Akhmetov, Iskander
Gelbukh, Alexander
Gelbukh, Irina
TI Comprehensive Survey: Approaches to Emerging Technologies Detection
within Scientific Publications
SO COMPUTACION Y SISTEMAS
LA English
DT Article
DE Citation prediction; emergent technology; neural networks;
scientometrics
ID MATHEMATICAL APPROACH; SCIENCE; INDICATORS; TOPICS; GROWTH; TOOL
AB The identification of breakthrough topics and emerging technologies has been of interest to the governments of many countries and the scientific community since the last century. This study presents the status and trend of the research field through a comprehensive review of relevant publications, a new look at the problem of defining the term "emergent technologies, " defining boundaries between similar terms; and a modern baseline method on the citation prediction subtask for the discovery of emergent technologies. The outcomes of this technique have demonstrated the significance of features that characterize the preceding 1-year, 2-year, and 3-year citation counts, as well as their impact on the quality of neural network and random forest models. Our hypothesis, however, that author-specific measures may enhance prediction results was not supported. We ascribe this difficulty to the dimensionality curse. The authors examined methodological elements of research and technological development; consequently, it is important to note that, from a technical viewpoint, theoretical research is far from complete due to the vast variety of projects, outstanding challenges, research questions, and market assumptions. Finding more input characteristics to improve the quality of predictions and switching from classification to regression may also improve the precision of the suggested baseline model.
C1 [Yelenov, Amir; Pak, Alexandr A.; Ziyaden, Atabay A.; Akhmetov, Iskander] Inst Informat & Computat Technol, Alma Ata, Kazakhstan.
[Yelenov, Amir; Pak, Alexandr A.; Ziyaden, Atabay A.; Akhmetov, Iskander] Kazakh British Tech Univ, Alma Ata, Kazakhstan.
[Gelbukh, Alexander] Inst Politecn Nacl, Mexico City, Mexico.
C3 Institute of Information & Computational Technologies; Kazakh British
Technical University; Instituto Politecnico Nacional - Mexico
RP Yelenov, A (corresponding author), Inst Informat & Computat Technol, Alma Ata, Kazakhstan.; Yelenov, A (corresponding author), Kazakh British Tech Univ, Alma Ata, Kazakhstan.
EM greamdesu@gmail.com; aa.pak83@gmail.com; iamdenay@gmail.com;
iskander.akhmetov@gamil.com; gelbukh@gmail.com; ir.gelbukh@gmail.com
RI Pak, Alexandr/W-4002-2018; Yelenov, Amir/AAW-9817-2020; Yelenov,
Amir/JEZ-9542-2023
OI Pak, Alexandr/0000-0002-8685-9355; Yelenov, Amir/0000-0003-0674-5460;
Yelenov, Amir/0000-0003-0674-5460; Ziyaden, Atabay/0000-0002-4878-8971
FU Aerospace Committee of the Ministry of Digital Development, Innovations
and Aerospace Industry of the Republic of Kazakhstan; [BR11265420]
FX This research was funded by Aerospace Committee of the Ministry of
Digital Development, Innovations and Aerospace Industry of the Republic
of Kazakhstan grant number BR11265420.
CR Almeida JAS, 2009, J INFORMETR, V3, P134, DOI 10.1016/j.joi.2009.01.001
Altuntas S, 2015, TECHNOL FORECAST SOC, V96, P202, DOI 10.1016/j.techfore.2015.03.011
[Anonymous], 2003, ACM SIGIR FOR 2003, DOI DOI 10.1145/945546.945547
Atkinson R. D., 2021, WHY US NEEDS NATL AD, V4
Bettencourt LMA, 2008, SCIENTOMETRICS, V75, P495, DOI 10.1007/s11192-007-1888-4
Braun T, 1997, SCIENTOMETRICS, V38, P321, DOI 10.1007/BF02457417
Breitzman A, 2015, RES POLICY, V44, P195, DOI 10.1016/j.respol.2014.06.006
Cohan A, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P2270
Correia A, 2020, IEEE INT CONF BIG DA, P2876, DOI 10.1109/BigData50022.2020.9378096
Couper MP, 2005, SOC SCI COMPUT REV, V23, P486, DOI 10.1177/0894439305278972
Cozzens S, 2010, TECHNOL ANAL STRATEG, V22, P361, DOI 10.1080/09537321003647396
Cullen PJ, 2000, TRENDS FOOD SCI TECH, V11, P451, DOI 10.1016/S0924-2244(01)00034-6
Dummitt B, 2006, ASSAY DRUG DEV TECHN, V4, P343, DOI 10.1089/adt.2006.4.343
Froyland G, 2001, NONLINEAR DYNAMICS AND STATISTICS, P281
Glänzel W, 2012, SCIENTOMETRICS, V91, P399, DOI 10.1007/s11192-011-0591-7
GOFFMAN W, 1964, NATURE, V204, P225, DOI 10.1038/204225a0
GOFFMAN W, 1971, J ACM, V18, P173, DOI 10.1145/321637.321640
GOFFMAN W, 1966, NATURE, V212, P449, DOI 10.1038/212449a0
GOFFMAN W, 1971, NATURE, V229, P103, DOI 10.1038/229103a0
Goldstein J., 1999, Emergence, V1, P49, DOI DOI 10.1207/S15327000EM01014
Guz AN, 2009, INT APPL MECH+, V45, P351, DOI 10.1007/s10778-009-0189-4
HARRIS RH, 1985, ANNU REV PUBL HEALTH, V6, P269
HICKS D, 1987, SOC STUD SCI, V17, P295, DOI 10.1177/030631287017002004
Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7
Jo Y, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P370
Jones BF, 2011, P NATL ACAD SCI USA, V108, P18910, DOI 10.1073/pnas.1102895108
Kajikawa Y, 2008, TECHNOL FORECAST SOC, V75, P771, DOI 10.1016/j.techfore.2007.05.005
KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501
Kingma DP, 2014, ADV NEUR IN, V27
Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314
Lamirel Jean-Charles, 2008, Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, P169
Lee J, 2005, IEEE T PATTERN ANAL, V27, P461, DOI 10.1109/TPAMI.2005.47
Lee WH, 2008, SCIENTOMETRICS, V76, P503, DOI 10.1007/s11192-007-1898-2
Leydesdorff L, 2008, J AM SOC INF SCI TEC, V59, P1810, DOI 10.1002/asi.20891
Mane KK, 2004, P NATL ACAD SCI USA, V101, P5287, DOI 10.1073/pnas.0307626100
MARTIN BR, 1995, TECHNOL ANAL STRATEG, V7, P139, DOI 10.1080/09537329508524202
Mikolov T, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P52
Osborne Francesco, 2014, The Semantic Web: Trends and Challenges. 11th International Conference (ESWC 2014). Proceedings: LNCS 8465, P114, DOI 10.1007/978-3-319-07443-6_9
Ramachary DB, 2012, EUR J ORG CHEM, V2012, P865, DOI 10.1002/ejoc.201101157
Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006
Scharnhorst A., 2010, DYNAMICS SOCIO EC SY, V2, DOI [10.48550/ARXIV.1010.3525.43, DOI 10.48550/ARXIV.1010.3525.43]
Serenko A, 2010, J KNOWL MANAG, V14, P3, DOI 10.1108/13673271011015534
Sharma E, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2204
Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009
Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005
Takeda Y, 2009, SCIENTOMETRICS, V78, P543, DOI 10.1007/s11192-007-2012-5
Takeda Y, 2009, SCIENTOMETRICS, V80, P23, DOI 10.1007/s11192-007-1897-3
Thijs B, 2018, SCIENTOMETRICS, V115, P21, DOI 10.1007/s11192-018-2659-0
Thorleuchter D, 2010, TECHNOL FORECAST SOC, V77, P1037, DOI 10.1016/j.techfore.2010.03.002
van Raan AFJ, 2000, SCIENTOMETRICS, V47, P347, DOI 10.1023/A:1005647328460
Vityaev EE, 2004, MIND MACH, V14, P551, DOI 10.1023/B:MIND.0000045991.67908.13
Waksman R, 2000, J INVASIVE CARDIOL, V12, p18A
Watts RJ, 2003, TECHNOL FORECAST SOC, V70, P735, DOI 10.1016/S0040-1625(02)00355-4
Wayne C. L., 1998, TOPIC DETECTION TRAC, P56
Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9
Zhang LX, 2011, SENSOR ACTUAT B-CHEM, V160, P364, DOI 10.1016/j.snb.2011.07.062
ZITT M., 2008, Ethics Sci. Environ. Politics, V8, P49, DOI [DOI 10.3354/ESEP00092, 10.3354/esep00092]
NR 57
TC 1
Z9 1
U1 3
U2 10
PU Inst Politecnico Nacional IPN, Centro Investigation Computacion
PI MEXICO CITY
PA AV JUAN DIOS BATIZ, S N ESQ M OTHON MENDIZABAL, UP ADOLFO LOPEZ MATEOS
ZACATENCO, MEXICO CITY, 07738, MEXICO
SN 1405-5546
EI 2007-9737
J9 COMPUT SIST
JI Comput. Sist.
PY 2022
VL 26
IS 4
BP 1587
EP 1601
DI 10.13053/CyS-26-4-4424
PG 15
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA 7L0UM
UT WOS:000905691500013
DA 2024-09-05
ER
PT J
AU Jiang, CZ
Xu, H
Huang, CF
Chen, YY
Zou, RQ
Wang, YX
AF Jiang, Chengzhi
Xu, Hao
Huang, Chuanfeng
Chen, Yiyang
Zou, Ruoqi
Wang, Yixiu
TI Research on knowledge dissemination in smart cities environment based on
intelligent analysis algorithms: a case study on online platform
SO MATHEMATICAL BIOSCIENCES AND ENGINEERING
LA English
DT Article
DE speech; relationship network; sentiment analysis; textual analysis;
smart cities
AB In developing smart cities, the implementation of social connections, collaboration, innovation, exchange of views by observing, exploiting and integrating various types of knowledge is required. The smart cities concept that employs knowledge sharing mechanism can be defined as the concept of a city that utilizes information technology to increase citizens' awareness, intelligence as well as community's participation. The knowledge dissemination via online sharing platforms has been becoming more popular in recent years, especially during the epidemic of infectious diseases. Thus, the social network and emotional analysis method based on intelligent data analysis algorithms is proposed to study the speaker relationship and comment sentiment tendency of a Chinese popular speech (knowledge dissemination) platform: YiXi. In our research, 690 speakers' information and 23,685 comments' information are collected from YiXi website as the data source. The speaker relationship network construction algorithm and emotional analysis algorithm are designed in details respectively. Experiments show that speakers who have the same profession can deliver different types of speeches, indicating that selection of YiXi platform in the invitation of speakers is diversified. In addition, overall sentiment tendency of comments on speeches seem to be slightly positive and most of them are the personal feelings according to their experience after watching speech videos instead of the direct evaluations of speech quality. The research aims to gain an insight into the popular knowledge sharing phenomenon and is expected to provide reference for knowledge dissemination platforms in order to improve the knowledge sharing environment in smart cities.
C1 [Jiang, Chengzhi; Xu, Hao] Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China.
[Jiang, Chengzhi; Xu, Hao; Huang, Chuanfeng] Sch Econ & Management, Nanjing Inst Technol, Nanjing 211167, Peoples R China.
[Chen, Yiyang] Univ St Andrews, Sch Comp Sci, St Andrews KY16 9AJ, Fife, Scotland.
[Zou, Ruoqi; Wang, Yixiu] Ping An Int Smart City Technol Co Ltd, Shenzhen 518002, Peoples R China.
C3 Nanjing University; Nanjing Institute of Technology; University of St
Andrews
RP Xu, H (corresponding author), Nanjing Univ, Sch Informat Management, Nanjing 210023, Peoples R China.; Xu, H (corresponding author), Sch Econ & Management, Nanjing Inst Technol, Nanjing 211167, Peoples R China.
EM xhnju2014@163.com
RI Jiang, Cheng/JHU-0179-2023; Zhang, Ge/KGL-7634-2024
FU Nanjing Institute of Technology [YKJ201989]; Open Research Fund of NJIT
Institute of Industrial Economy and Innovation Management [JGKB202001,
JGKC 202003]; Innovation Fund General Project I of Nanjing institute of
technology [CKJB202003]; University Philosophy and Social Science
Research Project of Jiangsu province [2019SJA2274]; Major Project of
Philosophy and Social Science Research in Universities of Jiangsu
Province Education Department [2020SJZDA069]; ZHINIAO-ASKBOB Project of
Vocational Education Department of Ping An International Smart City
Technology Co., Ltd
FX The research is supported by the high level introduction of talent
research startup fund of Nanjing Institute of Technology (Grant NO.:
YKJ201989) ; Open Research Fund of NJIT Institute of Industrial Economy
and Innovation Management (Grant NO.: JGKB202001, JGKC 202003) ;
Innovation Fund General Project I of Nanjing institute of technology
(Grant NO.: CKJB202003) ; University Philosophy and Social Science
Research Project of Jiangsu province (Grant NO.: 2019SJA2274) ; Major
Project of Philosophy and Social Science Research in Universities of
Jiangsu Province Education Department (Grant NO.: 2020SJZDA069) .
ZHINIAO-ASKBOB Project of Vocational Education Department of Ping An
International Smart City Technology Co., Ltd
CR [Anonymous], 2009, [No title captured]
[Anonymous], 2020, [No title captured]
[Anonymous], 2018, [No title captured]
[Anonymous], [No title captured]
[Anonymous], 2012, [No title captured]
[Anonymous], 2020, ANN ONCOL, DOI DOI 10.1093/annonc/mdy517
[Anonymous], 2018, HLT NAACL
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Borgatti SP, 2009, SCIENCE, V323, P892, DOI 10.1126/science.1165821
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Cai Y., 2019, Communications in Computer and Information Science, P352
Colizza V, 2006, NAT PHYS, V2, P110, DOI 10.1038/nphys209
Elabora A., 2020, 2020 5 INT C SMART S
Erhan L, 2019, IEEE ACCESS, V7, P19890, DOI 10.1109/ACCESS.2019.2897217
Founoun A., 2019, 2019 IEEE INT SMART
FRUCHTERMAN TMJ, 1991, SOFTWARE PRACT EXPER, V21, P1129, DOI 10.1002/spe.4380211102
Fu L, 2020, P IAEA 64 GEN C VIEN
Ghose A., 2007, INT C EL COMM
Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799
[官琴 Guan Qin], 2017, [数据分析与知识发现, Data Analysis and Knowledge Discovery?], V1, P72
Kilicay-Ergin N., 2020, 2020 IEEE INT SYST C
Latapy M, 2008, THEOR COMPUT SCI, V407, P458, DOI 10.1016/j.tcs.2008.07.017
Mudambi SM, 2010, MIS QUART, V34, P185
Negre E, 2015, P ANN HICSS, P2317, DOI 10.1109/HICSS.2015.279
Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113
Oza KS, 2016, PROCEDIA COMPUT SCI, V92, P468, DOI 10.1016/j.procs.2016.07.369
Rani S. A., 2020, 2020 6 INT C INF MAN
Sun T., 2019, EXPT STUDY INTERFERO
Tarjan R., 1972, SIAM Journal on Computing, V1, P146, DOI 10.1137/0201010
Waltman L, 2013, EUR PHYS J B, V86, DOI 10.1140/epjb/e2013-40829-0
Wu X., 2019, Landsc Architect, V26, P52
Xu C., IEEE T IND INF, V17, P4197
Xu Linhong, 2008, Journal of the China Society for Scientific and Technical Information, V27, P180
Ye QL, 2019, IEEE T NEUR NET LEAR, V30, P3818, DOI 10.1109/TNNLS.2019.2944869
Yin Guopeng., 2012, Library and Information Service, V56, P140
Yu HS, 1993, MELATONIN BIOSYNTHES
NR 36
TC 1
Z9 1
U1 0
U2 17
PU AMER INST MATHEMATICAL SCIENCES-AIMS
PI SPRINGFIELD
PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA
SN 1547-1063
EI 1551-0018
J9 MATH BIOSCI ENG
JI Math. Biosci. Eng.
PY 2021
VL 18
IS 3
BP 2632
EP 2653
DI 10.3934/mbe.2021134
PG 22
WC Mathematical & Computational Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematical & Computational Biology
GA TD7LO
UT WOS:000669503800012
PM 33892564
OA gold
DA 2024-09-05
ER
PT J
AU Bentley, JP
Ramachandran, S
Salgado, TM
AF Bentley, John P.
Ramachandran, Sujith
Salgado, Teresa M.
TI Considerations when conducting moderation analysis with a binary
outcome: Applications to clinical and social pharmacy research
SO RESEARCH IN SOCIAL & ADMINISTRATIVE PHARMACY
LA English
DT Article
DE Binary outcome; Moderation; Interaction; Additive interaction;
Multiplicative interaction; Logistic regression
ID REGRESSION APPROACH; RISK; MEDIATION
AB Clinical and social pharmacy researchers often have questions regarding contingencies of effects (i.e., moderation) that are tested by including interactions in statistical models. Much of the available literature for estimating and testing effects that emanate from moderation models is based on extensions of the linear model with continuous outcomes. Binary (or dichotomous) outcome variables, such as prescription-medication misuse versus no misuse, are commonly encountered by clinical and social pharmacy researchers. In moderation analysis, binary outcomes have led to an increased focus on the fact that measures of interaction are scale-dependent; thus, researchers may need to consider both additive interaction and multiplicative interaction. Further complicating interpretation is that the statistical model chosen for an interaction can provide different answers to questions of moderation. This manuscript will: 1) identify research questions in clinical and social pharmacy that necessitate the use of these statistical methods, 2) review statistical models that can be used to estimate effects when the outcome of interest is binary, 3) review basic concepts of moderation, 4) describe the challenges inherent in conducting moderation analysis when modeling binary outcomes, and 5) demonstrate how to conduct such analyses and interpret relevant statistical output (including interpretations of interactions on additive and multiplicative scales with a focus on identifying which statistical models for binary outcomes lead to which measure of interaction). Although much of the basis for this paper comes from research in epidemiology, recognition of these issues has occurred in other disciplines.
C1 [Bentley, John P.; Ramachandran, Sujith] Univ Mississippi, Dept Pharm Adm, Sch Pharm, Faser Hall, University, MS 38677 USA.
[Salgado, Teresa M.] Virginia Commonwealth Univ, Dept Pharmacotherapy & Outcomes Sci, Sch Pharm, 410 N 12th St,POB 980533, Richmond, VA 23298 USA.
C3 University of Mississippi; Virginia Commonwealth University
RP Bentley, JP (corresponding author), Ctr Pharmaceut Mkt & Management, Faser Hall 225, University, MS 38677 USA.; Bentley, JP (corresponding author), Pharm Adm, Faser Hall 225, University, MS 38677 USA.
EM phjpb@olemiss.edu
RI Salgado, Teresa M/M-7550-2017
CR Agresti A., 2007, INTRO CATEGORICAL DA
Almeida AC, 2020, J CLIN PSYCHOL MED S, V27, P247, DOI 10.1007/s10880-019-09662-y
[Anonymous], 1975, JAMA-J AM MED ASSOC, V231, P718
[Anonymous], 2012, EPIDEMIOLOGY INTRO
[Anonymous], 2014, Epidemiologic Methods, DOI DOI 10.1515/EM-2013-0005
Assmann SF, 2000, LANCET, V355, P1064, DOI 10.1016/S0140-6736(00)02039-0
Assmann SF, 1996, EPIDEMIOLOGY, V7, P286, DOI 10.1097/00001648-199605000-00012
Brankovic M, 2019, EUR J CLIN INVEST, V49, DOI 10.1111/eci.13145
Cheung YB, 2007, AM J EPIDEMIOL, V166, P1337, DOI 10.1093/aje/kwm223
Corraini P, 2017, CLIN EPIDEMIOL, V9, P331, DOI 10.2147/CLEP.S129728
Greenland S., 2008, Modern epidemiology, V3rd, P283
Greenland S., 2008, Modern Epidemiology, V3rd, DOI 10.1016/j.annemergmed.2008.06.461
Greenland S., 2008, Modern Epidemiology, V3rd, P51
Hayes A. F., 2019, Introduction to mediation, moderation, and conditional process analysis: A regression-based approach
Hayes AF, 2017, BEHAV RES THER, V98, P39, DOI 10.1016/j.brat.2016.11.001
Hosmer DW, 2013, WILEY SER PROBAB ST, P1, DOI 10.1002/9781118548387
HOSMER DW, 1992, EPIDEMIOLOGY, V3, P452, DOI 10.1097/00001648-199209000-00012
Katz MH, 2003, ANN INTERN MED, V138, P644, DOI 10.7326/0003-4819-138-8-200304150-00012
Knol MJ, 2007, INT J EPIDEMIOL, V36, P1111, DOI 10.1093/ije/dym157
Knol MJ, 2012, INT J EPIDEMIOL, V41, P514, DOI 10.1093/ije/dyr218
Knol MJ, 2011, EUR J EPIDEMIOL, V26, P433, DOI 10.1007/s10654-011-9554-9
Knol MJ, 2009, EPIDEMIOLOGY, V20, P161, DOI 10.1097/EDE.0b013e31818f6651
Liddelow C, 2021, PSYCHOL HEALTH, V36, P529, DOI 10.1080/08870446.2020.1788715
McNutt LA, 2003, AM J EPIDEMIOL, V157, P940, DOI 10.1093/aje/kwg074
Naimi AI, 2020, AM J EPIDEMIOL, V189, P508, DOI 10.1093/aje/kwaa044
Paulus DJ, 2019, DRUG ALCOHOL DEPEN, V204, DOI 10.1016/j.drugalcdep.2019.02.036
PETITTI DB, 1991, AM J EPIDEMIOL, V133, P101, DOI 10.1093/oxfordjournals.aje.a115848
Rockwood NJ, 2020, CAMB HANDB PSYCHOL, P396
Rosenberg E.S., 2014, APPL REGRESSION ANAL, V5th ed.
Skrondal A, 2003, AM J EPIDEMIOL, V158, P251, DOI 10.1093/aje/kwg113
Spiegelman D, 2005, AM J EPIDEMIOL, V162, P199, DOI 10.1093/aje/kwi188
Szklo M., 2019, EPIDEMIOLOGY BASICS
TOOTHMAKER LE, 1994, J OPER RES SOC, V45, P119
VanderWeele TJ, 2013, EUR J EPIDEMIOL, V28, P779, DOI 10.1007/s10654-013-9843-6
VanderWeele TJ, 2009, EPIDEMIOLOGY, V20, P863, DOI 10.1097/EDE.0b013e3181ba333c
Wang R, 2007, NEW ENGL J MED, V357, P2189, DOI 10.1056/NEJMsr077003
Zou GY, 2004, AM J EPIDEMIOL, V159, P702, DOI 10.1093/aje/kwh090
NR 37
TC 1
Z9 1
U1 1
U2 3
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 1551-7411
EI 1934-8150
J9 RES SOC ADMIN PHARM
JI Res. Soc. Adm. Pharm.
PD FEB
PY 2022
VL 18
IS 2
BP 2276
EP 2282
DI 10.1016/j.sapharm.2021.04.020
EA DEC 2021
PG 7
WC Public, Environmental & Occupational Health; Pharmacology & Pharmacy
WE Social Science Citation Index (SSCI)
SC Public, Environmental & Occupational Health; Pharmacology & Pharmacy
GA YU0XB
UT WOS:000751773000003
PM 34119445
DA 2024-09-05
ER
PT J
AU Teng, L
Dong, FY
Zhang, H
Ding, HX
AF Teng, Ling
Dong, Fangyun
Zhang, Hui
Ding, Huixia
TI Research on high-precision synchronous output technology of
multi-reference source weighted synthesis in power system
SO IET CYBER-PHYSICAL SYSTEMS: THEORY & APPLICATIONS
LA English
DT Article
DE genetic algorithms; global positioning system; power electronics;
synchronisation
AB The massive perception data based on efficient analysis and intelligent decision have put forward higher requirements for high-precision time synchronisation with the construction and development of smart power grid. However, multi-reference source time-frequency synchronisation of power system only selects the best method after comparison, which cannot make the most efficient use of the existing resources. It also cannot meet the need for high-precision time synchronisation of future power system. The existing multi-reference source synthesis algorithms cannot take into account both long-term stability and high-precision synchronous output. This article presents a multi-reference source weighted improved noise model and the high-precision output method. The multi-reference source error after classification is eliminated by leading into classification vector and classification coefficient. The synthesised frequency offset or the time precision of output can be optimised as the objective function by weighted classification algorithm and genetic algorithm. A simulation example based on the synthesis of two satellite system clock sources and three local caesium reference sources shows that the peak value of long-term output accuracy is controlled within 10 ns after classification weighted synthesis and optimisation, which is better than that of any single reference source.
C1 [Teng, Ling; Dong, Fangyun; Zhang, Hui; Ding, Huixia] China Elect Power Res Inst, Beijing, Peoples R China.
RP Teng, L (corresponding author), China Elect Power Res Inst, Beijing, Peoples R China.
EM tengling@epri.sgcc.com.cn
FU China Electric Power Research Institute; National Key R&D Program of
China [2020YFB0905900]; Science and Technology Project of SGCC; Key
Technologies for Electric Internet of Things [SGTJDK00DWJS2100223]
FX China Electric Power Research Institute; the National Key R&D Program of
China, Grant/Award Number: 2020YFB0905900; the Science and Technology
Project of SGCC, Grant/Award Number: State Grid Corporation of China;
Key Technologies for Electric Internet of Things, Grant/Award Number:
SGTJDK00DWJS2100223
CR Chen W., 2017, RES HIGH PRECISION T
Chen Zhigang, 2021, Electric Power Automation Equipment, P213, DOI 10.16081/j.epae.202011020
Dai X., 2017, INF COMMUN TECHNOL L, P196
Diao X., 2010, STUDY PROJECT SCHEDU
Huangfu S., 2021, CHINA SATELLITE NAVI, P3, DOI [10.1007/978-981-16-3146-7_11, DOI 10.1007/978-981-16-3146-7_11]
ITU-T Recommendation G.810, 1996, G810 ITUT
ITU-T Recommendation G.8262.1-2019, G826212019 ITUT
ITU-T Recommendation G.8262-2018, G82622018 ITUT
Jun Lu, 2021, China Satellite Navigation Conference (CSNC 2021). Proceedings. Lecture Notes in Electrical Engineering (LNEE 774), P3, DOI 10.1007/978-981-16-3146-7_1
[李铎 Li Duo], 2018, [电子学报, Acta Electronica Sinica], V46, P1194
Li S., 2020, STUDY OPT COMMUN, V10, P54
[李依泽 Li Yize], 2019, [电网技术, Power System Technology], V43, P777
Liu G., 2014, TELECOM NETW TECH, P28
Liu P., 2016, COMPUT MEAS CONTROL, V24, P158
Liu Ya., 2019, NAVIG POSITION TIM, V6, P57
Sun X, 2021, LIGHTING RES TECHNOL, V53, P777, DOI 10.1177/1477153521991590
[滕玲 Teng Ling], 2015, [电网技术, Power System Technology], V39, P294
Wu Y, 2020, SKIN RES TECHNOL, V26, P584, DOI 10.1111/srt.12838
Yi-Fei SONG., 2017, TELECOM NETW TECH, V30, P60
Yue Y.U., 2019, DESIGN PLL FREQUENCY
Zhang M., 2017, TELECOM NETW TECHN, V11, P61
NR 21
TC 0
Z9 0
U1 1
U2 1
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
EI 2398-3396
J9 IET CYBER PHYS SYST
JI IET Cyber Phys. Syst. Theory Appl.
PD DEC
PY 2023
VL 8
IS 4
SI SI
BP 247
EP 256
DI 10.1049/cps2.12051
EA MAY 2023
PG 10
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Engineering, Electrical & Electronic
WE Emerging Sources Citation Index (ESCI)
SC Computer Science; Engineering
GA CE9J8
UT WOS:000988363200001
OA gold
DA 2024-09-05
ER
PT J
AU Casagrande, E
Woldeamlak, S
Woon, WL
Zeineldin, HH
Svetinovic, D
AF Casagrande, Erik
Woldeamlak, Selamawit
Woon, Wei Lee
Zeineldin, H. H.
Svetinovic, Davor
TI NLP-KAOS for Systems Goal Elicitation: Smart Metering System Case Study
SO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
LA English
DT Article
DE Requirements engineering; goal elicitation; NLP; data mining;
bibliometrics
ID REQUIREMENTS; ONTOLOGY
AB This paper presents a computational method that employs Natural Language Processing (NLP) and text mining techniques to support requirements engineers in extracting and modeling goals from textual documents. We developed a NLP-based goal elicitation approach within the context of KAOS goal-oriented requirements engineering method. The hierarchical relationships among goals are inferred by automatically building taxonomies from extracted goals. We use smart metering system as a case study to investigate the proposed approach. Smart metering system is an important subsystem of the next generation of power systems (smart grids). Goals are extracted by semantically parsing the grammar of goal-related phrases in abstracts of research publications. The results of this case study show that the developed approach is an effective way to model goals for complex systems, and in particular, for the research-intensive complex systems.
C1 [Casagrande, Erik; Woldeamlak, Selamawit; Woon, Wei Lee; Zeineldin, H. H.; Svetinovic, Davor] Masdar Inst Sci & Technol, Dept Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates.
C3 Khalifa University of Science & Technology
RP Casagrande, E (corresponding author), Masdar Inst Sci & Technol, Dept Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates.
EM dsvetinovic@masdar.ac.ae
RI Svetinovic, Davor/AAQ-9433-2020; Svetinovic, Davor/IUQ-2141-2023
OI Svetinovic, Davor/0000-0002-3020-9556; Svetinovic,
Davor/0000-0002-3020-9556; Woon, Wei Lee/0000-0002-6155-1741; Gifalli,
Andre/0000-0001-8958-6746
CR [Anonymous], 1992, COLING 1992, DOI DOI 10.3115/992133.992154
[Anonymous], 2004, AIS
[Anonymous], 2005, Ontology learning from text: Methods, evaluation and applications
[Anonymous], COMPETITIVE INTELLIG
Anton AI, 1998, PROC INT CONF SOFTW, P157, DOI 10.1109/ICSE.1998.671112
Breitman KK, 2003, 11TH IEEE INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE, PROCEEDINGS, P309
Creswell J. W., 2013, RES DESIGN QUALITATI
Cunningham SW, 2006, TECHNOL FORECAST SOC, V73, P915, DOI 10.1016/j.techfore.2006.06.004
Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004
DARDENNE A, 1993, SCI COMPUT PROGRAM, V20, P3, DOI 10.1016/0167-6423(93)90021-G
Fürst F, 2006, LECT NOTES COMPUT SC, V4277, P38
Gacitua R, 2011, REQUIR ENG, V16, P251, DOI 10.1007/s00766-011-0122-3
Goldin L., 1997, Automated Software Engineering, V4, P375, DOI 10.1023/A:1008617922496
GRUBER TR, 1993, KNOWL ACQUIS, V5, P199, DOI 10.1006/knac.1993.1008
Happel H.J., 2006, P WORKSH SEM WORKSH, P5
Harris Z. S., 1968, MATH STRUCTURES LANG
Henschel Andreas, 2009, 2009 International Conference on Innovations in Information Technology (IIT), P160, DOI 10.1109/IIT.2009.5413365
Henschel A, 2012, BUSINESS INTELLIGENCE APPLICATIONS AND THE WEB: MODELS, SYSTEMS AND TECHNOLOGIES, P178, DOI 10.4018/978-1-61350-038-5.ch008
Heydt GT, 2010, IEEE T SMART GRID, V1, P225, DOI 10.1109/TSG.2010.2080328
Heymann P., 2006, ILPRINTS775 STANDF U
Jureta IJ, 2008, INT REQUIR ENG CONF, P71, DOI 10.1109/RE.2008.13
Kaiya H, 2006, RE'06: 14TH IEEE INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE, PROCEEDINGS, P189
Klein D, 2003, 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P423, DOI 10.3115/1075096.1075150
Klein D., 2003, Proceedings of Advances in Neural Information Processing Systems, V15, P3
Kof Leonid, 2004, P 19 INT C AUT SOFTW, P91
Kostoff RN, 2006, TECHNOL FORECAST SOC, V73, P923, DOI 10.1016/j.techfore.2005.09.004
Lamsweerde A, 2009, REQUIREMENTS ENG FRO
LETIER E, 2001, THESIS U CATHOLIQUE
Maedche A, 2001, IEEE INTELL SYST APP, V16, P72, DOI 10.1109/5254.920602
Martino JP, 2003, TECHNOL FORECAST SOC, V70, P719, DOI 10.1016/S0040-1625(02)00375-X
MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748
Navigli R, 2003, IEEE INTELL SYST, V18, P22, DOI 10.1109/MIS.2003.1179190
Polacek G., 2009, P 7 ANN C SYST ENG R, P1
Porter A.L., 2005, Tech mining: exploiting new technologies for competitive advantage
Porter A, 2007, RES TECHNOL MANAGE, V50, P15, DOI 10.1080/08956308.2007.11657425
Rusu D., 2007, Proceedings of the 10th International Multiconference Information Society-IS, P8
Rusu D, 2009, INFORM-J COMPUT INFO, V33, P357
RYAN K, 1993, P IEEE INT S REQ ENG, P240
Sanderson M, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P206, DOI 10.1145/312624.312679
Sawyer P, 2005, IEEE T SOFTWARE ENG, V31, P969, DOI 10.1109/TSE.2005.129
Shih MJ, 2010, EXPERT SYST APPL, V37, P2882, DOI 10.1016/j.eswa.2009.09.001
Suleiman H, 2013, REQUIR ENG, V18, P251, DOI 10.1007/s00766-012-0153-4
Suleiman H, 2012, IEEE T SMART GRID, V3, P692, DOI 10.1109/TSG.2011.2176151
Svetinovic D, 2013, SYSTEMS ENG, V16, P165, DOI 10.1002/sys.21231
Tseng YH, 2007, INFORM PROCESS MANAG, V43, P1216, DOI 10.1016/j.ipm.2006.11.011
van Lamsweerde A, 2003, LECT NOTES COMPUT SC, V2804, P25
van Lamsweerde A, 2001, FIFTH IEEE INTERNATIONAL SYMPOSIUM ON REQUIREMENTS ENGINEERING, PROCEEDINGS, P249
van Lamsweerde A, 1998, IEEE T SOFTWARE ENG, V24, P1089, DOI 10.1109/32.738341
van Lamsweerde A, 2000, IEEE T SOFTWARE ENG, V26, P978, DOI 10.1109/32.879820
van Lamsweerde A, 1998, IEEE T SOFTWARE ENG, V24, P908, DOI 10.1109/32.730542
Woldeamlak S., 2013, THESIS MASDAR I SCI
Wong W, 2012, ACM COMPUT SURV, V44, DOI 10.1145/2333112.2333115
Zafar N, 2014, SYSTEMS ENG, V17, P77, DOI 10.1002/sys.21252
Zhao YJ, 2009, IEEE T SERV COMPUT, V2, P303, DOI 10.1109/TSC.2009.20
Zickert F., 2010, AMCIS, P1
?zsu, 2009, ENCY DATABASE SYSTEM, DOI [10.1007/978-0-387-39940-9_1314, DOI 10.1007/978-0-387-39940-9_1314]
NR 56
TC 26
Z9 29
U1 5
U2 24
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 0098-5589
EI 1939-3520
J9 IEEE T SOFTWARE ENG
JI IEEE Trans. Softw. Eng.
PD OCT
PY 2014
VL 40
IS 10
BP 941
EP 956
DI 10.1109/TSE.2014.2339811
PG 16
WC Computer Science, Software Engineering; Engineering, Electrical &
Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA AR9ML
UT WOS:000343899100001
DA 2024-09-05
ER
PT J
AU Jensen, MJ
Chen, TC
AF Jensen, Michael J.
Chen, Titus C.
TI Illiberal Media in a Liberal Democracy: Examining Identity in
Australia's Mandarin Language News
SO ISSUES & STUDIES
LA English
DT Article
DE China; WeChat; topic modeling; foreign influence; identity narratives
AB The regime of censorship in the People's Republic of China (PRC) extends beyond its borders through the extraterritorial application of its media regulations to popular social media platforms like WeChat. This research investigates the effects of the PRC's extraterritorial control of online content on the identity narratives and norms communicated by comparing Australia's Special Broadcast Service (SBS) Mandarin language news and the news targeting Australian audiences published on popular WeChat Official Accounts (OAs). We find significant differences in the news content between these two platforms: SBS provides more political content and a focus on political and cultural integration, while WeChat pages tend to avoid political topics that are not otherwise press releases from the PRC and they encourage strong cultural ties with Mainland China. Finally, SBS tends to both inform and cultivate democratic political identities and identification with the Australian political system, whereas WeChat tends to differentiate the Chinese diaspora from the wider Australian community. We situate these findings within a wider understanding of PRC's national security strategies and doctrine. Whether by requirement or practice, not only the WeChat OAs in Australia implement PRC's communication controls, but the content on these pages also challenges the liberal democratic practices and norms and supports foreign influence and espionage in Australia.
C1 [Jensen, Michael J.] Univ Canberra, Inst Governance & Policy Anal, Canberra, ACT, Australia.
[Chen, Titus C.] Natl Sun Yat Sen Univ, Inst Polit, Taipei, Taiwan.
C3 University of Canberra; National Sun Yat Sen University
RP Jensen, MJ (corresponding author), Univ Canberra, Inst Governance & Policy Anal, Canberra, ACT, Australia.
EM Michael.Jensen@canberra.edu.au; tituschen@mail.nsysu.edu.tw
CR [Anonymous], Between Facts and Norms; Contributions to a Discourse Theory of Law and Democracy
[Anonymous], 1992, WRITING SECURITY US
[Anonymous], 1990, MODE INFORM POSTSTRU
[Anonymous], 2019, BBC 0227
[Anonymous], 2019, Radio Free Asia
Anthony Downs., 1957, An economic theory of democracy
Australian Bureau of Statistics, 2017, CENS REV FAST CHANG
Bandurski David, 2017, GREAT HIVE PROPAGAND
Barnidge M, 2020, INT J PUBLIC OPIN R, V32, P732, DOI 10.1093/ijpor/edz043
BERELSON Bernard, 1986, Voting. A study of Opinion Formation in a Presidential Campaign
Bolsover G., 2018, COMPUTATIONAL PROPAG, P212
Brady Anne-Marie., 2017, Magic weapons: China's political influence activities under Xi Jinping
Burke Kenneth., 1989, SYMBOLS SOC
Burke Kenneth., 1969, A Grammar of Motives
China Internet Watch, 2017, CHIN INT INS
China Tech Insights, 2017, 2017 WECHAT DAT REP
Connolly William, 2002, IDENTITYDIFFERENCE D
Dalton RJ, 1998, AM POLIT SCI REV, V92, P111, DOI 10.2307/2585932
Department of Home Affairs, 2018, CHIN BORN COMM INF S
Druckman JN, 2005, J POLIT, V67, P1030, DOI 10.1111/j.1468-2508.2005.00349.x
Easton D., 1965, SYSTEMS ANAL POLITIC, P507
Easton D., 1990, ANAL POLITICAL STRUC
Ellul Jacques., 1966, PROPAGANDA
Fish S., 1994, There's No Such Thing as Free Speech: And It's a Good Thing, Too
Freedman L., 2006, The Adelphi Papers, V45, P11, DOI DOI 10.1080/05679320600661640
GIDDENS Anthony, 1991, The Consequences of Modernity
Gill Bates., 2017, China Matters: Getting It Right for Australia
Guo L, 2017, INT J COMMUN-US, V11, P408
Hackett R.A., 1984, Critical Studies in Mass Communication, V1, P329
Hawkins G., 2007, ACH J HIST CULTURE A, V26, P1
Hawkins G., 1996, CULTURE POLICY, V7, P45
Kallinikos J., 2006, CONSEQUENCES INFORM
Kennan George., 1948, The Inauguration of Organized Political Warfare
King G, 2017, AM POLIT SCI REV, V111, P484, DOI 10.1017/S0003055417000144
King G, 2013, AM POLIT SCI REV, V107, P326, DOI 10.1017/S0003055413000014
Knockel J., SECTION FREE EXPRESS
Lagerkvist J, 2008, J CONTEMP CHINA, V17, P121, DOI 10.1080/10670560701693120
Lee J.-A., 2018, 3174626 SSRN SCHOL
Lewis D, 2019, ADDRESS ASIO DIRECTO
Li J., 2018, **DATA OBJECT**
Li M., 2019, ABC NEWS
Lindsay J.R., 2015, China and Cybersecurity: Espionage, Strategy, and Politics in the Digital Domain
Lipset Seymour Martin., 1967, PARTY SYSTEMS VOTER
Mattis Peter., 2019, CHINESE COMMUNIST ES
McCarthy KJ, 2014, REV SOC ECON, V72, P42, DOI 10.1080/00346764.2013.806110
McCauley Kevin., 2016, Russian Influence Campaigns Against the West: From the Cold War to Putin
Medew Julia., 2013, The Sydney Morning Herald
Miskimmon A., 2013, STRATEGIC NARRATIVES
Morgan E., 2018, INFORM WARFARE EMERG
Ng J. Q, 2015, TRACKING CENSORSHIP
Olson J.M., 2019, To Catch a Spy: The Art of Counterintelligence
Pettyjohn Stacie L., 2019, Competing in the Gray Zone: Russian Tactics and Western Responses
Pitkin H. F., 1985, The Concept of Representation
Poindexter D.F., 2018, CHINESE INFORM WAR E, V2
Rawls John., 1996, POLITICAL LIBERALISM
Richardson D, 2017, D RICHARDSON AO AUST
Rid T., 2020, Active Measures: The Secret History of Disinformation and Political Warfare
Roberts M. E., 2018, Censored: Distraction and Diversion Inside China's Great Firewall
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Sun W, 2018, CONVERSATION 1122
Sun W, 2017, READ THIS CHINESE LA
Sun W., 2016, Media Asia, V43, P165
Tang M., 2012, Digital Media and Political Engagement Worldwide: A Comparative Study, P221
Tsai WH, 2016, J CONTEMP CHINA, V25, P731, DOI 10.1080/10670564.2016.1160506
Wade Samuel, 2018, CHINA DIGITAL TIMES
Wang SL, 2015, J MED INTERNET RES, V17, DOI 10.2196/jmir.3875
Weinswig D, 2017, DEEP DIVE WECHAT FRO
Yin H, 2015, NEW MEDIA SOC, V17, P556, DOI 10.1177/1461444813505363
Young I. M., 2002, Inclusion and democracy
Yu HQ, 2019, MEDIA INT AUST, V173, P17, DOI 10.1177/1329878X19875854
Zhang C., 2020, J. Med. Virol.
NR 71
TC 0
Z9 0
U1 1
U2 6
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 1013-2511
EI 2529-802X
J9 ISSUES STUD
JI Issues Stud.
PD JUN
PY 2021
VL 57
IS 2
AR 2150005
DI 10.1142/S1013251121500053
PG 35
WC Area Studies; International Relations; Political Science
WE Emerging Sources Citation Index (ESCI)
SC Area Studies; International Relations; Government & Law
GA TZ3ME
UT WOS:000684379000004
DA 2024-09-05
ER
PT J
AU Pradhan, T
Sahoo, S
Singh, U
Pal, S
AF Pradhan, Tribikram
Sahoo, Suchit
Singh, Utkarsh
Pal, Sukomal
TI A proactive decision support system for reviewer recommendation in
academia
SO EXPERT SYSTEMS WITH APPLICATIONS
LA English
DT Article
DE Reviewer recommendation; Topic modeling; Clustering; Citation analysis;
Random walk with restart (RWR)
ID INFORMATION; INDEX
AB Peer review is an essential part of scientific communications to ensure the quality of publications and a healthy scientific evaluation process. Assigning appropriate reviewers poses a great challenge for program chairs and journal editors for many reasons, including relevance, fair judgment, no conflict of interest, and qualified reviewers in terms of scientific impact. With a steady increase in the number of research domains, scholarly venues, researchers, and papers in academia, manually selecting and accessing adequate reviewers is becoming a tedious and time-consuming task. Traditional approaches for reviewer selection mainly focus on the matching of research relevance by keywords or disciplines. However, in real-world systems, various factors are often needed to be considered. Therefore, we propose a multilayered approach integrating Topic Network, Citation Network, and Reviewer Network into a reviewer Recommender System (TCRRec). We explore various aspects, including relevance between reviewer candidates and submission, authority, expertise, diversity, and conflict of interest and integrate them into the proposed framework TCRRec. The paper also addresses cold start issues for researchers having unique areas of interest or for isolated researchers. Experiments based on the NIPS and AMiner dataset demonstrate that the proposed TCRRec outperforms state-of-the-art recommendation techniques in terms of standard metrics of precision@k, MRR, nDCG@k, authority, expertise, diversity, and coverage.
C1 [Pradhan, Tribikram; Pal, Sukomal] Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi, Uttar Pradesh, India.
[Pradhan, Tribikram] MAHE, Manipal Inst Technol, Dept Informat & Commun Technol, Manipal, Karnataka, India.
[Sahoo, Suchit; Singh, Utkarsh] Indian Inst Technol BHU, Dept Elect Engn, Varanasi, Uttar Pradesh, India.
C3 Indian Institute of Technology System (IIT System); Indian Institute of
Technology BHU Varanasi (IIT BHU Varanasi); Manipal Academy of Higher
Education (MAHE); Indian Institute of Technology System (IIT System);
Indian Institute of Technology BHU Varanasi (IIT BHU Varanasi)
RP Pradhan, T (corresponding author), Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi, Uttar Pradesh, India.; Pradhan, T (corresponding author), MAHE, Manipal Inst Technol, Dept Informat & Commun Technol, Manipal, Karnataka, India.
EM tpradhan.rs.cse16@itbhu.ac.in; suchit.sahoo.eee15@itbhu.ac.in;
utkarsh.singh.eee15@itbhu.ac.in; spal.cse@iitbhu.ac.in
RI PRADHAN, TRIBIKRAM/AAY-1283-2021
OI PRADHAN, TRIBIKRAM/0000-0001-5458-2286
CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99
Anjum O, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P518
[Anonymous], 2008, CIKM 08, DOI [10.1145/1458082.1458127, DOI 10.1145/1458082.1458127]
Basheer IA, 2000, J MICROBIOL METH, V43, P3, DOI 10.1016/S0167-7012(00)00201-3
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012
Bradley Keith, 2001, P 12 IR C ART INT CO, P85
Buckley C., 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P25, DOI 10.1145/1008992.1009000
Chaiwanarom P, 2015, KNOWL-BASED SYST, V75, P161, DOI 10.1016/j.knosys.2014.11.029
Charlin L., 2013, The toronto paper matching system: an automated paper-reviewer assignment system, P28
Conry D., 2009, RECSYS 09, P357, DOI [DOI 10.1145/1639714.1639787, 10.1145/1639714.1639787]
Di Mauro N, 2005, LECT NOTES ARTIF INT, V3533, P789
DUMAIS ST, 1992, SIGIR 92 : PROCEEDINGS OF THE FIFTEENTH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P233
Flach Peter A., 2010, ACM SIGKDD Explor. Newsl., V11, P63
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Hettich S., 2006, KDD 06, P862, DOI [10.1145/1150402.1150521, DOI 10.1145/1150402.1150521]
Huang WY, 2015, AAAI CONF ARTIF INTE, P2404
Jin J., 2018, J INF SCI
Jin J, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1233, DOI 10.1145/3041021.3053053
Jin JL, 2018, ANN MED, V50, P576, DOI 10.1080/07853890.2018.1523549
Kong XJ, 2017, SCIENTOMETRICS, V113, P369, DOI 10.1007/s11192-017-2485-9
Kou NM, 2015, PROC VLDB ENDOW, V8, P1852
Kunaver M, 2017, KNOWL-BASED SYST, V123, P154, DOI 10.1016/j.knosys.2017.02.009
Li BC, 2016, IEEE NETWORK, V30, P18, DOI 10.1109/MNET.2016.7579022
Liu O, 2016, COMPUT IND, V76, P1, DOI 10.1016/j.compind.2015.11.001
Liu X., 2016, IC 2016 P ISCHOOLS
Liu X, 2014, PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), P25, DOI 10.1145/2645710.2645749
Lu J, 2015, DECIS SUPPORT SYST, V74, P12, DOI 10.1016/j.dss.2015.03.008
Mimno D, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P500
Moawad M., 2019, 22 INT C EXT DAT TEC
Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113
Nguyen J, 2018, PATTERN RECOGN LETT, V105, P114, DOI 10.1016/j.patrec.2017.09.020
Peng HW, 2017, LECT NOTES COMPUT SC, V10179, P145, DOI 10.1007/978-3-319-55705-2_11
Pradhan T., 2019, FUTURE GENER COMP SY
Pradhan T, 2020, KNOWL-BASED SYST, V204, DOI 10.1016/j.knosys.2020.106181
Pradhan T, 2020, KNOWL-BASED SYST, V197, DOI 10.1016/j.knosys.2020.105784
Pradhan T, 2020, KNOWL-BASED SYST, V189, DOI 10.1016/j.knosys.2019.105092
Real R, 1996, SYST BIOL, V45, P380, DOI 10.2307/2413572
Son J, 2018, DECIS SUPPORT SYST, V105, P24, DOI 10.1016/j.dss.2017.10.011
Stuckenschmidt H, 2002, LECT NOTES ARTIF INT, V2479, P114
Sun Y. H., 2007, 2007 40 ANN HAW INT, P47
Sun YZ, 2013, ACM T KNOWL DISCOV D, V7, DOI 10.1145/2500492
Sun YZ, 2011, 2011 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2011), P121, DOI 10.1109/ASONAM.2011.112
Tayal DK, 2014, APPL INTELL, V40, P54, DOI 10.1007/s10489-013-0445-5
Tong HH, 2006, IEEE DATA MINING, P613
Wang G, 2018, KNOWL-BASED SYST, V148, P85, DOI 10.1016/j.knosys.2018.02.024
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
Xu YH, 2012, INT C MANAGE SCI ENG, P213, DOI 10.1109/ICMSE.2012.6414185
Zhao S, 2018, SCIENTOMETRICS, V115, P1293, DOI 10.1007/s11192-018-2726-6
NR 50
TC 12
Z9 13
U1 1
U2 18
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0957-4174
EI 1873-6793
J9 EXPERT SYST APPL
JI Expert Syst. Appl.
PD MAY 1
PY 2021
VL 169
AR 114331
DI 10.1016/j.eswa.2020.114331
EA FEB 2021
PG 20
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Operations Research & Management Science
GA SV3FJ
UT WOS:000663708000016
DA 2024-09-05
ER
PT J
AU Li, ZM
AF Li, ZhengMin
TI Research on Brand Image Evaluation Method Based on Consumer Sentiment
Analysis
SO COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE
LA English
DT Article
ID SYSTEM; ONTOLOGY; MODEL
AB Brand image assessment is a key step to reasonably quantify the value of a brand and has far-reaching significance for improving the competitiveness of an enterprise. With the rapid development of Internet technology, traditional questionnaires can no longer meet the current needs of brand image assessment. In this environment, the huge amount of fragmented consumer topic data provides a rich data resource and new research ideas for brand image assessment. Therefore, a brand image assessment method based on consumer sentiment analysis is proposed. First, a topic-based brand image cognitive label extraction method is proposed by setting language rules, aggregation rules, and ranking rules according to the characteristics of online topic data. Then, the fusion of cognitive labels and deep features is performed by fusing the deep features extracted from word vectors. Finally, a supervised learning support vector machine is selected as the sentiment classification model. The experimental results show that based on the obtained important cognitive labels, enterprises are able to better understand the unique attributes that consumers have for the brand; the feature fusion approach is better evaluated and can accurately reflect consumers' views on brand image and quantified as brand score.
C1 [Li, ZhengMin] Wuhan Univ, Sch Journalism & Commun, Wuhan 430072, Hubei, Peoples R China.
C3 Wuhan University
RP Li, ZM (corresponding author), Wuhan Univ, Sch Journalism & Commun, Wuhan 430072, Hubei, Peoples R China.
EM 2015101030022@whu.edu.cn
CR Chen J, 2015, APPL SOFT COMPUT, V30, P663, DOI 10.1016/j.asoc.2015.01.007
Feng WT, 2021, TOURISM MANAGE, V86, DOI 10.1016/j.tourman.2021.104344
Ferreiro-Rosende E, 2023, MUS MANAGE CURATOR, V38, P157, DOI 10.1080/09647775.2021.1914143
Gilal AR, 2017, INT J ADV COMPUT SC, V8, P153
Guo JQ, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21010241
Hou Q, 2021, J INTELL FUZZY SYST, V40, P2721, DOI 10.3233/JIFS-189314
Hou YZ, 2021, J INTELL FUZZY SYST, V40, P3801, DOI 10.3233/JIFS-189413
Hu JJ, 2021, INT J EMERG TECHNOL, V16, P87, DOI 10.3991/ijet.v16i05.20299
Kakad S, 2021, EXPERT SYST APPL, V178, DOI 10.1016/j.eswa.2021.115046
Kang Q, 2018, IEEE T NEUR NET LEAR, V29, P4152, DOI 10.1109/TNNLS.2017.2755595
Keller KO, 2020, J MARKETING RES, V57, P677, DOI 10.1177/0022243720922853
Khan A, 2021, J INTELL FUZZY SYST, V40, P1681, DOI 10.3233/JIFS-201069
Lanjewar RB, 2015, PROCEDIA COMPUT SCI, V49, P50, DOI 10.1016/j.procs.2015.04.226
Liu B, 2020, J AMB INTEL HUM COMP, V11, P451, DOI 10.1007/s12652-018-1095-6
Liu Z., 2015, J INFORM COMPUTATION, V12, P1011, DOI [10.12733/jics20105433, DOI 10.12733/JICS20105433]
Portal S, 2018, BUS HORIZONS, V61, P367, DOI 10.1016/j.bushor.2018.01.003
Singh D, 2021, J CREAT COMMUN, V16, P266, DOI 10.1177/09732586211002104
Suhasini M., 2018, Int. J. Comput. Appl., V179, P12, DOI [10.5120/ijca2018917350, DOI 10.5120/IJCA2018917350]
Thenmozhi M., 2019, INT J COMPUTER SCI E, V7, P591, DOI [10.26438/ijcse/v7i6.591594, DOI 10.26438/IJCSE/V7I6.591594]
Uzunkaya T, 2020, PRESSACADEMIA, V7, P80, DOI [10.17261/Pressacademia.2020.1201, DOI 10.17261/PRESSACADEMIA.2020.1201]
Xiong ZY, 2019, CMC-COMPUT MATER CON, V60, P259, DOI 10.32604/cmc.2019.05155
Zhang XY, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/5596518
NR 22
TC 0
Z9 1
U1 4
U2 14
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1687-5265
EI 1687-5273
J9 COMPUT INTEL NEUROSC
JI Comput. Intell. Neurosci.
PD MAY 27
PY 2022
VL 2022
AR 2647515
DI 10.1155/2022/2647515
PG 8
WC Mathematical & Computational Biology; Neurosciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematical & Computational Biology; Neurosciences & Neurology
GA 1Y0AU
UT WOS:000807810000001
PM 35669638
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Bhattacharya, S
AF Bhattacharya, Sujit
TI Some Salient Aspects of Machine Learning Research: A Bibliometric
Analysis
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Machine Learning; Social Network Analysis; Bibliometrics; Co-word
analysis; Intellectual Structure
AB Machine learning has emerged as an important and distinct area of research closely related to and often overlaps with various domains within computer science, computational statistics, artificial intelligence, cognitive science. One can observe connections with these fields at the cognitive level (in terms of theoretical framework), and on methodological levels (drawing from tools and techniques of these fields). The evolution of the field has taken a very directed and operational approach with basic tenet of machine learning being 'teaching computers how to learn from data to make decisions or predictions'. As we move into systems that increasingly need to exploit data, we find the research in this area getting more application oriented, expansive in scope with loci of research and innovation dispersed across academia, research institutions and industry. It is thus becoming a challenging as well as useful exercise to know the structure and dynamics of this field. The paper is centered on this issue; it tries to capture the intellectual structure of this field and research trends from quantitative and statistical analysis of research publications. Conceptual connections are constructed from linkages among keywords using tools and techniques of Social network Analysis. It also acts as a conceptual framework for the study. Some indications from patent statistics are also drawn to provide some insights of the technological trends.
C1 [Bhattacharya, Sujit] CSIR Natl Inst Sci Technol & Dev Studies, NISTADS Campus,KS Krishnan Marg,Pusa Campus, New Delhi 110012, India.
[Bhattacharya, Sujit] AcSIR, NISTADS Campus,KS Krishnan Marg,Pusa Campus, New Delhi 110012, India.
C3 Council of Scientific & Industrial Research (CSIR) - India; CSIR -
National Institute of Science Communication & Policy Research (NIScPR);
Academy of Scientific & Innovative Research (AcSIR)
RP Bhattacharya, S (corresponding author), CSIR Natl Inst Sci Technol & Dev Studies, NISTADS Campus,KS Krishnan Marg,Pusa Campus, New Delhi 110012, India.; Bhattacharya, S (corresponding author), AcSIR, NISTADS Campus,KS Krishnan Marg,Pusa Campus, New Delhi 110012, India.
EM sujit_academic@yahoo.com
RI Bhattacharya, Sujit/AAH-2660-2020
OI Bhattacharya, Sujit/0000-0002-6769-8293
CR [Anonymous], 2009, Social Network Analysis. Methods and Applications
[Anonymous], STRUCTURAL ANAL SOCI
Bhattacharya S, 1998, SCIENTOMETRICS, V43, P359, DOI 10.1007/BF02457404
Brynjolfsson E., 2014, 2 MACHINE AGE WORK P, P306
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Meixin Mao, 2018, Data Mining and Big Data. Third International Conference, DMBD 2018. Proceedings: LNCS 10943, P585, DOI 10.1007/978-3-319-93803-5_55
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
Rincon-Patino J, 2018, F1000Research, V7, P1240
Van Eck NJ, 2007, INT J UNCERTAIN FUZZ, V15, P625, DOI 10.1142/S0218488507004911
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Yu DJ, 2020, INT J MACH LEARN CYB, V11, P715, DOI 10.1007/s13042-019-01028-y
NR 13
TC 11
Z9 11
U1 2
U2 9
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD MAY-AUG
PY 2019
VL 8
IS 2
SI SI
BP S85
EP S92
DI 10.5530/jscires.8.2.26
PG 8
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA KA8FQ
UT WOS:000506037200007
OA hybrid
DA 2024-09-05
ER
PT C
AU Jing, M
Fang, FY
AF Jing, Ma
Fang, Fu Yan
GP IEEE
TI Research on the Dynamic Assessment of Battlefield Forces Based on
Bayesian Networks
SO 2012 INTERNATIONAL CONFERENCE ON INDUSTRIAL CONTROL AND ELECTRONICS
ENGINEERING (ICICEE)
LA English
DT Proceedings Paper
CT International Conference on Industrial Control and Electronics
Engineering (ICICEE)
CY AUG 23-25, 2012
CL Xian, PEOPLES R CHINA
DE situation battlefield forces; Bayesian network; dynamic assessment
AB Two sides of the battlefield forces contrast is an important influence factor of battlefield situation. Accurately judge it is a preconditions of situation assessment. This paper researches on the battlefield forces assessment and the results of the dynamic changes. In order to achieve it, we build two Bayesian networks, one analyses situation battlefield forces, the other analyses dynamic changes with the nodes. The nodes of first Bayesian network contains enemy air-to-ground attack force, our air-to-ground attack force, enemy air-to-air attack force, our air-to-air attack force, enemy ground-to-air attack force, our ground-to-air attack force, enemy ground-to-ground attack force, our ground-to-ground attack force, enemy ground defenses, our ground defenses, etc. The second Bayesian network reflects the changes of nodes of first Bayesian network. Through the Bayesian network, we can get the current situation of battlefield forces, and find the change between original result and now. Finally, the process of how to use the Bayesian networks for situation assessment was showed by an example.
C1 [Jing, Ma; Fang, Fu Yan] Xian Technol Univ, Xian 710032, Shaanxi, Peoples R China.
C3 Xi'an Technological University
RP Jing, M (corresponding author), Xian Technol Univ, Xian 710032, Shaanxi, Peoples R China.
CR BARNARD GF, 1993, CANCER RES, V53, P4048
BJOERN T, 2006, CANCER, P792
Determan J, 1999, P 1999 C EV COMP PIS, P2101
LEI De-ming, 2006, CHINESE J ELECTRON, V34, P1142
Wang M.-L, 2010, J WUYI U NATURAL SCI, V24, P44
NR 5
TC 1
Z9 1
U1 0
U2 6
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
BN 978-0-7695-4792-3
PY 2012
BP 321
EP 323
DI 10.1109/ICICEE.2012.92
PG 3
WC Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering
GA BCJ89
UT WOS:000310339200085
DA 2024-09-05
ER
PT J
AU Manakhova, AM
Lagutina, NS
AF Manakhova, A. M.
Lagutina, N. S.
TI Analysis of the Influence of Mixed-Level Stylometric Characteristics on
the Verification of Authors of Literary Works
SO AUTOMATIC CONTROL AND COMPUTER SCIENCES
LA English
DT Article
DE stylometry; stylometric characteristics; authorship verification;
natural language processing
AB This article analyses the influence of various combinations of mixed-level stylometric characteristics on the quality of verification of the authorship of Russian, English and French prose texts. The study is carried out both for low-level stylometric characteristics based on words and characters, and for higher-level structure ones. All stylometric characteristics are calculated automatically using the ProseRhythmDetector program. This approach provides the analyses of works of a large volume and many writers at the same time. In the course of the work, character-level, word-level, and structure-level stylometric vectors are associated with each text. During the experiments, the sets of parameters of these three levels were combined with each other in all possible ways. The resulting vectors of stylometric characteristics were submitted to the input of various classifiers to perform verification and identify the most suitable classifier for solving the problem. The best results were obtained using the AdaBoost classifier. The average F-measure for all languages was over 92%. Detailed verification quality assessments are given for each author and analyzed. The use of high-level stylometric characteristics, in particular, the frequency of using N-grams of POS tags, opens the prospect of a more detailed analysis of author's styles. The results of the experiments show that when combining the characteristics of the structure level with the characteristics of the word level and/or character level, the most accurate results of authorship verification for literary texts in Russian, English, and French are obtained. Additionally, the authors concluded that stylometric characteristics have different degrees of influence on the quality of authorship verification for different languages.
C1 [Manakhova, A. M.; Lagutina, N. S.] Yaroslavl State Univ, Yaroslavl 150003, Russia.
C3 Yaroslavl State University
RP Manakhova, AM (corresponding author), Yaroslavl State Univ, Yaroslavl 150003, Russia.
EM al.mnkhv@yandex.ru; lagutinans@rambler.ru
OI Lagutina, Nadezhda/0000-0002-6137-8643
CR Adamovic S, 2019, J ASSOC INF SCI TECH, V70, P858, DOI 10.1002/asi.24163
Ahmed H, 2018, PROCEDIA COMPUT SCI, V142, P214, DOI 10.1016/j.procs.2018.10.478
Al-Khatib MA, 2021, INFORM COMMUN SOC, V24, P1603, DOI 10.1080/1369118X.2020.1716039
Altamimi A, 2019, THIRD CENTRAL EUROPEAN CYBERSECURITY CONFERENCE (CECC 2019), DOI 10.1145/3360664.3360677
Benzebouchi NE, 2018, 2018 2ND INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE AND SPEECH PROCESSING (ICNLSP), P142
Boenninghoff B, 2019, IEEE INT CONF BIG DA, P36, DOI 10.1109/BigData47090.2019.9005650
Castillo E, 2019, J INTELL FUZZY SYST, V36, P6075, DOI 10.3233/JIFS-181934
Corbara Silvia, 2019, New Trends in Image Analysis and Processing - ICIAP 2019. ICIAP International Workshops BioFor, PatReCH, e-BADLE, DeepRetail, and Industrial Session. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11808), P148, DOI 10.1007/978-3-030-30754-7_15
Drozdov V.A., 2020, ORIENTALISTIKA, V3, P1360, DOI [10.31696/2618-7043-2020-3-5-1360-1378, DOI 10.31696/2618-7043-2020-3-5-1360-1378]
Halvani Oren, 2020, ARES 2020: Proceedings of the 15th International Conference on Availability, Reliability and Security, DOI 10.1145/3407023.3409194
Kestemont M., 2019, J EUR PERIODICAL STU, V4, P115, DOI [10.21825/jeps.v4i1.10188, DOI 10.21825/JEPS.V4I1.10188]
Kestemont M., 2020, CEUR WORKSHOP PROC, V2696, P264
Kim SB, 2006, IEEE T KNOWL DATA EN, V18, P1457, DOI 10.1109/TKDE.2006.180
Lagutina K, 2020, PROC CONF OPEN INNOV, P247, DOI [10.23919/fruct48808.2020.9087430, 10.23919/FRUCT48808.2020.9087430]
Lagutina K, 2019, PROC CONF OPEN INNOV, P184, DOI [10.23919/FRUCT48121.2019.8981504, 10.23919/fruct48121.2019.8981504]
Li JS, 2017, CONCURR COMP-PRACT E, V29, DOI 10.1002/cpe.3918
Polin Y., 2020, SOVREM NAUKOEMKIE TE, P59, DOI [10.17513/snt.38215, DOI 10.17513/SNT.38215]
Potha N, 2018, 10TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2018), DOI 10.1145/3200947.3201013
Reddy PB, 2020, ADV INTELL SYST COMP, V1079, P441, DOI 10.1007/978-981-15-1097-7_37
Tuccinardi E, 2017, DIGIT SCHOLARSH HUM, V32, P435, DOI 10.1093/llc/fqw001
Tuchkova N. P., 2020, INFORM MATH TECHNOL, V2, P5, DOI [10.38028/ESI.2020.18.2.00, DOI 10.38028/ESI.2020.18.2.00]
Xu BX, 2012, J COMPUT, V7, P2913, DOI 10.4304/jcp.7.12.2913-2920
NR 22
TC 0
Z9 0
U1 1
U2 2
PU PLEIADES PUBLISHING INC
PI NEW YORK
PA PLEIADES HOUSE, 7 W 54 ST, NEW YORK, NY, UNITED STATES
SN 0146-4116
EI 1558-108X
J9 AUTOM CONTROL COMPUT
JI Autom. Control Comp. Sci.
PD DEC
PY 2022
VL 56
IS 7
BP 744
EP 761
DI 10.3103/S0146411622070148
PG 18
WC Automation & Control Systems
WE Emerging Sources Citation Index (ESCI)
SC Automation & Control Systems
GA 9D9NI
UT WOS:000936422500013
DA 2024-09-05
ER
PT J
AU Habib, E
Deshotel, M
Lai, GL
Miller, R
AF Habib, Emad
Deshotel, Matthew
Lai, Guolin
Miller, Robert
TI Student Perceptions of an Active Learning Module to Enhance Data and
Modeling Skills in Undergraduate Water Resources Engineering Education
SO INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION
LA English
DT Article
DE water resources engineering education; active-learning; numerical
modeling; data analysis; project-based; improvement-focused evaluation;
design-based research; open-source tools
ID CURRICULUM
AB This article describes the design, development, and evaluation of an undergraduate learning module that builds student's skills on how data analysis and numerical modeling can be used to analyze and design water resources engineering projects. The module follows a project-based approach by using a hydrologic restoration project in a coastal basin in south Louisiana, USA. The module has two main phases, a feasibility analysis phase and a hydraulic design phase, and follows an active learning approach where students perform a set of quantitative learning activities that involve extensive data and modeling analyses. The module is designed using open resources, including online datasets, hydraulic simulation models and geographical information system software that are typically used by the engineering industry and research communities. Upon completing the module, students develop skills that involve model formulation, parameter calibration, sensitivity analysis, and the use of data and models to assess and design a hydrologic a proposed hydrologic engineering project. Guided by design-based research framework, the implementation and evaluation of the module focused primarily on assessing students' perceptions of the module usability and its design attributes, their perceived contribution of the module to their learning, and their overall receptiveness of the module and how it impacts their interest in the subject and future careers. Following an improvement-focused evaluation approach, design attributes that were found most critical to students included the use of user-support resources and self-checking mechanisms. These aspects were identified as key features that facilitate students' self-learning and independent completion of tasks, while still enriching their learning experiences when using data and modeling-rich applications. Evaluation data showed that the following attributes contributed the most to students' learning and potential value for future careers: application of modern engineering data analysis; use of real-world hydrologic datasets; and appreciation of uncertainties and challenges imposed by data scarcity. The evaluation results were used to formulate a set of guiding principles on how to design effective and conducive undergraduate learning experiences that adopt technology-enhanced and data and modeling-based strategies, on how to enhance users' experiences with free and open-source engineering analysis tools, and on how to strike a pedagogical balance between module complexity, student engagement, and flexibility to fit within existing curricula limitations.
C1 [Habib, Emad; Deshotel, Matthew; Miller, Robert] Univ Louisiana Lafayette, Dept Civil Engn, POB 70503, Lafayette, LA 70504 USA.
[Habib, Emad; Miller, Robert] Univ Louisiana Lafayette, Louisiana Watershed Flood Ctr, POB 70503, Lafayette, LA 70504 USA.
[Lai, Guolin] Univ Louisiana Lafayette, Dept Management, POB 43930, Lafayette, LA 70504 USA.
C3 University of Louisiana Lafayette; University of Louisiana Lafayette;
University of Louisiana Lafayette
RP Habib, E (corresponding author), Univ Louisiana Lafayette, Dept Civil Engn, POB 70503, Lafayette, LA 70504 USA.; Habib, E (corresponding author), Univ Louisiana Lafayette, Louisiana Watershed Flood Ctr, POB 70503, Lafayette, LA 70504 USA.
EM habib@louisiana.edu; mdeshot@gmail.com; glai@louisiana.edu;
robert.miller@louisiana.edu
FU National Science Foundation [1122898, 1726965]; Louisiana Sea Grant
College Program (LSG) under NOAA [R/EMD-03, NA14OAR4170099]; Division Of
Undergraduate Education; Direct For Education and Human Resources
[1726965, 1122898] Funding Source: National Science Foundation
FX This material is based upon work supported by the National Science
Foundation Collaborative Award No. 1122898 and Award No. 1726965, and by
Program Project ID: R/EMD-03 through the Louisiana Sea Grant College
Program (LSG) under NOAA Award #NA14OAR4170099.
CR [Anonymous], 2003, Diffusion of Innovations
[Anonymous], ASEE SE SECT C MAC G
[Anonymous], ED RES
[Anonymous], CHRONICLE HIGHER ED
[Anonymous], HYDROLOGY EARTH SYST
[Anonymous], 2010, Water in a Dynamic Planet: A Five-year Strategic Plan for Water Science, DOI [10.4211/sciplan.200711, DOI 10.4211/SCIPLAN.200711]
[Anonymous], PROGRAM EVALUATION M
Armellini A, 2013, OPEN LEARN, V28, P7, DOI 10.1080/02680513.2013.796286
Atkins D.E., 2007, A review of the open educational resources (OER) movement: Achievements, challenges, and new opportunities
Beven K.J., 2001, Rainfall-runoff Modelling, The Primer, P360
Borrego M, 2010, J ENG EDUC, V99, P185, DOI 10.1002/j.2168-9830.2010.tb01056.x
Chi MTH, 2009, TOP COGN SCI, V1, P73, DOI 10.1111/j.1756-8765.2008.01005.x
Keeney-Kennicutt W., 2008, Journal for the Scholarship of Teaching and Learning, V2, P1
Menekse M, 2013, J ENG EDUC, V102, P346, DOI 10.1002/jee.20021
Miles M. B., 2014, QUALITATIVE DATA ANA
Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x
Prince MJ, 2006, J ENG EDUC, V95, P123, DOI 10.1002/j.2168-9830.2006.tb00884.x
Ruddell BL, 2015, J HYDROL ENG, V20, DOI 10.1061/(ASCE)HE.1943-5584.0000956
Seidel SB, 2013, CBE-LIFE SCI EDUC, V12, P586, DOI 10.1187/cbe-13-09-0190
Thompson SE, 2012, HYDROL EARTH SYST SC, V16, P3263, DOI 10.5194/hess-16-3263-2012
Wagener T, 2012, HYDROL EARTH SYST SC, V16, P3405, DOI 10.5194/hess-16-3405-2012
Wagener T, 2010, WATER RESOUR RES, V46, DOI 10.1029/2009WR008906
Wang F, 2005, ETR&D-EDUC TECH RES, V53, P5, DOI 10.1007/BF02504682
NR 23
TC 12
Z9 12
U1 1
U2 11
PU TEMPUS PUBLICATIONS
PI DURRUS, BANTRY
PA IJEE , ROSSMORE,, DURRUS, BANTRY, COUNTY CORK 00000, IRELAND
SN 0949-149X
J9 INT J ENG EDUC
JI Int. J. Eng. Educ
PY 2019
VL 35
IS 5
BP 1353
EP 1365
PG 13
WC Education, Scientific Disciplines; Engineering, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Education & Educational Research; Engineering
GA IV6FK
UT WOS:000484364100010
DA 2024-09-05
ER
PT J
AU Khayet, M
Aytaç, E
Matsuura, T
AF Khayet, Mohamed
Aytac, Ersin
Matsuura, Takeshi
TI Bibliometric and sentiment analysis with machine learning on the
scientific contribution of Professor Srinivasa Sourirajan
SO DESALINATION
LA English
DT Article
DE Biblioshiny; Exploratory Tool; Text mining; VADER; Word cloud
ID SEPARATION; PRESSURE; FLOW
AB Prof. Srinivasa Sourirajan is remembered by the desalination and membrane community as the "Father of Reverse Osmosis ". He passed away at the age of 98 peacefully in his beloved city Ottawa (Canada). His legacy will be remembered by the scientific community "membrane science, membrane processes, desalination and engineering ". His research studies were not only novel, but also very creative and even visionary. He offered a priceless gift to humanity by bringing clean water to all those in need through the presentation of reverse osmosis technology together with its appropriate membranes for water treatment, including desalination. This technology has now gained worldwide interest as it is able to produce clean water at a lower cost compared to other separation processes. His scientific contribution also pioneered other research areas. He developed novel research methodologies in geophysics while in catalysis he produced unleaded gasoline to help with the smog issue. He was nominated for the Nobel Prize three times. Prof. Sourirajan had also an exceptional humanitarian attribute. He played a significant role in bringing the Indian community to Ottawa. In the present paper we apply machine learning for his extraordinary and original scientific contribution. The results reveal how influential scientist he was.
C1 [Khayet, Mohamed; Aytac, Ersin] Univ Complutense Madrid, Fac Phys, Dept Struct Matter Thermal Phys & Elect, Avda Complutense S-N, Madrid 28040, Spain.
[Khayet, Mohamed] Madrid Inst Adv Studies Water, IMDEA Water Inst, Calle Punto Net 4, Madrid 28805, Spain.
[Aytac, Ersin] Zonguldak Bulent Ecevit Univ, Dept Environm Engn, TR-67100 Zonguldak, Turkey.
[Matsuura, Takeshi] Univ Ottawa, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada.
C3 Complutense University of Madrid; IMDEA Water Institute; Zonguldak
Bulent Ecevit University; University of Ottawa
RP Khayet, M (corresponding author), Univ Complutense Madrid, Fac Phys, Dept Struct Matter Thermal Phys & Elect, Avda Complutense S-N, Madrid 28040, Spain.
EM khayetm@fis.ucm.es
RI ; Khayet, Mohamed/L-3814-2014
OI Aytac, Ersin/0000-0002-7124-4438; Khayet, Mohamed/0000-0002-5117-2975
FU Scientific and Technological Research Council of Turkey (TUBITAK) at the
University Complutense of Madrid (UCM) [1059B191900618]
FX Acknowledgements Dr. Ersin Ayta? would like to express his
acknowledgement for the postdoctoral grant received from The Scientific
and Technological Research Council of Turkey (TUBITAK) at the University
Complutense of Madrid (UCM) with the grant number of 1059B191900618.
CR Abu Sayed M, 2021, ACCIDENT ANAL PREV, V159, DOI 10.1016/j.aap.2021.106211
[Anonymous], 2022, GOOGLE PATENTS PATEN
[Anonymous], 2022, TRIBUTE S SOURIRAJAN
ARIA M., 2017, BRIEF INTRO BIBLIOME
Aria M., 2017, Biblioshiny-Bibliometrix for non-coders
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Atenstaedt RL, 2021, PUBLIC HEALTH, V197, P39, DOI 10.1016/j.puhe.2021.06.010
Aytac E., 2021, Fen Ve Muhendislik Bilimleri Dergisi, V21, P958, DOI [10.35414/akufemubid.870649, DOI 10.35414/AKUFEMUBID.870649]
Aytac E., 2022, EUR J SUSTAIN DEV RE, V6
Aytaç E, 2022, ENVIRON ENG MANAG J, V21, P671
Aytaç E, 2021, ADCAIJ-ADV DISTRIB C, V10, P33, DOI 10.14201/ADCAIJ20211013347
Aytaç E, 2020, INT SOIL WATER CONSE, V8, P321, DOI 10.1016/j.iswcr.2020.05.002
Baker R.W., 2004, Membrane technology and applications, V2nd, P89, DOI DOI 10.1002/0470020393.CH3
Bibi M, 2022, PATTERN RECOGN LETT, V158, P80, DOI 10.1016/j.patrec.2022.04.004
Denn M.M, 2011, CHEM ENG INTRO, V1st
Desai N, 2018, J SURG RES, V229, P90, DOI 10.1016/j.jss.2018.03.062
Ding YX, 2022, AUTOMAT CONSTR, V136, DOI 10.1016/j.autcon.2022.104169
Dissanayake M, 2022, THIN WALL STRUCT, V175, DOI 10.1016/j.tws.2022.109152
Edwards V.H, 2018, CAREERS CHEM BIOMOLE, V1st
Fomina Y, 2022, J RURAL STUD, V92, P294, DOI 10.1016/j.jrurstud.2022.04.007
Garner B, 2022, J BUS RES, V139, P1366, DOI 10.1016/j.jbusres.2021.08.025
Goodwin B, 2022, CHILD YOUTH SERV REV, V133, DOI 10.1016/j.childyouth.2021.106344
Husain A., 2010, PHYS CHEM BIOLOGICAL, P160
Kilicoglu O, 2021, RADIAT PHYS CHEM, V189, DOI 10.1016/j.radphyschem.2021.109721
KIMURA S, 1967, AICHE J, V13, P497, DOI 10.1002/aic.690130319
Kucera Jane:., 2015, Reverse Osmosis: Industrial Processes and Applications, V2nd
Liao J, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102934
Liu GY, 2021, PROCESS SAF ENVIRON, V152, P37, DOI 10.1016/j.psep.2021.05.036
Mörschbächer AP, 2022, BIOCHEM ENG J, V180, DOI 10.1016/j.bej.2022.108343
Occhipinti A, 2022, EXPERT SYST APPL, V201, DOI 10.1016/j.eswa.2022.117193
Okoroafor ER, 2022, GEOTHERMICS, V102, DOI 10.1016/j.geothermics.2022.102401
Orooji Y, 2022, NPJ CLEAN WATER, V5, DOI 10.1038/s41545-022-00167-0
Pang TT, 2022, DESALINATION, V527, DOI 10.1016/j.desal.2022.115562
Polat ZA, 2022, LAND USE POLICY, V112, DOI 10.1016/j.landusepol.2021.105847
Saffarimiandoab F, 2021, DESALINATION, V515, DOI 10.1016/j.desal.2021.115197
Shafizadeh A, 2022, CHEM ENG J, V445, DOI 10.1016/j.cej.2022.136579
SOURIRAJAN S, 1963, NATURE, V199, P590, DOI 10.1038/199590a0
SOURIRAJAN S, 1964, NATURE, V203, P1348, DOI 10.1038/2031348a0
SOURIRAJAN S, 1962, AM J SCI, V260, P115, DOI 10.2475/ajs.260.2.115
Sourirajan S., 1970, REVERSE OSMOSIS
Sourirajan S, 2022, THE OTTAWA CITIZEN
Suardi S, 2022, INT REV ECON FINANC, V79, P289, DOI 10.1016/j.iref.2022.02.017
Tamala J.K., 2022, CLEAN ENG TECH, V7
Tseng H.-H., 2022, 60 YEARS LOEB SOURIR, pxxvii
Zhan Q, 2022, PHOTODIAGN PHOTODYN, V38, DOI 10.1016/j.pdpdt.2022.102860
Zhang T, 2019, COMPUT CHEM ENG, V129, DOI 10.1016/j.compchemeng.2019.106511
Zheng ZY, 2022, NANO TODAY, V44, DOI 10.1016/j.nantod.2022.101453
NR 47
TC 7
Z9 7
U1 2
U2 24
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0011-9164
EI 1873-4464
J9 DESALINATION
JI Desalination
PD DEC 1
PY 2022
VL 543
AR 116095
DI 10.1016/j.desal.2022.116095
EA SEP 2022
PG 12
WC Engineering, Chemical; Water Resources
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Water Resources
GA 4V1OU
UT WOS:000859254300003
DA 2024-09-05
ER
PT C
AU Rong, CH
Hu, GL
AF Rong Cuihong
Hu Guoliang
BE Duysters, G
DeHoyos, A
Kaminishi, K
TI Innovation Mechanism of Academic Journals
SO PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON INNOVATION AND
MANAGEMENT
LA English
DT Proceedings Paper
CT 9th International Conference on Innovation and Management
CY NOV 14-16, 2012
CL Eindhoven Univ Technol, Eindhoven, NETHERLANDS
HO Eindhoven Univ Technol
DE Academic journals; Management; Multiple linear regression model; Impact
factor; Circulation
AB The present article deals with the issue of the quality of academic journals. After we have analyzed the current situation of the problems, we propose some solutions. Academic journals should try to attract the best articles by making an arrangement in advance with the writer or by contributions solicitation. At the same time, the amount of subscription should be enlarged and the academic quality of the editorial team should be improved. It is also important for striving for more financial support. We conclude that the coordination of the different aspects involved is the key to the improvement of the quality of academic journals.
C1 [Rong Cuihong] Wuhan Univ Technol, Wuhan 430070, Peoples R China.
[Hu Guoliang] Cent China Normal Univ, Dept Sports, Wuhan 430079, Peoples R China.
C3 Wuhan University of Technology; Central China Normal University
RP Rong, CH (corresponding author), Wuhan Univ Technol, Wuhan 430070, Peoples R China.
EM rongyan5878@vip.sina.com; 510522042@qq.com
CR Kelman H.C. Compliance, 1968, J CONFLICT RESOLUT, P51
Powers Willian, 2002, NATL J, V12
Xiao Tanghua, 2007, CHINESE J SCI TECHNI
Zhang Yaoming, 2006, J TSINGHUA U PHILOS
NR 4
TC 0
Z9 0
U1 0
U2 3
PU WUHAN UNIV TECHNOLOGY PRESS
PI WUHAN
PA 122 LUOSHI RD, WUHAN 430070, PEOPLES R CHINA
BN 978-7-5629-3854-5
PY 2012
BP 1107
EP +
PG 2
WC Economics; Management; Regional & Urban Planning
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics; Public Administration
GA BDF49
UT WOS:000313020500176
DA 2024-09-05
ER
PT C
AU Indrianti, Y
Sasmoko
Manalu, SR
Waromi, QLK
AF Indrianti, Yasinta
Sasmoko
Manalu, Sonya Rapinta
Waromi, Queensy Lovenia Kerrin
GP ACM
TI Literature Review Profiles of Specialization in Education and Profession
as the basis for the development of Artificial Intelligence Website
SO AICCC 2021: 2021 4TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING
CONFERENCE
LA English
DT Proceedings Paper
CT 4th Artificial Intelligence and Cloud Computing Conference (AICCC)
CY DEC 17-19, 2021
CL ELECTR NETWORK
DE Literature Review; Specialization in Education; Specialization in
Profession; Artificial Intelligence Website; Bibliometric
ID FRAMEWORK; KNOWLEDGE; SKILLS; WILL
AB Profiles of specialization in education and profession are currently heavily influenced by the development of industry 4.0. The era of disruption is marked by massive changes due to innovations that change business systems and arrangements to newer levels. In various studies, there will be many professions that are extinct but there will also be many new professions that will be born. This study aims to conduct a literature review of profiles of specialization in education and profession that are relevant to industry 4.0 trends which will then be developed in a measurement through an artificial intelligence-based website. The research method used is a bibliometric approach through scientific studies of various library sources using VOSViewer with cartographic overlay techniques and density visualization maps, to represent sequences and their relationships. While the method used to develop website profiles of specialization in education and profession based on artificial intelligence is to use the waterfall method. The results of the literature review found 10 words with a high level of bibliometric correlation as the basis for developing artificial intelligence-based websites.
C1 [Indrianti, Yasinta] Univ Agung Podomoro, Entrepreneurship Dept, West Jakarta, Indonesia.
[Sasmoko] Bina Nusantara Univ, Primary Teacher Educ Dept, Fac Humanities, Jakarta, Indonesia.
[Manalu, Sonya Rapinta] Bina Nusantara Univ, Dept Comp Sci, Jakarta, Indonesia.
[Waromi, Queensy Lovenia Kerrin] Bina Nusantara Univ, Dept Management, Binus Business Sch, Undergrad Program, Jakarta, Indonesia.
C3 Universitas Bina Nusantara; Universitas Bina Nusantara; Universitas Bina
Nusantara
RP Indrianti, Y (corresponding author), Univ Agung Podomoro, Entrepreneurship Dept, West Jakarta, Indonesia.
EM yasinta.indrianti@podomorouniversity.ac.id; sasmoko@binus.edu;
smanalu@binus.edu; queensy.waromi@binus.ac.id
FU Research and Technology Transfer Office, Bina Nusantara University as a
part of the Multi-Year Grant Ministry of Research and Technology/BRIN
2020 entitled Student Interest Preferences in Education and Profession
Era 4.0: Artificial Intelligence
FX This work is supported by the Research and Technology Transfer Office,
Bina Nusantara University as a part of the Multi-Year Grant Ministry of
Research and Technology/BRIN 2020 entitled Student Interest Preferences
in Education and Profession Era 4.0: Artificial Intelligence. We also
want to say thanks to the Podomoro University for the participation in
this research.
CR Abdul-Razaq B., 2013, The Social Science, V8, P19, DOI DOI 10.3923/SSCIENCE.2013.19.24
Almeida F., 2019, Contemp. Educ. Technol, V10, P120, DOI DOI 10.30935/CET.554469
Ancarani A., 2018, Digitalisierung im Einkauf, P11
Anshari M., 2020, Journal of Physics: Conference Series, V1477, P1, DOI [10.1088/1742-6596/1477/7/072023, DOI 10.1088/1742-6596/1477/7/072023]
Arnold D., 2016, DIGITIZATION WORKPLA
Brougham D, 2018, J MANAGE ORGAN, V24, P239, DOI 10.1017/jmo.2016.55
Bughin J., 2018, SKILL SHIFT AUTOMATI
Carnevale AP, 2013, HUM RESOUR DEV INT, V16, P491, DOI 10.1080/13678868.2013.821267
Cascio WF, 2016, ANNU REV ORGAN PSYCH, V3, P349, DOI 10.1146/annurev-orgpsych-041015-062352
Chae B., 2020, Journal of Open Innovation: Technology, Market, and Complexity, V6, P56
Dutta DK, 2011, INT ENTREP MANAG J, V7, P163, DOI 10.1007/s11365-010-0151-2
Fernández-Sanz L, 2017, COMPUT STAND INTER, V51, P30, DOI 10.1016/j.csi.2016.11.004
Gu DX, 2017, INT J MED INFORM, V98, P22, DOI 10.1016/j.ijmedinf.2016.11.006
Janssen J, 2013, COMPUT EDUC, V68, P473, DOI 10.1016/j.compedu.2013.06.008
Japan Business Federation (Keidanren), 2016, Toward realization of the new economy and society. Reform of the economy and society by the deepening of "Society 5.0
Kurt Resul, 2019, Procedia Computer Science, V158, P590, DOI 10.1016/j.procs.2019.09.093
Maricar M. I., 2016, P 9 IEEE WORKSH SENS, P1
Motyl B, 2017, PROCEDIA MANUF, V11, P1501, DOI 10.1016/j.promfg.2017.07.282
Oberländer M, 2020, COMPUT EDUC, V146, DOI 10.1016/j.compedu.2019.103752
Pinto M, 2014, SCIENTOMETRICS, V98, P2311, DOI 10.1007/s11192-013-1166-6
Rampersad G, 2020, J BUS RES, V116, P68, DOI 10.1016/j.jbusres.2020.05.019
Redish EF, 2008, J ENG EDUC, V97, P295, DOI 10.1002/j.2168-9830.2008.tb00980.x
Sousa MJ, 2019, J BUS RES, V94, P257, DOI 10.1016/j.jbusres.2017.12.051
Szalavetz A, 2019, TECHNOL FORECAST SOC, V145, P384, DOI 10.1016/j.techfore.2018.06.027
Withing K., 2020, WORLD EC FORUM, P1
NR 25
TC 0
Z9 0
U1 6
U2 16
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 978-1-4503-8416-2
PY 2021
BP 216
EP 220
DI 10.1145/3508259.3508296
PG 5
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BU6VJ
UT WOS:000929714300030
DA 2024-09-05
ER
PT J
AU Zhao, QY
Liang, ZQ
AF Zhao, Qianyi
Liang, Zhiqiang
TI Research on multimodal based learning evaluation method in smart
classroom
SO LEARNING AND MOTIVATION
LA English
DT Article
DE Artificial intelligence; Smart classrooms; Multi -modal information
fusion
ID INFORMATION FUSION; RECOGNITION; EDUCATION; EMOTION
AB In traditional learning contexts, teachers primarily assess students' behavior, emotional changes, and assignment completion to ensure teaching quality. Currently, there are challenges in evalu-ating students, such as assessments being insufficiently comprehensive and timely, a singular evaluation perspective that hinders the holistic consideration of factors affecting learning as-sessments, and a weak correlation among evaluation criteria, resulting in suboptimal evaluation outcomes. In recent years, with the rapid development and widespread application of artificial intelligence and information technology, the era of smart classrooms has arrived. New technol-ogies like image processing and artificial intelligence offer opportunities for personalized support services and enhancing teaching quality. Therefore, to provide a more comprehensive and objective reflection of teaching quality, this paper proposes a multi-modal information fusion learning assessment model. This model is achieved by determining the weight values of three dimensions, cognitive attention, emotional attitude, and course acceptance along with their corresponding attributes. Subsequently, through a fusion strategy, it calculates the learning assessment score by integrating information from these three dimensions. A series of experi-mental data confirms the effectiveness of this approach.
C1 [Zhao, Qianyi] Jinan Univ, Sch Journalism & Commun, Guangzhou 510000, Peoples R China.
[Liang, Zhiqiang] Guangzhou Univ, Sch Civil Engn, Guangzhou 510000, Peoples R China.
C3 Jinan University; Guangzhou University
RP Zhao, QY (corresponding author), Jinan Univ, Sch Journalism & Commun, Guangzhou 510000, Peoples R China.
EM zhao_qianyi89@outlook.com
CR Alelaiwi A, 2015, COMPUT HUM BEHAV, V51, P852, DOI 10.1016/j.chb.2014.11.061
Arriaga O., 2015, Its Technical Review, V32, P347
Chollet F, 2017, PROC CVPR IEEE, P1800, DOI 10.1109/CVPR.2017.195
Duan Y., 2020, INT C MACHINE LEARNI, P621, DOI DOI 10.1007/978-3-030-62743-0_89
Ehatisham-Ul-Haq M, 2019, IEEE ACCESS, V7, P60736, DOI 10.1109/ACCESS.2019.2913393
Fang Haiguang, 2023, ICDEL '23: Proceedings of the 2023 8th International Conference on Distance Education and Learning, P205, DOI 10.1145/3606094.3606112
Frenzel AC, 2007, EUR J PSYCHOL EDUC, V22, P497, DOI 10.1007/BF03173468
Gao J, 2020, NEURAL COMPUT, V32, P829, DOI 10.1162/neco_a_01273
Ghareeb S., 2022, Discover Internet of Things, V2, DOI DOI 10.1007/S43926-022-00023-0
Greenfield P.M., 1994, Journal of Applied Developmental Psychology, V15, P105, DOI DOI 10.1016/0193-3973(94)90008-6
Guangyou Xu., 2002, Advances in web based learning
Han K, 2014, INTERSPEECH, P223
Huang GB, 2004, IEEE IJCNN, P985
Jeon J., 2016, P 10 INT C UB INF MA, P1, DOI DOI 10.1145/2857546.2857642
Jiang J., 2023, P 4 INT C ARTIFICIAL, P345
Jiang RM, 2010, IEEE T SYST MAN CY C, V40, P676, DOI 10.1109/TSMCC.2010.2050476
Jo J, 2014, WIRELESS PERS COMMUN, V79, P2453, DOI 10.1007/s11277-014-1765-4
Kaili Z., 2019, Thinking and practice on the reform of engineering drawing classroom teaching under the intelligent teaching environment
Karambakhsh A, 2019, INT J INFORM MANAGE, V45, P328, DOI 10.1016/j.ijinfomgt.2018.03.004
Lahat D, 2015, P IEEE, V103, P1449, DOI 10.1109/JPROC.2015.2460697
Lavie N, 2010, CURR DIR PSYCHOL SCI, V19, P143, DOI 10.1177/0963721410370295
Li B., 2021, Computational Intelligence and Neuroscience
Li Cuimei, 2017, 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), P483, DOI 10.1109/ICEMI.2017.8265863
Liu W, 2019, PROC CVPR IEEE, P5182, DOI 10.1109/CVPR.2019.00533
Llinas J., 1998, P IEEE INT S CIRCUIT, P23
Ma SQ, 2023, LEARN MOTIV, V84, DOI 10.1016/j.lmot.2023.101916
Meng ZB, 2019, IEEE T CYBERNETICS, V49, P3293, DOI 10.1109/TCYB.2018.2840090
Meyer DK, 2002, EDUC PSYCHOL-US, V37, P107, DOI 10.1207/S15326985EP3702_5
Qing-Yun Z., 2019, Modern Computer
Sabourin JL, 2014, IEEE T AFFECT COMPUT, V5, P45, DOI 10.1109/T-AFFC.2013.27
Snoek C. G. M., 2005, 13th Annual ACM International Conference on Multimedia, P399, DOI 10.1145/1101149.1101236
Suzanne Hidi., 1990, Review of Educational Research Winter, V60, P549
Wang Q, 2020, INT SYM QUAL ELECT, P1, DOI [10.1109/isqed48828.2020.9137057, 10.1109/ISQED48828.2020.9137057, 10.1109/CVPR42600.2020.01155]
Wang XY, 2023, LEARN MOTIV, V83, DOI 10.1016/j.lmot.2023.101895
Yang CL, 2019, INFORM FUSION, V50, P126, DOI 10.1016/j.inffus.2018.10.007
Yantis S, 2000, CONTROL OF COGNITIVE PROCESSES: ATTENTION AND PERFORMANCE XVIII, P73
Yue ST, 2023, LEARN MOTIV, V84, DOI 10.1016/j.lmot.2023.101929
Zhang C, 2020, IEEE J-STSP, V14, P478, DOI 10.1109/JSTSP.2020.2987728
Zhang K, 2017, IEEE T IMAGE PROCESS, V26, P3142, DOI 10.1109/TIP.2017.2662206
Zhang Y, 2016, IEEE T IMAGE PROCESS, V25, DOI 10.1109/TIP.2016.2549360
Ziwei Liu, 2016, Large-scale CelebFaces attributes CelebA dataset
NR 41
TC 1
Z9 1
U1 11
U2 20
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0023-9690
EI 1095-9122
J9 LEARN MOTIV
JI Learn. Motiv.
PD NOV
PY 2023
VL 84
AR 101943
DI 10.1016/j.lmot.2023.101943
EA NOV 2023
PG 19
WC Psychology, Biological; Psychology, Experimental
WE Social Science Citation Index (SSCI)
SC Psychology
GA CF0G5
UT WOS:001123712600001
DA 2024-09-05
ER
PT J
AU Ren, YS
Ma, CQ
Kong, XL
Baltas, K
Zureigat, Q
AF Ren, Yi-Shuai
Ma, Chao-Qun
Kong, Xiao-Lin
Baltas, Konstantinos
Zureigat, Qasim
TI Past, present, and future of the application of machine learning in
cryptocurrency research
SO RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE
LA English
DT Article
DE Cryptocurrency; Machine learning; Blockchain; Bibliometric analysis
ID NEURAL-NETWORKS; PRICE PREDICTION; SAFE HAVEN; BITCOIN; VOLATILITY;
BLOCKCHAIN; CURRENCIES; HEDGE; ALGORITHMS; SCIENCE
AB Cryptocurrency has captured the interest of financial scholars and become a major research topic in blockchain. In cryptocurrency research, the use of machine learning algorithms is enabled by the presence of many types of data and abundant resources. However, there is currently no comprehensive review on cryptocurrencies using machine learning. Therefore, we collect papers on cryptocurrency-related using machine learning in the web of science database, and summarize these papers according to the algorithm, and draw the following conclusions: (1) The application of machine learning for cryptocurrencies research is increasing year over year; (2) Predicting cryptocurrency price trends and income fluctuations is the most relevant research topic; (3) The machine learning algorithm utilized in cryptocurrency research is not unique, and the practise of combining multiple machine learning approaches has emerged; (4) Concerns such as overfitting and interpretability still persist with machine learning methods. Finally, we suggest future research directions.
C1 [Ren, Yi-Shuai] Hunan Univ, Sch Publ Adm, Hunan, Peoples R China.
[Ma, Chao-Qun; Kong, Xiao-Lin] Hunan Univ, Sch Business, Hunan, Peoples R China.
[Ren, Yi-Shuai; Ma, Chao-Qun; Kong, Xiao-Lin] Hunan Univ, Res Inst Digital Soc & BlockChain, Hunan, Peoples R China.
[Ren, Yi-Shuai; Ma, Chao-Qun] Hunan Univ, Ctr Resource & Environm Management, Hunan, Peoples R China.
[Ren, Yi-Shuai] Univ Auckland, Energy Ctr, 12 Grafton Rd, Auckland 1010, New Zealand.
[Baltas, Konstantinos] Univ Essex, Essex Business Sch, Colchester, Essex, England.
[Zureigat, Qasim] Sulaiman Al Rajhi Univ, Dept Accounting & Informat Syst, Al Bukayriyah, Saudi Arabia.
C3 Hunan University; Hunan University; Hunan University; Hunan University;
University of Auckland; University of Essex; Sulaiman AlRajhi University
RP Kong, XL (corresponding author), Hunan Univ, Sch Business, Hunan, Peoples R China.
EM renyishuai1989@126.com; cqma1998@126.com; kongxiaolin@hnu.edu.cn;
k.baltas@essex.ac.uk; q.zureigat@sr.edu.sa
RI Ren, Yishuai/AAB-9519-2019
FU National Natural Science Foundation of China [71850012, 72104075,
72274056, 72192800]; National Social Science Fund of China [19AZD014,
21ZD125]; Major Special Projects of the Department of Science and
Technology of Hunan province [2018GK1020]; Natural Science Foundation of
Hunan Province [2022JJ40106]; Hunan Social Science Achievement Review
Committee [XSP21YBC087]; Hunan University Youth Talent Program
FX This research is supported by the National Natural Science Foundation of
China (No. 71850012, 72104075, 72274056, 72192800), the National Social
Science Fund of China (No. 19AZD014, 21&ZD125), the Major Special
Projects of the Department of Science and Technology of Hunan province
(No. 2018GK1020), the Natural Science Foundation of Hunan Province (No.
2022JJ40106), the Hunan Social Science Achievement Review Committee (No.
XSP21YBC087), and Hunan University Youth Talent Program.
CR Abu Al-Haija Q, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10172113
Aggarwal D, 2020, J BEHAV EXP FINANC, V27, DOI 10.1016/j.jbef.2020.100335
Ahmed S, 2022, RES INT BUS FINANC, V61, DOI 10.1016/j.ribaf.2022.101646
Akba F, 2021, IEEE ACCESS, V9, P108819, DOI 10.1109/ACCESS.2021.3101528
Akhtaruzzaman M, 2022, FINANC RES LETT, V47, DOI 10.1016/j.frl.2022.102787
Akyildirim E, 2023, ANN OPER RES, V330, P553, DOI 10.1007/s10479-021-04205-x
Akyildirim E, 2021, ANN OPER RES, V297, DOI 10.1007/s10479-020-03575-y
Al-Hashedi KG, 2021, COMPUT SCI REV, V40, DOI 10.1016/j.cosrev.2021.100402
Alessandretti L, 2018, COMPLEXITY, DOI 10.1155/2018/8983590
Alhenawi Y, 2022, RES INT BUS FINANC, V59, DOI 10.1016/j.ribaf.2021.101550
Alkhodhairi RK, 2021, CMC-COMPUT MATER CON, V68, P3215, DOI 10.32604/cmc.2021.016881
Alonso-Monsalve S, 2020, EXPERT SYST APPL, V149, DOI 10.1016/j.eswa.2020.113250
Anghel DG, 2021, FINANC RES LETT, V39, DOI 10.1016/j.frl.2020.101655
[Anonymous], 1979, Expert syst microelectron age
[Anonymous], 2017, Classification and regression trees
Atsalakis GS, 2019, EUR J OPER RES, V276, P770, DOI 10.1016/j.ejor.2019.01.040
Aysan AF, 2019, RES INT BUS FINANC, V47, P511, DOI 10.1016/j.ribaf.2018.09.011
Balcilar M, 2017, ECON MODEL, V64, P74, DOI 10.1016/j.econmod.2017.03.019
Bayhan S, 2019, IEEE T COGN COMMUN, V5, P648, DOI 10.1109/TCCN.2019.2936190
Benitez JM, 1997, IEEE T NEURAL NETWOR, V8, P1156, DOI 10.1109/72.623216
Borges TA, 2020, APPL SOFT COMPUT, V90, DOI 10.1016/j.asoc.2020.106187
Bouri E, 2021, FINANC RES LETT, V38, DOI 10.1016/j.frl.2019.101398
Bouri E, 2017, FINANC RES LETT, V23, P87, DOI 10.1016/j.frl.2017.02.009
Bouri E, 2017, FINANC RES LETT, V20, P192, DOI 10.1016/j.fri.2016.09.025
Chang TH, 2020, IEEE T SYST MAN CY-S, V50, P9, DOI 10.1109/TSMC.2018.2867497
Chen CM, 2009, J INFORMETR, V3, P191, DOI 10.1016/j.joi.2009.03.004
Chen HL, 2021, IEEE ACCESS, V9, P36008, DOI 10.1109/ACCESS.2021.3062410
Chen S, 2022, COMPLEXITY, V2022, DOI 10.1155/2022/2611063
Chen TH, 2021, COMPUT ECON, V57, P267, DOI 10.1007/s10614-020-10057-7
Chen ZS, 2020, J COMPUT APPL MATH, V365, DOI 10.1016/j.cam.2019.112395
Chowdhury R, 2020, PHYSICA A, V551, DOI 10.1016/j.physa.2020.124569
Ciaian P, 2016, APPL ECON, V48, P1799, DOI 10.1080/00036846.2015.1109038
Cocco L, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.413
Cohen G, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22080838
Corbet S, 2019, INT REV FINANC ANAL, V62, P182, DOI 10.1016/j.irfa.2018.09.003
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Crowcroft J, 2021, IEEE T NETW SCI ENG, V8, P1338, DOI 10.1109/TNSE.2020.3008600
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
Dastgir S, 2019, FINANC RES LETT, V28, P160, DOI 10.1016/j.frl.2018.04.019
Delfabbro P, 2021, J BEHAV ADDICT, V10, P201, DOI 10.1556/2006.2021.00037
Derbentsev V, 2021, INT J ENG-IRAN, V34, P140, DOI 10.5829/ije.2021.34.01a.16
Dyhrberg AH, 2016, FINANC RES LETT, V16, P85, DOI 10.1016/j.frl.2015.10.008
El Naqa I., 2015, Machine Learning in Radiation Oncology: Theory and Applications, P3, DOI [DOI 10.1007/978-3-319-18305-3_1, 10.1007/978-3-319-18305-3, DOI 10.1007/978-3-319-18305-3]
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Fang F, 2024, EUR J FINANC, V30, P78, DOI 10.1080/1351847X.2021.1908390
Ferdiansyah, 2019, 2019 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS 2019), P206, DOI [10.1109/icecos47637.2019.8984499, 10.1109/ICECOS47637.2019.8984499]
Ferdous MS, 2021, J NETW COMPUT APPL, V182, DOI 10.1016/j.jnca.2021.103035
Foley S, 2019, REV FINANC STUD, V32, P1798, DOI 10.1093/rfs/hhz015
Gagarina M, 2019, BEHAV SCI-BASEL, V9, DOI 10.3390/bs9120118
Gerlach JC, 2019, ROY SOC OPEN SCI, V6, DOI 10.1098/rsos.180643
Gidea M, 2020, PHYSICA A, V548, DOI 10.1016/j.physa.2019.123843
Giron AA, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21124078
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Goodell JW, 2021, INT REV FINANC ANAL, V76, DOI 10.1016/j.irfa.2021.101781
Goodell JW, 2021, FINANC RES LETT, V38, DOI 10.1016/j.frl.2020.101625
Guerra ML, 2020, AXIOMS, V9, DOI 10.3390/axioms9040139
Guesmi K, 2019, INT REV FINANC ANAL, V63, P431, DOI 10.1016/j.irfa.2018.03.004
Guru R, 2020, ENERG SOURCE PART A, DOI 10.1080/15567036.2020.1852341
Hasan MB, 2022, FINANC RES LETT, V46, DOI 10.1016/j.frl.2021.102272
HORNIK K, 1989, NEURAL NETWORKS, V2, P359, DOI 10.1016/0893-6080(89)90020-8
Hwang SJ, 2022, IEEE ACCESS, V10, P32595, DOI 10.1109/ACCESS.2022.3162065
Jalal RNUD, 2021, TECHNOL ANAL STRATEG, DOI 10.1080/09537325.2021.1939001
Jana RK, 2022, TECHNOL FORECAST SOC, V178, DOI 10.1016/j.techfore.2022.121584
Jang H, 2018, IEEE ACCESS, V6, P5427, DOI 10.1109/ACCESS.2017.2779181
García-Corral FJ, 2022, FINANC INNOV, V8, DOI 10.1186/s40854-021-00306-5
Jay P, 2020, IEEE ACCESS, V8, P82804, DOI 10.1109/ACCESS.2020.2990659
Ji SW, 2019, MATHEMATICS-BASEL, V7, DOI 10.3390/math7100898
Jia BX, 2022, FINANC RES LETT, V45, DOI 10.1016/j.frl.2021.102139
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Kamal J. B., 2022, J EC ASYMMETRIES, V25, DOI [10.1016/j.jeca.2022.e00240, DOI 10.1016/J.JECA.2022.E00240, DOI 10.1016/JJECA2022-00240]
Kamisalic A, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11177987
Katsiampa P, 2017, ECON LETT, V158, P3, DOI 10.1016/j.econlet.2017.06.023
Khedr AM, 2021, INTELL SYST ACCOUNT, V28, P3, DOI 10.1002/isaf.1488
Kim HM, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115480
Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314
Kondor D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086197
Kourou K, 2015, COMPUT STRUCT BIOTEC, V13, P8, DOI 10.1016/j.csbj.2014.11.005
Kumari A, 2022, IEEE INTERNET THINGS, V9, P2180, DOI 10.1109/JIOT.2021.3090305
Kumari A, 2022, MULTIMED TOOLS APPL, V81, P36645, DOI 10.1007/s11042-021-11491-x
Kurbucz MT, 2019, ECON LETT, V184, DOI 10.1016/j.econlet.2019.108655
Lahmiri S, 2020, ENTROPY-SWITZ, V22, DOI 10.3390/e22080833
Lahmiri S, 2020, CHAOS SOLITON FRACT, V133, DOI 10.1016/j.chaos.2020.109641
Lahmiri S, 2019, CHAOS SOLITON FRACT, V118, P35, DOI 10.1016/j.chaos.2018.11.014
Lamothe-Fernández P, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8081245
Lee RST, 2020, IEEE T FUZZY SYST, V28, P731, DOI 10.1109/TFUZZ.2019.2914642
Levulyte L, 2021, Q REV ECON FINANC, V82, P44, DOI 10.1016/j.qref.2021.07.003
Li YZ, 2021, FINANC INNOV, V7, DOI 10.1186/s40854-021-00281-x
Li ZH, 2021, INT REV ECON FINANC, V73, P1, DOI 10.1016/j.iref.2020.12.020
Libbrecht MW, 2015, NAT REV GENET, V16, P321, DOI 10.1038/nrg3920
Lim M, 2021, J KING SAUD UNIV-COM, V33, P1202, DOI 10.1016/j.jksuci.2019.07.010
Livieris IE, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10030287
Livieris IE, 2022, EVOL SYST-GER, V13, P85, DOI 10.1007/s12530-020-09361-2
Lorenzo L, 2022, FINANC INNOV, V8, DOI 10.1186/s40854-021-00310-9
Lucarelli G, 2020, NEURAL COMPUT APPL, DOI 10.1007/s00521-020-05359-8
Lucey BM, 2022, FINANC RES LETT, V45, DOI 10.1016/j.frl.2021.102147
Lundberg SM, 2018, NAT BIOMED ENG, V2, P749, DOI 10.1038/s41551-018-0304-0
Ma FC, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102565
Madan I., 2015, Automated bitcoin trading via machine learning algorithms
Mahesh B., 2019, Machine Learning Algorithms -A Review
Mallqui DCA, 2019, APPL SOFT COMPUT, V75, P596, DOI 10.1016/j.asoc.2018.11.038
Manavi SA, 2020, PHYSICA A, V556, DOI 10.1016/j.physa.2020.124759
Mao DH, 2019, IEEE ACCESS, V7, P73131, DOI 10.1109/ACCESS.2019.2920776
McNally S, 2018, EUROMICRO WORKSHOP P, P339, DOI 10.1109/PDP2018.2018.00060
Meiklejohn S, 2016, COMMUN ACM, V59, P86, DOI 10.1145/2896384
Michalski R, 2020, IEEE ACCESS, V8, P109639, DOI 10.1109/ACCESS.2020.3001676
Mills DJ, 2019, ADDICT BEHAV, V92, P136, DOI 10.1016/j.addbeh.2019.01.005
Mohamed MA, 2022, CMC-COMPUT MATER CON, V70, P3473, DOI 10.32604/cmc.2022.020782
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Mudassir M, 2020, NEURAL COMPUT APPL, DOI 10.1007/s00521-020-05129-6
NAKAMOTO S., 2008, DECENT BUS REV, P1
Nakano M, 2018, PHYSICA A, V510, P587, DOI 10.1016/j.physa.2018.07.017
Alonso SLN, 2021, ENERGIES, V14, DOI 10.3390/en14144254
Nerurkar P, 2021, APPL INTELL, V51, P3824, DOI 10.1007/s10489-020-02048-w
Nghiem H, 2021, EXPERT SYST APPL, V182, DOI 10.1016/j.eswa.2021.115284
Nikic V, 2018, TRANSFORM BUS ECON, V17, P469
Nosratabadi S, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8101799
Papadamou S, 2021, J BEHAV EXP FINANC, V30, DOI 10.1016/j.jbef.2021.100469
Patel MM, 2020, J INF SECUR APPL, V55, DOI 10.1016/j.jisa.2020.102583
Peng YH, 2018, EXPERT SYST APPL, V97, P177, DOI 10.1016/j.eswa.2017.12.004
Poongodi M, 2020, COMPUT ELECTR ENG, V81, DOI 10.1016/j.compeleceng.2019.106527
Qin M, 2021, ECON MODEL, V94, P896, DOI 10.1016/j.econmod.2020.02.031
Qiu T, 2021, IEEE T IND INFORM, V17, P2160, DOI 10.1109/TII.2020.2995766
Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1023/A:1022643204877
Quinlan J. R., 1993, C4 5 PROGRAMS MACHIN
Rakkini MJJ, 2021, J AMB INTEL HUM COMP, DOI 10.1007/s12652-021-03527-9
Rudin C, 2019, NAT MACH INTELL, V1, P206, DOI 10.1038/s42256-019-0048-x
Saad M, 2020, IEEE SYST J, V14, P321, DOI 10.1109/JSYST.2019.2927707
Sattarov O, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10041506
Schnaubelt M, 2022, EUR J OPER RES, V296, P993, DOI 10.1016/j.ejor.2021.04.050
Sebastiao H, 2021, FINANC INNOV, V7, DOI 10.1186/s40854-020-00217-x
Seo M, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10144768
Serrano W, 2022, NEURAL COMPUT APPL, V34, P855, DOI 10.1007/s00521-021-05903-0
Shahbazi Z, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22051740
Shayegan MJ, 2022, SYMMETRY-BASEL, V14, DOI 10.3390/sym14020328
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Song JY, 2019, PHYSICA A, V527, DOI 10.1016/j.physa.2019.121339
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
Steinert L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0208119
Su CW, 2020, TECHNOL FORECAST SOC, V158, DOI 10.1016/j.techfore.2020.120178
Sun XL, 2020, FINANC RES LETT, V32, DOI 10.1016/j.frl.2018.12.032
Sun XW, 2022, APPL INTELL, V52, P780, DOI 10.1007/s10489-021-02453-9
Suzuki Y, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-77474-4
Tanwar S, 2021, IEEE ACCESS, V9, P138633, DOI 10.1109/ACCESS.2021.3117848
Tian ZZ, 2022, INT J INTELL SYST, V37, P450, DOI 10.1002/int.22633
Tsimpourlas F, 2022, IET SOFTW, V16, P301, DOI 10.1049/sfw2.12038
Uras N, 2020, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.279
Urquhart A, 2019, INT REV FINANC ANAL, V63, P49, DOI 10.1016/j.irfa.2019.02.009
Urquhart A, 2017, ECON LETT, V159, P145, DOI 10.1016/j.econlet.2017.07.035
Valencia F, 2019, ENTROPY-SWITZ, V21, DOI 10.3390/e21060589
Vieira ES, 2009, SCIENTOMETRICS, V81, P587, DOI 10.1007/s11192-009-2178-0
Wang Q, 2018, IEEE ACCESS, V6, P12336, DOI 10.1109/ACCESS.2017.2787563
Wang TT, 2021, INT J INTELL SYST, V36, P2183, DOI 10.1002/int.22375
Wei WQ, 2021, IEEE T EMERG TOP COM, V9, P1359, DOI 10.1109/TETC.2020.3010464
Weng LG, 2020, NEUROCOMPUTING, V402, P171, DOI 10.1016/j.neucom.2020.04.004
Wu JJ, 2022, IEEE T SYST MAN CY-S, V52, P1156, DOI 10.1109/TSMC.2020.3016821
Xu M, 2019, FINANC INNOV, V5, DOI 10.1186/s40854-019-0147-z
Yasir M, 2023, J ENTERP INF MANAG, V36, P718, DOI 10.1108/JEIM-02-2020-0077
Yue Y, 2021, INT REV FINANC ANAL, V77, DOI 10.1016/j.irfa.2021.101869
Zbikowski K, 2016, STUD BIG DATA, V19, P161, DOI 10.1007/978-3-319-30315-4_14
Zhang ZR, 2021, EXPERT SYST APPL, V183, DOI 10.1016/j.eswa.2021.115378
Zheng BK, 2020, SCI CHINA INFORM SCI, V63, DOI 10.1007/s11432-019-9900-9
Zhou GQ, 2020, MOBILE NETW APPL, V25, P259, DOI 10.1007/s11036-019-01440-2
NR 162
TC 17
Z9 18
U1 7
U2 28
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0275-5319
EI 1878-3384
J9 RES INT BUS FINANC
JI Res. Int. Bus. Financ.
PD DEC
PY 2022
VL 63
AR 101799
DI 10.1016/j.ribaf.2022.101799
PG 21
WC Business, Finance
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA H1NY5
UT WOS:000993711000001
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Xue, XL
Yang, XW
Deng, ZY
Tu, H
Kong, DZ
Li, N
Xu, F
AF Xue, Xiali
Yang, Xinwei
Deng, Zhongyi
Tu, Huan
Kong, Dezhi
Li, Ning
Xu, Fan
TI Global Trends and Hotspots in Research on Rehabilitation Robots: A
Bibliometric Analysis From 2010 to 2020
SO FRONTIERS IN PUBLIC HEALTH
LA English
DT Article
DE machine learning; bibliometric analysis; CiteSpace; trend; artificial
intelligence; rehabilitation robot
ID EXOSKELETON; THERAPY; STROKE
AB Background: In recent years, with the development of medical science and artificial intelligence, research on rehabilitation robots has gained more and more attention, for nearly 10 years in the Web of Science database by journal of rehabilitation robot-related research literature analysis, to parse and track rehabilitation robot research hotspot and front, and provide some guidance for future research.Methods: This study employed computer retrieval of rehabilitation robot-related research published in the core data collection of the Web of Science database from 2010 to 2020, using CiteSpace 5.7 visualization software. The hotspots and frontiers of rehabilitation robot research are analyzed from the aspects of high-influence countries or regions, institutions, authors, high-frequency keywords, and emergent words.Results: A total of 3,194 articles were included. In recent years, the research on rehabilitation robots has been continuously hot, and the annual publication of relevant literature has shown a trend of steady growth. The United States ranked first with 819 papers, and China ranked second with 603 papers. Northwestern University ranked first with 161 publications. R. Riener, a professor at the University of Zurich, Switzerland, ranked as the first author with 48 articles. The Journal of Neural Engineering and Rehabilitation has the most published research, with 211 publications. In the past 10 years, research has focused on intelligent control, task analysis, and the learning, performance, and reliability of rehabilitation robots to realize the natural and precise interaction between humans and machines. Research on neural rehabilitation robots, brain-computer interface, virtual reality, flexible wearables, task analysis, and exoskeletons has attracted more and more attention.Conclusions: At present, the brain-computer interface, virtual reality, flexible wearables, task analysis, and exoskeleton rehabilitation robots are the research trends and hotspots. Future research should focus on the application of machine learning (ML), dimensionality reduction, and feature engineering technologies in the research and development of rehabilitation robots to improve the speed and accuracy of algorithms. To achieve wide application and commercialization, future rehabilitation robots should also develop toward mass production and low cost. We should pay attention to the functional needs of patients, strengthen multidisciplinary communication and cooperation, and promote rehabilitation robots to better serve the rehabilitation medical field.
C1 [Xue, Xiali; Deng, Zhongyi; Tu, Huan; Kong, Dezhi; Li, Ning] Chengdu Sport Univ, Inst Sports Med & Hlth, Chengdu, Peoples R China.
[Yang, Xinwei] Chengdu Sport Univ, Sch Sports Med & Hlth, Chengdu, Peoples R China.
[Xu, Fan] Chengdu Med Coll, Sch Publ Hlth, Chengdu, Peoples R China.
C3 Chengdu Sport University; Chengdu Sport University; Chengdu Medical
College
RP Li, N (corresponding author), Chengdu Sport Univ, Inst Sports Med & Hlth, Chengdu, Peoples R China.; Xu, F (corresponding author), Chengdu Med Coll, Sch Publ Hlth, Chengdu, Peoples R China.
EM lining@cdsu.edu.cn; xufan@cmc.edu.cn
RI XU, FAN/HLW-1600-2023; xue, xiali/KUF-2917-2024; LI, Ning/AGU-3177-2022
OI XU, FAN/0000-0001-9984-2854; xue, xiali/0000-0003-0727-6459; LI,
Ning/0000-0002-0394-933X
FU Key Laboratory of Sports Medicine of Sichuan Province, Institute of
Sports Medicine and Health, Chengdu Sport University [2021-A030];
National Key Research and Development Program of China [2018YFF0300904]
FX & nbsp;This work was supported by the Key Laboratory of Sports Medicine
of Sichuan Province, Institute of Sports Medicine and Health, Chengdu
Sport University (No. 2021-A030) and the National Key Research and
Development Program of China (No. 2018YFF0300904).
CR Abbruzzese G, 2016, PARKINSONISM RELAT D, V22, pS60, DOI 10.1016/j.parkreldis.2015.09.005
Ahmad P, 2020, PERIODONTOL 2000, V82, P286, DOI 10.1111/prd.12328
Akbari A, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.612331
Becht E, 2019, NAT BIOTECHNOL, V37, P38, DOI 10.1038/nbt.4314
Bernhardt J, 2019, LANCET, V394, P6, DOI 10.1016/S0140-6736(19)31156-0
Blaya JA, 2004, IEEE T NEUR SYS REH, V12, P24, DOI 10.1109/TNSRE.2003.823266
Butchart J, 2021, DISABIL REHABIL, V43, P163, DOI 10.1080/09638288.2019.1617357
Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507
Chen Chaomei, 2005, AMIA Annu Symp Proc, P121
Chien WT, 2020, BRAIN BEHAV, V10, DOI 10.1002/brb3.1742
Esquenazi A, 2012, AM J PHYS MED REHAB, V91, P911, DOI 10.1097/PHM.0b013e318269d9a3
Fang J, 2021, TECHNOL HEALTH CARE, V29, P595, DOI 10.3233/THC-202392
Fiske A, 2019, J MED INTERNET RES, V21, DOI 10.2196/13216
He JW, 2021, J ARTHROPLASTY, V36, P1810, DOI 10.1016/j.arth.2020.11.038
Heo P, 2012, INT J PRECIS ENG MAN, V13, P807, DOI 10.1007/s12541-012-0107-2
Hussain S, 2021, EXPERT REV NEUROTHER, V21, P111, DOI [10.1080/14737175.2021.1847646, 10.1007/s41825-020-00029-8]
Kaelin VC, 2021, J MED INTERNET RES, V23, DOI 10.2196/25745
Keeling AB, 2021, J NEUROENG REHABIL, V18, DOI 10.1186/s12984-021-00804-8
Khor KX, 2017, IEEE T NEUR SYS REH, V25, P1864, DOI 10.1109/TNSRE.2017.2692520
Kiguchi K, 2012, IEEE T SYST MAN CY B, V42, P1064, DOI 10.1109/TSMCB.2012.2185843
Kim WS, 2020, J CLIN MED, V9, DOI 10.3390/jcm9103369
Klamroth-Marganska V, 2018, ADV EXP MED BIOL, V1065, P579, DOI 10.1007/978-3-319-77932-4_35
Klamroth-Marganska V, 2014, LANCET NEUROL, V13, P159, DOI 10.1016/S1474-4422(13)70305-3
Krakauer JW, 2012, NEUROREHAB NEURAL RE, V26, P923, DOI 10.1177/1545968312440745
Krebs H I, 2013, Handb Clin Neurol, V110, P283, DOI 10.1016/B978-0-444-52901-5.00023-X
Langhorne P, 2011, LANCET, V377, P1693, DOI 10.1016/S0140-6736(11)60325-5
Lefmann S, 2017, J NEUROENG REHABIL, V14, DOI 10.1186/s12984-016-0214-x
Li G., 2015, P CHIN ACAD SCI US, V30, P793, DOI [10.16418/j.issn.1000-3045.2015.06.013, DOI 10.16418/J.ISSN.1000-3045.2015.06.013]
[李宏伟 Li Hongwei], 2017, [中国康复理论与实践, Chinese Journal of Rehabilitation Theory and Practice], V23, P788
Liang CC, 2018, SAGE OPEN MED, V6, DOI 10.1177/2050312118800199
Liu Y, 2020, IEEE T NEUR NET LEAR, V31, P3269, DOI 10.1109/TNNLS.2019.2940088
Lo AC, 2010, NEW ENGL J MED, V362, P1772, DOI 10.1056/NEJMoa0911341
Lu CC, 2019, FRONT PUBLIC HEALTH, V7, DOI 10.3389/fpubh.2019.00384
Lu L, 2020, JMIR MHEALTH UHEALTH, V8, DOI 10.2196/18907
Maciejasz P, 2014, J NEUROENG REHABIL, V11, DOI 10.1186/1743-0003-11-3
Mehrholz J, 2012, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD006876.pub3, 10.1002/14651858.CD006876.pub4]
Mehrholz J, 2020, J NEUROENG REHABIL, V17, DOI 10.1186/s12984-020-00715-0
Musk E, 2019, J MED INTERNET RES, V21, DOI 10.2196/16194
Nam CY, 2022, SOFT ROBOT, V9, P14, DOI 10.1089/soro.2020.0090
Nam KY, 2017, J NEUROENG REHABIL, V14, DOI 10.1186/s12984-017-0232-3
Page RJ., 2020, MIT TECHNOLOGY REV
Park J, 2014, ACS NANO, V8, P12020, DOI 10.1021/nn505953t
Park YL, 2014, BIOINSPIR BIOMIM, V9, DOI 10.1088/1748-3182/9/1/016007
Pérez-San Lázaro R, 2021, ISA T, V109, P218, DOI 10.1016/j.isatra.2020.10.008
Polygerinos P, 2015, ROBOT AUTON SYST, V73, P135, DOI 10.1016/j.robot.2014.08.014
Price DDS., 1963, PAPERBACK
Prior SD., 2002, IEEE C HIGH TECH HEL
Ranzani R, 2020, J NEUROENG REHABIL, V17, DOI 10.1186/s12984-020-00746-7
Reddy GT, 2020, IEEE ACCESS, V8, P54776, DOI 10.1109/ACCESS.2020.2980942
Rodgers H, 2019, LANCET, V394, P51, DOI 10.1016/S0140-6736(19)31055-4
Sarhan MH, 2020, IEEE J BIOMED HEALTH, V24, P3338, DOI 10.1109/JBHI.2020.3012134
Schicketmueller A, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20123399
Scrutinio D, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-77243-3
Seo K, 2021, DIAGNOSTICS, V11, DOI 10.3390/diagnostics11061096
Singh HR., 1999, TENC 99 IEEE REG 10
Sun WJ, 2020, MEDICINE, V99, DOI 10.1097/MD.0000000000023208
Sun XX, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19465-7
Synnestvedt Marie B, 2005, AMIA Annu Symp Proc, P724
Treviño LR, 2021, FRONT NEUROROBOTICS, V15, DOI 10.3389/fnbot.2021.682156
van Hedel HJA, 2018, J NEUROENG REHABIL, V15, DOI 10.1186/s12984-018-0366-y
Wang Q., 2018, PACKAGING ENG, V39, P83, DOI [10.19554/j.cnki.1001-3563.2018.18.018, DOI 10.19554/J.CNKI.1001-3563.2018.18.018]
Xia DM, 2021, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.713487
Xie P, 2015, SCIENTOMETRICS, V105, P611, DOI 10.1007/s11192-015-1689-0
Xue XL, 2021, MEDICINE, V100, DOI 10.1097/MD.0000000000026254
Zhang XT, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12759-5
喻洪流, 2020, [中国康复医学杂志, Chinese Journal of Rehabilitation Medicine], V35, P900
励建安, 2020, [中国康复医学杂志, Chinese Journal of Rehabilitation Medicine], V35, P897
NR 67
TC 9
Z9 11
U1 6
U2 89
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2296-2565
J9 FRONT PUBLIC HEALTH
JI Front. Public Health
PD JAN 11
PY 2022
VL 9
AR 806723
DI 10.3389/fpubh.2021.806723
PG 17
WC Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Public, Environmental & Occupational Health
GA ZE3AP
UT WOS:000758759800001
PM 35087788
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Walstad, WB
AF Walstad, WB
TI Improving assessment in university economics
SO JOURNAL OF ECONOMIC EDUCATION
LA English
DT Article
DE active learning; assessment; economics courses; research; testing
ID STUDENT; COURSES
AB The author discusses the following seven issues affecting assessment of undergraduates in universities: decisionmaking and the selection of tests, the use of written and oral assignments to measure learning, the characteristics of grades and portfolios for evaluating students, opportunities for self-assessment and feedback to instructors, retention of learning and the testing for higher-ordered thinking, the psychology of students in the economics classroom, and the development of new tests as public goods. The author suggests ways that economics faculty can add new dimensions to their assessment practices, improve their understanding of assessment choices, use assessment to enhance the quality of student thinking, and conduct research studies on assessment questions.
C1 Univ Nebraska, Natl Ctr Res Econ Educ, Lincoln, NE 68588 USA.
C3 University of Nebraska System; University of Nebraska Lincoln
RP Walstad, WB (corresponding author), Univ Nebraska, Natl Ctr Res Econ Educ, Lincoln, NE 68588 USA.
CR ALLGOOD S, IN PRESS GRADE TARGE
Angelo T.A., 1993, Classroom assessment techniques: A handbook for college teachers, VSecond
[Anonymous], TEACHING EC UNDERGRA
[Anonymous], TEACHING UNDERGRADUA
[Anonymous], 1998, ALTERNATIVES CHALK T
Arter J.A., 1992, ED MEASUREMENT, V11, P36
Bartlett R., 1998, TEACHING EC UNDERGRA, P11
BECKER WE, 1982, AM ECON REV, V72, P229
Becker WE, 1997, J ECON LIT, V35, P1347
Bloom Benjamin S, 1956, HDB 1 COGNITIVE DOMA, V1, P20
BRENNAN RL, 1995, ED MEASUREMENT ISSUE, V14, P5
Cameron B., 1998, Teaching Undergraduate Economics, P245
Chizmar JF, 1998, J ECON EDUC, V29, P3, DOI 10.2307/1182961
CROOKS TJ, 1988, REV EDUC RES, V58, P438, DOI 10.3102/00346543058004438
FALCHIKOV N, 1989, REV EDUC RES, V59, P395, DOI 10.3102/00346543059004395
HANSEN WL, 1986, AM ECON REV, V76, P149
HANSEN WL, 2000, J ECON EDUC, V32, P231
Holt C. A., 1998, TEACHING UNDERGRADUA
MAXWELL NL, 1994, AM ECON REV, V84, P201
Miller E, 1998, J ECON EDUC, V29, P195
Miller M., 1993, Educational Measurement: Issues and Practice, V12, P9
Petr J.L., 1998, Teaching Undergraduate Economics: A Handbook for Instructors, P227
Rabin M, 1998, J ECON LIT, V36, P11
SAUNDERS P, 1980, J ECON EDUC, V12, P1, DOI 10.2307/1182816
Saunders P., 1991, Test of Understanding in College Economics, Examiners Manual, V3rd Edition
Siegfried J.J., 1996, ECON INQ, V34, P1182
Siegfried J.J., 1998, TEACHING UNDERGRADUA, P59
STIGLER GJ, 1963, AM ECON REV, V53, P653
Terwilliger J.S., 1997, Educational Researcher, V26, P24
Walstad W, 1999, AM ECON REV, V89, P350, DOI 10.1257/aer.89.2.350
WALSTAD W, 1998, TEACHING UNDERGRADUA, P337
NR 31
TC 51
Z9 59
U1 0
U2 9
PU HELDREF PUBLICATIONS
PI WASHINGTON
PA 1319 EIGHTEENTH ST NW, WASHINGTON, DC 20036-1802 USA
SN 0022-0485
J9 J ECON EDUC
JI J. Econ. Educ.
PD SUM
PY 2001
VL 32
IS 3
BP 281
EP 294
DI 10.2307/1183385
PG 14
WC Economics; Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Business & Economics; Education & Educational Research
GA 447RL
UT WOS:000169586200008
DA 2024-09-05
ER
PT C
AU Yao, QP
Guo, L
AF Yao, Qipeng
Guo, Li
BE Zhang, C
Huang, W
Shi, Y
Yu, PS
Zhu, Y
Tian, Y
Zhang, P
He, J
TI Minimizing the Social Influence from a Topic Modeling Perspective
SO DATA SCIENCE
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 2nd International Conference on Data Science (ICDS)
CY AUG 08-09, 2015
CL Univ Technol Sydney, Sydney, AUSTRALIA
HO Univ Technol Sydney
DE Influence minimization; Blocking nodes; Social networks
ID DIFFUSION; NODES
AB In this paper, we address the problem of minimizing the negative influence of undesirable things in a network by blocking a limited number of nodes from a topic modeling perspective. When undesirable thing such as a rumor or an infection emerges in a social network and part of users have already been infected, our goal is to minimize the size of ultimately infected users by blocking k nodes outside the infected set. We first employ the HDP-LDA and KL divergence to analysis the influence and relevance from a topic modeling perspective. Then two topic-aware heuristics based on betweenness and out-degree for finding approximate solutions to this problem are proposed. Using two real networks, we demonstrate experimentally the high performance of the proposed models and learning schemes.
C1 [Yao, Qipeng; Guo, Li] Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China.
[Yao, Qipeng] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China.
C3 Chinese Academy of Sciences; Institute of Information Engineering, CAS;
Beijing University of Posts & Telecommunications
RP Yao, QP (corresponding author), Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China.
EM yaoqipeng0706@gmail.com; guoli@iie.ac.cn
CR Albert R, 2000, NATURE, V406, P378, DOI 10.1038/35019019
[Anonymous], 2008, Proceedings of the 23th AAAI Conference on Artificial Intelligence
[Anonymous], ARXIV12051682
[Anonymous], 2010, P 16 ACM SIGKDD INT, DOI DOI 10.1145/1835804.1835934
[Anonymous], 2003, P 9 ACM SIGKDD INT C
[Anonymous], KDD 2007
[Anonymous], ICDM 2010
ANTONIAK CE, 1974, ANN STAT, V2, P1152, DOI 10.1214/aos/1176342871
Barbieri N, 2012, IEEE DATA MINING, P81, DOI 10.1109/ICDM.2012.122
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Budak C., 2011, P 20 INT C WORLD WID, DOI [DOI 10.1145/1963405.1963499, 10.1145/1963405.1963499]
CASELLA G, 1992, AM STAT, V46, P167, DOI 10.2307/2685208
Chen W, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P199, DOI 10.1145/1557019.1557047
Domingos P., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P57, DOI 10.1145/502512.502525
Dumais ST, 2004, ANNU REV INFORM SCI, V38, P189
Goyal A., 2011, Proceedings of the 2011 IEEE 11th International Conference on Data Mining (ICDM 2011), P211, DOI 10.1109/ICDM.2011.132
Goyal A., 2011, WWW 2011
Goyal A, 2011, PROC VLDB ENDOW, V5, P73, DOI 10.14778/2047485.2047492
Guo J, 2013, INT CONF DAT MIN WOR, P780, DOI 10.1109/ICDMW.2013.144
Habiba, 2010, LECT NOTES COMPUT SC, V5498, P55
Kimura M, 2006, LECT NOTES ARTIF INT, V4213, P259
Narayanam R, 2011, IEEE T AUTOM SCI ENG, V8, P130, DOI 10.1109/TASE.2010.2052042
Newman MEJ, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.016128
Shi Y, 2014, PROCEDIA COMPUT SCI, V30, P81, DOI 10.1016/j.procs.2014.05.384
Wang S., 2013, AAAI
Yao Q., 2015, 24 INT WORLD WID WEB
Yao Q., 2014, 2014 INT STAND C TRU
Zang WY, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P141, DOI 10.1145/2740908.2742745
Zang WY, 2014, PROCEDIA COMPUT SCI, V29, P443, DOI 10.1016/j.procs.2014.05.040
Zhang P, 2015, IEEE T KNOWL DATA EN, V27, P461, DOI 10.1109/TKDE.2014.2298018
Zhou C., 2014, ICCS 2014
Zhou C, 2015, IEEE T KNOWL DATA EN, V27, P2770, DOI 10.1109/TKDE.2015.2419659
Zhou C, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P421, DOI 10.1145/2567948.2577336
Zhou C, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P423, DOI 10.1145/2567948.2577376
Zhou C, 2013, IEEE DATA MINING, P907, DOI 10.1109/ICDM.2013.55
NR 35
TC 3
Z9 3
U1 0
U2 7
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-319-24474-7; 978-3-319-24473-0
J9 LECT NOTES COMPUT SC
PY 2015
VL 9208
BP 6
EP 15
DI 10.1007/978-3-319-24474-7_2
PG 10
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Software Engineering; Computer Science,
Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BE0HB
UT WOS:000366018100002
DA 2024-09-05
ER
PT J
AU Akrami, NE
Hanine, M
Flores, ES
Aray, DG
Ashraf, I
AF Akrami, Nouhaila El
Hanine, Mohamed
Flores, Emmanuel Soriano
Aray, Daniel Gavilanes
Ashraf, Imran
TI Unleashing the Potential of Blockchain and Machine Learning: Insights
and Emerging Trends From Bibliometric Analysis
SO IEEE ACCESS
LA English
DT Article
DE Blockchain; machine learning; bibliometric analysis; network
visualization
ID ARTIFICIAL-INTELLIGENCE; SMART; AI; CRYPTOCURRENCIES; INTERNET; SYSTEM;
HEALTH; IOT
AB Blockchain and machine learning (ML) has garnered growing interest as cutting-edge technologies that have witnessed tremendous strides in their respective domains. Blockchain technology provides a decentralized and immutable ledger, enabling secure and transparent transactions without intermediaries. Alternatively, ML is a sub-field of artificial intelligence (AI) that empowers systems to enhance their performance by learning from data. The integration of these data-driven paradigms holds the potential to reinforce data privacy and security, improve data analysis accuracy, and automate complex processes. The confluence of blockchain and ML has sparked increasing interest among scholars and researchers. Therefore, a bibliometric analysis is carried out to investigate the key focus areas, hotspots, potential prospects, and dynamical aspects of the field. This paper evaluates 700 manuscripts drawn from the Web of Science (WoS) core collection database, spanning from 2017 to 2022. The analysis is conducted using advanced bibliometric tools (e.g., Bibliometrix R, VOSviewer, and CiteSpace) to assess various aspects of the research area regarding publication productivity, influential articles, prolific authors, the productivity of academic countries and institutions, as well as the intellectual structure in terms of hot topics and emerging trends. The findings suggest that upcoming research should focus on blockchain technology, AI-powered 5G networks, industrial cyber-physical systems, IoT environments, and autonomous vehicles. This paper provides a valuable foundation for both academic scholars and practitioners as they contemplate future projects on the integration of blockchain and ML.
C1 [Akrami, Nouhaila El; Hanine, Mohamed] Chouaib Doukkali Univ, Natl Sch Appl Sci, Lab Informat Technol, El Jadida 24002, Morocco.
[Flores, Emmanuel Soriano; Aray, Daniel Gavilanes] Univ Europea Atlantico, Santander 39011, Spain.
[Flores, Emmanuel Soriano] Univ Int Iberoamer, Dept Informat & Commun Engn, Campeche 24560, Mexico.
[Flores, Emmanuel Soriano] Univ Int Iberoamer, Arecibo, PR 00613 USA.
[Aray, Daniel Gavilanes] Univ Int Cuanza, Kuito, Bie, Angola.
[Aray, Daniel Gavilanes] Fdn Univ Int Colombia, Bogota 111311, Colombia.
[Ashraf, Imran] Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan 38541, South Korea.
C3 Chouaib Doukkali University of El Jadida; Yeungnam University
RP Hanine, M (corresponding author), Chouaib Doukkali Univ, Natl Sch Appl Sci, Lab Informat Technol, El Jadida 24002, Morocco.; Ashraf, I (corresponding author), Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan 38541, South Korea.
EM hanine.m@ucd.ac.ma; ashrafimran@live.com
RI Hanine, Mohamed/AAC-1879-2021
OI Hanine, Mohamed/0000-0001-5981-2511; Ashraf, Imran/0000-0002-8271-6496
FU European University of Atlantics
FX This work was supported by the European University of Atlantics.
CR Ahamed SA, 2022, INT J ENG SYST MODEL, V13, P164, DOI 10.1504/IJESMS.2022.123341
Alonso RS, 2020, AD HOC NETW, V98, DOI 10.1016/j.adhoc.2019.102047
[Anonymous], 2009, PLOS MED, V6, pe1000097, DOI DOI 10.1371/JOURNAL.PMED.1000097
Antoniadis I., 2020, STRATEGIC INNOVATIVE, P375, DOI DOI 10.1007/978-3-030-36126-6_41
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Baker HK, 2020, J BUS RES, V108, P232, DOI 10.1016/j.jbusres.2019.11.025
Boukhlif M, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12092109
Boutkhoum O, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9141601
Buterin V., 2014, NEXT GENERATION SMAR
Chamola V, 2020, IEEE ACCESS, V8, P90225, DOI 10.1109/ACCESS.2020.2992341
Chen Chaomei., 2015, How to Use CiteSpace
Chen XH, 2018, IEEE INT CONF BIG DA, P1178, DOI 10.1109/BigData.2018.8622598
Dai YY, 2019, IEEE NETWORK, V33, P10, DOI 10.1109/MNET.2019.1800376
Dinh TN, 2018, COMPUTER, V51, P48, DOI 10.1109/MC.2018.3620971
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626
El Azzaoui A, 2020, IEEE ACCESS, V8, P145918, DOI 10.1109/ACCESS.2020.3014356
Fallucchi F., 2021, P SCHOL YEARL S TECH, V3092, pp13
Fernández-Caramés TM, 2018, IEEE ACCESS, V6, P32979, DOI 10.1109/ACCESS.2018.2842685
Ferrag MA, 2020, IEEE T ENG MANAGE, V67, P1285, DOI 10.1109/TEM.2019.2922936
Firouzi F, 2021, IEEE INTERNET THINGS, V8, P12826, DOI 10.1109/JIOT.2021.3073904
George Joey F, 2020, P 41 INT C INF SYST
Gill S. S., Internet of Things
Gusc J, 2022, ENERGIES, V15, DOI 10.3390/en15031089
Haddad A, 2022, IEEE ACCESS, V10, P94583, DOI 10.1109/ACCESS.2022.3201878
Heister S., 2022, BLOCKCHAIN POTENTIAL
Hu YH, 2014, COMPUT HUM BEHAV, V36, P469, DOI 10.1016/j.chb.2014.04.002
Ji B, 2021, CHEMOSPHERE, V262, DOI 10.1016/j.chemosphere.2020.128366
Jindal D. T., 2022, SECURITY PRIVACY ISS
Jogunola O, 2021, IEEE INTERNET THINGS, V8, P4211, DOI 10.1109/JIOT.2020.3032162
Kim H, 2020, IEEE COMMUN LETT, V24, P1279, DOI 10.1109/LCOMM.2019.2921755
Kumar R, 2021, IEEE SENS J, V21, P16301, DOI 10.1109/JSEN.2021.3076767
Kumar S, 2023, INFORM SYST FRONT, V25, P871, DOI 10.1007/s10796-022-10279-0
Kuo TT, 2017, J AM MED INFORM ASSN, V24, P1211, DOI 10.1093/jamia/ocx068
Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5
Li Y., 2021, J. Healthcare Eng., P1
Liang C, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9071120
Lin X, 2019, IEEE T IND INFORM, V15, P6367, DOI 10.1109/TII.2019.2917307
Liu WS, 2016, SCIENTOMETRICS, V106, P1273, DOI 10.1007/s11192-015-1821-1
Lu YL, 2020, IEEE T IND INFORM, V16, P4177, DOI 10.1109/TII.2019.2942190
Magazzeni D, 2017, COMPUTER, V50, P50, DOI 10.1109/MC.2017.3571045
Mao DH, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15081627
Martin K, 2022, SECUR PRIVACY, V5, DOI 10.1002/spy2.192
Miglani A, 2021, COMPUT COMMUN, V178, P37, DOI 10.1016/j.comcom.2021.07.009
Mishra D, 2018, ANN OPER RES, V270, P313, DOI 10.1007/s10479-016-2236-y
Mohanta BK, 2020, INTERNET THINGS-NETH, V11, DOI 10.1016/j.iot.2020.100227
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Nakamoto S., 2008, Technical Report, P1
Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160]
Panarello A, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18082575
Pokhrel SR, 2020, IEEE T COMMUN, V68, P4734, DOI 10.1109/TCOMM.2020.2990686
Qin Y, 2022, RENEW SUST ENERG REV, V153, DOI 10.1016/j.rser.2021.111780
Qu YY, 2020, IEEE INTERNET THINGS, V7, P5171, DOI 10.1109/JIOT.2020.2977383
Rai J., 2021, INT J MECH ENG, V6, P1026
Rey-Martí A, 2016, J BUS RES, V69, P1651, DOI 10.1016/j.jbusres.2015.10.033
Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507
Shukla S, 2021, INTERNET THINGS-NETH, V15, DOI 10.1016/j.iot.2021.100422
Singh S, 2020, SUSTAIN CITIES SOC, V63, DOI 10.1016/j.scs.2020.102364
Singh SK, 2020, FUTURE GENER COMP SY, V110, P721, DOI 10.1016/j.future.2019.09.002
Szomszor Martin, 2020, Front Res Metr Anal, V5, P628703, DOI 10.3389/frma.2020.628703
Taherdoost H, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122412948
Tanwar S, 2020, IEEE ACCESS, V8, P474, DOI 10.1109/ACCESS.2019.2961372
Tian YL, 2022, IEEE T IND INFORM, V18, P1918, DOI 10.1109/TII.2021.3097131
Turing A. M., 2009, Computing machinery and intelligence
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vijayakumar PB, 2019, ADV GLOB LEADERSHIP, V11, P31, DOI 10.1108/S1535-120320180000011002
Wang QL, 2020, IEEE ACCESS, V8, P60598, DOI 10.1109/ACCESS.2020.2980298
Wang RN, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/6126247
Warnat-Herresthal S, 2021, NATURE, V594, P265, DOI 10.1038/s41586-021-03583-3
Weng JS, 2021, IEEE T DEPEND SECURE, V18, P2438, DOI 10.1109/TDSC.2019.2952332
Yang YF, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142214971
Yin HHS, 2019, J MANAGE INFORM SYST, V36, P37, DOI 10.1080/07421222.2018.1550550
Yong BB, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.10.009
Yuan Y, 2018, IEEE T SYST MAN CY-S, V48, P1421, DOI 10.1109/TSMC.2018.2854904
Zang XM, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12094607
Zhong P, 2019, IEEE INT CONF MOB DA, P457, DOI 10.1109/MDM.2019.000-2
Zhou L, 2021, INF SYST E-BUS MANAG, V19, P757, DOI 10.1007/s10257-020-00461-9
Zhu W, 2020, CANCERS, V12, DOI 10.3390/cancers12030603
NR 78
TC 10
Z9 10
U1 5
U2 20
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2023
VL 11
BP 78879
EP 78903
DI 10.1109/ACCESS.2023.3298371
PG 25
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA O2CS4
UT WOS:001041956300001
OA gold
DA 2024-09-05
ER
PT C
AU Makawana, PR
Jhaveri, RH
AF Makawana, Pooja R.
Jhaveri, Rutvij H.
BE Hu, YC
Tiwari, S
Mishra, KK
Trivedi, MC
TI A Bibliometric Analysis of Recent Research on Machine Learning for Cyber
Security
SO INTELLIGENT COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES
SE Lecture Notes in Networks and Systems
LA English
DT Proceedings Paper
CT International Conference on Internet of Things for Technological
Development (IoT4TD)
CY APR 01-02, 2017
CL Gandhinagar, INDIA
DE Machine learning; Cybersecurity; Trend analysis; Graphical
interpretation
AB In today's world a huge amount of information is shared around the globe using internet. While connected to cyber word, cybersecurity is an increasing problem. Nowadays, various machine learning techniques are used to deal with cybersecurity threats. To enlighten the researchers about recent trends in this research area, we have analyzed 149 research papers from January 2015 to December 2016 and present a graphical and organized view of the referred research works. We observe that machine learning for cybersecurity has a great potential in carrying out further research. We have carried out bibliometric analysis by categorizing the referred papers using the method of implementation, article type, publishers and article efficiency. This analysis will provide insights for researchers, students, publishers and experts to study current research trends in the area of machine learning for cybersecurity.
C1 [Makawana, Pooja R.; Jhaveri, Rutvij H.] Shri Sad Vidya Mandal Inst Technol, Dept Informat Technol, Bharuch, India.
RP Makawana, PR (corresponding author), Shri Sad Vidya Mandal Inst Technol, Dept Informat Technol, Bharuch, India.
EM poojakatariya1408@gmail.com; rhj_svmit@yahoo.com
RI Jhaveri, Rutvij H./A-5354-2018
OI Jhaveri, Rutvij H./0000-0002-3285-7346; makawana,
pooja/0000-0001-6705-0393
CR Ahmed U., 2015, J Reliab Intell Environ, V1, P123
Analysis I. B., 2015, WIRELESS ANOMALY DET, V6013
Dhammi A., 2015, CONT COMP IC3 2015 8
Gao R., 2015, CIRP ANN MANUF TECHN
Hydara I, 2015, INFORM SOFTWARE TECH, V58, P170, DOI 10.1016/j.infsof.2014.07.010
Iannacone M., 2015, 10 ANN CYB INF SEC R, P4
Uddin S., 2011, TREND EFFICIENCY ANA, P687
Uddin S, 2012, SCIENTOMETRICS, V90, P687, DOI 10.1007/s11192-011-0511-x
NR 8
TC 9
Z9 11
U1 0
U2 19
PU SPRINGER-VERLAG SINGAPORE PTE LTD
PI SINGAPORE
PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
SN 2367-3370
EI 2367-3389
BN 978-981-10-5523-2; 978-981-10-5522-5
J9 LECT NOTE NETW SYST
PY 2018
VL 19
BP 213
EP 226
DI 10.1007/978-981-10-5523-2_20
PG 14
WC Computer Science, Artificial Intelligence; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BL1UF
UT WOS:000448431100020
DA 2024-09-05
ER
PT J
AU Pereira, RA
Puga, MED
Atallah, AN
Macedo, EC
Macedo, CR
AF Pereira, Rogerio Aparecido
dos Santos Puga, Maria Eduarda
Atallah, Alvaro Nagib
Macedo, Elizeu Coutinho
Macedo, Cristiane Rufino
TI lilacs search strategy for systematic reviews of diagnostic test
accuracy studies
SO HEALTH INFORMATION AND LIBRARIES JOURNAL
LA English
DT Article
DE bibliographic databases; precision; recall; search strategies
ID DA-SAUDE LILACS; TRIALS
AB Background There are few publications on search strategies to identify diagnostic test accuracy (DTA) studies in lilacs. Objective To translate and customise medline search strategies for use in lilacs and assess their retrieval of studies in Cochrane DTA systematic reviews. Method We developed a six-step process to translate and customise medline search strategies for use in lilacs (iAHx interface). We identified medline search strategies of published Cochrane DTA reviews, translated/customised them for use in lilacs, ran searches in lilacs and compared the retrieval results of our translated search strategy versus the one used in the published reviews. Results Our lilacs search strategies translated/customised from the medline strategies retrieved studies in 70 Cochrane DTA reviews. Only 29 of these reviews stated that they had searched the lilacs database and 21 published their lilacs search strategies. Few had used the lilacs database search tools, none exploded the subject headings, and 86% used only English terms. Conclusion Translating and tailoring a medline search strategy for the lilacs database resulted in the retrieval of DTA studies that would have been missed otherwise.
C1 [Pereira, Rogerio Aparecido] Univ Fed Sao Paulo, Inst Fed Sao Paulo, Evidence Based Dept, Sao Paulo, Brazil.
[Pereira, Rogerio Aparecido] Univ Fed Sao Paulo, Leforte Hosp, Sao Paulo, Brazil.
[dos Santos Puga, Maria Eduarda] Univ Fed Sao Paulo, Unifesp, Brazilian Cochrane Ctr, Sao Paulo, Brazil.
[Atallah, Alvaro Nagib; Macedo, Cristiane Rufino] Univ Fed Sao Paulo, Unifesp, EPM, Brazilian Cochrane Ctr, Sao Paulo, Brazil.
[Macedo, Elizeu Coutinho] Univ Prebiteriana Mackenzie, Ctr Hlth & Biol Sci, Social & Cognit Neurosci Lab, Sao Paulo, Brazil.
[Macedo, Elizeu Coutinho] Univ Prebiteriana Mackenzie, Ctr Hlth & Biol Sci, Dev Disorders Program, Sao Paulo, Brazil.
C3 Universidade Federal de Sao Paulo (UNIFESP); Instituto Federal de Sao
Paulo (IFSP); Universidade Federal de Sao Paulo (UNIFESP); Universidade
Federal de Sao Paulo (UNIFESP); Universidade Federal de Sao Paulo
(UNIFESP); Universidade Presbiteriana Mackenzie; Universidade
Presbiteriana Mackenzie
RP Puga, MED (corresponding author), Rua Borges Lagoa 564,Cj 63, BR-04003800 Sao Paulo, SP, Brazil.
EM mespuga@yahoo.com.br
RI macedo, cristiane R/A-8987-2013; Macedo, Elizeu C/N-4387-2015; Macedo,
Elizeu Coutinho/AAF-1775-2020
OI Macedo, Elizeu Coutinho/0000-0003-1412-3450
FU CNPQ [311479/2015-4] Funding Source: Medline
CR Abba K, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011431
Abba K, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008122.pub2
Alldred SK, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009925
Alldred SK, 2017, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD012599
Alldred SK, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011984
Allen VB, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009323.pub2
[Anonymous], 2011, COCHRANE HDB SYSTEMA
[Anonymous], 2015, COCHRANE DB SYST REV, DOI DOI 10.1002/14651858.CD010653.PUB2
[Anonymous], 2016, COCHRANE DATABASE SY
Arbyn M, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008054.pub2
Archer HA, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010896.pub2
Arevalo-Rodriguez I, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010783.pub2
Avenell A, 2001, AM J CLIN NUTR, V73, P505
Betran AP, 2005, BMC MED RES METHODOL, V5, P6, DOI DOI 10.1186/1471-2288-5-6
Bleeker G, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009263.pub2
Boelaert M, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009135.pub2
Brazzelli M, 2009, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007424.pub2
Castro A A, 1999, Sao Paulo Med J, V117, P138
Castro A A, 1997, Sao Paulo Med J, V115, P1423
Clark OAC, 2002, INT J EPIDEMIOL, V31, P112, DOI 10.1093/ije/31.1.112
Cohen JF, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010502.pub2
Colli A, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008760.pub2
Crawford F, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010680.pub2
Crawford F, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010864.pub2
Creavin ST, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011145.pub2
Cruciani M, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009551.pub3
Davis DHJ, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010775.pub2
Deville Walter L, 2002, BMC Med Res Methodol, V2, P9, DOI 10.1186/1471-2288-2-9
Egger E, 1997, LANCET, V350, P326, DOI 10.1016/S0140-6736(97)02419-7
Egger M, 1998, BMJ-BRIT MED J, V316, P61, DOI 10.1136/bmj.316.7124.61
Eisinga A., 2008, COCHRANE HDB SYSTEMA
Fage BA, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010860.pub2
Giljaca V, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011549
Gupta D, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD012165
Gurusamy KS, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011548
Gurusamy KS, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010339.pub2
Hanchard NCA, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007427.pub2
Harrison JK, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010772.pub2
Harrison JK, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010771.pub2
Henschke N, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008686.pub2
Hooper L, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009647.pub2
Hunt H, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010438.pub2
Josephson CB, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009372.pub2
Khan KS, 2003, J ROY SOC MED, V96, P118, DOI 10.1258/jrsm.96.3.118
Khan KS, 2001, EUR J OBSTET GYN R B, V95, P6, DOI 10.1016/S0301-2115(00)00463-2
Lawrie TA, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010409.pub2
Leeflang MM, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007394
Leeflang MMG, 2008, ANN INTERN MED, V149, P889, DOI 10.7326/0003-4819-149-12-200812160-00008
Lenza M, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009020.pub2
LILACS, 2017, BAS DAD LILACS DISTR
LILACS, 2017, TUT PESQ LILACS
LILACS, 2017, MAN GEST FI LILACS
Liu E, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD012019
Macey R, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010276.pub2
Mallee WH, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010023.pub2
Manríquez JJ, 2008, J CLIN EPIDEMIOL, V61, P407, DOI 10.1016/j.jclinepi.2007.06.009
Manriquez JJ, 2009, ARCH DERMATOL, V145, P947, DOI 10.1001/archdermatol.2009.153
McCleery J, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010633.pub2
Michelessi M, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008803.pub2
Mocellin S, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009944.pub2
Moher D, 1996, LANCET, V347, P363, DOI 10.1016/S0140-6736(96)90538-3
Moher D, 2003, Health Technol Assess, V7, P1
Moher D, 2008, BMC MED, V6, DOI 10.1186/1741-7015-6-13
Nicholson BD, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011134.pub2
Nisenblat V, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD012281
Nisenblat V, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD012179
Nisenblat V, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009591.pub2
Ochodo EA, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009579.pub2
Palaniyappan L, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011021.pub2
Pavlov CS, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011602.pub2
Pavlov CS, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010542.pub2
Quinn TJ, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010079.pub2
Ratnavelu NDG, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010360.pub2
Ritchie C, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008782.pub4
Rutten MJ, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009786.pub2
Sampson M., 2008, PRESS PEER REV ELECT
Sampson M, 2008, J CLIN EPIDEMIOL, V61, P748, DOI 10.1016/j.jclinepi.2007.10.009
Sampson M, 2006, J CLIN EPIDEMIOL, V59, P1057, DOI 10.1016/j.jclinepi.2006.01.007
Sampson M, 2009, J CLIN EPIDEMIOL, V62, P944, DOI 10.1016/j.jclinepi.2008.10.012
Schmidt-Hansen M, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009519.pub2
Shah M, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011420.pub2
Shaikh N, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010657.pub2
Shaikh N, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009185.pub2
Smailagic N, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010632.pub2
Steingart KR, 2014, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD009593.pub3, 10.1002/14651858.CD009593.pub2]
Taylor T, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009694.pub2
Theron G, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010705.pub2
van der Windt DAWM, 2010, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007431.pub2
Virgili G, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008081.pub2
Walsh T, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010173.pub2
Wang K, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD009175.pub2
Wang LW, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008691.pub2
Whiting P, 2008, J CLIN EPIDEMIOL, V61, P357, DOI 10.1016/j.jclinepi.2007.05.013
Williams CM, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008643.pub2
Yoshii A, 2009, J MED LIBR ASSOC, V97, P21, DOI 10.3163/1536-5050.97.1.004
Zhang S, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010386.pub2
NR 96
TC 1
Z9 1
U1 0
U2 11
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1471-1834
EI 1471-1842
J9 HEALTH INFO LIBR J
JI Heatlth Info. Libr. J.
PD SEP
PY 2019
VL 36
IS 3
BP 223
EP 243
DI 10.1111/hir.12263
PG 21
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA IZ1ZQ
UT WOS:000486886900003
PM 31271504
OA Bronze
DA 2024-09-05
ER
PT J
AU Montejo-Ráez, A
Ureña-López, LA
Steinberger, R
AF Montejo-Raez, Arturo
Alfonso Urena-Lopez, L.
Steinberger, Ralf
TI Text Categorization using bibliographic records: beyond document content
SO PROCESAMIENTO DEL LENGUAJE NATURAL
LA English
DT Article
DE text categorization; machine learning; digital libraries
AB This paper studies the use of direrent sources of information for performing a text classiffcation task. The growing number of digital libraries imposes a review of the available data from those databases. Some experiments applying diffrerent base classiffers for a multi-label classffer in the domain of High Energy Physics on several of these possible sources have been carried out. Results show that the use of metadata is almost as good as the full-text version of papers.
C1 [Montejo-Raez, Arturo; Alfonso Urena-Lopez, L.] Univ Jaen, Dept Comp Sci, Jaen, Spain.
[Steinberger, Ralf] European Commiss, IPSC, Joint Res Ctr, Ispra, Italy.
C3 Universidad de Jaen; European Commission Joint Research Centre; EC JRC
ISPRA Site
RP Montejo-Ráez, A (corresponding author), Univ Jaen, Dept Comp Sci, Jaen, Spain.
EM amontejo@ujaen.es; laurena@ujaen.es; ralf.steinberger@jrc.it
FU Spanish Minister of Science and Technology [TIC2003-07158-004-04]
FX This work is partially ffnanced by the Spanish Minister of Science and
Technology, by means of project TIC2003-07158-004-04.
CR [Anonymous], 1994, P 17 ANN INT ACM SIG
Berners-Lee T, 2001, SCI AM, V284, P34, DOI 10.1038/scientificamerican0501-34
Dallman David, 1999, TECHNICAL REPORT
Joachims Thorsten, 1998, ECML, P137, DOI DOI 10.1007/BFB0026683
Kohavi R., 1995, Ijcai, V14, P1137
Lewis D., 1991, HLT WORKSHOP SPEECH, P312, DOI DOI 10.3115/112405.112471
Lewis D. D., 1996, SIGIR Forum, P298
Li Y., 2002, P INT C MACH LEARN I
Mitchell T.M., 1997, Machine Learning. Section 3.4.1, P55
Monteiro Antonio, 2004, P1
Montejo-Rffez Arturo, 2001, HIGH ENERGY PHYS LIB
Porter M. F., 1997, An Algorithm for Suffix Stripping, page, P313
Pouliquen Bruno, 2003, P WORKSH ONT INF EXT
Robertson S., 2001, TEXT RETR C TREC 10
SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0
Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283
Steinberger Ralf, 2002, 3 INT C INT TEXT PRO
Steinberger Ralf, 2000, USING THESAURI AUTOM, P130
van Rijsbergen C. J., 1975, INFORM RETRIEVAL
Yirning Yang, 2001, SIGIR Forum, P137
NR 20
TC 3
Z9 3
U1 0
U2 0
PU SOC ESPANOLA PROCESAMIENTO LENGUAJE NATURAL-SEPLN
PI ALICANTE
PA DEPT LENGUAJES & SISTEMAS INFORMATICOS, UNIV ALICANTE, APDO 99,
ALICANTE, 03080, SPAIN
SN 1135-5948
EI 1989-7553
J9 PROCES LENG NAT
JI Proces. Leng. Nat.
PY 2005
IS 35
BP 119
EP 126
PG 8
WC Computer Science, Artificial Intelligence; Linguistics
WE Emerging Sources Citation Index (ESCI)
SC Computer Science; Linguistics
GA V29FZ
UT WOS:000215482200015
DA 2024-09-05
ER
PT J
AU Ebert-May, D
Batzli, J
Lim, H
AF Ebert-May, D
Batzli, J
Lim, H
TI Disciplinary research strategies for assessment of learning
SO BIOSCIENCE
LA English
DT Article
DE assessment; introductory biology; carbon cycle; active learning;
misconceptions
ID RESPIRATION
AB Science faculty who want to improve instructional strategies need to design appropriate methods for assessing and analyzing classroom data to determine the effectiveness of their approaches to learning. We used systematic strategies derived from methods of discipline-based science research to design problems to assess students' understanding of the carbon cycle in two introductory biology courses for science majors. Among typical misconceptions are the ideas that gaseous carbon dioxide is not respired during decomposition by organisms in the soil and that plants acquire carbon from the soil rather than from the air through leaves during photosynthesis. Diagnostic problems provided data on students' understanding and misconceptions. In-class instruction, problems, and laboratories were designed to focus on student misconceptions and provided formative assessment. After two semesters, results indicated that the majority of students responded accurately; however, 20 to 40 percent of the students maintained misconceptions even after instruction. Assessment strategies enabled us to collect, analyze, and report data that will influence future instruction.
C1 Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.
Michigan State Univ, Div Sci & Math Educ, E Lansing, MI 48824 USA.
Univ Wisconsin, Biol Core Curriculum, Madison, WI 53706 USA.
C3 Michigan State University; Michigan State University; University of
Wisconsin System; University of Wisconsin Madison
RP Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.
EM ebertmay@msu.edu
CR ANDERSON CW, 1990, J RES SCI TEACH, V27, P761, DOI 10.1002/tea.3660270806
*ANN FDN CORP PUBL, 1997, MINDS OUR OWN PROGRA
[Anonymous], LIB ART SCI
[Anonymous], 2001, Knowing what students know: The science and design of educational assessment
[Anonymous], 1999, How people learn
[Anonymous], 2003, BIO 2010 TRANSF UND
Ausubel D.P., 2000, ACQUISITION RETENTIO
Cech TR, 1999, DAEDALUS, V128, P195
Cech TR, 2003, SCIENCE, V299, P165, DOI 10.1126/science.299.5604.165
Fosnot C., 1996, Constructivism: Theory, Perspectives, and Practice
Hestenes D., 1992, The physics teacher, V30, P141, DOI [DOI 10.1119/1.2343498, 10.1119/1.2343497, DOI 10.1119/1.2343497]
Mintzes J.J., 2000, ASSESSING SCI UNDERS, P1
Novak J.D., 1998, LEARNING CREATING US
*NRC, 1997, SCI TEACH REC
*NTC, 1999, TRANSF UND ED SCI MA
Posner G. J., 1982, Science Education, V66, P4, DOI 10.1002/sce.3730660207
SONGER CJ, 1994, J RES SCI TEACH, V31, P621, DOI 10.1002/tea.3660310605
Stokstad E, 2001, SCIENCE, V293, P1608, DOI 10.1126/science.293.5535.1608
SVINICKI M, 1999, TEACHING LEARNING ED, P5
UNO G, 2002, HDB TEACHING UNDERGR
Wandersee J.H., 1994, HDB RES SCI TEACHING, P177
NR 21
TC 52
Z9 66
U1 1
U2 16
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0006-3568
EI 1525-3244
J9 BIOSCIENCE
JI Bioscience
PD DEC
PY 2003
VL 53
IS 12
BP 1221
EP 1228
DI 10.1641/0006-3568(2003)053[1221:DRSFAO]2.0.CO;2
PG 8
WC Biology
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Life Sciences & Biomedicine - Other Topics
GA 754NA
UT WOS:000187322200011
OA Bronze
DA 2024-09-05
ER
PT J
AU Halverson, LR
Graham, CR
Spring, KJ
Drysdale, JS
AF Halverson, Lisa R.
Graham, Charles R.
Spring, Kristian J.
Drysdale, Jeffery S.
TI An analysis of high impact scholarship and publication trends in blended
learning
SO DISTANCE EDUCATION
LA English
DT Article
DE blended learning; hybrid learning; publication impact and trends; online
learning; scholarship
ID FACE-TO-FACE; INSTRUCTIONAL-MODEL; ONLINE; STUDENTS; EDUCATION;
OUTCOMES; COURSES; ENVIRONMENTS; SATISFACTION; PERCEPTIONS
AB Blended learning is a diverse and expanding area of design and inquiry that combines face-to-face and online modalities. As blended learning research matures, numerous voices enter the conversation. This study begins the search for the center of this emerging area of study by finding the most cited scholarship on blended learning. Using Harzing's Publish or Perish software (http://www.harzing.com/pop.htm), we determined the most frequently cited books, book chapters, and articles on the subject of blended learning, as well as the journals in which these highly cited articles appeared. Through these findings we offer some conclusions about where the conversations about blended learning are happening, which scholars are at the forefront of these conversations, and other emerging trends in blended learning scholarship.
C1 [Halverson, Lisa R.; Spring, Kristian J.; Drysdale, Jeffery S.] Brigham Young Univ, Instruct Psychol & Technol Program, Provo, UT 84602 USA.
C3 Brigham Young University
RP Halverson, LR (corresponding author), Brigham Young Univ, Instruct Psychol & Technol Program, Provo, UT 84602 USA.
EM lisa.halverson@byu.edu
OI Halverson, Lisa/0000-0001-8867-6598; Graham, Charles
R./0000-0001-8598-2602
CR Akyol Z, 2011, BRIT J EDUC TECHNOL, V42, P233, DOI 10.1111/j.1467-8535.2009.01029.x
Allan B., 2007, Blended learning: Tools for teaching and training
Allen I.E., 2003, Sizing the opportunity: The quality and extent of online education in the United States, 2002 and 2003
Alonso F, 2005, BRIT J EDUC TECHNOL, V36, P217, DOI 10.1111/j.1467-8535.2005.00454.x
ALVAREZ S, 2005, ENCY ED TECHNOLOGY
[Anonymous], 2006, Journal of the Medical Library Association
[Anonymous], 2007, BLENDED LEARNING RES
[Anonymous], 2002, An international comparative survey on the current and future use of ICT in higher education
[Anonymous], 2006, INNOVATIVE ASSESSMEN
Arbaugh JB, 2009, INTERNET HIGH EDUC, V12, P71, DOI 10.1016/j.iheduc.2009.06.006
Aspden L., 2004, Educational Media International, V41, P245, DOI 10.1080/09523980410001680851
Ausburn L. J., 2004, Educational Media International, V41, P327, DOI 10.1080/0952398042000314820
Aycock A., 2002, TEACHING TECHNOLOGY, V8, P9
Bernard RM, 2009, REV EDUC RES, V79, P1243, DOI 10.3102/0034654309333844
Bersin J., 2004, The blended learning book
Bielawski L., 2003, Blended eLearning, Integrating Knowledge, Performance Support, and Online Learning
Bliuc AM, 2010, BRIT J EDUC TECHNOL, V41, P512, DOI 10.1111/j.1467-8535.2009.00966.x
Bonk C.J., 2006, HDB BLENDED LEARNING
Bonk C.J., 2006, The handbook of blended learning, P550
Bonk C.J., 2002, J DISTANCE ED, V17, P97
Bourne J, 2005, J ENG EDUC, V94, P131, DOI 10.1002/j.2168-9830.2005.tb00834.x
Boyle T., 2003, Journal of Educational Media, V28, P165, DOI [10.1080/1358165032000153160, DOI 10.1080/1358165032000153160]
Brown BW, 2002, AM ECON REV, V92, P444, DOI 10.1257/000282802320191778
Burkhardt H., 2003, EDUC RESEARCHER, V32, P3, DOI [10.3102/0013189X032009003, DOI 10.3102/0013189X032009003]
Carman J.M., 2002, BLENDED LEARNING DES
Cavanaugh CS, 2009, INT REV RES OPEN DIS, V10
Chen PSD, 2010, COMPUT EDUC, V54, P1222, DOI 10.1016/j.compedu.2009.11.008
Chen XT, 2010, SERIALS REV, V36, P221, DOI 10.1016/j.serrev.2010.08.002
Chew E., 2010, Handbook of research on hybrid learning models: Advanced tools, technologies, and applications, P1
Clayton K, 2010, BRIT J EDUC TECHNOL, V41, P349, DOI 10.1111/j.1467-8535.2009.00993.x
Concannon F, 2005, BRIT J EDUC TECHNOL, V36, P501, DOI 10.1111/j.1467-8535.2005.00482.x
Condie R, 2007, BRIT J EDUC TECHNOL, V38, P337, DOI 10.1111/j.1467-8535.2006.00630.x
Cooner TS, 2010, BRIT J EDUC TECHNOL, V41, P271, DOI 10.1111/j.1467-8535.2009.00933.x
Cox G, 2004, J COMPUT ASSIST LEAR, V20, P183, DOI 10.1111/j.1365-2729.2004.00084.x
Derntl M., 2005, Internet and Higher Education, V8, P111, DOI 10.1016/j.iheduc.2005.03.002
DeRouin RE, 2005, J MANAGE, V31, P920, DOI 10.1177/0149206305279815
Douglis F., 2002, ENCY ED TECHNOLOGY
Driscoll M., 2002, E LEARN, V1, P1
Drysdale J. S., 2012, 9 ANN SLOAN CONS BLE
Dziuban C., 2005, Elements of quality online education: Engaging communities, P85
Dziuban Charles., 2006, HDB BLENDED LEARNING, P195
Edirisingha P., 2007, Research on competence development in online distance education and e-learning, P127
El Mansour B., 2007, College Student Journal, V4, P242
Ellis RA, 2006, J COMPUT ASSIST LEAR, V22, P244, DOI 10.1111/j.1365-2729.2006.00173.x
Finn A., 2002, Learning Circuits, V3
Garnham C., 2002, TEACHING TECHNOLOGY, V8
Garrison D. R., 2004, Internet and Higher Education, V7, P95, DOI 10.1016/j.iheduc.2004.02.001
Garrison D.R., 2007, BLENDED LEARNING HIG
Garrison DR, 2010, INTERNET HIGH EDUC, V13, P5, DOI 10.1016/j.iheduc.2009.10.003
Garrison R., 2007, HDB DISTANCE ED, V2nd, P77
Ginns P., 2007, Internet and Higher Education, V10, P53, DOI 10.1016/j.iheduc.2006.10.003
Glogoff S., 2005, INNOVATE, V1
Gonzalez C., 2004, BENCHMARKS ONLINE
Graham C., 2006, Beltwide Cotton Conferences
Graham C.R., 2005, ENCY INFORM SCI TECH, P253
Graham C.R., 2007, Blended learning: Research perspectives, P83
Graham CR, 2013, INTERNET HIGH EDUC, V18, P4, DOI 10.1016/j.iheduc.2012.09.003
Graham CR, HDB DISTANCE ED, P333
Hall H, 2007, LIBR INFORM SCI RES, V29, P163, DOI 10.1016/j.lisr.2007.04.007
Hanson K.S., 2006, HDB BLENDED LEARNING, P136
Harzing A.W., 2007, Publish or perish
Hofmann Jennifer., 2006, HDB BLENDED LEARNING, P27
Hoic-Bozic N, 2009, IEEE T EDUC, V52, P19, DOI 10.1109/TE.2007.914945
Howard J., 2012, CHRONICLE HIGHE 0228
Huang R., 2006, HDB BLENDED LEARNING, P296
INOUE Yukiko., 2010, Cases on Online and Blended Learning Technologies in Higher Education: Concepts and Practices, DOI DOI 10.4018/978-1-60566-880-2
Jones N., 2006, The handbook of blended learning, P182
Jung I., 2006, HDB BLENDED LEARNING, P267
Kerres M., 2003, Journal of Educational Media, V28, P101, DOI DOI 10.1080/1358165032000165653
King K. P., 2002, Internet and Higher Education, V5, P231, DOI 10.1016/S1096-7516(02)00104-5
Kirkley S E., 2004, TECHTRENDS, V49, P89, DOI 10.1007/BF02763646
Kirkley SE, 2005, TECHTRENDS, V49, P42, DOI 10.1007/BF02763646
Klein HJ, 2006, PERS PSYCHOL, V59, P665, DOI 10.1111/j.1744-6570.2006.00050.x
Klein J.D., 2004, INSTRUCTOR COMPETENC
Kyong-Jee K., 2006, EDUCAUSE Q, V29, P22, DOI DOI 10.4018/978-1-7998-0062-0.CH003
Latchem C, 2010, OPEN FLEX LEARN SER, P1
Laurillard D, 2007, HIGH EDUC, V54, P21, DOI 10.1007/s10734-006-9044-2
Leh A. S. C., 2002, Educational Media International, V39, P31, DOI 10.1080/09523980210131204
Lewis N.J., 2006, The handbook of blended learning: Global perspectives, local designs, P61
Littlejohn A, 2007, CONNECT E LEARN, P1
Lynch R., 2004, INT REV RES OPEN DIS, V5, P189
MacDonald J., 2008, Blended learning and online tutoring: planning learner support and activity design, V2nd
Mantyla K., 2001, BLENDING E LEARNING
Marsh G.E., 2003, ONLINE J DISTANCE LE, V6
Martyn M., 2003, EDUCAUSE Quarterly, V26, P18
Masie E., 2002, The ASTD e-learning handbook: Best practices, strategies, and case studies for an emerging field, P58
Masie E., 2006, HDB BLENDED LEARNING, P22
Means B., 2009, Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies, DOI DOI 10.30935/CEDTECH/8708
Milne A., 2006, LEARNING SPACES, P27
Moore M.G., 2007, Handbook of distance education, V2nd, P89
Moore M.G., HDB DISTANC IN PRESS
Moore M.G., 2004, American Journal of Distance Education, V18, P127, DOI [10.1207/s5389286ajde1803_1, DOI 10.1207/S15389286AJDE1803_1]
Mortera-Gutierrez F., 2006, International Journal on ELearning, V5, P313
Motteram G, 2006, BRIT J EDUC TECHNOL, V37, P17, DOI 10.1111/j.1467-8535.2005.00511.x
Ocak MA, 2011, COMPUT EDUC, V56, P689, DOI 10.1016/j.compedu.2010.10.011
Olapiriyakul K., 2006, Internet and Higher Education, V9, P287, DOI 10.1016/j.iheduc.2006.08.001
Oliver M., 2005, ELearning, V2, P17
Oliver Ron., 2006, HDB BLENDED LEARNING, P502
Oravec J., 2003, J ED MEDIA, V28, P225
Osguthorpe R.T., 2003, Q REV DISTANCE ED, V4, P227, DOI DOI 10.4018/978-1-59140-555-9.CH024
Owston R.D., 2006, HDB BLENDED LEARNING, P338
Ozkan S, 2009, COMPUT EDUC, V53, P1285, DOI 10.1016/j.compedu.2009.06.011
Picciano A., 2009, K 12 ONLINE LEARNING
Picciano A.G., 2007, K 12 ONLINE LEARNING
Picciano AC, 2012, INTERNET HIGH EDUC, V15, P127, DOI 10.1016/j.iheduc.2011.07.004
Priem J., 2011, ALTMETRICS MANIFESTO
Reay J., 2001, Knowledge Management Review, V4, P6
Research in context: Article-level metrics, 2009, RES CONT ART LEV MET
Riffell S, 2005, COMPUT EDUC, V44, P217, DOI 10.1016/j.compedu.2004.01.005
Rivera J., 2002, ONLINE J DISTANCE LE, V5
Rooney J.E., 2003, Association Management, V55, P26
Rossett A., 2003, LEARNING CIRCUITS
Rovai A.P., 2004, The International Review of Research in Open and Distance Learning, V5, DOI [10.19173/irrodl.v5i2.192, DOI 10.19173/IRRODL.V5I2.192]
Ruiz JG, 2006, ACAD MED, V81, P207, DOI 10.1097/00001888-200603000-00002
Sharma P., 2007, Blended learning: Using technology in a beyond the language classroom
Sharpe R., 2006, UNDERGRADUATE EXPERI, P1
Singh H.Reed., 2001, A white paper: Achieving success with blended learning
Singh H, 2021, ADV EDUC TECHNOL INS, P15, DOI 10.4018/978-1-7998-7607-6.ch002
Smart KL, 2006, J INF TECHNOL EDUC-R, V5, P201
Smith J.M., 2001, BLENDED LEARNING OLD
So HJ, 2008, COMPUT EDUC, V51, P318, DOI 10.1016/j.compedu.2007.05.009
Stacey E., 2009, EFFECTIVE BLENDED LE, P19, DOI [10.4018/978-1-60566-296-1, DOI 10.4018/978-1-60566-296-1]
Staker H., 2012, CLASSIFYING K 12 BLE
Staker H., 2011, The rise of K-12 blended learning: profiles of emerging models
Swenson P., 2003, ELECT LEARNING COMMU, P27
Taradi SK, 2005, ADV PHYSIOL EDUC, V29, P35, DOI 10.1152/advan.00026.2004
Thorne K., 2003, Blended learning: How to integrate online traditional learning
Tuckman BW, 2002, COMPUT EDUC, V39, P261, DOI 10.1016/S0360-1315(02)00045-3
Unwin T, 2005, OPEN LEARN, V20, P113, DOI 10.1080/02680510500094124
Utts J., 2003, J STAT EDUC, V11
Valiathan P., 2002, Learning circuits
Vaughan N., 2005, Internet and Higher Education, V8, P1, DOI 10.1016/j.iheduc.2004.11.001
VOOS R, 2003, SLOAN C VIEW, V2, P3
Wagner E.D., 2006, HDB BLENDED LEARNING, P41
Wang MJ, 2009, BRIT J EDUC TECHNOL, V40, P673, DOI 10.1111/j.1467-8535.2008.00846.x
Watson J., 2008, Promising practices in online learning: Blended learning: The convergence of online and face-to-face education
Wenger M., 2006, The handbook of blended learning, P76
West RE, 2012, INNOV HIGH EDUC, V37, P359, DOI 10.1007/s10755-012-9214-3
Woods R., 2004, Internet and Higher Education, V7, P281, DOI 10.1016/j.iheduc.2004.09.002
Wu JH, 2010, COMPUT EDUC, V55, P155, DOI 10.1016/j.compedu.2009.12.012
Yasmeen S, 2010, ED WORLD, V92, P70
NR 141
TC 64
Z9 138
U1 1
U2 37
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0158-7919
EI 1475-0198
J9 DISTANCE EDUC
JI Distance Educ.
PY 2012
VL 33
IS 3
BP 381
EP 413
DI 10.1080/01587919.2012.723166
PG 33
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA 034SW
UT WOS:000310894200007
DA 2024-09-05
ER
PT J
AU Vangumalli, DR
Nikolopoulos, K
Litsiou, K
AF Vangumalli, Dinesh Reddy
Nikolopoulos, Konstantinos
Litsiou, Konstantia
TI Aggregate Selection, Individual Selection, and Cluster Selection: An
Empirical Evaluation and Implications for Systems Research
SO CYBERNETICS AND SYSTEMS
LA English
DT Article
DE Business analytics; clustering; forecasting; method selection; nearest
neighbors; random forests
ID TIME; CLASSIFICATION; INFORMATION; REGRESSION; TRENDS
AB Data analysts when forecasting large number of time series, they regularly employ one of the following methodological approaches: either select a single forecasting method for the entire dataset (aggregate selection), or use the best forecasting method for each time series (individual selection). There is evidence in the predictive analytics literature that the former is more robust than the latter, as in individual selection you tend to overfit models to the data. A third approach is to first identify homogeneous clusters within the dataset, and then select a single forecasting method for each cluster (cluster selection). To that end, we examine three machine learning clustering methods: k-medoids, k-NN and random forests. The evaluation is performed in the 645 yearly series of the M3 competition. The empirical evidence suggests: (a) random forests provide the best clusters for the sequential forecasting task, and (b) cluster selection has the potential to outperform aggregate selection.
C1 [Vangumalli, Dinesh Reddy] Resolut Life, Washington, DC USA.
[Nikolopoulos, Konstantinos] Univ Durham, Business Sch, Durham, England.
[Litsiou, Konstantia] Manchester Metropolitan Univ, Dept Mkt Retail & Tourism, Business Sch, Manchester, Lancs, England.
C3 Durham University; Manchester Metropolitan University
RP Nikolopoulos, K (corresponding author), Univ Durham, Business Sch, Durham, England.
EM kostas.nikolopoulos@durham.ac.uk
OI Litsiou, Konstantia/0009-0009-6157-7683
CR Agrawal R., 1993, Proceedings of the International Conference on Foundations of Data Organization and Algorithms, Chicago, IL, P69
Anderberg MR., 1973, Cluster analysis for researchers
[Anonymous], 2009, Finding groups in data: an introduction to cluster analysis
ARMSTRONG JS, 1992, INT J FORECASTING, V8, P69, DOI 10.1016/0169-2070(92)90008-W
Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142
Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Breiman L., 2002, IMS WALD LECT, V2, P59
Bubeck S, 2009, J MACH LEARN RES, V10, P657
Charrad M, 2014, J STAT SOFTW, V61, P1
Clark L.A., 1992, STAT MODELS S, P373
CORMACK RM, 1971, J R STAT SOC SER A-G, V134, P321, DOI 10.2307/2344237
Duda R. O., 2001, Pattern Classification, V2nd
EVERITT B, 1980, QUAL QUANT, V14, P75, DOI 10.1007/BF00154794
Fildes R, 2015, J BUS RES, V68, P1692, DOI 10.1016/j.jbusres.2015.03.028
GARDNER ES, 1985, MANAGE SCI, V31, P1237, DOI 10.1287/mnsc.31.10.1237
Goldstein BA, 2011, STAT APPL GENET MOL, V10, DOI 10.2202/1544-6115.1691
Green KC, 2015, J BUS RES, V68, P1678, DOI 10.1016/j.jbusres.2015.03.026
Holt CC, 2004, INT J FORECASTING, V20, P5, DOI [10.1016/j.ijforecast.2003.09.015, 10.1016/j.ijforecast.2004.09.015]
Hyndman RJ, 2006, INT J FORECASTING, V22, P679, DOI 10.1016/j.ijforecast.2006.03.001
Iglesias F, 2013, ENERGIES, V6, P579, DOI 10.3390/en6020579
Iverson LR, 1998, ECOL MONOGR, V68, P465, DOI 10.1890/0012-9615(1998)068[0465:PAOTSF]2.0.CO;2
James W., 1977, WRITINGS W JAMES, P264
Keogh E., 2002, Proceedings of the Twenty-eighth International Conference on Very Large Data Bases, P406
Lorr Maurice., 1983, CLUSTER ANAL SOCIAL
Makridakis S, 2000, INT J FORECASTING, V16, P451, DOI 10.1016/S0169-2070(00)00057-1
MAKRIDAKIS S, 1993, INT J FORECASTING, V9, P5, DOI 10.1016/0169-2070(93)90044-N
MAKRIDAKIS S, 1982, J FORECASTING, V1, P111, DOI 10.1002/for.3980010202
Makridakis SG, 1998, Forecasting: Methods and Applications
Makridakis S, 2020, INT J FORECASTING, V36, P54, DOI 10.1016/j.ijforecast.2019.04.014
MOORE DM, 1991, ENVIRON MANAGE, V15, P59, DOI 10.1007/BF02393838
Nikolopoulos K, 2007, EUR J OPER RES, V180, P354, DOI 10.1016/j.ejor.2006.03.047
Nikolopoulos K. I., 2019, Forecasting with the theta method: theory and applications
Nikolopoulos K, 2015, J BUS RES, V68, P1785, DOI 10.1016/j.jbusres.2015.03.037
P Box GM Jenkins G.E., 1976, TIME SERIES ANAL FOR
Petropoulos F, 2014, EUR J OPER RES, V237, P152, DOI 10.1016/j.ejor.2014.02.036
Prasad AM, 2006, ECOSYSTEMS, V9, P181, DOI 10.1007/s10021-005-0054-1
Rafiei D., 1997, SIGMOD Record, V26, P13, DOI 10.1145/253262.253264
Reilly D, 2000, INT J FORECASTING, V16, P531, DOI 10.1016/S0169-2070(00)00085-6
Ripley B. D., 1996, Pattern Recognition and Neural Networks
Shi T, 2005, MODERN PATHOL, V18, P547, DOI 10.1038/modpathol.3800322
Teraoka R., 2014, THESIS U MANCHESTER
Xiaoyan Wu, 2008, 2008 2nd International Conference on Bioinformatics and Biomedical Engineering (ICBBE '08), P763
NR 43
TC 0
Z9 0
U1 0
U2 4
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0196-9722
EI 1087-6553
J9 CYBERNET SYST
JI Cybern. Syst.
PD JUL 16
PY 2021
VL 52
IS 7
BP 553
EP 578
DI 10.1080/01969722.2021.1902049
EA APR 2021
PG 26
WC Computer Science, Cybernetics
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA TJ3PG
UT WOS:000661315100001
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Sarbay, I
Berikol, GB
Özturan, IU
AF Sarbay, Ibrahim
Berikol, Goeksu Bozdereli
Ozturan, Ibrahim Ulas
TI Performance of emergency triage prediction of an open access natural
language processing based chatbot application (ChatGPT): A preliminary,
scenario-based cross-sectional study
SO TURKISH JOURNAL OF EMERGENCY MEDICINE
LA English
DT Article
DE Chatbot; ChatGPT; emergency severity index; triage
ID CHIEF COMPLAINT
AB OBJECTIVES: Artificial intelligence companies have been increasing their initiatives recently to improve the results of chatbots, which are software programs that can converse with a human in natural language. The role of chatbots in health care is deemed worthy of research. OpenAI's ChatGPT is a supervised and empowered machine learning-based chatbot. The aim of this study was to determine the performance of ChatGPT in emergency medicine (EM) triage prediction. METHODS: This was a preliminary, cross-sectional study conducted with case scenarios generated by the researchers based on the emergency severity index (ESI) handbook v4 cases. Two independent EM specialists who were experts in the ESI triage scale determined the triage categories for each case. A third independent EM specialist was consulted as arbiter, if necessary. Consensus results for each case scenario were assumed as the reference triage category. Subsequently, each case scenario was queried with ChatGPT and the answer was recorded as the index triage category. Inconsistent classifications between the ChatGPT and reference category were defined as over-triage (false positive) or under-triage (false negative). RESULTS: Fifty case scenarios were assessed in the study. Reliability analysis showed a fair agreement between EM specialists and ChatGPT (Cohen's Kappa: 0.341). Eleven cases (22%) were over triaged and 9 (18%) cases were under triaged by ChatGPT. In 9 cases (18%), ChatGPT reported two consecutive triage categories, one of which matched the expert consensus. It had an overall sensitivity of 57.1% (95% confidence interval [CI]: 34-78.2), specificity of 34.5% (95% CI: 17.9-54.3), positive predictive value (PPV) of 38.7% (95% CI: 21.8-57.8), negative predictive value (NPV) of 52.6 (95% CI: 28.9-75.6), and an F1 score of 0.461. In high acuity cases (ESI-1 and ESI-2), ChatGPT showed a sensitivity of 76.2% (95% CI: 52.8-91.8), specificity of 93.1% (95% CI: 77.2-99.2), PPV of 88.9% (95% CI: 65.3-98.6), NPV of 84.4 (95% CI: 67.2-94.7), and an F1 score of 0.821. The receiver operating characteristic curve showed an area under the curve of 0.846 (95% CI: 0.724-0.969, P < 0.001) for high acuity cases. CONCLUSION: The performance of ChatGPT was best when predicting high acuity cases (ESI-1 and ESI-2). It may be useful when determining the cases requiring critical care. When trained with more medical knowledge, ChatGPT may be more accurate for other triage category predictions.
C1 [Sarbay, Ibrahim] Kesan State Hosp, Dept Emergency Med, Asagi Zaferiye Mahallesi Evrese Caddesi, Edirne, Turkiye.
[Berikol, Goeksu Bozdereli] Bakirkoy Dr Sadi Konuk Training & Res Hosp, Dept Emergency Med, Istanbul, Turkiye.
[Ozturan, Ibrahim Ulas] Kocaeli Univ, Fac Med, Dept Emergency Med, Kocaeli, Turkiye.
[Ozturan, Ibrahim Ulas] Acibadem Univ, Inst Hlth Sci, Dept Med Educ, Istanbul, Turkiye.
C3 Bakirkoy Dr. Sadi Konuk Research & Training Hospital; Kocaeli
University; Acibadem University
RP Sarbay, I (corresponding author), Kesan State Hosp, Dept Emergency Med, Asagi Zaferiye Mahallesi Evrese Caddesi, Edirne, Turkiye.
EM ibrahimsar@gmail.com
RI Sarbay, İbrahim/JDD-3003-2023; Berikol, Goksu/ABM-3605-2022
OI Sarbay, İbrahim/0000-0001-8804-2501; Berikol, Goksu/0000-0002-4529-3578
CR Baumann MR, 2005, ACAD EMERG MED, V12, P219, DOI 10.1197/j.aem.2004.09.023
Beitel AJ, 2004, PEDIATR EMERG CARE, V20, P355, DOI 10.1097/01.pec.0000133608.96957.b9
Benoit JRA, 2023, medRxiv, DOI [10.1101/2023.02.04.23285478, 10.1101/2023.02.04.23285478v1, DOI 10.1101/2023.02.04.23285478V1, 10.1101/2023.02.04.23285478, DOI 10.1101/2023.02.04.23285478]
Bullard MJ, 2017, CAN J EMERG MED, V19, pS18, DOI 10.1017/cem.2017.365
Caldarini G, 2022, INFORMATION, V13, DOI 10.3390/info13010041
Ceney A, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0254088
ChatGPT, Optimizing Language Models for Dialogue 2022
Ghosh S, 2018, STUD HEALTH TECHNOL, V252, P51, DOI 10.3233/978-1-61499-890-7-51
Gilboy N, 2005, J EMERG NURS, V31, P357, DOI 10.1016/j.jen.2005.05.011
Goonesekera Y, 2022, JMIR FORM RES, V6, DOI 10.2196/37877
He YH, 2022, J MED INTERNET RES, V24, DOI 10.2196/40719
Hirosawa Takanobu, 2023, Int J Environ Res Public Health, V20, DOI 10.3390/ijerph20043378
Ivanov O, 2021, J EMERG NURS, V47, DOI 10.1016/j.jen.2020.11.001265
Kim Y, 2023, INT J MED INFORM, V170, DOI 10.1016/j.ijmedinf.2022.104956
King MR, 2023, ANN BIOMED ENG, V51, P291, DOI 10.1007/s10439-022-03121-w
Kittipimpanon K, 2023, JMIR FORM RES, V7, DOI 10.2196/43639
Kolter JZ, 2022, SCIENCE, V378, P1056, DOI 10.1126/science.add8258
Kuriyama A, 2017, EMERG MED J, V34, P703, DOI 10.1136/emermed-2016-206295
Lee S, 2019, WEST J EMERG MED, V20, P219, DOI 10.5811/westjem.2019.1.41244
Lee SH, 2019, J BIOMED INFORM, V93, DOI 10.1016/j.jbi.2019.103158
Li YJ, 2022, SCIENCE, V378, P1092, DOI 10.1126/science.abq1158
Semigran HL, 2015, BMJ-BRIT MED J, V351, DOI 10.1136/bmj.h3480
Sterling NW, 2020, JACEP OPEN, V1, P1676, DOI 10.1002/emp2.12253
Sterling NW, 2019, INT J MED INFORM, V129, P184, DOI 10.1016/j.ijmedinf.2019.06.008
Thompson DA, 2006, ACAD EMERG MED, V13, P774, DOI 10.1197/j.aem.2006.02.013
Tootooni MS, 2019, COMPUT BIOL MED, V113, DOI 10.1016/j.compbiomed.2019.103398
Travers DA, 2004, ACAD EMERG MED, V11, P1170, DOI 10.1197/j.aem.2004.08.012
Tzelios C, 2022, PUBLIC HEALTH ACTION, V12, P180, DOI 10.5588/pha.22.0046
Unger B, 2010, CAN J EMERG MED, V12, P311
Wuerz R, 1998, ANN EMERG MED, V32, P431, DOI 10.1016/S0196-0644(98)70171-4
NR 30
TC 15
Z9 15
U1 3
U2 9
PU WOLTERS KLUWER MEDKNOW PUBLICATIONS
PI MUMBAI
PA WOLTERS KLUWER INDIA PVT LTD , A-202, 2ND FLR, QUBE, C T S NO 1498A-2
VILLAGE MAROL, ANDHERI EAST, MUMBAI, Maharashtra, INDIA
SN 2452-2473
J9 TURK J EMERG MED
JI Turk. J. Emerg. Med.
PD JUL-SEP
PY 2023
VL 23
IS 3
BP 156
EP +
DI 10.4103/tjem.tjem_79_23
PG 9
WC Emergency Medicine
WE Emerging Sources Citation Index (ESCI)
SC Emergency Medicine
GA L9QI8
UT WOS:001026537900004
PM 37529789
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Hohmann, E
Wetzler, MJ
D'Agostino, RB
AF Hohmann, Erik
Wetzler, Merrick J.
D'Agostino, Ralph B.
TI Research Pearls: The Significance of Statistics and Perils of Pooling.
Part 2: Predictive Modeling
SO ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY
LA English
DT Article
ID SURVIVAL ANALYSIS; CLINICAL-TRIALS; DESCRIPTIVE STATISTICS; REGRESSION;
PROGNOSIS; IMPACT; PRIMER; FIT
AB The focus of predictive modeling or predictive analytics is to use statistical techniques to predict outcomes and/or the results of an intervention or observation for patients that are conditional on a specific set of measurements taken on the patients prior to the outcomes occurring. Statistical methods to estimate these models include using such techniques as Bayesian methods; data mining methods, such as machine learning; and classical statistical models of regression such as logistic (for binary outcomes), linear (for continuous outcomes), and survival (Cox proportional hazards) for time-to-event outcomes. A Bayesian approach incorporates a prior estimate that the outcome of interest is true, which is made prior to data collection, and then this prior probability is updated to reflect the information provided by the data. In principle, data mining uses specific algorithms to identify patterns in data sets and allows a researcher to make predictions about outcomes. Regression models describe the relations between 2 or more variables where the primary difference among methods concerns the form of the outcome variable, whether it is measured as a binary variable (i.e., success/failure), continuous measure (i.e., pain score at 6 months postop), or time to event (i.e., time to surgical revision). The outcome variable is the variable of interest, and the predictor variable(s) are used to predict outcomes. The predictor variable is also referred to as the independent variable and is assumed to be something the researcher can modify in order to see its impact on the outcome (i.e., using one of several possible surgical approaches). Survival analysis investigates the time until an event occurs. This can be an event such as failure of a medical device or death. It allows the inclusion of censored data, meaning that not all patients need to have the event (i.e., die) prior to the study's completion.
C1 [Hohmann, Erik] Univ Queensland, Med Sch, Brisbane, Qld, Australia.
[Hohmann, Erik] Univ Pretoria, Med Sch, Pretoria, South Africa.
[Wetzler, Merrick J.] South Jersey Orthoped, Voorhees, NJ USA.
[D'Agostino, Ralph B.] Wake Forest Sch Med, Winston Salem, NC USA.
C3 University of Queensland; University of Pretoria; Wake Forest University
RP Hohmann, E (corresponding author), Valiant Healthcare Houston Methodist Grp, POB 414296, Dubai, U Arab Emirates.
EM ehohmann@hotmail.com
RI Hohmann, Erik/B-1922-2012; Dagostino Jr, Ralph/C-4060-2017
OI Dagostino Jr, Ralph/0000-0002-3550-8395
FU Arthroscopy: The Journal of Arthroscopic and Related Surgery and Storz
FX The authors report the following potential conflicts of interest or
sources of funding: M.J.W. received support from Arthroscopy: The
Journal of Arthroscopic and Related Surgery and Storz.
CR Abd ElHafeez S, 2012, AGING CLIN EXP RES, V24, P203, DOI 10.1007/BF03325249
Abdi Herve, 2013, Methods Mol Biol, V930, P549, DOI 10.1007/978-1-62703-059-5_23
Abdi Herve., 2007, ENCY MEASUREMENT STA, P1
Altman DG, 1998, BRIT MED J, V317, P468
Altman DG, 2009, BMJ-BRIT MED J, V338, DOI 10.1136/bmj.b605
Cerrito PB, 2008, P 2008 MIDW SAS US G, pS03
Cruz JA, 2006, CANCER INFORM, V2, P59
Fennema P, 2010, J BONE JOINT SURG BR, V92B, P701, DOI 10.1302/0301-620X.92B5.23470
Fleming TR, 2000, BIOMETRICS, V56, P971, DOI 10.1111/j.0006-341X.2000.0971.x
Hosmer DW, 1997, STAT MED, V16, P965
HOSMER DW, 1991, AM J PUBLIC HEALTH, V81, P1630, DOI 10.2105/AJPH.81.12.1630
LAGAKOS SW, 1979, BIOMETRICS, V35, P139, DOI 10.2307/2529941
Larson MG, 2006, CIRCULATION, V114, P76, DOI 10.1161/CIRCULATIONAHA.105.584474
LEWIS RJ, 1993, ANN EMERG MED, V22, P1328, DOI 10.1016/S0196-0644(05)80119-2
Marill KA, 2004, ACAD EMERG MED, V11, P87, DOI 10.1197/S1069-6563(03)00600-6
Nick Todd G., 2007, V404, P33, DOI 10.1007/978-1-59745-530-5_3
Patel A, 2015, BONE JOINT J, V97B, P1076, DOI 10.1302/0301-620X.97B8.35170
Petrie A, 2006, J BONE JOINT SURG BR, V88B, P1121, DOI 10.1302/0301-620X.88B9.17896
Prinja Shankar, 2010, Indian J Community Med, V35, P217, DOI 10.4103/0970-0218.66859
Rich JT, 2010, OTOLARYNG HEAD NECK, V143, P331, DOI 10.1016/j.otohns.2010.05.007
Shmueli G, 2010, STAT SCI, V25, P289, DOI 10.1214/10-STS330
Toll DB, 2008, J CLIN EPIDEMIOL, V61, P1085, DOI 10.1016/j.jclinepi.2008.04.008
Waljee AK, 2014, CLIN TRANSL GASTROEN, V5, DOI 10.1038/ctg.2013.19
Waljee AK, 2010, AM J GASTROENTEROL, V105, P1224, DOI 10.1038/ajg.2010.173
Zhang JM, 2005, CLIN TRIALS, V2, P488, DOI 10.1191/1740774505cn128oa
NR 25
TC 15
Z9 16
U1 1
U2 6
PU W B SAUNDERS CO-ELSEVIER INC
PI PHILADELPHIA
PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA
SN 0749-8063
EI 1526-3231
J9 ARTHROSCOPY
JI Arthroscopy
PD JUL
PY 2017
VL 33
IS 7
BP 1423
EP 1432
DI 10.1016/j.arthro.2017.01.054
PG 10
WC Orthopedics; Sport Sciences; Surgery
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Orthopedics; Sport Sciences; Surgery
GA FB2OH
UT WOS:000405982600028
PM 28457678
OA Green Submitted, Green Accepted
DA 2024-09-05
ER
PT J
AU Dorta-González, P
AF Dorta-Gonzalez, Pablo
TI A Multiple Linear Regression Analysis to Measure the Journal
Contribution to the Social Attention of Research
SO AXIOMS
LA English
DT Article
DE altmetrics; social mentions; multiple linear regression; public
attention to research; socially influential journal
ID RESEARCH COLLABORATION; CITATION COUNTS; IMPACT; ALTMETRICS; METRICS;
MEDIA; WEB
AB This paper proposes a three-year average of social attention as a more reliable measure of the social impact of journals since the social attention of research can vary widely among scientific articles, even within the same journal. The proposed measure is used to evaluate a journal's contribution to social attention in comparison to other bibliometric indicators. This study uses Dimensions as a data source and examines research articles from 76 disciplinary libraries and information science journals through multiple linear regression analysis. This study identifies socially influential journals whose contribution to social attention is twice that of scholarly impact, as measured by citations. In addition, this study finds that the number of authors and open access have a moderate effect on social attention, while the journal impact factor has a negative effect and funding has a small effect.
C1 [Dorta-Gonzalez, Pablo] Univ Las Palmas Gran Canaria, Inst Tourism & Sustainable Econ Dev TIDES, Campus Tafira, Las Palmas Gran Canaria 35017, Spain.
C3 Universidad de Las Palmas de Gran Canaria
RP Dorta-González, P (corresponding author), Univ Las Palmas Gran Canaria, Inst Tourism & Sustainable Econ Dev TIDES, Campus Tafira, Las Palmas Gran Canaria 35017, Spain.
EM pablo.dorta@ulpgc.es
RI Dorta-González, Pablo/C-6425-2009
OI Dorta-González, Pablo/0000-0003-0494-2903
CR [Anonymous], IS ALTM ATT SCOR CAL
Bornmann L, 2015, SCIENTOMETRICS, V103, P1123, DOI 10.1007/s11192-015-1565-y
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
Costas R, 2012, J AM SOC INF SCI TEC, V63, P1647, DOI 10.1002/asi.22692
Dorta-González P, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10122082
Dorta-González P, 2022, J DATA INFO SCI, V7, P57, DOI 10.2478/jdis-2022-0007
Dorta-González P, 2022, SCIENTOMETRICS, V127, P2901, DOI 10.1007/s11192-022-04359-w
Dorta-González P, 2018, RES EVALUAT, V27, P1, DOI 10.1093/reseval/rvx035
Dorta-González P, 2017, SCIENTOMETRICS, V112, P877, DOI 10.1007/s11192-017-2422-y
Ezema IJ, 2019, INF DISCOV DELIV, V47, P143, DOI 10.1108/IDD-08-2018-0029
Fanelli D, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149504
Fang ZC, 2020, SCIENTOMETRICS, V123, P1077, DOI 10.1007/s11192-020-03405-9
Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257
Bote VPG, 2013, J AM SOC INF SCI TEC, V64, P392, DOI 10.1002/asi.22754
Heinze T, 2008, RES POLICY, V37, P888, DOI 10.1016/j.respol.2008.01.009
Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359
Parish AJ, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0189742
Priem J., 2010, Altmetrics: A manifesto
Rong LQ, 2020, BRIT J ANAESTH, V125, pE223, DOI [10.1016/j.bja.2020.05.033, 10.1016/j.bja.2020.04.086]
Smith R, 2001, BRIT MED J, V323, P528, DOI 10.1136/bmj.323.7312.528
Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2
Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833
Thelwall M, 2021, J ECON SURV, V35, P1302, DOI 10.1111/joes.12381
Thelwall M, 2016, SCIENTOMETRICS, V108, P337, DOI 10.1007/s11192-016-1973-7
Wouters P, 2019, SPRINGER HBK, P687, DOI 10.1007/978-3-030-02511-3_26
Zahedi Z, 2018, J INFORMETR, V12, P191, DOI 10.1016/j.joi.2017.12.005
Zhao SX, 2018, SCIENTOMETRICS, V115, P153, DOI 10.1007/s11192-018-2662-5
NR 27
TC 0
Z9 0
U1 4
U2 15
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2075-1680
J9 AXIOMS
JI Axioms
PD APR
PY 2023
VL 12
IS 4
AR 337
DI 10.3390/axioms12040337
PG 13
WC Mathematics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematics
GA E7KE2
UT WOS:000977281900001
OA Green Published, Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Xu, LH
Ding, K
Lin, Y
AF Xu, Linhong
Ding, Kun
Lin, Yuan
TI Do negative citations reduce the impact of cited papers?
SO SCIENTOMETRICS
LA English
DT Article
DE Negative citation; Citation analysis; Citation polarity; SVM
ID REFERENCES; BEHAVIOR; QUALITY
AB Citation is an important process of scientific activities, reflecting the inheritance and development of knowledge. However, citations representing different sentiment polarities function differently in knowledge construction, especially negative citations holding critical views, which deserve more in-depth study. This paper selected papers on SVM from 1995 to 2020, and used the stratified random sampling method to obtain 3,337 citation sentences from 46,157 citations, coding several attributes such as citation polarity, to analyze the relationship between negative citation and the impact of cited paper and the role of negative citation in the development of SVM technology. The results of the study found that negative citations do not reduce the literature impact; papers with a certain negative citation ratio would have a higher impact; and the impact of those partially dismissed papers would be even higher. In addition, negative citation presents different characteristics in different periods of the development of SVM, which has a certain promotion effect on the improvement of this technology.
C1 [Xu, Linhong; Ding, Kun; Lin, Yuan] Dalian Univ Technol, Inst Sci Sci & Technol Management, WISE Lab, Dalian 116024, Peoples R China.
[Xu, Linhong] Dalian Univ Foreign Languages, Software Inst, Dalian 116044, Peoples R China.
C3 Dalian University of Technology; Dalian University of Foreign Languages
RP Ding, K; Lin, Y (corresponding author), Dalian Univ Technol, Inst Sci Sci & Technol Management, WISE Lab, Dalian 116024, Peoples R China.
EM qingniao1203@163.com; dingk@dlut.edu.cn; zhlin@dlut.edu.cn
RI DING, KUN/HNJ-1709-2023
FU Natural Science Foundation of China [61976036]; Ministry of Education
Humanities and Social Science Project [18YJCZH208]
FX This work is partially supported by Grant from the Natural Science
Foundation of China (Nos. 61772103, 61806038), Ministry of Education
Humanities and Social Science Project (Nos. 18YJCZH208), Natural Science
Foundation of China (Nos. 61976036). We also thank the anonymous
reviewers for their constructive comments and suggestions.
CR Abu-Jbara A., 2013, NAACL, P596
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
Athar A., 2011, P ACL 2011 STUD SESS, P81
Bordignon F, 2020, SCIENTOMETRICS, V124, P1225, DOI 10.1007/s11192-020-03536-z
BROOKS TA, 1986, J AM SOC INFORM SCI, V37, P34
CANO V, 1989, J AM SOC INFORM SCI, V40, P284, DOI 10.1002/(SICI)1097-4571(198907)40:4<284::AID-ASI10>3.0.CO;2-Z
Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H
Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112
CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403
COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Cronin B, 2006, J AM SOC INF SCI TEC, V57, P1275, DOI 10.1002/asi.20354
Danell JAB, 2012, SCI COMMUN, V34, P299, DOI 10.1177/1075547011413140
GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189
Geras A, 2020, J ASSOC INF SCI TECH, V71, P221, DOI 10.1002/asi.24231
Ikram MT, 2019, SCIENTOMETRICS, V119, P73, DOI 10.1007/s11192-019-03028-9
Jochim C, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P42
Khamsi R, 2020, NATURE, V580, P578, DOI 10.1038/d41586-020-01063-8
Kim I., 2015, 2015 IEEE International Magnetics Conference (INTERMAG), DOI 10.1109/INTMAG.2015.7157583
Kumar S, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P63, DOI 10.1145/2872518.2889391
Ma Z, 2016, P 5 WORKSH COMP LING, P122, DOI [10.18653/v1/w16-0420, DOI 10.18653/V1/W16-0420]
MACROBERTS MH, 1984, SOC STUD SCI, V14, P91, DOI 10.1177/030631284014001006
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Munkhdalai Tsendsuren., 2016, P 7 INT WORKSHOP HLT, P69, DOI [DOI 10.18653/V1/W16-6109, 10.18653/v1/W16-6109]
Nicholson JM, 2021, QUANT SCI STUD, V2, P882, DOI 10.1162/qss_a_00146
Rousseau R., 2018, Becoming metric-wise A bibliometric guide for researchers, DOI DOI 10.1016/B978-0-08-102474-4.00009-1
SHADISH WR, 1995, SOC STUD SCI, V25, P477, DOI 10.1177/030631295025003003
Suelzer EM, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.15552
Tang R, 2008, J DOC, V64, P246, DOI 10.1108/00220410810858047
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
VINKLER P, 1987, SCIENTOMETRICS, V12, P47, DOI 10.1007/BF02016689
Vyas V., 2020, ARTICLE CITATION STU
Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334
Yan EJ, 2020, J ASSOC INF SCI TECH, V71, P314, DOI 10.1002/asi.24237
Zhou LN, 2020, INFORM SYST FRONT, V22, P77, DOI 10.1007/s10796-018-9889-9
NR 35
TC 6
Z9 6
U1 7
U2 48
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD FEB
PY 2022
VL 127
IS 2
BP 1161
EP 1186
DI 10.1007/s11192-021-04214-4
EA JAN 2022
PG 26
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA YY7GU
UT WOS:000749747600005
DA 2024-09-05
ER
PT J
AU Zhu, YB
Chen, XY
Wang, G
Zhong, ZC
Zhuang, M
AF Zhu, Yuanbing
Chen, Xueying
Wang, Gang
Zhong, Zuchang
Zhuang, Meier
TI Research on the impact of home country patent level on outward foreign
direct investment: Empirical analysis via equal part linear regression
model and Grey Computing (Publication with Expression of Concern)
SO INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION
LA English
DT Article; Early Access; Publication with Expression of Concern
DE Patent level; outward foreign direct investment; equal part linear
regression; Grey Computing
ID DETERMINANTS
AB From the practice of developed countries, countries with higher patent applications and PCT patent applications (such as the United States, China, Japan, the United Kingdom, Germany, etc.) have relatively higher outward foreign direct investment, and the actual data of provinces in China also show that with the improvement of the patent level in various provinces and cities, the intensity of outward foreign direct investment in each province and city has also increased. At present, there are relatively few research data and the research method is relatively single. Therefore, collecting panel data on China's 31 provinces from 2003 to 2016, this paper conducts an empirical analysis on the influence of patent level on outward foreign direct investment via analytical method of equal part linear regression and Grey Computing. By comparing analysis results with the model and the results with conventional linear regression model, the difference of different regression models is observed. Furthermore, the impact of China's patent level on China's inter-provincial outward foreign direct investment is further analyzed.
C1 [Zhu, Yuanbing] Jinan Univ, Sch Int Studies, Guangzhou, Peoples R China.
[Chen, Xueying; Wang, Gang; Zhong, Zuchang; Zhuang, Meier] Guangdong Univ Foreign Studies, Sch Business, Guangzhou, Peoples R China.
C3 Jinan University; Guangdong University of Foreign Studies
RP Wang, G (corresponding author), Guangdong Univ Foreign Studies, Sch Business, Guangzhou, Peoples R China.
EM 13570105916@163.com
RI Li, Huizhen/JPX-2563-2023; Guo, yongqing/KDS-5864-2024
FU Humanities and Social Sciences Planning Project of the Ministry of
Education [15YJA630067]; Soft Science Project of the Science and
Technology Program of Guangdong Province [2015A070704055]; 12th
Five-year Plan Program of Philosophy and Social Science in Guangdong
Province [GD14CGL11]; National Natural Science Foundation of China
[71673064, 71974039]; National Natural Science Foundation of Guangdong
[2019A1515011475]; Innovation team project (HUMANITIES AND SOCIAL
SCIENCES) of universities in Guangdong [2017WCXTD003]; Guangdong
University of Foreign Studies [6]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: The
research is supported by the Humanities and Social Sciences Planning
Project of the Ministry of Education (Grant: 15YJA630067), Soft Science
Project of the Science and Technology Program of Guangdong Province
(Grant: 2015A070704055), and the 12th Five-year Plan Program of
Philosophy and Social Science in Guangdong Province (Grant: GD14CGL11),
the National Natural Science Foundation of China (Grant:
71673064;71974039), the National Natural Science Foundation of Guangdong
(Grant: 2019A1515011475), Innovation team project (HUMANITIES AND SOCIAL
SCIENCES) of universities in Guangdong (Grant: 2017WCXTD003), Regional
and national projects of Guangdong University of Foreign Studies in 2018
(Grant: 6).
CR Chang SC, 2014, GLOBAL ECON REV, V43, P244, DOI 10.1080/1226508X.2014.930670
Cheung YW, 2012, REV INT ECON, V20, P201, DOI 10.1111/j.1467-9396.2012.01017.x
Gong J., 2014, IND EC REV, V5, P150
Juan L, 2019, 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), P1, DOI 10.1109/ICITBS.2019.00009
Kolstad I, 2012, J WORLD BUS, V47, P26, DOI 10.1016/j.jwb.2010.10.017
Li J, 2016, INT BUS REV, V25, P1010, DOI 10.1016/j.ibusrev.2016.01.008
Luo XY, 2009, J WORLD BUS, V45, P68
Pan WT, 2017, EURASIA J MATH SCI T, V13, P5765, DOI 10.12973/eurasia.2017.01026a
Tao T, 2009, REFORM STRATEGY, V25, P152
Yanan H., 2017, SHANGHAI FIN, P14
Yue C., 2018, MODERN BUS TRADE IND, V39, P50
Zhang XX, 2011, EMERG MARK REV, V12, P389, DOI 10.1016/j.ememar.2011.06.001
NR 12
TC 2
Z9 2
U1 1
U2 16
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0020-7209
EI 2050-4578
J9 INT J ELEC ENG EDUC
JI Int. J. Elec. Eng. Educ.
PD 2020 MAY 31
PY 2020
AR 0020720920922517
DI 10.1177/0020720920922517
EA MAY 2020
PG 15
WC Education, Scientific Disciplines; Engineering, Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Education & Educational Research; Engineering
GA LT6NC
UT WOS:000537184500001
DA 2024-09-05
ER
PT J
AU Liu, LJ
Wu, H
Wang, JW
Yang, TY
AF Liu, Lanjun
Wu, Han
Wang, Junwu
Yang, Tingyou
TI Research on the evaluation of the resilience of subway station projects
to waterlogging disasters based on the projection pursuit model
SO MATHEMATICAL BIOSCIENCES AND ENGINEERING
LA English
DT Article
DE subway station project; waterlogging disasters; resilience capability;
projection pursuit model; quantum particle swarm optimization
ID PARTICLE SWARM OPTIMIZATION; RISK-ASSESSMENT; ALGORITHM; POWER
AB To improve sustainable development, increasingly more attention has been paid to the evaluation of the resilience to waterlogging disasters. This paper proposed a projection pursuit model (PPM) improved by quantum particle swarm optimization (QPSO) for the evaluation of the resilience of subway station projects to waterlogging disasters. In view of the lack of research results related to the evaluation of the resilience of subway station projects to waterlogging disasters, 16 secondary indicators that affected the ability of subway station projects to recover from waterlogging disasters were identified from defense, recovery, and adaptability, for the first time. A PPM improved by QPSO was then proposed to effectively deal with the high-dimensional data about the resilience of subway station projects to waterlogging disasters. The QPSO was used to solve the best projection vector of the PPM, and interpolation algorithm was used to construct the mathematical model of evaluation. Finally, four station projects of Chengdu Metro Line 11 in China were selected for a case study analysis. The case study revealed that, among the secondary indicators, the emergency plan of construction order, the exercise frequency of emergency plans, and relief supplies had the greatest weights. The recovery was found to be the most important in the primary indicators. The values of the resilience of Lushan Avenue Station, Miaoeryan Station, Shenyang Road Station, and Tianfu CBD North Station to waterlogging disasters were found to be 2, 1.6571, 2.8318, and 3 respectively. This resilience ranking was consistent with the actual disaster situation in the flood season of 2019. In addition, the case study results showed that QPSO had the advantages of fewer parameter settings and a faster convergence speed as compared with PSO and the genetic algorithm.
C1 [Liu, Lanjun] Wuhan Inst Technol, Sch Civil Engn & Architecture, Wuhan 430070, Peoples R China.
[Wu, Han; Wang, Junwu] Wuhan Univ Technol, Sch Civil Engn & Architecture, Wuhan 430070, Peoples R China.
[Yang, Tingyou] CCTEB Infrastruct Construct Investment Co Ltd, Wuhan 430070, Peoples R China.
C3 Wuhan Institute of Technology; Wuhan University of Technology
RP Wu, H (corresponding author), Wuhan Univ Technol, Sch Civil Engn & Architecture, Wuhan 430070, Peoples R China.
EM wu.han@whut.edu.cn
RI Wu, Han/JXN-2469-2024
OI wu, han/0000-0001-5827-0159
FU Science and Technology Project of Wuhan Urban and Rural Construction
Bureau, China [201943]
FX This paper is supported by the Science and Technology Project of Wuhan
Urban and Rural Construction Bureau, China (201943).
CR Adger WN, 2005, SCIENCE, V309, P1036, DOI 10.1126/science.1112122
Alajmi MS, 2020, MATERIALS, V13, DOI 10.3390/ma13132986
Ardabili SF, 2018, ENG APPL COMP FLUID, V12, P438, DOI 10.1080/19942060.2018.1452296
Ayesha S, 2020, INFORM FUSION, V59, P44, DOI 10.1016/j.inffus.2020.01.005
Banan A, 2020, AQUACULT ENG, V89, DOI 10.1016/j.aquaeng.2020.102053
Berro A, 2010, ANN MATH ARTIF INTEL, V60, P153, DOI 10.1007/s10472-010-9211-0
Bozza A, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9010103
Carrasco J, 2020, SWARM EVOL COMPUT, V54, DOI 10.1016/j.swevo.2020.100665
Chalermchaiarbha S, 2012, ELECTR POW COMPO SYS, V40, P1562, DOI 10.1080/15325008.2012.707288
Chang MS, 2007, TRANSPORT RES E-LOG, V43, P737, DOI 10.1016/j.tre.2006.10.013
Cheng CT, 2015, WATER-SUI, V7, P4232, DOI 10.3390/w7084232
Chin VJ, 2019, SOL ENERGY, V194, P656, DOI 10.1016/j.solener.2019.10.093
Cui P, 2019, SOC SCI QUART, V100, P2059, DOI 10.1111/ssqu.12699
Cutter SL, 2016, ANN AM ASSOC GEOGR, V106, P1236, DOI 10.1080/24694452.2016.1194740
Czarn A, 2004, IEEE T EVOLUT COMPUT, V8, P405, DOI 10.1109/TEVC.2004.831262
Derrac J, 2014, INFORM SCIENCES, V289, P41, DOI 10.1016/j.ins.2014.06.009
Elloumi W, 2014, J INTELL FUZZY SYST, V27, P515, DOI 10.3233/IFS-131020
Fang W, 2010, IETE TECH REV, V27, P336, DOI 10.4103/0256-4602.64601
Fu YG, 2012, IEEE T SYST MAN CY A, V42, P511, DOI 10.1109/TSMCA.2011.2159586
Gong JW, 2020, CONSTR BUILD MATER, V238, DOI 10.1016/j.conbuildmat.2019.117666
Hassan BA, 2020, DATA BRIEF, V28, DOI 10.1016/j.dib.2019.105046
Hunt S, 2018, AUST J PUBL ADMIN, V77, P482, DOI 10.1111/1467-8500.12320
Igel C, 2007, EVOL COMPUT, V15, P1, DOI 10.1162/evco.2007.15.1.1
Ji B, 2014, INT J PATTERN RECOGN, V28, DOI 10.1142/S0218001414530024
Khodadadi H, 2018, DISASTER MED PUBLIC, V12, P493, DOI 10.1017/dmp.2017.113
Lai WL, 2017, J MT SCI-ENGL, V14, P898, DOI 10.1007/s11629-016-4035-y
Lan ZG, 2018, NAT HAZARDS, V91, P1165, DOI 10.1007/s11069-018-3172-8
Leichenko R, 2011, CURR OPIN ENV SUST, V3, P164, DOI 10.1016/j.cosust.2010.12.014
Li GF, 2013, STOCH ENV RES RISK A, V27, P1683, DOI 10.1007/s00477-013-0706-1
Lin T, 2018, HABITAT INT, V71, P88, DOI 10.1016/j.habitatint.2017.11.013
Liu D, 2019, J CLEAN PROD, V241, DOI 10.1016/j.jclepro.2019.118406
Liu YM, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12081301
Lo AY, 2016, GEOGR RES-AUST, V54, P406, DOI 10.1111/1745-5871.12179
Lu YH, 2015, AER ADV ENG RES, V39, P94
Lyu HM, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051682
Meng K, 2010, IEEE T POWER SYST, V25, P215, DOI 10.1109/TPWRS.2009.2030359
Passos MHP, 2017, J PEDIAT-BRAZIL, V93, P200, DOI 10.1016/j.jped.2016.06.006
Renjith VR, 2010, J HAZARD MATER, V183, P103, DOI 10.1016/j.jhazmat.2010.06.116
Sun J, 2004, IEEE C EVOL COMPUTAT, P325
Sun J, 2012, INFORM SCIENCES, V193, P81, DOI 10.1016/j.ins.2012.01.005
Suwal N, 2020, RENEW ENERG, V158, P453, DOI 10.1016/j.renene.2020.05.161
Talbi H, 2017, APPL SOFT COMPUT, V61, P765, DOI 10.1016/j.asoc.2017.07.046
Taormina R, 2015, ENG APPL ARTIF INTEL, V45, P429, DOI 10.1016/j.engappai.2015.07.019
Turner BL, 2003, P NATL ACAD SCI USA, V100, P8074, DOI 10.1073/pnas.1231335100
Wang GG, 2016, NEURAL COMPUT APPL, V27, P989, DOI 10.1007/s00521-015-1914-z
Wang SJ, 2006, INT J ENVIRON POLLUT, V28, P253, DOI 10.1504/IJEP.2006.011210
Wu C, 2004, PROG SAFETY SCI TECH, V4, P3
Wu CL, 2013, ENG APPL ARTIF INTEL, V26, P997, DOI 10.1016/j.engappai.2012.05.023
Wu H., 2020, ADV CIV ENG, V2020
Yang K, 2018, ADV SPACE RES, V62, P2998, DOI 10.1016/j.asr.2018.08.006
Yi W, 2007, EUR J OPER RES, V179, P1177, DOI 10.1016/j.ejor.2005.03.077
Yin ZE, 2011, J GEOGR SCI, V21, P274, DOI 10.1007/s11442-011-0844-7
Yoshida H, 2000, IEEE T POWER SYST, V15, P1232, DOI 10.1109/59.898095
Yu HY, 2019, ADV CIV ENG, V2019, DOI 10.1155/2019/5393171
Yumin D, 2014, MATH PROBL ENG, V2014, DOI 10.1155/2014/592682
Zeng JJ, 2018, HYDROL RES, V49, P1143, DOI 10.2166/nh.2017.265
Zhang QQ, 2019, IEEE ACCESS, V7, P157353, DOI 10.1109/ACCESS.2019.2948197
Zhi GZ, 2020, J ENVIRON MANAGE, V268, DOI 10.1016/j.jenvman.2020.110521
NR 58
TC 21
Z9 23
U1 13
U2 107
PU AMER INST MATHEMATICAL SCIENCES-AIMS
PI SPRINGFIELD
PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA
SN 1547-1063
EI 1551-0018
J9 MATH BIOSCI ENG
JI Math. Biosci. Eng.
PY 2020
VL 17
IS 6
BP 7302
EP 7331
DI 10.3934/mbe.2020374
PG 30
WC Mathematical & Computational Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematical & Computational Biology
GA QL6KW
UT WOS:000621193600009
PM 33378898
OA gold
DA 2024-09-05
ER
PT J
AU Boffa, E
Maffei, A
AF Boffa, Eleonora
Maffei, Antonio
TI How does Manufacturing Strategy Impact the Goals of a Firm? A Relational
Framework Characterizing the Related Business Models' Components
SO MANAGEMENT AND PRODUCTION ENGINEERING REVIEW
LA English
DT Article
DE Business models; Manufacturing model; Scientometric analysis; Topic
modelling; Latent Dirichlet Allocation
ID INDUSTRY 4.0; INNOVATION; PATTERNS
AB The fourth industrial revolution has resulted in technology advancements in the manufacturing industry. However, the innovation potential embedded in these technologies should be unlocked by a viable application, i.e., the business model (BM). The BM as a holistic concept featuring different interacting elements is thus emerging as a promising vehicle for innovation. Current BM research describes the entire domain but lacks depth in the characterization of its individual components. This paper investigates the available manufacturing literature through the lens of the BM concept performing a scientometric analysis. The results are presented in a relational framework that provides an in-depth characterization of the manufacturing element of the BM and highlights identified connections that link the BM components. This is the basis for tools that will support firms in developing manufacturing portfolios aligned with their strategic goals.
C1 [Boffa, Eleonora; Maffei, Antonio] KTH Royal Inst Technol, Prod Engn, Stockholm, Sweden.
[Boffa, Eleonora] KTH royal Inst technol, Stockholm, Sweden.
C3 Royal Institute of Technology; Royal Institute of Technology
RP Boffa, E (corresponding author), KTH royal Inst technol, Stockholm, Sweden.
EM boffa@kth.se
OI Boffa, Eleonora/0000-0003-4847-3723; /0000-0002-0723-1712
CR Afuah Allan., 2001, Internet business models and strategies
Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7
Björkdahl J, 2020, CALIF MANAGE REV, V62, P17, DOI 10.1177/0008125620920349
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Casadesus-Masanell R, 2010, LONG RANGE PLANN, V43, P195, DOI 10.1016/j.lrp.2010.01.004
Chang J, 2009, Adv. Neural Inf. Process. Syst., P288
CHASE RB, 1987, J MANAGE, V13, P351, DOI 10.1177/014920638701300210
Chesbrough, 2007, STRATEGY LEADERSHIP, V35, P12, DOI [10.1108/10878570710833714, DOI 10.1108/10878570710833714]
Chesbrough H, 2002, IND CORP CHANGE, V11, P529, DOI 10.1093/icc/11.3.529
Chesbrough H.W., 2007, MITSloan Management Review [Online]. Available
Chuang J, 2012, PROCEEDINGS OF THE INTERNATIONAL WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES, P74, DOI 10.1145/2254556.2254572
D'Amato D, 2017, J CLEAN PROD, V168, P716, DOI 10.1016/j.jclepro.2017.09.053
DaSilva CM, 2014, LONG RANGE PLANN, V47, P379, DOI 10.1016/j.lrp.2013.08.004
Davies R, 2015, DIGITALISATION PRODU
Demil B, 2010, LONG RANGE PLANN, V43, P227, DOI 10.1016/j.lrp.2010.02.004
Fettermann DC, 2018, J IND PROD ENG, V35, P255, DOI 10.1080/21681015.2018.1462863
Foss NJ, 2017, J MANAGE, V43, P200, DOI 10.1177/0149206316675927
Frank AG, 2019, INT J PROD ECON, V210, P15, DOI 10.1016/j.ijpe.2019.01.004
George G, 2011, ENTREP THEORY PRACT, V35, P83, DOI 10.1111/j.1540-6520.2010.00424.x
Hamel G., 2001, Strategy Leadersh, V29, P4, DOI DOI 10.1108/10878570110367141
Ibarra D, 2018, PROCEDIA MANUF, V22, P4, DOI 10.1016/j.promfg.2018.03.002
Johnson MW, 2008, HARVARD BUS REV, V86, P50
Knutas A., 2015, P 16 INT C COMPUTER, V1008, P184, DOI [10.1145/2812428, 10.1145/2812428.2812442, DOI 10.1145/2812428.2812442]
Magretta J, 2002, HARVARD BUS REV, V80, P86
Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754
McKinsey Digital, 2015, Industrie 4.0. How to navigate the digitization of the manufacturing sector
Morris M, 2005, J BUS RES, V58, P726, DOI 10.1016/j.jbusres.2003.11.001
Mugge P, 2020, RES TECHNOL MANAGE, V63, P27, DOI 10.1080/08956308.2020.1707003
Osterwalder A., 2010, BUSINESS MODEL GENER
Osterwalder A., 2004, THESIS U LAUSANNE
Petrovic O., 2001, Developing Business Models for Ebusiness
Pirola F, 2020, COMPUT IND, V123, DOI 10.1016/j.compind.2020.103301
Pooya A, 2017, J IND PROD ENG, V34, P300, DOI 10.1080/21681015.2017.1305996
Ritter T, 2018, LONG RANGE PLANN, V51, P1, DOI 10.1016/j.lrp.2017.07.005
Schaffer N., 2019, MCIS 2019 P
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Teece DJ, 2018, LONG RANGE PLANN, V51, P40, DOI 10.1016/j.lrp.2017.06.007
Teece DJ, 2010, LONG RANGE PLANN, V43, P172, DOI 10.1016/j.lrp.2009.07.003
Weking J, 2020, INT J PROD ECON, V225, DOI 10.1016/j.ijpe.2019.107588
Wirtz BW, 2016, LONG RANGE PLANN, V49, P36, DOI 10.1016/j.lrp.2015.04.001
Yip G.S., 2004, BUS STRAT REV, V15, P17, DOI DOI 10.1111/J.0955-6419.2004.00308.X
Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8
Zott C, 2011, J MANAGE, V37, P1019, DOI 10.1177/0149206311406265
NR 43
TC 0
Z9 0
U1 0
U2 0
PU POLSKA AKAD NAUK, POLISH ACAD SCIENCES
PI WARSZAWA
PA PL DEFILAD 1, WARSZAWA, 00-901, POLAND
SN 2080-8208
EI 2082-1344
J9 MANAG PROD ENG REV
JI Manag. Prod. Eng. Rev.
PD JUN
PY 2023
VL 14
IS 2
BP 18
EP 36
DI 10.24425/mper.2023.146020
PG 19
WC Engineering, Industrial
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA O6OA6
UT WOS:001044966600002
OA gold
DA 2024-09-05
ER
PT J
AU Sharma, A
Koohang, A
Rana, NP
Abed, SS
Dwivedi, YK
AF Sharma, Anuj
Koohang, Alex
Rana, Nripendra P.
Abed, Salma S.
Dwivedi, Yogesh K.
TI Journal of Computer Information Systems: Intellectual and Conceptual
Structure
SO JOURNAL OF COMPUTER INFORMATION SYSTEMS
LA English
DT Article
DE Scientometric analysis; topic modeling; structural topic models;
co-citation analysis; keyword co-occurrence analysis
ID TECHNOLOGY ACCEPTANCE MODEL; USER ACCEPTANCE; CONSUMER-BEHAVIOR;
PERCEIVED EASE; E-COMMERCE; COCITATION; KNOWLEDGE; CITATION; TRUST;
USAGE
AB This study examines the intellectual and conceptual structure of the Journal of Computer Information Systems (JCIS) from 1995 to 2021. The evolution of the key topics and the performance of different actors like the key publications, authors, institutions, countries, etc., are reported using a hybrid methodology based upon scientometrics and topic modeling. The latent topics are discovered using structural topic models, and the temporal deviation in the topic prevalences from 1995 to 2021 is visualized. Further, this study reports the most prominent articles, themes, and collaboration patterns using co-citation network analysis, assessment of keywords co-occurrences, and exploration of coauthorship patterns. Finally, the disciplinary influences and knowledge exchange across disciplines are reported. The most significant findings from the study reveal that themes such as "Information Security and Privacy," "Social Commerce and Social Networking Sites," "Social Media, Web Search and User Satisfaction," "Big Data Analytics and Cloud Computing, and "ICT for Economic Development and Empowerment" may become the hotspot for future research. The social exchange of knowledge reveals intra-disciplinarity, where JCIS gets most of the knowledge from the information systems domain itself. However, closest associations with the general business domain, computer science, marketing, organization science, and psychology for knowledge inflows make JCIS a net knowledge receiver.
C1 [Sharma, Anuj] Chandragupt Inst Management Patna, Patna, Bihar, India.
[Koohang, Alex] Middle Georgia State Univ, Macon, GA USA.
[Rana, Nripendra P.] Qatar Univ, Coll Business & Econ, Doha, Qatar.
[Abed, Salma S.] King Abdulaziz Univ, Rabigh, Saudi Arabia.
[Dwivedi, Yogesh K.] Swansea Univ, Swansea, W Glam, Wales.
[Dwivedi, Yogesh K.] Pune & Symbiosis Int Deemed Univ, Symbiosis Inst Business Management, Pune, Maharashtra, India.
C3 Qatar University; King Abdulaziz University; Swansea University;
Symbiosis International University; Symbiosis Institute of Business
Management (SIBM) Pune
RP Dwivedi, YK (corresponding author), Swansea Univ, Sch Management, Emerging Markets Res Ctr Emarc, Bay Campus, Swansea SA1 8EN, W Glam, Wales.
EM y.k.dwivedi@swansea.ac.uk
RI Dwivedi, Yogesh Kumar/A-5362-2008; Rana, Nripendra P./ABA-4719-2020;
Abed, Salma S./AAU-7092-2021; Sharma, Anuj/AAE-5767-2020; Sharma,
Anuj/JTS-4887-2023
OI Dwivedi, Yogesh Kumar/0000-0002-5547-9990; Rana, Nripendra
P./0000-0003-1105-8729; Sharma, Anuj/0000-0001-6602-9285; Sharma,
Anuj/0000-0002-6281-6115; Koohang, Alex/0000-0002-4565-0408; Shodmonov,
Ruslan/0000-0002-8723-2378
CR Agarwal R, 2016, INFORM SYST RES, V27, P471, DOI 10.1287/isre.2016.0670
AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T
Alsudairi M, 2010, J ENTERP INF MANAG, V23, P215, DOI 10.1108/17410391011019787
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Bai XW, 2021, TRANSPORT POLICY, V102, P11, DOI 10.1016/j.tranpol.2020.12.013
Baker HK, 2021, INT REV FINANC ANAL, V78, DOI 10.1016/j.irfa.2021.101946
Bhattacherjee A, 2001, MIS QUART, V25, P351, DOI 10.2307/3250921
Blei D., 2006, Advances in Neural Information Processing Systems, V18, P147
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907
Chin WW, 1998, QUANT METH SER, P295
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
COMPEAU DR, 1995, MIS QUART, V19, P189, DOI 10.2307/249688
DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
DeLone WH, 1992, INFORM SYST RES, V3, P60, DOI 10.1287/isre.3.1.60
Dwivedi YK, 2010, J ENTERP INF MANAG, V23, P8, DOI 10.1108/17410391011008888
Dwivedi YK, 2010, J ENTERP INF MANAG, V23, P673, DOI 10.1108/17410391011088583
Dwivedi YK, 2009, INFORM SYST FRONT, V11, P87, DOI 10.1007/s10796-008-9147-7
Dwivedi YK, 2008, EUR J INFORM SYST, V17, P678, DOI 10.1057/ejis.2008.57
FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312
Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519
Gefen D, 2000, OMEGA-INT J MANAGE S, V28, P725, DOI 10.1016/S0305-0483(00)00021-9
Hughes DL, 2016, PROD PLAN CONTROL, V27, P1313, DOI 10.1080/09537287.2016.1217571
Jeyaraj A, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102226
Martin KD, 2021, J PUBLIC POLICY MARK, V40, P301, DOI 10.1177/07439156211018689
Mathieson K, 1991, INFORM SYST RES, V2, P173, DOI 10.1287/isre.2.3.173
MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792
Mcknight DH, 1998, ACAD MANAGE REV, V23, P473, DOI 10.5465/AMR.1998.926622
McKnight DH, 2002, INFORM SYST RES, V13, P334, DOI 10.1287/isre.13.3.334.81
Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044
Nelson MR, 2017, J ADVERTISING, V46, P309, DOI 10.1080/00913367.2016.1277379
Nunkoo R, 2023, J SUSTAIN TOUR, V31, P735, DOI 10.1080/09669582.2021.2004416
Park E, 2018, INT J CONTEMP HOSP M, V30, P3386, DOI 10.1108/IJCHM-11-2017-0714
Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879
Radhakrishnan S, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172778
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Sarin S, 2020, TECHNOL FORECAST SOC, V160, DOI 10.1016/j.techfore.2020.120210
Sharma A, 2021, ANN TOURISM RES, V91, DOI 10.1016/j.annals.2021.103142
Sharma A, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102316
Shiau WL, 2017, INT J INFORM MANAGE, V37, P390, DOI 10.1016/j.ijinfomgt.2017.04.007
Shiau WL, 2013, SCIENTOMETRICS, V94, P1317, DOI 10.1007/s11192-012-0807-5
Singh S, 2020, TECHNOL FORECAST SOC, V154, DOI 10.1016/j.techfore.2020.119963
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
SMALL HG, 1977, SOC STUD SCI, V7, P139, DOI 10.1177/030631277700700202
TAYLOR S, 1995, INFORM SYST RES, V6, P144, DOI 10.1287/isre.6.2.144
THOMPSON RL, 1991, MIS QUART, V15, P125, DOI 10.2307/249443
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Vanhala M, 2020, J BUS RES, V106, P46, DOI 10.1016/j.jbusres.2019.09.009
Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926
Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540
Venkatesh V, 2000, INFORM SYST RES, V11, P342, DOI 10.1287/isre.11.4.342.11872
Verma S, 2021, J INTERACT MARK, V53, P111, DOI 10.1016/j.intmar.2020.07.001
Wang X, 2015, J CONSUM RES, V42, P5, DOI 10.1093/jcr/ucv009
Zhang Y, 2017, KNOWL-BASED SYST, V133, P255, DOI 10.1016/j.knosys.2017.07.011
Zinkhan GM, 1999, J ADVERTISING, V28, P51, DOI 10.1080/00913367.1999.10673583
ZINKHAN GM, 1992, J CONSUM RES, V19, P282, DOI 10.1086/209302
NR 61
TC 14
Z9 14
U1 1
U2 28
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0887-4417
EI 2380-2057
J9 J COMPUT INFORM SYST
JI J. Comput. Inf. Syst.
PD JAN 2
PY 2023
VL 63
IS 1
BP 37
EP 67
DI 10.1080/08874417.2021.2021114
EA JAN 2022
PG 31
WC Computer Science, Information Systems
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 8I3KY
UT WOS:000744778600001
OA Green Submitted
DA 2024-09-05
ER
PT C
AU Amerika, M
Kim, LH
Gallagher, B
AF Amerika, Mark
Kim, Laura Hyunjhee
Gallagher, Brad
GP Assoc Comp Machinery
TI Fatal Error: Artificial Creative Intelligence (ACI)
SO CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS
IN COMPUTING SYSTEMS
LA English
DT Proceedings Paper
CT ACM CHI Conference on Human Factors in Computing Systems (CHI)
CY APR 25-30, 2020
CL Honolulu, HI
DE Artificial intelligence; Arts; Poetry; Persona; Performance;
Practice-based Research
AB Computer-generated algorithmic art has undergone significant developments since its emergence in the 1960s. With further integration of art and technology in the 21st century, artists continue to respond, take risks and challenge the ways computers can be thought of as a creative medium. This project specifically addresses speculative forms of artificial intelligence particularly the possibilities for creative collaboration between human and machine-generated embodiments of poetic expression. The Artificial Creative Intelligence (ACI) is a fictional AI Poet whose spoken word poetry signals the horizon of a new type of authorship that questions the philosophical implications of artificial intelligence for creative practitioners.
C1 [Amerika, Mark] Univ Colorado, Art & Art Hist, Boulder, CO 80309 USA.
[Kim, Laura Hyunjhee; Gallagher, Brad] Univ Colorado, Intermedia Art Writing & Performance, Boulder, CO 80309 USA.
C3 University of Colorado System; University of Colorado Boulder;
University of Colorado System; University of Colorado Boulder
RP Amerika, M (corresponding author), Univ Colorado, Art & Art Hist, Boulder, CO 80309 USA.
EM mark.amerika@colorado.edu; laura.h.kim@colorado.edu;
jonathan.gallagher@colorado.edu
FU University of Colorado's College of Media, Communication and
Information; College of Arts and Sciences; Professor of Distinction Fund
FX The University of Colorado's College of Media, Communication and
Information, the College of Arts and Sciences and the Professor of
Distinction Fund have all provided support for this project.
CR Amerika Mark., 2011, REMIXTHEBOOK
Amerika Mark, 2018, REMIXTHECONTEXT
Amerika Mark., 2007, Meta Data, A Digital Poetics
Burdick A, 2019, J FUTURES STUD, V23, P75, DOI 10.6531/JFS.201903_23(3).0006
Coulton Paul, 2019, J CONTRIBUTION 0411, DOI [10.6084/m9.figshare.4746964.v1, DOI 10.6084/M9.FIGSHARE.4746964.V1]
Craig C., 2020, OSGOODE LEGAL STUDIE, V52, P31, DOI [10.2139/ssrn.3374951, DOI 10.2139/SSRN.3374951]
Devendorf Laura, P MICI 2017 CHI WORK
Dunne Anthony, 2013, SPECULATIVE EVERYTHI, P125
Haraway Donna J, 2000, Posthumanism, P69, DOI DOI 10.1007/978-1-4020-3803-7_4
Kang L.L., 2018, INTERACTIONS, V25, P78, DOI [10.11453177816////, DOI 10.1145/3177816]
Leahu Lucian, P 7 ACM C DES INT SY, P203
Marenko Betti, 2018, HYBRID ECOLOGIES DIA
Weigel Moira, 2019, LOGIC MAGAZINE
NR 13
TC 2
Z9 3
U1 2
U2 19
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 978-1-4503-6819-3
PY 2020
AR ALT10
DI 10.1145/3334480.3381815
PG 9
WC Computer Science, Cybernetics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BQ9OG
UT WOS:000626317801035
DA 2024-09-05
ER
PT J
AU Zuccala, A
van Someren, M
van Bellen, M
AF Zuccala, Alesia
van Someren, Maarten
van Bellen, Maurits
TI A Machine-Learning Approach to Coding Book Reviews as Quality
Indicators: Toward a Theory of Megacitation
SO JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE bibliometrics; book reviews; machine learning
ID CITATION CHARACTERISTICS; HUMANITIES; SCIENCE; SCHOLARLINESS;
PUBLISHERS; MONOGRAPHS; BEHAVIOR; COUNTS; IMPACT
AB A theory of megacitation is introduced and used in an experiment to demonstrate how a qualitative scholarly book review can be converted into a weighted bibliometric indicator. We employ a manual human-coding approach to classify book reviews in the field of history based on reviewers' assessments of a book author's scholarly credibility (SC) and writing style (WS). In total, 100 book reviews were selected from the American Historical Review and coded for their positive/negative valence on these two dimensions. Most were coded as positive (68% for SC and 47% for WS), and there was also a small positive correlation between SC and WS (r=0.2). We then constructed a classifier, combining both manual design and machine learning, to categorize sentiment-based sentences in history book reviews. The machine classifier produced a matched accuracy (matched to the human coding) of approximately 75% for SC and 64% for WS. WS was found to be more difficult to classify by machine than SC because of the reviewers' use of more subtle language. With further training data, a machine-learning approach could be useful for automatically classifying a large number of history book reviews at once. Weighted megacitations can be especially valuable if they are used in conjunction with regular book/journal citations, and libcitations (i.e., library holding counts) for a comprehensive assessment of a book/monograph's scholarly impact.
C1 [Zuccala, Alesia] Univ Amsterdam, Inst Log Language & Computat, Fac Humanities, NL-1090 GE Amsterdam, Netherlands.
[van Someren, Maarten; van Bellen, Maurits] Univ Amsterdam, Fac Sci, Inst Informat, NL-1098 XG Amsterdam, Netherlands.
C3 University of Amsterdam; University of Amsterdam
RP Zuccala, A (corresponding author), Univ Amsterdam, Inst Log Language & Computat, Fac Humanities, Sci Pk 105, NL-1090 GE Amsterdam, Netherlands.
EM a.a.zuccala@uva.nl; m.w.vansomeren@uva.nl; mauritsvanbellen@gmail.com
CR [Anonymous], CITATION INDEXING IT
[Anonymous], 1984, The citation process: The role and significance of citations in scientific communication
Bilhartz T. D., 1984, HIST TEACHER, V17, P525
Blake V.L., 1989, Collection Management, V11, P1
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555
Carlo P. W., 1996, COLLECTION MANAGEMEN, V20, P97
Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H
CHAMPION DJ, 1973, AM J SOCIOL, V78, P1256, DOI 10.1086/225431
CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403
COLE S, 1967, AM SOCIOL REV, V32, P377, DOI 10.2307/2091085
Cozzens S.E., 1981, ISSK Newsletter on the New Directions in the Sociology of Science, V7, P16
COZZENS SE, 1989, SCIENTOMETRICS, V15, P437, DOI 10.1007/BF02017064
CRONIN B, 1994, J AM SOC INFORM SCI, V45, P537, DOI 10.1002/(SICI)1097-4571(199408)45:7<537::AID-ASI8>3.0.CO;2-Q
Cronin B, 1997, J DOC, V53, P263, DOI 10.1108/EUM0000000007200
Cronin B, 1998, SCIENTOMETRICS, V43, P45, DOI 10.1007/BF02458393
CULLARS J, 1992, LIBR QUART, V62, P325, DOI 10.1086/602473
Cullars JM, 1998, LIBR INFORM SCI RES, V20, P41, DOI 10.1016/S0740-8188(98)90005-6
Dilevko J, 2006, J ACAD LIBR, V32, P452, DOI 10.1016/j.acalib.2006.07.001
DIODATO V, 1984, P AM SOC INFORM SCI, V21, P217
Feldman R., 2006, TEXT MINING HDB ADV
FROST CO, 1979, LIBR QUART, V49, P399
GARFIELD E, 1964, SCIENCE, V144, P649, DOI 10.1126/science.144.3619.649
GILBERT GN, 1977, SOC STUD SCI, V7, P113
Glenn NorvalD., 1978, Contemporary Sociology, V7, P254
Guillory J., 2005, ADE B, V137, P18
Hartley J., 2010, J TECHNICAL WRITING, V40, P473, DOI [10.2190/TW.40.4.g, DOI 10.2190/TW.40.4.G]
Hartley J, 2006, J AM SOC INF SCI TEC, V57, P1194, DOI 10.1002/asi.20399
Haustein S., 2012, MULTIDIMENSIONAL J E
Hirsch W., 1974, 81 PURD U I STUD SOC
Holton G., 1978, METRIC SCI ADVENT SC, P39
Jordy ML, 1999, COLL RES LIBR, V60, P132, DOI 10.5860/crl.60.2.132
KAPLAN N, 1965, AM DOC, V16, P179, DOI 10.1002/asi.5090160305
Knievel JE, 2005, LIBR QUART, V75, P142, DOI 10.1086/431331
Kousha K, 2011, J AM SOC INF SCI TEC, V62, P2147, DOI 10.1002/asi.21608
Lewison G, 2001, RES EVALUAT, V10, P89, DOI 10.3152/147154401781777051
Leydesdorff L, 1998, SCIENTOMETRICS, V43, P5, DOI 10.1007/BF02458391
LEYDESDORFF L, 1990, SCI TECHNOL HUM VAL, V15, P305, DOI 10.1177/016224399001500303
Lindholm-Romantschuk Y., 1998, Scholarly Book Reviewing in the Social Sciences and Humanities: The Flow of Ideas within and among Disciplines
Maricic S, 1998, J AM SOC INFORM SCI, V49, P530, DOI 10.1002/(SICI)1097-4571(19980501)49:6<530::AID-ASI5>3.0.CO;2-U
Merton R. K., 1996, ISIS, V79, P606
Miranda E. O., 1996, J EDUC THOUGHT, V30, P101
Moed HF, 2005, INFORM SCI KNOWL MAN, V9, P1, DOI 10.1007/1-4020-3714-7
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Motta-Roth Desiree., 1998, Genre Studies in English for Academic Purposes, P29
Mullen T, 2004, PROC 2004 C EMPIRIC, P412
Natowitz A., 1997, AM HIST REV J AM HIS, V58, P322
Nederhof AJ, 2006, SCIENTOMETRICS, V66, P81, DOI 10.1007/s11192-006-0007-2
Nicolaisen J, 2002, COLIS4: EMERGING FRAMEWORKS AND METHODS, P123
Nicolaisen J, 2002, J DOC, V58, P383, DOI 10.1108/00220410210431118
Nicolaisen J, 2002, RES EVALUAT, V11, P129, DOI 10.3152/147154402781776808
Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704
Parker J. M., 1989, COLLECTION MANAGEMEN, V11, P41
Pichappan P, 1996, J AM SOC INFORM SCI, V47, P650, DOI 10.1002/(SICI)1097-4571(199608)47:8<650::AID-ASI9>3.0.CO;2-S
Prabowo R, 2009, J INFORMETR, V3, P143, DOI 10.1016/j.joi.2009.01.003
PRICE DJD, 1980, C EV SCI TECHN THEOR
RILEY LE, 1970, AM SOCIOL, V5, P358
Salvetti F, 2004, COLORADO RES LINGUIS, V17
SCHUBERT A, 1984, SCIENTOMETRICS, V6, P433, DOI 10.1007/BF02025830
Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283
SEREBNICK J, 1992, LIBR QUART, V62, P259
Small H, 2011, SCIENTOMETRICS, V87, P373, DOI 10.1007/s11192-011-0349-2
SMALL HG, 1978, SOC STUD SCI, V8, P327, DOI 10.1177/030631277800800305
SNIZEK WE, 1979, CONTEMP SOCIOL, V8, P339, DOI 10.2307/2064545
Spink A, 1998, J AM SOC INFORM SCI, V49, P364, DOI 10.1002/(SICI)1097-4571(19980401)49:4<364::AID-ASI6>3.0.CO;2-3
STOWE S, 1991, J AM HIST, V78, P591, DOI 10.2307/2079535
Tang HF, 2009, EXPERT SYST APPL, V36, P10760, DOI 10.1016/j.eswa.2009.02.063
Taylor W. R., 1967, THESIS PURDUE U W LA
Thelwall M, 2010, J AM SOC INF SCI TEC, V61, P2544, DOI 10.1002/asi.21416
Thomson Reuters, 2012, PUTT BOOKS BACK LIB
Torres-Salinas D, 2012, REV ESP DOC CIENT, V35, P615, DOI 10.3989/redc.2012.4.1010
Torres-Salinas D, 2009, J INFORMETR, V3, P9, DOI 10.1016/j.joi.2008.10.002
Turney PD, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P417
Van Raan AFJ, 1998, SCIENTOMETRICS, V43, P129, DOI 10.1007/BF02458401
Weiss S.M., 2010, Text Mining: Predictive Methods for Analyzing Unstructured Information, DOI 10.1007/978-0-387-34555-0
WHITE HD, 1981, J AM SOC INFORM SCI, V32, P163, DOI 10.1002/asi.4630320302
White HD, 2009, J AM SOC INF SCI TEC, V60, P1083, DOI 10.1002/asi.21045
Williams P, 2009, ASLIB PROC, V61, P67, DOI 10.1108/00012530910932294
Wouters P, 1999, SCIENTOMETRICS, V44, P561, DOI 10.1007/BF02458496
Zuccala A, 2011, J AM SOC INF SCI TEC, V62, P1979, DOI 10.1002/asi.21588
NR 80
TC 25
Z9 25
U1 1
U2 67
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2330-1635
EI 2330-1643
J9 J ASSOC INF SCI TECH
PD NOV
PY 2014
VL 65
IS 11
BP 2248
EP 2260
DI 10.1002/asi.23104
PG 13
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA AS4EE
UT WOS:000344225200007
DA 2024-09-05
ER
PT C
AU Khor, KA
Ko, G
Theseira, W
Cai, XQ
Goh, YC
AF Khor, Khiam Aik
Ko, Giovanni
Theseira, Walter
Cai, Xin Qing
Goh, Yeow Chong
BE Catalano, G
Daraio, C
Gregori, M
Moed, HF
Ruocco, G
TI Evaluating Human Versus Machine Learning Performance in Classifying
Research Abstracts
SO 17TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS
(ISSI2019), VOL II
SE Proceedings of the International Conference on Scientometrics and
Informetrics
LA English
DT Proceedings Paper
CT 17th International Conference of the
International-Society-for-Scientometrics-and-Informetrics (ISSI) on
Scientometrics and Informetrics
CY SEP 02-05, 2019
CL Sapienza Univ Rome, Rome, ITALY
HO Sapienza Univ Rome
AB Machine Learning (ML) methods are now applied to many problems in Scientometrics. Given sufficiently large training datasets, ML can efficiently complete natural language processing tasks such as classifying research abstracts and outputs, which otherwise require extensive manpower. But what are the relative strengths and limitations of ML methods versus human research assistance when training data is limited? Our study compares the performance of 63 student research assistants to that of an ML model. The task is classifying a research grant abstract into one of nineteen scientific funding areas in physical and life sciences defined by the European Research Council. We find that ML models, even trained on relatively small datasets, outperform the average human research assistant. While some research assistants perform at levels just below that of the ML models, the research assistants display lower inter-rater reliability. Crucially, human classification performance and reliability appears fixed over moderate levels of training and task exposure, suggesting that selecting research assistants based on pre-existing ability could be superior to relying on task-specific training. These results suggest ML classification may be superior to human research assistance for natural language processing tasks even when training datasets are limited.
C1 [Khor, Khiam Aik] Nanyang Technol Univ, Talent Recruitment & Career Support TRACS Off & B, 50 Nanyang Ave, Singapore 639798, Singapore.
[Ko, Giovanni] Singapore Management Univ, Sch Econ, 90 Stamford Rd, Singapore 178903, Singapore.
[Theseira, Walter] Singapore Univ Social Sci, Sch Business, 463 Clementi Rd, Singapore 599494, Singapore.
C3 Nanyang Technological University; Singapore Management University;
Singapore University of Social Sciences (SUSS)
RP Ko, G (corresponding author), Singapore Management Univ, Sch Econ, 90 Stamford Rd, Singapore 178903, Singapore.
EM mkakhor@ntu.edu.sg; giovanniko@smu.edu.sg; waltertheseira@suss.edu.sg;
xqcai@ntu.edu.sg; ycgoh@ntu.edu.sg
RI Khor, Michael/B-6929-2009; Theseira, Walter/AAW-2209-2020
OI Theseira, Walter/0000-0002-8738-2341
CR BUCKLAND M, 1994, J AM SOC INFORM SCI, V45, P12, DOI 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L
COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104
European Research Council, 2018, START GRANTS
FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619
Freyman CA, 2016, RES EVALUAT, V25, P442, DOI 10.1093/reseval/rvw016
Joachims T., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P137, DOI 10.1007/BFb0026683
Khor K. A., 2018, 23 INT C SCI TECHN I
King DA, 2004, NATURE, V430, P311, DOI 10.1038/430311a
McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031
Schubert J., 2010, Proceedings of the 13th International Conference on Information Fusion (FUSION 2010)
Simundic AM, 2009, CLIN CHEM LAB MED, V47, P1361, DOI 10.1515/CCLM.2009.306
Sing DC, 2017, SPINE, V42, P863, DOI 10.1097/BRS.0000000000002079
Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002
Surowiecki J., 2004, WISDOM CROWDS
Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8
NR 15
TC 0
Z9 0
U1 0
U2 2
PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI
PI LEUVEN
PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN,
B-3000, BELGIUM
SN 2175-1935
BN 978-88-3381-118-5
J9 PRO INT CONF SCI INF
PY 2019
BP 2157
EP 2162
PG 6
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BO2SO
UT WOS:000508227200085
DA 2024-09-05
ER
PT J
AU SCHIMINOVICH, S
AF SCHIMINOVICH, S
TI AUTOMATIC CLASSIFICATION OF BIBLIOGRAPHIC DATA BASES - MODEL FOR
COGNITIVE BIOLOGICAL PROCESSES AND ARTIFICIAL INTELLIGENCE
SO BIOSCIENCES COMMUNICATIONS
LA English
DT Article
C1 AMER INST PHYS,355 E 45 ST,NEW YORK,NY 10017.
CR FEINMAN RD, 1973, J AM SOC INFORM SCI, V24, P382, DOI 10.1002/asi.4630240510
LANCASTER FW, 1968, JAN HEW NAT LIBR MED
MACKAY DH, 1969, INFORMATION MECHANIS
MCCARTHY J, 1955, ANN MATH STUD, V34, P5
SALTON G, 1965, AM DOCUMENTAT, V16
SALTON G, 1965, COMMUN ACM, V8
SCHIMINOVICH S, 1971, INFORM STORAGE RET, V6, P417, DOI 10.1016/0020-0271(71)90008-8
NR 7
TC 1
Z9 1
U1 0
U2 3
PU KARGER
PI BASEL
PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND
SN 0378-9845
J9 BIOSCI COMMUN
PY 1975
VL 1
IS 1
BP 24
EP 39
PG 16
WC Communication; Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Communication; Information Science & Library Science
GA AT159
UT WOS:A1975AT15900003
DA 2024-09-05
ER
PT J
AU Kseoglu, MA
AF Koseoglu, Mehmet Ali
TI Identifying the intellectual structure of fields: introduction of the
MAK approach
SO SCIENTOMETRICS
LA English
DT Article
DE Co-citation analysis; Text-net analysis; LDA; Strategic management
ID STRATEGIC MANAGEMENT RESEARCH; INFORMATION-SYSTEMS; EVOLUTION; FUTURE
AB This study introduces MAK approach to investigate intellectual structure of fields which combines text-net analysis (TNA), latent dirichlet allocation (LDA), and co-citation analysis. Researchers have previously deployed co-citation analysis to reveal the intellectual structure of fields. However, in these applications, the research has two technical limitations-small representativeness in datasets analyzed and the primary consideration for dated documents-towards the co-citation analysis. These limitations impede the formation of a larger picture in the structure. The present study seeks to eliminate these limitations by utilizing TNA and LDA methods as topic modeling approaches for 38,368 journal articles as references with 125,154 appearances in 2680 articles published between 1980 and 2019 in theStrategic Management Journal(SMJ). We suggest researchers should embrace MAK approach as complementary approach to research, with its focus on the intellectual structures of the field. We provide a workflow to show potential research applications and address advantages and limitations associated with the two new methods.
C1 [Koseoglu, Mehmet Ali] Hong Kong Polytech Univ, Sch Hotel & Tourism Management, Kowloon, Hong Kong, Peoples R China.
C3 Hong Kong Polytechnic University
RP Kseoglu, MA (corresponding author), Hong Kong Polytech Univ, Sch Hotel & Tourism Management, Kowloon, Hong Kong, Peoples R China.
EM MehmetAli.Koseoglu@polyu.edu.hk
RI Koseoglu, Mehmet Ali/AAF-1401-2019
OI Koseoglu, Mehmet Ali/0000-0001-9369-1995
CR Guerras-Martín LA, 2014, BRQ-BUS RES Q, V17, P69, DOI 10.1016/j.brq.2014.03.001
Batistic S, 2017, LEADERSHIP QUART, V28, P86, DOI 10.1016/j.leaqua.2016.10.007
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bragge J, 2019, J BUS RES, V97, P141, DOI 10.1016/j.jbusres.2018.12.050
Cook DJ, 1997, ANN INTERN MED, V126, P376, DOI 10.7326/0003-4819-126-5-199703010-00006
CULNAN MJ, 1986, MANAGE SCI, V32, P156, DOI 10.1287/mnsc.32.2.156
Davis GF, 2014, ADMIN SCI QUART, V59, P193, DOI 10.1177/0001839214534186
Debortoli S, 2016, COMMUN ASSOC INF SYS, V39, P110, DOI 10.17705/1CAIS.03907
Eto M, 2019, INFORM PROCESS MANAG, V56, DOI 10.1016/j.ipm.2019.05.007
Ferreira JJM, 2016, SCIENTOMETRICS, V109, P1, DOI 10.1007/s11192-016-2008-0
Francisco GL, 2019, INT BUS REV, V28, P713, DOI 10.1016/j.ibusrev.2019.02.001
Furrer O, 2008, INT J MANAG REV, V10, P1, DOI 10.1111/j.1468-2370.2007.00217.x
García-Lillo F, 2018, INT J CONTEMP HOSP M, V30, P1741, DOI [10.1108/ijchm-04-2017-0187, 10.1108/IJCHM-04-2017-0187]
González-Teruel A, 2015, SCIENTOMETRICS, V103, P687, DOI 10.1007/s11192-015-1548-z
Guba E. G., 1989, Fourth Generation Evaluation, V1st ed
Guba EG, 1994, HDB QUALITATIVE RES, P105, DOI DOI 10.1093/INTQHC/MZM042
Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009
Hota PK, 2020, J BUS ETHICS, V166, P89, DOI 10.1007/s10551-019-04129-4
Hou JH, 2018, SCIENTOMETRICS, V115, P869, DOI 10.1007/s11192-018-2695-9
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Koseoglu MA, 2019, ANN TOURISM RES, V79, DOI 10.1016/j.annals.2019.102760
Köseoglu MA, 2019, INT J HOSP MANAG, V78, P234, DOI 10.1016/j.ijhm.2018.09.006
Koseoglu MA, 2016, SCIENTOMETRICS, V109, P203, DOI 10.1007/s11192-016-1894-5
Koseoglu MA, 2016, BRQ-BUS RES Q, V19, P153, DOI 10.1016/j.brq.2016.02.001
Krippendorff K., 2011, Computing krippendorff's alpha-reliability, DOI DOI 10.1002/9781405186407.WBIECR029
Kunisch S., 2018, Organizational Research Methods, V21, P519, DOI [DOI 10.1177/1094428118770750, 10.1177/1094428118770750]
Lampe J, 2020, ENTREP THEORY PRACT, V44, P784, DOI 10.1177/1042258719851217
Molina-Azorín JF, 2014, BRQ-BUS RES Q, V17, P102, DOI 10.1016/j.brq.2014.01.001
Müller O, 2016, EUR J INFORM SYST, V25, P289, DOI 10.1057/ejis.2016.2
Paranyushkin D, 2019, WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), P3584
Park E, 2018, INT J CONTEMP HOSP M, V30, P3386, DOI 10.1108/IJCHM-11-2017-0714
Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397
Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858
Shafique M, 2013, STRATEGIC MANAGE J, V34, P62, DOI 10.1002/smj.2002
Slevitch L, 2011, J QUAL ASSUR HOSP TO, V12, P73, DOI 10.1080/1528008X.2011.541810
SULLIVAN D, 1977, SOC STUD SCI, V7, P223, DOI 10.1177/030631277700700205
Tan LW, 2015, NANKAI BUS REV NT, V6, P20, DOI 10.1108/NBRI-09-2014-0036
Torraco RJ, 2016, HUM RESOUR DEV REV, V15, P404, DOI 10.1177/1534484316671606
Toubia O, 2019, J MARKETING RES, V56, P18, DOI 10.1177/0022243718820559
VANRAAN AFJ, 1990, NATURE, V347, P626, DOI 10.1038/347626a0
Webster J, 2002, MIS QUART, V26, pXIII
Zhao HY, 2018, INT BUS REV, V27, P389, DOI 10.1016/j.ibusrev.2017.09.006
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 43
TC 20
Z9 20
U1 4
U2 4
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2020
VL 125
IS 3
BP 2169
EP 2197
DI 10.1007/s11192-020-03719-8
EA SEP 2020
PG 29
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA PE1YL
UT WOS:000571691800002
DA 2024-09-05
ER
PT C
AU Brown, AO
Crawford, RH
Jensen, DD
Rencis, JJ
Liu, JC
Watson, KA
Jackson, KS
Hackett, RK
Schimpf, PH
Chen, CC
Orabi, II
Akasheh, F
Wood, JJ
Dunlap, BU
Sargent, ER
AF Brown, Ashland O.
Crawford, Richard H.
Jensen, Daniel D.
Rencis, Joseph J.
Liu, Jiancheng
Watson, Kyle A.
Jackson, Kathy Schmidt
Hackett, Rachelle Kisst
Schimpf, Paul Henry
Chen, Chuan-Chiang
Orabi, Ismail I.
Akasheh, Firas
Wood, John J.
Dunlap, Brock U.
Sargent, Ella R.
GP ASEE
TI Assessment of Active Learning Modules: An Update of Research Findings
SO 2013 ASEE ANNUAL CONFERENCE
SE ASEE Annual Conference & Exposition
LA English
DT Proceedings Paper
CT ASEE Annual Conference
CY JUN 23-26, 2013
CL Atlanta, GA
ID CURRICULUM
AB The landscape of contemporary engineering education is ever changing, adapting and evolving. As an example, finite element theory and application has often been included in graduate-level courses in engineering programs; however, current industry needs bachelor's-level engineering graduates with skills in applying this essential analysis and design technique. Engineering education is also changing to include more active learning. In response to the need to introduce undergrads to the finite element method as well as the need for engineering curricula to include more active learning, we have developed, implemented and assessed a suite of Active Learning Module (ALMs). The ALMs are designed to improve student learning of difficult engineering concepts while students gain essential knowledge of finite element analysis. We have used the Kolb Learning Cycle as a conceptual framework to guide our design of the ALMs.
Originally developed using MSC Nastran, followed by development efforts in SolidWorks Simulation, ANSOFT, ANSYS, and other commercial FEA software packages, a team of researchers, with National Science Foundation support, have created over twenty-eight active learning modules. We will discuss the implementation of these learning modules which have been incorporated into undergraduate courses that cover topics such as machine design, mechanical vibrations, heat transfer, bioelectrical engineering, electromagnetic field analysis, structural fatigue analysis, computational fluid dynamics, rocket design, chip formation during manufacturing, and large scale deformation in machining.
This update on research findings includes statistical results for each module which compare performance on pre-and post-learning module quizzes to gauge change in student knowledge related to the difficult engineering concepts that each module addresses. Statistically significant student performance gains provide evidence of module effectiveness. In addition, we present statistical comparisons between different personality types (based on Myers-Briggs Type Indicator, MBTI, subgroups) and different learning styles (based on Felder-Solomon ILS subgroups) in regards to the average gains each group of students have made on quiz performance. Although exploratory, and generally based on small sample sizes at this point in our multi-year effort, the modules for which subgroup differences are found are being carefully reviewed in an attempt to determine whether modifications should be made to better ensure equitable impact of the modules across students from specific personality and /or learning styles subgroups (e.g., MBTI Intuitive versus Sensing; ILS Sequential versus Global).
C1 [Brown, Ashland O.] Univ Pacific, Mech Engn, Sch Engn & Comp Sci, Stockton, CA 95211 USA.
[Crawford, Richard H.] Univ Texas Austin, Mech Engn, Austin, TX 78712 USA.
[Jensen, Daniel D.] US Air Force Acad, Engn Mech, Colorado Springs, CO 80840 USA.
[Rencis, Joseph J.] Tennessee Technol Univ, Clay N Hixson Chair Engn Leadership, Cookeville, TN 38505 USA.
[Rencis, Joseph J.] Tennessee Technol Univ, Mech Engn, Cookeville, TN 38505 USA.
[Liu, Jiancheng] Univ Pacific, Dept Mech Engn, Stockton, CA 95211 USA.
[Watson, Kyle A.] Univ Pacific, Mech Engn, Stockton, CA 95211 USA.
[Jackson, Kathy Schmidt] Penn State Univ, Schreyer Inst Teaching Excellence, University Pk, PA 16802 USA.
[Hackett, Rachelle Kisst] Univ Pacific, Stockton, CA 95211 USA.
[Schimpf, Paul Henry] Eastern Washington Univ, Cheney, WA 99004 USA.
[Chen, Chuan-Chiang] Calif State Polytech Univ Pomona, Dept Mech Engn, Pomona, CA 91768 USA.
[Orabi, Ismail I.] Univ New Haven, Dept Mech Engn, West Haven, CT 06516 USA.
[Akasheh, Firas] Tuskegee Univ, Tuskegee, AL 36088 USA.
[Wood, John J.] US Air Force Acad, Engn Mech, Colorado Springs, CO 80840 USA.
[Dunlap, Brock U.] Univ Texas Austin, Act Learning & Prototyping Methodol, Austin, TX 78712 USA.
[Sargent, Ella R.] Univ Pacific, Benerd Sch Educ, Stockton, CA 95211 USA.
C3 University of the Pacific; University of Texas System; University of
Texas Austin; United States Department of Defense; United States Air
Force; United States Air Force Academy; Tennessee Technological
University; Tennessee Technological University; University of the
Pacific; University of the Pacific; Pennsylvania Commonwealth System of
Higher Education (PCSHE); Pennsylvania State University; Pennsylvania
State University - University Park; University of the Pacific; Eastern
Washington University; California State University System; California
State Polytechnic University Pomona; University New Haven; Tuskegee
University; United States Department of Defense; United States Air
Force; United States Air Force Academy; University of Texas System;
University of Texas Austin; University of the Pacific
RP Brown, AO (corresponding author), Univ Pacific, Mech Engn, Sch Engn & Comp Sci, Stockton, CA 95211 USA.
CR [Anonymous], EFF EV 2012 2013 ACC
Baker J. R., 2002, Computers in Education Journal, V12, P10
Belytschko T, 1997, INT J ENG EDUC, V13, P457
BORCHERT R, 1999, P ASEE ANN C EXP CHA
Bower M., 2000, P ASEE ANN C EXP ST
Brinson L.C., 1997, Journal of Engineering Education, V86, P159
Brown A., 2004, ANAL NEURAL NETWORK, P1
Brown A.O, 2004, 2004 ASME INT MECH E
Brown A.O., 2008, 2008 ASEE ANN C EXP
Chiou R., 1998, Computers in Education Journal, V8, P50
Coffman J., 2009, P 2009 ASEE MIDDL AT
FELDER RM, 1988, ENG EDUC, V78, P674
Graham L., 2002, Computers in Education Journal, V12, P32
Kaufman K., 2009, P ASEE ANN C EXP AUS
Kaufman K., 2011, INT J ENG UNPUB OCT
Kaufman K., 2011, ADV ENG ED UNPUB NOV
Kolb D.A., 2014, Experiential Learning: Experience as a source of learning and development
Linsey J., 2009, Advances in Engineering Education, V1, P1
Liu J., 2008, 2008 ASEE PAC SW REG
Mahoney D. P., 1999, COMPUTER GRAPHI 0303, P30
Matthews J. M., 1999, Computers in Education Journal, V9, P46
Milton-Benoit J., 1998, J ENG EDUC, V87, P511
Myers IB., 1985, Manual: a Guide to the Development and Use of the Myers-Briggs Type Indicator
Nesbit S.N., 1998, COMPUTER APPL ENG ED, V87, P511
Rencis J. J., 1999, Computers in Education Journal, V9, P22
Sorby SA, 1999, COMPUT APPL ENG EDUC, V7, P252, DOI 10.1002/(SICI)1099-0542(1999)7:4<252::AID-CAE7>3.0.CO;2-Z
STICE JE, 1987, ENG EDUC, V77, P291
Thilmany J, 2001, MECH ENG, V123, P60
Thilmany J, 2000, MECH ENG, V122, P88, DOI 10.1115/1.2000-OCT-6
Watson K.A., 2009, P 2009 ASEE PAC SW C
Watson KA, 2012, ASEE ANNU CONF EXPO
NR 31
TC 0
Z9 0
U1 0
U2 8
PU AMER SOC ENGINEERING EDUCATION
PI WASHINGTON
PA 1818 N STREET, NW SUITE 600, WASHINGTON, DC 20036 USA
SN 2153-5965
J9 ASEE ANNU CONF EXPO
PY 2013
PG 26
WC Education & Educational Research; Education, Scientific Disciplines;
Engineering, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research; Engineering
GA BE7HB
UT WOS:000375256301018
DA 2024-09-05
ER
PT J
AU Goh, YC
Cai, XQ
Theseira, W
Ko, G
Khor, KA
AF Goh, Yeow Chong
Cai, Xin Qing
Theseira, Walter
Ko, Giovanni
Khor, Khiam Aik
TI Evaluating human versus machine learning performance in classifying
research abstracts
SO SCIENTOMETRICS
LA English
DT Article
DE Discipline classification; Text classification; Supervised
classification
ID COMBINED COCITATION; WORD ANALYSIS; SCIENCE
AB We study whether humans or machine learning (ML) classification models are better at classifying scientific research abstracts according to a fixed set of discipline groups. We recruit both undergraduate and postgraduate assistants for this task in separate stages, and compare their performance against the support vectors machine ML algorithm at classifying European Research Council Starting Grant project abstracts to their actual evaluation panels, which are organised by discipline groups. On average, ML is more accurate than human classifiers, across a variety of training and test datasets, and across evaluation panels. ML classifiers trained on different training sets are also more reliable than human classifiers, meaning that different ML classifiers are more consistent in assigning the same classifications to any given abstract, compared to different human classifiers. While the top five percentile of human classifiers can outperform ML in limited cases, selection and training of such classifiers is likely costly and difficult compared to training ML models. Our results suggest ML models are a cost effective and highly accurate method for addressing problems in comparative bibliometric analysis, such as harmonising the discipline classifications of research from different funding agencies or countries.
C1 [Goh, Yeow Chong; Cai, Xin Qing] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore, Singapore.
[Theseira, Walter] Singapore Univ Social Sci, Sch Business, Singapore, Singapore.
[Ko, Giovanni] Singapore Management Univ, Sch Econ, Singapore, Singapore.
[Khor, Khiam Aik] Nanyang Technol Univ, Talent Recruitment & Career Support TRACS Off & B, Singapore, Singapore.
C3 Nanyang Technological University; Singapore University of Social
Sciences (SUSS); Singapore Management University; Nanyang Technological
University
RP Khor, KA (corresponding author), Nanyang Technol Univ, Talent Recruitment & Career Support TRACS Off & B, Singapore, Singapore.
EM mkakhor@ntu.edu.sg
RI Khor, Michael/B-6929-2009; Theseira, Walter/AAW-2209-2020
OI Theseira, Walter/0000-0002-8738-2341
FU Singapore National Research Foundation [NRF2014-NRF-SRIE001-027]
FX The study was partially funded by the Singapore National Research
Foundation, Grant No. NRF2014-NRF-SRIE001-027. A portion of this study
used the resources of the ASPIRE1 supercomputer hosted at the National
Supercomputing Centre (NSCC) Singapore (https://www.nscc.sg/).
CR Aggarwal C.C., 2012, MINING TEXT DATA
Baeza-Yates Ricardo, 1999, MODERN INFORM RETRIE
Bergstra J, 2012, J MACH LEARN RES, V13, P281
BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I
BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P252, DOI 10.1002/(SICI)1097-4571(199105)42:4<252::AID-ASI2>3.0.CO;2-G
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
DEBRUIN RE, 1993, SCIENTOMETRICS, V26, P65, DOI 10.1007/BF02016793
European Research Council, 2019, INF APPL START CONS
European Research Council, 2019, 2019 ERC EV PAN KEYW
FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619
Freyman CA, 2016, RES EVALUAT, V25, P442, DOI 10.1093/reseval/rvw016
Herzog C., 2016, OECD BLUE SKY 2016 F
Khor K. A., 2018, 23 INT C SCI TECHN I
King DA, 2004, NATURE, V430, P311, DOI 10.1038/430311a
KING J, 1987, J INFORM SCI, V13, P261, DOI 10.1177/016555158701300501
LANDIS JR, 1977, BIOMETRICS, V33, P363, DOI 10.2307/2529786
Lariviere V., 2015, COMP SCIENTOMETRIC A
Lee CH, 2009, EXPERT SYST APPL, V36, P2400, DOI 10.1016/j.eswa.2007.12.052
Liu XX, 2009, PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, P49
Liu XH, 2012, SCIENTOMETRICS, V91, P473, DOI 10.1007/s11192-011-0600-x
Liu XH, 2010, J AM SOC INF SCI TEC, V61, P1105, DOI 10.1002/asi.21312
McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031
Moed H. F., 2006, 200601 CWTS
Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002
Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2
Oberski J.E. J., 1988, Handbook of Quantitative Studies of Science and Technology, P431, DOI [DOI 10.1016/B978-0-44470537-2.50019-2, 10.1016/B978-0-44470537-2.50019-2]
Piro FN, 2013, J AM SOC INF SCI TEC, V64, P307, DOI 10.1002/asi.22746
Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105
Schumacher Jan., 2010, Proc. ACMIEEE Int. Symp. on Empirical Software Eng. and Measurement. ESEM '10, V8, P1, DOI [10.1145/1852786.1852797, DOI 10.1145/1852786.1852797]
Simundic AM, 2009, CLIN CHEM LAB MED, V47, P1361, DOI 10.1515/CCLM.2009.306
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002
Weismayer C., 2018, INFORM COMMUNICATION, P365, DOI [DOI 10.1007/978-3-319-72923-7_28, 10.1007/978, DOI 10.1007/978]
Xing Wei, 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P178
Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8
NR 36
TC 24
Z9 25
U1 1
U2 18
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2020
VL 125
IS 2
BP 1197
EP 1212
DI 10.1007/s11192-020-03614-2
EA JUL 2020
PG 16
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA OT3PI
UT WOS:000549661600001
PM 32836529
OA Green Published, hybrid
DA 2024-09-05
ER
PT J
AU Di Zio, S
Tontodimamma, A
del Gobbo, E
Fontanella, L
AF Di Zio, Simone
Tontodimamma, Alice
del Gobbo, Emiliano
Fontanella, Lara
TI Exploring the research dynamics of futures studies: An analysis of six
top journals
SO FUTURES
LA English
DT Article
DE Futures studies; Bibliometrics analysis; Dynamic topic models; Latent
Dirichlet Allocation; GIS
ID EVOLUTION; SCIENCE; TRENDS; TOOL
AB This paper focuses on the global literature on Futures Studies and foresight over the last thirty years by using a bibliographic dataset from the Scopus and using an integrated statistical methodological approach. Bibliometric measures, knowledge mapping tools, topic modelling, Geographical Information Systems and network analysis are used to understand the scholarly literature's evolution, main research areas, temporal evolution, geographical differences, and fragmentation. This allows to outline a separation between research areas and understand the dynamics of the main topics. The aim of this research is to fill the gap in the literature regarding the mapping of research themes in Futures Studies and foresight, as well as their temporal evolution and geographical distribution. Results showed a notable growth in the number of published articles in the last 32 years and identified (through Latent Dirichlet Allocation) 21 topics, which summarize the most important research themes in the context of Future Studies and foresight. A dynamic topic model helped to understand the evolution of topics, while the network analysis provided quantitative measures on the interactions between the topics as well as the international collaborations. Finally, a geographical analysis of both authors and topics highlighted the global distribution of research on Futures Studies.
C1 [Di Zio, Simone; Tontodimamma, Alice; Fontanella, Lara] G dAnnunzio Univ Chieti Pescara, Dept Legal & Social Sci, Pescara, Italy.
[del Gobbo, Emiliano] Univ Foggia, Dept Econ Management & Terr, Foggia, Italy.
C3 G d'Annunzio University of Chieti-Pescara; University of Foggia
RP Di Zio, S (corresponding author), G dAnnunzio Univ Chieti Pescara, Dept Legal & Social Sci, Pescara, Italy.
EM simone.dizio@unich.it; alice.tontodimamma@unich.it;
emiliano.delgobbo@unifg.it; lara.fontanella@unich.it
OI del Gobbo, Emiliano/0000-0003-1088-7306; Di Zio,
Simone/0000-0002-9139-1451
CR Alghamdi R, 2015, INT J ADV COMPUT SC, V6, P147
[Anonymous], 2006, MULTIPLE CORRES ANAL
Aria M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063643
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391
Barua A, 2014, EMPIR SOFTW ENG, V19, P619, DOI 10.1007/s10664-012-9231-y
Bell Wendell., 1997, Foundations of Futures Studies: Human Science for a New Era, vol. 2: Values, Objectivity, and the Good Society, V2
Blei D.M., 2006, P 23 INT C MACHINE L, P113, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859, 10.1145/1143844.114385]
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Buehring J, 2020, SHE JI, V6, P408, DOI 10.1016/j.sheji.2020.07.002
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Chowdhary K., 2020, FUNDAMENTALS ARTIFIC, P603, DOI 10.1007/978-81-322-3972-7_19
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Csardi G., 2006, INTERJOUR NALEZ COMP, V1695
Dator Jim., 2011, Leadership in Science and Technology, V1, P32
De Jouvenel B., 1964, ART CONJECTURE
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Ebadi A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133061
Fergnani A, 2019, FUTURES, V105, P104, DOI 10.1016/j.futures.2018.09.007
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
Gan JX, 2021, ENTROPY-SWITZ, V23, DOI 10.3390/e23101301
Geurts Amber, 2022, Futures & Foresight Science, V4, DOI 10.1002/ffo2.99
Gidley JenniferM., 2017, The Future: A Very Short Introduction
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
INAYATULLAH S, 1990, FUTURES, V22, P115, DOI 10.1016/0016-3287(90)90077-U
Kayser V, 2020, TECHNOL FORECAST SOC, V156, DOI 10.1016/j.techfore.2020.120086
Krigsholm P, 2019, LAND-BASEL, V8, DOI 10.3390/land8120181
Kuosa T, 2011, FUTURES, V43, P327, DOI 10.1016/j.futures.2010.04.001
Masini EleonaraBarbieri., 1993, WHY FUTURE STUDIES
Masini E, 2006, FUTURES, V38, P1158, DOI 10.1016/j.futures.2006.02.004
McPhee C, 2017, TECHNOL INNOV MANAG, V7, P5
Miller R, 2018, TRANSFORMING THE FUTURE: ANTICIPATION IN THE 21ST CENTURY, P1
Momtazmanesh Sara, 2021, SN Compr Clin Med, V3, P1699, DOI 10.1007/s42399-021-00896-2
Niiniluoto I, 2001, FUTURES, V33, P371, DOI 10.1016/S0016-3287(00)00080-X
Price D. J. d. S., 1963, Little Science, Big Science
Rehurek R., 2011, Gensim-statistical semantics in python"
Rosa AB, 2021, FUTURES, V129, DOI 10.1016/j.futures.2021.102733
Sardar Z, 2010, FUTURES, V42, P177, DOI 10.1016/j.futures.2009.11.001
Schultz W.L., 2015, World Futures Review, V7, P324
Son H, 2015, FUTURES, V66, P120, DOI 10.1016/j.futures.2014.12.013
Steyvers M, 2006, LATENT SEMANTIC ANAL
Sun Y, 2011, J COMPUT GRAPH STAT, V20, P316, DOI 10.1198/jcgs.2011.09224
Tontodimamma A, 2021, SCIENTOMETRICS, V126, P157, DOI 10.1007/s11192-020-03737-6
Wang C, 2008, P 24 C UNCERTAINTY A, P579
Wang Xuerui., P 12 ACM SIGKDD INT, P424
Zhang JL, 2017, ADV INTEL SYS RES, V132, P300
NR 48
TC 2
Z9 2
U1 5
U2 15
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0016-3287
EI 1873-6378
J9 FUTURES
JI Futures
PD OCT
PY 2023
VL 153
AR 103232
DI 10.1016/j.futures.2023.103232
EA AUG 2023
PG 22
WC Economics; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA Q1LC0
UT WOS:001055191300001
OA Bronze
DA 2024-09-05
ER
PT C
AU Yu, TB
Jiang, XY
Wang, JR
Su, YY
Yu, G
Wang, WS
AF Yu, Tianbiao
Jiang, Xingyu
Wang, Jianrong
Su, Yingying
Yu, Ge
Wang, Wanshan
GP IEEE
TI Research on project evaluation system based on "Black Box" technology
SO 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-5
LA English
DT Proceedings Paper
CT IEEE International Conference on Robotics and Biomimetics (ROBIO 2007)
CY DEC 15-18, 2007
CL Sanya, PEOPLES R CHINA
DE black box; project evaluation; export performance evaluation; artificial
intelligence
AB To assure justice and science of scientific and technological project evaluation, avoiding the corrupt transaction in the process of project evaluation, scientific and technological project evaluation management model based on "black box" technology is presented, and the architecture of evaluation "black box" is established based on artificial intelligence, experts' selection based on knowledge reasoning is analyzed, system architecture and work workflow are studied, and evaluation model of experts' performance based on analytic hierarchy process and fuzzy comprehensive evaluation is established. Based on these a prototype system is developed, results of the system running prove the correctness of theory study and feasibility of technology research. The study works provides a scientific and reliable method of scientific and technological project evaluation.
C1 [Yu, Tianbiao; Jiang, Xingyu; Wang, Jianrong; Su, Yingying; Yu, Ge; Wang, Wanshan] Northeastern Univ, Sch Mech Engn & Automat, Shenyang, Liaoning Prov, Peoples R China.
C3 Northeastern University - China
RP Yu, TB (corresponding author), Northeastern Univ, Sch Mech Engn & Automat, Shenyang, Liaoning Prov, Peoples R China.
EM tbyu@me.neu.edu.cn
RI Jiang, Xingyu/AGB-8636-2022; Yu, Ge/AAN-8191-2021; Wang,
Shuai/JAZ-0277-2023; Wang, Jianrong/C-2222-2008
OI Yu, Tianbiao/0000-0002-6161-8838
CR DAN ZP, 1999, COMPUTER ENG, V24, P92
DONG J, 2007, COMPUTER APPL SOFTWA, V24, P145
FANG Y, 2006, CONTROL THEORY APPL, V23
Jiang Zhizhong, 2007, Computer Engineering, V33, P278
Li Jian-Xing, 2007, Journal of Software, V18, P582, DOI 10.1360/jos180582
YANG CY, 2005, INT J NETWORK SECURI, V1, P22
Yang Jian-chi, 2007, Journal of System Simulation, V19, P1199
Zhang Xin-Liang, 2007, Journal of Software, V18, P574, DOI 10.1360/jos180574
NR 8
TC 0
Z9 0
U1 0
U2 6
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4244-1761-2
PY 2007
BP 2250
EP 2255
PG 6
WC Automation & Control Systems; Computer Science, Artificial Intelligence;
Engineering, Biomedical; Engineering, Electrical & Electronic; Robotics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Computer Science; Engineering; Robotics
GA BHW67
UT WOS:000257065801229
DA 2024-09-05
ER
PT J
AU Roy, J
AF Roy, Jason
TI Randomized treatment-belief trials
SO CONTEMPORARY CLINICAL TRIALS
LA English
DT Article
DE Causal inference; Comparative effectiveness research; Placebo effect;
Potential outcomes; Pragmatic trials; Randomized trials
ID CLINICAL-TRIALS
AB It is widely recognized that traditional randomized controlled trials (RCTs) have limited generalizability due to the numerous ways in which conditions of RCTs differ from those experienced each day by patients and physicians. As a result, there has been a recent push towards pragmatic trials that better mimic real-world conditions. One way in which RCTs differ from normal everyday experience is that all patients in the trial have uncertainty about what treatment they were assigned. Outside of the RCT setting, if a patient is prescribed a drug then there is no reason for them to wonder if it is a placebo. Uncertainty about treatment assignment could affect both treatment and placebo response. We use a potential outcomes approach to define relevant causal effects based on combinations of treatment assignment and belief about treatment assignment. We show that traditional RCTs are designed to estimate a quantity that is typically not of primary interest. We propose a new study design that has the potential to provide information about a wider range of interesting causal effects. (C) 2011 Elsevier Inc. All rights reserved.
C1 Univ Penn, Ctr Clin Epidemiol & Biostat, Philadelphia, PA 19104 USA.
C3 University of Pennsylvania
RP Roy, J (corresponding author), Univ Penn, Ctr Clin Epidemiol & Biostat, Philadelphia, PA 19104 USA.
EM jaroy@upenn.edu
CR Bailey SR, 2010, J SUBST ABUSE TREAT, V39, P150, DOI 10.1016/j.jsat.2010.05.013
Dumville JC, 2006, CONTEMP CLIN TRIALS, V27, P1, DOI 10.1016/j.cct.2005.08.003
Hall SM, 2007, NICOTINE TOB RES, V9, P467, DOI 10.1080/14622200701239480
Kirsch I., 1998, Prevention Treatment, V1
Kunz R, 1998, BRIT MED J, V317, P1185, DOI 10.1136/bmj.317.7167.1185
Lipkus I M, 1999, J Natl Cancer Inst Monogr, P149
Luce BR, 2009, ANN INTERN MED, V151, P206, DOI 10.7326/0003-4819-151-3-200908040-00126
Meissner K, 2007, BMC MED, V5, DOI 10.1186/1741-7015-5-3
Roy J, 2010, STAT MED, V29, P588, DOI 10.1002/sim.3831
RUBIN DB, 1974, J EDUC PSYCHOL, V66, P688, DOI 10.1037/h0037350
Ruppert D, 2003, SEMIPARAMETRIC REGRE
Sox HC, 2009, ANN INTERN MED, V151, P203, DOI 10.7326/0003-4819-151-3-200908040-00125
Stewart WF, 2007, HEALTH AFFAIR, V26, pW181, DOI 10.1377/hlthaff.26.2.w181
NR 13
TC 10
Z9 10
U1 0
U2 7
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 1551-7144
EI 1559-2030
J9 CONTEMP CLIN TRIALS
JI Contemp. Clin. Trials
PD JAN
PY 2012
VL 33
IS 1
BP 172
EP 177
DI 10.1016/j.cct.2011.09.011
PG 6
WC Medicine, Research & Experimental; Pharmacology & Pharmacy
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Research & Experimental Medicine; Pharmacology & Pharmacy
GA 889KL
UT WOS:000300072500025
PM 21989161
DA 2024-09-05
ER
PT J
AU Zhao, WD
Yu, ZX
Wu, R
AF Zhao, Weidong
Yu, Zhaoxin
Wu, Ran
TI A citation recommendation method based on context correlation
SO INTELLIGENT DATA ANALYSIS
LA English
DT Article
DE Citation recommendation; context correlation; neural networks; citation
network; authority
AB Researchers need to formulate their achievements as research papers. Representative references are essential to high-quality papers. Academic citation recommendation refers to providing the recommendation of citations for the author of papers when they write. With the help of citation recommendation, researchers can improve the efficiency of writing academic papers and reduce the omission of important related literature. To achieve this goal, some methods were proposed. Many of them used citation networks to learn the representation of papers and chose references, they tended to ignore the content properties of papers. There are also some methods used partial properties to recommend citation. But their performance can be further improved. In this paper, we propose a citation recommendation method based on context correlation. We use two neural network models to learn the representations of papers and their references, then calculate the context similarity of them. Besides, we also introduce the publishing time and authority of papers, two key properties of papers for citation evaluation. In the experiment section, we compare our method with other methods and evaluate the performance of different properties choice in our method, it shows that our method outperforms some baselines and the combination of the dimensions including time, authority and context performs better.
C1 [Zhao, Weidong; Yu, Zhaoxin; Wu, Ran] Fudan Univ, Sch Software, Shanghai Key Lab Data Sci, 220 Handan Rd, Shanghai 200433, Peoples R China.
C3 Fudan University
RP Yu, ZX (corresponding author), Fudan Univ, Sch Software, Shanghai Key Lab Data Sci, 220 Handan Rd, Shanghai 200433, Peoples R China.
EM 18212010047@fudan.edu.cn
RI li, fei/JYP-3334-2024
FU National Nature Science Foundation of China [61671157]
FX Third, this work was supported by the National Nature Science Foundation
of China [grant number 61671157], we want to give our heartiest thanks
for the National Nature Science Foundation of China.
CR [Anonymous], 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772731
[Anonymous], 2014, KDD, DOI [10 . 1145 / 2623330 . 2623732. arXiv: 1403.6652, DOI 10.1145/2623330.2623732]
Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Cohen JL, 2014, REV ART, P37
Dai T, 2018, J AMB INTEL HUM COMP, V9, P957, DOI 10.1007/s12652-017-0497-1
de Arruda GF, 2018, PHYS REP, V756, P1, DOI 10.1016/j.physrep.2018.06.007
Dong YX, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P135, DOI 10.1145/3097983.3098036
Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
Galke L, 2018, PROCEEDINGS OF THE 26TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'18), P197, DOI 10.1145/3209219.3209236
He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734
Hong CQ, 2015, IEEE T IMAGE PROCESS, V24, P5659, DOI 10.1109/TIP.2015.2487860
Jiang ZR, 2018, ACM/SIGIR PROCEEDINGS 2018, P635, DOI 10.1145/3209978.3210032
Kim J, 2018, INT J INFORM MANAGE, V38, P86, DOI 10.1016/j.ijinfomgt.2017.08.003
Li J., 2015, ARXIV150601057
Maharani W, 2014, 2014 8TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATION SYSTEMS SERVICES AND APPLICATIONS (TSSA)
Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010
McNee SM, 2002, P 2002 ACM C COMP SU, P116, DOI DOI 10.1145/587078.587096
Mu DJ, 2018, IEEE ACCESS, V6, P3107, DOI 10.1109/ACCESS.2017.2787179
Oldham S., 2018, ARXIV180502375
Page L., 1999, The PageRank citation ranking: bringing order to the web
Pan SR, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2609
Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2
Roffo G., 2016, INT WORKSH NEW FRONT
Ruhnau B, 2000, SOC NETWORKS, V22, P357, DOI 10.1016/S0378-8733(00)00031-9
Shi J., 2011, J COMPUT RES DEV
Strohman Trevor, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P705, DOI 10.1145/1277741.1277868
Tang J., 2009, PAC AS C KNOWL DISC
Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093
West Jevin D., 2016, IEEE Transactions on Big Data, V2, P113, DOI 10.1109/TBDATA.2016.2541167
Zarrinkalam F, 2013, PROGRAM-ELECTRON LIB, V47, P92, DOI 10.1108/00330331311296320
Zhang Yun-tao, 2005, Journal of Zhejiang University (Science), V6A, P49, DOI 10.1631/jzus.2005.A0049
ZHOU D., 2008, WWW 08, P141
NR 34
TC 4
Z9 4
U1 1
U2 38
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 1088-467X
EI 1571-4128
J9 INTELL DATA ANAL
JI Intell. Data Anal.
PY 2021
VL 25
IS 1
BP 225
EP 243
DI 10.3233/IDA-195041
PG 19
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA QH1VI
UT WOS:000618065600013
DA 2024-09-05
ER
PT J
AU Huo, Q
Luo, X
Xu, ZC
Yang, XY
AF Huo, Qing
Luo, Xu
Xu, Zu-Cai
Yang, Xiao-Yan
TI Machine learning applied to epilepsy: bibliometric and visual analysis
from 2004 to 2023
SO FRONTIERS IN NEUROLOGY
LA English
DT Article
DE machine learning; epilepsy; VOSviewer; CiteSpace; visual analysis
ID SEIZURE ONSET; CLASSIFICATION; CONNECTIVITY; ALGORITHM; PATTERNS; TRENDS
AB Background: Epilepsy is one of the most common serious chronic neurological disorders, which can have a serious negative impact on individuals, families and society, and even death. With the increasing application of machine learning techniques in medicine in recent years, the integration of machine learning with epilepsy has received close attention, and machine learning has the potential to provide reliable and optimal performance for clinical diagnosis, prediction, and precision medicine in epilepsy through the use of various types of mathematical algorithms, and promises to make better parallel advances. However, no bibliometric assessment has been conducted to evaluate the scientific progress in this area. Therefore, this study aims to visually analyze the trend of the current state of research related to the application of machine learning in epilepsy through bibliometrics and visualization. Methods: Relevant articles and reviews were searched for 2004-2023 using Web of Science Core Collection database, and bibliometric analyses and visualizations were performed in VOSviewer, CiteSpace, and Bibliometrix (R-Tool of R-Studio). Results: A total of 1,284 papers related to machine learning in epilepsy were retrieved from the Wo SCC database. The number of papers shows an increasing trend year by year. These papers were mainly from 1,957 organizations in 87 countries/regions, with the majority from the United States and China. The journal with the highest number of published papers is EPILEPSIA. Acharya, U. Rajendra (Ngee Ann Polytechnic, Singapore) is the authoritative author in the field and his paper "Deep Convolutional Neural Networks for Automated Detection and Diagnosis of Epileptic Seizures Using EEG Signals" was the most cited. Literature and keyword analysis shows that seizure prediction, epilepsy management and epilepsy neuroimaging are current research hotspots and developments. Conclusions: This study is the first to use bibliometric methods to visualize and analyze research in areas related to the application of machine learning in epilepsy, revealing research trends and frontiers in the field. This information will provide a useful reference for epilepsy researchers focusing on machine learning.
C1 [Huo, Qing] Zunyi Med Univ, Sch Nursing, Zunyi, Peoples R China.
[Luo, Xu] Zunyi Med Univ, Sch Med Informat Engn, Zunyi, Peoples R China.
[Xu, Zu-Cai; Yang, Xiao-Yan] Zunyi Med Univ, Affiliated Hosp, Dept Neurol, Zunyi, Peoples R China.
C3 Zunyi Medical University; Zunyi Medical University; Zunyi Medical
University
RP Luo, X (corresponding author), Zunyi Med Univ, Sch Med Informat Engn, Zunyi, Peoples R China.
EM luoxu@zmu.edu.cn
CR Abbasi B, 2019, EPILEPSIA, V60, P2037, DOI 10.1111/epi.16333
Ablakimova N, 2023, ANTIBIOTICS-BASEL, V12, DOI 10.3390/antibiotics12091411
Acharya UR, 2018, COMPUT BIOL MED, V100, P270, DOI 10.1016/j.compbiomed.2017.09.017
Acharya UR, 2013, KNOWL-BASED SYST, V45, P147, DOI 10.1016/j.knosys.2013.02.014
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Attia TP, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.704170
Beam AL, 2018, JAMA-J AM MED ASSOC, V319, P1317, DOI 10.1001/jama.2017.18391
Bernhardt BC, 2015, ANN NEUROL, V77, P436, DOI 10.1002/ana.24341
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
BROOKES BC, 1985, J INFORM SCI, V10, P173, DOI 10.1177/016555158501000406
Bruno E, 2018, EPILEPSY BEHAV, V85, P141, DOI 10.1016/j.yebeh.2018.05.044
Caciagli L, 2022, BRAIN, V145, P807, DOI 10.1093/brain/awac027
Caciagli L, 2019, BRAIN, V142, P2670, DOI 10.1093/brain/awz215
Caro V, 2022, IEEE ACCESS, V10, P32912, DOI 10.1109/ACCESS.2022.3159653
Cendes F, 2022, EPILEPSY CURR, V22, P91, DOI 10.1177/15357597211068600
Chen CM, 2014, J ASSOC INF SCI TECH, V65, P334, DOI 10.1002/asi.22968
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen WN, 2023, BMC MED INFORM DECIS, V23, DOI 10.1186/s12911-023-02180-w
Coito A, 2015, EPILEPSIA, V56, P207, DOI 10.1111/epi.12904
Corrales-Hernández MG, 2023, BIOMEDICINES, V11, DOI 10.3390/biomedicines11061632
Dai N, 2022, ESMO OPEN, V7, DOI 10.1016/j.esmoop.2022.100590
Deo RC, 2015, CIRCULATION, V132, P1920, DOI 10.1161/CIRCULATIONAHA.115.001593
Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626
Fan ZG, 2023, J NANOBIOTECHNOL, V21, DOI 10.1186/s12951-023-02051-6
Fisher RS, 2014, EPILEPSIA, V55, P475, DOI 10.1111/epi.12550
Fodjo JNS, 2019, LANCET, V394, P2072, DOI 10.1016/S0140-6736(19)31906-3
Golmohammadi M, 2019, FRONT HUM NEUROSCI, V13, DOI 10.3389/fnhum.2019.00076
Guekht A, 2021, EPILEPSIA, V62, P1057, DOI 10.1111/epi.16856
Guo Y, 2022, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.823474
Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a
Huang RZ, 2023, FRONT MICROBIOL, V13, DOI 10.3389/fmicb.2022.1074003
Jing J, 2020, JAMA NEUROL, V77, P103, DOI 10.1001/jamaneurol.2019.3485
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Kaestner E, 2023, NEUROLOGY, V101, pE324, DOI 10.1212/WNL.0000000000207411
Karakis I, 2022, EPILEPSY CURR, V22, P279, DOI 10.1177/15357597221105139
Kerr WT, 2023, CURR NEUROL NEUROSCI, V23, P869, DOI 10.1007/s11910-023-01318-7
Kim MC, 2020, J AM MED INFORM ASSN, V27, P1612, DOI 10.1093/jamia/ocaa107
Lee HW, 2014, NEUROLOGY, V83, P2269, DOI 10.1212/WNL.0000000000001068
Lee HM, 2022, BRAIN, V145, P897, DOI 10.1093/brain/awab425
Liu C, 2023, INT UROL NEPHROL, V55, P1509, DOI 10.1007/s11255-022-03456-2
Lopes MA, 2019, FRONT COMPUT NEUROSC, V13, DOI 10.3389/fncom.2019.00025
Truong ND, 2018, NEURAL NETWORKS, V105, P104, DOI 10.1016/j.neunet.2018.04.018
Rasheed K, 2021, IEEE REV BIOMED ENG, V14, P139, DOI 10.1109/RBME.2020.3008792
Sabé M, 2024, CURR NEUROPHARMACOL, V22, P736, DOI 10.2174/1570159X22666230927143106
Scheffer IE, 2017, EPILEPSIA, V58, P512, DOI 10.1111/epi.13709
Shoeibi A, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18115780
Song B, 2023, FRONT ENDOCRINOL, V14, DOI 10.3389/fendo.2023.1252389
Tao SY, 2023, EUR J MED RES, V28, DOI 10.1186/s40001-023-01220-5
Vaessen MJ, 2012, CEREB CORTEX, V22, P2139, DOI 10.1093/cercor/bhr298
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wan YT, 2023, FRONT ONCOL, V13, DOI 10.3389/fonc.2023.1181164
Wan YT, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.1025861
Yang YK, 2022, IEEE J BIOMED HEALTH, V26, P3529, DOI 10.1109/JBHI.2022.3157877
Yang YH, 2021, IEEE J BIOMED HEALTH, V25, P2997, DOI 10.1109/JBHI.2021.3049649
Yuan WC, 2023, FRONT IMMUNOL, V14, DOI 10.3389/fimmu.2023.1323115
Zhang DW, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.978427
Zhang J, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.686726
Zhang QZ, 2021, BIOMED SIGNAL PROCES, V64, DOI 10.1016/j.bspc.2020.102293
Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8
NR 59
TC 0
Z9 0
U1 20
U2 20
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-2295
J9 FRONT NEUROL
JI Front. Neurol.
PD APR 2
PY 2024
VL 15
AR 1374443
DI 10.3389/fneur.2024.1374443
PG 18
WC Clinical Neurology; Neurosciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Neurosciences & Neurology
GA NX9N5
UT WOS:001203871200001
PM 38628694
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Valencia-Arias, A
González-Ruiz, JD
Flores, LV
Vega-Mori, L
Rodríguez-Correa, P
Santos, GS
AF Valencia-Arias, Alejandro
Gonzalez-Ruiz, Juan David
Flores, Lilian Verde
Vega-Mori, Luis
Rodriguez-Correa, Paula
Santos, Gustavo Sanchez
TI Machine Learning and Blockchain: A Bibliometric Study on Security and
Privacy
SO INFORMATION
LA English
DT Article
DE Internet of Things; 5G networks; artificial intelligence; PRISMA-2020;
cloud computing; intrusion detection; smart contracts
ID IOT; AI
AB Machine learning and blockchain technology are fast-developing fields with implications for multiple sectors. Both have attracted a lot of interest and show promise in security, IoT, 5G/6G networks, artificial intelligence, and more. However, challenges remain in the scientific literature, so the aim is to investigate research trends around the use of machine learning in blockchain. A bibliometric analysis is proposed based on the PRISMA-2020 parameters in the Scopus and Web of Science databases. An objective analysis of the most productive and highly cited authors, journals, and countries is conducted. Additionally, a thorough analysis of keyword validity and importance is performed, along with a review of the most significant topics by year of publication. Co-occurrence networks are generated to identify the most crucial research clusters in the field. Finally, a research agenda is proposed to highlight future topics with great potential. This study reveals a growing interest in machine learning and blockchain. Topics are evolving towards IoT and smart contracts. Emerging keywords include cloud computing, intrusion detection, and distributed learning. The United States, Australia, and India are leading the research. The research proposes an agenda to explore new applications and foster collaboration between researchers and countries in this interdisciplinary field.
C1 [Valencia-Arias, Alejandro; Flores, Lilian Verde] Univ Senor Sipan, Escuela Ingn Ind, Chiclayo 14001, Peru.
[Gonzalez-Ruiz, Juan David] Univ Nacl Colombia, Dept Econ, Medellin 050001, Colombia.
[Vega-Mori, Luis; Santos, Gustavo Sanchez] Univ Ricardo Palma, Inst Invest & Estudios Mujer, Lima 15074, Peru.
[Rodriguez-Correa, Paula] Inst Univ Escolme, Inst Universitaria Escolme, Ctr Invest Escolme CIES, Medellin 050001, Colombia.
C3 Universidad Senor de Sipan; Universidad Nacional de Colombia;
Universidad Ricardo Palma
RP Valencia-Arias, A (corresponding author), Univ Senor Sipan, Escuela Ingn Ind, Chiclayo 14001, Peru.
EM valenciajho@uss.edu.pe; jdgonza3@unal.edu.co;
lilianverde@crece.uss.edu.pe; iepvlvega@gmail.com; cies4@escolme.edu.co;
sanchezsantosgustavo1@gmail.com
RI Arias, Alejandro Valencia/I-9436-2019
OI Arias, Alejandro Valencia/0000-0001-9434-6923; Verde Flores, Lilian
Janet/0000-0003-0496-853X; Gonzalez Ruiz, Juan
David/0000-0003-4425-7687; Vega Mori, Luis Angel/0000-0002-3825-7720
FU Universidad Seor de Sipn-USS
FX No Statement Available
CR Al-Qarafi A, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12125893
Azimov D., 2022, Business Management, V4, P52
Azimov D, 2021, ACCESS-ACCESS SCI BU, V2, P138, DOI 10.46656/access.2021.2.2(2)
Baucas MJ., 2023, IEEE Trans Comput Soc Syst, DOI 10.48550/arXiv.2301.04511
Cao LB, 2021, INT J DATA SCI ANAL, V12, P81, DOI 10.1007/s41060-021-00278-w
Carter D., 2018, Sage Journals, DOI DOI 10.1177/0266382118790150
Cheng ASK, 2021, ASIA-PAC J ONCOL NUR, V8, P720, DOI 10.4103/apjon.apjon-2140
Dibaei M, 2022, IEEE T INTELL TRANSP, V23, P683, DOI 10.1109/TITS.2020.3019101
Diro A, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21248320
Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626
Dyzel V, 2020, FRONT EDUC, V5, DOI 10.3389/feduc.2020.578389
Femmy E., 2021, Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, V16, P10, DOI 10.35969
Ferrag MA, 2020, IEEE T ENG MANAGE, V67, P1285, DOI 10.1109/TEM.2019.2922936
Gayialis SP, 2022, IFIP ADV INF COMM TE, V663, P477, DOI 10.1007/978-3-031-16407-1_56
Geldiev E.M., 2018, P CBU INT C P 2018 P
George Joey F, 2020, P 41 INT C INF SYST
Gong Y, 2022, IND MARKET MANAG, V102, P164, DOI 10.1016/j.indmarman.2022.01.010
Guo FX, 2021, IEEE INTERNET THINGS, V8, P11891, DOI 10.1109/JIOT.2021.3063686
Harbi Y, 2021, IEEE ACCESS, V9, P113292, DOI 10.1109/ACCESS.2021.3103725
Hassija V, 2021, IEEE COMMUN SURV TUT, V23, P2802, DOI 10.1109/COMST.2021.3097916
Hassija V, 2021, IEEE INTERNET THINGS, V8, P6222, DOI 10.1109/JIOT.2020.3025775
Hassija V, 2019, IEEE ACCESS, V7, P82721, DOI 10.1109/ACCESS.2019.2924045
Himeur Y, 2022, COMPUT SCI REV, V43, DOI 10.1016/j.cosrev.2021.100439
Kadian K, 2021, COMPUT SCI REV, V41, DOI 10.1016/j.cosrev.2021.100419
Kechagias EP, 2023, FOODS, V12, DOI 10.3390/foods12061220
Keshk M, 2020, IEEE T IND INFORM, V16, P5110, DOI 10.1109/TII.2019.2957140
Kumar NM, 2020, ENERGIES, V13, DOI 10.3390/en13215739
Kumar P, 2021, IEEE T NETW SCI ENG, V8, P2326, DOI 10.1109/TNSE.2021.3089435
Kumar P, 2021, J SYST ARCHITECT, V115, DOI 10.1016/j.sysarc.2020.101954
Lemos C, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14074172
Li Y, 2021, J HEALTHC ENG, V2021, DOI 10.1155/2021/9739219
Lu YL, 2020, IEEE T IND INFORM, V16, P4177, DOI 10.1109/TII.2019.2942190
Mendis GJ, 2021, IEEE T EMERG TOP COM, V9, P2201, DOI 10.1109/TETC.2020.2983007
Miglani A, 2021, COMPUT COMMUN, V178, P37, DOI 10.1016/j.comcom.2021.07.009
Mohanta BK, 2020, INTERNET THINGS-NETH, V11, DOI 10.1016/j.iot.2020.100227
Mololoth VK, 2023, ENERGIES, V16, DOI 10.3390/en16010528
Mrabet H, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12094641
Nguyen DC, 2021, IEEE ACCESS, V9, P95730, DOI 10.1109/ACCESS.2021.3093633
Nguyen DC, 2020, J NETW COMPUT APPL, V166, DOI 10.1016/j.jnca.2020.102693
Nouman A., 2022, Int J Of Computat Innovat Sci, V1, P1
Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160]
Park JH, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11082264
Petrova M., 2022, P 2022 INT C COMM IN, DOI [10.1109/CIEES55704.2022.9990882, DOI 10.1109/CIEES55704.2022.9990882]
Petrova MM, 2018, 2018 IEEE FIRST INTERNATIONAL CONFERENCE ON SYSTEM ANALYSIS & INTELLIGENT COMPUTING (SAIC), P256
Raj A, 2022, WIRELESS PERS COMMUN, V122, P1481, DOI 10.1007/s11277-021-08958-3
Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507
Shafay M, 2023, CLUSTER COMPUT, V26, P197, DOI 10.1007/s10586-022-03582-7
Shahbazi Z, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21041467
Stahlschmidt S, 2022, SCIENTOMETRICS, V127, P2413, DOI 10.1007/s11192-022-04309-6
Taylor PJ, 2020, DIGIT COMMUN NETW, V6, P147, DOI 10.1016/j.dcan.2019.01.005
Tsoukas V, 2022, INFORMATION, V13, DOI 10.3390/info13050213
Waheed N, 2021, ACM COMPUT SURV, V53, DOI 10.1145/3417987
Wan YL, 2022, TECHNOL FORECAST SOC, V177, DOI 10.1016/j.techfore.2022.121540
Zerka F, 2020, IEEE ACCESS, V8, P183939, DOI 10.1109/ACCESS.2020.3029445
NR 54
TC 0
Z9 0
U1 4
U2 4
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2078-2489
J9 INFORMATION
JI Information
PD JAN
PY 2024
VL 15
IS 1
AR 65
DI 10.3390/info15010065
PG 25
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA GD9N1
UT WOS:001150846700001
OA gold
DA 2024-09-05
ER
PT J
AU Galanti, TM
Baker, CK
Morrow-Leong, K
Kraft, T
AF Galanti, Terrie McLaughlin
Baker, Courtney Katharine
Morrow-Leong, Kimberly
Kraft, Tammy
TI Enriching TPACK in mathematics education: using digital interactive
notebooks in synchronous online learning environments
SO INTERACTIVE TECHNOLOGY AND SMART EDUCATION
LA English
DT Article
DE Research; Mathematics; Distance learning; Higher education; Teaching
methods; Assessment and e-assessment
ID PEDAGOGICAL CONTENT KNOWLEDGE; TEACHERS; TECHNOLOGY
AB Purpose - In spring 2020, educators throughout the world abruptly shifted to emergency remote teaching in response to an emerging pandemic. The instructors of a graduate-level synchronous online geometry and measurement course for practicing school teachers redesigned their summative assessments. Their goals were to reduce outside-of-class work and to model the integration of content, pedagogy and technology. This paper aims to describe the development of a digital interactive notebook (dINB) assignment using online presentation software, dynamic geometry tools and mathematical learning trajectories. Broader implications for dINBs as assessments in effective distance learning are presented.
Design/methodology/approach - The qualitative analysis in this study consists of a sequence of first-cycle coding of mid-semester surveys and second-cycle thematic categorizations of mid-semester surveys and end-of-course reflections. Descriptive categorization counts along with select quotations from open-ended participant responses provided a window on evolving participant experiences with the dINB across the course.
Findings - Modifications to the dINB design based on teacher mid-semester feedback created a flexible assessment tool aligned with the technological pedagogical content knowledge (TPACK) framework. The teachers also constructed their own visions for adapting the dINB for student-centered instructional technology integration in their own virtual classrooms.
Originality/value - The development of the dINB enriched the TPACK understandings of the instructors in this study. It also positioned teachers to facilitate innovative synchronous and blended learning in their own school communities. Further analysis of dINB artifacts in future studies will test the hypothesis that practicing teachers' experiences as learners increased their TPACK knowledge.
C1 [Galanti, Terrie McLaughlin] Univ North Florida, Dept Teaching Learning & Curriculum, Jacksonville, FL 32224 USA.
[Baker, Courtney Katharine; Morrow-Leong, Kimberly; Kraft, Tammy] George Mason Univ, Math Educ Leadership, Fairfax, VA 22030 USA.
C3 State University System of Florida; University of North Florida; George
Mason University
RP Galanti, TM (corresponding author), Univ North Florida, Dept Teaching Learning & Curriculum, Jacksonville, FL 32224 USA.
EM terrie.galanti@unf.edu
CR Akyuz D, 2018, COMPUT EDUC, V125, P212, DOI 10.1016/j.compedu.2018.06.012
[Anonymous], 2000, PRINC STAND SCH MATH
[Anonymous], 2014, Principles to actions: Ensuring mathematical success for all
Baker C.K., 2019, International Journal of Web-based Learning and Teaching Technologies, V14, P1, DOI DOI 10.4018/IJWLTT.2019010101
Battista M., 2006, TEACHING CHILDREN MA, V13, P140, DOI DOI 10.5951/TCM.13.3.0140
Baum, 2019, HDB RES FIELD BASED, P635
Borko H., 1996, HDB ED PSYCHOL, P673, DOI DOI 10.4324/9780203053874
Chesbro R., 2006, SCI SCOPE, V29, P30
Clements D.H., 2003, TEACHING CHILDREN MA, V8, P480
Culp K. M., 2005, Journal of Educational Computing Research, V32, P279, DOI 10.2190/7W71-QVT2-PAP2-UDX7
Ferdig R. E., 2020, Teaching, technology, and teacher education during the COVID-19 pandemic: Stories from the field
Hersh, 2013, THESIS MANHATTANVILL
Hodges C. B., 2020, DIFFERENCE EMERGENCY
Howse T.D., 2014, Teaching Children Mathematics, V21, P304, DOI [10.5951/teacchilmath.21.5.0304, DOI 10.5951/TEACCHILMATH.21.5.0304]
Jaladanki VS, 2014, QUAL REP, V19
Koehler M. J., 2005, Journal of Educational Computing Research, V32, P131, DOI 10.2190/0EW7-01WB-BKHL-QDYV
Kopcha TJ, 2020, ETR&D-EDUC TECH RES, V68, P729, DOI 10.1007/s11423-020-09735-y
Lesh R., 1987, PROBLEMS REPRESENTAT
Li C., 2020, THIS IS
Loong EYK, 2018, MATH EDUC RES J, V30, P475, DOI 10.1007/s13394-018-0235-9
Mallozzi F., 2013, ELECT J SCI ED, V17, P1
Martin B., 2015, International Journal on Integrating Technology in Education IJITE, V4, P17, DOI [10.5121/ijite.2015.4102, DOI 10.5121/IJITE.2015.4102]
Maxwell J. A., 2005, Qualitative research design: An interactive approach, V2nd
Merriam S. B., 2015, QUALITATIVE RES GUID
Milman N., 2020, This Is Emergency Remote Teaching, Not Just Online Teaching There's a difference
Mishra P, 2006, TEACH COLL REC, V108, P1017, DOI 10.1111/j.1467-9620.2006.00684.x
National Council of Teachers of Mathematics (NCTM), 2012, NCTM CAEP STAND EL
Niess C.A., 2016, HERALD SUN 0517, P1
Niess ML, 2017, AUSTRALAS J EDUC TEC, V33, P77, DOI 10.14742/ajet.3473
Niess ML, 2005, TEACH TEACH EDUC, V21, P509, DOI 10.1016/j.tate.2005.03.006
Owens LM, 2005, QUEST, V57, P392, DOI 10.1080/00336297.2005.10491864
Ravitch S., 2020, Penn GSE Perspectives on Urban Education
Russell, 2017, MEASURING SPACE ONE
Russell, 2017, EXAMINING FEATURES S
Saldana Johnny, 2015, The coding manual for qualitative researchers, Vfourth
Saubern R, 2020, AUSTRALAS J EDUC TEC, V36, DOI 10.14742/ajet.6378
Shulman LS, 2019, PROFESORADO, V23, P269, DOI 10.30827/profesorado.v23i3.11230
Smith M.S., 1998, MATH TEACHING MIDDLE, V3, P344, DOI DOI 10.5951/MTMS.3.5.0344
Urbina A, 2017, INT J INF LEARN TECH, V34, P439, DOI 10.1108/IJILT-06-2017-0054
Van de Walle J., 2018, ELEMENTARY MIDDLE SC, VFifth
van Hiele P.M., 1984, English translation of selected writings of Dina van Hiele-Geldof and Pierre M. van Hiele, P243
Waldman C., 2009, SCI TEACHER, V76, P51
Walker C, 2016, TEACH TEACH EDUC, V54, P65, DOI 10.1016/j.tate.2015.11.013
Yin R. K., 2011, QUALITATIVE RES STAR
NR 44
TC 10
Z9 10
U1 4
U2 51
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 1741-5659
EI 1758-8510
J9 INTERACT TECHNOL SMA
JI Interact. Technol. Smart Educ.
PD OCT 4
PY 2021
VL 18
IS 3
SI SI
BP 345
EP 361
DI 10.1108/ITSE-08-2020-0175
EA DEC 2020
PG 17
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA WC0FE
UT WOS:000603426600001
DA 2024-09-05
ER
PT J
AU De Block, A
Conix, S
AF De Block, Andreas
Conix, Stijn
TI Responsible Dissemination in Sexual Orientation Research: The Case of
the AI "Gaydar"
SO PHILOSOPHY OF SCIENCE
LA English
DT Article
AB A recent controversy about neural networks allegedly capable of detecting a person's sexual orientation raises the question of whether all research on homosexuality should be permitted. This paper considers two arguments for limits to such research, and concludes that there are good reasons to limit at least the dissemination of applied research on the etiology of homosexuality. The paper then briefly sketches how this could work, and looks at three objections against these limitations.
C1 [De Block, Andreas; Conix, Stijn] Katholieke Univ Leuven, Inst Philosophy, Ctr L & Philosophy Sci, Leuven, Belgium.
C3 KU Leuven
RP De Block, A (corresponding author), Katholieke Univ Leuven, Inst Philosophy, Ctr L & Philosophy Sci, Leuven, Belgium.
EM andreas.deblock@kuleuven.be
RI Conix, Stijn/HKO-8315-2023
OI Conix, Stijn/0000-0002-1487-0213; De Block, Andreas/0000-0002-7927-8210
FU Research Council - Flanders [3H200026]
FX The authors would like to thank Jacob Stegenga for organizing the
symposium on "the sciences of sexual desire," and the attendees of that
symposium for their interesting comments and suggestions on this paper.
Stijn Conix gratefully acknowledges funding from the Research Council -
Flanders (grant 3H200026).
CR Andrew Gelman, 2018, PREPRINT
[Anonymous], 2004, BIOT RES AG TERR
April Bailey, 2021, PREPRINT
Brundage M, 2018, Arxiv, DOI [arXiv:1802.07228, DOI 10.48550/ARXIV.1802.07228, 10.48550/arXiv.1802.07228]
Carrier M, 2021, SYNTHESE, V198, P4749, DOI 10.1007/s11229-019-02254-1
De Block A, 2013, J SEX RES, V50, P276, DOI 10.1080/00224499.2012.738259
FAUSTOSTERLING A, 1995, J HOMOSEXUAL, V28, P217, DOI 10.1300/J082v28n03_02
Householder Allen D., 2017, CERT GUIDE COORDINAT
Hull D.L., 1998, PHILOS BIOL, P383
Kitcher P, 2001, Science, truth, and democracy
Kourany JA, 2016, PHILOS SCI, V83, P779, DOI 10.1086/687863
Långström N, 2010, ARCH SEX BEHAV, V39, P75, DOI 10.1007/s10508-008-9386-1
Leuner J, 2019, Arxiv, DOI [arXiv:1902.10739, DOI 10.48550/ARXIV.1902.10739]
Margolin L, 2023, J HOMOSEXUAL, V70, P291, DOI 10.1080/00918369.2021.1945340
Miller AE, 2018, PSYCHOL SEX, V9, P188, DOI 10.1080/19419899.2018.1468353
Oldham JD, 1999, J SEX MARITAL THER, V25, P121, DOI 10.1080/00926239908403984
Ovadya A, 2019, Arxiv, DOI arXiv:1907.11274
Plant R., 2011, The pink triangle: The Nazi war against homosexuals
Schuklenk U, 1997, HASTINGS CENT REP, V27, P6, DOI 10.2307/3528773
Selgelid MJ, 2011, INFECTIOUS DIEASE ETHICS: LIMITING LIBERTY IN CONTEXTS OF CONTAGION, P135, DOI 10.1007/s11569-009-0074-y
Stein Edward., 1999, MISMEASURE DESIRE
Talisse Robert., 2007, J SOC PHILOS, V38, P654
Tam V, 2019, NAT REV GENET, V20, P467, DOI 10.1038/s41576-019-0127-1
Wang Y, 2018, J PERS SOC PSYCHOL, V114, P246, DOI 10.1037/pspa0000098
Whittlestone J, 2020, Arxiv, DOI arXiv:1910.01170
NR 25
TC 0
Z9 0
U1 0
U2 5
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0031-8248
EI 1539-767X
J9 PHILOS SCI
JI Philos. Sci.
PD DEC
PY 2022
VL 89
IS 5
BP 1075
EP 1084
DI 10.1017/psa.2022.44
PG 10
WC History & Philosophy Of Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC History & Philosophy of Science
GA 8O7XM
UT WOS:000926046700020
OA Bronze, Green Accepted
DA 2024-09-05
ER
PT J
AU Kerekes, J
King, KP
AF Kerekes, Judit
King, Kathleen P.
TI THE KING'S CARPET: DRAMA PLAY IN TEACHER EDUCATION
SO INTERNATIONAL JOURNAL OF INSTRUCTION
LA English
DT Article
DE teacher education; collaboration; co-teaching; drama; role playing;
active learning; critical thinking and research; inquiry based learning
AB Trying to develop new perspectives of teaching is never easy, but trying to cultivate ownership and initiative among teacher education students is a still greater aspiration that is infrequently realized. This article addresses each of these highly valued goals for teacher educators as a case study reveals the impact of involving teacher candidates in interdisciplinary focused, constructivist and reflective models and planning for teaching, and then student teaching, which reaffirms this approach. Most significant is the phenomenon of several teacher candidates continuing their development and study of innovative drama play projects with their classes after the semester finishes. The resulting transformations in professional identity development, self-efficacy and studentteacher relationships confirm the value of the teacher education model which has developed over a decade of practice (Lyublinskaya & Kerekes, 2009).
C1 [Kerekes, Judit] CUNY, 2800 Victory Blvd, Staten Isl, NY 10314 USA.
[King, Kathleen P.] Fordham Univ, New York, NY 10023 USA.
C3 City University of New York (CUNY) System; Fordham University
RP Kerekes, J (corresponding author), CUNY, 2800 Victory Blvd, Staten Isl, NY 10314 USA.
EM Kerekes@mail.csi.cuny.edu; kpking@fordham.edu
CR [Anonymous], 1974, SOC SERV REV, DOI DOI 10.1086/643248
[Anonymous], 2000, CURR EV STAND SCH MA
[Anonymous], 2009, EURASIA J MATH SCI T
[Anonymous], 2002, Applied Social Research Methods Series
Baji-Gal F., 2001, DRAMAPEDAGOGIA ALKAL
Cranton P., 2003, NEW DIRECTIONS ADULT, V98, P31, DOI [DOI 10.1002/ACE.97, https://doi.org/10.1002/(ISSN)1536-0717, DOI 10.1002/(ISSN)1536-0717]
Creswell J., 2003, RES DESIGN, V2nd
Daloz L.A., 1999, MENTORING GUIDING JO
Enriquez J., 2001, FUTURE CATCHES YOU
Fosnot C., 2001, YOUNG MATH WORK, V1
Freire P., 1970, Pedagogy of the oppressed. Trans. Myra Bergman Ramos
Freudenthal H., 1973, MATH ED TASK
Glaser, 1978, THEORETICAL SENSITIV
Jonassen D.H., 2003, LEARNING SOLVE PROBL, V2nd
King K.P., 2005, Bringing transformative learning to life
King KP, 2009, ADULT EDUC SPEC TOP, P1
Laszlo Kaposi, 2005, A DRAMA TANITASA
Lyublinskaya I., 2009, INTEGRATING MATH SCI
Merriam S.B., 2007, QUALITATIVE RES CASE
Partnership for 21st Century Learning, 2008, INTELLECTUAL POLICY
Schn D. A., 1987, Educating the reflexive practitioner
NR 21
TC 10
Z9 13
U1 0
U2 0
PU ESKISEHIR OSMANGAZI UNIV, FAC EDUCATION
PI ESKISEHIR
PA ESKISEHIR OSMANGAZI UNIV, FAC EDUCATION, ESKISEHIR, 26480, TURKEY
SN 1694-609X
EI 1308-1470
J9 INT J INSTR
JI Int. J. Instr.
PD JAN
PY 2010
VL 3
IS 1
BP 39
EP 60
PG 22
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA VA3AT
UT WOS:000409779800004
DA 2024-09-05
ER
PT J
AU Ye, ZW
Li, JL
Wang, WJ
Qin, FZ
Li, KT
Tan, H
Zhang, C
AF Ye, Zhiwei
Li, Jialing
Wang, Wenjun
Qin, Fanzhi
Li, Keteng
Tan, Hao
Zhang, Chen
TI Data-driven visualization of the dynamics of machine learning in
materials research
SO JOURNAL OF CLEANER PRODUCTION
LA English
DT Article
DE Materials; Machine learning; Visualization; Bibliometrics analysis;
Environmental sustainability
ID HIGH ENTROPY ALLOYS; PHASE PREDICTION; DESIGN; MODELS; SCIENCE
AB The intricate interplay between material structure and properties lies at the heart of modern materials research. Understanding and manipulating this relationship is essential for the development of advanced materials with tailored properties for a wide range of applications. Machine learning (ML) has been intensively employed for prediction purposes. This trend of research into new insights, techniques, and research paradigms is gaining great popularity and demonstrating its promising potential for materials research. This study aims to conduct a bibliometric analysis of ML applications in materials, offering researchers, particularly those in the green energy sector, insights to incorporate into their future research plans. Here, the dataset was retrieved from the Web of Science Core Collection and the earliest related publication was recorded in 1998. Metrics based on retrieved data were extracted, including publication evaluations, countries, journals, and authors. Keywords temporal variations and citation-based scientific landscapes were constructed. The findings underscore the embryonic nature of machine learning's deployment in materials research but also highlight its significance as an emerging field that has captured the attention of scholars across multiple domains. Specifically, ongoing research efforts are directed towards optimizing ML models and algorithms, as well as refining data handling techniques to glean insights into complex structure-property relationships. The findings will provide novices with a data-driven visualization summary about the dynamics of this field, and its inspiration to environmental sustainability, and benefit a wide range of stakeholders to enhance their informed decisions on research funding and policy.
C1 [Ye, Zhiwei; Qin, Fanzhi; Li, Keteng; Zhang, Chen] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Peoples R China.
[Li, Jialing; Tan, Hao] Hunan Univ, Sch Design, Changsha 410082, Hunan, Peoples R China.
[Wang, Wenjun] Hunan Univ Technol & Business, Sch Resources & Environm, Changsha 410205, Peoples R China.
C3 Hunan University; Hunan University; Hunan University of Technology &
Business
RP Zhang, C (corresponding author), Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Peoples R China.; Li, JL (corresponding author), Hunan Univ, Sch Design, Changsha 410082, Hunan, Peoples R China.
EM zhangchen@hnu.edu.cn
RI Zhang, Chen/AAY-8585-2021
OI Zhang, Chen/0000-0002-3579-6980
FU National Natural Science Foundation of China [52170162, 51809090];
Natural Science Foundation of Hunan Province, China [2022JJ10016];
Science and Technology Innovation Program of Hunan Province
[2021RC3049]; Fundamental Research Funds for the Central Universities
[531118010114]
FX This study was financially supported by the program for the National
Natural Science Foundation of China (52170162, 51809090) , the Natural
Science Foundation of Hunan Province, China (2022JJ10016) , the Science
and Technology Innovation Program of Hunan Province (2021RC3049) , and
the Fundamental Research Funds for the Central Universities
(531118010114) .
CR Agrawal A, 2016, APL MATER, V4, DOI 10.1063/1.4946894
Ahmad T, 2022, RENEW SUST ENERG REV, V160, DOI 10.1016/j.rser.2022.112128
Akanbi LA, 2020, J CLEAN PROD, V274, DOI 10.1016/j.jclepro.2020.122843
Al-Wesabi F, 2022, SUSTAIN ENERGY TECHN, V52, DOI 10.1016/j.seta.2022.102040
Alberi K, 2019, J PHYS D APPL PHYS, V52, DOI 10.1088/1361-6463/aad926
Alexander J., 2019, Nature, V575
Bostanabad R, 2018, PROG MATER SCI, V95, P1, DOI 10.1016/j.pmatsci.2018.01.005
Butler KT, 2018, NATURE, V559, P547, DOI 10.1038/s41586-018-0337-2
Carrete J, 2014, PHYS REV X, V4, DOI 10.1103/PhysRevX.4.011019
Chen A, 2020, INFOMAT, V2, P553, DOI 10.1002/inf2.12094
Chen C, 2020, ADV ENERGY MATER, V10, DOI 10.1002/aenm.201903242
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chouard T, 2015, NATURE, V521, P435, DOI 10.1038/521435a
Clayson IG, 2020, ADV MATER, V32, DOI 10.1002/adma.202002780
Correa-Baena JP, 2017, SCIENCE, V358, P739, DOI 10.1126/science.aam6323
Goh GB, 2017, J COMPUT CHEM, V38, P1291, DOI 10.1002/jcc.24764
Gómez-Bombarelli R, 2018, ACS CENTRAL SCI, V4, P268, DOI 10.1021/acscentsci.7b00572
Gómez-Bombarelli R, 2016, NAT MATER, V15, P1120, DOI [10.1038/nmat4717, 10.1038/NMAT4717]
Gu GX, 2018, MATER HORIZ, V5, P939, DOI 10.1039/c8mh00653a
Gul G, 2021, ENVIRON SCI-NANO, V8, P937, DOI 10.1039/d0en01240h
HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRevB.7.1912
Huang SD, 2019, WIRES COMPUT MOL SCI, V9, DOI 10.1002/wcms.1415
Huang WJ, 2019, ACTA MATER, V169, P225, DOI 10.1016/j.actamat.2019.03.012
Jacsó P, 2011, ONLINE INFORM REV, V35, P821, DOI 10.1108/14684521111176525
Janet JP, 2017, CHEM SCI, V8, P5137, DOI 10.1039/c7sc01247k
Jorgensen PB, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5023563
Kimmig J, 2021, ADV MATER, V33, DOI 10.1002/adma.202004940
Koseoglu MA, 2016, ANN TOURISM RES, V61, P180, DOI 10.1016/j.annals.2016.10.006
Leydesdorff L, 2015, J ASSOC INF SCI TECH, V66, P1001, DOI 10.1002/asi.23243
Leydesdorff L, 2013, J AM SOC INF SCI TEC, V64, P2573, DOI 10.1002/asi.22946
Liu Y, 2017, J MATERIOMICS, V3, P159, DOI 10.1016/j.jmat.2017.08.002
Mohamed OA, 2016, ADV PROD ENG MANAG, V11, P227, DOI 10.14743/apem2016.3.223
Moosavi SM, 2020, J AM CHEM SOC, V142, P20273, DOI 10.1021/jacs.0c09105
Mou TY, 2023, NAT CATAL, V6, P122, DOI 10.1038/s41929-023-00911-w
Mozaffar M., 2018, MANUF LETT, V18, P35, DOI DOI 10.1016/J.MFGLET.2018.10.002
Muratov EN, 2020, CHEM SOC REV, V49, P3525, DOI 10.1039/d0cs00098a
Musib M, 2017, SCIENCE, V357, P28, DOI 10.1126/science.357.6346.28
Nosengo N, 2016, NATURE, V533, P22, DOI 10.1038/533022a
Padula D, 2019, MATER HORIZ, V6, P343, DOI 10.1039/c8mh01135d
Paszkowicz W, 2013, MATER MANUF PROCESS, V28, P708, DOI 10.1080/10426914.2012.746707
Pople JA, 1999, ANGEW CHEM INT EDIT, V38, P1894, DOI 10.1002/(SICI)1521-3773(19990712)38:13/14<1894::AID-ANIE1894>3.0.CO;2-H
RAHMAN A, 1964, PHYS REV, V136, pA405, DOI 10.1103/PhysRev.136.A405
Rajan K, 2005, MATER TODAY, V8, P38, DOI 10.1016/S1369-7021(05)71123-8
Ramprasad R, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0056-5
Ramu P, 2022, STRUCT MULTIDISCIP O, V65, DOI 10.1007/s00158-022-03369-9
Rao ZY, 2022, SCIENCE, V378, P78, DOI 10.1126/science.abo4940
Ren F, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aaq1566
Sanchez-Lengeling B, 2018, SCIENCE, V361, P360, DOI 10.1126/science.aat2663
Sha WX, 2021, INFOMAT, V3, P353, DOI 10.1002/inf2.12167
Shotton D, 2013, NATURE, V502, P295, DOI 10.1038/502295a
Tabor DP, 2018, NAT REV MATER, V3, P5, DOI 10.1038/s41578-018-0005-z
Tachibana Y, 2012, NAT PHOTONICS, V6, P511, DOI 10.1038/nphoton.2012.175
Tao QL, 2021, NPJ COMPUT MATER, V7, DOI 10.1038/s41524-021-00495-8
Tian CX, 2021, ADV INTELL SYST-GER, V3, DOI 10.1002/aisy.202100014
Trahey L, 2020, P NATL ACAD SCI USA, V117, P12550, DOI 10.1073/pnas.1821672117
Wallin JA, 2005, BASIC CLIN PHARMACOL, V97, P261, DOI 10.1111/j.1742-7843.2005.pto_139.x
Wang C, 2020, ADDIT MANUF, V36, DOI 10.1016/j.addma.2020.101538
Ward L, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.024104
Ward L, 2016, NPJ COMPUT MATER, V2, DOI 10.1038/npjcompumats.2016.28
Wen C, 2019, ACTA MATER, V170, P109, DOI 10.1016/j.actamat.2019.03.010
Xiong Z, 2020, COMP MATER SCI, V171, DOI 10.1016/j.commatsci.2019.109203
Xue RM, 2018, SMALL, V14, DOI 10.1002/smll.201801793
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
Zhang Y, 2020, ACTA MATER, V185, P528, DOI 10.1016/j.actamat.2019.11.067
Zhu XZ, 2020, J CLEAN PROD, V273, DOI 10.1016/j.jclepro.2020.122915
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 66
TC 1
Z9 1
U1 12
U2 12
PU ELSEVIER SCI LTD
PI London
PA 125 London Wall, London, ENGLAND
SN 0959-6526
EI 1879-1786
J9 J CLEAN PROD
JI J. Clean Prod.
PD APR 10
PY 2024
VL 449
AR 141410
DI 10.1016/j.jclepro.2024.141410
EA MAR 2024
PG 13
WC Green & Sustainable Science & Technology; Engineering, Environmental;
Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics; Engineering; Environmental Sciences
& Ecology
GA QI2Z5
UT WOS:001220195100001
DA 2024-09-05
ER
PT J
AU Zabezhailo, MI
AF Zabezhailo, M. I.
TI Three Comprehension Test Questions for Fellow Members
SO PATTERN RECOGNITION AND IMAGE ANALYSIS
LA English
DT Article
DE artificial intelligence; intelligent data analysis; research and
developments; quality evaluation
AB The work concerns the quality of intelligent-data-analysis results. Learning-sample quality for precedents of knowledge representation language and means for intelligent data analysis are considered. Several problems are formulated, acceptable answers to which will make it possible to increase the efficiency and quality of intelligent data analysis.
C1 [Zabezhailo, M. I.] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia.
C3 Russian Academy of Sciences; Federal Research Center "Computer Science &
Control" of RAS
RP Zabezhailo, MI (corresponding author), Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia.
EM m.zabezhailo@yandex.ru
CR Finn VK, 2011, SCI TECH INF PROCESS, V38, P385, DOI 10.3103/S0147688211060037
Mitin A., 2020, Conf. in Memory of Academician O.M. Belotserkovsky
Zabezhailo M., 2022, IMSC 2022 INTEGRATED, P50
Zabezhailo MI, 2022, SCI TECH INF PROCESS, V49, P385, DOI 10.3103/S0147688222050148
Zabezhailo MI, 2021, AUTOMAT DOC MATH LIN, V55, P94, DOI 10.3103/S0005105521030092
Zabezhailo MI, 2020, AUTOM DOC MATH LINGU, V54, P298, DOI 10.3103/S0005105520060072
Zabezhailo M. I., 2021, CEUR Workshop Proc, V3044, P98
[Забежайло Михаил Иванович Zabezhailo Michael I.], 2021, [Системы и средства информатики, Systems and Means of Informatics, Sistemy i sredstva informatiki], V31, P69, DOI 10.14357/08696527210106
NR 8
TC 0
Z9 0
U1 0
U2 0
PU SPRINGERNATURE
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND
SN 1054-6618
EI 1555-6212
J9 PATTERN RECOGN IMAGE
JI Pattern Recogn. Image Anal.
PD SEP
PY 2023
VL 33
IS 3
SI SI
BP 555
EP 559
DI 10.1134/S1054661823030501
PG 5
WC Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA T0NU8
UT WOS:001075049100047
DA 2024-09-05
ER
PT J
AU Podestà, F
AF Podesta, Federico
TI Combining process tracing and synthetic control method: Bridging two
ways of making causal inference in evaluation research
SO EVALUATION
LA English
DT Article
DE causation; process tracing; single-case study; Synthetic control method
ID MECHANISMS
AB This article discusses potential ways of combining two methods of evaluation in single-case studies: the synthetic control method and the process tracing method. Both are designed to examine certain events/programmes that take place in given cases but view these events/programmes from different causal perspectives. Seeing an event/programme as a cause, synthetic control estimates its impact on one or more outcomes. Conversely, starting from a certain outcome, process tracing uncovers the causes responsible. One can start from the causal explanation reached via one of the two methods and then proceed to examine that explanation through the other method. Once the causes of an outcome are traced via a process tracing analysis, that account can be validated by estimating the effects of those causes via synthetic control. Equally, once the impact of a certain event is estimated through synthetic control, causal mechanisms traceable via process tracing can be exploited to refine that impact evaluation.
C1 [Podesta, Federico] Bruno Kessler Fdn, Trento, Italy.
C3 Fondazione Bruno Kessler
RP Podestà, F (corresponding author), Bruno Kessler Fdn, Res Inst Evaluat Publ Policies IRVAPP, Via S Croce 77, I-38122 Trento, Italy.
EM podesta@irvapp.it
OI Podesta, Federico/0000-0003-0307-8041
CR Abadie A, 2003, AM ECON REV, V93, P113, DOI 10.1257/000282803321455188
Abadie A, 2021, J ECON LIT, V59, P391, DOI 10.1257/jel.20191450
Abadie A, 2015, AM J POLIT SCI, V59, P495, DOI 10.1111/ajps.12116
Abadie A, 2010, J AM STAT ASSOC, V105, P493, DOI 10.1198/jasa.2009.ap08746
Arkhangelsky D, 2021, AM ECON REV, V111, P4088, DOI 10.1257/aer.20190159
Barrenechea R, 2019, SOCIOL METHOD RES, V48, P451, DOI 10.1177/0049124117701489
Beach D., 2019, Process-tracing methods: Foundations and guidelines
Befani B., 2012, BROADENING RANGE DES
Befani B, 2017, EVALUATION-US, V23, P42, DOI 10.1177/1356389016654584
Befani B, 2014, IDS BULL-I DEV STUD, V45, P17, DOI 10.1111/1759-5436.12110
Bennett A, 2015, STRAT SOC INQ, P1
Bennett A, 2006, ANNU REV POLIT SCI, V9, P455, DOI 10.1146/annurev.polisci.8.082103.104918
Bennett A, 2015, STRAT SOC INQ, P3
Bennett Andrew., 2010, RETHINKING SOCIAL IN, P207
Blatter J., 2012, Designing case studies: Explanatory approaches in small-N research, DOI [10.1057/9781137016669, DOI 10.1057/9781137016669]
Busetti S, 2017, EVALUATION-US, V23, P256, DOI 10.1177/1356389017716738
Collier D, 2011, PS-POLIT SCI POLIT, V44, P823, DOI 10.1017/S1049096511001429
Collier David., 2010, RETHINKING SOCIAL IN, V2nd
George Alexander., 1979, DIPLOMACY, P43
George Alexander L., 2005, CASE STUDIES THEORY, DOI DOI 10.1017/S1537592707070491
Gerring J, 2007, CASE STUDY RESEARCH: PRINCIPLES AND PRACTICES, P1
Gerring J, 2010, COMP POLIT STUD, V43, P1499, DOI 10.1177/0010414010376911
Hall PA, 2006, EUR MANAG REV, V3, P24, DOI 10.1057/palgrave.emr.1500050
Harvey FrankP., 2011, Explaining the Iraq War: Counterfactual Theory, Logic and Evidence
Kay A, 2015, POLICY STUD J, V43, P1, DOI 10.1111/psj.12092
Keele L, 2015, J POLICY ANAL MANAG, V34, P937, DOI 10.1002/pam.21853
Mahoney J, 1999, AM J SOCIOL, V104, P1154, DOI 10.1086/210139
Mahoney J, 2006, POLIT ANAL, V14, P227, DOI 10.1093/pan/mpj017
Mahoney J, 2012, SOCIOL METHOD RES, V41, P570, DOI 10.1177/0049124112437709
MAYNE J., 2012, Making causal claims (Brief No. 26)
Mayntz R, 2004, PHILOS SOC SCI, V34, P237, DOI 10.1177/0048393103262552
Mellace G., 2019, ARXIV E PRINTS
Pawson R., 2013, The science of evaluation: A realist manifesto, DOI DOI 10.4135/9781473913820
Pierson P, 1996, WORLD POLIT, V48, P143, DOI 10.1353/wp.1996.0004
Podestà F, 2020, COMP EUR POLIT, V18, P819, DOI 10.1057/s41295-020-00211-8
Rohlfing I, 2014, SOCIOL METHOD RES, V43, P606, DOI 10.1177/0049124113503142
Schmitt J, 2015, EVALUATION-US, V21, P429, DOI 10.1177/1356389015607739
Skarbek D, 2020, J I ECON, V16, P409, DOI 10.1017/S174413741900078X
Skocpol T., 1979, States and Social Revolutions: A Comparative Analysis of France, Russia and China
Tarrow S, 2010, COMP POLIT STUD, V43, P230, DOI 10.1177/0010414009350044
Van Evera S., 1997, Guide to methods for students of political science
NR 41
TC 0
Z9 0
U1 3
U2 11
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1356-3890
EI 1461-7153
J9 EVALUATION-US
JI Evaluation
PD JAN
PY 2023
VL 29
IS 1
BP 50
EP 66
DI 10.1177/13563890221139511
EA DEC 2022
PG 17
WC Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Social Sciences - Other Topics
GA 7X3LH
UT WOS:000893653200001
DA 2024-09-05
ER
PT J
AU Frandsen, TF
Carlsen, AMF
Eriksen, MB
AF Frandsen, Tove Faber
Carlsen, Anne-Marie Fiala
Eriksen, Mette Brandt
TI The use of subject headings varied in Embase and MEDLINE: An analysis of
indexing across six subject areas
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
DE Bibliographic databases; Embase; linear regression; MEDLINE; subject
headings; thesaurus
ID SYSTEMATIC REVIEWS; ABSTRACTS; LENGTH; CINAHL; MESH
AB Many bibliographic databases describe the content of a publication using a thesaurus. The vocabularies vary and the extent to which the databases apply them may also differ significantly. The aim of this study is to empirically explore the number of subject headings assigned to publications in two databases over time and to determine if publication characteristics are associated with the number of subject headings. Articles and reviews in MEDLINE and Embase from 1990 to 2019 assigned with one of the subject headings from six subject areas are included in this study. Each of the retrieved publications in Embase is matched with a similar publication in MEDLINE. Furthermore, multivariable linear regressions are used to explore the association of the number of subject headings in MEDLINE and Embase with six prespecified publication characteristics. The average number of assigned subject headings in MEDLINE is stable or even slightly decreasing over time. In Embase, the average number of assigned subject headings was stable until about 2000 where the average number increased dramatically during the next 3 years. Furthermore, linear regressions show that the average number of subject headings in MEDLINE and Embase is higher for publications in English, publications with longer abstract, recent publications and if it belongs to specific subject areas. However, reviews are assigned with more subject headings in Embase and fewer in MEDLINE. The implications of the results are discussed.
C1 [Frandsen, Tove Faber] Univ Southern Denmark, Dept Design & Commun, Univ Sparken 1, DK-6000 Odence, Denmark.
[Carlsen, Anne-Marie Fiala] UCL Univ Coll, Svendborg, Denmark.
[Eriksen, Mette Brandt] Univ Southern Denmark, Univ Lib Southern Denmark, Cochrane Denmark, Odense, Denmark.
[Eriksen, Mette Brandt] Univ Southern Denmark, Ctr Evidence Based Med Odense CEBMO, Odense, Denmark.
C3 University of Southern Denmark; University of Southern Denmark;
University of Southern Denmark
RP Frandsen, TF (corresponding author), Univ Southern Denmark, Dept Design & Commun, Univ Sparken 1, DK-6000 Odence, Denmark.
EM t.faber@sdu.dk
RI Frandsen, Tove Faber/A-6185-2012
OI Frandsen, Tove Faber/0000-0002-8983-5009; Brandt Eriksen,
Mette/0000-0001-6785-261X
CR AITCHISON J., 2000, THESAURUS CONSTRUCTI, V4th
[Anonymous], 2005, Guidelines for the construction, format, and management of monolingual controlled vocabularies
Aromataris E., 2017, Joanna Briggs Institute reviewers manual [Internet]
Banks J., 2004, TECH SERV Q, V21, P17
Bekhuis T, 2013, J MED LIBR ASSOC, V101, P92, DOI 10.3163/1536-5050.101.2.004
BETRANAP, 2005, BMC MED RES METHODOL, V5
Booth Andrew, 2012, Systematic approaches to a successful literature review
Burns CS, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0234221
Chen C, 2018, J INF SCI, V44, P3, DOI 10.1177/0165551516671629
Chu Heting., 2010, Information Representation and Retrieval in the Digital Age
Cleveland D.B., 2013, INTRO INDEXING ABSTR
Cooper H., 2019, The handbook of research synthesis and meta-analysis
Dai SY, 2020, BIOINFORMATICS, V36, P1533, DOI 10.1093/bioinformatics/btz756
Elsevier, 2021, EMBASE INDEXING GUID
Elsevier RD Solutions, 2015, COMP EMTR MESH
Eriksen MB., 2016, UGESKRIFT LAEGER, V178, P1610
Frank J, 2018, SOCIOL ARTS, P1, DOI [10.1007/978-3-319-65036-4_1, 10.1002/jrsm.1302]
Glanville J., 2015, PRUNING EMTREE DOES
Green S, 2011, COCHRANE HDB SYSTEMA, DOI DOI 10.1002/9780470712184
Gross T, 2015, CAT CLASSIF Q, V53, P1, DOI 10.1080/01639374.2014.917447
Harpring P., 2010, Introduction to controlled vocabularies: Terminology for art, architecture, and other cultural works
Hartley J, 2009, J AM SOC INF SCI TEC, V60, P2010, DOI 10.1002/asi.21102
HIGGINS JPT, 2011, COCHRANE HDB SYSTEMA, V0001
Hjorland B, 2001, ANNU REV INFORM SCI, V35, P249
Holly C., 2016, Comprehensive Systematic Review for Advanced Practice Nursing
Jenuwine ES, 2004, J MED LIBR ASSOC, V92, P349
Kim E, 2021, SCI EDIT, V8, P39, DOI 10.6087/kcse.228
Koffel JB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125931
Lancaster FrederickW., 1991, Indexing and abstracting in theory and practice
Liu H., 2013, J PHYS ED SPORT, V13, P53
Losee R, 2004, KNOWL ORGAN, V31, P245
Losee RM, 2007, INFORM PROCESS MANAG, V43, P958, DOI 10.1016/j.ipm.2006.08.011
Minozzi S, 2000, ARCH PHYS MED REHAB, V81, P720, DOI 10.1016/S0003-9993(00)90099-6
Mork J, 2017, J BIOMED SEMANT, V8, DOI 10.1186/s13326-017-0113-5
Volpato EDN, 2018, SAO PAULO MED J, V136, P103, DOI 10.1590/1516-3180.2017.0277100917
Parlak B, 2020, J INF SCI, V46, P648, DOI 10.1177/0165551519860982
Pieper D, 2021, J CLIN EPIDEMIOL, V132, P146, DOI 10.1016/j.jclinepi.2020.12.027
Premji Z, 2020, J CAN HEALTH LIBRARI, V41, P3, DOI 10.29173/jchla29437
Ratner B., 2009, Journal of Targeting, Measurement and Analysis for Marketing, V17, P139, DOI [DOI 10.1057/JT.2009.5, 10.1057/jt.2009.5]
Salvador-Oliván JA, 2019, J MED LIBR ASSOC, V107, P210, DOI 10.5195/jmla.2019.567
Sampson M, 2006, J CLIN EPIDEMIOL, V59, P1057, DOI 10.1016/j.jclinepi.2006.01.007
Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605
Suarez-Almazor ME, 2000, CONTROL CLIN TRIALS, V21, P476, DOI 10.1016/S0197-2456(00)00067-2
Subirana M, 2005, J CLIN EPIDEMIOL, V58, P20, DOI 10.1016/j.jclinepi.2004.06.001
TIBBO HR, 1994, AM ARCHIVIST, V57, P310
U.S. National Library of Medicine, INTR MESH HIST MESH
Voorbij HJ, 1998, J DOC, V54, P466, DOI 10.1108/EUM0000000007178
Wilkins Thad, 2005, Can Fam Physician, V51, P848
Wright K, 2015, SYST REV-LONDON, V4, DOI 10.1186/s13643-015-0069-4
NR 49
TC 0
Z9 0
U1 2
U2 7
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PD AUG
PY 2024
VL 50
IS 4
BP 851
EP 860
DI 10.1177/01655515221107335
EA AUG 2022
PG 10
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA C3E8I
UT WOS:000835912300001
DA 2024-09-05
ER
PT J
AU Nazarovets, S
Teixeira da Silva, JA
AF Nazarovets, Serhii
Teixeira da Silva, Jaime A.
TI ChatGPT as an "author": Bibliometric analysis to assess the validity of
authorship
SO ACCOUNTABILITY IN RESEARCH-ETHICS INTEGRITY AND POLICY
LA English
DT Article; Early Access
DE Artificial intelligence (AI); authorship principles; ethics;
responsibility; transparency
AB Background: Following the 2023 surge in popularity of large language models like ChatGPT, significant ethical discussions emerged regarding their role in academic authorship. Notable ethics organizations, including the ICMJE and COPE, alongside leading publishers, have instituted ethics clauses explicitly stating that such models do not meet the criteria for authorship due to accountability issues.Objective: This study aims to assess the prevalence and ethical implications of listing ChatGPT as an author on academic papers, in violation of existing ethical guidelines set by the ICMJE and COPE.Methods: We conducted a comprehensive review using databases such as Web of Science and Scopus to identify instances where ChatGPT was credited as an author, co-author, or group author.Results: Our search identified 14 papers featuring ChatGPT in such roles. In four of those papers, ChatGPT was listed as an "author" alongside the journal's editor or editor-in-chief. Several of the ChatGPT-authored papers have accrued dozens, even hundreds of citations according to Scopus, Web of Science, and Google Scholar.Discussion: The inclusion of ChatGPT as an author on these papers raises critical questions about the definition of authorship and the accountability mechanisms in place for content produced by artificial intelligence. Despite the ethical guidelines, the widespread citation of these papers suggests a disconnect between ethical policy and academic practice.Conclusion: The findings suggest a need for corrective measures to address these discrepancies. Immediate review and amendment of the listed papers is advised, highlighting a significant oversight in the enforcement of ethical standards in academic publishing.
C1 [Nazarovets, Serhii] Borys Grinchenko Kyiv Metropolitan Univ, Lib, 18-2 Bulvarno Kudriavska Str, UA-04053 Kiev, Ukraine.
C3 Ministry of Education & Science of Ukraine; Borys Grinchenko Kyiv
Metropolitan University
RP Nazarovets, S (corresponding author), Borys Grinchenko Kyiv Metropolitan Univ, Lib, 18-2 Bulvarno Kudriavska Str, UA-04053 Kiev, Ukraine.
EM sergiy.nazarovets@gmail.com
RI Nazarovets, Serhii/I-1680-2012
OI Nazarovets, Serhii/0000-0002-5067-4498
CR Abalkina A, 2023, LEARN PUBL, V36, P689, DOI 10.1002/leap.1574
Berdejo-Espinola V, 2023, SCIENCE, V379, P991, DOI 10.1126/science.adg9714
Cellular and Molecular Bioengineering, 2024, SUBM GUID
Christopher J, 2021, FEBS LETT, V595, P1751, DOI 10.1002/1873-3468.14143
COPE (Committee on Publication Ethics), 2024, AUTH AI TOOLS
Hosseini M, 2023, RES ETHICS-UK, DOI 10.1177/17470161231180449
Hosseini M, 2023, ACCOUNT RES, DOI 10.1080/08989621.2023.2168535
Hutson M, 2022, NATURE, V611, P192, DOI 10.1038/d41586-022-03479-w
ICMJE (International Committee of Medical Journal Editors), 2024, REC
Joelving F, 2024, SCIENCE, V383, P252, DOI 10.1126/science.ado0309
Kaebnick GE, 2023, HASTINGS CENT REP, V53, P3, DOI 10.1002/hast.1507
King MR, 2023, CELL MOL BIOENG, V16, P1, DOI 10.1007/s12195-022-00754-8
Lund BD, 2024, LEARN PUBL, V37, P13, DOI 10.1002/leap.1582
Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750
O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537
Owens B, 2023, NATURE, V615, P20, DOI 10.1038/d41586-023-00500-8
Prillaman M, 2024, NATURE, V627, P16, DOI 10.1038/d41586-024-00592-w
PubMed, 2024, ABOUT US
Springer Nature, 2024, AUTHORSHIP
Springer Nature, 2024, AUTH PRINC
Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6
Tang GY, 2023, ACCOUNT RES, DOI 10.1080/08989621.2023.2180359
Teixeira da Silva J. A., 2023, SCI EDITOR PUBLISHER, V8, P110, DOI [https://doi.org/10.24069/SEP-23-17, DOI 10.24069/SEP-23-17]
Teixeira da Silva JA, 2023, DIAB MET SYND CLIN R, V17, DOI 10.1016/j.dsx.2023.102779
Teixeira da Silva JA, 2023, NURSE EDUC PRACT, V68, DOI 10.1016/j.nepr.2023.103600
Teixeira da Silva JA, 2021, PUBLISH RES Q, V37, P90, DOI 10.1007/s12109-021-09784-y
Teixeira da Silva JA, 2017, BANGLADESH J MED SCI, V16, P610
Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879
van Woudenberg Rene, 2024, Philos Technol, V37, P34, DOI 10.1007/s13347-024-00715-1
Wykes T, 2023, J MENT HEALTH, V32, P865, DOI 10.1080/09638237.2023.2232217
NR 30
TC 1
Z9 1
U1 11
U2 11
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0898-9621
EI 1545-5815
J9 ACCOUNT RES
JI Account. Res.
PD 2024 MAY 3
PY 2024
DI 10.1080/08989621.2024.2345713
EA MAY 2024
PG 11
WC Medical Ethics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Medical Ethics
GA PS2Z6
UT WOS:001216019800001
PM 38693669
DA 2024-09-05
ER
PT J
AU Rosenkrantz, AB
Doshi, AM
Ginocchio, LA
Aphinyanaphongs, Y
AF Rosenkrantz, Andrew B.
Doshi, Ankur M.
Ginocchio, Luke A.
Aphinyanaphongs, Yindalon
TI Use of a Machine-learning Method for Predicting Highly Cited Articles
Within General Radiology Journals
SO ACADEMIC RADIOLOGY
LA English
DT Article
DE Radiology; bibliometrics; biomedical journals; machine learning
ID DATA SYSTEM; NODULES
AB Rationale and Objectives: This study aimed to assess the performance of a text classification machine-learning model in predicting highly cited articles within the recent radiological literature and to identify the model's most influential article features.
Materials and Methods: We downloaded from PubMed the title, abstract, and medical subject heading terms for 10,065 articles published in 25 general radiology journals in 2012 and 2013. Three machine-learning models were applied to predict the top 10% of included articles in terms of the number of citations to the article in 2014 (reflecting the 2-year time window in conventional impact factor calculations). The model having the highest area under the curve was selected to derive a list of article features (words) predicting high citation volume, which was iteratively reduced to identify the smallest possible core feature list maintaining predictive power. Overall themes were qualitatively assigned to the core features.
Results: The regularized logistic regression (Bayesian binary regression) model had highest performance, achieving an area under the curve of 0.814 in predicting articles in the top 10% of citation volume. We reduced the initial 14,083 features to 210 features that maintain predictivity. These features corresponded with topics relating to various imaging techniques (eg, diffusion-weighted magnetic resonance imaging, hyperpolarized magnetic resonance imaging, dual-energy computed tomography, computed tomography reconstruction algorithms, tomosynthesis, elastography, and computer-aided diagnosis), particular pathologies (prostate cancer; thyroid nodules; hepatic adenoma, hepatocellular carcinoma, non-alcoholic fatty liver disease), and other topics (radiation dose, electroporation, education, general oncology, gadolinium, statistics).
Conclusions: Machine learning can be successfully applied to create specific feature-based models for predicting articles likely to achieve high influence within the radiological literature.
C1 [Rosenkrantz, Andrew B.; Doshi, Ankur M.; Ginocchio, Luke A.] NYU, Langone Med Ctr, Dept Radiol, 660 First Ave,3rd Floor, New York, NY 10016 USA.
[Aphinyanaphongs, Yindalon] NYU, Ctr Healthcare Innovat & Delivery Sci, Langone Med Ctr, New York, NY USA.
C3 New York University; NYU Langone Medical Center; NYU Langone Medical
Center; New York University
RP Rosenkrantz, AB (corresponding author), NYU, Langone Med Ctr, Dept Radiol, 660 First Ave,3rd Floor, New York, NY 10016 USA.
EM Andrew.Rosenkrantz@nyumc.org
OI Ginocchio, Luke/0000-0002-0183-7246; Aphinyanaphongs,
Yin/0000-0001-8605-5392; Doshi, Ankur/0000-0002-9415-2763; Rosenkrantz,
Andrew/0000-0002-1558-5350
CR [Anonymous], INCITES J CIT REP
[Anonymous], MULTINOMIAL NAIVE BA
Aphinyanaphongs Y, 2016, BIOCOMPUT-PAC SYM, P480
Aphinyanaphongs Y, 2014, J ASSOC INF SCI TECH, V65, P1964, DOI 10.1002/asi.23110
Barentsz JO, 2012, EUR RADIOL, V22, P746, DOI 10.1007/s00330-011-2377-y
Brinjikji W, 2013, RADIOLOGY, V269, P272, DOI 10.1148/radiol.13122242
Bui-Mansfield LT, 2006, AM J ROENTGENOL, V186, P3, DOI 10.2214/AJR.05.1186
Castillo C, 2007, LECT NOTES COMPUT SC, V4726, P107, DOI 10.1007/978-3-540-75530-2_10
Cheng SP, 2013, HEAD NECK-J SCI SPEC, V35, P541, DOI 10.1002/hed.22985
Davenport MS, 2014, RADIOLOGY, V272, P132, DOI 10.1148/radiol.14131963
Dolan RS, 2015, EMERG RADIOL, V22, P667, DOI 10.1007/s10140-015-1345-2
Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626
Fu Lawrence D, 2008, AMIA Annu Symp Proc, P222
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Genkin A, 2007, TECHNOMETRICS, V49, P291, DOI 10.1198/004017007000000245
Joachims T., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P137, DOI 10.1007/BFb0026683
Lokker C, 2008, BMJ-BRIT MED J, V336, P655, DOI 10.1136/bmj.39482.526713.BE
McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit
Pagni M, 2014, ACAD RADIOL, V21, P1056, DOI 10.1016/j.acra.2014.03.011
Purysko AS, 2012, RADIOGRAPHICS, V32, P1977, DOI 10.1148/rg.327125026
Rosenkrantz AB, 2016, ACAD RADIOL, V23, P661, DOI 10.1016/j.acra.2015.12.026
Rosenkrantz AB, 2013, RADIOLOGY, V269, P481, DOI 10.1148/radiol.13122233
Russ G, 2013, EUR J ENDOCRINOL, V168, P649, DOI 10.1530/EJE-12-0936
SIEGELMAN SS, 1988, RADIOLOGY, V168, P414, DOI 10.1148/radiology.168.2.3293111
Yoon DY, 2013, AM J ROENTGENOL, V201, P471, DOI 10.2214/AJR.12.10489
NR 25
TC 2
Z9 3
U1 2
U2 42
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 1076-6332
EI 1878-4046
J9 ACAD RADIOL
JI Acad. Radiol.
PD DEC
PY 2016
VL 23
IS 12
BP 1573
EP 1581
DI 10.1016/j.acra.2016.08.011
PG 9
WC Radiology, Nuclear Medicine & Medical Imaging
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Radiology, Nuclear Medicine & Medical Imaging
GA EC8ZJ
UT WOS:000388431300015
PM 27692588
DA 2024-09-05
ER
PT J
AU Aristovnik, A
Karampelas, K
Umek, L
Ravselj, D
AF Aristovnik, Aleksander
Karampelas, Konstantinos
Umek, Lan
Ravselj, Dejan
TI Impact of the COVID-19 pandemic on online learning in higher education:
a bibliometric analysis
SO FRONTIERS IN EDUCATION
LA English
DT Article
DE online learning; e-learning; higher education; bibliometrics; mapping;
visualization; VOSviewer; COVID-19
ID GOOGLE-SCHOLAR; SCIENCE; SCOPUS; WEB
AB The outbreak of the COVID-19 pandemic significantly disrupted higher education by forcing the transition to online learning, which became a mandatory teaching process during the lockdowns. Although the epidemiological situation has gradually improved since then, online learning is becoming ever more popular as it provides new learning opportunities. Therefore, the paper aims to present recent research trends concerning online learning in higher education during the COVID-19 pandemic by using selected bibliometric approaches. The bibliometric analysis is based on 8,303 documents from the Scopus database published between January 2020 and March 2022, when repeated lockdowns meant most countries were experiencing constant disruptions to the educational process. The results show that the COVID-19 pandemic increased interest in online learning research, notably in English-speaking and Asian countries, with most research being published in open-access scientific journals. Moreover, the topics most frequently discussed in the online learning research during the COVID-19 pandemic were ICT and pedagogy, technology-enhanced education, mental health and well-being, student experience and curriculum and professional development. Finally, the COVID-19 pandemic encouraged explorations of emergency remote learning approaches like e-learning, distance learning and virtual learning, which are intended to limit physical contact between teachers and students, where the specific requirements of a given field of study often guide which online learning approach is the most suitable. The findings add to the existing body of scientific knowledge and support the evidence-based policymaking needed to ensure sustainable higher education in the future.
C1 [Aristovnik, Aleksander; Umek, Lan; Ravselj, Dejan] Univ Ljubljana, Fac Publ Adm, Ljubljana, Slovenia.
[Karampelas, Konstantinos] Univ Aegean, Dept Primary Level Educ, Rhodes, Greece.
C3 University of Ljubljana; University of Aegean
RP Aristovnik, A; Ravselj, D (corresponding author), Univ Ljubljana, Fac Publ Adm, Ljubljana, Slovenia.
EM aleksander.aristovnik@fu.uni-lj.si; dejan.ravselj@fu.uni-lj.si
RI Karampelas, Konstantinos/AFA-6504-2022; Ravšelj, Dejan/JMA-8751-2023
OI Karampelas, Konstantinos/0000-0001-6631-1408; Ravšelj,
Dejan/0000-0003-0426-820X
FU Slovenian Research Agency [P5-0093, Z5-4569]
FX This research and the APC were funded by the Slovenian Research Agency
under grant numbers P5-0093 and Z5-4569.
CR Abu Kwaik A., 2021, INT J DENT ORAL SCI, V8, P1560, DOI [10.19070/2377-8075-21000310, DOI 10.19070/2377-8075-21000310]
Adedoyin O.B., 2020, INTERACT LEARN ENVIR, P1, DOI DOI 10.1080/10494820.2020.1813180
Almazova N, 2020, EDUC SCI, V10, DOI 10.3390/educsci10120368
Aristovnik A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12219132
Aristovnik A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208438
Baber H, 2022, INFORM LEARN SCI, V123, P214, DOI 10.1108/ILS-10-2021-0090
Bawa'aneh MS, 2021, CONTEMP EDUC TECHNOL, V13, DOI 10.30935/cedtech/10872
Bilal, 2022, RISK MANAG HEALTHC P, V15, P1353, DOI 10.2147/RMHP.S355895
Bismala L., 2021, International Journal of Evaluation and Research in Education, V10, P753, DOI [10.11591/ijere.v10i3.21467, DOI 10.11591/IJERE.V10I3.21467]
Bonsaksen T, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9070903
Bozkurt A, 2022, J INTERACT MEDIA EDU, DOI 10.5334/jime.751
Brika SKM, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.762819
Campos E, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.991654
Chen K, 2020, J CHEM EDUC, V97, P3265, DOI 10.1021/acs.jchemed.0c00581
Chick RC, 2020, J SURG EDUC, V77, P729, DOI 10.1016/j.jsurg.2020.03.018
Dedeilia A, 2023, HUM RESOUR HEALTH, V21, DOI 10.1186/s12960-023-00799-4
Dedeilia A, 2020, IN VIVO, V34, P1603, DOI 10.21873/invivo.11950
Djeki E, 2022, J COMPUT EDUC, V9, P727, DOI 10.1007/s40692-021-00218-4
Duan DZ, 2021, LEARN PUBL, V34, P429, DOI 10.1002/leap.1382
Dwivedi YK, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102211
Elmer T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0236337
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Fauzi MA, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09433
Ferri F, 2020, SOCIETIES, V10, DOI 10.3390/soc10040086
Fried EI, 2022, CLIN PSYCHOL SCI, V10, P340, DOI 10.1177/21677026211017839
Fuchs K, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.921332
Gao Y., 2022, International Journal of Information and Education Technology, V12, P390, DOI [10.18178/ijiet.2022.12.5.1632, DOI 10.18178/IJIET.2022.12.5.1632]
Garcia Penalvo F. J., 2020, EDUC KNOWL SOC, V21, P23086, DOI [10.14201/eks.23086, DOI 10.14201/EKS.23086]
García-Alberti M, 2021, EDUC SCI, V11, DOI 10.3390/educsci11020059
Gavriluta C, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19073990
Gonzalez C, 2020, J CHEM EDUC, V97, P2871, DOI 10.1021/acs.jchemed.0c00670
Gritsova OA, 2021, EKON REG, V17, P929, DOI 10.17059/ekon.reg.2021-3-15
Gurcan F, 2022, IEEE ACCESS, V10, P123349, DOI 10.1109/ACCESS.2022.3224034
Hamdan R, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132112021
Harzing AW, 2009, J AM SOC INF SCI TEC, V60, P41, DOI 10.1002/asi.20953
Hodges CB., 2020, Why IT Matters to Higher Education EDUCAUSE Review
Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55
Iyer P, 2020, J DENT EDUC, V84, P718, DOI 10.1002/jdd.12163
James N, 2020, STUD ED ADULTS-NIACE, V52, P129, DOI 10.1080/02660830.2020.1811474
Kahwash BM, 2021, J ALLER CL IMM-PRACT, V9, DOI 10.1016/j.jaip.2020.09.036
Kapasia N, 2020, CHILD YOUTH SERV REV, V116, DOI 10.1016/j.childyouth.2020.105194
Kartimi Kartimi, 2022, Educ. quím, V33, P194, DOI 10.22201/fq.18708404e.2022.2.80579
Keri D., 2022, EGPA 2022 C 6 9 SEPT
Kerzic D, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0258807
Keskin G, 2021, PESQUI BRAS ODONTOPE, V21, DOI 10.1590/pboci.2021.102
Khan MA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010057
Küçük-Avci S, 2022, CROAT J EDUC, V24, P457, DOI 10.15516/cje.v24i2.4534
Leighton K, 2021, CLIN SIMUL NURS, V55, P37, DOI 10.1016/j.ecns.2021.03.006
McKinney W., 2012, Python for data analysis: Data wrangling with Pandas, NumPy, and IPython
Misiejuk K, 2023, FRONT EDUC, V7, DOI 10.3389/feduc.2022.996006
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Müller AM, 2021, EDUC SCI, V11, DOI 10.3390/educsci11010019
Murphy MPA, 2020, CONTEMP SECUR POL, V41, P492, DOI 10.1080/13523260.2020.1761749
Navarro-Espinosa JA, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18189605
Nguyen JG, 2020, J CHEM EDUC, V97, P3429, DOI 10.1021/acs.jchemed.0c00790
Ochnik D, 2021, J CLIN MED, V10, DOI 10.3390/jcm10235564
Okoro C, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19094929
Pandey K., 2020, INT J MANAG HUMAN, V4, P104, DOI [10.35940/ijmh.H0834.044820, DOI 10.35940/IJMH.H0834.044820]
Patience GS, 2017, HELIYON, V3, DOI 10.1016/j.heliyon.2017.e00300
Perets EA, 2020, J CHEM EDUC, V97, P2439, DOI 10.1021/acs.jchemed.0c00879
Pham P.T, 2022, European Journal of Educational Research, V11, P1363
Pokhrel S., 2021, High. Educ. Future, V8, P133, DOI DOI 10.1177/2347631120983481
Raccanello D, 2022, LEARN INSTR, V80, DOI 10.1016/j.learninstruc.2022.101629
Rapanta C., 2020, Postdigital Science and Education, V2, P923, DOI [10.1007/s42438-020-00155-y, DOI 10.1007/S42438-020-00155-Y]
Rasheed RA, 2020, COMPUT EDUC, V144, DOI 10.1016/j.compedu.2019.103701
Rasli A, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.992063
Ravselj D, 2022, FUTURE INTERNET, V14, DOI 10.3390/fi14050126
Rhile IJ, 2020, J CHEM EDUC, V97, P2857, DOI 10.1021/acs.jchemed.0c00618
Rogers G, 2020, SCIENTOMETRICS, V125, P777, DOI 10.1007/s11192-020-03647-7
Rojas-Sánchez MA, 2023, EDUC INF TECHNOL, V28, P155, DOI 10.1007/s10639-022-11167-5
Saqr M, 2024, UNIVERSAL ACCESS INF, V23, P1163, DOI 10.1007/s10209-023-00989-w
Schultz M, 2020, J CHEM EDUC, V97, P2678, DOI 10.1021/acs.jchemed.0c00620
Shapiro Hilary, 2021, US Cardiol, V15, DOI 10.15420/usc.2020.25
She L, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.743936
Sobaih AE, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166520
Sundarasen S, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17176206
Tang KHD, 2023, EDUC RES POLICY PRAC, V22, P23, DOI 10.1007/s10671-022-09319-y
Tlili A, 2022, TURK ONLINE J DISTAN, V23
Vaicondam Y, 2022, INT J ONLINE BIOMED, V18, P4, DOI 10.3991/ijoe.v18i08.31963
Van der Graaf L, 2021, Research for CULT Committee-Education and youth in post-COVID-19 Europe-Crisis effects and policy recommendations
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vera-Baceta MA, 2019, SCIENTOMETRICS, V121, P1803, DOI 10.1007/s11192-019-03264-z
Waller R, 2020, INT J LIFELONG EDUC, V39, P243, DOI 10.1080/02601370.2020.1790267
Wang C, 2020, OMEGA-INT J MANAGE S, V93, DOI 10.1016/j.omega.2019.08.005
Watermeyer R, 2021, HIGH EDUC, V81, P623, DOI 10.1007/s10734-020-00561-y
Williams ND, 2022, J CHEM EDUC, V99, P1100, DOI 10.1021/acs.jchemed.1c00476
Yaghi A, 2022, J PUBLIC AFF EDUC, V28, P91, DOI 10.1080/15236803.2021.1954469
Yan H, 2022, JMIR RES PROTOC, V11, DOI 10.2196/34575
Yan Y, 2021, MED EDUC ONLINE, V26, DOI 10.1080/10872981.2021.1897267
Zhang L, 2022, BRIT J EDUC TECHNOL, V53, P620, DOI 10.1111/bjet.13191
NR 90
TC 10
Z9 11
U1 5
U2 18
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2504-284X
J9 FRONT EDUC
JI Front. Educ.
PD AUG 3
PY 2023
VL 8
AR 1225834
DI 10.3389/feduc.2023.1225834
PG 13
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA P3ZH4
UT WOS:001050058100001
OA gold
DA 2024-09-05
ER
PT C
AU Hou, W
Huang, Y
Zhang, K
AF Hou, Wei
Huang, Yuan
Zhang, Kao
BE Ge, N
Lu, J
Wang, Y
Howard, N
Chen, P
Tao, X
Zhang, B
Zadeh, LA
TI Research of Micro-blog Diffusion Effect Based on Analysis of retweet
Behavior
SO PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE
INFORMATICS & COGNITIVE COMPUTING (ICCI*CC)
LA English
DT Proceedings Paper
CT 14th IEEE International Conference on Cognitive Informatics and
Cognitive Computing (ICCI*CC)
CY JUL 06-08, 2015
CL Beijing, PEOPLES R CHINA
DE Micro-Blog; Behavior Prediction; Retweet Scale; Diffusion Depth;
Logistic Regression
AB Research on the diffusion effect of micro-blog plays an important role in improving marketing efficiency, strengthening monitoring public opinion and accurately discovering hotspot etc. To solve the problems not taking users' differences into consideration in the previous research, this paper proposes an algorithm to predict scale and depth of retweet massages based on analysis of retweet behavior. With the combination of LR algorithm and nine related features extracted from micro-blog users themselves, their relationships and micro-blog contents, we proposes a prediction model of retweet behavior. Based on this model, we proposes an algorithm to predict the diffusion effect, which considers the character of information spreading along users and does statistical analysis of adjacent users iteratively. Experimental results on Sina micro-blog dataset show that the algorithm has a prediction accuracy of 87.1 % and 81.6% in scale and depth respectively, which indicates the model works well.
C1 [Hou, Wei; Huang, Yuan] Natl Comp Network & Informat Secur Management Ctr, Beijing 100038, Peoples R China.
[Zhang, Kao] Natl Digital Switching Syst Engn & Technol R&D Ct, Zhengzhou 450001, Peoples R China.
C3 PLA Information Engineering University
RP Hou, W (corresponding author), Natl Comp Network & Informat Secur Management Ctr, Beijing 100038, Peoples R China.
EM 1004790227@qq.com
CR [Anonymous], 2013, 31 CHIN INT NETW INF
[Anonymous], 2010, P 2010 43 HAWAII INT, DOI DOI 10.1353/JSM.2016.0009
[Anonymous], 2010, P INT AAAI C WEB SOC, DOI DOI 10.1609/ICWSM.V4I1.14033
Bandari Roja., 2012, The Pulse of News in Social Media: Forecasting Popularity
Kwak H., WWW'10, DOI DOI 10.1145/1772690.1772751
Lahiri M, 2010, P ART INT
Li Ying-le, 2013, Application Research of Computers, V30, P2594, DOI 10.3969/j.issn.1001-3695.2013.09.008
Lian J, 2011, J TSINGHUA U SCI TEC, V10
Lin Xue-Min, 2011, Chinese Journal of Computers, V34, P1853, DOI 10.3724/SP.J.1016.2011.01853
Liu Q, 2002, APPL LINGUIST, V4, P50
Narayanam R, 2011, IEEE T AUTOM SCI ENG, V8, P130, DOI 10.1109/TASE.2010.2052042
Richardson M, 2004, WEB DYNAMICS: ADAPTING TO CHANGE IN CONTENT, SIZE TOPOLOG AND USE, P179
Shi C, 2005, COMPUTER AIDED ENG, V14, P74
Suh Bongwon, 2010, 2010 IEEE 2 INT C SO, P177, DOI DOI 10.1109/SOCIALCOM.2010.33
Zhang YC, 2011, ACTA PHYS SIN-CH ED, V60, DOI 10.7498/aps.60.050501
[张旸 Zhang Yang], 2012, [中文信息学报, Journal of Chinese Information Processing], V26, P109
[张玥 Zhang Yue], 2012, [中文信息学报, Journal of Chinese Information Processing], V26, P122
Zhao Li, 2009, Journal of Software, V20, P1384, DOI 10.3724/SP.J.1001.2009.03512
NR 18
TC 5
Z9 7
U1 0
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4673-7290-9
PY 2015
BP 255
EP 261
PG 7
WC Computer Science, Hardware & Architecture; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BF2GR
UT WOS:000380466100040
DA 2024-09-05
ER
PT C
AU Rochd, E
Quafafou, M
Aznag, M
AF Rochd, El Mehdi
Quafafou, Mohamed
Aznag, Mustapha
GP IEEE
TI Encoding local correspondence in Topic Models
SO 2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL
INTELLIGENCE (ICTAI)
SE Proceedings-International Conference on Tools With Artificial
Intelligence
LA English
DT Proceedings Paper
CT 25th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI)
CY NOV 04-06, 2013
CL Washington, DC
DE Topic Models; Automatic Image Annotation; Local Influence; Probabilistic
Graphical Models
AB Exploiting label correlations is a challenging and crucial problem especially in multi-label learning context. Labels correlations are not necessarily shared by all instances and have generally a local definition. This paper introduces LOC-LDA, which is a latent variable model that adresses the problem of modeling annotated data by locally exploiting correlations between annotations. In particular, we represent explicitly local dependencies to define the correspondence between specific objects, i.e. regions of images and their annotations. We conducted experiments on a collection of pictures provided by the Wikipedia "Picture of the day" website (1), and evaluated our model on the task of "automatic image annotation". The results validate the effectiveness of our approach.
C1 [Rochd, El Mehdi; Quafafou, Mohamed; Aznag, Mustapha] Aix Marseille Univ, LSIS, UMR 7296, Marseille, France.
C3 Aix-Marseille Universite
RP Rochd, E (corresponding author), Aix Marseille Univ, LSIS, UMR 7296, Marseille, France.
EM el-mehdi.rochd@univ-amu.fr; mohamed.quafafou@univ-amu.fr;
mustapha.aznag@univ-amu.fr
CR [Anonymous], 1998, LEARNING GRAPHICAL M
[Anonymous], 2002, ADV NEURAL INFORM PR
Barnard K, 2003, J MACH LEARN RES, V3, P1107, DOI 10.1162/153244303322533214
Blei D., 2006, INT C MACH LEARN
Blei D., 2003, ACM SIGIR INT C RES
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Jeon J., 2003, ACM SIGIR INT C RES
Jia Y., 2011, INT C COMP VIS
Jordan MI, 1999, MACH LEARN, V37, P183, DOI 10.1023/A:1007665907178
Jurman G., 2009, P ADV RANKING NIPS 0, P22
Lozano A. C., 2012, INT C MACH LEARN
Mcauliffe J, 2007, ADV NEURAL INFORM PR, V20
McCallum A, 1999, AAAI WORKSH TEXT LEA
Ramage Daniel, 2009, P C EMP METH NAT LAN
Rockafellar R. T., 1993, SIAM REV
Wang C., 2009, C COMP VIS PATT REC
Xiao H., 2010, NIPS WORKSH MACH LEA
Zhang M. L., 2010, ACM SIGKDD C KNOWL D
Zhao B., 2010, EUR C COMP VIS
NR 20
TC 1
Z9 1
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 1082-3409
BN 978-1-4799-2971-9
J9 PROC INT C TOOLS ART
PY 2013
BP 602
EP 609
DI 10.1109/ICTAI.2013.95
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BN4OO
UT WOS:000482633400069
DA 2024-09-05
ER
PT J
AU Ning, T
Duan, XD
An, L
Gou, T
AF Ning, Tao
Duan, Xiaodong
An, Lu
Gou, Tao
TI Research on disruption management of urgent arrival in job shop with
deteriorating effect
SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS
LA English
DT Article
DE Flexible job-shop scheduling; deteriorating effect; emergency order
insertion; disruption management; multi-phase quantum particle swarm
optimization
ID OPTIMIZATION; ALGORITHM; RESOURCE; ROBUST; CLOUD
AB A disruption management method based on cumulative prospect theory is proposed for the urgent with deteriorating effect arrival in flexible job shop scheduling problem (FJSP). First, the mathematical model of problem is established with minimizing the completion time of urgent order, minimizing the total process time of the system and minimizing the total cost as the target. Then, the cumulative prospect theory equation of the urgent arrival in job shop scheduling process is induced designed. Based on the selected model, an optimized multi-phase quantum particle swarm algorithm (MQPSO) is proposed for selecting processing route. Finally, using Solomon example simulation and company Z riveting shop example as the study object, the performance of the proposed method is analyzed. It is compared with the current common rescheduling methods, and the results verify that the method proposed in this paper not only meets the goal of the optimized objects, but improves the practical requirements for the stability of production and processing system during urgent arrival. Lastly, the optimized multiphase quantum particle swarm algorithm is used to solve disruption management of urgent arrival problem. Through instance analysis and comparison, the effectiveness and efficiency of urgent arrival disruption management method with deteriorating effect are verified.
C1 [Ning, Tao; Duan, Xiaodong] Dalian Minzu Univ, Inst Comp Sci & Engn, Dalian, Peoples R China.
[Ning, Tao; Duan, Xiaodong] Big Data Applicat Technol Key Lab State Ethn Affa, Dalian, Peoples R China.
[An, Lu; Gou, Tao] Dalian Jiaotong Univ, Inst Software, Dalian, Peoples R China.
C3 Dalian Minzu University; Dalian Jiaotong University
RP Duan, XD (corresponding author), Dalian Minzu Univ, Inst Comp Sci & Engn, Dalian, Peoples R China.; Duan, XD (corresponding author), Big Data Applicat Technol Key Lab State Ethn Affa, Dalian, Peoples R China.
EM daliannt@126.com
RI An, Lu/V-1548-2018
FU Liaoning Provincial Natural Science Foundation [20180550499,
2019-ZD-0109]; Education Department Project of Liaoning Province
[JDL2019022]; Science and technology innovation fund program of Dalian
[2021JJ13SN81]
FX Foundation items: Project supported by Liaoning Provincial Natural
Science Foundation (20180550499, 2019-ZD-0109) and Education Department
Project of Liaoning Province (JDL2019022). Science and technology
innovation fund program of Dalian (2021JJ13SN81).
CR Al-Hinai N, 2011, INT J PROD ECON, V132, P279, DOI 10.1016/j.ijpe.2011.04.020
Biggs AT, 2021, J DEF MODEL SIMUL-AP, V18, P125, DOI 10.1177/1548512919840445
Blavatskyy P, 2021, THEOR DECIS, V91, P403, DOI 10.1007/s11238-021-09811-6
Boudreau J., 2003, Manufacturing & Service Operations Management, V5, P179, DOI 10.1287/msom.5.3.179.16032
Gao KZ, 2016, KNOWL-BASED SYST, V109, P1, DOI 10.1016/j.knosys.2016.06.014
Gao K, 2021, TRANSPORT RES A-POL, V148, P1, DOI 10.1016/j.tra.2021.03.025
Gino F, 2008, M&SOM-MANUF SERV OP, V10, P676, DOI 10.1287/msom.1070.0205
Gong X, 2019, J CLEAN PROD, V209, P1078, DOI 10.1016/j.jclepro.2018.10.289
[韩文民 Han Wenmin], 2018, [运筹与管理, Operations Research and Management Science], V27, P68
Hao H., 2012, JOUNAL CHONGQING NOR, V29, P7
Laili YJ, 2013, COMPUT IND, V64, P448, DOI 10.1016/j.compind.2013.02.008
[刘作仪 LIU Zuo-yi], 2009, [管理科学学报, Journal of Management Sciences in China], V12, P64
Moratori P, 2012, INT J PROD RES, V50, P261, DOI 10.1080/00207543.2011.571458
Ning T, 2020, J CLEAN PROD, V263, DOI 10.1016/j.jclepro.2020.121449
[宁涛 Ning Tao], 2019, [系统工程理论与实践, Systems Engineering-Theory & Practice], V39, P1236
[宁涛 Ning Tao], 2019, [系统工程理论与实践, Systems Engineering-Theory & Practice], V39, P673
[宁涛 Ning Tao], 2018, [控制与决策, Control and Decision], V33, P2064
Pan Feng-shan, 2012, Industrial Engineering and Management, V17, P48
Rahmani D, 2014, J MANUF SYST, V33, P84, DOI 10.1016/j.jmsy.2013.03.004
Shen LJ, 2018, EUR J OPER RES, V265, P503, DOI 10.1016/j.ejor.2017.08.021
Sheng XY, 2015, J ALGORITHMS COMPUT, V9, P143
Singh S, 2016, J GRID COMPUT, V14, P217, DOI 10.1007/s10723-015-9359-2
Tao Ning, 2020, J AMB INTEL HUM COMP, V33, P125
Vijaychakaravarthy G, 2014, ARAB J SCI ENG, V39, P4285, DOI 10.1007/s13369-014-0994-x
Walther M, 2021, J BEHAV FINANC, V22, P74, DOI 10.1080/15427560.2020.1735390
Wan P, 2020, J ALLOY COMPD, V826, DOI 10.1016/j.jallcom.2020.154047
[王征 Wang Zheng], 2013, [系统工程理论与实践, Systems Engineering-Theory & Practice], V33, P378
Yang De-li, 2014, OPERATION RES MANAGE, V22, P201
Yang Xiao-lin, 2019, Control Theory & Applications, V36, P803, DOI 10.7641/CTA.2018.70968
Zeng ZQ, 2018, J CLEAN PROD, V183, P925, DOI 10.1016/j.jclepro.2018.02.224
Zhang DG, 2019, IEEE ACCESS, V7, P158514, DOI 10.1109/ACCESS.2019.2950266
Zhang T, 2019, IEEE ACCESS, V7, P82571, DOI 10.1109/ACCESS.2019.2921310
Zheng X. L., 2018, INT J PROD RES, V54, P1
NR 33
TC 2
Z9 2
U1 2
U2 47
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 1064-1246
EI 1875-8967
J9 J INTELL FUZZY SYST
JI J. Intell. Fuzzy Syst.
PY 2021
VL 41
IS 1
BP 1247
EP 1259
DI 10.3233/JIFS-210166
PG 13
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA UB5PA
UT WOS:000685896700075
DA 2024-09-05
ER
PT J
AU Kusumastuti, R
Silalahi, M
Sambodo, MT
Juwono, V
AF Kusumastuti, Retno
Silalahi, Mesnan
Sambodo, Maxensius Tri
Juwono, Vishnu
TI Understanding rural context in the social innovation knowledge structure
and its sector implementations
SO MANAGEMENT REVIEW QUARTERLY
LA English
DT Article
DE Rural social innovation; knowledge structure; Topic modeling; Co-word
analysis; Co-citation analysis
ID CHALLENGES
AB The concept of social innovation is increasingly being discussed to pursue sustainable development. New terms and keywords are created to cope with new ideas in various contexts. How these terms are developed in the current structure of knowledge and how we can reinterpret the semantic networks with the empirical context are the primary motivation of this paper. The rural social innovation knowledge structure is constructed to understand the phenomena better and cope with future needs. A multi-methods methodology is applied to construct the knowledge structure with the primary method being topic modeling. The results from topic modeling, co-word analysis, and co-citation are combined to co-construct the knowledge structure. The narratives for the built knowledge structure are then developed in the context of rural social innovation to enhance our understanding. This study found three findings. First, the trend of keywords "community", "governance", and "rural" have increased significantly in the field of social innovation. Second, an investigation of the intensity of the topics found six dominant groups of topics, namely actor, business model, natural resources, food security, governance, and urban. Third, the co-word analysis shows that the word innovation is closely related to the terms: sustainable development, social entrepreneurship, social enterprise, rural community, electronic commerce, co-design, and social behavior. The mapping of key terms shows that the structure of the global social innovation research landscape is quite complex. However, it can be broken down into five main parts: objectives, inputs, transformations, outputs, and outcomes.
C1 [Kusumastuti, Retno; Juwono, Vishnu] Univ Indonesia, Fac Adm Sci, Jl Prof DR Selo Soemardjan, Depok 16424, ID, Indonesia.
[Silalahi, Mesnan] Indonesian Inst Sci, Ctr Policy Res & Management Sci Technol & Innovat, Jl Gatot Subroto 10, Jakarta 12042, ID, Indonesia.
[Sambodo, Maxensius Tri] Indonesian Inst Sci, Econ Res Ctr, Jl Gatot Subroto 10, Jakarta 12042, ID, Indonesia.
C3 University of Indonesia; National Research & Innovation Agency of
Indonesia (BRIN); Indonesian Institute of Sciences (LIPI); National
Research & Innovation Agency of Indonesia (BRIN); Indonesian Institute
of Sciences (LIPI)
RP Silalahi, M (corresponding author), Indonesian Inst Sci, Ctr Policy Res & Management Sci Technol & Innovat, Jl Gatot Subroto 10, Jakarta 12042, ID, Indonesia.
EM r.kusumastuti@ui.ac.id; mesnans@yahoo.com; smaxensius@yahoo.com;
vjuwono@ui.ac.id
OI Kusumastuti, Retno/0000-0001-9290-4952; Sambodo,
Maxensius/0000-0003-3705-2245
FU Universitas Indonesia [NKB - 480/UN2, RST/HKP.05.00/2021]; University of
Indonesia in the World Class University Scheme
FX The process to produce this study and its publication is supported by
funding from University of Indonesia in the World Class University
Scheme, as outlined in the Assignment Agreement for the Publication of
Review Article (PRA) of 2021 Number: NKB - 480/UN2.RST/HKP.05.00/2021.
CR Abbasianchavari A., 2021, Manag Rev Q, V71, P1, DOI [10.1007/s11301-019-00179-0, DOI 10.1007/S11301-019-00179-0]
[Anonymous], 2013, Guide to social innovation
Ansell C, 2008, J PUBL ADM RES THEOR, V18, P543, DOI 10.1093/jopart/mum032
ATINA, 2022, Women social entrepreneurs are innovators creating social changes
Audretsch DB, 2022, INT ENTREP MANAG J, V18, P217, DOI 10.1007/s11365-021-00789-9
Avelino F, 2019, TECHNOL FORECAST SOC, V145, P195, DOI 10.1016/j.techfore.2017.05.002
Baker S, 2015, Local Environment: The International Journal of Justice and, VSustainability20
Banerjee S, 2023, J RURAL STUD, V99, P252, DOI 10.1016/j.jrurstud.2021.04.007
Barth H, 2021, J CLEAN PROD, V304, DOI 10.1016/j.jclepro.2021.127004
Benckendorff P, 2013, ANN TOURISM RES, V43, P121, DOI 10.1016/j.annals.2013.04.005
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bonilla T, 2013, POETICS, V41, P650, DOI 10.1016/j.poetic.2013.06.003
Borzaga C, 2014, SOC POLICY SOC, V13, P411, DOI 10.1017/S1474746414000116
Callon Michel., 1986, Mapping the Dynamics of Science and Technology, P221
Carvalho J., 2015, Journal of Applied Management, V4, P49, DOI [10.9774/GLEAF.3709.2015.ap.00006, DOI 10.9774/GLEAF.3709.2015.AP.00006]
Castro-Arce K, 2020, J RURAL STUD, V74, P45, DOI 10.1016/j.jrurstud.2019.11.010
Chang J, 2009, Adv. Neural Inf. Process. Syst., P288
Edwards-Schachter M, 2017, TECHNOL FORECAST SOC, V119, P64, DOI 10.1016/j.techfore.2017.03.012
Eichler GM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11020522
Galego D, 2022, INNOVATION-ABINGDON, V35, P265, DOI 10.1080/13511610.2021.1879630
Georgios C, 2023, J RURAL STUD, V99, P193, DOI 10.1016/j.jrurstud.2021.06.004
Ghorbani M, 2022, Bonding Social Cap-ital of Rural Women in Southwest Iran: Application of Social Network Analysis, DOI [10.1111/ruso.12430, DOI 10.1111/RUSO.12430]
Grimm R, 2013, INNOVATION-ABINGDON, V26, P436, DOI 10.1080/13511610.2013.848163
Guba EG., Alternative Paradigms Conference, Mar, 1989, Indiana U, School of Education, San Francisco, CA, US; 1990
Huang GQ, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.614469
Indriati F, 2018, Open Innovation: Model Kolaborasi Penenun Sikka dan Pelanggan
Janik A., 2021, Journal of Open Innovation: Technology, Market, and Complexity, V7, P226, DOI [10.3390/joitmc7040226, DOI 10.3390/JOITMC7040226]
Kuhn TS., 1970, Postscript, V2, P174
Kuthrakun A, 2013, Japan Social Innovation Japan, V2
Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012
Lindberg M., 2017, Eur Public Social Innov Rev, V2, P30, DOI [10.31637/epsir.17-2.3, DOI 10.31637/EPSIR.17-2.3]
Linder J., 2000, Changing Business Models:Surveying the Landscape
Lombardi M, 2020, SOC NETWORKS, V63, P11, DOI 10.1016/j.socnet.2020.04.001
Lorek S, 2019, ENERG POLICY, V126, P287, DOI 10.1016/j.enpol.2018.11.026
Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754
Mair J, 2006, J WORLD BUS, V41, P36, DOI 10.1016/j.jwb.2005.09.002
Marques GD, 2020, EUR J MANAG BUS ECON, V29, P97, DOI 10.1108/EJMBE-06-2019-0110
Marques P, 2018, ENVIRON PLAN C-POLIT, V36, P496, DOI 10.1177/2399654417717986
Michelini L., 2012, Social Innovation and New Business Models: Creating shared value in low-income markets
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Mollet JA, 2011, Female labour force participation and economic development in West Papua
Moulaert F, 2013, The international handbook on social innovation: Collective action, social learning and transdisciplinary research, V13
Müller S, 2018, ENTREP REGION DEV, V30, P224, DOI 10.1080/08985626.2017.1402092
Neumann T., 2020, Management Review Quarterly, DOI [10.1007/s11301-020-00193-7, DOI 10.1007/S11301-020-00193-7]
Neumeier S, 2017, GEOGR J, V183, P34, DOI 10.1111/geoj.12180
Neumeier S, 2012, SOCIOL RURALIS, V52, P48, DOI 10.1111/j.1467-9523.2011.00553.x
Pestoff V, 2012, VOLUNTAS, V23, P1102, DOI 10.1007/s11266-012-9308-7
Tan LP, 2021, COGENT BUS MANAG, V8, DOI 10.1080/23311975.2021.1896885
Pisani E., 2017, Social capital and local development: from theory to empirics
Portales L., 2019, Social Innovation and Social Entrepreneurship, DOI DOI 10.1007/978-3-030-13456-3
Porter M, 2019, Institutional Investor16
Prahalad C.K., 2002, STRATEGY BUSINESS, DOI DOI 10.19177/REEN.V1E220081-23
Prahalad C.K., 2006, The Fortune at the Bottom of the Pyramid: Eradicating Poverty Through Profits
Purwanto Yuliana CI, 2021, IOP Conference Series: Earth and Environmental Science, V917, DOI [10.1088/1755-1315/917/1/012010, DOI 10.1088/1755-1315/917/1/012010]
Rajasekhar D., 2020, Cooperatives and Social Innovation: Experiences from the Asia Pacific Region, P1, DOI [10.1007/978-981-15-8880-8, DOI 10.1007/978-981-15-8880-8]
Richter R., 2018, J Entrepreneurial Organizational Divers, V7, P61, DOI [10.5947/jeod.2018.004, DOI 10.5947/JEOD.2018.004]
S&P Global, 2020, A Pandemic-Driven Surge In Social Bond Issuance Shows The Sustainable Debt Market Is Evolvin
Saviera TM, 2022, INT J INNOV LEARN, V31, P91
Scott W.R., 2005, Great minds in management: The process of theory development, P460, DOI [DOI 10.1093/OSO/9780199276813.003.0022, 10.1093/oso/9780199276813.003.0022]
SHRIVASTAVA U., 2021, Management Review Quarterly, V71, P753, DOI [10.1007/s11301-020-00199-1, DOI 10.1007/S11301-020-00199-1]
Small H, 2003, J AM SOC INF SCI TEC, V54, P394, DOI 10.1002/asi.10225
Streb CK., 2017, Int J Entrepreneurship, V21, P75
Teece DJ, 2010, LONG RANGE PLANN, V43, P172, DOI 10.1016/j.lrp.2009.07.003
TURNER WA, 1991, SCIENTOMETRICS, V22, P139, DOI 10.1007/BF02019279
van der Have RP, 2016, RES POLICY, V45, P1923, DOI 10.1016/j.respol.2016.06.010
Vazquez JM, 2017, The role of indigenous knowledge and innovation in creating food sovereignty in the Oneida Nation of Wisconsin
WeStart, 2015, Mapping Women's Social Entrepreneurship in Europe
Westley F., 2010, INNOVATION J, V15, DOI DOI 10.1108/01437730710739675
Zhao Y, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/s12859-015-0558-4
Zivojinovic I, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11247248
NR 70
TC 2
Z9 2
U1 5
U2 5
PU SPRINGERNATURE
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND
SN 2198-1620
EI 2198-1639
J9 MANAG REV Q
JI Manag. Rev. Q.
PD DEC
PY 2023
VL 73
IS 4
BP 1873
EP 1901
DI 10.1007/s11301-022-00288-3
PG 29
WC Business; Business, Finance; Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA SI8D0
UT WOS:001233907400008
OA Bronze
DA 2024-09-05
ER
PT J
AU Chen, Y
Si, F
Lu, XY
Li, X
AF Chen, Yan
Si, Fan
Lu, Xiying
Li, Xin
TI Research on the Influence Mechanism of the Across-Industrial-Chain
Investment Speed on Innovation Performance of AI Enterprises:
Improvement Path of Artificial Intelligence Technology Application
SO MOBILE INFORMATION SYSTEMS
LA English
DT Article
ID MANAGEMENT; IMPACT; TIME
AB This paper presents a regression analysis by using the system generalized method of moments (SYS-GMM) model as the main regression model and combining it with the fixed effect of panel data and acquires the basic empirical research data from Wind database. The research shows that the speed of cross-industrial-chain investment can improve the innovation ability of AI enterprises, and AI enterprises with deep technology accumulation can improve their innovation performance in the rapid across-industrial-chain investment. In this paper, an across-industrial-chain investment decision path model for AI enterprises is proposed for the first time, suggesting that AI enterprises should pay attention to the related factors of industry and AI enterprises when making across-industrial-chain investment decisions. This helps to express the determination of investment, integration, and reconstruction to the target AI enterprises, and it can also facilitate fast across-industrial-chain investment and improve the innovation performance of AI enterprises.
C1 [Chen, Yan; Si, Fan; Lu, Xiying] Beijing Univ Posts & Telecommun, Sch Econ & Management, Beijing, Peoples R China.
[Li, Xin] Civil Aviat Univ China, Sch Econ & Management, Tianjin, Peoples R China.
C3 Beijing University of Posts & Telecommunications; Civil Aviation
University of China
RP Li, X (corresponding author), Civil Aviat Univ China, Sch Econ & Management, Tianjin, Peoples R China.
EM 2019071091@cauc.edu.cn
CR Ahmed I, 2018, IEEE INTERNET THINGS, V5, P1598, DOI 10.1109/JIOT.2017.2787779
[Anonymous], 2006, MANAGE SCI, DOI [DOI 10.1287/mnsc.1050.0470, 10.1287/mnsc.1050.0470]
Antràs P, 2013, ECONOMETRICA, V81, P2127, DOI 10.3982/ECTA10813
Barkema HG, 2008, ACAD MANAGE J, V51, P696
Bassetti Thomas., 2020, Artificial intelligence: impact on total factor productivity, E-commerce fintech
Chen HQ, 2016, MANAGE DECIS, V54, P1320, DOI 10.1108/MD-10-2015-0458
Cockburn I. M., 1E IMPACT ARTIFICIAL
Cross R, 2015, ORGAN DYN, V44, P204, DOI 10.1016/j.orgdyn.2015.05.006
Delaney JM, 2020, ECON SOC REV, V51, P189
Dimiduk DM, 2018, INTEGR MATER MANUF I, V7, P157, DOI 10.1007/s40192-018-0117-8
Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021
Dzwigol H., 2019, Virtual Econ, V2, P46, DOI [10.34021/ve.2019.02.04(3), DOI 10.34021/VE.2019.02.04(3)]
Olmos MF, 2015, EUR J MARKETING, V49, P420, DOI 10.1108/EJM-06-2012-0365
Guo YY, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10040940
HANSEN LP, 1982, ECONOMETRICA, V50, P1029, DOI 10.2307/1912775
Hashai N, 2018, J MANAGE, V44, P707, DOI 10.1177/0149206315592030
Jonathan G. M, 2018, 17 INT C PERSP BUS I, P375
이강윤, 2016, [Korean Medical Education Review, 의학교육논단], V18, P51
Kunisch S, 2017, ACAD MANAG ANN, V11, P1005, DOI 10.5465/annals.2015.0133
Van Huy L, 2012, J GLOB INF MANAG, V20, P23, DOI 10.4018/jgim.2012070102
Lee OK, 2009, J GLOB INF MANAG, V17, P70, DOI 10.4018/jgim.2009010104
Liang ZX, 2015, INSUR MATH ECON, V65, P66, DOI 10.1016/j.insmatheco.2015.08.008
Lin SY, 2019, J GEN INTERN MED, V34, P1626, DOI 10.1007/s11606-019-05035-1
Liu J, 2020, TECHNOL FORECAST SOC, V158, DOI 10.1016/j.techfore.2020.120142
Neirotti P, 2019, EUR J INNOV MANAG, V22, P383, DOI 10.1108/EJIM-02-2018-0039
Raisch S, 2021, ACAD MANAGE REV, V46, P192, DOI 10.5465/amr.2018.0072
Sandberg A, 2019, FORESIGHT, V21, P84, DOI 10.1108/FS-04-2018-0044
Shi WL, 2012, J MANAGE, V38, P164, DOI 10.1177/0149206311424942
Tambe P, 2019, CALIF MANAGE REV, V61, P15, DOI 10.1177/0008125619867910
Teece DJ, 2007, STRATEGIC MANAGE J, V28, P1319, DOI 10.1002/smj.640
Tippins MJ, 2003, STRATEGIC MANAGE J, V24, P745, DOI 10.1002/smj.337
Wang D., 2017, SPATIAL TEMPORAL DAT
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhang N, 2009, J GLOB INF MANAG, V17, P49, DOI 10.4018/jgim.2009010103
Zhou N, 2015, STRATEGIC MANAGE J, V36, P907, DOI 10.1002/smj.2242
NR 35
TC 0
Z9 0
U1 13
U2 52
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1574-017X
EI 1875-905X
J9 MOB INF SYST
JI Mob. Inf. Syst.
PD NOV 29
PY 2021
VL 2021
AR 6149746
DI 10.1155/2021/6149746
PG 12
WC Computer Science, Information Systems; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Telecommunications
GA YS4BN
UT WOS:000750624400003
OA gold
DA 2024-09-05
ER
PT J
AU Sampatrao, GS
Dey, SR
Bansal, A
Saha, S
AF Sampatrao, Gambhire Swati
Dey, Sudeepa Roy
Bansal, Abhishek
Saha, Sriparna
TI Analyzing the Common Wisdom of Binarization Doctrine in Internationality
Classification of Journals: A Machine Learning Approach
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Journal Internationality; Binary classification; Bayesian Error rate
function; web scraping; supervised learning; Non-Local Influence
Quotient (NLIQ); Source-Normalized Impact per Paper (SNIP); Other
Citation Quotient (OCQ); Unified Granular Neural Network (UGNN).
AB Evaluating and identifying "Internationality" of peer reviewed journals is a hotly debated topic. The problem broadly focuses on whether a journal is international or not, indicating a strong tilt toward binary classification doctrine. The manuscript investigates the doctrine, for the first time. The authors have validated their study further by using minimum error rate classifier, investigated theoretical lower and upper bounds of classification error in the context of internationality. The novel approach has rich ramifications in Scientometrics. Further, we propose a new principle of classification that results in greater accuracy fortifying the assertion.
C1 [Sampatrao, Gambhire Swati; Dey, Sudeepa Roy] PESIT BSC, Dept Comp Sci & Engn, Bangalore 560100, Karnataka, India.
[Sampatrao, Gambhire Swati; Dey, Sudeepa Roy] Visvesvarya Tech Univ, Belagavi, Karnataka, India.
[Bansal, Abhishek; Saha, Sriparna] IIT Patna, Dept Comp Sci, Patna, Bihar, India.
C3 PES University; Visvesvaraya Technological University; Indian Institute
of Technology System (IIT System); Indian Institute of Technology (IIT)
- Patna
RP Dey, SR (corresponding author), PESIT BSC, Dept Comp Sci & Engn, Bangalore 560100, Karnataka, India.; Dey, SR (corresponding author), Visvesvarya Tech Univ, Belagavi, Karnataka, India.
EM sudeepar@gmail.com
CR [Anonymous], 2017, S SAHAS MACHINE LEAR
Bora K, 2016, ASTRONOMY COMPUTING, V17
Buchandiran G, 2011, EXPLORATORY STUDY IN
Changa Chia-Lin, 2013, MATH COMPUT SIMULAT, V93
Duda RO, 2001, PATTERN CLASSIFICAT
Ginde G., 2016, CORR
Ginde G., 2015, P 4 NAT C I SCI
Ginde G, 2016, SCIENTOMETRICS, V108, P1479, DOI 10.1007/s11192-016-2006-2
Gose Earl., 1997, Pattern Recognition and Image Analysis
Kao C, 2009, SCIENTOMETRICS, V81, P123, DOI 10.1007/s11192-009-2093-4
Kumar DA, 2016, NEUROCOMPUTING, V216, P109, DOI 10.1016/j.neucom.2016.07.034
Waltman L, 2016, J INFORMETR, V10, P671, DOI 10.1016/j.joi.2015.12.008
Waltman L, 2013, J INFORMETR, V7, P272, DOI 10.1016/j.joi.2012.11.011
Yu LP, 2009, J INFORMETR, V3, P304, DOI 10.1016/j.joi.2009.04.002
Zupanc Gunther K. H., 2014, J COMP PHYSIOL A, V200
ZWEIG MH, 1993, CLIN CHEM, V39, P561
NR 16
TC 1
Z9 1
U1 0
U2 0
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD MAY-AUG
PY 2019
VL 8
IS 2
SI SI
BP S7
EP S38
DI 10.5530/jscires.8.2.22
PG 32
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA KA8FQ
UT WOS:000506037200003
DA 2024-09-05
ER
PT J
AU Shi, X
Li, JN
Xiong, QY
Wu, YF
Yuan, YP
AF Shi, Xin
Li, Jiannan
Xiong, Qingyu
Wu, Yinfang
Yuan, Yupeng
TI Research of uniformity evaluation model based on entropy clustering in
the microwave heating processes
SO NEUROCOMPUTING
LA English
DT Article
DE Spectral clustering; Maximum entropy; Uniformity evaluation model;
Microwave heating
ID HIGH-DIMENSIONAL DATA; SELECTION; CONSTRAINT; ALGORITHM; OVENS
AB This paper proposes a uniformity evaluation method based on Spectral Clustering and Maximum Information Entropy (ECUEM) for clustering the simulation results in the microwave heating system. The proposed method can effectively evaluate the dataset of the electric field E, the magnetic field H, the temperature field T, and analyze the non-uniformity phenomenon in the microwave heating processes. Compared with other clustering algorithms, the ECUEM can get better clustering results for the dataset in simulation of microwave heating. In particular, in the resonant cavity, the experimental results show that the minimum the evaluation results, the better the materials heating uniformity. In addition, when the ECUEM method is used to analyze the experiment of waveguide moving, the best position (0, 11/20*do, 3/14*ho) of waveguide can be obtained; at the same time, the uniformity or efficiency of materials microwave heating is the best. Moreover, other rules have been obtained in the microwave heating processes. Thus, the proposed method would provide a new method to guide the researchers who are working in the area of dataset clustering in the microwave heating. (C) 2015 Published by Elsevier B.V.
C1 [Shi, Xin; Li, Jiannan; Yuan, Yupeng] Chongqing Univ, Dept Automat, Chongqing 630044, Peoples R China.
[Xiong, Qingyu] Chongqing Univ, Dept Software, Chongqing 630044, Peoples R China.
[Wu, Yinfang] Guangxi Normal Univ, Dept Foreign Studies, Guilin, Guangxi, Peoples R China.
C3 Chongqing University; Chongqing University; Guangxi Normal University
RP Shi, X (corresponding author), Chongqing Univ, Dept Automat, Chongqing 630044, Peoples R China.
EM shixin@cqu.edu.cn; cdljn2011@126.com; xiong03@cqu.edu.cn;
Wuyinfang77@163.com; yup@cqu.edu.cn
FU National Basic Research Program of China [2013CB328903]; National
Natural Science Foundation of China [61473050]
FX The authors thank the editors and the anonymous reviewers for their
helpful comments and suggestions. This research is supported by the
National Basic Research Program of China (Grant no. 2013CB328903), the
National Natural Science Foundation of China (Grant no. 61473050).
CR Antonio C, 2005, J MATER PROCESS TECH, V169, P234, DOI 10.1016/j.jmatprotec.2005.03.024
Boutemedjet S, 2009, IEEE T PATTERN ANAL, V31, P1429, DOI 10.1109/TPAMI.2008.155
Cao H, 2013, NEUROCOMPUTING, V117, P54, DOI 10.1016/j.neucom.2013.01.040
Chandrasekaran S, 2013, FOOD RES INT, V52, P243, DOI 10.1016/j.foodres.2013.02.033
De Mulder W, 2013, INFORM SCIENCES, V223, P56, DOI 10.1016/j.ins.2012.09.051
Elhamifar E, 2013, IEEE T PATTERN ANAL, V35, P2765, DOI 10.1109/TPAMI.2013.57
Geedipalli SSR, 2007, J FOOD ENG, V82, P359, DOI 10.1016/j.jfoodeng.2007.02.050
Gunasekaran S, 2007, J FOOD ENG, V78, P1452, DOI 10.1016/j.jfoodeng.2006.01.017
Handl J, 2005, BIOINFORMATICS, V21, P3201, DOI 10.1093/bioinformatics/bti517
Hossan MR, 2010, INT J HEAT MASS TRAN, V53, P5129, DOI 10.1016/j.ijheatmasstransfer.2010.07.051
Hsu CC, 2007, INFORM SCIENCES, V177, P4474, DOI 10.1016/j.ins.2007.05.003
James C, 2002, INT J FOOD SCI TECH, V37, P879, DOI 10.1046/j.1365-2621.2002.00636.x
Jiao LC, 2012, PATTERN RECOGN, V45, P4358, DOI 10.1016/j.patcog.2012.05.007
Kao YT, 2008, EXPERT SYST APPL, V34, P1754, DOI 10.1016/j.eswa.2007.01.028
Liu MY, 2014, IEEE T PATTERN ANAL, V36, P99, DOI 10.1109/TPAMI.2013.107
Liu XY, 2014, NEUROCOMPUTING, V142, P478, DOI 10.1016/j.neucom.2014.04.013
Milev M, 2012, APPL MATH COMPUT, V218, P5782, DOI 10.1016/j.amc.2011.11.093
Rebagliati N, 2011, NEUROCOMPUTING, V74, P1391, DOI 10.1016/j.neucom.2010.12.008
Saha S, 2010, PATTERN RECOGN, V43, P738, DOI 10.1016/j.patcog.2009.07.004
Santos T, 2011, APPL THERM ENG, V31, P3255, DOI 10.1016/j.applthermaleng.2011.06.006
[石欣 Shi Xin], 2014, [仪器仪表学报, Chinese Journal of Scientific Instrument], V35, P1938
Tao DC, 2007, IEEE T KNOWL DATA EN, V19, P568, DOI 10.1109/TKDE.2007.1003
Tao DC, 2009, IEEE T PATTERN ANAL, V31, P260, DOI 10.1109/TPAMI.2008.70
Tu EM, 2014, NEUROCOMPUTING, V143, P109, DOI 10.1016/j.neucom.2014.05.067
Wu S, 2014, NEUROCOMPUTING, V135, P229, DOI 10.1016/j.neucom.2013.12.027
Xia TA, 2010, IEEE T SYST MAN CY B, V40, P1438, DOI 10.1109/TSMCB.2009.2039566
Yang L, 2004, IEEE T PATTERN ANAL, V26, P1243, DOI 10.1109/TPAMI.2004.66
Yuwono M, 2014, IEEE T EVOLUT COMPUT, V18, P366, DOI 10.1109/TEVC.2013.2281545
Zhang HX, 2014, NEUROCOMPUTING, V139, P289, DOI 10.1016/j.neucom.2014.02.030
Zhao F, 2010, NEUROCOMPUTING, V73, P1704, DOI 10.1016/j.neucom.2009.12.029
NR 30
TC 8
Z9 10
U1 0
U2 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0925-2312
EI 1872-8286
J9 NEUROCOMPUTING
JI Neurocomputing
PD JAN 15
PY 2016
VL 173
BP 562
EP 572
DI 10.1016/j.neucom.2015.07.034
PG 11
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA CZ1QG
UT WOS:000366879800009
DA 2024-09-05
ER
PT J
AU Wing, C
Bello-Gomez, RA
AF Wing, Coady
Bello-Gomez, Ricardo A.
TI Regression Discontinuity and Beyond: Options for Studying External
Validity in an Internally Valid Design
SO AMERICAN JOURNAL OF EVALUATION
LA English
DT Article
DE regression discontinuity design; external validity; extrapolation;
causal inference; research design; program evaluation; quasi-experiments
ID STUDENT-ACHIEVEMENT; VARIABLES; SCHOOL
AB Treatment effect estimates from a regression discontinuity design (RDD) have high internal validity. However, the arguments that support the design apply to a subpopulation that is narrower and usually different from the population of substantive interest in evaluation research. The disconnect between RDD population and the evaluation population of interest suggests that RDD evaluations lack external validity. New methodological research offer strategies for studying and sometimes improving external validity in RDDs. This article examines four techniques: comparative RDD, covariate matching RDD, treatment effect derivatives, and statistical tests for local selection bias. The goal of the article is to help evaluators understand the logic, assumptions, data requirements, and reach of the new methods.
C1 [Wing, Coady; Bello-Gomez, Ricardo A.] Indiana Univ, Sch Publ & Environm Affairs, 1315 East Tenth St,Room 339A, Bloomington, IN 47405 USA.
C3 Indiana University System; Indiana University Bloomington
RP Wing, C (corresponding author), Indiana Univ, Sch Publ & Environm Affairs, 1315 East Tenth St,Room 339A, Bloomington, IN 47405 USA.
EM cwing@indiana.edu
RI Bello-Gomez, Ricardo/U-1146-2019
OI Bello-Gomez, Ricardo/0000-0001-6479-4979
CR Abdulkadiroglu A, 2014, ECONOMETRICA, V82, P137, DOI 10.3982/ECTA10266
Angrist JD, 2004, ECON J, V114, pC52, DOI 10.1111/j.0013-0133.2003.00195.x
Angrist JD, 2015, J AM STAT ASSOC, V110, P1331, DOI 10.1080/01621459.2015.1012259
[Anonymous], 1987, Stat Sci, DOI DOI 10.1214/SS/1177013232
[Anonymous], EVALUATING BIA UNPUB
Athey S., 2016, STATE APPL ECO UNPUB
Bertanha M., 2014, EXTERNAL VALID UNPUB
Bertanha M., 2017, REGRESSION DIS UNPUB
CAMPBELL DT, 1969, AM PSYCHOL, V24, P409, DOI 10.1037/h0027982
Cook TD, 2014, J POLICY ANAL MANAG, V33, P527, DOI 10.1002/pam.21750
DiNardo J, 2011, HBK ECON, V4, P463, DOI 10.1016/S0169-7218(11)00411-4
Dong YY, 2015, REV ECON STAT, V97, P1081, DOI 10.1162/REST_a_00510
Goodman J, 2008, J PUBLIC ECON, V92, P2121, DOI 10.1016/j.jpubeco.2008.03.009
Hahn JY, 2001, ECONOMETRICA, V69, P201, DOI 10.1111/1468-0262.00183
HAUSMAN JA, 1978, ECONOMETRICA, V46, P1251, DOI 10.2307/1913827
Hirano K, 2003, ECONOMETRICA, V71, P1161, DOI 10.1111/1468-0262.00442
HORVITZ DG, 1952, J AM STAT ASSOC, V47, P663, DOI 10.2307/2280784
Imbens GW, 2008, J ECONOMETRICS, V142, P615, DOI 10.1016/j.jeconom.2007.05.001
Jacob BA, 2004, REV ECON STAT, V86, P226, DOI 10.1162/003465304323023778
Kline P, 2011, AM ECON REV, V101, P532, DOI 10.1257/aer.101.3.532
Kowalski A. E., 2016, UNPUB
LINDBLOM CE, 1979, PUBLIC ADMIN REV, V39, P517, DOI 10.2307/976178
Matsudaira JD, 2008, J ECONOMETRICS, V142, P829, DOI 10.1016/j.jeconom.2007.05.015
McCrary J, 2008, J ECONOMETRICS, V142, P698, DOI 10.1016/j.jeconom.2007.05.005
Papay JP, 2011, J ECONOMETRICS, V161, P203, DOI 10.1016/j.jeconom.2010.12.008
ROBINSON PM, 1988, ECONOMETRICA, V56, P931, DOI 10.2307/1912705
Stuart EA, 2008, J EDUC BEHAV STAT, V33, P279, DOI 10.3102/1076998607306078
Wing C, 2017, J POLICY ANAL MANAG, V36, P418, DOI 10.1002/pam.21965
Wing C, 2013, J POLICY ANAL MANAG, V32, P853, DOI 10.1002/pam.21721
WONG V, 2016, OBSERVATIONAL STUDIE, V2, P183
Wong VC, 2013, J EDUC BEHAV STAT, V38, P107, DOI 10.3102/1076998611432172
NR 31
TC 11
Z9 16
U1 0
U2 12
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1098-2140
EI 1557-0878
J9 AM J EVAL
JI Am. J. Eval.
PD MAR
PY 2018
VL 39
IS 1
BP 91
EP 108
DI 10.1177/1098214017736155
PG 18
WC Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Social Sciences - Other Topics
GA FW1JZ
UT WOS:000425054900007
OA Bronze
DA 2024-09-05
ER
PT C
AU Zhang, JS
Liu, XZ
AF Zhang, Jinsong
Liu, Xiaozhong
GP ACM
TI Full-text and Topic Based AuthorRank and Enhanced Publication Ranking
SO JCDL'13: PROCEEDINGS OF THE 13TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL
LIBRARIES
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 13th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL)
CY JUL 22-26, 2013
CL Indianapolis, IN
DE AuthorRank; Paper Ranking; Full-text; Labeled-LDA; PageRank with Priors;
Citation Analysis
AB The idea behind AuthorRank is that a content created by more popular authors should rank higher than the content created by less popular authors. This paper brings this idea into scientific publications analysis to test whether the optimized topical AuthorRank can replace or enhance topical PageRank for publication ranking. First, the PageRank with Priors (PRP) algorithm was employed to rank topic-based publications and authors. Second, the first author's reputation was used for generating an AuthorRank score. Additionally, linear combination method of topical AuthorRank and PageRank were compared with several baselines. Finally, as shown in our evaluation results, the performance of topical AuthorRank combined with topic-based PageRank is better than other baselines for publication ranking.
C1 [Zhang, Jinsong] Dalian Maritime Univ, Coll Transportat Management, Dalian 116026, Peoples R China.
[Liu, Xiaozhong] Indiana Univ, Sch Lib & Informat Sci, Bloomington, IN 47405 USA.
C3 Dalian Maritime University; Indiana University System; Indiana
University Bloomington
RP Zhang, JS (corresponding author), Dalian Maritime Univ, Coll Transportat Management, Dalian 116026, Peoples R China.
EM zhangjinsong85@163.com; liu237@indiana.edu
CR [Anonymous], 1999, WWW 1999
[Anonymous], 2012, P 21 ACM INT C INFOR
Dom B., 2003, Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, DMKD '03, ACM, New York, NY, USA, P42, DOI DOI 10.1145/882082.882093
Fang H, 2007, LECT NOTES COMPUT SC, V4425, P418
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Haveliwala TH, 2003, IEEE T KNOWL DATA EN, V15, P784, DOI 10.1109/TKDE.2003.1208999
Ramage Daniel., 2009, EMNLP
Rodriguez M. A, 2006, SIMULATING NETWORK I
NR 8
TC 3
Z9 3
U1 0
U2 2
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
SN 2575-7865
EI 2575-8152
BN 978-1-4503-2076-4
J9 ACM-IEEE J CONF DIG
PY 2013
BP 393
EP 394
PG 2
WC Information Science & Library Science
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Information Science & Library Science
GA BL7RG
UT WOS:000455376400064
DA 2024-09-05
ER
PT C
AU Hassany, M
Ke, JZ
Brusilovsky, P
Narayanan, ABL
Akhuseyinoglu, K
AF Hassany, Mohammad
Ke, Jiaze
Brusilovsky, Peter
Narayanan, Arun Balajiee Lekshmi
Akhuseyinoglu, Kamil
GP ASSOC COMPUTING MACHINERY
TI Authoring Worked Examples for Java Programming with Human-AI
Collaboration
SO 39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024
LA English
DT Proceedings Paper
CT 39th Annual ACM Symposium on Applied Computing (SAC)
CY APR 08-12, 2024
CL Univ Salamanca, Avila, SPAIN
HO Univ Salamanca
DE Code Examples; Authoring Tool; Human-AI Collaboration
AB Worked examples are among the most popular types of learning content in programming classes. However, instructors rarely have time to provide line-by-line explanations for a large number of examples typically used in a programming class. In this paper, we explore and assess a human-AI collaboration approach to authoring worked examples for Java programming. We introduce an authoring system for creating Java worked examples that generates a starting version of code explanations and presents it to the instructor to edit if necessary. We also present a study that assesses the quality of explanations created with this approach.
C1 [Hassany, Mohammad; Brusilovsky, Peter; Narayanan, Arun Balajiee Lekshmi; Akhuseyinoglu, Kamil] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Ke, Jiaze] Carnegie Mellon Univ, Pittsburgh, PA USA.
C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); University
of Pittsburgh; Carnegie Mellon University
RP Hassany, M (corresponding author), Univ Pittsburgh, Pittsburgh, PA 15260 USA.
EM moh70@pitt.edu; jiazek@andrew.cmu.edu; peterb@pitt.edu; arl122@pitt.edu;
kaa108@pitt.edu
OI Akhuseyinoglu, Kamil/0000-0002-7761-9755; Brusilovsky,
Peter/0000-0002-1902-1464
CR Brusilovsky Peter, 2009, Journal of Educational Multimedia and Hypermedia, V18, P267
Chen Eason, 2023, Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky: 24th International Conference, AIED 2023, Proceedings. Communications in Computer and Information Science (1831), P321, DOI 10.1007/978-3-031-36336-8_50
Hassany M, 2023, Arxiv, DOI [arXiv:2312.02105, 10.48550/arXiv.2312.02105, DOI 10.48550/ARXIV.2312.02105]
Hosseini R, 2020, INT J ARTIF INTELL E, V30, P299, DOI 10.1007/s40593-020-00197-0
Hsiao IH, 2011, BRIT J EDUC TECHNOL, V42, P482, DOI 10.1111/j.1467-8535.2009.01030.x
Khandwala K, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231652
LINN MC, 1992, COMMUN ACM, V35, P121, DOI 10.1145/131295.131301
MacNeil S, 2023, PROCEEDINGS OF THE 54TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, VOL 1, SIGCSE 2023, P931, DOI 10.1145/3545945.3569785
Sarsa Sami, 2022, ICER 2022 V1: Proceedings of the 2022 ACM Conference on International Computing Education Research V.1, P27, DOI 10.1145/3501385.3543957
NR 9
TC 0
Z9 0
U1 0
U2 0
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 979-8-4007-0243-3
PY 2024
BP 101
EP 103
DI 10.1145/3605098.3636160
PG 3
WC Computer Science, Interdisciplinary Applications; Computer Science,
Software Engineering; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BX0OH
UT WOS:001236958200015
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Kumar, P
Prakash, K
Dimri, A
Khulbe, M
Mishra, SC
AF Kumar, Pankaj
Prakash, Karuna
Dimri, Anjali
Khulbe, Manjula
Mishra, Satish Chandra
TI Using bibliometric analysis to determine the role of cutting-edge
technologies in the development of future performance management system
SO BENCHMARKING-AN INTERNATIONAL JOURNAL
LA English
DT Article; Early Access
DE Performance management system; Artificial intelligence; Machine
learning; Bibliometric analysis; VOS viewer
ID BALANCED SCORECARD; PUBLIC-SECTOR; INFORMATION-SYSTEMS; SUPPLY CHAINS;
WORK; KNOWLEDGE; FRAMEWORK; SCIENCE; INCENTIVES; EVOLUTION
AB PurposePerformance management system (PMS) is a crucial element of strategic human resource practices in any organization. This research aims to provide a concise overview of how bibliometric analysis is employed to assess the influence and significance of cutting-edge technologies in shaping of PMS. This study seeks to identify key trends, emerging technologies and their impact on the evolution of performance management practices, contributing valuable insights for researchers, practitioners and policymakers in this field.Design/methodology/approachThis investigation is carried out utilizing total of eight research questions, which are examined through VOS Viewer and Biblioshiny software. The research offers visual diagrams and tables depicting the data extracted from the Scopus Database.FindingsThe study's results underscore a noticeable increase in research literature pertaining to PMS, indicating a shift from conventional methods to a strategic, technology-driven approach. These findings cover the way for further investigation across various disciplines, offering opportunities to enhance the efficacy and productivity of PMS.Practical implicationsThe implementation of new technologies such as Artificial intelligence (AI), machine learning and robotics etc. in PMS have also been analysed to give a sneak peak of the bigger future picture of AI and strategic human resource integration.Originality/valueTo the best of the authors' understanding, this analysis represents the inaugural application of bibliometric techniques to evaluate the advancement of research on Performance Management System (PMS) dating back to 1978, utilizing academic literature sourced from the Scopus database.
C1 [Kumar, Pankaj; Prakash, Karuna; Dimri, Anjali; Khulbe, Manjula; Mishra, Satish Chandra] DIT Univ, Dept Management Studies, Dehra Dun, India.
C3 DIT University
RP Kumar, P (corresponding author), DIT Univ, Dept Management Studies, Dehra Dun, India.
EM pankaj.kumar@dituniversity.edu.in
CR Abdel-Kader M, 2011, REVIEW OF MANAGEMENT ACCOUNTING RESEARCH, P214
Aguinis H., 2013, Performance management, V3rd ed.
Aguinis H, 2021, BRQ-BUS RES Q, V24, P233, DOI 10.1177/23409444211009528
Aguinis H, 2014, ACAD MANAG LEARN EDU, V13, P623, DOI 10.5465/amle.2014.0121
Agyemang G, 2015, ACCOUNT AUDIT ACCOUN, V28, P1018, DOI 10.1108/AAAJ-11-2013-1531
[Anonymous], 1934, Engineering, DOI [10.1177/016555158501000, DOI 10.1177/016555158501000]
Armstrong M., 2009, Armstrong's Handbook of Performance management, V11th
Armstrong M., 2010, Armstrongs Essential Human Resource Management Practice: A Guide to People Management
Arnaboldi M, 2015, FINANC ACCOUNT MANAG, V31, P1, DOI 10.1111/faam.12049
Asadi S, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120860
Bai CG, 2012, SUPPLY CHAIN MANAG, V17, P78, DOI 10.1108/13598541211212221
Barnes-Farrell JL, 2001, S APPL PSYC, P135
Beer M., 1979, Compensation Review, V11, P56
Bellisario A, 2018, PROD PLAN CONTROL, V29, P367, DOI 10.1080/09537287.2018.1432909
Bevan S., 1991, Personnel Management, V23, P36
Biron M, 2011, INT J HUM RESOUR MAN, V22, P1294, DOI 10.1080/09585192.2011.559100
Bititci U, 2012, INT J MANAG REV, V14, P305, DOI 10.1111/j.1468-2370.2011.00318.x
Bititci US, 2018, INT J MANAG REV, V20, P653, DOI 10.1111/ijmr.12185
Boswell W.R., 2000, HUM RESOUR DEV Q, V11, P283, DOI [10.1002/1532-1096(200023)11:3andlt;283::AID-HRDQ6andgt;3.0.CO;2-3, DOI 10.1002/1532-1096(200023)11:3ANDLT;283::AID-HRDQ6ANDGT;3.0.CO;2-3]
Bourne M, 2018, INT J OPER PROD MAN, V38, P2010, DOI 10.1108/IJOPM-11-2018-784
BOXALL P., 2003, Asia Pacific Journal of Human Resources, V41, P195, DOI DOI 10.1177/10384111030412006
Broadbent J, 2009, MANAGE ACCOUNT RES, V20, P283, DOI 10.1016/j.mar.2009.07.004
Buchner TW, 2007, HUM RESOUR DEV INT, V10, P59, DOI 10.1080/13678860601170294
Cardador MT, 2017, HUM RESOUR MANAGE R, V27, P353, DOI 10.1016/j.hrmr.2016.09.014
Chavan M, 2009, J MANAG DEV, V28, P393, DOI 10.1108/02621710910955930
Chowdhury S, 2023, HUM RESOUR MANAGE R, V33, DOI 10.1016/j.hrmr.2022.100899
Christensen T., 2008, Public Organization Review, V8, P97, DOI DOI 10.1007/S11115-008-0058-3
Claus L, 2009, INT J MANAG REV, V11, P175, DOI 10.1111/j.1468-2370.2008.00237.x
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Conway E, 2016, HUM RESOUR MANAGE-US, V55, P901, DOI 10.1002/hrm.21691
CULNAN MJ, 1986, MIS QUART, V10, P289, DOI 10.2307/249263
Cuthbertson R, 2011, INT J PRODUCT PERFOR, V60, P583, DOI 10.1108/17410401111150760
Dabic M, 2014, BRQ-BUS RES Q, V17, P129, DOI 10.1016/j.brq.2013.09.001
de Waal A. A., 2003, Management Decision, V41, P688, DOI 10.1108/00251740310496206
de Waal AA, 2009, INT J PRODUCT PERFOR, V58, P367, DOI 10.1108/17410400910951026
DeNisi A.S., 2006, MANAGEMENT ORG REV, V2, P253, DOI DOI 10.1111/J.1740-8784.2006.00042.X
DeNisi AS, 2017, J APPL PSYCHOL, V102, P421, DOI 10.1037/apl0000085
Di Minin A, 2010, CALIF MANAGE REV, V52, P132, DOI 10.1525/cmr.2010.52.3.132
Diab-Bahman R, 2020, INT J SOCIOL SOC POL, V40, P909, DOI 10.1108/IJSSP-07-2020-0262
Dias-Sardinha I., 2002, Environmental Quality Managemnet , winter, p, P51
Evans L, 2011, BRIT EDUC RES J, V37, P851, DOI 10.1080/01411926.2011.607231
Fernandes C, 2023, THUNDERBIRD INT BUS, V65, P9, DOI 10.1002/tie.22249
Ferreira A, 2009, MANAGE ACCOUNT RES, V20, P263, DOI 10.1016/j.mar.2009.07.003
Figge F., 2002, Business Strategy and the Environment, V11, P269, DOI [10.1002/bse.339, DOI 10.1002/BSE.339]
Fletcher C., 1996, BRIT J MANAGE, V7, P169, DOI [DOI 10.1111/J.1467-8551.1996.TB00112.X, 10.1111/j.1467-8551.1996.tb00112.x]
Franco-Santos M, 2007, INT J OPER PROD MAN, V27, P784, DOI 10.1108/01443570710763778
Furrer O, 2007, SERV BUS, V1, P93, DOI 10.1007/s11628-006-0006-7
Garengo P, 2020, INT J PRODUCT PERFOR, DOI 10.1108/IJPPM-03-2020-0102
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
George RA, 2016, J CLEAN PROD, V136, P197, DOI 10.1016/j.jclepro.2016.01.097
Gerrish E, 2016, PUBLIC ADMIN REV, V76, P48, DOI 10.1111/puar.12433
Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087
Gruman JA, 2011, HUM RESOUR MANAGE R, V21, P123, DOI 10.1016/j.hrmr.2010.09.004
Gunasekaran A, 2004, INT J PROD ECON, V87, P333, DOI 10.1016/j.ijpe.2003.08.003
Gunasekaran A, 2001, INT J OPER PROD MAN, V21, P71, DOI 10.1108/01443570110358468
Gunasekaran A, 2007, INT J PROD RES, V45, P2819, DOI 10.1080/00207540600806513
Hassini E, 2012, INT J PROD ECON, V140, P69, DOI 10.1016/j.ijpe.2012.01.042
Heinrich CJ, 2010, J POLICY ANAL MANAG, V29, P183, DOI 10.1002/pam.20484
Hsu IC, 2006, INT J INFORM MANAGE, V26, P326, DOI 10.1016/j.ijinfomgt.2006.03.001
Inamdar N, 2002, J HEALTHC MANAG, V47, P179, DOI 10.1097/00115514-200205000-00008
Kallio KM, 2016, HUM RELAT, V69, P685, DOI 10.1177/0018726715596802
Kaplan RS, 1996, CALIF MANAGE REV, V39, P53, DOI 10.2307/41165876
Karapetrovic S., 1998, INT J QUALITY RELIAB, V15, P694, DOI DOI 10.1108/02656719810218220
Kellough EdwardJ., 2002, Review of Public Personnel Administration, V22, P146, DOI DOI 10.1177/0734371X0202200206
Kloot L., 2000, MANAGE ACCOUNT RES, V11, P231, DOI 10.1006/mare.2000.0130
Kumar Pankaj, 2022, International Journal of Social Ecology and Sustainable Development, p?, DOI 10.4018/IJSESD.315316
Kumar P., 2023, FOCUS: Journal of International Business, V10, P96, DOI [10.17492/jpi.focus.v10i2.1022305, DOI 10.17492/JPI.FOCUS.V10I2.1022305]
Latham GP, 2008, INT PUBLIC MANAG J, V11, P385, DOI 10.1080/10967490802491087
Lawler EE., 2003, The Journal of Total Rewards, V12, P49
Lazaroiu G, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12187705
Lee J., 2004, LEADERSHIP ORG DEV J, V26, P655, DOI [10.1108/01437730510633728, DOI 10.1108/01437730510633728]
Liang JQ, 2015, INT PUBLIC MANAG J, V18, P346, DOI 10.1080/10967494.2015.1043167
LihBrody L, 1996, DIGEST DIS SCI, V41, P2078, DOI 10.1007/BF02093613
Lotka Alfred J., 1945, HUMAN BIOL, V17, P167
Maltz AC, 2003, LONG RANGE PLANN, V36, P187, DOI 10.1016/S0024-6301(02)00165-6
Marchand M, 2008, INT J OPER PROD MAN, V28, P663, DOI 10.1108/01443570810881802
McAdam R, 2005, INT J PUBLIC SECT MA, V18, P256, DOI 10.1108/09513550510591542
Modell S, 2009, FINANC ACCOUNT MANAG, V25, P277, DOI 10.1111/j.1468-0408.2009.00477.x
Mouritsen J, 2005, J INTELLECT CAP, V6, P8, DOI 10.1108/14691930510574636
Munro E, 2010, BRIT J SOC WORK, V40, P1135, DOI 10.1093/bjsw/bcq024
Narayanamurthy G, 2021, INT J PROD ECON, V234, DOI 10.1016/j.ijpe.2021.108075
Neely A, 2005, INT J OPER PROD MAN, V25, P1264, DOI 10.1108/01443570510633648
Neely A, 1995, INT J OPER PROD MAN, V15, P80, DOI 10.1108/01443579510083622
Nudurupati SS, 2005, PROD PLAN CONTROL, V16, P152, DOI 10.1080/09537280512331333057
Nyathani R., 2023, Journal of Artificial Intelligence & Cloud Computing, V2, P1, DOI [10.47363/JAICC/2023(2)134, DOI 10.47363/JAICC/2023(2)134]
Otley D., 1999, MANAGE ACCOUNT RES, V10, P363, DOI [DOI 10.1006/MARE.1999.0115, https://doi.org/10.1006/mare.1999.0115]
Pollitt C, 2013, EVALUATION-US, V19, P346, DOI 10.1177/1356389013505040
Pulakos ED, 2015, IND ORGAN PSYCHOL-US, V8, P51, DOI 10.1017/iop.2014.2
Radnor Z.J., 2004, INT J PRODUCT PERFOR, V53, P245, DOI DOI 10.1108/17410400410523783
Rajesh R, 2020, J CLEAN PROD, V247, DOI 10.1016/j.jclepro.2019.119600
Sardi A, 2023, MEAS BUS EXCELL, V27, P531, DOI 10.1108/MBE-06-2019-0053
Schaltegger S, 2018, J BUS ETHICS, V147, P241, DOI 10.1007/s10551-015-2938-0
Schläfke M, 2012, INT J PRODUCT PERFOR, V62, P110, DOI 10.1108/17410401311285327
Schleicher DJ, 2018, J MANAGE, V44, P2209, DOI 10.1177/0149206318755303
Schneider R, 2010, INT J PRODUCT PERFOR, V59, P493, DOI 10.1108/17410401011052904
Searcy C, 2012, J BUS ETHICS, V107, P239, DOI 10.1007/s10551-011-1038-z
Shih HA, 2006, INT J MANPOWER, V27, P741, DOI 10.1108/01437720610713530
Snee RD, 2010, INT J LEAN SIX SIG, V1, P9, DOI 10.1108/20401461011033130
SPARROW P.R., 1996, HUM RESOUR MANAG J, V6, P75, DOI [10.1111/j.1748-8583.1996.tb00419.x, DOI 10.1111/J.1748-8583.1996.TB00419.X]
Stroet H.P, 2020, Bachelor's thesis
Tangen S., 2004, International Journal of Productivity and Performance Management, V53, P726, DOI [DOI 10.1108/17410400410569134, 10.1108/17410400410569134]
Taticchi P, 2015, INT J PROD RES, V53, P6473, DOI 10.1080/00207543.2014.939239
Thompson DF, 2015, PHARMACOTHERAPY, V35, P551, DOI 10.1002/phar.1586
Townley B, 2002, ACAD MANAGE J, V45, P163, DOI 10.5465/3069290
Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375
Tseng ST, 2019, HUM RESOUR MANAGE R, V29, DOI 10.1016/j.hrmr.2018.10.001
Turzo T, 2022, J CLEAN PROD, V345, DOI 10.1016/j.jclepro.2022.131154
van Veen-Dirks P, 2002, LONG RANGE PLANN, V35, P407, DOI 10.1016/S0024-6301(02)00066-3
Veen A, 2020, WORK EMPLOY SOC, V34, P388, DOI 10.1177/0950017019836911
Visnjic Kastalli I, 2013, CALIF MANAGE REV, V56, P100, DOI 10.1525/cmr.2013.56.1.100
Vlachos PA, 2010, EUR J MARKETING, V44, P1478, DOI 10.1108/03090561011062934
Vrontis D, 2022, INT J HUM RESOUR MAN, V33, P1237, DOI 10.1080/09585192.2020.1871398
NR 112
TC 0
Z9 0
U1 3
U2 3
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 1463-5771
EI 1758-4094
J9 BENCHMARKING
JI Benchmarking
PD 2024 JUN 17
PY 2024
DI 10.1108/BIJ-07-2023-0477
EA JUN 2024
PG 29
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA UP9A2
UT WOS:001249368000001
DA 2024-09-05
ER
PT C
AU Maiorino, A
Padgett, Z
Wang, C
Yakubovskiy, M
Jiang, P
AF Maiorino, Antonio
Padgett, Zoe
Wang, Chun
Yakubovskiy, Misha
Jiang, Peng
GP ACM
TI Application and Evaluation of Large Language Models for the Generation
of Survey Questions
SO PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND
KNOWLEDGE MANAGEMENT, CIKM 2023
LA English
DT Proceedings Paper
CT 32nd ACM International Conference on Information and Knowledge
Management (CIKM)
CY OCT 21-25, 2023
CL Birmingham, ENGLAND
DE Generative AI; Survey Research; Text Evaluation
AB Generative Language Models have shown promising results in various domains, and some of the most successful applications are related to "concept expansion", which is the task of generating extensive text based on concise instructions provided through a "seed" prompt. In this presentation we will discuss the recent work conducted by the Data Science team at SurveyMonkey, where we have recently introduced a new feature that harnesses Generative AI models to streamline the survey design process. With this feature users can effortlessly initiate this process by specifying their desired objectives through a prompt, allowing them to automate the creation of surveys that include the critical aspects they wish to investigate.
We will share our findings regarding some of the challenges encountered during the development of this feature. These include techniques for conditioning the model outputs, integrating generated text with industry-standard questions, fine-tuning Language Models using semi-synthetic Data Generation techniques, and more. Moreover, we will showcase the Evaluation Methodology that we have developed to measure the quality of the generated surveys across several dimensions. This evaluation process is crucial in ensuring that the generated surveys align well with user expectations and serve their intended purpose effectively. Our goal is to demonstrate the promising potential of Generative Language Models in the context of Survey Research, and we believe that sharing our learnings on these challenges and how we addressed them will be useful for practitioners working with Language Models on similar problems.
C1 [Maiorino, Antonio] SurveyMonkey, Milan, Italy.
[Padgett, Zoe] SurveyMonkey, Gaithersburg, MD USA.
[Wang, Chun] SurveyMonkey, Ottawa, ON, Canada.
[Yakubovskiy, Misha] SurveyMonkey, Bellevue, WA USA.
[Jiang, Peng] SurveyMonkey, San Mateo, CA USA.
RP Maiorino, A (corresponding author), SurveyMonkey, Milan, Italy.
EM amaiorino@surveymonkey.com; zpadgett@surveymonkey.com;
chunw@surveymonkey.com; myakubovskiy@surveymonkey.com;
pjiang@surveymonkey.com
NR 0
TC 0
Z9 0
U1 5
U2 5
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 979-8-4007-0124-5
PY 2023
BP 5244
EP 5245
DI 10.1145/3583780.3615506
PG 2
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BW5IO
UT WOS:001161549505056
DA 2024-09-05
ER
PT J
AU Shahzad, M
Alhoori, H
Freedman, R
Rahman, SA
AF Shahzad, Murtuza
Alhoori, Hamed
Freedman, Reva
Rahman, Shaikh Abdul
TI Quantifying the online long-term interest in research
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Long-term research interest; Online scholarly impact; Aging of articles;
Social media; Altmetrics; Machine learning
ID CITED OLD PAPERS; SOCIAL MEDIA; SOCIETAL IMPACT; OBSOLESCENCE; CITATION;
ALTMETRICS; GROWTH; ARTICLE; PUBLICATION; CONTINUE
AB Research articles are being shared in increasing numbers on multiple online platforms. Although the scholarly impact of these articles has been widely studied, the online interest determined by how long the research articles are shared online remains unclear. Being cognizant of how long a research article is mentioned online could be valuable information to the researchers. In this paper, we analyzed multiple social media platforms on which users share and/or discuss scholarly articles. We built three clusters for papers, based on the number of yearly online mentions having publication dates ranging from the year 1920 to 2016. Using the online social media metrics for each of these three clusters, we built machine learning models to predict the long-term online interest in research articles. We addressed the prediction task with two different approaches: regression and classification. For the regression approach, the Multi-Layer Perceptron model performed best, and for the classification approach, the tree-based models performed better than other models. We found that old articles are most evident in the contexts of economics and industry (i.e., patents). In contrast, recently published articles are most evident in research platforms (i.e., Mendeley) followed by social media platforms (i.e., Twitter).
C1 [Shahzad, Murtuza; Alhoori, Hamed; Freedman, Reva; Rahman, Shaikh Abdul] Northern Illinois Univ, De Kalb, IL 60115 USA.
C3 Northern Illinois University
RP Shahzad, M (corresponding author), Northern Illinois Univ, De Kalb, IL 60115 USA.
EM msyed1@niu.edu; alhoori@niu.edu; freedman@cs.niu.edu; ashaikh2@niu.edu
RI Alhoori, Hamed/B-8106-2009
OI Alhoori, Hamed/0000-0002-4733-6586; Freedman, Reva/0000-0002-0823-6961;
Syed, Mohammed Murtuza Shahzad/0000-0001-7630-1617
FU NSF [2022443]; SBE Off Of Multidisciplinary Activities; Direct For
Social, Behav & Economic Scie [2022443] Funding Source: National Science
Foundation
FX This work is supported in part by NSF Grant No. 2022443.
CR Abramo G., 2020, KNOWLEDGE SPILLOVERS
Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
Adie E, 2013, LEARN PUBL, V26, P11, DOI 10.1087/20130103
Ahmed T, 2004, SCIENTOMETRICS, V61, P147, DOI 10.1023/B:SCIE.0000041645.60907.57
Akella AP, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2020.101128
Alhoori H, 2019, INT J DIGIT LIBRARIE, V20, P369, DOI 10.1007/s00799-018-0255-9
Allen HG, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068914
[Anonymous], CITATION ANAL RES EV
AVRAMESCU A, 1979, J AM SOC INFORM SCI, V30, P296, DOI 10.1002/asi.4630300509
Azoulay P, 2018, SCIENCE, V361, P1194, DOI 10.1126/science.aav2484
Barnes Barry., 1996, Scientific Knowledge: A Sociological Analysis
Barnett GA, 2008, J AM SOC INF SCI TEC, V59, P526, DOI 10.1002/asi.20706
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Bornmann L, 2013, J AM SOC INF SCI TEC, V64, P217, DOI 10.1002/asi.22803
Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112
Bouabid H, 2013, SCIENTOMETRICS, V97, P695, DOI 10.1007/s11192-013-0995-7
BOXENBAUM H, 1984, INT J PHARM, V21, P135, DOI 10.1016/0378-5173(84)90088-7
Bozeman B, 2000, RES POLICY, V29, P627, DOI 10.1016/S0048-7333(99)00093-1
Bu Y, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102300
Cortex, 2001, CORTEX, V37, P575
CUNNINGHAM SJ, 1995, SCIENTOMETRICS, V34, P255, DOI 10.1007/BF02020423
Das A. K., 2014, ARXIV PREPRINT ARXIV
Datta Subhajit, 2016, IEEE Transactions on Big Data, V2, P124, DOI 10.1109/TBDATA.2016.2580541
Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2388, DOI 10.1002/asi.21190
EGGHE L, 1995, SCIENTOMETRICS, V34, P285, DOI 10.1007/BF02020425
EGGHE L, 1993, SCIENTOMETRICS, V27, P195, DOI 10.1007/BF02016550
EGGHE L, 1994, INFORM PROCESS MANAG, V30, P279, DOI 10.1016/0306-4573(94)90070-1
Fausto S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050109
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Freeman Cole, 2020, Proceedings of the ACM on Human-Computer Interaction, V4, DOI 10.1145/3375192
Freeman C, 2019, ACM-IEEE J CONF DIG, P301, DOI 10.1109/JCDL.2019.00050
Gupta BM, 1998, SCIENTOMETRICS, V42, P335, DOI 10.1007/BF02458376
Huntington P, 2006, J AM SOC INF SCI TEC, V57, P1840, DOI 10.1002/asi.20383
KOHUT JJ, 1974, J AM SOC INFORM SCI, V25, P242, DOI 10.1002/asi.4630250407
Kousha K, 2008, J AM SOC INF SCI TEC, V59, P2060, DOI 10.1002/asi.20920
Kousha K, 2016, J ASSOC INF SCI TECH, V67, P2993, DOI 10.1002/asi.23542
Larivière V, 2008, J AM SOC INF SCI TEC, V59, P288, DOI 10.1002/asi.20744
Liang GQ, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101053
Lima H, 2013, ACM-IEEE J CONF DIG, P97
LINE MB, 1974, J DOC, V30, P283, DOI 10.1108/eb026583
Luc JGY, 2021, ANN THORAC SURG, V111, P296, DOI 10.1016/j.athoracsur.2020.04.065
MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
Martín-Martín A, 2016, SCIENTOMETRICS, V107, P1477, DOI 10.1007/s11192-016-1917-2
McKeown K, 2016, J ASSOC INF SCI TECH, V67, P2684, DOI 10.1002/asi.23612
Melero R, 2015, BIOCHEM MEDICA, V25, P152, DOI 10.11613/BM.2015.016
Mohammadi E, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102230
Neylon C, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000242
OPPENHEIM C, 1978, J AM SOC INFORM SCI, V29, P225, DOI 10.1002/asi.4630290504
Patel A, 2016, BRIT J GEN PRACT, V66, pE59, DOI 10.3399/bjgp16X683353
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Penfield T, 2014, RES EVALUAT, V23, P21, DOI 10.1093/reseval/rvt021
Piwowar H., 2013, Bull Am Soc Inf Sci Technol., V39, P8, DOI [10.1002/bult.2013.1720390404, DOI 10.1002/BULT.2013.1720390404]
Priem J., 2010, First Monday.
Priem J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048753
Samuel GN, 2015, RES EVALUAT, V24, P229, DOI 10.1093/reseval/rvv007
Sangam SL, 1999, SCIENTOMETRICS, V44, P33, DOI 10.1007/BF02458476
Savov P, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102168
SEGLEN PO, 1992, J AM SOC INFORM SCI, V43, P628, DOI 10.1002/(SICI)1097-4571(199210)43:9<628::AID-ASI5>3.0.CO;2-0
Seglen PO, 1997, BRIT MED J, V314, P498
Sember M, 2017, MALAYS J LIBR INF SC, V22, P15, DOI 10.22452/mjlis.vol22no1.2
Shahzad M, 2022, J DATA INFO SCI, V7, P97, DOI 10.2478/jdis-2022-0003
Shaikh AR, 2019, ACM-IEEE J CONF DIG, P400, DOI 10.1109/JCDL.2019.00089
Sikdar S, 2017, ACM-IEEE J CONF DIG, P179
Singh M, 2017, ACM-IEEE J CONF DIG, P59
Siravuri HV, 2018, ACM-IEEE J CONF DIG, P385, DOI 10.1145/3197026.3203890
Stacey AG, 2021, SCIENTOMETRICS, V126, P619, DOI 10.1007/s11192-020-03761-6
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Stern DI, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112520
STINSON ER, 1987, J INFORM SCI, V13, P65, DOI 10.1177/016555158701300201
Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833
Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008
Thelwall M, 2015, PROF INFORM, V24, P587, DOI 10.3145/epi.2015.sep.08
Thorndike RL, 1953, Psychometrika, V18, P267, DOI [10.1007/BF02289263, DOI 10.1007/BF02289263]
Tonia T, 2016, INT J PUBLIC HEALTH, V61, P513, DOI 10.1007/s00038-016-0831-y
Tsay MY, 2006, INFORM PROCESS MANAG, V42, P1567, DOI 10.1016/j.ipm.2006.03.020
Wallace ML, 2009, J INFORMETR, V3, P296, DOI 10.1016/j.joi.2009.03.010
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
Wang X, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101019
WATSON JD, 1953, NATURE, V171, P737, DOI 10.1038/171737a0
Wouters P, 2019, SPRINGER HBK, P687, DOI 10.1007/978-3-030-02511-3_26
NR 81
TC 3
Z9 5
U1 3
U2 31
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD MAY
PY 2022
VL 16
IS 2
AR 101288
DI 10.1016/j.joi.2022.101288
EA APR 2022
PG 16
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 2S3GW
UT WOS:000821684900008
OA Green Submitted
DA 2024-09-05
ER
PT C
AU Yang, H
Ji, CJ
Wu, QY
AF Yang, Hua
Ji, Chao-jun
Wu, Qiao-yun
BE Qi, E
Shen, J
Dou, R
TI Research on Risk Assessment of the Equipment Maintenance Contractor
Support
SO 19TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING
MANAGEMENT: MANAGEMENT SYSTEM INNOVATION
LA English
DT Proceedings Paper
CT 19th International Conference on Industrial Engineering and Engineering
Management
CY OCT 27-29, 2012
CL Changsha, PEOPLES R CHINA
DE Bayesian networks; Contractor support; Equipment maintenance; Risk
identification; Risk assessment
AB With regard to many uncertain factors which the process of military equipment maintenance support undertaken by contractors exists, this paper focuses on analysis and assessment of contractor support risks. Firstly, the whole procedure of the contractor support is formal described. Eight risk factors are identified through three aspects, including the army, the contractor, and both concerned parties. Secondly, a Bayesian Network diagram of these risk factors is constructed. Through an example, it has demonstrated the forward reasoning process of equipment maintenance contractor support risks, with using Bayesian Networks rational arithmetic. In order to control the most influencing risk factors, the sensitivity of different risk factors is finally analyzed. This method to identify, classify, and assess risks is useful for the army to prevent risks from occurring.
C1 [Yang, Hua; Ji, Chao-jun; Wu, Qiao-yun] Univ Mil Transportat, Dept Equipment Support, Tianjin, Peoples R China.
RP Yang, H (corresponding author), Univ Mil Transportat, Dept Equipment Support, Tianjin, Peoples R China.
EM liuzesheng_1999@sina.com
CR Al-Sobiei OS, 2005, CONSTR MANAG ECON, V23, P423, DOI 10.1080/01446190500041578
Anisur R, 2010, P 2010 INT C IND ENG, P9
Bao Qiang, 2010, Journal of the Academy of Equipment Command & Technology, V21, P31, DOI 10.3783/j.issn.1673-0127.2010.01.008
Bertolini M., 2004, International Journal of Quality Reliability Management, V21, P772, DOI [10.1108/02656710410549118, DOI 10.1108/02656710410549118]
Cai Liying, 2011, Journal of the Academy of Equipment Command & Technology, V22, P24, DOI 10.3783/j.issn.1673-0127.2011.02.006
Gao PW, 2009, EUR J OPER RES, V192, P975, DOI 10.1016/j.ejor.2007.10.010
Ke Feng, 2011, ORDANCE IND AUTOMATI, V29, P23
Kumar R., 2004, INT J SURFACE MINING, V18, P299
Levery M., 1998, Engineering Management Journal, V8, P34, DOI 10.1049/em:19980111
Mak S, 2000, J CONSTR ENG M ASCE, V126, P130, DOI 10.1061/(ASCE)0733-9364(2000)126:2(130)
Mohammad A. M., 1991, IEEE T ENG MANAGE, V38, P46
[叶跃祥 YE Yuexiang], 2007, [系统工程理论与实践, Systems Engineering-Theory & Practice], V27, P107
Zavadskas EK, 2010, J CIV ENG MANAG, V16, P33, DOI 10.3846/jcem.2010.03
Zhang HM, 2011, J ACAD EQUIP COMMAND, V22, P37
Zhang Hongmei, 2010, Journal of the Academy of Equipment Command & Technology, V21, P37, DOI 10.3783/j.issn.1673-0127.2010.05.009
NR 15
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
BN 978-3-642-38427-1; 978-3-642-38426-4
PY 2013
BP 1035
EP 1045
DI 10.1007/978-3-642-38427-1_109
PG 11
WC Management; Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics; Operations Research & Management Science
GA BG8UK
UT WOS:000392719200109
DA 2024-09-05
ER
PT J
AU Brown, P
Brody, JG
Morello-Frosch, R
Tovar, J
Zota, AR
Rudel, RA
AF Brown, Phil
Brody, Julia Green
Morello-Frosch, Rachel
Tovar, Jessica
Zota, Ami R.
Rudel, Ruthann A.
TI Measuring the Success of Community Science: The Northern California
Household Exposure Study
SO ENVIRONMENTAL HEALTH PERSPECTIVES
LA English
DT Article
DE breast cancer; community-based participatory research; environmental
justice; evaluation metrics; exposure science
ID ENDOCRINE-DISRUPTING COMPOUNDS; BREAST-CANCER; PARTICIPATORY RESEARCH;
AIR; EXPERIENCE; INDOOR; DUST
AB BACKGROUND: Environmental health research involving community participation has increased substantially since the National Institute of Environmental Health Sciences (NIEHS) environmental justice and community-based participatory research (CBPR) partnerships began in the mid-1990s. The goals of these partnerships are to inform and empower better decisions about exposures, foster trust, and generate scientific knowledge to reduce environmental health disparities in low-income, minority communities. Peer-reviewed publication and clinical health outcomes alone are inadequate criteria to judge the success of projects in meeting these goals; therefore, new strategies for evaluating success are needed.
OBJECTIVES: We reviewed the methods used to evaluate our project, "Linking Breast Cancer Advocacy and Environmental Justice," to help identify successful CBPR methods and to assist other teams in documenting effectiveness. Although our project precedes the development of the NIEHS Evaluation Metrics Manual, a schema to evaluate the success of projects funded through the Partnerships in Environmental Public Health (PEPH), our work reported here illustrates the record keeping and self-reflection anticipated in NIEHS's PEPH.
DISCUSSION: Evaluation strategies should assess how CBPR partnerships meet the goals of all partners. Our partnership, which included two strong community-based organizations, produced a team that helped all partners gain organizational capacity. Environmental sampling in homes and reporting the results of that effort had community education and constituency-building benefits. Scientific results contributed to a court decision that required cumulative impact assessment for an oil refinery and to new policies for chemicals used in consumer products. All partners leveraged additional funding to extend their work.
CONCLUSIONS: An appropriate evaluation strategy can demonstrate how CBPR projects can advance science, support community empowerment, increase environmental health literacy, and generate individual and policy action to protect health.
C1 [Brown, Phil] Brown Univ, Dept Sociol, Providence, RI 02912 USA.
[Brown, Phil] Brown Univ, Ctr Environm Studies, Providence, RI 02912 USA.
[Brody, Julia Green; Rudel, Ruthann A.] Silent Spring Inst, Newton, MA USA.
[Morello-Frosch, Rachel] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA.
[Morello-Frosch, Rachel] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA.
[Tovar, Jessica] Commun Better Environm, Oakland, CA USA.
[Zota, Ami R.] Univ Calif San Francisco, Program Reprod Hlth & Environm, Oakland, CA USA.
C3 Brown University; Brown University; University of California System;
University of California Berkeley; University of California System;
University of California Berkeley; University of California System;
University of California San Francisco
RP Brown, P (corresponding author), Brown Univ, Dept Sociol, Box 1916, Providence, RI 02912 USA.
EM phil_brown@brown.edu
RI Rudel, Ruthann/AAJ-5956-2021
OI Rudel, Ruthann/0000-0002-1809-4127; Zota, Ami/0000-0003-0710-354X;
Newman, Gregory/0000-0003-0503-5782; Morello-Frosch,
Rachel/0000-0003-1153-7287
FU National Institute of Environmental Health Sciences [R25 ES013258];
National Science Foundation [SES 0450837]; breast cancer organizations
FX This research was supported by the National Institute of Environmental
Health Sciences (R25 ES013258) and the National Science Foundation (SES
0450837). J.G.B. and R.A.R. are employed at Silent Spring Institute, a
scientific research organization dedicated to studying environmental
factors in women's health. The institute is a 501(c)(3) public charity
funded by federal grants and contracts, foundation grants, and private
donations, including from breast cancer organizations. J.T. is employed
by Communities for a Better Environment, Oakland, CA.
CR Adams C, 2011, J HEALTH SOC BEHAV, V52, P180, DOI 10.1177/0022146510395593
Altman RG, 2008, J HEALTH SOC BEHAV, V49, P417, DOI 10.1177/002214650804900404
[Anonymous], NAT AMB AIR QUAL STA
[Anonymous], 2005, 10 WAYS RED YOUR EXP
Baron Sherry, 2009, Am J Public Health, V99 Suppl 3, pS517, DOI 10.2105/AJPH.2009.174557
Brody JG, 2007, AM J PUBLIC HEALTH, V97, P1547, DOI 10.2105/AJPH.2006.094813
Brody Julia Green, 2009, Am J Public Health, V99 Suppl 3, pS600, DOI 10.2105/AJPH.2008.149088
Brown P, 2006, SCI TECHNOL HUM VAL, V31, P499, DOI 10.1177/0162243906289610
Brown P, 2010, ENVIRON HEALTH-GLOB, V9, DOI 10.1186/1476-069X-9-39
California Environmental Protection Agency, 2011, CAL AMB AIR QUAL STA
CBE (Communities for a Better Environment), 2008, CUM IMP E OAKL FIND
City of Richmond, 2008, NOT AV FIN ENV IMP R
City of Richmond, 2011, PLANN BUILD SERV
Cohen A, 2012, HEALTH EDUC BEHAV, V39, P198, DOI 10.1177/1090198111412591
Consumer Federation of California, 2009, FIGHT PROT CHILDR TO
Curtis K, 2007, IS IT US CHEM CONT O
Drew CH, 2010, DRAFT PARTN ENV PUBL
Israel BA, 1998, ANNU REV PUBL HEALTH, V19, P173, DOI 10.1146/annurev.publhealth.19.1.173
McCormick S, 2004, INT J HEALTH SERV, V34, P625, DOI 10.2190/HPXB-9RK8-ETVM-RVEA
McCormick S, 2003, SOCIOL FORUM, V18, P545, DOI 10.1023/B:SOFO.0000003003.00251.2f
Minkler M, 2008, HEALTH EDUC BEHAV, V35, P119, DOI 10.1177/1090198106287692
Morello-Frosch R, 2009, ENVIRON HEALTH-GLOB, V8, DOI 10.1186/1476-069X-8-6
O'Fallon LR, 2002, ENVIRON HEALTH PERSP, V110, P155, DOI 10.1289/ehp.02110s2155
Our Blog: News from the Frontlines, 2011, LA POISED DEAL HIDD
Rhode Island Department of Environmental Management, 2009, POL CONS ENV JUST RE
Rier DavidA., 2010, NEW BLACKWELL COMPAN, P163
Rudel RA, 2003, ENVIRON SCI TECHNOL, V37, P4543, DOI 10.1021/es0264596
Rudel RA, 2010, ENVIRON SCI TECHNOL, V44, P6583, DOI 10.1021/es100159c
Rudel RA, 2008, ENVIRON HEALTH-GLOB, V7, DOI 10.1186/1476-069X-7-2
Silent Spring Institute, 2011, HOUS EXP STUD
Silent Spring Institute, 2011, HOUS EXP STUD RICHM
State of California, 1970, CAL ENV QUAL ACT CEQ
State of California, 2000, REQ TEST PROC APP TE
Titmuss R., 1972, GIFT REL HUM BLOOD S
United States' Environmental Protection Agency (US EPA), 1994, FED ACT ADDR ENV JUS
Wolfson M, 2010, SOCIAL MOVEMENTS DEV, P117
Zota AR, 2008, ENVIRON SCI TECHNOL, V42, P8158, DOI 10.1021/es801792z
NR 37
TC 65
Z9 71
U1 1
U2 57
PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
PI RES TRIANGLE PK
PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233,
RES TRIANGLE PK, NC 27709-2233 USA
SN 0091-6765
EI 1552-9924
J9 ENVIRON HEALTH PERSP
JI Environ. Health Perspect.
PD MAR
PY 2012
VL 120
IS 3
BP 326
EP 331
DI 10.1289/ehp.1103734
PG 6
WC Environmental Sciences; Public, Environmental & Occupational Health;
Toxicology
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Toxicology
GA 907CF
UT WOS:000301394700017
PM 22147336
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Muthusi, J
Mwalili, S
Young, P
AF Muthusi, Jacques
Mwalili, Samuel
Young, Peter
TI %svy_logistic_regression: A generic SAS macro for
simple and multiple logistic regression and creating quality
publication-ready tables using survey or non-survey data
SO PLOS ONE
LA English
DT Article
ID REPRODUCIBLE RESEARCH; HIV; MEN; SEX
AB Introduction
Reproducible research is increasingly gaining interest in the research community. Automating the production of research manuscript tables from statistical software can help increase the reproducibility of findings. Logistic regression is used in studying disease prevalence and associated factors in epidemiological studies and can be easily performed using widely available software including SAS, SUDAAN, Stata or R. However, output from these software must be processed further to make it readily presentable. There exists a number of procedures developed to organize regression output, though many of them suffer limitations of flexibility, complexity, lack of validation checks for input parameters, as well as inability to incorporate survey design.
Methods
We developed a SAS macro, % svy_logistic_regression, for fitting simple and multiple logistic regression models. The macro also creates quality publication-ready tables using survey or non-survey data which aims to increase transparency of data analyses. It further significantly reduces turn-around time for conducting analysis and preparing output tables while also addressing the limitations of existing procedures. In addition, the macro allows for user-specific actions to handle missing data as well as use of replication-based variance estimation methods.
Results
We demonstrate the use of the macro in the analysis of the 2013-2014 National Health and Nutrition Examination Survey (NHANES), a complex survey designed to assess the health and nutritional status of adults and children in the United States. The output presented here is directly from the macro and is consistent with how regression results are often presented in the epidemiological and biomedical literature, with unadjusted and adjusted model results presented side by side.
Conclusions
The SAS code presented in this macro is comprehensive, easy to follow, manipulate and to extend to other areas of interest. It can also be incorporated quickly by the statistician for immediate use. It is an especially valuable tool for generating quality, easy to review tables which can be incorporated directly in a publication.
C1 [Muthusi, Jacques; Mwalili, Samuel; Young, Peter] US Ctr Dis Control & Prevent, Div Global HIV & TB, Nairobi, Kenya.
RP Muthusi, J (corresponding author), US Ctr Dis Control & Prevent, Div Global HIV & TB, Nairobi, Kenya.
EM mwj6@cdc.gov
RI Mwalili, Samuel/AAV-6758-2020; Muthusi, Jacques/ABB-1863-2021
OI Mwalili, Samuel/0000-0002-9703-6514; Muthusi,
Jacques/0000-0003-4092-3486
FU President's Emergency Plan for AIDS Relief (PEPFAR) through the U.S.
Centers for Disease Control and Prevention (CDC)
FX This work was supported by the President's Emergency Plan for AIDS
Relief (PEPFAR) through the U.S. Centers for Disease Control and
Prevention (CDC). The funder had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.
CR ALTMAN DG, 1983, BRIT MED J, V286, P1489, DOI 10.1136/bmj.286.6376.1489
[Anonymous], P MIWWEST SAS US GRO
[Anonymous], 2011, Categorical data analysis
[Anonymous], 1965, Survey Sampling
[Anonymous], POL DAT SOFTW MAT MA
[Anonymous], REFORMAT STATA MODUL
[Anonymous], OP ACC POL 2017
[Anonymous], USING SAS LATEX CREA
[Anonymous], OP GOV PLAN
[Anonymous], OUTREG2 STATA MODULE
[Anonymous], SCI EDITORS HDB
[Anonymous], 2014, VITAL HLTH STAT
[Anonymous], 2015, National Health and Nutrition Examination Survey
[Anonymous], P MIDWEST SAS US GRO
[Anonymous], BAS SAS 9 3 CAR
[Anonymous], 2005, ANAL COMPLEX SURVEY
[Anonymous], 2010, Sampling: Design and Analysis
Archer KJ, 2007, COMPUT STAT DATA AN, V51, P4450, DOI 10.1016/j.csda.2006.07.006
Cherutich P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154318
Cochran WG., 2007, SAMPLING TECHNIQUES
Dhand NK, 2010, J STAT SOFTW, V35, P1
Foreman E., 1991, SURVEY SAMPLING PRIN
Hosmer W., 2000, Applied Logistic Regression, VSecond
Iqbal SA, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002333
Jann B, 2007, STATA J, V7, P227, DOI 10.1177/1536867X0700700207
Jann B, 2005, STATA J, V5, P288
Leek JT, 2015, P NATL ACAD SCI USA, V112, P1645, DOI 10.1073/pnas.1421412111
Levy P.S., 2013, SAMPLING POPULATIONS
Lumley T., 2020, J Stat Software
Moore DM, 2016, JAIDS-J ACQ IMM DEF, V72, P87, DOI 10.1097/QAI.0000000000000934
Nalá R, 2015, AIDS BEHAV, V19, P393, DOI 10.1007/s10461-014-0895-8
Oluoch T, 2016, LANCET HIV, V3, pE76, DOI 10.1016/S2352-3018(15)00242-8
Peng RD, 2006, AM J EPIDEMIOL, V163, P783, DOI 10.1093/aje/kwj093
Peng RD, 2011, SCIENCE, V334, P1226, DOI 10.1126/science.1213847
Peng RD, 2009, BIOSTATISTICS, V10, P405, DOI 10.1093/biostatistics/kxp014
SAS Institute Inc, 2011, SAS/STAT 9.3 Users Guide
Wolter K.M., 1985, INTRO VARIANCE ESTIM
NR 37
TC 2
Z9 2
U1 0
U2 13
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD SEP 3
PY 2019
VL 14
IS 9
AR e0214262
DI 10.1371/journal.pone.0214262
PG 14
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA IY3OS
UT WOS:000486302400001
PM 31479445
OA Green Published, gold, Green Submitted
DA 2024-09-05
ER
PT C
AU Tang, J
Sun, JM
Wang, C
Yang, Z
AF Tang, Jie
Sun, Jimeng
Wang, Chi
Yang, Zi
GP ACM
TI Social Influence Analysis in Large-scale Networks
SO KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA
MINING
LA English
DT Proceedings Paper
CT 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining
CY JUN 28-JUL 01, 2009
CL Paris, FRANCE
DE Social Influence Analysis; Topical Affinity Propagation; Large-scale
Network; Social Networks
AB In large social networks, nodes (users, entities) are influenced by others for various reasons. For example, the col leagues have strong influence on one's work, while the friends have strong influence on one's daily life. How to differentiate the social influences from different angles(topics)? How to quantify the strength of those social influences? How to estimate the model on real large networks?
To address these fundamental questions, we propose Topical Affinity Propagation (TAP) to model the topic-level social influence on large networks. In particular, TAP can take results of any topic modeling and the existing network structure to perform topic-level influence propagation. With the help of the influence analysis, we present several important applications on real data sets such as 1) what are the representative nodes on a given topic? 2) how to identify the social influences of neighboring nodes on a particular node?
To scale to real large networks, TAP is designed with efficient distributed learning algorithms that is implemented and tested under the Map-Reduce framework. We further present the common characteristics of distributed learning algorithms for Map-Reduce. Finally, we demonstrate the effectiveness and efficiency of TAP on real large data sets.
C1 [Tang, Jie; Wang, Chi; Yang, Zi] Tsinghua Univ, Dept Comp Sci, Beijing, Peoples R China.
C3 Tsinghua University
RP Tang, J (corresponding author), Tsinghua Univ, Dept Comp Sci, Beijing, Peoples R China.
EM jietang@tsinghau.edu.cn; jimeng@us.ibm.com; sonicive@gmail.com;
yz@keg.cs.tsinghua.edu.cn
RI tang, jie/KIE-8633-2024
OI Sun, Jimeng/0000-0003-1512-6426
CR Albert R., 2002, REV MODERN PHYS, V74, DOI arXivcond-mat/0106096v1
Anagnostopoulos A., 2008, P 14 ACM SIGKDD INT, P7, DOI [10.1145/1401890.1401897, DOI 10.1145/1401890.1401897]
[Anonymous], 2007, 16 INT C WORLD WID W
[Anonymous], P 17 INT C WORLD WID
[Anonymous], 1992, NETWORKS ORG
[Anonymous], 2009, Social Network Analysis. Methods and Applications
[Anonymous], P 18 NEUR INF PROC S
[Anonymous], P IEEE 6 C S OP SYST
[Anonymous], P IEEE INT C DAT MIN
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Buckley C., 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P25, DOI 10.1145/1008992.1009000
Crandall DavidJ., 2008, KDD, P160
CRASWELL N, 2005, TREC 2005 C NOT, P199
Das A. S., 2007, WWW
Faloutsos M, 1999, COMP COMM R, V29, P251, DOI 10.1145/316194.316229
Flake G. W., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P150, DOI 10.1145/347090.347121
FREY BJ, 2006, P 18 NEUR INF PROC S, P379
GRANOVETTER MS, 1973, AM J SOCIOL, V78, P1360, DOI 10.1086/225469
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
Kschischang FR, 2001, IEEE T INFORM THEORY, V47, P498, DOI 10.1109/18.910572
Newman MEJ, 2003, SIAM REV, V45, P167, DOI 10.1137/S003614450342480
Singla P., 2008, WWW '08, P655
Smolensky P., 1986, Parallel distributed processing: explorations in the microstructure of cognition
Strogatz SH, 2001, NATURE, V410, P268, DOI 10.1038/35065725
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Tang J, 2008, IEEE DATA MINING, P1055, DOI 10.1109/ICDM.2008.71
Welling M., 2001, P INT C ART NEUR NET, P351
NR 27
TC 546
Z9 650
U1 1
U2 26
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-60558-495-9
PY 2009
BP 807
EP 815
PG 9
WC Computer Science, Artificial Intelligence
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BLS23
UT WOS:000270922000080
DA 2024-09-05
ER
PT J
AU Mauro, DM
Ellis, JA
Lilly, JF
Dallaghan, GLB
Jordan, SG
AF Mauro, David M.
Ellis, Joshua A.
Lilly, John F., III
Dallaghan, Gary L. Beck
Jordan, Sheryl G.
TI Creating an Open-Access Educational Radiology Website for Medical
Students: A Guide for Radiology Educators
SO ACADEMIC RADIOLOGY
LA English
DT Article
DE Website; Active learning; Medical student education; Clinician educator;
Radiology
AB Rationale and objectives: Studies of medical school clerkship websites have reported efficient time management, resource utilization, and hands-on activities. We built a website devoted to medical student education in radiology to address student, educator, and school curricular needs and surveyed students to assess their satisfaction with the site. Materials and methods: The website was created using an easily-recalled name, no-cost institutional software, and no-cost enterprise-level university hardware. The main menu links to the student formal didactic lecture calendar, custom-built health sciences library e-resources in radiology, American College of Radiology Appropriateness Criteria, each radiology course page, and teaching files. Each course tab includes faculty-curated content from course lectures, supplemental articles and educational modules. At 6, 12, and 24 months, website analytics were assessed. At 12 and 24 months postimplementation, data were evaluated to include student assessment and satisfaction surveys and student course comments. This project was IRB-exempted. Results: At 6 months, the website had received 5792 views, at 12 months 10,022 views and at 24 months 19,478 views. The website homepage with the formal didactic lecture calendar received 7156 views, the general clerkship page 4233 views, the teaching file page 3884, and thereafter subspecialty pages as follows: breast 1478, body 633, pediatrics 361, neuro 346, cardiothoracic 291, musculoskele-tal 249, vascular interventional 178. One hundred fifty-two of 240 (63.3%) of students surveyed replied. Of students who utilized the web-site on the satisfaction survey, 80 of 97 (82.5%) indicated ratings of "extremely informative" and "very informative" to the question "How would you rate the website?." Students indicated convenience and structure as website strengths in their postcourse evaluations. Conclusion: The radiology medical student website incorporates demands and needs of today's students, faculty, and our medical school. A radiology clerkship website for medical students centralizes access to course resources and promotes an active learning experi-ence with high satisfaction. Instructions on setting up a website are offered to today's radiology educators, including pearls and pitfalls.
C1 [Mauro, David M.; Lilly, John F., III; Jordan, Sheryl G.] UNC Hlth, Dept Radiol, 101 Manning Dr Campus Box 7510, Chapel Hill, NC 27514 USA.
[Ellis, Joshua A.] Univ N Carolina, Sch Med, Chapel Hill, NC USA.
[Dallaghan, Gary L. Beck] Univ N Carolina, Sch Med, Dept Pediat, Chapel Hill, NC USA.
C3 University of North Carolina School of Medicine; University of North
Carolina; University of North Carolina Chapel Hill; University of North
Carolina School of Medicine; University of North Carolina; University of
North Carolina Chapel Hill
RP Mauro, DM (corresponding author), UNC Hlth, Dept Radiol, 101 Manning Dr Campus Box 7510, Chapel Hill, NC 27514 USA.
EM david_mauro@med.unc.edu
OI Ellis, Joshua/0000-0003-3284-2731; Jordan, Sheryl/0000-0002-6686-2100;
Mauro, David/0000-0003-3088-1809
CR [Anonymous], 2011, ACR appropriateness criteria
Desai NS, 2016, CURR PROBL DIAGN RAD, V45, P17, DOI 10.1067/j.cpradiol.2015.03.002
Ferenchick G, 1997, ACAD MED, V72, P277, DOI 10.1097/00001888-199704000-00011
Gill P, 2010, CLIN TEACH, V7, P53, DOI 10.1111/j.1743-498X.2009.00337.x
Hopkins L, 2018, AM J OBSTET GYNECOL, V218, P188, DOI 10.1016/j.ajog.2017.06.001
Liaison Committee on Medical Education, FUNCT STRUCT MED SCH
Ramnanan CJ, 2017, ADV MED EDUC PRACT, V8, P63, DOI 10.2147/AMEP.S109037
Scott K, 2018, CLIN TEACH, V15, P29, DOI 10.1111/tct.12630
Zafara S, 2014, EUR J RADIOL, V83, P2277, DOI 10.1016/j.ejrad.2014.08.017
NR 9
TC 8
Z9 8
U1 2
U2 4
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 1076-6332
EI 1878-4046
J9 ACAD RADIOL
JI Acad. Radiol.
PD NOV
PY 2021
VL 28
IS 11
BP 1631
EP 1636
DI 10.1016/j.acra.2020.08.021
EA NOV 2021
PG 6
WC Radiology, Nuclear Medicine & Medical Imaging
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Radiology, Nuclear Medicine & Medical Imaging
GA WZ3MU
UT WOS:000719875900018
PM 32972840
DA 2024-09-05
ER
PT J
AU Wang, CH
AF Wang, Chien-hsing
TI An Exploratory Study of Student Self-Assessment in an Online Learning
Context
SO INTERNATIONAL JOURNAL OF ONLINE PEDAGOGY AND COURSE DESIGN
LA English
DT Article
DE Action Research; Classroom Management; Self-Assessment; Student
Reflection; Teacher Education
ID HIGHER-EDUCATION
AB This paper reports the investigation of the application of self-assessment in an online learning setting based on action research. The reset:irk participants were students who completed their self-assessment when taking the course on Classroom Management taught by the teacher researcher. Although the analytic results show the lack of critical reflection in student self-assessment, the teacher researcher learned the following lessons: a) self-assessment helps the students to articulate their learning results in specific; (b) self-assessment can be a means to cultivate students' abilities in information-integration; (c) using multiple evaluative tools for assessing self-assessment is recommended to better describe the levels of student reflection; and (d) effective and efficient implementation of self-assessment requires a redesigning of the learning management system. Finally, further research can focus on the possibility of promoting the level of student reflection by encouraging students to use evaluative tools to assess their self-assessment.
C1 [Wang, Chien-hsing] Natl Changhua Univ Educ, Grad Inst Educ, Changhua, Taiwan.
C3 National Changhua University of Education
RP Wang, CH (corresponding author), Natl Changhua Univ Educ, Grad Inst Educ, Changhua, Taiwan.
CR Anderson T., 2001, Journal of Asynchronous Learning Networks, V5, P1, DOI [10.24059/olj.v5i2.1875, DOI 10.24059/OLJ.V5I2.1875]
ANGELO TA, 1995, TEACH PSYCHOL, V22, P6, DOI 10.1207/s15328023top2201_1
[Anonymous], STRATEGY TRAINING DE
[Anonymous], 2006, J ASYNCHRONOUS LEARN, DOI DOI 10.24059/OLJ.V10I1.1770
[Anonymous], ASSESSMENT VERSUS EV
[Anonymous], ASSESSMENT VERSUS EV
[Anonymous], SIGNAL
Barab SA, 2003, INFORM SOC, V19, P197, DOI 10.1080/01972240309467
Bednar A.K., 1992, Constructivism and the technology of instruction, P17
Beebe R, 2010, ELECTRON J E-LEARN, V8, P1
Benson A.D., 2003, NEW DIRECTIONS ADULT, V100, P69
Bleakley A., 2000, TEACHING HIGHER ED, V5, P405, DOI DOI 10.1080/713699179
Brown J.S., 1989, Educational Researcher, V18, P32, DOI 10.3102/0013189x018001032
Clark R., 2003, eLearning and the science of instruction
Dochy F, 1999, STUD HIGH EDUC, V24, P331, DOI 10.1080/03075079912331379935
Ducate LC, 2008, COMPUT ASSIST LANG L, V21, P9, DOI 10.1080/09588220701865474
Fischer C., 1995, AUTHENTIC ASSESSMENT
Fourie I., 2001, Education for Information, V19, P107
Fund Z., 2002, Assessment Evaluation in Higher Education, V27, P485, DOI DOI 10.1080/0260293022000020264
Gale K., 2002, ASSESS EVAL HIGH EDU, V27, P557, DOI DOI 10.1080/0260293022000020318
Gersh S. O., 2001, Multimedia Schools, V8, P48
Griffin M.L., 2003, Reflective Practice, V4, P207, DOI [DOI 10.1080/14623940308274, 10.1080/14623940308274]
Hanna D., 2000, 147 PRACTICAL TIPS T
HATTON N, 1995, TEACH TEACH EDUC, V11, P33, DOI 10.1016/0742-051X(94)00012-U
Huba M.E., 2000, LEARNER CTR ASSESSME
Kearsley G., 2000, Online education: Learning and teaching in cyberspace
Kling R, 2003, INFORM SOC, V19, P221, DOI 10.1080/01972240390210055
Kochtanek TR, 2000, ONLINE INFORM REV, V24, P280, DOI 10.1108/14684520010350632
Kuiper RA, 2004, J ADV NURS, V45, P381, DOI 10.1046/j.1365-2648.2003.02921.x
Lave J., 1991, Situated learning: Legitimate peripheral participation
Li Q, 2005, TECHTRENDS, V49, P51, DOI 10.1007/BF02824111
Palloff R., 1999, BUILDING LEARNING CO
Palloff R.M., 2001, LESSONS CYBERSPACE C
Pilkington R, 2004, J COMPUT ASSIST LEAR, V20, P161, DOI 10.1111/j.1365-2729.2004.00080.x
Reeves TC, 2000, J EDUC COMPUT RES, V23, P101, DOI 10.2190/GYMQ-78FA-WMTX-J06C
Ross JA, 2008, ASSESS EDUC, V15, P183, DOI 10.1080/09695940802164218
Schwen TM, 2003, INFORM SOC, V19, P257, DOI [10.1080/01972240390210073, 10.1080/01972240309462]
Shrivastava P., 1999, J MANAG EDUC, V23, P691, DOI DOI 10.1177/105256299902300607
Smith S., 2001, J SPECIAL ED TECHNOL, V16, P55
Speck B.W., 2002, NEW DIRECTIONS TEACH, V91, P5, DOI DOI 10.1002/TL.61
Taras M., 2002, Assessment Evaluation in Higher Education, V27, P501, DOI DOI 10.1080/0260293022000020273
Tu C.-H., 2001, DISTANCE EDUC, V22, P245
Vonderwell S, 2007, J RES TECHNOL EDUC, V39, P309, DOI 10.1080/15391523.2007.10782485
Wang CH, 2004, ED-MEDIA 2004: World Conference on Educational Multimedia, Hypermedia & Telecommunications, Vols. 1-7, P5495
Wang F.-K., 2001, J ASYNCHRONOUS LEARN, V5, P131
White KW., 2000, The online teaching guide: A handbook of attitudes, strategies, and techniques for the virtual classroom
Wilson B., 1999, Situated cognition in theoretical and practical context. From
Ziegahn L., 2001, DISTANCE EDUC, V22, P144
NR 48
TC 1
Z9 1
U1 0
U2 2
PU IGI GLOBAL
PI HERSHEY
PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA
SN 2155-6873
EI 2155-6881
J9 INT J ONLINE PEDAGOG
JI Int. J. Online Pedagog. Course Des.
PD OCT-DEC
PY 2011
VL 1
IS 4
BP 50
EP 61
DI 10.4018/ijopcd.2011100104
PG 12
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA VF9OZ
UT WOS:000444154700004
DA 2024-09-05
ER
PT J
AU Dalavi, AM
Gomes, A
Husain, AJ
AF Dalavi, Amol M.
Gomes, Alyssa
Husain, Aaliya Javed
TI Bibliometric analysis of nature inspired optimization techniques
SO COMPUTERS & INDUSTRIAL ENGINEERING
LA English
DT Article
DE Nature inspired optimization algorithms; Optimization; Bibliometric
analysis; Citation analysis; Evolutionary algorithms; Bio-inspired
algorithms
ID SEARCH ALGORITHM; EVOLUTIONARY ALGORITHM; HEURISTIC OPTIMIZATION; GLOBAL
OPTIMIZATION; GENETIC ALGORITHMS; DESIGN; BEHAVIOR; SCOPUS
AB Nature-inspired optimization has gained immense popularity over the past six decades and has been extensively used across various disciplines. This paper aims to statistically evaluate the impact and importance of natureinspired optimization by presenting an analysis of works published between 2016 and 2020. The data is obtained from Scopus and focuses on metrics like the total number of publications, citations, average citations per publication, and the h-index. Graphical and statistical analysis was carried out using Excel, Python, RAWGraphs, and Tableau Public. All the data in the present work was accessed on 11th August 2021. A total of 91,507 publications were analysed. China, India, and the US are the highest contributors with 27045, 12129, and 8947 publications respectively. The Ministry of Education China has contributed the most to this field, followed by the Chinese Academy of Sciences. The National Natural Science Foundation of China has funded the highest number of works (14.72% publications). Zhang M. is the most productive author with 224 publications. Lecture Notes in Computer Science, Advances in Intelligent Systems and Computing, and IEEE Access are the most productive journals. The top disciplines contributing to research include Computer Science (55.22%), Engineering (48.06%), and Mathematics (27.30%), and the top application areas include optimization, artificial intelligence, and decision sciences. The most popular algorithms include Genetic Algorithms, Simulated Annealing, and Particle Swarm Optimization. This data could prove beneficial to scholars looking for an overview of nature-inspired algorithms to determine future research directions.
C1 [Dalavi, Amol M.; Gomes, Alyssa; Husain, Aaliya Javed] Symbiosis Int Univ, Symbiosis Inst Technol, Dept Mech Engn, Pune 412115, India.
C3 Symbiosis International University; Symbiosis Institute of Technology
(SIT)
RP Dalavi, AM (corresponding author), Symbiosis Int Univ, Symbiosis Inst Technol, Dept Mech Engn, Pune 412115, India.
EM amol.dalavi@sitpune.edu.in
RI Gomes, Alyssa/HKV-2935-2023
OI Gomes, Alyssa/0000-0002-1711-7999
CR Adorio EP, 2005, MVF-multivariate test functions library in C for unconstrained global optimization
Ali AF, 2016, STUD COMPUT INTELL, V651, P431, DOI 10.1007/978-3-319-33793-7_19
[Anonymous], 2014, International Journal of Computer Applications, DOI DOI 10.5120/17593-8331
[Anonymous], 2021, POPULATION COUNTRY 2
[Anonymous], 2005, Advanced OR and AI Methods in Transportation
Atashpaz-Gargari E, 2007, IEEE C EVOL COMPUTAT, P4661, DOI 10.1109/cec.2007.4425083
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Bandyopadhyay S, 2008, IEEE T EVOLUT COMPUT, V12, P269, DOI 10.1109/TEVC.2007.900837
Bar-Ilan J., 2018, Front Res Metr Anal, V3, P6, DOI DOI 10.3389/FRMA.2018.00006
BASKARAN A, 2015, INT J APPL ENG RES, V10, P19313
Bastos CJA, 2008, IEEE SYS MAN CYBERN, P2645
Bhuvaneswari M., 2014, INT J EMERGING TECHN, V12, P976
BISHOP JM, 1989, IEE CONF PUBL, P329
Bongale A, 2021, LIB PHILOS PRACTICE
Bongale A. M, 2020, LIB PHILOS PRACTICE
Braik MS, 2021, EXPERT SYST APPL, V174, DOI 10.1016/j.eswa.2021.114685
Camp CV, 2004, J STRUCT ENG, V130, P741, DOI 10.1061/(ASCE)0733-9445(2004)130:5(741)
Chai ZJ, 2019, IOP CONF SER-MAT SCI, V646, DOI 10.1088/1757-899X/646/1/012040
Chen LJ, 2019, HEALTH CARE MANAG SC, V22, P304, DOI 10.1007/s10729-018-9438-6
Cheng MY, 2014, ENG APPL ARTIF INTEL, V29, P104, DOI 10.1016/j.engappai.2013.11.014
Civicioglu P, 2013, INFORM SCIENCES, V229, P58, DOI 10.1016/j.ins.2012.11.013
Civicioglu P, 2012, COMPUT GEOSCI-UK, V46, P229, DOI 10.1016/j.cageo.2011.12.011
Coelho LDS, 2008, EXPERT SYST APPL, V34, P1905, DOI 10.1016/j.eswa.2007.02.002
Coelho LD, 2010, EXPERT SYST APPL, V37, P1676, DOI 10.1016/j.eswa.2009.06.044
Coelho LD, 2009, CHAOS SOLITON FRACT, V39, P510, DOI 10.1016/j.chaos.2007.01.093
Cuevas E, 2015, INT J BIO-INSPIR COM, V7, P402, DOI 10.1504/IJBIC.2015.073178
Cuevas E, 2014, APPL INTELL, V40, P256, DOI 10.1007/s10489-013-0458-0
Cuevas E, 2014, EXPERT SYST APPL, V41, P412, DOI 10.1016/j.eswa.2013.07.067
Cuevas E, 2013, EXPERT SYST APPL, V40, P6374, DOI 10.1016/j.eswa.2013.05.041
Cuevas E, 2013, APPL SOFT COMPUT, V13, P3047, DOI 10.1016/j.asoc.2012.09.020
Cuevas E, 2012, INFORM SCIENCES, V182, P40, DOI 10.1016/j.ins.2010.12.024
Dahlman C. J, 2007, ISSUES SCI TECHNOL
Dao SD, 2017, COMPUT IND ENG, V110, P395, DOI 10.1016/j.cie.2017.06.009
Darvishpoor S., NATURE INSPIRED OPTI
Darwish Ashraf, 2018, Future Computing and Informatics Journal, V3, P231, DOI 10.1016/j.fcij.2018.06.001
Dash R, 2021, J KING SAUD UNIV-COM, V33, P195, DOI 10.1016/j.jksuci.2018.02.013
Segundo EHD, 2019, APPL THERM ENG, V156, P119, DOI 10.1016/j.applthermaleng.2019.04.038
Deb K, 2002, EVOL COMPUT, V10, P371, DOI 10.1162/106365602760972767
Deb K, 2001, LECT NOTES COMPUT SC, V1993, P67
Deb K, 2002, IEEE T EVOLUT COMPUT, V6, P182, DOI 10.1109/4235.996017
Deb K., 1994, SIMULATED BINARY CRO
Deb K, 2008, EUR J OPER RES, V185, P1062, DOI 10.1016/j.ejor.2006.06.042
Dehghani M, 2022, IEEE ACCESS, V10, P19599, DOI 10.1109/ACCESS.2022.3151641
Dehghani M, 2021, IEEE ACCESS, V9, P162059, DOI 10.1109/ACCESS.2021.3133286
Del Ser J, 2019, SWARM EVOL COMPUT, V48, P220, DOI 10.1016/j.swevo.2019.04.008
Deng GF, 2012, EXPERT SYST APPL, V39, P6229, DOI 10.1016/j.eswa.2011.12.001
Derigs U., 2009, OPTIMIZATION OPERATI, V4
Dhiman G, 2019, ENG APPL ARTIF INTEL, V82, P148, DOI 10.1016/j.engappai.2019.03.021
Dhiman G, 2019, KNOWL-BASED SYST, V165, P169, DOI 10.1016/j.knosys.2018.11.024
Dhiman G, 2018, KNOWL-BASED SYST, V159, P20, DOI 10.1016/j.knosys.2018.06.001
Dhiman G, 2017, ADV ENG SOFTW, V114, P48, DOI 10.1016/j.advengsoft.2017.05.014
Díaz P, 2018, ENERGIES, V11, DOI 10.3390/en11030571
Dorigo M, 1999, ARTIF LIFE, V5, P137, DOI 10.1162/106454699568728
Dorigo M., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1470, DOI 10.1109/CEC.1999.782657
Dorigo M., 1992, Ph.D. thesis, DOI DOI 10.1002/9780470549070
Emami H, 2022, ENG COMPUT-GERMANY, V38, P3191, DOI 10.1007/s00366-021-01460-1
Enriquez E. A. T., 2021, ARXIV PREPRINT ARXIV
Eusuff M, 2006, ENG OPTIMIZ, V38, P129, DOI 10.1080/03052150500384759
Eusuff MM, 2003, J WATER RES PLAN MAN, V129, P210, DOI 10.1061/(ASCE)0733-9496(2003)129:3(210)
Ezugwu AE, 2021, ARTIF INTELL REV, V54, P4237, DOI 10.1007/s10462-020-09952-0
Fadafen M. K., 2021, TURKISH J COMPUTER M, V12
Faris H, 2016, PROCEEDINGS OF THE 8TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, VOL 1: ECTA, P171, DOI 10.5220/0006048201710177
Ferreira C., 2001, Complex Systems, V13, P87
Fister Iztok, 2021, GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference Companion, P71, DOI 10.1145/3449726.3459413
Fister I, 2015, ADAPT LEARN OPTIM, V18, P3, DOI 10.1007/978-3-319-14400-9_1
Fister I, 2013, ELEKTROTEH VESTN, V80, P116
Geem ZW, 2001, SIMULATION, V76, P60, DOI 10.1177/003754970107600201
Gopalakrishnan SK, 2020, IET RENEW POWER GEN, V14, P1471, DOI 10.1049/iet-rpg.2019.0936
Gupta S, 2021, ENG COMPUT-GERMANY, V37, P1049, DOI 10.1007/s00366-019-00871-5
Halim AH, 2021, ARTIF INTELL REV, V54, P2323, DOI 10.1007/s10462-020-09906-6
Hamadicharef B, 2011, LECT NOTES ARTIF INT, V7004, P404, DOI 10.1007/978-3-642-23896-3_50
Hamdaoui F, 2013, INT J IMAG SYST TECH, V23, P265, DOI 10.1002/ima.22060
Hammed K, 2016, J SENSORS, V2016, DOI 10.1155/2016/9871826
Hedar A.R., Global optimization test problems
Hildmann H., 2019, The IoT Physical Layer: Design and Implementation, P171
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Houssein EH, 2021, STUD COMPUT INTELL, V967, P239, DOI 10.1007/978-3-030-70542-8_11
Joshi R, 2021, LIB PHILOS PRACTICE
Karakatic S, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8060900
Kashan AH, 2009, 2009 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION, P43, DOI 10.1109/SoCPaR.2009.21
Kaur Parmeet, 2022, Energy Conservation Solutions for Fog-Edge Computing Paradigms. Lecture Notes on Data Engineering and Communications Technologies (74), P49, DOI 10.1007/978-981-16-3448-2_3
Kaur S, 2020, ENG APPL ARTIF INTEL, V90, DOI 10.1016/j.engappai.2020.103541
Kaveh A, 2017, ADV ENG SOFTW, V110, P69, DOI 10.1016/j.advengsoft.2017.03.014
Kaveh A, 2017, SCI IRAN, V24, P551, DOI 10.24200/sci.2017.2417
Kaveh A, 2016, COMPUT STRUCT, V167, P69, DOI 10.1016/j.compstruc.2016.01.008
Kaveh A, 2014, COMPUT STRUCT, V139, P18, DOI 10.1016/j.compstruc.2014.04.005
Kaveh A, 2013, ADV ENG SOFTW, V59, P53, DOI 10.1016/j.advengsoft.2013.03.004
Kaveh A, 2012, COMPUT STRUCT, V112, P283, DOI 10.1016/j.compstruc.2012.09.003
Kaveh A, 2010, ACTA MECH, V213, P267, DOI 10.1007/s00707-009-0270-4
Kavlakoglu E., 2020, AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What's the Difference?
Kelley T. R, 2010, TECHNOLOGY TEACHER, V69
Kennedy J., 1995, Proceedings of ICNN'95 - International Conference on Neural Networks, V4, P1942
Khamparia A., 2021, NATURE INSPIRED OPTI
KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671
Kumar S.R., 2021, NATURE INSPIRED OPTI, V20
LaTorre A, 2021, SWARM EVOL COMPUT, V67, DOI 10.1016/j.swevo.2021.100973
Li C, 2022, INFORM SCIENCES, V586, P424, DOI 10.1016/j.ins.2021.11.043
Li H, 2020, IEEE ACCESS, V8, P72620, DOI 10.1109/ACCESS.2020.2987689
Lones M.A., 2020, SN Comput. Sci., V49, P9, DOI [10.1007/s42979-019-0050-8., DOI 10.1007/S42979-019-0050-8]
Manohar Botcha V., 2020, J CRIT REV, V7, P752, DOI [10.31838/jcr.07.04.140, DOI 10.31838/JCR.07.04.140]
Mashwani WK, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/5515701
McCullough R, 2021, ELSEVIER SCOPUS BLOG
Mirjalili S, 2017, ADV ENG SOFTW, V114, P163, DOI 10.1016/j.advengsoft.2017.07.002
Mirjalili S, 2016, ADV ENG SOFTW, V95, P51, DOI 10.1016/j.advengsoft.2016.01.008
Mirjalili S, 2016, NEURAL COMPUT APPL, V27, P1053, DOI 10.1007/s00521-015-1920-1
Mirjalili S, 2015, KNOWL-BASED SYST, V89, P228, DOI 10.1016/j.knosys.2015.07.006
Mirjalili S, 2016, NEURAL COMPUT APPL, V27, P495, DOI 10.1007/s00521-015-1870-7
Mirjalili S, 2015, ADV ENG SOFTW, V83, P80, DOI 10.1016/j.advengsoft.2015.01.010
Mirjalili S, 2014, ADV ENG SOFTW, V69, P46, DOI 10.1016/j.advengsoft.2013.12.007
Mohammadi A, 2017, ARTIF INTELL REV, V48, P237, DOI 10.1007/s10462-016-9500-z
Molina D, 2020, COGN COMPUT, V12, P897, DOI 10.1007/s12559-020-09730-8
Molina D, 2018, IEEE C EVOL COMPUTAT, P1229, DOI 10.1109/CEC.2018.8477924
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Mozaffari MH, 2016, COMPUT INFORM, V35, P222
Mozaffari MH, 2013, 2013 FIRST IRANIAN CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (PRIA)
Nandy S, 2016, BIO-INSPIRED COMPUTATION AND APPLICATIONS IN IMAGE PROCESSING, P157, DOI 10.1016/B978-0-12-804536-7.00008-9
Niu WT, 2016, MATH PROBL ENG, V2016, DOI 10.1155/2016/7912863
Odili J B., 2018, The Eurasia Proceedings of Science, Technology, Engineering Mathematics, V2, P376
Osaba E, 2021, SWARM EVOL COMPUT, V64, DOI 10.1016/j.swevo.2021.100888
Pierezan J, 2018, IEEE C EVOL COMPUTAT, P2633, DOI 10.1109/CEC.2018.8477769
Rahimi I, 2022, PROCESSES, V10, DOI 10.3390/pr10010098
Rao RV, 2020, INT J IND ENG COMP, V11, P107, DOI 10.5267/j.ijiec.2019.6.002
Rashedi E, 2009, INFORM SCIENCES, V179, P2232, DOI 10.1016/j.ins.2009.03.004
Riza L. S., METAHEURISTIC OPTIMI
Rosenstreich D., 2009, The British Accounting Review, V41, P227, DOI DOI 10.1016/J.BAR.2009.10.002
Roy PK, 2013, INT J ELEC POWER, V53, P10, DOI 10.1016/j.ijepes.2013.03.024
Rui Tang, 2012, 2012 Seventh International Conference on Digital Information Management (ICDIM 2012), P165, DOI 10.1109/ICDIM.2012.6360147
Sachan R. K., 2019, RECENT ADV COMPUTER, V14, P1706, DOI [10.2174/2666255813666191204145707, DOI 10.2174/2666255813666191204145707]
Schulte RV, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.710806
Scrucca L, 2013, J STAT SOFTW, V53, P1
Shahraki NS, 2021, KNOWL-BASED SYST, V219, DOI 10.1016/j.knosys.2021.106886
Sharma S, 2021, EVOL INTELL, V14, P1271, DOI 10.1007/s12065-019-00231-8
Singh A., 2021, Int. J. Adv. Intell. Paradig, V20, P388, DOI [10.1504/IJAIP.2021.119026, DOI 10.1504/IJAIP.2021.119026]
Singh S, 2014, SOFTWARE DESIGN DEV, P644, DOI [10.4018/978-1-4666-4301-7.ch031, DOI 10.4018/978-1-4666-4301-7.CH031]
Sinha GR, 2020, MODERN OPTIMIZATION METHODS FOR SCIENCE, ENGINEERING AND TECHNOLOGY, DOI 10.1088/978-0-7503-2404-5ch1
Sörensen K, 2015, INT T OPER RES, V22, P3, DOI 10.1111/itor.12001
Soni Vishnu, 2021, IOP Conference Series: Materials Science and Engineering, V1099, DOI 10.1088/1757-899X/1099/1/012055
Steer K. C. B., 2009, RATIONALE SEEKING IN
Storn R, 1997, J GLOBAL OPTIM, V11, P341, DOI 10.1023/A:1008202821328
Surjanovic Sonja, 2013, Virtual Library of Simulation Experiments: Test Functions and Datasets
Tamura K, 2011, J ADV COMPUT INTELL, V15, P1116, DOI 10.20965/jaciii.2011.p1116
Trojovsky P., 2022, HYBRID LEADER BASED, DOI [10.21203/rs.3.rs-1312581/v1, DOI 10.21203/RS.3.RS-1312581/V1]
Trojovsky P, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22030855
Tzanetos A., 2017, INT J ARTIF INTELL T, V26, DOI [10.1142/S0218213017500221, DOI 10.1142/S0218213017500221]
Tzanetos A, 2021, **DATA OBJECT**, V2, DOI 10.17632/XFNZD2C8V7.2
Tzanetos A, 2021, ARTIF INTELL REV, V54, P1841, DOI 10.1007/s10462-020-09893-8
Tzanetos A, 2020, DATA BRIEF, V31, DOI 10.1016/j.dib.2020.105792
Tzanetos Alexandros., 2020, MACHINE LEARNING PAR, P337, DOI [10.1007/978-3-030-49724-8_15, DOI 10.1007/978-3-030-49724-8_15]
Valdez F, 2021, ALGORITHMS, V14, DOI 10.3390/a14040122
Vamsi Krishna A. K., 2021, ADV INTELL SYST COMP, V1086, P59, DOI [10.1007/978-981-15-1275-9_6, DOI 10.1007/978-981-15-1275-9_6]
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Visser M, 2021, QUANT SCI STUD, V2, P20, DOI [10.1162/qss_a_00112, 10.1162/qes_a_00112]
Walters WH, 2017, IEEE ACCESS, V5, P22036, DOI 10.1109/ACCESS.2017.2761400
Wang C, 2021, ARAB J SCI ENG, V46, P3443, DOI 10.1007/s13369-020-05129-7
Wang GG, 2019, NEURAL COMPUT APPL, V31, P1995, DOI 10.1007/s00521-015-1923-y
Wang GG, 2018, INT J BIO-INSPIR COM, V12, P1, DOI 10.1504/IJBIC.2015.10004283
Wang GG, 2016, NEUROCOMPUTING, V177, P147, DOI 10.1016/j.neucom.2015.11.018
Wang GG, 2015, 2015 3RD INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL AND BUSINESS INTELLIGENCE (ISCBI 2015), P1, DOI 10.1109/ISCBI.2015.8
Wang GG, 2016, SOFT COMPUT, V20, P3349, DOI 10.1007/s00500-015-1726-1
Wang GG, 2016, NEURAL COMPUT APPL, V27, P989, DOI 10.1007/s00521-015-1914-z
Watson JP, 2006, COMPUT OPER RES, V33, P2623, DOI 10.1016/j.cor.2005.07.016
Whitacre JM, 2011, COMPUTING, V93, P135, DOI 10.1007/s00607-011-0156-x
Wolpert D. H., 1997, IEEE Transactions on Evolutionary Computation, V1, P67, DOI 10.1109/4235.585893
Xin-She Yang, 2012, Unconventional Computation and Natural Computation. Proceedings of the 11th International Conference, UCNC 2012, P240, DOI 10.1007/978-3-642-32894-7_27
Xu YC, 2010, LECT NOTES COMPUT SC, V6466, P583, DOI 10.1007/978-3-642-17563-3_68
Yang X.-S., 2010, Engineering Optimization: An Introduction with Metaheuristic Applications, DOI DOI 10.1002/9780470640425
Yang X.S., 2008, Nature-Inspired Metaheuristic Algorithms
Yang XS, 2020, J COMPUT SCI-NETH, V46, DOI 10.1016/j.jocs.2020.101104
Yang XS, 2009, WOR CONG NAT BIOL, P210, DOI 10.1109/nabic.2009.5393690
Yang XS, 2012, ENG COMPUTATION, V29, P464, DOI 10.1108/02644401211235834
Zandi Z, 2012, 2012 IEEE INTERNATIONAL CONFERENCE ON POWER AND ENERGY (PECON), P239, DOI 10.1109/PECon.2012.6450215
Zeidabadi F.A., 2022, Int J Intell Eng Syst, V15, P273
Zeidabadi FA, 2022, CMC-COMPUT MATER CON, V70, P5631, DOI 10.32604/cmc.2022.021072
Zolfaghari A, 2017, J BRAZ SOC MECH SCI, V39, P2121, DOI 10.1007/s40430-017-0733-9
NR 174
TC 7
Z9 7
U1 2
U2 20
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-8352
EI 1879-0550
J9 COMPUT IND ENG
JI Comput. Ind. Eng.
PD JUL
PY 2022
VL 169
AR 108161
DI 10.1016/j.cie.2022.108161
EA APR 2022
PG 19
WC Computer Science, Interdisciplinary Applications; Engineering,
Industrial
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA 1J5GJ
UT WOS:000797946900009
DA 2024-09-05
ER
PT C
AU Palen-Michel, C
Kim, J
Lignos, C
AF Palen-Michel, Chester
Kim, June
Lignos, Constantine
BA Mariani, J
BF Mariani, J
BE Calzolari, N
Bechet, F
Blache, P
Choukri, K
Cieri, C
Declerck, T
Goggi, S
Isahara, H
Maegaard, B
Mazo, H
Odijk, H
Piperidis, S
TI Multilingual Open Text Release 1: Public Domain News in 44 Languages
SO LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND
EVALUATION
LA English
DT Proceedings Paper
CT 13th International Conference on Language Resources and Evaluation
(LREC)
CY JUN 20-25, 2022
CL Marseille, FRANCE
DE multilingual corpora; text data; low resource NLP; open access text
AB We present a Multilingual Open Text (MOT), a new multilingual corpus containing text in 44 languages, many of which have limited existing text resources for natural language processing. The first release of the corpus contains over 2.8 million news articles and an additional 1 million short snippets (photo captions, video descriptions, etc.) published between 2001-2022 and collected from Voice of America's news websites. We describe our process for collecting, filtering, and processing the data. The source material is in the public domain, our collection is licensed using a creative commons license (CC BY 4.0), and all software used to create the corpus is released under the MIT License. The corpus will be regularly updated as additional documents are published.
C1 [Palen-Michel, Chester; Kim, June; Lignos, Constantine] Brandeis Univ, Michtom Sch Comp Sci, Waltham, MA 02254 USA.
C3 Brandeis University
RP Palen-Michel, C (corresponding author), Brandeis Univ, Michtom Sch Comp Sci, Waltham, MA 02254 USA.
EM cpalenmichel@brandeis.edu; junekim@brandeis.edu; lignos@brandeis.edu
FU 2021 Brandeis University Provost Research Grant
FX We thank the early adopters of our resource-many of whom are members of
the Masakhane communitywho used preliminary releases and offered
feedback. This work was supported by a 2021 Brandeis University Provost
Research Grant.
CR Adelani DI, 2021, T ASSOC COMPUT LING, V9, P1116, DOI 10.1162/tacl_a_00416
Agic E, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P3204
Bañón M, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P4555
Caswell I., 2021, ARXIV210312028
Conneau Alexis, 2020, P 58 ANN M ASS COMP, P8440, DOI [10.18653/v1/2020.acl-main.747, 10.18653/v1, DOI 10.18653/V1]
Davies Mark., 2006, Corpus do Portugues: 45 million words, 1300s-1900s
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
El-Kishky A, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P5960
Espla-Gomis M., 2019, MTSUMMIT
Gezmu A. M., 2021, 2 WORKSH AFR NAT LAN
Hoang P. V., 2020, KHMER NATURAL LANGUA
Honnibal M, 2020, SPACY IND STRENGTH N
Louw W., 1993, ZAMBEZIA, V20, P131
Mohtaj S, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P1112
Niyongabo Rubungo Andre, 2020, P 28 INT C COMP LING, P5507, DOI DOI 10.18653/V1/2020.COLING-MAIN.480
Ogueji K, 2021, P 1 WORKSH MULT REPR, P116
Pfeiffer J, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P7654
Qi P, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020): SYSTEM DEMONSTRATIONS, P101
Salcianu A, 2016, COMPACT LANGUAGE DET
Santy S., 2020, P 58 ANN M ASS COMPU, P6282, DOI [10.18653/v1/2020.acl-main.560, DOI 10.18653/V1/2020.ACL-MAIN.560]
Schwenk H., 2021, P 16 C EUR CHAPT ASS, P1351
Strassel S, 2016, LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3273
Suárez PJO, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P1703
Tiedemann J, 2012, LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P2214
Tracey J, 2019, P 2 WORKSH TECHN MT, P48
Tracey J., 2020, P 1 JOINT WORKSHOP S, P277
Voice of America, 2016, TERMS US PRIV NOT
Voice of America, 2021, VOA FIR LAW MOR 40 Y
Voice of America, 2021, MISS VAL
Wicks R., 2021, P 59 ANN M ASS COMP, V1, P3995
Yimam SM, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13110275
NR 31
TC 2
Z9 3
U1 1
U2 2
PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA
PI PARIS
PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE
BN 979-10-95546-72-6
PY 2022
BP 2080
EP 2089
PG 10
WC Computer Science, Interdisciplinary Applications; Linguistics
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Linguistics
GA BU2ZO
UT WOS:000889371702021
DA 2024-09-05
ER
PT J
AU Long, ZH
Zhao, GJ
Wang, J
Zhang, MT
Zhou, SY
Zhang, L
Huang, ZX
AF Long, Zehai
Zhao, Guojing
Wang, Jing
Zhang, Mengting
Zhou, Shaoyu
Zhang, Ling
Huang, Zhaoxin
TI Research on the Drivers of Entrepreneurship Education Performance of
Medical Students in the Digital Age
SO FRONTIERS IN PSYCHOLOGY
LA English
DT Article
DE medical students; entrepreneurship education performance; driving
factors; digital economy; ridge regression model
ID RIDGE REGRESSION; INNOVATION; TEACHER; GENDER; INTENTIONS; BUSINESS;
POLICY
AB COVID-19 has made the entire society pay more attention to medical students training. Medicine development is inseparable from the spirit of innovation, focusing on cultivating medical students' innovative awareness and improving entrepreneurship education performance, which has an irreplaceable effect on both the students themselves and the society. This study is based on the ridge regression model to study the driving factors of the entrepreneurship education performance of medical students. Compared with traditional multiple regression, it can improve the consistency of parameter estimation and obtain more realistic results. Based on a large sample of empirical survey data of 24,677 medical students in China, this study analyzed the driving factors of the entrepreneurship education performance of medical students and found that medical students of different genders have differences in entrepreneurship education performance; the digital economy impacts entrepreneurship education performance of medical students; entrepreneurship course, entrepreneurship faculty, entrepreneurship competition, entrepreneurship practice, and entrepreneurship policy have a driving effect on the entrepreneurship education performance of medical students. Meanwhile, the impact of entrepreneurship policy is the most obvious, followed by entrepreneurship practice and entrepreneurship competition, followed by entrepreneurship course and entrepreneurship faculty.
C1 [Long, Zehai; Zhao, Guojing; Wang, Jing; Zhang, Mengting; Zhou, Shaoyu; Huang, Zhaoxin] Wenzhou Med Univ, Inst China Innovat & Entrepreneurship Educ, Wenzhou, Peoples R China.
[Zhang, Ling] Hangzhou Normal Univ, Sch Educ, Hangzhou, Peoples R China.
C3 Wenzhou Medical University; Hangzhou Normal University
RP Zhao, GJ; Zhou, SY; Huang, ZX (corresponding author), Wenzhou Med Univ, Inst China Innovat & Entrepreneurship Educ, Wenzhou, Peoples R China.; Zhang, L (corresponding author), Hangzhou Normal Univ, Sch Educ, Hangzhou, Peoples R China.
EM 13600641869@126.com; shaowzmc@qq.com; 1046814422@qq.com;
25732880@wmu.edu.cn
RI Tang, Hao/HHN-2620-2022
OI Zhao, Guojing/0000-0003-1920-0769
FU National Social Science Fund of China
FX Funding This work was supported by the key project of the National
Social Science Fund of Chinathe Research on Barriers and Policy Support
Mechanisms for Female Entrepreneurship in the Digital Era (20ASH012).
CR [Anonymous], 2021, Global entrepreneurship monitor 2020/2021 global report
[Anonymous], 2002, J SMALL BUS STRATEGY
Audretsch D.S., 2015, EVERYTHING ITS PLACE, DOI [10.1093/acprof:oso/9780199351251.001.0001, DOI 10.1093/ACPROF:OSO/9780199351251.001.0001]
Béchard JP, 2005, ACAD MANAG LEARN EDU, V4, P22, DOI 10.5465/AMLE.2005.16132536
Brieger SA, 2021, SMALL BUS ECON, V56, P1007, DOI 10.1007/s11187-019-00314-x
[Румана Бухт Bukht Rumana], 2018, [Вестник международных организаций: образование, наука, новая экономика, International Organisations Research Journal, Vestnik mezhdunarodnykh organizatsii: obrazovanie, nauka, novaya ekonomika], V13, P143
Byun C. G., 2018, Journal of Open Innovation: Technology, Market, and Complexity, V4, P26, DOI [10.3390/joitmc4030026, DOI 10.3390/JOITMC4030026]
Callaway S., 2009, Service Science, V1, P225, DOI [DOI 10.1287/serv.1.4.225, 10.1287/serv.1.4.225, DOI 10.1287/SERV.1.4.225]
Chang J.C., 2009, INT J VOCATIONAL TEC, V1, P25
Chen SC, 2015, INT ENTREP MANAG J, V11, P557, DOI 10.1007/s11365-013-0293-0
Cheung CK, 2008, EDUC TRAIN, V50, P500, DOI 10.1108/00400910810901827
Dahlstedt M., 2012, Journal of Pedagogy, V3, P242, DOI DOI 10.2478/V10159-012-0012-X
Daniela L, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13073640
Deng W, 2020, ASIA PAC J MANAG, V37, P1013, DOI 10.1007/s10490-019-09660-6
Dickel P, 2021, J SMALL BUS MANAGE, V59, P196, DOI 10.1080/00472778.2019.1704489
Douglas E.J., 2002, Entrepreneurship Theory Practice, V26, P8190, DOI [DOI 10.1177/104225870202600305, 10.1177/104225870202600305, https://doi.org/10.1177/104225870202600305]
Fan Y., 2013, Creat. Educ, V4, P92, DOI 10.4236/ce.2013.42013
Fayolle A., 2006, Journal of European Industrial Training, V30, P701, DOI 10.1108/03090590610715022
Fayolle A, 2013, ENTREP REGION DEV, V25, P692, DOI 10.1080/08985626.2013.821318
Fejes A, 2019, J CURRICULUM STUD, V51, P554, DOI 10.1080/00220272.2018.1488998
Fossen FM, 2021, J BUS RES, V125, P548, DOI 10.1016/j.jbusres.2019.09.019
Foster J, 2003, BRIT J EDUC TECHNOL, V34, P455, DOI 10.1111/1467-8535.00342
Giones F, 2017, TECHNOL INNOV MANAG, V7, P44, DOI 10.22215/timreview1076
Hasan SM, 2017, EDUC TRAIN, V59, P888, DOI 10.1108/ET-01-2016-0020
Hechavarría DM, 2017, SMALL BUS ECON, V48, P225, DOI 10.1007/s11187-016-9747-4
Higgins LM, 2018, INT FOOD AGRIBUS MAN, V21, P121, DOI [10.22434/IFAMR2016.0166, 10.22434/ifamr2016.0166]
HOERL AE, 1970, TECHNOMETRICS, V12, P69, DOI 10.2307/1267352
HOERL AE, 1970, TECHNOMETRICS, V12, P55, DOI 10.1080/00401706.1970.10488634
Hoppe M, 2016, SMALL BUS ECON, V46, P13, DOI 10.1007/s11187-015-9676-7
Horel A.E., 1962, Chem Eng Prog, V58, P54
Hsu DH, 2007, RES POLICY, V36, P768, DOI 10.1016/j.respol.2007.03.001
Huang YJ, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.585698
Huang YJ, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.563381
Kang YY, 2021, INT J EDUC DEV, V84, DOI 10.1016/j.ijedudev.2021.102406
Kecskes Z, 2017, MED J AUSTRALIA, V206, P13, DOI 10.5694/mja16.01212
Kesner A, 2018, MED PHYS, V45, pE40, DOI 10.1002/mp.12794
Kop R, 2011, INT REV RES OPEN DIS, V12, P19, DOI 10.19173/irrodl.v12i3.882
Kuratko DF, 2005, ENTREP THEORY PRACT, V29, P577, DOI 10.1111/j.1540-6520.2005.00099.x
Li GH, 2017, EURASIA J MATH SCI T, V13, P8149, DOI 10.12973/ejmste/80779
Lin S, 2017, MANAGE DECIS, V55, P1351, DOI 10.1108/MD-06-2016-0416
Mack EA, 2017, TELECOMMUN POLICY, V41, P120, DOI 10.1016/j.telpol.2016.12.001
Maes J, 2014, EUR MANAG J, V32, P784, DOI 10.1016/j.emj.2014.01.001
Matlay H, 2006, EDUC TRAIN, V48, P704, DOI 10.1108/00400910610710119
Moses CL, 2014, EDULEARN PROC, P7466
Mueller Susan, 2011, International Journal of Entrepreneurship and Small Business, V13, P55, DOI 10.1504/IJESB.2011.040416
Neck HM, 2011, J SMALL BUS MANAGE, V49, P55, DOI 10.1111/j.1540-627X.2010.00314.x
Nichols SP, 2003, IEEE ANTENN PROPAG M, V45, P134, DOI 10.1109/MAP.2003.1189659
O'Connor A, 2013, J BUS VENTURING, V28, P546, DOI 10.1016/j.jbusvent.2012.07.003
Otache I, 2020, EDUC TRAIN, V62, P741, DOI 10.1108/ET-02-2020-0032
Ozdemir D, 2019, TECHNOL SOC, V58, DOI 10.1016/j.techsoc.2019.01.006
Ruskovaara E, 2015, J EDUC RES, V108, P236, DOI 10.1080/00220671.2013.878301
Ruskovaara E, 2013, EDUC TRAIN, V55, P204, DOI 10.1108/00400911311304832
Seikkula-Leino J, 2015, EDUC TRAIN, V57, P392, DOI 10.1108/ET-03-2013-0029
Seikkula-Leino J, 2010, EDUC TRAIN, V52, P117, DOI 10.1108/00400911011027716
Slisane A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13116424
Srinivasan A, 2018, STRATEG ENTREP J, V12, P54, DOI 10.1002/sej.1272
Teerijoki H, 2014, INT J MANAG EDUC-OXF, V12, P479, DOI 10.1016/j.ijme.2014.05.005
Tkachev A., 1999, ENTREP REGION DEV, V11, P269, DOI DOI 10.1080/089856299283209
Wang SM, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02048
Wang X., 2020, CREAT ED, V11, P275, DOI [10.4236/ce.2020.113021, DOI 10.4236/CE.2020.113021]
Watson K, 2019, EDUC TRAIN, V62, P31, DOI 10.1108/ET-11-2018-0234
Wen CT, 2007, INT J TECHNOL MANAGE, V39, P346, DOI 10.1504/IJTM.2007.013505
Whiteley T., 1995, Education and Training, V37, P4
Wilson Anne, 2012, Online J Issues Nurs, V17, P5
Wilson F, 2007, ENTREP THEORY PRACT, V31, P387, DOI 10.1111/j.1540-6520.2007.00179.x
Wu WH, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.01109
Yan D., 2020, OPEN J SOCIAL SCI, V8, P218
Yan XH, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10093335
Yunis M, 2018, J BUS RES, V88, P344, DOI 10.1016/j.jbusres.2017.12.030
Zhang Y, 2014, INT ENTREP MANAG J, V10, P623, DOI 10.1007/s11365-012-0246-z
Zhao F, 2015, INTERNET RES, V25, P734, DOI 10.1108/IntR-02-2014-0055
Zhu YX, 2016, ACAD MANAG LEARN EDU, V15, P607, DOI 10.5465/amle.2013.0263
Zisser MR, 2019, GEND MANAG, V34, P666, DOI 10.1108/GM-08-2018-0105
NR 73
TC 8
Z9 8
U1 9
U2 85
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-1078
J9 FRONT PSYCHOL
JI Front. Psychol.
PD OCT 29
PY 2021
VL 12
AR 733301
DI 10.3389/fpsyg.2021.733301
PG 17
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA WW3FM
UT WOS:000717806900001
PM 34777115
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Tahiru, F
Parbanath, S
Agbesi, S
AF Tahiru, Fati
Parbanath, Steven
Agbesi, Samuel
TI Machine Learning-based Predictive Systems in Higher Education: A
Bibliometric Analysis
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Machine Learning; Predictive System; Data Analytics; Learning Analytics;
Higher Education
AB This paper aims to comprehensively review the present state and research trends in predictive systems in higher education. It also addresses the research contribution of countries in Machine Learning-based predictive systems in higher education to depict the research landscape given the growing number of related publications. A bibliometric analysis of publications on predictive systems in education published in the Scopus Database from 2015 to 2022 was conducted. The dataset obtained covered the contribution of authors, affiliations, countries, themes and trends in the field of Machine Learning-based predictive systems in higher education. A total of 72 publications with 3408 cited references were collected from Scopus for the bibliometric analysis. The technique used for the bibliometric analysis included performance analysis and science mapping. Research on Machine Learning-based predictive systems has been widely published from 2020 to 2022. Researchers in China, Belgium, Spain, India, and Korea were most active in researching Machine Learning-based predictive systems in education. However, international collaborations have remained infrequent except for the few involving Australia, Belgium, and Canada. There is a lack of research in the subject area in Africa. This study illustrates the intellectual landscape of Machine Learning-based predictive systems in higher education and the field's evolution and emerging trends. The findings highlight the area of research concentration and the most recent developments and suggest future research collaborations on a larger scale as well as additional research on the implementation of predictive systems in education in Africa.
C1 [Tahiru, Fati; Parbanath, Steven] Durban Univ Technol, Dept Informat Technol, Kwa Zulu, South Africa.
[Agbesi, Samuel] IT Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark.
C3 Durban University of Technology; IT University Copenhagen
RP Tahiru, F (corresponding author), Durban Univ Technol, Dept Informat Technol, Kwa Zulu, South Africa.
EM 22176488@dut4life.ac.za
CR Ahsan M.M., International Journal of Information Management Data Insights, V2, P100079, DOI DOI 10.1016/J.JJIMEI.2022.100079
Chung JY, 2019, CHILD YOUTH SERV REV, V96, P346, DOI 10.1016/j.childyouth.2018.11.030
de Oliveira TN, 2021, 2021 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE 2021), DOI 10.1109/FIE49875.2021.9637207
Djeki E, 2022, J COMPUT EDUC, V9, P727, DOI 10.1007/s40692-021-00218-4
dos Santos BS, 2019, COMPUT IND ENG, V138, DOI 10.1016/j.cie.2019.106120
Firdaus A, 2019, SCIENTOMETRICS, V120, P1289, DOI 10.1007/s11192-019-03170-4
Guo XR, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132313234
Kehinde Adeniyi Jide, 2022, Recent Innovations in Computing: Proceedings of ICRIC 2021. Lecture Notes in Electrical Engineering (855), P613, DOI 10.1007/978-981-16-8892-8_46
Koseoglu MA, 2016, ANN TOURISM RES, V61, P180, DOI 10.1016/j.annals.2016.10.006
Li KC, 2022, INTERACT TECHNOL SMA, V19, P3, DOI 10.1108/ITSE-05-2021-0083
Liao HC, 2019, OMEGA-INT J MANAGE S, V88, P223, DOI 10.1016/j.omega.2018.11.005
Liu XY, 2022, EDUC INF TECHNOL, V27, P9913, DOI 10.1007/s10639-022-11010-x
Liu Y, 2021, MOB INF SYST, V2021, DOI 10.1155/2021/8161985
Mariani M, 2019, TECHNOL FORECAST SOC, V149, DOI 10.1016/j.techfore.2019.119752
Oralbayeva N, 2017, K-Qbot: Language Learning Chatbot based on Reinforcement Learning
Pears M, 2022, Bibliometric Analysis of Chatbots in Health-Trend Shifts and Advancements in Artificial Intelligence for Personalised Conversational Agents, V2020, P494
Piñeiro-Chousa J, 2020, J BUS RES, V115, P475, DOI 10.1016/j.jbusres.2019.11.045
Prudencio RF, 2022, Arxiv, DOI arXiv:2203.01387
Romero C, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1355
Sandra L, 2021, TEM J, V10, P1919, DOI 10.18421/TEM104-56
Sassirekha MS, 2022, AUTOMATIKA-UK, V63, P605, DOI 10.1080/00051144.2022.2060652
Shukla AK, 2020, ENG APPL ARTIF INTEL, V92, DOI 10.1016/j.engappai.2020.103625
Suhaimi NA, 2021, 7 INT C RES INNOVATI, P0
Tahiru F, 2021, Digital Technology Advancements in Knowledge Management, P187
Tahiru F, 2021, J CASES INF TECHNOL, V23, P1, DOI 10.4018/JCIT.2021010101
Umer R, 2023, INTERACT LEARN ENVIR, V31, P3503, DOI 10.1080/10494820.2021.1933542
Xu XH, 2018, INT J PROD ECON, V204, P160, DOI 10.1016/j.ijpe.2018.08.003
Yang YF, 2020, J CLEAN PROD, V263, DOI 10.1016/j.jclepro.2020.121433
Yousafzai BK, 2020, EDUC INF TECHNOL, V25, P4677, DOI 10.1007/s10639-020-10189-1
Zhao L, 2020, PROCESS SAF ENVIRON, V133, P169, DOI 10.1016/j.psep.2019.11.014
NR 30
TC 0
Z9 0
U1 6
U2 6
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD MAY-AUG
PY 2023
VL 12
IS 2
BP 436
EP 447
DI 10.5530/jscires.12.2.040
PG 12
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA HF6A6
UT WOS:001158105300020
OA hybrid
DA 2024-09-05
ER
PT J
AU Kim, J
Kim, J
AF Kim, Jinseok
Kim, Jenna
TI ANDez: An open-source tool for author name disambiguation using machine
learning
SO SOFTWAREX
LA English
DT Article
DE Author name disambiguation; Authority control; Machine learning; Science
of science; Scientometrics; Bibliometrics
AB Author name disambiguation in bibliographic data is challenging due to the same names of different authors and name variations of authors. Various machine learning (ML) methods address this, but a unified framework for comparing them is lacking. This study introduces ANDez, an open-source tool that integrates top-performing ML techniques for author name disambiguation. Developed in Python using popular ML libraries, ANDez provides a transparent system, merging complex procedures from different ML approaches. This promotes the assessment, modification, and benchmarking of ML techniques in author name disambiguation. ANDez's user-friendly design also helps researchers analyze ambiguous bibliographic data without needing advanced ML coding expertise.
C1 [Kim, Jinseok] Univ Michigan, Inst Social Res, 330 Packard St, Ann Arbor, MI 48104 USA.
[Kim, Jinseok] Univ Michigan, Sch Informat, 330 Packard St, Ann Arbor, MI 48104 USA.
[Kim, Jenna] Univ Illinois, Sch Informat Sci, 501 E Daniel St, Champaign, IL 61820 USA.
C3 University of Michigan System; University of Michigan; University of
Michigan System; University of Michigan; University of Illinois System;
University of Illinois Urbana-Champaign
RP Kim, J (corresponding author), Univ Michigan, Inst Social Res, 330 Packard St, Ann Arbor, MI 48104 USA.; Kim, J (corresponding author), Univ Michigan, Sch Informat, 330 Packard St, Ann Arbor, MI 48104 USA.
EM jinseokk@umich.edu; jkim682@illinois.edu
OI Kim, Jinseok/0000-0001-6481-2065
FU National Science Foundation (NSF NCSES) [1917663]; NSF; University of
Michigan Institute for Data Science
FX ANDez was created with support from the National Science Foundation (NSF
NCSES Award #1917663: Creating a Data Quality Control Framework for
Producing New Personnel-Based S & E Indicators) grant and additional NSF
funding through the Research Experiences for Undergraduates (REU)
program. A PODS grant from the University of Michigan Institute for Data
Science also supported the development of ANDez. We thank Dr. Jason D.
Owen-Smith (University of Michigan) for his valuable feedback and
recommendations that have enhanced ANDez's accessibility and utility for
a diverse group of social scientists.
CR Albert PJ, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0244641
[Anonymous], 1999, Statistical Research Division, US Census Bureau
Backes T, 2018, CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P803, DOI 10.1145/3269206.3271699
Fegley BD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070299
Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040
Han H, 2004, ACM-IEEE J CONF DIG, P296, DOI 10.1145/996350.996419
Han H., 2005, P 2005 ACM S APPL CO, P1065, DOI [10.1145/1066677.1066920, DOI 10.1145/1066677.1066920]
Huang J, 2006, Efficient Name Disambiguation for Large-Scale Databases
Hussain I, 2017, KNOWL ENG REV, V32, DOI 10.1017/S0269888917000182
Kim J, 2023, SOFTW IMPACTS, V16, DOI 10.1016/j.simpa.2023.100510
Kim J, 2023, J INF SCI, V49, P711, DOI 10.1177/01655515211018171
Kim J, 2021, J ASSOC INF SCI TECH, V72, P979, DOI 10.1002/asi.24459
Kim J, 2020, J ASSOC INF SCI TECH, V71, P839, DOI 10.1002/asi.24298
Kim J, 2019, SCIENTOMETRICS, V120, P661, DOI 10.1007/s11192-019-03143-7
Kim J, 2019, J ASSOC INF SCI TECH, V70, P685, DOI 10.1002/asi.24158
Kim J, 2019, SCIENTOMETRICS, V118, P253, DOI 10.1007/s11192-018-2968-3
Kim J, 2018, SCIENTOMETRICS, V117, P511, DOI 10.1007/s11192-018-2865-9
Kim J, 2016, J ASSOC INF SCI TECH, V67, P1446, DOI 10.1002/asi.23489
Kim K, 2020, Learning CNF Blocking for Large-scale Author Name Disambiguation
Kim K, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2018), P265, DOI 10.1109/ICWS.2018.00041
Levin M, 2012, J AM SOC INF SCI TEC, V63, P1030, DOI 10.1002/asi.22621
Liu WL, 2014, J ASSOC INF SCI TECH, V65, P765, DOI 10.1002/asi.23063
Louppe G, 2016, COMM COM INF SC, V649, P272, DOI 10.1007/978-3-319-45880-9_21
Lv CD, 2022, ADV MATER, V34, DOI 10.1002/adma.202101474
Milojevic S, 2013, J INFORMETR, V7, P767, DOI 10.1016/j.joi.2013.06.006
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Qian YA, 2015, INFORM RETRIEVAL J, V18, P379, DOI 10.1007/s10791-015-9261-3
Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605
Schulz J, 2016, SCIENTOMETRICS, V107, P1283, DOI 10.1007/s11192-016-1892-7
Smalheiser NR, 2009, ANNU REV INFORM SCI, V43, P287
Song M, 2015, J INFORMETR, V9, P924, DOI 10.1016/j.joi.2015.08.004
Strotmann A, 2012, J AM SOC INF SCI TEC, V63, P1820, DOI 10.1002/asi.22695
Subramanian S, 2021, ACM-IEEE J CONF DIG, P170, DOI 10.1109/JCDL52503.2021.00029
Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304
Treeratpituk P, 2009, ACM-IEEE J CONF DIG, P39
Vishnyakova D, 2016, P 5 WORKSH BUILD EV, DOI 10.5167/uzh-132256
Yao ZP, 2023, NAT REV MATER, V8, P202, DOI 10.1038/s41578-022-00490-5
NR 37
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2352-7110
J9 SOFTWAREX
JI SoftwareX
PD MAY
PY 2024
VL 26
AR 101719
DI 10.1016/j.softx.2024.101719
EA APR 2024
PG 7
WC Computer Science, Software Engineering
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA QQ9P4
UT WOS:001222456100001
OA gold
DA 2024-09-05
ER
PT C
AU Zhang, QA
Liu, TN
AF Zhang, Qian
Liu, Tongna
BE Xu, H
TI Research on Performance Evaluation of Project Management Based on
Support Vector Machine and Fuzzy Rules
SO 2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC
2010), VOL. 5
LA English
DT Proceedings Paper
CT 2nd IEEE International Conference on Advanced Computer Control
CY MAR 27-29, 2010
CL Shenyang, PEOPLES R CHINA
DE SVM; project management; performance evaluation; fuzzy rules
AB The principle and step of performance evaluation of project management based on SVM and fuzzy rules are studied. The index system of performance evaluation of project management is set up. Then we built up the evaluation model on SVM and fuzzy rules. Finally, take some samples of project for an example, we carry on this model to instance. It can take a preferably evaluation, so that it is a viable method.
C1 [Zhang, Qian] North China Elect Power Univ, Dept Econ Management, Baoding 071000, Hebei, Peoples R China.
[Liu, Tongna] North China Elect Power Univ, Dept Elect & Commun ENgn, Baoding, Hebei, Peoples R China.
C3 North China Electric Power University; North China Electric Power
University
RP Zhang, QA (corresponding author), North China Elect Power Univ, Dept Econ Management, Baoding 071000, Hebei, Peoples R China.
EM hdzhq@yeah.net; hdltn@yeah.net
FU Hebei Natural Science Fund [G2009001410]
FX This research was supported by Hebei Natural Science Fund.!G2009001410"
CR [Anonymous], INF SCI
Hu Jun, 2005, Modular Machine Tool & Automatic Manufacturing Technique, P97
Kazama N., 1996, Information Infrastructure and Policy, V5, P279
Liu Shihong, 2005, AGR INFORM TECHNOLOG
Machlup Fritz., 1962, The Production and Distribution of Knowledge in the United States
National informatization evaluation center, 2002, EV ENT INF COMP US
National informatization evaluation center, COMP STUD MEAS RES C
Porat M U, 1984, SCIENCE, V10, p15~17
Qi Er-shi, 2005, Industrial Engineering Journal, V8, P52
Rai LP, 2000, TECHNOL SOC, V22, P221, DOI 10.1016/S0160-791X(00)00006-3
Yu EJ, 2005, LECT NOTES COMPUT SC, V3482, P1306
NR 11
TC 1
Z9 1
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4244-5847-9
PY 2010
BP 397
EP 400
DI 10.1109/ICACC.2010.5487081
PG 4
WC Automation & Control Systems; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Engineering
GA BUG32
UT WOS:000289207500093
DA 2024-09-05
ER
PT J
AU Wang, ZY
Dong, W
Yang, K
AF Wang, Zhenyi
Dong, Wen
Yang, Kun
TI Spatiotemporal Analysis and Risk Assessment Model Research of Diabetes
among People over 45 Years Old in China
SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH
LA English
DT Article
DE spatiotemporal analysis; risk factors; binary logistic regression;
random forest model
ID GEOGRAPHIC INFORMATION-SYSTEMS; SPATIAL-ANALYSIS; PREVALENCE; HEALTH;
HYPERTENSION; MELLITUS; SMOKING; INDEX
AB Diabetes, which is a chronic disease with a high prevalence in people over 45 years old in China, is a public health issue of global concern. In order to explore the spatiotemporal patterns of diabetes among people over 45 years old in China, to find out diabetes risk factors, and to assess its risk, we used spatial autocorrelation, spatiotemporal cluster analysis, binary logistic regression, and a random forest model in this study. The results of the spatial autocorrelation analysis and the spatiotemporal clustering analysis showed that diabetes patients are mainly clustered near the Beijing-Tianjin-Hebei region, and that the prevalence of diabetes clusters is waning. Age, hypertension, dyslipidemia, and smoking history were all diabetes risk factors (p < 0.05), but the spatial heterogeneity of these factors was weak. Compared with the binary logistic regression model, the random forest model showed better accuracy in assessing diabetes risk. According to the assessment risk map generated by the random forest model, the northeast region and the Beijing-Tianjin-Hebei region are high-risk areas for diabetes.
C1 [Wang, Zhenyi; Dong, Wen; Yang, Kun] Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China.
[Wang, Zhenyi; Dong, Wen; Yang, Kun] Yunnan Normal Univ, GIS Technol Engn Res Ctr, West China Resources & Environm Educ Minist, Kunming 650500, Yunnan, Peoples R China.
C3 Yunnan Normal University; China Resources Group; Yunnan Normal
University
RP Dong, W; Yang, K (corresponding author), Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China.; Dong, W; Yang, K (corresponding author), Yunnan Normal Univ, GIS Technol Engn Res Ctr, West China Resources & Environm Educ Minist, Kunming 650500, Yunnan, Peoples R China.
EM kmynnu_gis@163.com; kmdcynu@163.com
RI Yang, Kun/ISA-1094-2023; yang, kun/JGM-4169-2023
OI Yang, Kun/0000-0003-1335-3449; Wang, Zhenyi/0009-0001-4552-7207
FU National Natural Science Foundation of China [42161071, 42071381,
41661087]
FX This research was supported by National Natural Science Foundation of
China (Grants Nos. 42161071, 42071381, 41661087).
CR Alcalá-Rmz V, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9040422
Ali A, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19073943
Asante DO, 2022, BIOMED RES INT-UK, V2022, DOI 10.1155/2022/9690964
Aswin M., 2022, HYPERTENSION CARDIOV, P159, DOI [10.1007/978-3-030-95734-6_12, DOI 10.1007/978-3-030-95734-6_12]
Boateng E.Y., 2020, J. Data Analys. Inform. Proc., V8, P341, DOI [DOI 10.4236/JDAIP.2020.84020, 10.4236/JDAIP.2020.84020]
Cao GZ, 2020, BMC HEALTH SERV RES, V20, DOI 10.1186/s12913-020-05609-4
Cheng F, 2022, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.823739
Cheruiyot K, 2022, REG SCI POLICY PRACT, V14, P307, DOI 10.1111/rsp3.12526
Chung S, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102522
Daghistani T, 2020, J ADV INFORM TECHNOL, V11, P78, DOI 10.12720/jait.11.2.78-83
DeCesare NJ, 2012, ECOL APPL, V22, P1068, DOI 10.1890/11-1610.1
Dong W, 2017, BMC INFECT DIS, V17, DOI 10.1186/s12879-017-2781-2
Dudley T, 2013, J COMMUN HEALTH, V38, P951, DOI 10.1007/s10900-013-9705-x
Eccles KM, 2015, CAN J PUBLIC HEALTH, V106, pE355, DOI 10.17269/cjph.106.4981
El-Shareif HJ, 2019, IBNOSINA J MED BIOME, V11, P171, DOI 10.4103/ijmbs.ijmbs_37_19
Freitas WWL, 2022, EXPERT SYST APPL, V195, DOI 10.1016/j.eswa.2022.116561
Ghosh K, 2020, J PUBLIC HEALTH-HEID, V28, P535, DOI 10.1007/s10389-019-01072-6
Hamat A, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19116802
He BJ, 2023, PUBLIC HEALTH NUTR, V26, P190, DOI 10.1017/S1368980022001215
International Diabetes Federation, ABOUT US
Isfandiari MA, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10050872
Jesri N, 2021, BMC PUBLIC HEALTH, V21, DOI 10.1186/s12889-021-12267-6
Khodakarami L, 2022, EARTH SPACE SCI, V9, DOI 10.1029/2022EA002261
Lee S, 2021, INT J HEALTH GEOGR, V20, DOI 10.1186/s12942-021-00286-w
Li CR, 2021, TECHNOL HEALTH CARE, V29, pS351, DOI 10.3233/THC-218033
Li JM, 2020, SOC SCI MED, V256, DOI 10.1016/j.socscimed.2020.113062
Li LQ, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19063619
Liang WB, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/795741
Liu XN, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13094996
Masimalai P., 2014, Int. J. Med. Sci. Public Health, V3, P1430, DOI [10.5455/ijmsph.2014.081020141, DOI 10.5455/IJMSPH.2014.081020141]
Medina-Chavez Juan Humberto, 2022, Rev Med Inst Mex Seguro Soc, V60, pS19
Miranda ML, 2013, PREV CHRONIC DIS, V10, DOI 10.5888/pcd10.120321
Murad A, 2022, GEOSPATIAL HEALTH, V17, DOI 10.4081/gh.2022.1072
Murad A, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9050328
Nayak BS, 2014, DIABETES METAB SYND, V8, P91, DOI 10.1016/j.dsx.2014.04.018
Oza Ami, 2022, Congress on Intelligent Systems: Proceedings of CIS 2021. Lecture Notes on Data Engineering and Communications Technologies (111), P407, DOI 10.1007/978-981-16-9113-3_30
Rabieenia E, 2020, DIABETES METAB SYND, V14, P1543, DOI 10.1016/j.dsx.2020.08.007
Ren ZD, 2020, IEEE ACCESS, V8, P206406, DOI 10.1109/ACCESS.2020.3037912
Ricketts TC, 2003, ANNU REV PUBL HEALTH, V24, P1, DOI 10.1146/annurev.publhealth.24.100901.140924
Saeedi P, 2019, DIABETES RES CLIN PR, V157, DOI 10.1016/j.diabres.2019.107843
Samet S, 2022, INT J DECIS SUPPORT, V14, DOI 10.4018/IJDSST.303943
Sandie AB, 2022, BMC INFECT DIS, V22, DOI 10.1186/s12879-022-07306-5
Sergeev A.V., 2015, ANN EPIDEMIOL, V25, P705, DOI [10.1016/j.annepidem.2015.06.020, DOI 10.1016/J.ANNEPIDEM.2015.06.020]
Su BB, 2022, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.777654
Su R, 2016, INT J ENV RES PUB HE, V13, DOI 10.3390/ijerph13080751
Tomic D, 2022, NAT REV ENDOCRINOL, V18, P525, DOI 10.1038/s41574-022-00690-7
Tonstad S, 2009, DIABETES RES CLIN PR, V85, P4, DOI 10.1016/j.diabres.2009.04.013
Vine MF, 1997, ENVIRON HEALTH PERSP, V105, P598, DOI 10.2307/3433605
Wang YJ, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19052989
Wu Y, 2022, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.808120
Xiao Lin, 2020, Asian Pac J Cancer Prev, V21, P17, DOI 10.31557/APJCP.2020.21.S1.17
Xu SY, 2013, BMC PUBLIC HEALTH, V13, DOI 10.1186/1471-2458-13-299
Xue D, 2022, LAND USE POLICY, V117, DOI 10.1016/j.landusepol.2022.106117
Yang LQ, 2022, REMOTE SENS-BASEL, V14, DOI 10.3390/rs14051266
Yatsuya H, 2021, J DIABETES INVEST, V12, P317, DOI 10.1111/jdi.13421
Yu JY, 2022, DIABETES-METAB RES, V38, DOI 10.1002/dmrr.3507
Yuan QL, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19042096
Yuan YP, 2022, CHINESE MED J-PEKING, V135, P356, DOI 10.1097/CM9.0000000000001895
Zhang X, 2019, J DIABETES INVEST, V10, P272, DOI 10.1111/jdi.12899
Zhang Y, 2015, INT J ENV RES PUB HE, V12, P816, DOI 10.3390/ijerph120100816
Zhao Y, 2022, EUR J AGRON, V134, DOI 10.1016/j.eja.2022.126466
Zhou MG, 2015, DIABETES CARE, V38, P72, DOI 10.2337/dc14-1100
Zhou T, 2019, MEDICINE, V98, DOI 10.1097/MD.0000000000015581
Zhou YH, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16010107
NR 64
TC 1
Z9 1
U1 7
U2 37
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1660-4601
J9 INT J ENV RES PUB HE
JI Int. J. Environ. Res. Public Health
PD AUG
PY 2022
VL 19
IS 16
AR 9861
DI 10.3390/ijerph19169861
PG 26
WC Environmental Sciences; Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health
GA 4B3JQ
UT WOS:000845678700001
PM 36011493
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Purnell, PJ
AF Purnell, Philip J.
TI A comparison of different methods of identifying publications related to
the United Nations Sustainable Development Goals: Case study of SDG
13-Climate Action
SO QUANTITATIVE SCIENCE STUDIES
LA English
DT Article
DE artificial intelligence; bibliometrics; climate action; machine
learning; sustainable development goal
ID DIMENSIONS; WEB; SCOPUS
AB As sustainability becomes an increasing priority throughout global society, academic and research institutions are assessed on their contribution to relevant research publications. This study compares four methods of identifying research publications related to United Nations Sustainable Development Goal 13-Climate Action (SDG 13). The four methods (Elsevier, STRINGS, SIRIS, and Dimensions) have each developed search strings with the help of subject matter experts, which are then enhanced through distinct methods to produce a final set of publications. Our analysis showed that the methods produced comparable quantities of publications but with little overlap between them. We visualized some difference in topic focus between the methods and drew links with the search strategies used. Differences between publications retrieved are likely to come from subjective interpretation of the goals, keyword selection, operationalizing search strategies, AI enhancements, and selection of bibliographic database. Each of the elements warrants deeper investigation to understand their role in identifying SDG-related research. Before choosing any method to assess the research contribution to SDGs, end users of SDG data should carefully consider their interpretation of the goal and determine which of the available methods produces the closest data set. Meanwhile, data providers might customize their methods for varying interpretations of the SDGs.
C1 [Purnell, Philip J.] Leiden Univ, Ctr Sci & Technol Studies, Leiden, Netherlands.
[Purnell, Philip J.] United Arab Emirates Univ, Al Ain, U Arab Emirates.
C3 Leiden University; Leiden University - Excl LUMC; United Arab Emirates
University
RP Purnell, PJ (corresponding author), Leiden Univ, Ctr Sci & Technol Studies, Leiden, Netherlands.; Purnell, PJ (corresponding author), United Arab Emirates Univ, Al Ain, U Arab Emirates.
EM p.j.purnell@cwts.leidenuniv.nl
RI Purnell, Philip/JQX-0944-2023; Purnell, Philip/ITU-3369-2023; Purnell,
Philip/A-3080-2009
OI Purnell, Philip/0000-0003-3146-2737
FU GCRF [AH/S011501/1] Funding Source: UKRI
CR Adams J, 1998, NATURE, V396, P615, DOI 10.1038/25219
[Anonymous], 2021, Nature, DOI 10.1038/d41586-021-02406-9
[Anonymous], 2021, WORLD U RANK
[Anonymous], 2014, The road to dignity by 2030: ending poverty, transforming all lives and protecting the planet: Synthesis report of the Secretary-General on the post-2015 sustainable development agenda
Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062
Armitage Caroline, 2020, DataverseNO, DOI 10.18710/98CMDR
Armitage CS, 2020, QUANT SCI STUD, V1, P1092, DOI 10.1162/qss_a_00071
Association of Dutch Universities, 2019, SDG DASHB IMP DUTCH
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Blasco N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010089
Clarivate, 2020, WEB SCI J EV PROC SE
Confraria H, 2021, PRO INT CONF SCI INF, P281
Digital Science, 2021, WHICH PUBL DAT DOES
Duran-Silva Nicolau, 2019, Zenodo
Elsevier SciDev.Net, 2015, SUST SCI GLOB LANDSC
European Commission, 2020, CORDIS-EU Research Results
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Gläser J, 2017, SCIENTOMETRICS, V111, P981, DOI 10.1007/s11192-017-2296-z
Harzing AW, 2019, SCIENTOMETRICS, V120, P341, DOI 10.1007/s11192-019-03114-y
Herzog C, 2020, QUANT SCI STUD, V1, P387, DOI 10.1162/qss_a_00020
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hook DW., 2018, FRONT RES METR ANAL, V3, P23, DOI DOI 10.3389/FRMA.2018.00023
International Science Council, 2015, REV TARGETS SUSTAINA
James Chris, 2021, Mendeley Data, V4
Jayabalasingham B., 2019, **DATA OBJECT**, VV1, DOI [10.17632/87TXKW7KHS.1, 10.17632/87txkw7khs.1]
Jetten T.H., 2019, EXPLORATIVE STUDY U, DOI [10.18174/476199, DOI 10.18174/476199]
Huang CK, 2020, QUANT SCI STUD, V1, P445, DOI 10.1162/qss_a_00031
Körfgen A, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10093295
Lane A., 2017, Journal of Learning for Development-JL4D, V4
Nakamura M., 2019, Navigating the structure of research on sustainable development goals
Provencal S., 2021, POLICY BRIEF J, DOI [10.2777/03227, DOI 10.2777/03227]
Purnell Philip J, 2022, Zenodo, DOI 10.5281/ZENODO.6861335
Rafols I., 2021, SocArXiv, DOI DOI 10.31235/OSF.IO/YFQBD
Schotten M., 2017, Research Analytics. Boosting University Productivity and Competitiveness through Scientometrics, P31, DOI [10.1201/9781315155890-3, DOI 10.1201/9781315155890-3]
SIRIS Academic, 2020, IS EU FUND RES INN E
Thelwall M, 2018, J INFORMETR, V12, P430, DOI 10.1016/j.joi.2018.03.006
Times Higher Education, 2021, IMP RANK 2021 METH
van Nes F, 2010, EUR J AGEING, V7, P313, DOI 10.1007/s10433-010-0168-y
Van Raan A, 1999, SCIENTOMETRICS, V45, P417, DOI 10.1007/BF02457601
Vanderfeesten M., 2017, SOC RELEVANT IMPACT, DOI [DOI 10.5281/ZENODO.1045839, 10.5281/ZENODO.1045839]
Vanderfeesten Maurice, 2020, Zenodo
Visser M, 2021, QUANT SCI STUD, V2, P20, DOI [10.1162/qss_a_00112, 10.1162/qes_a_00112]
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2378, DOI 10.1002/asi.22748
Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5
Wastl J., 2020, Contextualizing Sustainable Development Research, DOI DOI 10.6084/M9.FIGSHARE.12200081
NR 45
TC 6
Z9 7
U1 7
U2 16
PU MIT PRESS
PI CAMBRIDGE
PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA
EI 2641-3337
J9 QUANT SCI STUD
JI Quant. Sci. Stud.
PD DEC 20
PY 2022
VL 3
IS 4
BP 976
EP 1002
DI 10.1162/qss_a_00215
PG 27
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA 9B9MZ
UT WOS:000935055300005
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Pan, X
Zuo, DJ
Zhang, WJ
Hu, LH
Wang, HX
Jiang, J
AF Pan, Xing
Zuo, Dujun
Zhang, Wenjin
Hu, Lunhu
Wang, Huixiong
Jiang, Jing
TI Research on Human Error Risk Evaluation Using Extended Bayesian Networks
with Hybrid Data
SO RELIABILITY ENGINEERING & SYSTEM SAFETY
LA English
DT Article
DE Bayesian Network; Human Reliability Analysis; Hybrid Data
ID HUMAN RELIABILITY-ANALYSIS; EPISTEMIC UNCERTAINTY; CREDAL NETWORKS;
PROBABILITY; ALGORITHM; TANKER; SETS; 2U
AB Bayesian networks (BNs) play an important role in performing uncertainty analysis. BNs, as a sort of directed acyclic graph with probabilities, can establish causality and clarify complex uncertain relationships to benefit risk analyze. A large number of accurate data must be obtained for precisely reasoning, but it is often difficult in human reliability analysis (HRA). Inadequate data on space launch sites make it necessary to utilize different types of data in engineering. This paper studies the uncertainty in BNs and classifies the using data. Besides, the concept of Extended BNs containing the most likely probabilities and probability boundaries is proposed to address the hybrid data problem in BNs. Accordingly, the mathematical model and usage of the Extended BNs are also developed to fuse different types of data in HRA. To verify the rationality and accuracy of this method, the Extended BN with hybrid data is applied to HRA for fueling task in space launch sites. Finally, the case study shows the validity of the uncertainty expression in Extended BNs, and the Extended BNs perform well in risk prediction and risk avoidance.
C1 [Pan, Xing; Zuo, Dujun; Zhang, Wenjin; Hu, Lunhu; Wang, Huixiong; Jiang, Jing] Beihang Univ, Sch Reliabil & Syst Engn, Beijing, Peoples R China.
[Jiang, Jing] China Astronauts Res & Training Ctr, Natl Key Lab Human Factors Engn, Beijing, Peoples R China.
C3 Beihang University
RP Zhang, WJ (corresponding author), 37 Xueyuan Rd, Beijing 100191, Peoples R China.
EM panxing@buaa.edu.cn; zuodujun@buaa.edu.cn; zwjok@buaa.edu.cn;
hulunhu@buaa.edu.cn; wanghuixiong@buaa.edu.cn; jiangjingbuaa@buaa.edu.cn
RI Wang, Huixiong/M-3891-2019; XIONG, LIU/JOK-5886-2023; Zuo,
Dujun/ABA-1204-2020; zhu, yujie/KBC-4009-2024
OI Wang, Huixiong/0000-0002-8954-1967;
FU National Natural Science Foundation of China [72071011, 71571004]; Open
Funding Project of National Key Laboratory of Human Factors Engineering
[6142222190307]
FX This work is supported by the National Natural Science Foundation of
China under Grants No. 72071011/No. 71571004, and the Open Funding
Project of National Key Laboratory of Human Factors Engineering under
Grant No. 6142222190307.
CR Amin MT, 2018, CHEM ENG SCI, V189, P191, DOI 10.1016/j.ces.2018.05.045
Antonucci Alessandro, 2013, Symbolic and Quantitative Approaches to Reasoning with Uncertainty. 12th European Conference, ECSQARU 2013. Proceedings. LNCS 7958, P13, DOI 10.1007/978-3-642-39091-3_2
Antonucci A, 2008, INT J APPROX REASON, V49, P345, DOI 10.1016/j.ijar.2008.02.005
Antonucci A, 2015, INT J APPROX REASON, V58, P25, DOI 10.1016/j.ijar.2014.10.003
Antonucci A, 2010, INT J APPROX REASON, V51, P474, DOI 10.1016/j.ijar.2010.01.007
Antonucci A, 2009, INT J APPROX REASON, V50, P666, DOI 10.1016/j.ijar.2009.01.005
Atanassov K. T., 1986, Fuzzy Sets and Systems, V20, P87, DOI 10.1016/S0165-0114(86)80034-3
Cozman FG, 2000, ARTIF INTELL, V120, P199, DOI 10.1016/S0004-3702(00)00029-1
Deng XY, 2018, ANN NUCL ENERGY, V117, P183, DOI 10.1016/j.anucene.2018.03.028
[董正国 Dong Zhengguo], 2012, [系统工程, Systems Engineering], V30, P123
DUBOIS D, 1989, EUR J OPER RES, V40, P135, DOI 10.1016/0377-2217(89)90326-3
DUBOIS D, 1993, SECOND IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, P1059, DOI 10.1109/FUZZY.1993.327367
El-Gheriani M, 2017, PROCESS SAF ENVIRON, V106, P52, DOI 10.1016/j.psep.2016.12.004
Eleye-Datubo AG, 2006, RISK ANAL, V26, P695, DOI 10.1111/j.1539-6924.2006.00775.x
Fagiuoli E, 1998, ARTIF INTELL, V106, P77, DOI 10.1016/S0004-3702(98)00089-7
Ge YF, 2013, 2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), P588, DOI 10.1109/FSKD.2013.6816265
Groth KM, 2013, RELIAB ENG SYST SAFE, V115, P33, DOI 10.1016/j.ress.2013.02.015
Guo P, 2010, EUR J OPER RES, V203, P444, DOI 10.1016/j.ejor.2009.07.020
Guoxing W, 2005, SPACE INT, V2, P18
Halliwell J, 2002, PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, P596, DOI 10.1109/FUZZ.2002.1005059
Hancock JM, 2004, BAYESIAN NETWORK BEL
Hu L, 2020, IEEE SYST J, P1
Hu LH, 2020, RELIAB ENG SYST SAFE, V198, DOI 10.1016/j.ress.2020.106874
Ide JS, 2008, INT J APPROX REASON, V48, P275, DOI 10.1016/j.ijar.2007.09.003
Jia S. K, 2015, SCI TECHNOLOGY MANAG, V1, P193
Junguang Z, 2012, J IND TECHNOLOGICAL, V12, P66
Kang R, 2016, CHINESE J AERONAUT, V29, P571, DOI 10.1016/j.cja.2016.04.004
Kuhnert PM, 2010, ECOL LETT, V13, P900, DOI 10.1111/j.1461-0248.2010.01477.x
Li YT, 2020, PROCESS SAF ENVIRON, V134, P36, DOI 10.1016/j.psep.2019.11.033
Merz B, 2005, J HYDROL, V309, P114, DOI 10.1016/j.jhydrol.2004.11.015
Musharraf M, 2018, SAFETY SCI, V107, P216, DOI 10.1016/j.ssci.2017.07.010
Musharraf M, 2014, RELIAB ENG SYST SAFE, V132, P1, DOI 10.1016/j.ress.2014.06.016
Musharraf M, 2013, SAFETY SCI, V59, P19, DOI 10.1016/j.ssci.2013.04.001
Norazahar N, 2018, APPL OCEAN RES, V79, P1, DOI 10.1016/j.apor.2018.07.002
Norazahar N, 2018, OCEAN ENG, V147, P621, DOI 10.1016/j.oceaneng.2017.09.044
O'Hagan A, 2004, RELIAB ENG SYST SAFE, V85, P239, DOI 10.1016/j.ress.2004.03.014
Poussin H., 2017, Journal of Space Safety Engineering, V4, P45, DOI 10.1016/j.jsse.2017.03.001
Qiao WL, 2020, RISK ANAL, V40, P957, DOI 10.1111/risa.13444
Ren J, 2009, J OFFSHORE MECH ARCT, V131, DOI 10.1115/1.3124123
Shuiwang C., 1994, CRYOGENICS, V79, P1
Siu NO, 1998, RELIAB ENG SYST SAFE, V62, P89, DOI 10.1016/S0951-8320(97)00159-2
[宋建军 Song Jianjun], 2012, [航天控制, Aerospace Control], V30, P76
Sykora M, 2018, RELIAB ENG SYST SAFE, V169, P312, DOI 10.1016/j.ress.2017.09.006
Tessem B., 1992, International Journal of Approximate Reasoning, V7, P95, DOI 10.1016/0888-613X(92)90006-L
Ung ST, 2018, SAFETY SCI, V104, P16, DOI 10.1016/j.ssci.2017.12.035
Wei Song, 2015, ICIC Express Letters, V9, P671
Xiong Wen-tao, 2009, Computer Engineering and Applications, V45, P27, DOI 10.3778/j.issn.1002-8331.2009.31.009
Yang ZL, 2019, OCEAN ENG, V186, DOI 10.1016/j.oceaneng.2019.05.077
Zadeh L. A., 1978, Fuzzy Sets and Systems, V1, P3, DOI 10.1016/0165-0114(78)90029-5
ZADEH LA, 1984, INFORM PROCESS MANAG, V20, P363, DOI 10.1016/0306-4573(84)90067-0
Zarei E, 2019, J LOSS PREVENT PROC, V57, P7, DOI 10.1016/j.jlp.2018.10.011
Zarei E, 2019, J LOSS PREVENT PROC, V57, P142, DOI 10.1016/j.jlp.2018.11.015
Zhang GZ, 2018, SAFETY SCI, V102, P211, DOI 10.1016/j.ssci.2017.10.016
[智文书 Zhi Wenshu], 2013, [低温工程, Cryogenics], P31
NR 54
TC 9
Z9 9
U1 5
U2 40
PU ELSEVIER SCI LTD
PI London
PA 125 London Wall, London, ENGLAND
SN 0951-8320
EI 1879-0836
J9 RELIAB ENG SYST SAFE
JI Reliab. Eng. Syst. Saf.
PD MAY
PY 2021
VL 209
AR 107336
DI 10.1016/j.ress.2020.107336
EA JAN 2021
PG 13
WC Engineering, Industrial; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Operations Research & Management Science
GA SV6DB
UT WOS:000663909200002
DA 2024-09-05
ER
PT J
AU Leoni, RA
Alves-Silva, L
De Araujo , HI Jr
AF Leoni, Ronaldo A.
Alves-Silva, Lais
De Araujo-Junior, Herminio Ismael
TI Overview of computational methods in taphonomy based on the combination
of bibliometric analysis and natural language
SO ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS
LA English
DT Article
DE artificial intelligence; google scholar; machine learning; paleontology;
web scraping; scopus
ID CUT MARKS; BONE
AB Artificial intelligence tools are new in taphonomy and are growing fast. They are being used mainly to investigate bone surface marks. In order to investigate this subject, a bibliometric study was made to understand the growing rate of this intersectional field, the future, and gaps in the field until now. From Scopus and Google Scholar metadata, graphs were made to describe the data, and inferential statistics were made by regression with the Ordinary Least Squares method. Exploratory analysis with word clouds, topic modeling, and natural language processing with Latent Dirichlet Allocation as a method were also made using the entire corpus from the papers. From the first register until 2023, we found eight articles in Scopus and 32 in Google Scholar; the majority of the studies and the most cited were from Spain. The studies are growing fast from 2016 to 2018, and the regression shows that growth can be maintained in the coming years. Exploratory analysis shows the most frequent words are marks, models, data, and bone. Topic modeling shows that the studies are highly concentrated on similar problems and the tools to solve them, revealing that there is much more to explore with computational tools in taphonomy and paleontology as well.
C1 [Leoni, Ronaldo A.; Alves-Silva, Lais; De Araujo-Junior, Herminio Ismael] Univ Estado Rio de Janeiro, Programa Posgrad Geociencias, Rua Sao Francisco Xavier 524, BR-20950000 Rio De Janeiro, RJ, Brazil.
C3 Universidade do Estado do Rio de Janeiro
RP Leoni, RA (corresponding author), Univ Estado Rio de Janeiro, Programa Posgrad Geociencias, Rua Sao Francisco Xavier 524, BR-20950000 Rio De Janeiro, RJ, Brazil.
EM ronaldoaleoni@gmail.com
RI ; Araujo-Junior, Herminio/E-5832-2013
OI Alves Silva, Lais/0000-0001-9692-9989; Araujo-Junior,
Herminio/0000-0003-4371-0611
FU Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES
[88887.683402/2022-00, 88887.602327/2021-00]; Fundaco de Amparo a
Pesquisa do Estado do Rio de Janeiro [E-26/201.371/2021,
E-26/010.002218/2019]; Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico -CNPq [305576/2021-6]; UERJ
FX We thank Mr. Eroaldo G. S. Junior for his support on the final
development of the web scraping technique and useful discussions in the
early stages of this work, and Mr. Zainal Salam for his several valuable
suggestions and elucidations to improve the writing during the final
stage of writing this manuscript. The authors are grateful to
Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES for
funding RAL [CNPq; grants: 88887.683402/2022-00] and LAS (process number
88887.602327/2021-00) ; HIAJR thanks to Fundac & atilde;o de Amparo a
Pesquisa do Estado do Rio de Janeiro (processes n degrees
E-26/201.371/2021 and E-26/010.002218/2019) , Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico -CNPq (process n degrees
305576/2021-6) and UERJ (Prociencia grant) .
CR ARRIAZAMC ARAMENDIJ, Quat Sci
Atenstaedt R, 2012, BRIT J GEN PRACT, V62, P148, DOI 10.3399/bjgp12X630142
Barde BV, 2017, 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), P745, DOI 10.1109/ICCONS.2017.8250563
Beel J, 2009, PRO INT CONF SCI INF, V1, P230
BEHRENSMEYER AK, 1986, NATURE, V319, P768, DOI 10.1038/319768a0
BIRD S, 2001, NLTK Project. Natural Language Toolkit Documentation
Byeon W, 2019, J COMPUT SCI-NETH, V32, P36, DOI 10.1016/j.jocs.2019.02.005
Arriaza MC, 2016, QUATERNARY SCI REV, V139, P43, DOI 10.1016/j.quascirev.2016.03.005
Cifuentes-Alcobendas G, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-55439-6
Courtenay LA, 2019, QUATERN INT, V517, P55, DOI 10.1016/j.quaint.2018.12.019
Courtenay LA, 2019, PALAEOGEOGR PALAEOCL, V522, P28, DOI 10.1016/j.palaeo.2019.03.007
Domínguez-Rodrigo M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-24071-1
Domínguez-Rodrigo M, 2017, J ARCHAEOL SCI, V86, P14, DOI 10.1016/j.jas.2017.08.001
DOMINGUEZ-RODRIGOM, 2019, Successfulclassificationofexperimentalbonesurfacemodifications(BSM)throughmachinelearningalgorithms:asolutiontothecontroversialuseofBSMinpaleoanthropology?, VArchaeolAnthropolSci11, P2711
DOMINGUEZ-RODRIGOM&FERNANDEZ-LOPEZS ALCALAL, 2011, JournalofTaphonomy9, P1
DONTHUN KUMARS, 2021, Howtoconductabibliometricanalysis:Anoverviewandguidelines, VJBusRes133, P285
FARIASMT ANGELUCIACB&PASSARELLIB, 2021, Webscrapinganddatascienceinappliedresearchincommunication:Astudyononlinereviews.RevistaObservatorio7:a1en.FERNANDEZ-JALVO Y&ANDREWSP. 2016. Atlasof TaphonomicIdentifications1001+ImagesofFossilandRecentMammalBoneModification(VertebratePaleobiologyandPaleoanthropologySeries)
Fernandez-Lopez Sixto Rafael, 2002, P27
FERNANDEZ-LOPEZSR, 2000, FERNANDEZ-LOPESSR.2005.Alteraciontafonomicaytafonomiaevolutiva, P149
JIANGH QIANGM&LINP, 2016, Atopicmodelingbasedbibliometricexplorationofhydropowerresearch, VRenewSustainEnergyRev57, P226
JIMENEZ-GARCIAB AZNARTEJ, 2020, Deeplearningimprovestaphonomicresolution:highaccuracyindifferentiatingtoothmarksmadebylionsandjaguars, VJRSocInterface17
KAESLERRL, 1993, AWindowofOpportunity:PeeringIntoaNewCenturyofPaleontology, VJPaleontol67, P329
Li X, 2021, J INF SCI, V47, P161, DOI 10.1177/0165551519877049
Lin LF, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204056
Martín-Martín A, 2021, SCIENTOMETRICS, V126, P871, DOI 10.1007/s11192-020-03690-4
Martín-Perea DM, 2020, PEERJ, V8, DOI 10.7717/peerj.8767
Mohammed S.H., 2020, Indonesian Journal of Electrical Engineering and Computer Science, V19, P353, DOI [10.11591/ijeecs.v19.i1, 10.11591/ijeecs.v19.i1.pp353-362, DOI 10.11591/IJEECS.V19.I1.PP353-362]
Noruzi A, 2005, LIBRI, V55, P170, DOI 10.1515/LIBR.2005.170
OLSEN SL, 1988, J ARCHAEOL SCI, V15, P535, DOI 10.1016/0305-4403(88)90081-7
Pineda A, 2014, J ARCHAEOL SCI, V50, P84, DOI 10.1016/j.jas.2014.06.018
Pizarro-Monzo M, 2020, ARCHAEOL ANTHROP SCI, V12, DOI 10.1007/s12520-019-00966-6
Rehurek R., 2010, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
Richardson L., 2007, Beautiful soup documentation
Rovira C, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13020031
SANTANA TS, 2020, AN 14 WOM INF TECHN, P279
Santos BS, 2020, DATA BRIEF, V32, DOI 10.1016/j.dib.2020.106178
Scaccia JP, 2021, IMPLEMENT SCI, V16, DOI 10.1186/s13012-021-01120-4
Sequeiros L., 1998, LLULL, V21, P517
SPICHAK E, 2012, P 14 WORKSH FORM TEC, P20
Wang B, 2023, BIOLOGY-BASEL, V12, DOI 10.3390/biology12010016
Wang JW, 2022, DRUG DISCOV TODAY, V27, DOI 10.1016/j.drudis.2022.05.023
Xu YX, 2020, IEEE ACCESS, V8, P172972, DOI 10.1109/ACCESS.2020.3024819
NR 42
TC 0
Z9 0
U1 0
U2 0
PU ACAD BRASILEIRA DE CIENCIAS
PI RIO JANEIRO
PA RUA ANFILOFIO DE CARVALHO, 29, 3 ANDAR, 20030-060 RIO JANEIRO, BRAZIL
SN 0001-3765
EI 1678-2690
J9 AN ACAD BRAS CIENC
JI An. Acad. Bras. Cienc.
PY 2024
VL 96
IS 3
AR e20230789
DI 10.1590/0001-3765202420230789
PG 15
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA A9J4F
UT WOS:001285627100001
PM 39109751
DA 2024-09-05
ER
PT C
AU Juric, M
Sandic, A
Brcic, M
AF Juric, Mislav
Sandic, Agneza
Brcic, Mario
BE Koricic, M
Skala, K
Car, Z
CincinSain, M
Sruk, V
Skvorc, D
Ribaric, S
Jerbic, B
Gros, S
Vrdoljak, B
Mauher, M
Tijan, E
Katulik, T
Pale, P
Grbac, TG
Fijan, NF
Boukalov, A
Cisic, D
Gradisnik, V
TI AI safety: state of the field through quantitative lens
SO 2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND
ELECTRONIC TECHNOLOGY (MIPRO 2020)
LA English
DT Proceedings Paper
CT 43rd International Convention on Information, Communication and
Electronic Technology (MIPRO)
CY SEP 28-OCT 02, 2020
CL Opatija, CROATIA
DE AI safety; technical AI safety; research; surveys; bibliometrics
ID INTELLIGENCE; SECURITY
AB Last decade has seen major improvements in the performance of artificial intelligence which has driven wide-spread applications. Unforeseen effects of such mass-adoption has put the notion of AI safety into the public eye. AI safety is a relatively new field of research focused on techniques for building AI beneficial for humans. While there exist survey papers for the field of AI safety, there is a lack of a quantitative look at the research being conducted. The quantitative aspect gives a data-driven insight about the emerging trends, knowledge gaps and potential areas for future research. In this paper, bibliometric analysis of the literature finds significant increase in research activity since 2015. Also, the field is so new that most of the technical issues are open, including: explainability and its long-term utility, and value alignment which we have identified as the most important long-term research topic. Equally, there is a severe lack of research into concrete policies regarding AI. As we expect AI to be the one of the main driving forces of changes, AI safety is the field under which we need to decide the direction of humanity's future.
C1 [Juric, Mislav; Sandic, Agneza; Brcic, Mario] Univ Zagreb, Fac Elect Engn & Comp, Zagreb, Croatia.
C3 University of Zagreb
RP Juric, M (corresponding author), Univ Zagreb, Fac Elect Engn & Comp, Zagreb, Croatia.
EM mislav.juric2@fer.hr; agneza.sandic@fer.hr; mario.brcic@fer.hr
RI Brčić, Mario/L-3415-2019
OI Brčić, Mario/0000-0002-7564-6805
CR Abel David, 2016, WORKSHOPS 30 AAAI C
Adadi A, 2018, IEEE ACCESS, V6, P52138, DOI 10.1109/ACCESS.2018.2870052
Akhtar N, 2018, IEEE ACCESS, V6, P14410, DOI 10.1109/ACCESS.2018.2807385
Amodei D., 2016, ABS160606565 CORR
[Anonymous], 2017, AAAI WORKSH
Awad E, 2020, P NATL ACAD SCI USA, V117, P2332, DOI 10.1073/pnas.1911517117
Awad E, 2018, NATURE, V563, P59, DOI 10.1038/s41586-018-0637-6
Babcock J., 2017, ARXIV170708476 CS
Barn BS, 2019, J INF COMMUN ETHICS, V18, P38, DOI 10.1108/JICES-04-2019-0039
Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012
Brundage M., 2016, ARXIV160808196 CS
Cath C, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2018.0080
Cath C, 2018, SCI ENG ETHICS, V24, P505, DOI 10.1007/s11948-017-9901-7
Cervantes JA, 2020, SCI ENG ETHICS, V26, P501, DOI 10.1007/s11948-019-00151-x
Chakraborty A., 2018, ARXIV181000069 CS ST
Christiano P., 2018, ARXIV181008575 CS ST
Coates DL, 2019, IBM J RES DEV, V63, DOI 10.1147/JRD.2019.2915062
Coglianese C, 2019, ADMIN LAW REV, V71, P1
Dafoe A., 2018, GOVERNANCE RES AGEND
Dosilovic FK, 2018, 2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P210, DOI 10.23919/MIPRO.2018.8400040
Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002
Everitt T., 2018, ARXIV180501109 CS
García J, 2015, J MACH LEARN RES, V16, P1437
Guidotti R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3236009
Hagerty A., 2019, ARXIV190707892 CS
Hubinger E., 2019, ARXIV190601820 CS
Israelsen BW, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3267338
Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2
LaCroix T., 2019, ARXIV200100006 CS ST
Leike J, 2017, ARXIV171109883 CS
Leike J., 2018, ARXIV181107871 CS ST
lrving G., 2018, ARXIV180500899 CS ST
medium, BUILDING SAFE ARTIFI
Mehrabi N, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3457607
Mittelstadt BD, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716679679
Morley J., 2019, SSRN
Morley J, 2020, SCI ENG ETHICS, V26, P2141, DOI 10.1007/s11948-019-00165-5
Preece A, 2018, INTELL SYST ACCOUNT, V25, P63, DOI 10.1002/isaf.1422
Ramamoorthy A., 2018, ITU J, V1, P77
Rosenfeld A, 2019, AUTON AGENT MULTI-AG, V33, P673, DOI 10.1007/s10458-019-09408-y
Rothenberger L., 2019, RELEVANCE ETHLCAL GU
Russell S, 2015, AI MAG, V36, P105, DOI 10.1609/aimag.v36i4.2577
Scott P. J., 2019, ARXIV190707771 CS
Soares N, 2017, FRONT COLLECT, P103, DOI 10.1007/978-3-662-54033-6_5
Soares Nate, 2015, WORKSH 29 AAAI C ART, P74
Sotala K, 2015, PHYS SCRIPTA, V90, DOI 10.1088/0031-8949/90/1/018001
Spiekermann S, 2019, P IEEE, V107, P600, DOI 10.1109/JPROC.2018.2866769
Taylor J., 2016, Ethics of Artificial Intelligence
Townsend J, 2020, IEEE T NEUR NET LEAR, V31, P3456, DOI 10.1109/TNNLS.2019.2944672
Wang XM, 2019, J PARALLEL DISTR COM, V130, P12, DOI 10.1016/j.jpdc.2019.03.003
Yampolskiy R. V, 2019, ARXIV190703869 CS
Yampolskiy R, 2013, TOPOI-INT REV PHILOS, V32, P217, DOI 10.1007/s11245-012-9128-9
Yu XY, 2019, IEEE T NEUR NET LEAR, V30, P2805, DOI 10.1109/TNNLS.2018.2886017
Zhang J. M., 2019, ARXIV190610742 CS ST
Zhang JL, 2020, IEEE T NEUR NET LEAR, V31, P2578, DOI 10.1109/TNNLS.2019.2933524
Zhang X., 2020, ARXIV200104861 CS
NR 56
TC 11
Z9 12
U1 3
U2 7
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-953-233-099-1
PY 2020
BP 1254
EP 1259
PG 6
WC Engineering, Electrical & Electronic; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Telecommunications
GA BT0NT
UT WOS:000790326400227
DA 2024-09-05
ER
PT J
AU Dunkel, J
Dominguez, D
Borzdynski, OG
Sanchez, A
AF Dunkel, Juergen
Dominguez, David
Borzdynski, oscar G.
Sanchez, Angel
TI Solid Waste Analysis Using Open-Access Socio-Economic Data
SO SUSTAINABILITY
LA English
DT Article
DE solid waste management; OECD datasets; machine learning; forecasting
models on countries; clustering on countries; smart cities
ID DEVELOPING-COUNTRIES; NEURAL-NETWORKS; GENERATION; MANAGEMENT;
PREDICTION
AB Nowadays, problems related with solid waste management become a challenge for most countries due to the rising generation of waste, related environmental issues, and associated costs of produced wastes. Effective waste management systems at different geographic levels require accurate forecasting of future waste generation. In this work, we investigate how open-access data, such as provided from the Organisation for Economic Co-operation and Development (OECD), can be used for the analysis of waste data. The main idea of this study is finding the links between socio-economic and demographic variables that determine the amounts of types of solid wastes produced by countries. This would make it possible to accurately predict at the country level the waste production and determine the requirements for the development of effective waste management strategies. In particular, we use several machine learning data regression (Support Vector, Gradient Boosting, and Random Forest) and clustering models (k-means) to respectively predict waste production for OECD countries along years and also to perform clustering among these countries according to similar characteristics. The main contributions of our work are: (1) waste analysis at the OECD country-level to compare and cluster countries according to similar waste features predicted; (2) the detection of most relevant features for prediction models; and (3) the comparison between several regression models with respect to accuracy in predictions. Coefficient of determination (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), respectively, are used as indices of the efficiency of the developed models. Our experiments have shown that some data pre-processings on the OECD data are an essential stage required in the analysis; that Random Forest Regressor (RFR) produced the best prediction results over the dataset; and that these results are highly influenced by the quality of available socio-economic data. In particular, the RFR model exhibited the highest accuracy in predictions for most waste types. For example, for "municipal " waste, it produced, respectively, R-2 = 1 and MAPE=4.31 global error values for the test set; and for "household " waste, it, respectively, produced R-2 = 1 and MAPE=3.03. Our results indicate that the considered models (and specially RFR) all are effective in predicting the amount of produced wastes derived from input data for the considered countries.
C1 [Dunkel, Juergen] Hsch Hannover, Comp Sci Dept, D-30459 Hannover, Germany.
[Dominguez, David; Borzdynski, oscar G.] Univ Autonoma Madrid, Comp Engn Dept, Madrid 28049, Spain.
[Sanchez, Angel] Univ Rey Juan Carlos, Comp Sci & Stat Dept, Mostoles 28933, Spain.
C3 Hochschule Hannover-University of Applied Sciences & Arts; Autonomous
University of Madrid; Universidad Rey Juan Carlos
RP Dunkel, J (corresponding author), Hsch Hannover, Comp Sci Dept, D-30459 Hannover, Germany.
EM juergen.dunkel@hs-hannover.de; david.dominguez@uam.es;
oscar.gomezb@estudiante.uam.es; angel.sanchez@urjc.es
RI Dominguez Carreta, David Renato/L-8715-2014; Sanchez, Angel/B-8271-2012
OI Dominguez Carreta, David Renato/0000-0003-0911-1834; Gomez Borzdynski,
Oscar/0000-0001-6598-3448; Dunkel, Jurgen/0000-0003-3567-1173; Sanchez,
Angel/0000-0001-9069-6985
FU Spanish Ministry of Science and Innovation [RTI2018-098019-B-I00,
PID2020-114867RB-I00]; CYTED Network "IberoAmerican Thematic Network on
ICT Applications for Smart Cities" [518RT0559]
FX This work was funded by the Spanish Ministry of Science and Innovation
projects with Grants No.: RTI2018-098019-B-I00 and PID2020-114867RB-I00;
and by the CYTED Network "IberoAmerican Thematic Network on ICT
Applications for Smart Cities" with Grant No.: 518RT0559.
CR Abbasi M, 2016, WASTE MANAGE, V56, P13, DOI 10.1016/j.wasman.2016.05.018
Abdallah M, 2020, WASTE MANAGE, V109, P231, DOI 10.1016/j.wasman.2020.04.057
Abualigah L, 2022, EXPERT SYST APPL, V191, DOI 10.1016/j.eswa.2021.116158
Abualigah LMQ., 2019, FEATURE SELECTION EN, DOI [DOI 10.1007/978-3-030-10674-4, 10.1007/978-3-030-10674-4]
Agovino M, 2016, LAND USE POLICY, V57, P669, DOI 10.1016/j.landusepol.2016.06.027
[Anonymous], 2019, Solid Waste Management
Antanasijevic D, 2013, SUSTAIN SCI, V8, P37, DOI 10.1007/s11625-012-0161-9
Azevedo BD, 2021, WASTE MANAGE, V120, P772, DOI 10.1016/j.wasman.2020.11.001
BASRI HB, 1995, WASTE MANAGE RES, V13, P67, DOI 10.1177/0734242X9501300108
Beigl P, 2008, WASTE MANAGE, V28, P200, DOI 10.1016/j.wasman.2006.12.011
BOWLES MICHAEL., 2015, Machine learning in Python: Essential techniques for predictive analysis
Caruso G, 2019, SOC SCI-BASEL, V8, DOI 10.3390/socsci8060186
Cubillos M, 2021, WASTE MANAGE, V127, P90, DOI 10.1016/j.wasman.2021.04.011
Cubillos M, 2020, WASTE MANAGE, V115, P8, DOI 10.1016/j.wasman.2020.06.046
Goel S., 2017, Modelling Trends in Solid and Hazardous Waste Management, P35, DOI [10.1007/978-981-10-2410-8_3, DOI 10.1007/978-981-10-2410-8_3]
Guleryuz D, 2020, ENVIRON SCI TECHNOL, V3, P10
Guo HN, 2021, BIORESOURCE TECHNOL, V319, DOI 10.1016/j.biortech.2020.124114
Keser S, 2012, WASTE MANAGE, V32, P359, DOI 10.1016/j.wasman.2011.10.017
Kolekar KA, 2017, GLOBAL NEST J, V19, P511
Kolekar KA, 2016, PROCEDIA ENVIRON SCI, V35, P238, DOI 10.1016/j.proenv.2016.07.087
Kontokosta CE, 2018, COMPUT ENVIRON URBAN, V70, P151, DOI 10.1016/j.compenvurbsys.2018.03.004
Kulisz M, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122310088
Magazzino C, 2021, UTIL POLICY, V72, DOI 10.1016/j.jup.2021.101256
Márquez MY, 2008, RESOUR CONSERV RECY, V52, P1299, DOI 10.1016/j.resconrec.2008.07.011
Noori R, 2009, EXPERT SYST APPL, V36, P9991, DOI 10.1016/j.eswa.2008.12.035
Otoo D., 2014, ASIAN J SCI RES, V4, P460
Ramasami K., 2016, 2016 11 INT C EC VEH, DOI [10.1109/EVER.2016.7476430, DOI 10.1109/EVER.2016.7476424, 10.1109/ICCIC.2016.7919609, DOI 10.1109/EVER.2016.7476430]
Rodriguez-Galiano V, 2015, ORE GEOL REV, V71, P804, DOI 10.1016/j.oregeorev.2015.01.001
Sharma N., 2020, PROC INT C ADV MACHI, P267
Meza JKS, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e02810
Thanh NP, 2010, J ENVIRON MANAGE, V91, P2307, DOI 10.1016/j.jenvman.2010.06.016
Wu JS, 2012, ATLAS OF INTESTINAL STOMAS, P1, DOI 10.1007/978-0-387-78851-7_1
NR 32
TC 5
Z9 5
U1 1
U2 17
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD FEB
PY 2022
VL 14
IS 3
AR 1233
DI 10.3390/su14031233
PG 24
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA YZ0BC
UT WOS:000755147600001
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Morris, V
AF Morris, Victoria
TI Automated Language Identification of Bibliographic Resources
SO CATALOGING & CLASSIFICATION QUARTERLY
LA English
DT Article
DE Language identification; machine learning; automatic metadata
generation; metadata; legacy record enhancement
AB This article describes experiments in the use of machine learning techniques at the British Library to assign language codes to catalog records, in order to provide information about the language of content of the resources described. In the first phase of the project, language codes were assigned to 1.15 million records with 99.7% confidence. The automated language identification tools developed will be used to contribute to future enhancement of over 4 million legacy records.
C1 [Morris, Victoria] British Lib, Collect Metadata, Boston Spa, Wetherby, England.
RP Morris, V (corresponding author), British Lib, Collect Metadata, Boston Spa, Wetherby, England.
EM victoria.morris@bl.uk
OI Morris, Victoria/0000-0002-5954-6994
CR Ahmed B., 2004, P STUD FAC RES DAY S
Balazevic Ivana, 2016, ARXIV E PRINTS
Balazevic Ivana, 2016, ARXIV E PRINTS
Baldwin Timothy, 2010, Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, P229
Cavnar William B., 1994, Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, V161175
Dunning, 1994, COMPUTING RES LAB TE
Duvenhage Bernardt, 2019, ARXIV E PRINTS
GOLD EM, 1967, INFORM CONTROL, V10, P447, DOI 10.1016/S0019-9958(67)91165-5
Greenhill SJ, 2011, COMPUT LINGUIST, V37, P689, DOI 10.1162/COLI_a_00073
Library of Congress. Network Development and MARC Standards Office, 2007, MARC COD LIST LANG 2
Selamat A, 2016, J KING SAUD UNIV-COM, V28, P457, DOI 10.1016/j.jksuci.2014.12.004
Vatanen T, 2010, LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3423
Winkelmolen Fela, 2011, ITALY
NR 13
TC 3
Z9 3
U1 0
U2 9
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0163-9374
EI 1544-4554
J9 CAT CLASSIF Q
JI Cat. Classif. Q.
PY 2020
VL 58
IS 1
BP 1
EP 27
DI 10.1080/01639374.2019.1700201
PG 27
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA LD2IA
UT WOS:000525854000001
DA 2024-09-05
ER
PT J
AU Phillips, JL
Heneka, N
Hickman, L
Lam, L
Shaw, T
AF Phillips, Jane L.
Heneka, Nicole
Hickman, Louise
Lam, Lawrence
Shaw, Tim
TI Impact of a novel online learning module on specialist palliative care
nurses' pain assessment competencies and patients' reports of pain:
Results from a quasi-experimental pilot study
SO PALLIATIVE MEDICINE
LA English
DT Article
DE Palliative care; nurses; pain assessment; learning;
education-professional; intervention; translational medical research;
teaching materials; patient-centred outcome research; inpatient
ID SPACED EDUCATION; ASSESSMENT TOOLS; MANAGEMENT; BEHAVIOR; OUTCOMES;
STANDARDS; PROGRAM; HEALTH
AB Background: Pain is a complex multidimensional phenomenon moderated by consumer, provider and health system factors. Effective pain management cuts across professional boundaries, with failure to screen and assess contributing to the burden of unrelieved pain.
Aim: To test the impact of an online pain assessment learning module on specialist palliative care nurses' pain assessment competencies, and to determine whether this education impacted positively on palliative care patients' reported pain ratings.
Design: A quasi-experimental pain assessment education pilot study utilising 'Qstream (c)', an online methodology to deliver II case-based pain assessment learning scenarios, developed by an interdisciplinary expert panel and delivered to participants' work emails over a 28-day period in mid-2012. The 'Self-Perceived Pain Assessment Competencies' survey and chart audit data, including patient-reported pain intensity ratings, were collected pre-intervention (TI) and post-intervention (T2) and analysed using inferential statistics to determine key outcomes.
Setting/participants: Nurses working at two Australian inpatient specialist palliative care services in 2012.
Results: The results reported conform to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Guidelines. Participants who completed the education intervention (n = 34) increased their pain assessment knowledge, assessment tool knowledge and confidence to undertake a pain assessment (p < 0.001). Participants were more likely to document pain intensity scores in patients' medical records than non-participants (95% confidence interval = 7.3%-22.7%, p = 0.021). There was also a significant reduction in the mean patient-reported pain ratings between the admission and audit date at post-test of 1.5 (95% confidence interval = 0.7-2.3) units in pain score.
Conclusion: This pilot confers confidence of the education interventions capacity to improve specialist palliative care nurses' pain assessment practices and to reduce patient-rated pain intensity scores.
C1 [Phillips, Jane L.] Univ Notre Dame, Sch Nursing, Sydney, NSW 2007, Australia.
[Phillips, Jane L.] Cunningham Ctr Palliat Care, POB 944, Sydney, NSW 2007, Australia.
[Hickman, Louise] Univ Technol Sydney, Fac Hlth, Sydney, NSW 2007, Australia.
[Lam, Lawrence] Hong Kong Inst Educ, Dept Hlth & Phys Educ, Hong Kong, Hong Kong, Peoples R China.
[Lam, Lawrence] Univ Sydney, Sydney Med Sch, Sydney, NSW 2006, Australia.
[Shaw, Tim] Univ Sydney, Sydney Med Sch, WEDG, Sydney, NSW 2006, Australia.
C3 The University of Notre Dame Australia; University of Technology Sydney;
Education University of Hong Kong (EdUHK); University of Sydney;
University of Sydney
RP Phillips, JL (corresponding author), Cunningham Ctr Palliat Care, POB 944, Sydney, NSW 2007, Australia.
EM jane.phillips@nd.edu.au
RI Hickman, Louise D/AAV-1449-2020; Phillips, Jane/A-7780-2015; Lam,
Lawrence/HTP-2419-2023; Heneka, Nicole/AAP-1807-2021
OI Hickman, Louise D/0000-0002-5116-6559; Phillips,
Jane/0000-0002-3691-8230; Lam, Lawrence/0000-0001-6183-6854; Heneka,
Nicole/0000-0001-8102-1871; shaw, tim/0000-0003-0783-1918
FU Curran Foundation; St Vincent's Clinic Multidisciplinary Research Grant;
Cancer Institute New South Wales Academic Chairs Program
FX This research was undertaken, in part, with funding support from the
Curran Foundation, St Vincent's Clinic Multidisciplinary Research Grant
and the Cancer Institute New South Wales Academic Chairs Program.
CR Allard P, 2001, J Palliat Med, V4, P191, DOI 10.1089/109662101750290227
[Anonymous], 2000, A framework for development and evaluation of RCTs for complex interventions to improve health
[Anonymous], 2022, CLIN PRACTICE GUIDEL
Berry P H, 2000, Pain Manag Nurs, V1, P3, DOI 10.1053/jpmn.2000.5833
Bruera E, 2005, SUPPORT CARE CANCER, V13, P228, DOI 10.1007/s00520-004-0692-4
BRUNIER G, 1995, J PAIN SYMPTOM MANAG, V10, P436, DOI 10.1016/0885-3924(95)00020-Y
Carr E., 2003, Learning in Health and Social Care, V2, P6, DOI [DOI 10.1046/j.1473-6861.2003.00038.x, 10.1046/j.14736861.2003.00038.x, DOI 10.1046/J.14736861.2003.00038.X]
Cohen MZ, 2003, J PAIN SYMPTOM MANAG, V25, P519, DOI 10.1016/S0885-3924(03)00068-X
Cummings GG, 2011, J PAIN SYMPTOM MANAG, V41, P915, DOI 10.1016/j.jpainsymman.2010.07.017
Curran VR, 2005, MED EDUC, V39, P561, DOI 10.1111/j.1365-2929.2005.02173.x
de Rond MEJ, 2000, J PAIN SYMPTOM MANAG, V20, P424, DOI 10.1016/S0885-3924(00)00209-8
Dworkin RH, 2008, J PAIN, V9, P105, DOI 10.1016/j.jpain.2007.09.005
Dy SM, 2008, J CLIN ONCOL, V26, P3879, DOI 10.1200/JCO.2007.15.9517
Dy SM, 2010, CANCER J, V16, P500, DOI 10.1097/PPO.0b013e3181f45853
Eagar K, 2010, AUST HEALTH REV, V34, P186, DOI 10.1071/AH08718
Franck LS, 2009, PAIN RES MANAG, V14, P13, DOI 10.1155/2009/856587
Ger LP, 2004, J PAIN SYMPTOM MANAG, V27, P61, DOI 10.1016/j.jpainsymman.2003.05.006
Herr K, 2010, J PAIN SYMPTOM MANAG, V39, P803, DOI 10.1016/j.jpainsymman.2009.09.025
Hjermstad MJ, 2008, PALLIATIVE MED, V22, P895, DOI 10.1177/0269216308095701
Holen JC, 2006, J PAIN SYMPTOM MANAG, V32, P567, DOI 10.1016/j.jpainsymman.2006.05.025
Kerfoot BP, 2008, J UROLOGY, V179, P2351, DOI 10.1016/j.juro.2008.01.126
Kerfoot BP, 2010, AM J PREV MED, V39, P472, DOI 10.1016/j.amepre.2010.07.016
Kerfoot BP, 2010, J AM COLL SURGEONS, V211, P331, DOI 10.1016/j.jamcollsurg.2010.04.023
Kerfoot BP, 2010, J UROLOGY, V183, P678, DOI 10.1016/j.juro.2009.10.005
Kerns RD, 2003, J REHABIL RES DEV, V40, P371, DOI 10.1682/JRRD.2003.09.0371
Luckett T, 2014, ASIA-PAC J CLIN ONCO, V10, pE99, DOI 10.1111/ajco.12040
Mansouri M, 2007, J CONTIN EDUC HEALTH, V27, P6, DOI 10.1002/chp.88
McDonald MV, 2005, J PAIN SYMPTOM MANAG, V29, P474, DOI 10.1016/j.jpainsymman.2004.08.018
Miaskowski C, 2010, ONCOL NURS FORUM, V37, P27, DOI 10.1188/10.ONF.S1.27-32
Michie S, 2011, IMPLEMENT SCI, V6, DOI 10.1186/1748-5908-6-42
Norman GR., 2005, Evid Based Med, V10, P66, DOI [10.1136/ebm.10.3.66-a, DOI 10.1136/ebm.10.3.66-a]
Palliative Care Outcomes Collaboration, 2012, PAT CAR EXP SURV RES
Phillips JL, 2010, LEVEL QUALITY END OF
Schiavenato M, 2010, CLIN J PAIN, V26, P667, DOI 10.1097/AJP.0b013e3181e72507
Shaw TJ, 2012, BMJ QUAL SAF, V21, P819, DOI 10.1136/bmjqs-2011-000702
Shaw T, 2011, J CONTIN EDUC HEALTH, V31, P103, DOI 10.1002/chp.20113
Sherman Deborah Witt, 2004, J Contin Educ Nurs, V35, P107
Sherman DW, 2004, J CONTIN EDUC NURS, V35, P141
Stiles CR, 2010, J PAIN SYMPTOM MANAG, V40, P301, DOI 10.1016/j.jpainsymman.2009.12.011
Therapeutic Guidelines, 2010, THER GUID PALL CAR V
NR 40
TC 23
Z9 23
U1 1
U2 13
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0269-2163
EI 1477-030X
J9 PALLIATIVE MED
JI Palliat. Med.
PD JUN
PY 2014
VL 28
IS 6
BP 521
EP 529
DI 10.1177/0269216314527780
PG 9
WC Health Care Sciences & Services; Public, Environmental & Occupational
Health; Medicine, General & Internal
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Health Care Sciences & Services; Public, Environmental & Occupational
Health; General & Internal Medicine
GA AI9NH
UT WOS:000337258800008
PM 24685649
DA 2024-09-05
ER
PT C
AU Salatino, AA
Osborne, F
Thanapalasingam, T
Motta, E
AF Salatino, Angelo A.
Osborne, Francesco
Thanapalasingam, Thiviyan
Motta, Enrico
BE Doucet, A
Isaac, A
Golub, K
Aalberg, T
Jatowt, A
TI The CSO Classifier: Ontology-Driven Detection of Research Topics in
Scholarly Articles
SO DIGITAL LIBRARIES FOR OPEN KNOWLEDGE, TPDL 2019
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 23rd International Conference on Theory and Practice of Digital
Libraries (TPDL)
CY SEP 09-12, 2019
CL Oslo Metropolitan Univ, Oslo, NORWAY
HO Oslo Metropolitan Univ
DE Scholarly data; Digital libraries; Bibliographic data; Ontology; Text
mining; Topic detection; Word embeddings; Science of science
AB Classifying research papers according to their research topics is an important task to improve their retrievability, assist the creation of smart analytics, and support a variety of approaches for analysing and making sense of the research environment. In this paper, we present the CSO Classifier, a new unsupervised approach for automatically classifying research papers according to the Computer Science Ontology (CSO), a comprehensive ontology of research areas in the field of Computer Science. The CSO Classifier takes as input the metadata associated with a research paper (title, abstract, keywords) and returns a selection of research concepts drawn from the ontology. The approach was evaluated on a gold standard of manually annotated articles yielding a significant improvement over alternative methods.
C1 [Salatino, Angelo A.; Osborne, Francesco; Thanapalasingam, Thiviyan; Motta, Enrico] Open Univ, Knowledge Media Inst, Milton Keynes MK7 6AA, Bucks, England.
C3 Open University - UK
RP Salatino, AA (corresponding author), Open Univ, Knowledge Media Inst, Milton Keynes MK7 6AA, Bucks, England.
EM angelo.salatino@open.ac.uk; francesco.osborne@open.ac.uk;
thiviyan.thanapalasingam@open.ac.uk; enrico.motta@open.ac.uk
RI Salatino, Angelo A./AAD-7423-2022; Osborne, Francesco/HGU-2673-2022
OI Salatino, Angelo A./0000-0002-4763-3943; Osborne,
Francesco/0000-0001-6557-3131; Thanapalasingam,
Thiviyan/0000-0002-0170-9105; Motta, Enrico/0000-0003-0015-1952
CR [Anonymous], 2015, NAACL HLT 2015 2015
[Anonymous], 1998, P DARPA BROADC NEWS
[Anonymous], 2013, P WORKSHOP ICLR 2013
Bhatia S, 2016, PROCEEDINGS OF 2016 FUTURE TECHNOLOGIES CONFERENCE (FTC), P958, DOI 10.1109/FTC.2016.7821720
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bolelli L, 2009, LECT NOTES COMPUT SC, V5478, P776, DOI 10.1007/978-3-642-00958-7_84
Caragea C., 2015, COTRAINING TOPIC CLA
Chernyak E, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P429, DOI 10.1145/2684822.2697032
Decker S.L., 2007, DETECTION BURSTY EME
Duvvuru A, 2013, PROCEDIA COMPUT SCI, V20, P439, DOI 10.1016/j.procs.2013.09.300
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Lilleberg J, 2015, PROCEEDINGS OF 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), P136, DOI 10.1109/ICCI-CC.2015.7259377
Mai F, 2018, ACM-IEEE J CONF DIG, P169, DOI 10.1145/3197026.3197039
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
Narayanan A, 2009, P IEEE S SECUR PRIV, P173, DOI 10.1109/SP.2009.22
Osborne Francesco, 2014, The Semantic Web: Trends and Challenges. 11th International Conference (ESWC 2014). Proceedings: LNCS 8465, P114, DOI 10.1007/978-3-319-07443-6_9
Osborne Francesco, 2012, The Semantic Web. 11th International Semantic Web Conference (ISWC 2012). Proceedings, P410, DOI 10.1007/978-3-642-35176-1_26
Osborne F, 2016, LECT NOTES COMPUT SC, V9982, P383, DOI 10.1007/978-3-319-46547-0_33
Osborne F, 2015, LECT NOTES COMPUT SC, V9366, P408, DOI 10.1007/978-3-319-25007-6_24
Osborne F, 2013, LECT NOTES COMPUT SC, V8218, P460, DOI 10.1007/978-3-642-41335-3_29
Salatino A., 2018, CLASSIFYING RES PAPE
Salatino AC, 2019, J PERS DISORD, V33, P776, DOI 10.1521/pedi_2018_32_377
Salatino AA, 2018, LECT NOTES COMPUT SC, V11137, P187, DOI 10.1007/978-3-030-00668-6_12
Satopaa V., 2011, Proceedings of the 2011 31st International Conference on Distributed Computing Systems Workshops (ICDCS Workshops), P166, DOI 10.1109/ICDCSW.2011.20
Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005
Thanapalasingam T, 2018, LECT NOTES COMPUT SC, V11137, P341, DOI 10.1007/978-3-030-00668-6_21
Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004
NR 28
TC 39
Z9 41
U1 0
U2 3
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-30760-8; 978-3-030-30759-2
J9 LECT NOTES COMPUT SC
PY 2019
VL 11799
BP 296
EP 311
DI 10.1007/978-3-030-30760-8_26
PG 16
WC Information Science & Library Science
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Information Science & Library Science
GA BP4BL
UT WOS:000550576600026
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Urooj, A
Khan, HU
Iqbal, S
Alghobiri, M
AF Urooj, Amber
Khan, Hikmat Ullah
Iqbal, Saqib
Alghobiri, Mohammed
TI Exploring Author, Article, and Venue Feature Sets for Rising Star
Prediction in Academic Network
SO JOURNAL OF SCHOLARLY PUBLISHING
LA English
DT Article
DE machine learning; scientometrics; rising star prediction; feature
engineering; academic ranking
AB Rising stars are the researchers who are relatively new to the research area and have published fewer research articles, but their research work is of such standard that they have the potential to be top researchers in near future. Research work on the evaluation of researchers and prediction of rising stars is getting attention because it can be useful for selecting capable candidates for the jobs, hiring young faculty members for institutes, and seeking reviewers for journals and conferences and members for different committees. In this research study, the authors address the research problem of finding rising stars and propose novel features in diverse feature sets of three categories: article, author, and venue. The real-world data set has been extracted, preprocessed, and used from the Web of Science for empirical analysis. Several diverse supervised machine learning, ensemble learning algorithms, and deep learning are applied to the data set. The results, using classifiers, are compared based on standard performance evaluation measures to reveal the significance of the proposed as well as existing features. It also shows that the novel features play a significant role in finding rising stars. The ensemble-based machine learning classifier generalized linear model outperforms all other classifiers and gives the highest accuracy and F-measure compared to other models and the existing studies in the relevant literature.
C1 [Urooj, Amber; Khan, Hikmat Ullah] COMATS Univ Islamabad, Dept Comp Sci, Wah Campus, Wah Cantt, Pakistan.
[Khan, Hikmat Ullah] Namal Univ Mianwali, Dept Comp Sci, Mianwali, Pakistan.
[Iqbal, Saqib] Al Ain Univ, Coll Engn, Al Ain, U Arab Emirates.
[Alghobiri, Mohammed] King Khalid Univ, Dept informat Syst, Abha, Asir, Saudi Arabia.
C3 King Khalid University
RP Urooj, A (corresponding author), COMATS Univ Islamabad, Dept Comp Sci, Wah Campus, Wah Cantt, Pakistan.
RI Khan, Hikmat Ullah/GZG-2251-2022
CR Abdul-Majeed G, 2021, SCIENTOMETRICS, V126, P2349, DOI 10.1007/s11192-021-03866-6
ABRAHAMSON E, 1991, ACAD MANAGE REV, V16, P586, DOI 10.2307/258919
Agasisti T, 2021, SCIENTOMETRICS, V126, P5819, DOI 10.1007/s11192-021-03978-z
Ahmad H, 2017, IEEE ACCESS, V5, P4104, DOI 10.1109/ACCESS.2017.2682162
Amjad Tehmina, 2018, 2018 IEEE 14 INT C E, P1
Amjad Tehmina, 2018, RANKING AUTHORS
[Anonymous], INTEGRATED SOLUTION
[Anonymous], PREDICTIONS RISING V
[Anonymous], USING MACHINE LEARNI
[Anonymous], ACAD RISING STAR PRE
Bibi F, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8101824
Bin-Obaidellah, SCIENTOMETRIC INDICA
Bin-Obaidellah O, 2019, 2019 7TH INTERNATIONAL CONFERENCE ON SMART COMPUTING & COMMUNICATIONS (ICSCC), P1
Chang LLH, 2021, SCIENTOMETRICS, V126, P7373, DOI 10.1007/s11192-021-04037-3
Daud, ACAD RISING STAR PRE
Daud Ali, 2013, Database Systems for Advanced Applications.18th International Conference, DASFAA 2013. Proceedings, P13, DOI 10.1007/978-3-642-37487-6_4
Daud A, 2021, FUTURE GENER COMP SY, V115, P798, DOI 10.1016/j.future.2020.10.013
Daud A, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P33, DOI 10.1145/3041021.3054137
Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8
Ding F, 2018, IEEE ACCESS, V6, P29436, DOI 10.1109/ACCESS.2018.2812923
Dycke Nils, 2021, ARXIV, DOI DOI 10.48550/ARXIV.2109.01190
Farooq M, 2019, ELECTRON LIBR, V37, P67, DOI 10.1108/EL-03-2018-0064
Farooq M, 2017, INT J ADV APPL SCI, V4, P148, DOI 10.21833/ijaas.2017.06.021
Farooq M, 2017, IEEE ACCESS, V5, P19588, DOI 10.1109/ACCESS.2017.2744798
Gopavarapu AR., 2019, International Journal of Advance Research, Ideas, and Innovations in Technology, V5, P441
Kanellos I, 2021, PROC INT CONF DATA, P1997, DOI 10.1109/ICDE51399.2021.00190
Le LT, 2016, LECT NOTES ARTIF INT, V9622, P25, DOI 10.1007/978-3-662-49390-8_3
Li XL, 2009, LECT NOTES COMPUT SC, V5463, P288, DOI 10.1007/978-3-642-00887-0_25
Lindahl J, 2018, J INFORMETR, V12, P518, DOI 10.1016/j.joi.2018.04.002
Ma YL, 2020, COGN COMPUT, V12, P296, DOI 10.1007/s12559-019-09680-w
Mahmood Z, 2021, KNOWL-BASED SYST, V211, DOI 10.1016/j.knosys.2020.106506
Malik N, 2019, NEW REV HYPERMEDIA M, V25, P182, DOI 10.1080/13614568.2019.1653996
Nawaz, RISING STARS PREDICT
Nawaz A, 2022, ELECTRON COMMER RES, V22, P53, DOI 10.1007/s10660-021-09476-x
Nie YB, 2019, SCIENTOMETRICS, V120, P461, DOI 10.1007/s11192-019-03131-x
Ning Zhalong, 2017, 2017 INT S NETW COMP, P1
Ning ZL, 2017, IEEE ACCESS, V5, P24229, DOI 10.1109/ACCESS.2017.2765363
Nykl M, 2015, J INFORMETR, V9, P777, DOI 10.1016/j.joi.2015.07.002
Panagopoulos G, 2017, J INFORMETR, V11, P198, DOI 10.1016/j.joi.2016.11.003
Piazza A, 2020, INT J MANAG REV, V22, P264, DOI 10.1111/ijmr.12225
Scarpa F, 2018, SCIENTOMETRICS, V117, P997, DOI 10.1007/s11192-018-2913-5
Shah, 2016, INT J COMPUTER SCI I, P617
Zhang CX, 2017, LECT NOTES COMPUT SC, V10366, P475, DOI 10.1007/978-3-319-63579-8_36
Zhang Chuxu, 2016, ARXIV, DOI DOI 10.48550/ARXIV.1606.05752
Zhang J, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P395, DOI 10.1145/2872518.2890524
Zhu L, 2019, SCIENTOMETRICS, V121, P137, DOI 10.1007/s11192-019-03194-w
Zia MA, 2017, J ADV COMPUT INTELL, V21, P650, DOI 10.20965/jaciii.2017.p0650
NR 47
TC 0
Z9 0
U1 4
U2 13
PU UNIV TORONTO PRESS INC
PI TORONTO
PA JOURNALS DIVISION, 5201 DUFFERIN ST, DOWNSVIEW, TORONTO, ON M3H 5T8,
CANADA
SN 1198-9742
EI 1710-1166
J9 J SCHOLARLY PUBL
JI J. Sch. Publ.
PD JUL 1
PY 2023
VL 54
IS 3
BP 445
EP 473
DI 10.3138/jsp-2022-0025
EA JUN 2023
PG 29
WC Humanities, Multidisciplinary; Information Science & Library Science
WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Arts & Humanities - Other Topics; Information Science & Library Science
GA N4XJ2
UT WOS:001033650100001
DA 2024-09-05
ER
PT J
AU Li, XC
Wu, Q
Liu, YY
AF Li, Xingchen
Wu, Qiang
Liu, Yuanyuan
TI A quantitative analysis of researcher citation personal display
considering disciplinary differences and influence factors
SO SCIENTOMETRICS
LA English
DT Article
DE Personal website; Citation personal display; Bibliometric indicators;
Citation analysis; Binary logistic regression; Disciplinary differences;
Influence factors
ID HIGHLY CITED RESEARCHERS; BIBLIOMETRIC INDICATORS; SCIENTIFIC IMPACT;
WEB; INDEX; VISIBILITY; HOMEPAGES; RANK
AB Personal websites are a good place not only for the scientists to show a wealth of content, but also for researchers to excavate some useful information related to quantitative evaluation. Based on researchers' personal websites this study aims to investigate the degree of citation personal display (CPD) in three major disciplines (chemistry, mathematics, and physics), as well as disciplinary differences in CPD. This paper also studies the factors which have influences on CPD by using binary logistic regression. The datasets studied consisted of 5771 researchers in 39 U.S. universities. Results show that CPD varies significantly by discipline, with chemistry researchers having the highest CPD (15.3%), followed by physics researchers (12.7%), and mathematics researchers (7.1%). The binary logistic models indicate that total citations, h-index, and citations per publication have significantly positive effects on CPD in chemistry; for mathematics, total citations and h-index do; and for physics, only total citations does (p < .05). The significantly positive influence of publication counts occurs in chemistry and mathematics, and significantly negative influences of scientific age and academic rank only appear in chemistry (p < .05).
C1 [Li, Xingchen; Wu, Qiang; Liu, Yuanyuan] Univ Sci & Technol China, Sch Management, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China.
C3 Chinese Academy of Sciences; University of Science & Technology of
China, CAS
RP Wu, Q (corresponding author), Univ Sci & Technol China, Sch Management, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China.
EM qiangwu@ustc.edu.cn
RI Wu, Qiang/HLX-9353-2023; liu, yuanyuan/IQS-2755-2023; Wu,
Qiang/JAC-9731-2023
OI Wu, Qiang/0000-0002-1308-1669
FU National Natural Science Foundation of China [71273250]
FX This research was supported by the National Natural Science Foundation
of China (Grant No. 71273250). We would like to thank the editor and
anonymous reviewers for their constructive comments and suggestions,
which helped us to improve the paper.
CR Ajiferuke I, 2004, SCIENTOMETRICS, V59, P43, DOI 10.1023/B:SCIE.0000013298.22207.2b
Ball P, 2005, NATURE, V436, P900, DOI 10.1038/436900a
Barjak F, 2007, J AM SOC INF SCI TEC, V58, P200, DOI 10.1002/asi.20476
Bordons M, 2015, SCIENTOMETRICS, V102, P1385, DOI 10.1007/s11192-014-1491-4
Bornmann L, 2014, J INFORMETR, V8, P581, DOI 10.1016/j.joi.2014.04.008
Bornmann L, 2013, J INFORMETR, V7, P562, DOI 10.1016/j.joi.2013.02.005
Chung CJ, 2012, SCIENTOMETRICS, V93, P207, DOI 10.1007/s11192-012-0707-8
Costas R, 2010, J AM SOC INF SCI TEC, V61, P1564, DOI 10.1002/asi.21348
Cronin B, 2006, J AM SOC INF SCI TEC, V57, P1275, DOI 10.1002/asi.20354
Dumont K, 2005, COMPUT HUM BEHAV, V21, P73, DOI 10.1016/j.chb.2004.02.001
Espadas J, 2008, J AM SOC INF SCI TEC, V59, P1727, DOI 10.1002/asi.20865
GILBERT GN, 1977, SOC STUD SCI, V7, P113
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3
Knorr-Cetina K., 1981, MANUFACTURE KNOWLEDG, P68
Kousha K, 2014, J ASSOC INF SCI TECH, V65, P1615, DOI 10.1002/asi.23070
Larivière V, 2010, J AM SOC INF SCI TEC, V61, P126, DOI 10.1002/asi.21226
Latour B., 1986, LAB LIFE CONSTRUCTIO, P208
Li XC, 2017, J DOC, V73, P733, DOI 10.1108/JD-09-2016-0108
Lillquist E, 2010, SCIENTOMETRICS, V84, P749, DOI 10.1007/s11192-010-0162-3
Mas-Bleda A, 2014, SCIENTOMETRICS, V101, P337, DOI 10.1007/s11192-014-1345-0
Más-Bleda A, 2014, J DOC, V70, P148, DOI 10.1108/JD-12-2012-0156
Más-Bleda A, 2013, SCIENTOMETRICS, V96, P51, DOI 10.1007/s11192-013-0952-5
Merton RK., 1973, The sociology of science, P267
Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105
Slyder JB, 2011, SCIENTOMETRICS, V89, P955, DOI 10.1007/s11192-011-0467-x
Van Noorden R., 2007, HIRSCH INDEX RANKS T
Wildgaard L, 2014, SCIENTOMETRICS, V101, P125, DOI 10.1007/s11192-014-1423-3
Wouters P. F., 1999, INFORMALISIERUNG
NR 29
TC 4
Z9 4
U1 1
U2 68
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2017
VL 113
IS 2
BP 1093
EP 1112
DI 10.1007/s11192-017-2501-0
PG 20
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA FJ7EN
UT WOS:000412920200021
DA 2024-09-05
ER
PT J
AU Mota, FB
Braga, LAM
Cabral, BP
AF Mota, Fabio Batista
Braga, Luiza Amara Maciel
Cabral, Bernardo Pereira
TI Alternative Dispute Resolution Research Landscape from 1981 to 2022
SO GROUP DECISION AND NEGOTIATION
LA English
DT Article
DE Alternative dispute resolution; Scientific publications; Bibliometrics;
Network analysis; Latent Dirichlet allocation analysis
ID MEDICAL MALPRACTICE; MEDIATION; LITIGATION; ADR
AB Alternative dispute resolution (ADR) is an important means of resolving disputes outside of traditional legal frameworks. It is usually adopted because of its flexibility, cost-effectiveness, and ability to preserve relationships that a contentious court battle might damage. This study aims to evaluate the scientific publication related to ADR. To do so, we used metadata of ADR-related articles from 1981 to 2022 collected in the Web of Science Core Collection and carried out a bibliometric, network, and latent Dirichlet allocation analysis. Our results indicate that ADR research is concentrated in North America, with research organizations from the United States accounting for most publications. At the same time, recent years have seen a shift to a more diverse group of countries, with the Chinese City University of Hong Kong and the Australian Victoria University leading in the last five years. The five main topics in ADR research include online dispute resolution for consumer protection, mediation for family law, arbitration in medical malpractice cases, ADR in construction projects, and ADR in employment law. The most frequent research areas assigned to ADR publications are Government & Law and Business & Economics. Network results show keywords ADR, Mediation, and Arbitration as central nodes, while the Chinese and North American organizations established the most frequent collaborations, addressing ADR applications in various sectors. The findings underscore the interdisciplinary nature of ADR research, its adaptability across industries, and the importance of cross-cultural research partnerships.
C1 [Mota, Fabio Batista; Braga, Luiza Amara Maciel; Cabral, Bernardo Pereira] Fundacao Oswaldo Cruz, Oswaldo Cruz Inst, Lab Cellular Commun, Rio De Janeiro, Brazil.
[Cabral, Bernardo Pereira] Univ Fed Bahia, Dept Econ, Salvador, Brazil.
C3 Fundacao Oswaldo Cruz; Universidade Federal da Bahia
RP Mota, FB (corresponding author), Fundacao Oswaldo Cruz, Oswaldo Cruz Inst, Lab Cellular Commun, Rio De Janeiro, Brazil.
EM fabio.mota@fiocruz.br; luiza.braga@fiocruz.br;
bernardo.cabral@fiocruz.br
RI Mota, Fabio Batista/G-3164-2015; Braga, Luiza Amara Maciel/KUF-1504-2024
OI Mota, Fabio Batista/0000-0003-2401-7336; Braga, Luiza Amara
Maciel/0000-0002-1726-2643
CR Abedi F, 2011, J GLOB MANAG, V2
Abedi F, 2019, INT J LAW INFORM TEC, V27, P209, DOI 10.1093/ijlit/eaz005
Abedi F, 2019, COMPUT LAW SECUR REV, V35, DOI 10.1016/j.clsr.2019.05.003
ABEL RL, 1981, SOCIOL TRAV, V81, P32
Akhtar N., 2022, J CONT ISSUES BUS GO, DOI [10.47750/cibg.2022.28.03.015, DOI 10.47750/CIBG.2022.28.03.015]
[Anonymous], 2023, J LEGAL AFFAIRS DISP
[Anonymous], 2023, NEGOTIATION J
Balcerzak GA, 2008, PATIENT SAF QUAL HEA, P44
Balzer B, 2021, RAND J ECON, V52, P415, DOI 10.1111/1756-2171.12374
Barrett Jerome., 2004, HIST ALTERNATIVE DIS
Beebeejaun Z, 2022, J WORLD ENERGY LAW B, V15, P97, DOI 10.1093/jwelb/jwac004
Bradford B, 2023, LAW SOCIAL INQUIRY, V48, P748, DOI 10.1017/lsi.2022.55
Camacho D, 2020, INFORM FUSION, V63, P88, DOI 10.1016/j.inffus.2020.05.009
Brophy CC, 2020, FAM COURT REV, V58, P710, DOI 10.1111/fcre.12508
Charkoudian L, 2019, CONFL RESOLUT Q, V37, P101, DOI 10.1002/crq.21264
Chen H, 2019, PERS INDIV DIFFER, V150, DOI 10.1016/j.paid.2019.109507
Chen HS, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121402
Cheung SO, 2019, J LEG AFF DISPUTE RE, V11, DOI 10.1061/(ASCE)LA.1943-4170.0000287
Cheung SO, 2006, J PROF ISS ENG ED PR, V132, P48, DOI 10.1061/(ASCE)1052-3928(2006)132:1(48)
Cheung SO, 2002, J CONSTR ENG M ASCE, V128, P409, DOI 10.1061/(ASCE)0733-9364(2002)128:5(409)
Cortes P, 2023, LEGAL STUD, V43, P312, DOI 10.1017/lst.2022.42
Dauer EA, 2002, HEMATOL ONCOL CLIN N, V16, P1415, DOI 10.1016/S0889-8588(02)00069-2
DeSouza JR, 1998, J HEALTHC MANAG, V43, P453, DOI 10.1097/00115514-199809000-00013
Deutsch RM, 2018, FAM COURT REV, V56, P119, DOI 10.1111/fcre.12326
DeVries BE, 2018, FAM COURT REV, V56, P679, DOI 10.1111/fcre.12385
Fox S., 2009, Consulting Psychology Journal, V61, P220, DOI DOI 10.1037/A0016637
Garechana G, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0210441
Gatto JD, 2022, ORTHOPEDICS, V45, pE47, DOI 10.3928/01477447-20211101-06
Hagg LJ, 2022, J MED INTERNET RES, V24, DOI 10.2196/33166
Hann D, 2019, ECON IND DEMOCRACY, V40, P776, DOI 10.1177/0143831X16663013
Hodson D, 2008, INT FAM LAW, P209
Ibrahim AS, 2022, LAND USE POLICY, V120, DOI 10.1016/j.landusepol.2022.106272
Illankoon IMCS, 2019, INT J CONSTR MANAG, DOI 10.1080/15623599.2019.1616415
Imam SK, 2020, PAK J CRIMINOL, P30
Jain S, 2021, ARBITR INT J ARBITR, P67
Kass Joseph S, 2016, AMA J Ethics, V18, P299, DOI 10.1001/journalofethics.2016.18.3.pfor6-1603
Kisi KP, 2020, J LEG AFF DISPUTE RE, V12, DOI 10.1061/(ASCE)LA.1943-4170.0000373
Lau ACK, 2022, PUBLIC ADMIN POLICY, V25, P264, DOI 10.1108/PAP-08-2022-0101
Lee CK, 2021, INT J CONSTR MANAG, V21, P27, DOI 10.1080/15623599.2018.1505026
Lee CK, 2018, J LEG AFF DISPUTE RE, V10, DOI 10.1061/(ASCE)LA.1943-4170.0000252
Lee CK, 2018, J LEG AFF DISPUTE RE, V10, DOI 10.1061/(ASCE)LA.1943-4170.0000245
Lee CK, 2016, INT J PROJ MANAG, V34, P494, DOI 10.1016/j.ijproman.2015.12.008
Braga LAM, 2021, COLLNET J SCIENTOMET, V15, P163, DOI 10.1080/09737766.2021.1949949
Mania K., 2015, INT COMPAR JURISPRUD, V1, P76, DOI [DOI 10.1016/J.ICJ.2015.10.006, 10.1016/j.icj.2015.10.006]
McManus M., 2011, Brief History of Alternative Dispute Resolution in the United States
Menkel-Meadow C, 2015, INT ENCY SOC BEHAV S
Minter SP, 2018, FAM COURT REV, V56, P410, DOI 10.1111/fcre.12357
Morhe R, 2022, FAM COURT REV, V60, P411, DOI 10.1111/fcre.12662
Mueller TG, 2008, J EDUC PSYCHOL CONS, V18, P191, DOI 10.1080/10474410701864339
Newman NC, 2014, J ENG TECHNOL MANAGE, V32, P97, DOI 10.1016/j.jengtecman.2013.09.001
Ninkov A, 2022, PERSPECT MED EDUC, V11, P173, DOI 10.1007/s40037-021-00695-4
Noone MA, 2020, INT J LAW CONTEXT, V16, P108, DOI 10.1017/S1744552320000099
Nussbaum L, 2022, FAM COURT REV, V60, P777, DOI 10.1111/fcre.12675
Olapade DT, 2019, J PROP PLAN ENV LAW, V11, P67, DOI 10.1108/JPPEL-06-2018-0015
Orosco RK, 2012, J AM COLL SURGEONS, V215, P480, DOI 10.1016/j.jamcollsurg.2012.04.028
Peters S, 2021, REV CES DERECHO, V12, P3, DOI 10.21615/cesder.12.1.1
Pruett MK, 2018, FAM COURT REV, V56, P100, DOI 10.1111/fcre.12325
Qin HP, 2022, AIR SPACE LAW, V47, P347
Riveros C, 2019, REV DIREITO GV, V15, DOI 10.1590/2317-6172201914
Roche WK, 2023, ECON IND DEMOCRACY, V44, P634, DOI 10.1177/0143831X221086016
Ross WH, 2000, ACAD MANAGE REV, V25, P416, DOI 10.2307/259022
Russell ML, 2021, PEPP DISP RESOL L J, V173
Saeb A, 2018, CIV ENG J-TEHRAN, V4, P11, DOI 10.28991/cej-030965
Schmitz AJ, 2021, FAM COURT REV, V59, P250, DOI 10.1111/fcre.12572
Sgubini A, 2004, BRIDG MEDIAT
Shang CS, 2020, ASIA PAC LAW REV, V28, P97, DOI 10.1080/10192557.2020.1786255
Si YT, 2022, ENERGY STRATEG REV, V41, DOI 10.1016/j.esr.2022.100859
Sohn DH, 2012, CLIN ORTHOP RELAT R, V470, P1370, DOI 10.1007/s11999-011-2206-2
Song YC, 2022, THER ADV GASTROINTES, V15, DOI 10.1177/26317745221111944
Stipanowich TJ, 2020, HARV NEGOT LAW REV
Strazisar B, 2018, PRAVO, P214, DOI 10.17323/2072-8166.2018.3.214.233
Sustek P, 2017, ALTERNATIVE DISPUTE
Szmania SJ, 2008, CONFL RESOLUT Q, V26, P71, DOI 10.1002/crq.224
Teague P, 2020, ILR REV, V73, P345, DOI 10.1177/0019793919872448
The government of the Hong Kong Special Administrative Region, 2023, OUR LEG SYST
Thomas P, 2000, HOSP MED, V61, P302, DOI 10.12968/hosp.2000.61.5.1326
van Dijk F., 2023, OCJ, DOI [10.1108/OCJ-11-2021-0034, DOI 10.1108/OCJ-11-2021-0034]
Wang JJ, 2020, J RETAILING, V96, P548, DOI 10.1016/j.jretai.2020.03.001
Wang MX, 2020, BMC HEALTH SERV RES, V20, DOI 10.1186/s12913-020-5044-7
Wang ZQJN, 2020, INT J LAW CONTEXT, V16, P165, DOI 10.1017/S1744552320000129
Wasser LA, 2021, FAM COURT REV, V59, P268, DOI 10.1111/fcre.12573
Wasserman S., 1994, Social Network Analysis
Whaley KA, 2022, TRUSTS TRUSTEES, V28, pE8, DOI 10.1093/tandt/ttz115
Williams J, 2020, J LAW SOC, V47, P271, DOI 10.1111/jols.12224
Wiryawan IWG, 2020, ALTERNATIVE DISPUTE
Zeller B, 2019, UNIV LAW REV, V24, P449, DOI 10.1093/ulr/unz020
NR 86
TC 0
Z9 0
U1 5
U2 15
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0926-2644
EI 1572-9907
J9 GROUP DECIS NEGOT
JI Group Decis. Negot.
PD DEC
PY 2023
VL 32
IS 6
BP 1415
EP 1435
DI 10.1007/s10726-023-09848-8
EA AUG 2023
PG 21
WC Management; Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Business & Economics; Social Sciences - Other Topics
GA U8BG5
UT WOS:001044846500001
DA 2024-09-05
ER
PT C
AU Baron, G
AF Baron, Grzegorz
BE Jedrzejowicz, P
Czarnowski, I
Howlett, RJ
Jain, LC
TI Influence of data discretization on efficiency of Bayesian classifier
for authorship attribution
SO KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS 18TH
ANNUAL CONFERENCE, KES-2014
SE Procedia Computer Science
LA English
DT Proceedings Paper
CT 18th Annual International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems (KES)
CY SEP 15-17, 2014
CL Pomeranian Sci & Technol, Gdynia, POLAND
HO Pomeranian Sci & Technol
DE Bayesian classifier; Naive Bayes; stylometry; authorship attribution;
text analysis; classification; discretization; binarization
ID DECISION TREE; NAIVE
AB Authorship attribution is one of the research areas in data mining domain and various methods can be employed for performing that task. The paper presents results of research on influence of data discretization on efficiency of Naive Bayes classifier. The analysis has been carried on datasets founded on texts of two male and two female authors using the WEKA data mining software framework. The binary classification was performed separately for both datasets for wide range of parameters of discretization process in order to investigate dependency between ways of discretization and quality of classification using Naive Bayes method. The numerical results of tests have been compared and discussed and some observations and conclusions formulated. (C) 2014 The Authors. Published by Elsevier B. V.
C1 Silesian Tech Univ, PL-44100 Gliwice, Poland.
C3 Silesian University of Technology
RP Baron, G (corresponding author), Silesian Tech Univ, PL-44100 Gliwice, Poland.
EM grzegorz.baron@polsl.pl
OI Baron, Grzegorz/0000-0001-8613-631X
CR [Anonymous], 1993, Proceedings of the 13th International Joint Conference on Artificial Intelligence
Chandra B, 2011, EXPERT SYST APPL, V38, P1293, DOI 10.1016/j.eswa.2010.06.076
Dougherty J., 1995, P 12 INT C MACH LEAR, P194, DOI [10.1016/B978-1-55860-377-6.50032-3, DOI 10.1016/B978-1-55860-377-6.50032-3]
Farid DM, 2014, EXPERT SYST APPL, V41, P1937, DOI 10.1016/j.eswa.2013.08.089
Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278
HOLMES DI, 1994, COMPUT HUMANITIES, V28, P87, DOI 10.1007/BF01830689
Jiang LX, 2009, IEEE T KNOWL DATA EN, V21, P1361, DOI 10.1109/TKDE.2008.234
John G. H., 1995, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, P338, DOI DOI 10.1109/TGRS.2004.834800
Kim SB, 2006, IEEE T KNOWL DATA EN, V18, P1457, DOI 10.1109/TKDE.2006.180
Klement W, 2012, ARTIF INTELL MED, V54, P163, DOI 10.1016/j.artmed.2011.11.005
Koc L, 2012, EXPERT SYST APPL, V39, P13492, DOI 10.1016/j.eswa.2012.07.009
Koppel M, 2009, J AM SOC INF SCI TEC, V60, P9, DOI 10.1002/asi.20961
Kotsiantis S., 2006, GESTS International Transactions on Computer Science and Engineering, V32, P47
Loganantharaj R, 2007, LECT N BIOINFORMAT, V4463, P282
McCallum A., 1998, AAAI 98 WORKSH LEARN, VVolume 752, P41, DOI DOI 10.1109/TSMC.1985.6313426
Mukherjee S, 2012, PROC TECH, V4, P119, DOI 10.1016/j.protcy.2012.05.017
Muralidharan V, 2012, APPL SOFT COMPUT, V12, P2023, DOI 10.1016/j.asoc.2012.03.021
Sammut C, 2010, ENCY MACHINE LEARNIN, P713, DOI DOI 10.1007/978-1-4899-7502-7_581-1
Schneider KM, 2005, LECT NOTES COMPUT SC, V3406, P682
Setsirichok D, 2012, BIOMED SIGNAL PROCES, V7, P202, DOI 10.1016/j.bspc.2011.03.007
Stamatatos E, 1999, NINTH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS, P158
Stamatatos E, 2001, COMPUT HUMANITIES, V35, P193, DOI 10.1023/A:1002681919510
Stanczyk Urszula, 2013, Database and Expert Systems Applications. 24th International Conference, DEXA 2013. Proceedings: LNCS 8056, P1, DOI 10.1007/978-3-642-40173-2_1
STANCZYK U, 2013, SIST, V13, P441
Stanczyk U, 2013, J INTELL FUZZY SYST, V24, P429, DOI 10.3233/IFS-2012-0564
Valle MA, 2012, EXPERT SYST APPL, V39, P9939, DOI 10.1016/j.eswa.2011.11.126
Witten IH, 2011, MOR KAUF D, P1
Youn E, 2009, PATTERN RECOGN LETT, V30, P477, DOI 10.1016/j.patrec.2008.11.013
2014, OXFORD DICT STYLOMET
NR 29
TC 16
Z9 18
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1877-0509
J9 PROCEDIA COMPUT SCI
PY 2014
VL 35
BP 1112
EP 1121
DI 10.1016/j.procs.2014.08.201
PG 10
WC Computer Science, Artificial Intelligence; Computer Science, Software
Engineering; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BB7DO
UT WOS:000345394100115
OA gold
DA 2024-09-05
ER
PT J
AU Green, S
Bevan, A
Shapland, M
AF Green, Susie
Bevan, Andrew
Shapland, Michael
TI A comparative assessment of structure from motion methods for
archaeological research
SO JOURNAL OF ARCHAEOLOGICAL SCIENCE
LA English
DT Article
DE Structure from motion; Computer vision; Bundler; Open source;
Photogrammetry; Multi-view stereo
AB This paper addresses the use of open source, structure from motion methods for creating 3d pointclouds from photographs and compares these with alternative workflows in other software, and relative accuracy compared to other 3D modelling methods. It describes a series of case studies that use structure from motion to record standing buildings and create digital elevation models. Looking at other recording techniques it finds that structure from motion can produce better results than traditional techniques such as plan drawing, topographic survey and photogrammetry, and is cheaper and more accessible than new techniques such as laser scanning and LiDAR, although it is less accurate in some regards. It demonstrates that good accuracy can be achieved if careful measurements are made, and concludes that it has great potential for widespread archaeological application. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Green, Susie; Bevan, Andrew] UCL, Inst Archaeol, London WC1H 0PY, England.
[Shapland, Michael] Archaeol South East UCL Ctr Appl Archaeol, Portslade BN41 1DR, E Sussex, England.
C3 University of London; University College London
RP Green, S (corresponding author), UCL, Inst Archaeol, 31-34 Gordon Sq, London WC1H 0PY, England.
EM susan.green.10@ucl.ac.uk
OI Bevan, Andrew/0000-0001-7967-3117
CR Agisoft, 2013, AGIS PHOT PROF ED
[Anonymous], WINDMILL HILL AVEBUR
ArcheOS, 2011, WHAT IS ARCHAEOS
Autodesk, 2014, 123D CATCH
Changchang Wu, 2011, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P3057, DOI 10.1109/CVPR.2011.5995552
Crutchley S., 2010, The Light Fantastic: Using airborne lidar in archaeological survey
Cunliffe B., 1971, Excavations at Fishbourne 1961-1969
De Reu J, 2013, J ARCHAEOL SCI, V40, P1108, DOI 10.1016/j.jas.2012.08.040
Ducke B, 2011, COMPUT GRAPH-UK, V35, P375, DOI 10.1016/j.cag.2011.01.006
Furukawa Y, 2010, PROC CVPR IEEE, P1434, DOI 10.1109/CVPR.2010.5539802
Girardeau-Montaut D., 2014, CloudCompare
Lowe DG, 2004, INT J COMPUT VISION, V60, P91, DOI 10.1023/B:VISI.0000029664.99615.94
Olson BR, 2013, J FIELD ARCHAEOL, V38, P244, DOI 10.1179/0093469013Z.00000000056
Shapland M. G., 2012, THESIS U COLLEGE LON
Snavely N, 2006, ACM T GRAPHIC, V25, P835, DOI 10.1145/1141911.1141964
Szeliski R, 2011, TEXTS COMPUT SCI, P1, DOI 10.1007/978-1-84882-935-0
Verhoeven G, 2012, J ARCHAEOL SCI, V39, P2060, DOI 10.1016/j.jas.2012.02.022
Verhoeven G, 2011, ARCHAEOL PROSPECT, V18, P67, DOI 10.1002/arp.399
Whittingham A., 1951, ARCHAEOL J, V108, P170
NR 19
TC 107
Z9 118
U1 1
U2 31
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0305-4403
EI 1095-9238
J9 J ARCHAEOL SCI
JI J. Archaeol. Sci.
PD JUN
PY 2014
VL 46
BP 173
EP 181
DI 10.1016/j.jas.2014.02.030
PG 9
WC Anthropology; Archaeology; Geosciences, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Anthropology; Archaeology; Geology
GA AI6UZ
UT WOS:000337013800016
DA 2024-09-05
ER
PT J
AU Din, EU
Hua, L
Lu, ZY
AF Din, Ejaz ud
Hua, Long
Lu, Zhongyu
TI Research on Performance of the Classifying Models Based on Chinese,
Pakistani, and Other Genres
SO INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH
LA English
DT Article
DE Audio Classification; Classifiers; Feature Extraction; MFCC;
Pre-Processing
ID CLASSIFICATION
AB In recent years, with the increase in the amount of audio on the internet, the demand for audio classification is increasing. This paper focuses on finding the performance of the classifiers, uses Python for the simulation part, compares the performance, and finds the best classifier. Two experiments are performed for this paper; for the first part of the experiment, Pakistan and Chinese music samples are considered, and classifiers are used to classify these music samples. It is found that the artificial neural network (ANN) has lowest accuracy of 81.4%; additionally, support vector machine (SVM), k-nearest neighbor (KNN), and convolutional (CNN) accuracies remain between 82% to 86% based on the dataset. Random forest model has the highest accuracy of 94.3%. It is considered to be the best classifier. For the second part of the experiment, other genres such as classical, country, and pop music were added to the previous dataset. After adding these genres, performance of the classifying models varies slightly; it fluctuates between 75% to 84%. These results can be used for music recommendation applications.
C1 [Din, Ejaz ud; Hua, Long] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Yunnan, Peoples R China.
[Lu, Zhongyu] Univ Huddersfield, Huddersfield, W Yorkshire, England.
C3 Kunming University of Science & Technology; University of Huddersfield
RP Din, EU (corresponding author), Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Yunnan, Peoples R China.
RI Lu, Zhongyu/ABC-4006-2020
CR Apostolidis-Afentoulis V., 2015, SVM Classification with Linear and RBF kernels, DOI [10.13140/RG.2.1.3351.4083, DOI 10.13140/RG.2.1.3351.4083]
Bischoff Kerstin., 2009, 10th International Society for Music Information Retrieval Conference, P657
Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
Cunningham P., 2007, MULTIPLE CLASSIFIER, V34, P1, DOI [DOI 10.48550/ARXIV.2004.04523, DOI 10.1145/3459665]
Deshpande H., 2001, CLASSIFICATION MUSIC
Elbir A, 2020, ELECTRON LETT, V56, P627, DOI 10.1049/el.2019.4202
Foote J., 2001, IEEE INT C MULT EXP, DOI [10.1109/ICME.2001.1237863, DOI 10.1109/ICME.2001.1237863]
Fulzele P, 2018, INT CONF CONTEMP, P386
Gaana, PAK TRACKS
Github, PYTH COD
Janitza S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201904
KIKUCHI Y., 2020, 2020 INT C ART INT I, P705, DOI [10.1109/ICAIIC48513.2020.9065046, DOI 10.1109/ICAIIC48513.2020.9065046]
Kumpf K, 1996, ICSLP 96 - FOURTH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING, PROCEEDINGS, VOLS 1-4, P1740, DOI 10.1109/ICSLP.1996.607964
Lambrou T, 1998, INT CONF ACOUST SPEE, P3621, DOI 10.1109/ICASSP.1998.679665
Lee CH, 2009, IEEE T MULTIMEDIA, V11, P670, DOI 10.1109/TMM.2009.2017635
Li Tao, 2003, P 26 ANN INT ACM SIG, P282, DOI [DOI 10.1145/860435.860487, DOI 10.1145/860484.860487, 10.1109/ISSPA.2003.1224828, DOI 10.1109/ISSPA.2003.1224828]
Logan B., 2000, MEL FREQUENCY CEPSTR
Panagakis Yannis, 2009, 2009 17th European Signal Processing Conference (EUSIPCO 2009), P1, DOI 10.1109/PS.2009.5307817
Pelchat N., 2019, 2019 IEEE CAN C EL C, DOI [10.1109/CCECE.2019.8861555, DOI 10.1109/CCECE.2019.8861555]
Rabiner L. R., 1993, Fundamentals of speech recognition, V14
Ramdoss A., 2017, ADV ENG RES APPL, P447
Rong F, 2017, 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), P81, DOI 10.1109/ICITBS.2016.98
Saunders J, 1996, INT CONF ACOUST SPEE, P993, DOI 10.1109/ICASSP.1996.543290
Scheirer E, 1997, INT CONF ACOUST SPEE, P1331, DOI 10.1109/ICASSP.1997.596192
Soltau H, 1998, INT CONF ACOUST SPEE, P1137, DOI 10.1109/ICASSP.1998.675470
Tzanetakis G, 2002, IEEE T SPEECH AUDI P, V10, P293, DOI 10.1109/TSA.2002.800560
Vishnupriya S, 2018, INT CONF COMP COMMUN
Xuan Huang, 2021, 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), P867, DOI 10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00144
Zhang T, 1998, P SOC PHOTO-OPT INS, V3461, P432, DOI 10.1117/12.325703
Zupan J., 1994, ACTA CHIM SLOV, V41, P1
NR 30
TC 0
Z9 0
U1 0
U2 1
PU IGI GLOBAL
PI HERSHEY
PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA
SN 2155-6377
EI 2155-6385
J9 INT J INF RETR RES
JI Int. J. Inf. Retr. Res.
PD OCT-DEC
PY 2021
VL 11
IS 4
BP 61
EP 79
DI 10.4018/IJIRR.2021100104
PG 19
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA UE9ZL
UT WOS:000688240900004
DA 2024-09-05
ER
PT C
AU Wang, XJ
Guo, JF
AF Wang Xuejun
Guo Jianfang
BA Zhou, Q
BF Zhou, Q
BE Luo, J
TI Application Research of SVM in The Evaluation of Scientific Research
Project
SO 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY
APPLICATION WORKSHOP: IITA 2008 WORKSHOPS, PROCEEDINGS
LA English
DT Proceedings Paper
CT 2nd International Symposium on Intelligent Information Technology
Application
CY DEC 21-22, 2008
CL Shanghai, PEOPLES R CHINA
AB In the management of scientific research project, the evaluation of scientific research project is one of important processes. Traditional evaluation methods can not suffice the increasing need in the evaluation of scientific research project. In order to improve the efficiency of the evaluation of scientific research Project., this paper on the basis of support vector machines(SVM) based on statistical learning theory, especially analyzes SVM for classification theory, and proposes a binary tree multi-class method based on two-class SVM algorithm and applies this method in the evaluation of scientific research Project.
C1 [Wang Xuejun; Guo Jianfang] Shijiazhuang Railway Inst, Shijiazhuang 050043, Hebei, Peoples R China.
C3 Shijiazhuang Tiedao University
RP Wang, XJ (corresponding author), Shijiazhuang Railway Inst, Shijiazhuang 050043, Hebei, Peoples R China.
EM wangxj@sjzri.edu.cn; guo_jian_fang@sina.com
CR [Anonymous], P IEEE INT C AUT FAC
[Anonymous], 1998, Encyclopedia of Biostatistics
[Anonymous], 2000, NATURE STAT LEARNING, DOI DOI 10.1007/978-1-4757-3264-1
Cristianini N., 2000, Support Vector Machines and other kernel-based learning methods
Guo GD, 2003, IEEE T NEURAL NETWOR, V14, P209, DOI 10.1109/TNN.2002.806626
QIU DH, 2003, MINIMICROSYSTENS, V11, P2004
NR 6
TC 0
Z9 0
U1 0
U2 1
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
BN 978-0-7695-3505-0
PY 2008
BP 364
EP 367
DI 10.1109/IITA.Workshops.2008.160
PG 4
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BIY43
UT WOS:000263690400087
DA 2024-09-05
ER
PT C
AU Liu, JZ
Shao, XK
AF Liu Jianzhou
Shao Xiongkai
BE Wang, XL
TI Research on Automated Assessment of Chinese Subjective Questions
SO 2011 INTERNATIONAL CONFERENCE ON COMPUTER, ELECTRICAL, AND SYSTEMS
SCIENCES, AND ENGINEERING (CESSE 2011)
LA English
DT Proceedings Paper
CT International Conference on Computer, Electrical, and Systems Sciences,
and Engineering
CY APR 10-11, 2011
CL Wuhan, PEOPLES R CHINA
DE semantic similarity; machine learning; HowNet; vector space model
AB In this paper, based on the analysis of previous automated assessment methods of Chinese subjective questions, we have proposed a novel automated assessment algorithm using sentence semantic similarity in Natural Language Processing. At the same time, we make a full comparative study on two different similarity methods. The results of the research indicate that our algorithm is robust.
C1 [Liu Jianzhou; Shao Xiongkai] Hubei Univ Technol, Sch Comp Sci, Wuhan, Hubei Province, Peoples R China.
C3 Hubei University of Technology
RP Liu, JZ (corresponding author), Hubei Univ Technol, Sch Comp Sci, Wuhan, Hubei Province, Peoples R China.
EM xxzzsoft@163.com; shao_xk@163.com
RI Liu, Jianzhou/ADN-7696-2022
OI Liu, Jianzhou/0000-0002-3721-6871
CR BING H, 2005, COMPUTER NETWORK, P50
Dong Zhendong, ABOUT HOWNET
Hu Bin, 2005, COMPUTER NETWORK, P50
LIANG Z, 2001, COMPUTER ENG APPL, V37, P108
LIREN C, 1995, COMPUTER LANGUAGE DE, P152
SUJIAN L, 2002, COMPUTER ENG APPL, V38, P75
XIUBO Y, 2003, MODERN DISTANCE ED, P1
NR 7
TC 0
Z9 0
U1 0
U2 0
PU INFORMATION ENGINEERING RESEARCH INST, USA
PI NEWARK
PA 100 CONTINENTAL DR, NEWARK, DE 19713 USA
BN 978-0-615-42292-3
PY 2011
BP 318
EP 321
PG 4
WC Automation & Control Systems; Computer Science, Information Systems;
Computer Science, Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Computer Science
GA BWO35
UT WOS:000294390700079
DA 2024-09-05
ER
PT J
AU Sánchez-Núñez, P
Cobo, MJ
De las Heras-Pedrosa, C
Peláez, JI
Herrera-Viedma, E
AF Sanchez-Nunez, Pablo
Cobo, Manuel J.
De las Heras-Pedrosa, Carlos
Ignacio Pelaez, Jose
Herrera-Viedma, Enrique
TI Opinion Mining, Sentiment Analysis and Emotion Understanding in
Advertising: A Bibliometric Analysis
SO IEEE ACCESS
LA English
DT Article
DE Advertising; Sentiment analysis; Bibliometrics; Organizations;
Registers; Indexes; Computer science; Advertising research;
bibliometrics; communication; consumer behavior; emotion understanding;
opinion mining; science mapping analysis; SciMAT; sentiment analysis;
VOSviewer; Web of Science (WoS)
ID PREDICTION
AB In the last decade, the advertising industry has experienced a quantum leap, powered by recent advances in neuroscience, a large investment in artificial intelligence, and a high degree of consumer expertise. Within this context, opinion mining, sentiment analysis, and emotion understanding bring us closer to one of the most sought-after objectives of advertising: to offer relevant ads at scale. The importance of studies about opinion mining, sentiment analysis, and emotion understanding in advertising has been rising exponentially over the last years. The peak of this new situation has been the interest of the research community in studying the relationship between such innovations and the spread of smart and contextual advertising. This article analyzes those works that address the relationship between sentiment analysis, opinion mining, and emotion understanding in advertising. The main objective is to clarify the current state of these studies, explore issues, methods, findings, themes, and gaps as well as to define their significance within the current convergence advertising research scenario. To reach such objectives, a bibliometric analysis was conducted, retrieving and analyzing 919 research works published between 2010 and 2019 based on results from Web of Science (WoS).
C1 [Sanchez-Nunez, Pablo] Univ Malaga, Joint PhD Programme Commun, Malaga 29071, Spain.
[Cobo, Manuel J.] Univ Cadiz, Dept Comp Sci & Engn, Cadiz 11202, Spain.
[De las Heras-Pedrosa, Carlos] Univ Malaga, Fac Commun Sci, Dept Audiovisual Commun & Advertising, Malaga 29071, Spain.
[Ignacio Pelaez, Jose] Univ Malaga, Higher Tech Sch Comp Engn, Dept Languages & Comp Sci, Malaga 29071, Spain.
[Herrera-Viedma, Enrique] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, Spain.
C3 Universidad de Malaga; Universidad de Cadiz; Universidad de Malaga;
Universidad de Malaga; University of Granada
RP De las Heras-Pedrosa, C (corresponding author), Univ Malaga, Fac Commun Sci, Dept Audiovisual Commun & Advertising, Malaga 29071, Spain.
EM cheras@uma.es
RI de las Heras-Pedrosa, Carlos/M-4492-2015; Cobo Martín, Manuel
Jesús/C-5581-2011; HERRERA-VIEDMA, ENRIQUE/C-2704-2008; Pelaez Sanchez,
Jose Ignacio/O-9450-2016
OI de las Heras-Pedrosa, Carlos/0000-0002-2738-4177; Cobo Martín, Manuel
Jesús/0000-0001-6575-803X; HERRERA-VIEDMA, ENRIQUE/0000-0002-7922-4984;
Sanchez Nunez, Pablo/0000-0001-7845-9506; Pelaez Sanchez, Jose
Ignacio/0000-0002-2606-3849
FU Programa Operativo FEDER Andalucia [UMA 18-FEDERJA-148]
FX This work was supported by the Programa Operativo FEDER Andalucia
2014-2020 under Grant UMA 18-FEDERJA-148.
CR Añaños E, 2015, COMUNICAR, V23, P75, DOI 10.3916/C45-2015-08
Baraybar-Fernández A, 2017, COMUNICAR, V25, P19, DOI 10.3916/C52-2017-02
Baron AS, 2017, J MARKET MANAG-UK, V33, P893, DOI 10.1080/0267257X.2017.1323839
Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001
Bolderston A, 2008, J MED IMAGING RADIAT, V39, P86, DOI 10.1016/j.jmir.2008.04.009
Borth Damian, 2013, P 21 ACM INT C MULT, P459
Campos V, 2017, IMAGE VISION COMPUT, V65, P15, DOI 10.1016/j.imavis.2017.01.011
Chen CLP, 2014, INFORM SCIENCES, V275, P314, DOI 10.1016/j.ins.2014.01.015
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Dafonte-Gómez A, 2014, COMUNICAR, V22, P199, DOI 10.3916/C43-2014-20
De Las Heras-Pedrosa C, 2020, COGENT SOC SCI, V6, DOI 10.1080/23311886.2020.1718578
Druga S, 2017, PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INTERACTION DESIGN AND CHILDREN (IDC 2017), P595, DOI 10.1145/3078072.3084330
Dumay J, 2016, ACCOUNT FORUM, V40, P166, DOI 10.1016/j.accfor.2016.06.001
Gauba H, 2017, NEURAL NETWORKS, V92, P77, DOI 10.1016/j.neunet.2017.01.013
Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145
Gruebner O, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181233
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Ji RR, 2016, FRONT COMPUT SCI-CHI, V10, P602, DOI 10.1007/s11704-016-5453-2
Kim H, 2015, SUSTAINABILITY-BASEL, V7, P3683, DOI 10.3390/su7043683
Marin MM, 2015, FRONT HUM NEUROSCI, V9, DOI 10.3389/fnhum.2015.00443
Martínez MA, 2015, SCIENTOMETRICS, V102, P1713, DOI 10.1007/s11192-014-1460-y
Montero-Díaz J, 2018, COMUNICAR, V26, P81, DOI 10.3916/C55-2018-08
Pavaloaia VD, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11164459
Peláez JI, 2020, SOFT COMPUT, V24, P1775, DOI 10.1007/s00500-019-04005-3
Pettit A, 2013, INT J MARKET RES, V55, P757, DOI 10.2501/IJMR-2013-065
Saura JR, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12031003
Romero M, 2010, COMUNICAR, V17, P125, DOI 10.3916/C34-2010-03-12
San Pedro Jose., 2012, WWW, P439
Sánchez-Núñez P, 2020, SOC SCI-BASEL, V9, DOI 10.3390/socsci9030023
Soleymani M, 2017, IMAGE VISION COMPUT, V65, P3, DOI 10.1016/j.imavis.2017.08.003
Umilta' MA, 2012, FRONT HUM NEUROSCI, V6, DOI 10.3389/fnhum.2012.00311
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Webster J, 2002, MIS QUART, V26, pXIII
Wereda W, 2019, SOC SCI-BASEL, V8, DOI 10.3390/socsci8060177
Xing BX, 2019, IEEE ACCESS, V7, P59844, DOI 10.1109/ACCESS.2019.2914872
Yang YW, 2017, IEEE INTELL SYST, V32, P3, DOI 10.1109/MIS.2017.58
Yuan Y, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON SERVICE OPERATIONS AND LOGISTICS, AND INFORMATICS (SOLI), P418, DOI 10.1109/SOLI.2014.6960761
Zhang KZK, 2016, DECIS SUPPORT SYST, V86, P95, DOI 10.1016/j.dss.2016.04.001
Zhao JQ, 2018, IEEE ACCESS, V6, P23253, DOI 10.1109/ACCESS.2017.2776930
NR 40
TC 41
Z9 46
U1 9
U2 64
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2020
VL 8
BP 134563
EP 134576
DI 10.1109/ACCESS.2020.3009482
PG 14
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA MS6CG
UT WOS:000554360900001
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU D'Angelo, CA
van Eck, NJ
AF D'Angelo, Ciriaco Andrea
van Eck, Nees Jan
TI Collecting large-scale publication data at the level of individual
researchers: a practical proposal for author name disambiguation
SO SCIENTOMETRICS
LA English
DT Article
DE Authorship disambiguation; Bibliometrics; Precision-recall; Publication
oeuvre; Research evaluation
ID CITATIONS
AB The disambiguation of author names is an important and challenging task in bibliometrics. We propose an approach that relies on an external source of information for selecting and validating clusters of publications identified through an unsupervised author name disambiguation method. The application of the proposed approach to a random sample of Italian scholars shows encouraging results, with an overall precision, recall, and F-measure of over 96%. The proposed approach can serve as a starting point for large-scale census of publication portfolios for bibliometric analyses at the level of individual researchers.
C1 [D'Angelo, Ciriaco Andrea] Univ Roma Tor Vergata, Dept Engn & Management, Rome, Italy.
[van Eck, Nees Jan] Leiden Univ, Ctr Sci & Technol Studies, Leiden, Netherlands.
C3 University of Rome Tor Vergata; Leiden University; Leiden University -
Excl LUMC
RP D'Angelo, CA (corresponding author), Univ Roma Tor Vergata, Dept Engn & Management, Rome, Italy.
EM dangelo@dii.uniroma2.it; ecknjpvan@cwts.leidenuniv.nl
RI D'Angelo, Ciriaco Andrea/J-8162-2012; van Eck, Nees Jan/B-6042-2008
OI D'Angelo, Ciriaco Andrea/0000-0002-6977-6611; van Eck, Nees
Jan/0000-0001-8448-4521
CR Abdulhayoglu MA, 2017, SCIENTOMETRICS, V111, P1965, DOI 10.1007/s11192-017-2341-y
Aksnes DW, 2008, J AM SOC INF SCI TEC, V59, P838, DOI 10.1002/asi.20788
Backes T, 2018, ACM-IEEE J CONF DIG, P203, DOI 10.1145/3197026.3197036
Caron E., 2014, In: Proceedings of the 2014 Science and Technology Indicators Conference, P79, DOI DOI 10.1007/978-981-32-9298-7_12
Chinchilla-Rodrguez Z., 2018, FRONTIERS RES METRIC, V3, P17, DOI DOI 10.3389/FRMA.2018.00017
Chinchilla-Rodríguez Z, 2018, SCIENTOMETRICS, V116, P569, DOI 10.1007/s11192-018-2738-2
CORNELL LL, 1982, J AM SOC INFORM SCI, V33, P102, DOI 10.1002/asi.4630330209
Cota RG, 2010, J AM SOC INF SCI TEC, V61, P1853, DOI 10.1002/asi.21363
Culotta A., 2007, P 6 INT WORKSH INF I, P32
D'Angelo CA, 2011, J AM SOC INF SCI TEC, V62, P257, DOI 10.1002/asi.21460
Enserink M, 2009, SCIENCE, V323, P1662, DOI 10.1126/science.323.5922.1662
Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040
Haak LL, 2012, LEARN PUBL, V25, P259, DOI 10.1087/20120404
Han H, 2005, ACM-IEEE J CONF DIG, P334, DOI 10.1145/1065385.1065462
Han H, 2004, ACM-IEEE J CONF DIG, P296, DOI 10.1145/996350.996419
Harman G, 2000, J HIGH EDUC POLICY M, V22, P11
Hicks D, 2009, HIGH EDUC, V57, P393, DOI 10.1007/s10734-008-9154-0
Hjorland B, 2010, J AM SOC INF SCI TEC, V61, P217, DOI 10.1002/asi.21261
Huang J, 2006, LECT NOTES ARTIF INT, V4213, P536
Huang SQ, 2014, SCIENTOMETRICS, V99, P823, DOI 10.1007/s11192-013-1214-2
Kanani P, 2007, 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P429
Kang IS, 2009, INFORM PROCESS MANAG, V45, P84, DOI 10.1016/j.ipm.2008.06.006
Kawashima H, 2015, SCIENTOMETRICS, V103, P1061, DOI 10.1007/s11192-015-1580-z
Kim JI, 2019, PLANT BIOTECHNOL REP, V13, P419, DOI 10.1007/s11816-019-00581-w
Kim J, 2019, SCIENTOMETRICS, V118, P253, DOI 10.1007/s11192-018-2968-3
Kim J, 2018, SCIENTOMETRICS, V116, P1867, DOI 10.1007/s11192-018-2824-5
Larivière V, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162709
Larivière V, 2016, SOC STUD SCI, V46, P417, DOI 10.1177/0306312716650046
Levin M, 2012, J AM SOC INF SCI TEC, V63, P1030, DOI 10.1002/asi.22621
Liu WL, 2014, J ASSOC INF SCI TECH, V65, P765, DOI 10.1002/asi.23063
Mazov NA, 2014, SCI TECH INF PROCESS, V41, P206, DOI 10.3103/S0147688214030101
Morillo F, 2013, SCIENTOMETRICS, V95, P953, DOI 10.1007/s11192-013-0965-0
Müller MC, 2017, SCIENTOMETRICS, V111, P1467, DOI 10.1007/s11192-017-2363-5
On BW, 2005, ACM-IEEE J CONF DIG, P344, DOI 10.1145/1065385.1065463
Palmblad M, 2018, J AM SOC MASS SPECTR, V29, P447, DOI 10.1007/s13361-017-1846-1
Pereira DA, 2009, ACM-IEEE J CONF DIG, P49
Robinson-Garcia N, 2019, J INFORMETR, V13, P50, DOI 10.1016/j.joi.2018.11.002
Ruiz-Castillo J, 2014, J INFORMETR, V8, P917, DOI 10.1016/j.joi.2014.09.006
Sá PM, 2010, IEEE ENG MED BIO, P398, DOI 10.1109/IEMBS.2010.5627284
Schulz C, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0011-3
Schulz J, 2016, SCIENTOMETRICS, V107, P1283, DOI 10.1007/s11192-016-1892-7
Smalheiser NR, 2009, ANNU REV INFORM SCI, V43, P287
Soler JM, 2007, SCIENTOMETRICS, V72, P281, DOI 10.1007/s11192-007-1730-z
Song M, 2015, J INFORMETR, V9, P924, DOI 10.1016/j.joi.2015.08.004
Song Y, 2007, ACM-IEEE J CONF DIG, P342, DOI 10.1145/1255175.1255243
Strotmann A, 2012, J AM SOC INF SCI TEC, V63, P1820, DOI 10.1002/asi.22695
Sugimoto CR, 2017, NATURE, V550, P29, DOI 10.1038/550029a
Sun XL, 2013, INFORM PROCESS MANAG, V49, P454, DOI 10.1016/j.ipm.2012.09.001
Tekles A, 2019, ARXIV190412746
Tijssen R, 2017, NATURE, V544, P35, DOI 10.1038/544035c
Treeratpituk P, 2009, ACM-IEEE J CONF DIG, P39
Veloso A, 2012, INFORM PROCESS MANAG, V48, P680, DOI 10.1016/j.ipm.2011.08.005
Yang KH, 2008, LECT NOTES COMPUT SC, V5173, P185
Youtie J, 2017, SCIENTOMETRICS, V113, P437, DOI 10.1007/s11192-017-2473-0
NR 54
TC 32
Z9 35
U1 1
U2 41
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD MAY
PY 2020
VL 123
IS 2
BP 883
EP 907
DI 10.1007/s11192-020-03410-y
PG 25
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA LJ0VN
UT WOS:000529892100015
DA 2024-09-05
ER
PT J
AU Drummond, C
AF Drummond, Chris
TI Reproducible research: aminority opinion
SO JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE
LA English
DT Article
DE machine learning; reproducible research; scientific evaluation;
scientific communication
AB Reproducible research, a growing movement within many scientific fields, including machine learning, would require the code, used to generate the experimental results, be published along with any paper. Probably the most compelling argument for this is that it is simply following good scientific practice, established over the years by the greats of science. The implication is that failure to follow such a practice is unscientific, not a label any machine learning researchers would like to carry. It is further claimed that misconduct is causing a growing crisis of confidence in science. That, without this practice being enforced, science would inevitably fall into disrepute. This viewpoint is becoming ubiquitous but here I offer a differing opinion. I argue that far from being central to science, what is being promulgated is a narrow interpretation of how science works. I contend that the consequences are somewhat overstated. I would also contend that the effort necessary to meet the movement's aims, and the general attitude it engenders would not serve well any of the research disciplines, including our own.
C1 [Drummond, Chris] Natl Res Council Canada, Informat & Commun Technol, Ottawa, ON, Canada.
C3 National Research Council Canada
RP Drummond, C (corresponding author), Natl Res Council Canada, Informat & Commun Technol, Ottawa, ON, Canada.
EM Chris.Drummond@nrc-cnrc.gc.ca
CR AAAS, 2011, AAAS ANN M S DIG SCI
AMP, 2011, APPL MATH PERSP WORK
[Anonymous], 2016, RIG REPR
[Anonymous], 2015, NATURE OCT
[Anonymous], 2010, THE CANCER LETTER
[Anonymous], 2006, The Sunday Times
[Anonymous], 1989, NY TIMES
[Anonymous], 2011, NY TIMES
[Anonymous], 2012, NY Times
[Anonymous], 1937, MANCHESTER GUARDIAN
Asuncion A., 2007, TECHNICAL REPORT
Baker BT, 2015, IEEE INT WORKS MACH, DOI 10.1038/nature.2015.18248
Bissell M, 2013, NATURE, V503, P333, DOI 10.1038/503333a
Bridgman P., 1986, REFLECTIONS PHYS
BROAD W, 1984, BETRAYERS TRUTH
Broman K., 2017, Recommendations to Funding Agencies for Supporting Reproducible Research, V2, P1
Camerer CF, 2016, SCIENCE, V351, P1433, DOI 10.1126/science.aaf0918
Crocker J, 2011, SCIENCE, V334, P1182, DOI 10.1126/science.1216775
CST, 1993, CHICAGO SUN TIMES
Drummond C., 2009, P 26 INT C MACH LEAR
Drummond C., 2008, P 25 INT C MACH LEAR
Drummond C, 2006, MACH LEARN, V65, P95, DOI 10.1007/s10994-006-8199-5
Drummond C, 2010, J EXP THEOR ARTIF IN, V22, P67, DOI 10.1080/09528130903010295
Economist Editorial, 2013, ECONOMIST
Economist Editorial, 2011, ECONOMIST
ENAR, 2011, ENAR 2011 BIOST ROL
Feyerabend Paul., 1970, Against Method: Outline of an Anarchistic Theory of Knowledge
Fisher R. A., 1946, Statistical methods for research workers.
Fritzson P., 2005, P 46 C SIM MOD SCAND
Groves T, 2012, BRIT MED J, V344, DOI 10.1136/bmj.e4383
HAMILTON DP, 1990, SCIENCE, V250, P1331, DOI 10.1126/science.2255902
HOLTON G, 1986, ADV SCI ITS BURDENS
Iorns E, 2013, REPROD INITIATIVE RE
Jasny BR, 2011, SCIENCE, V334, P1225, DOI 10.1126/science.334.6060.1225
Johns Hopkins University, 2015, REPR RES
Kazai G., 2015, EUR C INF RETR SPEC
Kenett RS, 2015, NAT METHODS, V12, P699, DOI 10.1038/nmeth.3489
Kibler D., 1988, EWSL 88: Proceedings of the Third European Working Session on Learning, P81
Knuth D., 1988, COMPUT J, V27, P97
Kuhn T.S., 1962, The structure of scientific revolutions
Meehl PE., 1990, Psychological Inquiry, V1, P108, DOI DOI 10.1207/S15327965PLI0102_1
Moska S., 2015, WORKSH REPR RES COMP
Nature Editorial, 2016, NATURE, V533
Neyman J, 1933, PHILOS T R SOC LOND, V231, P289, DOI 10.1098/rsta.1933.0009
NSF, 2010, NAT SCI FDN WORKSH C
*OP SOC I, 2001, BUD OP ACC IN
Oreskes N, 2004, SCIENCE, V306, P1686, DOI 10.1126/science.1103618
Peng RD, 2011, SCIENCE, V334, P1226, DOI 10.1126/science.1213847
Polanyi Michael, 1958, Personal knowledge: Toward a post critical philosophy
Popper K., 2005, LOGIC SCI DISCOVERY
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Push onto Protect New Troops from IEDS, 2010, US TODAY
Reuters, 1981, NY TIMES
Ryan MJ, 2011, SCIENCE, V334, P1229, DOI 10.1126/science.1214532
Sanders J., 2014, ROYAL SOC OPEN SCI
Sandve G. K., 2013, PLOS COMPUTATIONAL B
Schulte E., 2012, J STAT SOFTWARE, V46
Services A. W., 2016, AWS PUBL DAT SETS
SIAM-CSE, 2011, SIAM C COMP SCI AMP
SIAM-Geo, 2011, SIAM GEOSC WORKSH RE
Sonnenburg S, 2007, J MACH LEARN RES, V8, P2443
Stallman R. M., 1981, AIM519A MIT ART INT
Stodden V., 2014, THE R SERIES
Swiss Institute of BioInformatics, 2015, REPR RES
Vanschoren J, 2012, MACH LEARN, V87, P127, DOI 10.1007/s10994-011-5277-0
Weinberg Steven., 1995, Academic Questions, V8, P7
Wren K., 2014, AAAS NEWS MAY
Yale Law Sch Roundtable Data Code, 2010, COMPUT SCI ENG, V12, P8
NR 68
TC 10
Z9 11
U1 0
U2 4
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 0952-813X
EI 1362-3079
J9 J EXP THEOR ARTIF IN
JI J. Exp. Theor. Artif. Intell.
PY 2018
VL 30
IS 1
BP 1
EP 11
DI 10.1080/0952813X.2017.1413140
PG 11
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA FZ8SH
UT WOS:000427879800001
OA Bronze
DA 2024-09-05
ER
PT J
AU Kinnear, G
Jones, I
Sangwin, C
Alarfaj, M
Davies, B
Fearn, S
Foster, C
Heck, A
Henderson, K
Hunt, T
Iannone, P
Kontorovich, I
Larson, N
Lowe, T
Meyer, JC
O'Shea, A
Rowlett, PJ
Sikurajapathi, I
Wong, T
AF Kinnear, George
Jones, Ian
Sangwin, Chris
Alarfaj, Maryam
Davies, Ben
Fearn, Sam
Foster, Colin
Heck, Andre
Henderson, Karen
Hunt, Tim
Iannone, Paola
Kontorovich, Igor'
Larson, Niclas
Lowe, Tim
Meyer, John Christopher
O'Shea, Ann
Rowlett, Peter James
Sikurajapathi, Indunil
Wong, Thomas
TI A Collaboratively-Derived Research Agenda for E-assessment in
Undergraduate Mathematics
SO INTERNATIONAL JOURNAL OF RESEARCH IN UNDERGRADUATE MATHEMATICS EDUCATION
LA English
DT Article
DE Online learning; Assessment; Feedback; Mathematics education; Delphi
methods
ID COMPUTER-AIDED ASSESSMENT; PEER-ASSESSMENT; EDUCATION; FEEDBACK; TESTS;
PERFORMANCE; LESSONS; IMPACT
AB This paper describes the collaborative development of an agenda for research on e-assessment in undergraduate mathematics. We built on an established approach to develop the agenda from the contributions of 22 mathematics education researchers, university teachers and learning technologists interested in this topic. The resulting set of 55 research questions are grouped into 5 broad themes: errors and feedback, student interactions with e-assessment, design and implementation choices, affordances offered by e-assessment tools, and mathematical skills. This agenda gives a framework for a programme of research aligned with practical concerns that will contribute to both theoretical and practical development.
C1 [Kinnear, George; Sangwin, Chris; Alarfaj, Maryam] Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland.
[Jones, Ian; Foster, Colin; Iannone, Paola] Loughborough Univ, Loughborough, Leics, England.
[Davies, Ben] UCL, London, England.
[Fearn, Sam] Univ Durham, Durham, England.
[Heck, Andre] Univ Amsterdam, Amsterdam, Netherlands.
[Henderson, Karen; Sikurajapathi, Indunil] Univ West England, Bristol, Avon, England.
[Hunt, Tim; Lowe, Tim] Open Univ, Milton Keynes, Bucks, England.
[Kontorovich, Igor'] Univ Auckland, Auckland, New Zealand.
[Larson, Niclas] Univ Agder, Kristiansand, Norway.
[O'Shea, Ann] Maynooth Univ, Maynooth, Kildare, Ireland.
[Rowlett, Peter James] Sheffield Hallam Univ, Sheffield, S Yorkshire, England.
[Wong, Thomas] Heriot Watt Univ, Edinburgh, Midlothian, Scotland.
[Meyer, John Christopher] Univ Birmingham, Birmingham, W Midlands, England.
[Alarfaj, Maryam] Saudi Elect Univ, Riyadh, Saudi Arabia.
C3 University of Edinburgh; Loughborough University; University of London;
University College London; Durham University; University of Amsterdam;
University of West England; Open University - UK; University of
Auckland; University of Agder; Maynooth University; Sheffield Hallam
University; Heriot Watt University; University of Birmingham; Saudi
Electronic University
RP Kinnear, G (corresponding author), Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland.
EM G.Kinnear@ed.ac.uk
RI Kontorovich, Igor'/AFH-4311-2022; OShea, Ann/IUQ-3104-2023; Rowlett,
Peter/R-2612-2017
OI Kontorovich, Igor'/0000-0002-3353-5445; OShea, Ann/0000-0001-8504-2290;
Rowlett, Peter/0000-0003-1917-7458; Lowe, Tim/0000-0001-7154-0168;
Meyer, John Christopher/0000-0003-0708-1088; Heck,
Andre/0000-0002-7923-6360
CR Alarfaj M., 2022, MSOR CONNECTIONS, V20, P56, DOI [10.21100/msor.v20i1.1310, DOI 10.21100/MSOR.V20I1.1310]
Alcock L., 2016, Journal of Numerical Cognition, V2, P20, DOI DOI 10.5964/JNC.V2I1.10
Alcock L, 2020, J RES MATH EDUC, V51, P26, DOI 10.5951/jresematheduc.2019.0006
Alcock L, 2013, RES MATH EDUCAT, V15, P97, DOI 10.1080/14794802.2013.797731
Anderson JR, 1995, J LEARN SCI, V4, P167, DOI 10.1207/s15327809jls0402_2
Appleby J, 1997, COMPUT EDUC, V28, P113, DOI 10.1016/S0360-1315(97)00001-8
Arnold IJM, 2016, INTERNET HIGH EDUC, V29, P98, DOI 10.1016/j.iheduc.2016.02.001
Ashenafi MM, 2017, ASSESS EVAL HIGH EDU, V42, P226, DOI 10.1080/02602938.2015.1100711
Ashton HS, 2006, BRIT J EDUC TECHNOL, V37, P93, DOI 10.1111/j.1467-8535.2005.00512.x
Attali Y, 2017, COMPUT EDUC, V110, P154, DOI 10.1016/j.compedu.2017.03.012
Avigad J., 2019, MATH ED DIGITAL ERA, P277
Bakker A, 2021, EDUC STUD MATH, V107, P1, DOI 10.1007/s10649-021-10049-w
Beeson M., 1998, COMPUTER HUMAN INTER, P89
Beevers C.E., 2003, Active Learning in Higher Education, V4, P127, DOI DOI 10.1177/1469787403004002002
Bhaird CMA, 2017, RES MATH EDUCAT, V19, P147, DOI 10.1080/14794802.2017.1318084
Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA]
Breen S., 2019, PRIMUS, V29, P9, DOI DOI 10.1080/10511970.2017.1396567
Broughton SJ, 2017, ADV EDUC TECHNOL INS, P415, DOI 10.4018/978-1-5225-2026-9.ch020
Byrne M, 2018, INT J RES UN MATH ED, V4, P228, DOI 10.1007/s40753-017-0059-0
Cai JF, 2020, J RES MATH EDUC, V51, P518, DOI 10.5951/jresematheduc-2020-0165
Cai JF, 2020, INT J SCI MATH EDUC, V18, P1, DOI 10.1007/s10763-020-10079-5
Cai JF, 2019, J RES MATH EDUC, V50, P114
Darlington E, 2014, TEACH MATH APPL, V33, P213, DOI 10.1093/teamat/hru021
Davies B, 2020, EDUC STUD MATH, V105, P181, DOI 10.1007/s10649-020-09984-x
Devlin K, 2011, MATHEMATICS EDUCATION FOR A NEW ERA: VIDEO GAMES AS A MEDIUM FOR LEARNING, P1, DOI 10.1201/b10816
Dorko A, 2020, INT J RES UN MATH ED, V6, P446, DOI 10.1007/s40753-020-00113-w
English L.D., 2008, Handbook of International Research in Mathematics Education, V2nd, P3
Foster C., 2014, European Journal of Science and Mathematics Education, V2, P147, DOI [10.30935/SCIMATH/9407, DOI 10.30935/SCIMATH/9407]
Foster C, 2021, J CURRICULUM STUD, V53, P621, DOI 10.1080/00220272.2021.1902569
Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111
Freudenthal H., 1973, MATH ED TASK
Fyfe ER, 2021, ADV METH PRACT PSYCH, V4, DOI 10.1177/25152459211027575
Gierl MJ, 2017, REV EDUC RES, V87, P1082, DOI 10.3102/0034654317726529
Greenhow M, 2015, TEACH MATH APPL, V34, P117, DOI 10.1093/teamat/hrv012
Gruttmann S., 2008, P 11 IASTED INT C CO, P120
Hanna G., 1983, RIGOROUS PROOF MATH
Hannah J, 2014, INT J MATH EDUC SCI, V45, P269, DOI 10.1080/0020739X.2013.822583
Harjula M., 2017, MSOR CONNECTIONS, V15, P60, DOI [10.21100/msor.v15i2.408, DOI 10.21100/MSOR.V15I2.408]
Hart K.M., 1980, Secondary school children's understanding of mathematics: a report of the mathematics component of the concepts in secondary Mathematics and Science Programme
Heck A., STUDENT ASSESSMENT D
Heck A., 2017, MSOR CONNECTIONS, V15, P6, DOI [10.21100/msor.v15i2.412, DOI 10.21100/MSOR.V15I2.412]
Hsu CC, 2007, PRACTICAL ASSESSMENT, V12, P1, DOI [DOI 10.7275/PDZ9-TH90, 10.7275/pdz9-th90]
Iannone P, 2015, STUD HIGH EDUC, V40, P1046, DOI 10.1080/03075079.2013.858683
Iannone P, 2022, TEACH MATH APPL, V41, P22, DOI 10.1093/teamat/hrab007
Iannone P, 2019, EDUC STUD MATH, V101, P387, DOI 10.1007/s10649-018-9872-x
Inglis M, 2018, J RES MATH EDUC, V49, P462
Jones I., 2017, NORDIC STUDIES MATH, V22, P147
Jones I, 2015, EDUC STUD MATH, V89, P337, DOI 10.1007/s10649-015-9607-1
Jones I, 2014, STUD HIGH EDUC, V39, P1774, DOI 10.1080/03075079.2013.821974
Jordan S, 2012, COMPUT EDUC, V58, P818, DOI 10.1016/j.compedu.2011.10.007
Kalyuga S, 2003, EDUC PSYCHOL-US, V38, P23, DOI 10.1207/S15326985EP3801_4
Kinnear G., MATH ED DIGITAL AGE
Kinnear G, 2022, INT J MATH EDUC SCI, V53, P11, DOI 10.1080/0020739X.2021.1962554
Kinnear G, 2020, TEACH MATH APPL, V39, P281, DOI 10.1093/teamat/hrz017
Kluger AN, 1996, PSYCHOL BULL, V119, P254, DOI 10.1037/0033-2909.119.2.254
Kontorovich I., 2017, For the Learning of Mathematics, V37, P29
Lester FK, 2005, ZDM-MATH EDUC, V37, P457, DOI 10.1007/BF02655854
Lindsay E, 2022, MATH EDUC RES J, V34, P911, DOI 10.1007/s13394-021-00369-8
Lithner J., 2008, EDUC STUD MATH, V67, P255, DOI DOI 10.1007/S10649-007-9104-2
Lyle KB, 2020, EDUC PSYCHOL REV, V32, P277, DOI 10.1007/s10648-019-09489-x
Maciejewski W, 2016, TEACH MATH APPL, V35, P187, DOI 10.1093/teamat/hrv019
Marton F., 1997, EXPERIENCE LEARNING, V2nd
Mason J., 2000, INT J MATH EDUC SCI, V31
Mason J., 2010, THINKING MATH, VSecond
McKenney S, 2012, CONDUCTING EDUCATIONAL DESIGN RESEARCH, P1
Mejía-Ramos JP, 2017, RES MATH EDUCAT, V19, P130, DOI 10.1080/14794802.2017.1325776
Oshler S., 2016, For the Learning of Mathematics, V36, P11
Oyengo M.O, 2021, INT M STACK COMMUNIT, DOI [10.5281/zenodo.5035980, DOI 10.5281/ZENODO.5035980]
Palm T., 2017, Nordic Studies in Mathematics Education, V22, P25
Pointon A., 2003, International Journal of Mathematical Education in Science and Technology, V34, P671, DOI DOI 10.1080/0020739031000148930
Pollitt A, 2012, ASSESS EDUC, V19, P281, DOI 10.1080/0969594X.2012.665354
Polya G., 1954, MATH PLAUSIBLE REASO, V2
Popper P, 2022, EDUC STUD MATH, V110, P83, DOI 10.1007/s10649-021-10109-1
Rienties B, 2019, COMPUT HUM BEHAV, V100, P345, DOI 10.1016/j.chb.2019.07.007
Rohrer D, 2015, J EDUC PSYCHOL, V107, P900, DOI 10.1037/edu0000001
Ronning F, 2017, TEACH MATH APPL, V36, P94, DOI 10.1093/teamat/hrx001
Rowlett P, 2022, INT J MATH EDUC SCI, V53, P1413, DOI 10.1080/0020739X.2020.1822554
Sangwin C., 2003, International Journal of Mathematical Education in Science and Technology, V34, P813, DOI DOI 10.1080/00207390310001595474
Sangwin CJ, 2007, J SYMB COMPUT, V42, P920, DOI 10.1016/j.jsc.2007.07.002
Sangwin C.J, 2019, 11 C EUR SOC RES MAT
Sangwin CJ, 2016, COMPUT EDUC, V94, P215, DOI 10.1016/j.compedu.2015.11.014
Sangwin CJ., 2013, COMPUTER AIDED ASSES, DOI [10.1093/acprof:oso/9780199660353.001.0001, DOI 10.1093/ACPROF:OSO/9780199660353.001.0001]
Sangwin CJ., 2022, PRIMUS, V32, P927, DOI [10.1080/10511970.2021.1999352, DOI 10.1080/10511970.2021.1999352]
Seaton K, 2022, INT J MATH EDUC SCI, V53, P559, DOI 10.1080/0020739X.2022.2008551
Selden A., 2018, PRIMUS, V28, P31, DOI [https://doi.org/10.1080/10511970.2017.1355858, DOI 10.1080/10511970.2017.1355858]
Shute VJ, 2008, REV EDUC RES, V78, P153, DOI 10.3102/0034654307313795
Sikurajapathi Indunil, 2020, International Journal of Information and Education Technology, V10, P356, DOI 10.18178/ijiet.2020.10.5.1389
Sleeman D., 1982, INTELLIGENT TUTORING
Smith G., 1996, International Journal o fMathematical Education in Science and Technology, V27, P65
Sutherland WJ, 2011, METHODS ECOL EVOL, V2, P238, DOI 10.1111/j.2041-210X.2010.00083.x
Thoma A, 2022, INT J RES UN MATH ED, V8, P64, DOI 10.1007/s40753-021-00140-1
Bickerton RT, 2022, INT J MATH EDUC SCI, V53, P2637, DOI 10.1080/0020739X.2021.1896813
Topping K, 2009, THEOR PRACT, V48, P20, DOI 10.1080/00405840802577569
Vajda R., 2009, TEACHING MATH COMPUT, V7, P13, DOI [10.5485/TMCS.2009.0189, DOI 10.5485/TMCS.2009.0189]
Vajda R, 2009, MATH COMPUT SIMULAT, V79, P2310, DOI 10.1016/j.matcom.2008.11.002
Van der Kleij FM, 2015, REV EDUC RES, V85, P475, DOI 10.3102/0034654314564881
VanDerHuck F, 2020, EXPLORACIONES, P1, DOI [10.18046/EUI/expl.13.2020, 10.1007/s11092-020-09331-x]
Watson A., 2006, MATH CONSTRUCTIVE AC, DOI [10.4324/9781410613714, DOI 10.4324/9781410613714]
Wiliam D, 2016, EDUC LEADERSHIP, V73, P10
Wood AK, 2021, TECHNOL PEDAGOG EDUC, V30, P443, DOI 10.1080/1475939X.2021.1917449
NR 100
TC 3
Z9 3
U1 0
U2 3
PU SPRINGER INT PUBL AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2198-9745
EI 2198-9753
J9 INT J RES UN MATH ED
JI Int. J. Res. Undergrad. Math. Educ.
PD APR
PY 2024
VL 10
IS 1
BP 201
EP 231
DI 10.1007/s40753-022-00189-6
EA SEP 2022
PG 31
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA TV2J1
UT WOS:000852922600001
OA Green Accepted, Green Published, hybrid
DA 2024-09-05
ER
PT C
AU Liu, HJ
Xu, HZ
Yan, Y
Li, W
AF Liu, Hong Jie
Xu, Hong Zhe
Yan, Yu
Li, Wen
BE Getov, V
Gaudiot, JL
Yamai, N
Cimato, S
Chang, M
Teranishi, Y
Yang, JJ
Leong, HV
Shahriar, H
Takemoto, M
Towey, D
Takakura, H
Elci, A
Susumu
Puri, S
TI Research on Evaluation Function of Clustering Algorithm Based on Duty
Cycle
SO 2019 IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE
(COMPSAC), VOL 2
SE Proceedings International Computer Software and Applications Conference
LA English
DT Proceedings Paper
CT 43rd IEEE-Computer-Society Annual International Computers, Software and
Applications Conference (COMPSAC)
CY JUL 15-19, 2019
CL Marquette Univ, Milwaukee, WI
HO Marquette Univ
DE DBSCAN; Validity dex; Density-based Clustering; Trajectory Clustering
AB Density-based clustering (DBSCAN) is one of the most effective methods for trajectory data mining, but density based clustering algorithms are often limited by the choice of input parameters. In the trajectory data mining, clustering results are not only affected by the within-class distance and between-class distance, but also by the number of coordinate points in the cluster. Therefore, this paper proposes a novel cluster validity index based on the internal and external duty cycle to balance the three factors. In this way, the parameters of density clustering can be automatically selected, and effective clustering can be formed on different datasets. Then the clustering method is applied to the depth analysis and mining of travelers' behavior trajectories. The experiment proves that compared with the traditional Validity index, the evaluation function proposed in this paper can optimize input parameters and get better user location information clustering results.
C1 [Liu, Hong Jie; Xu, Hong Zhe; Yan, Yu; Li, Wen] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian, Peoples R China.
C3 Xi'an Jiaotong University
RP Liu, HJ (corresponding author), Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian, Peoples R China.
EM hj_popel@stu.xjtu.edu.cn; xuhz@xjtu.edu.cn; yanyu94@stu.xjtu.edu.cn;
leewhen@xjtu.edu.cn
CR Acharya S, 2014, INT CONF SOFT COMP, P24, DOI 10.1109/ISCMI.2014.14
[Anonymous], 2016, IEEE T NEUR NET LEAR, DOI DOI 10.1109/TNNLS.2016.2608001
[Anonymous], J CYBERNETICS
Chen D, 2020, INT J PAVEMENT ENG, V21, P416, DOI 10.1080/10298436.2018.1483503
Choong MY, 2014, PROCEEDINGS 2014 4TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE WITH APPLICATIONS IN ENGINEERING AND TECHNOLOGY ICAIET 2014, P199, DOI 10.1109/ICAIET.2014.41
DAVIES DL, 1979, IEEE T PATTERN ANAL, V1, P224, DOI 10.1109/TPAMI.1979.4766909
Hou J, 2016, IEEE T IMAGE PROCESS, V25, DOI 10.1109/TIP.2016.2559803
Karo I.M.K., 2017, 2 INT C INF COMP ICI, P1, DOI DOI 10.1109/IAC.2017.8280572
Rojas Thomas Juan Carlos, 2013, 2013 32nd International Conference of the Chilean Computer Science Society (SCCC). Proceedings, P49, DOI 10.1109/SCCC.2013.29
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Sharma A, 2017, 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), P787, DOI 10.1109/ICICICT1.2017.8342664
Wang Z, 2017, 2017 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), P538, DOI 10.1109/ICSGEA.2017.52
Zheng Y, 2015, ACM T INTEL SYST TEC, V6, DOI 10.1145/2743025
NR 13
TC 1
Z9 1
U1 1
U2 4
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
SN 0730-3157
BN 978-1-7281-2607-4
J9 P INT COMP SOFTW APP
PY 2019
BP 48
EP 54
DI 10.1109/COMPSAC.2019.10182
PG 7
WC Computer Science, Interdisciplinary Applications; Computer Science,
Software Engineering
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BP1DH
UT WOS:000538781300009
DA 2024-09-05
ER
PT J
AU Alemdag, E
AF Alemdag, Ecenaz
TI The effect of chatbots on learning: a meta-analysis of empirical
research
SO JOURNAL OF RESEARCH ON TECHNOLOGY IN EDUCATION
LA English
DT Article; Early Access
DE Chatbot; conversational agent; learning; meta-analysis; artificial
intelligence
ID INTELLIGENT TUTORING SYSTEMS; CONVERSATIONAL AGENTS; FEEDBACK PRACTICE;
TEACHING-ENGLISH; SKILLS; PERCEPTIONS; EDUCATION; GUIDANCE
AB This meta-analysis aimed to comprehensively review empirical studies on the effect of chatbots on learning and quantitatively synthesize their findings to produce an overall effect size. Searching several databases yielded 28 eligible reports with 31 individual effect sizes. The results revealed a significant and medium effect (g = .48) of chatbots on learning. Further analyses indicated four significant moderators: the type of instruction in the comparison group, experimental duration, chatbot type, and chatbot tasks. The highest effect sizes emerged when the comparison group had no specific support, the experiment lasted only one session, and chatbots were task-focused and took care of frequently asked questions. These results suggest that chatbots can be more effective in certain cases within their overall contribution area to learning.
C1 [Alemdag, Ecenaz] Tech Univ Dresden, Dresden, Germany.
[Alemdag, Ecenaz] Tech Univ Dresden, Psychol Learning & Instruct, Dresden, Germany.
C3 Technische Universitat Dresden; Technische Universitat Dresden
RP Alemdag, E (corresponding author), Tech Univ Dresden, Psychol Learning & Instruct, Dresden, Germany.
EM ecenazalemdag@gmail.com
OI Alemdag, Ecenaz/0000-0003-2645-4732
FU The author completed this research during her postdoctoral fellowship
funded by the Alexander von Humboldt Foundation. She is grateful to this
foundation for providing financial support for her studies. She also
expresses her gratitude to Dr. Merve Basdoga; Alexander von Humboldt
Foundation
FX The author completed this research during her postdoctoral fellowship
funded by the Alexander von Humboldt Foundation. She is grateful to this
foundation for providing financial support for her studies. She also
expresses her gratitude to Dr. Merve Basdogan, who provided enormous
help in the analysis stage of this study.
CR Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006
Bibauw S, 2022, LANG LEARN TECHNOL, V26
Borenstein M., 2009, INTRO META ANAL
Bozkurt A., 2023, Asian Journal of Distance Education, V18, P198, DOI [10.5281/zenodo.7716416, DOI 10.5281/ZENODO.7716416]
Brachten F, 2020, INF SYST E-BUS MANAG, V18, P187, DOI 10.1007/s10257-020-00471-7
BRUSTENGA Guillem, 2018, Briefing paper: Los chatbots en educacion
Chang CY, 2022, EDUC TECHNOL SOC, V25, P15
Chang CY, 2022, BRIT J EDUC TECHNOL, V53, P171, DOI 10.1111/bjet.13158
Chang JN, 2023, ASIA-PAC SCI EDUC, V9, P44, DOI 10.1163/23641177-BJA10062
Chiu TKF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2172044
Cohen J., 1977, STAT POWER ANAL BEHA
Sáiz-Manzanares MC, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e12843
Deeks JJ., 2022, COCHRANE HDB SYSTEMA
Deng H, 2018, PROC INT CONF EDU IN, P234, DOI 10.1109/EITT.2018.00054
Deng XJ, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15042940
Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846
Fidan M, 2022, J EDUC COMPUT RES, V60, P1716, DOI 10.1177/07356331221077901
Fryer LK, 2017, COMPUT HUM BEHAV, V75, P461, DOI 10.1016/j.chb.2017.05.045
*Graesser A. C., 2003, P 25 ANN C COGN SCI, P1
Grudin J, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300439
Han S, 2022, COMPUT EDUC, V179, DOI 10.1016/j.compedu.2021.104395
Hannafin M, 1999, INSTRUCTIONAL-DESIGN THEORIES AND MODELS, VOL II, P115
Hattie JAC, 2009, VISIBLE LEARNING: A SYNTHESIS OF OVER 800 META-ANALYSES RELATING TO ACHIEVEMENT, P1
Hayashi Y, 2020, INT J COMP-SUPP COLL, V15, P469, DOI 10.1007/s11412-020-09333-3
Hedges LV., 1985, Journal of Educational Statistics, DOI [DOI 10.2307/1164953, 10.1016/C2009-0-03396-0, DOI 10.1016/C2009-0-03396-0]
Higgins J. P. T., 2021, COCHRANE HDB SYSTEMA
Higgins JPT, 2003, BMJ-BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557
Hoque M, 2013, UBICOMP'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, P697
Hsu MH, 2023, INTERACT LEARN ENVIR, V31, P4297, DOI 10.1080/10494820.2021.1960864
Hsu TC, 2023, EDUC TECHNOL SOC, V26, P218, DOI 10.30191/ETS.202301_26(1).0016
Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610
Hwang GJ, 2023, INTERACT LEARN ENVIR, V31, P4099, DOI 10.1080/10494820.2021.1952615
Jasin J, 2023, EDUC INF TECHNOL, V28, P10665, DOI 10.1007/s10639-023-11602-1
Je-Young Lee, 2022, [Studies in English Language & Literature, 영어영문학연구], V48, P213
Jeon J, 2024, COMPUT ASSIST LANG L, V37, P1, DOI 10.1080/09588221.2021.2021241
Jeon J, 2023, COMPUT ASSIST LANG L, V36, P1338, DOI 10.1080/09588221.2021.1987272
Ji H, 2023, J RES TECHNOL EDUC, V55, P48, DOI 10.1080/15391523.2022.2142873
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Kerly A, 2009, APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS XVI, P169
Kim HS, 2021, J ASIA TEFL, V18, P161, DOI 10.18823/asiatefl.2021.18.1.10.161
Kirschner PA, 2006, EDUC PSYCHOL-US, V41, P75, DOI 10.1207/s15326985ep4102_1
Kron FW, 2017, PATIENT EDUC COUNS, V100, P748, DOI 10.1016/j.pec.2016.10.024
Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3
Kumar JA, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00302-w
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Lin H, 2019, INT REV RES OPEN DIS, V20, P1
Lin MPC, 2020, EDUC TECHNOL SOC, V23, P78
Lipsey MW., 2001, PRACTICAL META ANAL
Ma WT, 2014, J EDUC PSYCHOL, V106, P901, DOI 10.1037/a0037123
Mageira K, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12073239
Mejbri N, 2017, 2017 6TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY AND ACCESSIBILITY (ICTA)
Morris SB, 2008, ORGAN RES METHODS, V11, P364, DOI 10.1177/1094428106291059
Na-Young Kim, 2018, [Journal of Digital Convergence, 디지털융복합연구], V16, P19
Na-Young Kim, 2018, [Journal of Digital Convergence, 디지털융복합연구], V16, P1, DOI 10.14400/JDC.2018.16.2.001
Na-Young Kim, 2016, [Multimedia-Assisted Language Learning, 멀티미디어 언어교육], V19, P63
Nghi T. T., 2019, International Journal of Scientific & Technology research, V8, P897
Okonkwo CW., 2021, COMPUTERS ED ARTIFIC, V2, P100033, DOI [10.1016/j.caeai.2021.100033, DOI 10.1016/J.CAEAI.2021.100033]
Page MJ, 2021, BMJ-BRIT MED J, V372, DOI 10.1136/bmj.n160
Pérez JQ, 2020, COMPUT APPL ENG EDUC, V28, P1549, DOI 10.1002/cae.22326
Petticrew M, 2006, SYSTEMATIC REVIEWS IN THE SOCIAL SCIENCES: A PRACTICAL GUIDE, P1, DOI 10.1002/9780470754887
ROSENTHAL R, 1979, PSYCHOL BULL, V86, P638, DOI 10.1037/0033-2909.86.3.638
Ruan S, 2021, IUI '21 - 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P434, DOI 10.1145/3397481.3450648
Schmidt F., 2015, METHODS META ANAL CO, DOI [10.4135/9781483398105, DOI 10.4135/9781483398105]
Slavin RE, 2008, EDUC RESEARCHER, V37, P5, DOI 10.3102/0013189X08314117
Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862
Song D, 2021, J RES TECHNOL EDUC, V53, P249, DOI 10.1080/15391523.2020.1767525
Suurmond R, 2017, RES SYNTH METHODS, V8, P537, DOI 10.1002/jrsm.1260
Tegos S, 2017, EDUC TECHNOL SOC, V20, P99
Tegos S, 2016, INT J COMP-SUPP COLL, V11, P417, DOI 10.1007/s11412-016-9246-2
Terras M.M., 2013, E-Learning and Digital Media, V10, P161, DOI [DOI 10.1016/J.TECHFORE.2018.01, 10.1016/j.techfore.2018.01]
Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x
Topal AD, 2021, EDUC INF TECHNOL, V26, P6241, DOI 10.1007/s10639-021-10627-8
Vattoy KD, 2020, STUD EDUC EVAL, V64, DOI 10.1016/j.stueduc.2019.100828
Vattoy KD, 2019, TEACH TEACH EDUC, V85, P260, DOI 10.1016/j.tate.2019.06.024
Vázquez-Cano E, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00269-8
Viechtbauer W, 2010, RES SYNTH METHODS, V1, P112, DOI 10.1002/jrsm.11
*Wambsganss T., 2021, P 2021 CHI C HUM FAC, P1, DOI [https://doi.org/10.1145/3411764.3445781, DOI 10.1145/3411764.3445781]
Winkler R., 2018, ACAD MANAGEMENT ANN, V2018, P15903, DOI DOI 10.5465/AMBPP.2018.15903ABSTRACT
Winkler R, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376781
Wollny S, 2021, FRONT ARTIF INTELL, V4, DOI 10.3389/frai.2021.654924
Xia Q, 2023, BRIT J EDUC TECHNOL, V54, P967, DOI 10.1111/bjet.13305
Xu Y, 2021, COMPUT EDUC, V161, DOI 10.1016/j.compedu.2020.104059
Xu ZH, 2019, BRIT J EDUC TECHNOL, V50, P3119, DOI 10.1111/bjet.12758
Yilmaz Ramazan, 2023, Computers in Human Behavior: Artificial Humans, V1, DOI DOI 10.1016/J.CHBAH.2023.100005
Yin JQ, 2021, J EDUC COMPUT RES, V59, P154, DOI 10.1177/0735633120952067
Zhang RF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2202704
Zhang SA, 2023, EDUC INF TECHNOL, V28, P15223, DOI 10.1007/s10639-023-11805-6
NR 87
TC 9
Z9 9
U1 39
U2 99
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1539-1523
EI 1945-0818
J9 J RES TECHNOL EDUC
JI J. Res. Technol. Educ.
PD 2023 SEP 4
PY 2023
DI 10.1080/15391523.2023.2255698
EA SEP 2023
PG 23
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA R5BL3
UT WOS:001064500700001
DA 2024-09-05
ER
PT C
AU Chen, C
Zhang, SM
Zhang, H
Li, XJ
He, ZC
AF Chen, Chong
Zhang, Shimin
Zhang, Hang
Li, Xiaojun
He, Zichen
BE Reich, A
Cluever, J
TI RESEARCH ON RISK ASSESSMENT METHOD OF STICK-SLIP VIBRATION OF THE BIT
BASED ON BP NEURAL NETWORK ALGORITHM
SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2018,
VOL 7
LA English
DT Proceedings Paper
CT ASME Pressure Vessels and Piping Conference (PVP 2018)
CT COFOLA INTERNATIONAL 2017: Resolution of International Disputes
Conference
CY JUL 15-20, 2018
CY APR 27-29, 2017
CL Prague, CZECH REPUBLIC
CL Masaryk Univ, Telc, CZECH REPUBLIC
HO Masaryk Univ
DE stick-slip vibration; time and frequency domain; kernel principal
component analysis; backpropagation neural network; drilling risk
AB During the drilling process, the non-linear contacts between the bit and the bottom hole, the drill string and the borehole wall can cause the bit's stick-slip vibration, which will shorten the life of the bit and even endanger the safety of the drill string. The severity of stick-slip vibration of a bit can be identified by the rotary speed of a bit, the triaxial accelerations of the drill string, the wellhead torque and other parameters measured by the measuring while drilling (MWD) tools in the downhole and devices on the surface. To evaluate the level of stick-slip vibration, this paper proposes a risk assessment method of sick-slip vibration based on backpropagation neural network (BPNN). According to the time and frequency domain analysis of the data collected from simulation, the feature parameters of the time and frequency domains of signals are extracted, and then the kernel principal component analysis (KPCA) is applied to reduce dimensions. Consequently, the feature vectors can be obtained, which become the input parameters of the BPNN. Based on BPNN algorithm, the stick slip vibration of the bit is determined, and the classification of stick-slip vibration strength is carried out. The results show that this method can effectively identify the severity of stick-slip vibration of a bit. Therefore, this method is valid to evaluate the stick-slip vibration of a bit, which will help drillers adjust the drilling parameters practically according to the severity of vibration, so as to reduce the risks of stick-slip vibration during drilling and improve the efficiency and safety of drilling operation.
C1 [Chen, Chong; Zhang, Shimin; Zhang, Hang; He, Zichen] China Univ Petr, Beijing, Peoples R China.
[Li, Xiaojun] CNPC Xibu Drilling Engn Co Ltd, Urumqi, Xinjiang, Peoples R China.
C3 China University of Petroleum; China National Petroleum Corporation
RP Chen, C (corresponding author), China Univ Petr, Beijing, Peoples R China.
FU CNPC Xibu Drilling Engineering Company Limited
FX The author would like to thank CNPC Xibu Drilling Engineering Company
Limited, for sponsoring this study, and providing the field data.
CR Besaisow A., 1988, SPE DRILLING ENG, V3, P93
Bresch-Pietri D, 2014, P AMER CONTR CONF, P386, DOI 10.1109/ACC.2014.6858642
Brett J.F., 1992, SPE Drilling Engineering, V7, P168, DOI DOI 10.2118/21943-PA
Challamel N, 2000, P IADC SPE DRILL C
Davis J, 2012, P IADC SPE DRILL C E
Halsey G. W, 1988, P SPE TECHN C EXH
HECHTNIELSEN R, 1988, NEURAL NETWORKS, V1, P131, DOI 10.1016/0893-6080(88)90015-9
Kyllingstad A, 2009, P SPE IADC DRILL C E
LIN YQ, 1991, J ENG IND-T ASME, V113, P38, DOI 10.1115/1.2899620
Richard T, 2004, CR MECANIQUE, V332, P619, DOI 10.1016/j.crme.2004.01.016
Robnett E, 1999, P SPE IADC DRILL C
RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0
Scholkopf B., 1997, Artificial Neural Networks - ICANN '97. 7th International Conference Proceedings, P583, DOI 10.1007/BFb0020217
NR 13
TC 0
Z9 0
U1 0
U2 0
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5170-8
PY 2019
AR UNSP V007T07A026
PG 6
WC Engineering, Mechanical; Nuclear Science & Technology
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Nuclear Science & Technology
GA BM2GO
UT WOS:000460999100026
DA 2024-09-05
ER
PT J
AU Xu, M
AF Xu, Man
TI Research on Evaluation and Improvement of Government Short Video
Communication Effect Based on Big Data Statistics
SO INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS
LA English
DT Article
DE Big data statistics; short videos of government affairs; communication
effect; linear regression; mainstream media
ID FUEL MOISTURE-CONTENT; DATA SCIENCE; ERA
AB Mainstream media is no longer the only way for people to obtain information, and the official media no longer has absolute control. People can choose the form and content of receiving information according to their preferences, which poses a new challenge to the government departments that have always been serious. From the beginning of short video to its prosperity, the government has shown great interest in its characteristics and functions. It has started to layout short video of government affairs on platforms such as Tiktok and Kwai, opened accounts one after another, and actively participated in the production and dissemination of content. Through the continuous launch of well-designed "hot money", the popularity of government affairs short videos on Tiktok and other platforms continued to rise, harvested a large number of fans, attracted social attention, and also brought good results and repercussions. This paper proposes an optimization design scheme for the evaluation and improvement of the dissemination effect of government short video based on big data statistics. The basic situation of government video is obtained through content analysis, and then the judgment coefficient and linear regression in big data statistics are used to extract common factors to improve the dissemination effect of government short video, so as to improve the dissemination influence of government short video. Finally, simulation test and analysis are carried out. Simulation results show that the proposed algorithm has certain accuracy, which is 8.24% higher than the traditional algorithm. Carrying out the research on the promotion planning and design with the dissemination of short videos of government affairs as the core has important practical guiding significance for guiding local grass-roots governments to build public services and public feedback.
C1 [Xu, Man] Commun Univ China, Dept Journalism, Beijing 100020, Peoples R China.
[Xu, Man] Qiqihar Univ, Qiqihar 161000, Heilongjiang, Peoples R China.
C3 Communication University of China; Qiqihar University
RP Xu, M (corresponding author), Commun Univ China, Dept Journalism, Beijing 100020, Peoples R China.; Xu, M (corresponding author), Qiqihar Univ, Qiqihar 161000, Heilongjiang, Peoples R China.
CR Adnan K, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0254-8
Afolayan AO, 2019, ADV SPACE RES, V64, P2154, DOI 10.1016/j.asr.2019.06.019
Cao R, 2019, TEST-SPAIN, V28, P664, DOI 10.1007/s11749-019-00666-2
Chen LJ, 2020, COMPUT STAT DATA AN, V144, DOI 10.1016/j.csda.2019.106892
Cruz MG, 2020, INT J WILDLAND FIRE, V29, P1133, DOI 10.1071/WF20006
Daas PJH, 2015, J OFF STAT, V31, P249, DOI 10.1515/JOS-2015-0016
David JF, 2022, B MATH BIOL, V84, DOI 10.1007/s11538-022-01020-8
Dozier J, 2022, IEEE GEOSCI REMOTE S, V19, DOI 10.1109/LGRS.2021.3125278
Dunson DB, 2018, STAT PROBABIL LETT, V136, P4, DOI 10.1016/j.spl.2018.02.028
Genton MG, 2019, TEST-SPAIN, V28, P338, DOI 10.1007/s11749-019-00642-w
Grzybowski A, 2018, ACTA OPHTHALMOL, V96, pE885, DOI 10.1111/aos.13756
Guo Z, 2018, ASTROPHYS J, V868, DOI 10.3847/1538-4357/aaeb9b
Hong S, 2020, MON NOT R ASTRON SOC, V493, P5972, DOI 10.1093/mnras/staa566
James GM, 2018, STAT PROBABIL LETT, V136, P155, DOI 10.1016/j.spl.2018.02.034
McGrath S, 2019, STAT MED, V38, P969, DOI 10.1002/sim.8013
Nobis WP, 2020, J NEUROSURG, V132, P1313, DOI 10.3171/2019.1.JNS183157
Okulicz-Kozaryn A, 2017, SOC INDIC RES, V132, P953, DOI 10.1007/s11205-016-1327-0
Pimont F, 2019, INT J WILDLAND FIRE, V28, P127, DOI [10.1071/WF18091, 10.1071/wf18091]
Pitcher BW, 2019, GEOCHIM COSMOCHIM AC, V265, P443, DOI 10.1016/j.gca.2019.08.035
Rehman A, 2022, MULTIMEDIA SYST, V28, P1339, DOI 10.1007/s00530-020-00736-8
Rossa CG, 2017, INT J WILDLAND FIRE, V26, P24, DOI 10.1071/WF16049
Sangalli LM, 2018, STAT PROBABIL LETT, V136, P1, DOI 10.1016/j.spl.2018.04.009
Scanlon DP, 2020, AM J MANAG CARE, V26, P241, DOI 10.37765/ajmc.2020.43142
Soomro K, 2019, WIRES DATA MIN KNOWL, V9, DOI 10.1002/widm.1319
Yuan Y, 2022, MULTIMEDIA SYST, V28, P387, DOI 10.1007/s00530-021-00777-7
Zhang YX, 2018, IEEE NETWORK, V32, P146, DOI 10.1109/MNET.2018.1700282
NR 26
TC 0
Z9 0
U1 4
U2 4
PU SCIENCE & INFORMATION SAI ORGANIZATION LTD
PI WEST YORKSHIRE
PA 19 BOLLING RD, BRADFORD, WEST YORKSHIRE, 00000, ENGLAND
SN 2158-107X
EI 2156-5570
J9 INT J ADV COMPUT SC
JI Int. J. Adv. Comput. Sci. Appl.
PD JAN
PY 2024
VL 15
IS 1
BP 1073
EP 1083
PG 11
WC Computer Science, Theory & Methods
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA UV6A2
UT WOS:001250863900033
DA 2024-09-05
ER
PT J
AU Ni, Z
Peng, ML
Balakrishnan, V
Tee, V
Azwa, I
Saifi, R
Nelson, LE
Vlahov, D
Altice, FL
AF Ni, Zhao
Peng, Mary L.
Balakrishnan, Vimala
Tee, Vincent
Azwa, Iskandar
Saifi, Rumana
Nelson, LaRon E.
Vlahov, David
Altice, Frederick L.
TI Implementation of Chatbot Technology in Health Care: Protocol for a
Bibliometric Analysis
SO JMIR RESEARCH PROTOCOLS
LA English
DT Article
DE artificial intelligence; AI; bibliometric analysis; chatbots; health
care; health promotion
AB Background: Chatbots have the potential to increase people's access to quality health care. However, the implementation of chatbot technology in the health care system is unclear due to the scarce analysis of publications on the adoption of chatbot in health and medical settings. Objective: This paper presents a protocol of a bibliometric analysis aimed at offering the public insights into the current state and emerging trends in research related to the use of chatbot technology for promoting health. Methods: In this bibliometric analysis, we will select published papers from the databases of CINAHL, IEEE Xplore, PubMed, Scopus, and Web of Science that pertain to chatbot technology and its applications in health care. Our search strategy includes keywords such as "chatbot," "virtual agent," "virtual assistant," "conversational agent," "conversational AI," "interactive agent," "health," and "healthcare." Five researchers who are AI engineers and clinicians will independently review the titles and abstracts of selected papers to determine their eligibility for a full-text review. The corresponding author (ZN) will serve as a mediator to address any discrepancies and disputes among the 5 reviewers. Our analysis will encompass various publication patterns of chatbot research, including the number of annual publications, their geographic or institutional distribution, and the number of annual grants supporting chatbot research, and further summarize the methodologies used in the development of health-related chatbots, along with their features and applications in health care settings. Software tool VOSViewer (version 1.6.19; Leiden University) will be used to construct and visualize bibliometric networks. Results: The preparation for the bibliometric analysis began on December 3, 2021, when the research team started the process of familiarizing themselves with the software tools that may be used in this analysis, VOSViewer and CiteSpace, during which they consulted 3 librarians at the Yale University regarding search terms and tentative results. Tentative searches on the aforementioned databases yielded a total of 2340 papers. The official search phase started on July 27, 2023. Our goal is to complete the screening of papers and the analysis by February 15, 2024. Conclusions: Artificial intelligence chatbots, such as ChatGPT (OpenAI Inc), have sparked numerous discussions within the health care industry regarding their impact on human health. Chatbot technology holds substantial promise for advancing health care systems worldwide. However, developing a sophisticated chatbot capable of precise interaction with health care consumers, delivering personalized care, and providing accurate health-related information and knowledge remain considerable challenges.
C1 [Ni, Zhao; Nelson, LaRon E.; Vlahov, David] Yale Univ, Sch Nursing, Orange, CT USA.
[Ni, Zhao; Nelson, LaRon E.; Vlahov, David; Altice, Frederick L.] Yale Univ, Ctr Interdisciplinary Res AIDS, New Haven, CT USA.
[Peng, Mary L.] Harvard Univ, Harvard Med Sch, Dept Global Hlth & Social Med, Boston, MA USA.
[Balakrishnan, Vimala] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Informat Syst, Kuala Lumpur, Malaysia.
[Tee, Vincent; Azwa, Iskandar; Saifi, Rumana; Altice, Frederick L.] Univ Malaya, Fac Med, Ctr Excellence Res AIDS, Kuala Lumpur, Malaysia.
[Azwa, Iskandar] Univ Malaya, Fac Med, Infect Dis Unit, Kuala Lumpur, Malaysia.
[Altice, Frederick L.] Yale Sch Med, Dept Internal Med, Sect Infect Dis, New Haven, CT USA.
[Altice, Frederick L.] Yale Sch Publ Hlth, Div Epidemiol Microbial Dis, New Haven, CT USA.
[Ni, Zhao] Yale Univ, Sch Nursing, 400 West Campus Dr, Orange, CT 06477 USA.
C3 Yale University; Yale University; Harvard University; Harvard Medical
School; Universiti Malaya; Universiti Malaya; Universiti Malaya; Yale
University; Yale University; Yale University
RP Ni, Z (corresponding author), Yale Univ, Sch Nursing, 400 West Campus Dr, Orange, CT 06477 USA.
EM zhao.ni@yale.edu
RI Ni, Zhao/HNB-9508-2023; Balakrishnan, Vimala/F-4037-2011; Azwa,
Iskandar/N-9186-2017; Tee, Vincent/AAU-1296-2021
OI Ni, Zhao/0000-0002-9185-9894; Balakrishnan, Vimala/0000-0002-6859-4488;
Azwa, Iskandar/0000-0003-1977-6709; Tee, Vincent/0000-0002-6562-2666;
Peng, Lihong/0000-0001-9360-5487; Nelson, LaRon/0000-0002-2630-602X;
Altice, Frederick L/0000-0002-7860-693X
FU National Institutes of Health [R21TW011663, R33TW011663, D43TW011324];
Yale University School of Nursing
FX This work was supported by grants from the National Institutes of Health
(R21TW011663 and R33TW011663 for ZN and FLA; and D43TW011324 for FLA and
RS) and faculty research funds from Yale University School of Nursing
for ZN.
CR Abd-Alrazaq AA, 2021, J MED INTERNET RES, V23, DOI 10.2196/17828
[Anonymous], 2023, NAT MED, V29, P505, DOI 10.1038/s41591-023-02289-5
Bender ME, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0004182
Car LT, 2020, J MED INTERNET RES, V22, DOI 10.2196/17158
Cascella M, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01925-4
Coheur L, 2020, INFORM PROCESSING MA, V1237, P29
Corti K, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00634
de Cock C, 2020, JMIR RES PROTOC, V9, DOI 10.2196/16934
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Feng H, 2021, GERIATR NURS, V42, P479, DOI 10.1016/j.gerinurse.2021.02.012
Gaffney H, 2019, JMIR MENT HEALTH, V6, DOI 10.2196/14166
Galescu Lucian., 2009, 2009 IEEE INT C BIOI, P302, DOI [DOI 10.1109/BIBMW.2009.5332111, 10.1109/BIBMW.2009.5332111]
Geoghegan L, 2021, BJS OPEN, V5, DOI 10.1093/bjsopen/zrab070
Heyworth L, 2014, OSTEOPOROSIS INT, V25, P1519, DOI 10.1007/s00198-014-2629-1
Hoermann S, 2017, J MED INTERNET RES, V19, DOI 10.2196/jmir.7023
Holloway IW, 2017, JMIR MHEALTH UHEALTH, V5, DOI 10.2196/mhealth.6436
Howard A, 2023, LANCET INFECT DIS, V23, P405, DOI 10.1016/S1473-3099(23)00113-5
Kate B, 2019, Techtarget
Koman J, 2020, J MED INTERNET RES, V22, DOI 10.2196/15185
Li HZ, 2023, LANCET DIGIT HEALTH, V5, pE333, DOI 10.1016/S2589-7500(23)00083-3
Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678
Luo TC, 2021, J MED INTERNET RES, V23, DOI 10.2196/25486
Luxton DD, 2020, B WORLD HEALTH ORGAN, V98, P285, DOI 10.2471/BLT.19.237636
Mesko B, 2021, The top 12 health Chatbots
Miles O, 2021, DIGIT HEALTH, V7, DOI 10.1177/20552076211063012
Milne-Ives M, 2020, J MED INTERNET RES, V22, DOI 10.2196/20346
Nadarzynski T, 2019, DIGIT HEALTH, V5, DOI 10.1177/2055207619871808
Ni Z, 2022, J MED INTERNET RES, V24, DOI 10.2196/27202
Ni Z, 2018, Int J Nurs Sci, V5, P322, DOI 10.1016/j.ijnss.2018.09.003
Oh YJ, 2021, INT J BEHAV NUTR PHY, V18, DOI 10.1186/s12966-021-01224-6
Palanica A, 2019, J MED INTERNET RES, V21, DOI 10.2196/12887
Peng ML, 2022, JMIR FORM RES, V6, DOI 10.2196/42055
Sajjad M, 2023, ANN BIOMED ENG, V51, P1663, DOI 10.1007/s10439-023-03225-x
Sallam M, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11060887
Simon SR, 2010, ARCH INTERN MED, V170, P264, DOI 10.1001/archinternmed.2009.522
Vega-Olivero DA, 2019, INFORM PROCESS MANAG, V56, DOI 10.1016/j.ipm.2019.102063
Walpole SC, 2019, J CLIN EPIDEMIOL, V111, P127, DOI 10.1016/j.jclinepi.2019.03.004
Wang XF, 2023, LANCET REG HEALTH-W, V41, DOI 10.1016/j.lanwpc.2023.100905
Zheng Y, 2024, ANN BIOMED ENG, V52, P750, DOI 10.1007/s10439-023-03323-w
NR 39
TC 0
Z9 0
U1 18
U2 18
PU JMIR PUBLICATIONS, INC
PI TORONTO
PA 130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA
SN 1929-0748
J9 JMIR RES PROTOC
JI JMIR RES. Protoc.
PY 2024
VL 13
AR e54349
DI 10.2196/54349
PG 7
WC Health Care Sciences & Services; Public, Environmental & Occupational
Health
WE Emerging Sources Citation Index (ESCI)
SC Health Care Sciences & Services; Public, Environmental & Occupational
Health
GA JQ5Z9
UT WOS:001174657500001
PM 38228575
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Pradhan, T
Pal, S
AF Pradhan, Tribikram
Pal, Sukomal
TI A hybrid personalized scholarly venue recommender system integrating
social network analysis and contextual similarity
SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
LA English
DT Article
DE Recommender system; Social network analysis; Citation analysis; Topic
modeling; Factorization model; Main path analysis
ID PATH-ANALYSIS; DATA FUSION; JOURNALS; COLLABORATION; COCITATION;
CENTRALITY; WALK
AB Rapidly developing academic venues throw a challenge to researchers in identifying the most appropriate ones that are in-line with their scholarly interests and of high relevance. Even a high-quality paper is sometimes rejected due to a mismatch between the area of the paper, and the scope of the journal attempted to. Recommending appropriate academic venues can, therefore, enable researchers to identify and take part in relevant conferences and to publish in impactful journals. Although a researcher may know a few leading high-profile venues for her specific field of interest, a venue recommender system becomes particularly helpful when one explores a new field or when more options are needed. We propose DISCOVER: A Diversified yet Integrated Social network analysis and COntextual similarity-based scholarly VEnue Recommender system. Our work provides an integrated framework incorporating social network analysis, including centrality measure calculation, citation and co-citation analysis, topic modeling based contextual similarity, and key-route identification based main path analysis of a bibliographic citation network. The paper also addresses cold start issues for a new researcher and a new venue along with a considerable reduction in data sparsity, computational costs, diversity, and stability problems. Experiments based on the Microsoft Academic Graph (MAG) dataset show that the proposed DISCOVER outperforms state-of-the-art recommendation techniques using standard metrics of precision@k, nDCG@k, accuracy, MRR, F - measure(macro), diversity, stability, and average venue quality. (C) 2019 Elsevier B.V. All rights reserved.
C1 [Pradhan, Tribikram; Pal, Sukomal] Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi, Uttar Pradesh, India.
C3 Indian Institute of Technology System (IIT System); Indian Institute of
Technology BHU Varanasi (IIT BHU Varanasi)
RP Pradhan, T (corresponding author), Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi, Uttar Pradesh, India.
EM tpradhan.rs.cse16@itbhu.ac.in; spal.cse@itbhu.ac.in
RI PRADHAN, TRIBIKRAM/AAY-1283-2021
OI PRADHAN, TRIBIKRAM/0000-0001-5458-2286
CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99
Adomavicius G, 2015, IEEE T KNOWL DATA EN, V27, P1573, DOI 10.1109/TKDE.2014.2384502
Alhoori H, 2017, J INFORMETR, V11, P553, DOI 10.1016/j.joi.2017.03.006
Alhoori H, 2016, ACM-IEEE J CONF DIG, P239, DOI 10.1145/2910896.2925450
[Anonymous], 2018, 2018 INT JOINT C NEU
[Anonymous], 1990, Six degrees of separation: A play
[Anonymous], 2011, P 4 ACM INT C WEB SE, DOI DOI 10.1145/1935826.1935926
Beel J, 2016, INT J DIGIT LIBRARIE, V17, P305, DOI 10.1007/s00799-015-0156-0
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012
Bonacich P, 2007, SOC NETWORKS, V29, P555, DOI 10.1016/j.socnet.2007.04.002
Boukhris I, 2014, INT SYMP COMP INTELL, P465, DOI 10.1109/CINTI.2014.7028720
Bradley Keith, 2001, P 12 IR C ART INT CO, P85
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Chen Z, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P579, DOI 10.1145/2740908.2741738
Cohen S, 2013, PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), P959
Egghe L, 2002, SCIENTOMETRICS, V55, P349, DOI 10.1023/A:1020458612014
Elmacioglu E, 2005, SIGMOD REC, V34, P33, DOI 10.1145/1083784.1083791
Errami M, 2007, NUCLEIC ACIDS RES, V35, pW12, DOI 10.1093/nar/gkm221
FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7
Herrmannova D., D LIB MAG, V22
Hiep Luong, 2012, Proceedings of the 4th International Conference on Knowledge Discovery and Information Retrieval. KDIR 2012, P239
Luong H, 2012, LECT NOTES ARTIF INT, V7198, P426, DOI 10.1007/978-3-642-28493-9_45
Hornick MF, 2012, IEEE T KNOWL DATA EN, V24, P1478, DOI 10.1109/TKDE.2011.90
Hsu W., 2006, AAAI SPRING S SERIES
Huang WY, 2015, AAAI CONF ARTIF INTE, P2404
HUMMON NP, 1989, SOC NETWORKS, V11, P39, DOI 10.1016/0378-8733(89)90017-8
Huynh T., 2012, TECHNOL APPL, P41
Kang N., 2015, P 9 ACM C RECOMMENDE, P261, DOI [DOI 10.1145/2792838.2799663, 10.1145/2792838.2799663]
Klamma R, 2009, L N INST COMP SCI SO, V4, P657
Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140
Kong X., J NETW COMPUT APPL
Kong XJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148492
Kunaver M, 2017, KNOWL-BASED SYST, V123, P154, DOI 10.1016/j.knosys.2017.02.009
Lai KK, 2005, INFORM PROCESS MANAG, V41, P313, DOI 10.1016/j.ipm.2003.11.004
Lee JH, 1997, PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P267, DOI 10.1145/258525.258587
Liang DW, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P951, DOI 10.1145/2872427.2883090
Liang W, 2018, FUTURE GENER COMP SY, V87, P591, DOI 10.1016/j.future.2017.12.038
Liang YC, 2011, LECT NOTES COMPUT SC, V6897, P403, DOI 10.1007/978-3-642-23535-1_35
Liu HF, 2015, IEEE ACCESS, V3, P1695, DOI 10.1109/ACCESS.2015.2481320
Liu JS, 2016, J ASSOC INF SCI TECH, V67, P465, DOI 10.1002/asi.23384
Liu X., ICONFERENCE 2016 P
Lops P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P73, DOI 10.1007/978-0-387-85820-3_3
Lu J, 2015, DECIS SUPPORT SYST, V74, P12, DOI 10.1016/j.dss.2015.03.008
Lu ZY, 2009, BIOINFORMATICS, V25, P3038, DOI 10.1093/bioinformatics/btp529
Pham MC, 2012, 2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P464, DOI 10.1109/ASONAM.2012.80
Medvet E, 2014, PROC INT C TOOLS ART, P1004, DOI 10.1109/ICTAI.2014.152
Minkov E., 2010, P 19 ACM INT C INFOR, P819, DOI DOI 10.1145/1871437.1871542.HTTP://P0RTAL.ACM.0RG/CITATI0N.CFM?D0ID=1871437.1871542
Montague M., 2001, Proceedings of the 2001 ACM CIKM. Tenth International Conference on Information and Knowledge Management, P427, DOI 10.1145/502585.502657
Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898
Opsahl T, 2010, SOC NETWORKS, V32, P245, DOI 10.1016/j.socnet.2010.03.006
Pedersen T., 2004, PROCEEDING 19 NATL C, P38, DOI DOI 10.3115/1614025.1614037
Peng SC, 2018, J NETW COMPUT APPL, V106, P17, DOI 10.1016/j.jnca.2018.01.005
Pham M, 2010, P I KNOW CIT
Pham MC, 2011, J UNIVERS COMPUT SCI, V17, P583
Porter M. F, 2001, Snowball: A language for stemming algorithms
Real R, 1996, SYST BIOL, V45, P380, DOI 10.2307/2413572
Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3_1
Richards W.D., 2000, Journal of Social Structure, V1, P1
Schuemie MJ, 2008, BIOINFORMATICS, V24, P727, DOI 10.1093/bioinformatics/btn006
Sebastian Y, 2017, KNOWL-BASED SYST, V115, P66, DOI 10.1016/j.knosys.2016.10.015
Silva T, 2015, J ASSOC INF SCI TECH, V66, P180, DOI 10.1002/asi.23150
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002
Son J, 2018, DECIS SUPPORT SYST, V105, P24, DOI 10.1016/j.dss.2017.10.011
Sparck-Jones K, 2000, INFORM PROCESS MANAG, V36, P809, DOI 10.1016/S0306-4573(00)00016-9
Stuckenschmidt H, 2002, LECT NOTES ARTIF INT, V2479, P114
Sugiyama Kazunari., 2015, SIGWEB Newsl. Winter, p4:1, DOI [10.1145/2719943.2719947, DOI 10.1145/2719943.2719947]
Tang J., 2012, 18 ACM SIGKDD INT C, P1285, DOI DOI 10.1145/2339530.2339730
Trotman Andrew, 2014, P AUSTR DOC COMP S, P58, DOI [10.1145/2682862.2682863, DOI 10.1145/2682862.2682863]
Villegas NM, 2018, KNOWL-BASED SYST, V140, P173, DOI 10.1016/j.knosys.2017.11.003
Wang G., BASED SYST
Wu SL, 2012, EXPERT SYST APPL, V39, P1346, DOI 10.1016/j.eswa.2011.08.015
Wu SL, 2006, INFORM PROCESS MANAG, V42, P899, DOI 10.1016/j.ipm.2005.08.004
WU ZB, 1994, 32ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P133
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
Xia F, 2014, IEEE T EMERG TOP COM, V2, P364, DOI 10.1109/TETC.2014.2356505
Xia F, 2013, 2013 IEEE 10TH INTERNATIONAL CONFERENCE ON AND 10TH INTERNATIONAL CONFERENCE ON AUTONOMIC AND TRUSTED COMPUTING (UIC/ATC) UBIQUITOUS INTELLIGENCE AND COMPUTING, P134, DOI 10.1109/UIC-ATC.2013.81
Xiao Y, 2014, J INFORMETR, V8, P594, DOI 10.1016/j.joi.2014.05.001
Xu XL, 2012, J FAIL ANAL PREV, V12, P375, DOI 10.1007/s11668-012-9572-2
Yang ZH, 2014, 2014 PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2014), P566, DOI 10.1109/ASONAM.2014.6921643
Yang ZH, 2012, 2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, P681, DOI 10.1109/ICMLA.2012.127
Yu F., CoRR
Yu J, 2012, PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), P584, DOI 10.1109/ICCSNT.2012.6526005
Yu S, 2018, J NETW COMPUT APPL, V104, P38, DOI 10.1016/j.jnca.2017.12.004
Zhu B, 2010, DECIS SUPPORT SYST, V49, P151, DOI 10.1016/j.dss.2010.02.001
NR 86
TC 32
Z9 36
U1 1
U2 39
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0167-739X
EI 1872-7115
J9 FUTURE GENER COMP SY
JI Futur. Gener. Comp. Syst.
PD SEP
PY 2020
VL 110
BP 1139
EP 1166
DI 10.1016/j.future.2019.11.017
PG 28
WC Computer Science, Theory & Methods
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA LZ3UK
UT WOS:000541153400091
DA 2024-09-05
ER
PT J
AU Traymbak, S
Sharma, M
Anand, A
Shukla, A
AF Traymbak, Shruti
Sharma, Meghna
Anand, Aastha
Shukla, Anju
TI Chatbot technology in the education sector: a bibliometrics analysis
using VOS viewer
SO INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT
LA English
DT Article; Early Access
DE Artificial intelligence; Natural language processing; Chatbot; Education
sector; Harzing's publish or perish software; Bibliometrics; VOS viewer;
C8; C88; I2; I21
AB Chatbots that are powered by artificial intelligence and natural language processing, have found a significant foothold in the sphere of education. In this research, VOS viewer software was employed to conduct a comprehensive bibliometric analysis, focusing on 49 research papers and conference papers published between 2005 and 2023, with the keyword "chatbot in education." The analysis revealed an average of 30.76 citations per year and 10.67 citations per author, indicating a sustained and growing interest in the subject. Notably, the paper titled "An Overview of Chatbot Technology," (Adamopoulou and Moussiades in An overview of chatbot technology, Springer, Cham, 2020a), emerged as the most highly cited work with 573 citations, underscoring the robust recognition of chatbot research in the academic community. The recent increase in research serves to underscore the growing significance of this subject in educational discussions. The analysis suggested that the authors, Ahmed Tlili, Boulus Shehata, Michael Adarkwah, and Aras Bozkurt emerged as highly cited contributors, accumulating an annual mean of 209 citations. This study underscores the profound interest and influence of chatbots in the educational sector, as underscored by citation metrics and author analysis. The findings illuminate influential publications, eminent authors, and the interplay of keywords and research themes within this dynamic field.
C1 [Traymbak, Shruti; Shukla, Anju] Jagannath Int Management Sch, New Delhi, India.
[Sharma, Meghna; Anand, Aastha] Amity Univ, AIBS, Noida, India.
C3 Amity University Noida
RP Anand, A (corresponding author), Amity Univ, AIBS, Noida, India.
EM shruti.traymbak@jagannath.org; msharma9@amity.edu;
anand.aastha11@gmail.com; anju.shukla@jagannath.org
OI traymbak, shruti/0000-0003-2306-7999
CR Adamopoulou E., 2020, ARTIF INTELL, P373, DOI [10.1007/978-3-030-49186-4_31, DOI 10.1007/978-3-030-49186-4_31]
Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006
Ahmad N.A., 2018, Int. J. Comput. Appl. Technol., V181, P7, DOI [DOI 10.5120/IJCA2018917606, 10.5120/ijca2018917606]
Akkineni Haritha, 2022, IoT and Analytics for Sensor Networks: Proceedings of ICWSNUCA 2021. Lecture Notes in Networks and Systems (244), P477, DOI 10.1007/978-981-16-2919-8_43
Benotti Luciana., 2014, P 2014 C INNOVATION, P63, DOI 10.1145/2591708.2591728
Chen HL, 2020, J EDUC COMPUT RES, V58, P1161, DOI 10.1177/0735633120929622
Chocarro R, 2023, EDUC STUD-UK, V49, P295, DOI 10.1080/03055698.2020.1850426
Ciechanowski L, 2019, FUTURE GENER COMP SY, V92, P539, DOI 10.1016/j.future.2018.01.055
Clarizia Fabio, 2018, Cyberspace Safety and Security. 10th International Symposium, CSS 2018. Proceedings: Lecture Notes in Computer Science (LNCS 11161), P291, DOI 10.1007/978-3-030-01689-0_23
Colace F., 2018, Int. J. Mech. Eng. Robot. Res., V7, P528, DOI DOI 10.18178/IJMERR.7.5.528-533
Dsouza R, 2019, 2019 INT C ADV COMPU, DOI [DOI 10.1109/ICAC347590.2019.9036844, 10.1109/ICAC347590.2019.9036844]
Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023
Haristiani Nuria, 2019, Journal of Physics: Conference Series, V1387, DOI 10.1088/1742-6596/1387/1/012020
Heller B, 2005, Computer Science
Hien HT, 2018, PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY (SOICT 2018), P69, DOI 10.1145/3287921.3287937
Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610
Hwang GJ, 2023, INTERACT LEARN ENVIR, V31, P4099, DOI 10.1080/10494820.2021.1952615
Jia JY, 2009, KNOWL-BASED SYST, V22, P249, DOI 10.1016/j.knosys.2008.09.001
Kerly A, 2007, KNOWL-BASED SYST, V20, P177, DOI 10.1016/j.knosys.2006.11.014
King MR, 2023, CELL MOL BIOENG, V16, P1, DOI 10.1007/s12195-022-00754-8
Kiptonui B.P., 2013, Educational Research", Vol, V4, Issue, P218
Kooli C, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15075614
Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3
Kumar JA, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00302-w
Liu Chia-Wei, 2016, arXiv
Meshram SG, 2022, IJST-T CIV ENG, V46, P2393, DOI 10.1007/s40996-021-00696-7
Meshram Siddhant., 2021, International Conference on Intelligent Technologies, (CONIT), P1, DOI [10.1109/CONIT51480.2021.9498508, DOI 10.1109/CONIT51480.2021.9498508]
Molnar G, 2018, EEE 16 INT S INTELLI, DOI [10.1109/SISY.2018.8524609, DOI 10.1109/SISY.2018.8524609]
Okonkwo CW, 2021, ENG LET, V29, P25
Okonkwo CW., 2021, COMPUTERS ED ARTIFIC, V2, P100033, DOI [10.1016/j.caeai.2021.100033, DOI 10.1016/J.CAEAI.2021.100033]
Ondas Stanislav, 2019, 2019 17th International Conference on Emerging eLearning Technologies and Applications (ICETA). Proceedings, P575, DOI 10.1109/ICETA48886.2019.9040095
Pedro F., 2019, ARTIFICIAL INTELLIGE
Pérez JQ, 2020, COMPUT APPL ENG EDUC, V28, P1549, DOI 10.1002/cae.22326
Rainer Winkler MS, 2018, 78 ANN M AC MAN CHIC
Roos S., 2018, Chatbots in education: A passing trend or a valuable pedagogical tool?
Ruan S., 2019, P 6 2019 ACM C LEARN
Sameera A., 2015, International Journal of Advanced Computer Science and Applications, V6, DOI DOI 10.14569/IJACSA.2015.060712
Sandu N, 2019, INT CONF INFO TECH, DOI 10.1109/ithet46829.2019.8937382
Shawar B.A., 2007, LDV Forum, V22, P29, DOI DOI 10.21248/JLCL.22.2007.88
Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862
Tamrakar R, 2021, INT C LAT TRENDS CIV
Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x
Tsivitanidou O, 2020, CEN EUR CON INFO INT, P55
Wang J., 2021, Comput. Educ. Artif. Intell, V2, P100023, DOI DOI 10.1016/J.CAEAI.2021.100023
Wollny S, 2021, FRONT ARTIF INTELL, V4, DOI 10.3389/frai.2021.654924
Yin JQ, 2021, J EDUC COMPUT RES, V59, P154, DOI 10.1177/0735633120952067
Zhang K., 2021, Computers and Education: Artificial Intelligence, V2, P100025, DOI [DOI 10.1016/J.CAEAI.2021.100025, 10.1016/j.caeai.2021.100025, https://doi.org/10.1016/j.caeai.2021.100025]
NR 47
TC 0
Z9 0
U1 15
U2 23
PU SPRINGER INDIA
PI NEW DELHI
PA 7TH FLOOR, VIJAYA BUILDING, 17, BARAKHAMBA ROAD, NEW DELHI, 110 001,
INDIA
SN 0975-6809
EI 0976-4348
J9 INT J SYST ASSUR ENG
JI Int. J. Syst. Assur. Eng. Manag.
PD 2024 JAN 3
PY 2024
DI 10.1007/s13198-023-02230-6
EA JAN 2024
PG 12
WC Engineering, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA DV4U2
UT WOS:001134851900001
DA 2024-09-05
ER
PT C
AU Scozzi, MV
Iacovides, I
Linehan, C
AF Scozzi, Monica Visani
Iacovides, Ioanna
Linehan, Conor
GP Assoc Comp Machinery
TI A Mixed Method Approach for Evaluating and Improving the Design of
Learning in Puzzle Games
SO CHI PLAY'17: PROCEEDINGS OF THE ANNUAL SYMPOSIUM ON COMPUTER-HUMAN
INTERACTION IN PLAY
LA English
DT Proceedings Paper
CT Annual Symposium on Computer-Human Interaction in Play (CHI PLAY)
CY OCT 15-18, 2017
CL Amsterdam, NETHERLANDS
DE Games; Learning Curves; Breakdowns; Player Experience; Evaluation
Methods; Games User Research
AB Despite the acknowledgment that learning is a necessary part of all gameplay, the area of Games User Research lacks an established evidence based method through which designers and researchers can understand, assess, and improve how commercial games teach players game-specific skills and information. In this paper, we propose a mixed method procedure that draws together both quantitative and experiential approaches to examine the extent to which players are supported in learning about the game world and mechanics. We demonstrate the method through presenting a case study of the game Portal involving 14 participants, who differed in terms of their gaming expertise. By comparing optimum solutions to puzzles against observed player performance, we illustrate how the method can indicate particular problems with how learning is structured within a game. We argue that the method can highlight where major breakdowns occur and yield design insights that can improve the player experience with puzzle games.
C1 [Scozzi, Monica Visani] UCL, London, England.
[Iacovides, Ioanna] Open Univ, Milton Keynes, Bucks, England.
[Linehan, Conor] Univ Coll Cork, Cork, Ireland.
C3 University of London; University College London; Open University - UK;
University College Cork
RP Scozzi, MV (corresponding author), UCL, London, England.
EM monica.visani@gmail.com; jo.iacovides@open.ac.uk; conor.linehan@ucc.ie
RI ; Iacovides, Ioanna/C-5124-2016
OI Linehan, Conor/0000-0002-7654-6697; Iacovides,
Ioanna/0000-0001-9674-8440
FU EPSRC [EP/G059063/1]
FX We thank all the volunteers who took part in both studies. This research
was supported by the EPSRC funded CHI+ MED project (EP/G059063/1).
CR Alexander JT, 2013, ENTERTAIN COMPUT, V4, P53, DOI 10.1016/j.entcom.2012.09.001
Andersen Erik, 2011, P CHI 12, P59
Anderson E, 2010, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION WARFARE AND SECURITY, P1, DOI 10.1145/1822348.1822349
[Anonymous], 2008, Flow: The Psychology of Optimal Experience (Harper Perennial Modern Classics)
[Anonymous], 2004, What video games have to teach us about language and learning
[Anonymous], 2013, GAMES ANAL MAXIMIZIN, DOI DOI 10.1007/978-1-4471-4769-5
[Anonymous], 2005, A theory of fun for game design
[Anonymous], 2007, Portal
Blumberg FC, 2008, COMPUT HUM BEHAV, V24, P1530, DOI 10.1016/j.chb.2007.05.010
Brown E, 2010, HUM-COMPUT INT-SPRIN, P73, DOI 10.1007/978-1-84882-963-3_5
Cairns P, 2014, HANDBOOK OF DIGITAL GAMES, P339
Canossa A., 2009, PLAY PERSONA MODELIN
Carter Marcus, 2014, P 1 ACM SIGCHI ANN S, P27
Cook D., 2007, CHEM GAME DESIGN GAM
Desurvire H, 2010, HUM-COMPUT INT-SPRIN, P131, DOI 10.1007/978-1-84882-963-3_8
Desurvire H, 2009, LECT NOTES COMPUT SC, V5621, P557, DOI 10.1007/978-3-642-02774-1_60
El-Nasr MS, 2013, IEEE COMPUT GRAPH, V33, P6, DOI 10.1109/MCG.2013.26
Gee J.P., 2005, E-LEARNING DIGITAL M, V2, P5, DOI [DOI 10.2304/ELEA.2005.2.1.5, 10.2304/elea.2005.2.1.5, https://doi.org/10.2304/elea.2005.2.1.5]
Harpstead Erik., 2015, Proceedings of the 2nd ACM SIGCHI annual symposium on Computer-human interaction in play - CHI PLAY 2015, P197, DOI 10.1145/2793107.2793128
Horn B, 2016, CHI PLAY 2016: PROCEEDINGS OF THE 2016 ANNUAL SYMPOSIUM ON COMPUTER-HUMAN INTERACTION IN PLAY, P142, DOI 10.1145/2967934.2968109
Iacovides I, 2015, HUM-COMPUT INTER-US, V30, P202, DOI 10.1080/07370024.2014.987347
Iacovides I, 2011, PROCEEDINGS OF THE 5TH EUROPEAN CONFERENCE ON GAMES BASED LEARNING, P275
Iacovides Ioanna., 2014, Proceedings of the First ACM SIGCHI Annual Symposium on Computer-Human Interaction in Play (CHI PLAY 2014), P131, DOI DOI 10.1145/2658537.2658697
Koeffel C, 2010, HUM-COMPUT INT-SPRIN, P233, DOI 10.1007/978-1-84882-963-3_13
Latham AJ, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00941
Linehan C, 2011, 29TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P1979
Linehan Conor, 2014, P 1 ACM C COMP HUM I, p[27, 181], DOI [10.1145/2658537.2658695, DOI 10.1145/2658537.2658695]
Loftus Geoffrey R., 1983, MIND PLAY PSYCHOL VI
lsbister Katherine, 2008, GAME USABILITY ADV P
MALOUF DB, 1987, J SPEC EDUC, V21, P27
Mayo M.J., 2007, COMMUN ACM, V50, P31, DOI DOI 10.1145/1272516.1272536
Mirza-Babaei P., 2014, GAMES MEDIA ENTERTAI, P1, DOI DOI 10.1109/GEM.2014.7048098
Owen VElizabeth., 2014, American Educational Research Association Annual Meeting, P1
Pagulayan R.J., 2003, HUM FAC ER, P883, DOI 10
Pelletier C., 2006, Learning, Media Technology, V31, P329
Ryan William, 2009, P DIG GAM RES ASS DI
Sharples M., 2009, Researching Mobile Learning: Frameworks, Tools and Research Designs, P17
Swartout W, 2003, COMMUN ACM, V46, P32, DOI 10.1145/792704.792727
Sweetser P., 2005, Computers in Entertainment, P3, DOI DOI 10.1145/1077246.1077253
Sweetser Penelope, 2012, J CREATIVE TECHNOLOG, V3
Tan CT, 2014, 32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), P381, DOI 10.1145/2556288.2557326
Valve Corporation, 2011, PORT 2
Valve Corporation, 2007, PORT DEV COMM
NR 43
TC 4
Z9 4
U1 0
U2 2
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-4898-0
PY 2017
BP 217
EP 228
DI 10.1145/3116595.3116628
PG 12
WC Computer Science, Cybernetics; Computer Science, Software Engineering
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BL7OX
UT WOS:000455267200019
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Burgelman, JC
Pascu, C
Szkuta, K
Von Schomberg, R
Karalopoulos, A
Repanas, K
Schouppe, M
AF Burgelman, Jean-Claude
Pascu, Corina
Szkuta, Katarzyna
Von Schomberg, Rene
Karalopoulos, Athanasios
Repanas, Konstantinos
Schouppe, Michel
TI Open Science, Open Data, and Open Scholarship: European Policies to Make
Science Fit for the Twenty-First Century
SO FRONTIERS IN BIG DATA
LA English
DT Article
DE open science; open data; open access; open scholarship; European science
policies; artificial intelligence
AB Open science will make science more efficient, reliable, and responsive to societal challenges. The European Commission has sought to advance open science policy from its inception in a holistic and integrated way, covering all aspects of the research cycle from scientific discovery and review to sharing knowledge, publishing, and outreach. We present the steps taken with a forward-looking perspective on the challenges laying ahead, in particular the necessary change of the rewards and incentives system for researchers (for which various actors are co-responsible and which goes beyond the mandate of the European Commission). Finally, we discuss the role of artificial intelligence (AI) within an open science perspective.
C1 [Burgelman, Jean-Claude; Pascu, Corina; Szkuta, Katarzyna; Von Schomberg, Rene; Karalopoulos, Athanasios; Repanas, Konstantinos; Schouppe, Michel] European Commiss, DG Res & Innovat, Open Sci, Brussels, Belgium.
RP Burgelman, JC; Pascu, C (corresponding author), European Commiss, DG Res & Innovat, Open Sci, Brussels, Belgium.
EM jean-claude.burgelman@ec.europa.eu; corina.pascu@ec.europa.eu
RI Burgelman, Jean-Claude/KEH-1053-2024; Von Schomberg, Rene/J-5376-2014
OI Burgelman, Jean-Claude/0000-0003-4817-8425; Von Schomberg,
Rene/0000-0003-1768-806X; Pascu, Corina/0000-0002-9068-5271; repanas,
kostas/0000-0002-7848-2834
CR [Anonymous], 2015, VAL RES PUBL CONS SC
Budroni Paolo, 2019, ABI Technik, V39, P130, DOI 10.1515/abitech-2019-2006
Burgelman J-C., 2015, SCI 2 0 CHANGE WILL, V15, DOI [10.5210/fm.v15i7.2961, DOI 10.5210/FM.V15I7.2961]
Costas R., 2013, The value of research data metrics from a cultural and technical point of view
Dodge J, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P2185
Elsevier, 2018, Artificial Intelligence: How Knowledge Is Created, Transferred, and Used
European Commission, 2021, EUS OP SCI POL
European Commission, 2018, Turning FAIR into Reality 2018: Final report and action plan from the European Commission Expert Group on FAIR Data, DOI [10.2777/1524, DOI 10.2777/54599, 10.2777/54599]
European Commission, 2019, POLICY RECOMMENDATIO
European Commission, 2016, Open Innovation Open Science Opent to the World-a Vision for Europe, DOI DOI 10.2777/061652
European Commission, 2019, COST BEN AN FAIR RES
Euroscientist, 2015, COMMUNICATION
Evans JA, 2011, SCIENCE, V331, P721, DOI 10.1126/science.1201765
Fecher B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118053
Fischer BA, 2010, SCI ENG ETHICS, V16, P783, DOI 10.1007/s11948-010-9239-x
Ioannidis JPA, 2011, SCIENCE, V334, P1230, DOI 10.1126/science.1211811
King G, 2011, SCIENCE, V331, P719, DOI 10.1126/science.1197872
KNOBLOCH J, 1982, ANN INST PASTEUR VIR, V133, P125, DOI 10.1016/S0769-2617(82)80028-2
National Academies of Sciences Engineering and Medicine, 2018, OP SCI DES REAL VIS
OECD, 2006, RECOMMENDATION COUNC
OECD, 2017, OECD SCI TECHNOLOGY, DOI [10.1787/9789264268821-en, DOI 10.1787/9789264268821-EN]
Pascu C., 2007, POTENTIAL DISRUPTIVE, V12
Peters I, 2016, SCIENTOMETRICS, V107, P723, DOI 10.1007/s11192-016-1887-4
Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a
Piwowar HA, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000308
Piwowar HA, 2011, NATURE, V473, P285, DOI 10.1038/473285a
Sansone SA, 2019, NAT BIOTECHNOL, V37, P358, DOI 10.1038/s41587-019-0080-8
Scheliga Kaja, 2014, First Monday, V19, P1, DOI 10.5210/fm.v19i9.5381
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Szkuta K, 2016, FORESIGHT, V18, P204, DOI 10.1108/FS-06-2014-0040
Tenopir C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021101
von Schomberg Rene., 2019, The international handbook on responsible innovation, a global resource
Wallis JC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067332
Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00026
Whitlock MC, 2011, TRENDS ECOL EVOL, V26, P61, DOI 10.1016/j.tree.2010.11.006
Wilkinson MD, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.118
Wilkinson MD, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.18
World Health Organization, 2015, Developing global norms for sharing data and results during public health emergencies. Statement arising from a WHO consultation held on 1-2 September 2015
NR 38
TC 81
Z9 83
U1 12
U2 118
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2624-909X
J9 FRONT BIG DATA
JI Front. Big Data
PD DEC 10
PY 2019
VL 2
AR 43
DI 10.3389/fdata.2019.00043
PG 6
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Multidisciplinary Sciences
WE Emerging Sources Citation Index (ESCI)
SC Computer Science; Science & Technology - Other Topics
GA TV4WA
UT WOS:000681724000001
PM 33693366
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Zhai, MM
Li, WH
Tie, P
Wang, XC
Xie, T
Ren, H
Zhang, Z
Song, WM
Quan, DC
Li, MC
Chen, LM
Qiu, LX
AF Zhai, Mengmeng
Li, Wenhan
Tie, Ping
Wang, Xuchun
Xie, Tao
Ren, Hao
Zhang, Zhuang
Song, Weimei
Quan, Dichen
Li, Meichen
Chen, Limin
Qiu, Lixia
TI Research on the predictive effect of a combined model of ARIMA and
neural networks on human brucellosis in Shanxi Province, China: a time
series predictive analysis
SO BMC INFECTIOUS DISEASES
LA English
DT Article
DE Human brucellosis; ARIMA-ERNN model; ARIMA-BPNN model; Predictive effect
AB BackgroundBrucellosis is a major public health problem that seriously affects developing countries and could cause significant economic losses to the livestock industry and great harm to human health. Reasonable prediction of the incidence is of great significance in controlling brucellosis and taking preventive measures.MethodsOur human brucellosis incidence data were extracted from Shanxi Provincial Center for Disease Control and Prevention. We used seasonal-trend decomposition using Loess (STL) and monthplot to analyse the seasonal characteristics of human brucellosis in Shanxi Province from 2007 to 2017. The autoregressive integrated moving average (ARIMA) model, a combined model of ARIMA and the back propagation neural network (ARIMA-BPNN), and a combined model of ARIMA and the Elman recurrent neural network (ARIMA-ERNN) were established separately to make predictions and identify the best model. Additionally, the mean squared error (MAE), mean absolute error (MSE) and mean absolute percentage error (MAPE) were used to evaluate the performance of the model.ResultsWe observed that the time series of human brucellosis in Shanxi Province increased from 2007 to 2014 but decreased from 2015 to 2017. It had obvious seasonal characteristics, with the peak lasting from March to July every year. The best fitting and prediction effect was the ARIMA-ERNN model. Compared with those of the ARIMA model, the MAE, MSE and MAPE of the ARIMA-ERNN model decreased by 18.65, 31.48 and 64.35%, respectively, in fitting performance; in terms of prediction performance, the MAE, MSE and MAPE decreased by 60.19, 75.30 and 64.35%, respectively. Second, compared with those of ARIMA-BPNN, the MAE, MSE and MAPE of ARIMA-ERNN decreased by 9.60, 15.73 and 11.58%, respectively, in fitting performance; in terms of prediction performance, the MAE, MSE and MAPE decreased by 31.63, 45.79 and 29.59%, respectively.ConclusionsThe time series of human brucellosis in Shanxi Province from 2007 to 2017 showed obvious seasonal characteristics. The fitting and prediction performances of the ARIMA-ERNN model were better than those of the ARIMA-BPNN and ARIMA models. This will provide some theoretical support for the prediction of infectious diseases and will be beneficial to public health decision making.
C1 [Zhai, Mengmeng; Li, Wenhan; Wang, Xuchun; Ren, Hao; Zhang, Zhuang; Song, Weimei; Quan, Dichen; Li, Meichen; Qiu, Lixia] Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Taiyuan, Shanxi, Peoples R China.
[Tie, Ping] Shanxi Ctr Dis Control & Prevent, Endem Dis Prevent & Control Sect, Taiyuan, Shanxi, Peoples R China.
[Xie, Tao] Jiangxi Univ Finance & Econ, Sch Stat, Dept Math Stat, Nanchang, Jiangxi, Peoples R China.
[Chen, Limin] Shanxi Prov Peoples Hosp, Taiyuan, Shanxi, Peoples R China.
C3 Shanxi Medical University; Jiangxi University of Finance & Economics;
Shanxi People's Hospital
RP Qiu, LX (corresponding author), Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Taiyuan, Shanxi, Peoples R China.; Chen, LM (corresponding author), Shanxi Prov Peoples Hosp, Taiyuan, Shanxi, Peoples R China.
EM sxchenlimin@163.com; qlx_1126@163.com
RI Chen, Limin/X-5598-2019
OI Chen, Limin/0000-0003-4937-2756; Xie, Tao/0000-0003-2930-2742
FU Key Research and Development Projects of Shanxi Province [201803D31066]
FX This study was supported by Key Research and Development Projects of
Shanxi Province [grant No. 201803D31066]. The funders had no role in
design of the study and collection, analysis, and interpretation of data
and in writing the manuscript.
CR Ablikim M, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.032013
Ahmed W, 2016, FRONT CELL INFECT MI, V6, DOI 10.3389/fcimb.2016.00030
Aladag CH, 2009, APPL MATH LETT, V22, P1467, DOI 10.1016/j.aml.2009.02.006
Bagheri H, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0232910
Bagheri H, 2019, J RES HEALTH SCI, V19
BATES JM, 1969, OPER RES QUART, V20, P451, DOI 10.2307/3008764
Sánchez AB, 2013, ABSTR APPL ANAL, DOI 10.1155/2013/238259
Billah B, 2006, INT J FORECASTING, V22, P239, DOI 10.1016/j.ijforecast.2005.08.002
Boger Z, 2020, NEURAL PROCESS LETT, V51, P577, DOI 10.1007/s11063-019-10089-7
Buttigieg SC, 2018, FRONT VET SCI, V5, DOI 10.3389/fvets.2018.00147
Cao N, 2018, J INFECT PUBLIC HEAL, V11, P24, DOI 10.1016/j.jiph.2017.02.013
Chatrchyan S, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.022003
Cui BY., 2007, Dis. Surveill, V22, P649
Cui PJ, 2010, J ALZHEIMERS DIS, V19, P31, DOI 10.3233/JAD-2010-1207
Dean AS, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001865
Firmino PRA, 2015, NEUROCOMPUTING, V153, P242, DOI 10.1016/j.neucom.2014.11.030
Franc KA, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-017-5016-y
Hwarng HB, 2001, OMEGA-INT J MANAGE S, V29, P319, DOI 10.1016/S0305-0483(01)00027-5
Jia P, 2015, BMC INFECT DIS, V15, DOI 10.1186/s12879-015-0763-9
Kaan Jan A, 2012, Ned Tijdschr Geneeskd, V156, pA4460
Khashei M, 2011, APPL SOFT COMPUT, V11, P2664, DOI 10.1016/j.asoc.2010.10.015
Lee HS, 2013, PREV VET MED, V110, P190, DOI 10.1016/j.prevetmed.2012.12.003
Li SY, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11030695
Liu QY, 2011, BMC INFECT DIS, V11, DOI 10.1186/1471-2334-11-218
Liu WD, 2019, BMC INFECT DIS, V19, DOI 10.1186/s12879-019-4457-6
Ministry of Health of the People's Republic of China, 2007, 2692007 WS
Nelson BK, 1998, ACAD EMERG MED, V5, P739, DOI 10.1111/j.1553-2712.1998.tb02493.x
Pappas G, 2006, LANCET INFECT DIS, V6, P91, DOI 10.1016/S1473-3099(06)70382-6
Qi Y, 2014, TRANSPORT RES C-EMER, V43, P95, DOI 10.1016/j.trc.2014.02.007
Lasheras FS, 2015, RESOUR POLICY, V45, P37, DOI 10.1016/j.resourpol.2015.03.004
Sanchez-Vazquez MJ, 2012, PREV VET MED, V104, P65, DOI 10.1016/j.prevetmed.2011.11.003
Shang DQ, 2002, VET MICROBIOL, V90, P165, DOI 10.1016/S0378-1135(02)00252-3
Shirmohammadi-Khorram N, 2019, ZOONOSES PUBLIC HLTH, V66, P759, DOI 10.1111/zph.12622
Singh BB, 2015, PREV VET MED, V119, P211, DOI 10.1016/j.prevetmed.2015.03.013
Taskaya-Temizel T, 2005, NEURAL NETWORKS, V18, P781, DOI 10.1016/j.neunet.2005.06.003
Wang YW, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2018-025773
Wei WD, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156768
Wu W, 2019, BMC INFECT DIS, V19, DOI 10.1186/s12879-019-4028-x
Xu XK, 2019, ALGORITHMS, V12, DOI 10.3390/a12010022
Yan Wei-Rong, 2007, Zhonghua Liu Xing Bing Xue Za Zhi, V28, P1219
Yang XB, 2018, MEDICINE, V97, DOI 10.1097/MD.0000000000011787
Zhang GP, 2003, NEUROCOMPUTING, V50, P159, DOI 10.1016/S0925-2312(01)00702-0
Zhang GP, 2001, COMPUT OPER RES, V28, P381, DOI 10.1016/S0305-0548(99)00123-9
Zhang GL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080969
Zhang J, 2017, BIOSCI TRENDS, V11, P533, DOI 10.5582/bst.2017.01257
Zhao HY, 2018, ACM T DES AUTOMAT EL, V23, DOI 10.1145/3200904
Zheng RJ, 2018, BIOMED RES INT-UK, V2018, DOI 10.1155/2018/5712920
NR 47
TC 19
Z9 22
U1 6
U2 47
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1471-2334
J9 BMC INFECT DIS
JI BMC Infect. Dis.
PD MAR 19
PY 2021
VL 21
IS 1
AR 280
DI 10.1186/s12879-021-05973-4
PG 12
WC Infectious Diseases
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Infectious Diseases
GA RA6CF
UT WOS:000631504200004
PM 33740904
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Chen, XL
Zou, D
Cheng, G
Xie, HR
Jong, M
AF Chen, Xieling
Zou, Di
Cheng, Gary
Xie, Haoran
Jong, Morris
TI Blockchain in smart education: Contributors, collaborations,
applications and research topics
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article
DE Smart education; Blockchain; Topic modeling; Bibliometrics;
Contributors; Collaborations
ID INTERNET
AB Researchers and practitioners are paying increasing attention to blockchain's potential for resolving trust, privacy, and transparency-related issues in smart education. Research on educational blockchain is also becoming an active field of research. Based on 206 studies published from 2017 to 2020, we identify contributors, collaborators, applications, and research topics using topic modeling and bibliometrics. Results indicate that currently, studies on the educational blockchain are mostly published in computer science conferences, with few in educational technology journals. Asian countries/regions (e.g., China and India) and institutions (e.g., University of Raharja) are active in this field. Countries/regions and institutions from the same regions tend to have close collaborations. Blockchain is mainly used to facilitate online testing and learning, education data mining and analytics, resource sharing, educational record verification and authentication, data management and storing, administration management, education/discipline of children, and college crowdfunding. Based on the results, we highlight the need to integrate artificial intelligence to enhance scalability and security and to facilitate justification and personalization of blockchain solutions based on accumulated big data to capture abnormal behaviors. This study assists researchers and practitioners in understanding educational blockchain research and becoming aware of the hot topics and future directions.
C1 [Chen, Xieling] South China Normal Univ, Sch Informat Technol Educ, Guangzhou, Peoples R China.
[Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
[Xie, Haoran] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Jong, Morris] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
[Cheng, Gary] Chinese Univ Hong Kong, Dept Curriculum & Instruct, Hong Kong, Peoples R China.
C3 South China Normal University; Education University of Hong Kong
(EdUHK); Education University of Hong Kong (EdUHK); Lingnan University;
Chinese University of Hong Kong
RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; chengks@eduhk.hk;
hrxie2@gmail.com; mjong@cuhk.edu.hk
RI Xie, Haoran/AFS-3515-2022
OI Xie, Haoran/0000-0003-0965-3617; PV, THAYYIB/0000-0001-8929-0398; ZOU,
Di/0000-0001-8435-9739
CR Al Harthy K., 2019, 2019 4 MEC INT C
Alam T., 2020, Universal J. Educ. Res, V8, P2164, DOI [10.13189/ujer.2020.080556, DOI 10.13189/UJER.2020.080556]
Alammary A, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9122400
Filvà DA, 2018, SIXTH INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ECOSYSTEMS FOR ENHANCING MULTICULTURALITY (TEEM'18), P997, DOI 10.1145/3284179.3284354
Arins A, 2019, INNOVATIONS, TECHNOLOGIES AND RESEARCH IN EDUCATION, 2019, P207, DOI 10.22364/atee.2019.itre.13
Arndt Timothy, 2020, International Journal of Information and Education Technology, V10, P7, DOI 10.18178/ijiet.2020.10.2.1344
BADR A, 2019, 2019 10 IFIP INT C N, P1
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Bessa E., 2019, 7 INT WORKSH ADV ICT, P1
Bhagwat M., 2020, 2020 IEEE INT C ELEC, P1, DOI 10.1109/CONECCT50063.2020.9198665
Bhaskar P, 2021, INTERACT TECHNOL SMA, V18, P1, DOI 10.1108/ITSE-07-2020-0102
Chen G., 2018, SMART LEARN ENVIRON, V5, P1, DOI [10.1186/s40561-017-0050-x, DOI 10.1186/S40561-017-0050-X]
Chen XL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00239-6
Chen XL, 2022, NEURAL COMPUT APPL, V34, P11295, DOI 10.1007/s00521-020-05588-x
Cheng H., 2020, Revised Selected Papers, V2, P456
Chung M, 2016, KSII T INTERNET INF, V10, P1311
Daraghmi EY, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9224966
Dettling Walter, 2020, Games and Learning Alliance. 9th International Conference, GALA 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12517), P169, DOI 10.1007/978-3-030-63464-3_16
Dinh TN, 2018, COMPUTER, V51, P48, DOI 10.1109/MC.2018.3620971
Gong XY, 2018, CHIN AUTOM CONGR, P2390, DOI 10.1109/CAC.2018.8623198
Guo JQ, 2020, MULTIMED TOOLS APPL, V79, P9735, DOI 10.1007/s11042-019-08059-1
Hao Zhang, 2020, e-Learning, e-Education, and Online Training. 6th EAI International Conference, eLEOT 2020. Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST 340), P87, DOI 10.1007/978-3-030-63955-6_8
Hillman V, 2019, IEEE INT CONF BIG DA, P5754, DOI 10.1109/BigData47090.2019.9006190
Hoy Matthew B., 2017, Medical Reference Services Quarterly, V36, P273, DOI 10.1080/02763869.2017.1332261
Hsu CH, 2022, EDUC TECHNOL SOC, V25, P71
Islam Anik, 2019, Journal of Information and Communication Convergence Engineering, V17, P174, DOI 10.6109/jicce.2019.17.3.174
Kamisalic A, 2019, COMM COM INF SC, V1011, P114, DOI 10.1007/978-3-030-20798-4_11
Kontzinos Christos, 2019, Proceedings of the 18th International Conference www/internet, P93
Kuhn KD, 2018, TRANSPORT RES C-EMER, V87, P105, DOI 10.1016/j.trc.2017.12.018
Lam TY, 2022, INTERACT LEARN ENVIR, V30, P1229, DOI 10.1080/10494820.2020.1716022
Liang X., 2020, 2020 INT C HIGH PERF, P151, DOI [10.1109/HPBDIS49115.2020.9130584, DOI 10.1109/HPBDIS49115.2020.9130584]
Liu MT, 2019, IEEE T IND INFORM, V15, P3559, DOI 10.1109/TII.2019.2897805
Lu LL, 2019, 2019 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN (BLOCKCHAIN 2019), P490, DOI 10.1109/Blockchain.2019.00074
Mentzer K., 2020, INFORM SYSTEMS ED J, V06, P57
Nurhaeni T., 2020, PROC 5 INT C INFORMA, P1, DOI DOI 10.1109/ICIC50835.2020.9288605
Ocheja P, 2019, RES PRACT TECH ENHAN, V14, DOI 10.1186/s41039-019-0097-0
Ocheja P, 2018, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'18): TOWARDS USER-CENTRED LEARNING ANALYTICS, P265, DOI 10.1145/3170358.3170365
Rashid MA, 2020, KNOWL ENG REV, V35, DOI 10.1017/S0269888920000326
Rasool S, 2020, IEEE T COMPUT SOC SY, V7, P827, DOI 10.1109/TCSS.2020.2973710
Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Roberts Margaret E., 2014, Journal of Statistical Software, V10, P1, DOI [DOI 10.18637/JSS.V000.I00, 10.18637/jss.v091.i02]
Sharples M, 2016, LECT NOTES COMPUT SC, V9891, P490, DOI 10.1007/978-3-319-45153-4_48
Silge Julia., 2018, Training, Evaluating, and Interpreting Topic Models
Srivastava A, 2018, 2018 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, CONTROL AND COMMUNICATION TECHNOLOGY (IAC3T), P54, DOI 10.1109/IAC3T.2018.8674023
Suchaad SAL, 2018, PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND MACHINE INTELLIGENCE (MLMI 2018), P50, DOI 10.1145/3278312.3278326
Sunday Oyelere Solomon, 2020, Trends and Innovations in Information Systems and Technologies. Advances in Intelligent Systems and Computing (1161), P397, DOI 10.1007/978-3-030-45697-9_39
Tapscott A., 2017, HARVARD BUS REV
Tentea E. C., 2019, 2019 11 INT C ELECT, P1
The World Bank, 2018, EUR CENTR AS EC UPD, DOI [10.1596/978-1-4648-1299-6, DOI 10.1596/978-1-4648-1299-6]
Ting-sheng Weng, 2019, Innovative Technologies and Learning. Second International Conference, ICITL 2019. Proceedings. Lecture Notes in Computer Science (LNCS 11937), P513, DOI 10.1007/978-3-030-35343-8_55
Trines, 2017, WORLD ED NEWS REV, P1
Turkanovic M, 2018, IEEE ACCESS, V6, P5112, DOI 10.1109/ACCESS.2018.2789929
Ubaka M., 2020, Int. J. Adv. Trends Comput. Sci. Eng, V9, P2933, DOI [10.30534/ijatcse/2020/68932020, DOI 10.30534/IJATCSE/2020/68932020]
Vasiuta, 2019, FUNDAMENTAL APPL RES, V31, P229, DOI [10.33531/farplss.2019.1.44, DOI 10.33531/FARPLSS.2019.1.44]
Veena P., 2015, IBM Inst. Business Value, V17
de Castro AV, 2017, EDULEARN PROC, P4046
Wu Q, 2019, 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), P2741, DOI 10.1109/SSCI44817.2019.9003096
Wu XZ, 2020, WIREL COMMUN MOB COM, V2020, DOI 10.1155/2020/8827084
Yang L, 2019, J IND INF INTEGR, V15, P80, DOI 10.1016/j.jii.2019.04.002
Yi-Ching Chen, 2019, 2019 IEEE 11th International Conference on Engineering Education (ICEED), P113, DOI 10.1109/ICEED47294.2019.8994934
Zhang ZC, 2020, IEEE COMMUN MAG, V58, P47, DOI 10.1109/MCOM.001.1900130
NR 62
TC 8
Z9 8
U1 12
U2 48
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD APR
PY 2023
VL 28
IS 4
BP 4597
EP 4627
DI 10.1007/s10639-022-11399-5
EA OCT 2022
PG 31
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA F7WX6
UT WOS:000870636400003
DA 2024-09-05
ER
PT C
AU Fiallos, A
Jimenes, K
Vaca, C
Ochoa, X
AF Fiallos, Angel
Jimenes, Karina
Vaca, Carmen
Ochoa, Xavier
BE Teran, L
Meier, A
TI Scientific Communities Detection and Analysis in the Bibliographic
Database: Scopus
SO 2017 FOURTH INTERNATIONAL CONFERENCE ON EDEMOCRACY & EGOVERNMENT
(ICEDEG)
SE International Conference on eDemocracy and eGovernment ICEDEG
LA English
DT Proceedings Paper
CT 4th International Conference on eDemocracy and eGovernment (ICEDEG)
CY APR 19-21, 2017
CL Quito, ECUADOR
DE LDA; TF-IDF; SNA; Scopus; authors; communities; Ecuador
AB In recent years, Governments of many countries had promoted higher education in exclusive areas and disciplines to improve the quality of inhabitant's life, economy, and public management. However, there is no an effective way to help governments to verify if scientific works and research centers are aligned to a country priority research area. A dataset of 4552 scientific works associated to 29 research areas in Ecuador was collected from a bibliographic database SCOPUS. This work is focused on detection of the most important Ecuadorian research areas based on scientific collaboration in scientific publications in such areas through a proposed methodology. The methodology is subject to Social Network Analysis and Natural Language Processing to identify collaboration communities and the most relevant topics on densely connected communities. Finally, an exploratory analysis of a case study thought this methodology is presented to demonstrate that is possible to know which scientific areas are the most collaborative and which topics were the most popular in Ecuador.
C1 [Fiallos, Angel; Jimenes, Karina; Vaca, Carmen; Ochoa, Xavier] Escuela Super Politecn Litoral, ESPOL8, Fac Ingn Elect & Computac, Campus Gustavo Galindo Km 30-5,Via Perimetral, Guayaquil, Ecuador.
C3 Escuela Superior Politecnica del Litoral
RP Fiallos, A (corresponding author), Escuela Super Politecn Litoral, ESPOL8, Fac Ingn Elect & Computac, Campus Gustavo Galindo Km 30-5,Via Perimetral, Guayaquil, Ecuador.
EM anfiallos@fiec.espol.edu.ec; kbjimene@fiec.espol.edu.ec;
cvaca@fiec.espol.edu.ec; xochoa@fiec.espol.edu.ec
RI Fiallos, Angel/CAE-9290-2022; Vaca, Carmen/AAL-4156-2021; Ochoa,
Xavier/AAJ-8085-2021
OI Ochoa, Xavier/0000-0002-4371-7701; Vaca Ruiz, Carmen
Karina/0000-0002-0474-1901; Fiallos, Angel/0000-0002-7828-1207
CR [Anonymous], P 15 INT C KNOWL TEC
[Anonymous], PLAN NAC BUEN VIV
[Anonymous], AR EST U EXC
[Anonymous], APPL TF IDF FACTOR S
[Anonymous], 2004, Facilitating Interdisciplinary Research
[Anonymous], P 26 AAAI C ART INT
[Anonymous], LEARNING SEMANTIC CO
[Anonymous], INT J PHARM TECHNOLO
[Anonymous], INT J CARDIOLOGY
Azam N, 2012, EXPERT SYST APPL, V39, P4760, DOI 10.1016/j.eswa.2011.09.160
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Cios K., 2007, Data Mining A Knowledge Discovery
De Vocht L, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1053, DOI 10.1145/2740908.2742030
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
Ian P., 2008, Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, P569, DOI 10.1145/1401890.1401960
Jacomy M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098679
Kastrin A, 2017, SCIENTOMETRICS, V110, P791, DOI 10.1007/s11192-016-2203-z
Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066133
SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0
NR 20
TC 5
Z9 5
U1 0
U2 6
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2573-2005
EI 2573-1998
BN 978-1-5090-4830-4
J9 INT CONF EDEMOC EGOV
PY 2017
BP 118
EP 124
PG 7
WC Computer Science, Interdisciplinary Applications; Computer Science,
Theory & Methods; Political Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Government & Law
GA BM4XR
UT WOS:000464415600020
DA 2024-09-05
ER
PT J
AU Zhang, W
Bai, L
Zhang, FY
Zhao, FF
Liu, ZL
Xiong, XC
AF Zhang, Wei
Bai, Lu
Zhang, Fengyi
Zhao, Feifan
Liu, Zilong
Xiong, Xingchuang
TI A comprehensive research on measurement and evaluation of intelligent
meter reading systems
SO ENGINEERING RESEARCH EXPRESS
LA English
DT Article
DE meter; intelligent reading system; artificial intelligence; measurement
and evaluation; metrology
ID ROBUST
AB Based on the machine vision and artificial intelligence technologies, the reading and acquisition of meter values have become the mainstream technical solutions for real-time monitoring of production data in the current industrial field. At the same time, the number of intelligent instruments and meters is increasing, and the quality varies. There is a lack of scientifically measurement methods and quality trust for intelligent meter reading algorithms. To promote their reliable and widespread application in various fields, it is necessary to conduct in-depth research on the assessment system of artificial intelligence in intelligent meter reading systems. This paper comprehensively studies various aspects involved in the emerging measurement field of artificial intelligence evaluation at the current stage, providing scientific measurement and evaluation references for the quality trust of artificial intelligence in the field of meters.
C1 [Zhang, Wei; Bai, Lu; Zhang, Fengyi; Zhao, Feifan; Liu, Zilong; Xiong, Xingchuang] Natl Inst Metrol, Beijing 100029, Peoples R China.
[Zhang, Wei; Bai, Lu; Zhang, Fengyi; Zhao, Feifan; Liu, Zilong; Xiong, Xingchuang] Key Lab Metrol Digitalizat & Digital Metrol State, Beijing 100029, Peoples R China.
[Zhang, Fengyi] China Jiliang Univ, Coll Informat Engn, Hangzhou 310018, Zhejiang, Peoples R China.
[Zhao, Feifan] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Peoples R China.
C3 National Institute of Metrology China; China Jiliang University;
Zhengzhou University
RP Xiong, XC (corresponding author), Natl Inst Metrol, Beijing 100029, Peoples R China.; Xiong, XC (corresponding author), Key Lab Metrol Digitalizat & Digital Metrol State, Beijing 100029, Peoples R China.
EM xiongxch@nim.ac.cn
FU National Key R&D Program of China
FX No Statement Available
CR [Anonymous], 2012, GB/T 2900.90-2012
[Anonymous], 1992, GB/T 13983-1992
Azeem Abdullah, 2020, 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), P209, DOI 10.1109/AEECA49918.2020.9213531
Cai M Q., 2018, Modern Computer: First Half of the Month Edition, V000, P38
Chorev S., 2022, J. Mach. Learn. Res, V23, p285:1, DOI [10.48550/arXiv.2203.08491, DOI 10.48550/ARXIV.2203.08491]
Ebadi A, 2021, Arxiv, DOI [arXiv:2111.06827, 10.48550/arXiv.2111.06827, DOI 10.48550/ARXIV.2111.06827]
Ghosh S, 2021, Arxiv, DOI [arXiv:2106.01410, 10.48550/arxiv.2106.01410]
Girshick R., 2014, IEEE C COMP VIS PATT, DOI [DOI 10.1109/CVPR.2014.81, 10.1109/CVPR.2014.81]
Girshick R, 2015, IEEE I CONF COMP VIS, P1440, DOI 10.1109/ICCV.2015.169
Guo JM, 2018, ESEC/FSE'18: PROCEEDINGS OF THE 2018 26TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, P739, DOI 10.1145/3236024.3264835
[郭兰英 Guo Lanying], 2020, [计算机科学, Computer Science], V47, P187
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
Humbatova N, 2021, ISSTA '21: PROCEEDINGS OF THE 30TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, P67, DOI 10.1145/3460319.3464825
Kendall A, 2017, Arxiv, DOI arXiv:1703.04977
Laroca R, 2021, IEEE ACCESS, V9, P67569, DOI 10.1109/ACCESS.2021.3077415
Laroca R, 2019, J ELECTRON IMAGING, V28, DOI 10.1117/1.JEI.28.1.013023
Liang WX, 2022, NAT MACH INTELL, V4, P669, DOI 10.1038/s42256-022-00516-1
Lin TY, 2017, PROC CVPR IEEE, P936, DOI 10.1109/CVPR.2017.106
Liu X B., 2019, Power supply, V36, P80, DOI [10.19421/j.cnki.1006-6357.2019.11.013, DOI 10.19421/J.CNKI.1006-6357.2019.11.013]
Ma L, 2018, PROC INT SYMP SOFTW, P100, DOI 10.1109/ISSRE.2018.00021
Mena J, 2022, ACM COMPUT SURV, V54, DOI 10.1145/3477140
Rao YB, 2024, APPL INTELL, V54, P1847, DOI 10.1007/s10489-024-05278-4
Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031
Salomon G., 2022, Measurement, V204, DOI [10.1016/j.measurement.2022.112025, DOI 10.1016/J.MEASUREMENT.2022.112025]
Salomon G, 2020, IEEE IJCNN, DOI 10.1109/ijcnn48605.2020.9207318
Shelhamer E, 2017, IEEE T PATTERN ANAL, V39, P640, DOI 10.1109/TPAMI.2016.2572683
Shu Y, 2023, Arxiv, DOI [arXiv:2302.14323, 10.48550/arXiv.2302.14323v2, DOI 10.48550/ARXIV.2302.14323V2]
Sun JJ, 2023, NEURAL COMPUT APPL, V35, P8357, DOI 10.1007/s00521-022-08110-7
Tian YC, 2018, PROCEEDINGS 2018 IEEE/ACM 40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), P303, DOI 10.1145/3180155.3180220
Waqar M, 2019, 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION IN INDUSTRY (ICRAI), DOI 10.1109/icrai47710.2019.8967357
Yang CJ, 2023, CONNECT SCI, V35, DOI 10.1080/09540091.2023.2241669
Yang F, 2019, IEEE ACCESS, V7, P11679, DOI 10.1109/ACCESS.2019.2891767
Yi J, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P1294
Zhang G B., 2008, Industrial Automation Instrument and Process Control
Zhang JM, 2022, IEEE T SOFTWARE ENG, V48, P1, DOI 10.1109/TSE.2019.2962027
Zou L, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23146644
Zuo L, 2020, NEUROCOMPUTING, V388, P90, DOI 10.1016/j.neucom.2020.01.032
NR 37
TC 0
Z9 0
U1 2
U2 2
PU IOP Publishing Ltd
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2631-8695
J9 ENG RES EXPRESS
JI Eng. Res. Express
PD JUN 1
PY 2024
VL 6
IS 2
AR 025212
DI 10.1088/2631-8695/ad45b5
PG 16
WC Engineering, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA QP4E9
UT WOS:001222053600001
DA 2024-09-05
ER
PT J
AU Jiang, T
Liu, XP
Zhang, C
Yin, CAH
Liu, HZ
AF Jiang, Tian
Liu, Xiaoping
Zhang, Chao
Yin, Chuanhao
Liu, Huizhou
TI Overview of Trends in Global Single Cell Research Based on Bibliometric
Analysis and LDA Model (2009-2019)
SO JOURNAL OF DATA AND INFORMATION SCIENCE
LA English
DT Article
DE LDA model; Topic evolution; Bibliometric analysis; Post-discretized;
Single-cell
AB Purpose: This article aims to describe the global research profile and the development trends of single cell research from the perspective of bibliometric analysis and semantic mining.
Design/methodology/approach: The literatures on single cell research were extracted from Clarivate Analytic's Web of Science Core Collection between 2009 and 2019. Firstly, bibliometric analyses were performed with Thomson Data Analyzer (TDA). Secondly, topic identification and evolution trends of single cell research was conducted through the LDA topic model. Thirdly, taking the post-discretized method which is used for topic evolution analysis for reference, the topics were also be dispersed to countries to detect the spatial distribution.
Findings: The publication of single cell research shows significantly increasing tendency in the last decade. The topics of single cell research field can be divided into three categories, which respectively refers to single cell research methods, mechanism of biological process, and clinical application of single cell technologies. The different trends of these categories indicate that technological innovation drives the development of applied research. The continuous and rapid growth of the topic strength in the field of cancer diagnosis and treatment indicates that this research topic has received extensive attention in recent years. The topic distributions of some countries are relatively balanced, while for the other countries, several topics show significant superiority.
Research limitations: The analyzed data of this study only contain those were included in the Web of Science Core Collection.
Practical implications: This study provides insights into the research progress regarding single cell field and identifies the most concerned topics which reflect potential opportunities and challenges. The national topic distribution analysis based on the post-discretized analysis method extends topic analysis from time dimension to space dimension.
Originality/value: This paper combines bibliometric analysis and LDA model to analyze the evolution trends of single cell research field. The method of extending post-discretized analysis from time dimension to space dimension is distinctive and insightful.
C1 [Jiang, Tian; Liu, Xiaoping; Zhang, Chao; Liu, Huizhou] Chinese Acad Sci, Natl Sci Lib, Beijing 100190, Peoples R China.
[Yin, Chuanhao] Chinese Inst Elect, Beijing 100036, Peoples R China.
C3 Chinese Academy of Sciences; National Science Library, CAS; Chinese
Academy of Sciences; Institute of Electronics, CAS
RP Liu, HZ (corresponding author), Chinese Acad Sci, Natl Sci Lib, Beijing 100190, Peoples R China.
EM jiangtian@mail.las.ac.cn; liuxp@mail.las.ac.cn; zhangch@mail.las.ac.cn;
cieyinchuanhao@163.com; liuhz@mail.las.ac.cn
FU [E290001]
FX This study was supported by the Chinese Academy of Sciences literature
information capability construction project of 2020 "Construction of
strategic information research and consultation system in science and
technology field" (Grant No. E290001).
CR Ai SS, 2019, NAT CELL BIOL, V21, P1164, DOI 10.1038/s41556-019-0383-5
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Briggs JA, 2018, SCIENCE, V360, P980, DOI 10.1126/science.aar5780
Cao JY, 2019, NATURE, V566, P496, DOI 10.1038/s41586-019-0969-x
Farrell JA, 2018, SCIENCE, V360, P979, DOI 10.1126/science.aar3131
Griffiths JA, 2018, MOL SYST BIOL, V14, DOI 10.15252/msb.20178046
Guo XY, 2018, NAT MED, V24, P978, DOI 10.1038/s41591-018-0045-3
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Junker JP, 2014, CELL, V157, P8, DOI 10.1016/j.cell.2014.02.010
Lee L, 2001, P ENGL INT WORKSH AR
Lindstrom Sara, 2012, Methods Mol Biol, V853, P13, DOI 10.1007/978-1-61779-567-1_2
Nicolaisen J, 2010, J AM SOC INF SCI TEC, V61, P205, DOI 10.1002/asi.21181
Reece A, 2016, CURR OPIN BIOTECH, V40, P90, DOI 10.1016/j.copbio.2016.02.015
Wang QH, 2019, MOL CELL, V76, P206, DOI 10.1016/j.molcel.2019.07.015
Wei W, 2016, CANCER CELL, V29, P563, DOI 10.1016/j.ccell.2016.03.012
Zhang L, 2018, NATURE, V564, P268, DOI 10.1038/s41586-018-0694-x
Zhang W, 2016, SCIENTOMETRICS, V109, P359, DOI 10.1007/s11192-016-1995-1
Zheng TL, 2016, SCIENTOMETRICS, V109, P53, DOI 10.1007/s11192-016-2004-4
NR 18
TC 1
Z9 1
U1 2
U2 48
PU SCIENDO
PI WARSAW
PA BOGUMILA ZUGA 32A, WARSAW, MAZOVIA, POLAND
SN 2096-157X
EI 2543-683X
J9 J DATA INFO SCI
JI J. Data Info. Sci.
PD APR
PY 2021
VL 6
IS 2
BP 163
EP 178
DI 10.2478/jdis-2021-0008
PG 16
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA RV9WI
UT WOS:000646175200008
OA gold
DA 2024-09-05
ER
PT J
AU Alon, I
Chebance, Z
Massucci, FA
Bounartzi, T
Ravitsky, V
AF Alon, Ido
Chebance, Zacharie
Massucci, Francesco Alessandro
Bounartzi, Theofano
Ravitsky, Vardit
TI Mapping international research output within ethical, legal, and social
implications (ELSI) of assisted reproductive technologies
SO JOURNAL OF ASSISTED REPRODUCTION AND GENETICS
LA English
DT Article
DE Assisted reproductive technologies; Ethical; social; and legal
implications; Mapping; Topic modeling; Geographic distribution of
research; International research
ID MITOCHONDRIAL REPLACEMENT TECHNIQUES; COMMERCIAL SURROGACY;
INEQUALITIES; INFERTILITY
AB PurposeResearch about ethical, legal, and social implications (ELSI) of assisted reproductive technologies (ART) is influenced by cultural and value-based perspectives. It impacts regulations, funding, and clinical practice, and shapes the perception of ART in society. We analyze trends in the global literature on ELSI of ART between 1999 and 2019. As most output is produced by North America, Western Europe, and Australia, we focus on international research, i.e., academic articles studying a different country than that of the corresponding author.MethodsThe corpus, extracted from PubMed, Web of Science, and Scopus, includes 7714 articles, of which 1260 involved international research. Analysis is based on titles, abstracts and keywords, classification into ART fields and Topic Modeling, the countries of corresponding author, and countries mentioned in abstracts.ResultsAn absolute increase in the number of international studies, and their relative proportion. Trends of decentralization are apparent, yet geographic centralization remains, which reflects an unequal distribution of research funds across countries and may result in findings that do not reflect global diversity of norms and values. Preference for studying conceptual challenges through philosophical analysis, and for fields that concern only a portion of ART cycles. Less attention was dedicated to economic analysis and barriers to access, or to knowledge of and attitudes. International studies provide an opportunity to expand and diversify the scope of ELSI research.ConclusionWe call on the research community to promote international collaborations, focus on less explored regions, and divert more attention to questions of cost, access, knowledge, and attitudes.
C1 [Alon, Ido] Autonomous Univ Madrid, Dept Dev Econ, Madrid, Spain.
[Alon, Ido; Ravitsky, Vardit] Univ Montreal, Montreal, PQ, Canada.
[Chebance, Zacharie] Mines Paristech, Paris, France.
[Massucci, Francesco Alessandro] SIRIS Acad, Res Div, SIRIS Lab, Barcelona, Spain.
[Bounartzi, Theofano] Univ Thessaly, Fac Med, Sch Hlth Sci, Dept Obstet & Gynaecol, Larisa, Greece.
[Ravitsky, Vardit] Harvard Med Sch, Boston, MA USA.
C3 Autonomous University of Madrid; Universite de Montreal; Universite PSL;
MINES ParisTech; University of Thessaly; Harvard University; Harvard
Medical School
RP Alon, I (corresponding author), Autonomous Univ Madrid, Dept Dev Econ, Madrid, Spain.; Alon, I (corresponding author), Univ Montreal, Montreal, PQ, Canada.
EM idoalon77@gmail.com
OI Alon, Ido/0000-0001-6603-7496
FU CRUE-CSIC; Springer Nature; Autonomous University of Madrid; Centre de
recherche en ethique (CRE) at the University of Montreal
FX & nbsp;Open Access funding provided thanks to the CRUE-CSIC agreement
with Springer Nature. This work received financial support provided by
both the Margarita Salas Fellowship from the Autonomous University of
Madrid and the Centre de recherche en ethique (CRE) at the University of
Montreal which have both provided invaluable financial assistance,
enabling us to conduct our research.
CR Alon I, 2021, INT J EQUITY HEALTH, V20, DOI 10.1186/s12939-021-01438-x
Alon I, 2019, J ASSIST REPROD GEN, V36, P1665, DOI 10.1007/s10815-019-01525-7
[Anonymous], 2017, Human genome editing: Science, ethics, and governance, DOI DOI 10.17226/24623
[Anonymous], 2018, Genome Editing and Human Reproduction: social and ethical issues
Boggio A, 2017, EUR J HEALTH LAW, V24, P85, DOI 10.1163/15718093-12341409
Callier SL, 2016, BIOETHICS, V30, P698, DOI 10.1111/bioe.12285
CDC, 2020, ASSISTED REPROD TECH
Chambers GM, 2014, FERTIL STERIL, V101, P191, DOI 10.1016/j.fertnstert.2013.09.005
Chambers GM, 2013, FERTIL STERIL, V100, P319, DOI 10.1016/j.fertnstert.2013.06.017
Cohen IG, 2020, ANNU REV GENOM HUM G, V21, P565, DOI 10.1146/annurev-genom-111119-101815
Csomós G, 2018, J INFORMETR, V12, P547, DOI 10.1016/j.joi.2018.05.003
Dhalwani NN, 2013, HUM REPROD, V28, P960, DOI 10.1093/humrep/des451
Doetsch JN, 2021, BMC PUBLIC HEALTH, V21, DOI 10.1186/s12889-021-10194-0
Eisenberg ML, 2010, FERTIL STERIL, V94, P2369, DOI 10.1016/j.fertnstert.2010.03.068
Ferraretti AP, 2017, HUM REPROD OPEN, V2017, DOI 10.1093/hropen/hox012
Fire M, 2019, GIGASCIENCE, V8, DOI 10.1093/gigascience/giz053
García D, 2020, REPROD BIOMED ONLINE, V40, P71, DOI 10.1016/j.rbmo.2019.10.013
Gerlach M, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aaq1360
Gui QC, 2019, GEOFORUM, V105, P1, DOI 10.1016/j.geoforum.2019.06.017
Inhorn MC, 2015, HUM REPROD UPDATE, V21, P411, DOI 10.1093/humupd/dmv016
Ishihara O, 2021, REPROD MED BIOL, V20, P3, DOI 10.1002/rmb2.12358
Johnson MH, 2008, HUM REPROD, V23, P716, DOI 10.1093/humrep/dem387
Mladovsky P, 2010, HEALTH CARE ANAL, V18, P113, DOI 10.1007/s10728-009-0114-3
NIH, ETH LEG SOC IMPL RES
Nuffield Council on Bioethics, 2016, GEN ED ETH REV
Ormond KE, 2017, AM J HUM GENET, V101, P167, DOI 10.1016/j.ajhg.2017.06.012
Palacios-González C, 2017, J LAW BIOSCI, V4, P50, DOI 10.1093/jlb/lsw065
Pande A, 2016, CURR SOCIOL, V64, P244, DOI 10.1177/0011392115614786
Pande A, 2011, REPROD BIOMED ONLINE, V23, P618, DOI 10.1016/j.rbmo.2011.07.007
Parker LS, 2019, GENET MED, V21, P505, DOI 10.1038/s41436-018-0065-x
Präg P, 2017, HUM REPROD, V32, P2305, DOI 10.1093/humrep/dex298
Ravitsky V, 2019, BIOL REPROD, V101, P872, DOI 10.1093/biolre/ioz161
Salter B, 2022, SCI TECHNOL HUM VAL, V47, P3, DOI 10.1177/0162243921991929
Sayers E, 2021, Entrez programming utilities help-a general introduction to the E-utilities
Sobotka T, 2017, DEMOGR RES MONOGR, P17, DOI 10.1007/978-3-319-44667-7_2
White, 2019, PUBLICATIONS OUTPUT
Wyns C, 2020, HUM REPROD OPEN, V2020, DOI 10.1093/hropen/hoaa032
NR 37
TC 4
Z9 4
U1 3
U2 7
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1058-0468
EI 1573-7330
J9 J ASSIST REPROD GEN
JI J. Assist. Reprod. Genet.
PD SEP
PY 2023
VL 40
IS 9
BP 2023
EP 2043
DI 10.1007/s10815-023-02834-8
EA JUN 2023
PG 21
WC Genetics & Heredity; Obstetrics & Gynecology; Reproductive Biology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Genetics & Heredity; Obstetrics & Gynecology; Reproductive Biology
GA P6OS5
UT WOS:001020140100002
PM 37382788
OA Green Published, hybrid
DA 2024-09-05
ER
PT C
AU Shang, WY
Cordell, R
Downie, JS
AF Shang, Wenyi
Cordell, Ryan
Downie, J. Stephen
GP ACM
TI Book Size, Book Format: Historical Relationship in the HathiTrust
Digital Library Metadata (1500-1799)
SO 2023 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, JCDL
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 23rd ACM/IEEE Joint Conference on Digital Libraries (JCDL)
CY JUN 26-30, 2023
CL Santa Fe, NM
DE Digital library; Bibliographic metadata; Book history; Machine learning
AB Digital libraries create new scholarly possibilities for investigating hook format at scale, providing a valuable perspective for hook history. This study evaluates the historical relationship between hook format and book size using the HathiTrust Digital Library metadata of 133,268 books published between 1500 and 1799. We found that: (1) the size of books generally decreased; (2) smaller hook formats gradually replaced larger hook formats; and, (3) book size can predict book format relatively accurately. Our findings suggest possible automated improvements to digital library metadata where information about book size is better represented than format, enabling book historians to estimate the prevalence of formats and analyze publication trends.
C1 [Shang, Wenyi; Cordell, Ryan; Downie, J. Stephen] Univ Illinois, Sch Informat Sci, Champaign, IL 61820 USA.
C3 University of Illinois System; University of Illinois Urbana-Champaign
RP Shang, WY (corresponding author), Univ Illinois, Sch Informat Sci, Champaign, IL 61820 USA.
EM wenyis3@illinois.edu; rcordell@illinois.edu; jdownie@illinois.edu
CR McGill ML, 2018, EARLY AM STUD, V16, P671, DOI 10.1353/eam.2018.0033
Pettegree Andrew, 2010, The Book in the Renaissance, P354
Stallybrass P, 2004, PMLA, V119, P1347, DOI 10.1632/003081204X17914
NR 3
TC 0
Z9 0
U1 2
U2 3
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
SN 2575-7865
EI 2575-8152
BN 979-8-3503-9931-8
J9 ACM-IEEE J CONF DIG
PY 2023
BP 279
EP 281
DI 10.1109/JCDL57899.2023.00059
PG 3
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BW0PC
UT WOS:001098971300049
DA 2024-09-05
ER
PT J
AU Maatouk, Y
AF Maatouk, Yasser
TI AI-SPedia: a novel ontology to evaluate the impact of research in the
field of artificial intelligence
SO PEERJ COMPUTER SCIENCE
LA English
DT Article
DE Altmetrics; Bibliometrics; Semantic web; Ontology
ID BIBLIOMETRIC INDICATORS; ALTMETRIC SCORE; SCIENCE; WEB
AB Background. Sharing knowledge such as resources, research results, and scholarly documents, is of key importance to improving collaboration between researchers worldwide. Research results from the field of artificial intelligence (AI) are vital to share because of the extensive applicability of AI to several other fields of research. This has led to a significant increase in the number of AI publications over the past decade. The metadata of AI publications, including bibliometrics and altmetrics indicators, can be accessed by searching familiar bibliographical databases such as Web of Science (WoS), which enables the impact of research to be evaluated and identify rising researchers and trending topics in the field of AI. Problem description. In general, bibliographical databases have two limitations in terms of the type and form of metadata we aim to improve. First, most bibliographical databases, such as WoS, are more concerned with bibliometric indicators and do not offer a wide range of altmetric indicators to complement traditional bibliometric indi-cators. Second, the traditional format in which data is downloaded from bibliographical databases limits users to keyword-based searches without considering the semantics of the data. Proposed solution. To overcome these limitations, we developed a repository, named AI-SPedia. The repository contains semantic knowledge of scientific publications concerned with AI and considers both the bibliometric and altmetric indicators. Moreover, it uses semantic web technology to produce and store data to enable semantic-based searches. Furthermore, we devised related competency questions to be answered by posing smart queries against the AI-SPedia datasets. Results. The results revealed that AI-SPedia can evaluate the impact of AI research by exploiting knowledge that is not explicitly mentioned but extracted using the power of semantics. Moreover, a simple analysis was performed based on the answered questions to help make research policy decisions in the AI domain. The end product, AI-SPedia, is considered the first attempt to evaluate the impacts of AI scientific publications using both bibliometric and altmetric indicators and the power of semantic web technology.
C1 [Maatouk, Yasser] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia.
C3 King Abdulaziz University
RP Maatouk, Y (corresponding author), King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia.
EM ymaatouk@kau.edu.sa
RI Maatouk, Yasser/E-6548-2016
OI Maatouk, Yasser/0000-0001-9333-5907
FU Deanship of Scientific Research (DSR) , King Abdulaziz University,
Jeddah; [DF-771-611-1441]
FX Funding This project was funded by the Deanship of Scientific Research
(DSR) , King Abdulaziz University, Jeddah, under Grant No.
DF-771-611-1441. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.
CR Aleman-Meza B, 2007, J WEB SEMANT, V5, P151, DOI 10.1016/j.websem.2007.03.001
Altmetric, 2021, ALTM HOM
[Anonymous], 2009, HDB ONTOLOGIES INT H, DOI DOI 10.1007/978-3-540-92673-3_0
Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062
Aslam Muhammad Ahtisham, 2018, International Journal of Information Engineering and Electronic Business, V10, P8, DOI 10.5815/ijieeb.2018.05.02
Aslam MA, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.445
Aslam MA, 2017, INT J SEMANT WEB INF, V13, P128, DOI 10.4018/IJSWIS.2017010108
Aslam MA, 2016, LECT NOTES COMPUT SC, V9658, P479, DOI 10.1007/978-3-319-39937-9_37
Butler JS, 2017, CLIN SPINE SURG, V30, P226, DOI 10.1097/BSD.0000000000000531
Collins CS, 2021, J SURG RES, V268, P705, DOI 10.1016/j.jss.2021.07.025
Corson-Rikert J, 2010, P IASSIST 10 SOC DAT
Daraio C, 2016, SCIENTOMETRICS, V106, P857, DOI 10.1007/s11192-015-1814-0
DBLP, 2021, WHAT IS DBLP
Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626
Franceschet M, 2010, SCIENTOMETRICS, V83, P243, DOI 10.1007/s11192-009-0021-2
Gandhi K, 2016, 2016 INT C ICT BUSIN, P18, DOI [10.1109/ICTBIG.2016.7892635, DOI 10.1109/ICTBIG.2016.7892635]
Haustein S, 2016, J ASSOC INF SCI TECH, V67, P232, DOI 10.1002/asi.23456
Lei YF, 2019, J PHYS CONF SER, V1168, DOI 10.1088/1742-6596/1168/2/022027
Maatouk Y., 2021, ACAD LETT, V2021, P2781, DOI [10.20935/AL2781, DOI 10.20935/AL2781]
Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001
Nogales A, 2014, PROCEDIA COMPUT SCI, V33, P266, DOI 10.1016/j.procs.2014.06.042
Ortega JL, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.07
Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a
Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874
Rong LQ, 2020, BRIT J ANAESTH, V125, pE223, DOI [10.1016/j.bja.2020.05.033, 10.1016/j.bja.2020.04.086]
Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x
Samuel S, 2022, PEERJ COMPUT SCI, V8, DOI 10.7717/peerj-cs.921
Say Zeynep, 2020, Digital Libraries for Open Knowledge. 24th International Conference on Theory and Practice of Digital Libraries, TPDL 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12246), P119, DOI 10.1007/978-3-030-54956-5_9
Thelwall M, 2018, J INFORMETR, V12, P237, DOI 10.1016/j.joi.2018.01.008
Warren VT, 2020, CLIN IMPLANT DENT R, V22, P54, DOI 10.1111/cid.12876
Web of Science, 2021, WEB SCI
Yu HQ, 2017, J INFORMETR, V11, P466, DOI 10.1016/j.joi.2017.02.011
NR 32
TC 0
Z9 0
U1 3
U2 15
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
EI 2376-5992
J9 PEERJ COMPUT SCI
JI PeerJ Comput. Sci.
PD SEP 22
PY 2022
VL 8
AR e1099
DI 10.7717/peerj-cs.1099
PG 24
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 5A7EM
UT WOS:000863046700001
PM 37346315
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Yang, SC
Guo, CY
Ren, W
AF Yang, Shucai
Guo, Chaoyang
Ren, Wei
TI Research on optimization of milling performance of V-groove
micro-texture ball-end milling cutter
SO JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
LA English
DT Article
DE V-groove micro-texture; Ball-end milling cutter; Titanium alloy;
Performance optimization; Simulated annealing algorithm
ID WEAR
AB Titanium alloys generally have problems such as sticking, large cutting force, and poor heat dissipation during the cutting process., research shows that processing microtextures on the surface of the tool can effectively improve the above problems. Therefore, this paper designs the V-groove micro-textures based on the principle of bionics. Use simulation software to analyze the milling behavior of different V-groove micro-texture ball-end milling cutters for milling titanium alloys. Build a test platform to study the milling performance of the V-groove micro-texture ball-end milling cutter for milling titanium alloys, obtain the prior choice range of V-groove micro-texture parameters, optimize the parameters based on the simulated annealing algorithm and conduct experimental verification. The results of the optimal tool parameters are that the opening angle of the V-groove micro-textures is 79 degrees, the V-groove micro-texture spacing is 170 mu m, and the V-groove micro-texture width is 30 mu m, the distance from blade of the V-groove micro-textures is 90 mu m.
C1 [Yang, Shucai; Guo, Chaoyang; Ren, Wei] Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin 150080, Peoples R China.
C3 Harbin University of Science & Technology
RP Yang, SC (corresponding author), Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin 150080, Peoples R China.
EM yangshucai@hrbust.edu.cn
FU National Natural Science Foundation of China, China [51875144]
FX This work was funded by the National Natural Science Foundation of China
(Micro-texture preparation of cemented carbide ball end milling tool and
its dynamic evolution of milling behavior [51875144]), China.
CR Chen H., 2018, TOOL TECHNOLOGY, V52, P13
Dai ZD, 2006, CHINESE SCI BULL, V51, P2681, DOI 10.1007/s11434-006-2184-z
Huang B., 2015, RES CUTTING PROCESS
Kam M, 2021, SURF REV LETT, V28, DOI 10.1142/S0218625X21500414
Liu Y, 2018, AVIATION MANUFACTURI, V61, P38
Pang MH, 2018, INT J ADV MANUF TECH, V99, P737, DOI 10.1007/s00170-018-2498-4
Sugihara T., 2016, ADV MAT RES, V1136, P561
Tong J, 1998, WEAR, V221, P37, DOI 10.1016/S0043-1648(98)00261-0
Wei P., 2019, RES NC MACHINING TEC
West N., 2016, P I MECH ENG L-J MAT
Wu Z, 2012, AVIATION MANUFACTURI, P32
[谢志斌 Xie Zhibin], 2015, [兵器材料科学与工程, Ordnance Material Science and Engineering], V38, P33
Yang S., 2019, J HARBIN U SCI TECHN, V24, P47
Yang S., 2016, J HARBIN U SCI TECHN, V21, P5
Yang SC, 2020, ADV MECH ENG, V12, DOI 10.1177/1687814020908423
Yang SC, 2019, MICROMACHINES-BASEL, V10, DOI 10.3390/mi10010021
Yin SB, 2018, INT J ADV MANUF TECH, V99, P2929, DOI 10.1007/s00170-018-2657-7
Zhang W, 2008, AEROENGINE, P23
NR 18
TC 3
Z9 3
U1 3
U2 49
PU KOREAN SOC MECHANICAL ENGINEERS
PI SEOUL
PA KSTC NEW BLD. 7TH FLOOR, 635-4 YEOKSAM-DONG KANGNAM-KU, SEOUL 135-703,
SOUTH KOREA
SN 1738-494X
EI 1976-3824
J9 J MECH SCI TECHNOL
JI J. Mech. Sci. Technol.
PD JUN
PY 2022
VL 36
IS 6
BP 2849
EP 2860
DI 10.1007/s12206-022-0517-8
PG 12
WC Engineering, Mechanical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA 2G8CH
UT WOS:000813815300017
DA 2024-09-05
ER
PT C
AU Shivakumar, R
Diddi, S
Maitra, S
AF Shivakumar, R.
Diddi, Sreelakshmi
Maitra, Samita
GP IEEE
TI Utilization of Unisim Design Tool for Enhanced Learning and Assessment
in Engineering Education
SO 2017 5TH IEEE INTERNATIONAL CONFERENCE ON MOOCS, INNOVATION AND
TECHNOLOGY IN EDUCATION (MITE)
LA English
DT Proceedings Paper
CT 5th IEEE International Conference on MOOCs, Innovation and Technology in
Education (MITE)
CY OCT 27-28, 2017
CL Bangalore, INDIA
DE Virtual Experiments; Assessment tool; Active learning; Student Centered
Learning; Open Ended Research and Self-Evaluation
AB Virtual and augmented tools have revolutionized the changes in teaching styles and curriculum design of engineering education irrespective of the disciplines. These tools aims at improving their learning skills, bridge the gap between instructional laboratory experiments & open ended research experiments and initiate for student centred learning. Many initiatives for development of virtual labs from different universities across the world have proved that virtual reality can be one of the important tools in engineering education by bringing experience based learning in students. This article aims to project the applicability of virtual experiments as an important tool for learning and assessment of self-study component. Unisim Design tool is used to develop virtual experiments for core courses. These virtual experiments can be used as one of the self-assessment tools for all laboratory based courses in engineering education. A methodology for the assessment is proposed.
C1 [Shivakumar, R.; Diddi, Sreelakshmi; Maitra, Samita] BMS Coll Engn, Dept Chem Engn, Bengaluru 19, India.
C3 BMS College of Engineering
RP Shivakumar, R (corresponding author), BMS Coll Engn, Dept Chem Engn, Bengaluru 19, India.
RI R, Shivakumar/HLH-4693-2023; Diddi, Sreelakshmi/F-1370-2018; Maitra,
Samita/ABA-8195-2020; R, Shivakumar/O-9688-2015
OI R, Shivakumar/0000-0002-1806-1878; Diddi,
Sreelakshmi/0000-0002-5657-2564; R, Shivakumar/0000-0001-6729-4574;
Maitra, Samita/0000-0003-0196-1762
FU TEQIP-II, MHRD, Govt. of India; BMS College of engineering
FX The authors wish to acknowledge the funding under TEQIP-II, MHRD, Govt.
of India for procuring UNISIM Simulation Software. Thanks to Principal,
BMS College of engineering for the support. Our gratitude to Honeywell
Automations Ltd., for seeding the idea to develop virtual experiments
for chemical engineering using Unisim
CR Abdulwahed M, 2009, J ENG EDUC, V98, P283, DOI 10.1002/j.2168-9830.2009.tb01025.x
Barr R.B., 1995, Change Magazine, V27, P12, DOI DOI 10.1080/00091383.1995.10544672
Behzadan AH, 2011, WINT SIMUL C PROC, P3568, DOI 10.1109/WSC.2011.6148051
Bell J. T., 1996, Computer Applications in Engineering Education, V4, P285, DOI 10.1002/(SICI)1099-0542(1996)4:4<285::AID-CAE4>3.0.CO;2-9
Bell J. T., 1999, P 1999 AM SOC ENG ED, P5665
Bell J. T., 1995, COMPUTING SYSTEMS TE, V18, P1
Berqia Amine, 2002, INT C ENG ED AUG 18, P1
Cai S, 2014, COMPUT HUM BEHAV, V37, P31, DOI 10.1016/j.chb.2014.04.018
Chen WQ, 2016, EDUC CHEM ENG, V17, P44, DOI 10.1016/j.ece.2016.07.005
Feisel LD, 2005, J ENG EDUC, V94, P121, DOI 10.1002/j.2168-9830.2005.tb00833.x
Fernandez-Sanchez P., 2011, USING VIRTUAL LAB SE, P569
Fogler, 2001, ELEMENTS CHEM REACTI
Fogler H.S., 1996, COMPUT APPL ENG EDUC, V1, P11, DOI [10.1002/cae.6180010103, DOI 10.1002/CAE.6180010103]
GOSSAGE JL, 2001, TECHNICAL OUTREACH C, V6, P1
Green D.W., 1973, PERRYS CHEM ENG HDB
KIRSCHNER PA, 1988, HIGH EDUC, V17, P81, DOI 10.1007/BF00130901
Kolb AY, 2005, ACAD MANAG LEARN EDU, V4, P193, DOI 10.5465/AMLE.2005.17268566
Levenspeil Octave, 2007, CHEM REACTION ENG
Maitra S, 2015, 2015 IEEE 3RD INTERNATIONAL CONFERENCE ON MOOCS, INNOVATION AND TECHNOLOGY IN EDUCATION (MITE), P204, DOI 10.1109/MITE.2015.7375315
Moure MJ, 2004, INT J ENG EDUC, V20, P188
Munipala Abhishake, 2012, 15 WORLD C EARTHQ EN, P1
Onyesolu Moses O., 2009, P WCECS 2009 OCT 20, VI
Radhamani R., 2014, INT C E LEARN E ED O, P138
Raineri D, 2001, BIOCHEM MOL BIOL EDU, V29, P160, DOI 10.1111/j.1539-3429.2001.tb00107.x
Rajendran L., 2010, INT J COMPUTER SCI E, V2, P2173
Ruiqing J, 2006, ASEE ANN C EXP EXC E, P1
Spicer JI, 2001, J COMPUT ASSIST LEAR, V17, P345, DOI 10.1046/j.0266-4909.2001.00191.x
Webber KL, 2012, RES HIGH EDUC, V53, P201, DOI 10.1007/s11162-011-9245-0
NR 28
TC 2
Z9 2
U1 0
U2 3
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-5386-3189-8
PY 2017
BP 108
EP 114
DI 10.1109/MITE.2017.00025
PG 7
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BM0AA
UT WOS:000458537800021
DA 2024-09-05
ER
PT J
AU Gil, EL
AF Gil, Esther L.
TI Maximizing and assessing a one-shot information literacy session: A case
study
SO JOURNAL OF BUSINESS & FINANCE LIBRARIANSHIP
LA English
DT Article
DE Active learning; assessment; bibliographic instruction; business
education; information literacy
ID BUSINESS STUDENTS; LIBRARY; INSTRUCTION; COLLABORATION; FACULTY
AB This case study describes collaboration between an instructor and business librarian to maximize a one-shot information literacy session for a required marketing class for business majors. It includes an active-learning exercise where groups use three key business databases to conduct a company and industry analysis and an environmental scan for a company. The instructor then guides them in developing a strengths, weaknesses, opportunities, threats (SWOT) analysis. This session prepares students for the SWOT analysis they will have to submit for their actual projects. This article includes assessment of groups' in-class exercises as well as citation analysis of the assignments they turned in for their actual projects.
C1 [Gil, Esther L.] Univ Denver, 2150 E Evans Ave, Denver, CO 80208 USA.
C3 University of Denver
RP Gil, EL (corresponding author), Univ Denver, Univ Lib, 2150 E Evans Ave, Denver, CO 80208 USA.
EM egil@du.edu
CR American Library Association, 2000, INF LIT COMP STAND H
American Library Association, 1989, FIN REP AM LIB ASS P
Atwong CT, 2008, J BUS FINANC LIBR, V13, P433, DOI 10.1080/08963560802202227
Bean T.M., 2010, PUBLIC SERVICES Q, V6, P237
Besharat A., 2016, MAREKTING LIB UNPUB
Bowers CVM, 2009, J BUS FINANC LIBR, V14, P110, DOI 10.1080/08963560802362179
Byerly G, 2006, REF SERV REV, V34, P589, DOI 10.1108/00907320610716477
Cooney M, 2005, J BUS FINANC LIBR, V11, P3, DOI 10.1300/J109v11n01_02
Coulter Priscilla, 2007, Public Services Quarterly, V3, P147, DOI 10.1300/J295v03n01_08
Deemer Kevin, 2007, Community & Junior College Libraries, V14, P21, DOI 10.1300/J107v14n01_04
Detlor B, 2012, EDUC INFORM, V29, P147, DOI 10.3233/EFI-2012-0924
Jacobs HLM, 2009, REF USER SERV Q, V49, P72, DOI 10.5860/rusq.49n1.72
Lieberthal SP, 2009, J BUS FINANC LIBR, V14, P230, DOI 10.1080/08963560802362849
Markgraf J., 2015, MAXIMIZING ONE SHOT
Mery Y, 2012, COLL RES LIBR, V73, P366, DOI 10.5860/crl-271
Mezick E.M., 2016, Journal of Business Finance Librarianship, V21, P95, DOI [DOI 10.1080/08963568.2016, 10.1080/08963568.2016.1169970, DOI 10.1080/08963568.2016.1169970]
Rutledge D.P., 2003, J BUSINESS FINANCE L, V9, P3, DOI DOI 10.1300/J109V09N01_02
Senior H, 2009, J BUS FINANC LIBR, V14, P202, DOI 10.1080/08963560802370867
Strittmatter C, 2012, J BUS FINANC LIBR, V17, P95, DOI 10.1080/08963568.2012.630645
Taylor LH, 2008, COLL UNDERGRAD LIBR, V15, P141, DOI 10.1080/10691310802177127
Whitesell M, 2011, J BUS FINANC LIBR, V16, P125, DOI 10.1080/08963568.2011.554773
NR 21
TC 9
Z9 10
U1 0
U2 4
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0896-3568
EI 1547-0644
J9 J BUS FINANC LIBR
JI J. Bus. Financ. Libr.
PY 2017
VL 22
IS 2
BP 97
EP 110
DI 10.1080/08963568.2017.1285748
PG 14
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA FV5KO
UT WOS:000424620400002
DA 2024-09-05
ER
PT C
AU de Cerqueira, JAS
de Almeida, PS
Canedo, ED
Alves, GD
Giozza, WF
de Mendonça, FLL
de Sousa, RT
AF Siqueira de Cerqueira, Jose Antonio
de Almeida, Paulo Santos
Canedo, Edna Dias
Alves, Gabriel de Oliveira
Giozza, William Ferreira
Lopes de Mendonca, Fabio Lucio
de Sousa Jr, Rafael T.
BE Rocha, A
Perez, BE
Penalvo, FG
Miras, MD
Goncalves, R
TI Exploratory Overview on Breaking CAPTCHAs Using the Theory of the
Consolidated Meta-Analytic Approach
SO 2020 15TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES
(CISTI'2020)
SE Iberian Conference on Information Systems and Technologies
LA English
DT Proceedings Paper
CT 15th Iberian Conference on Information Systems and Technologies (CISTI)
CY JUN 24-27, 2020
CL ELECTR NETWORK
DE CAPTCHA; CAPTCHA Breaking; Bibliographic Research; State-of-the-art;
Artificial Intelligence
ID COCITATION
AB This study sought to provide an integrating model of the main contributions of the literature on CAPTCHAs with an impact in this field. With the expansion of internet access, there is an increasing need for a mechanism to protect websites from attacks, although there are situations where it is interesting to be able to automate some activities. This work consisted of identifying the most influential CAPTCHA-related academic works and trends in the field, which could serve as a metric on what approaches to take when developing new studies. Data such as main authors, current lines of research and more prolific research centers are arrived at using the Theory of the Consolidated Meta-analytic Approach. Inputting the keyword "captcha" in the Web of Science database, 539 records were found, from 2001 to 2020. The main classes retrieved are: (a) Captcha in Security Context (31.9%), (b) Usability in Captcha Design (28%), (c) Captcha Recognition by AI (21.8%), (d) Captcha Approaches and Novel Implementation Proposals (18.2%).
C1 [Siqueira de Cerqueira, Jose Antonio; Canedo, Edna Dias] Univ Brasilia UnB, Dept Comp Sci, POB 4466, BR-70910900 Brasilia, DF, Brazil.
[de Almeida, Paulo Santos; Alves, Gabriel de Oliveira; Giozza, William Ferreira; Lopes de Mendonca, Fabio Lucio; de Sousa Jr, Rafael T.] Univ Brasilia UnB, Technol Coll, Elect Engn Dept ENE, Decis Technol Lab LATITUDE, Brasilia, DF, Brazil.
C3 Universidade de Brasilia; Universidade de Brasilia
RP de Cerqueira, JAS (corresponding author), Univ Brasilia UnB, Dept Comp Sci, POB 4466, BR-70910900 Brasilia, DF, Brazil.
EM jose.cerqueira@redes.unb.br; paulo.almeida@redes.unb.br;
ednacanedo@unb.br; gabriel.alves@redes.unb.br; giozza@unb.br;
fabio.mendonca@redes.unb.br; desousa@unb.br
RI Canedo, Edna Dias/D-5674-2015; de Sousa Júnior, Rafael/V-3293-2019;
Giozza, William/AAH-4838-2019; Canedo, Edna Dias/AGR-0318-2022
OI Canedo, Edna Dias/0000-0002-2159-339X; de Sousa Júnior,
Rafael/0000-0003-1101-3029; Giozza, William/0000-0002-3003-3458; Canedo,
Edna Dias/0000-0002-2159-339X; Lopes de Mendonca, Fabio
Lucio/0000-0001-7100-7304; Siqueira de Cerqueira, Jose
Antonio/0000-0002-8143-1042
FU CAPES [23038.007604/2014-69 FORTE, 88887.144009/201700 PROBRAL]; CNPq
[312180/2019-5 PQ-2, BRICS2017-591 LargEWiN, 465741/2014-2 INCT]; FAP-DF
[0193.001366/2016 UIoT, 0193.001365/2016 SSDDC]; Ministry of the Economy
[DIPLA 005/2016, ENAP 083/2016]; Institutional Security Office of the
Presidency of the Republic [ABIN 002/2017]; Administrative Council for
Economic Defense [CADE 08700.000047/2019-14]; General Attorney of the
Union [AGU 697.935/2019]
FX The authors would like to thank the support of the Brazilian research,
development and innovation agencies CAPES (grants 23038.007604/2014-69
FORTE and 88887.144009/201700 PROBRAL), CNPq (grants 312180/2019-5 PQ-2,
BRICS2017-591 LargEWiN, and 465741/2014-2 INCT in Cybersecurity) and
FAP-DF (grants 0193.001366/2016 UIoT and 0193.001365/2016 SSDDC), as
well as the cooperation projects with the Ministry of the Economy
(grants DIPLA 005/2016 and ENAP 083/2016), the Institutional Security
Office of the Presidency of the Republic (grant ABIN 002/2017), the
Administrative Council for Economic Defense (grant CADE
08700.000047/2019-14) and the General Attorney of the Union (grant AGU
697.935/2019).
CR Bacon S, 2020, J MED INTERNET RES, V22, DOI 10.2196/15603
Baird H. S., 2003, International Journal on Document Analysis and Recognition, V5, P158, DOI 10.1007/s10032-002-0089-1
Blum M., 2000, COMPLETELY AUTOMATIC
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
C. M. University, 2000, CAPTCHA TELL HUM COM
Csuka K., 2018, BREAKING CAPTCHAS DA
Garg G, 2016, PROCEEDINGS OF 2016 FUTURE TECHNOLOGIES CONFERENCE (FTC), P853, DOI 10.1109/FTC.2016.7821703
George D, 2017, SCIENCE, V358, DOI 10.1126/science.aag2612
Hasan A, 2016, J PIPELINE SYST ENG, V7, DOI 10.1061/(ASCE)PS.1949-1204.0000235
Kaur K., 2014, INT J COMPUTER SCI I, V5, P6341
Kulkarni Sushama, 2018, Proceedings of the Second International Conference on Computational Intelligence and Informatics. ICCII-2017. Advances in Intelligent Systems and Computing (AISC 712), P359, DOI 10.1007/978-981-10-8228-3_33
Mariano A. M., 2018, INT JOINT C IND ENG, P243
MARIANO A. M, 2017, 26 C INT AC EUR DIR, V26
Moradi M, 2015, SECUR COMMUN NETW, V8, P2135, DOI 10.1002/sec.1157
Sharma S., 2015, INT J ENG TRENDS TEC, V22, P240
Singh V.P., 2014, INT J COMPUTER SCI I, V5, P2242
Sivakorn S, 2016, 1ST IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY, P388, DOI 10.1109/EuroSP.2016.37
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Tharad A, 2018, PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES, ELECTRONICS AND MECHANICAL SYSTEMS (CTEMS), P487, DOI 10.1109/CTEMS.2018.8769168
Ye GX, 2018, PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), P332, DOI 10.1145/3243734.3243754
Zi Y., 2019, IEEE T INF FOREN SEC, V15, P753
NR 21
TC 0
Z9 0
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2166-0727
BN 978-989-54659-0-3
J9 IBER CONF INF SYST
PY 2020
PG 6
WC Computer Science, Information Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BQ6NN
UT WOS:000612720600182
DA 2024-09-05
ER
PT J
AU Lyutov, A
Uygun, Y
Hütt, MT
AF Lyutov, Alexey
Uygun, Yilmaz
Huett, Marc-Thorsten
TI Machine learning misclassification of academic publications reveals
non-trivial interdependencies of scientific disciplines
SO SCIENTOMETRICS
LA English
DT Article
DE Machine learning; Scientometrics; Maps of science; Classification
algorithms; Interdisciplinary research
ID SCIENCE; PAPER; MAP
AB Exploring the production of knowledge with quantitative methods is the foundation of scientometrics. In an application of machine learning to scientometrics, we here consider the classification problem of the mapping of academic publications to the subcategories of a multidisciplinary journal-and hence to scientific disciplines-based on the information contained in the abstract. In contrast to standard classification tasks, we are not interested in maximizing the accuracy, but rather we ask, whether the failures of an automatic classification are systematic and contain information about the system under investigation. These failures can be represented as a 'misclassification network' inter-relating scientific disciplines. Here we show that this misclassification network (1) gives a markedly different pattern of interdependencies among scientific disciplines than common 'maps of science', (2) reveals a statistical association between misclassification and citation frequencies, and (3) allows disciplines to be classified as 'method lenders' and 'content explorers', based on their in-degree out-degree asymmetry. On a more general level, in a wide range of machine learning applications misclassification networks have the potential of extracting systemic information from the failed classifications, thus allowing to visualize and quantitatively assess those aspects of a complex system, which are not machine learnable.
C1 [Lyutov, Alexey; Uygun, Yilmaz] Jacobs Univ, Dept Math & Logist, Campus Ring 1, D-28759 Bremen, Germany.
[Huett, Marc-Thorsten] Jacobs Univ, Dept Life Sci & Chem, Campus Ring 1, D-28759 Bremen, Germany.
C3 Jacobs University; Jacobs University
RP Lyutov, A (corresponding author), Jacobs Univ, Dept Math & Logist, Campus Ring 1, D-28759 Bremen, Germany.
EM a.lyutov@jacobs-university.de
OI /0000-0003-1271-9672; Lyutov, Alexey/0000-0002-0733-2783
FU Projekt DEAL
FX Open Access funding enabled and organized by Projekt DEAL.
CR [Anonymous], 2011, J. Mach. Learn. Res.
[Anonymous], SCOPUS API DOCUMENTA
[Anonymous], About Nature
Basurto-Flores R, 2018, SCIENTOMETRICS, V117, P123, DOI 10.1007/s11192-018-2860-1
Bilke S, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.036106
Bird Steven, 2009, Natural language processing with python
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Börner K, 2010, SCI TRANSL MED, V2, DOI 10.1126/scitranslmed.3001399
Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6
Chawla NV., 2004, ACM SIGKDD EXPLORATI, V6, P1, DOI [10.1145/1007730.1007733, DOI 10.1145/1007730.1007733]
Derntl M, 2014, INT J TECHNOL ENHANC, V6, P105, DOI 10.1504/IJTEL.2014.066856
Enders M, 2018, ECOSPHERE, V9, DOI 10.1002/ecs2.2146
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Guimerà R, 2005, SCIENCE, V308, P697, DOI 10.1126/science.1106340
He HB, 2009, IEEE T KNOWL DATA EN, V21, P1263, DOI 10.1109/TKDE.2008.239
Ipsen M, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.046109
Ke Q, 2015, P NATL ACAD SCI USA, V112, P7426, DOI 10.1073/pnas.1424329112
Klavans R, 2007, PROCEEDINGS OF ISSI 2007: 11TH INTERNATIONAL CONFERENCE OF THE INTERNATIONAL SOCIETY FOR SCIENTOMETRICS AND INFORMETRICS, VOLS I AND II, P437
Klosik DF, 2014, PHYS REV E, V90, DOI 10.1103/PhysRevE.90.032811
Krumov L, 2011, EUR PHYS J B, V84, P535, DOI 10.1140/epjb/e2011-10746-5
Leydesdorff L., 2001, The Challenge of Scientometrics: The Development, Measurement, and Self-Organization of Scientific Communications
Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P348, DOI 10.1002/asi.20967
Lyutov A, 2019, COMPUT IND, V109, P215, DOI 10.1016/j.compind.2019.04.010
Ma YF, 2018, P NATL ACAD SCI USA, V115, P12608, DOI 10.1073/pnas.1800485115
Maslov S, 2002, SCIENCE, V296, P910, DOI 10.1126/science.1065103
Milojevic S, 2018, P NATL ACAD SCI USA, V115, P12616, DOI 10.1073/pnas.1800478115
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292, DOI 10.1002/asi.4630270505
Redner S, 1998, EUR PHYS J B, V4, P131, DOI 10.1007/s100510050359
Shiffrin RM, 2018, P NATL ACAD SCI USA, V115, P2632, DOI 10.1073/pnas.1711786114
Small H, 2010, SCIENTOMETRICS, V83, P835, DOI 10.1007/s11192-009-0121-z
Stringer MJ, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001683
Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596
Trujillo CM, 2018, SCI ADV, V4, DOI 10.1126/sciadv.1701130
Tsallis C, 2000, EUR PHYS J B, V13, P777, DOI 10.1007/s100510050097
Velden T, 2017, SCIENTOMETRICS, V111, P1169, DOI 10.1007/s11192-017-2306-1
Way SF, 2019, P NATL ACAD SCI USA, V116, P10729, DOI 10.1073/pnas.1817431116
Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9
Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099
Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8
Yegros-Yegros A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135095
Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814
Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1
NR 44
TC 6
Z9 7
U1 2
U2 8
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD FEB
PY 2021
VL 126
IS 2
BP 1173
EP 1186
DI 10.1007/s11192-020-03789-8
PG 14
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 3U7TI
UT WOS:000841168800001
OA hybrid
DA 2024-09-05
ER
PT C
AU Mosans, G
Kampars, J
AF Mosans, Guntis
Kampars, Janis
GP IEEE
TI Big Data-based Solutions for Sustainable Digital Services: Evaluation of
Research Methods
SO 2022 63RD INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY
AND MANAGEMENT SCIENCE OF RIGA TECHNICAL UNIVERSITY (ITMS)
LA English
DT Proceedings Paper
CT 63rd International Scientific Conference on
Information-Technology-and-Management-Science of
Riga-Technical-University (ITMS)
CY OCT 06-07, 2022
CL Riga, LATVIA
DE digital services; graphs; machine learning
AB Modern information technology infrastructure is highly complex, and its monitoring requires the integration of different monitoring tools and management systems. This is especially important for businesses that must be able to provide their digital services in crisis situations, such as the COVID-19 pandemic. This paper identifies research methods suitable to evaluate algorithms for integrated processing of graphs and vertex metrics in data streams. They are identified by means of a literature review. The research finding will serve as an input for further research activities on methods and technological solutions that enable the creation of resilient digital services that are able to adapt to changing contexts and crises, combining big data analysis, knowledge management, business data, and knowledge ecosystems.
C1 [Mosans, Guntis; Kampars, Janis] Riga Tech Univ, Riga, Latvia.
C3 Riga Technical University
RP Mosans, G (corresponding author), Riga Tech Univ, Riga, Latvia.
EM guntis.mosans@rtu.lv; janis.kampars@rtu.lv
RI Mosans, Guntis/LDG-2421-2024
OI Mosans, Guntis/0000-0001-9373-4000
FU Riga Technical University's Doctoral Grant program
FX This research/publication was supported by Riga Technical University's
Doctoral Grant program.
CR AlNuaimi N, 2022, APPL COMPUT INFORM, V18, P113, DOI 10.1016/j.aci.2019.01.001
BASILI VR, 1986, IEEE T SOFTWARE ENG, V12, P733, DOI 10.1109/TSE.1986.6312975
Boachie E, 2019, INT J CONTIN ENG EDU, V29, P5, DOI 10.1504/IJCEELL.2019.099217
Creswell J.W., 2014, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, P3
Eftekhari A, 2020, IEEE T PATTERN ANAL, V42, P2901, DOI 10.1109/TPAMI.2019.2919597
Guandalini I, 2022, J BUS RES, V148, P456, DOI 10.1016/j.jbusres.2022.05.003
Jafari N, 2021, J PARALLEL DISTR COM, V147, P140, DOI 10.1016/j.jpdc.2020.09.004
Kauffman S, 2021, J SYST ARCHITECT, V113, DOI 10.1016/j.sysarc.2020.101876
Kerber M, 2019, DISCRETE COMPUT GEOM, V61, P852, DOI 10.1007/s00454-018-0030-0
Kjus Y, 2016, POP COMMUN, V14, P127, DOI 10.1080/15405702.2016.1193183
Li JK, 2020, J CLEAN PROD, V273, DOI 10.1016/j.jclepro.2020.122953
Magelinski T, 2019, APPL NETW SCI, V4, DOI 10.1007/s41109-019-0136-1
Malthus C, 2017, HIGH EDUC RES DEV, V36, P872, DOI 10.1080/07294360.2017.1281284
Mohamadi H, 2017, BIOINFORMATICS, V33, P1324, DOI 10.1093/bioinformatics/btw832
Muallem A., 2017, J. Inf. Secur, V8, P720, DOI DOI 10.4236/JIS.2017.84022
Noel Steven, 2018, From Database to Cyber Security: Essays Dedicated to Sushil Jajodia on the Occasion of His 70th Birthday. Lecture Notes in Computer Science (LNCS 11170), P300, DOI 10.1007/978-3-030-04834-1_16
Sakr S, 2021, COMMUN ACM, V64, P62, DOI 10.1145/3434642
Sarkar B., 2021, ANN DATA SCI, V8, P667, DOI [10.1007/s40745-020-00301-0, DOI 10.1007/S40745-020-00301-0]
Shanmugam K, 2013, IEEE T INFORM THEORY, V59, P8402, DOI 10.1109/TIT.2013.2281606
Siles I, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720923377
Street W. N., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P377, DOI 10.1145/502512.502568
Syamsuddin I., 2017, INT J ELECT COMPUTER, V7, P3529, DOI [10.11591/ijece.v7i6.pp3529-3535, DOI 10.11591/IJECE.V7I6.PP3529-3535]
Verdecchia R, 2022, SUSTAIN COMPUT-INFOR, V35, DOI 10.1016/j.suscom.2022.100767
Williams K, 2008, EUR J INFORM SYST, V17, P505, DOI 10.1057/ejis.2008.38
Wu BF, 2020, GEOGR SUSTAIN, V1, P25, DOI 10.1016/j.geosus.2020.03.006
Yang ZY, 2020, J PROCESS CONTR, V85, P52, DOI 10.1016/j.jprocont.2019.10.010
Yu Kangqing, 2020, Sensors (Basel), V20, DOI 10.3390/s20051261
Zhang XY, 2005, IEEE INFOCOM SER, P2102
NR 28
TC 0
Z9 0
U1 0
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 979-8-3503-9985-1
PY 2022
DI 10.1109/ITMS56974.2022.9937095
PG 6
WC Computer Science, Information Systems; Operations Research & Management
Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Operations Research & Management Science
GA BU4DE
UT WOS:000895918800004
DA 2024-09-05
ER
PT C
AU Dubson, M
Johnsen, E
Lieberman, D
Olsen, J
Finkelstein, N
AF Dubson, Michael
Johnsen, Ed
Lieberman, David
Olsen, Jack
Finkelstein, Noah
BE Engelhardt, PV
Churukian, AD
Jones, DL
TI Apples vs. Oranges: Comparison of Student Performance in a MOOC vs. a
Brick-and-Mortar Course
SO 2014 PHYSICS EDUCATION RESEARCH CONFERENCE
SE Physics Education Research Conference
LA English
DT Proceedings Paper
CT Physics Education Research (PER) Conference on Outpacing New
Technologies with Novel Pedagogies - The Role of PER in the Transforming
Landscape of Higher Education
CY JUL 30-31, 2014
CL Minneapolis, MN
DE MOOC; online learning; FMCE; PER; education research; exam performance
AB In the fall of 2013, we taught the calculus-based introductory physics course at the University of Colorado at Boulder and, at the same time we taught a MOOC version of the same course, through Coursera. Students in both courses received identical lectures, homework assignments, and timed exams. We present data on participation rates and exam performance for the two groups. We find that the MOOC is like a drug targeted at a very specific population. When it works, it works well, but it works for very few. This MOOC worked well for older, well-educated students, who already have a good understanding of Newtonian mechanics.
C1 [Dubson, Michael; Johnsen, Ed; Olsen, Jack; Finkelstein, Noah] Univ Colorado, Dept Phys, UCB 390, Boulder, CO 80309 USA.
[Lieberman, David] CUNY Queensborough Community Coll, Dept Phys, Bayside, NY 11364 USA.
C3 University of Colorado System; University of Colorado Boulder; City
University of New York (CUNY) System
RP Dubson, M (corresponding author), Univ Colorado, Dept Phys, UCB 390, Boulder, CO 80309 USA.
CR [Anonymous], TUTORIALS INTRO PHYS
[Anonymous], 2013, RES PRACTICE ASSESSM, V8, P1
Fredericks C., 2013, 6 INT C MITS LEARN I
Hake RR, 1998, AM J PHYS, V66, P64, DOI 10.1119/1.18809
KASHY E, 1993, AM J PHYS, V61, P1124, DOI 10.1119/1.17307
Lin S., PERC P 2013 PORTL OR
Otero V, 2010, AM J PHYS, V78, P1218, DOI 10.1119/1.3471291
Thornton RK, 1998, AM J PHYS, V66, P338, DOI 10.1119/1.18863
NR 8
TC 0
Z9 1
U1 0
U2 4
PU AMER ASSOC PHYSICS TEACHERS
PI COLLEGE PARK
PA ONE PHYSICS ELLIPSE, COLLEGE PARK, MD 20740-3845 USA
SN 2377-2379
BN 978-1-931024-23-5
J9 PHYS EDUC RES CONF
PY 2014
BP 9
EP 12
DI 10.1119/perc.2014.plenary.001
PG 4
WC Education & Educational Research; Education, Scientific Disciplines;
Physics, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research; Physics
GA BE7ED
UT WOS:000375145900001
DA 2024-09-05
ER
PT J
AU Solstad, SM
Kleiven, GS
Castonguay, LG
Moltu, C
AF Solstad, Stig Magne
Kleiven, Goril Solberg
Castonguay, Louis Georges
Moltu, Christian
TI Clinical dilemmas of routine outcome monitoring and clinical feedback: A
qualitative study of patient experiences
SO PSYCHOTHERAPY RESEARCH
LA English
DT Article
DE psychotherapy; outcome research; qualitative research; ROM; routine
outcome monitoring; clinical feedback; IPR; interpersonal process recall
ID MENTAL-HEALTH; PSYCHOTHERAPY; PERCEPTIONS; VIEWS
AB Purpose:Routine outcome monitoring (ROM) and clinical feedback systems (CFS) are becoming prevalent in mental health services, but there are several challenges to successful implementation. ROM/CFS seem to be helpful for some patients, but not for others. To investigate this, we explored patients' experiences with ROM/CFS as an interpersonal and psychotherapeutic process, in naturalistic settings.Method:We used video-assisted interpersonal process recall interviews to investigate the experiences of 12 patients using ROM/CFS in a Norwegian mental health outpatient clinic. Data were analyzed through systematic text condensation.Results:Our analysis resulted in three pairs of experiences with ROM/CFS: (1) Explicit vs. implicit use of information, (2) Directing focus towards or away from therapeutic topics, and (3) Giving and receiving feedback. These experiences could be helpful or hindering, depending on participants' needs and preferences. All participants needed to know that the CFS was used in a meaningful way. If not, it could be detrimental to the therapeutic process.Conclusion:In order to be helpful for patients, ROM/CFS should be used in a way that is flexible, meaningful to patients, and sensitive to individual needs and preferences. Future research should further explore this how-to aspect of ROM/CFS with different CFS and populations.
C1 [Solstad, Stig Magne; Kleiven, Goril Solberg; Moltu, Christian] Dist Gen Hosp Forde, Sunnfjord, Norway.
[Castonguay, Louis Georges] Penn State Univ, Dept Psychol, University Pk, PA 16802 USA.
[Moltu, Christian] Western Norway Univ Appl Sci, Dept Hlth & Caring Sci, Sunnfjord, Norway.
C3 Pennsylvania Commonwealth System of Higher Education (PCSHE);
Pennsylvania State University; Pennsylvania State University -
University Park; Western Norway University of Applied Sciences
RP Solstad, SM (corresponding author), Dist Gen Hosp Forde, POB 1000, N-6807 Forde, Norway.
EM stig.magne.solstad@helse-forde.no
FU Helse Vest [913032]
FX This work was supported by Helse Vest [grant number 913032].
CR Barkham M., 2010, DEVELOPING DELIVERIN, P21, DOI [DOI 10.1002/9780470687994, DOI 10.1002/9780470687994.CH2]
Black J, 2009, AUST HEALTH REV, V33, P93, DOI 10.1071/AH090093
Börjesson S, 2020, PSYCHOTHER RES, V30, P337, DOI 10.1080/10503307.2019.1630780
Boswell JF, 2015, PSYCHOTHER RES, V25, P6, DOI 10.1080/10503307.2013.817696
Callaly T, 2001, Aust Health Rev, V24, P43
Castonguay L.G., 2013, BERGIN GARFIELDS HDB, V6, P85
de Jong K, 2012, PSYCHOTHER RES, V22, P464, DOI 10.1080/10503307.2012.673023
Duong MT, 2016, INT J MENT HEALTH PR, V18, P49, DOI 10.1080/14623730.2015.1079429
Elliott R., 1986, The psychotherapeutic process: A research handbook, P503
Frankel Z, 2009, J CONTEMP PSYCHOTHER, V39, P171, DOI 10.1007/s10879-008-9087-z
Glaser B., 1967, DISCOV GROUNDED THEO, DOI [10.4324/9780203793206, DOI 10.4324/9780203793206]
Gondek D, 2016, ADM POLICY MENT HLTH, V43, P325, DOI 10.1007/s10488-015-0710-5
Greenhalgh J, 2018, J PATIENT-REP OUTCOM, V2, DOI 10.1186/s41687-018-0061-6
Guthrie D, 2008, INT J MENT HEALTH NU, V17, P92, DOI 10.1111/j.1447-0349.2008.00516.x
Happell Brenda, 2008, Issues Ment Health Nurs, V29, P1098, DOI 10.1080/01612840802319852
Hetrick SE, 2015, EARLY INTERV PSYCHIA, V9, P66, DOI 10.1111/eip.12127
Hill CE, 2005, J COUNS PSYCHOL, V52, P196, DOI 10.1037/0022-0167.52.2.196
HORVATH AO, 1991, J COUNS PSYCHOL, V38, P139, DOI 10.1037/0022-0167.38.2.139
Hovland RT, 2019, INT J MENT HEALTH SY, V13, DOI 10.1186/s13033-019-0324-5
HOWARD KI, 1993, J CONSULT CLIN PSYCH, V61, P678, DOI 10.1037/0022-006X.61.4.678
Jones SA, 2016, PSYCHOL PSYCHOTHER-T, V89, P97, DOI 10.1111/papt.12061
Kagan N. I., 1991, INTERPERSONAL PROCES, P221
Kendrick T, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011119.pub2
Lambert MJ, 2018, CLIN PSYCHOL-SCI PR, V25, DOI 10.1111/cpsp.12268
Lambert MJ, 2018, PSYCHOTHERAPY, V55, P520, DOI 10.1037/pst0000167
Lewis CC, 2019, JAMA PSYCHIAT, V76, P324, DOI 10.1001/jamapsychiatry.2018.3329
Lutz W, 2015, PSYCHOTHER RES, V25, P647, DOI 10.1080/10503307.2015.1053553
Malterud K, 2016, QUAL HEALTH RES, V26, P1753, DOI 10.1177/1049732315617444
Malterud K, 2012, SCAND J PUBLIC HEALT, V40, P795, DOI 10.1177/1403494812465030
McAleavey A. A., 2020, INITIAL QUANTI UNPUB
Miller SD, 2015, PSYCHOTHERAPY, V52, P449, DOI 10.1037/pst0000031
Moltu C, 2018, PSYCHOTHER RES, V28, P250, DOI 10.1080/10503307.2016.1189619
Muir HJ, 2019, PSYCHOTHERAPY, V56, P459, DOI 10.1037/pst0000246
Omer S, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148415
Overington L, 2012, CAN PSYCHOL, V53, P82, DOI 10.1037/a0028017
Rennie D.L., 2001, Counselling and Psychotherapy Research: Linking research with practice, V1, P82, DOI DOI 10.1080/14733140112331385118
Roe D, 2015, INT REV PSYCHIATR, V27, P257, DOI 10.3109/09540261.2015.1070552
Sapyta J, 2005, J CLIN PSYCHOL, V61, P145, DOI 10.1002/jclp.20107
Solstad SM, 2021, QUAL LIFE RES, V30, P3117, DOI 10.1007/s11136-020-02550-1
Solstad SM, 2019, PSYCHOTHER RES, V29, P157, DOI 10.1080/10503307.2017.1326645
Sundet R, 2014, J FAM THER, V36, P195, DOI 10.1111/j.1467-6427.2012.00613.x
Unsworth G, 2012, COUNS PSYCHOTHER RES, V12, P71, DOI 10.1080/14733145.2011.565125
Wampold BE, 2015, PSYCHOTHERAPY, V52, P458, DOI 10.1037/pst0000037
Wolpert M, 2016, ADM POLICY MENT HLTH, V43, P309, DOI 10.1007/s10488-014-0586-9
Wolpert M, 2014, ADM POLICY MENT HLTH, V41, P141, DOI 10.1007/s10488-013-0509-1
NR 45
TC 18
Z9 20
U1 0
U2 5
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1050-3307
EI 1468-4381
J9 PSYCHOTHER RES
JI Psychother. Res.
PD FEB 17
PY 2021
VL 31
IS 2
SI SI
BP 200
EP 210
DI 10.1080/10503307.2020.1788741
EA JUL 2020
PG 11
WC Psychology, Clinical
WE Social Science Citation Index (SSCI)
SC Psychology
GA QA4JE
UT WOS:000547012500001
PM 32635834
DA 2024-09-05
ER
PT J
AU Cornford, R
Millard, J
González-Suárez, M
Freeman, R
Johnson, TF
AF Cornford, Richard
Millard, Joseph
Gonzalez-Suarez, Manuela
Freeman, Robin
Johnson, Thomas Frederick
TI Automated synthesis of biodiversity knowledge requires better tools and
standardised research output
SO ECOGRAPHY
LA English
DT Article
DE data extraction; ecology; literature synthesis; machine learning;
population trends; text mining
AB As the impact of anthropogenic activity on the environment has grown, research into biodiversity change and associated threats has also accelerated. Synthesising this vast literature is important for understanding the drivers of biodiversity change and identifying those actions that will mitigate further ecological losses. However, keeping pace with an ever-increasing publication rate presents a substantial challenge to efficient syntheses, an issue which could be partly addressed by increasing levels of automation in the synthesis pipeline. Here, we evaluate the potential for automated tools to extract ecologically important information from the abstracts of articles compiled in the Living Planet Database. Specifically, we focused on extracting key information on taxonomy (studied species names), geographic location and estimated population trend, assessing the accuracy of automated versus manual information extraction, the potential for automated tools to introduce biases into syntheses, and evaluating if synthesising abstracts was enough to capture the key information from the full article. Taxonomic and geographic extraction tools performed reasonably well, although information on studied species was sometimes limited in the abstract (compared to the main text) preventing fast extraction. In contrast, extraction of trends was less successful, highlighting the challenges involved in automating information extraction from abstracts, such as deficiencies in the algorithms, linguistic complexity associated with ecological findings, and limited information when compared to the main text. In light of these results, we cautiously advocate for a wider use of automated taxonomic and geographic parsing tools for ecological synthesis. Additionally, to further the use of automated synthesis within ecology, we recommend a dual approach: development of improved computational tools to reduce biases; and enhanced protocols for abstracts (and associated metadata) to ensure key information is included in a format that facilitates machine-readability.
C1 [Cornford, Richard] Imperial Coll London, Dept Life Sci, London, England.
[Cornford, Richard; Freeman, Robin] Zool Soc London, Inst Zool, London, England.
[Cornford, Richard] Nat Hist Museum, Dept Life Sci, London, England.
[Millard, Joseph] UCL, Dept Genet Evolut & Environm, London, England.
[Millard, Joseph] Univ Oxford, Leverhulme Ctr Demog Sci, Oxford, England.
[Gonzalez-Suarez, Manuela] Univ Reading, Sch Biol Sci, Reading, Berks, England.
[Johnson, Thomas Frederick] Univ Sheffield, Dept Anim & Plant Sci, Sheffield, S Yorkshire, England.
C3 Imperial College London; Zoological Society of London; Natural History
Museum London; University of London; University College London;
University of Oxford; University of Reading; University of Sheffield
RP Cornford, R (corresponding author), Imperial Coll London, Dept Life Sci, London, England.; Cornford, R (corresponding author), Zool Soc London, Inst Zool, London, England.; Cornford, R (corresponding author), Nat Hist Museum, Dept Life Sci, London, England.
EM richard.cornford16@imperial.ac.uk
RI Freeman, Robin/JOZ-4393-2023; González-Suárez, Manuela/B-9740-2008
OI Freeman, Robin/0000-0002-0560-8942; González-Suárez,
Manuela/0000-0001-5069-8900; Cornford, Richard/0000-0002-9963-3603;
Millard, Joseph/0000-0002-3025-3565; Johnson, Thomas/0000-0002-6363-1825
FU NERC [NE/R012229/1]
FX RC was supported by the QMEE CDT, funded by NERC grant no. NE/R012229/1.
CR Akella LM, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-211
Amano T, 2021, PLOS BIOL, V19, DOI 10.1371/journal.pbio.3001296
Ananiadou S, 2009, SOC SCI COMPUT REV, V27, P509, DOI 10.1177/0894439309332293
Anderson SC, 2021, FRONT ECOL ENVIRON, V19, P274, DOI 10.1002/fee.2320
Bongaarts J, 2019, POPUL DEV REV, V45, P680, DOI 10.1111/padr.12283
Brassey J, 2021, BMJ EVID-BASED MED, V26, P24, DOI 10.1136/bmjebm-2018-111126
Buscaldi D., 2008, Proceeding of the 2nd international workshop on Geographic information retrieval, GIR '08, P19, DOI DOI 10.1145/1460007.1460011
Ceballos G, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1400253
Chamberlain S., 2018, R PACKAGE
Chamberlain Scott A, 2013, F1000Res, V2, P191, DOI 10.12688/f1000research.2-191.v1
Cohen AM, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-33
Cornford R, 2021, GLOBAL ECOL BIOGEOGR, V30, P339, DOI 10.1111/geb.13219
D'Ignazio C., 2014, CLIFF‐CLAVIN: Determining geographic focus for news articles [extended abstract]
Díaz S, 2018, SCIENCE, V359, P270, DOI 10.1126/science.aap8826
Ding DZ, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P833, DOI 10.1145/3178876.3186131
Dornelas M, 2019, ECOL LETT, V22, P847, DOI 10.1111/ele.13242
Dornelas M, 2018, GLOBAL ECOL BIOGEOGR, V27, P760, DOI 10.1111/geb.12729
Fisher R, 2011, CONSERV LETT, V4, P64, DOI 10.1111/j.1755-263X.2010.00146.x
Fournier AMV, 2019, CONSERV BIOL, V33, P1370, DOI 10.1111/cobi.13371
Gates, 2020, SYST REV-LONDON, V9, P1
Gerner M, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-85
Gonzalez A, 2016, ECOLOGY, V97, P1949, DOI 10.1890/15-1759.1
Grames EM, 2019, METHODS ECOL EVOL, V10, P1645, DOI 10.1111/2041-210X.13268
Guerra CA, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-17688-2
Hennessy, 2021, PREV SCI, DOI 10.1007/s11121-021-01279-8
Hintzen RE, 2020, CONSERV BIOL, V34, P721, DOI 10.1111/cobi.13435
Hudson LN, 2017, ECOL EVOL, V7, P145, DOI 10.1002/ece3.2579
Humbert JY, 2009, OIKOS, V118, P1940, DOI 10.1111/j.1600-0706.2009.17839.x
Jetz W, 2019, NAT ECOL EVOL, V3, P539, DOI 10.1038/s41559-019-0826-1
Johnson TF, 2021, METHODS ECOL EVOL, V12, P1329, DOI 10.1111/2041-210X.13596
Johnson TF, 2021, GLOBAL ECOL BIOGEOGR, V30, P51, DOI 10.1111/geb.13185
Jones Kate E., 2009, Ecology (Washington D C), V90, P2648, DOI 10.1890/08-1494.1
Kitamoto A., 2012, GEOMM 2012 P 2012 AC, V2012, P23
Kokla M, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9030146
Konno K, 2020, ECOL EVOL, V10, P6373, DOI 10.1002/ece3.6368
Kulkarni R, 2021, METHODS ECOL EVOL, V12, P1226, DOI 10.1111/2041-210X.13608
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Leclère D, 2020, NATURE, V585, P551, DOI 10.1038/s41586-020-2705-y
Leung B, 2020, NATURE, V588, DOI 10.1038/s41586-020-2920-6
Liu Y, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P5070
Magge A, 2018, BIOINFORMATICS, V34, P565, DOI 10.1093/bioinformatics/bty273
Marshall IJ, 2020, HEALTH PSYCHOL REV, V14, P145, DOI 10.1080/17437199.2020.1716198
Marshall IJ, 2019, SYST REV-LONDON, V8, DOI 10.1186/s13643-019-1074-9
Mcrae L, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0169156
Millard JW, 2020, ECOGRAPHY, V43, P44, DOI 10.1111/ecog.04532
Nuñez MA, 2021, NAT ECOL EVOL, V5, P264, DOI 10.1038/s41559-020-01369-w
Pachauri RK, 2014, 2014 IEEE STUDENTS' CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER SCIENCE (SCEECS)
Pereira HM, 2013, SCIENCE, V339, P277, DOI 10.1126/science.1229931
Rockström J, 2009, NATURE, V461, P472, DOI 10.1038/461472a
Roskov Y., 2017, Species 2000 ITIS Cat. Life
Shackelford GE, 2020, FUTURES, V116, DOI 10.1016/j.futures.2019.102508
Speriosu M, 2013, P 51 ANN M ASS COMP, P1466
Troudet J, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09084-6
Tydecks L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199327
vanRossum G., 1995, Python Reference Manual
Wallace BC, 2012, P ACM SIGHIT INT HLT, P819, DOI [DOI 10.1145/2110363.2110464, 10.1145/2110363.2110464]
Wang JM, 2020, T GIS, V24, P719, DOI 10.1111/tgis.12627
Wei J, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P6382
Westergaard D, 2018, PLOS COMPUT BIOL, V14, DOI 10.1371/journal.pcbi.1005962
Westgate MJ, 2018, NAT ECOL EVOL, V2, P588, DOI 10.1038/s41559-018-0502-x
Westgate MJ, 2015, CONSERV BIOL, V29, P1606, DOI 10.1111/cobi.12605
WWF (World Wildlife Fund), 2020, LIVING PLANET REPORT
Yang C, 2020, ADV NUTR, V11, P1079, DOI 10.1093/advances/nmaa057
Yates KL, 2018, TRENDS ECOL EVOL, V33, P790, DOI 10.1016/j.tree.2018.08.001
NR 64
TC 2
Z9 3
U1 2
U2 14
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0906-7590
EI 1600-0587
J9 ECOGRAPHY
JI Ecography
PD MAR
PY 2022
VL 2022
IS 3
AR e06068
DI 10.1111/ecog.06068
EA FEB 2022
PG 9
WC Biodiversity Conservation; Ecology
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA ZK0BM
UT WOS:000757297100001
OA Green Published, gold, Green Accepted
DA 2024-09-05
ER
PT J
AU Gurcan, F
Cagiltay, NE
AF Gurcan, Fatih
Cagiltay, Nergiz Ercil
TI Exploratory Analysis of Topic Interests and Their Evolution in
Bioinformatics Research Using Semantic Text Mining and Probabilistic
Topic Modeling
SO IEEE ACCESS
LA English
DT Article
DE Bioinformatics; Market research; Biology; Analytical models; Genomics;
Proteins; Computational modeling; Bioinformatics corpus; probabilistic
topic modeling; textual content analysis; scientometric analysis;
bioinformatics topics and trends
ID TRENDS; FIELD; DYNAMICS; IMPACT; LDA
AB Bioinformatics, which has developed rapidly in recent years with the collaborative contributions of the fields of biology and informatics, provides a deeper perspective on the analysis and understanding of complex biological data. In this regard, bioinformatics has an interdisciplinary background and a rich literature in terms of domain-specific studies. Providing a holistic picture of bioinformatics research by analyzing the major topics and their trends and developmental stages is critical for an understanding of the field. From this perspective, this study aimed to analyze the last 50 years of bioinformatics studies (a total of 71,490 articles) by using an automated text-mining methodology based on probabilistic topic modeling to reveal the main topics, trends, and the evolution of the field. As a result, 24 major topics that reflect the focuses and trends of the field were identified. Based on the discovered topics and their temporal tendencies from 1970 until 2020, the developmental periods of the field were divided into seven phases, from the "newborn" to the "wisdom" stages. Moreover, the findings indicated a recent increase in the popularity of the topics "Statistical Estimation", "Data Analysis Tools", "Genomic Data", "Gene Expression", and "Prediction". The results of the study revealed that, in bioinformatics studies, interest in innovative computing and data analysis methods based on artificial intelligence and machine learning has gradually increased, thereby marking a significant improvement in contemporary analysis tools and techniques based on prediction.
C1 [Gurcan, Fatih] Karadeniz Tech Univ, Fac Engn, Dept Comp Engn, TR-61080 Trabzon, Turkey.
[Cagiltay, Nergiz Ercil] Atilim Univ, Fac Engn, Dept Software Engn, TR-06830 Ankara, Turkey.
C3 Karadeniz Technical University; Atilim University
RP Gurcan, F (corresponding author), Karadeniz Tech Univ, Fac Engn, Dept Comp Engn, TR-61080 Trabzon, Turkey.
EM fgurcan@ktu.edu.tr
RI Cagiltay, Nergiz/O-3082-2019; GURCAN, Fatih/AAJ-7503-2021
OI Cagiltay, Nergiz/0000-0003-0875-9276; GURCAN, Fatih/0000-0001-9915-6686
CR Abdurakhmonov IY, 2016, BIOINFORMATICS - UPDATED FEATURES AND APPLICATIONS, P3, DOI 10.5772/63817
[Anonymous], 2013, BASICS BIOINFORMATIC
Baxevanis A. D., 2020, Bioinformatics, V4th ed.
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
da Silva DSM, 2019, IEEE INT C BIOINFORM, P1862, DOI 10.1109/BIBM47256.2019.8982963
GitHub~WZB Social Science Center, TMTOOLKIT TEXT MININ
Guan J, 2008, SCIENTOMETRICS, V75, P357, DOI 10.1007/s11192-007-1871-0
Gurcan F, 2023, INTERACT LEARN ENVIR, V31, P1007, DOI 10.1080/10494820.2020.1815795
Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1
Gurcan F, 2021, INT J HUM-COMPUT INT, V37, P267, DOI 10.1080/10447318.2020.1819668
Gurcan F, 2019, IEEE ACCESS, V7, P82541, DOI 10.1109/ACCESS.2019.2924075
Gurcan F, 2019, INT J ENG EDUC, V35, P1110
Hahn A, 2017, LECT N BIOINFORMAT, V10330, P279, DOI 10.1007/978-3-319-59575-7_25
Heo GE, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1640-x
Hesper B., 1970, Kameleon, V1, P28
Hogeweg P, 2011, PLOS COMPUT BIOL, V7, DOI 10.1371/journal.pcbi.1002021
Ishaq M, 2019, IEEE ACCESS, V7, P68380, DOI 10.1109/ACCESS.2019.2916154
Jiang X, 2020, IEEE ACCESS, V8, P37352, DOI 10.1109/ACCESS.2020.2975585
Kastrin A, 2021, SCIENTOMETRICS, V126, P1415, DOI 10.1007/s11192-020-03811-z
Kavvadias S, 2020, J BIOMED INFORM, V110, DOI 10.1016/j.jbi.2020.103574
Konrad M., 2017, TEXT MINING TOPIC MO
Lesk A.M., 2019, Introduction to bioinformatics, Vfifth, DOI [10.1002/biot.200800277, DOI 10.1002/BIOT.200800277]
Li C, 2019, IEEE ACCESS, V7, P6386, DOI 10.1109/ACCESS.2018.2887314
Lu Y, 2011, INFORM RETRIEVAL, V14, P178, DOI 10.1007/s10791-010-9141-9
Luo J, 2016, BIOMED INFORM INSIGH, V8, P1, DOI 10.4137/BII.S31559
Luscombe NM, 2001, METHOD INFORM MED, V40, P346, DOI 10.1055/s-0038-1634431
Manoharan A., 2011, IPCSIT, V16, P199
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Ouzounis CA, 2012, PLOS COMPUT BIOL, V8, DOI 10.1371/journal.pcbi.1002487
Patra SK, 2006, SCIENTOMETRICS, V67, P477, DOI 10.1556/Scient.67.2006.3.9
Perez-Iratxeta C, 2007, BRIEF BIOINFORM, V8, P88, DOI 10.1093/bib/bbl035
Porter M. F, 2001, Snowball: A language for stemming algorithms
Song M, 2014, SCIENTOMETRICS, V101, P397, DOI 10.1007/s11192-014-1246-2
Song M, 2013, SCIENTOMETRICS, V96, P183, DOI 10.1007/s11192-012-0900-9
Tao ZY, 2020, IEEE ACCESS, V8, P89802, DOI 10.1109/ACCESS.2020.2992468
Uysal AK, 2014, INFORM PROCESS MANAG, V50, P104, DOI 10.1016/j.ipm.2013.08.006
van Altena Allard J., 2016, Journal of Big Data, V3, DOI 10.1186/s40537-016-0057-0
Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582
Wren JD, 2016, BIOINFORMATICS, V32, P2686, DOI 10.1093/bioinformatics/btw284
Wu YM, 2010, PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON EMERGENCY MANAGEMENT 2010, P1
Yousaf A, 2018, 2018 IEEE LONG ISL S, P1
NR 44
TC 17
Z9 17
U1 5
U2 32
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2022
VL 10
BP 31480
EP 31493
DI 10.1109/ACCESS.2022.3160795
PG 14
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA ZZ4FZ
UT WOS:000773228200001
OA gold
DA 2024-09-05
ER
PT J
AU Roda-Segarra, J
Simón-Martín, M
Rico, AP
Huerta, JLH
AF Roda-Segarra, Jacobo
Simon-Martin, Meritxell
Rico, Andres Paya
Huerta, Jose Luis Hernandez
TI History of Education Meets Digital Humanities: A Field-Specific Finding
Aid to Review Past and Present Research
SO HISTORY OF EDUCATION
LA English
DT Article
DE Digital humanities/digital history; data sources; bibliographic data;
artificial intelligence; Hecumen
ID AHR-EXCHANGE; MANIFESTO; NETWORKS
AB Research in the field of History of Education has experienced a remarkable increase in recent decades. Resulting publications are referenced in generalist databases that do not catalogue academic works according to the specific characteristics of History of Education. Seeking to give response to this bibliographic gap, we are developing a database catered for historians of education that aims to map out present, past, and future research. Conceived within the framework of Digital Humanities/Digital History, Hecumen is being designed, with the aid of Artificial Intelligence, as an open access finding aid that permits (1) conducting specific and multilevel complex engine searches, (2) having a panoramic view of publications; (3) mapping out relevant/missing areas of research, and, ultimately, (4) keeping up to date with the research produced by historians of education. This paper presents, contextualises, and problematises Hecumen - a digital tool that will facilitate and boost History of Education research.
C1 [Roda-Segarra, Jacobo; Rico, Andres Paya] Univ Valencia, Dept Comparat Educ & Educ Hist, Ave Blasco Ibanez 30, Valencia 46010, Spain.
[Simon-Martin, Meritxell] Univ Lleida, Dept Pedag, Lleida, Spain.
[Huerta, Jose Luis Hernandez] Univ Valladolid, Dept Philosophy, Valladolid, Spain.
C3 University of Valencia; Universitat de Lleida; Universidad de Valladolid
RP Roda-Segarra, J (corresponding author), Univ Valencia, Dept Comparat Educ & Educ Hist, Ave Blasco Ibanez 30, Valencia 46010, Spain.
EM jacobo.roda@uv.es
OI Roda-Segarra, Jacobo/0000-0002-4717-6295; Paya Rico,
Andres/0000-0001-7646-4539; Simon-Martin, Meritxell/0000-0002-9486-3020
FU MCIN/AEI [PID2019-105328GB-I00]; ESF Investing in Your Future
[PRE2020-093276]
FX This work was supported by the MCIN/AEI/10.13039/501100011033 and by
"ESF Investing in Your Future" under Grant [PRE2020-093276];
MCIN/AEI/10.13039/501100011033 under Grant [PID2019-105328GB-I00].
CR Armitage D, 2015, AM HIST REV, V120, P543, DOI 10.1093/ahr/120.2.543
Blanco N., 2016, ESPACIOS PUBLICOS, V19, P97
Bruno V., 2005, P 17 AUSTR C COMP HU, P1
Cohen DJ, 2008, J AM HIST, V95, P452
Cohen D, 2015, AM HIST REV, V120, P530, DOI 10.1093/ahr/120.2.530
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Edelstein D, 2016, MOD INTELLECT HIST, V13, P237, DOI 10.1017/S1479244314000833
Fickers A., 2022, DIGITAL HIST HERMENE
GARFIELD E, 1970, NATURE, V227, P669, DOI 10.1038/227669a0
Garfield E., 1978, SCIENTOMETRICS, V1, P5
Gibbs F. W., 2013, WRITING HIST DIGITAL, P159, DOI [DOI 10.1353/BOOK.27633, DOI 10.2307/J.CTV65SX57.18]
Grondin J., 2014, QUE HERMENEUTICA
Guichot Reina V., 2006, REV LATINOAMERICANA, V2, P11
Guldi JoDavid Armitage., 2014, The History Manifesto
Hernandez Huerta J. L., 2022, CONNECTING HIST ED R, P13
Hernandez Huerta J. L., 2019, BILDUNGSGESCHICHTE I, V9, P206
Huerta JLH, 2019, BORDON, V71, P45, DOI 10.13042/Bordon.2019.69624
Hiltmann T, 2021, GESCH GES, V47, P122
Hofstetter R., 2020, HIST LEDUCATION, P9, DOI DOI 10.4000/HISTOIRE-EDUCATION.5485
Hofstetter R, 2014, PAEDAGOG HIST, V50, P871, DOI 10.1080/00309230.2014.948017
Huerta JLH, 2023, FUTURO PASADO, P643, DOI 10.14201/fdp.28213
Laaziri M., 2019, International Journal of Electrical and Computer Engineering, V9, P704, DOI [DOI 10.11591/IJECE.V9I1.PP.704-712, DOI 10.11591/IJECE.V9I1.PP704-712]
Lundberg B., 2022, NORDIC J ED HIST, V9, P1
May J, 2021, HIST EDUC REV, V50, P287, DOI 10.1108/HER-10-2020-0053
McCulloch G, 2011, FOUND FUTURES EDUC, P1
Miranda I. P., 2020, HIST LEDUCATION, V2, P177
Orera Orera L., 1995, REV GEN INFORM DOCUM, V5, P73
Rico AP, 2016, EDUC KNOWL SOC, V17, P55, DOI 10.14201/eks20161725572
Rico AP, 2016, HIST EDUC CHILD LIT, V11, P249
Piersma H, 2013, BMGN, V128, P78
PRICE DJD, 1965, B ATOM SCI, V21, P2
Ribeiro, 2022, INVESTIGACAO HIST ED, P23
Roda-Segarra J., 2023, CONECTANDO HIST EDUC, P95
Roda-Segarra J., IN PRESS
Roda-Segarra J., 2023, THESIS U VALENCIA
Roda-Segarra J, 2023, HSE-SOC EDUC HIST, V12, P85, DOI 10.17583/hse.11028
Romein CA, 2020, HISTORY-UK, V105, P291, DOI 10.1111/1468-229X.12969
Romele A., 2019, Digital Hermeneutics: Philosophical Investigations in New Media and Technologies
Romele A, 2020, AI SOC, V35, P73, DOI 10.1007/s00146-018-0856-2
Rothschild E., 2011, GOING DIGITAL EVOLUT, P280
Sanchidrián Blanco Carmen, 2021, Rev. educ. sup, V50, P129, DOI 10.36857/resu.2021.199.1804
Sanchidrian C., 2020, HIST ED, V154, P49, DOI DOI 10.4000/HISTOIRE-EDUCATION.5525
Sani R., 2015, HIST EDUC CHILD LIT, V10, P13
Schwandt S, 2018, GESCH GES, V44, P107
Simon-Martin M., FORO EDUC-SPAIN
Simon-Martin M., 2023, CONECTANDO HIST EDUC, P231
Somogyvári L, 2023, PAEDAGOG HIST, V59, P837, DOI 10.1080/00309230.2021.1962927
Staring J, 2013, HIST EDUC REV, V42, P85, DOI 10.1108/08198691311317714
Van Ruyskensvelde S, 2014, PAEDAGOG HIST, V50, P861, DOI 10.1080/00309230.2014.955511
Wang C, 2021, HIST EDUC REV, V50, P5, DOI 10.1108/HER-10-2019-0042
Zaagsma G, 2013, BMGN, V128, P3
NR 51
TC 1
Z9 1
U1 5
U2 5
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0046-760X
EI 1464-5130
J9 HIST EDUC
JI Hist. Educ.
PD SEP 2
PY 2024
VL 53
IS 5
BP 893
EP 913
DI 10.1080/0046760X.2024.2337896
EA APR 2024
PG 21
WC Education & Educational Research; History Of Social Sciences
WE Social Science Citation Index (SSCI)
SC Education & Educational Research; Social Sciences - Other Topics
GA A4N8L
UT WOS:001208161500001
DA 2024-09-05
ER
PT C
AU Brown, AO
Watson, KA
Liu, JC
Orabi, II
Rencis, JJ
Chen, CC
Akasheh, F
Wood, JJ
Jackson, KS
Hackett, RK
Sargent, ER
Dunlap, B
Wejmar, CA
Crawford, RH
Jensen, DD
AF Brown, Ashland O.
Watson, Kyle A.
Liu, Jiancheng
Orabi, Ismail I.
Rencis, Joseph J.
Chen, Chuan-Chiang
Akasheh, Firas
Wood, John J.
Jackson, Kathy Schmidt
Hackett, Rachelle Kisst
Sargent, Ella R.
Dunlap, Brock
Wejmar, Christopher Allen
Crawford, Richard H.
Jensen, Daniel D.
GP ASEE
TI Assessment of Finite Element Active Learning Modules: An Update in
Research Findings
SO 2014 ASEE ANNUAL CONFERENCE
SE ASEE Annual Conference & Exposition
LA English
DT Proceedings Paper
CT ASEE Annual Conference
CY JUN 15-18, 2014
CL Indianapolis, IN
ID CURRICULUM
AB The landscape of contemporary engineering education is ever changing, adapting and evolving. As an example, finite element theory and application has often been included in graduate-level courses in engineering programs; however, current industry needs bachelor's-level engineering graduates with skills in applying this essential analysis and design technique. Engineering education is also changing to include more active learning. In response to the need to introduce undergrads to the finite element method as well as the need for engineering curricula to include more active learning, we have developed, implemented and assessed a suite of Active Learning Module (ALMs). The ALMs are designed to improve student learning of difficult engineering concepts while students gain essential knowledge of finite element analysis. We have used the Kolb Learning Cycle as a conceptual framework to guide our design of the ALMs.
Originally developed using MSC Nastran, followed by development efforts in SolidWorks Simulation, ANSOFT, ANSYS, and other commercial FEA software packages, a team of researchers, with National Science Foundation support, have created over twenty-eight active learning modules. We will discuss the implementation of these learning modules which have been incorporated into undergraduate courses that cover topics such as machine design, mechanical vibrations, heat transfer, bioelectrical engineering, electromagnetic field analysis, structural fatigue analysis, computational fluid dynamics, rocket design, and chip formation during manufacturing, and large scale deformation in machining.
This update on research findings includes statistical results for each module which compare performance on pre-and post-learning module quizzes to gauge change in student knowledge related to the difficult engineering concepts that each module addresses. Statistically significant student performance gains provide evidence of module effectiveness. In addition, we present statistical comparisons between different personality types (based on Myers-Briggs Type Indicator, MBTI, subgroups) and different learning styles (based on Felder-Solomon ILS subgroups) in regards to the average gains each group of students have made on quiz performance. Although exploratory, and generally based on small sample sizes at this point in our multi-year effort, the modules for which subgroup differences are found are being carefully reviewed in an attempt to determine whether modifications should be made to better ensure equitable impact of the modules across students from specific personality and / or learning styles subgroups (e.g., MBTI Intuitive versus Sensing; ILS Sequential versus Global).
C1 [Brown, Ashland O.] Univ Pacific, Mech Engn, Sch Engn & Comp Sci, Stockton, CA 95211 USA.
[Brown, Ashland O.] Univ Pacific, Engn, Stockton, CA 95211 USA.
[Brown, Ashland O.; Watson, Kyle A.; Hackett, Rachelle Kisst; Sargent, Ella R.] Univ Pacific, Stockton, CA 95211 USA.
[Liu, Jiancheng] Univ Pacific, Mech Engn, Stockton, CA 95211 USA.
[Orabi, Ismail I.] Univ New Haven, West Haven, CT USA.
[Rencis, Joseph J.] Tennessee Technol Univ, Mech Engn, Cookeville, TN 38505 USA.
[Chen, Chuan-Chiang] Tuskegee Univ, Tuskegee, AL 36088 USA.
[Akasheh, Firas] Tuskegee Univ, Tuskegee, AL 36088 USA.
[Wood, John J.; Jensen, Daniel D.] US Air Force Acad, Engn Mech, Colorado Springs, CO 80840 USA.
[Jackson, Kathy Schmidt] Penn State Univ, Schreyer Inst Teaching Excellence, University Pk, PA 16802 USA.
[Dunlap, Brock] Univ Texas Austin, Austin, TX 78712 USA.
[Wejmar, Christopher Allen] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA.
[Crawford, Richard H.] Univ Texas Austin, Mech Engn, Austin, TX 78712 USA.
C3 University of the Pacific; University of the Pacific; University of the
Pacific; University of the Pacific; University New Haven; Tennessee
Technological University; Tuskegee University; Tuskegee University;
United States Department of Defense; United States Air Force; United
States Air Force Academy; Pennsylvania Commonwealth System of Higher
Education (PCSHE); Pennsylvania State University; Pennsylvania State
University - University Park; University of Texas System; University of
Texas Austin; University of the Pacific; University of Texas System;
University of Texas Austin
RP Brown, AO (corresponding author), Univ Pacific, Mech Engn, Sch Engn & Comp Sci, Stockton, CA 95211 USA.
CR [Anonymous], EFF EV 2012 2013 ACC
Baker J. R., 2002, Computers in Education Journal, V12, P10
Belytschko T, 1997, INT J ENG EDUC, V13, P457
BORCHERT R, 1999, P ASEE ANN C EXP CHA
Bower M., 2000, P ASEE ANN C EXP ST
Brinson L.C., 1997, Journal of Engineering Education, V86, P159
Brown A.O, 2004, ASEE PAC SW SEC C U
Brown A.O, 2004, 2004 ASME INT MECH E
Brown A.O., 2008, 2008 ASEE ANN C EXP
Chiou R., 1998, Computers in Education Journal, V8, P50
Coffman J., 2009, P 2009 ASEE MIDDL AT
FELDER RM, 1988, ENG EDUC, V78, P674
Graham L., 2002, Computers in Education Journal, V12, P32
Kaufman K., 2009, P ASEE ANN C EXP AUS
Kaufman K., 2011, ADV ENG ED UNPUB
Kaufman K., 2011, INT J ENG ED UNPUB
Kolb D.A., 2014, Experiential Learning: Experience as a source of learning and development
Linsey J., 2009, Advances in Engineering Education, V1, P1
Liu J., 2008, 2008 ASEE PAC SW REG
Mahoney DP, 1999, COMPUT GRAPH WORLD, V22, P30
Matthews J. M., 1999, Computers in Education Journal, V9, P46
Milton-Benoit J., 1998, J ENG EDUC, V87, P511
Myers IB., 1985, Manual: a Guide to the Development and Use of the Myers-Briggs Type Indicator
Nesbit S.N., 1998, COMPUTER APPL ENG ED, V87, P511
Rencis J. J., 1999, Computers in Education Journal, V9, P22
Sorby SA, 1999, COMPUT APPL ENG EDUC, V7, P252, DOI 10.1002/(SICI)1099-0542(1999)7:4<252::AID-CAE7>3.0.CO;2-Z
STICE JE, 1987, ENG EDUC, V77, P291
Thilmany J, 2001, MECH ENG, V123, P60
Thilmany J, 2000, MECH ENG, V122, P88, DOI 10.1115/1.2000-OCT-6
Watson K.A., 2009, P 2009 ASEE PAC SW C
Watson KA, 2012, ASEE ANNU CONF EXPO
NR 31
TC 0
Z9 0
U1 0
U2 4
PU AMER SOC ENGINEERING EDUCATION
PI WASHINGTON
PA 1818 N STREET, NW SUITE 600, WASHINGTON, DC 20036 USA
SN 2153-5965
J9 ASEE ANNU CONF EXPO
PY 2014
PG 31
WC Education & Educational Research; Education, Scientific Disciplines;
Engineering, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research; Engineering
GA BF6XT
UT WOS:000383779702062
DA 2024-09-05
ER
PT C
AU García-Sánchez, P
Mora, AM
Castillo, PA
Pérez, IJ
AF Garcia-Sanchez, Pablo
Mora, Antonio M.
Castillo, Pedro A.
Perez, Ignacio J.
BE HerreraViedma, E
Shi, Y
Berg, D
Tien, J
Cabrerizo, FJ
Li, J
TI A bibliometric study of the research area of videogames using
Dimensions.ai database
SO 7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE
MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE
MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE
SE Procedia Computer Science
LA English
DT Proceedings Paper
CT 7th International Conference on Information Technology and Quantitative
Management (ITQM) - Information Technology and Quantitative Management
Based on Artificial Intelligence
CY NOV 03-06, 2019
CL Granada, SPAIN
DE videogames; Dimensions.ai; bibliometrics; scientometrics
ID GAMES
AB Videogames are a very interesting area of research for fields as diverse as computer science, health, psychology or even social sciences. Every year a growing number of articles are published in different topics inside this field, so it is very convenient to study the different bibliometric data in order to consolidate the research efforts.
Thus, the aim of this work is to conduct a study on the distribution of articles related to videogames in the different fields of research, as well as to measure their interest over time, to identify the sources, countries and authors with the highest scientific production. In order to carry out this analysis, the information system Dimensions.ai has been considered, since it covers a large number of documents and allows for easy downloading and analysis of datasets.
According to the study, three countries are the most prolific in this area: USA, Canada and UK. The obtained results also indicate that the fields with the highest number of publications are Information and Computer Sciences, Medical and Health Sciences, and Psychology and Cognitive Sciences, in this order. With regard to the impact of the publications, differences between the number of citations, and the number of Altmetric Attention Score, have been found. (C) 2020 The Authors. Published by Elsevier B.V.
C1 [Garcia-Sanchez, Pablo; Perez, Ignacio J.] Univ Cadiz, Dept Comp Sci & Engn, Escuela Super Ingn, Avda Univ 10, Cadiz 11519, Spain.
[Mora, Antonio M.] Univ Granada, Dept Signal Theory Telemat & Commun, ETSIIT CITIC, Calle Periodista Daniel Saucedo Aranda S-N, Granada, Spain.
[Castillo, Pedro A.] Univ Granada, Dept Comp Sci & Comp Architecture, ETSIIT CITIC, Calle Periodista Daniel Saucedo Aranda S-N, Granada, Spain.
C3 Universidad de Cadiz; University of Granada; University of Granada
RP García-Sánchez, P (corresponding author), Univ Cadiz, Dept Comp Sci & Engn, Escuela Super Ingn, Avda Univ 10, Cadiz 11519, Spain.
EM pablo.garciasanchez@uca.es
RI Castillo-Valdivieso, Pedro A./KBQ-6381-2024; Perez, Ignacio
javier/M-2437-2015; García, Antonio M. M. Mora/M-1127-2014;
García-Sánchez, Pablo/G-2166-2010
OI Castillo-Valdivieso, Pedro A./0000-0002-5258-0620; Perez, Ignacio
javier/0000-0003-4253-8629; García-Sánchez, Pablo/0000-0003-4644-2894
FU Spanish Ministry of Economy and Competitiveness [TIN2016-75850-R,
11E2015-68752, TIN2017-85727-C4-2-P]; Program of Promotion and
Development of Research Activity of the University of Cadiz (Programa de
Fomento e Impulso de la actividad Investigadora de la Universidad de
Cadiz); Junta de Andalucia [B-TIC-402-UGR18]; FEDER [B-TIC-402-UGR18]
FX This contribution has been made possible thanks to Dimensions.ai
database. Also, the authors would like to acknowledge FEDER funds
provided by the Spanish Ministry of Economy and Competitiveness under
grants TIN2016-75850-R, 11E2015-68752, TIN2017-85727-C4-2-P and Program
of Promotion and Development of Research Activity of the University of
Cadiz (Programa de Fomento e Impulso de la actividad Investigadora de la
Universidad de Cadiz); and B-TIC-402-UGR18 (FEDER and Junta de
Andalucia).
CR [Anonymous], 2002, Education and Health
Carbonell X, 2009, J MED LIBR ASSOC, V97, P102, DOI 10.3163/1536-5050.97.2.006
Ciftci S., 2017, J ED TRAINING STUDIE, V6
Cobo MJ, 2014, PROCEDIA COMPUT SCI, V31, P567, DOI 10.1016/j.procs.2014.05.303
Deutsch JE, 2008, PHYS THER, V88, P1196, DOI 10.2522/ptj.20080062
García-Sánchez P, 2018, LECT NOTES COMPUT SC, V11315, P138, DOI 10.1007/978-3-030-03496-2_16
Granic I, 2014, AM PSYCHOL, V69, P66, DOI 10.1037/a0034857
Lara-Cabrera R, 2019, FUTURE GENER COMP SY, V92, P516, DOI 10.1016/j.future.2017.12.056
Lara-Cabrera R, 2013, 2013 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE (FOCI), P114, DOI 10.1109/FOCI.2013.6602463
Martí-Parreño J, 2016, J COMPUT ASSIST LEAR, V32, P663, DOI 10.1111/jcal.12161
Nguyen THD, 2018, ENTERTAIN COMPUT, V26, P88, DOI 10.1016/j.entcom.2018.02.002
Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a
Podlubny I, 2005, SCIENTOMETRICS, V64, P95, DOI 10.1007/s11192-005-0240-0
Yannakakis G. N., 2018, INTRODUCTION, P3
Yannakakis Georgios N, 2018, Artificial Intelligence and Games, V2, DOI 10.1007/978-3-319-63519-46
NR 15
TC 10
Z9 10
U1 2
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1877-0509
J9 PROCEDIA COMPUT SCI
PY 2019
VL 162
BP 737
EP 744
DI 10.1016/j.procs.2019.12.045
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BO4FC
UT WOS:000514081500092
OA gold, Green Submitted, Green Published
DA 2024-09-05
ER
PT J
AU Ding, X
Wang, BZ
He, GQ
AF Ding, Xiao
Wang, Bing-Zhong
He, Guo-Qiang
TI Research on a Millimeter-Wave Phased Array With Wide-Angle Scanning
Performance
SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
LA English
DT Article
DE Genetic algorithms; pattern reconfigurable antenna; phased array;
wide-angle scanning
ID ANTENNA
AB In order to extend the scanning range of a phased array and maintain the scanning gain flatness, a novel millimeter-wave phased array with four linearly-arranged pattern reconfigurable elements is presented in this communication. The phased array has been designed, fabricated, measured and analyzed. The active patterns of each reconfigurable element are measured at different reconfigurable modes and the pattern scanning performance of the phased array is synthesized by using these active patterns. Furthermore, a genetic algorithm is used to lower the level of side lobes of the proposed phased array. The results show that the phased array can scan its main lobe from -75 degrees to + 75 degrees in the elevation plane with a gain fluctuation less than 3 dB.
C1 [Ding, Xiao; Wang, Bing-Zhong; He, Guo-Qiang] Univ Elect Sci & Technol China, Inst Appl Phys, Chengdu 610054, Peoples R China.
C3 University of Electronic Science & Technology of China
RP Ding, X (corresponding author), Univ Elect Sci & Technol China, Inst Appl Phys, Chengdu 610054, Peoples R China.
EM xiaoding.antenna@gmail.com; bzwang@uestc.edu.cn; guoqianghe22@gmail.com
RI Wang, Bing/IAQ-0291-2023; ding, xiao/KAM-4458-2024; He,
Guoqiang/AAV-7800-2021; Wang, Bing/IAP-6059-2023
OI ding, xiao/0000-0003-0804-6444; Wang, Bing-Zhong/0000-0003-0679-8925
FU Doctoral Program of Higher Education of China [20100185110021,
20120185130001]; National Natural Science Foundation of China
[61071031]; [ITR1113]
FX This work was supported in part by the Research Fund for the Doctoral
Program of Higher Education of China (No. 20100185110021, No.
20120185130001), in part by the National Natural Science Foundation of
China (No. 61071031), and in part by the Project ITR1113.
CR Bai YY, 2011, IEEE T ANTENN PROPAG, V59, P4071, DOI 10.1109/TAP.2011.2164176
Bai YY, 2010, J INFRARED MILLIM TE, V31, P1, DOI 10.1007/s10762-009-9559-6
Balanis C. A., 1997, Antenna Theory: Analysis and Design, V2nd
Beenamole KS, 2008, MICROW OPT TECHN LET, V50, P1737, DOI 10.1002/mop.23531
Ding X, 2013, J ELECTROMAGNET WAVE, V27, P649, DOI 10.1080/09205071.2013.759520
Ding X, 2010, IEEE ANTENN WIREL PR, V9, P303, DOI 10.1109/LAWP.2010.2047374
Fu JS, 1999, RADAR CONF, P22, DOI 10.1109/NRC.1999.767196
Johnson JM, 1999, WILEY MICRO, P1
Kedar A., 2011, Progress In Electromagnetics Research B, V27, P235
Mailloux R. J., 2008, PHASED ARRAY ANTENNA, V2nd
Toshev AG, 2008, IEEE T ANTENN PROPAG, V56, P3330, DOI 10.1109/TAP.2008.929527
NR 11
TC 116
Z9 126
U1 2
U2 56
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-926X
EI 1558-2221
J9 IEEE T ANTENN PROPAG
JI IEEE Trans. Antennas Propag.
PD OCT
PY 2013
VL 61
IS 10
BP 5319
EP 5324
DI 10.1109/TAP.2013.2275247
PG 7
WC Engineering, Electrical & Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Telecommunications
GA 250DR
UT WOS:000326831000051
DA 2024-09-05
ER
PT J
AU Hasumi, T
Chiu, MS
AF Hasumi, Toshiyuki
Chiu, Mei-Shiu
TI Online mathematics education as bio-eco-techno process: bibliometric
analysis using co-authorship and bibliographic coupling
SO SCIENTOMETRICS
LA English
DT Article
DE Bibliometric analysis; Ecological technology theories; Mathematics
education; Online learning; Flipped learning
ID E-LEARNING SYSTEM; CLASSROOM; PATTERNS; DESIGN; PERFORMANCE; PRINCIPLES;
COCITATION; CITATION; SCIENCE; TRENDS
AB Under the COVID-19 pandemic, mathematics education has moved completely online. To tackle this new norm based on bio-eco-techno theories, this study aims to provide educators an overview of the research landscape for envisioning educational practices through bibliometric analysis of 319 articles and reviews published in peer-reviewed journals from 1993 to 2020. Country and institutional co-authorship depicts the social network structure of the field to identify top productive contributors. Bibliographic coupling of publications forms the conceptual structure, revealing research themes. Together, the results are mapped according to the bio-eco-techno perspective. The bioecological system highlights student achievement as the central concerns. The microsystem emphasizes techno-subsystems for supporting flipped learning. The exosystem and mesosystem require institution support for teacher pedagogical design, digital competencies, and collaboration. The macrosystem raises the issue of distribution or centralization in the strengths of online mathematics education and calls for greater cross-national boundary digital use and collaboration. The chronosystem asks: Does Covid-19 force the popularity of blended or flipped learning into online education? Based on the bio-eco-techno perspective, further recommendations are provided.
C1 [Hasumi, Toshiyuki] Ming Chuan Univ, Int Coll, 250 Zhong Shan N Rd,Sec 5, Taipei 111, Taiwan.
[Chiu, Mei-Shiu] Natl Chengchi Univ, Dept Educ, 64 Zhinan Rd,Sec 2, Taipei 11605, Taiwan.
C3 Ming Chuan University; National Chengchi University
RP Hasumi, T (corresponding author), Ming Chuan Univ, Int Coll, 250 Zhong Shan N Rd,Sec 5, Taipei 111, Taiwan.
EM 107152521@g.nccu.edu.tw; chium@nccu.edu.tw
RI Hasumi, Toshiyuki/IQV-0095-2023; Chiu, Mei-Shiu/Q-1116-2019
OI Hasumi, Toshiyuki/0000-0003-4259-5607; Chiu,
Mei-Shiu/0000-0002-2929-5151
FU Ministry of Science and Technology, Taiwan [MOST 109-2629H-004-002]
FX This work was supported by the Ministry of Science and Technology,
Taiwan (MOST 109-2629H-004-002). An early part of this study was orally
presented, without any written publication, as "Hasumi, T., & Chiu,
M.-S. (2021, June 9). Online mathematics education: A bibliometric
analysis [Conference session]. Global Conference on Education and
Research, virtually hosted by University of South Florida, FL, United
States. https://glocer.org/schedule/2/".
CR Abu Talib M, 2021, EDUC INF TECHNOL, V26, P6719, DOI 10.1007/s10639-021-10507-1
Aghaei Chadegani A., 2013, Asian Social Science, V9, P18, DOI [10.5539/ass.v9n5p18, DOI 10.5539/ASS.V9N5P18]
[Anonymous], 2014, PISA 2012 results: What students know and can do. Student performance in mathematics, V1
[Anonymous], 2010, PISA 2009 Results: What Students Know and Can Do - Student Performance in Reading, Mathematics and Science, VI, DOI [10.1787/9789264091450-en, DOI 10.1787/9789264091450-EN]
[Anonymous], 2012, KURAM UYGUL EGIT BIL
[Anonymous], 2007, PISA 2006: Science competencies for tomorrow's world: Volume 1: Analysis, DOI DOI 10.1787/9789264040014-EN
Aria M, 2020, SOC INDIC RES, V149, P803, DOI 10.1007/s11205-020-02281-3
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Aristovnik A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12219132
Baier-Fuentes H, 2019, INT ENTREP MANAG J, V15, P385, DOI 10.1007/s11365-017-0487-y
Bakker A, 2020, EDUC STUD MATH, V104, P1, DOI 10.1007/s10649-020-09946-3
Bano M, 2018, COMPUT EDUC, V121, P30, DOI 10.1016/j.compedu.2018.02.006
Bhagat KK, 2016, EDUC TECHNOL SOC, V19, P134
Borba MC, 2021, EDUC STUD MATH, V108, P385, DOI 10.1007/s10649-021-10043-2
Bouilheres F, 2020, EDUC INF TECHNOL, V25, P3049, DOI 10.1007/s10639-020-10100-y
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Bozkurt A, 2021, INT REV RES OPEN DIS, V22, P19
Brahimi T, 2015, COMPUT HUM BEHAV, V51, P604, DOI 10.1016/j.chb.2015.03.013
Bronfenbrenner U., 2006, Handbook of Child Psychology: Theoretical Models of Human Development, V1, P793, DOI DOI 10.1002/9780470147658.CHPSY0114
Bronfenbrenner W., 1979, The ecology of human development: Experiments by nature and design
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen SC, 2016, BRIT J EDUC TECHNOL, V47, P1096, DOI 10.1111/bjet.12278
Cheng L, 2019, ETR&D-EDUC TECH RES, V67, P793, DOI 10.1007/s11423-018-9633-7
Chi YL, 2009, EXPERT SYST APPL, V36, P7838, DOI 10.1016/j.eswa.2008.11.048
Chiu M-S, 2021, ED STUDIES, V47, P155, DOI [10.1080/03055698.2019.1672522, DOI 10.1080/03055698.2019.1672522]
Chiu MS, 2022, RES SCI TECHNOL EDUC, V40, P549, DOI 10.1080/02635143.2020.1830270
Chiu MS, 2020, ETR&D-EDUC TECH RES, V68, P413, DOI 10.1007/s11423-019-09707-x
Christy KR, 2014, COMPUT EDUC, V78, P66, DOI 10.1016/j.compedu.2014.05.005
Ramírez MC, 2019, MATH ENTHUS, V16, P37
Dalgarno B, 2009, COMPUT EDUC, V53, P853, DOI 10.1016/j.compedu.2009.05.005
Drijvers P, 2020, ZDM-MATH EDUC, V52, P1455, DOI 10.1007/s11858-020-01169-3
Engelbrecht J, 2020, ZDM-MATH EDUC, V52, P821, DOI 10.1007/s11858-020-01185-3
Engelbrecht J, 2020, ZDM-MATH EDUC, V52, P825, DOI 10.1007/s11858-020-01176-4
Ersozlu Z., 2019, EURASIA J MATH SCI T, V15, DOI DOI 10.29333/EJMSTE/102441
Garfield E., 1994, Current Contents: Social and Behavioural Sciences, V7, P5
Gasparyan AY, 2018, J KOREAN MED SCI, V33, DOI 10.3346/jkms.2018.33.e139
Gutiérrez-Salcedo M, 2018, APPL INTELL, V48, P1275, DOI 10.1007/s10489-017-1105-y
Hansen JD, 2015, SCIENCE, V350, P1245, DOI 10.1126/science.aab3782
Hodges C., 2020, Educ. Rev., P1
Huang C, 2020, EDUC REV, V72, P281, DOI 10.1080/00131911.2019.1566212
Hwang GJ, 2017, EDUC TECHNOL SOC, V20, P184
Ibáñez MB, 2018, COMPUT EDUC, V123, P109, DOI 10.1016/j.compedu.2018.05.002
Jagust T, 2018, COMPUT EDUC, V125, P444, DOI 10.1016/j.compedu.2018.06.022
Johnson G.M., 2008, Canadian Journal of Learning Technology, V34, P19, DOI [10.21432/T2CP4T, DOI 10.21432/T2CP4T]
Johnson GM, 2010, EDUC TECHNOL SOC, V13, P176
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Khaddage F, 2016, EDUC TECHNOL SOC, V19, P16
Khirwadkar A, 2020, BROCK EDUC, V29, P42
Koedinger KR, 2010, J EDUC COMPUT RES, V43, P489, DOI 10.2190/EC.43.4.d
Kramarski B, 2006, J COMPUT ASSIST LEAR, V22, P24, DOI 10.1111/j.1365-2729.2006.00157.x
Kumar Basak S., 2018, E-LEARNING DIGITAL M, V15, P191, DOI 10.1177%2F2042753018785180
Lai CL, 2016, COMPUT EDUC, V100, P126, DOI 10.1016/j.compedu.2016.05.006
Lassoued Z, 2020, EDUC SCI, V10, DOI 10.3390/educsci10090232
Lee J, 2017, ETR&D-EDUC TECH RES, V65, P427, DOI 10.1007/s11423-016-9502-1
Lo CK, 2018, COMPUT EDUC, V118, P150, DOI 10.1016/j.compedu.2017.12.003
Lo CK, 2017, EDUC RES REV-NETH, V22, P50, DOI 10.1016/j.edurev.2017.08.002
Lopes AP, 2018, INT J MANAG EDUC-OXF, V16, P105, DOI 10.1016/j.ijme.2018.01.001
Lundin M, 2018, INT J EDUC TECHNOL H, V15, DOI 10.1186/s41239-018-0101-6
Maag M, 2004, CIN-COMPUT INFORM NU, V22, P26, DOI 10.1097/00024665-200401000-00007
Makri K, 2007, EDUC TECHNOL SOC, V10, P73
Martin T, 2009, CHILD DEV PERSPECT, V3, P140, DOI 10.1111/j.1750-8606.2009.00094.x
Mas-Tur A, 2020, REV MANAG SCI, V14, P933, DOI 10.1007/s11846-020-00406-z
Muritala BA, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12239977
OECD, 2016, PISA 2015 results (volume I) Excellence and Equity in Education, DOI [10.1787/9789264266490-en, DOI 10.1787/9789264266490-EN, DOI 10.1787/9789264266490-11-EN]
OECD, 2019, Where all students can succeed, DOI [DOI 10.1787/5F07C754-EN, DOI 10.1787/B5FD1B8F-EN]
Okubo Y., 1997, OECD Science, Technology and Industry Working Papers, DOI DOI 10.1787/208277770603
Ozkaya A., 2018, Educational Research and Reviews, V13, P723, DOI [10.5897/ERR2018.3603, DOI 10.5897/ERR2018.3603, 10.5897/err2018.3603]
Özyurt Ö, 2013, COMPUT HUM BEHAV, V29, P726, DOI 10.1016/j.chb.2012.11.013
Özyurt Ö, 2013, EXPERT SYST APPL, V40, P2914, DOI 10.1016/j.eswa.2012.12.008
Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006
Perrotta C, 2018, LEARN MEDIA TECHNOL, V43, P3, DOI 10.1080/17439884.2016.1182927
PRITCHARD A, 1969, J DOC, V25, P348
Recker MM, 2004, EDUC TECHNOL SOC, V7, P93
Sahin A, 2015, EDUC TECHNOL SOC, V18, P142
Sarrafzadeh A, 2008, COMPUT HUM BEHAV, V24, P1342, DOI 10.1016/j.chb.2007.07.008
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Steen-Utheim AT, 2018, TEACH HIGH EDUC, V23, P307, DOI 10.1080/13562517.2017.1379481
Steenbergen-Hu S, 2013, J EDUC PSYCHOL, V105, P970, DOI 10.1037/a0032447
Sun ZR, 2018, INTERNET HIGH EDUC, V36, P41, DOI 10.1016/j.iheduc.2017.09.003
Sweileh WM, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-018-5689-x
Tartavulea CV, 2020, AMFITEATRU ECON, V22, P920, DOI 10.24818/EA/2020/55/920
Tempelaar DT, 2012, INTERNET HIGH EDUC, V15, P161, DOI 10.1016/j.iheduc.2011.10.003
Tibaná-Herrera G, 2018, PROF INFORM, V27, P1082, DOI 10.3145/epi.2018.sep.12
Trenholm S, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00215-0
UNESCO, 1 3 BILL LEARN AR ST
UNESCO, HALF WORLDS STUD POP
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Raan AFJ, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P19
Walker A, 2012, ETR&D-EDUC TECH RES, V60, P421, DOI 10.1007/s11423-012-9243-8
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Walton G, 2011, J DOC, V67, P449, DOI 10.1108/00220411111124541
Wang J, 2017, COMPUT HUM BEHAV, V71, P79, DOI 10.1016/j.chb.2017.01.049
Wang TH, 2014, COMPUT EDUC, V73, P189, DOI 10.1016/j.compedu.2013.12.002
WHO, 2020, WHO DIR GEN STAT IHR
Wilson SG, 2013, TEACH PSYCHOL, V40, P193, DOI 10.1177/0098628313487461
Xing WL, 2015, COMPUT HUM BEHAV, V47, P168, DOI 10.1016/j.chb.2014.09.034
Zhu MH, 2021, J EDUC WORK, V34, P356, DOI 10.1080/13639080.2021.1922621
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
Zurita G, 2004, COMPUT EDUC, V42, P289, DOI 10.1016/j.compedu.2003.08.005
NR 99
TC 6
Z9 6
U1 5
U2 38
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD AUG
PY 2022
VL 127
IS 8
BP 4631
EP 4654
DI 10.1007/s11192-022-04441-3
EA JUL 2022
PG 24
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 3R1UC
UT WOS:000820549600005
PM 35813407
OA Bronze, Green Published
DA 2024-09-05
ER
PT C
AU Wu, KY
Hu, SS
AF Wu, Kunya
Hu, Shuaishuai
BE Liu, Z
Wang, L
TI Research on the Upgrade of Evaluation System Design of Vegetables Safety
of Shenzhen
SO 2017 INTERNATIONAL CONFERENCE ON FRONTIERS IN EDUCATIONAL TECHNOLOGIES
AND MANAGEMENT SCIENCES (FETMS 2017)
LA English
DT Proceedings Paper
CT International Conference on Frontiers in Educational Technologies and
Management Sciences (FETMS)
CY OCT 07-08, 2017
CL Nanjing, PEOPLES R CHINA
DE Risk evaluation; Hierarchy analysis; Cluster analysis; Linear regression
model
AB Food safety issues are national security issues. Any food safety event they not only brings people great harm, but also hurts the credibility of the government. At present, many kinds of fresh vegetables are being imported into consumer market of Shenzhen via many channels. Different habitats and production management patterns pose a new challenge to the traditional vegetable safety supervision. This paper improves the traditional method of vegetable safety supervision through modeling and analysis of the factors directly related to vegetable safety.
C1 [Wu, Kunya; Hu, Shuaishuai] BOHAI Univ, Coll Math & Phys, Jinzhou 121000, Peoples R China.
C3 Bohai University
RP Wu, KY (corresponding author), BOHAI Univ, Coll Math & Phys, Jinzhou 121000, Peoples R China.
CR Cao Na, 2016, SCI TECHNOLOGY FOOD, V37
Wang Huimin, 2011, ISSUES AGR EC
Zhou JH, 2015, J INTEGR AGR, V14, P2189, DOI 10.1016/S2095-3119(15)61115-7
Zhu Feng, 2015, CHINESE J HLTH LAB T, V25, P274
NR 4
TC 0
Z9 0
U1 0
U2 1
PU FRANCIS ACAD PRESS
PI LONDON
PA 35 IVOR PL, LOWER GROUND, LONDON, NW1 6EA, ENGLAND
BN 978-1-912407-67-5
PY 2017
BP 422
EP 426
PG 5
WC Education & Educational Research; Management
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research; Business & Economics
GA BL5HH
UT WOS:000451521400098
DA 2024-09-05
ER
PT J
AU Maphosa, M
Doorsamy, W
Paul, BS
AF Maphosa, Mfowabo
Doorsamy, Wesley
Paul, Babu Sena
TI Factors Influencing Students' Choice of and Success in STEM: A
Bibliometric Analysis and Topic Modeling Approach
SO IEEE TRANSACTIONS ON EDUCATION
LA English
DT Article
DE STEM; Engineering profession; Education; Analytical models; Citation
analysis; Data visualization; Systematics; Choice of qualifications;
social cognitive career theory (SCCT); science; technology; engineering;
and mathematics (STEM) students; student retention
ID ENGINEERING STUDENTS; COLLEGE MAJOR; SELF-EFFICACY; SCIENCE; CAREER;
MATHEMATICS; IMPACT; PREDICTORS; INDICATORS; KNOWLEDGE
AB Contribution: This article lends empirical evidence to this research area of factors influencing students' choice of and success in science, technology, engineering, and mathematics (STEM). Background: Understanding these factors is crucial as it informs recruitment and support interventions provided to students and constitutes a premise to improving graduation rates. The social cognitive career theory (SCCT) was used as a theoretical framework to provide insight regarding factors influencing students' choice of qualifications. Research Questions: What is the state of research on the factors influencing students' choice of and success in STEM programmes? Which of these factors have interested most researchers? What research themes are covered in articles investigating these factors? Methodology: This study followed the general bibliometric analysis workflow--study design, data collection, data analysis, data visualization, and interpretation. Data collection followed the preferred reporting items for systematic review and metaanalysis (PRISMA) guidelines. From an initial set of 408 articles, 179 related to the theme and were published in the Web of Science between 2004 and 2020. These articles were analyzed using the standard bibliometric metrics. Findings: Findings indicate that this research field is still growing. Thirty-two factors were identified and rated based using an objective assessment criterion. In addition, a classification of the factors is presented based on the SCCT. This study provides a theoretical reference for improving success rates for STEM qualifications and better understanding the theme. The study proposes a research agenda of what future research in the field should focus on, based on current gaps.
C1 [Maphosa, Mfowabo; Doorsamy, Wesley; Paul, Babu Sena] Univ Johannesburg, Inst Intelligent Syst, ZA-2193 Johannesburg, South Africa.
C3 University of Johannesburg
RP Maphosa, M (corresponding author), Univ Johannesburg, Inst Intelligent Syst, ZA-2193 Johannesburg, South Africa.
EM 201312940@student.uj.ac.za; wdoorsamy@uj.ac.za; bspaul@uj.ac.za
RI Zandonade, Viviane/JKI-1817-2023
OI Doorsamy, Wesley/0000-0001-9043-9882; Maphosa,
Mfowabo/0000-0003-3702-6821
FU U.S. Department of Commerce [BS123456]
FX This work was supported in part by the U.S. Department of Commerce under
Grant BS123456.
CR Albert KA, 1999, J COUNS DEV, V77, P431, DOI 10.1002/j.1556-6676.1999.tb02470.x
Anindita Chakrabarti Anindita Chakrabarti, 2009, South Asia Economic Journal, V10, P371, DOI 10.1177/139156140901000205
[Anonymous], 2006, REP
Bandura, 1986, J APPL PSYCHOL, V12, P169, DOI [DOI 10.2307/258004, 10.4135/9781446221129.n6.]
Bertoli-Barsotti L, 2017, SCIENTOMETRICS, V111, P1415, DOI 10.1007/s11192-017-2351-9
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blotnicky KA, 2018, INT J STEM EDUC, V5, DOI 10.1186/s40594-018-0118-3
Boles W, 2017, EUR J ENG EDUC, V42, P368, DOI 10.1080/03043797.2016.1189879
Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Chawla NV, 2013, J GEN INTERN MED, V28, pS660, DOI 10.1007/s11606-013-2455-8
Cole D, 2008, J COLL STUDENT DEV, V49, P285, DOI 10.1353/csd.0.0018
Crisp G, 2009, AM EDUC RES J, V46, P924, DOI 10.3102/0002831209349460
DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004
Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626
Elchardus M, 2009, SOC SCI QUART, V90, P446, DOI 10.1111/j.1540-6237.2009.00626.x
Espinosa LL, 2011, HARVARD EDUC REV, V81, P209, DOI 10.17763/haer.81.2.92315ww157656k3u
French BF, 2005, J ENG EDUC, V94, P419, DOI 10.1002/j.2168-9830.2005.tb00869.x
Gottfried M.A., 2013, Education Policy Analysis Archives, V21, P1, DOI [10.14507/epaa.v21n79.2013, DOI 10.14507/EPAA.V21N79.2013]
Goyette KA, 2006, J HIGH EDUC, V77, P497, DOI 10.1353/jhe.2006.0020
Griffith AL, 2010, ECON EDUC REV, V29, P911, DOI 10.1016/j.econedurev.2010.06.010
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Ho YX, 2007, J VISION, V7, DOI 10.1167/7.1.1
Horta H, 2010, HIGH EDUC, V59, P387, DOI 10.1007/s10734-009-9253-6
Huai CQ, 2016, SCIENTOMETRICS, V108, P1531, DOI 10.1007/s11192-016-2019-x
Hutchison MA, 2006, J ENG EDUC, V95, P39, DOI 10.1002/j.2168-9830.2006.tb00876.x
Kushkowski JD, 2020, J DOC, V76, P1313, DOI 10.1108/JD-10-2019-0207
Law KMY, 2009, INT J ENG EDUC, V25, P1068
LENT RW, 1994, J VOCAT BEHAV, V45, P79, DOI 10.1006/jvbe.1994.1027
Liao YX, 2017, INT J PROD RES, V55, P3609, DOI 10.1080/00207543.2017.1308576
Lyons T., 2010, REP
Maphosa M, 2020, INT J ADV COMPUT SC, V11, P287
Matusovich HM, 2010, J ENG EDUC, V99, P289, DOI 10.1002/j.2168-9830.2010.tb01064.x
McGee EO, 2011, AM EDUC RES J, V48, P1347, DOI 10.3102/0002831211423972
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
Moakler MW, 2014, CAREER DEV Q, V62, P128, DOI 10.1002/j.2161-0045.2014.00075.x
Montmarquette C, 2002, ECON EDUC REV, V21, P543, DOI 10.1016/S0272-7757(01)00054-1
Moore TJ, 2015, J RES SCI TEACH, V52, P296, DOI 10.1002/tea.21199
Moote J, 2020, J ENG EDUC, V109, P34, DOI 10.1002/jee.20302
Ochs LA, 2004, REHABIL COUNS BULL, V47, P224, DOI 10.1177/00343552040470040401
Page MJ, 2021, J CLIN EPIDEMIOL, V134, P178, DOI 10.1016/j.jclinepi.2021.03.001
Riegle-Crumb C, 2012, AM EDUC RES J, V49, P1048, DOI 10.3102/0002831211435229
Riegle-Crumb C, 2010, EDUC RESEARCHER, V39, P656, DOI 10.3102/0013189X10391657
Roehrig GH, 2012, SCHOOL SCI MATH, V112, P31, DOI 10.1111/j.1949-8594.2011.00112.x
Sahin A, 2018, INT J SCI MATH EDUC, V16, pS69, DOI 10.1007/s10763-017-9847-x
Seymour E., 2019, TALKING LEAVING REVI, DOI [10.1007/978-3-030-25304-2_1, DOI 10.1007/978-3-030-25304-2]
Shahali EHM, 2017, EURASIA J MATH SCI T, V13, P1189, DOI 10.12973/eurasia.2017.00667a
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Spinks N., 2006, Educating engineers for the 21st century: The industry view
Sweileh WM, 2021, GLOBALIZATION HEALTH, V17, DOI 10.1186/s12992-020-00651-7
Tilak JBG, 2020, YUKSEKOGRETIM DERG, V10, P163, DOI 10.2399/yod.19.017000
Tonso K.L., 1999, J WOMEN MINORITIES S, V5, P365, DOI DOI 10.1615/JWOMENMINORSCIENENG.V5.I4.60
Tonso KL, 2006, CULT STUD SCI EDUCAT, V1, P273, DOI 10.1007/s11422-005-9009-2
Van Eck N J., 2020, VOSviewer Manual: Manual for VOSviewer version 1 .6.8. CWTS Meaningful Metrics
Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6
van Raan A, 2019, SPRINGER HBK, P237, DOI 10.1007/978-3-030-02511-3_10
Waltman L, 2020, QUANT SCI STUD, V1, P360, DOI 10.1162/qss_e_00026
Wang MT, 2013, DEV REV, V33, P304, DOI 10.1016/j.dr.2013.08.001
Zhao Dangzhi., 2015, Analysis and Visualization of Citation Networks, DOI DOI 10.2200/S00624ED1V01Y201501ICR039
Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8
Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 63
TC 8
Z9 8
U1 5
U2 30
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9359
EI 1557-9638
J9 IEEE T EDUC
JI IEEE Trans. Educ.
PD NOV
PY 2022
VL 65
IS 4
BP 657
EP 669
DI 10.1109/TE.2022.3160935
EA MAR 2022
PG 13
WC Education, Scientific Disciplines; Engineering, Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Education & Educational Research; Engineering
GA 5T5CV
UT WOS:000778627200001
DA 2024-09-05
ER
PT C
AU Zhang, YF
Wang, Y
Wen, JX
AF Zhang Yafei
Wang Yong
Wen Jingxuan
BE Kuek, M
Cheng, H
Zhao, R
TI Construction of Comprehensive Evaluation Model of Credit Rating of Small
and Medium Enterprises and Empirical Research
SO PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE - WTO & FINANCIAL
ENGINEERING
LA English
DT Proceedings Paper
CT International Conference on WTO and Financial Engineering
CY SEP 15-16, 2013
CL Hangzhou, PEOPLES R CHINA
DE Big data; Small and medium enterprises; Credit rating; RESSET database;
Principal component analysis; Entropy method; Panel exponential
smoothing
AB From the perspective of analysis of big data, based on RESSET database of financial research, authors of this article choose quarterly financial index data of 60 companies in 20 quarters on small and medium board, combining with the selected non financial indicators and use principal component analysis, entropy method, panel exponential smoothing and the analytic hierarchy process (AHP) to construct the comprehensive evaluation model. The survey and empirical evidence have demonstrated that credit rating system designed in this paper can preferably reflect and predict the enterprise's credit rating, and the distribution of credit rating of sample enterprises basically agrees with actual situation in morphology and grade center.
C1 [Zhang Yafei; Wang Yong; Wen Jingxuan] Nanjing Univ Finance & Econ, Sch Finance, Nanjing 210036, Jiangsu, Peoples R China.
C3 Nanjing University of Finance & Economics
CR Bian Ning, 2008, THESIS WUHAN U TECHN
Chen Daidi, 2011, COMP ANAL ENLIGHTENM, P1
Chi Guotai, 2012, FINANCIAL PROBLEM, P63
Hu H.Q., 2012, Bus. Rev., V24, P70
Kang scholar, 2007, J HEBEI U PHILOS SOC, P26
Peng Jiangang, 2009, FINANCIAL THEORY PRA, P2
Xiong Xiaofen, 2007, THESIS WUHAN U TECHN
[熊熊 Xiong Xiong], 2009, [南开管理评论, Nankai Business Review], V12, P92
Yan Chunhong, 2007, THESIS NW POLYTECHNI
Zhi Tang, 2012, TIMES FINANCE, P317
NR 10
TC 0
Z9 0
U1 0
U2 9
PU ST PLUM-BLOSSOM PRESS PTY LTD
PI HAWTHORN EAST
PA STE 4, LEVEL 3, 695 BURKE RD, HAWTHORN EAST, VC 3123, AUSTRALIA
BN 978-0-9874593-5-0
PY 2013
BP 39
EP 47
PG 9
WC Business; Business, Finance; Economics; Management
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics
GA BB2XU
UT WOS:000342522500007
DA 2024-09-05
ER
PT J
AU Shi, XQ
Long, W
Li, YY
Deng, DS
Wei, YL
AF Shi, Xiaoqiu
Long, Wei
Li, Yanyan
Deng, Dingshan
Wei, Yonglai
TI Research on the performance of multi-population genetic algorithms with
different complex network structures
SO SOFT COMPUTING
LA English
DT Article
DE Complex network; Network structure; Multi-population; Genetic algorithm;
Flexible job shop scheduling problem
ID EVOLUTIONARY ALGORITHMS; OPTIMIZATION; COOPERATION; MODELS
AB Genetic algorithm is a frequently used evolutionary algorithm that cannot avoid premature convergence. Multi-population is usually used to overcome this disadvantage, obtaining multi-population genetic algorithm (MGA). If sub-populations and communications among them are considered as nodes and edges, respectively, an MGA can be represented as a complex network. After reviewing previous researches, we find that the network structures used to design MGAs are limited and some parameters (SPS, sub-population size, and SPN, sub-population number) under a certain total individual number (TIN) are always ignored. Using seven network structures (BAnet, BDnet, CTnet, ERnet, HAnet, LCnet, and SWnet) to design MGAs that are used to solve some flexible job shop scheduling problems, how the network structures and parameters affect the performances of MGAs is addressed. The simulation results indicate that: (i) the MGA with ERnet rather than the famous BAnet often performs well although their performances are problem-dependent; (ii) the Hamming distance index proposed here can properly capture the phenomenon that the smaller the average path length, the higher the propagation rate; and (iii) under a certain TIN, their performances first increase and then decrease gradually as SPN increases, and their performances first increase rapidly and then remain almost unchanged as SPS increases.
C1 [Shi, Xiaoqiu] Southwest Univ Sci & Technol, Sch Mfg Sci & Engn, Mianyang 621000, Sichuan, Peoples R China.
[Long, Wei; Li, Yanyan; Deng, Dingshan; Wei, Yonglai] Sichuan Univ, Sch Mfg Sci & Engn, Chengdu 610000, Peoples R China.
C3 Southwest University of Science & Technology - China; Sichuan University
RP Shi, XQ (corresponding author), Southwest Univ Sci & Technol, Sch Mfg Sci & Engn, Mianyang 621000, Sichuan, Peoples R China.
EM shixiaoqiu_scu@163.com
RI 邓, 丁山/ABF-7645-2020; SHI, Xingqiang/D-8625-2011
OI 邓, 丁山/0000-0001-7553-8655; SHI, Xingqiang/0000-0003-2029-1506
FU National Green Manufacturing System Plan [[2017]327]
FX This research was partially supported by the National Green
Manufacturing System Plan ([2017]327).
CR Alba E, 2002, IEEE T EVOLUT COMPUT, V6, P443, DOI 10.1109/TEVC.2002.800880
[Anonymous], 1959, Publicationes Mathematicae
Bai XS, 2018, INFORM SCIENCES, V453, P227, DOI 10.1016/j.ins.2018.04.044
Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509
Berners-Lee T, 2006, SCIENCE, V313, P769, DOI 10.1126/science.1126902
Boccaletti S, 2006, PHYS REP, V424, P175, DOI 10.1016/j.physrep.2005.10.009
Boguñá M, 2009, NAT PHYS, V5, P74, DOI 10.1038/NPHYS1130
BRUCKER P, 1990, COMPUTING, V45, P369, DOI 10.1007/BF02238804
Bryden KM, 2006, IEEE T EVOLUT COMPUT, V10, P550, DOI 10.1109/TEVC.2005.863128
Cantú-Paz E, 2000, IEEE T EVOLUT COMPUT, V4, P216, DOI 10.1109/4235.873233
Chiang TC, 2013, INT J PROD ECON, V141, P87, DOI 10.1016/j.ijpe.2012.03.034
Chu XW, 2010, J PHYS A-MATH THEOR, V43, DOI 10.1088/1751-8113/43/6/065001
Deng ZH, 2018, CHAOS SOLITON FRACT, V114, P151, DOI 10.1016/j.chaos.2018.06.036
Ebel H, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.035103
Garey M. R., 1976, Mathematics of Operations Research, V1, P117, DOI 10.1287/moor.1.2.117
Gasparri A, 2009, INTEL SERV ROBOT, V2, P31, DOI 10.1007/s11370-008-0025-4
Ghemawat P, 2008, MANAGE SCI, V54, P1638, DOI 10.1287/mnsc.1080.0883
Giacobini M, 2005, IEEE T EVOLUT COMPUT, V9, P489, DOI 10.1109/TEVC.2005.850298
Gong YJ, 2015, APPL SOFT COMPUT, V34, P286, DOI 10.1016/j.asoc.2015.04.061
Hauert C, 2004, NATURE, V428, P643, DOI 10.1038/nature02360
Herrera F, 2000, IEEE T EVOLUT COMPUT, V4, P43, DOI 10.1109/4235.843494
Huang S, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3054-z
Ichinose G, 2018, NEW J PHYS, V20, DOI 10.1088/1367-2630/aac2a7
Jalili M, 2011, PHYSICA A, V390, P4588, DOI 10.1016/j.physa.2011.06.053
Kacem I, 2002, IEEE T SYST MAN CY C, V32, P1, DOI 10.1109/TSMCC.2002.1009117
Kang F, 2016, APPL MATH MODEL, V40, P6105, DOI 10.1016/j.apm.2016.01.050
Kang F, 2011, INFORM SCIENCES, V181, P3508, DOI 10.1016/j.ins.2011.04.024
Kim DH, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/5/053022
Kim Y, 2015, J OPER MANAG, V33-34, P43, DOI 10.1016/j.jom.2014.10.006
Krapivsky PL, 2000, PHYS REV LETT, V85, P4629, DOI 10.1103/PhysRevLett.85.4629
Lienig J., 1997, IEEE Transactions on Evolutionary Computation, V1, P29, DOI 10.1109/4235.585890
Lu C, 2017, COMPUT IND ENG, V104, P156, DOI 10.1016/j.cie.2016.12.020
Mateo PM, 2018, APPL SOFT COMPUT, V62, P619, DOI 10.1016/j.asoc.2017.10.042
Mitzenmacher M., 2004, INTERNET MATH, V1, P226, DOI [10.1080/15427951.2004.10129088, DOI 10.1080/15427951.2004.10129088]
Mustafi D, 2019, SOFT COMPUT, V23, P6361, DOI 10.1007/s00500-018-3289-4
Newman M. E. J., 2018, Network: An introduction, V2nd, DOI 10.1093/acprof:oso/9780199206650.001.0001
Nouiri M, 2018, J INTELL MANUF, V29, P603, DOI 10.1007/s10845-015-1039-3
Pastor-Satorras R, 2001, PHYS REV LETT, V86, P3200, DOI 10.1103/PhysRevLett.86.3200
Payne JL, 2009, IEEE T EVOLUT COMPUT, V13, P895, DOI 10.1109/TEVC.2009.2019825
Rauch EM, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.020903
Rivkin JW, 2007, MANAGE SCI, V53, P1068, DOI 10.1287/mnsc.1060.0626
Rivkin JW, 2003, MANAGE SCI, V49, P290, DOI 10.1287/mnsc.49.3.290.12740
Shen XN, 2017, SOFT COMPUT, V21, P6531, DOI 10.1007/s00500-016-2245-4
Shi XQ, 2018, COMPUT INTEL NEUROSC, V2018, DOI 10.1155/2018/4617816
Shirali A, 2018, GENET PROGRAM EVOL M, V19, P505, DOI 10.1007/s10710-018-9326-3
Tettamanzi Andrea., 2001, Soft Computing: Integrating Evolutionary, Neural, and Fuzzy Systems, V1st
Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918
Werfel J, 2004, P NATL ACAD SCI USA, V101, P11019, DOI 10.1073/pnas.0305059101
Wu AC, 2014, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2014/03/P03015
Yamauchi A, 2018, J THEOR BIOL, V441, P58, DOI 10.1016/j.jtbi.2017.12.027
Yu EL, 2010, INFORM SCIENCES, V180, P2815, DOI 10.1016/j.ins.2010.04.008
Zandavi SM, 2019, SOFT COMPUT, V23, P5559, DOI 10.1007/s00500-018-3213-y
Zhang W, 2017, INT J SIMUL MODEL, V16, P313, DOI 10.2507/IJSIMM16(2)CO6
Zhou SY, 2018, PHYS REV E, V98, DOI 10.1103/PhysRevE.98.012303
NR 54
TC 16
Z9 18
U1 1
U2 35
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1432-7643
EI 1433-7479
J9 SOFT COMPUT
JI Soft Comput.
PD SEP
PY 2020
VL 24
IS 17
BP 13441
EP 13459
DI 10.1007/s00500-020-04759-1
EA FEB 2020
PG 19
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA MT2NR
UT WOS:000516032500002
DA 2024-09-05
ER
PT J
AU Yaghtin, M
Sotudeh, H
Nikseresht, A
Mirzabeigi, M
AF Yaghtin, Maryam
Sotudeh, Hajar
Nikseresht, Alireza
Mirzabeigi, Mahdieh
TI Modeling the co-citation dependence on semantic layers of co-cited
documents
SO ONLINE INFORMATION REVIEW
LA English
DT Article
DE Co-citation; Co-opinionatedness; MeSH; Content-based citation analysis;
Natural language processing; Citation proximity index; Semantic
similarity; Syntactic similarity
ID SCIENTIFIC LITERATURE; CITATION; SIMILARITY
AB Purpose - Co-citation frequency, defined as the number of documents co-citing two articles, is considered as a quantitative, and thus, an efficient proxy of subject relatedness or prestige of the co-cited articles.
Despite its quantitative nature, it is found effective in retrieving and evaluating documents, signifying its linkage with the related documents' contents. To better understand the dynamism of the citation network, the present study aims to investigate various content features giving rise to the measure. Design/methodology/approach - The present study examined the interaction of different co-citation features in explaining the co-citation frequency. The features include the co-cited works' similarities in their full-texts, Medical Subject Headings (MeSH) terms, co-citation proximity, opinions and co-citances. A test collection is built using the CITREC dataset. The data were analyzed using natural language processing (NLP) and opinion mining techniques. A linear model was developed to regress the objective and subjective contentbased co-citation measures against the natural log of the co-citation frequency.
Findings - The dimensions of co-citation similarity, either subjective or objective, play significant roles in predicting co-citation frequency. The model can predict about half of the co-citation variance. The interaction of co-opinionatedness and non-co-opinionatedness is the strongest factor in the model.
Originality/value - It is the first study in revealing that both the objective and subjective similarities could significantly predict the co-citation frequency. The findings re-confirm the citation analysis assumption claiming the connection between the cognitive layers of cited documents and citation measures in general and the co-citation frequency in particular.
C1 [Yaghtin, Maryam; Sotudeh, Hajar; Nikseresht, Alireza; Mirzabeigi, Mahdieh] Shiraz Univ, Sch Educ & Psychol, Dept Knowledge & Informat Sci, Shiraz, Iran.
C3 Shiraz University
RP Sotudeh, H (corresponding author), Shiraz Univ, Sch Educ & Psychol, Dept Knowledge & Informat Sci, Shiraz, Iran.
EM sotudeh@shirazu.ac.ir
RI Nikseresht, Alireza/GLN-3972-2022; Yaghtin, Maryam/ABE-6954-2021;
Sotudeh, Hajar/D-5718-2016; Mirzabeigi, mahdieh/W-6831-2018
OI Nikseresht, Alireza/0000-0002-4516-0409; Yaghtin,
Maryam/0000-0001-5806-3942; Sotudeh, Hajar/0000-0002-7949-7165;
Mirzabeigi, mahdieh/0000-0002-3256-3153
CR Abu-Jbara A., 2013, NAACL, P596
Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11
Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645
Aljuaid H, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101492
Amadi UP., 2014, EXPLOITING ROLE POLA
Andrejko A, 2009, COMPUT INFORM, V28, P429
[Anonymous], 1990, Introduction to informetrics: Quantitative methods in library, Documentation and Information Science
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
Athar A., 2014, Sentiment analysis of scientific citations, DOI DOI 10.48456/TR-856
BADRAN OM, 1984, P AM SOC INFORM SCI, V21, P137
BICHTELER J, 1980, J AM SOC INFORM SCI, V31, P278, DOI 10.1002/asi.4630310408
Boyack KW, 2013, J AM SOC INF SCI TEC, V64, P1759, DOI 10.1002/asi.22896
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Bradshaw S, 2003, LECT NOTES COMPUT SC, V2769, P499
Bruni E, 2014, J ARTIF INTELL RES, V49, P1, DOI 10.1613/jair.4135
Callahan A, 2010, J AM SOC INF SCI TEC, V61, P1130, DOI 10.1002/asi.21313
Cavalcanti DC, 2011, PROC INT C TOOLS ART, P156, DOI 10.1109/ICTAI.2011.32
Colavizza G, 2018, J ASSOC INF SCI TECH, V69, P600, DOI 10.1002/asi.23981
Di Iorio A., 2013, SePublica, P63
Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256
Ding Y, 2013, J INFORMETR, V7, P583, DOI 10.1016/j.joi.2013.03.003
Dong C., 2011, P 5 INT JOINT C NAT, P623
Doslu M, 2016, SCIENTOMETRICS, V108, P653, DOI 10.1007/s11192-016-1982-6
Elkiss A, 2008, J AM SOC INF SCI TEC, V59, P51, DOI 10.1002/asi.20707
Esuli Andrea., 2006, P 5 C LANG RES EV LR, P417
Eto M., 2012, P 5 ACM WORKSH RES A, P7, DOI DOI 10.1145/2390116.2390121
Eto M., 2014, PROC AM SOC INFORM S, V51, P1
Eto M, 2015, PROCEEDINGS OF THE 15TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL'15), P245, DOI 10.1145/2756406.2756957
Eto M, 2013, SCIENTOMETRICS, V94, P651, DOI 10.1007/s11192-012-0756-z
Ghosh S, 2018, LECT NOTES COMPUT SC, V9624, P292, DOI 10.1007/978-3-319-75487-1_23
Gipp B, 2009, PRO INT CONF SCI INF, V2, P571
Gipp Bela, 2015, ICONFERENCE 2015 P
Goh D., 2007, Social Information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectively: Emerging Technologies and Applications for Searching the Web Effectively: IGI Global
Hamedani MR, 2016, INFORM SCIENCES, V334, P273, DOI 10.1016/j.ins.2015.12.001
Haozhen Zhao, 2014, 2014 IEEE International Conference on Big Data (Big Data), P77, DOI 10.1109/BigData.2014.7004500
Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388
Hsiao T. M., 2017, P ASS INFORM SCI TEC, V54, P170, DOI DOI 10.1002/PRA2.2017
Janssens ACJW, 2015, BMC MED RES METHODOL, V15, DOI 10.1186/s12874-015-0077-z
Jeong YK, 2014, J INFORMETR, V8, P197, DOI 10.1016/j.joi.2013.12.001
Jia M., 2018, THESIS U W ONTARIO
Jochim C., 2012, P COLING 2012, P1343
Kilicoglu H, 2019, J BIOMED INFORM, V91, DOI 10.1016/j.jbi.2019.103123
Larsen, 2015, 2 WORKSH BIBL ENH IN, P14
Lin MF, 2013, INFORM SYST RES, V24, P906, DOI 10.1287/isre.2013.0480
Liu SB, 2014, SCIENTOMETRICS, V101, P1293, DOI 10.1007/s11192-014-1233-7
MACROBERTS MH, 1984, SOC STUD SCI, V14, P91, DOI 10.1177/030631284014001006
Mahalakshmi GS, 2015, SMART INNOV SYST TEC, V33, DOI 10.1007/978-81-322-2202-6_53
Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81
OCONNOR J, 1982, INFORM PROCESS MANAG, V18, P125, DOI 10.1016/0306-4573(82)90036-X
Parthasarathy G, 2014, 2014 5TH INTERNATIONAL CONFERENCE CONFLUENCE THE NEXT GENERATION INFORMATION TECHNOLOGY SUMMIT (CONFLUENCE), P923, DOI 10.1109/CONFLUENCE.2014.6949321
Parthasarathy G., 2015, INDIAN J SCI TECHNOL, V8, P1
Piao SS., 2007, International Workshop on Computational Semantics (IWCS), P366
Ritchie A., 2008, P 17 ACM C INF KNOWL, P213, DOI DOI 10.1145/1458082.1458113
Ritchie A., 2009, THESIS U CAMBRIDGE
Rodriguez-Prieto O, 2019, SCIENTOMETRICS, V120, P105, DOI 10.1007/s11192-019-03125-9
S Harispe, 2015, SYNTHESIS LECT HUMAN, V8, P1
Sanguri K, 2020, SCIENTOMETRICS, V125, P233, DOI 10.1007/s11192-020-03608-0
Saraçoglu R, 2007, EXPERT SYST APPL, V33, P600, DOI 10.1016/j.eswa.2006.06.002
Saric F., 2012, SEM 2012 1 JOINT C L, P441
Schäfer U, 2010, IEEE INT C SEMANT CO, P317, DOI 10.1109/ICSC.2010.40
Schneider J.W., 2014, STI 2014, P551
Segaran T., 2007, Programming Collective Intelligence: Building Smart Web 2.0 Applications
Sendhilkumar S., 2013, P INT C ICCSEA, P411
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Small H., 1982, PROGR COMMUNICATION, V3, P287
Small H, 2011, SCIENTOMETRICS, V87, P373, DOI 10.1007/s11192-011-0349-2
SMALL HG, 1978, SOC STUD SCI, V8, P327, DOI 10.1177/030631277800800305
Su MS, 2001, IEEE T PATTERN ANAL, V23, P674, DOI 10.1109/34.927466
Teufel S., 2009, P 7 SIGDIAL WORKSH D, P80
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Thelwall M, 2014, J INFORMETR, V8, P963, DOI 10.1016/j.joi.2014.09.011
Wang B., 2018, DATA INFORM MANAGEME, V2, P70, DOI [10.2478/dim-2018-0009, DOI 10.2478/DIM-2018-0009]
White H.D., 2016, P 3 WORKSHOP BIBLIOM, P63
Wilson T., 2005, Proceedings of HLT/EMNLP on Interactive Demonstrations -, P34
Yaghtin M., 2019, INT J INTEGRATED SUP, V17, P19
Yaghtin M, 2019, SCIENTOMETRICS, V119, P987, DOI 10.1007/s11192-019-03058-3
Yan EJ, 2020, J ASSOC INF SCI TECH, V71, P314, DOI 10.1002/asi.24237
Yoon SH, 2016, INFORM SCIENCES, V326, P25, DOI 10.1016/j.ins.2015.07.036
Yu Bei., 2013, P 76 ASIST ANN M CLO, P1, DOI [10.1002/meet.14505001084, DOI 10.1002/MEET.14505001084]
NR 79
TC 2
Z9 2
U1 5
U2 42
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 1468-4527
EI 1468-4535
J9 ONLINE INFORM REV
JI Online Inf. Rev.
PD JAN 25
PY 2022
VL 46
IS 1
BP 59
EP 78
DI 10.1108/OIR-04-2020-0126
EA MAY 2021
PG 20
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA YT5WW
UT WOS:000649782500001
DA 2024-09-05
ER
PT S
AU Vaaler, PM
Aguilera, RV
Flores, R
AF Vaaler, Paul M.
Aguilera, Ruth V.
Flores, Ricardo
BE Ketchen, DJ
Bergh, DD
TI NEW METHODS FOR EX POST EVALUATION OF REGIONAL GROUPING SCHEMES
IN INTERNATIONAL BUSINESS RESEARCH: A SIMULATED ANNEALING APPROACH
SO RESEARCH METHODOLOGY IN STRATEGY AND MANAGEMENT, VOL 4
SE Research Methodology in Strategy and Management
LA English
DT Article; Book Chapter
ID MULTINATIONAL-ENTERPRISES; NATIONAL CULTURE; OPTIMIZATION; GLOBE;
GLOBALIZATION; CONSEQUENCES; PERFORMANCE; INVESTMENT; COUNTRIES;
STRATEGY
AB International business research has long acknowledged the importance of regional factors for foreign direct investment (FDI) by multinational corporations (MNCs). However, significant differences when defining these regions obscure the analysis about how and why regions matter. In response, we develop and empirically document support for a framework to evaluate alternative regional grouping schemes. We demonstrate application of this evaluative framework using data on the global location decisions by US-based MNCs from 1980 to 2000 and two alternative regional grouping schemes. We conclude with discussion of implications for future academic research related to understanding the impact of country groupings on MNC FDI decisions.
C1 [Vaaler, Paul M.; Aguilera, Ruth V.; Flores, Ricardo] Coll Business, Dept Business Adm, Champaign, IL USA.
RP Vaaler, PM (corresponding author), Coll Business, Dept Business Adm, Champaign, IL USA.
RI Flores, Ricardo G/H-2351-2013; AGUILERA, Ruth/GSE-3899-2022; Vaaler,
Paul/H-9703-2017
OI Flores, Ricardo G/0000-0003-2510-6840; AGUILERA,
Ruth/0000-0002-1144-1499; Vaaler, Paul/0000-0002-3566-6764
CR Abramson P.R., 1995, Value change in global perspective
Aerts JCJH, 2002, INT J GEOGR INF SCI, V16, P571, DOI 10.1080/13658810210138751
Agmon T, 2003, J INT BUS STUD, V34, P416, DOI 10.1057/palgrave.jibs.8400041
Aguilera R.V., 2007, INT STRATEGIC MANAGE
Aguilera RV, 2004, ORGAN STUD, V25, P415, DOI 10.1177/0170840604040669
Alrefaei MH, 1999, MANAGE SCI, V45, P748, DOI 10.1287/mnsc.45.5.748
ANGEL JL, 2001, DIRECTORY AM FIRMS O, V1
ANGEL JL, 1991, DIRECTORY AM FIRMS O, V1
[Anonymous], 2005, WORLD INVESTMENT REP
[Anonymous], 1999, AGGREGATING GOVERNAN
[Anonymous], 2004, Journal of International Management, DOI DOI 10.1016/J.INTMAN.2004.08.007
Berkowitz D, 2003, EUR ECON REV, V47, P165, DOI 10.1016/S0014-2921(01)00196-9
Bird A., 2003, Journal of International Management, V9, P395, DOI [10.1016/j.intman.2003.08.003, DOI 10.1016/J.INTMAN.2003.08.003]
Brodbeck FC, 2000, J OCCUP ORGAN PSYCH, V73, P1, DOI 10.1348/096317900166859
Buckley PJ, 2004, J INT BUS STUD, V35, P81, DOI 10.1057/palgrave.jibs.8400076
Carley KM, 1996, SOCIOL METHOD RES, V25, P138, DOI 10.1177/0049124196025001005
Chetty S, 2006, J INT BUS STUD, V37, P699, DOI 10.1057/palgrave.jibs.8400214
CLARK RP, 1997, GLOBAL IMPERATIVE
Clark T., 2003, J OFINTERNATIONAL MA, V9, P361, DOI DOI 10.1016/J.INTMAN.2003.08.007
Dicken P., 1998, GLOBAL SHIFT
Dow D, 2006, J INT BUS STUD, V37, P578, DOI 10.1057/palgrave.jibs.8400221
Dunning J.H., 2001, The Oxford Handbook of International Business
Dunning JH, 1998, J INT BUS STUD, V29, P45, DOI 10.1057/palgrave.jibs.8490024
Dunning JH, 2007, J INT BUS STUD, V38, P177, DOI 10.1057/palgrave.jibs.8400241
Earley PC, 2006, J INT BUS STUD, V37, P922, DOI 10.1057/palgrave.jibs.8400236
EDEN L, 2006, GREAT CIRCLE DISTANC
Elkins Z, 2006, INT ORGAN, V60, P811, DOI 10.1017/S0020818306060279
FLORES R, 2007, J INT BUSIN IN PRESS
Fox I, 1997, STATISTICAL MODELS FOR STRATEGIC MANAGEMENT, P81
FURNHAM A, 1994, HUM RELAT, V47, P119, DOI 10.1177/001872679404700106
Gatignon H., 2004, The Insead-Wharton Alliance on Globalizing: Strategies for Building Successful Global Business
GERINGER JM, 1989, STRATEGIC MANAGE J, V10, P109
Giddens A., 1999, Runaway World: How Globalisation is Reshaping Our Lives
Globerman S, 2003, J INT BUS STUD, V34, P19, DOI 10.1057/palgrave.jibs.8400001
GOFFE WL, 1994, J ECONOMETRICS, V60, P65, DOI 10.1016/0304-4076(94)90038-8
Guiso L, 2006, J ECON PERSPECT, V20, P23, DOI 10.1257/jep.20.2.23
Gupta V, 2002, J WORLD BUS, V37, P11, DOI 10.1016/S1090-9516(01)00070-0
HAN BT, 1994, INFORM DECIS TECHNOL, V19, P393
Held David., 2000, GLOBALIZING WORLD CU
Hofstede G., 1991, Cultures and organizations, DOI DOI 10.1016/S0005-7967(02)00184-5
Hofstede G, 2006, J INT BUS STUD, V37, P882, DOI 10.1057/palgrave.jibs.8400233
House R, 2002, J WORLD BUS, V37, P3, DOI 10.1016/S1090-9516(01)00069-4
Javidan M, 2006, J INT BUS STUD, V37, P897, DOI 10.1057/palgrave.jibs.8400234
Katrishen FA, 1998, J INT BUS STUD, V29, P305, DOI 10.1057/palgrave.jibs.8490038
Kirkman BL, 2006, J INT BUS STUD, V37, P285, DOI 10.1057/palgrave.jibs.8400202
KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671
KOGUT B, 1988, J INT BUS STUD, V19, P411, DOI 10.1057/palgrave.jibs.8490394
Krishna P, 1998, Q J ECON, V113, P227, DOI 10.1162/00335539851144162
Kwok CCY, 2006, J INT BUS STUD, V37, P227, DOI 10.1057/palgrave.jibs.8400188
La Porta R, 1999, J LAW ECON ORGAN, V15, P222, DOI 10.1093/jleo/15.1.222
La Porta R, 1998, J POLIT ECON, V106, P1113, DOI 10.1086/250042
Lenartowicz T, 2003, J INT BUS STUD, V34, P266, DOI 10.1057/palgrave.jibs.8400032
Leung K, 2005, J INT BUS STUD, V36, P357, DOI 10.1057/palgrave.jibs.8400150
LONGMAN X, 1995, DICT CONT ENGLISH
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114
North D. C., 1990, I I CHANGE EC PERFOR, DOI DOI 10.1017/CBO9780511808678
Ohmae Kenichi., 1985, TRIAD POWER COMING S
Press W. H., 2002, Numerical recipes in C++
Reynolds ThomasH., 1989, FOREIGN LAW CURRENT
RONEN S, 1985, ACAD MANAGE REV, V10, P435, DOI 10.2307/258126
Rugman A.M., 2005, MIR MANAGEMENT INT R, P5
Rugman Alan., 2005, REGIONAL MULTINATION
Rugman AM, 2007, J INT BUS STUD, V38, P200, DOI 10.1057/palgrave.jibs.8400242
Rugman AM, 2004, J INT BUS STUD, V35, P3, DOI 10.1057/palgrave.jibs.8400073
Semmler W, 1996, J ECON BEHAV ORGAN, V30, P301, DOI 10.1016/S0167-2681(96)00872-4
Short JC, 2007, STRATEGIC MANAGE J, V28, P147, DOI 10.1002/smj.574
Smith PB, 2006, J INT BUS STUD, V37, P915, DOI 10.1057/palgrave.jibs.8400235
*UN, 2007, WORLD REG
Vaaler PA, 2004, ORGAN SCI, V15, P687, DOI 10.1287/orsc.1040.0089
Wei S.J., 1997, REGIONAL TRADING BLO
NR 70
TC 2
Z9 2
U1 0
U2 1
PU EMERALD GROUP PUBLISHING LIMITED
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY, W YORKSHIRE BD16 1WA, ENGLAND
SN 1479-8387
BN 978-0-7623-1404-1
J9 RES METHOD STRAT MAN
PY 2007
VL 4
BP 161
EP 190
DI 10.1016/S1479-8387(07)04007-6
PG 30
WC Management
WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH)
SC Business & Economics
GA BLR18
UT WOS:000270845100008
DA 2024-09-05
ER
PT J
AU Schwenke, T
Holzkämper, E
AF Schwenke, Theresa
Holzkamper, Eike
TI Social (-Ecological) Network Analysis in Environmental Governance:
Central Publications, Important Concepts, and Areas of Application
SO HUMAN ECOLOGY REVIEW
LA English
DT Article
DE bibliometric network analysis; environmental management; Latent
Dirichlet Allocation; social network analysis; topic detection
ID STAKEHOLDER ANALYSIS; WATER GOVERNANCE; CLIMATE-CHANGE; INSIGHTS;
COLLABORATION; MANAGEMENT; COASTAL; POLICY; FOREST; TOOL
AB Social and social-ecological network analysis (S(E)NA) have recently emerged as new methods in the environmental governance (EG) literature. By investigating networks of connections between actors, S(E)NA advances the understanding ofwho is involved in EG and how. We provide an overview of the EG literature applying S(E)NA and map (1) the citation network emerging from cross-references and (2) the similarity network emerging from word similarities between publications. We show that S(E)NA application in EG is in the process of developing into a field of research where publications frequently cite each other. We identify 20 publications which occupy positions as sources, storers, or bridges of knowledge in the citation network. While we see S(E)NA applied in diverse resource contexts, these are mainly discussed on the local spatial level, with a focus on "policy" or "collaboration." We discover that "power structures" and "the production of knowledge" are themes influencing the whole field.
C1 [Schwenke, Theresa; Holzkamper, Eike] Leibniz Ctr Trop Marine Res, Social Ecol Syst Anal Working Grp, Dept Social Sci, Bremen, Germany.
C3 Leibniz Zentrum fur Marine Tropenforschung (ZMT)
RP Schwenke, T (corresponding author), Leibniz Ctr Trop Marine Res, Social Ecol Syst Anal Working Grp, Dept Social Sci, Bremen, Germany.
EM theresa.schwenke@leibniz-zmt.de
CR Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9
Alexander S, 2015, THESIS
[Anonymous], 2009, Social Network Analysis. Methods and Applications
Armitage D, 2012, CONSERV LETT, V5, P245, DOI 10.1111/j.1755-263X.2012.00238.x
Baggio JA, 2015, ECOL SOC, V20, DOI 10.5751/ES-07484-200202
Balint P.J., 2011, WICKED ENV PROBLEMS, DOI DOI 10.5822/978-1-61091-047-7
Barnett GA, 2011, SCIENTOMETRICS, V88, P449, DOI 10.1007/s11192-011-0381-2
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bodin Ö, 2017, POLICY STUD J, V45, P289, DOI 10.1111/psj.12146
Bodin Ö, 2012, GLOBAL ENVIRON CHANG, V22, P430, DOI 10.1016/j.gloenvcha.2012.01.005
Bodin Ö, 2009, GLOBAL ENVIRON CHANG, V19, P366, DOI 10.1016/j.gloenvcha.2009.05.002
Borg R, 2015, FOREST POLICY ECON, V50, P90, DOI 10.1016/j.forpol.2014.06.008
Borgatti StephenP., 2002, UCINET for Windows. Version 6.178
Borrini-Feyerabend G, 2011, COMANAGEMENT SHARED, P5
Bulkeley H, 2005, POLIT GEOGR, V24, P875, DOI 10.1016/j.polgeo.2005.07.002
Chiesura A, 2003, ECOL ECON, V44, P219, DOI 10.1016/S0921-8009(02)00275-6
Cohen PJ, 2012, CONSERV LETT, V5, P376, DOI 10.1111/j.1755-263X.2012.00255.x
Crona B., 2011, Social Networks and Natural Resource Management: Uncovering the Social Fabric in Environmental Governance, P44, DOI [10.1017/CBO9780511894985.004, DOI 10.1017/CBO9780511894985.004]
CUMMINGS MM, 1973, AM SCI, V61, P163
Fliervoet JM, 2016, ENVIRON MANAGE, V57, P355, DOI 10.1007/s00267-015-0606-x
Folke C, 2005, ANNU REV ENV RESOUR, V30, P441, DOI 10.1146/annurev.energy.30.050504.144511
FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7
FREEMAN LC, 1991, SOC NETWORKS, V13, P141, DOI 10.1016/0378-8733(91)90017-N
Galik CS, 2017, J ENVIRON MANAGE, V198, P75, DOI 10.1016/j.jenvman.2017.04.043
Garfield E, 2004, J INF SCI, V30, P119, DOI 10.1177/0165551504042802
Glaeser B, 2016, REG ENVIRON CHANGE, V16, P367, DOI 10.1007/s10113-015-0817-y
Glasbergen P., 1998, COOPERATIVE ENV GOVE, P1, DOI DOI 10.1007/978-94-011-5143-6_1
GRANOVETTER MS, 1973, AM J SOCIOL, V78, P1360, DOI 10.1086/225469
Gropp C, 2019, IEEE INT CONF BIG DA, P4503, DOI 10.1109/BigData47090.2019.9005964
Hanneman R. A., 2005, INTRO SOCIAL NETWORK
Hauck J, 2015, GLOBAL ENVIRON CHANG, V35, P400, DOI 10.1016/j.gloenvcha.2015.09.022
Huang A., 2008, NZCSRSC 2008
Ingold K, 2014, GLOBAL ENVIRON CHANG, V24, P88, DOI 10.1016/j.gloenvcha.2013.11.021
Jacomy M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098679
Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140
Kuzdas C, 2015, WORLD DEV, V66, P254, DOI 10.1016/j.worlddev.2014.08.018
Larsen B., 1999, P 5 ACM SIGKDD INT C, DOI DOI 10.1145/312129.312186
Lebel L, 2006, ECOL SOC, V11
Lee M, 2003, I AN DEV MIN C
Leydesdorff L, 2007, J AM SOC INF SCI TEC, V58, P1303, DOI 10.1002/asi.20614
Lienert J, 2013, J ENVIRON MANAGE, V125, P134, DOI 10.1016/j.jenvman.2013.03.052
Lipschutz R, 2009, ENV GOVERNANCE POWER, DOI [10.4324/9780203880104, DOI 10.4324/9780203880104]
Lopez Jose., 2000, SOCIAL STRUCTURE
Luthe T, 2012, REG ENVIRON CHANGE, V12, P839, DOI 10.1007/s10113-012-0294-5
Marin A, 2011, The SAGE handbook of social network analysis, P25, DOI DOI 10.4135/9781446294413.N2
Mierswa I, 2018, Data Science, Machine Learning, Predictive Analytics
Mills M, 2014, BIOL CONSERV, V169, P6, DOI 10.1016/j.biocon.2013.10.015
Muñoz-Erickson TA, 2016, CURR OPIN ENV SUST, V18, P56, DOI 10.1016/j.cosust.2015.08.013
Nakazawa R, 2018, J VISUAL-JAPAN, V21, P681, DOI 10.1007/s12650-018-0483-5
Le NP, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10072314
Ostrom E., 1992, CRAFTING I SELF GOVE
Paavola J, 2007, ECOL ECON, V63, P93, DOI 10.1016/j.ecolecon.2006.09.026
Pattberg P, 2015, MILLENNIUM-J INT ST, V43, P684, DOI 10.1177/0305829814561773
Pietri DM, 2015, GLOBAL ENVIRON CHANG, V33, P165, DOI 10.1016/j.gloenvcha.2015.05.005
Prell C, 2009, SOC NATUR RESOUR, V22, P501, DOI 10.1080/08941920802199202
Romolini M, 2013, LANDSCAPE URBAN PLAN, V120, P190, DOI 10.1016/j.landurbplan.2013.08.008
Ruzol C, 2017, GLOBAL ENVIRON CHANG, V45, P183, DOI 10.1016/j.gloenvcha.2017.06.009
Sayles JS, 2017, J ENVIRON MANAGE, V186, P64, DOI 10.1016/j.jenvman.2016.09.085
Schoon M, 2017, REG ENVIRON CHANGE, V17, P677, DOI 10.1007/s10113-016-1060-x
Scott M, 2015, PROG HUM GEOG, V39, P449, DOI 10.1177/0309132514554322
SHAW R, 1981, Z NATURFORSCH A, V36, P80
Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005
Stein C, 2011, PHYS CHEM EARTH, V36, P1085, DOI 10.1016/j.pce.2011.07.083
van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006
Venturini T., 2015, VISUAL NETWORK ANAL
Ware M., 2015, An overview of scientific and scholarly journal publishing
Weiss K, 2012, GLOBAL ENVIRON CHANG, V22, P178, DOI 10.1016/j.gloenvcha.2011.09.007
Wijkman Anders., 2013, Bankrupting Nature: Denying Our Planetary Boundaries, V1st, DOI DOI 10.4324/9780203107980
Young OR., 2016, ENV GOVERNANCE SUSTA, DOI [10.4324/9781315633176, DOI 10.4324/9781315633176]
Zhang Y, 2010, INT J MACH LEARN CYB, V1, P43, DOI 10.1007/s13042-010-0001-0
Zhuge H, 2016, COMPUT SCI REV TR, P1
NR 73
TC 2
Z9 2
U1 8
U2 30
PU ANU PRESS
PI ACTON
PA RG MENZIES LIBRARY, BLDG 2, AUSTRALIAN NATL UNIV, ACTON, ACT 2601 AP,
AUSTRALIA
SN 1074-4827
EI 2204-0919
J9 HUM ECOL REV
JI Hum. Ecol. Rev.
PY 2020
VL 26
IS 2
BP 103
EP 145
PG 43
WC Environmental Studies; Sociology
WE Social Science Citation Index (SSCI)
SC Environmental Sciences & Ecology; Sociology
GA XN0CO
UT WOS:000729183300006
DA 2024-09-05
ER
PT J
AU Van Eck, NJ
Waltman, L
AF Van Eck, Nees Jan
Waltman, Ludo
TI Bibliometric mapping of the computational intelligence field
SO INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED
SYSTEMS
LA English
DT Article
DE bibliometrics; bibliometric mapping; computational intelligence; neural
networks; fuzzy systems; evolutionary computation
ID DISCIPLINE; JACKKNIFE; SCIENCE; MAPS
AB In this paper, a bibliometric study of the computational intelligence field is presented. Bibliometric maps showing the associations between the main concepts in the field are provided for the periods 1996-2000 and 2001-2005. Both the current structure of the field and the evolution of the field over the last decade are analyzed. In addition, a number of emerging areas in the fild are identified. It turns out that the computational intelligence can best be seen as a field that is structured around four important types of problems, namely control problems, classification problems, regression problemsm and optimization problems. Within the computational intelligence field, the neural networks and fuzzy systems sudfields are fairly intertwined, whereas the evolutionary computation subfield has a relatively independent postion.
C1 Erasmus Univ, Erasmus Sch Econ, Inst Econometr, NL-3000 DR Rotterdam, Netherlands.
C3 Erasmus University Rotterdam; Erasmus University Rotterdam - Excl
Erasmus MC
RP Van Eck, NJ (corresponding author), Erasmus Univ, Erasmus Sch Econ, Inst Econometr, PO Box 1738, NL-3000 DR Rotterdam, Netherlands.
EM nvaneck@few.eur.nl; waltman@few.eur.nl
RI van Eck, Nees Jan/B-6042-2008; White, Howard D./A-7034-2009; Waltman,
Ludo/B-5561-2008
OI van Eck, Nees Jan/0000-0001-8448-4521; Waltman, Ludo/0000-0001-8249-1752
CR Borg I., 2005, Modern multidimensional scaling: theory and applications
Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
Chen C., 2006, Information visualization: Beyond the horizon
DELEEUW J, 1986, J CLASSIF, V3, P97, DOI 10.1007/BF01896814
Engelbrecht A.P., 2003, Computational Intelligence: an Introduction
HEISER WJ, 1983, J ECONOMETRICS, V22, P139, DOI 10.1016/0304-4076(83)90097-0
HEISER WJ, 1983, APPL PSYCH MEAS, V7, P381, DOI 10.1177/014662168300700402
HINZE S, 1994, SCIENTOMETRICS, V29, P353, DOI 10.1007/BF02033445
Justeson J.S., 1995, Natural Language Engineering, V1, P9, DOI [DOI 10.1017/S1351324900000048, 10.1017/S1351324900000048]
Konar A., 2005, COMPUTATIONAL INTELL
MCCAIN KW, 1990, J AM SOC INFORM SCI, V41, P433, DOI 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q
NOVAK J.D., 1988, APRENDIENDO APRENDER
Noyons ECM, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P237
Noyons ECM, 1998, J AM SOC INFORM SCI, V49, P68, DOI 10.1002/(SICI)1097-4571(1998)49:1<68::AID-ASI9>3.0.CO;2-1
PETERS HPF, 1993, RES POLICY, V22, P23, DOI 10.1016/0048-7333(93)90031-C
RIP A, 1984, SCIENTOMETRICS, V6, P381, DOI 10.1007/BF02025827
Scott D.W., 2015, Multivariate density estimation, DOI 10.1002/9780470316849
Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299
van Eck NJ, 2006, IEEE COMPUT INTELL M, V1, P6, DOI 10.1109/CI-M.2006.248043
van Eck NJ, 2006, INFORMATION VISUALIZATION-BOOK, P270
VANECK NJ, 2006, P 2006 IEEE INT C FU, P7862
VANRAAN AFJ, 1993, SCIENTOMETRICS, V26, P169, DOI 10.1007/BF02016799
WEINBERG SL, 1984, PSYCHOMETRIKA, V49, P475, DOI 10.1007/BF02302586
White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W
NR 24
TC 176
Z9 184
U1 5
U2 69
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0218-4885
EI 1793-6411
J9 INT J UNCERTAIN FUZZ
JI Int. J. Uncertainty Fuzziness Knowl.-Based Syst.
PD OCT
PY 2007
VL 15
IS 5
BP 625
EP 645
DI 10.1142/S0218488507004911
PG 21
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA 238DG
UT WOS:000251426900008
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Zhang, H
Yang, S
Guo, L
Zhao, Y
Shao, F
Chen, F
AF Zhang, Hui
Yang, Sheng
Guo, Li
Zhao, Yang
Shao, Fang
Chen, Feng
TI Comparisons of isomiR patterns and classification performance using the
rank-based MANOVA and 10-fold cross-validation
SO GENE
LA English
DT Article
DE Differential expression; IsomiR pattems; Classification performance;
miRNA sequencing research
ID DIFFERENTIAL EXPRESSION ANALYSIS; ARM SELECTION; RNA-SEQ; MICRORNAS;
EVENTS; MIRNAS
AB Next generation sequencing technology has identified a series of miRNA variants (named "isomiRs"), which might be associated with cancer progression. We provide a new strategy to reanalyze the miR-seq datasets through a view of the isomiR spectrum. Firstly, differentially expressed (DE) isomiRs were detected with the DESeq algorithm based on negative binomial distribution. Secondly, the rank-based MANOVA was adopted to compare the isomiR patterns between normal and tumor tissues. Moreover, a comprehensive survey on classification performance of three features was conducted, including the logistic regression, k-nearest neighbors and Random Forest. Finally, functional enrichment analysis was performed with the putative targets of specific isomiRs to elucidate their biological functions. Furthermore, the methods were applied to the downloaded miR-seq datasets of breast invasive carcinoma from TCGA. We found that the expression levels of multiple isomiRs derived from the same miRNA locus showed significant inconsistency between normal and tumor samples. In most cases, logistic regression with multiple DE isomiRs was superior to the others, with highest ADC and lowest AIC. Similarly, DE isomiRs performed best in the average accuracy of standard classifiers. Integrated targets were significantly enriched in some cancer-related pathways, including MAPK signaling pathway, and focal adhesion. Collectively, we could recommend the rank-based MANOVA for comparing different isomiR patterns, and further investigation on isomiRs needs to be considered in miRNA sequencing research. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Zhang, Hui; Yang, Sheng; Guo, Li; Zhao, Yang; Shao, Fang; Chen, Feng] Nanjing Med Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Nanjing 211166, Jiangsu, Peoples R China.
C3 Nanjing Medical University
RP Chen, F (corresponding author), Nanjing Med Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Nanjing 211166, Jiangsu, Peoples R China.
EM fengchen@njmu.edu.cn
OI Chen, Feng/0000-0002-2699-7190; Zhang, Hui/0000-0002-5172-4039
FU National Natural Science Foundation of China [61301251, 81473070,
81373102]; Research Fund for the Doctoral Program of Higher Education of
China [211323411002, 20133234120009]; National Natural Science
Foundation of Jiangsu [BK20130885]; Natural Science Foundation of the
Jiangsu Higher Education Institutions [12KJB310003, 13KJB330003,
14KJA310002]; Priority Academic Program Development of Jiangsu Higher
Education Institutions (PAPD); Research and Innovation Project for
College Graduates of Jiangsu Province [944]
FX This work was supported by the National Natural Science Foundation of
China (Nos. 61301251, 81473070 and 81373102), the Research Fund for the
Doctoral Program of Higher Education of China (Nos. 211323411002 and
20133234120009), the National Natural Science Foundation of Jiangsu (No.
BK20130885), the Natural Science Foundation of the Jiangsu Higher
Education Institutions (Nos.12KJB310003, 13KJB330003, and 14KJA310002),
the Priority Academic Program Development of Jiangsu Higher Education
Institutions (PAPD) and the Research and Innovation Project for College
Graduates of Jiangsu Province (No. 944).
CR Anders S, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-10-r106
Bajan Sarah, 2014, Microrna, V3, P10
Baran-Gale J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073240
Burroughs AM, 2010, GENOME RES, V20, P1398, DOI 10.1101/gr.106054.110
Chan YT, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058169
Chang HT, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-S7-S18
Cheng WC, 2013, NUCLEIC ACIDS RES, V41, pD285, DOI 10.1093/nar/gks1238
Cloonan N, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-12-r126
Falcon S, 2007, BIOINFORMATICS, V23, P257, DOI 10.1093/bioinformatics/btl567
Fernandez-Valverde SL, 2010, RNA, V16, P1881, DOI 10.1261/rna.2379610
Fu SW, 2011, J CANCER, V2, P116, DOI 10.7150/jca.2.116
Griffiths-Jones S, 2006, NUCLEIC ACIDS RES, V34, pD140, DOI 10.1093/nar/gkj112
Guo L, 2014, GENE, V544, P1, DOI 10.1016/j.gene.2014.04.039
Guo L, 2014, GENE, V533, P149, DOI 10.1016/j.gene.2013.09.102
Guo L, 2013, MOL BIOL REP, V40, P2175, DOI 10.1007/s11033-012-2277-5
Guo L, 2012, MOL BIOL REP, V39, P6699, DOI 10.1007/s11033-012-1493-3
Guo L, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021072
Hardcastle TJ, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-422
Li SC, 2012, BMC SYST BIOL, V6, DOI 10.1186/1752-0509-6-S2-S14
Li SC, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-S1-S13
Li SC, 2011, GENOMICS, V98, P453, DOI 10.1016/j.ygeno.2011.08.008
Marioni JC, 2008, GENOME RES, V18, P1509, DOI 10.1101/gr.079558.108
McCarthy DJ, 2012, NUCLEIC ACIDS RES, V40, P4288, DOI 10.1093/nar/gks042
Neilsen CT, 2012, TRENDS GENET, V28, P544, DOI 10.1016/j.tig.2012.07.005
Tan GC, 2014, NUCLEIC ACIDS RES, V42, P9424, DOI 10.1093/nar/gku656
NR 25
TC 25
Z9 29
U1 0
U2 20
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0378-1119
EI 1879-0038
J9 GENE
JI Gene
PD SEP 10
PY 2015
VL 569
IS 1
BP 21
EP 26
DI 10.1016/j.gene.2014.11.026
PG 6
WC Genetics & Heredity
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Genetics & Heredity
GA CN4IS
UT WOS:000358394400004
PM 25447923
DA 2024-09-05
ER
PT C
AU Novotná, T
AF Novotna, Tereza
BE Schweighofer, E
TI Human Evaluation Experiment of Legal Information Retrieval Methods
SO LEGAL KNOWLEDGE AND INFORMATION SYSTEMS
SE Frontiers in Artificial Intelligence and Applications
LA English
DT Proceedings Paper
CT 34th Annual International Conference on Legal Knowledge and Information
Systems (JURIX)
CY DEC 08-10, 2021
CL Mykolas Romeris Univ, ELECTR NETWORK
HO Mykolas Romeris Univ
DE human evaluation; court decisions retrieval; doc2vec; citation analysis;
LDA; multilayered approach
AB In this article, I present the results of the human evaluation experiment of three commonly used methods in legal information retrieval and a new "multilayered" approach. I use the doc2vec model, citation network analysis and two topic modelling algorithms for the Czech Supreme Court decisions retrieval and evaluate their performance. To improve the accuracy of the results of these methods, I combine the methods in a "multilayered" way and perform the subsequent evaluation. Both evaluation experiments are conducted with a group of legal experts to assess the applicability and usability of the methods for legal information retrieval. The combination of the doc2vec and citations is found satisfactory accurate for practical use for the Czech court decisions retrieval.
C1 [Novotna, Tereza] Masaryk Univ, Inst Law & Technol, Brno, Czech Republic.
C3 Masaryk University Brno
RP Novotná, T (corresponding author), Masaryk Univ, Inst Law & Technol, Brno, Czech Republic.
EM tereza.novotna@law.muni.cz
RI Novotná, Tereza/JNR-9159-2023
OI Novotná, Tereza/0000-0002-1426-4547
FU ERDF project "Internal grant agency of Masaryk University"
[CZ.02.2.69/0.0/0.0/19 073/0016943]
FX I acknowledge the support of the ERDF project "Internal grant agency of
Masaryk University" (No. CZ.02.2.69/0.0/0.0/19 073/0016943). I would
like to thank Jakub Hara.sta for consultations and ideas for this
research.
CR Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Fowler JH, 2007, POLIT ANAL, V15, P324, DOI 10.1093/pan/mpm011
Geist A, 2010, EUR J LEG STUD, V2, P137
Harasta J., 2020, Revue pro pravo a technologie, V11, P219
Harasta J, 2020, Arxiv, DOI arXiv:2002.02224
Kumar R., 2012, International Journal of Computer Science and Telecommunications, V3, P114
Kumar S., 2014, Doctoral dissertation, Ph. D. thesis
Lu Qiang., 2011, Proc. of CIKM'11, P383
Novotna T., 2020, ASAIL 2020 Automated Semantic Analysis of Information in Legal Text
Novotna T., 2020, Masaryk Univ. J. Law Technol., V14, P105, DOI [10.5817/MUJLT2020-1-5, DOI 10.5817/MUJLT2020-1-5]
Novotna T, 2019, Arxiv, DOI arXiv:1910.09513
Le Q, 2014, PR MACH LEARN RES, V32, P1188
Renjit S., 2019, P FIRE, P12
NR 13
TC 0
Z9 0
U1 0
U2 0
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 0922-6389
EI 1879-8314
BN 978-1-64368-253-2; 978-1-64368-252-5
J9 FRONT ARTIF INTEL AP
PY 2021
VL 346
BP 131
EP 137
DI 10.3233/FAIA210328
PG 7
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Information Science & Library Science; Law
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science; Government &
Law
GA BW6PH
UT WOS:001180102000018
OA hybrid
DA 2024-09-05
ER
PT J
AU Kolakoti, A
Tadros, M
Ambati, VK
Gudlavalleti, VNS
AF Kolakoti, Aditya
Tadros, Mina
Ambati, Vijay Kumar
Gudlavalleti, Venkata Naga Sai
TI Optimization of biodiesel production, engine exhaust emissions, and
vibration diagnosis using a combined approach of definitive screening
design (DSD) and artificial neural network (ANN)
SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
LA English
DT Article
DE Machine learning; Research operation; Biofuel production; Engine
performance; Engine vibration; Palm oil; Feed forward back propagation
algorithm; Correlation coefficient
ID OIL; PERFORMANCE; MICROALGAE; BIOFUELS
AB In this study, definitive screening design (DSD) optimization and artificial neural network (ANN) modelling techniques are applied for the production of palm oil biodiesel (POBD). These techniques are implemented to examine the vital contributing factors in achieving maximum POBD yield. For this purpose, seventeen experiments are conducted randomly by varying the four contributing factors. The results of DSD optimization reveal that a biodiesel yield of 96.06% is achieved. Also, the experimental results are trained in ANN for predicting the biodiesel yield. The results proved that the prediction capability of ANN is superior, with a high correlation coefficient (R-2) and low mean square error (MSE). Furthermore, the obtained POBD is characterized by significant fuel properties and fatty acid compositions and observed within the standards (ASTM-D675). Finally, the neat POBD is examined for exhaust emissions and engine cylinder vibration analysis. The emissions results confirm a significant drop in NOx (32.46%), HC (40.57%), CO (44.44%), and exhaust smoke (39.65%) compared to diesel fuel at 100% load. Likewise, the engine cylinder vibration measured on top of the cylinder head reveals a low spectral density with low amplitude vibrations observed for POBD at measured loads.
C1 [Kolakoti, Aditya; Ambati, Vijay Kumar; Gudlavalleti, Venkata Naga Sai] Raghu Engn Coll A, Dept Mech Engn, Visakhapatnam, India.
[Tadros, Mina] Univ Lisbon, Ctr Marine Technol & Ocean Engn CENTEC, Inst Super Tecn, Lisbon, Portugal.
[Tadros, Mina] Alexandria Univ, Fac Engn, Naval Architecture & Marine Engn, Alexandria, Egypt.
C3 Universidade de Lisboa; Egyptian Knowledge Bank (EKB); Alexandria
University
RP Tadros, M (corresponding author), Univ Lisbon, Ctr Marine Technol & Ocean Engn CENTEC, Inst Super Tecn, Lisbon, Portugal.; Tadros, M (corresponding author), Alexandria Univ, Fac Engn, Naval Architecture & Marine Engn, Alexandria, Egypt.
EM mina.tadros@centec.tecnico.ulisboa.pt
RI Tadros, Mina/D-1800-2018; Kolakoti, Aditya/AAO-8216-2020; Ambati, Vijay
Kumar/GVS-3304-2022
OI Tadros, Mina/0000-0001-9065-3803; Kolakoti, Aditya/0000-0002-7515-8318;
Ambati, Vijay Kumar/0000-0002-4902-0737
CR Atabani AE, 2013, RENEW SUST ENERG REV, V18, P211, DOI 10.1016/j.rser.2012.10.013
Atadashi IM, 2010, RENEW SUST ENERG REV, V14, P1999, DOI 10.1016/j.rser.2010.03.020
Bai A, 2016, TRANSPORT RES D-TR E, V47, P323, DOI 10.1016/j.trd.2016.06.009
Baudry G, 2018, TRANSPORT RES D-TR E, V63, P291, DOI 10.1016/j.trd.2018.05.012
Elgharbawy AA, 2017, WASTE BIOMASS VALORI, V8, P839, DOI 10.1007/s12649-016-9638-6
Fakudze S, 2021, ENERGY, V236, DOI 10.1016/j.energy.2021.121482
Fangfang F, 2021, SUSTAIN ENERGY TECHN, V46, DOI 10.1016/j.seta.2021.101265
Felix C, 2019, ENRGY PROCED, V158, P1149, DOI 10.1016/j.egypro.2019.01.296
Gupta S, 2022, FUEL, V310, DOI 10.1016/j.fuel.2021.122230
Hoang AT, 2021, SUSTAIN ENERGY TECHN, V47, DOI 10.1016/j.seta.2021.101416
Hoekman SK, 2012, FUEL PROCESS TECHNOL, V96, P237, DOI 10.1016/j.fuproc.2011.12.036
Hundie KB, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e08965
Karthikeyan S, 2017, TRANSPORT RES D-TR E, V50, P385, DOI 10.1016/j.trd.2016.11.028
Kolakoti, 2022, INT J AMBIENT ENERGY, P1, DOI [10.1080/01430750.2022.2103730, DOI 10.1080/01430750.2022.2103730]
Kolakoti A, 2020, J THERM ENG, V6, P712, DOI 10.18186/thermal.796761
Kolakoti A., 2022, Automot. Exp, V5, P3, DOI [10.31603/ae.6171, DOI 10.31603/AE.6171]
Kolakoti A., 2023, COMPUTATIONAL INTELL, DOI [10.1002/9781119865421.ch6, DOI 10.1002/9781119865421.CH6]
Kolakoti A, 2022, ENERGY, V260, DOI 10.1016/j.energy.2022.125054
Kolakoti A, 2022, INT J RENEW ENERGY D, V11, P703, DOI 10.14710/ijred.2022.43627
Kolakoti A, 2021, WORLD J ENG, V18, P805, DOI 10.1108/WJE-01-2021-0010
Kolakoti A, 2023, AUST J MECH ENG, V21, P316, DOI 10.1080/14484846.2020.1842298
Kolakoti A, 2019, BIOFUELS-UK, V10, P591, DOI 10.1080/17597269.2017.1332293
Kumar N, 2013, RENEW SUST ENERG REV, V21, P633, DOI 10.1016/j.rser.2013.01.006
Liyanaarachchi VC, 2021, BIOCHEM ENG J, V173, DOI 10.1016/j.bej.2021.108072
Mahler T, 2019, ELGAR STUD LAW REG, P1, DOI [10.1007/s11356-019-04563-x, 10.4337/9781786435149]
Mishra VK, 2018, BIOFUELS-UK, V9, P273, DOI 10.1080/17597269.2017.1336350
Nawaz A, 2022, BIORESOUR TECH REP, V18, DOI 10.1016/j.biteb.2022.101110
Noor CWM, 2018, RENEW SUST ENERG REV, V94, P127, DOI 10.1016/j.rser.2018.05.031
Panoutsou C, 2021, ENERGY STRATEG REV, V34, DOI 10.1016/j.esr.2021.100633
Piloto-Rodríguez R, 2017, RENEW SUST ENERG REV, V69, P833, DOI 10.1016/j.rser.2016.11.015
Rajendra M, 2009, FUEL, V88, P868, DOI 10.1016/j.fuel.2008.12.008
Rajesh Y., 2019, INT J ENG SCI TECHNO, V11, P48, DOI [10.4314/ijest.v11i2.4, DOI 10.4314/IJEST.V11I2.4]
Rao B.V.A., 2021, HDB RES ADVANCEMENTS, P25, DOI [10.4018/978-1-7998-4939-1.ch002, DOI 10.4018/978-1-7998-4939-1.CH002]
Rao K. Prasada, 2017, Egyptian Journal of Petroleum, V26, P733, DOI 10.1016/j.ejpe.2016.10.003
Rulli MC, 2019, RENEW SUST ENERG REV, V105, P499, DOI 10.1016/j.rser.2018.12.050
Sambasivam KM, 2019, ENVIRON SCI POLLUT R, V26, P31301, DOI 10.1007/s11356-019-06214-7
Simsek S, 2022, ENERGY, V239, DOI 10.1016/j.energy.2021.122389
Soosai MR, 2022, J CLEAN PROD, V367, DOI 10.1016/j.jclepro.2022.132946
Tadros M, 2022, PROC MAR TECHNOL OC, V8, P545, DOI 10.1201/9781003320272-61
Tadros M, 2019, ENERGY, V168, P897, DOI 10.1016/j.energy.2018.11.146
Tadros M., 2021, Developments in Maritime Technology and Engineering, V2, P481, DOI [10.1201/9781003216599-51, DOI 10.1201/9781003216599-51]
Talamala V, 2017, BIOFUELS-UK, V8, P307, DOI 10.1080/17597269.2016.1226723
Tong DM, 2011, J AM OIL CHEM SOC, V88, P415, DOI 10.1007/s11746-010-1672-0
Velmurugan K, 2017, INT J AMBIENT ENERGY, V38, P644, DOI 10.1080/01430750.2016.1155486
Vera-Rozo JR, 2022, FUEL, V321, DOI 10.1016/j.fuel.2022.124063
Yesilyurt MK, 2022, FUEL, V329, DOI 10.1016/j.fuel.2022.125406
Zivkovic S, 2018, ENVIRON SCI POLLUT R, V25, P191, DOI 10.1007/s11356-017-0649-z
NR 47
TC 2
Z9 2
U1 1
U2 3
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0944-1344
EI 1614-7499
J9 ENVIRON SCI POLLUT R
JI Environ. Sci. Pollut. Res.
PD AUG
PY 2023
VL 30
IS 37
BP 87260
EP 87273
DI 10.1007/s11356-023-28619-1
EA JUL 2023
PG 14
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA HH5V7
UT WOS:001024269500006
PM 37421526
DA 2024-09-05
ER
PT J
AU Dommeyer, CJ
AF Dommeyer, Curt J.
TI Lecture capturing: Its effects on students' absenteeism, performance,
and impressions in a traditional marketing research course
SO JOURNAL OF EDUCATION FOR BUSINESS
LA English
DT Article
DE Distance learning; lecture capture; online learning
ID IMPACT; WONT; IF
AB A quasiexperiment was conducted among marketing research students to determine the effects of lecture capturing (LC). One group of students (the LC group) was allowed access to video recordings of the class lectures whereas another group of students in a parallel class (the control group) was not given access to the recordings. When both groups were compared on their absentee rate and performance variables, the LC group had a lower absentee rate and higher scores on all of the performance variables. Moreover, survey data revealed that the LC group made fewer visits to the instructor than the control group did.
C1 [Dommeyer, Curt J.] Calif State Univ Northridge, David Nazarian Coll Business & Econ, Northridge, CA 91330 USA.
C3 California State University System; California State University
Northridge
RP Dommeyer, CJ (corresponding author), Calif State Univ Northridge, David Nazarian Coll Business & Econ, Mkt, 18111 Nordhoff St, Northridge, CA 91330 USA.
EM vcmkt001@csun.edu
CR Al Nashash H, 2013, EDUC TECHNOL SOC, V16, P69
Aldamen H, 2015, ACCOUNT EDUC, V24, P291, DOI 10.1080/09639284.2015.1043563
[Anonymous], 2010, LECT CAPTURE GUIDE E
Balfour J A D, 2006, BUILT ENV ED ANN C B
Barker L., 2014, FRONT ED C P MADR SP
Bollmeier SG, 2010, AM J PHARM EDUC, V74, DOI 10.5688/aj7407127
Briggs L., 2007, CAMPUS TECHNOLOGY
Brotherton J. A., 2004, ACM Transactions on Computer-Human Interaction, V11, P121, DOI 10.1145/1005361.1005362
Cramer KM, 2007, BRIT J EDUC TECHNOL, V38, P106, DOI 10.1111/j.1467-8535.2006.00598.x
Davis Simon, 2009, Engineering Education, V4, P4, DOI 10.11120/ened.2009.04020004
Drouin MA, 2014, TEACH PSYCHOL, V41, P11, DOI 10.1177/0098628313514172
Fernandes L., 2008, Journal of the International Association of Medical Science Educators, V18, P62
Ford MB, 2012, ACT LEARN HIGH EDUC, V13, P191, DOI 10.1177/1469787412452982
Grabe M, 2008, J COMPUT ASSIST LEAR, V24, P1, DOI [10.1111/j.1365-2729.2007.00228.x, 10.1111/J.1365-2729.2007.00228.x]
Hove MC, 2008, TEACH PSYCHOL, V35, P91, DOI 10.1080/00986280802004560
Johnston ANB, 2013, NURSE EDUC PRACT, V13, P40, DOI 10.1016/j.nepr.2012.07.004
Larkin HE, 2010, AUSTRALAS J EDUC TEC, V26, P238
McNulty JA, 2009, BMC MED EDUC, V9, DOI 10.1186/1472-6920-9-6
Owston R, 2011, INTERNET HIGH EDUC, V14, P262, DOI 10.1016/j.iheduc.2011.05.006
Settle A., 2011, Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science, P78, DOI DOI 10.1145/1999747.1999772
Shaw GP, 2011, BIOCHEM MOL BIOL EDU, V39, P416, DOI 10.1002/bmb.20552
Sloan TW, 2014, DECIS SCI-J INNOV ED, V12, P339, DOI 10.1111/dsji.12041
Smith C.M., 2011, Active Learning in Higher Education, V12, P151, DOI 10.1177/1469787411415082
Stroup M.D., 2012, TEACHER SCHOLAR J ST, V4, P43
Toppin IN, 2011, EDUC INF TECHNOL, V16, P383, DOI 10.1007/s10639-010-9140-x
Traphagan T, 2010, ETR&D-EDUC TECH RES, V58, P19, DOI 10.1007/s11423-009-9128-7
von Konsky BR, 2009, AUSTRALAS J EDUC TEC, V25, P581
Whitley-Grassi N., 2010, INT J INSTRUCTIONAL, V7, P31
NR 28
TC 15
Z9 16
U1 0
U2 15
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0883-2323
EI 1940-3356
J9 J EDUC BUS
JI J. Educ. Bus.
PY 2017
VL 92
IS 8
BP 388
EP 395
DI 10.1080/08832323.2017.1398129
PG 8
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA FU5TE
UT WOS:000423915100003
DA 2024-09-05
ER
PT J
AU Dahl, AA
Bowling, J
Krinner, LM
Brown, CS
Shaw, G
Lewis, JB
Moore-Harrison, T
Clinton, SM
Gartlan, SR
AF Dahl, Alicia A.
Bowling, Jessamyn
Krinner, Lisa M.
Brown, Candace S.
Shaw, George, Jr.
Lewis, Janaka B.
Moore-Harrison, Trudy
Clinton, Sandra M.
Gartlan, Scott R.
TI "If we can do it, anyone can!": Evaluating a virtual "Paper Chase"
collaborative writing model for rapid research dissemination
SO ACTIVE LEARNING IN HIGHER EDUCATION
LA English
DT Article
DE active learning; collaborative writing; dissemination; higher education;
Paper Chase; science communication
ID GROUP WORK; PERCEPTIONS; EXPERIENCE; ATTITUDES
AB The Paper Chase model is a synchronous collaborative approach to manuscript development. Through a structured and team-based design, authors participate in a "marathon" of writing, editing, revising, and submitting their publications within a specified period. This active-learning approach is considered a high-impact practice by engaging students in research dissemination through a collaborative project. This study sought to evaluate the feasibility and acceptability of a virtual Paper Chase exercise. We conducted the Paper Chase with six teams led by multidisciplinary faculty (with 24 undergraduate students and four graduate students). All participants were given pre-and post-surveys, with both open- and closed-ended questions. Results indicated that the process increased cooperative and problem-solving components of group work attitudes, increased participants' confidence in writing skills, increased understanding of research processes and that participants appreciated putting their skills immediately into practice. Participants identified strengths as well as opportunities for improvement in online modules and facilitation. The process was effective in that half of the manuscripts were submitted to peer-reviewed outlets within 90 days of the event. The positive evidence for learning in the virtual Paper Chase model supports future applications and may strengthen the involvement of students in research dissemination. Additional research may expand upon the findings by assessing group work dynamics, quality of final products, and conducting the process in a hybrid model.
C1 [Dahl, Alicia A.; Bowling, Jessamyn] Univ N Carolina, Publ Hlth Sci, Charlotte, NC USA.
[Krinner, Lisa M.] Univ N Carolina, Abacus, Chapel Hill, NC USA.
[Brown, Candace S.] Univ N Carolina, Gerontol, Charlotte, NC USA.
[Shaw, George, Jr.] Univ N Carolina, Dept Publ Hlth Sci, Charlotte, NC USA.
[Lewis, Janaka B.] Univ N Carolina, English, Charlotte, NC USA.
[Moore-Harrison, Trudy] Univ N Carolina, Dept Appl Physiol Hlth & Clin Sci, Charlotte, NC USA.
[Clinton, Sandra M.] Univ N Carolina, Geog & Earth Sci, Charlotte, NC USA.
[Gartlan, Scott R.] Univ N Carolina, Charlotte Teachers Inst, Charlotte, NC USA.
C3 University of North Carolina; University of North Carolina Charlotte;
University of North Carolina; University of North Carolina Chapel Hill;
University of North Carolina; University of North Carolina Charlotte;
University of North Carolina; University of North Carolina Charlotte;
University of North Carolina; University of North Carolina Charlotte;
University of North Carolina; University of North Carolina Charlotte;
University of North Carolina; University of North Carolina Charlotte;
University of North Carolina; University of North Carolina Charlotte
RP Dahl, AA (corresponding author), Univ N Carolina, Dept Publ Hlth Sci, 9201 Univ City Blvd, Charlotte, NC 28223 USA.
EM adahl3@uncc.edu; jessamyn.bowling@uncc.edu; lisa_krinner@med.unc.edu;
cbrow342@uncc.edu; j.lewis@uncc.edu; tlmoore2@uncc.edu;
sclinto1@uncc.edu; scott.gartlan@uncc.edu
RI Dahl, Alicia/ITV-8301-2023; Brown, Candace S/KVB-3413-2024; Bowling,
Jessamyn/ABI-5661-2020; Clinton, Sandra/V-8925-2019
OI Dahl, Alicia/0000-0002-6229-0926; Bowling, Jessamyn/0000-0001-7410-4433;
Clinton, Sandra/0000-0002-8042-6671; Brown, Candace/0000-0001-6102-7483
FU Office of Undergraduate Research at the University of North Carolina at
Charlotte; Women + Girls Research Alliance Seed Grant
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This work
was supported by the Office of Undergraduate Research at the University
of North Carolina at Charlotte; and the Women + Girls Research Alliance
Seed Grant.
CR Bandura A., 1986, Social foundations of thought and action: A social cognitive theory, Vxiii
Brame C.J., 2015, Setting up and facilitating group work: Using Cooperative Learning Groups Effectively. From
Cameron J, 2009, J GEOGR HIGHER EDUC, V33, P269, DOI 10.1080/03098260902734943
Caspi A, 2011, SOC PSYCHOL EDUC, V14, P283, DOI 10.1007/s11218-010-9141-z
Chai PR, 2019, CLIN TEACH, V16, P565, DOI 10.1111/tct.12923
Chase JAD, 2013, WESTERN J NURS RES, V35, P155, DOI 10.1177/0193945912451163
Choe RC, 2019, CBE-LIFE SCI EDUC, V18, DOI 10.1187/cbe.18-08-0171
Cliff-Hodges G., 2002, READING, V36, P4, DOI DOI 10.1111/1467-9345.00178
Clughen L, 2012, ARTS HUM HIGH EDUC, V11, P333, DOI 10.1177/1474022211429543
Du JX, 2019, ETR&D-EDUC TECH RES, V67, P767, DOI 10.1007/s11423-018-9631-9
Ellis JM, 2019, CULT DIVERS ETHN MIN, V25, P266, DOI 10.1037/cdp0000198
Farrah MAH, 2011, ARAB WORLD ENGL J, V2, P136
Foldnes N, 2016, ACT LEARN HIGH EDUC, V17, P39, DOI 10.1177/1469787415616726
Frykedal KF, 2018, INT J DISABIL DEV ED, V65, P183, DOI 10.1080/1034912X.2017.1363381
Gazza EA, 2013, NURS EDUC TODAY, V33, P268, DOI 10.1016/j.nedt.2012.04.019
Hassanien A., 2007, Higher education in Europe, V32
Hensley MK., 2017, COLL RES LIBR, V79, pix
Hopkins AL, 2013, SCIENTOMETRICS, V96, P515, DOI 10.1007/s11192-012-0893-4
Horta H, 2016, RES HIGH EDUC, V57, P28, DOI 10.1007/s11162-015-9380-0
Hsieh HF, 2005, QUAL HEALTH RES, V15, P1277, DOI 10.1177/1049732305276687
Hyun J., 2017, INT J TEACHING LEARN, V29, P108
Kim AA, 2022, COMPUT ASSIST LANG L, V35, P437, DOI 10.1080/09588221.2019.1705353
Kim T, 2011, BIOCHEM MOL BIOL EDU, V39, P412, DOI 10.1002/bmb.20551
Kuh G.D., 2013, ENSURING QUALITY TAK
Kuh G. D., 2008, HIGH IMPACT ED PRACT, DOI [10.1080/00091380109601795, DOI 10.1080/00091380109601795]
Lei S., 2009, Education, V130, P232
Limbu L, 2015, COMPUT EDUC, V82, P393, DOI 10.1016/j.compedu.2014.11.024
Lombardi D, 2021, PSYCHOL SCI PUBL INT, V22, P8, DOI 10.1177/1529100620973974
Lopatto David, 2007, CBE Life Sci Educ, V6, P297, DOI 10.1187/cbe.07-06-0039
Maiden B, 2011, ASSESS EVAL HIGH EDU, V36, P451, DOI 10.1080/02602930903429302
Marks MB, 2013, J EDUC BUS, V88, P147, DOI 10.1080/08832323.2012.664579
Martin F, 2019, INTERNET HIGH EDUC, V42, P34, DOI 10.1016/j.iheduc.2019.04.001
Michaelsen L. K., 2004, Team-based learning: A transformative use of small groups in college teaching
Moore-Adams BL, 2016, DISTANCE EDUC, V37, P333, DOI 10.1080/01587919.2016.1232158
Morales DX, 2017, CBE-LIFE SCI EDUC, V16, DOI 10.1187/cbe.16-11-0326
Nosek BA, 2012, PSYCHOL INQ, V23, P308, DOI 10.1080/1047840X.2012.717907
Nykopp M, 2019, J COMPUT HIGH EDUC, V31, P536, DOI 10.1007/s12528-018-9203-3
Olson JS, 2017, ACM T COMPUT-HUM INT, V24, DOI 10.1145/3038919
Petrella John K, 2008, Int J Exerc Sci, V1, P91
Potter H, 2011, J CRIM JUSTICE EDUC, V22, P84, DOI 10.1080/10511253.2010.517653
Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x
Quitadamo Ian J, 2007, CBE Life Sci Educ, V6, P140, DOI 10.1187/cbe.06-11-0203
Risopoulos-Pichler F, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12156016
Russell SH, 2007, SCIENCE, V316, P548, DOI 10.1126/science.1140384
Sasa RI, 2020, TEACH LEARN NURS, V15, P137, DOI 10.1016/j.teln.2020.01.008
Schaumberg K., 2015, BEHAV THER, V38, P43
Scherman R, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.01183
Scotland J, 2016, ASSESS EVAL HIGH EDU, V41, P15, DOI 10.1080/02602938.2014.977221
Shehadeh A, 2011, J SECOND LANG WRIT, V20, P286, DOI 10.1016/j.jslw.2011.05.010
Skarupski K.A., 2018, Journal of Faculty Development, V32, P47
Speare M, 2018, J ACAD LIBR, V44, P762, DOI 10.1016/j.acalib.2018.09.019
Springer L, 1999, REV EDUC RES, V69, P21, DOI 10.2307/1170643
Swanson E, 2019, ACT LEARN HIGH EDUC, V20, P39, DOI 10.1177/1469787417731201
van Dijk D, 2014, CURR BIOL, V24, pR516, DOI 10.1016/j.cub.2014.04.039
Winter J.K., 1995, Business Communication Quarterly, V58, P21, DOI [DOI 10.1177/108056999505800204, 10.1177/108056999505800204]
Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099
NR 56
TC 0
Z9 0
U1 3
U2 14
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1469-7874
EI 1741-2625
J9 ACT LEARN HIGH EDUC
JI Act. Learn. High. Educ.
PD MAR
PY 2024
VL 25
IS 1
BP 115
EP 134
AR 14697874221099011
DI 10.1177/14697874221099011
EA JUN 2022
PG 20
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA KF5B9
UT WOS:000808554300001
DA 2024-09-05
ER
PT S
AU Leetch, A
Hauk, M
AF Leetch, Amanda
Hauk, Marna
BE Filho, WL
Mifsud, M
Shiel, C
Pretorius, R
TI A Decade of Earth in the Mix: A Bibliometric Analysis of Emergent
Scholarly Research on Sustainability Education and Ecopsychology in
Higher Education
SO HANDBOOK OF THEORY AND PRACTICE OF SUSTAINABLE DEVELOPMENT IN HIGHER
EDUCATION, VOL 3
SE World Sustainability Series
LA English
DT Article; Book Chapter
DE Sustainability education; Ecopsychology; Resilience; Latent dirichlet
allocation; Bayesian network; Bibliometric analysis; Post-DESD
sustainability education
AB As part of understanding methodological approaches which aim to integrate the topic of sustainability in the curriculum of universities, the intersection of ecopsychology with education for sustainable development marks an emergent methodological and curricular bridge. Using Bayesian probablistic modeling of related topics, called latent Dirichlet allocation, an analysis of theses and dissertations published since the advent of the UN Decade of Education for Sustainable Development revealed a substantial volume of higher education research regarding ecopsychology and sustainability education in higher education (using Proquest Database). Within that larger field, several hundred works existed at the intersection of ecopsychology and education for sustainable development/sustainability education. This research reported on findings from analyzing titles, abstracts and keywords of this data set of theses and dissertations to identify emergent trends in topics within the research scholarship. Initial findings indicated directions for viable inter-and transdisciplinary collaboration in order to extend and integrate the reach of sustainability education across the university curriculum. Research from the field suggested such inter-and transdisciplinary curricular approaches to the "wicked" problems of sustainability are requisite to cultivate the next generation of sustainability innovators and educators.
C1 [Leetch, Amanda] Prescott Coll, Dept Educ, Prescott, AZ 86301 USA.
[Hauk, Marna] Prescott Coll, Dept Sustainabil Educ, Prescott, AZ USA.
RP Leetch, A (corresponding author), Prescott Coll, Dept Educ, Prescott, AZ 86301 USA.
EM amanda.leetch@student.prescott.edu; earthregenerative@gmail.com
CR Adomssent M., 2007, International Journal of Sustainability in Higher Education, V8, P385, DOI DOI 10.1108/14676370710823564
Agyeman Julian., 2013, Introducing Just Sustainabilities: Policy, Planning, and Practice
[Anonymous], 2008, PSYCHOL LIBERATION
[Anonymous], THESIS
Barth M., 2007, International Journal of Sustainability for Higher Education, V8, P416, DOI [DOI 10.1108/14676370710823582, 10.1108/1467637071082358]
Bigelow Bill., 2014, PEOPLES CURRICULUM E
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Buzzell L., 2009, ECOTHERAPY HEALING N, P17
Chalquist C., 2009, Ecotherapy, P69
Chalquist C., 2007, TERRAPSYCHOLOGY REEN
Chalquist Craig., 2010, RebEarths: Conversations with a world ensouled
Corcoran PB, 2004, HIGHER EDUCATION AND THE CHALLENGE OF SUSTAINABILITY, P1, DOI 10.1007/0-306-48515-X
Corral-Verdugo V., 2013, PSYCHOL APPROACHES S
Doherty T. J., 2011, EC ENV FOC PSYCHOL A
Edwards S., 2009, ECOTHERAPY HEALING N, P126
Farren Bradley J., 2010, Sustainability education: perspectives and practice across higher education, P257
Fisher A., 2002, Radical ecopsychology: Psychology in the service of life
Hauk M., 2014, THESIS
Huckle J, 2015, ENVIRON EDUC RES, V21, P491, DOI 10.1080/13504622.2015.1011084
Jickling B., 2012, Journal of Education for Sustainable Development, V6, P49, DOI 10.1177/097340821100600111
Jones P., 2010, Sustainability education: Perspectives and practice across higher education, P17
Judson Gillian., 2015, Sustainability frontiers: Critical and transformative voices from the borderlands of sustainability education, P205
Kahn R., 2009, CANADIAN J ENV ED, V14, P173
Koger SM, 2007, TEACH PSYCHOL, V34, P10, DOI 10.1207/s15328023top3401_3
Krasny M.E., 2013, Trading zones in environmental education: Creating transdisciplinary dialogue
Leetch A., 2015, SCHEMAS GROUPS UNPUB
Lotz-Sisitka H, 2015, CURR OPIN ENV SUST, V16, P73, DOI 10.1016/j.cosust.2015.07.018
Macy J., 2012, ACTIVE HOPE
Macy J., 2014, COMING BACK LIFE UPD
O'Connor T., 1995, ECOPSYCHOLOGY, P149
Peters S., 2013, Trading zones in environmental education: Creating transdisciplinary dialogue, P79
Roszak T., 2009, Ecotherapy: Healing with nature mind, P30
Roszak T., 1995, ECOPSYCHOLOGY, P1
Roszak T., 1994, REVISION, V16, P108
Selby D, 2015, SUSTAINABILITY FRONT
Sewell L., 1995, ECOPSYCHOLOGY
SHIVA M. MIES-A. SAL- LEH-V., 2014, ECOFEMINISM
Shoreman-Ouimet E, 2015, BIOL CONSERV, V184, P320, DOI 10.1016/j.biocon.2015.01.030
Sipos Y., 2008, International Journal of Sustainability in Higher Education, V9, P68, DOI DOI 10.1108/14676370810842193
Sterling S., 2011, Learning and Teaching in Higher Education, V5, P17
Sterling S.R., 2001, Sustainable education: re-visioning learning and change
Sterling S, 2010, ENVIRON EDUC RES, V16, P511, DOI 10.1080/13504622.2010.505427
Sterling S, 2004, HIGHER EDUCATION AND THE CHALLENGE OF SUSTAINABILITY, P49, DOI 10.1007/0-306-48515-X_5
Stibbe Arran., 2009, The Handbook of Sustainability Literacy: Skills for a Changing World
Thomashow M., 1998, The Humanistic Psychologist, V26, P275
Wals AEJ, 2004, HIGHER EDUCATION AND THE CHALLENGE OF SUSTAINABILITY, P347, DOI 10.1007/0-306-48515-X_27
Wals ArjenE. J., 2010, SUSTAINABILITY ED PE, P55
Wals ArjenEJ., 2007, SOCIAL LEARNING SUST
Ziegler B., 2009, 200910 CISL MASS I
NR 49
TC 3
Z9 4
U1 0
U2 5
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2199-7373
EI 2199-7381
BN 978-3-319-47895-1; 978-3-319-47894-4
J9 WORLD SUSTAIN SER
PY 2017
BP 291
EP 306
DI 10.1007/978-3-319-47895-1_18
D2 10.1007/978-3-319-47895-1
PG 16
WC Green & Sustainable Science & Technology; Education & Educational
Research
WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH)
SC Science & Technology - Other Topics; Education & Educational Research
GA BI5WY
UT WOS:000412935300019
DA 2024-09-05
ER
PT J
AU Bodea, C
AF Bodea, Constanta
TI Artificial intelligence techniques applied to the evaluation of the
research and technology development projects and programmes
SO ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH
LA English
DT Article
DE KPI; RTD project; RTD programme; data mining; project portfolio;
indicator template
AB The paper presents the specific ways in which indicators and artificial intelligence methods and tools can be used for the evaluation of research projects and programmes. The author's research purpose is to improve the programme ex post evaluation and ex ante impact assessment thought the development of a improved set of strong integrated research performance indicators, structured according to the results chains and comprehensively described using a standard indicator template; the development of data sets and databases for projects and programmes evaluation and, finally the development of projects and programmes evaluation techniques, based on database and machine learning technologies.
Using these methods a new and better understanding of the scientific, technological, human resources, structuring, economic, social, environmental etc impacts of national and European research programmes is possible. The research is financed by the Minister of Education and Research, IDEI programme.
C1 Acad Econ Studies, Econ Informat Dept, Bucharest, Romania.
C3 Bucharest University of Economic Studies
RP Bodea, C (corresponding author), Acad Econ Studies, Econ Informat Dept, Bucharest, Romania.
RI Bodea, Constanta-Nicoleta/GXV-2034-2022
OI Bodea, Constanta-Nicoleta/0000-0001-5542-8133
CR [Anonymous], 2002, Proposed standard practice for surveys on research and experimental development
Fahrenkrog G., 2002, RTD EVALUATION TOOLB
GHEORGIOU L, 2002, ASSESSING SOCIO EC I
2002, USE EVALUATION COMMI
1999, MANAGING NATL INNOVA
NR 5
TC 3
Z9 3
U1 0
U2 26
PU ACAD ECONOMIC STUDIES
PI BUCHAREST
PA 15-17 CALEA DOROBANTI, SECTOR 1, BUCHAREST, 00000, ROMANIA
SN 0424-267X
EI 1842-3264
J9 ECON COMPUT ECON CYB
JI Econ. Comput. Econ. Cybern. Stud.
PY 2007
VL 41
IS 3-4
BP 141
EP 150
PG 10
WC Economics; Mathematics, Interdisciplinary Applications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Mathematics
GA 339KE
UT WOS:000258575700012
DA 2024-09-05
ER
PT J
AU Chen, XL
Zou, D
Xie, HR
Chen, GL
Lin, JH
Cheng, GR
AF Chen, Xieling
Zou, Di
Xie, Haoran
Chen, Guanliang
Lin, Jionghao
Cheng, Gary
TI Exploring contributors, collaborations, and research topics in
educational technology: A joint analysis of mainstream conferences
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article
DE Educational technology; Mainstream conferences; Bibliometrics;
Structural topic modeling
ID CITATION ANALYSIS; DECADES; SYSTEMS; IMPACT
AB The diversity and advance of information, communication, and analytical technologies and their increasing adoption to assist instruction and learning give rise to various technology-driven conferences (e.g., artificial intelligence in education) in educational technology. Previous reviews on educational technology commonly focused on journal articles while seldom including mainstream conference papers which also contribute to an important part of scientific output in computer science and emerging disciplines like educational technology and are equally and even more important than articles in knowledge transmission. Hence, conference papers should also be included in bibliometric studies to produce a complete and precise picture of scientific production concerning educational technology. This study, therefore, uses bibliometrics and topic modeling to analyze papers from mainstream conferences, including Artificial Intelligence in Education, Learning Analytics and Knowledge, Educational Data Mining, Intelligent Tutoring System, and Learning at Scale, focusing on contributors, collaborations, and particularly research topics and topic evolutions to inform relevant stakeholders about educational technology's development and its future. Results indicate promising areas like affective computing and behavior mining for adaptive instruction, recommender systems in personalized learning recommendations, eye-tracking for cognitive process diagnosis, videos for feedback provision, and natural language processing in discourse analysis and language education.
C1 [Chen, Xieling] South China Normal Univ, Sch Informat Technol Educ, Guangzhou, Peoples R China.
[Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Tuen Mun, Hong Kong, Peoples R China.
[Chen, Guanliang; Lin, Jionghao] Monash Univ, Fac Informat Technol, Melbourne, Vic, Australia.
[Cheng, Gary] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
C3 South China Normal University; Education University of Hong Kong
(EdUHK); Lingnan University; Monash University; Education University of
Hong Kong (EdUHK)
RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.; Chen, GL (corresponding author), Monash Univ, Fac Informat Technol, Melbourne, Vic, Australia.
EM xielingchen0708@gmail.com; dizoudaisy@gmail.com; hrxie2@gmail.com;
guanliang.chen@monash.edu; jionghao.lin@monash.edu; chengks@eduhk.hk
RI Lin, Jionghao/JEO-6478-2023; Xie, Haoran/AFS-3515-2022; Xie,
Haoran/AAW-8845-2020
OI Lin, Jionghao/0000-0003-3320-3907; Xie, Haoran/0000-0003-0965-3617; ZOU,
Di/0000-0001-8435-9739; PV, THAYYIB/0000-0001-8929-0398
CR Akram B., 2018, EDM, P208
Ashwin TS, 2019, IEEE ACCESS, V7, P150693, DOI 10.1109/ACCESS.2019.2947519
Atanassova Iana, 2019, Front Res Metr Anal, V4, P2, DOI 10.3389/frma.2019.00002
Bond M, 2019, BRIT J EDUC TECHNOL, V50, P12, DOI 10.1111/bjet.12730
Botelho A., 2018, P 11 INT C ED DAT MI, P157
Butler L, 2006, SCIENTOMETRICS, V66, P327, DOI 10.1007/s11192-006-0024-1
Butler L, 2008, SCIENTOMETRICS, V74, P39, DOI 10.1007/s11192-008-0102-7
Byrne Timothy, 2007, Computer Assisted Language Learning, V20, P459, DOI 10.1080/09588220701746039
Chan Kai Siang, 2019, JMIR Med Educ, V5, pe13930, DOI 10.2196/13930
Chen GL, 2020, LAK20: THE TENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P544, DOI 10.1145/3375462.3375500
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chung JY, 2019, CHILD YOUTH SERV REV, V96, P346, DOI 10.1016/j.childyouth.2018.11.030
Dawson S, 2019, PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'19), P446, DOI 10.1145/3303772.3303784
Duchowski AT, 2017, EYE TRACKING METHODO
Dwivedi P, 2018, EDUC INF TECHNOL, V23, P819, DOI 10.1007/s10639-017-9637-7
Feinerer I., 2015, Package 'tm'
Grafsgaard Joseph F., 2013, Artificial Intelligence in Education. Proceedings of 16th International Conference (AIED 2013): LNCS 7926, P1, DOI 10.1007/978-3-642-39112-5_1
Bote VPG, 2013, J AM SOC INF SCI TEC, V64, P392, DOI 10.1002/asi.22754
Harper F, 2018, LANG LEARN J, V46, P277, DOI 10.1080/09571736.2015.1061586
Head A, 2017, PROCEEDINGS OF THE FOURTH (2017) ACM CONFERENCE ON LEARNING @ SCALE (L@S'17), P89, DOI 10.1145/3051457.3051467
Higgins SE, 2011, INT J COMP-SUPP COLL, V6, P515, DOI 10.1007/s11412-011-9131-y
Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610
Kao GYM, 2019, COMPUT EDUC, V136, P99, DOI 10.1016/j.compedu.2019.03.010
Karumbaiah S., 2018, PREDICTING QUITTING
Kendall M. G., 1948, Rank correlation methods.
Khandwala K, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231652
Kyvik S, 2017, SCIENTOMETRICS, V113, P951, DOI 10.1007/s11192-017-2497-5
Labarthe H., 2018, ITS 2018 WORKSH P, P63
Liefner I, 2003, HIGH EDUC, V46, P469, DOI 10.1023/A:1027381906977
Lisée C, 2008, J AM SOC INF SCI TEC, V59, P1776, DOI 10.1002/asi.20888
Liu CX, 2021, ASIA PAC EDUC REV, V22, P515, DOI 10.1007/s12564-021-09692-y
Lucas C, 2015, POLIT ANAL, V23, P254, DOI 10.1093/pan/mpu019
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Mojarad S, 2018, LECT NOTES COMPUT SC, V10858, P130, DOI 10.1007/978-3-319-91464-0_13
Molina AI, 2018, COMPUT STAND INTER, V59, P45, DOI 10.1016/j.csi.2018.02.004
Nabizadeh AH, 2020, COMPUT EDUC, V147, DOI 10.1016/j.compedu.2019.103777
Nam S, 2019, LECT NOTES ARTIF INT, V11625, P345, DOI 10.1007/978-3-030-23204-7_29
Le NT, 2016, ADV INTELL SYST, V453, P141, DOI 10.1007/978-3-319-38884-7_11
Ninaus M, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103641
Ochoa X., 2014, Journal of Learning Analytics, V1, P5, DOI DOI 10.18608/JLA.2014.12.2
Ocumpaugh J, 2017, LECT NOTES ARTIF INT, V10331, P238, DOI 10.1007/978-3-319-61425-0_20
Peng BH, 2018, J CLEAN PROD, V197, P1177, DOI 10.1016/j.jclepro.2018.06.283
Pham P, 2018, LECT NOTES COMPUT SC, V10858, P150, DOI 10.1007/978-3-319-91464-0_15
Pohlert T., 2016, Package "trend"
Rivers K, 2017, INT J ARTIF INTELL E, V27, P37, DOI 10.1007/s40593-015-0070-z
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Romero L, 2018, PORTAL-LIBR ACAD, V18, P505, DOI 10.1353/pla.2018.0031
Serdyukov P., 2017, J RES INNOVATIVE TEA, V10, P4, DOI [10.1108/JRIT-10-2016-0007, DOI 10.1108/JRIT-10-2016-0007, 10.1108/jrit-10-2016-0007]
Shen CW, 2020, COMPUT HUM BEHAV, V104, DOI 10.1016/j.chb.2019.106177
Staubitz T, 2016, PROCEEDINGS OF THE THIRD (2016) ACM CONFERENCE ON LEARNING @ SCALE (L@S 2016), P389, DOI 10.1145/2876034.2876043
Stewart A, 2018, LECT NOTES ARTIF INT, V10947, P545, DOI 10.1007/978-3-319-93843-1_40
Sullivan FR, 2019, BRIT J EDUC TECHNOL, V50, P3047, DOI 10.1111/bjet.12875
Sung YT, 2015, EDUC RES REV-NETH, V16, P68, DOI 10.1016/j.edurev.2015.09.001
Svensson G, 2010, EUR J MARKETING, V44, P23, DOI 10.1108/03090561011008583
Taub M, 2020, INT J ARTIF INTELL E, V30, P97, DOI 10.1007/s40593-019-00191-1
Tsai YL, 2018, COMPUT EDUC, V125, P345, DOI 10.1016/j.compedu.2018.06.020
Vanbecelaere S, 2021, BRIT J EDUC TECHNOL, V52, P112, DOI 10.1111/bjet.12957
Vanitha V, 2019, COMPUT ELECTR ENG, V77, P325, DOI 10.1016/j.compeleceng.2019.06.016
Wampfler Rafael, 2019, P 12 INT C ED DAT MI, P198, DOI 10.3929
Wang XH, 2018, BRIT J EDUC TECHNOL, V49, P742, DOI 10.1111/bjet.12646
Westera W, 2018, COMPUT EDUC, V123, P212, DOI 10.1016/j.compedu.2018.05.010
Xiao J, 2018, J AMB INTEL HUM COMP, V9, P667, DOI 10.1007/s12652-017-0466-8
Yang S. J. H., 2021, Computers and Education: Artificial Intelligence, V2, DOI [DOI 10.1016/J.CAEAI.2021.100008, 10.1016/j.caeai.2021.100008]
Yenioglu BY, 2023, INTERACT LEARN ENVIR, V31, P4572, DOI 10.1080/10494820.2021.1976802
Zarzour H, 2020, COMPUT EDUC, V156, DOI 10.1016/j.compedu.2020.103957
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zawacki-Richter O, 2018, COMPUT EDUC, V122, P136, DOI 10.1016/j.compedu.2018.04.001
Zhou YW, 2018, INFORM SCIENCES, V444, P135, DOI 10.1016/j.ins.2018.02.053
NR 69
TC 2
Z9 2
U1 13
U2 63
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD FEB
PY 2023
VL 28
IS 2
BP 1323
EP 1358
DI 10.1007/s10639-022-11209-y
EA JUL 2022
PG 36
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA 9Q6HD
UT WOS:000829709100002
DA 2024-09-05
ER
PT J
AU Ghaffari, M
Aliahmadi, A
Khalkhali, A
Zakery, A
Daim, TU
Yalcin, H
AF Ghaffari, Mohsen
Aliahmadi, Alireza
Khalkhali, Abolfazl
Zakery, Amir
Daim, Tugrul U.
Yalcin, Haydar
TI Topic-based technology mapping using patent data analysis: A case study
of vehicle tires
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Bibliometrics; Patent analysis; Technology mapping; Tire Industry;
Machine learning; Topic modeling; Emerging technologies
ID FORECASTING TECHNOLOGY; EMERGING TECHNOLOGIES; TRANSPORTATION;
CLASSIFICATION; IDENTIFICATION; PREDICTION; INNOVATION; SUCCESS;
SCIENCE; AREAS
AB The analysis of patent certificates for the purpose of determining the technologies of an industry is a method that has been used by experts and researchers of technology management and technology forecasting for nearly two decades. Meanwhile, using different techniques and software and completing the experiences of past researches have increased the speed, accuracy, and practicality of the relevant reports. In this study, the tire industry has been investigated with regard to its prominent role in the future automobile and transportation industry. All tirerelated patent certificates in the last 20 years were extracted from the Derwent Innovation Index database using a search string and IPC codes, and with the help of Latent Dirichlet Allocation (LDA) which is an unsupervised machine learning method, the relevant technology areas were extracted. The analysis of technologies and forecasting future technology areas were conducted regarding the share and growth rate of each technology in two 10-year periods (2000-2009 and 2010-2019) and the study of trends and technical indicators related to the industry and value chain. The analysis of nine technology areas considered by tire industry innovators during the last 20 years, as well as the analysis of trends and effective factors on these technologies indicated that the fields of airless tires and intelligent tires technology areas would be highly welcomed in the future and become the dominant and extensively-used technologies of the tire industry in the future.
C1 [Ghaffari, Mohsen; Aliahmadi, Alireza; Khalkhali, Abolfazl; Zakery, Amir] Iran Univ Sci & Technol IUST, Tehran, Iran.
[Daim, Tugrul U.] Portland State Univ, Portland, OR 97201 USA.
[Daim, Tugrul U.; Yalcin, Haydar] Ege Univ, Izmir, Turkiye.
[Daim, Tugrul U.] Chaoyang Univ Technol, Taichung, Taiwan.
C3 Iran University Science & Technology; Portland State University; Ege
University; Chaoyang University of Technology
RP Daim, TU (corresponding author), Portland State Univ, Portland, OR 97201 USA.; Daim, TU (corresponding author), Ege Univ, Izmir, Turkiye.; Daim, TU (corresponding author), Chaoyang Univ Technol, Taichung, Taiwan.
EM tugrul.u.daim@pdx.edu
RI Ghaffari, Mohsen/IAQ-7348-2023; Zakery, Amir/R-8017-2018; Daim,
Tugrul/JFJ-5740-2023; Yalcin, Haydar/HHN-1057-2022
OI Ghaffari, Mohsen/0009-0003-9109-2616; Zakery, Amir/0000-0002-6530-8933;
CR Aldhufairi HS, 2018, P I MECH ENG D-J AUT, V232, P1865, DOI 10.1177/0954407017727195
Altuntas S, 2015, TECHNOL FORECAST SOC, V96, P202, DOI 10.1016/j.techfore.2015.03.011
Ampornphan P, 2020, INFORMATION, V11, DOI 10.3390/info11060333
amueller, WORDCLOUD PYTH DOC W
An HJ, 2016, TECHNOL FORECAST SOC, V102, P132, DOI 10.1016/j.techfore.2015.06.015
AndreaGlover, 2020, MANN KENDALL TREND T
[Anonymous], IMP FUT FUEL EC TARG
[Anonymous], 1992, CONT SOCIOLOGICAL TH
[Anonymous], TEXT MINING HDB ADV
Ashouri S, 2021, SCIENTOMETRICS, V126, P5727, DOI 10.1007/s11192-021-04025-7
Askari H, 2019, ADV MATER TECHNOL-US, V4, DOI 10.1002/admt.201800105
Aznag M, 2013, INT J ADV COMPUT SC, V4, P285
Bankar Ravindra S., 2019, BIBEXCEL TUTOR UNPUB
Behroozinia P, 2019, STRUCT HEALTH MONIT, V18, P390, DOI 10.1177/1475921718756602
Bhat MR, 2020, J INFORM OPTIM SCI, V41, P823, DOI 10.1080/02522667.2019.1616911
BOWONDER B, 1993, FUTURES, V25, P757, DOI 10.1016/0016-3287(93)90023-M
Braghin F, 2006, VEHICLE SYST DYN, V44, P3, DOI 10.1080/00423110600867101
Chen HS, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121402
Chen HS, 2017, TECHNOL FORECAST SOC, V119, P39, DOI 10.1016/j.techfore.2017.03.009
Choi D, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10082810
Clarivate, DERW WORLD PAT IND C
Cunningham SW, 2017, INT J INNOV TECHNOL, V14, DOI 10.1142/S0219877017400090
da Costa-Luis C., tqdm documentation
Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004
Dehler-Holland J, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121354
Dumais ST, 2004, ANNU REV INFORM SCI, V38, P189
Durmusoglu A, 2018, KYBERNETES, V47, P672, DOI 10.1108/K-04-2017-0144
Eligüzel N, 2020, ADV ENG INFORM, V46, DOI 10.1016/j.aei.2020.101151
Ernst H., 2003, World Patent Information, V25, P233, DOI 10.1016/S0172-2190(03)00077-2
Erzurumlu SS, 2020, TECHNOL FORECAST SOC, V156, DOI 10.1016/j.techfore.2020.120041
F. A. USA, NEW TIR TECHN YOU MU
Feldman R., 2013, TEXT MINING HDB ADV
Mendoza-Petit MF, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20061750
Fernando J., 2003, COMPOUND ANN GROWTH
Fokaides PA, 2019, CASE STUD TRANSP POL, V7, P470, DOI 10.1016/j.cstp.2019.01.003
Fountain S.B., 2012, ENCY SCI LEARNING, P1814, DOI DOI 10.1007/978-1-4419-1428-61042
Ghandriz T, 2020, TRANSPORT RES C-EMER, V115, DOI 10.1016/j.trc.2020.102610
Guo HY, 2019, IEEE T SYST MAN CY-S, V49, P14, DOI 10.1109/TSMC.2018.2819500
Han XT, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120691
Hassler M., DATA MINING 7 DATA T, P13
Hotho A., 2005, BRIEF SURVEY TEXT MI
Huenteler J, 2016, TECHNOL FORECAST SOC, V104, P102, DOI 10.1016/j.techfore.2015.09.022
Hwang Y, 2020, J MED INTERNET RES, V22, DOI 10.2196/15700
Jeong Y, 2019, TECHNOL FORECAST SOC, V146, P655, DOI 10.1016/j.techfore.2018.05.010
Jovanovic M, 2016, J MANUF SYST, V40, P119, DOI 10.1016/j.jmsy.2016.06.008
Jun S, 2016, TECHNOL ANAL STRATEG, V28, P156, DOI 10.1080/09537325.2015.1073252
Jun S, 2015, QUEEN MARY J INTELLE, V5, P474, DOI 10.4337/qmjip.2015.04.06
Jun S, 2014, EXPERT SYST APPL, V41, P3204, DOI 10.1016/j.eswa.2013.11.018
justia, DUR PAT PROT
Kawakami A, 2017, ROAD MATER PAVEMENT, V18, P2, DOI 10.1080/14680629.2017.1304264
Kim H, 2019, TECHNOL FORECAST SOC, V146, P588, DOI 10.1016/j.techfore.2018.02.007
Kim JM, 2019, SOFT COMPUT, V23, P8815, DOI 10.1007/s00500-018-3481-6
Kim J, 2021, TECHNOL FORECAST SOC, V171, DOI 10.1016/j.techfore.2021.120972
Kim KH, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11226240
Kwok SWH, 2021, J MED INTERNET RES, V23, DOI 10.2196/26953
Landauer TK, 1997, PSYCHOL REV, V104, P211, DOI 10.1037/0033-295X.104.2.211
LAUGLAUG AS, 1987, LONG RANGE PLANN, V20, P21, DOI 10.1016/0024-6301(87)90089-6
Lee C, 2018, TECHNOL FORECAST SOC, V127, P291, DOI 10.1016/j.techfore.2017.10.002
Lee C, 2012, TECHNOL FORECAST SOC, V79, P16, DOI 10.1016/j.techfore.2011.06.009
Lee DW, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21093233
Lee H, 2017, IEEE INTEL TRANSP SY, V9, P114, DOI 10.1109/MITS.2017.2666584
Lee J, 2012, INT J AUTO TECH-KOR, V13, P963, DOI 10.1007/s12239-012-0098-0
Lee YS, 2015, IEEE ICCE, P136, DOI 10.1109/ICCE-TW.2015.7216819
Li X, 2019, TECHNOL FORECAST SOC, V146, P432, DOI 10.1016/j.techfore.2019.01.012
Li X, 2019, TECHNOL FORECAST SOC, V146, P687, DOI 10.1016/j.techfore.2018.06.004
Madvar MD, 2019, INT J ENERG RES, V43, P1142, DOI 10.1002/er.4344
Matsuzaki R, 2008, SENSORS-BASEL, V8, P8123, DOI 10.3390/s8128123
McKinney W., 2011, pandas: a Foundational Python Library for Data Analysis and Statistics
Mo YH, 2015, SYST REV-LONDON, V4, DOI 10.1186/s13643-015-0117-0
Momeni A, 2016, TECHNOL FORECAST SOC, V104, P16, DOI 10.1016/j.techfore.2015.12.003
Naeini AB, 2022, TECHNOL FORECAST SOC, V185, DOI 10.1016/j.techfore.2022.122052
Nagula M, 2016, J STAT MANAG SYST, V19, P73, DOI 10.1080/09720510.2014.1001601
nltk, Natural language toolkit
Padmanabhan D, 2017, INFORMATION, V8, DOI 10.3390/info8020052
Pallas MA, 2016, APPL ACOUST, V113, P89, DOI 10.1016/j.apacoust.2016.06.012
Phan Xuan-Hieu, 2008, P 17 INT C WORLD WID, P91, DOI 10.1145/1367497.1367510
Pohl A, 1999, IEEE T INSTRUM MEAS, V48, P1041, DOI 10.1109/19.816111
Pohl A., 2015, IEEE T INSTRUM MEAS, V2015, P265
Pohl A., 2017, IEEE T INSTRUM MEAS, V2017, P236, DOI [10.1016/j.techfore.2017.08.002, DOI 10.1016/J.TECHFORE.2017.08.002]
Pohl A., 2021, IEEE T INSTRUM MEAS, V2021, P61756, DOI [10.1109/ACCESS.2021.3073657, DOI 10.1109/ACCESS.2021.3073657]
Priority Tire, TIR FUT NEW TECHN IN
Qi GQ, 2019, TRANSPORT RES D-TR E, V66, P13, DOI 10.1016/j.trd.2018.05.002
radimrehurek, Gensim: Topic Modelling for Humans
Remmerswaal T., DOES PATENT EXPIRE 2
researchgate, About us
ResearchGate, BRIEF SURVEY TEXT MI
Rortais A, 2021, FOOD CONTROL, V119, DOI 10.1016/j.foodcont.2020.107435
Sakthi Vel S., 2020, LANGUAGE TECHNOLOGY
Sandu C, 2019, J TERRAMECHANICS, V86, P1, DOI 10.1016/j.jterra.2019.08.002
Sauvage T., 2003, International Journal of Physical Distribution & Logistics Management, V33, P236, DOI 10.1108/09600030310471989
Savin I, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121280
Savoy J, 2013, INFORM PROCESS MANAG, V49, P341, DOI 10.1016/j.ipm.2012.06.003
Shao H, 2020, IEEE ACCESS, V8, P215943, DOI 10.1109/ACCESS.2020.3041645
Singh T, 2016, PROCEDIA COMPUT SCI, V89, P549, DOI 10.1016/j.procs.2016.06.095
Song A., 2021, 10 FUTURISTIC TIRES
spacy, SPACY 101 EV YOU NEE
Sun B, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.00806
Technobis, US
Trubia S, 2020, INFRASTRUCTURES-BASE, V5, DOI 10.3390/infrastructures5120107
Uhm D, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10020570
Uhm D, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9112025
Venugopalan S, 2015, TECHNOL FORECAST SOC, V94, P236, DOI 10.1016/j.techfore.2014.10.006
Wang YH, 2015, INNOV-MANAG POLICY P, V17, P196, DOI 10.1080/14479338.2015.1011061
webofscience, MICR BIOR OIL CONT S
webofscience, PAT REL VEL CHIN PHA
Wiley.com, ENCY ENV, V2nd
Wiley.com, STAT METHODS ENV POL
Xiong Y, 2018, SENSOR REV, V38, P231, DOI 10.1108/SR-07-2017-0132
Xu N, 2021, IEEE T VEH TECHNOL, V70, P2239, DOI 10.1109/TVT.2021.3059432
Xu S, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120366
Yalcin H, 2022, TRANSPORT RES E-LOG, V168, DOI 10.1016/j.tre.2022.102943
Yalcin H, 2021, SCIENTOMETRICS, V126, P3775, DOI 10.1007/s11192-021-03876-4
Yang Y, 2014, INT J DATA MIN BIOIN, V10, P440, DOI 10.1504/IJDMB.2014.064894
Yang ZL, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120673
Yuan H, 2016, DECIS SUPPORT SYST, V91, P67, DOI 10.1016/j.dss.2016.08.001
Zamani M, 2022, TECHNOL FORECAST SOC, V176, DOI 10.1016/j.techfore.2021.121456
Zhang H., 2021, TECHNOLOGICAL FORECA, V167
Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015
Zhou XP, 2020, GROWTH CHANGE, V51, P852, DOI 10.1111/grow.12374
Zhu L, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121277
NR 120
TC 11
Z9 11
U1 47
U2 115
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD AUG
PY 2023
VL 193
AR 122576
DI 10.1016/j.techfore.2023.122576
EA MAY 2023
PG 15
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA I7TR5
UT WOS:001004779200001
DA 2024-09-05
ER
PT J
AU Alani, F
Geng, F
Toribio, M
Grewal, R
AF Alani, Faiez
Geng, Fei
Toribio, Mae
Grewal, Rehmat
TI Effect of Case-Based Learning (CBL) on Student Performance in
Engineering Biotechnology Education
SO INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION
LA English
DT Article
DE CBL; active learning; pedagogical research; student performance;
engineering biotechnology
ID CASE-BASED INSTRUCTION
AB Case-based learning is a method that has been used increasingly in a variety of disciplines. However, in the engineering technology education, this method is still underutilized. The goal of this study was to evaluate the effect of case-based learning in the performance of engineering technology students. Students enrolled in an undergraduate biotechnology course answered an anonymous survey about the effects of CBL on different factors that are linked to improving their performance. The results demonstrate that CBL had a positive effect on the students' learning experience, concept understanding, and deep understanding for the course which contributed to the effectiveness of CBL in improving the students' performance. Furthermore, this study found that having more cases reviewed per term increased the student performance based on their final marks on the course, clearly indicating the positive impact of CBL on student performance.
C1 [Alani, Faiez; Geng, Fei; Toribio, Mae; Grewal, Rehmat] W Booth Sch Engn Practice & Technol, 1280 Main St West ETB 121A, Hamilton, ON L8S 0A3, Canada.
RP Alani, F (corresponding author), W Booth Sch Engn Practice & Technol, 1280 Main St West ETB 121A, Hamilton, ON L8S 0A3, Canada.
EM alanif@mcmaster.ca
CR Alani F, 2020, INT J ENG EDUC, V36, P896
Bonney KM, 2015, J MICROBIOL BIOL EDU, V16, P21, DOI 10.1128/jmbe.v16i1.846
Bozic CL, 2014, ASEE ANNU CONF EXPO
Garcia J, 2012, INT J ENG EDUC, V28, P448
Henderson J.G., 2001, Reflective teaching: Professional artistry through inquiry
Klein S.R., 2003, Teaching art in context: Case studies for preservice art education
Krain M., 2016, Journal on Excellence in College Teaching, V27, P131
Raju P., 1999, Journal of Engineering Education, V88, P501
Thistlethwaite JE, 2012, MED TEACH, V34, pE421, DOI 10.3109/0142159X.2012.680939
Vivas JF, 2006, INT J ENG EDUC, V22, P236
Yadav A, 2019, INT J ENG EDUC, V35, P25
Yadav A, 2015, INT J ENG EDUC, V31, P1554
Yadav A, 2014, J RES SCI TEACH, V51, P659, DOI 10.1002/tea.21149
Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981
Zarrajeria J, 2016, INT J ENG EDUC, V32, P830
NR 15
TC 3
Z9 3
U1 2
U2 7
PU TEMPUS PUBLICATIONS
PI DURRUS, BANTRY
PA IJEE , ROSSMORE,, DURRUS, BANTRY, COUNTY CORK 00000, IRELAND
SN 0949-149X
J9 INT J ENG EDUC
JI Int. J. Eng. Educ
PY 2022
VL 38
IS 2
BP 543
EP 548
PG 6
WC Education, Scientific Disciplines; Engineering, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Education & Educational Research; Engineering
GA ZE1PN
UT WOS:000758662400022
DA 2024-09-05
ER
PT J
AU Tran, HN
Phan, GTT
Do, QB
Tran, VP
AF Tran, Hoai-Nam
Phan, Giang T. T.
Do, Quang Binh
Tran, Viet-Phu
TI Comparative evaluation of the performance of improved genetic algorithms
and differential evolution for in-core fuel management of a research
reactor
SO NUCLEAR ENGINEERING AND DESIGN
LA English
DT Article
DE Genetic algorithm; Differential evolution; In-core fuel management; DNRR
ID MULTIOBJECTIVE OPTIMIZATION; LOADING PATTERN
AB This paper presents a comparative evaluation of the performance of Genetic Algorithm (GA) and Differential Evolution (DE) algorithm applied to in-core fuel management of the DNRR research reactor. Two GA variants corresponding to two selection operators, i.e., tournament (GA1) and roulette wheel (GA2) selections, respectively, with two-point crossover and scramble mutation were implemented for the ICFM problem. A comprehensive survey of the GA control parameters such as population size, crossover-type, mutation probability, and elitist archive size has been conducted to optimize the performance of the GAs. The basic DE was implemented with a standard mutation strategy DE/rand/1/bin. Numerical computations were performed based on the DNRR research reactor core loaded with 100 highly enriched uranium fuel (HEU) bundles for evaluating the performance of the GA and DE algorithms. Two main objectives were included in the fitness function to maximize the fuel cycle length and flatten the power distribution. The performance of the two GA variants and the basic DE was investigated with the same population size, fitness function, and convergence criterion. Each method was performed with 50 independent runs, and the best fitness values were collected for statistical analysis using Kruskal-Wallis and Mann-Whitney tests in comparison among the three methods. The statistical analysis shows that the performance of GA1 with tournament selection and DE are not significantly different and are better than GA2 with roulette wheel selection. DE is stable and efficient in exploring the search space to approach the global optimal solution in most runs. While, GA1 and GA2 were trapped at local optima by about 26% and 38%, respectively. However, the best solutions obtained with GA1 and GA2 after 50 independent runs are better than that obtained with DE in term of fitness values. This suggests an improvement of the basic DE is needed to maintain the potential good solutions during the evolution process.
C1 [Tran, Hoai-Nam] PHENIKAA Univ, Fac Fundamental Sci, Hanoi 12116, Vietnam.
[Phan, Giang T. T.] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam.
[Phan, Giang T. T.] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam.
[Do, Quang Binh] Sai Gon Univ, Inst Environm Energy Technol, 230 An Duong Vuong,Dist 5, Ho Chi Minh City 700000, Vietnam.
[Tran, Viet-Phu] VINATOM, Inst Nucl Sci & Technol, 179 Hoang Quoc Viet, Hanoi 100000, Vietnam.
C3 Duy Tan University; Duy Tan University; Saigon University
RP Tran, HN (corresponding author), PHENIKAA Univ, Fac Fundamental Sci, Hanoi 12116, Vietnam.; Phan, GTT (corresponding author), Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam.
EM nam.tranhoai@phenikaa-uni.edu.vn; phantthuygiang@duytan.edu.vn
FU National Foundation for Science and Technology Development (NAFOSTED) ,
Vietnam; [103.04-2020.06]
FX Acknowledgment This research was funded by National Foundation for
Science and Technology Development (NAFOSTED) , Vietnam under grant
103.04-2020.06.
CR AEA Technology, 1997, WIMSD NEUTR COD STAN
[Anonymous], 1975, Ann Arbor
Charles A, 2019, ANN NUCL ENERGY, V127, P165, DOI 10.1016/j.anucene.2018.12.002
Chen ZP, 2019, ANN NUCL ENERGY, V134, P318, DOI 10.1016/j.anucene.2019.06.031
Costa L., 2004, ELITIST GENETIC ALGO, P217, DOI [10.1007/978-1-4757-4137-7_10, DOI 10.1007/978-1-4757-4137-7_10]
Das S, 2011, IEEE T EVOLUT COMPUT, V15, P4, DOI 10.1109/TEVC.2010.2059031
DECHAINE MD, 1995, NUCL TECHNOL, V111, P109, DOI 10.13182/NT95-A35149
Ding H, 2020, ANN NUCL ENERGY, V137, DOI 10.1016/j.anucene.2019.107057
Do BQ, 2007, APPL MATH COMPUT, V187, P977, DOI 10.1016/j.amc.2006.09.024
Binh DQ, 2014, KERNTECHNIK, V79, P511, DOI 10.3139/124.110447
Fowler T., 1971, NUCL REACT COR AN CO
Phan G, 2017, SCI TECHNOL NUCL INS, V2017, DOI 10.1155/2017/2615409
Israeli E, 2018, ANN NUCL ENERGY, V118, P35, DOI 10.1016/j.anucene.2018.03.042
Karahroudi MR, 2013, ANN NUCL ENERGY, V57, P142, DOI 10.1016/j.anucene.2013.01.051
Liang Y, 2011, APPL SOFT COMPUT, V11, P2017, DOI 10.1016/j.asoc.2010.06.017
Nguyen N.D., 2014, Nucl. Sci. Technol., V4, P1
Pachuau A., 2021, SMART INNOVATION SYS, P6
Phan GTT, 2020, NUCL ENG DES, V362, DOI 10.1016/j.nucengdes.2020.110582
Price K., 2005, NAT COMP SER, DOI 10.1007/3-540-31306-0
Do QB, 2019, NUCL ENG DES, V343, P197, DOI 10.1016/j.nucengdes.2019.01.011
Sacco WF, 2009, ANN NUCL ENERGY, V36, P1093, DOI 10.1016/j.anucene.2009.05.007
Sacco WF, 2014, PROG NUCL ENERG, V70, P140, DOI 10.1016/j.pnucene.2013.09.012
Shukla A, 2015, 2015 1ST INTERNATIONAL CONFERENCE ON FUTURISTIC TRENDS ON COMPUTATIONAL ANALYSIS AND KNOWLEDGE MANAGEMENT (ABLAZE), P515, DOI 10.1109/ABLAZE.2015.7154916
Storn R, 1997, J GLOBAL OPTIM, V11, P341, DOI 10.1023/A:1008202821328
Turinsky PJ, 2005, NUCL TECHNOL, V151, P3, DOI 10.13182/NT05-A3626
Tran VP, 2021, NUCL ENG DES, V377, DOI 10.1016/j.nucengdes.2021.111125
NR 26
TC 3
Z9 4
U1 3
U2 9
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0029-5493
EI 1872-759X
J9 NUCL ENG DES
JI Nucl. Eng. Des.
PD NOV
PY 2022
VL 398
AR 111953
DI 10.1016/j.nucengdes.2022.111953
EA SEP 2022
PG 14
WC Nuclear Science & Technology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Nuclear Science & Technology
GA 5A0FZ
UT WOS:000862573900003
DA 2024-09-05
ER
PT J
AU Kim, D
Kim, E
Cha, SK
Son, S
Kim, Y
AF Kim, Dongkwan
Kim, Eunsoo
Cha, Sang Kil
Son, Sooel
Kim, Yongdae
TI Revisiting Binary Code Similarity Analysis Using Interpretable Feature
Engineering and Lessons Learned
SO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
LA English
DT Article
DE Benchmark testing; Computer architecture; Binary codes; Syntactics;
Semantics; Licenses; Market research; Binary code similarity analysis;
similarity measures; feature evaluation and selection; benchmark
ID SEMANTICS; ACCURATE; GRAPH; SOFTWARE; SEARCH
AB Binary code similarity analysis (BCSA) is widely used for diverse security applications, including plagiarism detection, software license violation detection, and vulnerability discovery. Despite the surging research interest in BCSA, it is significantly challenging to perform new research in this field for several reasons. First, most existing approaches focus only on the end results, namely, increasing the success rate of BCSA, by adopting uninterpretable machine learning. Moreover, they utilize their own benchmark, sharing neither the source code nor the entire dataset. Finally, researchers often use different terminologies or even use the same technique without citing the previous literature properly, which makes it difficult to reproduce or extend previous work. To address these problems, we take a step back from the mainstream and contemplate fundamental research questions for BCSA. Why does a certain technique or a certain feature show better results than the others? Specifically, we conduct the first systematic study on the basic features used in BCSA by leveraging interpretable feature engineering on a large-scale benchmark. Our study reveals various useful insights on BCSA. For example, we show that a simple interpretable model with a few basic features can achieve a comparable result to that of recent deep learning-based approaches. Furthermore, we show that the way we compile binaries or the correctness of underlying binary analysis tools can significantly affect the performance of BCSA. Lastly, we make all our source code and benchmark public and suggest future directions in this field to help further research.
C1 [Kim, Dongkwan; Kim, Eunsoo; Cha, Sang Kil; Son, Sooel; Kim, Yongdae] Korea Adv Inst Sci & Technol, Daejeon 34141, South Korea.
C3 Korea Advanced Institute of Science & Technology (KAIST)
RP Cha, SK (corresponding author), Korea Adv Inst Sci & Technol, Daejeon 34141, South Korea.
EM dkay@kaist.ac.kr; hahah@kaist.ac.kr; sangkilc@kaist.ac.kr;
sl.son@kaist.ac.kr; yongdaek@kaist.ac.kr
OI Kim, Yongdae/0000-0003-4879-1262; Son, Sooel/0000-0003-0904-2875; Cha,
Sang Kil/0000-0002-6012-7228
FU Institute of Information & Communications Technology Planning &
Evaluation (IITP) Grant, Korea Government (MSIT) [2021-0-01332]
FX This work was supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) Grant, Korea Government
(MSIT)under Grant 2021-0-01332, Developing Next-Generation Binary
Decompiler.
CR Alrabaee S, 2020, IEEE T INF FOREN SEC, V15, P3051, DOI 10.1109/TIFS.2020.2980190
Alrabaee S, 2018, ACM T PRIV SECUR, V21, DOI 10.1145/3175492
Alrabaee S, 2016, DIGIT INVEST, V18, pS11, DOI 10.1016/j.diin.2016.04.002
Alrabaee S, 2015, DIGIT INVEST, V12, pS61, DOI 10.1016/j.diin.2015.01.011
Andriesse D, 2017, 2017 IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY (EUROS&P), P177, DOI 10.1109/EuroSP.2017.11
Andriesse D, 2016, PROCEEDINGS OF THE 25TH USENIX SECURITY SYMPOSIUM, P583
[Anonymous], Diaphora: A Free and Open Source Program Diffing Tool
[Anonymous], 2006, P 2006 ACM SIGPLAN S
[Anonymous], CLANG CLANG C C OBJE
[Anonymous], GNU PACKAGES
[Anonymous], 2006, GPL VIOLATIONSORG PR
[Anonymous], STUNNIX C C OBFUSCAT
Arandjelovic R, 2013, PROC CVPR IEEE, P1578, DOI 10.1109/CVPR.2013.207
Artuso F, 2021, Arxiv, DOI arXiv:1912.07946
Babic Domagoj, 2011, Computer Aided Verification. Proceedings 23rd International Conference, CAV 2011, P116, DOI 10.1007/978-3-642-22110-1_10
Bao T, 2014, PROCEEDINGS OF THE 23RD USENIX SECURITY SYMPOSIUM, P845
Bindiff, ABOUT AS
Bourquin M., 2013, P 2 ACM SIGPLAN PROG
Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339
Brumley David, 2013, P USENIX SEC, P353
Bunke H, 1997, PATTERN RECOGN LETT, V18, P689, DOI 10.1016/S0167-8655(97)00060-3
Calvet J., 2012, P 2012 ACM C COMP CO, P169, DOI [DOI 10.1145/2382196.2382217, 10.1145/2382196.2382217]
Canali D., 2012, P 2012 INT S SOFTW T, P122, DOI [10.1145/2338965.2336768, DOI 10.1145/2338965.2336768]
Tol MC, 2021, Arxiv, DOI arXiv:2006.14147
Capstone, ULT DIS
Caruana R., 1994, Machine Learning Proceedings 1994, P28, DOI [10.1016/B978-1-55860-335-6.50012-X, DOI 10.1016/B978-1-55860-335-6.50012-X]
Cha Sang Kil, 2010, NSDI, P377
Chandramohan M, 2016, FSE'16: PROCEEDINGS OF THE 2016 24TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEERING, P678, DOI 10.1145/2950290.2950350
Chen K, 2014, 36TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2014), P175, DOI 10.1145/2568225.2568286
Chua ZL, 2017, PROCEEDINGS OF THE 26TH USENIX SECURITY SYMPOSIUM (USENIX SECURITY '17), P99
Collberg C., 2015, TIGRESS C DIVERSIFIE, V14
Comparetti PM, 2010, P IEEE S SECUR PRIV, P61, DOI 10.1109/SP.2010.12
Crosstool-NG, ABOUT AS
Dai HJ, 2016, PR MACH LEARN RES, V48
David Y, 2018, ACM SIGPLAN NOTICES, V53, P392, DOI [10.1145/3173162.3177157, 10.1145/3296957.3177157]
David Y, 2017, ACM SIGPLAN NOTICES, V52, P79, DOI [10.1145/3140587.3062387, 10.1145/3062341.3062387]
David Y, 2016, ACM SIGPLAN NOTICES, V51, P266, DOI [10.1145/2980983.2908126, 10.1145/2908080.2908126]
David Y, 2014, ACM SIGPLAN NOTICES, V49, P349, DOI [10.1145/2666356.2594343, 10.1145/2594291.2594343]
Ding SHH, 2019, P IEEE S SECUR PRIV, P472, DOI 10.1109/SP.2019.00003
Ding SHH, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P461, DOI 10.1145/2939672.2939719
Duan Y, 2020, 27TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2020), DOI 10.14722/ndss.2020.24311
Dullien T, 2005, SSTIC, V5, P3
Egele M, 2014, PROCEEDINGS OF THE 23RD USENIX SECURITY SYMPOSIUM, P303
ElWazeer K, 2013, ACM SIGPLAN NOTICES, V48, P51, DOI 10.1145/2499370.2462165
Eschweiler S, 2016, 23RD ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2016), DOI 10.14722/ndss.2016.23185
Farhadi MR, 2014, INT CONF SOFTW SECUR, P78, DOI 10.1109/SERE.2014.21
Feng Q., 2016, P 2016 ACM SIGSAC C, DOI 10.1145/2976749.2978370
Feng Q, 2017, PROCEEDINGS OF THE 2017 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (ASIA CCS'17), P346, DOI 10.1145/3052973.3052995
FERRANTE J, 1987, ACM T PROGR LANG SYS, V9, P319, DOI 10.1145/24039.24041
Flake H., 2004, Proceedings of the IEEE Conference on Detection of Intrusions and Malware Vulnerability Assessment DIMVA, P161
Forrest S, 1996, P IEEE S SECUR PRIV, P120, DOI 10.1109/SECPRI.1996.502675
Gao DB, 2008, LECT NOTES COMPUT SC, V5308, P238
Gao J, 2018, IEEE INT CONF AUTOM, P896, DOI 10.1145/3238147.3240480
Geurts P, 2006, MACH LEARN, V63, P3, DOI 10.1007/s10994-006-6226-1
Gröbert F, 2011, LECT NOTES COMPUT SC, V6961, P41, DOI 10.1007/978-3-642-23644-0_3
Guo H, 2020, IEEE ACCESS, V8, P120501, DOI 10.1109/ACCESS.2020.3004813
Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616
HAGBERG A., 2008, P 7 PYTH SCI C SCIPY, P11
He JX, 2018, PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), P1667, DOI 10.1145/3243734.3243866
Hemel Armijn, 2011, P INT C SOFTW ENG, P63, DOI [10.1145/1985441.1985453, DOI 10.1145/1985441.1985453]
HENRY S, 1981, IEEE T SOFTWARE ENG, V7, P510, DOI 10.1109/TSE.1981.231113
Hex Rays, IDA Pro
Hiebert D., 1999, EXUBERANT CTAGS
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
HORWITZ S, 1990, ACM T PROGR LANG SYS, V12, P26, DOI 10.1145/960116.53994
Hu X, 2009, CCS'09: PROCEEDINGS OF THE 16TH ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P611
Hu YK, 2019, IEEE ACCESS, V7, P28170, DOI 10.1109/ACCESS.2019.2901951
Hu YK, 2018, PROC IEEE INT CONF S, P104, DOI 10.1109/ICSME.2018.00019
Hu YK, 2017, INT C PROGRAM COMPRE, P88, DOI 10.1109/ICPC.2017.22
Hu YK, 2016, 2016 IEEE 23RD INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), VOL 1, P57, DOI 10.1109/SANER.2016.50
Huang H, 2017, PROCEEDINGS OF THE 2017 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (ASIA CCS'17), P155, DOI 10.1145/3052973.3052974
Intel Corporation, Intel 64 and IA-32 Architectures Software Developer's Manuals
Jang JY, 2011, PROCEEDINGS OF THE 18TH ACM CONFERENCE ON COMPUTER & COMMUNICATIONS SECURITY (CCS 11), P309
Jang JY, 2012, P IEEE S SECUR PRIV, P48, DOI 10.1109/SP.2012.13
Ji YD, 2021, ASIA CCS'21: PROCEEDINGS OF THE 2021 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P702, DOI 10.1145/3433210.3437533
Jia L, 2020, IEEE ACCESS, V8, P23506, DOI 10.1109/ACCESS.2020.2966860
Jiang LX, 2007, PROC INT CONF SOFTW, P96
Jiang Ming, 2013, Information Security and Cryptology - ICISC 2012. 15th International Conference. Revised Selected Papers, P92, DOI 10.1007/978-3-642-37682-5_8
Jianguo Jiang, 2020, Computer Security - ESORICS 2020 25th European Symposium on Research in Computer Security, ESORICS 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12308), P295, DOI 10.1007/978-3-030-58951-6_15
Jin W, 2012, 2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, P386, DOI 10.1109/ICMLA.2012.70
Jones E., 2001, SciPy: Open source scientific tools for Python
Jung M., 2019, PROC NDSS WORKSHOP B
Junod P, 2015, 2015 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON SOFTWARE PROTECTION (SPRO), P3, DOI 10.1109/SPRO.2015.10
Kamiya T, 2002, IEEE T SOFTWARE ENG, V28, P654, DOI 10.1109/TSE.2002.1019480
Karamitas C, 2018, 2018 25TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER 2018), P335, DOI 10.1109/SANER.2018.8330221
Kargén U, 2017, IEEE INT CONF AUTOM, P342, DOI 10.1109/ASE.2017.8115647
Dam HK, 2017, Arxiv, DOI arXiv:1708.02368
Khoo WM, 2013, IEEE WORK CONF MIN S, P329, DOI 10.1109/MSR.2013.6624046
Kim H, 2022, I C DEPEND SYS NETWO, P559, DOI 10.1109/DSN53405.2022.00061
Kim M, 2020, ANN COMPUT SECURITY, P733, DOI 10.1145/3427228.3427294
Kim S, 2017, P IEEE S SECUR PRIV, P595, DOI 10.1109/SP.2017.62
Kim S, 2017, IEEE INT CONF AUTOM, P353, DOI 10.1109/ASE.2017.8115648
Kim T, 2019, J SUPERCOMPUT, V75, P607, DOI 10.1007/s11227-016-1941-2
Kim Y, 2014, Arxiv, DOI arXiv:1408.5882
Kinder J, 2008, LECT NOTES COMPUT SC, V5123, P423
Lageman Nathaniel., 2016, Proceedings of the Security and Privacy in Communication Networks12th International Conference, SecureComm 2016, Guangzhou, China, 10-12 October 2016, P517
Lahiri Shuvendu K., 2012, Computer Aided Verification. Proceedings 24th International Conference, CAV 2012, P712, DOI 10.1007/978-3-642-31424-7_54
Lakhotia A., 2013, P 2 ACM SIGPLAN PROG
LASZLO T, 2009, SECTIO COMPUTATORICA, V30, P3
Lee J., 2011, PROC NETW DISTRIB SY
Li Z, 2016, ANN COMPUT SECURITY, P201, DOI 10.1145/2991079.2991102
Li ZM, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE '04), P289
Liu BC, 2018, IEEE INT CONF AUTOM, P667, DOI 10.1145/3238147.3238199
Luo LN, 2017, IEEE T SOFTWARE ENG, V43, P1157, DOI 10.1109/TSE.2017.2655046
Luo LN, 2014, 22ND ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING (FSE 2014), P389, DOI 10.1145/2635868.2635900
Luo M., 2016, INT C SECURITY PRIVA, P517
MacKenzie D., 1996, AUTOCONF CREATING AU
Manès VJM, 2021, IEEE T SOFTWARE ENG, V47, P2312, DOI 10.1109/TSE.2019.2946563
Marastoni N., 2018, P 1 INT WORKSH MACH, P26
Massarelli L., 2019, PROC NDSS WORKSHOP B
Massarelli L, 2019, LECT NOTES COMPUT SC, V11543, P309, DOI 10.1007/978-3-030-22038-9_15
Meng XZ, 2017, LECT NOTES COMPUT SC, V10493, P286, DOI 10.1007/978-3-319-66399-9_16
Mikolov T, 2013, Arxiv, DOI [arXiv:1301.3781, 10.48550/arXiv.1301.3781, DOI 10.48550/ARXIV.1301.3781]
Ming J, 2017, PROCEEDINGS OF THE 26TH USENIX SECURITY SYMPOSIUM (USENIX SECURITY '17), P253
Ming J, 2016, IEEE T RELIAB, V65, P1647, DOI 10.1109/TR.2016.2570554
Ming J, 2015, IFIP ADV INF COMM TE, V455, P416, DOI 10.1007/978-3-319-18467-8_28
*MIPS TECHN INC, 2001, MIPS32 ARCH PROGR
Miyani D, 2017, Arxiv, DOI arXiv:1711.00830
Ng AY, 2002, ADV NEUR IN, V14, P849
Nouh L, 2017, IFIP ADV INF COMM TE, V502, P341, DOI 10.1007/978-3-319-58469-0_23
Oh J. W., 2015, DARUNGRIM PATCH ANAL
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Pewny J., 2014, P 30 ANN COMP SEC AP, P406
Pewny J, 2015, P IEEE S SECUR PRIV, P709, DOI 10.1109/SP.2015.49
Qasem A, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3432893
Qiao R, 2017, I C DEPEND SYS NETWO, P201, DOI 10.1109/DSN.2017.29
Qiu J, 2015, 2015 22ND INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), P261, DOI 10.1109/SANER.2015.7081836
Le Q, 2014, PR MACH LEARN RES, V32, P1188
Rahimian Ashkan, 2013, Foundations and Practice of Security. 5th International Symposium, FPS 2012. Revised Selected Papers, P211, DOI 10.1007/978-3-642-37119-6_14
Real R, 1996, SYST BIOL, V45, P380, DOI 10.2307/2413572
Redmond K., 2019, PROC NDSS WORKSHOP B
Reiss SP, 2009, PROC INT CONF SOFTW, P243, DOI 10.1109/ICSE.2009.5070525
Rosenblum N. E., 2011, P INT S SOFTW TEST A, P100, DOI 10.1145/2001420.2001433
Schkufza E, 2013, ACM SIGPLAN NOTICES, V48, P305, DOI 10.1145/2499368.2451150
Schleimer S., 2003, P 2003 ACM SIGMOD IN, V10, P76, DOI DOI 10.1145/872757.872770
Seal David, 2001, ARM ARCHITECTURE REF
SecurityTeam, 2016, PIE
Semantic Designs, SOURCE CODE OBFUSCAT
Shalev N, 2018, PLAS'18: PROCEEDINGS OF THE 13TH WORKSHOP ON PROGRAMMING LANGUAGES AND ANALYSIS FOR SECURITY, P42, DOI 10.1145/3264820.3264821
Shin ECR, 2015, PROCEEDINGS OF THE 24TH USENIX SECURITY SYMPOSIUM, P611
Shirani Paria, 2017, Detection of Intrusions and Malware, and Vulnerability Assessment. 14th International Conference, DIMVA 2017. Proceedings: LNCS 10327, P301, DOI 10.1007/978-3-319-60876-1_14
Shirani P, 2018, LECT NOTES COMPUT SC, V10885, P114, DOI 10.1007/978-3-319-93411-2_6
Sun PF, 2020, I C DEPEND SYS NETWO, P373, DOI 10.1109/DSN48063.2020.00053
Tange O, 2011, The USENIX Magazine, V36, P42
Themida, ADV WINDOWS SOFTWARE
Tian ZZ, 2020, IEEE ACCESS, V8, P160802, DOI 10.1109/ACCESS.2020.3021184
Ul Haq I, 2019, Arxiv, DOI arXiv:1909.11424
Using the GNU compiler collection (GCC), OPTIMIZE OPTIONS
van der Veen V, 2016, P IEEE S SECUR PRIV, P934, DOI 10.1109/SP.2016.60
van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37
VMProtect, ABOUT AS
Wang S, 2017, IEEE INT CONF AUTOM, P319, DOI 10.1109/ASE.2017.8115645
Wang S, 2017, PROC IEEE INT CONF S, P388, DOI 10.1109/ICSME.2017.59
Wang S, 2016, PROC INT CONF SOFTW, P297, DOI 10.1145/2884781.2884804
Wikipedia, 2018, RELATIVE CHANGE DIFF
Xiao YJ, 2016, IEEE TRUST BIG, P252, DOI [10.1109/TrustCom.2016.70, 10.1109/TrustCom.2016.0071]
Xu DP, 2017, P IEEE S SECUR PRIV, P921, DOI 10.1109/SP.2017.56
Xu XJ, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P363, DOI 10.1145/3133956.3134018
Xu ZZ, 2017, PROC INT CONF SOFTW, P462, DOI 10.1109/ICSE.2017.49
Xue YX, 2019, IEEE T SOFTWARE ENG, V45, P1125, DOI 10.1109/TSE.2018.2827379
Yakdan K, 2015, 22ND ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2015), DOI 10.14722/ndss.2015.23185
Yang Jun, 2007, Evaluating Bag-of-Visual-Words Representations in Scene Classification, P197
Yuan BG, 2018, COMPUT J, V61, P1202, DOI 10.1093/comjnl/bxy055
Zhang FF, 2014, PROC INT SYMP SOFTW, P66, DOI 10.1109/ISSRE.2014.18
Zhao L, 2020, CCS '20: PROCEEDINGS OF THE 2020 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P149, DOI 10.1145/3372297.3423342
Zuo F, 2019, 26TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2019), DOI 10.14722/ndss.2019.23492
NR 166
TC 16
Z9 19
U1 1
U2 7
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 0098-5589
EI 1939-3520
J9 IEEE T SOFTWARE ENG
JI IEEE Trans. Softw. Eng.
PD APR 1
PY 2023
VL 49
IS 4
BP 1661
EP 1682
DI 10.1109/TSE.2022.3187689
PG 22
WC Computer Science, Software Engineering; Engineering, Electrical &
Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA E9NM9
UT WOS:000978723600015
OA hybrid, Green Submitted
DA 2024-09-05
ER
PT J
AU Deka, M
Buragohain, D
Kumar, A
AF Deka, Manashjyoti
Buragohain, Dibanjyoti
Kumar, Amit
TI Two decades of research on Online Learning published by Springer Link: A
bibliometric analysis
SO QUALITATIVE & QUANTITATIVE METHODS IN LIBRARIES
LA English
DT Article
DE Online Learning; SpringerLink; Annual Growth Rate; Relative Growth Rate;
Degree of Collaboration and Collaboration Coefficient
ID COLLABORATION
AB The emergence of online learning has acquired the attention of learners and educators in the 21st century. The need has arisen especially when the world has suffered from the Covid-19 pandemic, the institutions of higher learning have come up with the latest technologies to combat the learning environment scenario. The present study mainly analysis the existing works of literature published on the topic of online learning which is abstracted from SpringerLink. The bibliometrics method of analyzing the data was adopted for the study. The study analysis the components such as the growth of literature,year-wise distribution, annual growth rate (AGR), compound annual growth rate (CAGR), relative growth rate (RGR), and doubling time (DT) of the publications authorship pattern and authors productivity of literature, Study the citation, altmetrics, download and access pattern of literature, the most prominent journals, publisher -wise, country -wise distribution of literature, most productive institutions and top -cited paper in the published literature on "online learning". The study shows that the highest number of publications can be noticed from the conference papers and there is a frequent rise in publications. The annual growth rate of the published literature is 533.34 in 2003 and the number of authors per publication on average was highest in 2017. The study shall contribute to examining the existing scenario of the published literature measurement on online learning and shall encourage more exciting researchers and academicians to work more in this specific field.
C1 [Deka, Manashjyoti; Buragohain, Dibanjyoti] Mizoram Univ, Aizawl, Mizoram, India.
[Kumar, Amit] Cent Univ Gujarat, Gandhinagar, Gujarat, India.
C3 Mizoram University; Central University of Gujarat
RP Deka, M (corresponding author), Mizoram Univ, Aizawl, Mizoram, India.
CR Amoozegar A., 2018, International Journal of Information Research and Review, V5, P5352, DOI 10.6084/m9.figshare.6210536.v1
Aslam S., 2021, Library Philosophy and Practice, P1
Chandwani S., 2021, Library Philosophy and Practice (e-journal), V5330, P1
Dhawan Shivangi, 2020, Journal of Educational Technology Systems, V49, P5, DOI 10.1177/0047239520934018
Kumar A., 2021, Library Philosophy and Practice
Kumar RS, 2015, SCIENTOMETRICS, V105, P921, DOI 10.1007/s11192-015-1710-7
Lawani SM, 1980, Quality, collaboration and citations in cancer research: a bibliometric study
Liu L., 2011, International Journal of Technology in Teaching Learning, V7
Mahapatra M., 1985, P 15 IASLIC C, V6170
Moore JL, 2011, INTERNET HIGH EDUC, V14, P129, DOI 10.1016/j.iheduc.2010.10.001
Neelamma G., 2018, Library Philosophy and Practice (e-journal), V1879
Nisha F, 2015, DESIDOC J LIB INF TE, V35, P82, DOI 10.14429/djlit.35.2.8191
Savanur K, 2010, SCIENTOMETRICS, V84, P365, DOI 10.1007/s11192-009-0100-4
Sivakumaren K. S., 2019, Library Philosophy and Practices(eJournal), P3570
Sobral S. R., 2021, Two decades of research in e-learning: a deep bibliometric analysis
SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105
Tawiah R., 2019, Library Philosophy and Practice (ejournal), P2337
Tripathi M, 2010, DESIDOC J LIB INF TE, V30, P83, DOI 10.14429/djlit.30.618
Wahid R, 2020, INT REV RES OPEN DIS, V21, P292
Yoshikane F, 2009, SCIENTOMETRICS, V79, P435, DOI 10.1007/s11192-008-0429-8
Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235
NR 21
TC 0
Z9 0
U1 3
U2 3
PU INT SOC ART SCIENCE & TECHNOLOGY-ISAST
PI ATHINA
PA INT SOC ART SCIENCE & TECHNOLOGY-ISAST, ATHINA, 00000, GREECE
SN 2241-1925
J9 QUAL QUANT METHODS L
JI Qual. Quant. Methods Libr.
PD MAR
PY 2024
VL 13
IS 1
BP 1
EP 34
PG 34
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA MX4O7
UT WOS:001196924600002
DA 2024-09-05
ER
PT J
AU Sánchez-Núñez, P
de las Heras-Pedrosa, C
Peláez, JI
AF Sanchez-Nunez, Pablo
de las Heras-Pedrosa, Carlos
Ignacio Pelaez, Jose
TI Opinion Mining and Sentiment Analysis in Marketing Communications: A
Science Mapping Analysis in Web of Science (1998-2018)
SO SOCIAL SCIENCES-BASEL
LA English
DT Article
DE sentiment analysis; opinion mining; advertising; marketing; science
mapping analysis; Web of Science (WoS); bibliometric indicators;
scientific collaboration
ID SCIENTIFIC COLLABORATION; DECISION-MAKING
AB Opinion mining and sentiment analysis has become ubiquitous in our society, with applications in online searching, computer vision, image understanding, artificial intelligence and marketing communications (MarCom). Within this context, opinion mining and sentiment analysis in marketing communications (OMSAMC) has a strong role in the development of the field by allowing us to understand whether people are satisfied or dissatisfied with our service or product in order to subsequently analyze the strengths and weaknesses of those consumer experiences. To the best of our knowledge, there is no science mapping analysis covering the research about opinion mining and sentiment analysis in the MarCom ecosystem. In this study, we perform a science mapping analysis on the OMSAMC research, in order to provide an overview of the scientific work during the last two decades in this interdisciplinary area and to show trends that could be the basis for future developments in the field. This study was carried out using VOSviewer, CitNetExplorer and InCites based on results from Web of Science (WoS). The results of this analysis show the evolution of the field, by highlighting the most notable authors, institutions, keywords, publications, countries, categories and journals.
C1 [Sanchez-Nunez, Pablo] Univ Malaga, Univ Huelva, Univ Cadiz, Doctorate Program Commun, Malaga 29071, Spain.
[Sanchez-Nunez, Pablo] Univ Seville, Malaga 29071, Spain.
[de las Heras-Pedrosa, Carlos] Univ Malaga, Fac Commun Sci, Dept Audiovisual Commun & Advertising, Malaga 29071, Spain.
[Ignacio Pelaez, Jose] Univ Malaga, Higher Tech Sch Comp Engn, Dept Languages & Comp Sci, Malaga 29071, Spain.
C3 Universidad de Huelva; Universidad de Cadiz; Universidad de Malaga;
University of Sevilla; Universidad de Malaga; Universidad de Malaga
RP Sánchez-Núñez, P (corresponding author), Univ Malaga, Univ Huelva, Univ Cadiz, Doctorate Program Commun, Malaga 29071, Spain.; Sánchez-Núñez, P (corresponding author), Univ Seville, Malaga 29071, Spain.
EM psancheznunez@uma.es; cheras@uma.es; jipelaez@uma.es
RI de las Heras-Pedrosa, Carlos/M-4492-2015; Pelaez Sanchez, Jose
Ignacio/O-9450-2016
OI de las Heras-Pedrosa, Carlos/0000-0002-2738-4177; Sanchez Nunez,
Pablo/0000-0001-7845-9506; Pelaez Sanchez, Jose
Ignacio/0000-0002-2606-3849
FU Programa Operativo FEDER Andalucia 2014-2020 [UMA18-FEDERJA-148]
FX The research was funded by Programa Operativo FEDER Andalucia 2014-2020,
grant number "La reputacion de las organizaciones en una sociedad
digital. Elaboracion de una Plataforma Inteligente para la Localizacion,
Identificacion y Clasificacion de Influenciadores en los Medios Sociales
Digitales (UMA18-FEDERJA-148)" and The APC was funded by the same
research grant.
CR Ahlgren P, 2013, SCIENTOMETRICS, V95, P771, DOI 10.1007/s11192-012-0819-1
Alvarez-Bornstein B, 2017, SCIENTOMETRICS, V112, P1793, DOI 10.1007/s11192-017-2453-4
Baraybar-Fernández A, 2017, COMUNICAR, V25, P19, DOI 10.3916/C52-2017-02
Baron AS, 2017, J MARKET MANAG-UK, V33, P893, DOI 10.1080/0267257X.2017.1323839
Beaver DD, 2001, SCIENTOMETRICS, V52, P365, DOI 10.1023/A:1014254214337
Bericat E, 2016, CURR SOCIOL, V64, P491, DOI 10.1177/0011392115588355
Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001
Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006
EGGHE L, 1994, SCIENTOMETRICS, V30, P389, DOI 10.1007/BF02018109
Fonseca BDFE, 2016, HEALTH RES POLICY SY, V14, DOI 10.1186/s12961-016-0104-5
Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145
HERAS-PEDROSA C. de las, 2018, PRISM SOC, V22, P229
Peláez JI, 2018, KNOWL-BASED SYST, V162, P252, DOI 10.1016/j.knosys.2018.07.023
Jasanoff Sheila., 2019, SPRINGER HDB SCI TEC, DOI [10.1007/978-3-030-02511-3, DOI 10.1007/978-3-030-02511-3]
Kang D, 2014, EXPERT SYST APPL, V41, P1041, DOI 10.1016/j.eswa.2013.07.101
Katz JS, 1997, SCIENTOMETRICS, V40, P541, DOI 10.1007/BF02459299
Kennedy H, 2012, J BROADCAST ELECTRON, V56, P435, DOI 10.1080/08838151.2012.732141
Liu W., 2018, Soc Sci, V7, P141, DOI [10.3390/socsci7080141, DOI 10.3390/SOCSCI7080141]
LUUKKONEN T, 1992, SCI TECHNOL HUM VAL, V17, P101, DOI 10.1177/016224399201700106
Mäntylä MV, 2018, COMPUT SCI REV, V27, P16, DOI 10.1016/j.cosrev.2017.10.002
Martínez-López FJ, 2018, EUR J MARKETING, V52, P439, DOI 10.1108/EJM-11-2017-0853
Mostafa MM, 2013, EXPERT SYST APPL, V40, P4241, DOI 10.1016/j.eswa.2013.01.019
Moya-Anegón F, 2013, SCIENTOMETRICS, V97, P421, DOI 10.1007/s11192-013-1046-0
Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898
Peláez JI, 2020, SOFT COMPUT, V24, P1775, DOI 10.1007/s00500-019-04005-3
Pelaez JI, 2019, KNOWL-BASED SYST, V172, P33, DOI 10.1016/j.knosys.2019.02.009
Piryani R, 2017, INFORM PROCESS MANAG, V53, P122, DOI 10.1016/j.ipm.2016.07.001
Prabowo R, 2009, J INFORMETR, V3, P143, DOI 10.1016/j.joi.2009.01.003
Saaty Thomas L., 2012, Models, methods, concepts & applications of the analytic hierarchy process, DOI DOI 10.1007/978-1-4614-3597-6
Sebastian V, 2014, PROCD SOC BEHV, V127, P758, DOI 10.1016/j.sbspro.2014.03.350
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
UNESCO, 2015, UNESCO SCIENCE REPORT: TOWARDS 2030, P1
van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075
Wereda W, 2019, SOC SCI-BASEL, V8, DOI 10.3390/socsci8060177
NR 36
TC 13
Z9 13
U1 3
U2 13
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-0760
J9 SOC SCI-BASEL
JI Soc. Sci.-Basel
PD MAR
PY 2020
VL 9
IS 3
AR 23
DI 10.3390/socsci9030023
PG 20
WC Social Sciences, Interdisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Social Sciences - Other Topics
GA TY3DZ
UT WOS:000683665600002
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Hauffa, J
Bräu, W
Groh, G
AF Hauffa, Jan
Braeu, Wolfgang
Groh, Georg
BE Spezzano, F
Chen, W
Xiao, X
TI Detection of Topical Influence in Social Networks via Granger-Causal
Inference: A Twitter Case Study
SO PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN
SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2019)
LA English
DT Proceedings Paper
CT IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM)
CY AUG 27-30, 2019
CL Vancouver, CANADA
ID LINEAR-DEPENDENCE; FEEDBACK
AB With the ever-increasing importance of computer-mediated communication in our everyday life, understanding the effects of social influence in online social networks has become a necessity. In this work, we argue that cascade models of information diffusion do not adequately capture attitude change, which we consider to be an essential element of social influence. To address this concern, we propose a topical model of social influence and attempt to establish a connection between influence and Granger-causal effects on a theoretical and empirical level. While our analysis of a social media dataset finds effects that are consistent with our model of social influence, evidence suggests that these effects can be attributed largely to external confounders. The dominance of external influencers, including mass media, over peer influence raises new questions about the correspondence between objectively measurable information diffusion and social influence as perceived by human observers.
C1 [Hauffa, Jan; Braeu, Wolfgang; Groh, Georg] Tech Univ Munich, Dept Informat, Garching, Germany.
C3 Technical University of Munich
RP Hauffa, J (corresponding author), Tech Univ Munich, Dept Informat, Garching, Germany.
EM hauffa@in.tum.de; braeuw@in.tum.de; grohg@in.tum.de
OI Hauffa, Jan/0000-0001-5785-8698
CR AITCHISON J, 1980, BIOMETRIKA, V67, P261, DOI 10.2307/2335470
Anagnostopoulos A., 2008, P 14 ACM SIGKDD INT, P7, DOI [10.1145/1401890.1401897, DOI 10.1145/1401890.1401897]
[Anonymous], CMUML06113
[Anonymous], 2003, P 9 ACM SIGKDD INT C
Barnett L, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.238701
Basu S., 2017, SSRN
Bessi Alessandro, 2016, First Monday, V21, P11, DOI [DOI 10.5210/FM.V21I11.7090, 10.5210/fm.v21i11.7090]
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Bossomaier T, 2013, COMPLEX ADAPT SYST M, V1, DOI 10.1186/2194-3206-1-9
Brahim A. S., 2013, P INT AAAI C WEBL SO, P546
Chaudhry A., 2017, P 34 INT C MACHINE L, V70, P684
Chua F. C., 2015, 150101270 ARXIV
Galligan DJ, 2013, COMP CONST LAW POLIC, P3
Gandy A, 2014, SCAND J STAT, V41, P1083, DOI 10.1111/sjos.12085
GEWEKE J, 1982, J AM STAT ASSOC, V77, P304, DOI 10.2307/2287238
GEWEKE JF, 1984, J AM STAT ASSOC, V79, P907, DOI 10.2307/2288723
GRANGER CWJ, 1980, J ECON DYN CONTROL, V2, P329, DOI 10.1016/0165-1889(80)90069-X
Hauffa J., 2016, P 2 INT WORKSH SOC I, P3
Javanmard A, 2014, J MACH LEARN RES, V15, P2869
Kumar N, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P1329, DOI 10.1109/ASONAM.2016.7752408
Kwak HG, 2010, INT CONF ADV COMMUN, P591
Liotsiou D, 2016, LECT NOTES COMPUT SC, V10047, P116, DOI 10.1007/978-3-319-47874-6_9
Maziarz M, 2015, J PHILOS ECON, V8, P86
McKenney D, 2017, SOC NETW ANAL MIN, V7, DOI 10.1007/s13278-017-0421-x
Ritzer George., 2007, BLACKWELL ENCY SOCIO, DOI DOI 10.1002/9781405165518.WBEOSS154
Schreiber T, 2000, PHYSICA D, V142, P346, DOI 10.1016/S0167-2789(00)00043-9
Sousa D., 2010, P 2 INT WORKSHOP SEA, P63, DOI DOI 10.1145/1871985.1871996
Tsur O., 2017, P INT AAAI C WEB SOC, P680
Tufekci Z., 2014, Proceedings of the International AAAI Conference on Web and Social Media
NR 29
TC 2
Z9 2
U1 0
U2 4
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-6868-1
PY 2019
BP 969
EP 977
DI 10.1145/3341161.3345024
PG 9
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BP5IK
UT WOS:000555683800164
DA 2024-09-05
ER
PT C
AU Cui, JF
Wang, HM
Wang, CY
Wan, JZ
Mu, G
AF Cui, Jiefan
Wang, Hemin
Wang, Chengyuan
Wan, Junzhu
Mu, Gang
GP IEEE
TI Research on High Performance Direct Torque Control System Based on DSP
SO 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23
LA English
DT Proceedings Paper
CT 7th World Congress on Intelligent Control and Automation
CY JUN 25-27, 2008
CL Chongqing, PEOPLES R CHINA
DE DSP; DTC; PMSM; SVM
ID MOTOR-DRIVES
AB To minimize the ripples of the electromagnetic torque and flux linkage, fix the variable switching frequency, produced in the conventional direct torque control (DTC) system for permanent magnet synchronous motor (PMSM), a space vector modulation (SVM) DTC strategy was introduced based on PI predictive controller. This strategy and the conventional DTC were simulated by the Matlab/Simulink toolbox, the conventional DTC and SVM-DTC PMSM drive system was implemented based on TMS320LF2407 digital signal processor (DSP), the steady state and dynamic performance of the two schemes was analyzed. The results show that the steady state performance is improved in the SVM DTC system while preserving the dynamic performance of conventional DTC system and achieving constant switching frequency.
C1 [Cui, Jiefan; Wang, Hemin; Wang, Chengyuan; Wan, Junzhu; Mu, Gang] Shenyang Univ Technol, Sch Elect Engn, Shenyang, Liaoning Prov, Peoples R China.
C3 Shenyang University of Technology
RP Cui, JF (corresponding author), Shenyang Univ Technol, Sch Elect Engn, Shenyang, Liaoning Prov, Peoples R China.
EM mugangsmart@126.com
RI Mu, Gang/E-7851-2013
OI Mu, Gang/0000-0002-3907-1856
CR DEPENBROCK M, 1985, UNG ETZ ARCH, P211
Lai YS, 2001, IEEE T ENERGY CONVER, V16, P220, DOI 10.1109/60.937200
SUN D, PEDS 2003, V1, P692
Sun Dan, 2005, Proceedings of the CSEE, V25, P112
WANG CY, 2006, ELECT MACHINE MODERN
*WARS U DEP EL ENG, 2002, IEEE T IND ELECTRON, V3, P723
ZHAO LJ, 2005, J SHENYANG U TECHNOL, V27
Zhong L, 1997, IEEE T POWER ELECTR, V12, P528, DOI 10.1109/63.575680
NR 8
TC 0
Z9 0
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4244-2113-8
PY 2008
BP 1494
EP 1497
DI 10.1109/WCICA.2008.4594456
PG 4
WC Automation & Control Systems; Computer Science, Artificial Intelligence;
Computer Science, Cybernetics; Engineering, Electrical & Electronic;
Robotics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Automation & Control Systems; Computer Science; Engineering; Robotics
GA BIJ02
UT WOS:000259965701053
DA 2024-09-05
ER
PT J
AU Wu, JF
Huang, GY
Zheng, H
Huang, GL
Cai, BR
Chi, CH
He, J
AF Wu, Junfeng
Huang, Guangyan
Zheng, Hui
Huang, Guang-Li
Cai, Borui
Chi, Chi-Hung
He, Jing
TI Emerging Scientific Topic Discovery by Analyzing Reliable Patterns of
Infrequent Synonymous Biterms
SO IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE
LA English
DT Article
DE Reliability; Collaboration; Market research; Linguistics; Computational
intelligence; Resource management; Linear regression; Emerging
scientific topics; trend analysis; synonymous terms; text mining;
clustering; adaptivity
AB Emerging scientific topics are those topics that the number of related articles was small in the past but has grown dramatically in recent years. Automatic discovery of emerging scientific topics has become increasingly necessary because of the exponentially increasing of research papers. Such discovery enables broad applications, such as optimizing resource allocations for promising research areas, predicting future technology trends, finding knowledge gaps and new concepts, and recommending personalized research directions. In this paper, we provide a framework of emerging topic discovery methods using Infrequent Synonymous Biterm (ISB), which automatically extracts the dedicated knowledge from the infrequent patterns of synonymous biterms in a corpus (e.g., paper titles); each term in a synonymous biterm represents a collaborating supertopic, whose collaboration originates an emerging topic. In particular, we propose an Analyzing Reliable Patterns of Infrequent Synonymous Biterms (ARPISB) method, which guarantees the quality of the result emerging topics by adaptively giving larger weights to more reliable ISB. Extensive experiments on five subfields' scholarly papers demonstrate the significant and robust improvement of the accuracy of emerging scientific topic discovery.
C1 [Wu, Junfeng; Huang, Guangyan; Huang, Guang-Li; Cai, Borui] Deakin Univ, Sch Informat Technol, Blackburn South 3130, Australia.
[Zheng, Hui] CSIRO, Data61, Clayton, Vic 3168, Australia.
[Chi, Chi-Hung] Nanyang Technol Univ, Singapore 639798, Singapore.
[He, Jing] Univ Oxford, Nuffield Dept Clin Neurosci, Oxford OX1 2JD, England.
C3 Deakin University; Commonwealth Scientific & Industrial Research
Organisation (CSIRO); Nanyang Technological University; University of
Oxford
RP Huang, GY (corresponding author), Deakin Univ, Sch Informat Technol, Blackburn South 3130, Australia.
EM wujunfeng@vip.163.com; guangyan.huang@deakin.edu.au;
hui.zheng@data61.csiro.au; guangli.huang@qq.com; b.cai@deakin.edu.au;
chihungchi@gmail.com; jing.he@ndcn.ox.ac.uk
RI Zhang, Yuyao/KEH-7175-2024; Huang, Guang-Li/AED-6392-2022; Wu,
Junfeng/C-7246-2019
OI Huang, Guang-Li/0000-0001-8698-2946; Wu, Junfeng/0000-0003-1263-3051
FU Australian Research Council [DP190100587]
FX This work was supported by the Australian Research Council under Grant
DP190100587.(Corresponding author: Guangyan Huang.).
CR Alam MM, 2017, SCIENTOMETRICS, V113, P1325, DOI 10.1007/s11192-017-2548-y
Chen KX, 2020, IEEE T NEUR NET LEAR, V31, P1747, DOI 10.1109/TNNLS.2019.2927224
de Arruda HF, 2016, CHAOS, V26, DOI 10.1063/1.4954215
Ezzeldin M., 2020, J STRUCT ENG, V146
Hazem A, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P297
Kim M, 2016, J SUPERCOMPUT, V72, P3663, DOI 10.1007/s11227-016-1831-7
King D, 2020, PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), P1549, DOI 10.1145/3397271.3401235
Luo MN, 2018, IEEE T CYBERNETICS, V48, P648, DOI 10.1109/TCYB.2017.2647904
Mikolov T., 2013, ADV NEURAL INFORM PR, P3111, DOI DOI 10.48550/ARXIV.1310.4546
Noh H, 2019, J TECHNOL TRANSFER, V44, P700, DOI 10.1007/s10961-017-9634-4
Piwowar H., 2022, OPEN SCI FACTSHEET N, DOI [10.48440/os.helmholtz.046, DOI 10.48440/OS.HELMHOLTZ.046]
Porter M., 2013, ENGLISH PORTER2 STEM
Prabhakaran V, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1170
Priem J., 2022, ARXIV
Salatino AA, 2018, ACM-IEEE J CONF DIG, P303, DOI 10.1145/3197026.3197052
Salatino AA, 2018, LECT NOTES COMPUT SC, V11137, P187, DOI 10.1007/978-3-030-00668-6_12
Silva FN, 2016, J INFORMETR, V10, P487, DOI 10.1016/j.joi.2016.03.008
Tseng YH, 2009, SCIENTOMETRICS, V81, P73, DOI 10.1007/s11192-009-1885-x
Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021
Wu J., 2020, PROC CHALLENGES LARG
Wu JF, 2022, LECT NOTES ARTIF INT, V13280, P29, DOI 10.1007/978-3-031-05933-9_3
Zhang DL, 2020, IEEE T CYBERNETICS, V50, P3033, DOI 10.1109/TCYB.2019.2905157
NR 22
TC 0
Z9 0
U1 7
U2 10
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2471-285X
J9 IEEE T EM TOP COMP I
JI IEEE Trans. Emerg. Top. Comput. Intell.
PD FEB
PY 2024
VL 8
IS 1
BP 752
EP 761
DI 10.1109/TETCI.2023.3266944
EA APR 2023
PG 10
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA KA1I7
UT WOS:000980472900001
DA 2024-09-05
ER
PT J
AU Thomas, J
Zaytseva, A
AF Thomas, John
Zaytseva, Anna
TI Mapping complexity/Human knowledge as a complex adaptive system
SO COMPLEXITY
LA English
DT Article
DE knowledge architecture dynamics; scientometrics; knowledge as a complex
adaptive system; emergence; Latent Dirichlet Allocation
AB Cartography is the art of map-making that integrates science, technology, and visual aesthetics for the purpose of rendering the domain of interest, navigable. The science could aid the cartographer if it were to inform about the underlying process. Thus, Mendeleev's periodic table was informed by insights about the atomic mass periodicity. Likewise, Harvey's work on the circulatory system map was informed by his theoretical insights on Galen's errors. Mapping of human knowledge dates back at least to Porphyry who laid out the first tree-of-knowledge. Modern knowledge-cartographers use a wide array of scientometric techniques capable of rendering appealing visuals of massive scientific corpuses. But what has perhaps been lacking is a sound theoretical basis for rendering legible the adaptive dynamics of knowledge creation and accumulation. Proposed is a theoretical framework, knowledge as a complex adaptive system (CAS) patterned on Holland's work on CAS, as well as the view that knowledge is a hierarchically heterarchic dynamical system. As a first leg in the conjoining experimental phase, we extract terms from approximately 1400 complexity science papers published at the Santa Fe Institute, deduce the topic distribution using Latent Dirichlet Allocation, capture the underlying dynamics, and show how to navigate the corpus visually. (c) 2016 Wiley Periodicals, Inc. Complexity 21: 207-234, 2016
C1 [Thomas, John] Cognit Tools Ltd LLC, POB 695,255 North Ave, New Rochelle, NY 10801 USA.
[Zaytseva, Anna] Univ Oslo, Postboks 1080 Blindern, N-0316 Oslo, Norway.
C3 University of Oslo
RP Thomas, J (corresponding author), Cognit Tools Ltd LLC, POB 695,255 North Ave, New Rochelle, NY 10801 USA.
EM johntom@cogtools.com
CR [Anonymous], MASS COLLABORATION E
[Anonymous], 2011, Reinventing discovery
Bar-Yam Y., 2002, Complexity rising: From human beings to human civilization, a complexity profile
Barron B, 2016, COMPUT-SUPP COLLAB L, V16, P257, DOI 10.1007/978-3-319-13536-6_13
Binswanger H., 1990, BIOL BASIS TELEOLOGI
Borner K., 2010, Atlas of Science: Visualizing what We Know
Borner K., 2012, Springer Book in the Understanding Complex Systems Series
Campbell T., 2009, INTERDISCIPLINARY RE
Castellani B., SACS TOOLKIT E SOCIA
Castellani B., MAP COMPLEXITY SCI
Castellani B, 2009, UNDERST COMPLEX SYST, P1
Chase M, 2011, DIALOGUE-CAN PHILOS, V50, P511, DOI 10.1017/S0012217311000527
Chemistry World, 2014, INT CEL
Chen C., 2013, Mapping scientific frontiers: The quest for knowledge visualization, DOI [10.1007/978-1-4471-5128-9, DOI 10.1007/978-1-4471-5128-9]
Chen CM, 2001, COMPUTER, V34, P65, DOI 10.1109/2.910895
Collins A, 2016, COMPUT-SUPP COLLAB L, V16, P31, DOI 10.1007/978-3-319-13536-6_2
Cress U, 2016, COMPUT-SUPP COLLAB L, V16, P3, DOI 10.1007/978-3-319-13536-6_1
DeAngelis J., 2014, BUTTERFLY EFFECT UND
Devedzic V., 2004, INT J ARTIFICIAL INT, V14, P165
Eimler SC, 2016, COMPUT-SUPP COLLAB L, V16, P285, DOI 10.1007/978-3-319-13536-6_14
Fairtlough G., 2005, The three ways of getting things done: Hierarchy, heterarchy and responsible autonomy in organizations
Fischer G, 2016, COMPUT-SUPP COLLAB L, V16, P43, DOI 10.1007/978-3-319-13536-6_3
Fu W.T., 2016, MASS COLLABORATION E
Ganter B., 1999, Formal concept analysis
Haken Hermann., 1984, The science of structure: synergetics
Hawkins Harriett., 1995, Strange Attractors: Literature, Culture and Chaos Theory
Holland J. H., 2006, Journal of Systems Science and Complexity, V19, P1, DOI 10.1007/s11424-006-0001-z
Holland J. H., 1989, INDUCTION PROCESSES
Holland J. H., 1995, Hidden order
Holland J.H., 1999, Emergence: From chaos to order
Holland John H., COMPLEX ADAPTIVE SYS
Jantsch E., 1947, Higher Education Quarterly, V1, P7, DOI [DOI 10.1111/J.1468-2273.1947.TB02067.X, 10.1111/j.1468-2273.1947.tb02067.x.]
Kauffman S, 2006, BIOL PHILOS, V21, P501, DOI 10.1007/s10539-005-9003-9
Kauffman Stuart A., 1993
Kellert StephenH., 2008, Borrowed Knowledge: Chaos Theory and the Challenge of Learning Across Disciplines
Kuhn T.S., 1962, The structure of scientific revolutions
Licklider J.C.R., 1960, IRE Transactions on Human Factors in Electronics, P4, DOI [DOI 10.1109/THFE2.1960.4503259, 10.1109/THFE2.1960.4503259]
LINSTONE HA, 1970, TECHNOL FORECAST SOC, V1, P263, DOI 10.1016/0099-3964(70)90028-1
Mann M.G, 1994, COMPLEXITY METAPHORS
Morowitz H., 1995, SANTE FE I STUDIES S
Morowitz HaroldJ., 1993, Entropy and the Magic Flute
Pollack J., 2014, Emergence: Complexity Organization, V16, P74
Popper K. R., 2002, Conjectures and Refutations: The Growth of Scientific Knowledge
Sokal A., 1999, FASHIONABLE NONSENSE
Tabony J, 2006, BIOL CELL, V98, P603, DOI 10.1042/BC20050087
Thagard P., 1992, Conceptual revolution
Thomas J., 1995, THESIS
Thomas J, 2015, PROC CIRP, V34, P268, DOI 10.1016/j.procir.2015.08.010
Thorén H, 2013, J GEN PHILOS SCI, V44, P337, DOI 10.1007/s10838-013-9233-5
Vinokurova N.D., 2012, THESIS
Weiss R., 1998, WASHINGTON POST
Yang D., 2013, P 2013 NIPS DAT DRIV, V11, P14, DOI DOI 10.1109/APPEEC.2013.6837188
IEEE INTELL SYST APP, DOI DOI 10.1109/MIS.2010.131
NR 53
TC 11
Z9 12
U1 0
U2 25
PU WILEY-HINDAWI
PI LONDON
PA ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND
SN 1076-2787
EI 1099-0526
J9 COMPLEXITY
JI Complexity
PD NOV-DEC
PY 2016
VL 21
IS S2
BP 207
EP 234
DI 10.1002/cplx.21799
PG 28
WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematics; Science & Technology - Other Topics
GA EC7ND
UT WOS:000388325600020
DA 2024-09-05
ER
PT J
AU Briggs, DC
AF Briggs, Derek C.
TI Strive for Measurement, Set New Standards, and Try Not to Be Evil
SO JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS
LA English
DT Article; Early Access
DE artificial intelligence; assessment; language comprehension/development;
measurement; psychology; research methodology; validity/reliability
AB I consider recent attempts to establish standards, principles, and goals for artificial intelligence (AI) through the lens of educational measurement. Distinctions are made between generative AI and AI-adjacent methods and applications of AI in formative versus summative assessment contexts. While expressing optimism about its possibilities, I caution that the examples of truly generative AI in educational testing have the potential to be overexaggerated, that efforts to establish standards for AI should complement the Standards for Educational and Psychological Testing and focus attention on the issues of fairness and social responsibility, and that scientific advance and transparency in the development and application of AI in educational assessment may be incompatible with the competitive marketplace that is funding this development.
C1 [Briggs, Derek C.] Univ Colorado, Educ, Boulder, CO 80309 USA.
C3 University of Colorado System; University of Colorado Boulder
RP Briggs, DC (corresponding author), Univ Colorado, Educ, Boulder, CO 80309 USA.
CR Ackerman TA, 2023, EDUC MEAS-ISSUES PRA, DOI 10.1111/emip.12581
[Anonymous], 2020, Relationship of the SAT/ACT to College Performance at the University of California
[Anonymous], 2014, Standards for Educational Psychological Testing
Attali Y, 2022, FRONT ARTIF INTELL, V5, DOI 10.3389/frai.2022.903077
Briggs D. C., 2024, Educational measurement, V5th ed
Briggs D. C., 2021, Historical and conceptual foundations of measurement in the human sciences: Credos and controversies
Briggs DC, 2022, J EDUC MEAS, V59, P398, DOI 10.1111/jedm.12350
Burstein J., 2023, The Duolingo English test responsible AI standards
Cardwell R. L., 2023, Duolingo Research Report
Cardwell RL, 2024, LANG TEST, V41, P192, DOI 10.1177/02655322231195027
Gierl M.J., 2013, Automatic Item Generation: Theory and Practice
Giordani A, 2023, MEASUREMENT, V222, DOI 10.1016/j.measurement.2023.113598
International Test Commission and Association of Test Publishers, 2022, Guidelines for technology-based assessment
Maris G., 2020, Duolingo Research Report, DRR-20-02
Russell M., 2023, Systemic Racism and Educational Measurement: Confronting Injustice in Testing, Assessment
Swiecki Z., 2022, Computers and Education: Artificial Intelligence, V3, DOI DOI 10.1016/J.CAEAI.2022.100075
Wainer H., 2000, COMPUTERIZED ADAPTIV, DOI DOI 10.1002/9780470479216.CORPSY0213
Williamson D.M., 2006, AUTOMATED SCORING CO
NR 18
TC 1
Z9 1
U1 6
U2 6
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1076-9986
EI 1935-1054
J9 J EDUC BEHAV STAT
JI J. Educ. Behav. Stat.
PD 2024 APR 7
PY 2024
DI 10.3102/10769986241238479
EA APR 2024
PG 8
WC Education & Educational Research; Social Sciences, Mathematical Methods;
Psychology, Mathematical
WE Social Science Citation Index (SSCI)
SC Education & Educational Research; Mathematical Methods In Social
Sciences; Psychology
GA NE5V5
UT WOS:001198799200001
DA 2024-09-05
ER
PT C
AU Rao, SG
Rao, PV
Rambabu, R
Reddy, PCS
AF Rao, Govinda S.
Rao, Varaprasada P.
Rambabu, R.
Reddy, Chandra Sekahar P.
BE Goswami, A
TI A Novel Approach in Clustering Algorithm to Evaluate the Performance of
Regression Analysis
SO PROCEEDINGS OF THE 2018 IEEE 8TH INTERNATIONAL ADVANCE COMPUTING
CONFERENCE (IACC 2018)
SE IEEE International Advance Computing Conference
LA English
DT Proceedings Paper
CT IEEE 8th International Advance Computing Conference (IACC)
CY DEC 14-15, 2018
CL Bennett Univ, Greater Noida, INDIA
HO Bennett Univ
DE Modified K Means Clustering Algorithm; Regression Analysis; Cluster;
SCImago; Bibliometric Index
AB This paper, introduced a new methodology to raise the metric of a journal's impact. This method is depending on finding clusters from SC Imago database and creates datasets utilizing a modified k-means clustering algorithm. Farther, developing of linear regression analysis on these datasets is perplexed by seeing index values are dependent variables and citation parameters as independent variables result in assessing contributing factors to increase bibliometric index of any journal. next step, cluster quality metrics enforced to evaluate the perfectness of fit of the cluster such as homogeneity score, completeness score, V measure, accommodated rand score and silhouette coefficient. The output of modified k-means algorithm on a dataset of 1445 journals resulted in 3 clusters (k=3). Each cluster data clustered depending on the title.
The regression analysis states that the publisher who desires to enhance his journal bibliometric indexes should deliberate the advice conferred, in this work, bring large number of paper submissions to their journal especially. Almost four indices which are of main importance in the publisher industry having been used this. The analysis ensure in strong advantage as the testing of output produced including regression parameters clarified with the identification of outliers by the inclusion of relative error calculation. Accordingly, seeing the suggestive features with increase or decrease in TD3, TC3, CD3, CD2 and RD values, the publisher would profit from raising their respective bibliometric index.
C1 [Rao, Govinda S.; Rao, Varaprasada P.; Reddy, Chandra Sekahar P.] GRIET, CSE, Hyderabad, Telangana, India.
[Rambabu, R.] RIET, CSE, Rajamahendravaram, India.
C3 Gokaraju Rangaraju Institute of Engineering & Technology
RP Rao, SG (corresponding author), GRIET, CSE, Hyderabad, Telangana, India.
EM govind.griet@gmail.com; prasadp.griet@gmail.com;
rambabureddy.rampatruni@gmail.com; pchandureddy@yahoo.com
RI s, govinda rao/AAF-9720-2020; REDDY, P CHANDRA Sekhar/AAD-6388-2020; P,
Varaprasada Rao/AAG-2920-2020
OI s, govinda rao/0000-0002-1331-1786; REDDY, P CHANDRA
Sekhar/0000-0001-8666-2619;
CR Abbasi A, 2011, J INFORMETR, V5, P594, DOI 10.1016/j.joi.2011.05.007
BASERGA R, 1995, CANCER RES, V55, P249
Bolin JH, 2014, J EDUC MEAS, V51, P335, DOI 10.1111/jedm.12050
Li Wei, 2008, IM SIGN PROC 2008 CI, V4
Patel VR, 2011, COMM COM INF SC, V250, P307
Rambabu R, 2016, J INFORM TECHNOLOGY, V5, P30
Rao S.G, 2015, I MANAGERS J COMPUTE, V3, P33
Rao S.G, 2015, INT J SCI ENG RES, V6, P726
Shafeeq A., 2012, P 2012 C INF COMP NE
Su MS, 2001, IEEE T PATTERN ANAL, V23, P674, DOI 10.1109/34.927466
NR 10
TC 0
Z9 0
U1 0
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2164-8263
BN 978-1-5386-6678-4
J9 IEEE INT ADV COMPUT
PY 2018
BP 47
EP 52
PG 6
WC Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BO1AG
UT WOS:000494356000008
DA 2024-09-05
ER
PT J
AU Wang, DL
Guo, XW
AF Wang, Daliang
Guo, Xiaowen
TI Research on Evaluation Model of Music Education Informatization System
Based on Machine Learning
SO SCIENTIFIC PROGRAMMING
LA English
DT Article
AB Music education informatization system can promote music teaching; in addition, due to the characteristics of music disciplines such as the audiovisual nature of music, the influence of informatization on music teaching is self-evident. With the rapid development of the human ability to obtain information, machine learning algorithms have been widely used in various fields of scientific research and engineering, involving chemical production statistical process control, archeology text recognition, social and criminal investigation field fingerprint and image recognition, and genomic information research in the field of biomedicine. In order to correctly evaluate the music education information system based on machine learning, through the comparison of four models, it is concluded that the construction of the GBDT model is optimal.
C1 [Wang, Daliang; Guo, Xiaowen] Henan Polytech, Mus Acad, Zhengzhou, Peoples R China.
C3 Henan Polytechnic
RP Wang, DL (corresponding author), Henan Polytech, Mus Acad, Zhengzhou, Peoples R China.
EM daliangwang@hnzj.edu.cn; padoca@163.com
CR Adams N, 2010, J R STAT SOC A STAT, V173, P274, DOI 10.1111/j.1467-985X.2009.00624_10.x
Arel I, 2010, IEEE COMPUT INTELL M, V5, P13, DOI 10.1109/MCI.2010.938364
Chen GB, 2020, COMPUT COMMUN, V153, P538, DOI 10.1016/j.comcom.2020.02.033
Chen GB, 2021, ENTERP INF SYST-UK, V15, P935, DOI 10.1080/17517575.2020.1720828
Danyan X., 2013, INT C INF TECHN MAN, P391, DOI [10.1007/978-3-642-34910-2_44, DOI 10.1007/978-3-642-34910-2_44]
Du J., 2014, CHINA ED TECHNOLOGY, V7
Duro DC, 2012, REMOTE SENS ENVIRON, V118, P259, DOI 10.1016/j.rse.2011.11.020
Guo T, 2008, PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, P3630, DOI 10.1109/ICMLC.2008.4621035
Hu S., 2012, MODERN DISTANCE ED R, V188, P6278
Huang B., 2018, CHINA ED TECHNOLOGY, V380, P69
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Lalit S., 2016, COMPUTING REV, V57, P237
Lemm S, 2011, NEUROIMAGE, V56, P387, DOI 10.1016/j.neuroimage.2010.11.004
Matoga Adrian, 2013, 2013 International Conference on High Performance Computing & Simulation (HPCS), P461, DOI 10.1109/HPCSim.2013.6641454
Rahman A., 2014, IJCTT, V10, DOI [10.14445/22312803/IJCTT-V10P137, DOI 10.14445/22312803/IJCTT-V10P137]
Tag PM, 1996, J APPL METEOROL, V35, P714, DOI 10.1175/1520-0450(1996)035<0714:MLOMFF>2.0.CO;2
Wang HC, 2020, COMPUT COMMUN, V157, P336, DOI 10.1016/j.comcom.2020.04.039
Wang W., 2011, INFORM STUDIES THEOR
Weimei Z., 2011, P 2011 NAT AC TEACH, P250
Yang DL, 2011, ADV MATER RES-SWITZ, V189-193, P823, DOI 10.4028/www.scientific.net/AMR.189-193.823
Zhou L., 2015, J XIAN POLY TECHNIC, V29, P772
Zubek J, 2015, PEERJ, V3, DOI 10.7717/peerj.1041
NR 22
TC 3
Z9 3
U1 0
U2 9
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1058-9244
EI 1875-919X
J9 SCI PROGRAMMING-NETH
JI Sci. Program.
PD FEB 24
PY 2022
VL 2022
AR 9658735
DI 10.1155/2022/9658735
PG 12
WC Computer Science, Software Engineering
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA ZZ0WL
UT WOS:000772997100005
OA gold
DA 2024-09-05
ER
PT J
AU RAITT, DI
AF RAITT, DI
TI RECALL AND PRECISION DEVICES IN INTERACTIVE BIBLIOGRAPHIC SEARCH AND
RETRIEVAL-SYSTEMS
SO ASLIB PROCEEDINGS
LA English
DT Article
RP RAITT, DI (corresponding author), EUROPEAN SPACE AGCY,LIB & INFORMAT SERV,NL-2200 AG NOORDWIJK,NETHERLANDS.
CR *AM SOC MET, 1976, THES MET TERMS
*ENG IND INC, 1972, SUBJ HEAD ENGN
*ENG JOINT COUNC, 1969, THES ENG SCI TERMS
*I ELECT ENG, 1979, INSPEC THES
1971, TID5001 USAEC NTIS
1976, NASA THESAURUS, V1
1976, NASA THESAURUS, V2
1974, INIS THESAURUS
NR 8
TC 5
Z9 5
U1 0
U2 1
PU ASLIB
PI LONDON
PA 20-24 OLD ST, LONDON, ENGLAND EC1V 9AP
SN 0001-253X
J9 ASLIB PROC
JI Aslib Proc.
PY 1980
VL 32
IS 7-8
BP 281
EP 301
DI 10.1108/eb050747
PG 21
WC Computer Science, Information Systems; Information Science & Library
Science
WE Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA JZ642
UT WOS:A1980JZ64200001
DA 2024-09-05
ER
PT J
AU Qi, RH
Wei, J
Shao, Z
Li, ZG
Chen, H
Sun, YH
Li, SH
AF Qi, Ruihua
Wei, Jia
Shao, Zhen
Li, Zhengguang
Chen, Heng
Sun, Yunhao
Li, Shaohua
TI Multi-task learning model for citation intent classification in
scientific publications
SO SCIENTOMETRICS
LA English
DT Article
DE Citation intent classification; Multi-task; Pretrained language model;
Heterogeneous features
AB Citations play a significant role in the evaluation of scientific literature and researchers. Citation intent analysis is essential for academic literature understanding. Meanwhile, it is useful for enriching semantic information representation for the citation intent classification task because of the rapid growth of publicly accessible full-text literature. However, some useful information that is readily available in citation context and facilitates citation intent analysis has not been fully explored. Furthermore, some deep learning models may not be able to learn relevant features effectively due to insufficient training samples of citation intent analysis tasks. Multi-task learning aims to exploit useful information between multiple tasks to help improve learning performance and exhibits promising results on many natural language processing tasks. In this paper, we propose a joint semantic representation model, which consists of pretrained language models and heterogeneous features of citation intent texts. Considering the correlation between citation intents, citation section and citation worthiness classification tasks, we build a multi-task citation classification framework with soft parameter sharing constraint and construct independent models for multiple tasks to improve the performance of citation intent classification. The experimental results demonstrate that the heterogeneous features and the multi-task framework with soft parameter sharing constraint proposed in this paper enhance the overall citation intent classification performance.
C1 [Qi, Ruihua; Li, Zhengguang; Chen, Heng; Sun, Yunhao; Li, Shaohua] Dalian Univ Foreign Languages, Sch Software, Dalian, Liaoning, Peoples R China.
[Qi, Ruihua; Wei, Jia; Shao, Zhen] Dalian Univ Foreign Languages, Res Ctr Language Intelligence, Dalian, Liaoning, Peoples R China.
C3 Dalian University of Foreign Languages; Dalian University of Foreign
Languages
RP Qi, RH (corresponding author), Dalian Univ Foreign Languages, Sch Software, Dalian, Liaoning, Peoples R China.; Qi, RH (corresponding author), Dalian Univ Foreign Languages, Res Ctr Language Intelligence, Dalian, Liaoning, Peoples R China.
EM rhqi@dlufl.edu.cn; lizhengguang2004@163.com
FU This work is partially supported by grant from the Applied Basic
Research Project of Liaoning Province (No. 2022JH2/101300270), the
Scientific Research Innovation Team Project of Dalian University of
Foreign Languages (No. 2016CXTD06) [2022JH2/101300270]; Applied Basic
Research Project of Liaoning Province [2016CXTD06]; Scientific Research
Innovation Team Project of Dalian University of Foreign Languages
FX This work is partially supported by grant from the Applied Basic
Research Project of Liaoning Province (No. 2022JH2/101300270), the
Scientific Research Innovation Team Project of Dalian University of
Foreign Languages (No. 2016CXTD06)
CR Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Cohan A., 2019, STRUCTURAL SCAFFOLDS
de Andrade C. M. V., 2020, P 8 INT WORKSH MIN S, P54
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Dong C., 2011, P 5 INT JOINT C NAT, P623
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Hassan NR, 2019, J DOC, V75, P593, DOI 10.1108/JD-08-2018-0125
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
Hu TZ, 2022, INT C ELECTR MACH SY, DOI 10.1109/ICEMS56177.2022.9983414
Jiang X, 2023, SEMIN OPHTHALMOL, V38, P744, DOI 10.1080/08820538.2023.2204939
Jochim C., 2012, P COLING 2012, P1343
Jurgens D., 2018, T ASSOC COMPUT LING, DOI 10.1162/tacl_a_00028
Lauscher A., 2021, MULTICITE MODELING R
Lyu DQ, 2021, SCIENTOMETRICS, V126, P3243, DOI 10.1007/s11192-021-03908-z
Maheshwari H., 2021, P 2 WORKSHOP SCHOLAR, P130
Oesterling A., 2021, MULTITASK LEARNING C
PAICE CD, 1990, INFORM PROCESS MANAG, V26, P171, DOI 10.1016/0306-4573(90)90014-S
Prester J, 2021, DECIS SUPPORT SYST, V140, DOI 10.1016/j.dss.2020.113432
Pride D, 2019, ACM-IEEE J CONF DIG, P329, DOI 10.1109/JCDL.2019.00055
Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x
Qi R. H., 2022, IN P 21 CHINESE NATL, P684
Qi RH, 2023, APPL INTELL, V53, P4145, DOI 10.1007/s10489-022-03684-0
Roman M, 2021, IEEE ACCESS, V9, P9982, DOI 10.1109/ACCESS.2021.3050547
Ruder Sebastian, 2017, arXiv, P1
Su X, 2019, ACM-IEEE J CONF DIG, P394, DOI 10.1109/JCDL.2019.00122
Teufel S, 2002, COMPUT LINGUIST, V28, P409, DOI 10.1162/089120102762671936
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Tuarob S, 2020, IEEE T KNOWL DATA EN, V32, P1881, DOI 10.1109/TKDE.2019.2913376
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
Vaswani A, 2017, ADV NEUR IN, V30
Xiao X, 2013, 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR)
Yousif A, 2019, NEUROCOMPUTING, V335, P195, DOI 10.1016/j.neucom.2019.01.021
Zhang Y, 2021, LECT NOTES COMPUT SC, V13081, P363, DOI 10.1007/978-3-030-91560-5_26
Zhang Y, 2022, SCIENTOMETRICS, V127, P6557, DOI 10.1007/s11192-021-04242-0
Zhang Y, 2018, NATL SCI REV, V5, P30, DOI 10.1093/nsr/nwx105
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 36
TC 1
Z9 1
U1 6
U2 14
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2023
VL 128
IS 12
BP 6335
EP 6355
DI 10.1007/s11192-023-04858-4
EA OCT 2023
PG 21
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA AH4D9
UT WOS:001097747800001
DA 2024-09-05
ER
PT J
AU Li, L
Wang, JZ
AF Li, Lin
Wang, Juzhen
TI Research on feature importance evaluation of wireless signal recognition
based on decision tree algorithm in cognitive computing
SO COGNITIVE SYSTEMS RESEARCH
LA English
DT Article
DE Cognitive computing; Modulation recognition; Feature evaluation
ID NETWORKS
AB Cognitive computing is an important method in the field of wireless signal processing, analysis and recognition. How to select features to complete the cognitive computing quickly and effectively is an important role in real application. In this paper, three kinds of features are extracted from six communication signals: power spectrum entropy, singular spectrum entropy and wavelet energy entropy. And the importance of the features is evaluated. Box-diagram and recognition rate are used for the evaluation of single feature. The visual boundaries of feature classification are used to evaluate two features. Meanwhile, the confusion matrix and the visualization model of decision tree are given for more detailed evaluation. The evaluation results show that the combination of power spectrum entropy and singular spectrum entropy can get the best recognition performance. (C) 2018 Elsevier B.V. All rights reserved.
C1 [Li, Lin] State Key Lab Complex Electromagnet Environm Effe, Luoyang 471003, Henan, Peoples R China.
[Wang, Juzhen] Zhongxing Telecommun Equipment Corp ZTE Corp, 55 Keji Rd South, Shenzhen 518057, Peoples R China.
RP Wang, JZ (corresponding author), Zhongxing Telecommun Equipment Corp ZTE Corp, 55 Keji Rd South, Shenzhen 518057, Peoples R China.
EM wjzheu@163.com
CR [Anonymous], INT J COMPUTER THEOR
[Anonymous], INT J SIGNAL PROCESS
[Anonymous], IJVDCS
[Anonymous], 2018, IEEE T NEUR NET LEAR, DOI DOI 10.1109/TNNLS.2018.2827036
[Anonymous], 2018, MULTIMEDIA TOOLS APP, DOI DOI 10.1109/tfuzz.2018.2859904
[Anonymous], TR18292 STANF U CAL
[Anonymous], SENSORS BASEL
[Anonymous], 2018, WIRELESS PERSONAL CO
[Anonymous], 2015, INT J ADV RES COMPUT
[Anonymous], 2018, NATURE INSPIRED COMP
Geronazzo A, 2018, BUILD ENVIRON, V128, P260, DOI 10.1016/j.buildenv.2017.11.030
Guo ZM, 2017, I COMP CONF WAVELET, P89, DOI 10.1109/ICCWAMTIP.2017.8301455
Jia M, 2016, IEEE WIREL COMMUN, V23, P96, DOI 10.1109/MWC.2016.1500108WC
Li JC, 2014, 2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), P718, DOI 10.1109/ICSAI.2014.7009379
Li JC, 2015, KSII T INTERNET INF, V9, P4934, DOI 10.3837/tiis.2015.12.011
Li JH, 2015, SPRINGER THESES-RECO, P1, DOI 10.1007/978-3-662-46991-0_1
Lin Y., 2018, IEEE T RELIAB, P1
Lin Y, 2019, J SUPERCOMPUT, V75, P3010, DOI 10.1007/s11227-017-2216-2
Liu T, 2017, EURASIP J WIREL COMM, DOI 10.1186/s13638-017-0949-5
Nivedha R., 2015, INDIAN J SCI TECHNOL, V8
Quinlan J. R, 1983, Machine Learning: An Artificial Intelligence Approach, P463
Sathyadevan S, 2015, SMART INNOV SYST TEC, V31, P549, DOI 10.1007/978-81-322-2205-7_51
Shi CZ, 2018, PHYS COMMUN-AMST, V27, P99, DOI 10.1016/j.phycom.2018.02.001
Shi XH, 2018, ACM COMPUT SURV, V50, DOI 10.1145/3128571
Tang B, 2018, IEEE ACCESS, V6, P15713, DOI 10.1109/ACCESS.2018.2815741
Tu Y, 2018, CMC-COMPUT MATER CON, V55, P243, DOI 10.3970/cmc.2018.01755
Walenczykowska M, 2016, B POL ACAD SCI-TECH, V64, P257, DOI 10.1515/bpasts-2016-0028
Wang H, 2018, MOBILE NETW APPL, V23, P677, DOI 10.1007/s11036-018-1000-8
Wang H, 2017, 2017 FORUM ON COOPERATIVE POSITIONING AND SERVICE (CPGPS), P316, DOI 10.1109/CPGPS.2017.8075146
Wang H, 2017, FRACTALS, V25, DOI 10.1142/S0218348X17400084
Wu QD, 2017, MULTIMED TOOLS APPL, V76, P17179, DOI 10.1007/s11042-016-3760-0
Yang ZT, 2017, IEEE T VEH TECHNOL, V66, P5985, DOI 10.1109/TVT.2016.2617874
Zheng ZG, 2018, FUTURE GENER COMP SY, V88, P92, DOI 10.1016/j.future.2018.05.027
NR 33
TC 6
Z9 6
U1 0
U2 13
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2214-4366
EI 1389-0417
J9 COGN SYST RES
JI Cogn. Syst. Res.
PD DEC
PY 2018
VL 52
BP 882
EP 890
DI 10.1016/j.cogsys.2018.09.007
PG 9
WC Computer Science, Artificial Intelligence; Neurosciences; Psychology,
Experimental
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Neurosciences & Neurology; Psychology
GA HB2GA
UT WOS:000450854400089
DA 2024-09-05
ER
PT C
AU Kosch, O
Szarucki, M
AF Kosch, Oskar
Szarucki, Marek
BE Glanzel, W
Heeffer, S
Chi, PS
Rousseau, R
TI A model for Custom Bibliographic Databases Creation: Machine Learning
Approach for Analogue Documents Inclusion
SO 18TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS
(ISSI2021)
SE Proceedings of the International Conference on Scientometrics and
Informetrics
LA English
DT Proceedings Paper
CT 18th International Conference on Scientometrics and Informetrics (ISSI)
CY JUL 12-15, 2021
CL KU Leuven, ELECTR NETWORK
HO KU Leuven
ID SCOPUS; ERRORS/HORRORS; COVERAGE; SCIENCE; MUSEUM; WEB
AB To fully take advantage of rigorous literature-based study (e.g., bibliometrics or systematic literature reviews), databases that enable the inclusion of all relevant documents are needed. As many currently available bibliographic databases inherit characteristics of the core-periphery model of scientific production or are unbalanced in their thematic structure, the need for a model for custom bibliographic databases creation procedure arises. At the same time, the adoption of machine learning is apparent throughout science, technology and business, as we learn how to maximise its usefulness. We investigate what model for custom bibliographic database could be adopted, especially taking into consideration the inclusion of analogue publications. Such documents need to be converted into digital form, hence we propose machine learning algorithms and then we explore their accuracy in analogue documents inclusion into the custom bibliographic database for the case of Polish management sciences methodology. We explore the application of neural networks for image preprocessing and optical character recognition, and subsequent application of conditional random fields to obtain a bibliographic database. Our results are highly suggestive and reveal the applicability of the proposed model consisting of database search and snowballing.
C1 [Kosch, Oskar; Szarucki, Marek] Cracow Univ Econ, Rakowicka 27, PL-31510 Krakow, Poland.
C3 Cracow University of Economics
RP Kosch, O (corresponding author), Cracow Univ Econ, Rakowicka 27, PL-31510 Krakow, Poland.
EM koscho@uek.krakow.pl; szaruckm@uek.krakow.pl
RI Kosch, Oskar/AAD-3183-2021; Szarucki, Marek/T-2662-2018
OI Kosch, Oskar/0000-0003-2697-1393
CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
Abrizah A, 2014, J ASSOC INF SCI TECH, V65, P2498, DOI 10.1002/asi.23145
Archambault É, 2006, SCIENTOMETRICS, V68, P329, DOI 10.1007/s11192-006-0115-z
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Bar-Ilan J., 2017, CEUR WORKSHOP PROC, V1888
Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018
Botha L, 2011, INT J SOC RES METHOD, V14, P313, DOI 10.1080/13645579.2010.516644
Bradski G, 2000, DR DOBBS J, V25, P120
Bramer WM, 2017, SYST REV-LONDON, V6, DOI 10.1186/s13643-017-0644-y
Breslin D, 2020, INT J MANAG REV, V22, P219, DOI 10.1111/ijmr.12234
Butler L, 2006, SCIENTOMETRICS, V66, P327, DOI 10.1007/s11192-006-0024-1
Cassell C, 2016, EUR MANAG J, V34, P453, DOI 10.1016/j.emj.2016.06.013
CeON, 2018, CEON CERMINE CONT EX
Clarivate, WEB SCI MAST J LIST
Cowhitt Thomas, 2020, Journal of Electronic Resources Librarianship, V32, P195, DOI 10.1080/1941126X.2020.1790952
De Moya-Anegón F, 2007, SCIENTOMETRICS, V73, P53, DOI 10.1007/s11192-007-1681-4
Echchakoui S, 2020, J MARK ANAL, V8, P165, DOI 10.1057/s41270-020-00081-9
Felizardo KR, 2016, ESEM'16: PROCEEDINGS OF THE 10TH ACM/IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT, DOI 10.1145/2961111.2962630
Franceschini F, 2016, J INFORMETR, V10, P933, DOI 10.1016/j.joi.2016.07.003
Franceschini F, 2016, J INFORMETR, V10, P174, DOI 10.1016/j.joi.2015.11.006
Frandsen TF, 2008, J AM SOC INF SCI TEC, V59, P1570, DOI 10.1002/asi.20817
Hendricks G, 2020, QUANT SCI STUD, V1, P414, DOI 10.1162/qss_a_00022
Herzog C, 2020, QUANT SCI STUD, V1, P387, DOI 10.1162/qss_a_00020
inukshuk, 2020, INUKSHUK ANYSTYLE FA
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Kawabe H, 2020, ADV INTELL SYST COMP, V1001, P322, DOI 10.1007/978-3-030-21248-3_24
kermitt2, 2020, KERMITT2 GROBID MACH
Lee B, 2020, EUR MANAG REV, V17, P279, DOI 10.1111/emre.12398
Meester WJN, 2016, J INFORMETR, V10, P569, DOI 10.1016/j.joi.2016.04.011
Mourao E, 2020, INFORM SOFTWARE TECH, V123, DOI 10.1016/j.infsof.2020.106294
Peroni S, 2020, QUANT SCI STUD, V1, P428, DOI 10.1162/qss_a_00023
Prashanth P, 2019, PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), P1167, DOI [10.1109/iccmc.2019.8819725, 10.1109/ICCMC.2019.8819725]
Quan N, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), P579, DOI 10.1109/ICInfA.2016.7831888
Rebala G., 2019, INTRO MACHINE LEARNI, P1
Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28
Sile L, 2018, RES EVALUAT, V27, P310, DOI 10.1093/reseval/rvy016
Sivertsen G, 2012, SCIENTOMETRICS, V91, P567, DOI 10.1007/s11192-011-0615-3
Suddaby R, 2017, EUR MANAG J, V35, P285, DOI 10.1016/j.emj.2017.03.009
Bansal P, 2011, ACAD MANAGE J, V54, P233, DOI 10.5465/AMJ.2011.60262792
Tkaczyk D, 2018, ACM-IEEE J CONF DIG, P99, DOI 10.1145/3197026.3197048
Tkaczyk D, 2015, INT J DOC ANAL RECOG, V18, P317, DOI 10.1007/s10032-015-0249-8
Tunger D, 2018, SCIENTOMETRICS, V117, P2041, DOI 10.1007/s11192-018-2919-z
van Raan A, 2019, SPRINGER HBK, P237, DOI 10.1007/978-3-030-02511-3_10
Waltman L, 2020, QUANT SCI STUD, V1, P360, DOI 10.1162/qss_e_00026
Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021
Web of Knowledge, J TITL ABBR
NR 46
TC 0
Z9 0
U1 0
U2 1
PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI
PI LEUVEN
PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN,
B-3000, BELGIUM
SN 2175-1935
BN 978-90-803282-2-8
J9 PRO INT CONF SCI INF
PY 2021
BP 573
EP 584
PG 12
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BS3CO
UT WOS:000709638700065
DA 2024-09-05
ER
PT J
AU Badia, G
AF Badia, Giovanna
TI Identifying "best bets" for searching in chemical engineering Comparing
database content and performance for information retrieval
SO JOURNAL OF DOCUMENTATION
LA English
DT Article
DE Information retrieval; Searching; Comparative tests; Citation analysis;
Online databases; Search recall
ID BIBLIOGRAPHIC DATABASES; GOOGLE SCHOLAR; H-INDEX; COVERAGE; JOURNALS;
EIGENFACTOR(TM); RECALL
AB Purpose - Performing efficient literature searches and subscribing to the most comprehensive databases for interdisciplinary fields can be challenging since the literature is typically indexed in numerous databases to different extents. Comparing databases will help information professionals make appropriate choices when teaching, literature searching, creating online subject guides, and deciding which databases to renew when faced with fiscal challenges. The purpose of this paper is to compare databases for searching the chemical engineering literature.
Design/methodology/approach - This paper compares journal indexing and search recall across seven databases that cover the chemical engineering literature in order to determine which database and database pair provide the most comprehensive coverage in this area. It also summarizes published, database comparison methods to aid information professionals in undertaking their own comparative assessments.
Findings - SciFinder, Scopus, and Web of Science, listed alphabetically, were the leading databases for searching the chemical engineering literature. SciFinder-Scopus and SciFinder-Web of Science were the top two database pairs. No single database or pair provided 100 percent complete coverage of the literature examined. Searching a second database increased the recall of results by an average of 17.6 percent.
Practical implications - The findings are useful since they identify "best bets" for performing an efficient search of the chemical engineering literature. Information professionals can also use the methods discussed to compare databases for any discipline or search topic.
Originality/value - This paper builds on the previous literature by using a dual approach to compare the coverage of the chemical engineering literature across multiple databases. To the author's knowledge, comparing databases in the field of chemical engineering has not been reported in the literature thus far.
C1 [Badia, Giovanna] McGill Univ, Schulich Lib Phys Sci Life Sci & Engn, Montreal, PQ, Canada.
C3 McGill University
RP Badia, G (corresponding author), McGill Univ, Schulich Lib Phys Sci Life Sci & Engn, Montreal, PQ, Canada.
EM giovanna.badia@mcgill.ca
RI Badia, Giovanna/A-5829-2009
OI Badia, Giovanna/0000-0003-1544-2728
CR Alpi Kristine M, 2006, J Med Libr Assoc, V94, pE107
[Anonymous], REFERENCE SERVICES R
Barnett P., 2012, ISSUES SCI TECHNOLOG, V70
BAWDEN D, 1985, J CHEM INF COMP SCI, V25, P31, DOI 10.1021/ci00045a008
Bergman Elaine M. Lasda, 2011, Behavioral & Social Sciences Librarian, V30, P154, DOI 10.1080/01639269.2011.592803
Beyer FR, 2013, HEALTH INFO LIBR J, V30, P49, DOI 10.1111/hir.12009
BRADFORD SC, 1985, J INFORM SCI, V10, P176
Brettle AJ, 2001, B MED LIBR ASSOC, V89, P353
BROOKS K, 1980, DATABASE, V3, P38
BURTON RE, 1959, AM DOC, V10, P70, DOI 10.1002/asi.5090100109
Cavacini A, 2015, SCIENTOMETRICS, V102, P2059, DOI 10.1007/s11192-014-1506-1
Ciccone K, 2015, EVID BASED LIB INF P, V10, P34, DOI 10.18438/B86G6Q
Delwiche F. A., 2010, MAPPING LIT NU UNPUB
Elsevier, 2015, SCOPUS HAS ADDED 5MI
Finch K., 2010, MISSISSIPPI LIB, V74, P9
Grabowsky A., 2015, ISSUES SCI TECHNOLOG, V2015
Grindlay DJC, 2012, J VET MED EDUC, V39, P404, DOI 10.3138/jvme.1111.109R
Hanneke R, 2016, J MED LIBR ASSOC, V104, P109, DOI 10.3163/1536-5050.104.2.004
Hill B, 2009, J MED LIBR ASSOC, V97, P313, DOI 10.3163/1536-5050.97.4.017
Ingold C, 2007, LIBR TRENDS, V56, P449
Jacso P, 1997, ANNU REV INFORM SCI, V32, P231
JACSO P, 2001, CONTENT EVALUATION T
Kawasaki J. L., 2002, Quarterly Bulletin of IAALD, V47, P33
Lehr J., 2015, THESIS
McDonald S, 1999, Health Libr Rev, V16, P151
Michaleff ZA, 2011, PHYS THER, V91, P190, DOI 10.2522/ptj.20100116
Modak JM, 2008, CURR SCI INDIA, V94, P1265
Newton D, 2010, REF USER SERV Q, V49, P265, DOI 10.5860/rusq.49n3.265
PETERS HPF, 1988, INFORMETRICS 87 88, P175
Prathap G, 2011, CURR SCI INDIA, V100, P1276
Rashapov R., 2015, THESIS
Reuters Thomson, 2016, HIST CIT IND
Roberts D, 1999, TOP GERIATR REHABIL, V14, P10
Saracevic T., 2016, SYNTHESIS LECT INFOR, V8, pi
Shultz M, 2007, J MED LIBR ASSOC, V95, P442, DOI 10.3163/1536-5050.95.4.442
SNOW B, 1984, ONLINE, V8, P37
Speare Marie, 2010, Science & Technology Libraries, V29, P1, DOI 10.1080/01942620802205561
Stirbu S, 2015, J ACAD LIBR, V41, P322, DOI 10.1016/j.acalib.2015.02.013
Stokes P, 2009, HEALTH INFO LIBR J, V26, P220, DOI 10.1111/j.1471-1842.2008.00822.x
Tober M., 2011, Med. Laser Appl., V26, P139, DOI [10.1016/j.mla.2011.05.006, 10.1016/J.MLA.2011.05.006, DOI 10.1016/J.MLA.2011.05.006, 10.1016/j.mla.2011.05.006.]
Todd J, 2006, ONLINE, V30, P35
Tremblay D., 2009, THESIS
Veeder HB, 2011, ART DOC, V30, P54, DOI 10.1086/adx.30.1.27949568
Walters WH, 2003, J AM SOC INF SCI TEC, V54, P1305, DOI 10.1002/asi.10337
Walters WH, 2011, PORTAL-LIBR ACAD, V11, P971
Yin CY, 2011, CURR SCI INDIA, V100, P648
NR 46
TC 2
Z9 3
U1 0
U2 31
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 0022-0418
EI 1758-7379
J9 J DOC
JI J. Doc.
PY 2018
VL 74
IS 1
BP 80
EP 98
DI 10.1108/JD-09-2016-0112
PG 19
WC Computer Science, Information Systems; Information Science & Library
Science
WE Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA FR6QP
UT WOS:000419191300005
DA 2024-09-05
ER
PT J
AU de Waal, A
AF de Waal, Andre
TI Evaluating High Performance the Evidence-Based Way: The Case of the
Swagelok Transformers
SO SAGE OPEN
LA English
DT Article
DE high performance organizations; HPO framework; long-term research; North
America; organizational performance
ID ORGANIZATIONAL PERFORMANCE; SUBJECTIVE MEASURES; IMPACT; INNOVATION;
EFFICIENCY; UNIVERSITY; RESOURCES; TURNOVER; GREAT; FOCUS
AB Many of the publications on achieving high performance have been written by North American researchers and consultants, and the case companies they described originate mainly from the United States. However, there is a lack of long-term studies that subject the described techniques to rigorous evidence-based management research in North American companies, to test the ideas in practice over a period of time to evaluate their relevance to managerial practice. In this article, we evaluate the high performance organization (HPO) Framework, a scientifically validated technique for helping organizations become high performing, in the North American context. This framework evaluates the strengths and weaknesses of the internal organization of a company, using a questionnaire. This questionnaire was applied in 2013 at seven Swagelok locations in the United States and Canada. From the questionnaire improvement opportunities were identified on which the locations subsequently worked. In 2015, the questionnaire was repeated to evaluate the effects of these improvements on the locations' performance and to identify the most effective interventions. The study results show that the application of the HPO Framework had different outcomes depending on local circumstances. Some locations experienced a growth while other locations used the framework to battle the consequences of adverse economic circumstances. All locations agreed that the HPO Framework had been instrumental, in a positive way, to the development of their organization and its people.
C1 [de Waal, Andre] HPO Ctr, Havenstr 29, NL-1211 KG Hilversum, Netherlands.
RP de Waal, A (corresponding author), HPO Ctr, Havenstr 29, NL-1211 KG Hilversum, Netherlands.
EM andredewaal@planet.nl
CR [Anonymous], GLOBAL BUSINESS ORG
[Anonymous], 2006, Hard facts, dangerous half-truths, total nonsense
[Anonymous], 2013, Handbook of psychology: Research methods in psychology
Axson D.A.J., 2010, The management mythbuster
Baguley T, 2009, BRIT J PSYCHOL, V100, P603, DOI 10.1348/000712608X377117
Bhattacharya M., 2006, Journal of Managerial Issues, V18, P62
BOMMER WH, 1995, PERS PSYCHOL, V48, P587, DOI 10.1111/j.1744-6570.1995.tb01772.x
Botner KA, 2015, J MARKETING RES, V52, P39, DOI 10.1509/jmr.13.0211
Bozarth C, 2001, INT J PROD RES, V39, P3237, DOI 10.1080/00207540110064929
Camfield L, 2014, EUR J DEV RES, V26, P1, DOI 10.1057/ejdr.2013.42
Chen CM, 2015, STRATEGIC MANAGE J, V36, P19, DOI 10.1002/smj.2199
Cohen J., 1977, STAT POWER ANAL BEHA
Collins J., 2019, TURNING FLYWHEEL MON
Collins JamesC., 1994, Built to Last: Successful Habits of Visionary Companies
Dawes J., 1999, MARKETING B, V10, P65
De Waal A., 2006, Characteristics of a high performance organisation
de Waal A. A, 2018, INT J PRODUCTION PER
de Waal AA., 2012, What Makes a High Performance Organization: Five Validated Factors of Competitive Performance That Apply Worldwide
de Waal A, 2017, MANAG RES REV, V40, P429, DOI 10.1108/MRR-03-2016-0058
de Waal A, 2015, J STRATEGY MANAG, V8, P87, DOI 10.1108/JSMA-07-2014-0065
de Waal A, 2011, INT J EMERG MARK, V6, P148, DOI 10.1108/17468801111119506
de Waal A, 2011, MEAS BUS EXCELL, V15, P4, DOI 10.1108/13683041111113213
DESS GG, 1984, STRATEGIC MANAGE J, V5, P265, DOI 10.1002/smj.4250050306
Dong JQ, 2016, J BUS RES, V69, P4358, DOI 10.1016/j.jbusres.2016.04.066
Dubois A, 2002, J BUS RES, V55, P553, DOI 10.1016/S0148-2963(00)00195-8
Edwards MT, 2013, J HEALTHC MANAG, V58, P369, DOI 10.1097/00115514-201309000-00011
Eesley C, 2017, RES POLICY, V46, P636, DOI 10.1016/j.respol.2017.01.010
Gomes P, 2017, INT J PRODUCT PERFOR, V66, P517, DOI 10.1108/IJPPM-03-2016-0057
Hale D, 2016, ACAD MANAGE J, V59, P906, DOI 10.5465/amj.2013.0546
Harrington M, 2015, MULTIVAR BEHAV RES, V50, P162, DOI 10.1080/00273171.2014.973989
Horgan J., 2003, IR J MANAG, V24, P26
Johnson PF, 2014, J PURCH SUPPLY MANAG, V20, P130, DOI 10.1016/j.pursup.2014.01.003
JOHNSTON MW, 1989, J BUS RES, V18, P141, DOI 10.1016/0148-2963(89)90032-5
Jones Mark R., 2014, Quality Management Journal, V21, P49
Kieser A, 2015, ACAD MANAG ANN, V9, P143, DOI 10.1080/19416520.2015.1011853
Kirby J, 2005, HARVARD BUS REV, V83, P30
Lawrence P., 1967, Organization and Environment: Managing Differentiation and Integration
Mellat-Parast M, 2015, INT J PROD ECON, V164, P24, DOI 10.1016/j.ijpe.2015.02.027
Menard S., 2007, HDB LONGITUDINAL RES
Niendorf B, 2008, ACAD MANAGE PERSPECT, V23, P13
Parnell JA, 2012, BRIT J MANAGE, V23, pS104, DOI 10.1111/j.1467-8551.2012.00815.x
Peters T.J., 1982, SEARCH EXCELLENCE
Ployhart RE, 2015, MORE STATISTICAL AND METHODOLOGICAL MYTHS AND URBAN LEGENDS, P85
Raynor ME, 2009, HARVARD BUS REV, V87, P18
Reichmann G, 2010, APPL ECON, V42, P311, DOI 10.1080/00036840701604511
Resnick BG, 2008, ACAD MANAGE PERSPECT, V23, P6
Robson C, 2002, REAL WORLD RES RECIP
Saïd T, 2007, INT J HUM RESOUR MAN, V18, P2075, DOI 10.1080/09585190701695234
Saunders M., 2015, RES METHODS BUSINESS
Shih T, 2016, IMP J, V10, P296, DOI 10.1108/IMP-08-2015-0044
Sirén C, 2016, LEADERSHIP QUART, V27, P653, DOI 10.1016/j.leaqua.2016.03.002
Tsikriktsis N, 2007, M&SOM-MANUF SERV OP, V9, P506, DOI 10.1287/msom.1060.0133
van Wingerden J, 2016, J MANAGE PSYCHOL, V31, P686, DOI 10.1108/JMP-03-2014-0086
Vij S, 2016, INT J PRODUCT PERFOR, V65, P603, DOI 10.1108/IJPPM-12-2014-0196
Waal A. A, 2017, J ADV MANAGEMENT RES, V14, P352
Wall TD, 2004, PERS PSYCHOL, V57, P95, DOI 10.1111/j.1744-6570.2004.tb02485.x
Wallace J., 2012, SAM Advanced Management Journal, V77, P27
Wayhan VB, 2013, TOTAL QUAL MANAG BUS, V24, P171, DOI 10.1080/14783363.2012.746195
Whiston S.C., 1993, J CAREER DEV, V19, P175, DOI DOI 10.1007/BF01353276
Yeniyurt S, 2014, J ACAD MARKET SCI, V42, P291, DOI 10.1007/s11747-013-0360-7
NR 60
TC 2
Z9 3
U1 0
U2 2
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 2158-2440
J9 SAGE OPEN
JI SAGE Open
PD OCT 12
PY 2017
VL 7
IS 4
AR 2158244017736801
DI 10.1177/2158244017736801
PG 15
WC Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Social Sciences - Other Topics
GA FJ7PE
UT WOS:000412950400001
OA gold
DA 2024-09-05
ER
PT C
AU Li, XL
Xue, HA
AF Li, Xueliang
Xue, Haian
BE Marcus, A
Rosenzweig, E
Soares, MM
TI Cultivating Researcher-Sensibility in Novice Designers: Exploring
Genre-Specific Heuristics for Game Evaluation in a Design Studio
SO DESIGN, USER EXPERIENCE, AND USABILITY, DUXU 2023, PT II
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 12th International Conference on Design, User Experience, and Usability
(DUXU) Held as Part of the 25th International Conference on
Human-Computer Interaction (HCII)
CY JUL 23-28, 2023
CL Copenhagen, DENMARK
DE Design Education; Studio; Design Research Methodology; Design Evaluation
AB This paper presents an eight-day design studio that teaches heuristic evaluation of games to third-year bachelor students at the School of Design, Southern University of Science and Technology. Through this course, students gain the first-hand experiences of developing heuristics for games through online survey and using them in idea generation and game evaluation. 13 students (working in groups of two or individually) developed 88 heuristics for 8 game genres by analyzing 349 quotes of game reviews collected from online. The heuristics were further developed into questionnaires and tested with invited 51 game players, followed up by post-interviews. The heuristics were also used as inspirational tools to help the students generate design ideas in an ideation exercise. Results of the students' work indicate usefulness of the heuristics as evaluative and inspirational tools. In the discussion, we reflected on the challenges encountered by the students over the course and how dealing with these challenges could reveal further directions of teaching research methods in HCI studios.
C1 [Li, Xueliang] Southern Univ Sci & Technol, Sch Design, Chuangyuan Bldg 6,1088 Xueyuan Ave, Shenzhen, Guangdong, Peoples R China.
[Xue, Haian] Delft Univ Technol, Fac Ind Design Engn, Landbergstr 15, NL-2628 CE Delft, Netherlands.
C3 Southern University of Science & Technology; Delft University of
Technology
RP Li, XL (corresponding author), Southern Univ Sci & Technol, Sch Design, Chuangyuan Bldg 6,1088 Xueyuan Ave, Shenzhen, Guangdong, Peoples R China.
EM lixl6@sustech.edu.cn; h.xue@tudelft.nl
OI Xue, Haian/0000-0002-2351-9070
CR [Anonymous], 2003, Comput. Sci. Educ., DOI DOI 10.1076/CSED.13.3.191.14945
Bodker S, 1998, HUM-COMPUT INTERACT, V13, P107, DOI 10.1207/s15327051hci1302_1
Button G., 1994, REQUIREMENTS ENG SOC, P217
Churchill E.F., 2013, CHI '14: Extended abstracts on human factors in computing systems, P135
Cross N, 2007, BOARD INT RES DES, P41, DOI 10.1007/978-3-7643-8472-2_3
Davis Meredith., 2017, TEACHING DESIGN GUID
Grandhi Sukeshini, 2015, Interactions, V22, P69, DOI 10.1145/2834811
Höök K, 2012, ACM T COMPUT-HUM INT, V19, DOI 10.1145/2362364.2362371
Jones J.C., 1980, Design Studies, V1, P172, DOI DOI 10.1016/0142-694X(80)90025-3
Korhonen H., 2009, INT C DES PLEAS PROD, VVolume 2009, P13
Lucero A., 2014, interactions, V21, P34, DOI [DOI 10.1145/2590973, https://doi.org/10.1145/2590973]
Lucero A., 2013, Proceedings of the 6th International Conference on Designing Pleasurable Products and Interfaces, ACM, P221, DOI [10.1145/2513506.2513530, DOI 10.1145/2513506.2513530]
Lucero A., 2010, Proceedings of the 3rd International Conference on Fun and Games, P28
Nagel J., 2014, Knowledge-A Very Short Introduction
Nielsen Jakob., 1995, CONDUCT HEURISTIC EV, V1, P1
Petitmengin C., 2006, Phenomenol. Cogn. Sci, V5, P229, DOI [10.1007/s11097-006-9022-2, DOI 10.1007/S11097-006-9022-2]
Pinelle D, 2008, CHI 2008: 26TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS VOLS 1 AND 2, CONFERENCE PROCEEDINGS, P1453
Plimmer B., P 11 ANN SIGCSE C IN, P53
Rajanen M., 2018, GamiFIN, P159
Rittel H., 1987, INT C PLANN DES THEO
Rivard Kathryn., 2012, P DESIGNING INTERACT, P298, DOI DOI 10.1145/2317956.2318002
Schn D. A., 1987, Educating the reflexive practitioner
Schon D.A., 1985, The Design Studio An Exploration of its Traditions and Potentials
Strååt B, 2014, INT J GAMING COMPUT-, V6, P45, DOI 10.4018/ijgcms.2014100104
Vieira EAO, 2019, INFORM EDUC, V18, P427, DOI 10.15388/infedu.2019.20
Wilcox L, 2019, PROCEEDINGS OF THE 2019 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE (DIS 2019), P871, DOI 10.1145/3322276.3322381
Xue H, 2019, DESIGN STUD, V63, P37, DOI 10.1016/j.destud.2019.03.001
NR 27
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-35695-7; 978-3-031-35696-4
J9 LECT NOTES COMPUT SC
PY 2023
VL 14031
BP 483
EP 496
DI 10.1007/978-3-031-35696-4_35
PG 14
WC Computer Science, Cybernetics; Computer Science, Software Engineering;
Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BW8RY
UT WOS:001206155200035
DA 2024-09-05
ER
PT J
AU Liang, K
Wu, P
Zhang, R
AF Liang, Kun
Wu, Peng
Zhang, Rui
TI Research on the Evaluation of Regional Scientific and Technological
Innovation Capabilities Driven by Big Data
SO SUSTAINABILITY
LA English
DT Article
DE RSTI; big data; LDA; AHP-SMO
ID DEVELOPMENT PROJECT-SELECTION; SYSTEM
AB Scientific and technological innovation (STI) is an important internal driver of social and economic development. Reasonable evaluation of regional scientific and technological innovation (RSTI) capability helps discover shortcomings in the development of urban development and guides the allocation of scientific and technological resources and the formulation of policies to promote innovation. This paper analyzes new opportunities created by big data and artificial intelligence for the evaluation of RSTI capability, and based on this analysis, the collaborative evaluation schemes of multi-entity participation are investigated. In addition, considering the important value of unstructured data in evaluating STI, the Latent Dirichlet Allocation (LDA) topic model and sentiment analysis method are employed to analyze the construction of an evaluation indicator system that integrates scientific and technological news data. To fully utilize the respective advantages of human experts and machine learning in the field of complex issue evaluation, this paper proposes an RSTI capability evaluation model based on AHP-SMO human-machine fusion. This study promotes the integration of science and technology and economy and has theoretical and practical significance.
C1 [Liang, Kun; Wu, Peng; Zhang, Rui] Anhui Univ, Sch Business, Hefei 230601, Peoples R China.
C3 Anhui University
RP Liang, K (corresponding author), Anhui Univ, Sch Business, Hefei 230601, Peoples R China.
EM 17014@ahu.edu.cn; pengwu@ahu.edu.cn; 05073@ahu.edu.cn
FU University Scientific Research Project of Anhui Province
FX No Statement Available
CR Alassery F, 2023, COMPUT SYST SCI ENG, V44, P859, DOI 10.32604/csse.2023.025796
Bai YC, 2022, INT J COOP INF SYST, V31, DOI 10.1142/S0218843021500040
BAKER NR, 1974, IEEE T ENG MANAGE, VEM21, P165, DOI 10.1109/TEM.1974.6448498
Barletta F, 2017, RES POLICY, V46, P1361, DOI 10.1016/j.respol.2017.05.007
Chang Y, 2020, IOP C SER EARTH ENV, V446, DOI 10.1088/1755-1315/446/2/022016
Dai YF, 2022, TECHNOL ECON DEV ECO, V28, P1313, DOI 10.3846/tede.2022.16988
Feller I, 2013, J TECHNOL TRANSFER, V38, P565, DOI 10.1007/s10961-012-9264-9
Furman JL, 2002, RES POLICY, V31, P899, DOI 10.1016/S0048-7333(01)00152-4
Gómez J, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.104030
Gong C, 2021, MATH PROBL ENG, V2021, DOI 10.1155/2021/5528042
Gu WJ, 2023, FRONT PUBLIC HEALTH, V11, DOI 10.3389/fpubh.2023.1141757
Guo FR, 2020, IOP C SER EARTH ENV, V510, DOI 10.1088/1755-1315/510/3/032023
Hwangbo Wonju, 2021, Asian Journal of Innovation and Policy, V10, P39
Li HM, 2020, J SUPERCOMPUT, V76, P3283, DOI 10.1007/s11227-018-2542-z
Li X, 2015, ADV INTEL SYS RES, V117, P1582
LIBERATORE MJ, 1987, IEEE T ENG MANAGE, V34, P12, DOI 10.1109/TEM.1987.6498854
Liu YF, 2020, IOP C SER EARTH ENV, V510, DOI 10.1088/1755-1315/510/3/032015
Luo Y, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132313495
Lv ZG, 2021, J INTELL FUZZY SYST, V40, P8371, DOI 10.3233/JIFS-189658
Minarikova E., 2015, P EUR C INN ENTR ECI
Mohamed MMA, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063586
Nelson R.R., 1987, Technology generation in Latin American manufacturing industries, P78
Ngo NDK, 2019, I C SERV SYST SERV M
OAKEY R, 1988, RES POLICY, V17, P180, DOI 10.1016/0048-7333(88)90043-1
Otsuka K, 2012, APPL ECON LETT, V19, P1045, DOI 10.1080/13504851.2011.613743
Ou X., 2017, 7th International Conference on Education, Management, Information and Mechanical Engineering (EMIM 2017), P1430
Paredes-Frigolett H., 2014, Ranking the Performance of National Innovation Systems in the Iberian Peninsula and Latin America from a Neo-Schumpeterian Economics Perspective (FZID Discussion Papers No. 95-2014)
Polednikova E., 2014, P ECMLG 2014 10 EUR
Porter M., 1999, The New Challenge to America's Prosperity: Findings from the Innovation Index
Ramirez-Hernandez Luis Fernando, 2019, Journal of Technology Management & Innovation, V14, P44
Raza A, 2023, IRRIG DRAIN, V72, P945, DOI 10.1002/ird.2838
Navarro-Machado VR, 2016, MEDICC REV, V18, P34, DOI 10.37757/MR2016.V18.N1-2.7
Rodríguez-Navarro A, 2022, SCIENTOMETRICS, V127, P2871, DOI 10.1007/s11192-022-04313-w
SCHMIDT RL, 1992, IEEE T ENG MANAGE, V39, P189, DOI 10.1109/17.141276
Stankovic J.J., 2021, Multiple Criteria Decision Making, P69
TREVOR M, 1989, R&D MANAGE, V19, P278, DOI 10.1111/j.1467-9310.1989.tb00649.x
Ture H, 2019, SOC INDIC RES, V142, P645, DOI 10.1007/s11205-018-1938-8
Wang JS, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph192416597
Wang XL, 2023, IEEE T ENG MANAGE, V70, P1808, DOI 10.1109/TEM.2021.3068989
Wang XT, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120941
Xu HY, 2018, PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED MANUFACTURING (IEEE ICAM), P85, DOI 10.1109/AMCON.2018.8615038
Yang HC, 2022, TECHNOL FORECAST SOC, V178, DOI 10.1016/j.techfore.2022.121569
Yang YL, 2022, J INTELL FUZZY SYST, V43, P4911, DOI 10.3233/JIFS-220491
Zhang J, 2019, CHAOS SOLITON FRACT, V128, P25, DOI 10.1016/j.chaos.2019.07.036
Zhang JS, 2018, INT CONF SEMANT, P100, DOI 10.1109/SKG.2018.00021
Zhang R, 2022, ENERGY REP, V8, P425, DOI 10.1016/j.egyr.2021.11.282
NR 46
TC 0
Z9 0
U1 17
U2 17
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD FEB
PY 2024
VL 16
IS 4
AR 1379
DI 10.3390/su16041379
PG 22
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA JJ0D2
UT WOS:001172670700001
OA gold
DA 2024-09-05
ER
PT J
AU Mulhearn, TJ
Watts, LL
Todd, EM
Medeiros, KE
Connelly, S
Mumford, MD
AF Mulhearn, Tyler J.
Watts, Logan L.
Todd, E. Michelle
Medeiros, Kelsey E.
Connelly, Shane
Mumford, Michael D.
TI Validation and Use of a Predictive Modeling Tool: Employing Scientific
Findings to Improve Responsible Conduct of Research Education
SO ACCOUNTABILITY IN RESEARCH-ETHICS INTEGRITY AND POLICY
LA English
DT Article
DE Education; ethics; evaluation; path model; RCR; responsible conduct of
research; tool; training
ID TEACHING MEDICAL-ETHICS; SENSEMAKING APPROACH; STUDENTS; INSTRUCTION
AB Although recent evidence suggests ethics education can be effective, the nature of specific training programs, and their effectiveness, varies considerably. Building on a recent path modeling effort, the present study developed and validated a predictive modeling tool for responsible conduct of research education. The predictive modeling tool allows users to enter ratings in relation to a given ethics training program and receive instantaneous evaluative information for course refinement. Validation work suggests the tool's predicted outcomes correlate strongly (r=0.46) with objective course outcomes. Implications for training program development and refinement are discussed.
C1 [Mulhearn, Tyler J.; Watts, Logan L.; Todd, E. Michelle; Connelly, Shane; Mumford, Michael D.] Univ Oklahoma, Dept Psychol, 201 Stephenson Pkwy,Ste 4100, Norman, OK 73019 USA.
[Medeiros, Kelsey E.] Univ Texas Arlington, Dept Psychol, Arlington, TX 76019 USA.
C3 University of Oklahoma System; University of Oklahoma - Norman;
University of Texas System; University of Texas Arlington
RP Mumford, MD (corresponding author), Univ Oklahoma, Dept Psychol, 201 Stephenson Pkwy,Ste 4100, Norman, OK 73019 USA.
EM mmumford@ou.edu
RI Watts, Logan L./I-5332-2019
OI Watts, Logan L./0000-0001-7629-0188; Medeiros,
Kelsey/0000-0002-7388-3970
FU Office of Research Integrity [ORIIR140010-01-00]
FX The project described was supported by grant number ORIIR140010-01-00
from the Office of Research Integrity. The contents of this publication
are solely the responsibility of the authors and do not necessarily
represent the official views of the Department of Health and Human
Services or the Office of Research Integrity.
CR Al-Jalahma Mariam, 2004, Educ Health (Abingdon), V17, P62, DOI 10.1080/13576280310001656187
[Anonymous], ACCOUNTABIL IN PRESS
[Anonymous], ACCOUNTABIL IN PRESS
[Anonymous], THESIS
[Anonymous], SCI ENG ETH IN PRESS
[Anonymous], ETHICS ASSESSM UNPUB
[Anonymous], ETHICS BEHA IN PRESS
[Anonymous], U KANSAS INITI UNPUB
[Anonymous], J INFORM SYSTEMS ED
Antes AL, 2014, ACCOUNT RES, V21, P50, DOI 10.1080/08989621.2013.822269
Austin KA, 2011, INSTR SCI, V39, P975, DOI 10.1007/s11251-010-9162-1
Barchi FH, 2013, BMC MED EDUC, V13, DOI 10.1186/1472-6920-13-14
Baykara ZG, 2015, NURS ETHICS, V22, P661, DOI 10.1177/0969733014542673
Bebeau M J, 1994, J Dent Educ, V58, P684
Cho KC, 2014, NURS ETHICS, V21, P484, DOI 10.1177/0969733013505310
Clarkeburn H, 2002, J MORAL EDUC, V31, P439, DOI 10.1080/0305724022000029662
COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155
Evans Bronwynne C, 2004, Nurs Educ Perspect, V25, P188
Frisch N C, 1987, J Nurs Educ, V26, P328
Gaul A L, 1987, J Nurs Educ, V26, P113
Goldie J, 2002, MED EDUC, V36, P489, DOI 10.1046/j.1365-2923.2002.01176.x
GOLDMAN SA, 1979, J MED ETHICS, V5, P170, DOI 10.1136/jme.5.4.170
Goldstein I.L., 2002, TRAINING ORG NEEDS A, V4th
Jurkiewicz CaroleL., 2002, Journal of Public Affairs Education, V8, P263
Kalichman M, 2014, ACCOUNT RES, V21, P68, DOI 10.1080/08989621.2013.822271
Kalichman MW, 2007, ACAD MED, V82, P870, DOI 10.1097/ACM.0b013e31812f77fe
Kligyte V, 2008, SCI ENG ETHICS, V14, P251, DOI 10.1007/s11948-007-9048-z
Major-Kincade T L, 2001, J Perinatol, V21, P161, DOI 10.1038/sj.jp.7200570
McCormack WT, 2014, ACCOUNT RES, V21, P34, DOI 10.1080/08989621.2013.822267
Mulhearn TJ, 2017, SCI ENG ETHICS, V23, P883, DOI 10.1007/s11948-016-9803-0
Mumford MD, 2015, ETHICS BEHAV, V25, P37, DOI 10.1080/10508422.2014.917417
Mumford M, 2008, ETHICS BEHAV, V18, P315, DOI 10.1080/10508420802487815
Myyry L, 2002, J MORAL EDUC, V31, P35, DOI 10.1080/03057240120111427
Powell ST, 2007, SCI ENG ETHICS, V13, P249, DOI 10.1007/s11948-007-9012-y
Ramalingam S, 2014, J CLIN DIAGN RES, V8, pXC1, DOI 10.7860/JCDR/2014/8825.4561
Resnik DB, 2014, ACCOUNT RES, V21, P211, DOI 10.1080/08989621.2013.848800
Rozmus CL, 2015, NURS ETHICS, V22, P815, DOI 10.1177/0969733014547974
Schuh LA, 2004, NEUROLOGY, V62, P1897, DOI 10.1212/01.WNL.0000125252.41096.59
SELF DJ, 1992, MED EDUC, V26, P178, DOI 10.1111/j.1365-2923.1992.tb00151.x
Steele LM, 2016, ACCOUNT RES, V23, P319, DOI 10.1080/08989621.2016.1186547
Steneck NH, 2013, SCIENCE, V340, P552, DOI 10.1126/science.1236373
Thirunavukarasu P, 2010, AM J SURG, V200, P665, DOI 10.1016/j.amjsurg.2010.08.002
Viswesvaran C, 1996, J APPL PSYCHOL, V81, P557, DOI 10.1037/0021-9010.81.5.557
Watts LL, 2017, ETHICS BEHAV, V27, P632, DOI 10.1080/10508422.2016.1247354
Watts LL, 2017, ETHICS BEHAV, V27, P351, DOI 10.1080/10508422.2016.1182025
Wilson WR, 2013, SCI ENG ETHICS, V19, P625, DOI 10.1007/s11948-011-9337-4
NR 46
TC 4
Z9 4
U1 0
U2 5
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0898-9621
EI 1545-5815
J9 ACCOUNT RES
JI Account. Res.
PY 2017
VL 24
IS 4
BP 195
EP 210
DI 10.1080/08989621.2016.1274886
PG 16
WC Medical Ethics
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Medical Ethics
GA EN0MS
UT WOS:000395704700001
PM 28005407
DA 2024-09-05
ER
PT J
AU Basilio, MP
Pereira, V
de Oliveira, MWCM
Neto, AFD
de Moraes, OCR
Siqueira, SCB
AF Basilio, Marcio Pereira
Pereira, Valdecy
de Oliveira, Max William Coelho Moreira
da Costa Neto, Antonio Fernandes
de Moraes, Orlinda Claudia Rosa
Siqueira, Samya Cotta Brandao
TI Knowledge discovery in research on domestic violence: an overview of the
last fifty years
SO DATA TECHNOLOGIES AND APPLICATIONS
LA English
DT Article
DE Domestic violence; Intimate partner violence; Bibliometric analysis;
Latent Dirichlet allocation; Domestic abuse; Family violence
AB Purpose The database of the Web of Science (WoS) was searched for publications from January 1945-May 7, 2020 on the topic of domestic violence in titles, abstracts and keywords. The references were analyzed using the R bibliometrix package, and abstracts were analyzed using latent Dirichlet allocation (LDA) with collapsed Gibbs sampling to obtain topics related to domestic violence. Design/methodology/approach The aim of the study is to explore and provide an overview of research carried out on domestic violence, in its various aspects, over the past fifty years. Findings As a result of the research, the authors can assert that in the last fifty years, 32,298 authors have produced 19,495 documents on the theme of policing strategy and related subjects in 111 countries. Scientific production in this area grows at a rate of 12.81 per year. The United States of America is the leading country in publications with 48.14%, followed by the United Kingdom with 7.57% and Australia with 6.05%. Regarding universities, the highlight is the University of California with 664 publications, followed by the University of London with 515 and the University of North Carolina with 484. As for journals, the highlight is the Journal of Interpersonal Violence, Journal of Family Violence and Violence Against Women, which account for more than 14.32% of all indexed literature. Regarding the authors, the highlight is Campbell J.C and Feder G. Probabilistic topic modeling revealed that 18% of the topics concentrate 90% of all tokens. Topic 1 accounts for 27.9% of the sample and conducts research related to intimate partner violence. Practical implications As a practical implication of using the LDA in the bibliographic review, we infer that its capacity to explore large masses of data allows the researcher to explore an infinitely greater amount than the traditional methods of systematic literature review. Originality/value The value of these studies is summarized in the presentation of an overview on the theme in the last fifty years, offering the opportunity for other researchers to use this research as a starting point for other analyses.
C1 [Basilio, Marcio Pereira] Fed Fluminense Univ, Dept Prod Engn, Niteroi, RJ, Brazil.
[Basilio, Marcio Pereira; da Costa Neto, Antonio Fernandes; Siqueira, Samya Cotta Brandao] Mil Police State Rio de Janeiro, Rio De Janeiro, Brazil.
[da Costa Neto, Antonio Fernandes] Getulio Vargas Fdn, Rio De Janeiro, Brazil.
C3 Universidade Federal Fluminense; Getulio Vargas Foundation
RP Basilio, MP (corresponding author), Fed Fluminense Univ, Dept Prod Engn, Niteroi, RJ, Brazil.; Basilio, MP (corresponding author), Mil Police State Rio de Janeiro, Rio De Janeiro, Brazil.
EM marcio_basilio@id.uff.br; valdecy.pereira@gmail.com;
mwcoliveira@yahoo.com.br; antoniocostaneto@gmail.com;
orlindamoraes@gmail.com; samyacotta@gmail.com
RI Pereira, Valdecy/I-7493-2017; Basilio, Marcio Pereira/L-4363-2016
OI Pereira, Valdecy/0000-0003-0599-8888; Basilio, Marcio
Pereira/0000-0002-9453-741X; Fernandes da Costa Neto,
Antonio/0000-0002-6920-586X
CR [Anonymous], 2009, Science of Science (Sci2) Tool
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7
Basilio MP, 2020, J MODEL MANAG, V15, P849, DOI 10.1108/JM2-10-2018-0166
Basilio MP, 2019, DATA TECHNOL APPL, V53, P333, DOI 10.1108/DTA-12-2018-0109
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Borgatti SP, 2009, SCIENCE, V323, P892, DOI 10.1126/science.1165821
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Chan WC, 2017, STATUTE LAW REV, V38, P1, DOI 10.1093/slr/hmv032
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Cheng B, 2014, EDUC RES REV-NETH, V11, P56, DOI 10.1016/j.edurev.2014.01.001
Cho H., 2016, CRIMINAL INVESTIGATI, P323
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Coker AL, 2007, TRAUMA VIOLENCE ABUS, V8, P149, DOI 10.1177/1524838007301162
Dai SL, 2020, J CLEAN PROD, V262, DOI 10.1016/j.jclepro.2020.121168
Darling, 2011, THEORETICAL PRACTICA
Das S, 2015, ECON REC, V91, P78, DOI 10.1111/1475-4932.12180
de la Hoz-Correa A, 2018, TOURISM MANAGE, V65, P200, DOI 10.1016/j.tourman.2017.10.001
de Santana IO, 2016, ARQ BRAS PSICOL APL, V68
Dervis H, 2019, J SCIENTOMETR RES, V8, P156, DOI 10.5530/jscires.8.3.32
Dutton D.G., 1981, VICTIMOLOGY, V6, P139
Elkan C.P., 2014, TEXT MINING TOPIC MO
Emezue CN, 2021, J AGGRESS MALTREAT T, V30, P907, DOI 10.1080/10926771.2019.1685042
Esquivel-Santoveña EE, 2013, PARTN ABUSE, V4, P6, DOI 10.1891/1946-6560.4.1.6
Faleiros T.D., 2016, 409 U SAO PAUL I CIE
Feinerer I, 2008, J STAT SOFTW, V25, P1
Fotheringham S, 2021, VIOLENCE AGAINST WOM, V27, P425, DOI 10.1177/1077801219897846
Gangoli G, 2018, J AGGRESS CONFL PEAC, V10, P251, DOI 10.1108/JACPR-09-2017-0323
García-Moreno C, 2009, INT J GYNECOL OBSTET, V106, P144, DOI 10.1016/j.ijgo.2009.03.053
Ghadimi P, 2019, RESOUR CONSERV RECY, V140, P72, DOI 10.1016/j.resconrec.2018.09.005
Gill N.S., 2019, INT J ADV TRENDS COM, V8, P795, DOI DOI 10.30534/IJATCSE/2019/71832019
González-Alcaide G, 2020, SCIENTOMETRICS, V123, P707, DOI 10.1007/s11192-020-03404-w
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grün B, 2011, J STAT SOFTW, V40, P1
Halket MM, 2014, J FAM VIOLENCE, V29, P35, DOI 10.1007/s10896-013-9555-4
Inamdar Z, 2021, J ENTERP INF MANAG, V34, P101, DOI 10.1108/JEIM-09-2019-0267
Jabeen S, 2021, J INTERPERS VIOLENCE, V36, pNP12481, DOI 10.1177/0886260519898442
Kartha, 2017, INT J COMMUNITY MED, V4, P1353, DOI [10.18203/2394-6040.ijcmph20171375, DOI 10.18203/2394-6040.IJCMPH20171375]
Kee YH, 2019, MINDFULNESS, V10, P1474, DOI 10.1007/s12671-019-01136-4
León T, 2014, REV MED CHILE, V142, P1014, DOI 10.4067/S0034-98872014000800009
Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012
MacGregor JCD, 2022, TRAUMA VIOLENCE ABUS, V23, P224, DOI 10.1177/1524838020933861
Hernández JM, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8040544
Mendonça CS, 2020, CIENC SAUDE COLETIVA, V25, P2247, DOI 10.1590/1413-81232020256.19332018
Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004
Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006
Persson O., 2009, CELEBRATING SCHOLARL, V5, P9
Phan Xuan-Hieu, 2008, P 17 INT C WORLD WID, P91, DOI 10.1145/1367497.1367510
Ratten V, 2021, J FAM BUS MANAG, V11, P137, DOI 10.1108/JFBM-02-2020-0013
Ravikumar S, 2015, SCIENTOMETRICS, V102, P929, DOI 10.1007/s11192-014-1402-8
Robinson SR, 2021, TRAUMA VIOLENCE ABUS, V22, P1279, DOI 10.1177/1524838020916254
Rousseau D., 2012, The Oxford Handbook of Evidence Based Management, DOI DOI 10.1093/OXFORDHB/9780199763986.001.0001
Shah PS, 2010, J WOMENS HEALTH, V19, P2017, DOI 10.1089/jwh.2010.2051
Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [10.3115/v1/W14-3110, DOI 10.3115/V1/W14-3110, 10.3115/v1/w14-3110]
Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852
Stark L, 2011, TRAUMA VIOLENCE ABUS, V12, P127, DOI 10.1177/1524838011404252
Stith SM, 2004, AGGRESS VIOLENT BEH, V10, P65, DOI 10.1016/j.avb.2003.09.001
Strong B., 2010, The Marriage and Family Experience: Intimate Relationships in a Changing Society, P447
Swan SC, 2008, VIOLENCE VICTIMS, V23, P301, DOI 10.1891/0886-6708.23.3.301
Turhan Z, 2021, TRAUMA VIOLENCE ABUS, V22, P856, DOI 10.1177/1524838019888554
van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang C, 2020, OMEGA-INT J MANAGE S, V93, DOI 10.1016/j.omega.2019.08.005
Wang C, 2019, J CLEAN PROD, V206, P741, DOI 10.1016/j.jclepro.2018.09.172
West CM, 2016, J AGGRESS MALTREAT T, V25, P4, DOI 10.1080/10926771.2016.1116479
Yan EJ, 2012, J AM SOC INF SCI TEC, V63, P1313, DOI 10.1002/asi.22680
Zhang Y, 2019, MICROORGANISMS, V7, DOI 10.3390/microorganisms7080213
NR 69
TC 12
Z9 12
U1 2
U2 47
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 2514-9288
EI 2514-9318
J9 DATA TECHNOL APPL
JI Data Technol. Appl.
PD AUG 5
PY 2021
VL 55
IS 4
BP 480
EP 510
DI 10.1108/DTA-08-2020-0179
EA MAR 2021
PG 31
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA TX9NL
UT WOS:000625455900001
DA 2024-09-05
ER
PT J
AU Steinfeldt, C
Mihaljevic, H
AF Steinfeldt, Christian
Mihaljevic, Helena
TI A machine learning approach to quantify gender bias in collaboration
practices of mathematicians
SO FRONTIERS IN BIG DATA
LA English
DT Article
DE collaboration networks; machine learning; gender in mathematics;
regression-based analysis; authorship; scientific publishing;
single-authored publications; coauthorship
AB Collaboration practices have been shown to be crucial determinants of scientific careers. We examine the effect of gender on coauthorship-based collaboration in mathematics, a discipline in which women continue to be underrepresented, especially in higher academic positions. We focus on two key aspects of scientific collaboration-the number of different coauthors and the number of single authorships. A higher number of coauthors has a positive effect on, e.g., the number of citations and productivity, while single authorships, for example, serve as evidence of scientific maturity and help to send a clear signal of one's proficiency to the community. Using machine learning-based methods, we show that collaboration networks of female mathematicians are slightly larger than those of their male colleagues when potential confounders such as seniority or total number of publications are controlled, while they author significantly fewer papers on their own. This confirms previous descriptive explorations and provides more precise models for the role of gender in collaboration in mathematics.
C1 [Steinfeldt, Christian; Mihaljevic, Helena] Univ Appl Sci, Hsch Tech & Wirtschaft Berlin, Dept Comp Sci Commun & Econ 4, Berlin, Germany.
RP Mihaljevic, H (corresponding author), Univ Appl Sci, Hsch Tech & Wirtschaft Berlin, Dept Comp Sci Commun & Econ 4, Berlin, Germany.
EM helena.mihaljevic@htw-berlin.de
RI Mihaljevic, Helena/L-8928-2013
OI Mihaljevic, Helena/0000-0003-0782-5382
CR Allen L, 2014, NATURE, V508, P312, DOI 10.1038/508312a
Barlow J, 2018, J APPL ECOL, V55, P1, DOI 10.1111/1365-2664.13040
Bertrand M, 2004, AM ECON REV, V94, P991, DOI 10.1257/0002828042002561
Boekhout H, 2021, arXiv
Bozeman B, 2011, RES POLICY, V40, P1393, DOI 10.1016/j.respol.2011.07.002
Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
Caplar N, 2017, NAT ASTRON, V1, DOI 10.1038/s41550-017-0141
De Nicola A, 2021, SCIENTOMETRICS, V126, P3807, DOI 10.1007/s11192-021-03885-3
Ductor L., 2018, 856 QUEEN MAR U LOND, P36
Ductor L, 2023, REV ECON STAT, V105, P1366, DOI 10.1162/rest_a_01113
Ductor L, 2015, OXFORD B ECON STAT, V77, P385, DOI 10.1111/obes.12070
Epasto A, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P145, DOI 10.1145/3097983.3098054
European Commission, 2018, She Figures 2018 Report
Farber M, 2005, J INF SCI, V31, P62, DOI 10.1177/0165551505049261
FIZ Karlsruhe, 2022, AB ZBMATH OP
Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451
Golbeck AL., 2018, NOTICES AMS, V65, P952
Gowers T., 2009, GOWERSS WEBLOG
Grossman J. W., 2002, SIAM NEWS, V35, P485
Jadidi M, 2018, ADV COMPLEX SYST, V21, DOI 10.1142/S0219525917500114
Ryu BK, 2020, Arxiv, DOI arXiv:2001.00350
Kuld L, 2018, SCIENTOMETRICS, V114, P1207, DOI 10.1007/s11192-017-2588-3
Kwiek M, 2022, SCIENTOMETRICS, V127, P1697, DOI 10.1007/s11192-022-04308-7
Lindenlaub I., 2016, 807 QUEEN MAR U LOND
Lundberg SM, 2017, ADV NEUR IN, V30
McKenzie R. H., 2012, CONDENSED CONCEPTS
Mihaljevic H., 2020, GLOBAL APPROACH GEND, P83, DOI [10.5281/zenodo.3882609, DOI 10.5281/ZENODO.3882609]
Mihaljevic H, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00029
Mihaljevic-Brandt H., 2014, JOINT P MATHUI OPENM
Mihaljevic-Brandt H, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165367
Müller MC, 2017, SCIENTOMETRICS, V111, P1467, DOI 10.1007/s11192-017-2363-5
Olechnicka A., 2020, GEOGRAPHY SCI COLLAB
Paul-Hus A, 2020, QUANT SCI STUD, V1, P582, DOI 10.1162/qss_a_00036
Pedregosa Fabian, 2011, The Journal of Machine Learning Research, V12, P2825
Pina DG, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212286
Price D. J. d. S., 1963, Little Science, Big Science
Santamaría L, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.156
Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x
Sarsons H, 2021, J POLIT ECON, V129, P101, DOI 10.1086/711401
Servia-Rodriguez S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0114302
Vafeas N, 2010, EUROMED J BUS, V5, P332, DOI 10.1108/14502191011080845
West JD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066212
Wilson Robin J., 2002, CAMBRIDGE SCI MINDS, p[202, 202]
Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099
Yamamoto J, 2022, PUBLICATIONS, V10, DOI 10.3390/publications10010010
Zeng XHT, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002573
NR 46
TC 1
Z9 1
U1 0
U2 4
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2624-909X
J9 FRONT BIG DATA
JI Front. Big Data
PD JAN 18
PY 2023
VL 5
AR 989469
DI 10.3389/fdata.2022.989469
PG 17
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Multidisciplinary Sciences
WE Emerging Sources Citation Index (ESCI)
SC Computer Science; Science & Technology - Other Topics
GA 8G0DS
UT WOS:000920023500001
PM 36743404
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Chen, X
Zhang, QS
Liu, RT
Zhao, DK
Li, HZ
Pan, XD
He, WL
Shi, LL
Guo, SX
AF Chen, Xin
Zhang, Qing-Song
Liu, Ren-Tai
Zhao, Du-Kun
Li, Hong-Zhao
Pan, Xu-Dong
He, Wan-Li
Shi, Le-Le
Guo, Shao-Xuan
TI Research on the impact of underground excavation metro on surface
traffic safety and assessment method
SO JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS
LA English
DT Article
DE Ou; Yu-Chen; Risk assessment; underground engineering; traffic safety;
ensemble learning
ID TUNNEL CONSTRUCTION; SETTLEMENT; CHINA
AB This study focuses on a problem that has been seriously troubled urban traffic managers: the impact of underground excavation metros on surface traffic safety during construction. In underground construc-tion, surface subsidence and road collapse due to concealed underground construction constantly occur, resulting in casualties property damage and seriously impairing normal urban road traffic. Urban road managers urgently need a quick, objective, and easy-to-use method for the early warning and prevention of such risks. Therefore, this study collates relevant accident cases that have occurred in China over the last 20 years and summarises the impact mechanisms of concealed underground works affecting surface road traffic capacity through a detailed study of natural factors, engineering geology, types of structures, and types of workmanship. Two indices, Rank(S-c) and Cr, are proposed to describe the impact of concealed underground works on surface traffic capacity, while an early warning method based on data on the impact of urban road capacity by concealed underground works is established using integrated learning methods and is well applied in practical projects. The results of this study are important for helping city managers quickly assess urban road traffic risks.
C1 [Chen, Xin; Zhang, Qing-Song; Liu, Ren-Tai; Zhao, Du-Kun; Li, Hong-Zhao; Pan, Xu-Dong; Guo, Shao-Xuan] Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Shandong, Peoples R China.
[He, Wan-Li] Qingdao Metro Grp Co, Survey & Mapping Ctr, Qingdao, Shandong, Peoples R China.
[Shi, Le-Le] Qingdao Survey & Mapping Inst, Operat Branch, Qingdao, Shandong, Peoples R China.
C3 Shandong University
RP Chen, X (corresponding author), Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Shandong, Peoples R China.
EM chenxinsdu@mail.sdu.edu.cn
RI Zhou, Qi/JTT-3417-2023; pan, xu/KJL-1993-2024; Zhang,
Qing/IZQ-5273-2023; Yang, Fei/JLM-3367-2023; Zhao, Xuan/JMR-2135-2023;
GUO, SHAOXUAN/GWV-5154-2022; Wang, Xingyi/KHT-7171-2024; zhang,
ly/JMB-7214-2023; qin, cheng/KHC-3344-2024; Yan, Miaochen/JLL-5061-2023
FU Key research and development project of Shandong ProvinceThe Major
Science and Technology Innovation Project of Shandong Province
[2019JZZY010427]; National Key research and development program Plan of
China [2018YFB1600104,2020YFB1600504,2021YFB2600800]
FX This work was supported by the Key research and development project of
Shandong ProvinceThe Major Science and Technology Innovation Project of
Shandong Province [2019JZZY010427]; The National Key research and
development program Plan of China
[2018YFB1600104,2020YFB1600504,2021YFB2600800].
CR Al-Omari RR, 2019, STUD GEOTECH MECH, V41, P102, DOI 10.2478/sgem-2019-0008
Ayeneh AL, 2022, INT J ENVIRON SCI TE, V19, P3061, DOI 10.1007/s13762-021-03427-7
Bo Y, 2022, TUNN UNDERGR SP TECH, V124, DOI 10.1016/j.tust.2022.104448
Chen WQ, 2022, SAFETY SCI, V147, DOI 10.1016/j.ssci.2021.105591
Choe S, 2020, SAFETY SCI, V124, DOI 10.1016/j.ssci.2019.104594
Cui YL, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13061048
Ding LY, 2014, SAFETY SCI, V62, P8, DOI 10.1016/j.ssci.2013.07.021
Gao MZ, 2018, GEOMECH GEOPHYS GEO, V4, P51, DOI 10.1007/s40948-017-0074-2
Golpasand MRB, 2019, TRANSP GEOTECH, V21, DOI 10.1016/j.trgeo.2019.100262
Guo YY, 2013, APPL MECH MATER, V353-356, P1588, DOI 10.4028/www.scientific.net/AMM.353-356.1588
He YY, 2021, GEOFLUIDS, V2021, DOI 10.1155/2021/6043807
Huang X, 2021, FRONT EARTH SC-SWITZ, V9, DOI 10.3389/feart.2021.795457
Jasechko S, 2014, WATER RESOUR RES, V50, P8845, DOI 10.1002/2014WR015809
Kang K, 2019, SAFETY SCI, V120, P226, DOI 10.1016/j.ssci.2019.06.034
Kianifar MA, 2022, J CHIN INST ENG, V45, P282, DOI 10.1080/02533839.2022.2034052
Kyriakidis M, 2012, SAFETY SCI, V50, P1535, DOI 10.1016/j.ssci.2012.03.004
Lan XD, 2022, ENVIRON EARTH SCI, V81, DOI 10.1007/s12665-022-10226-x
Lee CJ, 2004, J CHIN INST ENG, V27, P1021, DOI 10.1080/02533839.2004.9670957
Li M, 2018, SAFETY SCI, V110, P418, DOI 10.1016/j.ssci.2018.03.026
Li XB, 2019, ADV CIV ENG, V2019, DOI 10.1155/2019/2724370
Lin DY, 2012, J CHIN INST ENG, V35, P285, DOI 10.1080/02533839.2012.655466
Liu QS, 2020, TUNN UNDERGR SP TECH, V106, DOI 10.1016/j.tust.2020.103595
Liu W, 2019, ADV CIV ENG, V2019, DOI 10.1155/2019/2045125
Liu W, 2018, SAFETY SCI, V105, P98, DOI 10.1016/j.ssci.2018.01.009
Lo HW, 2020, INT J CRIT INFR PROT, V28, DOI 10.1016/j.ijcip.2019.100336
Namli M, 2020, ARAB J GEOSCI, V13, DOI 10.1007/s12517-020-05456-x
Ozcelik M, 2018, GEOTECH GEOL ENG, V36, P3437, DOI 10.1007/s10706-018-0545-4
Sarfarazi V, 2021, J MIN ENVIRON, V12, P785, DOI 10.22044/jme.2021.10846.2057
Shafiei S, 2022, TRANSP LETT, V14, P629, DOI 10.1080/19427867.2021.1916284
Song ZP, 2019, ADV CIV ENG, V2019, DOI 10.1155/2019/7328190
Sun G, 2021, ADV CIV ENG, V2021, DOI 10.1155/2021/9980837
Tang QL, 2021, ADV CIV ENG, V2021, DOI 10.1155/2021/8858874
Tu HL, 2020, TUNN UNDERGR SP TECH, V97, DOI 10.1016/j.tust.2019.103245
Wang F, 2016, SAFETY SCI, V87, P101, DOI 10.1016/j.ssci.2016.01.014
Wang HT, 2020, J CHIN INST ENG, V43, P681, DOI 10.1080/02533839.2020.1779615
Wang JX, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112110491
Wang SL, 2022, INT J CRIT INFR PROT, V38, DOI 10.1016/j.ijcip.2022.100536
Wang ZC, 2020, KSCE J CIV ENG, V24, P2345, DOI 10.1007/s12205-020-1958-1
Wu YK, 2011, KEY ENG MATER, V462-463, P732, DOI 10.4028/www.scientific.net/KEM.462-463.732
Xu N, 2021, SAFETY SCI, V138, DOI 10.1016/j.ssci.2021.105216
Yan HY, 2019, SAFETY SCI, V118, P583, DOI 10.1016/j.ssci.2019.05.042
Zeng S, 2019, ACTA GEOTECH, V14, P1643, DOI 10.1007/s11440-019-00806-w
Zhang K, 2021, ADV CIV ENG, V2021, DOI 10.1155/2021/5523668
Zhang LM, 2014, SAFETY SCI, V63, P8, DOI 10.1016/j.ssci.2013.10.016
Zhang P, 2020, ARAB J GEOSCI, V13, DOI 10.1007/s12517-020-05880-z
Zhang R, 2020, CAN GEOTECH J, V57, P423, DOI 10.1139/cgj-2018-0513
Zhang XL, 2016, SAFETY SCI, V84, P88, DOI 10.1016/j.ssci.2015.11.023
Zheng Z, 2020, ARAB J GEOSCI, V13, DOI 10.1007/s12517-020-06074-3
Zhou SH, 2020, INT J CRIT INFR PROT, V31, DOI 10.1016/j.ijcip.2020.100391
Zhou Z., 2021, SAFETY SCI, P139, DOI [10.1016/j.ssci.2821.105261, DOI 10.1016/J.SSCI.2821.105261]
NR 50
TC 3
Z9 3
U1 13
U2 39
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 0253-3839
EI 2158-7299
J9 J CHIN INST ENG
JI J. Chin. Inst. Eng.
PD APR 3
PY 2023
VL 46
IS 3
BP 267
EP 281
DI 10.1080/02533839.2023.2170928
EA FEB 2023
PG 15
WC Engineering, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA 9G3LR
UT WOS:000929529100001
DA 2024-09-05
ER
PT C
AU Dias, GP
Gomes, H
AF Dias, G. P.
Gomes, H.
BE Chova, LG
Martinez, AL
Torres, IC
TI COMBINING RESEARCH AND LEARNING: AN EXAMPLE USING LOCAL E-GOVERNMENT
EVALUATION
SO 12TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE
(INTED)
SE INTED Proceedings
LA English
DT Proceedings Paper
CT 12th International Technology, Education and Development Conference
(INTED)
CY MAR 05-07, 2018
CL Valencia, SPAIN
DE research-based learning; active learning; higher education; e-government
AB Between 2010 and 2015, the authors implemented a set of research-based learning activities in the context of two curricular units offered at the University of Aveiro in Portugal. Although initially designed with strictly pedagogical purposes and to familiarize students with research, these activities have formed the basis of several studies that have been published in journals and international conference proceedings. In general, the activities developed with students aimed at evaluating the maturity of municipal websites, under different perspectives of analysis, at different dates, and in different geographies, using content analysis and, as appropriate, maturity models or conceptual analysis. In this article, the motivations, methods, and results achieved are described. The experiment demonstrates that, in appropriate contexts, the link between teaching and learning and research can contribute to student motivation and the development of relevant learning and simultaneously be an added value for research.
C1 [Dias, G. P.] Univ Aveiro, ESTGA GOVCOPP, Aveiro, Portugal.
[Gomes, H.] Univ Aveiro, ESTGA IEETA, Aveiro, Portugal.
C3 Universidade de Aveiro; Universidade de Aveiro
RP Dias, GP (corresponding author), Univ Aveiro, ESTGA GOVCOPP, Aveiro, Portugal.
RI Dias, Gonçalo Paiva/B-7461-2008; Gomes, Helder/JCD-7431-2023; Gomes,
Helder/AAC-4495-2019
OI Dias, Gonçalo Paiva/0000-0002-8599-3798;
CR [Anonymous], 2004, STUD HIGH EDUC, DOI DOI 10.1080/0307507042000287212
Clark BR, 1997, J HIGH EDUC, V68, P241, DOI 10.2307/2960040
Costa M., 2011, P 26 INT WORKSH STAT, P146
Dias G P., 2014, 2014 9th Iberian Conference on Information Systems and Technologies (CISTI), P1
Dias G. P., 2011, INF SYST TECHN CISTI, P1
Dias GP, 2013, ADV INTELL SYST, V206, P87, DOI 10.1007/978-3-642-36981-0_9
Healey M, 2005, J GEOGR HIGHER EDUC, V29, P183, DOI 10.1080/03098260500130387
Lambert C, 2009, PEDAGOG CULT SOC, V17, P295, DOI 10.1080/14681360903194327
Maciel G., 2016, J INFORM SYSTEMS ENG, V1, P91
Maciel G G., 2015, 2015 10th Iberian Conference on Information Systems and Technologies (CISTI), P1
Paiva Dias Goncalo, 2016, Electronic Government, V12, P301
Paiva Dias Goncalo, 2013, Electronic Government, V10, P284, DOI 10.1504/EG.2013.058785
NR 12
TC 0
Z9 0
U1 0
U2 2
PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT
PI VALENICA
PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN
SN 2340-1079
BN 978-84-697-9480-7
J9 INTED PROC
PY 2018
BP 5628
EP 5633
PG 6
WC Education & Educational Research
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BL1ZA
UT WOS:000448704000088
DA 2024-09-05
ER
PT C
AU Gao, LC
Tang, Z
Lin, XF
AF Gao, Liangcai
Tang, Zhi
Lin, Xiaofan
GP ACM
TI CEBBIP: A Parser of Bibliographic Information in Chinese Electronic
Books
SO JCDL 09: PROCEEDINGS OF THE 2009 ACM/IEEE JOINT CONFERENCE ON DIGITAL
LIBRARIES
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 9th Annual International ACM/IEEE Joint Conference on Digital Libraries
CY JUN 15-19, 2009
CL Austin, TX
DE Metadata extraction; Digital Library; Chinese Electronic Book;
Bibliography; Machine learning
AB Bibliographic information is essential for many digital library applications, such as citation analysis, academic searching and topic discovery. And bibliographic data extraction has attracted a great deal of attention in recent years. In this paper, we address the problem of automatic extraction of bibliographic data in Chinese electronic book and propose a tool called CEBBIP. for the task, which includes three main systems: data preprocessing, data parsing and data postprocessing. In the data preprocessing system, the tool adopts a rules-based method to locate citation data in a book and to segment citation data into citation strings of individual referencing literature. And a learning-based approach, Conditional Random Fields (CRF), is employed to parse citation strings in the data parsing system. Finally, the tool takes advantage of document intrinsic local format consistency to enhance citation data segmentation and parsing through clustering techniques. CEBBIP has been used in a commercial E-book production system. Experimental results show that CEBBIP's precision rate is very high. More specially, adopting the document intrinsic local format consistency obviously improves the citation data segmenting and parsing accuracy.
C1 [Gao, Liangcai; Tang, Zhi] Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China.
C3 Peking University
RP Gao, LC (corresponding author), Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China.
EM gaoliangcai@icst.pku.edu.cn; tangzhi@icst.pku.edu.cn;
xiaofan@vobileinc.com
RI gao, liangcai/P-8338-2017
CR Besagni D, 2003, PROC INT CONF DOC, P384
Bollacker K. D., 1998, Proceedings of the Second International Conference on Autonomous Agents, P116, DOI 10.1145/280765.280786
Chen CC, 2008, 2008 22ND INTERNATIONAL WORKSHOPS ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOLS 1-3, P1175, DOI 10.1109/WAINA.2008.125
Cortez E, 2007, ACM-IEEE J CONF DIG, P215, DOI 10.1145/1255175.1255219
Day MY, 2007, DECIS SUPPORT SYST, V43, P152, DOI 10.1016/j.dss.2006.08.006
Gao L., 2008, P SPIE C DOC REC 15, p0B
Han H, 2003, ACM-IEEE J CONF DIG, P37
Huang IA, 2004, LECT NOTES ARTIF INT, V3056, P539
Jain AK, 1999, ACM COMPUT SURV, V31, P264, DOI 10.1145/331499.331504
Li C., 2002, COMPUTER ENG APPL, V21, P189
[李朝光 Li Chaoguang], 2002, [计算机工程与应用, Computer Engineering and Application], V38, P189
Peng FC, 2004, HLT-NAACL 2004: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P329
Seymore Kristie, 1999, AAAI 99 WORKSH MACH, P37
Takasu A, 2003, ACM-IEEE J CONF DIG, P49, DOI 10.1109/JCDL.2003.1204843
Wei W, 2007, PROC INT CONF DOC, P804
NR 15
TC 4
Z9 4
U1 0
U2 3
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
SN 2575-7865
EI 2575-8152
BN 978-1-60558-697-7
J9 ACM-IEEE J CONF DIG
PY 2009
BP 73
EP 76
PG 4
WC Computer Science, Hardware & Architecture; Computer Science, Information
Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BWY55
UT WOS:000295296700010
DA 2024-09-05
ER
PT J
AU Krange, I
Segaran, M
Gamlem, S
Moltudal, S
Engeness, I
AF Krange, Ingeborg
Segaran, Meerita
Gamlem, Siv
Moltudal, Synnove
Engeness, Irina
TI A Triple Challenge: Students' Identification, Interpretation, and Use of
Individualized Automated Feedback in Learning to Write English as a
Foreign Language.
SO INTERACTION DESIGN AND ARCHITECTURES
LA English
DT Article
DE Assessment for learning; sociocultural interpretation of learning and
teaching; design-based research; interaction analysis; frequency
analysis; artificial intelligence (AI); automatic essay assessment;
junior high school
ID SUPPORT; TEACHERS; QUALITY
AB The aim of this study was to investigate eighth-grade students' assessment literacy and writing skills in English as a foreign language using an AI-based automated essay assessment tool (EAT). Data were gathered from a design-based research initiative where the EAT was designed, developed, and tested in naturalistic school settings. Fifty-six eighth-grade students wrote individual essays, for which they received automatic feedback. The feedback was discussed with their teachers and peers. Both the writing process and teacher and peer interactions were video recorded. The video data were analyzed using an interaction analysis. The improvements made on the essay based on the feedback logs registered by the EAT for each student's writing trajectory and the different versions of the essay were examined using frequency analyses. The findings demonstrate that automated essay assessment might be useful for fostering students' writing skills if teachers help students get started, identify errors, and share interpretations.
C1 [Krange, Ingeborg; Segaran, Meerita; Engeness, Irina] Univ Coll Ostfold, Dept Pedag ICT & Learning, POB 700, NO-1757 Halden, Norway.
[Gamlem, Siv; Moltudal, Synnove] Univ Coll Volda, Dept Humanities & Teacher Educ, POB 500, NO-6101 Volda, Norway.
C3 Volda University College
RP Krange, I (corresponding author), Univ Coll Ostfold, Dept Pedag ICT & Learning, POB 700, NO-1757 Halden, Norway.
EM ingeborg.h.krange@hiof.no
OI Gamlem, Siv M./0000-0002-6523-0486; Krange,
Ingeborg/0009-0005-5946-0612; Kunna Segaran,
Meerita/0000-0001-5592-038X; Engeness, Irina/0000-0001-5948-4992
FU Norwegian Research Council [326607]
FX For their comments and helpful feedback at various stages of manuscript
preparation, we thank Professor Halla Holmarsdottir, Oslo Metropolitan
University; Associate Professor Sima Caspari-Sadeghi, Q stfold
University College; and our research group RIDE (Research in Digital
Education) . For their participation in this study, we thank the
teachers and students. For the design and development of the essay
assessment tool, we thank our interdisciplinary research team from Q
stfold University College, Volda University College, Hypatia Learning,
and Halden Municipality. For providing grant No. 326607, we thank the
Norwegian Research Council.
CR [Anonymous], 2003, Educational Researcher, DOI DOI 10.3102/0013189X032001005
Black P., 2012, Assessment and Learning, DOI [10.4135/9781446250808, DOI 10.4135/9781446250808]
Black P, 2018, ASSESS EDUC, V25, P551, DOI 10.1080/0969594X.2018.1441807
Black P, 2009, EDUC ASSESS EVAL ACC, V21, P5, DOI 10.1007/s11092-008-9068-5
Brown A., 1992, J LEARN SCI, V2, P141, DOI [DOI 10.1207/S15327809JLS0202_2, https://doi.org/10.1207/s15327809jls0202_2]
Collins A, 2004, J LEARN SCI, V13, P15, DOI 10.1207/s15327809jls1301_2
Danielsen AG, 2009, J EDUC RES, V102, P303, DOI 10.3200/JOER.102.4.303-320
Dasgupta J., 2019, New Paradigm of Industry 4.0: Internet of Things, Big Data & Cyber Physical Systems, P37
Engeness I, 2018, TECHNOL PEDAGOG EDUC, V27, P297, DOI 10.1080/1475939X.2017.1421259
Engeness I, 2016, NORD J DIGIT LIT, V11, P118, DOI 10.18261/issn.1891-943x-2016-02-03
Gamlem S. M., 2023, International encyclopedia of education, V13, P89, DOI [10.1016/j.tate.2019.06.024, DOI 10.1016/J.TATE.2019.06.024]
Gamlem SM, 2013, ASSESS EDUC, V20, P150, DOI 10.1080/0969594X.2012.749212
Gamlem SM, 2015, TEACH DEV, V19, P461, DOI 10.1080/13664530.2015.1060254
Gamlem SM, 2014, CAMB J EDUC, V44, P75, DOI 10.1080/0305764X.2013.855171
Gao JM, 2021, INT J EMERG TECHNOL, V16, P322, DOI 10.3991/ijet.v16i11.19657
Graham E., 2018, The Cambridge handbook of instructional feedback, P145
Graham S, 2019, REV RES EDUC, V43, P277, DOI 10.3102/0091732X18821125
Graham S, 2012, J EDUC PSYCHOL, V104, P879, DOI 10.1037/a0029185
Han T, 2024, COMPUT ASSIST LANG L, V37, P961, DOI 10.1080/09588221.2022.2067179
Hannigan C, 2022, ASSESS EDUC, V29, P482, DOI 10.1080/0969594X.2022.2121911
Hattie JAC, 2009, VISIBLE LEARNING: A SYNTHESIS OF OVER 800 META-ANALYSES RELATING TO ACHIEVEMENT, P1
Hattie J, 2007, REV EDUC RES, V77, P81, DOI 10.3102/003465430298487
Hegelheimer V, 2016, CALICO J, V33, pI, DOI 10.1558/cj.v33i1.29251
Hopfenbeck TN, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1270700
Jingxin G., 2020, Universal Journal of Educational Research, V8, P8334, DOI [10.13189/ujer.2020.082638, DOI 10.13189/UJER.2020.082638]
Jordan B, 1995, J LEARN SCI, V4, P39, DOI 10.1207/s15327809jls0401_2
Link S, 2022, COMPUT ASSIST LANG L, V35, P605, DOI 10.1080/09588221.2020.1743323
Ludvigsen S, 2011, NEW PERSP LEARN INST, P105
Mercer N., 1995, Talk Amongst Teachers and Learners
Moltudal S., 2020, Designs for Learning, V12, P13, DOI DOI 10.16993/DFL.138
Moltudal SH, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.830536
Munthe E., 2022, Digitalisering i grunnopplaering; kunnskap, trender og framtidig forskningsbehov. Digitalization in compulsory education, evidence, trends and future needs for research
Price M., 2012, Assessment literacy: The foundation for improving student learning
Qi P, 2020, Arxiv, DOI arXiv:2003.07082
Ranalli J, 2017, EDUC PSYCHOL-UK, V37, P8, DOI 10.1080/01443410.2015.1136407
Schildkamp K, 2020, INT J EDUC RES, V103, DOI 10.1016/j.ijer.2020.101602
Smith CD, 2013, ASSESS EVAL HIGH EDU, V38, P44, DOI 10.1080/02602938.2011.598636
Torkildsen L.G., 2016, Education Inquiry, V7, P27416, DOI DOI 10.3402/EDUI.V7.27416
Vattoy KD, 2022, EDUC INQ, DOI 10.1080/20004508.2022.2122202
Vattoy KD, 2020, CAMB J EDUC, V50, P371, DOI 10.1080/0305764X.2019.1707512
Wiliam D., 1998, ASSESS EDUC, V5, P7, DOI [DOI 10.1080/0969595980050102, 10.1080/0969595980050102]
Wilson J., 2014, Learning Disabilities: A Contemporary Journal, V12, P93
NR 42
TC 1
Z9 1
U1 4
U2 4
PU INTERACTION DESIGN & ARCHITECTURES
PI ROMA
PA INTERACTION DESIGN & ARCHITECTURES, ROMA, 00000, ITALY
SN 1826-9745
EI 2283-2998
J9 INTERACT DES ARCHIT
JI Interact. Des. Archit.
PD WIN
PY 2023
IS 59
SI SI
BP 37
EP 61
DI 10.55612/s-5002-059-001
PG 25
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA WC9L0
UT WOS:001252786900003
OA gold
DA 2024-09-05
ER
PT J
AU Leiva, V
Castro, C
Vila, R
Saulo, H
AF Leiva, Victor
Castro, Cecilia
Vila, Roberto
Saulo, Helton
TI Unveiling patterns and trends in research on cumulative damage models
for statistical and reliability analyses: Bibliometric and thematic
explorations with data analytics
SO CHILEAN JOURNAL OF STATISTICS
LA English
DT Article
DE Bibliometrical analysis; Birnbaum-Saunders distribution; cumulative
damage; fatigue life prediction; Gaussian inverse distribution; latent
Dirichlet allocation
ID BIRNBAUM-SAUNDERS DISTRIBUTION; TRUNCATED LIFE TESTS; ACCEPTANCE
SAMPLING PLANS; FATIGUE DAMAGE; FAILURE; DISTRIBUTIONS; PREDICTION;
DIAGNOSTICS; CORROSION; FAMILY
AB This study comprehensively explores the research landscape within statistical and reliability studies, focusing on the Birnbaum-Saunders distribution, Gaussian inverse distribution, cumulative damage models, and fatigue life prediction. Using a combination of bibliometric analysis, network visualization, thematic mapping, and latent Dirichlet allocation, we analyze 465 articles from the ISI Web of Science database. These articles were selected for their relevance based on a targeted search strategy. Our analysis identifies key trends, collaboration networks, and emerging research themes. Notable growth in scholarly activity was observed from 2015 to 2021, with a peak around 2021, followed by a decline in the number of publications. Relevant contributions were noted from countries such as Brazil, Canada, Chile, China, Iran, Japan, and the United States. The thematic analysis of keywords reveals influential motor themes like the Birnbaum-Saunders distribution and expectation-maximization algorithm; specialized niche areas such as producer risk; emerging or declining themes like the generalized Birnbaum-Saunders distribution; and foundational themes including cumulative damage and fatigue life distributions. A cluster analysis states key focus areas, such as material durability and advanced statistical methods. Integrating latent Dirichlet allocation, six main topics are derived, capturing broad thematic structures. However, some niche areas do not align directly due to their specialized nature and limited cross-field impact. These findings map the current research on this thematic and suggest future research directions, including deeper exploration of niche themes, integration of advanced statistical methods in practical applications, and increased collaboration across diverse research areas to enhance the robustness and applicability of reliability models.
C1 [Leiva, Victor] Pontificia Univ Catolica Valparaiso, Escuela Ingn Ind, Valparaiso, Chile.
[Castro, Cecilia] Univ Minho, Ctr Math, Braga, Portugal.
[Vila, Roberto; Saulo, Helton] Univ Brasilia, Dept Estat, Brasilia, DF, Brazil.
C3 Pontificia Universidad Catolica de Valparaiso; Universidade do Minho;
Universidade de Brasilia
RP Leiva, V (corresponding author), Pontificia Univ Catolica Valparaiso, Escuela Ingn Ind, Valparaiso, Chile.
EM victorleivasanchez@gmail.com
RI Costa e Castro, Cecilia Maria Vasconcelos/ACU-7420-2022
OI Costa e Castro, Cecilia Maria Vasconcelos/0000-0001-9897-8186
FU FONDECYT, Chile [1200525]; National Agency for Research and Development
(ANID) of the Chilean government under the Ministry of Science,
Technology; Portuguese funds through the CMAT-Research Centre of
Mathematics of University of Minho, Portugal [UIDB/00013/2020,
UIDP/00013/2020]; Brazilian agency Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPq) [309674/2020-4, 304716/2023-5]
FX This research was partially supported by FONDECYT, Chile, grant number
1200525 (V.L.) , from the National Agency for Research and Development
(ANID) of the Chilean government under the Ministry of Science,
Technology, Knowledge, and Innovation; by Portuguese funds through the
CMAT-Research Centre of Mathematics of University of Minho, Portugal,
within projects UIDB/00013/2020
(https://doi.org/10.54499/UIDB/00013/2020) and UIDP/00013/2020
(https://doi.org/10.54499/UIDP/00013/2020) (C.C.) ; and funds provided
by the Brazilian agency Conselho Nacional de Desenvolvimento Cientifico
e Tecnologico (CNPq) through grant numbers 309674/2020-4 and
304716/2023-5 (H.S.) .
CR Aid A, 2011, MATER DESIGN, V32, P183, DOI 10.1016/j.matdes.2010.06.010
Arnold BC, 2023, REVSTAT-STAT J, V21, P1, DOI 10.57805/revstat.v21i1.396
Arnold BC, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13050762
Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391
Azevedo C, 2012, COMPUT STAT DATA AN, V56, P3887, DOI 10.1016/j.csda.2012.05.007
Baklizi A, 2004, RISK ANAL, V24, P1453, DOI 10.1111/j.0272-4332.2004.00541.x
Balakrishnan N, 2007, COMMUN STAT-SIMUL C, V36, P643, DOI 10.1080/03610910701207819
Balakrishnan N, 2019, APPL STOCH MODEL BUS, V35, P4, DOI 10.1002/asmb.2348
Balakrishnan N, 2011, J STAT PLAN INFER, V141, P2175, DOI 10.1016/j.jspi.2010.12.005
BHATTACHARYYA GK, 1982, IEEE T RELIAB, V31, P439, DOI 10.1109/TR.1982.5221421
Bhatti CR, 2010, MATH COMPUT SIMULAT, V80, P2062, DOI 10.1016/j.matcom.2010.01.011
BIRNBAUM ZW, 1969, J APPL PROBAB, V6, P328, DOI 10.2307/3212004
BIRNBAUM ZW, 1969, J APPL PROBAB, V6, P319, DOI 10.2307/3212003
BIRNBAUM ZW, 1968, SIAM J APPL MATH, V16, P637, DOI 10.1137/0116052
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bourguignon M, 2022, APPL STOCH MODEL BUS, V38, P935, DOI 10.1002/asmb.2687
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011
Carcamo E., 2024, REVSTAT Statistical Journal
Caro-Lopera FJ, 2012, J MULTIVARIATE ANAL, V104, P126, DOI 10.1016/j.jmva.2011.07.004
Chaves NL, 2019, CHIL J STAT, V10, P55
Cheng G, 1998, INT J FATIGUE, V20, P495, DOI 10.1016/S0142-1123(98)00018-8
Cordeiro GM, 2011, COMPUT STAT DATA AN, V55, P1445, DOI 10.1016/j.csda.2010.10.007
Costa E, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13060926
Durham SD, 1997, TECHNOMETRICS, V39, P34, DOI 10.2307/1270770
Fatemi A, 1998, INT J FATIGUE, V20, P9, DOI 10.1016/S0142-1123(97)00081-9
Fatemi A, 2011, INT J FATIGUE, V33, P948, DOI 10.1016/j.ijfatigue.2011.01.003
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7
Gallardo DI, 2024, STAT COMPUT, V34, DOI 10.1007/s11222-024-10458-w
Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799
Gómez HW, 2009, STAT PROBABIL LETT, V79, P331, DOI 10.1016/j.spl.2008.08.014
Gómez-Déniz E, 2022, COMPUT APPL MATH, V41, DOI 10.1007/s40314-022-01875-6
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grün B, 2011, J STAT SOFTW, V40, P1
Guiraud P, 2009, IEEE T RELIAB, V58, P152, DOI 10.1109/TR.2008.2011869
He MM, 2019, INT J ROCK MECH MIN, V114, P17, DOI 10.1016/j.ijrmms.2018.12.015
Kumar R, 2009, EARTHQ ENG STRUCT D, V38, P887, DOI 10.1002/eqe.873
Kundu D, 2008, COMPUT STAT DATA AN, V52, P2692, DOI 10.1016/j.csda.2007.09.021
Kundu D, 2010, J MULTIVARIATE ANAL, V101, P113, DOI 10.1016/j.jmva.2009.05.005
Kuroda M, 2002, INT J FATIGUE, V24, P699, DOI 10.1016/S0142-1123(01)00170-0
Leiva V., 2022, Bayesian Computation in Reliability and Survival Analysis, P41
Leiva V, 2008, ENVIRONMETRICS, V19, P235, DOI 10.1002/env.861
Leiva V, 2008, COMPUT STAT DATA AN, V52, P2079, DOI 10.1016/j.csda.2007.07.003
Leiva V, 2007, COMPUT STAT DATA AN, V51, P5694, DOI 10.1016/j.csda.2006.09.020
Leiva V, 2014, APPL STOCH MODEL BUS, V30, P115, DOI 10.1002/asmb.1944
Leiva V, 2014, STAT MODEL, V14, P21, DOI 10.1177/1471082X13494532
Lemonte AJ, 2007, COMPUT STAT DATA AN, V51, P4656, DOI 10.1016/j.csda.2006.08.016
Lio YL, 2010, COMMUN STAT-SIMUL C, V39, P119, DOI 10.1080/03610910903350508
Lv ZQ, 2015, INT J DAMAGE MECH, V24, P168, DOI 10.1177/1056789514524075
Marchant C, 2019, ENVIRONMETRICS, V30, DOI 10.1002/env.2551
Marchant C, 2013, REV ENVIRON CONTAM T, V223, P1, DOI 10.1007/978-1-4614-5577-6_1
Mazucheli J, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13040682
Mazucheli J, 2018, CHIL J STAT, V9, P47
Murakami Y, 2005, INT J FATIGUE, V27, P991, DOI 10.1016/j.ijfatigue.2004.10.009
Murzintcev N., 2016, R package version 0.2.0
NEWMAN M. E. J., 2010, Networks
Ng HKT, 2003, COMPUT STAT DATA AN, V43, P283, DOI 10.1016/S0167-9473(02)00254-2
Park C, 2005, LIFETIME DATA ANAL, V11, P511, DOI 10.1007/s10985-005-5237-8
Park C, 2005, IEEE T RELIAB, V54, P530, DOI 10.1109/TR.2005.853278
Paula GA, 2012, APPL STOCH MODEL BUS, V28, P16, DOI 10.1002/asmb.887
Puentes R, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060645
Rege K, 2017, INT J FATIGUE, V98, P234, DOI 10.1016/j.ijfatigue.2017.01.039
Reyes J, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9161891
RIECK JR, 1991, TECHNOMETRICS, V33, P51, DOI 10.2307/1269007
Risitano A, 2013, INT J FATIGUE, V48, P214, DOI 10.1016/j.ijfatigue.2012.10.020
Sánchez L, 2021, APPL STOCH MODEL BUS, V37, P53, DOI 10.1002/asmb.2556
Sanhueza A, 2008, COMMUN STAT-THEOR M, V37, P645, DOI 10.1080/03610920701541174
Shang DG, 1999, INT J FATIGUE, V21, P187, DOI 10.1016/S0142-1123(98)00069-3
Shi P, 2001, ENG FRACT MECH, V68, P1493, DOI 10.1016/S0013-7944(01)00041-8
Tang J, 2014, PR MACH LEARN RES, V32
Yao WX, 2000, COMPOS SCI TECHNOL, V60, P59, DOI 10.1016/S0266-3538(99)00100-1
Zhu SP, 2019, INT J FATIGUE, V128, DOI 10.1016/j.ijfatigue.2019.105185
NR 74
TC 2
Z9 2
U1 1
U2 1
PU SOC CHILENA ESTADISTICA-SOCHE
PI SANTIAGO
PA CASILLA 306, CORREO 22, SANTIAGO, 00000, CHILE
SN 0718-7912
EI 0718-7920
J9 CHIL J STAT
JI Chil. J. Stat.
PD JUN
PY 2024
VL 15
IS 1
BP 81
EP 109
DI 10.32372/chjs.15-01-05
PG 29
WC Statistics & Probability
WE Emerging Sources Citation Index (ESCI)
SC Mathematics
GA XZ9N1
UT WOS:001265620900005
DA 2024-09-05
ER
PT J
AU Weinand, JM
Sörensen, K
San Segundo, P
Kleinebrahm, M
McKenna, R
AF Weinand, Jann Michael
Sorensen, Kenneth
San Segundo, Pablo
Kleinebrahm, Max
McKenna, Russell
TI Research trends in combinatorial optimization
SO INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
LA English
DT Article
DE combinatorial optimization; bibliometric analysis; metaheuristics;
genetic algorithms; exact algorithms; OR in energy
ID HARMONY SEARCH ALGORITHM; ANT COLONY OPTIMIZATION; BIG DATA;
METAHEURISTICS; NETWORK; SYSTEM; UNCERTAINTY; DESIGN; MODELS;
COMPUTATION
AB Real-world problems are becoming highly complex and therefore have to be solved with combinatorial optimization (CO) techniques. Motivated by the strong increase in publications on CO, 8393 articles from this research field are subjected to a bibliometric analysis. The corpus of literature is examined using mathematical methods and a novel algorithm for keyword analysis. In addition to the most relevant countries, organizations, and authors as well as their collaborations, the most pertinent CO problems, solution methods, and application areas are presented. Publications on CO focus mainly on the development or enhancement of metaheuristics like genetic algorithms. The increasingly problem-oriented studies deal particularly with real-world applications within the energy sector, production sector, or data management, which are of increasing relevance due to various global developments. The demonstration of global research trends in CO can support researchers in identifying the relevant issues regarding this expanding and transforming research area.
C1 [Weinand, Jann Michael; Kleinebrahm, Max] Karlsruhe Inst Technol, Inst Ind Prod, Chair Energy Econ, D-76131 Karlsruhe, Germany.
[Sorensen, Kenneth] Univ Antwerp, Dept Engn Management, B-2000 Antwerp, Belgium.
[San Segundo, Pablo] Univ Politecn Madrid, Ctr Automat & Robot, Madrid 28040, Spain.
[McKenna, Russell] Univ Aberdeen, Sch Engn, Chair Energy Transit, Aberdeen AB24 3FX, Scotland.
C3 Helmholtz Association; Karlsruhe Institute of Technology; University of
Antwerp; Consejo Superior de Investigaciones Cientificas (CSIC);
Universidad Politecnica de Madrid; CSIC-UPM - Centro de Automatica y
Robotica; University of Aberdeen
RP Weinand, JM (corresponding author), Karlsruhe Inst Technol, Inst Ind Prod, Chair Energy Econ, D-76131 Karlsruhe, Germany.
EM jann.weinand@kit.edu; kenneth.sorensen@uantwerpen.be;
pablo.sansegundo@upm.es; max.kleinebrahm@kit.edu;
russell.mckenna@abdn.ac.uk
RI Weinand, Jann Michael/AAH-4400-2020; Weinand, Jann/GNH-5511-2022
OI Kleinebrahm, Max/0000-0002-6957-2379; Weinand, Jann
Michael/0000-0003-2948-876X; McKenna, Russell/0000-0001-6758-482X
FU Spanish Ministry of Science, Innovation, and Universities through the
project COGDRIVE [DPI2017-86915-C3-3-R]; Projekt DEAL
FX This work has been partially funded by the Spanish Ministry of Science,
Innovation, and Universities through the project COGDRIVE
(DPI2017-86915-C3-3-R). In this context, we would also like to thank the
Karlsruhe Institute of Technology.; Open access funding enabled and
organized by Projekt DEAL.
CR Abido MA, 2002, INT J ELEC POWER, V24, P563, DOI 10.1016/S0142-0615(01)00067-9
Akiba T, 2016, THEOR COMPUT SCI, V609, P211, DOI 10.1016/j.tcs.2015.09.023
Alharbi F, 2019, EXPERT SYST APPL, V120, P228, DOI 10.1016/j.eswa.2018.11.029
Amen M, 2006, EUR J OPER RES, V168, P747, DOI 10.1016/j.ejor.2004.07.026
[Anonymous], 2012, GENETIC ALGORITHMS S
[Anonymous], 2013, Encyclopedia of Operations Research and Management Science, DOI DOI 10.1007/978-1-4419-1153-7
[Anonymous], 2010, The Design of Approximation Algorithms
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Barr R. S., 1995, Journal of Heuristics, V1, P9, DOI 10.1007/BF02430363
Becker C, 2009, EUR J OPER RES, V199, P359, DOI 10.1016/j.ejor.2008.11.051
Ben Meskina S, 2018, INFORM SCIENCES, V454, P73, DOI 10.1016/j.ins.2018.04.010
Bengio Y, 2021, EUR J OPER RES, V290, P405, DOI 10.1016/j.ejor.2020.07.063
Bidhandi HM, 2009, EUR J OPER RES, V198, P121, DOI 10.1016/j.ejor.2008.07.034
Biel K, 2016, COMPUT IND ENG, V101, P243, DOI 10.1016/j.cie.2016.08.021
BJORNDAL MH, 1995, EUR J OPER RES, V83, P253, DOI 10.1016/0377-2217(95)00005-B
Blum C, 2003, ACM COMPUT SURV, V35, P268, DOI 10.1145/937503.937505
Blum C, 2005, PHYS LIFE REV, V2, P353, DOI 10.1016/j.plrev.2005.10.001
Blum C, 2011, APPL SOFT COMPUT, V11, P4135, DOI 10.1016/j.asoc.2011.02.032
Boykov Y, 2004, IEEE T PATTERN ANAL, V26, P1124, DOI 10.1109/TPAMI.2004.60
Boykov Y, 2006, INT J COMPUT VISION, V70, P109, DOI 10.1007/s11263-006-7934-5
Brandner H, 2013, EUR J OPER RES, V230, P581, DOI 10.1016/j.ejor.2013.05.010
Braun G, 2017, COMPUT COMPLEX, V26, P147, DOI 10.1007/s00037-016-0125-z
Burke EK, 2013, J OPER RES SOC, V64, P1695, DOI 10.1057/jors.2013.71
Cacchiani V., 2018, EUR J OPER RES
Campelo F., 2019, EC BESTIARY BESTIARY
Clarivate, 2021, KEYWORDS PLUS GEN CR
Conforti M, 2014, GRAD TEXTS MATH, V271, P1, DOI 10.1007/978-3-319-11008-0
Cook William, 2019, Computing and Software Science: State of the Art and Perspectives. Lecture Notes in Computer Science (LNCS 10000), P27, DOI 10.1007/978-3-319-91908-9_3
de Castro LN, 2002, IEEE T EVOLUT COMPUT, V6, P239, DOI 10.1109/TEVC.2002.1011539
Deng W, 2019, SOFT COMPUT, V23, P2445, DOI 10.1007/s00500-017-2940-9
Donoho DL, 2003, P NATL ACAD SCI USA, V100, P2197, DOI 10.1073/pnas.0437847100
Donoho DL, 2001, IEEE T INFORM THEORY, V47, P2845, DOI 10.1109/18.959265
Dorigo M, 2005, THEOR COMPUT SCI, V344, P243, DOI 10.1016/j.tcs.2005.05.020
Dorigo M, 1997, BIOSYSTEMS, V43, P73, DOI 10.1016/S0303-2647(97)01708-5
Dorigo M, 1996, IEEE T SYST MAN CY B, V26, P29, DOI 10.1109/3477.484436
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Eskandarpour M, 2015, OMEGA-INT J MANAGE S, V54, P11, DOI 10.1016/j.omega.2015.01.006
Fan W., 2013, ACM sIGKDD Explorations Newsletter, V14, P1
FEO TA, 1995, J GLOBAL OPTIM, V6, P109, DOI 10.1007/BF01096763
Ferdows K, 2016, J OPER MANAG, V41, P63, DOI 10.1016/j.jom.2015.11.006
Fichte Johannes K., 2020, Principles and Practice of Constraint Programming. 26th International Conference, CP 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12333), P267, DOI 10.1007/978-3-030-58475-7_16
Froger A, 2016, EUR J OPER RES, V251, P695, DOI 10.1016/j.ejor.2015.08.045
Gabrel V, 2014, EUR J OPER RES, V235, P471, DOI 10.1016/j.ejor.2013.09.036
Gandomi AH, 2014, ISA T, V53, P1168, DOI 10.1016/j.isatra.2014.03.018
Garey MichaelR., 2009, COMPUTERS INTRACTABI, V1
Geem ZW, 2001, SIMULATION, V76, P60, DOI 10.1177/003754970107600201
Gendreau M, 2005, ANN OPER RES, V140, P189, DOI 10.1007/s10479-005-3971-7
Gerkey BP, 2004, INT J ROBOT RES, V23, P939, DOI 10.1177/0278364904045564
Glover F., 1990, ORSA Journal on Computing, V2, P4, DOI [10.1287/ijoc.1.3.190, 10.1287/ijoc.2.1.4]
Gocht Stephan, 2020, Principles and Practice of Constraint Programming. 26th International Conference, CP 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12333), P338, DOI 10.1007/978-3-030-58475-7_20
Goderbauer S, 2019, COMPUT CHEM ENG, V124, P343, DOI 10.1016/j.compchemeng.2019.02.002
Goemans MX, 1995, J ACM, V42, P1115, DOI 10.1145/227683.227684
Haastrup P, 1998, EUR J OPER RES, V109, P330, DOI 10.1016/S0377-2217(98)00061-7
Halim AH, 2019, ARCH COMPUT METHOD E, V26, P367, DOI 10.1007/s11831-017-9247-y
Han KH, 2002, IEEE T EVOLUT COMPUT, V6, P580, DOI 10.1109/TEVC.2002.804320
Hartmann S, 2010, EUR J OPER RES, V207, P1, DOI 10.1016/j.ejor.2009.11.005
Hertz A, 2003, EUR J OPER RES, V151, P247, DOI 10.1016/S0377-2217(02)00823-8
Hespe D, 2020, 2020 PROCEEDINGS OF THE SIAM WORKSHOP ON COMBINATORIAL SCIENTIFIC COMPUTING, CSC
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hooker J. N., 1995, Journal of Heuristics, V1, P33, DOI 10.1007/BF02430364
HOPFIELD JJ, 1985, BIOL CYBERN, V52, P141
Ibaraki T., 1976, Discrete Mathematics, V16, P39, DOI 10.1016/0012-365X(76)90091-1
Jaqaman K, 2008, NAT METHODS, V5, P695, DOI 10.1038/nmeth.1237
Johnson MW, 2011, NATURE, V473, P194, DOI 10.1038/nature10012
Jozefowiez N, 2008, EUR J OPER RES, V189, P293, DOI 10.1016/j.ejor.2007.05.055
Kendall G, 2016, J OPER RES SOC, V67, P676, DOI 10.1057/jors.2015.77
Kheiri A, 2019, EURO J TRANSP LOGIST, V8, P561, DOI 10.1007/s13676-019-00143-8
KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671
Knill E, 2001, NATURE, V409, P46, DOI 10.1038/35051009
Lanza G, 2019, CIRP ANN-MANUF TECHN, V68, P823, DOI 10.1016/j.cirp.2019.05.008
Levenshtein V. I., 1966, Soviet Physics Doklady, V10, P707
Li CM, 2018, INFORMS J COMPUT, V30, P137, DOI 10.1287/ijoc.2017.0770
Loiola EM, 2007, EUR J OPER RES, V176, P657, DOI 10.1016/j.ejor.2005.09.032
Marti R., 2018, Handbook of Heuristics
Mavromatidis G, 2018, RENEW SUST ENERG REV, V88, P258, DOI 10.1016/j.rser.2018.02.021
Mladenovic N, 1997, COMPUT OPER RES, V24, P1097, DOI 10.1016/S0305-0548(97)00031-2
Mundi I, 2019, INT J PROD RES, V57, P5239, DOI 10.1080/00207543.2019.1566665
Nagy G, 2007, EUR J OPER RES, V177, P649, DOI 10.1016/j.ejor.2006.04.004
Nouiri M, 2018, J INTELL MANUF, V29, P603, DOI 10.1007/s10845-015-1039-3
Pardalos P. M., 2013, Handbook of combinatorial optimization
Pessoa A, 2020, MATH PROGRAM, V183, P483, DOI 10.1007/s10107-020-01523-z
Pillac V, 2013, EUR J OPER RES, V225, P1, DOI 10.1016/j.ejor.2012.08.015
Pop PC, 2020, EUR J OPER RES, V283, P1, DOI 10.1016/j.ejor.2019.05.017
Prodhon C, 2014, EUR J OPER RES, V238, P1, DOI 10.1016/j.ejor.2014.01.005
PUrez-Chacn R., 2020, CORONAVIRUS OPTIMIZA
Rahmaniani R, 2017, EUR J OPER RES, V259, P801, DOI 10.1016/j.ejor.2016.12.005
Razmjooy N, 2016, J CONTROL AUTOM ELEC, V27, P419, DOI 10.1007/s40313-016-0242-6
San Segundo P, 2016, COMPUT OPER RES, V66, P81, DOI 10.1016/j.cor.2015.07.013
Santini A, 2018, J HEURISTICS, V24, P783, DOI 10.1007/s10732-018-9377-x
Schmidt M, 2019, EUR J OPER RES, V275, P446, DOI 10.1016/j.ejor.2018.11.048
Shah-Hosseini H, 2009, INT J BIO-INSPIR COM, V1, P71, DOI 10.1504/IJBIC.2009.022775
Shishvan MS, 2015, EUR J OPER RES, V240, P825, DOI 10.1016/j.ejor.2014.07.040
Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961
Sörensen K, 2015, INT T OPER RES, V22, P3, DOI 10.1111/itor.12001
Sorensen K., 2018, HDB HEURISTICS, P791, DOI DOI 10.1007/978-3-319-07124-4_4
Sörensen K, 2019, INT T OPER RES, V26, P54, DOI 10.1111/itor.12443
Sörensen K, 2013, COMPUT OPER RES, V40, P3197, DOI 10.1016/j.cor.2013.02.005
Spiliopoulos K, 2007, EUR J OPER RES, V177, P525, DOI 10.1016/j.ejor.2005.09.005
Stützle T, 2000, FUTURE GENER COMP SY, V16, P889, DOI 10.1016/S0167-739X(00)00043-1
Swan J., 2020, METAHEURISTICS LARGE
TAILLARD E, 1993, EUR J OPER RES, V64, P278, DOI 10.1016/0377-2217(93)90182-M
Talbi EG, 2016, ANN OPER RES, V240, P171, DOI 10.1007/s10479-015-2034-y
Tero A, 2010, SCIENCE, V327, P439, DOI 10.1126/science.1177894
UNESCO, 2020, SCI TECHN INN GROSS
Van den Bergh J, 2013, EUR J OPER RES, V226, P367, DOI 10.1016/j.ejor.2012.11.029
Walteros JL, 2020, OPER RES, V68, P1866, DOI 10.1287/opre.2019.1970
Watson JP, 2003, ARTIF INTELL, V143, P189, DOI 10.1016/S0004-3702(02)00363-6
Weinand JM, 2020, ENERGIES, V13, DOI 10.3390/en13061367
Weinand JM, 2019, APPL ENERG, V251, DOI 10.1016/j.apenergy.2019.113367
Wen LL, 2018, RENEW SUST ENERG REV, V91, P59, DOI 10.1016/j.rser.2018.03.088
Wen ZW, 2013, MATH PROGRAM, V142, P397, DOI 10.1007/s10107-012-0584-1
Weyland D, 2015, OPER RES PERSPECT, V2, P97, DOI 10.1016/j.orp.2015.04.001
Weyland D, 2010, INT J APPL METAHEUR, V1, P50, DOI 10.4018/jamc.2010040104
Xia ZG, 2016, DALTON T, V45, P11214, DOI 10.1039/c6dt01230b
Xiao L, 2004, SYST CONTROL LETT, V53, P65, DOI 10.1016/j.sysconle.2004.02.022
Xu L, 2014, IEEE ACCESS, V2, P1149, DOI 10.1109/ACCESS.2014.2362522
Xu P, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2425
Yao X, 1999, IEEE T EVOLUT COMPUT, V3, P82, DOI 10.1109/4235.771163
Zäpfel G, 2010, METAHEURISTIC SEARCH CONCEPTS, P145, DOI 10.1007/978-3-642-11343-7_8
Zhang C, 2017, RENEW SUST ENERG REV, V76, P353, DOI 10.1016/j.rser.2017.03.071
Zhou N. F., 2015, CONSTRAINT SOLVING P
NR 121
TC 15
Z9 15
U1 0
U2 14
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0969-6016
EI 1475-3995
J9 INT T OPER RES
JI Int. Trans. Oper. Res.
PD MAR
PY 2022
VL 29
IS 2
BP 667
EP 705
DI 10.1111/itor.12996
EA MAY 2021
PG 39
WC Management; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Operations Research & Management Science
GA WI8YH
UT WOS:000655468200001
OA Green Published
DA 2024-09-05
ER
PT J
AU Pudasaini, B
Shahandashti, M
AF Pudasaini, Binaya
Shahandashti, Mohsen
TI Seismic Rehabilitation Optimization of Water Pipe Networks Considering
Spatial Variabilities of Demand Criticalities and Seismic Ground Motion
Intensities
SO JOURNAL OF INFRASTRUCTURE SYSTEMS
LA English
DT Article
DE Critical infrastructure; Water pipe networks; Rehabilitation;
Optimization; Simulated annealing; Operations research; Seismic
vulnerability assessment; Spatial analyses
ID RISK-ASSESSMENT; EARTHQUAKE; PIPELINES; FRAMEWORK
AB Operation of critical infrastructure facilities such as hospitals, firefighting stations, and disaster shelters are critical during a postearthquake scenario. The serviceability of many such facilities is, in turn, dependent on the proper operation of water-supply systems providing water to these facilities. Due to such dependency of disaster relief systems on water supply, having a resilient water-supply system is even more critical in a postearthquake scenario as compared to a normal operating condition. Extant pertinent literature ignores spatial variabilities of the water demand priorities. It assumes that the water demand originating from critical facilities, such as hospitals and the water demand originating from less critical facilities such as golf courses and temporary storage facilities, are of equal importance. This oversimplification has made existing models practically limited, especially in a postearthquake scenario. The objective of this study is to create a methodology to identify optimized proactive seismic rehabilitation policy for water pipe networks considering spatial variabilities of demand criticalities and seismic ground motion intensities. A novel approach based on proximity analysis was created to determine the criticality of each node where the criticality was established based on the spatial distribution of water demand type in the neighborhood of the node. The spatial variabilities of demand criticalities along with the spatial variabilities of the seismic ground motion intensities integrated into the formulation of a stochastic combinatorial optimization problem to identify economical rehabilitation policies for enhancing seismic resilience of the water-supply network. A purpose-built simulated-annealing algorithm integrated with Monte Carlo simulation was then used to solve the optimization problem. A city-scale water pipe network was used as a testbed to demonstrate the effectiveness of the created methodology. The results of this study and their comparison with results from existing methods showed that the created methodology was highly effective in identifying economical proactive seismic rehabilitation policies for preventive intervention when the rehabilitation budget is limited. Furthermore, the results showed that the consideration of spatial variability in water demand type leads to the identification of rehabilitation policies that ensure higher postearthquake serviceability in nodes supplying water to critical facilities.
C1 [Pudasaini, Binaya; Shahandashti, Mohsen] Univ Texas Arlington, Dept Civil Engn, 416 S Yates St, Arlington, TX 76019 USA.
C3 University of Texas System; University of Texas Arlington
RP Shahandashti, M (corresponding author), Univ Texas Arlington, Dept Civil Engn, 416 S Yates St, Arlington, TX 76019 USA.
EM binaya.pudasaini@mavs.uta.edu; mohsen@uta.edu
OI Shahandashti, Mohsen/0000-0002-2373-7596
CR Abdel-Mottaleb N, 2019, WATER RESOUR RES, V55, P5255, DOI 10.1029/2018WR024063
Abrahamson N.A., 2007, ABHRAMSON SILVA NGA
Adachi T., 2007, Ph.D. thesis
American Lifelines Alliance (ALA), 2001, SEISM FRAG FORM WAT
Angeloudis P, 2006, PHYSICA A, V367, P553, DOI 10.1016/j.physa.2005.11.007
[Anonymous], 2003, P WORLD WAT ENV RES
Arboleda CA, 2009, J INFRASTRUCT SYST, V15, P149, DOI 10.1061/(ASCE)1076-0342(2009)15:3(149)
ASCE, 2016, ASCE 7-16
Baker J.W., 2013, INTRO PROBABILISTIC
Baumberger L, 2007, FLORIDA WATER RESOUR, P15
Bellagamba X, 2019, EARTHQ SPECTRA, V35, P1397, DOI 10.1193/052218EQS119M
Berche B, 2009, EUR PHYS J B, V71, P125, DOI 10.1140/epjb/e2009-00291-3
BRASSEL KE, 1979, GEOGR ANAL, V11, P289
Chen A, 2007, NETW SPAT ECON, V7, P241, DOI 10.1007/s11067-006-9012-5
Christodoulou S. E., 2014, 2014 International Conference on Computing in Civil and Building Engineering. Proceedings, P1812
Crucitti P, 2005, FLUCT NOISE LETT, V5, pL201, DOI 10.1142/S0219477505002562
Cunha MD, 1999, J WATER RES PL-ASCE, V125, P215, DOI 10.1061/(ASCE)0733-9496(1999)125:4(215)
Datta TK, 1999, NUCL ENG DES, V192, P271, DOI 10.1016/S0029-5493(99)00113-2
Delaunay B, 1934, IZV AKAD NAUK SSSR O, V7, P1
Douglas J., 2019, Ground motion prediction equations 1964 2019
Du E, 2009, P INT C MAN SERV SCI, P1
Eagle J.M, 2017, PVC VS DUCT IR PIP I
Faturechi R, 2014, COMPUT OPER RES, V43, P335, DOI 10.1016/j.cor.2013.10.009
Field EH, 2005, EARTHQ SPECTRA, V21, P329, DOI 10.1193/1.1898332
Gomez C, 2019, STRUCT SAF, V77, P1, DOI 10.1016/j.strusafe.2018.10.002
Gordian, 2019, HEAVY CONSTRUCTION C
Hackl J, 2018, COMPUT-AIDED CIV INF, V33, P618, DOI 10.1111/mice.12346
Haddaway A., 2015, EARTHQUAKE RESITANT
Han ZY, 2010, J LOSS PREVENT PROC, V23, P428, DOI 10.1016/j.jlp.2010.02.003
Honegger DG., 1992, Determination of the relative vulnerabilities to seismic damage for San Diego County Water Authority: water transmission pipelines
Huang FY, 2007, IEEE WIREL COMMUN, V14, P48, DOI 10.1109/MWC.2007.4396942
Jayaram N, 2009, EARTHQ ENG STRUCT D, V38, P1687, DOI 10.1002/eqe.922
Jeon SS, 2005, B SEISMOL SOC AM, V95, P294, DOI 10.1785/0120040020
Kielhauser C, 2017, STRUCT INFRASTRUCT E, V13, P361, DOI 10.1080/15732479.2016.1162818
KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671
Klinkhamer C., 2017, FUNCTIONALLY FRACTAL
Laucelli D, 2015, J WATER RES PLAN MAN, V141, DOI 10.1061/(ASCE)WR.1943-5452.0000478
Liu HX, 2017, J WATER RES PLAN MAN, V143, DOI 10.1061/(ASCE)WR.1943-5452.0000766
Maantay J, 2001, AM J PUBLIC HEALTH, V91, P1033, DOI 10.2105/AJPH.91.7.1033
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114
Mulyasari F, 2013, INT J DISAST RISK SC, V4, P89, DOI 10.1007/s13753-013-0010-1
Newmark N.M., 1971, Fundamentals of Earthquake Engineering
O'Rourke M, 2004, EARTHQ SPECTRA, V20, P1167, DOI 10.1193/1.1808143
Pudasaini B, 2018, J INFRASTRUCT SYST, V24, DOI 10.1061/(ASCE)IS.1943-555X.0000439
Pudasaini B, 2017, COMPUTING IN CIVIL ENGINEERING 2017: SMART SAFETY, SUSTAINABILITY, AND RESILIENCE, P231
Pudasaini B, 2020, COMPUT-AIDED CIV INF, V35, P1101, DOI 10.1111/mice.12566
Rokneddin K., 2009, REDUCED COMPUTATIONA, P1
Shahandashti SM, 2019, NAT HAZARDS REV, V20, DOI 10.1061/(ASCE)NH.1527-6996.0000328
Shi P., 2006, SEISMIC RESPONSE MOD
Sukru O., 2004, Water resource systems management tools, V7, P1
Sullivan JL, 2010, TRANSPORT RES A-POL, V44, P323, DOI 10.1016/j.tra.2010.02.003
WALSKI TM, 1993, RELIAB ENG SYST SAFE, V42, P21, DOI 10.1016/0951-8320(93)90051-Y
Wang M, 2005, EARTHQ SPECTRA, V21, P1137, DOI 10.1193/1.2083887
Wang Y, 2010, EARTHQ SPECTRA, V26, P257, DOI 10.1193/1.3276900
Weatherill G., 2013, Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, P28
Zanini MA, 2017, ENG STRUCT, V136, P219, DOI 10.1016/j.engstruct.2017.01.029
Zanini MA, 2016, CHEM ENGINEER TRANS, V53, P163, DOI 10.3303/CET1653028
Zischg J, 2018, WATER SCI TECHNOL, V77, P1851, DOI 10.2166/wst.2018.060
NR 58
TC 6
Z9 7
U1 3
U2 17
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 1076-0342
EI 1943-555X
J9 J INFRASTRUCT SYST
JI J. Infrastruct. Syst.
PD DEC 1
PY 2021
VL 27
IS 4
AR 04021028
DI 10.1061/(ASCE)IS.1943-555X.0000638
PG 12
WC Engineering, Civil
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Engineering
GA WI1JZ
UT WOS:000708123600016
DA 2024-09-05
ER
PT J
AU Watts, FM
Dood, AJ
Shultz, GV
Rodriguez, JMG
AF Watts, Field M.
Dood, Amber J.
Shultz, Ginger V.
Rodriguez, Jon-Marc G.
TI Comparing Student and Generative Artificial Intelligence Chatbot
Responses to Organic Chemistry Writing-to-Learn Assignments
SO JOURNAL OF CHEMICAL EDUCATION
LA English
DT Article
DE Second-Year Undergraduate; Organic Chemistry; Writing; Problem Solving;
Assessment; Mechanisms of Reactions; Internet/Web-Based Learning;
Chemical Education Research
ID MECHANISMS; FRAMEWORK; THINKING
AB Chemistry education research demonstrates the value of open-ended writing tasks, such as writing-to-learn (WTL) assignments, for supporting students' learning with topics including reasoning about reaction mechanisms. The emergence of generative artificial intelligence (AI) technology, such as chatbots ChatGPT and Bard, raises concerns regarding the value of open-ended writing tasks in the classroom; one concern involves academic integrity and whether students will use these chatbots to produce sufficient responses to open-ended writing tasks. The present study investigates the degree to which generative AI chatbots exhibit mechanistic reasoning in response to organic chemistry WTL assignments. We produced responses from three generative AI chatbots (ChatGPT-3.5, ChatGPT-4, and Bard) to two WTL assignments developed to elicit students' mechanistic reasoning. Using previously reported machine learning models for analyzing student writing in response to the WTL assignments, we analyzed the chatbot responses for the inclusion of features pertinent to mechanistic reasoning. Herein, we report quantitative analyses of (1) the differences between chatbot responses on the two assignments and (2) the differences between chatbot and authentic student responses. Findings indicate that chatbots respond differently to different WTL assignments. Additionally, the chatbots rarely incorporated the discussion of electron movement, a key feature of mechanistic reasoning. Furthermore, the chatbots, in general, do not engage in mechanistic reasoning at the same level as students. We contextualize the results by considering academic integrity with the assumption that students' intentions are to engage in academically honest behavior, and we focus on understanding the ethical uses of generative AI for classroom assignments.
C1 [Dood, Amber J.; Shultz, Ginger V.] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA.
[Watts, Field M.; Rodriguez, Jon-Marc G.] Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA.
C3 University of Michigan System; University of Michigan; University of
Wisconsin System; University of Wisconsin Milwaukee
RP Watts, FM (corresponding author), Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA.
EM wattsf@uwm.edu
RI Watts, Field/ABA-1960-2021
OI Dood, Amber/0000-0003-4572-1402; Rodriguez, Jon-Marc
G./0000-0001-6949-6823; Watts, Field/0000-0002-1800-1816
FU University of Michigan Provost's Third Century Initiative
FX The authors would like to thank the University of Michigan Provost's
Third Century Initiative for funding. We would like to thank the
participating students, as well as Solaire Finkenstaedt-Quinn, Ina
Zaimi, and Michael Petterson for their assistance in developing the two
WTL assignments. The authors would additionally like to thank Solaire
FinkenstaedtQuinn for discussions related to the preparation of this
manuscript.
CR Anderson P, 2015, RES TEACH ENGL, V50, P199
[Anonymous], 2000, Information literacy competency standards for higher education
[Anonymous], THAL
[Anonymous], ChatGPT
[Anonymous], BARD AI EXPT GOOGLE
Arnold K. C., 2021, JOINT P ACM IUI 2021
Ashenhurst J., WITTIG REACTION
Asmussen G., 2022, ADV CHEM ED SERIES S, P90, DOI 10.1039/9781839167782-00090
Bodé NE, 2019, J CHEM EDUC, V96, P1068, DOI 10.1021/acs.jchemed.8b00719
Brandfonbrener PB, 2021, J CHEM EDUC, V98, P3431, DOI 10.1021/acs.jchemed.1c00660
Buriak JM, 2023, ACS NANO, V17, P4091, DOI 10.1021/acsnano.3c01544
Burke DD, 2018, J LEG STUD EDUC, V35, P5, DOI 10.1111/jlse.12068
Caspari I, 2018, CHEM EDUC RES PRACT, V19, P1117, DOI 10.1039/c8rp00131f
Caspari I., 2019, Int. J. Phys. Chem. Educ., V11, P31
Clark TM, 2023, J CHEM EDUC, V100, P1905, DOI 10.1021/acs.jchemed.3c00027
Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y
Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148
DeKorver BK, 2023, J CHEM EDUC, V100, P91, DOI 10.1021/acs.jchemed.2c00206
Dood AJ, 2023, J CHEM EDUC, V100, P53, DOI 10.1021/acs.jchemed.2c00572
Dood AJ, 2022, J CHEM EDUC, DOI 10.1021/acs.jchemed.2c00313
Dood AJ, 2020, J CHEM EDUC, V97, P3551, DOI 10.1021/acs.jchemed.0c00569
Dood AJ, 2020, CHEM EDUC RES PRACT, V21, P267, DOI 10.1039/c9rp00148d
Dood AJ, 2019, CAN J CHEM, V97, P711, DOI 10.1139/cjc-2018-0479
Dood AJ, 2018, J CHEM EDUC, V95, P1267, DOI 10.1021/acs.jchemed.8b00177
Emenike ME, 2023, J CHEM EDUC, V100, P1413, DOI 10.1021/acs.jchemed.3c00063
Exintaris B, 2023, J CHEM EDUC, V100, P2972, DOI 10.1021/acs.jchemed.3c00481
Fergus S, 2023, J CHEM EDUC, V100, P1672, DOI 10.1021/acs.jchemed.3c00087
Finkenstaedt-Quinn S. A., 2023, International Journal for the Scholarship of Teaching and Learning, V17, DOI [10.20429/ijsotl.2023.17118, DOI 10.20429/IJSOTL.2023.17118]
Finkenstaedt-Quinn SA, 2021, J CHEM EDUC, V98, P1548, DOI 10.1021/acs.jchemed.0c01482
Frost SJH, 2023, CHEM EDUC RES PRACT, V24, P706, DOI 10.1039/d2rp00327a
Gere AR, 2019, WRIT COMMUN, V36, P99, DOI 10.1177/0741088318804820
Graulich N, 2019, CHEM EDUC RES PRACT, V20, P924, DOI 10.1039/c9rp00054b
Graulich N, 2018, J CHEM EDUC, V95, P376, DOI 10.1021/acs.jchemed.7b00672
Graves BC, 2023, ASSESS WRIT, V57, DOI 10.1016/j.asw.2023.100754
Gupte T, 2021, CHEM EDUC RES PRACT, V22, P396, DOI 10.1039/d0rp00266f
Haudek KC, 2012, CBE-LIFE SCI EDUC, V11, P283, DOI 10.1187/cbe.11-08-0084
Howitz WJ, 2021, J CHEM EDUC, V98, P385, DOI 10.1021/acs.jchemed.0c00450
Humphry T, 2023, J CHEM EDUC, V100, P1434, DOI 10.1021/acs.jchemed.3c00006
Jacques V, 2015, P NATL ACAD SCI USA, V112, pE1471, DOI 10.1073/pnas.1417832112
Jamieson MV, 2020, J CHEM EDUC, V97, P2768, DOI 10.1021/acs.jchemed.0c00785
Kranz D, 2023, CHEM EDUC RES PRACT, V24, P453, DOI 10.1039/d2rp00132b
Krist C, 2019, J LEARN SCI, V28, P160, DOI 10.1080/10508406.2018.1510404
Lawrie G, 2023, CHEM EDUC RES PRACT, V24, P392, DOI 10.1039/d3rp90003g
Lialin V., 2023, arXiv, parXiv2303.15647
Martin PP, 2023, CHEM EDUC RES PRACT, V24, P407, DOI 10.1039/d2rp00287f
Moon A, 2019, CHEM EDUC RES PRACT, V20, P484, DOI 10.1039/c9rp00005d
Nguyen JG, 2020, J CHEM EDUC, V97, P3429, DOI 10.1021/acs.jchemed.0c00790
Noyes K, 2020, J CHEM EDUC, V97, P3923, DOI 10.1021/acs.jchemed.0c00445
OpenAI, 2023, ARXIV
Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07
Petterson MN, 2022, CHEM EDUC RES PRACT, V23, P189, DOI 10.1039/d1rp00181g
Raje S, 2020, J CHEM EDUC, V97, P3436, DOI 10.1021/acs.jchemed.0c00797
Raker J. R., 2022, STUDENT REASONING IN, DOI [10.1039/9781839167782-00304, DOI 10.1039/9781839167782-00304]
Russ RS, 2008, SCI EDUC, V92, P499, DOI 10.1002/sce.20264
Salomon G., 1991, EDUC RESEARCHER, V20, P2, DOI [DOI 10.3102/0013189X020003002, 10.3102/0013189X020003002]
Schmidt-McCormack JA, 2019, CHEM EDUC RES PRACT, V20, P383, DOI 10.1039/c8rp00260f
Sheskin D. J., 2011, HDB PARAMETRIC NONPA
Shibani A., 2023, P 16 INT C ED DAT MI, P283
Stowe RL, 2017, J CHEM EDUC, V94, P1852, DOI 10.1021/acs.jchemed.7b00335
Talanquer V, 2023, J CHEM EDUC, V100, P2821, DOI 10.1021/acs.jchemed.3c00472
Toledo S, 2017, J CHEM EDUC, V94, P1043, DOI 10.1021/acs.jchemed.6b00651
Tyson J, 2023, J CHEM EDUC, V100, P3098, DOI 10.1021/acs.jchemed.3c00361
Waltzer T, 2023, ETHICS BEHAV, V33, P130, DOI 10.1080/10508422.2022.2026775
Watts F. M., 2022, STUDENT REASONING OR, P285, DOI DOI 10.1039/9781839167782-00285
Watts F.M., 2023, ACM International Conference Proceeding Series, P531, DOI DOI 10.1145/3576050.3576053
Watts FM, 2022, CHEM EDUC RES PRACT, V23, P486, DOI 10.1039/d1rp00301a
Watts FM, 2021, CHEM EDUC RES PRACT, V22, P364, DOI 10.1039/d0rp00298d
Watts FM, 2020, CHEM EDUC RES PRACT, V21, P1148, DOI 10.1039/c9rp00185a
West C. G., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2303.17012
Winograd B, 2021, LAK21 CONFERENCE PROCEEDINGS: THE ELEVENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P586, DOI 10.1145/3448139.3448202
Xu WQ, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-022-00377-5
Yik BJ, 2023, CHEM EDUC RES PRACT, V24, P263, DOI 10.1039/d2rp00184e
Yik BJ, 2021, CHEM EDUC RES PRACT, V22, P866, DOI 10.1039/d1rp00111f
Zhai XM, 2022, J RES SCI TEACH, V59, P1765, DOI 10.1002/tea.21773
Zhai XM, 2020, STUD SCI EDUC, V56, P111, DOI 10.1080/03057267.2020.1735757
NR 75
TC 19
Z9 19
U1 47
U2 123
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0021-9584
EI 1938-1328
J9 J CHEM EDUC
JI J. Chem. Educ.
PD SEP 7
PY 2023
VL 100
IS 10
BP 3806
EP 3817
DI 10.1021/acs.jchemed.3c00664
EA SEP 2023
PG 12
WC Chemistry, Multidisciplinary; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Education & Educational Research
GA T5DC4
UT WOS:001070107700001
DA 2024-09-05
ER
PT J
AU Bian, YJ
Lu, YC
Li, JQ
AF Bian, Yijie
Lu, Yanchi
Li, Jingqi
TI Research on an Artificial Intelligence-Based Professional Ability
Evaluation System from the Perspective of Industry-Education Integration
SO SCIENTIFIC PROGRAMMING
LA English
DT Article
AB The rapid development of artificial intelligence technology demands higher requirements for employment and talent training. The integration of industry and education is an important way to solve the mismatch between industrial demand and talent supply. Therefore, this study starts from the perspective of the integration of industry and education. We collect recruitment texts from the perspective of "industry" and mine the specific requirements of the artificial intelligence post system through the LDA topic model and the combination of Word2Vec and K-means. We then conduct expert consultations and adjust the selected indicators from the perspective of "education." Finally, we construct a four-dimensional vocational ability grade evaluation index system, including basic vocational skills of artificial intelligence, database, network skills, algorithm and design skills, and research and practice skills. The intuitionistic fuzzy analytic hierarchy process, which can eliminate the subjective uncertainty of experts in the scoring process, is applied to calculate the index weights. We find that the weight of algorithm and design skill is the highest, which is an important criterion for artificial intelligence professional ability evaluation. Among the second-level indicators, practical indicators such as team spirit, innovation ability, and communication ability are the focus of investigation from the perspective of industry, while in education, the cultivation of knowledge and skills such as programming ability, applied mathematics ability, data structures, and algorithms are more important.
C1 [Bian, Yijie; Lu, Yanchi; Li, Jingqi] Hohai Univ, Business Sch, Nanjing 211100, Peoples R China.
C3 Hohai University
RP Lu, YC (corresponding author), Hohai Univ, Business Sch, Nanjing 211100, Peoples R China.
EM byj@hhu.edu.cn; 1019238072@qq.com; lijingqi@hhu.edu.cn
FU special key project "research on vocational skill level evaluation
system of artificial intelligence integrated with industry and
education" of the Modern Educational Technology Research Smart Campus in
Jiangsu Province; [2020-R-84366]
FX AcknowledgmentsThis work was supported by the special key project
"research on vocational skill level evaluation system of artificial
intelligence integrated with industry and education" of the Modern
Educational Technology Research Smart Campus in Jiangsu Province
(2020-R-84366).
CR Acemoglu D, 2020, J POLIT ECON, V128, P2188, DOI 10.1086/705716
ATANASSOV KT, 1986, FUZZY SET SYST, V20, P87, DOI 10.1016/S0165-0114(86)80034-3
Bie Y, 2021, BIG DATA MIN ANAL, V4, P195, DOI 10.26599/BDMA.2021.9020003
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
BUCKLEY JJ, 1985, FUZZY SET SYST, V17, P233, DOI 10.1016/0165-0114(85)90090-9
Cao QC, 2021, TSINGHUA SCI TECHNOL, V26, P275, DOI 10.26599/TST.2019.9010035
Catlett Charlie, 2020, Journal of Social Computing, V1, P14, DOI 10.23919/JSC.2020.0003
Chen L, 2017, ANAL BIOCHEM, V526, P58, DOI 10.1016/j.ab.2017.03.017
Chen Y., 2022, China Communications
Chen Y, 2022, IEEE T VEH TECHNOL, V71, P4584, DOI 10.1109/TVT.2021.3133586
Chen Y, 2022, INT J COMMUN SYST, DOI 10.1002/dac.5154
Chen Y, 2023, TSINGHUA SCI TECHNOL, V28, P421, DOI 10.26599/TST.2021.9010050
Chen Y, 2021, IEEE T IND INFORM, V17, P4925, DOI 10.1109/TII.2020.3028963
Dai HP, 2023, IEEE T MOBILE COMPUT, V22, P3589, DOI 10.1109/TMC.2021.3136967
Dai HP, 2022, IEEE T MOBILE COMPUT, V21, P2180, DOI 10.1109/TMC.2020.3032591
Dong W., 2019, CHINA ED TECHNOLOGY, V40, P1
Evans James, 2020, Journal of Social Computing, V1, P1, DOI 10.23919/JSC.2020.0002
Frey CB, 2017, TECHNOL FORECAST SOC, V114, P254, DOI 10.1016/j.techfore.2016.08.019
Gu R, 2022, IEEE T PARALL DISTR, V33, P2808, DOI 10.1109/TPDS.2021.3138825
Guo X, 2022, CMES-COMP MODEL ENG, V130, P23, DOI 10.32604/cmes.2021.017679
Hu M., 2019, CHINA U TEACHING, V41, P7
Huang H., 2019, CHINA U TEACHING, V39, P20
Huang JW, 2022, INT J COMMUN SYST, DOI 10.1002/dac.5161
Huang JW, 2022, IEEE T VEH TECHNOL, V71, P1964, DOI 10.1109/TVT.2021.3133696
Jing LP, 2010, KNOWL INF SYST, V25, P35, DOI 10.1007/s10115-009-0256-5
Li T., 2020, Intelligent and Converged Networks, V1, P1, DOI [DOI 10.23919/TUP-ICN.9195266, 10.23919/ICN.2020.0005, DOI 10.23919/ICN.2020.0005]
Li Y., 2021, CHONGQING HIGHER ED, V9, P55
Li Y., 2021, CHINA ED TECHNOLOGY, V42, P88
Liu W., 2019, U ED SCI
Lu YG, 2022, IEEE T NETW SERV MAN, V19, P3163, DOI 10.1109/TNSM.2022.3163297
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
Nath Samrat, 2020, Intelligent and Converged Networks, V1, P181, DOI 10.23919/ICN.2020.0014
Peng C, 2022, TSINGHUA SCI TECHNOL, V27, P664, DOI 10.26599/TST.2021.9010055
Qi LY, 2021, IEEE T IND INFORM, V17, P4159, DOI 10.1109/TII.2020.3012157
Rahman G. M. Shafiqur, 2020, Intelligent and Converged Networks, V1, P243, DOI 10.23919/ICN.2020.0020
Rong G., 2022, 38 IEEE INT C DAT EN, P2183
Sandhu AK, 2022, BIG DATA MIN ANAL, V5, P32, DOI 10.26599/BDMA.2021.9020016
Shao QX, 2022, BIG DATA MIN ANAL, V5, P64, DOI 10.26599/BDMA.2021.9020021
VANLAARHOVEN PJM, 1983, FUZZY SET SYST, V11, P229, DOI 10.1016/S0165-0114(83)80083-9
Wang C., 2017, COMP EC SOCIAL SYSTE, V191, P10
Wang Q, 2022, CMES-COMP MODEL ENG, V130, P269, DOI 10.32604/cmes.2022.016437
Wang TT., 2018, J DISTANCE ED, V36, P52
Xin Gao, 2020, Journal of Social Computing, V1, P40, DOI 10.23919/JSC.2020.0005
Xu JJ, 2022, BUILD ENVIRON, V222, DOI 10.1016/j.buildenv.2022.109218
Xu ZS, 2014, IEEE T FUZZY SYST, V22, P749, DOI 10.1109/TFUZZ.2013.2272585
Yilin Xiao, 2020, Intelligent and Converged Networks, V1, P258, DOI 10.23919/ICN.2020.0021
Yu-Sung Su, 2020, Journal of Social Computing, V1, P28, DOI 10.23919/JSC.2020.0004
Zhai GL, 2020, BIG DATA MIN ANAL, V3, P311, DOI 10.26599/BDMA.2020.9020024
Zhang Cheng-yi, 2006, Computer Engineering and Applications, V42, P20
Zhang W, 2021, TSINGHUA SCI TECHNOL, V26, P95, DOI 10.26599/TST.2019.9010044
Zhou XK, 2021, IEEE T COMPUT SOC SY, V8, P171, DOI 10.1109/TCSS.2020.2987846
Zhou XK, 2021, IEEE ACM T COMPUT BI, V18, P912, DOI 10.1109/TCBB.2020.2994780
NR 52
TC 3
Z9 3
U1 23
U2 101
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1058-9244
EI 1875-919X
J9 SCI PROGRAMMING-NETH
JI Sci. Program.
PD AUG 24
PY 2022
VL 2022
AR 4478115
DI 10.1155/2022/4478115
PG 20
WC Computer Science, Software Engineering
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 4O8IC
UT WOS:000854936200002
OA gold
DA 2024-09-05
ER
PT J
AU Meer, PFV
Ring, DM
Perez-Stable, MA
AF Meer, Patricia Fravel Vander
Ring, Donna M.
Perez-Stable, Maria A.
TI Engaging the Masses: Library Instruction with Large Undergraduate
Classes
SO COLLEGE & UNDERGRADUATE LIBRARIES
LA English
DT Article
DE Library instruction; bibliographic instruction; user instruction; active
learning; large classes
AB This article discusses challenges in teaching library instruction to large classes and identifies practical ways librarians can use to engage large undergraduate classes in a single session. The authors searched the literature, examined related instructional services Web pages, and solicited feedback from instructional academic librarians. Various instructional techniques and activities are described. Discussion also includes areas such as classroom management, technology, risk-taking, and assessment. (C) 2007 by The Haworth Press, Inc. All rights reserved.
C1 [Meer, Patricia Fravel Vander; Ring, Donna M.] Western Michigan Univ, Dwight B Waldo Lib, Kalamazoo, MI 49008 USA.
[Perez-Stable, Maria A.] Western Michigan Univ, Cent Reference Dept, Dwight B Waldo Lib, Kalamazoo, MI 49008 USA.
C3 Western Michigan University; Western Michigan University
RP Meer, PFV (corresponding author), Western Michigan Univ, Dwight B Waldo Lib, Kalamazoo, MI 49008 USA.
EM pat.vandermeer@wmich.edu; donna.ring@wmich.edu;
maria.perez-stable@wmich.edu
RI Perez-Stable, Maria/L-8113-2019
CR Betts J., 2004, SYLL 2004 C SAN FRAN
Bonwell James., 1991, Active Learning: Creating Excitement in the Classroom AEHE-ER1C Higher Education Report No. 1
Carbone E., 1998, Teaching in large classes
Centre for Teaching Excellence, 2005, LARG CLASS TEACH GUI
Francis Barbara W., 1997, Medical Reference Services Quarterly, V16, P25
Fulton T. L., 1985, ED274353 ERIC U TEX
Gedeon R., 1997, Research Strategies, V15, P301
Green T., 2000, CLEARING HOUSE, V73, P331, DOI 10.1080/00098650009599438
Iverson K., 2005, E LEARNING GAMES INT
Jacobson T. E., 1995, Reference Librarian, P105, DOI 10.1300/J120v24n51_11
Jacobson TE, 2002, PORTAL-LIBR ACAD, V2, P423, DOI 10.1353/pla.2002.0055
MACADAM B, 1985, COLL RES LIBR, V46, P327, DOI 10.5860/crl_46_04_327
Ragains P., 1995, Research Strategies, V13, P40
Snavely L., 1998, DESIGNS ACTIVE LEARN, P114
Trefts Kristin, 2000, REFERENCE SERVICES R, V28, P369, DOI DOI 10.1108/00907320010359731
WILSON RC, 1986, J HIGH EDUC, V57, P196, DOI 10.2307/1981481
NR 16
TC 3
Z9 4
U1 0
U2 0
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1069-1316
EI 1545-2530
J9 COLL UNDERGRAD LIBR
JI Coll. Undergrad. Libr.
PY 2007
VL 14
IS 1
BP 39
EP 56
DI 10.1300/J106v14n01_04
PG 18
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA VC3DR
UT WOS:000433665900004
DA 2024-09-05
ER
PT J
AU Smith, MK
Wood, WB
AF Smith, Michelle K.
Wood, William B.
TI Teaching Genetics: Past, Present, and Future
SO GENETICS
LA English
DT Article
DE active learning; assessment; discipline-based education research;
instructional practices; teaching
ID STUDENT PERFORMANCE; INVENTORY; INSTRUMENT; SCIENCE; COURSES; PEER; TOOL
AB Genetics teaching at the undergraduate level has changed in many ways over the past century. Compared to those of 100 years ago, contemporary genetics courses are broader in content and are taught increasingly differently, using instructional techniques based on educational research and constructed around the principles of active learning and backward design. Future courses can benefit from wider adoption of these approaches, more emphasis on the practice of genetics as a science, and new methods of assessing student learning.
C1 [Smith, Michelle K.] Univ Maine, Sch Biol & Ecol, 5751 Murray Hall, Orono, ME 04469 USA.
[Smith, Michelle K.] Univ Maine, Maine Ctr Res STEM Sci Technol Engn & Math Educ, Orono, ME 04469 USA.
[Wood, William B.] Univ Colorado, Mol Cellular & Dev Biol, Boulder, CO 80309 USA.
C3 University of Maine System; University of Maine Orono; University of
Maine System; University of Maine Orono; University of Colorado System;
University of Colorado Boulder
RP Smith, MK (corresponding author), Univ Maine, Sch Biol & Ecol, 5751 Murray Hall, Orono, ME 04469 USA.
EM michelle.k.smith@maine.edu
CR Adams WK, 2011, INT J SCI EDUC, V33, P1289, DOI 10.1080/09500693.2010.512369
[Anonymous], 2014, UNDERGRADUATE TEACHI
[Anonymous], 1997, Peer Instruction - A User's Manual
[Anonymous], 2015, AP Biology: Course and exam description
[Anonymous], 2011, Vision and change in undergraduate biology education: A call to action
[Anonymous], 2012, DISCIPLINE BASED ED
Bowling BV, 2008, GENETICS, V178, P15, DOI 10.1534/genetics.107.079533
Brockliss L., 1996, CURRICULA HIST U EUR, VII, P565
Chen X., 2013, 2014001 NCES I ED SC, DOI DOI 10.3926/JOTSE.136
Couch B.A., 2015, CBE-LIFE SCI EDUC, V14, P1
Edwards AWF, 2013, GENETICS, V194, P529, DOI 10.1534/genetics.113.151266
Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111
Glenna LL, 2007, SOC STUD SCI, V37, P281, DOI 10.1177/0306312706066177
Ha MS, 2011, CBE-LIFE SCI EDUC, V10, P379, DOI 10.1187/cbe.11-08-0081
Handelsman J, 2004, SCIENCE, V304, P521, DOI 10.1126/science.1096022
Hatfull GF, 2006, PLOS GENET, V2, P835, DOI 10.1371/journal.pgen.0020092
Hollister P. L., 1939, THESIS
Hora M.T., 2014, Journal of College Science Teaching, V43, P36
Kalas P, 2013, CBE-LIFE SCI EDUC, V12, P655, DOI 10.1187/cbe.12-10-0174
Kober N., 2015, REACHING STUDENTS
Lewin J., 2016, CBE-LIFE SCI EDUC, V15, P1
Lock R.H., 1906, Recent progress in the study of variation, heredity, and evolution
Lopatto D, 2014, CBE-LIFE SCI EDUC, V13, P711, DOI 10.1187/cbe.13-10-0200
MacNell L, 2015, INNOV HIGH EDUC, V40, P291, DOI 10.1007/s10755-014-9313-4
Mawer S., 2006, Gregor Mendel: Planting the seeds of genetics
National Research Council [NRC], 2011, FRAM SCI ED
Newman DL, 2016, CBE-LIFE SCI EDUC, V15, DOI 10.1187/cbe.15-06-0124
Price RM, 2014, CBE-LIFE SCI EDUC, V13, P65, DOI 10.1187/cbe.13-08-0159
Redfield RJ, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001356
Seymour E., 2006, Talking about leaving: Why undergraduates leave the sciences
Simon B., 2009, Journal of College Science Teaching, V39, P52
Smith MK, 2011, CBE-LIFE SCI EDUC, V10, P55, DOI 10.1187/cbe.10-08-0101
Smith MK, 2009, SCIENCE, V323, P122, DOI 10.1126/science.1165919
Smith MK, 2014, CBE-LIFE SCI EDUC, V13, P624, DOI 10.1187/cbe.14-06-0108
Smith MK, 2010, MICROBIOL AUST, V31, P35
Smith MK, 2013, CBE-LIFE SCI EDUC, V12, P618, DOI 10.1187/cbe.13-08-0154
Smith MK, 2012, GENETICS, V191, P21, DOI 10.1534/genetics.111.137810
Smith MK, 2008, CBE-LIFE SCI EDUC, V7, P422, DOI 10.1187/cbe.08-08-0045
Stanger-Hall KF, 2012, CBE-LIFE SCI EDUC, V11, P294, DOI 10.1187/cbe.11-11-0100
Stefanski KM, 2016, CBE-LIFE SCI EDUC, V15, DOI 10.1187/cbe.15-07-0162
Tsui CY, 2010, INT J SCI EDUC, V32, P1073, DOI 10.1080/09500690902951429
University of Maine, 1915, CAT U MAIN 1915 1916
University of Wisconsin, 1915, LONG MIDDL COURS AGR
Urban-Lurain M., 2015, COMPUT ED J, V6, P65
Vickrey T, 2015, CBE-LIFE SCI EDUC, V14, DOI 10.1187/cbe.14-11-0198
Watkins J., 2013, J COLL SCI TEACH, V42, P36
Wieman C, 2014, CBE-LIFE SCI EDUC, V13, P552, DOI 10.1187/cbe.14-02-0023
Wiggins G., 2015, Understanding by design
Wood W., 2004, DEV CELL, V7, P796
Wood WB, 2009, ANNU REV CELL DEV BI, V25, P93, DOI 10.1146/annurev.cellbio.24.110707.175306
NR 50
TC 17
Z9 20
U1 1
U2 25
PU GENETICS SOCIETY AMERICA
PI BETHESDA
PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA
SN 0016-6731
EI 1943-2631
J9 GENETICS
JI Genetics
PD SEP
PY 2016
VL 204
IS 1
BP 5
EP 10
DI 10.1534/genetics.116.187138
PG 6
WC Genetics & Heredity
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Genetics & Heredity
GA DW9RD
UT WOS:000383998500003
PM 27601614
OA Green Published, Bronze
DA 2024-09-05
ER
PT J
AU COHEN, PR
HOWE, AE
AF COHEN, PR
HOWE, AE
TI TOWARD AI RESEARCH METHODOLOGY - 3 CASE STUDIES IN EVALUATION
SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS
LA English
DT Article
RP COHEN, PR (corresponding author), UNIV MASSACHUSETTS,DEPT COMP & INFORMAT SCI,EXPTL KNOWLEDGE SYST LAB,AMHERST,MA 01003, USA.
CR [Anonymous], 1976, Cognition and reality
[Anonymous], INFORMATION RETRIEVA
Barr A., 1981, The Handbook of Artificial Intelligence, Volume, V1
BUCHANAN BG, 1987, KSL8703 STANF U KNOW
Buchanan BG., 1984, Rule based expert systems: the mycin experiments of the stanford heuristic programming project (the AddisonWesley series in artificial intelligence)
CLANCEY WJ, 1984, 4TH P NAT C ART INT, P49
COHEN P, 1985, ART INTELL MAG, V6, P136
COHEN PR, 1987, INFORM PROCESS MANAG, V23, P255, DOI 10.1016/0306-4573(87)90017-3
COHEN PR, 1983, 8TH P INT JOINT C AR, P212
DAWSON G, 1986, CHILD DEV, V57, P1442
DIXON JR, 1984, 2UST P ACM IEEE DES
ERMAN LD, 1980, COMPUT SURV, V12, P213, DOI 10.1145/356810.356816
GASCHNIG J, 1983, BUILDING EXPERT SYST, P241
Geissman J.R., 1988, AI EXPERT, V1, P26
HENRION M, 1987, 6TH P NAT C ART INT
Hillier FrederickS., 1980, Introduction to operations research, V3rd
Howe A. E., 1986, International Journal for Artificial Intelligence in Engineering, V1, P23
HOWE AE, 1986, EKSL8601 U MASS WORK
Kemeny JG., 1959, PHILOS LOOKS SCI
Langley P, 1987, MACH LEARN, V2, P195, DOI DOI 10.1023/A:1022603230145
Lenat D. B., 1976, STANCS76570 STANF U
MITCHELL TM, 1977, 5TH P INT JOINT C AR, P305
MITCHELL TM, 1986, MACHINE LEARNING, V2, P46
NEWELL A, 1976, COMMUN ACM, V19, P113, DOI 10.1145/360018.360022
NEWELL A, 1975, SPEECH RECOGNITION, P3
Newell A., 1973, Visual information processing
ORELUP MF, 1987, THESIS U MASS MECH E
ROTHENBERG J, 1987, R3542DARPA RAND CORP
Shortliffe E., 2012, Computer-based medical consultations: MYCIN, VVolume 2
Waltz D.L., 1975, GENERATING SEMANTIC, P19
NR 30
TC 30
Z9 33
U1 1
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017-2394
SN 0018-9472
J9 IEEE T SYST MAN CYB
JI IEEE Trans. Syst. Man Cybern.
PD MAY-JUN
PY 1989
VL 19
IS 3
BP 634
EP 646
DI 10.1109/21.31069
PG 13
WC Computer Science, Cybernetics; Engineering, Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA AM016
UT WOS:A1989AM01600021
DA 2024-09-05
ER
PT C
AU Shtekh, G
Kazakova, P
Nikitinsky, N
Skachkov, N
AF Shtekh, Gennady
Kazakova, Polina
Nikitinsky, Nikita
Skachkov, Nikolay
BE Bodrunova, SS
TI Exploring Influence of Topic Segmentation on Information Retrieval
Quality
SO INTERNET SCIENCE (INSCI 2018)
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 5th International Conference on Internet Science (INSCI)
CY OCT 24-26, 2018
CL St. Petersburg, RUSSIA
DE Information retrieval; Text segmentation; Topic modeling; Querying by
example
AB In the present paper we address the issue of how an information retrieval system might be improved via text segmentation and to what extent. We assume that topic text segmentation allows one to better model text structure and therefore language itself, which influences the quality of text representation. We propose a search pipeline based on text segmentation by means of BigARTM tool and TopicTiling algorithm. We test the initial hypothesis by conducting experiments with several baseline models on two textual collections. The results are rather contradictory: while one collection showed that segmentation does improve the quality of retrieval, the other one demonstrated that segmentation does not influence the quality significantly.
C1 [Shtekh, Gennady; Kazakova, Polina] Natl Univ Sci & Technol MISIS, Leninsky Ave 4, Moscow 119049, Russia.
[Nikitinsky, Nikita] Integrated Syst, Vorontsovskaya St,35B Bldg 3,Room 413, Moscow 109147, Russia.
[Skachkov, Nikolay] Lomonosov Moscow State Univ, Leninskie Gory 1, Moscow 119991, Russia.
C3 National University of Science & Technology (MISIS); Lomonosov Moscow
State University
RP Kazakova, P (corresponding author), Natl Univ Sci & Technol MISIS, Leninsky Ave 4, Moscow 119049, Russia.
EM kazakova1537@gmail.com
RI Nikitinsky, Nikita/AAE-4248-2022
FU Ministry of Education and Science of the Russian Federation
[RFMEFI57917X0143]
FX This research was supported by the Ministry of Education and Science of
the Russian Federation under the unique research id RFMEFI57917X0143.
CR [Anonymous], 2015, DOCUMENT EMBEDDING P
[Anonymous], 2017, BILLION SCALE SIMILA
[Anonymous], 2018, NAACL
[Anonymous], 2016, T ASSOC COMPUT LING, DOI DOI 10.1162/TACL_A_00051
[Anonymous], 2018, P INT C LANG RES EV
Chan S. K., 2007, 8 ANN C INT SPEECH C
Du Lan., 2013, HLT-NAACL, P190
Galley M., 2003, P 41 ANN M ASS COMP
Galuscakova P., APPL TOPIC SEGMENTAT
Ganguly D., 2011, P 4 WORKSH WORKSH PH, P75
Honnibal Matthew, 2017, IN PRESS
Lau J. H., 2016, arXiv preprint arXiv:1607.05368
Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
Pennington J., 2014, P 2014 C EMP METH NA, P1532
Prince V, 2007, LECT NOTES COMPUT SC, V4592, P295
Riedl M., 2012, J LANG TECHNOL COMPU, V27, P47
Skachkov N., 2018, COMP LING INT TECHN, P652
Vorontsov K, 2015, COMM COM INF SC, V542, P370, DOI 10.1007/978-3-319-26123-2_36
Vorontsov K, 2015, MACH LEARN, V101, P303, DOI 10.1007/s10994-014-5476-6
NR 20
TC 1
Z9 1
U1 0
U2 3
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-01437-7; 978-3-030-01436-0
J9 LECT NOTES COMPUT SC
PY 2018
VL 11193
BP 131
EP 140
DI 10.1007/978-3-030-01437-7_11
PG 10
WC Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BN2UQ
UT WOS:000477766000011
DA 2024-09-05
ER
PT J
AU Liu, XW
Doboli, A
MacCarthy, T
Doboli, S
AF Liu, Xiaowei
Doboli, Alex
MacCarthy, Tom
Doboli, Simona
TI Understanding the Significance of Mid-Tier Research Teams in Idea Flow
Through a Community
SO IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS
LA English
DT Article
DE Measurement; Magnetic heads; Ecology; Clustering algorithms; Testing;
Mathematical models; Transforms; Experimental study; groups; impact of
ideas; research community; role
ID NETWORK; COLLABORATION; CENTRALITY; CREATIVITY; KNOWLEDGE; PATENTS
AB Studying the dynamics of research communities has been an important yet tedious topic. It is important for devising management policies that optimize the quality of research outputs by promoting a certain composition, structure, and interaction patterns for a community. While there has been significant attention to understanding the roles of individuals, there has been less focus on studying the roles that research groups perform and how roles relate to the characteristics of the community. This article presents an experimental study on the roles that research groups have in the idea flow through a community. The study analyzes two facets: the contribution of different kinds of groups to the impact research ideas make on other groups and the importance of specific groups to connect a community together. The results showed that research groups can be classified into four categories depending on the number of received citations. Groups of the mid-tier categories (called categories B and C in this article) are important in tying a community together as they improve the idea impact and bridging between groups. Policies that aggressively eliminate such groups reduce the effectiveness of idea flow, even though research communities include a certain amount of robustness for moderate levels of group removals.
C1 [Liu, Xiaowei; Doboli, Alex] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA.
[MacCarthy, Tom] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA.
[Doboli, Simona] Hofstra Univ, Dept Comp Sci, Hempstead, NY 11549 USA.
C3 State University of New York (SUNY) System; State University of New York
(SUNY) Stony Brook; State University of New York (SUNY) System; State
University of New York (SUNY) Stony Brook; Hofstra University
RP Doboli, A (corresponding author), SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA.
EM alex.doboli@stonybrook.edu; thomas.maccarthy@stonybrook.edu;
simona.doboli@hofstra.edu
OI Doboli, Alex/0000-0003-2472-4014; Doboli, Simona/0000-0003-0158-4725
FU National Science Foundation [1247971]; Division Of Behavioral and
Cognitive Sci; Direct For Social, Behav & Economic Scie [1247971]
Funding Source: National Science Foundation
FX This work was supported in part by the National Science Foundation under
Grant 1247971.
CR Agarwal P, 2008, BRIEF BIOINFORM, V9, P479, DOI 10.1093/bib/bbn035
Bettencourt LMA, 2011, P NATL ACAD SCI USA, V108, P19540, DOI 10.1073/pnas.1102712108
Borgatti SP, 2005, SOC NETWORKS, V27, P55, DOI 10.1016/j.socnet.2004.11.008
Burt RS, 2000, RES ORGAN BEHAV, V22, P345, DOI 10.1016/S0191-3085(00)22009-1
Cambria E., 2012, P 25 INT FLOR ART IN, P1
Capaldo A, 2007, STRATEGIC MANAGE J, V28, P585, DOI 10.1002/smj.621
de Montjoye YA, 2014, SCI REP-UK, V4, DOI 10.1038/srep05277
Dickinson RE, 2003, MATH COMPUT MODEL, V38, P1157, DOI [10.1016/S0895-7177(03)90116-6, 10.1016/S0895-7177(03)00327-3]
Fleming L, 2007, ORGAN SCI, V18, P938, DOI 10.1287/orsc.1070.0289
FREEMAN LC, 1991, SOC NETWORKS, V13, P141, DOI 10.1016/0378-8733(91)90017-N
GOFFMAN W, 1971, NATURE, V229, P103, DOI 10.1038/229103a0
Hansen MT, 1999, ADMIN SCI QUART, V44, P82, DOI 10.2307/2667032
Kennedy, 1986, POSITIVE SUM STRATEG, P263
Kim D, 2012, IEEE T AUTOM SCI ENG, V9, P723, DOI 10.1109/TASE.2012.2210214
Kuhn T.S., 1962, The structure of scientific revolutions
Lucio-Arias D, 2008, J AM SOC INF SCI TEC, V59, P1948, DOI 10.1002/asi.20903
McFadyen MA, 2009, ORGAN SCI, V20, P552, DOI 10.1287/orsc.1080.0388
Newman MEJ, 2005, SOC NETWORKS, V27, P39, DOI 10.1016/j.socnet.2004.11.009
Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898
Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132]
Page L., 1999, The PageRank citation ranking: bringing order to the web
Pentland A, 2012, HARVARD BUS REV, V90, P61
Perry-Smith JE, 2006, ACAD MANAGE J, V49, P85, DOI 10.2307/20159747
Perry-Smith JE, 2003, ACAD MANAGE REV, V28, P89
Rodriguez A, 2015, EXPERT SYST APPL, V42, P1479, DOI 10.1016/j.eswa.2014.08.051
Rost K, 2011, RES POLICY, V40, P588, DOI 10.1016/j.respol.2010.12.001
Scheffer M, 2006, P NATL ACAD SCI USA, V103, P6230, DOI 10.1073/pnas.0508024103
Scheffer M., 2009, Critical transitions in nature and society
Skvoretz J., 2002, Complexity, V8, P47, DOI 10.1002/cplx.10062
Uzzi B, 2005, AM J SOCIOL, V111, P447, DOI 10.1086/432782
Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099
Zafarani R., 2014, Social Media Mining: An introduction, DOI DOI 10.1017/CBO9781139088510
NR 32
TC 0
Z9 0
U1 0
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2329-924X
J9 IEEE T COMPUT SOC SY
JI IEEE Trans. Comput. Soc. Syst.
PD DEC
PY 2023
VL 10
IS 6
BP 3422
EP 3432
DI 10.1109/TCSS.2022.3205279
EA OCT 2022
PG 11
WC Computer Science, Cybernetics; Computer Science, Information Systems
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA CE5H8
UT WOS:000865079000001
DA 2024-09-05
ER
PT C
AU Xu, YH
Jiang, WJ
Xu, YS
AF Xu, YH
Jiang, WJ
Xu, YS
GP IEEE
TI Research on reliability evaluation of series systems with optimization
algorithm
SO PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND
CYBERNETICS, VOLS 1-9
LA English
DT Proceedings Paper
CT 4th International Conference on Machine Learning and Cybernetics
CY AUG 18-21, 2005
CL Canton, PEOPLES R CHINA
DE system reliability; First Order Second Moment; optimization algorithms;
Monte Carlo method; importance sampling
ID STRUCTURAL RELIABILITY; CODE
AB The failure probability of a system can be expressed as an integral of the joint probability density function within the failure domain defined by the limit state functions of the system. Generally, it is very difficult to solve this integral directly. The evaluation of system reliability has been the active research area during the recent decades. Some methods were developed to solve system reliability analysis, such as Monte Carlo method, importance sampling method, bounding techniques and Probability Network Evaluation Technique (PNET). This paper presents the implementation of several optimization algorithms, modified Method of Feasible Direction (MFD), Sequential Linear Programming (SLP) and Sequential Quadratic programming (SQP), in order to demonstrate the convergence abilities and robust nature of the optimization technique when applied to series system reliability analysis. Examples taken from the published references were calculated and the results were compared with the answers of various other methods and the exact solution. Results indicate the optimization technique has a wide range of application with good convergence ability and robustness, and handle problems under generalized conditions or cases.
C1 Zhuzhou Inst Technol, Dept Informat & Comp Sci, Zhuzhou 412008, Peoples R China.
RP Zhuzhou Inst Technol, Dept Informat & Comp Sci, Zhuzhou 412008, Peoples R China.
EM jwj3666@163.com; yshxu520@163.com
CR Borri A, 1997, STRUCT SAF, V19, P361, DOI 10.1016/S0167-4730(97)00017-9
HASOFER AM, 1974, J ENG MECH DIV-ASCE, V100, P111
Jiang Wei-jin, 2004, Wuhan University Journal of Natural Sciences, V9, P735, DOI 10.1007/BF02831672
Jiang WJ, 2004, PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, P222
Melchers RE., 1999, STRUCTURAL RELIABILI
RACKWITZ R, 1978, COMPUT STRUCT, V9, P489, DOI 10.1016/0045-7949(78)90046-9
Sorensen J.D., 1994, PRADSR RELIABILITY P
*VAND RES DEV INC, 1999, DOT US MAN
Xu L, 2003, STRUCT SAF, V25, P193, DOI 10.1016/S0167-4730(02)00056-5
Zhao YG, 1998, J STRUCT ENG, V124, P678, DOI 10.1061/(ASCE)0733-9445(1998)124:6(678)
NR 10
TC 0
Z9 0
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 0-7803-9091-1
PY 2005
BP 3438
EP 3442
PG 5
WC Computer Science, Artificial Intelligence; Computer Science,
Cybernetics; Computer Science, Information Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BDT94
UT WOS:000235325605031
DA 2024-09-05
ER
PT C
AU Block, BM
AF Block, Brit-Maren
GP IEEE
TI Digitalization in Engineering Education Research and Practice
SO PROCEEDINGS OF 2018 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE
(EDUCON) - EMERGING TRENDS AND CHALLENGES OF ENGINEERING EDUCATION
SE IEEE Global Engineering Education Conference
LA English
DT Proceedings Paper
CT IEEE Global Engineering Education Conference (EDUCON) - Emerging Trends
and Challenges of Engineering Education
CY APR 17-20, 2018
CL Santa Cruz de Tenerife, SPAIN
DE digitalization; engineering education research; e-assessment; active
learning; students competences
AB Digitalization is the ongoing trend of recent years. It covers all areas of business, society and research. This paper makes a contribution to that discourse focusing on engineering education research and practice. The contribution aims at generating new insights in a threefold way: (I) by analyzing the significance of digitalization in the research area, (2) by describing an example of the implementation of digital methods in education practice, and (3) by presenting the theoretical and methodological framework of a course that covers the digital transformation and backlash effects on society. This approach generates empirically grounded knowledge on the state-of-the-art and contributes to the translation of engineering education research to practice.
C1 [Block, Brit-Maren] Leuphana Univ Lueneburg, Inst Prod & Proc Innovat, Luneburg, Germany.
C3 Leuphana University Luneburg
RP Block, BM (corresponding author), Leuphana Univ Lueneburg, Inst Prod & Proc Innovat, Luneburg, Germany.
CR [Anonymous], EUROPEAN J ENG ED
[Anonymous], 2012, GIEE 2011 GENDER INT
Block BM, 2014, IEEE GLOB ENG EDUC C, P23, DOI 10.1109/EDUCON.2014.6826062
Block BM, 2013, IEEE GLOB ENG EDUC C, P213, DOI 10.1109/EduCon.2013.6530108
DECI EL, 1993, Z PADAGOGIK, V39, P223
Kloos CD, 2015, IEEE GLOB ENG EDUC C, P967, DOI 10.1109/EDUCON.2015.7096090
Erpenbeck J., 2007, HDB COMPETENCE ASSES
Hakala I, 2016, IEEE GLOB ENG EDUC C, P409, DOI 10.1109/EDUCON.2016.7474586
Harteis Ch., 2018, PROFESSIONAL PRACTIC, V21
Krapp A., 2006, ED PSYCHOL
Kruse D, 2016, IEEE GLOB ENG EDUC C, P469, DOI 10.1109/EDUCON.2016.7474595
Lauer P., 2017, GLOBAL CURRICULUM PR
Mayring Philipp., 2008, GRUNDLAGEN TECHNIKEN
Mills J., 2010, GENDER INCLUSIVE ENG
Ortelt TR, 2016, IEEE GLOB ENG EDUC C, P602, DOI 10.1109/EDUCON.2016.7474612
Riedel J., 2017, DIGITALIZATION U RES, V12, P3
Tsironis A, 2016, IEEE GLOB ENG EDUC C, P608, DOI 10.1109/EDUCON.2016.7474613
NR 17
TC 9
Z9 9
U1 0
U2 8
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2165-9567
BN 978-1-5386-2957-4
J9 IEEE GLOB ENG EDUC C
PY 2018
BP 1024
EP 1028
PG 5
WC Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Education & Educational Research
GA BK3EO
UT WOS:000434866100143
DA 2024-09-05
ER
PT J
AU Wang, Y
Li, F
Dou, JL
AF Wang, Yong
Li, Fang
Dou, Jia-Li
TI Research on the Evaluation Model of the Overall Benefit of the Nonlinear
Rural Pension Based on Particle Swarm Optimization Algorithm: From the
Perspective of Migrant Workers Returning
SO MATHEMATICAL PROBLEMS IN ENGINEERING
LA English
DT Article
ID INFORMATION; COSTS
AB In this paper, based on the existing research, the rural talent supply situation is analyzed. Rural talent relative to the existing rural labor force has a higher human capital of the labor force. We also discuss the part of moving workers who can be considered as talents. Financial dimension is mostly through literature collection and statistical data finding and computational calculation, according to the results of communicate indicators, to reflect its performance level. The performance analysis of organizational management dimension and institutional development dimension mainly focuses on qualitative analysis and comparative analysis, and then we summarize and evaluate the performance status of Shanghai basic endowment insurance system for urban and rural residents. Therefore, all countries in the world are constantly exploring and trying to improve the performance management model of their social security institutions. Through the evaluation and analysis of the above four dimensions, it can be found that the overall performance level of urban and rural residential insurance in Shanghai is relatively high, but there are still some problems in the operation process.
C1 [Wang, Yong] Anhui Sci & Technol Univ Finance, Econ College1, Bengbu 233100, Anhui, Peoples R China.
[Wang, Yong; Li, Fang] Nanjing Agr Univ, Sch Publ Adm, Nanjing 210095, Jiangsu, Peoples R China.
[Dou, Jia-Li] Anhui Sci & Technol Univ Adm Coll, Bengbu 233100, Anhui, Peoples R China.
C3 Nanjing Agricultural University
RP Dou, JL (corresponding author), Anhui Sci & Technol Univ Adm Coll, Bengbu 233100, Anhui, Peoples R China.
EM n3480646duxiezi56@163.com; bjwje204@163.com; doujl@ahstu.edu.cn
FU Philosophy and Social Science Planning Project of Anhui Province, China
[ahsky2016d18]; Industry university research innovation fund project of
science and technology development center of the Ministry of Education
[2018a01011]
FX This study was supported by Philosophy and Social Science Planning
Project of Anhui Province, China: Research on rural old-age security
from the perspective of the return of elderly migrant workers--Based on
the survey of Fuyang, Anhui Province (ahsky2016d18), and Industry
university research innovation fund project of science and technology
development center of the Ministry of Education: Research on influencing
factors and mechanism of purchase intention of Internet personal
financial products based on big data technology (2018a01011).
CR ALCHIAN AA, 1972, AM ECON REV, V62, P777
FAMA EF, 1980, J POLIT ECON, V88, P288, DOI 10.1086/260866
GROSSMAN SJ, 1983, ECONOMETRICA, V51, P7, DOI 10.2307/1912246
GROSSMAN SJ, 1988, J FINANC ECON, V20, P175, DOI 10.1016/0304-405X(88)90044-X
HOLMSTROM B, 1982, BELL J ECON, V13, P324, DOI 10.2307/3003457
Holmström B, 1999, REV ECON STUD, V66, P169, DOI 10.1111/1467-937X.00083
Holzmann R, 2005, OLD-AGE INCOME SUPPORT IN THE 21ST CENTURY: AN INTERNATIONAL PERSPECTIVE ON PENSION SYSTEMS AND REFORM, P55
JENSEN MC, 1976, J FINANC ECON, V3, P305, DOI 10.1016/0304-405X(76)90026-X
Kennedy J., 1995, Proceedings of ICNN'95 - International Conference on Neural Networks, V4, P1942
KREPS DM, 1982, J ECON THEORY, V27, P245, DOI 10.1016/0022-0531(82)90029-1
Lewis A. W., 1954, MANCHESTER SCH EC SO, V22, P139, DOI DOI 10.1111/J.1467-9957.1954.TB00021.X
Mirrlees J, 1974, ESSAYS EC BEHAV UNCE
Qassoum M., 2004, LOCAL DIALECTIC PROD
RANIS G, 1961, AM ECON REV, V51, P533
SPENCE M, 1971, AM ECON REV, V61, P380
TODARO MP, 1969, AM ECON REV, V59, P138
NR 16
TC 0
Z9 0
U1 2
U2 7
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1024-123X
EI 1563-5147
J9 MATH PROBL ENG
JI Math. Probl. Eng.
PD APR 12
PY 2022
VL 2022
AR 6554300
DI 10.1155/2022/6554300
PG 8
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Mathematics
GA 1V7CZ
UT WOS:000806244400007
OA gold
DA 2024-09-05
ER
PT J
AU Sasaki, H
Hara, T
Sakata, I
AF Sasaki, Hajime
Hara, Tadayoshi
Sakata, Ichiro
TI Identifying Emerging Research Related to Solar Cells Field using a
Machine Learning Approach
SO JOURNAL OF SUSTAINABLE DEVELOPMENT OF ENERGY WATER AND ENVIRONMENT
SYSTEMS-JSDEWES
LA English
DT Article
DE Solar cells; Photovoltaic; Emerging research; Technology prediction;
Citation network; Machine learning; Scientometrics; Innovation
management
ID SCIENCE-AND-TECHNOLOGY; RECENT PROGRESS; POLYMER; CENTRALITY; LANDSCAPE;
EFFICIENT; NETWORKS; GRAPHENE; DESIGN; TIO2
AB The number of research papers related to solar cells field is increasing rapidly. It is hard to grasp research trends and to identify emerging research issues because of exponential growth of publications, and the field's subdivided knowledge structure. Machine learning techniques can be applied to the enormous amounts of data and subdivided research fields to identify emerging researches. This paper proposed a prediction model using a machine learning approach to identify emerging solar cells related academic research, i.e. papers that might be cited very frequently within three years. The proposed model performed well and stable. The model highlighted some articles published in 2015 that will be emerging in the future. Research related to vegetable-based dye-sensitized solar cells was identified as the one of the promising researches by the model. The proposed prediction model is useful to gain foresight into research trends in science and technology, facilitating decision-making processes.
C1 [Sasaki, Hajime; Sakata, Ichiro] Univ Tokyo, Policy Alternat Res Inst, Bunkyo Ku, 7-3-1 Hongo, Tokyo, Japan.
[Hara, Tadayoshi; Sakata, Ichiro] Univ Tokyo, Innovat Policy Res Ctr, Inst Engn Innovat, Sch Engn,Bunkyo Ku, Yayoi 2-11-16, Tokyo, Japan.
C3 University of Tokyo; University of Tokyo
RP Sasaki, H (corresponding author), Univ Tokyo, Policy Alternat Res Inst, Bunkyo Ku, 7-3-1 Hongo, Tokyo, Japan.
EM sasaki@pari.u-tokyo.ac.jp; t.hara@ipr-ctr.t.u-tokyo.ac.jp;
isakata@ipr-ctr.t.u-tokyo.ac.jp
RI Sasaki, Hajime/AHA-8512-2022; Sasaki, Hajime/AEB-0480-2022
OI Sasaki, Hajime/0000-0003-0026-4076; SAKATA, ICHIRO/0000-0001-5881-3790
FU Project of the NARO Bio-oriented Technology Research Advancement
Institution
FX This research was supported by grants from the Project of the NARO
Bio-oriented Technology Research Advancement Institution (Integration
research for agriculture and interdisciplinary fields).
CR Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9
Albero J, 2015, CHEM REC, V15, P803, DOI 10.1002/tcr.201500007
Bella F, 2015, CHEM SOC REV, V44, P3431, DOI 10.1039/c4cs00456f
Berger T, 2012, CHEMPHYSCHEM, V13, P2824, DOI 10.1002/cphc.201200073
Bettencourt LMA, 2008, SCIENTOMETRICS, V75, P495, DOI 10.1007/s11192-007-1888-4
Bonacich P., 1972, Sociological methodology, V4, P176, DOI [DOI 10.2307/270732, 10.2307/270732]
Bouclé J, 2012, POLYM INT, V61, P355, DOI 10.1002/pi.3157
Brin S, 2012, COMPUT NETW, V56, P3825, DOI 10.1016/j.comnet.2012.10.007
Burt RS, 2004, AM J SOCIOL, V110, P349, DOI 10.1086/421787
Calogero G, 2015, CHEM SOC REV, V44, P3244, DOI 10.1039/c4cs00309h
Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190
Chen CM, 2009, J INFORMETR, V3, P191, DOI 10.1016/j.joi.2009.03.004
Chen W, 2012, ENERG ENVIRON SCI, V5, P8045, DOI 10.1039/c2ee22056c
Cheng P, 2015, MATER HORIZ, V2, P462, DOI 10.1039/c5mh00090d
Chueh CC, 2015, ENERG ENVIRON SCI, V8, P1160, DOI 10.1039/c4ee03824j
Coontz R, SCI TOP 10 BREAKTHRO
Davletov F., 2014, P 23 ACM INT C CONFE, P491, DOI [DOI 10.1145/2661829, 10.1145/2661829.2662066, 10.1145/2661829]
Dong Y, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P149, DOI 10.1145/2684822.2685314
Dou LT, 2012, NAT PHOTONICS, V6, P180, DOI [10.1038/nphoton.2011.356, 10.1038/NPHOTON.2011.356]
FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7
FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543
GOFFMAN W, 1964, NATURE, V204, P225, DOI 10.1038/204225a0
Guimerà R, 2005, NATURE, V433, P895, DOI 10.1038/nature03288
Kajikawa Y, 2007, SUSTAIN SCI, V2, P221, DOI 10.1007/s11625-007-0027-8
KAY A, 1993, J PHYS CHEM-US, V97, P6272, DOI 10.1021/j100125a029
Kojima A, 2009, J AM CHEM SOC, V131, P6050, DOI 10.1021/ja809598r
Kumar P, 2012, PROG PHOTOVOLTAICS, V20, P377, DOI 10.1002/pip.1141
Li L., 2015, ARXIV150400948
Li LL, 2012, INT REV PHYS CHEM, V31, P420, DOI 10.1080/0144235X.2012.733539
Liang ZQ, 2015, ENERG ENVIRON SCI, V8, P3442, DOI 10.1039/c5ee02510a
Liu ZK, 2015, CHEM SOC REV, V44, P5638, DOI 10.1039/c4cs00455h
Lizin S, 2013, RENEW ENERG, V57, P5, DOI 10.1016/j.renene.2013.01.027
Lu LY, 2015, CHEM REV, V115, P12666, DOI 10.1021/acs.chemrev.5b00098
Mishra A, 2012, ANGEW CHEM INT EDIT, V51, P2020, DOI 10.1002/anie.201102326
Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103
Ooyama Y, 2012, CHEMPHYSCHEM, V13, P4032, DOI 10.1002/cphc.201200218
Sakata I., 2013, NAT RESOUR, V4, P134, DOI [10.4236/nr.2013.41A017, DOI 10.4236/NR.2013.41A017]
Shibata N, 2010, TECHNOL FORECAST SOC, V77, P1147, DOI 10.1016/j.techfore.2010.03.008
Singh E, 2015, SCI ADV MATER, V7, P1863, DOI 10.1166/sam.2015.2438
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918
Winnink JJ, 2015, SCIENTOMETRICS, V102, P113, DOI 10.1007/s11192-014-1451-z
Wu JH, 2015, CHEM REV, V115, P2136, DOI 10.1021/cr400675m
Yip HL, 2012, ENERG ENVIRON SCI, V5, P5994, DOI 10.1039/c2ee02806a
Zhou HX, 2012, MACROMOLECULES, V45, P607, DOI 10.1021/ma201648t
NR 45
TC 11
Z9 11
U1 0
U2 20
PU INT CENTRE SUSTAINABLE DEV ENERGY WATER & ENV SYSTEMS-SDEWES
PI ZAGREB
PA IVANA LUCICA 5, ZAGREB, 10000, CROATIA
SN 1848-9257
J9 J SUSTAIN DEV ENERGY
JI J. Sustain. Dev. Energy Water Environ. Syst.-JSDEWES
PD DEC
PY 2016
VL 4
IS 4
BP 418
EP 429
DI 10.13044/j.sdewes.2016.04.0032
PG 12
WC Environmental Sciences
WE Emerging Sources Citation Index (ESCI)
SC Environmental Sciences & Ecology
GA FG1KH
UT WOS:000409554200008
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Sahni, S
Verma, S
Kaurav, RPS
AF Sahni, Shalini
Verma, Sushma
Kaurav, Rahul Pratap Singh
TI Understanding digital transformation challenges for online learning and
teaching in higher education institutions: a review and research
framework
SO BENCHMARKING-AN INTERNATIONAL JOURNAL
LA English
DT Article; Early Access
DE HEIs; Digital transformation; Online teaching; Online learning;
Bibliometrics; TCM framework; Sustainable higher education
ID STUDENT SATISFACTION; MENTAL-HEALTH; COVID-19; ENGAGEMENT; EXPERIENCES;
UNIVERSITIES; PERFORMANCE; MOTIVATION; IMPROVE; IMPACT
AB PurposeThe widespread uptake of digital technology tools for online teaching and learning reached its peak during the nationwide lockdown triggered by the COVID-19 pandemic. It transformed the higher education institutions (HEIs) marketplace both in developed and developing countries. However, in this process of digital transformation, several HEIs, specifically from developing countries, faced major challenges. That threatened to affect their sustainability and performance. In this vein, this study conducts a bibliometric review to map the challenges during the COVID-19 pandemic and suggest strategies for HEIs to cope with post-pandemic situations in the future.Design/methodology/approachThis comprehensive review encompasses 343 papers published between 2020 and 2023, employing a systematic approach that combines bibliometrics and content analysis to thoroughly evaluate the articles.FindingsThe investigation revealed a lack of published work addressing the specific challenges faced by the faculty members affecting their well-being. The study underscores the importance of e-learning technology adoption for higher education sustainability by compelling both students and teachers to rely heavily on social media platforms to maintain social presence and facilitate remote learning. The reduced interpersonal interaction during the pandemic has had negative consequences for academic engagement and professional advancement for both educators and students.Practical implicationsThis has implications for policymakers and the management of HEIs, as it may prove useful in reenvisioning and redesigning future curricula. The paper concludes by developing a sustainable learning framework using a blended approach. Additionally, we also provide directions for future research to scholars.Originality/valueThis study has implications for policymakers and HEI management to rethink the delivery of future courses with a focus on education and institute sustainability. Finally, the research also proposes a hybrid learning framework for sustainability and forms a robust foundation for scholars in future research.
C1 [Sahni, Shalini] Koach Scholar, New Delhi, India.
[Verma, Sushma] Vivekanand Educ Soc, Inst Management Studies & Res, Mumbai, Maharashtra, India.
[Kaurav, Rahul Pratap Singh] FORE Sch Management, New Delhi, India.
C3 FORE School of Management
RP Kaurav, RPS (corresponding author), FORE Sch Management, New Delhi, India.
EM drshalini2532@gmail.com; sushma.verma@ves.ac.in; rsinghkaurav@gmail.com
RI Kaurav, Rahul Pratap Singh/K-8505-2015; Verma, Sushma/KGL-2188-2024
OI Kaurav, Rahul Pratap Singh/0000-0001-9851-6854; Verma,
Sushma/0000-0003-2027-380X; sahni, Shalini/0000-0002-9096-6524
CR Abuhmaid A., 2022, Nature, V16, P54, DOI [10.55951/nurture.v16i2.127, DOI 10.55951/NURTURE.V16I2.127]
Akram H, 2021, J INF TECHNOL EDUC-R, V20, P263, DOI 10.28945/4784
Al-Salman S, 2021, ONLINE LEARN, V25, P286, DOI 10.24059/olj.v25i1.2470
Aleynikova D.V., 2021, XLinguae, V14, P170, DOI [10.18355/xl.2021.14.01.14, DOI 10.18355/XL.2021.14.01.14]
Ali W., 2020, HIGHER ED STUDIES, V10, P16, DOI DOI 10.5539/HES.V10N3P16
Alkhalil SM, 2021, J HUM BEHAV SOC ENVI, V31, P464, DOI 10.1080/10911359.2020.1829243
Almazova N, 2020, EDUC SCI, V10, DOI 10.3390/educsci10120368
Almusharraf NM, 2020, INT J EMERG TECHNOL, V15, P246, DOI 10.3991/ijet.v15i21.15647
Alonso-García M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13115938
AlTameemy F.A., 2021, Impact of Covid-19 on English language teaching in Yemen: challenges and opportunities
Anderson PJ, 2022, EDUC SCI, V12, DOI 10.3390/educsci12120911
Anderson T., 2001, Journal of Asynchronous Learning Networks, V5, P1, DOI [10.24059/olj.v5i2.1875, DOI 10.24059/OLJ.V5I2.1875]
Andersson A, 2009, ELECTR J INF SYS DEV, V38
Ando S, 2021, J HUM BEHAV SOC ENVI, V31, P435, DOI 10.1080/10911359.2020.1814928
[Anonymous], 2021, Education at a glance 2021: OECD indicators, DOI DOI 10.1787/69096873-EN
Aqdas S, 2023, INT J INSTR, V16, P753
Aria M, 2020, SOC INDIC RES, V149, P803, DOI 10.1007/s11205-020-02281-3
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arrabal R, 2022, J CHEM EDUC, V99, P3298, DOI 10.1021/acs.jchemed.2c00644
Aspland T., 2022, Journal of Applied Learning and Teaching, V5, P145
Azman A, 2020, SOC WORK EDUC, V39, P1058, DOI 10.1080/02615479.2020.1815692
Bajaj P, 2021, COGENT EDUC, V8, DOI 10.1080/2331186X.2021.2002130
Bao W, 2020, HUM BEHAV EMERG TECH, V2, P113, DOI 10.1002/hbe2.191
Berger K.A., 1997, Journal of Marketing for Higher Education, V7, P61, DOI 10.1300/j050v07n04_05
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Breiki M.A., 2022, Int. J. Emerg. Technol. Learn, V17, P4, DOI [10.3991/ijet.v17i20.29441, DOI 10.3991/IJET.V17I20.29441]
Bruggeman B, 2021, INTERNET HIGH EDUC, V48, DOI 10.1016/j.iheduc.2020.100772
Çakiroglu Ü, 2022, AUSTRALAS J EDUC TEC, V38, P87, DOI 10.14742/ajet.7307
Cameron-Standerford A, 2020, FRONT EDUC, V5, DOI 10.3389/feduc.2020.583881
Chandrasinghe PC, 2020, BMC MED EDUC, V20, DOI 10.1186/s12909-020-02236-9
Chi Zhang, 2023, International Journal of Emerging Technologies in Learning, P152, DOI 10.3991/ijet.v18i01.36705
Chierichetti M, 2021, EDUC SCI, V11, DOI 10.3390/educsci11080419
Christensen MK, 2022, ADV HEALTH SCI EDUC, V27, P577, DOI 10.1007/s10459-022-10102-0
Chu AMY, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13095038
Clipper B, 2020, NURSE LEAD, V18, P500, DOI 10.1016/j.mnl.2020.06.008
Clum K, 2022, ONLINE LEARN, V26, P323
Crisp BR, 2021, BRIT J SOC WORK, V51, P1839, DOI 10.1093/bjsw/bcab108
Dahabiyeh L, 2022, INT J INF LEARN TECH, V39, P97, DOI 10.1108/IJILT-09-2021-0147
Das R, 2021, J UNIV TEACH LEARN P, V18
David S, 2022, EDUC SCI, V12, DOI 10.3390/educsci12100693
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
del Barrio-García S, 2020, J BUS RES, V121, P73, DOI 10.1016/j.jbusres.2020.08.023
Denyer D., 2009, The Sage handbook of organizational research methods, P671
Devkota KR, 2021, INT REV EDUC, V67, P145, DOI 10.1007/s11159-021-09886-x
Ding LL, 2023, J RES TECHNOL EDUC, V55, P817, DOI 10.1080/15391523.2022.2038315
Diningrat S.W.M., 2020, Jurnal Cakrawala Pendidikan, V39, P705, DOI DOI 10.21831/CP.V39I3.32304
Donlon E, 2022, IRISH EDUC STUD, V41, P41, DOI 10.1080/03323315.2021.2022520
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Eden J, 2022, KOME, V10, P60, DOI 10.17646/KOME.75672.91
Elmer T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0236337
Frank AG, 2019, TECHNOL FORECAST SOC, V141, P341, DOI 10.1016/j.techfore.2019.01.014
Golinelli D, 2020, J MED INTERNET RES, V22, DOI 10.2196/22280
Gourlay L, 2021, J INTERACT MEDIA EDU, DOI 10.5334/jime.655
Gradisek P, 2021, SODOB PEDAGOG, V72, P286
Guan W, 2020, NEW ENGL J MED, V382, P1708, DOI 10.1056/NEJMoa2002032
Guangul FM, 2020, EDUC ASSESS EVAL ACC, V32, P519, DOI 10.1007/s11092-020-09340-w
Hadjeris F, 2021, HUM BEHAV EMERG TECH, V3, P160, DOI 10.1002/hbe2.245
Hardt D, 2022, LABOUR ECON, V78, DOI 10.1016/j.labeco.2022.102220
Harsch C, 2021, SYSTEM, V103, DOI 10.1016/j.system.2021.102673
Heeks R, 2002, INFORM SOC, V18, P101, DOI 10.1080/01972240290075039
Heilporn G, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00260-3
Heyang T, 2024, RES DANC EDUC, V25, P343, DOI 10.1080/14647893.2022.2114446
Hjorland B, 2013, KNOWL ORGAN, V40, P11
Pichardo JI, 2021, EDUC SCI, V11, DOI 10.3390/educsci11110667
Iivari N, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102183
Jebarajakirthy C, 2021, INT J CONSUM STUD, V45, P1258, DOI 10.1111/ijcs.12728
Jelinska M, 2021, ONLINE LEARN, V25, P303, DOI 10.24059/olj.v25i1.2492
Jin TJ, 2023, EUR J ENG EDUC, V48, P300, DOI 10.1080/03043797.2022.2117023
Johnson N, 2020, ONLINE LEARN, V24, P6, DOI 10.24059/olj.v24i2.2285
Joshi A, 2021, INTERACT TECHNOL SMA, V18, P205, DOI 10.1108/ITSE-06-2020-0087
Kabilan MK, 2022, STUD EDUC EVAL, V74, DOI 10.1016/j.stueduc.2022.101182
Kallunki V, 2023, EDUC INF TECHNOL, V28, P10005, DOI 10.1007/s10639-022-11559-7
Kamble A, 2022, EDUC MEDIA INT, V59, P324, DOI 10.1080/09523987.2022.2153989
Kang XW, 2023, INTERACT LEARN ENVIR, V31, P1029, DOI 10.1080/10494820.2020.1817758
Kanwar A., 2020, Journal of Learning for Development, V7, P326
Karasneh A. A. F., 2022, European Journal of Educational Research, V11, P1197, DOI [https://doi.org/10.12973/eu-jer.11.2.1197, DOI 10.12973/EU-JER.11.2.1197]
Katai Z, 2023, EDUC INF TECHNOL, V28, P3089, DOI 10.1007/s10639-022-11306-y
Kaurav RPS, 2022, FIIB BUS REV, V11, P382, DOI 10.1177/23197145221136966
Kaushal N, 2023, MANAG REV Q, V73, P455, DOI 10.1007/s11301-021-00249-2
Kebritchi Mansureh, 2017, Journal of Educational Technology Systems, V46, P4, DOI 10.1177/0047239516661713
Kumar P, 2023, HIGH EDUC SKILL WORK, V13, P720, DOI 10.1108/HESWBL-03-2022-0052
Kummitha H.R., 2021, Higher Education for the Future, V8, P90, DOI [10.1177/2347631120983650, DOI 10.1177/2347631120983650]
Lambie I., 2020, 19 EUR C E LEARN AC, P270
Lapitan LDS, 2020, EDUC CHEM ENG, V35, P116, DOI 10.1016/j.ece.2021.01.012
Lazer D., 2009, CONNECTIONS, V29, P43
Lee J, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00286-7
Lee KCS, 2022, SAGE OPEN, V12, DOI 10.1177/21582440221082126
Leydesdorff L, 2011, J INFORMETR, V5, P469, DOI 10.1016/j.joi.2011.01.008
Li ZY, 2022, INT J INF COMMUN TEC, V18, DOI 10.4018/IJICTE.313424
Lima CO, 2020, NAT HAZARDS, V102, P1589, DOI 10.1007/s11069-020-03974-1
Lin X, 2022, ONLINE LEARN, V26, P347, DOI 10.24059/olj.v26i4.3117
Liu SY, 2020, PSYCHIAT RES, V289, DOI 10.1016/j.psychres.2020.113070
Longhurst GJ, 2020, ANAT SCI EDUC, V13, P298, DOI 10.1002/ase.1967
Lu KL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00238-7
Luan L, 2023, INTERACT LEARN ENVIR, V31, P1703, DOI 10.1080/10494820.2020.1855211
Mahajan R., 2023, Global Business and Organisational Excellence, V43, P135, DOI [10.1002/joe.22207, DOI 10.1002/JOE.22207]
Mahmood S, 2021, HUM BEHAV EMERG TECH, V3, P199, DOI 10.1002/hbe2.218
Makina A, 2022, PYTHAGORAS, V43, DOI 10.4102/pythagoras.v43i1.644
Marczuk A, 2024, J STUD INT EDUC, V28, P165, DOI 10.1177/10283153221150116
Martinho D, 2021, EDUC SCI, V11, DOI 10.3390/educsci11020053
Maulana AE, 2022, ELECTRON J E-LEARN, V20, P554
Mhandu J, 2021, COGENT SOC SCI, V7, DOI 10.1080/23311886.2021.1947568
Mishra Lokanath, 2020, Int J Educ Res Open, V1, P100012, DOI 10.1016/j.ijedro.2020.100012
Mittal A, 2022, INF DISCOV DELIV, V50, P117, DOI 10.1108/IDD-09-2020-0114
Mo CY, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105471
Mo DY, 2022, EDUC INF TECHNOL, V27, P12543, DOI 10.1007/s10639-022-11098-1
Mohammed AS, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132011401
Mok KH., 2021, International Journal of Chinese Education, V10, P1, DOI [DOI 10.1177/22125868211007011, https://doi.org/10.1177/22125868211007011]
Muhaji U., 2023, Indonesian Journal of Applied Linguistics, V12, P840, DOI [10.17509/ijal.v12i3.38930, DOI 10.17509/IJAL.V12I3.38930]
Mukherjee D, 2022, J BUS RES, V148, P101, DOI 10.1016/j.jbusres.2022.04.042
Müller C, 2021, EDUC RES REV-NETH, V34, DOI 10.1016/j.edurev.2021.100394
Murakami K, 2022, HUMAN ARENAS, DOI 10.1007/s42087-022-00292-9
Navarro-Espinosa JA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13116363
Nayak A, 2023, INFORM TECHNOL PEOPL, V36, P1939, DOI 10.1108/ITP-01-2021-0043
Nesar S, 2021, J EDUC HEALTH PROMOT, V10, DOI 10.4103/jehp.jehp_951_20
Newman MEJ, 2004, EUR PHYS J B, V38, P321, DOI 10.1140/epjb/e2004-00124-y
Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113
Ng LK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13010042
Nuere S, 2021, TECHNOL KNOWL LEARN, V26, P931, DOI 10.1007/s10758-020-09454-6
O'Dea X, 2023, POLICY FUTURES EDUC, V21, P372, DOI 10.1177/14782103221088154
O'Leary DE, 2020, J ORG COMP ELECT COM, V30, P1, DOI 10.1080/10919392.2020.1755790
Obada DO, 2023, EDUC INF TECHNOL, V28, P4649, DOI 10.1007/s10639-022-11330-y
Oducado RM., 2020, Universal Journal of Educational Research, V8, P4736
Ohanu IB, 2018, EDUC INF TECHNOL, V23, P3029, DOI 10.1007/s10639-018-9757-8
Organisation for economic co-operation and Development (OECD), 2012, Connected Mind Technology and Today's Learners. Education Research and Innovation
Orlowski M, 2021, J HOSP TOUR EDUC, V33, P163, DOI 10.1080/10963758.2021.1907193
Patil Y. M., 2021, Journal of Engineering Education Transformations, V34, DOI [https://doi.org/10.16920/jeet/2021/v34i0/157194, DOI 10.16920/JEET/2021/V34I0/157194]
Paul J, 2021, INT J CONSUM STUD, DOI 10.1111/ijcs.12695
Peimani N, 2021, EDUC SCI, V11, DOI 10.3390/educsci11020072
Peng MH, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14138031
Persson O., 2009, CELEBRATING SCHOLARL, V5, P9
Pieters R, 2002, J ECON LIT, V40, P483, DOI 10.1257/002205102320161348
Plummer L, 2021, EDUC SCI, V11, DOI 10.3390/educsci11030130
Pokhrel S., 2021, High. Educ. Future, V8, P133, DOI DOI 10.1177/2347631120983481
Ponomarev IV, 2014, SCIENTOMETRICS, V100, P755, DOI 10.1007/s11192-014-1320-9
Prakasha G. S., 2022, International Journal of Information and Education Technology, P1056, DOI 10.18178/ijiet.2022.12.10.1720
Quezada RL, 2020, J EDUC TEACHING, V46, P472, DOI 10.1080/02607476.2020.1801330
Rahim N.N.A., 2022, Asian Journal of University Education, V18, P406
Rajesh M., 2003, Turkish Online Journal of Distance Education, V4
Rameez A., 2020, J. Educ. Soc. Res, V10, P341, DOI [10.36941/jesr-2020-0132, DOI 10.36941/JESR-2020-0132]
Ramesh G., 2023, International Journal of Evaluation and Research in Education, V12, P197, DOI [10.11591/ijere.v12i1.23469, DOI 10.11591/IJERE.V12I1.23469]
Randhawa K, 2016, J PROD INNOVAT MANAG, V33, P750, DOI 10.1111/jpim.12312
Rapanta C., 2020, Postdigital Science and Education, V2, P923, DOI [10.1007/s42438-020-00155-y, DOI 10.1007/S42438-020-00155-Y]
Rawat S, 2023, TEACH PUBLIC ADMIN, V41, P122, DOI 10.1177/01447394221119092
Raza SA, 2023, BENCHMARKING, V30, P834, DOI 10.1108/BIJ-12-2021-0755
Rehman UU, 2020, BUS PROCESS MANAG J, V26, P1731, DOI 10.1108/BPMJ-07-2019-0274
Rossi R, 2020, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.00790
Saleem Imran, 2023, International Journal of Information and Education Technology, P102, DOI 10.18178/ijiet.2023.13.1.1785
Sarra Annalina, 2022, Qual Quant, P1, DOI 10.1007/s11135-022-01567-7
Schauffel N, 2022, PSYCHOL LEARN TEACH-, V21, P235, DOI 10.1177/14757257221102563
Schildkamp K, 2020, J PROF CAP COMMUNITY, V5, P281, DOI 10.1108/JPCC-06-2020-0034
Shaharanee M., 2020, Ilkogretim Online-Elementary Education Online, V19, P79
Sharma S, 2022, J FURTH HIGHER EDUC, V46, P721, DOI 10.1080/0309877X.2021.1998395
Shen SW, 2022, J HOSP LEIS SPORT TO, V30, DOI 10.1016/j.jhlste.2022.100373
Shi YN, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142114006
Shohel MMC, 2022, EDUC SCI, V12, DOI 10.3390/educsci12120857
Sinclair J, 2008, J INF SCI, V34, P15, DOI 10.1177/0165551506078083
Singh S, 2020, PSYCHIAT RES, V293, DOI 10.1016/j.psychres.2020.113429
Sobaih AE, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166520
Soesmanto T, 2023, STUD EDUC EVAL, V77, DOI 10.1016/j.stueduc.2023.101253
Stead S, 2022, J SERV RES-US, V25, P440, DOI 10.1177/10946705221079941
Stevens G., 2001, Distance learning for technical and vocational education in sub-Sahara Africa: Challenges and opportunities English
Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171
Stukalo N., 2020, Universal Journal of Educational Research, V8, P3673, DOI 10.13189/ujer.2020.080846
Sun GY, 2023, INTERACT LEARN ENVIR, V31, P4652, DOI 10.1080/10494820.2021.1978503
Tang YM, 2021, COMPUT EDUC, V168, DOI 10.1016/j.compedu.2021.104211
Terblanche W, 2023, S AFR J ACCOUNT RES, V37, P35, DOI 10.1080/10291954.2022.2101328
Thumiki Venkat Ram Raj, 2022, International Journal of Information and Education Technology, P840, DOI 10.18178/ijiet.2022.12.9.1692
Thumvichit A., 2021, Teaching English with Technology, V21, P14
Trevisan O, 2023, ETR&D-EDUC TECH RES, V71, P79, DOI 10.1007/s11423-023-10197-1
Tuan NA, 2023, POLICY FUTURES EDUC, V21, P335, DOI 10.1177/14782103221124181
Tzafilkou K, 2021, EDUC INF TECHNOL, V26, P7279, DOI 10.1007/s10639-021-10586-0
UNESCO, 2020, 10 recommendations to ensure that learning remains uninterrupted
United Nations, 2020, Policy brief: Education during COVID-19 and beyond, DOI DOI 10.24215/18509959.26.E12
Usman J, 2022, ISS EDUC RES, V32, P1196
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Waghid Z, 2021, INT J INF LEARN TECH, V38, P413, DOI 10.1108/IJILT-01-2021-0006
Wan FZ, 2023, J CHINA TOUR RES, V19, P517, DOI 10.1080/19388160.2022.2096165
Wang K, 2021, J DENT EDUC, V85, P128, DOI 10.1002/jdd.12413
Wang Y, 2022, EDUC SCI, V12, DOI 10.3390/educsci12100664
West H, 2024, J GEOGR HIGHER EDUC, V48, P157, DOI 10.1080/03098265.2023.2190962
Wut TM, 2021, ASIA PAC EDUC REV, V22, P371
Xiong JQ, 2020, J AFFECT DISORDERS, V277, P55, DOI 10.1016/j.jad.2020.08.001
Yau AHY, 2022, STUD EDUC EVAL, V72, DOI 10.1016/j.stueduc.2022.101128
Ye L, 2021, INT J ART DES EDUC, V40, P342, DOI 10.1111/jade.12347
Yeung MWL, 2022, EDUC INF TECHNOL, V27, P181, DOI 10.1007/s10639-021-10656-3
Yu HY, 2022, ASIA PAC J EDUC, DOI 10.1080/02188791.2022.2122021
Zeqiri Jusuf, 2022, International Journal of Technology Enhanced Learning, V14, P163, DOI 10.1504/IJTEL.2022.121815
Zhai YS, 2020, LANCET PSYCHIAT, V7, pE22, DOI 10.1016/S2215-0366(20)30089-4
Zhang J, 2023, INNOV EDUC TEACH INT, V60, P174, DOI 10.1080/14703297.2021.2000473
Zhang WN, 2020, J RISK FINANC MANAG, V13, DOI 10.3390/jrfm13030055
Zhao J, 2023, EDUC SCI, V13, DOI 10.3390/educsci13030300
NR 192
TC 0
Z9 0
U1 3
U2 3
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 1463-5771
EI 1758-4094
J9 BENCHMARKING
JI Benchmarking
PD 2024 MAY 10
PY 2024
DI 10.1108/BIJ-04-2022-0245
EA MAY 2024
PG 35
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA PU1L8
UT WOS:001216504800001
DA 2024-09-05
ER
PT J
AU Wang, KQ
Wang, T
Wang, TY
Cai, ZQ
AF Wang, Keqin
Wang, Ting
Wang, Tianyi
Cai, Zhiqiang
TI Research on Evaluation Methods for Sustainable Enrollment Plan
Configurations in Chinese Universities Based on Bayesian Networks
SO SUSTAINABILITY
LA English
DT Article
DE enrollment plan configurations; sustainable enrollment policies;
advanced education rate prediction; importance ranking; indicator
combination strategy
ID BIRNBAUM IMPORTANCE; EDUCATION
AB Evaluation methods based on data-driven techniques and artificial intelligence for the sustainable enrollment plan configurations of Chinese universities have become a research hotspot in the field of higher education teaching reform. Enrollment, education, and employment constitute the three key pillars of talent cultivation in universities. However, due to an unclear understanding of their interconnection, universities have yet to establish robust quantitative relationship models, hindering the formation of an evaluation mechanism for sustainable enrollment plan configurations. This study begins by constructing a relevant indicator system and utilizing real enrollment data from a specific university. Through statistical methods such as correlation analysis, it systematically sorts out key variables and identifies seven effective indicators, including average admission score and first-time graduation rate. Subsequently, by using the increase or decrease in enrollment quotas for each major as the experimental target, evaluation models for sustainable enrollment plan configurations aimed at enhancing the advanced education rate are constructed using naive Bayes networks and tree-augmented Bayesian networks; these are compared with three other classic machine learning methods. The accuracy of these models is evaluated through confusion matrices and receiver operating characteristic curves. Additionally, the Birnbaum importance analysis method is utilized to prioritize remaining variables, ultimately identifying the optimal combination strategy of indicators conducive to the sustainable development of the advanced education rate. The results indicate that the average admission score, transfer rate, and student/teacher ratio are the top 3 prognostic factors affecting the advanced education rate, with the TAN model achieving an accuracy of 96.49%, thus demonstrating good reliability.
C1 [Wang, Keqin] Northwestern Polytech Univ, Undergrad Acad Affairs Off, Xian 710072, Peoples R China.
[Wang, Keqin] Northwestern Polytech Univ, Sch Management, Xian 710072, Peoples R China.
[Wang, Ting; Wang, Tianyi; Cai, Zhiqiang] Northwestern Polytech Univ, Dept Ind Engn, Xian 710072, Peoples R China.
C3 Northwestern Polytechnical University; Northwestern Polytechnical
University; Northwestern Polytechnical University
RP Cai, ZQ (corresponding author), Northwestern Polytech Univ, Dept Ind Engn, Xian 710072, Peoples R China.
EM keqinwang@nwpu.edu.cn; wt3377@mail.nwpu.edu.cn;
wangtianyi@mail.nwpu.edu.cn; caizhiqiang@nwpu.edu.cn
OI Cai, Zhiqiang/0000-0002-7380-8110; Wang, Keqin/0000-0001-5248-7672
FU Key Research Project on Undergraduate and Higher Continuing Education
Teaching Reform in Shaanxi Province
FX No Statement Available
CR Alghamdi J, 2020, EDUC INF TECHNOL, V25, P4721, DOI 10.1007/s10639-020-10169-5
Altbach P.G., 2016, International Higher Education, P21, DOI [DOI 10.6017/IHE.2016.84.9116, 10.6017/ihe.2016.84, DOI 10.6017/IHE.2016.84]
Anafinova S, 2020, INT J EDUC DEV, V78, DOI 10.1016/j.ijedudev.2020.102246
Atuahene-Gima K, 2007, J INT MARKETING, V15, P1, DOI 10.1509/jimk.15.2.1
Cai ZQ, 2013, QUAL TECHNOL QUANT M, V10, P203, DOI 10.1080/16843703.2013.11673317
Colbert BA, 2004, ACAD MANAGE REV, V29, P341, DOI 10.2307/20159047
Dixon W. J., 1951, Introduction to statistical analysis
Faggian A, 2009, TIJDSCHR ECON SOC GE, V100, P210, DOI 10.1111/j.1467-9663.2009.00530.x
Fang F., 2021, International Conference on Frontier Computing, P973
Gupta S., 2021, Theme Aiu Zon. Vice Chancellors' Meet, V18, P14
Huang H, 2022, J COMB OPTIM, V44, P2515, DOI 10.1007/s10878-021-00761-x
Jacobi Maryann., 1987, COLL STUDENT OUTCOME
Jiang YM, 2021, ANN SURG, V274, pE1153, DOI 10.1097/SLA.0000000000003778
Lee KW, 2015, INT J EDUC DEV, V40, P19, DOI 10.1016/j.ijedudev.2014.11.014
Liu XY, 2012, NEURAL NETWORKS, V33, P58, DOI 10.1016/j.neunet.2012.04.002
Middaugh M.F., 2011, Planning and assessment in higher education: Demonstrating institutional effectiveness
Miziula P, 2019, IEEE T RELIAB, V68, P439, DOI 10.1109/TR.2019.2895400
Peterson P., 2011, Int. High. Educ, V62, P10, DOI [10.6017/ihe.2011.62.8527, DOI 10.6017/IHE.2011.62.8527]
Peyser J.A., 2023, Educ. Next, V23, P44
Raja R., 2018, J Appl Adv Res., V3, P33, DOI [10.21839/jaar.2018.v3iS1.165, DOI 10.21839/JAAR.2018.V3IS1.165]
Shalev-Shwartz S, 2014, UNDERSTANDING MACHIN
Song P.C., 2016, J. Telecommun. Electron. Comput. Eng. (JTEC), V8, P105
Tanveer M, 2023, IEEE IJCNN, DOI 10.1109/IJCNN54540.2023.10191119
Thelwall M., 2021, Synthesis Lectures on Information Concepts, Retrieval, and Services, V13, pi
Wang CC, 2022, J MATER SCI TECHNOL, V128, P31, DOI 10.1016/j.jmst.2022.04.014
Wang HF, 2005, PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, P279
Wang YL, 2017, EURASIA J MATH SCI T, V13, P6875, DOI 10.12973/ejmste/78525
Xiang BS, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su152115540
Yang F, 2019, INFORM-INT J COMPUT, V43, P573, DOI 10.31449/inf.v43i4.3008
Zhang XL, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15032335
Zhu M.Q., 2016, P ASEES 123 C EXPOSI
Zhuang YF, 2017, INT CONF SOFTW ENG, P194, DOI 10.1109/ICSESS.2017.8342895
NR 32
TC 0
Z9 0
U1 8
U2 8
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD APR
PY 2024
VL 16
IS 7
AR 2998
DI 10.3390/su16072998
PG 18
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA NN8D5
UT WOS:001201212000001
OA gold
DA 2024-09-05
ER
PT J
AU Wan, M
AF Wan, Min
TI Research on economic system based on fuzzy set comprehensive evaluation
model
SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS
LA English
DT Article
DE Fuzzy set; machine learning; comprehensive evaluation; economic system
ID BIG DATA; PREDICTION; ANALYTICS
AB The development of the economic system is affected by many factors, and the stability of the traditional economic analysis model is difficult to maintain. In order to explore the efficient and stable economic system evaluation and analysis model, based on machine learning ideas, this study uses rough set algorithm as the basic algorithm, and applies the related methods of rough set and catastrophe model theory to the evaluation of ecological economic development level. Moreover, this study reduces the redundant index of the index system and calculates the importance of the index after reduction. Based on the catastrophe set model, this study uses MATLAB software programming to comprehensively quantify the ecological economy, and finally divides the ecological economic grade. In addition, this study combines rough set theory with fuzzy mathematics, and initially establishes a two-branch fuzzy evaluation model. Finally, this study combines the actual situation to use the established model to evaluate the regional eco-economic system. The research results show that the method proposed in this paper has a certain effect, which can provide a reference for subsequent related research.
C1 [Wan, Min] East China Jiaotong Univ, Inst Technol, Nanchang, Jiangxi, Peoples R China.
C3 East China Jiaotong University
RP Wan, M (corresponding author), East China Jiaotong Univ, Inst Technol, Nanchang, Jiangxi, Peoples R China.
EM wanmin516@163.com
RI wan, min/KLC-3833-2024
CR Ataka K., 2014, RESUSCITATION, V96, P84
Barde S, 2015, COMPUT ECON, V45, P337, DOI 10.1007/s10614-014-9422-2
Bhattacharya D, 2019, APPL SOFT COMPUT, V76, P31, DOI 10.1016/j.asoc.2018.12.003
Cordioli E, 2017, VALUE HEALTH, V20, pA923, DOI 10.1016/j.jval.2017.08.2884
Daksiya V, 2017, NAT HAZARDS, V87, P515, DOI 10.1007/s11069-017-2774-x
Ellis M, 2014, CONTROL ENG PRACT, V22, P242, DOI 10.1016/j.conengprac.2013.02.016
Ferramosca A, 2017, J PROCESS CONTR, V54, P1, DOI 10.1016/j.jprocont.2017.02.014
Ferramosca A, 2014, IEEE T AUTOMAT CONTR, V59, P2657, DOI 10.1109/TAC.2014.2326013
Geng YQ, 2020, DISCRETE DYN NAT SOC, V2020, DOI 10.1155/2020/1406978
Gordini N, 2014, EXPERT SYST APPL, V41, P6433, DOI 10.1016/j.eswa.2014.04.026
He XF, 2016, ENG FRACT MECH, V163, P189, DOI 10.1016/j.engfracmech.2016.07.002
Vu HL, 2019, WASTE MANAGE, V84, P129, DOI 10.1016/j.wasman.2018.11.038
Jahedpari F, 2017, IEEE INTELL SYST, V32, P61, DOI 10.1109/MIS.2017.12
Jane C.J.A., 2018, J GREY SYST-UK, V21, P91
Karanikic P., 2019, QUALITY QUANTITY, V53, P1095, DOI [DOI 10.1007/S11135-019-00843-3, 10.1007/s11135-019-00843-3]
Lahmiri S, 2016, EXPERT SYST APPL, V55, P268, DOI 10.1016/j.eswa.2016.02.025
Nassirtoussi AK, 2014, EXPERT SYST APPL, V41, P7653, DOI 10.1016/j.eswa.2014.06.009
Paredes P, 2014, AGR WATER MANAGE, V135, P27, DOI 10.1016/j.agwat.2013.12.010
Paul A, 2019, HUM BEHAV EMERG TECH, V1, P37, DOI 10.1002/hbe2.133
Paul A, 2016, IEEE WIREL COMMUN, V23, P68, DOI 10.1109/MWC.2016.7721744
Paul A, 2017, IEEE SYST J, V11, P1249, DOI 10.1109/JSYST.2015.2411856
Paul A, 2012, ACM T EMBED COMPUT S, V11, DOI 10.1145/2331147.2331149
Peters J, 2014, ASYSTEMATIC REV VALU, V17, P56
Pu Y, 2020, DYNAM SYST APPL, V29, P648
Rajsic P, 2016, EUPHYTICA, V210, P259, DOI 10.1007/s10681-016-1716-0
Rathore MM, 2018, SUSTAIN CITIES SOC, V40, P600, DOI 10.1016/j.scs.2017.12.022
Ryoo CS, 2019, DYNAM SYST APPL, V28, P153, DOI 10.12732/dsa.v28i1.9
Schultz W, 2017, CURR OPIN NEUROBIOL, V43, P139, DOI 10.1016/j.conb.2017.03.013
Teljeur C, 2014, INT J TECHNOL ASSESS, V30, P44, DOI 10.1017/S0266462313000676
Zhou LG, 2014, INT J SYST SCI, V45, P241, DOI 10.1080/00207721.2012.720293
NR 30
TC 2
Z9 2
U1 1
U2 10
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 1064-1246
EI 1875-8967
J9 J INTELL FUZZY SYST
JI J. Intell. Fuzzy Syst.
PY 2021
VL 40
IS 4
BP 7471
EP 7481
DI 10.3233/JIFS-189569
PG 11
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA RN7FL
UT WOS:000640518000150
DA 2024-09-05
ER
PT C
AU Gomez, MJ
Ruipérez-Valiente, JA
Clemente, FJG
AF Gomez, Manuel J.
Ruiperez-Valiente, Jose A.
Garcia Clemente, Felix J.
BE DeLaet, T
Klemke, R
AlarioHoyos, C
Hilliger, I
OrtegaArranz, A
TI Bibliometric Analysis of the Last Ten Years of the European Conference
on Technology-Enhanced Learning
SO TECHNOLOGY-ENHANCED LEARNING FOR A FREE, SAFE, AND SUSTAINABLE WORLD,
EC-TEL 2021
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 16th European Conference on Technology Enhanced Learning (EC-TEL)
CY SEP 20-24, 2021
CL ELECTR NETWORK
DE Technology-enhanced learning; Bibliometrics; Natural language
processing; Education
ID EDUCATION
AB Over the last decade, we have seen a large amount of research being performed in technology-enhanced learning. The European Conference on Technology-enhanced Learning (EC-TEL) is one of the conferences with the most extended trajectory in this area. The goal of this paper is to provide an overview of the last ten years of the conference. We collected all papers from the last ten years of the conference, along with the metadata, and used their keywords to find the most important ones across the papers. We also parsed papers' full text automatically, and used it to extract information about this year's conference topic. These results will shed some light on the latest trends and evolution of EC-TEL.
C1 [Gomez, Manuel J.; Ruiperez-Valiente, Jose A.; Garcia Clemente, Felix J.] Univ Murcia, Fac Comp Sci, Murcia, Spain.
C3 University of Murcia
RP Gomez, MJ (corresponding author), Univ Murcia, Fac Comp Sci, Murcia, Spain.
EM manueljesus.gomezm@um.es
RI Gomez Moratilla, Manuel Jesus/HMW-0780-2023; Clemente, Félix Jesús
Garcia/AAM-8396-2020; Ruiperez-Valiente, Jose A./U-8795-2018
OI Clemente, Félix Jesús Garcia/0000-0001-6181-5033; Ruiperez-Valiente,
Jose A./0000-0002-2304-6365; Gomez, Manuel J./0000-0003-0571-2923
CR [Anonymous], 2009, COMP STUDY METHODOLO
Elsevier, 2021, About Scopus
Fabry DL, 1997, J EDUC COMPUT RES, V17, P385, DOI 10.2190/C770-AWA1-CMQR-YTYV
Firssova O, 2014, LECT NOTES COMPUT SC, V8719, P112, DOI 10.1007/978-3-319-11200-8_9
Kammer T, 2011, LECT NOTES COMPUT SC, V6964, P196, DOI 10.1007/978-3-642-23985-4_16
Kirkwood A, 2014, LEARN MEDIA TECHNOL, V39, P6, DOI 10.1080/17439884.2013.770404
Noble H., 2018, REV LIT CHOOSING REV
Ohrstrom P, 2013, LECT NOTES COMPUT SC, V8095, P410, DOI 10.1007/978-3-642-40814-4_32
Prieto LP, 2011, LECT NOTES COMPUT SC, V6964, P285, DOI 10.1007/978-3-642-23985-4_23
Science W.O, 2021, WEB SCI
Springer, 2021, EUROPEAN C TECHNOLOG
NR 11
TC 1
Z9 1
U1 0
U2 1
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-86436-1; 978-3-030-86435-4
J9 LECT NOTES COMPUT SC
PY 2021
VL 12884
BP 337
EP 341
DI 10.1007/978-3-030-86436-1_31
PG 5
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Computer Science, Theory & Methods; Education & Educational
Research
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BT0SL
UT WOS:000791071400031
DA 2024-09-05
ER
PT J
AU El-Taliawi, OG
Goyal, N
Howlett, M
AF El-Taliawi, Ola G.
Goyal, Nihit
Howlett, Michael
TI Holding out the promise of Lasswell's dream: Big data analytics in
public policy research and teaching(sic)(sic)(sic)Palabras Clave
SO REVIEW OF POLICY RESEARCH
LA English
DT Article
DE bibliometric review; big data analytics; machine learning; pedagogy;
policy sciences; public policy; topic modeling
ID SUPPLY CHAIN; BIOMEDICAL TEXT; SCIENCE; INFORMATION; PERFORMANCE;
COMPLEXITY; ONTOLOGIES; DISCOVERY; STRATEGY; BEHAVIOR
AB While the emergence of big data raises concerns regarding governance and public policy, it also creates opportunities for diversifying the toolkit for analysis for the policy sciences as a whole, i.e., research concerning policy analysis as well as policy studies. Further, it opens avenues for practice, which together with research requires adaptation in teaching curricula if policy education were to remain relevant. However, it is not clear to what extent this opportunity is being realized in public policy research and teaching. In this study, we examine the prevalence of big data analytics in public policy research and pedagogy using bibliometric analysis and topic modeling for the former, and content analysis of course titles and descriptions for the latter. We find that despite significant scope for application of various big data techniques, the use of these analytic techniques in public policy has been largely limited to select institutions in a few countries. Further, data science has received limited attention in policy pedagogy, once again with significant geographic variation in its prevalence. We conclude that, to stay relevant, the policy sciences need to pay more attention to the integration of big data techniques in policy research, pedagogy, and thereby practice.
C1 [Goyal, Nihit] Delft Univ Technol, Fac Technol Policy & Management, Delft, Netherlands.
[El-Taliawi, Ola G.] Carleton Univ, Fac Publ Affairs, Dept Polit Sci, Ottawa, ON, Canada.
[Howlett, Michael] Simon Fraser Univ, Dept Polit Sci, Burnaby, BC, Canada.
C3 Delft University of Technology; Carleton University; Simon Fraser
University
RP Goyal, N (corresponding author), Delft Univ Technol TU Delft, Fac Technol Policy & Management, Jaffalaan 5, NL-2628 BX Delft, Netherlands.
EM nihit.goyal@tudelft.nl
RI Howlett, Michael/W-7544-2019
OI Howlett, Michael/0000-0003-4689-740X; Goyal, Nihit/0000-0002-1025-7585;
El-Taliawi, Ola G./0000-0002-1615-6021
CR Acquisti A, 2015, SCIENCE, V347, P509, DOI 10.1126/science.aaa1465
Adeyinka DA, 2020, BMC PUBLIC HEALTH, V20, DOI 10.1186/s12889-020-09672-8
Akodéwou A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12135439
Alashri S, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P795, DOI 10.1109/ASONAM.2016.7752329
Allahyari Mehdi, 2017, A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques.
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arkhipov V, 2016, COMPUT LAW SECUR REV, V32, P868, DOI 10.1016/j.clsr.2016.07.009
Aronson AR, 2001, J AM MED INFORM ASSN, P17
Athukorala D, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12197953
Aznar-Lou I, 2018, BMJ QUAL SAF, V27, P878, DOI 10.1136/bmjqs-2017-007416
Barnes L, 2018, AM J POLIT SCI, V62, P340, DOI 10.1111/ajps.12346
Bates DW, 2014, HEALTH AFFAIR, V33, P1123, DOI 10.1377/hlthaff.2014.0041
Bax V, 2018, APPL GEOGR, V91, P99, DOI 10.1016/j.apgeog.2018.01.002
Bayen E, 2017, J MED INTERNET RES, V19, DOI 10.2196/jmir.8095
Berk RA, 2013, CRIMINOL PUBLIC POL, V12, P513, DOI 10.1111/1745-9133.12047
Bibri SE, 2019, ADV SCI TECHNOL INN, P95, DOI 10.1007/978-3-030-17312-8_5
Bilgili M, 2012, RENEW SUST ENERG REV, V16, P404, DOI 10.1016/j.rser.2011.08.005
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Boyd D, 2012, INFORM COMMUN SOC, V15, P662, DOI 10.1080/1369118X.2012.678878
Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726
Cairney P, 2012, POLIT STUD REV, V10, P346, DOI 10.1111/j.1478-9302.2012.00270.x
Caputo F, 2019, KYBERNETES, V48, P108, DOI 10.1108/K-07-2017-0274
Chun J, 2020, TOURISM MANAGE, V81, DOI 10.1016/j.tourman.2020.104136
Clarke A, 2017, CAN PUBLIC ADMIN, V60, P476, DOI 10.1111/capa.12228
Cohen AM, 2005, BRIEF BIOINFORM, V6, P57, DOI 10.1093/bib/6.1.57
Conrad C, 2017, APPL GEOGR, V86, P102, DOI 10.1016/j.apgeog.2017.06.016
Constantinides P, 2018, INFORM SYST RES, V29, P381, DOI 10.1287/isre.2018.0794
Croitoru A, 2020, CRIMINOL PUBLIC POL, V19, P335, DOI 10.1111/1745-9133.12486
D'Orazio P, 2017, J ECON METHODOL, V24, P410, DOI 10.1080/1350178X.2017.1362151
De Alban JDT, 2018, REMOTE SENS-BASEL, V10, DOI 10.3390/rs10020306
Desdemoustier J, 2019, CITIES, V92, P175, DOI 10.1016/j.cities.2019.03.021
Donovan S, 2008, NATURE, V455, P461, DOI 10.1038/455461d
Du SF, 2018, ANN OPER RES, V270, P125, DOI 10.1007/s10479-016-2291-4
El-Taliawi OG, 2021, POLICY SCI, V54, P371, DOI 10.1007/s11077-020-09413-z
El-Taliawi OG, 2021, J CONTING CRISIS MAN, V29, P104, DOI 10.1111/1468-5973.12337
Feldman R., 2006, TEXT MINING HDB ADV
Gawankar SA, 2020, INT J PROD RES, V58, P1574, DOI 10.1080/00207543.2019.1668070
Gerum PCL, 2019, TRANSPORT RES C-EMER, V107, P137, DOI 10.1016/j.trc.2019.07.020
Greene D, 2017, POLIT ANAL, V25, P77, DOI 10.1017/pan.2016.7
Guo TD, 2019, SCI TOTAL ENVIRON, V681, P202, DOI 10.1016/j.scitotenv.2019.05.122
Hämäläinen M, 2020, CONTRIB MANAG SCI, P63, DOI 10.1007/978-3-030-23604-5_5
Hernandez-Boussard T, 2020, CANCER EPIDEM BIOMAR, V29, P816, DOI 10.1158/1055-9965.EPI-19-0873
Howie L, 2014, HEALTH AFFAIR, V33, P1220, DOI 10.1377/hlthaff.2014.0225
Huo D, 2015, ROM J ECON FORECAST, V18, P148
Hysing E, 2009, GOVERNANCE, V22, P647, DOI 10.1111/j.1468-0491.2009.01457.x
IBM Center for Business of Government, 2015, 5 EX FED AG US BIG D
Janssen M, 2022, SOC SCI COMPUT REV, V40, P478, DOI 10.1177/0894439320980118
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Jung SH, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133499
Kim JD, 2003, BIOINFORMATICS, V19, pi180, DOI 10.1093/bioinformatics/btg1023
Kitchin R., 2013, Dialogues in Human Geography, V3, P262, DOI 10.1177/2043820613513388
Kleinberg Jon, 2018, Q J Econ, V133, P237, DOI 10.1093/qje/qjx032
Kong L, 2018, URBAN STUD, V55, P679, DOI 10.1177/0042098017746528
Kwakkel JH, 2016, TECHNOL FORECAST SOC, V111, P124, DOI 10.1016/j.techfore.2016.06.014
Lai YY, 2018, INT J LOGIST MANAG, V29, P676, DOI 10.1108/IJLM-06-2017-0153
Lasswell H.D., 1971, A Pre-View of Policy Sciences
LASSWELL HD, 1970, POLICY SCI, V1, P3, DOI 10.1007/BF00145189
Li JY, 2017, ENERGIES, V10, DOI 10.3390/en10101520
Liu LC, 2017, J CLEAN PROD, V142, P1044, DOI 10.1016/j.jclepro.2016.08.011
Liu P, 2017, J CLEAN PROD, V164, P1614, DOI 10.1016/j.jclepro.2017.07.049
Lyu XZ, 2020, SCIENTOMETRICS, V123, P909, DOI 10.1007/s11192-020-03415-7
Marelli L, 2020, POLICY STUD-UK, V41, P447, DOI 10.1080/01442872.2020.1724929
Marley TL, 2019, AM BEHAV SCI, V63, P722, DOI 10.1177/0002764218799130
MAYER-SCHONBERGER Viktor, 2013, Big Data: A Revolution That Will Transform How We Live, Work, and Think
Mostert M, 2016, EUR J HUM GENET, V24, P956, DOI 10.1038/ejhg.2015.239
Moyano A, 2018, J TRANSP GEOGR, V73, P84, DOI 10.1016/j.jtrangeo.2018.10.010
Nazir MS, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12093778
Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713
Nieminen H, 2016, EUR J COMMUN, V31, P19, DOI 10.1177/0267323115614198
Noy NF, 2009, NUCLEIC ACIDS RES, V37, pW170, DOI 10.1093/nar/gkp440
Pandey A, 2020, J CLIN MED, V9, DOI 10.3390/jcm9020442
Rabini C, 2020, BRIT J POLIT INT REL, V22, P256, DOI 10.1177/1369148120910984
Ranagalage M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11195517
Rasouli S, 2014, EUR J TRANSP INFRAST, V14, P412
Rieser V, 2011, COMPUT LINGUIST, V37, P153, DOI 10.1162/coli_a_00038
Rikin S, 2015, ACAD PEDIATR, V15, P651, DOI 10.1016/j.acap.2015.08.008
Roberts Margaret E., 2014, Journal of Statistical Software, V10, P1, DOI [DOI 10.18637/JSS.V000.I00, 10.18637/jss.v091.i02]
Rosen-Zvi M, 2004, Proceedings of the 20th conference on Uncertainty in artificial intelligence, P487
Sanga S, 2019, NORTHWEST U LAW REV, V113, P1121
Sözen A, 2011, ENERG SOURCE PART B, V6, P263, DOI 10.1080/15567240802534268
Spasic I, 2005, BRIEF BIOINFORM, V6, P239, DOI 10.1093/bib/6.3.239
Srinivasan P, 2004, J AM SOC INF SCI TEC, V55, P396, DOI 10.1002/asi.10389
Talamini E, 2012, SCI PUBL POLICY, V39, P13, DOI 10.3152/030234212X13214603531923
Townsend BA, 2019, S AFR J HUM RIGHTS, V35, P329, DOI 10.1080/02587203.2020.1717366
van Loenen B, 2016, GOV INFORM Q, V33, P338, DOI 10.1016/j.giq.2016.04.002
Wang XR, 2007, IEEE DATA MINING, P697, DOI 10.1109/ICDM.2007.86
Wen L, 2020, J CLEAN PROD, V250, DOI 10.1016/j.jclepro.2019.119492
Xiang Z, 2015, INT J HOSP MANAG, V44, P120, DOI 10.1016/j.ijhm.2014.10.013
Ying CS, 2020, TRANSPORT RES B-METH, V140, P210, DOI 10.1016/j.trb.2020.08.005
Zenk SN, 2018, AM J HEALTH PROMOT, V32, P779, DOI 10.1177/0890117117694448
Zhang XY, 2017, DESTECH TRANS SOC, P123
Zhao HR, 2017, ENERGIES, V10, DOI 10.3390/en10070874
Zharova AK, 2017, COMPUT LAW SECUR REV, V33, P482, DOI 10.1016/j.clsr.2017.03.025
NR 94
TC 14
Z9 15
U1 2
U2 44
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1541-132X
EI 1541-1338
J9 REV POLICY RES
JI Rev. Policy Res.
PD NOV
PY 2021
VL 38
IS 6
BP 640
EP 660
DI 10.1111/ropr.12448
EA SEP 2021
PG 21
WC Political Science; Public Administration
WE Social Science Citation Index (SSCI)
SC Government & Law; Public Administration
GA WN8JA
UT WOS:000694642700001
OA hybrid
DA 2024-09-05
ER
PT C
AU Song, HM
Cao, ZX
AF Song, Huaming
Cao, Zhexiu
GP IEEE
TI Research on Product Quality Evaluation Based on Big Data Analysis
SO 2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA)
LA English
DT Proceedings Paper
CT 2nd IEEE International Conference on Big Data Analysis (ICBDA)
CY MAR 10-12, 2017
CL Beijing, PEOPLES R CHINA
DE quality evaluation; online reviews; big data analysis; machine learning
ID SENTIMENT ANALYSIS
AB In order to evaluate product quality from nonnumerical data, we propose the product quality evaluation model based on big data analysis including data collecting, data preprocessing, quality feature extraction, vector quantization and quality classification. Quality feature word extension algorithm, reviews quantization algorithm and machine learning algorithm are applied. We finally obtain the qualified rate(88.94%) and 7 features that most concerned by consumers through the analysis of 184,967 effective product reviews of wooden toys. In the end, we compare the SVM machine learning algorithm with decision tree and naive bayes, and discuss the credibility of the results. Our research on product quality evaluation extends the application of big data analysis, and also presents a new method to evaluate product quality in the field of manufacture.
C1 [Song, Huaming; Cao, Zhexiu] Nanjing Univ Sci & Technol, Sch Econ Management, Nanjing, Jiangsu, Peoples R China.
C3 Nanjing University of Science & Technology
RP Song, HM (corresponding author), Nanjing Univ Sci & Technol, Sch Econ Management, Nanjing, Jiangsu, Peoples R China.
EM huaming@njust.edu.cn; caozhexiu@126.com
CR Ghiassi M, 2013, EXPERT SYST APPL, V40, P6266, DOI 10.1016/j.eswa.2013.05.057
Holmes G., 2012, P INT C ENV MOD SOFT
Hu Y., 2013, P INT JOINT C ART IN, P2540
Jing RZ, 2015, J ORG COMP ELECT COM, V25, P316, DOI 10.1080/10919392.2015.1058125
Kang D, 2014, EXPERT SYST APPL, V41, P1041, DOI 10.1016/j.eswa.2013.07.101
Li DC, 2012, J INTELL MANUF, V23, P835, DOI 10.1007/s10845-010-0440-1
Mollazade K, 2015, INT J FOOD PROP, V18, P880, DOI 10.1080/10942912.2013.835822
Mostafa MM, 2013, EXPERT SYST APPL, V40, P4241, DOI 10.1016/j.eswa.2013.01.019
Pérez-Palacios T, 2014, J FOOD ENG, V131, P82, DOI 10.1016/j.jfoodeng.2014.01.015
Peters H, 2012, STAHL EISEN, V132, P29
Sun M, 2012, MANAGE SCI, V58, P696, DOI 10.1287/mnsc.1110.1458
Tian Jiu-le, 2010, Journal of Jilin University (Information Science Edition), V28, P602
Yussupova N, 2016, ACTA POLYTECH HUNG, V13, P45
Zhang WH, 2012, EXPERT SYST APPL, V39, P10283, DOI 10.1016/j.eswa.2012.02.166
NR 14
TC 0
Z9 0
U1 0
U2 9
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-5090-3619-6
PY 2017
BP 178
EP 182
PG 5
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Operations Research & Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Operations Research & Management Science
GA BJ6KQ
UT WOS:000426794900037
DA 2024-09-05
ER
PT C
AU Omae, Y
Mitsui, T
Takahashi, H
AF Omae, Yuto
Mitsui, Takako
Takahashi, Hirotaka
GP IEEE
TI Rubric Evaluation for Project Research as Active Learning in Super
Science High School
SO 2016 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII)
SE IEEE/SICE International Symposium on System Integration
LA English
DT Proceedings Paper
CT IEEE/SICE International Symposium on System Integration (SII)
CY DEC 13-15, 2016
CL Sapporo, JAPAN
AB In Super Science High School's (SSH's) educational activities, the students at Yamanashi Eiwa Senior and Junior high school are working on the project research as active learning. In this paper, we report on the results of rubric evaluation and questionnaire survey of motivation for the project research. By using the rubric evaluation's items and questionnaire for motivation between two points of time, we measured the rubric score and motivation of the students in SSH class (n = 17). Moreover, to measure the rubric score as others evaluation, the committee consisted of the researchers and teachers also evaluated at the same time. The results of analysis of the rubric score showed that the average scores were improved significantly and the students and committee could evaluate consistently. The results of analysis of the questionnaire for motivations showed the motivation of interesting, importance and confidence were improved. From the results of the detailed analysis of the relation between the rubric score of others evaluation and motivation, we found that the rubric score of others evaluation was improved by promoting the motivation of interesting. These results suggested that the project research as active learning had an effect to increase the motivation of research activity. As the result, the students worked on the research activity strenuously.
C1 [Omae, Yuto] Japan Inst Sports Sci, Tokyo, Japan.
[Mitsui, Takako] Yamanashi Eiwa Jr & Senior High Sch, Yamanashi, Japan.
[Takahashi, Hirotaka] Nagaoka Univ Technol, Niigata, Japan.
C3 Nagaoka University of Technology
RP Omae, Y (corresponding author), Japan Inst Sports Sci, Tokyo, Japan.
EM yuto.omae@gmail.com; hirotaka@kjs.nagaokaut.ac.jp
FU JSPS [16K04672]; Grants-in-Aid for Scientific Research [16K04672]
Funding Source: KAKEN
FX We would like to thank the teachers at Yamanashi Eiwa Junior and Senior
High School for cooperating on our research. This work was supported in
part by JSPS Grant-in-Aid for Scientific Research (C) (Grant Number
16K04672; H. Takahashi).
CR Ichihara M, 2006, JPN J EDUC PSYCHOL, V54, P199, DOI 10.5926/jjep1953.54.2_199
Japan Science and Technology Agency, SUP SCI HIGH SCH
Omae Y., 2016, J YAMANASHI EI UNPUB, V15
Omae Y, 2015, 2015 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), P146, DOI 10.1109/SII.2015.7404969
Sohma S., 2014, J HIROSHIMA SHUDO U, V55, P15
Yamanashi Eiwa Junior and Senior High School, 2016, 3 ANN REP RES DEV SU
Yumoto A., 2012, C JAP SOC ENG ED YEA, V60, P520
NR 7
TC 0
Z9 0
U1 0
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2474-2317
BN 978-1-5090-3329-4
J9 IEEE/SICE I S SYS IN
PY 2016
BP 827
EP 831
PG 5
WC Computer Science, Interdisciplinary Applications; Engineering,
Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BH6MF
UT WOS:000401914000135
DA 2024-09-05
ER
PT J
AU Avram, S
Velter, V
Dumitrache, I
AF Avram, Sorin
Velter, Victor
Dumitrache, Ioan
TI Semantic Analysis Applications in Computational Bibliometrics
SO CONTROL ENGINEERING AND APPLIED INFORMATICS
LA English
DT Article
DE bibliometrics; citation weighting; natural language processing; text
similarity
AB Continuing a previous theoretical research in bibliometrics, this study aims to conclude a bibliometric endeavor, in the quest of finding an adapted impact measure for scientific papers. Its main objective is to define a technological solution capable to interpret both citations and papers' content, in an integrative approach. The solution employs natural language processors, similarity measures and graph computation algorithms, while integrating them in a software prototype. Describing the design and implementation phases, the research underlines specific solutions and optimizations for relevance computing in citation networks.
C1 [Avram, Sorin; Dumitrache, Ioan] Univ Politehn Bucuresti, Bucharest 060042, Romania.
[Velter, Victor] Execut Agcy Higher Educ, Bucharest 010362, Romania.
C3 National University of Science & Technology POLITEHNICA Bucharest
RP Avram, S (corresponding author), Univ Politehn Bucuresti, Bucharest 060042, Romania.
EM avram.sorin@gmail.com; victor.velter@uefiscdi.ro;
ioan.dumitrache@acse.pub.ro
RI VELTER, Victor/E-9135-2017; VELTER, Victor/J-3536-2013
OI VELTER, Victor/0000-0003-0566-3789; VELTER, Victor/0000-0003-0566-3789
CR ACETIC CYBERLEX, 2013, SEM SEARCH ENG TEXT
Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003
[Anonymous], 2005, P 14 INT C WORLD WID, DOI 10.1145/1060745.1060827
Avram S, 2012, CONTROL ENG APPL INF, V14, P35
Ball R, 2006, SCIENTOMETRICS, V66, P561, DOI 10.1007/s11192-006-0041-0
Braun T, 2010, NATURE, V465, P870, DOI 10.1038/465870a
Brin S., 1998, TECHNICAL REPORT
Caragea D., 2011, MANUAL AUTORAT STIIN
Griffin C, 2010, LEARN PUBL, V23, P132, DOI 10.1087/20100208
HEIMERIKS G, 2002, STATE ART BIBLIOMETR
Huang A., 2008, NZCSRSC 2008
Karlin I, 2012, EVALUATION NLP TOOLK
Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140
Lee DL, 1997, IEEE SOFTWARE, V14, P67, DOI 10.1109/52.582976
Levitt JM, 2011, INFORM PROCESS MANAG, V47, P300, DOI 10.1016/j.ipm.2010.09.005
Li W., 2005, P 2 AS C AS INF RETR
Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006
Molette P, 2012, DOCUMENTATION LOGICI
RAGHAVAN VV, 1986, J AM SOC INFORM SCI, V37, P279, DOI 10.1002/asi.4630370502
Ryzko D., 2011, EMERGING INTELIGENT
Sidiropoulos A, 2005, SIGMOD REC, V34, P54, DOI 10.1145/1107499.1107506
SPARCKJONES K, 1972, J DOC, V28, P11, DOI 10.1108/eb026526
The Apache Software Foundation, 2010, AP OPENNLP
The Stanford Natural Language Processing Group, 2013, COR NLP TOOLS
Velter V., 2010, ANN CONSTANTIN BRANC, V3, P119
Webster GD, 2009, EVOL PSYCHOL-US, V7, P348
West JD, 2010, COLL RES LIBR, V71, P236, DOI 10.5860/0710236
Ye J, 2012, GROUP DECIS NEGOT, V21, P519, DOI 10.1007/s10726-010-9224-4
NR 28
TC 3
Z9 4
U1 0
U2 21
PU ROMANIAN SOC CONTROL TECH INFORMATICS
PI BUCHAREST
PA 313 SPLAIUL INDEPENDENTEI, BUCHAREST, 060042, ROMANIA
SN 1454-8658
J9 CONTROL ENG APPL INF
JI Control Eng. Appl. Inform.
PD MAR
PY 2014
VL 16
IS 1
BP 62
EP 69
PG 8
WC Automation & Control Systems
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Automation & Control Systems
GA AE1JB
UT WOS:000333724500007
DA 2024-09-05
ER
PT C
AU Bugajska, M
AF Bugajska, Malgorzata
BE Ackerman, M
DiengKuntz, R
Simone, C
Wulf, V
TI "KT" CarePacks - Collaboration patterns for knowledge transfer: Learning
from IS/IT-outsourcing case at a Swiss financial institution
SO KNOWLEDGE MANAGEMENT IN ACTION
SE International Federation for Information Processing
LA English
DT Proceedings Paper
CT 20th World Computer Congress
CY SEP 07-10, 2008
CL Milan, ITALY
DE knowledge transfer; IS/IT outsourcing; patterns
AB Organizations now more than ever focus on fostering team work in their daily activities to secure better results for their stakeholders. Team work and collaboration are especially important for inter-organizational outsourcing relationships where these qualities are crucial for the successful knowledge transfer conducted throughout all phases of outsourcing relationship. Knowledge workers involved in such complex, inter-organizational collaboration processes require support to secure structured and well managed collaboration. Consequently, there is a strong need of service receiver organizations to use sustainable approaches for the knowledge transfer to satisfy recurring transfer processes in forthcoming sourcing activities. Idea of "pattern" offers encapsulated approach for describing solutions for recurring problems and is already successfully used within the IT domain. In this paper we present the concept of patterns for the sustainable knowledge transfer for outsourcing relationships. We introduce CarePacks - reusable patterns for supporting act of the collaborative knowledge transfer and present lessons learned from introducing them at a Swiss financial - institution while conducting six knowledge transfer pilots in three consecutive trials.
C1 [Bugajska, Malgorzata] Univ Zurich, Dept Informat, CH-8006 Zurich, Switzerland.
C3 University of Zurich
EM bugajska@gmail.coni
CR Alexander C., 1977, PATTERN LANGUAGE TOW
[Anonymous], 1993, METHODEN ENG SPEZIFI
[Anonymous], 2000, COMMON KNOWLEDGE COM
[Anonymous], 2000, Technology, Learning, and Innovation: Experiences of Newly Industrializing Economies
[Anonymous], 1979, The Timeless Way of Building
Becker J., 2004, REFERENZMODELLIERUNG
Bloch M., 2005, MCKINSEY Q
Braun C., 2004, Methodenkonstruktion als wissenschaftlicher Erkenntnisansatz
BRIGGS RO, 2003, J MANAGEMENT INFORM, V19
BUGAJSKA M, 2006, P 3 INT C KNOWL MAN
BUGAJSKA M, 2007, PILOTING KNOWLEDGE T
Carmel E., 2005, Offshoring Information Technology: Sourcing and Outsourcing to a Global Workforce
Cohen Linda., 2006, Multisourcing: Moving Beyond Outsourcing to Achieve Growth and Agility
Collison C., 2004, LEARNING FLY PRACTIC
Darr ED, 2000, ORGAN BEHAV HUM DEC, V82, P28, DOI 10.1006/obhd.2000.2885
Davenport T.H., 2005, Thinking for a living: How to get better performance and results from knowledge workers
Davenport T.H., 2000, WORKING KNOWLEDGE OR, DOI DOI 10.1145/347634.348775
de Vreede GJ, 2006, INT J COMPUT APPL T, V25, P140, DOI 10.1504/IJCAT.2006.009064
DEVREEDE GJ, 2005, INT C SYST SCI, V3
ENGLISH W, 2006, WINNING KNOWLEDGE TR
FOWLER B, 2006, IS INSOURCING NEW OU
Gamma E., 1994, Design Patterns: Elements of Reusable Object-Oriented Software
Gottschalk P., 2007, KNOWLEDGE MANAGEMENT
Gregor S, 2006, MIS QUART, V30, P611
Heinzl A, 2001, WIRTSCHAFTSINF, V43, P223, DOI 10.1007/BF03252668
Hinds PJ, 2003, SHARING EXPERTISE: BEYOND KNOWLEDGE MANAGEMENT, P3
HUTZSCHENREUTER T, 2004, EVALUATOR KNOWLEDGE
JENSEN MC, 1976, J FINANC ECON, V3, P305, DOI 10.1016/0304-405X(76)90026-X
Ko DG, 2005, MIS QUART, V29, P59
Lukosch S, 2006, INT J HUM-COMPUT ST, V64, P599, DOI 10.1016/j.ijhcs.2006.02.006
Mulder U., 2007, Journal of Knowledge Management, V11, P68, DOI 10.1108/13673270710728240
Nonaka I., 1995, The knowledge-creating company: How Japanese companies create the dynamics of innovation
Owen C.L., 1997, Journal of the Japanese Society for the Science of Design, V5, P36, DOI DOI 10.11247/JSSDS.5.2_36
Pavitt K, 2002, IND CORP CHANGE, V11, P117, DOI 10.1093/icc/11.1.117
Rulke DL, 2000, ORGAN BEHAV HUM DEC, V82, P134, DOI 10.1006/obhd.2000.2892
Szulanski G, 2000, ORGAN BEHAV HUM DEC, V82, P9, DOI 10.1006/obhd.2000.2884
Thatchenkery T., 2005, APPRECIATIVE SHARING
VOIGT B, 2007, MANAGE KNOWLEDGE TRA
VONKROGH G, 1998, UNTERNEHMUNG, V52, P235
Willcocks LP, 2006, TECHNOL WORK GLOB, pXII
*WKWI, 1994, WIRTSCHAFTSINF, V36, P80
NR 41
TC 0
Z9 0
U1 0
U2 4
PU SPRINGER
PI NEW YORK
PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES
SN 1571-5736
BN 978-0-387-09658-2
J9 INT FED INFO PROC
PY 2008
VL 270
BP 17
EP 36
PG 20
WC Computer Science, Information Systems; Management; Operations Research &
Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Business & Economics; Operations Research & Management
Science
GA BIC05
UT WOS:000258322500003
DA 2024-09-05
ER
PT C
AU Wang, Z
Zhang, XC
AF Wang, Zheng
Zhang, Xianchao
BE Zhao, C
TI Research on real-time and intelligent learning performance testing
method
SO PROCEEDINGS OF 2008 INTERNATIONAL COLLOQUIUM ON ARTIFICIAL INTELLIGENCE
IN EDUCATION
LA English
DT Proceedings Paper
CT International Colloquium on Artificial Intelligence in Education
CY OCT 17-18, 2008
CL Wuhan, PEOPLES R CHINA
DE online learning; learning performance; real-time and intelligent testing
method; distance learning
ID TUTORING SYSTEMS
AB Based on the results of online exams, a tree-like representation method for course resources and a knowledge-based testing method for students' online learning performance are presented in the paper, by introducing the methodology of artificial intelligence, knowledge engineering and fuzzy mathematics. A real-time and intelligent testing system is realized based on the testing method, which tests whether students have mastered the course's knowledge. The application and its feedback from students prove the scientificity and validity of the testing method.
C1 [Wang, Zheng] Dalian Univ Technol, Software Sch, Dalian, Peoples R China.
C3 Dalian University of Technology
CR Akhras FN, 2002, INSTR SCI, V30, P1, DOI 10.1023/A:1013544300305
Hwang GJ, 2003, COMPUT EDUC, V40, P217, DOI 10.1016/S0360-1315(02)00121-5
MYMIC LLC, 2004, OUTSTANDING RES ISSU
WANG QH, 2006, RES DESIGN ANAL SYST
YACEF K, 2003, AIED 2003 WORKSH P I
NR 5
TC 0
Z9 0
U1 0
U2 4
PU WORLD ACAD UNION-WORLD ACAD PRESS
PI LIVERPOOL
PA 113, ACADEMIC HOUSE, MILL LANE, WAVERTREE TECHNOLOGY PARK, LIVERPOOL,
L13 4 AH, ENGLAND
BN 978-1-84626-173-2
PY 2008
BP 37
EP 41
PG 5
WC Computer Science, Artificial Intelligence; Education & Educational
Research; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BIM65
UT WOS:000260861200008
DA 2024-09-05
ER
PT J
AU Glänzel, W
Thijs, B
AF Glanzel, Wolfgang
Thijs, Bart
TI Using hybrid methods and 'core documents' for the representation of
clusters and topics: the astronomy dataset
SO SCIENTOMETRICS
LA English
DT Article
DE Astronomy; Astrophysics; Clustering; NLP; Bibliographic coupling; Hybrid
clustering; Core documents
ID COCITATION ANALYSIS; INFORMATION; NETWORK; TOOL
AB Based on a dataset on Astronomy and Astrophysics, hybrid cluster analyses have been conducted. In order to obtain an optimum solution and to analyse possible issues resulting from the bibliometric methodologies used, we have systematically studied three models and, within these models, two scenarios each. The hybrid clustering was based on a combination of bibliographic coupling and textual similarities using the Louvain method at two resolution levels. The procedure resulted in three clearly hierarchical structures with six and thirteen, seven and thirteen and finally five and eleven clusters, respectively. These structures are analysed with the help of a concordance table. The statistics reflect a high quality of classification. The results of these three models are presented, discussed and compared with each other. For labelling and interpreting clusters, core documents representing the obtained clusters are used. Furthermore, these core documents help depict the internal structure of the complete network and the clusters. This work has been done as part of the international project 'Measuring the Diversity of Research' and in the framework a special workshop on the comparative analysis of algorithms for the identification of topics in science organised in Berlin in August 2014.
C1 [Glanzel, Wolfgang; Thijs, Bart] Katholieke Univ Leuven, ECOOM, Louvain, Belgium.
[Glanzel, Wolfgang; Thijs, Bart] Katholieke Univ Leuven, Dept MSI, Louvain, Belgium.
[Glanzel, Wolfgang] Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Budapest, Hungary.
C3 KU Leuven; KU Leuven; Hungarian Academy of Sciences
RP Glänzel, W (corresponding author), Katholieke Univ Leuven, ECOOM, Louvain, Belgium.; Glänzel, W (corresponding author), Katholieke Univ Leuven, Dept MSI, Louvain, Belgium.; Glänzel, W (corresponding author), Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Budapest, Hungary.
EM wolfgang.glanzel@kuleuven.be
RI Glanzel, Wolfgang/AAE-4395-2021
CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003
[Anonymous], 1989, Sociological Methodology, DOI DOI 10.2307/270949
Batagelj V, 2004, MATH VIS, P77
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
GARFIELD E, 1969, CC/LIFE SCI, V12, P4
Glänzel W, 2011, SCIENTOMETRICS, V88, P297, DOI 10.1007/s11192-011-0347-4
Glanzel W, 1996, SCIENTOMETRICS, V37, P195, DOI 10.1007/BF02093621
Glanzel W., 2012, BIBLIOMETRIE PRAXIS, V1, DOI [10.5283/bpf.156., DOI 10.5283/BPF.156]
Glänzel W, 2015, PRO INT CONF SCI INF, P1085
Glänzel W, 2012, SCIENTOMETRICS, V93, P113, DOI 10.1007/s11192-012-0639-3
Glänzel W, 2012, SCIENTOMETRICS, V91, P399, DOI 10.1007/s11192-011-0591-7
Glenisson P, 2005, INFORM PROCESS MANAG, V41, P1548, DOI 10.1016/j.ipm.2005.03.021
HICKS D, 1987, SOC STUD SCI, V17, P295, DOI 10.1177/030631287017002004
Janssens F., 2007, THESIS
Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7
Klein D, 2003, 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P423, DOI 10.3115/1075096.1075150
Kostoff RN, 1997, J INF SCI, V23, P301, DOI 10.1177/016555159702300404
Thijs B., 2015, P WORKSH MIN SCI PAP, V1384
Thijs B, 2013, SCIENTOMETRICS, V96, P667, DOI 10.1007/s11192-012-0896-1
TODOROV R, 1992, SCIENTOMETRICS, V23, P319, DOI 10.1007/BF02017044
Turner W.A., 1988, HDB QUANTITATIVE STU
Zitt M, 1996, SCIENTOMETRICS, V37, P223, DOI 10.1007/BF02093622
NR 24
TC 51
Z9 53
U1 2
U2 114
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD MAY
PY 2017
VL 111
IS 2
BP 1071
EP 1087
DI 10.1007/s11192-017-2301-6
PG 17
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA ES9JC
UT WOS:000399871500024
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Panchendrarajan, R
Saxena, A
AF Panchendrarajan, Rrubaa
Saxena, Akrati
TI Topic-based influential user detection: a survey
SO APPLIED INTELLIGENCE
LA English
DT Article
DE Topic-based influential user detection; Topic modeling; Influence
mining; Online social network
ID LEVEL INFLUENCERS; SOCIAL NETWORKS; OPINION LEADER; TWITTER;
RECOMMENDATION; REGRESSION; MODEL; BERT
AB Online Social networks have become an easy means of communication for users to share their opinion on various topics, including breaking news, public events, and products. The content posted by a user can influence or affect other users, and the users who could influence or affect a high number of users are called influential users. Identifying such influential users has a wide range of applications in the field of marketing, including product advertisement, recommendation, and brand evaluation. However, the users' influence varies in different topics, and hence a tremendous interest has been shown towards identifying topic-based influential users over the past few years. Topic-level information in the content posted by the users can be used in various stages of the topic-based influential user detection (IUD) problem, including data gathering, construction of influence network, quantifying the influence between two users, and analyzing the impact of the detected influential user. This has opened up a wide range of opportunities to utilize the existing techniques to model and analyze the topic-level influence in online social networks. In this paper, we perform a comprehensive study of existing techniques used to infer the topic-based influential users in online social networks. We present a detailed review of these approaches in a taxonomy while highlighting the challenges and limitations associated with each technique. Moreover, we perform a detailed study of different evaluation techniques used in the literature to overcome the challenges that arise in evaluating topic-based IUD approaches. Furthermore, closely related research topics and open research questions in topic-based IUD are discussed to provide a deep understanding of the literature and future directions.
C1 [Panchendrarajan, Rrubaa] Sri Lanka Inst Informat Technol, Fac Comp, Colombo, Sri Lanka.
[Saxena, Akrati] Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands.
C3 Sri Lanka Institute of Information Technology (SLIIT); Eindhoven
University of Technology
RP Saxena, A (corresponding author), Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands.
EM rrubaa.p@sliit.lk; a.saxena@tue.nl
OI Saxena, Akrati/0000-0002-7151-6309
CR Abuzayed A, 2021, PROCEDIA COMPUT SCI, V189, P191, DOI 10.1016/j.procs.2021.05.096
Agness JA, 2018, P 3 INT C INTERNET T, P26
Aizawa A, 2003, INFORM PROCESS MANAG, V39, P45, DOI 10.1016/S0306-4573(02)00021-3
Al-Garadi MA, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3155897
Al-Yazidi S, 2020, IEEE ACCESS, V8, P105824, DOI 10.1109/ACCESS.2020.2999033
ALLEN LJS, 1994, MATH BIOSCI, V124, P83, DOI 10.1016/0025-5564(94)90025-6
Alp ZZ, 2018, KNOWL-BASED SYST, V141, P211, DOI 10.1016/j.knosys.2017.11.021
[Anonymous], 2012, P SIGCHI C HUM FACT, DOI [DOI 10.1145/2207676.2208672, 10.1145/2207676.2208672]
[Anonymous], 2012, P 24 BEN C ART INT B
[Anonymous], 2008, Proceedings of NIPS'08
Asgari-Chenaghlu M, 2021, CHAOS SOLITON FRACT, V151, DOI 10.1016/j.chaos.2021.111274
Balmin AL, 2016, Google Patents, Patent No. [9,449,096, 9449096]
Bamakan SMH, 2019, EXPERT SYST APPL, V115, P200, DOI 10.1016/j.eswa.2018.07.069
Barbieri N, 2013, KNOWL INF SYST, V37, P555, DOI 10.1007/s10115-013-0646-6
Bashari B, 2020, MEAS CONTROL-UK, V53, P409, DOI 10.1177/0020294019877489
Bi B, 2014, WSDM'14: PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P513, DOI 10.1145/2556195.2556229
Bingol K, 2019, IEEE T SERV COMPUT, V12, P970, DOI 10.1109/TSC.2016.2619688
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bogdanov P, 2014, SOC NETW ANAL MIN, V4, DOI 10.1007/s13278-014-0204-6
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Cano AE, 2014, SEMANT WEB, V5, P357, DOI 10.3233/SW-130108
Cha M., 2010, P INT AAAI C WEB SOC, V10
Chakrabarti S, 2003, VLDB J, V12, P170, DOI 10.1007/s00778-003-0098-9
Chen L, 2019, P 2019 SIAM INT C DA, P262
Chen S, 2015, PROC VLDB ENDOW, V8, P666, DOI 10.14778/2735703.2735706
Chen Stanley F, 1998, Evaluation metrics for language models
Dhali A, 2020, 2020 IEEE ASIA PACIF, P1
Ding ZY, 2013, CHINA COMMUN, V10, P93, DOI 10.1109/CC.2013.6457533
Dong G., 2019, INT J PERFORMABILITY, V15, P3024, DOI DOI 10.23940/IJPE.19.11.P22.30243030
Eliacik AB, 2018, EXPERT SYST APPL, V92, P403, DOI 10.1016/j.eswa.2017.10.006
Embar VR, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1759, DOI 10.1145/2783258.2788593
Enliang Xu, 2014, Database and Expert Systems Applications 25th International Conference (DEXA 2014). Proceedings: LNCS 8645, P131, DOI 10.1007/978-3-319-10085-2_11
Fan J, 2018, PROC INT CONF DATA, P1569, DOI 10.1109/ICDE.2018.00178
Fang Q, 2014, IEEE T MULTIMEDIA, V16, P796, DOI 10.1109/TMM.2014.2298216
Farahani HS, 2017, 2017 INTERNATIONAL CONFERENCE ON INNOVATIVE MECHANISMS FOR INDUSTRY APPLICATIONS (ICIMIA), P581, DOI 10.1109/ICIMIA.2017.7975527
Fei H, 2006, FRIEND SCI AMATEURS, V6
Frey BJ, 2007, SCIENCE, V315, P972, DOI 10.1126/science.1136800
Fuglede B, 2004, 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, P31
Gelfand AE, 2000, J AM STAT ASSOC, V95, P1300, DOI 10.2307/2669775
González-Bailón S, 2011, SCI REP-UK, V1, DOI 10.1038/srep00197
Graves A., 2013, Generating sequences with recurrent neural networks, P1
Grootendorst Maarten, 2020, Bertopic: Leveraging bert and c-tf-idf to create easily interpretable topics, DOI DOI 10.5281/ZENODO
Hamzehei A, 2019, MACH LEARN, V108, P1831, DOI 10.1007/s10994-018-05776-w
Hamzehei A, 2017, AUSTRALAS J INF SYST, V21
Herzig J., 2014, Proc. 25th ACM Conf. Hypertext Soc. media
Hethcote HW, 2000, SIAM REV, V42, P599, DOI 10.1137/S0036144500371907
Hofmann T, 2013, UNC ART INT P
Ishfaq U, 2022, BEHAV INFORM TECHNOL, V41, P2201, DOI 10.1080/0144929X.2021.1915384
Jagarlamudi J., 2012, EACL 2012 13 C EUROP, P204
Jain L, 2018, PROC IEEE INT SOFT, P10
Jeh G., 2003, WWW, P271, DOI DOI 10.1145/775152.775191
Kefato ZT, PERSONALIZED INFLUEN
Kempe D., 2005, Automata, Languages and Programming. 32nd International Colloquium, ICALP 2005. Proceedings (Lecture Notes in Computer Science Vol. 3580), P1127, DOI 10.1007/11523468_91
Kempe David, 2003, Theory Comput., P137, DOI DOI 10.1145/956750.956769
Kim D, 2016, PROC INT CONF DATA, P13, DOI 10.1109/ICDE.2016.7498225
Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140
Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263
Koutrouli Eleni, 2018, Discovery Science. 21st International Conference, DS 2018. Proceedings: Lecture Notes in Artificial Intelligence (LNAI 11198), P405, DOI 10.1007/978-3-030-01771-2_26
Lahoti P., 2017, P 2017 IEEE ACM INT, P155, DOI 10.1145/3110025.3110044
Lee RKW, 2021, IEEE T KNOWL DATA EN, V33, P70, DOI 10.1109/TKDE.2019.2922962
Letierce Julie., 2010, Understanding how Twitter is used to spread scientific messages"
Li DF, 2015, J ASSOC INF SCI TECH, V66, P2657, DOI 10.1002/asi.23350
Li Daifeng., 2012, 21 ACM INT C INFORM, P1562
Li X, 2017, NEUROCOMPUTING, V230, P197, DOI 10.1016/j.neucom.2016.12.024
Li Y., 2015, Social Context Analysis for Topic-Specific Expert Finding in Online Learning Communities, P57
Liengpradit P., 2014, INT J COMPUTER INTER, V22, P33
Lim E.-P., 2018, P 2018 SIAM INT C DA, P378
Liu Lu., 2010, CIKM
Liu XY, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P1012, DOI 10.1109/ICDMW.2014.11
Loh WY., 2014, Classification and Regression Tree Methods
Lu ML, 2019, IEEE ACCESS, V7, P101665, DOI 10.1109/ACCESS.2019.2931146
Ma QC, 2019, CONCURR COMP-PRACT E, V31, DOI 10.1002/cpe.5029
Ma X, 2017, ARXIV 170301468
Makita M, 2021, ISSUES MENT HEALTH N, V42, P437, DOI 10.1080/01612840.2020.1814914
Mikolov T., 2013, ARXIV
Mittal D, 2020, PROCEDIA COMPUT SCI, V167, P1861, DOI 10.1016/j.procs.2020.03.205
Myung IJ, 2003, J MATH PSYCHOL, V47, P90, DOI 10.1016/S0022-2496(02)00028-7
Oo MM, DETECTING INFLUENTIA
Oro E, 2018, IEEE T MULTIMEDIA, V20, P1195, DOI 10.1109/TMM.2017.2763324
Page L., 1999, The PageRank citation ranking: bringing order to the web
Pal A., 2011, P 4 ACM INT C WEB SE, P45, DOI [10.1145/1935826.1935843, DOI 10.1145/1935826.1935843]
Pal A, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P1203, DOI 10.1145/2872427.2883078
Petre A-N, 2014, SEARCHING TOPICAL AU
Qian Y, 2020, WORLD WIDE WEB, V23, P831, DOI 10.1007/s11280-019-00751-4
Ramya GR, 2021, SOC NETW ANAL MIN, V11, DOI 10.1007/s13278-021-00732-4
Reynolds DA, 2000, DIGIT SIGNAL PROCESS, V10, P19, DOI 10.1006/dspr.1999.0361
Riquelme F, 2016, INFORM PROCESS MANAG, V52, P949, DOI 10.1016/j.ipm.2016.04.003
Santos Henrique DP, POPULAR TOPICAL AUTH
Saquib S, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), P98, DOI 10.1109/CCAA.2017.8229780
Saxena Akrati, 2022, Principles of Social Networking: The New Horizon and Emerging Challenges. Smart Innovation, Systems and Technologies (246), P355, DOI 10.1007/978-981-16-3398-0_16
Saxena A, 2020, WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, P363, DOI 10.1145/3366424.3383297
Shalaby M., 2013, ACTA PRESS, V793, P16
Shalaby M, 2014, IDENTIFYING TOPIC SP
Shalaby M, 2015, 2015 FIRST INTERNATIONAL CONFERENCE ON ARABIC COMPUTATIONAL LINGUISTICS (ACLING 2015): ADVANCES IN ARABIC COMPUTATIONAL LINGUISTICS, P118, DOI 10.1109/ACLing.2015.24
Shen HW, 2014, P NATL ACAD SCI USA, V111, P12325, DOI 10.1073/pnas.1401992111
Shi LL, 2020, IEEE T COMPUT SOC SY, V7, P141, DOI 10.1109/TCSS.2019.2938954
Shinde M, 2016, 2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), P144, DOI 10.1109/CAST.2016.7914956
Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162]
Su S, 2018, MACH LEARN, V107, P551, DOI 10.1007/s10994-017-5665-1
Subbian K, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P493, DOI 10.1145/2835776.2835788
Tang J., 2008, Proceedings of the 17th international conference on World Wide Web, P1193
Tang J., 2011, KDD, P769
Tang J, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P807
van Erven T, 2014, IEEE T INFORM THEORY, V60, P3797, DOI 10.1109/TIT.2014.2320500
Vega L, 2021, SOC NETW ANAL MIN, V11, DOI 10.1007/s13278-020-00705-z
Wall ME, 2003, PRACTICAL APPROACH M, P91, DOI DOI 10.1007/0-306-47815-3_5
Wang B., 2017, NAT CCF C NAT LANG P, P477
Wang J, 2017, CHINESE J ELECTRON, V26, P106, DOI 10.1049/cje.2016.11.017
Wang J, 2015, 2015 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT), VOL 1, P123, DOI 10.1109/WI-IAT.2015.202
Wang L, 2015, INT C COMP SUPP COOP, P176, DOI 10.1109/CSCWD.2015.7230954
Wang YK, 2016, FRONT ARTIF INTEL AP, V285, P1559, DOI 10.3233/978-1-61499-672-9-1559
Weinberg T., 2009, The new community rules: Marketing on the social web
Weng J., 2010, P 3 ACM INT C WEB SE, P261, DOI [10.1145/1718487.1718520, DOI 10.1145/1718487.1718520]
Wright R.E., 1995, READING UNDERSTANDIN, P217
Xia F, 2020, IEEE TETCI, V4, P95, DOI 10.1109/TETCI.2019.2952908
Xiao F, 2014, J WEB ENG, V13, P405
Xing WP, 2004, SECOND ANNUAL CONFERENCE ON COMMUNICATION NETWORKS AND SERVICES RESEARCH, PROCEEDINGS, P305, DOI 10.1109/DNSR.2004.1344743
Xu Songhua, 2016, JMIR Public Health Surveill, V2, pe17, DOI 10.2196/publichealth.5205
Yan X, 2013, WWW, P1445, DOI [10.1145/2488388.2488514, DOI 10.1145/2488388.2488514]
Yao QP, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P139, DOI 10.1145/2740908.2742767
Yong Quan, 2019, Artificial Intelligence and Security. 5th International Conference, ICAIS 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11635), P476, DOI 10.1007/978-3-030-24268-8_44
Yu Y, 2016, KSII T INTERNET INF, V10, P2627, DOI 10.3837/tiis.2016.06.010
Zar J.H., 2005, Encyclopedia of biostatistics, V7, DOI [DOI 10.1002/0470011815.B2A15150, 10.1002/0470011815.b2a15150]
Zemel RS, 2001, ADV NEUR IN, V13, P696
Zhang SX, 2017, MOBILE NETW APPL, V22, P228, DOI 10.1007/s11036-016-0790-9
Zhao QC, 2019, IEEE ACCESS, V7, P175917, DOI 10.1109/ACCESS.2019.2953243
Zhao T, 2018, LECT NOTES COMPUT SC, V10827, P372, DOI 10.1007/978-3-319-91452-7_25
Zhao WNX, 2011, LECT NOTES COMPUT SC, V6611, P338, DOI 10.1007/978-3-642-20161-5_34
Zheng C, 2021, IDENTIFYING HIV RELA
Zheng C, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P2337, DOI 10.1145/3340531.3412134
Zheng C, 2020, IEEE ACCESS, V8, P82481, DOI [10.1109/access.2020.2991683, 10.1109/ACCESS.2020.2991683]
Zhou J, 2017, 2017 2ND IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2017), P133, DOI 10.1109/ICCCBDA.2017.7951898
NR 132
TC 7
Z9 8
U1 5
U2 20
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0924-669X
EI 1573-7497
J9 APPL INTELL
JI Appl. Intell.
PD MAR
PY 2023
VL 53
IS 5
BP 5998
EP 6024
DI 10.1007/s10489-022-03831-7
EA JUL 2022
PG 27
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA A3ZV8
UT WOS:000822010200013
OA hybrid
DA 2024-09-05
ER
PT J
AU Argoubi, M
Jammeli, H
Masri, H
AF Argoubi, Majdi
Jammeli, Haifa
Masri, Hatem
TI The intellectual structure of the waste management field
SO ANNALS OF OPERATIONS RESEARCH
LA English
DT Article
DE Waste management; Intellectual structure; Optimization; Heuristics;
Co-citation analysis; Literature mapping
ID REVERSE LOGISTICS NETWORK; DECISION-SUPPORT-SYSTEM; LANDFILL SITE
SELECTION; RIO-GRANDE VALLEY; PROGRAMMING APPROACH; ENVIRONMENTAL
ASSESSMENT; OPTIMIZATION MODEL; ALGORITHM; GREY; DESIGN
AB Waste management is an important issue in the field of green logistics. It has consequently drawn the attention of the scientific community and has been extensively investigated over the past few years. Through an analysis of the existing waste management literature, we attempt in this paper to better understand past developments in this area as well as emerging trends and recent developments. Emphasis will be put mainly on Operations Research and Management Science techniques when dealing with waste management problems. To reach this target, we follow bibliometric-based methods, specifically Co-citation Analysis, Betweenness Centrality and Burst Detection combined with network visualization. After identifying the research papers published between 1990 and 2018 within the Thomson Reuters Web of Science database, a Co-citation network has been constructed. We propose an algorithm for modularity-based clustering in small networks that iteratively solves a sequence of Mixed Integer Non-linear Programming problems to maximize the modularity therefore providing a non-overlapping partition of the network. A display of the principal research areas and landmark articles that shape the intellectual structure of the waste management problems during the last 30 years is reported.
C1 [Argoubi, Majdi] Univ Sousse, Rue Abdlaaziz Behi, Sousse, Tunisia.
[Jammeli, Haifa] Univ Tunis, Rue Liberte, Le Bardo, Tunisia.
[Jammeli, Haifa] HIGHFI, HF LAB, Paris, France.
[Masri, Hatem] Univ Bahrain, POB 32038, Sakhir, Bahrain.
C3 Universite de Sousse; Universite de Tunis; University of Bahrain
RP Masri, H (corresponding author), Univ Bahrain, POB 32038, Sakhir, Bahrain.
EM mejdiargoubi@yahoo.fr; haifa.echaarika@gmail.com; hmasri@uob.edu.bh
RI ARGOUBI, Majdi/AEI-8735-2022; Masri, Hatem/M-9133-2015; jammeli,
haifa/P-3141-2017
OI Masri, Hatem/0000-0002-2750-129X; Jammeli, Haifa/0000-0003-0326-1321
CR Achillas C, 2010, WASTE MANAGE, V30, P870, DOI 10.1016/j.wasman.2009.11.029
Ahmed S, 2004, MATH PROGRAM, V100, P355, DOI 10.1007/s10107-003-0475-6
[Anonymous], THESIS
Aras N, 2008, EUR J OPER RES, V191, P1223, DOI 10.1016/j.ejor.2007.08.002
Beliën J, 2014, TRANSPORT SCI, V48, P78, DOI 10.1287/trsc.1120.0448
Bettencourt LMA, 2011, P NATL ACAD SCI USA, V108, P19540, DOI 10.1073/pnas.1102712108
Brandes U, 2001, J MATH SOCIOL, V25, P163, DOI 10.1080/0022250X.2001.9990249
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Cao MF, 2010, STOCH ENV RES RISK A, V24, P1163, DOI 10.1007/s00477-010-0390-3
Chang NB, 1996, 7TH ISWA INTERNATIONAL CONGRESS, PROCEEDINGS II, pII295
Chang NB, 2008, WASTE MANAGE, V28, P776, DOI 10.1016/j.wasman.2007.04.002
Chang NB, 2007, WASTE MANAGE, V27, P820, DOI 10.1016/j.wasman.2006.05.002
Chang NB, 2011, CRIT REV ENV SCI TEC, V41, P1449, DOI 10.1080/10643381003608326
Chen, 2012, TURNING POINTS NATUR, DOI 10.1007/978-3-642-19160-2
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen HB, 2015, J AIR WASTE MANAGE, V65, P1161, DOI 10.1080/10962247.2015.1083913
Chen MM, 2014, IEEE T COMPUT SOC SY, V1, P46, DOI 10.1109/TCSS.2014.2307458
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Davila E, 2005, J ENVIRON MANAGE, V75, P353, DOI 10.1016/j.jenvman.2004.11.015
Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002
Eriksson O, 2005, J CLEAN PROD, V13, P241, DOI 10.1016/j.jclepro.2004.02.018
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
FRUCHTERMAN TMJ, 1991, SOFTWARE PRACT EXPER, V21, P1129, DOI 10.1002/spe.4380211102
Ghinea C, 2010, ENVIRON ENG MANAG J, V9, P869
Salema MIG, 2007, EUR J OPER RES, V179, P1063, DOI 10.1016/j.ejor.2005.05.032
Gorsevski PV, 2012, WASTE MANAGE, V32, P287, DOI 10.1016/j.wasman.2011.09.023
Govindan K, 2015, EUR J OPER RES, V240, P603, DOI 10.1016/j.ejor.2014.07.012
Guo P, 2008, ENVIRON MODELL SOFTW, V23, P1422, DOI 10.1016/j.envsoft.2008.04.009
Hanine M, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-2131-7
Hokkanen J, 1997, EUR J OPER RES, V98, P19, DOI 10.1016/0377-2217(95)00325-8
Hsin-Neng, 1993, J RESOURCE MANAGEMEN, V21, P194
HUANG GH, 1995, EUR J OPER RES, V83, P594, DOI 10.1016/0377-2217(94)00093-R
HUANG GH, 1992, CIVIL ENG SYST, V9, P319, DOI 10.1080/02630259208970657
Huang GH, 2001, ENVIRON MODEL ASSESS, V6, P271, DOI 10.1023/A:1013394118863
Iakovou E, 2009, RESOUR CONSERV RECY, V53, P329, DOI 10.1016/j.resconrec.2009.02.001
Jiménez M, 2007, EUR J OPER RES, V177, P1599, DOI 10.1016/j.ejor.2005.10.002
KAMADA T, 1989, INFORM PROCESS LETT, V31, P7, DOI 10.1016/0020-0190(89)90102-6
Kara SS, 2010, INT J ENVIRON SCI TE, V7, P717, DOI 10.1007/BF03326181
Karmakar S, 2006, ADV WATER RESOUR, V29, P1088, DOI 10.1016/j.advwatres.2006.04.003
Kirkeby JT, 2006, WASTE MANAGE RES, V24, P3, DOI 10.1177/0734242X06062580
Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314
Ko HJ, 2007, COMPUT OPER RES, V34, P346, DOI 10.1016/j.cor.2005.03.004
Korucu MK, 2012, WASTE MANAGE, V32, P2315, DOI 10.1016/j.wasman.2012.07.003
Laurent A, 2014, WASTE MANAGE, V34, P573, DOI 10.1016/j.wasman.2013.10.045
Lee DH, 2008, TRANSPORT RES E-LOG, V44, P455, DOI 10.1016/j.tre.2006.11.003
Leskovec J., 2007, ACM Transactions on the Web (TWEB), V1, P5
Li YP, 2010, J COMPUT CIVIL ENG, V24, P188, DOI 10.1061/(ASCE)CP.1943-5487.0000025
Lu HW, 2009, J ENVIRON MANAGE, V90, P396, DOI 10.1016/j.jenvman.2007.10.011
Lu ZQ, 2007, COMPUT OPER RES, V34, P299, DOI 10.1016/j.cor.2005.03.002
Maqsood M, 2003, J AIR WASTE MANAGE, V53, P540, DOI 10.1080/10473289.2003.10466195
Minciardi R, 2008, WASTE MANAGE, V28, P2202, DOI 10.1016/j.wasman.2007.10.003
Morrissey AJ, 2004, WASTE MANAGE, V24, P297, DOI 10.1016/j.wasman.2003.09.005
Najm MA, 2004, ENVIRON MODELL SOFTW, V19, P1151, DOI 10.1016/j.envsoft.2003.12.005
Ness AR, 1997, INT J EPIDEMIOL, V26, P1, DOI 10.1093/ije/26.1.1
Newman MEJ, 2004, PHYS REV E, V69, P24
Nie XH, 2007, J ENVIRON MANAGE, V84, P1, DOI 10.1016/j.jenvman.2006.04.006
Opsahl T, 2010, SOC NETWORKS, V32, P245, DOI 10.1016/j.socnet.2010.03.006
REVELLE C, 1991, TRANSPORT SCI, V25, P138, DOI 10.1287/trsc.25.2.138
Riber C, 2008, WASTE MANAGE RES, V26, P96, DOI 10.1177/0734242X08088583
Saaty TL, 1980, ANAL HIERARCHY PROCE
Sener S, 2010, WASTE MANAGE, V30, P2037, DOI 10.1016/j.wasman.2010.05.024
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
SMALL HG, 1977, SOC STUD SCI, V7, P139, DOI 10.1177/030631277700700202
Tan Q, 2010, J ENVIRON MANAGE, V91, P1898, DOI 10.1016/j.jenvman.2010.04.005
Thelwall M, 2008, J INF SCI, V34, P605, DOI 10.1177/0165551507087238
van Leeuwen T, 2006, SCIENTOMETRICS, V66, P133, DOI 10.1007/s11192-006-0010-7
White HD, 2003, J AM SOC INF SCI TEC, V54, P423, DOI 10.1002/asi.10228
White P., 1995, INTEGRATED SOLID WAS, DOI DOI 10.1007/978-1-4615-2369-7
Wu YN, 2016, ENERGIES, V9, DOI 10.3390/en9030157
Yang LJ, 2016, ALGORITHMS, V9, DOI 10.3390/a9040073
Yeomans JS, 2003, J ENVIRON INFORM, V1, P37, DOI 10.3808/jei.200300005
Zarei M, 2010, MATH PROBL ENG, V2010, DOI 10.1155/2010/649028
Zeng Y, 2005, J ENVIRON INFORM, V6, P1, DOI 10.3808/jei.200500050
Zhang BC, 2005, ACM SIGCOMM COMP COM, V35, P53, DOI 10.1145/1052812.1052825
ZHU ZP, 1990, CIVIL ENG SYST, V7, P29, DOI 10.1080/02630259008970567
NR 75
TC 8
Z9 9
U1 3
U2 22
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0254-5330
EI 1572-9338
J9 ANN OPER RES
JI Ann. Oper. Res.
PD NOV
PY 2020
VL 294
IS 1-2
SI SI
BP 655
EP 676
DI 10.1007/s10479-020-03570-3
EA MAR 2020
PG 22
WC Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Operations Research & Management Science
GA OP9XW
UT WOS:000564403200001
DA 2024-09-05
ER
PT J
AU Kusch, JD
Nelson, DA
Simpson, D
Gerrits, R
Glass, L
AF Kusch, Jennifer D.
Nelson, David A.
Simpson, Deborah
Gerrits, Ronald
Glass, Laurie
TI Using AI to Understand Key Success Features in Evolving CTSAs
SO CTS-CLINICAL AND TRANSLATIONAL SCIENCE
LA English
DT Article
DE clinical translational science; appreciative inquiry; research;
qualitative evaluation; organizational change
AB A vital role for Clinical and Translational Science Award (CTSA) evaluators is to first identify and then articulate the necessary change processes that support the research infrastructures and achieve synergies needed to improve health through research. The use of qualitative evaluation strategies to compliment quantitative tracking measures (e.g., number of grants/publications) is an essential but under-utilized approach in CTSA evaluations. The Clinical and Translational Science Institute of Southeast Wisconsin implemented a qualitative evaluation approach using appreciative inquiry (AI) that has revealed three critical features associated with CTSA infrastructure transformation success: developing open communication, creating opportunities for proactive collaboration, and ongoing attainment of milestones at the key function group level. These findings are consistent with Bolman & Deal's four interacting hallmarks of successful organizations: structural (infrastructure), political (power distribution; organizational politics), human resource (facilitating change among humans necessary for continued success), and symbolic (visions and aspirations). Data gathered through this longitudinal AI approach illuminates how these change features progress over time as CTSA funded organizations successfully create the multiinstitutional infrastructures to connect laboratory discoveries with the diagnosis and treatment of human disease.
C1 [Kusch, Jennifer D.] Med Coll Wisconsin, Clin & Translat Sci Inst Southeast Wisconsin, Milwaukee, WI 53226 USA.
[Nelson, David A.; Simpson, Deborah] Med Coll Wisconsin, Milwaukee, WI 53226 USA.
[Simpson, Deborah] Aurora Hlth Care, Milwaukee, WI USA.
[Gerrits, Ronald] Milwaukee Sch Engn, Milwaukee, WI USA.
[Glass, Laurie] Univ Wisconsin, Milwaukee, WI 53201 USA.
C3 Medical College of Wisconsin; Medical College of Wisconsin; Milwaukee
School Engineering; University of Wisconsin System; University of
Wisconsin Milwaukee
RP Kusch, JD (corresponding author), Med Coll Wisconsin, Clin & Translat Sci Inst Southeast Wisconsin, Milwaukee, WI 53226 USA.
EM jkusch@mcw.edu
RI Nelson, David A/A-8306-2008
FU National Center for Advancing Translational Sciences, National
Institutes of Health [8UL1TR000055]
FX This publication was supported by the National Center for Advancing
Translational Sciences, National Institutes of Health, through Grant
Number 8UL1TR000055. Its Contents are solely the responsibility of the
authors and do not necessarily represent the official views of the NIH.
CR Bolman L.G., 2008, Reframing organizations, artistry, choice and leadership, VFourth
Bushe G.R., 2005, J APPL BEHAV SCI, V41, P161, DOI [10.1177/0021886304270337, DOI 10.1177/0021886304270337]
Preskill H., 2006, REFRAMING EVALUATION
Zerhouni E, 2003, SCIENCE, V302, P63, DOI 10.1126/science.1091867
Zerhouni EA, 2005, NEW ENGL J MED, V353, P1621, DOI 10.1056/NEJMsb053723
Zerhouni EA, 2005, JAMA-J AM MED ASSOC, V294, P1352, DOI 10.1001/jama.294.11.1352
NR 6
TC 1
Z9 1
U1 0
U2 11
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1752-8054
EI 1752-8062
J9 CTS-CLIN TRANSL SCI
JI CTS-Clin. Transl. Sci.
PD AUG
PY 2013
VL 6
IS 4
BP 314
EP 316
DI 10.1111/cts.12027
PG 3
WC Medicine, Research & Experimental
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Research & Experimental Medicine
GA 196GR
UT WOS:000322762300013
PM 23919368
OA Green Published, Green Accepted, hybrid
DA 2024-09-05
ER
PT C
AU Hou, JB
AF Hou, Jinbiao
BE Luo, Q
Wang, T
TI Research on Design of an Automatic Evaluation System of Search Engine
SO 2009 ETP INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION
(FCC 2009)
LA English
DT Proceedings Paper
CT 1st International Conference on Future Computer and Communication (FCC
2009)
CY JUN 06-07, 2009
CL Wuhan, PEOPLES R CHINA
DE search engine; evaluation system; recall rate; accuracy rate
AB At present, the search engine is getting more and more important. The frequency of use is getting higher and higher. In order to help users to choose a highly effective search engine, C# is used as a development tool. It researches and implements an automatic evaluation system of search engine which is accurate, highly effective, highly automatic, safe. The structure of the system is simple. It has four modules. Its functions are powerful. It can implement evaluation to search engines on the web. It has the good promotion and application value.
C1 Dezhou Univ, Dept Comp Sci & Technol, Dezhou, Peoples R China.
C3 Dezhou University
RP Hou, JB (corresponding author), Dezhou Univ, Dept Comp Sci & Technol, Dezhou, Peoples R China.
EM houjinb@126.com
CR LI CL, 2006, ASP NET SQL SERVER D, P63
LIBERTY J, 2001, PROGRAMMING C, P86
LIU GQ, 2006, DESIGN RES TOPIC SPE, P8
Liu Y, 2007, CYTOKINE, V39, P25, DOI 10.1016/j.cyto.2007.07.096
MEN FC, 2008, MODERN INFORM, P21
QIU JL, 2007, VISUAL C NET PROGRAM, P121
WANG JC, 2001, J COMPUTER RES DEV, P187
ZHANG X, 2004, MICROW OPT TECHN LET, P142
NR 8
TC 3
Z9 3
U1 0
U2 0
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
BN 978-0-7695-3676-7
PY 2009
BP 16
EP 18
DI 10.1109/FCC.2009.11
PG 3
WC Computer Science, Hardware & Architecture; Engineering, Electrical &
Electronic; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering; Telecommunications
GA BVF72
UT WOS:000291396200004
DA 2024-09-05
ER
PT J
AU Li, XX
Bai, Y
Kang, YF
AF Li, Xixi
Bai, Yun
Kang, Yanfei
TI Exploring the social influence of the Kaggle virtual community on the M5
competition
SO INTERNATIONAL JOURNAL OF FORECASTING
LA English
DT Article
DE Forecasting competition; Virtual community; Social influence; Topic
modeling; Social network analysis; M5
ID LEADERSHIP; ROLES
AB One of the most significant differences of M5 over previous forecasting competitions is that it was held on Kaggle, an online platform for data scientists and machine learning practitioners. Kaggle provides a gathering place, or virtual community, for web users who are interested in the M5 competition. Users can share code, models, features, and loss functions through online notebooks and discussion forums. Here, we study the social influence of this virtual community on user behavior in the M5 competition. We first research the content of the M5 virtual community by topic modeling and trend analysis. Further, we perform social media analysis to identify the potential relationship network of the virtual community. We study the roles and characteristics of some key participants who promoted the diffusion of information within the M5 virtual community. Overall, this study provides in-depth insights into the mechanism of the virtual community's influence on the participants and has potential implications for future online competitions.(c) 2021 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
C1 [Li, Xixi] Univ Manchester, Dept Math, Manchester, England.
[Bai, Yun; Kang, Yanfei] Beihang Univ, Sch Econ & Management, Beijing, Peoples R China.
C3 University of Manchester; Beihang University
RP Kang, YF (corresponding author), Beihang Univ, Sch Econ & Management, Beijing, Peoples R China.
EM xixi.li@manchester.ac.uk; baiyun12138@buaa.edu.cn;
yanfeikang@buaa.edu.cn
RI Kang, Yanfei/ITT-3438-2023
OI Kang, Yanfei/0000-0001-8769-6650; Bai, Yun/0000-0003-4237-7589; Li,
Xixi/0000-0001-5846-3460
FU National Natural Science Foundation of China; National Key Re-search and
Development Program; [72171011]; [72021001]; [2019YFB1404600]
FX Acknowledgments The authors are grateful to the editors and two
anony-mous reviewers for their helpful comments that improved the
content of the paper. Yanfei Kang is supported by the National Natural
Science Foundation of China (No. 72171011 and No. 72021001) and the
National Key Re-search and Development Program (No. 2019YFB1404600) .
This research was supported by the high-performance computing (HPC)
resources at Beihang University.
CR Ågerfalk PJ, 2013, EUR J INFORM SYST, V22, P251, DOI 10.1057/ejis.2013.6
Aletras N, 2013, P 10 INT C COMP SEM, P13, DOI [10.1145/2537052, DOI 10.1145/2537052]
[Anonymous], 2006, P 39 ANN HAW INT C S
[Anonymous], 1989, Sociological Methodology, DOI DOI 10.2307/270949
Bai Y., 2020, J PHYS C SERIES
Benamar L, 2017, J COMPUT-MEDIAT COMM, V22, P337, DOI 10.1111/jcc4.12195
Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859]
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Chau M, 2012, MIS QUART, V36, P1189
Cialdini R.B., 1998, Social Influence, Social Norms, Conformity and Compliance, VVolume 2, P151
Creswell J. W., 2018, Designing and conducting mixed methods research, V3rd
Disney A., 2020, SOCIAL NETWORK ANAL
Ellison N.B., 2013, SOCIALITY SOCIAL NET, DOI [10.1093/oxfordhb/9780199589074.001.0001, DOI 10.1093/OXFORDHB/9780199589074.013.0008]
Fournier S, 2009, HARVARD BUS REV, V87, P105
Gleave E., 2009, Proceedings of the 42nd Hawaii International Conference on System Science, P1
Golbeck J., 2013, Analyzing the social web, DOI DOI 10.1016/B978-0-12-405531-5.00003-1
Golbeck J., 2015, Syngress
Hoppe B, 2010, LEADERSHIP QUART, V21, P600, DOI 10.1016/j.leaqua.2010.06.004
Hovland Carl I, 1953, Communication and persuasion
Huberty M, 2015, INT J FORECASTING, V31, P992, DOI 10.1016/j.ijforecast.2014.08.005
Huffaker D, 2010, HUM COMMUN RES, V36, P593, DOI 10.1111/j.1468-2958.2010.01390.x
Jacobi C, 2016, DIGIT JOURNAL, V4, P89, DOI 10.1080/21670811.2015.1093271
Ke GL, 2017, ADV NEUR IN, V30
Kim YoungJi., 2015, Annals of the International Communication Association, V39, P163, DOI DOI 10.1080/23808985.2015.11679175
Kwok N, 2018, LEADERSHIP QUART, V29, P648, DOI 10.1016/j.leaqua.2018.04.003
Makridakis, 2020, INT J FORECASTING, DOI [10.1016/j.ijforecast.2021.10.009, DOI 10.1016/J.IJFORECAST.2021.10.009]
Makridakis S, 2000, INT J FORECASTING, V16, P451, DOI 10.1016/S0169-2070(00)00057-1
MAKRIDAKIS S, 1982, J FORECASTING, V1, P111, DOI 10.1002/for.3980010202
Makridakis S, 2020, INT J FORECASTING, V36, P54, DOI 10.1016/j.ijforecast.2019.04.014
Newman D., 2010, P HUM LANG TECHN ANN, P100
O'Callaghan D, 2015, EXPERT SYST APPL, V42, P5645, DOI 10.1016/j.eswa.2015.02.055
Page L., 1999, Technical Report Stanford InfoLab
Pavlinek M, 2017, EXPERT SYST APPL, V80, P83, DOI 10.1016/j.eswa.2017.03.020
Pfeil U, 2011, INT J HUM-COMPUT INT, V27, P323, DOI 10.1080/10447318.2011.540490
SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007
Turner TC, 2005, J COMPUT-MEDIAT COMM, V10
Venkatesh V, 2013, MIS QUART, V37, P21
Walther JB, 2012, J COMPUT-MEDIAT COMM, V18, P2, DOI 10.1111/j.1083-6101.2012.01592.x
Xixi L., 2017, 2017 INT C SERVICE S, P1
Xue J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239441
Ye LS, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102248
Zhang H, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1425, DOI 10.1145/2783258.2783293
NR 42
TC 1
Z9 1
U1 9
U2 16
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0169-2070
EI 1872-8200
J9 INT J FORECASTING
JI Int. J. Forecast.
PD OCT-DEC
PY 2022
VL 38
IS 4
SI SI
BP 1507
EP 1518
DI 10.1016/j.ijforecast.2021.10.001
EA OCT 2022
PG 12
WC Economics; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA 5U0AG
UT WOS:000876216700022
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Arguello, J
Callan, J
Shulman, S
AF Arguello, Jaime
Callan, Jamie
Shulman, Stuart
TI Recognizing Citations in Public Comments
SO JOURNAL OF INFORMATION TECHNOLOGY & POLITICS
LA English
DT Article
DE Citation analysis; public comments; e-rulemaking; text mining;
information extraction; machine learning
ID ALGORITHM
AB Notice and comment rulemaking is central to how U.S. federal agencies craft new regulation. E-rulemaking, the process of soliciting and considering public comments that are submitted electronically, poses a challenge for agencies. The large volume of comments received makes it difficult to distill and address the most substantive concerns of the public. This work attempts to alleviate this burden by applying existing machine learning techniques to the problem of recognizing citation sentences. A citation in this context is defined as a statement in which the author of the public comment references an external source of factual information that is associated with a specific person or organization. The problem is formulated as a binary classification problem: Is a specific person or organization mentioned in a sentence being referenced as an external source of information? We show that our definition of a citation is reproducible by human judges and that citations can be detected using machine learning techniques with some success. Casting this as a machine learning problem requires selecting an appropriate representation of the sentence. Several feature sets are evaluated individually and in combination. Superior results are obtained by combining feature sets. Syntactic features, which characterize the structure of the sentence rather than its content, significantly improve accuracy when combined with other features, but not when used in isolation. Although prediction error rate is adequate, coverage could be improved. An error analysis enumerates short-term and long-term challenges that must be overcome to improve recall.
C1 [Arguello, Jaime] Carnegie Mellon Univ, Language Technol Inst, Pittsburgh, PA 15213 USA.
[Callan, Jamie] Carnegie Mellon Univ, Sch Comp Sci, Language Technol Inst, Grad Dept, Pittsburgh, PA 15213 USA.
[Shulman, Stuart] Univ Pittsburgh, Sch Informat Sci, Sara Fine Inst, Pittsburgh, PA 15260 USA.
[Shulman, Stuart] Univ Pittsburgh, Ctr Social & Urban Res, Qualitat Data Anal Program, Pittsburgh, PA 15260 USA.
[Shulman, Stuart] DARPA, Natl Inst Hlth, Natl Sci Fdn, Arlington, VA 22203 USA.
C3 Carnegie Mellon University; Carnegie Mellon University; Pennsylvania
Commonwealth System of Higher Education (PCSHE); University of
Pittsburgh; Pennsylvania Commonwealth System of Higher Education
(PCSHE); University of Pittsburgh; National Science Foundation (NSF);
National Institutes of Health (NIH) - USA; United States Department of
Defense; Defense Advanced Research Projects Agency (DARPA)
RP Arguello, J (corresponding author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
EM jaime@cs.cmu.edu
RI Shulman, Stuart/JQW-7521-2023
CR [Anonymous], 2007, HUMAN LANGUAGE TECHN
[Anonymous], 1968, Public Knowledge: An Essay Concerning the Social Dimension of Science
Bikel DM, 1999, MACH LEARN, V34, P211, DOI 10.1023/A:1007558221122
Blum A., 1998, Proceedings of the Eleventh Annual Conference on Computational Learning Theory, P92, DOI 10.1145/279943.279962
Bunescu Razvan C, 2005, P C HUM LANG TECHN E
Carletta J, 1996, COMPUT LINGUIST, V22, P249
ERKAN G, 2007, P 2007 JOINT C EMP M, P228
Green R., 2004, ACL 2004, P375
Joachims T., 1998, MAKING LARGE SCALE S
Kim Y., 2006, P CODATA COMM DAT SC
Pasanek B., LIT LINGUISTIC COMPU
PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814
Powley B., 2007, P RIAO C I D
RILOFF E, 1993, PROCEEDINGS OF THE ELEVENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, P811
Ruppenhofer J., 2006, FRAMENET 2 EXTENDED
Stevenson M, 2005, Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), P379, DOI DOI 10.3115/1219840.1219887
Teufel S., 2006, P 7 SIGDIAL WORKSHOP, P80, DOI [10.3115/1654595.1654612, DOI 10.3115/1654595.1654612]
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Vapnik Vladimir N., 1995, The nature of statistical learning theory
Wiebe J, 2004, COMPUT LINGUIST, V30, P277, DOI 10.1162/0891201041850885
WOLPERT DH, 1990, LAUR903460 COMPL SYS
Yang H., 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P421, DOI 10.1145/1148170.1148243
Yangarber R, 2003, 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P343
NR 23
TC 2
Z9 3
U1 1
U2 5
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1933-1681
EI 1933-169X
J9 J INF TECHNOL POLITI
JI J. Inf. Technol. Politics
PY 2008
VL 5
IS 1
SI SI
BP 49
EP 71
DI 10.1080/19331680802153683
PG 23
WC Communication; Political Science
WE Emerging Sources Citation Index (ESCI)
SC Communication; Government & Law
GA V92JK
UT WOS:000212989900005
DA 2024-09-05
ER
PT J
AU Fitzgerald, L
Wong, P
Hannon, J
Tokerud, MS
Lyons, J
AF Fitzgerald, Les
Wong, Pauline
Hannon, John
Tokerud, Marte Solberg
Lyons, Judith
TI Curriculum learning designs: Teaching health assessment skills for
advanced nursing practitioners through sustainable flexible learning
SO NURSE EDUCATION TODAY
LA English
DT Article
DE Action research; Clinical practice; Curriculum development; Nursing;
Online learning; Health assessment
AB Background: Innovative curriculum designs are vital for effective learning in contemporary nursing education where traditional modes of delivery are not adequate to meet the learning needs of postgraduate students. This instance of postgraduate teaching in a distributed learning environment offered the opportunity to design a flexible learning model for teaching advanced clinical skills.
Aim: To present a sustainable model for flexible learning that enables specialist nurses to gain postgraduate qualifications without on-campus class attendance by teaching and assessing clinical health care skills in an authentic workplace setting.
Methods: An action research methodology was used to gather evidence and report on the process of curriculum development of a core unit, Comprehensive Health Assessment (CHA), within 13 different postgraduate speciality courses. Qualitative data was collected from 27 teaching academics, 21 clinical specialist staff, and 7 hospital managers via interviews, focus groups and journal reflections. Evaluations from the initial iteration of CHA from 36 students were obtained. Data was analyzed to develop and evaluate the curriculum design of CHA.
Results: The key factors indicated by participants in the curriculum design process were coordination and structuring of teaching and assessment; integration of content development; working with technologies, balancing specialities and core knowledge; and managing induction and expectations.
Conclusions: A set of recommendations emerged as a result of the action research process. These included: a constructive alignment approach to curriculum design; the production of a facilitator's guide that specifies expectations and unit information for academic and clinical education staff; an agreed template for content authors; and the inclusion of synchronous communication for real-time online tutoring. The highlight of the project was that it built curriculum design capabilities of clinicians and students which can sustain this alternative model of online learning. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Fitzgerald, Les; Hannon, John; Lyons, Judith] La Trobe Univ, La Trobe Rural Hlth Sch, Bundoora, Vic 3086, Australia.
[Wong, Pauline] La Trobe Univ, Alfred Hlth Clin Sch, Bundoora, Vic 3086, Australia.
[Tokerud, Marte Solberg] La Trobe Univ, Sch Nursing & Midwifery, Bundoora, Vic 3086, Australia.
C3 La Trobe University; La Trobe University; La Trobe University
RP Fitzgerald, L (corresponding author), La Trobe Univ, La Trobe Rural Hlth Sch, Bundoora, Vic 3086, Australia.
EM L.Fitzgerald@latrobe.edu.au; P.Wong@latrobe.edu.au;
J.Hannon@latrobe.edu.au; M.SolbergTokerud@latrobe.edu.au;
Judith.Lyons@latrobe.edu.au
RI Wong, Pauline/X-2488-2019; Hannon, John/AAZ-4722-2021; Wong,
Pauline/JCE-4682-2023; Wong, Pauline/AAQ-1526-2020
OI Lyons, Judith/0000-0002-3184-173X; Hannon, John/0000-0002-1790-0860;
Wong, Pauline/0000-0002-6396-0338
CR [Anonymous], 2004, THEORY PRACTICE ONLI
[Anonymous], INT J NURSING ED SCH
Biggs J., 2003, Aligning Teaching for Constructing Learning
Carr W., 2003, BECOMING CRITICAL ED
Decker S, 2008, J CONTIN EDUC NURS, V39, P74, DOI 10.3928/00220124-20080201-06
Fraser DM, 2000, MIDWIFERY, V16, P213, DOI 10.1054/midw.2000.0223
Jeffries P., 2007, SIMHLATION NURSING E
Jeffries PR, 2005, NURS EDUC PERSPECT, V26, P96
Koeckeritz Jane, 2002, Nurse Educ, V27, P283, DOI 10.1097/00006223-200211000-00010
Lyons J, 1998, Contemp Nurse, V7, P98
Milton J., 2003, Higher Education Research Development, V22, P297
Stringer E.T., 2007, ACTION RES-LONDON
Tallent-Runnels MK, 2006, REV EDUC RES, V76, P93, DOI 10.3102/00346543076001093
Wozniak H, 2009, AUSTRALAS J EDUC TEC, V25, P221
NR 14
TC 8
Z9 11
U1 0
U2 33
PU CHURCHILL LIVINGSTONE
PI EDINBURGH
PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE,
LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND
SN 0260-6917
EI 1532-2793
J9 NURS EDUC TODAY
JI Nurse Educ. Today
PD OCT
PY 2013
VL 33
IS 10
BP 1230
EP 1236
DI 10.1016/j.nedt.2012.05.029
PG 7
WC Education, Scientific Disciplines; Nursing
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Education & Educational Research; Nursing
GA 244SP
UT WOS:000326410800025
PM 22749437
DA 2024-09-05
ER
PT J
AU Liang, ZT
Mao, J
Lu, K
Ba, ZC
Li, G
AF Liang, Zhentao
Mao, Jin
Lu, Kun
Ba, Zhichao
Li, Gang
TI Combining deep neural network and bibliometric indicator for emerging
research topic prediction
SO INFORMATION PROCESSING & MANAGEMENT
LA English
DT Article
DE Emerging topic prediction; Time series forecasting; Neural network;
Bibliometric indicator
ID SCIENTIFIC LITERATURES; IDENTIFICATION; EVOLUTION; IMPACT; TECHNOLOGIES;
EMERGENCE; SCIENCE; TRENDS
AB Predicting emerging research topics is important to researchers and policymakers. In this study, we propose a two-step solution to the problem of emerging topic prediction. The first step forecasts the future popularity score, a novel indicator reflecting the impact and growth, of candidate topics in a time-series manner. The second step selects novel topics from the candidates predicted to be popular in the first step. Terms with domain characteristics are used as candidate topics. Deep neural networks, specifically LSTM and NNAR, are applied with nine features of topics to predict popularity score. We evaluated the models and five baselines on two datasets from two perspectives, i.e., the ability to (1) predict the correct indicator value and (2) reconstruct the optimal ranking order. Two types of training strategies were compared, including a global strategy that trains a model with all topics and two local strategies that train separate models with different groups of topics. Our results show that LSTM and NNAR outperform other models in predicting the value of popularity score measured by MAE and RMSE, while LightGBM is a competitive baseline in ranking the topics in terms of NDCG@20. The performance difference of global and local strategies is not significant. Emerging topics predicted by our approach are compared with those by other methods. A qualitative assessment on nominated emerging topics suggests topics nominated by machine learning methods are more alike than those by the rulebased model. Some important topics are nominated according to a preliminary literature analysis. This study exploited the strengths of both machine learning and bibliometric indicator approaches for emerging topic prediction. Deep neural networks are applied where objective optimization target can be defined and measured. Bibliometric indicator offers an efficient way to select novel topics from candidates. The hybrid approach shows promise in considering various characteristics of emerging topics when making predictions.
C1 [Liang, Zhentao; Mao, Jin; Li, Gang] Wuhan Univ, Ctr Studies Informat Resources, Bayi Rd 299, Wuhan 430072, Peoples R China.
[Liang, Zhentao; Mao, Jin] Wuhan Univ, Sch Informat Management, Bayi Rd 299, Wuhan 430072, Peoples R China.
[Lu, Kun] Univ Oklahoma, Sch Lib & Informat Studies, Norman, OK 73019 USA.
[Ba, Zhichao] Nanjing Univ Sci & Technol, Dept Informat Management, Xiaolingwei St 200, Nanjing 210094, Peoples R China.
C3 Wuhan University; Wuhan University; University of Oklahoma System;
University of Oklahoma - Norman; Nanjing University of Science &
Technology
RP Mao, J (corresponding author), Wuhan Univ, Ctr Studies Informat Resources, Bayi Rd 299, Wuhan 430072, Peoples R China.; Mao, J (corresponding author), Wuhan Univ, Sch Informat Management, Bayi Rd 299, Wuhan 430072, Peoples R China.
EM maojin@whu.edu.cn
RI Ba, Zhichao/IAR-0606-2023; Liang, Zhentao/AAP-7103-2020; Lu,
Kun/G-2416-2015
OI Liang, Zhentao/0000-0003-2927-3523; Lu, Kun/0000-0001-5614-7042; ba, zhi
chao/0000-0001-7005-8265
FU National Natural Science Foundation of China (NSFC) [71804135, 71921002,
71790612]; world class discipline project of the Ministry of Education
"Library, Information, and Data Science" in China
FX This study was funded by the National Natural Science Foundation of
China (NSFC) Grant Nos. 71804135, 71921002, and 71790612. This research
was also supported by the world class discipline project of the Ministry
of Education "Library, Information, and Data Science" in China. In
addition, we are very grateful to the anonymous reviewers for their
helpful comments.
CR Aboagye-Sarfo P, 2015, J BIOMED INFORM, V57, P62, DOI 10.1016/j.jbi.2015.06.022
Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Altuntas S, 2020, SCIENTOMETRICS, V124, P1157, DOI 10.1007/s11192-020-03535-0
Asooja K, 2016, LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P417
Batlle D, 2020, J AM SOC NEPHROL, V31, P1380, DOI 10.1681/ASN.2020040419
Ben Taieb S, 2012, EXPERT SYST APPL, V39, P7067, DOI 10.1016/j.eswa.2012.01.039
Boyack KW, 2014, J ENG TECHNOL MANAGE, V32, P147, DOI 10.1016/j.jengtecman.2013.07.001
Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003
Chen CY, 2018, AAAI CONF ARTIF INTE, P2111
Cho TS, 2011, SCIENTOMETRICS, V89, P795, DOI 10.1007/s11192-011-0457-z
Cozzens S, 2010, TECHNOL ANAL STRATEG, V22, P361, DOI 10.1080/09537321003647396
Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526
Fang YC, 2020, RADIOLOGY, V296, pE115, DOI 10.1148/radiol.2020200432
Glänzel W, 2012, SCIENTOMETRICS, V91, P399, DOI 10.1007/s11192-011-0591-7
Gök A, 2016, J ASSOC INF SCI TECH, V67, P715, DOI 10.1002/asi.23406
Goldstein J., 1999, Emergence, V1, P49, DOI DOI 10.1207/S15327000EM01014
Guo HN, 2011, SCIENTOMETRICS, V89, P421, DOI 10.1007/s11192-011-0433-7
Hill JT, 2014, DEV DYNAM, V243, P1632, DOI 10.1002/dvdy.24183
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Hu K, 2019, INFORM PROCESS MANAG, V56, P1185, DOI 10.1016/j.ipm.2019.02.014
Hua H, 2019, J HEMATOL ONCOL, V12, DOI 10.1186/s13045-019-0754-1
Huang Y, 2019, NAT BIOTECHNOL, V37, P1107, DOI 10.1038/s41587-019-0275-z
Jeong Y, 2019, TECHNOL FORECAST SOC, V146, P655, DOI 10.1016/j.techfore.2018.05.010
Ke GL, 2017, ADV NEUR IN, V30
Khatibi A, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102057
Kim M, 2018, J ASSOC INF SCI TECH, V69, P329, DOI 10.1002/asi.23960
Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314
Krenn M, 2020, P NATL ACAD SCI USA, V117, P1910, DOI 10.1073/pnas.1914370116
Larivière V, 2015, J ASSOC INF SCI TECH, V66, P1323, DOI 10.1002/asi.23266
Lee C, 2018, TECHNOL FORECAST SOC, V127, P291, DOI 10.1016/j.techfore.2017.10.002
LESHNO M, 1993, NEURAL NETWORKS, V6, P861, DOI 10.1016/S0893-6080(05)80131-5
Machuca TN, 2015, AM J TRANSPLANT, V15, P993, DOI 10.1111/ajt.13124
Mariani MS, 2019, TECHNOL FORECAST SOC, V146, P644, DOI 10.1016/j.techfore.2018.01.036
McKeown K, 2016, J ASSOC INF SCI TECH, V67, P2684, DOI 10.1002/asi.23612
Meyers A. L., 2018, Frontiers in Research Metrics and Analytics, V3, P19, DOI [10.3389/frma.2018.00019, DOI 10.3389/FRMA.2018.00019]
Muhlroth C, 2022, IEEE T ENG MANAGE, V69, P493, DOI 10.1109/TEM.2020.2989214
Porter AL, 2019, TECHNOL FORECAST SOC, V146, P628, DOI 10.1016/j.techfore.2018.04.016
PRICE DJD, 1965, SCIENCE, V149, P510
Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006
Savarimuthu S, 2020, J CARDIAC SURG, V35, P1298, DOI 10.1111/jocs.14635
SMALL H, 1974, SCI STUD, V4, P17, DOI 10.1177/030631277400400102
Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005
Sutskever I, 2014, ADV NEUR IN, V27
Taskaya-Temizel T, 2005, NEURAL NETWORKS, V18, P781, DOI 10.1016/j.neunet.2005.06.003
Tu YN, 2012, INFORM PROCESS MANAG, V48, P303, DOI 10.1016/j.ipm.2011.07.006
Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808
Wang J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127298
Wang Q, 2018, J ASSOC INF SCI TECH, V69, P290, DOI 10.1002/asi.23930
Winnink JJ, 2019, TECHNOL FORECAST SOC, V146, P673, DOI 10.1016/j.techfore.2018.05.018
Xu J, 2018, SCIENTOMETRICS, V117, P973, DOI 10.1007/s11192-018-2897-1
Xu S, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100983
Xu S, 2020, SCIENTOMETRICS, V122, P607, DOI 10.1007/s11192-019-03288-5
Yan EJ, 2018, SCIENTOMETRICS, V115, P369, DOI 10.1007/s11192-017-2583-8
NR 53
TC 34
Z9 39
U1 20
U2 220
PU ELSEVIER SCI LTD
PI London
PA 125 London Wall, London, ENGLAND
SN 0306-4573
EI 1873-5371
J9 INFORM PROCESS MANAG
JI Inf. Process. Manage.
PD SEP
PY 2021
VL 58
IS 5
AR 102611
DI 10.1016/j.ipm.2021.102611
EA APR 2021
PG 18
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA TU6HG
UT WOS:000681134700007
DA 2024-09-05
ER
PT J
AU Marrone, M
Lemke, S
Kolbe, LM
AF Marrone, Mauricio
Lemke, Sascha
Kolbe, Lutz M.
TI Entity linking systems for literature reviews
SO SCIENTOMETRICS
LA English
DT Article
DE Word-sense disambiguation; Entity annotation; Science mapping;
Bibliometric methods; Systematic mapping; Systematic literature review;
Named entity recognition
ID SCIENCE; MANAGEMENT; TOOL; KNOWLEDGE; LANGUAGE
AB Computer-assisted methods and tools can help researchers automate the coding process of literature reviews and accelerate the literature review process. However, existing approaches for coding textual data do not account for lexical ambiguity; that is, instances in which individual words have multiple meanings. To counter this, we developed a method to conduct rapid and comprehensive analyses of diverse literature types. Our method uses entity linking and keyword analysis and is embedded into a literature review framework. Next, we apply the framework to review the literature on digital disruption and digital transformation. We outline the method's advantages and its applicability to any research topic.
C1 [Marrone, Mauricio] Macquarie Univ, Dept Accounting & Corp Governance, Sydney, NSW 2109, Australia.
[Lemke, Sascha; Kolbe, Lutz M.] Univ Goettingen, Chair Informat Syst, Gottingen, Germany.
C3 Macquarie University; University of Gottingen
RP Marrone, M (corresponding author), Macquarie Univ, Dept Accounting & Corp Governance, Sydney, NSW 2109, Australia.
EM mauricio.marrone@mq.edu.au
OI Marrone, Mauricio/0000-0003-3896-6049
FU CAUL
FX Open Access funding enabled and organized by CAUL and its Member
Institutions.
CR Alghamdi R, 2015, INT J ADV COMPUT SC, V6, P147
Anthony L, 2005, 2005 IEEE INTERNATIONAL PROFESSIONAL COMMUNICATION CONFERENCE (IPCC), P729
Antons D, 2019, J MANAGE, V45, P3035, DOI 10.1177/0149206318774619
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Bal AS, 2010, J PUBLIC AFF, V10, P313, DOI 10.1002/pa.366
Bandara W, 2015, COMMUN ASSOC INF SYS, V37, P154
Banks GC, 2016, ACAD MANAGE J, V59, P2205, DOI 10.5465/amj.2015.0728
Barry CA, 1998, SOCIOL RES ONLINE, V3
Baskerville RL, 2009, MIS QUART, V33, P647
BENBASAT I, 1987, MIS QUART, V11, P369, DOI 10.2307/248684
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boell SK, 2014, COMMUN ASSOC INF SYS, V34, P257
Bonaccorsi A, 2021, SCIENTOMETRICS, V126, P1745, DOI 10.1007/s11192-020-03803-z
Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA]
Brendel A. B., 2020, WHAT LIT REV A SYNTH
Cai CW, 2019, ABACUS, V55, P709, DOI 10.1111/abac.12179
Callon Michel., 1986, Mapping the Dynamics of Science and Technology, P163
Campbell C, 2011, J ADVERTISING, V40, P87, DOI 10.2753/JOA0091-3367400106
Cifariello P, 2019, INFORM SYST, V82, P1, DOI 10.1016/j.is.2018.12.003
Cornolti Marco., 2013, Proceedings of the 22nd international conference on World Wide Web, P249, DOI [10.1145/2488388.2488411, DOI 10.1145/2488388.2488411]
Crichton G, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1776-8
Cuzzola J, 2015, EXPERT SYST APPL, V42, P6864, DOI 10.1016/j.eswa.2015.04.054
Dunning T., 1993, Computational Linguistics, V19, P61
Dyson RG, 2004, EUR J OPER RES, V152, P631, DOI 10.1016/S0377-2217(03)00062-6
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Gallon J. R., 1991, NITROGEN FIXING ORGA
Garrett-Jones S, 2010, J TECHNOL TRANSFER, V35, P527, DOI 10.1007/s10961-009-9139-x
George G, 2016, ACAD MANAGE J, V59, P1493, DOI 10.5465/amj.2016.4005
Giorgi JM, 2018, BIOINFORMATICS, V34, P4087, DOI 10.1093/bioinformatics/bty449
González-Albo B, 2011, J INFORMETR, V5, P369, DOI 10.1016/j.joi.2011.01.011
Granato D, 2018, TRENDS FOOD SCI TECH, V72, P83, DOI 10.1016/j.tifs.2017.12.006
Hannigan TR, 2019, ACAD MANAG ANN, V13, P586, DOI 10.5465/annals.2017.0099
Hasibi Faegheh, 2016, Advances in Information Retrieval. 38th European Conference on IR Research, ECIR 2016. Proceedings; LNCS 9626, P436, DOI 10.1007/978-3-319-30671-1_32
Hobolt S. B., 2005, WHY LABOUR DIDNT LIS
Hoon C, 2013, ORGAN RES METHODS, V16, P522, DOI 10.1177/1094428113484969
Indulska M, 2012, EUR J INFORM SYST, V21, P49, DOI 10.1057/ejis.2011.37
Kemp M, 2009, NATURE, V459, P32, DOI 10.1038/459032a
Kitchenham B., 2007, EBSE Technical Report, Keele University and Durham University Joint Report, Report EBSE 2007-001
Kolev KD, 2019, J MANAGE STUD, V56, P1138, DOI 10.1111/joms.12444
Kuckartz U., 2019, Analyzing qualitative data with MAXQDA: Text, audio, and video
Larsen KR, 2016, MIS QUART, V40, P529, DOI 10.25300/MISQ/2016/40.3.01
Levac D, 2010, IMPLEMENT SCI, V5, DOI 10.1186/1748-5908-5-69
Lewis RB, 2007, FIELD METHOD, V19, P87, DOI 10.1177/1525822X06296589
Li J, 2017, J LOSS PREVENT PROC, V49, P103, DOI 10.1016/j.jlp.2016.06.003
Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678
Maclaran P., 2002, Marketing Intelligence Planning, V20, P319
Marrone M., 2016, Proceedings of the 37th International Conference on Information Systems (ICIS 2016), P1
Marrone M, 2020, SCIENTOMETRICS, V122, P357, DOI 10.1007/s11192-019-03274-x
Marrone M, 2017, COMMUN ASSOC INF SYS, V41, P517, DOI 10.17705/1CAIS.04123
McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861]
Meuser JD, 2016, J MANAGE, V42, P1374, DOI 10.1177/0149206316647099
Molla A., 2016, ARXIV PREPRINT ARXIV
Nakagawa S, 2019, TRENDS ECOL EVOL, V34, P224, DOI 10.1016/j.tree.2018.11.007
Navigli R, 2009, ACM COMPUT SURV, V41, DOI 10.1145/1459352.1459355
Papadimitriou C. H., 1998, Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. PODS 1998, P159, DOI 10.1145/275487.275505
Paré G, 2015, INFORM MANAGE-AMSTER, V52, P183, DOI 10.1016/j.im.2014.08.008
Patriotta G, 2020, J MANAGE STUD, V57, P1272, DOI 10.1111/joms.12608
Paulus Trena., 2013, DIGITAL TOOLS QUALIT
Piccinno F., 2014, 37 ANN INT ACM SIGIR
Pollack J., 2006, International Journal of Project Management, V24, P175, DOI 10.1016/j.ijproman.2005.10.005
Preiss J, 2016, BMC MED INFORM DECIS, V16, DOI 10.1186/s12911-016-0296-1
Rayson P., 2004, 7 INT C STAT AN TEXT
Schryen G, 2015, COMMUN ASSOC INF SYS, V37, P286
Scott M, 2006, STUD CORPUS LINGUIST, V22, P1
Shen W, 2015, IEEE T KNOWL DATA EN, V27, P443, DOI 10.1109/TKDE.2014.2327028
Smith A.E., 2003, Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology: Demonstrations, V4, P23
Smith AE, 2006, BEHAV RES METHODS, V38, P262, DOI 10.3758/BF03192778
Smith C., 2001, QUAL SOCIOL, V24, P401, DOI DOI 10.1023/A:1010643025038
Snow C.P., 1961, 2 CULTURES SCI REVOL
Snyder H, 2019, J BUS RES, V104, P333, DOI 10.1016/j.jbusres.2019.07.039
Sotiriadou P, 2014, ANN LEIS RES, V17, P218, DOI 10.1080/11745398.2014.902292
Sridhar Vivek Kumar Rangarajan, 2015, P 1 WORKSH VECT SPAC, P192, DOI 10.3115/v1/w15-1526
Templier M, 2015, COMMUN ASSOC INF SYS, V37, P112
Templier M, 2018, EUR J INFORM SYST, V27, P503, DOI 10.1080/0960085X.2017.1398880
Tienari J, 2003, J MANAGE INQUIRY, V12, P377, DOI 10.1177/1056492603258975
Vaara E, 2002, ORGANIZATION, V9, P275, DOI 10.1177/1350508402009002912
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
Vesti H, 2017, ISPIM INNOVATION SUM
Weber R.P., 1990, Basic Content Analysis, DOI 10.4135/9781412983488
Westgate MJ, 2019, RES SYNTH METHODS, V10, P606, DOI 10.1002/jrsm.1374
WHITTAKER J, 1989, SOC STUD SCI, V19, P473, DOI 10.1177/030631289019003004
Wickham M, 2005, QUAL REP, V10, P687
Wu GQ, 2018, IEEE ACCESS, V6, P6220, DOI 10.1109/ACCESS.2017.2787787
Xu ZS, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120896
Zhai X, 2015, SCIENTOMETRICS, V105, P509, DOI 10.1007/s11192-015-1700-9
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 87
TC 3
Z9 3
U1 3
U2 26
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUL
PY 2022
VL 127
IS 7
BP 3857
EP 3878
DI 10.1007/s11192-022-04423-5
EA JUN 2022
PG 22
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 3L2ZJ
UT WOS:000817847200005
OA hybrid
DA 2024-09-05
ER
PT C
AU Gabureanu, S
Istrate, O
AF Gabureanu, Simona
Istrate, Olimpius
BE Soare, E
TI The effects of using intelligent tutoring systems for language learning
- findings of a research evaluation report
SO 5TH INTERNATIONAL CONFERENCE EDU-WORLD 2012 - EDUCATION FACING
CONTEMPORARY WORLD ISSUES
SE Procedia Social and Behavioral Sciences
LA English
DT Proceedings Paper
CT 5th International Conference EDU-WORLD - Education Facing Contemporary
World Issues
CY NOV 29-DEC 01, 2012
CL Pitesti, ROMANIA
DE language learning; intelligent tutoring system; online learning platform
AB The present paper aims to present the pilot project "ICE3- Integrating CALL in early education environments" - developed in Romania, Spain and Germany and the impact of the ICE3 platform usage - a state-of-the-art online platform for learning English or German as a foreign language - on students learning, on teaching, on development of educational situations using ICT. The evaluation research developed within the project comprised data from a sample of 513 students which have participated in the instructional activities performed within the project. The article is describing the outcomes of the evaluation: (1) the effects of using an innovative didactic pathway on students' learning motivation, (2) learners preferences for different language learning activities such as individual study and communication, (3) increasing the learners' preference for practicing different language skills such as understanding a written text, writing a text, (4) increase in students' digital competences used for learning, (5) the degree to which students better understand the content after using intelligent feed-back provided on the AutoTutor exercises. (c) 2013 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the University of Pitesti, Romania
C1 [Gabureanu, Simona] Univ Politehn Bucuresti, Bucharest 060042, Romania.
[Istrate, Olimpius] Univ Bucharest, Bucharest 050107, Romania.
C3 National University of Science & Technology POLITEHNICA Bucharest;
University of Bucharest
RP Gabureanu, S (corresponding author), Univ Politehn Bucuresti, Bucharest 060042, Romania.
RI Gabureanu, Simona/AAY-2267-2020; Gabureanu, Simona N./IQS-7425-2023;
Istrate, Olimpius/E-8553-2011
OI Istrate, Olimpius/0000-0002-1940-6284
CR [Anonymous], ICVL P 6 INT C VIRT
Badia T, 2011, P E SOC IADIS INT C, P1354
Estrada Mariona, 2009, P E SOC IADIS INT C, VII, P95
NR 3
TC 0
Z9 0
U1 0
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1877-0428
J9 PROCD SOC BEHV
PY 2013
VL 76
BP 351
EP 355
DI 10.1016/j.sbspro.2013.04.126
PG 5
WC Education & Educational Research
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BFH50
UT WOS:000319885300064
OA gold
DA 2024-09-05
ER
PT J
AU Wang, XB
Dai, ZY
Li, H
Yang, JF
AF Wang, Xibin
Dai, Zhenyu
Li, Hui
Yang, Jianfeng
TI Research on Hybrid Collaborative Filtering Recommendation Algorithm
Based on the Time Effect and Sentiment Analysis
SO COMPLEXITY
LA English
DT Article
AB In this study, we focus on the problem of information expiration when using the traditional collaborative filtering algorithm and propose a new collaborative filtering algorithm by integrating the time factor (ITWCF). This algorithm considers information influence attenuation over time, introduces an information retention period based on the information half-value period, and proposes a time-weighted function, which is applied to the nearest neighbor selection and score prediction to assign different time weights to the scores. In addition, to further improve the quality of the nearest neighbor selection and alleviate the problem of data sparsity, a method of calculating users' sentiment tendency by analysis of user review features is proposed to mine users' attitudes about the reviewed items, which expands the score matrix. The time factor and sentiment tendency are then integrated into the K-means clustering algorithm to select the nearest neighbor. A hybrid collaborative filtering model (TWCHR) based on the improved K-means clustering algorithm is then proposed, by combining item-based and user-based collaborative filtering. Finally, the experimental results show that the proposed algorithm can address the time effect and sentiment analysis in recommendations and improve the predictive performance of the model.
C1 [Wang, Xibin; Yang, Jianfeng] Guizhou Inst Technol, Sch Data Sci, Guiyang 550003, Guizhou, Peoples R China.
[Wang, Xibin; Yang, Jianfeng] Special Key Lab Artificial Intelligence & Intelli, Guiyang 550003, Guizhou, Peoples R China.
[Dai, Zhenyu; Li, Hui] Guizhou Univ, Coll Comp Sci & Technol, Guiyang 550025, Guizhou, Peoples R China.
C3 Guizhou Institute of Technology; Guizhou University
RP Li, H (corresponding author), Guizhou Univ, Coll Comp Sci & Technol, Guiyang 550025, Guizhou, Peoples R China.
EM cse.huili@gzu.edu.cn
RI Yang, Jianfeng/AAC-5521-2021
OI Yang, Jianfeng/0000-0003-3486-9604; Wang, Xibin/0000-0003-1831-9872
FU Technology Foundation of Guizhou Province [QianKeHeJiChu[2020]1Y269];
New Academic Seedling Cultivation and Exploration Innovation Project
[QianKeHe Platform Talents[2017]5789-21]; Program for Innovative Talent
of Guizhou Province [QianCaiJiao[2018]190]; National Natural Science
Foundation of China [71901078, 71964009]; High-Level Talent Project of
Guizhou Institute of Technology [XJGC20190929]; Special Key Laboratory
of Artificial Intelligence and Intelligent Control of Guizhou Province
[KY[2020]001]
FX This work was partially supported by the Technology Foundation of
Guizhou Province (Grant no. QianKeHeJiChu[2020]1Y269), New Academic
Seedling Cultivation and Exploration Innovation Project (Grant no.
QianKeHe Platform Talents[2017]5789-21), Program for Innovative Talent
of Guizhou Province (Grant no. QianCaiJiao[2018]190), National Natural
Science Foundation of China (Grant nos. 71901078 and 71964009),
High-Level Talent Project of Guizhou Institute of Technology (Grant no.
XJGC20190929), and Special Key Laboratory of Artificial Intelligence and
Intelligent Control of Guizhou Province (Grant no. KY[2020]001).
CR [Anonymous], 2015, INT J UAND E SERVICE, DOI [10.14257/ijunesst.2015.8.4.23, DOI 10.14257/IJUNESST.2015.8.4.23]
Chao C., 2014, J COMPUTER COMMUNICA, V2, P59, DOI [10.4236/jcc.2014.214006, DOI 10.4236/JCC.2014.214006]
Chen J, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P921, DOI 10.1145/2647868.2654954
Chen L, 2015, USER MODEL USER-ADAP, V25, P99, DOI 10.1007/s11257-015-9155-5
Dehkordi Y., P IEEE 4 INT C BIG D
Ding Y., P 14 ACM INT C INF K, P485
Dong Z, 2006, Hownet and the computation of meaning
Du XY, 2019, ACM T INFORM SYST, V37, DOI 10.1145/3357154
Feng CJ, 2020, INFORM SCIENCES, V521, P365, DOI 10.1016/j.ins.2020.02.052
Ganu G, 2012, INFORM SYST, V38, P1, DOI 10.1016/j.is.2012.03.001
Guo GB, 2016, IEEE T KNOWL DATA EN, V28, P1607, DOI 10.1109/TKDE.2016.2528249
Latha R, 2019, PHYSICA A, V533, DOI 10.1016/j.physa.2019.122052
Liu J, 2009, PHYSICA A, V388, P3643, DOI 10.1016/j.physa.2009.05.021
McAuley J., P 7 ACM C REC SYST A, P165
Qiu L, 2016, KNOWL-BASED SYST, V110, P233, DOI 10.1016/j.knosys.2016.07.033
Song H., 2011, P 6 INT C COMP SCI C
Wang J., P 2017 IEEE INT C CO
[邢春晓 Xing Chunxiao], 2007, [计算机研究与发展, Journal of Computer Research and Development], V44, P296, DOI 10.1360/crad20070216
Yao L, 2019, AAAI CONF ARTIF INTE, P7370
Zhu H, 2018, NEURAL COMPUT, V30, P3281, DOI 10.1162/neco_a_01140
NR 20
TC 7
Z9 7
U1 3
U2 24
PU WILEY-HINDAWI
PI LONDON
PA ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND
SN 1076-2787
EI 1099-0526
J9 COMPLEXITY
JI Complexity
PD MAR 8
PY 2021
VL 2021
AR 6635202
DI 10.1155/2021/6635202
PG 11
WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematics; Science & Technology - Other Topics
GA RB1UK
UT WOS:000631901200006
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Li, X
Chen, HC
Zhang, Z
Li, JX
Nunamaker, JF
AF Li, Xin
Chen, Hsinchun
Zhang, Zhu
Li, Jiexun
Nunamaker, Jay F., Jr.
TI Managing Knowledge in Light of Its Evolution Process: An Empirical Study
on Citation Network-Based Patent Classification
SO JOURNAL OF MANAGEMENT INFORMATION SYSTEMS
LA English
DT Article
DE citation analysis; classification; kernel-based method; knowledge
management; machine learning; patent management
ID ECONOMICS; WEB
AB Knowledge management is essential to modem organizations. Due to the information overload problem, managers are facing critical challenges in utilizing the data in organizations. Although several automated tools have been applied, previous applications often deem knowledge items independent and use solely contents, which may limit their analysis abilities. This study focuses on the process of knowledge evolution and proposes to incorporate this perspective into knowledge management tasks. Using a patent classification task as an example, we represent knowledge evolution processes with patent citations and introduce a labeled citation graph kernel to classify patents under a kernel-based machine learning framework. In the experimental study, our proposed approach shows more than 30 percent improvement in classification accuracy compared to traditional content-based methods. The approach can potentially affect the existing patent management procedures. Moreover, this research ends strong support to considering knowledge evolution processes in other knowledge management tasks.
C1 [Li, Xin] City Univ Hong Kong, Dept Informat Syst, Hong Kong, Hong Kong, Peoples R China.
[Zhang, Zhu] Univ Arizona, Dept MIS, Tucson, AZ 85721 USA.
[Li, Jiexun] Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA USA.
[Nunamaker, Jay F., Jr.] Univ Arizona, Ctr Management Informat, Tucson, AZ 85721 USA.
C3 City University of Hong Kong; University of Arizona; Drexel University;
University of Arizona
RP Li, X (corresponding author), City Univ Hong Kong, Dept Informat Syst, Hong Kong, Hong Kong, Peoples R China.
RI Li, Xin/K-8045-2015
OI Li, Xin/0000-0002-0041-3134
FU NSF [IIS-0311652, DMI-0533749]
FX This research is supported by the NSF: IIS-0311652 "Intelligent Patent
Analysis for Nanoscale Science and Engineering" and DMI-0533749
"NanoMap: Mapping Nanotechnology Development." The authors thank the
USPTO for making their data available for research purposes.
CR Almeida P, 1999, MANAGE SCI, V45, P905, DOI 10.1287/mnsc.45.7.905
Amsler R., 1972, Application of Citation-based Automatic Classification
[Anonymous], 2003, SIGKDD
[Anonymous], 1996, Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering
[Anonymous], P SIGIR
[Anonymous], 2003, ACM SIGIR FOR 2003, DOI DOI 10.1145/945546.945547
Bieber M, 2002, J MANAGE INFORM SYST, V18, P11, DOI 10.1080/07421222.2002.11045707
Borgwardt KM, 2005, BIOINFORMATICS, V21, pI47, DOI 10.1093/bioinformatics/bti1007
Broder A, 2000, COMPUT NETW, V33, P309, DOI 10.1016/S1389-1286(00)00083-9
Calado P, 2006, J AM SOC INF SCI TEC, V57, P208, DOI 10.1002/asi.20266
Chakrabarti S., 1998, SIGMOD Record, V27, P307, DOI 10.1145/276305.276332
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Craven M, 2001, MACH LEARN, V43, P97, DOI 10.1023/A:1007676901476
Cristianini Nello, 2000, An introduction to support Vector Machines: and other kernel-based learning methods
CRISTO M, 2003, P INT S STRING PROC, P43
Dunford R., 2000, Journal of Knowledge Management, V4, P295, DOI 10.1108/13673270010379849
Fall CJ, 2004, EXPERT SYST APPL, V26, P269, DOI 10.1016/S0957-4174(03)00141-6
Fleming L, 2001, MANAGE SCI, V47, P117, DOI 10.1287/mnsc.47.1.117.10671
Gallini NT, 2002, J ECON PERSPECT, V16, P131, DOI 10.1257/0895330027292
Ghani R., 2001, Proceedings of the 18th International Conference on Machine Learning, P178
Ginsparg P, 2004, P NATL ACAD SCI USA, V101, P5236, DOI 10.1073/pnas.0308253100
Haussler D., 1999, Technical report
Huang MH, 2007, J MANAGE INFORM SYST, V24, P79, DOI 10.2753/MIS0742-1222240303
Huang Z, 2003, J NANOPART RES, V5, P333, DOI 10.1023/A:1025556800994
HULL D, 2001, WORLD PATENT INFORM, V21, P265
Hunt R.M., 2001, Federal Reserve Bank of Philadelphia Business Review, VQ1, P5
Joachims T., 2001, Proceedings of 18th International Conference on Machine Learning, P250
Kashima Hisashi, 2003, P 20 INT C MACH LEAR, P321
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
King J.L., 2003, Patents in the Knowledge-Based Economy, P54
Koller D., 2002, em Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence, P485
Koster CHA, 2003, LECT NOTES COMPUT SC, V2890, P546
Krier M., 2002, World Patent Information, V24, P187, DOI 10.1016/S0172-2190(02)00026-1
Lanckriet GRG, 2004, BIOINFORMATICS, V20, P2626, DOI 10.1093/bioinformatics/bth294
Larkey L.S., 1999, 4th ACM Conference on Digital Libraries, P79
Le Si Quang, 2004, Genome Inform, V15, P82
Li X, 2007, J NANOPART RES, V9, P337, DOI 10.1007/s11051-006-9194-2
LOH HT, 2006, WORLD PAT INF, V28, P6
NARIN F, 1994, SCIENTOMETRICS, V30, P147, DOI 10.1007/BF02017219
Nerkar A, 2003, MANAGE SCI, V49, P211, DOI 10.1287/mnsc.49.2.211.12747
Nidumolu SR, 2001, J MANAGE INFORM SYST, V18, P115, DOI 10.1080/07421222.2001.11045675
Redner S, 1998, EUR PHYS J B, V4, P131, DOI 10.1007/s100510050359
Richter G, 2005, WORLD PAT INF, V27, P13, DOI 10.1016/j.wpi.2004.08.001
Scherer FM, 2002, ACAD MED, V77, P1348, DOI 10.1097/00001888-200212001-00006
Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283
SINCLAIR G, 2004, P 2004 INT JOINT WOR, P69
Singh J, 2005, MANAGE SCI, V51, P756, DOI 10.1287/mnsc.1040.0349
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Smith SR, 2002, J PSYCHOPATHOL BEHAV, V24, P269, DOI 10.1023/A:1020731117022
Spangler S, 2003, J MANAGE INFORM SYST, V19, P191
Stenmark D, 2000, J MANAGE INFORM SYST, V17, P9
Tan Y, 2004, IEEE T KNOWL DATA EN, V16, P385, DOI 10.1109/TKDE.2004.1269664
Teichert T, 2002, IEMC-2002: IEEE INTERNATIONAL ENGINEERING MANAGEMENT CONFERENCE, VOLS I AND II, PROCEEDINGS, P596, DOI 10.1109/IEMC.2002.1038503
*US PAT TRAD OFF, 2005, US PAT STAT CHART CA
YANG YK, 2002, RRD ENDOCRINOL 1, V3, P219
Yiming Yang, 1999, Information Retrieval, V1, P69, DOI 10.1023/A:1009982220290
NR 56
TC 19
Z9 21
U1 7
U2 106
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0742-1222
EI 1557-928X
J9 J MANAGE INFORM SYST
JI J. Manage. Inform. Syst.
PD SUM
PY 2009
VL 26
IS 1
BP 129
EP 153
DI 10.2753/MIS0742-1222260106
PG 25
WC Computer Science, Information Systems; Information Science & Library
Science; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science; Business &
Economics
GA 477LL
UT WOS:000268520500007
DA 2024-09-05
ER
PT J
AU Willis, M
Duckworth, P
Coulter, A
Meyer, ET
Osborne, M
AF Willis, Matthew
Duckworth, Paul
Coulter, Angela
Meyer, Eric T.
Osborne, Michael
TI The Future of Health Care: Protocol for Measuring the Potential of Task
Automation Grounded in the National Health Service Primary Care System
SO JMIR RESEARCH PROTOCOLS
LA English
DT Article
DE qualitative research; supervised machine learning; automation;
interdisciplinary research; task performance and analysis
ID TIME; JOBS
AB Background: Recent advances in technology have reopened an old debate on which sectors will be most affected by automation. This debate is ill served by the current lack of detailed data on the exact capabilities of new machines and how they are influencing work. Although recent debates about the future of jobs have focused on whether they are at risk of automation, our research focuses on a more fine-grained and transparent method to model task automation and specifically focus on the domain of primary health care.
Objective: This protocol describes a new wave of intelligent automation, focusing on the specific pressures faced by primary care within the National Health Service (NHS) in England. These pressures include staff shortages, increased service demand, and reduced budgets. A critical part of the problem we propose to address is a formal framework for measuring automation, which is lacking in the literature. The health care domain offers a further challenge in measuring automation because of a general lack of detailed, health care-specific occupation and task observational data to provide good insights on this misunderstood topic.
Methods: This project utilizes a multimethod research design comprising two phases: a qualitative observational phase and a quantitative data analysis phase; each phase addresses one of the two project aims. Our first aim is to address the lack of task data by collecting high-quality, detailed task-specific data from UK primary health care practices. This phase employs ethnography, observation, interviews, document collection, and focus groups. The second aim is to propose a formal machine learning approach for probabilistic inference of task- and occupation-level automation to gain valuable insights. Sensitivity analysis is then used to present the occupational attributes that increase/decrease automatability most, which is vital for establishing effective training and staffing policy.
Results: Our detailed fieldwork includes observing and documenting 16 unique occupations and performing over 130 tasks across six primary care centers. Preliminary results on the current state of automation and the potential for further automation in primary care are discussed. Our initial findings are that tasks are often shared amongst staff and can include convoluted workflows that often vary between practices. The single most used technology in primary health care is the desktop computer. In addition, we have conducted a large-scale survey of over 156 machine learning and robotics experts to assess what tasks are susceptible to automation, given the state-of-the-art technology available today. Further results and detailed analysis will be published toward the end of the project in early 2019.
Conclusions: We believe our analysis will identify many tasks currently performed manually within primary care that can be automated using currently available technology. Given the proper implementation of such automating technologies, we expect considerable staff resources to be saved, alleviating some pressures on the NHS primary care staff.
C1 [Willis, Matthew; Meyer, Eric T.] Univ Oxford, Oxford Internet Inst, 1 St Giles, Oxford OX1 3JS, England.
[Duckworth, Paul; Osborne, Michael] Univ Oxford, Dept Engn Sci, Machine Learning Res Grp, Oxford, England.
[Coulter, Angela] Univ Oxford, Nuffield Dept Populat Hlth, Hlth Serv Res Unit, Oxford, England.
[Meyer, Eric T.] Univ Texas Austin, Sch Informat, Austin, TX 78712 USA.
C3 University of Oxford; University of Oxford; University of Oxford;
University of Texas System; University of Texas Austin
RP Willis, M (corresponding author), Univ Oxford, Oxford Internet Inst, 1 St Giles, Oxford OX1 3JS, England.
EM mwillis@syr.edu
RI Coulter, Angela/N-6998-2019; Meyer, Eric T./C-1029-2011
OI Coulter, Angela/0000-0002-6308-8375; Frey, Carl
Benedikt/0000-0002-0034-6293; Osborne, Michael/0000-0003-1959-012X
FU Health Foundation [7559]; Oxford Martin Programme on Technology and
Employment; Rhodes Trust
FX We thank The Health Foundation (award #7559), the Oxford Martin
Programme on Technology and Employment, and the Rhodes Trust.
CR Alaa AM, 2018, IEEE T BIO-MED ENG, V65, P207, DOI 10.1109/TBME.2017.2698602
Anand V, 2012, PEDIATRICS, V129, pE1275, DOI 10.1542/peds.2011-2875
[Anonymous], 2017, A future that works: automation, employment, and productivity
[Anonymous], 2016, PRESSURE WHAT COMMON
Arntz M., 2016, OECD Social, Employment and Migration Working Papers, V189, DOI [10.1787/5jlz9h56dvq7-en, DOI 10.1787/5JLZ9H56DVQ7-EN]
Autor DH, 2013, J LABOUR MARK RES, V46, P185, DOI 10.1007/s12651-013-0128-z
Autor DH, 2013, AM ECON REV, V103, P1553, DOI 10.1257/aer.103.5.1553
Baird B., 2016, KINGS FUND
Bakhshi H., FUTURE SKILLS EMPLOY
Bruegel Bowles J., 2014, COMPUTERISATION EURO
Chu W, 2005, J MACH LEARN RES, V6, P1019
Clifton L, 2013, IEEE T BIO-MED ENG, V60, P193, DOI 10.1109/TBME.2012.2208459
Dahl TS, 2014, ROBOTICS, V3, P1, DOI 10.3390/robotics3010001
Frey CB, 2017, TECHNOL FORECAST SOC, V114, P254, DOI 10.1016/j.techfore.2016.08.019
Goddard K, 2011, STUD HEALTH TECHNOL, V164, P17, DOI 10.3233/978-1-60750-709-3-17
Grace K., 2017, When will AI exceed human performance? Evidence from AI experts
Greenes RA., 2007, Clinical Decision Support: The Road Ahead, V1
Grewal D, 2018, J MARKET EDUC, V40, P85, DOI 10.1177/0273475318755838
Handel MJ, 2016, J LABOUR MARK RES, V49, P157, DOI 10.1007/s12651-016-0199-8
Jemma I, 2015, BRAWN BRAINS IMPACT
Liaw A, 2002, CLASSIFICATION REGRE
Moran WP, 2012, SOUTH MED J, V105, P18, DOI 10.1097/SMJ.0b013e31823d22a8
Novek J, 2000, SOC SCI MED, V51, P491, DOI 10.1016/S0277-9536(99)00488-8
O'Sullivan D, 2014, CLIN MED, V14, P338, DOI 10.7861/clinmedicine.14-4-338
Onwuegbuzie Anthony J., 2009, International Journal of Multiple Research Approaches, V3, P114, DOI [10.5172/mra.3.2.114, DOI 10.5172/MRA.3.2.114]
Pooler M, 2017, FINANCIAL TIMES
Pope C, 2013, BMC HEALTH SERV RES, V13, DOI 10.1186/1472-6963-13-111
Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1
TAKAHASHI T, 2012, PROC 15TH INT CONF A, P61
Weiner JP, 2013, HEALTH AFFAIR, V32, P1998, DOI 10.1377/hlthaff.2013.0680
NR 30
TC 6
Z9 6
U1 0
U2 6
PU JMIR PUBLICATIONS, INC
PI TORONTO
PA 59 WINNERS CIRCLE, TORONTO, ON M4L 3Y7, CANADA
SN 1929-0748
J9 JMIR RES PROTOC
JI JMIR RES. Protoc.
PD APR
PY 2019
VL 8
IS 4
AR e11232
DI 10.2196/11232
PG 9
WC Health Care Sciences & Services; Public, Environmental & Occupational
Health
WE Emerging Sources Citation Index (ESCI)
SC Health Care Sciences & Services; Public, Environmental & Occupational
Health
GA HW2EW
UT WOS:000466496800019
PM 30964437
OA Green Published, Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Peng, Z
Zhang, H
Tang, HT
Feng, Y
Yin, WM
AF Peng, Zhao
Zhang, Huan
Tang, Hongtao
Feng, Yue
Yin, Weiming
TI Research on flexible job-shop scheduling problem in green sustainable
manufacturing based on learning effect
SO JOURNAL OF INTELLIGENT MANUFACTURING
LA English
DT Article
DE Green sustainable development; Man– machine dual resource
constraint mechanism; FJSP; Learning effect; HDMICA; Improved simulated
annealing
ID SEARCH ALGORITHM; MACHINE; OPTIMIZATION; NOISE; TIME
AB As one of the manufacturing industries with high energy consumption and high pollution, sand casting is facing major challenges in green manufacturing. In order to balance production and green sustainable development, this paper puts forward man-machine dual resource constraint mechanism. In addition, a multi-objective flexible job shop scheduling problem model constrained by job transportation time and learning effect is constructed, and the goal is to minimize processing time energy consumption and noise. Subsequently, a hybrid discrete multi-objective imperial competition algorithm (HDMICA) is developed to solve the model. The global search mechanism based on the HDMICA improves two aspects: a new initialization method to improve the quality of the initial population, and the empire selection method based on Pareto non-dominated solution to balance the empire forces. Then, the improved simulated annealing algorithm is embedded in imperial competition algorithm (ICA), which overcomes the premature convergence problem of ICA. Therefore, four neighborhood structures are designed to help the algorithm jump out of the local optimal solution. Finally, an example is used to verify the feasibility of the proposed algorithm. By comparing with the original ICA and other four algorithms, the effectiveness of the proposed algorithm in the quality of the first frontier solution is verified.
C1 [Peng, Zhao; Zhang, Huan; Tang, Hongtao; Feng, Yue; Yin, Weiming] Wuhan Univ Technol, Hubei Key Lab Digital Mfg, Sch Mech & Elect Engn, Wuhan 430070, Peoples R China.
C3 Wuhan University of Technology
RP Tang, HT (corresponding author), Wuhan Univ Technol, Hubei Key Lab Digital Mfg, Sch Mech & Elect Engn, Wuhan 430070, Peoples R China.
EM pz@whut.edu.cn; 2932532969@qq.com; tanghongtaozc@163.com;
2662133749@qq.com; 528566385@qq.com
RI 殷, 伟铭/HJY-3493-2023
OI 殷, 伟铭/0009-0002-9074-1699
CR [Anonymous], 2011, APPL SOFT COMPUT, DOI DOI 10.1016/j.asoc.2010.05.029
Atashpaz-Gargari E, 2007, IEEE C EVOL COMPUTAT, P4661, DOI 10.1109/cec.2007.4425083
Azzouz A, 2017, IEEE C EVOL COMPUTAT, P1827, DOI 10.1109/CEC.2017.7969523
Behnamian J, 2011, APPL MATH MODEL, V35, P1107, DOI 10.1016/j.apm.2010.07.057
Bewoor LA, 2018, PROCEDIA MANUF, V22, P57, DOI 10.1016/j.promfg.2018.03.010
Biskup D, 1999, EUR J OPER RES, V115, P173, DOI 10.1016/S0377-2217(98)00246-X
Boutsinas B, 2013, EUR J OPER RES, V230, P563, DOI 10.1016/j.ejor.2013.05.007
Cao S., A novel constrained multi-objective imperialist competitive algorithm Information and Control, Patent No. 20194804437451
Coca G, 2019, J CLEAN PROD, V209, P146, DOI 10.1016/j.jclepro.2018.10.193
Deb K, 2000, LECT NOTES COMPUTER, P849, DOI [10.1109/4235.996017, DOI 10.1109/4235.996017, DOI 10.1007/3-540-45356-3_83]
Gen M, 2014, J INTELL MANUF, V25, P849, DOI 10.1007/s10845-013-0804-4
Gong GL, 2018, J CLEAN PROD, V174, P560, DOI 10.1016/j.jclepro.2017.10.188
Hajiaghaei-Keshteli M, 2018, COMPUT IND ENG, V123, P378, DOI 10.1016/j.cie.2018.07.009
Hans E, 2011, INT J PROD RES, V49, P2481, DOI 10.1080/00207543.2010.532913
Hosseini S, 2019, J INTELL MANUF, V30, P207, DOI 10.1007/s10845-016-1241-y
Karimi S, 2017, APPL MATH MODEL, V41, P667, DOI 10.1016/j.apm.2016.09.022
Lei Deming, 2018, Journal of Huazhong University of Science and Technology (Natural Science Edition), V46, P104, DOI 10.13245/j.hust.180820
Li MQ, 2017, IEEE COMPUT INTELL M, V12, P88, DOI 10.1109/MCI.2017.2742869
Liu QQ, 2021, CURR PSYCHOL, V40, P5134, DOI 10.1007/s12144-019-00464-x
Lu C, 2018, J CLEAN PROD, V196, P773, DOI 10.1016/j.jclepro.2018.06.137
Nowicki E, 1996, MANAGE SCI, V42, P797, DOI 10.1287/mnsc.42.6.797
Olayinka OS, 2009, IND HEALTH, V47, P123, DOI 10.2486/indhealth.47.123
Pan, 2015, J CHANGSHA U SCI TEC, V30, P103
Shivasankaran N, 2015, INT J COMPUT INT SYS, V8, P455, DOI 10.1080/18756891.2015.1017383
Tandon N, 2000, SADHANA-ACAD P ENG S, V25, P331, DOI 10.1007/BF02703549
Tang HT, 2019, APPL SOFT COMPUT, V78, P176, DOI 10.1016/j.asoc.2019.02.011
Wan JF, 2016, IEEE ACCESS, V4, P8977, DOI 10.1109/ACCESS.2016.2631152
Wang B, 2018, APPL SOFT COMPUT, V62, P259, DOI 10.1016/j.asoc.2017.10.020
Wang SY, 2016, COMPUT NETW, V101, P158, DOI 10.1016/j.comnet.2015.12.017
Wirojanagud P, 2007, INT J PROD RES, V45, P525, DOI 10.1080/00207540600792242
Wu MT, 2019, J INTELL MANUF, V30, P1111, DOI 10.1007/s10845-017-1315-5
Wu XL, 2018, J CLEAN PROD, V172, P3249, DOI 10.1016/j.jclepro.2017.10.342
[徐云琴 Xu Yunqin], 2019, [计算机应用研究, Application Research of Computers], V36, P3033
Yin LJ, 2017, SUSTAIN COMPUT-INFOR, V13, P15, DOI 10.1016/j.suscom.2016.11.002
Yu J, 2016, RES LEARNING CURVE B
Zhang J, 2014, RES FLEXIBLE JOB SHO
Zhang J, 2019, J INTELL MANUF, V30, P1809, DOI 10.1007/s10845-017-1350-2
Zhao CL, 2017, COMPUT IND ENG, V112, P447, DOI 10.1016/j.cie.2017.08.010
Zhou Ji, 2015, China Mechanical Engineering, V26, P2273, DOI 10.3969/j.issn.1004-132X.2015.17.001
NR 39
TC 41
Z9 43
U1 14
U2 227
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0956-5515
EI 1572-8145
J9 J INTELL MANUF
JI J. Intell. Manuf.
PD AUG
PY 2022
VL 33
IS 6
BP 1725
EP 1746
DI 10.1007/s10845-020-01713-8
EA MAR 2021
PG 22
WC Computer Science, Artificial Intelligence; Engineering, Manufacturing
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA 2O2EH
UT WOS:000631323400001
DA 2024-09-05
ER
PT C
AU Wei, ZJ
Han, BY
Zhou, EX
AF Wei, Zhongji
Han, Baiyang
Zhou, Enxian
GP IOP
TI Research on Text Emotion Analysis and Product Performance based on NLP
and VAR Model
SO 2020 ASIA CONFERENCE ON GEOLOGICAL RESEARCH AND ENVIRONMENTAL TECHNOLOGY
SE IOP Conference Series-Earth and Environmental Science
LA English
DT Proceedings Paper
CT Asia Conference on Geological Research and Environmental Technology
(GRET)
CY OCT 10-11, 2020
CL ELECTR NETWORK
AB Customers' evaluations, in terms of text or ratings, are important sources of information for online shops to decide products and marketing strategies. In this paper, we discuss methods to conclude and predict merchants' performance and characteristics of customers' behavior of target products based on Amazon dataset. First, we design a Natural Language Processing (NLP) model, Amazon-BERT, to predict text to rating based on transfer learning. We improve the model accuracy by 20% compared to the original pre-trained BERT, and we use the predicted rating in our following steps of modeling. Second, we use PCA to extract 5 principle components, which estimate review's popularity, product's reputation and so on. And then, for pacifier, we find that vector auto regression (VAR) model fits better, we apply it to the regression and doing a Granger causality test. Finally, we looked at the impulse response and variance decomposition. All 3 factors included do have a small impact.
C1 [Wei, Zhongji; Han, Baiyang; Zhou, Enxian] Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China.
C3 Tsinghua University
RP Wei, ZJ (corresponding author), Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China.
EM zhongjiwei@tsinghua.edu.cn
CR Breitung J, 2005, STAT NEERL, V59, P414, DOI 10.1111/j.1467-9574.2005.00299.x
Chen Q., 2014, Advanced econometrics and Stata applications, V2nd
Devlin J., 2018, ARXIV
Ding Mingzhou, 2016, QUANTITATIVE BIOL, P826
Kaiser H. F., ED PSYCHOL MEASUREME, V34, P111
Liu Xuetian, 2017, FEATURE ANAL DETECTI
NR 6
TC 0
Z9 0
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1755-1307
J9 IOP C SER EARTH ENV
JI IOP Conf. Ser. Earth Envir. Sci.
PY 2021
VL 632
AR 052077
DI 10.1088/1755-1315/632/5/052077
PG 7
WC Green & Sustainable Science & Technology; Energy & Fuels; Engineering,
Civil; Engineering, Geological; Environmental Sciences
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Science & Technology - Other Topics; Energy & Fuels; Engineering;
Environmental Sciences & Ecology
GA BS1EX
UT WOS:000688420702092
OA gold
DA 2024-09-05
ER
PT C
AU Wahle, JP
Ruas, T
Mohammad, SM
Gipp, B
AF Wahle, Jan Philip
Ruas, Terry
Mohammad, Saif M.
Gipp, Bela
BA Mariani, J
BF Mariani, J
BE Calzolari, N
Bechet, F
Blache, P
Choukri, K
Cieri, C
Declerck, T
Goggi, S
Isahara, H
Maegaard, B
Mazo, H
Odijk, H
Piperidis, S
TI D3: A Massive Dataset of Scholarly Metadata for Analyzing the State of
Computer Science Research
SO LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND
EVALUATION
LA English
DT Proceedings Paper
CT 13th International Conference on Language Resources and Evaluation
(LREC)
CY JUN 20-25, 2022
CL Marseille, FRANCE
DE Computer Science; Scientometrics; Research Trends; NLP; DBLP; AI
AB DBLP is the largest open-access repository of scientific articles on computer science and provides metadata associated with publications, authors, and venues. We retrieved more than 6 million publications from DBLP and extracted pertinent metadata (e.g., abstracts, author affiliations, citations) from the publication texts to create the DBLP Discovery Dataset (D3). D3 can be used to identify trends in research activity, productivity, focus, bias, accessibility, and impact of computer science research. We present an initial analysis focused on the volume of computer science research (e.g., number of papers, authors, research activity), trends in topics of interest, and citation patterns. Our findings show that computer science is a growing research field (approximate to 15% annually), with an active and collaborative researcher community. While papers in recent years present more bibliographical entries in comparison to previous decades, the average number of citations has been declining. Investigating papers' abstracts reveals that recent topic trends are clearly reflected in D3. Finally, we list further applications of D3 and pose supplemental research questions. The D3 dataset, our findings, and source code are publicly available for research purposes.
C1 [Wahle, Jan Philip; Ruas, Terry; Gipp, Bela] Univ Wuppertal, Wuppertal, Germany.
[Mohammad, Saif M.] Natl Res Council Canada, Ottawa, ON, Canada.
C3 University of Wuppertal; National Research Council Canada
RP Wahle, JP (corresponding author), Univ Wuppertal, Wuppertal, Germany.
EM wahle@uni-wuppertal.de; ruas@uni-wuppertal.de;
saif.mohammad@nrc-cnrc.gc.ca; gipp@uni-wuppertal.de
OI Lima Ruas, Terry/0000-0002-9440-780X
FU DBLP, ACL Anthology, Semantic Scholar and teams
FX This work would not be possible without the great resources offered by
DBLP, ACL Anthology, Semantic Scholar and teams, to whom we are very
thankful. We also thank Lennart K ull who helped us
during the initial phase of the project.
CR AALBERTS JJJ, 2019, FRONTIERS RES METRIC, V3
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Dror R, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P1383
Lavergne T, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P504
Lo K., 2020, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, P4969, DOI [DOI 10.18653/V1/2020.ACL-MAIN.447, 10.18653/v1/2020.acl-main.447]
Mohammad S. M., 2020, P 58 ANN M ASS COMPU, P7860, DOI [10.18653/v1/2020.acl-main.702, DOI 10.18653/V1/2020.ACL-MAIN.702]
Mohammad SM, 2020, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), P868
Mohammad Saif M., 2020, P 58 ANN M ASS COMP, P5199
Parmar Monarch, 2020, Advances in Information Retrieval. 42nd European Conference on IR Research, ECIR 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12036), P476, DOI 10.1007/978-3-030-45442-5_61
RADEV DR, 2009, P ACL WORKSH NAT LAN
Schumann Anne-Kathrin, 2016, INNOVATION SUSTAINAB, P1
Sharma A., 2021, ARXIV210701198CS
Vaswani A, 2017, ADV NEUR IN, V30
NR 13
TC 1
Z9 1
U1 0
U2 1
PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA
PI PARIS
PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE
BN 979-10-95546-72-6
PY 2022
BP 2642
EP 2651
PG 10
WC Computer Science, Interdisciplinary Applications; Linguistics
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Linguistics
GA BU2ZO
UT WOS:000889371702080
DA 2024-09-05
ER
PT J
AU Taheri, S
Aliakbary, S
AF Taheri, Soroush
Aliakbary, Sadegh
TI Research trend prediction in computer science publications: a deep
neural network approach
SO SCIENTOMETRICS
LA English
DT Article
DE Scientometrics; Research trends; Time-series prediction; Deep learning;
Computer science
AB Thousands of research papers are being published every day, and among all these research works, one of the fastest-growing fields is computer science (CS). Thus, learning which research areas are trending in this particular field of study is advantageous to a significant number of scholars, research institutions, and funding organizations. Many scientometric studies have been done focusing on analyzing the current CS trends and predicting future ones from different perspectives as a consequence. Despite the large datasets from this vast number of CS publications and the power of deep learning methods in such big data problems, deep neural networks have not yet been used to their full potential in this area. Therefore, the objective of this paper is to predict the upcoming years' CS trends using long short-term memory neural networks. Accordingly, CS papers from 1940 and their corresponding fields of study from the microsoft academic graph dataset have been exploited for solving this research trend prediction problem. The prediction accuracy of the proposed method is then evaluated using RMSE and coefficient of determination (R-2) metrics. The evaluations show that the proposed method outperforms the baseline approaches in terms of the prediction accuracy in all considered time periods. Subsequently, adopting the proposed method's predictions, we investigate future trending areas in computer science research from various viewpoints.
C1 [Taheri, Soroush; Aliakbary, Sadegh] Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran, Iran.
C3 Shahid Beheshti University
RP Aliakbary, S (corresponding author), Shahid Beheshti Univ, Fac Comp Sci & Engn, Tehran, Iran.
EM so.taheri@mail.sbu.ac.ir; s_aliakbary@sbu.ac.ir
RI Taheri, Soroush/GVU-0703-2022
OI Taheri, Soroush/0000-0002-5885-3036
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
[Anonymous], 2001, CHALLENGE SCIENTOMET
[Anonymous], 2014, ARXIV PREPRINT ARXIV
[Anonymous], 2015, ARXIV151203131
Behrouzi S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101079
Brockwell PJ., 2013, THEORY METHODS, V3, P77, DOI DOI 10.1007/s11192-015-1559-9
Chen CY, 2018, AAAI CONF ARTIF INTE, P2111
Cheng Q, 2015, SCIENTOMETRICS, V103, P453, DOI 10.1007/s11192-015-1559-9
Chong E, 2017, EXPERT SYST APPL, V83, P187, DOI 10.1016/j.eswa.2017.04.030
Chung J., 2014, NIPS 2014 WORKSH DEE
Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
Clauset A, 2017, SCIENCE, V355, P477, DOI 10.1126/science.aal4217
Dargan S, 2020, ARCH COMPUT METHOD E, V27, P1071, DOI 10.1007/s11831-019-09344-w
DEGROOT MH, 1974, J AM STAT ASSOC, V69, P118, DOI 10.2307/2285509
Deng L, 2013, INT CONF ACOUST SPEE, P8599, DOI 10.1109/ICASSP.2013.6639344
Dridi A, 2021, WIRES DATA MIN KNOWL, V11, DOI 10.1002/widm.1395
Ebadi A, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101018
Effendy S, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1245, DOI 10.1145/3041021.3053064
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Garousi V, 2013, INT J SOFTW ENG KNOW, V23, P1343, DOI 10.1142/S0218194013500423
Goodall AH, 2006, J DOC, V62, P388, DOI 10.1108/00220410610666529
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
Han J, 2012, MOR KAUF D, P1
Hegselmann R, 2002, JASSS-J ARTIF SOC S, V5
Hochreiter S, 1997, ADV NEUR IN, V9, P473
Hoonlor A, 2013, COMMUN ACM, V56, P74, DOI 10.1145/2500892
Hurtado Jose L., 2016, Journal of Big Data, V3, DOI 10.1186/s40537-016-0039-2
Jablonska-Sabuka M, 2014, J INFORMETR, V8, P111, DOI 10.1016/j.joi.2013.11.003
Katsurai M, 2019, SCIENTOMETRICS, V121, P1583, DOI 10.1007/s11192-019-03241-6
Krenn M, 2020, P NATL ACAD SCI USA, V117, P1910, DOI 10.1073/pnas.1914370116
Mahalakshmi GS, 2017, 2017 SECOND INTERNATIONAL CONFERENCE ON RECENT TRENDS AND CHALLENGES IN COMPUTATIONAL MODELS (ICRTCCM), P222, DOI 10.1109/ICRTCCM.2017.22
Mandic DP, 2001, ADAPT LEARN SYST SIG, DOI 10.1002/047084535X
Pham MC, 2011, SOC NETW ANAL MIN, V1, P321, DOI 10.1007/s13278-011-0024-x
Poznanski A, 2016, PROC CVPR IEEE, P2305, DOI 10.1109/CVPR.2016.253
Rzhetsky A, 2015, P NATL ACAD SCI USA, V112, P14569, DOI 10.1073/pnas.1509757112
Salatino AA, 2018, ACM-IEEE J CONF DIG, P303, DOI 10.1145/3197026.3197052
Sanderson M, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P206, DOI 10.1145/312624.312679
Sari N, 2012, PROCEDIA ENGINEER, V50, P871, DOI 10.1016/j.proeng.2012.10.095
Shen ZH, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P87
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Sitarz R, 2012, COMPUT-AIDED CHEM EN, V30, P437
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Tseng YH, 2009, SCIENTOMETRICS, V81, P73, DOI 10.1007/s11192-009-1885-x
Wu Y, 2016, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.41
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738
NR 46
TC 10
Z9 10
U1 6
U2 49
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD FEB
PY 2022
VL 127
IS 2
BP 849
EP 869
DI 10.1007/s11192-021-04240-2
EA JAN 2022
PG 21
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA YY7GU
UT WOS:000744421100005
DA 2024-09-05
ER
PT J
AU Wang, R
AF Wang, Ran
TI Legal technology in contemporary USA and China
SO COMPUTER LAW & SECURITY REVIEW
LA English
DT Article
DE Legal technology; Big data; Artificial intelligence; Intelligent legal
research; Risk assessment; Judicial system
AB The US and China are two typical models that present legal tech trends that are common world over. In China, robust regional models of intelligent judicial systems have emerged alongside some common applications that include the same-type case referencing, auto-mated sentencing decision, uniform standards of evidence, and judges' data profiling systems. In the US, legal tech refers to artificial intelligence in domains such as innovative legal research, predictive litigation analysis, e-discovery, and contract review.
The common elements in the development of legal tech in both countries are useful for other countries to understand. However, the legal tech in both countries has distinct characteristics, as seen in their different driving forces, target groups and purposes. The characteristics of legal tech are heavily related to each country's political background, legal system, and judicial structure. The different paths taken toward legal tech also remind us to reflect on the mistakes made and to explore some experiences pertaining to developing legal tech. For the strategic deployment, it is reasonable to apply cutting-edge technologies to the legal field until they are truly matured, and combine the top-level design with local pilot projects. For the target groups, litigants and vulnerable groups should not be neglected in legal tech service provision. For the purposes, machines should play an auxiliary role rather than replace judges altogether. (C) 2020 Ran Wang. Published by Elsevier Ltd. All rights reserved.
C1 [Wang, Ran] Tianjin Univ TJU, Law Sch, Tianjin, Peoples R China.
[Wang, Ran] TJU, Inst Intelligent Rule Law, Tianjin, Peoples R China.
RP Wang, R (corresponding author), Tianjin Univ TJU, Law Sch, Tianjin, Peoples R China.; Wang, R (corresponding author), TJU, Inst Intelligent Rule Law, Tianjin, Peoples R China.
EM ran.wang@tju.edu.cn
FU Chinese Scholarship Council of the Ministry of Education; Youth Project
of the National Social Science Fund of China "Research on Big Data
Evidence" [18CFX036]
FX This project was supported by the Chinese Scholarship Council of the
Ministry of Education and the Youth Project of the National Social
Science Fund of China "Research on Big Data Evidence"(18CFX036).
CR Angwin J., 2016, Machine Bias. There's software used across the country to predict future criminals. And it's biased against blacks, P23
[Anonymous], 2019, REPORT SELECT COMMIT
[Anonymous], 2018, LAW REV
[Anonymous], WHAT IS AUTOMATED IN
[Anonymous], 2009, DATA PROFILING
[Anonymous], 2019, NARROWING ACCESS JUS
[Anonymous], 2018, C L REV
[Anonymous], VS LAWYERS ULTIMATE
[Anonymous], 2016, OUTLINE NATL INFORM
[Anonymous], 2017, HARV. L.REV., V130, P1530
[Anonymous], 2018, JIN J PHIL SOC SCI
[Anonymous], 2006, NATL INFORMATIZATION
[Anonymous], 2016, INNOVATION DRIVEN TE
[Anonymous], 2012, USING TECHNOLOGY ENH
[Anonymous], 2018, SPP ISSUES OPINIONS
[Anonymous], 2017, CHIN J L, DOI DOI 10.1186/S40035-017-0072-X
[Anonymous], 2015, DOCUMENT 50 STATE CO
[Anonymous], 2017, CHIN J L, DOI DOI 10.1093/GIGASCIENCE/GIX066
[Anonymous], 2014, Boston College Law Review
[Anonymous], 2001, ADVERSARIAL LEGALISM
[Anonymous], 2016, BEIJ REV, V59, P44
[Anonymous], J ANHUI U PHILOS SOC
[Anonymous], 2019, ACCELERATING AM LEAD
[Anonymous], ACCESS JUSTICE RULE
[Anonymous], 2016, 13th Five-Year Plan for National Science and Technology Innovation
[Anonymous], LEGAL TECH NON LAWYE, P11
[Anonymous], 2017, DOCUMENT 35 STATE CO
[Anonymous], 2019, CHINA COMPUTATIONAL
Arruda Andrew, 2018, ROSS NEWS 0807
Bai Jianjun, 2016, CHIN J L, V6, P140
Beaty Dan, 2019, LAW
Bergal Jenni, 2014, COURTS PLUNGE DIGITA
Billotte Raymond, 2017, CM, V32, P6
Bose P.K., 2017, J Enam Med Col., V7, P29, DOI DOI 10.3329/JEMC.V7I1.30748
Branting Karl, 2017, NACM ANN C
Bues Micha- Manuel, 2017, LIQ LEG MANAG PROF, V90, P91
BulletProof, EDNAS CONTINUOUS PRO
Cabral JamesE., 2012, HARVARD J LAW TECHNO, V26, P241
Chen XD, 2019, INT J CONCR STRUCT M, V13, DOI 10.1186/s40069-018-0305-0
Chessman C, 2017, CALIF LAW REV, V105, P179, DOI 10.15779/Z38S27M
Cohen Andrew, 2019, BERKELEY JUDICIAL I
Dajun Qian, 2018, L REV, V36, P141
Deng Jinting, 2019, GEO L TECH REV, V3, P236
Deng Jinting, 2019, GEo. L. TECH. REV., V3, P223
Goodman Aaron, 2016, LITIG, V43, P25
Goodman Aaron, 2016, LITIGATION, V43, P23
Hongdao Q, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11041015
Kanaracus Chris, 2012, PCWORLD
Kehl Danielle, 2017, ALGORITHMS CRIMINAL, P4
Kwong Katherine, 2017, HARV JL TECH, V31, P281
Kwong Katherine, 2017, Harv. JL & Tech., V31, P275
Lat David, ARTIFICIAL INTELLIGE
Liddy E. D., 2001, Natural language processing
Lijun Mao, 2017, E DAY 1007
Losey Ralph, 2013, REGENT U L REV, V26, P7
Losey Ralph, 2013, REGENT U L REV, V26, P24
Lucy Ricca, 2019, STATE FARMWORKERS CA
Murray David, 2015, THE COURIER MAIL
Nelson Sharon, 2018, J LAW TECHNOLOGY
Obama White House, 2016, FACT SHEET LAUNCHING
Ping Lin, 2019, PAPER 2702
Pivovarov Valentin, 2019, FORBES
Polans Daniel S., 2018, 201802 INT NAT ASS C, P1
Ran Wang, 2018, JIN J PHIL SOC SCI, V7, P61
Roth A, 2016, GEORGETOWN LAW J, V104, P1245
Roth Andrea, 2016, EO L J, V104, P1275
Schallhorn Kaitlyn, 2019, FOX NEWS
Shao Y, 2019, J MANUF PROCESS, V43, P9, DOI 10.1016/j.jmapro.2019.05.012
Shen KL, 2020, WORLD J PEDIATR, V16, P223, DOI 10.1007/s12519-020-00343-7
STRIER F, 1992, JUDICATURE, V76, P109
The Supreme People's Court of PRC, 2019, **NON-TRADITIONAL**, P82
The White House, 2019, EXECUTIVE ORDER MAIN
United States Courts, 2016, LONG RANGE PLAN INFO
Wang Heng, 2017, Guiyang Judiciary Big Data Case Handling System: Innovating Use of Big Data Technology to Solve the Judicial Problems'
Wang Lusheng, 2020, J COMP LAW, V2, P133
Wang Lusheng, 2018, CHINA LAW REV, V20, P46
Wang Lusheng, 2020, J COMP LAW, V2, P145
Wang Lusheng, 2018, CHIN L REV, V20, P48
Wang Wenhua, 2019, WORLD JUDICIAL INFOR, V2, P3
Weimin Zuo, 2020, Legal Forum, V35, P17
Xu Qingyu, 2017, PRACTICAL EXPLORATIO
Yuan S., 2019, CHINA DAILY
Zhang Ziyang, 2004, CALCULATING SENTENCI
Zhou Qiang, 2020, DEEPENING REFORM JUD
Zuo Weimin, 2020, LEGAL FORUM, V35, P20
NR 85
TC 13
Z9 13
U1 5
U2 31
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
OXFORD OX5 1GB, OXON, ENGLAND
SN 0267-3649
J9 COMPUT LAW SECUR REV
JI Comput. Law Secur. Rev.
PD NOV
PY 2020
VL 39
AR 105459
DI 10.1016/j.clsr.2020.105459
PG 20
WC Law
WE Social Science Citation Index (SSCI)
SC Government & Law
GA OP8LV
UT WOS:000588342700003
DA 2024-09-05
ER
PT J
AU Balbuena, LD
AF Balbuena, Lloyd D.
TI The UK Research Excellence Framework and the Matthew effect: Insights
from machine learning
SO PLOS ONE
LA English
DT Article
ID ASSESSMENT EXERCISE RATINGS; CITATION COUNTS; H-INDEX; SCIENCE; IMPACT;
PRODUCTIVITY; UNIVERSITIES; KNOWLEDGE; SYSTEM; SCOPUS
AB With the high cost of the research assessment exercises in the UK, many have called for simpler and less time-consuming alternatives. In this work, we gathered publicly available REF data, combined them with library-subscribed data, and used machine learning to examine whether the overall result of the Research Excellence Framework 2014 could be replicated. A Bayesian additive regression tree model predicting university grade point average (GPA) from an initial set of 18 candidate explanatory variables was developed. One hundred and nine universities were randomly divided into a training set (n = 79) and test set (n = 30). The model "learned" associations between GPA and the other variables in the training set and was made to predict the GPA of universities in the test set. GPA could be predicted from just three variables: the number of Web of Science documents, entry tariff, and percentage of students coming from state schools (r-squared = .88). Implications of this finding are discussed and proposals are given.
C1 [Balbuena, Lloyd D.] Univ Saskatchewan, Dept Psychiat, Saskatoon, SK, Canada.
C3 University of Saskatchewan
RP Balbuena, LD (corresponding author), Univ Saskatchewan, Dept Psychiat, Saskatoon, SK, Canada.
EM lloyd.balbuena@usask.ca
RI Balbuena, Lloyd/H-5658-2013
OI Balbuena, Lloyd/0000-0002-3745-5426
CR Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9
Althouse BM, 2009, J AM SOC INF SCI TEC, V60, P27, DOI 10.1002/asi.20936
[Anonymous], 2016, TIMES HIGHER ED
Auranen O, 2010, RES POLICY, V39, P822, DOI 10.1016/j.respol.2010.03.003
Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y
BERRY C, 1981, BRIT J SOCIOL, V32, P381, DOI 10.2307/589284
Bishop D, DEP H INDEX IS MORE
Boliver V, 2015, OXFORD REV EDUC, V41, P608, DOI 10.1080/03054985.2015.1082905
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806
Burris V, 2004, AM SOCIOL REV, V69, P239, DOI 10.1177/000312240406900205
Castelvecchi D, 2016, NATURE, V538, P21, DOI 10.1038/538020a
Chang YC, 2009, RES POLICY, V38, P936, DOI 10.1016/j.respol.2009.03.005
Chipman HA, 2010, ANN APPL STAT, V4, P266, DOI 10.1214/09-AOAS285
Choobbasti HJ, 2007, RES SOC STRAT MOBIL, V25, P233, DOI DOI 10.1016/J.RSSM.2007.04.001
COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155
Dobbin KK, 2011, BMC MED GENOMICS, V4, DOI 10.1186/1755-8794-4-31
Farla K., 2015, REF 2014 accountability review: Costs, benefits and burden
Fortin JM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065263
Gannon F, 2004, EMBO REP, V5, P323, DOI 10.1038/sj.embor.7400138
Gibbons M, 1994, NEW PRODUCTION KNOWL, Vix
Gordon R, 2009, ACCOUNT RES, V16, P13, DOI 10.1080/08989620802689821
Gray R, 2015, J PSYCHIATR MENT HLT, V22, P155, DOI 10.1111/jpm.12217
Harnad S, 2009, SCIENTOMETRICS, V79, P147, DOI 10.1007/s11192-009-0409-z
Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a
Higher Education Funding Council for England, 2015, REF 2014 KEY FACTS
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hoare T, 2011, IMPACT SUTTON TRUSTS
Jump P, WINNERS LOSERS HEFCE
Kapelner A, 2016, J STAT SOFTW, V70, P1
Lombardi JV, 2000, TOP AM RES U
LONG JS, 1981, AM SOCIOL REV, V46, P422, DOI 10.2307/2095262
LONG JS, 1978, AM SOCIOL REV, V43, P889, DOI 10.2307/2094628
Martin BR, 2011, RES EVALUAT, V20, P247, DOI 10.3152/095820211X13118583635693
McKnight A, DOWNWARD MOBILITY OP
Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677
Merton RK., 1973, SOCIOLOGY SCI THEORE, Vxxxi
Mryglod O, 2015, SCIENTOMETRICS, V104, P1013, DOI 10.1007/s11192-015-1567-9
Mryglod O, 2015, SCIENTOMETRICS, V102, P2165, DOI 10.1007/s11192-014-1512-3
Norris M, 2003, J DOC, V59, P709, DOI 10.1108/00220410310698734
Nowotny H, 2003, MINERVA, V41, P179, DOI 10.1023/A:1025505528250
OPPENHEIM C, 1995, J DOC, V51, P18, DOI 10.1108/eb026940
Oppenheim C, 1997, J DOC, V53, P477, DOI 10.1108/EUM0000000007207
Owens B, 2013, NATURE, V502, P288, DOI 10.1038/502288a
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Reay D, 2001, SOCIOLOGY, V35, P855, DOI 10.1177/0038038501035004004
Reeves R.V., 2013, The Glass Floor: Education, Downward Mobility, and Opportunity Hoarding
Reich ES, 2013, NATURE, V502, P291, DOI 10.1038/502291a
RESKIN BF, 1977, AM SOCIOL REV, V42, P491, DOI 10.2307/2094753
Russell Group, 2012, JEW CROWN IMP CHAR U
Sayer D., 2014, Five reasons why the REF is not fit for purpose
Scott P, 2009, ISSUES HIGH EDUC, P58
Stephan PE, 2012, EC SHAPES SCI, Vxiv
Stern L., 2016, Building on Success and Learning from Experience: An Independent Review of the Research Excellence Framework
Stern LN, ITS OUR DUTY ASSESS
Sutton Trust, DEGR SUCC U CHANC IN
Universiteit Leiden, P SCI TECHN IND C 20
University and College Union, 2013, RES EXC FRAM REF UCU
Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6
NR 58
TC 3
Z9 3
U1 0
U2 10
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD NOV 26
PY 2018
VL 13
IS 11
AR e0207919
DI 10.1371/journal.pone.0207919
PG 13
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics
GA HB8GM
UT WOS:000451325700088
PM 30475868
OA gold, Green Published, Green Submitted
DA 2024-09-05
ER
PT J
AU Hidalgo, RC
Elias, RP
Torres-Moreno, JM
Villegas, OOV
Salgado, GR
Salazar, AM
AF Cuellar Hidalgo, Rodrigo
Pinto Elias, Raul
Torres-Moreno, Juan-Manuel
Vergara Villegas, Osslan Osiris
Reyes Salgado, Gerardo
Magadan Salazar, Andrea
TI Neural Architecture Comparison for Bibliographic Reference Segmentation:
An Empirical Study
SO DATA
LA English
DT Article
DE reference mining; BiLSTM; transformers; byte-pair encoding; Conditional
Random Fields
ID EXTRACTION
AB In the realm of digital libraries, efficiently managing and accessing scientific publications necessitates automated bibliographic reference segmentation. This study addresses the challenge of accurately segmenting bibliographic references, a task complicated by the varied formats and styles of references. Focusing on the empirical evaluation of Conditional Random Fields (CRF), Bidirectional Long Short-Term Memory with CRF (BiLSTM + CRF), and Transformer Encoder with CRF (Transformer + CRF) architectures, this research employs Byte Pair Encoding and Character Embeddings for vector representation. The models underwent training on the extensive Giant corpus and subsequent evaluation on the Cora Corpus to ensure a balanced and rigorous comparison, maintaining uniformity across embedding layers, normalization techniques, and Dropout strategies. Results indicate that the BiLSTM + CRF architecture outperforms its counterparts by adeptly handling the syntactic structures prevalent in bibliographic data, achieving an F1-Score of 0.96. This outcome highlights the necessity of aligning model architecture with the specific syntactic demands of bibliographic reference segmentation tasks. Consequently, the study establishes the BiLSTM + CRF model as a superior approach within the current state-of-the-art, offering a robust solution for the challenges faced in digital library management and scholarly communication.
C1 [Cuellar Hidalgo, Rodrigo] Biblioteca Daniel Cosio Villegas, Colegio Mexico, Carretera Picacho Ajusco 20, Mexico City 14110, Mexico.
[Pinto Elias, Raul; Magadan Salazar, Andrea] Tecnol Nacl Mexico CENIDET, Cuernavaca 62490, Mexico.
[Torres-Moreno, Juan-Manuel] Univ Avignon, Lab Informat Avignon, 339 Chemin Meinajaries, F-84911 Avignon 9, France.
[Vergara Villegas, Osslan Osiris] Univ Autonoma Ciudad Juarez, Ind & Mfg Engn Dept, Ciudad Juarez 32310, Mexico.
[Reyes Salgado, Gerardo] Univ Rey Juan Carlos, Dept Informat & Estadist, Ave Alcalde de Mostoles, Madrid 28933, Spain.
C3 Colegio de Mexico; Avignon Universite; Universidad Autonoma de Ciudad
Juarez; Universidad Rey Juan Carlos
RP Torres-Moreno, JM (corresponding author), Univ Avignon, Lab Informat Avignon, 339 Chemin Meinajaries, F-84911 Avignon 9, France.
EM rcuellar@colmex.mx; raul.pe@cenidet.tecnm.mx;
juan-manuel.torres@univ-avignon.fr; overgara@uacj.mx;
gerardo.reyes@urjc.es; andrea.ms@cenidet.tecnm.mx
RI Reyes Salgado, Gerardo/U-4717-2018; Torres-Moreno,
Juan-Manuel/K-5137-2012; Vergara Villegas, Osslan Osiris/N-1898-2016
OI Reyes Salgado, Gerardo/0000-0001-7942-2967; Torres-Moreno,
Juan-Manuel/0000-0002-4392-1825; Vergara Villegas, Osslan
Osiris/0000-0002-6572-6596
CR Akbik A, 2019, NAACL HLT 2019: THE 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES: PROCEEDINGS OF THE DEMONSTRATIONS SESSION, P54
Anzaroot S., 2013, P ICML 2013 WORKSH P
Becker DA, 2015, J ACAD LIBR, V41, P613, DOI 10.1016/j.acalib.2015.06.022
Bergmark D., 2000, Automatic Extraction of Reference Linking Information from Onlinedocuments
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Choi W, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0280637
Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Escobar Farfn J.I., 2021, P 10 C INT BIBL REP
Grennan M., 2020, P 8 INT WORKSH MIN S, P27
Grennan M., 2019, P 27 AIAI IR C ART I, VVolume 2563, P260
Hetzner Erik, 2008, Joint Conference on Digital Libraries (JCDL 2008), P280, DOI 10.1145/1378889.1378937
Huang ZH, 2015, Arxiv, DOI arXiv:1508.01991
Jain Vidhi, 2023, Decision Intelligence: Proceedings of the International Conference on Information Technology, InCITe 2023. Lecture Notes in Electrical Engineering (1079), P287, DOI 10.1007/978-981-99-5997-6_25
Khabsa M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093949
Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning
Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62
Mitrofan M, 2022, PROCEEDINGS OF THE 21ST WORKSHOP ON BIOMEDICAL LANGUAGE PROCESSING (BIONLP 2022), P316
Patro Sunanda, 2011, Database and Expert Systems Applications. Proceedings 22nd International Conference, DEXA 2011, P172, DOI 10.1007/978-3-642-23088-2_12
Peng FC, 2006, INFORM PROCESS MANAG, V42, P963, DOI 10.1016/j.ipm.2005.09.002
Prasad A, 2018, INT J DIGIT LIBRARIE, V19, P323, DOI 10.1007/s00799-018-0242-1
Rizvi STR, 2020, IEEE ACCESS, V8, P217231, DOI 10.1109/ACCESS.2020.3042455
Rodrigues Alves D., 2018, FRONT RES METR ANAL, V3, P21, DOI DOI 10.3389/FRMA.2018.00021
Tkaczyk D., 2018, P 26 AIAI IR C ART I, V2259, P162
Tkaczyk D, 2018, ACM-IEEE J CONF DIG, P99, DOI 10.1145/3197026.3197048
Vaswani A, 2023, Arxiv, DOI [arXiv:1706.03762, 10.48550/ARXIV.1706.03762, DOI 10.48550/ARXIV.1706.03762]
Ware M., 2015, STM REPORT OVERVIEW
Yan H, 2019, Arxiv, DOI arXiv:1911.04474
NR 28
TC 0
Z9 0
U1 1
U2 1
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2306-5729
J9 DATA-BASEL
JI Data
PD MAY
PY 2024
VL 9
IS 5
AR 71
DI 10.3390/data9050071
PG 24
WC Computer Science, Information Systems; Multidisciplinary Sciences
WE Emerging Sources Citation Index (ESCI)
SC Computer Science; Science & Technology - Other Topics
GA SC3Q1
UT WOS:001232224300001
OA gold
DA 2024-09-05
ER
PT J
AU Bartolomé, E
Benítez, P
AF Bartolome, Elena
Benitez, Paula
TI Failure mode and effect analysis (FMEA) to improve collaborative
project-based learning: Case study of a Study and Research Path in
mechanical engineering
SO INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING EDUCATION
LA English
DT Article
DE Failure mode and effect analysis; active learning; collaborative and
project-based learning; Study and Research Paths; Mechanical
Engineering; Theory of Machines and Mechanisms
ID RISK-MANAGEMENT; OPPORTUNITIES; WEAKNESSES; STRENGTHS; THREATS; TOOL
AB Failure Mode and Effect Analysis (FMEA) is a powerful quality tool, widely used in industry, for the identification of failure modes, their effects and causes. In this work, we investigated the utility of FMEA in the education field to improve active learning processes. In our case study, the FMEA principles were adapted to assess the risk of failures in a Mechanical Engineering course on "Theory of Machines and Mechanisms" conducted through a project-based, collaborative "Study and Research Path (SRP)" methodology. The SRP is an active learning instruction format which is initiated by a generating question that leads to a sequence of derived questions and answers, and combines moments of study and inquiry. By applying the FMEA, the teaching team was able to identify the most critical failures of the process, and implement corrective actions to improve the SRP in the subsequent year. Thus, our work shows that FMEA represents a simple tool of risk assesment which can serve to identify criticality in educational process, and improve the quality of active learning.
C1 [Bartolome, Elena; Benitez, Paula] Escola Univ Salesiana Sarria EUSS, Mech Engn Dept, Passeig St Joan Bosco 74, Barcelona 08017, Spain.
RP Bartolomé, E (corresponding author), Escola Univ Salesiana Sarria EUSS, Mech Engn Dept, Passeig St Joan Bosco 74, Barcelona 08017, Spain.
EM ebartolome@euss.es
RI Bartolomé, Elena/AFS-0763-2022; Bartolome, Elena/K-9014-2017; Bartolome,
Elena/R-5486-2019
OI Bartolome, Elena/0000-0001-5108-0977; Bartolome,
Elena/0000-0001-5108-0977
CR Mesa FA, 2015, WORLD J SURG, V39, P536, DOI 10.1007/s00268-014-2827-1
Alonso-Tristán C, 2017, ICERI PROC, P3491
[Anonymous], 2013, RECHERCHES DIDACTIQU
[Anonymous], 2012, PROJECT APPROACHES L
Barquero B., 2008, P 5 C EUR SOC RES MA, P2050
BARQUERO B., 2015, New ICMI Study Series, P249
Bartolomé E, 2020, EUR J ENG EDUC, V45, P985, DOI 10.1080/03043797.2020.1819962
Bartolomé E, 2021, INT J ENG EDUC, V37, P446
Bartolomé E, 2019, EUR J ENG EDUC, V44, P330, DOI 10.1080/03043797.2018.1490699
Bluvband Z, 2004, P REL MAINT S, P31, DOI 10.1109/RAMS.2004.1285419
Bosch M., 2015, STUDY RES PATHS U MA, P1
Boylan, 2011, INT C ED NEW LEARN T
Buljubasic-Kuzmanovic Senka, 2016, DIDACT SLOV-PEDAGOS, P118
Catelani M, 2020, IEEE ACCESS, V8, P20181, DOI 10.1109/ACCESS.2020.2968812
Chandrasekaran, 2012, SEFI 2012 ENG ED 202, P8
Chevallard Y., 2015, P 12 INT C MATH ED, P173, DOI DOI 10.1007/978-3-319-12688-3_13
de Du, 2009, RES PPL PRACTICE ENG
Deming W.E., 1950, ELEMENTARY PRINCIPLE
Lantada AD, 2013, INT J ENG EDUC, V29, P476
Dieste-Velasco MI, 2016, ICERI PROC, P900, DOI 10.21125/iceri.2016.1205
Dieste-Velasco MI, 2015, ICERI PROC, P5862
Dill, 1963, 63TMP22 RM GEN EL CO
DRAGAN P, 2014, SERB J MANAG, V9, P219
Florensa, 2018, CONTRIBUTIONS EPISTE
Florensa G., 2019, 11 C EUR SOC RES MAT
Florensa I, 2018, INT J ENG EDUC, V34, P1848
Flyvbjerg B, 2006, QUAL INQ, V12, P219, DOI 10.1177/1077800405284363
Ford EC, 2009, INT J RADIAT ONCOL, V74, P852, DOI 10.1016/j.ijrobp.2008.10.038
Gascon J, 2011, REV LAT AM INV MAT E, V14, P203
Grimson J., 2002, European Journal of Engineering Education, V27, P31, DOI 10.1080/03043790110100803
Gurses AP, 2019, INFECT CONT HOSP EP, V40, P178, DOI 10.1017/ice.2018.292
Habek P, 2017, PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON OPERATIONS RESEARCH AND ENTERPRISE SYSTEMS (ICORES), P57, DOI 10.5220/0006118600570065
Hamid Haghshenas Gorgani (last), 2016, Journal of Engineering and Applied Sciences, V11, P37
Hande S, 2014, ANN MED HEALTH SCI R, V4, P336, DOI 10.4103/2141-9248.133455
Hari R., 2015, GLOBAL J RES ANAL, V4, P330
Iadanza E, 2019, IEEE ACCESS, V7, P181546, DOI 10.1109/ACCESS.2019.2960235
Kruger D, 2015, PORTL INT CONF MANAG, P1424, DOI 10.1109/PICMET.2015.7273000
Lee H, 2017, DRUG DES DEV THER, V11, P3035, DOI 10.2147/DDDT.S145310
Liu HC, 2019, COMPUT IND ENG, V135, P881, DOI 10.1016/j.cie.2019.06.055
Liu HC, 2013, EXPERT SYST APPL, V40, P828, DOI 10.1016/j.eswa.2012.08.010
Mazumder, 2014, ASEE ANN C EXP C P I
McDermott R.E., 2008, The basics of FMEA
Neal, 1962, WANLTNR042 WEST EL C
Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x
Rodríguez-Amigo C, 2016, EDULEARN PROC, P1397
Rugarcia A., 2000, CHEM ENG EDUC, V34, P16, DOI DOI 10.1109/FIE.2002.1157986
Segismundo A, 2008, INT J QUAL RELIAB MA, V25, P899, DOI 10.1108/02656710810908061
Serafini A, 2016, ANN IG MED PREV COMU, V28, P288, DOI 10.7416/ai.2016.2108
Silva MM, 2014, INT J INFORM MANAGE, V34, P733, DOI 10.1016/j.ijinfomgt.2014.07.005
Simona Duicu, 2011, Recent Advances in Signal Processing, Computational Geometry and Systems Theory. Proceedings of the 11th WSEAS International Conference on Signal Processing, Computational Geometry and Artificial Vision (ISCGAV 2011). Proceedings of the 11th WSEAS International Conference on Systems Theory and Scientific Computation (ISTASG 2011), P189
Sinthavalai, 2008, IEEE INT ENG MAN C E
Sriraman B, 2010, ADVNCS MTHMTCS EDUC, V1, P7, DOI 10.1007/978-3-642-00742-2_2
Stamatis D.H., 1995, Failure Mode and Effect Analysis FMEA from Theory to Execution ASQC
Tooranloo HS, 2018, KNOWL INF SYST, V57, P183, DOI 10.1007/s10115-018-1172-3
van Hattum-Jansen, 2007, INT C ENG ED COIMBR
Vázquez-Valencia Agustín, 2018, Rev. colomb. anestesiol., V46, P3, DOI 10.1097/cj9.0000000000000002
Vinodh Sekar, 2012, TQM Journal, V24, P260, DOI 10.1108/17542731211226772
Winslow C, 2013, EDUC STUD MATH, V83, P267, DOI 10.1007/s10649-012-9453-3
Yin R.K., 2014, Case study research, V5th ed.
Zhao YX, 2012, ADV DIFFER EQU-NY, P1, DOI 10.1186/1687-1847-2012-15
NR 60
TC 8
Z9 8
U1 3
U2 18
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0306-4190
EI 2050-4586
J9 INT J MECH ENG EDUC
JI Int. J. Mech. Eng. Educ.
PD APR
PY 2022
VL 50
IS 2
BP 291
EP 325
DI 10.1177/0306419021999046
PG 35
WC Education, Scientific Disciplines; Engineering, Mechanical
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research; Engineering
GA ZZ5IQ
UT WOS:000773302700005
DA 2024-09-05
ER
PT C
AU Obaideen, K
AlShabi, M
Bettayeb, M
Faroukh, Y
Bonny, T
AF Obaideen, Khaled
AlShabi, Mohammad
Bettayeb, Maamar
Faroukh, Yousuf
Bonny, Talal
BE Schwartz, PJ
Jensen, B
Hohil, ME
TI The confluence of PSO and MDO: a bibliometric perspective
SO ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS
APPLICATIONS VI
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Artificial Intelligence and Machine Learning for
Multi-Domain Operations Applications VI
CY APR 22-26, 2024
CL National Harbor, MD
DE Particle Swarm Optimization; Multi-Disciplinary Design Optimization;
VOSviewer; Bibliometric; MDO
ID PARTICLE SWARM OPTIMIZATION; NEURAL-NETWORKS; DESIGN
AB This paper presents a thorough investigation into the convergence of Particle Swarm Optimization (PSO) and Multi-Disciplinary Design Optimization (MDO), two pivotal methodologies in the realm of computational optimization. By harnessing the strengths of PSO's heuristic search capabilities and MDO's integrative design approach, this study explores the synergistic potential of combining these methods to tackle complex optimization challenges. Through a systematic literature review and bibliometric analysis, we delve into the evolution, methodologies, applications, and outcomes of this interdisciplinary integration, drawing from a diverse array of scholarly works. Our analysis reveals a growing trend in the application of PSO within MDO frameworks, highlighting significant advancements, identifying gaps in the current literature, and suggesting fruitful directions for future research. The findings underscore the robustness and adaptability of PSO-MDO integration across various domains, offering insights into its potential to enhance optimization practices and contribute to the advancement of engineering and technology. This study not only charts the current landscape of PSO and MDO convergence but also sets the groundwork for future explorations in this promising research domain.
C1 [Obaideen, Khaled] Univ Sharjah, Biosensing & Biosensors Grp, Smart Automat & Commun Technol, RISE, Sharjah, U Arab Emirates.
[AlShabi, Mohammad] Univ Sharjah, Coll Engn, Dept Mech & Nucl Engn, Sharjah, U Arab Emirates.
[Bettayeb, Maamar] Univ Sharjah, Coll Engn, Dept Elect Engn, Sharjah, U Arab Emirates.
[Faroukh, Yousuf] Univ Sharjah, Sharjah Acad Astron Space Sci & Technol, CubeSat Lab, Sharjah, U Arab Emirates.
[Bonny, Talal] Univ Sharjah, Coll Comp & Informat, Sharjah, U Arab Emirates.
C3 University of Sharjah; University of Sharjah; University of Sharjah;
University of Sharjah; University of Sharjah
RP Obaideen, K (corresponding author), Univ Sharjah, Biosensing & Biosensors Grp, Smart Automat & Commun Technol, RISE, Sharjah, U Arab Emirates.
OI Obaideen, Khaled/0000-0002-6472-2753
CR Abanades S, 2022, ENERGY SCI ENG, V10, P630, DOI 10.1002/ese3.1030
Abushihab K, 2023, J RELIG HEALTH, DOI 10.1007/s10943-023-01955-9
Adebayo PO, 2024, SCI AFR, V23, DOI 10.1016/j.sciaf.2023.e02012
Afzal M, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.120623
Ahmed R, 2021, SUSTAIN ENERGY TECHN, V47, DOI 10.1016/j.seta.2021.101488
Al-geelani NA, 2015, RENEW SUST ENERG REV, V45, P20, DOI 10.1016/j.rser.2015.01.047
Al-Shabi M., 2020 IEEE CAN C EL C, P1
Al-Shabi M., 2021, IAES Int. J. Artif. Intell, V10, P398, DOI [10.11591/ijai.v10.i2.pp398-406, DOI 10.11591/IJAI.V10.I2.PP398-406]
Al-Shabi M., 2017 7 INT C MOD SIM, P1
Al-Shabi M, 2019, INT J ROBOT AUTOM, V34, P632, DOI 10.2316/J.2019.206-0160
Alam S, 2014, SWARM EVOL COMPUT, V17, P1, DOI 10.1016/j.swevo.2014.02.001
Alhammadi A, 2023, Cleaner Engineering and Technology
Alhammadi A., INT S IND ENG AUT, P37
AlMallahi M., SPIE, V12513, P113
AlShabi M., 2021, IAES International Journal of Artificial Intelligence, V10, P166
AlShabi M, 2021, J THERM ANAL CALORIM, V144, P1655, DOI 10.1007/s10973-020-09895-2
Avzayesh M, 2021, DIGIT SIGNAL PROCESS, V110, DOI 10.1016/j.dsp.2020.102912
Balasubramanian K, 2020, RENEW ENERG FOCUS, V35, P84, DOI 10.1016/j.ref.2020.09.001
Barber KA, 2022, RENEW SUST ENERG REV, V160, DOI 10.1016/j.rser.2022.112359
Batista NE, 2023, RENEW SUST ENERG REV, V182, DOI 10.1016/j.rser.2023.113377
Bianchi S, 2024, BUILD ENVIRON, V250, DOI 10.1016/j.buildenv.2024.111184
Chehouri A, 2015, APPL ENERG, V142, P361, DOI 10.1016/j.apenergy.2014.12.043
Chenhong X., 2022, Sustainable Cities and Society, V87
Cicconi P, 2023, J ENERGY STORAGE, V73, DOI 10.1016/j.est.2023.109197
Cura T, 2012, EXPERT SYST APPL, V39, P1582, DOI 10.1016/j.eswa.2011.07.123
Ekici B, 2019, BUILD ENVIRON, V147, P356, DOI 10.1016/j.buildenv.2018.10.023
Eskandarpour M, 2015, OMEGA-INT J MANAGE S, V54, P11, DOI 10.1016/j.omega.2015.01.006
Gadsden S. A., 2011, ISRN Signal Processing, DOI 10.5402/2011/120351
Gan VJL, 2020, J CLEAN PROD, V254, DOI 10.1016/j.jclepro.2020.120012
Ghadge R, 2022, COMPOS STRUCT, V280, DOI 10.1016/j.compstruct.2021.114875
Hatamleh KS, 2015, APPL SOFT COMPUT, V36, P457, DOI 10.1016/j.asoc.2015.06.031
Isuwa J, 2023, EGYPT INFORM J, V24, DOI 10.1016/j.eij.2023.100416
Jiang TY, 2015, CHINESE J AERONAUT, V28, P865, DOI 10.1016/j.cja.2015.04.005
Jordehi AR, 2015, RENEW SUST ENERG REV, V52, P1260, DOI 10.1016/j.rser.2015.08.007
Khare A, 2013, APPL SOFT COMPUT, V13, P2997, DOI 10.1016/j.asoc.2012.11.033
Kumar SBV, 2020, J KING SAUD UNIV-COM, V32, P1095, DOI 10.1016/j.jksuci.2018.01.001
Lee AS, 2021, IEEE SIGNAL PROC LET, V28, P1295, DOI 10.1109/LSP.2021.3089918
Li LL, 2023, ENERG CONVERS MANAGE, V297, DOI 10.1016/j.enconman.2023.117637
Liu Z, 2020, ENG APPL ARTIF INTEL, V95, DOI 10.1016/j.engappai.2020.103771
Lu YZ, 2015, INFORM SCIENCES, V297, P21, DOI 10.1016/j.ins.2014.11.017
Mbungu NT, 2023, RENEW SUST ENERG REV, V179, DOI 10.1016/j.rser.2023.113251
Messinger TL, 2023, AEROSP SCI TECHNOL, V140, DOI 10.1016/j.ast.2023.108495
Mohebbi A, 2019, ENG APPL ARTIF INTEL, V82, P192, DOI 10.1016/j.engappai.2019.03.025
Obaideen Khaled, 2022, Diabetes Metab Syndr, V16, P102566, DOI 10.1016/j.dsx.2022.102566
Sethi N, 2022, ARRAY-NY, V14, DOI 10.1016/j.array.2022.100183
Shan JJ, 2014, AEROSP SCI TECHNOL, V36, P114, DOI 10.1016/j.ast.2014.04.004
Singh Y., 2024, Advances in Computers
Wang KG, 2024, EXPERT SYST APPL, V244, DOI 10.1016/j.eswa.2023.122732
Wang KG, 2023, COMPUT METHOD APPL M, V416, DOI 10.1016/j.cma.2023.116307
Wang XH, 2021, ACTA ASTRONAUT, V178, P595, DOI 10.1016/j.actaastro.2020.09.040
Yang FF, 2023, FINITE ELEM ANAL DES, V223, DOI 10.1016/j.finel.2023.103989
Yu QQ, 2024, ADV SPACE RES, V73, P1952, DOI 10.1016/j.asr.2023.11.007
Yuan YL, 2023, OCEAN ENG, V285, DOI 10.1016/j.oceaneng.2023.115426
NR 53
TC 0
Z9 0
U1 0
U2 0
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
EI 1996-756X
BN 978-1-5106-7421-9; 978-1-5106-7420-2
J9 PROC SPIE
PY 2024
VL 13051
AR 130511P
DI 10.1117/12.3013817
PG 7
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BX2FO
UT WOS:001259449700049
DA 2024-09-05
ER
PT J
AU Ribeiro, VM
AF Ribeiro, Vitor Miguel
TI Pioneering paradigms: unraveling niche opportunities in green finance
through bibliometric analysis of nation brands and brand culture
SO GREEN FINANCE
LA English
DT Article
DE bibliometric analysis; latent Dirichlet allocation; multinomial discrete
choice analysis; nation brand; brand culture; green economy; green
finance
ID COUNTRY-OF-ORIGIN; EXPRESSING HERSELF; GOOGLE-SCHOLAR; SOCIAL MEDIA;
SCIENCE; IMPACT; IDENTITY; CHINA; MANAGEMENT; INFRASTRUCTURE
AB This study reviews the literature focused on nation brands and brand culture through the innovative combination of latent Dirichlet allocation with a multinomial and unordered discrete choice analysis. Unlike a narrow perspective of bibliometric work, which confines itself to reviewing existing literature within a specific research domain, a broader viewpoint leverages bibliometric analysis to pinpoint potential research opportunities indicative of emerging trends in related fields. Adopting this comprehensive paradigm, the current study scrutinizes 60 articles spanning the timeframe from 1992 to 2021. The analysis discerns six prospective marketing strategies instrumental in propelling a country to global brand prominence: the synergistic integration of country -of -origin and city brands, consumption branding, materialistic branding, green branding, ideological branding, and scientific branding. Notably, environmental branding has assumed a pivotal global role post-2015, while ideological branding represents a more recent trend centered on diligent e fforts to invigorate national identity systems. Empirical insights underscore the need of a multidisciplinary approach in the creation of nation brands, suggesting that distinct strategies need not be mutually exclusive. Quantitatively, it is found evidence that covering one additional environmental topic in a study increases (decreases) its likelihood of belonging to the consumption (ideology) cluster by 50.8 (50.6) percentage points, respectively. Strategic recommendations for future national endeavors emphasize the significance of becoming a Stackelberg leader in the race to generate added value. Collectively, these findings underscore that the bibliometric analysis employed to elucidate the evolution of nation brands and brand culture, typically associated with international marketing, unveils two promising niche areas for future research in green finance: green nation brands and green brand culture . The former pertains to asset allocations within green enterprises and environmental sectors, enhancing a country's symbolic commitment to the burgeoning green paradigm. Meanwhile, the later delves into the internalization of fintech development's growth and intermediary e ffects, fostering green innovation, energy e fficiency, and green supply chains. This bottom -up approach is geared towards meeting community -based needs and presents valuable avenues for future exploration in the field of green finance.
C1 [Ribeiro, Vitor Miguel] Univ Porto, Fac Econ, Dept Econ, Econometr Grp, Rua Dr Roberto Frias, P-4200464 Porto, Portugal.
C3 Universidade do Porto
RP Ribeiro, VM (corresponding author), Univ Porto, Fac Econ, Dept Econ, Econometr Grp, Rua Dr Roberto Frias, P-4200464 Porto, Portugal.
EM vsribeiro@fep.up.pt
OI Ribeiro, Vitor Miguel/0000-0002-7223-9841
FU FCT [DSAIPA-CS-0086-2020]
FX V. M. Ribeiro acknowledges financial support from the FCT project
DSAIPA-CS-0086-2020. Any necessary material for replication of this
study can be provided upon request to vsribeiro@fep.up.pt. V. M. Ribeiro
also appreciates the comments and suggestions from two anonymous
reviewers, the Editor -in -Chief, the Editor -in -Charge, the Assistant
Editor, and the English Editor, which substantially improved the quality
of the final version of this manuscript.
CR Aaker DA, 1996, CALIF MANAGE REV, V38, P102, DOI 10.2307/41165845
Abramo G, 2011, SCIENTOMETRICS, V87, P499, DOI 10.1007/s11192-011-0352-7
Adda J, 2016, Q J ECON, V131, P891, DOI 10.1093/qje/qjw005
Adriaanse LS, 2013, ELECTRON LIBR, V31, P727, DOI 10.1108/EL-12-2011-0174
Aguilar-Moreno JA, 2024, AIMS MATH, V9, P4337, DOI 10.3934/math.2024215
Aldridge Stephen., 2002, SOCIAL CAPITAL DISCU
Alserhan BA, 2015, J RES MARK ENTREP, V17, P36, DOI 10.1108/JRME-09-2014-0024
Anderson B, 1983, Imagined communities: Reflections on the origin and spread of nationalism Verso books, DOI [10.4324/9781003060963-46/imagined-communities-benedict-anderson, DOI 10.4324/9781003060963-46/IMAGINED-COMMUNITIES-BENEDICT-ANDERSON]
Anholt S, 2005, J ADVERTISING RES, V45, P296, DOI 10.1017/S0021849905050336
Anholt S., 2002, Journal of Brand Management, V10, P59, DOI [10.1057/palgrave.bm.2540101, DOI 10.1057/PALGRAVE.BM.2540101]
Appio FP, 2016, SCIENTOMETRICS, V108, P355, DOI 10.1007/s11192-016-1955-9
Appio FP, 2014, SCIENTOMETRICS, V101, P623, DOI 10.1007/s11192-014-1329-0
Aria M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063643
Aria M, 2020, SOC INDIC RES, V149, P803, DOI 10.1007/s11205-020-02281-3
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Aronczyk Melissa., 2008, INT J COMMUN-US, V2, P25
Bartikowski B, 2021, J BUS ETHICS, V169, P261, DOI 10.1007/s10551-020-04483-8
Batra R, 2019, J CONSUM PSYCHOL, V29, P535, DOI 10.1002/jcpy.1122
BELK RW, 1984, ADV CONSUM RES, V11, P291
Bellostas A, 2023, GREEN FINANC, V5, P211, DOI 10.3934/GF.2023009
Benneworth P, 2005, EUR PLAN STUD, V13, P537, DOI 10.1080/09654310500107175
Bennink H, 2023, GREEN FINANC, V5, P154, DOI 10.3934/GF.2023007
BILKEY WJ, 1982, J INT BUS STUD, V13, P89, DOI 10.1057/palgrave.jibs.8490539
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boell SK, 2015, J INF TECHNOL-UK, V30, P161, DOI 10.1057/jit.2014.26
Bulmer S, 2010, AUSTRALAS MARK J, V18, P199, DOI 10.1016/j.ausmj.2010.07.002
Caffrey J., 1971, ESTIMATING IMPACT CO
Carlsen L, 2023, GREEN FINANC, V5, P89, DOI 10.3934/GF.2023005
Chabowski BR, 2013, J INT BUS STUD, V44, P622, DOI 10.1057/jibs.2013.20
Chappin EJL, 2014, RENEW SUST ENERG REV, V30, P715, DOI 10.1016/j.rser.2013.11.013
Clayton R, 1998, WORLD POLIT, V51, P67, DOI 10.1017/S0043887100007796
Clifton N, 2014, J DESTIN MARK MANAGE, V3, P122, DOI 10.1016/j.jdmm.2014.02.003
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Cohen J., 1992, Current directions in psychological science, V1, P98, DOI [10.1111/1467-8721.ep10768783, DOI 10.1111/1467-8721.EP10768783]
Connor Walker., 1978, Ethnic and Racial Studies, V1, P377
D'Angelo CA, 2011, J AM SOC INF SCI TEC, V62, P257, DOI 10.1002/asi.21460
De Cillia R, 1999, DISCOURSE SOC, V10, P149, DOI 10.1177/0957926599010002002
de Nooy W, 2011, SOC NETWORKS, V33, P31, DOI 10.1016/j.socnet.2010.09.003
Demangeot C, 2015, INT MARKET REV, V32, P118, DOI 10.1108/IMR-01-2015-0017
Demir G., 2024, Decis. Making Appl. Manag. Eng, V7, P290, DOI [10.31181/dmame7120241037, DOI 10.31181/DMAME7120241037]
Demir G, 2024, EXPERT SYST APPL, V237, DOI 10.1016/j.eswa.2023.121660
Desalegn G, 2023, GREEN FINANC, V5, P195, DOI 10.3934/GF.2023008
Dinnie K., 2003, J CUSTOMER BEHAV, V3, P165, DOI DOI 10.1362/1475392041829537
Dinnie K, 2010, INT MARKET REV, V27, P388, DOI 10.1108/02651331011058572
Dinnie Keith., 2004, Place Branding, V1, P106, DOI https://doi.org/10.1057/palgrave.pb.5990010
Donato H, 2019, ACTA MEDICA PORT, V32, P227, DOI 10.20344/amp.11923
Druckmann Daniel., 1994, MERSHON INT STUD REV, V38, P43, DOI DOI 10.2307/222610
Ductor L, 2015, OXFORD B ECON STAT, V77, P385, DOI 10.1111/obes.12070
Dwivedi Y, 2008, ECIS 2008 P, V112
Dzhengiz T, 2020, GREEN FINANC, V2, P323, DOI 10.3934/GF.2020018
EVERETT DH, 1952, T FARADAY SOC, V48, P749, DOI 10.1039/tf9524800749
Ezuma REMR, 2022, GREEN FINANC, V4, P450, DOI 10.3934/GF.2022.2022022
Failler P, 2019, GREEN FINANC, V1, P1, DOI 10.3934/GF.2019.1.1
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Fan Y, 2010, PLACE BRANDING PUBLI, V6, P97, DOI 10.1057/pb.2010.16
Fetscherin M, 2010, INT MARKET REV, V27, P466, DOI 10.1108/02651331011058617
Foscht T, 2008, J PROD BRAND MANAG, V17, P131, DOI 10.1108/10610420810875052
Frankenberger-Graham KD, 2015, P 1993 AC MARK SCI A, P15, DOI [10.1007/978-3-319-13159-74, DOI 10.1007/978-3-319-13159-74]
FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543
Friedman Milton., 1980, Free to choose: a personal statement
Gaggiotti H, 2008, PLACE BRANDING PUBLI, V4, P115, DOI 10.1057/palgrave.pb.6000081
Gan CM, 2015, SCIENTOMETRICS, V105, P1167, DOI 10.1007/s11192-015-1723-2
Geary D, 2013, TOURIST STUD, V13, P36, DOI 10.1177/1468797612471105
Gellner E, 1994, Philos Quart, V47
Gielens K, 2019, INT J RES MARK, V36, P367, DOI 10.1016/j.ijresmar.2019.01.005
Gong W, 2014, J RES INTERACT MARK, V8, P37, DOI 10.1108/JRIM-09-2013-0064
Gorelick J, 2020, GREEN FINANC, V2, P114, DOI 10.3934/GF.2020007
Gössling S, 2020, GLOBAL ENVIRON CHANG, V65, DOI 10.1016/j.gloenvcha.2020.102194
Gould M, 2007, PLACE BRANDING PUBLI, V3, P100, DOI 10.1057/palgrave.pb.6000051
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grimson A, 2010, SOC IDENT, V16, P61, DOI 10.1080/13504630903465894
Gupta N, 2011, ASIA PAC J MARKET LO, V23, P251, DOI 10.1108/13555851111143204
Guzman F., 2005, The ICFAI Journal of Brand Management, V2, P30
Haas R, 2021, GREEN FINANC, V3, P90, DOI 10.3934/GF.2021006
Hahn ED, 2005, J R Stat Soc Series B, P1
Hanson K, 2019, POLIT PSYCHOL, V40, P777, DOI 10.1111/pops.12561
Hao AW, 2021, INT MARKET REV, V38, P46, DOI 10.1108/IMR-01-2019-0028
He JX, 2021, INT MARKET REV, V38, P19, DOI 10.1108/IMR-11-2019-0268
Hewett K, 2022, INT J RES MARK, V39, P619, DOI 10.1016/j.ijresmar.2021.09.003
Hicks D, 1999, SCIENTOMETRICS, V44, P193, DOI 10.1007/BF02457380
HILL MO, 1973, ECOLOGY, V54, P427, DOI 10.2307/1934352
HONG ST, 1989, J CONSUM RES, V16, P175, DOI 10.1086/209206
Hsieh MH, 2005, J PROD BRAND MANAG, V14, P14, DOI 10.1108/10610420510583716
Huang YC, 2023, GREEN FINANC, V5, P1, DOI 10.3934/GF.2023001
HUTCHESON K, 1970, J THEOR BIOL, V29, P151, DOI 10.1016/0022-5193(70)90124-4
Ilic B, 2019, GREEN FINANC, V1, P94, DOI 10.3934/GF.2019.2.94
van Eck NJ, 2011, Arxiv, DOI arXiv:1109.2058
Johansson J.K., 1985, J MARKETING RES, V22, P388
Kalamova MM, 2010, KYKLOS, V63, P400, DOI 10.1111/j.1467-6435.2010.00480.x
Kaufmann HR, 2008, EUROMED J BUS, V3, P38, DOI 10.1108/14502190810873812
Keillor BD, 1999, INT MARKET REV, V16, P65, DOI 10.1108/02651339910257656
Kemfert C, 2019, GREEN FINANC, V1, P237, DOI 10.3934/GF.2019.3.237
Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001
Kirloskar-Steinbach M, 2019, EDUC PHILOS THEORY, V51, P1490, DOI 10.1080/00131857.2018.1562850
Klein JillG., 1999, J INT CONSUM MARK, V11, P5, DOI [10.1300/J046v11n04_02, DOI 10.1300/J046V11N04_02]
KLEIN LR, 1978, AM ECON REV, V68, P1
KOSTERMAN R, 1989, POLIT PSYCHOL, V10, P257, DOI 10.2307/3791647
Kotler P., 2002, Journal of Brand Management, V9, P249, DOI DOI 10.1057/PALGRAVE.BM.2540076
Lantz G, 1998, ADV CONSUM RES, V25, P486
Lewison G, 1998, SCIENTOMETRICS, V41, P5, DOI 10.1007/BF02457962
Li W.K., 1994, Journal of Consumer Psychology, V3, P187
Loo T, 2006, CORP REPUT REV, V9, P198, DOI 10.1057/palgrave.crr.1550025
Maciel FA, 2013, Latin Am Bus Rev, V14, P139, DOI [10.1080/10978526.2013.808950, DOI 10.1080/10978526.2013.808950]
Magurran AE, 1988, Why diversity? Ecological Diversity and its Measurement, DOI [10.1007/978-94-015-7358-0, DOI 10.1007/978-94-015-7358-0]
Magurran AE, 2010, Biological diversity: frontiers in measurement and assessment, DOI DOI 10.1086/666756
MAHESWARAN D, 1994, J CONSUM RES, V21, P354, DOI 10.1086/209403
Margalef R, 1972, Homage to Evelyn Hutchinson, or why there is an upper limit to diversity
Marino-Romero JA, 2024, TECHNOL FORECAST SOC, V199, DOI 10.1016/j.techfore.2023.123014
Matzler K, 2016, TOURISM MANAGE, V52, P507, DOI 10.1016/j.tourman.2015.07.017
May RM, 1979, Ecol Evol Communities, V1, P81
McFadden D., 1974, Journal of Public Economics, V3, P303, DOI DOI 10.1016/0047-2727(74)90003-6
Martínez NM, 2016, J PLACE MANAG DEV, V9, P73, DOI 10.1108/JPMD-11-2015-0052
PIELOU E C, 1969, P286
Porta J., 1998, GEODERMA, V87, P31, DOI DOI 10.1080/10641734.1998.10505081
Ribeiro HCM, 2013, Revista De Administracao e Inovacao, V10, P208, DOI [10.5773/rai.v10i4.1139, DOI 10.5773/RAI.V10I4.1139]
Ribeiro VM, 2016, B ECON RES, V68, pS133, DOI 10.1111/boer.12084
Rojas-Mendez JI, 2023, J PROD BRAND MANAG, V32, P107, DOI 10.1108/JPBM-04-2021-3444
Roztocki N, 2008, P 14 AM C INF SYST, V1, P1
SAMIEE S, 1994, J INT BUS STUD, V25, P579, DOI 10.1057/palgrave.jibs.8490213
Schwarz C, 2018, STATA J, V18, P101, DOI 10.1177/1536867X1801800107
Seo J, 2008, ASIAN PERSPEC, V32, P39
Seo J, 2024, THIRD WORLD Q, V45, P1106, DOI 10.1080/01436597.2021.1937098
SHIMP TA, 1987, J MARKETING RES, V24, P280, DOI 10.2307/3151638
Shugurov M, 2023, GREEN FINANC, V5, P102, DOI 10.3934/GF.2023006
Silva ST, 2009, J EVOL ECON, V19, P605, DOI 10.1007/s00191-008-0121-9
Smith P.M., 1994, Journal of Global Marketing, V7, P103, DOI DOI 10.1300/J042V07N0306
Södergren J, 2021, INT J CONSUM STUD, V45, P645, DOI 10.1111/ijcs.12651
Song YA, 2013, CORP REPUT REV, V16, P80, DOI 10.1057/crr.2012.24
Stalnaker S, 2002, Hub culture: The next wave of urban consumers Wiley
Steenkamp JB, 2021, INT MARKET REV, V38, P6, DOI 10.1108/IMR-10-2019-0253
Steenkamp JBEM, 2010, J MARKETING RES, V47, P1011, DOI 10.1509/jmkr.47.6.1011
Steenkamp JBEM, 1999, J MARKETING, V63, P55, DOI 10.2307/1251945
Tajfel H., 1986, An Integrative Theory of Intergroup Conflict, P33
Teixeira AAC, 2017, SCIENTOMETRICS, V110, P541, DOI 10.1007/s11192-016-2186-9
Therkelsen A, 2010, SCAND J HOSP TOUR, V10, P107, DOI 10.1080/15022250903561903
Tuan Y.-F., 1990, Topophilia: A Study of Environmental Perception, Attitudes, and Values
Turner G, 1994, Making it national: Australian nationalism and popular culture, DOI [10.4324/9781003116363, DOI 10.4324/9781003116363]
Turner G, 1994, Metro Magazine: Media and Education Magazine, V1, P32, DOI [10.3316/ielapa.153836366722575, DOI 10.3316/IELAPA.153836366722575]
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075
Verlegh PWJ, 1999, J ECON PSYCHOL, V20, P521, DOI 10.1016/S0167-4870(99)00023-9
Volcic Z, 2009, Television in the Balkans: The rise of commercial nationalism
Volcic Z, 2011, INT J COMMUN-US, V5, P598
Wakkee I, 2019, TECHNOL FORECAST SOC, V141, P195, DOI 10.1016/j.techfore.2018.10.013
Wallström Å, 2010, J BRAND MANAG, V18, P228, DOI 10.1057/bm.2010.45
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Wang YF, 2023, GREEN FINANC, V5, P452, DOI 10.3934/GF.2023018
White GO, 2016, MANAGE INT REV, V56, P35, DOI 10.1007/s11575-015-0260-9
White L, 2009, TOUR REV INT, V13, P139, DOI 10.3727/154427209789604633
Wilson JAJ, 2010, J ISLAMIC MARK, V1, P177, DOI 10.1108/17590831011055905
Winit W, 2014, INT MARKET REV, V31, P102, DOI 10.1108/IMR-01-2012-0001
Wolfswinkel JF, 2013, EUR J INFORM SYST, V22, P45, DOI 10.1057/ejis.2011.51
Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1
NR 153
TC 0
Z9 0
U1 1
U2 1
PU AMER INST MATHEMATICAL SCIENCES-AIMS
PI SPRINGFIELD
PA PO BOX 2604, SPRINGFIELD, MO 65801-2604, UNITED STATES
SN 2643-1092
J9 GREEN FINANC
JI Green Financ.
PY 2024
VL 6
IS 2
BP 287
EP 347
DI 10.3934/GF.2024012
PG 61
WC Business, Finance; Green & Sustainable Science & Technology
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics; Science & Technology - Other Topics
GA UL8R0
UT WOS:001248310400001
OA gold
DA 2024-09-05
ER
PT J
AU Altuntas, S
Dereli, T
AF Altuntas, Serkan
Dereli, Turkay
TI A Regression-Based "Patent Data Analysis" Approach: A Case Study for
"Weapon Technology" Evaluation Process
SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
LA English
DT Article
DE Patents; Weapons; Defense industry; Data analysis; Linear regression;
Companies; Market research; Linear regression model; patent analysis;
technology evaluation; weapon technology
ID SOCIAL NETWORK ANALYSIS; DEFENSE INDUSTRY; MILITARY TECHNOLOGY;
KNOWLEDGE; FUTURE; CHINA; FIRMS; PERFORMANCE; INNOVATION; DOCUMENTS
AB Technology evaluation is one of the most essential tasks for today's companies to make correct decisions that will increase their competitiveness. To date, numeroushave been made to address technology evaluation in the literature. Nevertheless, none of them have built a technology map or classified technologies based on their effects on the competitive power of a company in practice. To overcome the limitations of previous studies, a regression-based patent data analysis is proposed here for technology evaluation in this article. To this end, the proposed approach builds a technology map and classifies the technologies into four classes with respect to the technology effect ratio, namely 1) very high effect class, 2) high effect class, 3) medium effect class, and 4) low effect class. The technology evaluation of weapon technology in the defense industry has been conducted to show how the proposed approach works in real life. A good technology management strategy can be selected among available alternatives by decision makers and managers using the proposed approach. The results show that the proposed technology evaluation process can be used effectively in practice.
C1 [Altuntas, Serkan] Yildiz Tech Univ, Dept Ind Engn, TR-34349 Istanbul, Turkey.
[Dereli, Turkay] Hasan Kalyoncu Univ, Off President, TR-27010 Gaziantep, Turkey.
C3 Yildiz Technical University; Hasan Kalyoncu University
RP Altuntas, S (corresponding author), Yildiz Tech Univ, Dept Ind Engn, TR-34349 Istanbul, Turkey.
EM serkan@yildiz.edu.tr; turkay.dereli@hku.edu.tr
RI Altuntas, Serkan/ABA-3083-2020
OI Altuntas, Serkan/0000-0003-4383-4710; Dereli, Turkay/0000-0002-2130-5503
CR Abbas A, 2014, WORLD PAT INF, V37, P3, DOI 10.1016/j.wpi.2013.12.006
Altuntas F., 2017, GIRISIMCILIK VE INOV, V6, P97
Altuntas F, 2021, KYBERNETES, V50, P1180, DOI 10.1108/K-11-2019-0761
Altuntas S, 2020, SCIENTOMETRICS, V124, P1157, DOI 10.1007/s11192-020-03535-0
Altuntas S, 2015, TECHNOL FORECAST SOC, V96, P202, DOI 10.1016/j.techfore.2015.03.011
Altuntas S, 2015, TECHNOL FORECAST SOC, V92, P249, DOI 10.1016/j.techfore.2014.09.012
Atesoglu S., 1990, DEFENC ECON, V2, P19, DOI DOI 10.1080/10430719008404675
Azimi S, 2022, IEEE T ENG MANAGE, V69, P1394, DOI 10.1109/TEM.2020.2981284
Barros CP, 2002, DEFENCE PEACE ECON, V13, P311, DOI 10.1080/10242690212359
Bitzinger RA, 2011, J STRATEGIC STUD, V34, P425, DOI 10.1080/01402390.2011.574985
Capelle-Blancard G, 2008, REV FINANC ECON, V17, P14, DOI 10.1016/j.rfe.2007.02.001
Castellacci F, 2014, DEFENCE PEACE ECON, V25, P549, DOI 10.1080/10242694.2013.857451
CASTRO AureliaVALINO., 2001, Defence and Peace Economics, V12, P395, DOI [https://doi.org/10.1080/10430710108404996, DOI 10.1080/10430710108404996]
CHAKRABARTI AK, 1994, INT J TECHNOL MANAGE, V9, P757
CHAKRABARTI AK, 1993, IEEE T ENG MANAGE, V40, P91, DOI 10.1109/17.206656
Chen W, 2022, IEEE T ENG MANAGE, V69, P1135, DOI 10.1109/TEM.2020.2975988
Choi J, 2014, TECHNOL FORECAST SOC, V83, P170, DOI 10.1016/j.techfore.2013.07.004
Cowey K, 2004, CURR OPIN SOLID ST M, V8, P367, DOI 10.1016/j.cossms.2004.12.004
Dagdeviren M, 2009, EXPERT SYST APPL, V36, P8143, DOI 10.1016/j.eswa.2008.10.016
Daim T, 2020, TECHNOL FORECAST SOC, V161, DOI 10.1016/j.techfore.2020.120329
de Oliveira L. G, 2012, J DEFENCE MANAGE, V2
Dehghani Milad, 2018, International Journal of Product Development, V22, P293
Dereli T, 2010, CYBERNET SYST, V41, P371, DOI 10.1080/01969722.2010.486225
Dowdall P, 2004, DEFENCE PEACE ECON, V15, P565, DOI 10.1080/1024269042000246684
Dunne P, 2001, DEFENCE PEACE ECON, V12, P5, DOI 10.1080/10430710108404974
Ernest Nick., 2015, J DEF MANAG, V6, P2167
Ernst H., 2003, World Patent Information, V25, P233, DOI 10.1016/S0172-2190(03)00077-2
Esper Thomas., 1969, SLAVIC REV, V28, P185
Guillou S, 2009, RES POLICY, V38, P170, DOI 10.1016/j.respol.2008.10.015
Günlük-Senesen G, 2001, DEFENCE PEACE ECON, V12, P27, DOI 10.1080/10430710108404975
HACKER BC, 1977, TECHNOL CULT, V18, P43, DOI 10.2307/3103204
Heshmati A, 2009, PRODUCTIVITY EFFICIE
Hsueh CC, 2009, 2009 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, P393, DOI 10.1109/ASONAM.2009.68
Jang, 2012, J INTELLECT PROP RIG, V17, P539
Jun S., 2012, INT J SOFTWARE ENG I, V6, P107
Jun S., 2015, INT J STW ENG APPL, V9, P155
Jun S., 2010, Journal of Modern Mathematics and Statistics, V4, P101
Jun S, 2018, TECHNOL ANAL STRATEG, V30, P311, DOI 10.1080/09537325.2017.1309015
Jun S, 2016, TECHNOL ANAL STRATEG, V28, P156, DOI 10.1080/09537325.2015.1073252
Jun S, 2013, IND MANAGE DATA SYST, V113, P890, DOI 10.1108/IMDS-01-2013-0032
Jun S, 2012, COMM COM INF SC, V340, P28
Jun S, 2012, COMM COM INF SC, V340, P1
Jun S, 2011, COMM COM INF SC, V258, P21
Kim DH, 2016, TECHNOL FORECAST SOC, V105, P140, DOI 10.1016/j.techfore.2016.01.025
Kim H, 2013, TECHNOL FORECAST SOC, V80, P944, DOI 10.1016/j.techfore.2012.10.014
Kim YG, 2008, EXPERT SYST APPL, V34, P1804, DOI 10.1016/j.eswa.2007.01.033
Kirkpatrick D, 2008, DEFENCE PEACE ECON, V19, P479, DOI 10.1080/10242690701750668
Kirkpatrick DLI, 2004, DEFENCE PEACE ECON, V15, P259, DOI 10.1080/1024269032000123203
Kollias C, 1997, DEFENCE PEACE ECON, V8, P189, DOI 10.1080/10430719708404875
Kollias C, 2003, DEFENCE PEACE ECON, V14, P311, DOI 10.1080/10242690302927
Li SY, 2019, TECHNOL FORECAST SOC, V148, DOI 10.1016/j.techfore.2019.119731
Li X, 2022, IEEE T ENG MANAGE, V69, P2603, DOI 10.1109/TEM.2019.2949124
Lundmark M, 2016, EMERGING CRITICAL TE, P37
Madani F, 2017, INT J MANAG SCI ENG, V12, P1, DOI 10.1080/17509653.2015.1100525
Sempere CM, 2017, DEFENCE PEACE ECON, V28, P319, DOI 10.1080/10242694.2015.1072377
Mittal V, 2021, IEEE T ENG MANAGE, V68, P1195, DOI 10.1109/TEM.2020.3017459
Park S, 2016, IND MANAGE DATA SYST, V116, P122, DOI 10.1108/IMDS-05-2015-0206
Park S, 2015, SUSTAINABILITY-BASEL, V7, P13126, DOI 10.3390/su71013126
Patil AS, 2004, J POWER SOURCES, V136, P220, DOI 10.1016/j.jpowsour.2004.03.009
Linares IMP, 2019, TECHNOL SOC, V59, DOI 10.1016/j.techsoc.2019.04.010
Qiu ZP, 2022, IEEE T ENG MANAGE, V69, P1216, DOI 10.1109/TEM.2020.2978849
Ranaei S, 2014, PORTL INT CONF MANAG, P2924
Sezgin S, 1997, DEFENCE PEACE ECON, V8, P381, DOI 10.1080/10430719708404887
Siddiqa-Agha A, 1999, DEFENCE PEACE ECON, V10, P347, DOI 10.1080/10430719908404932
Sternitzke C, 2008, WORLD PAT INF, V30, P115, DOI 10.1016/j.wpi.2007.08.003
Struys W, 2004, DEFENCE PEACE ECON, V15, P551, DOI 10.1080/1024269042000246648
Trappey AJC, 2021, IEEE T ENG MANAGE, V68, P1334, DOI 10.1109/TEM.2019.2957842
Trappey CV, 2011, ADV ENG INFORM, V25, P53, DOI 10.1016/j.aei.2010.05.007
Tseng FM, 2002, TECHNOL FORECAST SOC, V69, P71, DOI 10.1016/S0040-1625(00)00113-X
Vekstein D, 1999, TECHNOVATION, V19, P615, DOI 10.1016/S0166-4972(99)00066-8
Vekstein D., 1997, The Journal of Technology Transfer, V22, P47, DOI DOI 10.1007/BF02509153
Wang PM, 1998, J BUS ECON STAT, V16, P27, DOI 10.2307/1392013
Weng C, 2012, J KNOWL ECON, V3, P327, DOI 10.1007/s13132-011-0048-5
Wu C.-C., 2012, Data Sci. J, V11, P110, DOI DOI 10.2481/DSJ.011-003
Zervos V, 2009, DEFENCE PEACE ECON, V20, P27, DOI 10.1080/10242690701833183
NR 75
TC 3
Z9 3
U1 6
U2 39
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9391
EI 1558-0040
J9 IEEE T ENG MANAGE
JI IEEE Trans. Eng. Manage.
PD DEC
PY 2022
VL 69
IS 6
BP 3874
EP 3886
DI 10.1109/TEM.2021.3088804
EA JUN 2021
PG 13
WC Business; Engineering, Industrial; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Engineering
GA 5Y1MO
UT WOS:000732640600001
DA 2024-09-05
ER
PT C
AU Kim, J
Le, DX
Thoma, GR
AF Kim, Jongwoo
Le, Daniel X.
Thoma, George R.
GP IEEE
TI Identification of Investigator Name Zones using SVM Classifiers and
Heuristic Rules
SO 2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION
(ICDAR)
SE Proceedings of the International Conference on Document Analysis and
Recognition
LA English
DT Proceedings Paper
CT 12th International Conference on Document Analysis and Recognition
(ICDAR)
CY AUG 25-28, 2013
CL Washington, DC
DE Investigator Names; MEDLINE; Support Vector Machine; heuristic rules;
labeling; bibliographic information
AB The research reported in biomedical articles often involves large numbers of investigators at different institutions. To properly credit these investigators, an article's authors frequently name them together in some part of the article. These Investigator Names (IN) now constitute a required field in the MEDLINE (R) citation for the article. The automated extraction of these names is implemented in a system developed by a research group at the U. S. National Library of Medicine, consisting of three modules based on Support Vector Machine (SVM) classifiers and heuristic rules. The SVM classifiers label text blocks ("zones") that possibly contain Investigator Names, and the heuristic rules identify the actual zones. We collect eleven sets of word lists to train and test the classifiers, each set containing 100 to 56,000 words. Experimental results on online biomedical articles show a Precision of 0.90, 0.95 Recall, 0.92 F-Measure, and 0.99 Accuracy.
C1 [Kim, Jongwoo; Le, Daniel X.; Thoma, George R.] Natl Lib Med, Bethesda, MD 20894 USA.
C3 National Institutes of Health (NIH) - USA; NIH National Library of
Medicine (NLM)
RP Kim, J (corresponding author), Natl Lib Med, 8600 Rockville Pike, Bethesda, MD 20894 USA.
EM jongkim@mail.nih.gov
CR [Anonymous], 1998, MACHINE LEARNING ECM, DOI DOI 10.1007/BFB0026666
[Anonymous], 2008, TECHNICAL MEMORANDUM
Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555
Chang C.-C., 2001, LIBSVM A LIBRARY FOR
Dumais S., 1998, Proceedings of the 1998 ACM CIKM International Conference on Information and Knowledge Management, P148, DOI 10.1145/288627.288651
Gabrilovich E., 2004, P 21 INT C MACH LEAR, P321
Joachims T., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P137, DOI 10.1007/BFb0026683
Johnson M., 2008, SVM NET SOFTWARE
Jongwoo Kim, 2008, Proceedings of the 2008 International Conference on Data Mining, P373
Kim J., 2010, IS T SPIES 22 ANN S
Kim J., 2009, PROCEEDINGS OF THE 2
Kim J, 2012, PROC SPIE, V8297, DOI 10.1117/12.910517
Lafferty John, 2001, PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L PROC 18 INT C MACH L, V1, P282
Madigan D., 2005, STAT GUIDE UNKNOWN, P135
McCallum A., 1998, PROC THE AAAI 98 WOR, V577
Shetty S., 2007, PROCEEDING OF DOCUME
Zhang C., 2008, J Comput Informat Syst, V4, P1169
NR 17
TC 2
Z9 2
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 1520-5363
J9 PROC INT CONF DOC
PY 2013
BP 140
EP 144
DI 10.1109/ICDAR.2013.35
PG 5
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BB4XX
UT WOS:000343489100026
DA 2024-09-05
ER
PT C
AU Dong, HQ
Cao, GH
Huang, L
AF Dong, Huan Qing
Cao, Gao Hui
Huang, Lu
GP ASSOC COMPUTING MACHINERY
TI Research on evaluation system of human-computer interaction system in
university library under the background of artificial intelligence
SO 2024 6TH ASIA PACIFIC INFORMATION TECHNOLOGY CONFERENCE, APIT 2024
LA English
DT Proceedings Paper
CT 6th Asia Pacific Information Technology Conference (APIT)
CY JAN 29-31, 2024
CL Bangkok, THAILAND
DE university library; human-computer interaction system; evaluation index
system; analytic hierarchy process
AB The human-computer interaction system of university library plays a vital role in the digital age. In order to comprehensively evaluate the quality and performance of the system, the optimization of human-computer interaction system in the field of university library is promoted. Through literature investigation and expert investigation, this study screens the factors that affect the human-computer interaction system, constructs the evaluation index system of the human-computer interaction system of university library, and uses the analytic hierarchy process to analyze. The evaluation index system consists of 4 primary indicators and 14 secondary indicators. The results show that user experience is the most important index in the evaluation system of university library human-computer interaction system, followed by intelligent interaction performance, and finally system performance and application technology performance. Through the evaluation index system constructed, it is expected to provide an effective evaluation tool for the human-computer interaction system of university library and provide a reference for improving the quality of the human-computer interaction system of university library.
C1 [Dong, Huan Qing; Cao, Gao Hui] Cent China Normal Univ, Sch Informat Management, Wuhan, Peoples R China.
[Huang, Lu] Cent China Normal Univ, Natl Res Ctr Cultural Ind, Wuhan, Peoples R China.
C3 Central China Normal University; Central China Normal University
RP Dong, HQ (corresponding author), Cent China Normal Univ, Sch Informat Management, Wuhan, Peoples R China.
EM donghuanqing13@163.com; ghcao@mail.ccnu.edu.cn; huanglu433123@163.com
CR [Anonymous], 2010, DIS I S O. 9241-210
Apraiz A, 2023, INT J SOC ROBOT, V15, P187, DOI 10.1007/s12369-022-00957-z
Blackwell A. F., 2015, HCI as an Inter-Discipline
Cresswell K, 2023, HEALTH POLICY, V136, DOI 10.1016/j.healthpol.2023.104889
Daghouri A, 2018, INT J ADV COMPUT SC, V9, P291
Gul S, 2019, ELECTRON LIBR, V37, P764, DOI 10.1108/EL-02-2019-0052
Helia Vembri Noor, 2018, MATEC Web of Conferences, V154, DOI 10.1051/matecconf/201815401101
Heun V., 2013, CHI 13 HUM FACT COMP
Ishii H., 2003, P INT S MIX AUGM REA
KANG JANG MOOK, 2019, The International Journal of Advanced Smart Convergence, V8, P1
Kato H, 2000, IEEE AND ACM INTERNATIONAL SYMPOSIUM ON AUGMENTED REALITY, PROCEEDING, P111, DOI 10.1109/ISAR.2000.880934
Ke ZY, 2022, SECUR COMMUN NETW, V2022, DOI 10.1155/2022/9562104
Li X., 2022, Computational Intelligence and Neuroscience, V2022
Liu XX, 2019, IOP C SER EARTH ENV, V252, DOI 10.1088/1755-1315/252/4/042090
Lund A., 2001, Usability and User Experience Newsletter of the STC Usability SIG, V8, P3, DOI DOI 10.1177/1078087402250360
Morrison A, 2009, CHI2009: PROCEEDINGS OF THE 27TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1-4, P1889
Piumsomboon T, 2013, LECT NOTES COMPUT SC, V8118, P282
Ramanayaka K. H., 2018, Digital Information Research Foundation
Reilly D, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P887, DOI 10.1145/2702123.2702506
Saaty T. L., 2002, Sharif University of Technology
SAATY TL, 1990, EUR J OPER RES, V48, P9, DOI 10.1016/0377-2217(90)90057-I
Santhanes D., 2018, Factors influencing HPV Vaccine Hesitancy in SEAR and WPR: A Systematic Review and Meta-Analysis
Turk M, 2014, PATTERN RECOGN LETT, V36, P189, DOI 10.1016/j.patrec.2013.07.003
NR 23
TC 0
Z9 0
U1 1
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 979-8-4007-1621-8
PY 2024
BP 69
EP 77
DI 10.1145/3651623.3651634
PG 9
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BX0CD
UT WOS:001228306500011
DA 2024-09-05
ER
PT J
AU Ingwersen, P
Serrano-López, AE
AF Ingwersen, Peter
Eleazar Serrano-Lopez, Antonio
TI Smart city research 1990-2016
SO SCIENTOMETRICS
LA English
DT Article
DE Smart city research; Publication and citation analysis; Median age of
references; Median age of citations; Topic modeling; Social network
analysis; Clustering
AB This scientometric analysis of the area of smart city(ies)' research covers 1990-2016, divided into three nine year periods: 1990-1998; 1999-2007; and 2008-2016. The methodology is partly based on the issue management' approach by Lancaster and Lee (J Assoc Inf Sci Technol 36(6):389-397, 1985) partly on common publication and citation analysis of the set of source documents (n=4725), the set of their references (n=27,099) and the set of publications (n=7863) citing the source documents. Median age analyses are included for the sets of references and citations to the source documents. DIVA-like diagrams (Database Information Visualization and Analysis system) are used to demonstrate the distribution of source documents over document types, time and volume of citations obtained. Social Network Analysis (SNA) is applied to topic modeling of the top-100 central WoS Categories of smart city(ies)' research and to the set of references. Findings show that the first mention of the concept smart city(ies)' in publication titles takes place in 1999. The research area demonstrates a strong multidisciplinary nature and an exponential growth of research publications (in WoS) 2008-2016 dominated by China, Italy, USA, Spain and England. The same five countries are also among the most citing and cited countries. Aside from a constantly strong ICT (Information and Communication Technology) and Electrical/Electronic Engineering presence sustainability' elements (Energy, Transport, Environment) are also vital, in particular during the first and third analysis period. The references from the source documents have more distinct topical clusters than the source documents. Artificial Intelligence (AI) appears as a novel field among the source documents 2008-2016, but disappears from the top-25 list in the citing documents. Instead Economics, Water Resources and Meteorology and Atmospheric Sciences move into the list. Proceedings papers, as in many other engineering and technology based research fields, are the dominant document type (70%) but have small citation impact (0.6c/p), thus decreasing the overall impact of the area to 3.6c/p. Journal articles are the most cited type with 76% of all citations received (impact 2008-2016: 7.5c/p). Most citations to journal articles derive from journal articles themselves (76%).
C1 [Ingwersen, Peter] Aalborg Univ, Copenhagen, Denmark.
[Eleazar Serrano-Lopez, Antonio] Carlos III Univ Madrid, Madrid, Spain.
C3 Aalborg University
RP Ingwersen, P (corresponding author), Aalborg Univ, Copenhagen, Denmark.
EM ingwersen@id.aau.dk
RI Lopez, Antonio Eleazar Serrano/D-4726-2013; Ingwersen,
Peter/AEC-1759-2022
OI Lopez, Antonio Eleazar Serrano/0000-0003-1261-386X; Ingwersen,
Peter/0000-0001-7964-5896
FU Spanish Ministry of Economy and Competitiveness [CSO
2014-51,916-C2-1-R]; Titled "La investigacion en eficiencia energetica y
transporte sostenibles en el medio urbano
FX This research was funded by the Spanish Ministry of Economy and
Competitiveness under the Project CSO 2014-51,916-C2-1-R. Titled "La
investigacion en eficiencia energetica y transporte sostenibles en el
medio urbano: analisis del desarrollo cientifico y la percepcion social
del tema desde la perspectiva de los estudios metricos de la
informacion" "(Research on energy efficiency and sustainable transport
in the urban environment: analysis of the scientific development and the
social perception of the topic from the perspective of the metric
studies of information)"
CR [Anonymous], 2011, Proceedings of the 12th Annual International Digital Government Research Conference on Digital Government Innovation in Challenging Times - dg.o'11, DOI DOI 10.1145/2037556.2037602
Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391
Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011
Cocchia A, 2014, PROGR IS, P13, DOI 10.1007/978-3-319-06160-3_2
Csardi G., 2017, PARSEDATE RECOGNIZE
DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017
Durán-Sánchez A, 2017, INNOV TECH KNOWL MAN, P159, DOI 10.1007/978-3-319-40895-8_12
Efrain-García P, 2016, REV ESP DOC CIENT, V39, DOI 10.3989/redc.2016.1.1223
Egghe L, 2018, BECOMING METRIC WISE
Serrano-López AE, 2017, SCIENTOMETRICS, V112, P1471, DOI 10.1007/s11192-017-2447-2
Gagolewski M., 2016, R PACKAGE STRINGI CH, P385, DOI [10. 5281/zenodo. 19071, DOI 10.5281/ZENODO.19071]
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Harrison C, 2010, IBM J RES DEV, V54, DOI 10.1147/JRD.2010.2048257
Ingwersen P, 2000, ASIST MON SER, P373
Ingwersen P, 2001, CHINESE SCI BULL, V46, P524, DOI 10.1007/BF03187274
LANCASTER FW, 1985, J AM SOC INFORM SCI, V36, P389, DOI 10.1002/asi.4630360608
Mora L, 2019, TECHNOL FORECAST SOC, V142, P56, DOI 10.1016/j.techfore.2018.07.019
Mora L, 2017, J URBAN TECHNOL, V24, P3, DOI 10.1080/10630732.2017.1285123
Moritz S., 2015, imputeTS: time series missing value imputation in R. R package version 0.4
Morris S, 2002, COMPUT IND ENG, V43, P841, DOI 10.1016/S0360-8352(02)00143-2
Nenadic O, 2007, J STAT SOFTW, V20
Ojo A., 2016, SMARTER NEW URBAN AG, V11, DOI [DOI 10.1007/978-3-319-17620-82, DOI 10.1007/978-3-319-17620-8_2]
ProQuest Dialog, 2017, HISTORY
Ricciardi F, 2015, FROM INFORMATION TO SMART SOCIETY, P163, DOI 10.1007/978-3-319-09450-2_14
Sanz-Casado E, 2014, RENEW ENERG, V68, P733, DOI 10.1016/j.renene.2014.03.013
Sanz-Casado E, 2013, SCIENTOMETRICS, V95, P197, DOI 10.1007/s11192-012-0825-3
Su LX, 2015, SCIENTOMETRICS, V105, P449, DOI 10.1007/s11192-015-1697-0
WETHERELL C, 1994, J INTERDISCIPL HIST, V24, P639, DOI 10.2307/205629
Wickham H, 2016, EASILY TIDY DATA SPR
NR 29
TC 38
Z9 39
U1 4
U2 129
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2018
VL 117
IS 2
BP 1205
EP 1236
DI 10.1007/s11192-018-2901-9
PG 32
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA HC4EA
UT WOS:000451754300024
DA 2024-09-05
ER
PT J
AU Wang, J
Zhu, L
Dai, T
Wang, YB
AF Wang, Jie
Zhu, Li
Dai, Tao
Wang, Yabin
TI Deep memory network with Bi-LSTM for personalized context-aware citation
recommendation
SO NEUROCOMPUTING
LA English
DT Article
DE Context-aware citation recommendation; Memory network; Bi-LSTM;
Personalized author; Citation relationship
ID SYSTEM
AB The explosive growth of data leads researchers to waste time and energy to search for papers they need. Context-aware citation recommendation aims to solve this problem by analyzing a citation context and provides a list of recommended papers. In this paper, we propose a context-aware citation recommendation model based on end to end memory network. The model learns the representations of papers and citation contexts respectively based on bidirectional long short-term memory (Bi-LSTM). In particular, we jointly integrate author information and citation relationship in the distributed vector representations of citation contexts and papers. Then calculates the continuous relevance between them based on a computational multilayers memory network. We also conduct experiments on three real-world datasets to evaluate the performance of our model. (C) 2020 Elsevier B.V. All rights reserved.
C1 [Wang, Jie; Zhu, Li; Dai, Tao; Wang, Yabin] Xi An Jiao Tong Univ, Sch Software Engn, Xian, Shaanxi, Peoples R China.
C3 Xi'an Jiaotong University
RP Zhu, L (corresponding author), Xi An Jiao Tong Univ, Sch Software Engn, Xian, Shaanxi, Peoples R China.
EM zhuli@xjtu.edu.cn
OI wang, jie/0009-0005-7117-8580; wang, Yabin/0000-0003-2931-572X
FU National Key Research and Development Project [2019YFB2102500]
FX This research is supported by National Key Research and Development
Project (No. 2018AAA0101100) and National Key Research and Development
Project (No. 2019YFB2102500).
CR Alhamid M F., 2013, Proceedings of the 1st ACM International Workshop on Multimedia Indexing and Information Retrieval for Healthcare. MIIRH'13, P41, DOI DOI 10.1145/2505323.2505332
[Anonymous], 2011, P 4 ACM INT C WEB SE, DOI DOI 10.1145/1935826.1935926
[Anonymous], ARXIV150804025
[Anonymous], ARXIV160507683
Bahdanau D., ICLR
Bethard S., 2010, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, P609, DOI [DOI 10.1145/1871437.1871517, 10.1145/1871437.1871517]
Cai XY, 2018, IEEE T NEUR NET LEAR, V29, P6026, DOI 10.1109/TNNLS.2018.2817245
Choi JY, 2007, EXPERT SYST, V24, P32
Dodge J., ARXIV151106931
Ebesu T, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1093, DOI 10.1145/3077136.3080730
Gipp B., 2009, Proceedings of the International Conference on Emerging Trends in Computing, P309
Gori M, 2006, 2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS), P778, DOI 10.1109/WI.2006.149
Graves A., ARXIV14105401
He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734
Hill F., ARXIV151102301
Huang WY, 2015, AAAI CONF ARTIF INTE, P2404
Huang WY, 2014, ACM-IEEE J CONF DIG, P371, DOI 10.1109/JCDL.2014.6970192
Huang Wenyi, 2012, P 21 ACM INT C INF K, P1910, DOI DOI 10.1145/2396761.2398542
Jeong C., ARXIV190306464
Jia H., ARXIV181203835
Jiang ZR, 2018, ACM/SIGIR PROCEEDINGS 2018, P635, DOI 10.1145/3209978.3210032
Kataria S., TOPIC MODELS LINK PR
Khadka A, 2018, 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), P362, DOI 10.1145/3240323.3240379
Kumar A, 2016, PR MACH LEARN RES, V48
Lee JS, 2007, LECT NOTES COMPUT SC, V4836, P45
Livne A, 2014, SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P807, DOI 10.1145/2600428.2609585
Lu HQ, 2016, NEUROCOMPUTING, V216, P61, DOI 10.1016/j.neucom.2016.07.011
Lu Y, 2011, INFORMATION SYSTEMS DEVELOPMENT: ASIAN EXPERIENCES, P201
Luo X, 2020, IEEE T CYBERNETICS, V50, P1798, DOI 10.1109/TCYB.2019.2903736
Luo X, 2018, IEEE T CYBERNETICS, V48, P1216, DOI 10.1109/TCYB.2017.2685521
Luo YH, 2020, IEEE-CAA J AUTOMATIC, V7, P48, DOI 10.1109/JAS.2019.1911798
Meng FQ, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1509
Miller A., ARXIV160603126
Nallapati R. M., 2008, P 14 ACM SIGKDD INT, P542, DOI DOI 10.1145/1401890.1401957
Peng H, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P388
Qiao JF, 2020, IEEE-CAA J AUTOMATIC, V7, P276, DOI 10.1109/JAS.2019.1911852
Le Q, 2014, PR MACH LEARN RES, V32, P1188
Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2
Ren X, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P821, DOI 10.1145/2623330.2623630
Rush A.M., ARXIV150900685
Shang MS, 2019, IEEE-CAA J AUTOMATIC, V6, P131, DOI 10.1109/JAS.2018.7511189
Shaoping Z., 2010, THESIS
Strohman Trevor, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P705, DOI 10.1145/1277741.1277868
Sukhbaatar S., 2015, ADV NEURAL INFORM PR, P1
Tang XW, 2014, SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P817, DOI 10.1145/2600428.2609564
Weissenborn D., ARXIV160703316
Weston J., ARXIV150205698
Weston J., ARXIV14103916
Weston J. E., 2016, Advances in Neural Information Processing Systems, P829
Xiong CM, 2016, PR MACH LEARN RES, V48
Yang LB, 2018, IEEE ACCESS, V6, P59618, DOI 10.1109/ACCESS.2018.2872730
Yin J, 2017, LECT NOTES COMPUT SC, V10367, P285, DOI 10.1007/978-3-319-63564-4_23
Zerari N, 2019, IEEE-CAA J AUTOMATIC, V6, P278, DOI 10.1109/JAS.2018.7511255
Zhao Z, 2016, IEEE T KNOWL DATA EN, V28, P2522, DOI 10.1109/TKDE.2016.2569096
NR 54
TC 35
Z9 36
U1 5
U2 37
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29a, 1043 NX AMSTERDAM, NETHERLANDS
SN 0925-2312
EI 1872-8286
J9 NEUROCOMPUTING
JI Neurocomputing
PD OCT 14
PY 2020
VL 410
BP 103
EP 113
DI 10.1016/j.neucom.2020.05.047
PG 11
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA OD4CB
UT WOS:000579799300010
DA 2024-09-05
ER
PT J
AU Song, YH
Cao, JY
AF Song, Yanhui
Cao, Jiayi
TI An ARIMA-based study of bibliometric index prediction
SO ASLIB JOURNAL OF INFORMATION MANAGEMENT
LA English
DT Article
DE ARIMA model; Literature indicators; Indicator forecasting; Time series
forecasting
ID CITATION COUNTS; H-INDEX; IMPACT; MODELS; TIME
AB Purpose The purpose of this paper is to predict bibliometric indicators based on ARIMA models and to study the short-term trends of bibliometric indicators. Design/methodology/approach This paper establishes a non-stationary time series ARIMA (p, d, q) model for forecasting based on the bibliometric index data of 13 journals in the library intelligence category selected from the Chinese Social Sciences Citation Index (CSSCI) as the data source database for the period 1998-2018, and uses ACF and PACF methods for parameter estimation to predict the development trend of the bibliometric index in the next 5 years. The predicted model was also subjected to error analysis. Findings ARIMA models are feasible for predicting bibliometric indicators. The model predicted the trend of the four bibliometric indicators in the next 5 years, in which the number of publications showed a decreasing trend and the H-value, average citations and citations showed an increasing trend. Error analysis of the model data showed that the average absolute percentage error of the four bibliometric indicators was within 5%, indicating that the model predicted well. Research limitations/implications This study has some limitations. 13 Chinese journals were selected in the field of Library and Information Science as the research objects. However, the scope of research based on bibliometric indicators of Chinese journals is relatively small and cannot represent the evolution trend of the entire discipline. Therefore, in the future, the authors will select different fields and different sources for further research. Originality/value This study predicts the trend changes of bibliometric indicators in the next 5 years to understand the trend of bibliometric indicators, which is beneficial for further in-depth research. At the same time, it provides a new and effective method for predicting bibliometric indicators.
C1 [Song, Yanhui; Cao, Jiayi] Hangzhou Dianzi Univ, Hangzhou, Peoples R China.
C3 Hangzhou Dianzi University
RP Song, YH (corresponding author), Hangzhou Dianzi Univ, Hangzhou, Peoples R China.
EM syh687@163.com
RI lan, xueyao/JZD-4201-2024
OI song, yan hui/0000-0003-2456-222X
FU major project of National Social Science Foundation of China [19ZDA348];
Fundamental Research Funds for the Provincial Universities of Zhejiang
[GK209907299001-201]
FX This study was funded by major project of National Social Science
Foundation of China (19ZDA348), and the Fundamental Research Funds for
the Provincial Universities of Zhejiang (GK209907299001-201).
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Acuna DE, 2013, MED PHYS, V40, DOI 10.1118/1.4816659
Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
Adebiyi AA, 2014, UKSIM INT CONF COMP, P106, DOI 10.1109/UKSim.2014.67
Ayaz S, 2018, SCIENTOMETRICS, V114, P993, DOI 10.1007/s11192-017-2618-1
Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4
Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190
Contreras J, 2003, IEEE T POWER SYST, V18, P1014, DOI 10.1109/TPWRS.2002.804943
Dong YX, 2015, LECT NOTES ARTIF INT, V9286, P259, DOI 10.1007/978-3-319-23461-8_26
Durieux V, 2010, RADIOLOGY, V255, P342, DOI 10.1148/radiol.09090626
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Guns R, 2009, J AM SOC INF SCI TEC, V60, P410, DOI 10.1002/asi.20973
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Ibáñez A, 2009, BIOINFORMATICS, V25, P3303, DOI 10.1093/bioinformatics/btp585
Kumar SV, 2015, EUR TRANSP RES REV, V7, DOI 10.1007/s12544-015-0170-8
Kumar U, 2010, STOCH ENV RES RISK A, V24, P751, DOI 10.1007/s00477-009-0361-8
Lercher A, 2013, J AM SOC INF SCI TEC, V64, P455, DOI 10.1002/asi.22776
Liu Q, 2008, LIB INFORM SERVICE, V52, P31
Liu Q, 2008, INFORM STUDIES THEOR, V31, P37
Mishra PN, 2010, MALAYS J LIBR INF SC, V15, P91
Narayanan P, 2013, CR GEOSCI, V345, P22, DOI 10.1016/j.crte.2012.12.001
Prathap G, 2010, SCIENTOMETRICS, V84, P153, DOI 10.1007/s11192-009-0066-2
Quan S.Y, 2015, J INTELL-BASEL, V34, P54
Robson BJ, 2016, ENVIRON MODELL SOFTW, V75, P94, DOI 10.1016/j.envsoft.2015.10.007
Rousseau R, 2014, ASLIB J INFORM MANAG, V66, P2, DOI 10.1108/AJIM-01-2013-0001
Soheili F, 2017, ASLIB J INFORM MANAG, V69, P215, DOI 10.1108/AJIM-01-2017-0027
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Wang KT, 2022, SUBST ABUS, V43, P171, DOI [10.1080/08897077.2021.1903652, 10.7506/spkx1002-6630-20211218-213]
Wu R, 2021, CELL J, V23, P238, DOI 10.22074/cellj.2021.7143
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
Yunus K, 2016, IEEE T POWER SYST, V31, P2546, DOI 10.1109/TPWRS.2015.2468586
Zhang, 2017, J MODERN INFORM, V37, P74
Zhang Z.Q, 2017, J MODERN INFORM, V37, P66
Zhou Y, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.669000
NR 34
TC 2
Z9 2
U1 6
U2 56
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 2050-3806
EI 1758-3748
J9 ASLIB J INFORM MANAG
JI Aslib J. Inf. Manag.
PD JAN 3
PY 2022
VL 74
IS 1
BP 94
EP 109
DI 10.1108/AJIM-03-2021-0072
EA OCT 2021
PG 16
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA XW8ED
UT WOS:000710628000001
DA 2024-09-05
ER
PT J
AU Talafidaryani, M
Jalali, SMJ
Moro, S
AF Talafidaryani, Mojtaba
Jalali, Seyed Mohammad Jafar
Moro, Sergio
TI Tracing the evolution of digitalisation research in business and
management fields: Bibliometric analysis, topic modelling and deep
learning trend forecasting
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article; Early Access
DE bibliometric analysis; business and management; digital transformation;
digital X; digitalization; topic modelling; trend forecasting
ID INFORMATION-TECHNOLOGY; INTELLECTUAL STRUCTURE; OPEN INNOVATION; IMPACT;
ENTREPRENEURSHIP; CAPABILITIES; INTERNET; DETERMINANTS; HOSPITALITY;
GENERATION
AB Research on digitalisation trends and digital topics has become one of the most prolific streams of research within the fields of business and management during the course of the past few years. The purpose of this study is to provide a general picture of the intellectual structure and the conceptual space of this research realm. To this purpose, 6067 publications related to digital topics, indexed in the business and management categories of Web of Science (WoS), and dated from 1990 to 2020 are explored based on the approaches of bibliometric analysis, topic modelling and trend forecasting. The results of the bibliometric analysis comprise insights into the publication and citation structure, the most productive authors, the most productive universities, the most productive countries, the most productive journals, the most cited studies and the most prevalent themes and sub-themes on digitalisation in business and management. In addition, the outcomes of the topic modelling give new knowledge on the latent topical structure along with the rising, falling and fluctuating trends of this literature. In addition, the results of the trend forecasting enable readers to have a glimpse of how the underlying trends of the literature will probably change within the next years until 2025. These results provide guidance and orientation for both academics and practitioners who are initiating or currently developing their efforts in this discipline.
C1 [Talafidaryani, Mojtaba] Univ Tehran, Fac Management, Tehran, Iran.
[Jalali, Seyed Mohammad Jafar] Deakin Univ, Inst Intelligent Syst Res & Innovat, Burwood, Australia.
[Moro, Sergio] Inst Univ Lisboa ISCTE IUL, ISTAR, Lisbon, Portugal.
C3 University of Tehran; Deakin University; Instituto Universitario de
Lisboa
RP Talafidaryani, M (corresponding author), Univ Tehran, Fac Management, Tehran, Iran.
EM mojtabatalafi@ut.ac.ir
FU Fundacxao para a Ci<^>encia e Tecnologia (FCT) [UIDB/04466/2020,
UIDP/04466/2020]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: The work
by Sergio Moro was supported by the Fundacxao para a Ciencia e
Tecnologia (FCT) within the following Projects: UIDB/04466/2020 and
UIDP/04466/2020.
CR Adner R, 2001, MANAGE SCI, V47, P611, DOI 10.1287/mnsc.47.5.611.10482
Albort-Morant G, 2018, EUR RES MANAG BUS EC, V24, P42, DOI 10.1016/j.iedeen.2017.06.004
Albort-Morant G, 2016, J BUS RES, V69, P1775, DOI 10.1016/j.jbusres.2015.10.054
Alfaro-García VG, 2020, INT J FUZZY SYST, V22, P2414, DOI 10.1007/s40815-020-00924-8
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
Amado A, 2018, EUR RES MANAG BUS EC, V24, P1, DOI 10.1016/j.iedeen.2017.06.002
Ananda S, 2020, J FINANC SERV MARK, V25, P14, DOI 10.1057/s41264-020-00072-y
Bakos Y, 1999, MANAGE SCI, V45, P1613, DOI 10.1287/mnsc.45.12.1613
Barua A, 2004, MIS QUART, V28, P585
Baskerville RL, 2020, MIS QUART, V44, P509, DOI 10.25300/MISQ/2020/14418
Beck R, 2017, BUS INFORM SYST ENG+, V59, P381, DOI 10.1007/s12599-017-0505-1
Belanger F, 2011, MIS QUART, V35, P1017
Belk RW, 2013, J CONSUM RES, V40, P477, DOI 10.1086/671052
Berman B, 2012, BUS HORIZONS, V55, P155, DOI 10.1016/j.bushor.2011.11.003
Bharadwaj A, 2013, MIS QUART, V37, P471, DOI 10.25300/MISQ/2013/37:2.3
Björkdahl J, 2020, CALIF MANAGE REV, V62, P17, DOI 10.1177/0008125620920349
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bolton RN, 2013, J SERV MANAGE, V24, P245, DOI 10.1108/09564231311326987
Bonilla CA, 2015, SCIENTOMETRICS, V105, P1239, DOI 10.1007/s11192-015-1747-7
Brynjolfsson E, 2003, MANAGE SCI, V49, P1580, DOI 10.1287/mnsc.49.11.1580.20580
Budler M, 2021, J BUS RES, V135, P480, DOI 10.1016/j.jbusres.2021.06.045
Bughin J, 2017, MIT SLOAN MANAGE REV, V58, P80
Higuita LC, 2012, ESTUD GERENC, V28, P213
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Cancino CA, 2020, J INTELL FUZZY SYST, V38, P5463, DOI 10.3233/JIFS-179638
Cancino CA, 2017, COMPUT IND ENG, V113, P614, DOI 10.1016/j.cie.2017.08.033
Caputo A, 2021, J BUS RES, V123, P489, DOI 10.1016/j.jbusres.2020.09.053
Cho J, 2014, J INF SCI, V40, P386, DOI 10.1177/0165551514524686
Ciriello RF, 2018, BUS INFORM SYST ENG+, V60, P563, DOI 10.1007/s12599-018-0559-8
Coronado FC, 2021, J INTELL FUZZY SYST, V40, P1865, DOI 10.3233/JIFS-189192
Loureiro SMC, 2021, J BUS RES, V129, P911, DOI 10.1016/j.jbusres.2020.11.001
Danaher B, 2010, MARKET SCI, V29, P1138, DOI 10.1287/mksc.1100.0600
Day GS, 2011, J MARKETING, V75, P183, DOI 10.1509/jmkg.75.4.183
de Reuver M, 2018, J INF TECHNOL-UK, V33, P124, DOI 10.1057/s41265-016-0033-3
Delen D, 2018, J BUS RES, V90, P186, DOI 10.1016/j.jbusres.2018.05.013
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Du K, 2015, INFORM SYST RES, V26, P829, DOI 10.1287/isre.2015.0604
Givi ME, 2022, J INTELLECT CAP, V23, P864, DOI 10.1108/JIC-02-2020-0057
Forman C, 2008, INFORM SYST RES, V19, P291, DOI 10.1287/isre.1080.0193
de Soto BG, 2020, INT J CONSTR MANAG, V20, P900, DOI 10.1080/15623599.2018.1502929
Gilbert CG, 2005, ACAD MANAGE J, V48, P741, DOI 10.2307/20159695
Gobble MM, 2018, RES TECHNOL MANAGE, V61, P56, DOI 10.1080/08956308.2018.1471280
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Gubiani D, 2020, INT J INNOV LEARN, V27, P37, DOI 10.1504/IJIL.2020.103887
Hajiheydari N, 2019, FORESIGHT, V21, P654, DOI 10.1108/FS-01-2019-0002
Hajiheydari N, 2019, ICSLT 2019: PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON E-SOCIETY, E-LEARNING AND E-TECHNOLOGIES, P98, DOI 10.1145/3312714.3312728
Hanna R, 2011, BUS HORIZONS, V54, P265, DOI 10.1016/j.bushor.2011.01.007
Hannigan TR, 2019, ACAD MANAG ANN, V13, P586, DOI 10.5465/annals.2017.0099
Heidari A, 2021, J STRATEG MANAGE STU, V12, P161
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hong W, 2001, J MANAGE INFORM SYST, V18, P97, DOI 10.1080/07421222.2002.11045692
Hou XL, 2019, J BEHAV ADDICT, V8, P306, DOI [10.1556/2006.8.2019.26, 10.1016/j.techfore.2019.04.022]
Jalali SMJ, 2021, DIGIT SCHOLARSH HUM, V36, P361, DOI 10.1093/llc/fqaa012
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194
Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006
Kim J, 2021, J BUS RES, V130, P552, DOI 10.1016/j.jbusres.2019.09.043
Kohli R, 2019, INFORM SYST J, V29, P200, DOI 10.1111/isj.12193
Korhonen HME, 2017, TECHNOL INNOV MANAG, V7, P17, DOI 10.22215/timreview/1103
Kovács A, 2015, SCIENTOMETRICS, V104, P951, DOI 10.1007/s11192-015-1628-0
Krishen AS, 2021, J BUS RES, V131, P183, DOI 10.1016/j.jbusres.2021.03.061
Laengle S, 2020, ANN OPER RES, V294, P769, DOI 10.1007/s10479-018-3017-6
Leviäkangas P, 2016, TECHNOL SOC, V47, P1, DOI 10.1016/j.techsoc.2016.07.001
Li X, 2021, J INF SCI, V47, P161, DOI 10.1177/0165551519877049
Litvin SW, 2008, TOURISM MANAGE, V29, P458, DOI 10.1016/j.tourman.2007.05.011
Lu Y, 2018, TECHNOL FORECAST SOC, V136, P285, DOI 10.1016/j.techfore.2018.01.022
Lusch RF, 2015, MIS QUART, V39, P155
Ma M, 2007, INFORM SYST RES, V18, P42, DOI 10.1287/isre.1070.0113
Martínez-López FJ, 2018, EUR J MARKETING, V52, P439, DOI 10.1108/EJM-11-2017-0853
Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006
Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004
Merigó JM, 2016, GLOBALIZATION HEALTH, V12, DOI 10.1186/s12992-016-0186-4
Merigó JM, 2016, J BUS ECON MANAG, V17, P397, DOI 10.3846/16111699.2013.807868
Merigó JM, 2017, AUST ACCOUNT REV, V27, P71, DOI 10.1111/auar.12109
Merigó JM, 2015, APPL SOFT COMPUT, V27, P420, DOI 10.1016/j.asoc.2014.10.035
Moro S, 2019, J BUS RES, V103, P275, DOI 10.1016/j.jbusres.2019.01.053
Mulet-Forteza C, 2019, J BUS RES, V101, P819, DOI 10.1016/j.jbusres.2018.12.002
Muñoz-Leiva F, 2021, EUR J MARKETING, V55, P2269, DOI 10.1108/EJM-02-2019-0179
Nambisan S, 2017, ENTREP THEORY PRACT, V41, P1029, DOI 10.1111/etap.12254
Oliveira E, 2015, J VACAT MARK, V21, P53, DOI 10.1177/1356766714544235
Parviainen P, 2017, IJISPM-INT J INF SYS, V5, P63, DOI 10.12821/ijispm050104
Petter S, 2018, MIS Q EXEC, V17, P315, DOI 10.17705/2msqe.00004
Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533
Raeesi Vanani I., 2022, Quality Quantity, V56, P1293
Rai A, 2006, MIS QUART, V30, P225
Rauwers F, 2018, INT J ADVERT, V37, P806, DOI 10.1080/02650487.2018.1470918
Reis Joao, 2020, Proceedings on 25th International Joint Conference on Industrial Engineering and Operations Management - IJCIEOM. The Next Generation of Production and Service Systems. Lecture Notes on Multidisciplinary Industrial Engineering (LNMUINEN), P443, DOI 10.1007/978-3-030-43616-2_47
Rey-Martí A, 2016, J BUS RES, V69, P1651, DOI 10.1016/j.jbusres.2015.10.033
Rodriguez-Crespo E, 2021, EMERG MARK FINANC TR, V57, P3017, DOI 10.1080/1540496X.2019.1676225
Saheb T., 2021, INT J INF MANAG DATA, V1
SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0
Salvi A, 2021, J BUS RES, V124, P437, DOI 10.1016/j.jbusres.2020.10.025
Sambamurthy V, 2003, MIS QUART, V27, P237
Sashi CM, 2012, MANAGE DECIS, V50, P253, DOI 10.1108/00251741211203551
Schau HJ, 2003, J CONSUM RES, V30, P385
Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858
Schwab K., 2017, 4 IND REVOLUTION
Sebastian I., 2017, MIS Q EXEC
Seyedghorban Z, 2020, PROD PLAN CONTROL, V31, P96, DOI 10.1080/09537287.2019.1631461
Sklyar A, 2019, J BUS RES, V104, P450, DOI 10.1016/j.jbusres.2019.02.012
Sohrabi B, 2019, J INF KNOWL MANAG, V18, DOI 10.1142/S0219649219500436
Su HN, 2010, SCIENTOMETRICS, V85, P65, DOI 10.1007/s11192-010-0259-8
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Svensson G, 2010, EUR J MARKETING, V44, P23, DOI 10.1108/03090561011008583
Talafi M., 2018, Innovation Management Journal, V7, P57
Talafidaryani M., 2019, THESIS U TEHRAN TEHR
Talafidaryani M, 2020, IRAN J INF MANAGE, V5, P197
Talafidaryani M, 2021, BUS INF REV, V38, P79
Talafidaryani M, 2021, MANAG RES REV, V44, P236, DOI 10.1108/MRR-03-2020-0139
Tandon A, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120649
Taylor SJ, 2018, AM STAT, V72, P37, DOI 10.1080/00031305.2017.1380080
Torres P, 2020, TECHNOL FORECAST SOC, V161, DOI 10.1016/j.techfore.2020.120279
Triebe O., 2021, arXiv, DOI [DOI 10.48550/ARXIV.2111.15397, 10.48550/arXiv.2111.15397]
Tripsas M, 2000, STRATEGIC MANAGE J, V21, P1147, DOI 10.1002/1097-0266(200010/11)21:10/11<1147::AID-SMJ128>3.3.CO;2-I
Trittin-Ulbrich H, 2021, ORGANIZATION, V28, P8, DOI 10.1177/1350508420968184
Urbinati A, 2020, R&D MANAGE, V50, P136, DOI 10.1111/radm.12313
Valenzuela-Fernández L, 2018, INT J ENG BUS MANAG, V10, DOI 10.1177/1847979017751484
Vallaster C, 2019, J BUS RES, V99, P226, DOI 10.1016/j.jbusres.2019.02.050
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
van Eck NJ, 2010, J AM SOC INF SCI TEC, V61, P2405, DOI 10.1002/asi.21421
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075
Verhoef PC, 2015, J RETAILING, V91, P174, DOI 10.1016/j.jretai.2015.02.005
Verma S, 2020, J BUS RES, V118, P253, DOI 10.1016/j.jbusres.2020.06.057
Vial G, 2019, J STRATEGIC INF SYST, V28, P118, DOI 10.1016/j.jsis.2019.01.003
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Yan BN, 2015, SCIENTOMETRICS, V105, P1285, DOI 10.1007/s11192-015-1740-1
Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8
Yoo Y, 2012, ORGAN SCI, V23, P1398, DOI 10.1287/orsc.1120.0771
Yoo YJ, 2010, INFORM SYST RES, V21, P724, DOI 10.1287/isre.1100.0322
Yu DJ, 2015, APPL SOFT COMPUT, V32, P189, DOI 10.1016/j.asoc.2015.03.027
Zaheer H, 2019, TECHNOL FORECAST SOC, V148, DOI 10.1016/j.techfore.2019.119735
Zekhnini K, 2021, BENCHMARKING, V28, P465, DOI 10.1108/BIJ-04-2020-0156
Zhang L, 2011, ELECTRON COMMER R A, V10, P545, DOI 10.1016/j.elerap.2011.01.004
Zhang X., 2017, Journal of Management Science and Engineering, V2, P95, DOI 10.3724/SP.J.1383.202005
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
Zurita G, 2020, J INTELL FUZZY SYST, V38, P5441, DOI 10.3233/JIFS-179636
NR 138
TC 0
Z9 0
U1 9
U2 63
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PD 2023 JAN 17
PY 2023
DI 10.1177/01655515221148365
EA JAN 2023
PG 29
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 7X7WV
UT WOS:000914408700001
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Zhou, XJ
Wang, Y
Tsafnat, G
Coiera, E
Bourgeois, FT
Dunn, AG
AF Zhou, Xujuan
Wang, Ying
Tsafnat, Guy
Coiera, Enrico
Bourgeois, Florence T.
Dunn, Adam G.
TI Citations alone were enough to predict favorable conclusions in reviews
of neuraminidase inhibitors
SO JOURNAL OF CLINICAL EPIDEMIOLOGY
LA English
DT Article
DE Neuraminidase inhibitors; Bibliometrics; Evidence synthesis; Reviews as
a topic; Citation analysis; Supervised machine learning
ID NETWORK ANALYSIS SEBRINA; STATISTICALLY SIGNIFICANT; SYSTEMATIC REVIEWS;
INFLUENZA; OSELTAMIVIR; BIAS; CLASSIFICATION; METAANALYSIS; SELECTION;
ADULTS
AB Objectives: To examine the use of supervised machine learning to identify biases in evidence selection and determine if citation information can predict favorable conclusions in reviews about neuraminidase inhibitors.
Study Design and Setting: Reviews of neuraminidase inhibitors published during January 2005 to May 2013 were identified by searching PubMed. In a blinded evaluation, the reviews were classified as favorable if investigators agreed that they supported the use of neuraminidase inhibitors for prophylaxis or treatment of influenza. Reference lists were used to identify all unique citations to primary articles. Three classification methods were tested for their ability to predict favorable conclusions using only citation information.
Results: Citations to 4,574 articles were identified in 152 reviews of neuraminidase inhibitors, and 93 (61%) of these reviews were graded as favorable. Primary articles describing drug resistance were among the citations that were underrepresented in favorable reviews. The most accurate classifier predicted favorable conclusions with 96.2% accuracy, using citations to only 24 of 4,574 articles.
Conclusion: Favorable conclusions in reviews about neuraminidase inhibitors can be predicted using only information about the articles they cite. The approach highlights how evidence exclusion shapes conclusions in reviews and provides a method to evaluate citation practices in a corpus of reviews. (C) 2015 Elsevier Inc. All rights reserved.
C1 [Zhou, Xujuan; Wang, Ying; Tsafnat, Guy; Coiera, Enrico; Dunn, Adam G.] Univ New S Wales, Australian Inst Hlth Innovat, Ctr Hlth Informat, Sydney, NSW 2052, Australia.
[Bourgeois, Florence T.] Boston Childrens Hosp, Div Emergency Med, Boston, MA USA.
[Bourgeois, Florence T.] Harvard Univ, Sch Med, Dept Pediat, Boston, MA 02115 USA.
[Bourgeois, Florence T.] Boston Childrens Hosp, Childrens Hosp Informat Program, Boston, MA USA.
C3 University of New South Wales Sydney; Harvard University; Boston
Children's Hospital; Harvard University; Harvard Medical School; Harvard
University; Boston Children's Hospital
RP Dunn, AG (corresponding author), Univ New S Wales, Australian Inst Hlth Innovat, Ctr Hlth Informat, Sydney, NSW 2052, Australia.
EM a.dunn@unsw.edu.au
RI Wang, Xuejun/K-8874-2013; Dunn, Adam/H-4425-2019; Tsafnat,
Guy/C-2292-2008; Bourgeois, Florence/H-6710-2016; Zhou,
Xujuan/HIZ-7836-2022
OI Wang, Xuejun/0000-0001-9267-1343; Dunn, Adam/0000-0002-1720-8209;
Bourgeois, Florence/0000-0001-7798-4560; Coiera,
Enrico/0000-0002-6444-6584; Wang, Ying/0000-0001-8537-3954; Zhou,
Xujuan/0000-0002-1736-739X
FU National Health and Medical Research Council [568612, 1045065]
FX This study was supported by National Health and Medical Research Council
Program Grant 568612 and Project Grant 1045065. The sponsors had no role
in the study.
CR Adisasmito W, 2010, J INFECT DIS, V202, P1154, DOI 10.1086/656316
Bax L, 2011, J CLIN EPIDEMIOL, V64, P459, DOI 10.1016/j.jclinepi.2010.09.003
Bekhuis T, 2012, ARTIF INTELL MED, V55, P197, DOI 10.1016/j.artmed.2012.05.002
Burch J, 2009, HEALTH TECHNOL ASSES, V13, P1, DOI 10.3310/hta13580
Cohen D, 2010, BRIT MED J, V340, DOI 10.1136/bmj.c2912
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964
Domingos P, 1997, MACH LEARN, V29, P103, DOI 10.1023/A:1007413511361
Doshi P, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b5164
Dunn AG, 2014, ANN INTERN MED, V161, P513, DOI 10.7326/M14-0933
Egger M, 1998, BMJ-BRIT MED J, V316, P61, DOI 10.1136/bmj.316.7124.61
Etter JF, 2009, J CLIN EPIDEMIOL, V62, P831, DOI 10.1016/j.jclinepi.2008.09.015
Falagas ME, 2006, FASEB J, V20, P1039, DOI 10.1096/fj.06-0603ufm
Fiorentino F, 2011, BRIT J CANCER, V104, P1085, DOI 10.1038/sj.bjc.6606060
GOTZSCHE PC, 1987, BMJ-BRIT MED J, V295, P654, DOI 10.1136/bmj.295.6599.654
Greenberg SA, 2011, J EVAL CLIN PRACT, V17, P389, DOI 10.1111/j.1365-2753.2011.01646.x
Greenberg SA, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b2680
Guyon I, 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1162/153244303322753616
Hand DJ, 2001, INT STAT REV, V69, P385, DOI 10.2307/1403452
Jannot AS, 2013, J CLIN EPIDEMIOL, V66, P296, DOI 10.1016/j.jclinepi.2012.09.015
Jefferson T, 2014, BMJ-BRIT MED J, V348, DOI 10.1136/bmj.g2545
Jefferson T, 2014, BMJ-BRIT MED J, V348, DOI 10.1136/bmj.g2263
Jefferson T, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b5106
Jones M, 2006, EXPERT OPIN DRUG SAF, V5, P603, DOI 10.1517/14740338.5.5.603
Kamber M., 2011, Pei. data mining concepts and techniques
Kho ME, 2012, J CLIN EPIDEMIOL, V65, P1010, DOI 10.1016/j.jclinepi.2012.03.009
Kho ME, 2012, J CLIN EPIDEMIOL, V65, P996, DOI 10.1016/j.jclinepi.2012.03.008
Kiso M, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000786
Kohavi R, 1997, ARTIF INTELL, V97, P273, DOI 10.1016/S0004-3702(97)00043-X
Krutnholz HM, 2013, BMJ-BRIT MED J, P346
Kulkarni AV, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020885
Latourrette M, 2000, LECT NOTES ARTIF INT, V1810, P238
Lau AYS, 2006, J AM SOC INF SCI TEC, V57, P873, DOI 10.1002/asi.20377
Mierswa I, 2006, P 12 ACM SIGKDD INT, V2006, P935, DOI DOI 10.1145/1150402.1150531
Monto AS, 2009, CLIN INFECT DIS, V48, pS20, DOI 10.1086/591853
Moscati R, 1994, Acad Emerg Med, V1, P267
Moscona A, 2005, NEW ENGL J MED, V353, P1363, DOI 10.1056/NEJMra050740
Nguyen HT, 2010, CLIN INFECT DIS, V51, P983, DOI 10.1086/656439
Nieminen P, 2007, J CLIN EPIDEMIOL, V60, P939, DOI 10.1016/j.jclinepi.2006.11.014
Okike K, 2011, J CLIN EPIDEMIOL, V64, P331, DOI 10.1016/j.jclinepi.2010.03.019
Perneger TV, 2010, J CLIN EPIDEMIOL, V63, P660, DOI 10.1016/j.jclinepi.2009.09.012
Scholkopf B., 2001, Learning with Kernels |
Shotton D, 2013, NATURE, V502, P295, DOI 10.1038/502295a
Smith JR, 2011, ADV THER, V28, P927, DOI 10.1007/s12325-011-0072-7
Trikalinos TA, 2012, J CLIN EPIDEMIOL, V65, P16, DOI 10.1016/j.jclinepi.2011.07.006
Tumpey TM, 2002, P NATL ACAD SCI USA, V99, P13849, DOI 10.1073/pnas.212519699
NR 46
TC 9
Z9 9
U1 0
U2 28
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0895-4356
EI 1878-5921
J9 J CLIN EPIDEMIOL
JI J. Clin. Epidemiol.
PD JAN
PY 2015
VL 68
IS 1
BP 87
EP 93
DI 10.1016/j.jclinepi.2014.09.014
PG 7
WC Health Care Sciences & Services; Public, Environmental & Occupational
Health
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Health Care Sciences & Services; Public, Environmental & Occupational
Health
GA AX1EL
UT WOS:000346690800011
PM 25450452
DA 2024-09-05
ER
PT C
AU Yang, P
Xia, HH
Liu, WY
Li, ZS
AF Yang, Ping
Xia, Huanhuan
Liu, Wangyang
Li, Zesong
GP IEEE
TI Research on Government Integrity Evaluation Based on Big Data
SO 2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG
DATA (ICAIBD 2019)
LA English
DT Proceedings Paper
CT 2nd International Conference on Artificial Intelligence and Big Data
(ICAIBD)
CY MAY 25-28, 2019
CL Chengdu, PEOPLES R CHINA
DE government integrity; evaluation; big data; internet public opinion;
credit scorecard model; NLP
AB By studying the international advanced practices of government integrity evaluation represented by Standard & Poor's, Global Integrity, Transparency International and Korea, this paper found that most of the evaluations are based on perceptual surveys. Although this method of data acquisition is simple and easy to implement, it has inherent defects, such as strong subjectivity, lack of details, prone to cause sample deviation, etc. Based on the goal of improving government capacity in integrity, this paper put forward a new idea of government integrity evaluation based on big data: Firstly, collect the behavior data and complaint reporting data in the government business systems, combine with the public opinion data on the Internet. Then, use the big data technology to get the evaluation indicator data of government integrity. Finally, construct a scientific evaluation model through the credit scorecard method. Compared with the traditional measure of evaluation, the government integrity evaluation based on big data in this paper not only can obtain more accurate evaluation results, but also has great value in its evaluation process. A large amount of objective and quantitative - rather than subjective and perceived data - can better support government decision-making and reform. The scientific evaluation indicator system can also guide the specific work of the government.
C1 [Yang, Ping; Li, Zesong] CETC Big Data Res Inst Co Ltd, Chengdu Branch, Chengdu, Peoples R China.
[Xia, Huanhuan; Liu, Wangyang] CETC Big Data Res Inst Co Ltd, Gen Technol Res Ctr, Guiyang, Peoples R China.
RP Yang, P (corresponding author), CETC Big Data Res Inst Co Ltd, Chengdu Branch, Chengdu, Peoples R China.
EM yangping@cetcbigdata.com; xiahuanhuan@cetcbigdata.com;
liuwangyang@cetcbigdata.com; lizesongcd@cetcbigdata.com
FU China Electronics Technology Group Corporation [KJ1805002]
FX This paper is the research achievement of Technology Innovation Fund
Project "Research on Key Technologies and Systems of Intelligent
Governance System for Promoting Government Executive Power" (KJ1805002)
of China Electronics Technology Group Corporation.
CR Alvarez-Diaz M., 2018, Corruption perceptions index 2017 statistical assessment
[Anonymous], 2016, INTRO KOREAS ANTICOR
[Anonymous], 2012, GLOBAL INTEGRITY REP
Beers D.T., 2004, Sovereign Credit Ratings: A Primer
Han Bing, 2018, W LEATHER, V40, P50
Lei Youxi, 2016, MARKET MODERNIZATION, P254
Ni Xianqing, 2017, CREDIT SCORING CARD
OECD, 2009, OECD PAPERS
QIN P, 2017, ELECT DESIGN ENG, V22, P68, DOI DOI 10.11841/J.ISSN.1007-4333.2017.01.09
Wang Huan, 2019, SCI TECHNOLOGICAL EN, V32, P145
Wu Jinmei, 2018, MODERN MANAGEMENT SC, P3
Yang Dengfeng, 2018, J NINGXIA TEACHERS U, V39, P72
Yang Qiong, 2018, RES STRUCTURE EVALUA
Yang Qiuju, 2015, CREDIT REFERENCE, V33, P60
Yang Qiuju, 2015, ADM TRIBUNE, V22, P96
NR 15
TC 3
Z9 3
U1 0
U2 5
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-0831-5
PY 2019
BP 28
EP 35
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BQ4OL
UT WOS:000591586200006
DA 2024-09-05
ER
PT C
AU Kim, J
Le, DX
Thoma, GR
AF Kim, Jongwoo
Le, Daniel X.
Thoma, George R.
BE ViardGaudin, C
Zanibbi, R
TI Combining SVM Classifiers to Identify Investigator Name Zones in
Biomedical Articles
SO DOCUMENT RECOGNITION AND RETRIEVAL XIX
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Document Recognition and Retrieval XIX (DRR)/Electronic
Imaging Symposium
CY JAN 25-26, 2012
CL Burlingame, CA
DE Investigator Names; MEDLINE; Support Vector Machine; labeling; text
classification; bibliographic information
AB This paper describes an automated system to label zones containing Investigator Names (IN) in biomedical articles, a key item in a MEDLINE (R) citation. The correct identification of these zones is necessary for the subsequent extraction of IN from these zones. A hierarchical classification model is proposed using two Support Vector Machine (SVM) classifiers. The first classifier is used to identify an IN zone with highest confidence, and the other classifier identifies the remaining IN zones. Eight sets of word lists are collected to train and test the classifiers, each set containing collections of words ranging from 100 to 1,200. Experiments based on a test set of 105 journal articles show a Precision of 0.88, 0.97 Recall, 0.92 F-Measure, and 0.99 Accuracy.
C1 [Kim, Jongwoo; Le, Daniel X.; Thoma, George R.] Natl Lib Med, Bethesda, MD 20894 USA.
C3 National Institutes of Health (NIH) - USA; NIH National Library of
Medicine (NLM)
RP Kim, J (corresponding author), Natl Lib Med, 8600 Rockville Pike, Bethesda, MD 20894 USA.
EM jongkim@mail.nih.gov
CR [Anonymous], 2008, TECHN MEM 484 INV NA
Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Dumais S., 1998, Proceedings of the 1998 ACM CIKM International Conference on Information and Knowledge Management, P148, DOI 10.1145/288627.288651
Gabrilovich E., 2004, P 21 INT C MACH LEAR, P321
Joachims Thorsten, 1998, ECML, P137, DOI DOI 10.1007/BFB0026683
Johnson M., 2008, SVM NET
Jongwoo Kim, 2008, Proceedings of the 2008 International Conference on Data Mining, P373
Kim J., 2010, IS T SPIES 22 ANN S
Kim J., 2009, P 22 IEEE INT S COMP
Lewis D. D., 1998, EUR C MACH LEARN, P4, DOI DOI 10.1007/BFB0026666
Madigan D., 2005, STAT GUIDE UNKNOWN, P135
McCallum A., 1998, P AAAI 98 WORKSH LEA, P577
NR 13
TC 1
Z9 1
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
EI 1996-756X
BN 978-0-81948-944-9
J9 PROC SPIE
PY 2012
VL 8297
AR 829704
DI 10.1117/12.910517
PG 8
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic; Optics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering; Optics
GA BYT89
UT WOS:000300251700003
DA 2024-09-05
ER
PT J
AU Kunoe, G
AF Kunoe, Gorm
TI Using persuasive marketing methods and mobile phones as active learning
devices to enhance students' learning
SO JOURNAL OF PEDAGOGIC DEVELOPMENT
LA English
DT Article
DE Mobile learning parcels; a four-factor pedagogy model; learning
evaluation model; action research
AB One of the latest additions to the educator's toolbox are learning parcels sent to the students' mobile phones. We used a four factor sales and marketing model from previous research to produce and evaluate the contents of the learning parcels and the mobile phone concept. The four factors are: Relevance, timeliness, responsibility and value. In an action research program during the first semester of 2015, we tested to which degree the students felt their curriculum knowledge improved through the use of learning parcels on their mobile phones. We learned that the novelty effect of using mobile phones as a medium quickly evaporated. The use of the learning parcels depends to a high degree on the instant feeling of high usefulness in relation to the four factors and is decisive for students' use of the learning parcels and the concept as such. A significant number of the students liked the concept, and were sure of its positive learning outcome.
Purpose
The purpose of this paper is to present the development and effectiveness test of a series of learning packets sent to the mobile phones of students taking a Bachelor's degree. A four-factor research model is presented that can be used for accessing new teaching tools and the contents of learning parcels.
Design/methodology/approach
We tested the four-factor model and the use of learning parcels on one class of Norwegian students. 135 students established an account, and 57 student made use of the APP and downloaded in total ten learning parcels. These were weekly send to their mobile phones, assisting them in understanding specific parts of the curriculum.
Findings - Students experienced improved learning outcomes through the use of learning parcels on their mobile phones. The contents of the learning parcels should be optimized by the use of our four-factor model. The universal model can be used to judge learning parcels in industrial teaching and training programs. The contents are more engaging when the medium is a mobile phone and the length of the contents is short and engaging.
Research limitations/implications
It would be rewarding to measure the effect on the outcome of the mobile learning parcels on the results of the students. We have only their own opinion on the effect. The results from the action research will be used in a new round of action research this year and next year. It will then be possible to compare the alterations made from the first round of research presented here.
Originality/value
This paper appears to be the first, which simultaneously examines the use of a marketing model to target contents of learning parcels and the use of mobile phones as learning media.
C1 [Kunoe, Gorm] Norwegian Business Sch, Inst Mkt, Oslo, Norway.
C3 BI Norwegian Business School
RP Kunoe, G (corresponding author), Norwegian Business Sch, Inst Mkt, Oslo, Norway.
CR Benshoff J. M, 2011, PROFESSIONAL COUNCEL, V1
Burns A., 2010, International House Journal, V29, P3
Dichter E., 1966, HARVARD BUSINESS REV, V44
Husman J., 2000, ANN M AM PSYCH ASS W
Kunoe Gorm, 2006, SPAREBANKBLADET
Mertler Craig A., 2012, J PEDAGOGIC DEV, V3
Toffler A., 1980, 3 WAVE
Wlodkowski R., 1995, DIVERSITY MOTIVATION
NR 8
TC 0
Z9 0
U1 0
U2 1
PU UNIV BEDFORDSHIRE, CENTRE LEARNING EXCELLENCE
PI BEDS
PA UNIVERSITY SQ, LUTON, BEDS, LU1 3JU, ENGLAND
SN 2047-3257
EI 2047-3265
J9 J PEDAGOG DEV
JI J. Pedagog. Dev.
PY 2016
VL 6
IS 1
BP 64
EP 70
PG 7
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA EL5CM
UT WOS:000394639200008
DA 2024-09-05
ER
PT J
AU Prasad, KDV
Vaidya, R
AF Prasad, K. D., V
Vaidya, Rajesh
TI Causes and Effect of Job Stress and Coping on Performance and
Psychological Well-being among the Agricultural Research Sector
Employees: An Empirical Study Using Multinomial Logistic Regression
Approach
SO HELIX
LA English
DT Article
DE Job Stress; Agricultural Research Sector (ARS); Psychological
Well-being; Coping; Gender
AB This manuscript reports the results of our study to assess the influence of stress due to job, strategies adopted for coping the stress, their association, and effect on performance and psychological well-being of agricultural research sector (ARS) employees. A survey of 700 staff working in the ARS in Hyderabad Metro, consisting of 360 women and 340 men were carried out. The 14 independent job stress components, harassment, role ambiguity, psychological factors, peer support, workload, co-workers, role conflict, career, physiological factors, behavioral factors, job control and social support, strategies of coping both the approach & avoidance strategies on dependent factors Performance and Psychological well-being of the agricultural research sector employees were estimated. The Cronbach's alpha value for the whole sample is 0.87, and C-alpha values for the job stress components and outcome factors performance and psychological well-being ranged between 0.70-0.81. The odds ratios (ORs) were measured to calculate the level of relation of job stress, coping methods, relationship with performance and psychological well-being of ARS staff. The age and gender differences were also studied.
C1 [Prasad, K. D., V] Int Crops Res Inst Semi Arid Trop, Hyderabad, Telangana, India.
[Vaidya, Rajesh] Shri Ramdeobaba Coll Engn & Management, Dept Management Technol, Katol Rd, Nagpur 444013, Maharashtra, India.
C3 CGIAR; International Crops Research Institute for the Semi-Arid-Tropics
(ICRISAT); Rashtrasant Tukadoji Maharaj Nagpur University; Shri
Ramdeobaba College of Engineering & Management
RP Prasad, KDV (corresponding author), Int Crops Res Inst Semi Arid Trop, Hyderabad, Telangana, India.
EM k.d.prasad@cgiar.org; rwvaidya@gmail.com
RI PRASAD, KDV/AAF-7097-2019; Vaidya, Rajesh W/AAC-6790-2021
OI PRASAD, KDV/0000-0001-9921-476X; Vaidya, Rajesh W/0000-0002-7541-2187
CR Annamali Sumathi, 2015, OCCUPATIONAL STRESS, P165
Burns KL, 2006, PERCEIVED ORG SUPPOR, P1
CAMPBELL CH, 1990, PERS PSYCHOL, V43, P277, DOI 10.1111/j.1744-6570.1990.tb01559.x
Cochran W., 1977, Sampling techniques
Cooper C., 1978, Sources of managerial and White Collar Stress- Wiley
Cronbach LJ, 1951, PSYCHOMETRIKA, V16, P297
Francis Andre, 2008, BUSINESS MATH STAT, P50
Kahn R.L., 1964, Organizational Stress: Studies in Role Conflict and Ambiguity
MasoudLotfizadeh, 2014, MALAYSIAN J PUBLIC H, V14, P79
Odetunmibi Oluwole A., 2017, P WORLD C ENG COMP S, VI, P1
Prasad KDV, 2018, PAC BUS REV INT, V10, P27
Prasad K.D. V., 2015, International Journal of Management Research and Business Strategy pp, P68
RYFF CD, 1995, J PERS SOC PSYCHOL, V69, P719
Sateesh Kumar K, 2012, INT J ADV ENG TECHNO, V2, P410
Selye H, 1956, J CLIN ENDOCRINOLOGY, V2, P117
Selye H., 1976, STRESS HLTH DIS BUTT
Sharma SK, 2012, MANAG-J CONTEMP MANA, V17, P1
Srivastava A.K., 1984, OCCUPATIONAL STRESS
Srivastava AK, 2001, COPING STRATEGY SCAL
Stephen EB., 1984, INT J SCI RES MANAGE, V2, P1417
Suryawanshi A., 2015, INT J SCI RES PUBLIC, V5, P1
Trochim K.M., 2006, Research Methods Knowledge Base
NR 22
TC 1
Z9 1
U1 1
U2 12
PU BIOAXIS DNA RESEARCH CENTRE PRIVATE LIMITED
PI HYDERBAD
PA 13-51, SRI LAKSHMI NAGAR COLONY, BESIDES BLG BAZAR, NEAR KAMINENI
HOSPITALS, GSI POST BANDAGUDA, HYDERBAD, 500068, INDIA
SN 2277-3495
EI 2319-5592
J9 HELIX
JI Helix
PY 2018
VL 8
IS 6
BP 4114
EP 4119
DI 10.29042/2018-4114-4119
PG 6
WC Biotechnology & Applied Microbiology
WE Emerging Sources Citation Index (ESCI)
SC Biotechnology & Applied Microbiology
GA HN2LK
UT WOS:000460016500002
OA Bronze
DA 2024-09-05
ER
PT C
AU Anupkant, S
Kumar, PVMS
Sateesh, N
Mahesh, DB
AF Anupkant, S.
Kumar, P. V. M. Seravana
Sateesh, Nayani
Mahesh, D. Bhanu
BE Niranjan, SK
TI Opinion mining on author's citation characteristics of scientific
publications
SO PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS
AND COMPUTATIONAL INTELLIGENCE (ICBDAC)
LA English
DT Proceedings Paper
CT International Conference on Big Data Analytics and Computational
Intelligence (ICBDAC)
CY MAR 23-25, 2017
CL Chirala Engn Coll, Chirala, INDIA
HO Chirala Engn Coll
DE Opinion mining; citation; publications; egression; sentiment analysis
ID INDEX
AB Opinion mining of authors opinions on scientific papers in citations is an important feature of scientific publications. Opinion mining aims to determine the defiance of a topic with respect to the overall polarity of a document. The main engine that drives opinion mining is the processing of subjective information. A dataset in the form of sentence-based collection of over 785 citations were collected. After excluding neutral citations, the dataset of 234 opinion citations were analyzed for the presence of positive and negative features. It was observed that majority (91.6 %) were found to be positive, the fraction of citations with negative orientation amounted to 8.4% and nearly 6% of the citations contained opinion terms of both positive and negative polarity. Logistic regression applied on training set resulted in 0.98 precision obtained on a classification model; hence the obtained regression model was applied on test set data to reveal positive and negative opinions.
C1 [Anupkant, S.; Kumar, P. V. M. Seravana; Sateesh, Nayani; Mahesh, D. Bhanu] CVR Coll Engn, Dept IT, Hyderabad 501510, Andhra Pradesh, India.
RP Anupkant, S (corresponding author), CVR Coll Engn, Dept IT, Hyderabad 501510, Andhra Pradesh, India.
EM anupkant@gmail.com; seravanakumar@gmail.com; nayanisateesh@gmail.com;
dbhanumahesh@gmail.com
RI D, BHANU MAHESH/IAL-9086-2023; NAYANI, SATEESH/HHM-7838-2022
OI D, BHANU MAHESH/0000-0003-3082-0598; N, Sateesh/0000-0003-0094-1057;
NAYANI, SATEESH/0000-0001-8216-1809
CR [Anonymous], 2004, INT C INF SYST
Athar A., 2011, P ACL 2011 STUD SESS, P81
Bird SB, 2008, J MED TOXICOL, V4, P261, DOI 10.1007/BF03161211
BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404
Breck Eric., 2007, P INT JOINT C ARTIFI
Cardie Claire., 2003, P AAAI SPRING S NEW, P20
Chen YB, 2008, MANAGE SCI, V54, P477, DOI 10.1287/mnsc.1070.0810
Chesley P., 2006, Training, V580, P233
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Das SanjivR., 2001, P 8 ASIA PACIFIC FIN
Dave K., 2003, P 12 INT C WORLD WID, P519, DOI DOI 10.1145/775152.775226
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Fukuhara T, 2007, P INT C WEBL SOC MED
Glanzel W, 2002, SCIENTOMETRICS, V53, P171, DOI 10.1023/A:1014848323806
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Hatzivassiloglou V, 1997, 35TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 8TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P174, DOI 10.3115/976909.979640
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
JINDAL N, 2006, P ACM SPEC INT GROUP
Joshi Medha A, 2014, J Contemp Dent Pract, V15, P258
Kaur G., 2016, INT J ADV RES COMPUT, V5, P148
Kosmulski M., 2006, ISSI NEWSLETTER, V2, P4, DOI [10.1177/01655515211014478, DOI 10.1177/01655515211014478]
Li Y., 2005, SIGKDD EXPLORATIONS, V7, P91
Lita L.V., 2005, Proceedings of the national conference on artificial intelligence, V20, P1616
Liu Bing, 2006, WEB DATA MINING EXPL
Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704
Piao SS., 2007, International Workshop on Computational Semantics (IWCS), P366
Radev DragomirR., 2009, Journal of the American Society for Information Science and Technology (JASIST)
Tatemura J., 2000, IUI 2000. 2000 International Conference on Intelligent User Interfaces, P272, DOI 10.1145/325737.325870
Tong R.M., 2001, P ACM SIGIR WORKSH O
West JD, 2010, COLL RES LIBR, V71, P236, DOI 10.5860/0710236
NR 30
TC 1
Z9 2
U1 0
U2 6
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-5090-6400-7
PY 2017
BP 348
EP 351
PG 4
WC Computer Science, Artificial Intelligence; Computer Science, Hardware &
Architecture; Computer Science, Software Engineering
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BJ5EI
UT WOS:000425843000064
DA 2024-09-05
ER
PT J
AU Min, J
Han, YX
Sun, Y
Jin, FX
Li, T
AF Min, Ji
Yunxiu, Han
Yong, Sun
Fengxiang, Jin
Ting, Li
TI Research on Analysis of Evaluation Influence Factors of Air Quality
Opinions Sentiment Value and Quantification Method
SO WATER AIR AND SOIL POLLUTION
LA English
DT Article
DE Air quality perception; Social media; Opinion mining; Sentiment
analysis; Public perceptions
ID MORTALITY; HEALTH
AB More and more people make opinions on air quality on social media, as science develops and the seriousness of air quality issues. Studies on sentiment analysis keyed to this kind of public opinions will do help in the introduction and perfection of policy of air quality. The evaluation of opinions sentiment is still a hard point in at this stage. There are only a few researches about the factors of the value of opinions sentiment. This article uses opinions related to air quality from Sina Weibo (Chinese Twitter) users, by online questionnaire surveys, and studies the results of opinions sentiment value about air quality in different groups, aiming at doing a research on the evaluation influence factors of opinions sentiment value on air quality. Furthermore, we came up with a solution synthesizing the influential level to calculate opinions sentiment value. We found amounts of respondents had a negative attitude to the opinions. We can now say with some confidence that education is the most significant influence factor on the public to tell the degree of sentiment level of air quality opinions. The sentiment calculation method where we come up could reduce the one-sidedness of different individuals' evaluations of the same opinion to some extent. The research could be reference for air quality management from the perspective of public opinion sentiment analysis.
C1 [Min, Ji; Yunxiu, Han; Ting, Li] Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China.
[Yong, Sun; Fengxiang, Jin] Shandong Jianzhu Univ, Sch Surveying & Geoinformat, Jinan 250000, Peoples R China.
C3 Shandong University of Science & Technology; Shandong Jianzhu University
RP Han, YX (corresponding author), Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China.
EM HanYunxiu1997@163.com
FU Major Science and Technology Innovation Projects of Shandong Province
[2019JZZY020103]
FX This research was funded by the Major Science and Technology Innovation
Projects of Shandong Province (2019JZZY020103).
CR [Anonymous], 2011, INT C PERS TECHN
[Anonymous], MACHINE LEARNING
Barbosa L., 2010, P 23 INT C COMP LING, P36
Bickerstaff K, 2003, PROG HUM GEOG, V27, P45, DOI 10.1191/0309132503ph412oa
BOFFEY PM, 1968, SCIENCE, V161, P990, DOI 10.1126/science.161.3845.990
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Calle M Luz, 2011, Brief Bioinform, V12, P86, DOI 10.1093/bib/bbq011
Chen YX, 2018, PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), P117, DOI 10.1145/3240508.3240533
Cody EM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136092
de Santana FB, 2019, FOOD CHEM, V293, P323, DOI 10.1016/j.foodchem.2019.04.073
Eden S., 1996, PUBLIC UNDERST SCI, V5, P183, DOI [10.1088/0963-6625/5/3/001, DOI 10.1088/0963-6625/5/3/001]
Goldstein BA, 2011, STAT APPL GENET MOL, V10, DOI 10.2202/1544-6115.1691
Gruebner O, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181233
[何炎祥 He Yanxiang], 2017, [计算机学报, Chinese Journal of Computers], V40, P773
Hornberg C, 1998, TOXICOL LETT, V96-7, P215, DOI 10.1016/S0378-4274(98)00075-7
Hu M., 2004, P 10 ACM SIGKDD INT, P168, DOI [10.1145/1014052.1014073, DOI 10.1145/1014052.1014073]
Huang J, 2018, LANCET PLANET HEALTH, V2, pE313, DOI 10.1016/S2542-5196(18)30141-4
Kim Y., 2014, C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS C EMPIRICAL METHODS
Muindi K, 2014, BMC PUBLIC HEALTH, V14, DOI 10.1186/1471-2458-14-226
Pope CA, 2002, JAMA-J AM MED ASSOC, V287, P1132, DOI 10.1001/jama.287.9.1132
Riddel M, 2006, J RISK UNCERTAINTY, V32, P131, DOI 10.1007/s11166-006-8290-0
Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049
Tang D., 2015, Computer Science
The State Council of China, 2013, AIR POLL PREV CONTR
Turney PD, 2003, ACM T INFORM SYST, V21, P315, DOI 10.1145/944012.944013
Vincent B., 2014, PLOS ONE, V9, DOI [10.1371/journal.pone.0093379, DOI 10.1371/JOURNAL.PONE.0093379]
Wang H, 2020, RESOUR CONSERV RECY, V158, DOI 10.1016/j.resconrec.2020.104813
Wang X, 2018, ATMOS ENVIRON, V194, P188, DOI 10.1016/j.atmosenv.2018.09.041
Wang X, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P1343
Yan Z., 2020, ENV POLLUTION CONTRO, V42, P1182
Ye, 2020, J FINANC ECON, V1, P126, DOI [DOI 10.16538/J.CNKI.JFE.2020.01.009, 10.16538/J.CNKI.JFE.2020.01.009]
Yuan JH, 2020, SCI CHINA TECHNOL SC, V63, P1947, DOI 10.1007/s11431-020-1634-3
Zhang L, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1253
Zhang X, 2017, J ENVIRON ECON MANAG, V85, P81, DOI 10.1016/j.jeem.2017.04.001
NR 34
TC 1
Z9 1
U1 1
U2 31
PU SPRINGER INT PUBL AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0049-6979
EI 1573-2932
J9 WATER AIR SOIL POLL
JI Water Air Soil Pollut.
PD JUL
PY 2021
VL 232
IS 7
AR 256
DI 10.1007/s11270-021-05197-x
PG 17
WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water
Resources
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences;
Water Resources
GA UJ8XE
UT WOS:000691561700004
DA 2024-09-05
ER
PT J
AU Zeng, ST
Cai, YF
Zhang, RS
Lyu, X
AF Zeng, Shaoting
Cai, Yifei
Zhang, Renshui
Lyu, Xin
TI Research on Human-Machine Collaborative Aesthetic Decision-Making and
Evaluation Methods in Automotive Body Design: Based on DCGAN and ANN
Models
SO IEEE ACCESS
LA English
DT Article
DE Automobiles; Generators; Training; Collaboration; Human-machine systems;
Solid modeling; Noise measurement; Machine learning; Design for
manufacture; Automotive components; Human-machine collaboration; human
calculating and machine computing; machine learning; aesthetic
evaluation and optimization; automotive body design
AB The main content of this study is the human-machine collaborative design research, taking the car body design as the carrier. The research framework focused on two phases of car body design process, that of design ideation and evaluation. In the ideation stage, we trained an imperfect Deep Convolutional Generative Adversarial Network (DCGAN) model that just could generate blur automobile images as the blur design motherboards for the iterative sketching, which had design uncertainties and blanks, thus activating designers' subjective initiative and aesthetic intuition to provide more creative deepen sketches. We leveraged motherboards to address uncertainty through sketching and aesthetic intuition, refining options and ultimately selecting an optimal design. In the evaluation phase, we initially constructed a parametric 3D model with 20 parameters based on the optimal design, and invited 32 designers conducting participatory design experiments, getting 1024 human-designed schemes. Following this, we administered an online survey to assess the aesthetic qualities of a total of 1024 design schemes. Leveraging the collected score data (The first round of surveys engaged 279 participants, while the second round involved 73 participants), we trained an Artificial Neural Network (ANN) model to serve as an aesthetic evaluation score predictor for unknown parameter configurations. The machine could evaluate designs autonomously, thus selecting best design from 20,000 schemes generated randomly by machine. We utilized the parametric design converting sketching images to the numeric parameters, switching the qualitative ideation to the quantitative evaluation, thus achieving aesthetic evaluation and optimization. This study explores the relationship between human cognitive intuition and machine intelligence and how they can collaborate with each other.
C1 [Zeng, Shaoting; Cai, Yifei; Zhang, Renshui; Lyu, Xin] Beijing Univ Technol, Coll Art & Design, Beijing 100124, Peoples R China.
C3 Beijing University of Technology
RP Zeng, ST (corresponding author), Beijing Univ Technol, Coll Art & Design, Beijing 100124, Peoples R China.
EM sjmjzst@gmail.com
RI Lyu, Xin/IVH-1329-2023
OI Lyu, Xin/0009-0008-0118-2834; Zeng, Shaoting/0000-0003-4720-7351
FU R&D Program of Beijing Municipal Education Commission [SM202310005009]
FX This work was supported by the R&D Program of Beijing Municipal
Education Commission under Grant SM202310005009. This work involved
human subjects or animals in its research. Approval of all ethical and
experimental procedures and protocols was granted by the Science and
Technology Ethics Committee of Beijing University of Technology.
CR Abdullaeva N. B., 2015, Theor. Appl. Sci., V29, P169
Agatonovic-Kustrin S, 2000, J PHARMACEUT BIOMED, V22, P717, DOI 10.1016/S0731-7085(99)00272-1
Ali AK, 2019, J CLEAN PROD, V234, P1033, DOI 10.1016/j.jclepro.2019.06.202
Bansal GG, 2021, AAAI CONF ARTIF INTE, V35, P11405
Barenji AV, 2021, ROBOT CIM-INT MANUF, V67, DOI 10.1016/j.rcim.2020.102043
Becerik-Gerber B, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-25047-y
Berdiev N., 2021, Amer. J. Social Sci. Educ. Innov., V3, P397
Bolojan D., 2021, CAADRIA P, P1
Bouchard C., 2006, Journal of Design Research, V5, DOI 10.1504/JDR.2006.010810
Burnap A, 2023, MARKET SCI, V42, P1029, DOI 10.1287/mksc.2022.1429
Casini L, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-36015-5
Cetinic E, 2022, ACM T MULTIM COMPUT, V18, DOI 10.1145/3475799
Cheng JW, 2022, SURV GEOPHYS, V43, P1395, DOI 10.1007/s10712-022-09718-z
Cross N., 1996, DESIGN STUD, V17, P91
Cui YR, 2018, COMPUT GRAPH FORUM, V37, P109, DOI 10.1111/cgf.13552
Dash T, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-021-04590-0
Davies A, 2021, NATURE, V600, P70, DOI 10.1038/s41586-021-04086-x
Dew R, 2022, MARKET SCI, V41, P401, DOI 10.1287/mksc.2021.1326
Duan LB, 2017, ENG OPTIMIZ, V49, P1247, DOI 10.1080/0305215X.2016.1241780
Epstein Z, 2023, Arxiv, DOI arXiv:2306.04141
Epstein Z, 2023, SCIENCE, V380, P1110, DOI 10.1126/science.adh4451
Farzaneh N, 2023, NPJ DIGIT MED, V6, DOI 10.1038/s41746-023-00797-9
Folkmann MN, 2018, DES RES FOUND, P263, DOI 10.1007/978-3-319-73302-9_13
Gatys LA, 2017, PROC CVPR IEEE, P3730, DOI 10.1109/CVPR.2017.397
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622
Gorji HT, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-29647-0
Hekkert P., 2008, Product Experience, P85
Hewer P, 2007, INT J SOCIOL SOC POL, V27, P106, DOI 10.1108/01443330710741057
HOHENDAHL PU, 1977, NEW GER CRIT, P29, DOI 10.2307/487671
Hu ZY, 2019, COMPUT ANIMAT VIRT W, V30, DOI 10.1002/cav.1889
Huang CY, 2022, BUILD ENVIRON, V224, DOI 10.1016/j.buildenv.2022.109575
Jia D, 2013, PROC CVPR IEEE, P580, DOI 10.1109/CVPR.2013.81
Kanarik KJ, 2023, NATURE, V616, P707, DOI 10.1038/s41586-023-05773-7
Kang WJ, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-33055-9
Krause J, 2013, 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), P554, DOI 10.1109/ICCVW.2013.77
Kuglitsch MM, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-29285-6
Lin S, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-32827-7
Mukherkjee D, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-12646-y
Oxman R, 2017, DESIGN STUD, V52, P4, DOI 10.1016/j.destud.2017.06.001
Ozili P.K., 2022, SSRN, DOI [DOI 10.2139/SSRN.4128165, 10.2139/ssrn.4128165]
Palmer SE, 2013, ANNU REV PSYCHOL, V64, P77, DOI 10.1146/annurev-psych-120710-100504
Qiong W., 2020, P WEB C, P1
Radford A, 2016, Arxiv, DOI [arXiv:1511.06434, DOI 10.48550/ARXIV.1511.06434]
Reverberi C, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-18751-2
Soon CS, 2008, NAT NEUROSCI, V11, P543, DOI 10.1038/nn.2112
Stiny G., 2012, Dosya, Comput. Des., V29, P6
Sylolypavan A, 2023, NPJ DIGIT MED, V6, DOI 10.1038/s41746-023-00773-3
Tian R., 2020, P 40 ANN C ASS COMP, P1
Toubia O, 2017, MARKET SCI, V36, P1, DOI 10.1287/mksc.2016.0994
Vitruvius, 1914, 10 BOOKS ARCHITECTUR
Wang DK, 2020, CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3334480.3381069
Wang XG, 2022, ADV MECH ENG, V14, DOI 10.1177/16878132221078495
Wilson J, 2018, HARVARD BUS REV, V96, P115
Wong Alexander, 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Proceedings, P684, DOI 10.1109/CVPRW.2019.00095
Yousif S., 2017, P ACADIA, P1
Zuo WJ, 2013, ADV ENG SOFTW, V64, P1, DOI 10.1016/j.advengsoft.2013.04.003
NR 56
TC 0
Z9 0
U1 1
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2024
VL 12
BP 91575
EP 91589
DI 10.1109/ACCESS.2024.3422134
PG 15
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA YQ0V0
UT WOS:001269840500001
OA gold
DA 2024-09-05
ER
PT C
AU Wiechetek, L
AF Wiechetek, Lukasz
BE Chova, LG
Martinez, AL
Torres, IC
TI EDUCATORS AND ACADEMICS IN SPECIALIZED SOCIAL NETWORKS. COMPARISON OF
GOOGLE SCHOLAR AND RESEARCHGATE USAGE BY BUSINESS RESEARCHERS OF MCSU
SO EDULEARN19: 11TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING
TECHNOLOGIES
SE EDULEARN Proceedings
LA English
DT Proceedings Paper
CT 11th International Conference on Education and New Learning Technologies
(EDULEARN)
CY JUL 01-03, 2019
CL Palma, SPAIN
DE social network; specialized social network; SNS; ResearchGate; Google
Scholar; business scientist; comparative analysis; WEB 2.0; research
evaluation; research evaluation metrics; researcher reputation
ID WEB-OF-SCIENCE; SCOPUS
AB Social networks play significant role not only in entertainment but also can improve the effectiveness of business and scientific processes. IT tools accelerate the knowledge dissemination, promote provided services or goods but also scientific achievements. At present researchers and scientists not only have to find interesting, up to date and significant topic of research, plan and perform the research in accordance with the methodology. They have to analyze and clearly visualize collected data and describe the final outcomes, prepare the scientific articles, but also effectively manage the research teams and widely promote the research and achievements. In today's fast changing and digital world, single researcher is not able to perform the whole complex research process on global scale and in a short time. Also, after performing the hard research work, the outcomes should by widely disseminated to promote the results, the author and the research organization. Research results have to reach a large, global audience, otherwise they could be not noticed or quickly forgotten. In this case very useful can be specialized social network sites like ResearchGate or Google Scholar. They integrate researchers with similar or supplementary interests, allow for building scientific portfolio by adding papers, research data, projects description. They can be also successfully used for improving communication, give the possibility of worldwide promotion of research outcomes and offer useful mechanisms for evaluation and comparison of educators, academics and research centers.
The aim of the article is to present and compare the usage of specialized social network platforms by MCSU business researchers. The author compares two popular platforms Google Scholar and ResearchGate. The article contains the characteristics of analyzed platforms, main profits and problems related to their usage and comparison of offered functionalities. The main part of the paper is the quantitative analysis of business researchers' profiles on ResearchGate and Google Scholar. The data collected in April 2018 were used to answer the following research questions: If SNS platforms are widely used by the researchers?, What are the values of main metrics provided by both systems? and What are the differences between profiles created on explored platforms by various groups of users?
The literature research, analysis of services offered by the explored portals and performed quantitative analysis indicate that possessing SNS profile is not very popular among analyzed researchers. Metrics presented by Google Scholar are higher than available on ResearchGate. However, RG presents more metrics which allow for a more in-depth achievements analysis. The author experiences and opinions of active SNS users indicate that use of specialized social networks is easy and intuitive. The main initial barrier is manual profile creating. Many activities like metrics calculation, development of the publication list is performed automatically without the extra effort of the researchers. Therefore, it is worth to create the profile in social network sites for researchers to be more recognizable and boost the development of scientific career.
C1 [Wiechetek, Lukasz] Marie Curie Sklodowska Univ, Fac Econ, Lublin, Poland.
C3 Maria Curie-Sklodowska University
RP Wiechetek, L (corresponding author), Marie Curie Sklodowska Univ, Fac Econ, Lublin, Poland.
RI Ločičnik, Aleksandra/ABE-7348-2021; Wiechetek, Łukasz/AAH-7309-2021
OI Wiechetek, Łukasz/0000-0001-7755-2282
CR Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Harzing A., 2008, Ethics in Science and Environmental Politics, V8, P61, DOI [DOI 10.3354/ESEP00076, 10.3354/esep00076]
Jacso P, 2005, CURR SCI INDIA, V89, P1537
Jacsó P, 2005, ONLINE INFORM REV, V29, P208, DOI 10.1108/14684520510598066
Jamali HR, 2017, SCIENTOMETRICS, V112, P241, DOI 10.1007/s11192-017-2291-4
Kraker P., 2015, P QUANT AN SCHOL COM
Kulkarni AV, 2009, JAMA-J AM MED ASSOC, V302, P1092, DOI 10.1001/jama.2009.1307
Nicholas D, 2016, LEARN PUBL, V29, P173, DOI 10.1002/leap.1035
Noruzi A, 2005, LIBRI, V55, P170, DOI 10.1515/LIBR.2005.170
Orduna-Malea E, 2017, SCIENTOMETRICS, V112, P443, DOI 10.1007/s11192-017-2396-9
Shultz M., 2004, J MED LIB ASS JMLA, V95, P442
Thelwall M, 2017, J ASSOC INF SCI TECH, V68, P468, DOI 10.1002/asi.23675
Van Noorden R, 2014, NATURE, V512, P126, DOI 10.1038/512126a
Yu MC, 2016, COMPUT HUM BEHAV, V55, P1001, DOI 10.1016/j.chb.2015.11.007
NR 15
TC 4
Z9 4
U1 0
U2 2
PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT
PI VALENICA
PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN
SN 2340-1117
BN 978-84-09-12031-4
J9 EDULEARN PROC
PY 2019
BP 8039
EP 8051
PG 13
WC Education & Educational Research
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BP4NG
UT WOS:000553304902092
DA 2024-09-05
ER
PT J
AU Bukowski, M
Geisler, S
Schmitz-Rode, T
Farkas, R
AF Bukowski, Mark
Geisler, Sandra
Schmitz-Rode, Thomas
Farkas, Robert
TI Feasibility of activity-based expert profiling using text mining of
scientific publications and patents
SO SCIENTOMETRICS
LA English
DT Article
DE Supervised learning; Biomedical engineering domain model; Translational
value chain; Research evaluation; Author contribution; Domain-specific
recommendation; Self; and external-assessment
ID SLEEPING BEAUTIES; GOOGLE-SCHOLAR; CLASSIFICATION; COLLABORATION;
TECHNOLOGY; AUTHORSHIP; INNOVATION; PRODUCTIVITY; NETWORKS; JOURNALS
AB Research and development (R&D) in many technological areas is characterized by growing complexity. In biomedical engineering, too, interdisciplinary collaboration is regarded as a promising way to master this challenge. Therefore, identifying suitable experts becomes crucial, which is currently being researched, amongst others, by analyzing semantic data. However, previous approaches lack clarity and traceability of the mechanisms for compiling top-n lists of recommended experts, as domain specificity in profiling is insufficient. Moreover, these recommenders are mainly based on scientific publications, while patents are rarely considered as an important outcome of R&D. Thus, we study the feasibility of profiling 16 biomedical engineering experts using both publications and patents. These documents are automatically labeled according to a three-dimensional domain model by machine learning-based classifiers. On this basis, we created various activity-based representations, including author-contribution-weighting. We evaluated the profiling through self- and external-assessments and tested the recommendation compared to scientometric measures in three case studies. All interviewed experts identify themselves among 10 pseudonymous profiles and 96% of all 51 external-assignments are correct. The recommendation over three case studies reaches a high mean average precision of 89% and contrasts with the use of scientometric measures (41%). Moreover, the activity based on patents primarily corresponds to that of publications but patents also introduce new activities. The author-contribution-weighting improves the performance. In conclusion, our findings show that exploiting publications and patents enables comprehensible profiling of biomedical engineering experts that allows visual comparisons and clear selection and ranking of potential R&D collaboration partners along the translational value chain.
C1 [Bukowski, Mark; Farkas, Robert] Rhein Westfal TH Aachen, Univ Hosp Aachen, Inst Appl Med Engn, Helmholtz Inst,Dept Sci Management, Pauwelsstr 20, D-52074 Aachen, Germany.
[Geisler, Sandra] Fraunhofer Inst Appl Informat Technol FIT, Schloss Birlinghoven, D-53754 St Augustin, Germany.
[Schmitz-Rode, Thomas] Rhein Westfal TH Aachen, Univ Hosp Aachen, Inst Appl Med Engn, Helmholtz Inst, Pauwelsstr 20, D-52074 Aachen, Germany.
C3 Helmholtz Association; RWTH Aachen University; RWTH Aachen University
Hospital; Fraunhofer Gesellschaft; RWTH Aachen University; RWTH Aachen
University Hospital; Helmholtz Association
RP Bukowski, M (corresponding author), Rhein Westfal TH Aachen, Univ Hosp Aachen, Inst Appl Med Engn, Helmholtz Inst,Dept Sci Management, Pauwelsstr 20, D-52074 Aachen, Germany.
EM bukowski@ame.rwth-aachen.de
RI Bukowski, Mark/M-4621-2019
OI Bukowski, Mark/0000-0003-4563-1159; Farkas, Robert/0000-0002-8199-6764;
Geisler, Sandra/0000-0002-8970-6282; Schmitz-Rode,
Thomas/0000-0002-1181-2165
FU Klaus Tschira Stiftung gGmbH [00.263.2015]
FX This study was funded by the Klaus Tschira Stiftung gGmbH (Grant No.
00.263.2015).
CR albertbup, 2017, A python implementation of deep belief networks built upon numpy and tensorflow with scikit-learn compatibility
Alstott J, 2017, DES SCI, V3, DOI 10.1017/dsj.2017.21
[Anonymous], 2010, MEASURING INNOVATION
[Anonymous], INT STAT CLASS DIS R
[Anonymous], 2009, OECD Patent Statistics Manual
[Anonymous], 2003, ACM SIGIR FOR 2003, DOI DOI 10.1145/945546.945547
Baerlocher MO, 2007, J INVEST MED, V55, P174, DOI 10.2310/6650.2007.06044
Balog Krisztian, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P551, DOI 10.1145/1277741.1277836
Balog K, 2012, FOUND TRENDS INF RET, V6, P127, DOI 10.1561/1500000024
Balog K, 2007, 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2657
Benzineb K, 2011, INFORM RETRIEVAL SER, V29, P239, DOI 10.1007/978-3-642-19231-9_12
Bercovitz J, 2011, RES POLICY, V40, P81, DOI 10.1016/j.respol.2010.09.008
Berendsen R, 2013, J AM SOC INF SCI TEC, V64, P2024, DOI 10.1002/asi.22908
Borge L, 2017, CREAT INNOV MANAG, V26, P311, DOI 10.1111/caim.12222
Brink PA, 2013, CARDIOVASC J AFR, V24, P295
Bukowski M., 2017, P 2 INT WORKSH HLTH
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Chen H.-H., 2015, ARXIVABS151102058 CO
Chen SY, 2017, J THORAC DIS, V9, P1725, DOI 10.21037/jtd.2017.05.34
Chin-Dusting J, 2005, NAT REV DRUG DISCOV, V4, P891, DOI 10.1038/nrd1879
Clarivate Analytics, 2018, WEB SCI COR COLL CIT
Clarivate Analytics, 2018, INCITES J CIT REP
Cope AP, 2018, NAT REV RHEUMATOL, V14, P53, DOI 10.1038/nrrheum.2017.200
Corbi A, 2019, IEEE ACCESS, V7, P9105, DOI 10.1109/ACCESS.2018.2887272
da Silva J. A. Teixeira, 2017, ACAD QUESTIONS, V30, P433, DOI DOI 10.1007/S12129-017-9671-3
Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008
Du GC, 2018, PROCEEDINGS OF 2018 IEEE 4TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2018), P75, DOI 10.1109/ITOEC.2018.8740444
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Farkas R, 2017, S VOR TECHN 2017 PAD, P239
Farkas R., 2005, STUDIE SITUATION MED
Felfernig A., 2018, SPRINGERBRIEFS ELECT
Ferguson MWJ, 2016, NATURE, V538, P453, DOI 10.1038/538453a
Fernández-Delgado M, 2014, J MACH LEARN RES, V15, P3133
FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619
George S, 2020, SCIENTOMETRICS, V122, P127, DOI 10.1007/s11192-019-03286-7
Guan JC, 2009, J AM SOC INF SCI TEC, V60, P35, DOI 10.1002/asi.20954
Guan JC, 2016, RES POLICY, V45, P97, DOI 10.1016/j.respol.2015.08.002
Haeussler C, 2013, RES POLICY, V42, P688, DOI 10.1016/j.respol.2012.09.009
Hampton SE, 2011, BIOSCIENCE, V61, P900, DOI 10.1525/bio.2011.61.11.9
Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9
Heidemeier H, 2009, J APPL PSYCHOL, V94, P353, DOI 10.1037/0021-9010.94.2.353
Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a
Huang YM, 2005, PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, P4365
Konski AF, 2015, CSH PERSPECT MED, V5, DOI 10.1101/cshperspect.a020859
Kuan CH, 2011, J INFORMETR, V5, P303, DOI 10.1016/j.joi.2011.01.002
Lanjouw JO, 2004, ECON J, V114, P441, DOI 10.1111/j.1468-0297.2004.00216.x
Li SB, 2018, SCIENTOMETRICS, V117, P721, DOI 10.1007/s11192-018-2905-5
Lin SY, 2017, J INTELL INF SYST, V49, P255, DOI 10.1007/s10844-016-0440-5
Lissoni F, 2013, J ECON BEHAV ORGAN, V95, P49, DOI 10.1016/j.jebo.2013.08.016
Ma JT, 2017, IEEE ACCESS, V5, P12031, DOI 10.1109/ACCESS.2017.2717921
Manotungvorapun N, 2016, PORTL INT CONF MANAG, P420, DOI 10.1109/PICMET.2016.7806579
Massa P, 2007, RECSYS 07: PROCEEDINGS OF THE 2007 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P17
Mattsson P, 2011, SCIENTOMETRICS, V87, P99, DOI 10.1007/s11192-010-0310-9
McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031
Mindruta D, 2013, STRATEGIC MANAGE J, V34, P644, DOI 10.1002/smj.2036
Moehrle MG, 2005, R&D MANAGE, V35, P513, DOI 10.1111/j.1467-9310.2005.00408.x
NGUYEN J, 2015, IEEE INT FUZZY SYST, P1
Pan B, 2007, J COMPUT-MEDIAT COMM, V12, P801, DOI 10.1111/j.1083-6101.2007.00351.x
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Powers D M W, 2011, INT J MACH LEARN TEC, V2, P37
Renjun Chi, 2018, 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). Proceedings, P881, DOI 10.1109/DSC.2018.00141
Rexha A, 2018, SCIENTOMETRICS, V115, P223, DOI 10.1007/s11192-018-2661-6
Ribeiro LC, 2018, SCIENTOMETRICS, V114, P159, DOI 10.1007/s11192-017-2573-x
Rose S., 2010, TEXT MINING APPL THE, P1, DOI [DOI 10.1002/9780470689646.CH1, 10.1002/9780470689646.CH1, 10.1002/9780470689646.ch1]
Rybak Jan, 2014, Advances in Information Retrieval. 36th European Conference on IR Research, ECIR 2014. Proceedings: LNCS 8416, P540, DOI 10.1007/978-3-319-06028-6_54
Rycroft RW, 2007, TECHNOL FORECAST SOC, V74, P565, DOI 10.1016/j.techfore.2006.10.005
Sateli B, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.121
Sauermann H, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1700404
Schillebeeckx SJD, 2019, J MANAGE STUD, V56, P1073, DOI 10.1111/joms.12447
Schlotelburg Cord., 2008, IDENTIFIZIERUNG INNO
Schuemie MJ, 2008, BIOINFORMATICS, V24, P727, DOI 10.1093/bioinformatics/btn006
Schuh G, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1022, DOI 10.1109/ICIT.2016.7474894
Sekercioglu CH, 2008, SCIENCE, V322, P371, DOI 10.1126/science.322.5900.371a
Serdyukov P, 2011, LECT NOTES COMPUT SC, V6611, P399, DOI 10.1007/978-3-642-20161-5_40
Silva T, 2017, INF DISCOV DELIV, V45, P169, DOI 10.1108/IDD-03-2017-0021
Silva T, 2015, J ASSOC INF SCI TECH, V66, P180, DOI 10.1002/asi.23150
Silvello G, 2017, INT J DIGIT LIBRARIE, V18, P145, DOI 10.1007/s00799-016-0172-8
Singh H, 2013, HEALTHC INFORM RES, V19, P243, DOI 10.4258/hir.2013.19.4.243
Singh R, 2018, IEEE RAD FREQ INTEGR, P4, DOI 10.1109/RFIC.2018.8429031
Squicciarini M., 2013, Measuring patent quality: Indicators of technological and economic value, DOI DOI 10.1787/5K4522WKW1R8-EN
Stephan P, 2017, NATURE, V544, P411, DOI 10.1038/544411a
Tang J., 2008, ArnetMiner
Tie-Yan Liu, 2009, Foundations and Trends in Information Retrieval, V3, P225, DOI 10.1561/1500000016
Trappey AJC, 2012, ADV ENG INFORM, V26, P26, DOI 10.1016/j.aei.2011.06.005
Tscharntke T, 2007, PLOS BIOL, V5, P13, DOI 10.1371/journal.pbio.0050018
Tseng YH, 2007, INFORM PROCESS MANAG, V43, P1216, DOI 10.1016/j.ipm.2006.11.011
van Raan AFJ, 2004, SCIENTOMETRICS, V59, P467, DOI 10.1023/B:SCIE.0000018543.82441.f1
van Raan AFJ, 2018, SCIENTOMETRICS, V114, P701, DOI 10.1007/s11192-017-2603-8
Vavrycuk V, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195509
Wallach H. M., 2006, P 23 INT C MACH LEAR, V23, P977, DOI [10.1145/1143844.1143967, DOI 10.1145/1143844.1143967]
Wang BC, 2015, IEEE ACM T COMPUT BI, V12, P1286, DOI 10.1109/TCBB.2015.2430338
Wang Q, 2017, DECIS SUPPORT SYST, V103, P46, DOI 10.1016/j.dss.2017.09.001
Wu CH, 2010, APPL SOFT COMPUT, V10, P1164, DOI 10.1016/j.asoc.2009.11.033
Ystrom A., 2018, CREATIVITY INNOVATIO
Zhang L., 2015, SIGKDD Explor. Newsl, V16, P1, DOI DOI 10.1145/2783702.2783704
Zhang Q, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111795
Zhou JL, 2018, SCIENTOMETRICS, V117, P1721, DOI 10.1007/s11192-018-2918-0
Zhu L, 2019, SCIENTOMETRICS, V121, P137, DOI 10.1007/s11192-019-03194-w
NR 98
TC 6
Z9 6
U1 3
U2 69
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD MAY
PY 2020
VL 123
IS 2
BP 579
EP 620
DI 10.1007/s11192-020-03414-8
EA MAR 2020
PG 42
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA LJ0VN
UT WOS:000520818400002
DA 2024-09-05
ER
PT C
AU Hou, L
Li, JZ
Li, XL
Su, Y
AF Hou, Lei
Li, Juanzi
Li, Xiao-Li
Su, Yu
BE Renz, M
Shahabi, C
Zhou, X
Cheema, MA
TI Measuring the Influence from User-Generated Content to News via
Cross-Dependence Topic Modeling
SO DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT1
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 20th International Conference on Database Systems for Advanced
Applications (DASFAA)
CY APR 20-23, 2015
CL Hanoi, VIETNAM
DE News stream; User-generated content; Cross dependence; Influence;
Response
AB Online news has become increasingly prevalent as it helps the public access timely information conveniently. Meanwhile, the rapid proliferation of Web 2.0 applications has enabled the public to freely express opinions and comments over news (user-generated content, or UGC for short), making the current Web a highly interactive platform. Generally, a particular event often brings forth two correlated streams from news agencies and the public, and previous work mainly focuses on the topic evolution in single or multiple streams. Studying the inter-stream influence poses a new research challenge. In this paper, we study the mutual influence between news and UGC streams (especially the UGC-to-news direction) through a novel three-phase framework. In particular, we first propose a cross-dependence temporal topic model (CDTTM) for topic extraction, then employ a hybrid method to discover short and long term influence links across streams, and finally introduce four measures to quantify how the unique topics from one stream affect or influence the generation of the other stream (e.g. UGC to news). Extensive experiments are conducted on five actual news datasets from Sina, New York Times and Twitter, and the results demonstrate the effectiveness of the proposed methods. Furthermore, we observe that not only news triggers the generation of UGC, but also UGC conversely drives the news reports.
C1 [Hou, Lei; Li, Juanzi] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Dept Comp Sci & Technol, Beijing 100084, Peoples R China.
[Li, Xiao-Li] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore.
[Su, Yu] Xinhua News Agcy, Commun Technol Bur, Beijing 100803, Peoples R China.
C3 Tsinghua University; Agency for Science Technology & Research (A*STAR);
A*STAR - Institute for Infocomm Research (I2R)
RP Hou, L (corresponding author), Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Dept Comp Sci & Technol, Beijing 100084, Peoples R China.
EM houl10@mails.tsinghua.edu.cn; lijuanzi@tsinghua.edu.cn;
xlli@i2r.a-star.edu.sg; suyu@xinhua.org
RI Li, Zhiyuan/AAT-1121-2020; Li, Xiaoli/C-9739-2012; Li,
Xiaoli/GYQ-7384-2022
OI Li, Xiaoli/0000-0002-0762-6562; Hou, Lei/0000-0002-8907-3526
CR Ahmed Amr, 2010, UAI'10, V20, P29
AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T
Ajzen I., 1985, ACTION CONTROL, P11
AlSumait L, 2008, IEEE DATA MINING, P3, DOI 10.1109/ICDM.2008.140
[Anonymous], 2009, P 2009 SIAM INT C DA
[Anonymous], 2009, WSDM
[Anonymous], 1999, PERSONALITY SOCIAL P
[Anonymous], 2011, Proceedings of the 17th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining
Arnold A, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P66
Blei D.M., 2006, P 23 INT C MACH LEAR, DOI [DOI 10.1145/1143844.1143859, 10.1145/1143844.1143859]
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Cheng DH, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P382, DOI 10.1145/2623330.2623709
Chung YF, 2011, INT C PAR DISTRIB SY, P372, DOI 10.1109/ICPADS.2011.28
Daily C. Y., 2013, CHINA YOUTH DAIL DEC
Danescu-Niculescu-Mizil Cristian, 2013, P 22 INT C WORLD WID, P307, DOI [DOI 10.1145/2488388.2488416, 10.1145/2488388.2488416]
Gao Z. J., 2011, Proceedings of the 2011 IEEE 11th International Conference on Data Mining (ICDM 2011), P1056, DOI 10.1109/ICDM.2011.148
Giorgino T, 2009, J STAT SOFTW, V31, P1, DOI 10.18637/jss.v031.i07
Hanska-Ahy M., 2013, J AUDIENCE RECEPTION, V10, P436
Holcomb J., 2013, News use across social media platforms
Hou Lei, 2013, P 23 INT JOINT C ART, P1401
Jo Yookyung., 2011, P 20 INT C WORLD WID, P257, DOI DOI 10.1145/1963405.1963444
Jönsson AM, 2011, JOURNAL PRACT, V5, P127, DOI 10.1080/17512786.2010.501155
McCombs M., 2011, POLITY
Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895
Morinaga S., 2004, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), P811, DOI DOI 10.1145/1014052.1016919
Petrovic Sasa, 2013, P 7 INT AAAI C WEBL, V7
Po Hu, 2011, Proceedings of the 2011 IEEE 11th International Conference on Data Mining (ICDM 2011), P260, DOI 10.1109/ICDM.2011.71
Rosen-Zvi Michal., 2004, UAI
Sheeran P, 2003, PERS SOC PSYCHOL B, V29, P205, DOI 10.1177/0146167202239046
Wang XH, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P784
Wang Xuerui., P 12 ACM SIGKDD INT, P424
Zhao WNX, 2011, LECT NOTES COMPUT SC, V6611, P338, DOI 10.1007/978-3-642-20161-5_34
NR 32
TC 0
Z9 0
U1 0
U2 4
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 978-3-319-18120-2; 978-3-319-18119-6
J9 LECT NOTES COMPUT SC
PY 2015
VL 9049
BP 125
EP 141
DI 10.1007/978-3-319-18120-2_8
PG 17
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BD5PI
UT WOS:000361697600008
DA 2024-09-05
ER
PT J
AU Traag, VA
AF Traag, V. A.
TI Inferring the causal effect of journals on citations
SO QUANTITATIVE SCIENCE STUDIES
LA English
DT Article
DE Bayesian model; causal inference; citations; journal effects; science of
science
ID IMPACT; PERFORMANCE; BIAS
AB Articles in high-impact journals are, on average, more frequently cited. But are they cited more often because those articles are somehow more "citable"? Or are they cited more often simply because they are published in a high-impact journal? Although some evidence suggests the latter, the causal relationship is not clear. We here compare citations of preprints to citations of the published version to uncover the causal mechanism. We build on an earlier model of citation dynamics to infer the causal effect of journals on citations. We find that high-impact journals select articles that tend to attract more citations. At the same time, we find that high-impact journals augment the citation rate of published articles. Our results yield a deeper understanding of the role of journals in the research system. The use of journal metrics in research evaluation has been increasingly criticized in recent years and article-level citations are sometimes suggested as an alternative. Our results show that removing impact factors from evaluation does not negate the influence of journals. This insight has important implications for changing practices of research evaluation.
C1 [Traag, V. A.] Leiden Univ, Ctr Sci & Technol Studies CWTS, Leiden, Netherlands.
C3 Leiden University - Excl LUMC; Leiden University
RP Traag, VA (corresponding author), Leiden Univ, Ctr Sci & Technol Studies CWTS, Leiden, Netherlands.
EM v.a.traag@cwts.leidenuniv.nl
RI Traag, Vincent/A-1897-2011
OI Traag, Vincent/0000-0003-3170-3879
CR Abramo G, 2019, J INFORMETR, V13, P32, DOI 10.1016/j.joi.2018.11.003
Adams J, 2008, SCIENTOMETRICS, V75, P81, DOI 10.1007/s11192-007-1832-7
Bareinboim E., 2012, Artificial Intelligence and Statistics, P100
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Callaham M, 2002, JAMA-J AM MED ASSOC, V287, P2847, DOI 10.1001/jama.287.21.2847
Cantrill S., 2016, CHEM CONNECTIONS BLO
Davis P., 2010, IMPACT FACTORS SELF
Eyre-Walker A, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001675
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Kim L, 2020, J ASSOC INF SCI TECH, V71, P1218, DOI 10.1002/asi.24326
Klein M, 2016, ACM-IEEE J CONF DIG, P153, DOI 10.1145/2910896.2910909
Kuroki M, 2014, BIOMETRIKA, V101, P423, DOI 10.1093/biomet/ast066
Larivière V, 2019, SPRINGER HBK, P3, DOI 10.1007/978-3-030-02511-3_1
Larivière V, 2014, J ASSOC INF SCI TECH, V65, P1157, DOI 10.1002/asi.23044
Larivière V, 2010, J AM SOC INF SCI TEC, V61, P424, DOI 10.1002/asi.21232
Lariviere Vincent., 2016, BioRxiv, P062109, DOI DOI 10.1101/062109
Levitt JM, 2011, INFORM PROCESS MANAG, V47, P300, DOI 10.1016/j.ipm.2010.09.005
Mckiernan EC, 2019, ELIFE, V8, DOI 10.7554/eLife.47338
Medoff MH, 2006, J ECON METHODOL, V13, P485, DOI 10.1080/13501780601049079
Müller R, 2017, RES EVALUAT, V26, P157, DOI 10.1093/reseval/rvx023
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
PERITZ BC, 1995, J INFORM SCI, V21, P63, DOI 10.1177/016555159502100108
Perneger TV, 2010, J CLIN EPIDEMIOL, V63, P660, DOI 10.1016/j.jclinepi.2009.09.012
Petersen AM, 2014, P NATL ACAD SCI USA, V111, P15316, DOI 10.1073/pnas.1323111111
PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292, DOI 10.1002/asi.4630270505
Rushforth A, 2015, MINERVA, V53, P117, DOI 10.1007/s11024-015-9274-5
SEGLEN PO, 1994, J AM SOC INFORM SCI, V45, P1, DOI 10.1002/(SICI)1097-4571(199401)45:1<1::AID-ASI1>3.0.CO;2-Y
Smaldino PE, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160384
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Traag VA, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0233-x
Traag V.A., 2020, REPLICATION SOURCE C
Traag V.A., 2020, REPLICATION DATA INF
Waltman Ludo, 2020, F1000Res, V9, P366, DOI 10.12688/f1000research.23418.1
Wang DS, 2013, SCIENCE, V342, P127, DOI 10.1126/science.1237825
Wouters P, 2019, NATURE, V569, P621, DOI 10.1038/d41586-019-01643-3
Zitt M, 2005, SCIENTOMETRICS, V63, P373, DOI 10.1007/s11192-005-0218-y
NR 36
TC 16
Z9 16
U1 4
U2 22
PU MIT PRESS
PI CAMBRIDGE
PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA
EI 2641-3337
J9 QUANT SCI STUD
JI Quant. Sci. Stud.
PD JUL 15
PY 2021
VL 2
IS 2
BP 496
EP 504
DI 10.1162/qss_a_00128
PG 9
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA YX2LG
UT WOS:000753939000005
OA Green Published, gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Aljohani, NR
Fayoumi, A
Saeed-Ul Hassan
AF Aljohani, Naif Radi
Fayoumi, Ayman
Saeed-Ul Hassan
TI Bot prediction on social networks of Twitter in altmetrics using deep
graph convolutional networks
SO SOFT COMPUTING
LA English
DT Article
DE Social media; Twitter; Information spread; Smart cities; Bots;
Prediction; Altmetrics; Deep learning
ID CITIES; MEDIA; ALGORITHM; INNOVATION; QUALITY; TWEETS
AB In the context of smart cities, it is crucial to filter out falsified information spread on social media channels through paid campaigns or bot-user accounts that significantly influence communication networks across the social communities and may affect smart decision-making by the citizens. In this paper, we focus on two major aspects of the Twitter social network associated with altmetrics: (a) to analyze the properties of bots on Twitter networks and (b) to distinguish between bots and human accounts. Firstly, we employed state-of-the-art social network analysis techniques that exploit Twitter's social network properties in novel altmetrics data. We found that 87% of tweets are affected by bots that are involved in the network's dominant communities. We also found that, to some extent, community size and the degree of distribution in Twitter's altmetrics network follow a power-law distribution. Furthermore, we applied a deep learning model, graph convolutional networks, to distinguish between organic (human) and bot Twitter accounts. The deployed model achieved the promising results, providing up to 71% classification accuracy over 200 epochs. Overall, the study concludes that bot presence in altmetrics-associated social media platforms can artificially inflate the number of social usage counts. As a result, special attention is required to eliminate such discrepancies when using altmetrics data for smart decision-making, such as research assessment either independently or complementary along with traditional bibliometric indices.
C1 [Aljohani, Naif Radi; Fayoumi, Ayman] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia.
[Saeed-Ul Hassan] Informat Technol Univ, Dept Comp Sci, 346-B,Ferozepur Rd, Lahore, Pakistan.
C3 King Abdulaziz University
RP Saeed-Ul Hassan (corresponding author), Informat Technol Univ, Dept Comp Sci, 346-B,Ferozepur Rd, Lahore, Pakistan.
EM nraljohani@kau.edu.sa; afayoumi@kau.edu.sa; saeed-ul-hassan@itu.edu.pk
RI Fayoumi, Ayman/E-7236-2014; Aljohani, Naif R/S-1109-2017; Hassan,
Saeed-Ul/G-1889-2016
OI Fayoumi, Ayman/0000-0002-4160-3305; Hassan, Saeed-Ul/0000-0002-6509-9190
CR Abokhodair N, 2015, PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW'15), P839, DOI 10.1145/2675133.2675208
Adamic LA, 2000, SCIENCE, V287, DOI 10.1126/science.287.5461.2115a
Al-Janabi Samaher, 2020, International Journal of Computers and Applications, V42, P244, DOI 10.1080/1206212X.2018.1512460
Al-Janabi S, 2020, SOFT COMPUT, V24, P555, DOI 10.1007/s00500-019-03972-x
Al-Janabi S, 2014, 2014 INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK)
Al-Zoubi AM, 2018, KNOWL-BASED SYST, V153, P91, DOI 10.1016/j.knosys.2018.04.025
Alarifi A, 2016, INFORM SCIENCES, V372, P332, DOI 10.1016/j.ins.2016.08.036
ALJANABI S, 2019, INT J GRID UTIL COMP, V10, P512
ALJANABI S, 2019, INT C BIG DAT NETW T, P231, DOI DOI 10.1007/978-3-030-23672-4_18
AlJanabi S., 2020, INT C BIG DAT NETW T, P84, DOI [DOI 10.1007/978-3-030-23672-4_8, 10.1007/978-3-030-23672-4_8]
Alkhammash EH, 2019, IEEE ACCESS, V7, P116267, DOI 10.1109/ACCESS.2019.2935186
Alperin JP, 2017, ALTMETRICS17 WORKSH
Alsinet T, 2019, SOFT COMPUT, V23, P2147, DOI 10.1007/s00500-018-3380-x
Alvisi L, 2013, P IEEE S SECUR PRIV, P382, DOI 10.1109/SP.2013.33
Ananiadou Sophia, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P318, DOI 10.1007/978-3-642-37256-8_27
[Anonymous], 2019, SUSTAINABILITY BASEL, DOI DOI 10.3390/SU11185067
[Anonymous], 2018, SUSTAINABILITY BASEL, DOI DOI 10.3390/su10092974
[Anonymous], 2020, Lecture Notes in Networks and Systems, DOI DOI 10.1007/978-3-030-23672-4_10
[Anonymous], 2010, P AM SOC INFORM SCI, DOI DOI 10.1002/MEET.14504701201
Arif MH, 2018, SOFT COMPUT, V22, P7281, DOI 10.1007/s00500-017-2729-x
Batista-Navarro Riza Theresa, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P559, DOI 10.1007/978-3-642-37247-6_45
Bessi A, 2016, 1 MONDAY, V21, P11
Cai CY, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), P128, DOI 10.1109/ISI.2017.8004887
Chu Z, 2010, 26TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2010), P21
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
Didegah F, 2018, J INFORMETR, V12, P960, DOI 10.1016/j.joi.2018.08.002
Edwards C, 2014, COMPUT HUM BEHAV, V33, P372, DOI 10.1016/j.chb.2013.08.013
Elovici Y, 2014, SCI ENG ETHICS, V20, P1027, DOI 10.1007/s11948-013-9473-0
Ersahin B, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), P388, DOI 10.1109/UBMK.2017.8093420
Ferrara E, 2016, COMMUN ACM, V59, P96, DOI 10.1145/2818717
Gilani Zafar, 2017, 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P489, DOI 10.1145/3110025.3110091
Gilani Z, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P37, DOI 10.1145/2872518.2889360
Gong VX, 2018, IEEE ACCESS, V6, P36325, DOI 10.1109/ACCESS.2018.2845339
Haustein S, 2019, SPRINGER HBK, P729, DOI 10.1007/978-3-030-02511-3_28
Haustein S, 2016, J ASSOC INF SCI TECH, V67, P232, DOI 10.1002/asi.23456
Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101
Holmberg K, 2018, SCIENTOMETRICS, V116, P435, DOI 10.1007/s11192-018-2710-1
Ismagilova E, 2019, INT J INFORM MANAGE, V47, P88, DOI 10.1016/j.ijinfomgt.2019.01.004
Ismail HM, 2018, SOFT COMPUT, V22, P6011, DOI 10.1007/s00500-017-2994-8
Jahangir M, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P722, DOI 10.1109/IntelliSys.2017.8324209
Jia JY, 2017, I C DEPEND SYS NETWO, P273, DOI 10.1109/DSN.2017.55
Kaghed NH, 2006, IEEE 2006 2 INT C IN, P430, DOI DOI 10.1109/ICTTA.2006.1684408
Kalajdzic K, 2015, COMPUT STAND INTER, V37, P53, DOI 10.1016/j.csi.2014.05.005
Kantepe M, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), P630, DOI 10.1109/UBMK.2017.8093483
Kipf Thomas N, 2017, P 5 INT C LEARN REPR
Liu LG, 2013, SOFT POWER THEORY DEVELOPMENT, PRACTISE AND INNOVATION, P448
Lytras MD, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10061998
Lytras MD, 2017, INT REV RES OPEN DIS, V18, pI
Lytras MD, 2017, INT J SEMANT WEB INF, V13, P1, DOI 10.4018/IJSWIS.2017010101
Lytras MD, 2015, J UNIVERS COMPUT SCI, V21, P1379
Mehrotra A, 2016, PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), P499, DOI 10.1109/IC3I.2016.7918016
Nawaz R, 2012, LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3505
Priem J., 2010, ALTMETRICS MANIFESTO
SAEEDULHASSAN, 2019, SCIENTOMETRICS, V119, P481, DOI DOI 10.1007/S11192-019-03044-9
SAEEDULHASSAN, 2017, SCIENTOMETRICS, V113, P1037, DOI DOI 10.1007/S11192-017-2512-X
Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y
Said A, 2019, SCIENTOMETRICS, V120, P217, DOI 10.1007/s11192-019-03112-0
Said A, 2018, APPL SOFT COMPUT, V63, P59, DOI 10.1016/j.asoc.2017.11.014
Shardlow M, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0639-1
Shuai X, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047523
Stein Tao., 2011, Proceedings of the 4th Workshop on Social Network Systems, page, P8
Subrahmanian VS, 2016, COMPUTER, V49, P38, DOI 10.1109/MC.2016.183
Sugimoto CR, 2017, J ASSOC INF SCI TECH, V68, P2037, DOI 10.1002/asi.23833
Thompson P, 2017, LANG RESOUR EVAL, V51, P409, DOI 10.1007/s10579-016-9344-9
Toor HI, 2018, 2018 IEEE CONFERENCE ON SYSTEMS, PROCESS AND CONTROL (ICSPC), P17, DOI 10.1109/SPC.2018.8703981
Varol O, 2017, 11 INT AAAI C WEB SO
Visvizi A, 2020, COMPUT HUM BEHAV, V107, DOI 10.1016/j.chb.2019.03.022
Visvizi A, 2018, J SCI TECHNOL POLICY, V9, P134, DOI 10.1108/JSTPM-02-2018-0020
Visvizi A, 2018, J SCI TECHNOL POLICY, V9, P126, DOI 10.1108/JSTPM-07-2018-079
Visvizi A, 2017, J SCI TECHNOL POLICY, V8, P227, DOI 10.1108/JSTPM-05-2017-0020
Yang B, 2011, ISTM/2011: 9TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, P318
Yang KC, 2019, HUM BEHAV EMERG TECH, V1, P48, DOI 10.1002/hbe2.115
Zahedi Z, 2018, J INFORMETR, V12, P191, DOI 10.1016/j.joi.2017.12.005
Zhang JX, 2016, IEEE ACM T NETWORK, V24, P2866, DOI 10.1109/TNET.2015.2494059
Zhao S, 2012, INT CONF SOFTW ENG, P15
Zhuhadar L, 2017, COMPUT HUM BEHAV, V66, P273, DOI 10.1016/j.chb.2016.09.030
NR 76
TC 11
Z9 12
U1 4
U2 39
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1432-7643
EI 1433-7479
J9 SOFT COMPUT
JI Soft Comput.
PD AUG
PY 2020
VL 24
IS 15
SI SI
BP 11109
EP 11120
DI 10.1007/s00500-020-04689-y
PG 12
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA MI8VP
UT WOS:000547678300009
DA 2024-09-05
ER
PT J
AU Sun, C
Li, XJ
AF Sun, Chan
Li, Xiaojuan
TI Research on the Relationship between Human Resource Management
Activities and Enterprise Performance Based on the Supervised Learning
Model
SO DISCRETE DYNAMICS IN NATURE AND SOCIETY
LA English
DT Article
ID PERSPECTIVE
AB HRMS is a very critical tool for companies. The recruitment text contains rich information that can provide strong information support for the company's recruitment work and also improve the efficiency of job seekers in finding job opportunities. To this end, for the problem of multilabel text classification of recruitment information, this paper provides two algorithms for multilayer classification based on supported SVM. First, the same learning subclass method is used for text sorting subclass acquisition, and then, the class of the text is determined. Second, the hemispherical support SVM is used to find the smallest hypersphere in the feature space that contains the most text of that class and segment the text of that class from other texts. For the text to be classified, the distance from it to the center of each hypersphere is used to determine the class of the text. Experimental results on recruitment data demonstrate that the algorithm in this paper has a high check-all rate, check-accuracy rate, and F1. And, the relationship between HRM activities and corporate performance is discussed.
C1 [Sun, Chan] Hunan Int Econ Univ, Sch Business, Changsha 410000, Hunan, Peoples R China.
[Li, Xiaojuan] Hunan Univ Finance & Econ, Sch Business Adm, Changsha 410205, Hunan, Peoples R China.
C3 Hunan University of Finance & Economics
RP Li, XJ (corresponding author), Hunan Univ Finance & Econ, Sch Business Adm, Changsha 410205, Hunan, Peoples R China.
EM lixiaojuan@hufe.edu.cn
FU National Social Science Fund Project: Research on Inter-organizational
Knowledge Sharing Behavior and Its Dynamic Incentive Mechanism in
Differentiation Context [20BGL126]
FX This work was supported by National Social Science Fund Project:
Research on Inter-organizational Knowledge Sharing Behavior and Its
Dynamic Incentive Mechanism in Differentiation Context, under Grant no.
20BGL126.
CR Ali B.J., 2021, J HUMANITIES ED DEV, V3, P16, DOI [10.22161/jhed.3.3.4, DOI 10.22161/JHED.3.3.4, DOI 10.22161/JHED.3.3]
Ali B.J., 2021, International Journal of Engineering, Business and Management, V5, P31, DOI [10.22161/ijebm.5.2.4, DOI 10.22161/IJEBM.5.2.4]
Ali BJ, 2021, Marketing Strategy: Pricing strategies and its influence on consumer purchasing decision. International journal of Rural Development, Environment and Health Research, V5, P26, DOI DOI 10.22161/IJREH.5.2.4
Alvis Armando, 2008, Inf. tecnol., V19, P19, DOI [10.4067/S0718-07642008000100004, 10.4067/S0718-07642008000500004]
Bajo J, 2012, EXPERT SYST APPL, V39, P6921, DOI 10.1016/j.eswa.2012.01.001
Bliss L. R., 2011, INT J HLTH WELLNESS, V1, P129
Brito R., 2005, ENTIFIC MANAGEMENT R, V13, P90
Elshaer IA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041956
Fayolle A, 2014, INT ENTREP MANAG J, V10, P679, DOI 10.1007/s11365-014-0306-7
Hon AHY, 2012, CORNELL HOSP Q, V53, P53, DOI 10.1177/1938965511424725
Jamal AliB., 2021, INT J ENGLISH LIT SO, V6, P361, DOI DOI 10.22161/IJELS.62.52
Jiang YH, 2021, J BUS ECON MANAG, V22, P1288, DOI 10.3846/jbem.2021.14950
Kumar R, 2001, MANAGE LEARN, V32, P363, DOI 10.1177/1350507601323005
Liang X, 2009, MANAGE INT REV, V49, P269, DOI 10.1007/s11575-009-0143-z
Martínez-Ferrero J, 2016, J BUS ETHICS, V133, P305, DOI 10.1007/s10551-014-2399-x
Matimbwa H., 2019, J HUMAN RESOURCE MAN, V7, P131, DOI [10.11648/j.jhrm.20190704.17, DOI 10.11648/J.JHRM.20190704.17]
Ping L, 2021, MICROPROCESS MICROSY, V80, DOI 10.1016/j.micpro.2020.103330
Rai A, 2019, ENVIRON MODELL SOFTW, V118, P252, DOI 10.1016/j.envsoft.2019.03.016
Recupero DR, 2015, COGN COMPUT, V7, P211, DOI 10.1007/s12559-014-9302-z
Rynes S, 2007, ACAD MANAGE J, V50, P985, DOI 10.5465/AMJ.2007.27151929
Sarkar S, 2015, ADV INTELL SYST, V339, P705, DOI 10.1007/978-81-322-2250-7_71
Tahiri Alberta, 2021, INT J EC BUSINESS AD, VIX, P292, DOI 10.35808/ijeba/673
Trauth JM, 2011, PUBLIC HEALTH REP, V126, P294, DOI 10.1177/003335491112600223
Ubeda-García M, 2021, J BUS RES, V123, P57, DOI 10.1016/j.jbusres.2020.09.055
Vidal JC, 2011, APPL SOFT COMPUT, V11, P1600, DOI 10.1016/j.asoc.2010.04.020
Walmsley B, 2013, ARTS HUM HIGH EDUC, V12, P222, DOI 10.1177/1474022212473944
Wang L, 2018, 2018 NINTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), P160, DOI 10.1109/ICICIP.2018.8606711
Wilson DC, 2012, WASTE MANAGE RES, V30, P237, DOI 10.1177/0734242X12437569
Wu D, 2021, TRAIT SIGNAL, V38, P775, DOI 10.18280/ts.380324
Xia R, 2015, IEEE T KNOWL DATA EN, V27, P2120, DOI 10.1109/TKDE.2015.2407371
Xie T, 2019, IEEE ACCESS, V7, P11338, DOI 10.1109/ACCESS.2018.2889717
Xue FR, 2021, ADV MATER SCI ENG, V2021, DOI 10.1155/2021/5360443
Zafra A, 2010, INFORM SCIENCES, V180, P4496, DOI 10.1016/j.ins.2010.07.031
Zhang CJ, 2019, IET NETW, V8, P107, DOI 10.1049/iet-net.2018.5072
Zhang LJ, 2004, FOREST SCI, V50, P117
Zhu Q. J., 2014, APPL MECH MAT, V687, P4560
NR 36
TC 1
Z9 1
U1 5
U2 15
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1026-0226
EI 1607-887X
J9 DISCRETE DYN NAT SOC
JI Discrete Dyn. Nat. Soc.
PD NOV 28
PY 2021
VL 2021
AR 4094704
DI 10.1155/2021/4094704
PG 7
WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematics; Science & Technology - Other Topics
GA 2T8VP
UT WOS:000822746100001
OA gold
DA 2024-09-05
ER
PT S
AU Devyatkin, D
Suvorov, R
Tikhomirov, I
Grigoriev, O
AF Devyatkin, D.
Suvorov, R.
Tikhomirov, I.
Grigoriev, O.
BE Sgurev, V
Jotsov, V
Kacprzyk, J
TI Scientific Research Funding Criteria: An Empirical Study of Peer Review
and Scientometrics
SO PRACTICAL ISSUES OF INTELLIGENT INNOVATIONS
SE Studies in Systems Decision and Control
LA English
DT Article; Book Chapter
DE Decision making; Decision analysis; Research funding; R&D support; Peer
review; Feature selection; Criteria importance; Machine learning; Random
forest; ReliefF; Gini importance; Linear SVM
ID INDICATORS
AB In this paper we investigated the problem of scientific research funding from the perspective of data-mining. The object was to conduct versatile retrospective analysis of decisions made by the Russian Foundation for Basic Research regarding scientific research funding. The central task of the analysis was to compare the impact of various items of information on final decision making. In other words, we tried to answer two questions: (a) what does an evaluation committee mainly look at when it selects projects for funding; (b) are scientometric indicators (or science metrics) useful in decision analysis? To achieve this, we built predictive models (classifiers), performed introspection (extracted feature importance) and compared them. The input data was a set of review forms (questionnaires) from the Russian Foundation for Basic Research completed in by peer reviewers. Final decision is made by the foundation board (an evaluation committee). Finally, we concluded that the available input (project proposals, expert assessments and scientometric data) was not enough to explain all the decisions. We showed that scientometric data does not have any significant influence on project proposals assessment. It also means that h-index, mean impact factor, publication and citation number cannot supersede the peer review procedure.
C1 [Devyatkin, D.; Suvorov, R.; Tikhomirov, I.; Grigoriev, O.] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow, Russia.
C3 Federal Research Center "Computer Science & Control" of RAS; Russian
Academy of Sciences
RP Devyatkin, D (corresponding author), Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow, Russia.
EM devyatkin@isa.ru; rsuvorov@isa.ru; tih@isa.ru; oleggpolikvart@yandex.ru
RI Grigoriev, Oleg/AAO-5552-2021; Tikhomirov, Ilya A/I-3771-2016;
Devyatkin, Dmitry/R-1809-2019
OI Devyatkin, Dmitry/0000-0002-0811-725X; Grigoriev,
Oleg/0000-0001-9660-2396
CR ATANASSOV KT, 1986, FUZZY SET SYST, V20, P87, DOI 10.1016/S0165-0114(86)80034-3
Benner M, 2000, RES POLICY, V29, P291, DOI 10.1016/S0048-7333(99)00067-0
Bergstra J, 2012, J MACH LEARN RES, V13, P281
Bornmann L, 2011, J INFORMETR, V5, P346, DOI 10.1016/j.joi.2011.01.006
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Breiman L, 1996, MACH LEARN, V24, P41, DOI 10.1023/A:1018094028462
Colledge L., BASKET METRICSTHE BE
Geuna A, 2003, MINERVA, V41, P277, DOI 10.1023/B:MINE.0000005155.70870.bd
Green J.T., 2013, The Academic Executive Brief, V3, P12
Hiroaki Y, 2012, IPSJ SIG TECHNICAL R, V89, P1
Joussleme A.-L., 2001, Information Fusion, V2, P91, DOI 10.1016/S1566-2535(01)00026-4
Juznic P, 2010, SCIENTOMETRICS, V85, P429, DOI 10.1007/s11192-010-0230-8
KIRA K, 1992, AAAI-92 PROCEEDINGS : TENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, P129
Kononenko I, 1997, APPL INTELL, V7, P39, DOI 10.1023/A:1008280620621
Larichev O., 1979, MOSCOW SCI, V200
Laudel G., 2006, Science and Public Policy, V33, P489, DOI DOI 10.3152/147154306781778777
Lee CJ, 2013, J AM SOC INF SCI TEC, V64, P2, DOI 10.1002/asi.22784
Mladenic D., 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P234, DOI 10.1145/1008992.1009034
Olson K, 2010, FIELD METHOD, V22, P295, DOI 10.1177/1525822X10379795
Olson R., 2016, RELIEFF 1 RELEASE, DOI [10.5281/zenodo.47803, DOI 10.5281/ZEN0D0.47803]
Osipov G, 2016, STUD COMPUT INTELL, V586, P269, DOI 10.1007/978-3-319-14194-7_14
Öztaysi B, 2015, ADV ENV ENG GREEN TE, P191, DOI 10.4018/978-1-4666-6631-3.ch008
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Petrovsky A., 2012, INFORM MODELS ANAL, P349
Pislyakov V, 2010, SCIENTOMETRICS, V83, P739, DOI 10.1007/s11192-009-0144-5
Saeys Y, 2008, LECT NOTES ARTIF INT, V5212, P313, DOI 10.1007/978-3-540-87481-2_21
Schilling C., 2016, MED DECIS MAK
Strobl C, 2007, BMC BIOINFORMATICS, V8, DOI 10.1186/1471-2105-8-25
Van Raan AFJ, 2006, SCIENTOMETRICS, V67, P491, DOI 10.1556/Scient.67.2006.3.10
Webber W, 2010, ACM T INFORM SYST, V28, DOI 10.1145/1852102.1852106
Weingart P, 2005, SCIENTOMETRICS, V62, P117, DOI 10.1007/s11192-005-0007-7
Wessely S, 1998, LANCET, V352, P301, DOI 10.1016/S0140-6736(97)11129-1
Zhu JJ, 2015, INFORM FUSION, V24, P93, DOI 10.1016/j.inffus.2014.09.006
NR 33
TC 1
Z9 1
U1 0
U2 13
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2198-4182
EI 2198-4190
BN 978-3-319-78437-3; 978-3-319-78436-6
J9 STUD SYST DECIS CONT
PY 2018
VL 140
BP 277
EP 292
DI 10.1007/978-3-319-78437-3_12
D2 10.1007/978-3-319-78437-3
PG 16
WC Automation & Control Systems; Computer Science, Artificial Intelligence;
Engineering, Electrical & Electronic
WE Book Citation Index – Science (BKCI-S)
SC Automation & Control Systems; Computer Science; Engineering
GA BM6GS
UT WOS:000466552900013
DA 2024-09-05
ER
PT J
AU Poggi, F
Ciancarini, P
Gangemi, A
Nuzzolese, AG
Peroni, S
Presutti, V
AF Poggi, Francesco
Ciancarini, Paolo
Gangemi, Aldo
Nuzzolese, Andrea Giovanni
Peroni, Silvio
Presutti, Valentina
TI Predicting the results of evaluation procedures of academics
SO PEERJ COMPUTER SCIENCE
LA English
DT Article
DE Predictive Models; Scientometrics; Research Evaluation; Data Processing;
ASN; Machine Learning; National Scientific Habilitation; Academic
assessment; Science of Science; Informetrics
ID BIBLIOMETRIC INDICATORS; CITATION COUNTS; H-INDEX; PUBLICATIONS;
INFORMATION; APPLICANTS; EXCELLENCE; DECISIONS; QUALITY; WORK
AB Background. The 2010 reform of the Italian university system introduced the National Scientific Habilitation (ASN) as a requirement for applying to permanent professor positions. Since the CVs of the 59,149 candidates and the results of their assessments have been made publicly available, the ASN constitutes an opportunity to perform analyses about a nation-wide evaluation process.
Objective. The main goals of this paper are: (i) predicting the ASN results using the information contained in the candidates' CVs; (ii) identifying a small set of quantitative indicators that can be used to perform accurate predictions.
Approach. Semantic technologies are used to extract, systematize and enrich the information contained in the applicants' CVs, and machine learning methods are used to predict the ASN results and to identify a subset of relevant predictors.
Results. For predicting the success in the role of associate professor, our best models using all and the top 15 predictors make accurate predictions (F-measure values higher than 0.6) in 88% and 88.6% of the cases, respectively. Similar results have been achieved for the role of full professor.
Evaluation. The proposed approach outperforms the other models developed to predict the results of researchers' evaluation procedures.
Conclusions. Such results allow the development of an automated system for supporting both candidates and committees in the future ASN sessions and other scholars' evaluation procedures.
C1 [Poggi, Francesco; Ciancarini, Paolo] Univ Bologna, Dept Comp Sci & Engn DISI, Bologna, Italy.
[Ciancarini, Paolo] Innopolis Univ, Inst Data Sci & Artificial Intelligence, Innopolis, Russia.
[Gangemi, Aldo; Peroni, Silvio] Univ Bologna, Dept Class Philol & Italian Studies, Bologna, Italy.
[Nuzzolese, Andrea Giovanni; Presutti, Valentina] CNR, Inst Cognit Sci & Technol, STLab, Rome, Italy.
C3 University of Bologna; Innopolis University; University of Bologna;
Consiglio Nazionale delle Ricerche (CNR); Istituto di Scienze e
Tecnologie della Cognizione (ISTC-CNR)
RP Poggi, F (corresponding author), Univ Bologna, Dept Comp Sci & Engn DISI, Bologna, Italy.
EM fpoggi@cs.unibo.it
RI Poggi, Francesco/AGK-3974-2022; Nuzzolese, Andrea
Giovanni/AAC-8369-2020; Gangemi, Aldo/C-7420-2013; Nuzzolese, Andrea
Giovanni/S-2298-2016; Ciancarini, Paolo/ABA-8413-2020
OI Poggi, Francesco/0000-0001-6577-5606; Gangemi, Aldo/0000-0001-5568-2684;
Ciancarini, Paolo/0000-0002-7958-9924
FU Italian National Agency for the Assessment of Universities and Research
(ANVUR); CINI (ENAV project); CNR-ISTC
FX This research has been supported by the Italian National Agency for the
Assessment of Universities and Research (ANVUR) within the Uniform
Representation of Curricular Attributes (URCA) project (see articolo 4
of the `Concorso Pubblico di Idee di Ricerca' bando ANVUR, 12 February
2015). Paolo Ciancarini was also supported by CINI (ENAV project) and by
CNR-ISTC. There was no additional external funding received for this
study. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
CR Abramo G, 2009, RES POLICY, V38, P206, DOI 10.1016/j.respol.2008.11.001
AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1007/BF00153759
Aittola H., 2009, Higher Education in Europe, V34, P303, DOI DOI 10.1080/03797720903355521
Aksnes DW, 2003, SCIENTOMETRICS, V56, P235, DOI 10.1023/A:1021919228368
[Anonymous], 2015, supplementary report ii to the independent review of the role of metrics in research assessment and management), DOI [DOI 10.13140/RG.2.1.3362.4162, 10.13140/RG.2.1.3362.4162]
Bornmann L, 2007, J INFORMETR, V1, P204, DOI 10.1016/j.joi.2007.01.002
Bornmann L, 2006, SCIENTOMETRICS, V68, P427, DOI 10.1007/s11192-006-0121-1
Bornmann L, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197133
Bornmann L, 2013, J AM SOC INF SCI TEC, V64, P587, DOI 10.1002/asi.22792
Bornmann L, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003480
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Cronin B, 2006, J AM SOC INF SCI TEC, V57, P1275, DOI 10.1002/asi.20354
Danell R, 2011, J AM SOC INF SCI TEC, V62, P50, DOI 10.1002/asi.21454
Franceschet M, 2011, J INFORMETR, V5, P275, DOI 10.1016/j.joi.2010.12.002
Franceschet M, 2009, J AM SOC INF SCI TEC, V60, P1950, DOI 10.1002/asi.21152
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Hall MA, 2003, IEEE T KNOWL DATA EN, V15, P1437, DOI 10.1109/TKDE.2003.1245283
He HB, 2009, IEEE T KNOWL DATA EN, V21, P1263, DOI 10.1109/TKDE.2008.239
Ibáñez A, 2016, J ASSOC INF SCI TECH, V67, P1703, DOI 10.1002/asi.23467
Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3
John G. H., 1995, Uncertainty in Artificial Intelligence. Proceedings of the Eleventh Conference (1995), P338
Keerthi SS, 2001, NEURAL COMPUT, V13, P637, DOI 10.1162/089976601300014493
Leydesdorff L, 2009, J AM SOC INF SCI TEC, V60, P1327, DOI 10.1002/asi.21024
Lindahl J, 2018, J INFORMETR, V12, P518, DOI 10.1016/j.joi.2018.04.002
Marzolla M, 2015, J INFORMETR, V9, P285, DOI 10.1016/j.joi.2015.02.006
NEDERHOF AJ, 1987, SCIENTOMETRICS, V11, P333, DOI 10.1007/BF02279353
Norris M, 2003, J DOC, V59, P709, DOI 10.1108/00220410310698734
Nuzzolese AG, 2019, SCIENTOMETRICS, V118, P539, DOI 10.1007/s11192-018-2988-z
Peroni S, 2019, ARXIV190306142
Peroni S, 2019, C P
Poggi F, 2016, 4 INT WORKSH LINK DA, P44
Poggi F, 2018, PREDICTING RESULTS E, DOI [10.6084/m9.figshare.6814550, DOI 10.6084/M9.FIGSHARE.6814550]
Poggi F, 2018, PREDICTING RESULTS E, DOI [10.6084/m9.figshare.6814502, DOI 10.6084/M9.FIGSHARE.6814502]
Quinlan J. R., 1993, C4 5 PROGRAMS MACHIN
Taylor J, 2011, BRIT J MANAGE, V22, P202, DOI 10.1111/j.1467-8551.2010.00722.x
Tregellas JR, 2018, PEERJ, V6, DOI 10.7717/peerj.5707
Van Raan AFJ, 2006, SCIENTOMETRICS, V67, P491, DOI 10.1556/Scient.67.2006.3.10
Vieira ES, 2014, J ASSOC INF SCI TECH, V65, P560, DOI 10.1002/asi.22981
Vieira ES, 2014, J INFORMETR, V8, P390, DOI 10.1016/j.joi.2014.01.012
W3C OWL Working Group, 2012, OWL 2 WEB ONT LANG
NR 40
TC 7
Z9 7
U1 0
U2 9
PU PEERJ INC
PI LONDON
PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND
EI 2376-5992
J9 PEERJ COMPUT SCI
JI PeerJ Comput. Sci.
PD JUN 21
PY 2019
AR e199
DI 10.7717/peerj-cs.199
PG 28
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA OH0RK
UT WOS:000582279900001
PM 33816852
OA Green Submitted, Green Published, gold
DA 2024-09-05
ER
PT J
AU Wilson, AJ
Ekti, AR
Follum, J
Biswas, S
Annalicia, C
Joo, JY
Aziz, O
Lian, JM
AF Wilson, Aaron J.
Ekti, Ali Riza
Follum, Jim
Biswas, Shuchismita
Annalicia, Christabella
Joo, Jhi-Young
Aziz, Omer
Lian, Jamie
TI The Grid Event Signature Library: An Open-Access Repository of Power
System Measurement Signatures
SO IEEE ACCESS
LA English
DT Article
DE Phasor measurement units; Taxonomy; Current measurement; Voltage
measurement; Labeling; Frequency measurement; Streams; Climate change;
Artificial intelligence; Data models; Power systems; Power grids;
data-driven applications; power systems; signatures
AB The power grid is undergoing massive changes, driven by the need to improve both reliability and resiliency, as well as meeting goals intended to combat climate change. Many solutions to such problems will require vast amounts of data. Almost all measurement, control - and in the future, artificial intelligence (AI) - systems utilize sensing mechanisms designed to capture, transmit, or even act on voltage and/or current measurement parsing and characterization. In this paper, a free, open-access online repository of such grid signatures is presented with the intent of encouraging open sharing of power grid data for the development of artificial intelligence and data-driven applications to meet the goals of tomorrow's grid. Known as the Grid Event Signature Library, or GESL, this Department of Energy-funded endeavour has seen a growth of over 200 users worldwide since its inception.
C1 [Wilson, Aaron J.; Ekti, Ali Riza; Aziz, Omer; Lian, Jamie] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
[Follum, Jim; Biswas, Shuchismita] Pacific Northwest Natl Lab, Richland, WA 99354 USA.
[Annalicia, Christabella; Joo, Jhi-Young] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
C3 United States Department of Energy (DOE); Oak Ridge National Laboratory;
United States Department of Energy (DOE); Pacific Northwest National
Laboratory; United States Department of Energy (DOE); Lawrence Livermore
National Laboratory
RP Wilson, AJ (corresponding author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
EM wilsonaj@ornl.gov
OI Biswas, Shuchismita/0000-0003-2090-6830
FU U.S. Department of Energy (DOE), Office of Electricity, through
UT-Battelle, LLC
FX No Statement Available
CR Alaca Ozgur, 2023, 2023 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), P247, DOI 10.1109/BlackSeaCom58138.2023.10299692
Alaca O, 2023, IEEE T SMART GRID, V14, P4980, DOI 10.1109/TSG.2023.3309532
[Anonymous], 2013, The IIA's Global Internal Audit Competency Framework, P1
Banning J., 2021, Tech. Rep. PNNL-32303
Biswas J., 2023, IEEE Access, V11
Biswas S., 2022, Tech. Rep. PNNL-33548
Biswas S, 2022, IEEE T POWER DELIVER, V37, P3302, DOI 10.1109/TPWRD.2021.3126843
Brunner C, 2008, TRANS DISTRIB CONF, P1342
Ehsani N, 2023, NORTH AMER POW SYMP, DOI 10.1109/NAPS58826.2023.10318763
Ekti AR, 2022, ENERGIES, V15, DOI 10.3390/en15228367
Follum S., 2024, P 57 HAW INT C SYST
Folsom M., 2016, Magnetotelluric Data Collected in 2016 Overthe San Emidio Geothermal Field in Nevada
IEEE recommended practice for monitoring electric power quality, 2019, IEEE Std 1619-2018, P1, DOI [DOI 10.1109/IEEESTD.2019.8796486, DOI 10.1109/IEEESTD.2019.8637988]
Kiritchenko S., 2005, P ACL WORKSHOPLINKIN
McEachern A., 2022, P IEEE POW ENERGYSOC, P1
Mooney M., 2016, PV Rooftop Database
Neon Neue Energieokonomik Technical University of Berlin DIW Berlinand ETH Zurich, 2020, Open Power System Data: A Free and Open DataPlatform for Power System Modeling
North Amer. Electric Rel. Corp. (NERC), 2023, Inverter-based ResourcePerformance Issues Report: Findings From the Level 2 Alert
North Amer. Electric Rel. Corp. (NERC), 2021, Recommended OscillationAnalysis for Monitoring and Mitigation
Oak Ridge National Laboratory Lawrence Livermore National LaboratoryPacific Northwest National Laboratory, 2022, Grid Event SignatureLibrary
Open Energy Platform, ABOUT US
Silla CN, 2011, DATA MIN KNOWL DISC, V22, P31, DOI 10.1007/s10618-010-0175-9
Steppan J., A Few Samples From the MNIST Test Dataset
Tekbiyik K, 2019, IEEE ACCESS, V7, P138890, DOI 10.1109/ACCESS.2019.2942368
Wilson AJ, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22228827
WILSON AJ, 2022, P 2022 IEEEPES TRANS, P1
Zhang YC, 2010, IEEE T SMART GRID, V1, P159, DOI 10.1109/TSG.2010.2050345
NR 27
TC 0
Z9 0
U1 2
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2024
VL 12
BP 76207
EP 76218
DI 10.1109/ACCESS.2024.3404886
PG 12
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA SW0D8
UT WOS:001237359900001
OA gold
DA 2024-09-05
ER
PT C
AU Packer, S
Seals, C
Dozier, G
AF Packer, Sadaira
Seals, Cheryl
Dozier, Gerry
BE Moallem, A
TI Towards the Improvement of UI/UX of a Human-AI Adversarial Authorship
System
SO HCI FOR CYBERSECURITY, PRIVACY AND TRUST, HCI-CPT 2022
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 4th International Conference on HCI for Cybersecurity, Privacy and Trust
(HCI-CPT) Held as Part of the 24th International Conference on
Human-Computer Interaction (HCII)
CY JUN 26-JUL 01, 2022
CL ELECTR NETWORK
DE Human-AI collaboration; Adversarial authorship; AuthorCAAT; Usability
AB AuthorCAAT (Author Cyber Analysis & Advisement Tool) is a tool created to aid users in protecting their online privacy by assisting them in altering their writing style through Adversarial Authorship. There have been several iterations of AuthorCAAT that were all tested for efficiency, but not for usability. In this work, we conduct a preliminary study on AuthorCAAT-V to determine any features that need improvement to inform our iterative design decisions for an Adversarial Authorship framework JohariMAA. We plan to develop JohariMAA to adapt to the evolving authorship attribution field and be accessible to a broad audience. Our usability assessment of AuthorCAAT reveals issues involving task complexity, usability, user experience, and user interface efficiency. We discuss potential design decisions for JohariMAA planned to alleviate these issues.
C1 [Packer, Sadaira; Seals, Cheryl; Dozier, Gerry] Auburn Univ, Auburn, AL 36849 USA.
C3 Auburn University System; Auburn University
RP Packer, S (corresponding author), Auburn Univ, Auburn, AL 36849 USA.
EM smp0043@auburn.edu; sealscd@auburn.edu; doziegv@auburn.edu
CR Allred J., 2020, IEEE SOUTHEASTCON, P1
[Anonymous], 2016, CLEF WORKING NOTES
[Anonymous], 2003, Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4, CONLL'03
Back T., 1997, IEEE Transactions on Evolutionary Computation, V1, P3, DOI 10.1109/4235.585888
Boyd Ryan L, 2015, Tech. Rep.
Brennan M, 2012, ACM T INFORM SYST SE, V15, DOI 10.1145/2382448.2382450
Brooke J., 1996, USABILITY EVALUATION, P189, DOI DOI 10.1201/9781498710411-35
Castro-Castro D., 2017, CLEF WORKING NOTES
Davis L, 1991, HDB GENETIC ALGORITH
Day S., 2016, MODERN ARTIFICIAL IN, V1584, P41
Day S, 2016, IEEE IC COMP COM NET
Dean B., 2021, SOCIAL NETWORK USAGE
DEJONG K, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P618
Dozier G., 2011, IEEE SSCI 2011 S SER, P152, DOI DOI 10.1109/CIBIM.2011.5949211
Dozier G., 2001, ACM S APPL COMPUTING
Faust C., 2017, 2017 IEEE S SERIES C
Gaston J, 2018, 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), P933, DOI 10.1109/SSCI.2018.8628647
Gaston J, 2018, 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), P920, DOI 10.1109/SSCI.2018.8628769
Kemp S., TIKTOK GAINS 8 NEW U
Keselj V., 2003, Proc. of the conference pacific association for computational linguistics, VVolume 3, P255
Koppel M, 2011, LANG RESOUR EVAL, V45, P83, DOI 10.1007/s10579-009-9111-2
Mack Nathan, 2015, International Journal of Machine Learning and Computing, V5, P409, DOI 10.7763/IJMLC.2015.V5.543
McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit
McDonald A.W., 2012, USE FEWER INSTANCES
Narayanan M, 2018, 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), P928, DOI 10.1109/SSCI.2018.8628806
Neal T., 2017, 2016 IEEE EUROPEAN S
Oh C, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3174223
Rahgouy M., 2018, AUTHOR MASKING DIREC
Riloff E, 2003, PROCEEDINGS OF THE 2003 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P105
Roy Q, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300750
Shrestha P., 2017, P 15 C EUROPEAN CHAP, V2, P669, DOI 10.18653/v1/e17-2106
Spears W. M., 1993, Machine Learning: ECML-93. European Conference on Machine Learning Proceedings, P442
Takagi H, 2001, P IEEE, V89, P1275, DOI 10.1109/5.949485
Tausczik YR, 2010, J LANG SOC PSYCHOL, V29, P24, DOI 10.1177/0261927X09351676
Teahan W.J., 2003, Language modeling for information retrieval, P141
Wiebe J, 2005, LANG RESOUR EVAL, V39, P165, DOI 10.1007/s10579-005-7880-9
Williams Henry C., 2014, International Journal of Machine Learning and Computing, V4, P250, DOI 10.7763/IJMLC.2014.V4.420
Wilson T., 2005, P HUM LANG TECHN C E, P347
Wilson TS, 2005, PHIL EDUC, P347, DOI 10.3115/1220575.1220619
NR 39
TC 0
Z9 0
U1 3
U2 4
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-05563-8; 978-3-031-05562-1
J9 LECT NOTES COMPUT SC
PY 2022
VL 13333
BP 194
EP 205
DI 10.1007/978-3-031-05563-8_13
PG 12
WC Computer Science, Cybernetics; Computer Science, Information Systems;
Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BU5CT
UT WOS:000911440600013
DA 2024-09-05
ER
PT C
AU Mariani, J
Francopoulo, G
Paroubek, P
AF Mariani, Joseph
Francopoulo, Gil
Paroubek, Patrick
BA Declerck, T
BF Declerck, T
BE Calzolari, N
Choukri, K
Cieri, C
Hasida, K
Isahara, H
Maegaard, B
Mariani, J
Moreno, A
Odijk, J
Piperidis, S
Tokunaga, T
Goggi, S
Mazo, H
TI Measuring Innovation in Speech and Language Processing Publications
SO PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE
RESOURCES AND EVALUATION (LREC 2018)
LA English
DT Proceedings Paper
CT 11th International Conference on Language Resources and Evaluation
(LREC)
CY MAY 07-12, 2018
CL Miyazaki, JAPAN
DE Speech Processing; Natural Language Processing; Text Analytics;
Bibliometrics; Scientometrics
AB The goal of this paper is to propose measures of innovation through the study of publications in the field of speech and language processing. It is based on the NLP4NLP corpus, which contains the articles published in major conferences and journals related to speech and language processing over 50 years (1965-2015). It represents 65,003 documents from 34 different sources, conferences and journals, published by 48,894 different authors in 558 events, for a total of more than 270 million words and 324,422 bibliographical references. The data was obtained in textual form or as an image that had to be converted into text. This resulted in a lower quality for the most ancient papers, that we measured through the computation of an unknown word ratio. The multi-word technical terms were automatically extracted after parsing, using a set of general language text corpora. The occurrences, frequencies, existences and presences of the terms were then computed overall, for each year and for each document. It resulted in a list of 3.5 million different terms and 24 million term occurrences. The evolution of the research topics over the year, as reflected by the terms presence, was then computed and we propose a measure of the topic popularity based on this computation. The author(s) who introduced the terms were searched for, together with the year when the term was first introduced and the publication where it was introduced. We then studied the global and evolutional contributions of authors to a given topic. We also studied the global and evolutional contributions of the various publications to a given topic. We finally propose a measure of innovativeness for authors and publications.
C1 [Mariani, Joseph; Paroubek, Patrick] Univ Paris Saclay, CNRS, LIMSI, Rue John von Neumann, F-91400 Orsay, France.
[Francopoulo, Gil] Tagmatica, 126 Rue Picpus, F-75012 Paris, France.
C3 Universite Paris Cite; Centre National de la Recherche Scientifique
(CNRS); Universite Paris Saclay
RP Mariani, J (corresponding author), Univ Paris Saclay, CNRS, LIMSI, Rue John von Neumann, F-91400 Orsay, France.
EM Joseph.Mariani@limsi.fr; gil.francopoulo@wanadoo.fr; pap@limsi.fr
CR Banchs R. E., 2012, P ACL 2012 SPEC WORK
Drouin Patrick, 2004, P LANG RES EV C LREC
Francopoulo G., 2013, LMF Lexical Markup Framework
Francopoulo Gil, 2016, NLP4NLP NLP SCI PAPE
Francopoulo Gil, 2015, WORKSH MIN SCI PAP C
Francopoulo Gil, 2015, 4 INT WORKSH MIN SCI
Francopoulo Gil, 2007, ICGL INT C GLOB INT
Karagoz Y., 2014, SPSS 21.1 Uygulamali Biyoistatistik
Litchfield Ben, 2005, JAVA DEV J 0324
Mariani J, 2013, INTERSPEECH, P3370
Mariani J, 2014, LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P4632
Mariani Joseph, 2015, L TC 2015
Paul M., 2009, INT C RANLP 2009, P337
NR 13
TC 0
Z9 0
U1 0
U2 0
PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA
PI PARIS
PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE
BN 979-10-95546-00-9
PY 2018
BP 1890
EP 1895
PG 6
WC Computer Science, Interdisciplinary Applications; Linguistics; Language
& Linguistics
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Linguistics
GA BS5BI
UT WOS:000725545001150
DA 2024-09-05
ER
PT J
AU Rizvi, STR
Dengel, A
Ahmed, S
AF Rizvi, Syed Tahseen Raza
Dengel, Andreas
Ahmed, Sheraz
TI A Hybrid Approach and Unified Framework for Bibliographic Reference
Extraction
SO IEEE ACCESS
LA English
DT Article
DE Layout; Feature extraction; Task analysis; Metadata; Tools; Portable
document format; Libraries; Reference extraction; layout detection;
image-based reference detection; bibliography
ID METADATA
AB Publications are an integral part of a scientific community. Bibliographic reference extraction from scientific publication is a challenging task due to diversity in referencing styles and document layout. Existing methods perform sufficiently on one dataset however, applying these solutions to a different dataset proves to be challenging. Therefore, a generic solution was anticipated which could overcome the limitations of the previous approaches. The contribution of this paper is three-fold. First, it presents a novel approach called DeepBiRD which is inspired by human visual perception and exploits layout features to identify individual references in a scientific publication. Second, we release a large dataset for image-based reference detection with 2401 scans containing 38863 references, all manually annotated for individual reference. Third, we present a unified and highly configurable end-to-end automatic bibliographic reference extraction framework called BRExSys which employs DeepBiRD along with state-of-the-art text-based models to detect and visualize references from a bibliographic document. Our proposed approach pre-processes the images in which a hybrid representation is obtained by processing the given image using different computer vision techniques. Then, it performs layout driven reference detection using Mask R-CNN on a given scientific publication. DeepBiRD was evaluated on two different datasets to demonstrate the generalization of this approach. The proposed system achieved an AP50 of 98.56% on our dataset. DeepBiRD significantly outperformed the current state-of-the-art approach on their dataset. Therefore, suggesting that DeepBiRD is significantly superior in performance, generalized, and independent of any domain or referencing style.
C1 [Rizvi, Syed Tahseen Raza; Dengel, Andreas; Ahmed, Sheraz] German Res Ctr Artificial Intelligence, D-67663 Kaiserslautern, Germany.
[Rizvi, Syed Tahseen Raza] Tech Univ Kaiserslautern, Dept Comp Sci, D-67663 Kaiserslautern, Germany.
C3 University of Kaiserslautern
RP Rizvi, STR (corresponding author), German Res Ctr Artificial Intelligence, D-67663 Kaiserslautern, Germany.; Rizvi, STR (corresponding author), Tech Univ Kaiserslautern, Dept Comp Sci, D-67663 Kaiserslautern, Germany.
EM syed_tahseen_raza.rizvi@dfki.de
OI Dengel, Andreas/0000-0002-6100-8255; Rizvi, Syed Tahseen
Raza/0000-0002-4359-4772
FU BMBF Project DeFuseNN [01IW17002]; JSPS KAKENHI [JP17H06100]
FX This work was supported in part by the BMBF Project DeFuseNN under Grant
01IW17002, and in part by JSPS KAKENHI under Grant JP17H06100.
CR Ahmed MW, 2020, IEEE ACCESS, V8, P99458, DOI 10.1109/ACCESS.2020.2997907
[Anonymous], 2018, Tech. Rep.
Bhardwaj A., 2018, ICONIP DATASAET LABE
Bhardwaj A, 2017, LECT NOTES COMPUT SC, V10635, P286, DOI 10.1007/978-3-319-70096-0_30
Boukhers Z, 2019, ACM-IEEE J CONF DIG, P186, DOI 10.1109/JCDL.2019.00035
Chen CC, 2012, IEEE T KNOWL DATA EN, V24, P236, DOI 10.1109/TKDE.2010.231
Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661
Dai JF, 2016, ADV NEUR IN, V29
Dai JF, 2017, IEEE I CONF COMP VIS, P764, DOI 10.1109/ICCV.2017.89
Erhard L., 2019, REFDET DATASET ADDIT
Girshick R., 2018, Detectron
Girshick R, 2017, P IEEE INT C COMPUTE
Grennan M., 2020, ABS200410410 CORR
He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
Hochreiter S., 1997, Neural Comput., V9, P1735, DOI 10.1162/neco.1997.9.8.1735
Kunnas E., PDFSSA4MET
Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning
Lauscher A, 2018, ACM-IEEE J CONF DIG, P109, DOI 10.1145/3197026.3197050
Lin TY, 2017, PROC CVPR IEEE, P936, DOI 10.1109/CVPR.2017.106
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62
Matsuoka D, 2016, 2016 ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT (ICDIM 2016), P243, DOI 10.1109/ICDIM.2016.7829774
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Prasad A, 2018, INT J DIGIT LIBRARIE, V19, P323, DOI 10.1007/s00799-018-0242-1
Ren SQ, 2015, ADV NEUR IN, V28, DOI 10.1109/TPAMI.2016.2577031
Rizvi STR, 2019, 2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), P400, DOI [10.1109/dicta47822.2019.8945991, 10.1145/3345838.3356005]
Sautter Guido, 2012, Theory and Practice of Digital Libraries. Second International Conference, TPDL 2012. Proceedings: LNCS 7489, P370, DOI 10.1007/978-3-642-33290-6_40
Tkaczyk D., 2018, ARXIV181110369
Tkaczyk D, 2015, INT J DOC ANAL RECOG, V18, P317, DOI 10.1007/s10032-015-0249-8
Ware M., 2015, TECH REP
Zou J, 2010, INT J DOC ANAL RECOG, V13, P107, DOI 10.1007/s10032-009-0105-9
NR 31
TC 4
Z9 4
U1 1
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2020
VL 8
BP 217231
EP 217245
DI 10.1109/ACCESS.2020.3042455
PG 15
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA PE3AH
UT WOS:000598239200001
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Du, YF
You, SB
Zhang, MY
Song, Z
Liu, WS
Li, DJ
AF Du, Yuanfang
You, Shibing
Zhang, Mengyu
Song, Ze
Liu, Weisheng
Li, Dongju
TI Analysis of Correlation between Quality of Life and Subjective
Evaluation of Air Quality-Empirical Research Based on CHARLS 2018 Data
SO ATMOSPHERE
LA English
DT Article
DE air quality satisfaction; quality of life; binomial logistic regression;
health utility value; experienced utility
AB This paper mainly focuses on the relationship between the subjective evaluation of air quality and the quality of life (QOL) of middle-aged and elderly residents in China. The 2018 China Health and Retirement Longitudinal Study (CHARLS) project database is the key sources of data, from which 16,736 valid samples were used in our research. Multivariate linear regression analysis and binomial logistic regression model were applied to detect the impact of the subjective evaluation of air quality on QOL, which was evaluated in two dimensions, which are health utility and experienced utility, using the health utility EQ-5D score and the experienced utility of life satisfaction score. Our results show that there is a significant positive correlation between the subjective evaluation of air quality and the two dimensions of QOL. Age, education, marital status and sleep status also have a relatively great impact on the QOL of residents. This worked studied the overall QOL of middle-aged and elderly residents in China, while policy suggestions regarding high-quality air public goods are also given in the paper.
C1 [Du, Yuanfang; You, Shibing; Zhang, Mengyu; Song, Ze] Wuhan Univ, Sch Econ & Management, Wuhan 430072, Peoples R China.
[Du, Yuanfang] Tibet Univ, Math Dept, Lhasa 850000, Peoples R China.
[Liu, Weisheng] Jiangxi Univ Finance & Econ, Sch Econ, Nanchang 330013, Peoples R China.
[Li, Dongju] Henan Univ Econ & Law, Sch Stat & Big Data, Zhengzhou 450046, Peoples R China.
C3 Wuhan University; Tibet University; Jiangxi University of Finance &
Economics; Henan University of Economics & Law
RP Du, YF (corresponding author), Wuhan Univ, Sch Econ & Management, Wuhan 430072, Peoples R China.; Du, YF (corresponding author), Tibet Univ, Math Dept, Lhasa 850000, Peoples R China.
EM ruyier521@whu.edu.cn; 00001839@whu.edu.cn; 2019201050157@whu.edu.cn;
songze@whu.edu.cn; liu.wilson.edu@gmail.com; 20100452@huel.edu.cn
CR Chen YY, 2013, P NATL ACAD SCI USA, V110, P12936, DOI 10.1073/pnas.1300018110
China Health and Retirement Longitudinal Study (CHARLS), 2018, WAV 4
Darçin M, 2014, ENVIRON SCI POLLUT R, V21, P1954, DOI 10.1007/s11356-013-2101-3
EuroQol Research Foundation, 2018, EQ-5D-3L User Guide
Liao L, 2014, ATMOS OCEAN SCI LETT, V7, P434, DOI 10.3878/j.issn.1674-2834.14.0023
Liao X, 2015, ATMOS POLLUT RES, V6, P835, DOI 10.5094/APR.2015.092
Liu GG, 2014, VALUE HEALTH, V17, P597, DOI 10.1016/j.jval.2014.05.007
Mendoza Y, 2019, SOC INDIC RES, V145, P367, DOI 10.1007/s11205-019-02103-1
Rickenbacker HJ, 2020, J ARCHIT ENG, V26, DOI 10.1061/(ASCE)AE.1943-5568.0000439
Shi XM, 2022, ENVIRON DEV SUSTAIN, V24, P6860, DOI 10.1007/s10668-021-01730-4
Suwandee S, 2014, PROCD SOC BEHV, V88, P205, DOI 10.1016/j.sbspro.2013.08.497
Wang HM, 2013, QUAL LIFE RES, V22, P1577, DOI 10.1007/s11136-012-0306-4
Wu TT, 2020, Chin Gen Pract, V23, P47
NR 13
TC 2
Z9 2
U1 12
U2 59
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2073-4433
J9 ATMOSPHERE-BASEL
JI Atmosphere
PD DEC
PY 2021
VL 12
IS 12
AR 1551
DI 10.3390/atmos12121551
PG 15
WC Environmental Sciences; Meteorology & Atmospheric Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA XW0EH
UT WOS:000735303000001
OA gold
DA 2024-09-05
ER
PT J
AU Jung, JH
Lee, JHY
Choi, S
Baek, W
AF Jung, Jihoo
Lee, Jehyun
Choi, Sangjin
Baek, Woonho
TI Information Analysis on Foreign Institution for International R&D
Collaboration Using Natural Language Processing
SO ENERGIES
LA English
DT Article
DE open API; international cooperation; data analysis; R&D planning; text
mining
ID PYROLYSIS
AB The number of international collaborations in research and development (R&D) has been increasing in the energy sector to solve global environmental problems-such as climate change and the energy crisis-and to reduce the time, cost, and risk of failure. Successful international project planning requires the analysis of research fields and the technology expertise of cooperative partner institutions or countries, but this takes time and resources. In this study, we developed a method to analyze the information on research organizations and topics, taking advantage of data analysis as well as deep learning natural language processing (NLP) models. A method to evaluate the relative superiority of efficient international collaboration was suggested, assuming international collaboration of the National Renewable Energy Laboratory (NREL) and the Korea Institute of Energy Research (KIER). Additionally, a workflow of an automated executive summary and a translation of tens of web-posted articles is also suggested for a quick glance. The valuation of the suggested methodology is estimated as much as the annual salary of an experienced employee.
C1 [Jung, Jihoo; Choi, Sangjin; Baek, Woonho] Korea Inst Energy Res, Global Strategy Team, Daejeon 34129, South Korea.
[Lee, Jehyun] Korea Inst Energy Res, Computat Sci & Engn Lab, Daejeon 34129, South Korea.
C3 Korea Institute of Energy Research (KIER); Korea Institute of Energy
Research (KIER)
RP Lee, JHY (corresponding author), Korea Inst Energy Res, Computat Sci & Engn Lab, Daejeon 34129, South Korea.
EM jehyunlee@kier.re.kr
OI Lee, Jehyun/0000-0003-1752-3564
FU Korea Institute of Energy Research (KIER) [C2-2444, C2-2447]
FX This work was conducted under the framework of Research and Development
Program of the Korea Institute of Energy Research (KIER) (C2-2444 and
C2-2447).
CR Abusnina M, 2015, IEEE PHOT SPEC CONF
Aghajanyan Armen, 2020, ARXIV
Amano K, 2004, HUM MOL GENET, V13, P1333, DOI 10.1093/hmg/ddh154
[Anonymous], 2008, US
[Anonymous], 2022, FAST FLOW FUTURE HEA
[Anonymous], 2019, PUBLICATIONS OUTPUT
[Anonymous], 2022, INT COLLABORATION GA
[Anonymous], python-docx
Baranowski LL, 2016, SEMICOND SCI TECH, V31, DOI 10.1088/0268-1242/31/12/123004
Beiter Philipp, 2017, Electricity Journal, V30, P47, DOI 10.1016/j.tej.2017.01.011
Biswal AK, 2022, BIOTECHNOL BIOF BIOP, V15, DOI 10.1186/s13068-022-02119-9
Blei David M, 2003, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, P127
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
BRECKLER SJ, 1985, MUSIC PERCEPT, V2, P459
Brown T., 2020, NEURIPS
Cachola I, 2020, Arxiv, DOI arXiv:2004.15011
Chang H., 2018, J KOREA TECHNOL INNO, V21, P213
Charikar Moses S., 2002, P THIR 4 ANN ACM S T, P380, DOI [DOI 10.1145/509907.509965, 10.1145/509907.509965]
Conneau A., 2019, P 33 C NEURAL INFORM
Coulling AJ, 2013, PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 8
Dimitrievska M, 2018, J PHYS CHEM C, V122, P15198, DOI 10.1021/acs.jpcc.8b04385
Dumitrache A, 2016, BIOTECHNOL BIOFUELS, V9, DOI 10.1186/s13068-016-0445-x
Eiband M, 2018, IUI 2018: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P211, DOI 10.1145/3172944.3172961
Energiepartnershaft Deutchland-Korea, 2022, HOME
Fire M, 2019, GIGASCIENCE, V8, DOI 10.1093/gigascience/giz053
Godínez-Salomón F, 2018, ACS CATAL, V8, P10498, DOI 10.1021/acscatal.8b02171
Google Translate, About us
Grootendorst M., 2020, KeyBERT: minimal keyword extraction with BERT, v0.1.3
Guz AN, 2009, INT APPL MECH+, V45, P351, DOI 10.1007/s10778-009-0189-4
Herrmannova D., 2016, ANAL MICROSOFT ACAD
Honnibal M., 2017, spacy 2: natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing, DOI DOI 10.3233/978-1-60750-588-4-1080
Huang JQ, 2022, ELECTR POW SYST RES, V213, DOI 10.1016/j.epsr.2022.108305
Hull R, 2007, NEUROPSYCHOLOGIA, V45, P1987, DOI 10.1016/j.neuropsychologia.2007.03.002
Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55
IEA, 2000, INT COLL EN TECHN
Ingole PG, 2017, J IND ENG CHEM, V48, P5, DOI 10.1016/j.jiec.2016.09.041
Jaehong P., 2015, P PHYS CHEM INTERFAC
Jain N., 2016, P 2016 IEEE 43 PHOTO
Jehyun Lee, 2022, [Journal of The Korean Solar Energy Society, 한국태양에너지학회 논문집], V42, P13
Johnston S, 2014, IEEE J PHOTOVOLT, V4, P1295, DOI 10.1109/JPHOTOV.2014.2339491
Jung J., 2021, P KOREA ENERGY SOC C
Jung J., 2019, P KOREA ENERGY SOC C
Kim Young-In, 2009, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V12, P545
Kinsey GS, 2022, RENEW ENERG, V196, P995, DOI 10.1016/j.renene.2022.07.011
Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87
Leal W, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28230-x
Lee Hyungjin, 2014, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V17, P584
Lee J., 2022, P APPL ARTIFICIAL IN
Lee J, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10072278
Li M, 2017, BIOTECHNOL BIOFUELS, V10, DOI 10.1186/s13068-016-0695-7
Lieberman R, 2001, UROLOGY, V57, P4, DOI 10.1016/S0090-4295(00)00931-6
Limpens R, 2018, NANOSCALE, V10, P12068, DOI 10.1039/c8nr02173b
Ma ZW, 2017, PROCEEDINGS OF THE ASME 11TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2017
Magrini K, 2022, BIOMASS BIOENERG, V163, DOI 10.1016/j.biombioe.2022.106502
McLevey John., 2022, DOING COMPUTATIONAL
Mihalcea Rada, 2004, Textrank: bringing order into text, DOI DOI 10.3115/1219044.1219064
Muhammad HA, 2022, ENERGY, V239, DOI 10.1016/j.energy.2021.122216
Nathan Paco, 2016, Pytextrank, a python implementation of textrank for phrase extraction and summarization of text documents
National Laboratories Department of Energy, NAT LAB
National Renewable Energy Laboratory, About us
Oesper L, 2011, SOURCE CODE BIOL MED, V6, DOI 10.1186/1751-0473-6-7
Oshman C, 2017, APPL THERM ENG, V126, P1141, DOI 10.1016/j.applthermaleng.2017.01.038
Page L., 1999, Technical Report Stanford InfoLab
Paulus Romain, 2017, A deep reinforced model for abstractive summarization arXiv preprint arXiv:1705 04304
Paye JMD, 2016, BIOTECHNOL BIOFUELS, V9, DOI 10.1186/s13068-015-0412-y
RapidAPI, ABOUT US
Rehman SU, 2022, J ENERGY CHEM, V70, P201, DOI 10.1016/j.jechem.2022.02.052
Rehurek R., 2011, GENSIM PYTHON FRAMEW, V3, P2
Robey R, 2022, ATMOS MEAS TECH, V15, P4585, DOI 10.5194/amt-15-4585-2022
Rose ME, 2019, SOFTWAREX, V10, DOI 10.1016/j.softx.2019.100263
Shin Hyung-Deok, 2010, [Journal of Korea Technology Innovation Society, 기술혁신학회지], V13, P638
Sievert C., 2014, LDAVIS METHOD VISUAL, DOI 10.13140/2.1.1394.3043
Simeone CE, 2023, J AIR WASTE MANAGE, V73, P25, DOI 10.1080/10962247.2022.2100510
Starace AK, 2017, ACS SUSTAIN CHEM ENG, V5, P11761, DOI 10.1021/acssuschemeng.7b03344
Tikofsky R.S., 1967, LENNEBERG BIOL FDN L, V13, P493
UNESCO, 2015, UNESCO SCIENCE REPORT: TOWARDS 2030, P1
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Veinberg-Vidal E., 2017, P 2017 IEEE 44 PHOTO
Vorpahl F, 2014, WIND ENERGY, V17, P519, DOI 10.1002/we.1588
Wang SH, 2022, ENVIRON IMPACT ASSES, V97, DOI 10.1016/j.eiar.2022.106895
Waskom M., 2021, Journal of Open Source Software, V6, P3021, DOI [10.21105/joss.03021, DOI 10.21105/JOSS.03021]
Weers J., 2019, P OFFSHORE TECHNOLOG
Zacher AH, 2014, ENERG FUEL, V28, P7510, DOI 10.1021/ef5017945
Zakutayev A, 2013, J AM CHEM SOC, V135, P10048, DOI 10.1021/ja311599g
Zhang XX, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P5059
NR 85
TC 0
Z9 0
U1 2
U2 5
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1996-1073
J9 ENERGIES
JI Energies
PD JAN
PY 2023
VL 16
IS 1
AR 33
DI 10.3390/en16010033
PG 17
WC Energy & Fuels
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Energy & Fuels
GA 7R6QF
UT WOS:000910194700001
OA gold
DA 2024-09-05
ER
PT J
AU Kim, M
Park, Y
Yoon, J
AF Kim, Mujin
Park, Youngjin
Yoon, Janghyeok
TI Generating patent development maps for technology monitoring using
semantic patent-topic analysis
SO COMPUTERS & INDUSTRIAL ENGINEERING
LA English
DT Article
DE Patent development map; Technology monitoring; Patent map;
Bibliometrics; Latent Dirichlet allocation; Topic analysis; 3D printing
technology
ID SYSTEM; TRENDS
AB Patent development maps (PDMs) are a useful visual and monitoring tool for technology-trend identification, and therefore proper technology planning, because they provide an overall understanding of a technology's historical development and current stage. The rapid increase in technical data, however, has made it costly and time-consuming to monitor the technology development progress manually. Although some studies have suggested how to identify development paths among patents, little attention has been paid to synthetic consideration of the two core factors for PDMs: (1) the succession relationship among patents in terms of technological content and (2) the technological taxonomies of individual patents. Therefore, this paper suggests a semantic patent topic analysis-based bibliometric method for PDM generation.
The method consists of (1) collecting and preprocessing patents, (2) structuring each patent into a term vector, (3) identifying the technological taxonomies of patents by applying latent Dirichlet allocation, and (4) visualizing the development paths among patents through sensitivity analyses based on semantic patent similarities and citations. This method is illustrated using patents related to 3D printing technology. This method contributes to quantifying PDM generation and, in particular, will become a useful monitoring tool for effective understanding of the technologies including massive patents. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Kim, Mujin; Park, Youngjin; Yoon, Janghyeok] Konkuk Univ, Dept Ind Engn, Seoul, South Korea.
C3 Konkuk University
RP Yoon, J (corresponding author), Konkuk Univ, Dept Ind Engn, Seoul, South Korea.
EM janghyoon@konkuk.ac.kr
FU Konkuk University
FX This paper was supported by Konkuk University in 2014.
CR ALBERT MB, 1991, RES POLICY, V20, P251, DOI 10.1016/0048-7333(91)90055-U
[Anonymous], 2009, P 3 ACM C REC SYST, DOI DOI 10.1145/1639714.1639726
[Anonymous], 2014, SOFT COMPUTING BIG D
[Anonymous], 2007, Google news personalization: scalable online collaborative filtering, DOI DOI 10.1145/1242572.1242610
[Anonymous], [No title captured]
[Anonymous], WHY RES SHOULD CAR P
Bergmann I, 2008, R&D MANAGE, V38, P550, DOI 10.1111/j.1467-9310.2008.00533.x
Biro I., 2008, AIRWeb, P29
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Brent Stucker Ian Gibson DavidRosen., 2010, Additive manufacturing technologies, Vsecond, DOI [DOI 10.1007/978-1-4419-1120-9, 10.1007/978-1-4419-1120-9]
Chang PL, 2010, SCIENTOMETRICS, V82, P5, DOI 10.1007/s11192-009-0033-y
Choi C, 2009, TECHNOL FORECAST SOC, V76, P754, DOI 10.1016/j.techfore.2008.10.007
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Gress B, 2010, WORLD PAT INF, V32, P3, DOI 10.1016/j.wpi.2009.05.005
Hellinger E, 1909, J REINE ANGEW MATH, V136, P210, DOI 10.1515/crll.1909.136.210
Hirschey Mark., 2001, Pacific Basin Finance Journal, V9, P65, DOI [10.1016/S0927-538X(00)00038-X, DOI 10.1016/S0927-538X(00)00038-X]
Hu ZY, 2014, SCIENTOMETRICS, V100, P787, DOI 10.1007/s11192-014-1328-1
Hull CW, 1986, US Pat, Patent No. 4575330
Hung SW, 2010, SCIENTOMETRICS, V82, P121, DOI 10.1007/s11192-009-0032-z
Jang-Hyeok Yoon,, 2012, Journal of Information Management, V43, P169, DOI 10.1633/JIM.2012.43.2.169
Jin X., 2005, KDD 05, P612
Kim YG, 2008, EXPERT SYST APPL, V34, P1804, DOI 10.1016/j.eswa.2007.01.033
Miller JosephScott., 2005, Lewis Clark Law Review, V9, P177
박영진, 2015, [The Journal of Intellectual Property, 지식재산연구], V10, P169, DOI 10.34122/jip.2015.03.10.1.169
Park H, 2013, EXPERT SYST APPL, V40, P2373, DOI 10.1016/j.eswa.2012.10.073
Sachs EM H.J., 1993, Three-dimensional Printing Techniques, Patent No. [5204055, 5204055A]
Wang B, 2014, SCIENTOMETRICS, V101, P685, DOI 10.1007/s11192-014-1342-3
Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480
Wang Y, 2007, LECT NOTES COMPUT SC, V4814, P240
Xing DS, 2007, PATTERN RECOGN LETT, V28, P1727, DOI 10.1016/j.patrec.2007.04.015
Yoon B., 2004, The Journal of High Technology Management Research, V15, P37, DOI DOI 10.1016/J.HITECH.2003.09.003
Yoon J, 2014, J NANOPART RES, V16, DOI 10.1007/s11051-014-2471-6
Yoon J, 2013, SCIENTOMETRICS, V94, P313, DOI 10.1007/s11192-012-0830-6
Yoon J, 2012, SCIENTOMETRICS, V90, P445, DOI 10.1007/s11192-011-0543-2
Yoon J, 2011, SCIENTOMETRICS, V88, P213, DOI 10.1007/s11192-011-0383-0
NR 35
TC 38
Z9 39
U1 6
U2 114
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-8352
EI 1879-0550
J9 COMPUT IND ENG
JI Comput. Ind. Eng.
PD AUG
PY 2016
VL 98
BP 289
EP 299
DI 10.1016/j.cie.2016.06.006
PG 11
WC Computer Science, Interdisciplinary Applications; Engineering,
Industrial
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering
GA DU1EA
UT WOS:000381949800025
DA 2024-09-05
ER
PT J
AU Rodríguez-Sabiote, C
Ubeda-Sánchez, AM
Alvarez-Rodríguez, J
Alvarez-Ferrándiz, D
AF Rodriguez-Sabiote, Clemente
Ubeda-Sanchez, Alvaro Manuel
Alvarez-Rodriguez, Jose
Alvarez-Ferrandiz, Daniel
TI Active Learning in an Environment of Innovative Training and
Sustainability. Mapping of the Conceptual Structure of Research Fronts
through a Bibliometric Analysis
SO SUSTAINABILITY
LA English
DT Article
DE active learning; teacher training; digital learning environments;
information and communication technologies; bibliometric analysis
ID EDUCATION; CENTRALITY; NETWORKS
AB The present study seeks to map and visualize up-to-date perspectives of the topic of active learning by analyzing and interpreting the different elements that make up learning ecosystems within the European Higher Education Area. With this aim, scientometric methods were employed to analyze a sample of 474 articles recovered from Web of Science (WoS) during the three-year period between 2018 and 2020. All articles examined the topic of active learning. Keywords (authors' keywords and 'keywords plus') from the manuscripts were examined through co-occurrence analysis in order to establish the conceptual structure of active learning. Among the different trends and emerging topics identified, there is an important presence of topics related to technology applied to the field of education, where digital contexts acquire a preponderant role in current education. These innovative changes focused on the digital updating and exploitation of technology represent a methodological challenge that requires an involvement and commitment to this new space for educational practice by teachers and students.
C1 [Rodriguez-Sabiote, Clemente; Ubeda-Sanchez, Alvaro Manuel] Univ Granada, Dept Res Methods & Diagnost Educ, Granada 18071, Spain.
[Alvarez-Rodriguez, Jose] Univ Granada, Dept Pedag, Granada 18071, Spain.
[Alvarez-Ferrandiz, Daniel] Univ Granada, Fac Educ Sci, Granada 18071, Spain.
C3 University of Granada; University of Granada; University of Granada
RP Rodríguez-Sabiote, C (corresponding author), Univ Granada, Dept Res Methods & Diagnost Educ, Granada 18071, Spain.
EM clerosa@ugr.es; amsu@correo.ugr.es; alvarez@ugr.es;
ferrandiz98@correo.ugr.es
RI Rodríguez-Sabiote, Clemente/R-5941-2017
OI Ubeda-Sanchez, Alvaro Manuel/0000-0001-8948-8767; Alvarez Rodriguez,
Jose/0000-0002-8411-9265; Alvarez Ferrandiz, Daniel/0000-0003-4924-1334;
Rodriguez Sabiote, Clemente/0000-0003-3094-9199
CR Anderson T, 2003, HANDBOOK OF DISTANCE EDUCATION, P129
Andrews TM, 2011, CBE-LIFE SCI EDUC, V10, P394, DOI 10.1187/cbe.11-07-0061
Andrioni F, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051539
Anglada-Tort M., 2019, Music & Science, V2, P1, DOI [10.1177/2059204318811786, DOI 10.1177/2059204318811786]
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arici F, 2019, COMPUT EDUC, V142, DOI 10.1016/j.compedu.2019.103647
Bernard RM, 2009, REV EDUC RES, V79, P1243, DOI 10.3102/0034654309333844
Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
Brown G., 2002, EFFECTIVE TEACHING H, P136
Buil-Fabregá M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11174577
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Chang V., 2007, P IN IEEE IES DIG EC, P420, DOI DOI 10.1109/DEST.2007.372010
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Cretu DM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12124923
del Río-Rama MD, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020724
De la Rosa Troyano F., 2005, REDES REV HISPANA AN, V8, P1, DOI DOI 10.5565/REV/REDES.65
Deslauriers L, 2011, SCIENCE, V332, P862, DOI 10.1126/science.1201783
Escamilla-Fajardo P, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12114499
Esteves M, 2018, INT J ENG PEDAGOG, V8, P115, DOI 10.3991/ijep.v8i2.8146
Fabregat-Aibar L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11092526
Fellnhofer K, 2019, EDUC RES REV-NETH, V27, P28, DOI 10.1016/j.edurev.2018.10.002
FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7
FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543
GARFIELD E, 1993, J AM SOC INFORM SCI, V44, P298, DOI 10.1002/(SICI)1097-4571(199306)44:5<298::AID-ASI5>3.0.CO;2-A
Giannakos Michail N., 2016, Smart Learning Environments, V3, DOI 10.1186/s40561-016-0034-2
Giannakos MN, 2016, LECT N EDUC TECHNOL, P105, DOI 10.1007/978-981-287-868-7_12
Glänzel W, 2001, SCIENTOMETRICS, V51, P69, DOI 10.1023/A:1010512628145
Grosseck G, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11216136
Gvaramadze I, 2008, EUR J EDUC, V43, DOI 10.1111/j.1465-3435.2008.00376.x
Hake RR, 1998, AM J PHYS, V66, P64, DOI 10.1119/1.18809
Hallinger P, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11082401
Jarden RJ, 2019, BMC NURS, V18, DOI 10.1186/s12912-019-0343-1
Hinojo-Lucena FJ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051334
Johnson D.W., 2000, ACTIVE LEARNING COOP, P81
Kehm B.M., 2010, Change, V42, P40, DOI [DOI 10.1080/00091381003704677, 10.1080/00091381003704677]
Knight Jennifer K, 2005, Cell Biol Educ, V4, P298, DOI 10.1187/05-06-0082
Lancichinetti A, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.056117
Lanjie Chen, 2010, 2010 5th International Conference on Computer Science & Education (ICCSE 2010), P515, DOI 10.1109/ICCSE.2010.5593561
Liu JS, 2016, OMEGA-INT J MANAGE S, V58, P33, DOI 10.1016/j.omega.2015.04.004
March A.F., 2006, Educatio siglo, V24, P35
Marín-Díaz V, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12156134
Meyer CO, 2005, EUR J INT RELAT, V11, P523, DOI 10.1177/1354066105057899
Morris SA, 2008, ANNU REV INFORM SCI, V42, P213
Pollock SJ, 2008, PHYS REV SPEC TOP-PH, V4, DOI 10.1103/PhysRevSTPER.4.010110
Restrepo-Arango C., 2018, REV CONHEC ACAO, V2, P1, DOI [10.5897/IJLIS2015.0584, DOI 10.5897/IJLIS2015.0584]
Rico C, 2010, INTERPRET TRANSL TRA, V4, P89, DOI 10.1080/1750399X.2010.10798798
Robelo OG., 2018, INT J ED EXCELLENCE, V4, P15, DOI [10.18562/ijee.031, DOI 10.18562/IJEE.031]
Schmidt R, 2009, EUR J EDUC, V44, P399, DOI 10.1111/j.1465-3435.2009.01393.x
Seop Lee Gi, 2018, [Journal of Korean Society of Coastal and Ocean Engineers, 한국해안·해양공학회논문집], V30, P19, DOI 10.9765/KSCOE.2018.30.1.19
Sharma A., 2011, Journal of Education and Practice, V2, P1
Shen CW, 2020, COMPUT HUM BEHAV, V104, DOI 10.1016/j.chb.2019.106177
Shum SB, 2012, EDUC TECHNOL SOC, V15, P3
Small H, 1997, SCIENTOMETRICS, V38, P275, DOI 10.1007/BF02457414
Terrón-López MJ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12124817
Turpen C, 2009, PHYS REV SPEC TOP-PH, V5, DOI 10.1103/PhysRevSTPER.5.020101
Ulazia A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12062495
Wheeldon J., 2011, VISUALIZING SOCIAL S, P115
Zempoalteca Durán Beatriz, 2017, Apert. (Guadalaj., Jal.), V9, P80, DOI 10.32870/ap.v9n1.922
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
Zhao L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236648
Zheng MQ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030748
Zhou L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11072151
NR 62
TC 14
Z9 14
U1 0
U2 13
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD OCT
PY 2020
VL 12
IS 19
AR 8012
DI 10.3390/su12198012
PG 18
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA ON1YE
UT WOS:000586504700001
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Manju, G
Kavitha, V
Geetha, TV
AF Manju, G.
Kavitha, V
Geetha, T., V
TI Influential Researcher Identification in Academic Network Using Rough
Set Based Selection of Time-Weighted Academic and Social Network
Features
SO INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES
LA English
DT Article
DE Academic Influence; Feature Selection; Influential Researcher; Map
Reduce Paradigm; Recommendation System; Rough Set Theory; Spreading
Activation; Time-Weighted Relation
ID SIMILARITY
AB Researchers entering into a new research area are interested in knowing the current research trends, popular publications and influential (popular) researchers in that area in order to initiate their research. In this work, we attempt to determine the influential researcher for a specific topic. The active participation of the researchers in both the academic and social network activities signifies the researchers' influence level across time. The content and frequency of social interaction to a researcher reflects his or her influence. In our system, appropriate time-based social and academic features are selected using entropy based feature selection approach of rough set theory. A three layer model comprising semantically related concepts, researcher and social relations is developed based on the appropriate (influential) features. The researchers' topic trajectories are identified and recommended using Spreading activation algorithm. To cope up with the scalable academic network, map reduce paradigm has been employed in the spreading activation algorithm.
C1 [Manju, G.; Kavitha, V; Geetha, T., V] Anna Univ, Dept Comp Sci, Madras, Tamil Nadu, India.
C3 Anna University; Anna University Chennai
RP Manju, G (corresponding author), Anna Univ, Dept Comp Sci, Madras, Tamil Nadu, India.
CR [Anonymous], 1997, PROC 10 RES COMPUTAT
[Anonymous], 2012, ARCH ENVIRON CON TOX, DOI [DOI 10.1007/S00244-011-9745-0, 10.1007/s00244-011-9745-0]
[Anonymous], 2007, PROCC 16 ACM C C INF, DOI DOI 10.1145/1321440.1321528
Caragea C., 2013, P ICONFERENCE, P849
Caruana R. A., 1994, P AAAI S REL NEW ORL
Dahimene R, 2015, INT J INTELL INF TEC, V11, P30, DOI 10.4018/ijiit.2015010103
Ding Yi, 2005, Proceedings of the 14th ACM international conference on Information and knowledge management, P485, DOI DOI 10.1145/1099554.1099689
Firdaus A., 2013, SCALING PERFORMANCE
Ganapathy S, 2013, EURASIP J WIREL COMM, DOI 10.1186/1687-1499-2013-271
Groth P., 2010, STUDYING SCI DISCOUR
Haron N, 2010, INNOVATIONS IN COMPUTING SCIENCES AND SOFTWARE ENGINEERING, P477, DOI 10.1007/978-90-481-9112-3_81
Haury AC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028210
Huang Z, 2004, ACM T INFORM SYST, V22, P116, DOI 10.1145/963770.963775
Kannan A, 2015, INT J INTELL INF TEC, V11, P1, DOI 10.4018/IJIIT.2015100101
Kavitha V, 2014, 2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P1053, DOI 10.1109/ICACCI.2014.6968216
Khalid NEA, 2011, P 15 WSEAS INT C COM, P313
Kohavi R, 1997, ARTIF INTELL, V97, P273, DOI 10.1016/S0004-3702(97)00043-X
Li H, 2011, IEICE T INF SYST, VE94D, P1854, DOI 10.1587/transinf.E94.D.1854
Li X, 2008, IEEE DATA MINING, P893, DOI 10.1109/ICDM.2008.155
Li YH, 2003, IEEE T KNOWL DATA EN, V15, P871, DOI 10.1109/TKDE.2003.1209005
Li YH, 2006, IEEE T KNOWL DATA EN, V18, P1138, DOI 10.1109/TKDE.2006.130
Lippmann R. P., 1987, IEEE ASSP Magazine, V4, P4, DOI 10.1145/44571.44572
Liu L, 2012, DATA MIN KNOWL DISC, V25, P511, DOI 10.1007/s10618-012-0252-3
Manju G., 2013, Mining Intelligence and Knowledge Exploration. First International Conference, MIKE 2013. Proceedings: LNCS 8284, P677, DOI 10.1007/978-3-319-03844-5_66
Matsatsinis NF, 2007, P 11 PANH C INF, P135
Moreira C., 2013, PROGR ARTIFICIAL INT
Morid MA, 2014, INFORM RETRIEVAL, V17, P137, DOI 10.1007/s10791-013-9224-5
Na Li, 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P608
Nagwani N., 2015, Journal of Big Data, V2, P6, DOI [DOI 10.1186/S40537-015-0020-5, 10.1186/s40537-015-0020-5]
Neylon C, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000242
Pawlak Z, 2002, INFORM SCIENCES, V147, P1, DOI 10.1016/S0020-0255(02)00197-4
PAWLAK Z, 1982, INT J COMPUT INF SCI, V11, P341, DOI 10.1007/BF01001956
Pawlak Z., 1993, Foundations of Computing and Decision Sciences, V18, P157
Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874
Quinlan J. R., 1993, C4 5 PROGRAMS MACHIN
Sayyadi H., 2009, FUTURERANK RANKING S
Shaparenko B., 2009, P ECML
Sie RLL, 2012, INT J TECHNOL ENHANC, V4, P121, DOI 10.1504/IJTEL.2012.048314
Suguna N., 2010, Journal of Computing, V2, P49
Sun Y., 2011, P ASONAM
Tang J, 2007, IEEE DATA MINING, P292, DOI 10.1109/ICDM.2007.30
Taraborelli D., 2008, P 8 INT C DES COOP S, P99
Walker D, 2007, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2007/06/P06010
Wang Senzhang., 2014, P 2014 SIAM INT C DA, P749, DOI DOI 10.1137/1.9781611973440.86
Weng J., 2011, EVENT DETECTION TWIT
Xu YG, 2010, INT J ADAPT CONTROL, V24, P20, DOI 10.1002/acs.1102
Yin HJ, 2014, INT J INTELL INF TEC, V10, P57, DOI 10.4018/ijiit.2014010104
Zeng M, 2013, 27 AAAI C ART INT
Zhang Y.-D., 2013, MATH PROBL ENG, P1
Zhang YF, 2014, INT J INTELL INF TEC, V10, P1, DOI 10.4018/ijiit.2014100101
NR 50
TC 4
Z9 4
U1 0
U2 7
PU IGI GLOBAL
PI HERSHEY
PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA
SN 1548-3657
EI 1548-3665
J9 INT J INTELL INF TEC
JI Int. J. Intell. Inf. Technol.
PD JAN-MAR
PY 2017
VL 13
IS 1
BP 1
EP 25
DI 10.4018/IJIIT.2017010101
PG 25
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA EO5GQ
UT WOS:000396721700001
DA 2024-09-05
ER
PT J
AU García-Pineda, V
Valencia-Arias, A
Patino-Vanegas, JC
Cueto, JJF
Arango-Botero, D
Coronel, AMR
Rodríguez-Correa, PA
AF Garcia-Pineda, Vanessa
Valencia-Arias, Alejandro
Patino-Vanegas, Juan Camilo
Flores Cueto, Juan Jose
Arango-Botero, Diana
Rojas Coronel, Angel Marcelo
Rodriguez-Correa, Paula Andrea
TI Research Trends in the Use of Machine Learning Applied in Mobile
Networks: A Bibliometric Approach and Research Agenda
SO INFORMATICS-BASEL
LA English
DT Article
DE mobile networks; mobile communication systems; 5G; PRISMA; machine
learning; internet of things
ID MASSIVE MIMO; 5G NETWORKS; 6G; FRAMEWORK; SYSTEMS; ACCESS; ENERGY;
INTELLIGENCE; CHALLENGES; MANAGEMENT
AB This article aims to examine the research trends in the development of mobile networks from machine learning. The methodological approach starts from an analysis of 260 academic documents selected from the Scopus and Web of Science databases and is based on the parameters of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Quantity, quality and structure indicators are calculated in order to contextualize the documents' thematic evolution. The results reveal that, in relation to the publications by country, the United States and China, who are competing for fifth generation (5G) network coverage and are responsible for manufacturing devices for mobile networks, stand out. Most of the research on the subject focuses on the optimization of resources and traffic to guarantee the best management and availability of a network due to the high demand for resources and greater amount of traffic generated by the many Internet of Things (IoT) devices that are being developed for the market. It is concluded that thematic trends focus on generating algorithms for recognizing and learning the data in the network and on trained models that draw from the available data to improve the experience of connecting to mobile networks.
C1 [Garcia-Pineda, Vanessa] Corp Univ Amer, Fac Ingn, Medellin 055428, Colombia.
[Valencia-Arias, Alejandro] Univ Senor Sipan, Escuela Ingn Ind, Chiclayo 14001, Peru.
[Patino-Vanegas, Juan Camilo; Arango-Botero, Diana] Inst Tecnol Metropolitano, Fac Ciencias Econ & Adm, Medellin 050034, Colombia.
[Flores Cueto, Juan Jose] Univ San Martin Porres, Unidad Virtualizac Acad, Santa Anita 15011, Peru.
[Rojas Coronel, Angel Marcelo] Univ Senor Sipan, Escuela Ingn Mecan, Chiclayo 14001, Peru.
[Rodriguez-Correa, Paula Andrea] Inst Univ Escolme, Ctr Invest, Medellin 050012, Colombia.
C3 Universidad Senor de Sipan; Universidad de San Martin de Porres;
Universidad Senor de Sipan
RP Valencia-Arias, A (corresponding author), Univ Senor Sipan, Escuela Ingn Ind, Chiclayo 14001, Peru.
EM vgarcia@americana.edu.co; valenciajho@crece.uss.edu.pe;
juanpatino@itm.edu.co; jfloresc@usmp.pe; dianaarangob@itm.edu.co;
rmarcelo@crece.uss.edu.pe; cies4@escolme.edu.co
RI Arango-Botero, Diana/W-6231-2018; Arias, Alejandro Valencia/I-9436-2019
OI Arias, Alejandro Valencia/0000-0001-9434-6923; Rojas Coronel, Angel
Marcelo/0000-0002-2720-9707; Rodriguez Correa,
Paula/0000-0002-9748-0148; Garcia Pineda, Vanessa/0000-0003-3418-8956
FU Corporacion Universitaria Americana (Colombia); Universidad Senor de
Sipan (Peru)
FX This research was funded by the Corporacion Universitaria Americana
(Colombia) and the Universidad Senor de Sipan (Peru). The APC was funded
by Universidad Senor de Sipan (Peru).
CR Abdulqadder IH, 2020, COMPUT NETW, V179, DOI 10.1016/j.comnet.2020.107364
Abusubaih M, 2022, J NETW SYST MANAG, V30, DOI 10.1007/s10922-021-09625-5
Aqdus A, 2023, CMC-COMPUT MATER CON, V74, P1413, DOI 10.32604/cmc.2023.031719
Aryal B., 2021, J COMMUN, V16, P267, DOI [10.12720/jcm.16.7.267-275, DOI 10.12720/JCM.16.7.267-275]
Bagchi S, 2020, IEEE INTERNET THINGS, V7, P11330, DOI 10.1109/JIOT.2020.3007690
Balachandran A, 2014, PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING (MOBICOM '14), P213, DOI 10.1145/2639108.2639137
Bastug E, 2015, J COMMUN NETW-S KOR, V17, P549, DOI 10.1109/JCN.2015.000102
Ben Yahia IG, 2017, CONF INNOV CLOUD, P252, DOI 10.1109/ICIN.2017.7899421
Bi Q, 2019, IEEE COMMUN MAG, V57, P31, DOI 10.1109/MCOM.001.1900315
Björnson E, 2019, DIGIT SIGNAL PROCESS, V94, P3, DOI 10.1016/j.dsp.2019.06.007
Cao B., 2016, P 31 ANN ACM S APPL, P546
Chaccour C, 2022, IEEE COMMUN SURV TUT, V24, P967, DOI 10.1109/COMST.2022.3143454
Chen G, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22093495
Chen Y, 2018, IEEE COMMUN MAG, V56, P19, DOI 10.1109/MCOM.2018.1700845
Comsa IS, 2020, IEEE T NETW SERV MAN, V17, P1110, DOI 10.1109/TNSM.2019.2960849
Dai YY, 2019, IEEE NETWORK, V33, P10, DOI 10.1109/MNET.2019.1800376
Das S, 2012, 2012 25TH IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE)
Dharmani P, 2021, J BUS RES, V135, P252, DOI 10.1016/j.jbusres.2021.06.037
Dubreil H, 2005, IEEE VTS VEH TECHNOL, P1865
Elijah O, 2022, IEEE ACCESS, V10, P102532, DOI 10.1109/ACCESS.2022.3208284
Faisal KM, 2022, IEEE ACCESS, V10, P27343, DOI 10.1109/ACCESS.2022.3157651
Fang H, 2019, IEEE WIREL COMMUN, V26, P55, DOI 10.1109/MWC.001.1900054
Gavrilovska L, 2020, WIRELESS PERS COMMUN, V113, P1523, DOI 10.1007/s11277-020-07231-3
Guo FX, 2021, IEEE INTERNET THINGS, V8, P11891, DOI 10.1109/JIOT.2021.3063686
Haneda E.M.K., 2017, Millimetre-Wave Based Mobile Radio Access Network for Fifth Generation Integrated Communications (mmMAGIC), P1
Hua YX, 2020, IEEE J SEL AREA COMM, V38, P334, DOI 10.1109/JSAC.2019.2959185
Jagannath A, 2022, PHYS COMMUN-AMST, V54, DOI 10.1016/j.phycom.2022.101793
Jiang W., 2017, P EUR WIR 2017 23 EU, P1
Jiang W, 2021, IEEE OPEN J COMM SOC, V2, P334, DOI 10.1109/OJCOMS.2021.3057679
Kader MA, 2015, IEEE GLOBE WORK
Kairouz P, 2021, FOUND TRENDS MACH LE, V14, P1, DOI 10.1561/2200000083
Kamruzzaman MM, 2022, COMPUT ELECTR ENG, V102, DOI 10.1016/j.compeleceng.2022.108233
Kato N, 2017, IEEE WIREL COMMUN, V24, P146, DOI 10.1109/MWC.2016.1600317WC
Kazi BU, 2019, WIREL NETW, V25, P2041, DOI 10.1007/s11276-018-1796-y
Kirsur S.M., 2022, Computational Intelligence and Data Analytics. Lecture Notes on Data Engineering and Communications Technologies, P89
Klaine PV, 2017, IEEE COMMUN SURV TUT, V19, P2392, DOI 10.1109/COMST.2017.2727878
Koudouridis GP, 2022, EURASIP J WIREL COMM, V2022, DOI 10.1186/s13638-022-02164-w
Kumar R., 2021, Internet Things Anal. Agric, V3, P141, DOI [10.1007/978-981-16-6210-2_7, DOI 10.1007/978-981-16-6210-2_7]
Le LV, 2018, 2018 IEEE 5G WORLD FORUM (5GWF), P20, DOI 10.1109/5GWF.2018.8516953
Letaief KB, 2019, IEEE COMMUN MAG, V57, P84, DOI 10.1109/MCOM.2019.1900271
Lim WYB, 2020, IEEE INTERNET THINGS, V7, P9575, DOI 10.1109/JIOT.2020.2985694
Liu YW, 2022, IEEE J SEL AREA COMM, V40, P1037, DOI 10.1109/JSAC.2022.3145234
López-Pérez D, 2022, IEEE COMMUN SURV TUT, V24, P653, DOI 10.1109/COMST.2022.3142532
Lu YT, 2020, IEEE T VEH TECHNOL, V69, P8459, DOI 10.1109/TVT.2020.2995160
Luong NC, 2019, IEEE COMMUN SURV TUT, V21, P3133, DOI 10.1109/COMST.2019.2916583
Mach P, 2017, IEEE COMMUN SURV TUT, V19, P1628, DOI 10.1109/COMST.2017.2682318
Mahmood MR, 2022, IEEE ACCESS, V10, P87535, DOI 10.1109/ACCESS.2022.3199689
Mao BM, 2017, IEEE T COMPUT, V66, P1946, DOI 10.1109/TC.2017.2709742
Mao Q, 2018, IEEE COMMUN SURV TUT, V20, P2595, DOI 10.1109/COMST.2018.2846401
Maraqa O, 2020, IEEE COMMUN SURV TUT, V22, P2192, DOI 10.1109/COMST.2020.3013514
Mason F, 2021, 2021 19TH MEDITERRANEAN COMMUNICATION AND COMPUTER NETWORKING CONFERENCE (MEDCOMNET), DOI [10.1109/MedComNet52149.2021.9501279, 10.1109/MEDCOMNET52149.2021.9501279]
Mazin A, 2018, IEEE VTS VEH TECHNOL
Moher D., 2015, Revista Espaola de Nutricin Humana y Diettica, V4, P1, DOI [DOI 10.1186/S13643-015-0163-7, 10.1186/2046-4053-4-1, DOI 10.14306/RENHYD.20.2.223]
Moysen J, 2018, COMPUT COMMUN, V129, P248, DOI 10.1016/j.comcom.2018.07.015
Mozaffari M, 2019, IEEE T WIREL COMMUN, V18, P357, DOI 10.1109/TWC.2018.2879940
Mughees A, 2020, IEEE ACCESS, V8, P187498, DOI 10.1109/ACCESS.2020.3029903
Mwanje S., 2016, P 2016 IEEE 27 ANN I, P1
Nakao A, 2018, IEICE T COMMUN, VE101B, P1536, DOI 10.1587/transcom.2017CQI0002
Narmanlioglu Omer, 2017, 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), P929, DOI 10.23919/INM.2017.7987414
Nasri R, 2006, ANN TELECOMMUN, V61, P1119, DOI 10.1007/BF03219884
Nawaz SJ, 2019, IEEE ACCESS, V7, P46317, DOI 10.1109/ACCESS.2019.2909490
Nomikos N, 2022, IEEE ACCESS, V10, P4380, DOI 10.1109/ACCESS.2022.3140719
Page MJ, 2021, J CLIN EPIDEMIOL, V134, P178, DOI 10.1016/j.jclinepi.2021.03.001
Valencia CMP, 2019, 2019 IEEE 4TH COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL (CCAC): AUTOMATIC CONTROL AS KEY SUPPORT OF INDUSTRIAL PRODUCTIVITY, DOI [10.1109/ccac.2019.8920902, 10.1109/iwmn.2019.8805017]
Park J, 2019, P IEEE, V107, P2204, DOI 10.1109/JPROC.2019.2941458
Paropkari R.A., 2022, 2022 INT C WIR COMM, P244
Perez JS, 2017, INT BLACK SEA CONF, P92
Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012
Pham QV, 2020, IEEE ACCESS, V8, P116974, DOI 10.1109/ACCESS.2020.3001277
Rahman A, 2023, FUTURE GENER COMP SY, V138, P61, DOI 10.1016/j.future.2022.08.004
Rodrigues TK, 2022, IEEE WIREL COMMUN, V29, P104, DOI 10.1109/MWC.001.2100287
Savazzi S, 2023, IEEE T GREEN COMMUN, V7, P248, DOI 10.1109/TGCN.2022.3186439
Shajin FH, 2022, J CIRCUIT SYST COMP, V31, DOI 10.1142/S0218126622500931
Shang X., 2021, IEEE Trans. Netw. Sci. Eng.. early access, DOI [10.1109/TNSE.2021.3109538, DOI 10.1109/TNSE.2021.3109538]
Sharma SK, 2020, IEEE COMMUN SURV TUT, V22, P426, DOI 10.1109/COMST.2019.2916177
Singh Monika, 2021, 2021 2nd International Conference on Computational Methods in Science & Technology (ICCMST), P24, DOI 10.1109/ICCMST54943.2021.00017
Sun DF, 2019, IFAC PAPERSONLINE, V52, P219, DOI 10.1016/j.ifacol.2019.12.411
Sun G., 2018, P 2018 IEEE 37 INT P, P1
Sundsoy Pal, 2014, Social Computing, Behavioral-Cultural Modeling and Prediction. 7th International Conference, SBP 2014. Proceedings: LNCS 8393, P367, DOI 10.1007/978-3-319-05579-4_45
Thantharate A, 2023, J NETW SYST MANAG, V31, DOI 10.1007/s10922-022-09693-1
Tömösközi M, 2016, IEEE VTS VEH TECHNOL
Upadhyay Deepak, 2023, ICT with Intelligent Applications: Proceedings of ICTIS 2022. Smart Innovation, Systems and Technologies (311), P643, DOI 10.1007/978-981-19-3571-8_59
Vaezi M, 2019, IEEE WIREL COMMUN, V26, P174, DOI 10.1109/MWC.2019.1800598
Viswanathan H, 2020, IEEE ACCESS, V8, P57063, DOI 10.1109/ACCESS.2020.2981745
Thang VV, 2019, J COMPUT NETW COMMUN, V2019, DOI 10.1155/2019/4708201
Vukobratovic D, 2016, IEEE ACCESS, V4, P3360, DOI 10.1109/ACCESS.2016.2585468
Wei-Cheng Kao, 2018, 2018 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), P278, DOI 10.1109/ISPACS.2018.8923234
Wild T, 2021, IEEE ACCESS, V9, P30845, DOI 10.1109/ACCESS.2021.3059488
Xie JF, 2019, IEEE COMMUN SURV TUT, V21, P393, DOI 10.1109/COMST.2018.2866942
Xu HS, 2018, IEEE ACCESS, V6, P78238, DOI [10.1109/access.2018.2884906, 10.1109/ACCESS.2018.2884906]
Xu Y, 2019, IEEE J SEL AREA COMM, V37, P1291, DOI 10.1109/JSAC.2019.2904330
Zhang CY, 2019, IEEE COMMUN SURV TUT, V21, P2224, DOI 10.1109/COMST.2019.2904897
Zhang JX, 2019, IEEE ACCESS, V7, P65811, DOI 10.1109/ACCESS.2019.2917751
Zhang ZM, 2022, COMPUT NETW, V218, DOI 10.1016/j.comnet.2022.109376
Zhao YL, 2019, IEEE ACCESS, V7, P95397, DOI 10.1109/ACCESS.2019.2928564
Zhou YB, 2018, IEEE NETWORK, V32, P28, DOI 10.1109/MNET.2018.1800085
NR 96
TC 1
Z9 1
U1 0
U2 3
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-9709
J9 INFORMATICS-BASEL
JI Informatics-Basel
PD SEP
PY 2023
VL 10
IS 3
AR 73
DI 10.3390/informatics10030073
PG 24
WC Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA S8OC5
UT WOS:001073697200001
OA gold
DA 2024-09-05
ER
PT C
AU Feng, WW
Wang, P
Zhou, C
Hu, Y
Guo, L
AF Feng, Weiwei
Wang, Peng
Zhou, Chuan
Hu, Yue
Guo, Li
BE Lu, Y
Wu, X
Zhang, X
TI Nonparametric Topic-Aware Sparsification of Influence Networks
SO TRUSTWORTHY COMPUTING AND SERVICES (ISCTCS 2014)
SE Communications in Computer and Information Science
LA English
DT Proceedings Paper
CT International Standard Conference on Trustworthy Computing and Services
(ISCTCS)
CY NOV 28-29, 2014
CL Beijing, PEOPLES R CHINA
DE Social network; Sparsification; HDP-LDA
AB In the last decade social networks are becoming denser and denser, which makes analyzing their structures and properties very difficult. However, for certain task, if we can remove the inactive users and irrelevant links, the network will be amazingly sparse and tractable. In this paper we propose the Nonparametric Topic-aware Sparsification (NTAS) algorithm, which can simplify social networks for a specific task. To determine whether a link is relevant to the task, we adopt nonparametric topic model to analyze the topic distribution of links and the task. We empirically demonstrate that our algorithm can return a more sparse network compared with other state-of-the-art methods in the task of network monitoring.
C1 [Feng, Weiwei; Zhou, Chuan; Hu, Yue; Guo, Li] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China.
[Wang, Peng] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China.
C3 Chinese Academy of Sciences; Institute of Information Engineering, CAS;
Chinese Academy of Sciences; Institute of Computing Technology, CAS
RP Feng, WW (corresponding author), Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China.
EM fengweiwei@iie.ac.cn; peng860215@gmail.com; zhouchuan@iie.ac.cn;
huyue@iie.ac.cn; guoli@iie.ac.cn
RI WANG, Peng/GSN-5263-2022; Zhou, Chuan/JFS-4721-2023; Hu,
Yue/HGE-1673-2022
OI Zhou, Chuan/0000-0001-9958-8673;
CR [Anonymous], 2008, Proceedings of the 17th international conference on World Wide Web
[Anonymous], 2 SNA KDD WORKSH
[Anonymous], 2011, ACM SIGKDD INT C KNO, DOI DOI 10.1145/2020408.2020492
ANTONIAK CE, 1974, ANN STAT, V2, P1152, DOI 10.1214/aos/1176342871
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bonchi F, 2013, DATA MIN KNOWL DISC, V27, P321, DOI 10.1007/s10618-013-0328-8
CASELLA G, 1992, AM STAT, V46, P167, DOI 10.2307/2685208
Dumais ST, 2004, ANNU REV INFORM SCI, V38, P189
Foti NJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016431
Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424
Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302
Yin H., 2014, TEMPORAL CONTEXT AWA
NR 12
TC 0
Z9 0
U1 0
U2 1
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 1865-0929
EI 1865-0937
BN 978-3-662-47401-3; 978-3-662-47400-6
J9 COMM COM INF SC
PY 2015
VL 520
BP 83
EP 90
DI 10.1007/978-3-662-47401-3_11
PG 8
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BE1QX
UT WOS:000368404900011
DA 2024-09-05
ER
PT J
AU Liu, J
Wang, C
Liu, ZL
Gao, MH
Xu, YH
Chen, JY
Cheng, YC
AF Liu, Jun
Wang, Cong
Liu, Zile
Gao, Minghui
Xu, Yanhua
Chen, Jiayu
Cheng, Yichun
TI A bibliometric analysis of generative AI in education: current status
and development
SO ASIA PACIFIC JOURNAL OF EDUCATION
LA English
DT Article
DE Generative AI; education; bibliometric analysis; visualization;
CiteSpace; VOSviewer
ID INTELLIGENCE; EVOLUTION
AB The rapid advancement of generative AI technology offers new opportunities for the innovation and transformation of education. However, this also brings forth risks and challenges, including the potential to exacerbate educational inequality and integrity. This study aims to address the extensive controversies surrounding the application of generative AI technology in education by providing an objective and comprehensive understanding of its current state, development in educational contexts. Using the CiteSpace and VOSviewer software, we conducted visual analyses of relevant literature from the Web of Science core collection pertaining to the application of generative AI in education.Subsequently, we identified productive journals, productive articles, collaboration patterns, article hotspots, and prevalent topics in this field.This study will facilitate the promotion of in-depth research and practical implementation of AI in education.
C1 [Liu, Jun; Wang, Cong; Liu, Zile] Capital Normal Univ, Coll Educ, Beijing, Peoples R China.
[Gao, Minghui; Chen, Jiayu; Cheng, Yichun] Capital Normal Univ, Coll Teacher Educ, Beijing, Peoples R China.
[Xu, Yanhua] Jiangxi Normal Univ, Sch Geog & Environm, Nanchang 330022, Jiangxi, Peoples R China.
C3 Capital Normal University; Capital Normal University; Jiangxi Normal
University
RP Xu, YH (corresponding author), Jiangxi Normal Univ, Sch Geog & Environm, Nanchang 330022, Jiangxi, Peoples R China.
EM yanhuaxuedu@foxmail.com
RI guo, yi/KHC-4669-2024; ren, jun/KHG-7717-2024; liu, qi/KHC-7509-2024;
li, cheng/KCZ-0615-2024; zhu, hao/KHW-3813-2024; Zhang,
Lu/KHE-5879-2024; liu, qi/KFA-4047-2024; Liu, Yu/KFS-0769-2024; zhang,
yan/KHC-3163-2024; Chen, Yang/KHD-8849-2024; su, lin/KHC-5034-2024; li,
jing/KHC-8303-2024
OI Wang, Cong/0000-0002-6976-0433
FU Major Educational Project of National Social Science Fund [VHA220005];
The 2023 Open Research Project "Artificial Intelligence in Education" in
the College of Education in Capital Normal University
FX This work was supported by Major Educational Project of National Social
Science Fund under the Grant [number VHA220005], and 2023 Open Research
Project "Artificial Intelligence in Education" in the College of
Education in Capital Normal University.
CR Abd-alrazaq A, 2023, JMIR MED EDUC, V9, DOI 10.2196/48291
Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006
Anderson Lauren B, 2023, Geohealth, V7, pe2023GH000875, DOI 10.1029/2023GH000875
Assefa SG, 2013, J AM SOC INF SCI TEC, V64, P2513, DOI 10.1002/asi.22917
Bogolyubova O, 2022, J EMDR PRACT RES, V16, P76, DOI 10.1891/EMDR-2021-0008
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Bowles DC, 2023, PEDAGOGY HEAL PROMOT, V9, P75, DOI 10.1177/23733799231175171
Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165
Byrne MD, 2023, J PERIANESTH NURS, V38, P519, DOI 10.1016/j.jopan.2023.04.001
Cao Y., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2303.04226
Chan CKY, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00408-3
Chang CH, 2023, INT RES GEOGR ENVIRO, V32, P85, DOI 10.1080/10382046.2023.2194036
Chaudhry IS, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2210461
Chen C., 2023, CITE SPACE HOMEPAGE
Chen HC, 2012, MIS QUART, V36, P1165
Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0692-9
Chomsky N., 2023, FALSE PROMISE CHATGP
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Dave T, 2023, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1169595
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662
Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642
Dzikowski P, 2018, J BUS RES, V85, P281, DOI 10.1016/j.jbusres.2017.12.054
Eck v. Waltman, 2023, VOSVIEWER HOMEPAGE
Eggmann F, 2023, J ESTHET RESTOR DENT, V35, P1098, DOI 10.1111/jerd.13046
Ellis AR, 2023, J STAT DATA SCI EDUC, V31, P128, DOI 10.1080/26939169.2023.2223609
Emenike ME, 2023, J CHEM EDUC, V100, P1413, DOI 10.1021/acs.jchemed.3c00063
Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1
Franceschelli G, 2022, DATA POLICY, V4, DOI 10.1017/dap.2022.10
Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023
Fu SC, 2021, MATH PROBL ENG, V2021, DOI 10.1155/2021/5555058
Gentile M, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1161777
Gimenez E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10020391
Gonzalez C, 2023, TOP COGN SCI, DOI 10.1111/tops.12673
Huang L, 2020, ENVIRON SCI POLLUT R, V27, P8740, DOI 10.1007/s11356-019-07489-6
Iskender A, 2023, EUR J TOUR RES, V34, DOI 10.54055/ejtr.v34i.3169
Jeon J, 2023, EDUC INF TECHNOL, V28, P11963, DOI 10.1007/s10639-023-11656-1
Karabacak M, 2023, JMIR MED EDUC, V9, DOI 10.2196/48163
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Kiili K, 2023, INT J SERIOUS GAMES, V10, P93, DOI 10.17083/ijsg.v10i4.629
Kohnke L, 2023, RELC J, V54, P537, DOI 10.1177/00336882231162868
Koohi-Moghadam M, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01987-4
Lee H, 2024, ANAT SCI EDUC, V17, P926, DOI 10.1002/ase.2270
Li H, 2022, COMMUN ACM, V65, P56, DOI 10.1145/3490443
Lin S, 2021, IEEE ACCESS, V9, P111181, DOI 10.1109/ACCESS.2021.3102606
Liu YH, 2019, INFORM SYST RES, DOI 10.48550/arXiv.1907.11692
Lodge JM, 2023, AUSTRALAS J EDUC TEC, V39, P18, DOI 10.14742/ajet.8695
Lu YQ, 2023, ANN BIOMED ENG, V51, P1898, DOI 10.1007/s10439-023-03234-w
Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009
Marcato A, 2023, CAN J CHEM ENG, V101, P3013, DOI 10.1002/cjce.24838
Megahed FM, 2024, QUAL ENG, V36, P287, DOI 10.1080/08982112.2023.2206479
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Murugesan S, 2023, COMPUTER, V56, P116, DOI 10.1109/MC.2023.3253292
Nikolic S, 2023, EUR J ENG EDUC, V48, P559, DOI 10.1080/03043797.2023.2213169
Oh M., 2023, J HUMANITIES, V89, P255, DOI [https://doi.org/10.31310/HUM.089.08, DOI 10.31310/HUM.089.08]
Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160]
Pedersen I, 2023, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1259407
Peters ME, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P43
Pradana M, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2243134
Presswire M., 2023, M2 PRESSWIRE
Qadir Junaid, 2023, 2023 IEEE Global Engineering Education Conference (EDUCON), P1, DOI 10.1109/EDUCON54358.2023.10125121
Radford A., 2018, OPENAI
Raffel C, 2020, J MACH LEARN RES, V21
Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783
Ramos L, 2023, CIENC ING, V44, P131
Rawat KS, 2021, COMPUT APPL ENG EDUC, V29, P1324, DOI 10.1002/cae.22388
Reynolds DA., 2009, ENCY BIOMETRICS, V741, P659, DOI 10.1007/978-0-387-73003-5_196
Rousseau R., 2018, Becoming metric-wise A bibliometric guide for researchers, DOI DOI 10.1016/B978-0-08-102474-4.00009-1
Sánchez-Ruiz LM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13106039
Shoja MM, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.40883
Shoufan A, 2023, IEEE ACCESS, V11, P38805, DOI 10.1109/ACCESS.2023.3268224
Skrabut S., 2023, 80 ways to use ChatGPT in the classroom: Using AI to enhance teaching and learning
Snoswell CL, 2023, J TELEMED TELECARE, DOI 10.1177/1357633X231169055
Su YF, 2023, ASSESS WRIT, V57, DOI 10.1016/j.asw.2023.100752
Susnjak T., 2022, ARXIV, DOI [DOI 10.48550/ARXIV.2212.09292, 10.48550/arXiv.2212.09292]
Taylor A, 2006, CALICO J, V23, P309
Thunström AO, 2022, SCI AM, V327, P70, DOI 10.1038/scientificamerican0922-70
Thurzo A, 2023, EDUC SCI, V13, DOI 10.3390/educsci13020150
Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x
Waisberg E, 2023, PREHOSPITAL DISASTER, V38, P532, DOI 10.1017/S1049023X23005848
Wang J. T. H., 2023, IS LAB REPORT DEAD C, DOI [https://doi.org/10.1071/ma23042, DOI 10.1071/MA23042]
Wang T, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13116716
Wang WH, 2020, SOFT COMPUT, V24, P8173, DOI 10.1007/s00500-019-04384-7
Wesendrup K, 2023, COMPUT IND ENG, V179, DOI 10.1016/j.cie.2023.109216
Xing, 2023, J ARTIFICIAL INTELLI, V6
Yu H, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1183162
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zawacki-Richter O, 2018, COMPUT EDUC, V122, P136, DOI 10.1016/j.compedu.2018.04.001
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 91
TC 4
Z9 4
U1 152
U2 179
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0218-8791
EI 1742-6855
J9 ASIA PAC J EDUC
JI Asia Pac. J. Educ.
PD JAN 2
PY 2024
VL 44
IS 1
SI SI
BP 156
EP 175
DI 10.1080/02188791.2024.2305170
EA JAN 2024
PG 20
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA JG4I1
UT WOS:001151191800001
DA 2024-09-05
ER
PT J
AU Wang, CS
Zhou, J
Wu, HR
Li, JX
Zhao, CJ
Liu, R
AF Wang, Chunshan
Zhou, Ji
Wu, Huarui
Li, Jiuxi
Chunjiang, Zhao
Liu, Rong
TI Research on the Evaluation Method of Eggshell Dark Spots Based on
Machine Vision
SO IEEE ACCESS
LA English
DT Article
DE Object segmentation; Image segmentation; Manuals; Clustering algorithms;
Production; Lighting; eggshell; dark spot; evaluation; machine vision;
K-means
ID CRACK DETECTION; PENETRATION; SALMONELLA
AB Dark spots, which are widely present in different species of eggs, not only significantly affect the appearance and reduce the commercial value of eggs, but also increase the safety hazards of edible eggs in view of that Salmonella can easily penetrate the eggshell at the location of dark spots. During the first 5 days after egg production, it is difficult to identify and evaluate dark spots on the eggshell surface under natural lighting conditions. Therefore, it is a great challenge to automatically classify commercial eggs according to the amount of dark spots at the initial stage. In this paper, a method based on machine vision was proposed for identifying and evaluating eggshell dark spots. First, the K-means clustering algorithm was used to segment the individual egg image on the production line in order to obtain the complete eggshell surface area; then, the unsharp masking method was used to enhance the dark-spot features so as to realize the recognition of dark spots; and finally, quantitative evaluation was conducted according to the amount of dark spots on the eggshell surface and the ratio of the dark-spot projected area. Our experimental results show that the proposed method is able to quickly and accurately calculate the distribution of dark spots and the ratio of the dark-spot projected area. Specifically, the processing speed of dark-spot image is 1 frame/0.5s, which is 960 times faster than the speed of manual marking (1 frame/480s), and the detection capacity of the experimental device is 3600 eggs/h. It provides an automated method for quantitatively examining dark spots on eggshells, a scientific tool for conducting further research on the formation mechanism of dark spots, as well as a technical means for the high-throughput online examination of egg quality.
C1 [Wang, Chunshan; Zhou, Ji] Hebei Agr Univ, Sch Informat Sci & Technol, Baoding 071001, Peoples R China.
[Wang, Chunshan; Wu, Huarui; Chunjiang, Zhao] Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China.
[Wang, Chunshan; Wu, Huarui; Chunjiang, Zhao] Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China.
[Li, Jiuxi; Liu, Rong] Hebei Agr Univ, Sch Mech & Elect Engn, Baoding 071001, Peoples R China.
C3 Hebei Agricultural University; Beijing Academy of Agriculture & Forestry
Sciences (BAAFS); Beijing Academy of Agriculture & Forestry Sciences
(BAAFS); Hebei Agricultural University
RP Zhao, CJ (corresponding author), Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China.; Zhao, CJ (corresponding author), Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China.
EM zhaocj@nercita.org.cn
RI wang, chunshan/ADR-4786-2022
OI wang, chunshan/0000-0002-0222-8397
FU National Natural Science Foundation of China [61871041]; Beijing
Municipal Science and Technology Project [Z191100004019007]; Hebei
Province Key Research and Development Project [20326630D]; Project of
Introducing Overseas Students in Hebei Province [C20190340]
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 61871041, in part by the Beijing
Municipal Science and Technology Project under Grant Z191100004019007,
in part by the Hebei Province Key Research and Development Project under
Grant 20326630D, and in part by the Project of Introducing Overseas
Students in Hebei Province under Grant C20190340. They respectively
provided equipment development, experimental location, experimental
conditions and technical support for the research work of this paper.
CR Abdullah MH, 2017, COMPUT ELECTRON AGR, V141, P81, DOI 10.1016/j.compag.2017.07.006
[Anonymous], 2019, CHINA POULTRY, DOI DOI 10.3969/J.ISSN.1674-0858.2019.05.12
Bao GJ, 2019, COMPUT ELECTRON AGR, V158, P159, DOI 10.1016/j.compag.2019.01.005
Chen X, 2019, POULTRY SCI, V98, P940, DOI 10.3382/ps/pey369
Chousalkar KK, 2010, INT J FOOD MICROBIOL, V142, P207, DOI 10.1016/j.ijfoodmicro.2010.06.029
[邓海霞 DENG Haixia], 2006, [华中农业大学学报, Journal of Huazhong Agricultural University], V25, P452
Duan YuFei Duan YuFei, 2016, Transactions of the Chinese Society of Agricultural Engineering, V32, P282, DOI 10.11975/j.issn.1002-6819.2016.15.039
Fei L., 2019, APPL MACHINE LEARNIN
He K, 2019, IEEE ACCESS, V7, P176248, DOI 10.1109/ACCESS.2019.2957504
Mertens K, 2005, POULTRY SCI, V84, P1653, DOI 10.1093/ps/84.10.1653
Mingrong Z., 2016, RES EGGSHELL DARK SP
Mizuno N, 2020, IEEE/SICE I S SYS IN, P195, DOI [10.1109/sii46433.2020.9025861, 10.1109/SII46433.2020.9025861]
Okinda C, 2020, J FOOD ENG, V283, DOI 10.1016/j.jfoodeng.2020.110041
Pan LeiQing Pan LeiQing, 2010, Transactions of the Chinese Society of Agricultural Engineering, V26, P332
Priyadumkol J, 2017, J FOOD ENG, V209, P76, DOI 10.1016/j.jfoodeng.2017.04.015
Ray A, 2015, FOOD RES INT, V78, P34, DOI 10.1016/j.foodres.2015.11.010
Shi XueFeng Shi XueFeng, 2018, China Poultry, V40, P35
Sinaga KP, 2020, IEEE ACCESS, V8, P80716, DOI 10.1109/ACCESS.2020.2988796
Sun K, 2017, COMPUT ELECTRON AGR, V142, P429, DOI 10.1016/j.compag.2017.09.034
Wang DH, 2019, POULTRY SCI, V98, P6677, DOI 10.3382/ps/pez539
Wang Qiaohua, 2019, Transactions of the Chinese Society of Agricultural Engineering, V35, P314, DOI 10.11975/j.issn.1002-6819.2019.24.037
Wang ShuCai Wang ShuCai, 2017, Transactions of the Chinese Society of Agricultural Engineering, V33, P265, DOI 10.11975/j.issn.1002-6819.2017.03.036
Wang XR, 2020, IEEE ACCESS, V8, P109325, DOI 10.1109/ACCESS.2020.2999942
[吴兰兰 Wu Lanlan], 2016, [华中农业大学学报, Journal of Huazhong Agricultural University], V35, P136
Xiaoguang D., 2019, NONDESTRUCTIVE COMPR
Yang MS, 2019, IEEE ACCESS, V7, P114472, DOI 10.1109/ACCESS.2019.2934179
Zhang P., 2010, P INT C MECH AUT CON, P5718
Zhang ShiQing Zhang ShiQing, 2014, Nongye Jixie Xuebao = Transactions of the Chinese Society for Agricultural Machinery, V45, P204
[周雨程 Zhou Yucheng], 2017, [华中农业大学学报, Journal of Huazhong Agricultural University], V36, P113
NR 29
TC 0
Z9 0
U1 3
U2 23
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2020
VL 8
BP 160116
EP 160125
DI 10.1109/ACCESS.2020.3020260
PG 10
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA NP3QU
UT WOS:000570094400001
OA gold
DA 2024-09-05
ER
PT J
AU Mendes, AM
Tonin, FS
Buzzi, MF
Pontarolo, R
Fernandez-Llimos, F
AF Mendes, Antonio M.
Tonin, Fernanda S.
Buzzi, Maiko F.
Pontarolo, Roberto
Fernandez-Llimos, Fernando
TI Mapping pharmacy journals: A lexicographic analysis
SO RESEARCH IN SOCIAL & ADMINISTRATIVE PHARMACY
LA English
DT Article
DE Pharmacy; Periodicals as topic; Bibliometrics; Principal component
analysis
ID SCIENCE; KNOWLEDGE; ARTICLES
AB Background: Pharmacy journals constitute a heterogeneous group that can be map to identify Pharmacy scientific subareas.
Objective: This study aimed to objectively map Pharmacy journals by means of a lexicographic analysis of the titles of published articles.
Methods: Active journals between 2006 and 2016 containing any of the terms 'pharmacy', 'pharmacist*', 'pharmaceut*', 'pharmacol*', or 'pharmacotherap*' in their titles were searched in four databases (01/15/2018): Medline, PubMed Central, Science Citation Index expanded/Social Sciences Citation Index expanded (SCIe/SSCIe), and Scopus CiteScore Metrics. The titles of all the articles (Jan-2006 to Dec-2016) in the identified journals were gathered into a single text corpus. The following analyses were performed (Iramuteq 0.7): lexicographic analysis to determine the number, frequency and distribution of active words; descending hierarchical classification (DHC) to categorize active words and journals into lexical classes; factorial correspondence analyses (FCA) to obtain bi- and tri-dimensional graphs.
Results: A total of 285 journals comprising 316,089 articles (median 70.4 articles [IQR 34.0-141.0] per journal per year) were included for the analyses. The journals were indexed in Scopus (90.2%) with a median CiteScore of 1.16 (IQR 0.28-2.55); in SCIe/SSCIe (44.6%) with a median impact factor of 2.410 (IQR 1.629-3.316); and in PubMed (65.7%). The DHC of active words produced three major groups (A, B, C) with two lexical classes each, representing six Pharmacy subareas depicted by the FCA as: Group A comprising 'Cell Pharmacology' (20 journals) and 'Molecular Pharmacology' (46 journals), Group B with 'Clinical Pharmacology' (57 journals) and 'Pharmacy Practice' (67 journals), and Group C with 'Pharmaceutics' (35 journals) and 'Pharmaceutical Analysis' (60 journals). Coverage of the classes in bibliographic databases and impact metrics is unbalanced.
Conclusions: Pharmacy journals that can be objectively classified into six different classes that represent different research subareas with uneven coverage in bibliographic databases.
C1 [Mendes, Antonio M.; Tonin, Fernanda S.] Univ Fed Parana, Pharmaceut Sci Postgrad Programme, Curitiba, Parana, Brazil.
[Buzzi, Maiko F.] Univ Tecnol Fed Parana, Dept Math, Curitiba, Parana, Brazil.
[Pontarolo, Roberto] Univ Fed Parana, Dept Pharm, Curitiba, Parana, Brazil.
[Fernandez-Llimos, Fernando] Univ Lisbon, Dept Social Pharm, Fac Pharm, Res Inst Med iMed ULisboa, Av Prof Gama Pinto, P-1649003 Lisbon, Portugal.
C3 Universidade Federal do Parana; Universidade Tecnologica Federal do
Parana; Universidade Federal do Parana; Pontificia Universidade Catolica
do Parana; Universidade Federal do Parana; Universidade de Lisboa
RP Fernandez-Llimos, F (corresponding author), Univ Lisbon, Dept Social Pharm, Fac Pharm, Res Inst Med iMed ULisboa, Av Prof Gama Pinto, P-1649003 Lisbon, Portugal.
EM mmendesantonio@gmail.com; stumpf.tonin@ufpr.br; maikobuzzi@hotmail.com;
pontarolo@ufpr.br; f-llimos@ff.ulisboa.pt
RI Tonin, Fernanda S/O-2050-2017; Tonin, Fernanda S./AAE-3435-2022;
Fernandez-Llimos, Fernando/B-8931-2008; Pontarolo, Roberto/G-6948-2014
OI Tonin, Fernanda S/0000-0003-4262-8608; Tonin, Fernanda
S./0000-0003-4262-8608; Fernandez-Llimos, Fernando/0000-0002-8529-9595;
Matoso Mendes, Antonio Eduardo/0000-0002-5752-349X; Pontarolo,
Roberto/0000-0002-7049-4363
CR Almarsdóttir AB, 2014, RES SOC ADMIN PHARM, V10, P252, DOI 10.1016/j.sapharm.2013.04.002
[Anonymous], 2003, PHARM J, V270, P674
[Anonymous], 1962, The Structure of Scientific Revolutions
[Anonymous], 1973, L'Analyse des Donnees
Baroni M, 2006, CORPUS LINGUISTICS I
Barrett A, 2016, J MED LIBR ASSOC, V104, P118, DOI 10.3163/1536-5050.104.2.005
BIGLAN A, 1973, J APPL PSYCHOL, V57, P195, DOI 10.1037/h0034701
Börner K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039464
BORNER K, 2003, ANN REV INFORM SCI T
Boyack KW, 2004, P NATL ACAD SCI USA, V101, P5192, DOI 10.1073/pnas.0307509100
Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6
Clausen S., 1998, APPL CORRES ANAL INT
De Alba M, 2004, PAPERS SOCIAL REPRES, V13, P1
Desselle S.P., 2002, J PHARM TEACH, V9, P27
Desselle SP, 2019, RES SOC ADMIN PHARM, V15, P1, DOI 10.1016/j.sapharm.2018.10.026
Desselle SP, 2018, RES SOC ADMIN PHARM, V14, P727, DOI 10.1016/j.sapharm.2017.09.001
Desselle SP, 2002, J PHARM TEACH, V9, P1
Dorta-González P, 2013, SCIENTOMETRICS, V95, P645, DOI 10.1007/s11192-012-0929-9
Fabry G, 2017, GMS J MED EDU, V34, DOI 10.3205/zma001104
Fernandez-Llimos F, 2018, PHARM PRACT-GRANADA, V16, DOI [10.18549/PharmPract.2018.02.1282, 10.18549/pharmpract.2018.02.1282]
Gagnon ML, 2011, J CLIN EPIDEMIOL, V64, P25, DOI 10.1016/j.jclinepi.2009.08.013
Garcia-Cardenas V, 2016, EUR RESPIR J, V47, P1134, DOI 10.1183/13993003.01497-2015
Gonzalez B, 1991, MULTIVARIATE ANAL
Irwin AN, 2017, RES SOC ADMIN PHARM, V13, P389, DOI 10.1016/j.sapharm.2016.04.006
Lebart L., 2000, STAT ANAL TEXTS
Lemaire B., 2008, ACT 9 JOURN INT AN S, P725
LEYDESDORFF L, 1987, SCIENTOMETRICS, V11, P295, DOI 10.1007/BF02279351
Lotriet CJ, 2012, AUSTRALAS MED J, V5, P26, DOI 10.4066/AMJ.2012.1165
Mendes Antonio E., 2016, Pharmacy Pract (Granada), V14, P847, DOI [10.18549/pharmpract.2016.04.847, 10.18549/PharmPract.2016.04.847]
Minguet F, 2017, INT J CLIN PHARM-NET, V39, P989, DOI 10.1007/s11096-017-0527-2
Minguet F, 2015, RES SOC ADMIN PHARM, V11, P686, DOI 10.1016/j.sapharm.2014.11.004
Morillo F, 2003, J AM SOC INF SCI TEC, V54, P1237, DOI 10.1002/asi.10326
NLM, MEDLINE PUBMED PMC P
Pintor-Mármol A, 2012, PHARMACOEPIDEM DR S, V21, P799, DOI 10.1002/pds.3296
Pudovkin AI, 2002, J AM SOC INF SCI TEC, V53, P1113, DOI 10.1002/asi.10153
Rawat S, 2014, J RES MED SCI, V19, P87
Reinert M., 1990, BMS-B SOCIOL METHOD, V26, P24, DOI DOI 10.1177/075910639002600103
Reinert Max., 1983, CAHIERS LANALYSE DON, V8, P187
Reinert P. M., 1987, Bulletin of Sociological Methodology/Bulletin de Mthodologie Sociologique, V13, P53, DOI [https://doi.org/10.1177/075910638701300107, DOI 10.1177/075910638701300107, 10.1177/075910638701300107]
Rodriguez RW, 2016, AM J HEALTH-SYST PH, V73, P569, DOI 10.2146/ajhp150319
Rodriguez RW, 2014, AM J HEALTH-SYST PH, V71, P321, DOI 10.2146/ajhp130421
Skau K, 2007, AM J PHARM EDUC, V71, DOI 10.5688/aj710111
Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G
Sourial N, 2010, J CLIN EPIDEMIOL, V63, P638, DOI 10.1016/j.jclinepi.2009.08.008
Spasser MA, 1997, SCIENTOMETRICS, V39, P77, DOI 10.1007/BF02457431
Tonin FS, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196644
van Assen MALM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084896
Wallach JD, 2018, RES INTEGR PEER REV, V3, DOI 10.1186/s41073-017-0045-8
NR 48
TC 31
Z9 33
U1 0
U2 10
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 1551-7411
EI 1934-8150
J9 RES SOC ADMIN PHARM
JI Res. Soc. Adm. Pharm.
PD DEC
PY 2019
VL 15
IS 12
BP 1464
EP 1471
DI 10.1016/j.sapharm.2019.01.011
PG 8
WC Public, Environmental & Occupational Health; Pharmacology & Pharmacy
WE Social Science Citation Index (SSCI)
SC Public, Environmental & Occupational Health; Pharmacology & Pharmacy
GA JS8TO
UT WOS:000500574500012
PM 30683600
DA 2024-09-05
ER
PT C
AU Schedl, M
Seyerlehner, K
Schnitzer, D
Widmer, G
Schiketanz, C
AF Schedl, Markus
Seyerlehner, Klaus
Schnitzer, Dominik
Widmer, Gerhard
Schiketanz, Cornelia
BE Chen, HH
Efthimiadis, EN
Savoy, J
Crestani, F
MarchandMaillet, S
TI Three Web-based Heuristics to Determine a Person's or Institution's
Country of Origin
SO SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR
CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL
LA English
DT Proceedings Paper
CT 33rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval
CY JUL 19-23, 2010
CL Geneva, SWITZERLAND
DE information extraction; country of origin detection; term weighting;
music information research; evaluation
AB We propose three heuristics to determine the country of origin of a person or institution via text-based IE from the Web. We evaluate all methods on a collection of music artists and bands, and show that some heuristics outperform earlier work on the topic by terms of coverage, while retaining similar precision levels. We further investigate an extension using country-specific synonym lists.
C1 [Schedl, Markus; Seyerlehner, Klaus; Schnitzer, Dominik; Widmer, Gerhard; Schiketanz, Cornelia] Johannes Kepler Univ Linz, Dept Computat Percept, A-4040 Linz, Austria.
C3 Johannes Kepler University Linz
RP Schedl, M (corresponding author), Johannes Kepler Univ Linz, Dept Computat Percept, A-4040 Linz, Austria.
EM markus.schedl@jku.at; klaus.seyerlehner@jku.at;
dominik.schnitzer@ofai.at; gerhard.widmer@jku.at; music@jku.at
RI Widmer, Gerhard/B-8218-2017
OI Widmer, Gerhard/0000-0003-3531-1282
CR [Anonymous], 1979, INFORM RETRIEVAL
Baeza-Yates Ricardo, 1999, MODERN INFORM RETRIE
GOVAERTS S, 2009, P 10 ISMIR OCT
KNEES P, 2004, P 5 ISMIR OCT
KNEES P, 2007, P 30 ACM SIGIR JUL
SCHEDL M, 2010, P 2 ADMIRE JUL
TURNBULL D, 2007, P 30 ACM SIGIR JUL
NR 7
TC 0
Z9 0
U1 1
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-60558-896-4
PY 2010
BP 801
EP 802
PG 2
WC Computer Science, Information Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BTG52
UT WOS:000286904100146
DA 2024-09-05
ER
PT C
AU Wen, L
Li, JF
AF Wen, Lei
Li, Junfei
BE Chen, Y
Abraham, A
TI Research of credit grade assessment for suppliers based on multi-layer
SVM classifier
SO ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN
AND APPLICATIONS, VOL 1
LA English
DT Proceedings Paper
CT 6th International Conference on Intelligent Systems Design and
Applications (ISDA 2006)
CY OCT 16-18, 2006
CL Jinan Univ, Jinan, PEOPLES R CHINA
HO Jinan Univ
AB It is very important to choose swift, powerful and compatible suppliers in supply chain management (SCM). According to the credit grade assessment for suppliers in practice and the related theories, a set of index system which assesses a supplier's credit grade is established. Basing on the index system, a multi-layer support vector machines (SVM) classifier is established to assess and classify the suppliers' credit grade in SC. In order to verify the effectiveness of the method, a real case is given and BP neural network is also used assess the same data. The experimental results show that multi-layer SVM classifier is effective in credit level assessment and achieves better performance than BP neural network.
C1 [Wen, Lei; Li, Junfei] North China Elect Power Univ, Dept Econ Management, Baoding 071003, Hebei, Peoples R China.
C3 North China Electric Power University
RP Wen, L (corresponding author), North China Elect Power Univ, Dept Econ Management, Baoding 071003, Hebei, Peoples R China.
EM leejfgood@126.com
FU Doctor Foundation of North China Electric Power University [20041205];
nature science planning project of hebei provence education bureau
[z2005117]
FX This paper was supported by Doctor Foundation of North China Electric
Power University. number:20041205 And the nature science planning
project of hebei provence education bureau, number :z2005117.
CR [Anonymous], NEW APPROACH DATA MI
Campbell C, 2002, NEUROCOMPUTING, V48, P63, DOI 10.1016/S0925-2312(01)00643-9
CHANG LF, 2001, MANAGE SCI, P117
Gold C, 2003, NEUROCOMPUTING, V55, P221, DOI 10.1016/S0925-2312(03)00375-8
Haykin S., 2004, Neural Network: A comprehensive foundation." Em, V2A
Kim HC, 2003, PATTERN RECOGN, V36, P2757, DOI 10.1016/S0031-3203(03)00175-4
LV YG, 2001, ELECT POWER SYSTEM A, V17, P23
Min JH, 2005, EXPERT SYST APPL, V28, P603, DOI 10.1016/j.eswa.2004.12.008
Shih FY, 2005, INT J PATTERN RECOGN, V19, P775, DOI 10.1142/S0218001405004320
SINALINGAM DM, 2005, INT J PATTERN RECOGN, V5, P663
Vapnik V., 2000, NATURE STAT THEORY
WANG XD, 2003, COMPUTER ENG APPL, P75
XU J, 2003, SOFT SCI, V17, P12
NR 13
TC 1
Z9 1
U1 0
U2 0
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
BN 0-7695-2528-8
PY 2006
BP 207
EP 211
PG 5
WC Computer Science, Artificial Intelligence
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BFK66
UT WOS:000242507000039
DA 2024-09-05
ER
PT J
AU CZERWON, HJ
AF CZERWON, HJ
TI SCIENTOMETRIC INDICATORS FOR A SPECIALTY IN THEORETICAL HIGH-ENERGY
PHYSICS - MONTE-CARLO METHODS IN LATTICE FIELD-THEORY
SO SCIENTOMETRICS
LA English
DT Article
RP CZERWON, HJ (corresponding author), ACAD SCI GDR,CTR SCI INF,SCHIFFBAUERDAMM 19,O-1040 BERLIN,GERMANY.
CR AVERSA ES, 1985, SCIENTOMETRICS, V7, P383, DOI 10.1007/BF02017156
BENNION BC, 1986, CZECH J PHYS, V36, P19, DOI 10.1007/BF01599718
BONITZ M, 1980, J RADIOANAL CHEM, V57, P7, DOI 10.1007/BF02519858
Braun T., 1985, Scientometric indicators:a 32-country comparative evaluation of publishing performance and citation impact
CHEN YS, 1987, SCIENTOMETRICS, V11, P183, DOI 10.1007/BF02016591
Cole JR., 1973, Social stratification in science
CRANE D, 1980, SOC STUD SCI, V10, P23, DOI 10.1177/030631278001000102
CZERWON HJ, 1986, CZECH J PHYS, V36, P1343, DOI 10.1007/BF01598035
CZERWON HJ, 1986, CZECH J PHYS, V36, P1101, DOI 10.1007/BF01597776
CZERWON HJ, 1986, CZECH J PHYS, V36, P33, DOI 10.1007/BF01599721
GARFIELD E, 1985, CURR CONTENTS, V50, P3
GARFIELD E, 1984, CURR CONTENTS, V48, P3
GARFIELD E, 1983, CURR CONTENTS, V46, P5
GARFIELD E, 1986, CURR CONTENTS, V47, P3
GARFIELD E, 1983, CURR CONTENTS, V20, P5
GARFIELD E, 1982, CURR CONTENTS, V32, P5
KOESTER D, 1982, SOC STUD SCI, V12, P73, DOI 10.1177/030631282012001004
LINDSEY D, 1980, SOC STUD SCI, V10, P145, DOI 10.1177/030631278001000202
LIPATOV YS, 1986, SCIENTOMETRICS, V9, P197, DOI 10.1007/BF02017243
MORAVCSIK MJ, 1979, SCIENTOMETRICS, V1, P161, DOI 10.1007/BF02016968
PAO ML, 1986, J AM SOC INFORM SCI, V37, P26, DOI 10.1002/(SICI)1097-4571(198601)37:1<26::AID-ASI4>3.0.CO;2-Z
PICKERING A, 1987, SOC STUD SCI, V17, P87, DOI 10.1177/030631287017001004
PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292, DOI 10.1002/asi.4630270505
SCHUBERT A, 1986, SCIENTOMETRICS, V9, P281, DOI 10.1007/BF02017249
SCHUBERT A, 1983, 1ST P NAT C INT PART, P80
SMALL H, 1985, J INFORM SCI, V11, P147, DOI 10.1177/016555158501100402
SULLIVAN D, 1980, SCIENTOMETRICS, V2, P309, DOI 10.1007/BF02016351
VLACHY J, 1980, CZECH J PHYS, V30, P477, DOI 10.1007/BF01596104
VLACHY J, 1985, SCIENTOMETRICS, V7, P505, DOI 10.1007/BF02017164
VLACHY J, 1980, SCI YUGOSL, V6, P155
WHITE DH, 1979, PHYS TODAY, V32, P40, DOI 10.1063/1.2995489
WHITE DH, 1980, SCI YUG, V6, P203
NR 32
TC 14
Z9 16
U1 0
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0138-9130
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 1990
VL 18
IS 1-2
BP 5
EP 20
DI 10.1007/BF02019159
PG 16
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA CP071
UT WOS:A1990CP07100001
DA 2024-09-05
ER
PT C
AU Zhang, CX
AF Zhang, Chenxiang
BE Chen, T
Xu, L
TI Research on recognition algorithm of network public opinion in view of
evaluation
SO PROCEEDINGS OF THE 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL,
COMPUTER ENGINEERING AND ELECTRONICS (ICECEE 2015)
SE ACSR-Advances in Comptuer Science Research
LA English
DT Proceedings Paper
CT 2nd International Conference on Electrical, Computer Engineering and
Electronics (ICECEE)
CY MAY 29-31, 2015
CL Jinan, PEOPLES R CHINA
DE Internet public opinion; Online review; Opinion analysis; Feature
presentation; Ensemble learning; Combination optimization; Review spam
detection
AB In This paper, firstly, discusses the theoretical background, the existed research achievements and commercial products of Internet public opinion monitoring and analysis, according to preceding context we find the needs of public opinion analysis and the deficiency in the existed systems, and then raise the prototype of Internet public opinion mining with the function of opinion tracking. Secondly, decomposes the prototype to figure out the technology points, then corroding to them, gives a detailed introduction of their theories. Thirdly, describes the overall system design and detail works in each module of the Internet public opinion monitoring and analysis system.
C1 Suzhou Ind Pk Inst Serv Outsourcing, Suzhou 215123, Jiangsu, Peoples R China.
RP Zhang, CX (corresponding author), Suzhou Ind Pk Inst Serv Outsourcing, Suzhou 215123, Jiangsu, Peoples R China.
EM kylinbaby@163.com
CR Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001
Hu M., 2006, AAAI, P1621
Mukherjee Arjun., 2011, P 20 INT C COMPANION, P93, DOI DOI 10.1145/1963192.1963240
Xie S., 2012, Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P823, DOI DOI 10.1145/2339530.2339662
Zakoian J. M., 2013, J ECON DYN CONTROL, V18, P931
NR 5
TC 0
Z9 0
U1 0
U2 10
PU ATLANTIS PRESS
PI PARIS
PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE
SN 2352-538X
BN 978-94-62520-81-3
J9 ACSR ADV COMPUT
PY 2015
VL 24
BP 178
EP 181
PG 4
WC Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering
GA BD3KZ
UT WOS:000359820600040
DA 2024-09-05
ER
PT J
AU Cappelletti-Montano, B
Cherchi, G
Manca, B
Montaldo, S
Musio, M
AF Cappelletti-Montano, Beniamino
Cherchi, Gianmarco
Manca, Benedetto
Montaldo, Stefano
Musio, Monica
TI How to Measure the Researcher Impact with the Aid of its Impactable
Area: A Concrete Approach Using Distance Geometry
SO JOURNAL OF CLASSIFICATION
LA English
DT Article; Early Access
DE Bibliometrics; Dimensionality reduction; Linear programming
ID INDIVIDUAL RESEARCHERS; SINGLE RESEARCHERS; LOCALIZATION
AB Assuming that the subject of each scientific publication can be identified by one or more classification entities, we address the problem of determining a similarity function (distance) between classification entities based on how often two classification entities are used in the same publication. This similarity function is then used to obtain a representation of the classification entities as points of an Euclidean space of a suitable dimension by means of optimization and dimensionality reduction algorithms. This procedure allows us also to represent the researchers as points in the same Euclidean space and to determine the distance between researchers according to their scientific production. As a case study, we consider as classification entities the codes of the American Mathematical Society Classification System.
C1 [Cappelletti-Montano, Beniamino; Cherchi, Gianmarco; Manca, Benedetto; Montaldo, Stefano; Musio, Monica] Univ Cagliari, Dept Math & Comp Sci, Via Osped 72, I-09124 Cagliari, Italy.
C3 University of Cagliari
RP Manca, B (corresponding author), Univ Cagliari, Dept Math & Comp Sci, Via Osped 72, I-09124 Cagliari, Italy.
EM b.cappellettimontano@unica.it; g.cherchi@unica.it; bmanca@unica.it;
montaldo@unica.it; mmusio@unica.it
FU PRIN 2022 - EUD4XR End User Development for eXtended Reality
FX No Statement AvailableDAS:The datasets generated by the survey research
during and/or analyzed during the current study are available in the
Zentralblatt MATH repository, https://zbmath.org.
CR Abramo G, 2015, ECON POLIT-ITALY, V32, P329, DOI 10.1007/s40888-015-0016-9
Baccini A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0221212
Baccini F, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101226
Bahr A, 2009, INT J ROBOT RES, V28, P714, DOI 10.1177/0278364908100561
Bornmann L, 2018, SCIENTOMETRICS, V115, P385, DOI 10.1007/s11192-018-2658-1
Bornmann L, 2014, SCIENTOMETRICS, V98, P487, DOI 10.1007/s11192-013-1161-y
Cagan R, 2013, DIS MODEL MECH, V6, P869, DOI 10.1242/dmm.012955
Cappelletti-Montano B, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101164
Cherchi G., 2019, IT CHAPT C 2019 SMAR, P121
Cox T.F., 2000, Multidimensional Scaling, V88, P328, DOI DOI 10.1201/9781420036121
Dasgupta S., 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), P634, DOI 10.1109/SFFCS.1999.814639
DAVIES DL, 1979, IEEE T PATTERN ANAL, V1, P224, DOI 10.1109/TPAMI.1979.4766909
Demetrescu C, 2020, SCIENTOMETRICS, V124, P2207, DOI 10.1007/s11192-020-03548-9
Glnzel W., 2019, Springer handbook of science and technology indicators, DOI [10.1007/978-3-030-02511-3, DOI 10.1007/978-3-030-02511-3]
Gurobi Optimization LLC, 2024, Gurobi Optimizer Reference Manual
Haunschild R, 2019, SCIENTOMETRICS, V120, P925, DOI 10.1007/s11192-019-03147-3
Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325
Indyk P., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P604, DOI 10.1145/276698.276876
Ioannidis J.P., 2022, Mendeley Data, V4
Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384
Jackson JE, 1991, USERS GUIDE PRINCIPA
Johnson W., 1984, Contemp. Math., V26, P1, DOI DOI 10.1090/CONM/026/737400
Jolliffe IT, 2002, Principal Component Analysis, V2nd
Kurimo M, 1999, KOHONEN MAPS, P363, DOI 10.1016/B978-044450270-4/50029-2
Liberti L, 2020, TOP, V28, P271, DOI 10.1007/s11750-020-00563-0
Livesu Marco, 2019, Transactions on Computational Science XXXIV. Lecture Notes in Computer Science (LNCS 11820), P64, DOI 10.1007/978-3-662-59958-7_4
Marzolla M, 2016, J INFORMETR, V10, P408, DOI 10.1016/j.joi.2016.01.009
McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861]
MURASE H, 1995, INT J COMPUT VISION, V14, P5, DOI 10.1007/BF01421486
Murtagh F, 2018, J CLASSIF, V35, P5, DOI 10.1007/s00357-018-9247-0
Petrera M., 2021, arXiv
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Singer A, 2011, APPL COMPUT HARMON A, V30, P20, DOI 10.1016/j.acha.2010.02.001
Tabaghi P, 2019, INT CONF ACOUST SPEE, P4893, DOI 10.1109/ICASSP.2019.8682653
Tenenbaum JB, 2000, SCIENCE, V290, P2319, DOI 10.1126/science.290.5500.2319
TURK M, 1991, J COGNITIVE NEUROSCI, V3, P71, DOI 10.1162/jocn.1991.3.1.71
Waltman L, 2013, SCIENTOMETRICS, V96, P699, DOI 10.1007/s11192-012-0913-4
WUTHRICH K, 1989, SCIENCE, V243, P45, DOI 10.1126/science.2911719
Xie HZ, 2018, Arxiv, DOI arXiv:1706.04371
NR 39
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 0176-4268
EI 1432-1343
J9 J CLASSIF
JI J. Classif.
PD 2024 AUG 26
PY 2024
DI 10.1007/s00357-024-09490-2
EA AUG 2024
PG 29
WC Mathematics, Interdisciplinary Applications; Psychology, Mathematical
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Mathematics; Psychology
GA D7F0C
UT WOS:001297789800001
OA hybrid
DA 2024-09-05
ER
PT J
AU Nguyen, VA
Boyd-Graber, J
Resnik, P
Cai, DA
Midberry, JE
Wang, YX
AF Viet-An Nguyen
Boyd-Graber, Jordan
Resnik, Philip
Cai, Deborah A.
Midberry, Jennifer E.
Wang, Yuanxin
TI Modeling topic control to detect influence in conversations using
nonparametric topic models
SO MACHINE LEARNING
LA English
DT Article
DE Bayesian nonparametrics; Influencer detection; Topic modeling; Topic
segmentation; Gibbs sampling
ID DISCOURSE; DOMINANCE; TEXT; LEADERSHIP; MEETINGS; TURNS; TIME
AB Identifying influential speakers in multi-party conversations has been the focus of research in communication, sociology, and psychology for decades. It has been long acknowledged qualitatively that controlling the topic of a conversation is a sign of influence. To capture who introduces new topics in conversations, we introduce SITS-Speaker Identity for Topic Segmentation-a nonparametric hierarchical Bayesian model that is capable of discovering (1) the topics used in a set of conversations, (2) how these topics are shared across conversations, (3) when these topics change during conversations, and (4) a speaker-specific measure of "topic control". We validate the model via evaluations using multiple datasets, including work meetings, online discussions, and political debates. Experimental results confirm the effectiveness of SITS in both intrinsic and extrinsic evaluations.
C1 [Viet-An Nguyen] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA.
[Boyd-Graber, Jordan] Univ Maryland, ISch, College Pk, MD 20742 USA.
[Boyd-Graber, Jordan; Resnik, Philip] Univ Maryland, UMIACS, College Pk, MD 20742 USA.
[Resnik, Philip] Univ Maryland, Dept Linguist, College Pk, MD 20742 USA.
[Cai, Deborah A.; Midberry, Jennifer E.; Wang, Yuanxin] Temple Univ, Sch Media & Commun, Philadelphia, PA 19122 USA.
C3 University System of Maryland; University of Maryland College Park;
University System of Maryland; University of Maryland College Park;
University System of Maryland; University of Maryland College Park;
University System of Maryland; University of Maryland College Park;
Pennsylvania Commonwealth System of Higher Education (PCSHE); Temple
University
RP Nguyen, VA (corresponding author), Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA.
EM vietan@cs.umd.edu; jbg@umiacs.umd.edu; resnik@umd.edu;
debcai@temple.edu; jmidberry@gmail.com; yuanxin@gmail.com
RI Midberry, Jennifer/KIC-3279-2024; Boyd-Graber, Jordan/A-9976-2016; Cai,
Deborah A/N-8816-2018
OI Midberry, Jennifer/0000-0003-0709-2406; Boyd-Graber,
Jordan/0000-0002-7770-4431
FU Army Research Laboratory through ARL [W911NF-09-2-0072]; Office of the
Director of National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), through the Army Research Laboratory; US
National Science Foundation Grant NSF [1018625, IIS1211153]; Direct For
Computer & Info Scie & Enginr; Div Of Information & Intelligent Systems
[1211153] Funding Source: National Science Foundation; Division of
Computing and Communication Foundations; Direct For Computer & Info Scie
& Enginr [1018625] Funding Source: National Science Foundation
FX We would like to thank the reviewers for their insightful comments. We
are grateful to Eric Hardisty, Pranav Anand, Craig Martell, Douglas W.
Oard, Earl Wagner, and Marilyn Walker for helpful discussions. This
research was funded in part by the Army Research Laboratory through ARL
Cooperative Agreement W911NF-09-2-0072 and by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA), through the Army Research Laboratory. Jordan
Boyd-Graber and Philip Resnik are supported by US National Science
Foundation Grant NSF #1018625. Viet-An Nguyen and Philip Resnik are also
supported by US National Science Foundation Grant NSF #IIS1211153. Any
opinions, findings, conclusions, or recommendations expressed are the
authors' and do not necessarily reflect those of the sponsors.
CR Abbott Rob, 2011, P WORKSH LANG SOC ME
Ahmed A., 2010, P UNC ART INT
Alarcon-del Amo M., 2011, CYBERPSYCHOLOGY BEHA, V14
Anand Pranav, 2011, AAAI 2011 WORKSH COM
Andrzejewski D., 2007, P EUR C MACH LEARN
[Anonymous], 2009, KNOWLEDGE DISCOVERY
[Anonymous], 1991, Contexts of accommodation, DOI DOI 10.1017/CBO9780511663673.001
[Anonymous], P EMP METH NAT LANG
[Anonymous], P INT C MACH LEARN
[Anonymous], 1986, Exchange and power in social life
[Anonymous], 2009, ADV NEURAL INFORM PR
[Anonymous], P EMP METH NAT LANG
[Anonymous], UMIACSTR201004
[Anonymous], 2012, P WORLD WID WEB C
[Anonymous], P UNC ART INT
[Anonymous], P ADV NEUR INF PROC
[Anonymous], 1994, PUBLIC OPIN Q
[Anonymous], 2008, FDN TRENDS INF RETRI, DOI DOI 10.1561/1500000001
[Anonymous], 2012, Multilingual topic models for unaligned text
[Anonymous], P SIAM INT C DAT MIN
[Anonymous], 2001, LEARNING HUMAN INTER
ANTONIAK CE, 1974, ANN STAT, V2, P1152, DOI 10.1214/aos/1176342871
Aran O., 2010, P INT C PATT REC ICP
Artstein R, 2008, COMPUT LINGUIST, V34, P555, DOI 10.1162/coli.07-034-R2
Bales R.F., 1970, PERSONALITY INTERPER
Beeferman D, 1999, MACH LEARN, V34, P177, DOI 10.1023/A:1007506220214
Bender Emily M, 2011, P WORKSH LANG SOC ME
Biran O., 2012, P WORKSH LANG SOC ME
Blei D.M., 2006, P 23 INT C MACH LEAR
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Booth N, 2011, CORP COMMUN, V16, P184, DOI 10.1108/13563281111156853
Boydstun A. E., 2013, AM POLITICS RES
Brooke M.E., 1986, J LANG SOC PSYCHOL, V5, P201
Burrel N.A., 1998, PERSUASION ADV METAA
Butler B., 2008, INT C HUM FACT COMP
Chen H., 2009, COMPUTATIONAL LINGUI
Choi F.Y., 2001, P EMP METH NAT LANG
Cialdini R.B., 2000, Influence: Science and practice, V4th
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
Cowans P. J., 2006, THESIS U CAMBRIDGE
Daly JA., 1977, Western Journal of Speech Communication: WJSC, V41, P175, DOI DOI 10.1080/10570317709389610
Danescu-Niculescu-Mizil Cristian, 2012, Proceedings of the 21st international conference on World Wide Web, P699
Davis J., 2006, P INT C MACH LEARN
Dowman M, 2008, IEEE T AUDIO SPEECH, V16, P1238, DOI 10.1109/TASL.2008.925867
DRAKE BH, 1986, ACAD MANAGE REV, V11, P567, DOI 10.2307/258311
Du L., 2010, INT C DAT MIN
Ehlen P, 2007, P AAAI SPRING S INT
Eisenstein J., 2008, P EMP METH NAT LANG
Emerson R.M., 1981, SOCIAL PSYCHOL SOCIO
Fallows J., 2008, The Atlantic Monthly
FERGUSON TS, 1973, ANN STAT, V1, P209, DOI 10.1214/aos/1176342360
Fleischmann K. R., 2011, ICONFERENCE
Foa U.G., 1972, STUDIES DYADIC COMMU, P291, DOI DOI 10.1016/B978-0-08-015867-9.50017-4
FOX EB, 2008, P INT C MACH LEARN
Galley M., 2003, P ASS COMP LING
Galley M., 2004, P ASS COMP LING
Gardner M., 2010, P ADV NEUR INF PROC
Gershman SJ, 2012, J MATH PSYCHOL, V56, P1, DOI 10.1016/j.jmp.2011.08.004
Greene Stephan, 2009, NAACL
Grimmer J, 2011, POLIT ANAL, V19, P32, DOI [10.1093/pan/mpq027, 10.1093/pan/mpp034]
Halliday M.A.K., 1976, Language, Context, and Text: Aspects of Language in a Social-Semiotic Perspective
Hamilton M. A., 1998, PERSUATION ADV METAA
Hardisty Eric, 2010, P EMP METH NAT LANG
Hawes T, 2009, J AM SOC INF SCI TEC, V60, P1607, DOI 10.1002/asi.21087
Hearst MA, 1997, COMPUT LINGUIST, V23, P33
Hirschberg J., 1993, Computational Linguistics, V19, P501
Hoffman M. D., 2009, P C DIG AUD EFF
Horton S., 2008, HARPERS MAGAZINE
Hsueh P., 2006, P EUR CHAPT ASS COMP
Hu Y., 2011, P ASS COMP LING
Huffaker D, 2010, HUM COMMUN RES, V36, P593, DOI 10.1111/j.1468-2958.2010.01390.x
Hung H, 2011, IEEE T AUDIO SPEECH, V19, P847, DOI 10.1109/TASL.2010.2066267
Ireland ME, 2011, PSYCHOL SCI, V22, P39, DOI 10.1177/0956797610392928
Janin A., 2003, IEEE INT C AC SPEECH
Jayagopi DB, 2009, IEEE T AUDIO SPEECH, V17, P501, DOI 10.1109/TASL.2008.2008238
Johnson M., 2010, P ASS COMP LING
Katz E., 1955, PERSONAL INFLUENCE P
Kellermann K, 2004, J LANG SOC PSYCHOL, V23, P308, DOI 10.1177/0261927x04266811
Marin A., 2010, Proceedings 2010 IEEE Spoken Language Technology Workshop (SLT 2010), P49, DOI 10.1109/SLT.2010.5700821
Mast MS, 2002, HUM COMMUN RES, V28, P420, DOI 10.1111/j.1468-2958.2002.tb00814.x
McCombs M, 2009, COMMUN SER, P1
Mimno David., 2011, Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, P506
Morris J., 1991, Computational Linguistics, V17, P21
Müller P, 2004, STAT SCI, V19, P95, DOI 10.1214/088342304000000017
Murray Gabriel, 2005, EUR C SPEECH COMM TE
Neal RM, 2000, J COMPUT GRAPH STAT, V9, P249, DOI 10.2307/1390653
Neal RM, 2003, ANN STAT, V31, P705, DOI 10.1214/aos/1056562461
Ng S. H., 1993, POWER LANGUAGE VERBA
NG SH, 1993, BRIT J SOC PSYCHOL, V32, P265, DOI 10.1111/j.2044-8309.1993.tb01000.x
Nguyen V. A., 2012, P ASS COGN LING
Olney A., 2005, P HUM MANG TECHN C
Otsuka K., 2006, INT C HUM FACT COMP
PALMER MT, 1989, COMMUN MONOGR, V56, P1, DOI 10.1080/03637758909390246
Passonneau RJ, 1997, COMPUT LINGUIST, V23, P103
Paul Michael, 2010, ASS ADV ARTIFICIAL I
Paul R., 2007, TEXAS STRAIGHT TALK
Pele O., 2009, INT C COMP VIS
Pele O, 2008, LECT NOTES COMPUT SC, V5304, P495, DOI 10.1007/978-3-540-88690-7_37
Pevzner L, 2002, COMPUT LINGUIST, V28, P19, DOI 10.1162/089120102317341756
PLANALP S, 1980, COMMUNICATION YB, V4, P237
Purver M., 2011, SPOKEN LANGUAGE UNDE
Purver M., 2006, P ASS COMP LING
REGULA CR, 1973, J SOC PSYCHOL, V89, P115, DOI 10.1080/00224545.1973.9922575
Reid SA, 2000, EUR J SOC PSYCHOL, V30, P83, DOI 10.1002/(SICI)1099-0992(200001/02)30:1<83::AID-EJSP983>3.0.CO;2-I
Ren L., 2008, P INT C MACH LEARN
RIENKS R, 2006, P INT C MULT INT ICM
Rienks Rutger, 2005, P 2 JOINT WORKSH MUL
Rubner Y, 2000, INT J COMPUT VISION, V40, P99, DOI 10.1023/A:1026543900054
Sayeed AB., 2012, North American Association of Computational Linguistics
SCHEER LK, 1992, J MARKETING RES, V29, P128, DOI 10.2307/3172498
SCHLENKER BR, 1976, SOCIOMETRY, V39, P316, DOI 10.2307/3033497
Sorrentino R. M., 1972, J EXPT SOCIAL PSYCHO, V5, P403
STANG DJ, 1973, J PERS SOC PSYCHOL, V27, P405, DOI 10.1037/h0034940
Teh Y. W., 2006, P ASS COMP LING
Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302
Thomas M., 2006, P EMP METH NAT LANG
Trammell KD, 2005, J MASS COMMUN Q, V82, P968, DOI 10.1177/107769900508200413
Tur G, 2010, IEEE T AUDIO SPEECH, V18, P1601, DOI 10.1109/TASL.2009.2038810
Wallach HM, 2008, THESIS U CAMBRIDGE
Zhang D., 2005, P ADV NEUR INF PROC
NR 121
TC 16
Z9 27
U1 1
U2 14
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0885-6125
EI 1573-0565
J9 MACH LEARN
JI Mach. Learn.
PD JUN
PY 2014
VL 95
IS 3
SI SI
BP 381
EP 421
DI 10.1007/s10994-013-5417-9
PG 41
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA AH3OO
UT WOS:000336034000006
OA Bronze
DA 2024-09-05
ER
PT J
AU Street, JN
Santhanakrishnan, M
AF Street, Jeffrey N.
Santhanakrishnan, Mukunthan
TI Real options logic in R&D project valuation A useful tool for decision
making through the lens of heuristics
SO JOURNAL OF STRATEGY AND MANAGEMENT
LA English
DT Article
DE Decision making; Research and development; Return on investment; Project
evaluation
AB Purpose - Decision making for acceptance of an R&D project occurs under uncertainty and may involve predominantly quantitative analyses, such as net-present value, predominantly intuitive analyses, such as real options logic, or some combination thereof. This paper attempts to bring together two concepts of decision theory, i.e. heuristics and framing, and real options logic into one integrated view relative to R&D project valuation. It is believed that the integration of theory helps explain expected and unexpected decisions resulting from the R&D project valuation process.
Design/methodology/approach - It is proposed here that, under a typical R&D project review, aspects of two theoretical concepts integrate to aid project valuation and decision making. The aim of this paper is to develop a research framework leading to advancement in the understanding of the relationship of heuristic principles from decision theory and the valuation methodology of real options logic.
Findings - As a conceptual paper, propositions and a research model representing the conceptual framework are presented.
Research limitations/implications - Stemming from the propositions and research model, it is believed that the degree of influence that heuristics potentially exhibit on real options logic can be successfully measured. Confirming the degree of influence is a matter for future empirical research.
Originality/value - The originality of this paper is to develop a research framework leading to advancement in the understanding of the relationship of heuristic principles from decision theory and the valuation methodology of real options logic. In this framework, heuristics has been positioned as a moderator affecting project valuation derived by real options logic.
C1 [Street, Jeffrey N.; Santhanakrishnan, Mukunthan] Idaho State Univ, Coll Business, Pocatello, ID 83209 USA.
C3 Idaho; Idaho State University
RP Street, JN (corresponding author), Idaho State Univ, Coll Business, Pocatello, ID 83209 USA.
EM strejeff@isu.edu
CR Alchian A.A., 1982, Corporate Enterprise in a New Environment, P11
AMIT R, 1993, STRATEGIC MANAGE J, V14, P33, DOI 10.1002/smj.4250140105
[Anonymous], 1993, Organizations
[Anonymous], 1974, Strategy, structure and economic performance
[Anonymous], 2006, JUDGMENT MANAGERIAL
Barnett ML, 2003, J MANAGE INQUIRY, V12, P185, DOI 10.1177/1056492603012002012
BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108
BLACK F, 1973, J POLIT ECON, V81, P637, DOI 10.1086/260062
Boer FP, 2000, RES TECHNOL MANAGE, V43, P26, DOI 10.1080/08956308.2000.11671365
Bollen NPB, 1999, MANAGE SCI, V45, P670, DOI 10.1287/mnsc.45.5.670
BOWMAN EH, 1993, ACAD MANAGE REV, V18, P760, DOI 10.2307/258597
Bowman EH, 2001, ORGAN SCI, V12, P772, DOI 10.1287/orsc.12.6.772.10080
Christensen CM, 1996, STRATEGIC MANAGE J, V17, P197, DOI 10.1002/(SICI)1097-0266(199603)17:3<197::AID-SMJ804>3.0.CO;2-U
Christensen CM, 2001, HARVARD BUS REV, V79, P72
Christensen CM, 2000, HARVARD BUS REV, V78, P66
Coff R.W., 2002, DILEMMAS EXERCISE DE
Cohen MA, 1996, MANAGE SCI, V42, P173, DOI 10.1287/mnsc.42.2.173
CONNER KR, 1991, J MANAGE, V17, P121, DOI 10.1177/014920639101700109
COPELAND T.V. ANTIKAROV., 2001, REAL OPTIONS PRACTIT
Eisenhardt KM, 2000, STRATEGIC MANAGE J, V21, P1105, DOI 10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E
Ettlie JE, 2004, J PROD INNOVAT MANAG, V21, P95, DOI 10.1111/j.0737-6782.2004.00060.x
Folta TB, 2004, STRATEGIC MANAGE J, V25, P121, DOI 10.1002/smj.368
Foster S. T, 2003, MANAGING QUALITY INT
Garud R, 1998, ACAD MANAGE REV, V23, P212, DOI 10.5465/AMR.1998.26096183
HENDERSON RM, 1990, ADMIN SCI QUART, V35, P9, DOI 10.2307/2393549
Hill CWL, 2003, ACAD MANAGE REV, V28, P257
Howells J, 1997, RES POLICY, V25, P1209, DOI 10.1016/S0048-7333(96)00904-3
Hultnik E.J., 1999, J PROD INNOVAT MANAG, V17, P5
Kahneman D, 2003, AM PSYCHOL, V58, P697, DOI 10.1037/0003-066X.58.9.697
Kessler EH, 1999, J PROD INNOVAT MANAG, V16, P231, DOI 10.1016/S0737-6782(98)00048-4
Kogut B, 2001, ORGAN SCI, V12, P744, DOI 10.1287/orsc.12.6.744.10082
Kulatilaka N, 1998, MANAGE SCI, V44, P1021, DOI 10.1287/mnsc.44.8.1021
Kyläheiko K, 2002, INT J PROD ECON, V80, P65, DOI 10.1016/S0925-5273(02)00244-X
McGrath RG, 2000, RES TECHNOL MANAGE, V43, P35, DOI 10.1080/08956308.2000.11671367
McGrath RG, 1997, ACAD MANAGE REV, V22, P974, DOI 10.2307/259251
McGrath RG, 2004, STRATEGIC MANAGE J, V25, P1, DOI 10.1002/smj.358
Miller KD, 2002, STRATEGIC MANAGE J, V23, P655, DOI 10.1002/smj.244
Moel A, 2002, REV FINANC STUD, V15, P35, DOI 10.1093/rfs/15.1.35
Motavalli J., 2010, FORD FOCUS ELECT GET
Oriani R, 2008, STRATEGIC MANAGE J, V29, P343, DOI 10.1002/smj.664
Pandza K, 2003, INT J OPER PROD MAN, V23, P1010, DOI 10.1108/01443570310491756
PINDYCK RS, 1988, AM ECON REV, V78, P969
Porter Mu., 1985, Competitive Advantage: Creating and Sustaining Superior Performance
QUIGG L, 1993, J FINANC, V48, P621, DOI 10.2307/2328915
Rice MP, 2001, R&D MANAGE, V31, P409, DOI 10.1111/1467-9310.00228
SIMON HA, 1979, AM ECON REV, V69, P493
Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852
Stanovich KE, 2000, BEHAV BRAIN SCI, V23, P645, DOI 10.1017/S0140525X00003435
Turner I.D, 2002, MANAGER UPDATE, V13, P1
TVERSKY A, 1981, SCIENCE, V211, P453, DOI 10.1126/science.7455683
TVERSKY A, 1986, J BUS, V59, pS251, DOI 10.1086/296365
TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124
WERNERFELT B, 1984, STRATEGIC MANAGE J, V5, P171, DOI 10.1002/smj.4250050207
NR 53
TC 1
Z9 2
U1 0
U2 1
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 1755-425X
J9 J STRATEGY MANAG
JI J. Strategy Manag.
PY 2011
VL 4
IS 2
BP 155
EP 171
DI 10.1108/17554251111128628
PG 17
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA V15MD
UT WOS:000214551800004
DA 2024-09-05
ER
PT J
AU VOIGT, K
PEPPING, T
KOTCHETOVA, E
MUCKE, W
AF VOIGT, K
PEPPING, T
KOTCHETOVA, E
MUCKE, W
TI TESTING OF ONLINE DATABASES IN THE INFORMATION-SYSTEM FOR ENVIRONMENTAL
CHEMICALS WITH A TESTSET OF 68 CHEMICALS
SO CHEMOSPHERE
LA English
DT Article
DE DATA-BANKS; DATABASES; BIBLIOGRAPHIC DATABASES; NUMERIC DATABASES;
ENVIRONMENTAL CHEMICALS; EXISTING CHEMICALS; TEST SET; HOSTS
ID FOOD
AB As part of the research project "Information system for environmental chemicals' we tested 265 databases with the help of a testset of 68 environmentally relevant chemicals. The different groups of chemicals in the testset and their number of hits in our Databank of Databases on Environmental Chemicals (DADB) are shown. On top of the general difficulties in searching for information on chemicals there are considerable differences in using either bibliographic or numeric databases. The differences searching by chemical name or by CAS-Number are illustrated and discussed.
C1 MV LOMONOSOV STATE UNIV,DEPT ORGAN CHEM,INFORMAT SERV,MOSCOW 117234,USSR.
TECH UNIV MUNICH,INST TOXIKOL & UMWELTHYG,W-8000 MUNICH 19,GERMANY.
C3 Lomonosov Moscow State University; Technical University of Munich
RP VOIGT, K (corresponding author), GSF FORSCHUNGSZENTRUM UMWELT & GESUNDHEIT GMBH,W-8042 NEUHERBERG,GERMANY.
CR MUCKE W, 1986, TOXICOL ENVIRON CHEM, V13, P129, DOI 10.1080/02772248609357175
MUCKE W, 1989, Z LEBENSM UNTERS FOR, V189, P99, DOI 10.1007/BF01332939
VOIGT K, 1990, CHEMOSPHERE, V21, P1429, DOI 10.1016/0045-6535(90)90047-W
VOIGT K, 1989, TOXICOL ENVIRON CHEM, V23, P243, DOI 10.1080/02772248909357469
VOIGT K, 1990, GSF2190 FORSCH ZENTR
1991, CUADRA DIRECTORY ONL
1987, ALTSTOFFBEURTEILUNG
1991, BEDIENUNGSANLEITUNG
1986, EXISTING CHEM SYSTEM
NR 9
TC 5
Z9 5
U1 0
U2 0
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB
SN 0045-6535
J9 CHEMOSPHERE
JI Chemosphere
PD APR
PY 1992
VL 24
IS 7
BP 857
EP 866
DI 10.1016/0045-6535(92)90005-C
PG 10
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA HM303
UT WOS:A1992HM30300004
DA 2024-09-05
ER
PT J
AU Raman, R
Aljafari, R
Venkatesh, V
Richardson, V
AF Raman, Raji
Aljafari, Ruba
Venkatesh, Viswanath
Richardson, Vernon
TI Mixed-methods research in the age of analytics, an exemplar leveraging
sentiments from news articles to predict firm performance
SO INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT
LA English
DT Article
DE Sentiments; Machine learning; Abnormal returns; Econometrics
ID INFORMATION-CONTENT; STOCK; IMPACT; MEDIA; TEXT
AB Investors and companies have always aspired to make informed investment decisions by using diverse information sources. With the explosion of information sources on the web and emergence of predictive analytics, many investors moved beyond traditional financial measures, as key predictors of firm performance, to textual content from analysts' reports. Empirical research suggests that these information sources complement each other by providing a clear picture of firm performance, but remains silent on the role of additional textual content that continues to emerge and reach more potential investors on the web. We build on this line of research to examine the effect of textual content from business journals in conjunction with summary measures on cumulative abnormal returns. We use sentiment analysis with machine learning and econometrics methods to examine content extracted from textual articles about S&P 500 index companies that are published in the Wall Street Journal (years 2013-2016). Textual analysis of business journals in conjunction with quantitative measures revealed direct and interaction effects on abnormal returns over time. We also tested for robustness by replicating the analysis with different variable operationalization and observe consistent patterns. Relative to positive sentiments, negative sentiments have more profound effects on cumulative abnormal returns. The effect of positive sentiments becomes weaker when past quantitative measures are high. As information sources continue to emerge on the web, this work makes key contributions to the practice of sentiment analysis in financial markets.
C1 [Raman, Raji; Venkatesh, Viswanath] Virginia Tech, Pamplin Coll Business, Blacksburg, VA 24061 USA.
[Aljafari, Ruba] Univ Pittsburgh, Katz Grad Sch Business, Pittsburgh, PA USA.
[Richardson, Vernon] Univ Arkansas, Walton Coll Business, Fayetteville, AR USA.
C3 Virginia Polytechnic Institute & State University; Pennsylvania
Commonwealth System of Higher Education (PCSHE); University of
Pittsburgh; University of Arkansas System; University of Arkansas
Fayetteville
RP Venkatesh, V (corresponding author), Virginia Tech, Pamplin Coll Business, Blacksburg, VA 24061 USA.
EM rajiraman@vt.edu; raljafari@katz.pitt.edu; vvenkatesh@vvenkatesh.us;
vrichardson@walton.uark.edu
RI Venkatesh, Viswanath/ABD-9343-2020
OI Venkatesh, Viswanath/0000-0001-8473-376X
CR Adamopoulos P, 2018, INFORM SYST RES, V29, P612, DOI 10.1287/isre.2017.0768
Ahmad SN, 2017, INT J INFORM MANAGE, V37, P202, DOI 10.1016/j.ijinfomgt.2016.08.004
Altinkiliç O, 2009, J ACCOUNT ECON, V48, P17, DOI 10.1016/j.jacceco.2009.04.005
Asquith P, 2005, J FINANC ECON, V75, P245, DOI 10.1016/j.jfineco.2004.01.002
Ballinger GA, 2004, ORGAN RES METHODS, V7, P127, DOI 10.1177/1094428104263672
Barth ME, 1998, J ACCOUNT ECON, V25, P1, DOI 10.1016/S0165-4101(98)00017-2
Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001
Choi JJ, 2002, J FINANC ECON, V64, P397, DOI 10.1016/S0304-405X(02)00130-7
Choudhury P, 2021, STRATEGIC MANAGE J, V42, P30, DOI 10.1002/smj.3215
Comparitech, 2017, AN DAT BREACH AFF ST
Das SR, 2007, MANAGE SCI, V53, P1375, DOI 10.1287/mnsc.1070.0704
Deng SY, 2018, MIS QUART, V42, P895, DOI 10.25300/MISQ/2018/14268
El-Haj M, 2019, J BUS FINAN ACCOUNT, V46, P265, DOI 10.1111/jbfa.12378
Ertimur Y, 2003, REV ACC STUD, V8, P185, DOI 10.1023/A:1024409311267
Givoly D, 2009, ACCOUNT REV, V84, P1877, DOI 10.2308/accr.2009.84.6.1877
Goode S, 2017, MIS QUART, V41, P703
Grover P, 2018, INT J INFORM MANAGE, V43, P85, DOI 10.1016/j.ijinfomgt.2018.07.003
Grover P, 2022, ANN OPER RES, V308, P177, DOI 10.1007/s10479-020-03683-9
Grover P, 2019, INT J INFORM MANAGE, V48, P39, DOI 10.1016/j.ijinfomgt.2019.01.009
Hájek P, 2018, NEURAL COMPUT APPL, V29, P343, DOI 10.1007/s00521-017-3194-2
Hu YH, 2016, INT J INFORM MANAGE, V36, P929, DOI 10.1016/j.ijinfomgt.2016.06.003
Huang AH, 2018, MANAGE SCI, V64, P2833, DOI 10.1287/mnsc.2017.2751
Huang AH, 2014, ACCOUNT REV, V89, P2151, DOI 10.2308/accr-50833
John St, 2018, FACEBOOK BREACH EXPO
Johns G, 2006, ACAD MANAGE REV, V31, P386, DOI 10.5465/amr.2006.20208687
Kar AK, 2020, INT J INFORM MANAGE, V54, DOI 10.1016/j.ijinfomgt.2020.102205
Kar AK, 2021, INFORM SYST FRONT, V23, P1341, DOI 10.1007/s10796-020-10045-0
Kumar S, 2021, INT J INFORM MANAGE, DOI DOI 10.1016/J.JJIMEI.2021.100008
Kushwaha A. K., 2021, International Journal of Information Management Data Insights, V1, DOI DOI 10.1016/J.JJIMEI.2021.100017
Lee H, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9060978
Li T, 2018, J INF TECHNOL-UK, V33, P50, DOI 10.1057/s41265-016-0034-2
Lo AW, 2004, J PORTFOLIO MANAGE, P15, DOI 10.3905/jpm.2004.442611
Jimenez-Marquez JL, 2019, INT J INFORM MANAGE, V44, P1, DOI 10.1016/j.ijinfomgt.2018.09.003
Mighty Guides, 2016, APPL TEXT AN MARK
Shannon C. E., 2001, Bell Labs Technical Journal, V5, P3, DOI [DOI 10.1002/J.1538-7305.1948.TB01338.X, 10.1002/j.1538-7305.1948.tb01338.x]
Shmueli G, 2011, MIS QUART, V35, P553
Tang CY, 2016, INT J INFORM MANAGE, V36, P1124, DOI 10.1016/j.ijinfomgt.2016.03.015
Tetlock PC, 2007, J FINANC, V62, P1139, DOI 10.1111/j.1540-6261.2007.01232.x
Venkatesh V, 2006, ORGAN BEHAV HUM DEC, V100, P160, DOI 10.1016/j.obhdp.2006.02.003
Venkatesh V, 2021, IND MANAGE DATA SYST, V121, P30, DOI 10.1108/IMDS-08-2020-0506
Wang Q, 2018, INFORM SYST RES, V29, P273, DOI 10.1287/isre.2017.0735
Yu H, 2003, PROCEEDINGS OF THE 2003 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P129
NR 42
TC 5
Z9 5
U1 5
U2 39
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0268-4012
EI 1873-4707
J9 INT J INFORM MANAGE
JI Int. J. Inf. Manage.
PD JUN
PY 2022
VL 64
AR 102451
DI 10.1016/j.ijinfomgt.2021.102451
EA FEB 2022
PG 11
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA 0Z8FW
UT WOS:000791308400008
OA Green Accepted, hybrid
DA 2024-09-05
ER
PT J
AU Bhatt, PC
Lu, TC
AF Bhatt, Priyanka C. C.
Lu, Tzu-Chuen
TI Identifying Firm Significance and Positions in the Patent Innovation
Based on Centrality Measures' Clustering Approach
SO IEEE ACCESS
LA English
DT Article
DE Patents; Technological innovation; Organizations; Knowledge engineering;
Position measurement; Trajectory; Research and development; Patent
analysis; innovation assessment; k-means clustering; patent centrality
analysis; social network analysis
ID TECHNOLOGICAL CONVERGENCE; NETWORK
AB Organizations strive to achieve technological competence in the current era of inevitable technological progress. One way to measure the adaptability of firms to huge technological shifts is through various parameters, including patenting activities. This study presents a method for identifying the significance of firms in an innovation network using patent citation analysis and centrality measures. Specifically, the study employs k-means clustering to classify firms into similar clusters based on network-based centrality measures such as betweenness, closeness, and eigenvector centrality. The study then develops a cluster relational network by establishing a cluster adjacency network and identifying firm positions within and between clusters. By examining the relationship between clusters, the cluster network identifies the significance of firms. The study identifies four positions, namely, leader, follower, knowledge inertia, and significantly emerging, that align with the status of firms in patenting innovation capability. The method is implemented using blockchain technology as a case study. The novelty of the study lies in the structured approach to identifying firm significance by adding another layer of adjacency network to existing patent citation analysis techniques.
C1 [Bhatt, Priyanka C. C.; Lu, Tzu-Chuen] Chaoyang Univ Technol, Dept Informat Management, Taichung 413, Taiwan.
C3 Chaoyang University of Technology
RP Lu, TC (corresponding author), Chaoyang Univ Technol, Dept Informat Management, Taichung 413, Taiwan.
EM tclu@cyut.edu.tw
OI Lu, Tzu-Chuen/0000-0001-7305-4622; Bhatt, Priyanka
Chand/0000-0001-5638-6844
FU Ministry of Science and Technology (MOST), Taiwan, Republic of China
[MOST 109-2221-E-324-025-MY3]
FX This work was supported in part by the Ministry of Science and
Technology (MOST), Taiwan, Republic of China, under Grant MOST
109-2221-E-324-025-MY3.
CR Aaldering LJ, 2018, EXPERT SYST APPL, V100, P17, DOI 10.1016/j.eswa.2018.01.045
Altuntas F, 2021, KYBERNETES, V50, P2548, DOI 10.1108/K-06-2020-0365
Ampornphan P, 2020, INFORMATION, V11, DOI 10.3390/info11060333
Baruffaldi SH, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.103927
Bhatt P.C., 2020, 12 AS C INT INF DAT, P456, DOI [10.1007/978-981-15-3380-840, DOI 10.1007/978-981-15-3380-840]
Bhatt PC, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101709
Chang CL, 2017, INT ICE CONF ENG, P111, DOI 10.1109/ICE.2017.8279877
Chang HJ., 2020, INT J INFORM MANAGE, V31, P55, DOI [10.6186/IJIMS.20200331(1).0004, DOI 10.6186/IJIMS.20200331(1).0004]
Chang YH, 2017, SCIENTOMETRICS, V113, P1733, DOI 10.1007/s11192-017-2556-y
Chen TM, 2018, 2018 7TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2018), P793, DOI 10.1109/IIAI-AAI.2018.00163
Cho Y, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13052424
Choi S, 2022, IEEE ACCESS, V10, P19284, DOI 10.1109/ACCESS.2022.3151870
Choi S, 2018, IEEE ACCESS, V6, P3573, DOI 10.1109/ACCESS.2017.2788918
Daim T, 2020, TECHNOL FORECAST SOC, V161, DOI 10.1016/j.techfore.2020.120329
Das P, 2018, EUR J INNOV MANAG, V21, P96, DOI 10.1108/EJIM-03-2017-0028
Feng LJ, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17082928
Ficara Annamaria, 2022, Proceedings of Sixth International Congress on Information and Communication Technology: ICICT 2021. Lecture Notes in Networks and Systems (216), P901, DOI 10.1007/978-981-16-1781-2_78
Hu YG, 2015, J KNOWL MANAG, V19, P1250, DOI 10.1108/JKM-10-2014-0431
Jee SJ, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100985
Jeon J, 2019, DATA TECHNOL APPL, V53, P269, DOI 10.1108/DTA-09-2018-0077
Kumar V, 2021, J KNOWL MANAG, V25, P477, DOI 10.1108/JKM-01-2020-0080
Lai KK, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101143
Lai KK, 2021, J KNOWL MANAG, V25, P402, DOI 10.1108/JKM-01-2020-0037
Lai KK, 2017, SCIENTOMETRICS, V111, P1327, DOI 10.1007/s11192-017-2376-0
Lin Wenguang, 2020, China Mechanical Engineering, V31, P842, DOI 10.3969/j.issn.1004-132X.2020.07.010
Miau S, 2018, TECHNOL ANAL STRATEG, V30, P1029, DOI 10.1080/09537325.2018.1434138
Park I, 2018, J INFORMETR, V12, P1199, DOI 10.1016/j.joi.2018.09.007
Park J, 2017, SCIENTOMETRICS, V111, P67, DOI 10.1007/s11192-017-2276-3
Saqr M, 2022, EDUC RES REV-NETH, V35, DOI 10.1016/j.edurev.2022.100437
Soto-Acosta P, 2018, J KNOWL MANAG, V22, P824, DOI 10.1108/JKM-10-2017-0448
Sukumar A, 2020, J KNOWL MANAG, V24, P965, DOI 10.1108/JKM-10-2019-0590
Sun AW, 2022, IEEE ACCESS, V10, P79335, DOI 10.1109/ACCESS.2022.3194531
Tang CY, 2022, IEEE T ENG MANAGE, V69, P2102, DOI 10.1109/TEM.2020.3001561
Wada T, 2018, SCIENTOMETRICS, V117, P825, DOI 10.1007/s11192-018-2885-5
Wang ZN, 2019, TECHNOL FORECAST SOC, V146, P723, DOI 10.1016/j.techfore.2018.12.015
Xu XG, 2021, ENVIRON SCI POLLUT R, V28, P68300, DOI 10.1007/s11356-021-15298-z
Yalcin H, 2021, SCIENTOMETRICS, V126, P3775, DOI 10.1007/s11192-021-03876-4
Yan BW, 2019, NETW SCI, V7, P70, DOI 10.1017/nws.2018.27
Zhao Y, 2022, IEEE ACCESS, V10, P89745, DOI 10.1109/ACCESS.2022.3200753
NR 39
TC 1
Z9 1
U1 11
U2 36
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2023
VL 11
BP 30515
EP 30528
DI 10.1109/ACCESS.2023.3261331
PG 14
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA D0TP5
UT WOS:000965940000001
OA gold
DA 2024-09-05
ER
PT J
AU Saha, S
Jangid, N
Mathur, A
Narsimhamurthy, AM
AF Saha, Snehanshu
Jangid, Neelam
Mathur, Archana
Narsimhamurthy, Anand M.
TI DSRS: Estimation and forecasting of journal influence in the science and
technology domain via a lightweight quantitative approach
SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT
LA English
DT Article
DE Journal Influence Score (JIS); Downselection with Regression and
Significance scheme (DSRS); Multiple Linear Regression (MLR);
Clustering; Significance test; Internationality; Principal
representative features
ID IMPACT; INTERNATIONALITY
AB The evaluation of journals based on their influence is of interest for numerous reasons. Various methods of computing a score have been proposed for measuring the scientific influence of scholarly journals. Typically the computation of any of these scores involves compiling the citation information pertaining to the journal under consideration. This involves significant overhead since the article citation information of not only the journal under consideration but also that of other journals for the recent few years need to be stored. Our work is motivated by the idea of developing a computationally lightweight approach that does not require any data storage, yet yields a score which is useful for measuring the importance of journals. In this paper, a regression analysis based method is proposed to calculate Journal Influence Score. Proposed model is validated using historical data from the SCImago portal. The results show that the error is small between rankings obtained using the proposed method and the SCImago Journal Rank, thus proving that the proposed approach is a feasible and effective method of calculating scientific impact of journals.
C1 [Saha, Snehanshu; Jangid, Neelam; Mathur, Archana] PESIT South Campus, Dept Comp Sci & Engn, Bangalore 560100, Karnataka, India.
[Narsimhamurthy, Anand M.] BITS Hyderabad, Hyderabad, Andhra Pradesh, India.
C3 PES University; Birla Institute of Technology & Science Pilani (BITS
Pilani)
RP Saha, S (corresponding author), PESIT South Campus, Dept Comp Sci & Engn, Bangalore 560100, Karnataka, India.
EM snehanshusaha@pes.edu; neelu.jangid88@gmail.com; archanamathur@pes.edu;
anand@hyderabad.bits-pilani.ac.in
RI /AAD-2304-2020
CR [Anonymous], 2006, Google's PageRank and Beyond: The Science of Search Engine Rankings
[Anonymous], SCI AAAS, V122, P108, DOI [10.1126/science.122.3159.108, DOI 10.1126/SCIENCE.122.3159.108]
Buchandiran G., EXPLORATORY STUDY IN
Buela-Casal G, 2006, SCIENTOMETRICS, V67, P45, DOI 10.1556/Scient.67.2006.1.4
Buela-Casal G, 2012, PSICOTHEMA, V24, P435
Dwivedi Nandita, 2015, JIMI J INT MODELLING
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Ginde Gouri, 2015, 4 NAT C I SCI
Government of India, 2012, BIBL STUD IND SCI PU
Haddow G, 2010, SCIENTOMETRICS, V85, P471, DOI 10.1007/s11192-010-0198-4
Jain Raj, 2014, ART COMPUTER SYSTEM
Jangid N, 2014, IERI PROC, V10, P57, DOI 10.1016/j.ieri.2014.09.091
Kao C, 2009, SCIENTOMETRICS, V81, P123, DOI 10.1007/s11192-009-2093-4
Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002
Svensson G, 2008, MARK INTELL PLAN, V26, P340, DOI 10.1108/02634500810879250
Waltman L, 2013, SCIENTOMETRICS, V96, P699, DOI 10.1007/s11192-012-0913-4
Waltman L, 2013, J INFORMETR, V7, P272, DOI 10.1016/j.joi.2012.11.011
Wormell I, 1998, J DOC, V54, P584, DOI 10.1108/EUM0000000007182
NR 18
TC 6
Z9 6
U1 0
U2 3
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0973-7766
EI 2168-930X
J9 COLLNET J SCIENTOMET
JI Collnet J. Scientometr. Inf. Manag.
PD JUN
PY 2016
VL 10
IS 1
BP 41
EP 70
DI 10.1080/09737766.2016.1177939
PG 30
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA DW8DF
UT WOS:000383882900004
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Patkar, V
AF Patkar, Vivek
TI A Passage to Ontology Tool for Information Organisation in the Digital
Age
SO DESIDOC JOURNAL OF LIBRARY & INFORMATION TECHNOLOGY
LA English
DT Article
DE Artificial intelligence; bibliographic control; information
architecture; knowledge representation; ontology evaluation; semantic
Web; social tagging
AB To facilitate access to relevant documents and information has been the core of the library and information science (LIS) profession. In this regard tools like classification, cataloguing, and indexing formed the basis of library practice for a long time. These served particularly well for the material that was predominantly in the print form and required physical location for storage. New information sources, however, in contrast are increasingly in the electronic or digital form and stored on medium like computer hard disks requiring completely different strategy for access and management. Extension of the traditional bibliographic control tools as well as construction of new tools has therefore become pertinent. Ontology is one of the latest tools in this context. The paper discusses progress of information organising tools culminating in ontology, highlights the commonality of the concept of ontology and its applications among the fields of philosophy, computer science and LIS. It also discusses the select features of ontology development in practice and directions for features of ontology development in practice and directions for further
RP Patkar, V (corresponding author), D-1,Anita C H S,Plot 612,Sect 6,Kandivali West, Bombay 400067, Maharashtra, India.
EM vnpatkar2004@yahoo.co.in
CR [Anonymous], 1989, Automatic Text Processing: The Transformation, Analysis, and Retrieval of
[Anonymous], 1991, FACETS SYSTEMS SCI, DOI DOI 10.1007/978-1-4899-0718-9_28
Berners-Lee T, 2001, SCI AM, V284, P34, DOI 10.1038/scientificamerican0501-34
Broughton V, 2006, ASLIB PROC, V58, P49, DOI 10.1108/00012530610648671
Chandra C, 2005, HUM SYST MANAGE, V24, P245
Chandrasekaran B, 1999, IEEE INTELL SYST APP, V14, P20, DOI 10.1109/5254.747902
Chowdhury G.G., 2007, ORGANISING INFORM SH
Colace F, 2009, INTERACT TECHNOL SMA, V6, P6, DOI 10.1108/17415650910965173
CUTTER CharlesAmmi., 1962, Rules for a dictionary catalog, V4th
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Dublin Core Metadata Initiative, 2006, DUBL COR MET EL SET
Georgiev I., 2005, P INT C COMP SYST TE
Gilchrist A, 2006, J DOC, V62, P21, DOI 10.1108/00220410610642020
Gilchrist A, 2003, J DOC, V59, P7, DOI 10.1108/00220410310457984
GILCHRIST A., 2004, INFORM ARCHITECTURE
Gilliand-Swedand A., 2004, METADATA APPL MANAGE
Gokhale Pratibha A., 2009, Information Studies, V15, P233
GRUBER TR, 1993, KNOWL ACQUIS, V5, P199, DOI 10.1006/knac.1993.1008
Gruber TR, 1995, INT J HUM-COMPUT ST, V43, P907, DOI 10.1006/ijhc.1995.1081
Guarino N., 1998, P 1 INT C
Hunter E.J., 1991, CATALOGUING
Ingarden Roman., 1973, LIT WORK ART INVESTI
Kruk R.S., 2006, 5 EUR NETW KNOWL ORG
Lausen H., 2005, Journal of Knowledge Management, V9, P40, DOI 10.1108/13673270510622447
Library of Congress, 2006, LIB C SUBJ HEAD
Lozano-Tello A, 2004, J DATABASE MANAGE, V15, P1, DOI 10.4018/jdm.2004040101
MARC 21, 2004, LIB C NETW DEV MARC
McCarthy L., 2000, Integrated Manufacturing Systems, V11, P16, DOI 10.1108/09576060010303631
McGuinness D.L., 2000, PRINCIPLES KNOWLEDGE
Mealy G.H., 1967, P FALL JOINT COMPUTE, P525, DOI 10.1145/1465611.1465682
Noy N., 2001, Ontology development 101: A guide to creating your first ontology
Patkar V., 2007, KNOWLEDGE LIB INFORM, P23
Patkar V., 2010, KNOWLEDGE LIB INFORM, P113
Patkar V, 2009, DESIDOC J LIB INF TE, V29, P14, DOI 10.14429/djlit.29.225
Ranganathan S., 1987, COLON CLASSIFICATION
Rees R.V., 2003, CONSTRUCTION INFORM
Rifkin J., 1981, ENTROPY A NEW WORLD
SMITH B, 1978, GRAZER PHILOS STUDIE, V6, P39
Vickery B.C., 1993, J INF SCI, V23, P276
W3C semantic activity, 2002, SEM WEB ACT STAT
Zaho G., 2003, P IADIS INT C SOC, P745
NR 41
TC 4
Z9 4
U1 0
U2 1
PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE
PI DELHI
PA METCALFE HOUSE, DELHI 110054, INDIA
SN 0974-0643
EI 0976-4658
J9 DESIDOC J LIB INF TE
JI DESIDOC J. Lib. Inf. Technol.
PD MAR
PY 2011
VL 31
IS 2
SI SI
BP 90
EP 102
DI 10.14429/djlit.31.2.861
PG 13
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA V9N1L
UT WOS:000422463200004
DA 2024-09-05
ER
PT J
AU Bryda, G
Costa, AP
AF Bryda, Grzegorz
Costa, Antonio Pedro
TI Qualitative Research in Digital Era: Innovations, Methodologies and
Collaborations
SO SOCIAL SCIENCES-BASEL
LA English
DT Article
DE CAQDAS; artificial intelligence; digital methods; digital skills;
collaborative analysis
ID COMPETENCE; STRATEGIES; PROJECT; SKILLS
AB The differentiation of contemporary approaches to qualitative data analysis can seem daunting even for experienced social science researchers. Especially when they move forward in the data analysis process from general analytical strategies used in qualitative research to more specific approaches for different types of qualitative data, including interviews, text, audio, images, videos, and so-called virtual data, by discovering the domain ontology of the qualitative research field, we see that there are more than twice as many different classes of data analysis methods as qualitative research methods. This article critically reflects on qualitative research and the qualitative computer data analysis process, emphasising its significance in harnessing digital opportunities and shaping collaborative work. Using our extensive analytical and research project experience, the last research results, and a literature review, we try to show the impact of new technologies and digital possibilities on our thinking. We also try to do the qualitative data analysis. The essence of this procedure is a dialectical interplay between the new world of digital technology and the classic methodology. The use of digital possibilities in qualitative research practices shapes the researcher's identity and their analytical and research workshop. Moreover, it teaches collaborative thinking and teamwork and fosters the development of new analytical, digital, and Information Technology (IT) skills. Imagining contemporary qualitative research and data analysis in the humanities and social sciences is difficult. Opening to modern technologies in computer-based qualitative data analysis shapes our interpretation frameworks and changes the optics and perception of research problems.
C1 [Bryda, Grzegorz] Jagiellonian Univ, Inst Sociol, CAQDAS TM Lab, PL-31007 Krakow, Poland.
[Costa, Antonio Pedro] Univ Aveiro, Res Ctr Didact & Technol Educ Trainers, Dept Educ & Psychol, P-3810193 Aveiro, Portugal.
C3 Jagiellonian University; Universidade de Aveiro; Centro Investigacao
Didatica Tecnologia Formacao Formadores (CIDTFF)
RP Bryda, G (corresponding author), Jagiellonian Univ, Inst Sociol, CAQDAS TM Lab, PL-31007 Krakow, Poland.
EM grzegorz.bryda@uj.edu.pl; pcosta@ua.pt
RI Costa, António Pedro/M-4494-2016
OI Costa, António Pedro/0000-0002-4644-5879; Bryda,
Grzegorz/0000-0002-8892-099X
FU Narodowe Centrum Nauki (Poland) [2016/23/B/HS6/00301]; national funds
through FCT-Fundacao para a Ciencia e a Tecnologia (Portugal)
[CDL-CTTRI-248-SGRH/2022]; CIDTFF [UIDB/00194/2020, UIDP/00194/2020]
FX The work of the first author was entitled "The domain ontology as a
model of knowledgerepresentation about the contemporary field of
qualitative research" and financed from 2017 to 2021 by Narodowe Centrum
Nauki (Poland, Project No. 2016/23/B/HS6/00301). The work of the
secondauthor is funded by national funds through FCT-Fundacao para a
Ciencia e a Tecnologia (Portugal), under the Scientific Employment
Stimulus-Institutional Call-[CDL-CTTRI-248-SGRH/2022] and the CIDTFF
(projects UIDB/00194/2020 and UIDP/00194/2020).
CR Akkerman S, 2006, CULT PSYCHOL, V12, P461, DOI 10.1177/1354067X06069947
Bartunek J.M., 1992, Journal of Management Inquiry, V1, P101, DOI DOI 10.1177/105649269212002
Berelson B., 1984, CONTENT ANAL COMMUNI
Berry D., 2011, Culture Machine, V12, P1, DOI DOI 10.1007/S12599-014-0342-4
Brent Edward E., 1990, Computer Applications in the Social Sciences
Bringer JD, 2006, FIELD METHOD, V18, P245, DOI 10.1177/1525822X06287602
Broer Christian., 2016, Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, V17, P3, DOI [10.17169/FQS-17.3.2388, DOI 10.17169/FQS-17.3.2388]
Brown David., 2002, Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, V3, DOI [10.17169/FQS-3.2.851, DOI 10.17169/FQS-3.2.851]
Bryda G., 2020, Przeglad Socjologii Jakosciowej, V16, P120, DOI [DOI 10.18778/1733-8069.16.3.08, 10.18778/17338069.16.3.08, DOI 10.18778/17338069.16.3.08]
Bryda G, 2020, ADV INTELL SYST COMP, V1068, P72, DOI 10.1007/978-3-030-31787-4_6
Bryda Grzegorz., Domain Ontology
Bryda Grzegorz., 2014, Metody i Techniki Odkrywania Wiedzy. Narzedzia CAQDAS w Procesie Analizy Danych Jakociowych
Chi-Jung L., 2008, INT J MULTIPLE RES, V2, P105, DOI 10.5172/mra.455.2.1.105
Costa Antonio Pedro., 2016, Actas de La 11 a Conferencia Iberica de Sistemas y Tecnologias de Informacion, P935
Costa Antonio Pedro., 2023, Revista Lusofona de Educacao, V59, P67, DOI [10.24140/issn.1645-7250.rle59.04, DOI 10.24140/ISSN.1645-7250.RLE59.04]
Costa Elisabete Pinto da., 2017, Educacao a Distancia e Praticas Educativas Comunicacionais e Interculturais, V17, P61
Costa PA, 2016, J Soc Tech Environ Sci., V5, P153, DOI [10.21664/2238-8869.2016v5i2.p153-161, DOI 10.21664/2238-8869.2016V5I2.P153-161]
Crichton Susan., 2012, Online Research Methods in Urban and Planning Studies, P284, DOI [10.4018/978-1-4666-0074-4.ch017, DOI 10.4018/978-1-4666-0074-4.CH017]
Davidson J, 2016, QUAL INQ, V22, P606, DOI 10.1177/1077800415622505
Dicks B., 2012, Digital qualitative research methods
Fielding N., 1991, USING COMPUTERS QUAL
Flensburg S, 2023, NEW MEDIA SOC, V25, P1451, DOI 10.1177/14614448211046616
Freitas F., 2017, Computer Supported Qualitative Research, P176, DOI DOI 10.1007/978-3-319-61121-1_16
Freitas F, 2017, DIGIT EDUC REV, P97
Frost N, 2010, QUAL RES, V10, P441, DOI 10.1177/1468794110366802
Gillespie A., 2014, The SAGE Handbook of Qualitative Data Analysis, P79, DOI [10.4135/9781446282243, DOI 10.4135/9781446282243]
Glaser, 1978, THEORETICAL SENSITIV
Hall WA, 2005, QUAL HEALTH RES, V15, P394, DOI 10.1177/1049732304272015
Hartley J., 2000, EUR J WORK ORGAN PSY, V9, P463, DOI [DOI 10.1080/13594320050203085, 10.1080/13594320050203085]
Janssen J, 2013, COMPUT EDUC, V68, P473, DOI 10.1016/j.compedu.2013.06.008
Jemielniak Dariusz., 2020, THICK BIG DATA DOING, DOI [10.1093/oso/9780198839705.001.0001, DOI 10.1093/OSO/9780198839705.001.0001]
Kitchin R., 2014, The Data Revolution, DOI DOI 10.4135/9781473909472
Kitchin R, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714528481
Lazer D, 2009, SCIENCE, V323, P721, DOI 10.1126/science.1167742
Lindqvist L, 2023, FEM MEDIA STUD, V23, P4089, DOI 10.1080/14680777.2022.2149604
Makel MC, 2019, AERA OPEN, V5, DOI 10.1177/2332858419891963
Markova I, 2007, INTEGR PSYCHOL BEHAV, V41, P124, DOI 10.1007/s12124-007-9014-y
McCrohon Mark., 2013, CONT APPR RES MATH S, DOI [10.13140/RG.2.1.1269.7769, DOI 10.13140/RG.2.1.1269.7769]
Mertens E, 2017, QUAL RES J, V17, P306, DOI 10.1108/QRJ-06-2016-0034
Negroponte Nicholas., 1996, BEING DIGITAL
O'Connor C, 2020, INT J QUAL METH, V19, DOI 10.1177/1609406919899220
Oberländer M, 2020, COMPUT EDUC, V146, DOI 10.1016/j.compedu.2019.103752
Palys T, 2012, INT J QUAL METH, V11, P352, DOI 10.1177/160940691201100404
Paulus T.M., 2014, Digital tools for qualitative research, DOI [DOI 10.4135/9781473957671, 10.4135/9781473957671]
Pope EM, 2023, QUAL REP, V28, P2838, DOI 10.46743/2160-3715/2023.6676
Richards KAR, 2018, J TEACH PHYS EDUC, V37, P225, DOI 10.1123/jtpe.2017-0084
Robins CS, 2017, QUAL INQ, V23, P768, DOI 10.1177/1077800417731089
Rogers Richard., 2009, The End of the Virtual: Digital Methods. The End of the Virtual: Digital Methods, DOI [DOI 10.5117/9789056295936, https://doi.org/10.5117/9789056295936]
Rogers-Dillon R.H., 2005, Qualitative Research, V5, P437, DOI DOI 10.1177/1468794105056922
Schallmo DRA., 2021, Digitalization: Approaches, Case Studies, and Tools for Strategy, Transformation and Implementation
Schwarz O., 2021, Sociological Theory for Digital Society: The Codes that Bind Us Together
Seror J., 2012, ENCY APPL LINGUISTIC, DOI DOI 10.1002/9781405198431.WBEAL0177
Sweeney A, 2013, HEALTH EXPECT, V16, pE89, DOI 10.1111/j.1369-7625.2012.00810.x
Tartas V, 2007, INTEGR PSYCHOL BEHAV, V41, P154, DOI 10.1007/s12124-007-9019-6
Torrato Janette B., 2023, ACM International Conference Proceeding Series, P19, DOI [10.1145/3588243.3588250, DOI 10.1145/3588243.3588250]
Uehara Edwina S., 1996, Journal of Teaching in Social Work, V14, P45, DOI [10.1300/J067v14n01_04, DOI 10.1300/J067V14N01_04]
van Dijck J, 2014, SURVEILL SOC, V12, P197, DOI 10.24908/ss.v12i2.4776
Wa-Mbaleka Safary., 2020, WORLD C QUALITATIVE
Watts DJ, 2007, NATURE, V445, P489, DOI 10.1038/445489a
Woods M, 2016, INT J SOC RES METHOD, V19, P385, DOI 10.1080/13645579.2015.1023964
Yang H, 2012, COMMUN ASSOC INF SYS, V31, P35
NR 61
TC 3
Z9 3
U1 8
U2 14
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2076-0760
J9 SOC SCI-BASEL
JI Soc. Sci.-Basel
PD OCT
PY 2023
VL 12
IS 10
AR 570
DI 10.3390/socsci12100570
PG 17
WC Social Sciences, Interdisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Social Sciences - Other Topics
GA X6EZ8
UT WOS:001099375600001
OA gold
DA 2024-09-05
ER
PT J
AU Dzikowicz, DJ
Carey, MG
AF Dzikowicz, Dillon J.
Carey, Mary G.
TI The Use of Interactive Technology to Improve Student Accuracy on
Electrocardiographic Interpretation
SO NURSING EDUCATION PERSPECTIVES
LA English
DT Article
DE Electrocardiography (ECG) Instruction; Online Learning; Research
Evaluation; Teaching and Learning; Technology in Education
AB Electrocardiography (ECG) instruction relies heavily on memorization of interpretation rules and lacks opportunities for hands-on practice. Consequently, nursing students struggle with ECG interpretation. In an online undergradute nursing course, we implemented interactive technology to facilitate kinesthetic pedagogy. Accuracy was evaluated at midterm and during final assessments by two experts using a standardized rubric. Students who engaged with interactive technology at both assessments demonstrated consistent accuracy of ECG interpretation; students who did not failed to demonstrate consistent accuracy with ECG interpretation. Incorporating interactive technology to facilitate psychomotor learning may be essential in improving the accuracy of ECG interpretation.
C1 [Dzikowicz, Dillon J.] Univ Rochester Med Ctr, Rochester, NY 14627 USA.
[Dzikowicz, Dillon J.; Carey, Mary G.] Univ Rochester, Sch Nursing, Rochester, NY 14627 USA.
C3 University of Rochester; University of Rochester
RP Dzikowicz, DJ (corresponding author), Univ Rochester Med Ctr, Rochester, NY 14627 USA.; Dzikowicz, DJ (corresponding author), Univ Rochester, Sch Nursing, Rochester, NY 14627 USA.
EM illon_dzikowicz@urmc.rochester.edu; Mary_Carey@URMC.Rochester.edu
OI Carey, Mary/0000-0002-5013-3464
CR Brooks CA, 2016, AM J CRIT CARE, V25, P61, DOI 10.4037/ajcc2016556
Dzikowicz D. J., 2020, MEDSURG NURSING, V29, P263
Funk M, 2017, CIRC-CARDIOVASC QUAL, V10, DOI 10.1161/CIRCOUTCOMES.116.003132
Rubenstein CD, 2017, NURS EDUC, V42, P85, DOI 10.1097/NNE.0000000000000293
Schwimer D, 2022, CRIT CARE NURSE, V42, P33, DOI 10.4037/ccn2022465
Suba S, 2022, AM J CRIT CARE, V31, P83, DOI 10.4037/ajcc2022748
Viljoen CA, 2021, BMC MED EDUC, V21, DOI 10.1186/s12909-021-02854-x
Viljoen CA, 2020, BMC MED EDUC, V20, DOI 10.1186/s12909-020-02354-4
Weeks KW, 2019, NURSE EDUC PRACT, V37, P29, DOI 10.1016/j.nepr.2019.04.010
NR 9
TC 0
Z9 0
U1 0
U2 0
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA
SN 1536-5026
EI 1943-4685
J9 NURS EDUC PERSPECT
JI Nurs. Educ. Perspect.
PD JUL-AUG
PY 2023
VL 44
IS 4
BP 247
EP 249
DI 10.1097/01.NEP.0000000000001078
PG 3
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA L7SL8
UT WOS:001025220600011
PM 36729816
DA 2024-09-05
ER
PT J
AU Wang, R
Li, SJ
Yin, Q
Zhang, J
Yao, RJ
Wu, O
AF Wang, Rui
Li, Shijie
Yin, Qing
Zhang, Ji
Yao, Rujing
Wu, Ou
TI Improved PageRank and New Indices for Academic Impact Evaluation Using
AI Papers as Case Studies
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
DE Group evaluation; PageRank; Paper evaluation
ID H-INDEX; CITATION; PERFORMANCE; INDICATOR; ARTICLES; SCIENCE
AB Evaluating academic papers and groups is important in scholar evaluation and literature retrieval. However, current evaluation indices, which pay excessive attention to the citation number rather than the citation importance and unidirectionality, are relatively simple. This study proposes new evaluation indices for papers and groups. First, an improved PageRank (PR) algorithm introducing citation importance is proposed to obtain a new citation-based paper index (CPI) via a pre-ranking and fine-tuning strategy. Second, to evaluate the paper's influence inside and outside its research field, the focus citation-based paper index (FCPI) and diversity citation-based paper index (DCPI) are proposed based on topic similarity and diversity, respectively. Third, aside from the statistical indices for academic papers, we propose a foreign academic degree of dependence (FAD) to characterise the dependence between two academic groups. Finally, artificial intelligence (AI) papers from 2005 to 2019 are utilised for a case study.
C1 [Wang, Rui; Li, Shijie; Yin, Qing; Yao, Rujing; Wu, Ou] Tianjin Univ, Tianjin, Peoples R China.
[Zhang, Ji] Zhejiang Lab, Hangzhou, Peoples R China.
C3 Tianjin University; Zhejiang Laboratory
RP Wu, O (corresponding author), Tianjin Univ, Ctr Appl Math, 92 Weijin Rd, Tianjin 300072, Peoples R China.
EM wuou@tju.edu.cn
FU ZJFund [2019KB0AB03]; NSFC [62076178]; TJ-NSF [19JCZDJC31300,
19ZXAZNGX00050]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This study
is supported by ZJFund 2019KB0AB03, NSFC 62076178, TJ-NSF
(19JCZDJC31300, 19ZXAZNGX00050).
CR [Anonymous], 2013, P AAAI C ART INT
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Chao Min, 2017, Proceedings of the Association for Information Science and Technology, V54, DOI 10.1002/pra2.2017.14505401147
Chen P, 2007, J INFORMETR, V1, P8, DOI 10.1016/j.joi.2006.06.001
Chu JSG, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2021636118
Devlin J., 2018, ARXIV
Ding JD, 2020, SCIENTOMETRICS, V122, P1303, DOI 10.1007/s11192-020-03364-1
Ding Y, 2013, J INFORMETR, V7, P583, DOI 10.1016/j.joi.2013.03.003
Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171
Fiala D, 2012, J INFORMETR, V6, P370, DOI 10.1016/j.joi.2012.02.002
GARFIELD E, 1970, NATURE, V227, P669, DOI 10.1038/227669a0
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Gerrish SM., P ICML 2010
Gerrish SM, DROPPED REF
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Gotelli N.J., 2013, The encyclopedia of biodiversity, Vsecond, DOI DOI 10.1016/B978-0-12-384719-5.00424-X
Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9
Hu ZG, 2013, J INFORMETR, V7, P887, DOI 10.1016/j.joi.2013.08.005
Jiang XR, 2016, J ASSOC INF SCI TECH, V67, P1679, DOI 10.1002/asi.23463
Lu C, 2017, SCIENTOMETRICS, V112, P927, DOI 10.1007/s11192-017-2398-7
Ma N, 2008, INFORM PROCESS MANAG, V44, P800, DOI 10.1016/j.ipm.2007.06.006
Meyers MA, 2017, J MATER RES TECHNOL, V6, P304, DOI 10.1016/j.jmrt.2017.09.004
Mingcui Du, 2009, 2009 WRI World Congress on Computer Science and Information Engineering, CSIE, P277, DOI 10.1109/CSIE.2009.479
Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002
Nykl M, 2014, J INFORMETR, V8, P683, DOI 10.1016/j.joi.2014.06.005
Page L., 1999, The PageRank citation ranking: bringing order to the web
Pajic D, 2015, J INFORMETR, V9, P990, DOI 10.1016/j.joi.2015.08.005
Priem J., 2010, Altmetrics: a manifesto
Schubert A, 2009, SCIENTOMETRICS, V78, P559, DOI 10.1007/s11192-008-2208-3
Siudem G, 2020, P NATL ACAD SCI USA, V117, P13896, DOI 10.1073/pnas.2001064117
Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162]
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P406, DOI 10.1002/asi.21678
WANG S, 2016, ACM T INTEL SYST TEC, V7, P1, DOI DOI 10.1145/2897371
Xu J, 2019, SCIENTOMETRICS, V119, P1597, DOI 10.1007/s11192-019-03106-y
Yan E, 2010, J AM SOC INF SCI TEC, V61, P1635, DOI 10.1002/asi.21349
Ye FY, 2014, J ASSOC INF SCI TECH, V65, P742, DOI 10.1002/asi.23075
Yuan J., P 24 INT C WORLD WID
Zhang F, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101035
NR 39
TC 2
Z9 2
U1 7
U2 51
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PD JUN
PY 2024
VL 50
IS 3
BP 690
EP 702
DI 10.1177/01655515221105038
EA JUL 2022
PG 13
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA SS2E6
UT WOS:000828846900001
DA 2024-09-05
ER
PT J
AU Brand, C
Ward, F
MacDonagh, N
Cunningham, S
Timulak, L
AF Brand, Charles
Ward, Fiona
MacDonagh, Niamh
Cunningham, Sharon
Timulak, Ladislav
TI A national evaluation of the Irish public health counselling in primary
care service- examination of initial effectiveness data
SO BMC PSYCHIATRY
LA English
DT Article
DE Psychotherapy research; Primary care counselling; Practice-based
evidence; National counselling service evaluation; Logistic regression;
Multi-level modelling
ID DOSE-EFFECT RELATIONS; PSYCHOLOGICAL THERAPY; CORE-OM; PSYCHOTHERAPY;
RECOVERY; OUTCOMES; DURATION
AB Background The Counselling in Primary Care service (CIPC) is the first and only nationally available public counselling service in the Republic of Ireland. This study provides initial data for the effectiveness of short-term psychotherapy delivered in a primary care setting in Ireland for the first time. Method A practice-based observational research approach was employed to examine outcome data from 2806 clients receiving therapy from 130 therapists spread over 150 primary care locations throughout Ireland. Pre-post outcomes were assessed using the CORE-OM and reliable and clinically significant change proportions. Binary logistic regression examined the effect of pre therapy symptom severity on the log odds of recovering. Six and 12 month follow up data from a subsample of 276 clients were also analysed using growth curve analysis. Results Of 14,156 referred clients, 5356 presented for assessment and 52.3% (N = 2806) consented to participate. Between assessment and post-therapy a large reduction in severity of symptoms was observed- Cohen's d = 0.98. Furthermore, 47% of clients achieved recovery,a further 15.5% reliably improved, 2.7% reliably deteriorated and34.7% showed no reliable improvement. Higher initial severity was associated with less chance of recovering at post-therapy. Significant gains were maintained between assessment and12 months after therapy- Cohen's d = 0.50. Conclusions Outcomes for clients in the CIPC service compared favourably with large scale counselling and psychotherapy services in jurisdictions in the U.K., the U.S.A., Norway and Sweden. This study expands the international primary care psychotherapy research base to include the entire Republic of Ireland jurisdiction.
C1 [Brand, Charles; Timulak, Ladislav] Trinity Coll Dublin, Sch Psychol, Dublin 2, Ireland.
[Brand, Charles; Timulak, Ladislav] Counselling Primary Care Natl Evaluat, Hlth Serv Execut, 19 Upper Ormond Quay, Dublin 2, Ireland.
[Ward, Fiona] Hlth Serv Execut, 34 Brews Hill, Navan, Meath, Ireland.
[MacDonagh, Niamh] Primary Care Ctr, Hlth Serv Execut, 1st Floor Junct House,Airton Rd, Dublin, Ireland.
[Cunningham, Sharon] Hlth Serv Execut, Unit 8A Brulington Business Pk,Srah Ave, Tullamore, Offaly, Ireland.
C3 Trinity College Dublin
RP Brand, C (corresponding author), Trinity Coll Dublin, Sch Psychol, Dublin 2, Ireland.; Brand, C (corresponding author), Counselling Primary Care Natl Evaluat, Hlth Serv Execut, 19 Upper Ormond Quay, Dublin 2, Ireland.
EM brandc@tcd.ie
RI Timulak, Ladislav/P-6881-2017
OI Timulak, Ladislav/0000-0003-2785-0753; BRAND,
CHARLES/0000-0001-9831-1189
FU Irish Research Council [EBPPG12015, 124]
FX This work was supported by the Irish Research Council (Project ID:
EBPPG12015 vertical bar 124). The funding body was not involved in study
design, data collection, analyses, data interpretation, or manuscript
preparation.
CR Ammerman A, 2014, ANNU REV PUBL HEALTH, V35, P47, DOI 10.1146/annurev-publhealth-032013-182458
[Anonymous], 2006, VIS CHANG REP EXP GR
Barkham M, 1996, J CONSULT CLIN PSYCH, V64, P927, DOI 10.1037/0022-006X.64.5.927
Barkham M, 2006, J CONSULT CLIN PSYCH, V74, P160, DOI 10.1037/0022-006X.74.1.160
Barkham M, 2005, BRIT J PSYCHIAT, V186, P239, DOI 10.1192/bjp.186.3.239
Barkham M., 2010, DEV DELIVERING PRACT
Barkham M, 2007, PSYCHOL PSYCHOTHER-T, V80, P269, DOI 10.1348/147608306X148048
Barkham M, 2012, PSYCHOL PSYCHOTHER-T, V85, P1, DOI 10.1111/j.2044-8341.2011.02019.x
Batt V., 2002, PERSPECTIVES PROVISI
Bourke M., 2012, IRISH PSYCHOL, V38, P262
Connell J, 2007, BRIT J PSYCHIAT, V190, P69, DOI 10.1192/bjp.bp.105.017657
*CORE SYST GROUP, 1998, CORE SYST INF MAN HD
Draper H, 2009, FAM PRACT, V26, P231, DOI 10.1093/fampra/cmp011
Evans C., 1998, EVID-BASED MENT HEAL, V1, P70, DOI [10.1136/ebmh.1.3.70, DOI 10.1136/EBMH.1.3.70]
Falkenström F, 2016, PSYCHOTHERAPY, V53, P130, DOI 10.1037/pst0000039
Gagliardi AR, 2015, PATIENT EDUC COUNS, V98, P412, DOI 10.1016/j.pec.2014.11.020
Gu H, 2009, MIXED MODEL APPROACH
Gyani A, 2013, BEHAV RES THER, V51, P597, DOI 10.1016/j.brat.2013.06.004
Heck RH, 2014, QUANT METH SER, P409
HSRC NCS., 2003, SENCS SURV EXP NAT C
JACOBSON NS, 1991, J CONSULT CLIN PSYCH, V59, P12, DOI 10.1037/0022-006X.59.1.12
Knapstad M, 2018, BMC PSYCHIATRY, V18, DOI 10.1186/s12888-018-1838-0
Martin E, 2008, IR PSYCHOL
McGrath T, 2010, LIFE SHINES 10 YEARS, P252
Mellor-Clark J., 1999, EUROPEAN J PSYCHOTHE, V2, P357, DOI DOI 10.1080/13642539908400818
Mellor-Clark J, 2006, COUNS PSYCHOTHER RES, V6, P1, DOI 10.1080/14733140600581176
Mullin T, 2006, COUNS PSYCHOTHER RES, V6, P68, DOI 10.1080/14733140600581515
NHS Digital, 2018, PSYCH THER ANN REP U
Peugh JL, 2010, J SCHOOL PSYCHOL, V48, P85, DOI 10.1016/j.jsp.2009.09.002
Ray-Sannerud BN, 2012, FAM SYST HEALTH, V30, P60, DOI 10.1037/a0027029
Sawchuk CN, 2018, GEN HOSP PSYCHIAT, V54, P5, DOI 10.1016/j.genhosppsych.2018.06.005
Saxon D, 2010, COUNS PSYCHOTHER RES, V10, P13, DOI 10.1080/14733140902914604
Saxon D, 2008, COUNS PSYCHOTHER RES, V8, P223, DOI 10.1080/14733140802163872
Skre I, 2013, BMC PUBLIC HEALTH, V13, DOI 10.1186/1471-2458-13-873
Sterne JAC, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b2393
Stiles WB, 2008, PSYCHOL MED, V38, P677, DOI 10.1017/S0033291707001511
Stiles WB, 2015, BRIT J PSYCHIAT, V207, P115, DOI 10.1192/bjp.bp.114.145565
Viswesvaran C, 2003, PERS PSYCHOL, V56, P1085
Werbart A, 2013, PSYCHOTHERAPY, V50, P119, DOI 10.1037/a0031386
Wu L., 2016, BMJ OPEN, V6
NR 40
TC 4
Z9 4
U1 0
U2 0
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1471-244X
J9 BMC PSYCHIATRY
JI BMC Psychiatry
PD MAY 3
PY 2021
VL 21
IS 1
AR 227
DI 10.1186/s12888-021-03226-x
PG 10
WC Psychiatry
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Psychiatry
GA SK3SS
UT WOS:000656139500006
PM 33941127
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU SLATER, PB
AF SLATER, PB
TI HIERARCHICAL-CLUSTERING OF MATHEMATICAL JOURNALS BASED UPON CITATION
MATRICES
SO SCIENTOMETRICS
LA English
DT Article
RP SLATER, PB (corresponding author), UNIV CALIF SANTA BARBARA,COMMUNITY & ORG RES INST,SANTA BARBARA,CA 93106, USA.
RI Slater, Paul B/U-1847-2018
CR CARPENTER MP, 1973, J AM SOC INFORM SCI, V24, P425, DOI 10.1002/asi.4630240604
CHILKO DM, 1978, SAS S102 SAS I TECHN
CHILKO DM, 1977, 3RD P ANN C SAS US G, P255
Leusmann C. S., 1977, Computer Applications, V4, P769
MIYAMOTO S, 1980, IEEE T SYST MAN CYB, V10, P899
PRICE DD, 1981, SCIENTOMETRICS, V3, P55
SLATER PB, 1976, IEEE T SYST MAN CYB, V6, P321, DOI 10.1109/TSMC.1976.5408783
SLATER PB, 1981, QUAL QUANT, V15, P179, DOI 10.1007/BF00144259
SLATER PB, 1981, SOCIOECONOMIC PLANNI, V15, P2
NR 9
TC 12
Z9 12
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0138-9130
J9 SCIENTOMETRICS
JI Scientometrics
PY 1983
VL 5
IS 1
BP 55
EP 58
DI 10.1007/BF02097177
PG 4
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Social Science Citation Index (SSCI); Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Information Science & Library Science
GA QD335
UT WOS:A1983QD33500003
DA 2024-09-05
ER
PT C
AU Tsuji, K
Takizawa, N
Sato, S
Ikeuchi, U
Ikeuchi, A
Yoshikane, F
Itsumura, H
AF Tsuji, Keita
Takizawa, Nobuya
Sato, Sho
Ikeuchi, Ui
Ikeuchi, Atsushi
Yoshikane, Fuyuki
Itsumura, Hiroshi
BE Giannakopoulos, G
Sakas, DP
Vlachos, DS
KyriakiManessi, D
TI Book Recommendation Based on Library Loan Records and Bibliographic
Information
SO 3RD INTERNATIONAL CONFERENCE ON INTEGRATED INFORMATION (IC-ININFO)
SE Procedia Social and Behavioral Sciences
LA English
DT Proceedings Paper
CT 3rd International Conference on Integrated Information (IC-ININFO)
CY SEP 05-09, 2013
CL Prague, CZECH REPUBLIC
DE Book Recommendation; Recommender System; Library Loan Records; Support
Vector Machine; SVM
AB In order to show the effectiveness of using (a) library loan records and (b) information about book contents as a basis for book recommendations, we entered various data into a support vector machine (SVM), used it to recommend books to subjects, and asked them for evaluations of the recommendations that were given. The data that we used were (1) confidence and support with an association rule that was based on the loan records, (2) similarities between book titles, (3) matches/mismatches between the Nippon Decimal Classification (NDC) categories of the books, and (4) similarities between the outlines of the books in the BOOK Database. The subjects were 32 students who belonged to T University. The books that we recommended and the loan records that we used were obtained from the T University Library. The results showed that the combinations of (1), (2), (3) and (1), (2) were rated more favorably by the subjects than the other combinations. However, the books that were recommended by Amazon were rated even more favorably by the subjects. This is a topic for further research. (C) 2014 Elsevier Ltd. This is an open under the CC BY-NC-ND license (http://creavativecommons.org/licenses/by-nc-nd/3.0/). Selection and peer-review under responsibility of the 3rd International Conference on Integrated Information.
C1 [Tsuji, Keita; Ikeuchi, Atsushi; Yoshikane, Fuyuki; Itsumura, Hiroshi] Univ Tsukuba, Fac Lib Informat & Media Sci, Tsukuba, Ibaraki 3058550, Japan.
[Takizawa, Nobuya] Univ Tsukuba, Coll Knowledge & Lib Sci, Sch Informat, Tsukuba, Ibaraki 3058550, Japan.
[Sato, Sho] Doshisha Univ, Fac Social Studies, Kamigyo Ku, Kyoto 6028580, Japan.
[Ikeuchi, Ui] Univ Tsukuba, Grad Sch Lib Informat & Media Studies, Tsukuba, Ibaraki 3058550, Japan.
C3 University of Tsukuba; University of Tsukuba; Doshisha University;
University of Tsukuba
RP Tsuji, K (corresponding author), Univ Tsukuba, Fac Lib Informat & Media Sci, 1-2 Kasuga, Tsukuba, Ibaraki 3058550, Japan.
EM keita@slis.tsukuba.ac.jp
RI Ikeuchi, Ui/M-5494-2019; Ikeuchi, Ui/N-8436-2015
OI Ikeuchi, Ui/0000-0002-5680-1881; Ikeuchi, Ui/0000-0002-5680-1881
CR Chen CC, 2007, ELECTRON LIBR, V25, P711, DOI 10.1108/02640470710837137
Harada T., 2010, DIGITAL LIB, V38, P54
Harada T., 2009, DIGITAL LIB, V36, P22
RESNICK P, 1994, ACM C COMP SUPP COOP, V1, P175
Shirgaonkar S, 2010, INT C WORKSH EM TREN, P535
Tsuji K., 2011, P INT C INT INF IC I
Tsuji K., 2012, TOSHOKANKAI LIB WORL, V64, P176
Whitney C., 2006, D LIB MAGAZINE, V12
Yongcheng Luo, 2009, Proceedings of the 2009 Second International Workshop on Computer Science and Engineering (WCSE 2009), P323, DOI 10.1109/WCSE.2009.822
NR 9
TC 13
Z9 16
U1 2
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1877-0428
J9 PROCD SOC BEHV
PY 2014
VL 147
BP 478
EP 486
DI 10.1016/j.sbspro.2014.07.142
PG 9
WC Information Science & Library Science
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Information Science & Library Science
GA BD4GO
UT WOS:000360703000065
OA gold
DA 2024-09-05
ER
PT C
AU Wilson, M
AF Wilson, Marianne
BE Kamps, J
Goeuriot, L
Crestani, F
Maistro, M
Joho, H
Davis, B
Gurrin, C
Kruschwitz, U
Caputo, A
TI Designing Useful Conversational Interfaces for Information Retrieval in
Career Decision-Making Support
SO ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT III
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 45th European Conference on Information Retrieval (ECIR)
CY APR 02-06, 2023
CL Dublin, IRELAND
DE Conversational information retrieval; Applied NLP;
Research-through-design; Social impact; Evaluation Ethics
AB The proposal is an interdisciplinary problem-focused study to explore the usefulness of conversational information retrieval (CIR) in a complex domain. Aresearch-through-design methodology will be used to identify the informational, practical, affective, and ethical requirements for a CIR system in the specific context of Career Education, Information, Advice & Guidance (CEIAG) services for young people in Scotland. Later phases of the research will use these criteria to identify appropriate techniques in the literature, and design and evaluate artefacts intended to meet these. This research will use an interdisciplinary approach to further understanding on the use and limitations of dialogue systems as intermediaries for information retrieval where there are awide range of possible information tasks and specific users' needs may be ambiguous.
C1 [Wilson, Marianne] Edinburgh Napier Univ, 10 Colinton Rd, Edinburgh EH10 5DT, Scotland.
C3 Edinburgh Napier University
RP Wilson, M (corresponding author), Edinburgh Napier Univ, 10 Colinton Rd, Edinburgh EH10 5DT, Scotland.
EM m.wilson2@napier.ac.uk
OI Wilson, Marianne Clare/0000-0002-4780-2401
CR Akhgar B., 2022, CENTRIC ACCOUNTABILI
Avgustis I, 2021, LECT NOTES COMPUT SC, V12935, P155, DOI 10.1007/978-3-030-85610-6_10
Avula S, 2018, CHIIR'18: PROCEEDINGS OF THE 2018 CONFERENCE ON HUMAN INFORMATION INTERACTION & RETRIEVAL, P52, DOI 10.1145/3176349.3176380
Bender Emily, 2019, S DAT SCI STAT BELL
Bimrose J., 2021, OXFORD HDB CAREER DE, P282, DOI [10.1093/oxfordhb/9780190069704.013.21, DOI 10.1093/OXFORDHB/9780190069704.013.21]
Blodgett SL, 2020, Arxiv, DOI arXiv:2005.14050
Borsci Simone, 2022, Personal and Ubiquitous Computing, V26, P95, DOI 10.1007/s00779-021-01582-9
Career Review Programme Board, 2022, CAREERS DESIGN
Centre for Data Ethics and Innovation, 2021, The roadmap to an effective AI assurance ecosystem
Clark L, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300705
Custer R.L., 1999, The modified delphi technique-a rotational modification, DOI DOI 10.21061/JCTE.V15I2.702
Dignum V, 2019, ARTIF INTELL-FOUND, P1, DOI 10.1007/978-3-030-30371-6
Eggink W, 2016, E&PDE, P216
Elsweiler David, 2020, Datenbank-Spektrum, V20, P37, DOI 10.1007/s13222-020-00333-z
Folstad A., 2020, QUALITY USER EXPERIE, V5, P3, DOI DOI 10.1007/S41233-020-00033-2
Hooley T., 2021, OXFORD HDB CAREER DE, P296, DOI [10.1093/oxfordhb/9780190069704.013.22, DOI 10.1093/OXFORDHB/9780190069704.013.22]
International Organization for Standardization, 2018, 9241112018 BS EN ISO
Kerr A, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720915939
Kettunen J, 2019, INT J EDUC VOCAT GUI, V19, P1, DOI 10.1007/s10775-018-9365-6
Kiesel Johannes, 2021, ACM Transactions on Information Systems, V39, DOI 10.1145/3468868
Koene A, 2019, GOVERNANCE FRAMEWORK, DOI DOI 10.2861/59990
Kuziemski M, 2020, TELECOMMUN POLICY, V44, DOI 10.1016/j.telpol.2020.101976
Law B, 1999, BRIT J GUID COUNS, V27, P35, DOI 10.1080/03069889908259714
Linstone H. A., 2002, DELPHI METHOD TECHNI
McMahon M, 2014, INT CULT PSYCHOL, P13, DOI 10.1007/978-1-4614-9460-7_2
Moore N, 2021, J NAT I CAREER ED CO, V46, P25, DOI [10.20856/jnicec.4605, DOI 10.20856/JNICEC.4605]
Moore RJ, 2018, HUM-COMPUT INT-SPRIN, P1, DOI 10.1007/978-3-319-95579-7
OECD, 2021, OECDLEGAL0449
OECD (Organisation for Economic Co-operation and Development), 2021, STAT IMPL OECD AI PR
Radlinski F, 2017, CHIIR'17: PROCEEDINGS OF THE 2017 CONFERENCE HUMAN INFORMATION INTERACTION AND RETRIEVAL, P117, DOI 10.1145/3020165.3020183
Rahwan I, 2018, ETHICS INF TECHNOL, V20, P5, DOI 10.1007/s10676-017-9430-8
Robertson PJ, 2021, INT J EDUC VOCAT GUI, V21, P309, DOI 10.1007/s10775-020-09443-2
Sampson JP, 2020, INT J EDUC VOCAT GUI, V20, P191, DOI 10.1007/s10775-019-09399-y
Savickas M.L., 2019, International handbook of career guidance, P25, DOI [DOI 10.1007/978-3-030-25153-6_2, DOI 10.1007/978-3-030-25153-62LOSECOSISTEMASECONOMICOS]
Scottish Government, 2021, SCOTL ART INT STRAT
Scottish Government, 2019, SCOTT APPR SERV DES
Skills Development Scotland, 2020, DELIVERING SCOTLANDS
Skills Development Scotland, 2020, SKILLS DEV SCOTL ANN
Skills Development Scotland, 2022, ANN REV 2021 22
Skjuve M, 2019, LECT NOTES COMPUT SC, V11551, P113, DOI 10.1007/978-3-030-17705-8_10
Smestad TL, 2019, LECT NOTES COMPUT SC, V11551, P170, DOI 10.1007/978-3-030-17705-8_15
Spillner L, 2021, PROCEEDINGS OF 23RD ACM INTERNATIONAL CONFERENCE ON MOBILE HUMAN-COMPUTER INTERACTION (MOBILEHCI 2021): MOBILE APART, MOBILE TOGETHER, DOI 10.1145/3447526.3472050
Sun YM, 2018, ACM/SIGIR PROCEEDINGS 2018, P235, DOI 10.1145/3209978.3210002
Thies IM, 2017, LECT NOTES COMPUT SC, V10513, P441, DOI 10.1007/978-3-319-67744-6_28
Thomas Paul, 2021, ACM Transactions on Information Systems, V39, DOI 10.1145/3439869
Thomas P, 2018, CHIIR'18: PROCEEDINGS OF THE 2018 CONFERENCE ON HUMAN INFORMATION INTERACTION & RETRIEVAL, P42, DOI 10.1145/3176349.3176388
Trippas JR, 2018, CHIIR'18: PROCEEDINGS OF THE 2018 CONFERENCE ON HUMAN INFORMATION INTERACTION & RETRIEVAL, P32, DOI 10.1145/3176349.3176387
UNICEF, 2021, POL GUID CHILDR
Vakulenko S, 2020, Arxiv, DOI arXiv:2012.03704
Varjo J, 2022, J EDUC POLICY, V37, P1009, DOI 10.1080/02680939.2021.1971772
Wang ZD, 2022, ACM T INFORM SYST, V40, DOI 10.1145/3507357
Watts AG, 2010, INT J EDUC VOCAT GUI, V10, P89, DOI 10.1007/s10775-010-9177-9
Watts A.G., 2004, International Journal for Educational and Vocational Guidance, V4, P105, DOI [DOI 10.1007/S10775-005-1025-Y, 10.1007/s10775-005-1025-y]
Weiss A, 2015, 2015 24TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), P381, DOI 10.1109/ROMAN.2015.7333568
Wilson M., 2022, Journal of the National Institute for Career Education and Counselling, V48, P48, DOI [DOI 10.20856/JNICEC.4807, 10.20856/jnicec.4807]
Yates J., 2020, OXFORD HDB CAREER DE, DOI [10.1093/oxfordhb/9780190069704.013.10, DOI 10.1093/OXFORDHB/9780190069704.013.10]
Zamani H., 2022, Conversational Information Seeking, DOI DOI 10.1561/XXXXXXXXX
Zimmerman J., 2014, Research Through Design in HCI, DOI DOI 10.1007/978-1-4939-0378-8_8
NR 58
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-28240-9; 978-3-031-28241-6
J9 LECT NOTES COMPUT SC
PY 2023
VL 13982
BP 482
EP 488
DI 10.1007/978-3-031-28241-6_56
PG 7
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BV1RO
UT WOS:000995495200056
DA 2024-09-05
ER
PT C
AU Kang, H
Yoo, SJ
Han, D
AF Kang, Hanhoon
Yoo, Seong Joon
Han, Dongil
BE Ko, FIS
DalKwack, K
Hwang, S
Kawata, S
Chen, YW
TI Social Ranking of Medical Institutions Based on Social Information
SO 2011 6TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND CONVERGENCE
INFORMATION TECHNOLOGY (ICCIT)
LA English
DT Proceedings Paper
CT 6th International Conference on Computer Sciences and Convergence
Information Technology (ICCIT)
CY NOV 29-DEC 01, 2011
CL Jeju Island, SOUTH KOREA
DE medical institutions; ranking; sentiment analysis
AB In this paper we propose a method with which to rank medical institutions by utilizing the social information provided by social network services (SNS). Furthermore, the gap between the rankings proposed in this paper and the rankings based on the existing method provided by USNews.com is analyzed, and a need for social marketing by medical institutions is proposed. USNews.com ranks medical institutions each year and publishes the data through its site. Here, the rankings are determined based on the information generated offline, based on the ranking criteria determined by a specific group, in order to provide the applicable information. Consequently, the rankings perceived by the patients who actually visit the medical institutions may be somewhat different from the rankings provided by USNews.com. For this paper the social information related to medical institutions was crawled from the SNS sites in order to rank the medical institutions based on the information generated by many users in the social media, and these rankings were compared to the ranking results provided by USNews.com. The data used for the experiment comprised the basic information on the 892 medical institutions crawled from USNews.com and the social information crawled from the SNS sites. Social information was available for only 443 institutions. The rankings were computed for these institutions based on the method proposed in this paper, so as to compare to the existing results. According to the ranking results for 316 institutions, the rankings improved from one place to 846 places, with the average improvement being 330 places.
C1 [Kang, Hanhoon; Yoo, Seong Joon; Han, Dongil] Sejong Univ, Dept Comp Engn, Seoul 143747, South Korea.
C3 Sejong University
RP Yoo, SJ (corresponding author), Sejong Univ, Dept Comp Engn, 98 Gunja, Seoul 143747, South Korea.
EM sjyoo@sejong.ac.kr
RI YOO, SEONG JOON/AAB-3791-2021
CR [Anonymous], 2005, INFORM SYST J, V1, P203
[Anonymous], 1997, ICML
[Anonymous], 2004, Mining and Summarizing Customer Reviews
[Anonymous], J EXPERT SYSTEMS APP
Baeza-Yates Ricardo, 1999, MODERN INFORM RETRIE
Bertoli C, 2008, PROCEEDINGS OF THE 2008 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, P160
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Brin S., 1997, STANFORD DIGITAL LIB
Chang CH, 2006, IEEE T KNOWL DATA EN, V18, P1411, DOI 10.1109/TKDE.2006.152
Dave K., 2003, PROCEEDINGS OF THE 1, P512
Diligenti M., 2002, PROC OF 11TH INTL WW
Doan Son, 2004, PROCEEDINGS OF THE 4
Esuli A., PROCEEDINGS OF THE 5, P417
Hanhoon Kang, PROC OF THE INTERNAT
Jaeyoung Yang, 2004, Intelligent Agents and Multi-Agent Systems. 7th Pacific Rim International Workshop on Multi-Agents, PRIMA 2004. Revised Selected Papers (Lecture Notes on Computer Science Vol.3371), P291
JawWon Hwang, 2008, Journal of KISS: Computing Practices, V14, P336
Kang H, 2009, LECT NOTES COMPUT SC, V5616, P359, DOI 10.1007/978-3-642-02713-0_38
Kim Seong-Whan., 2004, Proceedings of the 37th Hawaii International Conference on System Sciences 2004, P1
Kim Y, 2008, LECT NOTES COMPUT SC, V4993, P466
Kleiber J., 1998, PROC OF 9TH ACM SIAM
Lempel R, 2000, COMPUT NETW, V33, P387, DOI 10.1016/S1389-1286(00)00034-7
Liao Ciya, ARTIFICIAL INTELLIGE
Miao Q., 2008, Proceeding of the 17th ACM conference on Information and knowledge management, CIKM '08. New York, NY, P1369, DOI DOI 10.1145/1458082.1458284
Miao QL, 2009, EXPERT SYST APPL, V36, P7192, DOI 10.1016/j.eswa.2008.09.035
Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704
Popescu Ana-Maria, 2005, P C HUM LANG TECHN E, P339, DOI DOI 10.3115/1220575.1220618
Rafiei D., 2000, PROC OF THE 9TH INTL
Shang WQ, 2007, EXPERT SYST APPL, V33, P1, DOI 10.1016/j.eswa.2006.04.001
SODERLAND S, 1999, MACHINE LEARNING
Su Q, 2006, LECT NOTES ARTIF INT, V4285, P22
Turney PD, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P417
NR 31
TC 0
Z9 0
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-89-88678-55-8
PY 2012
BP 155
EP 162
PG 8
WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BCC83
UT WOS:000309767600031
DA 2024-09-05
ER
PT J
AU Zwilling, M
Eckhaus, E
AF Zwilling, Moti
Eckhaus, Eyal
TI Do managers learn more about successful project management methods from
articles in high impact factor journals?
SO HUMAN SYSTEMS MANAGEMENT
LA English
DT Article
DE Project management; project procedures; prospect theory; project
management decision making; machine learning
ID PERFORMANCE; BENCHMARKING; FRAMEWORK; EDUCATION; SYSTEM; IMPROVEMENT;
RISKS
AB BACKGROUND: In recent years, the need to develop performance-based measurement systems to improve project management outcomes has dramatically increased. Managers still take various risks during the course of managing projects which lead to ineffective decision making. A range of theories discuss such behaviors. These theories demonstrate that the discussion of risk embedded in non-optimal decision-making processes is based on theory rather than practical knowledge. However, various components of project management can be derived from academic best practices for decision making.
OBJECTIVE: The study aims to explore whether articles in high impact journals tend to embody practical, rather than theoretical, knowledge thus closing the gap between academia and industry. The study is based on SEM and various machine learning classification methods.
METHOD: The study was conducted using an NLP analysis of 1461 academic journals in the field of project management.
RESULTS: Results show a significant positive relationship between the success of projects and the impact of new practical procedures. In contrast, a negative correlation was found between theories that use non-practical processes of effective project management.
CONCLUSION: Managers can learn about newmethods for project management from articles in high impact factor journals.
C1 [Zwilling, Moti; Eckhaus, Eyal] Ariel Univ, Dept Econ & Business Adm, Ramat Hagolan 65 St, Ariel, Israel.
C3 Ariel University
RP Zwilling, M (corresponding author), Ariel Univ, Dept Econ & Business Adm, Ramat Hagolan 65 St, Ariel, Israel.
EM motiz@ariel.ac.il
RI Eckhaus, Eyal/AAX-2557-2020; Zwilling, Moti/AAD-3965-2020
OI Eckhaus, Eyal/0000-0002-1815-0045; Zwilling, Moti/0000-0001-7628-8889
CR Alarcon LF, 1996, J CONSTR ENG M ASCE, V122, P265, DOI 10.1061/(ASCE)0733-9364(1996)122:3(265)
Allen I.E, 2010, CLASS DIFFRENCES ONL
Andersen ES, 2009, PROJ MANAG J, V40, P19, DOI 10.1002/pmj.20096
[Anonymous], 2009, ABAC J
[Anonymous], 2000, Project Management Journal
Atkinson R., 1999, Internaltional Journal of Project Management, V17, P337, DOI DOI 10.1016/S0263-7863(98)00069-6
Badewi A, 2016, INT J PROJ MANAG, V34, P761, DOI 10.1016/j.ijproman.2015.05.005
Barberis N, 2003, HDB EC FINANCE ASURV
Bentham H., 2013, Journal of Teacher Education of Sustainability, V15, P25
Boiangiu CA, 2019, EDUC SCI, V9, DOI 10.3390/educsci9010026
Bornmann L, 2019, SCIENTOMETRICS, V120, P841, DOI 10.1007/s11192-019-03140-w
Caramidaru I, 2020, HUM SYST MANAGE, V39, P529, DOI 10.3233/HSM-201039
Cha HS, 2018, KSCE J CIV ENG, V22, P1614, DOI 10.1007/s12205-017-0156-2
Chan TK, 2009, CONSTR MANAG ECON, V27, P1231, DOI 10.1080/01446190903233137
Chen CY, 2011, J SYST SOFTWARE, V84, P479, DOI 10.1016/j.jss.2010.10.042
Dang A., 2016, P COLING 2016 26 INT, P3553
Davidovitch N., 2018, Higher Education Studies, V8, P92, DOI [https://doi.org/10.5539/hes.v8n2p92, DOI 10.5539/HES.V8N2P92]
Devedzic V, 2011, IEEE T EDUC, V54, P273, DOI 10.1109/TE.2010.2052104
Djikhy S, 2019, HUM SYST MANAGE, V38, P423, DOI 10.3233/HSM-190614
Eckhaus E, 2018, E J SOCIAL BEHAV RES, V9, P1
Eckhaus E, 2017, BUS MANAGE ED, V15, P42, DOI 10.3846/bme.2017.345
Eckhaus E, 2018, RISK MANAG-UK, V20, P304, DOI 10.1057/s41283-018-0037-0
Eckhaus E, 2019, J GENDER STUD, V28, P97, DOI 10.1080/09589236.2017.1411789
Eckhaus E, 2018, TRAMES-J HUMANIT SOC, V22, P273, DOI 10.3176/tr.2018.3.04
Eskerod P, 2009, PROJ MANAG J, V40, P4, DOI 10.1002/pmj.20098
Flores NH, 2016, PROCD SOC BEHV, V228, P436, DOI 10.1016/j.sbspro.2016.07.067
Globerson S, 2009, PROJECT MANAGEMENT P
Haponava T, 2012, J MANAGE ENG, V28, P140, DOI 10.1061/(ASCE)ME.1943-5479.0000078
Herroelen W, 2001, J OPER MANAG, V19, P559, DOI 10.1016/S0272-6963(01)00054-7
Hwang BG, 2008, CONSTR MANAG ECON, V26, P177, DOI 10.1080/01446190701802398
KAPLAN RS, 1984, ACCOUNT REV, V59, P390
Kirasich K., 2018, SMU Data Sci. Rev., V1, P9
Kumar A, 2015, REBRIEF
Kwak YH, 2009, PROJ MANAG J, V40, P94, DOI 10.1002/pmj.20111
Lee SH, 2005, J CONSTR ENG M ASCE, V131, P790, DOI 10.1061/(ASCE)0733-9364(2005)131:7(790)
LEMA NM, 1995, J MANAGE ENG, V11, P28, DOI 10.1061/(ASCE)0742-597X(1995)11:1(28)
Mandrekar JN, 2010, J THORAC ONCOL, V5, P1315, DOI 10.1097/JTO.0b013e3181ec173d
Matarese V, 2010, ANN I SUPER SANITA, V46, P451, DOI 10.4415/ANN_10_04_14
McCoach DB, 2013, INSTRUMENT DEVELOPMENT IN THE AFFECTIVE DOMAIN: SCHOOL AND CORPORATE APPLICATIONS, THIRD EDITION, P109, DOI 10.1007/978-1-4614-7135-6_4
Medagoda N, 2015, 2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), P1418, DOI 10.1109/FSKD.2015.7382152
Meneghini R, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003804
Mengel T, 2009, PROJ MANAG J, V40, P28, DOI 10.1002/pmj.20097
Mir FA, 2014, INT J PROJ MANAG, V32, P202, DOI 10.1016/j.ijproman.2013.05.012
Moeini M, 2019, MIS QUART, V43, P475, DOI 10.25300/MISQ/2019/14505
Ozorhon B, 2011, J CONSTR ENG M ASCE, V137, P403, DOI 10.1061/(ASCE)CO.1943-7862.0000314
Panda RM, 2017, ECOL EVOL, V7, P10850, DOI 10.1002/ece3.3569
Pereira Suzanne, 2008, AMIA Annu Symp Proc, P586
Petroutsatou K, 2019, INT J CONSTR MANAG, DOI 10.1080/15623599.2019.1619225
Popescu S, 2020, HUM SYST MANAGE, V39, P511, DOI 10.3233/HSM-201034
Radygin VY, 2017, AIP CONF PROC, V1797, DOI 10.1063/1.4972435
Rand G.K., 2000, International Journal of Project Management, V18, P173, DOI [10.1016/S0263-7863(99)00019-8, DOI 10.1016/S0263-7863(99)00019-8, https://doi.org/10.1016/S0263-7863(99)00019-8]
Razavi AH, 2014, J INTELL INF SYST, V42, P393, DOI 10.1007/s10844-013-0273-4
Ritter JR., 2003, PACIFIC BASIN FINANC, V11, P429, DOI [10.1016/S0927-538X(03)00048-9, DOI 10.1016/S0927-538X(03)00048-9]
Machado TCS, 2015, INT T OPER RES, V22, P287, DOI 10.1111/itor.12078
Seglen PO, 1997, BRIT MED J, V314, P498
Serra CEM, 2015, INT J PROJ MANAG, V33, P53, DOI 10.1016/j.ijproman.2014.03.011
Sobel M.E., 1982, SOCIOLOGICAL METHODO, P290
Tahmoush D, FECS 2009, P135
Tereso A, 2019, PROJ MANAG J, V50, P6, DOI 10.1177/8756972818810966
Vasconcelos SMR, 2008, EMBO REP, V9, P700, DOI 10.1038/embor.2008.143
Yang Y, 2018, HUM SYST MANAGE, V37, P333, DOI 10.3233/HSM-17136
Yu I, 2007, J MANAGE ENG, V23, P131, DOI 10.1061/(ASCE)0742-597X(2007)23:3(131)
Zhai L, 2009, PROJ MANAG J, V40, P99, DOI 10.1002/pmj.20099
Zhu W., 2010, NESUG proceedings: health care and life sciences
NR 64
TC 0
Z9 0
U1 0
U2 21
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 0167-2533
EI 1875-8703
J9 HUM SYST MANAGE
JI Hum. Syst. Manag.
PY 2022
VL 41
IS 1
BP 119
EP 141
DI 10.3233/HSM-211194
PG 23
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA YU8KK
UT WOS:000752285400009
DA 2024-09-05
ER
PT C
AU Kehoe, AK
Torvik, VI
AF Kehoe, Adam K.
Torvik, Vetle I.
GP IEEE
TI Predicting Medical Subject Headings Based on Abstract Similarity and
Citations to MEDLINE Records
SO 2016 IEEE/ACM JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL)
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 16th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL)
CY JUN 19-23, 2016
CL Newark, NJ
DE Controlled vocabularies; Medical subject headings; Machine Learning;
Curation of bibliographic databases
ID MESH; ASSIGNMENT
AB We describe a classifier-enhanced nearest neighbor approach to assigning Medical Subject Headings (MeSH (R)) to unlabeled documents using a combination of abstract similarities and direct citations to labeled MEDLINE records. The approach frames the classification problem by decomposing it into sets of siblings in the MeSH hierarchy (e.g., training a classifier for predicting "Heterocyclic Compounds, 2-Ring" vs. other "Heterocyclic Compounds"). Preliminary experiments using a small but diverse set of MeSH terms shows the highest performance when using both abstracts and citations compared to each alone, and coupled with a non-naive classifier: 90+% precision and recall with 10-fold cross-validation. NLM's Medical Text Indexer (MTI) tool achieves similar overall performance but varies more across the terms tested. For example, MTI performs better on "Heterocyclic Compounds, 2-Ring", while our approach performs better on Alzheimer Disease and Neuroimaging. Our approach can be applied broadly to documents with abstracts that are similar to (or cite) MEDLINE abstracts, which would help linking and searching across bibliographic databases beyond MEDLINE.
C1 [Kehoe, Adam K.; Torvik, Vetle I.] Univ Illinois, Grad Sch Lib & Informat Sci, Champaign, IL 61801 USA.
C3 University of Illinois System; University of Illinois Urbana-Champaign
RP Kehoe, AK (corresponding author), Univ Illinois, Grad Sch Lib & Informat Sci, Champaign, IL 61801 USA.
EM kehoe2@illinois.edu; vtorvik@illinois.edu
RI Torvik, Vetle I/A-2327-2008
OI Torvik, Vetle/0000-0002-0035-1850
CR Agarwal S., Patci: A probabilistic citation matcher
Huang ML, 2011, J AM MED INFORM ASSN, V18, P660, DOI 10.1136/amiajnl-2010-000055
Kim W, 2001, J AM MED INFORM ASSN, P319
Mork J.G., 2013, CEUR WORKSHOP PROC
Mork JG., 2014, Working Notes for Conference and Labs of the Evaluation Forum 2014, P1328
Ruch P, 2006, BIOINFORMATICS, V22, P658, DOI 10.1093/bioinformatics/bti783
Sohn S, 2008, J AM MED INFORM ASSN, V15, P546, DOI 10.1197/jamia.M2431
Torvik V.I., Absim: A tool for calculating bm25 similarity among pairs of abstracts in pubmed
Trieschnigg D, 2009, BIOINFORMATICS, V25, P1412, DOI 10.1093/bioinformatics/btp249
Wahle Manuel, 2012, AMIA Annu Symp Proc, V2012, P940
Wilbur W John, 2014, AMIA Annu Symp Proc, V2014, P1198
NR 11
TC 2
Z9 3
U1 0
U2 6
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2575-7865
EI 2575-8152
BN 978-1-4503-4229-2
J9 ACM-IEEE J CONF DIG
PY 2016
BP 167
EP 170
DI 10.1145/2910896.2910920
PG 4
WC Computer Science, Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BG5HY
UT WOS:000389502300026
DA 2024-09-05
ER
PT C
AU Zhang, HY
Zhang, J
Liu, XC
Yan, GH
Liu, YZ
AF Zhang, Hongyuan
Zhang, Jing
Liu, Xuecheng
Yan, Guohui
Liu, Yanzhao
BE Jinhui, L
Hualong, H
TI Research on method of health assessment about the destruction equipment
for high-risk hazardous chemical waste
SO SEVENTH INTERNATIONAL CONFERENCE ON WASTE MANAGEMENT AND TECHNOLOGY
(ICWMT 7)
SE Procedia Environmental Sciences
LA English
DT Proceedings Paper
CT 7th International Conference on Waste Management and Technology (ICWMT)
CY SEP 05-07, 2012
CL Beijing, PEOPLES R CHINA
DE health status; destruc*tion equipment; high-risk hazardous chemical
wastes; Bayesian Networks; health assessment
AB The destroying tasks of high-risk hazardous chemical waste have a strict request to the health status of destruction equipment. The paper proposes the health status classification method based on time between failures for the destruction of equipment, set up health status assessment model based on Time-varying Bayesian Networks and the time slice, which can take advantage of history fault information and health status monitoring indicator information to health status assessment for the destruction equipment, and which provides a reliable and safe evaluation method. (C) 2012 Selection and/or peer-review under responsibility of Basel Convention Coordinating Centre for Asia and the Pacific and National Center of Solid Waste Management, Ministry of Environmental Protection of China.
C1 [Zhang, Hongyuan; Zhang, Jing; Liu, Xuecheng; Yan, Guohui; Liu, Yanzhao] Inst Chem Def CPLA, Beijing 102205, Peoples R China.
[Zhang, Hongyuan] Sch Automat Sci & Elect Engn BUAA, Beijing 100083, Peoples R China.
C3 Research Institute of Chemical Defense - China; Beihang University
RP Zhang, J (corresponding author), Inst Chem Def CPLA, Beijing 102205, Peoples R China.
EM zhybeijing@sina.com
RI Chen, Liang/JXX-7887-2024
CR Bing Guangfu, 2010, THEORY PRACTICE SYST, V30
Bobbio A, 1999, LECT NOTES COMPUT SC, V1698, P310
Chen Xiaotong, 2005, REL PRACT GUID, P7
Jia Yunxian, RELIABILITY BASED MA
People's Liberation Army General Armament Department, 1999, GJB Z108 NONW STAT E
People's Liberation Army General Armament Department, 1999, GJB Z 299B 98 EXP RE
Shukla CS, 2001, INT J ADV MANUF TECH, V18, P422, DOI 10.1007/s001700170052
Wang Guangyan, 2004, THEORY PRACTICE SYST, P76
Wang Guoping, 2004, Journal of System Simulation, V16, P963
[吴波 Wu BO], 2009, [计算机测量与控制, Computer Measurement & Control], V17, P2345
NR 10
TC 2
Z9 4
U1 1
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1878-0296
J9 PROCEDIA ENVIRON SCI
PY 2012
VL 16
BP 192
EP 201
DI 10.1016/j.proenv.2012.10.027
PG 10
WC Environmental Sciences
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Environmental Sciences & Ecology
GA BDN49
UT WOS:000314024400026
OA gold
DA 2024-09-05
ER
PT J
AU Ortega, JL
AF Luis Ortega, Jose
TI Disciplinary differences of the impact of altmetric
SO FEMS MICROBIOLOGY LETTERS
LA English
DT Article
DE altmetrics; disciplinary differences; principal component analysis
(PCA); PlumX; Crossref; citations
ID CITATION; MENDELEY; READERSHIP; TWITTER; METRICS; TWEETS; USAGE
AB The main objective of this work was to group altmetric indicators according to their relationships and detect disciplinary differences with regard to altmetric impact in a set of 3793 research articles published in 2013. Three of the most representative altmetric providers (Altmetric, PlumX and Crossref Event Data) and Scopus were used to extract information about these publications and their metrics. Principal component analysis was used to summarize the information on these metrics and detect groups of indicators. The results show that these metrics can be grouped into three components: social media, gathering metrics from social networks and online media; usage, including metrics on downloads and views; and citations and saves, grouping metrics related to research impact and saves in bookmarking sites. With regard to disciplinary differences, articles in the General category attract more attention from social media, Social Sciences articles have higher usage than Physical Sciences, and General articles are more cited and saved than Health Sciences and Social Sciences articles.
C1 [Luis Ortega, Jose] CSIC, Cybermetr Lab, Serrano 113, Madrid 2006, Spain.
C3 Consejo Superior de Investigaciones Cientificas (CSIC)
RP Ortega, JL (corresponding author), CSIC, Cybermetr Lab, Serrano 113, Madrid 2006, Spain.
EM jortega@orgc.csic.es
OI Ortega, Jose Luis/0000-0001-9857-1511
CR [Anonymous], METRICS 2011
[Anonymous], RESEARCHGATE
[Anonymous], BIBLIOMETRIE PRAXIS
[Anonymous], J AESTHET ART CRITIC
Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022
Bornmann L, 2016, J INFORMETR, V10, P776, DOI 10.1016/j.joi.2016.04.015
Bornmann L, 2015, SCIENTOMETRICS, V103, P1123, DOI 10.1007/s11192-015-1565-y
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
Ellison N.B., 2013, SOCIALITY SOCIAL NET, DOI [10.1093/oxfordhb/9780199589074.001.0001, DOI 10.1093/OXFORDHB/9780199589074.013.0008]
Gorraiz J, 2014, SCIENTOMETRICS, V101, P1077, DOI 10.1007/s11192-014-1271-1
Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101
Li XM, 2012, SCIENTOMETRICS, V91, P461, DOI 10.1007/s11192-011-0580-x
Liu CL, 2013, J MED INTERNET RES, V15, DOI 10.2196/jmir.2707
Ortega JL, 2017, ASLIB J INFORM MANAG, V69, P674, DOI 10.1108/AJIM-02-2017-0055
Ortega J, 2016, SCIENTOMETRICS, V109, P1353, DOI 10.1007/s11192-016-2113-0
Ortega JL, 2015, ONLINE INFORM REV, V39, P520, DOI 10.1108/OIR-03-2015-0093
Maflahi N, 2016, J ASSOC INF SCI TECH, V67, P191, DOI 10.1002/asi.23369
Murdough Chris., 2009, J INTERACTIVE ADVERT, V10, P94, DOI [DOI 10.1080/15252019.2009.10722165, 10.1080/15252019.2009.10722165]
Ortega JL, 2016, CHANDOS INF PROF SER, P1
Paroutis S, 2009, J KNOWL MANAG, V13, P52, DOI 10.1108/13673270910971824
Schloegl C, 2011, J AM SOC INF SCI TEC, V62, P161, DOI 10.1002/asi.21420
Schloegl C, 2010, SCIENTOMETRICS, V82, P567, DOI 10.1007/s11192-010-0172-1
Shema H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035869
Tattersall A., 2016, Altmetrics: A practical guide for librarians, researchers and academics
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Torres-Salinas D, 2017, SCIENTOMETRICS, V113, P1371, DOI 10.1007/s11192-017-2539-z
Vaughan L, 2017, SCIENTOMETRICS, V111, P1533, DOI 10.1007/s11192-017-2308-z
Wan JK, 2010, SCIENTOMETRICS, V82, P555, DOI 10.1007/s11192-010-0171-2
Zahedi Z., 2015, 2015 ALTM WORKSH AMS
Zahedi Z, 2017, J ASSOC INF SCI TECH, V68, P2511, DOI 10.1002/asi.23883
Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0
NR 31
TC 25
Z9 25
U1 2
U2 49
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0378-1097
EI 1574-6968
J9 FEMS MICROBIOL LETT
JI FEMS Microbiol. Lett.
PD APR
PY 2018
VL 365
IS 7
AR fny049
DI 10.1093/femsle/fny049
PG 6
WC Microbiology
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Microbiology
GA GP7TA
UT WOS:000441110500013
PM 29518193
OA Bronze, Green Published
DA 2024-09-05
ER
PT C
AU Ma, YJ
Hou, YY
Liu, YS
Xue, YH
AF Ma, Yongjun
Hou, Yangyang
Liu, Yushan
Xue, Yonghao
GP IEEE
TI Research of Food Safety Risk Assessment Methods based on Big Data
SO PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS
(ICBDA)
LA English
DT Proceedings Paper
CT IEEE International Conference on Big Data Analysis (ICBDA)
CY MAR 12-14, 2016
CL Hangzhou, PEOPLES R CHINA
DE Big Data; Food Safety Risk Assessment; The cascade SVM
AB The risk of food safety is serious in China, there are more and more food safety problems involving complex application of big data. The food safety risk assessment under the background of big data is an important issue. The paper takes dairy productions as an example to explain a method of dairy productions risk assessment using parallel support vector machine in the big data platform. We establish big data platform firstly, parallel the cascade support vector machine in the big data platform to obtain the assessment model secondly and get assessment results by data process according to the features of real-time data at last. The results of experiments show that big data platform can process dairy productions big data real-time. The accuracy of dairy productions safety assessment has improved.
C1 [Ma, Yongjun; Hou, Yangyang; Liu, Yushan; Xue, Yonghao] Tianjin Univ Sci & Technol, Coll Comp Sci & Informat Engn, Tianjin, Peoples R China.
C3 Tianjin University Science & Technology
RP Ma, YJ (corresponding author), Tianjin Univ Sci & Technol, Coll Comp Sci & Informat Engn, Tianjin, Peoples R China.
EM yjma@tust.edu.cn
RI Liu, YuShan/KRO-9598-2024
OI Liu, YuShan/0009-0001-6470-7879
CR [Anonymous], 2012, Hadoop: The definitive guide
Chongming Wu, 2009, Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2009), P551, DOI 10.1109/FSKD.2009.784
Collobert R, 2002, NEURAL COMPUT, V14, P1105, DOI 10.1162/089976602753633402
Gong Xia-yi, 2014, Journal of System Simulation, V26, P489
Graf H.P., 2004, NIPS
Li Z.W., 2005, J HARBIN ENG U, V26, P643
Qi Li, 2010, Proceedings 10th International Conference on Intelligent Systems Design and Applications (ISDA 2010), P1131, DOI 10.1109/ISDA.2010.5687033
Saradadevi M, 2008, INT J COMPUT SCI NET, V8, P183
Zhang P.X., 2014, RES SANDSTORM METEOR
[张巍 Zhang Wei], 2013, [计算机科学, Computer Science], V40, P69
NR 10
TC 1
Z9 1
U1 1
U2 13
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4673-9591-5
PY 2016
BP 142
EP 146
PG 5
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BG6HN
UT WOS:000390299100028
DA 2024-09-05
ER
PT J
AU Qin, W
Lin, QN
AF Qin, Wei
Lin, Qingna
TI Research on the Fusion Model of Professional Vocal Music Performance
Voice Care and Artificial Intelligence Technology in Intelligent Medical
Treatment
SO WIRELESS COMMUNICATIONS & MOBILE COMPUTING
LA English
DT Article
AB Intelligent medical treatment is an important research field in today's world. Artificial intelligence technology is the key factor to construct intelligent medical treatment. In the development of artificial intelligence technology, it is necessary to establish a scientific, systematic, and comprehensive system analysis model, inevitably with certain professional characteristics. At present, in the research of vocal health care in professional vocal music performance, the application of intelligent medical care and vocal health care in professional vocal music performance is studied. According to the DEMATEL-ISM research method, this paper constructs 4 internal and external factors and 16 influencing factors to build a comprehensive and systematic weight analysis model, which provides a theoretical and practical basis for the scientific construction of AI technology algorithms. The aim is to improve the value and research significance of intelligent medical artificial intelligence technology in professional vocal music performance sound care.
C1 [Qin, Wei; Lin, Qingna] Chongqing Univ Posts & Telecommun, Chongqing South Bank, Chongqing 400065, Peoples R China.
C3 Chongqing University of Posts & Telecommunications
RP Lin, QN (corresponding author), Chongqing Univ Posts & Telecommun, Chongqing South Bank, Chongqing 400065, Peoples R China.
EM qinwei@cqupt.edu.cn; linqn@cqupt.edu.cn
OI qin, wei/0000-0001-6598-327X
FU Chongqing Natural Science Foundation (Postdoctoral Fund) Project:
Development and Research of Interactive Accurate Evaluation Platform for
Professional Solfeggio Training Based on Reinforcement Learning
[cstc2021jcyj-bsh0202]
FX This work was financially supported by the Chongqing Natural Science
Foundation (Postdoctoral Fund) Project: Development and Research of
Interactive Accurate Evaluation Platform for Professional Solfeggio
Training Based on Reinforcement Learning (No. cstc2021jcyj-bsh0202,
host: Qin Wei).
CR [Anonymous], 2016, Nurs Outlook, V64, P103
Arunachalam R, 2014, J VOICE, V28, DOI 10.1016/j.jvoice.2013.08.003
Baird BJ, 2020, J VOICE, V34, DOI 10.1016/j.jvoice.2018.10.003
Bartlett I, 2017, J VOICE, V31, DOI 10.1016/j.jvoice.2016.04.003
Chen Y., 2018, BASIC THEORY VOCAL M, V6
Devadas U, 2020, J VOICE, V34, DOI 10.1016/j.jvoice.2018.09.013
Feng C., 2020, NO MUSIC, V9, P78
Flavia Z.A., 2021, J VOICE, V35, P17
García M, 2017, J VOICE, V31, DOI 10.1016/j.jvoice.2016.08.007
Gebhardt R. M., 2016, VOICE YELLOW RIVER
Gunjawate DR, 2017, J VOICE, V31, DOI 10.1016/j.jvoice.2016.06.022
Kun X., 2012, GRAND STAGE, V12, P190
Tepe ES, 2002, J VOICE, V16, P244, DOI 10.1016/S0892-1997(02)00093-0
NR 13
TC 1
Z9 1
U1 4
U2 17
PU WILEY-HINDAWI
PI LONDON
PA ADAM HOUSE, 3RD FL, 1 FITZROY SQ, LONDON, WIT 5HE, ENGLAND
SN 1530-8669
EI 1530-8677
J9 WIREL COMMUN MOB COM
JI Wirel. Commun. Mob. Comput.
PD MAY 9
PY 2022
VL 2022
AR 2947554
DI 10.1155/2022/2947554
PG 7
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA 1Q6SK
UT WOS:000802814700031
OA gold
DA 2024-09-05
ER
PT C
AU Mariani, J
Francopoulo, G
Paroubek, P
Vernier, F
AF Mariani, Joseph
Francopoulo, Gil
Paroubek, Patrick
Vernier, Frederic
GP IEEE
TI REDISCOVERING 50 YEARS OF DISCOVERIES IN SPEECH AND LANGUAGE PROCESSING:
A SURVEY.
SO 2017 20TH CONFERENCE OF THE ORIENTAL CHAPTER OF THE INTERNATIONAL
COORDINATING COMMITTEE ON SPEECH DATABASES AND SPEECH I/O SYSTEMS AND
ASSESSMENT (O-COCOSDA)
LA English
DT Proceedings Paper
CT 20th Conference of the
Oriental-Chapter-of-the-International-Coordinating-Committee-on-Speech-D
atabases-and-Speech-I/O-Systems-and-Assessment (O-COCOSDA)
CY NOV 01-03, 2017
CL Seoul, SOUTH KOREA
DE Speech Processing; Natural Language Processing; Text Analytics;
Bibliometrics; Scientometrics; Informetrics
AB We have created the NLP4NLP corpus to study the content of scientific publications in the field of speech and natural language processing. It contains articles published in 34 major conferences and journals in that field over a period of 50 years (1965-2015). comprising 65.000 documents. gathering 50.000 authors. including 325.000 references and representing approximately 270 million words. Most of these publications are in English. some are in French. German or Russian. Some are open access. others have been provided by the publishers. In order to constitute and analyze this corpus several tools have been used or developed. Some of them use Natural Language Processing methods that have been published in the corpus. hence its name. Numerous manual corrections were necessary. which demonstrated the importance of establishing standards for uniquely identifying authors. publications or resources. We have conducted various studies: evolution over time of the number of articles and authors. collaborations between authors. citations between papers and authors. evolution of research themes and identification of the authors who introduced them. measure of innovation and detection of epistemological ruptures. use of language resources. reuse of articles and plagiarism in the context of a global or comparative analysis between sources.
C1 [Mariani, Joseph; Paroubek, Patrick; Vernier, Frederic] CNRS, LIMSI, Paris, France.
[Francopoulo, Gil] Tagmatica, Paris, France.
C3 Centre National de la Recherche Scientifique (CNRS); Universite Paris
Saclay
RP Mariani, J (corresponding author), CNRS, LIMSI, Paris, France.
EM Joseph.Mariani@limsi.fr; gil.francopoulo@wanadoo.fr; pap@limsi.fr;
frederic.vernier@limsi.fr
CR [Anonymous], 2012, P ACL 2012 SPECIAL W
[Anonymous], 1948, HUMAN ORG
[Anonymous], P LANG RES EV C LREC
[Anonymous], P ACL 2012 SPEC WORK
Bavelas A, 1950, J ACOUST SOC AM, V57, P271, DOI DOI 10.1121/1.1906679
Drouin Patrick, 2004, P LANG RES EV C LREC
Dunne C, 2012, J AM SOC INF SCI TEC, V63, P2351, DOI 10.1002/asi.22652
Francopoulo G., 2013, LMF Lexical Markup Framework
Francopoulo Gil, 2015, WORKSH MIN COMP LING
Francopoulo Gil, 2007, ICGL ING C GLOB INT
Francopoulo Gil, 2015, 4 INT WORKSH MIN SCI
Francopoulo Gil, 2015, D LIB, V21
FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7
Fu Y, 2010, LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3417
Gollapalli Sujatha Das, 2015, EMNLP VERSUS ACL ANA
Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763
Ide Nancy, 2010, P 7 C INT LANG RES E
Jha R, 2017, NAT LANG ENG, V23, P93, DOI 10.1017/S1351324915000443
Joerg Brigitte, 2012, 11 INT C CURR RES IN
Karagoz Y., 2014, SPSS 21.1 Uygulamali Biyoistatistik
Li H., 2006, P 15 INT C WORLD WID
Mariani J, 2018, INT J DIGIT LIBRARIE, V19, P113, DOI 10.1007/s00799-017-0211-0
Mariani J, 2016, LANG RESOUR EVAL, V50, P165, DOI 10.1007/s10579-016-9352-9
Mariani Joseph, 1990, NOTES DOCUMENTS LIMS
Mariani Joseph, 2014, P LREC 2014 26 31 MA
Mariani Joseph, 2015, P L TC 2015 27 29 NO
Mariani Joseph, 2013, P INT 2013 26 29 AUG
Moro Andrea, 2014, T ACL
Osborne F, 2013, INT SEM WEB C SYDN A
Paul M, 2009, RECENT ADV NATURAL L
Perin Charles, 2016, IEEE COMPUTER GRAPHI
Radev DR, 2013, LANG RESOUR EVAL, V47, P919, DOI 10.1007/s10579-012-9211-2
Rochat Y., 2009, ASNA
Tang J, 2008, P 14 INT C KNOWL DIS
Witten IH, 2011, MOR KAUF D, P1
NR 35
TC 0
Z9 0
U1 0
U2 3
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-5386-3333-5
PY 2017
PG 23
WC Computer Science, Interdisciplinary Applications; Engineering,
Multidisciplinary; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BM4XH
UT WOS:000464400300001
DA 2024-09-05
ER
PT J
AU Thijs, B
Glänzel, W
AF Thijs, Bart
Glanzel, Wolfgang
TI The contribution of the lexical component in hybrid clustering, the case
of four decades of "Scientometrics"
SO SCIENTOMETRICS
LA English
DT Article
DE Science mapping; Lexical similarity; Hybrid clustering; Natural Language
Processing; Scientometrics
ID INFORMATION
AB The introduction of textual analysis and the use of lexical similarities already proved an important asset in science mapping. Earlier research showed the added value of hybrid document networks over link-based ones through the reduction of the extreme sparseness. However, it was only after the application of Natural Language Processing and phrase extraction that networks purely based on lexical similarities could be used as input for topic detection in quantitative science studies. This study investigates the contribution of the lexical component in hybrid cluster on a set of articles published in the journal Scientometrics since its foundation during four decades. Shifting the weight of the lexical components generates changes in the structure of the underlying hybrid network, which can be detected through clustering techniques. We show that these changes are not moving documents randomly, but in fact identify small groups of papers either at the borderline between different topics or combining those. In addition, the analysis substantiates that the lexical component adopts the structure of the network rather than amplifies hidden structures of the link-based network.
C1 [Thijs, Bart; Glanzel, Wolfgang] Katholieke Univ Leuven, ECOOM, Louvain, Belgium.
[Glanzel, Wolfgang] Katholieke Univ Leuven, Dept MSI, Louvain, Belgium.
[Glanzel, Wolfgang] Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Budapest, Hungary.
C3 KU Leuven; KU Leuven; Hungarian Academy of Sciences
RP Thijs, B (corresponding author), Katholieke Univ Leuven, ECOOM, Louvain, Belgium.
EM bart.thijs@kuleuven.be; wolfgang.glanzel@kuleuven.be
RI Glanzel, Wolfgang/AAE-4395-2021; Thijs, Bart CM/C-2995-2008; Glanzel,
Wolfgang/A-6280-2008
OI Glanzel, Wolfgang/0000-0001-7529-5198
CR Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
GARFIELD E, 1969, CC/LIFE SCI, V12, P4
Glänzel W, 2011, SCIENTOMETRICS, V88, P297, DOI 10.1007/s11192-011-0347-4
Glänzel W, 2017, SCIENTOMETRICS, V111, P1071, DOI 10.1007/s11192-017-2301-6
Glenisson P, 2005, INFORM PROCESS MANAG, V41, P1548, DOI 10.1016/j.ipm.2005.03.021
Good BH, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.046106
Janssens F, 2008, SCIENTOMETRICS, V75, P607, DOI 10.1007/s11192-007-2002-7
Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010
Thijs B., 2017, MSI1703 FEB KU LEUV
Thijs B, 2012, BIBLIOMETRIE PRAXIS, V1
TODOROV R, 1990, SCIENTOMETRICS, V19, P35, DOI 10.1007/BF02130464
NR 13
TC 7
Z9 7
U1 3
U2 51
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD APR
PY 2018
VL 115
IS 1
BP 21
EP 33
DI 10.1007/s11192-018-2659-0
PG 13
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA FY4PT
UT WOS:000426807700002
DA 2024-09-05
ER
PT J
AU Yao, JX
Shepperd, M
AF Yao, Jingxiu
Shepperd, Martin
TI The impact of using biased performance metrics on software defect
prediction research
SO INFORMATION AND SOFTWARE TECHNOLOGY
LA English
DT Article
DE Software engineering; Machine learning; Software defect prediction;
Computational experiment; Classification metrics
ID CLASSIFICATION; REVIEWS
AB Context: Software engineering researchers have undertaken many experiments investigating the potential of software defect prediction algorithms. Unfortunately some widely used performance metrics are known to be problematic, most notably F1, but nevertheless F1 is widely used. Objective: To investigate the potential impact of using F1 on the validity of this large body of research. Method: We undertook a systematic review to locate relevant experiments and then extract all pairwise comparisons of defect prediction performance using F1 and the unbiased Matthews correlation coefficient (MCC). Results: We found a total of 38 primary studies. These contain 12,471 pairs of results. Of these comparisons, 21.95% changed direction when the MCC metric is used instead of the biased F1 metric. Unfortunately, we also found evidence suggesting that F1 remains widely used in software defect prediction research. Conclusion: We reiterate the concerns of statisticians that the F1 is a problematic metric outside of an information retrieval context, since we are concerned about both classes (defect-prone and not defect-prone units). This inappropriate usage has led to a substantial number (more than one fifth) of erroneous (in terms of direction) results. Therefore we urge researchers to (i) use an unbiased metric and (ii) publish detailed results including confusion matrices such that alternative analyses become possible.
C1 [Yao, Jingxiu] Beihang Univ, Beijing, Peoples R China.
[Shepperd, Martin] Brunel Univ London, London, England.
C3 Beihang University; Brunel University
RP Shepperd, M (corresponding author), Brunel Univ London, London, England.
EM JingxiuYao@buaa.edu.cn; martin.shepperd@brunel.ac.uk
RI Shepperd, Martin/F-9683-2013; Yao, Jingxiu/HKE-8358-2023
OI Shepperd, Martin/0000-0003-1874-6145; Yao, Jingxiu/0000-0003-3742-9612
FU China Scholarship Council
FX The authors wish to thank the reviewers and the editor for their helpful
and constructive comments. They also thank the authors of the 38 primary
studies included for providing sufficient information to make this
analysis possible. We also wish to stress that our criticism of F1 does
not mean we are criticising their papers. On the contrary, their
foresight that alternative metrics to F1 are needed, has been
invaluable. Jingxiu Yao wishes to acknowledge the support of the China
Scholarship Council.
CR Abaei G., 2018, J KING SAUD U COMPUT
Al Dallal J, 2018, ARAB J SCI ENG, V43, P7153, DOI 10.1007/s13369-017-3012-2
Ali U., 2020, INT J MOD ED COMPUT, V12
Allison DB, 2016, NATURE, V530, P27, DOI 10.1038/530027a
Amasaki S, 2020, EMPIR SOFTW ENG, V25, P1573, DOI 10.1007/s10664-019-09777-8
Amasaki S, 2018, PROMISE'18: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON PREDICTIVE MODELS AND DATA ANALYTICS IN SOFTWARE ENGINEERING, P32, DOI 10.1145/3273934.3273938
[Anonymous], 1979, INFORM RETRIEVAL
Antal G, 2021, TECHNOLOGIES, V9, DOI 10.3390/technologies9010003
Ayon SI, 2019, 2019 1 INT C ADV SCI, P1
Baldi P, 2000, BIOINFORMATICS, V16, P412, DOI 10.1093/bioinformatics/16.5.412
Bangash AA, 2020, EMPIR SOFTW ENG, V25, P5047, DOI 10.1007/s10664-020-09878-9
Bowes D., 2012, Proceedings of the 8th International Conference on Predictive Models in Software Engineering, P109, DOI DOI 10.1145/2365324.2365338
Bowes D., 2015, 11 ACM INT C PRED MO, P1
Bowes D, 2018, SOFTWARE QUAL J, V26, P525, DOI 10.1007/s11219-016-9353-3
Bowes D, 2014, AUTOMAT SOFTW ENG, V21, P287, DOI 10.1007/s10515-013-0129-8
Brown LD, 2001, STAT SCI, V16, P101, DOI 10.1214/ss/1009213286
Catal C, 2009, EXPERT SYST APPL, V36, P7346, DOI 10.1016/j.eswa.2008.10.027
Chen H., 2020, IEEE T SOFTW ENG
COHEN J, 1994, AM PSYCHOL, V49, P997, DOI 10.1037/0003-066X.50.12.1103
Colquhoun D, 2014, ROY SOC OPEN SCI, V1, DOI 10.1098/rsos.140216
Donoho DL, 2009, COMPUT SCI ENG, V11, P8, DOI 10.1109/MCSE.2009.15
ELMORE RF, 1991, REV EDUC RES, V61, P293
Fawcett T, 2006, PATTERN RECOGN LETT, V27, P861, DOI 10.1016/j.patrec.2005.10.010
Felix EA, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0229131
Fernández DM, 2019, EMPIR SOFTW ENG, V24, P1057, DOI 10.1007/s10664-019-09712-x
Flach PA, 2015, ADV NEUR IN, V28
Garousi V, 2019, INFORM SOFTWARE TECH, V106, P101, DOI 10.1016/j.infsof.2018.09.006
Ge JX, 2018, 2018 19TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), P399, DOI 10.1109/SNPD.2018.8441143
Gelman A, 2006, AM STAT, V60, P328, DOI 10.1198/000313006X152649
Gelman A, 2009, AM STAT, V63, P1, DOI 10.1198/tast.2009.0001
Gong LN, 2019, J SOFTW-EVOL PROC, V31, DOI 10.1002/smr.2172
Hall T, 2012, IEEE T SOFTWARE ENG, V38, P1276, DOI 10.1109/TSE.2011.103
Hand D, 2018, STAT COMPUT, V28, P539, DOI 10.1007/s11222-017-9746-6
Hand DJ, 2009, MACH LEARN, V77, P103, DOI 10.1007/s10994-009-5119-5
Herbold S., 2019, IEEE T SOFTW ENG
Herbold S, 2018, IEEE T SOFTWARE ENG, V44, P811, DOI 10.1109/TSE.2017.2724538
Hosseini S, 2019, IEEE T SOFTWARE ENG, V45, P111, DOI 10.1109/TSE.2017.2770124
Iqbal A., 2020, International Journal of Modern Education Computer Science, V12, DOI [10.5815/ijmecs.2020.01.03, DOI 10.5815/IJMECS.2020.01.03]
Jingxiu Yao, 2020, EASE2020. Proceedings of the Evaluation and Assessment in Software Engineering, P120, DOI 10.1145/3383219.3383232
Khoshgoftaar T. M., 1998, Empirical Software Engineering, V3, P275, DOI 10.1023/A:1009736205722
Son LH, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11020212
Lenarduzzi V, 2020, PROCEEDINGS OF THE 2020 IEEE 27TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER '20), P501, DOI [10.1109/saner48275.2020.9054821, 10.1109/SANER48275.2020.9054821]
Li N, 2020, INFORM SOFTWARE TECH, V122, DOI 10.1016/j.infsof.2020.106287
Luque A, 2019, PATTERN RECOGN, V91, P216, DOI 10.1016/j.patcog.2019.02.023
Malhotra R, 2015, APPL SOFT COMPUT, V27, P504, DOI 10.1016/j.asoc.2014.11.023
Matloob F., 2019, INT J MOD ED COMPUT, V12, P14
Mittas N, 2015, INFORM SOFTWARE TECH, V57, P310, DOI 10.1016/j.infsof.2014.05.010
Morasca S, 2020, EMPIR SOFTW ENG, V25, P3977, DOI 10.1007/s10664-020-09861-4
Munafò MR, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-016-0021
Naseem R., 2020, COMPLEXITY 2020
NezhadShokouhi MM, 2020, J SUPERCOMPUT, V76, P602, DOI 10.1007/s11227-019-03051-w
Niu L, 2020, NEURAL PROCESS LETT, V52, P2415, DOI 10.1007/s11063-020-10355-z
Özakinci R, 2018, J SYST SOFTWARE, V144, P216, DOI 10.1016/j.jss.2018.06.025
Pan C, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9102138
Pandey SK, 2020, EXPERT SYST APPL, V144, DOI 10.1016/j.eswa.2019.113085
Pecorelli F, 2020, J SYST SOFTWARE, V169, DOI 10.1016/j.jss.2020.110693
Powers D, 2003, P 2003 INT C COGN SC
Powers D M W, 2011, INT J MACH LEARN TEC, V2, P37
Rizwan S., 2017, P 2017 INT C SOFTWAR, P55, DOI DOI 10.1145/3178212.3178221
Rodriguez D., 2014, P 18 INT C EV ASS SO, P1
Schober P, 2018, ANESTH ANALG, V126, P1763, DOI 10.1213/ANE.0000000000002864
Shepperd M, 2019, LECT NOTES COMPUT SC, V11871, P102, DOI 10.1007/978-3-030-33607-3_12
Shepperd M, 2014, IEEE T SOFTWARE ENG, V40, P603, DOI 10.1109/TSE.2014.2322358
Shippey T, 2018, EUROMICRO CONF PROC, P239, DOI 10.1109/SEAA.2018.00047
Sokolova M, 2009, INFORM PROCESS MANAG, V45, P427, DOI 10.1016/j.ipm.2009.03.002
Sun YM, 2009, INT J PATTERN RECOGN, V23, P687, DOI 10.1142/S0218001409007326
Tian YL, 2020, 2020 IEEE 20TH INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY, AND SECURITY (QRS 2020), P212, DOI 10.1109/QRS51102.2020.00038
Tong HN, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10228059
Tong HN, 2018, INFORM SOFTWARE TECH, V96, P94, DOI 10.1016/j.infsof.2017.11.008
Tran H., 2019, 2019 11 INT C KNOWL, P1
Wang S, 2013, IEEE T RELIAB, V62, P434, DOI 10.1109/TR.2013.2259203
Xu Z., 2020, J SYST SOFTWARE, V170
Xu Z, 2019, INFORM SOFTWARE TECH, V106, P182, DOI 10.1016/j.infsof.2018.10.004
Xuan X, 2015, 30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, VOLS I AND II, P1644, DOI 10.1145/2695664.2695959
YOUDEN WJ, 1950, BIOMETRICS, V6, P172, DOI 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
Zhang F, 2016, EMPIR SOFTW ENG, V21, P2107, DOI 10.1007/s10664-015-9396-2
Zhang YW, 2020, J SYST SOFTWARE, V166, DOI 10.1016/j.jss.2020.110585
Zhao LC, 2019, IEEE ACCESS, V7, P7663, DOI 10.1109/ACCESS.2018.2889061
NR 78
TC 32
Z9 33
U1 1
U2 7
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0950-5849
EI 1873-6025
J9 INFORM SOFTWARE TECH
JI Inf. Softw. Technol.
PD NOV
PY 2021
VL 139
AR 106664
DI 10.1016/j.infsof.2021.106664
EA JUN 2021
PG 14
WC Computer Science, Information Systems; Computer Science, Software
Engineering
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA US8LY
UT WOS:000697678300007
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Wang, MY
Jiao, SJ
Zhang, JQ
Zhang, XR
Zhu, N
AF Wang, Mingyang
Jiao, Shijia
Zhang, Jiaqi
Zhang, Xiangrong
Zhu, Na
TI Identification High Influential Articles by Considering the Topic
Characteristics of Articles
SO IEEE ACCESS
LA English
DT Article
DE Feature extraction; Bibliometrics; Task analysis; Semantics; Physics;
Oncology; Neurology; High influential articles; topic characteristics;
LDA; feature extraction
ID CITATION COUNTS MEASURE; OPEN ACCESS; RESEARCH PERFORMANCE; SCHOLARLY
ARTICLES; IMPACT; PUBLICATION; JOURNALS; USAGE; FIELD; COLLABORATION
AB The topic of one article reflects its main semantic content, which is also the main guidance for researchers to choose reference literature. In order to explore whether the topic of an article will affect its citation trend in future, this paper establishes a machine learning framework to study the role of topic characteristics in the prediction of future high influential articles. Articles from four different disciplines are collected as experimental samples to verify whether the framework proposed in this paper can be applied to the prediction task in different disciplines. The Latent Dirichlet Allocation (LDA) is used to determine the topic characteristics of sample articles. LDA can map sample articles to current hot topics and generate the mapping probability of sample articles under different hot topics. The maximum mapping probability of the sample article under the hot topics is extracted as the topic feature of the article. Then the feature space for the prediction task is constructed by combining the topic feature and some bibliometrics indices of articles. Three feature selection algorithms, Fisher Score, Relief-F and Spectral Feature Selection (SPEC), are taken to select the important features in the feature space. The prediction performance of these features is finally tested by three classifiers, SVM, KNN and Bagging. The experimental results show that the topic characteristics of article, the early citation characteristics of article, and the reputation of the author are the key factors that determine whether an article can grow into a highly influential one. The important value of topic characteristics in articles' citation activities shows that the content of the article is an important factor in attracting more citations.
C1 [Wang, Mingyang; Jiao, Shijia; Zhang, Jiaqi] Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Peoples R China.
[Zhang, Xiangrong] Heilongjiang Inst Technol, Coll Econ & Business Adm, Harbin 150040, Peoples R China.
[Zhu, Na] Harbin Univ, Lib, Harbin 150086, Peoples R China.
C3 Northeast Forestry University - China; Heilongjiang Institute of
Technology; Harbin University
RP Wang, MY (corresponding author), Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Peoples R China.
EM wmynefu@163.com
RI wang, mingyang/KSM-1989-2024; zhang, jiaqi/JNR-7443-2023
OI zhang, jiaqi/0000-0001-8888-9542
FU National Natural Science Foundation of China [71473034, 717D1063];
Heilongjiang Provincial Natural Science Foundation of China
[LH2019G001]; Financial Assistance from Postdoctoral Scientific Research
Developmental Fund of Heilongjiang Province [LBH-Q16003]; Heilongjiang
Province Art Planning Project: Research on Discipline Theme Evolution
Based on Multi-source Data Fusion [2019C027]
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 71473034 and Grant 717D1063, in part by
the Heilongjiang Provincial Natural Science Foundation of China under
Grant LH2019G001, in part by the Financial Assistance from Postdoctoral
Scientific Research Developmental Fund of Heilongjiang Province under
Grant LBH-Q16003, and in part by the Heilongjiang Province Art Planning
Project: Research on Discipline Theme Evolution Based on Multi-source
Data Fusion under Grant 2019C027.
CR Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9
Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645
Amara N, 2015, SCIENTOMETRICS, V103, P489, DOI 10.1007/s11192-015-1537-2
Annalingam A, 2014, SPRINGERPLUS, V3, DOI 10.1186/2193-1801-3-140
[Anonymous], 2013, P ASIST ANN M
[Anonymous], 2014, PROCEEDINGS OF THE 1
Antoniou GA, 2015, ANN VASC SURG, V29, P286, DOI 10.1016/j.avsg.2014.09.017
Asubiaro T, 2019, SCIENTOMETRICS, V120, P1261, DOI 10.1007/s11192-019-03157-1
Ayres I, 2000, J LEGAL STUD, V29, P427, DOI 10.1086/468081
Bai XM, 2017, INFORMATION, V8, DOI 10.3390/info8030073
Bai XM, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P9, DOI 10.1145/2872518.2889383
Bar-Ilan J, 2004, SCIENTOMETRICS, V59, P391, DOI 10.1023/B:SCIE.0000018540.33706.c1
Biscaro C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099502
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Bornmann L, 2017, SCIENTOMETRICS, V110, P937, DOI 10.1007/s11192-016-2200-2
Bornmann L, 2014, J INFORMETR, V8, P581, DOI 10.1016/j.joi.2014.04.008
Bornmann L, 2013, J INFORMETR, V7, P562, DOI 10.1016/j.joi.2013.02.005
Bornmann L, 2010, J INFORMETR, V4, P83, DOI 10.1016/j.joi.2009.09.001
Bosquet C, 2013, SCIENTOMETRICS, V97, P831, DOI 10.1007/s11192-013-0996-6
Callaham M, 2002, JAMA-J AM MED ASSOC, V287, P2847, DOI 10.1001/jama.287.21.2847
Cerovsek T, 2014, J INFORMETR, V8, P147, DOI 10.1016/j.joi.2013.11.004
Chakraborty T, 2014, ACM-IEEE J CONF DIG, P351, DOI 10.1109/JCDL.2014.6970190
Chen PH, 2005, APPL STOCH MODEL BUS, V21, P111, DOI 10.1002/asmb.537
Chi PS, 2019, SCIENTOMETRICS, V120, P1461, DOI 10.1007/s11192-019-03168-y
Chi PS, 2018, SCIENTOMETRICS, V116, P537, DOI 10.1007/s11192-018-2708-8
Jabbour CJC, 2013, SERIALS REV, V39, P93, DOI 10.1016/j.serrev.2013.03.001
Chuang KY, 2011, SCIENTOMETRICS, V87, P551, DOI 10.1007/s11192-011-0365-2
Collet F, 2014, STRATEG ORGAN, V12, P157, DOI 10.1177/1476127014530124
Didegah F, 2018, J ASSOC INF SCI TECH, V69, P832, DOI 10.1002/asi.23934
Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806
Dong Y, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P149, DOI 10.1145/2684822.2685314
Dorta-González P, 2014, J INFORMETR, V8, P406, DOI 10.1016/j.joi.2014.01.013
Falagas ME, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0049476
Farshad M., 2013, European Orthopaedics and Traumatology, V4, P125, DOI DOI 10.1007/S12570-013-0174-6
Fawcett T, 2006, PATTERN RECOGN LETT, V27, P861, DOI 10.1016/j.patrec.2005.10.010
Figuerola CG, 2017, SCIENTOMETRICS, V112, P1507, DOI 10.1007/s11192-017-2432-9
Fragkiadaki E, 2011, SCIENTOMETRICS, V86, P671, DOI 10.1007/s11192-010-0302-9
Frandsen TF, 2017, J ASSOC INF SCI TECH, V68, P1278, DOI 10.1002/asi.23746
Frandsen TF, 2013, J AM SOC INF SCI TEC, V64, P437, DOI 10.1002/asi.22785
Frosch DL, 2010, HEALTH PSYCHOL, V29, P555, DOI 10.1037/a0020750
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
Gargouri Y, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013636
Ginsberg MD, 2012, STROKE, V43, P1695, DOI 10.1161/STROKEAHA.111.640235
Glänzel W, 2014, SCIENTOMETRICS, V101, P939, DOI 10.1007/s11192-014-1247-1
Glänzel W, 2016, SCIENTOMETRICS, V107, P857, DOI 10.1007/s11192-016-1870-0
Glänzel W, 2012, J AM SOC INF SCI TEC, V63, P1420, DOI 10.1002/asi.22643
HARGENS LL, 1990, SOC SCI RES, V19, P205, DOI 10.1016/0049-089X(90)90006-5
Haslam N, 2010, PSYCHOL REP, V106, P891, DOI 10.2466/PR0.106.3.891-900
Hastie T, 1996, IEEE T PATTERN ANAL, V18, P607, DOI 10.1109/34.506411
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hu ZY, 2014, SCIENTOMETRICS, V100, P787, DOI 10.1007/s11192-014-1328-1
Huang H, 2012, J AM SOC INF SCI TEC, V63, P490, DOI 10.1002/asi.21707
Ingwersen P, 2014, SCIENTOMETRICS, V101, P1273, DOI 10.1007/s11192-014-1335-2
Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4
Jonkers K, 2008, SCIENTOMETRICS, V77, P309, DOI 10.1007/s11192-007-1971-x
Kim MC, 2015, SCIENTOMETRICS, V104, P239, DOI 10.1007/s11192-015-1595-5
Kononenko I., 1994, Machine Learning: ECML-94. European Conference on Machine Learning. Proceedings, P171
Korn F, 2001, IEEE T KNOWL DATA EN, V13, P96, DOI 10.1109/69.908983
Kousha K, 2017, J ASSOC INF SCI TECH, V68, P762, DOI 10.1002/asi.23694
Lamba M, 2019, SCIENTOMETRICS, V120, P477, DOI 10.1007/s11192-019-03137-5
Lee DH, 2019, SCIENTOMETRICS, V121, P1481, DOI 10.1007/s11192-019-03232-7
Li SC, 2018, IEEE ACCESS, V6, P17153, DOI 10.1109/ACCESS.2018.2817497
Li Z, 2008, SCIENTOMETRICS, V75, P97, DOI 10.1007/s11192-007-1838-1
Ling CX, 2003, LECT NOTES ARTIF INT, V2671, P329
Lira Rodrigo Pessoa Cavalcanti, 2014, Rev. bras.oftalmol., V73, P07, DOI 10.5935/0034-7280.20140002
Ortega J, 2016, SCIENTOMETRICS, V109, P1353, DOI 10.1007/s11192-016-2113-0
Lynn FB, 2014, SOC FORCES, V93, P355, DOI 10.1093/sf/sou069
Ma TC, 2018, SCIENTOMETRICS, V117, P789, DOI 10.1007/s11192-018-2891-7
Marashi SA, 2013, EXCLI J, V12, P15
McGillivray B, 2019, SCIENTOMETRICS, V121, P817, DOI 10.1007/s11192-019-03228-3
Mimno D. M., 2011, P C EMP METH NAT LAN, P96
Moin M, 2005, SCIENTOMETRICS, V62, P239, DOI 10.1007/s11192-005-0017-5
Nomaler Ö, 2013, J INFORMETR, V7, P966, DOI 10.1016/j.joi.2013.10.001
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
Onyancha OB, 2011, SCIENTOMETRICS, V87, P315, DOI 10.1007/s11192-010-0330-5
Pagel PS, 2011, J CARDIOTHOR VASC AN, V25, P761, DOI 10.1053/j.jvca.2011.03.003
Patterson MS, 2009, SCIENTOMETRICS, V80, P343, DOI 10.1007/s11192-008-2064-1
Perianes-Rodríguez A, 2019, SCIENTOMETRICS, V121, P1737, DOI 10.1007/s11192-019-03265-y
Perneger TV, 2015, J CLIN EPIDEMIOL, V68, P1440, DOI 10.1016/j.jclinepi.2015.01.024
Prasad AM, 2006, ECOSYSTEMS, V9, P181, DOI 10.1007/s10021-005-0054-1
Puuska HM, 2014, SCIENTOMETRICS, V98, P823, DOI 10.1007/s11192-013-1181-7
Qian HM, 2010, PATTERN RECOGN LETT, V31, P100, DOI 10.1016/j.patrec.2009.09.019
Rees T., 2012, P ISMPP, P9
Ren J, 2019, IEEE ACCESS, V7, P178675, DOI 10.1109/ACCESS.2019.2958649
Rosenkrantz AB, 2017, ACAD RADIOL, V24, P891, DOI 10.1016/j.acra.2016.11.019
Royle P, 2013, SYST REV-LONDON, V2, DOI 10.1186/2046-4053-2-74
Shu F, 2018, SCIENTOMETRICS, V116, P505, DOI 10.1007/s11192-018-2732-8
Sin SCJ, 2011, J AM SOC INF SCI TEC, V62, P1770, DOI 10.1002/asi.21572
So M, 2015, QUAL QUANT, V49, P1513, DOI 10.1007/s11135-014-0110-z
Stevens, 2012, Empirical Methods in Natural Language Processing, P952, DOI DOI 10.5555/2390948.2391052
Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171
Subotic S, 2014, J INF SCI, V40, P115, DOI 10.1177/0165551513511393
Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4
Tahamtan I, 2018, J INFORMETR, V12, P203, DOI 10.1016/j.joi.2018.01.002
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
Thelwall M, 2018, SCIENTOMETRICS, V115, P1231, DOI 10.1007/s11192-018-2715-9
Thijs B, 2017, SCIENTOMETRICS, V111, P829, DOI 10.1007/s11192-017-2282-5
Thor A, 2018, SCIENTOMETRICS, V116, P591, DOI 10.1007/s11192-018-2733-7
Tijssen RJW, 2007, SCIENTOMETRICS, V71, P303, DOI 10.1007/s11192-007-1658-3
Turney PD, 2010, J ARTIF INTELL RES, V37, P141, DOI 10.1613/jair.2934
van Leeuwen T, 2006, SCIENTOMETRICS, V66, P133, DOI 10.1007/s11192-006-0010-7
Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009
Walters GD, 2006, SCIENTOMETRICS, V69, P499, DOI 10.1007/s11192-006-0166-1
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Wang B, 2014, SCIENTOMETRICS, V101, P685, DOI 10.1007/s11192-014-1342-3
Wang L, 2015, SCIENTOMETRICS, V105, P843, DOI 10.1007/s11192-015-1735-y
Wang MY, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0225276
Wang MY, 2019, SCIENTOMETRICS, V121, P261, DOI 10.1007/s11192-019-03196-8
Wang MY, 2019, IEEE ACCESS, V7, P96198, DOI 10.1109/ACCESS.2019.2927016
Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9
Wang MY, 2019, SCIENTOMETRICS, V119, P1621, DOI 10.1007/s11192-019-03085-0
Wang MY, 2017, SCIENTOMETRICS, V112, P1557, DOI 10.1007/s11192-017-2433-8
Wang MY, 2012, SCIENTOMETRICS, V93, P635, DOI 10.1007/s11192-012-0766-x
Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002
Wang XW, 2016, SCIENTOMETRICS, V109, P917, DOI 10.1007/s11192-016-2093-0
Willis DL, 2011, BJU INT, V107, P1876, DOI 10.1111/j.1464-410X.2010.10028.x
Wu QQ, 2019, SCIENTOMETRICS, V118, P979, DOI 10.1007/s11192-018-2989-y
Wu ZM, 2019, IEEE ACCESS, V7, P51759, DOI 10.1109/ACCESS.2019.2910239
Xia JF, 2011, J INF SCI, V37, P19, DOI 10.1177/0165551510389358
Xie J, 2019, SCIENTOMETRICS, V118, P763, DOI 10.1007/s11192-019-03015-0
Xu JG, 2019, IEEE ACCESS, V7, P92248, DOI 10.1109/ACCESS.2019.2927011
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Yang ZY, 2019, IEEE ACCESS, V7, P77738, DOI 10.1109/ACCESS.2019.2921019
Youk S, 2019, SCIENTOMETRICS, V120, P1237, DOI 10.1007/s11192-019-03169-x
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
Zhang J, 2018, IEEE ACCESS, V6, P55661, DOI 10.1109/ACCESS.2018.2863938
Zhang L, 2011, J INFORMETR, V5, P583, DOI 10.1016/j.joi.2011.05.004
Zhao Z., 2007, INT C MACH LEARN, P1151
NR 128
TC 5
Z9 6
U1 17
U2 59
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2020
VL 8
BP 107887
EP 107899
DI 10.1109/ACCESS.2020.3001190
PG 13
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA MD5WH
UT WOS:000544042700021
OA gold
DA 2024-09-05
ER
PT J
AU Gharaibeh, MK
AF Gharaibeh, Malik Khlaif
TI Measuring student satisfaction of Microsoft teams as an online learning
platform in Jordan: An application of UTAUT2 model
SO HUMAN SYSTEMS MANAGEMENT
LA English
DT Article
DE Microsoft teams; UTAUT2; ministry of higher education and scientific
research; performance expectancy; effort expectancy
ID INFORMATION-TECHNOLOGY; USER ACCEPTANCE; INTENTION
AB BACKGROUND: As a result of the Covid-19 pandemic, educational institutions have shifted to electronic education at the global level, after face-to-face education was common in most countries of the world. From this aspect, assessing students' satisfaction with the platforms used in e-learning is very important. In this study, students' satisfaction with Microsoft Teams was measured, as it is one of the most important programs used in the educational process in various educational institutions. OBJECTIVE: This study uses five variables from the UTAUT2 model namely; performance expectancy, effort expectancy, facilitating conditions, social influence, price value, as well as two new variables which include student satisfaction, and flexibility to study the learning satisfaction with Microsoft Teams. METHODS: 520 questionnaires were distributed to Yarmouk and Ajloun National Universities students to collect the required data, and the data was analyzed using Smart PLS. RESULTS: The results showed that performance expectancy, effort expectancy, social influence, price value, facilitating conditions, student confidence, and flexibility are important indicators of satisfaction with Microsoft Teams. CONCLUSIONS: This study adds to the body of knowledge by building a conceptual model capable of effectively predicting student satisfaction with the Microsoft Teams platform. It concluded that the expected benefit from using Microsoft Teams will increase student satisfaction.
C1 [Gharaibeh, Malik Khlaif] Ajloun Natl Univ, Management Informat Syst, Ajloun, Jordan.
RP Gharaibeh, MK (corresponding author), Ajloun Natl Univ, Management Informat Syst, Ajloun, Jordan.
EM malik.gharaibeh@anu.edu.jo
OI Gharaibeh, Malik/0000-0002-8462-9599
CR AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T
Al-Rahmi WM, 2019, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2019.1629599
Al-Salman S, 2021, ONLINE LEARN, V25, P286, DOI 10.24059/olj.v25i1.2470
Alasmari T, 2019, EDUC INF TECHNOL, V24, P2127, DOI 10.1007/s10639-019-09865-8
Almaiah MA, 2019, EDUC INF TECHNOL, V24, P1433, DOI 10.1007/s10639-018-9840-1
Alrajawy I., 2018, International Journal of Management and Human Science, V2, P1
Alsadoon E., 2018, The Turkish Online Journal of Educational Technology, V17, P226
Alsharida RA, 2021, INT J EMERG TECHNOL, V16, P147, DOI 10.3991/ijet.v16i05.18093
Alshurideh M, 2019, INT C ADV INTELLI GE
Amid A., 2021, Journal of Personalized Learning, V4, P57
[Anonymous], 2016, Methodology in the social sciences. Principles and practice of structural equation modeling
BANDURA A, 1986, J SOC CLIN PSYCHOL, V4, P359, DOI 10.1521/jscp.1986.4.3.359
Bervell B, 2022, AUSTRALAS J EDUC TEC, V38, P115, DOI 10.14742/ajet.7178
Bhattacherjee A, 2006, MIS QUART, V30, P805
Chung N, 2014, COMPUT HUM BEHAV, V30, P59, DOI 10.1016/j.chb.2013.07.035
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
Dimitrova M, 2003, 14TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, P287, DOI 10.1109/DEXA.2003.1232037
Gharaibeh M, 2022, 1139TH INT C SCI TEC
Gharaibeh M., 2018, J ENG APPL SCI, V13, P2023
Gharaibeh M., 2016, World Applied Sciences Journal, V34, P931
Gharaibeh Malik Khlaif, 2021, International Journal of Sociotechnology and Knowledge Development, V13, P31, DOI 10.4018/IJSKD.2021040103
Gharaibeh MK, 2021, COMPUT SYST SCI ENG, V37, P187, DOI 10.32604/csse.2021.014902
Gharaibeh MK., 2020, International Journal of Advanced Science and Technology, V29, P3426
Gharaibeh MK., 2020, Advances in Science, Technology and Engineering Systems Journal, V5, P1261, DOI [10.25046/aj0505151, DOI 10.25046/AJ0505151]
Gharaibeh MK, 2018, INT J INTERACTIVE MO, V12
Gharaibeh N., 2020, International Journal of Scientific Technology Research, V9, P3826
GharaibehMK MK, 2022, INT J SERVICE SCI MA, V13, P1
Goh E, 2020, J TEACH TRAVEL TOUR, V20, P156, DOI 10.1080/15313220.2020.1740636
Guri-Rosenblit S., 2011, Journal of Distance Education, V25, P1
Hadullo K., 2018, International Journal of Education and Development Using Information and Communication Technology, V14, P152
Hair J.F., 2009, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Vseventh
Jebril H, 2021, ASIAN J ED SOCIAL ST, V23, P46
JUSOH S., 2019, J THEORETICAL APPL I, V97
Khan SMH, 2021, AIUB J SCI ENG AJSE, V20, P133
Kosiba JPB, 2022, J FURTH HIGHER EDUC, V46, P988, DOI 10.1080/0309877X.2022.2030687
Lee EY, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072672
Lee SG, 2013, J WORLD BUS, V48, P20, DOI 10.1016/j.jwb.2012.06.003
Meyliana Widjaja HAE, 2020, 4 INT C INFORMATICS
Ministry of higher education and scientific research, PLANS REP EX ACT PLA
Nortvig AM, 2018, ELECTRON J E-LEARN, V16, P46
Nunnally J.C., 1978, Psychometric Theory, Vsecond
Paechter M, 2010, COMPUT EDUC, V54, P222, DOI 10.1016/j.compedu.2009.08.005
Pal D, 2020, CHILD YOUTH SERV REV, V119, DOI 10.1016/j.childyouth.2020.105535
Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879
RogersEM, 1983, DIFFUSION INNOVATION
Rudhumbu N., 2022, Asian Association of Open Universities Journal
Sahu P, 2020, CUREUS J MED SCIENCE, V12, DOI 10.7759/cureus.7541
Sangeeta, 2021, J PUBLIC AFF, V21, DOI 10.1002/pa.2503
Saroia AI, 2019, INNOV EDUC TEACH INT, V56, P569, DOI 10.1080/14703297.2018.1557068
Tabachnick B.G., 2007, Using Multivariate Statistics, Vfifth
Tandon Urvashi, 2019, Journal of Information Technology Case and Application Research, V21, P13, DOI 10.1080/15228053.2019.1609779
Tiyar F., 2015, World Journal on Educational Technology, t, V7, br, P157
Tseng TH, 2022, INTERACT LEARN ENVIR, V30, P635, DOI 10.1080/10494820.2019.1674888
Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540
Venkatesh V, 2012, MIS QUART, V36, P157
Vitoria L, 2018, J PHYS C SERIES
West SG, 1995, Structural Equation Modeling: Concepts, Issues, and Applications, P56
Yu ZG, 2019, COMPUT ASSIST LANG L, V32, P323, DOI 10.1080/09588221.2018.1517093
NR 58
TC 2
Z9 2
U1 0
U2 5
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 0167-2533
EI 1875-8703
J9 HUM SYST MANAGE
JI Hum. Syst. Manag.
PY 2023
VL 42
IS 2
BP 121
EP 130
DI 10.3233/HSM-220032
PG 10
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA C8ZC2
UT WOS:000964726300002
DA 2024-09-05
ER
PT J
AU Xiong, H
Li, QY
Liu, JZ
AF Xiong, Hui
Li, Qingyu
Liu, Jinzhen
TI Performance Optimization and Simulation Research of New Coil for
Transcranial Magnetic Stimulation Based on Improved Particle Swarm
Optimizer
SO IEEE TRANSACTIONS ON MAGNETICS
LA English
DT Article
DE Optimization; Focusing; Magnetic heads; Convergence; Electric fields;
Particle swarm optimization; Attenuation; Particle swarm optimizer (PSO)
algorithm; three-layer multicoil (TLMC); transcranial magnetic
stimulation (TMS); von-Neumann topology
AB Transcranial magnetic stimulation (TMS) is a noninvasive technology used to treat certain brain disorders. As an important part of the TMS system, the stimulation coil induces the electric field (EF) in the brain, which can change the excitability of nerve tissue. First, a three-layer multicoil (TLMC) is proposed on the basis of the principle of superposition and cancellation of magnetic field (MF). The simulation results in COMSOL show that this structure can significantly improve focality and stimulation strength, but it reduces the depth of stimulation. Second, a novel improved particle swarm optimizer (PSO) is proposed with three improved strategies. The novel improved PSO has higher convergence accuracy and stability in the test function. Finally, we utilized the novel improved PSO to optimize the current configuration and rotation angle of the TLMC three times. The numerical results show that the TLMC after the second optimization can increase stimulation strength by 19.10% on the basis of satisfying the stimulation depth of 15 mm. Compared with the unoptimized, the optimized TLMC can better balance the focality and stimulation depth.
C1 [Xiong, Hui] Tiangong Univ, Sch Control Sci & Engn, Tianjin 300387, Peoples R China.
Tiangong Univ, Key Lab Intelligent Control Elect Equipment, Tianjin 300387, Peoples R China.
C3 Tiangong University; Tiangong University
RP Xiong, H (corresponding author), Tiangong Univ, Sch Control Sci & Engn, Tianjin 300387, Peoples R China.
EM xionghui@tiangong.edu.cn
OI Li, Qingyu/0000-0002-7820-1908
FU National Natural Science Foundation of China [62071329]; Natural Science
Foundation Applying System of Tianjin [18JCYBJC90400, 18JCQNJC84000];
Science and Technology Development Fund of Tianjin Education Commission
for Higher Education [2019KJ014]
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 62071329, in part by the Natural Science
Foundation Applying System of Tianjin under Grant 18JCYBJC90400 and
Grant 18JCQNJC84000, and in part by the Science and Technology
Development Fund of Tianjin Education Commission for Higher Education
under Grant 2019KJ014.
CR Çomak E, 2019, EXPERT SYST, V36, DOI 10.1111/exsy.12330
Deng B, 2017, IEEE T MAGN, V53, DOI 10.1109/TMAG.2017.2661244
Deng ZD, 2014, CLIN NEUROPHYSIOL, V125, P1202, DOI 10.1016/j.clinph.2013.11.038
Deng ZD, 2013, BRAIN STIMUL, V6, P1, DOI 10.1016/j.brs.2012.02.005
Gomez LJ, 2018, J NEURAL ENG, V15, DOI 10.1088/1741-2552/aac967
Guadagnin V, 2016, IEEE T BIO-MED ENG, V63, P1543, DOI 10.1109/TBME.2015.2498646
Isserles M, 2013, BRAIN STIMUL, V6, P377, DOI 10.1016/j.brs.2012.07.008
Jalinous R., 1998, Guide to Magnetic Stimulation
Kennedy J, 2002, IEEE C EVOL COMPUTAT, P1671, DOI 10.1109/CEC.2002.1004493
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
Laudani A, 2015, IEEE T MAGN, V51, DOI 10.1109/TMAG.2014.2364176
Lee WH, 2016, EUR PSYCHIAT, V36, P55, DOI 10.1016/j.eurpsy.2016.03.003
Li CS, 2019, BIOMED RES INT, V2019, DOI 10.1155/2019/9461018
Li YN, 2018, IEEE T MAGN, V54, DOI 10.1109/TMAG.2017.2751260
Ma HP, 2019, SWARM EVOL COMPUT, V44, P365, DOI 10.1016/j.swevo.2018.04.011
Rastogi P, 2017, AIP ADV, V7, DOI 10.1063/1.4973604
Rossi S, 2009, CLIN NEUROPHYSIOL, V120, P2008, DOI 10.1016/j.clinph.2009.08.016
Ruohonen J, 1997, ANN BIOMED ENG, V25, P840, DOI 10.1007/BF02684168
Ruohonen J, 1998, BIOELECTROCH BIOENER, V47, P213, DOI 10.1016/S0302-4598(98)00191-3
Ruohonen J, 1998, MED BIOL ENG COMPUT, V36, P297, DOI 10.1007/BF02522474
Shi YH, 1998, IEEE C EVOL COMPUTAT, P69, DOI 10.1109/ICEC.1998.699146
Vora M, 2018, NAT COMPUT, V17, P901, DOI 10.1007/s11047-017-9639-9
Xia XW, 2020, COMPUTING, V102, P1587, DOI 10.1007/s00607-019-00782-9
Xiong H, 2020, ARTIF INTELL MED, V104, DOI 10.1016/j.artmed.2020.101790
Xiong H, 2016, PROG ELECTROMA RES M, V48, P145, DOI 10.2528/PIERM16040509
Zhang Z, 2017, IEEE T MAGN, V53, DOI 10.1109/TMAG.2017.2700319
Zucca M, 2017, IEEE T MAGN, V53, DOI 10.1109/TMAG.2017.2709402
NR 27
TC 3
Z9 3
U1 1
U2 24
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9464
EI 1941-0069
J9 IEEE T MAGN
JI IEEE Trans. Magn.
PD DEC
PY 2021
VL 57
IS 12
AR 5800711
DI 10.1109/TMAG.2021.3121338
PG 11
WC Engineering, Electrical & Electronic; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Physics
GA XA2XX
UT WOS:000720517600019
DA 2024-09-05
ER
PT J
AU Druskat, S
AF Druskat, Stephan
TI Software and Dependencies in Research Citation Graphs
SO COMPUTING IN SCIENCE & ENGINEERING
LA English
DT Article
DE Software; Publishing; Stakeholders; Metadata; Sociotechnical systems;
Computational modeling; Digital systems; Citation analysis;
Bibliometrics; Graphical models; Scholarship; software citation;
citation graphs; transitive credit
ID SCIENCE; LIGHT
AB Following the widespread digitalization of scholarship, software has become essential for research, but the current sociotechnical system of citation does not reflect this sufficiently. Citation provides context for research, but the current model for the respective research citation graphs does not integrate software. In this article, I develop a directed graph model to alleviate this, describe challenges for its instantiation, and give an outlook of useful applications of research citation graphs, including transitive credit.
C1 [Druskat, Stephan] German Aerosp Ctr DLR, Cologne, Germany.
[Druskat, Stephan] Humboldt Univ, Dept Comp Sci, Berlin, Germany.
[Druskat, Stephan] Friedrich Schiller Univ Jena, Jena, Germany.
C3 Helmholtz Association; German Aerospace Centre (DLR); Humboldt
University of Berlin; Friedrich Schiller University of Jena
RP Druskat, S (corresponding author), German Aerosp Ctr DLR, Cologne, Germany.; Druskat, S (corresponding author), Humboldt Univ, Dept Comp Sci, Berlin, Germany.; Druskat, S (corresponding author), Friedrich Schiller Univ Jena, Jena, Germany.
RI Druskat, Stephan/AAS-5131-2021
OI Druskat, Stephan/0000-0003-4925-7248
CR Abramatic JF, 2018, COMMUN ACM, V61, P29, DOI 10.1145/3183558
AlNoamany Y, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.163
[Anonymous], 2019, NAT METHODS, V16, P207, DOI 10.1038/s41592-019-0350-x
[Anonymous], [No title captured]
[Anonymous], [No title captured]
[Anonymous], 1983, ARCHAEOLOGY KNOWLEDG
[Anonymous], [No title captured]
[Anonymous], [No title captured]
[Anonymous], [No title captured]
[Anonymous], [No title captured]
[Anonymous], [No title captured]
[Anonymous], [No title captured]
[Anonymous], [No title captured]
Beck G, 2011, J RISK RES, V14, P1, DOI 10.1080/13669877.2010.505348
Berez-Kroeker AL, 2018, LINGUISTICS, V56, P1, DOI 10.1515/ling-2017-0032
Bonisch Sebastian, 2013, Intelligent Computer Mathematics. MKM, Calculemus, DML, and Systems and Projects 2013 Held as Part of CICM 2013. Proceedings. LNCS 7961, P369, DOI 10.1007/978-3-642-39320-4_31
Borgman C.L., 2007, SCHOLARSHIP DIGITAL, DOI DOI 10.7551/MITPRESS/7434.003.0009
Brand A, 2015, LEARN PUBL, V28, P151, DOI 10.1087/20150211
Chun Wendy Hui Kyong, 2005, GREY ROOM, V18, P26, DOI [DOI 10.1162/1526381043320741, 10.1162/1526381043320741]
Constantinou E, 2016, ASIA PAC SOFWR ENG, P365, DOI [10.1109/APSEC.2016.061, 10.1109/APSEC.2016.32]
Cousijn H, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.259
De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics
Druskat S., 2018, CITATION FILE FORMAT, DOI DOI 10.5281/ZENODO.1003149
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Goble C, 2014, IEEE INTERNET COMPUT, V18, P4, DOI 10.1109/MIC.2014.88
Greenberg SA, 2009, BMJ-BRIT MED J, V339, DOI 10.1136/bmj.b2680
Hafer L, 2009, COMMUN ACM, V52, P126, DOI 10.1145/1610252.1610285
Hanson B, 2011, SCIENCE, V331, P649, DOI 10.1126/science.1203354
Howison J, 2016, J ASSOC INF SCI TECH, V67, P2137, DOI 10.1002/asi.23538
Jones MB, 2017, CodeMeta: An Exchange Schema for Software Metadata, DOI [DOI 10.5063/SCHEMA/CODEMETA-2.0, 10.5063/schema/codemeta-2.0.]
Katz D.S., 2014, Journal of Open Research Software, V2, DOI DOI 10.5334/JORS.BE
Katz D.S., 2015, Journal of Open Research Software, V3, pe7, DOI [DOI 10.5334/JORS.BY, DOI 10.5334/J0RS.BY]
Katz D. S., 2019, ARXIV 1905 08674 CS
Li K, 2017, J INFORMETR, V11, P989, DOI 10.1016/j.joi.2017.08.003
McNutt MK, 2018, P NATL ACAD SCI USA, V115, P2557, DOI 10.1073/pnas.1715374115
Morin A, 2012, SCIENCE, V336, P159, DOI 10.1126/science.1218263
Neylon C, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000242
Nicholas D, 2014, LEARN PUBL, V27, P121, DOI 10.1087/20140206
Park H, 2019, J INFORMETR, V13, P574, DOI 10.1016/j.joi.2019.03.005
Peng RD, 2011, SCIENCE, V334, P1226, DOI 10.1126/science.1213847
Peroni S, 2015, J DOC, V71, P253, DOI 10.1108/JD-12-2013-0166
Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a
Recio T., 2019, F1000RESEARCH, V8, P1353, DOI DOI 10.12688/F1000RESEARCH.19994.2
Shamir L, 2013, ASTRON COMPUT, V1, P54, DOI 10.1016/j.ascom.2013.04.001
Smith AM, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.147
Smith AM, 2016, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.86
Stodden V, 2016, SCIENCE, V354, P1240, DOI 10.1126/science.aah6168
Yang SF, 2016, INT J DEV NEUROSCI, V53, P1, DOI 10.1016/j.ijdevneu.2016.05.009
NR 49
TC 7
Z9 7
U1 0
U2 9
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1521-9615
EI 1558-366X
J9 COMPUT SCI ENG
JI Comput. Sci. Eng.
PD MAR-APR
PY 2020
VL 22
IS 2
BP 8
EP 21
DI 10.1109/MCSE.2019.2952840
PG 14
WC Computer Science, Interdisciplinary Applications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA KU4RW
UT WOS:000519698500002
OA Green Submitted, Green Accepted
DA 2024-09-05
ER
PT C
AU Alsukhni, M
Zhu, Y
AF Alsukhni, Mohammad
Zhu, Ying
BE Zhang, C
Joshi, J
Bertino, E
Thuraisingham, B
TI Interactive Visualization of the Social Network of Research
Collaborations
SO 2012 IEEE 13TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND
INTEGRATION (IRI)
LA English
DT Proceedings Paper
CT 13th IEEE International Conference on Information Reuse and Integration
(IEEE IRI) / DIM / WICSOC / IEEE EM- RITE / IRI-HI
CY AUG 08-10, 2012
CL Las Vegas, NV
DE Social network; co-authorships network; Multidimensional scaling;
digital bibliography and library project; information retrieval;
gradient descent; graphs
AB Social networks have been evolving over the past few years, leading to a rapid increase in the number and complexity of relationships among their entities. In this paper, we focus on a large scale dataset known as the Digital Bibliography and Library Project (DBLP), which contains information on all publications that have been published in computer and information science related journals and conference proceedings. We model the DBLP dataset as a social network of research collaborations. DBLP is a structured and dynamic dataset stored in the XML file format; it contains over 850,000 authors and 2 million publications and the resulting collaboration social network is a scale-free network. We define DBLP collaboration social network as a graph that consists of researchers as nodes and links representing the collaboration among the researchers. In this work, we implement a data analysis algorithm called Multidimensional Scaling (MDS) to represent the degree of collaboration among the DBLP authors as Euclidean distances in order to analyze, mine and understand the relational information in this large scale network in a visual way. MDS requires a highly computational complexity for large scale graphs such as the DBLP graph. Therefore, we propose different solutions to overcome this problem, and improve the MDS performance. In addition, as the quality of the MDS result is measured by a metric known as the stress value, we use the steepest descent method to minimize the stress in an iterative process called stress optimization in order to generate the best geometric layout of the graph. We also propose a solution to further enhance the graph visualization by partitioning the graph into sub-graphs and using repelling forces among nodes within the same sub-graph.
C1 [Alsukhni, Mohammad; Zhu, Ying] Univ Ontario, Inst Technol, Fac Engn & Appl Sci, Oshawa, ON, Canada.
C3 Ontario Tech University
RP Alsukhni, M (corresponding author), Univ Ontario, Inst Technol, Fac Engn & Appl Sci, Oshawa, ON, Canada.
EM mohammad.alsukhni@uoit.ca; ying.zhu@uoit.ca
CR Alsukhni Mohammad, 2012, THESIS
Barabasi A., PHYSICA A, V311, P590
Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509
Chen Min, 2009, COMPUTER GRAPHICS AN, V29, P12
France S. L., 2010, SYSTEMS MAN AND CYBE, V41, P644
Groenen Patrick J.F., 2004, ECONOMETRIC INSTITUT
Holland Steven M., NON METRIC MULTIDIME, P30602
Ley Michael, 2009, UNIVERSIT AT TRIER I
Meza Juan C., 2010, TECHNICAL REPORT LBN
Michael A., 2008, HDB DATA VISUALIZATI, P316
The DBLP Computer Science Bibliography, THE DBLP COMPUTER SC
Young F., 1985, ENCY STAT SCI, V5
NR 12
TC 1
Z9 1
U1 0
U2 4
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4673-2284-3
PY 2012
BP 247
EP 254
PG 8
WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BDC08
UT WOS:000312540300039
DA 2024-09-05
ER
PT C
AU Yi, XT
AF Yi, Xitian
BE Lee, LK
Wang, FL
Kato, Y
Hui, YK
Sato, S
TI Research on the Cognitive Input Evaluation Model of MOOC Online Learning
from the Perspective of Learning Analysis
SO 2021 INTERNATIONAL SYMPOSIUM ON EDUCATIONAL TECHNOLOGY (ISET 2021)
SE International Symposium on Educational Technology
LA English
DT Proceedings Paper
CT International Symposium on Educational Technology (ISET)
CY AUG 10-13, 2021
CL Nihon Fukushi Univ, ELECTR NETWORK
HO Nihon Fukushi Univ
DE learning cognitive input; evalution model; learing analysis
AB Learning cognitive input is one of the most direct and continuous issues in educational practice. As a key element of online learning quality, effective evaluation of students' cognitive input in online learning can encourage students to actively participate in the online learning process. However, it is currently unclear which indicators can reflect the cognitive input of learners in the online learning process. Therefore, from the perspective of learning analysis, this research explored the relationship between online learning behavior and online cognitive input, clarified evaluation indicators that can represent online cognitive input, and attempted to build a learning analysis model for online cognitive input evaluation.
C1 [Yi, Xitian] South China Normal Univ, Sch Informat Technol Educ, Guangzhou, Peoples R China.
C3 South China Normal University
RP Yi, XT (corresponding author), South China Normal Univ, Sch Informat Technol Educ, Guangzhou, Peoples R China.
EM 1019672875@qq.com
CR Feng X., 2016, J. Dist. Educ, V34, P39
Gunawardena CN, 1997, J EDUC COMPUT RES, V17, P397, DOI 10.2190/7MQV-X9UJ-C7Q3-NRAG
Henri F., 1992, Collaborative Learning Through Computer Conferencing: the Najaden Papers. Proceedings of the NATO Advanced Research Workshop, P117
Hew KF, 2010, INSTR SCI, V38, P571, DOI 10.1007/s11251-008-9087-0
Jiang Xiuye, 2014, J SCI ED MID TERM, P25
Kop R, 2011, INT REV RES OPEN DIS, V12, P74, DOI 10.19173/irrodl.v12i7.1041
Li Shuang, 2015, OPEN ED RES, P62
Liang Yunzhen, 2018, ED RES, P66
Mazzolini M, 2007, COMPUT EDUC, V49, P193, DOI 10.1016/j.compedu.2005.06.011
Nandi D, 2012, AUSTRALAS J EDUC TEC, V28, P684
Ravindran B, 2005, J EDUC RES, V98, P222, DOI 10.3200/JOER.98.4.222-233
Wang G., 2016, E ED RES, V37, P66
Wang L., 2009, CHINA E ED, V265, P5
XinHua Net, 2019, MIN ED FULL IMPL 6 E
Yin R., 2016, Open Education Research, V22, P89, DOI [10.13966/j.cnki.kfjyyj.2016.03.010, DOI 10.13966/J.CNKI.KFJYYJ.2016.03.010]
Zhou Yuan, 2018, ED RES, P99
NR 16
TC 1
Z9 1
U1 5
U2 55
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
SN 2766-2144
EI 2766-2128
BN 978-1-6654-2859-0
J9 INT SYMP EDUC TECH
PY 2021
BP 211
EP 215
DI 10.1109/ISET52350.2021.00051
PG 5
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BS6XE
UT WOS:000754450200041
DA 2024-09-05
ER
PT J
AU Geng, CX
Wen, BH
Liu, R
AF Geng, Chengxuan
Wen, Bihan
Liu, Rui
TI Research on Financing Environment Evaluation of Scientific Innovation
Industry Based on the Bayesian Network Model under the Background of
Green Economy
SO POLISH JOURNAL OF ENVIRONMENTAL STUDIES
LA English
DT Article
DE environmental crisis; green economy; scientific innovation industry;
financing environment; bayesian networks
AB As the global environmental crisis evolves, China's traditional industries have serious problems of high energy consumption, high emission and low energy efficiency. Developing green industries has become an important direction of China's industrial transformation and upgrading. This paper selects scientific innovation industry as a typical representative of green industry and studies its financing environment assessment. In order to solve the financing dilemma faced by the science and technology innovation industry, this paper puts forward the evaluation method of the financing environment of science and technology innovation industry based on Bayesian network from the Angle of industry particularity. In this paper, Netica software is used to construct a Bayesian network model of the financing environment of the science and technology innovation industry, and the financing environment of the science and technology innovation industry in 2016-2020 is inferred according to the annual probability distribution. Then, the sensitivity analysis is carried out, and the hierarchical policy simulation is used to simulate the conditional probability of the initial node and the intermediate node respectively, so as to determine the impact of each node on the financing environment, and finally obtain the optimization path. The research results can be of great value for improving the financing environment of scientific innovation industry and promoting the development of green industry.
C1 [Geng, Chengxuan; Wen, Bihan; Liu, Rui] Nanjing Univ Aeronaut & Astronaut, Coll Econ & Management, Nanjing 211106, Jiangsu, Peoples R China.
C3 Nanjing University of Aeronautics & Astronautics
RP Wen, BH; Liu, R (corresponding author), Nanjing Univ Aeronaut & Astronaut, Coll Econ & Management, Nanjing 211106, Jiangsu, Peoples R China.
EM Wenbihan98@163.com; Ruiliu_68@163.com
FU project "Research on the Driving Mechanism and Promotion Path of the
market-oriented Allocation of Scientific Innovation Industry Elements
under the Background of Digital Economy" [22BJL140]
FX y This paper is supported by the project "Research on the Driving
Mechanism and Promotion Path of the market-oriented Allocation of
Scientific Innovation Industry Elements under the Background of Digital
Economy". The project approval number is 22BJL140.
CR [白云 Bai Yun], 2022, [水资源与水工程学报, Journal of Water Resources and Water Engineering], V33, P1
Bayes T., 1763, PHILOS T ROY SOC LON, V53, P370, DOI DOI 10.1098/RSTL.1763.0053
Belas J., 2020, Oeconomia Copernicana, V11
CAO X.L, 2020, Statistics and Decision, V36, P153
Come E, 2022, Spatial structures resuming by Bayesian network and fusion with diagnosis data in the transferable belief model framework
FU W., 2022, Journal of Intelligent Manufacturing, V33
GENG C.X., 2021, Science and Technology Management Research, V41, P58, DOI DOI 10.3969/J.ISSN.1000-7695.2021.13.008
GUAN Y.L, 2019, DEStech Transactions on Social Science Education and Human Science
HOU Z.Y, 2019, Financial development review, P146
JEFFREYS H, 1946, PROC R SOC LON SER-A, V186, P453, DOI 10.1098/rspa.1946.0056
JIA L.J., 2023, Review of Political Economy, V14, P100
KANG J.P, 2021, China Finance, V965, P96
KANG J.P., 2022, Western finance, V571, P17
LI C.X., 2022, Digital library forum, V214, P66
LI J.C., 2019, Statistical Research, V36, P4, DOI DOI 10.19343/J.CNKI.11-1302/C.2019.01.001
[李玥琪 Li Yueqi], 2022, [情报学报, Journal of the China Society for Scientific and Technical Information], V41, P1085
LIU Y, 2022, Commercial economic research, V5, P7
LUO X.E, 2021, Western Economic Management Forum, V32, P48
Pearl J., 2014, Probabilistic reasoning in intelligent systems: networks of plausible inference
Pikner T., 2022, Temporary clusters within knowledge dissemination: a case of networks towards a cross-border small business environment
QU C, 2016, Statistics and Decision, V65
QUAN Z., 2009, Evaluation on Financing Environment of Attracting Private Capital into Government Projects
SHANNON CE, 1948, BELL SYST TECH J, V27, P623, DOI 10.1002/j.1538-7305.1948.tb00917.x
SONG L.P, 2021, Technology and management, V23, P21
Tracy Gonzalez -Padron G, 2007, Industrial Marketing Management, V37
[王必好 Wang Bihao], 2019, [科学学研究, Studies in Science of Science], V37, P1364
WANG L, 2022, Journal of Mathematics
WANG Q., 2022, Environmental Research Communications, V4
WENG Y, 2021, Performance Evaluation of High-tech Innovation Enterprises Based on Grey Chaotic Neural Network
WU S.Q., 2020, Scientific Management Research, V38, P157
XIE R.Q, 2023, Shanghai Economic Research, V413, P64
YAN Y.Z, 2018, China's development, V18, P45
YANG S.H., 2023, Soft science, V37, P27
YANG X.Y., 2021, MARINE B, V40, P473
YUAN Z.M, 2018, Journal of Jiaxing University
Zeng Z, 2017, J INTELL FUZZY SYST, V33, P2085, DOI 10.3233/JIFS-161812
ZHANG L.Y., 2021, Financial Forum, V26, P3
ZHANG R.C., 2022, Tax Research, V449, P102
ZHANG Y, 2021, Comprehensive Utilization Pattern of the Bohai Rim Coastline Using the Restrictive Composite Index Method
ZHAO K.L., 2019, Journal of Changchun Finance College
Zheng Y., 2022, Bull Chinese Acad Sci, V36, P757, DOI DOI 10.16418/J.ISSN.1000-3045.20210518007
[朱月月 Zhu Yueyue], 2021, [测绘科学, Science of Surveying and Mapping], V46, P195
NR 42
TC 0
Z9 0
U1 10
U2 12
PU HARD
PI OLSZTYN 5
PA POST-OFFICE BOX, 10-718 OLSZTYN 5, POLAND
SN 1230-1485
EI 2083-5906
J9 POL J ENVIRON STUD
JI Pol. J. Environ. Stud.
PY 2023
VL 32
IS 6
BP 5047
EP 5060
DI 10.15244/pjoes/169619
PG 14
WC Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Environmental Sciences & Ecology
GA EJ2S6
UT WOS:001138499200038
OA gold
DA 2024-09-05
ER
PT C
AU Taxitari, L
Cappa, C
Ferro, M
Marzi, C
Nadalini, A
Pirrelli, V
AF Taxitari, Loukia
Cappa, Claudia
Ferro, Marcello
Marzi, Claudia
Nadalini, Andrea
Pirrelli, Vito
BE Elmohajir, M
AlAchhab, M
Elmohajir, BE
Ane, BK
Jellouli, I
TI Using mobile technology for reading assessment
SO 2020 6TH IEEE CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE
CIST'20)
SE Colloquium in Information Science and Technology
LA English
DT Proceedings Paper
CT 6th IEEE International Congress on Information Science and Technology
(IEEE CiSt)
CY JUN 05-12, 2021
CL Innov.org, Agadir, MOROCCO
HO Innov.org
DE reading assessment; reading research; mobile technology; NLP; cloud
computing; special education needs
ID COGNITIVE SKILLS; WORD RECOGNITION; SIMPLE VIEW; COMPREHENSION;
LANGUAGE; DIFFICULTIES
AB The enormous potential of Information and Communication Technologies (ICT) for addressing critical educational issues is generally acknowledged, but its use in the assessment of the complex skills of reading and understanding a text has been very limited to date. The paper contrasts traditional reading assessment protocols with ReadLet, an ICT platform with a tablet front-end, designed to support online monitoring of silent and oral reading abilities in early graders. ReadLet makes use of cloud computing and mobile technology for large-scale data collection and allows the time alignment of the child's reading behaviour with texts tagged using Natural Language Processing (NLP) tools. Initial findings replicate established benchmarks from the psycholinguistic literature on reading in both typically and atypically developing children, making the application a new ground-breaking approach in the evaluation of reading skills.
C1 [Taxitari, Loukia; Ferro, Marcello; Marzi, Claudia; Nadalini, Andrea; Pirrelli, Vito] CNR, Inst Computat Linguist Antonio Zampolli, Pisa, Italy.
[Cappa, Claudia] CNR, Inst Clin Physiol, Pisa, Italy.
C3 Consiglio Nazionale delle Ricerche (CNR); Istituto di Linguistica
Computazionale "A. Zampolli" (ILC-CNR); Consiglio Nazionale delle
Ricerche (CNR); Istituto di Fisiologia Clinica (IFC-CNR)
RP Taxitari, L (corresponding author), CNR, Inst Computat Linguist Antonio Zampolli, Pisa, Italy.
EM loukia.taxitari@ilc.cnr.it; claudia.cappa@ilc.cnr.it;
marcello.ferro@ilc.cnr.it; claudia.marzi@ilc.cnr.it;
andrea.nadalini@ilc.cnr.it; vito.pirrelli@ilc.cnr.it
RI ; MARZI, CLAUDIA/C-8034-2012
OI Nadalini, Andrea/0000-0001-8859-9449; MARZI, CLAUDIA/0000-0002-3427-2827
FU Italian Ministry of University and Research [2017W8HFRX]
FX We gratefully acknowledge the financial support of PRIN grant 2017W8HFRX
"ReadLet: reading to understand. An ICT-driven, large-scale
investigation of early grade children's reading strategies" (2020-2022),
from the Italian Ministry of University and Research.
CR [Anonymous], 2009, ACQUIRING KNOWLEDGE
[Anonymous], Vision: A Computational Investigation into the Human Representation and Processing of Visual Information
Benfatto MN, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165508
Burani C, 2008, COGNITION, V108, P243, DOI 10.1016/j.cognition.2007.12.010
Chzhen Y, 2018, 15 UNICEF OFF RES
Coltheart M, 2001, PSYCHOL REV, V108, P204, DOI 10.1037//0033-295X.108.1.204
Commodari E, 2017, I-PERCEPTION, V8, DOI 10.1177/2041669517718557
Cutting LE, 2006, SCI STUD READ, V10, P277, DOI 10.1207/s1532799xssr1003_5
De Luca M, 2008, COGN BEHAV NEUROL, V21, P227, DOI 10.1097/WNN.0b013e318190d162
Dehaene S., 2009, READING BRAIN SCI EV
DellOrletta F., 2011, P 2 WORKSH SPEECH LA, P73
Eason SH, 2012, J EDUC PSYCHOL, V104, P515, DOI 10.1037/a0027182
Ferrari M., 2018, 2018 9 IEEE INT S PO, P1
Ferro M., 11 INT C MENT LEX 25, P61
Francis D. J, 2005, CTR IMPROVEMENT EARL
Frank MC, 2016, J COGN DEV, V17, P1, DOI 10.1080/15248372.2015.1061528
Grabe W., 2019, TEACHING RES READING, DOI DOI 10.4324/9781315726274-2
HOOVER WA, 1990, READ WRIT, V2, P127, DOI 10.1007/BF00401799
Keenan JM, 2008, SCI STUD READ, V12, P281, DOI 10.1080/10888430802132279
Lio G, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-13285-0
Maffei Lamberto., 2018, Elogio della parola
Marzi C, 2015, J COGN SCI, V16, P493
Nation K, 1997, BRIT J EDUC PSYCHOL, V67, P359, DOI 10.1111/j.2044-8279.1997.tb01250.x
Nation K, 2019, AUST J LEARN DIFFIC, V24, P47, DOI 10.1080/19404158.2019.1609272
O'Reilly T, 2014, EDUC PSYCHOL REV, V26, P403, DOI 10.1007/s10648-014-9269-z
OECD, 2018, EQ ED BREAK BARR SOC, DOI 10.1787/9789264073234-en
Pirrelli V., 2020, WORD KNOWLEDGE WORD, V337, P23
Price CJ, 2012, NEUROIMAGE, V62, P816, DOI 10.1016/j.neuroimage.2012.04.062
Sabatini J., 2019, ETS RES REPORT SERIE, V2019, P1
Semmelmann K, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.01021
Vorstius C, 2014, VIS COGN, V22, P458, DOI 10.1080/13506285.2014.881445
Wayman MM, 2007, J SPEC EDUC, V41, P85, DOI 10.1177/00224669070410020401
Wolf M., 2018, Reader, Come Home: The Reading Brain in a Digital World
Zoccolotti P, READ WRIT, V22, P965
NR 34
TC 4
Z9 4
U1 1
U2 10
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2327-185X
BN 978-1-7281-6646-9
J9 COLLOQ INF SCI TECH
PY 2020
BP 302
EP 307
DI 10.1109/CIST49399.2021.9357173
PG 6
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BR5TS
UT WOS:000657322100052
DA 2024-09-05
ER
PT C
AU Zhang, LN
Yang, B
AF Zhang, Li-na
Yang, Bo
BE Liu, HW
Wang, G
Zhang, GW
TI Research on the Evaluation of Students' Development Based on Support
Vector Machine
SO MATERIAL SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL
ENGINEERING AND MANUFACTURING TECHNOLOGY II
SE Applied Mechanics and Materials
LA English
DT Proceedings Paper
CT 3rd International Conference on Advanced Engineering Materials and
Architecture Science (ICAEMAS)
CY JUL 26-27, 2014
CL Huhhot, PEOPLES R CHINA
DE Development of the students; Index of evaluation; SVM
AB This paper applies SVM theory to the evaluation of student development system, and study on the content of students' development contains, at the same time establish the evaluation index system of students' development. Through the use of sample data on the evaluation system for a certain amount of training, we get a trained model, then evaluate and analyze the students' data to be measured. This approach can make students' assessment more accurate and reasonable, and evaluation results can be used in scientific. It can be seen from the development point of view, evaluation of all aspects of students' quality, and reduce the error caused by subjective on evaluation process.
C1 [Zhang, Li-na] Jilin Agr Univ, Changchun 130118, Jilin, Peoples R China.
[Yang, Bo] Changchun Univ Finance & Econ, Changchun 130122, Jilin, Peoples R China.
C3 Jilin Agricultural University; Jilin University of Finance & Economics
RP Zhang, LN (corresponding author), Jilin Agr Univ, Changchun 130118, Jilin, Peoples R China.
EM mail_zhangln@163.com; mail_yangbo@163.com
CR Hsu CW, 2002, IEEE T NEURAL NETWOR, V13, P415, DOI 10.1109/72.991427
Kenneth A., 1988, MATHCED MISMATCHED P, V28, P291
PHETKAEW T, 2003, P 2003 INT JOINT C N, V2, P236
Rowley J., 2000, INT J EDUC MANAG, V3, P36
TIAN X, 2004, P 5 WORLD C INT CONT
NR 5
TC 2
Z9 2
U1 0
U2 3
PU TRANS TECH PUBLICATIONS LTD
PI DURNTEN-ZURICH
PA KREUZSTRASSE 10, 8635 DURNTEN-ZURICH, SWITZERLAND
SN 1660-9336
BN 978-3-03835-267-9
J9 APPL MECH MATER
PY 2014
VL 651-653
BP 2502
EP +
DI 10.4028/www.scientific.net/AMM.651-653.2502
PG 2
WC Construction & Building Technology; Engineering, Civil; Engineering,
Mechanical; Materials Science, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Construction & Building Technology; Engineering; Materials Science
GA BC0UL
UT WOS:000349617700530
DA 2024-09-05
ER
PT C
AU Hooper, CJ
Neves, B
Bordea, G
AF Hooper, Clare J.
Neves, Bruna
Bordea, Georgeta
BE Tiropanis, T
Vakali, A
Sartori, L
Burnap, P
TI A Disciplinary Analysis of Internet Science
SO INTERNET SCIENCE (INSCI 2015)
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 2nd International Conference on Internet Science - Societies, Governance
and Innovation (INSCI)
CY MAY 27-29, 2015
CL Brussels, BELGIUM
DE Internet Science; Disciplinary analysis; Interdisciplinarity;
Bibliometrics; Natural language processing
AB Internet Science is an interdisciplinary field. Motivated by the unforeseen scale and impact of the Internet, it addresses Internet-related research questions in a holistic manner, incorporating epistemologies from a broad set of disciplines. Nonetheless, there is little empirical evidence of the levels of disciplinary representation within this field.
This paper describes an analysis of the presence of different disciplines in Internet Science based on techniques from Natural Language Processing and network analysis. Key terms from Internet Science are identified, as are nine application contexts. The results are compared with a disciplinary analysis of Web Science, showing a surprisingly low amount of overlap between these two related fields. A practical use of the results within Internet Science is described. Finally, next steps are presented that will consolidate the analysis regarding representation of less technologically-oriented disciplines within Internet Science.
C1 [Hooper, Clare J.; Neves, Bruna] Univ Southampton, IT Innovat Ctr, Southampton, Hants, England.
[Bordea, Georgeta] Natl Univ Ireland Univ Coll Galway, Insight, Galway, Ireland.
C3 University of Southampton; Ollscoil na Gaillimhe-University of Galway
RP Hooper, CJ (corresponding author), Univ Southampton, IT Innovat Ctr, Southampton, Hants, England.
EM cjh@it-innovation.soton.ac.uk; georgeta.bordea@insight-centre.org
RI Bordea, Georgeta/T-5762-2019
OI Bordea, Georgeta/0000-0001-9921-8234
CR Ananiadou S., 1994, 15 C COMP LING
Barthélemy M, 2004, EUR PHYS J B, V38, P163, DOI 10.1140/epjb/e2004-00111-4
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bordea G., 2010, P 5 INT WORKSH SEM E
Bordea G., 2013, THESIS
Bordea Georgeta, 2013, 10 INT C TERM ART IN
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Chen C., 1999, 10 ACM C HYP HYP
Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F
Dini P., 2013, INT C INT SCI, P42
Fdidia S., 2013, ACM WEB SCI 2013
Guevara K., 2013, INT C INT SCI, P37
Henry N, 2007, INT J HUM-COMPUT INT, V23, P239, DOI 10.1080/10447310701702402
Hooper C., 2012, P ACM WEBSCI 2012
Hooper Clare J., 2013, Interactions, V20, P52, DOI 10.1145/2451856.2451868
Hooper C.J., 2014, INTERDISCIPLINARY CO
Hooper C. J., 2013, WEB SCI 200 CULTURES
Hooper C.J., 2014, FP7288021 NETW EXC I
Kraker P., 2013, P ACM WEBSCI 2013
Lopez-Herrera A., 2010, INT J HYBRID INTELLI, V7, P17, DOI DOI 10.3233/HIS-2010-0102
Lungeanu A, 2014, J INFORMETR, V8, P59, DOI 10.1016/j.joi.2013.10.006
Monaghan F., 2010, SEM WEB CHALL INT SE
Nagel T., 2011, 22 ACM C HYP HYP DEM
Navigli R., 2011, P 22 INT JOINT C ART
Sahal A., 2013, 1 INT C INT SCI
Stavrakakis I., 2014, FP7288021 NETW EXC I
Velardi P., 2007, 7 C TERM INT ART
Wang ZY, 2012, SCIENTOMETRICS, V90, P855, DOI 10.1007/s11192-011-0563-y
Zhang Z., 2008, P 6 INT C LANG RES E
NR 29
TC 1
Z9 1
U1 0
U2 8
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 978-3-319-18609-2; 978-3-319-18608-5
J9 LECT NOTES COMPUT SC
PY 2015
VL 9089
BP 63
EP 77
DI 10.1007/978-3-319-18609-2_5
PG 15
WC Computer Science, Artificial Intelligence; Computer Science, Hardware &
Architecture; Computer Science, Information Systems; Computer Science,
Theory & Methods; Robotics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Robotics
GA BD6MA
UT WOS:000362365800005
DA 2024-09-05
ER
PT C
AU David, P
Hawes, T
AF David, Peter
Hawes, Timothy
BE Hanratty, TP
Llinas, J
TI Quantity and Unit Extraction for Scientific and Technical Intelligence
Analysis
SO NEXT-GENERATION ANALYST V
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT 5th Conference on Next-Generation Analyst
CY APR 10-11, 2017
CL Anaheim, CA
DE Natural Language Processing; Quantity Extraction; Unit of Measure;
Scientometrics
AB Scientific and Technical (S&T) intelligence analysts consume huge amounts of data to understand how scientific progress and engineering efforts affect current and future military capabilities. One of the most important types of information S&T analysts exploit is the quantities discussed in their source material. Frequencies, ranges, size, weight, power, and numerous other properties and measurements describing the performance characteristics of systems and the engineering constraints that define them must be culled from source documents before quantified analysis can begin. Automating the process of finding and extracting the relevant quantities from a wide range of S&T documents is difficult because information about quantities and their units is often contained in unstructured text with ad hoc conventions used to convey their meaning. Currently, even simple tasks, such as searching for documents discussing RF frequencies in a band of interest, is a labor intensive and error prone process. This research addresses the challenges facing development of a document processing capability that extracts quantities and units from S&T data, and how Natural Language Processing algorithms can be used to overcome these challenges.
C1 [David, Peter; Hawes, Timothy] Decis Analyt Corp, 1400 Crystal Dr,Suite 1400, Arlington, VA 22202 USA.
RP David, P (corresponding author), Decis Analyt Corp, 1400 Crystal Dr,Suite 1400, Arlington, VA 22202 USA.
FU Army Research Laboratory [W911QX-15-C-0031]; Air Force Research
Laboratory [FA8750-14-C-0135]
FX The research reported in this document/presentation was performed under
the sponsorship the DoD Rapid Innovation Fund in conjunction with the
Army Research Laboratory under contract No W911QX-15-C-0031, and the Air
Force Research Laboratory under contract No. FA8750-14-C-0135. The views
and conclusions contained in this document/presentation are those of the
author and should not be interpreted as presenting the official policies
or position, either expressed or implied, of the Army Research
Laboratory, the Air Force Research Laboratory or the U.S. Government.
CR Agarwal P, 2008, BRIEF BIOINFORM, V9, P479, DOI 10.1093/bib/bbn035
Berrahou Soumia Lilia, 2013, KDIR & KMIS 2013. Proceedings of the International Conference on Knowledge Discovery and Information Retrieval and the International Conference on Knowledge Management and Information Sharing, P249
Cho K., 2014, P 8 WORKSH SYNT SEM
Graves A, 2005, IEEE IJCNN, P2047
Harmston Nathan, 2010, Human Genomics, V5, P17
Hoffmann Raphael, 2011, P 49 ANN M ASS COMPU
Kang Yanna Shen, 2013, J Pathol Inform, V4, P23, DOI 10.4103/2153-3539.117450
Mintz Mike, 2009, Dis-tant supervision for relation extraction without labeled data
Pereyra G., 2017, CORR
Schuster M, 1997, IEEE T SIGNAL PROCES, V45, P2673, DOI 10.1109/78.650093
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
SWANSON DR, 1986, PERSPECT BIOL MED, V30, P7
van Assem M, 2010, LECT NOTES COMPUT SC, V6496, P16, DOI 10.1007/978-3-642-17746-0_2
Willems D. J., 2012, P WORKSH SEM WEB INF, P43
NR 14
TC 0
Z9 0
U1 0
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
EI 1996-756X
BN 978-1-5106-0915-0; 978-1-5106-0916-7
J9 PROC SPIE
PY 2017
VL 10207
AR UNSP 102070F
DI 10.1117/12.2266039
PG 7
WC Computer Science, Artificial Intelligence; Computer Science,
Cybernetics; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BJ2TD
UT WOS:000422621500014
DA 2024-09-05
ER
PT J
AU Rokach, L
Kalech, M
Blank, I
Stern, R
AF Rokach, Lior
Kalech, Meir
Blank, Ido
Stern, Rami
TI Who Is Going to Win the Next Association for the Advancement of
Artificial Intelligence Fellowship Award? Evaluating Researchers by
Mining Bibliographic Data
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
ID H-INDEX; SCIENCE; WEB; SCOPUS
AB Accurately evaluating a researcher and the quality of his or her work is an important task when decision makers have to decide on such matters as promotions and awards. Publications and citations play a key role in this task, and many previous studies have proposed using measurements based on them for evaluating researchers. Machine learning techniques as a way of enhancing the evaluating process have been relatively unexplored. We propose using a machine learning approach for evaluating researchers. In particular, the proposed method combines the outputs of three learning techniques (logistics regression, decision trees, and artificial neural networks) to obtain a unified prediction with improved accuracy. We conducted several experiments to evaluate the model's ability to: (a) classify researchers in the field of artificial intelligence as Association for the Advancement of Artificial Intelligence (AAAI) fellows and (b) predict the next AAAI fellowship winners. We show that both our classification and prediction methods are more accurate than are previous measurement methods, and reach a precision rate of 96% and a recall of 92%.
C1 [Rokach, Lior; Kalech, Meir; Blank, Ido] Ben Gurion Univ Negev, Dept Informat Syst Engn, POB 653, IL-84105 Beer Sheva, Israel.
[Rokach, Lior; Stern, Rami] Ben Gurion Univ Negev, Deutsch Telekom Labs, IL-84105 Beer Sheva, Israel.
C3 Ben Gurion University; Deutsche Telekom AG; Ben Gurion University
RP Rokach, L (corresponding author), Ben Gurion Univ Negev, Dept Informat Syst Engn, POB 653, IL-84105 Beer Sheva, Israel.
EM liorrk@bgu.ac.il; kalech@bgu.ac.il; blanki@bgu.ac.il; sternr@bgu.ac.il
RI Rokach, Lior/F-8247-2010; Kalech, Meir/AAC-5476-2019
OI Kalech, Meir/0000-0001-7394-4713
CR Ali KM, 1996, MACH LEARN, V24, P173, DOI 10.1023/A:1018249309965
[Anonymous], 2007, International Society for Scientometrics and Informetrics newsletter
Batista PD, 2006, SCIENTOMETRICS, V68, P179, DOI 10.1007/s11192-006-0090-4
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806
Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Chawla NV., 2004, ACM SIGKDD EXPLORATI, V6, P1, DOI [10.1145/1007730.1007733, DOI 10.1145/1007730.1007733]
Cohen William W., 1995, MACHINE LEARNING P 1, V1995, P115, DOI DOI 10.1016/B978-1-55860-377-6.50023-2
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Feitelson DG, 2004, J DOC, V60, P44, DOI 10.1108/00220410410516644
Frolik J, 2001, IEEE T INSTRUM MEAS, V50, P1761, DOI 10.1109/19.982977
García S, 2010, INFORM SCIENCES, V180, P2044, DOI 10.1016/j.ins.2009.12.010
García-Pérez MA, 2011, J INFORMETR, V5, P214, DOI 10.1016/j.joi.2010.07.006
García-Pérez MA, 2010, J AM SOC INF SCI TEC, V61, P2070, DOI 10.1002/asi.21372
Harzing A. W., 2011, The publish or perish book
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3
Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9
Kan MY, 2008, COMMUN ACM, V51, P91, DOI 10.1145/1314215.1314231
KIRA K, 1992, AAAI-92 PROCEEDINGS : TENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, P129
Koren Y., 2009, Netflix prize documentation, V81, P1
Kretschmer H, 2004, SCIENTOMETRICS, V60, P409, DOI 10.1023/B:SCIE.0000034383.86665.22
Levine-Clark M, 2008, J BUS FINANC LIBR, V14, P32, DOI 10.1080/08963560802176348
Ley M., 2006, Extraction et gestion des connais- sances (EGC'2006), Actes des sixiemes journees Extraction et Gestion des Connaissances, P17
Li JA, 2010, J INFORMETR, V4, P554, DOI 10.1016/j.joi.2010.06.005
Liu X, 2011, J AM SOC INF SCI TEC, V62, P1166, DOI 10.1002/asi.21528
Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677
Mengle SSR, 2009, J AM SOC INF SCI TEC, V60, P1037, DOI 10.1002/asi.21023
MITCHELL T, 1989, ANNU REV COMPUT SCI, V4, P417
Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898
Patterson D., 1999, COMPUTING RES NEWS, V11, pA
Polikar R., 2006, IEEE Circuits and Systems Magazine, V6, P21, DOI 10.1109/MCAS.2006.1688199
Rokach L, 2006, INT J PATTERN RECOGN, V20, P329, DOI 10.1142/S0218001406004739
Rokach L, 2010, ARTIF INTELL REV, V33, P1, DOI 10.1007/s10462-009-9124-7
Ruane F., 2008, SCIENTOMETRICS
Schreiber M, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/4/040201
Setiono R., 1995, P 7 IEEE INT C TOOLS
Sidiropoulos A, 2007, SCIENTOMETRICS, V72, P253, DOI 10.1007/s11192-007-1722-z
Vinkler P, 2009, J INF SCI, V35, P602, DOI 10.1177/0165551509103601
Witten I.H., 2005, Data Mining: Practical Machine Learning Tools and Techniques, V3rd ed.
Zhang C, 2009, PLOS ONE, V4, DOI [10.1371/journal.pone.0004881, 10.1371/journal.pone.0005429]
Zhang CT, 2010, J AM SOC INF SCI TEC, V61, P625, DOI 10.1002/asi.21274
NR 42
TC 12
Z9 12
U1 1
U2 30
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1532-2882
EI 1532-2890
J9 J AM SOC INF SCI TEC
JI J. Am. Soc. Inf. Sci. Technol.
PD DEC
PY 2011
VL 62
IS 12
BP 2456
EP 2470
DI 10.1002/asi.21638
PG 15
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 851WT
UT WOS:000297303100014
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Li, K
Rollins, J
Yan, E
AF Li, Kai
Rollins, Jason
Yan, Erjia
TI Web of Science use in published research and review papers 1997-2017: a
selective, dynamic, cross-domain, content-based analysis
SO SCIENTOMETRICS
LA English
DT Article
DE Web of Science; Scientometrics; Natural language processing; Eugene
Garfield
ID IMPACT FACTOR; SCIENTOMETRICS; CITATIONS; BIBLIOMETRICS; TRENDS; TOOL
AB Clarivate Analytics's Web of Science (WoS) is the world's leading scientific citation search and analytical information platform. It is used as both a research tool supporting a broad array of scientific tasks across diverse knowledge domains as well as a dataset for large-scale data-intensive studies. WoS has been used in thousands of published academic studies over the past 20 years. It is also the most enduring commercial legacy of Eugene Garfield. Despite the central position WoS holds in contemporary research, the quantitative impact of WoS has not been previously examined by rigorous scientific studies. To better understand how this key piece of Eugene Garfield's heritage has contributed to science, we investigated the ways in which WoS (and associated products and features) is mentioned in a sample of 19,478 English-language research and review papers published between 1997 and 2017, as indexed in WoS databases. We offered descriptive analyses of the distribution of the papers across countries, institutions and knowledge domains. We also used natural language processingtechniques to identify the verbs and nouns in the abstracts of these papers that are grammatically connected to WoS-related phrases. This is the first study to empirically investigate the documentation of the use of the WoS platform in published academic papers in both scientometric and linguistic terms.
C1 [Li, Kai; Yan, Erjia] Drexel Univ, 30N 33rd St, Philadelphia, PA 19104 USA.
[Rollins, Jason] Clarivate Analyt, 50 Calif St, San Francisco, CA 94111 USA.
C3 Drexel University; Clarivate
RP Li, K (corresponding author), Drexel Univ, 30N 33rd St, Philadelphia, PA 19104 USA.
EM kl696@drexel.edu; Jason.rollins@clarivate.com; Erjia.yan@drexel.edu
RI Li, Kai/N-3209-2013; Yan, Erjia/E-7887-2011
OI Li, Kai/0000-0002-7264-365X; Yan, Erjia/0000-0002-0365-9340; Rollins,
Jason/0000-0001-6201-1133
CR Adair W.C., 1955, American Documentation, V6, P31, DOI DOI 10.1002/ASI.5090060105
Amin M., 2004, INT J ENVIRON SCI TE, V1, P1
[Anonymous], 2016, P LREC
[Anonymous], ARXIV171001895
[Anonymous], RES DATA EXPLORED CI
[Anonymous], 2010, ENDURING VALUE SOCIA
Apai D, 2010, PUBL ASTRON SOC PAC, V122, P808, DOI 10.1086/654851
Arnold T, 2016, COMPUTER SOFTWARE MA
Belter CW, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092590
Bernes S., 2017, SCI ENG ETHICS
Bornmann L., 2017, REFERENCE PUBLICATIO
BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680
Cameron BD, 2005, PORTAL-LIBR ACAD, V5, P105, DOI 10.1353/pla.2005.0003
Carroll John, 1999, ARXIVCS9907013
Cawkell T., 2001, INFORM SERVICES USE, V21, P79
Chao TC., 2011, Proceedings of the American Society for Information Science and Technology, V48, P1, DOI DOI 10.1002/MEET.2011.14504801125
*CLAR AN, 2017, WEB SCI PROD WEBP
Coelho PMZ, 2003, BRAZ J MED BIOL RES, V36, P1605, DOI 10.1590/S0100-879X2003001200001
Demarest B, 2015, J ASSOC INF SCI TECH, V66, P1374, DOI 10.1002/asi.23271
Dorch S. B. F, 2012, H PRINTS HUMANITIES
Garfield E, 1996, LIBR QUART, V66, P449, DOI 10.1086/602912
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Garfield E., 1977, SCI J CITATION REPOR
Garfield E, 2007, INT MICROBIOL, V10, P65, DOI 10.2436/20.1501.01.10
Gleditsch N. P., 2003, INT STUDIES PERSPECT, V4, P89, DOI DOI 10.1111/1528-3577.04105
HANSSON S, 1995, LANCET, V346, P906, DOI 10.1016/S0140-6736(95)92749-2
He L, 2017, LIBR HI TECH, V35, P332, DOI 10.1108/LHT-12-2016-0158
He L, 2016, ASLIB J INFORM MANAG, V68, P478, DOI 10.1108/AJIM-01-2016-0008
Henneken E. A., 2011, LINKING DATA EFFECT
Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342
Ioannidis JPA, 2009, NAT GENET, V41, P149, DOI 10.1038/ng.295
Jelercic S, 2010, FAM PRACT, V27, P582, DOI 10.1093/fampra/cmq032
Klein D, 2003, 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P423, DOI 10.3115/1075096.1075150
Klein DB, 2004, ECON J WATCH, V1, P134
Kumar V, 2009, SINGAP MED J, V50, P752
Lazerow S., 1974, Encyclopedia of Library and Information Science, V12, P89
Leng ZK, 2013, NEURAL REGEN RES, V8, P1286, DOI 10.3969/j.issn.1673-5374.2013.14.005
Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010
MAYO C, 2016, INT J DIGITAL CURATI, V0011
Meho LI, 2007, PHYS WORLD, V20, P32
Nalimov V.V., 1969, Scientometrics
Orosz K, 2016, SCIENTOMETRICS, V108, P829, DOI 10.1007/s11192-016-1971-9
Pan XL, 2015, J INFORMETR, V9, P860, DOI 10.1016/j.joi.2015.07.012
PENDLEBURY DA, 1993, SCIENTIST, V7, P1
Peters I, 2016, SCIENTOMETRICS, V107, P723, DOI 10.1007/s11192-016-1887-4
Piqueras JA, 2017, J AFFECT DISORDERS, V218, P153, DOI 10.1016/j.jad.2017.04.022
Piwowar HA, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000308
Piwowar HA, 2013, PEERJ, V1, DOI 10.7717/peerj.175
Ponomarev IV, 2014, TECHNOL FORECAST SOC, V81, P49, DOI 10.1016/j.techfore.2012.09.017
Pringle J, 2008, LEARN PUBL, V21, P85, DOI 10.1087/095315108X288901
Raats M. M., 1991, Food Quality and Preference, V3, P89, DOI 10.1016/0950-3293(91)90028-D
Rumsey E, 2010, E GARFIELD LIB GRAND
Salager-Meyer F., 1990, TEXT, V10, P365, DOI [10.1515/text.1.1990.10.4.365, DOI 10.1515/TEXT.1.1990.10.4.365]
Salager-Meyer F., 1992, ENGL SPECIF PURP, V11, P93, DOI DOI 10.1016/S0889-4906(05)80002-X
Samraj B, 2005, ENGL SPECIF PURP, V24, P141, DOI 10.1016/j.esp.2002.10.001
Seglen PO, 1997, ALLERGY, V52, P1050, DOI 10.1111/j.1398-9995.1997.tb00175.x
SENGUPTA IN, 1992, LIBRI, V42, P75, DOI 10.1515/libr.1992.42.2.75
Shuai X, 2017, J ASSOC INF SCI TECH, V68, P2225, DOI 10.1002/asi.23826
Simons K, 2008, SCIENCE, V322, P165, DOI 10.1126/science.1165316
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Small H., 1982, PROGR COMMUNICATION, V3, P287
Small H, 2011, SCIENTOMETRICS, V87, P373, DOI 10.1007/s11192-011-0349-2
Swales J.M., 1981, Aspects of article introduction
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
van Raan A. F. J., 2017, E GARFIELD 1925 2017
VanRaan AFJ, 1997, SCIENTOMETRICS, V38, P205, DOI 10.1007/BF02461131
Wang YQ, 2017, ONCOTARGET, V8, P59666, DOI 10.18632/oncotarget.19611
Yan E, 2014, J ASSOC INF SCI TECH, V65, P2331, DOI 10.1002/asi.23106
Yan J, 2017, CLIN LAB, V63, P1187, DOI 10.7754/Clin.Lab.2017.170522
Zhang ZH, 2017, PRO INT CONF SCI INF, P1052
Zhao M., J ASS INFORM SCI TEC
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 73
TC 310
Z9 325
U1 28
U2 242
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD APR
PY 2018
VL 115
IS 1
BP 1
EP 20
DI 10.1007/s11192-017-2622-5
PG 20
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA FY4PT
UT WOS:000426807700001
PM 29527070
OA Green Published, hybrid
HC Y
HP N
DA 2024-09-05
ER
PT C
AU Cosh, K
Ramingwong, S
Eiamkanitchat, N
Ramingwong, L
AF Cosh, Kenneth
Ramingwong, Sakgasit
Eiamkanitchat, Narissara
Ramingwong, Lachana
GP IEEE
TI Automatically Identifying Themes and Trends in Software Engineering
Research
SO 2018 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY
(KST 2018) - CYBERNETICS IN THE NEXT DECADES
SE International Conference on Knowledge and Smart Technology
LA English
DT Proceedings Paper
CT 10th International Conference on Knowledge and Smart Technology (KST) -
Cybernetics in the Next Decades
CY JAN 31-FEB 03, 2018
CL Chiangmai, THAILAND
DE Bibliometric Analysis; Natural Language Processing; Information
Extraction; Software Engineering
AB Understanding the ways that research topics are evolving in a research domain is important when considering research proposals. Bibliometric analysis provides a variety of tools for exploring publication data, but often involves manual effort. This paper presents an automatic method for extracting and examining key research themes by using natural language processing to parse a large collection of papers. The method was applied to over 8,000 papers published in the software engineering field over the past 20 years. Key research themes were identified and visualized, so that trends could be highlighted. Some research fields that are in decline are identified, along with newly popular research topics such as fuzzy set membership, cloud computing, feature selection and agile development teams.
C1 [Cosh, Kenneth; Ramingwong, Sakgasit; Eiamkanitchat, Narissara; Ramingwong, Lachana] Chiang Mai Univ, Comp Engn Dept, Chiang Mai, Thailand.
C3 Chiang Mai University
RP Cosh, K (corresponding author), Chiang Mai Univ, Comp Engn Dept, Chiang Mai, Thailand.
EM drkencosh@gmail.com
RI Eiamkanitchat, Narissara/GRX-3360-2022
OI Eiamkanitchat, Narissara/0000-0001-7473-9762
CR Agarwal Parul, 2011, IJCSI INT J COMPUTER, V8
Aggarwal C.C., 2012, MINING TEXT DATA, P77, DOI 10.1007/978-1-4614-3223-4
Borodin M., 2010, C COMP HIGH EN NUCL
Cosh K., 2015, LECT NOTES ELECT ENG, V339
Cosh KJ, 2008, LIBR REV, V57, P722, DOI 10.1108/00242530810911824
Cronin B, 2014, BEYOND BIBLIOMETRICS: HARNESSING MULTIDIMENSIONAL INDICATORS OF SCHOLARLY IMPACT, P3
Deville S, 2015, J AM CERAM SOC, V98, P2324, DOI 10.1111/jace.13699
Do H., 2006, EMPIRICAL SOFTWARE E, V11
Jackson P., 2002, NATURAL LANGUGE PROC
Jarke M, 2013, SEMINAL CONTRIBUTION, P15, DOI [10. 1007/978-3-642-36926-1_2, DOI 10.1007/978-3-642-36926-1_2]
Jui-Long Hung, 2012, Journal of Computing in Higher Education, V24, P1, DOI 10.1007/s12528-011-9044-9
Keshava, 2008, Information Studies, V14, P223
Lee MR, 2012, KNOWL-BASED SYST, V28, P47, DOI 10.1016/j.knosys.2011.11.016
Ma J., 2012, IEEE T SYSTEMS MAN A, V42
Mogil JS, 2009, PAIN, V142, P48, DOI 10.1016/j.pain.2008.11.012
Rayson P, 2000, WORKSH COMP CORP HEL
Robert P., 1976, J ROYAL STAT SOC, V25
Teng T, 2008, FEATURE INTERACTIONS IN SOFTWARE AND COMMUNICATION SYSTEMS IX, P49
Thelwall M, 2008, J INF SCI, V34, P605, DOI 10.1177/0165551507087238
ZITT M, 1994, SCIENTOMETRICS, V30, P333, DOI 10.1007/BF02017232
NR 20
TC 2
Z9 2
U1 0
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2374-314X
BN 978-1-5386-4015-9
J9 INT CONF KNOWL SMART
PY 2018
BP 106
EP 111
PG 6
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BO1RK
UT WOS:000502134300021
DA 2024-09-05
ER
PT J
AU Cueva, K
Cueva, M
Revels, L
Hensel, M
Dignan, M
AF Cueva, Katie
Cueva, Melany
Revels, Laura
Hensel, Michelle
Dignan, Mark
TI Culturally Relevant Online Cancer Education Supports Tribal Primary Care
Providers to Reduce Their Cancer Risk and Share Information About Cancer
SO HEALTH PROMOTION PRACTICE
LA English
DT Article
DE Alaska Native; Indigenous; community-based participatory research;
online learning; evaluation; survey; distance education; cancer
ID COMMUNITY-HEALTH AIDES/PRACTITIONERS
AB Background. Culturally relevant education is an opportunity to reduce health disparities, and online learning is an emerging avenue for health promotion. In 2014-2019, a team based at the Alaska Native Tribal Health Consortium developed, implemented, and evaluated culturally relevant online cancer education modules with, and for, Alaska's tribal primary care providers. The project was guided by Indigenous Ways of Knowing and the principles of community-based participatory action research and was evaluated in alignment with empowerment theory. About 265 unique learners completed 1,898 end-of-module evaluation surveys between March 2015 and August 2019, and 13 people completed a follow-up survey up to 28 months post module completion. Key Findings. Learners described the modules as culturally respectful and informative and reported feeling more knowledgeable and comfortable talking about cancer as a result of the modules. About 98% of the learners planned to reduce their cancer risk because of the modules, and all follow-up survey respondents had reduced their risk, including by quitting smoking, getting screened for cancer, eating healthier, and exercising more. About 98% of the learners planned to share information with their patients, families, friends, and community members because of the modules, with all follow-up survey respondents indicating that they had shared information about cancer from the modules. Implications for Practice and Further Research. Culturally relevant online modules have the capacity for positive behavioral change and relatively high correlations between intent and behavior change. Future research could determine which aspects of the modules catalyzed reduced cancer risk and increased dissemination of cancer information.
C1 [Cueva, Katie] Univ Alaska Anchorage, Anchorage, AK USA.
[Cueva, Melany; Revels, Laura; Hensel, Michelle] Alaska Native Tribal Hlth Consortium, Anchorage, AK USA.
[Dignan, Mark] Univ Kentucky, Lexington, KY USA.
C3 University of Alaska System; University of Alaska Anchorage; Alaska
Native Tribal Health Consortium; University of Kentucky
RP Cueva, K (corresponding author), Univ Alaska Anchorage, Inst Social & Econ Res Anchorage, 3211 Providence Dr, Anchorage, AK 99508 USA.
EM kcueva@alaska.edu
OI Cueva, Katie/0000-0002-8013-9680
CR Alaska Community Health Aide Program, 2017, AL COMM HLTH AID
[Anonymous], 2015, Cancer in Alaska Native People: 1969-2013: The 45 Year Report
Blake I., 2016, Alaska native mortality update: 2009-2013
Carcaise-Edinboro P, 2008, MED CARE, V46, P738, DOI 10.1097/MLR.0b013e318178935a
Centers for Disease Control and Prevention, BRFSS PREV TRENDS DA
Cueva K, 2018, J COMMUN HEALTH, V43, P660, DOI 10.1007/s10900-018-0465-5
Cueva K, 2019, J CANCER EDUC, V34, P647, DOI 10.1007/s13187-018-1350-8
Cueva K, 2018, J CANCER EDUC, V33, P1102, DOI 10.1007/s13187-017-1217-4
Cueva K, 2017, J CANCER EDUC, V32, P426, DOI 10.1007/s13187-015-0961-6
Cueva M, 2005, J CANCER EDUC, V20, P85, DOI 10.1207/s15430154jce2002_8
Cueva M, 2014, J CANCER EDUC, V29, P613, DOI 10.1007/s13187-013-0590-x
Cueva M, 2014, J CANCER EDUC, V29, P529, DOI 10.1007/s13187-013-0577-7
Cueva M, 2012, INT J LIFELONG EDUC, V31, P341, DOI 10.1080/02601370.2012.683615
Dignan, 2008, IHS PRIMARY CARE PRO, V33, P1, DOI 10.1037/e405312008-001
Duran B., 2008, COMMUNITY BASED PART, P31
Federal Communications Commission, 2019, 2019 broadband deployment report
Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231
Gorin SS, 2004, CANCER EPIDEM BIOMAR, V13, P2012
Montano D.E., 2015, Health behavior: Theory, research and practice, DOI DOI 10.5771/9783845288277
MONTANO DE, 1991, SOC SCI MED, V32, P733, DOI 10.1016/0277-9536(91)90153-4
Perkins DD, 1995, AM J COMMUN PSYCHOL, V23, P569, DOI 10.1007/BF02506982
Petrella RJ, 2002, CAN FAM PHYSICIAN, V48, P72
Redwood S.H, 2018, CANC HLTH DISPARITIE, V2, pE1
WALLERSTEIN N, 1988, HEALTH EDUC QUART, V15, P379, DOI 10.1177/109019818801500402
Webb TL, 2010, J MED INTERNET RES, V12, DOI 10.2196/jmir.1376
Zimmerman MA, 1995, AM J COMMUN PSYCHOL, V23, P581, DOI 10.1007/BF02506983
NR 26
TC 1
Z9 1
U1 1
U2 2
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1524-8399
EI 1552-6372
J9 HEALTH PROMOT PRACT
JI Health Promot. Pract.
PD JUL
PY 2022
VL 23
IS 4
BP 631
EP 639
DI 10.1177/15248399211027827
EA AUG 2021
PG 9
WC Public, Environmental & Occupational Health
WE Emerging Sources Citation Index (ESCI)
SC Public, Environmental & Occupational Health
GA 3W6UR
UT WOS:000686964900001
PM 34416831
DA 2024-09-05
ER
PT J
AU Wang, YM
Liu, ZF
Zhao, YS
Cheng, Q
Cai, LG
AF Wang, Yumo
Liu, Zhifeng
Zhao, Yongsheng
Cheng, Qiang
Cai, Ligang
TI Research on an ANN system for monitoring hydrostatic turntable
performance based on ODNE training
SO TRIBOLOGY INTERNATIONAL
LA English
DT Article
DE Hydrostatic turntable; Artificial neural network training; Intelligent
monitoring system; Performance evaluation
ID OPTIMIZATION; PREDICTION; BEARING; DESIGN; IMPACT; FORCE; WEAR
AB Reliable operating conditions of hydrostatic turntables are prerequisite to ensuring machine tool performance. The hydrostatic turntable is affected by multiple working conditions, therefore, methods for evaluating turntable load-carrying capacity has become research hotspot. In this paper, by analyzing bearing capacity, parameters closely related to the support performance of turntables are selected as recognition features and an artificial neural network (ANN) training method is proposed. The ANN method is based on numerical solutions of over-determined nonlinear equations (ODNE) to intelligently evaluate turntable performance. In this study, ANN and ODNE training are applied to evaluate the performance of hydrostatic turntables. Finally, to verify the feasibility of the method, an intelligent monitoring system is established to collect data on machine tools.
C1 [Wang, Yumo; Liu, Zhifeng; Zhao, Yongsheng; Cheng, Qiang; Cai, Ligang] Beijing Univ Technol, Inst Adv Mfg & Intelligent Technol, Beijing 100124, Peoples R China.
[Wang, Yumo; Liu, Zhifeng; Zhao, Yongsheng; Cheng, Qiang; Cai, Ligang] Beijing Univ Technol, Mech Ind Lab Heavy Machine Tool Digital Design &, Beijing 100124, Peoples R China.
C3 Beijing University of Technology; Beijing University of Technology
RP Liu, ZF (corresponding author), Beijing Univ Technol, Inst Adv Mfg & Intelligent Technol, Beijing 100124, Peoples R China.
EM lzfeng1@126.com
RI Wang, Yumo/G-2572-2017; Liu, Zhifeng/AGZ-4638-2022
FU National Natural Science Fund [51575009]; National Science and
Technology Major Project [2018ZX04043001]; Jing-Hua Talents Project of
Beijing University of Technology
FX This research was supported by the National Natural Science Fund (grant
no. 51575009), National Science and Technology Major Project (grant no.
2018ZX04043001), and Jing-Hua Talents Project of Beijing University of
Technology.
CR Cai LG, 2015, J VIBROENG, V17, P2781
Cheng Q, 2015, STROJ VESTN-J MECH E, V61, P432, DOI 10.5545/sv-jme.2015.2478
Delgado A, 2018, J TRIBOL-T ASME, V140, DOI 10.1115/1.4040114
Díaz S, 2017, ENERG CONVERS MANAGE, V140, P334, DOI 10.1016/j.enconman.2017.02.064
El-Thalji I, 2015, MECH SYST SIGNAL PR, V60-61, P252, DOI 10.1016/j.ymssp.2015.02.008
Erdemir D, 2017, APPL THERM ENG, V112, P1317, DOI 10.1016/j.applthermaleng.2016.10.145
Feng S, 2015, WEAR, V336, P1, DOI 10.1016/j.wear.2015.04.007
Goyal D, 2016, ARCH COMPUT METHOD E, V23, P585, DOI 10.1007/s11831-015-9145-0
Griffin JM, 2017, INT J ADV MANUF TECH, V93, P811, DOI 10.1007/s00170-017-0320-3
Gu JX, 2018, PATTERN RECOGN, V77, P354, DOI 10.1016/j.patcog.2017.10.013
Hashemi S, 2017, TRIBOL INT, V115, P319, DOI 10.1016/j.triboint.2017.05.013
Kumar V, 2017, P I MECH ENG J-J ENG, V231, P716, DOI 10.1177/1350650116676739
Lai TH, 2017, TRIBOL INT, V107, P206, DOI 10.1016/j.triboint.2016.11.037
Li GC, 2017, INT J MACH TOOL MANU, V122, P149, DOI 10.1016/j.ijmachtools.2017.07.003
Lin XK, 2017, INT J ADV MANUF TECH, V92, P3319, DOI 10.1007/s00170-017-0396-9
Liu ZF, 2017, ADV MECH ENG, V9, DOI 10.1177/1687814017730536
Liu ZF, 2016, INT J ADV MANUF TECH, V84, P261, DOI 10.1007/s00170-015-8066-2
Martinez ELF, 2017, J TRIBOL, V139
Nagarajaiah S, 2017, STRUCT CONTROL HLTH, V24, DOI 10.1002/stc.1851
Qi EB, 2016, TRIBOL INT, V95, P279, DOI 10.1016/j.triboint.2015.11.032
Sinchev B, 2018, INT J NUMER METH FL, V86, P625, DOI 10.1002/fld.4470
Wang YM, 2018, STROJ VESTN-J MECH E, V64, P95, DOI 10.5545/sv-jme.2017.4742
Wang YM, 2018, IND LUBR TRIBOL, V70, P316, DOI 10.1108/ILT-11-2016-0285
Yang K, 2017, WEAR, V376, P1222, DOI 10.1016/j.wear.2016.11.027
Yu XH, 2018, INT J PRECIS ENG MAN, V19, P395, DOI 10.1007/s12541-018-0047-6
Zha J, 2017, INT J MACH TOOL MANU, V112, P1, DOI 10.1016/j.ijmachtools.2016.10.002
Zhang PH, 2018, INT J MACH TOOL MANU, V125, P55, DOI 10.1016/j.ijmachtools.2017.10.006
Zhao ZM, 2017, TRIBOL INT, V114, P77, DOI 10.1016/j.triboint.2017.04.021
Zhu XL, 2017, TRIBOL INT, V109, P473, DOI 10.1016/j.triboint.2017.01.015
NR 29
TC 9
Z9 9
U1 3
U2 50
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0301-679X
EI 1879-2464
J9 TRIBOL INT
JI Tribol. Int.
PD MAY
PY 2019
VL 133
BP 21
EP 31
DI 10.1016/j.triboint.2018.12.041
PG 11
WC Engineering, Mechanical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA HL7TI
UT WOS:000458943500003
DA 2024-09-05
ER
PT J
AU Obaideen, K
Albasha, L
Iqbal, U
Mir, H
AF Obaideen, Khaled
Albasha, Lutfi
Iqbal, Usama
Mir, Hasan
TI Wireless power transfer: Applications, challenges, barriers, and the
role of AI in achieving sustainable development goals - A bibliometric
analysis
SO ENERGY STRATEGY REVIEWS
LA English
DT Article
DE Wireless power transfer; Wireless charging; Sustainable development
goals; Electric vehicle; Artificial intelligence; Sustainable cities
ID ENERGY MANAGEMENT; DESIGN; SYSTEM; NETWORKS; COMMUNICATION;
ARCHITECTURE; AGRICULTURE; INTERNET; TRENDS; THINGS
AB This study presents a comprehensive bibliometric analysis of 19,235 publications on Wireless Power Transfer (WPT) from 2015 to 2023, underlining its critical role in advancing the Sustainable Development Goals (SDGs). Focusing on SDG 7 (Affordable and Clean Energy) and SDG 3 (Good Health and Well-being), the research highlights WPT ' s significant contributions to sustainability across economic, environmental, and social realms. Utilizing Biblioshiny and VOSviewer, we extract and visualize key insights into WPT ' s recent progress, technological applications, top keywords, publication trends, geographical distribution, and thematic clusters. Our findings indicate a strong emphasis on sustainable energy solutions, with 1589 publications directly related to SDG 7. WPT also supports SDG 9 (Industry, Innovation, and Infrastructure) with 56 publications and SDG 11 (Sustainable Cities and Communities) with 171 publications, contributing to resilient infrastructure and sustainable urban development. Moreover, the study uncovers WPT ' s potential in environmental conservation, with notable attention to SDG 14 (Life Below Water) and SDG 15 (Life on Land). The synergy of Artificial Intelligence (AI) with WPT is emphasized for enhancing efficiency and broad application in areas such as affordable energy, agricultural yields, health standards, digital education, and water purification. Despite challenges like financial constraints, technical hurdles, and environmental concerns, the paper suggests innovative solutions through funding, research, environmental assessments, and collaborative policymaking. Highlighting the promise of state -of -the -art WPT techniques, this analysis advocates for democratizing technology access in marginalized regions, presenting WPT as a pivotal tool for a sustainable, equitable future aligned with the SDGs.
C1 [Obaideen, Khaled; Albasha, Lutfi; Iqbal, Usama; Mir, Hasan] Amer Univ Sharjah, Dept Elect Engn, Sharjah, U Arab Emirates.
C3 American University of Sharjah
RP Obaideen, K (corresponding author), Amer Univ Sharjah, Dept Elect Engn, Sharjah, U Arab Emirates.
EM Khaled.obaideen@gmail.com; lalbasha@aus.edu; b00063610@alumni.aus.edu;
hmir@aus.edu
RI Kudrina, Olha/KHU-2090-2024; Adenidji, Eriola/ACX-8694-2022
OI Obaideen, Khaled/0000-0002-6472-2753
FU American University of Sharjah-UAE research fund [FRG20-L- E76,
FRG21-M-E80]
FX The authors would like to acknowledge the Energy, Water, and Sustainable
Environment Research Center at the American University of Sharjah-UAE,
for their essential support. This work has been funded by the American
University of Sharjah-UAE research fund no. FRG20-L- E76 and fund no.
FRG21-M-E80.
CR Abdelhamid A.A., 2022, Comput. Mater. Continua (CMC), V72
Aboelezz AM, 2023, SMART CITIES-BASEL, V6, P1435, DOI 10.3390/smartcities6030069
Adepoju W.O., 2021, 2021 IEEE VEH POW PR, P1
Adepoju W.O., 2022, Modeling, Artificial Intelligence-Based Optimization and Experimental Implementation of Novel Low Frequency Metamaterial for Efficient Wireless Power Transfer
Afshar S, 2021, RENEW SUST ENERG REV, V152, DOI 10.1016/j.rser.2021.111654
Ahluwalia U., 2022, System for wireless charging of battery-powered underwater sensor networks, P1
Ahmad A, 2018, IEEE T TRANSP ELECTR, V4, P38, DOI 10.1109/TTE.2017.2771619
AL Mahmud SA, 2022, IEEE ACCESS, V10, P40496, DOI 10.1109/ACCESS.2022.3167162
Alam Bilal, 2022, Intelligent Data Analytics for Power and Energy Systems. Lecture Notes in Electrical Engineering (802), P501, DOI 10.1007/978-981-16-6081-8_25
Albreem MA, 2021, IEEE ACCESS, V9, P38833, DOI 10.1109/ACCESS.2021.3061697
Allam Z, 2022, SMART CITIES-BASEL, V5, P539, DOI 10.3390/smartcities5020029
AlSuwaidi M., 2022, 2022 ADV SCI ENG TEC, P1
Amjad M, 2022, RENEW SUST ENERG REV, V167, DOI 10.1016/j.rser.2022.112730
Angurala M., 2023, International Journal of Intelligent Systems and Applications in Engineering, V11, P171
[Anonymous], 2017, IEEE Microwave Magazine, V18, P56, DOI 10.1109/MMM.2017.2680078
B Sridhar, 2023, 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), P347, DOI 10.1109/ICEARS56392.2023.10085244
Bana V, 2015, 2015 IEEE Wireless Power Transfer Conference (WPTC)
Bashir H, 2023, ENVIRON SUSTAIN IND, V19, DOI 10.1016/j.indic.2023.100267
Bi ZC, 2016, APPL ENERG, V179, P413, DOI 10.1016/j.apenergy.2016.07.003
Bibri Simon Elias, 2023, Energy Inform, V6, P9, DOI 10.1186/s42162-023-00259-2
Bidkar R, 2012, IND INT C POW ELECT
Biswa R., 2012, FEASIBILITY WIRELESS, P1
Briggs MA, 2021, SCI TOTAL ENVIRON, V756, DOI 10.1016/j.scitotenv.2020.143838
Butler JC, 2002, SENSOR ACTUAT A-PHYS, V102, P61, DOI 10.1016/S0924-4247(02)00342-4
Cacciuttolo C, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23156846
Chapman GR, 2020, J MANAGE ORGAN, V26, P1030, DOI 10.1017/jmo.2020.16
Chen WY, 2022, IEEE ACCESS, V10, P88398, DOI 10.1109/ACCESS.2022.3197632
Chhawchharia S, 2018, RENEW SUST ENERG REV, V91, P888, DOI 10.1016/j.rser.2018.04.101
Chiti F, 2021, J SENS ACTUAT NETW, V10, DOI 10.3390/jsan10010006
Choi BG, 2021, IEEE T IND ELECTRON, V68, P12162, DOI 10.1109/TIE.2020.3047041
Clerckx B, 2021, IEEE J-STSP, V15, P1060, DOI 10.1109/JSTSP.2021.3098478
Corti F, 2024, IEEE T IND ELECTRON, V71, P4586, DOI 10.1109/TIE.2023.3283679
Coufal O, 2017, INT J APPL ELECTROM, V54, P263, DOI 10.3233/JAE-160123
Dabirzadeh A, 2009, CONCEPT MAGN RESON B, V35B, P121, DOI 10.1002/cmr.b.20139
Das Barman S, 2015, RENEW SUST ENERG REV, V51, P1525, DOI 10.1016/j.rser.2015.07.031
Degen C, 2021, EURASIP J WIREL COMM, V2021, DOI 10.1186/s13638-021-01994-4
Delichte SD, 2018, AM J PHYS, V86, P623, DOI 10.1119/1.5037705
Devi R., 2022, 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC)., P1766, DOI 10.1109/ICAAIC53929.2022.9793153
Dimitriadou K, 2023, ENERGIES, V16, DOI 10.3390/en16042057
Ding JP, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10186463
Ejaz W, 2021, IEEE T IND INFORM, V17, P7075, DOI 10.1109/TII.2020.3025510
Ejaz W, 2017, IEEE COMMUN MAG, V55, P84, DOI 10.1109/MCOM.2017.1600218CM
El-Shahat A, 2019, ENRGY PROCED, V162, P24, DOI 10.1016/j.egypro.2019.04.004
Elijah O, 2018, IEEE INTERNET THINGS, V5, P3758, DOI 10.1109/JIOT.2018.2844296
EPA, 2019, Used Household Batteries
Esteban B, 2015, IEEE T POWER ELECTR, V30, P6408, DOI 10.1109/TPEL.2015.2440256
Faraci G, 2020, APPL ENERG, V259, DOI 10.1016/j.apenergy.2019.114204
Fathollahi A, 2022, SUSTAIN ENERGY GRIDS, V32, DOI 10.1016/j.segan.2022.100836
Fathollahi A, 2022, IEEE ACCESS, V10, P117105, DOI 10.1109/ACCESS.2022.3219055
Fidje Eline, 2023, Procedia Computer Science, P905, DOI 10.1016/j.procs.2023.01.366
Fisher TM, 2014, WIREL POWER TRANSF, V1, P87, DOI 10.1017/wpt.2014.8
Fonseca LM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12083359
Fontaine J.M., 2018, SEG Technical Program Expanded Abstracts 2018, P2491
Gagliardi G, 2020, SMART CITIES-BASEL, V3, P1495, DOI 10.3390/smartcities3040071
Gan KW, 2019, 2019 IEEE PELS WORKSHOP ON EMERGING TECHNOLOGIES - WIRELESS POWER TRANSFER (WOW), P71, DOI [10.1109/WoW45936.2019.9030635, 10.1109/wow45936.2019.9030635]
García-Vázquez CA, 2017, ENERGY, V137, P42, DOI 10.1016/j.energy.2017.07.016
Gardasevic G, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20133619
Giuliani G, 2008, EPL-EUROPHYS LETT, V81, DOI 10.1209/0295-5075/81/60002
Gonzalez M., 2023, IEEE Internet Things J., P1, DOI [10.1109/JIOT.2023.3263976,1, DOI 10.1109/JIOT.2023.3263976,1]
Gu XQ, 2022, P IEEE, V110, P56, DOI 10.1109/JPROC.2021.3127930
Guo LK, 2022, ENERG CONVERS MANAGE, V252, DOI 10.1016/j.enconman.2021.115080
Gupta A, 2022, T EMERG TELECOMMUN T, V33, DOI 10.1002/ett.4603
Haddad D., 2022, 2022 IEEE POW EN C I, P1
Hak T, 2016, ECOL INDIC, V60, P565, DOI 10.1016/j.ecolind.2015.08.003
He SB, 2024, IEEE T MOBILE COMPUT, V23, P2395, DOI 10.1109/TMC.2023.3255980
Helseth LE, 2022, EUR J PHYS, V43, DOI 10.1088/1361-6404/ac5123
Ho L, 2020, J CLEAN PROD, V277, DOI 10.1016/j.jclepro.2020.124082
Huang ZY, 2022, ENERGY REP, V8, P447, DOI 10.1016/j.egyr.2022.10.139
Huda SMA, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22082952
Hui S. Y. Ron, 2018, IEEE Electromagnetic Compatibility Magazine, V7, P78, DOI 10.1109/MEMC.0.8339551
Hui S.Y. R., 2016, CPSS Transactions on Power Electronics and Applications, V1, P83
Ijemaru GK, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11030371
Ijemaru GK, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10060697
Jang YJ, 2016, IEEE SYST J, V10, P495, DOI 10.1109/JSYST.2014.2369485
Jawad AM, 2017, ENERGIES, V10, DOI 10.3390/en10071022
Jeebklum Pharida, 2023, Proceedings of the 5th International Conference on Clean Energy and Electrical Systems: Proceedings of CEES 2023. Lecture Notes in Electrical Engineering (1058), P373, DOI 10.1007/978-981-99-3888-9_27
Jiang L, 2019, IEEE NETWORK, V33, P164, DOI 10.1109/MNET.001.1900008
Joseph PK, 2018, J ENERGY STORAGE, V16, P145, DOI 10.1016/j.est.2017.12.019
Juliet F.-J.O., 2019, Int. J. Eng. Res., V8, P103
K Vinoth Kumar, 2022, 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), P198, DOI 10.1109/ICACRS55517.2022.10029261
Kalialakis C., 2016, Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks, P161
Kamalapathi K., 2023, Power Electronics for Electric Vehicles and Energy Storage, P271
Kamarudin S.I., 2023, Trends in Sciences, V20, P3444
Kamruzzaman MM, 2022, ENERGIES, V15, DOI 10.3390/en15155608
Karimi MJ, 2021, IEEE SENS J, V21, P7145, DOI 10.1109/JSEN.2021.3049918
Karunathilake EMBM, 2023, AGRICULTURE-BASEL, V13, DOI 10.3390/agriculture13081593
Katsidimas I, 2019, IEEE INT CONF DISTR, P473, DOI 10.1109/DCOSS.2019.00093
Bai H, 2022, IEEE POWER ELECTRON, V9, P14, DOI 10.1109/MPEL.2022.3173543
Khalid Reda, 2022, IEEE Communications Standards Magazine, V6, P24, DOI 10.1109/MCOMSTD.0001.2200022
Khan MZ, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10192377
Kopyl S, 2021, MATER TODAY BIO, V12, DOI 10.1016/j.mtbio.2021.100149
Kruk ME, 2018, LANCET GLOB HEALTH, V6, pE1196, DOI 10.1016/S2214-109X(18)30386-3
Kufeoglu S., 2022, Emerging Technologies: Value Creation for Sustainable Development, P1
Kyriakarakos G., 2022, Information and Communication Technologies for Agriculture-Theme IV: Actions, P55
La Rosa R, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19122660
Lai YS, 2023, J POWER ELECTRON, V23, P581, DOI 10.1007/s43236-022-00560-5
Laumann F, 2022, LANCET PLANET HEALTH, V6, pE422, DOI 10.1016/S2542-5196(22)00070-5
Lazzeroni P., 2021, Renewable and Sustainable Energy Reviews, V138, P110537, DOI 10.1016/j.rser.2020.110537
Le A.M., 2020, EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, V7, P5
Li B, 2019, IEEE ACCESS, V7, DOI 10.1109/ACCESS.2019.2936250
Li K, 2023, RENEW SUST ENERG REV, V184, DOI 10.1016/j.rser.2023.113569
Lin H.-T., 2017, 2017 IEEE INT S CIRC, P1
Lin JC, 2021, IEEE ACCESS, V9, P125342, DOI 10.1109/ACCESS.2021.3108966
Lin W, 2021, PROCEEDINGS OF THE 2021 CROSS STRAIT RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSRSWTC), P200, DOI 10.1109/CSRSWTC52801.2021.9631634
Ling JK, 2022, ESCIENCE, V2, P347, DOI 10.1016/j.esci.2022.07.002
Liu H., 2022, IECON 2022 48 ANN C, P1
Liu LS, 2022, IEEE INTERNET THINGS, V9, P5216, DOI 10.1109/JIOT.2021.3110138
Liu W, 2023, RENEW SUST ENERG REV, V180, DOI 10.1016/j.rser.2023.113298
Lu CH, 2019, IEEE T ELECTROMAGN C, V61, P1438, DOI 10.1109/TEMC.2018.2865520
Lu X, 2016, IEEE COMMUN SURV TUT, V18, P1413, DOI 10.1109/COMST.2015.2499783
Lu X, 2015, IEEE NETWORK, V29, P68, DOI 10.1109/MNET.2015.7340427
Ma FY, 2022, IEEE GLOB COMM CONF, P4995, DOI 10.1109/GLOBECOM48099.2022.10001490
Machura P, 2019, RENEW SUST ENERG REV, V104, P209, DOI 10.1016/j.rser.2019.01.027
Mashat A.A., 2022, Comput. Mater. Continua (CMC), V72
Mishra R.K., 2023, Journal of Marine Science and Research
Mittal M., 2019, Concepts, Paradigms and Solutions, Studies in Systems, Decision and Control, P1
Mohsan SAH, 2022, J MAR SCI ENG, V10, DOI 10.3390/jmse10091282
Mohsan SAH, 2022, DRONES-BASEL, V6, DOI 10.3390/drones6060147
Mohsan SAH, 2022, MICROMACHINES-BASEL, V13, DOI 10.3390/mi13060977
Moisello Elisabetta, 2023, IEEE Open Journal of the Solid-State Circuits Society, P197, DOI 10.1109/OJSSCS.2023.3313575
Mou X., 2022, IEEE Journal of Emerging and Selected Topics in Industrial Electronics, V4, P147
Moyssides PG, 2014, EUR PHYS J PLUS, V129, DOI 10.1140/epjp/i2014-14034-2
Musavi F, 2012, IEEE ENER CONV, P1804, DOI 10.1109/ECCE.2012.6342593
Na K, 2020, IEEE WIREL POWER TRA, P443, DOI [10.1109/wptc48563.2020.9295544, 10.1109/WPTC48563.2020.9295544]
Nastasi B, 2022, RENEW SUST ENERG REV, V157, DOI 10.1016/j.rser.2022.112071
Nguyen DH, 2021, INT J SUSTAIN ENG, V14, P1780, DOI 10.1080/19397038.2021.1988187
Obaideen K, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15021418
Obaideen Khaled, 2022, Diabetes Metab Syndr, V16, P102566, DOI 10.1016/j.dsx.2022.102566
Obaideen K, 2022, J TAIWAN INST CHEM E, V131, DOI 10.1016/j.jtice.2022.104207
Obaideen Khaled., 2021, International Journal of Thermofluids, V12, P100, DOI [DOI 10.1016/J.IJFT.2021.100123, 10.1016/j.ijft.2021.100123]
Okasili I, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11091355
Olabi A., 2023, Therm. Sci. Eng. Prog.
Olabi AG, 2023, PROCESS SAF ENVIRON, V177, P664, DOI 10.1016/j.psep.2023.06.069
Olabi AG, 2022, RENEW SUST ENERG REV, V158, DOI 10.1016/j.rser.2022.112111
Olabi AG, 2022, RENEW SUST ENERG REV, V153, DOI 10.1016/j.rser.2021.111710
Olabi AG, 2023, THERM SCI ENG PROG, V41, DOI 10.1016/j.tsep.2023.101851
Pan HY, 2017, APPL ENERG, V195, P334, DOI 10.1016/j.apenergy.2017.03.069
Panchal C, 2018, ENG SCI TECHNOL, V21, P922, DOI 10.1016/j.jestch.2018.06.015
Peters CN, 2020, GROUNDWATER, V58, P645, DOI 10.1111/gwat.12937
Pravin A.M.A., 2014, International Journel of Emerging Technology and Computer Science, V8, P126
Purvis B, 2019, SUSTAIN SCI, V14, P681, DOI 10.1007/s11625-018-0627-5
Qiu JH, 2023, TRANSPORT RES C-EMER, V146, DOI 10.1016/j.trc.2022.103968
Qureshi KN, 2021, SUSTAIN CITIES SOC, V71, DOI 10.1016/j.scs.2021.102990
Rahangdale Harshal, 2022, ECS Transactions, V107, P1973, DOI 10.1149/10701.1973ecst
Rajaram K, 2019, NANO ENERGY, V57, P317, DOI 10.1016/j.nanoen.2018.12.021
Ravichandran V., 2023, 2023 8th International Conference on Communication and Electronics Systems (ICCES), P263, DOI 10.1109/ICCES57224.2023.10192740
Raza U, 2020, SMART CITIES-BASEL, V3, P308, DOI 10.3390/smartcities3020017
Sabarish P., 2020, IOP Conference Series: Materials Science and Engineering, V937, DOI 10.1088/1757-899X/937/1/012013
Sachs JD, 2019, NAT SUSTAIN, V2, P805, DOI 10.1038/s41893-019-0352-9
Sakai K, 2018, INT POWER ELECT ELEC, P268, DOI 10.1109/SPEEDAM.2018.8445354
Sayed ET, 2021, CARBON RES CONVERS, V4, P169, DOI 10.1016/j.crcon.2021.04.004
Shanmugam Y, 2022, IEEE ACCESS, V10, P133617, DOI 10.1109/ACCESS.2022.3227217
Sharifi A, 2024, CITIES, V146, DOI 10.1016/j.cities.2023.104659
Sharifi A, 2023, PROG PLANN, V173, DOI 10.1016/j.progress.2023.100740
Shishehgarkhaneh MB, 2023, SMART CITIES-BASEL, V6, P819, DOI 10.3390/smartcities6020040
Singh A., 2022, 2022 IEEE 8 WORLD FO, P1
Singh RK, 2021, IEEE ACCESS, V9, P136253, DOI 10.1109/ACCESS.2021.3116814
Soares L, 2022, RENEW SUST ENERG REV, V158, DOI 10.1016/j.rser.2022.112110
Sridharan B, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23167290
St. John Stuart A., 2017, Physics Education, V52, DOI 10.1088/1361-6552/aa7f44
Streich J, 2020, CURR OPIN BIOTECH, V61, P217, DOI 10.1016/j.copbio.2020.01.010
Su W., 2015, Plug In Electric Vehicles in Smart Grids: Integration Techniques, P61
Subudhi PS, 2020, INT J EMERG ELECTR P, V21, DOI 10.1515/ijeeps-2019-0151
Suh IS, 2013, 2013 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), P234
Suja S, 2013, INT CONF COMPUT POW, P93, DOI 10.1109/ICCPEIC.2013.6778505
Sukhwani V, 2020, SMART CITIES-BASEL, V3, P1266, DOI 10.3390/smartcities3040062
Tamura M, 2018, IEEE T MICROW THEORY, V66, P5873, DOI 10.1109/TMTT.2018.2875960
Tarakci S., 2018, Natural and Engineering Sciences
Teeneti CR, 2021, IEEE J OCEANIC ENG, V46, P68, DOI 10.1109/JOE.2019.2953015
Thiagarajan K, 2023, IETE J RES, V69, P2761, DOI 10.1080/03772063.2021.1905089
Torun HM, 2018, ELEC COMP C, P2374, DOI 10.1109/ECTC.2018.00358
Tran MT, 2023, ENERGIES, V16, DOI 10.3390/en16072953
Trinko D, 2022, ETRANSPORTATION, V11, DOI 10.1016/j.etran.2021.100154
Triviño A, 2021, ENERGIES, V14, DOI 10.3390/en14061547
Uddin MK, 2014, 2014 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), P412, DOI 10.1109/CENCON.2014.6967539
Ullah MA, 2022, IEEE ACCESS, V10, P17231, DOI 10.1109/ACCESS.2022.3149276
Urano M, 2017, 2017 IEEE INTERNATIONAL MEETING FOR FUTURE OF ELECTRON DEVICES, KANSAI (IMFEDK), P36, DOI 10.1109/IMFEDK.2017.7998030
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Van Mulders J, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22155573
Van Neste CW, 2020, J ELECTROCHEM SOC, V167, DOI 10.1149/1945-7111/ab729d
Vanus J, 2022, WORLD ELECTR VEHIC J, V13, DOI 10.3390/wevj13100176
Wang CJ, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, P2449, DOI 10.1109/ICMA.2016.7558950
Wu ZY, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11234050
Xie LG, 2012, IEEE ACM T NETWORK, V20, P1748, DOI 10.1109/TNET.2012.2185831
Xu S, 2022, SCI TRANSL MED, V14, DOI 10.1126/scitranslmed.abn6036
Yang J, 2018, MOBILE NETW APPL, V23, P188, DOI 10.1007/s11036-017-0930-x
Yang TN, 2020, PSYCHOL HEALTH MED, V25, P653, DOI 10.1080/13548506.2019.1668564
Yazdan A, 2017, IEEE MICROW MAG, V18, P18, DOI 10.1109/MMM.2017.2691422
Yeh E., 2016, Microwave Journal
Yoo S, 2021, ADV HEALTHC MATER, V10, DOI 10.1002/adhm.202100614
Yousef BAA, 2024, ENERGY STRATEG REV, V52, DOI 10.1016/j.esr.2024.101356
Youssef Yazan, 2023, 2023 IEEE Industrial Electronics and Applications Conference (IEACon), P36, DOI 10.1109/IEACon57683.2023.10370611
Youssef Y, 2023, IEEE T AERO ELEC SYS, V59, P3388, DOI 10.1109/TAES.2022.3212027
Yu Chunlai, 2022, 2022 5th International Conference on Power and Energy Applications (ICPEA), P157, DOI 10.1109/ICPEA56363.2022.10052116
Zeng YQ, 2023, IEEE T POWER ELECTR, V38, P1440, DOI 10.1109/TPEL.2022.3214318
Zeng Y, 2017, IEEE T COMMUN, V65, P2264, DOI 10.1109/TCOMM.2017.2676103
Zheng Y., 2022, 2022 IEEE 10 AS PAC, P1
Zhong WF, 2022, IEEE T GREEN COMMUN, V6, P2073, DOI 10.1109/TGCN.2022.3164967
Zhou BC, 2021, SUSTAIN ENERG FUELS, V5, P5139, DOI 10.1039/d1se00739d
NR 200
TC 1
Z9 1
U1 11
U2 11
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2211-467X
EI 2211-4688
J9 ENERGY STRATEG REV
JI Energy Strateg. Rev.
PD MAY
PY 2024
VL 53
AR 101376
DI 10.1016/j.esr.2024.101376
EA APR 2024
PG 25
WC Energy & Fuels
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Energy & Fuels
GA RK9P0
UT WOS:001227679000001
OA gold
DA 2024-09-05
ER
PT J
AU Miner-Romanoff, K
Sweetland, Y
Yang, Y
Fennema, B
AF Miner-Romanoff, Karen
Sweetland, Yuerong
Yang, Yi
Fennema, Barbara
TI Assessment of Professional Development and Research-Based Instructional
Strategies for Instructors of Online Undergraduate STEM Courses
SO INTERNATIONAL JOURNAL OF ONLINE PEDAGOGY AND COURSE DESIGN
LA English
DT Article
DE Active Learning; Observations; Online Faculty; Professional Development;
Research-Based Instructional Strategies; STEM
ID HIGHER-EDUCATION; SCIENCE; FACULTY
AB Professional development (PD) programs for faculty are critical for improvement of STEM instruction. Little research exists on the impact of such programs in the online environment. This article reports the pilot study results of an observation protocol (OP) on the development of an online PD program for STEM faculty grounded in research-based instructional strategies (RBIS) and the development plan for the program. The RBIS-based OP in place at Franklin University will be used to identify and assess online STEM instructors' teaching practices before and after the PD program. Pilot study results suggested that the OP yields valid and reliable evidence of STEM faculty's RBIS usage. Approximately 80 STEM course sections will be observed using the OP with data collected pre- and post-PD (3 year period). The mixed-method data will be analyzed by university researchers in conjunction with a community research partner. This project will test the success of an online professional development program with RBIS for higher education STEM faculty, aid determination of which RBIS can contribute most effectively to improving student outcomes and produce the first robust evidence of the impact of an online PD for STEM faculty.
C1 [Miner-Romanoff, Karen] NYU, Acad Qual, Sch Profess Studies, New York, NY 10003 USA.
[Miner-Romanoff, Karen] NYU, Sch Profess Studies, Ctr Acad Excellence & Support, New York, NY 10003 USA.
[Sweetland, Yuerong] Franklin Univ, Assessment, Columbus, OH USA.
[Sweetland, Yuerong] Franklin Univ, Columbus, OH USA.
[Yang, Yi] Franklin Univ, Doctor Profess Studies, Instruct Design Leadership Program, Columbus, OH USA.
[Fennema, Barbara] Franklin Univ, Int Inst Innovat Instruct, Columbus, OH USA.
C3 New York University; New York University; University System of Ohio;
Franklin University; University System of Ohio; Franklin University;
University System of Ohio; Franklin University; University System of
Ohio; Franklin University
RP Miner-Romanoff, K (corresponding author), NYU, Acad Qual, Sch Profess Studies, New York, NY 10003 USA.; Miner-Romanoff, K (corresponding author), NYU, Sch Profess Studies, Ctr Acad Excellence & Support, New York, NY 10003 USA.
CR American Association for the Advancement of Science, 2013, TRANSF UND STEM ED L
Avery Zanj K., 2013, Journal of Technology Education, V25, P55
Baker LA, 2014, J CHEM EDUC, V91, P1874, DOI 10.1021/ed500547n
Bergeron L, 2017, INT J SCI MATH EDUC, V15, P433, DOI 10.1007/s10763-015-9693-7
Bonura K. B, 2016, J CTR TEACHING LEARN, V4, P79
Borrego M, 2014, J ENG EDUC, V103, P220, DOI 10.1002/jee.20040
Borrego M, 2013, J ENG EDUC, V102, P394, DOI 10.1002/jee.20020
Bradforth SE, 2015, NATURE, V523, P282, DOI 10.1038/523282a
Committee on Science. Engineering Medicine and Public Policy, 2016, PROM PRACT STRENGTH
Creswell J., 2012, Educational Research. Planning, V4th
Dede C., 2016, Teacher learning in the digital age: Online professional development in STEM education
DeJarnette N.K., 2012, Education, V133, P77, DOI DOI 10.1007/S10649-005-9002-4
Derting TL, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1501422
Early D.M., 2014, HIGH SCH J, V97, P219, DOI DOI 10.1353/HSJ.2014.0008
Ebert-May D, 2015, CBE-LIFE SCI EDUC, V14, DOI 10.1187/cbe.14-12-0222
Fabrigar L.R., 2011, Exploratory Factor Analysis, DOI [10.1093/acprof:osobl/9780199734177.001.0001, DOI 10.1093/ACPROF:OSOBL/9780199734177.001.0001]
Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111
Froyd J. E., 2008, EV PROM PRACT UND SC
Gagne R, 1985, The Conditions of Learning, V4th
Hallgren Kevin A, 2012, Tutor Quant Methods Psychol, V8, P23
Henderson C, 2007, PHYS REV SPEC TOP-PH, V3, DOI 10.1103/PhysRevSTPER.3.020102
Jordan A, 2014, IEEE PULSE, V5, P46, DOI 10.1109/MPUL.2014.2321491
Kennedy TJ., 2014, SCI ED INT, V25, P246
Kober N., 2015, Reaching students: What research says about effective instruction in undergraduate science and engineering
Labov JB, 2009, CBE-LIFE SCI EDUC, V8, P157, DOI 10.1187/cbe.09-06-0038
Lund TJ, 2015, CBE-LIFE SCI EDUC, V14, DOI 10.1187/cbe.14-10-0168
Merrill MD, 2002, ETR&D-EDUC TECH RES, V50, P43, DOI 10.1007/BF02505024
National Science Foundation, 2015, REV STEM WORKF
Perez-Foguet A, 2017, PROMOTING SUSTAINABL
Ring EA, 2017, J SCI TEACH EDUC, V28, P444, DOI 10.1080/1046560X.2017.1356671
Sawada D., 2002, School Science and Mathematics, V102, P245
Shulman LS, 2005, DAEDALUS-US, V134, P52, DOI 10.1162/0011526054622015
Sibley K, 2015, EDUCAUSE
Teräs H, 2016, PROF DEV EDUC, V42, P258, DOI 10.1080/19415257.2014.961094
Whittaker JA, 2014, INNOV HIGH EDUC, V39, P263, DOI 10.1007/s10755-013-9277-9
Wieman C., 2015, Change, the Magazine of Higher Learning, V47, P6, DOI DOI 10.1080/00091383.2015.996077
NR 36
TC 2
Z9 3
U1 1
U2 19
PU IGI GLOBAL
PI HERSHEY
PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA
SN 2155-6873
EI 2155-6881
J9 INT J ONLINE PEDAGOG
JI Int. J. Online Pedagog. Course Des.
PD JAN-MAR
PY 2019
VL 9
IS 1
BP 51
EP 61
DI 10.4018/IJOPCD.2019010104
PG 11
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA HN1FS
UT WOS:000459933300004
DA 2024-09-05
ER
PT J
AU Melnychuk, T
Galke, L
Seidlmayer, E
Broring, S
Forstner, KU
Tochtermann, K
Schultz, C
AF Melnychuk, Tetyana
Galke, Lukas
Seidlmayer, Eva
Broring, Stefanie
Forstner, Konrad U.
Tochtermann, Klaus
Schultz, Carsten
TI Development of Similarity Measures From Graph-Structured Bibliographic
Metadata: An Application to Identify Scientific Convergence
SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
LA English
DT Article; Early Access
DE Data enrichment; machine learning; network analysis; science dynamics;
scientific convergence; similarity indicator
ID INTERNATIONAL JOINT RESEARCH; TECHNOLOGY CONVERGENCE; INDUSTRY
CONVERGENCE; SCIENCE CONVERGENCE; KNOWLEDGE DIFFUSION; SEARCH REGIMES;
IDENTIFICATION; INNOVATION; DYNAMICS; FIELDS
AB Scientific convergence is a phenomenon where the distance between hitherto distinct scientific fields narrows and the fields gradually overlap over time. It is creating important potential for research, development, and innovation. Although scientific convergence is crucial for the development of radically new technology, the identification of emerging scientific convergence is particularly difficult since the underlying knowledge flows are rather fuzzy and unstable in the early convergence stage. Nevertheless, novel scientific publications emerging at the intersection of different knowledge fields may reflect convergence processes. Thus, in this article, we exploit the growing number of research and digital libraries providing bibliographic metadata to propose an automated analysis of science dynamics. We utilize and adapt machine-learning methods (DeepWalk) to automatically learn a similarity measure between scientific fields from graphs constructed on bibliographic metadata. With a time-based perspective, we apply our approach to analyze the trajectories of evolving similarities between scientific fields. We validate the learned similarity measure by evaluating it within the well-explored case of cholesterol-lowering ingredients in which scientific convergence between the distinct scientific fields of nutrition and pharmaceuticals has partially taken place. Our results confirm that the similarity trajectories learned by our approach resemble the expected behavior, indicating that our approach may allow researchers and practitioners to detect and predict scientific convergence early.
C1 [Melnychuk, Tetyana; Schultz, Carsten] Univ Kiel, Kiel Inst Responsible Innovat, D-24118 Kiel, Germany.
[Galke, Lukas] Leibniz Informat Ctr Econ ZBW, D-24105 Kiel, Germany.
[Galke, Lukas] Max Planck Inst Psycholinguist, NL-6525 XD Nijmegen, Netherlands.
[Seidlmayer, Eva; Forstner, Konrad U.] Informat Ctr Life Sci ZB Med, D-50931 Cologne, Germany.
[Broring, Stefanie] Ruhr Univ Bochum, Fac Management & Econ, D-44780 Bochum, Germany.
[Tochtermann, Klaus] Leibniz Informat Ctr Econ ZBW, D-24105 Kiel, Germany.
C3 University of Kiel; Deutsche Zentralbibliothek fur
Wirtschaftswissenschaften (ZBW); Max Planck Society; Ruhr University
Bochum; Deutsche Zentralbibliothek fur Wirtschaftswissenschaften (ZBW)
RP Melnychuk, T (corresponding author), Univ Kiel, Kiel Inst Responsible Innovat, D-24118 Kiel, Germany.
EM melnychuk@bwl.uni-kiel.de; lukas.galke@mpi.nl; seidlmayer@zbmed.de;
stefanie.broering@ruhr-uni-bochum.de; foerstner@zbmed.de;
k.tochtermann@zbw-online.eu; schultz@bwl.uni-kiel.de
RI Schultz, Carsten/G-5554-2016
OI Schultz, Carsten/0000-0002-5984-9872; Galke, Lukas/0000-0001-6124-1092;
Tochtermann, Klaus/0000-0003-2471-2697; Broring,
Stefanie/0000-0003-2014-2586; Seidlmayer, Eva/0000-0001-7258-0532;
Melnychuk, Tetyana/0000-0002-7258-2842; Forstner, Konrad
U./0000-0002-1481-2996
FU German Federal Ministry of Education and Research (BMBF) [01PU17013A,
01PU17013B]; [01PU17013C]
FX This work was supported by the German Federal Ministry of Education and
Research (BMBF) represented by the executing agency the German Aerospace
Center (DLR) within the framework of the Research Project Q-AKTIV under
Grant 01PU17013A, Grant 01PU17013B,and Grant 01PU17013C within the
funding line "Quantitative Research on the Science Sector."
CR Aaldering LJ, 2019, TECHNOL FORECAST SOC, V138, P95, DOI 10.1016/j.techfore.2018.08.012
Appio FP, 2023, IEEE T ENG MANAGE, V70, P1389, DOI 10.1109/TEM.2023.3242518
Ardito L, 2023, IEEE T ENG MANAGE, V70, P1442, DOI 10.1109/TEM.2021.3103878
Battard N, 2012, TECHNOVATION, V32, P234, DOI 10.1016/j.technovation.2011.09.001
Bonaccorsi A, 2008, MINERVA, V46, P285, DOI 10.1007/s11024-008-9101-3
Bonaccorsi A, 2010, RES POLICY, V39, P1034, DOI 10.1016/j.respol.2010.05.002
Bornkessel S., 2014, Journal on Chain and Network Science, V14, P213, DOI 10.3920/JCNS2014.x011
Bornkessel Sabine, 2016, PharmaNutrition, V4, P29, DOI 10.1016/j.phanu.2015.10.002
Bröring S, 2006, R&D MANAGE, V36, P487, DOI 10.1111/j.1467-9310.2006.00449.x
Broring S., 2005, The front end of innovation in converging industries: the case of nutraceuticals and functional foods
Caferoglu H, 2023, IEEE T ENG MANAGE, V70, P1504, DOI 10.1109/TEM.2021.3092211
Carley S, 2017, J DATA INFO SCI, V2, P68, DOI 10.1515/jdis-2017-0015
Carley SF, 2018, SCIENTOMETRICS, V115, P35, DOI 10.1007/s11192-018-2654-5
Caviggioli F, 2016, TECHNOVATION, V55-56, P22, DOI 10.1016/j.technovation.2016.04.003
CHUBIN DE, 1976, SOCIOL QUART, V17, P448, DOI 10.1111/j.1533-8525.1976.tb01715.x
Coccia M, 2021, SCIENTOMETRICS, V126, P9405, DOI 10.1007/s11192-021-04172-x
Coccia M, 2020, SCIENTOMETRICS, V124, P451, DOI 10.1007/s11192-020-03464-y
Coccia M, 2020, TECHNOL SOC, V60, DOI 10.1016/j.techsoc.2019.101198
Coccia M, 2018, SCIENTOMETRICS, V117, P1265, DOI 10.1007/s11192-018-2902-8
Curran CS, 2011, TECHNOL FORECAST SOC, V78, P256, DOI 10.1016/j.techfore.2010.06.021
Curran CS, 2009, INT J INNOV MANAG, V13, P637, DOI 10.1142/S1363919609002455
Curran CS, 2010, TECHNOL FORECAST SOC, V77, P385, DOI 10.1016/j.techfore.2009.10.002
Dane E, 2010, ACAD MANAGE REV, V35, P579, DOI 10.5465/AMR.2010.53502832
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Dong YX, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P135, DOI 10.1145/3097983.3098036
Ebert D, 2021, COMPUT SCI ENG, V23, P99, DOI 10.1109/MCSE.2021.3069342
Galke L., 2019, INFORMATIK 2019 50 J, P219
Geum Y, 2016, TECHNOL FORECAST SOC, V107, P112, DOI 10.1016/j.techfore.2016.03.020
Gingras Y., 2016, Bibliometrics and research evaluation. Uses and abuses
Giordano V, 2023, IEEE T ENG MANAGE, V70, P1490, DOI 10.1109/TEM.2021.3078231
Grégoire DA, 2006, ENTREP THEORY PRACT, V30, P333, DOI 10.1111/j.1540-6520.2006.00124.x
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Hacklin F, 2023, IEEE T ENG MANAGE, V70, P1518, DOI 10.1109/TEM.2021.3087365
Hagedoorn J, 2002, J MANAGE STUD, V39, P167, DOI 10.1111/1467-6486.00287
Hallikainen M, 2011, ATHEROSCLEROSIS, V217, P473, DOI 10.1016/j.atherosclerosis.2011.03.041
Han SF, 2016, SCI REP-UK, V6, DOI 10.1038/srep31337
Heimeriks G, 2012, TECHNOL ANAL STRATEG, V24, P51, DOI 10.1080/09537325.2012.643562
Hoskins MH, 2006, FUTURE LIPIDOL, V1, P579, DOI 10.2217/17460875.1.5.579
Hwang I, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228616
Jeong DH, 2016, TECHNOL FORECAST SOC, V108, P15, DOI 10.1016/j.techfore.2016.03.017
Jeong D, 2018, ASIAN J TECHNOL INNO, V26, P246, DOI 10.1080/19761597.2018.1522961
Jeong S, 2015, SCIENTOMETRICS, V104, P841, DOI 10.1007/s11192-015-1606-6
Kim J, 2017, SCIENTOMETRICS, V111, P47, DOI 10.1007/s11192-017-2275-4
Kim N, 2015, RES POLICY, V44, P1734, DOI 10.1016/j.respol.2015.02.001
Kim TS, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120095
Klarin A, 2023, IEEE T ENG MANAGE, V70, P1531, DOI 10.1109/TEM.2021.3126055
Kong DJ, 2020, SCIENTOMETRICS, V125, P1983, DOI 10.1007/s11192-020-03696-y
Kose T, 2019, TECHNOL FORECAST SOC, V146, P751, DOI 10.1016/j.techfore.2018.09.005
Kuhn T.S., 1962, The structure of scientific revolutions
Lee H, 2017, ETRI J, V39, P467, DOI 10.4218/etrij.17.0116.0874
Leydesdorff L, 2012, J AM SOC INF SCI TEC, V63, P2239, DOI 10.1002/asi.22715
Linkov I, 2014, ENVIRON SCI TECHNOL, V48, P10539, DOI 10.1021/es503585u
Luan CJ, 2024, IEEE T ENG MANAGE, V71, P346, DOI 10.1109/TEM.2021.3120709
Maine E, 2014, J ENG TECHNOL MANAGE, V32, P1, DOI 10.1016/j.jengtecman.2013.10.007
Malina DMT, 2015, J CLIN LIPIDOL, V9, P542, DOI 10.1016/j.jacl.2015.04.003
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
Mittelstrass J, 2018, GAIA, V27, P201, DOI 10.14512/gaia.27.2.4
MULKAY MJ, 1975, SOCIOL REV, V23, P509, DOI 10.1111/j.1467-954X.1975.tb02231.x
Niemann H, 2017, TECHNOL FORECAST SOC, V115, P210, DOI 10.1016/j.techfore.2016.10.004
Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732
Petersen AM, 2021, HUM SOC SCI COMMUN, V8, DOI 10.1057/s41599-021-00869-9
Petersen AM, 2016, RES POLICY, V45, P666, DOI 10.1016/j.respol.2015.12.004
Phillips LT, 2018, CURR DIR PSYCHOL SCI, V27, P156, DOI 10.1177/0963721417753600
Porter AL, 2009, SCIENTOMETRICS, V81, P719, DOI 10.1007/s11192-008-2197-2
Price D. J. d. S., 1963, Little Science, Big Science
Romer S, 2006, COLLOID SURFACE A, V282, P435, DOI 10.1016/j.colsurfa.2005.12.032
Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006
Saha S, 2003, J MED LIBR ASSOC, V91, P42
SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0
Sanyal DK, 2021, J INF SCI, V47, P227, DOI 10.1177/0165551519888605
Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605
Sick N, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121321
Sick N, 2019, TECHNOVATION, V84-85, P48, DOI 10.1016/j.technovation.2018.08.001
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Song CH, 2017, TECHNOL FORECAST SOC, V116, P98, DOI 10.1016/j.techfore.2016.11.001
Stancu C, 2001, J CELL MOL MED, V5, P378, DOI 10.1111/j.1582-4934.2001.tb00172.x
Sugimoto CR, 2013, NATURE, V504, P211, DOI 10.1038/504211a
Sun XL, 2013, SCI REP-UK, V3, DOI 10.1038/srep01069
Upham SP, 2010, SCIENTOMETRICS, V83, P525, DOI 10.1007/s11192-009-0102-2
Venugopalan S, 2015, TECHNOL FORECAST SOC, V94, P236, DOI 10.1016/j.techfore.2014.10.006
Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004
Wenneras C, 1997, NATURE, V387, P341, DOI 10.1038/387341a0
West JD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066212
Wikidata, 2022, Wikipedia: Statistics
Yegros-Yegros A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135095
Ying Rex, 2019, Adv Neural Inf Process Syst, V32, P9240
Zhou Y, 2019, TECHNOL FORECAST SOC, V144, P205, DOI 10.1016/j.techfore.2019.03.014
2015, bioRxiv, DOI [10.1101/031971, 10.1101/031971, DOI 10.1101/031971]
NR 88
TC 1
Z9 1
U1 11
U2 24
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9391
EI 1558-0040
J9 IEEE T ENG MANAGE
JI IEEE Trans. Eng. Manage.
PD 2023 SEP 12
PY 2023
DI 10.1109/TEM.2023.3308008
EA SEP 2023
PG 17
WC Business; Engineering, Industrial; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Engineering
GA S1PN6
UT WOS:001068962400001
OA Green Accepted, hybrid
DA 2024-09-05
ER
PT J
AU Menekse, M
Chi, MTH
AF Menekse, Muhsin
Chi, Michelene T. H.
TI The role of collaborative interactions versus individual construction on
students? learning of engineering concepts
SO EUROPEAN JOURNAL OF ENGINEERING EDUCATION
LA English
DT Article
DE Engineering education research; teamwork; assessment of learning
outcomes; active learning; peer learning; teaching
ID TEAMS; INQUIRY; EXPLANATIONS; INSTRUCTION; MATHEMATICS; TECHNOLOGY;
ENGAGEMENT; FRAMEWORK; WORK
AB This study primarily investigated the role of interactional factors in an unstructured face-to-face collaborative learning environment with challenging engineering activities. We explored dialogue patterns in terms of quality of interaction, students? scaffolding instances, and discourse moves for productive interactions of collaborative dyads in the context of the Interactive-Constructive-Active-Passive (ICAP) framework. The sample included 72 engineering students for the interactive and constructive conditions. Students? understanding of material science and engineering concepts were measured using pre and posttest design. Results showed students in the interactive condition performed significantly better than students in the constructive condition. Verbal analysis of approximately 12 hours video recordings and 210 pages of transcriptions for students? dialogue in the interactive condition indicated a strong relation between the quality of interaction, scaffolding instances, and individual learning gains. In addition, a verbal analysis examining each utterance based on the discourse moves revealed that the certain moves are significantly linked with learning outcomes.
C1 [Menekse, Muhsin] Purdue Univ, Sch Engn Educ, W Lafayette, IN 47907 USA.
[Menekse, Muhsin] Purdue Univ, Dept Curriculum & Instruct, W Lafayette, IN 47907 USA.
[Chi, Michelene T. H.] Arizona State Univ, Mary Lou Fulton Teachers Coll, Tempe, AZ USA.
C3 Purdue University System; Purdue University; Purdue University System;
Purdue University; Arizona State University; Arizona State
University-Tempe
RP Menekse, M (corresponding author), Purdue Univ, Sch Engn Educ, W Lafayette, IN 47907 USA.; Menekse, M (corresponding author), Purdue Univ, Dept Curriculum & Instruct, W Lafayette, IN 47907 USA.
EM menekse@purdue.edu
OI Menekse, Muhsin/0000-0002-5547-5455
FU USA National Science Foundation [0935235]; Div Of Engineering Education
and Centers; Directorate For Engineering [0935235] Funding Source:
National Science Foundation
FX This material is based upon work supported by the USA National Science
Foundation under Grant No. 0935235.
CR Alfieri L, 2013, EDUC PSYCHOL-US, V48, P87, DOI 10.1080/00461520.2013.775712
[Anonymous], THESIS
[Anonymous], 2006, ANAL DYADIC DATA
[Anonymous], PROC FRONT EDUC CONF
[Anonymous], 2013, International Handbook of Collaborative Learning
Asterhan CSC, 2014, LEARN INSTR, V34, P1, DOI 10.1016/j.learninstruc.2014.07.003
Azevedo R, 2008, ETR&D-EDUC TECH RES, V56, P45, DOI 10.1007/s11423-007-9067-0
Biswas G, 2005, APPL ARTIF INTELL, V19, P363, DOI 10.1080/08839510590910200
Callister W., 2009, Materials Science and Engineering: An Introduction, V8th
Chi M.T. H., 2015, Socializing Intelligence Through Academic Talk and Dialogue, V21, P263
Chi MTH, 2014, EDUC PSYCHOL-US, V49, P219, DOI 10.1080/00461520.2014.965823
Chi MTH, 2009, TOP COGN SCI, V1, P73, DOI 10.1111/j.1756-8765.2008.01005.x
Chi MTH, 1997, J LEARN SCI, V6, P271, DOI 10.1207/s15327809jls0603_1
Czerniak C.M., 1998, J SCI TEACH EDUC, V9, P303, DOI [10.1023/A:1009431400397, DOI 10.1023/A:1009431400397]
Dillenbourg P., 1999, What do You Mean by Collaborative Learning?, P1, DOI DOI 10.1016/S0360-1315(00)00011-7
Fila ND, 2014, INT J ENG EDUC, V30, P848
Gadgil S, 2012, APPL COGNITIVE PSYCH, V26, P410, DOI 10.1002/acp.1843
Gijlers H, 2013, J LEARN SCI, V22, P340, DOI 10.1080/10508406.2012.748664
Hake RR, 1998, AM J PHYS, V66, P64, DOI 10.1119/1.18809
Hmelo-Silver CE, 2008, COGNITION INSTRUCT, V26, P48, DOI 10.1080/07370000701798495
Hsiung CM, 2010, J ENG EDUC, V99, P45, DOI 10.1002/j.2168-9830.2010.tb01041.x
Hsung CM, 2012, J ENG EDUC, V101, P119
Huang HC, 2011, INT J ENG EDUC, V27, P875
Kaartinen S, 2002, LEARN INSTR, V12, P189, DOI 10.1016/S0959-4752(01)00004-4
Kimmerle J, 2008, INT J COMP-SUPP COLL, V3, P85, DOI 10.1007/s11412-007-9027-z
King A, 2002, THEOR PRACT, V41, P33, DOI 10.1207/s15430421tip4101_6
King A, 1999, RUTG INV SYMP EDUC S, P87
Kirschner F, 2009, EDUC PSYCHOL REV, V21, P31, DOI 10.1007/s10648-008-9095-2
Kollar I, 2007, LEARN INSTR, V17, P708, DOI 10.1016/j.learninstruc.2007.09.021
Kramarski B, 2009, J EDUC COMPUT RES, V40, P377, DOI 10.2190/EC.40.4.a
Kuhn D, 2015, EDUC RESEARCHER, V44, P46, DOI 10.3102/0013189X15569530
Lakens D, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00863
Lou YP, 1996, REV EDUC RES, V66, P423, DOI 10.2307/1170650
Lou YP, 2001, REV EDUC RES, V71, P449, DOI 10.3102/00346543071003449
Menekse M, 2017, J ENG EDUC, V106, P564, DOI 10.1002/jee.20178
Menekse M, 2013, J ENG EDUC, V102, P346, DOI 10.1002/jee.20021
Mishra D, 2015, INT J ENG EDUC, V31, P627
Newell J., 2009, ESSENTIALS MODERN MA
O'Donnell A.M., 2006, Handbook of educational psychology, V2nd, P781, DOI DOI 10.4324/9780203874790
Okada T, 1997, COGNITIVE SCI, V21, P109, DOI 10.1016/S0364-0213(99)80020-2
Pasha-Zaidi N, 2015, INT J ENG EDUC, V31, P953
Puntambekar S, 2006, COMPUT EDUC, V47, P332, DOI 10.1016/j.compedu.2004.10.012
Purzer S, 2011, J ENG EDUC, V100, P655
Raudenbush Stephen W., 2002, HIERARCHICAL LINEAR
Renkl A., 1995, Learning and Instruction, V5, P21, DOI DOI 10.1016/0959-4752(94)00015-H
Roscoe RD, 2007, REV EDUC RES, V77, P534, DOI 10.3102/0034654307309920
Rummel N, 2005, J LEARN SCI, V14, P201, DOI 10.1207/s15327809jls1402_2
Scherbaum CA, 2009, ORGAN RES METHODS, V12, P347, DOI 10.1177/1094428107308906
Slavin R., 1995, Cooperative learning: Theory, research, and practice
Springer L, 1999, REV EDUC RES, V69, P21, DOI 10.2307/1170643
Stahl G, 2014, CAMBRIDGE HANDBOOK OF THE LEARNING SCIENCES, 2ND EDITION, P479
Stahl G, 2009, INT J COMP-SUPP COLL, V4, P365, DOI 10.1007/s11412-009-9075-7
Streveler RA, 2017, J ENG EDUC, V106, P186, DOI 10.1002/jee.20160
Summers M, 2010, EUR J PSYCHOL EDUC, V25, P473, DOI 10.1007/s10212-010-0026-5
Terenzini P.T., 2001, J ENG EDUC, V90, P123, DOI DOI 10.1002/J.2168-9830.2001.TB00579.X
Tonso KL, 2006, J ENG EDUC, V95, P25, DOI 10.1002/j.2168-9830.2006.tb00875.x
Volet S, 2009, LEARN INSTR, V19, P128, DOI 10.1016/j.learninstruc.2008.03.001
WASSERTHEIL S, 1970, BIOMETRICS, V26, P588, DOI 10.2307/2529115
Webb NM., 1989, INT J EDUC RES, V13, P21, DOI [DOI 10.1016/0883-0355(89)90014-1, 10.1016/0883-0355(89)90014-1]
Wentzel KR, 2011, EDUC PSYCHOL HANDB, P322
Yetter G, 2006, J EXP EDUC, V74, P137, DOI 10.3200/JEXE.74.2.137-160
Zafft CR, 2009, J ENG EDUC, V98, P273, DOI 10.1002/j.2168-9830.2009.tb01024.x
NR 62
TC 31
Z9 38
U1 3
U2 29
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 0304-3797
EI 1469-5898
J9 EUR J ENG EDUC
JI Eur. J. Eng. Educ.
PD SEP 3
PY 2019
VL 44
IS 5
BP 702
EP 725
DI 10.1080/03043797.2018.1538324
PG 24
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA JB3PR
UT WOS:000488469700006
DA 2024-09-05
ER
PT J
AU Li, WD
Yigitcanlar, T
Liu, A
Erol, I
AF Li, Wenda
Yigitcanlar, Tan
Liu, Aaron
Erol, Isil
TI Mapping two decades of smart home research: A systematic scientometric
analysis
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Smart home; Home automation; Home innovation; Domotics;
Internet-of-things (IoT); Artificial intelligence (AI)
ID ARTIFICIAL-INTELLIGENCE; ENERGY MANAGEMENT; PRESENT STATE; HEALTH-CARE;
INTERNET; THINGS; URBAN; CHALLENGES; SECURITY; MODEL
AB Technological advancements such as information and communication technologies (ICTs), artificial intelligence (AI), internet-of-things (IoT), and the increasing popularity of the smart city and smart living movements during the last couple of decades boosted the developments in the smart home domain. Although the number of smart home related research has been expanding rapidly, there is still a lack of systematic analysis of the evolution of this research domain. This study helps to generate an understanding of the historical vicissitude, state-of-the-art and emerging trends, and the existing smart home research clusters. The study applies a scientometric method to analyse the published scholarly research (n = 17,153) over the last two decades, from 2000 to 2021. The scientometric analysis findings reveal that: Smart home literature has experienced steady growth during the last two decades; Smart home research has mainly clustered around ICT for home automation, home information management, AI for home automation, domestic energy management, IoT for home automation, and home-based healthcare areas; IoT is seen as the most popular technology to realise fully functioning smart homes; Limited evidence exists on the urban perspective and social issues of smart home technology; Smart homes are seen potentially as a strong driver of the smart city agenda.
C1 [Li, Wenda; Yigitcanlar, Tan; Liu, Aaron] Queensland Univ Technol, Sch Architecture & Built Environm, 2 George St, Brisbane, Qld 4000, Australia.
[Erol, Isil] Univ Reading, Henley Business Sch, Reading RG6 6UD, Berks, England.
C3 Queensland University of Technology (QUT); University of Reading
RP Yigitcanlar, T (corresponding author), Queensland Univ Technol, Sch Architecture & Built Environm, 2 George St, Brisbane, Qld 4000, Australia.
EM tan.yigitcanlar@qut.edu.au
RI Liu, Aaron/T-7759-2019; Li, Wenda/ISB-6315-2023; Yigitcanlar,
Tan/J-1142-2012
OI Liu, Aaron/0000-0001-7690-6608; Li, Wenda/0000-0002-4430-7405;
Yigitcanlar, Tan/0000-0001-7262-7118; Erol, Isil/0000-0001-8125-9118
CR Alaa M, 2017, J NETW COMPUT APPL, V97, P48, DOI 10.1016/j.jnca.2017.08.017
Aldossari MQ, 2020, J COMPUT INFORM SYST, V60, P507, DOI 10.1080/08874417.2018.1543000
Almusaylim ZA, 2019, WIREL NETW, V25, P3193, DOI 10.1007/s11276-018-1712-5
Amiribesheli M, 2015, J AMB INTEL HUM COMP, V6, P495, DOI 10.1007/s12652-015-0270-2
[Anonymous], 2010, KNOWLEDGE BASED DEV
Badar AQH, 2022, ADV BUILD ENERGY RES, V16, P118, DOI 10.1080/17512549.2020.1806925
Bennett J, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9050840
Chan M, 2008, COMPUT METH PROG BIO, V91, P55, DOI 10.1016/j.cmpb.2008.02.001
Choi D, 2019, J ASIAN ARCHIT BUILD, V18, P194, DOI 10.1080/13467581.2019.1617718
Choi W, 2021, J CLEAN PROD, V301, DOI 10.1016/j.jclepro.2021.126908
Dahmen Jessamyn, 2017, J Reliab Intell Environ, V3, P83, DOI 10.1007/s40860-017-0035-0
Deutch J, 2018, ISSUES SCI TECHNOL, V34, P37
Dorri Ali, 2017, 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), P618, DOI 10.1109/PERCOMW.2017.7917634
Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z
Faisal A, 2021, J URBAN TECHNOL, V28, P45, DOI 10.1080/10630732.2020.1780868
Fan XD, 2017, ENRGY PROCED, V105, P2545, DOI 10.1016/j.egypro.2017.03.732
Ford R, 2017, BUILD ENVIRON, V123, P543, DOI 10.1016/j.buildenv.2017.07.020
Goldsmith A, 2005, Wireless Communications
Gu T, 2005, J NETW COMPUT APPL, V28, P1, DOI 10.1016/j.jnca.2004.06.002
Guo YM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133606
Hui TKL, 2017, FUTURE GENER COMP SY, V76, P358, DOI 10.1016/j.future.2016.10.026
Khan MA, 2018, FUTURE GENER COMP SY, V82, P395, DOI 10.1016/j.future.2017.11.022
Kim H, 2021, RENEW SUST ENERG REV, V140, DOI 10.1016/j.rser.2021.110755
Kim M, 2019, J SENSORS, V2019, DOI 10.1155/2019/1654013
Koltsaklis N, 2021, ENERGIES, V14, DOI 10.3390/en14061724
Kravchenko Y, 2017, 2017 4TH INTERNATIONAL SCIENTIFIC-PRACTICAL CONFERENCE PROBLEMS OF INFOCOMMUNICATIONS-SCIENCE AND TECHNOLOGY (PIC S&T), P579, DOI 10.1109/INFOCOMMST.2017.8246467
Lee SH, 2008, INNOV-MANAG POLICY P, V10, P282, DOI 10.5172/impp.453.10.2-3.282
Li WD, 2021, ENERGY RES SOC SCI, V80, DOI 10.1016/j.erss.2021.102211
Lynggaard P, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16111840
Majumder S, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17112496
Marcus S. J., 1983, INTELLIGENT BUILDING
Marikyan D, 2021, INT J E-BUS RES, V17, P1, DOI 10.4018/IJEBR.2021040101
Marikyan D, 2019, TECHNOL FORECAST SOC, V138, P139, DOI 10.1016/j.techfore.2018.08.015
Mekuria DN, 2021, J AMB INTEL HUM COMP, V12, P4485, DOI 10.1007/s12652-019-01572-z
Mukhopadhyay SC, 2015, IEEE SENS J, V15, P1321, DOI 10.1109/JSEN.2014.2370945
Oliveira L, 2020, PERS UBIQUIT COMPUT, V24, P613, DOI 10.1007/s00779-019-01302-4
Omar O, 2018, ALEX ENG J, V57, P2903, DOI 10.1016/j.aej.2018.07.004
Pandya S, 2018, APPL SYST INNOV, V1, DOI 10.3390/asi1040042
Park JY, 2018, DATA BRIEF, V17, P529, DOI 10.1016/j.dib.2018.01.033
Patel S, 2012, J NEUROENG REHABIL, V9, DOI 10.1186/1743-0003-9-21
Pedrasa MAA, 2010, IEEE T SMART GRID, V1, P134, DOI 10.1109/TSG.2010.2053053
Perri C, 2020, TECHNOL FORECAST SOC, V155, DOI 10.1016/j.techfore.2020.119991
Sapci A Hasan, 2019, JMIR Aging, V2, pe15429, DOI 10.2196/15429
Sepasgozar S, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10093074
Sheikhnejad Y, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12041293
Shi WS, 2016, IEEE INTERNET THINGS, V3, P637, DOI 10.1109/JIOT.2016.2579198
Solaimani S, 2015, INDOOR BUILT ENVIRON, V24, P370, DOI 10.1177/1420326X13516350
Sovacool BK, 2020, RENEW SUST ENERG REV, V120, DOI 10.1016/j.rser.2019.109663
Stojkoska BLR, 2017, J CLEAN PROD, V140, P1454, DOI 10.1016/j.jclepro.2016.10.006
Stolojescu-Crisan C, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21113784
Strengers Y, 2020, INT J HUM-COMPUT ST, V136, DOI 10.1016/j.ijhcs.2019.102379
Strengers Y, 2017, ENERGY RES SOC SCI, V32, P86, DOI 10.1016/j.erss.2017.02.008
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
Viana J, 2017, REMOTE SENS-BASEL, V9, DOI 10.3390/rs9121225
Vlachokostas C, 2020, INT J SUSTAIN ENERGY, V39, P648, DOI 10.1080/14786451.2020.1746789
Yigitcanlar T., 2019, Journal of Open Innovation: Technology, Market, and Complexity, V5, P24
Yigitcanlar T, 2022, CITIES, V120, DOI 10.1016/j.cities.2021.103434
Yigitcanlar T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208548
Yigitcanlar T, 2021, J URBAN TECHNOL, V28, P135, DOI 10.1080/10630732.2020.1753483
Yigitcanlar T, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20102988
Yigitcanlar T, 2020, ENERGIES, V13, DOI 10.3390/en13061473
Yigitcanlar T, 2019, LAND USE POLICY, V88, DOI 10.1016/j.landusepol.2019.104187
Yigitcanlar T, 2019, J URBAN TECHNOL, V26, P21, DOI 10.1080/10630732.2018.1476794
Zhao GL, 2018, QUAL RELIAB ENG INT, V34, P37, DOI 10.1002/qre.2234
Zhou B, 2016, RENEW SUST ENERG REV, V61, P30, DOI 10.1016/j.rser.2016.03.047
NR 65
TC 19
Z9 19
U1 28
U2 142
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD JUN
PY 2022
VL 179
AR 121676
DI 10.1016/j.techfore.2022.121676
EA APR 2022
PG 13
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA 1C1XP
UT WOS:000792920900004
OA Green Published, Green Accepted
DA 2024-09-05
ER
PT J
AU Klein, SA
Baiocchi, M
Rodu, J
Baker, H
Rosemond, E
Doyle, JM
AF Klein, Sean A.
Baiocchi, Michael
Rodu, Jordan
Baker, Heather
Rosemond, Erica
Doyle, Jamie Mihoko
TI An analysis of the Clinical and Translational Science Award pilot
project portfolio using data from Research Performance Progress Reports
SO JOURNAL OF CLINICAL AND TRANSLATIONAL SCIENCE
LA English
DT Article
DE Portfolio analysis; CTSA; evaluation; machine learning; networks;
collaboration
AB Introduction: Pilot projects ("pilots") are important for testing hypotheses in advance of investing more funds for full research studies. For some programs, such as Clinical and Translational Science Awards (CTSAs) supported by the National Center for Translational Sciences, pilots also make up a significant proportion of the research projects conducted with direct CTSA support. Unfortunately, administrative data on pilots are not typically captured in accessible databases. Though data on pilots are included in Research Performance Progress Reports, it is often difficult to extract, especially for large programs like the CTSAs where more than 600 pilots may be reported across all awardees annually. Data extraction challenges preclude analyses that could provide valuable information about pilots to researchers and administrators. Methods: To address those challenges, we describe a script that partially automates extraction of pilot data from CTSA research progress reports. After extraction of the pilot data, we use an established machine learning (ML) model to determine the scientific content of pilots for subsequent analysis. Analysis of ML-assigned scientific categories reveals the scientific diversity of the CTSA pilot portfolio and relationships among individual pilots and institutions. Results: The CTSA pilots are widely distributed across a number of scientific areas. Content analysis identifies similar projects and the degree of overlap for scientific interests among hubs. Conclusion: Our results demonstrate that pilot data remain challenging to extract but can provide useful information for communicating with stakeholders, administering pilot portfolios, and facilitating collaboration among researchers and hubs.
C1 [Klein, Sean A.] US Dept HHS, Off Sci & Data Policy, Off Assistant Secretary Nanning & Evaluat, Washington, DC 20201 USA.
[Baiocchi, Michael] Stanford Univ, Dept Epidemiol & Populat Hlth, Stanford, CA 94305 USA.
[Rodu, Jordan] Univ Virginia, Dept Stat, Charlottesville, VA USA.
[Baker, Heather; Rosemond, Erica; Doyle, Jamie Mihoko] NIH, Div Clin Innovat, Natl Ctr ForAdv Translat Sci, Bldg 10, Bethesda, MD 20892 USA.
C3 Stanford University; University of Virginia; National Institutes of
Health (NIH) - USA
RP Klein, SA (corresponding author), US Dept HHS, Planning & Evaluat, Room 440F1,200 Independence Ave SW, Washington, DC 20201 USA.
EM sean.klein@hhs.gov
CR Altimus CM, 2019, ALZHEIMERS DEMENT, V15, P42, DOI 10.1016/j.jalz.2018.07.218
[Anonymous], 2 OPTIONS INCLUDE NI
[Anonymous], OVERVIEW RCDC
Assistant Secretary for Planning and Resonse, DET PUBL HLTH EM EX
Austin CP, 2018, NAT REV DRUG DISCOV, V17, P455, DOI 10.1038/nrd.2018.27
Azoulay P., 2020, NBER WORKING PAPER S, DOI 10.3386/w26889
Ballreich JM, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2020.34890
Dozier A., AD HOC WORKGROUP COM
Farooq F, 2020, JAMA NETW OPEN, V3, DOI 10.1001/jamanetworkopen.2020.1737
Ghazarian AL, 2022, ALZHEIMERS DEMENT, V18, P348, DOI 10.1002/alz.12392
Gilliland CT, 2019, ACS PHARMACOL TRANSL, V2, P213, DOI 10.1021/acsptsci.9b00022
Hutchins BI, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000416
Leeper T.J., 2018, TABULIZER BINDINGS T
Li D, 2017, SCIENCE, V356, P78, DOI 10.1126/science.aal0010
Morozumi K, 2021, J CLIN TRANSL SCI, V5, DOI 10.1017/cts.2020.557
National Center for Accelerating Translational Science, PAR21293 NAT CTR ACC
National Center for Accelerating Translational Science, CTSA PROGR GOV GUID
NIH Office of Extramural Research, 2022, NIH OTH PHS AG RES P
NIH RePORT, EST FUND VAR RES CON
Oliveira DFM, 2019, JAMA-J AM MED ASSOC, V321, P898, DOI 10.1001/jama.2018.21944
Ooms OJ, 2020, PDFTOOLS TEXT EXTRAC
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Rankin Tracy, COMMUNICATION
Rees CA, 2021, JAMA PEDIATR, V175, P1236, DOI 10.1001/jamapediatrics.2021.3360
report.nih, ABOUT US
Rollins L, 2021, J CLIN TRANSL SCI, V5, DOI 10.1017/cts.2020.542
Sampat BN, 2021, HEALTH AFFAIR, V40, P400, DOI 10.1377/hlthaff.2020.02097
Schmidt S, 2018, J CLIN TRANSL SCI, V2, P135, DOI 10.1017/cts.2018.30
Surkis A, 2016, J TRANSL MED, V14, DOI 10.1186/s12967-016-0992-8
Wickham H., 2019, WELC, DOI [DOI 10.21105/JOSS.01686, 10.21105/joss.01686]
Zerhouni E, 2008, NIH REFORM ACT 2006
US
NR 32
TC 0
Z9 0
U1 0
U2 1
PU CAMBRIDGE UNIV PRESS
PI CAMBRIDGE
PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND
EI 2059-8661
J9 J CLIN TRANSL SCI
JI J. Clin. Transl. Sci.
PD AUG 18
PY 2022
VL 6
IS 1
AR e113
DI 10.1017/cts.2022.444
PG 8
WC Medicine, Research & Experimental
WE Emerging Sources Citation Index (ESCI)
SC Research & Experimental Medicine
GA 4P9QY
UT WOS:000855724800001
PM 36285022
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Bhullar, PS
Joshi, M
Chugh, R
AF Bhullar, Pritpal Singh
Joshi, Mahesh
Chugh, Ritesh
TI ChatGPT in higher education - a synthesis of the literature and a future
research agenda
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article; Early Access
DE ChatGPT; Artificial Intelligence; Generative AI; Higher education;
Plagiarism; Academic integrity; Systematic review; Bibliometric analysis
ID RESEARCH-FRONT; PERFORMANCE
AB ChatGPT has emerged as a significant subject of research and exploration, casting a critical spotlight on teaching and learning practices in the higher education domain. This study examines the most influential articles, leading journals, and productive countries concerning citations and publications related to ChatGPT in higher education, while also shedding light on emerging thematic and geographic clusters within research on ChatGPT's role and challenges in teaching and learning at higher education institutions. Forty-seven research papers from the Scopus database were shortlisted for bibliometric analysis. The findings indicate that the use of ChatGPT in higher education, particularly issues of academic integrity and research, has been studied extensively by scholars in the United States, who have produced the largest volume of publications, alongside the highest number of citations. This study uncovers four distinct thematic clusters (academic integrity, learning environment, student engagement, and scholarly research) and highlights the predominant areas of focus in research related to ChatGPT in higher education, including student examinations, academic integrity, student learning, and field-specific research, through a country-based bibliographic analysis. Plagiarism is a significant concern in the use of ChatGPT, which may reduce students' ability to produce imaginative, inventive, and original material. This study offers valuable insights into the current state of ChatGPT in higher education literature, providing essential guidance for scholars, researchers, and policymakers.
C1 [Bhullar, Pritpal Singh] Maharaja Ranjit Singh Punjab Tech Univ, Univ Business Sch, Bathinda, Punjab, India.
[Joshi, Mahesh] RMIT Univ, Sch Accounting Informat Syst & Supply Chain, Dept Financial Planning & Tax, Melbourne, Australia.
[Chugh, Ritesh] Cent Queensland Univ, CML NET & CREATE Res Ctr, Sch Engn & Technol, Rockhampton, Qld, Australia.
C3 Royal Melbourne Institute of Technology (RMIT); Central Queensland
University
RP Chugh, R (corresponding author), Cent Queensland Univ, CML NET & CREATE Res Ctr, Sch Engn & Technol, Rockhampton, Qld, Australia.
EM mgtpritpal@mrsptu.ac.in; mahesh.joshi@rmit.edu.au; r.chugh@cqu.edu.au
OI Chugh, Ritesh/0000-0003-0061-7206
FU Central Queensland University
FX No Statement Available
CR Adetayo A. J., 2023, Internet Reference Services Quarterly, V27, P131, DOI [https://doi.org/10.1080/10875301.2023.2203681, DOI 10.1080/10875301.2023.2203681]
AlAfnan M. A., 2023, Journal of Artificial Intelligence and Technology, V3, P60, DOI [https://doi.org/10.37965/jait.2023.0184, DOI 10.37965/JAIT.2023.0184]
Alnaqbi NM., 2023, International Journal of Neutrosophic Science, V20, P181, DOI [10.54216/IJNS.200414, DOI 10.54216/IJNS.200414]
Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062
Bajaj Y, 2021, J ADV MANAG RES, V18, P173, DOI 10.1108/JAMR-01-2020-0017
Bauer E, 2023, BRIT J EDUC TECHNOL, DOI 10.1111/bjet.13336
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Cingillioglu I, 2023, INT J INF LEARN TECH, V40, P259, DOI 10.1108/IJILT-03-2023-0043
Clark TM, 2023, J CHEM EDUC, V100, P1905, DOI 10.1021/acs.jchemed.3c00027
Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148
Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02
Crompton H, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00392-8
da Silva JAT, 2023, PLANT CELL REP, V42, P1529, DOI 10.1007/s00299-023-03022-9
De Angelis L, 2023, FRONT PUBLIC HEALTH, V11, DOI 10.3389/fpubh.2023.1166120
Dehouche Nassim, 2021, Ethics in Science and Environmental Politics, V21, P17, DOI DOI 10.3354/ESEP00195
Dencik L, 2022, INTERNET POLICY REV, V11, DOI 10.14763/2022.1.1615
Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039
Emenike ME, 2023, J CHEM EDUC, V100, P1413, DOI 10.1021/acs.jchemed.3c00063
Eysenbach Gunther, 2023, JMIR Med Educ, V9, pe46885, DOI 10.2196/46885
Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846
Fergus S, 2023, J CHEM EDUC, V100, P1672, DOI 10.1021/acs.jchemed.3c00087
Firat M., 2023, OSF, DOI DOI 10.31219/OSF.IO/9GE8M
Gardner DE, 2023, J CHEM EDUC, V100, P1705, DOI 10.1021/acs.jchemed.3c00011
Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312
Gisev N, 2013, RES SOC ADMIN PHARM, V9, P330, DOI 10.1016/j.sapharm.2012.04.004
Gupta R, 2021, J BUS RES, V125, P74, DOI 10.1016/j.jbusres.2020.12.005
Ibrahim H, 2023, IEEE INTELL SYST, V38, P24, DOI 10.1109/MIS.2023.3255599
Iskender A, 2023, EUR J TOUR RES, V34, DOI 10.54055/ejtr.v34i.3169
Ivanov S, 2021, J TOUR FUTURES, V9, P214, DOI 10.1108/JTF-02-2023-0038
Jarneving B, 2007, J INFORMETR, V1, P287, DOI 10.1016/j.joi.2007.07.004
Jeon J, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204343
Johinke R, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.01
Karaali Gizem, 2023, NUMERACY, V16, DOI [10.5038/1936-4660.16.1.1438, DOI 10.5038/1936-4660.16.1.1438]
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Lawrie G, 2023, CHEM EDUC RES PRACT, V24, P392, DOI 10.1039/d3rp90003g
Lee H, 2024, ANAT SCI EDUC, V17, P926, DOI 10.1002/ase.2270
Li Y., 2023, Computers and Education: Artificial Intelligence, V4, DOI DOI 10.1016/J.CAEAI.2023.100140
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Liebrenz M, 2023, LANCET DIGIT HEALTH, V5, pE105, DOI 10.1016/S2589-7500(23)00019-5
Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790
Lin CC, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15054012
Memarian B., 2023, Computers in Human Behavior: Artificial Humans, V100022, P1
Mishra D, 2017, SUSTAIN PROD CONSUMP, V10, P85, DOI 10.1016/j.spc.2017.01.003
Nautiyal R, 2023, ANN TOURISM RES, V99, DOI 10.1016/j.annals.2023.103544
Neumann M, 2023, 2023 IEEE/ACM 5TH INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING EDUCATION FOR THE NEXT GENERATION, SEENG, P29, DOI 10.1109/SEENG59157.2023.00010
Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160]
Palomo J, 2017, SCIENTOMETRICS, V113, P123, DOI 10.1007/s11192-017-2484-x
Patrício LD, 2021, J ADV MANAG RES, V18, P1, DOI 10.1108/JAMR-04-2020-0051
Paul J, 2021, INT J CONSUM STUD, DOI 10.1111/ijcs.12695
Pechenkina K., 2023, Higher education for good: Teaching and learning futures
Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07
Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783
Rana S, 2023, FIIB BUS REV, V12, P7, DOI 10.1177/23197145231161408
Seetharaman R, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01957-w
Seth I, 2023, ANN SURG ONCOL, DOI 10.1245/s10434-023-13642-w
Shoufan A, 2023, IEEE ACCESS, V11, P38805, DOI 10.1109/ACCESS.2023.3268224
Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5
Skavronskaya L, 2023, J TEACH TRAVEL TOUR, V23, P253, DOI 10.1080/15313220.2023.2196658
Strzelecki A, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2209881
Su JH, 2023, ECNU REV EDUC, V6, P355, DOI 10.1177/20965311231168423
Subramani M, 2023, ADV PHYSIOL EDUC, V47, P270, DOI 10.1152/advan.00036.2023
Sun GH, 2023, NURS EDUC, V48, P119, DOI 10.1097/NNE.0000000000001390
Tang GY, 2023, IRISH J MED SCI, V192, P3195, DOI 10.1007/s11845-023-03374-x
Tang GY, 2023, ACCOUNT RES, DOI 10.1080/08989621.2023.2180359
Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879
Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vijaya V., 2023, Purushartha, V15, P32
Vogels E., 2023, A majority of Americans have heard of ChatGPT, but few have tried it themselves
Wooten J., 2023, AM ECON, p056943452311696
Wu R, 2024, BRIT J EDUC TECHNOL, V55, DOI 10.1111/bjet.13334
Wu TY, 2023, IEEE-CAA J AUTOMATIC, V10, P1122, DOI 10.1109/JAS.2023.123618
Yan D, 2023, EDUC INF TECHNOL, V28, P13943, DOI 10.1007/s10639-023-11742-4
Yeadon W., 2023, Physics Education, V58, P1
Zhai X., 2022, CHATGPT USER EXPERIE, DOI DOI 10.2139/SSRN.4312418
NR 75
TC 2
Z9 2
U1 81
U2 81
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD 2024 MAY 2
PY 2024
DI 10.1007/s10639-024-12723-x
EA MAY 2024
PG 22
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA PV9O8
UT WOS:001216978200002
OA hybrid
DA 2024-09-05
ER
PT J
AU Hoekstra, RC
van Arkel, H
Leurs, B
AF Hoekstra, Rinke C.
van Arkel, Henk
Leurs, Bas
TI MODELING LOCAL MONETARY FLOWS IN POOR REGIONS: A RESEARCH SETUP TO
SIMULATE THE MULTIPLIER EFFECT IN LOCAL ECONOMIES
SO INTERDISCIPLINARY DESCRIPTION OF COMPLEX SYSTEMS
LA English
DT Article
DE multiplier effect; simulation; multi-agent based simulation; social
accounting matrix; artificial intelligence techniques
AB In poor regions, lack of local monetary circulation is one of the key elements causing underdevelopment. The more incoming money is passed from hand to hand, the more the local economy will be stimulated. However, in most poor areas money is spent outside the community before circulating locally, reducing the effectiveness of money inflow dramatically.
Development programs would increase their effectiveness if knowledge was available on how spending money could lead to optimized and prolonged local circulation. To gain this knowledge a simulation tool will be created, which is able to analyze financial flows, to evaluate the potency of specific actions aimed on local development, and to monitor a development scheme during the execution phase.
The basic model will be developed through a multi-agent approach, where each agent represents one (or more) family/households belonging to one of several socio-economic groups. A Social Accounting Matrix (SAM) of the local economy will be used as a basis to set up a spendings matrix for each agent, defining its spending priorities. Artificial Intelligence techniques will be used to give the agent the possibility to make decisions on how to satisfy these spending priorities. Also, social dynamics, the simulation of strategic planning behavior, learning, and exchange in limited networks will be addressed. The simulation application will consist of a common user interface allowing the user to "play" the simulation. This user interface layer will be "pluggable" with the underlying programming layer responsible for the calculations on the simulation, so that different plug-ins may be used for different simulation techniques.
C1 [Hoekstra, Rinke C.; van Arkel, Henk; Leurs, Bas] STRO Fdn, Utrecht, Netherlands.
RP Hoekstra, RC (corresponding author), Stichting STROhalm, Oude Gracht 42, NL-3511 AR Utrecht, Netherlands.
EM rinke@strohalm.nl
CR ADELMAN I, 1988, J DEV STUD, V25, P5, DOI 10.1080/00220388808422092
[Anonymous], 1986, AGR HOUSEHOLD MODELS
[Anonymous], JAPANESE J MANAGEMEN
Cogneau D., 2000, GROWTH DISTRIBUTION
Davies JamesB., 2004, MICROSIMULATION CGE
Fisher I., 2006, The purchasing power of money: its' determination and relation to credit interest and crises
Fisher I., 2003, PROJ FOM FORT FIN RE
Lattarulo P., 2003, 212003 IRPET
Robilliard A., 2001, Crisis and income distribution: A micromacro model for Indonesia
Schreinemachers P., 2005, IRRELEVANCE CROP YIE
Taylor J.E., 1996, VILLAGE EC DESIGN ES
Wilhite A, 2006, HANDB ECON, V13, P1013
NR 12
TC 1
Z9 1
U1 0
U2 0
PU CROATIAN INTERDISCIPLINARY SOC
PI SESVETE
PA SIMUNCEVECKA 38B, SESVETE, HR-10360, CROATIA
SN 1334-4684
EI 1334-4676
J9 INTERDISCIP DESCR CO
JI Interdiscip. Descr. Complex Syst.
PD OCT
PY 2007
VL 5
IS 2
BP 138
EP 150
PG 13
WC Social Sciences, Interdisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Social Sciences - Other Topics
GA VA6YI
UT WOS:000410261300005
DA 2024-09-05
ER
PT C
AU Mojzes, M
Kukal, J
AF Mojzes, Matej
Kukal, Jaromir
BE Prazak, P
TI Bayesian Study on When to Restart Heuristic Search
SO MATHEMATICAL METHODS IN ECONOMICS (MME 2017)
LA English
DT Proceedings Paper
CT 35th International Conference Mathematical Methods in Economics (MME)
CY SEP 13-15, 2017
CL Hradec Kralove, CZECH REPUBLIC
DE Heuristics; search process; performance measure; restart strategy;
Bayesian analysis; operational research
ID ALGORITHMS
AB Heuristic algorithm performance measures assess the quality of a search process by statistically analyzing its performance data, typically the number of objective function evaluations before optimal or acceptable solution is found. Such criteria are not only intended to provide the verdict on which algorithm is better for what task, but also to help make the best possible use of a given algorithm on a given task. This target may be achieved by an appropriate restart strategy of the search process. In our paper we formulate axiomatic approach which also describes existing performance measures. Novelty of this paper consist in performance measure analysis via Marko-ian chain calculation and its direct Bayesian estimation based on Monte Carlo simulations. Practical results are demonstrated on combinatorial optimization problems and are applicable e.g. to NP-hard problems from the field of operational research.
C1 [Mojzes, Matej; Kukal, Jaromir] FNSPE CTU, Dept Software Engn, Trojanova 13, Prague, Czech Republic.
C3 Czech Technical University Prague
RP Mojzes, M (corresponding author), FNSPE CTU, Dept Software Engn, Trojanova 13, Prague, Czech Republic.
EM mojzemat@fjfi.cvut.cz; jaromir.kukal@fjfi.cvut.cz
FU Czech Technical University in Prague [SGS17/196/OHK4/3T/14]
FX This paper was created under the support of grant SGS17/196/OHK4/3T/14
Czech Technical University in Prague.
CR [Anonymous], 2005, PRACTICAL MATH OPTIM
[Anonymous], 2010, HDB METAHEURISTICS
[Anonymous], 2009, MARKOV CHAINS STOCHA
Auger A, 2005, IEEE C EVOL COMPUTAT, P1777
Babai L., 1979, UNIVERSIT TDE MONTR, P79
Balakrish V. B., 2005, PRIMER STAT DISTRIBU, P274
BATTITI R, 1992, MICROPROCESS MICROSY, V16, P351, DOI 10.1016/0141-9331(92)90003-C
BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x
CERNY V, 1985, J OPTIMIZ THEORY APP, V45, P41, DOI 10.1007/BF00940812
Feoktistov V, 2006, SPRINGER SER OPTIM A, V5, pXI
Guo Y, 2012, INT SYM COMPUT INTEL, P423, DOI 10.1109/ISCID.2012.254
Hanning C., 2010, DISCRETE DYNAMICS NA, V2010
Hansen N, 2010, Real-parameter black-box optimization benchmarking 2010: Experimental setup
HILbERT D., 1894, Acta Math., V18, P155, DOI [DOI 10.1007/BF02418278, 10.1007/BF02418278]
Hoos H. H., 1998, Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference (1998), P238
Hoos H. H, 2005, Stochastic Local Search. Foundations and Applications
Howson Colin., 2005, SCI REASONING BAYESI, V3rd
LUBY M, 1993, INFORM PROCESS LETT, V47, P173, DOI 10.1016/0020-0190(93)90029-9
Mojzes M, 2011, MENDEL, P244
Schrijver A., 1997, Combinatorial Optimization
TAILLARD E, 1991, PARALLEL COMPUT, V17, P443, DOI 10.1016/S0167-8191(05)80147-4
Taillard E. D., 1994, ORSA Journal on Computing, V6, P108, DOI 10.1287/ijoc.6.2.108
TENEIKELDER HMM, 1996, METAHEURISTICS THEOR, P605
Tvrdik J., 2012, 18 INT C SOFT COMP M, P132
Wolpert D. H., 1997, IEEE Transactions on Evolutionary Computation, V1, P67, DOI 10.1109/4235.585893
Yang XS, 2009, WOR CONG NAT BIOL, P210, DOI 10.1109/nabic.2009.5393690
NR 26
TC 0
Z9 0
U1 1
U2 3
PU UNIV HRADEC KRALOVE
PI HRADEC KRALOVE 3
PA ROKITANSKEHO 62, HRADEC KRALOVE 3, 500 03, CZECH REPUBLIC
BN 978-80-7435-678-0
PY 2017
BP 480
EP 485
PG 6
WC Economics; Operations Research & Management Science; Mathematics,
Interdisciplinary Applications; Social Sciences, Mathematical Methods
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics; Operations Research & Management Science;
Mathematics; Mathematical Methods In Social Sciences
GA BJ7ED
UT WOS:000427151400082
DA 2024-09-05
ER
PT J
AU Gou, W
Ren, ZT
Chen, HX
Xing, L
Zhou, ZX
Xia, XX
Shi, JF
AF Gou, Wei
Ren, Zhaoting
Chen, Huanxin
Xing, Lu
Zhou, Zhenxin
Xia, Xingxiang
Shi, Jingfeng
TI Experimental research on the performance and parameters sensitivity
analysis of variable refrigerant flow system with common faults imposed
in heating mode
SO ENERGY AND BUILDINGS
LA English
DT Article
DE Variable refrigerant flow systems; Fault impacts; Sensitivity analysis;
Feature selection; Fault decoupling variables
ID AIR-CONDITIONER; PUMP; CHARGE; IMPACT; CONDENSER
AB Due to improper installation, operation, and maintenance, many common faults inevitably occur in the air conditioning systems. However, the same fault could demonstrate different characteristics under dif-ferent load rates and fault levels; different faults may present similar fault phenomena. This paper reveals the quantitative impact of faults on system performance of VRF system with common faults imposed in heating mode through fault experiments. The system parameters sensitivity study has been carried out to understand the internal impact mechanism related to system parameters. This provides a reference for selecting characteristic parameters and fault decoupling variables and developing interpretable, profes-sional, and reliable fault detection and diagnosis models. The results show that the outdoor unit fouling fault can cause the heating capacity to drop by 73.2%, and the indoor unit fouling can cause the system power to drop by 65.5%. The coefficient of performance drop is as high as 48.6%. The sensitivity study result shows that the system load rate is an influential parameter; it needs to be considered when char-acteristic parameters and fault decoupling variables are selected.(c) 2022 Elsevier B.V. All rights reserved.
C1 [Gou, Wei; Chen, Huanxin; Zhou, Zhenxin] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept Refrigerant & Cryogen Engn, Wuhan 430074, Peoples R China.
[Ren, Zhaoting; Xia, Xingxiang; Shi, Jingfeng] Qingdao Hisense Hitachi Air Conditioning Syst Co L, Qingdao 266510, Peoples R China.
[Xing, Lu] Northumbria Univ, Mech & Construct Engn, Newcastle Upon Tyne NE1 8ST, England.
C3 Huazhong University of Science & Technology; Northumbria University
RP Chen, HX (corresponding author), Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept Refrigerant & Cryogen Engn, Wuhan 430074, Peoples R China.
EM chenhuanxin@tsinghua.org.cn
RI Xing, Lu/ABH-4014-2022
OI Xing, Lu/0000-0002-5561-7417
FU National Natural Science Foundation of China; [51876070]
FX Acknowledgments The authors gratefully acknowledge the support of the
National Natural Science Foundation of China (Grant number 51876070) .
CR Ali AHH, 2008, HVAC&R RES, V14, P209, DOI 10.1080/10789669.2008.10391004
[Anonymous], 2012, 2011 BUILD EN DAT BO
Bellanco I, 2021, J BUILD ENG, V39, DOI 10.1016/j.jobe.2021.102254
Breuker MS, 1998, HVAC&R RES, V4, P303, DOI 10.1080/10789669.1998.10391406
Bultman DH, 1995, J ENERG RESOUR-ASME, V117, P349, DOI 10.1115/1.2835434
Cho JM, 2014, APPL THERM ENG, V67, P1, DOI 10.1016/j.applthermaleng.2014.03.010
Choi JM, 2002, ENERGY, V27, P391, DOI 10.1016/S0360-5442(01)00093-7
Dooley J.B, 2005, EFFECTS SYSTEM CYCLI
Du ZM, 2016, APPL THERM ENG, V98, P61, DOI 10.1016/j.applthermaleng.2015.11.108
F.M, 1990, MODELING EFFECTS REF
FARZAD M, 1991, INT J REFRIG, V14, P321, DOI 10.1016/0140-7007(91)90027-E
Gao Y, 2021, ENERG BUILDINGS, V251, DOI 10.1016/j.enbuild.2021.111318
Hu Y, 2022, APPL THERM ENG, V215
Hu YF, 2022, ENERG BUILDINGS, V254, DOI 10.1016/j.enbuild.2021.111630
Hu YF, 2021, ENERG BUILDINGS, V242, DOI 10.1016/j.enbuild.2021.110975
Hu YF, 2021, APPL THERM ENG, V184, DOI 10.1016/j.applthermaleng.2020.116116
Jon W., 2020, APPL ENERG, V278
Katipamula Srinivas, 2005, METHODS FAULT DETE 1
Kim M, 2009, APPL THERM ENG, V29, P770, DOI 10.1016/j.applthermaleng.2008.04.009
Kim W, 2012, INT J REFRIG, V35, P1805, DOI 10.1016/j.ijrefrig.2012.06.007
Koebrich Samuel., 2017, Renewable Energy Data Book: Including Data and Trends for Energy Storage and Electric Vehicles
Li JB, 2020, INT J REFRIG, V112, P14, DOI 10.1016/j.ijrefrig.2019.12.020
Mehrabi M, 2017, INT J REFRIG, V76, P367, DOI 10.1016/j.ijrefrig.2017.02.014
Pak BC, 2005, ASHRAE TRAN, V111, P496
Palmiter L, 2011, ENERG BUILDINGS, V43, P1802, DOI 10.1016/j.enbuild.2011.03.026
Qureshi BA, 2014, INT J REFRIG, V38, P260, DOI 10.1016/j.ijrefrig.2013.08.012
Schein J, 2006, ENERG BUILDINGS, V38, P1485, DOI 10.1016/j.enbuild.2006.04.014
Wu JH, 2019, ENERG POLICY, V125, P368, DOI 10.1016/j.enpol.2018.10.038
Xu YZ, 2020, SUSTAIN CITIES SOC, V62, DOI 10.1016/j.scs.2020.102369
Yan K, 2018, INT J REFRIG, V86, P401, DOI 10.1016/j.ijrefrig.2017.11.003
Zhang P, 2019, APPL SOFT COMPUT, V85, DOI 10.1016/j.asoc.2019.105859
Zhao Y, 2019, RENEW SUST ENERG REV, V109, P85, DOI 10.1016/j.rser.2019.04.021
Zhenxin Z, 2022, APPL THERM ENG, V202
Zhong FL, 2022, ENERGY, V258, DOI 10.1016/j.energy.2022.124762
NR 34
TC 4
Z9 4
U1 3
U2 6
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0378-7788
EI 1872-6178
J9 ENERG BUILDINGS
JI Energy Build.
PD JAN 1
PY 2023
VL 278
AR 112624
DI 10.1016/j.enbuild.2022.112624
EA NOV 2022
PG 14
WC Construction & Building Technology; Energy & Fuels; Engineering, Civil
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Construction & Building Technology; Energy & Fuels; Engineering
GA 6V3QN
UT WOS:000894967000002
DA 2024-09-05
ER
PT J
AU Casey, M
Raynor, M
Jacob, C
Sharp, S
McFarlane, E
AF Casey, Monica
Raynor, Michael
Jacob, Catherine
Sharp, Stephen
McFarlane, Emma
TI Improving the precision of search strategies for guideline surveillance
SO RESEARCH SYNTHESIS METHODS
LA English
DT Article
DE databases; bibliographic; information storage and retrieval; search
precision; search recall; search strategy
ID HEALTH
AB Introduction and aim NICE guideline surveillance determines whether previously published guidelines need updating. The surveillance process must balance time constraints with methodological rigor. It includes a rapid review to identify new evidence to contradict, reinforce or clarify guideline recommendations. Despite this approach, the screening burden can still be high. Applying additional search techniques may increase the precision of the database searches.
Methods A retrospective analysis was conducted on five surveillance reviews with less than 2% of the studies included after screening. Modified searches were run in MEDLINE, Embase and PsycINFO (where appropriate) to test the impact of additional search techniques: focused subject headings, subheadings, frequency operators and title only searches. Modified searches were compared to original search results to determine: the retrieval of included studies, the precision of the search and the number needed to read. Studies not retrieved by the modified search were checked to determine if the surveillance decision would have been affected.
Results The additional search techniques tested indicated that a combination of focused subject headings and frequency operators could improve the precision of surveillance searches. The modified search retrieved all the original studies included in the surveillance review for three of the reviews tested. Some of the original included studies were not retrieved for two reviews but the missing studies would not have affected the surveillance decision.
Conclusions Combining focused subject headings and frequency operators is a viable option for improving the precision of surveillance searches without compromising recall and without impacting the surveillance decision.
C1 [Casey, Monica; Jacob, Catherine] Natl Inst Hlth & Care Excellence, Informat Serv, London, England.
[Raynor, Michael; Sharp, Stephen; McFarlane, Emma] Natl Inst Hlth & Care Excellence, Ctr Guidelines, London, England.
C3 National Institute for Health & Care Excellence; National Institute for
Health & Care Excellence
RP Casey, M (corresponding author), Natl Inst Hlth & Care Excellence, Informat Serv, London, England.
EM monica.casey@nice.org.uk
RI Jacob, Catherine/IXD-2619-2023
OI Casey, Monica/0000-0002-9483-9012
CR Abou-Setta AM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165903
Alderson LJH, 2014, J CLIN EPIDEMIOL, V67, P52, DOI 10.1016/j.jclinepi.2013.07.012
[Anonymous], 2015, PRUN EMTR DOES FOC E
[Anonymous], 2012, Autism spectrum disorder in adults: diagnosis and management (CG142)
[Anonymous], 2012, NEON INF EARL ONS AN
Bramer WM, 2018, SYST REV-LONDON, V7, DOI 10.1186/s13643-018-0864-9
Haby MM, 2016, HEALTH RES POLICY SY, V14, DOI 10.1186/s12961-016-0155-7
Harker J, 2012, INT J EVID-BASED HEA, V10, P397, DOI 10.1111/j.1744-1609.2012.00290.x
Levay P, 2016, RES SYNTH METHODS, V7, P34, DOI 10.1002/jrsm.1158
Moore G, 2018, HEALTH RES POLICY SY, V16, DOI 10.1186/s12961-018-0293-1
NICE, 2012, PSYCH SCHIZ CHILDR Y
NICE, 2012, AC UPP GASTR BLEED O
NICE, 2018, DEV NICE GUID MAN
(NICE) NIoHaCE, 2013, FEV 5S ASS IN MAN CL
Nussbaumer-Streit B, 2016, SYST REV, V5, DOI 10.1186/s13643-016-0380-8
Sharp S, 2018, GUID INT NETW GIN C
Tricco AC, 2015, BMC MED, V13, DOI 10.1186/s12916-015-0465-6
NR 17
TC 6
Z9 6
U1 0
U2 1
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1759-2879
EI 1759-2887
J9 RES SYNTH METHODS
JI Res. Synth. Methods
PD NOV
PY 2020
VL 11
IS 6
BP 903
EP 912
DI 10.1002/jrsm.1461
PG 10
WC Mathematical & Computational Biology; Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematical & Computational Biology; Science & Technology - Other
Topics
GA OR4HP
UT WOS:000589433800014
PM 32985071
DA 2024-09-05
ER
PT C
AU Schilling, K
AF Schilling, Katherine
BE Beldhuis, H
TI The Efficacy of eLearning for Information-Retrieval Skills in Medical
Education
SO PROCEEDINGS OF THE 11TH EUROPEAN CONFERENCE ON E-LEARNING
LA English
DT Proceedings Paper
CT 11th European Conference on E-Learning (ECEL)
CY OCT 26-27, 2012
CL Univ Groningen, Groningen, NETHERLANDS
HO Univ Groningen
DE online learning; distance education; literature searching; bibliographic
retrieval; information-retrieval skills; evidence-based practice
ID FACE-TO-FACE; STUDENTS; LITERACY; MEDLINE; ONLINE; CURRICULUM; OUTCOMES;
SEEKING
AB A randomised, blinded study addressed the extent to which the training method used to deliver information literacy skills instruction impacted on students' information-retrieval skills and other variables. First-year medical students at a major U. S. university (N = 128) were randomly assigned to a control or intervention group for information-retrieval skills training on searching the MEDLINE database for the best evidence on common patient problems. The control group (n = 63) participated in traditional, instructor-led information and MEDLINE searching skills training, and the intervention group (n = 65) participated in the same instruction via a web-based tutorial. Data was gathered from multiple sources including a) pre- and post-training surveys, skills self-assessments, and written skills tests; b) the evaluation of students' MEDLINE literature searches; and c) follow-up surveys administered at the end of the semester measuring students' use of information resources for evidence-based practice. Students' MEDLINE literature searches were evaluated by expert searchers, allowing for a comprehensive analysis of students' literature searching skills for identifying the best evidence in the biomedical journals. Intervention group (e-learning) students earned slightly higher MEDLINE searching scores. Data analysis showed no statistically significant differences (P = 0.065) between the training groups, however, illustrating that e-learning methods and face-to-face training were equally effective. Study results provide a picture of students' MEDLINE searching skills, information usage patterns and behaviours, and attitudes regarding library and information services and resources. Research findings are important for assessing the viability of self-paced, online tutorials for teaching and promoting effective information skills, particularly in evidence-based practice environments in which literature searching is routinely required.
C1 [Schilling, Katherine] Indiana Univ, Sch Lib Informat Sci, Indianapolis, IN 46204 USA.
C3 Indiana University System; Indiana University Indianapolis
EM katschil@iupui.edu
CR Abdous M, 2010, INTERNET HIGH EDUC, V13, P248, DOI 10.1016/j.iheduc.2010.04.005
Anderson K, 2010, J ACAD LIBR, V36, P495, DOI 10.1016/j.acalib.2010.08.005
[Anonymous], 1992, QUALITATIVE RES INFO
[Anonymous], 1974, STAT MED
Anwar MA, 2012, J LIBR INF SCI, V44, P36, DOI 10.1177/0961000611425568
Artino AR, 2012, INTERNET HIGH EDUC, V15, P170, DOI 10.1016/j.iheduc.2012.01.006
Artino AR, 2010, INTERNET HIGH EDUC, V13, P272, DOI 10.1016/j.iheduc.2010.07.005
Association of College and Research Libraries, 2000, INF LIT COMP STAND H
Association of College and Research Libraries, 1998, ACRL GUID DIST LEARN
Bloom Benjamin S, 1956, HDB 1 COGNITIVE DOMA, V1, P20
Brettle A, 2007, HEALTH INFO LIBR J, V24, P18, DOI 10.1111/j.1471-1842.2007.00740.x
Bruce C, 2011, AUST LIBR J, V60, P334, DOI 10.1080/00049670.2011.10722653
BURROWS S, 1989, B MED LIBR ASSOC, V77, P245
Burrows SC, 1999, B MED LIBR ASSOC, V87, P471
Figa Elizabeth, 2009, Journal of Library & Information Services in Distance Learning, V3, P67, DOI 10.1080/15332900902979119
Garg Anupama, 2003, Health Info Libr J, V20, P33, DOI 10.1046/j.1471-1842.2003.00416.x
Gilstrap DL, 2008, COLL RES LIBR, V69, P407, DOI 10.5860/0690407
HAYNES RB, 1990, ANN INTERN MED, V112, P78, DOI 10.7326/0003-4819-112-1-78
HAYNES RB, 1993, ONLINE J CURREN 0511
Kuhlthau C.C., 1993, Seeking meaning: A process approach to library and information services
KUHLTHAU CC, 1990, LIBR INFORM SCI RES, V12, P5
Kwon N, 2008, COLL RES LIBR, V69, P117, DOI 10.5860/crl.69.2.117
Lai NM, 2010, EDUC HEALTH, V23, P151
Lindsay EB, 2004, J ACAD LIBR, V30, P482, DOI 10.1016/j.acalib.2004.07.007
Marcinek M., 2011, IATUL ANN C P, V21, P1
MARSHALL JG, 1993, B MED LIBR ASSOC, V81, P299
Nesbitt K.W., 2001, ANN M MED LIB ASS OR
Niedbala MA, 2010, J LIBR ADM, V50, P867, DOI 10.1080/01930826.2010.488986
PAO ML, 1993, COMPUT BIOMED RES, V26, P541, DOI 10.1006/cbmr.1993.1038
PAO ML, 1994, ACAD MED, V69, P914, DOI 10.1097/00001888-199411000-00014
Plutchak T.S., 1989, MED REF SER QUART, V8, P45
RANKIN JA, 1992, B MED LIBR ASSOC, V80, P36
Rosenberg WMC, 1998, J ROY COLL PHYS LOND, V32, P557
Russell T.L., 1999, NO SIGNIFICANT DIFFE
Scaramozzino JM, 2010, J LIBR ADM, V50, P315, DOI 10.1080/01930821003666981
Schilling K, 2006, FAM MED, V38, P126
Straus SE., 2005, Evidence-Based Medicine: How to Practice and Teach EBM, V3rd
TAYLOR RS, 1968, COLL RES LIBR, V29, P178, DOI 10.5860/crl_29_03_178
Thornes S.S., 2012, Journal of Information Literacy, V6, P81
Usova T., 2011, The Canadian Journal Of Library Information Practice Research, V6, P1
WILDEMUTH BM, 1995, B MED LIBR ASSOC, V83, P294
Wildemuth BM, 1993, END USER SEARCHING M
Yukawa J., 2010, Journal of Education for Library and Information Science, V51, P54
Zoellner K, 2008, COLL RES LIBR, V69, P370, DOI 10.5860/crl.69.4.370
NR 44
TC 6
Z9 6
U1 0
U2 38
PU ACAD CONFERENCES LTD
PI NR READING
PA CURTIS FARM, KIDMORE END, NR READING, RG4 9AY, ENGLAND
BN 978-1-908272-74-4
PY 2012
BP 515
EP 522
PG 8
WC Education & Educational Research
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BFW04
UT WOS:000321613000062
DA 2024-09-05
ER
PT J
AU Leiva, R
Kimber, D
AF Leiva, Ricardo
Kimber, David
TI A Persistent Gender Bias in Chilean Press: The Influence of Journalist's
Gender and Editor's Gender
SO JOURNALISM & MASS COMMUNICATION QUARTERLY
LA English
DT Article
DE gatekeeping; newspaper and online news; newspaper; Chile; logistic
regression; content analysis; gender
ID INFORMATION-SOURCES; SOURCE SELECTION; NEWS COVERAGE; WOMEN; NEWSPAPER;
MEDIA; US; AMERICAN; MODEL
AB There is a lot of evidence about gender bias in the media, but not clear evidence about its causes. In this article, we study the influence of journalist's gender and editor's gender on gender bias in Chilean press through time. Based on content analysis of 2,645 news articles from Chilean leading newspapers and logistics regression, results confirm the relevance of the gender of both, journalists and editors, on the presence of gender bias in Chilean press, being a permanent behavior through time. Our research supports that the more women in the newsrooms, the greater women's representation by the news media.
C1 [Leiva, Ricardo] Univ Los Andes, Sch Commun, Monsenor Alvaro del Portillo 12455, Santiago 7550000, Chile.
[Kimber, David] Univ Los Andes, Sch Business & Econ, Santiago, Chile.
C3 Universidad de los Andes - Chile; Universidad de los Andes - Chile
RP Leiva, R (corresponding author), Univ Los Andes, Sch Commun, Monsenor Alvaro del Portillo 12455, Santiago 7550000, Chile.
EM rleiva@uandes.cl
RI Kimber, David/G-2864-2015
OI Kimber, David/0000-0002-3006-9231
CR Aaker D., 2012, Marketing Research, V11th
[Anonymous], 2005, WOM TAK CAR MEN TAK
[Anonymous], 2015, WHO MAKES NEWS GLOBA
[Anonymous], 2005, Who makes the news? Global Media Monitoring Project 2005
[Anonymous], 2005, Analyzing media messages: Using quantitative content analysis in research
[Anonymous], 2012, CLOS GEND GAP ACT NO
[Anonymous], 2010, STAT NEWS MED
[Anonymous], 2014, STAT WOM US MED 2014
Armstrong CL, 2005, J MASS COMMUN Q, V82, P820, DOI 10.1177/107769900508200405
Armstrong CL, 2004, JOURNALISM MASS COMM, V81, P139, DOI 10.1177/107769900408100110
Balch O., 2009, GUARDIAN
Banerjee M, 1999, CAN J STAT, V27, P3, DOI 10.2307/3315487
Beam RA, 2010, J MASS COMMUN Q, V87, P393, DOI 10.1177/107769901008700211
Buckley HL, 2014, NEW ZEAL J ECOL, V38, P335
Byerly C., 2018, GLOBAL REPORT STATUS
Cadem, 2018, CHIL QUE VIEN
Camara de Diputados de Chile, 2020, GAL HIST CAM DIP 201
Campbell X. M., 2014, THESIS
Candidaturas Chile, 2017, INF COMP C NAC 2018
Cattell RB, 1943, PSYCHOL BULL, V40, P153, DOI 10.1037/h0059973
Collins RL, 2011, SEX ROLES, V64, P290, DOI 10.1007/s11199-010-9929-5
Craft S, 2004, JOURNALISM MASS COMM, V81, P124, DOI 10.1177/107769900408100109
Davis Aeron., 2000, JOURNALISM, V1, P282
DAVIS J, 1982, JOURNALISM QUART, V59, P456, DOI 10.1177/107769908205900316
Dides C, 2010, ESTUDIO COMPARATIVO
Dow Jones & Co, 2010, WALL STREET J MEDIA
Dow Jones & Co, 2010, WALL STREET J DIGITA
Egon Zehnder, 2016, E ZEHND LAT AM BOARD
Elmore C., 2007, Women Language, V30, P18
Everbach T, 2006, J MASS COMMUN Q, V83, P477, DOI 10.1177/107769900608300301
Fort L., 2007, Chile-reconciling the gender paradox
Freedman E., 2005, MASS COMMUNICATION S, V8, P257, DOI DOI 10.1207/S15327825MCS0803_5
Freedman E, 2007, J WOMEN POLIT POLICY, V29, P57, DOI 10.1300/J501v29n01_04
Rodríguez-Zoya LG, 2015, PALABRA CLAVE, V18, P905, DOI 10.5294/pacla.2015.18.3.12
Gallagher Margaret., 2010, Who makes the news? Global Media Monitoring Project 2010
Gambino L., 2019, Government shutdown: How bad is it and can it be resolved?
Gans H. J., 2004, Deciding what's news: A study of CBS Evening News, NBC Nightly News. Newsweek
GANS HJ, 1979, COLUMBIA JOURNAL REV, V17, P40
Gaonkar DP, 2002, PUBLIC CULTURE, V14, P1, DOI 10.1215/08992363-14-1-1
Gidengil E, 1999, HARV INT J PRESS-POL, V4, P48, DOI 10.1177/1081180X99004001005
Godoy-Pressland A, 2014, MEDIA CULT SOC, V36, P595, DOI 10.1177/0163443714532977
GoodyearGrant E, 2013, GENDERED NEWS: MEDIA COVERAGE AND ELECTORAL POLITICS IN CANADA, P1
Grandy K, 2014, J MASS COMMUN Q, V91, P578, DOI 10.1177/1077699014538832
Greenwald MarilynS., 1990, NEWSPAPER RES J, V11, P68
Greenwood J, 2016, AM ECON J-MACROECON, V8, P1, DOI 10.1257/mac.20130156
Harp D, 2014, J MASS COMMUN Q, V91, P289, DOI 10.1177/1077699014527457
Harris J., 2002, International Review for the Sociology of Sport, V37, P397, DOI 10.1177/1012690202037004024
Vu HT, 2018, J MASS COMMUN Q, V95, P565, DOI 10.1177/1077699017714224
Islam Roumeen., 2002, RIGHT TELL, P1
Jalalzai F, 2006, POLITICS POLICY, V34, P606, DOI 10.1111/j.1747-1346.2006.00030.x
Kriefing L.A., 2002, Women in Management Review, V17, P104
Kristjanpoller WD, 2015, SEX ROLES, V72, P50, DOI 10.1007/s11199-014-0439-8
Lavery L, 2013, POLITICS POLICY, V41, P877, DOI 10.1111/polp.12051
Lavie A, 2003, EUR J COMMUN, V18, P5, DOI 10.1177/0267323103018001224
Layton Alexi., 2013, Lack of female sources in NY Times front-page stories highlights need for change
Lazarsfeld P. F., 1974, IND CULTURAL SOC MAS, P231
Lewin K, 1947, HUM RELAT, V1, P143, DOI 10.1177/001872674700100201
Liebler CM, 1997, J BROADCAST ELECTRON, V41, P58
MCSHANE SL, 1995, JOURNALISM MASS COMM, V72, P190, DOI 10.1177/107769909507200116
Mellado C., 2012, The Global Journalist of the 21st century, P382
Mellado C, 2010, CUAD INFO-SANTIAGO, P45, DOI 10.7764/cdi.26.11
Metz I, 2009, ACAD MANAG LEARN EDU, V8, P540, DOI 10.5465/AMLE.2009.47785472
Mineduc, 2019, INF MATR 2019 ED SUP
Mitsu D., 2013, STATUS WOMEN S MEDIA
National Institute of Statistics [INE], 2016, ENC SUPL INGR I NACL
National Institute of Statistics [INE], 2019, POBL ED TRAB SIT FUE
Neuendorf KA, 2011, SEX ROLES, V64, P276, DOI 10.1007/s11199-010-9893-0
Neuendorf KA, 2010, SEX ROLES, V62, P747, DOI 10.1007/s11199-009-9644-2
Oggins J, 2014, SEX ROLES, V71, P182, DOI 10.1007/s11199-014-0382-8
Organisation for Economic Co-operation and Development, 2015, COUNTR STAT PROF CHI, DOI 10.1787/csp-chl-table-2015-2-en
Organisation for Economic Co-operation and Development, 2016, BETT LIF IND 2015
Organisation for Economic Co-operation and Development, 2015, EC SURV CHIL 2015
Parsons W., 1989, POWER FINANCIAL PRES
Peiser W, 2000, JOURNALISM MASS COMM, V77, P243, DOI 10.1177/107769900007700202
Matud MP, 2011, SEX ROLES, V64, P253, DOI 10.1007/s11199-010-9874-3
Programa de las Naciones Unidas para el desarrollo, 2017, DES OR CAMB DES BREC
Reinardy S., 2012, NEWSPAPER RES J, V33, P54
Rodgers S, 2003, J COMMUN, V53, P658, DOI 10.1111/j.1460-2466.2003.tb02916.x
Rodgers YanaVan Der Meulen., 2006, Visual Communication, P139
Rosas-Moreno TC, 2014, WOMEN IN POLITICS AND MEDIA: PERSPECTIVES FROM NATIONS IN TRANSITION, P131
Ross Karen., 2002, SEX MONEY FEMINISM P, P112, DOI DOI 10.5749/J.CTTTV3ZG.2
Sanchez-Aranda Jose J., 2003, MUJER PUBLICADA MUJE
Schwartz J, 2011, SEX ROLES, V64, P265, DOI 10.1007/s11199-010-9825-z
Senado de la Republica de Chile, 2016, LIST SEN
Servel, 2018, PART MUJ POL
SHELLEY M, 1984, J AM STAT ASSOC, V79, P240, DOI 10.2307/2288384
Shoemaker PJ, 2009, INT COMMUN ASSOC HAN, P73
Shoemaker PJ, 2001, JOURNALISM MASS COMM, V78, P233, DOI 10.1177/107769900107800202
Shoemaker PJ., 1996, Mediating the Message: Theories of Influences on Mass Media Content, V2nd
SrebernyMohammadi A, 1996, PARLIAMENT AFF, V49, P103, DOI 10.1093/oxfordjournals.pa.a028661
SVS, 2015, REG DIR EJ ENT FISC
Sylvie G, 2008, J MASS COMMUN Q, V85, P61, DOI 10.1177/107769900808500105
Tan G., 2018, BLOOMBERG NEWS
Tokman A, 2011, Mujeres en puestos de responsabilidad empresarial informe de estudio
TUCHMAN G, 1979, SIGNS, V4, P528, DOI 10.1086/493636
Tuchman Gaye., 1978, Hearth and Home: Images of Women in the Mass Media, P186
Usher N, 2018, INT J PRESS/POLIT, V23, P324, DOI 10.1177/1940161218781254
Valenzuela S., 2009, International Communication Gazette, V71, P203
Valida, 2014, IND CIRC LECT CHIL 2
Valida, 2016, IND CIRC LECT CHIL 2
Van Zoonen L., 1988, EUR J COMMUN, VI, P35, DOI DOI 10.1177/0267323188003001003
Vega M., 2014, EL MERCURIO, pC3
Weaver D.H., 1996, AM JOURNALIST 1990S
White DM, 1950, JOURNALISM QUART, V27, P383, DOI 10.1177/107769905002700403
Wilson JB, 2014, J VEG SCI, V25, P4, DOI 10.1111/jvs.12136
World Bank, 2018, PIB US PREC ACT
World Economic Forum, 2018, GLOB GEND GAP REP WO
World Economic Forum, 2015, GLOB GEND GAP REP WO
World Economic Forum, 2011, GLOB GEND GAP REP WO
World Economic Forum, 2006, GLOB GEND GAP REP WO
Zeldes GeriAlumit., 2005, MASS COMMUNICATION S, V8, P373, DOI [DOI 10.1207/S15327825MCS0804_5, 10.1207/s15327825mcs08045, DOI 10.1207/S15327825MCS08045]
Zoch LM, 1998, JOURNALISM MASS COMM, V75, P762, DOI 10.1177/107769909807500410
NR 112
TC 9
Z9 9
U1 3
U2 23
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1077-6990
EI 2161-430X
J9 J MASS COMMUN Q
JI Journal. Mass Commun. Q.
PD MAR
PY 2022
VL 99
IS 1
BP 156
EP 182
AR 1077699020958753
DI 10.1177/1077699020958753
EA SEP 2020
PG 27
WC Communication
WE Social Science Citation Index (SSCI)
SC Communication
GA YX7ZR
UT WOS:000572397500001
DA 2024-09-05
ER
PT J
AU Cooper, C
Snowsill, T
Worsley, C
Prowse, A
O'Mara-Eves, A
Greenwood, H
Boulton, E
Strickson, A
AF Cooper, Chris
Snowsill, Tristan
Worsley, Christine
Prowse, Amanda
O'Mara-Eves, Alison
Greenwood, Helen
Boulton, Emma
Strickson, Amanda
TI Handsearching had best recall but poor efficiency when exporting to a
bibliographic tool: case study
SO JOURNAL OF CLINICAL EPIDEMIOLOGY
LA English
DT Article
ID RANDOMIZED CONTROLLED-TRIALS; SYSTEMATIC REVIEWS; PUBLIC-HEALTH;
ABSTRACTS; SEARCHES; JOURNALS
C1 [Cooper, Chris] UCL, Dept Clin Educ & Hlth Psychol, London WC1E 7HB, England.
[Snowsill, Tristan] Univ Exeter, Med Sch, Hlth Econ Grp, Exeter, Devon, England.
[Worsley, Christine; Prowse, Amanda; Boulton, Emma; Strickson, Amanda] Tolley Hlth Econ, Buxton, England.
[O'Mara-Eves, Alison] UCL, EPPi Ctr, London, England.
[Greenwood, Helen] Royal Coll Psychiatrists, London, England.
C3 University of London; University College London; University of Exeter;
University of London; University College London; UCL Institute of
Education
RP Cooper, C (corresponding author), UCL, 1-19 Torrington Pl, London WC1E 7HB, England.
EM ucjucc4@ucl.ac.uk
RI Cooper, Chris/C-9318-2012
OI Cooper, Chris/0000-0003-0864-5607; O'Mara-Eves,
Alison/0000-0002-0359-6423
FU Takeda Pharmaceuticals, Cambridge MA, USA
FX The systematic review related to this study was sponsored by Takeda
Pharmaceuticals, Cambridge MA, USA. The case study presented here was
undertaken without any specific sponsorship or funding.
CR ADAMS CE, 1994, PSYCHOL MED, V24, P741, DOI 10.1017/S0033291700027896
Adams J, 2016, SYST REV-LONDON, V5, DOI 10.1186/s13643-016-0337-y
[Anonymous], 2009, Systematic reviews: CRD's guidancefor undertaking reviews in health care
[Anonymous], HLTH LIB REV
Armstrong R, 2005, J PUBLIC HEALTH, V27, P388, DOI 10.1093/pubmed/fdi056
Bethel A, 2014, HEALTH INFO LIBR J, V31, P43, DOI 10.1111/hir.12054
Blümle A, 2008, DEUT MED WOCHENSCHR, V133, P230, DOI 10.1055/s-2008-1017501
Booth A, 2010, INT J TECHNOL ASSESS, V26, P431, DOI 10.1017/S0266462310000966
Collaboration for Environmental Evidence, 2013, GUID SYST REV EV SYS
Cooper C, 2019, COMP 5 METHODS DOWNL
Cooper C, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0545-3
Cooper C, 2018, RES SYNTH METHODS, V9, P361, DOI 10.1002/jrsm.1315
Cooper C, 2018, RES SYNTH METHODS, V9, P195, DOI 10.1002/jrsm.1286
Cooper C, 2018, J CLIN EPIDEMIOL, V99, P53, DOI 10.1016/j.jclinepi.2018.02.025
Cooper C, 2017, SYST REV-LONDON, V6, DOI 10.1186/s13643-017-0625-1
Croft A M, 1999, J R Army Med Corps, V145, P86
Dundar Y, 2006, HEALTH TECHNOL ASSES, V10, pIII
Eden J, 2011, FINDING WHAT WORKS IN HEALTH CARE: STANDARDS FOR SYSTEMATIC REVIEWS, P1
Elsevier, 2019, EMBASE CONTENT
Finelli C, 2018, BLOOD, V132, DOI 10.1182/blood-2018-99-117714
Finelli C, 2016, BLOOD, V128, DOI 10.1182/blood.V128.22.3169.3169
Garcia-Manero G, 2016, BLOOD C 58 ANN M AM, P128
Heale Roberta, 2018, Evid Based Nurs, V21, P7, DOI 10.1136/eb-2017-102845
Higgins JPT., 2016, Methodological Expectations of Cochrane Intervention Reviews (MECIR).
Hirt J, 2019, GMS MED BIBLIOTHEK I, V19, p1e2
Hopewell S, 2002, STAT MED, V21, P1625, DOI 10.1002/sim.1191
Hopewell S, 2015, J CLIN EPIDEMIOL, V68, P1488, DOI 10.1016/j.jclinepi.2015.03.006
Jadad AR, 1993, ONLINE J CURR CLIN T, V33
Langham J, 1999, ANN EMERG MED, V34, P25, DOI 10.1016/S0196-0644(99)70268-4
Lefebvre C., 2008, COCHRANE HDB SYSTEMA
Mahood Q, 2014, RES SYNTH METHODS, V5, P221, DOI 10.1002/jrsm.1106
Mathieu Sylvain, 2017, Joint Bone Spine, P109, DOI 10.1016/j.jbspin.2016.12.011
Mattioli S, 2012, OCCUP ENVIRON MED, V69, P522, DOI 10.1136/oemed-2011-100180
Milne R, 1996, J EPIDEMIOL COMMUN H, V50, P178, DOI 10.1136/jech.50.2.178
NICE, DEV NICE GUID MAN 20
Paez Arsenio, 2017, J Evid Based Med, DOI [10.1111/jebm.12266, 10.1111/jebm.12265]
Saric L, 2019, EUR J PAIN, V23, P107, DOI 10.1002/ejp.1289
Saric L, 2019, J CLIN EPIDEMIOL
Scherer RW, 2007, COCHRANE DB SYST REV, DOI [10.1002/14651858.MR000005.pub4, 10.1002/14651858.MR000005.pub3]
Scherer RW, 2019, SYST REV-LONDON, V8, DOI 10.1186/s13643-019-1188-0
Schreiber A, 2011, LC GC EUR, P6
Schutze H., 2008, Introduction to information retrieval, V39
Shao Z, 2018, FINAL RESULTS PHASE
Shemilt I, 2014, RES SYNTH METHODS, V5, P31, DOI 10.1002/jrsm.1093
The Institute of Medicine (IOM), 2011, FIND WHAT WORKS HLTH
Wagner G, 2017, BMC MED RES METHODOL, V17, DOI 10.1186/s12874-017-0406-5
WEINTRAUB WH, 1987, J PEDIATR SURG, V22, P11, DOI 10.1016/S0022-3468(87)80005-2
Worsley C, 2019, PEVONEDISTAT HYDROCH
Young T, 2011, COCHRANE DB SYST REV, V9
NR 49
TC 6
Z9 6
U1 0
U2 4
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0895-4356
EI 1878-5921
J9 J CLIN EPIDEMIOL
JI J. Clin. Epidemiol.
PD JUL
PY 2020
VL 123
BP 39
EP 48
DI 10.1016/j.jclinepi.2020.03.013
PG 10
WC Health Care Sciences & Services; Public, Environmental & Occupational
Health
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Health Care Sciences & Services; Public, Environmental & Occupational
Health
GA LY4AU
UT WOS:000540472200006
PM 32229252
OA Green Accepted, Green Published
DA 2024-09-05
ER
PT J
AU Thorburn, D
AF Thorburn, D
TI Significance testing, interval estimation or Bayesian inference:
Comments to "Extracting a maximum of useful information from statistical
research data" by S. Sohlberg and G. Andersson
SO SCANDINAVIAN JOURNAL OF PSYCHOLOGY
LA English
DT Article
DE Bayesian paradigm; information building; model selection; posterior
distribution; scientific knowledge
AB Statistical inference plays an important part in the formation of scientific knowledge in psychology. Starting from a paper by Sohlberg and Andersson (2005; Scandinavian Journal of Psychology, 46, 69-77) these issues are discussed. It is argued that interval estimates are easy to understand and that they are more suitable than significance testing for most problems. Bayesian inference is a coherent description of the information building process. With some examples it is shown that null hypothesis significance testing is full of contradictions. Finally, some other important issues like convenience sampling and model selection are shortly mentioned.
C1 Stockholm Univ, Dept Stat, SE-10691 Stockholm, Sweden.
C3 Stockholm University
RP Thorburn, D (corresponding author), Stockholm Univ, Dept Stat, SE-10691 Stockholm, Sweden.
EM Daniel.Thorburn@stat.su.se
CR [Anonymous], 2009, Bayesian Theory
[Anonymous], 1979, MEASURES ASS CROSS C
Chow S. C., 1992, Design and Analysis of Bioavailability and Bioequivalence Studies
Dale A.I., 1999, A history of inverse probability: from Thomas Bayes to Karl Pearson
EDWARDS W, 1963, PSYCHOL REV, V70, P193, DOI 10.1037/h0044139
Gamerman D., 1997, MARKOV CHAIN MONTE C
Howson C., 2006, SCI REASONING BAYESI
MADIGAN D, 1994, J AM STAT ASSOC, V89, P1536
THORBURN D, 1998, 199810 STOCKH U DEP
NR 9
TC 0
Z9 0
U1 0
U2 3
PU BLACKWELL PUBL LTD
PI OXFORD
PA 108 COWLEY RD, OXFORD OX4 1JF, OXON, ENGLAND
SN 0036-5564
J9 SCAND J PSYCHOL
JI Scand. J. Psychol.
PD FEB
PY 2005
VL 46
IS 1
BP 79
EP 82
DI 10.1111/j.1467-9450.2005.00437.x
PG 4
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA 888MJ
UT WOS:000226378100009
PM 15660636
DA 2024-09-05
ER
PT J
AU Ortega, JL
Lopez-Romero, E
Fernández, I
AF Luis Ortega, Jose
Lopez-Romero, Elena
Fernandez, Ines
TI Multivariate approach to classify research institutes according to their
outputs: The case of the CSIC's institutes
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Scientometrics; Principal component analysis; Linear discriminant
analysis; Research centres classification
ID PRINCIPAL COMPONENT ANALYSIS; CLASSIFICATION; UNIVERSITIES; PERFORMANCE
AB This paper attempts to build a classification model according to the research products created by those institutes and hence to design specific evaluation processes. Several scientific input/output indicators belonging to 109 research institutes from the Spanish National Research Council (CSIC) were selected. A multidimensional approach was proposed to resume these indicators in various components. A clustering analysis was used to classify the institutes according to their scores with those components (principal component analysis). Moreover, the validity of the a priori classification was tested and the most discriminant variables were detected (linear discriminant analysis). Results show that there are three types of institutes according to their research outputs: Humanistic, Scientific and Technological. It is argue that these differences oblige to design more precise assessment exercises which focus on the particular results of each type of institute. We conclude that this method permits to build more precise research assessment exercises which consider the varied nature of the scientific activity. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Luis Ortega, Jose; Lopez-Romero, Elena; Fernandez, Ines] CSIC, R&DUnit, E-28006 Madrid, Spain.
C3 Consejo Superior de Investigaciones Cientificas (CSIC)
RP Ortega, JL (corresponding author), CSIC, R&DUnit, Serrano 113, E-28006 Madrid, Spain.
EM jortega@orgc.csic.es; elena.lopez@orgc.csic.es;
ines.fernandez@orgc.csic.es
RI FERNANDEZ PINTADO, INES/E-3209-2014
OI Ortega, Jose Luis/0000-0001-9857-1511
CR [Anonymous], INT J INNOVATION REG
Bollen J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006022
Cheng Y, 2006, SCIENTOMETRICS, V68, P135, DOI 10.1007/s11192-006-0087-z
Coccia M, 2005, SCIENTOMETRICS, V65, P307, DOI 10.1007/s11192-005-0276-1
Coccia M, 2004, R&D MANAGE, V34, P267, DOI 10.1111/j.1467-9310.2004.00338.x
Fisher RA, 1936, ANN EUGENIC, V7, P179, DOI 10.1111/j.1469-1809.1936.tb02137.x
GIESE E, 1990, SCIENTOMETRICS, V19, P363, DOI 10.1007/BF02020699
Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087
HARRIS G, 1994, HIGH EDUC, V27, P191, DOI 10.1007/BF01384088
Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325
KAISER HF, 1958, PSYCHOMETRIKA, V23, P187, DOI 10.1007/BF02289233
Katz JS, 1999, RES POLICY, V28, P501, DOI 10.1016/S0048-7333(99)00010-4
Kuhlmann S., 2003, LEARNING SCI TECHNOL
Lin JS, 2007, ELE COM ENG, P139
LINE MB, 1970, J DOC, V26, P46, DOI 10.1108/eb026486
Martin BR, 1996, SCIENTOMETRICS, V36, P343, DOI 10.1007/BF02129599
Martìnez AM, 2001, IEEE T PATTERN ANAL, V23, P228, DOI 10.1109/34.908974
MICHEL AG, 1993, COMPUT CHEM, V17, P49, DOI 10.1016/0097-8485(93)80028-C
Modlin IM, 2009, ANN SURG ONCOL, V16, P487, DOI 10.1245/s10434-008-0251-1
Pearson K, 1901, PHILOS MAG, V2, P559, DOI 10.1080/14786440109462720
Polanco X, 1998, SCIENTOMETRICS, V41, P69, DOI 10.1007/BF02457968
Ramani SV, 2002, RES POLICY, V31, P381, DOI 10.1016/S0048-7333(01)00115-9
Schubert A, 1996, SCIENTOMETRICS, V36, P311, DOI 10.1007/BF02129597
Skoie H, 1999, SCIENTOMETRICS, V45, P433, DOI 10.1007/BF02457603
Sneath P. H. A., NUMERICAL TAXONOMY
Tagarelli A, 2004, AI COMMUN, V17, P111
Thijs B, 2008, SCIENTOMETRICS, V74, P223, DOI 10.1007/s11192-008-0214-0
Van Raan AFJ, 2005, SCIENTOMETRICS, V62, P133, DOI 10.1007/s11192-005-0008-6
Zhou F, 2007, SCIENTOMETRICS, V73, P265, DOI 10.1007/s11192-007-1798-5
NR 29
TC 17
Z9 17
U1 0
U2 37
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD JUL
PY 2011
VL 5
IS 3
BP 323
EP 332
DI 10.1016/j.joi.2011.01.004
PG 10
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 769QF
UT WOS:000291032500001
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Zou, J
Le, D
Thoma, GR
AF Zou, Jie
Le, Daniel
Thoma, George R.
TI Locating and parsing bibliographic references in HTML medical articles
SO INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION
LA English
DT Article; Proceedings Paper
CT 16th Document Recognition and Retrieval Conference
CY JAN, 2009
CL San Jose, CA
DE HTML document analysis; Document Object Model (DOM); Reference parsing;
Support Vector Machine (SVM); Conditional Random Field (CRF)
ID EXTRACTION; REPRESENTATION; METADATA
AB The set of references that typically appear toward the end of journal articles is sometimes, though not always, a field in bibliographic (citation) databases. But even if references do not constitute such a field, they can be useful as a preprocessing step in the automated extraction of other bibliographic data from articles, as well as in computer-assisted indexing of articles. Automation in data extraction and indexing to minimize human labor is key to the affordable creation and maintenance of large bibliographic databases. Extracting the components of references, such as author names, article title, journal name, publication date and other entities, is therefore a valuable and sometimes necessary task. This paper describes a two-step process using statistical machine learning algorithms, to first locate the references in HTML medical articles and then to parse them. Reference locating identifies the reference section in an article and then decomposes it into individual references. We formulate this step as a two-class classification problem based on text and geometric features. An evaluation conducted on 500 articles drawn from 100 medical journals achieves near-perfect precision and recall rates for locating references. Reference parsing identifies the components of each reference. For this second step, we implement and compare two algorithms. One relies on sequence statistics and trains a Conditional Random Field. The other focuses on local feature statistics and trains a Support Vector Machine to classify each individual word, followed by a search algorithm that systematically corrects low confidence labels if the label sequence violates a set of predefined rules. The overall performance of these two reference-parsing algorithms is about the same: above 99% accuracy at the word level, and over 97% accuracy at the chunk level.
C1 [Zou, Jie; Le, Daniel; Thoma, George R.] Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, NIH, Bethesda, MD 20894 USA.
C3 National Institutes of Health (NIH) - USA; NIH National Library of
Medicine (NLM)
RP Zou, J (corresponding author), Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, NIH, 8600 Rockville Pike, Bethesda, MD 20894 USA.
EM jzou@mail.nlm.nih.gov
CR [Anonymous], P INT C VER LARG DAT
Aronson AR, 2000, J AM MED INFORM ASSN, P17
Baird H. S., 1990, Proceedings. 10th International Conference on Pattern Recognition (Cat. No.90CH2898-5), P820, DOI 10.1109/ICPR.1990.118223
Besagni D, 2003, PROC INT CONF DOC, P384
BUYUKKOKTEN O, 2001, P SIGCHI C HUM FACT, P213
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Chowdhury GG, 1999, LIBR TRENDS, V48, P182
Cortez E, 2009, J AM SOC INF SCI TEC, V60, P1144, DOI 10.1002/asi.21049
Councill IG, 2008, P 6 INT LANG RES EV
Day MY, 2007, DECIS SUPPORT SYST, V43, P152, DOI 10.1016/j.dss.2006.08.006
Day MY, 2005, PROCEEDINGS OF THE 2005 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, P50
Ding Ying., 1999, Proceedings of the Second Asian Digital Library Conference, Taiwan, P47
GALAVOTTI L, 2000, P 4 EUR C RES ADV TE, P59
HA J, 1995, P 3 INT C DOC AN REC, P952
Hauser SE, 2000, P SOC PHOTO-OPT INS, V3967, P248
Huang IA, 2004, P 8 PAC AS C KNOWL D, P26
Jain AK, 1998, IEEE T PATTERN ANAL, V20, P294, DOI 10.1109/34.667886
KAASINEN E, 2000, P 9 INT WORLD WID WE, P231
KIM I, 2007, P SPIE C DOC REC RET
Kim J, 2001, PROC SPIE, V4307, P111
Klink S., 2001, International Journal on Document Analysis and Recognition, V4, P18, DOI 10.1007/PL00013570
Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning
Lawrence S, 1999, COMPUTER, V32, P67, DOI 10.1109/2.769447
Likforman-Sulem L, 2006, PATTERN ANAL APPL, V9, P211, DOI [10.1007/s10044-006-0038-6, 10.1007/S10044-006-0038-6]
Liu B, 2004, IEEE INTELL SYST, V19, P49, DOI 10.1109/MIS.2004.68
McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit
Nagy G, 2000, IEEE T PATTERN ANAL, V22, P38, DOI 10.1109/34.824820
NAGY G, 1992, COMPUTER, V25, P10, DOI 10.1109/2.144436
OGORMAN L, 1993, IEEE T PATTERN ANAL, V15, P1162, DOI 10.1109/34.244677
Okada T, 2004, LECT NOTES COMPUT SC, V3232, P501
Parmentier F, 1997, PROC INT CONF DOC, P1072, DOI 10.1109/ICDAR.1997.620673
PAVLIDIS T, 1992, CVGIP-GRAPH MODEL IM, V54, P484, DOI 10.1016/1049-9652(92)90068-9
Peng FC, 2004, HLT-NAACL 2004: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P329
Reis D.d.C., 2004, 13 INT C WORLD WIDE, P502, DOI DOI 10.1145/988672.988740
Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283
Sutton Charles, 2006, Introduction to Statistical Relational Learning, V2
Takasu A, 2003, ACM-IEEE J CONF DIG, P49, DOI 10.1109/JCDL.2003.1204843
Zhai YH, 2006, IEEE T KNOWL DATA EN, V18, P1614, DOI 10.1109/TKDE.2006.197
ZOU J, 2007, P DOCENG, P119
Zou J, 2008, PROC SPIE, V6815, DOI 10.1117/12.765907
NR 40
TC 16
Z9 18
U1 0
U2 11
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1433-2833
EI 1433-2825
J9 INT J DOC ANAL RECOG
JI Int. J. Doc. Anal. Recognit.
PD JUN
PY 2010
VL 13
IS 2
SI SI
BP 107
EP 119
DI 10.1007/s10032-009-0105-9
PG 13
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA 613UJ
UT WOS:000279007000004
PM 20640222
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Tompos, A
Margitfalvi, JL
Tfirst, E
Végvári, L
AF Tompos, A
Margitfalvi, JL
Tfirst, E
Végvári, L
TI Evaluation of catalyst library optimization algorithms:: Comparison of
the Holographic Research Strategy and the Genetic Algorithm in virtual
catalytic experiments
SO APPLIED CATALYSIS A-GENERAL
LA English
DT Article
DE catalyst library design; combinatorial catalysis; Holographic Research
Strategy; Genetic Algorithm; visualization
ID ARTIFICIAL NEURAL-NETWORKS; DESIGN; OXIDATION; PROPANE; METHANE
AB In this study two catalyst library optimization methods, the Holographic Research Strategy (HRS) and the Genetic Algorithm (GA) were compared based on their ability to find the optimum compositions in a given multi-dimensional experimental space. Results obtained in three different case studies were used to investigate both the rate and the certainty of the optimum search. In these case studies the activity-composition relationships were established using Artificial Neural Networks (ANNs) trained with catalytic data published earlier. The above relationships were used in "virtual optimization experiments" using both HRS and GA for catalyst library optimization. Upon using the stochastic GA its exceedingly divers mode of sampling often resulted in poor catalytic materials in the next catalyst generation. This fact resulted in a decreased rate of convergence to the optimum. In contrast, in HRS, which is a deterministic optimization algorithm, a moderate level of diversity in the catalyst library can easily be achieved. In this way an acceptable rate in optimum search can be accomplished. The visualization ability of HRS allows the illustration of all virtually tested compositions in a two-dimensional form regardless the optimization algorithm used. Upon using HRS a structured arrangement of experimental points in the virtual holograms was observed. However, when GA was applied for virtual optimization "starry sky"-like arrangement of compositions in the virtual holograms was obtained. Therefore based on virtual holograms, upon using HRS the relationship between the composition of catalytic materials and their performance can be qualitatively revealed, while no similar correlation can be obtained using GA. (c) 2006 Elsevier B.V. All rights reserved.
C1 Hungarian Acad Sci, Chem Res Ctr, Inst Surface Chem & Catalysis, H-1525 Budapest, Hungary.
Meditor Gen Innovat Bur, H-2623 Kismaros, Hungary.
C3 Hungarian Academy of Sciences; Hungarian Research Network; HUN-REN
Research Centre for Natural Sciences
RP Hungarian Acad Sci, Chem Res Ctr, Inst Surface Chem & Catalysis, POB 17, H-1525 Budapest, Hungary.
EM joemarg@chemres.hu
RI Tompos, Andras/K-8462-2019
CR Corma A, 2002, CHEMPHYSCHEM, V3, P939, DOI 10.1002/1439-7641(20021115)3:11<939::AID-CPHC939>3.0.CO;2-E
Cundari TR, 2001, IND ENG CHEM RES, V40, P5475, DOI 10.1021/ie010316v
Hashem S, 1997, NEURAL NETWORKS, V10, P599, DOI 10.1016/S0893-6080(96)00098-6
Holena M, 2003, CATAL TODAY, V81, P485, DOI 10.1016/S0920-5861(03)00147-0
HOLENA M, 2003, EXPT DESIGN COMBINAT, P163
Huang K, 2001, APPL CATAL A-GEN, V219, P61, DOI 10.1016/S0926-860X(01)00659-7
Rodemerck U, 2001, CHEM ENG J, V82, P3, DOI 10.1016/S1385-8947(00)00348-X
Tompos A, 2005, APPL CATAL A-GEN, V285, P65, DOI 10.1016/j.apcata.2005.02.019
Tompos A, 2003, APPL CATAL A-GEN, V254, P161, DOI 10.1016/S0926-860X(03)00285-0
Végvári L, 2003, CATAL TODAY, V81, P517, DOI 10.1016/S0920-5861(03)00150-0
Wolf D, 2000, APPL CATAL A-GEN, V200, P63, DOI 10.1016/S0926-860X(00)00643-8
WOLF D, 2003, EXPT DESIGN COMBINAT, P147
NR 12
TC 20
Z9 22
U1 0
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0926-860X
EI 1873-3875
J9 APPL CATAL A-GEN
JI Appl. Catal. A-Gen.
PD APR 18
PY 2006
VL 303
IS 1
BP 72
EP 80
DI 10.1016/j.apcata.2006.01.028
PG 9
WC Chemistry, Physical; Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Environmental Sciences & Ecology
GA 034GM
UT WOS:000236917100010
DA 2024-09-05
ER
PT J
AU Wu, H
Jiao, HZ
Yu, Y
Li, ZG
Peng, ZH
Liu, LB
Zeng, Z
AF Wu, Hao
Jiao, Hongzan
Yu, Yang
Li, Zhigang
Peng, Zhenghong
Liu, Lingbo
Zeng, Zheng
TI Influence Factors and Regression Model of Urban Housing Prices Based on
Internet Open Access Data
SO SUSTAINABILITY
LA English
DT Article
DE regression model; housing prices; geographically weighted regression;
influence factor; hedonic model; artificial neural network (ANN);
geographically weighted regression (GWR); urban planning
ID GEOGRAPHICALLY WEIGHTED REGRESSION; ACCESSIBILITY; IMPACTS; CHOICE
AB With the commercialization of housing and the deepening of urbanization in China, housing prices are having increasing influence on the land market, and thus indirectly affecting urban development. As various spatial features of an urban housing property directly affect its price, the study of this connection has significance for urban planning. The present study uses mainly open internet data of housing prices, supplemented by other data sources, to identify the spatial features of housing prices and the influence factors in a case study city, Wuhan. Methods employed in the study include the hedonic linear regression model, the geographically weighted regression (GWR) model and the artificial neural network (ANN) model, etc. Progress is made in the following two aspects: first, when calculating the influence factors, hierarchical values for accessibility variables of certain public facilities are used instead of simple Euclidean distance and the results shows a better model fit; second, the ANN model shows the best fit in the study, and while the three models all show respective strengths, the combined use of all models offers the possibility of a more comprehensive analysis of the influence factors of housing prices.
C1 [Wu, Hao; Jiao, Hongzan; Peng, Zhenghong] Wuhan Univ, Sch Urban Design, Dept Graph & Digital Technol, Wuhan 430072, Hubei, Peoples R China.
[Yu, Yang; Li, Zhigang; Liu, Lingbo] Wuhan Univ, Sch Urban Design, Dept Urban Planning, Wuhan 430072, Hubei, Peoples R China.
[Zeng, Zheng] China Univ Geosci, Dept Sch Arts & Commun, Wuhan 430074, Hubei, Peoples R China.
C3 Wuhan University; Wuhan University; China University of Geosciences
RP Yu, Y (corresponding author), Wuhan Univ, Sch Urban Design, Dept Urban Planning, Wuhan 430072, Hubei, Peoples R China.
EM wh79@whu.edu.cn; jiaohongzan@whu.edu.cn; yuyang1@whu.edu.cn;
zhigangli@whu.edu.cn; pengzhenghong@whu.edu.cn; lingbo.liu@whu.edu.cn;
zeng_cug@hotmail.com
RI li, zhigang/AFT-5267-2022; Liu, Lingbo/AAH-8240-2019; Wu,
Hao/HJG-9487-2022
OI Liu, Lingbo/0000-0002-9876-8506; Wu, Hao/0000-0001-7107-8081; Yu,
Yang/0000-0001-8776-0157
FU China Postdoctoral Science Foundation [2016M600609, 2016M602357];
National Science Fund for Young Scholars [51708425, 51708426]; English
Course Program of Wuhan University [209411800012]
FX The study is funded by the China Postdoctoral Science Foundation (No.
2016M600609); National Science Fund for Young Scholars (No. 51708425);
China Postdoctoral Science Foundation (No. 2016M602357); National
Science Fund for Young Scholars (No. 51708426); and English Course
Program of Wuhan University (No. 209411800012).
CR Adair A, 2000, HOUSING STUD, V15, P699, DOI 10.1080/02673030050134565
ATKINSON SE, 1987, J APPL ECONOMET, V2, P27, DOI 10.1002/jae.3950020103
Basu S, 1998, J REAL ESTATE FINANC, V17, P61, DOI 10.1023/A:1007703229507
Bitter C, 2007, J GEOGR SYST, V9, P7, DOI 10.1007/s10109-006-0028-7
Brunsdon C, 1999, J REGIONAL SCI, V39, P497, DOI 10.1111/0022-4146.00146
Brunsdon C, 1996, GEOGR ANAL, V28, P281, DOI 10.1111/j.1538-4632.1996.tb00936.x
BUTLER RV, 1982, LAND ECON, V58, P96, DOI 10.2307/3146079
Cai JX, 2017, REMOTE SENS ENVIRON, V202, P210, DOI 10.1016/j.rse.2017.06.039
CASSEL E, 1985, J URBAN ECON, V18, P135, DOI 10.1016/0094-1190(85)90012-9
Do A.Quang., 1993, J REAL ESTATE RES, V8, P253
Dziauddin MF, 2015, APPL SPAT ANAL POLIC, V8, P1, DOI 10.1007/s12061-014-9117-z
Efthymiou D, 2013, TRANSPORT RES A-POL, V52, P1, DOI 10.1016/j.tra.2013.04.002
Esri. Geographically Weighted Regression (GWR), 2013, GEOGR WEIGHT REGR GW
Fotheringham AS, 2015, ANN REGIONAL SCI, V54, P417, DOI 10.1007/s00168-015-0660-6
Ge Y., 2016, T GIS, V21
Glaeser EL, 2018, ECON INQ, V56, P114, DOI 10.1111/ecin.12364
HALVORSEN R, 1981, J URBAN ECON, V10, P37, DOI 10.1016/0094-1190(81)90021-8
Hu SG, 2016, APPL GEOGR, V68, P48, DOI 10.1016/j.apgeog.2016.01.006
Huang B, 2010, INT J GEOGR INF SCI, V24, P383, DOI 10.1080/13658810802672469
Jim CY, 2006, LANDSCAPE URBAN PLAN, V78, P422, DOI 10.1016/j.landurbplan.2005.12.003
Kuminoff NV, 2010, J ENVIRON ECON MANAG, V60, P145, DOI 10.1016/j.jeem.2010.06.001
Law S, 2017, CITIES, V60, P166, DOI 10.1016/j.cities.2016.08.008
Lu BB, 2014, INT J GEOGR INF SCI, V28, P660, DOI 10.1080/13658816.2013.865739
Mulley C, 2014, URBAN STUD, V51, P1707, DOI 10.1177/0042098013499082
Nakaya Tomoki., 2001, GeoJournal, V53, P347, DOI DOI 10.1023/A:1020149315435
Rasmussen D. W., 1988, APPL ECON, V22, P431
ROSEN S, 1974, J POLIT ECON, V82, P34, DOI 10.1086/260169
Selim H, 2009, EXPERT SYST APPL, V36, P2843, DOI 10.1016/j.eswa.2008.01.044
SMITH VK, 1995, J POLIT ECON, V103, P209, DOI 10.1086/261981
STRASZHEIM M.R., 1975, ECONOMETRIC ANAL URB
Sunak Y, 2017, PAP REG SCI, V96, P423, DOI 10.1111/pirs.12197
TOBLER WR, 1970, ECON GEOGR, V46, P234, DOI 10.2307/143141
Wang D., 2007, CITY PLANNING REV, V31, P34
WANG D, 2005, CITY PLAN, V29, P62
Wu B, 2014, INT J GEOGR INF SCI, V28, P1186, DOI 10.1080/13658816.2013.878463
Wu CM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0164334
You W, 2015, REMOTE SENS ENVIRON, V168, P276, DOI 10.1016/j.rse.2015.07.020
Yrigoyen C. C., 2007, MPRA PAP, V50, P321
NR 38
TC 29
Z9 33
U1 12
U2 90
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD MAY
PY 2018
VL 10
IS 5
AR 1676
DI 10.3390/su10051676
PG 17
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA GJ7RP
UT WOS:000435587100372
OA gold
DA 2024-09-05
ER
PT J
AU Bach, MP
Ivec, A
Hrman, D
AF Bach, Mirjana Pejic
Ivec, Arian
Hrman, Danijela
TI Industrial Informatics: Emerging Trends and Applications in the Era of
Big Data and AI
SO ELECTRONICS
LA English
DT Article
DE industrial informatics; Scopus; bibliometrics; VosViewer; Big Data; AI
ID GOOGLE-SCHOLAR; SCIENCE; CITATION; BIBLIOMETRICS; WEB
AB Industrial informatics is a rapidly developing scientific field that deals with the knowledge-based automation of industrial design and manufacturing processes. In the last decade, industrial informatics has been strongly influenced by the rapid rise of data-based technologies such as Data Science, Big Data, and artificial intelligence. The goal of this paper is to provide a literature review of academic research analyzing the extensive spectrum of industrial informatics. Articles indexed in Scopus with the term "Industrial Informatics" in the title, abstract, or keywords were extracted since the term emerged in the 1990s, over a period of 29 years. The main journals, conferences, authors and countries were studied using bibliometric analysis. Text mining using VosViewer was used to extract the thematic groups of research related to industrial informatics, which are as follows: (i) Internet of Things, (ii) machine learning, (iii) engineering education, (iv) cyber-physical systems, and (v) embedded systems. We also found that China, Germany, and Brazil dominate research in industrial computing. The results showed that research in industrial informatics is related to the emergence of new methods and tools, and is nowadays shifting towards the application of intelligent methods such as machine learning and Big Data.
C1 [Bach, Mirjana Pejic] Univ Zagreb, Fac Econ & Business, Dept Informat, Zagreb 10000, Croatia.
[Ivec, Arian] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 10000, Croatia.
[Hrman, Danijela] Probotica D o o, Zagreb 10000, Croatia.
C3 University of Zagreb; University of Zagreb
RP Bach, MP (corresponding author), Univ Zagreb, Fac Econ & Business, Dept Informat, Zagreb 10000, Croatia.
EM mpejic@net.efzg.hr
RI Pejic Bach, Mirjana/E-7313-2012
OI Pejic Bach, Mirjana/0000-0003-3899-6707
CR Adibhatla VA, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9091547
Aguillo IF, 2012, SCIENTOMETRICS, V91, P343, DOI 10.1007/s11192-011-0582-8
[Anonymous], 2012, NEW YORK TIMES
Ansari AQ, 2012, HANDBOOK OF RESEARCH ON INDUSTRIAL INFORMATICS AND MANUFACTURING INTELLIGENCE: INNOVATIONS AND SOLUTIONS, P1, DOI 10.4018/978-1-4666-0294-6.ch001
Ballew B.S., 2009, Journal of Electronic Resources in Medical Libraries, V6, P245
Belter CW, 2013, WIRES CLIM CHANGE, V4, P417, DOI 10.1002/wcc.229
Bhattacharya S, 1998, SCIENTOMETRICS, V43, P359, DOI 10.1007/BF02457404
Bi ZM, 2017, ENTERP INF SYST-UK, V11, P949, DOI 10.1080/17517575.2016.1258734
Borrett SR, 2018, ECOL MODEL, V382, P63, DOI 10.1016/j.ecolmodel.2018.04.020
Borrett SR, 2014, ECOL MODEL, V293, P111, DOI 10.1016/j.ecolmodel.2014.02.019
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Burnham Judy F, 2006, Biomed Digit Libr, V3, P1
Chen MQ, 2022, COMPUT IND, V134, DOI 10.1016/j.compind.2021.103551
Chunlei Ye, 2018, 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), P927, DOI 10.1109/FSKD.2018.8687153
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
De Silva D, 2020, IEEE IND ELECTRON M, V14, P57, DOI 10.1109/MIE.2019.2952165
Ding X, 2022, ELECTRON COMMER RES, V22, P787, DOI 10.1007/s10660-020-09410-7
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Fu HZ, 2022, CLIMATIC CHANGE, V170, DOI 10.1007/s10584-022-03324-z
Greengard S., 2015, The Internet of Things, DOI DOI 10.7551/MITPRESS/10277.001.0001
He Q, 1999, LIBR TRENDS, V48, P133
Holmstrom J, 2010, IND INFORM DESIGN US, P1, DOI 10.4018/978-1-61520-692-6
Jackson D J., 2005, ACM SIGBED Review, V2, P1, DOI DOI 10.1145/1121812.1121814
van Eck NJ, 2011, Arxiv, DOI arXiv:1109.2058
Javaid M., 2023, Green Technologies and Sustainability, V1, P100001, DOI [https://doi.org/10.1016/j.grets.2022.100001, DOI 10.1016/J.GRETS.2022.100001]
Jonsson K, 2008, INFORM SYST J, V18, P227, DOI 10.1111/j.1365-2575.2007.00267.x
Jonsson K, 2009, INFORM ORGAN-UK, V19, P233, DOI 10.1016/j.infoandorg.2009.07.001
Kaelbling L. P., 1993, Learning in Embedded Systems
Kling R, 2007, INFORM SOC, V23, P205, DOI 10.1080/01972240701441556
Kuzior A, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14138206
Lee E.A., 2011, Introduction to embedded systems: A cyberphysical systems approach
Li JF, 2011, GLOBAL PLANET CHANGE, V77, P13, DOI 10.1016/j.gloplacha.2011.02.005
Marzi G, 2017, SCIENTOMETRICS, V113, P673, DOI 10.1007/s11192-017-2500-1
McAllister James T. III, 2022, Science & Technology Libraries, V41, P319, DOI 10.1080/0194262X.2021.1991547
McKinley DC, 2012, FOREST POLICY ECON, V21, P1, DOI 10.1016/j.forpol.2012.03.007
Mehta D, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-29320-6
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Morris SA, 2008, ANNU REV INFORM SCI, V42, P213
Moura L R., 2020, Emerging Science Journal, V4, P365, DOI DOI 10.28991/ESJ-2020-01237
Oyewola DO, 2022, SN APPL SCI, V4, DOI 10.1007/s42452-022-05027-7
Pfeiffer S, 2017, NANOETHICS, V11, P107, DOI 10.1007/s11569-016-0280-3
Rahman T, 2022, 2022 INTERNATIONAL SYMPOSIUM ON THE TSETLIN MACHINE (ISTM 2022), P29, DOI 10.1109/ISTM54910.2022.00014
Raja Mohd Ali R. H., 2020, Journal of Physics: Conference Series, V1529, DOI 10.1088/1742-6596/1529/2/022075
Ricci J, 2019, IEEE SECUR PRIV, V17, P34, DOI 10.1109/MSEC.2018.2875877
Rönnbäck L, 2007, IND MANAGE DATA SYST, V107, P1276, DOI 10.1108/02635570710833965
Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G
Thelwall M, 2008, J INF SCI, V34, P605, DOI 10.1177/0165551507087238
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
van Eck NJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062395
van Eck NJ, 2010, J AM SOC INF SCI TEC, V61, P2405, DOI 10.1002/asi.21421
van Eck NeesJan., 2011, Methodological advances in bibliometric mapping of science
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Wang B, 2014, NAT HAZARDS, V74, P1649, DOI 10.1007/s11069-014-1260-y
Wiberg M., 2005, The interaction society practice, theories and supportive technologies
Xin Xiang, 2021, 2021 2nd International Conference on Information Science and Education (ICISE-IE), P720, DOI 10.1109/ICISE-IE53922.2021.00168
NR 57
TC 3
Z9 3
U1 7
U2 24
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2079-9292
J9 ELECTRONICS-SWITZ
JI Electronics
PD MAY 15
PY 2023
VL 12
IS 10
AR 2238
DI 10.3390/electronics12102238
PG 16
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Physics
GA H5SG1
UT WOS:000996553400001
OA gold
DA 2024-09-05
ER
PT J
AU DAVIDSON, WN
WORRELL, DL
AF DAVIDSON, WN
WORRELL, DL
TI Research notes and communications: The effect of product recall
announcements on shareholder wealth
SO STRATEGIC MANAGEMENT JOURNAL
LA English
DT Article
DE PRODUCT RECALLS; SHAREHOLDER WEALTH
ID MODERN FINANCIAL THEORY; ORGANIZATIONAL ECONOMICS; CORPORATE-STRATEGY;
PUBLIC-POLICY; IMPACT
AB Previous research has found that product recall announcements in the automobile industry are associated with negative abnormal returns. We extend this research by examining announcements of product recalls and products taken off the market outside the automobile industry. We find negative abnormal returns for these announcements and that the returns are significantly more negative when products are replaced (or the purchase price is returned) than when the products are checked and repaired. We find only limited evidence that government-ordered recalls produce more negative returns than voluntary recalls.
C1 APPALACHIAN STATE UNIV, DEPT MANAGEMENT, BOONE, NC 28608 USA.
C3 University of North Carolina; Appalachian State University
RP SO ILLINOIS UNIV, DEPT FINANCE, CARBONDALE, IL 62901 USA.
RI Sharma, Kulwant Kumar/AAE-7849-2022
OI Sharma, Kulwant Kumar/0000-0002-3564-6130
CR BARNEY JB, 1990, ACAD MANAGE REV, V15, P382, DOI 10.2307/258014
BETTIS RA, 1983, ACAD MANAGE REV, V8, P406
BROMILEY P, 1989, STRATEGIC MANAGE J, V10, P233
COCHRAN PL, 1984, ACAD MANAGE J, V27, P42, DOI 10.5465/255956
DAVIDSON WN, 1988, ACAD MANAGE J, V31, P195, DOI 10.5465/256506
DODD P, 1983, J FINANC ECON, V11, P401, DOI 10.1016/0304-405X(83)90018-1
HESTERLY WS, 1990, ACAD MANAGE REV, V15, P402, DOI 10.2307/258016
HOFFER GE, 1988, J POLIT ECON, V96, P663, DOI 10.1086/261556
Hoffer GeorgeE., 1987, Financial Review, V22, P433, DOI DOI 10.1111/J.1540-6288.1987.TB01265.X
JARRELL G, 1985, J POLIT ECON, V93, P512, DOI 10.1086/261313
Jemison D.B., 1981, ACAD MANAGE REV, V6, P601, DOI DOI 10.5465/AMR.1981.4285702
LUBATKIN M, 1986, ACAD MANAGE REV, V11, P497, DOI 10.2307/258307
MYERS SC, 1984, J FINANC ECON, V13, P187, DOI 10.1016/0304-405X(84)90023-0
OVIATT BM, 1988, ACAD MANAGE REV, V13, P214, DOI 10.2307/258573
PEAVY JW, 1984, ACAD MANAGE REV, V9, P152, DOI 10.2307/258241
PRUITT SW, 1986, J FINANC RES, V9, P113, DOI 10.1111/j.1475-6803.1986.tb00441.x
RAPPAPORT A, 1981, HARVARD BUS REV, V59, P139
ROSS SA, 1977, BELL J ECON, V8, P23, DOI 10.2307/3003485
NR 18
TC 140
Z9 189
U1 1
U2 37
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0143-2095
EI 1097-0266
J9 STRATEGIC MANAGE J
JI Strateg. Manage. J.
PD SEP
PY 1992
VL 13
IS 6
BP 467
EP 473
DI 10.1002/smj.4250130606
PG 7
WC Business; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA JK648
UT WOS:A1992JK64800005
DA 2024-09-05
ER
PT J
AU Gu, SS
Wang, KY
Gao, LY
Liu, J
AF Gu, Suishan
Wang, Kangyu
Gao, Lianyue
Liu, Jun
TI Research on express service defect evaluation based on semantic network
diagram and SERVQUAL model
SO FRONTIERS IN PUBLIC HEALTH
LA English
DT Article
DE express service defects; text mining; semantic network diagram; SERVQUAL
model; LDA topic model
ID BIG DATA; FAILURE
AB This paper constructs a defect evaluation model of express service, uses the text mining methods of web crawler, SVM (Support Vector Machine) emotion analysis and LDA (Linear Discriminant Analysis) topic model to capture and clean up the online negative comment data of express service, establishes a semantic network diagram, and uses LDA topic model to extract the characteristic words of defect topic. Based on SERVQUAL model, it can classify the subject characteristic words of express service defects from the dimensions of tangibility, reliability, responsiveness, assurance, empathy and economy, etc., calculate the degree value and attention value of express service defects, and establish IPA model for defect mapping and identify the improvement direction. The evaluation model constructed in this paper has reference value for evaluating the defects of service industry and improving service quality. It is found that the "responsiveness" defect is the primary improvement direction, and the reliability, assurance and economy are the secondary improvement defects. Among them, the "responsiveness" defect has five improvement detail defects. The evaluation model constructed in this paper has reference value for evaluating the defects of service industry and improving service quality.
C1 [Gu, Suishan; Wang, Kangyu; Gao, Lianyue] Jilin Univ, Sch Business & Management, Changchun, Jilin, Peoples R China.
[Liu, Jun] China Shipbldg Ind Grp Co Ltd, Res Inst 716, Lianyungang, Jiangsu, Peoples R China.
C3 Jilin University
RP Gu, SS (corresponding author), Jilin Univ, Sch Business & Management, Changchun, Jilin, Peoples R China.
EM guss@jlu.edu.cn
CR Aloini D, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.03.012
Berman J., 2020, MODERN MAT HANDLING, V75, P9
Cao X., 2015, RAILWAY TRANSP EC, V37, P93, DOI [10.14097/j.cnki.5392/2020.22.015, DOI 10.14097/J.CNKI.5392/2020.22.015]
Chen YL, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132414046
Dong Z., 1998, Appl. Linguist., V03, P79
Dospinescu O, 2022, KYBERNETES, V51, P1, DOI 10.1108/K-03-2021-0197
Fan X, 2012, APPL MECH MATER, V121-126, P4456, DOI 10.4028/www.scientific.net/AMM.121-126.4456
Ge YB., 2013, SCI TECHNOL INF, P196, DOI [10.3969/j.issn.1005-5800.2011.29.060, DOI 10.3969/J.ISSN.1005-5800.2011.29.060]
Glaser S, INT J LOGIST-RES APP, P1
Guo YY, 2020, LOGISTICS SCI TECH, V43, P22
Haung XB., 2005, NETWORK INFORM MININ, P99
He Y, 2016, NEW TECHNOL LIB INF, V31, P58, DOI [10.14089/j.cnki.cn11-3664/f.2019.01.005, DOI 10.14089/J.CNKI.CN11-3664/F.2019.01.005]
Hess RL, 2003, J ACAD MARKET SCI, V31, P127, DOI 10.1177/0092070302250898
Hong W, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133570
Hsiao YH, 2017, TELEMAT INFORM, V34, P284, DOI 10.1016/j.tele.2016.08.002
Jing L, 2020, COMPUT SCI
Joung J, 2021, SAGE OPEN, V11, DOI 10.1177/2158244020988249
Khan M, 2020, INT J COMPUT SCI NET, V20, P138, DOI 10.22937/IJCSNS.2020.20.12.15
Ku LW, 2007, J AM SOC INF SCI TEC, V58, P1838, DOI 10.1002/asi.20630
Li J, 2007, PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND KNOWLEDGE ENGINEERING (NLP-KE'07), P393
Li M, 2019, J COMPUT APPL, V39, P15, DOI [10.19695/j.cnki.cn12-1369.2018.06.49, DOI 10.19695/J.CNKI.CN12-1369.2018.06.49]
Li XS, 2020, MODERN BUS, V39, P33
Liu J.Y., 2018, Digit Technol Appl, V36, P84, DOI [10.1140/epjc/s10052-018-5559-9, DOI 10.1140/EPJC/S10052-018-5559-9, DOI 10.19695/J.CNKI.CN12-1369.2018.06.49]
Liu Ziyu, 2017, Journal of Hebei University of Science and Technology, V38, P600, DOI 10.7535/hbkd.2017yx06014
Ma PP, 2021, MATH PROBL ENG, V2021, DOI 10.1155/2021/8883370
MARTILLA JA, 1977, J MARKETING, V41, P77, DOI 10.2307/1250495
Matthias O, 2017, INT J OPER PROD MAN, V37, P37, DOI 10.1108/IJOPM-02-2015-0084
Meng Y., 2017, MANAG REV, V29, P144
Muda M, 2021, J RES INTERACT MARK, V15, P441, DOI 10.1108/JRIM-04-2020-0072
Park Y, 2009, TRANSPORT RES E-LOG, V45, P321, DOI 10.1016/j.tre.2008.09.004
Qi JY, 2016, INFORM MANAGE-AMSTER, V53, P951, DOI 10.1016/j.im.2016.06.002
Ralevic P, 2016, CENT EUR J OPER RES, V24, P637, DOI 10.1007/s10100-014-0369-0
Rampal N., 2022, IND TRUJILLO 0829, V38, P100525, DOI 10.1093/eurheartj/10.suppl_H.85
Saito J, 2014, PROC CIRP, V16, P235, DOI 10.1016/j.procir.2014.01.026
Sampaio M. I. C., 2004, Ciencia da Informacao, V33, P142, DOI 10.1590/S0100-19652004000100017
Shi YP, 2019, J BEIJING INF SCI TE, V34, P41, DOI [10.16508/j.cnki.11-5866/n.2019.02.009, DOI 10.16508/J.CNKI.11-5866/N.2019.02.009]
Wang YH., 2019, STAT DEC, V35, P150, DOI [10.3969/j.issn.1001-9960.2013.10.171, DOI 10.3969/J.ISSN.1001-9960.2013.10.171]
Wu PJ, 2018, TELEMAT INFORM, V35, P237, DOI 10.1016/j.tele.2017.11.004
Xia YF, 2011, CHINA BUS TRADE, V47, P126, DOI [10.1080/13675567.2021.2005005, DOI 10.1080/13675567.2021.2005005]
Yao YB., 2018, COMMER RES, V60, P107, DOI [10.2307/1250495, DOI 10.2307/1250495]
Zeithaml V.A., 1993, J ACAD MARKET SCI, V21, P1, DOI [DOI 10.1177/0092070393211001, 10.1177/0092070393211001]
Zhang N, 2021, J ORGAN END USER COM, V33, DOI 10.4018/JOEUC.20211101.oa3
Zhang Z., 2019, CHINA BUS MARKET, V33, P43, DOI [10.14089/j.cnki.cn11-3664/f.2019.01.005, DOI 10.13714/J.CNKI.1002-3100.2020.12.006]
Zhen X, 2014, ADV INTEL SYS RES, V101, P262
Zhuo J, 2009, I C SERV SYST SERV M, P78
NR 45
TC 0
Z9 0
U1 16
U2 71
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2296-2565
J9 FRONT PUBLIC HEALTH
JI Front. Public Health
PD DEC 2
PY 2022
VL 10
AR 1056575
DI 10.3389/fpubh.2022.1056575
PG 11
WC Public, Environmental & Occupational Health
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Public, Environmental & Occupational Health
GA 7B1GC
UT WOS:000898889800001
PM 36530722
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Hamilton, L
Elliott, D
Quick, A
Smith, S
Choplin, V
AF Hamilton, Leah
Elliott, Desha
Quick, Aaron
Smith, Simone
Choplin, Victoria
TI Exploring the Use of AI in Qualitative Analysis: A Comparative Study of
Guaranteed Income Data
SO INTERNATIONAL JOURNAL OF QUALITATIVE METHODS
LA English
DT Article
DE methods in qualitative inquiry; phenomenology; qualitative evaluation;
social justice; community based research
AB This study explores the potential of the AI chatbot ChatGPT to supplement human-centered tasks such as qualitative research analysis. The study compares the emergent themes in human and AI-generated qualitative analyses of interviews with guaranteed income pilot recipients. The results reveal that there are similarities and differences between human and AI-generated analyses, with the human coders recognizing some themes that ChatGPT did not and vice versa. The study concludes that AI like ChatGPT provides a powerful tool to supplement complex human-centered tasks, and predicts that such tools will become an additional tool to facilitate research tasks. Future research could explore feeding raw interview transcripts into ChatGPT and incorporating AI-generated themes into triangulation discussions to help identify oversights, alternative frames, and personal biases.
C1 [Hamilton, Leah; Choplin, Victoria] Appalachian State Univ, Dept Social Work, ASU Box 32155, 1179 State Farm Rd, Boone, NC 28608 USA.
[Elliott, Desha; Quick, Aaron; Smith, Simone] Clark Atlanta Univ, Dept Social Work, Atlanta, GA USA.
C3 University of North Carolina; Appalachian State University; Clark
Atlanta University
RP Hamilton, L (corresponding author), Appalachian State Univ, Dept Social Work, ASU Box 32155, 1179 State Farm Rd, Boone, NC 28608 USA.
EM hamiltonl@appstate.edu
OI Hamilton, Leah/0000-0002-1253-171X
FU Give Directly
FX The author(s) disclosed receipt of the following financial support
forthe research, authorship, and/or publication of this article: This
workwas supported by the Give Directly.
CR Brewer LC, 2019, AM J PUBLIC HEALTH, V109, P385, DOI 10.2105/AJPH.2018.304939
Bruun EPG, 2018, BASIC INCOME STUD, V13, DOI 10.1515/bis-2018-0018
Bureau of Labor Statistics, 2022, A look at falls, slips, and trips in the construction industry: The Economics Daily: U.S. Bureau of Labor Statistics
Chelliah John, 2017, Human Resource Management International Digest, V25, P1, DOI 10.1108/HRMID-11-2016-0152
Chow Andrew, 2023, Time
Chowdhury H, 2023, Insider
Creswell J.W., 2017, Qualitative inquiry and research design: Choosing among five approaches
Dastin Jeffrey, 2022, Reuters
Geronimus DAT., 2023, Weathering: The Extraordinary Stress of Ordinary Life in an Unjust Society
Gordon C., 2023, FORBES FEB
Kuskoff E, 2022, BRIT J SOC WORK, V52, P3982, DOI 10.1093/bjsw/bcac027
Lincoln Y. S., 1985, Naturalistic Enquiry, DOI DOI 10.1016/0147-1767(85)90062-8
Mesec B., 2023, PREPRINT, DOI [10.22541/au.168182047.70243364/v1, DOI 10.22541/AU.168182047.70243364/V1]
Miller K., 2021, Stanford HAI
Morrow R., 2015, PSYCHOLOGIST, V28, P643, DOI DOI 10.1016/J.JCIN.2015.03.004
Moustakas C., 1994, Phenomenological Research Methods, P180, DOI [https://doi.org/10.4135/9781412995658, DOI 10.4135/9781412995658]
Open AI, CHATGPT GEN FAQ
Smith A., 2014, AI, robotics, and the future of jobs
Tabone W., 2023, Using ChatGPT for human-computer interaction research: A primer
Van Manen M, 2016, Researching lived experience: human science for an action sensitive pedagogy, VSecond
NR 20
TC 5
Z9 9
U1 15
U2 31
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1609-4069
J9 INT J QUAL METH
JI Int. J. Qual. Meth.
PD SEP
PY 2023
VL 22
AR 16094069231201504
DI 10.1177/16094069231201504
PG 13
WC Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Social Sciences - Other Topics
GA R1AC1
UT WOS:001061726100001
OA gold
DA 2024-09-05
ER
PT J
AU Zhang, WS
Ma, LP
AF Zhang, Wangshu
Ma, Liping
TI Research and application of second-hand commodity price evaluation
methods on B2C platform: take the used car platform as an example
SO ANNALS OF OPERATIONS RESEARCH
LA English
DT Article
DE Second-hand product price; Business to customer (B2C) platform; Support
vector machine regression (SVR) model; Gradient boosting decision tree
(GBDT) algorithm; Boruta algorithm
ID MODEL
AB Taking the business to customer used car trading platform as an example, two feature selection algorithms, namely, gradient boosting decision tree (GBDT) and Boruta, have been used for optimizing the support vector machine regression (SVR) model in order to explore efficient and accurate second-hand commodity price evaluation methods. On comparing the prediction accuracy of the original SVR model, the GBDT-SVR model, and the Boruta-SVR model, it has been found that the error between the price predicted by the Boruta-SVR model and the actual given price is the smallest among the three models. Thus, this model can provide an accurate evaluation of the prices of used cars. This method can also be extended to other second-hand goods by incorporating their respective attributes and the price evaluation link of the second-hand trading platform in the consumer to business to consumer model, which will help in improving the efficiency of the merchant price evaluation and the merchant evaluation process.
C1 [Zhang, Wangshu; Ma, Liping] Capital Univ Econ & Business, Sch Stat, Beijing 100071, Peoples R China.
C3 Capital University of Economics & Business
RP Zhang, WS (corresponding author), Capital Univ Econ & Business, Sch Stat, Beijing 100071, Peoples R China.
EM zws19971009@126.com
CR Chi XC, 2015, OPT MATER, V46, P350, DOI 10.1016/j.optmat.2015.04.043
Feng Guohe, 2011, Computer Engineering and Applications, V47, P123, DOI 10.3778/j.issn.1002-8331.2011.03.037
Kanisha B, 2018, PERS UBIQUIT COMPUT, V22, P1083, DOI 10.1007/s00779-018-1139-0
Liu, 2020, BUS ECON, V525, P139
Liu BH, 2017, INT J COMMUN SYST, V30, DOI 10.1002/dac.3050
[刘承照 Liu Chengzhao], 2019, [地学前缘, Earth Science Frontiers], V26, P138
Liu Z, 2019, INFORM SYSTEM ENG, V08, P95
Manogaran G, 2022, IEEE T COMPUT SOC SY, V9, P174, DOI 10.1109/TCSS.2021.3051330
Prieto M, 2015, J RETAIL CONSUM SERV, V22, P206, DOI 10.1016/j.jretconser.2014.08.013
Ruo SY, 2004, J SHANGHAI U ENG SCI, V3, P195
Shi P.X, 2017, EVALUATION PREDICTIO
Wang C, 2022, COMPUT INTELL-US, V38, P842, DOI 10.1111/coin.12430
Xia Yanjiao, 2020, COMPUTER SYSTEMS APP, V29, P209
Zhang J, 2015, ENTERPRISE TECHNICAL, V34, P116
Zhao F, 2013, JOUNAL XINGTAI VOCAT, V30, P54
NR 15
TC 3
Z9 3
U1 8
U2 84
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0254-5330
EI 1572-9338
J9 ANN OPER RES
JI Ann. Oper. Res.
PD JUL
PY 2023
VL 326
IS SUPPL 1
SU 1
BP 37
EP 37
DI 10.1007/s10479-021-04332-5
EA OCT 2021
PG 1
WC Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Operations Research & Management Science
GA N0LM4
UT WOS:000712497400002
DA 2024-09-05
ER
PT J
AU Jing, WX
Zhen, LM
Wei, SY
Wang, X
AF Jing, Wang X.
Zhen, Liu M.
Wei, Sun Y.
Wang, Xin
TI Research on low-speed performance of continuous rotary electro-hydraulic
servo motor based on robust control with Adaboost prediction
SO JOURNAL OF ENGINEERING-JOE
LA English
DT Article
AB In order to improve the robustness and low-speed performance of continuous rotary electro-hydraulic servo system under influences of dynamic uncertainties, parametric perturbation, friction, other non-linear properties, and uncertainties, the robust control strategy was proposed with Adaboost prediction. Firstly, basing on the system mathematic model, the model with structured uncertainty and generalised state equation was established with parametric perturbation and external disturbances, and then the robust controller was developed by adopting $H_\infty $H infinity theory. Furthermore, Adaboost algorithm based on radial basis function (RBF) neural network was applied to design the system feedback mechanism, so the multiple weak neural network learners were obtained by using Adaboost algorithm to train system actual output and input. Also, these weak neural network learners constituted a strong learner to predict the electro-hydraulic servo system output and calculate the predictive error so as to adjust the system robust control output, so the real-time control was carried out by the robust controller. Some comparative simulated results are obtained to verify the proposed controller guarantees performances of low speed, tracking accuracy, and ability of anti-interference, which greatly expands the band of frequency response and improve the system robustness.
C1 [Jing, Wang X.; Zhen, Liu M.; Wei, Sun Y.] Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin, Heilongjiang, Peoples R China.
[Wang, Xin] Jilin Univ, Sch Mech & Aerosp Engn, Changchun, Jilin, Peoples R China.
C3 Harbin University of Science & Technology; Jilin University
RP Zhen, LM (corresponding author), Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin, Heilongjiang, Peoples R China.
EM mzliu94@163.com
FU National Natural Science Foundation of China [51305108]; Post Doctoral
Researchers Settled in Heilongjiang Research Start Funding Projects
[LBH-Q15069]
FX This project was supported by National Natural Science Foundation of
China (grant no. 51305108), and Post Doctoral Researchers Settled in
Heilongjiang Research Start Funding Projects (no. LBH-Q15069).
CR Cao Y., 2013, J AUTOM, V17, P342
Fu Q, 2018, IEEE SENS J, V18, P5024, DOI 10.1109/JSEN.2018.2830109
GUO Juan, 2009, THESIS
Han Songshan, 2014, Journal of Beijing University of Aeronautics and Astronautics, V40, P321
He, 2010, RES PERFORMANCE CONT, P6
Hu J, 2015, ACTA ARMAMENTARII, V36, P34
Jammoussi AY, 2014, SPRINGERPLUS, V3, DOI 10.1186/2193-1801-3-355
Kuo W. H, 2017, IMCOM 17 P 11 INT C, V1
Li S., 2017, Modeling and compensation design of air pressure variation in high-speed elevator car and its application
Liu C, 2010, J INSTRUM INSTRUM, V15, P345
Liu H., 2013, J INSTRUM INSTRUM, V34, P643
Liu Xiao-dong, 2011, Journal of Shanghai Jiaotong University, V45, P393
Liu Z. K, 2013, LINEAR ROBUST CONTRO
Mohanty A, 2011, IEEE T CONTR SYST T, V19, P567, DOI 10.1109/TCST.2010.2048569
Mukherjee I, 2013, J MACH LEARN RES, V14, P2315
Sun M. H, 2016, MACH TOOLS HYDRAUL, V6, P1232
Sun WC, 2013, IEEE-ASME T MECH, V18, P1072, DOI 10.1109/TMECH.2012.2204765
Wu J. L, 2012, POWER GRID TECHNOL, V36, P345
Xiao L, 2018, ENERG CONVERS MANAGE, V160, P273, DOI 10.1016/j.enconman.2018.01.038
Xu DD., 2015, AIRCRAFT MANUF TECHN, V479, P86
Yao JY, 2012, CHINESE J AERONAUT, V25, P766, DOI 10.1016/S1000-9361(11)60443-3
NR 21
TC 1
Z9 2
U1 0
U2 7
PU INST ENGINEERING TECHNOLOGY-IET
PI HERTFORD
PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND
SN 2051-3305
J9 J ENG-JOE
JI J. Eng.-JOE
PD JAN
PY 2019
IS 13
BP 60
EP 67
DI 10.1049/joe.2018.8970
PG 8
WC Engineering, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA HN0ZX
UT WOS:000459918000009
OA gold
DA 2024-09-05
ER
PT J
AU Doloreux, D
de la Puerta, JG
Pastor-López, I
Gómez, IP
Sanz, B
Zabala-Iturriagagoitia, JM
AF Doloreux, David
Gaviria de la Puerta, Jose
Pastor-Lopez, Iker
Porto Gomez, Igone
Sanz, Borja
Mikel Zabala-Iturriagagoitia, Jon
TI Territorial innovation models: to be or not to be, that's the question
SO SCIENTOMETRICS
LA English
DT Article
DE Territorial innovation models; Bibliometric analysis; Natural language
processing; Regional development
ID RESEARCH-AND-DEVELOPMENT; INDUSTRIAL DISTRICTS; KEYWORD COOCCURRENCE;
LEARNING REGION; CLUSTERS; SCIENCE; SYSTEMS; POLICY; DYNAMICS; KNOWLEDGE
AB Industrial agglomerations are key in explaining the development paths followed by territories, particularly at sub-national levels. This field of research has received increasing attention in the last decades, what has led to the emergence of a variety of models intended to characterize innovation at the regional level. Moulaert and Sekia (Reg Stud 37:289-302, 2003) introduced the concept of 'Territorial Innovation Models' (TIMs) as a generic name that embraced these conceptual models of regional innovation in the literature. However, the literature does not help to assess the extent to which convergence or divergence is found across TIMs. In this paper we aim to clarify if there are clear boundaries across TIMs, so each TIM has particular characteristics that make it conceptually different from others, and hence, justify its introduction in the literature. Based on natural language processing methodologies, we extract the key terms of a large volume of academic papers published in peer review journals indexed in the Web of Science for the following TIMS: industrial districts, innovative milieu, learning regions, clusters, regional innovation systems, local production systems and new industrial spaces. We resort to Rapid Automatic Keyword Extraction to identify the associations between the topics extracted from the previous corpus. Finally, a configuration to visualise the results of the methodology followed is also proposed. Our results evidence that the previous models do not have a unique flavour but are rather similar in their taste. We evidence that there is quite little that is truly new in the different TIMs in terms of theory-building and the concepts being used in each model.
C1 [Doloreux, David] HEC Montreal, Dept Int Business, Montreal, PQ, Canada.
[Gaviria de la Puerta, Jose; Pastor-Lopez, Iker; Sanz, Borja] Univ Deusto, Fac Engn, Ave Universidades 24, Bilbao 48007, Spain.
[Porto Gomez, Igone] Univ Deusto, Deusto Business Sch, Ave Universidades 24, Bilbao 48007, Spain.
[Mikel Zabala-Iturriagagoitia, Jon] Univ Deusto, Deusto Business Sch, Camino Mundaiz 50, Donostia San Sebastian 20012, Spain.
C3 Universite de Montreal; HEC Montreal; University of Deusto; University
of Deusto; University of Deusto
RP Gómez, IP (corresponding author), Univ Deusto, Deusto Business Sch, Ave Universidades 24, Bilbao 48007, Spain.
EM igone.porto@deusto.es
RI Gomez, Igone Porto/J-4501-2014; Zabala-Iturriagagoitia, Jon
Mikel/L-9297-2013; Sanz, Borja/L-8365-2014; Doloreux, David/Y-7368-2019
OI Gomez, Igone Porto/0000-0003-2865-4818; Zabala-Iturriagagoitia, Jon
Mikel/0000-0003-1975-2555; Sanz, Borja/0000-0003-2039-7773; Doloreux,
David/0000-0001-7101-2170
FU Eusko Jaurlaritza [IT885-16, H2020-700367]
FX The funding was provided by Eusko Jaurlaritza (Grand No. IT885-16) and
H2020 Societal Challenges (Grand No. H2020-700367).
CR Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
Amara N, 2012, SCIENTOMETRICS, V93, P553, DOI 10.1007/s11192-012-0729-2
[Anonymous], 2005, OXFORD HDB INNOVATIO
[Anonymous], 2005, P 1 INT WORKSH OP SO, DOI DOI 10.1145/1133905.1133907
Archambault É, 2006, SCIENTOMETRICS, V68, P329, DOI 10.1007/s11192-006-0115-z
Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062
Asheim BT, 2016, HANDBOOK ON THE GEOGRAPHIES OF INNOVATION, P45
Asheim BT, 2011, REG STUD, V45, P893, DOI 10.1080/00343404.2010.543126
Barrutia J, 2018, EVOL INST ECON REV, V15, P213, DOI 10.1007/s40844-018-0109-6
BECATTINI G., 1979, REV EC A POLITICA IN, P7
Becattini G., 2009, A Handbook of industrial districts
Bergman EML, 2012, J ACAD LIBR, V38, P370, DOI 10.1016/j.acalib.2012.08.002
Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8
Boschma R., 2007, IND INNOV, V14, P177, DOI [DOI 10.1080/13662710701253441, 10.1080/13662710701253441]
Cainelli G, 2008, GROWTH CHANGE, V39, P414, DOI 10.1111/j.1468-2257.2008.00432.x
Chavarro D, 2018, RES EVALUAT, V27, P106, DOI 10.1093/reseval/rvy001
Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Cooke P, 1997, RES POLICY, V26, P475, DOI 10.1016/S0048-7333(97)00025-5
Courlet C, 1994, ORG PRODUCTION TERRI, P45
Crescenzi R, 2011, ENVIRON PLANN A, V43, P773, DOI 10.1068/a43492
Crevoisier O, 2004, ECON GEOGR, V80, P367
Cruz SCS, 2010, REG STUD, V44, P1263, DOI 10.1080/00343400903234670
De Marchi V, 2014, COMPET CHANG, V18, P70, DOI 10.1179/1024529413Z.00000000049
Doloreux D, 2017, EUR PLAN STUD, V25, P371, DOI 10.1080/09654313.2016.1244516
Dotti N. F, 2014, 1 GREATPI VRIJ U CTR
Elgaml E. M., 2015, INT J COMPUTER ELECT, V9, P1087, DOI DOI 10.5281/ZENODO.1100847
Enkel E, 2009, R&D MANAGE, V39, P311, DOI 10.1111/j.1467-9310.2009.00570.x
Evens E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098221
Fang L, 2015, J PLAN LIT, V30, P239, DOI 10.1177/0885412215589848
FLORIDA R, 1995, FUTURES, V27, P527, DOI 10.1016/0016-3287(95)00021-N
Garcia-Lillo F, 2017, PAPERS REGIONAL SCI, V97, P835
Hahsler M., 2011, R Project Module, P223
Hassink R, 2005, EUR PLAN STUD, V13, P521, DOI 10.1080/09654310500107134
Henry N, 1996, AREA, V28, P25
Hervas-Oliver JL, 2015, EUR PLAN STUD, V23, P1827, DOI 10.1080/09654313.2015.1021300
Horváth K, 2019, REG STUD, V53, P330, DOI 10.1080/00343404.2018.1469741
Isaksen A., 1996, Norsk Geografisk Tidsskrift, V50, P113, DOI [10.1080/00291959608542834, DOI 10.1080/00291959608542834]
Isaksen A, 2017, ECON GEOGR, V93, P436
Isaksen A, 2009, REG STUD, V43, P1155, DOI 10.1080/00343400802094969
Jesson J.K., 2011, Doing your literature review
Lee PC, 2010, INNOV-MANAG POLICY P, V12, P26, DOI 10.5172/impp.12.1.26
Liu ZG, 2015, SCIENTOMETRICS, V103, P135, DOI 10.1007/s11192-014-1517-y
LOUNSBURY JW, 1979, COMMUNITY MENT HLT J, V15, P267
Lundvall B.-A., 1988, Technical change and economic theory, P349
Maillat D., 1998, RECHERCHES CONOMIQUE, V64, P111
Markusen A, 2003, REG STUD, V37, P701, DOI 10.1080/0034340032000108796
Marshall A., 1890, PRINCIPLES EC
MARSHALL Alfred., 1919, IND TRADE
Mazzucato M, 2018, TECHNOL FORECAST SOC, V136, P166, DOI 10.1016/j.techfore.2017.03.034
Miettinen R., 2002, NATL INNOVATION SYST
Morgan K, 1997, REG STUD, V31, P491, DOI 10.1080/00343409750132289
Moulaert F, 2005, EUR URBAN REG STUD, V12, P45, DOI 10.1177/0969776405048500
Moulaert F, 2003, REG STUD, V37, P289, DOI 10.1080/0034340032000065442
Muscio A, 2006, EUR PLAN STUD, V14, P773, DOI 10.1080/09654310500496073
O'Gorman C, 2004, ENTREP REGION DEV, V16, P459, DOI 10.1080/0898562042000224369
Olsen LS, 2012, EUR PLAN STUD, V20, P1785, DOI 10.1080/09654313.2012.723421
Onan A, 2016, EXPERT SYST APPL, V57, P232, DOI 10.1016/j.eswa.2016.03.045
Ortega-Colomer Francisco Javier, 2016, Journal of Technology Management & Innovation, V11, P139
Piore M., 1984, The Second Industrial Divide: Possibilities for Prosperity
PORTER ME, 1990, HARVARD BUS REV, V68, P73
Porter ME, 2000, ECON DEV Q, V14, P15, DOI 10.1177/089124240001400105
Porter ME., 2008, EU C INN CLUST STOCK
Porto Gomez I., 2014, THESIS
Gómez IP, 2016, ENTREP REGION DEV, V28, P26, DOI 10.1080/08985626.2015.1095946
Rose S., 2010, TEXT MINING APPL THE, P1, DOI [DOI 10.1002/9780470689646.CH1, 10.1002/9780470689646.CH1, 10.1002/9780470689646.ch1]
Santos I, 2012, EXPERT SYST APPL, V39, P13417, DOI 10.1016/j.eswa.2012.05.061
Scaringella L, 2018, TECHNOL FORECAST SOC, V136, P59, DOI 10.1016/j.techfore.2017.09.023
Scaringella L, 2016, TECHNOL FORECAST SOC, V112, P92, DOI 10.1016/j.techfore.2016.05.026
Schot J, 2018, RES POLICY, V47, P1554, DOI 10.1016/j.respol.2018.08.011
SCOTT AJ, 1988, INT J URBAN REGIONAL, V12, P171, DOI 10.1111/j.1468-2427.1988.tb00448.x
Storper L.M., 1988, The Power of Geography, P21
Sun H, 2013, ADV INTEL SYS RES, V52, P250
Sun YT, 2016, SCIENTOMETRICS, V106, P17, DOI 10.1007/s11192-015-1778-0
Thushara MG, 2017, 2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P1695, DOI 10.1109/ICACCI.2017.8126087
Tödtling F, 2005, RES POLICY, V34, P1203, DOI 10.1016/j.respol.2005.01.018
Toivanen H, 2011, SCIENTOMETRICS, V88, P471, DOI 10.1007/s11192-011-0390-1
Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375
Tremblay D.G., 2005, Geographie, economie, societe, n, P37
Uriona-Maldonado M, 2012, SCIENTOMETRICS, V91, P977, DOI 10.1007/s11192-012-0653-5
Uyarra E, 2016, EU-SPRI FORUM SCI TE, P196
Wolfe DA, 2004, URBAN STUD, V41, P1071, DOI 10.1080/00420980410001675832
NR 82
TC 13
Z9 16
U1 2
U2 44
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD SEP
PY 2019
VL 120
IS 3
BP 1163
EP 1191
DI 10.1007/s11192-019-03181-1
PG 29
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA IR4WE
UT WOS:000481434200010
DA 2024-09-05
ER
PT J
AU Zope, B
Mishra, S
Shaw, K
Vora, DR
Kotecha, K
Bidwe, RV
AF Zope, Bhushan
Mishra, Sashikala
Shaw, Kailash
Vora, Deepali Rahul
Kotecha, Ketan
Bidwe, Ranjeet Vasant
TI Question Answer System: A State-of-Art Representation of Quantitative
and Qualitative Analysis
SO BIG DATA AND COGNITIVE COMPUTING
LA English
DT Article
DE question answering system; bibliometric analysis; natural language
processing; machine comprehension
ID WEB; CATEGORIZATION; SIMILARITY; QUERIES; MODELS
AB Question Answer System (QAS) automatically answers the question asked in natural language. Due to the varying dimensions and approaches that are available, QAS has a very diverse solution space, and a proper bibliometric study is required to paint the entire domain space. This work presents a bibliometric and literature analysis of QAS. Scopus and Web of Science are two well-known research databases used for the study. A systematic analytical study comprising performance analysis and science mapping is performed. Recent research trends, seminal work, and influential authors are identified in performance analysis using statistical tools on research constituents. On the other hand, science mapping is performed using network analysis on a citation and co-citation network graph. Through this analysis, the domain's conceptual evolution and intellectual structure are shown. We have divided the literature into four important architecture types and have provided the literature analysis of Knowledge Base (KB)-based and GNN-based approaches for QAS.
C1 [Zope, Bhushan; Mishra, Sashikala; Shaw, Kailash; Vora, Deepali Rahul; Bidwe, Ranjeet Vasant] Symbiosis Int Deemed Univ SIU, Symbiosis Inst Technol, Pune 412115, India.
[Kotecha, Ketan] Symbiosis Int Deemed Univ SIU, Symbiosis Inst Technol, Symbiosis Ctr Appl Artificial Intelligence SCAAI, Pune 412115, India.
C3 Symbiosis International University; Symbiosis Institute of Technology
(SIT); Symbiosis International University; Symbiosis Institute of
Technology (SIT)
RP Zope, B (corresponding author), Symbiosis Int Deemed Univ SIU, Symbiosis Inst Technol, Pune 412115, India.
EM bhushan.zope.phd2021@sitpune.edu.in
RI Vora, Deepali/AAB-8430-2019; Zope, Bhushan/GQP-7499-2022; Shaw,
Kailash/AHC-6550-2022; Bidwe, Ranjeet/AGD-7872-2022; Shaw,
Kailash/AAG-4625-2021; Kotecha, K/U-3927-2017
OI Vora, Deepali/0000-0003-3969-9800; Zope, Bhushan/0000-0003-2636-223X;
Bidwe, Ranjeet/0000-0002-6801-3102; Shaw, Kailash/0000-0001-5677-7423;
Kotecha, K/0000-0003-2653-3780
CR Inan HA, 2019, Arxiv, DOI arXiv:1909.12764
Abad-Navarro F, 2021, IEEE ACCESS, V9, P91282, DOI 10.1109/ACCESS.2021.3091413
Abujabal A, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P1191, DOI 10.1145/3038912.3052583
Akour Mohammed, 2011, American Journal of Applied Sciences, V8, P652, DOI 10.3844/ajassp.2011.652.661
[Anonymous], 2012, WWW 12, DOI DOI 10.1145/2187836.2187923
Athenikos SJ, 2010, COMPUT METH PROG BIO, V99, P1, DOI 10.1016/j.cmpb.2009.10.003
Bakhshi M, 2020, EXPERT SYST APPL, V146, DOI 10.1016/j.eswa.2020.113205
Bastian M., 2009, Association for the Advancement of Artificial Intelligence, DOI 10.13140/2.1.1341.1520
Berant Jonathan, 2013, EMPIRICAL METHODS NA, P1533
Berger A., 2000, SIGIR Forum, V34, P192
Bidwe RV, 2022, BIG DATA COGN COMPUT, V6, DOI 10.3390/bdcc6020044
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blooma MJ, 2009, PROCEEDINGS OF THE 2009 SIXTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, VOLS 1-3, P1522, DOI 10.1109/ITNG.2009.96
BOBROW DG, 1977, ARTIF INTELL, V8, P155, DOI 10.1016/0004-3702(77)90018-2
Bollacker K., 2008, P 2008 ACM SIGMOD IN, P1247
Budiharto W, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-020-00341-6
Burke RD, 1997, AI MAG, V18, P57
Cai DF, 2004, FOURTH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY, PROCEEDINGS, P1141, DOI 10.1109/CIT.2004.1357348
Cao NicolaDe., 2018, Question answering by reasoning across documents with graph convolutional networks
Cao Yang Trista, 2019, arXiv
Chen DQ, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1870, DOI 10.18653/v1/P17-1171
Chen DY, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P1021, DOI 10.1145/3331184.3331328
Chen YH, 2021, IEEE ACCESS, V9, P158638, DOI 10.1109/ACCESS.2021.3130667
Clark P., 1999, Question Answering Systems. Papers from the 1999 AAAI Fall Symposium, P43
Cocco R., 2019, P CEUR WORKSHOP P, V2400
Cui H, 2007, ACM T INFORM SYST, V25, DOI 10.1145/1229179.1229182
Cui WY, 2017, PROC VLDB ENDOW, V10, P565, DOI 10.14778/3055540.3055549
Dai ZH, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P800
Das A, 2018, IEEE COMPUT SOC CONF, P2135, DOI 10.1109/CVPRW.2018.00279
Nguyen DQ, 2017, SEMANT WEB, V8, P511, DOI 10.3233/SW-150204
Day MY, 2020, 2020 IEEE 21ST INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2020), P419, DOI 10.1109/IRI49571.2020.00070
Devlin J., 2018, ARXIV
Diefenbach D, 2018, KNOWL INF SYST, V55, P529, DOI 10.1007/s10115-017-1100-y
Diefenbach D, 2017, IN SY AP IN WE HC, V10577, P48, DOI 10.1007/978-3-319-70407-4_10
Dimitrakis E, 2020, J INTELL INF SYST, V55, P233, DOI 10.1007/s10844-019-00584-7
Ding Ming, 2019, ARXIV
Dong L, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P260
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Du YP, 2005, LECT NOTES COMPUT SC, V3248, P81
Esposito M, 2020, INFORM SCIENCES, V514, P88, DOI 10.1016/j.ins.2019.12.002
Fader A, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P1156, DOI 10.1145/2623330.2623677
Ferrucci D, 2010, AI MAG, V31, P59, DOI 10.1609/aimag.v31i3.2303
Figueroa A, 2014, EXPERT SYST APPL, V41, P4730, DOI 10.1016/j.eswa.2014.02.004
Green Jr Bert F, 1961, Proceedings of the Western Joint Computer Conference, P219
Hao XY, 2007, 2007 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, VOL II, PROCEEDINGS, P325
Hao YC, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P221, DOI 10.18653/v1/P17-1021
He X., 2016, ARXIV160400727
Hermann KM, 2015, ADV NEUR IN, V28
Hirschman L., 2001, Natural Language Engineering, V7, P275, DOI 10.1017/S1351324901002807
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Höffner K, 2017, SEMANT WEB, V8, P895, DOI 10.3233/SW-160247
Hu S, 2018, P 2018 C EMP METH NA, P2098, DOI 10.18653/v1/d18-1234
Hu S, 2018, IEEE T KNOWL DATA EN, V30, P824, DOI 10.1109/TKDE.2017.2766634
Hu X, 2021, KNOWL INF SYST, V63, P819, DOI 10.1007/s10115-020-01534-4
Huang X, 2019, PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), P105, DOI 10.1145/3289600.3290956
Huang Z, 2020, IEEE ACCESS, V8, P94341, DOI 10.1109/ACCESS.2020.2988903
Ittycheriah A., 2000, P 10 TEXT RETRIEVAL
Jabalameli M, 2020, ETRI J, V42, P239, DOI 10.4218/etrij.2018-0312
Jiao J, 2021, KNOWL-BASED SYST, V228, DOI 10.1016/j.knosys.2021.107270
Jin H, 2019, IEEE ACCESS, V7, P75235, DOI 10.1109/ACCESS.2019.2918675
Kepei Zhang, 2010, 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2010), P2692, DOI 10.1109/FSKD.2010.5569607
Khodadi I, 2016, INFORM PROCESS MANAG, V52, P340, DOI 10.1016/j.ipm.2015.09.001
Khot T, 2018, AAAI CONF ARTIF INTE, P5189
Kim MY, 2015, LECT NOTES ARTIF INT, V9067, P244, DOI 10.1007/978-3-662-48119-6_18
Kolomiyets O, 2011, INFORM SCIENCES, V181, P5412, DOI 10.1016/j.ins.2011.07.047
Kwok C, 2001, ACM T INFORM SYST, V19, P242, DOI 10.1145/502115.502117
Le H., 2014, P KNOWLEDGE SYSTEMS
Lehman J., 2010, P GEN EV COMP C, P103
Li G., 2018, P 30 INT C SOFTWARE
Liu S, 2013, LECT NOTES ARTIF INT, V8208, P73, DOI 10.1007/978-3-642-41491-6_8
Liu XA, 2018, 2018 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), P179, DOI 10.1109/CIS2018.2018.00046
Liu YQ, 2016, 2016 3RD INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), P115, DOI 10.1109/ICISCE.2016.35
Lopez V, 2007, J WEB SEMANT, V5, P72, DOI 10.1016/j.websem.2007.03.003
Lopez V, 2011, SEMANT WEB, V2, P125, DOI 10.3233/SW-2011-0041
Lu JT, 2021, KNOWL-BASED SYST, V225, DOI 10.1016/j.knosys.2021.107098
Lu XL, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P105, DOI 10.1145/3331184.3331252
Lukovnikov D, 2019, LECT NOTES COMPUT SC, V11778, P470, DOI 10.1007/978-3-030-30793-6_27
Lukovnikov D, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P1211, DOI 10.1145/3038912.3052675
Luo D, 2020, IEEE IJCNN, DOI 10.1109/ijcnn48605.2020.9207186
Luo KQ, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P2185
Maheshwari G, 2019, LECT NOTES COMPUT SC, V11778, P487, DOI 10.1007/978-3-030-30793-6_28
Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010
Mansouri A, 2008, INTERNATIONAL SYMPOSIUM OF INFORMATION TECHNOLOGY 2008, VOLS 1-4, PROCEEDINGS, P1014
Meditskos G., 2016, ACM INT C PROCEEDING, P153, DOI [10.1145/2993318.2993331, DOI 10.1145/2993318.2993331]
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748
Mishra A., 2010, Proceedings of the 2010 International Conference on Computational Intelligence and Communication Networks (CICN 2010), P548, DOI 10.1109/CICN.2010.108
Moldovan D, 2003, ACM T INFORM SYST, V21, P133, DOI 10.1145/763693.763694
Mollá D, 2007, COMPUT LINGUIST, V33, P41, DOI 10.1162/coli.2007.33.1.41
Moschitti A, 2003, PROC INT C TOOLS ART, P241, DOI 10.1109/TAI.2003.1250197
Neshati M, 2017, INFORM PROCESS MANAG, V53, P1026, DOI 10.1016/j.ipm.2017.04.002
Bach NX, 2020, CYBERN INF TECHNOL, V20, P112, DOI 10.2478/cait-2020-0008
Nicula B, 2015, ROEDUNET IEEE, P167, DOI 10.1109/RoEduNet.2015.7311988
NOSOFSKY RM, 1986, J EXP PSYCHOL GEN, V115, P39, DOI 10.1037/0096-3445.115.1.39
Otsuka A, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P1063, DOI 10.1145/3184558.3191537
Pal A, 2012, ACM T INFORM SYST, V30, DOI 10.1145/2180868.2180872
Panchbhai A, 2020, COMM COM INF SC, V1232, P158, DOI 10.1007/978-3-030-65384-2_12
Patil S, 2022, INT J ADV COMPUT SC, V13, P445
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Qiu XP, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P1305
Qu YQ, 2018, Arxiv, DOI arXiv:1804.03317
Quarteroni S, 2009, NAT LANG ENG, V15, P73, DOI 10.1017/S1351324908004919
Rajpurkar P., 2016, P 2016 C EMPIRICAL M, P2383, DOI 10.18653/v1/D16-1264
Rajpurkar P, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P784
Ravichandran D, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P41
Rodrigo A, 2017, KNOWL-BASED SYST, V137, P83, DOI 10.1016/j.knosys.2017.09.015
Ruseti S., 2015, P CEUR WORKSHOP P, VVolume 1391
Seo Min Joon, 2016, arXiv
Shah AA, 2019, KNOWL INF SYST, V58, P611, DOI 10.1007/s10115-018-1203-0
Shekarpour S, 2015, J WEB SEMANT, V30, P39, DOI 10.1016/j.websem.2014.06.002
Shin S, 2019, INFORM PROCESS MANAG, V56, P445, DOI 10.1016/j.ipm.2018.12.003
Singh K, 2018, LECT NOTES COMPUT SC, V10843, P624, DOI 10.1007/978-3-319-93417-4_40
Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162]
Song B, 2018, LECT NOTES COMPUT SC, V10942, P522, DOI 10.1007/978-3-319-93818-9_50
Song DZ, 2015, LECT NOTES COMPUT SC, V9367, P21, DOI 10.1007/978-3-319-25010-6_2
Song LF, 2018, Arxiv, DOI arXiv:1809.02040
Soricut R, 2006, INFORM RETRIEVAL, V9, P191, DOI 10.1007/s10791-006-7149-y
Soricut R, 2004, HLT-NAACL 2004: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, P57
Srba I, 2016, ACM T WEB, V10, DOI 10.1145/2934687
Sutskever I, 2014, ADV NEUR IN, V27
To ND, 2020, IEEE SYS MAN CYBERN, P4236, DOI [10.1109/smc42975.2020.9282949, 10.1109/SMC42975.2020.9282949]
Toba H, 2014, INFORM SCIENCES, V261, P101, DOI 10.1016/j.ins.2013.10.030
Tong PH, 2019, DATA SCI ENG, V4, P323, DOI 10.1007/s41019-019-00109-w
Tran Q., 2014, KNOWLEDGE SYSTEMS EN
Tu M., 2019, arXiv
Tu M, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P2704
Vakulenko S, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P1431, DOI 10.1145/3357384.3358026
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vollmers D., 2021, arXiv
Wang LJ, 2016, LECT NOTES COMPUT SC, V10102, P885, DOI 10.1007/978-3-319-50496-4_82
Wang RZ, 2019, IEEE ACCESS, V7, P46773, DOI 10.1109/ACCESS.2019.2909826
Wang SJ, 2020, WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, P63, DOI 10.1145/3366424.3382698
Wang SH, 2018, AAAI CONF ARTIF INTE, P5981
Wang W, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P1705
Wang WH, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P189, DOI 10.18653/v1/P17-1018
Wang XZ, 2018, J COMPUT SCI TECH-CH, V33, P625, DOI 10.1007/s11390-018-1845-0
Wu LJ, 2020, COMM COM INF SC, V1157, P170, DOI 10.1007/978-981-15-3412-6_17
Xia L, 2008, PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON UNIVERSAL COMMUNICATION, P317, DOI 10.1109/ISUC.2008.18
Xiao Y., 2019, P 57 ANN M ASS COMPU
Xie ZW, 2016, LECT NOTES COMPUT SC, V10102, P300, DOI 10.1007/978-3-319-50496-4_25
Xiong C, 2017, ARXIV
Xiong HB, 2021, KNOWL-BASED SYST, V221, DOI 10.1016/j.knosys.2021.106954
Xu K, 2018, IEEE INT SYMP CIRC S, DOI 10.1109/ISCAS.2018.8350934
Xu K, 2015, LECT NOTES COMPUT SC, V9283, P414, DOI 10.1007/978-3-319-24027-5_43
Yang Z, 2018, arXiv
Yin J., 2016, P 25 INT JOINT C ART, P2972
Yu M, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P571, DOI 10.18653/v1/P17-1053
Yuan Sui, 2021, Journal of Physics: Conference Series, V1883, DOI 10.1088/1742-6596/1883/1/012064
Yue Wang, 2020, ICIAI 2020: Proceedings of the 2020 the 4th International Conference on Innovation in Artificial Intelligence, P170, DOI 10.1145/3390557.3394296
Zafar H, 2018, LECT NOTES COMPUT SC, V10843, P714, DOI 10.1007/978-3-319-93417-4_46
Zhang XB, 2018, INT CONF MANAGE DATA, P1753, DOI 10.1145/3183713.3193555
Zhao Z, 2015, IEEE T KNOWL DATA EN, V27, P993, DOI 10.1109/TKDE.2014.2356461
Zheng HT, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0205097
Zheng WG, 2019, INFORM SCIENCES, V481, P141, DOI 10.1016/j.ins.2018.12.032
Zhu CH, 2018, Arxiv, DOI arXiv:1510.04780
Zhu GG, 2018, EXPERT SYST APPL, V101, P8, DOI 10.1016/j.eswa.2018.02.011
Zou L, 2014, SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, P313, DOI 10.1145/2588555.2610525
NR 157
TC 4
Z9 4
U1 2
U2 17
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2504-2289
J9 BIG DATA COGN COMPUT
JI Big Data Cogn. Comput.
PD DEC
PY 2022
VL 6
IS 4
AR 109
DI 10.3390/bdcc6040109
PG 33
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA 7D2TR
UT WOS:000900349900001
OA gold
DA 2024-09-05
ER
PT J
AU Cumiskey, KM
Humphreys, L
AF Cumiskey, Kathleen M.
Humphreys, Lee
TI Social, seamless, just, and open: Advancing mobile communication
research
SO NEW MEDIA & SOCIETY
LA English
DT Article
DE AI; diversity; inclusivity; mobile phones; open access; open research;
seamless; smartphones; social; social justice
ID PHONE; TECHNOLOGY; INFORMATION; MIDWIVES; ACCESS; AGE
AB Through integrating the research featured in this issue, this article describes generative areas for future research and the means to advance the impact of our field. Reflective practices related to field building and knowledge access for which Rich Ling helped to lay the groundwork are highlighted. Ling's work in mobile media and telecommunications has influenced the theoretical, methodological, and empirical opportunities for mobile communication research. Four themes for future mobile communication research have emerged: social, seamless, just, and open. These themes align with the work featured in this issue and with Ling's promotion of practices that enhance our field to develop relevancy, integrity, and ecological validity. This article places special focus on global and social justice as leading to a better understanding of mobile communication in the world.
C1 [Cumiskey, Kathleen M.] CUNY, Coll Staten Isl, Dept Psychol, New York, NY USA.
[Humphreys, Lee] Cornell Univ, Dept Commun, Ithaca, NY USA.
[Humphreys, Lee] Cornell Univ, Qualitat & Interpret Res Inst, Ithaca, NY USA.
[Cumiskey, Kathleen M.] CUNY, Coll Staten Isl, 2800 Victory Blvd,Bldg 4S-108, Staten Isl, NY 10314 USA.
C3 City University of New York (CUNY) System; College of Staten Island
(CUNY); Cornell University; Cornell University; City University of New
York (CUNY) System; College of Staten Island (CUNY)
RP Cumiskey, KM (corresponding author), CUNY, Coll Staten Isl, 2800 Victory Blvd,Bldg 4S-108, Staten Isl, NY 10314 USA.
EM Katie.cumiskey@csi.cuny.edu
CR Ali C, 2021, INFORM POL, P1
Alper M, 2017, JOHN D CATH T MAC, P1
[Anonymous], 2002, Smart mobs: The next social revolution
Archambault JS, 2011, NEW MEDIA SOC, V13, P444, DOI 10.1177/1461444810393906
Bayer JB, 2016, COMMUN THEOR, V26, P128, DOI 10.1111/comt.12090
Brock A.L., 2020, Distributed blackness: African American cybercultures
Brough M, 2018, MOB MEDIA COMMUN, V6, P247, DOI 10.1177/2050157917737812
Campbell S., 2014, Media and Social Life, P176
Campbell Scott W., 2014, Living Inside Mobile Social Information, P23
Chib A, 2013, MOB MEDIA COMMUN, V1, P69, DOI 10.1177/2050157912459502
Chib A, 2011, NEW MEDIA SOC, V13, P486, DOI 10.1177/1461444810393902
Chib A, 2010, J COMPUT-MEDIAT COMM, V15, P500, DOI 10.1111/j.1083-6101.2010.01515.x
Clark MD., WE TRIED TELL YALL B
Cumiskey K.M., 2017, Haunting Hands: Mobile Media Practices and Loss
Silva ADE, 2011, NEW MEDIA SOC, V13, P411, DOI 10.1177/1461444810393901
Dienlin T, 2021, J COMMUN, V71, P1, DOI 10.1093/joc/jqz052
DIgnazio C, 2020, STRONG IDEAS SERIES, P1
Donner J, 2015, INFORM SOC SER, P1
Freelon Deen., 2016, HASHTAGS FERGUSON BL, DOI DOI 10.2139/SSRN.2747066
Gershon I, 2021, NEW MEDIA SOC, V23, P853, DOI 10.1177/1461444820954184
Goffman E., 1959, PRESENTATION SELF EV
Goggin G, 2017, NEW MEDIA SOC, V19, P1563, DOI 10.1177/1461444817717512
Gonzales A, 2016, INFORM COMMUN SOC, V19, P234, DOI 10.1080/1369118X.2015.1050438
HJORTH L, 2020, ROUTL COMPANIONS
Hjorth L, 2012, FEM MEDIA STUD, V12, P477, DOI 10.1080/14680777.2012.741860
Humphreys L, 2021, J COMMUN, V71, P855, DOI 10.1093/joc/jqab026
Humphreys L, 2021, MOB MEDIA COMMUN, V9, P103, DOI 10.1177/2050157920927062
Lewis NA, 2020, COMMUN METHODS MEAS, V14, P71, DOI 10.1080/19312458.2019.1685660
Lexander KV, 2011, NEW MEDIA SOC, V13, P427, DOI 10.1177/1461444810393905
Lim S.S., 2019, Transcendent Parenting: Raising Children in the Digital Age
Ling R, 2010, NEW TECH, NEW TIES, P1
Ling R, 2012, TAKEN FOR GRANTEDNESS: THE EMBEDDING OF MOBILE COMMUNICATION INTO SOCIETY, P1
Ling R, 2002, PERPETUAL CONTACT: MOBILE COMMUNICATION, PRIVATE TALK, PUBLIC PERFORMANCE, P139
Ling R., 1997, Communications on the move: The experience of mobile telephony in the 1990s, P97
Ling R., 1997, THEMES MOBILE TELEPH
Ling R, 2018, J COMPUT-MEDIAT COMM, V23, P69, DOI 10.1093/jcmc/zmy003
Ling R, 2016, J COMMUN, V66, P834, DOI 10.1111/jcom.12251
Ling R, 2014, INFORM SOC, V30, P282, DOI 10.1080/01972243.2014.915279
Ling R, 2011, NEW MEDIA SOC, V13, P363, DOI 10.1177/1461444810393899
Ling R, 2010, AM BEHAV SCI, V53, P1133, DOI 10.1177/0002764209356245
Ling Rich., 2011, Mobile Communication: Bringing Us Together and Tearing Us Apart
Liu J., 2020, Shifting dynamics of contention in the digital age: Mobile communication and politics in China
Morozov Evgeny., 2011, The Net Delusion: How Not to Liberate the World
Nosek BA, 2015, SCIENCE, V348, P1422, DOI 10.1126/science.aab2374
Palackal A, 2011, NEW MEDIA SOC, V13, P391, DOI 10.1177/1461444810393900
Pearce KE, 2013, J COMMUN, V63, P721, DOI 10.1111/jcom.12045
Pew Research Center, 2019, MOB TECHN HOM BROADB
Qiu JL, 2009, WORKING-CLASS NETWORK SOCIETY: COMMUNICATION TECHNOLOGY AND THE INFORMATION HAVE-LESS IN URBAN CHINA, P1
Reeves B., 1996, MEDIA EQUATION PEOPL, DOI 10.1300/j105v24n03_14
Richardson A., 2020, Bearing Witness While Black: African Americans, Smartphones, and the New Protest #Journalism
Sey A, 2011, NEW MEDIA SOC, V13, P375, DOI 10.1177/1461444810393907
Steele C.K., 2021, Digital Black feminism
Stevic A, 2022, MOB MEDIA COMMUN, V10, P294, DOI 10.1177/20501579211051820
Tenhunen S., 2018, A village goes mobile: Telephony, mediation, and social change in Rural India
Wallis C, 2011, NEW MEDIA SOC, V13, P471, DOI 10.1177/1461444810393904
Wei R., 2021, News in Their Pockets: A Cross-City Comparative Study of Mobile News Consumption in Asia
Wilken R., 2018, SAGE HDB SOCIAL MEDI, P279, DOI DOI 10.4135/9781473984066.N16
NR 57
TC 0
Z9 0
U1 1
U2 8
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1461-4448
EI 1461-7315
J9 NEW MEDIA SOC
JI New Media Soc.
PD APR
PY 2023
VL 25
IS 4
SI SI
BP 833
EP 848
DI 10.1177/14614448231158642
EA APR 2023
PG 16
WC Communication
WE Social Science Citation Index (SSCI)
SC Communication
GA E2SW2
UT WOS:000973458000001
DA 2024-09-05
ER
PT C
AU Rao, Y
Zhong, XH
Lu, SM
AF Rao, Yuan
Zhong, Xuhui
Lu, Shumin
GP IEEE
TI Research on News Topic-driven Market Flucatuation and Predication
SO 2016 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND
KNOWLEDGE IN THE INTERNET OF THINGS (IIKI)
LA English
DT Proceedings Paper
CT International Conference on Identification, Information and Knowledge in
the Internet of Things (IIKI)
CY OCT 20-21, 2016
CL Beijing, PEOPLES R CHINA
DE News Topic Recognition; LP-based LDA; Degree of Influence; Price
Movement
AB In order to forecast the price movement of stock with the correlated news events, an enhanced Topic-driven model with the positional weight of feature words and label of stocks, named LP-LDA model, is proposed to represent and analyze the intrinsic mechanism in financial market. The experiment results show that LP-LDA has a better performance than traditional LDA model. Especially, when the number of topics are increasing, the running time of LP-LDA model are 0.69s, 0.78 s and 1.15s at 100, 200 and 300 topics, respectively, which are better than LDA. Furthermore, Degree of Influence (DoI) is defined to describe the considerable influence about the news events on the price movement of certain stock, which provides a new mechanism to measure the fluctuating price. The experiment results shown that the coefficient of correlation between news topic and return rate of stock is 0.9137, which is much higher than other results of experiment.
C1 [Rao, Yuan; Zhong, Xuhui] Xi An Jiao Tong Univ, Sch Software Engn, Lab Social Intelligence & Complex Data Proc, Xian 710049, Peoples R China.
[Lu, Shumin] Xi An Jiao Tong Univ, Sch Humanity Social Sci, Lab Social Intelligence & Complex Data Proc, Xian 710049, Peoples R China.
C3 Xi'an Jiaotong University; Xi'an Jiaotong University
RP Rao, Y (corresponding author), Xi An Jiao Tong Univ, Sch Software Engn, Lab Social Intelligence & Complex Data Proc, Xian 710049, Peoples R China.
EM yuanrao@163.com; 2998999684@qq.com; Shuminlu@126.com
FU Science and Technology Project of Xi'an City in China [CXY1514(5)]; Key
Science and Technology Project of YanTa District of Xi'an [QX1404-2];
Key Collaborative Innovation Project of Shanxi Province in China
[2015XT-21]
FX This paper is joint supported by "2015 Key Collaborative Innovation
Project of Shanxi Province in China (2015XT-21)", "2015 Science and
Technology Project of Xi'an City in China(CXY1514(5))" and "2014 Key
Science and Technology Project of YanTa District of Xi'an (QX1404-2)".
CR [Anonymous], 2000, P KDD 2000 WORKSHOP
Arthur W. B., 1995, Complexity, V1, P20
Blei D. M., 2003, LATENT DIRICHLET ALL
Bordino I, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040014
Engle R., 2016, VOLATILITY OVERVIEW
Kullmann L, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.026125
Montier James, 2010, DEFENSE OLD ALWAYS
Preis T, 2013, SCI REP-UK, V3, DOI 10.1038/srep01684
Schumaker RP, 2009, ACM T INFORM SYST, V27, DOI 10.1145/1462198.1462204
Shiller Robert J, 1980, AM EC REV
Zhang X, 2011, PROCD SOC BEHV, V26, DOI 10.1016/j.sbspro.2011.10.562
NR 11
TC 2
Z9 2
U1 0
U2 4
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-5090-5952-2
PY 2016
BP 559
EP 562
DI 10.1109/IIKI.2016.93
PG 4
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BJ6WP
UT WOS:000426969900103
DA 2024-09-05
ER
PT J
AU Anghelescu, A
Ciobanu, I
Munteanu, C
Anghelescu, LAM
Onose, G
AF Anghelescu, Aurelian
Ciobanu, Ilinca
Munteanu, Constantin
Anghelescu, Lucia Ana Maria
Onose, Gelu
TI ChatGPT: "To be or not to be"... in academic research. The human mind's
analytical rigor and capacity to discriminate between AI bots' truths
and hallucinations
SO BALNEO AND PRM RESEARCH JOURNAL
LA English
DT Article
DE ChatGPT; academic writing; bibliographic resources; metha-analyse
AB Background. ChatGPT can generate increasingly realistic language, but the correctness and integrity of implementing these models in scientific papers remain unknown.
Recently published literature emphasized the "three faces of the coin" of ChatGPT: the negative impact on academic writing, limitations in analyzing and conducting extensive searches of references across multiple databases, and the superiority of the human mind.
Method. The present study assessed the chatbot's ability for improvement and its propensity for self-correction at various points in 2023.
Starting from previous papers published in our clinic, the authors repeatedly challenged the ChatGPT to conduct extensive searches for references across multiple databases at different time intervals (in March and September 2023). The bot was asked to find recent meta-analyses on a particular topic.
Results. The replies (print screens) generated in March and September 2023 serve as evidence of the OpenAI platform's qualitative development and improvement.
During the first contact with ChatGPT-3, one noticed significant content flows and drawbacks. ChatGPT provided references and short essays, but none of them were real, despite ChatGPT's clear affirmative response. When searching PubMed IDs, all DOI numbers indicated by the chatbot correlated to various unconnected manuscripts.
After a few months, the authors repeated the same interrogative provocations and observed a significant shift in the replies. The ChatGPT-3.5 delivered balanced responses, emphasizing the superiority of the human intellect and advocating traditional academic research techniques and methods.
Discussion. A recent comparative systematic analysis using the PRISMA method using the same keyword syntactic correlations to search for systematic literature or open sources has revealed the superiority of the classical scholarly method of research.
In contrast, every document (title, authors, doi) that ChatGPT-3 initially delivered was erroneous and associated with a different field or topic.
Literature published during the first trimester of 2023 emphasized ChatGPT`s hallucinatory tendency to supply fake "bibliographic resources" and confabulatory attempts to paraphrase nonexistent "research papers" presented as authentic articles.
A second inquiry was realized six months later generated reserved and cautious solutions, indicating the researcher should analyze and carefully verify the information from specialized academic databases.
Conclusions. The paper succinctly describes the flows and initial limitations of the ChatGPT-3 version and the process of updating and improving the GPT-3.5 system during 2023.
ChatGPT might be a possible adjunct to academic writing and scientific research, considering any limitations that might jeopardize the study.
The new perspective from ChatGPT claims that human intelligence and thought must thoroughly assess any AI information.
C1 [Anghelescu, Aurelian; Onose, Gelu] Carol Davila Univ Med & Pharm, Bucharest, Romania.
[Anghelescu, Aurelian; Ciobanu, Ilinca; Munteanu, Constantin; Onose, Gelu] Teaching Emergency Hosp Bagdasar Arseni TEHBA, Bucharest, Romania.
[Munteanu, Constantin] Univ Med & Pharm Grigore T Popa Iasi, Iasi, Romania.
C3 Carol Davila University of Medicine & Pharmacy; Grigore T Popa
University of Medicine & Pharmacy
RP Anghelescu, A (corresponding author), Carol Davila Univ Med & Pharm, Bucharest, Romania.; Anghelescu, A (corresponding author), Teaching Emergency Hosp Bagdasar Arseni TEHBA, Bucharest, Romania.
EM aurelian.anghelescu@umfcd.ro
RI Munteanu, Constantin/ACM-9541-2022
OI Munteanu, Constantin/0000-0002-1084-7710
CR Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179
Anghelescu A, 2023, BIOMEDICINES, V11, DOI 10.3390/biomedicines11061623
Azamfirei R, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04393-x
Beutel G, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04425-6
Cahan P, 2023, STEM CELL REP, V18, P1, DOI 10.1016/j.stemcr.2022.12.009
Cascella M, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01925-4
Dahmen J, 2023, KNEE SURG SPORT TR A, V31, P1187, DOI 10.1007/s00167-023-07355-6
Eysenbach Gunther, 2023, JMIR Med Educ, V9, pe46885, DOI 10.2196/46885
Folstad A, 2021, COMPUTING, V103, P2915, DOI 10.1007/s00607-021-01016-7
Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1
Jeblick Katharina, 2022, arXiv, DOI 10.48550/arXiv.2212.14882
Kostick-Quenet KM, 2022, NPJ DIGIT MED, V5, DOI 10.1038/s41746-022-00737-z
la Fleur P, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0270497
Lee JY, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.6
Liverpool L, 2023, NATURE, V618, P222, DOI 10.1038/d41586-023-01780-w
Marchandot Benjamin, 2023, Eur Heart J Open, V3, poead007, DOI 10.1093/ehjopen/oead007
Moons P, ChatGPT: Can Artificial Intelligence Language Models be of Value for Cardiovascular Nurses and Allied Health Professionals, DOI [10.1093/eurjcn/zvad022/7031481, DOI 10.1093/EURJCN/ZVAD022/7031481]
Munteanu C, 2022, CURR ISSUES MOL BIOL, V44, P3378, DOI 10.3390/cimb44080233
Onose G, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23020907
Onose G, 2021, FRONT BIOSCI-LANDMRK, V26, P1204, DOI 10.52586/5020
Onose G, 2017, FARMACIA, V65, P772
opengenus, About us
Patel S, 2023, LANCET DIGIT HEALTH, V5, pE102, DOI 10.1016/S2589-7500(23)00023-7
Sallam M, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11060887
Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2
Shen YQ, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.230163
Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6
Stokel-Walker Chris, 2022, Nature, DOI 10.1038/d41586-022-04397-7
NR 28
TC 0
Z9 0
U1 11
U2 11
PU ROMANIAN ASSOC BALNEOLOGY
PI BUCHAREST
PA SECTOR 2, ALEEA DOBRINA NO 7, BL D10, SC A, AP 4, BUCHAREST, ROMANIA
SN 2734-844X
EI 2734-8458
J9 BALNEO PRM RES J
JI Balneo PRM Res. J.
PD DEC
PY 2023
VL 14
IS 4
AR 614
DI 10.12680/balneo.2023.614
PG 9
WC Rehabilitation
WE Emerging Sources Citation Index (ESCI)
SC Rehabilitation
GA IN9F3
UT WOS:001167118000019
OA gold
DA 2024-09-05
ER
PT J
AU Mateo, FW
Redchuk, A
AF Walas Mateo, Federico
Redchuk, Andres
TI Artificial Intelligence as a Process Optimization Driver under Industry
4.0 Framework and the Role of IIoT, a Bibliometric Analysis
SO JOURNAL OF INDUSTRIAL INTEGRATION AND MANAGEMENT-INNOVATION AND
ENTREPRENEURSHIP
LA English
DT Article; Early Access
DE Industry digitalization; Industry 4.0; industrial Internet of Things
(IIoT); AI/ML; data-driven culture; people empowerment; data-driven
process optimization
AB Connected products generate data that are being seen as a key source of competitive advantage, and the management and processing of that data are generating new challenges in the industrial environment. This paper proposes a conceptual framework and preliminary findings to go deeper into a bibliometric analysis around the idea of artificial intelligence and machine learning (AI/ML) as a tool for the optimization of processes within the Industry 4.0 model. Methodologically, a technological mapping was carried out through an exercise on Scopus indexed database, the results of which were analyzed using bibliometric indicators. The bibliometric study is completed with a screening of relevant papers searching for linking among the industrial Internet of Thing (IIoT) or Internet of Thing (IoT), IA/ML and process optimization. Finally, this paper gives information about the state-of-the-art AI/ML applied to the optimization of industrial processes and presents a novel Canadian startup that has a business model that aims to make AI/ML easy to use in the industrial world towards a lean processes strategy.
C1 [Walas Mateo, Federico] Univ Nacl Arturo Jauretche, RA-1888 Buenos Aires, DF, Argentina.
[Redchuk, Andres] Univ Nacl Lomas de Zamora, Fac Ingn, Buenos Aires, DF, Argentina.
[Redchuk, Andres] Univ Rey Juan Carlos, ETSII, Madrid, Spain.
C3 National University of Lomas de Zamora; Universidad Rey Juan Carlos
RP Mateo, FW (corresponding author), Univ Nacl Arturo Jauretche, RA-1888 Buenos Aires, DF, Argentina.
EM fedewalas@gmail.com
RI Redchuk, Andrés/ABF-6067-2021
OI Redchuk, Andrés/0000-0001-5903-166X; WALAS MATEO,
FEDERICO/0000-0001-5437-5789
FU Resolution Engineering Faculty of University of Lomas de Zamora, Buenos
Aires, Argentine [148-18-UNAJ]
FX The authors wish to thank for the support received from two research
projects. The projects are "Analisis del abordaje de herramientas de
Produccion 4.0 en PyMEs locales," approved by Resolution (R) No.
148-18-UNAJ INVESTIGA 2017 Program, and "Mejora de Procesos,
Optimizacion y Data Analytics," approved by Resolution Engineering
Faculty of University of Lomas de Zamora, Buenos Aires, Argentine.
CR Bellini P, 2022, J IND INF INTEGR, V26, DOI 10.1016/j.jii.2021.100276
Brun L, 2019, BOOK TRANSFORMING IN
Chen H, 2021, J MANAG ANAL, V8, P36, DOI 10.1080/23270012.2020.1852895
Chen YJ., 2018, APPL SOFT COMPUT
Da Silva VL, 2020, INT J COMPUT INTEG M, V33, P325, DOI 10.1080/0951192X.2019.1699258
Davenport TH, 2020, IS AI GETTING EASIER
Davenport TH, 2018, J BUS ANAL, V1, P73, DOI 10.1080/2573234X.2018.1543535
Erozan I, 2019, J MANUF SYST, V52, P110, DOI 10.1016/j.jmsy.2019.06.002
Gorkhali A, 2022, J IND INTEGR MANAG, V07, P311, DOI 10.1142/S2424862222500075
Grover V, 2018, J MANAGE INFORM SYST, V35, P388, DOI 10.1080/07421222.2018.1451951
Hansen EB, 2021, J MANUF SYST, V58, P362, DOI 10.1016/j.jmsy.2020.08.009
Ibarra D, 2018, PROCEDIA MANUF, V22, P4, DOI 10.1016/j.promfg.2018.03.002
Islam N., 2019, TECHNOLOGICAL FORECA
Javaid M, 2022, J IND INTEGR MANAG, V07, P83, DOI 10.1142/S2424862221300040
Kagermann H, 2011, VDI NACHRICHTEN, V13, P2
Kang ZQ, 2020, COMPUT IND ENG, V149, DOI 10.1016/j.cie.2020.106773
Lara P, 2020, J IND INF INTEGR, V19, DOI 10.1016/j.jii.2020.100160
Lu Y, 2019, J MANAG ANAL, V6, P1, DOI 10.1080/23270012.2019.1570365
Merediz-Solà I, 2019, RES INT BUS FINANC, V50, P294, DOI 10.1016/j.ribaf.2019.06.008
Merkas Zvonko, 2020, International Journal of E-Services and Mobile Applications, V12, P1, DOI 10.4018/IJESMA.2020010101
Muhuri PK, 2019, ENG APPL ARTIF INTEL, V78, P218, DOI 10.1016/j.engappai.2018.11.007
Park Y, 2020, INT J COMPUT INTEG M, V33, P1259, DOI 10.1080/0951192X.2020.1815850
Porter ME, 2014, HARVARD BUS REV, V92, P64
Ruiz-Sarmiento JR, 2020, ENG APPL ARTIF INTEL, V87, DOI 10.1016/j.engappai.2019.103289
Seetharaman A, 2019, J MANUF TECHNOL MANA, V30, P1161, DOI 10.1108/JMTM-08-2018-0278
Sharma D, 2019, COMPETING AGE AISTRA
Silveira GDN, 2020, SENSORS-BASEL, p5752S
Van Eck N.J., 2020, VOSviewer Manual Version 1.6.16, P1
Vater J, 2019, PROC 2019 8 INT C IN
Walas Mateo F, 2020, IND INTERNET THINGS, P1123
Xu LD., 2014, ENTERPRISE INTEGRATI
Xu LD, 2011, IEEE T IND INFORM, V7, P630, DOI 10.1109/TII.2011.2167156
Yang S, 2020, COMPUT CHEM ENG, V140, DOI 10.1016/j.compchemeng.2020.106874
Zhang CM, 2021, J IND INF INTEGR, V23, DOI 10.1016/j.jii.2021.100224
NR 34
TC 7
Z9 7
U1 8
U2 43
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 2424-8622
EI 2424-8630
J9 J IND INTEGR MANAG
JI J. Ind. Integr. Manag.
PD 2022 SEP 17
PY 2022
DI 10.1142/S2424862222500130
EA SEP 2022
PG 16
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA 4P0VC
UT WOS:000855112700001
DA 2024-09-05
ER
PT J
AU Semushin, IV
Tsyganova, JV
Ugarov, VV
Afanasova, AI
AF Semushin, I. V.
Tsyganova, J. V.
Ugarov, V. V.
Afanasova, A. I.
TI The WHATs and HOWs of maturing computational and software engineering
skills in Russian higher education institutions
SO EUROPEAN JOURNAL OF ENGINEERING EDUCATION
LA English
DT Article
DE Active learning; assessment of learning outcomes; engineering education
research; mathematics education; project organised learning
ID LEARNING APPROACH; MOTIVATION; MODEL
AB Russian higher education institutions' tradition of teaching large-enrolled classes is impairing student striving for individual prominence, one-upmanship, and hopes for originality. Intending to converting these drawbacks into benefits, a Project-Centred Education Model (PCEM) has been introduced to deliver Computational Mathematics and Information Science courses. The model combines a Frontal Competitive Approach and a Project-Driven Learning (PDL) framework. The PDL framework has been developed by stating and solving three design problems: (i) enhance the diversity of project assignments on specific computation methods algorithmic approaches, (ii) balance similarity and dissimilarity of the project assignments, and (iii) develop a software assessment tool suitable for evaluating the technological maturity of students' project deliverables and thus reducing instructor's workload and possible overlook. The positive experience accumulated over 15 years shows that implementing the PCEM keeps students motivated to strive for success in rising to higher levels of their computational and software engineering skills.
C1 [Semushin, I. V.; Tsyganova, J. V.; Ugarov, V. V.; Afanasova, A. I.] Ulyanovsk State Univ, Math Informat & Aviat Technol Fac, Ulyanovsk, Russia.
C3 Ulyanovsk State University
RP Semushin, IV (corresponding author), Ulyanovsk State Univ, Math Informat & Aviat Technol Fac, Ulyanovsk, Russia.
EM i.v.semushin@ieee.org
RI Tsyganova, Julia V./F-7169-2013
OI Tsyganova, Julia V./0000-0001-8812-6035
CR 21CenturyEdTech, 2015, 21 CENT ED TECHN LEA
Abran A., 2010, Software metrics and software metrology
Afanasova A. I., 2015, [No title captured], Patent No. 2015611297
Al Qutaish R.E., 2005, International Workshop on Software Measurement, P337
Al-Qutaish RE, 2011, J RES PRACT INF TECH, V43, P307
Ala-Mutka KM, 2005, COMPUT SCI EDUC, V15, P83, DOI 10.1080/08993400500150747
[Anonymous], 2007, Mindset: The new psychology of success
[Anonymous], 2011, Education Digest, V77, P43
Bandor M. S., 2006, CMU/SEI-2006-TN-026
Barge S., 2010, Principles of problem and project based learning: The Aalborg PBL Model
Bell Stephanie., 2010, CLEARING HOUSE, V83, P39, DOI [10.1080/00098650903505415, DOI 10.1080/00098650903505415]
Berander P., 2005, SOFTWARE QUALITY ATT
Boehm B.W., 1978, Characteristics of Software Quality
Bucur I., 2006, J APPL QUANTITATIVE, V1, P210
Chawla S, 2013, INT J ADV COMPUT SC, V4, P161
Cheong F, 2008, J INF TECHNOL EDUC-R, V7, P47
Chuchalin A, 2016, EUR J ENG EDUC, V41, P426, DOI 10.1080/03043797.2015.1085837
Crawley E., 2001, CDIO SYLLABUS STATEM, V1, P2001
Davies J., 2011, PBL across the disciplines: Research into best practice
de Graaff E., 2015, P 13 INT WORKSH ACT
Dhawan K., 2012, INT J SOFTWARE WEB S, P4
DiPiro JT, 2009, AM J PHARM EDUC, V73, DOI 10.5688/aj7308137
Dole S, 2016, INTERDIS J PROBL-BAS, V10, DOI 10.7771/1541-5015.1538
Douce C., 2005, Journal on Educational Resources in Computing (JERIC), V5, P4, DOI DOI 10.1145/1163405.1163409
DROMEY RG, 1995, IEEE T SOFTWARE ENG, V21, P146, DOI 10.1109/32.345830
Dumestre J., 1997, P 2 INT SIM TECHN TR, P447
Faculty Development and Instructional Design Center, 2015, RUBR ASS
Forcheri P., 2007, GIVING TEACHERS HDB, P301
Frank M, 2003, INT J TECHNOL DES ED, V13, P273, DOI 10.1023/A:1026192113732
Frier J. R., 2015, J COMPUTER SCI INFOR, V3, P01, DOI [10. 15640/jcsit. v3n1a1, DOI 10.15640/JCSIT.V3N1A1]
Gancarski A.L., 2013, P 2 S LANGUAGES APPL, VVolume 29, P129, DOI [10.4230/OASIcs.SLATE.2013.129, DOI 10.4230/OASICS.SLATE.2013.129]
Gelman A, 2005, ANN STAT, V33, P1, DOI 10.1214/009053604000001048
Hadim H. A., 2002, 32nd Annual Frontiers in Education. Conference Proceedings (Cat.No.02CH37351), pF3F, DOI 10.1109/FIE.2002.1158200
Halstead Maurice Howard, 1977, Elements of software science, V7
Harrigan G., 2014, THESIS
Heitmann G., 1996, European Journal of Engineering Education, V21, P121, DOI 10.1080/03043799608923395
Herman Geoffrey L., 2013, 2013 IEEE Frontiers in Education Conference (FIE), P1203, DOI 10.1109/FIE.2013.6685021
Humphrey W.S., 1989, MANAGING SOFTWARE PR
HUMPHREY WS, 1988, IEEE SOFTWARE, V5, P73, DOI 10.1109/52.2014
HUNG SL, 1993, COMPUT EDUC, V20, P183, DOI 10.1016/0360-1315(93)90086-X
Ihantola P., 2011, THESIS
Ihantola Petri, 2010, P 10 KOL CALL INT C, P86, DOI 10.1145/1930464.1930480
[International Software Testing Qualifications Board ISTQB Glossary Working Group Judy McKay (Chair) and Matthias Hamburg (Vice-Chair)], 2015, STAND GLOSS TERMS US
Jackson D, 1996, COMPUT EDUC, V27, P171, DOI 10.1016/S0360-1315(96)00025-5
Jackson D, 2000, SIGCSE BULL, V32, P164, DOI 10.1145/353519.343160
Jones D., 2009, LEARNING PYRAMID TRU
Khalane T., 2013, THESIS
Kolmos A., 1996, European Journal of Engineering Education, V21, P141, DOI 10.1080/03043799608923397
Leach R. J., 1995, SIGCSE Bulletin, V27, P41, DOI 10.1145/201998.202010
Lehmann M, 2008, EUR J ENG EDUC, V33, P283, DOI 10.1080/03043790802088566
Levine D.M., 2008, Statistics for managers using Microsoft Excel, V5th
Lincke R, 2008, INT S SOFTW TEST AN, P131
Llorens A, 2017, EUR J ENG EDUC, V42, P382, DOI 10.1080/03043797.2016.1189880
Love B, 2014, INT J MATH EDUC SCI, V45, P317, DOI 10.1080/0020739X.2013.822582
Ma K, 2014, INT J EMERG TECHNOL, V9, P26, DOI 10.3991/ijet.v9i9.4006
Manoharan T., 2014, INT J RES INFO TECH, V2, P1
McDermott K. J., 2007, 37 ASEE IEEE FRONT E, P1
Mengel SA, 1999, PROCEEDINGS OF THE THIRTIETH SIGCSE TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, P78, DOI 10.1145/384266.299689
Mengel SA, 1998, PROC FRONT EDUC CONF, P1213, DOI 10.1109/FIE.1998.738617
Metiri Group Commissioned by Cisco, 2008, MULT LEARN MED WHAT
Miller CJ, 2013, ADV PHYSIOL EDUC, V37, P347, DOI 10.1152/advan.00050.2013
Miller H., 2013, PROJECT LAB MAT
Mills J. E., 2003, J. Australasian Assoc. Eng. Educ., V3, P2
Min Liu, 2002, Journal of Interactive Learning Research, V13, P311
Murgu A., 2017, P REG SCI METH C UL, P151
Noguez J., 2004, P 2 INT WORKSH DES C, P83
Okeyinka A. E., 2012, INT J APPL SCI TECHN, V2, P106
Ortega J. M., 1998, INTRO PARALLEL VECTO
ostlund B., 2015, EUROPEAN J OPEN DIST
Paulk M. C., 1995, The Capability Maturity Model: Guide- lines for Improving the Software Process
Pearlman Bob., 2009, 21 CENTURY SKILLS RE, P117
Pearlman Bob., 2009, T L 2009 C DENV CO O
Perrenet J C, 2000, Teaching in Higher Education, V3, P345, DOI [DOI 10.1080/13562510050084730, 10.1080/713699144, DOI 10.1080/713699144]
Pintrich PR, 2003, J EDUC PSYCHOL, V95, P667, DOI 10.1037/0022-0663.95.4.667
Powell P., 2000, CHARACTERISTICS PROJ
Proctor H., 2015, CONTROVERSIES EDUCAT
Renyi A., 1967, DIALOGUSOK MATEMATIK
Roerich N., 1921, NICHOLAS ROERICH MUS
Rooch A., 2015, EUROPEAN J ENG ED, P1, DOI 10. 1080/03043797. 2015. 1056095
Sanders J., 1994, SOFTWARE QUALITY FRA
Sarper Huseyin., 2013, P 2013 AM SOC ENG ED, P105
Sawyer SF, 2009, J MAN MANIP THER, V17, pE27, DOI 10.1179/jmt.2009.17.2.27E
Schachterle L., 1996, European Journal of Engineering Education, V21, P115, DOI [DOI 10.1080/03043799608923394, https://doi.org/10.1080/03043799608923394]
Semoushin I, 2003, LECT NOTES COMPUT SC, V2658, P1098
Semushin I. V., 2005, PRACTICAL WORKS OPTI
Semushin I. V., 2014, COMPUTING METHODS US
Semushin I. V., 2002, 2 INT C TEACH MATH U
Semushin I. V., 1995, LAB EXPT COMPUTATI 1
Semushin I. V., 1997, STOCHASTIC MODELS ES
Semushin I. V., 2005, LINEAR PROGRAMMING E
Semushin I. V., 2011, COMPUTATIONAL METHOD
Semushin I. V., 1999, PRACTICAL COURSE OPT
Semushin I. V., 2014, COMPUTATIONAL LINEAR
Shereni T., 2014, THESIS
Smith B., 1992, What is Collaborative Learning? Collaborative Learning: A Sourcebook for Higher Education, P9
Stevens J. W., 2013, P 2013 AM SOC ENG ED, P27
Sturmer I., 2010, AUTOMOTIVE SAFETY SE, P69
Talbert R., 2014, Primus, V24, P361, DOI [DOI 10.1080/10511970.2014.883457, 10.1080/10511970.2014.883457]
Thinkful's Curriculum Team, 2015, PROJ BAS VS PROJ DRI
Thomas J. W., 2000, REV RES PROJECT BASE
Tien C. J., 2004, P 9 WORLD C CONT ENG, P15
Trenshaw KF, 2014, INT J ENG EDUC, V30, P837
Tsypkin J. Z., 1970, INTRO SELF LEARNING
Ugarov V. V., 2005, THESIS
Wade A. M., 2013, IMPACTING STUDENT AT
Willey K., 2012, P 42 ASEE IEEE FRONT, P15
Willey K, 2013, 2013 ASEE INTERNATIONAL FORUM
Wolkenhauer O., 2001, DATA ENG FUZZY MATH
Yang Aimin, 2009, Journal of Software, V4, P1110, DOI 10.4304/jsw.4.10.1110-1118
Yu S., 2010, 2010 2 IEEE INT C IN, P352, DOI [10.1109/ICIME.2010.5477581, DOI 10.1109/ICIME.2010.5477581]
NR 110
TC 1
Z9 1
U1 0
U2 3
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 0304-3797
EI 1469-5898
J9 EUR J ENG EDUC
JI Eur. J. Eng. Educ.
PY 2018
VL 43
IS 3
SI SI
BP 446
EP 472
DI 10.1080/03043797.2017.1385594
PG 27
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA GA9QF
UT WOS:000428675200009
DA 2024-09-05
ER
PT J
AU Chen, HS
Wang, XM
Pan, SR
Xiong, F
AF Chen, Hongshu
Wang, Ximeng
Pan, Shirui
Xiong, Fei
TI Identify Topic Relations in Scientific Literature Using Topic Modeling
SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
LA English
DT Article
DE Bibliometrics; tech mining; text mining; topic analysis
ID BIG DATA; CITATION; TEXT; INFORMATION; TECHNOLOGY; SCIENCE; EMERGENCE;
MAP
AB Over the past five years, topic models have been applied to bibliometrics research as an efficient tool for discovering latent and potentially useful content. The combination of topic modeling algorithms and bibliometrics has generated new challenges of interpreting and understanding the outcome of topic modeling. Motivated by these new challenges, this paper proposes a systematic methodology for topic analysis in scientific literature corpora to face the concerns of conducting post topic modeling analysis. By linking the corpus metadata with the discovered topics, we feature them with a number of topic-based analytic indices to explore their significance, developing trend, and received attention. A topic relation identification approach is then presented to quantitatively model the relations among the topics. To demonstrate the feasibility and effectiveness of our methodology, we present two case studies, using big data and dye-sensitized solar cell publications derived from searches in World of Science. Possible application of the methodology in telling good stories of a target corpus is also explored to facilitate further research management and opportunity discovery.
C1 [Chen, Hongshu] Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China.
[Wang, Ximeng; Xiong, Fei] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China.
[Wang, Ximeng] Univ Technol Sydney, Fac Engn & Informat Techno Logy, Ctr Artificial Intelligence, Ultimo, NSW 2007, Australia.
[Pan, Shirui] Monash Univ, Fac Informat & Technol, Clayton, Vic 3800, Australia.
C3 Beijing Institute of Technology; Beijing Jiaotong University; University
of Technology Sydney; Monash University
RP Xiong, F (corresponding author), Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China.
EM Hongsue1114@hotmail.com; wangxm@bjtu.edu.cn; shirui.pan@monash.edu;
xiongf@bjtu.edu.cn
RI Pan, Shirui/K-6763-2018; Chen, Hongshu/O-2926-2017
OI Pan, Shirui/0000-0003-0794-527X; Chen, Hongshu/0000-0002-0893-1817;
Xiong, Fei/0000-0002-1610-335X; Wang, Ximeng/0000-0002-2445-6737
FU National Natural Science Foundation of China [61872033]; Humanity and
Social Science Youth Foundation of Ministry of Education of China
[18YJCZH204]; Beijing Natural Science Foundation [4184084]
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 61872033, in part by the Humanity and
Social Science Youth Foundation of Ministry of Education of China under
Grant 18YJCZH204, and in part by the Beijing Natural Science Foundation
under Grant 4184084.
CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003
Basole RC, 2019, IEEE T ENG MANAGE, V66, P568, DOI 10.1109/TEM.2018.2855435
Bello-Orgaz G, 2016, INFORM FUSION, V28, P45, DOI 10.1016/j.inffus.2015.08.005
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boyack KW, 2014, J INFORMETR, V8, P569, DOI 10.1016/j.joi.2014.04.001
Boyack KW, 2014, J ENG TECHNOL MANAGE, V32, P147, DOI 10.1016/j.jengtecman.2013.07.001
Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Broniatowski DA, 2017, IEEE T ENG MANAGE, V64, P337, DOI 10.1109/TEM.2017.2677744
Cao JC, 2013, PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 6
Cao MD, 2005, LECT NOTES ARTIF INT, V3809, P143
Cascini G., INT J PROD DEV, V4, P52
Chen HS, 2017, TECHNOL FORECAST SOC, V119, P39, DOI 10.1016/j.techfore.2017.03.009
Chen HS, 2015, PORTL INT CONF MANAG, P2049, DOI 10.1109/PICMET.2015.7273098
Cotelo JM, 2016, INFORM FUSION, V31, P54, DOI 10.1016/j.inffus.2016.01.002
Cunningham SW, 2006, TECHNOL FORECAST SOC, V73, P915, DOI 10.1016/j.techfore.2006.06.004
De Battisti F, 2015, SCIENTOMETRICS, V103, P413, DOI 10.1007/s11192-015-1554-1
De Maio C, 2016, INFORM FUSION, V28, P60, DOI 10.1016/j.inffus.2015.06.004
Ding Y, 2011, J AM SOC INF SCI TEC, V62, P449, DOI 10.1002/asi.21467
Glenisson P, 2005, INFORM PROCESS MANAG, V41, P1548, DOI 10.1016/j.ipm.2005.03.021
Gregor H., 2009, PARAMETER ESTIMATION PARAMETER ESTIMATION
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Guo Y, 2012, TECHNOL ANAL STRATEG, V24, P843, DOI 10.1080/09537325.2012.715491
Huang AH, 2018, MANAGE SCI, V64, P2833, DOI 10.1287/mnsc.2017.2751
Huang Y., TECHNOL FORECASTING
JIANG EP, 2010, TEXT MINING APPL THE, P37
Ketata I, 2015, R&D MANAGE, V45, P60, DOI 10.1111/radm.12052
Kim D, 2011, LECT NOTES COMPUT SC, V6609, P163, DOI 10.1007/978-3-642-19437-5_13
Klavans R, 2017, J INFORMETR, V11, P1158, DOI 10.1016/j.joi.2017.10.002
Kostoff RN, 2001, TECHNOL FORECAST SOC, V68, P223, DOI 10.1016/S0040-1625(01)00133-0
Krzywinski M, 2009, GENOME RES, V19, P1639, DOI 10.1101/gr.092759.109
Lin J, 2007, BMC BIOINFORMATICS, V8, DOI 10.1186/1471-2105-8-423
Liu SB, 2013, J AM SOC INF SCI TEC, V64, P627, DOI 10.1002/asi.22771
McAfee A, 2012, HARVARD BUS REV, V90, P60
Phaal R, 2004, TECHNOL FORECAST SOC, V71, P5, DOI 10.1016/S0040-1625(03)00072-6
Porter A.L., 2004, Tech mining: Exploiting new technologies for competitive advantage
Radicchi F, 2012, J INFORMETR, V6, P121, DOI 10.1016/j.joi.2011.09.002
Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424
Suominen A, 2016, J ASSOC INF SCI TECH, V67, P2464, DOI 10.1002/asi.23596
Tseng YH, 2007, INFORM PROCESS MANAG, V43, P1216, DOI 10.1016/j.ipm.2006.11.011
Waltman L, 2013, J INFORMETR, V7, P833, DOI 10.1016/j.joi.2013.08.002
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Xing Wei, 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P178
Xiong F, 2020, IEEE T SYST MAN CY-S, V50, P3804, DOI 10.1109/TSMC.2018.2854000
Yan EJ, 2015, J INFORMETR, V9, P455, DOI 10.1016/j.joi.2015.04.003
Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8
Yoon B, 2005, TECHNOL FORECAST SOC, V72, P145, DOI 10.1016/j.techfore.2004.08.011
Zhang Y., TECHNOL FORECASTING
Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814
Zhang Y, 2016, TECHNOL FORECAST SOC, V105, P179, DOI 10.1016/j.techfore.2016.01.015
Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019
NR 52
TC 14
Z9 16
U1 6
U2 57
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9391
EI 1558-0040
J9 IEEE T ENG MANAGE
JI IEEE Trans. Eng. Manage.
PD OCT
PY 2021
VL 68
IS 5
BP 1232
EP 1244
DI 10.1109/TEM.2019.2903115
PG 13
WC Business; Engineering, Industrial; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Engineering
GA TK4EZ
UT WOS:000674114900003
DA 2024-09-05
ER
PT J
AU Sang, NM
AF Sang, Nguyen Minh
TI "Bibliometric insights into the evolution of digital marketing trends
SO INNOVATIVE MARKETING
LA English
DT Article
DE artificial intelligence; content marketing; customer engagement; digital
transformation; machine learning; social media marketing; technology
adoption; virtual reality
ID SOCIAL MEDIA; STRATEGIES; PERSONALIZATION; PERCEPTIONS; ACCEPTANCE;
RICHNESS; CHANNELS; BEHAVIOR; WORD
AB This bibliometric analysis aims to delineate the progression of research in the domain of digital marketing by examining 513 English -language articles published in Scopus during the period of 2003-2024. An examination of scholarly productivity indicates an upward trend, as evidenced by the increase in publications from one in 2003 to 115 in 2022 and citations from 79 in 2003 to 1131 in 2021, as determined by keyword, citation, and authorship analyses. A review of citation patterns reveals that publications with significant impact are primarily found in prestigious academic journals, such as Industrial Marketing Management and International Journal of Research in Marketing. Prominent contributors hail from Jordan, Finland, Spain, the United Arab Emirates, and Saudi Arabia; among other regions - the United States, the Middle East, Europe, and Asia. Keyword analysis revealed an emphasis on emerging technologies such as artificial intelligence and traditional digital marketing techniques (e.g., social media, content marketing, internet marketing). Co -occurrence theme analysis highlighted digital marketing strategy, digital marketing audiences, the digital transformation of business and marketing, and the acceleration of digital adoption as a result of COVID-19. Further areas of investigation encompass optimizing the utilization of emergent social media platforms, implementing virtual and augmented reality technologies to enhance the customer experience, and capitalizing on the potential of artificial intelligence and machine learning to augment the efficacy of digital marketing. By utilizing data -driven insights, this study offers guidance for curricular enhancements, scholarly agendas, and digital marketing practice.
C1 [Sang, Nguyen Minh] Ho Chi Minh Univ Banking, Fac Int Econ, Ho Chi Minh City, Vietnam.
RP Sang, NM (corresponding author), Ho Chi Minh Univ Banking, Fac Int Econ, Ho Chi Minh City, Vietnam.
OI Sang, Nguyen Minh/0000-0002-4272-0247
CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7
Aghaei Chadegani A., 2013, Asian Social Science, V9, P18, DOI [10.5539/ass.v9n5p18, DOI 10.5539/ASS.V9N5P18]
Aguirre E, 2015, J RETAILING, V91, P34, DOI 10.1016/j.jretai.2014.09.005
Al-Jamimi HA, 2022, SCIENTOMETRICS, V127, P5879, DOI 10.1007/s11192-022-04490-8
Al-Slehat Z. A. F., 2023, Business: Theory and Practice, V24, P183, DOI [10.3846/btp.2023.17624, DOI 10.3846/BTP.2023.17624]
Anderson C., 2012, The Social Media Reader, P137, DOI DOI 10.18574/NYU/9780814763025.003.0014
Behera RK, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.03.026
Blomster M, 2022, INF SYST E-BUS MANAG, V20, P123, DOI 10.1007/s10257-021-00547-y
Carpenter CR, 2014, ACAD EMERG MED, V21, P1160, DOI 10.1111/acem.12482
Carroll A, 2007, INT J ADVERT, V26, P79, DOI 10.1080/02650487.2007.11072997
Chaffey D., 2012, J DIRECT DATA DIGITA, V14, P30, DOI [DOI 10.1057/DDDMP.2012.20, 10.1057/dddmp.2012.20]
Chaffey D., 2009, INTERNET MARKETING S, Vfourth
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
DAFT RL, 1986, MANAGE SCI, V32, P554, DOI 10.1287/mnsc.32.5.554
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
De Pelsrnacker P, 2018, INT J HOSP MANAG, V72, P47, DOI 10.1016/j.ijhm.2018.01.003
Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z
Felix R, 2017, J BUS RES, V70, P118, DOI 10.1016/j.jbusres.2016.05.001
Gutiérrez-Salcedo M, 2018, APPL INTELL, V48, P1275, DOI 10.1007/s10489-017-1105-y
Herhausen D, 2020, IND MARKET MANAG, V90, P276, DOI 10.1016/j.indmarman.2020.07.022
Herrero J, 2023, TECHNOL FORECAST SOC, V188, DOI 10.1016/j.techfore.2022.122292
Hudson S, 2016, INT J RES MARK, V33, P27, DOI 10.1016/j.ijresmar.2015.06.004
Jaafar Nor Safura, 2022, International Journal of Interactive Mobile Technologies, V16, P130, DOI 10.3991/ijim.v16i09.27915
Järvinen J, 2016, IND MARKET MANAG, V54, P164, DOI 10.1016/j.indmarman.2015.07.002
Järvinen J, 2015, IND MARKET MANAG, V50, P117, DOI 10.1016/j.indmarman.2015.04.009
Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006
Ketter E, 2021, J TRAVEL TOUR MARK, V38, P819, DOI 10.1080/10548408.2021.1921670
Kitsios F, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11178032
Levy S, 2015, J ADVERTISING RES, V55, P95, DOI 10.2501/JAR-55-1-095-109
Lu JY, 2015, CURR ISSUES TOUR, V18, P1059, DOI 10.1080/13683500.2015.1043248
Luangrath AW, 2022, J MARKETING RES, V59, P306, DOI 10.1177/00222437211059540
Mazodier M, 2014, INT J RES MARK, V31, P16, DOI 10.1016/j.ijresmar.2013.08.004
Mehrabian A., 1974, An approach to environmental psychology.
Tiago MTPMB, 2014, BUS HORIZONS, V57, P703, DOI 10.1016/j.bushor.2014.07.002
Mogaji E, 2021, AUSTRALAS MARK J, V29, P235, DOI 10.1016/j.ausmj.2020.05.003
Muñoz-Leiva F, 2012, ONLINE INFORM REV, V36, P879, DOI 10.1108/14684521211287945
Ngai EWT, 2015, INT J INFORM MANAGE, V35, P33, DOI 10.1016/j.ijinfomgt.2014.09.004
Nightingale JM, 2012, RADIOGRAPHY, V18, P60, DOI 10.1016/j.radi.2011.10.044
Okazaki S, 2008, J BUS RES, V61, P4, DOI 10.1016/j.jbusres.2006.05.003
Saura JR, 2021, J INNOV KNOWL, V6, P92, DOI 10.1016/j.jik.2020.08.001
Royle J, 2014, INT J INFORM MANAGE, V34, P65, DOI 10.1016/j.ijinfomgt.2013.11.008
Sahni NS, 2018, MARKET SCI, V37, P236, DOI 10.1287/mksc.2017.1066
Saura JR, 2021, IND MARKET MANAG, V98, P161, DOI 10.1016/j.indmarman.2021.08.006
Sedighi M, 2016, LIBR REV, V65, P52, DOI 10.1108/LR-07-2015-0075
Shah N. U., 2021, Library Philosophy and Practice, V2021, P1
Shankar V, 2010, J INTERACT MARK, V24, P111, DOI 10.1016/j.intmar.2010.02.006
Shin DH, 2012, COMPUT HUM BEHAV, V28, P1417, DOI 10.1016/j.chb.2012.03.004
Singh V, 2023, INFORM SYST FRONT, V25, P1621, DOI 10.1007/s10796-022-10314-0
Smith KT, 2011, J STRATEG MARK, V19, P489, DOI 10.1080/0965254X.2011.581383
Smith KT, 2012, J CONSUM MARK, V29, P86, DOI 10.1108/07363761211206339
Taiminen HM, 2015, J SMALL BUS ENTERP D, V22, P633, DOI 10.1108/JSBED-05-2013-0073
Tang YM, 2023, J THEOR APPL EL COMM, V18, P889, DOI 10.3390/jtaer18020046
Tariq E., 2022, International Journal of Data and Network Science, V6, P401, DOI [10.5267/j.ijdns.2021.12.014, DOI 10.5267/J.IJDNS.2021.12.014]
Unni R., 2007, J INTERACTIVE ADVERT, V7, P28, DOI DOI 10.1080/15252019.2007.10722129
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
Vieira VA, 2019, J ACAD MARKET SCI, V47, P1085, DOI 10.1007/s11747-019-00687-1
Wang CG, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.103085
Whiting A, 2013, QUAL MARK RES, V16, P362, DOI 10.1108/QMR-06-2013-0041
Wymbs C, 2011, J MARKET EDUC, V33, P93, DOI 10.1177/0273475310392544
Yi-Shun Wang, 2003, Journal of End User Computing, V15, P14
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 61
TC 0
Z9 0
U1 15
U2 15
PU LLC CPC BUSINESS PERSPECTIVES
PI SUMY
PA HRYHORII SKOVORODA LN, 10, SUMY, 40022, UKRAINE
SN 1814-2427
EI 1816-6326
J9 INNOV MARKET
JI Innovation Marketing
PY 2024
VL 20
IS 2
DI 10.21511/im.20(2).2024.01
PG 15
WC Business
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA RV4B4
UT WOS:001230411600012
OA gold
DA 2024-09-05
ER
PT J
AU Hahn, J
AF Hahn, Jim
TI Semi-Automated Methods for BIBFRAME Work Entity Description
SO CATALOGING & CLASSIFICATION QUARTERLY
LA English
DT Article
DE RDF; BIBFRAME; work entity description; bibliographic entities; machine
learning; RDF editors; linked data
ID MARC
AB This paper reports an investigation of machine learning methods for the semi-automated creation of a BIBFRAME Work entity description within the RDF linked data editor Sinopia (https://sinopia.io). The automated subject indexing software Annif was configured with the Library of Congress Subject Headings (LCSH) vocabulary from the Linked Data Service at https://id.loc.gov/. The training corpus was comprised of 9.3 million titles and LCSH linked data references from the IvyPlus POD project (https://pod.stanford. edu/) and from Share-VDE (https://wiki.share-vde.org). Semi-automated processes were explored to support and extend, not replace, professional expertise.
C1 [Hahn, Jim] Univ Penn, Univ Lib, Philadelphia, PA 19104 USA.
C3 University of Pennsylvania
RP Hahn, J (corresponding author), Univ Penn, Univ Lib, Philadelphia, PA 19104 USA.
EM jimhahn@upenn.edu
OI Hahn, Jim/0000-0001-7924-5294
CR Aizawa A, 2003, INFORM PROCESS MANAG, V39, P45, DOI 10.1016/S0306-4573(02)00021-3
Clemente, DATA SCI
D'Ignazio C, 2020, STRONG IDEAS SERIES, P1
Gebru T, 2021, COMMUN ACM, V64, P86, DOI 10.1145/3458723
GitHub/jimfhahn, ANN TUT DAT
Github/Kubeflow, KUB KUB
GitHub/lcnetdev, LCNETD BFE
GitHub/LD4P, SIN ED
GitHub/NatLibFi, ANN TUT
GitHub/samvera, QUEST AUTH
Haas Konstantinos, P 25 ACM SIGKDD INT, DOI 10.1145/3292500.3340408
Hahn, 2020, P ASS INFORM SCI TEC, V57, DOI 10.1002/pra2.408
Hahn, 2020, CODE4LIB J
Hahn Jim, 2021, Proceedings of the Association for Information Science and Technology, V58, DOI 10.1002/pra2.479
Hao, MIT TECHNOL REV
Harper CA, 2007, CAT CLASSIF Q, V43, P47, DOI [10.1300/J104v43n03_04, 10.1300/J104v43n03_03]
IvyPlus Library Confederation, AGGREGATOR POD DATA
Järvelin K, 2002, ACM T INFORM SYST, V20, P422, DOI 10.1145/582415.582418
Library of Congress, LINK DAT SERV TECHN
Library of Congress, OV BIBFRAME 2 0 MOD
Michael B., 2019, INT C DUBL COR MET A, P26
Mitchell M., 2019, ARTIFICIAL INTELLIGE
Mitchell M, 2019, FAT*'19: PROCEEDINGS OF THE 2019 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P220, DOI 10.1145/3287560.3287596
Nelson, 2019, CODE4LIB J
ONeil C., 2016, Weapons of math destruction
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Raptor RDF Syntax Library, RDF PARSER UTILITY
Reese, 2018, SERIALS LIBR, V74, P3, DOI [10.1080/036152 6X.2018.1439247, DOI 10.1080/0361526X.2018.1439247]
Riva Pat., 2017, IFLA LIB REFERENCE M
Russell Stuart, 2019, HUMAN COMPATIBLE ART
Samples J, 2020, CAT CLASSIF Q, V58, P403, DOI 10.1080/01639374.2020.1751764
Samuylova, MACHINE LEARNING PRO
Share-VDE, SHAREVDE LIB
Summers E., 2008, P 8 INT C DUBLIN COR
Suominen Osma, 2019, LIBER Quarterly, V29, DOI 10.18352/lq.10285
Suominen Osma, ITALIAN J LIB ARCH I
Svenonius, 2000, INTELLECTUAL FDN INF, P36
Svenonius E, 2018, CAT CLASSIF Q, V56, P711, DOI 10.1080/01639374.2018.1524284
Thomas Rachel, PROBLEM METRICS IS F
Thomas Rachel, AND WHY CREATE GOOD
Vizine-Goetz Diane, 2010, NEXTSPACE, V14, P14
Wang Yining, THEORETICAL ANAL NDC
Xu A, 2018, CAT CLASSIF Q, V56, P224, DOI 10.1080/01639374.2017.1388326
NR 43
TC 3
Z9 3
U1 1
U2 10
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0163-9374
EI 1544-4554
J9 CAT CLASSIF Q
JI Cat. Classif. Q.
PD DEC 4
PY 2021
VL 59
IS 8
SI SI
BP 853
EP 867
DI 10.1080/01639374.2021.2014011
EA DEC 2021
PG 15
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA YU1BN
UT WOS:000734206800001
OA hybrid
DA 2024-09-05
ER
PT B
AU Fister, B
AF Fister, Barbara
BA Flaspohler, MR
BF Flaspohler, MR
TI Pragmatic pedagogical approaches
SO ENGAGING FIRST-YEAR STUDENTS IN MEANINGFUL LIBRARY RESEARCH: A PRACTICAL
GUIDE FOR TEACHING FACULTY
SE Chandos Information Professional Series
LA English
DT Article; Book Chapter
DE novice researchers; information landscape; librarian advice; assignment
design; staggered approach; faculty assumptions; topic generation;
higher-order research skills; Internet; research projects; research
process; outcomes; constructivist theory; Bloom's Taxonomy; Taxonomy for
Information Literacy; information literacy; curricular planning; library
programs; collaboration; pedagogy; active learning; faculty buy-in;
semantics
AB This chapter offers practical advice to faculty who plan to include research projects in their work with first-year students. After briefly discussing constructivist learning theory and Bloom's Taxonomy of Educational Outcomes, the author suggests using an Information Literacy Taxonomy as a framework for developing increasingly complex library competencies among novice researchers. Additionally, the value of student-based, active learning is described and a number of guidelines for effective assignment design are provided. Finally, this chapter concludes by offering suggestions for moving information literacy beyond the first year.
C1 Gustavus Adolphus Coll, St Peter, MN 56082 USA.
C3 Gustavus Adolphus College
RP Fister, B (corresponding author), Gustavus Adolphus Coll, St Peter, MN 56082 USA.
NR 0
TC 0
Z9 0
U1 0
U2 3
PU CHANDOS PUBL
PI SAWSTON
PA 80 HIGH ST, SAWSTON, CAMBRIDGE CB22 3HJ, ENGLAND
BN 978-1-78063-294-0
J9 CHANDOS INF PROF SER
PY 2012
BP 99
EP 158
PG 60
WC Information Science & Library Science
WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH)
SC Information Science & Library Science
GA BYV76
UT WOS:000300620800005
DA 2024-09-05
ER
PT J
AU Cherkaoui, A
Aliat, M
AF Cherkaoui, Adil
Aliat, Marouane
TI Mapping the field of responsible sourcing: Topic modeling through
bibliometric analysis
SO BUSINESS STRATEGY AND DEVELOPMENT
LA English
DT Article
DE bibliometric analysis; co-wording analysis; responsible sourcing;
sustainability; sustainable procurement
ID SUSTAINABLE PROCUREMENT; PUBLIC PROCUREMENT; ORGANIZATIONS; FUTURE;
SECTOR
AB Academic interest concerning inclusion of sustainability principles in the field of procurement has been in steady increase over the last 20 years. However, there is an apparent void in bibliometric analyses in this field. To address this gap, VosViewer is used in this study to examine the academic literature on responsible sourcing. 575 peer-reviewed papers from Scopus were analyzed to reveal important topics, authors, and publications connected to the subject in hand. The first part of the analysis analyzed publication activity and listed all high impact journals covering the topic. Geographical distribution of findings showed that developed countries are the most productive in the field, in addition to an increasing interest from developing countries over the last decade. Keyword analysis generated from Vosviewer yielded to four main clusters covering the topic and shaping the intellectual structure of the study: (1) sustainable development & supply chain management, (2) environmental impact of procurement, (3) lifecycle analysis, (4) social responsibility and ethical sourcing. The article discusses the four main clusters and ends with concluding remarks encompassing six knowledge gaps and potential future research fields.
C1 [Cherkaoui, Adil; Aliat, Marouane] Hassan II Univ Casablanca, Fac Legal Econ & Social Sci, Res Lab Dev Econ & Governance Org LAREDGO, Casablanca, Morocco.
[Cherkaoui, Adil] Hassan II Univ Casablanca, Fac Legal Econ & Social Sci, Res Lab Dev Econ & Governance Org LAREDGO, Km 8,Route El Jadida,BP 8110, Oasis, Casablanca, Morocco.
C3 Hassan II University of Casablanca; Hassan II University of Casablanca
RP Cherkaoui, A (corresponding author), Hassan II Univ Casablanca, Fac Legal Econ & Social Sci, Res Lab Dev Econ & Governance Org LAREDGO, Km 8,Route El Jadida,BP 8110, Oasis, Casablanca, Morocco.
EM cherkaoui.adil.casa@gmail.com
RI CHERKAOUI, Adil/CAH-1494-2022
OI CHERKAOUI, Adil/0000-0002-9857-3629
CR Afonso M., 2020, INT J SUPPLY CHAIN O, V4, P239
[Anonymous], 2000, J FASH MARK MANAG
Azevedo D., 2020, SUSTAINABILITY-BASEL, V12, P3826
Aziz M. A., 2020, SUSTAINABILITY-BASEL, V12, P4489
Baumgartner S., 2017, J CLEAN PROD, V152, P463
Becker B., 2020, SUSTAINABILITY-BASEL, V12, P1076
Boak G, 2016, ACTION LEARN, V13, P204, DOI 10.1080/14767333.2016.1215290
Brammer S, 2011, INT J OPER PROD MAN, V31, P452, DOI 10.1108/01443571111119551
Brinkman J., 2017, J BUS ETHICS, V144, P207
Carraher M., 2020, RESOURCES, V9, P549
Chen RCY, 2017, APPL ECON, V49, P3422, DOI 10.1080/00036846.2016.1262516
Chen Z., 2020, SUSTAINABILITY-BASEL, V12, P7062
CLARK SD, 1990, LIBR ACQUIS PRACT TH, V14, P265, DOI 10.1016/0364-6408(90)90027-R
Connelly K., 2015, BUS SOC REV, V54, P835
Cooper L, 2023, BUS SOC, V62, P229, DOI 10.1177/00076503211056540
Dai X., 2019, SUSTAINABILITY-BASEL, V11, P5386
Dalgliesh C D., 1997, Engineering, Construction and Architectural Management, V4, P23, DOI 10.1108/eb021038
Darso L., 2020, TRANSPORT RES D-TR E, V77, P899
De la Riva A., 2020, SUSTAIN PROD CONSUMP, V25, P71
De Pelsmacker P, 2007, J BUS ETHICS, V75, P361, DOI 10.1007/s10551-006-9259-2
Deng XM, 2015, GEOFORUM, V67, P204, DOI 10.1016/j.geoforum.2015.03.018
Denyse M., 2018, INDIAN J MARKETING, V48, P21
Dermody J, 2018, J BUS RES, V86, P333, DOI 10.1016/j.jbusres.2017.09.041
Dey PK, 2022, INT J PROD ECON, V248, DOI 10.1016/j.ijpe.2022.108496
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Ecker A., 2020, INT J MANAG REV, V22, P109
Fennell D., 2015, Journal of Ecotourism, V14, P48, DOI 10.1080/14724049.2015.1080716
Fields M., 2011, AGR HUM VALUES, V28, P289
Fotakis V., 2020, INT J SUST DEV WORLD, V27, P413
French J. J., 2013, J INT ACAD CASE STUD, V19, P75
Gama A., 2020, SUSTAINABILITY-BASEL, V12, P5237
Gillespie S., 2018, J BUS ETHICS, V150, P85
Goebel P, 2012, INT J PROD ECON, V140, P7, DOI 10.1016/j.ijpe.2012.02.020
Goodall R., 2018, INT J PUBLIC SECT MA, V31, P169
Hancock L, 2018, J CLEAN PROD, V187, P485, DOI 10.1016/j.jclepro.2018.03.097
Harrison A., 2017, J CLEAN PROD, V161, P1033
Heydinger T. S., 2018, SUSTAINABILITY-BASEL, V10, P1
Hoejmose SU, 2012, J PURCH SUPPLY MANAG, V18, P232, DOI 10.1016/j.pursup.2012.06.002
Hollos D, 2012, INT J PROD RES, V50, P2968, DOI 10.1080/00207543.2011.582184
Hsu C. H., 2014, J BUS ETHICS, V122, P439
Humphreys C., 2018, SUPPLY CHAIN MANAG, V23, P265
Islam MM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122310168
Islam MM, 2017, INT J SUST DEV WORLD, V24, P289, DOI 10.1080/13504509.2016.1209794
Jager J., 2020, RESOUR CONSERV RECY, V157, P639
Janssen M., 2019, INT J OPER PROD MAN, V39, P2548
Jham V, 2019, INT J SERV TECHNOL M, V25, P36, DOI 10.1504/IJSTM.2019.10017174
Kalra A., 2020, RESOUR CONSERV RECY, V160, P750
Kannan D, 2021, TRANSPORT RES E-LOG, V146, DOI 10.1016/j.tre.2020.102092
Kelleher C., 2020, INT J PROCUREMENT MA, V13, P543
Khan A., 2021, INT J SUSTAINABLE SU, V5, P146
Khan M. J., 2019, SUSTAINABILITY-BASEL, V11, P4785
Kim S, 2022, J BUS ETHICS, V179, P887, DOI 10.1007/s10551-021-04841-0
Kshetri N, 2022, INT J LOGIST MANAG, V33, P1, DOI 10.1108/IJLM-02-2021-0108
Lai C. C., 2018, INT J PROD RES, V56, P1821
Lang M., 2020, J BUS ETHICS, V159, P817
Lee K., 2020, INT J PROD RES, V58, P4535
Liang X., 2020, INT J PROD ECON, V223, P31
Lowenthal J., 2014, J BUS ETHICS, V123, P437
Maignan I., 2002, EUR MANAG J, V20, P641, DOI [https://doi.org/10.1016/S0263-2373, DOI 10.1016/S0263-2373(02)00115-9]
Marr C., 2020, SUSTAINABILITY-BASEL, V12, P5339
Martinez M., 2019, INT J ENV RES PUB HE, V16, P645
Mashele F., 2018, J BUS RETAIL MANAGE, V12, P121
McCrudden C, 2004, NAT RESOUR FORUM, V28, P257, DOI 10.1111/j.1477-8947.2004.00099.x
McMurray AJ, 2014, J PURCH SUPPLY MANAG, V20, P195, DOI 10.1016/j.pursup.2014.02.005
Meehan J, 2011, BUS STRATEG ENVIRON, V20, P94, DOI 10.1002/bse.678
Moffatt J., 2020, J RESPONSIBLE RETAIL, V5, P1
Münch C, 2022, J PURCH SUPPLY MANAG, V28, DOI 10.1016/j.pursup.2022.100793
Naseri M., 2020, SUSTAINABILITY-BASEL, V12, P7072
Navare K, 2021, RESOUR CONSERV RECY, V170, DOI 10.1016/j.resconrec.2021.105563
Nguyen N. T. T., 2019, SUSTAINABILITY-BASEL, V11, P3854
O'Connor P., 2020, SUSTAINABILITY-BASEL, V12, P5414
Phanthanouvon S., 2020, INT J SUPPLY CHAIN M, V9, P572
Pillay M., 2020, SUSTAINABILITY-BASEL, V12, P279
Preuss L, 2011, PUBLIC ADMIN, V89, P493, DOI 10.1111/j.1467-9299.2010.01893.x
Preuss L, 2009, SUPPLY CHAIN MANAG, V14, P213, DOI 10.1108/13598540910954557
Qazi AA, 2022, SUSTAIN PROD CONSUMP, V33, P343, DOI 10.1016/j.spc.2022.07.013
Scheu C., 2020, SUSTAINABILITY-BASEL, V12, P2859
Schulte M., 2022, INT J INTELL ENG INF, V9, P438
Schulte M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084558
Singhry H B., 2015, International Journal of Supply Chain Management, V4, P115
Stevenson J., 2018, J BUS ETHICS, V151, P505
Tajuddin S. M., 2018, SUSTAINABILITY-BASEL, V10, P4255
Tatrai, 2013, ERA FORUM, V14, P59
Thorsen B., 2010, INT J AGR MANAGEMENT, V4, P41
Vacchiano G., 2018, SUSTAINABILITY-BASEL, V10, P1475
Verde R., 2018, INT J PROCUREMENT MA, V11, P589
Vermeulen D., 2020, SUSTAINABILITY-BASEL, V12, P3788
Vianna S. S., 2018, SUSTAIN PROD CONSUMP, V16, P54
Vlaanderen B. V., 2016, RESOUR CONSERV RECY, V112, P115
Walker Helen, 2009, International Journal of Procurement Management, V2, P41, DOI 10.1504/IJPM.2009.021729
Walker H, 2012, INT J PROD ECON, V140, P256, DOI 10.1016/j.ijpe.2012.01.008
Walker H, 2009, SUPPLY CHAIN MANAG, V14, P128, DOI 10.1108/13598540910941993
Walker HL, 2009, J MANAG EDUC, V33, P348, DOI 10.1177/1052562908323190
Watkins C., 2016, GEOFORUM, V73, P101
WCED SWS., 1987, Our Common Future, V17, P1
Wu ZH, 2011, J OPER MANAG, V29, P577, DOI 10.1016/j.jom.2010.10.001
Xu Y., 2020, SUSTAINABILITY-BASEL, V12, P4288
Yim J., 2020, INT J PROCUREMENT MA, V13, P344
Young S, 2016, PUBLIC MANAG REV, V18, P993, DOI 10.1080/14719037.2015.1051575
Zhou W., 2020, SUSTAINABILITY-BASEL, V12, P9071
Zijp M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141610271
Zorzini M, 2015, INT J OPER PROD MAN, V35, P60, DOI 10.1108/IJOPM-07-2013-0355
NR 102
TC 1
Z9 1
U1 2
U2 16
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
EI 2572-3170
J9 BUS STRATEGY DEV
JI Bus. Strategy Dev.
PD SEP
PY 2023
VL 6
IS 3
BP 397
EP 410
DI 10.1002/bsd2.246
EA MAY 2023
PG 14
WC Business; Environmental Studies
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics; Environmental Sciences & Ecology
GA Q9YT2
UT WOS:000988483600001
DA 2024-09-05
ER
PT J
AU Kennedy, JV
Arendale, DR
AF Kennedy, Jolie V.
Arendale, David R.
TI Investigating Metacognitive Strategies and Exam Performance: A
Cross-Sectional Survey Research Study
SO EDUCATION SCIENCES
LA English
DT Article
DE exam preparation; history; active learning; cooperative learning;
metacognitive learning strategies; Universal Design for Learning;
constructivism; self-regulated learning
AB This investigation used cross-sectional survey research methods in a high-enrollment undergraduate history course, setting out to examine test performance and metacognitive strategies that subjects self-selected prior to class, during class, and during the exam. This study examined the differences in exam scores between one group of students who self-reported completing specific metacognitive strategies and one group of students who self-reported not completing them. An online survey instrument was used to collect data from 121 students about the frequency of occurrence of specific behaviors. Frequencies and an Independent Samples T-Test were used to analyze metacognitive strategies and exam performance. The results showed the following strategies were statistically significant at the 0.05 alpha level: (1) read or listened to assigned readings and audio files before they were discussed during class; (2) frequently took part in small group discussion at the table during the class session; (3) created outlines for each of the potential essay questions to prepare for the examination; and (4) made an outline of the essay question before beginning to write while taking the exam. Limitations of the study, implications of the results, and recommendations for future research are provided. With the challenges of supporting students to earn higher grades and persist toward graduation, faculty members need to join the rest of the campus to be active agents in supporting students through simple learning strategies and effective student behaviors embedded into their courses. This may require extra time and effort to engage in professional development to learn how to embed practice with metacognitive strategies during class sessions.
C1 [Kennedy, Jolie V.] Empire State Univ, Educ Technol & Learning Design, Saratoga Springs, NY 12866 USA.
[Arendale, David R.] Univ Minnesota Twin Cities, Curriculum & Instruct, Minneapolis, MN 55455 USA.
C3 University of Minnesota System; University of Minnesota Twin Cities
RP Arendale, DR (corresponding author), Univ Minnesota Twin Cities, Curriculum & Instruct, Minneapolis, MN 55455 USA.
EM jolie.kennedy@sunyempire.edu; arendale@umn.edu
RI Kennedy, Jolie V./KFS-7391-2024; Arendale, David/GNW-5740-2022
OI Kennedy, Jolie V./0000-0002-7317-5173; Arendale,
David/0000-0003-1928-9310
CR [Anonymous], 1963, The Developmental Psychology of Jean Piaget
Arendale D.R., 2007, Centerpoints Newsl, V4
Arendale D.R., 2012, Cultivating Change in the Academy: 50+ Stories from the Digital Frontiers at the University of Minnesota in 2012
Arendale D.R., 2008, Pedagogy and Student Services for Institutional Transformation: Implementing Universal Design in Higher Education, P113
Astin A.W., 1997, What matters in college? Four critical years revisited
Banks T., 2019, Higher Education Studies, V9, P118, DOI DOI 10.5539/HES.V9N1P118
Braxton J., 2014, Rethinking college student retention, V1st
Burgstabler S.E., 2015, Universal Design in Higher Education: From Principles to Practice, V2nd
Burke A., 2019, COLL UNIV, V94, P12
Canning EA, 2020, SOC PSYCHOL PERS SCI, V11, P647, DOI 10.1177/1948550619882032
Conefrey T, 2021, J COLL STUD RETENT-R, V23, P139, DOI 10.1177/1521025118807402
Correll SJ, 1997, CONTEMP SOCIOL, V26, P644, DOI 10.2307/2655673
Craig M., 2016, P 47 ACM TECHNICAL S, P285, DOI [10.1145/2839509.2844561, DOI 10.1145/2839509.2844561]
Dennis JL, 2023, HIGH EDUC, V86, P99, DOI 10.1007/s10734-022-00904-x
Dinsmore D, 2008, EDUC PSYCHOL REV, V20, P391, DOI 10.1007/s10648-008-9083-6
Dunlosky J, 2013, PSYCHOL SCI PUBL INT, V14, P4, DOI 10.1177/1529100612453266
Edlund JE, 2020, TEACH PSYCHOL, V47, P156, DOI 10.1177/0098628320901385
Ellis R.A., 2019, The Education Ecology of Universities: Integrating Learning, Strategy and the Academy
Friedlandeer J., 1984, J. Dev. Remedial Educ, V7, P13
Fritzgerald A., 2020, Antiracism and universal design for learning building expressways to success
Gezer-Templeton PG, 2017, J FOOD SCI EDUC, V16, P28, DOI 10.1111/1541-4329.12103
Gordon David., 2014, Universal Design for Learning: Theory and Practice
Habley W., 2012, Increasing persistence: Research based strategies for college student success
Kaplan M., 2013, Using reflection and metacognition to improve student learning: Across the disciplines, across the academy, VFirst
Lourenco O, 1996, PSYCHOL REV, V103, P143
Lovett M.C., 2013, USING REFLECTION MET, P18
McGuire S.Y., 2015, TEACH STUDENTS LEARN
McKinney L, 2019, RES HIGH EDUC, V60, P184, DOI 10.1007/s11162-018-9509-z
Nussbaumer A., 2015, Responsive Open Learning Environments: Outcomes of Research from the ROLE Project Cham, P17, DOI DOI 10.1007/978-3-319-02399-12
Piaget J., 1970, Genetic epistemology
Pintrich P., 1994, Student motivation, cognition
PINTRICH PR, 1990, J EDUC PSYCHOL, V82, P33, DOI 10.1037/0022-0663.82.1.33
Ross D.H., 2002, Teaching Every Student in the Digital Age: Universal Design for Learning
SCHRAW G, 1995, EDUC PSYCHOL REV, V7, P351, DOI 10.1007/BF02212307
Sethares KA, 2022, NURS EDUC, V47, P37, DOI 10.1097/NNE.0000000000001026
Shapiro SL, 2006, J CLIN PSYCHOL, V62, P373, DOI 10.1002/jclp.20237
Tight M, 2020, J FURTH HIGH EDUC, V44, P689, DOI 10.1080/0309877X.2019.1576860
Tinto V., 2012, COMPLETING COLL RETH
Tinto V., 1993, LEAVING COLL RETHINK, DOI DOI 10.7208/CHICAGO/9780226922461.001.0001
Tobin TJ., 2018, Reach everyone, teach everyone: Universal design for learning in higher education
Winkelmes M., 2019, Transparent Design in Higher Education Teaching and Leadership: A Guide to Implementing the Transparency Framework Institution-Wide to Improve Learning and Retention
Zamora-Polo F, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11154224
Zimmerman B. J., 2000, Handbook of Self-Regulation, P13, DOI [10.1016/B978-012109890-2/50031-7, DOI 10.1016/B978-012109890-2/50031-7]
NR 43
TC 0
Z9 0
U1 2
U2 3
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-7102
J9 EDUC SCI
JI Educ. Sci.
PD NOV
PY 2023
VL 13
IS 11
AR 1132
DI 10.3390/educsci13111132
PG 17
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA Y8VQ3
UT WOS:001107988600001
OA gold
DA 2024-09-05
ER
PT J
AU Fang, KL
Li, L
Wu, YF
AF Fang, Kailun
Li, Li
Wu, Yifei
TI Research on student engagement in distance learning in sustainability
science to design an online intelligent assessment system
SO FRONTIERS IN PSYCHOLOGY
LA English
DT Article
DE student engagement; engagement assessment system; distance learning;
higher education; machine learning algorithms
ID HIGHER-EDUCATION
AB Distance learning programs in sustainability science provide a structured curriculum that covers various aspects of sustainability. Despite the growing recognition of distance learning in higher education, existing literature has primarily focused on specific and detailed factors, without a comprehensive summary of the global themes, especially neglecting in-depth exploration of poor engagement factors. This study bridged this gap by not only examining detailed factors but also synthesizing the overarching themes that influenced student engagement. The aim of this study was to investigate the factors that impact student engagement in distance learning within higher education institutions across different countries. By developing a theoretical framework, three key aspects of student engagement in higher education were identified. A total of 42 students and 2 educators affiliated with universities participated in semi-structured interviews. The findings of this paper indicated that sociocultural, infrastructure, and digital equity factors were the main influencing factors of student engagement. Furthermore, a student engagement assessment system was developed using machine learning algorithms to identify students with low levels of engagement and conduct further analysis that considers the three aforementioned factors. The proposed automated approach holds the potential to enhance and revolutionize digital learning methodologies.
C1 [Fang, Kailun] Guangzhou Urban Planning & Design Co Ltd, Guangzhou, Peoples R China.
[Li, Li] Shanghai Baiaoheng New Mat Co Ltd, Shanghai, Peoples R China.
[Wu, Yifei] Shenzhen Polytech Univ, Sch Architectural Engn, Shenzhen, Peoples R China.
C3 Shenzhen Polytechnic University
RP Wu, YF (corresponding author), Shenzhen Polytech Univ, Sch Architectural Engn, Shenzhen, Peoples R China.
EM wuyifei@szpt.edu.cn
OI WU, YIFEI/0000-0001-7574-9479
FU Teaching and Research Program of Shenzhen Polytechnic University
[7023310200]
FX The author(s) declare financial support was received for the research,
authorship, and/or publication of this article. The authors gratefully
acknowledge financial support from Teaching and Research Program of
Shenzhen Polytechnic University (grant no. 7023310200).
CR Abuhammad S, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05482
Aguilar SJ, 2020, INFORM LEARN SCI, V121, P285, DOI 10.1108/ILS-04-2020-0084
Al-Balas M, 2020, BMC MED EDUC, V20, DOI 10.1186/s12909-020-02257-4
Alea LA., 2020, INT J LEARNING TEACH, V19, P127, DOI [10.26803/ijlter.19.6.8., DOI 10.26803/IJL-TER.19.6.8, 10.26803/ijlter.19.6.8, DOI 10.26803/IJLTER.19.6.8]
Almajali D, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14127353
Appolloni A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13031388
Arbaugh JB, 2006, ACAD MANAG LEARN EDU, V5, P435, DOI 10.5465/AMLE.2006.23473204
Arinto P, 2016, INT REV RES OPEN DIS, V17, P162
Asif T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12073014
Avsec S, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14073928
Caballé S, 2010, MOB INF SYST, V6, P27, DOI 10.1155/2010/935169
Capone R, 2022, TECHNOL KNOWL LEARN, V27, P1259, DOI 10.1007/s10758-021-09571-w
Davis N, 2005, EDUC INF TECHNOL, V10, P249, DOI 10.1007/s10639-005-3006-7
Demouy V., 2016, The EuroCALL Review, V24, P10, DOI DOI 10.4995/EUROCALL.2016.5663
Dixson M. D., 2015, Learning, V19, P561, DOI [10.24059/olj.v19i4.561, DOI 10.24059/OLJ.V19I4.561]
Dranias M., 2020, J BEHAV BRAIN SCI, V10, P165, DOI [DOI 10.4236/JBBS.2020.103010, 10.4236/JBBS.2020.103010]
Edisherashvili N, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.792422
Ferri F, 2020, SOCIETIES, V10, DOI 10.3390/soc10040086
Fwa H.L., 2018, GSTF J COMPUTING JOC, V6, P1, DOI [10.5176/2251-3043_6.1.114, DOI 10.5176/2251-3043_6.1.114]
Gan YQ, 2007, PERS INDIV DIFFER, V43, P851, DOI 10.1016/j.paid.2007.02.009
Henriksen E.K., 2015, Understanding student participation and choice in science and technology education
Huang EY, 2012, COMPUT EDUC, V58, P338, DOI 10.1016/j.compedu.2011.08.003
Kahu ER, 2013, STUD HIGH EDUC, V38, P758, DOI 10.1080/03075079.2011.598505
Kaplan AM, 2016, BUS HORIZONS, V59, P441, DOI 10.1016/j.bushor.2016.03.008
Kusmaryono I., 2021, International Journal of Education, V14, P62, DOI [DOI 10.17509/IJE.V14I1.29191, 10.17509/iie.v14i1.29191]
Nocua ACL, 2021, EDUC SCI, V11, DOI 10.3390/educsci11090540
Lee J, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11040985
Liu HM, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13116212
Liu S, 2019, MOBILE NETW APPL, V24, P1, DOI 10.1007/s11036-018-1136-6
Moore RL, 2018, EDUC COMMUN TECHNOL, P87, DOI 10.1007/978-3-319-61780-0_7
Morrison AL, 2020, CLIMATIC CHANGE, V159, P17, DOI 10.1007/s10584-019-02576-6
Muhammad I, 2022, ENVIRON SCI POLLUT R, V29, P90147, DOI 10.1007/s11356-022-22011-1
Orji F, 2020, IEEE INT CONF INF VI, P480, DOI 10.1109/IV51561.2020.00083
Park JY, 2015, TECHNOL PEDAGOG EDUC, V24, P389, DOI 10.1080/1475939X.2014.935743
Pittman J, 2021, J MULTICULT EDUC, V15, P68, DOI 10.1108/JME-09-2020-0099
Rigler G, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063647
Rudenko S., 2020, Ukr. Policymaker, V7, P52, DOI [10.29202/up/7/7, DOI 10.29202/UP/7/7]
Saleh TA, 2022, RSC ADV, V12, P23869, DOI 10.1039/d2ra03242b
Senthil S, 2017, PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES FOR SMART NATION (SMARTTECHCON), P699, DOI 10.1109/SmartTechCon.2017.8358461
Southernwood Julie, 2008, Community Pract, V81, P21
Starr-Glass D, 2020, HORIZON, V28, P125, DOI 10.1108/OTH-06-2020-0020
Stenman S, 2020, INT J INF LEARN TECH, V37, P87, DOI 10.1108/IJILT-10-2019-0096
Tsarapkina J. M., 2020, Journal of Physics: Conference Series, V1691, DOI 10.1088/1742-6596/1691/1/012094
Vanderlinde R, 2010, J COMPUT ASSIST LEAR, V26, P434, DOI 10.1111/j.1365-2729.2010.00358.x
Wang YH, 2021, IEEE SENS J, V21, P22402, DOI 10.1109/JSEN.2021.3105706
Yu SM, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12156288
Zhoc KCH, 2019, RES HIGH EDUC, V60, P219, DOI 10.1007/s11162-018-9510-6
NR 47
TC 0
Z9 0
U1 5
U2 11
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-1078
J9 FRONT PSYCHOL
JI Front. Psychol.
PD NOV 23
PY 2023
VL 14
AR 1282386
DI 10.3389/fpsyg.2023.1282386
PG 13
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA AA0N8
UT WOS:001115614700001
PM 38078210
OA gold
DA 2024-09-05
ER
PT C
AU Mohammad, SM
AF Mohammad, Saif M.
BE Calzolari, N
Bechet, F
Blache, P
Choukri, K
Cieri, C
Declerck, T
Goggi, S
Isahara, H
Maegaard, B
Mariani, J
Mazo, H
Moreno, A
Odijk, J
Piperidis, S
TI NLP Scholar: A Dataset for Examining the State of NLP Research
SO PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES
AND EVALUATION (LREC 2020)
LA English
DT Proceedings Paper
CT 12th International Conference on Language Resources and Evaluation
(LREC)
CY MAY 11-16, 2020
CL Marseille, FRANCE
DE Scientometrics; Trends in Research; Google Scholar; ACL Anthology;
Citations
ID CITATIONS
AB Google Scholar is the largest web search engine for academic literature that also provides access to rich metadata associated with the papers. The ACL Anthology (AA) is the largest repository of articles on Natural Language Processing (NLP). We extracted information from AA for about 44 thousand NLP papers and identified authors who published at least three papers in AA. We then extracted citation information from Google Scholar for all their papers (not just their AA papers). This resulted in a dataset of 1.1 million papers and associated Google Scholar information. We aligned the information in the AA and Google Scholar datasets to create the NLP Scholar Dataset-a single unified source of information (from both AA and Google Scholar) for tens of thousands of NLP papers. NLP Scholar can be used to identify broad trends in productivity, focus, and impact of NLP research. We present here initial work on analyzing the volume of research in NLP over the years and identifying the most cited papers in NLP. We also list a number of additional potential applications.
C1 [Mohammad, Saif M.] Natl Res Council Canada, Ottawa, ON, Canada.
C3 National Research Council Canada
RP Mohammad, SM (corresponding author), Natl Res Council Canada, Ottawa, ON, Canada.
EM saif.mohammad@nrc-cnrc.gc.ca
CR Anderson A., 2013, ACL 2012 SPEC WORKSH, P13
[Anonymous], 2011, Proceedings of the 2011 conference on empirical methods in natural language processing, DOI 10.18653/v1/d16-1202
Aya S., 2005, KNOWLEDGE MANAGEMENT, P287
Bird S, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P1755
Bos A. R., 2019, DATA SCI J, V18
Bulaitis Z, 2017, PALGR COMMUN, V3, DOI 10.1057/s41599-017-0002-7
Gildea D, 2018, NLP OPEN SOURCE SOFTWARE (NLP-OSS), P23
Gusenbauer M, 2019, SCIENTOMETRICS, V118, P177, DOI 10.1007/s11192-018-2958-5
Howland J. L., 2010, SCHOLARLY IS GOOGLE
Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384
Khabsa M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093949
Mariani Joseph, 2018, FRONTIERS RES METRIC, V3, P36
Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
Mishra S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195773
Mohammad MAB, 2020, PR IEEE SEN ARRAY, DOI [10.1109/sam48682.2020.9104381, 10.1109/SAM48682.2020.9104381]
Mohammad S., 2009, P HUMAN LANGUAGE TEC, P584
Mohammad S. M., 2020, REVIEW UNPUB
Nanba H., 2011, ADV CLASSIFICATION R, V11, P117, DOI DOI 10.7152/acro.v11i1.12774
Orduna-Malea E., 2014, ARXIV14076239, P1
Pham SB, 2003, LECT NOTES ARTIF INT, V2903, P759
Priem J., 2010, 1 MONDAY, V15, DOI 10.5210/fm.v15i7.2874
Qazvinian V, 2013, J ARTIF INTELL RES, V46, P165, DOI 10.1613/jair.3732
Radev DR, 2016, J ASSOC INF SCI TECH, V67, P683, DOI 10.1002/asi.23394
Ravenscroft J, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173152
Saggion H., 2017, BIRNDL SIGIR, V2017, P26
Schluter N., 2018, P 2018 C EMP METH NA, P2793
Teich E, 2010, LANG COMPUT, V71, P233
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 30
TC 10
Z9 10
U1 0
U2 0
PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA
PI PARIS
PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE
BN 979-10-95546-34-4
PY 2020
BP 868
EP 877
PG 10
WC Computer Science, Interdisciplinary Applications; Linguistics; Language
& Linguistics
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Linguistics
GA BS4ZZ
UT WOS:000724697200109
DA 2024-09-05
ER
PT J
AU Phillips, F
AF Phillips, Fred
TI 50 years of TF&SC
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Technology assessment; Technology forecasting; Technology management;
Artificial intelligence; Complexity; Operations research; Technology
diffusion; Multiple perspectives; Technology transitions
ID TRANSITIONS; INNOVATION
AB On Technological Forecasting & Social Change's 50th birthday, the journal's second and current Editor-in-Chief remarks on TF&SC's progress, the changes in the technological, cultural, and geopolitical environments in which the journal operates, TF&SC articles' changing topics and origins, and where future TF&SC volumes may lead.
C1 [Phillips, Fred] Univ New Mexico, Albuquerque, NM 87131 USA.
[Phillips, Fred] SUNY Stony Brook, Stony Brook, NY 11794 USA.
C3 University of New Mexico; State University of New York (SUNY) System;
State University of New York (SUNY) Stony Brook
RP Phillips, F (corresponding author), Univ New Mexico, Albuquerque, NM 87131 USA.
EM fred.phillips@stonybrook.edu
OI Phillips, Fred/0000-0002-1409-6889
FU FITE Department of the University of New Mexico's Anderson School of
Management
FX Appreciation goes to the FITE Department of the University of New
Mexico's Anderson School of Management for providing a research
assistant to support the preparation of this special anniversary issue.
The Editor-in-Chief is grateful also to Professor U.N. Umesh for taking
on guest editor responsibilities attending to this issue.
CR [Anonymous], 23921EN EUR EUR COMM
[Anonymous], 2018, TOTALLY RANDOM WHY N
[Anonymous], B AT SCI
[Anonymous], 2018, SECRET LIFE SCI IT R
[Anonymous], SLATE
[Anonymous], WALL STREET J
[Anonymous], 2018, NY TIMES
[Anonymous], 1985, BIFURCATION ANAL
[Anonymous], 2009, Nudge
[Anonymous], EMFD GLOBAL NET 0907
Brem A, 2019, TECHNOL FORECAST SOC, V144, P348, DOI 10.1016/j.techfore.2017.11.020
Brem A, 2017, TECHNOL FORECAST SOC, V123, P130, DOI 10.1016/j.techfore.2017.01.002
Coccia M, 2018, TECHNOL FORECAST SOC, V128, P287, DOI 10.1016/j.techfore.2017.11.013
Diamandis P.H., 2012, Abundance: The future is better than you think
Geels FW, 2017, SCIENCE, V357, P1242, DOI 10.1126/science.aao3760
Geels FW, 2005, TECHNOL FORECAST SOC, V72, P681, DOI 10.1016/j.techfore.2004.08.014
Harari Y. N., 2018, 21 lessons for the 21st century
Hutson M, 2018, SCIENCE, V361, P215, DOI 10.1126/science.361.6399.215
Kortenkamp A, 2018, SCIENCE, V361, P224, DOI 10.1126/science.aat9219
LEARNER DB, 1993, SOCIO ECON PLAN SCI, V27, P9, DOI 10.1016/0038-0121(93)90025-E
LINSTONE HA, 1989, TECHNOL FORECAST SOC, V36, P1, DOI 10.1016/0040-1625(89)90002-4
Linstone HA., 1994, CHALLENGE 21 CENTURY
Linstone HA, 2013, TECHNOL FORECAST SOC, V80, P1438, DOI 10.1016/j.techfore.2013.04.011
Linstone HA, 2012, TECHNOL FORECAST SOC, V79, P414, DOI 10.1016/j.techfore.2011.11.001
Marr B., 2018, How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should Read
Modis T, 2017, TECHNOL FORECAST SOC, V122, P63, DOI 10.1016/j.techfore.2017.04.015
Phillips F, 2008, TECHNOL FORECAST SOC, V75, P721, DOI 10.1016/j.techfore.2008.03.005
Phillips F, 2016, TECHNOL FORECAST SOC, V111, P1, DOI 10.1016/j.techfore.2016.08.021
Phillips F, 2016, TECHNOL FORECAST SOC, V105, P158, DOI 10.1016/j.techfore.2016.01.007
Phillips F, 2014, TECHNOL FORECAST SOC, V82, P1, DOI 10.1016/j.techfore.2013.09.008
Rogge KS, 2020, TECHNOL FORECAST SOC, V151, DOI 10.1016/j.techfore.2018.04.002
Sanwal A., 2017, CB Insights
Tangermann Victor, 2018, FUTURISM
Verbong GPJ, 2010, TECHNOL FORECAST SOC, V77, P1214, DOI 10.1016/j.techfore.2010.04.008
NR 34
TC 8
Z9 8
U1 0
U2 23
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD JUN
PY 2019
VL 143
BP 125
EP 131
DI 10.1016/j.techfore.2019.03.004
PG 7
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA IB1RT
UT WOS:000470043000012
DA 2024-09-05
ER
PT C
AU Chandrasekaran, MK
Jaidka, K
Mayr, P
AF Chandrasekaran, Muthu Kumar
Jaidka, Kokil
Mayr, Philipp
GP ACM/SIGIR
TI Joint Workshop on Bibliometric-enhanced Information Retrieval and
Natural Language Processing for Digital Libraries (BIRNDL 2018)
SO ACM/SIGIR PROCEEDINGS 2018
LA English
DT Proceedings Paper
CT 41st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR)
CY JUL 08-12, 2018
CL Univ Michigan, Ann Arbor, MI
HO Univ Michigan
AB The large scale of scholarly publications poses a challenge for scholars in information seeking and sensemaking. Information retrieval (IR), bibliometric and natural language processing (NLP) techniques could enhance scholarly search, retrieval and user experience but are not yet widely used. To this purpose, we propose the third iteration of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL) [1, 3]. The workshop is intended to stimulate IR, NLP researchers and Digital Library professionals to elaborate on new approaches in natural language processing, information retrieval, scientometrics, text mining and recommendation techniques that can advance the state-of-the-art in scholarly document understanding, analysis, and retrieval at scale. The BIRNDL workshop will incorporate multiple invited talks, paper sessions, a poster session and the 4th edition of the Computational Linguistics (CL) Scientific Summarization Shared Task.
C1 [Chandrasekaran, Muthu Kumar] Natl Univ Singapore, Sch Comp, Singapore, Singapore.
[Jaidka, Kokil] Univ Penn, Sch Arts & Sci, Philadelphia, PA 19104 USA.
[Mayr, Philipp] GESIS Leibniz Inst Social Sci, Mannheim, Germany.
C3 National University of Singapore; University of Pennsylvania; Leibniz
Institut fur Sozialwissenschaften (GESIS)
RP Chandrasekaran, MK (corresponding author), Natl Univ Singapore, Sch Comp, Singapore, Singapore.
EM muthu.chandra@comp.nus.edu.sg; jaidka@sas.upenn.edu;
philipp.mayr@gesis.org
RI Jaidka, Kokil/AAK-2618-2020
OI Jaidka, Kokil/0000-0002-8127-1157; Chandrasekaran, Muthu
Kumar/0000-0001-6479-5904
FU Microsoft Research Asia
FX We thank Microsoft Research Asia for their generous support in funding
the development, dissemination and organization of the CL-SciSumm
dataset and the Shared Task. We immensely thank Prof. Dragomir Radev and
Michihiro Yasunaga from Yale University for co-organising CL-Scisumm
with us this time. We are also grateful to the co-organizers of the 1st
BIRNDL workshop - Guillaume Cabanac, Ingo Frommholz, Min-Yen Kan and
Dietmar Wolfram, for their continued support and involvement.
CR Cabanac G., 2017, SIGIR FORUM, V50, P36, DOI [10.1145/3053408.3053417, DOI 10.1145/3053408.3053417]
Jaidka Kokil, 2014, The computational linguistics summarization pilot task
Mayr P, 2018, INT J DIGIT LIBRARIE, V19, P107, DOI 10.1007/s00799-017-0230-x
Mayr Philipp, 2017, SIGIR FORUM, V51, P29
Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81
Philipp Mayr, 2017, SIGIR FORUM, V51, P107
Teufel S., 2017, P 2 JOINT WORKSHOP B, P7
Wolfram D, 2016, P JOINT WORKSH BIBL, P6
NR 8
TC 1
Z9 1
U1 1
U2 5
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-5657-2
PY 2018
BP 1415
EP 1418
DI 10.1145/3209978.3210194
PG 4
WC Computer Science, Information Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BL4TH
UT WOS:000450784600232
OA Green Submitted
DA 2024-09-05
ER
PT C
AU Baran, M
Kulakowski, K
Ligeza, A
AF Baran, Mateusz
Kulakowski, Konrad
Ligeza, Antoni
BE Rutkowski, L
Korytkowski, M
Scherer, R
Tadeusiewicz, R
Zadeh, LA
Zurada, JM
TI A Note on Machine Learning Approach to Analyze the Results of Pairwise
Comparison Based Parametric Evaluation of Research Units
SO ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2014, PT II
SE Lecture Notes in Artificial Intelligence
LA English
DT Proceedings Paper
CT 13th International Conference on Artificial Intelligence and Soft
Computing (ICAISC)
CY JUN 01-05, 2014
CL Zakopane, POLAND
ID CONSISTENCY; PRIORITIES
AB This paper presents an attempt at an analysis of parametric evaluation of research units with machine learning toolkit. The main goal was to investigate if the rules of evaluation can be expressed in a readable, transparent, and easy to interpret way. A further attempt was made at investigating consistency of the applied procedure and presentation of some observed anomalies.
C1 [Baran, Mateusz; Kulakowski, Konrad; Ligeza, Antoni] AGH Univ Sci & Technol, PL-30059 Krakow, Poland.
C3 AGH University of Krakow
RP Baran, M (corresponding author), AGH Univ Sci & Technol, Al Mickiewicza 30, PL-30059 Krakow, Poland.
EM mateusz.baran@agh.edu.pl; konrad.kulakowski@agh.edu.pl;
antoni.ligeza@agh.edu.pl
RI Ligeza, Antoni/E-2422-2012; Baran, Mateusz/U-9571-2019; Kulakowski,
Konrad/C-1784-2013
OI Ligeza, Antoni/0000-0002-6573-4246; Baran, Mateusz/0000-0001-9667-5579;
Kulakowski, Konrad/0000-0002-2857-0916
CR [Anonymous], 1979, Multiple attribute decision making: methods and applications: a state-of-the-art survey
[Anonymous], TITLE ERROR
Bana E Costa CA, 2008, EUR J OPER RES, V187, P1422, DOI 10.1016/j.ejor.2006.09.022
Chang C.-C., 2001, LIBSVM A LIBRARY FOR
Cios K.J., 2007, DATA MINING A KNOWLE
Colomer J.M., 2011, SOCIAL CHOICE AND WE, V40, P317
DYER JS, 1990, MANAGE SCI, V36, P249, DOI 10.1287/mnsc.36.3.249
Fedrizzi M, 2007, EUR J OPER RES, V183, P303, DOI 10.1016/j.ejor.2006.09.065
Flach P., 2012, Machine Learning-The art and science of algorithms that make sense of data
Frank E., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P144
Gaines B. R., 1995, Journal of Intelligent Information Systems: Integrating Artificial Intelligence and Database Technologies, V5, P211, DOI 10.1007/BF00962234
Greco S, 2011, LECT NOTES ARTIF INT, V6954, P126, DOI 10.1007/978-3-642-24425-4_19
Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278
Huehn J.C., 2009, FURIA AN ALGORITHM F
Koczkodaj W.W., 2014, SCIENTOMETRICS ACCEP
KOCZKODAJ WW, 1993, MATH COMPUT MODEL, V18, P79, DOI 10.1016/0895-7177(93)90059-8
Kulakowski K, 2015, CENT EUR J OPER RES, V23, P187, DOI 10.1007/s10100-013-0311-x
Landwehr N, 2005, MACH LEARN, V59, P161, DOI 10.1007/s10994-005-0466-3
Miettinen K, 2012, NONLINEAR MULTIOBJEC, V12
Perron O, 1907, MATH ANN, V64, P248, DOI 10.1007/BF01449896
Quinlan R., 1993, C4 5 PROGRAMS FOR MA
SAATY TL, 1977, J MATH PSYCHOL, V15, P234, DOI 10.1016/0022-2496(77)90033-5
Sumner M, 2005, LECT NOTES ARTIF INT, V3721, P675
THURSTONE LL, 1994, PSYCHOL REV, V101, P266, DOI 10.1037/0033-295X.101.2.266
NR 24
TC 1
Z9 1
U1 0
U2 4
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 978-3-319-07175-6; 978-3-319-07176-3
J9 LECT NOTES ARTIF INT
PY 2014
VL 8468
BP 27
EP 39
PG 13
WC Computer Science, Artificial Intelligence
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BB1EQ
UT WOS:000341055600003
DA 2024-09-05
ER
PT J
AU Chen, F
AF Chen, Feng
TI Research on the Performance of Network Propagation by Using the Machine
Learning and Internet-of-Things Technology Integrating Model
SO COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE
LA English
DT Article
ID CONTEXT
AB We combine machine learning with Internet of Things technology to study the performance of network propagation model. This paper first introduces the construction environment of the business push system and then realizes user clustering and active business push by using the experimental data. Experimental results show that the active service push system constructed in this paper is feasible and effective. The experiment also compares and analyzes the influence of different clustering methods on the accuracy of service push. The results show that the clustering effect of the multi-Markov chain model (m-MCM) method is superior to that of the K-means method, a commonly used machine learning method, and the accuracy of user-service push obtained by the m-MCM method is superior to that obtained by the K-means method. Finally, on the basis of the existing experimental results, the shortcomings of the service push system are summarized, the future improvement direction and specific implementation measures are proposed, and new requirements for the future update of the service push system are put forward.
C1 [Chen, Feng] Zhejiang Coll Secur Technol, Coll Artificial Intelligence, Wenzhou 325016, Zhejiang, Peoples R China.
RP Chen, F (corresponding author), Zhejiang Coll Secur Technol, Coll Artificial Intelligence, Wenzhou 325016, Zhejiang, Peoples R China.
EM chenfeng@zjcst.edu.cn
CR Arnold C., 2017, BHM Berg-und Huttenmannische Monatshefte, V16, P371, DOI [10.1007/s00501-017-0667-7, DOI 10.1007/S00501-017-0667-7]
Baldwin C.Y., 2009, The architecture of platforms: A unified view
Baldwin C, 2011, ORGAN SCI, V22, P1399, DOI 10.1287/orsc.1100.0618
Borges J, 2000, LECT NOTES COMPUT SC, V1836, P92
Chesbrough H., 2006, OPEN INNOVATION RES
Cusumano MA, 2002, MIT SLOAN MANAGE REV, V43, P51
Gierej S, 2017, PROCEDIA ENGINEER, V182, P206, DOI 10.1016/j.proeng.2017.03.166
Hagiu A, 2006, RAND J ECON, V37, P720, DOI 10.1111/j.1756-2171.2006.tb00039.x
Hartman M., 2015, P 26 INT SOC PROFESS
Iivari M M., 2016, Journal of Business Models, V4, DOI DOI 10.5278/OJS.JBM.V4I2.1624
Kazuyuki M., 2017, RIETI POLICY DISCUSS, V17, P1
Kobayashi I, 2008, NEW GENERAT COMPUT, V26, P39, DOI 10.1007/s00354-007-0033-5
Krotov V, 2017, BUS HORIZONS, V60, P831, DOI 10.1016/j.bushor.2017.07.009
Montori F, 2018, PERVASIVE MOB COMPUT, V50, P56, DOI 10.1016/j.pmcj.2018.08.002
Palmisano C, 2008, IEEE T KNOWL DATA EN, V20, P1535, DOI 10.1109/TKDE.2008.110
Pramanik A., 2014, ASIAN J MULTIDISCIPL, V2, P195
Rochet JC, 2003, J EUR ECON ASSOC, V1, DOI 10.1162/154247603322493212
Tosi D, 2004, FOURTH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS ENGINEERING WORKSHOPS, PROCEEDINGS, P193, DOI 10.1109/WISEW.2003.1286802
Wang XV, 2012, ENTERP INF SYST-UK, V6, P291, DOI 10.1080/17517575.2011.587544
Xu X., ROBOTICS COMPUTER IN
NR 20
TC 0
Z9 0
U1 0
U2 4
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1687-5265
EI 1687-5273
J9 COMPUT INTEL NEUROSC
JI Comput. Intell. Neurosci.
PD SEP 19
PY 2022
VL 2022
AR 5480015
DI 10.1155/2022/5480015
PG 13
WC Mathematical & Computational Biology; Neurosciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematical & Computational Biology; Neurosciences & Neurology
GA 5E5FF
UT WOS:000865649400012
PM 36172310
OA Green Published, gold
DA 2024-09-05
ER
PT C
AU Raval, MS
Kaya, T
AF Raval, Mehul S.
Kaya, Tolga
BE Cardoso, A
Alves, GR
Restivo, MT
TI Effect of Multinational Projects on Engineering Students through a
Summer Exposure Research Program
SO PROCEEDINGS OF THE 2020 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE
(EDUCON 2020)
SE IEEE Global Engineering Education Conference
LA English
DT Proceedings Paper
CT IEEE Global Engineering Education Conference (IEEE EDUCON)
CY APR 27-30, 2020
CL ELECTR NETWORK
DE active learning; global competencies; engineering education;
multinational projects
ID EXPERIENCE
AB This paper studies and quantifies the impact of active learning experienced through multinational projects. The hypothesis was engineering education delivered through Active Learning in multicultural environment improves student competencies. The investigation captures the impact of international exposure program in developing global competencies of the modern engineer. The paper shows positive trends in the development of domain and life skills of engineering students. Post-survey after six months of completion of the program revealed that the program was valuable to students and their motivation increased.
C1 [Raval, Mehul S.] Pandit Deendayal Petr Univ, Sch Technol, Gandhinagar, India.
[Kaya, Tolga] Sacred Heart Univ, Sch Comp Sci & Engn, Fairfield, CT USA.
C3 Pandit Deendayal Energy University; Sacred Heart University
RP Raval, MS (corresponding author), Pandit Deendayal Petr Univ, Sch Technol, Gandhinagar, India.
EM mehul.raval@sot.pdpu.ac.in; kayat@sacredheart.edu
OI Kaya, Tolga/0000-0003-3425-4298; Raval, Mehul/0000-0002-3895-1448
CR Adams R., 2013, J COMPUT SCI COLL, V29, P10
Al-Janabi S., 2011, 2011 IEEE Global Engineering Education Conference (EDUCON), P86, DOI 10.1109/EDUCON.2011.5773118
[Anonymous], 2014, A Whole New Engineer: The Coming Revolution in Engineering Education
Campbell K., 2016, Journal of international Mobility, V4, P189, DOI DOI 10.3917/JIM.004.0189
Cavrak I, 2018, PROCEEDINGS 2018 ACM/IEEE 13TH INTERNATIONAL CONFERENCE ON GLOBAL SOFTWARE ENGINEERING ICGSE 2018, P112, DOI 10.1145/3196369.3196370
Cheng AYN, 2014, PROCD SOC BEHV, V116, P4277, DOI 10.1016/j.sbspro.2014.01.931
European Commission, WHAT IS ER
Gallarza MG, 2019, INT J EDUC MANAG, V33, P218, DOI 10.1108/IJEM-11-2017-0322
Gardner K., 2011, J AM SOC ENG ED
Giorgio D. P., 2019, U STUDY ABROAD GRADU
International Monetary Fund (IMF), 2000, Globalization: Threat or Opportunity?
Jackson TM, 2018, PR IEEE INT CONF TEA, P783, DOI 10.1109/TALE.2018.8615407
Jeschke S, 2011, AUTOMATION, COMMUNICATION AND CYBERNETICS IN SCIENCE AND ENGINEERING 2009/2010, P71, DOI 10.1007/978-3-642-16208-4_6
Jurica B., 2019, 15 INT C TELECOMMUNI, P1
Nascimbeni F, 2018, IEEE GLOB ENG EDUC C, P285, DOI 10.1109/EDUCON.2018.8363241
Ocampo JR, 2017, IEEE GLOB ENG EDUC C, P281, DOI 10.1109/EDUCON.2017.7942860
Poulova P, 2018, IEEE GLOB ENG EDUC C, P1283, DOI 10.1109/EDUCON.2018.8363377
Raval M. S., 2019, INT J ELECT ENG ED
Rodriguez J, 2017, IEEE REV IBEROAM TEC, V12, P218, DOI 10.1109/RITA.2017.2776446
Strenger N., 2016, SPRINGER ENG ED 4 0, V4, P611
Strenger N, 2017, IEEE GLOB ENG EDUC C, P226, DOI 10.1109/EDUCON.2017.7942852
Yelamarthi K, 2017, INT J ENG EDUC, V33, P1699
NR 22
TC 1
Z9 1
U1 0
U2 4
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2165-9567
BN 978-1-7281-0930-5
J9 IEEE GLOB ENG EDUC C
PY 2020
BP 51
EP 55
DI 10.1109/educon45650.2020.9125095
PG 5
WC Education, Scientific Disciplines; Engineering, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Education & Educational Research; Engineering
GA BQ7NB
UT WOS:000617739900013
DA 2024-09-05
ER
PT J
AU Gomez, MJ
Ruipérez-Valiente, JA
Clemente, FGJ
AF Gomez, Manuel J.
Ruiperez-Valiente, Jose A.
Garcia Clemente, Felix J.
TI Analyzing Trends and Patterns Across the Educational Technology
Communities Using Fontana Framework
SO IEEE ACCESS
LA English
DT Article
DE Bibliometrics; Market research; Task analysis; Metadata; Social
networking (online); Databases; Network analyzers; EdTech; data mining;
bibliometrics; NLP; network analysis; topic modeling
ID NETWORK ANALYSIS
AB Nowadays, the use of technology in continuously increasing, making a significant impact in almost every area, including education. New areas have gained much popularity in the last years in educational technology (EdTech), such as Massive Open Online Courses (MOOCs) or computer-supported collaborative learning. In addition, research and interest in this area have also been growing over the years. The quantity of research and scientific publications in EdTech is constantly increasing, and trying to analyze and extract information from a set of research papers is often a very time-consuming task. To make this process easier and solve these limitations, we present Fontana, a framework that can quickly perform trend and social network analysis using any corpus of documents and its metadata. Specifically, the framework can: 1) Discover the latest trends given any corpus of documents, using Natural Language Processing (NLP) analysis and keywords (bibliometric approach); 2) Discover the evolution of the trends previously identified over the years; 3) Discover the primary authors and papers, along with hidden relationships between existing communities. To test its functionality, we evaluated the framework using a corpus of papers from the EdTech research field. We also followed an open science methodology making the entire framework available in Open Science Framework (OSF) easy to access and use. The case study successfully proved the capabilities of the framework, revealing some of the most frequent topics in the area, such as "EDM," "learning analytics," or "collaborative learning." We expect our work to help identifying trends and patterns in the EdTech area, using natural language processing and social network analysis to objectively process large amounts of research.
C1 [Gomez, Manuel J.; Ruiperez-Valiente, Jose A.; Garcia Clemente, Felix J.] Univ Murcia, Fac Comp Sci, Murcia 30003, Spain.
C3 University of Murcia
RP Gomez, MJ (corresponding author), Univ Murcia, Fac Comp Sci, Murcia 30003, Spain.
EM manueljesus.gomezm@um.es
RI Clemente, Félix Jesús Garcia/AAM-8396-2020; Gomez Moratilla, Manuel
Jesus/HMW-0780-2023; Ruiperez-Valiente, Jose A./U-8795-2018
OI Clemente, Félix Jesús Garcia/0000-0001-6181-5033; Ruiperez-Valiente,
Jose A./0000-0002-2304-6365; Gomez, Manuel J./0000-0003-0571-2923
CR Abu-Jbara A., 2013, NAACL, P596
[Anonymous], 2013, ACM International Conference Proceeding Series, DOI [DOI 10.1145/2460296.2460316, 10.1145/2460296.2460316]
[Anonymous], 2021, Web of Science
[Anonymous], 2009, COMP STUDY METHODOLO
Atanassova I., 2019, FRONTIERS RES METRIC, V4, P2
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Bond M, 2019, BRIT J EDUC TECHNOL, V50, P12, DOI 10.1111/bjet.12730
Bordea G, 2014, LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P2083
BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680
Buck S, 2015, SCIENCE, V348, P1403, DOI 10.1126/science.aac8041
Burch~eld R. W., 1972, SUPPLEMENT OXFORD EN
Chen XL, 2020, BRIT J EDUC TECHNOL, V51, P692, DOI 10.1111/bjet.12907
Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1
Choi HS, 2017, COMPUT SECUR, V67, P244, DOI 10.1016/j.cose.2017.03.007
Chowdhury GG, 2003, ANNU REV INFORM SCI, V37, P51, DOI 10.1002/aris.1440370103
Dawson S., 2014, P 4 INT C LEARNING A, P231
DeShazo JP, 2009, BMC MED INFORM DECIS, V9, DOI 10.1186/1472-6947-9-7
Díaz O, 2017, LECT NOTES COMPUT SC, V10243, P231, DOI 10.1007/978-3-319-59144-5_14
Elsevier, 2021, About Scopus
Fabry DL, 1997, J EDUC COMPUT RES, V17, P385, DOI 10.2190/C770-AWA1-CMQR-YTYV
Anta AF, 2013, PROCES LENG NAT, P45
Fidler F., 2021, The Stanford Encyclopedia of Philosophy
Gao Y, 2019, ENVIRON SCI POLLUT R, V26, P17809, DOI 10.1007/s11356-019-05071-8
Gomez M. J., 2021, ANAL TRENDS PATTERNS
González-Alcaide G, 2012, REV INST MED TROP SP, V54, P219, DOI 10.1590/S0036-46652012000400007
Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1
Harman K, 2014, IND MANAGE DATA SYST, V114, P1438, DOI 10.1108/IMDS-07-2014-0208
Huang R., 2019, Educational Technology, P3, DOI [10.1007/978981-13-6643-7_1/FIGURES/4, DOI 10.1007/978-981-13-6643-7_1]
Huang R., 2019, Educational technology a primer for the 21st century, DOI DOI 10.1007/978-981-13-6643-7
Hulme EW, 1923, Statistical bibliography in relation to the growth of modern civilization, DOI DOI 10.1038/112585A0
Hung JL, 2012, BRIT J EDUC TECHNOL, V43, P5, DOI 10.1111/j.1467-8535.2010.01144.x
IAALDE, 2021, INT ALL ADV LEARN DI
Jack C, 2019, INT J EARLY YEARS ED, V27, P222, DOI 10.1080/09669760.2018.1504754
Kajikawa Y, 2009, TECHNOL FORECAST SOC, V76, P1115, DOI 10.1016/j.techfore.2009.04.004
Kajikawa Y, 2007, SUSTAIN SCI, V2, P221, DOI 10.1007/s11625-007-0027-8
Kapadia Shashank., 2019, EVALUATE TOPIC MODEL
Kirkwood A, 2014, LEARN MEDIA TECHNOL, V39, P6, DOI 10.1080/17439884.2013.770404
Kizilcec R. F., 2013, P 3 INT C LEARN AN K, P170, DOI [10.1145/2460296.2460330, DOI 10.1145/2460296.2460330]
Kokol P, 2021, HEALTH INFO LIBR J, V38, P125, DOI 10.1111/hir.12295
Kovacevic A, 2012, COMPUT SPEECH LANG, V26, P105, DOI [10.1016/j.csl.2011.09.001, 10.1016/j.cs1.2011.09.001]
Kross S, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231662
Kumar S, 2015, ASLIB J INFORM MANAG, V67, P55, DOI 10.1108/AJIM-09-2014-0116
Lee LK, 2020, J COMPUT EDUC, V7, P1, DOI 10.1007/s40692-020-00155-8
Liddy E.D, 2001, Encyclopedia of Library and Information Science, V2nd
Lu WZ, 2007, KNOWL INF SYST, V11, P105, DOI 10.1007/s10115-006-0023-9
Lv PH, 2011, SCIENTOMETRICS, V88, P399, DOI 10.1007/s11192-011-0386-x
Marin A, 2011, The SAGE handbook of social network analysis, P25, DOI DOI 10.4135/9781446294413.N2
Meyers A. L., 2018, Frontiers in Research Metrics and Analytics, V3, P19, DOI [10.3389/frma.2018.00019, DOI 10.3389/FRMA.2018.00019]
Miau S, 2018, TECHNOL ANAL STRATEG, V30, P1029, DOI 10.1080/09537325.2018.1434138
Mirrlees T., 2019, EDTECH INC SELLING A
NetworkX, NETWORKX NETW AN PYT
Noble Helen, 2018, Evid Based Nurs, V21, P39, DOI 10.1136/eb-2018-102895
O'Callaghan D, 2015, EXPERT SYST APPL, V42, P5645, DOI 10.1016/j.eswa.2015.02.055
Otte E, 2002, J INF SCI, V28, P441, DOI 10.1177/016555150202800601
Palmer J. A., 2021, pdftotext
PRITCHARD A, 1969, J DOC, V25, P348
PyVis, 2021, PYVIS INTR
Röder M, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P399, DOI 10.1145/2684822.2685324
Scheuer O., 2012, ENCY SCI LEARNING
SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007
Sood SK, 2024, IEEE T ENG MANAGE, V71, P671, DOI 10.1109/TEM.2021.3134128
Streeter C.L., 1992, Journal of Social Service Research, V16, P201, DOI [DOI 10.1300/J079V16N0110, 10.1300/J079v16n01_10, DOI 10.1300/J079V16N01_10]
Syed S, 2017, PR INT CONF DATA SC, P165, DOI 10.1109/DSAA.2017.61
van der Zee T, 2018, AERA OPEN, V4, DOI 10.1177/2332858418787466
Yao LM, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P937
Zaihan Yang, 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P324
NR 66
TC 2
Z9 2
U1 3
U2 17
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2022
VL 10
BP 35336
EP 35351
DI 10.1109/ACCESS.2022.3163253
PG 16
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA 0H6YD
UT WOS:000778877900001
OA gold
DA 2024-09-05
ER
PT J
AU Cabrera, PR
Bolívar, CR
Ramírez, T
AF Cabrera, Pablo Rios
Bolivar, Carlos Ruiz
Ramirez, Tulio
TI Online Course Evaluation for the Development of Research Competences
under a Socio-constructivist Pedagogical Approach
SO REVISTA EDUCACION
LA English
DT Article
DE Investigative Competencies; Socio-Constructivist Approach; Project-Based
Teaching; Pedagogical Innovation; Active Learning; Teamwork; Formative
Evaluation
AB The results of the evaluation of an online course are presented to develop investigative skills under a socio-constructivist pedagogical approach. Eleven subjects of both genders, university professionals from Latin America, and members of a cohort of the International Diploma in Investigative Competences participated in the course. Moreover, a mixed research design was used. For the quantitative analysis, a self-assessment scale (pretest and posttest) was used, which served to measure the acquisition of investigative skills. For the qualitative analysis, the focus group, a self-assessment rubric, and a final evaluation questionnaire of the course were used. The results indicate that there were statistically significant differences between the pretest and posttest of investigative skills (p < .001). 73% of the participants consider that they fully achieved the investigative competencies, while 27% partially achieved them and there were no participants in the not achieved category. In addition, the participants reached their achievement expectations in 90.6% of the cases and 63.6% of the individuals exceeded their achievement expectations. Therefore, it is concluded that the socio-constructivist pedagogical approach used was effective and efficient in the development of investigative skills, so its use in teaching research at the university is highly recommended. This research highlights the importance of the mediating work of teachers in the integration of research theory and practice, as well as the use of digital technologies to achieve active and collaborative learning. Thus, this study offers an innovative pedagogical perspective for the teaching of research at the university. However, the small sample size is recognized as a limitation. Hence, it is suggested that in future research the study be extended to a greater number of participants in different university contexts.
C1 [Cabrera, Pablo Rios; Ramirez, Tulio] Univ Catolica Andres Bello, Caracas, Venezuela.
[Bolivar, Carlos Ruiz] Nova Southeastern Univ, Ft Lauderdale, FL USA.
C3 Nova Southeastern University
RP Cabrera, PR (corresponding author), Univ Catolica Andres Bello, Caracas, Venezuela.
EM pablorioscabrera@gmail.com; cr1255@nova.edu; tuliorc1@gmail.com
CR Aguilar-Torres H., 2021, THESIS U AUTONOMA PU
Anama A., 2020, PRACTICAS ED SOCIOCO
Buendía-Arias Ximena Paola, 2018, Folios, P179
Castellaro Mariano, 2020, Perfiles educativos, V42, P140, DOI 10.22201/iisue.24486167e.2020.168.59439
Chacón Reyes Jorge, 2013, RMIE, V18, P735
Creswell J. W., 2017, MIXED METHODS RES
Davila A., 2015, REV EDUCACION DISTAN, V45, P7
Dewey J., 1952, BUSQUEDA CERTEZA EST
Fluckiger J., 2010, The Delta Kappa Gamma Bulletin, P18
Gamboa-Mora M., 2012, Res. Mag. UNAD, V11, P77, DOI [10.22490/25391887.789, DOI 10.22490/25391887.789]
Guerra Santana Mónica, 2019, Rev. estud. exp. educ., V18, P269, DOI 10.21703/rexe.20191836guerra5
GUERRERO USEDA MARÍA EUGENIA, 2007, Act.Colom.Psicol., V10, P190
Hernandez I. B., 2021, Revista de Ciencias Sociales, V27, P242
Johnson B., 2019, Educational research: Quantitative, qualitative, and mixed approaches, V7th
Jonnaert P., 2001, SESION CONGRESO 2 CO
Kaye H., 2018, CREATIVITY CRITIQUE, P59, DOI [10.1007/978-3-319-78298-0_4, DOI 10.1007/978-3-319-78298-0_4]
Krippendorff Klaus., 1990, Metodologia de analisis de contenido - Teoria e Practica
Ramírez-Díaz JL, 2020, REV ELECTRON EDUCARE, V24
Mendioroz Lacabra Ana, 2022, REDIE, V24, pe28, DOI 10.24320/redie.2022.24.e28.4182
Miyahira Arakaki Juan M, 2009, Rev Med Hered, V20, P119
Organizacion para la Cooperacion y el Desarrollo Economicos [OCDE], 2005, PROYECT DESECO DEF S
Paredes I. M., 2018, CONGRESO CIENCIA TEC, DOI [10.24133/cctespe.v13i1.724, DOI 10.24133/CCTESPE.V13I1.724]
Porras L. A., 2021, FACTORES ASOCIADOS E, DOI [10.57998/bdigital.handle.001.5239, DOI 10.57998/BDIGITAL.HANDLE.001.5239]
Ramos E., 2022, RISEI ACAD J, V2, P52
Real Academia Espanola (RAE), 2021, Diccionario de la lengua espanola. Voz "aborto
Rios P., 2023, Arete, Revista Digital del Doctorado en Educacion, V9, P147, DOI [10.55560/arete.2023.17.9.7, DOI 10.55560/ARETE.2023.17.9.7]
Rivas L. A., 2011, REV INVESTIGACION AD, V108, P43
Lizcano-Dallos AR, 2019, MAGIS, V12, P5, DOI 10.11144/Javeriana.m12-24.acat
Rodriguez Garcia A. B., 2014, Revista Academia y Virtualidad, V7, P53, DOI [10.18359/ravi.318, DOI 10.18359/RAVI.318]
Rodriguez M., 2023, DIDACTICA GEOGRAFICA, V24, P39
Ruiz C., 2014, COMO LLEGAR SER TUTO, V2da
Ruiz C., 2002, REV EDUCACION CIENCI, V10, P69
Ruiz C., 2021, CUESTIONARIO E UNPUB
Scager K, 2016, CBE-LIFE SCI EDUC, V15, DOI 10.1187/cbe.16-07-0219
Shah RK., 2019, Journal of Pedagogical Research, V3, P38, DOI [10.33902/JPR.2019254159, DOI 10.33902/JPR.2019254159]
Toro-Ocampo J., 2016, SESION CONGRESO ENCU
Valarino E., 2011, SESION CONFERENCIA
Vygotsky L., 1979, DESARROLLO PROCESOS
Zajac S, 2021, FRONT COMMUN, V6, DOI 10.3389/fcomm.2021.606445
Zambrano-Sandoval H, 2021, REV EDUC-COSTA RICA, V45, DOI 10.15517/revedu.v45i1.43646
NR 40
TC 0
Z9 0
U1 3
U2 7
PU UNIV COSTA RICA, EDITORIAL
PI SAN JOSE
PA SEDE RODRIGO FACIO BRENES, MONTES DE OCA, SAN JOSE, 00000, COSTA RICA
SN 0379-7082
EI 2215-2644
J9 REV EDUC-COSTA RICA
JI Rev. Educ.
PD JUL-DEC
PY 2023
VL 47
IS 2
AR 53856
DI 10.15517/revedu.v47i2.53856
PG 20
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA O0MF9
UT WOS:001040842100002
OA gold
DA 2024-09-05
ER
PT C
AU Rehs, A
AF Rehs, Andreas
BE Glanzel, W
Heeffer, S
Chi, PS
Rousseau, R
TI The scientific productivity of German PhD graduates: A machine
learning-based author name disambiguation and record linkage approach
SO 18TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS
(ISSI2021)
SE Proceedings of the International Conference on Scientometrics and
Informetrics
LA English
DT Proceedings Paper
CT 18th International Conference on Scientometrics and Informetrics (ISSI)
CY JUL 12-15, 2021
CL KU Leuven, ELECTR NETWORK
HO KU Leuven
C1 [Rehs, Andreas] Univ Kassel, Int Ctr Higher Educ Res, Monchebergstr 17, D-34109 Kassel, Germany.
C3 Universitat Kassel
RP Rehs, A (corresponding author), Univ Kassel, Int Ctr Higher Educ Res, Monchebergstr 17, D-34109 Kassel, Germany.
EM andreasrehs@googlemail.com
RI Rehs, Andreas/AAG-3062-2022; Rehs, Andreas/AFK-4297-2022
OI Rehs, Andreas/0000-0003-1947-2051; Rehs, Andreas/0000-0003-1947-2051
CR Blakely T, 2002, INT J EPIDEMIOL, V31, P1246, DOI 10.1093/ije/31.6.1246
BuWiN (Konsortium Bundesbericht Wissenschaftlicher Nachwuchs), 2017, BUND WISS NACHW 2017
DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1, DOI 10.1111/j.2517-6161.1977.tb01600.x
Enamorado T, 2019, AM POLIT SCI REV, V113, P353, DOI 10.1017/S0003055418000783
FELLEGI IP, 1969, J AM STAT ASSOC, V64, P1183, DOI 10.2307/2286061
Rehs A, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101166
Stephan PE, 2004, ECON DEV Q, V18, P151, DOI 10.1177/0891242403262019
NR 7
TC 0
Z9 0
U1 0
U2 1
PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI
PI LEUVEN
PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN,
B-3000, BELGIUM
SN 2175-1935
BN 978-90-803282-2-8
J9 PRO INT CONF SCI INF
PY 2021
BP 1531
EP 1532
PG 2
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BS3CO
UT WOS:000709638700205
DA 2024-09-05
ER
PT C
AU Tran, HN
Huynh, T
Do, T
AF Hung Nghiep Tran
Tin Huynh
Tien Do
BE Nguyen, NT
Attachoo, B
Trawinski, B
Somboonviwat, K
TI Author Name Disambiguation by Using Deep Neural Network
SO INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT 1
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 6th Asian Conference on Intelligent Information and Database Systems
(ACIIDS)
CY APR 07-09, 2014
CL Bangkok, THAILAND
DE Digital Library; Bibliographic Data; Author Name Disambiguation; Machine
Learning; Feature Learning; Deep Neural Network
AB Author name ambiguity is one of the problems that decrease the quality and reliability of information retrieved from digital libraries. Existing methods have tried to solve this problem by predefining a feature set based on expert's knowledge for a specific dataset. In this paper, we propose a new approach which uses deep neural network to learn features automatically for solving author name ambiguity. Additionally, we propose the general system architecture for author name disambiguation on any dataset. We evaluate the proposed method on a dataset containing Vietnamese author names. The results show that this method significantly outperforms other methods that use predefined feature set. The proposed method achieves 99.31% in terms of accuracy. Prediction error rate decreases from 1.83% to 0.69%, i.e., it decreases by 1.14%, or 62.3% relatively compared with other methods that use predefined feature set (Table 3).
C1 [Hung Nghiep Tran; Tin Huynh; Tien Do] Univ Informat Technol Vietnam, Linh Trung Ward, Ho Chi Minh City, Vietnam.
RP Tran, HN (corresponding author), Univ Informat Technol Vietnam, Linh Trung Ward, Ho Chi Minh City, Vietnam.
EM nghiepth@uit.edu.vn; tinhn@uit.edu.vn; tiendv@uit.edu.vn
RI Do, Tien/IVU-9134-2023
CR [Anonymous], 2007, NIPS
Bhattacharya I., 2007, ACM T KNOWL DISCOV D, V1
Bilenko M, 2003, IEEE INTELL SYST, V18, P16, DOI 10.1109/MIS.2003.1234765
Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110
Cohen W.W., 2003, IIWeb, P73
Ferreira AA, 2012, SIGMOD REC, V41, P15, DOI 10.1145/2350036.2350040
Glorot X., 2011, P 14 INT C ARTIFICIA, V15, P315
Glorot X., 2010, JMLR Workshop and Conference Proceedings., P249
Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
McClelland J., 1987, Learning Internal Representations by Error Propagation, V1, P318
Huynh T, 2013, LECT NOTES COMPUT SC, V7802, P226, DOI 10.1007/978-3-642-36546-1_24
Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304
Torvik VI, 2005, J AM SOC INF SCI TEC, V56, P140, DOI 10.1002/asi.20105
Yu D., 2013, CORRABS13013605
NR 15
TC 36
Z9 44
U1 0
U2 9
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 978-3-319-05476-6; 978-3-319-05475-9
J9 LECT NOTES COMPUT SC
PY 2014
VL 8397
BP 123
EP 132
PG 10
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BA6XT
UT WOS:000337302600013
DA 2024-09-05
ER
PT C
AU Ghosh, S
Das, D
Chakraborty, T
AF Ghosh, Souvick
Das, Dipankar
Chakraborty, Tanmoy
BE Gelbukh, A
TI Determining Sentiment in Citation Text and Analyzing Its Impact on the
Proposed Ranking Index
SO COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING
2016), PT II
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 17th International Conference on Intelligent Text Processing and
Computational Linguistics (CICLing)
CY APR 03-09, 2016
CL Mevlana Univ, Konya, TURKEY
HO Mevlana Univ
DE Sentiment analysis; Citation; Citation sentiment analysis; Citation
polarity; Ranking; Bibliometrics
AB Whenever human beings interact with each other, they exchange or express opinions, emotions and sentiments. These opinions can be expressed in text, speech or images. Analysis of these sentiments is one of the popular research areas of present day researchers. Sentiment analysis, also known as opinion mining tries to identify or classify these sentiments or opinions into two broad categories - positive and negative. Much work on sentiment analysis has been done on social media conversations, blog posts, newspaper articles and various narrative texts. However, when it came to identifying emotions from scientific papers, researchers used to face difficulties due to the implicit and hidden natures of opinions or emotions. As the citation instances are considered inherently positive in emotion, popular ranking and indexing paradigms often neglect the opinion present while citing. Therefore in the present paper, we deployed a system of citation sentiment analysis to achieve three major objectives. First, we identified sentiments in the citation text and assigned a score to each of the instances. We have used a supervised classifier for this purpose. Secondly, we have proposed a new index (we shall refer to it hereafter as M-index) which takes into account both the quantitative and qualitative factors while scoring a paper. Finally, we developed a ranking of research papers based on the M-index. We have also shown the impacts of M-index on the ranking of scientific papers.
C1 [Ghosh, Souvick; Das, Dipankar] Jadavpur Univ, Kolkata 700032, India.
[Chakraborty, Tanmoy] Univ Maryland, College Pk, MD 20742 USA.
C3 Jadavpur University; University System of Maryland; University of
Maryland College Park
RP Ghosh, S (corresponding author), Jadavpur Univ, Kolkata 700032, India.
EM souvick.gh@gmail.com; dipankar.dipnil2005@gmail.com;
tanchak@umiacs.umd.edu
OI Ghosh, Souvick/0000-0003-1610-9038; CHAKRABORTY,
TANMOY/0000-0002-0210-0369
CR Abu-Jbara A., 2011, P ACL
Abu-Jbara A., 2013, NAACL, P596
[Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], 2005, PROC 14 INT C WORLD
Athar A., 2011, P ACL 2011 STUD SESS, P81
Athar A., 1994, UCAMCLTR856 GIRT COL
Athar Awais., 2012, PROC ACL WORKSHOP DE, P18
BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Garfield E., 1994, T REUTERS IMPACT FAC
Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278
Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704
Radev D. R., 2009, J AM SOC INFORM SCI, V1001, P41092
Singh S.K., 2014, International Journal Of Database Theory and Application, V7, P39
Tandon N., 2014, POST DEM TRACK 35 GE, P98
Teufel S., 2006, P C EMP METH NAT LAN, DOI 10.3115/1610075.1610091
Yu B., 2013, P 76 ASIS T ANN M CL
NR 19
TC 5
Z9 5
U1 0
U2 10
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-319-75487-1; 978-3-319-75486-4
J9 LECT NOTES COMPUT SC
PY 2018
VL 9624
BP 292
EP 306
DI 10.1007/978-3-319-75487-1_23
PN II
PG 15
WC Computer Science, Artificial Intelligence; Computer Science, Software
Engineering; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BP1NL
UT WOS:000540377700023
DA 2024-09-05
ER
PT C
AU Mao, CH
AF Mao, Chunhua
BE Zhang, H
Jin, D
Zhao, XJ
TI Research on Information System for Teaching Quality Evaluation Model of
Business English Translation Based on SVM
SO ADVANCED RESEARCH ON MATERIAL SCIENCE, ENVIROMENT SCIENCE AND COMPUTER
SCIENCE III
SE Advanced Materials Research
LA English
DT Proceedings Paper
CT 3rd International Conference on Material Science, Environment Science
and Computer Science (MSESCS 2014)
CY JAN 11-12, 2014
CL Wuhan, PEOPLES R CHINA
DE Business English Translation; Teaching Quality Evaluation; Support
Vector Machine; Information Applied Technology
ID INNOVATION
AB The teaching quality evaluation of business English translation is a key basis to discover the teaching problems of business English translation and to promote the teaching quality. Compared with the traditional teaching quality evaluation method, support vector machine which is a type of information applied technology has many unique advantages, such as high accuracy, easily operation and fast implementation. This paper studies the current teaching quality on the basis of business English translation, and establishes the teaching quality evaluation model of business English translation based on SVM, and the experimental results show the superiority and validity of this method in the teaching quality assessment of business English translation.
C1 Hunan Vocat Coll Commerce, Changsha 410205, Hunan, Peoples R China.
RP Mao, CH (corresponding author), Hunan Vocat Coll Commerce, Changsha 410205, Hunan, Peoples R China.
EM 465756969@qq.com
CR ABERNATHY WJ, 1978, TECHNOL REV, V80, P40
Gang Fu Yong, 2004, COMPUTER ENG, V30, P15
Godoe H, 2000, RES POLICY, V29, P1033, DOI 10.1016/S0048-7333(99)00051-7
Ming Yang Zhi, 2007, UNCERTAINTY PRINCIPL, P55
Qi Chang Ming, 2011, NATURAL DISASTERS, V6, P167
Yu Chen Hang, 2005, EC SOCIAL DEV, V3, P154
NR 6
TC 4
Z9 4
U1 0
U2 10
PU TRANS TECH PUBLICATIONS LTD
PI STAFA-ZURICH
PA LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND
SN 1022-6680
BN 978-3-03835-011-8
J9 ADV MATER RES-SWITZ
PY 2014
VL 886
BP 552
EP 555
DI 10.4028/www.scientific.net/AMR.886.552
PG 4
WC Materials Science, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Materials Science
GA BA7XQ
UT WOS:000337849000122
DA 2024-09-05
ER
PT J
AU Asatani, K
Takeda, H
Yamano, H
Sakata, I
AF Asatani, Kimitaka
Takeda, Haruo
Yamano, Hiroko
Sakata, Ichiro
TI Scientific Attention to Sustainability and SDGs: Meta-Analysis of
Academic Papers
SO ENERGIES
LA English
DT Article
DE bibliometrics; network analysis; SDGs; natural language processing;
information retrieval; scientific foresight
ID ENERGY-STORAGE; LANDSCAPE; EVOLUTION; TOURISM; BATTERY
AB Scientific research plays an important role in the achievement of a sustainable society. However, grasping the trends in sustainability research is difficult because studies are not devised and conducted in a top-down manner with Sustainable Development Goals (SDGs). To understand the bottom-up research activities, we analyzed over 300,000 publications concerned with sustainability by using citation network analysis and natural language processing. The results suggest that sustainability science's diverse and dynamic changes have been occurring over the last few years; several new topics, such as nanocellulose and global health, have begun to attract widespread scientific attention. We further examined the relationship between sustainability research subjects and SDGs and found significant correspondence between the two. Moreover, we extracted SDG topics that were discussed following a convergent approach in academic studies, such as "inclusive society" and "early childhood development", by observing the convergence of terms in the citation network. These results are valuable for government officials, private companies, and academic researchers, empowering them to understand current academic progress along with research attention devoted to SDGs.
C1 [Asatani, Kimitaka; Yamano, Hiroko; Sakata, Ichiro] Univ Tokyo, Grad Sch Engn, Tokyo 1138654, Japan.
[Takeda, Haruo] Hitachi Ltd, Tokyo 1008280, Japan.
C3 University of Tokyo; Hitachi Limited
RP Asatani, K (corresponding author), Univ Tokyo, Grad Sch Engn, Tokyo 1138654, Japan.
EM asatani@ipr-ctr.t.u-tokyo.ac.jp; haruo.takeda.vp@hitachi.com;
yamano@pari.u-tokyo.ac.jp; isakata@ipr-ctr.t.u-tokyo.ac.jp
OI SAKATA, ICHIRO/0000-0001-5881-3790; Asatani,
Kimitaka/0000-0003-3595-8940
FU NEDO (New Energy and Industrial Technology Development Organization),
the funding agency of the Japan Ministry of Economy, Trade and Industry
(METI)
FX This project was funded by NEDO (New Energy and Industrial Technology
Development Organization), the funding agency of the Japan Ministry of
Economy, Trade and Industry (METI).
CR Aizawa A, 2003, INFORM PROCESS MANAG, V39, P45, DOI 10.1016/S0306-4573(02)00021-3
[Anonymous], UN NEWS
Baland J.Bardhan., 2018, Inequality, cooperation, and environmental sustainability
Bar-On YM, 2018, P NATL ACAD SCI USA, V115, P6506, DOI 10.1073/pnas.1711842115
Berruti A, 2016, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.01559
Bird Steven, 2004, NLTK: The Natural Language Toolkit, P31
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
De Almeida DG, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.01718
Dinda S, 2004, ECOL ECON, V49, P431, DOI 10.1016/j.ecolecon.2004.02.011
Dunn B, 2011, SCIENCE, V334, P928, DOI 10.1126/science.1212741
Goodenough JB, 2013, J AM CHEM SOC, V135, P1167, DOI 10.1021/ja3091438
Higgins-Desbiolles F, 2018, TOUR MANAG PERSPECT, V25, P157, DOI 10.1016/j.tmp.2017.11.017
Kajikawa Y, 2017, SUSTAIN SCI, V12, P869, DOI 10.1007/s11625-017-0477-6
Kajikawa Y, 2007, SUSTAIN SCI, V2, P221, DOI 10.1007/s11625-007-0027-8
Kates RW, 2001, SCIENCE, V292, P641, DOI 10.1126/science.1059386
Khan MI, 2018, MICROB CELL FACT, V17, DOI 10.1186/s12934-018-0879-x
Klewitz J, 2014, J CLEAN PROD, V65, P57, DOI 10.1016/j.jclepro.2013.07.017
Kush P, 2015, J MATER CHEM A, V3, P8098, DOI 10.1039/c4ta06551d
Lang DJ, 2012, SUSTAIN SCI, V7, P25, DOI 10.1007/s11625-011-0149-x
Li M, 2018, ADV MATER, V30, DOI 10.1002/adma.201800561
Marchi B, 2018, ENERGIES, V11, DOI 10.3390/en11040858
Marchi B, 2017, ENERGIES, V10, DOI 10.3390/en10101618
Martinuzzi Andre., 2017, TRANSNATIONAL CORPOR, V24, P33, DOI [10.18356/cfb5b8b6-e, DOI 10.18356/CFB5B8B6-EN, 10.18356/cfb5b8b6-en]
Mata TM, 2010, RENEW SUST ENERG REV, V14, P217, DOI 10.1016/j.rser.2009.07.020
Mooney R., 1999, P 16 NAT C ART INT O, V334
Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103
OECD, 2013, GOV GLANC 2013 PROC, P193
Olasanmi IO, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10124817
Pagliaro M, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01866
Panwar NL, 2011, RENEW SUST ENERG REV, V15, P1513, DOI 10.1016/j.rser.2010.11.037
Pasetti M, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8030432
Rogelj J, 2016, NATURE, V534, P631, DOI 10.1038/nature18307
Ruhanen L, 2015, J SUSTAIN TOUR, V23, P517, DOI 10.1080/09669582.2014.978790
Santmartí A, 2018, SUSTAIN-CONTRIB SCI, P67
Shapla UM, 2018, CHEM CENT J, V12, DOI 10.1186/s13065-018-0408-3
Shi YM, 2016, CHEM SOC REV, V45, P1529, DOI 10.1039/c5cs00434a
Sparck-Jones K, 2004, J DOC, V60, P493, DOI [10.1108/00220410410560573, 10.1108/eb026526]
Sterling S.R., 2001, Sustainable education: re-visioning learning and change
Tang J, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P287, DOI 10.1145/2872427.2883041
Traag VA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41695-z
Weitzel T, 2018, EUR J OPER RES, V264, P582, DOI 10.1016/j.ejor.2017.06.052
Xu C, 2019, NANOMATERIALS-BASEL, V9, DOI 10.3390/nano9010103
NR 42
TC 18
Z9 18
U1 3
U2 42
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1996-1073
J9 ENERGIES
JI Energies
PD FEB
PY 2020
VL 13
IS 4
AR 975
DI 10.3390/en13040975
PG 21
WC Energy & Fuels
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Energy & Fuels
GA KY3TB
UT WOS:000522492700203
OA Green Submitted, gold
DA 2024-09-05
ER
PT C
AU Liu, D
Li, GG
Zeng, W
Sun, M
Li, CB
AF Liu Ding
Li Gege
Zeng Wei
Sun Min
Li Cunbin
GP IOP
TI Research on Comprehensive Benefit Post Evaluation of Photovoltaic
Poverty Alleviation Projects Based on FCM and SVM
SO 2019 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL AND ENERGY
ENGINEERING (IC3E 2019)
SE IOP Conference Series-Earth and Environmental Science
LA English
DT Proceedings Paper
CT 3rd International Conference on Environmental and Energy Engineering
(IC3E)
CY MAR 14-16, 2019
CL Shanghai, PEOPLES R CHINA
AB Photovoltaic (PV) Poverty Alleviation makes full use of the solar energy in poverty-stricken areas so as to achieve sTable incomes increase for the poor households for 25 years. It is an advanced mode integrating new energy development, emission reduction and accurate poverty alleviation. Post evaluation of PV poverty alleviation project is of great guiding significance for new energy development planning, poverty alleviation promoting and construction and operation of PV power stations. Under the guidance of the practical experience of PV poverty alleviation in Jiangxi province, China, this paper firstly builds a comprehensive evaluation index system with 7 second-level targets based on the post evaluation theory. Then, considering that projects with different sizes, construction and operation mode have different features in the evaluation, this paper uses pattern recognition method based on fuzzy C-means clustering algorithm and support vector machine to classify the projects. Then comparative analysis is carried out within each class to achieve comprehensive benefits evaluation. The method can reduce the information loss of multi-index weighted aggregation of traditional post evaluation methods. The features of PV poverty alleviation projects are highlighted to help to find the weak points of the projects. So the evaluation results are more scientific and reasonable.
C1 [Liu Ding; Li Gege; Li Cunbin] North China Elect Power Univ, Beijing Key Lab New Energy & Low Carbon Dev, Beijing 102206, Peoples R China.
[Zeng Wei; Sun Min] State Grid Jiangxi Elect Power Co Elect Power Res, Nanchang 330039, Jiangxi, Peoples R China.
C3 North China Electric Power University
RP Liu, D (corresponding author), North China Elect Power Univ, Beijing Key Lab New Energy & Low Carbon Dev, Beijing 102206, Peoples R China.
EM liuding@163.com
RI Lau, Dean/IZP-7679-2023
FU Natural Science Foundation of China [71671065]; Science and Technology
Project of State Grid Corporation of China "Research and Application of
Improving the Accommodation Capacity and Guarantee Technologies of Power
Grid in PV Poverty Alleviation Areas" [52182017000W]
FX This study is supported by the Natural Science Foundation of China
(71671065) and the Science and Technology Project of State Grid
Corporation of China "Research and Application of Improving the
Accommodation Capacity and Guarantee Technologies of Power Grid in PV
Poverty Alleviation Areas" (52182017000W).
CR Akinyele DO, 2017, ENERGY, V130, P515, DOI 10.1016/j.energy.2017.04.126
Ayompe LM, 2014, SUSTAIN ENERGY TECHN, V7, P257, DOI 10.1016/j.seta.2013.10.002
Dabaieh M, 2018, J BUILDING ENG
LI Fen, 2011, SCI HYDROPOWER ENERG, V29, P188
Li Y, 2018, RENEW SUST ENERG REV, V94, P214, DOI 10.1016/j.rser.2018.06.012
[李彦斌 Li Yanbin], 2013, [电网技术, Power System Technology], V37, P1514
Mamia I, 2016, RENEW SUST ENERG REV, V55, P713, DOI 10.1016/j.rser.2015.11.009
Singh GK, 2013, ENERGY, V53, P1, DOI 10.1016/j.energy.2013.02.057
Nguyen THT, 2017, INT J ELEC POWER, V89, P27, DOI 10.1016/j.ijepes.2016.12.012
Zhang Yan-xia, 2010, High Voltage Engineering, V36, P3097
NR 10
TC 5
Z9 5
U1 0
U2 23
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1755-1307
J9 IOP C SER EARTH ENV
JI IOP Conf. Ser. Earth Envir. Sci.
PY 2019
VL 281
AR 012034
DI 10.1088/1755-1315/281/1/012034
PG 9
WC Energy & Fuels; Engineering, Environmental; Environmental Sciences
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA BO1EL
UT WOS:000495364600034
OA gold
DA 2024-09-05
ER
PT J
AU Gomes, RC
de Azevedo, CB
AF Gomes, Ricardo Correa
de Azevedo, Clovis Bueno
TI Balanced Scorecard: A Literature Review to Trace its Trajectory in the
Public Administration Domain
SO INTERNATIONAL JOURNAL OF PUBLIC ADMINISTRATION
LA English
DT Article; Early Access
DE Balanced scorecard; performance management; public administration;
bibliometric studies; natural language processing
ID PERFORMANCE-MEASUREMENT; MANAGEMENT; SERVICE; SECTOR; IMPLEMENTATION;
DEPARTMENTS; CONTEXT; ISSUES; CITY; TOOL
AB The Balanced Scorecard (BSC) has been a strategic and performance management tool for 30 years, initially for for-profit organizations but later adopted by other types. This study reviews its use by public administration scholars, analyzing articles from the Web of Science database with bibliometric tools and Artificial Intelligence for lexical and semantic analysis. The analysis concluded that BSC is mainly used in local government for performance management and measurement. The study enhances theoretical understanding by exploring BSC's application in the public sector, its effectiveness, distinctions from for-profit use, and identifying areas for further research.
C1 [Gomes, Ricardo Correa] Res Degree Program Publ Adm, FGV EAESP, Rua Ingleses,484,Apto 83, BR-1329000 Sao Paulo, SP, Brazil.
[de Azevedo, Clovis Bueno] FGV EAESP, Publ Management, Sao Paulo, Brazil.
C3 Getulio Vargas Foundation; Getulio Vargas Foundation
RP Gomes, RC (corresponding author), Res Degree Program Publ Adm, FGV EAESP, Rua Ingleses,484,Apto 83, BR-1329000 Sao Paulo, SP, Brazil.
EM ricardo.gomes@fgv.br
RI Gomes, Ricardo/D-8311-2017
OI Gomes, Ricardo/0000-0002-4164-5986
CR Admiraal RJ, 2003, PUBLIC MONEY MANAGE, V23, P113, DOI 10.1111/1467-9302.00354
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arnaboldi M, 2015, FINANC ACCOUNT MANAG, V31, P1, DOI 10.1111/faam.12049
Askim J., 2004, International Public Management Journal, V7, P415
Bakir C, 2017, POLICY SCI, V50, P585, DOI 10.1007/s11077-017-9299-8
Benoit Kenneth, 2018, J OPEN SOURCE SOFTW, V3, P774, DOI [10.21105/joss.00774, DOI 10.21105/JOSS.00774]
Biswas A., 2021, The Management Accountant Journal, V56, P58, DOI [https://doi.org/10.33516/maj.v56i2.58-62p, DOI 10.33516/MAJ.V56I2.58-62P]
Boland T., 2000, INT J PUBLIC SECTOR, V13, P417, DOI [DOI 10.1108/09513550010350832, 10.1108/09513550010350832]
Boyne GA, 2003, PUBLIC ADMIN, V81, P211, DOI 10.1111/1467-9299.00343
Bryson JohnM., 2018, Strategic planning for public and nonprofit organizations: An guide to strengthening and sustaining organizational achievement, V4th
BUDD JM, 1988, RES HIGH EDUC, V28, P180, DOI 10.1007/BF00992890
Chung CC, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8060518
Costa E, 2021, J PUBLIC BUDGET ACC, V33, P289, DOI 10.1108/JPBAFM-02-2020-0012
Cugini A, 2011, PUBLIC MONEY MANAGE, V31, P271, DOI 10.1080/09540962.2011.586240
Denhardt RB, 2000, PUBLIC ADMIN REV, V60, P549, DOI 10.1111/0033-3352.00117
Di Luozzo S, 2023, INT J PRODUCT PERFOR, V72, P625, DOI 10.1108/IJPPM-03-2021-0176
Dreveton B, 2013, PUBLIC MONEY MANAGE, V33, P131, DOI 10.1080/09540962.2013.763425
Dumais ST, 2004, ANNU REV INFORM SCI, V38, P189
Dyckhoff H, 2011, BUS INFORM SYST ENG+, V3, P65, DOI 10.1007/s12599-011-0145-9
Farneti F, 2009, PUBLIC MONEY MANAGE, V29, P313, DOI 10.1080/09540960903205964
Fleisher CS, 1997, PUBLIC RELAT REV, V23, P117, DOI 10.1016/S0363-8111(97)90020-5
Funck E, 2007, J ACCOUNT ORGAN CHAN, V3, P88, DOI 10.1108/18325910710756122
Gao J, 2015, PUBLIC ADMIN DEVELOP, V35, P86, DOI 10.1002/pad.1704
Gomes R, 2010, PUBLIC MANAG REV, V12, P53, DOI 10.1080/14719030902800218
Griffiths J, 2003, AUST J PUBL ADMIN, V62, P70, DOI 10.1111/j..2003.00350.x
Gunn E, 2014, LOCAL GOV STUD, V40, P851, DOI 10.1080/03003930.2013.815614
Guthrie J, 2024, J PUBLIC BUDGET ACC, V36, P1, DOI 10.1108/JPBAFM-10-2023-0176
Hagood WO, 2002, PUBLIC PERS MANAGE, V31, P543, DOI 10.1177/009102600203100410
Hippisley A, 2010, CH CRC MACH LEARN PA, P31
Höglund L, 2021, J PUBLIC BUDGET ACC, V33, P468, DOI 10.1108/JPBAFM-12-2019-0180
HOOD C, 1991, PUBLIC ADMIN, V69, P3, DOI 10.1111/j.1467-9299.1991.tb00779.x
Jelavic SR, 2021, STRATEG MANAG, V26, P37, DOI 10.5937/StraMan2104037R
Kaplan R., 2001, NONPROFIT MANAG LEAD, V11, P353, DOI DOI 10.1002/NML.11308
Kaplan R.S., 2001, Accounting Horizons, V15, P87, DOI DOI 10.2308/ACCH.2001.15.2.147
KAPLAN RS, 1993, HARVARD BUS REV, V71, P134
KAPLAN RS, 1992, HARVARD BUS REV, V70, P71
Karasneh AA, 2022, J PUBLIC AFF, V22, DOI 10.1002/pa.2359
Köper B, 2009, SCAND J WORK ENV HEA, V35, P413
Kong E, 2008, INT J MANAG REV, V10, P281, DOI 10.1111/j.1468-2370.2007.00224.x
Král M, 2022, INT J PUBLIC ADMIN, V45, P726, DOI 10.1080/01900692.2021.1891425
Kumar A, 2023, PUBLIC ORGAN REV, V23, P1143, DOI 10.1007/s11115-022-00646-5
Langbein L, 2010, INT PUBLIC MANAG J, V13, P9, DOI 10.1080/10967490903547134
Li SJ, 2022, INT J PUBLIC ADMIN, V45, P537, DOI 10.1080/01900692.2019.1660990
Liddy E.D., 2003, Natural language processing, V2nd
Lin WC, 2013, LEX LOCALIS, V11, P21, DOI 10.4335/199
Lindermüller D, 2022, INT PUBLIC MANAG J, V25, P639, DOI 10.1080/10967494.2020.1799888
Lu Y, 2023, MANAGE SCI, V69, P4888, DOI 10.1287/mnsc.2022.4554
Mahoney M, 2019, POLICY DES PRACT, V2, P383, DOI 10.1080/25741292.2019.1642072
Manville G, 2013, PUBLIC MANAG REV, V15, P992, DOI 10.1080/14719037.2012.761722
Marzuki S., 2020, Journal of the Community Development in Asia, V3, P29, DOI [DOI 10.32535/JCDA.V3I3.888, https://doi.org/10.32535/jcda.v3i3.888]
McAdam R, 2003, PUBLIC ADMIN, V81, P873, DOI 10.1111/j.0033-3298.2003.00375.x
Mendes P, 2012, J CLEAN PROD, V24, P20, DOI 10.1016/j.jclepro.2011.11.007
Micheli P, 2005, PROD PLAN CONTROL, V16, P125, DOI 10.1080/09537280512331333039
Monteiro S, 2017, MANAG ENVIRON QUAL, V28, P332, DOI 10.1108/MEQ-11-2015-0201
Mook L, 2019, CAN J NONPROFIT SOC, V10, P81, DOI 10.29173/anserj.2019v10n2a343
Mourato J, 2019, QUAL ASSUR EDUC, V27, P269, DOI 10.1108/QAE-02-2019-0019
Nica E., 2013, Economics, Management and Financial Markets, V8, P179
Northcott D, 2012, INT J PUBLIC SECT MA, V25, P166, DOI 10.1108/09513551211224234
Norton D, 1996, BALANCED SCORECARD T
Nurcahyo R., 2018, 2018 4 INT C SCI TEC
Osborne SP, 2006, PUBLIC MANAG REV, V8, P377, DOI 10.1080/14719030600853022
Osborne SP, 2018, PUBLIC MANAG REV, V20, P225, DOI 10.1080/14719037.2017.1350461
Piotrowski SJ, 2002, PUBLIC ADMIN REV, V62, P643, DOI 10.1111/1540-6210.00247
Pollitt C., 2000, Public Management, V2, P181
PORTER ME, 1991, STRATEGIC MANAGE J, V12, P95, DOI 10.1002/smj.4250121008
Pucek M, 2014, TRANSYLV REV ADM SCI, P146
Quinlivan D, 2000, AUST J PUBL ADMIN, V59, P36, DOI 10.1111/1467-8500.00178
Rao PK, 2024, INT J PRODUCT PERFOR, V73, P2016, DOI 10.1108/IJPPM-04-2023-0199
Ratnadi NMD, 2020, INT J PUBLIV LEADERS, V16, P337, DOI 10.1108/IJPL-05-2019-0022
Sharma B, 2011, AUST J PUBL ADMIN, V70, P167, DOI 10.1111/j.1467-8500.2011.00718.x
Soujaa I, 2023, RISK HAZARDS CRISIS, DOI 10.1002/rhc3.12285
Vitezic N, 2019, NISPACEE J PUBLIC AD, V12, P199, DOI 10.2478/nispa-2019-0009
Vosselman E, 2016, ADMIN SOC, V48, P602, DOI 10.1177/0095399713514844
Welbers K, 2017, COMMUN METHODS MEAS, V11, P245, DOI 10.1080/19312458.2017.1387238
Yetano A, 2009, AUST J PUBL ADMIN, V68, P167, DOI 10.1111/j.1467-8500.2009.00632.x
Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8
NR 76
TC 0
Z9 0
U1 4
U2 4
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0190-0692
EI 1532-4265
J9 INT J PUBLIC ADMIN
JI Int. J. Public Adm.
PD 2024 JUL 19
PY 2024
DI 10.1080/01900692.2024.2376053
EA JUL 2024
PG 17
WC Public Administration
WE Emerging Sources Citation Index (ESCI)
SC Public Administration
GA YW0I3
UT WOS:001271399400001
DA 2024-09-05
ER
PT J
AU Watrianthos, R
Ahmad, ST
Muskhir, M
AF Watrianthos, Ronal
Ahmad, Selamat Triono
Muskhir, Mukhlidi
TI CHARTING THE GROWTH AND STRUCTURE OF EARLY CHATGPT-EDUCATION RESEARCH: A
BIBLIOMETRIC STUDY
SO JOURNAL OF INFORMATION TECHNOLOGY EDUCATION-INNOVATIONS IN PRACTICE
LA English
DT Article
DE artificial intelligence; bibliometric; ChatGPT; education
AB Aim/Purpose The purpose of this article is to provide an overview and analysis of the emerging research landscape surrounding the integration of ChatGPT into education. The main problem appears to be that this is a new, rapidly developing research area for which there is no comprehensive synthesis of the current literature. The aim of the article is to fill this gap by conducting a timely bibliometric study to map publication trends, influential works, themes, and opportunities, thus representing the growth and structure of ChatGPT educational research.Background This article addresses the issue of the lack of a comprehensive synthesis of the new research on ChatGPT in education by conducting a bibliometric analysis. Specifically, the authors use statistical and network analysis techniques to examine the patterns of publication, citation, and keywords and map the growth, contributions, themes, structure, and opportunities in this evolving field. The bibliometric approach provides a comprehensive, evidence-based overview of the current state of the literature to uncover trends and gaps and help researchers improve their understanding of appropriate and effective applications of ChatGPT in educational contexts. Methodology The authors used bibliometric analysis as the primary method to summarize the new research on ChatGPT in education. We searched the database of the Web of Science Core Collection to find 51 relevant documents from 2023 that included ChatGPT in the title and were classified as 'educational research.' The sample consisted of these 51 documents, including articles, early access articles, editorials, reviews, and letters. Statistical techniques examined publication, citation, and keyword patterns. Network analysis visualized citation and co -occurrence networks to reveal intellectual structure. The multifaceted bibliometric approach allowed a comprehensive study of the sample from a productive, conceptual, and intellectual perspective. Contribution This article conducts comprehensive bibliometric analysis of this emerging research area and synthesizes publication, citation, and keyword data to map the growth and structure of the literature. The results reveal important trends, such as the rapid growth of publications since the release of ChatGPT, initial authorship patterns, the focus on higher education applications, and distinct research clusters around pedagogical, ethical, and assessment issues. Visualizing citation networks identifies seminal studies while mapping co-occurrence clarifies conceptual relationships between topics. The comparative analysis highlights the differences between document types, topics, and time periods. Knowledge mapping highlights gaps in the literature, such as lack of focus on K-12 contexts, and highlights opportunities for further research.Findings Key findings from this bibliometric analysis of the emerging research landscape surrounding ChatGPT integration in education include the following:center dot Since ChatGPT was released in late 2022, the number of releases has increased significantly, indicating rapid growth in this emerging space.center dot The most cited authors initially came primarily from Anthropic, but over time, the citations spread throughout the research community. center dot The topics focused primarily on higher education applications, with a clear focus on pedagogical strategies, ethical risks, and implications for assessment.center dot Citation networks visualized seminal studies, while the co-occurrence of keywords clarified conceptual connections.
center dot Gaps such as applications in the K-12 context were uncovered, and opportunities for further research were highlighted.center dot The literature is rapidly evolving and requires ongoing monitoring of the development of this field. In general, the analysis presents the productivity, contributors, themes, structure, and opportunities in this emerging area around the integration of ChatGPT in education based on current scientific evidence. The key findings focus on the growing early interest, gaps and developments that can provide insight for researchers and educators.Recommendations for Practitioners Practitioners should carefully integrate ChatGPT into education based on new evidence, carefully assess contextual applicability, and proactively develop guidelines for ethical and equitable implementation. Ongoing advice, impact monitoring, and research partnerships are crucial to informing best practices. Educators must be vigilant for risks such as privacy, student well-being, and competence impairment while staying abreast of advances in knowledge to dynamically adapt integration strategies. The introduction should empower diverse learners through measured, integrative approaches based on continuous contextual analysis and ethical principles.Recommendations for Researchers This article recommends that researchers conduct more studies in under- researched contexts, use multiple methods to capture nuanced impacts, increase focus on responsible integration strategies, develop tailored assessments, conduct interdisciplinary collaborations, monitor long-term adoption, mix with interactive explain and publish open access technologies, help guide adoption pathways through actionable studies, and synthesize the exponentially growing literature through updated systematic reviews.Impact on Society The rapid publication growth and prevailing optimism suggest that the integration of ChatGPT into education will accelerate, increasing the need for rigorous research that guides ethical, responsible innovations that avoid risks and improve outcomes in all educational contexts. The findings have broader implications for guiding adoption trajectories through ongoing evidence synthesis and expanded investigations in under-researched areas to address knowledge gaps. Ultimately, continued monitoring and updated guidance are critical to ensure that ChatGPT's educational penetration progresses carefully by maximizing benefits and minimizing harms in rapidly evolving AI-powered learning ecosystems.Future Research Based on the basic mapping provided by this paper, recommended research directions include longitudinal impact studies, research tailored to under- researched contexts such as K-12, qualitative research to capture stakeholder perspectives, development and testing of AI-calibrated assessments as well as explorations that combine conversational and interactive learning technologies, updated systematic reviews, and co-designed implementation research that explain pedagogical strategies that ethically unlock learning potential while mitigating risks in diverse educational environments. Such multilayered tracking can provide critical insights to guide context-specific, responsible ChatGPT integration and monitor impact within rapidly evolving AI-powered education ecosystems.
C1 [Watrianthos, Ronal] Univ Negeri Padang, Fac Engn, Tech Vocat Educ, Padang, Indonesia.
[Ahmad, Selamat Triono] Univ Negeri Medan, Fac Engn, Medan, Indonesia.
[Ahmad, Selamat Triono] Univ Negeri Medan, Vocat & Tech Educ, Medan, Indonesia.
[Muskhir, Mukhlidi] Univ Negeri Padang, Dept Elect Engn, Padang, Indonesia.
C3 Universitas Negeri Padang; Universitas Negeri Medan; Universitas Negeri
Medan; Universitas Negeri Padang
RP Watrianthos, R (corresponding author), Univ Negeri Padang, Fac Engn, Tech Vocat Educ, Padang, Indonesia.
EM ronal.watrianthos@gmail.com; striono.ahmad@gmail.com;
muskhir@ft.unp.ac.id
RI Watrianthos, Ronal/AEQ-0522-2022
OI Watrianthos, Ronal/0000-0003-3475-7266
CR Ahmad S. T., 2023, International Journal of Modern Education and Computer Science (IJMECS), V15, P43, DOI [10.5815/ijmecs.2023.04.04, DOI 10.5815/IJMECS.2023.04.04]
Aksnes DW, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019829575
Alhaidry Hind M, 2023, Cureus, V15, pe38317, DOI 10.7759/cureus.38317
Ali A. A. S., 2021, International Journal for Research in Applied Science and Engineering Technology, V9, P135, DOI [10.22214/ijraset.2021.37293, DOI 10.22214/IJRASET.2021.37293]
Alzubi J, 2018, J PHYS CONF SER, V1142, DOI 10.1088/1742-6596/1142/1/012012
Aoki N, 2020, GOV INFORM Q, V37, DOI 10.1016/j.giq.2020.101490
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arif TB, 2023, MED EDUC ONLINE, V28, DOI 10.1080/10872981.2023.2181052
Baidoo-Anu D., 2023, Journal of AI, V7, P52, DOI [DOI 10.61969/JAI.1337500, 10.2139/ssrn.4337484, DOI 10.2139/SSRN.4337484, 10.61969/jai.1337500]
Bar-Ilan J, 2008, SCIENTOMETRICS, V74, P257, DOI 10.1007/s11192-008-0216-y
Ciolacu MI, 2021, IEEE GLOB ENG EDUC C, P1449, DOI 10.1109/EDUCON46332.2021.9453959
Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y
Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148
Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02
Dempere J, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1206936
Ekbia HR, 2010, ANNU REV INFORM SCI, V44, P201, DOI 10.1002/aris.2010.1440440112
Fauzi F., 2023, Journal on Education, V5, P14886, DOI DOI 10.31004/JOE.V5I4.2563
Fransson G, 2020, EDUC INF TECHNOL, V25, P3383, DOI 10.1007/s10639-020-10119-1
Galassi A, 2021, IEEE T NEUR NET LEAR, V32, P4291, DOI 10.1109/TNNLS.2020.3019893
Hacker P, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P1112, DOI 10.1145/3593013.3594067
Halaweh M, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13036
Hopkins AM, 2023, JNCI CANCER SPECT, V7, DOI 10.1093/jncics/pkad010
Huang ZY, 2012, COMM COM INF SC, V316, P331
Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1
Karakose T., 2023, Educ. Process Int. J, V12, P7, DOI [10.22521/edupij.2023.121.1, DOI 10.22521/EDUPIJ.2023.121.1]
Khurana D, 2023, MULTIMED TOOLS APPL, V82, P3713, DOI 10.1007/s11042-022-13428-4
Liu R, 2018, J SYST SCI SYST ENG, V27, P479, DOI 10.1007/s11518-018-5375-7
Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410
McBurney MK, 2002, IPCC 2002, REFLECTIONS ON COMMUNICATION, PROCEEDINGS, P108, DOI 10.1109/IPCC.2002.1049094
Montenegro-Rueda M, 2023, COMPUTERS, V12, DOI 10.3390/computers12080153
Nikolic S, 2023, EUR J ENG EDUC, V48, P559, DOI 10.1080/03043797.2023.2213169
Ninkov A, 2022, PERSPECT MED EDUC, V11, P173, DOI 10.1007/s40037-021-00695-4
Opara E., 2023, Glob. Acad. J. Human. Soc. Sci, V5, P33, DOI DOI 10.36348/GAJHSS.2023.V05I02.001
Radha L., 2021, Shanlax Int. J. Arts Sci. Humanities, V9, P44, DOI [DOI 10.34293/SIJASH.V9I2.4197, 10.34293/sijash.v9i2.4197]
Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783
Rosa S, 2020, INT J TECHNOL HIGH E, V17, P88, DOI 10.18162/ritpu-2020-v17n1-16
Samala Agariadne Dwinggo, 2023, International Journal of Emerging Technologies in Learning, P231, DOI 10.3991/ijet.v18i05.35501
Shoufan A, 2023, IEEE ACCESS, V11, P38805, DOI 10.1109/ACCESS.2023.3268224
Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5
Susnjak T., 2022, arXiv, DOI [DOI 10.48550/ARXIV.2212.09292, 10.48550/arXiv.2212.09292]
Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x
Tsang R, 2023, J MED EDUC CURRIC DE, V10, DOI 10.1177/23821205231178449
Watrianthos R., 2022, JTEV JURNAL TEKNIK E, V8, P187, DOI [10.24036/jtev.v8i2.117045, DOI 10.24036/JTEV.V8I2.117045]
Watrianthos R., 2023, Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi),, V7, P970, DOI [10.29207/resti.v7i4.5101, DOI 10.29207/RESTI.V7I4.5101]
Wiranto W., 2022, Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi),, V6, P998, DOI [10.29207/resti.v6i6.4542, DOI 10.29207/RESTI.V6I6.4542]
Yi F, 2020, IEEE ACCESS, V8, P30692, DOI 10.1109/ACCESS.2020.2973207
Zhai X., 2022, CHATGPT USER EXPERIE, DOI DOI 10.2139/SSRN.4312418
NR 47
TC 1
Z9 1
U1 37
U2 53
PU INFORMING SCIENCE INST
PI SANTA ROSA
PA 131 BROOKHILL CT, SANTA ROSA, CA 95409 USA
SN 2165-3151
EI 2165-316X
J9 J INF TECHNOL EDUC-I
JI J. Inf. Technol. Educ.-Innov. Pract.
PY 2023
VL 22
BP 235
EP 253
DI 10.28945/5221
PG 19
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA CE5Q2
UT WOS:001123588900001
OA gold
DA 2024-09-05
ER
PT J
AU Lamirel, JC
Chen, Y
Cuxac, P
Al Shehabi, S
Dugue, N
Liu, ZY
AF Lamirel, Jean-Charles
Chen, Yue
Cuxac, Pascal
Al Shehabi, Shadi
Dugue, Nicolas
Liu, Zeyuan
TI An overview of the history of Science of Science in China based on the
use of bibliographic and citation data: a new method of analysis based
on clustering with feature maximization and contrast graphs
SO SCIENTOMETRICS
LA English
DT Article
DE Science of Science; China; World; Topic tracking; Feature maximization;
Unsupervised learning; Diachronic analysis
AB In the first part of this paper, we shall discuss the historical context of Science of Science both in China and at world level. In the second part, we use the unsupervised combination of GNG clustering with feature maximization metrics and associated contrast graphs to present an analysis of the contents of selected academic journal papers in Science of Science in China and the construction of an overall map of the research topics' structure during the last 40 years. Furthermore, we highlight how the topics have evolved through analysis of publication dates and also use author information to clarify the topics' content. The results obtained have been reviewed and approved by 3 leading experts in this field and interestingly show that Chinese Science of Science has gradually become mature in the last 40 years, evolving from the general nature of the discipline itself to related disciplines and their potential interactions, from qualitative analysis to quantitative and visual analysis, and from general research on the social function of science to its more specific economic function and strategic function studies. Consequently, the proposed novel method can be used without supervision, parameters and help from any external knowledge to obtain very clear and precise insights about the development of a scientific domain. The output of the topic extraction part of the method (clustering + feature maximization) is finally compared with the output of the well-known LDA approach by experts in the domain which serves to highlight the very clear superiority of the proposed approach.
C1 [Lamirel, Jean-Charles] INRIA Nancy Grand Est, SYNALP Team LORIA, Vandoeuvre Les Nancy, France.
[Chen, Yue; Liu, Zeyuan] Dalian Univ Technol, WISELAB, Dalian, Peoples R China.
[Cuxac, Pascal] INIST CNRS, Vandoeuvre Les Nancy, France.
[Al Shehabi, Shadi] Univ Turkish Aeronaut Assoc, Ankara, Turkey.
[Dugue, Nicolas] Univ Mans, LIUM, Le Mans, France.
C3 Universite de Lorraine; Dalian University of Technology; Centre National
de la Recherche Scientifique (CNRS); Turk Hava Kurumu University;
Turkish Aeronautical Association; Le Mans Universite
RP Lamirel, JC (corresponding author), INRIA Nancy Grand Est, SYNALP Team LORIA, Vandoeuvre Les Nancy, France.
EM jean-charles.lamirel@loria.fr; chenyue@dlut.edu.cn;
pascal.cuxac@inist.fr; shadialshehabi@gmail.com;
nicolas.dugue@univ-lemans.fr; liuzy@dlut.edu.cn
RI cuxac, pascal/AAE-3002-2019; Shehabi, Shadi Al/X-4322-2019
OI Shehabi, Shadi Al/0000-0003-0545-9104; Cuxac, Pascal/0000-0002-6809-5654
CR [Anonymous], 2006, P IASTED INT C DAT A
Bernal J.D., 1939, SOCIAL FUNCTION SCI
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Calinski T., 1974, Commun. Stat., V3, P1, DOI [DOI 10.1080/03610927408827101, 10.1080/03610927408827101]
[陈悦 Chen Yue], 2017, [科学学研究, Studies in Science of Science], V35, P4
[陈悦 Chen Yue], 2005, [科学学研究, Studies in Science of Science], V23, P149
CUXAC P, 2013, 14 COLLNET M
DAVIES DL, 1979, IEEE T PATTERN ANAL, V1, P224, DOI 10.1109/TPAMI.1979.4766909
Dunn J. C., 1974, Journal of Cybernetics, V4, P95, DOI 10.1080/01969727408546059
Etzkowitz H., 1997, TRIPLE HELIX U IND G
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Fritzke B., 1995, Advances in Neural Information Processing Systems 7, P625
[和钰 He Yu], 2017, [科学学研究, Studies in Science of Science], V35, P1121
Hessen Boris., 1931, The Social and Economic Roots of Newton's 'Principia'
Hoffman Matthew D., 2010, Adv. Neural Inf. Process. Syst. (NIPS), DOI DOI 10.5555/2997189.2997285
Huang Junming., 2012, Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM '12, P573
Kassab Randa, 2008, Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, P232
Kobourov S. G., 2012, ARXIV12013011
Lamirel JC, 2016, IEEE IJCNN, P3649, DOI 10.1109/IJCNN.2016.7727669
Lamirel JC, 2015, J INTELL INF SYST, V45, P379, DOI 10.1007/s10844-014-0317-4
Lamirel JC, 2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), P956, DOI 10.1109/IJCNN.2011.6033326
Liu C, 2013, PETROL SCI TECHNOL, V31, P1762, DOI 10.1080/10916466.2011.588634
[刘则渊 Liu Zeyuan], 2017, [科学学研究, Studies in Science of Science], V35, P655
MacQueen J., 1967, P 5 BERK S MATH STAT, P281, DOI DOI 10.1007/S11665-016-2173-6
PU G, 1998, J DIALETICS NATURE, V5, P29
ROUSSEEUW PJ, 1987, J COMPUT APPL MATH, V20, P53, DOI 10.1016/0377-0427(87)90125-7
Shen HW, 2014, P NATL ACAD SCI USA, V111, P12325, DOI 10.1073/pnas.1401992111
Sinatra R, 2016, SCIENCE, V354, DOI 10.1126/science.aaf5239
TSIEN H, 1979, MARXS PHILOS PHILOS, V1, P20
TSIEN H, 1980, RES MANAGE, P3
Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808
XIE XLL, 1991, IEEE T PATTERN ANAL, V13, P841, DOI 10.1109/34.85677
Zeng A, 2017, PHYS REP, V714, P1, DOI 10.1016/j.physrep.2017.10.001
Zhang ZH, 2012, OPEN CIRRUS SUMMIT, P16, DOI 10.1109/OCS.2012.33
ZHAO H, 1988, STUDIES SCI SCI, V6, P14
ZHAO H, 1983, SCI SCI S T MANAGEME, V3
NR 36
TC 7
Z9 8
U1 3
U2 50
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2020
VL 125
IS 3
BP 2971
EP 2999
DI 10.1007/s11192-020-03503-8
EA MAY 2020
PG 29
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA PE1YL
UT WOS:000534949200002
DA 2024-09-05
ER
PT J
AU Lascialfari, M
Magrini, MB
Cabanac, G
AF Lascialfari, Matteo
Magrini, Marie-Benoit
Cabanac, Guillaume
TI Unpacking research lock-in through a diachronic analysis of topic
cluster trajectories in scholarly publications
SO SCIENTOMETRICS
LA English
DT Article
DE Bibliometric data; Path-dependency; Natural language processing; Science
mapping; Sustainability concern
ID SCIENCE; NETWORKS; EVOLUTION; SYSTEMS; FUTURE; SHIFTS; FIELD; PATH;
MAPS; FOOD
AB Lock-in and path-dependency are well-known concepts in economics dealing with unbalanced development of alternative options. Lock-in was studied in various sectors, considering production or consumption sides. Lock-in in academic research went little addressed. Yet, science develops through knowledge accumulation and cross-fertilisation of research topics, that could lead to similar phenomena when some topics do not sufficiently benefit from accumulation mechanisms, reducing innovation opportunities from the concerned field consequently. We introduce an original method to explore these phenomena by comparing topic trajectories in research fields according to strong or weak accumulative processes over time. We combine the concepts of 'niche' and 'mainstream' from transition studies with scientometric tools to revisit Callon's strategic diagram with a diachronic perspective of topic clusters over time. Considering the trajectories of semantic clusters, derived from titles and authors' keywords extracted from scholarly publications in the Web of Science, we applied our method to two competing research fields in food sciences and technology related to pulses and soya over the last 60 years worldwide. These highly interesting species for the sustainability of agrifood systems experienced unbalanced development and thus is under-debated. Our analysis confirms that food research for soya was more dynamic than for pulses: soya topic clusters revealed a stronger accumulative research path by cumulating mainstream positions while pulses research did not meet the same success. This attempt to unpack research lock-in for evaluating the competition dynamics of scientific fields over time calls for future works, by strengthening the method and testing it on other research fields.
[GRAPHICS]
.
C1 [Lascialfari, Matteo; Magrini, Marie-Benoit] Univ Toulouse, INRAE, AGIR, Castanet Tolosan, France.
[Cabanac, Guillaume] Univ Toulouse, CNRS, IRIT, Toulouse, France.
C3 INRAE; Centre National de la Recherche Scientifique (CNRS); Universite
Federale Toulouse Midi-Pyrenees (ComUE); Universite de Toulouse;
Institut National Polytechnique de Toulouse; Universite Toulouse III -
Paul Sabatier
RP Magrini, MB (corresponding author), Univ Toulouse, INRAE, AGIR, Castanet Tolosan, France.
EM mtt.lascialfari@gmail.com; Marie-benoit.magrini@inrae.fr;
guillaume.cabanac@univ-tlse3.fr
RI Cabanac, Guillaume/C-5913-2011
OI Cabanac, Guillaume/0000-0003-3060-6241; Lascialfari,
Matteo/0000-0001-8128-572X; MAGRINI, Marie-Benoit/0000-0001-8027-7496
FU European Union [727672 LEGVALUE]; Agence Nationale de la Recherche (ANR)
[ANR-11-LABX-0066]; Occitanie region in France; Agence Nationale de la
Recherche (ANR) [ANR-11-LABX-0066] Funding Source: Agence Nationale de
la Recherche (ANR)
FX This work was supported by funding from the European Union's Horizon
2020 research and innovation program under grant agreement No. 727672
LEGVALUE (Fostering sustainable legume-based farming systems and
agri-feed and food chains in the EU); from the Agence Nationale de la
Recherche (ANR) under grant number ANR-11-LABX-0066; and the Occitanie
region in France.
CR Abdullah MMH, 2017, NUTRIENTS, V9, DOI 10.3390/nu9070793
Adams J, 2016, SYST REV-LONDON, V5, DOI 10.1186/s13643-016-0337-y
[Anonymous], 1994, Increasing Returns and Path Dependence in the Economy
Arthur W. B., 2009, The Nature of Technology: What It Is and How It Evolves, DOI DOI 10.20396/RBI.V8I2.8648990
Bailón-Moreno R, 2006, J AM SOC INF SCI TEC, V57, P949, DOI 10.1002/asi.20362
Balconi M, 2004, RES POLICY, V33, P127, DOI 10.1016/S0048-7333(03)00108-2
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Borsi B, 2011, SCIENTOMETRICS, V86, P133, DOI 10.1007/s11192-010-0235-3
Cahlik T, 2000, SCIENTOMETRICS, V49, P373, DOI 10.1023/A:1010581421990
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Callon M., 1986, Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World
Chavalarias D., 2009, ARXIV
Chavalarias D, 2008, SCIENTOMETRICS, V75, P37, DOI 10.1007/s11192-007-1825-6
Chavalarias D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054847
Ciarli T, 2019, RES POLICY, V48, P949, DOI 10.1016/j.respol.2018.10.027
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Conti C, 2021, GLOB FOOD SECUR-AGR, V31, DOI 10.1016/j.gfs.2021.100576
Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F
COURTIAL JP, 1993, SCIENTOMETRICS, V26, P231, DOI 10.1007/BF02016216
Cusworth G, 2021, GLOBAL ENVIRON CHANG, V69, DOI 10.1016/j.gloenvcha.2021.102321
Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004
Dosi G, 2012, HBK ECON, V1, P51, DOI 10.1016/S0169-7218(10)01003-8
Drieger P, 2013, PROCD SOC BEHV, V79, P4, DOI 10.1016/j.sbspro.2013.05.053
Epicoco M, 2014, TECHNOL FORECAST SOC, V81, P388, DOI 10.1016/j.techfore.2013.03.006
European Commission, 2018, COM/2018/757 final
Foyer CH, 2019, PLANT CELL ENVIRON, V42, P373, DOI 10.1111/pce.13466
Geels FW, 2004, RES POLICY, V33, P897, DOI 10.1016/j.respol.2004.01.015
Glanzel W., 2019, Springer Handbook of Science and Technology Indicators, DOI DOI 10.1007/978-3-030-02511-3
Guéguen J, 2016, CAH NUTR DIET, V51, P177, DOI 10.1016/j.cnd.2016.02.001
Hallström E, 2015, J CLEAN PROD, V91, P1, DOI 10.1016/j.jclepro.2014.12.008
Havemeier S, 2017, ANN NY ACAD SCI, V1392, P58, DOI 10.1111/nyas.13308
Heimeriks G, 2014, J ECON GEOGR, V14, P339, DOI 10.1093/jeg/lbs052
Hotchkiss J., 1998, FOOD SCI
Hu XJ, 2018, J INFORMETR, V12, P842, DOI 10.1016/j.joi.2018.07.004
Jackson M., 2010, SOCIAL EC NETWORKS, DOI [DOI 10.2307/J.CTVCM4GH1, 10.2307/j.ctvcm4gh1]
Jallinoja P, 2016, FUTURES, V83, P4, DOI 10.1016/j.futures.2016.03.006
Johnson Rob, 2018, The STM report: an overview of scientific and scholarly publishing, V5th
Kuhn TS, 1970, STRUCTURE SCI REVOLU
Lascialfari M, 2019, J INNOV ECON MANAG, P111, DOI 10.3917/jie.028.0111
Lee PC, 2011, TECHNOL FORECAST SOC, V78, P132, DOI 10.1016/j.techfore.2010.06.002
Leydesdorff L, 2011, J INFORMETR, V5, P469, DOI 10.1016/j.joi.2011.01.008
Magrini MB, 2023, FOOD SECUR, V15, P187, DOI 10.1007/s12571-022-01294-9
Magrini MB, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11236833
Magrini MB, 2018, FRONT SUSTAIN FOOD S, V2, DOI 10.3389/fsufs.2018.00064
Magrini MB, 2016, ECOL ECON, V126, P152, DOI 10.1016/j.ecolecon.2016.03.024
Manners R, 2018, GLOBAL ENVIRON CHANG, V53, P182, DOI 10.1016/j.gloenvcha.2018.09.010
Marvuglia A, 2020, RENEW SUST ENERG REV, V124, DOI 10.1016/j.rser.2020.109788
Moed H. F., 2004, Handbook of Quantitative Science and Technology Research
Peacock Mark S., 2009, SOC EPISTEMOL, V23, P105, DOI [DOI 10.1080/02691720902962813, 10.1080/02691720902962813]
Peoples MB, 2019, AGROECOSYSTEM DIVERSITY: RECONCILING CONTEMPORARY AGRICULTURE AND ENVIRONMENTAL QUALITY, P123, DOI 10.1016/B978-0-12-811050-8.00008-X
Pinto Alexandra, 2016, Rev. de Ciências Agrárias, V39, P571
Poux X., 2018, An agroecological Europe in 2050: multifunctional agriculture for healthy eating
Prabhakaran T, 2018, SCIENTOMETRICS, V117, P1611, DOI 10.1007/s11192-018-2931-3
Qian Y, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101047
Rafols I, 2014, TECHNOL FORECAST SOC, V81, P22, DOI 10.1016/j.techfore.2012.06.007
Rezaeian M, 2017, TECHNOL FORECAST SOC, V118, P270, DOI 10.1016/j.techfore.2017.02.027
Rosvall M, 2008, P NATL ACAD SCI USA, V105, P1118, DOI 10.1073/pnas.0706851105
Roth C, 2010, SOC NETWORKS, V32, P16, DOI 10.1016/j.socnet.2009.04.005
Rule A, 2015, P NATL ACAD SCI USA, V112, P10837, DOI 10.1073/pnas.1512221112
Semba RD, 2021, GLOB FOOD SECUR-AGR, V28, DOI 10.1016/j.gfs.2021.100520
Sonnino A., 2016, ATT SEM LEG GRAN SAN, P45
Sorenson O, 2004, RES POLICY, V33, P1615, DOI 10.1016/j.respol.2004.09.008
Stegmann J, 2003, SCIENTOMETRICS, V56, P111, DOI 10.1023/A:1021954808804
van Eck NJ, 2010, SCIENTOMETRICS, V82, P581, DOI 10.1007/s11192-010-0173-0
Wasserman S., 1994, Social Network Analysis
Weindl I, 2020, GLOB FOOD SECUR-AGR, V25, DOI 10.1016/j.gfs.2020.100367
Willett W, 2019, LANCET, V393, P447, DOI 10.1016/S0140-6736(18)31788-4
Xu HY, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101014
Yang Y, 2012, SCIENTOMETRICS, V90, P659, DOI 10.1007/s11192-011-0541-4
NR 70
TC 6
Z9 6
U1 7
U2 26
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2022
VL 127
IS 11
BP 6165
EP 6189
DI 10.1007/s11192-022-04514-3
EA SEP 2022
PG 25
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 5U5FU
UT WOS:000860397400003
DA 2024-09-05
ER
PT J
AU Dana, LP
Crocco, E
Culasso, F
Giacosa, E
AF Dana, Leo-Paul
Crocco, Edoardo
Culasso, Francesca
Giacosa, Elisa
TI Mapping the field of digital entrepreneurship: a topic modeling approach
SO INTERNATIONAL ENTREPRENEURSHIP AND MANAGEMENT JOURNAL
LA English
DT Article
DE Digital entrepreneurship; Enterprise; Bibliometric review; Digital
platforms
ID BIBLIOMETRIC ANALYSIS; EFFECTUATION; BUSINESS; WEB
AB In the evolving landscape of entrepreneurship, digital technologies have ushered in new possibilities, attracting considerable academic attention. Despite the burgeoning research in Digital Entrepreneurship, the field remains fragmented, warranting a synthesized overview and structured research agenda. Consistently with the above, the paper presents a quantitative mapping of Digital Entrepreneurship through a bibliometric analysis of its publications. The research aims to address the need for a comprehensive, bibliometric overview of the topic, which has been echoed in recently published papers. In order to achieve this goal, we collected data from the Web of Science database, a common and scientifically sound choice in entrepreneurship research. The data were analyzed by applying Latent Dirichlet Allocation and topic modeling, thus providing a unique approach to bibliometric mapping. Topic modeling allows for the processing and analysis of significant amounts of scientific data, thus making it an ideal tool for bibliometric research. We find the field of Digital Entrepreneurship to be rather lively and in rapid development, with several publication outlets, affiliations, and countries contributing to it. We found four main topics to be extracted: the implications of Digital Entrepreneurship for innovation, Digital Entrepreneurship as an enabler for empowerment, the transformation of business models through digitalization, and the surge of digital platforms as entrepreneurial ecosystems. Additionally, we have provided a comprehensive overview of the theoretical lenses used amid the sample and a structured research agenda built upon extant gaps. From a theoretical perspective, the article serves as a starting point for future research on the topic and a comprehensive analysis of its present and past. From a practical perspective, the study is of interest to digital entrepreneurs willing to learn more about the opportunities and challenges provided by the digital landscape.
C1 [Dana, Leo-Paul] ICD Business Sch, Lappeenranta, Finland.
[Dana, Leo-Paul] Lappeenranta Univ Technol, Lappeenranta, Finland.
[Crocco, Edoardo; Culasso, Francesca; Giacosa, Elisa] Univ Turin, Turin, Italy.
C3 Lappeenranta-Lahti University of Technology LUT; University of Turin
RP Crocco, E (corresponding author), Univ Turin, Turin, Italy.
EM edoardo.crocco@unito.it
OI Dana, Leo-Paul/0000-0002-0806-1911; Culasso,
Francesca/0000-0001-8357-1914; GIACOSA, Elisa/0000-0002-0445-3176
FU Universit degli Studi di Torino
FX No Statement Available
CR Alhajri A, 2024, INT J ENTREP BEHAV R, V30, P369, DOI 10.1108/IJEBR-09-2022-0790
Ammirato S, 2022, MEAS BUS EXCELL, V26, P6, DOI 10.1108/MBE-01-2021-0012
[Anonymous], 2015, EUROPEAN COMMISSION
Anwar MN, 2016, J ENTERPRISING CULT, V24, P419, DOI 10.1142/S0218495816500151
Autio E, 2018, STRATEG ENTREP J, V12, P72, DOI 10.1002/sej.1266
Aziz S, 2022, EUR FINANC MANAG, V28, P744, DOI 10.1111/eufm.12326
Basly S, 2020, J ENTREP, V29, P326, DOI 10.1177/0971355720930573
Berger ESC, 2021, J BUS RES, V125, P436, DOI 10.1016/j.jbusres.2019.12.020
Biclesanu I, 2021, ADM SCI, V11, DOI 10.3390/admsci11040125
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bogusz CI, 2019, EUR J INFORM SYST, V28, P318, DOI 10.1080/0960085X.2018.1534039
Cano-Marin E, 2023, TECHNOL FORECAST SOC, V190, DOI 10.1016/j.techfore.2023.122386
Chalmers D, 2021, J BUS RES, V125, P577, DOI 10.1016/j.jbusres.2019.09.002
Chandna V, 2022, ELECTRON COMMER RES, DOI 10.1007/s10660-022-09574-4
Cruz MC, 2024, INT ENTREP MANAG J, V20, P451, DOI 10.1007/s11365-022-00811-8
Davidson E, 2010, P ANN HICSS, P2978
Denyer D., 2009, SAGE HDB ORG RES MET, P671
Deyanova K, 2022, REV MANAG SCI, V16, P2083, DOI 10.1007/s11846-022-00525-9
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Duparc E, 2022, ELECTRON MARK, V32, P727, DOI 10.1007/s12525-022-00557-9
Dy AM, 2018, ORGANIZATION, V25, P585, DOI 10.1177/1350508418777891
Dy AM, 2017, HUM RELAT, V70, P286, DOI 10.1177/0018726716650730
Elia G, 2021, ADM SCI, V11, DOI 10.3390/admsci11030096
Elia G, 2020, TECHNOL FORECAST SOC, V150, DOI 10.1016/j.techfore.2019.119791
Engel JS, 2015, CALIF MANAGE REV, V57, P36, DOI 10.1525/cmr.2015.57.2.36
Fernandes C, 2022, TECHNOL SOC, V70, DOI 10.1016/j.techsoc.2022.101979
Filieri R, 2021, INT J CONTEMP HOSP M, V33, P4099, DOI 10.1108/IJCHM-02-2021-0220
Finch A, 2012, CHANDOS PUBL SER, P243
Fischer E, 2014, J BUS VENTURING, V29, P565, DOI 10.1016/j.jbusvent.2014.02.004
Gabrielsson M, 2022, MANAGE INT REV, V62, P137, DOI 10.1007/s11575-022-00469-y
Gartner W.B., 1988, ENTREP THEORY PRACT, V13, P47, DOI [10.1177/104225878801200401, DOI 10.1177/104225878801200401, 10.1177/104225878901300406, DOI 10.1177/104225878901300406]
Ghezzi A, 2019, TECHNOL FORECAST SOC, V146, P945, DOI 10.1016/j.techfore.2018.09.017
Ghezzi A, 2020, J BUS RES, V110, P519, DOI 10.1016/j.jbusres.2018.06.013
Gil-Gomez H, 2023, INT ENTREP MANAG J, V19, P27, DOI 10.1007/s11365-021-00784-0
Giones F, 2017, TECHNOL INNOV MANAG, V7, P44, DOI 10.22215/timreview1076
Griva A, 2023, INT J INFORM MANAGE, V69, DOI 10.1016/j.ijinfomgt.2021.102427
Hansen B, 2019, SMALL ENTERP RES, V26, P36, DOI 10.1080/13215906.2019.1570321
Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9
Huang J, 2017, MIS QUART, V41, P301, DOI 10.25300/MISQ/2017/41.1.16
Huber F, 2022, IND INNOV, V29, P992, DOI 10.1080/13662716.2022.2109455
Hull Clyde Eirikur, 2007, International Journal of Networking and Virtual Organisations, V4, P290, DOI 10.1504/IJNVO.2007.015166
Jawad M, 2021, BUS STRATEGY DEV, V4, P220, DOI 10.1002/bsd2.145
Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1
Kang HY, 2022, TECHNOVATION, V114, DOI 10.1016/j.technovation.2022.102522
Kaushik V, 2023, TECHNOL FORECAST SOC, V191, DOI 10.1016/j.techfore.2023.122516
Khlystova O, 2022, J BUS RES, V139, P1192, DOI 10.1016/j.jbusres.2021.09.062
Kollmann T, 2006, INT J TECHNOL MANAGE, V33, P322, DOI 10.1504/IJTM.2006.009247
Kollmann T, 2022, BUS INFORM SYST ENG+, V64, P15, DOI 10.1007/s12599-021-00728-6
Koomson I, 2023, INFORM TECHNOL PEOPL, V36, P996, DOI 10.1108/ITP-11-2021-0906
Kraus S., 2019, International Journal of Entrepreneurial Behavior Research, V25, P353, DOI [10.1108/IJEBR-06-2018-0425, DOI 10.1108/IJEBR-06-2018-0425]
Lall SA, 2023, SMALL BUS ECON, V61, P631, DOI 10.1007/s11187-022-00704-8
Leung WF, 2019, INT J CULTURAL STUD, V22, P264, DOI 10.1177/1367877918821234
Li K, 2018, SCIENTOMETRICS, V115, P1, DOI 10.1007/s11192-017-2622-5
Ligorio L, 2022, TECHNOL FORECAST SOC, V176, DOI 10.1016/j.techfore.2021.121447
Lin YK, 2022, ORGAN SCI, V33, P212, DOI 10.1287/orsc.2021.1538
Liu JY, 2018, J STRATEGIC INF SYST, V27, P311, DOI 10.1016/j.jsis.2018.10.003
Majdouline I, 2022, TECHNOL FORECAST SOC, V179, DOI 10.1016/j.techfore.2022.121589
Martínez-Climent C, 2018, INT ENTREP MANAG J, V14, P527, DOI 10.1007/s11365-018-0511-x
McAdam M, 2019, TECHNOL FORECAST SOC, V146, P912, DOI 10.1016/j.techfore.2018.07.051
McMullen JS, 2013, J MANAGE STUD, V50, P1481, DOI 10.1111/joms.12049
Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004
Merigó JM, 2016, J BUS ECON MANAG, V17, P397, DOI 10.3846/16111699.2013.807868
Miniesy R, 2022, INT J GEND ENTREP, V14, P235, DOI 10.1108/IJGE-06-2021-0085
Nájera-Sánchez JJ, 2023, INT ENTREP MANAG J, V19, P563, DOI 10.1007/s11365-022-00814-5
Nambisan S, 2021, J BUS RES, V125, P520, DOI 10.1016/j.jbusres.2019.06.037
Nambisan S, 2019, RES POLICY, V48, DOI 10.1016/j.respol.2019.03.018
Nambisan S, 2017, ENTREP THEORY PRACT, V41, P1029, DOI 10.1111/etap.12254
North D.C., 1990, Institutions, Institutional Change and Economic Performance, DOI [10.1017/CBO9780511808678, DOI 10.1017/CBO9780511808678, DOI 10.1257/JEP.5.1.97]
Ojala A, 2018, J WORLD BUS, V53, P725, DOI 10.1016/j.jwb.2018.05.001
Park H, 2021, CREAT INNOV MANAG, V30, P96, DOI 10.1111/caim.12404
Paul J, 2023, J BUS RES, V156, DOI 10.1016/j.jbusres.2022.113507
Pejic Bach M, 2018, ECON RES-EKON ISTRAZ, V31, P1453, DOI 10.1080/1331677X.2018.1478321
Perez-Vega R, 2022, J BUS RES, V151, P1, DOI 10.1016/j.jbusres.2022.06.028
Prashantham S, 2019, INT SMALL BUS J, V37, P3, DOI 10.1177/0266242618796145
Ratten V., 2023, Global Business and Organizational Excellence, V42, P79, DOI [10.1002/joe.22217, DOI 10.1002/JOE.22217]
Reuschke D, 2022, FUTURES, V135, DOI 10.1016/j.futures.2020.102542
Rippa P, 2019, TECHNOL FORECAST SOC, V146, P900, DOI 10.1016/j.techfore.2018.07.013
Rogers G, 2020, SCIENTOMETRICS, V125, P777, DOI 10.1007/s11192-020-03647-7
Sahut JM, 2021, SMALL BUS ECON, V56, P1159, DOI 10.1007/s11187-019-00260-8
Sarasvathy SD, 2001, ACAD MANAGE REV, V26, P243, DOI 10.2307/259121
Sarkar S, 2023, R&D MANAGE, V53, P695, DOI 10.1111/radm.12555
Satalkina L, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072764
Shane S, 2000, ACAD MANAGE REV, V25, P217, DOI 10.5465/amr.2000.2791611
Shukla A, 2021, J ENTERP COMMUNITIES, V15, P137, DOI 10.1108/JEC-04-2020-0071
Sigfusson T, 2013, J WORLD BUS, V48, P260, DOI 10.1016/j.jwb.2012.07.011
Sofia AT, 2022, INT ENTREP MANAG J, V18, P1707, DOI 10.1007/s11365-022-00798-2
Solaimani S, 2022, INT J ENTREP BEHAV R, V28, P198, DOI 10.1108/IJEBR-04-2021-0270
Solaimani S, 2018, EUR MANAG REV, V15, P79, DOI 10.1111/emre.12124
Soluk J, 2021, ENTREP THEORY PRACT, V45, P867, DOI 10.1177/1042258721998946
Srinivasan A, 2018, STRATEG ENTREP J, V12, P54, DOI 10.1002/sej.1272
Stevenson H.H., 1983, PERSPECTIVE ENTREPRE
Sussan F, 2017, SMALL BUS ECON, V49, P55, DOI 10.1007/s11187-017-9867-5
Tang HJ, 2023, EUR J INNOV MANAG, V26, P1106, DOI 10.1108/EJIM-08-2021-0431
Ughetto E, 2020, SMALL BUS ECON, V55, P305, DOI 10.1007/s11187-019-00298-8
Upadhyay N, 2023, INT J ENTREP BEHAV R, V29, P80, DOI 10.1108/IJEBR-02-2022-0154
Vadana II, 2020, INT MARKET REV, V37, P471, DOI 10.1108/IMR-04-2018-0129
Wang N, 2022, J CLEAN PROD, V380, DOI 10.1016/j.jclepro.2022.134754
Yu YY, 2022, INT ENTREP MANAG J, V18, P1475, DOI 10.1007/s11365-022-00804-7
Zaheer H, 2019, TECHNOL FORECAST SOC, V148, DOI 10.1016/j.techfore.2019.119735
Zahra SA, 2023, TECHNOVATION, V119, DOI 10.1016/j.technovation.2022.102457
Zhai YM, 2023, J BUS IND MARK, V38, P637, DOI 10.1108/JBIM-05-2021-0244
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 103
TC 0
Z9 0
U1 22
U2 34
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1554-7191
EI 1555-1938
J9 INT ENTREP MANAG J
JI Int. Entrep. Manag. J.
PD MAR
PY 2024
VL 20
IS 1
BP 55
EP 88
DI 10.1007/s11365-023-00926-6
EA DEC 2023
PG 34
WC Business; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA JD4G8
UT WOS:001120224200003
OA hybrid
DA 2024-09-05
ER
PT J
AU Hao, TY
Chen, XL
Li, GZ
Yan, J
AF Hao, Tianyong
Chen, Xieling
Li, Guozheng
Yan, Jun
TI A bibliometric analysis of text mining in medical research
SO SOFT COMPUTING
LA English
DT Article
DE Text mining; Medical; Bibliometric analysis; Topic modeling
ID MODEL APPROACH; TOPIC MODEL; SIMULATION; PARENTS; SPEECH
AB Text mining has become an increasingly significant role in processing medical information. The research of text mining enhanced medical has attracted much attention in view from the substantial expansion of literature. This study aims to systematically review the existing academic research outputs of the field from Web of Science and PubMed by using techniques such as geographic visualization, collaboration degree, social network analysis, and topic modeling analysis. Specifically, publication statistical characteristics, geographical distribution, collaboration relations, and research topic are quantitatively analyzed. This study contributes to the text mining enhanced medical research field in a number of ways. First, it provides the latest research status for researchers who are interested in the field through literature analysis. Second, it helps scholars become more aware of the research subfields through hot topic identification. Third, it provides insights to researchers engaging in the field and motivates attention on the relevant research.
C1 [Hao, Tianyong] South China Normal Univ, Sch Comp Sci, Guangzhou, Guangdong, Peoples R China.
[Chen, Xieling] Jinan Univ, Coll Econ, Guangzhou, Guangdong, Peoples R China.
[Li, Guozheng] China Acad Chinese Med Sci, Natl Data Ctr Tradit Chinese Med, Beijing, Peoples R China.
[Yan, Jun] Yidu Cloud Beijing Technol Co Ltd, AI Lab, Beijing, Peoples R China.
C3 South China Normal University; Jinan University; China Academy of
Chinese Medical Sciences
RP Chen, XL (corresponding author), Jinan Univ, Coll Econ, Guangzhou, Guangdong, Peoples R China.
EM haoty@126.com; shaylyn_chen@163.com; gzli@ndctcm.cn;
jun.yan@yiducloud.cn
RI Hao, Tianyong/HJH-2742-2023; Li, Guo-Zheng/D-5744-2011; Yang,
Jing/JFK-4046-2023
OI Hao, Tianyong/0000-0002-9792-3949; Yang, Jing/0009-0004-8274-9863; PV,
THAYYIB/0000-0001-8929-0398; Chen, Xieling/0000-0003-3417-7421
FU National Natural Science Foundation of China [61772146]; Guangzhou
Science Technology and Innovation Commission [201803010063]
FX The work was funded by the grant from National Natural Science
Foundation of China (No. 61772146) and Guangzhou Science Technology and
Innovation Commission (No. 201803010063).
CR Ahmed S, 2013, NEUROPSYCHOLOGY, V27, P79, DOI 10.1037/a0031288
Alzheimer's A, 2014, ALZHEIMERS DEMENT, V2014, pe47, DOI [DOI 10.1016/J.JALZ.2010.01.009, DOI 10.1016/J.JALZ.2015.02.003]
[Anonymous], 2005, P 43 ANN M ASS COMP, DOI DOI 10.3115/1219840.1219885
Apte C., 1998, CITESEER
Baker NC, 2018, DRUG DISCOV TODAY, V23, P661, DOI 10.1016/j.drudis.2018.01.018
Batet M, 2011, J BIOMED INFORM, V44, P118, DOI 10.1016/j.jbi.2010.09.002
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Borgatti SP, 2009, SCIENCE, V323, P892, DOI 10.1126/science.1165821
Bouyssou D, 2011, J AM SOC INF SCI TEC, V62, P1761, DOI 10.1002/asi.21544
Chen XY, 2017, ICPRAM: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, P89, DOI 10.5220/0006119900890095
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Chen Xieling, 2018, Wireless Communications and Mobile Computing, V2018, P1, DOI [DOI 10.1155/2018/1827074, DOI 10.1109/JI0T.2018.2876279]
Chou WYS, 2014, TRANSL BEHAV MED, V4, P314, DOI 10.1007/s13142-014-0256-1
Feinerer I, 2008, J STAT SOFTW, V25, P1
Fey MK, 2015, NURS EDUC PERSPECT, V36, P361, DOI 10.5480/14-1520
Fraser V, 2015, J APPL RES INTELLECT, V28, P319, DOI 10.1111/jar.12142
Fu HZ, 2010, WASTE MANAGE, V30, P2410, DOI 10.1016/j.wasman.2010.06.008
Glnzel W., 2003, Bibliometrics as a research field: A course on theory and application of bibliometric indicators
Grün B, 2011, J STAT SOFTW, V40, P1
He P, 2017, SOFT COMPUT, V21, P5413, DOI 10.1007/s00500-016-2130-1
He P, 2016, SOFT COMPUT, V20, P3537, DOI 10.1007/s00500-015-1710-9
Hearst Marti., 2003, WHAT IS TEXT MINING
Hoek J, 2014, BMJ OPEN, V4, DOI 10.1136/bmjopen-2014-006716
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194
Jin JH, 2016, INT J MED INFORM, V86, P91, DOI 10.1016/j.ijmedinf.2015.11.002
Kantrowitz-Gordon I, 2016, JOGNN-J OBST GYN NEO, V45, P196, DOI 10.1016/j.jogn.2015.12.004
Khan MS, 2016, J CARDIOVASC MAGN R, V18, DOI 10.1186/s12968-016-0303-9
Kim K, 2015, NURS ETHICS, V22, P467, DOI 10.1177/0969733014538892
Knight R, 2012, SOCIOL HEALTH ILL, V34, P1246, DOI 10.1111/j.1467-9566.2012.01471.x
Leonard AD, 2010, PERSPECT SEX REPRO H, V42, P110, DOI 10.1363/4211010
Li W, 2015, ENVIRON IMPACT ASSES, V50, P158, DOI 10.1016/j.eiar.2014.09.012
Li ZH, 2017, IEEE T KNOWL DATA EN, V29, P2100, DOI 10.1109/TKDE.2017.2728531
Lin WW, 2017, INFORM SCIENCES, V397, P168, DOI 10.1016/j.ins.2017.02.054
Liu FF, 2011, J AM MED INFORM ASSN, V18, P625, DOI 10.1136/amiajnl-2010-000071
Lu K, 2012, J AM SOC INF SCI TEC, V63, P1973, DOI 10.1002/asi.22628
Lucini FR, 2017, INT J MED INFORM, V100, P1, DOI 10.1016/j.ijmedinf.2017.01.001
Luo MN, 2017, COMPUT VIS IMAGE UND, V163, P67, DOI 10.1016/j.cviu.2017.07.001
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Mårtensson G, 2014, J PSYCHIATR MENT HLT, V21, P782, DOI 10.1111/jpm.12145
Mazloumian A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049246
Merigó JM, 2015, APPL SOFT COMPUT, V27, P420, DOI 10.1016/j.asoc.2014.10.035
Meystre Stephane, 2005, BMC Med Inform Decis Mak, V5, P30, DOI 10.1186/1472-6947-5-30
Nafade V, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0199706
Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2
Oscar N, 2017, J GERONTOL B-PSYCHOL, V72, P742, DOI 10.1093/geronb/gbx014
Peñaloza C, 2015, APHASIOLOGY, V29, P724, DOI 10.1080/02687038.2014.982500
Pistono A, 2016, J ALZHEIMERS DIS, V50, P687, DOI 10.3233/JAD-150408
Rees CE, 2015, J ADV NURS, V71, P169, DOI 10.1111/jan.12457
Robertson S, 2004, J DOC, V60, P503, DOI 10.1108/00220410410560582
Romero C, 2007, EXPERT SYST APPL, V33, P135, DOI 10.1016/j.eswa.2006.04.005
SALTON G, 1975, COMMUN ACM, V18, P613, DOI 10.1145/361219.361220
Saraswathi K, 2016, J MED IMAG HEALTH IN, V6, P1594, DOI 10.1166/jmihi.2016.1856
Savova GK, 2010, J AM MED INFORM ASSN, V17, P507, DOI 10.1136/jamia.2009.001560
Shin S, 2015, NURS EDUC TODAY, V35, P176, DOI 10.1016/j.nedt.2014.09.009
Tan HL, 2018, PATTERN RECOGN, V76, P434, DOI 10.1016/j.patcog.2017.11.020
Tan HL, 2017, IEEE ACCESS, V5, P15001, DOI 10.1109/ACCESS.2017.2733718
TEH Y. W., 2005, Advances in neural information processing systems, P1385
Wang H, 2018, INFORM SCIENCES, V438, P95, DOI 10.1016/j.ins.2018.01.041
[魏一鸣 Wei Yiming], 2013, [系统工程理论与实践, Systems Engineering-Theory & Practice], V33, P1905
Xieling Chen, 2017, Emerging Technologies for Education. Second International Symposium, SETE 2017 Held in Conjunction with ICWL 2017. Revised Selected Papers: LNCS 10676, P507, DOI 10.1007/978-3-319-71084-6_60
Yau CK, 2014, SCIENTOMETRICS, V100, P767, DOI 10.1007/s11192-014-1321-8
Yeung AWK, 2017, FRONT NEUROSCI-SWITZ, V11, DOI 10.3389/fnins.2017.00120
Yu DJ, 2018, KNOWL-BASED SYST, V141, P188, DOI 10.1016/j.knosys.2017.11.018
Zhang K, 2016, RENEW SUST ENERG REV, V58, P297, DOI 10.1016/j.rser.2015.12.089
Zhang SH, 2017, IEEE ACCESS, V5, P16904, DOI 10.1109/ACCESS.2017.2741221
Zhong SZ, 2016, J CLEAN PROD, V139, P122, DOI 10.1016/j.jclepro.2016.08.039
NR 68
TC 66
Z9 68
U1 5
U2 85
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1432-7643
EI 1433-7479
J9 SOFT COMPUT
JI Soft Comput.
PD DEC
PY 2018
VL 22
IS 23
SI SI
BP 7875
EP 7892
DI 10.1007/s00500-018-3511-4
PG 18
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA HC0FI
UT WOS:000451472000019
DA 2024-09-05
ER
PT C
AU Zheng, H
Chen, XY
Duan, X
AF Zheng, Han
Chen, Xiaoyu
Duan, Xu
BE Jatowt, A
Maeda, A
Syn, SY
TI An Overview of Altmetrics Research: A Typology Approach
SO DIGITAL LIBRARIES AT THE CROSSROADS OF DIGITAL INFORMATION FOR THE
FUTURE, ICADL 2019
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 21st International Conference on Asia-Pacific Digital Libraries (ICADL)
CY NOV 04-07, 2019
CL Kuala Lumpur, MALAYSIA
DE Altmetrics research; Typology; Topic modeling; Text mining
AB Altmetrics, novel metrics based on social media, have received much attention from scholars in recent years. As an emerging research area in information science, it is essential to understand the overview of altmetrics research. We extracted 731 altmetrics-related articles from the Scopus databases and adopted a text mining method (i.e., topic modeling) to develop a typology of altmetrics research. Six major themes were identified in our analysis, including altmetrics research in general, bibliometric and altmetrics, measuring research impact, metrics application, social media use, and performance evaluation. We interpreted the meaning of the six themes and their associations with altmetrics research. This paper is a first step in mapping the landscape of altmetrics research through uncovering the core topics discussed by scholars. Limitations and future work are also discussed.
C1 [Zheng, Han; Chen, Xiaoyu; Duan, Xu] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore, Singapore.
C3 Nanyang Technological University
RP Zheng, H (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore, Singapore.
EM hn019@e.ntu.edu.sg; xiaoyu001@e.ntu.edu.sg; xu007@e.ntu.edu.sg
RI Chen, Xiaoyu/AGX-8179-2022; Zheng, Han/AAD-6949-2020; Duan,
Xu/JDD-4522-2023
OI Chen, Xiaoyu/0000-0003-1741-0674; Zheng, Han/0000-0003-4032-4299;
CR [Anonymous], 2015, Incentives and Performance
Atenstaedt R, 2012, BRIT J GEN PRACT, V62, P148, DOI 10.3399/bjgp12X630142
Aung HH, 2019, J ASSOC INF SCI TECH, V70, P872, DOI 10.1002/asi.24162
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3
Bungo J, 2011, IEEE POTENTIALS, V30, P17, DOI 10.1109/MPOT.2010.938614
Chua AYK, 2008, J AM SOC INF SCI TEC, V59, P2156, DOI 10.1002/asi.20929
Erdt M, 2016, SCIENTOMETRICS, V109, P1117, DOI 10.1007/s11192-016-2077-0
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Harley D, 2013, SCIENCE, V342, P80, DOI 10.1126/science.1243622
Nicholas David, 2011, Information Services & Use, V31, P61, DOI 10.3233/ISU-2011-0623
Noh Y., 2011, P 11 ANN INT ACM IEE, P411, DOI [10.1145/1998076.1998160, DOI 10.1145/1998076.1998160]
Pal Amitangshu., 2016, Proceedings of the Association for Information Science and Technology, P1
Papachristopoulos L, 2019, INT J DIGIT LIBRARIE, V20, P125, DOI 10.1007/s00799-017-0222-x
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Yoshida M, 2005, LECT NOTES ARTIF INT, V3651, P269, DOI 10.1007/11562214_24
Yu HQ, 2018, J INFORMETR, V12, P605, DOI 10.1016/j.joi.2018.06.003
Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0
Zheng H, 2018, COMM COM INF SC, V856, P72, DOI 10.1007/978-981-13-1053-9_6
Zheng H, 2019, J ASSOC INF SCI TECH, V70, P256, DOI 10.1002/asi.24124
NR 20
TC 1
Z9 1
U1 3
U2 38
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-34058-2; 978-3-030-34057-5
J9 LECT NOTES COMPUT SC
PY 2019
VL 11853
BP 33
EP 39
DI 10.1007/978-3-030-34058-2_4
PG 7
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods; Information Science &
Library Science; Imaging Science & Photographic Technology
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science; Imaging Science
& Photographic Technology
GA BQ3BB
UT WOS:000583740100004
DA 2024-09-05
ER
PT J
AU Sheller, MJ
Edwards, B
Reina, GA
Martin, J
Pati, S
Kotrotsou, A
Milchenko, M
Xu, WL
Marcus, D
Colen, RR
Bakas, S
AF Sheller, Micah J.
Edwards, Brandon
Reina, G. Anthony
Martin, Jason
Pati, Sarthak
Kotrotsou, Aikaterini
Milchenko, Mikhail
Xu, Weilin
Marcus, Daniel
Colen, Rivka R.
Bakas, Spyridon
TI Federated learning in medicine: facilitating multi-institutional
collaborations without sharing patient data
SO SCIENTIFIC REPORTS
LA English
DT Article
AB Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine.
C1 [Sheller, Micah J.; Edwards, Brandon; Reina, G. Anthony; Martin, Jason; Xu, Weilin] Intel Corp, 2200 Mission Coll Blvd, Santa Clara, CA 95052 USA.
[Pati, Sarthak; Bakas, Spyridon] Univ Penn, Richards Med Res Labs, Ctr Biomed Image Comp & Analyt CBICA, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA.
[Pati, Sarthak; Bakas, Spyridon] Univ Penn, Richards Med Res Labs, Perelman Sch Med, Dept Radiol, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA.
[Kotrotsou, Aikaterini; Colen, Rivka R.] Univ Texas MD Anderson Canc Ctr, Dept Diagnost Radiol, 1400 Pressler St, Houston, TX 77030 USA.
[Kotrotsou, Aikaterini; Colen, Rivka R.] Univ Texas MD Anderson Canc Ctr, Dept Canc Syst Imaging, 1881 East Rd,3SCRB4, Houston, TX 77054 USA.
[Milchenko, Mikhail; Marcus, Daniel] Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA.
[Colen, Rivka R.] Univ Pittsburgh, Med Ctr, Hillman Canc Ctr, Pittsburgh, PA 15232 USA.
[Colen, Rivka R.] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15213 USA.
[Bakas, Spyridon] Univ Penn, Richards Med Res Labs, Perelman Sch Med, Dept Pathol & Lab Med, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA.
C3 Intel Corporation; University of Pennsylvania; University of
Pennsylvania; University of Texas System; UTMD Anderson Cancer Center;
University of Texas System; UTMD Anderson Cancer Center; Washington
University (WUSTL); Pennsylvania Commonwealth System of Higher Education
(PCSHE); University of Pittsburgh; Pennsylvania Commonwealth System of
Higher Education (PCSHE); University of Pittsburgh; University of
Pennsylvania
RP Bakas, S (corresponding author), Univ Penn, Richards Med Res Labs, Ctr Biomed Image Comp & Analyt CBICA, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA.; Bakas, S (corresponding author), Univ Penn, Richards Med Res Labs, Perelman Sch Med, Dept Radiol, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA.; Bakas, S (corresponding author), Univ Penn, Richards Med Res Labs, Perelman Sch Med, Dept Pathol & Lab Med, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA.
EM sbakas@upenn.edu
RI Pati, Sarthak/AAL-1334-2020
OI Pati, Sarthak/0000-0003-2243-8487; Reina, G Anthony/0000-0001-9623-9259
FU National Institutes of Health (NIH) [NCI:U01CA242871, NINDS:R01NS042645,
NCI:U24CA189523, NCI:U24CA204854, UPMC CCSG P30CA047904]
FX The authors would like to thank Dr. Christos Davatzikos for his
insightful comments during writing of this manuscript. Research reported
in this publication was partly supported by the National Institutes of
Health (NIH) under Award Numbers NCI:U01CA242871, NINDS:R01NS042645,
NCI:U24CA189523, NCI:U24CA204854, and UPMC CCSG P30CA047904. The content
of this publication is solely the responsibility of the authors and does
not necessarily represent the official views of the NIH.
CR Aldape K, 2018, NEURO-ONCOLOGY, V20, P873, DOI 10.1093/neuonc/noy020
Annas GJ, 2003, NEW ENGL J MED, V348, P1486, DOI 10.1056/NEJMlim035027
[Anonymous], **DATA OBJECT**, DOI DOI 10.7937/K9/TCIA.2017.GJQ7R0EF
[Anonymous], **DATA OBJECT**, DOI DOI 10.7937/K9/TCIA.2017.KLXWJJ1Q
Bakas S., 2018, arXiv
Bakas S, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.117
Bilic P., 2023, arXiv, V84
Borovec J, 2020, IEEE T MED IMAGING, V39, P3042, DOI 10.1109/TMI.2020.2986331
Brisimi TS, 2018, INT J MED INFORM, V112, P59, DOI 10.1016/j.ijmedinf.2018.01.007
Carlini N., 2018, ARXIV180208232
Chang K, 2018, J AM MED INFORM ASSN, V25, P945, DOI 10.1093/jamia/ocy017
Cheng M, 2016, INT J HYPERTHER, V32, P316, DOI 10.3109/02656736.2015.1137640
Clark K, 2013, J DIGIT IMAGING, V26, P1045, DOI 10.1007/s10278-013-9622-7
Davatzikos C, 2020, NEURO-ONCOLOGY, V22, P886, DOI 10.1093/neuonc/noaa045
DICE LR, 1945, ECOLOGY, V26, P297, DOI 10.2307/1932409
Fredrikson M, 2015, CCS'15: PROCEEDINGS OF THE 22ND ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1322, DOI 10.1145/2810103.2813677
French RM, 1999, TRENDS COGN SCI, V3, P128, DOI 10.1016/S1364-6613(99)01294-2
Heller N, 2019, ARXIV190400445
Hitaj B, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P603, DOI 10.1145/3133956.3134012
Kiley R, 2017, NEW ENGL J MED, V377, P1990, DOI 10.1056/NEJMsb1708278
Kingma DP, 2014, ADV NEUR IN, V27
Li WQ, 2019, LECT NOTES COMPUT SC, V11861, P133, DOI 10.1007/978-3-030-32692-0_16
Li ZY, 2019, J BIOMED INFORM, V92, DOI 10.1016/j.jbi.2019.103138
McCarthy AM, 2016, JNCI-J NATL CANCER I, V108, DOI 10.1093/jnci/djw104
McMahan B., 2017, FEDERATED LEARNING C
McMahan HB, 2017, PR MACH LEARN RES, V54, P1273
Menze BH, 2015, IEEE T MED IMAGING, V34, P1993, DOI 10.1109/TMI.2014.2377694
Rohlfing T, 2010, HUM BRAIN MAPP, V31, P798, DOI 10.1002/hbm.20906
Ronneberger O., INT C MED IM COMP AS, P234
Sheller MJ, 2019, LECT NOTES COMPUT SC, V11383, P92, DOI 10.1007/978-3-030-11723-8_9
Simpson A. L., 2019, LARGE ANNOTATED MEDI
Taichman DB, 2016, NEW ENGL J MED, V374, P384, DOI 10.1056/NEJMe1515172
Tresp V, 2016, P IEEE, V104, P2180, DOI 10.1109/JPROC.2016.2615052
Voigt P., 2017, PRACTICAL GUIDE, V1st
Zech JR, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002683
Zhao Y., 2018, ARXIV180600582
NR 36
TC 460
Z9 486
U1 10
U2 63
PU NATURE PORTFOLIO
PI BERLIN
PA HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD JUL 28
PY 2020
VL 10
IS 1
AR 12598
DI 10.1038/s41598-020-69250-1
PG 12
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA MV5LE
UT WOS:000556398500021
PM 32724046
OA gold, Green Published
HC Y
HP N
DA 2024-09-05
ER
PT C
AU Kergosien, E
Farvardin, A
Teisseire, M
Bessagnet, MN
Schöpfel, J
Chaudiron, S
Jacquemin, B
Lacayrelle, A
Roche, M
Sallaberry, C
Tonneau, JP
AF Kergosien, Eric
Farvardin, Amin
Teisseire, Maguelonne
Bessagnet, Marie-Noelle
Schopfel, Joachim
Chaudiron, Stephane
Jacquemin, Bernard
Lacayrelle, Annig
Roche, Mathieu
Sallaberry, Christian
Tonneau, Jean Philippe
BA Declerck, T
BF Declerck, T
BE Calzolari, N
Choukri, K
Cieri, C
Hasida, K
Isahara, H
Maegaard, B
Mariani, J
Moreno, A
Odijk, J
Piperidis, S
Tokunaga, T
Goggi, S
Mazo, H
TI Automatic Identification of Research Fields in Scientific Papers
SO PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE
RESOURCES AND EVALUATION (LREC 2018)
LA English
DT Proceedings Paper
CT 11th International Conference on Language Resources and Evaluation
(LREC)
CY MAY 07-12, 2018
CL Miyazaki, JAPAN
DE text mining; natural language processing; geographical information
retrieval; scientometrics; document analysis
AB The TERRE-ISTEX project aims to identify scientific research dealing with specific geographical territories areas based on heterogeneous digital content available in scientific papers. The project is divided into three main work packages: (1) identification of the periods and places of empirical studies, and which reflect the publications resulting from the analyzed text samples, (2) identification of the themes which appear in these documents, and (3) development of a web-based geographical information retrieval tool (GIR). The first two actions combine Natural Language Processing patterns with text mining methods. The integration of the spatial, thematic and temporal dimensions in a GIR contributes to a better understanding of what kind of research has been carried out, of its topics and its geographical and historical coverage. Another originality of the TERRE-ISTEX project is the heterogeneous character of the corpus, including PhD theses and scientific articles from the ISTEX digital libraries and the CIRAD research center.
C1 [Kergosien, Eric; Schopfel, Joachim; Chaudiron, Stephane; Jacquemin, Bernard] Univ Lille, GERiiCO, EA 4073, F-59000 Lille, France.
[Bessagnet, Marie-Noelle; Lacayrelle, Annig; Sallaberry, Christian] Univ Pau & Pays Adour, LIUPPA, Pau, France.
[Teisseire, Maguelonne; Roche, Mathieu; Tonneau, Jean Philippe] Univ Montpellier, TETIS, APT, Cirad,CNRS,Irstea, Montpellier, France.
[Roche, Mathieu; Tonneau, Jean Philippe] Cirad, Montpellier, France.
[Farvardin, Amin] Univ Paris 09, LAMSADE, Paris, France.
[Schopfel, Joachim] ANRT, Lille, France.
C3 Universite de Lille; Universite de Pau et des Pays de l'Adour;
Universite de Montpellier; Centre National de la Recherche Scientifique
(CNRS); CIRAD; INRAE; AgroParisTech; CIRAD; Universite PSL; Universite
Paris-Dauphine
RP Kergosien, E (corresponding author), Univ Lille, GERiiCO, EA 4073, F-59000 Lille, France.
EM eric.kergosien@univ-lille.fr; MohammadAmin.Farvardin@dauphine.eu;
maguelonne.teisseire@teledetection.fr;
marie-noelle.bessagnet@univ-pau.fr; joachim.schopfel@univ-lille.fr;
stephane.chaudiron@univ-lille.fr; bernard.jacquemin@univ-lille.fr;
annig.lacayrelle@univ-pau.fr; mathieu.roche@teledetection.fr;
christian.sallaberry@univ-pau.fr; jean.tonneau@teledetection.fr
RI Jacquemin, Bernard/D-9532-2016
OI Jacquemin, Bernard/0000-0001-9274-7424
FU ISTEX; SONGES project (Occitanie Fund); SONGES project (European
Regional Development Fund); DYNAMITEF project (CNES)
FX This work is funded by ISTEX (https://www.istex.fr/), SONGES project
(Occitanie and European Regional Development Funds), and DYNAMITEF
project (CNES).
CR [Anonymous], 2013, P 7 INT WORKSH SEM E
[Anonymous], 2013, P 3 INT C WEB INT MI
KERGOSIEN E, 2015, P 7 INT C KNOWL DISC, P301
Lossio-Ventura JA, 2016, INFORM RETRIEVAL J, V19, P59, DOI 10.1007/s10791-015-9262-2
Maurer D, 2011, TRAIT AUTOM LANG, V52, P69
Moriceau V, 2014, LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3239
Pustejovsky James., 2017, Handbook of Linguistic Annotation, P989, DOI DOI 10.1007/978-94-024-0881-237
Rajbhandari S, 2012, J INTEGR AGR, V11, P694, DOI 10.1016/S2095-3119(12)60058-6
Sallaberry C., 2009, The Geospatial Web, P93
Strötgen J, 2013, LANG RESOUR EVAL, V47, P269, DOI 10.1007/s10579-012-9179-y
NR 10
TC 1
Z9 1
U1 0
U2 0
PU EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA
PI PARIS
PA 55-57, RUE BRILLAT-SAVARIN, PARIS, 75013, FRANCE
BN 979-10-95546-00-9
PY 2018
BP 1902
EP 1907
PG 6
WC Computer Science, Interdisciplinary Applications; Linguistics; Language
& Linguistics
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Linguistics
GA BS5BI
UT WOS:000725545001152
DA 2024-09-05
ER
PT J
AU Xue, Y
AF Xue, Yi
TI Towards automated writing evaluation: A comprehensive review with
bibliometric, scientometric, and meta-analytic approaches
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article; Early Access
DE Natural language processing; Automated writing evaluation; Self-set
corpus; Writing proficiency; Moderator effects
ID WRITTEN CORRECTIVE FEEDBACK; FOREIGN-LANGUAGE; SYNTACTIC COMPLEXITY;
STUDENTS; IMPACT; EFFICIENCY; EVOLUTION; ACCURACY; ENGLISH; INDEXES
AB The new era of generative artificial intelligence has sparked the blossoming academic fireworks in the realm of education and information technologies. Driven by natural language processing (NLP), automated writing evaluation (AWE) tools become a ubiquitous practice in intelligent computer-assisted language learning (CALL) environments. Based on the self-set corpus of the plain text file encompassing 1524 documents from the Web of Science core collection, the current study adopts quantitative and qualitative methods and integrates bibliometric, scientometric, and meta-analytic approaches aiming to comprehensively review automated writing evaluation (AWE) over fifteen years from 2008 to 2023. Feedback literacy is the theoretical framework of automated written corrective feedback (AWCF). Through VOSviewer, this study bibliographically visualized AWE-relevant keywords, documents, authors, organizations, and regions at a macro level. Science mapping analysis (SMA), mapping knowledge domain (MKD), and author co-citation analysis (ACA) are the theoretical foundations of visualization on VOSviewer. Through Stata/SE 16 and SPSS 29, this study meta-analytically investigated moderator effects of various AWE tools, feedback types, intervention duration, target language learners, educational levels, genres of writing, regions, document types, and publication year at a micro level. It is concluded that AWE tools could facilitate writing proficiency at a statistical significance level (SMD = 0.422, p < 0.001) based on 29 experimental studies. The findings illuminate future research directions and provide heuristic implications for practitioners, researchers, and AWE technology developers.
C1 [Xue, Yi] Beijing Language & Culture Univ, Fac Foreign Studies, 15 Xueyuan Rd, Beijing 100083, Peoples R China.
C3 Beijing Language & Culture University
RP Xue, Y (corresponding author), Beijing Language & Culture Univ, Fac Foreign Studies, 15 Xueyuan Rd, Beijing 100083, Peoples R China.
EM 3252393470@qq.com
RI Yi, Xue/JRY-7660-2023
OI Yi, Xue/0009-0003-8573-0845
FU Beijing Language and Culture University
FX The author would like to extend her heartfelt gratitude to anonymous
reviewers and editors. The author sincerely appreciates the constructive
and thorough feedback provided by editors and reviewers. The author
sincerely appreciates Doctor Zhang Qi, Professor Liu Linjun, Professor
Zhu Erqian, Professor Xu Hongchen, beloved family, kind friends, and
Beijing Language and Culture University. The process of writing academic
articles is not only a self-actualization, but also a panacea.
CR Al-Mofti K., 2020, Journal of College of Education for Women, V31, P1, DOI [10.36231/coeduw/vol31no3.12, DOI 10.36231/COEDUW/VOL31NO3.12]
Aluthman ES, 2016, INT J ENGL LINGUIST, V6, P54, DOI 10.5539/ijel.v6n5p54
[Anonymous], 2006, Educational Researcher, V35, P33, DOI [10.3102/0013189X035006033, DOI 10.3102/0013189X035006033]
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Bai LF, 2017, EDUC PSYCHOL-UK, V37, P67, DOI 10.1080/01443410.2016.1223275
Barrot JS, 2024, EDUC INF TECHNOL, V29, P7155, DOI 10.1007/s10639-023-12083-y
Barrot JS, 2023, COMPUT ASSIST LANG L, V36, P584, DOI 10.1080/09588221.2021.1936071
Bayes T., 1763, Philos. Trans. R. Soc. Lond, V53, P157, DOI [10.1098/rstl.1763.0053, DOI 10.1098/RSTL.1763.0053]
Bennett R. E., 2015, Technology and testing: Improving educational and psychological measurement, P142, DOI DOI 10.4324/9781315871493-8
Borenstein M., 2009, Introduction to meta-analysis, DOI [10.1002/9780470743386, DOI 10.1002/9780470743386]
Brown D, 2023, LANG TEACH RES, DOI 10.1177/13621688221147374
Bu Y, 2016, SCIENTOMETRICS, V108, P143, DOI 10.1007/s11192-016-1959-5
Carless D, 2023, TEACH HIGH EDUC, V28, P150, DOI 10.1080/13562517.2020.1782372
Carless D, 2018, ASSESS EVAL HIGH EDU, V43, P1315, DOI 10.1080/02602938.2018.1463354
Chang CY, 2021, COMPUT EDUC, V164, DOI 10.1016/j.compedu.2020.104123
Cheng G, 2022, INTERACT LEARN ENVIR, V30, P353, DOI 10.1080/10494820.2019.1655769
Cheng G, 2017, INTERNET HIGH EDUC, V34, P18, DOI 10.1016/j.iheduc.2017.04.002
Chew CS, 2019, J COMPUT ASSIST LEAR, V35, P435, DOI 10.1111/jcal.12349
COCHRAN WG, 1954, BIOMETRICS, V10, P417, DOI 10.2307/3001616
Cohen J., 1977, STAT POWER ANAL BEHA
Cooper H., 2017, Research Synthesis and Meta-Analysis: A Step-by-Step Approach, V5th, DOI DOI 10.4135/9781071878644
Debray TPA, 2018, RES SYNTH METHODS, V9, P41, DOI 10.1002/jrsm.1266
Ding LQ, 2024, EDUC INF TECHNOL, DOI 10.1007/s10639-023-12402-3
Dong Z, 2023, ASSESS EVAL HIGH EDU, V48, P1103, DOI 10.1080/02602938.2023.2175781
Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629
Ellis R, 2009, ELT J, V63, P97, DOI 10.1093/elt/ccn023
Ellis R, 2008, SYSTEM, V36, P353, DOI 10.1016/j.system.2008.02.001
Elola I, 2010, LANG LEARN TECHNOL, V14, P51
Escalante J, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00425-2
Fan N, 2023, SAGE OPEN, V13, DOI 10.1177/21582440231181296
Fleckenstein J, 2023, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1162454
Frost K. L., 2009, The effects of automated essay scoring as a high school classroom intervention
Fu QK, 2024, COMPUT ASSIST LANG L, V37, P179, DOI 10.1080/09588221.2022.2033787
Gao JW, 2022, LANG TEACH RES, V26, P986, DOI 10.1177/1362168820915337
Gao JW, 2019, LANG LEARN TECHNOL, V23, P65
Grimes D., 2010, The Journal of Technology, Learning, and Assessment, V8
Han T, 2024, COMPUT ASSIST LANG L, V37, P961, DOI 10.1080/09588221.2022.2067179
Han YX, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.752793
Haque M, 2023, EDUC INF TECHNOL, V28, P13841, DOI 10.1007/s10639-023-11744-2
Harrer M., 2021, Doing Meta-Analysis With R: A HandsOn Guide, DOI [10.1201/9781003107347, DOI 10.1201/9781003107347]
Hassanzadeh M, 2021, J COMPUT ASSIST LEAR, V37, P1494, DOI 10.1111/jcal.12587
Hedges L. V., 2014, Statistical methods for meta-analysis
Heift T, 2017, ESL APPL LINGUIST, P51
Heigham J., 2009, Qualitative research in applied linguistics: A practical introduction, DOI DOI 10.1057/9780230239517
Higgins J, 2008, Cochrane handbook for systematic reviews of interventions
Higgins JPT, 2003, BMJ-BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557
Higgins JPT, 2002, STAT MED, V21, P1539, DOI 10.1002/sim.1186
Ho R., 2013, Handbook of univariate and multivariate data analysis with IBM SPSS, VSecond, DOI [DOI 10.1201/B15605, 10.1201/b15605.]
Hockly N, 2019, ELT J, V73, P82, DOI 10.1093/elt/ccy044
Hou JH, 2017, SCIENTOMETRICS, V110, P1437, DOI 10.1007/s11192-016-2206-9
Huang S, 2020, INNOV LANG LEARN TEA, V14, P15, DOI 10.1080/17501229.2018.1471083
Huawei S, 2023, EDUC INF TECHNOL, V28, P771, DOI 10.1007/s10639-022-11200-7
Hyland Ken., 1990, RELC J, V21, P66, DOI [10.1177/003368829002100105, DOI 10.1177/003368829002100105]
Hyland K, 2019, CAM APPL L, P1
Jacobs HL., 1981, Testing ESL composition: A practical approach, P01969
Johri P., 2021, Lecture notes in networks and systems, V167, DOI [10.1007/978, DOI 10.1007/978]
Karim K, 2020, LANG TEACH RES, V24, P519, DOI 10.1177/1362168818802469
Ke M., 2013, English Language Teaching, V6, P158, DOI DOI 10.5539/ELT.V6N7P158
Knapp G, 2003, STAT MED, V22, P2693, DOI 10.1002/sim.1482
Koltovskaia S, 2020, ASSESS WRIT, V44, DOI 10.1016/j.asw.2020.100450
Krishna K, 2023, Arxiv, DOI arXiv:2303.13408
Kyle K, 2015, TESOL QUART, V49, P757, DOI 10.1002/tesq.194
Lachner A., 2017, Journal of Experimental Psychology: Applied, DOI [10.1037/xap000011, DOI 10.1037/XAP000011]
Lai YH, 2010, BRIT J EDUC TECHNOL, V41, P432, DOI 10.1111/j.1467-8535.2009.00959.x
Laird AR, 2005, NEUROINFORMATICS, V3, P65, DOI 10.1385/NI:3:1:065
Larivière S, 2023, NEUROIMAGE, V266, DOI 10.1016/j.neuroimage.2022.119807
Lauriola I, 2022, NEUROCOMPUTING, V470, P443, DOI 10.1016/j.neucom.2021.05.103
Lee C, 2009, COMPUT ASSIST LANG L, V22, P57, DOI 10.1080/09588220802613807
Li JR, 2015, J SECOND LANG WRIT, V27, P1, DOI 10.1016/j.jslw.2014.10.004
Li R, 2023, BRIT J EDUC TECHNOL, V54, P773, DOI 10.1111/bjet.13294
Li SF, 2019, J SECOND LANG WRIT, V45, P1, DOI 10.1016/j.jslw.2019.03.003
Liao HC, 2016, ELT J, V70, P308, DOI 10.1093/elt/ccv058
Lin JJ, 2019, COMPUT ASSIST LANG L, V32, P878, DOI 10.1080/09588221.2018.1541359
Liu CC, 2023, INTERACT LEARN ENVIR, V31, P5614, DOI 10.1080/10494820.2021.2012812
Liu QD, 2015, J SECOND LANG WRIT, V30, P66, DOI 10.1016/j.jslw.2015.08.011
Lozano S, 2019, SCIENTOMETRICS, V120, P609, DOI 10.1007/s11192-019-03132-w
Lu XF, 2011, TESOL QUART, V45, P36, DOI 10.5054/tq.2011.240859
Lu XF, 2010, INT J CORPUS LINGUIS, V15, P474, DOI 10.1075/ijcl.15.4.02lu
Maley A, 2011, ELT J, V65, P192, DOI 10.1093/elt/ccr007
Masoumi S, 2022, BMC MED RES METHODOL, V22, DOI 10.1186/s12874-022-01673-y
Matsuura K., 2023, Bayesian Statistical Modeling with Stan, R, and Python
MCCAIN KW, 1990, J AM SOC INFORM SCI, V41, P433, DOI 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q
Mohsen MA, 2024, INNOV LANG LEARN TEA, V18, P109, DOI 10.1080/17501229.2023.2236084
Mohsen MA, 2022, J EDUC COMPUT RES, V60, P1253, DOI 10.1177/07356331211064066
Molloy E, 2020, ASSESS EVAL HIGH EDU, V45, P527, DOI 10.1080/02602938.2019.1667955
Morphy P, 2012, READ WRIT, V25, P641, DOI 10.1007/s11145-010-9292-5
Mulchenko Z. M., 1971, Proc. Natl. Acad.Sci. USA, V405, P210
Ngo TTN, 2024, INTERACT LEARN ENVIR, V32, P727, DOI 10.1080/10494820.2022.2096642
Nunes A, 2022, J COMPUT ASSIST LEAR, V38, P599, DOI 10.1111/jcal.12635
O'Brien S, 2018, MACH TRANS TECH APPL, V1, P237, DOI 10.1007/978-3-319-91241-7_11
Palmer TomM., 2016, Meta-Analysis in Stata: An Updated Collection from the Stata Journal
Pekrun R, 2014, LEARN INSTR, V29, P115, DOI 10.1016/j.learninstruc.2013.09.002
PRITCHARD A, 1969, J DOC, V25, P348
Rad HS, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2208170
Ranalli J, 2018, COMPUT ASSIST LANG L, V31, P653, DOI 10.1080/09588221.2018.1428994
Ranalli J, 2018, ASSESS WRIT, V36, P77, DOI 10.1016/j.asw.2018.03.007
Rassaei E, 2023, LANG TEACH RES, DOI 10.1177/13621688231195141
Rich CS, 2012, CHIN J APPL LINGUIST, V35, P63, DOI 10.1515/cjal-2012-0006
Richards J C., 2013, Longman dictionary of language teaching and applied linguistics, V4th, DOI [DOI 10.4324/9781315833835, https://doi.org/10.4324/9781315833835]
Salo T., 2023, APERTURE NEURO, V3, P1, DOI [10.52294/001c.87681, DOI 10.52294/001C.87681]
Schmidt F.L., 2014, METHODS META ANAL CO, V3rd, DOI DOI 10.4135/9781483398105
Sen S., 2022, Psych, V4, P640, DOI DOI 10.3390/PSYCH4040049
Sherafati N, 2020, EDUC INF TECHNOL, V25, P4591, DOI 10.1007/s10639-020-10177-5
Shintani N, 2017, STUD SECOND LANG ACQ, V39, P129, DOI 10.1017/S0272263116000127
Shintani N, 2016, MOD LANG J, V100, P296, DOI 10.1111/modl.12317
Shintani N, 2014, LANG LEARN, V64, P103, DOI 10.1111/lang.12029
Sidik K, 2002, STAT MED, V21, P3153, DOI 10.1002/sim.1262
Soava G, 2018, TECHNOL ECON DEV ECO, V24, P914, DOI 10.3846/tede.2018.1426
Stamatatos E, 2009, J AM SOC INF SCI TEC, V60, P538, DOI 10.1002/asi.21001
Stevenson M, 2014, ASSESS WRIT, V19, P51, DOI 10.1016/j.asw.2013.11.007
Sun B, 2022, STUD EDUC EVAL, V72, DOI 10.1016/j.stueduc.2021.101123
Tang J., 2017, JALT CALL Journal, V13, P117
Teakel S, 2024, ASSESS EVAL HIGH EDU, V49, P320, DOI 10.1080/02602938.2023.2232955
Truscott J, 1996, LANG LEARN, V46, P327, DOI 10.1111/j.1467-1770.1996.tb01238.x
Valverde S, 2017, NEUROIMAGE, V155, P159, DOI 10.1016/j.neuroimage.2017.04.034
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Van Eck NJ., 2023, VOSviewer Manual. Manual for VOSviewer version 1.6.20
Venables L, 2009, MOTIV EMOTION, V33, P63, DOI 10.1007/s11031-008-9116-y
Viechtbauer W, 2005, J EDUC BEHAV STAT, V30, P261, DOI 10.3102/10769986030003261
Waer H, 2023, INNOV LANG LEARN TEA, V17, P47, DOI 10.1080/17501229.2021.1914062
Wang J., 2019, Theory and Practice in Language Studies, V9, P1555, DOI [10.17507/tpls.0912.12, DOI 10.17507/TPLS.0912.12]
Wang YJ, 2013, COMPUT ASSIST LANG L, V26, P234, DOI 10.1080/09588221.2012.655300
Wilson J, 2020, J EDUC COMPUT RES, V58, P87, DOI 10.1177/0735633119830764
Yarkoni T, 2011, NAT METHODS, V8, P665, DOI [10.1038/NMETH.1635, 10.1038/nmeth.1635]
Yu Q, 2024, EDUC INF TECHNOL, V29, P4055, DOI 10.1007/s10639-023-11977-1
Yu SL, 2021, ASSESS WRIT, V48, DOI 10.1016/j.asw.2021.100525
Yu SL, 2020, J SECOND LANG WRIT, V48, DOI 10.1016/j.jslw.2020.100728
Zhai N, 2023, J EDUC COMPUT RES, V61, P875, DOI 10.1177/07356331221127300
Zhai N, 2022, COMPUT ASSIST LANG L, V35, P2817, DOI 10.1080/09588221.2021.1897019
Zhang Q., 2014, International Journal of English Language Teaching, V1, P35, DOI [10.5430/ijelt.v1n2p35, DOI 10.5430/IJELT.V1N2P35]
Zhang Q, 2024, EDUC INF TECHNOL, DOI 10.1007/s10639-024-12538-w
Zhang Z, 2023, COMPUT ASSIST LANG L, DOI 10.1080/09588221.2023.2256815
Zhang Z, 2020, ASSESS WRIT, V43, P78, DOI 10.1016/j.asw.2019.100439
NR 134
TC 2
Z9 2
U1 42
U2 42
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD 2024 MAR 23
PY 2024
DI 10.1007/s10639-024-12596-0
EA MAR 2024
PG 42
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA LY1G5
UT WOS:001190274400002
DA 2024-09-05
ER
PT C
AU Drago, C
Hoxhalli, G
AF Drago, Carlo
Hoxhalli, Gentian
BE Schiuma, G
TI Bibliometric Big Data Analysis in Economics
SO 15TH INTERNATIONAL FORUM ON KNOWLEDGE ASSET DYNAMICS (IFKAD 2020):
KNOWLEDGE IN DIGITAL AGE
SE Proceedings IFKAD
LA English
DT Proceedings Paper
CT 15th International Forum on Knowledge Asset Dynamics (IFKAD) - Knowledge
in Digital Age
CY SEP 09-11, 2020
CL ELECTR NETWORK
DE Bibliometric Analysis; Big Data; Symbolic Data Analysis; Regression
Discontinuity; Causal Inference
ID NETWORKS; SCIENCE
AB Over the last years there has been a relevant increase of large scale data. "Volume", Velocity", "Variety", "Veracity" and, more importantly today, "Value" are the dimensions that characterize Big Data. Big data are increasingly important in the real world. In this paper, we deal with bibliometric datasets which represent relevant information and value for applications, usually difficult to identify. In economic analyses, bibliographic networks are useful to represent the data and provide relevant insights on research findings. In this work we will propose to apply a framework based on symbolic data and, in particular, one based on data-based symbolic observation interval which represent relevant patterns and information from complex data. These results are important because they consider a relevant case of complex information which is transformed into a representation useful to be analysed as network data. From these network representations of the information (considering a co-occurrence network from the relevant concepts of the studied literature of "regression discontinuity") we are able to identify the most relevant patterns in data, as "communities" of concepts maximally connected to each other. From the communities we are able to represent the semantic cores of the literature.
C1 [Drago, Carlo; Hoxhalli, Gentian] Univ Niccolo Cusano, Via Don Carlo Gnocchi 3, I-00166 Rome, Italy.
[Drago, Carlo] NCI Univ, Northern & Shell Tower,4 Selsdon Way, London E14 9GL, England.
[Hoxhalli, Gentian] Luarasi Univ, Rruga Dritan Hoxha 127-1, Tirana, Albania.
C3 Niccolo Cusano Online University
RP Drago, C (corresponding author), Univ Niccolo Cusano, Via Don Carlo Gnocchi 3, I-00166 Rome, Italy.; Drago, C (corresponding author), NCI Univ, Northern & Shell Tower,4 Selsdon Way, London E14 9GL, England.
RI Drago, Carlo/Y-3357-2019
OI Drago, Carlo/0000-0002-3920-0267
CR Aguero C, 2019, RSDA R SYMBOLIC DATA
[Anonymous], 2001, HDB PERFORMANCE MEAS
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Ball R., 2017, An Introduction to Bibliometrics: New Development and Trends
BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108
Bello-Orgaz G, 2016, INFORM FUSION, V28, P45, DOI 10.1016/j.inffus.2015.08.005
Billard L, 2003, J AM STAT ASSOC, V98, P470, DOI 10.1198/016214503000242
Chen M, 2014, MOBILE NETW APPL, V19, P171, DOI 10.1007/s11036-013-0489-0
Davenport T.H., 1998, Working Knowledge: How Organizations Manage What They Know, DOI DOI 10.1109/EMR.2003.1267012
Drago C., 2017, MCA BASED COMMUNITY
Drago C, 2015, ANN MEMOTEF, V2016
Drago C., 2019, NEW STAT DEV DATA SC
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
Gandomi A, 2015, INT J INFORM MANAGE, V35, P137, DOI 10.1016/j.ijinfomgt.2014.10.007
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Hadi H J, 2015, INT J ADV ELECT COMP, V2
Halevi G., 2014, SEM BIBL AC SIGL 21
Hanneman RobertA., 2011, SAGE HDB SOCIAL NETW, P364
Harle C., 2016, Journal of Health Administration Education, V33, P285
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Huang Y, 2015, SCIENTOMETRICS, V105, P2005, DOI 10.1007/s11192-015-1638-y
Kitchin R, 2014, GEOJOURNAL, V79, P1, DOI 10.1007/s10708-013-9516-8
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
Moed H. F., 2014, OECD WORKSH PAR 25 M
Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695
Newman M.E., 2008, The New Palgrave Encyclopedia of Economics, V2, P1, DOI DOI 10.1057/978-1-349-95121-52565-1
Pons P, 2005, LECT NOTES COMPUT SC, V3733, P284
PRICE DJD, 1965, SCIENCE, V149, P510
Wasserman S., 1994, SOCIAL NETWORK ANAL, V8
White H., 2017, IMPACT EVALUATION DE
NR 30
TC 0
Z9 0
U1 0
U2 3
PU IKAM-INST KNOWLEDGE ASSET MANAGEMENT
PI MATERA
PA VIA D SCHIAVONE 1, MATERA, MT 75100, ITALY
SN 2280-787X
BN 978-88-96687-13-0
J9 PR IFKAD
PY 2020
BP 148
EP 155
PG 8
WC Business; Computer Science, Interdisciplinary Applications; Information
Science & Library Science; Management; Operations Research & Management
Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics; Computer Science; Information Science & Library
Science; Operations Research & Management Science
GA BS4CI
UT WOS:000717224200010
DA 2024-09-05
ER
PT J
AU Chen, C
Du, GL
Tong, DN
Lv, GD
Lv, XY
Si, RM
Tang, J
Li, HY
Ma, HB
Mo, JQ
AF Chen, Cheng
Du, Guoli
Tong, Dongni
Lv, Guodong
Lv, Xiaoyi
Si, Rumeng
Tang, Jun
Li, Hongyi
Ma, Hongbing
Mo, Jiaqing
TI Exploration research on the fusion of multimodal spectrum technology to
improve performance of rapid diagnosis scheme for thyroid dysfunction
SO JOURNAL OF BIOPHOTONICS
LA English
DT Article
DE PCA; serum; spectral fusion; SVM; thyroid dysfunction
ID RAMAN-SPECTROSCOPY
AB The spectral fusion by Raman spectroscopy and Fourier infrared spectroscopy combined with pattern recognition algorithms is utilized to diagnose thyroid dysfunction serum, and finds the spectral segment with the highest sensitivity to further advance diagnosis speed. Compared with the single infrared spectroscopy or Raman spectroscopy, the proposal can improve the detection accuracy, and can obtain more spectral features, indicating greater differences between thyroid dysfunction and normal serum samples. For discriminating different samples, principal component analysis (PCA) was first used for feature extraction to reduce the dimension of high-dimension spectral data and spectral fusion. Then, support vector machine (SVM), back propagation neural network, extreme learning machine and learning vector quantization algorithms were employed to establish the discriminant diagnostic models. The accuracy of spectral fusion of the best analytical model PCA-SVM, single Raman spectral accuracy and single infrared spectral accuracy is 83.48%, 78.26% and 80%, respectively. The accuracy of spectral fusion is higher than the accuracy of single spectrum in five classifiers. And the diagnostic accuracy of spectral fusion in the range of 2000 to 2500cm(-1) is 81.74%, which greatly improves the sample measure speed and data analysis speed than analysis of full spectra. The results from our study demonstrate that the serum spectral fusion technique combined with multivariate statistical methods have great potential for the screening of thyroid dysfunction.
C1 [Chen, Cheng; Lv, Xiaoyi; Si, Rumeng; Mo, Jiaqing] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Xinjiang, Peoples R China.
[Du, Guoli; Tong, Dongni] Xinjiang Med Univ, Affiliated Hosp 1, Urumqi, Peoples R China.
[Lv, Guodong] Xinjiang Med Univ, Affiliated Hosp 1, State Key Lab Pathogenesis Prevent & Treatment Ce, Urumqi, Peoples R China.
[Tang, Jun] Xinjiang Univ, Phys & Chem Detecting Ctr, Urumqi 830046, Xinjiang, Peoples R China.
[Li, Hongyi] Qual Prod Supervis & Inspect Inst, Urumqi, Peoples R China.
[Ma, Hongbing] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China.
C3 Xinjiang University; Xinjiang Medical University; Xinjiang Medical
University; Xinjiang University; Tsinghua University
RP Lv, XY (corresponding author), Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Xinjiang, Peoples R China.; Tang, J (corresponding author), Xinjiang Univ, Phys & Chem Detecting Ctr, Urumqi 830046, Xinjiang, Peoples R China.
EM xiaoz813@163.com; tangjunwq@163.com
RI ARSLAN, Okan/AAA-3232-2020
OI Chen, Cheng/0000-0002-6739-1937
FU National Science Foundation of China [61765014]; Urumqi Science and
Technology Project [P161310002]
FX the National Science Foundation of China, Grant/Award Number: 61765014;
the Urumqi Science and Technology Project, Grant/Award Number:
P161310002
CR Antonelli A, 2015, AUTOIMMUN REV, V14, P174, DOI 10.1016/j.autrev.2014.10.016
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Hands JR, 2016, J NEURO-ONCOL, V127, P463, DOI 10.1007/s11060-016-2060-x
Hunter R, 2018, J RAMAN SPECTROSC, V49, P1435, DOI 10.1002/jrs.5410
Khan S, 2016, BIOMED OPT EXPRESS, V7, P2249, DOI 10.1364/BOE.7.002249
Kim W, 2018, BIOSENS BIOELECTRON, V111, P59, DOI 10.1016/j.bios.2018.04.003
Li S, 2014, APPL PHYS LETT, V105, DOI 10.1063/1.4900758
Li XZ, 2016, J RAMAN SPECTROSC, V47, P917, DOI 10.1002/jrs.4924
Li Y, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-19131-x
Lin SW, 2008, EXPERT SYST APPL, V35, P1817, DOI 10.1016/j.eswa.2007.08.088
Luo SW, 2013, J BIOMED OPT, V18, DOI 10.1117/1.JBO.18.6.067004
Mehta K, 2018, ANALYST, V143, P1916, DOI 10.1039/c8an00224j
Movasaghi Z, 2007, APPL SPECTROSC REV, V42, P493, DOI 10.1080/05704920701551530
Rieben C, 2016, J CLIN ENDOCR METAB, V101, P4945, DOI 10.1210/jc.2016-2129
Silvestri M, 2013, ANAL CHIM ACTA, V769, P1, DOI 10.1016/j.aca.2013.01.024
Singh R, 2014, INFORM FUSION, V19, P49, DOI 10.1016/j.inffus.2012.09.005
Sitole L, 2014, OMICS, V18, P513, DOI 10.1089/omi.2013.0157
Tian DY, 2018, LASER PHYS LETT, V15, DOI 10.1088/1612-202X/aa981e
Vargas-Obieta E, 2016, LASER MED SCI, V31, P1317, DOI 10.1007/s10103-016-1976-x
Zheng X., 2018, IEEE PHOTON J, V10, P1, DOI DOI 10.1109/
Zheng XX, 2018, LASER PHYS LETT, V15, DOI 10.1088/1612-202X/aac29f
NR 21
TC 40
Z9 40
U1 3
U2 133
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1864-063X
EI 1864-0648
J9 J BIOPHOTONICS
JI J. Biophotonics
PD FEB
PY 2020
VL 13
IS 2
AR e201900099
DI 10.1002/jbio.201900099
EA NOV 2019
PG 9
WC Biochemical Research Methods; Biophysics; Optics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Biophysics; Optics
GA KM1BB
UT WOS:000497056500001
PM 31593625
DA 2024-09-05
ER
PT J
AU Yik, BJ
Dood, AJ
AF Yik, Brandon J.
Dood, Amber J.
TI ChatGPT Convincingly Explains Organic Chemistry Reaction Mechanisms
Slightly Inaccurately with High Levels of Explanation Sophistication
SO JOURNAL OF CHEMICAL EDUCATION
LA English
DT Article
DE Second-Year Undergraduate; Upper-DivisionUndergraduate; Organic
Chemistry; Testing and Assessment; Mechanistic Reasoning; Generative
Artificial Intelligence; Chemistry Education Research
ID FEATURES; MODES
AB The chemistry education research community values and emphasizes the role of constructing explanations and mechanistic reasoning to support students' learning of organic chemistry. Emerging large language model (LLM) and generative artificial intelligence (GAI) technologies are uniquely equipped to advance the teaching and learning of chemistry. GAI-based chatbots, such as ChatGPT, have the potential to help students learn mechanistic reasoning through their generated responses. This study investigates the extent to which 255 ChatGPT-generated responses are accurate explanations of 85 different reaction mechanisms and exhibit mechanistic reasoning as categorized by the levels of explanation sophistication framework. The study also explores the effects of prompt engineering on mechanism accuracy and explanation sophistication through three types of prompt cueing. Study findings show that (1) a quarter of responses are fully accurate explanations of reaction mechanisms and the majority contain predominantly accurate explanations of chemical phenomena and identification of nucleophiles and electrophiles, (2) responses exhibit high levels of explanation sophistication, and (3) prompt engineering plays a significant role in eliciting high levels of explanation sophistication but not mechanism description accuracy. Results are situated in mechanistic reasoning and prompt engineering frameworks with a focus on how these new technologies can be integrated into the chemistry classroom.
C1 [Yik, Brandon J.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA.
[Dood, Amber J.] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA.
C3 University of Virginia; University of Michigan System; University of
Michigan
RP Yik, BJ (corresponding author), Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA.
EM byik@virginia.edu
RI Yik, Brandon/AAS-6477-2021
OI Yik, Brandon/0000-0001-8124-8451; Dood, Amber/0000-0003-4572-1402
CR Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006
Alasadi EA, 2023, J CHEM EDUC, V100, P2965, DOI 10.1021/acs.jchemed.3c00323
[Anonymous], 2022, arXiv
[Anonymous], 2023, PERPLEXITYAI
[Anonymous], 2020, arXiv
[Anonymous], 2023, Gemini
Bodé NE, 2019, J CHEM EDUC, V96, P1068, DOI 10.1021/acs.jchemed.8b00719
Bongers A, 2020, CHEM EDUC RES PRACT, V21, P496, DOI 10.1039/c9rp00198k
Caspari I, 2018, CHEM EDUC RES PRACT, V19, P1117, DOI 10.1039/c8rp00131f
Caspari I, 2018, CHEM EDUC RES PRACT, V19, P42, DOI 10.1039/c7rp00124j
Christian K, 2012, CHEM EDUC RES PRACT, V13, P286, DOI 10.1039/c2rp20010d
Clark TM, 2023, J CHEM EDUC, V100, P3934, DOI 10.1021/acs.jchemed.3c00500
Clark TM, 2023, J CHEM EDUC, V100, P1905, DOI 10.1021/acs.jchemed.3c00027
COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104
Cooper MM, 2016, J CHEM EDUC, V93, P1703, DOI 10.1021/acs.jchemed.6b00417
Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148
Crandell OM, 2020, J CHEM EDUC, V97, P313, DOI 10.1021/acs.jchemed.9b00815
Crandell OM, 2019, J CHEM EDUC, V96, P213, DOI 10.1021/acs.jchemed.8b00784
Crowder CJ, 2024, J CHEM EDUC, V101, P398, DOI 10.1021/acs.jchemed.3c00710
Dahlkemper MN, 2023, PHYS REV PHYS EDUC R, V19, DOI 10.1103/PhysRevPhysEducRes.19.010142
DAIR.AI, 2024, ELEMENTS PROMPT
Deng JM, 2023, J CHEM EDUC, V100, P1523, DOI 10.1021/acs.jchemed.2c01063
Deng JM, 2021, CHEM EDUC RES PRACT, V22, P749, DOI 10.1039/d0rp00320d
Dood AJ, 2022, J CHEM EDUC, DOI 10.1021/acs.jchemed.2c00313
Dood AJ, 2020, J CHEM EDUC, V97, P3551, DOI 10.1021/acs.jchemed.0c00569
Dood AJ, 2020, CHEM EDUC RES PRACT, V21, P267, DOI 10.1039/c9rp00148d
Dood AJ, 2019, CAN J CHEM, V97, P711, DOI 10.1139/cjc-2018-0479
Dood AJ, 2018, J CHEM EDUC, V95, P1267, DOI 10.1021/acs.jchemed.8b00177
DUNN OJ, 1964, TECHNOMETRICS, V6, P241, DOI 10.2307/1266041
Ellis AR, 2017, J STAT SOFTW, V76, P1, DOI 10.18637/jss.v076.i04
Emenike ME, 2023, J CHEM EDUC, V100, P1413, DOI 10.1021/acs.jchemed.3c00063
Exintaris B, 2023, J CHEM EDUC, V100, P2972, DOI 10.1021/acs.jchemed.3c00481
Fergus S, 2023, J CHEM EDUC, V100, P1672, DOI 10.1021/acs.jchemed.3c00087
Frost SJH, 2023, CHEM EDUC RES PRACT, V24, P706, DOI 10.1039/d2rp00327a
Giray L, 2023, ANN BIOMED ENG, V51, P2629, DOI 10.1007/s10439-023-03272-4
Google Gemini Team, 2023, ARXIV
Graulich N, 2019, CHEM EDUC RES PRACT, V20, P924, DOI 10.1039/c9rp00054b
Guo Y, 2023, J CHEM EDUC, V100, P4876, DOI 10.1021/acs.jchemed.3c00505
Hasrod T, 2024, J CHEM EDUC, V101, P653, DOI 10.1021/acs.jchemed.3c01170
HuggingFace, 2024, HUGGINGCHAT
Humphry T, 2023, J CHEM EDUC, V100, P1434, DOI 10.1021/acs.jchemed.3c00006
Johnson R, 2022, J CHEM EDUC, V99, P3631, DOI 10.1021/acs.jchemed.2c01035
Keiner L, 2020, CHEM EDUC RES PRACT, V21, P469, DOI 10.1039/c9rp00241c
Keiner L, 2021, CHEM EDUC RES PRACT, V22, P146, DOI 10.1039/d0rp00206b
Kendall MG, 1938, BIOMETRIKA, V30, P81, DOI 10.2307/2332226
Kraft A, 2010, CHEM EDUC RES PRACT, V11, P281, DOI 10.1039/C0RP90003F
KRUSKAL WH, 1952, J AM STAT ASSOC, V47, P583, DOI 10.1080/01621459.1952.10483441
Lawrie G, 2023, CHEM EDUC RES PRACT, V24, P392, DOI 10.1039/d3rp90003g
Leon AJ, 2023, J CHEM EDUC, V100, P3859, DOI 10.1021/acs.jchemed.3c00288
Lialin V., 2023, arXiv, parXiv2303.15647
Lolinco AT, 2023, J CHEM EDUC, V100, P4092, DOI 10.1021/acs.jchemed.3c00520
Mahapatra S, 2024, SMART LEARN ENVIRON, V11, DOI 10.1186/s40561-024-00295-9
Malik A., 2023, OPENAIS CHATGPTNOW H
McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031
Microsoft, 2024, MICROSOFT COPILOT
Natl Res Council, 2012, FRAMEWORK FOR K-12 SCIENCE EDUCATION: PRACTICES, CROSSCUTTING CONCEPTS, AND CORE IDEAS, P1
NGSSLead States, 2013, NEXT GENERATIONSCIEN
OpenAI, 2023, ARXIV
OpenAI, 2023, INTRODUCINGGPTS
OpenAI, 2024, CHATGPT RELEASENOTES
OpenAI, 2023, CHATGPT
Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Raker J. R., 2022, STUDENT REASONINGIN
Sevian H, 2014, CHEM EDUC RES PRACT, V15, P10, DOI 10.1039/c3rp00111c
Tack A., 2022, PROCEEDS 15 INT C ED
Talanquer V, 2023, J CHEM EDUC, V100, P2821, DOI 10.1021/acs.jchemed.3c00472
Tyson J, 2023, J CHEM EDUC, V100, P3098, DOI 10.1021/acs.jchemed.3c00361
Waltzer T, 2023, ETHICS BEHAV, V33, P130, DOI 10.1080/10508422.2022.2026775
Watts FM, 2023, J CHEM EDUC, V100, P3806, DOI 10.1021/acs.jchemed.3c00664
Watts FM, 2020, CHEM EDUC RES PRACT, V21, P1148, DOI 10.1039/c9rp00185a
Weinrich ML, 2016, CHEM EDUC RES PRACT, V17, P394, DOI 10.1039/c5rp00208g
Wilks SS, 1932, BIOMETRIKA, V24, P471
Yik BJ, 2023, CHEM EDUC RES PRACT, V24, P263, DOI 10.1039/d2rp00184e
Yik BJ, 2021, CHEM EDUC RES PRACT, V22, P866, DOI 10.1039/d1rp00111f
Yuriev E, 2023, J CHEM EDUC, V100, P3168, DOI 10.1021/acs.jchemed.3c00829
NR 76
TC 3
Z9 3
U1 34
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0021-9584
EI 1938-1328
J9 J CHEM EDUC
JI J. Chem. Educ.
PD APR 25
PY 2024
VL 101
IS 5
BP 1836
EP 1846
DI 10.1021/acs.jchemed.4c00235
EA APR 2024
PG 11
WC Chemistry, Multidisciplinary; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Education & Educational Research
GA RE6I2
UT WOS:001208324000001
OA hybrid
DA 2024-09-05
ER
PT J
AU Danesh, F
Ghavidel, S
AF Danesh, Farshid
Ghavidel, Somayeh
TI A longitudinal study on knowledge organization publications: using
hierarchical clustering and multidimensional scaling
SO GLOBAL KNOWLEDGE MEMORY AND COMMUNICATION
LA English
DT Article
DE Knowledge organization (KO); Scientometrics; Co-word; Strategic diagram;
Multidimensional scaling; Bibliometrics
ID CO-WORD ANALYSIS; INFORMATION-SCIENCE; INTELLECTUAL STRUCTURE; LIBRARY;
SCIENTOMETRICS; DISSERTATIONS; COCITATION; EVOLUTION; NETWORKS; KEYWORD
AB PurposeThe purpose of this study was a longitudinal study on knowledge organization (KO) realm structure and cluster concepts and emerging KO events based on co-occurrence analysis. Design/methodology/approachThis longitudinal study uses the co-occurrence analysis. This research population includes keywords of articles indexed in the Web of Science Core Collection 1975-1999 and 2000-2018. Hierarchical clustering, multidimensional scaling and co-occurrence analysis were used to conduct the present research. SPSS, UCINET, VOSviewer and NetDraw were used to analyze and visualize data. FindingsThe "Information Technology" in 1975-1999 and the "Information Literacy" in 2000-2018, with the highest frequency, were identified as the most widely used keywords of KO in the world. In the first period, the cluster "Knowledge Management" had the highest centrality, the cluster "Strategic Planning" had the highest density in 2000-2018 and the cluster "Information Retrieval" had the highest centrality and density. The two-dimensional map of KO's thematic and clustering of KO topics by cluster analysis method indicates that in the periods examined in this study, thematic clusters had much overlap in terms of concept and content. Originality/valueThe present article uses a longitudinal study to examine the KO's publications in the past half-century. This paper also uses hierarchical clustering and multidimensional scaling methods. Studying the concepts and thematic trends in KO can impact organizing information as the core of libraries, museums and archives. Also, it can scheme information organizing and promote knowledge management. Because the results obtained from this article can help KO policymakers determine and design the roadmap, research planning, and micro and macro budgeting processes.
C1 [Danesh, Farshid] Reg Informat Ctr Sci & Technol, Informat Management Dept, Shiraz, Iran.
[Ghavidel, Somayeh] Iran Publ Lib Fdn, Tehran, Iran.
RP Ghavidel, S (corresponding author), Iran Publ Lib Fdn, Tehran, Iran.
EM farshiddanesh@ricest.ac.ir; ghavidel62@gmail.com
RI Danesh, Farshid/AAG-5286-2020; Danesh, Farshid/D-3829-2011
OI Danesh, Farshid/0000-0003-2581-7052; Danesh, Farshid/0000-0001-5481-3988
CR Ahmadi H., 2017, NATL STUDIES LIB INF, V28, P125
Alajmi B, 2016, EDUC INFORM, V32, P411, DOI 10.3233/EFI-160084
[Anonymous], SCI CITATION INDEX 1
Arkiv, 2009, TIM KNOWL ORG
Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018
Blessinger K, 2007, COLL RES LIBR, V68, P155, DOI 10.5860/crl.68.2.155
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Callon M.J., 1986, MAPPING DYNAMICS SCI, P1, DOI DOI 10.1007/978-1-349-07408-2
Castriotta M, 2019, SCIENTOMETRICS, V118, P407, DOI 10.1007/s11192-018-2977-2
Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8
Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F
Davarpanah M., 2005, LIB INFORM SCI, V8, P67
Deng SL, 2020, SCIENTOMETRICS, V124, P489, DOI 10.1007/s11192-020-03465-x
Galvez C, 2018, TRANSINFORMACAO, V30, P277, DOI 10.1590/2318-08892018000300001
Giannakos Michail, 2020, International Journal of Child-Computer Interaction, V23, DOI 10.1016/j.ijcci.2020.100165
Castanha RCG, 2018, KNOWL ORGAN, V45, P13, DOI 10.5771/0943-7444-2018-1-13
He Q, 1999, LIBR TRENDS, V48, P133
Hjorland B, 2003, KNOWL ORGAN, V30, P87
Hjorland B., 2020, REPRESENTATIONS AUTH, V47, P461
Hjorland B., 2013, 13 M GERMAN ISKO POT, V40, P169
Hjorland B., 2008, International Journal Devoted to Concept Theory, Classification, Indexing and Knowledge Representation, V35, P86
Hjorland B, 2015, KNOWL ORGAN, V42, P113
Hjorland B, 2009, J AM SOC INF SCI TEC, V60, P1519, DOI 10.1002/asi.21082
Hu CP, 2013, SCIENTOMETRICS, V97, P369, DOI 10.1007/s11192-013-1076-7
Kaiser J., 2011, SYSTEMATIC INDEXING
Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001
Liu GY, 2012, SCIENTOMETRICS, V91, P203, DOI 10.1007/s11192-011-0586-4
Makkizadeh Fatemah, 2019, Nanomedicine Research Journal, V4, P101, DOI 10.22034/nmrj.2019.02.007
Marco F.J.G., 2016, BRAZILIAN J INFO SCI, V10
Mazzocchi F, 2018, KNOWL ORGAN, V45, P54, DOI 10.5771/0943-7444-2018-1-54
Melcer E., 2015, network, V17, P20
Mohammadi E, 2012, SCIENTOMETRICS, V92, P593, DOI 10.1007/s11192-012-0644-6
Mokhtarpour R, 2021, J INF SCI, V47, P794, DOI 10.1177/0165551520932119
Nova-Reyes A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12083141
Ponzi LJ, 2002, SCIENTOMETRICS, V55, P259, DOI 10.1023/A:1019619824850
Qiu JP, 2014, SCIENTOMETRICS, V101, P1345, DOI 10.1007/s11192-014-1315-6
Ravikumar S, 2015, SCIENTOMETRICS, V102, P929, DOI 10.1007/s11192-014-1402-8
Smiraglia R.P., 2014, ELEMENTS KNOWLEDGE O, P1
Smiraglia R.P., 2014, ELEMENTS KNOWLEDGE O, P33
Soheili F., 2018, LIBRARIANSHIP INFORM, V29, P171
Soheili F., 2016, HUMAN INFORM INTERAC, V2, P21
Sugimoto CR, 2011, J AM SOC INF SCI TEC, V62, P185, DOI 10.1002/asi.21435
Wang XD, 2014, CYBERN INF TECHNOL, V14, P145, DOI 10.2478/cait-2014-0051
Weismayer C, 2017, SCIENTOMETRICS, V113, P1757, DOI 10.1007/s11192-017-2555-z
Wu Ke, 2013, Knowledge Science, Engineering and Management. 6th International Conference, KSEM 2013. Proceedings. LNCS 8041, P538, DOI 10.1007/978-3-642-39787-5_45
Zhao DZ, 2014, J ASSOC INF SCI TECH, V65, P995, DOI 10.1002/asi.23027
Zhao RY, 2017, KNOWL ORGAN, V44, P335, DOI 10.5771/0943-7444-2017-5-335
Zhao RY, 2017, KNOWL ORGAN, V44, P326, DOI 10.5771/0943-7444-2017-5-326
Zolfaghari S., 2015, RAHYAFT J, V25, P51
Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1
Zou Q., 2018, INT J LIBRARIANSHIP, V3, P67
NR 51
TC 2
Z9 2
U1 7
U2 16
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 2514-9342
EI 2514-9350
J9 GLOB KNOWL MEM COMMU
JI Glob. Knowl. Mem. Commun.
PD JUL 23
PY 2024
VL 73
IS 6/7
BP 929
EP 955
DI 10.1108/GKMC-05-2022-0111
EA DEC 2022
PG 27
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA ZD4P5
UT WOS:000899121500001
DA 2024-09-05
ER
PT J
AU Llewellyn, A
Whittington, C
Stewart, G
Higgins, JPT
Meader, N
AF Llewellyn, Alexis
Whittington, Craig
Stewart, Gavin
Higgins, Julian P. T.
Meader, Nick
TI The Use of Bayesian Networks to Assess the Quality of Evidence from
Research Synthesis: 2. Inter-Rater Reliability and Comparison with
Standard GRADE Assessment
SO PLOS ONE
LA English
DT Article
AB Background
The grades of recommendation, assessment, development and evaluation (GRADE) approach is widely implemented in systematic reviews, health technology assessment and guideline development organisations throughout the world. We have previously reported on the development of the Semi-Automated Quality Assessment Tool (SAQAT), which enables a semi-automated validity assessment based on GRADE criteria. The main advantage to our approach is the potential to improve inter-rater agreement of GRADE assessments particularly when used by less experienced researchers, because such judgements can be complex and challenging to apply without training. This is the first study examining the inter-rater agreement of the SAQAT.
Methods
We conducted two studies to compare: a) the inter-rater agreement of two researchers using the SAQAT independently on 28 meta-analyses and b) the inter-rater agreement between a researcher using the SAQAT (who had no experience of using GRADE) and an experienced member of the GRADE working group conducting a standard GRADE assessment on 15 meta-analyses.
Results
There was substantial agreement between independent researchers using the Quality Assessment Tool for all domains (for example, overall GRADE rating: weighted kappa 0.79; 95% CI 0.65 to 0.93). Comparison between the SAQAT and a standard GRADE assessment suggested that inconsistency was parameterised too conservatively by the SAQAT. Therefore the tool was amended. Following amendment we found fair-to-moderate agreement between the standard GRADE assessment and the SAQAT (for example, overall GRADE rating: weighted kappa 0.35; 95% CI 0.09 to 0.87).
Conclusions
Despite a need for further research, the SAQAT may aid consistent application of GRADE, particularly by less experienced researchers.
C1 [Llewellyn, Alexis; Meader, Nick] Univ York, Ctr Reviews & Disseminat, York YO10 5DD, N Yorkshire, England.
[Whittington, Craig] UCL, Dept Clin Educ & Hlth Psychol, Ctr Outcomes Res & Effectiveness Res, London, England.
[Stewart, Gavin] Newcastle Univ, Sch Agr Food & Rural Dev, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England.
[Higgins, Julian P. T.] Univ Bristol, Sch Social & Community Med, Bristol, Avon, England.
C3 University of York - UK; University of London; University College
London; Newcastle University - UK; University of Bristol
RP Stewart, G (corresponding author), Newcastle Univ, Sch Agr Food & Rural Dev, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England.
EM gavin.stewart@newcastle.ac.uk
RI Higgins, Julian/H-4008-2011; Whittington, Craig/B-1380-2008
OI Higgins, Julian/0000-0002-8323-2514; Stewart, Gavin/0000-0001-5684-1544;
Meader, Nick/0000-0001-9332-6605; Whittington, Craig/0000-0002-1950-0334
FU National Institute for Health Research; MRC [MR/K025643/1] Funding
Source: UKRI
FX This work was funded by the National Institute for Health Research.
CR [Anonymous], GRADEPRO
[Anonymous], J CLIN EPIDEMIOL
[Anonymous], PLOS ONE
[Anonymous], BAYESIAN NETWORKS A
[Anonymous], 2001, BAYESIAN NETWORKS AN
Archer J, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006525.pub2
Baumeister H, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008381.pub2
Brozek J, 2011, J CLIN EPIDEMIOL
Cipriani A, 2009, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006532.pub2
Cleary M, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD001088.pub2
COHEN J, 1968, PSYCHOL BULL, V70, P213, DOI 10.1037/h0026256
Depping AM, 2010, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008120.pub2
Dieterich M, 2010, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007906.pub2
Gillies D, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007986.pub2
James AC, 2013, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD004690.pub3, 10.1002/14651858.CD004690.pub4]
Kisely SR, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD004408.pub3
Macdonald G, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD001930.pub3
Matar HE, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006352.pub2
Meader N, 2014, SYST REV-LONDON, V3, DOI 10.1186/2046-4053-3-82
Mustafa RA, 2013, J CLIN EPIDEMIOL, V66, P736, DOI 10.1016/j.jclinepi.2013.02.004
Pani PP, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD002950.pub3
Rolinski M, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006504.pub2
Shrier I, 2011, RES SYNTH METHODS, V2, P223, DOI 10.1002/jrsm.52
Soomro GM, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD001765.pub3
Stewart GB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0114497
Thornton J, 2013, J CLIN EPIDEMIOL, V66, P124, DOI 10.1016/j.jclinepi.2011.12.007
Vernooij-Dassen M, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005318.pub2
Williams A.C.D.C., 2012, Cochrane Database of Systematic Reviews, V11, Art. No, pCD007407
NR 28
TC 7
Z9 7
U1 0
U2 13
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD DEC 30
PY 2015
VL 10
IS 12
AR e0123511
DI 10.1371/journal.pone.0123511
PG 11
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA DA0TN
UT WOS:000367510500001
PM 26716874
OA gold, Green Published, Green Submitted
DA 2024-09-05
ER
PT J
AU Bogdanovich, B
Shah, PR
Patel, PA
Bui, T
Boyd, CJ
AF Bogdanovich, Brennan
Shah, Pearl
Patel, Parth A.
Bui, Tommy
Boyd, Carter J.
TI Altmetric Analysis of Artificial Intelligence Articles in Plastic
Surgery
SO ARCHIVES OF PLASTIC SURGERY-APS
LA English
DT Article
C1 [Bogdanovich, Brennan; Shah, Pearl; Patel, Parth A.; Bui, Tommy] Augusta Univ, Med Coll Georgia, Augusta, GA USA.
[Boyd, Carter J.] NYU Langone Hlth, Hansjorg Wyss Dept Plast Surg, New York, NY USA.
[Boyd, Carter J.] NYU, Hansjorg Wyss Dept Plast Surg, Langone Hlth, 305 East 47th St,Suite 1A, New York, NY 10017 USA.
C3 University System of Georgia; Augusta University; NYU Langone Medical
Center; New York University
RP Boyd, CJ (corresponding author), NYU, Hansjorg Wyss Dept Plast Surg, Langone Hlth, 305 East 47th St,Suite 1A, New York, NY 10017 USA.
EM Carterjosephboyd@gmail.com
OI Shah, Pearl/0009-0000-7949-2586; Patel, Parth/0000-0001-6001-8462; Bui,
Tommy/0000-0002-7389-125X; Bogdanovich, Brennan/0009-0006-8252-4255;
Boyd, Carter/0000-0002-1421-6852
CR [Anonymous], 2018, GLOBAL GENDER GAP RE
Bui T, 2023, ASIA-PAC J OPHTHALMO, V12, P625, DOI 10.1097/APO.0000000000000587
Collier M., ACCENTURE
Elmore SA, 2018, TOXICOL PATHOL, V46, P252, DOI 10.1177/0192623318758294
Silvestre J, 2016, PLAST RECONSTR SURG, V138, p136E, DOI 10.1097/PRS.0000000000002308
NR 5
TC 0
Z9 0
U1 0
U2 2
PU GEORG THIEME VERLAG KG
PI STUTTGART
PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY
SN 2234-6163
EI 2234-6171
J9 ARCH PLAST SURG-APS
JI Arch. Plast. Surg.-APS
PD MAR
PY 2024
VL 51
IS 02
DI 10.1055/a-2223-5458
EA JAN 2024
PG 2
WC Surgery
WE Emerging Sources Citation Index (ESCI)
SC Surgery
GA NC9C9
UT WOS:001153227300001
PM 38596152
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Rothut, S
Schulze, H
Hohner, J
Rieger, D
AF Rothut, Sophia
Schulze, Heidi
Hohner, Julian
Rieger, Diana
TI Ambassadors of ideology: A conceptualization and computational
investigation of far-right influencers, their networking structures, and
communication practices
SO NEW MEDIA & SOCIETY
LA English
DT Article; Early Access
DE Computational; mobilization; network analysis; parasocial opinion
leadership; political influencers; radicalization; social influence;
Telegram; topic modeling; far-right extremism
ID HATE
AB Increasingly, influencers are employed to market not only products but also ideas and beliefs. The far right has recognized the strategic potential of influencer communication to tap into new target groups and mobilize supporters. This paper provides insights into the little-explored field of far-right influencers. We conceptualize them as individual actors characterized by far-right ideology, positioned as political influencers, actively advocating for their ideological aims. Employing a multi-layered computational approach to explore communication practices and networking structures of 243 German-speaking far-right influencers on Telegram, we derive a typology and observe the emergence of a functionally differentiated influencer collective. In this collective, each community has specific functions and characteristics that emphasize different ideological aspects, mobilization modes, and influencer practices. Despite the decentralized organization, we find high efficiency in information dissemination. The results corroborate the assumed potential of far-right influencers as disseminators of ideological content who can be particularly persuasive through their role as parasocial opinion leaders.
C1 [Rothut, Sophia; Schulze, Heidi; Hohner, Julian; Rieger, Diana] Ludwig Maximilian Univ Munich, Dept Media & Commun, Munich, Germany.
[Rothut, Sophia] Ludwig Maximilian Univ Munich, Dept Media & Commun, Oettingenstr 67, D-80538 Munich, Germany.
C3 University of Munich; University of Munich
RP Rothut, S (corresponding author), Ludwig Maximilian Univ Munich, Dept Media & Commun, Oettingenstr 67, D-80538 Munich, Germany.
EM sophia.rothut@ifkw.lmu.de; heidi.schulze@ifkw.lmu.de;
julian.hohner@ifkw.lmu.de; diana.rieger@ifkw.lmu.de
OI Hohner, Julian/0000-0002-5872-0954; Rothut, Sophia/0000-0003-0990-8034;
Rieger, Diana/0000-0002-2417-0480
FU German Federal Ministry of Education and Research [MOTRA-13N15223]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This study
was supported by grants from the German Federal Ministry of Education
and Research within the framework of the program "Research for Civil
Security" of the Federal Government (grant no. MOTRA-13N15223).
CR Adenion, 2021, Blog2Social
Åkerlund M, 2021, SOC MEDIA SOC, V7, DOI 10.1177/20563051211008831
Asprem A., 2019, HDB CONSPIRACY THEOR, P207
Bastian M., 2009, INT AAAI C WEBL SOC, DOI DOI 10.1609/ICWSM.V3I1.13937
Bause Halina., 2021, Publizistik, V66, P295
Benoit Kenneth., 2018, J OPEN SOURCE SOFTW, V3, P774, DOI DOI 10.21105/JOSS.00774
Berntzen L. E., 2018, THESIS EUROPEAN U I
Berntzen LE, 2016, J INTERCULT STUD, V37, P556, DOI 10.1080/07256868.2016.1235021
Bjorgo T., 2019, Report
Bliuc AM, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.641215
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Campbell C, 2020, BUS HORIZONS, V63, P469, DOI 10.1016/j.bushor.2020.03.003
Carter E, 2018, J POLIT IDEOL, V23, P157, DOI 10.1080/13569317.2018.1451227
Chan C., 2020, J OPEN SOURCE SOFTW, V5, P2461, DOI https://doi.org/10.21105/joss.02461
Chung SY, 2017, PSYCHOL MARKET, V34, P481, DOI 10.1002/mar.21001
Conway M., 2019, Report
De Gregorio G, 2022, GERMAN LAW J, V23, P204, DOI 10.1017/glj.2022.15
De Veirman M, 2017, INT J ADVERT, V36, P798, DOI 10.1080/02650487.2017.1348035
Dekoninck H, 2022, ENVIRON COMMUN, V16, P458, DOI 10.1080/17524032.2022.2027801
Douglas KM, 2019, POLIT PSYCHOL, V40, P3, DOI 10.1111/pops.12568
Enke N., 2019, INT J STRATEG COMMUN, V13, P261, DOI [DOI 10.1080/1553118X.2019.1620234, 10.1080/1553118X.2019.1620234]
Epskamp S, 2012, J STAT SOFTW, V48, P1, DOI 10.18637/jss.v048.i04
Fielitz M., 2020, Report
Fransen ML, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01201
Gaden Georgia, 2015, First Monday, V20, DOI 10.5210/fm.v20i1.4985
Garry A., 2021, Journal for Deradicalization, V26, P152
Geise Stephanie., 2017, Meinungsfuhrer und der Flow of Communication
Gephi, 2011, Gephi tutorial layouts
German Federal Office for the Protection of the Constitution, 2021, Report
Geyser W., 2021, Influencer rates: how much do influencers really cost in 2021?
González-Bailón S, 2013, AM BEHAV SCI, V57, P943, DOI 10.1177/0002764213479371
Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028
Hartmann T., 2004, Publizistik, V49, P25, DOI [10.1007/s11616-004-0003-6, DOI 10.1007/S11616-004-0003-6]
Heitmeyer W., 2020, RECHTE BEDROHUNGSALL
HORTON D, 1956, PSYCHIATR, V19, P215, DOI 10.1080/00332747.1956.11023049
Hudders L, 2021, INT J ADVERT, V40, P327, DOI 10.1080/02650487.2020.1836925
Humphries MD, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002051
Klein O, 2019, EUR SOC, V21, P540, DOI 10.1080/14616696.2018.1494293
Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140
Kupper B., 2014, The Palgrave Handbook of Global Political Psychology, P268
Lazarsfeld P. F., 1944, The People's Choice
Lewis R., 2018, Alternative influence: Broadcasting the reactionary right on YouTube
Mahl D., 2021, Social Media + Society, V7, p20563051211017482, DOI [10.1177/20563051211017482, DOI 10.1177/20563051211017482]
Maier D, 2018, SOC SCI COMPUT REV, V36, P3, DOI 10.1177/0894439317690337
Maireder A., 2015, Digital Methods in Communication Science, P115
Maly I, 2020, SOC SCI-BASEL, V9, DOI 10.3390/socsci9070113
Marcks H, 2022, TERROR POLIT VIOLENC, V34, P1415, DOI 10.1080/09546553.2020.1788544
Marres N., 2005, MAKING THINGS PUBLIC
McPherson M, 2001, ANNU REV SOCIOL, V27, P415, DOI 10.1146/annurev.soc.27.1.415
Minkenberg M, 2021, INT POLIT SCI REV, V42, P649, DOI 10.1177/0192512120972883
Mudde C., 2000, IDEOLOGY EXTREME RIG
Munn L., 2019, First Monday, V24, DOI DOI 10.5210/FM.V24I6.10108
Naderer B., 2022, Communications, DOI [10.1515/commun-2021-0006., DOI 10.1515/COMMUN-2021-0006]
Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695
Newman MEJ, 2003, PHYS REV E, V67, DOI 10.1103/PhysRevE.67.026126
Oaten A, 2014, PATTERNS PREJUDICE, V48, P331, DOI 10.1080/0031322X.2014.950454
Peeters S., 2022, Computational Communication Research, V4, P571
Pfahl-Traughber A., 2010, JB EXTREMISMUS TERRO, P273
Pirro ALP, 2023, NATIONS NATL, V29, P101, DOI 10.1111/nana.12860
R Core Team, 2020, R (Version 4.0.3)
Rajan A., 2021, Report
Reuters Institute, 2020, The Reuters Institute Digital News Report 2021 [Internet]
Riedl M, 2021, FRONT COMMUN, V6, DOI 10.3389/fcomm.2021.752656
Rieger D., 2020, Handbuch Extremismuspravention-Gesamtgesellschaftlich.Phanomenubergreifend, P351
Ritzmann A., 2021, Report
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Rogers R, 2020, EUR J COMMUN, V35, P213, DOI 10.1177/0267323120922066
Schils N, 2017, INT J CONFL VIOLENCE, V11, DOI 10.4119/UNIBI/ijcv.473
Schliessler Clara, 2020, Autoritare Dynamiken: Alte Ressentiments-neue Radikalitat: Leipziger Autoritarismus Studie 2020, P283
Schouten AP, 2020, INT J ADVERT, V39, P258, DOI 10.1080/02650487.2019.1634898
Schulz A, 2020, DISCOURSE SOC, V31, P235, DOI 10.1177/0957926519889109
Schulze H., 2021, Zeitschrift fur Semiotik, V41
Schwarzenegger C, 2018, SCM STUD COMM MEDIA, V7, P473, DOI 10.5771/2192-4007-2018-4-473
Schwemmer C, 2021, SOC MEDIA SOC, V7, DOI 10.1177/20563051211041650
Senholt JC., 2013, Contemporary Esotericism, P244
Stehr P, 2015, INT J COMMUN-US, V9, P982
Urman A, 2022, INFORM COMMUN SOC, V25, P904, DOI 10.1080/1369118X.2020.1803946
van der Vegt I, 2021, J COMPUT SOC SCI, V4, P333, DOI 10.1007/s42001-020-00080-x
van Prooijen JW, 2018, EUR J SOC PSYCHOL, V48, P320, DOI 10.1002/ejsp.2331
van Reijmersdal EA, 2020, J YOUTH ADOLESCENCE, V49, P1531, DOI 10.1007/s10964-019-01191-z
Vermeer SAM, 2021, INT J PRESS/POLIT, V26, P410, DOI 10.1177/1940161220925020
Wellman ML, 2021, NEW MEDIA SOC, V23, P3557, DOI 10.1177/1461444820958719
Winter A, 2019, PALGR STUD CYBERCRIM, P39, DOI 10.1007/978-3-030-12633-9_2
Winter C, 2020, INT J CONFL VIOLENCE, V14
Wood MJ, 2012, SOC PSYCHOL PERS SCI, V3, P767, DOI 10.1177/1948550611434786
Zick A, 2008, J SOC ISSUES, V64, P363, DOI 10.1111/j.1540-4560.2008.00566.x
NR 86
TC 6
Z9 6
U1 10
U2 17
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1461-4448
EI 1461-7315
J9 NEW MEDIA SOC
JI New Media Soc.
PD 2023 MAY 31
PY 2023
DI 10.1177/14614448231164409
EA MAY 2023
PG 28
WC Communication
WE Social Science Citation Index (SSCI)
SC Communication
GA U3LM4
UT WOS:001083846700001
OA hybrid
DA 2024-09-05
ER
PT S
AU McKillop, CA
AF McKillop, Christena A.
BE Sengupta, E
Blessinger, P
Cox, MD
TI DESIGNING EFFECTIVE LIBRARY LEARNING SPACES-STUDENT2SCHOLAR: A CASE
STUDY
SO DESIGNING EFFECTIVE LIBRARY LEARNING SPACES IN HIGHER EDUCATION
SE Innovations in Higher Education Teaching and Learning
LA English
DT Article; Book Chapter
DE Student2Scholar; online learning; e-resource; information literacy;
academic literacies; research skills; graduate students; higher
education; academic librarians; Canadian universities; Association of
College and Research Libraries ACRL; Queens University; University of
Toronto Ontario Institute for Studies in Education; University of
Western Ontario; pedagogy; collaboration; learning outcomes; teaching;
learning design; feedback; testing; assessment
AB In this chapter, the author examines Student2Scholar (S2S), an online e-learning resource for graduate students in the social sciences, as a case study that coalesces around effective learning design, innovation, and collaboration to meet and overcome the changes, challenges, and opportunities that have arisen in the twenty-first century. The author provides an overview of the S2S project, including an examination of the key design choices and pedagogy which were both strategic and critical in setting the foundation for effective learning in an online environment. This chapter also examines different elements of the project with a focus on the structure, purpose, and goals specific to a limited budget and a tight project timeline. A unique aspect of the project was the collaboration in and across three Canadian universities. The diverse project group of experts and important contributions by the team members played a significant role in creating a richer and more innovative product. These elements combined in such a way that led to the successful creation and launch of S2S, an award-winning e-learning resource.
C1 [McKillop, Christena A.] Univ Calgary, Taylor Family Digital Lib, Prestigious Arch & Special Collect, Calgary, AB, Canada.
C3 University of Calgary
RP McKillop, CA (corresponding author), Univ Calgary, Taylor Family Digital Lib, Prestigious Arch & Special Collect, Calgary, AB, Canada.
FU Government of Ontario, Ministry of Training, Colleges and Universities'
Shared Online Course Fund, the Ontario Online Initiative
FX The author wishes to acknowledge the contributions of all the S2S team
members over the course of the project. As experts in library and
information services, graduate research, and online learning for adults,
the team members' dedication and passion for the project was essential.
Dr Elan Paulson as the Primary Investigator inspired and encouraged the
team throughout the project. The author gratefully acknowledges the
Government of Ontario, Ministry of Training, Colleges and Universities'
Shared Online Course Fund, the Ontario Online Initiative's funding
support, and eCampus Ontario which have made creating and freely sharing
S2S possible.
CR ACRL, 2015, Framework for Information Literacy for Higher Education
Anderson L. W., 2001, A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives
[Anonymous], 2021, STUDENT2SCHOLAR S2S
Association of College and Research Libraries(ACRL), 2016, INSTR SECT PRIMO
Bates A.W., 2019, Teaching in a digital age: guidelines for designing, teaching and learning
Blaschke LM, 2012, INT REV RES OPEN DIS, V13, P56, DOI 10.19173/irrodl.v13i1.1076
Blessinger P, 2013, CUT TECHNOL HIGH ED, V6G, P3, DOI 10.1108/S2044-9968(2013)000006G003
Bloom Benjamin S., 1956, Taxonomy of Educational Objectives: The Classification of Educational Goals; Handbook I: Cognitive Domain, VI
Goodman VD, 2009, CHANDOS INF PROF SER, P1
Knowles MS, 1975, J CONTIN EDUC NURS
Krathwohl DR, 2002, THEOR PRACT, V41, P212, DOI 10.1207/s15430421tip4104_2
Laverty C., 2017, STUDENT SCHOLAR BUIL
Lederman D., 2018, New data: Online enrollments grow, and share of overall enrollment grows faster
Mills M., 2015, MIIETL C W U
Ontario College and University Library Association (OCULA), 2019, OCULA SPEC ACH AW
Ontario Council of University Faculty Associations (OCUFA), 2018, AC MATT
Ontario Universities Council on Quality Assurance, 2010, OCAVS UND GRAD DEGR
Paulson E., 2018, J LIB INFORM SERVICE, V12, P35, DOI [10.1080/1533290X.2017.1415242, DOI 10.1080/1533290X.2017.1415242]
Prensky M., 2001, DIGITAL NATIVES DIGI, V9, DOI 10.1108/10748120110424816/FULL/PDF
Slavin Robert., 2009, Educational psychology: Theory and practice, V9th
Student2Scholar (S2S), 2016, ACRL INSTR SECT WEBS
Su CH, 2016, MULTIMED TOOLS APPL, V75, P10013, DOI 10.1007/s11042-015-2799-7
West M.A., 2011, The handbook of organizational culture and climate, V2nd, P249
Wiggin G., 2005, UNDERSTANDING DESIGN, DOI DOI 10.14483/CALJ.V19N1.11490
NR 24
TC 0
Z9 0
U1 0
U2 1
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY, W YORKSHIRE BD16 1WA, ENGLAND
SN 2055-3641
BN 978-1-83909-782-9; 978-1-83909-783-6
J9 INNOV HIGH EDUC TEAC
PY 2020
VL 29
BP 45
EP 59
DI 10.1108/S2055-364120200000029005
D2 10.1108/S2055-3641202029
PG 15
WC Education & Educational Research; Information Science & Library Science
WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH)
SC Education & Educational Research; Information Science & Library Science
GA BS8YK
UT WOS:000778450500005
DA 2024-09-05
ER
PT J
AU Bohn, S
Braun, T
AF Bohn, Stephan
Braun, Timo
TI Field-configuring projects: How projects shape the public reflection of
electric mobility in Germany
SO INTERNATIONAL JOURNAL OF PROJECT MANAGEMENT
LA English
DT Article
DE Temporary organising; Field-level influence; Field-configuring events
(FCE); Electric mobility; Topic modeling; Framing; Industry;
Configuration; Mixed-method
ID MANAGEMENT RESEARCH; INSTITUTIONAL WORK; TRANSFORMATION; CULTURE;
EVENTS; ORGANIZATIONS; CONSTRUCTION; CONFERENCES; DISCOURSE; DYNAMICS
AB Organising in the context of projects has been extensively investigated with a focus on project-level processes. However, the industry and market impact, i.e. the field influencing potential of this temporary form of organizing, is still poorly understood. By using concepts derived from the literature on field-configuring events (FCE), we analyse the influence of two projects on the field of electric mobility in Germany. To capture the role of projects within fields, we apply a longitudinal mixed-methods approach combining interpretative qualitative methods with a topic modeling machine learning research strategy. The results highlight how projects can shape fields by opening and closing public debates and narratives in the sense of discursive institutional work. Additionally, we offer concepts that enable a more complete understanding of the sequential entanglement between projects and events, based on three scenarios: the project-by-itself, project-follows-event, and event-follows-project scenarios. With these insights, our empirical study contributes to the project management and institutional literature.
C1 [Bohn, Stephan] Humboldt Inst Internet & Soc HIIG, Berlin, Germany.
[Bohn, Stephan; Braun, Timo] Univ Appl Sci Darmstadt, Business Sch, Haardtring 100, D-64295 Darmstadt, Germany.
C3 Hochschule Darmstadt
RP Braun, T (corresponding author), Univ Appl Sci Darmstadt, Business Sch, Haardtring 100, D-64295 Darmstadt, Germany.
EM stephan.bohn@hiig.de; timo.braun@h-da.de
OI Braun, Timo/0000-0002-4427-2644; Bohn, Stephan/0000-0003-2404-4617
CR [Anonymous], 1995, Scandinavian Journal of Management, DOI [10.1016/0956-5221(95)00035-T, DOI 10.1016/0956-5221(95)00035-T]
Bail CA, 2014, THEOR SOC, V43, P465, DOI 10.1007/s11186-014-9216-5
Baker BN., 1997, PROJECT MANAGEMENT H, P902
Bakker RM, 2016, ORGAN STUD, V37, P1703, DOI 10.1177/0170840616655982
Bakker RM, 2010, INT J MANAG REV, V12, P466, DOI 10.1111/j.1468-2370.2010.00281.x
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blomquist T, 2010, PROJ MANAG J, V41, P5, DOI 10.1002/pmj.20141
Bohn S., 2018, ACAD MANAGEMENT P
Carroll Craig., 2003, Corporate REputation Review, V6, P36, DOI DOI 10.1057/PALGRAVE.CRR.1540188
Cicmil S., 2006, International Journal of Project Management, V24, P675, DOI 10.1016/j.ijproman.2006.08.006
CORBIN J, 1990, Z SOZIOL, V19, P418, DOI 10.1007/BF00988593
Croidieu G, 2018, ADMIN SCI QUART, V63, P1, DOI 10.1177/0001839216686531
DAUG, 1996, ERPR EL NEUEST GEN I
DiMaggio P, 2013, POETICS, V41, P570, DOI 10.1016/j.poetic.2013.08.004
DiMaggio PJ, 2000, ADV STRATEG MANAGE, V 17, P143, DOI 10.2307/2095101
Engwall M, 2003, RES POLICY, V32, P789, DOI 10.1016/S0048-7333(02)00088-4
Fligstein N, 2017, AM SOCIOL REV, V82, P879, DOI 10.1177/0003122417728240
Fred M., 2018, PROJECTIFICATION TRO
Garud R, 2008, J MANAGE STUD, V45, P1061, DOI 10.1111/j.1467-6486.2008.00783.x
German_Government, 2007, BER UMS KAB 23 24 08
German_Government, 2009, NAT ENTW EL BUND
Gioia DA, 2013, ORGAN RES METHODS, V16, P15, DOI 10.1177/1094428112452151
Grabher G, 2002, REG STUD, V36, P205, DOI 10.1080/00343400220122025
Hannigan TR, 2019, ACAD MANAG ANN, V13, P586, DOI 10.5465/annals.2017.0099
Hardy C, 2010, ACAD MANAGE J, V53, P1365, DOI 10.5465/AMJ.2010.57318384
Hiatt SR, 2019, STRATEGIC MANAGE J, V40, P865, DOI 10.1002/smj.2989
HOLM P, 1995, ADMIN SCI QUART, V40, P398, DOI 10.2307/2393791
IPCC (Intergovernmental Panel on Climate Change), 2007, Climate Change
Jensen A, 2016, PROJ MANAG J, V47, P21, DOI 10.1177/875697281604700303
Jugdev K., 2005, Project Management Journal, V36, P19, DOI [10.1177/875697280503600403, DOI 10.1177/875697280503600403]
Kadefors A., 1995, SCAND J MANAG, V11, P395, DOI 10.1016/0956-5221(95)00017-P
Kaplan S, 2015, STRATEGIC MANAGE J, V36, P1435, DOI 10.1002/smj.2294
Konrad M., 2020, WZBSOCIALSCIENCECENT
Lampel J, 2008, J MANAGE STUD, V45, P1025, DOI 10.1111/j.1467-6486.2008.00787.x
Lieftink B, 2019, INT J PROJ MANAG, V37, P269, DOI 10.1016/j.ijproman.2018.03.005
Lockwood C, 2019, J MANAGE, V45, P7, DOI 10.1177/0149206318777599
Lundin R. A., 1995, Scandinavian Journal of Management, V11, P437
Lundin R. A., 2013, INT J MANAG PROJ BUS, V6
Lundin RA., 2015, Managing and Working in Project Society
Maguire S, 2013, ACAD MANAGE J, V56, P231, DOI 10.5465/amj.2010.0714
Maylor H., 2006, International Journal of Project Management, V24, P663, DOI 10.1016/j.ijproman.2006.09.014
Meyer AD, 2005, ORGAN SCI, V16, P456, DOI 10.1287/orsc.1050.0135
Meyer RE, 2010, ACAD MANAGE J, V53, P1241, DOI 10.5465/AMJ.2010.57317829
NPE, 2012, FORTSCHR NAT PLATF E
NPE, 2014, FORTSCHR 2014 BIL MA
NPE - Nationale Plattform Elektromobilitat, 2010, ZWISCH NAT PLATTF EL
Phillips N, 2004, ACAD MANAGE REV, V29, P635, DOI 10.2307/20159075
Schmiedel T, 2019, ORGAN RES METHODS, V22, P941, DOI 10.1177/1094428118773858
Schüssler E, 2014, ACAD MANAGE J, V57, P140, DOI 10.5465/amj.2011.0812
Scott, 2014, I ORG 1000 OAKS
Söderlund J, 2019, INT J PROJ MANAG, V37, P259, DOI 10.1016/j.ijproman.2019.01.001
Söderlund J, 2011, INT J MANAG REV, V13, P153, DOI 10.1111/j.1468-2370.2010.00290.x
Sydow J, 2018, INT J PROJ MANAG, V36, P4, DOI 10.1016/j.ijproman.2017.04.012
Thiel J, 2015, IND INNOV, V22, P229, DOI 10.1080/13662716.2015.1033841
Tukiainen S, 2016, ORGAN STUD, V37, P1819, DOI 10.1177/0170840616662683
TVERSKY A, 1981, SCIENCE, V211, P453, DOI 10.1126/science.7455683
van den Ende L, 2019, INT J PROJ MANAG, V37, P331, DOI 10.1016/j.ijproman.2018.07.003
Vergne JP, 2011, ORGAN RES METHODS, V14, P484, DOI 10.1177/1094428109359811
Zietsma C, 2010, ADMIN SCI QUART, V55, P189, DOI 10.2189/asqu.2010.55.2.189
NR 60
TC 5
Z9 5
U1 3
U2 23
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0263-7863
EI 1873-4634
J9 INT J PROJ MANAG
JI Int. J. Proj. Manag.
PD AUG
PY 2021
VL 39
IS 6
BP 605
EP 619
DI 10.1016/j.ijproman.2021.04.006
EA SEP 2021
PG 15
WC Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA UR8PC
UT WOS:000697003100003
DA 2024-09-05
ER
PT C
AU Sykownik, P
Masuch, M
Emmerich, K
Peketz, J
AF Sykownik, Philipp
Masuch, Maic
Emmerich, Katharina
Peketz, Jochen
GP Assoc Comp Machinery
TI Blending Science and Practice: A Collaborative Approach for Evaluating
the Value of Heart Rate Measurement
SO CHI PLAY'19: EXTENDED ABSTRACTS OF THE ANNUAL SYMPOSIUM ON
COMPUTER-HUMAN INTERACTION IN PLAY
LA English
DT Proceedings Paper
CT 6th ACM SIGCHI Annual Symposium on Computer-Human Interaction in Play
(CHI PLAY)
CY OCT 22-25, 2019
CL Barcelona, SPAIN
DE playtests; game user research; game industry; evaluation methods;
biometrics; heart rate monitoring; stimulated recall; interviews
AB We report on our collaboration between the user research team of Ubisoft Blue Byte (UBB) Dusseldorf and the Entertainment Computing Research Group (ECG) of the University of Duisburg-Essen. Based on a shared interest in exploring the use of biometrics for evaluating the player experience, we opted for heart rate (HR) monitoring in order to gain initial experience with general requirements for psychophysiological methods. We conducted two subsequent studies: the first at the university to evaluate the method in general, the second at UBB to gain insights into the particular requirements of playtests in practice. This two-stage process was chosen to reduce resource requirements on the company's side and to refine the procedure before testing it in the field. Experiences with guidelines to use biometrics are shared and discussed regarding opportunities for collaboration between academics and practitioners.
C1 [Sykownik, Philipp; Masuch, Maic; Emmerich, Katharina] Univ Duisurg Essen, D-47058 Duisburg, Germany.
[Peketz, Jochen] Ubisoft Blue Byte, D-40211 Dusseldorf, Germany.
RP Sykownik, P (corresponding author), Univ Duisurg Essen, D-47058 Duisburg, Germany.
EM philipp.sykownik@uni-due.de; maic.masuch@uni-due.de;
katharina.emmerich@uni-due.de; jochen.peketz@ubisoft.de
CR [Anonymous], 2012, P CHI 2012
Blue Byte, 2019, ANN 1800 GAM PC
Cacioppo JT, 2007, HANDBOOK OF PSYCHOPHYSIOLOGY, 3RD EDITION, P1, DOI 10.2277/ 0521844711
Chalfoun P., 2018, OXFORD SCHOLARSHIP O, P281, DOI [10.1093/oso/9780198794844.003.0017, DOI 10.1093/OSO/9780198794844.003.0017]
Drachen A, 2010, P 5 ACM SIGGRAPH S V, P49, DOI DOI 10.1145/1836135.1836143
Drachen Anders, 2018, Games User Research
Fairclough Stephen H., 2011, BIOMETRICS GAME EVAL
IJsselsteijn W., 2013, Eindhoven: Technische Universiteit Eindhoven
Isbister K., 2008, Using biometric measurement to help develop emotionally compelling games, P187, DOI DOI 10.1016/B978-0-12-374447-0.00013-5
Kivikangas JM, 2011, J GAMING VIRTUAL WOR, V3, P181, DOI 10.1386/jgvw.3.3.181_1
Mandryk R. L., 2006, Conference on Human Factors in Computing Systems. CHI2006, P1027
Mandryk ReganL., 2008, Game usability: Advice from the experts for advancing the player experience, P207
Mandryk RL, 2006, BEHAV INFORM TECHNOL, V25, P141, DOI 10.1080/01449290500331156
Mirza-Babaei P., 2011, DiGRA conference
Mirza-Babaei Pejman., 2013, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI '13, P1499, DOI DOI 10.1145/2470654.2466200
Nacke L.E., 2013, GAMES ANAL MAXIMIZIN, P585
Nacke Lennart E., 2018, Games User Research, P281, DOI DOI 10.1093/OSO/9780198794844.003.0016
Pitkanen Jori., 2015, Game Research Methods, P117
Ravaja N, 2006, MEDIA PSYCHOL, V8, P343, DOI 10.1207/s1532785xmep0804_2
NR 19
TC 0
Z9 0
U1 0
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-6871-1
PY 2019
BP 211
EP 222
DI 10.1145/3341215.3354644
PG 12
WC Computer Science, Cybernetics; Computer Science, Interdisciplinary
Applications; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BO5NK
UT WOS:000518428000027
DA 2024-09-05
ER
PT C
AU Port, D
Korte, M
AF Port, Dan
Korte, Marcel
GP ACM
TI Comparative Studies of the Model Evaluation Criterions MMRE and PRED in
Software Cost Estimation Research
SO ESEM'08: PROCEEDINGS OF THE 2008 ACM-IEEE INTERNATIONAL SYMPOSIUM ON
EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT
LA English
DT Proceedings Paper
CT ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement
CY OCT 09-10, 2008-2009
CL Kaiserslautern, GERMANY
DE Cost Estimation; Cost Model; Standard Error; Confidence; MMRE; PRED;
Model Selection; Parameters; Calibration; Bootstrapping; Confidence
Interval
AB Software cost model research results depend on model accuracy criteria such as MMRE and PRIED. Despite criticism, MMRE has emerged as the de facto standard criterion. Many alternatives have been proposed and studied, surprisingly however PRED, the second most popular criterion, has not been extensively studied. This work attempts to fill this gap in the literature and expand the understanding and use of evaluation criterion in general. The majority of this work is empirically based, applying MMRE and PRED to a number of COCOMO model variations with respect to a simulated data set and four publicly available cost estimation data sets. We replicate a number of results based on MMRE and extend them to PRED. We study qualities of MMRE and PRED as sample estimator statistics for parameters of a cost model error distribution. Standard error is used to ensure greater confidence in replicated and new results based on sample data.
C1 [Port, Dan] Univ Hawaii Manoa, 2404 Maile Way,E303, Honolulu, HI 96822 USA.
[Korte, Marcel] Univ Appl Sci & Arts, Dortmund, Germany.
C3 University of Hawaii System; University of Hawaii Manoa; Hochschule
Hannover-University of Applied Sciences & Arts
RP Port, D (corresponding author), Univ Hawaii Manoa, 2404 Maile Way,E303, Honolulu, HI 96822 USA.
EM dport@hawaii.edu; marcel.korte@stud.fh-dortmund.de
CR [Anonymous], 2007, The PROMISE Repository of Empirical Software Engineering Data
[Anonymous], P 27 INT C SOFTW ENG
[Anonymous], 11 IEEE INT SOFTW ME
[Anonymous], INT S EMP SOFTW ENG
[Anonymous], 1981, Software engineering economics
[Anonymous], 2005, An introduction to mathematical statistics
BRIAND L, 1999, P 21 INT C SOFTW ENG
Briand L. C., 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium, P377, DOI 10.1109/ICSE.2000.870428
BRIAND LC, 2001, ENCY SOFTWARE ENG, P1160
Conte SD., 1986, Software Engineering Metrics and Models
Desharnais J., 1989, Analyse Statistique de la Productivitie des Projets Informatique a Partie de la Technique des Point des Function
EFRON B, 1979, ANN STAT, V7, P1, DOI 10.1214/aos/1176344552
FOSS T, 2003, IEEE T SOFTWARE ENG, V20
JORGENSEN M, 1995, IEEE T SOFTWARE ENG, V21, P674, DOI 10.1109/32.403791
JORGENSEN M, 2003, ACM SIGSOFT SOFTWARE, V28
Jorgensen M, 2007, IEEE T SOFTWARE ENG, V33, P33, DOI 10.1109/TSE.2007.256943
KITCHENHAM B, 2001, P IEEE, V148
Kitchenham BA, 2007, IEEE T SOFTWARE ENG, V33, P316, DOI 10.1109/TSE.2007.1101
LAND CE, 1971, ANN MATH STAT, V42, P1187, DOI 10.1214/aoms/1177693235
LUM K, 2006, P ISPA INT C SEATTL
MAIR C, 2005, INT C SOFTW ENG ST L
Menzies T, 2006, IEEE T SOFTWARE ENG, V32, P883, DOI 10.1109/TSE.2006.114
MOONEY C, 1993, SAGE PUBLICATIONS
MYRTWEIT I, 2005, IEEE T SOFTWARE ENG, V31
SHEPPERD M, 2001, P 5 INT SOFTW METR S
SHEPPERD M, 1997, IEEE T SOFTWARE ENG
WIECZOREK I, 2002, P 8 IEEE S SOFTW MET
BESTWEB BETTER ESTIM
2007, DESHARNIS DATASET
2007, NASA 93 DATASET
2007, COCOMO81 DATASET
2008, COCOMONASA DATASET
NR 32
TC 49
Z9 50
U1 0
U2 0
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-59593-971-5
PY 2008
BP 51
EP +
PG 2
WC Computer Science, Software Engineering
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BJJ30
UT WOS:000266371500006
DA 2024-09-05
ER
PT J
AU Glänzel, W
Heeffer, S
Thijs, B
AF Glanzel, Wolfgang
Heeffer, Sarah
Thijs, Bart
TI Lexical analysis of scientific publications for nano-level
scientometrics
SO SCIENTOMETRICS
LA English
DT Article; Proceedings Paper
CT 6th Global Tech Mining Conference
CY SEP, 2016
CL Valencia, SPAIN
DE Quantitative linguistics; Word-frequency; Waring distribution; Natural
language processing; Nano-level analysis
AB In earlier studies (e.g. Glanzel and Thijs in Scientometrics, 2017) we have used components of text analysis in combination with link-based techniques to cluster documents spaces and to detect emerging research topics on the large scale. Taking up now the objectives of evaluative scientometrics, we attempt to link the textual analysis of small sets of individual scientific papers to evaluative bibliometrics. The objective is, however, quite similar. We focus on the detection of similarities and on monitoring structural changes but this time on the small scale. We proceed from earlier approaches used in quantitative linguistics applied to bibliometrics (Telcs et al. in Math Soc Sci; 10(2):169-178, 1985). In the present pilot study we have selected 18 papers by Andras Schubert and published in three different periods with 6 papers each: 1983-1985, 1993-1998 and 2010-2013. The objective is twofold: We first try only to detect linguistic regularities in the scientometric text by applying a Waring model to the analysis of Schubert's vocabulary on the basis of all words and nouns. The second goal refers to the identification of changes in the used vocabulary over a period of three decades. The main findings are discussed along with future research tasks, which arise from these result in the context of the analysis of dynamics and emergence of research topics at the micro and nano level.
C1 [Glanzel, Wolfgang; Heeffer, Sarah; Thijs, Bart] Katholieke Univ Leuven, ECOOM, Naamsestr 61, B-3000 Leuven, Belgium.
[Glanzel, Wolfgang; Heeffer, Sarah; Thijs, Bart] Katholieke Univ Leuven, Dept MSI, Naamsestr 61, B-3000 Leuven, Belgium.
[Glanzel, Wolfgang] Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Arany Janos U 1, H-1051 Budapest, Hungary.
C3 KU Leuven; KU Leuven; Hungarian Academy of Sciences
RP Glänzel, W (corresponding author), Katholieke Univ Leuven, ECOOM, Naamsestr 61, B-3000 Leuven, Belgium.; Glänzel, W (corresponding author), Katholieke Univ Leuven, Dept MSI, Naamsestr 61, B-3000 Leuven, Belgium.; Glänzel, W (corresponding author), Lib Hungarian Acad Sci, Dept Sci Policy & Scientometr, Arany Janos U 1, H-1051 Budapest, Hungary.
EM Wolfgang.Glanzel@kuleuven.be; Sarah.Heeffer@kuleuven.be;
Bart.Thijs@kuleuven.be
RI Glanzel, Wolfgang/AAE-4395-2021; Glanzel, Wolfgang/A-6280-2008; Thijs,
Bart CM/C-2995-2008
OI Glanzel, Wolfgang/0000-0001-7529-5198;
CR Braun T, 2016, REV ROUM CHIM, V61, P231
Gelbukh A, 2001, LECT NOTES COMPUT SC, V2004, P332
Glänzel W, 2014, SCIENTOMETRICS, V101, P939, DOI 10.1007/s11192-014-1247-1
Glänzel W, 2017, SCIENTOMETRICS, V111, P1071, DOI 10.1007/s11192-017-2301-6
Kelih E, 2006, STUD CLASS DATA ANAL, P382, DOI 10.1007/3-540-31314-1_46
Kelih E., 2004, GLOTTOMETRICS, V8, P23
Kim SN, 2013, LANG RESOUR EVAL, V47, P723, DOI 10.1007/s10579-012-9210-3
Klein D, 2003, 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P423, DOI 10.3115/1075096.1075150
Kornai A., 2002, Glottometrics, V4, P61
Mullins N.C., 1988, Handbook of quantitative studies of science and technology, P81
Piantadosi ST, 2014, PSYCHON B REV, V21, P1112, DOI 10.3758/s13423-014-0585-6
PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814
Schubert A., 2013, ATOMS MOLECULES SCIE
Shah PK, 2003, BMC BIOINFORMATICS, V4, DOI 10.1186/1471-2105-4-20
SICHEL HS, 1974, J ROY STAT SOC A STA, V137, P25, DOI 10.2307/2345142
TELCS A, 1985, MATH SOC SCI, V10, P169, DOI 10.1016/0165-4896(85)90033-2
NR 16
TC 4
Z9 4
U1 1
U2 45
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUN
PY 2017
VL 111
IS 3
BP 1897
EP 1906
DI 10.1007/s11192-017-2336-8
PG 10
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Information Science & Library Science
GA EV4RE
UT WOS:000401747900037
DA 2024-09-05
ER
PT J
AU Schwemmer, C
Wieczorek, O
AF Schwemmer, Carsten
Wieczorek, Oliver
TI The Methodological Divide of Sociology: Evidence from Two Decades of
Journal Publications
SO SOCIOLOGY-THE JOURNAL OF THE BRITISH SOCIOLOGICAL ASSOCIATION
LA English
DT Article
DE natural language processing; research methodology; scientometrics;
sociology of science; sociology of Sociology
ID RESEARCH COLLABORATION; SCIENCE; BOUNDARIES; CRISIS; MODEL
AB Past research indicates that Sociology is a low-consensus discipline, where different schools of thought have distinct expectations about suitable scientific practices. This division of Sociology into different subfields is to a large extent related to methodology and choices between qualitative or quantitative research methods. Relying on theoretical constructs of the academic prestige economy, boundary demarcation and taste for research, we examine the methodological divide in generalist Sociology journals. Using automated text analysis for 8737 abstracts of articles published between 1995 and 2017, we discover evidence of this divide, but also of an entanglement between methodological choices and different research topics. Moreover, our results suggest a marginally increasing time trend for the publication of quantitative research in generalist journals. We discuss how this consolidation of methodological practices could enforce the entrenchment of different schools of thought, which ultimately reduces the potential for innovative and effective sociological research.
C1 [Schwemmer, Carsten] Univ Bamberg, Field Computat Social Sci, Bamberg, Germany.
[Schwemmer, Carsten] Univ Bamberg, Chair Polit Sociol, Feldkirchenstr 21, D-96052 Bamberg, Germany.
[Wieczorek, Oliver] Univ Bamberg, Chair Sociol, Especially Sociol Theory, Bamberg, Germany.
C3 Otto Friedrich University Bamberg; Otto Friedrich University Bamberg;
Otto Friedrich University Bamberg
RP Schwemmer, C (corresponding author), Univ Bamberg, Chair Polit Sociol, Feldkirchenstr 21, D-96052 Bamberg, Germany.
EM c.schwem2er@gmail.com
RI Wieczorek, Oliver/ABC-8053-2020
OI Wieczorek, Oliver/0000-0002-6504-0965; Schwemmer,
Carsten/0000-0001-9084-946X
CR Abramo G, 2009, HIGH EDUC, V57, P155, DOI 10.1007/s10734-008-9139-z
Adorno TW, 1987, POSITIVISMUSSTREIT D
[Anonymous], 2016, TIDYVERSE EASILY INS
Au A, 2018, AM SOCIOL, V49, P98, DOI 10.1007/s12108-017-9348-y
Benoit K., 2016, Quanteda: Quantitative analysis of textual data
Berger Peter L., 1991, SOCIAL CONSTRUCTION
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
BOURDIEU P, 1985, POETICS, V14, P13, DOI 10.1016/0304-422X(85)90003-8
Bourdieu P., 1992, INVITATION REFLEXIVE
Bourdieu Pierre., 1989, SOCIOL THEOR, V7, P14, DOI [DOI 10.2307/202060, 10.2307/202060]
Bourdieu Pierre, 2001, SCI SCI REFLEXIVITE
Boyns David., 2005, The American Sociologist, V36, P5
Brown SL, 2006, SOC SCI RES, V35, P454, DOI 10.1016/j.ssresearch.2006.03.001
Bryman A., 2008, SAGE HDB SOCIAL RES, P12, DOI [DOI 10.4135/9781446212165.N2, 10.4135/9781446212165.n2]
Burawoy M, 2005, AM SOCIOL REV, V70, P4, DOI 10.1177/000312240507000102
Byrne D, 2012, SOCIOLOGY, V46, P13, DOI 10.1177/0038038511419178
COLLINS R, 1994, SOCIOL FORUM, V9, P155, DOI 10.1007/BF01476360
COLLINS R, 1989, AM SOCIOL REV, V54, P124, DOI 10.2307/2095666
Croteau D, 2003, SOC PROBL, V50, P251, DOI 10.1525/sp.2003.50.2.251
Erola J, 2015, SOCIOLOGY, V49, P374, DOI 10.1177/0038038514542495
Feller I, 2009, MINERVA, V47, P323, DOI 10.1007/s11024-009-9129-z
Gage N.L., 1989, TEACH COLL REC, V18, P4, DOI https://doi.org/10.3102/0013189X018007004
Gläser J, 2016, ARCH EUR SOCIOL, V57, P117, DOI 10.1017/S0003975616000047
Glaser B. G., 2017, The discovery of grounded theory: Strategies for qualitative research
Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028
Harzing AW, 2013, SCIENTOMETRICS, V94, P23, DOI 10.1007/s11192-012-0738-1
Hunter Laura., 2008, AM SOCIOL, V39, P290, DOI [DOI 10.1007/S12108-008-9042-1, 10.1007/s12108-008-9042-1]
Kuhn T.S., 1962, The structure of scientific revolutions
L'decke D., 2018, Journal of Open Source Software, V3, P772, DOI [DOI 10.21105/JOSS.00772, 10.21105/joss.00772]
Lamont M, 2002, ANNU REV SOCIOL, V28, P167, DOI 10.1146/annurev.soc.28.110601.141107
Lampropoulou S., 2013, QUALITATIVE SOCIAL R, V14, P1
Le S, 2008, J STAT SOFTW, V25, P1, DOI 10.18637/jss.v025.i01
Leahey E, 2010, RES SOC STRAT MOBIL, V28, P135, DOI 10.1016/j.rssm.2009.12.001
Leahey Erin, 2014, SOC CURR, V1, P228, DOI [DOI 10.1177/2329496514540131, 10.1177/2329496514540131]
Lee S, 2005, SOC STUD SCI, V35, P673, DOI 10.1177/0306312705052359
Legewie J, 2016, AM J SOCIOL, V122, P125, DOI 10.1086/686942
Leifeld P, 2013, J STAT SOFTW, V55, P1
MERTON RK, 1968, SCIENCE, V159, P56, DOI 10.1126/science.159.3810.56
MERTON RK, 1988, ISIS, V79, P606, DOI 10.1086/354848
Moksony F, 2014, SCIENTOMETRICS, V101, P1715, DOI 10.1007/s11192-013-1218-y
Moody J, 2004, AM SOCIOL REV, V69, P213, DOI 10.1177/000312240406900204
Moody J., 2006, The American Sociologist, V38, P67, DOI [10.1007/s12108-006-1006-8, DOI 10.1007/S12108-006-1006-8]
Münch R, 2018, Z SOZIOL, V47, P1, DOI 10.1515/zfsoz-2018-1000
Munch R., 2014, Routledge Advances in Sociology, V121
Oromaner M., 2008, AM SOCIOL, V39, P279
Pachucki MA, 2007, POETICS, V35, P331, DOI 10.1016/j.poetic.2007.10.001
Payne G, 2004, SOCIOLOGY, V38, P153, DOI 10.1177/0038038504039372
Popper KR, 2008, ROUTLEDGE CLASSICS
Puddephatt AJ, 2015, CAN REV SOCIOL, V52, P310, DOI 10.1111/cars.12079
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Schmitz A, 2017, SOC SCI INFORM, V56, P49, DOI 10.1177/0539018416675071
Slapin JB, 2008, AM J POLIT SCI, V52, P705, DOI 10.1111/j.1540-5907.2008.00338.x
Smelser N.J., 2015, The American Sociologist, V46, P303, DOI DOI 10.1007/S12108-015-9260-2
Traag V., 2016, Revealing the quantitative-qualitative divide in sociology using bibliometric visualization Blog post
Turner JH, 1998, SOCIOL PERSPECT, V41, P243, DOI 10.2307/1389475
Turner JH, 2006, SOCIOL QUART, V47, P451, DOI 10.1111/j.1533-8525.2006.00053.x
Turner Jonathan H., 2016, The American Sociologist, V47, P289, DOI DOI 10.1007/S12108-015-9296-3
Vanderstraeten R, 2010, SOCIOLOGY, V44, P559, DOI 10.1177/0038038510362477
Varga AV, 2011, SCIENTOMETRICS, V88, P163, DOI 10.1007/s11192-011-0342-9
Wieczorek O, 2017, HIGH EDUC, V73, P887, DOI 10.1007/s10734-017-0116-2
Williams M, 2017, SOCIOL RES ONLINE, V22, P132, DOI 10.1177/1360780417734146
Ylijoki OH, 2011, HIGH EDUC, V62, P721, DOI 10.1007/s10734-011-9414-2
NR 62
TC 35
Z9 37
U1 5
U2 19
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0038-0385
EI 1469-8684
J9 SOCIOLOGY
JI Sociol.-J. Brit. Sociol. Assoc.
PD FEB
PY 2020
VL 54
IS 1
BP 3
EP 21
DI 10.1177/0038038519853146
PG 19
WC Sociology
WE Social Science Citation Index (SSCI)
SC Sociology
GA KF0YQ
UT WOS:000508978500001
OA hybrid, Green Submitted
DA 2024-09-05
ER
PT J
AU Zhao, XL
Zhang, YM
Xue, JF
Shan, C
Liu, Z
AF Zhao, Xiaolin
Zhang, Yiman
Xue, Jingfeng
Shan, Chun
Liu, Zhen
TI Research on Network Risk Evaluation Method Based on a Differential
Manifold
SO IEEE ACCESS
LA English
DT Article
DE Security; Measurement; Communication networks; Standards; Analytic
hierarchy process; Machine learning; Manifolds; Network risk evaluation;
differential manifold; Riemannian manifold; analytic hierarchy process;
common vulnerability scoring system
AB With the rapid development of networks, network security is a serious problem. To evaluate a network accurately, this paper proposes a network risk evaluation method based on a differential manifold (DM) and research on traditional methods. The DM divides the network risk evaluation into network structure risk and network behavior risk evaluations. Network structure risk evaluates the network identity, and network behavior risk evaluates the attack and defense of the network. Network assets and asset vulnerabilities characterize a network, and the analytic hierarchy process (AHP) and the Common Vulnerability Scoring System (CVSS) are combined to evaluate the network identity. Network behavior causes high-dimensional indicator changes, and DMs are used to measure network behavior. To examine the effectiveness and accuracy of DMs, two experiments were performed. The experimental results show that the DM method is valid and accurate for evaluating network risk.
C1 [Zhao, Xiaolin; Xue, Jingfeng; Shan, Chun; Liu, Zhen] Beijing Inst Technol, Beijing 100081, Peoples R China.
[Zhang, Yiman] China Ship Dev & Design Ctr, Wuhan 430064, Peoples R China.
C3 Beijing Institute of Technology
RP Xue, JF (corresponding author), Beijing Inst Technol, Beijing 100081, Peoples R China.
EM xuejf@bit.edu.cn
RI liu, zhen/GZK-9546-2022
OI Zhao, Xiaolin/0000-0002-9741-2954; LIU, ZHEN/0000-0003-2473-0086
FU National Key Research and Development Program of China [2016YFB0800700]
FX This work was supported by the National Key Research and Development
Program of China under Grant 2016YFB0800700.
CR Agyeya O, 2019, LECT NOTE DATA ENG, V28, P1, DOI 10.1007/978-981-13-6459-4_1
[Anonymous], INTRO DIFFERENTIABLE
[Anonymous], APPL MECH MAT
[Anonymous], P IEEE SMARTWORLD UB
[Anonymous], 2017, Intrusion Detection Evaluation Dataset (CIC-IDS2017)
[Anonymous], INTRO SYMPLECTIC GEO
[Anonymous], P DESTECH T COMP SCI
[Anonymous], P INT C INF TECHN UN
[Anonymous], DIFFERENTIAL GEOMETR
[Anonymous], P INT C MACH LEARN B
[Anonymous], HARMONIC MAPPINGS RI
[Anonymous], DIFFERENTIAL MANIFOL
[Anonymous], 2018, A Short Course in Differential Topology, Cambridge Mathematical Textbooks
[Anonymous], ANAL PSEUDODIFFERENT
[Anonymous], NONLINEAR DYNAMICS 2
[Anonymous], 2013, Differential Forms in Algebraic Topology
Azwar H., 2018, 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS), P1, DOI [10.1109/ICETAS.2018.8629197, DOI 10.1109/ICETAS.2018.8629197]
Banerjee M, 2015, LECT NOTES COMPUT SC, V9349, P719, DOI 10.1007/978-3-319-24553-9_88
Bhaya Wesam, 2017, 2017 Annual Conference on New Trends in Information & Communications Technology Applications (NTICT), P168, DOI 10.1109/NTICT.2017.7976110
Chobanian AV, 2003, HYPERTENSION, V42, P1206, DOI 10.1161/01.HYP.0000107251.49515.c2
Doynikova E, 2017, EUROMICRO WORKSHOP P, P346, DOI 10.1109/PDP.2017.44
Gao LJ, 2019, IEEE ACCESS, V7, P43018, DOI 10.1109/ACCESS.2019.2905812
Gu YH, 2019, IEEE ACCESS, V7, P64351, DOI 10.1109/ACCESS.2019.2917532
Hu CZ, 2018, ENGINEERING-PRC, V4, P78, DOI 10.1016/j.eng.2018.02.010
Kebande Victor R., 2018, CVSS METRIC BASED AN
[雷柯楠 Lei Kenan], 2017, [计算机研究与发展, Journal of Computer Research and Development], V54, P2296
Musa T, 2019, INT CONF COMP COMMUN, DOI 10.1109/iccci.2019.8822179
Ramos A, 2017, IEEE COMMUN SURV TUT, V19, P2704, DOI 10.1109/COMST.2017.2745505
Sharafaldin I, 2018, ICISSP: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, P108, DOI 10.5220/0006639801080116
Shuo Wang, 2018, 2018 IEEE 4th International Conference on Computer and Communications (ICCC). Proceedings, P1149, DOI 10.1109/CompComm.2018.8780688
Sun FX, 2017, J PHYS CONF SER, V910, DOI 10.1088/1742-6596/910/1/012005
Wang Qi, 2019, 2019 IEEE 2nd International Conference on Electronics Technology (ICET), P381, DOI 10.1109/ELTECH.2019.8839529
Zhao XL, 2019, IEEE ACCESS, V7, P70610, DOI 10.1109/ACCESS.2019.2919141
NR 33
TC 1
Z9 2
U1 1
U2 22
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2020
VL 8
BP 66315
EP 66326
DI 10.1109/ACCESS.2020.2985547
PG 12
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA LF4US
UT WOS:000527415200029
OA gold
DA 2024-09-05
ER
PT J
AU Li, X
Shen, YF
Cheng, HL
Yuan, F
Huang, LC
AF Li, Xin
Shen, Yuanfei
Cheng, Haolun
Yuan, Fei
Huang, Lucheng
TI Identifying the Development Trends and Technological Competition
Situations for Digital Twin: A Bibliometric Overview and Patent
Landscape Analysis
SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
LA English
DT Article
DE Patents; Market research; Hidden Markov models; Analytical models;
Digital twin; Bibliometrics; Industries; Bibliometric analysis;
competitive situation; digital twin; evolutionary trends; patent
analysis
ID MODEL
AB Digital twin is increasingly prominent for realizing the digital and intelligent transformation of various industries as an emerging technological means to connect the physical and virtual world. While there has been a recent growth of interest in digital twin in industry, finance, and academia, most relevant studies lack a systematic analysis of the status quo, development trends, and technological competition situations for digital twin. In this article, we used bibliometrics and patent analysis to conduct comprehensive and in-depth research of digital twin by reviewing the current status of academic research and technological development, distribution of countries and institutions, and technological competition situations. We found that academic research and technological development in digital twin are currently in the early stages of rapid growth, which is radiating from applications in smart manufacturing to other scenarios such as medical and health, smart cities, energy, transportation, public emergency, and agricultural food. Artificial intelligence technology, digital twin integrated architecture and system, intelligent real-time control have gradually become the key topics of academic research and technology research and development in the field of digital twin in recent years. The digital framework, sustainable digital twin, deep learning and neural network algorithms, and full lifecycle management have the potential to become technology development trends. USA and Germany are the technology leaders and occupy first-mover advantage at present, while China, the U.K., and South Korea are the powerful chasers in the future.
C1 [Li, Xin; Shen, Yuanfei; Yuan, Fei; Huang, Lucheng] Beijing Univ Technol, Coll Management & Econ, Beijing 100124, Peoples R China.
[Cheng, Haolun] Beijing Inst Graph Commun, Coll New Media, Beijing 102600, Peoples R China.
C3 Beijing University of Technology
RP Li, X (corresponding author), Beijing Univ Technol, Coll Management & Econ, Beijing 100124, Peoples R China.
EM lixinyz@bjut.edu.cn; yuan@bjut.edu.cn; haoluncheng1997@163.com;
18810601577@163.com; hlch@bjut.edu.cn
RI Yuan, Fei/D-5734-2011
OI Yuan, Fei/0000-0001-7633-0573
FU National Natural Science Foundation of China [72174017, 71673018];
Social Science Program of Beijing Municipal Education Commission
[SM202110005012]
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 72174017 and Grant 71673018 and in part
by the Social Science Program of Beijing Municipal Education Commission
under Grant SM202110005012.
CR [Anonymous], 2020, INT PAT CLASS
Ante L, 2021, MANUF LETT, V27, P96, DOI 10.1016/j.mfglet.2021.01.003
BRADFORD SC, 1985, J INFORM SCI, V10, P176
Budman M., 2020, DELOITTE INSIGHTS TE
C. E. S. Institute and L. RootcloudTechnology Co, 2020, WHIT PAP DIG TWIN AP
Costello K., 2019, Gartner Survey Reveals Digital Twins Are Entering Mainstream use
D. T. Laboratory, 2019, WHIT PAP DIG TWIN TE
Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039
Ernst H., 2003, World Patent Information, V25, P233, DOI 10.1016/S0172-2190(03)00077-2
Glaessgen E., 2012, P 53 AIAA ASME ASCE, DOI 10.2514/6.2012-1818
Grieves M., 2011, VIRTUALLY PERFECT DR
Grieves M., 2017, Transdisciplinary perspectives on complex systems, P85, DOI [10.1007/978-3-319-38756-7_4, DOI 10.1007/978-3-319-38756-7_4]
Harhoff D, 2003, RES POLICY, V32, P1343, DOI 10.1016/S0048-7333(02)00124-5
He B, 2021, ADV MANUF, V9, P1, DOI 10.1007/s40436-020-00302-5
Hu C., 2012, CHIN PHARM AFFAIRS, V26, P134
Hualong, 2021, WHIT PAP DIG TWIN TE
Huang L., 2016, SCI TECHNOLOGY MANAG, V36, P213, DOI DOI 10.3969/J.ISSN.1000-7695.2016.12.039
Karvonen M, 2016, J CLEAN PROD, V112, P3735, DOI 10.1016/j.jclepro.2015.06.031
Kritzinger W, 2018, IFAC PAPERSONLINE, V51, P1016, DOI 10.1016/j.ifacol.2018.08.474
Lee YG, 2007, SCIENTOMETRICS, V70, P27, DOI 10.1007/s11192-007-0102-z
Li X, 2020, INT J TECHNOL MANAGE, V82, P322, DOI 10.1504/IJTM.2020.108987
Li X, 2019, TECHNOL FORECAST SOC, V146, P432, DOI 10.1016/j.techfore.2019.01.012
Lim KYH, 2020, J INTELL MANUF, V31, P1313, DOI 10.1007/s10845-019-01512-w
Liu MN, 2021, J MANUF SYST, V58, P346, DOI 10.1016/j.jmsy.2020.06.017
Liu Y., 2016, Sci. Res. Manag., V37, P337, DOI [10.19571/j.cnki.1000-2995.2016.s1.049, DOI 10.19571/J.CNKI.1000-2995.2016.S1.049]
Ma Y.T., 2014, NUCL INSTRUM METH A, V33, P38
McWilliams K., 2013, P 28 TECH C AM SOC C, P114
Moore S., 2019, TOP TRENDS GARTNER H
Negri E, 2017, PROCEDIA MANUF, V11, P939, DOI 10.1016/j.promfg.2017.07.198
Nikolakis N, 2019, INT J COMPUT INTEG M, V32, P1, DOI 10.1080/0951192X.2018.1529430
Oyekan JO, 2019, ROBOT CIM-INT MANUF, V55, P41, DOI 10.1016/j.rcim.2018.07.006
P. I. Team, 2013, GRAPH WORLDW PAT LAN
Panetta K, 2020, 5 Trends Drive the Gartner Hype Cycle for Emerging Technologies, 2020
Piascik B., 2010, TECHNOLOGY AREA 12 M
Poppe A, 2019, ENERGIES, V12, DOI 10.3390/en12101909
Rosen R, 2015, IFAC PAPERSONLINE, V48, P567, DOI 10.1016/j.ifacol.2015.06.141
Schluse M, 2018, IEEE T IND INFORM, V14, P1722, DOI 10.1109/TII.2018.2804917
Shafto M., 2010, TECHNOLOGY AREA 11 M
Söderberg R, 2017, CIRP ANN-MANUF TECHN, V66, P137, DOI 10.1016/j.cirp.2017.04.038
Tao Fei, 2019, Computer Integrated Manufacturing Systems, V25, P1, DOI 10.13196/j.cims.2019.01.001
Tao F, 2019, IEEE T IND INFORM, V15, P2405, DOI 10.1109/TII.2018.2873186
Tao F, 2018, CIRP ANN-MANUF TECHN, V67, P169, DOI 10.1016/j.cirp.2018.04.055
Tao Fei, 2018, Computer Integrated Manufacturing Systems, V24, P1, DOI 10.13196/j.cims.2018.01.001
Tao F, 2018, INT J ADV MANUF TECH, V94, P3563, DOI 10.1007/s00170-017-0233-1
Tao F, 2017, IEEE ACCESS, V5, P20418, DOI 10.1109/ACCESS.2017.2756069
Tuegel E. J., 2011, International Journal of Aerospace Engineering, V2011, DOI 10.1155/2011/154798
Walker M., 2018, Hype cycle for emerging technologies
Wang KJ, 2020, INT J ADV MANUF TECH, V107, P4687, DOI 10.1007/s00170-020-05314-w
Weber C, 2017, PROC CIRP, V63, P173, DOI 10.1016/j.procir.2017.03.309
Xiao Y., 2021, MATERIALS, V14, P1
Zhang H, 2017, IEEE ACCESS, V5, P26901, DOI 10.1109/ACCESS.2017.2766453
NR 51
TC 5
Z9 5
U1 30
U2 226
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9391
EI 1558-0040
J9 IEEE T ENG MANAGE
JI IEEE Trans. Eng. Manage.
PY 2024
VL 71
BP 1998
EP 2021
DI 10.1109/TEM.2022.3166794
EA MAY 2022
PG 24
WC Business; Engineering, Industrial; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Engineering
GA EO4E7
UT WOS:000791727000001
DA 2024-09-05
ER
PT J
AU Rejeb, A
Rejeb, K
Appolloni, A
Treiblmaier, H
AF Rejeb, Abderahman
Rejeb, Karim
Appolloni, Andrea
Treiblmaier, Horst
TI Foundations and knowledge clusters in TikTok (Douyin) research: evidence
from bibliometric and topic modelling analyses
SO MULTIMEDIA TOOLS AND APPLICATIONS
LA English
DT Article
DE TikTok; Public health; Body image; Bibliometrics; Topic modeling
ID SOCIAL MEDIA; COVID-19 INFORMATION; SHORT VIDEO; MANAGEMENT; DOMAIN;
VISUALIZATION; OPPORTUNITIES; ENGAGEMENT; BUSINESS; SCIENCE
AB The goal of this study is to comprehensively analyze the dynamics and structure of TikTok research since its initial development. The scholarly composition of articles dealing with TikTok was dissected via a bibliometric study based on a corpus of 542 journal articles from the Scopus database. The results show that TikTok research has flourished in recent years and also demonstrate that the authors' collaboration networks are disjointed, indicating a lack of cooperation among TikTok researchers. Furthermore, the analysis reveals that research collaboration among academic institutions reflects the North-South divide, also highlighting a limited research collaboration between institutions in developed and developing countries. Based on the keyword co-occurrence network and topic modeling, TikTok research revolves mainly around five thematic areas, including public health, health communication and education, platform governance, body image, and its impact on children and students. Based on these findings, numerous suggestions for further research are offered. As far as the authors are aware, this is the first application of bibliometrics and topic modeling to assess the growth of TikTok research and reveal the intellectual base of this knowledge domain.
C1 [Rejeb, Abderahman] Univ Roma Tor Vergata, Fac Econ, Dept Management & Law, Via Columbia 2, I-00133 Rome, Italy.
[Rejeb, Karim] Univ Carthage, Fac Sci Bizerte, Zarzouna 7021, Bizerte, Tunisia.
[Appolloni, Andrea] Univ Roma Tor Vergata, Fac Econ, Dept Management & Law, Via Columbia 2, I-00133 Rome, Italy.
[Treiblmaier, Horst] Modul Univ Vienna, Sch Int Management, Kahlenberg 1, A-1190 Vienna, Austria.
C3 University of Rome Tor Vergata; Universite de Carthage; University of
Rome Tor Vergata
RP Treiblmaier, H (corresponding author), Modul Univ Vienna, Sch Int Management, Kahlenberg 1, A-1190 Vienna, Austria.
EM horst.treiblmaier@modul.ac.at
RI Appolloni, Andrea/L-3607-2014
OI Appolloni, Andrea/0000-0001-5741-398X
FU MODUL University Vienna GmbH
FX No Statement Available
CR Abdollahi A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132112011
AI-Maroof R., 2021, International Journal of Data and Network Science, V5, P197, DOI [10.5267/j.ijdns.2021.6.013, DOI 10.5267/J.IJDNS.2021.6.013]
AJIFERUKE I, 1988, SCIENTOMETRICS, V14, P421, DOI 10.1007/BF02017100
Alalwan AA, 2017, TELEMAT INFORM, V34, P1177, DOI 10.1016/j.tele.2017.05.008
Anderson K. E., 2020, Library hi tech news, V37, P7, DOI DOI 10.1108/LHTN-01-2020-0001
[Anonymous], 2021, MEDICINA LITHUANIA, DOI DOI 10.3390/MEDICINA57070648
[Anonymous], 1934, Engineering, DOI [10.1177/016555158501000, DOI 10.1177/016555158501000]
Arora SD, 2022, TECHNOL FORECAST SOC, V183, DOI 10.1016/j.techfore.2022.121942
Arroyo-Machado W, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228713
Aryadoust V, 2021, COMPUT ASSIST LANG L, V34, P898, DOI 10.1080/09588221.2019.1647251
Ashta A, 2021, STRATEG CHANG, V30, P211, DOI 10.1002/jsc.2404
Avdeeff MK, 2021, CONTEMP MUSIC REV, V40, P78, DOI 10.1080/07494467.2021.1945225
Bai GC, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.924748
Bandy Jack, 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3449148
Barta S, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103149
Basch CH, 2021, JMIR PEDIATR PARENT, V4, DOI 10.2196/30681
Basch CH, 2021, JMIR PUBLIC HLTH SUR, V7, DOI 10.2196/26392
Basch Corey H, 2022, Int J Adolesc Med Health, V34, P367, DOI 10.1515/ijamh-2020-0111
Bassell K, 2010, TEACH LEARN NURS, V5, P143, DOI 10.1016/j.teln.2010.07.007
Bolton RN, 2013, J SERV MANAGE, V24, P245, DOI 10.1108/09564231311326987
Bozzola E, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19169960
Brooks R, 2022, BMJ GLOB HEALTH, V7, DOI 10.1136/bmjgh-2022-009112
Brown Y, 2024, J SOCIOL, V60, P121, DOI 10.1177/14407833221110267
Bossen CB, 2020, YOUNG CONSUM, V21, P463, DOI 10.1108/YC-07-2020-1186
BURRELL QL, 1989, J DOC, V45, P302, DOI 10.1108/eb026847
Caputo A, 2023, INT J CONFL MANAGE, V34, P1, DOI 10.1108/IJCMA-07-2021-0117
Chai XN, 2022, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.774675
Chang CY, 2021, NURS EDUC TODAY, V96, DOI 10.1016/j.nedt.2020.104645
Chen XL, 2022, COGN COMPUT, V14, P24, DOI 10.1007/s12559-021-09861-6
Chobanyan K., 2021, J RUSSIAN MEDIA JOUR, V3, DOI [10.30547/worldofmedia.3.2021.3, DOI 10.30547/WORLDOFMEDIA.3.2021.3]
Cleofas JV, 2022, ARCH PSYCHIAT NURS, V40, P97, DOI 10.1016/j.apnu.2022.06.003
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Colicchia C, 2019, SUPPLY CHAIN MANAG, V24, P5, DOI 10.1108/SCM-01-2018-0003
Colicchia C, 2012, SUPPLY CHAIN MANAG, V17, P403, DOI 10.1108/13598541211246558
Cooper BR, 2022, CURR DERMATOL REP, V11, P103, DOI 10.1007/s13671-022-00359-4
Cuccurullo C, 2016, SCIENTOMETRICS, V108, P595, DOI 10.1007/s11192-016-1948-8
Dabic M, 2020, SMALL BUS ECON, V55, P705, DOI 10.1007/s11187-019-00181-6
De La Garza H, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18095002
De Leyn T, 2022, J YOUTH STUD, V25, P1108, DOI 10.1080/13676261.2021.1939286
de Solla Price DJ, 1963, LITTLE SCI BIG SCI, DOI DOI 10.7312/PRIC91844
De Veirman M, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.02685
Della Corte V, 2018, BRIT FOOD J, V120, P2270, DOI 10.1108/BFJ-09-2017-0538
Demiroz F, 2019, LOCAL GOV STUD, V45, P308, DOI 10.1080/03003930.2018.1541796
Deng DS, 2022, J HOSP TOUR TECHNOL, V13, P683, DOI 10.1108/JHTT-05-2021-0143
Dias P., 2022, J. Digit. Soc. Media Mark., V10, P82
Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008
Dinic BM, 2021, CURR PSYCHOL, V40, P3206, DOI 10.1007/s12144-019-00250-9
Doyle B, 2023, TikTok Statistics
Dwivedi Y.K., 2015, The Marketing Review, V15, P289, DOI [DOI 10.1362/146934715X14441363377999, 10.1362/146934715x14441363377999, 10.1362/146934715X14441363377999]
Eghtesadi M, 2020, CAN J PUBLIC HEALTH, V111, P389, DOI 10.17269/s41997-020-00343-0
Escamilla-Fajardo P, 2021, J HOSP LEIS SPORT TO, V28, DOI 10.1016/j.jhlste.2021.100302
ESFAHANI H J., 2019, Int J Data Netw Sci, V3, P145, DOI [10.5267/j.ijdns.2019.2.007, DOI 10.5267/J.IJDNS.2019.2.007]
Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003
Fraticelli L, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph182413260
Gamir-Ríos J, 2022, COMMUN SOC-SPAIN, V35, P37, DOI 10.15581/003.35.2.37-52
Gao LQ, 2022, FRONT PHYS-LAUSANNE, V9, DOI 10.3389/fphy.2021.787185
Garrido-Cardenas JA, 2020, TUBERCULOSIS, V121, DOI 10.1016/j.tube.2020.101917
Gillespie T, 2014, INSIDE TECHNOL, P1
Glänzel W, 2005, SCIENTOMETRICS, V65, P323, DOI 10.1007/s11192-005-0277-0
González-Teruel A, 2015, SCIENTOMETRICS, V103, P687, DOI 10.1007/s11192-015-1548-z
Gray JE, 2021, INTERNET POLICY REV, V10, DOI 10.14763/2021.2.1557
Greene Derek, 2014, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2014. Proceedings: LNCS 8724, P498, DOI 10.1007/978-3-662-44848-9_32
Guarda Teresa, 2021, Marketing and Smart Technologies. Proceedings of ICMarkTech 2020. Smart Innovation, Systems and Technologies (SIST 205), P35, DOI 10.1007/978-981-33-4183-8_4
He M, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12189136
Helbach J, 2021, J SPORT SCI MED, V20, P642, DOI 10.52082/jssm.2021.642
Hermida A, 2012, JOURNALISM STUD, V13, P815, DOI 10.1080/1461670X.2012.664430
Herrick SSC, 2021, INT J EAT DISORDER, V54, P516, DOI 10.1002/eat.23463
Holland G, 2016, BODY IMAGE, V17, P100, DOI 10.1016/j.bodyim.2016.02.008
Hopfer S, 2022, FRONT DIGIT HEALTH, V4, DOI 10.3389/fdgth.2022.819228
Jain J, 2022, MANAG REV Q, V72, P823, DOI 10.1007/s11301-021-00215-y
Janmaijaya M, 2021, ENG APPL ARTIF INTEL, V103, DOI 10.1016/j.engappai.2021.104280
Kajikawa Y, 2022, TECHNOL FORECAST SOC, V182, DOI 10.1016/j.techfore.2022.121877
Karizat Nadia, 2021, Proceedings of the ACM on Human-Computer Interaction, V5, DOI 10.1145/3476046
Kaye D.B. V., 2022, TikTok: Creativity and culture in short video
Keim Y, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11182972
Khan GF, 2016, COMMUN ASSOC INF SYS, V39, P367, DOI 10.17705/1CAIS.03918
Khan Y, 2022, ADV ARCHAEOL PRACT, V10, P452, DOI 10.1017/aap.2022.28
KINNUCAN MT, 1990, INFORM PROCESS MANAG, V26, P777, DOI 10.1016/0306-4573(90)90051-3
Knani M, 2022, INT J HOSP MANAG, V107, DOI 10.1016/j.ijhm.2022.103317
Kozlowski D, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0245393
LAW J, 1988, SCIENTOMETRICS, V14, P251, DOI 10.1007/BF02020078
Li M, 2022, CHEMOSPHERE, V304, DOI 10.1016/j.chemosphere.2022.135337
Li Y, 2021, Front Econ Manag, V2, P176, DOI [10.6981/FEM.202102_2(2).0022, DOI 10.6981/FEM.202102_2(2).0022]
Li YC, 2021, HEALTH EDUC RES, V36, P261, DOI 10.1093/her/cyab010
Liang J, 2022, J MED INTERNET RES, V24, DOI 10.2196/39360
Liu ZY, 2023, TECHNOL FORECAST SOC, V187, DOI 10.1016/j.techfore.2022.122253
Ma YL, 2021, MANAGE ORGAN REV, V17, P382, DOI 10.1017/mor.2020.69
MacKinnon KR, 2021, J MED INTERNET RES, V23, DOI 10.2196/30315
Manago A.M., 2015, FRIENDSHIP HAPPINESS, P187, DOI DOI 10.1007/978-94-017-9603-3_11
McCashin D, 2023, CLIN CHILD PSYCHOL P, V28, P279, DOI 10.1177/13591045221106608
Meng KS, 2021, TELECOMMUN POLICY, V45, DOI 10.1016/j.telpol.2021.102172
Mhalla M, 2020, INT J INNOV TECHNOL, V17, DOI 10.1142/S0219877020500509
Miao WS, 2023, MEDIA INT AUST, V186, P97, DOI 10.1177/1329878X211013919
Mobin MA, 2021, EURASIAN ECON REV, DOI 10.1007/s40822-021-00193-2
Morales M, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031820
Mostafa MM, 2020, TRENDS FOOD SCI TECH, V99, P660, DOI 10.1016/j.tifs.2020.03.022
Muhl DD, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09369
Nekmahmud M, 2022, TECHNOL FORECAST SOC, V185, DOI 10.1016/j.techfore.2022.122067
Olvera C, 2021, MOV DISORD CLIN PRAC, V8, P1200, DOI 10.1002/mdc3.13316
Omar Bahiyah, 2020, International Journal of Interactive Mobile Technologies, V14, P121, DOI 10.3991/ijim.v14i04.12429
Ostrovsky AM, 2020, J ADOLESCENT HEALTH, V67, P730, DOI 10.1016/j.jadohealth.2020.07.039
Pan WJ, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.846390
Patra SK, 2006, SCIENTOMETRICS, V67, P477, DOI 10.1556/Scient.67.2006.3.9
Pop LM, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19095064
Prieto-Gutirrez J. J., 2019, The Serials Librarian, V77, P38, DOI [10.1080/0361526X.2019.1637387, DOI 10.1080/0361526X.2019.1637387]
Purushothaman V, 2022, J MED INTERNET RES, V24, DOI 10.2196/34050
Qin Y, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.932805
Radin AGB, 2022, J MICROBIOL BIOL EDU, V23, DOI 10.1128/jmbe.00236-21
Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397
Rand JR, 2021, SCHOLE: A J Leisure Stud Recreat Educ, DOI [10.1080/1937156X.2021.1962219, DOI 10.1080/1937156X.2021.1962219]
Rejeb A, 2022, TELEMAT INFORM, V73, DOI 10.1016/j.tele.2022.101876
Reuter K, 2021, JMIR PUBLIC HLTH SUR, V7, DOI 10.2196/24429
Rosas SR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017428
Ruparel N, 2023, J BUS RES, V156, DOI 10.1016/j.jbusres.2022.113482
Rutherford BN, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031141
SALTON G, 1991, SCIENCE, V253, P974, DOI 10.1126/science.253.5023.974
Sari E. F. N., 2022, International Journal of Human Movement and Sports Sciences, V10, P187, DOI [10.13189/saj.2022.100208, DOI 10.13189/SAJ.2022.100208]
Schellewald A, 2021, INT J COMMUN, V15, P0
Scherr S, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106893
Song SJ, 2021, INTERNET RES, V31, P2120, DOI 10.1108/INTR-10-2020-0593
Southerton C, 2021, J Commun, V15, P0
Southwick L, 2021, J ADOLESCENT HEALTH, V69, P234, DOI 10.1016/j.jadohealth.2021.05.010
Su HN, 2010, SCIENTOMETRICS, V85, P65, DOI 10.1007/s11192-010-0259-8
Su YR, 2020, INT J SPORT COMMUN, V13, P436, DOI 10.1123/ijsc.2020-0238
Sun TZ, 2023, TOB CONTROL, V32, P251, DOI 10.1136/tobaccocontrol-2021-056619
Szeto MD, 2021, CURR DERMATOL REP, V10, P97, DOI 10.1007/s13671-021-00343-4
Tang KY, 2023, INTERACT LEARN ENVIR, V31, P2134, DOI 10.1080/10494820.2021.1875001
Umar IM, 2022, J ACCOUNT EMERG ECON, V12, P741, DOI 10.1108/JAEE-01-2021-0011
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Vanni T, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093376
Vázquez-Herrero J, 2022, JOURNALISM, V23, P1717, DOI 10.1177/1464884920969092
Wakefield R., 2008, The British Accounting Review, V40, P228, DOI DOI 10.1016/J.BAR.2008.03.001
Wamba SF, 2017, BUS PROCESS MANAG J, V23, P477, DOI 10.1108/BPMJ-02-2017-0047
Wang SS, 2022, SEXUALITIES, DOI 10.1177/13634607221106912
Wang YW, 2020, COMPUT HUM BEHAV, V110, DOI 10.1016/j.chb.2020.106373
Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918
Weimann G, 2023, STUD CONFL TERROR, V46, P752, DOI 10.1080/1057610X.2020.1780027
Wengel Y, 2022, J OUTDOOR REC TOUR, V37, DOI 10.1016/j.jort.2021.100458
Whiting A, 2013, QUAL MARK RES, V16, P362, DOI 10.1108/QMR-06-2013-0041
Wu JX, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19127064
Xi JN, 2023, COMPUT BIOL MED, V155, DOI 10.1016/j.compbiomed.2023.106672
Xi JN, 2022, NEUROCOMPUTING, V468, P60, DOI 10.1016/j.neucom.2021.10.013
Xue J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239441
Yan RT, 2022, INT J MACH LEARN CYB, V13, P839, DOI 10.1007/s13042-021-01356-y
Yang Y., 2021, J INTERACTIVE ADVERT, V21, P297, DOI DOI 10.1080/15252019.2021.1995544
Yeung AWK, 2018, CHEMOSENS PERCEPT, V11, P42, DOI 10.1007/s12078-018-9243-0
Yuan CX, 2022, J INTELL MANUF, V33, P425, DOI 10.1007/s10845-021-01885-x
Yuan L, 2022, IND MANAGE DATA SYST, V122, P1956, DOI 10.1108/IMDS-12-2021-0754
Zeng J, 2022, POLICY INTERNET, V14, P79, DOI 10.1002/poi3.287
Zheng DX, 2021, PEDIATR DERMATOL, V38, P336, DOI 10.1111/pde.14471
Zhu R, 2023, CURR ISSUES TOUR, V26, P2762, DOI 10.1080/13683500.2022.2097058
Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1
Zou HB, 2015, J MANAG ANAL, V2, P295, DOI 10.1080/23270012.2015.1100969
Zou X, 2018, ACCIDENT ANAL PREV, V118, P131, DOI 10.1016/j.aap.2018.06.010
Zulli D, 2022, NEW MEDIA SOC, V24, P1872, DOI 10.1177/1461444820983603
NR 155
TC 1
Z9 1
U1 16
U2 21
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1380-7501
EI 1573-7721
J9 MULTIMED TOOLS APPL
JI Multimed. Tools Appl.
PD MAR
PY 2024
VL 83
IS 11
BP 32213
EP 32243
DI 10.1007/s11042-023-16768-x
EA SEP 2023
PG 31
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Computer Science, Theory & Methods; Engineering, Electrical
& Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA KF5H9
UT WOS:001070386400002
OA hybrid
DA 2024-09-05
ER
PT J
AU Hake, J
Crowley, M
Coy, A
Shanks, D
Eoff, A
Kirmer-Voss, K
Dhanda, G
Parente, DJ
AF Hake, Joel
Crowley, Miles
Coy, Allison
Shanks, Denton
Eoff, Aundria
Kirmer-Voss, Kalee
Dhanda, Gurpreet
Parente, Daniel J.
TI Quality, Accuracy, and Bias in ChatGPT-Based Summarization of Medical
Abstracts
SO ANNALS OF FAMILY MEDICINE
LA English
DT Article
DE artificial intelligence; large language models; ChatGPT; primary care
research; critical assessment of scientific literature; bias; text
mining; text analysis
AB PURPOSE Worldwide clinical knowledge is expanding rapidly, but physicians have sparse time to review scientific literature. Large language models (eg, Chat Generative Pretrained Transformer [ChatGPT]), might help summarize and prioritize research articles to review. However, large language models sometimes "hallucinate" incorrect information. METHODS We evaluated ChatGPT's ability to summarize 140 peer -reviewed abstracts from 14 journals. Physicians rated the quality, accuracy, and bias of the ChatGPT summaries. We also compared human ratings of relevance to various areas of medicine to ChatGPT relevance ratings. RESULTS ChatGPT produced summaries that were 70% shorter (mean abstract length of 2,438 characters decreased to 739 characters). Summaries were nevertheless rated as high quality (median score 90, interquartile range [IQR] 87.0-92.5; scale 0-100), high accuracy (median 92.5, IQR 89.0-95.0), and low bias (median 0, IQR 0-7.5). Serious inaccuracies and hallucinations were uncommon. Classification of the relevance of entire journals to various fields of medicine closely mirrored physician classifications (nonlinear standard error of the regression [SER] 8.6 on a scale of 0-100). However, relevance classification for individual articles was much more modest (SER 22.3). CONCLUSIONS Summaries generated by ChatGPT were 70% shorter than mean abstract length and were characterized by high quality, high accuracy, and low bias. Conversely, ChatGPT had modest ability to classify the relevance of articles to medical specialties. We suggest that ChatGPT can help family physicians accelerate review of the scientific literature and have developed software (pyJournalWatch) to support this application. Life -critical medical decisions should remain based on full, critical, and thoughtful evaluation of the full text of research articles in context with clinical guidelines.
C1 [Hake, Joel; Crowley, Miles; Coy, Allison; Shanks, Denton; Eoff, Aundria; Kirmer-Voss, Kalee; Dhanda, Gurpreet; Parente, Daniel J.] Univ Kansas, Dept Family Med & Community Hlth, Med Ctr, Kansas City, KS USA.
[Parente, Daniel J.] 3901 Rainbow Blvd,MS 4010, Kansas City, KS 66160 USA.
C3 University of Kansas; University of Kansas Medical Center
RP Parente, DJ (corresponding author), 3901 Rainbow Blvd,MS 4010, Kansas City, KS 66160 USA.
EM dparente@kumc.edu
FU REDCap data management platform at the University of Kansas Medical
Center - National Center for Advancing Translational Sciences (NCATS)
[UL1TR002366]
FX This work was not directly funded but used the REDCap data management
platform at the University of Kansas Medical Center, which was supported
by a Clinical and Translational Science Awards grant from the National
Center for Advancing Translational Sciences (NCATS) awarded to the
University of Kansas for Frontiers: University of Kansas Clinical and
Translational Science Institute (#UL1TR002366) . This work is solely the
responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health or NCATS. This
agency had no role in the design and conduct of the study; collection,
management, analysis, and interpretation of the data; preparation,
review, or approval of the manuscript; or decision to submit the
manuscript for publication.
CR Agrawal A, Harv Bus Rev.
Amatriain X, 2024, Arxiv, DOI [arXiv:2302.07730, DOI 10.48550/ARXIV.2302.07730]
Azamfirei R, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04393-x
Bradley EA, 2022, CIRCULATION, V146, pe229, DOI 10.1161/CIR.0000000000001093
Brown T., 2020, NEURIPS
Browne R., 2021, CNBC
Chen M., 2021, arXiv
Densen Peter, 2011, Trans Am Clin Climatol Assoc, V122, P48
Dillon EC, 2020, J GEN INTERN MED, V35, P261, DOI 10.1007/s11606-019-05381-0
Goyal J. J., 2022, arXiv
Gupta A, 2021, Arxiv, DOI arXiv:2108.01064
Harris PA, 2019, J BIOMED INFORM, V95, DOI 10.1016/j.jbi.2019.103208
Harris PA, 2009, J BIOMED INFORM, V42, P377, DOI 10.1016/j.jbi.2008.08.010
Kirk H, 2021, Arxiv, DOI arXiv:2102.04130
Kojima T, 2022, Arxiv, DOI [arXiv:2205.11916, 10.48550/arXiv.2205.11916]
Kung Tiffany H, 2023, PLOS Digit Health, V2, pe0000198, DOI 10.1371/journal.pdig.0000198
Le Scao T., 2022, arXiv, DOI 10.48550/arXiv.2211.05100
Neelakantan A., 2022, arXiv
Nozza D, 2022, BIGSCIENCE EP 5 WORK
O'brien M., 2019, AP NEWS
Open AI, API Reference-OpenAI API 2023
Ouyang L., 2022, arXiv
Roller S, 2020, Arxiv, DOI arXiv:2004.13637
Sayers Eric., 2009, Entrez Programming Utilities Help [Internet]
Shuster K., 2021, arXiv, DOI DOI 10.48550/ARXIV.2104.07567
Stiennon N, 34 C NEUR INF PROC S
Sun Weiwei, 2022, arXiv
Thoppilan R., 2022, arXiv
Vaswani A, 2024, 31 C NEUR INF PROC S
Warzel C., The Atlantic
Wei JS, 2022, Arxiv, DOI [arXiv:2201.11903, 10.48550/arXiv.2201.11903]
Wobben G, Medium
Wunker S., 2015, Forbes
NR 33
TC 0
Z9 0
U1 16
U2 16
PU ANNALS FAMILY MEDICINE
PI LEAWOOD
PA 11400 TOMAHAWK CREEK PARKWAY, LEAWOOD, KS 66211-2672 USA
SN 1544-1709
EI 1544-1717
J9 ANN FAM MED
JI Ann. Fam. Med.
PD MAR-APR
PY 2024
VL 22
IS 2
BP 113
EP 120
DI 10.1370/afm.3075
PG 8
WC Primary Health Care; Medicine, General & Internal
WE Science Citation Index Expanded (SCI-EXPANDED)
SC General & Internal Medicine
GA NA2N2
UT WOS:001197653100009
PM 38527823
OA gold
DA 2024-09-05
ER
PT J
AU Vieira, ES
Gomes, JANF
AF Vieira, Elizabeth S.
Gomes, Jose A. N. F.
TI The bibliometric indicators as predictors of the final decision of the
peer review
SO RESEARCH EVALUATION
LA English
DT Article
DE peer review; bibliometric indicators; logistic regression; auxiliary
instrument; margins
ID ASSESSMENT EXERCISE RATINGS; CITATION COUNTS; COMPUTER-SCIENCE;
UNIVERSITY; INDEX; INFORMATION; ARCHAEOLOGY; VALIDATION; EXPERIENCE;
METRICS
AB Peer review of candidates' proposals for research position is generally used as the best method available to select the most promising researchers, but it is very costly and has its limitations. This article analyzes to what extent bibliometric indicators can predict the results of the peer review exercise using the example of a particular selection process. Two composite indicators are found to be strongly correlated with peer review-based decisions. We calculated that the probability of the estimated prediction, as determined by the composite indicators, for a selected applicant to be higher than the estimated prediction determined for a rejected applicant is about 75%.
C1 [Vieira, Elizabeth S.; Gomes, Jose A. N. F.] Univ Porto, Fac Ciencias, Dept Quim & Bioquim, REQUIMTE, Rua Campo Alegre,687, P-4169007 Oporto, Portugal.
C3 Universidade do Porto
RP Vieira, ES (corresponding author), Univ Porto, Fac Ciencias, Dept Quim & Bioquim, REQUIMTE, Rua Campo Alegre,687, P-4169007 Oporto, Portugal.
EM elizabeth.vieira@fc.up.pt
RI de Sousa Vieira, Elizabeth/A-6820-2010
OI de Sousa Vieira, Elizabeth/0000-0002-2240-110X
CR Abramo G, 2009, RES POLICY, V38, P206, DOI 10.1016/j.respol.2008.11.001
Aksnes DW, 2004, RES EVALUAT, V13, P33, DOI 10.3152/147154404781776563
[Anonymous], CITATION ANAL RES EV
[Anonymous], 2007, SJR SCIMAGO J COUNTR
[Anonymous], 2013, APPL LOGISTIC REGRES
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P1841, DOI 10.1002/asi.20901
Bornmann L, 2007, J INFORMETR, V1, P204, DOI 10.1016/j.joi.2007.01.002
Bornmann L, 2013, J INFORMETR, V7, P286, DOI 10.1016/j.joi.2012.12.003
Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112
Butler L, 2011, EUR POLIT SCI, V10, P44, DOI 10.1057/eps.2010.13
Cabezas-Clavijo A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068258
Cicero T., 2013, BIBLIOMETRIC PEER RE
De Sutter B, 2012, COMMUN ACM, V55, P69, DOI 10.1145/2240236.2240256
Franceschet M, 2011, J INFORMETR, V5, P275, DOI 10.1016/j.joi.2010.12.002
Glänzel W, 2003, SCIENTOMETRICS, V58, P571, DOI 10.1023/B:SCIE.0000006881.30700.ea
Glänzel W, 2006, SCIENTOMETRICS, V68, P457, DOI 10.1007/s11192-006-0124-y
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
HEFCE, 2014, IND REV ROL METR RES
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jayasinghe UW, 2001, EDUC EVAL POLICY AN, V23, P343, DOI 10.3102/01623737023004343
Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3
Lisée C, 2008, J AM SOC INF SCI TEC, V59, P1776, DOI 10.1002/asi.20888
Marsh HW, 2008, AM PSYCHOL, V63, P160, DOI 10.1037/0003-066X.63.3.160
McKay S, 2012, SOC POLICY ADMIN, V46, P526, DOI 10.1111/j.1467-9515.2011.00824.x
Meyer B, 2009, COMMUN ACM, V52, P31, DOI 10.1145/1498765.1498780
Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002
Neufeld J, 2013, RES EVALUAT, V22, P237, DOI 10.1093/reseval/rvt014
Norris M, 2003, J DOC, V59, P709, DOI 10.1108/00220410310698734
OPPENHEIM C, 1995, J DOC, V51, P18, DOI 10.1108/eb026940
Oppenheim C, 1997, J DOC, V53, P477, DOI 10.1108/EUM0000000007207
Reale E, 2007, RES EVALUAT, V16, P216, DOI 10.3152/095820207X227501
Rinia EJ, 1998, RES POLICY, V27, P95, DOI 10.1016/S0048-7333(98)00026-2
Scopus, 2013, SCOP CONT COV GUID
Taylor J, 2011, BRIT J MANAGE, V22, P202, DOI 10.1111/j.1467-8551.2010.00722.x
Van Raan AFJ, 2006, SCIENTOMETRICS, V67, P491, DOI 10.1556/Scient.67.2006.3.10
Vieira ES, 2014, J ASSOC INF SCI TECH, V65, P560, DOI 10.1002/asi.22981
Vieira ES, 2014, J INFORMETR, V8, P390, DOI 10.1016/j.joi.2014.01.012
Vieira ES, 2011, SCIENTOMETRICS, V89, P607, DOI 10.1007/s11192-011-0464-0
NR 38
TC 5
Z9 5
U1 2
U2 63
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0958-2029
EI 1471-5449
J9 RES EVALUAT
JI Res. Evaluat.
PD APR
PY 2016
VL 25
IS 2
BP 170
EP 183
DI 10.1093/reseval/rvv037
PG 14
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA DT1XB
UT WOS:000381274300006
DA 2024-09-05
ER
PT J
AU Kim, H
AF Kim, Heesop
TI Retrieval effectiveness of controlled and uncontrolled index terms in
INSPEC database
SO MALAYSIAN JOURNAL OF LIBRARY & INFORMATION SCIENCE
LA English
DT Article
DE Bibliographic Databases; Controlled vocabulary; Uncontrolled vocabulary;
INSPEC database; Information retrieval; Index terms; Precision and
recall
ID INFORMATION-RETRIEVAL; CONTROLLED VOCABULARY; FREE-TEXT;
NATURAL-LANGUAGE; RELEVANCE; SEARCH; SCIENCE
AB The purpose of this empirical study is to assess the retrieval effectiveness of controlled and uncontrolled index terms in bibliographic database. Two types of index terms were tested in a web-based environment using the operational large-scale INSPEC database. 15 query types used in the study were both controlled terms and uncontrolled index terms derived from inverse document frequency weights. The retrieval effectiveness was evaluated using Precision. The main finding indicates there are statistically significant differences in precision arising from the two types of index terms; the uncontrolled index terms demonstrate better precision than the controlled index terms.
C1 Kyungpook Natl Univ, Dept Lib & Informat Sci, Taegu 702701, South Korea.
C3 Kyungpook National University (KNU)
RP Kim, H (corresponding author), Kyungpook Natl Univ, Dept Lib & Informat Sci, Taegu 702701, South Korea.
EM heesop@knu.ac.kr
CR Aitchison T.M., 1970, INSPEC5 I EL ENG
Aitchison T.M., 1969, INSPEC4 I EL ENG
Belkin N., 2009, P SIGIR 2009 WORKSHO, P7, DOI DOI 10.1145/1670564.1670567
BHATTACHARYYA K, 1974, J DOC, V30, P235, DOI 10.1108/eb026580
Borlund P, 2003, J AM SOC INF SCI TEC, V54, P913, DOI 10.1002/asi.10286
BOYCE BR, 1989, J AM SOC INFORM SCI, V40, P273, DOI 10.1002/(SICI)1097-4571(198907)40:4<273::AID-ASI8>3.0.CO;2-T
Bradshaw S, 2003, LECT NOTES COMPUT SC, V2769, P499
Browne G, 2007, INDEXING COMPANION, P1, DOI 10.1017/CBO9781139168595
Buckley C., 2000, SIGIR Forum, V34, P33
CALKINS ML, 1980, DATABASE, V3, P53
Carrow D., 1981, INFORMATION MANAGEME, P131
Chu Heting., 2003, INFORM REPRESENTATIO
Cleveland DonaldB., 2001, INTRO INDEXING ABSTR, V3e
FIDEL R, 1991, J AM SOC INFORM SCI, V42, P501, DOI 10.1002/(SICI)1097-4571(199108)42:7<501::AID-ASI5>3.0.CO;2-V
FUGMANN R, 1982, INT CLASSIF, V9, P140
HARTER SP, 1992, J AM SOC INFORM SCI, V43, P602, DOI 10.1002/(SICI)1097-4571(199210)43:9<602::AID-ASI3>3.0.CO;2-Q
HEINE MH, 1984, INFORM TECHNOL R & D, V3, P95
HENZLER RG, 1978, INT CLASSIF, V5, P21
Järvelin K, 2009, LECT NOTES COMPUT SC, V5766, P289, DOI 10.1007/978-3-642-04417-5_28
Jones K.S., 1981, INFORM RETRIEVAL EXP
Kekäläinen J, 2002, J AM SOC INF SCI TEC, V53, P1120, DOI 10.1002/asi.10137
Kim H., 1998, THESIS U SHEFFIELD D
Lancaster F.W., 1998, INDEXING ABSTRACTING, V2nd
Muddamalle MR, 1998, J AM SOC INFORM SCI, V49, P881, DOI 10.1002/(SICI)1097-4571(199808)49:10<881::AID-ASI4>3.0.CO;2-M
PAO M.LEE., 1989, CONCEPTS INFORM RETR
ROBERTSON SE, 1976, J AM SOC INFORM SCI, V27, P129, DOI 10.1002/asi.4630270302
ROWLEY J, 1994, J INFORM SCI, V20, P108, DOI 10.1177/016555159402000204
Ruthven I., 2005, NEW DIRECTIONS COGNI
Saracevic T, 2007, J AM SOC INF SCI TEC, V58, P1915, DOI 10.1002/asi.20682
Savoy J, 2005, INFORM PROCESS MANAG, V41, P873, DOI 10.1016/j.ipm.2004.01.004
SCHAMBER L, 1994, ANNU REV INFORM SCI, V29, P3
Soergel D., 1985, Organizing information: principles of data base and retrieval systems
SVENONIUS E, 1986, J AM SOC INFORM SCI, V37, P331, DOI 10.1002/(SICI)1097-4571(198609)37:5<331::AID-ASI8>3.0.CO;2-E
SWETS JA, 1963, SCIENCE, V141, P245, DOI 10.1126/science.141.3577.245
The Institution of Engineering and Technology, 2012, IET INSPECDIRECT US
Waffenschmidt S, 2010, HEALTH INFO LIBR J, V27, P262, DOI [10.1111/j.1471-1842.2010.00910.x, 10.1111/J.1471-1842.2010.00910.x]
WALLACE PM, 1993, RQ, V33, P239
White H, 2013, CAT CLASSIF Q, V51, P655, DOI 10.1080/01639374.2013.777004
NR 38
TC 6
Z9 6
U1 0
U2 21
PU UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH
PI KUALA LUMPUR
PA UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH, KUALA LUMPUR,
50603, MALAYSIA
SN 1394-6234
J9 MALAYS J LIBR INF SC
JI Malays. J. Libr. Sci.
PY 2014
VL 19
IS 2
BP 103
EP 117
PG 15
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA AO3MH
UT WOS:000341233600007
DA 2024-09-05
ER
PT J
AU Yang, AM
Choi, IM
Abeliuk, A
Saffer, A
AF Yang, Aimei
Choi, Ian Myoungsu
Abeliuk, Andres
Saffer, Adam
TI The Influence of Interdependence in Networked Publics Spheres: How
Community-Level Interactions Affect the Evolution of Topics in Online
Discourse
SO JOURNAL OF COMPUTER-MEDIATED COMMUNICATION
LA English
DT Article
DE Networked Public Spheres; Cyberbalkanization; Twitter Discourse;
Community-Level Interaction; Network Analysis; Dynamic Topic Modeling
AB Investigations of networked public spheres often examine the structures of online platforms by studying users' interactions. These works suggest that users' interactions can lead to cyberbalkanization when interlocutors form homophilous communities that typically have few connections to others with opposing ideologies. Yet, rather than assuming communities are isolated, this study examines community-level interactions to reveal how communities in online discourses are more interdependent than previously theorized. Specifically, we examine how such interactions influence the evolution of topics overtime in source and target communities. Our analysis found that (a) the size of a source community (the community that initiates interactions) and a target community (the community that receives interactions), (b) the stability of the source community, and (c) the volume of mentions from a source community to a target community predicts the level of influence one community has on another's discussion topics. We argue this has significant theoretical and practical implications.
Lay Summary
Political discussions online, especially those in the United States, seem to range between harmonious discussions of likeminded people and heated debates that end with few, if any, who have changed their minds. Researchers have often examined these balkanized/polarized situations by studying online communities as isolated echo chambers of opinion. Our study focuses on the interactions between online communities who have different worldviews. We examine communities engaged in the global refugee crisis. We consider how the inter-community interactions influence the agenda of the respective communities. Our longitudinal analysis on the one hand confirms previous studies, namely that intra-community interactions indeed resemble echo chambers. On the other hand, we also find that there is interdependence in the inter-community discussion topics, albeit some communities had greater influence on other communities' discussion topics. For example, larger, more stable communities command more influence.
C1 [Yang, Aimei] Univ Southern Calif, Annenberg Sch Commun & Journalism, Los Angeles, CA 90089 USA.
[Choi, Ian Myoungsu] Univ Southern Calif, Viterbi Sch Engn, Informat Sci Inst, Marina Del Rey, CA 90292 USA.
[Abeliuk, Andres] Univ Chile, Dept Comp Sci, Santiago, Chile.
[Saffer, Adam] Univ Minnesota, Hubbard Sch Journalism & Mass Commun, Minneapolis, MN 55455 USA.
C3 University of Southern California; University of Southern California;
Universidad de Chile; University of Minnesota System; University of
Minnesota Twin Cities
RP Yang, AM (corresponding author), Univ Southern Calif, Annenberg Sch Commun & Journalism, Los Angeles, CA 90089 USA.
EM aimei.yang@usc.edu
RI Saffer, Adam/GRY-0838-2022
OI Saffer, Adam/0000-0001-8032-4256
CR [Anonymous], 1990, Social Text, DOI [10.2307/466240, DOI 10.2307/466240]
[Anonymous], 2009, INT ENCY CIVIL SOC
[Anonymous], 2010, ICML
Ausserhofer J, 2013, INFORM COMMUN SOC, V16, P291, DOI 10.1080/1369118X.2012.756050
Barberá P, 2015, PSYCHOL SCI, V26, P1531, DOI 10.1177/0956797615594620
Benkler Y, 2015, POLIT COMMUN, V32, P594, DOI 10.1080/10584609.2014.986349
Blei D, 2006, P 23 INT C MACH LEAR, P113
Brummette J, 2018, J MASS COMMUN Q, V95, P497, DOI 10.1177/1077699018769906
Chan CH, 2018, J INF TECHNOL POLITI, V15, P378, DOI 10.1080/19331681.2018.1519480
Colleoni E, 2014, J COMMUN, V64, P317, DOI 10.1111/jcom.12084
Dahlgren P, 2009, COMMUN SOC POLIT, P1
DOWNS A, 1972, PUBLIC INTEREST, P38
Freelon D, 2018, NEW MEDIA SOC, V20, P990, DOI 10.1177/1461444816676646
GRIFFITH BC, 1972, SCIENCE, V177, P959, DOI 10.1126/science.177.4053.959
Habermas J, 1989, The Structural Transformation of the Public Sphere: An Inquiry into a Category of Bourgeois Society
Habermas Jurgen, 2015, FACTS NORMS CONTRIBU
Himelboim I, 2013, COMMUN METHODS MEAS, V7, P195, DOI 10.1080/19312458.2013.813922
Jackson SJ, 2016, INFORM COMMUN SOC, V19, P397, DOI 10.1080/1369118X.2015.1106571
Marwick AE, 2011, NEW MEDIA SOC, V13, P114, DOI 10.1177/1461444810365313
Metzler S, 2019, SOC NETWORKS, V58, P50, DOI 10.1016/j.socnet.2018.12.004
Sabatier Paul A., 2007, THEORIES POLICY PROC, P189, DOI DOI 10.4324/9780367274689-7
Shulman S. W., 2011, P 12 ANN INT DIGITAL, P373
Uitermark J, 2016, SOC NETWORKS, V47, P107, DOI 10.1016/j.socnet.2016.05.006
UNHCR (United Nations High Commissioner for Refugees), 2019, FIG GLANC STAT YB
Waisanen D, 2012, COMMUN MONOGR, V79, P232, DOI 10.1080/03637751.2012.673230
NR 25
TC 4
Z9 5
U1 7
U2 77
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 1083-6101
J9 J COMPUT-MEDIAT COMM
JI J. Comput.-Mediat. Commun.
PD MAY
PY 2021
VL 26
IS 3
BP 148
EP 166
DI 10.1093/jcmc/zmab002
EA MAY 2021
PG 19
WC Communication; Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Communication; Information Science & Library Science
GA UE2WK
UT WOS:000687753900002
OA gold
DA 2024-09-05
ER
PT J
AU Mustapha, KB
Yap, EH
Abakr, YA
AF Mustapha, Khameel B.
Yap, Eng Hwa
Abakr, Yousif Abdalla
TI Bard, ChatGPT and 3DGPT: a scientometric analysis of generative AI tools
and assessment of implications for mechanical engineering education
SO INTERACTIVE TECHNOLOGY AND SMART EDUCATION
LA English
DT Article; Early Access
DE Generative AI; ChatGPT; Bard; 3DGPT; Mechanical engineering; Engineering
education
ID ARTIFICIAL-INTELLIGENCE; COMMUNICATION; MATHEMATICS; PERCEPTIONS;
CHALLENGES; CURRICULUM; MODELS
AB PurposeFollowing the recent rise in generative artificial intelligence (GenAI) tools, fundamental questions about their wider impacts have started to reverberate around various disciplines. This study aims to track the unfolding landscape of general issues surrounding GenAI tools and to elucidate the specific opportunities and limitations of these tools as part of the technology-assisted enhancement of mechanical engineering education and professional practices.Design/methodology/approachAs part of the investigation, the authors conduct and present a brief scientometric analysis of recently published studies to unravel the emerging trend on the subject matter. Furthermore, experimentation was done with selected GenAI tools (Bard, ChatGPT, DALL.E and 3DGPT) for mechanical engineering-related tasks.FindingsThe study identified several pedagogical and professional opportunities and guidelines for deploying GenAI tools in mechanical engineering. Besides, the study highlights some pitfalls of GenAI tools for analytical reasoning tasks (e.g., subtle errors in computation involving unit conversions) and sketching/image generation tasks (e.g., poor demonstration of symmetry).Originality/valueTo the best of the authors' knowledge, this study presents the first thorough assessment of the potential of GenAI from the lens of the mechanical engineering field. Combining scientometric analysis, experimentation and pedagogical insights, the study provides a unique focus on the implications of GenAI tools for material selection/discovery in product design, manufacturing troubleshooting, technical documentation and product positioning, among others.
C1 [Mustapha, Khameel B.; Abakr, Yousif Abdalla] Univ Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih, Malaysia.
[Yap, Eng Hwa] Xian Jiaotong Liverpool Univ, XJTLU Entrepreneur Coll Taicang, Sch Robot, Taicang, Greater Suzhou, Peoples R China.
C3 University of Nottingham Malaysia; Xi'an Jiaotong-Liverpool University
RP Mustapha, KB (corresponding author), Univ Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih, Malaysia.
EM Khameelb.Mustapha@nottingham.edu.my; Eng.Hwa@xjtlu.edu.cn;
Yousif.Ab@nottingham.edu.my
CR Abid A, 2021, NAT MACH INTELL, V3, P461, DOI 10.1038/s42256-021-00359-2
Akin F, 2016, MATER DESIGN, V90, P1207, DOI 10.1016/j.matdes.2015.04.045
Albort-Morant G, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9061011
ALLEN TJ, 1980, IEEE T ENG MANAGE, V27, P2, DOI 10.1109/TEM.1980.6447372
Almazrouei E., 2023, FINDINGS ASS COMPUTA, P10755
Anil R, 2023, Arxiv, DOI [arXiv:2305.10403, 10.48550/arXiv.2305.10403]
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Authentise, 2023, 3DGPT
Badini S, 2023, ADV IND ENG POLY RES, V6, P278, DOI 10.1016/j.aiepr.2023.03.003
Baechle-Clayton M, 2022, J COMPOS SCI, V6, DOI 10.3390/jcs6070202
Bahroun Z, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151712983
Bannour N., 2021, P 2 WORKSH SIMPL EFF, P11, DOI DOI 10.18653/V1/2021.SUSTAINLP-1.2
Bender EM, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P610, DOI 10.1145/3442188.3445922
Berdanier CGP, 2023, J ENG EDUC, V112, P583, DOI 10.1002/jee.20541
Bird J., 2014, Mechanical engineering principles, V3
Birhane A, 2023, NAT REV PHYS, V5, P277, DOI 10.1038/s42254-023-00581-4
Biswas SS, 2023, ANN BIOMED ENG, V51, P868, DOI 10.1007/s10439-023-03172-7
Blanco-González A, 2023, PHARMACEUTICALS-BASE, V16, DOI 10.3390/ph16060891
Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7
Bommasani Rishi, 2021, On the opportunities and risks of foundation models
Borji A, 2023, Arxiv, DOI [arXiv:2302.03494, DOI 10.48550/ARXIV.2302.03494]
Brainard S, 2017, SPACE POLICY, V42, P70, DOI 10.1016/j.spacepol.2017.07.001
Brown T., 2020, ADV NEURAL INFORM PR, V33, P1877, DOI DOI 10.48550/ARXIV.2005.14165
Care C, 2010, HIST COMPUT-SPRINGER, P1, DOI 10.1007/978-1-84882-948-0
Carr D.F., 2023, ChatGPT grew another 55.8% in march, overtaking Bing and DuckDuckGo
Carvallo Juan Pablo, 2023, Proceedings of the 18th Latin American Conference on Learning Technologies (LACLO 2023). Lecture Notes in Educational Technology, P328, DOI 10.1007/978-981-99-7353-8_25
Chan AKC, 2016, ENGINEERING-PRC, V2, P10, DOI 10.1016/J.ENG.2016.01.003
Chen HL, 2024, Arxiv, DOI arXiv:2311.16989
Chen Y, 2023, INFORM SYST FRONT, V25, P161, DOI 10.1007/s10796-022-10291-4
Chong S, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10113960
Chu Z, 2023, Arxiv, DOI arXiv:2309.15402
Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y
Dang H, 2022, Arxiv, DOI [arXiv:2209.01390, 10.48550/arXiv.2209.01390, DOI 10.48550/ARXIV.2209.01390, 10.48550/ARXIV.2209.01390]
Deeley SJ, 2018, ASSESS EVAL HIGH EDU, V43, P439, DOI 10.1080/02602938.2017.1356906
Dhillon B.S., 2006, Creativity for engineers, DOI 10.1080.030437905000087423
Duong CD, 2024, INTERACT TECHNOL SMA, V21, P356, DOI 10.1108/ITSE-05-2023-0096
Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642
Eager B, 2023, J UNIV TEACH LEARN P, V20
Edström K, 2014, EUR J ENG EDUC, V39, P539, DOI 10.1080/03043797.2014.895703
Eke D., 2023, Journal of Responsible Technology, V13, DOI [10.1016/j.jrt.2023.100060, DOI 10.1016/J.JRT.2023.100060]
Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z
Fan LZ, 2023, Arxiv, DOI arXiv:2304.02020
Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846
Flegg J, 2012, INT J MATH EDUC SCI, V43, P717, DOI 10.1080/0020739X.2011.644333
Frenkel ME, 2023, Arxiv, DOI arXiv:2309.15866
Frieder S, 2023, Arxiv, DOI arXiv:2301.13867
Gabajiwala E., 2022, FUTURISTIC TRENDS NE, V936, P523
Gill S. S., 2024, INTERNET THINGS CYBE, V4, P19, DOI DOI 10.1016/J.IOTCPS.2023.06.002
González-Pérez LI, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031493
Gozalo-Brizuela R, 2023, Arxiv, DOI arXiv:2306.02781
Gravel J., 2023, Mayo Clinic Proceedings: Digital Health, V1, P226, DOI DOI 10.1016/J.MCPDIG.2023.05.004
Guersenzvaig A., 2023, Nobody writing and nobody reading: artificial intelligence chatbots and the science we want
Hacker P, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P1112, DOI 10.1145/3593013.3594067
Hariri W, 2024, Arxiv, DOI [arXiv:2304.02017, 10.48550/arxiv.2304.02017, DOI 10.48550/ARXIV.2304.02017]
Hazell J, 2023, Arxiv, DOI arXiv:2305.06972
Henderson M, 2019, ASSESS EVAL HIGH EDU, V44, P1237, DOI 10.1080/02602938.2019.1599815
Hodge B., 2002, Journal of Engineering Education, V91, P415
Hopfenbeck TN, 2023, ASSESS EDUC, V30, P99, DOI 10.1080/0969594X.2023.2212192
Ibrahim D, 2011, PROCEDIA COMPUT SCI, V3, DOI 10.1016/j.procs.2010.12.140
Iqbal S, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON MOOC, INNOVATION AND TECHNOLOGY IN EDUCATION (MITE), P101, DOI 10.1109/MITE.2014.7020249
Jablonka KM, 2023, DIGIT DISCOV, V2, P1233, DOI 10.1039/d3dd00113j
Javaid M., 2023, BenchCouncil Transactions on Benchmarks, Standards and Evaluations, V3, DOI DOI 10.1016/J.TBENCH.2023.100115
John Schulman B.Z., 2023, Introducing ChatGPT
Johri A, 2023, J ENG EDUC, V112, P572, DOI 10.1002/jee.20537
Jovanovic M, 2022, COMPUTER, V55, P107, DOI 10.1109/MC.2022.3192720
Kang D., 2023, arXiv
Kasirzadeh A., 2023, Philos. & Technol., DOI [10.1007/s13347-023-00606-x, DOI 10.1007/S13347-023-00606-X]
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Katona Z, 2011, J MARKETING RES, V48, P425, DOI 10.1509/jmkr.48.3.425
Klahn C., 2020, P AMPA2020
Koukis N, 2019, INTERACT TECHNOL SMA, V16, P74, DOI 10.1108/ITSE-10-2018-0081
Kwan C.C.L., 2023, INT C TECHNOLOGY ED, P275
Lahat A, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-31412-2
Le Scao T., 2022, arXiv, DOI 10.48550/arXiv.2211.05100
Leonarcl D.A., 2011, Creativity and Innovation, V325
Li Junyi, 2022, arXiv
Lin T, 2022, AI Open
Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410
Luccioni A. S., 2022, arXiv, DOI [DOI 10.48550/ARXIV.2211.02001, 10.48550/arXiv.2211.02001]
Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750
Martinez P, 2019, AUTOMAT CONSTR, V107, DOI 10.1016/j.autcon.2019.102947
Menekse M, 2023, J ENG EDUC, V112, P578, DOI 10.1002/jee.20539
Meta A., 2023, Meta AI
Michko G.M., 2008, 2008 38 ANN FRONTIER, pS1A
Milano S, 2023, NAT MACH INTELL, V5, P333, DOI 10.1038/s42256-023-00644-2
Mishra S., 2022, arXiv
Mitchell M, 2023, P NATL ACAD SCI USA, V120, DOI 10.1073/pnas.2215907120
Mollick E.R., 2023, Including Prompts
Mollick E.R., 2022, New Modes of Learning Enabled by AI Chatbots: Three Methods and Assignments
Mollick E, 2023, RES TECHNOL MANAGE, V66, P11, DOI 10.1080/08956308.2023.2213102
Moore S, 2022, LECT NOTES COMPUT SC, V13450, P243, DOI 10.1007/978-3-031-16290-9_18
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Mozes M, 2023, Arxiv, DOI arXiv:2308.12833
Narayan A, 2022, Arxiv, DOI arXiv:2205.09911
Necesal P, 2012, LECT NOTES ENG COMP, P271
Neto DDES, 2016, J CONSTR ENG M, V142, DOI 10.1061/(ASCE)CO.1943-7862.0001163
Nikolic S, 2023, EUR J ENG EDUC, V48, P559, DOI 10.1080/03043797.2023.2213169
Norton R.L., 2010, Machine Design
Oduro S, 2022, EUR J INNOV MANAG, V25, P567, DOI 10.1108/EJIM-10-2020-0425
Ouyang L, 2022, ADV NEUR IN
Ozkan A, 2016, EURASIAN J EDUC RES, P239
Palmer S, 2011, EUR J ENG EDUC, V36, P357, DOI 10.1080/03043797.2011.593095
Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577
Peng Y., 2023, Nature Medicine, V29, P1
Peres R, 2023, INT J RES MARK, V40, P269, DOI 10.1016/j.ijresmar.2023.03.001
Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07
Pursnani V, 2023, Arxiv, DOI arXiv:2304.12198
Qadir J., 2023, 2023 IEEE GLOBAL ENG, P1
Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783
Ramalhete PS, 2010, MATER DESIGN, V31, P2275, DOI 10.1016/j.matdes.2009.12.013
Redecker C., 2017, Joint Research Centre (JRC) Science for Policy report, DOI DOI 10.2760/159770
Rillig MC, 2023, ENVIRON SCI TECHNOL, DOI 10.1021/acs.est.3c01106
Salah M., 2023, Computers in Human Behavior: Artificial Humans, V1, P100006, DOI [DOI 10.1016/J.CHBAH.2023.100006, https://doi.org/10.1016/j.chbah.2023.100006]
Sánchez-Ruiz LM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13106039
Sazhin SS, 1998, INT J ENG EDUC, V14, P145
Sezgin S, 2021, COMPUT APPL ENG EDUC, V29, P950, DOI 10.1002/cae.22350
Shanahan M, 2022, Arxiv, DOI arXiv:2212.03551
SHANNON CE, 1948, BELL SYST TECH J, V27, P623, DOI 10.1002/j.1538-7305.1948.tb00917.x
Solaiman I, 2021, ADV NEUR IN, V34
Sorby SA, 1999, COMPUT APPL ENG EDUC, V7, P252, DOI 10.1002/(SICI)1099-0542(1999)7:4<252::AID-CAE7>3.0.CO;2-Z
Sosa ME, 2002, IEEE T ENG MANAGE, V49, P45, DOI 10.1109/17.985747
SprutCAM Tech, 2023, Meet the SprutCAM X AI assistant
Stiene Riemer M.S., 2023, A generative AI roadmap for financial institutions
Tan H, 2021, J ENVIRON MANAGE, V297, DOI 10.1016/j.jenvman.2021.113382
Thirunavukarasu AJ, 2023, NAT MED, V29, P1930, DOI 10.1038/s41591-023-02448-8
Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879
Thurzo A, 2023, EDUC SCI, V13, DOI 10.3390/educsci13020150
Tiwari CK, 2023, INTERACT TECHNOL SMA, DOI 10.1108/ITSE-04-2023-0061
Tolouei-Rad M., 2006, Journal of Achievements in Materials and Manufacturing Engineering, V18, P31
Tshai K.Y., 2014, ENG EDUC, V9, P74, DOI [DOI 10.11120/ENED.2014.00020, 10.11120/ened.2014.00020]
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Kesteren IEH, 2008, MATER DESIGN, V29, P133, DOI 10.1016/j.matdes.2006.11.008
Vaswani A, 2017, ADV NEUR IN, V30
Wang HF, 2023, ENGINEERING-PRC, V25, P51, DOI 10.1016/j.eng.2022.04.024
Watkins R., 2023, AI Ethics, P1
Wei JS, 2022, Arxiv, DOI arXiv:2206.07682
Wiggins WF, 2022, RADIOL-ARTIF INTELL, V4, DOI 10.1148/ryai.220119
Wiliam D., 1998, ASSESS EDUC, V5, P7, DOI [DOI 10.1080/0969595980050102, 10.1080/0969595980050102]
World Health Organization, 2021, Ethics and governance of artificial intelligence for health: WHO guidance
WOS, 2023, Web of Science
Wu CJ., 2022, PROC MACH LEARN SYST, V4, P795, DOI DOI 10.48550/ARXIV.2111.00364
Yang JF, 2023, Arxiv, DOI [arXiv:2304.13712, DOI 10.48550/ARXIV.2304.13712]
Zhai Xiaoming, 2023, XRDS: Crossroads, The ACM Magazine for Students, P42, DOI 10.1145/3589649
Zhao WX, 2023, Arxiv, DOI [arXiv:2303.18223, DOI 10.48550/ARXIV.2303.18223, 10.48550/arXiv.2303.18223]
Zhavoronkov A, 2023, NAT MED, V29, P532, DOI 10.1038/d41591-023-00014-w
Zhu PF, 2023, Arxiv, DOI arXiv:2302.04456
NR 146
TC 0
Z9 0
U1 19
U2 24
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 1741-5659
EI 1758-8510
J9 INTERACT TECHNOL SMA
JI Interact. Technol. Smart Educ.
PD 2024 FEB 16
PY 2024
DI 10.1108/ITSE-10-2023-0198
EA FEB 2024
PG 37
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA HS1H6
UT WOS:001161398500001
DA 2024-09-05
ER
PT J
AU Farhat, F
Sohail, SS
Madsen, DO
AF Farhat, Faiza
Sohail, Shahab Saquib
Madsen, Dag Oivind
TI How trustworthy is ChatGPT? The case of bibliometric analyses
SO COGENT ENGINEERING
LA English
DT Article
DE ChatGpt; bibliometrics; trustworthiness; artificial intelligence;
chatbots
AB The introduction of the AI-powered chatbot ChatGPT by OpenAI has sparked much interest and debate among academic researchers. Commentators from different scientific disciplines have raised many concerns and issues, especially related to the ethics of using these tools in scientific writing and publications. In addition, there has been discussions about whether ChatGPT is trustworthy, effective, and useful in increasing researchers' productivity. Therefore, in this paper, we evaluate ChatGPT's performance on tasks related to bibliometric analysis, by comparing the output provided by the chatbot with a recently conducted bibliometric study on the same topic. The findings show that there are large discrepancies and ChatGPT's trustworthiness is low in this particular area. Therefore, researchers should exercise caution when using ChatGPT as a tool in bibliometric studies.
C1 [Farhat, Faiza] Aligarh Muslim Univ, Dept Zool, Aligarh, India.
[Sohail, Shahab Saquib] Jamia Hamdard, Dept Comp Sci & Engn, New Delhi, India.
[Madsen, Dag Oivind] Univ South Eastern Norway, USN Sch Business, Dept Business Mkt & Law, Honefoss, Norway.
C3 Aligarh Muslim University; Jamia Hamdard University; University College
of Southeast Norway
RP Madsen, DO (corresponding author), Univ South Eastern Norway, USN Sch Business, Dept Business Mkt & Law, Honefoss, Norway.
EM dag.oivind.madsen@usn.no
RI FARHAT, FAIZA/KIK-8175-2024; Madsen, Dag Øivind/I-1587-2016; sohail,
shahab/O-3263-2019
OI Madsen, Dag Øivind/0000-0001-8735-3332; sohail,
shahab/0000-0002-5944-7371
CR Biswas S, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.223312
Cotton D., 2023, PREPRINT, DOI DOI 10.35542/OSF.IO/MRZ8H
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662
Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642
Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z
Else H, 2023, NATURE, V613, P423, DOI 10.1038/d41586-023-00056-7
Farhat F, 2023, FRONT MICROBIOL, V14, DOI 10.3389/fmicb.2023.1179312
Farhat F, 2023, LIFE-BASEL, V13, DOI 10.3390/life13010143
Gao CA, 2022, bioRxiv, DOI [10.1101/2022.12.23.521610, 10.1101/2022.12.23.521610, DOI 10.1101/2022.12.23.521610, DOI 10.1101/2022.12.23.521610V1]
Graham Flora, 2022, Nature, DOI 10.1038/d41586-022-04437-2
Hill-Yardin EL, 2023, BRAIN BEHAV IMMUN, V110, P152, DOI 10.1016/j.bbi.2023.02.022
Khosravi H, 2023, Arxiv, DOI arXiv:2304.05436
King MR, 2023, CELL MOL BIOENG, V16, P1, DOI 10.1007/s12195-022-00754-8
Kitamura FC, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.230171
Koo Malcolm, 2023, Radiology, V307, pe230312, DOI 10.1148/radiol.230312
Lee JY, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.6
Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410
Maggio LA, 2021, PERSPECT MED EDUC, V10, P79, DOI 10.1007/s40037-020-00626-9
McMurtrie, 2023, CHRONICLES HIGHER ED
Omar R., 2017, CURRENT STATUS FUTUR
Perrier L, 2016, J CLIN EPIDEMIOL, V73, P50, DOI 10.1016/j.jclinepi.2015.02.019
Sallam M, 2023, RES PRACTICE SYSTEMA, P1
Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2
Sharples M., 2022, NEW AI TOOLS CAN WRI
Sohail S. S., 2023, CURRENT CHALLENGES P, DOI [https://doi.org/10.2139/ssrn.4413921, DOI 10.2139/SSRN.4413921]
Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z
Teixeira da Silva JA, 2023, NURSE EDUC PRACT, V68, DOI 10.1016/j.nepr.2023.103600
Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 30
TC 16
Z9 16
U1 17
U2 123
PU TAYLOR & FRANCIS AS
PI OSLO
PA KARL JOHANS GATE 5, NO-0154 OSLO, NORWAY
SN 2331-1916
J9 COGENT ENG
JI Cogent Eng.
PD DEC 31
PY 2023
VL 10
IS 1
AR 2222988
DI 10.1080/23311916.2023.2222988
PG 8
WC Engineering, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA K4RV1
UT WOS:001016335100001
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Lin, QN
Zhuo, LZ
AF Lin, Qingna
Zhuo, Lizheng
TI Research on the Evaluation and Optimization Method of the Impact of
Chorus Education on University Culture Based on Coevolution Model in the
Background of Artificial Intelligence
SO SCIENTIFIC PROGRAMMING
LA English
DT Article
AB The development of artificial intelligence technology is a field where all walks of life need to carry out in-depth research in the future, and the introduction of artificial intelligence technology in the field of university evaluation has become an inevitable trend. Through the collection and collation of the literature at home and abroad, the influence of chorus education on college culture in China has long remained in qualitative and experiential judgment and the significance and value of chorus education to colleges and universities are relatively single. Therefore, it is of great innovative value and practical significance to establish a scientific, systematic, and comprehensive evaluation mechanism for the impact of chorus education on university culture and to scientifically analyze key issues, establish evaluation criteria, and inject new research perspectives into the promotion of chorus education in colleges and universities in China, combining with the mature coevolution theoretical model of management science. It is of great innovative value and significance to combine the DEMATEL research method with the current practice of promoting chorus education in China's colleges and universities and to systematically and comprehensively construct the evaluation system and research paradigm in line with chorus education by using the qualitative and quantitative methods.
C1 [Lin, Qingna; Zhuo, Lizheng] Krirk Univ, Int Coll, Bangkok 10220, Thailand.
C3 Krirk University
RP Zhuo, LZ (corresponding author), Krirk Univ, Int Coll, Bangkok 10220, Thailand.
EM linqn@cqupt.edu.cn; 845902916@qq.com
CR Ahn HJ, 2015, J AUDIOL OTOL, V19, P79, DOI 10.7874/jao.2015.19.2.79
Albert E., 2016, EINSTEIN SCI ED, V4, P102
Barrientos-Fernández A, 2019, DATA BRIEF, V25, DOI 10.1016/j.dib.2019.104124
Chang Y, 2021, SCI TECHNOLOGY MANAG, V41, P238
Crickmore L, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00651
Das P., 2020, PROCEDIA COMPUT SCI, V172, P1033, DOI DOI 10.1016/J.PROCS.2020.05.151
Du Y., 2018, SCI FDN CHINA, V2, P161
Duarte P, 2018, EVENT MANAGE, V22, P517, DOI [10.3727/152599518X15264726192451, 10.3727/152599518x15264726192451]
EHRLICH PR, 1964, EVOLUTION, V18, P586, DOI 10.2307/2406212
Eisenhardt KM, 2000, HARVARD BUS REV, V78, P91
Fan S, 2013, VOICE YELLOW RIVER, V21, P35
González JG, 2017, COMPLEMENT THER CLIN, V27, P61, DOI 10.1016/j.ctcp.2017.03.004
Gorrochotegui A, 2009, CHORUS, V6, P83
Guo Y, 2016, J JIAOZUO U, V30, P105
Hodgson GM, 2002, J EVOL ECON, V12, P259, DOI 10.1007/s00191-002-0118-8
Hu S, 2019, P NAT TEACH RES FUND, P2
Huang Z., 2017, U ELECT SCI TECHNOLO, V4, P4
Huaxia, 2015, POPULAR TECHNOLOGY, V17, P209
Jacob K, 2016, SCI TESTS MEASUREMEN, V10, P32
JANZEN DH, 1980, EVOLUTION, V34, P611, DOI 10.1111/j.1558-5646.1980.tb04849.x
Jin R, 2016, J HEIHE U, V7, P159
Li C., 2019, 60 THEORIES COMMONLY, V03, P21
Li W., 2017, RES TEACHING REFORM, P58
Liu W, 2014, J XINGHAI CONSERVATO, V2, P140
Music G., 2018, NORD J MUSIC THER, V27
NORGAARD RB, 1984, ECON DEV CULT CHANGE, V32, P525, DOI 10.1086/451404
Pan M, 2016, J XIANGNAN U, V37, P86
Pan Q, 2020, THE ARTIST, V9, P120
Pei L., 2001, CHINESE MUSIC, V4
Shao Y, 2020, VOICE YELLOW RIVER, V7, P174
Shin O.P., 2019, J APPL MEASUREMENT, V20
SungWon Yoon, 2012, [Journal of Music Education Science, 음악교육공학], V14, P81
Tai DM, 2018, EDUC PSYCHOL-UK, V38, P633, DOI 10.1080/01443410.2017.1280129
Tang L., 2013, SCI SCI MANAGEMENT S, V12, P89
Wang Wengjuan, 2016, STUDIES SCI SCI, V3, P471
Wang Z., 2017, ARTHRITIS RES, V1, P196
Washnik NJ, 2016, NOISE HEALTH, V18, P98, DOI 10.4103/1463-1741.178510
Wesolowski BC, 2019, J EDUC MEAS, V56, P610, DOI 10.1111/jedm.12227
Xu Q, 2014, YIHAI, V10, P84
Zhang J, 2013, NO MUSIC, V10, P47
Zhang L., 2006, STAT DECIS MAK, V8, P10
Zhou H., 1989, ED EVALUATION EVALUA, V7, P1
Zhu W, 2011, MUSIC COMPOSITION, V6, P141
안비화, 2015, [Resach of Dance Education, 한국무용교육학회지], V26, P19
조홍기, 2017, 미디어와 공연예술 연구, V12, P157, DOI 10.22534/broad.2017.12.3.157
NR 45
TC 0
Z9 0
U1 2
U2 30
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1058-9244
EI 1875-919X
J9 SCI PROGRAMMING-NETH
JI Sci. Program.
PD OCT 31
PY 2021
VL 2021
AR 9261934
DI 10.1155/2021/9261934
PG 10
WC Computer Science, Software Engineering
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA XM9ZL
UT WOS:000729175200004
OA gold
DA 2024-09-05
ER
PT C
AU Tran, HMT
Anvari, F
AF Hien Minh Thi Tran
Anvari, Farshid
BE Blooma, J
Nkhoma, M
Leung, N
TI How Reflective Professionals Design and Evaluate Financial Information
Management Systems Courses
SO PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS
MANAGEMENT AND EVALUATION (ICIME 2013)
LA English
DT Proceedings Paper
CT 4th International Conference on Information Systems Management and
Evaluation (ICIME)
CY MAY 13-14, 2013
CL RMIT Univ Vietnam, Ho Chi Minh City, VIETNAM
HO RMIT Univ Vietnam
DE active learning; reflective practice strategies; action-research;
evaluation; financial information management systems (FIMS); accounting
information systems (AIS)
ID PRACTITIONER PERSPECTIVE
AB Financial Information Management Systems (FIMS) or Accounting Information Systems (AIS) is a cross-discipline subject, often taught by Computing and Accounting disciplines. In recent years, demand for this subject has grown. However, educators have lamented high failure rates among accounting information systems students; professional bodies have reported that graduates lack sufficient meta-cognitive knowledge of information systems to perform their tasks. Quality teaching of FIMS or AIS requires instructors to actively update their knowledge of accounting systems and information technology as well as to reflect on teaching techniques. Reflection and reflective practices are taught within the education discipline, and have grown in popularity among many other disciplines. Yet little has been written about how accounting and IT professionals reflect on their practice and how they apply their reflections to their teaching. This paper explores the research question: how can reflective professionals assist computing and accounting academics in the design and delivery of the FIMS or AIS courses? Through our case study at an Australian university, we provide insights into the application of constructivist theory and reflective practice strategies in teaching FIMS courses. We discuss (1) the rationale for the importance of constructivist theory, cognitive load theory, reflective and action-research in teaching and learning, (2) Bloom's Revised Taxonomy, (3) the applications of Bloom and the reflective concept to design and deliver FIMS courses, (4) reflection on our teaching strategies in applying these concepts and, (5) conclusions on how reflective professionals can assist computing and accounting academics in the design and delivery of FIMS or AIS courses. Our study supports the view that reflection is a strategy; the Bloom's Revised Taxonomy and the PEER Model are tools to assist instructors in designing and delivering courses that enhance participant's learning abilities. We propose the five dimensional reflective cycle to facilitate reflective practice among academic and professional instructors for designing and delivering FIMS and AIS courses.
C1 [Hien Minh Thi Tran] Macquarie Univ, Off Financial Serv, N Ryde, NSW 2109, Australia.
C3 Macquarie University
EM hien.tran@mq.edu.au
CR Anderson L., 2009, TAXONOMY LEARNING TE
[Anonymous], 2004, J INFORM SYSTEMS ED
[Anonymous], 1999, High Educ. Res. Dev.
[Anonymous], ACCOUNTING FUTURE MO
Aoun C., 2010, AMCIS P
Arum R., 2011, Academically adrift: Limited learning on college campuses
Badua F. A., 2011, ACCOUNTING ED J, V21, P89
Biggs J.D., 2009, Teaching for quality learning at university: What the student does
Çepni S, 2006, COMPUT EDUC, V46, P192, DOI 10.1016/j.compedu.2004.07.008
Del Carlo D, 2010, J SCI EDUC TECHNOL, V19, P58, DOI 10.1007/s10956-009-9178-y
DeLotell P.J., 2010, AM J BUSINESS ED, V3
Essayyad M., 2011, INT J TRADE GLOBAL M, V4
Falchikov N, 2008, J UNIV TEACH LEARN P, V5
Harrast S., 2010, ACCOUNTING ED J, V20, P1
Hazzan O, 2002, J SYST SOFTWARE, V63, P161, DOI 10.1016/S0164-1212(02)00012-2
Hazzan O, 2003, LECT NOTES COMPUT SC, V2753, P51
IFAC, 2007, IEPS 2, V2
Kelly P., 2008, GLOBO SAPIENS TRANSF
KILLION JP, 1991, EDUC LEADERSHIP, V48, P14
Krathwohl D.R., 2002, THEORY PRACTICE, V41
Lenard M. J., 2010, AM J BUSINESS ED, V3
Macquarie University, 2012, PEER REV LEARN TEACH
Mahani S., 2012, J COLL TEACHING LEAR, V9
Mann K, 2009, ADV HEALTH SCI EDUC, V14, P595, DOI 10.1007/s10459-007-9090-2
McGuigan N., 2010, ATN ASS C ASS SUST D
McGuigan N.C., 2009, International Journal of Learning, V16, P49, DOI [DOI 10.18848/1447-9494/CGP/V16I09/46586, 10.18848/1447-9494/CGP/v16i09/46586]
Plack MM, 2005, PEDIATRICS, V116, P1546, DOI 10.1542/peds.2005-0209
Ragan J., 2006, J BUSINESS CASE STUD, V2, P17
Roberts F.D., 2007, College Student Journal, V41, P423
Samkin G, 2008, ACCOUNT EDUC, V17, P233, DOI 10.1080/09639280701577460
Schon D. A., 1984, REFLECTIVE PRACTITIO
St Edward's University, 2004, TASK OR QUEST CONSTR
Stowe K., 2010, Journal for Economic Educators, V10, P33
Sweller J, 1998, EDUC PSYCHOL REV, V10, P251, DOI 10.1023/A:1022193728205
Tan F. T. C., 2010, ACIS P
Thorpe K., 2004, Reflective Practice, V5, P327, DOI DOI 10.1080/1462394042000270655
UTS, 2007, KEEP REFL J
Vatanasakdakul S., 2009, AMCIS P
Vatanasakdakul S, 2011, INT J EDUC MANAG, V25, P328, DOI 10.1108/09513541111136621
Velayutham S., 2008, INT J MANAGEMENT ED, V7
Yong R., 2008, ASIAN SOCIAL SCI, V4, P60
NR 41
TC 0
Z9 0
U1 0
U2 1
PU ACAD CONFERENCES LTD
PI NR READING
PA CURTIS FARM, KIDMORE END, NR READING, RG4 9AY, ENGLAND
BN 978-1-909507-20-3
PY 2013
BP 263
EP 271
PG 9
WC Business; Computer Science, Information Systems; Information Science &
Library Science; Management
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Business & Economics; Computer Science; Information Science & Library
Science
GA BFY80
UT WOS:000321909400032
DA 2024-09-05
ER
PT J
AU Zan, P
Zhao, YT
Zhong, H
Yu, Y
Wang, YB
Shao, YJ
Li, CY
AF Zan, Peng
Zhao, Yutong
Zhong, Hua
Yu, Yang
Wang, Yuanbo
Shao, Yijia
Li, Chunyong
TI Research on the evaluation of rectal function after LAR based on
CEEMDAN-Fast-ICA algorithm
SO IET SCIENCE MEASUREMENT & TECHNOLOGY
LA English
DT Article
DE CEEMDAN; FAST-ICA; multi-sensor information fusion; PSO-SVM; rectal
function assessment
ID INDEPENDENT COMPONENT ANALYSIS; ANTERIOR RESECTION SYNDROME; CANCER;
MANOMETRY; SURGERY
AB Rectal cancer is one of the most common lower gastrointestinal diseases worldwide. Currently, the common treatment is low anterior resection (LAR) of the rectum, which preserves the anus of the patient. However, it is easy to cause low anterior resection syndrome after surgery, which has a significant negative impact on the life of patients, and there is no unified evaluation standard for postoperative rectal function. To solve this problem, a multi-sensor fusion rectal information acquisition system is designed in this paper, and a rectal signal processing method is proposed to theoretically evaluate the rectal function of postoperative patients. The method uses the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to decompose the one-dimensional rectal signal to solve the underdetermined ICA problem, uses the Fast independent component analysis (Fast-ICA) to separate the pure rectal signal, uses the wavelet packet to extract features, and uses the particle swarm optimization optimizes support vector machine (PSO-SVM) to classify and evaluate postoperative function. According to the experimental results, the rectal signal preprocessing effect is good, the evaluation prediction rate is 99.5565%, and the algorithm classification results are accurate, which provides a certain preliminary theoretical basis and reference value for the evaluation of rectal function after LAR.
C1 [Zan, Peng; Zhao, Yutong; Zhong, Hua; Yu, Yang; Wang, Yuanbo] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai Key Lab Power Stn Automat Technol, Shanghai, Peoples R China.
[Shao, Yijia] Southeast Univ, Sch Elect Sci & Engn, Nanjing, Jiangsu, Peoples R China.
[Li, Chunyong] Beijing Inst Radiat Med, Beijing, Peoples R China.
[Li, Chunyong] Beijing Inst Radiat Med, 27 Taiping Rd, Beijing 100850, Peoples R China.
C3 Shanghai University; Southeast University - China; Academy of Military
Medical Sciences - China; Academy of Military Medical Sciences - China
RP Li, CY (corresponding author), Beijing Inst Radiat Med, 27 Taiping Rd, Beijing 100850, Peoples R China.
EM lcy07@tsinghua.org.cn
RI li, chunyong/JJE-0805-2023; zhong, hua/JRW-4786-2023
FU Science and Technology Commission of Shanghai Municipality; Development
Fund for Shanghai Talents; [22xtcx00300]; [2020010]
FX ACKNOWLEDGEMENTS This work was sponsored by Science and Technology
Commission of Shanghai Municipality (No. 22xtcx00300) and the
Development Fund for Shanghai Talents (No. 2020010).
CR Battersby NJ, 2016, DIS COLON RECTUM, V59, P270, DOI 10.1097/DCR.0000000000000552
Bin, 2021, CHINESE J ONCOL, V13, P113
Bing, 2019, CHIN COMMUN PHYS, V35, P119
Bing D., 2019, CHIN COMM PHYS, V35, P2
Bryant CLC, 2012, LANCET ONCOL, V13, pE403, DOI 10.1016/S1470-2045(12)70236-X
Carrington EV, 2018, NAT REV GASTRO HEPAT, V15, P309, DOI 10.1038/nrgastro.2018.27
Christensen P, 2021, COLORECTAL DIS, V23, P461, DOI 10.1111/codi.15517
COMON P, 1994, SIGNAL PROCESS, V36, P287, DOI 10.1016/0165-1684(94)90029-9
Dai CY, 2019, COMPUT BIOL MED, V109, P171, DOI 10.1016/j.compbiomed.2019.04.033
Deng W, 2022, INFORM SCIENCES, V612, P576, DOI 10.1016/j.ins.2022.08.115
Deng W, 2022, APPL SOFT COMPUT, V127, DOI 10.1016/j.asoc.2022.109419
Deng W, 2022, IEEE T SYST MAN CY-S, V52, P1578, DOI 10.1109/TSMC.2020.3030792
Du DL, 2018, CLIN COLORECTAL CANC, V17, P13, DOI 10.1016/j.clcc.2017.10.012
Dulskas A, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-68900-8
Dulskas A, 2018, INT J COLORECTAL DIS, V33, P251, DOI 10.1007/s00384-017-2954-x
Dulskas A, 2016, ACTA CHIR BELG, V116, P1, DOI 10.1080/00015458.2015.1136482
Emmertsen KJ, 2012, ANN SURG, V255, P922, DOI 10.1097/SLA.0b013e31824f1c21
Glia A, 1998, SCAND J GASTROENTERO, V33, P1273
Gu Qian-wei, 2014, Application Research of Computers, V31, P1551, DOI 10.3969/j.issn.1001-3695.2014.05.065
Harpale, 2017, SIGNIFICANCE INDEPEN
Herault J., 1986, AIP Conference Proceedings, P206, DOI 10.1063/1.36258
Hyvärinen A, 1999, IEEE T NEURAL NETWOR, V10, P626, DOI 10.1109/72.761722
Ihnát P, 2018, ANZ J SURG, V88, pE512, DOI 10.1111/ans.14207
Japan Social Enterprise short term University, 1951, ALL SOC UND PROBL JA
Jemal A, 2011, CA-CANCER J CLIN, V61, P134, DOI [10.3322/caac.20115, 10.3322/caac.21492, 10.3322/caac.20107]
Kadam ST, 2019, J NEUROSCI METH, V322, P71, DOI 10.1016/j.jneumeth.2019.04.008
Keane C, 2020, DIS COLON RECTUM, V63, P274, DOI [10.1097/DCR.0000000000001583, 10.1111/codi.14957]
KUMAR D, 1990, DIGEST DIS SCI, V35, P641, DOI 10.1007/BF01540414
Li Q. R., 2008, BEIJING BIOMED ENG, V27, P281
Luo Zhizeng, 2018, Chinese Journal of Sensors and Actuators, V31, P1211, DOI 10.3969/j.issn.1004-1699.2018.08.012
[马潇 Ma Xiao], 2016, [计算机科学, Computer Science], V43, P112
Oblizajek NR, 2019, NEUROGASTROENT MOTIL, V31, DOI 10.1111/nmo.13597
Pieniowski EHA, 2019, DIS COLON RECTUM, V62, P14, DOI 10.1097/DCR.0000000000001228
Rao SSC, 2001, AM J PHYSIOL-GASTR L, V280, pG629, DOI 10.1152/ajpgi.2001.280.4.G629
Shizhong, 1990, CHINESE J COLOPROCTO, V3, P9
Song YJ, 2023, EXPERT SYST APPL, V213, DOI 10.1016/j.eswa.2022.118834
Sun, 2007, THESIS SHANXI MED U
Torres ME, 2011, INT CONF ACOUST SPEE, P4144
Wang YT, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19020629
Wei, 2022, OPT LASER TECHNOL, V158
Wei, 2020, CHIN J GEN BASIC CLI, P624
Xugang, 2012, J SENS TECHNOL, V25, P6
Yan, 2020, CHIN GEN PRACT, V18, P1177, DOI [10.16766/j.cnki.issn.1674-4152.001459, DOI 10.16766/J.CNKI.ISSN.1674-4152.001459]
Yongbing, 2016, BIOMED ENG CLIN MED, V20, P143, DOI [10.13339/j.cnki.sglc.20160303.006, DOI 10.13339/J.CNKI.SGLC.20160303.006]
Zhao, 2016, THESIS SHANGHAI JIAO, DOI [10.27307/d.cnki.gsjtu.2016.003036, DOI 10.27307/D.CNKI.GSJTU.2016.003036]
Zhiqiang, 2021, J N U CHINA, V42, P7
NR 46
TC 1
Z9 1
U1 3
U2 14
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1751-8822
EI 1751-8830
J9 IET SCI MEAS TECHNOL
JI IET Sci. Meas. Technol.
PD JUN
PY 2023
VL 17
IS 4
BP 167
EP 182
DI 10.1049/smt2.12140
EA JAN 2023
PG 16
WC Engineering, Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA H7BW9
UT WOS:000909425200001
OA gold
DA 2024-09-05
ER
PT C
AU Lei, YF
Liu, ZB
AF Lei, Yufei
Liu, Zhongbao
GP IOP
TI The development of artificial intelligence: a bibliometric analysis,
2007-2016
SO 2018 INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND
APPLICATION TECHNOLOGY
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT International Conference on Computer Information Science and Application
Technology (CISAT)
CY DEC 07-09, 2018
CL NE Petr Univ, Daqing, PEOPLES R CHINA
HO NE Petr Univ
AB The aim of this study is to research the development of artificial intelligence in bibliometrics perspective. Bibliometrics, as one sub-field of scientometric, is an effective tool to evaluating research trends in different fields. The total number of 1188 publications between 1st January 2007 to 31, December 2016 was identified from an academic database Web of Science. In this study, yearly research output, distribution of publication by countries, most productive publication institutions, most productive authors, distribution of research field, artificial intelligence-related researches were analyzed based on bibliometrics. This study tries to provide a valuable reference for researchers to understand the development of artificial intelligence in multiple perspectives.
C1 [Lei, Yufei; Liu, Zhongbao] Quanzhou Univ Informat Engn, Sch Software, Quanzhou 362000, Fujian, Peoples R China.
[Liu, Zhongbao] North Univ China, Sch Software, Taiyuan 030051, Shanxi, Peoples R China.
C3 North University of China
RP Liu, ZB (corresponding author), Quanzhou Univ Informat Engn, Sch Software, Quanzhou 362000, Fujian, Peoples R China.; Liu, ZB (corresponding author), North Univ China, Sch Software, Taiyuan 030051, Shanxi, Peoples R China.
EM liuzb@nuc.edu.cn
CR Archambault É, 2009, J AM SOC INF SCI TEC, V60, P1320, DOI 10.1002/asi.21062
Arel I, 2010, IEEE COMPUT INTELL M, V5, P13, DOI 10.1109/MCI.2010.938364
Chau KW, 2006, MAR POLLUT BULL, V52, P726, DOI 10.1016/j.marpolbul.2006.04.003
He A, 2010, IEEE T VEH TECHNOL, V59, P1578, DOI 10.1109/TVT.2010.2043968
Kisi O, 2012, COMPUT GEOSCI-UK, V41, P169, DOI 10.1016/j.cageo.2011.08.027
Lin WYC, 2012, SCIENTOMETRICS, V92, P7, DOI 10.1007/s11192-012-0725-6
Lv PH, 2011, SCIENTOMETRICS, V88, P399, DOI 10.1007/s11192-011-0386-x
Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001
Milanez DH, 2013, MATER RES-IBERO-AM J, V16, P1282, DOI 10.1590/S1516-14392013005000130
Pan YH, 2016, ENGINEERING, V2, P409, DOI 10.1016/J.ENG.2016.04.018
Ranchum S. D., 2012, COMMUN ACM, V55, P86
Uriona-Maldonado M, 2012, SCIENTOMETRICS, V91, P977, DOI 10.1007/s11192-012-0653-5
Wang WC, 2009, J HYDROL, V374, P294, DOI 10.1016/j.jhydrol.2009.06.019
Zang YP, 2015, MATER HORIZ, V2, P140, DOI 10.1039/c4mh00147h
NR 14
TC 14
Z9 14
U1 5
U2 40
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
EI 1742-6596
J9 J PHYS CONF SER
PY 2019
VL 1168
AR 022027
DI 10.1088/1742-6596/1168/2/022027
PG 6
WC Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BM9MB
UT WOS:000471120700027
OA gold
DA 2024-09-05
ER
PT C
AU Shubankar, K
Singh, AP
Pudi, V
AF Shubankar, Kumar
Singh, Aditya Pratap
Pudi, Vikram
GP IEEE
BE Famili, FA
Osman, IH
Kendall, G
Hamdan, AR
Othman, Z
Sarim, HM
Abdullah, S
TI A Frequent Keyword-Set Based Algorithm for Topic Modeling and Clustering
of Research Papers
SO 2011 3RD CONFERENCE ON DATA MINING AND OPTIMIZATION (DMO)
SE IEEE International Conference on Data Mining
LA English
DT Proceedings Paper
CT 3rd Conference on Data Mining and Optimization (DMO)/1st Multi
Conference on Artificial Intelligence Technology (MCAIT)
CY JUN 28-29, 2011
CL Putrajaya, MALAYSIA
DE Closed Frequent Keyword-set; Topic Detection; Graph Mining; Citation
Network; Authoritative Score
AB In this paper we introduce a novel and efficient approach to detect topics in a large corpus of research papers. With rapidly growing size of academic literature, the problem of topic detection has become a very challenging task. We present a unique approach that uses closed frequent keyword-set to form topics. Our approach also provides a natural method to cluster the research papers into hierarchical, overlapping clusters using topic as similarity measure. To rank the research papers in the topic cluster, we devise a modified PageRank algorithm that assigns an authoritative score to each research paper by considering the sub-graph in which the research paper appears. We test our algorithms on the DBLP dataset and experimentally show that our algorithms are fast, effective and scalable.
C1 [Shubankar, Kumar; Singh, Aditya Pratap; Pudi, Vikram] IIIT Hyderabad, Ctr Data Engn, Hyderabad, Andhra Pradesh, India.
C3 International Institute of Information Technology Hyderabad
RP Shubankar, K (corresponding author), IIIT Hyderabad, Ctr Data Engn, Hyderabad, Andhra Pradesh, India.
EM shubankar@students.iiit.ac.in; aditya_pratap@students.iiit.ac.in;
vikram@iiit.ac.in
RI Pudi, Vikram/O-8981-2017
OI Pudi, Vikram/0000-0002-0589-6366
CR Agarwal R., 1993, P 1993 ACM SIGMOD C
[Anonymous], 1998, P 7 INT C WORLD WID
[Anonymous], P NATL ACAD SCI
[Anonymous], 1994, P 20 VLDB C
BEIL F, 2002, P 8 INT C KNOWL DISC
Blei D.M., 2005, CORRELATED TOPIC MOD
Chong Z., 2006, WUHAN J NATURAL SCI, V11, P1345
*DBLP, DBLP COMP SCI BIBL
Erosheva E., 2004, P NATL ACAD SCI
Geng X., 2008, P 1 INT C ADV COMP T
Jo Y., 2007, P 13 ACM SIGKDD INT
KLEINBERG J, 2002, P SIGKDD
Klienberg J., 1998, P 9 ANN ACM SIAM S D
Krishna S. M., 2010, EUROPEAN J SCI RES
Lin C. Y., 2002, P COLING C
Lloret E, 2009, TOPIC DETECTION SEGM
MANN GS, 2006, JCDL
McCallum A., 2004, AUTHOR RECIPIENT TOP
MEI Q, 2005, P SIGKDD
Pasquier N., 1999, INFORM SYSTEMS
Steyvers M., 2004, P SIGKDD
WANG X, 2006, P SIGKDD
Wartena C., 2008, P 19 INT C DAT EXP S
Zhou D., 2006, P WWW
Zhuang L., 2004, P 4 INT C COMP INF T
NR 25
TC 12
Z9 12
U1 0
U2 6
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 1550-4786
BN 978-1-61284-212-7
J9 IEEE DATA MINING
PY 2011
BP 96
EP 102
PG 7
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BYP33
UT WOS:000299559300016
DA 2024-09-05
ER
PT J
AU Blair, BL
Slagle, DR
Williams, AM
AF Blair, Bruce L.
Slagle, Derek R.
Williams, Adam M.
TI Institutional and programmatic determinants for graduate public affairs'
online education: Assessing the influence of faculty workload
SO TEACHING PUBLIC ADMINISTRATION
LA English
DT Article
DE Public Affairs Education; Higher Education; FacultyWorkload; Online
Learning; COVID-19
ID DISTANCE EDUCATION
AB The research explores why some public affairs graduate programs choose to develop fully online degree offerings while others do not. The study attempts to address questions surrounding how different institutions and programs are pursuing degree offerings and the potential influence of faculty workload. The research utilizes a quantitative, cross-sectional design analyzing results from a survey on institutional and programmatic practices in workload, hiring, and degree offerings administered to primary points of contact within public affairs academic units from all institutions found in the US News World Report Graduate Programs in Public Affairs Rankings from 2019. Survey data is paired with program information from the accrediting body institutional member database. Findings indicate differences from both institutional and programmatic groupings do demonstrate workload measures have unique characteristics depending upon the type of institution and rank of the program. Further analysis discusses the influence of the COVID-19 pandemic on future public affairs programming.
C1 [Blair, Bruce L.] Clayton State Univ, Morrow, GA USA.
[Slagle, Derek R.] Univ Arkansas, Little Rock, AR USA.
C3 University System of Georgia; Clayton State University; University of
Arkansas System; University of Arkansas Little Rock; University of
Arkansas Fayetteville
RP Williams, AM (corresponding author), Univ Illinois, One Univ Plaza,MS PAC 420, Springfield, IL 62704 USA.
EM adamwilliams1986@yahoo.com
OI Slagle, Derek/0000-0002-0367-3185; Williams, Adam/0000-0001-5307-5370
CR Allen I.E. Seaman., 2007, ONLINE NATION 5 YEAR
[Anonymous], TABL 311 2 NUMB PERC
Anttiroiko AV., 2018, ONLINE COURSE MANAGE, P1148, DOI [10.4018/978-1-5225-5472-1.ch058, DOI 10.4018/978-1-5225-5472-1.CH058]
Austin EK, 2009, J PUBLIC AFF EDUC, V15, P161, DOI 10.1080/15236803.2009.12001551
Bach S., 2007, Online learning and teaching in higher education
Barth T.J., 2004, INT J ADM, V6, P439
Blankenberger B., 2020, Administrative Theory Praxis, V42, P404, DOI [10.1080/10841806.2020.1771907, DOI 10.1080/10841806.2020.1771907]
Bocchi J., 2004, J EDUC BUS, V79, P245
Bolliger DU, 2009, DISTANCE EDUC, V30, P103, DOI 10.1080/01587910902845949
Brammer S, 2020, BRIT J MANAGE, V31, P453, DOI 10.1111/1467-8551.12425
Dupin-Byrant P.A., 2004, AM J DISTANCE EDUC, V18, P199, DOI 10.1207/s15389286ajde1804_2
Folkers DA, 2005, INF RESOUR MANAG J, V18, P61, DOI 10.4018/irmj.2005010105
Fortune MF, 2006, J EDUC BUS, V81, P210, DOI 10.3200/JOEB.81.4.210-214
Gigliotti RA, 2021, INNOV HIGH EDUC, V46, P429, DOI 10.1007/s10755-021-09545-x
Ginn MH, 2012, J PUBLIC AFF EDUC, V18, P247, DOI 10.1080/15236803.2012.12001683
Griffith AS, 2020, INNOV EDUC TEACH INT, V57, P691, DOI 10.1080/14703297.2020.1786432
Hilbe J.M., 2015, Practical guide to logistic regression, DOI DOI 10.1201/B18678
Hosmer DW, 2013, WILEY SER PROBAB ST, P153
Krieg E. J., 2019, STAT DATA ANAL SOCIA
NASPAA, FIND YOUR GRAD DEGR
Perreault H., 2002, J EDUC BUS, V77, P313, DOI [DOI 10.1080/08832320209599681, 10.1080/08832320209599681#.VMJ-o0eG-So, DOI 10.1080/08832320209599681#.VMJ-O0EG-SO]
Privitera G.J., 2018, Statistics for the behavioral sciences, V3rd
Schiffman S., 2007, Journal of Asynchronous Learning Networks, V11, P61
Slagle D, 2019, J PUBLIC AFF EDUC, V25, P441, DOI 10.1080/15236803.2018.1477370
Slagle DR, 2021, ONLINE INFORM REV, V45, P656, DOI 10.1108/OIR-09-2020-0415
Slagle DR, 2022, J CONTIN HIGH EDUC, V70, P21, DOI 10.1080/07377363.2020.1859349
Stack M, 2021, INT REV EDUC, V67, P127, DOI 10.1007/s11159-021-09891-0
Strange K., 2018, PRODUCTIVITY HIGHER, P252
Tomei L.A., 2006, J TECHNOLOGY TEACHER, V14, P531
Vernon R, 2009, J SOC WORK EDUC, V45, P263, DOI 10.5175/JSWE.2009.200700081
Williams SL, 2006, AM J DISTANCE EDUC, V20, P127, DOI 10.1207/s15389286ajde2003_2
Wilson, 2020, TEACH PUBLIC ADMIN, V38
NR 32
TC 1
Z9 1
U1 1
U2 4
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0144-7394
EI 2047-8720
J9 TEACH PUBLIC ADMIN
JI Teach. Public Admin.
PD JUL
PY 2022
VL 40
IS 2
BP 181
EP 198
DI 10.1177/01447394211017326
EA MAY 2021
PG 18
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA 2G4CL
UT WOS:000652700900001
OA Bronze
DA 2024-09-05
ER
PT C
AU Chagas, RRFF
Modesti, PH
Borsato, M
AF Chagas, Ruan R. F. F.
Modesti, Paulo H.
Borsato, Milton
BE Pokojski, J
Gil, M
Newnes, L
Stjepandic, J
Wognum, N
TI Bibliometric and Systemic Analysis of Production Planning Optimization
SO TRANSDISCIPLINARY ENGINEERING FOR COMPLEX SOCIO-TECHNICAL SYSTEMS -
REAL-LIFE APPLICATIONS
SE Advances in Transdisciplinary Engineering
LA English
DT Proceedings Paper
CT 27th ISTE International Conference on Transdisciplinary Engineering (TE)
- Transdisciplinary Engineering for Complex Socio-Technical Systems in
Perspective of Real-Life Application
CY JUL 01-10, 2020
CL ELECTR NETWORK
DE Artificial intelligence; optimization; production planning
ID SEQUENCE-DEPENDENT SETUPS
AB Having good production planning is essential to companies who need to maximize the use of their resources and boost their profits. However, to formulate efficient production planning is necessary to consider many variables. That makes analytical solutions almost impossible, forcing companies to use computational methods to solve this kind of problem. Even so, because of the complexity of the problems, much computational effort is needed. In that sense, using 4.0 industry concepts, like artificial intelligence, has been helping companies formulate optimal, or near-optimal, production plans for their process in a feasible time. Since each company has different characteristics and variables, the possibilities to formulate and optimize production planning are diverse. Thus, many case studies can be carried out. Generating a huge range of research opportunities. So, this study is a survey attempting to find some of these gaps through a systemic and bibliometric analysis. To achieve this goal the methodological procedure Knowledge Development Process - Constructivist (ProKnow - C) was used. This method aims to minimize the amount of content out of alignment with the research subject. In the first search, 44,609 articles were found, and after a filtering process that prioritized scientific recognized articles and journals, only 15 articles remained. Finally, common themes among the articles and opportunities for future work were highlighted.
C1 [Chagas, Ruan R. F. F.; Modesti, Paulo H.; Borsato, Milton] Univ Tecnol Fed Parana UTFPR, Curitiba, Parana, Brazil.
C3 Universidade Tecnologica Federal do Parana
RP Chagas, RRFF (corresponding author), Univ Tecnol Fed Parana UTFPR, Curitiba, Parana, Brazil.
EM ruan@alunos.utfpr.edu.br
RI Borsato, Milton/H-5937-2012
OI Borsato, Milton/0000-0002-3607-8315
FU Fundacao de Apoio a Universidade Tecnologica Federal do Parana
FX The authors wish to thank Fundacao de Apoio a Universidade Tecnologica
Federal do Parana for supporting the present research.
CR Afonso M. H. F., 2012, Revista de Gestao Social E Ambiental, V5, P47, DOI [DOI 10.24857/RGSA.V5I2.424, https://doi.org/10.24857/rgsa.v5i2.424]
Chakrabortty RK, 2015, COMPUT IND ENG, V88, P366, DOI 10.1016/j.cie.2015.07.021
Cheraghalikhani A, 2019, INT J IND ENG COMP, V10, P309, DOI 10.5267/j.ijiec.2018.6.002
Chergui A, 2018, COMPUT IND ENG, V126, P292, DOI 10.1016/j.cie.2018.09.048
Cho HM, 2017, COMPUT IND ENG, V106, P174, DOI 10.1016/j.cie.2017.02.010
Du BG, 2016, COMPUT IND ENG, V94, P158, DOI 10.1016/j.cie.2015.12.015
Fang CC, 2017, COMPUT IND ENG, V108, P88, DOI 10.1016/j.cie.2017.04.015
Gajpal Y, 2015, RELIAB ENG SYST SAFE, V144, P204, DOI 10.1016/j.ress.2015.06.019
Ji QK, 2016, EUR J OPER RES, V253, P383, DOI 10.1016/j.ejor.2016.02.021
Kilger C., 2008, Supply Chain Management and Advanced Planning: Concepts, Models, Software, and Case Studies, VFourth, P263
Lin JH, 2016, COMPUT OPER RES, V72, P189, DOI 10.1016/j.cor.2016.03.002
Lu HC, 2015, EUR J OPER RES, V246, P51, DOI 10.1016/j.ejor.2015.04.044
Poldi KC, 2016, ANN OPER RES, V238, P497, DOI 10.1007/s10479-015-2103-2
Polotski V, 2015, J MANUF SYST, V37, P703, DOI 10.1016/j.jmsy.2015.02.001
Roblek V, 2016, SAGE OPEN, V6, DOI 10.1177/2158244016653987
Torkaman S, 2018, APPL SOFT COMPUT, V71, P1085, DOI 10.1016/j.asoc.2017.10.019
Torkaman S, 2017, COMPUT IND ENG, V113, P602, DOI 10.1016/j.cie.2017.09.040
Xu LD, 2018, INT J PROD RES, V56, P2941, DOI 10.1080/00207543.2018.1444806
Yan HS, 2015, J OPER RES SOC, V66, P1250, DOI 10.1057/jors.2014.88
Zhou KL, 2015, 2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), P2147, DOI 10.1109/FSKD.2015.7382284
NR 20
TC 0
Z9 1
U1 1
U2 2
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 2352-7528
BN 978-1-64368-111-5; 978-1-64368-110-8
J9 ADV TRANSDISCIPL ENG
PY 2020
VL 12
BP 661
EP 669
DI 10.3233/ATDE200128
PG 9
WC Engineering, Industrial
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering
GA BR3OM
UT WOS:000648613100067
OA gold
DA 2024-09-05
ER
PT C
AU Mathew, G
Agrawal, A
Menzies, T
AF Mathew, George
Agrawal, Amritanshu
Menzies, Tim
GP IEEE
TI Trends in Topics at SE Conferences (1993-2013)
SO PROCEEDINGS OF THE 2017 IEEE/ACM 39TH INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING COMPANION (ICSE-C 2017)
SE Proceedings of the IEEE-ACM International Conference on Software
Engineering Companion
LA English
DT Proceedings Paper
CT IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C)
CY MAY 20-28, 2017
CL Buenos Aires, ARGENTINA
DE Software Engineering; Bibliometrics; Topic Modeling; Text Mining
AB Using topic modeling, we analyse the titles and abstracts of nearly 10,000 papers from 20 years published in 11 top-ranked Software Engineering(SE) conferences between 1993 to 2013. Seven topics are identified as the dominant themes in modern software engineering. We show that these topics are not static; rather, some of them are becoming decidedly less prominent over time (modeling) while others are become very prominent indeed (defect analysis).
By clustering conferences according to the topics they publish, we identify four large groups of SE conferences; e. g. ASE, FSE and ICSE publish mostly the same work (exceptions: there are more program analysis results in FSE than in ASE or ICSE).
Using these results, we offer numerous recommendations including how to plan an individuals research program; when to make or merge conferences; and how to encourage a broader range of topics at SE conferences. An extended version of this paper, that analyzes more conferences and papers, is available on https://goo. gl/mVdyfj
C1 [Mathew, George; Agrawal, Amritanshu; Menzies, Tim] NCSU, Comp Sci, Raleigh, NC 27695 USA.
C3 North Carolina State University
RP Mathew, G (corresponding author), NCSU, Comp Sci, Raleigh, NC 27695 USA.
EM george.meg91@gmail.com; aagrawa8@ncsu.edu; tim@menzies.us
RI Agrawal, Amritanshu/R-7093-2019; Menzies, Tim/X-7680-2019
OI Agrawal, Amritanshu/0000-0002-1220-8533; Menzies,
Tim/0000-0002-5040-3196
CR AGRAWAL A, IST UNPUB
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Vasilescu B, 2013, IEEE WORK CONF MIN S, P373, DOI 10.1109/MSR.2013.6624051
NR 3
TC 11
Z9 11
U1 2
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2574-1926
BN 978-1-5386-1589-8
J9 PROC IEEE ACM INT C
PY 2017
BP 397
EP 398
DI 10.1109/ICSE-C.2017.52
PG 2
WC Computer Science, Software Engineering; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BJ5GY
UT WOS:000425916900125
DA 2024-09-05
ER
PT J
AU Kumar, S
Sharma, D
Rao, SD
Lim, WM
Mangla, SK
AF Kumar, Satish
Sharma, Dipasha
Rao, Sandeep
Lim, Weng Marc
Mangla, Sachin Kumar
TI Past, present, and future of sustainable finance: insights from big data
analytics through machine learning of scholarly research
SO ANNALS OF OPERATIONS RESEARCH
LA English
DT Article; Early Access
DE Sustainable finance; Sustainable development goals; Socially responsible
investing; Climate financing; Green financing; Impact investing; Carbon
financing; Energy financing; Governance; Big data analytics; Machine
learning; Bibliometric analysis; Systematic literature review
ID CLIMATE FINANCE; CARBON FINANCE; SOCIAL-RESPONSIBILITY; BIBLIOMETRIC
ANALYSIS; PERFORMANCE EVIDENCE; POLITICAL-ECONOMY; GREEN FINANCE;
IMPACT; INVESTMENT; BONDS
AB Sustainable finance is a rich field of research. Yet, existing reviews remain limited due to the piecemeal insights offered through a sub-set rather than the entire corpus of sustainable finance. To address this gap, this study aims to conduct a large-scale review that would provide a state-of-the-art overview of the performance and intellectual structure of sustainable finance. To do so, this study engages in a review of sustainable finance research using big data analytics through machine learning of scholarly research. In doing so, this study unpacks the most influential articles and top contributing journals, authors, institutions, and countries, as well as the methodological choices and research contexts for sustainable finance research. In addition, this study reveals insights into seven major themes of sustainable finance research, namely socially responsible investing, climate financing, green financing, impact investing, carbon financing, energy financing, and governance of sustainable financing and investing. To drive the field forward, this study proposes several suggestions for future sustainable finance research, which include developing and diffusing innovative sustainable financing instruments, magnifying and managing the profitability and returns of sustainable financing, making sustainable finance more sustainable, devising and unifying policies and frameworks for sustainable finance, tackling greenwashing of corporate sustainability reporting in sustainable finance, shining behavioral finance on sustainable finance, and leveraging the power of new-age technologies such as artificial intelligence, blockchain, internet of things, and machine learning for sustainable finance.
C1 [Kumar, Satish] Malaviya Natl Inst Technol Jaipur, Dept Management Studies, Jaipur 302017, Rajasthan, India.
[Kumar, Satish; Lim, Weng Marc] Swinburne Univ Technol, Sch Business, Jalan Simpang Tiga, Sarawak 93350, Malaysia.
[Sharma, Dipasha] Symbiosis Int, Symbiosis Ctr Management & Human Resource Dev, Pune, Maharashtra, India.
[Rao, Sandeep] Dublin City Univ, DCU Business Sch, Dublin 09, Ireland.
[Lim, Weng Marc] Swinburne Univ Technol, Swinburne Business Sch, John St, Hawthorn, Vic 3122, Australia.
[Mangla, Sachin Kumar] OP Jindal Global Univ, Jindal Global Business Sch, Sonipat, Haryana, India.
C3 National Institute of Technology (NIT System); Malaviya National
Institute of Technology Jaipur; Swinburne University of Technology
Sarawak; Swinburne University of Technology; Symbiosis International
University; Symbiosis Centre for Management & Human Resource Development
(SCMHRD); Dublin City University; Swinburne University of Technology;
O.P. Jindal Global University
RP Mangla, SK (corresponding author), OP Jindal Global Univ, Jindal Global Business Sch, Sonipat, Haryana, India.
EM skumar.dms@mnit.ac.in; dipasha_sharma@scmhrd.edu;
sandeep.keshavarao@dcu.ie; lim@wengmarc.com; smangla@jgu.edu.in
RI Sharma, Dipasha/AAK-3480-2020; Lim, Weng Marc/I-1723-2019; Rao,
Sandeep/AAU-1452-2020; Kumar, Satish/M-8694-2017
OI Sharma, Dipasha/0000-0002-6804-0055; Lim, Weng Marc/0000-0001-7196-1923;
Rao, Sandeep/0000-0001-7752-4492; Kumar, Satish/0000-0001-5200-1476;
KUMAR MANGLA, SACHIN/0000-0001-7166-5315
CR Abadie LM, 2013, MITIG ADAPT STRAT GL, V18, P943, DOI 10.1007/s11027-012-9401-7
Abedin MZ, 2021, ANN OPER RES, DOI 10.1007/s10479-021-04420-6
Aglietta M, 2015, INT ENVIRON AGREEM-P, V15, P403, DOI 10.1007/s10784-015-9298-1
Agrawal A, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11154117
Agrawal Anirudh., 2021, J SMALL BUSINESS ENT, V33, P153, DOI [10.1080/08276331.2018.1551457, DOI 10.1080/08276331.2018.1551457]
Alda M, 2021, J CLEAN PROD, V298, DOI 10.1016/j.jclepro.2021.126812
Alda M, 2020, FINANC RES LETT, V36, DOI 10.1016/j.frl.2019.101313
Alessandrini F, 2020, J PORTFOLIO MANAGE, V46, P75, DOI 10.3905/jpm.2020.46.3.075
Alsaifi K, 2020, BUS STRATEG ENVIRON, V29, P711, DOI 10.1002/bse.2426
[Anonymous], PHYS REV E 2
Ari I, 2021, ENERGY, V222, DOI 10.1016/j.energy.2021.119925
Arouri M, 2021, FINANC RES LETT, V42, DOI 10.1016/j.frl.2021.101927
Bag S, 2020, ANN OPER RES, DOI 10.1007/s10479-020-03790-7
Baker HK, 2020, J BUS RES, V108, P232, DOI 10.1016/j.jbusres.2019.11.025
Bannier C, 2021, FINANC RES LETT, DOI DOI 10.1016/J.FRL.2021.102160
Barua S, 2019, BUS STRATEG ENVIRON, V28, P1131, DOI 10.1002/bse.2307
Bauer R, 2007, J BUS ETHICS, V70, P111, DOI 10.1007/s10551-006-9099-0
Belghitar Y, 2014, J BANK FINANC, V47, P54, DOI 10.1016/j.jbankfin.2014.06.027
Benjamin 7, 2014, Climate Law, V4, P94
Bolton RN, 2022, AUSTRALAS MARK J, V30, P107, DOI 10.1177/18393349211005200
Bredin D, 2014, INT REV FINANC ANAL, V34, P222, DOI 10.1016/j.irfa.2014.03.003
BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680
Brunner S, 2014, GLOBAL ENVIRON CHANG, V27, P138, DOI 10.1016/j.gloenvcha.2014.05.005
Bui TD, 2020, J RISK FINANC MANAG, V13, DOI 10.3390/jrfm13110264
Burton B, 2020, EUR J FINANC, V26, P1817, DOI 10.1080/1351847X.2020.1754873
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Camey B F, 1994, Health Prog, V75, P20
Camilleri MA, 2021, SOC RESPONSIB J, V17, P412, DOI 10.1108/SRJ-06-2019-0194
Cao X, 2021, CHINA ECON REV, V66, DOI 10.1016/j.chieco.2020.101582
Carè R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12187291
Caseau C, 2020, FINANC ANAL J, V76, P40, DOI 10.1080/0015198X.2020.1779561
Castriotta M, 2019, SCIENTOMETRICS, V118, P407, DOI 10.1007/s11192-018-2977-2
Cerqueti R, 2021, J FINANC STABIL, V54, DOI 10.1016/j.jfs.2021.100887
Chatzitheodorou K, 2019, SUSTAIN PROD CONSUMP, V19, P117, DOI 10.1016/j.spc.2019.03.006
Chen HY, 2020, PAC-BASIN FINANC J, V63, DOI 10.1016/j.pacfin.2020.101407
Chen L, 2021, J MANAGE SCI ENG, V6, P75, DOI 10.1016/j.jmse.2021.02.005
Chen MK, 2020, J PORTFOLIO MANAGE, V46, P65, DOI 10.3905/jpm.2020.46.3.065
Chen YF, 2021, ENERG POLICY, V153, DOI 10.1016/j.enpol.2021.112252
Cheng C, 2019, J CLEAN PROD, V232, P1148, DOI 10.1016/j.jclepro.2019.05.360
Chow GWS, 2014, AUST J MANAGE, V39, P645, DOI 10.1177/0312896213516327
Clark R, 2018, LAND USE POLICY, V71, P335, DOI 10.1016/j.landusepol.2017.12.013
Clarkin JE, 2016, ENTREP RES J, V6, P135, DOI 10.1515/erj-2014-0011
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Comerio N, 2019, TOURISM ECON, V25, P109, DOI 10.1177/1354816618793762
Craig C, 2021, Sustainable finance starts with data
Cui HR, 2020, J CLEAN PROD, V269, DOI 10.1016/j.jclepro.2020.121799
Dam L, 2015, RESOUR ENERGY ECON, V41, P103, DOI 10.1016/j.reseneeco.2015.04.008
Daugaard D, 2020, ACCOUNT FINANC, V60, P1501, DOI 10.1111/acfi.12479
Dedusenko EA., 2017, J ENV MANAGEMENT TOU, V8, P1474
Dikau S, 2021, ECOL ECON, V184, DOI 10.1016/j.ecolecon.2021.107022
Diltz J.D., 1995, APPL FINANCIAL EC, V5, P69
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234
Donthu N, 2021, PSYCHOL MARKET, V38, P834, DOI 10.1002/mar.21472
Donthu N, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102307
Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039
Dorfleitner G, 2021, FINANC RES LETT, V43, DOI 10.1016/j.frl.2021.101990
Dorfleitner G, 2015, J ASSET MANAG, V16, P450, DOI 10.1057/jam.2015.31
Durisin B, 2009, CORP GOV-OXFORD, V17, P266, DOI 10.1111/j.1467-8683.2009.00739.x
Eccles NS, 2011, J BUS ETHICS, V104, P389, DOI 10.1007/s10551-011-0917-7
Elavarasan RM, 2021, SUSTAIN CITIES SOC, V68, DOI 10.1016/j.scs.2021.102789
Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z
Escrig-Olmedo E, 2013, BUS STRATEG ENVIRON, V22, P410, DOI 10.1002/bse.1755
European Commission, 2021, Overview of sustainable finance
Fabregat-Aibar L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11092526
Ferris S.P., 1986, Business and Society, V25, P1, DOI [10.1177/000765038602500101, DOI 10.1177/000765038602500101]
Cunha FAFD, 2021, BUS STRATEG ENVIRON, V30, P3821, DOI 10.1002/bse.2842
Fonta WM, 2018, CLIM POLICY, V18, P1210, DOI 10.1080/14693062.2018.1459447
Friede G., 2015, Journal of Sustainable Finance and Investment, V5, P210, DOI [10.1080/20430795.2015.1118917, DOI 10.1080/20430795.2015.1118917]
Fu YF, 2020, RES INT BUS FINANC, V52, DOI 10.1016/j.ribaf.2019.101117
Garcia AS, 2017, J CLEAN PROD, V150, P135, DOI 10.1016/j.jclepro.2017.02.180
Geczy C, 2021, J FINANC ECON, V142, P697, DOI 10.1016/j.jfineco.2021.01.006
Geobey S., 2017, ACRN OXFORD J FINANC, V6, P17
Giacomantonio C, 2017, J SOC ENTREP, V8, P47, DOI 10.1080/19420676.2016.1271348
Giese G, 2019, J PORTFOLIO MANAGE, V45, P69, DOI 10.3905/jpm.2019.45.5.069
Giglio S., 2020, Inside the mind of a stock market crash, DOI DOI 10.3386/W27272
Goyal K, 2021, INT J BANK MARK, V39, P1166, DOI 10.1108/IJBM-12-2020-0612
Guerard JB, 1997, J FORECASTING, V16, P475, DOI 10.1002/(SICI)1099-131X(199712)16:7<475::AID-FOR668>3.3.CO;2-O
Gupta S., 2009, PROD OPER MANAG, V15, P448
Gupta S, 2020, IND MARKET MANAG, V89, P499, DOI 10.1016/j.indmarman.2019.09.009
Guptill A, 2021, AGR HUM VALUES, V38, P741, DOI 10.1007/s10460-020-10185-8
Gutierrez M., 2019, Development, V62, P136, DOI [10.1057/s41301-019-00204-5, DOI 10.1057/S41301-019-00204-5]
Halbritter G, 2015, REV FINANC ECON, V26, P25, DOI 10.1016/j.rfe.2015.03.004
Harari MB, 2020, J VOCAT BEHAV, V118, DOI 10.1016/j.jvb.2020.103377
Harmeling S, 2011, IDS BULL-I DEV STUD, V42, P23, DOI 10.1111/j.1759-5436.2011.00219.x
Heinkel R, 2001, J FINANC QUANT ANAL, V36, P431, DOI 10.2307/2676219
Herremans IM, 1993, ACCOUNT ORG SOC, V18, P587, DOI 10.1016/0361-3682(93)90044-7
Himick D., 2011, Critical Perspectives on Accounting, V22, P158, DOI [10.1016/j.cpa.2010.07.002, DOI 10.1016/J.CPA.2010.07.002]
Huang HF, 2020, TRANSPORT RES E-LOG, V140, DOI 10.1016/j.tre.2020.101976
Hutton R.Bruce., 1998, Business Society, V37, P281, DOI [10.1177/000765039803700303, DOI 10.1177/000765039803700303]
Ibrahim K, 2016, GEOMAT NAT HAZ RISK, V7, P1754, DOI 10.1080/19475705.2016.1155503
Jackson E.T., 2013, Journal of Sustainable Finance Investment, V3, P95, DOI [10.1080/20430795.2013.776257, DOI 10.1080/20430795.2013.776257]
Jackson ET, 2013, COMMUNITY DEV, V44, P608, DOI 10.1080/15575330.2013.854258
Jafri J, 2019, REV INT POLIT ECON, V26, P520, DOI 10.1080/09692290.2019.1608842
Jakob M, 2015, CLIM DEV, V7, P1, DOI 10.1080/17565529.2014.934768
Jan AA, 2021, J CLEAN PROD, V315, DOI 10.1016/j.jclepro.2021.128099
Joliet R, 2018, J BANK FINANC, V97, P70, DOI 10.1016/j.jbankfin.2018.09.011
Kamble SS, 2023, ANN OPER RES, V327, P575, DOI 10.1007/s10479-021-04129-6
Khan MA, 2021, J BUS RES, V125, P295, DOI 10.1016/j.jbusres.2020.12.015
Kling G, 2021, WORLD DEV, V137, DOI 10.1016/j.worlddev.2020.105131
Kollenda P, 2022, J BANK FINANC, V136, DOI 10.1016/j.jbankfin.2021.106224
Kumar S, 2021, J BUS RES, V134, P275, DOI 10.1016/j.jbusres.2021.05.041
Kumar S, 2021, BUS STRATEG ENVIRON, V30, P3454, DOI 10.1002/bse.2813
Kumar S, 2021, ELECTRON COMMER RES, V21, P1, DOI 10.1007/s10660-021-09464-1
La Torre M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11071887
Landi G, 2019, SOC RESPONSIB J, V15, P11, DOI 10.1108/SRJ-11-2017-0254
Lesser K, 2014, J ASSET MANAG, V15, P317, DOI 10.1057/jam.2014.31
Li WA, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.121008
Lieberman D, 2020, J INVEST, V29, P58, DOI 10.3905/joi.2019.1.112
Lim WM, 2021, TOUR RECREAT RES, V46, P314, DOI 10.1080/02508281.2021.1881708
Lim WM, 2021, J BUS RES, V122, P534, DOI 10.1016/j.jbusres.2020.08.051
Lim WM, 2019, IND MARKET MANAG, V76, P136, DOI 10.1016/j.indmarman.2018.08.007
Lim WM, 2015, J INF SCI, V41, P399, DOI 10.1177/0165551515577913
Lokuwaduge CSD, 2017, BUS STRATEG ENVIRON, V26, P438, DOI 10.1002/bse.1927
MacDonald A, 2019, J BUS ETHICS, V160, P409, DOI 10.1007/s10551-018-3885-3
Malhotra G, 2020, Gedrag & Organisatie Review, V33, P583
Marti E, 2013, ANAL KRITIK, V35, P219
Mekonnen A, 2014, J AFR ECON, V23, P50, DOI 10.1093/jae/eju012
Migliorelli M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020975
Mollet JC, 2014, REV FINANC ECON, V23, P208, DOI 10.1016/j.rfe.2014.08.003
Muganyi T, 2021, ENVIRON SCI ECOTECH, V7, DOI 10.1016/j.ese.2021.100107
Muhamat AA, 2017, ADV SCI LETT, V23, P7670, DOI 10.1166/asl.2017.9549
Ng AW, 2018, J CLEAN PROD, V195, P585, DOI 10.1016/j.jclepro.2018.05.250
Nielsen KP., 2011, Journal of Sustainable Finance and Investment, V1, P209, DOI DOI 10.1080/20430795.2012.655889
Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001
OECD, 2020, Technical report
Pattnaik D, 2020, RES INT BUS FINANC, V54, DOI 10.1016/j.ribaf.2020.101287
Paul J, 2021, INT J CONSUM STUD, DOI 10.1111/ijcs.12695
Pedersen LH, 2021, J FINANC ECON, V142, P572, DOI 10.1016/j.jfineco.2020.11.001
Pender H, 2011, JASSA, P26
Pesta Bryan, 2018, J Intell, V6, DOI 10.3390/jintelligence6040046
PIERCE TJ, 1993, SOC SCI J, V30, P13, DOI 10.1016/0362-3319(93)90003-E
Pinsky V., 2020, GLOBAL J FLEXIBLE SY, V21, P49
Pinsky VC, 2019, REV GEST AMBIENT SUS, V8, P468, DOI 10.5585/GEAS.V8I3.15766
Popescu IS, 2021, J CLEAN PROD, V314, DOI 10.1016/j.jclepro.2021.128016
Purdon M, 2015, WORLD DEV, V74, P462, DOI 10.1016/j.worlddev.2015.05.024
Quatrini Simone, 2021, Ecosyst Serv, V48, P101240, DOI 10.1016/j.ecoser.2020.101240
Rahman M., 2020, Asian Journal of Sustainability and Social Responsibility, V5, P1
Rajan AT, 2014, J PRIV EQUITY, V17, P37, DOI 10.3905/jpe.2014.17.2.037
Rao PI, 2023, J SMALL BUS MANAGE, V61, P1247, DOI 10.1080/00472778.2021.1955123
Refinitiv, 2020, SUST FIN REV
Renneboog L, 2008, J BANK FINANC, V32, P1723, DOI 10.1016/j.jbankfin.2007.12.039
Revelli C, 2015, BUS ETHICS, V24, P158, DOI 10.1111/beer.12076
Rezaee Z, 2017, ADV ACCOUNT, V39, P47, DOI 10.1016/j.adiac.2017.08.001
Richardson BJ, 2009, J BUS ETHICS, V87, P555, DOI 10.1007/s10551-008-9958-y
Rizzello A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12135362
Robb R., 2016, CAPITALISM SOC, V11
Roblek V, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208497
Roehrer C., 2015, NEW DIRECTIONS EVALU, V147, P129, DOI DOI 10.1002/ev.20136
Roundy PT, 2019, SOC RESPONSIB J, V16, P467, DOI 10.1108/SRJ-11-2018-0302
Ryan Hogarth J., 2012, Journal of Sustainable Finance Investment, V2, P257
Säve-Söderbergh J, 2010, ECON LETT, V107, P270, DOI 10.1016/j.econlet.2010.02.003
Schramade Willem., 2016, Journal of Sustainable Finance Investment, V6, P95, DOI [10.1080/20430795.2016.1176425, DOI 10.1080/20430795.2016.1176425]
Schulz KA, 2020, FUTURES, V122, DOI 10.1016/j.futures.2020.102611
Sinha A, 2021, J ENVIRON MANAGE, V292, DOI 10.1016/j.jenvman.2021.112751
Sisodia GS, 2020, BUS STRATEG ENVIRON, V29, P2789, DOI 10.1002/bse.2543
Sisodia RS, 2013, CALIF MANAGE REV, V55, P87, DOI 10.1525/cmr.2013.55.3.87
Sisodia RS, 2009, J INDIAN BUS RES, V1, P188, DOI 10.1108/17554190911005354
Sivarajah U, 2020, IND MARKET MANAG, V86, DOI 10.1016/j.indmarman.2019.04.005
Skovgaard J, 2015, ENVIRON POLIT, V24, P951, DOI 10.1080/09644016.2015.1056575
Statman M., 2000, Financial Analysts Journal, V56, P30, DOI DOI 10.2469/FAJ.V56.N3.2358
Sun ZY, 2019, J CLEAN PROD, V231, P1489, DOI 10.1016/j.jclepro.2019.05.335
Taghizadeh-Hesary F, 2019, FINANC RES LETT, V31, P98, DOI 10.1016/j.frl.2019.04.016
Tan LH, 2017, QUAL RES FINANC MARK, V9, P359, DOI 10.1108/QRFM-01-2017-0002
Tang DY, 2020, J CORP FINANC, V61, DOI 10.1016/j.jcorpfin.2018.12.001
Thomä J, 2019, J APPL ACCOUNT RES, V20, P439, DOI 10.1108/JAAR-03-2018-0034
Tian P, 2019, J CLEAN PROD, V217, P432, DOI 10.1016/j.jclepro.2019.01.209
United Nations, 2021, REP FINDS COVID 19 R
United Nations, 2020, The Sustainable Development Agenda
Urban Boris, 2018, International Journal of Sustainable Economy, V10, P61
Uyar A, 2020, J CLEAN PROD, V253, DOI 10.1016/j.jclepro.2020.119997
Van Der Laan S., 2004, AUST ACCOUNT REV, V14, P21
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
Vanderheiden S, 2015, INT SPECT, V50, P31, DOI 10.1080/03932729.2015.985523
Vazquez KC, 2019, GLOB POLICY, V10, P593, DOI 10.1111/1758-5899.12771
Vivers S., 2011, Corporate Ownership and Control, V8, P25, DOI DOI 10.22495/C0CV8I3C1P5
Viviani JL, 2019, RES INT BUS FINANC, V47, P31, DOI 10.1016/j.ribaf.2018.01.001
Viviers S, 2012, S AFR J BUS MANAG, V43, P1
Wallis M., 2015, BUSINESS RES, V8, P61, DOI DOI 10.1007/S40685-014-0015-7
Wang C, 2013, CALIF MANAGE REV, V55, P97, DOI 10.1525/cmr.2013.55.3.97
Wang C, 2013, CALIF MANAGE REV, V55, P60, DOI 10.1525/cmr.2013.55.3.60
Wang CN, 2022, J SUSTAIN FINANC INV, V12, P630, DOI 10.1080/20430795.2020.1796101
Watson R, 2011, J FINANC REGUL COMPL, V19, P100, DOI 10.1108/13581981111123825
Widyawati L, 2020, BUS STRATEG ENVIRON, V29, P619, DOI 10.1002/bse.2393
Wilson R., 1997, INT J SOC ECON, V24, P1325, DOI [10.1108/03068299710193624, DOI 10.1108/03068299710193624]
Yao SY, 2021, ENERG ECON, V101, DOI 10.1016/j.eneco.2021.105415
Yenneti K, 2012, ENVIRON URBAN ASIA, V3, P303, DOI 10.1177/0975425312473227
Yeoh P, 2008, INT J LAW MANAG, V50, P189, DOI 10.1108/17542430810890369
Yesuf A.J., 2020, Heliyon, V6, pe04562, DOI [DOI 10.1016/J.HELIYON.2020.E04562, 10.1016/j.heliyon.2020.e04562]
Yu CH, 2021, ENERG POLICY, V153, DOI 10.1016/j.enpol.2021.112255
Yu EPY, 2020, RES INT BUS FINANC, V52, DOI 10.1016/j.ribaf.2020.101192
Zhang DY, 2019, FINANC RES LETT, V29, P425, DOI 10.1016/j.frl.2019.02.003
Zhang DJ, 2021, J CLEAN PROD, V315, DOI 10.1016/j.jclepro.2021.128294
Zhang MS, 2020, ENERGY STRATEG REV, V30, DOI 10.1016/j.esr.2020.100520
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 195
TC 166
Z9 170
U1 215
U2 1156
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0254-5330
EI 1572-9338
J9 ANN OPER RES
JI Ann. Oper. Res.
PD 2022 JAN 4
PY 2022
DI 10.1007/s10479-021-04410-8
EA JAN 2022
PG 44
WC Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Operations Research & Management Science
GA XZ5SE
UT WOS:000737710700001
PM 35002001
OA Green Published, Bronze, Green Accepted
HC Y
HP N
DA 2024-09-05
ER
PT J
AU Zhang, LP
Qiu, HH
Chen, JY
Zhou, WH
Li, HL
AF Zhang, Liping
Qiu, Hanhui
Chen, Jinyi
Zhou, Wenhao
Li, Hailin
TI How Do Heterogeneous Networks Affect a Firm's Innovation Performance? A
Research Analysis Based on Clustering and Classification
SO ENTROPY
LA English
DT Article
DE innovation performance; IUR collaboration network; IF collaboration
network; decision rules; machine learning algorithms; entropy weight
ID INBOUND OPEN INNOVATION; QUALITY
AB Based on authorized patents of China's artificial intelligence industry from 2013 to 2022, this paper constructs an Industry-University-Research institution (IUR) collaboration network and an Inter-Firm (IF) collaboration network and used the entropy weight method to take both the quantity and quality of patents into account to calculate the innovation performance of firms. Through the hierarchical clustering algorithm and classification and regression trees (CART) algorithm, in-depth analysis has been conducted on the intricate non-linear influence mechanisms between multiple variables and a firm's innovation performance. The findings indicate the following: (1) Based on the network centrality (NC), structural hole (SH), collaboration breadth (CB), and collaboration depth (CD) of both IUR and IF collaboration networks, two types of focal firms are identified. (2) For different types of focal firms, the combinations of network characteristics affecting their innovation performance are various. (3) In the IUR collaboration network, focal firms with a wide range of heterogeneous collaborative partners can obtain high innovation performance. However, focal firms in the IF collaboration network can achieve the same aim by maintaining deep collaboration with other focal firms. This paper not only helps firms make scientific decisions for development but also provides valuable suggestions for government policymakers.
C1 [Zhang, Liping; Qiu, Hanhui; Chen, Jinyi; Zhou, Wenhao; Li, Hailin] Huaqiao Univ, Coll Business Adm, Quanzhou 362021, Peoples R China.
[Zhang, Liping; Li, Hailin] Huaqiao Univ, Res Ctr Appl Stat & Big Data, Xiamen 361021, Peoples R China.
C3 Huaqiao University; Huaqiao University
RP Li, HL (corresponding author), Huaqiao Univ, Coll Business Adm, Quanzhou 362021, Peoples R China.; Li, HL (corresponding author), Huaqiao Univ, Res Ctr Appl Stat & Big Data, Xiamen 361021, Peoples R China.
EM zhanglp@hqu.edu.cn; 2016411039@stu.hqu.edu.cn;
2116104003@stu.hqu.edu.cn; wenhaoz2021@stu.hqu.edu.cn; hailin@hqu.edu.cn
RI Chen, Yinglong/D-2104-2011
OI Chen, Yinglong/0000-0003-0798-8683; Zhou, Wenhao/0000-0001-9421-8526;
Li, Hailin/0000-0001-6924-9689
FU Social Science Foundation Project of Fujian Province of China
FX No Statement Available
CR Aghagolzadeh M, 2011, ENTROPY-SWITZ, V13, P450, DOI 10.3390/e13020450
Banalieva ER, 2019, J INT BUS STUD, V50, P1372, DOI 10.1057/s41267-019-00243-7
Basole RC, 2016, DECIS SUPPORT SYST, V83, P22, DOI 10.1016/j.dss.2015.12.005
Boxu Y., 2022, J Innov Knowl, V7, DOI DOI 10.1016/J.JIK.2022.100210
Breiman L., 1984, Classi cation and Regression Trees
Briggs K, 2014, APPL ECON, V46, P4370, DOI 10.1080/00036846.2014.957446
Broekhuizen TLJ, 2021, IND INNOV, V28, P1270, DOI 10.1080/13662716.2021.1941800
Cai Y., 2021, Forum Sci. Technol. China, V306, P94
Chen KH, 2020, TECHNOVATION, V94-95, DOI 10.1016/j.technovation.2017.10.005
Chen YL, 2011, INFORM PROCESS MANAG, V47, P309, DOI 10.1016/j.ipm.2010.06.001
Cui WJ, 2022, TECHNOL SOC, V70, DOI 10.1016/j.techsoc.2022.102025
Dakiche N, 2019, INFORM PROCESS MANAG, V56, P1084, DOI 10.1016/j.ipm.2018.03.005
Font-Julián CI, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101247
Guan JC, 2015, RES POLICY, V44, P545, DOI 10.1016/j.respol.2014.12.007
Guo M, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121129
Hou JH, 2023, J INFORMETR, V17, DOI 10.1016/j.joi.2023.101393
Jiang YS, 2020, IND MARKET MANAG, V88, P22, DOI 10.1016/j.indmarman.2020.03.020
Kaufman L., 2005, Finding Groups in Data An Introduction to Cluster Analysis, V2nd, P199
Kobarg S, 2019, RES POLICY, V48, P1, DOI 10.1016/j.respol.2018.07.014
Li FY, 2021, TECHNOL SOC, V64, DOI 10.1016/j.techsoc.2020.101483
Li HL, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.971971
Li HL, 2021, PATTERN RECOGN, V115, DOI 10.1016/j.patcog.2021.107919
Li HL, 2021, INFORM SCIENCES, V547, P592, DOI 10.1016/j.ins.2020.08.089
Li HC, 2024, IEEE INTERNET THINGS, V11, P8871, DOI [10.1109/JIOT.2023.3321931, 10.1109/TIE.2023.3236109, 10.1109/TEM.2023.3292339]
Li MX, 2021, MATH PROBL ENG, V2021, DOI 10.1155/2021/4771113
Li XJ, 2022, ENVIRON DEV SUSTAIN, V24, P11626, DOI 10.1007/s10668-021-01926-8
Lin WB, 2022, ENTROPY-SWITZ, V24, DOI 10.3390/e24070950
Lin WG, 2022, ENTROPY-SWITZ, V24, DOI 10.3390/e24040549
Luo J., 2020, Social Network Analysis, V3rd ed., P141
Lyu YB, 2019, TECHNOL FORECAST SOC, V144, P12, DOI 10.1016/j.techfore.2019.03.018
Moaniba IM, 2020, TECHNOL FORECAST SOC, V157, DOI 10.1016/j.techfore.2020.120070
Seo E, 2023, IND INNOV, V30, P423, DOI 10.1080/13662716.2022.2036598
Sime S, 2023, TECHNOVATION, V127, DOI 10.1016/j.technovation.2023.102826
Stefan I, 2017, TECHNOL FORECAST SOC, V120, P252, DOI 10.1016/j.techfore.2017.03.014
Walsh JP, 2016, RES POLICY, V45, P172, DOI 10.1016/j.respol.2016.04.013
Wang CH, 2015, TECHNOL FORECAST SOC, V99, P222, DOI 10.1016/j.techfore.2015.07.006
Wang MC, 2018, J BUS RES, V88, P222, DOI 10.1016/j.jbusres.2018.03.034
Wu HZ, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101756
Xie XM, 2023, TECHNOVATION, V124, DOI 10.1016/j.technovation.2023.102740
Zeng SX, 2010, TECHNOVATION, V30, P181, DOI 10.1016/j.technovation.2009.08.003
Zhang RX, 2023, J CLEAN PROD, V391, DOI 10.1016/j.jclepro.2023.136041
Zhang YF, 2022, IND MARKET MANAG, V102, P190, DOI 10.1016/j.indmarman.2022.01.018
[周文浩 Zhou Wenhao], 2023, [系统管理学报, Journal of Systems & Management], V32, P367
Zhou Y., 2010, Sci. Technol. Econ, V123, P4
钱锡红, 2010, [管理世界, Management World], P118
NR 45
TC 1
Z9 1
U1 8
U2 15
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 1099-4300
J9 ENTROPY-SWITZ
JI Entropy
PD NOV
PY 2023
VL 25
IS 11
AR 1560
DI 10.3390/e25111560
PG 18
WC Physics, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Physics
GA AT5Z4
UT WOS:001120733100001
PM 37998252
OA gold
DA 2024-09-05
ER
PT J
AU Obrenovic, B
Gu, X
Wang, GY
Godinic, D
Jakhongirov, I
AF Obrenovic, Bojan
Gu, Xiao
Wang, Guoyu
Godinic, Danijela
Jakhongirov, Ilimdorjon
TI Generative AI and human-robot interaction: implications and future
agenda for business, society and ethics
SO AI & SOCIETY
LA English
DT Article; Early Access
DE Generative AI; HRI; Human-robot interaction; Anthropomorphism; Humanoid
robot; Robot; ChatGPT; Scientometric analyses
ID ANTHROPOMORPHISM; INTELLIGENCE; INTERFACE; TRUST
AB The revolution of artificial intelligence (AI), particularly generative AI, and its implications for human-robot interaction (HRI) opened up the debate on crucial regulatory, business, societal, and ethical considerations. This paper explores essential issues from the anthropomorphic perspective, examining the complex interplay between humans and AI models in societal and corporate contexts. We provided a comprehensive review of existing literature on HRI, with a special emphasis on the impact of generative models such as ChatGPT. The scientometric study posits that due to their advanced linguistic capabilities and ability to mimic human-like behavior, generative AIs like ChatGPT will continue to grow in popularity in pair with human rational empathy, tendency for personification and their advanced linguistic capabilities and ability to mimic human-like behavior. As they blur the boundaries between humans and robots, these models introduce fresh moral and philosophical dilemmas. Our research aims to extrapolate key trends and unique factors in HRI and to elucidate the technical aspects of generative AI that enhance its effectiveness in this field compared to traditional rule-based AI systems. We further discuss the challenges and limitations of applying generative AI in HRI, providing a future research agenda for AI optimization in diverse applications, including education, entertainment, and healthcare.
C1 [Obrenovic, Bojan] Zagreb Sch Econ & Management, Zagreb 10000, Croatia.
[Gu, Xiao; Wang, Guoyu] Commun Univ Zhejiang, Media Literacy Res Inst, Hangzhou 310018, Zhejiang, Peoples R China.
[Godinic, Danijela] Univ Zagreb, Fac Humanities & Social Sci, Zagreb 10000, Croatia.
[Jakhongirov, Ilimdorjon] Ferghana Polytech Inst, Ferghana 150107, Uzbekistan.
C3 Communication University of Zhejiang; University of Zagreb; Fergana
Polytechnic Institute
RP Gu, X (corresponding author), Commun Univ Zhejiang, Media Literacy Res Inst, Hangzhou 310018, Zhejiang, Peoples R China.
EM bojan@inovatus-usluge.hr; guxiao0705@163.com; wangguoyu0323@126.com;
danijela.godinic5@gmail.com; jahongirov@inbox.ru
RI Gu, Xiao/HLX-4953-2023
OI Gu, Xiao/0000-0002-8346-4964
FU National Social Science Fund of China
FX No Statement Available
CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7
Alam A., 2021, 2021 INT C COMPUTATI, P1
An HY, 2023, PSYCHOL RES BEHAV MA, V16, P3303, DOI 10.2147/PRBM.S416100
Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051
Arslan A, 2022, INT J MANPOWER, V43, P75, DOI 10.1108/IJM-01-2021-0052
Atlas S., 2023, ChatGPT for Higher Education and Professional Development: A guide to conversational AI
Bail CA, 2023, Can Generative AI Improve Social Science?, DOI [10.31235/osf.io/rwtzs, DOI 10.31235/OSF.IO/RWTZS]
Bankins S., 2021, Redefining the psychological contract in the digital era: Issues for research and practice, P55
Bartneck C, 2009, INT J SOC ROBOT, V1, P71, DOI 10.1007/s12369-008-0001-3
Behrens R., 2015, P 8 INT C SAF IND AU, P18
Billard A., 2008, Handbook of robotics
Bryson JJ, 2010, Close Engagements with Artificial Companions: Key social, psychological, ethical and design issues, P63, DOI [10.1075/nlp.8.11bry, DOI 10.1075/NLP.8.11BRY]
Carter S., 2017, Distill, DOI DOI 10.23915/DISTILL.00009
Celik I, 2023, COMPUT HUM BEHAV, V138, DOI 10.1016/j.chb.2022.107468
Chen M, 2020, ACM T HUM-ROBOT INTE, V9, DOI 10.1145/3359616
Chen RJ, 2021, NAT BIOMED ENG, V5, P493, DOI 10.1038/s41551-021-00751-8
Cheng B, 2023, J BUS RES, V164, DOI 10.1016/j.jbusres.2023.113987
Chui M., 2018, McKinsey_Global_Institute
Coeckelbergh M, 2022, INT J SOC ROBOT, V14, P2049, DOI 10.1007/s12369-021-00770-0
Coeckelbergh M, 2018, ETHICS INF TECHNOL, V20, P71, DOI 10.1007/s10676-017-9441-5
Conti D, 2019, ACMIEEE INT CONF HUM, P630, DOI 10.1109/hri.2019.8673204
Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y
Cope B, 2021, EDUC PHILOS THEORY, V53, P1229, DOI 10.1080/00131857.2020.1728732
Coronado E, 2022, J MANUF SYST, V63, P392, DOI 10.1016/j.jmsy.2022.04.007
Crowell Charles R, 2019, JMIR Hum Factors, V6, pe12629, DOI 10.2196/12629
Crowell CR, 2009, 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, P3735, DOI 10.1109/IROS.2009.5354204
Damholdt MF, 2023, INT J SOC ROBOT, V15, P1203, DOI 10.1007/s12369-023-01014-z
Du GL, 2018, IEEE T IND ELECTRON, V65, P9571, DOI 10.1109/TIE.2018.2823667
Duffy BR, 2003, ROBOT AUTON SYST, V42, P177, DOI 10.1016/S0921-8890(02)00374-3
Epley N, 2007, PSYCHOL REV, V114, P864, DOI 10.1037/0033-295X.114.4.864
Eyssel F, 2017, ROBOT AUTON SYST, V87, P363, DOI 10.1016/j.robot.2016.08.029
Eyssel F, 2013, ACMIEEE INT CONF HUM, P121, DOI 10.1109/HRI.2013.6483531
Eyssel F, 2012, ACMIEEE INT CONF HUM, P125
Felten EW, 2023, Occupational Heterogeneity in Exposure to Generative AI
Fischer K., 2021, ACM Trans Hum-Robot Interact, V11, p4:1
Fiske A, 2019, J MED INTERNET RES, V21, DOI 10.2196/13216
Gautam AK, 2014, PROCEDIA ENGINEER, V97, P291, DOI 10.1016/j.proeng.2014.12.252
Goodrich Michael A., 2007, Foundations and Trends in Human-Computer Interaction, V1, P203, DOI 10.1561/1100000005
Gu X, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15065312
Guberina T, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0284766
Guthrie S.E., 1997, ANTHROPOMORPHISM ANE, P50
Haase J, 2023, Arxiv, DOI [arXiv:2303.12003, DOI 10.48550/ARXIV.2303.12003]
Häring M, 2014, ACMIEEE INT CONF HUM, P9, DOI 10.1145/2559636.2559673
Hancock PA, 2011, HUM FACTORS, V53, P517, DOI 10.1177/0018720811417254
Hee Rin Lee, 2012, 2012 RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, P803, DOI 10.1109/ROMAN.2012.6343850
Hegel F., 2011, 2011 RO-MAN: The 20th IEEE International Symposium on Robot and Human Interactive Communication, P72, DOI 10.1109/ROMAN.2011.6005246
Horvitz E, 1999, IEEE INTELL SYST APP, V14, P17
Ishiguro H., 2006, 2006 International Conference on Intelligent User Interfaces, P2, DOI 10.1145/1111449.1111451
Javaid M, 2022, J IND INTEGR MANAG, V07, P83, DOI 10.1142/S2424862221300040
Kalla D, 2023, INT J INNOV SCI RES, V8
Karaarslan E., 2023, Acad Platform J Eng Smart Syst, V11, P118, DOI [DOI 10.21541/APJESS.1293702, DOI 10.2139/SSRN.4341500]
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Kendell C, 2020, BMC FAM PRACT, V21, DOI 10.1186/s12875-020-01206-w
Kidd CD, 2008, 2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, P3230, DOI 10.1109/IROS.2008.4651113
Kory-Westlund JM, 2019, FRONT ROBOT AI, V6, DOI 10.3389/frobt.2019.00081
Krägeloh CU, 2019, ROBOTICS, V8, DOI 10.3390/robotics8040088
Kuchenbrandt D, 2013, INT J SOC ROBOT, V5, P409, DOI 10.1007/s12369-013-0197-8
Leong B, 2019, FAT*'19: PROCEEDINGS OF THE 2019 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P299, DOI 10.1145/3287560.3287591
Lihui Wang, 2020, Proceedings of 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing, (AMP 2020). Lecture Notes in Mechanical Engineering (LNME), P15, DOI 10.1007/978-3-030-46212-3_2
Loveys K, 2019, J MED INTERNET RES, V21, DOI 10.2196/13664
Luo J.T., 2006, Journal of Services Marketing, V20, P112, DOI [10.1108/08876040610657048, DOI 10.1108/08876040610657048]
Luo YY, 2024, ASIA PAC EDUC REV, V25, P267, DOI 10.1007/s12564-022-09749-6
MacDorman KF, 2015, INTERACT STUD, V16, P141, DOI 10.1075/is.16.2.01mac
Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045
Marvel JA, 2020, ACM T HUM-ROBOT INTE, V9, DOI 10.1145/3385009
Matheson E, 2019, ROBOTICS, V8, DOI 10.3390/robotics8040100
Mathur MB, 2016, COGNITION, V146, P22, DOI 10.1016/j.cognition.2015.09.008
Mazzone M, 2019, ARTS, V8, DOI 10.3390/arts8010026
McGinn C, 2020, INT J SOC ROBOT, V12, P281, DOI 10.1007/s12369-019-00564-5
Miseikis J, 2020, IEEE ROBOT AUTOM LET, V5, P5339, DOI 10.1109/LRA.2020.3007462
Mohammadpour A, 2019, Artificial Intelligence Techniques to Support Design and Construction, DOI [10.22260/ISARC2019/0172, DOI 10.22260/ISARC2019/0172]
Morris MR, 2023, Arxiv, DOI arXiv:2304.10547
Mukherjee D, 2022, ROBOT CIM-INT MANUF, V73, DOI 10.1016/j.rcim.2021.102231
Musbahi O, 2021, DIGIT HEALTH, V7, DOI 10.1177/20552076211063682
Olaronke Iroju, 2017, International Journal of Information Engineering and Electronic Business, V9, P43, DOI 10.5815/ijieeb.2017.03.06
Oswald FL, 2020, ANNU REV ORGAN PSYCH, V7, P505, DOI 10.1146/annurev-orgpsych-032117-104553
Pataranutaporn P, 2021, NAT MACH INTELL, V3, P1013, DOI 10.1038/s42256-021-00417-9
Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577
Peca A, 2016, IEEE TECHNOL SOC MAG, V35, P54, DOI 10.1109/MTS.2016.2554701
Pei Wang, 2019, Journal of Artificial General Intelligence, V10, P1, DOI 10.2478/jagi-2019-0002
Pollmann K, 2023, TECHNOL FORECAST SOC, V189, DOI 10.1016/j.techfore.2023.122376
Richardson K., 2018, Animism beyond the soul: ontology, reflexivity, and the making of anthropological knowledge, P110, DOI [10.2307/j.ctvw04dg0.10, DOI 10.2307/J.CTVW04DG0.10]
Roesler E, 2021, SCI ROBOT, V6, DOI 10.1126/scirobotics.abj5425
Ross A, 2021, CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3411764.3445296
Salem M, 2014, ACMIEEE INT CONF HUM, P74, DOI 10.1145/2559636.2559683
Salles Arleen, 2020, AJOB Neurosci, V11, P88, DOI 10.1080/21507740.2020.1740350
Samuel JL., 2019, Ethics Progr, V10, P8, DOI [10.14746/eip.2019.2.2, DOI 10.14746/EIP.2019.2.2]
Saunderson S, 2019, INT J SOC ROBOT, V11, P575, DOI 10.1007/s12369-019-00523-0
Scharth M., 2022, The ChatGPT chatbot is blowing people away with its writing skills
Sharkawy AN, 2021, Arxiv, DOI arXiv:2102.00928
Shiomi M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0240622
Shoham Y., 2018, The AI Index 2018 Annual Report
Skjuve M, 2023, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON CONVERSATIONAL USER INTERFACES, CUI 2023, DOI 10.1145/3571884.3597144
Song Y, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20185087
Sproull L, 1996, HUM-COMPUT INTERACT, V11, P97, DOI 10.1207/s15327051hci1102_1
Ullrich D, 2017, PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 2, P39, DOI 10.5220/0006155900390045
Wang CY, 2022, INT J EMERG TECHNOL, V17, P110, DOI 10.3991/ijet.v17i06.30019
Winkle K, 2023, ACM T HUM-ROBOT INTE, V12, DOI 10.1145/3571718
Woods S, 2006, 9TH IEEE INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL, VOLS 1 AND 2, PROCEEDINGS, P750, DOI 10.1109/AMC.2006.1631754
Xiao D, 2021, Sci Program, V2021, P1
Yang W., 2022, Computers and Education: Artificial Intelligence, V3, P100061, DOI DOI 10.1016/J.CAEAI.2022.100061
Yu PL, 2015, IND MANAGE DATA SYST, V115, P235, DOI 10.1108/IMDS-09-2014-0262
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhang H., 2021, Front Soc Sci Technol, V3, P11, DOI 10.25236/FSST.2021.030202
Zierock B., 2023, Learning, V116, P63
Zlotowski J, 2015, INT J SOC ROBOT, V7, P347, DOI 10.1007/s12369-014-0267-6
NR 106
TC 1
Z9 1
U1 55
U2 55
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 0951-5666
EI 1435-5655
J9 AI SOC
JI AI Soc.
PD 2024 MAR 15
PY 2024
DI 10.1007/s00146-024-01889-0
EA MAR 2024
PG 14
WC Computer Science, Artificial Intelligence
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA LA8H8
UT WOS:001184143100001
DA 2024-09-05
ER
PT C
AU Bertin, M
Atanassova, I
AF Bertin, Marc
Atanassova, Iana
BE Reyes, E
Szoniecky, S
Mkadmi, A
Kembellec, G
Fournier-S'niehotta, R
Siala-Kallel, F
Ammi, M
Labelle, S
TI Recommending Scientific Papers The Role of Citation Contexts
SO DTUC'18: PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON DIGITAL
TOOLS & USES CONGRESS
LA English
DT Proceedings Paper
CT 1st International Conference on Digital Tools and Uses (DTU)
CY OCT 03-05, 2018
CL Maison Sci Homme Paris Nord, Saint Denis, FRANCE
HO Maison Sci Homme Paris Nord
DE Citation Context Analysis; Bibliometrics; Natural Language Processing;
Recommender Systems; Information Retrieval; Scientific Papers
ID SYSTEMS
AB This paper addresses the problem of building recommender systems for scientific papers based on the linguistic and contextual analysis of citation contexts. We explain the importance of taking into consideration citation contexts and the different methodologies that exist as well as the ways that citations impact recommender systems. We also discuss the limits of using citation contexts to generate recommendations.
C1 [Bertin, Marc] Univ Claude Bernard Lyon 1, ELICO, Villeurbanne, France.
[Atanassova, Iana] Univ Franche Comte, CRIT, Besancon, France.
C3 Universite Claude Bernard Lyon 1; Universite de Franche-Comte
RP Bertin, M (corresponding author), Univ Claude Bernard Lyon 1, ELICO, Villeurbanne, France.
EM marc.bertin@univ-lyon1.fr; iana.atanassova@univ-fcomte.fr
RI Atanassova, Iana/ABC-5986-2020; Bertin, Marc/U-7606-2019; Bertin,
Marc/GQB-3671-2022; Bertin, Marc/ACT-2020-2022
OI Atanassova, Iana/0000-0003-3571-4006; Bertin, Marc/0000-0003-1803-6952;
Bertin, Marc/0000-0003-1803-6952; Bertin, Marc/0000-0003-1803-6952
CR Agarwal N, 2005, LECT NOTES COMPUT SC, V3739, P475
[Anonymous], INT J ADV MANUF TECH
[Anonymous], 2011, P 4 ACM INT C WEB SE, DOI DOI 10.1145/1935826.1935926
[Anonymous], 2010, Proceedings of the 10th Joint Conference on Digital Libraries, DOI DOI 10.1145/1816123.1816129
Beel J., 2017, CEUR Workshop Proceedings, V1823, P6
Beel J, 2016, INT J DIGIT LIBRARIE, V17, P305, DOI 10.1007/s00799-015-0156-0
Beel J, 2013, ACM-IEEE J CONF DIG, P459
Bertin Marc, 2012, D-Lib Magazine, V18, DOI 10.1045/july2012-bertin
BERTIN M, 2014, INF RETR WORKSH EUR, V1143, P5
Bertin Marc, 2015, P 1 WORKSH BIBL ENH
Bertin Marc, 2015, AAAS ANN M
Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012
Bogers Toine., 2008, Proc. DIR, P21
Bollacker KD, 2000, IEEE INTELL SYST APP, V15, P42, DOI 10.1109/5254.850826
CRONIN B, 1981, J DOC, V37, P16, DOI 10.1108/eb026703
Garfield E., 1992, Science and Public Policy, V19, P321, DOI [DOI 10.1093/SPP/19.5.321, 10.1093/spp/19.5.321]
Gasparic M, 2015, 2015 IEEE/ACM 2ND INTERNATIONAL WORKSHOP ON CONTEXT FOR SOFTWARE DEVELOPMENT, P1, DOI 10.1109/CSD.2015.7
Giles C. L., 1998, Digital 98 Libraries. Third ACM Conference on Digital Libraries, P89, DOI 10.1145/276675.276685
Gipp B., 2009, Proceedings of the International Conference on Emerging Trends in Computing, P309
Gori M, 2006, 2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS), P778, DOI 10.1109/WI.2006.149
Harper FM, 2005, LECT NOTES ARTIF INT, V3538, P307
He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734
Herrmannova D., 2017, P 1 WORKSH SCHOL WEB, P41
Huang WY, 2015, AAAI CONF ARTIF INTE, P2404
Huang WY, 2014, ACM-IEEE J CONF DIG, P371, DOI 10.1109/JCDL.2014.6970192
Huang Wenyi, 2012, P 21 ACM INT C INF K, P1910, DOI DOI 10.1145/2396761.2398542
Huang Z., 2002, JCDL 2002. Proceedings of the Second ACM/IEEE-CS Joint Conference on Digital Libraries, P65, DOI 10.1145/544220.544231
Kucuktunc Onur, 2012, ARXIV12051143
Küçüktunç O, 2015, ACM T INTEL SYST TEC, V5, DOI 10.1145/2668106
Lee J., 2013, ARXIV13045457
Liang YC, 2011, LECT NOTES COMPUT SC, V6897, P403, DOI 10.1007/978-3-642-23535-1_35
Livne A, 2014, SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P807, DOI 10.1145/2600428.2609585
Lops P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P73, DOI 10.1007/978-0-387-85820-3_3
MARSHAKOVA IV, 1973, NAUCH-TEKHN INFORM 2, P3
Matsatsinis NF, 2007, P 11 PANH C INF, P135
McNee S., 2006, ACM Conference on Computer Supported Cooperative Work (CSCW), P171
McNee S.M., 2006, Being accurate is not enough, P1097, DOI DOI 10.1145/1125451.1125659
Meng FQ, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1509
Middleton SE, 2004, ACM T INFORM SYST, V22, P54, DOI 10.1145/963770.963773
Middleton Stuart E., 2002, CS0204012 ARXIV
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Nascimento C., 2011, Proceeding of the 11th annual international ACMIEEE Joint Conference on Digital libraries, P297, DOI DOI 10.1145/1998076.1998132
Park DH, 2012, EXPERT SYST APPL, V39, P10059, DOI 10.1016/j.eswa.2012.02.038
Pohl S, 2007, ACM-IEEE J CONF DIG, P417, DOI 10.1145/1255175.1255260
Pruitikanee Siwipa, 2012, FUTURE COMPUTING 201, V7
Ren X, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P821, DOI 10.1145/2623330.2623630
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Small H., 1982, PROGR COMMUNICATION, V3, P287
Strohman Trevor, 2007, 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P705, DOI 10.1145/1277741.1277868
Sugiyama K, 2013, ACM-IEEE J CONF DIG, P153
Tang J, 2009, LECT NOTES ARTIF INT, V5476, P572, DOI 10.1007/978-3-642-01307-2_55
West Jevin D., 2016, IEEE Transactions on Big Data, V2, P113, DOI 10.1109/TBDATA.2016.2541167
White HD, 2004, APPL LINGUIST, V25, P89, DOI 10.1093/applin/25.1.89
Yonggang Wang, 2010, 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2010), P2777, DOI 10.1109/FSKD.2010.5569227
NR 55
TC 1
Z9 1
U1 3
U2 12
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
BN 978-1-4503-6451-5
PY 2018
DI 10.1145/3240117.3240123
PG 4
WC Computer Science, Interdisciplinary Applications; Computer Science,
Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BO0IC
UT WOS:000491157600006
DA 2024-09-05
ER
PT J
AU Zhang, ZB
Wang, JY
Li, JW
Wang, Y
Yin, K
Fei, XC
AF Zhang, Zhibo
Wang, Jingyi
Li, Jiuwei
Wang, Yao
Yin, Ke
Fei, Xunchang
TI Impacts of regional socioeconomic statuses and global events on solid
waste research reflected in six waste-focused journals
SO WASTE MANAGEMENT
LA English
DT Article
DE Solid waste research; Bibliometric analysis; Natural language
processing; Socioeconomic status; Global environmental events
ID BIBLIOMETRIC ANALYSIS; CO-AUTHORSHIP; MANAGEMENT; TRENDS; GENERATION;
ENERGY; INCINERATION; REUSE; LONG
AB The research pertaining to solid waste is undergoing extensive advancement, thereby necessitating a consolidation and analysis of its research trajectories. The existing biblio-studies on solid waste research (SWR) lack thorough analyses of the factors influencing its trends. This article presents an innovative categorization framework that categorizes publications from six SWR journals utilizing Source Latent Dirichlet Allocation. First analyse changes in publication numbers across main categories, subcategories, journals, and regions, providing a macro-level study of SWR. Temporal analysis of keywords supplements a micro-level study of SWR, which highlights that emerging technologies with low Technology Readiness Level receive significant attention, while studies on widespread technologies are diminishing. Additionally, this study demonstrates the substantial influence of socioeconomic factors and previous SWR publications on current and future SWR trends. Finally, the article confirms the impact of global events on SWR trends by examining the structural breakpoints of SWR and their correlation with global events.
C1 [Zhang, Zhibo; Li, Jiuwei; Wang, Yao; Fei, Xunchang] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639798, Singapore.
[Wang, Jingyi] Natl Univ Singapore, Dept Stat & Data Sci, Sci Dr 2, Singapore 117546, Singapore.
[Li, Jiuwei; Fei, Xunchang] Nanyang Environm & Water Res Inst, Residues & Resource Reclamat Ctr, 1 Cleantech Loop, Singapore 637141, Singapore.
[Yin, Ke] Nanjing Forestry Univ, Sch Biol & Environm, Dept Environm Engn, Nanjing 210037, Peoples R China.
[Fei, Xunchang] Nanyang Technol Univ, Sch Civil & Environm Engn, NI Bldg 01C-70,50 Nanyang Ave, Singapore 639798, Singapore.
C3 Nanyang Technological University; National University of Singapore;
Nanyang Technological University; Nanjing Forestry University; Nanyang
Technological University
RP Fei, XC (corresponding author), Nanyang Technol Univ, Sch Civil & Environm Engn, NI Bldg 01C-70,50 Nanyang Ave, Singapore 639798, Singapore.
EM xcfei@ntu.edu.sg
OI Wang, Yao/0000-0003-2373-0201; Wang, Jingyi/0009-0003-4100-813X; Zhang,
Zhibo/0000-0002-7239-4833; Fei, Xunchang/0000-0002-7435-9011
FU Nanyang Technological Uni- versity (Singapore)
FX Yao Wang would like to acknowledge Nanyang Technological Uni- versity
(Singapore) for a scholarship support.
CR Agreement P., 2015, FCCC/CP/2015/L. 9/Rev. 1
Animah I, 2018, SAFETY AND RELIABILITY - SAFE SOCIETIES IN A CHANGING WORLD, P1767
[Anonymous], 2023, Technology readiness level
Arai Y, 2007, ECONOMET REV, V26, P705, DOI 10.1080/07474930701653776
Barles S., 2014, The Basic Environmental History, P199, DOI [10.1007/978-3-319-09180-87, DOI 10.1007/978-3-319-09180-8_7, DOI 10.1007/978-3-319-09180-87]
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Brooks AL, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aat0131
Brunner PH, 2023, WASTE MANAGE RES, V41, P1717, DOI 10.1177/0734242X231172104
Chen DMC, 2020, ENVIRON RES LETT, V15, DOI 10.1088/1748-9326/ab8659
De Clercq D, 2019, SCI TOTAL ENVIRON, V673, P402, DOI 10.1016/j.scitotenv.2019.04.051
Dias JL, 2021, WASTE MANAGE RES, V39, P1331, DOI 10.1177/0734242X211042276
Ding ZK, 2021, ENVIRON SCI POLLUT R, V28, P30499, DOI 10.1007/s11356-021-13989-1
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Duan J.-C., 2019, Variable selection with big data based on zero norm and via sequential monte carlo, DOI [10.2139/ssrn.3377038, DOI 10.2139/SSRN.3377038]
Ezeah C, 2014, HABITAT INT, V41, P121, DOI 10.1016/j.habitatint.2013.07.007
Faybishenko B., 2017, International approaches for nuclear waste disposal in geological formations: Geological challenges in radioactive waste isolation-fifth worldwide review
Fei X., 2016, Experimental Assessment of Coupled Physical-Biochemical-MechanicalHydraulic Processes of Municipal Solid Waste Undergoing Biodegradation
Fei XC, 2022, NAT REV EARTH ENV, V3, P733, DOI 10.1038/s43017-022-00354-0
Fei XC, 2021, NAT CLIM CHANGE, V11, P1004, DOI 10.1038/s41558-021-01220-5
Fletcher CA, 2021, J CLEAN PROD, V306, DOI 10.1016/j.jclepro.2021.127169
Fu HZ, 2010, WASTE MANAGE, V30, P2410, DOI 10.1016/j.wasman.2010.06.008
Gajalakshmi S, 2008, CRIT REV ENV SCI TEC, V38, P311, DOI 10.1080/10643380701413633
GEORGE EI, 1993, J AM STAT ASSOC, V88, P881, DOI 10.2307/2290777
Ghisellini P, 2016, J CLEAN PROD, V114, P11, DOI 10.1016/j.jclepro.2015.09.007
Giusti L, 2009, WASTE MANAGE, V29, P2227, DOI 10.1016/j.wasman.2009.03.028
Gross R, 2018, ENERG POLICY, V123, P682, DOI 10.1016/j.enpol.2018.08.061
Gruchlik Y, 2018, J ENVIRON MANAGE, V206, P202, DOI 10.1016/j.jenvman.2017.10.020
Guo W, 2021, RESOUR CONSERV RECY, V173, DOI 10.1016/j.resconrec.2021.105727
Hayo B., 1971, Applied econometrics
Hoffert MI, 2002, SCIENCE, V298, P981, DOI 10.1126/science.1072357
Ikhlas N, 2024, J CLEAN PROD, V434, DOI 10.1016/j.jclepro.2023.140031
Karak T, 2012, CRIT REV ENV SCI TEC, V42, P1509, DOI 10.1080/10643389.2011.569871
Kaza S., 2018, What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, DOI DOI 10.1596/978-1-4648-1329-0
Khan D, 2016, WASTE MANAGE, V49, P15, DOI 10.1016/j.wasman.2016.01.019
Khor KA, 2016, SCIENTOMETRICS, V107, P1095, DOI 10.1007/s11192-016-1905-6
Korenius T., 2004, P 13 ACM INT C INF K, P625, DOI [DOI 10.1145/1031171.1031285, 10.1145/1031171.1031285]
Kowalski Z, 2022, FRONT ENERGY RES, V10, DOI 10.3389/fenrg.2022.919415
Lee P., 2017, study. Europ. Union, DOI [10.2861/978568, DOI 10.2861/978568]
Li N, 2018, RESOUR CONSERV RECY, V130, P109, DOI 10.1016/j.resconrec.2017.11.008
Liu YS, 2005, ENVIRON SCI TECHNOL, V39, P3855, DOI 10.1021/es040408m
MacLeo M, 2021, SCIENCE, V373, P61, DOI 10.1126/science.abg5433
Marshall RE, 2013, WASTE MANAGE, V33, P988, DOI 10.1016/j.wasman.2012.12.023
Mazzei HG, 2023, J ENVIRON CHEM ENG, V11, DOI 10.1016/j.jece.2023.109309
Modrow WM, 2005, J BUS FINANC LIBR, V11, P78
Montgomery D.C., 2015, Introduction to time series analysis and forecasting, DOI [10.1111/jtsa.12203, DOI 10.1111/JTSA.12203]
Munir MT, 2021, RENEW SUST ENERG REV, V145, DOI 10.1016/j.rser.2021.111080
Namlis KG, 2019, WASTE MANAGE, V89, P190, DOI 10.1016/j.wasman.2019.04.012
Nanda S, 2021, ENVIRON CHEM LETT, V19, P1433, DOI 10.1007/s10311-020-01100-y
Nayyar D., 2013, Catch up: Developing countries in the world economy, DOI [10.1093/acprof:oso/9780199652983.001.0001, DOI 10.1093/ACPROF:OSO/9780199652983.001.0001]
Ngoc UN, 2009, WASTE MANAGE, V29, P1982, DOI 10.1016/j.wasman.2008.08.031
Nwachukwu MA, 2017, WASTE MANAGE RES, V35, P923, DOI 10.1177/0734242X17715099
Olawumi TO, 2018, J CLEAN PROD, V183, P231, DOI 10.1016/j.jclepro.2018.02.162
Paulsen EB, 2021, ENERGIES, V14, DOI 10.3390/en14144247
Perez C, 2011, TECHNOLOGICAL REVOLUTIONS AND FINANCIAL CAPITAL: THE DYNAMICS OF BUBBLES AND GOLDEN AGES, P1
Pfaff B, 2008, J STAT SOFTW, V27, P1
Powell JT, 2018, WASTE MANAGE, V80, P137, DOI 10.1016/j.wasman.2018.09.008
Rodrigues S, 2016, J CLEAN PROD, V113, P374, DOI 10.1016/j.jclepro.2015.09.143
Rybicka J, 2016, J CLEAN PROD, V112, P1001, DOI 10.1016/j.jclepro.2015.08.104
Schubert A, 2006, SCIENTOMETRICS, V69, P409, DOI 10.1007/s11192-006-0160-7
Shahbaz M., 2022, Value-chain of Biofuels, P335, DOI [10.1016/B978-0-12-824388-6.00017-8, DOI 10.1016/B978-0-12-824388-6.00017-8]
Sales JCS, 2021, WORLD J MICROB BIOT, V37, DOI 10.1007/s11274-021-03089-0
Stern DI, 2004, WORLD DEV, V32, P1419, DOI 10.1016/j.worlddev.2004.03.004
Suthar S, 2015, SUSTAIN CITIES SOC, V14, P56, DOI 10.1016/j.scs.2014.07.004
Taherzadeh M.J., 2014, Waste Management and Sustainable Consumption: Reflections on Consumer Waste, V67, DOI [10.4324/9781315757261, DOI 10.4324/9781315757261]
Talang RPN, 2021, J CLEAN PROD, V312, DOI 10.1016/j.jclepro.2021.127761
Voutilainen A., 2003, The Oxford handbook of computational linguistics
Wang Y, 2016, RENEW SUST ENERG REV, V66, P95, DOI 10.1016/j.rser.2016.07.006
Williams E, 2008, ENVIRON SCI TECHNOL, V42, P6446, DOI 10.1021/es702255z
Wood J, 2017, PROC INT CONF DATA, P411, DOI 10.1109/ICDE.2017.99
Yang L, 2013, SCIENTOMETRICS, V96, P133, DOI 10.1007/s11192-012-0911-6
Zhang JT, 2022, Arxiv, DOI [arXiv:2212.12338, 10.48550/arXiv.2212.12338, DOI 10.48550/ARXIV.2212.12338]
Zhang Z., 2023, 9 INT C ENV GEOT, DOI [10.53243/ICEG2023-431, DOI 10.53243/ICEG2023-431]
Zhu JJ, 2021, ENVIRON SCI TECHNOL, V55, P3453, DOI 10.1021/acs.est.0c07551
NR 73
TC 0
Z9 0
U1 7
U2 7
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0956-053X
EI 1879-2456
J9 WASTE MANAGE
JI Waste Manage.
PD JUN 15
PY 2024
VL 182
BP 113
EP 123
DI 10.1016/j.wasman.2024.04.028
EA APR 2024
PG 11
WC Engineering, Environmental; Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering; Environmental Sciences & Ecology
GA SC7V0
UT WOS:001232333200001
PM 38648689
DA 2024-09-05
ER
PT C
AU Beaudoin, BL
Nusinovich, GS
Turner, C
Karakkad, JA
Narayan, AH
Thomson, C
Antonsen, TM
AF Beaudoin, Brian L.
Nusinovich, Gregory S.
Turner, Charles
Karakkad, Jayakrishnan A.
Narayan, Amith H.
Thomson, Connor
Antonsen, Thomas M., Jr.
GP IEEE
TI Novel High-Power Radio-Frequency Sources for Ionospheric Heating
SO 2016 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC)
SE IEEE International Vacuum Electronics Conference IVEC
LA English
DT Proceedings Paper
CT 17th IEEE International Vacuum Electronics Conference (IVEC)
CY APR 19-21, 2016
CL Monterey, CA
DE Inductive output tube; Ionospher; Radio frequency; Space-charge;
Inductive adders; Transformers; High-frequency Active Auroral Research
Program (HAARP)
AB Development of Mobile Ionospheric Heating sources (MIHs) would allow investigators to conduct needed research at different latitudes without building permanent and costly installations. As part of an Air Force Multi-University Research Initiative (MURI), the University of Maryland is designing a prototype of a powerful Radio Frequency (RF) source utilizing Inductive Output Tube (IOT) technology operating in class-D with a mod-anode controlled electron gun [1]. This technology was chosen because it has the potential to operate at efficiencies exceeding 90% [2].
C1 [Beaudoin, Brian L.; Nusinovich, Gregory S.; Turner, Charles; Karakkad, Jayakrishnan A.; Narayan, Amith H.; Thomson, Connor; Antonsen, Thomas M., Jr.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA.
C3 University System of Maryland; University of Maryland College Park
RP Beaudoin, BL (corresponding author), Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA.
RI Nusinovich, Gregory S/C-1314-2017; Nusinovich, Gregory/B-4751-2017;
Beaudoin, Brian/D-5174-2017; Antonsen, Thomas/D-8791-2017
OI Nusinovich, Gregory/0000-0002-8641-5156; Beaudoin,
Brian/0000-0001-9935-4658; Antonsen, Thomas/0000-0002-2362-2430
CR Beaudoin B. L., 2015, IPAC2015, P3398
Nusinovich G., 2016, IVEC2016
Pedersen T, 2015, PHYS TODAY, V68, P72, DOI 10.1063/PT.3.3032
Petillo JJ, 2005, IEEE T ELECTRON DEV, V52, P742, DOI 10.1109/TED.2005.845800
NR 4
TC 0
Z9 0
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4673-9217-4
J9 IEEE INT VAC ELECT C
PY 2016
PG 2
WC Engineering, Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering
GA BG0DO
UT WOS:000386185700013
DA 2024-09-05
ER
PT J
AU Jha, D
Alam, S
Pyun, JY
Lee, KH
Kwon, GR
AF Jha, Debesh
Alam, Saruar
Pyun, Jae-Young
Lee, Kun Ho
Kwon, Goo-Rak
TI Alzheimer's Disease Detection Using Extreme Learning Machine, Complex
Dual Tree Wavelet Principal Coefficients and Linear Discriminant
Analysis
SO JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS
LA English
DT Article
DE Alzheimer's Disease; Computer-Aided Diagnosis; Dual-Tree Complex Wavelet
Transform; Principal Component Analysis; Linear Discriminant Analysis;
Extreme Learning Machine; Alzheimer's Disease Neuroimaging Initiative;
Open Access Series of Imaging Studies
ID SUPPORT VECTOR MACHINE; MILD COGNITIVE IMPAIRMENT; CLASS IMBALANCE;
CLASSIFICATION; BRAIN; PREDICTION; DIAGNOSIS; SCANS; MRI
AB The early detection and classification of Alzheimer's disease (AD) are important clinical support tasks for medical practitioners in customizing patient treatment programs to have better manage the development and progression of these diseases. Efforts are being made to diagnose these neurodegenerative disorders in the early stages. Efficient early categorization of the AD and mild Cognitive Impairment (MCI) from HC is necessary as prompt preventive care could assist to mitigate risk factors. For analysis and prognosis of disease, Magnetic resonance imaging (MRI). In this paper, we proposed a novel computer-aided diagnosis (CAD) cascade model to discriminate patients with the AD from healthy controls using dual-tree complex wavelet transforms (DTCWT), principal component analysis, linear discriminant analysis, and extreme learning machine (ELM). The proposed method obtained accuracy of 90.26 +/- 1.17, a specificity of 90.20 +/- 1.56 and sensitivity of 90.27 +/- 1.29 on the Alzheimer's disease Neuroimaging Initiative (ADNI) dataset and accuracy of 95.72 +/- 1.54, a sensitivity of 96.59 +/- 2.34 and specificity of 93.03 +/- 1.67 on the Open Access Series of Imaging Studies (OASIS) dataset. The proposed method is effective and superior to the existing models.
C1 [Jha, Debesh; Alam, Saruar; Pyun, Jae-Young; Kwon, Goo-Rak] Chosun Univ, Dept Informat & Commun Engn, 375 Seosuk Dong, Gwangju 501759, South Korea.
[Lee, Kun Ho] Chosun Univ, Natl Res Ctr Dementia, 375 Seosuk Dong, Gwangju 501759, South Korea.
[Lee, Kun Ho] Chosun Univ, Dept Biomed Sci, 375 Seosuk Dong, Gwangju 501759, South Korea.
C3 Chosun University; Chosun University; Chosun University
RP Kwon, GR (corresponding author), Chosun Univ, Dept Informat & Commun Engn, 375 Seosuk Dong, Gwangju 501759, South Korea.
RI Jha, Debesh/M-2526-2019
OI Jha, Debesh/0000-0002-8078-6730
FU Brain Research Program through the National Research Foundation of Korea
- Ministry of Science, ICT and Future Planning [NRF-2014M3C7A1046050];
National Research Foundation of Korea Grant - Korean Government
[NRF-2017R1A2B4006533]; Alzheimer's Disease Neuroimaging Initiative
(ADNI) (National Institutes of Health) [U01 AG024904]; DOD ADNI
(Department of Defense) [W81XWH-12-2-0012]
FX This research was supported by the Brain Research Program through the
National Research Foundation of Korea funded by the Ministry of Science,
ICT and Future Planning (NRF-2014M3C7A1046050). And this work was
supported by the National Research Foundation of Korea Grant funded by
the Korean Government (NRF-2017R1A2B4006533). Data collection and
sharing for this project was funded by the Alzheimer's Disease
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01
AG024904) and DOD ADNI (Department of Defense award number
W81XWH-12-2-0012). The funding details of ADNI can be found at:
http://adni.loni.usc.edu/about/funding/.
CR Alam Saruar, 2016, [The Journal of Korean Institute of Next Generation Computing, 한국차세대컴퓨팅학회 논문지], V12, P51
Andersen AH, 1999, MAGN RESON IMAGING, V17, P795, DOI 10.1016/S0730-725X(99)00028-4
[Anonymous], J HEALTHCARE ENG JUN
[Anonymous], SIGNAL PROCESS
[Anonymous], 1986, The Fourier Transform and Its Applications
Ashburner J, 2011, NEUROIMAGE, V56, P422, DOI 10.1016/j.neuroimage.2010.03.059
Barri A, 2012, J MATH ANAL APPL, V389, P1303, DOI 10.1016/j.jmaa.2012.01.010
Chaplot S, 2006, BIOMED SIGNAL PROCES, V1, P86, DOI 10.1016/j.bspc.2006.05.002
Chupin M, 2009, HIPPOCAMPUS, V19, P579, DOI 10.1002/hipo.20626
Ecker C, 2010, J NEUROSCI, V30, P10612, DOI 10.1523/JNEUROSCI.5413-09.2010
Fisher RA, 1936, ANN EUGENIC, V7, P179, DOI 10.1111/j.1469-1809.1936.tb02137.x
Fletcher R., 1981, Practical methods of optimization, volume 2, Constrained Optimization, V2
Gray KR, 2013, NEUROIMAGE, V65, P167, DOI 10.1016/j.neuroimage.2012.09.065
Huang GB, 2007, NEUROCOMPUTING, V70, P3056, DOI 10.1016/j.neucom.2007.02.009
Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126
Jha D, 2017, J MED IMAG HEALTH IN, V7, P1744, DOI 10.1166/jmihi.2017.2269
Jha D, 2017, COMPUT INTEL NEUROSC, V2017, DOI 10.1155/2017/4205141
Jha D, 2017, J HEALTHC ENG, V2017, DOI 10.1155/2017/9060124
Jha Debesh, 2016, [Journal of Korean Institute of Information Technology, 한국정보기술학회논문지], V14, P121, DOI 10.14801/jkiit.2016.14.8.121
Klöppel S, 2008, BRAIN, V131, P681, DOI 10.1093/brain/awm319
Koutsouleris N, 2009, ARCH GEN PSYCHIAT, V66, P700, DOI 10.1001/archgenpsychiatry.2009.62
Lu SY, 2017, CNS NEUROL DISORD-DR, V16, P23, DOI 10.2174/1871527315666161019153259
Mirza B, 2015, NEUROCOMPUTING, V149, P316, DOI 10.1016/j.neucom.2014.03.075
Mirza B, 2013, NEURAL PROCESS LETT, V38, P465, DOI 10.1007/s11063-013-9286-9
Moritz CH, 2000, AM J NEURORADIOL, V21, P1629
Plant C, 2010, NEUROIMAGE, V50, P162, DOI 10.1016/j.neuroimage.2009.11.046
Sankari Z, 2011, J NEUROSCI METH, V197, P165, DOI 10.1016/j.jneumeth.2011.01.027
Savio A, 2013, EXPERT SYST APPL, V40, P1619, DOI 10.1016/j.eswa.2012.09.009
Schmitter D, 2015, NEUROIMAGE-CLIN, V7, P7, DOI 10.1016/j.nicl.2014.11.001
Tomar D, 2015, EGYPT INFORM J, V16, P55, DOI 10.1016/j.eij.2014.12.003
Weygandt M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021138
Yotter RA, 2011, NEUROIMAGE, V56, P961, DOI 10.1016/j.neuroimage.2011.02.007
Zhang YD, 2015, PEERJ, V3, DOI 10.7717/peerj.1251
Zhang YD, 2015, FRONT COMPUT NEUROSC, V9, DOI 10.3389/fncom.2015.00066
Zhang YD, 2014, PROG ELECTROMAGN RES, V144, P171, DOI 10.2528/PIER13121310
Zhang YD, 2011, EXPERT SYST APPL, V38, P10049, DOI 10.1016/j.eswa.2011.02.012
NR 36
TC 19
Z9 20
U1 0
U2 19
PU AMER SCIENTIFIC PUBLISHERS
PI VALENCIA
PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA
SN 2156-7018
EI 2156-7026
J9 J MED IMAG HEALTH IN
JI J. Med. Imaging Health Inform.
PD JUN
PY 2018
VL 8
IS 5
BP 881
EP 890
DI 10.1166/jmihi.2018.2381
PG 10
WC Mathematical & Computational Biology; Radiology, Nuclear Medicine &
Medical Imaging
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Mathematical & Computational Biology; Radiology, Nuclear Medicine &
Medical Imaging
GA GJ1AF
UT WOS:000434985100003
DA 2024-09-05
ER
PT J
AU Baier-Fuentes, H
Cascón-Katchadourian, J
Martínez, MA
Herrera-Viedma, E
Merigó, JM
AF Baier-Fuentes, Hugo
Cascon-Katchadourian, Jesus
Martinez, M. A.
Herrera-Viedma, Enrique
Merigo, Jose M.
TI A Bibliometric Overview of the International Journal of Interactive
Multimedia and Artificial Intelligence
SO INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL
INTELLIGENCE
LA English
DT Article
DE Bibliometrics; Web Of Science; VOS Viewer
ID MANAGEMENT; UNIVERSITY; ECONOMICS; HISTORY; SCIENCE; FIELD
AB The International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI) published its first issue ten years ago. Currently, IJIMAI is indexed in the important database Emerging Sources Citation Index. This paper aims to identify, through a mapping of science, those most relevant aspects of the structure of publications made during the first 10 years of IJIMAI. Using VOSviewer software, the structural maps of the IJIMAI publications are analysed according to techniques such as bibliographic coupling, co-citations and co-occurrence of keywords. In addition, the evolution of the publications, citations and an analysis of the most cited papers of the journal are presented. The results show that IJIMAI has experienced a remarkable growth of both publications and citations in the last five years. We also observe that IJIMAI does not only capture the attention of the Spanish scientific community, but also of emerging countries such as India and Iran and emerging Latin American countries such as Colombia. With a such increasing behaviour, it is expected in the coming years that IJIMAI will position itself among the best journals with similar scientific scope.
C1 [Baier-Fuentes, Hugo] Univ Catolica Santisima Concepcion, Dept Business Adm, Av Alonso de Ribera 2850, Concepcion, Chile.
[Cascon-Katchadourian, Jesus] Colegio Maximo Cartuja, Fac Commun & Documentat, Dept Informat & Commun, Granada 18071, Spain.
[Martinez, M. A.] Univ Granada, Dept Social Work & Social Serv, Granada, Spain.
[Herrera-Viedma, Enrique] Univ Granada, Dept Comp Sci & Artificial Intelligence, Av Periodista Daniel Saucedo S-N, Granada, Spain.
[Merigo, Jose M.] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Syst Management & Leadership, 81 Broadway, Ultimo, NSW 2007, Australia.
[Merigo, Jose M.] Univ Chile, Sch Econ & Business, Dept Management Control & Informat Syst, Av Diagonal Paraguay 257, Santiago 8330015, Chile.
C3 Universidad Catolica de la Santisima Concepcion; University of Granada;
University of Granada; University of Technology Sydney; Universidad de
Chile
RP Merigó, JM (corresponding author), Univ Technol Sydney, Fac Engn & Informat Technol, Sch Syst Management & Leadership, 81 Broadway, Ultimo, NSW 2007, Australia.; Merigó, JM (corresponding author), Univ Chile, Sch Econ & Business, Dept Management Control & Informat Syst, Av Diagonal Paraguay 257, Santiago 8330015, Chile.
EM hbaier@ucsc.cl; jesuscascon@gmail.com; mundodesilencio@ugr.es;
viedma@decsai.ugr.es; jmerigo@fen.uchile.cl
RI Merigó, José M./K-1500-2019; Sánchez, Maria Angeles
Martínez/AAB-7403-2019; Katchadourian, Jesús Daniel Cascón/E-7704-2016;
Baier-Fuentes, Hugo/AAP-5413-2020; HERRERA-VIEDMA, ENRIQUE/C-2704-2008
OI Merigó, José M./0000-0002-4672-6961; Katchadourian, Jesús Daniel
Cascón/0000-0002-3388-7862; Baier-Fuentes, Hugo/0000-0002-6436-1222;
HERRERA-VIEDMA, ENRIQUE/0000-0002-7922-4984
FU FEDER [TIN2016-75850-P]; Spanish Ministry of Science, Innovation and
Universities; Fondecyt Regular program [1160286]; Chilean Government
through Conicyt
FX This project was funded by the FEDER financial support from the Project
TIN2016-75850-P provided by the Spanish Ministry of Science, Innovation
and Universities. The last author acknowledges support from the Fondecyt
Regular program (project number 1160286) of the Chilean Government
through Conicyt.
CR [Anonymous], 2018, APPL INTELL, DOI [10.1007/s10489-017-1105-y., DOI 10.1007/s10489-017-1105-y, DOI 10.1007/S10489-017-1105-Y]
Baier-Fuentes H, 2019, INT ENTREP MANAG J, V15, P385, DOI 10.1007/s11365-017-0487-y
Biemans W, 2007, J PROD INNOVAT MANAG, V24, P193, DOI 10.1111/j.1540-5885.2007.00245.x
Blanco-Mesa F, 2017, J INTELL FUZZY SYST, V32, P2033, DOI 10.3233/JIFS-161640
Bonilla CA, 2015, SCIENTOMETRICS, V105, P1239, DOI 10.1007/s11192-015-1747-7
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Cancino CA, 2017, COMPUT IND ENG, V113, P614, DOI 10.1016/j.cie.2017.08.033
Cancino CA, 2017, J INNOV KNOWL, V2, P106, DOI 10.1016/j.jik.2017.03.006
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Gaviria-Marin M, 2019, TECHNOL FORECAST SOC, V140, P194, DOI 10.1016/j.techfore.2018.07.006
Gaviria-Marin M, 2018, J KNOWL MANAG, V22, P1655, DOI 10.1108/JKM-10-2017-0497
Huang Y, 2017, SCIENTOMETRICS, V111, P2041, DOI 10.1007/s11192-017-2349-3
Karagoz Y., 2014, SPSS 21.1 Uygulamali Biyoistatistik
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027
Martínez-López FJ, 2018, EUR J MARKETING, V52, P439, DOI 10.1108/EJM-11-2017-0853
Valenzuela L, 2017, J BUS IND MARK, V32, P1, DOI 10.1108/JBIM-04-2016-0079
Merigó JM, 2019, SOFT COMPUT, V23, P1477, DOI 10.1007/s00500-018-3168-z
Merigó JM, 2018, INFORM SCIENCES, V432, P245, DOI 10.1016/j.ins.2017.11.054
Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859
Morris SA, 2008, ANNU REV INFORM SCI, V42, P213
Mulet-Forteza C, 2018, J TRAVEL TOUR MARK, V35, P1201, DOI 10.1080/10548408.2018.1487368
Persson O., 2009, CELEBRATING SCHOLARL, V5, P9
PETERS HPF, 1991, SCIENTOMETRICS, V20, P235, DOI 10.1007/BF02018157
Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533
Porter A.L., 2005, Tech mining: exploiting new technologies for competitive advantage
PRITCHARD A, 1969, J DOC, V25, P348
SCHWERT GW, 1993, J FINANC ECON, V33, P369, DOI 10.1016/0304-405X(93)90012-Z
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G
Tur-Porcar A, 2018, J PSYCHOL, V152, P199, DOI 10.1080/00223980.2018.1440516
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Van Raan A., 2005, HDB QUANTITATIVE SCI
Wang WR, 2018, INT J UNCERTAIN FUZZ, V26, P169, DOI 10.1142/S0218488518500095
NR 38
TC 16
Z9 16
U1 1
U2 35
PU UNIV INT RIOJA-UNIR
PI LOGRONO
PA RECTORADO, AVENIDA DE LA PAZ, 137, LOGRONO, 26006, SPAIN
SN 1989-1660
J9 INT J INTERACT MULTI
JI Int. J. Interact. Multimed. Artif. Intell.
PD DEC
PY 2018
VL 5
IS 3
BP 9
EP 16
DI 10.9781/ijimai.2018.12.003
PG 8
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA HC5WZ
UT WOS:000451874400002
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Levin, G
Brezinov, Y
Meyer, R
AF Levin, Gabriel
Brezinov, Yoav
Meyer, Raanan
TI Exploring the use of ChatGPT in OBGYN: a bibliometric analysis of the
first ChatGPT-related publications
SO ARCHIVES OF GYNECOLOGY AND OBSTETRICS
LA English
DT Article
DE Artificial intelligence; Bibliometrics; ChatGPT; OBGYN literature;
Research
AB PurposeLittle is known about the scientific literature regarding the new revolutionary tool, ChatGPT. We aim to perform a bibliometric analysis to identify ChatGPT-related publications in obstetrics and gynecology (OBGYN).Study designA bibliometric study through PubMed database. We mined all ChatGPT-related publications using the search term "ChatGPT". Bibliometric data were obtained from the iCite database. We performed a descriptive analysis. We further compared IF among publications describing a study vs. other publications.ResultsOverall, 42 ChatGPT-related publications were published across 26 different journals during 69 days. Most publications were editorials (52%) and news/briefing (22%), with only one (2%) research article identified. Five (12%) publications described a study performed. No ChatGPT-related publications in OBGYN were found. The leading journal by the number of publications was Nature (24%), followed by Lancet Digital Health and Radiology (7%, for both). The main subjects of publications were ChatGPT's scientific writing quality (26%) and a description of ChatGPT (26%) followed by tested performance of ChatGPT (14%), authorship and ethical issues (10% for both topics).In a comparison of publications describing a study performed (n = 5) vs. other publications (n = 37), mean IF was lower in the study-publications (mean 6.25 +/- 0 vs. 25.4 +/- 21.6, p < .001).ConclusionsThe study highlights main trends in ChatGPT-related publications. OBGYN is yet to be represented in this literature.
C1 [Levin, Gabriel] Hadassah Hebrew Univ, Med Ctr, Dept Gynecol Oncol, Jerusalem, Israel.
[Levin, Gabriel] McGill Univ, Jewish Gen Hosp, Lady Davis Inst Canc Res, Quebec City, PQ, Canada.
[Brezinov, Yoav] McGill Univ, Expt Surg, Quebec City, PQ, Canada.
[Meyer, Raanan] Cedars Sinai Med Ctr, Dept Obstet & Gynecol, Div Minimally Invas Gynecol Surg, Los Angeles, CA USA.
[Meyer, Raanan] Sheba Med Ctr, Dr Pinchas Bornstein Talpiot Med Leadership Progra, Ramat Gan, Israel.
C3 Hebrew University of Jerusalem; Hadassah University Medical Center;
McGill University; McGill University; Cedars Sinai Medical Center; Chaim
Sheba Medical Center
RP Levin, G (corresponding author), Hadassah Hebrew Univ, Med Ctr, Dept Gynecol Oncol, Jerusalem, Israel.; Levin, G (corresponding author), McGill Univ, Jewish Gen Hosp, Lady Davis Inst Canc Res, Quebec City, PQ, Canada.
EM levin.gaby@gmail.com
RI Levin, Gabriel/AAF-2239-2020
OI Brezinov, Yoav/0000-0001-6452-9868
CR Agarwal A, 2016, ASIAN J ANDROL, V18, P296, DOI 10.4103/1008-682X.171582
Ahn C, 2023, RESUSCITATION, V185, DOI 10.1016/j.resuscitation.2023.109729
[Anonymous], ChatGPT
Arezzo F, 2022, ARCH GYNECOL OBSTET, V306, P2143, DOI 10.1007/s00404-022-06578-1
Biswas S, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.223312
Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7
D'Amico RS, 2023, NEUROSURGERY, V92, P663, DOI 10.1227/neu.0000000000002414
Else H, 2023, NATURE, V613, P423, DOI 10.1038/d41586-023-00056-7
Fijaoko N, 2023, RESUSCITATION, V185, DOI 10.1016/j.resuscitation.2023.109732
Fisher SA, 2022, CLIN OBSTET GYNECOL, V65, P290, DOI 10.1097/GRF.0000000000000695
Hackelöer M, 2023, ARCH GYNECOL OBSTET, V308, P1663, DOI 10.1007/s00404-022-06864-y
Kokol P, 2021, HEALTH INFO LIBR J, V38, P125, DOI 10.1111/hir.12295
Lee KS, 2022, ARCH GYNECOL OBSTET, V305, P1369, DOI 10.1007/s00404-022-06405-7
Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z
Stokel-Walker Chris, 2022, Nature, DOI 10.1038/d41586-022-04397-7
NR 15
TC 11
Z9 11
U1 23
U2 135
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0932-0067
EI 1432-0711
J9 ARCH GYNECOL OBSTET
JI Arch. Gynecol. Obstet.
PD DEC
PY 2023
VL 308
IS 6
BP 1785
EP 1789
DI 10.1007/s00404-023-07081-x
EA MAY 2023
PG 5
WC Obstetrics & Gynecology
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Obstetrics & Gynecology
GA U5KK2
UT WOS:000994086600001
PM 37222839
DA 2024-09-05
ER
PT J
AU Bornmann, L
Stefaner, M
Anegon, FD
Mutz, R
AF Bornmann, Lutz
Stefaner, Moritz
de Moya Anegon, Felix
Mutz, Ruediger
TI Excellence networks in science: A Web-based application based on
Bayesian multilevel logistic regression (BMLR) for the identification of
institutions collaborating successfully
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Citation network; Best paper rate; Co-authorship; Collaboration
ID GEOGRAPHICAL PROXIMITY; CITATION; PERFORMANCE; IMPACT; RANK; MAP
AB In this study we present an application which can be accessed via www.excellence-networks.net and which represents networks of scientific institutions worldwide. The application is based on papers (articles, reviews and conference papers) published between 2007 and 2011. It uses (network) data, on which the SCImago Institutions Ranking is based (Scopus data from Elsevier). Using this data, institutional networks have been estimated with statistical models (Bayesian multilevel logistic regression, BMLR) for a number of Scopus subject areas. Within single subject areas, we have investigated and visualized how successfully overall an institution (reference institution) has collaborated (compared to all the other institutions in a subject area), and with which other institutions (network institutions) a reference institution has collaborated particularly successfully. The "best paper rate" (statistically estimated) was used as an indicator for evaluating the collaboration success of an institution. This gives the proportion of highly cited papers from an institution, and is considered generally as an indicator for measuring impact in bibliometrics. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Bornmann, Lutz] Max Planck Gesell, Div Sci & Innovat Studies, Adm Headquarters, Munich, Germany.
[Stefaner, Moritz] Eickedorfer Damm 35, D-28865 Lilienthal, Germany.
[de Moya Anegon, Felix] CSIC, Inst Publ Goods & Policies IPP, Madrid, Spain.
[Mutz, Ruediger] ETH, Social Psychol & Res Higher Educ, Zurich, Switzerland.
C3 Max Planck Society; Consejo Superior de Investigaciones Cientificas
(CSIC); CSIC - Instituto de Politicas y Bienes Publicos (IPP); Swiss
Federal Institutes of Technology Domain; ETH Zurich
RP Bornmann, L (corresponding author), Max Planck Gesell, Div Sci & Innovat Studies, Adm Headquarters, Munich, Germany.
EM bornmann@gv.mpg.de
RI Mutz, Rüdiger/AAA-9629-2021; de Moya Anegón, Félix/C-4004-2009; Mutz,
Ruediger/A-2226-2009; Bornmann, Lutz/A-3926-2008; de Moya Anegón,
Félix/V-3678-2019
OI Mutz, Rüdiger/0000-0003-3345-6090; de Moya Anegón,
Félix/0000-0002-0255-8628
CR Adams J, 2012, NATURE, V490, P335, DOI 10.1038/490335a
[Anonymous], 2020, arm: Data analysis using regression and multilevel / hierarchical models
[Anonymous], UK SER GROUP UKSG AN
[Anonymous], 2013, SAS/STAT 13.1 User's Guide, P6247
[Anonymous], PLOS ONE
[Anonymous], MAP PROJECTIONS WORK
[Anonymous], FIELD NORMALIZED CIT
[Anonymous], MULTILEVEL MODEL
[Anonymous], INFORM VISUAL
[Anonymous], 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/B16018
Apolloni A, 2013, EUR PHYS J-SPEC TOP, V222, P1467, DOI 10.1140/epjst/e2013-01937-5
Bayarri MJ, 2004, STAT SCI, V19, P58, DOI 10.1214/088342304000000116
Börner K, 2007, ANNU REV INFORM SCI, V41, P537, DOI 10.1002/aris.2007.1440410119
Bornmann L, 2015, COLLNET J SCIENTOMET, V9, P65, DOI 10.1080/09737766.2015.1027090
Bornmann L, 2015, SCIENTOMETRICS, V102, P455, DOI 10.1007/s11192-014-1425-1
Bornmann L, 2014, J INFORMETR, V8, P581, DOI 10.1016/j.joi.2014.04.008
Bornmann L, 2014, ONLINE INFORM REV, V38, P43, DOI 10.1108/OIR-12-2012-0214
Bornmann L, 2013, J INFORMETR, V7, P933, DOI 10.1016/j.joi.2013.09.003
Bornmann L, 2013, J AM SOC INF SCI TEC, V64, P1649, DOI 10.1002/asi.22857
Bornmann L, 2012, J INFORMETR, V6, P333, DOI 10.1016/j.joi.2011.11.006
Bornmann L, 2011, J R STAT SOC A STAT, V174, P857, DOI 10.1111/j.1467-985X.2011.00689.x
Bozeman B., 2013, J TECHNOL TRANSFER, V38, P1, DOI [DOI 10.1007/s10961-012-9281-8, DOI 10.1007/S10961-012-9281-8]
Chessa A, 2013, SCIENCE, V339, P650, DOI 10.1126/science.1227970
Cimenler O, 2014, J INFORMETR, V8, P667, DOI 10.1016/j.joi.2014.06.004
Congdon PD, 2010, Applied Bayesian hierarchical methods
FRENKEN K., 2014, Measuring Scholarly Impact, P127, DOI [10.1007/978-3-319-10377-86, DOI 10.1007/978-3-319-10377-86, DOI 10.1007/978-3-319-10377-8_6]
Gelman A, 2014, AM SCI, V102, P460, DOI 10.1511/2014.111.460
GOLDSTEIN H, 1995, J ROY STAT SOC A STA, V158, P175, DOI 10.2307/2983411
Greenland S, 2000, INT J EPIDEMIOL, V29, P158, DOI 10.1093/ije/29.1.158
Guerrero-Bote VP, 2012, J INFORMETR, V6, P674, DOI 10.1016/j.joi.2012.07.001
Hamaker EL., 2011, HDB ADV MULTILEVEL A, P137
Hicks D, 2015, NATURE, V520, P429, DOI 10.1038/520429a
Hox J.J., 2017, Multilevel analysis, V3rd
HUNTER RS, 1948, J OPT SOC AM, V38, P1094
Jacomy M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098679
Jebb AT, 2015, ORGAN RES METHODS, V18, P92, DOI 10.1177/1094428114553060
Kass RE, 2011, STAT SCI, V26, P1, DOI 10.1214/10-STS337
KATZ JS, 1994, SCIENTOMETRICS, V31, P31, DOI 10.1007/BF02018100
Katz JS, 1997, RES POLICY, V26, P1, DOI 10.1016/S0048-7333(96)00917-1
Knoke D., 2008, QUANTITATIVE APPL SO, V154
Kumar S, 2015, ASLIB J INFORM MANAG, V67, P55, DOI 10.1108/AJIM-09-2014-0116
Lancho-Barrantes BS, 2013, SCIENTOMETRICS, V94, P817, DOI 10.1007/s11192-012-0797-3
Larivière V, 2015, J ASSOC INF SCI TECH, V66, P1323, DOI 10.1002/asi.23266
Levitt JM, 2010, SCIENTOMETRICS, V85, P171, DOI 10.1007/s11192-010-0197-5
Leydesdorff L, 2013, PROF INFORM, V22, P87, DOI 10.3145/epi.2013.ene.12
Lunn D, 2013, The BUGS book
Mutz R, 2007, DIAGNOSTICA, V53, P3, DOI 10.1026/0012-1924.53.1.3
SAS Institute Inc., 2011, SASSTAR 9 3 USERS GU
Simonton DK, 2013, NATURE, V493, P602, DOI 10.1038/493602a
SMITH R, 1988, BRIT MED J, V296, P774, DOI 10.1136/bmj.296.6624.774
Snijders T.A.B., 2004, Multilevel analysis: An introduction to basic and advanced multilevel modeling
Snijders T.A.B., 1995, J QUANTITATIVE ANTHR, V5, P85
SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105
Sugimoto CR, 2011, LIBR INFORM SCI RES, V33, P3, DOI 10.1016/j.lisr.2010.05.003
Wagner CS, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0131816
Waltman L, 2013, J AM SOC INF SCI TEC, V64, P372, DOI 10.1002/asi.22775
Waltman L, 2012, J AM SOC INF SCI TEC, V63, P2419, DOI 10.1002/asi.22708
Waltman L, 2011, J INFORMETR, V5, P574, DOI 10.1016/j.joi.2011.05.003
ZIMAN J. M., 2000, Real science: what it is and what it means
NR 59
TC 13
Z9 13
U1 1
U2 44
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD FEB
PY 2016
VL 10
IS 1
BP 312
EP 327
DI 10.1016/j.joi.2016.01.005
PG 16
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA DG2ZF
UT WOS:000371938600026
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Wang, JN
Li, J
Ji, Y
AF Wang, Jiani
Li, Jian
Ji, Yong
TI Mendelian randomization as a cornerstone of causal inference for gut
microbiota and related diseases from the perspective of bibliometrics
SO MEDICINE
LA English
DT Article
DE bibliometric analysis; causality; CiteSpace; gut microbiota; Mendelian
randomization; VOSviewer
ID SCIENCE
AB Gut microbiota, a special group of microbiotas in the human body, contributes to health in a way that can't be ignored. In recent years, Mendelian randomization, which is a widely used and successful method of analyzing causality, has been investigated for the relationship between the gut microbiota and related diseases. Unfortunately, there seems to be a shortage of systematic bibliometric analysis in this field. Therefore, this study aims to investigate the research progress of Mendelian randomization for gut microbiota through comprehensive bibliometric analysis. In this study, publications about Mendelian randomization for gut microbiota were gathered from 2013 to 2023, utilizing the Web of Science Core Collection as our literature source database. The search strategies were as follows: TS = (intestinal flora OR gut flora OR intestinal microflora OR gut microflora OR intestinal microbiota OR gut microbiota OR bowel microbiota OR bowel flora OR gut bacteria OR intestinal tract bacteria OR bowel bacteria OR gut metabolites OR gut microbiota) and TS = (Mendelian randomization). VOSviewer (version 1.6.18), CiteSpace (version 6.1.R1), Microsoft Excel 2021, and Scimago Graphica were employed for bibliometric and visualization analysis. According to research, from January 2013 to August 2023, 154 publications on Mendelian randomization for gut microbiota were written by 1053 authors hailing from 332 institutions across 31 countries and published in 86 journals. China had the highest number of publications, with 109. Frontiers in Microbiology is the most prolific journal, and Lei Zhang has published the highest number of significant articles. The most popular keywords were "Mendelian randomization," "gut microbiota," "instruments," "association," "causality," "gut microbiome," "risk," "bias," "genome-wide association," and "causal relationship." Moreover, the current research hotspots in this field focus on utilizing a 2-sample Mendelian randomization to investigate the relationship between gut microbiota and associated disorders. This research systematically reveals a comprehensive overview of the literature that has been published over the last 10 years about Mendelian randomization for gut microbiota. Moreover, the knowledge of key information in the field from a bibliometric perspective may greatly facilitate future research in the field.
C1 [Wang, Jiani] Shanxi Med Univ, Dept Pediat, Taiyuan, Peoples R China.
[Li, Jian] Shanxi Med Univ, Shanxi Bethune Hosp, Shanxi Acad Med Sci, Dept Orthoped,Hosp 3, Taiyuan, Peoples R China.
[Ji, Yong] Matern Hosp Shanxi Prov, Childrens Hosp Shanxi Prov, Maternal & Child Heath Hosp Shanxi Prov, Dept Neonatal Intens Care Unit, Taiyuan, Peoples R China.
C3 Shanxi Medical University; Shanxi Medical University; Shanxi Medical
University
RP Ji, Y (corresponding author), Matern Hosp Shanxi Prov, Childrens Hosp Shanxi Prov, Maternal & Child Heath Hosp Shanxi Prov, Dept Neonatal Intens Care Unit, Taiyuan, Peoples R China.
EM wjn_aoliao_lj@163.com; jianlisyd@163.com; jiyongnicu@163.com
FU National Clinical Key Specialty Neonatal Construction Funding
FX This work was supported by National Clinical Key Specialty Neonatal
Construction Funding.
CR Belvoncikova P, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms231810729
Bowden J, 2016, GENET EPIDEMIOL, V40, P304, DOI 10.1002/gepi.21965
Bowden J, 2015, INT J EPIDEMIOL, V44, P512, DOI 10.1093/ije/dyv080
Brandt JS, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.18007
Cao JM, 2023, FRONT IMMUNOL, V14, DOI 10.3389/fimmu.2023.977587
Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Giuliani C, 2019, CIRC RES, V124, pE2, DOI 10.1161/CIRCRESAHA.118.314440
Giuliani C, 2018, CIRC RES, V123, P745, DOI 10.1161/CIRCRESAHA.118.312562
Hemani G, 2018, ELIFE, V7, DOI 10.7554/eLife.34408
Hughes DA, 2020, NAT MICROBIOL, V5, P1079, DOI 10.1038/s41564-020-0743-8
Iannone LF, 2022, NEUROBIOL DIS, V174, DOI 10.1016/j.nbd.2022.105897
Jia JZ, 2019, DIABETES, V68, P1747, DOI 10.2337/db19-0153
Jin QB, 2023, FRONT IMMUNOL, V14, DOI 10.3389/fimmu.2023.1121273
Kurilshikov A, 2021, NAT GENET, V53, P156, DOI 10.1038/s41588-020-00763-1
Lamina C, 2022, ATHEROSCLEROSIS, V349, P36, DOI 10.1016/j.atherosclerosis.2022.04.013
Lee SY, 2022, FOOD RES INT, V156, DOI 10.1016/j.foodres.2022.111327
Ley RE, 2006, CELL, V124, P837, DOI 10.1016/j.cell.2006.02.017
Li N, 2023, NUTRIENTS, V15, DOI 10.3390/nu15020360
Li PS, 2022, BMC MED, V20, DOI 10.1186/s12916-022-02657-x
Liu KC, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.930318
Liu XM, 2022, NAT GENET, V54, P52, DOI 10.1038/s41588-021-00968-y
Luo MJ, 2023, FRONT CELL INFECT MI, V13, DOI 10.3389/fcimb.2023.1163898
Luo Q, 2022, FRONT NUTR, V9, DOI 10.3389/fnut.2022.899746
Ma J, 2023, LIVER INT, V43, P221, DOI 10.1111/liv.15466
Ni JJ, 2022, BMC CANCER, V22, DOI 10.1186/s12885-022-10483-w
Ni JJ, 2022, FRONT MICROBIOL, V12, DOI 10.3389/fmicb.2021.737197
Plotnikov D, 2019, OPHTHAL PHYSL OPT, V39, P11, DOI 10.1111/opo.12596
Qin YW, 2022, NAT GENET, V54, P134, DOI 10.1038/s41588-021-00991-z
Qiu P, 2022, FRONT CELL INFECT MI, V12, DOI 10.3389/fcimb.2022.733992
Rühlemann MC, 2021, NAT GENET, V53, P147, DOI 10.1038/s41588-020-00747-1
Sekula P, 2016, J AM SOC NEPHROL, V27, P3253, DOI 10.1681/ASN.2016010098
Synnestvedt Marie B, 2005, AMIA Annu Symp Proc, P724
Tin A, 2021, J AM SOC NEPHROL, V32, P2400, DOI 10.1681/ASN.2020121760
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Verbanck M, 2018, NAT GENET, V50, P693, DOI 10.1038/s41588-018-0099-7
Verhaar BJH, 2020, NUTRIENTS, V12, DOI 10.3390/nu12102982
Wang H, 2022, CURR PROB CARDIOLOGY, V47, DOI 10.1016/j.cpcardiol.2022.101213
Wang JC, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.845243
Wu HY, 2021, ARCH OSTEOPOROS, V16, DOI 10.1007/s11657-021-00929-2
Wu RR, 2023, J AUTOIMMUN, V141, DOI 10.1016/j.jaut.2023.103062
Xie N, 2023, NUTRIENTS, V15, DOI 10.3390/nu15132937
Xu FZ, 2020, MICROBIOME, V8, DOI 10.1186/s40168-020-00923-9
Yang Q, 2018, AM J EPIDEMIOL, V187, P1916, DOI 10.1093/aje/kwy096
Yang XL, 2022, EUR J CLIN NUTR, V76, P1017, DOI 10.1038/s41430-021-01065-3
Zabor EC, 2020, CHEST, V158, pS79, DOI 10.1016/j.chest.2020.03.013
Zhang XL, 2020, FOODS, V9, DOI 10.3390/foods9020166
Zhuang ZH, 2022, EUR J CLIN NUTR, V76, P1024, DOI 10.1038/s41430-022-01074-w
Zhuang ZH, 2020, J NEUROINFLAMM, V17, DOI 10.1186/s12974-020-01961-8
NR 49
TC 0
Z9 0
U1 9
U2 9
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA
SN 0025-7974
EI 1536-5964
J9 MEDICINE
JI Medicine (Baltimore)
PD JUN 28
PY 2024
VL 103
IS 26
AR e38654
DI 10.1097/MD.0000000000038654
PG 13
WC Medicine, General & Internal
WE Science Citation Index Expanded (SCI-EXPANDED)
SC General & Internal Medicine
GA YD9H4
UT WOS:001266661100006
PM 38941393
OA gold
DA 2024-09-05
ER
PT J
AU Massonnaud, CR
Kerdelhué, G
Grosjean, J
Lelong, R
Griffon, N
Darmoni, SJ
AF Massonnaud, Clement R.
Kerdelhue, Gaetan
Grosjean, Julien
Lelong, Romain
Griffon, Nicolas
Darmoni, Stefan J.
TI Identification of the Best Semantic Expansion to Query PubMed Through
Automatic Performance Assessment of Four Search Strategies on All
Medical Subject Heading Descriptors: Comparative Study
SO JMIR MEDICAL INFORMATICS
LA English
DT Article
DE bibliographic database; information retrieval; literature search;
Medical Subject Headings; MEDLINE; PubMed; precision; recall; search
strategy; thesaurus
ID KNOWLEDGE
AB Background: With the continuous expansion of available biomedical data, efficient and effective information retrieval has become of utmost importance. Semantic expansion of queries using synonyms may improve information retrieval.
Objective: The aim of this study was to automatically construct and evaluate expanded PubMed queries of the form "preferred term"[MH] OR "preferred term"[TIAB] OR "synonym 1"[TIAB] OR "synonym 2"[TIAB] OR..., for each of the 28,313 Medical Subject Heading (MeSH) descriptors, by using different semantic expansion strategies. We sought to propose an innovative method that could automatically evaluate these strategies, based on the three main metrics used in information science (precision, recall, and F-measure).
Methods: Three semantic expansion strategies were assessed. They differed by the synonyms used to build the queries as follows: MeSH synonyms, Unified Medical Language System (UMLS) mappings, and custom mappings (Catalogue et Index des Sites Medicaux de langue Francaise [CISMeF]). The precision, recall, and F-measure metrics were automatically computed for the three strategies and for the standard automatic term mapping (ATM) of PubMed. The method to automatically compute the metrics involved computing the number of all relevant citations (A), using National Library of Medicine indexing as the gold standard ("preferred term"[MH]), the number of citations retrieved by the added terms ("synonym 1"[TIAB] OR "synonym 2"[TIAB] OR...) (B), and the number of relevant citations retrieved by the added terms (combining the previous two queries with an "AND" operator) (C). It was possible to programmatically compute the metrics for each strategy using each of the 28,313 MeSH descriptors as a "preferred term," corresponding to 239,724 different queries built and sent to the PubMed application program interface. The four search strategies were ranked and compared for each metric.
Results: ATM had the worst performance for all three metrics among the four strategies. The MeSH strategy had the best mean precision (51%, SD 23%). The UMLS strategy had the best recall and F-measure (41%, SD 31% and 36%, SD 24%, respectively). CISMeF had the second best recall and F-measure (40%, SD 31% and 35%, SD 24%, respectively). However, considering a cutoff of 5%, CISMeF had better precision than UMLS for 1180 descriptors, better recall for 793 descriptors, and better F-measure for 678 descriptors.
Conclusions: This study highlights the importance of using semantic expansion strategies to improve information retrieval. However, the performances of a given strategy, relatively to another, varied greatly depending on the MeSH descriptor. These results confirm there is no ideal search strategy for all descriptors. Different semantic expansions should be used depending on the descriptor and the user's objectives. Thus, we developed an interface that allows users to input a descriptor and then proposes the best semantic expansion to maximize the three main metrics (precision, recall, and F-measure).
C1 [Massonnaud, Clement R.; Kerdelhue, Gaetan; Grosjean, Julien; Lelong, Romain; Griffon, Nicolas; Darmoni, Stefan J.] Rouen Univ Hosp, Dept Biomed Informat, 1 Rue Germont, Rouen, France.
[Massonnaud, Clement R.; Kerdelhue, Gaetan; Grosjean, Julien; Lelong, Romain; Griffon, Nicolas; Darmoni, Stefan J.] Sorbonne Univ, Lab Informat Med & Ingn Connaissances & Sante, INSERM, U1142, Paris, France.
C3 Universite de Rouen Normandie; CHU de Rouen; Institut National de la
Sante et de la Recherche Medicale (Inserm); Sorbonne Universite
RP Massonnaud, CR (corresponding author), Rouen Univ Hosp, Dept Biomed Informat, 1 Rue Germont, Rouen, France.
EM clement.massonnaud@gmail.com
RI Kerdelhué, Gaétan/J-6933-2019
OI Kerdelhué, Gaétan/0000-0001-5803-5554; Massonnaud,
Clement/0000-0003-0292-9668; Grosjean, Julien/0000-0002-7446-644X;
LELONG, Romain/0000-0003-1865-8786; Griffon, Nicolas/0000-0002-9602-6429
CR Afzal M, 2019, JMIR MED INF, V7, P111, DOI 10.2196/13430
Afzal M, 2015, SENSORS-BASEL, V15, P21294, DOI 10.3390/s150921294
Aronson AR, 1997, J AM MED INFORM ASSN, P485
Collins, 2019, NLM TECH B, P2
Cooper C, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0545-3
Griffon N, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-12
Grosjean J, 2011, STUD HEALTH TECHNOL, V166, P129, DOI 10.3233/978-1-60750-740-6-129
Hersh W, 2000, J AM MED INFORM ASSN, P344
Herskovic JR, 2007, J AM MED INFORM ASSN, V14, P212, DOI 10.1197/jamia.M2191
Hoogendam A, 2008, BMC MED INFORM DECIS, V8, DOI 10.1186/1472-6947-8-42
Kim S, 2017, J BIOMED INFORM, V75, P122, DOI 10.1016/j.jbi.2017.09.014
Lin J, 2007, BMC BIOINFORMATICS, V8, DOI 10.1186/1471-2105-8-423
Majid S, 2011, J MED LIBR ASSOC, V99, P229, DOI 10.3163/1536-5050.99.3.010
Massonnaud C, 2021, HEALTH INFO LIBR J, V38, P113, DOI 10.1111/hir.12291
Mosa AM, 2013, BMC MED INFORM DECIS, V13, DOI 10.1186/1472-6947-13-8
National Library of Medicine, PUBM WORKS AUT TERM
National Library of Medicine, YEARL CIT TOT 2017 M
National Library of Medicine, KEY MED R IND
Nelson S, 2001, REPORT OPERATION FIN, P978
Thirion B, 2009, STUD HEALTH TECHNOL, V150, P238, DOI 10.3233/978-1-60750-044-5-238
van Dijk N, 2010, ACAD MED, V85, P1163, DOI 10.1097/ACM.0b013e3181d4152f
Vassar M, 2016, J MED LIBR ASSOC, V104, P302, DOI 10.3163/1536-5050.104.4.009
Wei C, 2016, 2016 2ND INTERNATIONAL CONFERENCE ON SOCIAL SCIENCE, MANAGEMENT AND ECONOMICS (SSME 2016), P234
Wright T. B., 2017, DATABASE, V2017, P1
Xu B, 2019, IEEE ACM T COMPUT BI, V16, P954, DOI 10.1109/TCBB.2018.2801303
Zwolsman S, 2012, BRIT J GEN PRACT, V62, DOI 10.3399/bjgp12X652382
NR 26
TC 3
Z9 3
U1 0
U2 7
PU JMIR PUBLICATIONS, INC
PI TORONTO
PA 130 QUEENS QUAY E, STE 1102, TORONTO, ON M5A 0P6, CANADA
EI 2291-9694
J9 JMIR MED INF
JI JMIR Med. Inf.
PD JUN
PY 2020
VL 8
IS 6
AR e12799
DI 10.2196/12799
PG 9
WC Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Medical Informatics
GA MG9YS
UT WOS:000546388900001
PM 32496201
OA Green Submitted, Green Published, gold
DA 2024-09-05
ER
PT J
AU Abdelfattah, F
Al Alawi, AM
Dahleez, KA
El Saleh, A
AF Abdelfattah, Fadi
Al Alawi, Abrar Mohammed
Dahleez, Khalid Abed
El Saleh, Ayman
TI Reviewing the critical challenges that influence the adoption of the
e-learning system in higher educational institutions in the era of the
COVID-19 pandemic
SO ONLINE INFORMATION REVIEW
LA English
DT Article
DE COVID-19; E-Learning; Online learning; System; Obstacles; Challenges
ID STUDENTS; ACCEPTANCE; MODEL
AB Purpose - This paper aims to review the critical challenges and factors influencing the successful adoption of electronic learning (e-learning) systems in higher educational institutions before and during the current propagation of the coronavirus disease 2019 (COVID-19) pandemic.Design/methodology/approach - This study undertook a literature review concerning the in-depth revision of previous studies published in 2020 and 2021. A total of 100 out of 170 selected research papers were adopted to identify and recognise the factors restricting the application of e-learning systems.Findings - The findings determine and illuminate the most challenging factors that impact the successful application of online learning, particularly during the wide propagation of the COVID-19 pandemic. The review of the literature provides evidence that technological, organisational and behavioural issues constitute significant drivers that frontier the facilitation of the e-learning process in higher educational institutions.Practical implications - The current paper suggests a guide for managers and scholars in educational institutions and acts as a roadmap for practitioners and academics in the educational field and policymakers as this research spotlights the significant factors challenging the e-learning process before and during the pandemic crisis.Originality/value - The provided in-depth literature review in this research will support the researchers and system designers with a comprehensive review and recent studies conducted before and during the COVID-19 pandemic considering the factors limiting the e-learning process. This paper formulates a valuable contribution to the body of knowledge that will assist the stakeholders in the higher educational institutions' context.Peer review - The peer review history for this article is available at: .
C1 [Abdelfattah, Fadi] Modern Coll Business & Sci, Business & Econ Dept, Al Khuwair, Oman.
[Al Alawi, Abrar Mohammed] Univ Nizwa, Entrepreneurship Ctr, Nizwa, Oman.
[Dahleez, Khalid Abed] ASharqiyah Univ, Coll Business Adm, Ibra, Oman.
[El Saleh, Ayman] ASharqiyah Univ, Coll Engn, Ibra, Oman.
C3 University of Nizwa
RP Abdelfattah, F (corresponding author), Modern Coll Business & Sci, Business & Econ Dept, Al Khuwair, Oman.
EM fadi_fattah@yahoo.com; abraralalawi@unizwa.edu.om;
khalid.dahleez@asu.edu.om; ayman.elsaleh@asu.edu.om
RI AbdelFattah, Fadi/L-7441-2014; El-Saleh, Ayman A A./B-3732-2010;
Dahleez, Khalid Abed/M-6157-2017
OI AbdelFattah, Fadi/0000-0002-4665-4777; Dahleez, Khalid
Abed/0000-0002-1526-8750
FU Research Council (TRC) of the Sultanate of Oman under the Block Funding
Program [TRC/BFP/ASU/01/2018]
FX The research leading to these results has received fund from The
Research Council (TRC) of the Sultanate of Oman under the Block Funding
Program (No: TRC/BFP/ASU/01/2018).
CR Abbasi S, 2020, PAK J MED SCI, V36, pS57, DOI 10.12669/pjms.36.COVID19-S4.2766
Fattah FAMA, 2022, GLOB KNOWL MEM COMMU, V71, P27, DOI 10.1108/GKMC-10-2020-0152
Fattah FAMA, 2021, GLOB KNOWL MEM COMMU, V70, P611, DOI 10.1108/GKMC-07-2020-0104
Abdelfattah F, 2024, GLOB KNOWL MEM COMMU, V73, P292, DOI 10.1108/GKMC-02-2022-0033
Abdullahi MS, 2022, IND COMMER TRAIN, V54, P589, DOI 10.1108/ICT-10-2021-0075
AbuHassan L.F., 2012, WORLD C ISL THOUGHTS, P70
Adnan M., 2020, J. Pedagogical Sociology Psychol, V2, P45, DOI [DOI 10.33902/JPSP.2020261309, 10.33902/jpsp.2020261309]
Agormedah EK., 2020, Journal of Educational Technology and Online Learning, V3, P183, DOI [10.31681/jetol.726441, 10.3126/kumj.v18i2.32943]
Al-Adwan AS, 2018, INT REV RES OPEN DIS, V19, P221
Al-Amri AS, 2020, SAGE OPEN, V10, DOI 10.1177/2158244020947440
Al-Emran M, 2021, J ENTERP INF MANAG, V34, P1229, DOI 10.1108/JEIM-02-2020-0052
Al-Fraihat D, 2020, COMPUT HUM BEHAV, V102, P67, DOI 10.1016/j.chb.2019.08.004
Al-Gahtani S.S., 2016, Appl. Comput. Inform, V12, P27, DOI [https://doi.org/10.1016/j.aci.2014.09.001, DOI 10.1016/J.ACI.2014.09.001, 10.1016/j.aci.2014.09.001]
Al-Okaily M, 2020, DATA BRIEF, V32, DOI 10.1016/j.dib.2020.106176
Allam S N., 2020, International Journal of Academic Research in Business Social Sciences, V10, P642, DOI [10.6007/ijarbss/v10-i5/7236, DOI 10.6007/IJARBSS/V10-I5/7236, 10.6007/IJARBSS/v10-i5/7236]
Almaiah MA, 2020, EDUC INF TECHNOL, V25, P5261, DOI 10.1007/s10639-020-10219-y
Almaiah MA, 2016, ENG SCI TECHNOL, V19, P1314, DOI 10.1016/j.jestch.2016.03.004
Almekhlafy S.S. A., 2020, PSU Research Review, V5, P16, DOI DOI 10.1108/PRR-08-2020-0026
Almusharraf NM, 2021, J COMPUT ASSIST LEAR, V37, P1285, DOI 10.1111/jcal.12569
Alqahtani AY, 2020, EDUC SCI, V10, DOI 10.3390/educsci10090216
Amanor-Mfoafo N.K., 2020, Eur. J. Open Educ. E-Learning Stud, V5, P2, DOI [10.46827/ejoe.v5i2.3476, DOI 10.46827/EJOE.V5I2.3476]
Asad MM, 2021, J APPL RES HIGH EDUC, V13, P649, DOI 10.1108/JARHE-04-2020-0103
Asuman Baguma, 2018, International Journal of Web-Based Learning and Teaching Technologies, V13, P33, DOI 10.4018/IJWLTT.2018070103
Aydogdu S, 2020, EDUC INF TECHNOL, V25, P1913, DOI 10.1007/s10639-019-10053-x
Barteit S, 2020, COMPUT EDUC, V145, DOI 10.1016/j.compedu.2019.103726
Bhaskar P, 2021, INTERACT TECHNOL SMA, V18, P1, DOI 10.1108/ITSE-07-2020-0102
Bisht R.K., 2020, ACCEPTABILITY CHALLE, DOI [10.1108/AEDS-05-2020-0119, DOI 10.1108/AEDS-05-2020-0119]
Chang CT, 2017, COMPUT EDUC, V111, P128, DOI 10.1016/j.compedu.2017.04.010
Chin SPP, 2016, VINE J INF KNOWL MAN, V46, P123, DOI 10.1108/VJIKMS-02-2014-0015
Chopra G, 2019, INTERACT TECHNOL SMA, V16, P94, DOI 10.1108/ITSE-05-2018-0027
Choudhury S, 2020, COMPUT EDUC, V144, DOI 10.1016/j.compedu.2019.103657
Christian M., 2020, Technology Reports of Kansai University, V62, P2799
Dahleez KA, 2021, INT J INF LEARN TECH, V38, P473, DOI 10.1108/IJILT-04-2021-0057
Dahleez KA, 2021, INT J EDUC MANAG, V35, P1312, DOI 10.1108/IJEM-04-2021-0120
Darras KE, 2021, CAN ASSOC RADIOL J, V72, P194, DOI 10.1177/0846537120944821
Demir A, 2021, J APPL RES HIGH EDUC, V13, P1436, DOI 10.1108/JARHE-08-2020-0253
Dong CM, 2020, CHILD YOUTH SERV REV, V118, DOI 10.1016/j.childyouth.2020.105440
Ebner M, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12060094
Fandiño FGE, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04630
Fatima M.N., 2020, JRSP ELT, V21, P2456
Gani MO, 2022, BOTTOM LINE, V35, P90, DOI 10.1108/BL-03-2022-0045
Gomez INB, 2023, WORLD FED OCCUP THER, V79, P4, DOI 10.1080/14473828.2020.1836791
Grant MM, 2019, ETR&D-EDUC TECH RES, V67, P361, DOI 10.1007/s11423-018-09641-4
Guessar S., 2020, EUR J EDUC, V3, P73, DOI DOI 10.26417/949THO19T
Haider AS, 2020, DATA BRIEF, V32, DOI 10.1016/j.dib.2020.106104
Hasan N, 2020, CHILD YOUTH SERV REV, V118, DOI 10.1016/j.childyouth.2020.105355
Hussein E, 2020, CHILD YOUTH SERV REV, V119, DOI 10.1016/j.childyouth.2020.105699
Hussein MH, 2021, INTERACT TECHNOL SMA, V18, P380, DOI 10.1108/ITSE-06-2020-0095
Joshi A, 2021, INTERACT TECHNOL SMA, V18, P205, DOI 10.1108/ITSE-06-2020-0087
Kapo A, 2021, INFORM TECHNOL PEOPL, V34, P1462, DOI 10.1108/ITP-04-2020-0223
Karuppannan S., 2020, International Journal of Management and Human Science (IJMHS), V4, P19
Khan H.U., 2006, Directory of Open Access Journal, V5, P21, DOI [10.11120/ital.2006.05040021, DOI 10.11120/ITAL.2006.05040021]
Khan MA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010057
Kim MK, 2020, J COMPUT ASSIST LEAR, V36, P610, DOI 10.1111/jcal.12431
Kitchenham, 2004, PROC PERF SYST REV
Kundu A, 2021, CORP GOV-INT J BUS S, V21, P1250, DOI 10.1108/CG-09-2020-0377
Laamanen M, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00236-9
Lie A, 2020, J INF TECHNOL EDUC-R, V19, P803, DOI 10.28945/4626
Lin L, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18042114
Liu M, 2021, INT J ACCOUNT INF MA, V29, P217, DOI 10.1108/IJAIM-08-2020-0129
Lysenko I, 2020, EDUC SCI, V10, DOI 10.3390/educsci10090245
Mailizar AlmanthariA., 2020, EURASIA J MATH SCI T, V16, pem1860, DOI DOI 10.29333/EJMSTE/8240
Majanja MK, 2020, LIBR MANAGE, V41, P317, DOI 10.1108/LM-05-2020-0084
Malik A., 2020, Creative Education, V11, P1152
Mallillin L L. D., 2020, European Journal of Open Education and E-learning Studies, V5, P71, DOI DOI 10.46827/EJOE.V5I2.3321
Mishra Lokanath, 2020, Int J Educ Res Open, V1, P100012, DOI 10.1016/j.ijedro.2020.100012
Mittal A, 2022, INF DISCOV DELIV, V50, P117, DOI 10.1108/IDD-09-2020-0114
Mohamed AHHM, 2022, GLOB KNOWL MEM COMMU, V71, P529, DOI 10.1108/GKMC-02-2021-0021
Ho NTT, 2021, INTERACT TECHNOL SMA, V18, P246, DOI 10.1108/ITSE-08-2020-0164
Nie D., 2020, SUSTAINABILITY-BASEL, P3
Okour MK, 2021, GLOB KNOWL MEM COMMU, V70, P756, DOI 10.1108/GKMC-08-2020-0117
Olum R, 2020, J MED EDUC CURRIC DE, V7, DOI 10.1177/2382120520973212
Pajarianto H., 2020, TALENT DEV EXCELLENC
PARK C, 2020, DECIS SCI-J INNOV ED, P1
Patricia Aguilera-Hermida A, 2020, Int J Educ Res Open, V1, P100011, DOI 10.1016/j.ijedro.2020.100011
Pham HH, 2020, HIGH EDUC RES DEV, V39, P1327, DOI 10.1080/07294360.2020.1823945
Pima JM, 2018, INT J MOB BLENDED LE, V10, P1, DOI 10.4018/IJMBL.2018010101
Polo F.A.E., 2020, EUR J MOL CLIN MED, V7, P1
Prabu D.P.S., 2020, DEV NEXT GENERATION, VII, P3101
Purwanto A., 2020, J SUSTAIN SCI MANAG, V15, P20, DOI DOI 10.46754/jssm.2020.10.003
Rachmadtullah R., 2020, International Journal of Advanced Science and Technology, V29, P3272
Rafique GM, 2021, J ACAD LIBR, V47, DOI 10.1016/j.acalib.2021.102346
Rahman MS, 2022, J BUS IND MARK, V37, P1990, DOI 10.1108/JBIM-12-2020-0564
Rahman MS, 2021, GLOB KNOWL MEM COMMU, V70, P1, DOI 10.1108/GKMC-10-2019-0122
Rapanta C., 2020, Postdigital Science and Education, V2, P923, DOI [10.1007/s42438-020-00155-y, DOI 10.1007/S42438-020-00155-Y]
Rasmitadila R., 2020, Journal of Ethnic and Cultural Studies, V7, P90, DOI [10.29333/ejecs/388, DOI 10.29333/EJECS/388]
Regmi K, 2020, BMC MED EDUC, V20, DOI 10.1186/s12909-020-02007-6
Roskvist R, 2020, EDUC PRIM CARE, V31, P247, DOI 10.1080/14739879.2020.1772123
Ruales STP, 2021, EDUC INF TECHNOL, V26, P165, DOI 10.1007/s10639-020-10247-8
Sabarinath R, 2020, EDUC INF TECHNOL, V25, P3553, DOI 10.1007/s10639-020-10111-9
Salloum SA, 2019, EDUC INF TECHNOL, V24, P509, DOI 10.1007/s10639-018-9786-3
Salloum SA, 2019, ADV INTELL SYST COMP, V845, P469, DOI 10.1007/978-3-319-99010-1_43
Sangeeta, 2021, J PUBLIC AFF, V21, DOI 10.1002/pa.2503
Santally MI, 2020, BUS PROCESS MANAG J, V26, P1687, DOI 10.1108/BPMJ-11-2018-0335
Scherer R, 2021, COMPUT HUM BEHAV, V118, DOI 10.1016/j.chb.2020.106675
Shahijan M K., 2016, International Journal of Management in Education, V10, P145, DOI [DOI 10.1504/IJMIE.2016.075556, 10.1504/ijmie.2016.075556]
Shahzad Arfan, 2021, Qual Quant, V55, P805, DOI 10.1007/s11135-020-01028-z
Shannaq B., 2020, CURR CONTENTS, V29, P13597
Shawaqfeh MS, 2020, J MED EDUC CURRIC DE, V7, DOI 10.1177/2382120520963039
Shehzadi S, 2021, ASIAN EDUC DEV STUD, V10, P276, DOI 10.1108/AEDS-04-2020-0063
Siddaway AP, 2019, ANNU REV PSYCHOL, V70, P747, DOI 10.1146/annurev-psych-010418-102803
Singh A, 2021, INTERACT TECHNOL SMA, V18, P493, DOI 10.1108/ITSE-05-2020-0070
Somyürek S, 2021, INT J INF LEARN TECH, V38, P49, DOI 10.1108/IJILT-05-2020-0073
Sukendro S, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05410
Sulisworo D., 2020, International Journal of Evaluation and Research in Education (IJERE), V9, P723, DOI DOI 10.11591/IJERE.V9I3.20642
Swanson JA, 2020, TECHNOL KNOWL LEARN, V25, P389, DOI 10.1007/s10758-018-9372-1
Syahrin S, 2020, ARAB WORLD ENGL J, V11, P42, DOI 10.24093/awej/vol11no3.3
Tan C, 2021, ASIAN EDUC DEV STUD, V10, P308, DOI 10.1108/AEDS-05-2020-0084
Tinungki G. M., 2020, International Journal of Advanced Science and Technology, V29, P5793
van Alten DCD, 2021, COMPUT HUM BEHAV, V118, DOI 10.1016/j.chb.2020.106676
Vladova G, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.636086
Yates A, 2021, TECHNOL PEDAGOG EDUC, V30, P59, DOI 10.1080/1475939X.2020.1854337
Yilmaz R, 2020, J COMPUT HIGH EDUC, V32, P628, DOI 10.1007/s12528-020-09250-2
Zhao LL, 2021, CRIT REV FOOD SCI, V61, P3489, DOI 10.1080/10408398.2020.1799327
NR 114
TC 11
Z9 11
U1 0
U2 8
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 1468-4527
EI 1468-4535
J9 ONLINE INFORM REV
JI Online Inf. Rev.
PD NOV 8
PY 2023
VL 47
IS 7
BP 1225
EP 1247
DI 10.1108/OIR-02-2022-0085
EA APR 2023
PG 23
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA W6CS8
UT WOS:000962019700001
DA 2024-09-05
ER
PT J
AU Guo, H
AF Guo, Hao
TI Research on the Construction of the Quality Evaluation Model System for
the Teaching Reform of Physical Education Students in Colleges and
Universities under the Background of Artificial Intelligence
SO SCIENTIFIC PROGRAMMING
LA English
DT Article
ID CHALLENGES
AB With the continuous progress of the times, the reform of physical education teaching in colleges and universities has to be promoted day by day. The most important task in the process of reform is how to improve the quality of physical education teaching. Only by reforming colleges and universities can we transport outstanding talents into the society. It is very important to improve the teaching quality by improving the physical education quality evaluation system. As artificial intelligence technology has been more and more widely used in different fields, various educational administration systems based on information management have been established in various colleges and universities. On the one hand, it has brought great convenience to the management of physical education in colleges and universities and improvement of the efficiency of sports education management, but on the other hand, there are many shortcomings in the process of practical application. For example, the application of the database does not fully reflect its function and convenience, and it is only used at the level of query and statistics. Therefore, a better evaluation system of physical education teaching quality has become the common expectation of all colleges and universities. This paper makes a powerful analysis of the current quality evaluation of physical education in colleges and universities and proposes a method of establishing a basic framework through expert systems, filling in details with the idea of knowledge base and fuzzy sets, and further using a three-layer B/S framework model to design universal teaching quality assessment system. When discussing the requirements, functional framework, and actual development of the teaching evaluation system, the characteristics of the traditional physical education evaluation model are deeply analyzed, and the system's interactivity, flexibility, accuracy, and fairness are emphasized in the implementation process. Object-oriented design and analysis are carried out on the requirements of the system, and finally, black-box testing is carried out to ensure the reliability and correctness of the system logic.
C1 [Guo, Hao] Chongqing Coll Humanities, Sci & Technol, Chongqing 401524, Peoples R China.
RP Guo, H (corresponding author), Chongqing Coll Humanities, Sci & Technol, Chongqing 401524, Peoples R China.
EM ym520@swu.edu.cn
CR Barnes T, 2017, INT J ARTIF INTELL E, V27, P1, DOI 10.1007/s40593-016-0123-y
Bayne S, 2015, TEACH HIGH EDUC, V20, P455, DOI 10.1080/13562517.2015.1020783
Canbek G.N., 2016, INT J HUMAN SCI, V13, P592, DOI DOI 10.14687/IJHS.V13I1.3549
Carbone A, 2017, J HIGH EDUC POLICY M, V39, P183, DOI 10.1080/1360080X.2017.1276629
Ford J.H., 2016, BMC MED EDUC, V16
Goos M, 2017, RES HIGH EDUC, V58, P341, DOI 10.1007/s11162-016-9429-8
Hajra A., 2014, SEEU REV, V9
Holotescu C., 2016, ROCHI, P91, DOI 10.14687/ijhs.v13i1.3549
Li LH, 2022, J IND INF INTEGR, V26, DOI 10.1016/j.jii.2021.100289
McArthur D., 2005, Journal of Educational Technology, V1, P42
Ozbey N, 2016, INT CONF INFO TECH
Pinkwart N, 2016, INT J ARTIF INTELL E, V26, P771, DOI 10.1007/s40593-016-0099-7
Popescu Elvira, 2011, International Journal of Information Systems and Social Change, V2, P31, DOI 10.4018/jissc.2011010103
Roll I, 2016, INT J ARTIF INTELL E, V26, P582, DOI 10.1007/s40593-016-0110-3
Stone Peter, 2016, Artificial intelligence and life in 2030: One hundred year study on artificial intelligence
Timms MJ, 2016, INT J ARTIF INTELL E, V26, P701, DOI 10.1007/s40593-016-0095-y
Vail AK, 2016, LECT NOTES COMPUT SC, V9684, P154, DOI 10.1007/978-3-319-39583-8_15
Woolf BP, 2013, AI MAG, V34, P66, DOI 10.1609/aimag.v34i4.2490
Yin HB, 2015, ASSESS EVAL HIGH EDU, V40, P1032, DOI 10.1080/02602938.2014.963837
NR 19
TC 0
Z9 0
U1 11
U2 35
PU HINDAWI LTD
PI LONDON
PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND
SN 1058-9244
EI 1875-919X
J9 SCI PROGRAMMING-NETH
JI Sci. Program.
PD MAY 9
PY 2022
VL 2022
AR 6556631
DI 10.1155/2022/6556631
PG 9
WC Computer Science, Software Engineering
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 1S3JN
UT WOS:000803950700011
OA gold
DA 2024-09-05
ER
PT C
AU Tang, L
Zhou, CY
He, L
Zhang, SH
AF Tang, Li
Zhou, Caiyun
He, Li
Zhang, Shuhua
BE Liu, C
Cheung, KS
TI Research on Evaluation of Morality and Ability of Teachers in
Universities Based on the Perspective of Data Mining
SO PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON MANAGEMENT,
EDUCATION AND SOCIAL SCIENCE (ICMESS 2017)
SE Advances in Social Science Education and Humanities Research
LA English
DT Proceedings Paper
CT International Conference on Management, Education and Social Science
(ICMESS)
CY JUN 23-25, 2017
CL Qingdao, PEOPLES R CHINA
DE Support Vector Machine (SVM); Morality of Teachers; Ability of teachers;
Data Mining
AB The evaluation of professional morality and ability of teachers is an important part of management in the colleges and universities. Focusing on the evaluation of teachers in Chinese universities, this paper designs an evaluation model, and constructs an evaluation metrics from the perspective of data mining. Furthermore, a new evaluation method for teachers based on Support Vector Machine (SVM) is proposed. The prediction levels of the morality and ability of teachers will be given by SVM. Finally, it gives the relative policies to promote the morality and ability of teachers. It will efficiently improve the quality of teaching and bring benefit to the teaching reform.
C1 [Tang, Li; He, Li] Tianjin Univ Finance & Econ, Dept Informat Sci & Technol, Tianjin, Peoples R China.
[Zhou, Caiyun] Tianjin Univ Finance & Econ, Dept Econ, Tianjin, Peoples R China.
[Zhang, Shuhua] Tianjin Univ Finance & Econ, Coordinated Innovat Ctr Computable Modeling Manag, Tianjin, Peoples R China.
C3 Tianjin University of Finance & Economics; Tianjin University of Finance
& Economics; Tianjin University of Finance & Economics
RP Tang, L (corresponding author), Tianjin Univ Finance & Econ, Dept Informat Sci & Technol, Tianjin, Peoples R China.
EM tangli0831@tjufe.edu.cn; zhoucaiyun_0119@163.com; renkeheli@163.com;
shuhua55@126.com
FU Tianjin Social Science Foundation of China [TJYY15-017]
FX This research is supported by the Tianjin Social Science Foundation of
China (TJYY15-017).
CR Chang C.-C., LIBSVM: A library for support vector machines
Dong K., 2016, J ANHUI SCI TECHNOLO, V30, P100
Gao T., 2011, SCI TECHNOLOGY MANAG, V31, P131
Jiang M. S., 2016, J HUBEI CORRES U, V29, P5
Li L., 2014, J CHONGQING U TECHNO, V28, P69
VAPNIK, 2000, NATURE STAT LEARNING
Yong Zhang, 2013, 2013 Fifth International Conference on Computational and Information Sciences (ICCIS 2013), P1879, DOI 10.1109/ICCIS.2013.491
Zhang J., 2014, RES EVALUATION MODEL
NR 8
TC 1
Z9 1
U1 1
U2 4
PU ATLANTIS PRESS
PI PARIS
PA 29 AVENUE LAVMIERE, PARIS, 75019, FRANCE
SN 2352-5398
BN 978-94-6252-348-7
J9 ADV SOC SCI EDUC HUM
PY 2017
VL 72
BP 167
EP 170
PG 4
WC Social Sciences, Interdisciplinary
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Social Sciences - Other Topics
GA BI9GX
UT WOS:000416086100040
DA 2024-09-05
ER
PT J
AU Persson, RAX
AF Persson, Rasmus A. X.
TI Bibliometric author evaluation through linear regression on the coauthor
network
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Multiple authorship; Statistical method; Coauthor contribution
ID CITATION IMPACT INDICATORS; H-INDEX; ARTICLES; CREDIT; PUBLICATION;
BIOMEDICINE; COUNTS
AB The rising trend of coauthored academic works obscures the credit assignment that is the basis for decisions of funding and career advancements. In this paper, a simple model based on the assumption of an unvarying "author ability" is introduced. With this assumption, the weight of author contributions to a body of coauthored work can be statistically estimated. The method is tested on a set of some more than five-hundred authors in a coauthor network from the CiteSeerX database. The ranking obtained agrees fairly well with that given by total fractional citation counts for an author, but noticeable differences exist. (C) 2017 Elsevier Ltd. All rights reserved.
C1 [Persson, Rasmus A. X.] Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden.
C3 University of Gothenburg
RP Persson, RAX (corresponding author), Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden.
EM rasmus.a.persson@gmail.com
RI Persson, Rasmus A. X./AAN-5310-2021; Persson, Rasmus/A-6436-2011
OI Persson, Rasmus A. X./0000-0001-6587-5287; Persson,
Rasmus/0000-0001-6587-5287
CR [Anonymous], 2007, International Society for Scientometrics and Informetrics newsletter
Ausloos M, 2015, PHYSICA A, V422, P136, DOI 10.1016/j.physa.2014.12.004
Aziz NA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059814
Batista PD, 2006, SCIENTOMETRICS, V68, P179, DOI 10.1007/s11192-006-0090-4
Bornmann L, 2005, SCIENTOMETRICS, V65, P391, DOI 10.1007/s11192-005-0281-4
Bornmann L, 2008, J AM SOC INF SCI TEC, V59, P830, DOI 10.1002/asi.20806
Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609
Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1100, DOI 10.1002/asi.20531
Bras-Amorós M, 2011, J INFORMETR, V5, P248, DOI 10.1016/j.joi.2010.11.001
Eaton J.W., 2009, GNU Octave version 3.0.1 manual: a high-level interactive language for numerical computations
Egghe L, 1998, SCIENTOMETRICS, V43, P57, DOI 10.1007/BF02458394
Egghe L., 2006, ISSI newsletter., V2, P8
Egghe L, 2008, INFORM PROCESS MANAG, V44, P770, DOI 10.1016/j.ipm.2007.05.003
Figg WD, 2006, PHARMACOTHERAPY, V26, P759, DOI 10.1592/phco.26.6.759
Hagen NT, 2009, SCIENCE, V323, P583, DOI 10.1126/science.323.5914.583a
Hirsch JE, 2007, P NATL ACAD SCI USA, V104, P19193, DOI 10.1073/pnas.0707962104
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jin B., 2006, SCI FOCUS, V1, P8, DOI 10.1209/0295-5075/78/30002
Jin BH, 2007, CHINESE SCI BULL, V52, P855, DOI 10.1007/s11434-007-0145-9
Ke WM, 2013, SCIENTOMETRICS, V94, P981, DOI 10.1007/s11192-012-0787-5
Kosmulski M., 2006, ISSI NEWSLETTER, V2, P4, DOI [10.1177/01655515211014478, DOI 10.1177/01655515211014478]
Lokker C, 2008, BMJ-BRIT MED J, V336, P655, DOI 10.1136/bmj.39482.526713.BE
Schreiber M, 2008, J INFORMETR, V2, P211, DOI 10.1016/j.joi.2008.05.001
Sekercioglu CH, 2008, SCIENCE, V322, P371, DOI 10.1126/science.322.5900.371a
Shen HW, 2014, P NATL ACAD SCI USA, V111, P12325, DOI 10.1073/pnas.1401992111
Tol RSJ, 2011, SCIENTOMETRICS, V89, P291, DOI 10.1007/s11192-011-0451-5
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Waltman L, 2015, J INFORMETR, V9, P872, DOI 10.1016/j.joi.2015.08.001
Wang H, 2016, SCIENTOMETRICS, V109, P827, DOI 10.1007/s11192-016-2057-4
Zhang CT, 2009, EMBO REP, V10, P416, DOI 10.1038/embor.2009.74
NR 30
TC 8
Z9 9
U1 1
U2 43
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD FEB
PY 2017
VL 11
IS 1
BP 299
EP 306
DI 10.1016/j.joi.2017.01.003
PG 8
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA EO3SM
UT WOS:000396614600022
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Grodzinski, N
Grodzinski, B
Davies, BM
AF Grodzinski, Noah
Grodzinski, Ben
Davies, Benjamin M.
TI Can co-authorship networks be used to predict author research impact? A
machine-learning based analysis within the field of degenerative
cervical myelopathy research
SO PLOS ONE
LA English
DT Article
ID SCIENTIFIC COLLABORATION; SPONDYLOTIC MYELOPATHY; SURGICAL DECOMPRESSION
AB Introduction Degenerative Cervical Myelopathy (DCM) is a common and disabling condition, with a relatively modest research capacity. In order to accelerate knowledge discovery, the AO Spine RECODE-DCM project has recently established the top priorities for DCM research. Uptake of these priorities within the research community will require their effective dissemination, which can be supported by identifying key opinion leaders (KOLs). In this paper, we aim to identify KOLs using artificial intelligence. We produce and explore a DCM co-authorship network, to characterise researchers' impact within the research field.
Methods Through a bibliometric analysis of 1674 scientific papers in the DCM field, a co-authorship network was created. For each author, statistics about their connections to the co-authorship network (and so the nature of their collaboration) were generated. Using these connectedness statistics, a neural network was used to predict H-Index for each author (as a proxy for research impact). The neural network was retrospectively validated on an unseen author set.
Results DCM research is regionally clustered, with strong collaboration across some international borders (e.g., North America) but not others (e.g., Western Europe). In retrospective validation, the neural network achieves a correlation coefficient of 0.86 (p<0.0001) between the true and predicted H-Index of each author. Thus, author impact can be accurately predicted using only the nature of an author's collaborations.
Discussion Analysis of the neural network shows that the nature of collaboration strongly impacts an author's research visibility, and therefore suitability as a KOL. This also suggests greater collaboration within the DCM field could help to improve both individual research visibility and global synergy.
C1 [Grodzinski, Noah] Univ Cambridge, St Johns Coll, Cambridge, England.
[Grodzinski, Ben] Univ Cambridge, Sch Clin Med, Cambridge, England.
[Davies, Benjamin M.] Univ Cambridge, Dept Clin Neurosci, Div Neurosurg, Cambridge, England.
C3 University of Cambridge; University of Cambridge; University of
Cambridge
RP Davies, BM (corresponding author), Univ Cambridge, Dept Clin Neurosci, Div Neurosurg, Cambridge, England.
EM bd375@cam.ac.uk
OI Grodzinski, Ben/0000-0001-8839-4718
CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
Azondekon R, 2018, SCI AUTHORSHIP COLLA
Andrade HB, 2009, RES EVALUAT, V18, P301, DOI 10.3152/095820209X451041
Brownlee Jason, 2018, Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning
Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113
Davies B, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2019-031486
Davies BM, 2022, GLOB SPINE J, V12, P432, DOI 10.1177/2192568220953811
Davies BM, 2019, GLOB SPINE J, V9, p65S, DOI 10.1177/2192568219832855
Davies BM, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0529-3
Davies BM, 2018, BMJ-BRIT MED J, V360, DOI 10.1136/bmj.k186
Davies BM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172564
Davies BM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157263
Davies BM, GSJ
Davies BM., 2019, CONSENSUS PROCESS IM, V9
Fehlings MG, 2017, GLOB SPINE J, V7, p70S, DOI 10.1177/2192568217701914
Fehlings MG, 2015, SPINE, V40, P1322, DOI 10.1097/BRS.0000000000000988
Fehlings MG, 2013, J BONE JOINT SURG AM, V95A, P1651, DOI 10.2106/JBJS.L.00589
FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543
Ghogawala Z, 2021, JAMA-J AM MED ASSOC, V325, P942, DOI 10.1001/jama.2021.1233
Bote VPG, 2013, J AM SOC INF SCI TEC, V64, P392, DOI 10.1002/asi.22754
Hara N, 2003, J AM SOC INF SCI TEC, V54, P952, DOI 10.1002/asi.10291
Hilton B, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2018-027000
Hirsch JE, 2010, SCIENTOMETRICS, V85, P741, DOI 10.1007/s11192-010-0193-9
INGHAM AG, 1974, J EXP SOC PSYCHOL, V10, P371, DOI 10.1016/0022-1031(74)90033-X
Khan DZ, 2020, J RHEUMATOL, V47, P633, DOI 10.3899/jrheum.191225
Khan DZ, 2020, JMIR RES PROTOC, V9, DOI 10.2196/15922
Kreiner G, 2016, FRONT HUM NEUROSCI, V10, DOI 10.3389/fnhum.2016.00556
Leathers SJ, 2016, ADM POLICY MENT HLTH, V43, P768, DOI 10.1007/s10488-015-0694-1
Mallapaty S., 2018, NATURE INDEX
Mao A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153048
Mowforth OD, 2020, GLOB SPINE J, V10, P476, DOI 10.1177/2192568219847439
Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695
Oh T, 2017, WORLD NEUROSURG, V106, P699, DOI 10.1016/j.wneu.2016.12.124
Petit-Zeman S, 2010, LANCET, V376, P667, DOI 10.1016/S0140-6736(10)60712-X
Rose M., 2019, PYBLIOMETRICS SCRIPT, V10
SABIDUSSI G, 1966, PSYCHOMETRIKA, V31, P581, DOI 10.1007/BF02289527
Schmidhuber J, 2005, DEEP LEARNING NEURAL
Smalheiser NR, 2005, PLOS BIOL, V3, P963, DOI 10.1371/journal.pbio.0030217
Smith SS, GLOB SPINE J
Waqar M, 2019, POSTGRAD MED J, V95, P524, DOI 10.1136/postgradmedj-2019-136805
Yin M, 2020, BIBLIOMETRIC ANAL VI
Zuo KJ, 2020, J SURG RES, V256, P282, DOI 10.1016/j.jss.2020.06.054
NR 42
TC 15
Z9 15
U1 1
U2 18
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD SEP 2
PY 2021
VL 16
IS 9
AR e0256997
DI 10.1371/journal.pone.0256997
PG 14
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics
GA WG5QV
UT WOS:000707050100085
PM 34473796
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Massonnaud, C
Lelong, R
Kerdelhué, G
Lejeune, E
Grosjean, J
Griffon, N
Darmoni, SJ
AF Massonnaud, Clement
Lelong, Romain
Kerdelhue, Gaetan
Lejeune, Emeline
Grosjean, Julien
Griffon, Nicolas
Darmoni, Stefan J.
TI Performance evaluation of three semantic expansions to query PubMed
SO HEALTH INFORMATION AND LIBRARIES JOURNAL
LA English
DT Article
DE bibliographic databases; information retrieval; literature searching;
medical subject headings (MeSH); MEDLINE; precision; PubMed; recall;
search strategies; thesaurus
ID INFORMATION; BEHAVIOR
AB Background PubMed is one of the most important basic tools to access medical literature. Semantic query expansion using synonyms can improve retrieval efficacy. Objective The objective was to evaluate the performance of three semantic query expansion strategies. Methods Queries were built for forty MeSH descriptors using three semantic expansion strategies (MeSH synonyms, UMLS mappings, and mappings created by the CISMeF team), then sent to PubMed. To evaluate expansion performances for each query, the first twenty citations were selected, and their relevance were judged by three independent evaluators based on the title and abstract. Results Queries built with the UMLS expansion provided new citations with a slightly higher mean precision (74.19%) than with the CISMeF expansion (70.28%), although the difference was not significant. Inter-rater agreement was 0.28. Results varied greatly depending on the descriptor selected. Discussion The number of citations retrieved by the three strategies and their precision varied greatly according to the descriptor. This heterogeneity could be explained by the quality of the synonyms. Optimal use of these different expansions would be through various combinations of UMLS and CISMeF intersections or unions. Conclusion Information retrieval tools should propose different semantic expansions depending on the descriptor and the search objectives.
C1 [Massonnaud, Clement; Lelong, Romain; Kerdelhue, Gaetan; Lejeune, Emeline; Grosjean, Julien; Griffon, Nicolas; Darmoni, Stefan J.] Rouen Univ Hosp, Dept Biomed Informat, 1 Rue Germont, F-76000 Rouen, Normandy, France.
[Massonnaud, Clement; Lelong, Romain; Kerdelhue, Gaetan; Lejeune, Emeline; Grosjean, Julien; Griffon, Nicolas; Darmoni, Stefan J.] Sorbonne Univ, LIMICS, U1142, Paris, France.
C3 Universite de Rouen Normandie; CHU de Rouen; Sorbonne Universite
RP Massonnaud, C (corresponding author), Rouen Univ Hosp, Dept Biomed Informat, 1 Rue Germont, F-76000 Rouen, Normandy, France.
EM clement.massonnaud@gmail.com
RI LEJEUNE, Emeline/KAM-4290-2024; Stefan, Darmoni J/H-4554-2016;
Kerdelhué, Gaétan/J-6933-2019
OI LEJEUNE, Emeline/0000-0001-6177-2125; Kerdelhué,
Gaétan/0000-0001-5803-5554; Darmoni, Stefan/0000-0002-7162-318X;
Massonnaud, Clement/0000-0003-0292-9668; Griffon,
Nicolas/0000-0002-9602-6429; Grosjean, Julien/0000-0002-7446-644X;
LELONG, Romain/0000-0003-1865-8786
CR Alving BE, 2018, HEALTH INFO LIBR J, V35, P3, DOI 10.1111/hir.12204
Aronson AR, 1997, J AM MED INFORM ASSN, P485
Baorto DM, 2000, J AM MED INFORM ASSN, P47
Bouadjenek MR, 2017, DATABASE-OXFORD, DOI 10.1093/database/bax062
Carpineto C, 2012, ACM COMPUT SURV, V44, DOI 10.1145/2071389.2071390
CONGER AJ, 1980, PSYCHOL BULL, V88, P322, DOI 10.1037/0033-2909.88.2.322
Glocker K, 2017, STUD HEALTH TECHNOL, V243, P197, DOI 10.3233/978-1-61499-808-2-197
Green R, 2001, RELATIONSHIP MEDICAL, V171
Griffon N, 2012, BMC MED INFORM DECIS, V12, DOI 10.1186/1472-6947-12-12
Grosjean J, 2011, STUD HEALTH TECHNOL, V166, P129, DOI 10.3233/978-1-60750-740-6-129
Harris JK, 2014, PREV CHRONIC DIS, V11, DOI 10.5888/pcd11.140201
Hersh W., 1994, SIGIR '94. Proceedings of the Seventeenth Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, P192
Hersh W, 2000, J AM MED INFORM ASSN, P344
Herskovic JR, 2007, J AM MED INFORM ASSN, V14, P212, DOI 10.1197/jamia.M2191
Hisham R, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2015-010565
Hoogendam A, 2008, BMC MED INFORM DECIS, V8, DOI 10.1186/1472-6947-8-42
Isham A, 2016, J DENT EDUC, V80, P569
kahouei Mehdi, 2015, J Evid Based Med, V8, P91, DOI 10.1111/jebm.12154
LINDBERG DAB, 1993, METHOD INFORM MED, V32, P281, DOI 10.1055/s-0038-1634945
Lu ZY, 2011, DATABASE-OXFORD, DOI 10.1093/database/baq036
Mahmood W., 2018, DATABASE-OXFORD, V2018
Merabti T, 2015, STUD HEALTH TECHNOL, V216, P544, DOI 10.3233/978-1-61499-564-7-544
Schuers M, 2016, INT J MED INFORM, V89, P9, DOI 10.1016/j.ijmedinf.2016.02.003
Thirion B, 2009, STUD HEALTH TECHNOL, V150, P238, DOI 10.3233/978-1-60750-044-5-238
Torre S., 2013, AUTHOR KEYWORDS PUBM
Vanopstal K, 2013, EXPERT SYST APPL, V40, P4106, DOI 10.1016/j.eswa.2013.01.036
Wright TB, 2017, DATABASE-OXFORD, DOI 10.1093/database/bax065
NR 27
TC 2
Z9 2
U1 0
U2 10
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1471-1834
EI 1471-1842
J9 HEALTH INFO LIBR J
JI Heatlth Info. Libr. J.
PD JUN
PY 2021
VL 38
IS 2
BP 113
EP 124
DI 10.1111/hir.12291
PG 12
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA TB9RL
UT WOS:000668281300004
PM 31837099
DA 2024-09-05
ER
PT J
AU Verma, MK
Yuvaraj, M
AF Verma, Manoj Kumar
Yuvaraj, Mayank
TI What's up in WhatsApp research: a comprehensive analysis of 12,947
papers indexed in Dimensions.ai
SO LIBRARY HI TECH
LA English
DT Article; Early Access
DE WhatsApp; Instant messaging platform; Bibliometrics; Dimensions.ai;
Performance analysis; Science mapping; Cluster analysis
AB PurposeIn recent years, instant messaging platforms like WhatsApp have gained substantial popularity in both academic and practical domains. However, despite this growth, there is a lack of a comprehensive overview of the literature in this field. The primary purpose of this study is to bridge this gap by analyzing a substantial dataset of 12,947 articles retrieved from the Dimensions.ai, database spanning from 2011 to March 2023.Design/methodology/approachTo achieve the authors' objective, the authors employ bibliometric analysis techniques. The authors delve into various bibliometric networks, including citation networks, co-citation networks, collaboration networks, keywords and bibliographic couplings. These methods allow for the uncovering of the social and conceptual structures within the academic discourse surrounding WhatsApp.FindingsThe authors' analysis reveals several significant findings. Firstly, the authors observe a remarkable and continuous growth in the number of academic studies dedicated to WhatsApp over time. Notably, two prevalent themes emerge: the impact of coronavirus disease 2019 (COVID-19) and the role of WhatsApp in the realm of social media. Furthermore, the authors' study highlights diverse applications of WhatsApp, including its utilization in education and learning, as a communication tool, in medical education, cyberpsychology, security, psychology and behavioral learning.Originality/valueThis paper contributes to the field by offering a comprehensive overview of the scholarly research landscape related to WhatsApp. The findings not only illuminate the burgeoning interest in WhatsApp among researchers but also provide insights into the diverse domains where WhatsApp is making an impact. The analysis of bibliometric networks offers a unique perspective on the social and conceptual structures within this field, shedding light on emerging trends and influential research. This study thus serves as a valuable resource for scholars, practitioners and policymakers seeking to navigate the evolving landscape of WhatsApp research. The study will also be useful for researchers interested in conducting bibliometric analysis using Dimensions.ai, a free database.
C1 [Verma, Manoj Kumar] Mizoram Univ, Dept Lib & Informat Sci, Aizawl, India.
[Yuvaraj, Mayank] Cent Univ South Bihar, Rajarshi Janak Cent Lib, Gaya, India.
C3 Mizoram University; Central University of South Bihar
RP Yuvaraj, M (corresponding author), Cent Univ South Bihar, Rajarshi Janak Cent Lib, Gaya, India.
EM mayank.yuvaraj@gmail.com
RI Verma, Manoj Kumar/ABE-4906-2020
OI Verma, Prof. Manoj Kumar/0000-0002-3009-3258
CR Acedo FJ, 2006, J MANAGE STUD, V43, P957, DOI 10.1111/j.1467-6486.2006.00625.x
Agrawal S.R., 2021, J RELATIONSHIP MARKE, V20, P261, DOI DOI 10.1080/15332667.2020.1802643
Agrawal SR, 2019, INT J EDUC MANAG, V33, P954, DOI 10.1108/IJEM-07-2018-0205
Ahad A, 2016, ADV INTELL SYST, V433, P235, DOI 10.1007/978-81-322-2755-7_24
Aker S, 2020, J COMMUN HEALTH, V45, P684, DOI 10.1007/s10900-020-00841-9
Alabasi M K., 2019, Arab World English Journal, V1, P129, DOI [10.24093/awej/elt1.10, DOI 10.24093/AWEJ/ELT1.10]
Alabdulkareem SA, 2015, PROCD SOC BEHV, V182, P213, DOI 10.1016/j.sbspro.2015.04.758
Alam S, 2023, LIBR HI TECH, V41, P287, DOI 10.1108/LHT-07-2021-0244
Alamer A, 2023, J COMPUT ASSIST LEAR, V39, P417, DOI 10.1111/jcal.12753
AlFaris E, 2018, MED TEACH, V40, pS77, DOI 10.1080/0142159X.2018.1465536
Alsobayel Hana, 2016, JMIR Med Educ, V2, pe15
Amadeu Dutra Moresi Eduardo, 2022, Computer Supported Qualitative Research: New Trends in Qualitative Research (WCQR2022). Lecture Notes in Networks and Systems (466), P194, DOI 10.1007/978-3-031-04680-3_13
Amin F., 2020, Studies in English Language and Education, V7, P362, DOI DOI 10.24815/SIELE.V7I2.16929
Andujar A, 2016, SYSTEM, V62, P63, DOI 10.1016/j.system.2016.07.004
Anglano C, 2014, DIGIT INVEST, V11, P201, DOI 10.1016/j.diin.2014.04.003
[Anonymous], 2016, International Journal of Electrical and Computer Engineering, DOI [DOI 10.11591/IJECE.V6I3.10271, 10.11591/ijece.v6i3.10271, 10.11591/ijece.v6i3.pp909-914, DOI 10.11591/IJECE.V6I3.PP909-914]
[Anonymous], 2017, COMUNICAR, DOI [DOI 10.3916/C50-2017-04, 10.3916/C50-2017-04]
Apaolaza V, 2019, CYBERPSYCH BEH SOC N, V22, P388, DOI 10.1089/cyber.2018.0681
Apuke OD, 2021, ONLINE INFORM REV, V45, P220, DOI 10.1108/OIR-03-2020-0116
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Astarcioglu MA, 2015, AM J EMERG MED, V33, P1382, DOI 10.1016/j.ajem.2015.07.029
Aung HH, 2019, J ASSOC INF SCI TECH, V70, P872, DOI 10.1002/asi.24162
Awada G, 2016, COGENT EDUC, V3, DOI 10.1080/2331186X.2016.1264173
Awan WA, 2023, LIBR HI TECH, V41, P309, DOI 10.1108/LHT-07-2021-0233
Balatamoghna Nagajayanthi, 2022, Lecture Notes in Electrical Engineering, V792, P885
Bano S, 2019, CHILD YOUTH SERV REV, V103, P200, DOI 10.1016/j.childyouth.2019.06.002
Banshal SK, 2022, LIBR HI TECH, V40, P1337, DOI 10.1108/LHT-01-2022-0083
Barhoumi C, 2017, ELECTRON LIBR, V35, P977, DOI 10.1108/EL-03-2016-0069
Bartolo M., 2018, Multidisciplinary Teleconsultation in Developing Countries, DOI [10.1007/978-3-319-72763-9, DOI 10.1007/978-3-319-72763-9]
Basumatary B, 2023, LIBR HI TECH, DOI 10.1108/LHT-02-2023-0031
Belsti Y, 2021, J MULTIDISCIP HEALTH, V14, P1233, DOI 10.2147/JMDH.S312637
Boczkowski PJ, 2018, J COMPUT-MEDIAT COMM, V23, P245, DOI 10.1093/jcmc/zmy012
Boote DavidN., 2005, Educational Researcher, V34, P3, DOI [10.3102/0013189X034006003, DOI 10.3102/0013189X034006003]
Bouhnik D, 2014, J INF TECHNOL EDUC-R, V13, P217
Boulos MNK, 2016, FUTURE INTERNET, V8, DOI 10.3390/fi8030037
Bowles J, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0240005
Callon M., 1986, Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World
Chagas V, 2022, J INF TECHNOL POLITI, V19, P253, DOI 10.1080/19331681.2021.1962779
Chakraborty S, 2020, PAC BUS REV INT, V13, P46
Chan M, 2018, COMPUT HUM BEHAV, V87, P254, DOI 10.1016/j.chb.2018.05.027
[陈继文 Chen Jiwen], 2019, [现代制造工程, Modern Manufacturing Engineering], P1
Cheng ZC, 2023, INT J PRESS/POLIT, V28, P995, DOI [10.1177/19401612221075936, 10.24507/icicel.16.07.759]
Cheung YTD, 2015, J MED INTERNET RES, V17, DOI 10.2196/jmir.4829
Chiu DKW, 2023, LIBR HI TECH, V41, P277, DOI 10.1108/LHT-04-2023-586
Choudhury T., 2022, Telemedicine: the Computer Transformation of Healthcare, DOI [10.1007/978-3-030-99457-0, DOI 10.1007/978-3-030-99457-0]
Coleman E, 2019, BMC MED EDUC, V19, DOI 10.1186/s12909-019-1706-8
Conde MA, 2021, UNIVERSAL ACCESS INF, V20, P441, DOI 10.1007/s10209-020-00772-1
Cong T, 2022, SCIENTOMETRICS, V127, P7091, DOI 10.1007/s11192-022-04347-0
Cordero J., 2022, Applied Computing and Informatics, DOI [10.1108/ACI-06-2022-0148, DOI 10.1108/ACI-06-2022-0148]
Correia AP, 2020, DISTANCE EDUC, V41, P429, DOI 10.1080/01587919.2020.1821607
Costa E, 2022, SOC MEDIA SOC, V8, DOI 10.1177/20563051211069053
Cotrin P, 2020, AM J ORTHOD DENTOFAC, V158, P661, DOI 10.1016/j.ajodo.2020.06.028
Dong JH, 2023, RECALL, V35, P339, DOI 10.1017/S0958344022000222
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dorwal P, 2016, J MED SYST, V40, DOI 10.1007/s10916-015-0384-2
Duffy J.C., 2021, The Charleston Advisor, V23, P9, DOI [10.5260/chara.23.1.9, DOI 10.5260/CHARA.23.1.9]
Durgungoz A, 2022, LEARNING ENVIRON RES, V25, P423, DOI 10.1007/s10984-021-09371-0
Ellanti P, 2017, CUREUS J MED SCIENCE, V9, DOI 10.7759/cureus.1040
Elmore SA, 2018, TOXICOL PATHOL, V46, P252, DOI 10.1177/0192623318758294
Ermel A.P. C., 2021, Literature Reviews, DOI DOI 10.1007/978-3-030-75722-9
ESFAHANI H J., 2019, Int J Data Netw Sci, V3, P145, DOI [10.5267/j.ijdns.2019.2.007, DOI 10.5267/J.IJDNS.2019.2.007]
Evans D, 2002, INT J NURS STUD, V39, P735, DOI 10.1016/S0020-7489(02)00015-9
Fasae JK, 2021, LIBR HI TECH, V39, P696, DOI 10.1108/LHT-07-2020-0166
Ganasegeran K, 2017, INT J MED INFORM, V97, P145, DOI 10.1016/j.ijmedinf.2016.10.013
García-Gómez A, 2022, COMPUT ASSIST LANG L, V35, P1310, DOI 10.1080/09588221.2020.1799822
Gaviria-Marin M, 2019, TECHNOL FORECAST SOC, V140, P194, DOI 10.1016/j.techfore.2018.07.006
Gazit T, 2019, ONLINE INFORM REV, V44, P139, DOI 10.1108/OIR-03-2019-0076
de Zúñiga HG, 2021, INFORM COMMUN SOC, V24, P201, DOI 10.1080/1369118X.2019.1642933
Giordano V, 2017, INTERACT J MED RES, V6, DOI 10.2196/ijmr.6214
Giordano V, 2015, INT J MED INFORM, V84, P141, DOI 10.1016/j.ijmedinf.2014.11.002
Giudice A, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17103399
Gorwa R, 2019, INFORM COMMUN SOC, V22, P854, DOI 10.1080/1369118X.2019.1573914
Grover S, 2020, J POSTGRAD MED, V66, P17, DOI 10.4103/jpgm.JPGM_2_19
Gulacti U, 2016, J MED SYST, V40, DOI 10.1007/s10916-016-0483-8
Guo Y, 2022, INFORM TECHNOL LIBR, V41, DOI 10.6017/ital.v41i3.14325
Gutiérrez-Salcedo M, 2018, APPL INTELL, V48, P1275, DOI 10.1007/s10489-017-1105-y
Hasan MR, 2021, LIBR HI TECH, V39, P814, DOI 10.1108/LHT-02-2021-0071
Hasumi T, 2022, SCIENTOMETRICS, V127, P4631, DOI 10.1007/s11192-022-04441-3
Hazzam J, 2018, J MED INTERNET RES, V20, DOI 10.2196/12035
Henry JV, 2016, GLOB HEALTH-SCI PRAC, V4, P311, DOI 10.9745/GHSP-D-15-00386
Herrero-Solana V, 2022, SOCIETIES, V12, DOI 10.3390/soc12060164
Herzog C, 2020, QUANT SCI STUD, V1, P387, DOI 10.1162/qss_a_00020
Hook DW., 2018, FRONT RES METR ANAL, V3, P23, DOI DOI 10.3389/FRMA.2018.00023
Huang PS, 2023, LIBR HI TECH, V41, P1, DOI 10.1108/LHT-02-2023-585
Huang YH, 2024, LIBR HI TECH, V42, P885, DOI 10.1108/LHT-03-2022-0159
Hui SC, 2023, LIBR HI TECH, DOI 10.1108/LHT-11-2022-0533
Iftikhar R, 2017, J MED INTERNET RES, V19, DOI 10.2196/jmir.5989
Irvine L., 2022, Making Literature Reviews Work: A Multidisciplinary Guide to Systematic Approaches, P145
Jahangiry L, 2020, BMC PUBLIC HEALTH, V20, DOI 10.1186/s12889-020-09681-7
Jailobaev T, 2021, BMS-B SOCIOL METHOD, V149, P60, DOI 10.1177/0759106320978337
Jain J, 2022, MANAG REV Q, V72, P823, DOI 10.1007/s11301-021-00215-y
Jakhar D, 2020, CLIN EXP DERMATOL, V45, P739, DOI 10.1111/ced.14227
Jamal A, 2016, JMIR MHEALTH UHEALTH, V4, P136, DOI 10.2196/mhealth.4904
Johnston MJ, 2015, AM J SURG, V209, P45, DOI 10.1016/j.amjsurg.2014.08.030
Kanyike AM, 2021, TROP MED HEALTH, V49, DOI 10.1186/s41182-021-00331-1
Kapasia N, 2020, CHILD YOUTH SERV REV, V116, DOI 10.1016/j.childyouth.2020.105194
Kapoor KK, 2018, INFORM SYST FRONT, V20, P531, DOI 10.1007/s10796-017-9810-y
Karapanos E, 2016, COMPUT HUM BEHAV, V55, P888, DOI 10.1016/j.chb.2015.10.015
Karimii Z, 2020, RISK MANAG HEALTHC P, V13, P1271, DOI 10.2147/RMHP.S258785
Karimuribo Esron Daniel, 2017, JMIR Public Health Surveill, V3, pe94, DOI 10.2196/publichealth.7373
Karpisek F, 2015, DIGIT INVEST, V15, P110, DOI 10.1016/j.diin.2015.09.002
Kartal G., 2019, International Journal of Contemporary Educational Research, V6, P352, DOI DOI 10.33200/IJCER.599138
Kaufmann K, 2020, MOB MEDIA COMMUN, V8, P229, DOI 10.1177/2050157919852392
Kaufmann K, 2018, INFORM COMMUN SOC, V21, P882, DOI 10.1080/1369118X.2018.1437205
Kaye LK, 2020, INT J HUM-COMPUT INT, V36, P190, DOI 10.1080/10447318.2019.1620524
Khanna Vishesh, 2015, Eur J Orthop Surg Traumatol, V25, P821, DOI 10.1007/s00590-015-1600-y
Khasne RW, 2020, INDIAN J CRIT CARE M, V24, P664, DOI 10.5005/jp-journals-10071-23518
Klein AZ, 2018, INT J DIST EDUC TECH, V16, P51, DOI 10.4018/IJDET.2018040104
Kligler-Vilenchik N, 2022, DIGIT JOURNAL, V10, P300, DOI 10.1080/21670811.2021.1972020
Krämer NC, 2015, COMPUT HUM BEHAV, V51, P255, DOI 10.1016/j.chb.2015.05.005
Kuhn T.S., 2012, The structures of scientific revolutions
Latif Muhammad Zahid, 2019, Acta Inform Med, V27, P133, DOI 10.5455/aim.2019.27.133-138
Latina D, 2023, J CLIN MED, V12, DOI 10.3390/jcm12052056
Lee CE, 2023, EDUC SCI, V13, DOI 10.3390/educsci13030244
Li L, 2023, LIBR HI TECH, V41, P921, DOI 10.1108/LHT-05-2021-0161
Li YT, 2023, LIBR HI TECH, V41, P1039, DOI 10.1108/LHT-01-2021-0034
Lim TS, 2019, ADV INTELL SYST, V783, P626, DOI 10.1007/978-3-319-94709-9_61
Lim WM, 2021, J BUS RES, V122, P534, DOI 10.1016/j.jbusres.2020.08.051
Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
Malik UR, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17176395
Malka V, 2015, MEDIA WAR CONFL, V8, P329, DOI 10.1177/1750635215611610
Manca S, 2020, INTERNET HIGH EDUC, V44, DOI 10.1016/j.iheduc.2019.100707
Manji K, 2021, HEALTH POLICY PLANN, V36, P774, DOI 10.1093/heapol/czab024
Mars M, 2019, J TELEMED TELECARE, V25, P524, DOI 10.1177/1357633X19873233
Martin-Villares C, 2021, EUR ARCH OTO-RHINO-L, V278, P1605, DOI 10.1007/s00405-020-06220-3
Matassi M, 2019, NEW MEDIA SOC, V21, P2183, DOI 10.1177/1461444819841890
Matthes J, 2020, COMPUT HUM BEHAV, V105, DOI 10.1016/j.chb.2019.106217
McDonald ACE, 2022, ANZ J SURG, V92, P825, DOI 10.1111/ans.17550
Melo PD, 2019, Arxiv, DOI arXiv:1909.08740
Mohamed Inaam N, 2021, Sudan J Paediatr, V21, P48, DOI 10.24911/SJP.106-1596913564
Montag C, 2020, J BEHAV ADDICT, V9, P908, DOI 10.1556/2006.8.2019.59
Montag C, 2018, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.02247
Montag Christian, 2015, BMC Res Notes, V8, P331, DOI 10.1186/s13104-015-1280-z
Moorefield-Lang HM, 2017, LIBR HI TECH, V35, P81, DOI 10.1108/LHT-04-2016-0039
Morris C, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph182413426
Mostafa MM, 2023, MULTIMED TOOLS APPL, V82, P12423, DOI 10.1007/s11042-022-13908-7
Dávila CM, 2023, FAM RELAT, V72, P547, DOI 10.1111/fare.12816
Moyle L, 2019, INT J DRUG POLICY, V63, P101, DOI 10.1016/j.drugpo.2018.08.005
Mrad M, 2022, QUAL MARK RES, V25, P337, DOI 10.1108/QMR-10-2021-0132
Muller-Bloch C., 2015, ICIS 2015 P
Nachimuthu S, 2020, DIABETES METAB SYND, V14, P579, DOI 10.1016/j.dsx.2020.04.053
Nguyen Minh-Hoang, 2021, SN Bus Econ, V1, P2, DOI 10.1007/s43546-020-00002-z
Nobre GP, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102757
Noyons ECM, 1999, J AM SOC INFORM SCI, V50, P115, DOI 10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.3.CO;2-A
Nyashanu M, 2020, GLOB PUBLIC HEALTH, V15, P1443, DOI 10.1080/17441692.2020.1805787
Obreja DM, 2023, SOC SCI COMPUT REV, V41, P1712, DOI 10.1177/08944393221117749
Okunlaya RO, 2022, LIBR HI TECH, V40, P1869, DOI 10.1108/LHT-07-2021-0242
Olum R., 2020, JMIR Public Health and Surveillance, V6, P19847, DOI 10.2196/19847
Olum R, 2020, J MED EDUC CURRIC DE, V7, DOI 10.1177/2382120520973212
Olum R, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00181
Ortiz C, 2018, ACCIDENT ANAL PREV, V117, P239, DOI 10.1016/j.aap.2018.04.018
Ortiz-Peregrina S, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-70288-4
Pang Natalie., 2020, First Monday, DOI [DOI 10.5210/FM.V25I12.10417, https://doi.org/10.5210/fm.v25i12.10417]
Petersen David, 2022, Journal of Electronic Resources in Medical Libraries, P94, DOI 10.1080/15424065.2022.2113348
Petruzzi M, 2016, OR SURG OR MED OR PA, V121, P248, DOI 10.1016/j.oooo.2015.11.005
Pramukti I, 2020, J MED INTERNET RES, V22, DOI 10.2196/24487
Prebor G, 2023, LIBR HI TECH, V41, P969, DOI 10.1108/LHT-02-2021-0074
Qayyum A, 2019, IT PROF, V21, P16, DOI 10.1109/MITP.2019.2910503
Raiman L, 2017, BMC MED EDUC, V17, DOI 10.1186/s12909-017-0855-x
Rambe P., 2013, INT C ADV INF COMM T, P1, DOI [10.2991/icaicte.2013.66, DOI 10.2991/ICAICTE.2013.66]
Rejeb A, 2022, TELEMAT INFORM, V73, DOI 10.1016/j.tele.2022.101876
Rosales A., 2016, Romanian Journal of Communication and Public Relations, V18, P27, DOI [10.21018/rjcpr.2016.1.200, DOI 10.21018/RJCPR.2016.1.200]
Rozgonjuk D, 2020, ADDICT BEHAV, V110, DOI 10.1016/j.addbeh.2020.106487
Saefi M, 2020, DATA BRIEF, V31, DOI 10.1016/j.dib.2020.105855
Sallam M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0243264
Sampietro A, 2019, J PRAGMATICS, V143, P109, DOI 10.1016/j.pragma.2019.02.009
Schmidt F, 2008, ORGAN RES METHODS, V11, P96, DOI 10.1177/1094428107303161
Serra G, 2021, ITAL J PEDIATR, V47, DOI 10.1186/s13052-021-01102-8
Sha Peng, 2019, Addict Behav Rep, V9, P100148, DOI 10.1016/j.abrep.2018.100148
Shen CW, 2021, LIBR HI TECH, V39, P488, DOI 10.1108/LHT-10-2019-0210
Shiau WL, 2018, INT J INFORM MANAGE, V43, P52, DOI 10.1016/j.ijinfomgt.2018.06.006
So W.W.S., 2016, Turkish Online Journal of Educational Technology, V2016, P1359
Sperling D, 2021, NURS ETHICS, V28, P1096, DOI 10.1177/09697330211005175
Srivastava V., 2020, arXiv, DOI [10.48550/arXiv.2010.13263, DOI 10.48550/ARXIV.2010.13263]
Statista, 2021, Number of WhatsApp users in selected countries worldwide as of June 2021
Statista, 2022, Russia: COVID-19 influenced WhatsApp traffic 2020
Statista, 2022, Coronavirus (COVID-19) impact on the internet and media in Italy-statistics & facts
Statista, Impact of the coronavirus (COVID-19) on social media usage across India from January to July 2020
Statista, 2023, Most popular global mobile messenger apps as of January 2023, based on number of monthly active users
Sultan AJ, 2014, SOC SCI J, V51, P57, DOI 10.1016/j.soscij.2013.09.003
Supriyanto J., 2020, The use of Whatsapp to reduce students' speaking anxiety in a blended learning activity (A Case Study at the Tenth Grade of a Vocational School in Wanareja)
Swart J, 2019, DIGIT JOURNAL, V7, P187, DOI 10.1080/21670811.2018.1465351
Syairofi A., 2023, Computer Assisted Language Learning, V24, P305
Thomas K, 2018, BMJ-BRIT MED J, V360, DOI 10.1136/bmj.k622
Torun E.D., 2020, Acta Educationis Generalis, V10, P112, DOI DOI 10.2478/ATD-2020-0013
Trere Emiliano., 2020, First Monday, V25, DOI [10.5210/fm.v25i12.10404, DOI 10.5210/FM.V25I12.10404]
Urooj U, 2020, PAK J MED SCI, V36, pS37, DOI 10.12669/pjms.36.COVID19-S4.2643
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Steden R, 2022, CRIME MEDIA CULT, V18, P543, DOI 10.1177/17416590211041017
Van-Raan AFJ., 2004, HDB QUANTITATIVE SCI, P19, DOI [DOI 10.1007/1-4020-2755-9_2, DOI 10.1007/1-4020-2755-92]
Verma MK, 2022, J BUS FINANC LIBR, V27, P268, DOI 10.1080/08963568.2022.2100089
Vöelker J, 2021, COMPUT HUM BEHAV REP, V3, DOI 10.1016/j.chbr.2021.100062
Vogiatzis D., 2022, Open World Learning, V1st ed., P44, DOI [10.4324/9781003177098-5, DOI 10.4324/9781003177098-5]
Wang DY, 2022, LIBR HI TECH, V40, P1954, DOI 10.1108/LHT-01-2021-0031
Wani Shabeer Ahmad, 2013, Indian J Plast Surg, V46, P502, DOI 10.4103/0970-0358.121990
Waterloo SF, 2018, NEW MEDIA SOC, V20, P1813, DOI 10.1177/1461444817707349
Wegmann Elisa, 2017, Addict Behav Rep, V5, P33, DOI 10.1016/j.abrep.2017.04.001
Wegmann E, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.01747
Willemse Juliana J., 2015, Curationis, V38, P1, DOI 10.4102/curationis.v38i2.1512
Wu L L., 2009, 2009, P1, DOI [DOI 10.1109/HICSS.2009.368, 10.1109/hicss.2009.368]
Yadav D, 2022, PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), DOI 10.1145/3491102.3517575
Yarchi M, 2021, POLIT COMMUN, V38, P98, DOI 10.1080/10584609.2020.1785067
Yeshua-Katz D, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18094576
Yeung AWK, 2020, J ETHNOPHARMACOL, V250, DOI 10.1016/j.jep.2019.112414
Yoon J, 2023, LIBR HI TECH, V41, P833, DOI 10.1108/LHT-10-2021-0360
Yu PY, 2023, LIBR HI TECH, V41, P108, DOI 10.1108/LHT-10-2021-0342
Yuan CW, 2023, LIBR HI TECH, V41, P877, DOI 10.1108/LHT-01-2022-0080
Zhang K, 2023, LIBR HI TECH, V41, P788, DOI 10.1108/LHT-07-2021-0218
Zhang LJ, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS, ELECTRONICS AND CONTROL (ICCSEC), P1324, DOI 10.1109/ICCSEC.2017.8446863
Zhang XL, 2020, FOODS, V9, DOI 10.3390/foods9020166
Zhitomirsky-Geffet M, 2017, ASLIB J INFORM MANAG, V69, P721, DOI 10.1108/AJIM-04-2017-0083
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 213
TC 0
Z9 0
U1 4
U2 13
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 0737-8831
J9 LIBR HI TECH
JI Libr. Hi Tech
PD 2023 DEC 5
PY 2023
DI 10.1108/LHT-11-2023-0525
EA DEC 2023
PG 36
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA Z5JB3
UT WOS:001112425400001
DA 2024-09-05
ER
PT J
AU Hassan, SU
Aljohani, NR
Tarar, UI
Safder, I
Sarwar, R
Alelyani, S
Nawaz, R
AF Hassan, Saeed-Ul
Aljohani, Naif Radi
Tarar, Usman Iqbal
Safder, Iqra
Sarwar, Raheem
Alelyani, Salem
Nawaz, Raheel
TI Exploiting tweet sentiments in altmetrics large-scale data
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
DE Altmetrics; aspect-based sentiment analysis; lexicon; Twitter
ID RESEARCH EXCELLENCE; IMPACT; AGREEMENT; OPINIONS
AB This article aims to exploit social exchanges on scientific literature, specifically tweets, to analyse social media users' sentiments towards publications within a research field. First, we employ the SentiStrength tool, extended with newly created lexicon terms, to classify the sentiments of 6,482,260 tweets associated with 1,083,535 publications provided by Altmetric.com. Then, we propose harmonic means-based statistical measures to generate a specialised lexicon, using positive and negative sentiment scores and frequency metrics. Next, we adopt a novel article-level summarisation approach to domain-level sentiment analysis to gauge the opinion of social media users on Twitter about the scientific literature. Last, we propose and employ an aspect-based analytical approach to mine users' expressions relating to various aspects of the article, such as tweets on its title, abstract, methodology, conclusion or results section. We show that research communities exhibit dissimilar sentiments towards their respective fields. The analysis of the field-wise distribution of article aspects shows that in Medicine, Economics, Business and Decision Sciences, tweet aspects are focused on the results section. In contrast, in Physics and Astronomy, Materials Sciences and Computer Science, these aspects are focused on the methodology section. Overall, the study helps us to understand the sentiments of online social exchanges of the scientific community on scientific literature. Specifically, such a fine-grained analysis may help research communities in improving their social media exchanges about the scientific articles to disseminate their scientific findings effectively and to further increase their societal impact.
C1 [Hassan, Saeed-Ul] Informat Technol Univ, Dept Comp Sci, Lahore, Pakistan.
[Aljohani, Naif Radi] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia.
[Tarar, Usman Iqbal] Informat Technol Univ, Dept Comp Sci, Lahore, Pakistan.
[Safder, Iqra] FAST NU Lahore, FAST Sch Comp, Lahore, Pakistan.
[Sarwar, Raheem] Manchester Metropolitan Univ, Dept Operat Technol Events & Hospitality Managemen, Manchester, England.
[Alelyani, Salem] King Khalid Univ, Ctr Artificial Intelligence CAI, Abha, Saudi Arabia.
[Alelyani, Salem] King Khalid Univ, Coll Comp Sci, Abha, Saudi Arabia.
[Nawaz, Raheel] Staffordshire Univ, Stoke On trent, England.
C3 King Abdulaziz University; Manchester Metropolitan University; King
Khalid University; King Khalid University; Staffordshire University
RP Sarwar, R (corresponding author), Manchester Metropolitan Univ, Dept Operat Technol Events & Hospitality Managemen, Manchester, England.
EM R.Sarwar@mmu.ac.uk
RI Nawaz, Raheel/AAX-5293-2021; Aljohani, Naif R/S-1109-2017; Safder,
Iqra/JXN-8069-2024; Hassan, Saeed-Ul/G-1889-2016
OI Nawaz, Raheel/0000-0001-9588-0052; /0000-0002-0640-807X; Hassan,
Saeed-Ul/0000-0002-6509-9190
CR Bornmann L, 2019, J INFORMETR, V13, P325, DOI 10.1016/j.joi.2019.01.008
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Chaturvedi I, 2018, INFORM FUSION, V44, P65, DOI 10.1016/j.inffus.2017.12.006
COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104
Diamantini C, 2019, FUTURE GENER COMP SY, V95, P816, DOI 10.1016/j.future.2018.01.051
Didegah F, 2018, J ASSOC INF SCI TECH, V69, P832, DOI 10.1002/asi.23934
Drongstrup D., 2019, ISSI 2019 C 17 INT C, P984
El Rahman SA, 2019, 2019 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCIS), P336, DOI 10.1109/iccisci.2019.8716464
Friedrich N., 2015, DO TWEETS SCI ARTICL
FRIEDRICH N, 2015, ARXIV PREPRINT ARXIV
Gallo FR, 2020, FUTURE GENER COMP SY, V110, P918, DOI 10.1016/j.future.2019.10.044
Haddawy P, 2017, J INFORMETR, V11, P389, DOI 10.1016/j.joi.2017.02.004
Hammarfelt B, 2014, SCIENTOMETRICS, V101, P1419, DOI 10.1007/s11192-014-1261-3
Haustein S, 2019, SPRINGER HBK, P729, DOI 10.1007/978-3-030-02511-3_28
Haustein S, 2016, SCIENTOMETRICS, V108, P413, DOI 10.1007/s11192-016-1910-9
Haustein S, 2016, J ASSOC INF SCI TECH, V67, P232, DOI 10.1002/asi.23456
Haustein S, 2014, SCIENTOMETRICS, V101, P1145, DOI 10.1007/s11192-013-1221-3
Holmberg K, 2018, SCIENTOMETRICS, V116, P435, DOI 10.1007/s11192-018-2710-1
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Li S, 2010, P 23 INT C COMP LING, P635
Liu XZ, 2017, SCIENTOMETRICS, V111, P349, DOI 10.1007/s11192-017-2279-0
Plaza-del-Arco FM, 2020, FUTURE GENER COMP SY, V110, P1000, DOI 10.1016/j.future.2019.09.034
Pak A, 2010, LREC
Priem J., 2010, Proceedings of the American Society for Information Science and Technology, V47, P1, DOI [DOI 10.1002/MEET.14504701201, 10.1002/meet.14504701201]
Priem J., 2010, Altmetrics: A manifesto
Priem J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048753
Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551
Saeed-Ul Hassan, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2019.105383
Saeed-Ul Hassan, 2019, SCIENTOMETRICS, V119, P481, DOI 10.1007/s11192-019-03044-9
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Thelwall M, 2012, J AM SOC INF SCI TEC, V63, P163, DOI 10.1002/asi.21662
Vairetti C, 2020, FUTURE GENER COMP SY, V102, P838, DOI 10.1016/j.future.2019.09.023
Wouters P, 2019, SPRINGER HBK, P687, DOI 10.1007/978-3-030-02511-3_26
Yu HQ, 2017, SCIENTOMETRICS, V111, P267, DOI 10.1007/s11192-017-2251-z
NR 34
TC 1
Z9 1
U1 5
U2 32
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
EI 1741-6485
J9 J INF SCI
JI J. Inf. Sci.
PD OCT
PY 2023
VL 49
IS 5
BP 1229
EP 1245
DI 10.1177/01655515211043713
EA NOV 2022
PG 17
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA R5HB5
UT WOS:000888554300001
OA Green Submitted, Green Accepted
DA 2024-09-05
ER
PT C
AU Bernadt, J
Soh, LK
AF Bernadt, J
Soh, LK
BE Arabnia, HR
Mun, Y
TI Authoritative citation KNN learning with noisy training datasets
SO IC-AI '04 & MLMTA'04 , VOL 1 AND 2, PROCEEDINGS
LA English
DT Proceedings Paper
CT International Conference on Artificial Intelligence/International
Conference on Machine Learning, Models, Technologies and Applications
CY JUN 21-24, 2004
CL Las Vegas, NV
AB In this paper, we investigate the effectiveness of Citation K-Nearest Neighbors (KNN) learning with noisy training datasets. We devise an authority measure associated with each training instance that changes based on the outcome of Citation KNN classification. We show that by modifying only the authority measures, the classification accuracy by Citation KNN improves significantly in a variety of datasets with different noise levels. Also, by analyzing the authority measures, we are able to identify and correct noisy training instances.
C1 Univ Nebraska, Dept Comp Sci & Engn, Lincoln, NE 68588 USA.
C3 University of Nebraska System; University of Nebraska Lincoln
RP Bernadt, J (corresponding author), Univ Nebraska, Dept Comp Sci & Engn, Lincoln, NE 68588 USA.
CR Aha David, 1997, Lazy learning
Amaro R R., 2001, Pobreza e exclusao social nas sociedades contemporaneas. Formar, P3
Angluin D., 1988, Machine Learning, V2, P343, DOI 10.1023/A:1022873112823
[Anonymous], P 11 INT C ART INT I
[Anonymous], 1998, Introduction to Reinforcement Learning
[Anonymous], 2000, 17th International Conference on Machine Learning
Aslam JA, 1996, INFORM PROCESS LETT, V57, P189, DOI 10.1016/0020-0190(96)00006-3
Dietterich TG, 1997, ARTIF INTELL, V89, P31, DOI 10.1016/S0004-3702(96)00034-3
Garfield E, 1979, CITATION INDEXING IT
NR 9
TC 0
Z9 0
U1 0
U2 0
PU C S R E A PRESS
PI ATHENS
PA 115 AVALON DR, ATHENS, GA 30606 USA
BN 1-932415-33-5
PY 2004
BP 916
EP 921
PG 6
WC Computer Science, Artificial Intelligence
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BBL81
UT WOS:000226030400139
DA 2024-09-05
ER
PT J
AU Carson, S
Kanchanaraksa, S
Gooding, I
Mulder, F
Schuwer, R
AF Carson, Stephen
Kanchanaraksa, Sukon
Gooding, Ira
Mulder, Fred
Schuwer, Robert
TI Impact of OpenCourseWare Publication on Higher Education Participation
and Student Recruitment
SO INTERNATIONAL REVIEW OF RESEARCH IN OPEN AND DISTRIBUTED LEARNING
LA English
DT Article
DE Distance education; open learning; open universities; distance
universities; higher education; e-learning; online learning
AB The free and open publication of course materials (OpenCourseWare or OCW) was initially undertaken by Massachusetts Institute of Technology (MIT) and other universities primarily to share educational resources among educators (Abelson, 2007). OCW, however, and more in general open educational resources (OER),(1) have also provided well-documented opportunities for all learners, including the so-called "informal learners" and "independent learners" (Carson, 2005; Mulder, 2006, p. 35). Universities have also increasingly documented clear benefits for specific target groups such as secondary education students and lifelong learners seeking to enter formal postsecondary education programs.
In addition to benefitting learners, OCW publication has benefitted the publishing institutions themselves by providing recruiting advantages. Finally enrollment figures from some institutions indicate that even in the case of the free and open publication of materials from online programs, OCW does not negatively affect enrollment. This paper reviews evaluation conducted at Massachusetts Institute of Technology, Johns Hopkins Bloomberg School of Public Health (JHSPH), and Open Universiteit Nederland (OUNL) concerning OCW effects on higher education participation and student recruitment.
C1 [Carson, Stephen] MIT, Cambridge, MA 02139 USA.
C3 Massachusetts Institute of Technology (MIT)
RP Carson, S (corresponding author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RI Schuwer, Robert/IZE-0549-2023
OI Schuwer, Robert/0000-0001-5756-5406
CR Abelson H., 2007, J SCI ED TECHNOLOGY
[Anonymous], CASE STUDIES I OPEN
Butcher N., 2012, Exploring the business case for Open Educational Resources
Carson S., 2003, PROGRAM EVALUA UNPUB
CARSON S, 2005, PROGRAM EVALUATION F
Janssen B., 2012, C P CAMBR 2012 INN I
Mulder F., 2006, PRESENTATIONS DIES N
Schuwer R, 2009, OPEN LEARN, V24, P67, DOI 10.1080/02680510802627852
Wiley D, 2012, INT REV RES OPEN DIS, V13, P263, DOI 10.19173/irrodl.v13i3.1153
NR 9
TC 19
Z9 21
U1 0
U2 30
PU ATHABASCA UNIV PRESS
PI ATHABASCA
PA 1 UNIVERSITY DR, ATHABASCA, AB T9S 3A3, CANADA
SN 1492-3831
J9 INT REV RES OPEN DIS
JI Int. Rev. Res. Open Distrib. Learn.
PY 2012
VL 13
IS 4
BP 19
EP 32
DI 10.19173/irrodl.v13i4.1238
PG 14
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA 072HK
UT WOS:000313660500003
OA Green Submitted, gold
DA 2024-09-05
ER
PT C
AU Guo, LJ
Yan, HJ
Gao, WS
Chen, Y
Hao, YQ
AF Guo, Lijuan
Yan, Haijun
Gao, Wensheng
Chen, Yun
Hao, Yongqi
GP IOP
TI Research on big data risk assessment of major transformer defects and
faults fusing power grid, equipment and environment based on SVM
SO 2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL
APPLICATION (ESMA2017), VOLS 1-4
SE IOP Conference Series-Earth and Environmental Science
LA English
DT Proceedings Paper
CT 3rd International Conference on Environmental Science and Material
Application (ESMA)
CY NOV 25-26, 2017
CL Chongqing, PEOPLES R CHINA
ID PARTIAL-DISCHARGE; PD
AB With the development of power big data, considering the wider power system data, the appropriate large data analysis method can be used to mine the potential law and value of power big data. On the basis of considering all kinds of monitoring data and defects and fault records of main transformer, the paper integrates the power grid, equipment as well as environment data and uses SVM as the main algorithm to evaluate the risk of the main transformer. It gets and compares the evaluation results under different modes, and proves that the risk assessment algorithms and schemes have certain effectiveness. This paper provides a new idea for data fusion of smart grid, and provides a reference for further big data evaluation of power grid equipment.
C1 [Guo, Lijuan; Yan, Haijun] Guangxi Elect Power Res Inst, Nanning, Peoples R China.
[Gao, Wensheng; Chen, Yun] Tsinghua Univ, Sch Elect Engn, Beijing, Peoples R China.
[Hao, Yongqi] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu, Sichuan, Peoples R China.
C3 Tsinghua University; Southwest Jiaotong University
RP Hao, YQ (corresponding author), Southwest Jiaotong Univ, Sch Elect Engn, Chengdu, Sichuan, Peoples R China.
EM haoyongqi001@163.com
CR [Anonymous], 2016, Automation of Electric Power Systems, DOI DOI 10.7500/AEPS20151208005
Bai Cuifen, 2013, ADV ENG SCI, V2
[邓松 Deng Song], 2016, [电子测量与仪器学报, Journal of Electronic Measurement and Instrument], V30, P1679
Ding Dengwei, 2014, HIGH VOLTAGE APPARAT, V8
[高文胜 Gao Wensheng], 2015, [电网技术, Power System Technology], V39, P523
Gao WS, 2015, IEEE T DIELECT EL IN, V22, P1654, DOI [10.1109/TDEI.2014.004951, 10.1109/TDEI.2015.7116362]
Gao WS, 2014, IEEE T POWER DELIVER, V29, P38, DOI 10.1109/TPWRD.2013.2242206
Gao WS, 2013, IEEE T POWER DELIVER, V28, P2540, DOI 10.1109/TPWRD.2013.2250316
Hu J, 2010, J AM CERAM SOC, V93, P2155, DOI 10.1111/j.1551-2916.2010.03692.x
Ji Xuan, 2016, HEILONGJIANG SCI TEC, P143
Liu J, 2011, MATER CHEM PHYS, V125, P9, DOI 10.1016/j.matchemphys.2010.09.023
[孙莹 Sun Ying], 2016, [高电压技术, High Voltage Engineering], V42, P2054
Wang Dewen, 2016, P CSEE, P5111
Wang Yiping, 2016, ELECTROTECHNICS ELEC, P24
wei Wang, 2016, ELECT POWER INFORM C, V14, P1
[张友强 Zhang Youqiang], 2016, [电网技术, Power System Technology], V40, P768
Zheng Like, 2016, High Voltage Apparatus, V52, P85, DOI 10.13296/j.1001-1609.hva.2016.02.014
Zheng XL, 2017, NANO ENERGY, V38, P1, DOI 10.1016/j.nanoen.2017.05.040
Zhou RX, 2014, ADV METEOROL, V2014, DOI 10.1155/2014/735491
Zhou Zhicheng, 2016, Journal of Southeast University (Natural Science Edition), V46, P964, DOI 10.3969/j.issn.1001-0505.2016.05.011
NR 20
TC 1
Z9 1
U1 2
U2 19
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1755-1307
J9 IOP C SER EARTH ENV
JI IOP Conf. Ser. Earth Envir. Sci.
PY 2018
VL 108
AR 052027
DI 10.1088/1755-1315/108/5/052027
PG 5
WC Engineering, Environmental; Environmental Sciences
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Environmental Sciences & Ecology
GA BL0RY
UT WOS:000446447200314
OA gold
DA 2024-09-05
ER
PT J
AU King, CH
Yoon, N
Wang, XX
Lo, NC
Alsallaq, R
Ndeffo-Mbah, M
Li, E
Gurarie, D
AF King, Charles H.
Yoon, Nara
Wang, Xiaoxia
Lo, Nathan C.
Alsallaq, Ramzi
Ndeffo-Mbah, Martial
Li, Emily
Gurarie, David
TI Application of Schistosomiasis Consortium for Operational Research and
Evaluation Study Findings to Refine Predictive Modeling of
Schistosoma mansoni and Schistosoma haematobium Control in
Sub-Saharan Africa
SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE
LA English
DT Article
ID SOIL-TRANSMITTED HELMINTHIASIS; DRUG ADMINISTRATION STRATEGIES;
PERSISTENT HOTSPOTS; MATHEMATICAL-MODELS; TRANSMISSION; DYNAMICS;
PRAZIQUANTEL; IMPACT; CHEMOTHERAPY; INFECTIONS
AB An essential mission of the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) was to help inform global health practices related to the control and elimination of schistosomiasis. To provide more accurate, evidence-based projections of the most likely impact of different control interventions, whether implemented alone or in combination, SCORE supported mathematical modeling teams to provide simulations of community-level Schistosoma infection outcomes in the setting of real or hypothetical programs implementing multiyear mass drug administration (MDA) for parasite control. These models were calibrated using SCORE experience with Schistosoma mansoni and Schistosoma haematobium gaining and sustaining control studies, and with data from comparable programs that used community-based or school-based praziquantel MDA in other parts of sub-Saharan Africa. From 2010 to 2019, models were developed and refined, first to project the likely SCORE control outcomes, and later to more accurately reflect impact of MDA across different transmission settings, including the role of snail ecology and the impact of seasonal rainfall on snail abundance. Starting in 2014, SCORE modeling projections were also compared with the models of colleagues in the Neglected Tropical Diseases Modelling Consortium. To explore further possible improvement to program-based control, later simulations examined the cost-effectiveness of combining MDA with environmental snail control, and the utility of early impact assessment to more quickly identify persistent hot spots of transmission. This article provides a nontechnical summary of the 11 SCORE-related modeling projects and provides links to the original open-access articles describing model development and projections relevant to schistosomiasis control policy.
C1 [King, Charles H.; Alsallaq, Ramzi; Gurarie, David] Case Western Reserve Univ, Ctr Global Hlth & Dis, Cleveland, OH 44106 USA.
[King, Charles H.] Univ Georgia, Ctr Trop & Emerging Global Dis, Schistosomiasis Consortium Operat Res & Evaluat, Athens, GA 30602 USA.
[Yoon, Nara; Wang, Xiaoxia; Gurarie, David] Case Western Reserve Univ, Dept Math Appl Math & Stat, Cleveland, OH 44106 USA.
[Lo, Nathan C.] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA.
[Ndeffo-Mbah, Martial] Yale Univ, Yale Sch Publ Hlth, New Haven, CT USA.
[Li, Emily] Case Western Reserve Univ, Sch Med, Cleveland, OH USA.
C3 University System of Ohio; Case Western Reserve University; University
System of Georgia; University of Georgia; University System of Ohio;
Case Western Reserve University; University of California System;
University of California San Francisco; Yale University; University
System of Ohio; Case Western Reserve University
RP King, CH (corresponding author), CWRU Sch Med, Ctr Global Hlth & Dis, 2109 Adelbert Rd, Cleveland, OH 44106 USA.
EM chk@cwru.edu; nyoon@adelphi.edu; xiaoxiawang248@gmail.com;
nathan.lo@ucsf.edu; ramzi.alsallaq@gmail.com; mndeffo@cvm.tamu.edu;
yel3@case.edu; dxg5@cwru.edu
OI Ndeffo Mbah, Martial/0000-0003-4158-7613; King,
Charles/0000-0001-8349-9270
FU University of Georgia Research Foundation, Inc. - Bill AMP; Melinda
Gates Foundation; Children's Investment Fund Foundation (UK) ("CIFF")
FX These studies received financial support from the University of Georgia
Research Foundation, Inc., which was funded by the Bill & Melinda Gates
Foundation for the SCORE project. Schistosomiasis modeling at the NTD
Modelling Consortium was also was funded by The Children's Investment
Fund Foundation (UK) ("CIFF") through a grant to the Neglected Tropical
Diseases Modelling Consortium at Warwick University, United Kingdom.
CR Alsallaq RA, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005544
Anderson RM, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-1157-y
ANDERSON R M, 1991
ANDERSON RM, 1985, ADV PARASIT, V24, P1, DOI 10.1016/S0065-308X(08)60561-8
[Anonymous], 2013, SUST DRIV OV GLOB
[Anonymous], 2012, ACC WORK OV GLOB IMP
Bergquist R, 2008, PLOS NEGLECT TROP D, V2, DOI 10.1371/journal.pntd.0000244
Binder S, 2020, AM J TROP MED HYG, V103, P105, DOI 10.4269/ajtmh.19-0789
Bisanzio D, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0002992
Bustinduy AL, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0001213
Campbell CH, 2020, AM J TROP MED HYG, V103, P58, DOI 10.4269/ajtmh.19-0825
Chami GF, 2016, CLIN INFECT DIS, V62, P200, DOI 10.1093/cid/civ829
Colley DG, 2020, AM J TROP MED HYG, V103, P5, DOI 10.4269/ajtmh.19-0785
Ezeamama AE, 2016, BMC INFECT DIS, V16, DOI 10.1186/s12879-016-1575-2
Gurarie D, 2017, ADV WATER RESOUR, V108, P397, DOI 10.1016/j.advwatres.2016.11.008
Gurarie D, 2010, PARASITOLOGY, V137, P1951, DOI 10.1017/S0031182010000867
Gurarie D, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006514
Gurarie D, 2016, PARASITE VECTOR, V9, DOI 10.1186/s13071-016-1681-4
Gurarie D, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-1144-3
Gurarie D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115875
GUYATT HL, 1994, PARASITOLOGY, V109, P45, DOI 10.1017/S0031182000077751
Hilborn Ray, 1997, V28
Hollingsworth TD, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-1235-1
Karmakar S, 2014, J INFECT DIS, V209, P1929, DOI 10.1093/infdis/jiu031
Keitel WA, 2019, VACCINE, V37, P6500, DOI 10.1016/j.vaccine.2019.08.075
King CH, 2000, EMERG INFECT DIS, V6, P585, DOI 10.3201/eid0606.000606
King CH, 2008, CHRONIC ILLN, V4, P65, DOI 10.1177/1742395307084407
King CH, 2020, AM J TROP MED HYG, V103, P14, DOI 10.4269/ajtmh.19-0829
Kittur N, 2020, AM J TROP MED HYG, V103, P24, DOI 10.4269/ajtmh.19-0815
Kittur N, 2019, AM J TROP MED HYG, V101, P617, DOI 10.4269/ajtmh.19-0193
Kittur N, 2017, AM J TROP MED HYG, V97, P1810, DOI 10.4269/ajtmh.17-0368
Li EY, 2019, LANCET GLOB HEALTH, V7, pE1414, DOI 10.1016/S2214-109X(19)30346-8
Lo NC, 2018, P NATL ACAD SCI USA, V115, pE584, DOI 10.1073/pnas.1708729114
Lo NC, 2017, LANCET INFECT DIS, V17, pE64, DOI 10.1016/S1473-3099(16)30535-7
Lo NC, 2016, LANCET INFECT DIS, V16, P1065, DOI 10.1016/S1473-3099(16)30073-1
Lo NC, 2015, LANCET GLOB HEALTH, V3, pE629, DOI 10.1016/S2214-109X(15)00047-9
MACDONAL.G, 1965, T ROY SOC TROP MED H, V59, P489, DOI 10.1016/0035-9203(65)90152-5
MAY RM, 1977, MATH BIOSCI, V35, P301, DOI 10.1016/0025-5564(77)90030-X
Muchiri EM, 1996, AM J TROP MED HYG, V55, P127, DOI 10.4269/ajtmh.1996.55.127
NASELL I, 1973, COMMUN PUR APPL MATH, V26, P395, DOI 10.1002/cpa.3160260402
Phillips AE, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0006061
STURROCK RF, 1990, T ROY SOC TROP MED H, V84, P257, DOI 10.1016/0035-9203(90)90278-M
Tendler M, 2018, TROP MED INFECT DIS, V3, DOI 10.3390/tropicalmed3040121
Tian-Bi YNT, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-018-5044-2
Toor J, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006717
Toor J, 2018, CLIN INFECT DIS, V66, pS245, DOI 10.1093/cid/ciy001
Truscott JE, 2017, EPIDEMICS-NETH, V18, P29, DOI 10.1016/j.epidem.2017.02.003
Wang XX, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001903
Webster JP, 2020, AM J TROP MED HYG, V103, P80, DOI 10.4269/ajtmh.19-0827
WHO, 2011, HELMINTH CONTROL IN SCHOOL-AGE CHILDREN: A GUIDE FOR MANAGERS OF CONTROL PROGRAMMES, SECOND EDITION, P1
WHO, 2006, Preventive Chemotherapy in Human Helminthiasis: Coordinated Use of Anthelminthic Drugs in Control Interventions: A Manual for Health Professionals and Programme Managers
Wilson RA, 2006, MEM I OSWALDO CRUZ, V101, P13, DOI 10.1590/S0074-02762006000900004
World Health Organization, 2012, 6521 WHO
World Health Organization, 2002, World Health Organ Tech Rep Ser
NR 54
TC 3
Z9 3
U1 0
U2 2
PU AMER SOC TROP MED & HYGIENE
PI MCLEAN
PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA
SN 0002-9637
EI 1476-1645
J9 AM J TROP MED HYG
JI Am. J. Trop. Med. Hyg.
PD JUL
PY 2020
VL 103
IS 1
SU S
BP 97
EP 104
DI 10.4269/ajtmh.19-0852
PG 8
WC Public, Environmental & Occupational Health; Tropical Medicine
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Public, Environmental & Occupational Health; Tropical Medicine
GA MS9QP
UT WOS:000554606800013
PM 32400357
OA Green Published, Bronze
DA 2024-09-05
ER
PT J
AU Shackelford, J
Thompson, DS
James, MB
AF Shackelford, J
Thompson, DS
James, MB
TI Teaching strategy and assignment design - Assessing the quality and
validity of information via the Web
SO SOCIAL SCIENCE COMPUTER REVIEW
LA English
DT Article; Proceedings Paper
CT Annual Conference of the CSS / IASSIST on Global Access, Local Support -
Social Science Computing in the Age of the World Wide Web
CY MAY 19-22, 1998
CL YALE UNIV, NEW HAVEN, CONNECTICUT
HO YALE UNIV
DE information resources; active learning; pedagogy; Web-based information;
critical thinking skills; research strategies; Web assignments;
evaluation of Internet sites
AB As students increasingly use Internet technology to access information, new educational issues and opportunities arise. This article examines ways in which instructors and teaching professionals might work with students in guiding their research to establish "good practices" in both citing and using resources. The authors report on the process of crafting, administering, and assessing an assignment that might serve as a model for research-based papers and projects in a variety of disciplines. This assignment employs active learning strategies to encourage students to become better editors and critics as well as to teach them skills that they will be able to employ as this technology changes and others emerge.
C1 Bucknell Univ, Dept Econ, Lewisburg, PA 17837 USA.
Bucknell Univ, User Educ Serv, Bertrand Lib, Lewisburg, PA 17837 USA.
Bucknell Univ, Comp & Commun Serv, Lewisburg, PA 17837 USA.
C3 Bucknell University; Bucknell University; Bucknell University
RP Shackelford, J (corresponding author), Bucknell Univ, Dept Econ, Lewisburg, PA 17837 USA.
CR Bonwell James., 1991, Active Learning: Creating Excitement in the Classroom AEHE-ER1C Higher Education Report No. 1
*BUCKN U, 1998, BUCKN U CAGT
Chickering A.W., 1991, New Directions for Teaching and Learning, V47
KNOWLTON SK, 1997, NY TIMES 1102, pA21
Lackie P, 1999, SOC SCI COMPUT REV, V17, P189, DOI 10.1177/089443939901700205
MORAN JM, 1997, MANHATTAN MERCU 0803, pC7
SHACKELFORD J, 1999, FEMINIST EC MAR, P87
Spender D., 1996, Nattering on the net: Women, power and cyberspace
Stoll C., 1996, Silicon snake oil: Second thoughts on the information highway
YOUNG JR, 1997, CHRONICLE HIGHE 1003, pA26
Zuboff S., 1998, In the age of the smart machine - the future work and power
[No title captured]
NR 12
TC 7
Z9 8
U1 0
U2 4
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0894-4393
J9 SOC SCI COMPUT REV
JI Soc. Sci. Comput. Rev.
PD SUM
PY 1999
VL 17
IS 2
BP 196
EP 208
DI 10.1177/089443939901700206
PG 13
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science; Social Sciences, Interdisciplinary
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science; Social Sciences
- Other Topics
GA 183WT
UT WOS:000079577700006
DA 2024-09-05
ER
PT J
AU Vázquez-Cano, E
Parra-González, ME
Segura-Robles, A
López-Meneses, E
AF Vazquez-Cano, Esteban
Parra-Gonzalez, M. Elena
Segura-Robles, Adrian
Lopez-Meneses, Eloy
TI The Negative Effects of Technology on Education: A Bibliometric and
Topic Modeling Mapping Analysis (2008-2019)
SO INTERNATIONAL JOURNAL OF INSTRUCTION
LA English
DT Article
DE disadvantages; problems; technology; education; bibliometrics
ID ACADEMIC-ACHIEVEMENT; UNIVERSITY-STUDENTS; INFORMATION; TEACHERS;
PRIVACY; IMPACT; MEDIA; ICT
AB This study aims to analyze the scientific research that has addressed the negative impact of technology in the educational field. The research is implemented from a methodological approach based on the bibliometric mapping of the scientific production registered in the Web of Science in the period 2008-2019. To do this, indicators of growth, production, impact, topics, keywords, journal references, and analysis of co-citations of authors and co-authors are analyzed. This bibliometric approach is complemented by the analysis of the density, frequency and degree of centrality of the main terms associated with the difficulties and problems of technology in education located in the abstracts and discussion of results in the period 2016-2019. For this purpose, graph theory is developed, using the sigma, cytoscape and graphology libraries. The results show that, among the most common disadvantages linked to the use of technology in education, are: privacy problems, discerning reliable and relevant information, the time required for the preparation of educational materials, the negative impact on academic performance of the students, the lack of resources for its implementation in the classrooms and the infoxication. Finally, it should be noted that in the last three years, the negative impact of technology in the psychosocial field and its impact on teaching-learning processes are beginning to be analyzed in greater depth.
C1 [Vazquez-Cano, Esteban] Univ Nacl Educ Distancia, Madrid, Spain.
[Parra-Gonzalez, M. Elena; Segura-Robles, Adrian] Univ Granada, Granada, Spain.
[Lopez-Meneses, Eloy] Univ Pablo de Olavide, Seville, Spain.
C3 Universidad Nacional de Educacion a Distancia (UNED); University of
Granada; Universidad Pablo de Olavide
RP Vázquez-Cano, E (corresponding author), Univ Nacl Educ Distancia, Madrid, Spain.
EM evazquez@edu.uned.es; elenaparra@ugr.es; adrianseg@ugr.es;
elopmen@upo.es
RI Segura, Adrián/B-4963-2019; López-Meneses, Eloy/G-1307-2011;
Vazquez-Cano, Esteban/K-5424-2014
OI Segura, Adrián/0000-0003-0753-7129; López-Meneses,
Eloy/0000-0003-0741-5367; Vazquez-Cano, Esteban/0000-0002-6694-7948
FU I+D+I Project entitled: "Gamification and ubiquitous learning in Primary
Education [RTI2018099764-B-100]; FEDER (European Regional Development
Fund); Ministry of Science, Innovation and Universities of Spain
FX This research has been developed with the support of the I+D+I Project
entitled: "Gamification and ubiquitous learning in Primary Education.
Development of a map of teaching, learning and parental competences and
resources "GAUBI". (RTI2018099764-B-100) (MICINN/FEDER) financed by
FEDER (European Regional Development Fund) and Ministry of Science,
Innovation and Universities of Spain.
CR Gómez JIA, 2010, NEW EDUC REV, V22, P103
Aguaded J. I., 2010, PIXEL BIT REV MEDIOS, V36, P5
Allcott Hunt, 2019, 25514 NAT BUR EC RES, DOI [10.3386/w25514, DOI 10.3386/W25514]
[Anonymous], 2019, TALIS 2018 results (Volume I): Teachers and school leaders as lifelong learners, DOI [DOI 10.1787/1D0BC92A-EN, 10.1104/pp.56.3.394]
Barnett R., 2015, PALGRAVE HDB CRITICA
Behar-Horenstein L. S., 2011, Journal of College Teaching & Learning, V8, DOI [DOI 10.19030/TLC.V8I2.3554, 10.19030/tlc.v8i2.3554]
Beltrán Llavador José, 2015, Sinéctica, P01
Biddix JP, 2011, INTERNET HIGH EDUC, V14, P175, DOI 10.1016/j.iheduc.2011.01.003
BRADFORD SC, 1985, J INFORM SCI, V10, P176
Almenara JC, 2018, AULA ABIERTA, V47, P327, DOI 10.17811/rifie.47.3.2018.327-336
Caldeiro-Pedreira MC, 2017, VIRTUALIDAD EDUC CIE, V8, P92
Chen YNK, 2019, COMUNICAR, V27, P61, DOI 10.3916/C60-2019-06
Choudrie J, 2020, INFORM SYST FRONT, V22, P673, DOI [10.1007/s10796-018-9875-2, 10.1080/10298436.2018.1549325]
Clarke D, 2017, DCMI INT C DUBL COR
Curran D., 2018, GUARDIAN, V30
De Gracia Blanco., 2002, Anales de Psicologia, V18, P273
Demertzis Nicolas., 2021, J DIGITAL SOCIAL RES, V3, P2021, DOI DOI 10.33621/JDSR.V3I1.75
Desmurget M., 2020, FABRIQUE CRETIN DIGI
Coscollola MD, 2011, COMUNICAR, V19, P169, DOI 10.3916/C37-2011-03-09
Durán SM, 2019, SCI ADV, V5, DOI 10.1126/sciadv.aaw8114
Ebermann C, 2016, P ANN HICSS, P1338, DOI 10.1109/HICSS.2016.169
Education and Training Monitor, 2020, EXECUTIVE SUMMARY
Parra-González ME, 2020, INT J EDUC RES INNOV, P166
Elena-Bucea A, 2021, INFORM SYST FRONT, V23, P1007, DOI 10.1007/s10796-020-10012-9
Fernandez-Robles B., 2017, INT J ED RES INNOV, V9, P90
Fox G, 2018, INFORM SYST J, V28, P995, DOI 10.1111/isj.12179
Gaudreau P, 2014, COMPUT EDUC, V70, P245, DOI 10.1016/j.compedu.2013.08.019
Gogus A, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01614
González-Sanmamed M, 2020, COMUNICAR, V28, P9, DOI 10.3916/C62-2020-01
Harris A., 2019, J INFORM SYSTEMS ED, V20, P137
Hattie JAC, 2009, VISIBLE LEARNING: A SYNTHESIS OF OVER 800 META-ANALYSES RELATING TO ACHIEVEMENT, P1
Hoadley C, 2019, COMPUT-SUPP COLLAB L, P1, DOI 10.1007/978-3-030-14610-8_1
Huang CJ, 2018, COMPUT EDUC, V119, P76, DOI 10.1016/j.compedu.2017.12.010
IE University, 2020, INF OV TECHN IS CHAN
Jackson LA, 2011, COMPUT HUM BEHAV, V27, P228, DOI 10.1016/j.chb.2010.08.001
John Surej P., 2015, Contad. Adm, V60, P230
Junco R, 2012, COMPUT HUM BEHAV, V28, P187, DOI 10.1016/j.chb.2011.08.026
Kilic M, 2016, J ADDICT NURS, V27, P39, DOI 10.1097/JAN.0000000000000110
Lange C, 2019, ISS EDUC RES, V29, P158
Laskaris D, 2017, INT J TECHNOL ENHANC, V9, P339, DOI 10.1504/IJTEL.2017.087793
Lepp A, 2015, SAGE OPEN, V5, DOI 10.1177/2158244015573169
Leví-Orta G, 2020, EUR J EDUC, V55, P441, DOI 10.1111/ejed.12404
Livingstone S., 2009, EU kids online I: Final report
López-Gil M, 2019, INT J EDUC RES INNOV, P83
López-Meneses E, 2020, AUSTRALAS J EDUC TEC, V36, P69, DOI 10.14742/ajet.5583
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Mosquera R., 2019, WORKING PAPER, DOI [10.2139/ssrn.3312462, DOI 10.2139/SSRN.3312462]
Nield D., 2019, WIRED, V27
Norval A, 2017, NEW MEDIA SOC, V19, P637, DOI 10.1177/1461444816688896
Paramio-Perez G., 2018, Educacion y Comunicacion mediada por las tecnologias: tendencias y retos de investigacion, P91
de la Hoz JP, 2018, REV COMPLUT EDUC, V29, P491, DOI 10.5209/RCED.53428
García LR, 2016, REV ICONO 14, V14, P24, DOI 10.7195/ri14.v14i1.885
Romero M., 2018, Revista Referencia Pedagogica, V6, P2
Schleicher A., 2016, CULTURE QUI LIBERE
Sharkova N., 2014, Education Inquiry, V5, DOI DOI 10.3402/EDUI.V5.24610
Shorey S, 2016, INT J COMMUN, V10, P24
Smith D., 2020, CNET, V7
Talebian S, 2014, PROCD SOC BEHV, V152, P300, DOI 10.1016/j.sbspro.2014.09.199
Tondeur J, 2016, COMPUT EDUC, V94, P134, DOI 10.1016/j.compedu.2015.11.009
Troseth GL, 2016, J CHILD MEDIA, V10, P54, DOI 10.1080/17482798.2015.1123166
UNESCO, 2020, STARTL DIG DIV DIST
Uzun AM, 2019, COMPUT HUM BEHAV, V90, P196, DOI 10.1016/j.chb.2018.08.045
Vassilakopoulou P, 2023, INFORM SYST FRONT, V25, P955, DOI 10.1007/s10796-020-10096-3
Vázquez-Cano E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020749
Vázquez-Cano E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020476
Vázquez-Cano E, 2014, KURAM UYGUL EGIT BIL, V14, P1505
Ventura RC, 2018, AULA ABIERTA, V47, P355, DOI 10.17811/rifie.47.3.2018.355-364
Warsah I, 2021, INT J INSTR, V14, P443, DOI 10.29333/iji.2021.14225a
Weiss AP, 2020, INT J EDUC INTEGR, V16, DOI 10.1007/s40979-019-0049-x
Wisniewski PJ, 2017, INT J HUM-COMPUT ST, V98, P95, DOI 10.1016/j.ijhcs.2016.09.006
Zulfiani Z, 2021, INT J INSTR, V14, P735, DOI 10.29333/iji.2021.14241a
NR 71
TC 9
Z9 11
U1 7
U2 27
PU GATE ASSOC TEACHING & EDUCATION-GATE, SWITZERLAND
PI BASEL
PA GATE ASSOC TEACHING & EDUCATION-GATE, SWITZERLAND, BASEL, SWITZERLAND
SN 1694-609X
EI 1308-1470
J9 INT J INSTR
JI Int. J. Instr.
PD APR
PY 2022
VL 15
IS 2
BP 37
EP 60
DI 10.29333/iji.2022.1523a
PG 24
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA 0U3GZ
UT WOS:000787542400005
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Rokach, L
Mitra, P
AF Rokach, Lior
Mitra, Prasenjit
TI Parsimonious citer-based measures: The artificial intelligence domain as
a case study
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE bibliometric scatter; citation indexes
ID CITATION ANALYSIS; IMPACT; AUTHORS
AB This article presents a new Parsimonious Citer-Based Measure for assessing the quality of academic papers. This new measure is parsimonious as it looks for the smallest set of citing authors (citers) who have read a certain paper. The Parsimonious Citer-Based Measure aims to address potential distortion in the values of existing citer-based measures. These distortions occur because of various factors, such as the practice of hyperauthorship. This new measure is empirically compared with existing measures, such as the number of citers and the number of citations in the field of artificial intelligence (AI). The results show that the new measure is highly correlated with those two measures. However, the new measure is more robust against citation manipulations and better differentiates between prominent and nonprominent AI researchers than the above-mentioned measures.
C1 [Rokach, Lior] Ben Gurion Univ Negev, Dept Informat Syst Engn, IL-84105 Beer Sheva, Israel.
[Mitra, Prasenjit] Penn State Univ, Coll Informat Sci & Technol, University Pk, PA 16802 USA.
C3 Ben Gurion University; Pennsylvania Commonwealth System of Higher
Education (PCSHE); Pennsylvania State University; Pennsylvania State
University - University Park
RP Rokach, L (corresponding author), Ben Gurion Univ Negev, Dept Informat Syst Engn, POB 653, IL-84105 Beer Sheva, Israel.
EM liorrk@bgu.ac.il; pmitra@ist.psu.edu
RI Rokach, Lior/F-8247-2010
FU U.S. National Science Foundation [0845487]; Direct For Computer & Info
Scie & Enginr; Div Of Information & Intelligent Systems [0845487]
Funding Source: National Science Foundation
FX This paper is based on work supported partially by the U.S. National
Science Foundation under grant no. 0845487.
CR Ajiferuke I, 2010, J AM SOC INF SCI TEC, V61, P2086, DOI 10.1002/asi.21383
Ajiferuke I, 2010, SCIENTOMETRICS, V83, P623, DOI 10.1007/s11192-009-0127-6
[Anonymous], PLENUM COMPLEXITY CO
Braun T., 1985, Scientometric indicators:a 32-country comparative evaluation of publishing performance and citation impact
Cronin B, 2001, J AM SOC INF SCI TEC, V52, P558, DOI 10.1002/asi.1097
Cronin B, 2002, SCIENTOMETRICS, V54, P31, DOI 10.1023/A:1015628320056
DIEKS D, 1976, SOC STUD SCI, V6, P247, DOI 10.1177/030631277600600204
Egghe L, 2011, J AM SOC INF SCI TEC, V62, P1637, DOI 10.1002/asi.21557
Franceschini F, 2010, SCIENTOMETRICS, V85, P203, DOI 10.1007/s11192-010-0165-0
Grossman T, 1997, EUR J OPER RES, V101, P81, DOI 10.1016/S0377-2217(96)00161-0
Lazar R, 2004, Acta Paediatr, V93, P589
Meho LI, 2007, PHYS WORLD, V20, P32
Persson O, 2004, SCIENTOMETRICS, V60, P421, DOI 10.1023/B:SCIE.0000034384.35498.7d
Radicchi F, 2008, P NATL ACAD SCI USA, V105, P17268, DOI 10.1073/pnas.0806977105
Rokach L, 2011, J AM SOC INF SCI TEC, V62, P2456, DOI 10.1002/asi.21638
Serenko A, 2011, J INFORMETR, V5, P629, DOI 10.1016/j.joi.2011.06.002
Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001
van Raan AFJ, 2006, J AM SOC INF SCI TEC, V57, P1919, DOI 10.1002/asi.20389
White HD, 2001, J AM SOC INF SCI TEC, V52, P87, DOI 10.1002/1097-4571(2000)9999:9999<::AID-ASI1542>3.3.CO;2-K
NR 19
TC 1
Z9 2
U1 4
U2 37
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1532-2882
J9 J AM SOC INF SCI TEC
JI J. Am. Soc. Inf. Sci. Technol.
PD SEP
PY 2013
VL 64
IS 9
BP 1951
EP 1959
DI 10.1002/asi.22887
PG 9
WC Computer Science, Information Systems; Information Science & Library
Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 197SG
UT WOS:000322870300017
DA 2024-09-05
ER
PT J
AU Gao, F
Jia, XF
Zhao, ZY
Chen, CC
Xu, F
Geng, Z
Song, XT
AF Gao, Fang
Jia, Xiaofeng
Zhao, Zhiyun
Chen, Chih-Cheng
Xu, Feng
Geng, Zhe
Song, Xiaotong
TI Bibliometric analysis on tendency and topics of artificial intelligence
over last decade
SO MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND
PROCESSING SYSTEMS
LA English
DT Article
ID CO-WORD ANALYSIS; DEEP; EXPLORATION
AB Artificial intelligence (AI), together with its applications, has received world-wide attentions and is expected to exert force on the development of global economy and society in the future. By means of bibliometric method, the study aims at providing an overview on the research tendency and the most concerned topics of AI during the past decade. The database of Web of Science was chosen and the articles published in AI journals were retrieved. Top 10% of the yearly high-citation articles (12,301 articles) published since the year of 2008 were selected as sampling articles for the analysis. The bibliographic records were used for the overall analysis, and the core keywords were studied and classified into three categories (algorithm, general technology and application technology) for topics analysis. As results, number of articles in AI by year and country, the country collaboration and well-known institutes and researchers in AI were presented. Also we proposed and concluded the five most concerned topics, which are perception intelligence (1st), human mind simulated intelligence (2nd), classical model based machine learning (3rd), bio-inspired intelligence (4th), and big-data based intelligence (5th). It is the authors' wish that the study were helpful for researchers to have an overall grasp of the recent status of AI development.
C1 [Gao, Fang; Jia, Xiaofeng; Zhao, Zhiyun; Xu, Feng; Geng, Zhe; Song, Xiaotong] Inst Sci & Tech Informat China ISTIC, Beijing 100038, Peoples R China.
[Gao, Fang; Jia, Xiaofeng; Zhao, Zhiyun; Xu, Feng; Geng, Zhe; Song, Xiaotong] Minist Sci & Technol Peoples Republ China Most, New Generat Artificial Intelligence Dev Res Ctr, Beijing 100038, Peoples R China.
[Chen, Chih-Cheng] Jimei Univ, Sch Informat Engn, Xiamen 361021, Fujian, Peoples R China.
C3 Jimei University
RP Jia, XF (corresponding author), Inst Sci & Tech Informat China ISTIC, Beijing 100038, Peoples R China.; Jia, XF (corresponding author), Minist Sci & Technol Peoples Republ China Most, New Generat Artificial Intelligence Dev Res Ctr, Beijing 100038, Peoples R China.; Chen, CC (corresponding author), Jimei Univ, Sch Informat Engn, Xiamen 361021, Fujian, Peoples R China.
EM jiaxiaofeng@istic.ac.cn; 201761000018@jmu.edu.cn
RI jia, xiaofeng/KVB-5084-2024; zhao, zhiyun/E-6560-2011
CR Alickovic E, 2017, NEURAL COMPUT APPL, V28, P753, DOI 10.1007/s00521-015-2103-9
Amodei D, 2016, PR MACH LEARN RES, V48
An XY, 2011, SCIENTOMETRICS, V88, P133, DOI 10.1007/s11192-011-0374-1
[Anonymous], 2015, Arxiv.Org, DOI DOI 10.3389/FPSYG.2013.00124
Archambault E., 2004, USE BIBLIOMETRICS SO
Baskin II, 2017, RUSS CHEM REV+, V86, P1127, DOI 10.1070/RCR4746
Brunette ES, 2009, PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOTS AND AGENTS, P650
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Campbell M, 2002, ARTIF INTELL, V134, P57, DOI 10.1016/S0004-3702(01)00129-1
Cronin B, 2004, J AM SOC INF SCI TEC, V55, P160, DOI 10.1002/asi.10353
Ding Y, 2001, INFORM PROCESS MANAG, V37, P817, DOI 10.1016/S0306-4573(00)00051-0
Eslami M, 2011, PRZ ELEKTROTECHNICZN, V87, P188
Fang Gao, 2011, Proceedings of the 2011 International Conference on Machine Learning and Cybernetics (ICMLC 2011), P666, DOI 10.1109/ICMLC.2011.6016759
Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257
Jha SK, 2017, RENEW SUST ENERG REV, V77, P297, DOI 10.1016/j.rser.2017.04.018
Jia XF, 2014, SCIENTOMETRICS, V99, P881, DOI 10.1007/s11192-013-1220-4
Kostoff RN, 2001, TECHNOL FORECAST SOC, V68, P223, DOI 10.1016/S0040-1625(01)00133-0
Lazer D, 2014, SCIENCE, V343, P1203, DOI 10.1126/science.1248506
Lee EJ, 2017, J STROKE, V19, P277, DOI 10.5853/jos.2017.02054
Lu HM, 2018, MOBILE NETW APPL, V23, P368, DOI 10.1007/s11036-017-0932-8
Mansiaux Y, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051408
Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001
Mnih V, 2016, PR MACH LEARN RES, V48
Neff MW, 2009, SCIENTOMETRICS, V80, P657, DOI 10.1007/s11192-008-2099-3
Negnevitsky M, 2002, INF COMPUT SCI, V48, P284
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Pan YH, 2016, ENGINEERING, V2, P409, DOI 10.1016/J.ENG.2016.04.018
Pasandideh SHR, 2011, EXPERT SYST APPL, V38, P2708, DOI 10.1016/j.eswa.2010.08.060
Poria S, 2017, INFORM FUSION, V37, P98, DOI 10.1016/j.inffus.2017.02.003
Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961
Wasserman P.D., 1989, Neural Computing: Theory and Practice
NR 31
TC 22
Z9 22
U1 2
U2 29
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0946-7076
EI 1432-1858
J9 MICROSYST TECHNOL
JI Microsyst. Technol.
PD APR
PY 2021
VL 27
IS 4
SI SI
BP 1545
EP 1557
DI 10.1007/s00542-019-04426-y
PG 13
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Materials Science, Multidisciplinary; Physics, Applied
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Engineering; Science & Technology - Other Topics; Materials Science;
Physics
GA RY3FC
UT WOS:000647800200047
DA 2024-09-05
ER
PT J
AU Guns, R
Rousseau, R
AF Guns, Raf
Rousseau, Ronald
TI Recommending research collaborations using link prediction and random
forest classifiers
SO SCIENTOMETRICS
LA English
DT Article; Proceedings Paper
CT 14th International-Society-of-Scientometrics-and-Informetrics Conference
(ISSI)
CY JUL 15-20, 2013
CL Vienna, AUSTRIA
DE Collaboration; Networks; Link prediction; Machine learning; Random
forest classifiers; Recommendation; Facilitator cities
ID NETWORKS
AB We introduce a method to predict or recommend high-potential future (i.e., not yet realized) collaborations. The proposed method is based on a combination of link prediction and machine learning techniques. First, a weighted co-authorship network is constructed. We calculate scores for each node pair according to different measures called predictors. The resulting scores can be interpreted as indicative of the likelihood of future linkage for the given node pair. To determine the relative merit of each predictor, we train a random forest classifier on older data. The same classifier can then generate predictions for newer data. The top predictions are treated as recommendations for future collaboration. We apply the technique to research collaborations between cities in Africa, the Middle East and South-Asia, focusing on the topics of malaria and tuberculosis. Results show that the method yields accurate recommendations. Moreover, the method can be used to determine the relative strengths of each predictor.
C1 [Guns, Raf; Rousseau, Ronald] Univ Antwerp, IBW, Inst Educ & Informat Sci, B-2000 Antwerp, Belgium.
[Rousseau, Ronald] Katholieke Univ Leuven, B-3000 Leuven, Belgium.
C3 University of Antwerp; KU Leuven
RP Guns, R (corresponding author), Univ Antwerp, IBW, Inst Educ & Informat Sci, Venusstr 35, B-2000 Antwerp, Belgium.
EM raf.guns@uantwerpen.be; ronald.rousseau@uantwerpen.be
RI Guns, Raf/D-6762-2012
OI Guns, Raf/0000-0003-3129-0330
CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1
[Anonymous], 2002, P 8 ACM SIGKDD INT C
[Anonymous], 1 MONDAY
[Anonymous], ISSI NEWSLETTER
[Anonymous], THESIS ANTWERP U
[Anonymous], 2009, Social Network Analysis. Methods and Applications
Antonellis I, 2008, PROC VLDB ENDOW, V1, P408, DOI 10.14778/1453856.1453903
Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142
Boshoff N, 2010, SCIENTOMETRICS, V84, P481, DOI 10.1007/s11192-009-0120-0
Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
Egghe L, 2003, J AM SOC INF SCI TEC, V54, P193, DOI 10.1002/asi.10155
Frenken K, 2009, J INFORMETR, V3, P222, DOI 10.1016/j.joi.2009.03.005
Guns R, 2013, PRO INT CONF SCI INF, P1409
Guns R, 2011, PRO INT CONF SCI INF, P249
Katz Leo, 1953, PSYCHOMETRIKA, V18, P39
Langville AN, 2005, SIAM REV, V47, P135, DOI 10.1137/S0036144503424786
Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591
Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132]
Opsahl T, 2010, SOC NETWORKS, V32, P245, DOI 10.1016/j.socnet.2010.03.006
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
PINSKI G, 1976, INFORM PROCESS MANAG, V12, P297, DOI 10.1016/0306-4573(76)90048-0
Platt JC, 2000, ADV NEUR IN, P61
Schubert T, 2010, SCIENTOMETRICS, V83, P181, DOI 10.1007/s11192-009-0074-2
Shibata N, 2012, J AM SOC INF SCI TEC, V63, P78, DOI 10.1002/asi.21664
Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Yang L., 2006, ISSI Newsletter, V2, P7
NR 27
TC 59
Z9 75
U1 2
U2 112
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2014
VL 101
IS 2
BP 1461
EP 1473
DI 10.1007/s11192-013-1228-9
PG 13
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Information Science & Library Science
GA AR5FF
UT WOS:000343609900034
DA 2024-09-05
ER
PT J
AU Wu, TT
Yu, ZG
AF Wu, Tiantian
Yu, Zhonggen
TI Bibliometric and Systematic Analysis of Artificial Intelligence
Chatbots' Use for Language Education
SO JOURNAL OF UNIVERSITY TEACHING AND LEARNING PRACTICE
LA English
DT Article
ID CONTINUANCE INTENTION; EXPERIENCES; ANALYTICS; LEARNERS
AB This research aimed to comprehensively analyze the use of chatbots in language education and its potential for advancing educational development. Through a bibliometric and systematic approach, the study identified influential authors, references, organizations, and countries in the field of chatbot application in language education using VOSviewer. A total of 26 peer-reviewed publications were selected for a systematic review. The findings of the study indicated that chatbots have a positive impact on language learning, although they are limited in terms of facilitating listening and writing practice. The study extended the Human-Organization-Technology (HOT) fit framework for chatbots' use for language education and discussed the factors that frustrate learners' use of chatbots for language education from human, organization, and technology dimensions. Furthermore, the author further discussed the suggestions for chatbots' better application for language education based on the three dimensions.
C1 [Wu, Tiantian; Yu, Zhonggen] Beijing Language & Cultural Univ, Beijing, Peoples R China.
C3 Beijing Language & Culture University
RP Wu, TT (corresponding author), Beijing Language & Cultural Univ, Beijing, Peoples R China.
FU Fundamental Research Funds for the Central Universities; Research Funds
of Beijing Language and Culture University [23YCX021]
FX Funding This work is supported by the Fundamental Research Funds for the
Central Universities, and the Research Funds of Beijing Language and
Culture University, grant number 23YCX021.
CR Adamopoulou E, 2020, MACH LEARN APPL, V2, DOI 10.1016/j.mlwa.2020.100006
Ahmadi H, 2017, COMPUT HUM BEHAV, V67, P161, DOI 10.1016/j.chb.2016.10.023
Alm A, 2020, INT J COMPUT-ASSIST, V10, P51, DOI 10.4018/IJCALLT.2020100104
Baber H, 2024, INFORM LEARN SCI, V125, P587, DOI 10.1108/ILS-04-2023-0035
Bailey D, 2021, INTERACT TECHNOL SMA, V18, P85, DOI 10.1108/ITSE-08-2020-0170
Bao MH, 2019, ARAB WORLD ENGL J, P28, DOI 10.24093/awej/call5.3
Barrot JS, 2023, ASSESS WRIT, V57, DOI 10.1016/j.asw.2023.100745
Chen CC, 2018, LIBR HI TECH, V36, P705, DOI 10.1108/LHT-11-2016-0129
Chen HL, 2020, J EDUC COMPUT RES, V58, P1161, DOI 10.1177/0735633120929622
Chen XL, 2023, EDUC TECHNOL SOC, V26, P171, DOI 10.30191/ETS.202301_26(1).0013
Cheng YM, 2021, J ENTERP INF MANAG, V34, P1169, DOI 10.1108/JEIM-12-2019-0401
Chocarro R, 2023, EDUC STUD-UK, V49, P295, DOI 10.1080/03055698.2020.1850426
Coniam D, 2014, TEXT TALK, V34, P545, DOI 10.1515/text-2014-0018
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
Divekar RR, 2022, COMPUT ASSIST LANG L, V35, P2332, DOI 10.1080/09588221.2021.1879162
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Escalante J, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00425-2
Fryer L, 2006, LANG LEARN TECHNOL, V10, P8
Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023
Fryer LK, 2017, COMPUT HUM BEHAV, V75, P461, DOI 10.1016/j.chb.2017.05.045
Ghasemaghaei M, 2017, DECIS SUPPORT SYST, V101, P95, DOI 10.1016/j.dss.2017.06.004
Guo K, 2022, ASSESS WRIT, V54, DOI 10.1016/j.asw.2022.100666
Guo KY, 2024, EXPERT OPIN DRUG SAF, V23, P487, DOI [10.1080/14740338.2024.2327502, 10.1007/s10639-023-12230-5]
Haristiani N, 2022, J TECH EDUC TRAIN, V14, P143, DOI 10.30880/jtet.2022.14.02.013
Hockly N, 2023, RELC J, V54, P445, DOI 10.1177/00336882231168504
Hsu MH, 2023, INTERACT LEARN ENVIR, V31, P4297, DOI 10.1080/10494820.2021.1960864
Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610
Jeon J, 2023, EDUC INF TECHNOL, V28, P15873, DOI 10.1007/s10639-023-11834-1
Jeon J, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204343
Jeon J, 2023, COMPUT ASSIST LANG L, V36, P1338, DOI 10.1080/09588221.2021.1987272
Jeyaraj A, 2006, J INF TECHNOL-UK, V21, P1, DOI 10.1057/palgrave.jit.2000056
Ji H, 2023, J RES TECHNOL EDUC, V55, P48, DOI 10.1080/15391523.2022.2142873
Jung J, 2022, J INT NETW KOR LANG, V19, P405, DOI 10.15652/ink.2022.19.3.405
Klimova B, 2023, SYSTEMS-BASEL, V11, DOI 10.3390/systems11010042
Kohnke L, 2023, INT J MOB LEARN ORG, V17, P214, DOI 10.1504/IJMLO.2023.128339
Kohnke L, 2023, RELC J, V54, P828, DOI 10.1177/00336882211067054
Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3
Lee YH, 2011, KNOWL-BASED SYST, V24, P355, DOI 10.1016/j.knosys.2010.09.005
Li XM, 2024, BRIT J EDUC TECHNOL, DOI 10.1111/bjet.13430
Lian JW, 2014, INT J INFORM MANAGE, V34, P28, DOI 10.1016/j.ijinfomgt.2013.09.004
Lin CJ, 2021, EDUC TECHNOL SOC, V24, P16
Lin YP, 2024, INTERACT TECHNOL SMA, V21, P189, DOI 10.1108/ITSE-12-2022-0165
Liu CC, 2022, COMPUT EDUC, V189, DOI 10.1016/j.compedu.2022.104576
Luo X., 2023, 31 INT C COMP ED ICC
Mohamed AM, 2024, EDUC INF TECHNOL, V29, P3195, DOI 10.1007/s10639-023-11917-z
Page MJ, 2021, BMJ-BRIT MED J, V372, DOI [10.1136/bmj.n71, 10.1016/j.ijsu.2021.105906, 10.1136/bmj.n160]
Papineni K, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P311, DOI 10.3115/1073083.1073135
Peura L, 2023, NORD J DIGIT LIT, V18, P100, DOI 10.18261/njdl.18.2.3
Polyzi P, 2023, EDUC INF TECHNOL, V28, P16431, DOI 10.1007/s10639-023-11810-9
Qian K., 2023, Communications in Computer and Information Science
Ruan S., 2021, INT C INT US INT P I
Shamseer L, 2015, BMJ-BRIT MED J, V349, DOI 10.1136/bmj.g7647
Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862
Su YF, 2023, ASSESS WRIT, V57, DOI 10.1016/j.asw.2023.100752
Tai TY, 2023, INTERACT LEARN ENVIR, V31, P1485, DOI 10.1080/10494820.2020.1841801
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
Vancová H, 2023, J LANG CULT EDUC, V11, P12, DOI 10.2478/jolace-2023-0022
Vaswani A, 2017, ADV NEUR IN, V30
Vázquez-Cano E, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00269-8
Wang YF, 2017, BRIT J EDUC TECHNOL, V48, P431, DOI 10.1111/bjet.12388
WEIZENBAUM J, 1966, COMMUN ACM, V9, P36, DOI 10.1145/357980.357991
Wu B, 2017, COMPUT HUM BEHAV, V67, P221, DOI 10.1016/j.chb.2016.10.028
Xu JY, 2022, TECHNOL SOC, V70, DOI 10.1016/j.techsoc.2022.102010
Yan D, 2023, EDUC INF TECHNOL, V28, P13943, DOI 10.1007/s10639-023-11742-4
Ye YW, 2022, INT J MOB BLENDED LE, V14, DOI 10.4018/IJMBL.299405
Yu ZG, 2024, FOREIGN LANG ANN, V57, P550, DOI 10.1111/flan.12748
Yu ZG, 2023, BEHAV INFORM TECHNOL, DOI 10.1080/0144929X.2023.2260893
Yuan YJ, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2282112
Zhang RF, 2023, INNOV LANG LEARN TEA, V17, P932, DOI 10.1080/17501229.2023.2197417
Zhang RF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2220374
NR 70
TC 0
Z9 0
U1 0
U2 0
PU Open Access Publishing Assoc
PI Launceston
PA 28a Brisbane St, Launceston, Tasmania, AUSTRALIA
SN 1449-9789
J9 J UNIV TEACH LEARN P
JI J. Univ. Teach. Learn. Pract.
PY 2024
VL 21
IS 6
AR 54
PG 25
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA D5J4K
UT WOS:001296541300001
DA 2024-09-05
ER
PT J
AU Archambault, PM
Thanh, J
Blouin, D
Gagnon, S
Poitras, J
Fountain, RM
Fleet, R
Bilodeau, A
de Belt, THV
Légaré, F
AF Archambault, Patrick M.
Thanh, Jasmine
Blouin, Danielle
Gagnon, Susie
Poitras, Julien
Fountain, Renee-Marie
Fleet, Richard
Bilodeau, Andrea
de Belt, Tom H. van
Legare, France
TI Emergency medicine residents' beliefs about contributing to an online
collaborative slideshow
SO CANADIAN JOURNAL OF EMERGENCY MEDICINE
LA English
DT Article
DE online learning; collaborative writing applications; medical education;
Theory of Planned Behaviour; free and open access medical education (#
FOAMed); knowledge translation; evidence-based medicine
ID HEALTH-CARE PROFESSIONALS; WEB 2.0 TOOLS; PLANNED BEHAVIOR;
CLINICAL-RESEARCH; NET GENERATION; SOCIAL MEDIA; EDUCATION; WIKIS;
UNDERGRADUATE; TECHNOLOGIES
AB Objective: Collaborative writing applications (CWAs), such as the Google Docs (TM) platform, can improve skill acquisition, knowledge retention, and collaboration in medical education. Using CWAs to support the training of residents offers many advantages, but stimulating them to contribute remains challenging. The purpose of this study was to identify emergency medicine (EM) residents' beliefs about their intention to contribute summaries of landmark articles to a Google Docs (TM) slideshow while studying for their Royal College of Physicians and Surgeons of Canada (RCPSC) certification exam.
Method: Using the Theory of Planned Behavior, the authors interviewed graduating RCPSC EM residents about contributing to a slideshow. Residents were asked about behavioral beliefs (advantages/disadvantages), normative beliefs (positive/ negative referents), and control beliefs (barriers/facilitators). Two reviewers independently performed qualitative content analysis of interview transcripts to identify salient beliefs in relation to the defined behaviors.
Results: Of 150 eligible EM residents, 25 participated. The main reported advantage of contributing to the online slideshow was learning consolidation (n = 15); the main reported disadvantage was information overload (n = 3). The most frequently reported favorable referents were graduating EM residents writing the certification exam (n = 16). Few participants (n = 3) perceived any negative referents. The most frequently reported facilitator was peerreviewed high-quality scientific information (n = 9); and the most frequently reported barrier was time constraints (n = 22).
Conclusion: Salient beliefs exist regarding EM residents' intention to contribute content to an online collaborative writing project using a Google Docs (TM) slideshow. Overall, participants perceived more advantages than disadvantages to contributing and believed that this initiative would receive wide support. However, participants reported several barriers that need to be addressed to increase contributions. Our intention is for the beliefs identified in this study to contribute to the design of a theory-based questionnaire to explore determinants of residents' intentions to contribute to an online collaborative writing project. This will help develop implementation strategies for increasing contributions to other CWAs in medical education.
C1 [Archambault, Patrick M.; Fleet, Richard; Legare, France] Univ Laval, Dept Family Med & Emergency Med, Quebec City, PQ G1K 7P4, Canada.
[Archambault, Patrick M.; Gagnon, Susie; Fleet, Richard] CHAU Levis, CSSS Alphonse Desjardins, Levis, ON G6V 3Z1, Canada.
[Thanh, Jasmine; Poitras, Julien] Univ Laval, Fac Med, Quebec City, PQ G1K 7P4, Canada.
[Blouin, Danielle] Queens Univ, Dept Emergency Med, Kingston, ON, Canada.
[Fountain, Renee-Marie] Univ Laval, Fac Sci Educ, Ste Foy, PQ G1K 7P4, Canada.
[Bilodeau, Andrea] Minist Sante & Serv Sociaux, Quebec City, PQ, Canada.
[de Belt, Tom H. van] Radboud Univ Nijmegen, Med Ctr, Radboud Reshape & Innovat Ctr, NL-6525 ED Nijmegen, Netherlands.
[Legare, France] Univ Laval, Canada Res Chair Implementat Shared Decis Making, Ste Foy, PQ G1K 7P4, Canada.
[Legare, France] Univ Quebec, Ctr Hosp, Quebec City, PQ, Canada.
C3 Laval University; Laval University; Queens University - Canada; Laval
University; Radboud University Nijmegen; Laval University; Laval
University; University of Quebec
RP Archambault, PM (corresponding author), CHAU Levis, CSSS Alphonse Desjardins, 143 Rue Wolfe, Levis, ON G6V 3Z1, Canada.
EM patrick.m.archambault@gmail.com
RI Blouin, Danielle/AAF-9083-2019; van de Belt, Tom H/AAN-4345-2020
OI van de Belt, Tom H/0000-0002-5401-8973; Legare,
France/0000-0002-2296-6696; Archambault, Patrick M/0000-0002-5090-6439
FU Gilles Cormier Fund (Fonds Gilles Cormier) [FO099395]; Faculty of
Medicine at Universite Laval; Fonds de Recherche du Quebec - Sante
[FQ102051]
FX The principal author (PA) has received honoraria for presentations at
the National Emergency Medicine Review course at Queen's University. All
other authors declare that they have no competing interests. None of the
authors have a financial interest in the free online collaborative tool
discussed, and no patents are pending for this tool. This study was
supported by a grant from the Gilles Cormier Fund (Fonds Gilles Cormier
reference number: FO099395). This fund provided by the Faculty of
Medicine at Universite Laval supports research projects in medical
education. The funding organization did not influence the design of the
study or content of the manuscript. Patrick Archambault holds a career
scientist award from the Fonds de Recherche du Quebec - Sante (reference
number: FQ102051). France Legare holds a Canada Research Chair in
Implementation of Shared Decision Making in Primary Care.
CR AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T
Ajzen I., 2005, EBOOK: Attitudes, Personality and Behaviour
Anderson C., 2008, LONG TAIL REVISED UP
[Anonymous], J PATHOL INFORM
[Anonymous], PREDICTING HLTH BEHA
Archambault P, 2010, OPEN MED, V4, P214
Archambault PM, 2013, J MED INTERNET RES, V15, P4, DOI 10.2196/jmir.2787
Archambault Patrick M, 2011, Inform Prim Care, V19, P207
Archambault PM, 2012, J MED INTERNET RES, V14, DOI 10.2196/jmir.1983
Bender Jacqueline L, 2011, Open Med, V5, pe201
Benkler Y., 2005, Common wisdom: Peer production of educational materials [lemill.org]
Boulos Maged N Kamel, 2006, BMC Med Educ, V6, P41, DOI 10.1186/1472-6920-6-41
Carvas M, 2010, MED TEACH, V32, P270, DOI 10.3109/01421591003719525
Cheston CC, 2013, ACAD MED, V88, P893, DOI 10.1097/ACM.0b013e31828ffc23
Chu LF, CURR OPIN ANAESTHESI, V23, P218
Cohen N, 2013, NY TIMES, pB5
Cook DA, 2008, JAMA-J AM MED ASSOC, V300, P1181, DOI 10.1001/jama.300.10.1181
Cook DA, 2010, ACAD MED, V85, P909, DOI 10.1097/ACM.0b013e3181d6c319
Fishbein M, 2003, COMMUN THEOR, V13, P164, DOI 10.1111/j.1468-2885.2003.tb00287.x
Francis J, 2004, Quality of life and management of living resources, DOI DOI 10.1177/0018726707075703
Francis JJ, 2010, PSYCHOL HEALTH, V25, P1229, DOI 10.1080/08870440903194015
Free Open Access Meducation, LIF FAST LAN
Friedman RB, 1996, ACAD MED, V71, P979, DOI 10.1097/00001888-199609000-00013
Gagnon MP, 2012, J MED SYST, V36, P241, DOI 10.1007/s10916-010-9473-4
Godin G, 1996, AM J HEALTH PROMOT, V11, P87, DOI 10.4278/0890-1171-11.2.87
Hamm MP, 2013, ACAD MED, V88, P1376, DOI 10.1097/ACM.0b013e31829eb91c
Heilman JM, 2011, J MED INTERNET RES, V13, P153, DOI 10.2196/jmir.1589
Hollinderbaumer Anke, 2013, GMS Z Med Ausbild, V30, pDoc14, DOI 10.3205/zma000857
Holmes B, 2004, COMMUNAL CONSTRUCTIV
Hulbert-Williams Nicholas J, 2010, LEARNING TEACHING, V9, P45
Jalali A, 2009, MED EDUC, V43, P1117, DOI 10.1111/j.1365-2923.2009.03480.x
Johnson MO, 2010, ACAD MED, V85, P484, DOI 10.1097/ACM.0b013e3181cccd12
Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003
Kardong-Edgren Suzan EE, 2009, INT J NURS ED SCHOLA, V6
Kohli MD, 2011, J DIGIT IMAGING, V24, P170, DOI 10.1007/s10278-010-9292-7
Luoma TJ, FINDING DROPBOX CONF
MacKenzie J D, 1997, JAMA, V278, P1785, DOI 10.1001/jama.278.21.1785
McGee JB, 2008, MED TEACH, V30, P164, DOI 10.1080/01421590701881673
McGowan BS, 2012, J MED INTERNET RES, V14, DOI 10.2196/jmir.2138
Millstein SG, 1996, HEALTH PSYCHOL, V15, P398, DOI 10.1037/0278-6133.15.5.398
Mirk SM, 2010, CURR PHARM TEACH LEA, V2, P72, DOI 10.1016/j.cptl.2010.01.002
Moeller S, 2010, MED TEACH, V32, pE328, DOI 10.3109/0142159X.2010.490860
Mohammed S, 2008, Int J Electron Healthc, V4, P24, DOI 10.1504/IJEH.2008.018919
Morley DA, 2012, NURS EDUC TODAY, V32, P261, DOI 10.1016/j.nedt.2011.03.007
Park Seung, 2012, J Pathol Inform, V3, P32
Phadtare A, 2009, BMC MED EDUC, V9, DOI 10.1186/1472-6920-9-27
Priedhorsky R., 2007, P 2007 INT ACM C SUP
Rutter D., 2002, CHANGING HLTH BEHAV, P1
Montano BS, 2010, HEALTH INFO LIBR J, V27, P217, DOI 10.1111/j.1471-1842.2010.00893.x
Sandars J, 2007, POSTGRAD MED J, V83, P759, DOI 10.1136/pgmj.2007.063123
Sandars J, 2007, MED TEACH, V29, P85, DOI 10.1080/01421590601176380
Sandars J, 2006, MED TEACH, V28, P680, DOI 10.1080/01421590601106353
Sandars J, 2007, EDUC PRIM CARE, V18, P16, DOI 10.1080/14739879.2007.11493522
Stutsky BJ, 2009, THESIS NOVA SE U
Thompson C L, 2011, AMIA Annu Symp Proc, V2011, P1392
Triola MM, 2011, BMC MED EDUC, V11, DOI 10.1186/1472-6920-11-4
Varga-Atkins T, 2010, MED TEACH, V32, P824, DOI 10.3109/01421591003686245
Webb TL, 2010, J MED INTERNET RES, V12, DOI 10.2196/jmir.1376
Wood A, 2010, MED TEACH, V32, P618, DOI 10.3109/0142159X.2010.497719
Yan KK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019917
NR 60
TC 9
Z9 11
U1 1
U2 14
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 1481-8035
EI 1481-8043
J9 CAN J EMERG MED
JI Can. J. Emerg. Med.
PD JUL
PY 2015
VL 17
IS 4
BP 374
EP 386
DI 10.1017/cem.2014.49
PG 13
WC Emergency Medicine
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Emergency Medicine
GA CL9XM
UT WOS:000357332400005
PM 26134054
OA Bronze
DA 2024-09-05
ER
PT J
AU Wang, YF
Fan, LP
Wu, L
AF Wang, Yuefen
Fan, Lipeng
Wu, Lei
TI A validation test of the Uzzi et al. novelty measure of innovation and
applications to collaboration patterns between institutions
SO SCIENTOMETRICS
LA English
DT Article
DE Novelty; Atypical combination; Institutional collaborative pattern;
Artificial intelligence
ID COMBINATIONS; IMPACT
AB Exploring a robust and universal appeal bibliometric indicator for assessing creativity is essential but challenging. The novelty measure of innovation proposed by Uzzi et al. (NoveltyU) has sparked considerable interest and debate. Thus, further validation and understanding of its portfolio form of novelty and scope of application are necessary. This paper delves into the calculation and application of the NoveltyU method to shed light on its effectiveness and scope. Analysis of the calculation process reveals that journal pairs with higher novelty often span independent fundamental areas, while those with lower novelty tend to focus on similar and applied fields. Utilizing collaboration patterns between institutions, as discussed in our prior study (Fan et al., Scientometrics 125:1179-1196, 2020), offers insight into the method's performance in real-world contexts. Results consistently show higher mean NoveltyU values in MM pattern over time, affirming the method's validity. Categorizing papers into high conventional, low conventional, low novel, and high novel categories unveils higher overlap degree of terms among different patterns in high novel papers. Moreover, leading terms in MM pattern exhibit specific information, while delay terms tend to be more general, and simultaneous terms are even more so. These findings offer valuable insights into identifying hot and frontier topics, bolstering the credibility and application potential of the NoveltyU method, aligning with the broader objective of establishing valid measures of innovativeness in research.
C1 [Wang, Yuefen; Fan, Lipeng] Tianjin Normal Univ, Tianjin, Peoples R China.
[Wu, Lei] Shandong Normal Univ, Jinan, Shandong, Peoples R China.
C3 Tianjin Normal University; Shandong Normal University
RP Fan, LP (corresponding author), Tianjin Normal Univ, Tianjin, Peoples R China.
EM yuefen163@163.com; funnypower@126.com; ccnustone@yeah.net
OI , Lipeng/0000-0003-4884-511X
FU National Social Science of China [16ZDA224]; National Natural Science
Foundation of China [62307026]
FX This study is supported by the National Social Science of China
(16ZDA224) and National Natural Science Foundation of China (62307026).
CR Arts S, 2021, RES POLICY, V50, DOI 10.1016/j.respol.2020.104144
Bornmann L, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100979
Bornmann L, 2011, ANNU REV INFORM SCI, V45, P199, DOI 10.1002/aris.2011.1440450112
Campanario JM, 1998, SCI COMMUN, V19, P181, DOI 10.1177/1075547098019003002
Chen JY, 2021, RES POLICY, V50, DOI 10.1016/j.respol.2020.104115
Chen SJ, 2024, SCIENTOMETRICS, V129, P2615, DOI 10.1007/s11192-024-04981-w
Fan LP, 2020, SCIENTOMETRICS, V125, P1179, DOI 10.1007/s11192-020-03609-z
Fontana M, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.104063
Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366
Gao Q, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101165
Gault F, 2018, RES POLICY, V47, P617, DOI 10.1016/j.respol.2018.01.007
Hofstra B, 2020, P NATL ACAD SCI USA, V117, P9284, DOI 10.1073/pnas.1915378117
Hou JH, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101306
Li X, 2022, TECHNOL FORECAST SOC, V184, DOI 10.1016/j.techfore.2022.122042
Luo ZR, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2022.101282
Matsumoto K, 2021, SCIENTOMETRICS, V126, P6891, DOI 10.1007/s11192-021-04049-z
Min C, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120502
Min C, 2018, J ASSOC INF SCI TECH, V69, P1271, DOI 10.1002/asi.24047
Mukherjee S, 2016, J PROD INNOVAT MANAG, V33, P224, DOI 10.1111/jpim.12294
Park M, 2023, NATURE, V613, P138, DOI 10.1038/s41586-022-05543-x
Savov P, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102168
Schneider JW, 2017, J ASSOC INF SCI TECH, V68, P709, DOI 10.1002/asi.23695
Shibayama S, 2020, SCIENTOMETRICS, V122, P409, DOI 10.1007/s11192-019-03263-0
Sun BX, 2021, TECHNOL FORECAST SOC, V165, DOI 10.1016/j.techfore.2020.120534
Tahamtan I, 2018, J INFORMETR, V12, P906, DOI 10.1016/j.joi.2018.07.005
UTTERBACK JM, 1971, ACAD MANAGE J, V14, P75, DOI 10.5465/254712
Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474
Wagner CS, 2019, RES POLICY, V48, P1260, DOI 10.1016/j.respol.2019.01.002
Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006
Wang SY, 2023, J ASSOC INF SCI TECH, V74, P150, DOI 10.1002/asi.24719
Wu LF, 2019, NATURE, V566, P378, DOI 10.1038/s41586-019-0941-9
Xu HY, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102862
Yan Y, 2020, SCIENTOMETRICS, V122, P895, DOI 10.1007/s11192-019-03314-6
NR 33
TC 0
Z9 0
U1 5
U2 5
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUL
PY 2024
VL 129
IS 7
BP 4379
EP 4394
DI 10.1007/s11192-024-05071-7
EA JUN 2024
PG 16
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA ZU5Q7
UT WOS:001258044800003
DA 2024-09-05
ER
PT C
AU Bernadt, J
Soh, LK
AF Bernadt, J
Soh, LK
BE Kantardzic, M
Nasraoui, O
Milanova, M
TI Authoritative citation KNN learning in multiple-instance problems
SO PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND
APPLICATIONS (ICMLA'04)
LA English
DT Proceedings Paper
CT 3rd International Conference on Machine Learning and Applications
CY DEC 16-18, 2004
CL Louisville, KY
AB In this paper, we propose an authoritative citation K-nearest neighbor (ACKNN) algorithm for learning and classification in multiple-instance problems. We devise an authority measure for each instance or each bag of instances. This authority measure records how well an instance or a bag of instances has contributed to a correct classification, thus documenting how well an instance or a bag has been cited as a nearest neighbor. Based on our experiments with the Musk1 and Musk2 datasets, by learning the authority measures, the ACKNN algorithm outperforms Most other algorithms in Musk1 classification accuracy, but only performs reasonably well in Musk2 classification accuracy.
C1 Univ Nebraska, Dept Comp Sci & Engn, Lincoln, NE 68588 USA.
C3 University of Nebraska System; University of Nebraska Lincoln
RP Bernadt, J (corresponding author), Univ Nebraska, Dept Comp Sci & Engn, Lincoln, NE 68588 USA.
CR Aha David, 1997, Lazy learning
Amaro R R., 2001, Pobreza e exclusao social nas sociedades contemporaneas. Formar, P3
Angluin D., 1988, Machine Learning, V2, P343, DOI 10.1023/A:1022873112823
[Anonymous], P 11 INT C ART INT I
[Anonymous], 1998, Introduction to Reinforcement Learning
[Anonymous], 2000, 17th International Conference on Machine Learning
Aslam JA, 1996, INFORM PROCESS LETT, V57, P189, DOI 10.1016/0020-0190(96)00006-3
Atkeson CG, 1997, ARTIF INTELL REV, V11, P11, DOI 10.1023/A:1006559212014
AUER P, 1997, P 14 ICML SAN FRANC
BERNADT JJ, 2004, THESIS U NEBRASKA LI
BERNADT JJ, 2004, INT C MLMTA 04
COST S, 1993, MACH LEARN, V10, P57, DOI 10.1007/BF00993481
Dietterich TG, 1997, ARTIF INTELL, V89, P31, DOI 10.1016/S0004-3702(96)00034-3
Garfield E, 1979, CITATION INDEXING IT
MARON O, 1998, ADV NEURAL INFORMATI
Wettschereck D, 1997, ARTIF INTELL REV, V11, P273, DOI 10.1023/A:1006593614256
Zhang Q., 2001, Advances in neural information processing systems, P14
NR 17
TC 0
Z9 0
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 0-7803-8823-2
PY 2004
BP 410
EP 417
PG 8
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BBR87
UT WOS:000227493000058
DA 2024-09-05
ER
PT J
AU Lei, Y
Qiu, XD
AF Lei, Yi
Qiu, Xiaodong
TI Research on the Evaluation of Cross-Border E-Commerce Overseas Strategic
Climate Based on Decision Tree and Adaptive Boosting Classification
Models
SO FRONTIERS IN PSYCHOLOGY
LA English
DT Article
DE cross-border e-commerce; strategic climate; "Belt and Road" countries;
machine learning; Decision Tree; Adaptive Boosting
ID CHINA BELT; LOGISTICS
AB At present, China's cross-border e-commerce has ushered in a golden period of development. When developing cross-border e-commerce, enterprises should first assess the market climate of the target country and reasonably select the target country. Based on the PESTEL theory, an evaluation index system is established for China's cross-border e-commerce overseas strategic climate. Taking "One Belt, One Road" as the opportunity and background, the overseas strategic climate of cross-border e-commerce in 62 countries along the "One Belt, One Road" is selected as the research object, and the Decision Tree and Adaptive Boosting classification methods in machine learning are applied to train and predict the established index system. Finally an overall picture of the overseas strategic climate of the 62 countries is obtained. The results are compared and analysed in depth to identify the most suitable countries for cross-border e-merchants and to provide reference for cross-border e-merchants investors.
C1 [Lei, Yi; Qiu, Xiaodong] Beijing Jiaotong Univ, Sch Econ & Management, Beijing, Peoples R China.
C3 Beijing Jiaotong University
RP Lei, Y; Qiu, XD (corresponding author), Beijing Jiaotong Univ, Sch Econ & Management, Beijing, Peoples R China.
EM 18113082@bjtu.edu.cn; xdqiu@bjtu.edu.cn
CR Abdelmoaty HM, 2021, DESALINATION, V508, DOI 10.1016/j.desal.2021.115021
Agarwal A, 2014, J MACH LEARN RES, V15, P1111
Alshammri F, 2021, J STAT PLAN INFER, V212, P201, DOI 10.1016/j.jspi.2020.08.007
Aqlan M.A.A., 2020, OPEN J BUSINESS MANA, V08, P1536, DOI [10.4236/ojbm.2020.84097, DOI 10.4236/OJBM.2020.84097]
Ascarza E, 2018, MARKET SCI, V37, P54, DOI 10.1287/mksc.2017.1057
Asch T.V., 2020, RES TRANSP ECON, V79
Athey S, 2016, P NATL ACAD SCI USA, V113, P7353, DOI 10.1073/pnas.1510489113
Beskese A., 2014, AHMET, V14, P434
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bunnell S, 2020, J COMPUT INF SCI ENG, V20, DOI 10.1115/1.4047428
Chapelle Olivier, 2014, ACM Transactions on Intelligent Systems and Technology, V5, DOI 10.1145/2532128
[程豪 CHENG Hao], 2008, [自动化学报, Acta Automatica Sinica], V34, P1312
Dunford M, 2019, CAMB J REG ECON SOC, V12, P145, DOI 10.1093/cjres/rsy032
García-Aracil A, 2012, REV ESP DOC CIENT, V35, P119, DOI 10.3989/redc.2012.1.863
Giuffrida M, 2017, INT J PHYS DISTR LOG, V47, P772, DOI 10.1108/IJPDLM-08-2016-0241
Gray JE, 2020, BIG DATA SOC, V7, DOI 10.1177/2053951720919963
Hallak R, 2013, TOUR ANAL, V18, P691, DOI 10.3727/108354213X13824558188749
He HH, 2019, EXPERT SYST, V36, DOI 10.1111/exsy.12349
Herrero AG, 2017, CHINA WORLD ECON, V25, P84, DOI 10.1111/cwe.12222
Hoffman Matthew D., 2010, Adv. Neural Inf. Process. Syst. (NIPS), DOI DOI 10.5555/2997189.2997285
Huang RJ, 2020, COMPUT ECON, V55, P1233, DOI 10.1007/s10614-019-09886-y
Huang YP, 2016, CHINA ECON REV, V40, P314, DOI 10.1016/j.chieco.2016.07.007
Jiang X., 2021, SCI J EC MANAG RES, V3, P6
Kamel MS, 2018, CAMB REV INT AFF, V31, P76, DOI 10.1080/09557571.2018.1480592
Kawa A, 2016, LOGFORUM, V12, P63, DOI 10.17270/J.LOG.2016.1.6
Kelly M, 2000, AM ECON REV, V90, P1110, DOI 10.1257/aer.90.5.1110
Khan A, 2020, SCI PROGRAMMING-NETH, V2020, DOI 10.1155/2020/4621196
Kim JW, 2001, INT J ELECTRON COMM, V5, P45, DOI 10.1080/10864415.2001.11044215
Kumar E.A., 2018, IND J PUBLIC HLTH RE, V1, P193
Lei Y, 2020, INFORMATION, V11, DOI 10.3390/info11110526
Li BJ, 2020, J COASTAL RES, P628, DOI 10.2112/JCR-SI104-106.1
Li G., 2018, IND J PUBLIC HLTH RE, V1, P351
Liu J, 2018, MARKET SCI, V37, P930, DOI 10.1287/mksc.2018.1112
Liu ZD, 2020, COMPUT COMMUN, V155, P40, DOI 10.1016/j.comcom.2020.03.014
Luo YB, 2020, TUNN UNDERGR SP TECH, V106, DOI 10.1016/j.tust.2020.103591
Muravev D, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12010143
Nizamani S, 2011, LECT NOTES SOC NETW, P249, DOI 10.1007/978-3-7091-0388-3_13
Pan W, 2019, J MANAGE ENG, V35, DOI 10.1061/(ASCE)ME.1943-5479.0000662
Panigrahi R, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060690
Petrauskiene K, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072935
Qi ZC, 2021, J ELECTRON MATER, V50, P2066, DOI 10.1007/s11664-020-08704-8
Raphael K., 2004, MARKET INTELL PLAN, V22, P455
Razeghi O, 2020, SOFTWAREX, V12, DOI 10.1016/j.softx.2020.100570
Sheikh S., 2017, INT J ADV COMPUT APP, V8, P189
Sun LY, 2017, ECOL INDIC, V73, P554, DOI 10.1016/j.ecolind.2016.10.018
Vanneste P, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9030287
Wang YY, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060632
Wu PJ, 2018, TELEMAT INFORM, V35, P237, DOI 10.1016/j.tele.2017.11.004
Yan XS, 2012, NEUROCOMPUTING, V87, P51, DOI 10.1016/j.neucom.2012.02.002
Zhan H, 2009, KYBERNETES, V38, P1812, DOI 10.1108/03684920910994330
Zhang XH, 2021, J SENSORS, V2021, DOI 10.1155/2021/7021151
Zhongliang Liu, 2020, International Journal of Computers and Applications, V42, P533, DOI 10.1080/1206212X.2018.1477321
NR 52
TC 3
Z9 3
U1 3
U2 52
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-1078
J9 FRONT PSYCHOL
JI Front. Psychol.
PD DEC 23
PY 2021
VL 12
AR 803989
DI 10.3389/fpsyg.2021.803989
PG 10
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA YK5EU
UT WOS:000745236600001
PM 35002896
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Li, SY
Yu, TZ
Cao, X
Pei, Z
Yi, WC
Chen, Y
Lv, RF
AF Li, Shiyun
Yu, Tianzong
Cao, Xu
Pei, Zhi
Yi, Wenchao
Chen, Yong
Lv, Ruifeng
TI Machine learning-based scheduling: a bibliometric perspective
SO IET COLLABORATIVE INTELLIGENT MANUFACTURING
LA English
DT Article
AB In recent years, the rapid development of artificial intelligence and data science has given rise to the study of data driven algorithms in highly volatile systems. The scheduling of complex shop floor resources falls into such a category, which is often non-linear in nature, time varying, multi-objective, and subject to interruptions. Ergo, the machine learning-based scheduling, has become a research hotspot and attracted the attention of many scholars. In the literature, the research methods employed in solving scheduling problems are based on various perspectives, such as mathematical programming, combinatorial optimization, and heuristic rules. However, due to the inherent complexity of the problem, many issues remain to be addressed. In particular, with the availability of production data, the progress of computing power, and the breakthrough in intelligent algorithms, a novel branch of data driven algorithms present great potential, for example, the deep learning and reinforcement learning-based algorithms. To reveal the value of machine learning-based scheduling methods, bibliometric analysis was conducted to analyse the relevant articles and documents from the year 1980 to 2019. Finally, the future research trend in the domain of machine learning-based scheduling is considered and tips are provided for researchers as well as practitioners to find leading scientists for collaborations.
C1 [Li, Shiyun; Yu, Tianzong; Cao, Xu; Pei, Zhi; Yi, Wenchao; Chen, Yong; Lv, Ruifeng] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou, Peoples R China.
C3 Zhejiang University of Technology
RP Pei, Z (corresponding author), Zhejiang Univ Technol, Coll Mech Engn, Hangzhou, Peoples R China.
EM peizhi@zjut.edu.cn
RI Pei, Zhi/AFO-6324-2022
OI Pei, Zhi/0000-0001-6808-1490
FU Natural Science Foundation of China [71871203, 52005447, 51305400,
L1924063]; Zhejiang Provincial Natural Science Foundation of China
[LY18G010017, LY18G010020]
FX Natural Science Foundation of China, Grant/Award Number: 71871203,
52005447, 51305400, L1924063; Zhejiang Provincial Natural Science
Foundation of China, Grant/Award Number: LY18G010017, LY18G010020
CR Agarwal A, 2006, EUR J OPER RES, V175, P296, DOI 10.1016/j.ejor.2005.03.045
Ahmed U, 2021, SOFT COMPUT, V25, P407, DOI 10.1007/s00500-020-05152-8
Aissani N, 2012, J INTELL MANUF, V23, P2513, DOI 10.1007/s10845-011-0580-y
Alzahrani SI, 2020, J INFECT PUBLIC HEAL, V13, P914, DOI 10.1016/j.jiph.2020.06.001
Amiri MM, 2019, IEEE T SIGNAL PROCES, V67, P6270, DOI 10.1109/TSP.2019.2952051
Amudha S, 2021, J AMB INTEL HUM COMP, V12, P7441, DOI 10.1007/s12652-020-02421-0
ARCISZEWSKI T, 1994, APPL ARTIF INTELL, V8, P109, DOI 10.1080/08839519408945434
Arens S, 2018, ENERGIES, V11, DOI 10.3390/en11112913
AYTUG H, 1994, IEEE T ENG MANAGE, V41, P165, DOI 10.1109/17.293383
Benda F, 2019, OR SPECTRUM, V41, P871, DOI 10.1007/s00291-019-00567-8
Bengio Y., 2020, EUR J OPERATION RES
Billaut JC, 1996, INT J PROD RES, V34, P1555, DOI 10.1080/00207549608904984
Biskup D, 1999, EUR J OPER RES, V115, P173, DOI 10.1016/S0377-2217(98)00246-X
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
CHANG CY, 1995, IEEE INT CONF ROBOT, P202, DOI 10.1109/ROBOT.1995.525286
CHATURVEDI AR, 1994, IEEE T ENG MANAGE, V41, P194, DOI 10.1109/17.293386
CHEN LN, 1995, NEURAL NETWORKS, V8, P915, DOI 10.1016/0893-6080(95)00033-V
Cheng TCE, 2009, INFORM SCIENCES, V179, P3127, DOI 10.1016/j.ins.2009.05.002
Dalal G, 2019, IEEE T POWER SYST, V34, P2528, DOI 10.1109/TPWRS.2018.2889237
Ding DR, 2019, IEEE T CYBERNETICS, V49, P2372, DOI 10.1109/TCYB.2018.2827037
ERENGUC SS, 1994, IEEE T ENG MANAGE, V41, P107, DOI 10.1109/17.293376
Guo K, 2020, NEURAL COMPUT APPL, V32, P1857, DOI 10.1007/s00521-019-04571-5
Guo P, 2019, OMEGA-INT J MANAGE S, V89, P110, DOI 10.1016/j.omega.2018.10.003
Ham AM, 2016, COMPUT IND ENG, V102, P160, DOI 10.1016/j.cie.2016.11.001
Hong JK, 2004, APPL INTELL, V20, P71, DOI 10.1023/B:APIN.0000011143.95085.74
Hu H, 2020, COMPUT IND ENG, V149, DOI 10.1016/j.cie.2020.106749
Jiang ZB, 2019, COMPUT IND ENG, V127, P1131, DOI 10.1016/j.cie.2018.05.050
Jun S, 2021, INT J PROD RES, V59, P2838, DOI 10.1080/00207543.2020.1741716
Jun S, 2019, INT J PROD RES, V57, P3290, DOI 10.1080/00207543.2019.1581954
Jung SK, 2016, AM J ORTHOD DENTOFAC, V149, P127, DOI 10.1016/j.ajodo.2015.07.030
KADABA N, 1991, EXPERT SYST APPL, V2, P15, DOI 10.1016/0957-4174(91)90131-W
Kang Y, 2019, COMPUT IND ENG, V132, P271, DOI 10.1016/j.cie.2019.04.044
Kang ZQ, 2020, COMPUT IND ENG, V149, DOI 10.1016/j.cie.2020.106773
Kim BG, 2016, IEEE T SMART GRID, V7, P2187, DOI 10.1109/TSG.2015.2495145
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Lee CY, 1997, INT J PROD RES, V35, P1171, DOI 10.1080/002075497195605
Lee WC, 2009, EXPERT SYST APPL, V36, P10295, DOI 10.1016/j.eswa.2009.01.047
Li JY, 2016, COMPUT IND ENG, V102, P113, DOI 10.1016/j.cie.2016.10.012
LIEPINS G, 1990, AI APPL NAT RES MAN, V4, P9
Luo L, 2018, INT J HEALTH PLAN M, V33, P941, DOI 10.1002/hpm.2552
Marandi F, 2019, COMPUT IND ENG, V132, P293, DOI 10.1016/j.cie.2019.04.032
Matias JM, 2007, J HAZARD MATER, V147, P60, DOI 10.1016/j.jhazmat.2006.12.042
Mendes-Moreira J, 2015, INFORM SCIENCES, V293, P299, DOI 10.1016/j.ins.2014.09.005
Monch L, 2006, ENG APPL ARTIF INTEL, V19, P235, DOI 10.1016/j.engappai.2005.10.001
NAKASUKA S, 1992, INT J PROD RES, V30, P411, DOI 10.1080/00207549208942903
Ngo MH, 2010, IEEE T SIGNAL PROCES, V58, P438, DOI 10.1109/TSP.2009.2027735
Nitisiri K, 2019, COMPUT IND ENG, V130, P381, DOI 10.1016/j.cie.2019.02.035
Nonaka Y, 2012, CIRP ANN-MANUF TECHN, V61, P449, DOI 10.1016/j.cirp.2012.03.045
Park I.B., 2019, IEEE T AUTOM SCI ENG
Park M, 2019, PROCESSES, V7, DOI 10.3390/pr7060370
Peng T, 2020, RENEW ENERG, V156, P804, DOI 10.1016/j.renene.2020.03.168
Priore P, 2006, ENG APPL ARTIF INTEL, V19, P247, DOI 10.1016/j.engappai.2005.09.009
Qin Y, 2020, J SUPERCOMPUT, V76, P455, DOI 10.1007/s11227-019-03033-y
Romero M, 2018, COMPUT ELECTRON AGR, V147, P109, DOI 10.1016/j.compag.2018.02.013
Salodkar N, 2010, IEEE T MOBILE COMPUT, V9, P1391, DOI 10.1109/TMC.2010.106
Sang HY, 2014, ASIA PAC J OPER RES, V31, DOI 10.1142/S0217595914500456
Sbihi M, 2008, COMPUT IND ENG, V55, P830, DOI 10.1016/j.cie.2008.03.005
Shafaei R, 1999, INT J PROD RES, V37, P4105, DOI 10.1080/002075499189682
Shafaei R, 2000, INT J PROD RES, V38, P85, DOI 10.1080/002075400189590
Shahrabi J, 2017, COMPUT IND ENG, V110, P75, DOI 10.1016/j.cie.2017.05.026
Sui X, 2019, EURASIP J WIREL COMM, DOI 10.1186/s13638-019-1454-9
Sutton R. S., 1988, Machine Learning, V3, P9, DOI 10.1023/A:1022633531479
Tang ZY, 2015, IEEE T VEH TECHNOL, V64, P3167, DOI 10.1109/TVT.2014.2350510
VAITHYANATHAN S, 1992, COMPUT OPER RES, V19, P241, DOI 10.1016/0305-0548(92)90046-8
Vasile MA, 2018, INFORM SCIENCES, V433, P401, DOI 10.1016/j.ins.2017.01.005
Wang H, 2003, EXPERT SYST, V20, P208, DOI 10.1111/1468-0394.00245
Wang JB, 2008, COMPUT MATH APPL, V56, P1941, DOI 10.1016/j.camwa.2008.04.019
Wang K, 2014, INT J PROD RES, V52, P7360, DOI 10.1080/00207543.2014.930535
Wang K, 2016, IEEE T IND INFORM, V12, P2091, DOI 10.1109/TII.2016.2537788
Wang YC, 2004, ROBOT CIM-INT MANUF, V20, P553, DOI [10.1016/j.rcim.2004.07.003, 10.1016/j.rcim.2004.07.033]
Wang Y, 2011, INT J ROBOT AUTOM, V26, P369, DOI 10.2316/Journal.206.2011.4.206-3486
WILLIAMS RJ, 1992, MACH LEARN, V8, P229, DOI 10.1007/BF00992696
Wojtusiak J, 2012, COMPUT MATH APPL, V64, P3658, DOI 10.1016/j.camwa.2012.01.079
Wu WH, 2014, INT J COMPUT INTEG M, V27, P20, DOI 10.1080/0951192X.2013.800229
Xu X, 2020, IEEE T SMART GRID, V11, P3201, DOI 10.1109/TSG.2020.2971427
Xue Y, 2019, MEMET COMPUT, V11, P423, DOI 10.1007/s12293-019-00295-0
Yang J, 2019, FUTURE GENER COMP SY, V95, P140, DOI 10.1016/j.future.2018.11.014
Yang TT, 2019, IEEE T COGN COMMUN, V5, P1155, DOI 10.1109/TCCN.2019.2939813
Yang X.C., 2015, MATH PROBL ENG
Zhang Z, 2019, INT J SIMUL MODEL, V18, P699, DOI 10.2507/IJSIMM18(4)CO18
Zhang ZC, 2013, ASIA PAC J OPER RES, V30, DOI 10.1142/S0217595913500140
Zhang ZC, 2012, COMPUT OPER RES, V39, P1315, DOI 10.1016/j.cor.2011.07.019
NR 82
TC 7
Z9 7
U1 7
U2 10
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
EI 2516-8398
J9 IET COLL INTEL MANUF
JI IET Collab. Intell. Manufact.
PD JUN
PY 2021
VL 3
IS 2
BP 131
EP 146
DI 10.1049/cim2.12004
PG 16
WC Engineering, Industrial; Engineering, Manufacturing
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA VM0RA
UT WOS:000937711000004
OA gold
DA 2024-09-05
ER
PT J
AU Chen, XL
Zou, D
Xie, HR
AF Chen, Xieling
Zou, Di
Xie, Haoran
TI Fifty years of British Journal of Educational Technology: A topic
modeling based bibliometric perspective
SO BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY
LA English
DT Article
ID LEARNING-EXPERIENCES; DECADES
AB The British Journal of Educational Technology (BJET) has been active in the field of educational technology since 1970. To celebrate its 50th anniversary and to demonstrate a comprehensive overview of the field, we conducted a bibliometric analysis of the 3710 publications in this journal from 1971 to 2018 as indexed in the Web of Science with full bibliographic information. This study aimed to (1) identify the publication and citation trends, (2) explore the distribution of paper types, (3) recognize the most relevant countries/regions, affiliations and authors, and (4) reveal relevant thematic features by analyzing publication abstracts and titles with the use of word cloud analysis and topic modeling analysis. The results highlighted several research hotspots and emerging topics such as Technology-enhanced classroom pedagogy, Blended learning, Online social communities, Mobile assisted language learning, Game-based learning and Socialized e-learning.
C1 [Chen, Xieling; Zou, Di] Educ Univ Hong Kong, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Hong Kong, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Lingnan University
RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
EM dizoudaisy@gmail.com
RI Xie, Haoran/AAW-8845-2020; Xie, Haoran/AFS-3515-2022
OI Xie, Haoran/0000-0003-0965-3617; ZOU, Di/0000-0001-8435-9739; PV,
THAYYIB/0000-0001-8929-0398
FU Standing Committee on Language Education and Research
[EDB(LE)/PR/EL/175/2]; Education Bureau of the Hong Kong Special
Administrative Region; Interdisciplinary Research Scheme of the Dean's
Research Fund 2018-19 [FLASS/DRF/IDS-3]; Departmental Collaborative
Research Fund 2019 of The Education University of Hong Kong
[MIT/DCRF-R2/18-19]; [RG93/2018-2019R]; [RG 1/2019-2020R]
FX This research received grants from the Standing Committee on Language
Education and Research (EDB(LE)/P&R/EL/175/2), the Education Bureau of
the Hong Kong Special Administrative Region, the Internal Research Grant
(RG93/2018-2019R), the Internal Research Fund (RG 1/2019-2020R),
Interdisciplinary Research Scheme of the Dean's Research Fund 2018-19
(FLASS/DRF/IDS-3) and Departmental Collaborative Research Fund 2019
(MIT/DCRF-R2/18-19) of The Education University of Hong Kong.
CR Beelen K, 2017, CAN J POLIT SCI, V50, P849, DOI 10.1017/S0008423916001165
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bond M, 2019, BRIT J EDUC TECHNOL, V50, P12, DOI 10.1111/bjet.12730
Chen MH, 2018, BRIT J EDUC TECHNOL, V49, P69, DOI 10.1111/bjet.12526
Chen XL, 2019, J COMPUT EDUC, V6, P563, DOI 10.1007/s40692-019-00149-1
Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4
Chen XL, 2019, ONLINE INFORM REV, V43, P29, DOI 10.1108/OIR-03-2018-0068
Chen XL, 2018, BMC MED INFORM DECIS, V18, DOI [10.1186/s12911-018-0594-x, 10.1186/s12870-018-1555-3]
Cheng XS, 2016, BRIT J EDUC TECHNOL, V47, P803, DOI 10.1111/bjet.12382
Diep AN, 2017, BRIT J EDUC TECHNOL, V48, P473, DOI 10.1111/bjet.12431
Dzeng RJ, 2014, BRIT J EDUC TECHNOL, V45, P1115, DOI 10.1111/bjet.12189
Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4
Herodotou C, 2018, BRIT J EDUC TECHNOL, V49, P6, DOI 10.1111/bjet.12546
Hew KF, 2016, BRIT J EDUC TECHNOL, V47, P320, DOI 10.1111/bjet.12235
Jiang HC, 2016, RENEW SUST ENERG REV, V57, P226, DOI 10.1016/j.rser.2015.12.194
Kali Y, 2018, BRIT J EDUC TECHNOL, V49, P1145, DOI 10.1111/bjet.12698
Kuhn KD, 2018, TRANSPORT RES C-EMER, V87, P105, DOI 10.1016/j.trc.2017.12.018
Lameras P, 2017, BRIT J EDUC TECHNOL, V48, P972, DOI 10.1111/bjet.12467
Lesnikowski A, 2019, WIRES CLIM CHANGE, V10, DOI 10.1002/wcc.576
Mann HB, 1945, ECONOMETRICA, V13, P245, DOI 10.2307/1907187
Merigó JM, 2019, SOFT COMPUT, V23, P1477, DOI 10.1007/s00500-018-3168-z
Nel L, 2017, BRIT J EDUC TECHNOL, V48, P1131, DOI 10.1111/bjet.12549
Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2
Song Y, 2019, COMPUT EDUC, V137, P12, DOI 10.1016/j.compedu.2019.04.002
Tunstall P., 1996, BRIT EDUC RES J, V22, P389, DOI DOI 10.1080/0141192960220402
Vosinakis S, 2018, BRIT J EDUC TECHNOL, V49, P30, DOI 10.1111/bjet.12531
Walter-Laager C, 2017, BRIT J EDUC TECHNOL, V48, P1062, DOI 10.1111/bjet.12472
Zawacki-Richter O, 2018, COMPUT EDUC, V122, P136, DOI 10.1016/j.compedu.2018.04.001
NR 28
TC 91
Z9 94
U1 24
U2 121
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0007-1013
EI 1467-8535
J9 BRIT J EDUC TECHNOL
JI Br. J. Educ. Technol.
PD MAY
PY 2020
VL 51
IS 3
SI SI
BP 692
EP 708
DI 10.1111/bjet.12907
EA FEB 2020
PG 17
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA LI2BT
UT WOS:000511218300001
DA 2024-09-05
ER
PT C
AU Meng, QX
Kennedy, PJ
AF Meng, Qinxue
Kennedy, Paul J.
GP IEEE
TI Using field of research codes to discover research groups from
co-authorship networks
SO 2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS
ANALYSIS AND MINING (ASONAM)
LA English
DT Proceedings Paper
CT IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining
CY AUG 26-29, 2012
CL Kadir Has Univ, Istanbul, TURKEY
HO Kadir Has Univ
DE academic networks; academic collaboration; co-authorship; academic
network; spectral clustering
AB Nowadays, academic collaboration has become more prevalent and crucial than ever before and many studies of academic collaboration analysis are implemented based on co-authorship networks. This paper aims to build a novel co-authorship network by importing field of research codes based on Newman's model, and then analyze and extract research groups via spectral clustering. In order to explain the effectiveness of this revised network, we take the academic collaboration at the University of Technology, Sydney (UTS) as an example. The result of this study advances methods for selecting the most prolific research groups and individuals in research institutions, and provides scientific evidence for policymakers to manage laboratories and research groups more efficiently in the future.
C1 [Meng, Qinxue; Kennedy, Paul J.] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia.
C3 University of Technology Sydney
RP Meng, QX (corresponding author), Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia.
EM Qinxue.Meng@student.uts.edu.au; Paul.Kennedy@uts.edu.au
RI Kennedy, Paul/GPC-6789-2022
OI Kennedy, Paul/0000-0001-7837-3171
CR Abbasi A, 2011, J INFORMETR, V5, P594, DOI 10.1016/j.joi.2011.05.007
[Anonymous], 2007, Understanding Complex Datasets: Data Mining with Matrix Decomposition
[Anonymous], 2011, Neural Networks and Learning Machines
Boccaletti S, 2006, PHYS REP, V424, P175, DOI 10.1016/j.physrep.2005.10.009
Gross J. L., 2006, GRAPH THEORY ITS APP
Han Y., 2009, P 9 SIAM INT C DAT M, P1111
Hollstein B., 2011, SAGE HDB SOCIAL NETW
Kamber M., 2011, Pei. data mining concepts and techniques
Lu HQ, 2009, SCIENTOMETRICS, V81, P499, DOI 10.1007/s11192-008-2173-x
Moody J, 2003, AM SOCIOL REV, V68, P103, DOI 10.2307/3088904
Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898
Pilkington A, 2009, J OPER MANAG, V27, P185, DOI 10.1016/j.jom.2008.08.001
Pink B., 2008, Australian and New Zealand Standard Research Classification (ANZSRC), 2008
von Luxburg U, 2007, STAT COMPUT, V17, P395, DOI 10.1007/s11222-007-9033-z
Yu Q, 2011, SCIENTOMETRICS, V89, P553, DOI 10.1007/s11192-011-0465-z
NR 15
TC 2
Z9 3
U1 1
U2 2
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-0-7695-4799-2
PY 2012
BP 289
EP 293
PG 5
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BFL86
UT WOS:000320443500042
DA 2024-09-05
ER
PT J
AU Sokil, JP
Osorio, L
AF Pablo Sokil, Juan
Osorio, Laura
TI Scientific p roduction i n the fi eld of gender studies: analysis of se
lected Web of Science journals (2008-2018)
SO REVISTA ESPANOLA DE DOCUMENTACION CIENTIFICA
LA English
DT Article
DE gender studies; gender gap; bibliometrics; topic modeling; sex
prediction
AB The following research analyzes the scientific production of gender studies worldwide indexed in the Web of Science (WOS) between 2008 and 2018. The objectives are to analyze the dynamics of participation of women and men within this area and investigate what topics they investigate (separately and together) using sex classification and topic modeling algorithms. The results show that gender studies are one of the most feminized research areas, with the greatest gender gap and that there were no changes throughout the selected period. The identified topics segment the preferences between the authors: female authors specialize in feminism, politics, violence, male authors have a distributed production and mixed authorship specializes in medicine/ health and statistics/ methodology.
C1 [Pablo Sokil, Juan; Osorio, Laura] OCTS OEI, Org Estados Iberoamer, Observ Iberoamer Ciencia Tecnol & Soc, Madrid, Spain.
RP Sokil, JP (corresponding author), OCTS OEI, Org Estados Iberoamer, Observ Iberoamer Ciencia Tecnol & Soc, Madrid, Spain.
EM juanpablosokil@gmail.com; losorio.oei@gmail.com
CR Amoros Celia y., 2005, Teoria feminista de la ilustracion a la globalizacion
[Anonymous], 2004, EQUIDAD GENERO CIENC
[Anonymous], 2012, P ACL 2012 SPECIAL W
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bonder G., 1984, Revista Desarrollo y Sociedad, V13, P27, DOI [10.13043/dys.13.1, DOI 10.13043/DYS.13.1]
Elsevier, 2021, GENDER GLOBAL RES LA
Elsevier, 2015, MAPP GEND GERM RES A
Elsevier, 2020, The Researcher Journey Through a Gender Lens
Flores Espinola A., 2010, CLAVES ACTUALES PENS, P171
Flores Espinola A., 2016, REV IBEROAM CIENC TE, V31
González Marta I., 2016, Rev. iberoam. cienc. tecnol. soc., V11, P51
Hall David, 2008, P 2008 C EMP METH NA, P363, DOI DOI 10.3115/1613715.1613763
LONG JS, 1990, SOC FORCES, V68, P1297, DOI 10.2307/2579146
Lopez-Bassols V., 2018, BRECHAS GENERO CIENC, DOI [10.18235/0001082, DOI 10.18235/0001082]
Maffia D., 2008, ACT 7 C IB CIENC TEC
Morales S., 2018, CIENCIA
Mullen Lincoln., 2018, gender: Predict Gender from Names Using Historical Data. R package version 0.5.2
Noriega GN, 2016, CULTURALES, V4, P9
ORG. FOR ECON. COOP. & DEV, 2018, PHARMACEUTICAL INNOVATION AND ACCESS TO MEDICINES, P1
Papadopulos J., 2006, IESALC, P117
Penner AM, 2015, SCIENCE, V347, P234, DOI 10.1126/science.aaa3781
Perez Sedeno E., 2001, MUJERES SISTEMA CIEN, P9
Thelwall M, 2019, J INFORMETR, V13, P149, DOI 10.1016/j.joi.2018.12.002
UNESCO, 2017, PLAN ACC UNESCO PRIO
UNESCO Institute for Statistics, 2019, WOM SCI
Zuckerman H., 1991, The Outer Circle: Women in the Scientific Community, P27
NR 26
TC 4
Z9 4
U1 0
U2 7
PU CONSEJO SUPERIOR INVESTIGACIONES CIENTIFICAS-CSIC
PI MADRID
PA VITRUVIO 8, 28006 MADRID, SPAIN
SN 0210-0614
EI 1988-4621
J9 REV ESP DOC CIENT
JI Rev. Esp. Doc. Cient.
PD JAN-MAR
PY 2022
VL 45
IS 1
AR e320
DI 10.3989/redc.2022.1.1849
PG 14
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA YR7KU
UT WOS:000750172500003
OA gold
DA 2024-09-05
ER
PT J
AU Zhou, X
Guo, Y
Li, FS
Wang, J
Wei, HA
Yu, MM
Chen, SL
AF Zhou, Xiao
Guo, Ying
Li, Fangshun
Wang, Jin
Wei, Huanan
Yu, Miaomiao
Chen, Siliang
TI Identifying and Assessing Innovation Pathways for Emerging Technologies:
A Hybrid Approach Based on Text Mining and Altmetrics
SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
LA English
DT Article
DE Altmetrics; gold nanoparticles; sentiment analysis; technological
innovation pathways
ID SENTIMENT ANALYSIS; EXTRACTION; REVIEWS
AB Accurately identifying core technological innovation pathways (TIPs) and evaluating opportunities in emerging technologies is important. In this article, we present an integrated framework that combines sentiment analysis, subject-action-object (SAO) analysis, machine learning, altmetrics, and expert judgments to extract technical intelligence, chart technological innovation pathways, and analyze which research avenues have the most future promise. For industry stakeholders, our approach provides a comprehensive, time-efficient, and future-oriented evaluation system to support decision making. For researchers, our methodology should inspire new ways of thinking about technological opportunity analysis-particularly, exploring the merits of finding new and advantageous combinations of existing bibliometric and nonbibliometric techniques, rather than reinventing the wheel. For example, this methodology is to integrate bibliometric analysis with sentiment analysis to gauge the attitudes of domain experts toward a topic's potential value. We combine SAO analysis and machine learning to identify relationships between topics from tremendous short texts. Beyond traditional techniques, we have also drawn on altmetrics to further validate the findings our of analysis. A case study on gold nanoparticles demonstrates the merits of our framework, revealing anti-cancer therapies and dye-sensitized solar cells (DSSCs) as the two applications with most future potential and societal impact in this field.
C1 [Zhou, Xiao; Chen, Siliang] Xidian Univ, Sch Econ & Management, Xian 710000, Peoples R China.
[Guo, Ying] China Univ Polit Sci & Law, Business Sch, Beijing 100000, Peoples R China.
[Li, Fangshun] Univ Elect Sci & Technol China, Sch Econ & Management, Chengdu 610000, Peoples R China.
[Wang, Jin; Wei, Huanan; Yu, Miaomiao] Beijing Inst Thchnol, Sch Management & Econ, Beijing 100000, Peoples R China.
C3 Xidian University; China University of Political Science & Law;
University of Electronic Science & Technology of China
RP Guo, Y (corresponding author), China Univ Polit Sci & Law, Business Sch, Beijing 100000, Peoples R China.
EM belinda1214@126.com; guoying_cup1@126.com; lifangshunlfs@163.com;
wangjin_bit@163.com; hnwei97@163.com; 18165268237@163.com;
siliang_chen547@163.com
FU Chinese National Science Foundation for Young Scholars Award [71704139];
Chinese National Science Foundation Award [71874013]; National Science
Foundation of Shaanxi Province Award [2019JQ-661]; Basic Research
Foundation of Xidian University Award [RW180171, JB190603]; Program for
Qian Duansheng Excellent Researcher in China University of Political
Science and Law
FX This work was supported in part by the Chinese National Science
Foundation for Young Scholars Award 71704139, in part by the Chinese
National Science Foundation Award 71874013, in part by the Program for
Qian Duansheng Excellent Researcher in China University of Political
Science and Law, in part by the National Science Foundation of Shaanxi
Province Award 2019JQ-661, and in part by the Basic Research Foundation
of Xidian UniversityAward RW180171 and JB190603.
CR Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Bro R, 2014, ANAL METHODS-UK, V6, P2812, DOI 10.1039/c3ay41907j
Carley SF, 2018, SCIENTOMETRICS, V115, P35, DOI 10.1007/s11192-018-2654-5
Cho SK, 2019, MAT SCI ENG C-MATER, V97, P784, DOI 10.1016/j.msec.2018.12.113
Guo JF, 2016, TECHNOL FORECAST SOC, V105, P27, DOI 10.1016/j.techfore.2016.01.028
Han HY, 2018, MULTIMED TOOLS APPL, V77, P21265, DOI 10.1007/s11042-017-5529-5
Hui Cao, 2013, 2013 International Conference on Asian Language Processing (IALP 2013), P220, DOI 10.1109/IALP.2013.63
Kelly K., 2016, The Inevitable: Understanding the 12 Technological Forces That Will Shape Our Future
Khiavi MA, 2019, COLLOID SURFACE A, V572, P333, DOI 10.1016/j.colsurfa.2019.04.019
Li X, 2018, FAGUANGXUEBAO, V39, P96
Li X, 2019, TECHNOL FORECAST SOC, V146, P687, DOI 10.1016/j.techfore.2018.06.004
Li X, 2015, TECHNOL FORECAST SOC, V97, P205, DOI 10.1016/j.techfore.2014.05.007
Li Y, 2008, INT J COMPUT APPL T, V28, P108
Liu XY, 2018, POLYMERS-BASEL, V10, DOI 10.3390/polym10010042
Liu Y, 2017, INFORM FUSION, V36, P149, DOI 10.1016/j.inffus.2016.11.012
Manek AS, 2017, WORLD WIDE WEB, V20, P135, DOI 10.1007/s11280-015-0381-x
Maria L, 2010, P INT C LANG RES EV P INT C LANG RES EV, P2054
Medhat W, 2014, AIN SHAMS ENG J, V5, P1093, DOI 10.1016/j.asej.2014.04.011
Negahdari B, 2019, ARTIF CELL NANOMED B, V47, P469, DOI 10.1080/21691401.2018.1546185
Onan A, 2019, IEEE ACCESS, V7, P145614, DOI 10.1109/ACCESS.2019.2945911
Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006
Serrano-Guerrero J, 2015, INFORM SCIENCES, V311, P18, DOI 10.1016/j.ins.2015.03.040
Severyukhina AN, 2015, ACS APPL MATER INTER, V7, P15466, DOI 10.1021/acsami.5b03696
Sud P, 2014, SCIENTOMETRICS, V98, P1131, DOI 10.1007/s11192-013-1117-2
Tang J, 2014, P 31 INT C MACH LEAR P 31 INT C MACH LEAR, P337
Weilin H., 2018, J. Inf. Resour. Manag., V8, P55
Xu JY, 2015, DYES PIGMENTS, V123, P55, DOI 10.1016/j.dyepig.2015.07.019
Zhou X, 2019, TECHNOL FORECAST SOC, V146, P785, DOI 10.1016/j.techfore.2018.04.026
Zhou X, 2019, SCIENTOMETRICS, V121, P699, DOI 10.1007/s11192-019-03218-5
Zhou X, 2014, NANOMED-NANOTECHNOL, V10, P889, DOI 10.1016/j.nano.2014.03.001
NR 30
TC 6
Z9 7
U1 8
U2 134
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9391
EI 1558-0040
J9 IEEE T ENG MANAGE
JI IEEE Trans. Eng. Manage.
PD OCT
PY 2021
VL 68
IS 5
BP 1360
EP 1371
DI 10.1109/TEM.2020.2994049
PG 12
WC Business; Engineering, Industrial; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Engineering
GA TK4EZ
UT WOS:000674114900013
OA hybrid
DA 2024-09-05
ER
PT C
AU Jung, SW
Datta, R
Segev, A
AF Jung, Sukhwan
Datta, Rituparna
Segev, Aviv
BE Wu, XT
Jermaine, C
Xiong, L
Hu, XH
Kotevska, O
Lu, SY
Xu, WJ
Aluru, S
Zhai, CX
Al-Masri, E
Chen, ZY
Saltz, J
TI Identification and Prediction of Emerging Topics through Their
Relationships to Existing Topics
SO 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)
SE IEEE International Conference on Big Data
LA English
DT Proceedings Paper
CT 8th IEEE International Conference on Big Data (Big Data)
CY DEC 10-13, 2020
CL ELECTR NETWORK
DE Topic Evolution; Topic Prediction; Network-based Topic Modeling;
Scientometric
ID TRENDS; EVOLUTION
AB Understanding the current research topics and their histories allow researchers to focus their capabilities on the current research trends. The field of topic evolution helps the understanding by automatically model and detect the set of shared research fields in the academic papers as topics. The authors propose a novel topic evolution method for identifying and predicting the emergence of new topics under the assumption that neighborhoods of new topics in the future have distinguishable structural features. Eight journals were selected from the Microsoft Academic Graph dataset, each representing topics networks with varying size, history, and research domains. Both retrospective classification and prospective prediction showed promising performance with classifications above 0.89 for six journals and coefficients of determination exceeding 0.95 for five journals. The result showed both the retrospective identification and the prospective prediction can be done, validating the assumption that topic evolution events can be predicted with a network-based approach.
C1 [Jung, Sukhwan; Datta, Rituparna; Segev, Aviv] Univ S Alabama, Dept Comp Sci, Mobile, AL 36688 USA.
C3 University of South Alabama
RP Jung, SW (corresponding author), Univ S Alabama, Dept Comp Sci, Mobile, AL 36688 USA.
EM shjung@southalabama.edu; rdatta@southalabama.edu; segev@southalabama.edu
RI Segev, Aviv/C-2060-2011; Jung, Suk hwan/HIK-1039-2022
CR [Anonymous], 2009, P 2009 SIAM INT C DA
[Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076
[Anonymous], 1998, P DARPA BROADC NEWS
Balili C, 2020, IEEE ACCESS, V8, P108514, DOI 10.1109/ACCESS.2020.3000948
Balili C, 2017, IEEE INT CONF BIG DA, P1694, DOI 10.1109/BigData.2017.8258108
Battistella C, 2014, TECHNOL FORECAST SOC, V87, P60, DOI 10.1016/j.techfore.2013.10.022
Blei D, 2006, P 23 INT C MACH LEAR, P113
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bongers A, 2014, TECHNOL FORECAST SOC, V87, P125, DOI 10.1016/j.techfore.2013.12.007
Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526
Fiscus JG, 2002, KLUW S INF, V12, P17
Gencosman BC, 2014, INFORM PROCESS MANAG, V50, P821, DOI 10.1016/j.ipm.2014.06.005
Guo Z, 2014, IEEE T KNOWL DATA EN, V26, P780, DOI 10.1109/TKDE.2013.56
Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8
Jo Yookyung., 2011, P 20 INT C WORLD WID, P257, DOI DOI 10.1145/1963405.1963444
Jung S., 2013, P ACM INT C INF KNOW, P15, DOI [10.1145/2513549.2513553, DOI 10.1145/2513549.2513553]
Jung S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101040
Jung S, 2016, IEEE INT CONGR BIG, P357, DOI 10.1109/BigDataCongress.2016.57
Jung S, 2014, KNOWL-BASED SYST, V69, P34, DOI 10.1016/j.knosys.2014.04.036
Kay L, 2014, J ASSOC INF SCI TECH, V65, P2432, DOI 10.1002/asi.23146
Kim J, 2017, ACM T INTEL SYST TEC, V8, DOI 10.1145/2898362
Li MN, 2017, J INF SCI, V43, P725, DOI 10.1177/0165551516661914
Liu TY, 2004, IEEE IMAGE PROC, P1617
Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895
Newman NC, 2014, J ENG TECHNOL MANAGE, V32, P97, DOI 10.1016/j.jengtecman.2013.09.001
Ozmutlu HC, 2005, INFORM PROCESS MANAG, V41, P1243, DOI 10.1016/j.ipm.2004.04.018
Ozmutlu S, 2006, INFORM PROCESS MANAG, V42, P934, DOI 10.1016/j.ipm.2005.10.002
PORTER AL, 1995, TECHNOL FORECAST SOC, V49, P237, DOI 10.1016/0040-1625(95)00022-3
Rosvall M, 2008, P NATL ACAD SCI USA, V105, P1118, DOI 10.1073/pnas.0706851105
Segev A, 2015, IEEE T SERV COMPUT, V8, P903, DOI 10.1109/TSC.2014.2338855
Segev A, 2013, IEEE INT CONGR BIG, P419, DOI 10.1109/BigData.Congress.2013.65
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424, DOI [DOI 10.4324/9780203936399.CH21, 10.4324/9780203936399.ch21, DOI 10.1371/JOURNAL.PONE.0073791]
Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045
Yu J, 2005, PLOS BIOL, V3, P266, DOI 10.1371/journal.pbio.0030038
NR 38
TC 7
Z9 7
U1 2
U2 24
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2639-1589
BN 978-1-7281-6251-5
J9 IEEE INT CONF BIG DA
PY 2020
BP 5078
EP 5087
DI 10.1109/BigData50022.2020.9378277
PG 10
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BR6NZ
UT WOS:000662554705020
DA 2024-09-05
ER
PT J
AU Li, DC
Okamoto, J
Liu, HF
Leischow, S
AF Li, Dingcheng
Okamoto, Janet
Liu, Hongfang
Leischow, Scott
TI A bibliometric analysis on tobacco regulation investigators
SO BIODATA MINING
LA English
DT Article
DE Author topic modeling; Bibliometric analysis; Tobacco regulation
science; FDA; Principle investigators
ID SCIENCE
AB Background: To facilitate the implementation of the Family Smoking Prevention and Tobacco Control Act of 2009, the Federal Drug Agency (FDA) Center for Tobacco Products (CTP) has identified research priorities under the umbrella of tobacco regulatory science (TRS). As a newly integrated field, the current boundaries and landscape of TRS research are in need of definition. In this work, we conducted a bibliometric study of TRS research by applying author topic modeling (ATM) on MEDLINE citations published by currently-funded TRS principle investigators (PIs).
Results: We compared topics generated with ATM on dataset collected with TRS PIs and topics generated with ATM on dataset collected with a TRS keyword list. It is found that all those topics show a good alignment with FDA's funding protocols. More interestingly, we can see clear interactive relationships among PIs and between PIs and topics. Based on those interactions, we can discover how diverse each PI is, how productive they are, which topics are more popular and what main components each topic involves. Temporal trend analysis of key words shows the significant evaluation in four prime TRS areas.
Conclusions: The results show that ATM can efficiently group articles into discriminative categories without any supervision. This indicates that we may incorporate ATM into author identification systems to infer the identity of an author of articles using topics generated by the model. It can also be useful to grantees and funding administrators in suggesting potential collaborators or identifying those that share common research interests for data harmonization or other purposes. The incorporation of temporal analysis can be employed to assess the change over time in TRS as new projects are funded and the extent to which new research reflects the funding priorities of the FDA.
C1 [Li, Dingcheng; Liu, Hongfang] Mayo Clin, Dept Biomed Stat & Informat, Rochester, MN 55905 USA.
[Okamoto, Janet; Leischow, Scott] Mayo Clin, Dept Hematol Oncol, Scottsdale, AZ USA.
C3 Mayo Clinic; Mayo Clinic; Mayo Clinic Phoenix
RP Li, DC (corresponding author), Mayo Clin, Dept Biomed Stat & Informat, Rochester, MN 55905 USA.
EM Li.Dingcheng@mayo.edu
RI Liu, Hongfang/ISU-9369-2023
OI Liu, Hongfang/0000-0002-4352-2533
FU NLM NIH HHS [R01 LM009959] Funding Source: Medline
CR Aldworth Jeremy., 2009, Results from the 2007 National Survey on Drug Use and Health: National Findings
Bhattacharya I., 2005, LATENT DIRICHLET MOD
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blot WJ, 2011, JNCI-J NATL CANCER I, V103, P810, DOI 10.1093/jnci/djr102
Dumais ST, 2004, ANNU REV INFORM SCI, V38, P189
Hall KL, 2012, AM J PREV MED, V42, P157, DOI 10.1016/j.amepre.2011.10.011
Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649
Leischow SJ, 2012, NICOTINE TOB RES, V14, P1, DOI 10.1093/ntr/ntr057
Lipscomb CE, 2000, B MED LIBR ASSOC, V88, P265
Mann GS, 2006, OPENING INFORMATION HORIZONS, P65
Mark Steyvers TG, 2014, MATLAB TOPIC MODELIN
McCallum A., 2005, The author-recipient-topic model for topic and role discovery in social networks: Experiments with enron and academic email,"
McCallum A., 1999, AAAI 99 WORKSH TEXT, P1
McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit
Newman12 D, TOPIC MODELS INTERPR
Porter M. F, 2001, Snowball: A language for stemming algorithms
Rosen-Zvi Michal., 2004, UAI
Sonnenwald DH, 2007, ANNU REV INFORM SCI, V41, P643, DOI 10.1002/aris.2007.1440410121
Steyvers M., 2004, Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), P306, DOI [10.1145/1014052.1014087, 10.1145/1014052, DOI 10.1145/1014052]
Taylor JB, 2011, J ECON LIT, V49, P686, DOI 10.1257/jel.49.3.686
Troy JD, 2013, CANC EPIDEMIOLOGY
Turney PD, 2010, J ARTIF INTELL RES, V37, P141, DOI 10.1613/jair.2934
Wheat LA, 2011, ARTERIOSCL THROM VAS, V31, P1598, DOI 10.1161/ATVBAHA.111.227124
NR 23
TC 7
Z9 7
U1 0
U2 14
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1756-0381
J9 BIODATA MIN
JI BioData Min.
PD MAR 21
PY 2015
VL 8
AR 11
DI 10.1186/s13040-015-0043-7
PG 20
WC Mathematical & Computational Biology
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Mathematical & Computational Biology
GA CI1NA
UT WOS:000354509700001
PM 25984237
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU DeStefano, I
Oey, LA
Brockbank, E
Vul, E
AF DeStefano, Isabella
Oey, Lauren A.
Brockbank, Erik
Vul, Edward
TI Integration by Parts: Collaboration and Topic Structure in the CogSci
Community
SO TOPICS IN COGNITIVE SCIENCE
LA English
DT Article
DE Co‐ authorship networks; Topic modeling; Interdisciplinarity;
Multidisciplinarity; Scientometrics
ID COGNITIVE SCIENCE; NETWORK; INFORMATION; GROWTH
AB Is cognitive science interdisciplinary or multidisciplinary? We contribute to this debate by examining the authorship structure and topic similarity of contributions to the Cognitive Science Society from 2000 to 2019. Our analysis focuses on graph theoretic features of the co-authorship network-edge density, transitivity, and maximum subgraph size-as well as clustering within the space of scientific topics. We also combine structural and semantic information with an analysis of how authors choose their collaborators based on their interests and prior collaborations. We compare findings from CogSci to abstracts from the Vision Science Society over the same time frame and validate our approach by predicting new collaborations in the 2020 CogSci proceedings. Our results suggest that collaboration across authors and topics within cognitive science has become increasingly integrated in the last 19 years. More broadly, we argue that a formal quantitative approach which combines structural co-authorship information and semantic topic analysis provides inroads to questions about the level of interdisciplinary collaboration in a scientific community.
C1 [DeStefano, Isabella; Oey, Lauren A.; Brockbank, Erik; Vul, Edward] Univ Calif San Diego, Dept Psychol, 9500 Gilman Dr, La Jolla, CA 92093 USA.
C3 University of California System; University of California San Diego
RP DeStefano, I; Oey, LA (corresponding author), Univ Calif San Diego, Dept Psychol, 9500 Gilman Dr, La Jolla, CA 92093 USA.
EM idestefa@ucsd.edu; loey@ucsd.edu
OI Oey, Lauren/0000-0002-4959-5135; Brockbank, Erik/0000-0001-8702-239X
FU UCSD Research Grant [RG095178]; NSF Graduate Research Fellowship
[DGE-1650112]
FX We thank Rafael Nunez, Carson Miller Rigoli, Michael Allen, and Richard
Gao for helpful discussion. We also thank Jamal Williams and Hayden
Schill for their assistance with an earlier version of the analyses
presented here. Finally, we thank the CogSci 2020 organizers for
graciously sharing an early list of the authors published in the 2020
proceedings. This material is based upon work supported by a UCSD
Research Grant to I.D., the NSF Graduate Research Fellowship under Grant
No. DGE-1650112 to L.A.O. and UCSD Research Grant No. RG095178 to E.B.
CR Acedo FJ, 2006, J MANAGE STUD, V43, P957, DOI 10.1111/j.1467-6486.2006.00625.x
Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7
Bender A, 2019, TOP COGN SCI, V11, P853, DOI 10.1111/tops.12464
Bergmann T, 2017, COGNITIVE SCI, V41, P1412, DOI 10.1111/cogs.12352
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Chater N, 1999, TRENDS COGN SCI, V3, P57, DOI 10.1016/S1364-6613(98)01273-X
Feng SH, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64351-3
Goldstone RL, 2006, COGNITIVE SCI, V30, P983, DOI 10.1207/s15516709cog0000_96
Gopnik A, 2000, CHILD DEV, V71, P1205, DOI 10.1111/1467-8624.00224
Gowanlock M, 2013, SCIENTOMETRICS, V94, P133, DOI 10.1007/s11192-012-0765-y
Gray WD, 2019, TOP COGN SCI, V11, P838, DOI 10.1111/tops.12471
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100
Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898
Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2
Núñez R, 2020, TOP COGN SCI, V12, P790, DOI 10.1111/tops.12511
Núñez R, 2019, NAT HUM BEHAV, V3, P782, DOI 10.1038/s41562-019-0626-2
Parinov S, 2014, SCIENTOMETRICS, V98, P927, DOI 10.1007/s11192-013-1108-3
Porter AL, 2007, SCIENTOMETRICS, V72, P117, DOI 10.1007/s11192-007-1700-5
Porter AL, 2009, SCIENTOMETRICS, V81, P719, DOI 10.1007/s11192-008-2197-2
Priva UC, 2015, COGNITION, V135, P4, DOI 10.1016/j.cognition.2014.11.006
Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y
Ravikumar S, 2015, SCIENTOMETRICS, V102, P929, DOI 10.1007/s11192-014-1402-8
Roberts Margaret E., 2014, Journal of Statistical Software, V10, P1, DOI [DOI 10.18637/JSS.V000.I00, 10.18637/jss.v091.i02]
Rothe A., 2018, Proceedings of the 40th Annual Conference of the Cognitive Science Society, P979
Rumelhart D., 1986, Explorations in the Microstructure of Cognition: Foundations, P318, DOI 10.1016/b978-1-4832-1446-7.50035-2
Schunn CD, 1998, COGNITIVE SCI, V22, P107, DOI 10.1207/s15516709cog2201_4
SWETS JA, 1988, SCIENCE, V240, P1285, DOI 10.1126/science.3287615
Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004
Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002
NR 30
TC 4
Z9 5
U1 0
U2 5
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1756-8757
EI 1756-8765
J9 TOP COGN SCI
JI Top. Cogn. Sci.
PD APR
PY 2021
VL 13
IS 2
SI SI
BP 399
EP 413
DI 10.1111/tops.12526
EA MAR 2021
PG 15
WC Psychology, Experimental
WE Social Science Citation Index (SSCI)
SC Psychology
GA RU2QQ
UT WOS:000630752600001
PM 33742776
OA Bronze
DA 2024-09-05
ER
PT J
AU Dantu, R
Dissanayake, I
Nerur, S
AF Dantu, Ramakrishna
Dissanayake, Indika
Nerur, Sridhar
TI Exploratory Analysis of Internet of Things (IoT) in Healthcare: A Topic
Modelling & Co-citation Approaches
SO INFORMATION SYSTEMS MANAGEMENT
LA English
DT Article
DE Internet of things; healthcare; topic modeling; author co-citation;
smart health
ID MONITORING-SYSTEM; BIG DATA; SENSOR; INTEGRATION; MEDICINE; CITATION
AB Internet of Things (IoT) have made a significant impact in healthcare domain. The purpose of this study is to unravel key themes latent in the academic literature on IoT applications in healthcare. Using topic modeling and author co-citation techniques, we identified five dominant clusters of research. Our results show that research in healthcare IoT has mainly focused on the technical aspects with little attention to social concerns. Our paper provides directions for future research.
C1 [Dantu, Ramakrishna] Calif State Univ Sacramento, Informat Syst & Business Analyt Dept, Sacramento, CA 95819 USA.
[Dissanayake, Indika] Univ N Carolina, Dept Informat Syst & Supply Chain Management, Greensboro, NC USA.
[Nerur, Sridhar] Univ Texas Arlington, Dept Informat Syst & Operat Management, Arlington, TX 76019 USA.
C3 California State University System; California State University
Sacramento; University of North Carolina; University of North Carolina
Greensboro; University of Texas System; University of Texas Arlington
RP Dantu, R (corresponding author), Calif State Univ Sacramento, Coll Business Adm, Informat Syst & Business Analyt Dept, 6000 J St, Sacramento, CA 95819 USA.
EM Ramakrishna.dantu@csus.edu
CR A. W.S Marketplace, 2019, MON REM PAT HLTH APP
Alaiad A, 2017, IEEE T PROF COMMUN, V60, P4, DOI 10.1109/TPC.2016.2632822
Aldossari MQ, 2020, J COMPUT INFORM SYST, V60, P507, DOI 10.1080/08874417.2018.1543000
Ali Z, 2017, IEEE ACCESS, V5, P3900, DOI 10.1109/ACCESS.2017.2680467
Ammar M, 2018, J INF SECUR APPL, V38, P8, DOI 10.1016/j.jisa.2017.11.002
An R., 2016, LECT NOTES DATA ENG, V2
[Anonymous], 2014, CHIN PAT
[Anonymous], 2015, Data Science from Scratch, First Principles with Python
[Anonymous], 2016, EX OV PRIV SEC HLTH
[Anonymous], 2017, Gartner says 8.4 billion connected "things" will be inuse in 2017, up 31 percent from 2016
Bauer Harald., 2014, The Internet of Things: Sizing up the opportunity
Bibani O, 2016, INT CONF CLOUD COMP, P472, DOI [10.1109/CloudCom.2016.0081, 10.1109/CloudCom.2016.79]
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Botta A, 2016, FUTURE GENER COMP SY, V56, P684, DOI 10.1016/j.future.2015.09.021
Cai HM, 2017, IEEE INTERNET THINGS, V4, P75, DOI 10.1109/JIOT.2016.2619369
Catalyst N., 2018, NEJM CATAL, V4, DOI [10.1056/CAT.18.0290?targetBtn=articleToolSaveBtn, DOI 10.1056/CAT.18.0290?TARGETBTN=ARTICLETOOLSAVEBTN]
Catarinucci L, 2015, IEEE INTERNET THINGS, V2, P515, DOI 10.1109/JIOT.2015.2417684
Cavaleri S., 1993, MANAGEMENT SYSTEMS G
Chen M, 2017, IEEE COMMUN MAG, V55, P54, DOI 10.1109/MCOM.2017.1600410CM
Chen M, 2016, MOBILE NETW APPL, V21, P825, DOI 10.1007/s11036-016-0745-1
Chen M, 2011, MOBILE NETW APPL, V16, P171, DOI 10.1007/s11036-010-0260-8
Darwish A, 2011, SENSORS-BASEL, V11, P5561, DOI 10.3390/s110605561
Diegmann P., 2018, PROC INT CONF INFORM
Dimitrov DV, 2016, HEALTHC INFORM RES, V22, P156, DOI 10.4258/hir.2016.22.3.156
Dinl S, 2015, I CONF SENS TECHNOL, P677, DOI 10.1109/ICSensT.2015.7438483
Econsultancy, 2019, INTERNET THINGS HEAL
Fan YJ, 2014, IEEE T IND INFORM, V10, P1568, DOI 10.1109/TII.2014.2302583
Fortino G, 2014, WIREL NETW, V20, P1925, DOI 10.1007/s11276-014-0714-1
Fu Y, 2015, PROCEDIA MANUF, V3, P1187, DOI 10.1016/j.promfg.2015.07.197
Greer C., 2019, SPECIAL PUBLICATION, DOI [10.6028/NIST.SP.1900-202, DOI 10.6028/NIST.SP.1900-202]
Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010
Tran HA, 2017, INT CONF KNOWL SYS, P1, DOI 10.1109/KSE.2017.8119425
He DB, 2015, IEEE INTERNET THINGS, V2, P72, DOI 10.1109/JIOT.2014.2360121
HealthIT.Gov, 2019, HIPAA BAS PRIV SEC
Hofmann T, 2001, MACH LEARN, V42, P177, DOI 10.1023/A:1007617005950
Hossain MS, 2016, COMPUT NETW, V101, P192, DOI 10.1016/j.comnet.2016.01.009
Ishii H, 2016, PROCEDIA COMPUT SCI, V96, P1332, DOI 10.1016/j.procs.2016.08.178
Islam SMR, 2015, IEEE ACCESS, V3, P678, DOI 10.1109/ACCESS.2015.2437951
Ismail NHAB, 2014, 2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND TECHNOLOGY (ICCST)
Istepanian RSH, 2011, IEEE ENG MED BIO, P5264, DOI 10.1109/IEMBS.2011.6091302
Jara A. J., 2012, LECT NOTES COMPUTER, V7657, DOI [10.1007/978-3-642-35395-6_34, DOI 10.1007/978-3-642-35395-6_34]
Jara AJ, 2011, PERS UBIQUIT COMPUT, V15, P431, DOI 10.1007/s00779-010-0353-1
Jovanov E, 2011, J MED SYST, V35, P1245, DOI 10.1007/s10916-011-9661-x
Kalis B., 2017, ACCENTURE 2017 INTER
Kario K, 2017, PROG CARDIOVASC DIS, V60, P435, DOI 10.1016/j.pcad.2017.10.002
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
KIM JH, 2017, J IND INTEGR MANAG, V2, DOI DOI 10.1142/S2424862217500117
Krawiec R., 2015, No appointment necessary: How the IoT and patient-generated data can unlock health care value-The Internet of Things in health care
Kumaresh S., 2016, INT C EL EL OPT TECH
Kwon MC, 2017, INT CONF UBIQ FUTUR, P735
Laplante PA, 2018, IEEE SYST J, V12, P3030, DOI 10.1109/JSYST.2017.2662602
Lee S, 2010, J COMPUT INFORM SYST, V51, P1
Li CT, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17071482
Li SC, 2018, J IND INF INTEGR, V10, P1, DOI 10.1016/j.jii.2018.01.005
Liang X, 2011, DIABETIC MED, V28, P455, DOI 10.1111/j.1464-5491.2010.03180.x
Lin J, 2017, IEEE INTERNET THINGS, V4, P1125, DOI 10.1109/JIOT.2017.2683200
Malvade PS, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA)
Manning C. D., 2008, INTRO INFORM RETRIEV
Mansuri S, 2018, HEALTHWORKS COL 1120
McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit
Nagao T, 2016, PROCEEDINGS OF THE 18TH INTERNATIONAL SYMPOSIUM ON PRINCIPLES AND PRACTICE OF DECLARATIVE PROGRAMMING (PPDP 2016), P50, DOI 10.1145/2967973.2968598
Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659
Ng CK, 2018, ENTERP INF SYST-UK, V12, P820, DOI 10.1080/17517575.2018.1464666
Qin Z, 2017, MOB INF SYST, V2017, DOI 10.1155/2017/7514867
Rathore MM, 2017, ACM T INTERNET TECHN, V18, DOI 10.1145/3108936
Roy A, 2016, PROCEDIA ENGINEER, V159, P199, DOI 10.1016/j.proeng.2016.08.159
Sahi MA, 2018, IEEE ACCESS, V6, P464, DOI 10.1109/ACCESS.2017.2767561
Sareen S, 2017, ENTERP INF SYST-UK, V11, P1436, DOI 10.1080/17517575.2016.1277558
Sarkar S, 2017, IEEE COMMUN LETT, V21, P2492, DOI 10.1109/LCOMM.2017.2739141
Shahamabadi MS, 2016, 2016 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI), P305, DOI 10.1109/IIKI.2016.110
Sircar S, 2001, MIS QUART, V25, P457, DOI 10.2307/3250991
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Sood SK, 2017, COMPUT IND, V91, P33, DOI 10.1016/j.compind.2017.05.006
Staff, 2015, INTERNET THINGS PRIV
Statista, 2018, IOT NUMB CONN DEV WO
Sun J, 2016, AGING DIS, V7, DOI 10.14336/AD.2015.1011
Takamiya Makoto, 2015, 2015 International Symposium on VLSI Design, Automation and Test (VLSI-DAT). Proceedings, P1, DOI 10.1109/VLSI-DAT.2015.7114542
Taylor J, 2017, INFORM SYST MANAGE, V34, P105, DOI 10.1080/10580530.2017.1288521
Tyagi S, 2016, 2016 6TH INTERNATIONAL CONFERENCE - CLOUD SYSTEM AND BIG DATA ENGINEERING (CONFLUENCE), P503, DOI 10.1109/CONFLUENCE.2016.7508172
Ukil A, 2016, INT CON ADV INFO NET, P994, DOI 10.1109/AINA.2016.158
US Department of Health and Human Services, 2019, HLTH INF PRIV
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Varshney U, 2014, DECIS SUPPORT SYST, V66, P20, DOI 10.1016/j.dss.2014.06.001
Versel N., 2013, INFORMATIONWEEK
Walter C, 2013, KNOWL MAN RES PRACT, V11, P221, DOI 10.1057/kmrp.2013.25
Wang NX, 2016, DECIS SUPPORT SYST, V86, P35, DOI 10.1016/j.dss.2016.03.006
Whitmore A, 2015, INFORM SYST FRONT, V17, P261, DOI 10.1007/s10796-014-9489-2
Xu BY, 2014, IEEE T IND INFORM, V10, P1578, DOI 10.1109/TII.2014.2306382
Xu L., 2014, IEEE Transactions on Industrial Informatics, P1, DOI [DOI 10.1109/TII.2014.2300753, 10.1109/TII.2014.2300753]
Xu W., 2003, INT ACM SIGIR C RES, P267, DOI DOI 10.1145/860435.860485
Yan HR, 2015, J MANAG ANAL, V2, P121, DOI 10.1080/23270012.2015.1029550
Yang G, 2014, IEEE T IND INFORM, V10, P2180, DOI 10.1109/TII.2014.2307795
Yang P, 2018, IEEE T SYST MAN CY-S, V48, P50, DOI 10.1109/TSMC.2016.2586075
Yean S, 2016, 7TH IEEE ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE IEEE IEMCON-2016
Yin YH, 2016, J IND INF INTEGR, V1, P3, DOI 10.1016/j.jii.2016.03.004
Zanella A, 2014, IEEE INTERNET THINGS, V1, P22, DOI 10.1109/JIOT.2014.2306328
Zhang L, 2016, J MED SYST, V40, DOI [10.1007/s10916-016-0480-y, 10.1007/s10916-016-0644-9]
Zhikun Deng, 2015, 2015 IEEE International Conferences on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; and Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM). Proceedings, P2315, DOI 10.1109/CIT/IUCC/DASC/PICOM.2015.342
Zicari R, 2016, EXPLOSION BIG DATA H
NR 100
TC 25
Z9 29
U1 0
U2 27
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 1058-0530
EI 1934-8703
J9 INFORM SYST MANAGE
JI Inf. Syst. Manage.
PD JAN 2
PY 2021
VL 38
IS 1
BP 62
EP 78
DI 10.1080/10580530.2020.1746982
EA APR 2020
PG 17
WC Computer Science, Information Systems
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA PC3BG
UT WOS:000528370200001
DA 2024-09-05
ER
PT J
AU Dobos, I
Halmai, P
Sasvári, P
AF Dobos, Imre
Halmai, Peter
Sasvari, Peter
TI Compilation of an International Journal List in the HAS IX. Section of
the Doctoral Committee for Economics and Management
SO PUBLIC FINANCE QUARTERLY-HUNGARY
LA English
DT Article
DE scientometrics; list of journals; linear regression
AB Only some of the Sections of the Hungarian Academy of Sciences (HAS) compile a list of journals. One of these is the IX Section of Economics and Law of the MTA. The section(sic)s doctoral committees evaluate candidates for the title of Doctor of the Academy of Sciences on the basis of eight lists of journals. The lists are generally stable in the sense that they remain unchanged for about five years, but renewal of the lists becomes necessary from time to time. In this publication, we describe the process of renewing the list of journals of the Qualification Committee for Doctoral Candidates in Economics and Management, Section IX of the Academy of Sciences, from the method of compiling the list of journals to the statistical methods used to determine the A, B, C, and D.
C1 [Dobos, Imre; Halmai, Peter] Budapest Univ Technol & Econ, Fac Econ & Social Sci, Budapest, Hungary.
[Halmai, Peter] Hungarian Acad Sci, Budapest, Hungary.
[Halmai, Peter; Sasvari, Peter] Univ Publ Serv, Fac Publ Governance & Int Stud, Budapest, Hungary.
[Sasvari, Peter] Univ Miskolc, Fac Mech Engn & Informat, Miskolc, Hungary.
C3 Budapest University of Technology & Economics; Hungarian Academy of
Sciences; Ludovika University of Public Service; University of Miskolc
RP Sasvári, P (corresponding author), Univ Publ Serv, Fac Publ Governance & Int Stud, Budapest, Hungary.; Sasvári, P (corresponding author), Univ Miskolc, Fac Mech Engn & Informat, Miskolc, Hungary.
EM dobos.imre@gtk.bme.hu; halmai.peter@gtk.bme.hu; sasvari.peter@uni-nke.hu
RI Dobos, Imre/A-5180-2013; Sasvari, Peter/B-5149-2013
OI Dobos, Imre/0000-0001-6248-2920; Sasvari, Peter/0000-0002-4031-4843
CR [Anonymous], 2019, AZ MTA GAZDASAGES JO
Clarivate, J CIT IND
Clarivate, Essential science indicators: learn the basics
Clarivate, Journal Citation Reports
Csaba L., 2014, MAGYAR TUDOMANY, P442
Dobos I., 2022, MAGYAR TUDOMANY, V183, P495
Guerrero-Bote VP, 2012, J INFORMETR, V6, P674, DOI 10.1016/j.joi.2012.07.001
Harzing A-W, 2022, Journal Quality List
SCImago, SJR SCIMAGO J COUNTR
WU-Wirstchaftsuniversitat Wien, 2021, J RATINGS PERFORMANC
Zalai E., 2006, KOZGAZDASAGI SZEMLE, V53, P380
NR 11
TC 0
Z9 0
U1 0
U2 2
PU CORVINUS UNIV BUDAPEST
PI BUDAPEST
PA VILLANYI UT 29/43, BUDAPEST, H-1118, HUNGARY
SN 0031-496X
EI 2064-8278
J9 PUBLIC FINANC Q-HUNG
JI Public Financ. Q.-Hung.
PY 2023
VL 69
IS 2
BP 67
EP 80
DI 10.35551/PFQ_2023_2_4
PG 14
WC Business, Finance
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA P6FB1
UT WOS:001051602100007
OA Green Accepted, Bronze
DA 2024-09-05
ER
PT J
AU Jung, S
Segev, A
AF Jung, Sukhwan
Segev, Aviv
TI Analyzing the generalizability of the network-based topic emergence
identification method
SO SEMANTIC WEB
LA English
DT Article
DE Topic evolution; topic prediction; network-based topic modeling;
scientometrics
ID TRENDS
AB Topic evolution helps the understanding of current research topics and their histories by automatically modeling and detecting the set of shared research fields in academic publications as topics. This paper provides a generalized analysis of the topic evolution method for predicting the emergence of new topics, which can operate on any dataset where the topics are defined as the relationships of their neighborhoods in the past by extrapolating to the future topics. Twenty sample topic networks were built with various fields-of-study keywords as seeds, covering domains such as business, materials, diseases, and computer science from the Microsoft Academic Graph dataset. The binary classifier was trained for each topic network using 15 structural features of emerging and existing topics and consistently resulted in accuracy and F1 over 0.91 for all twenty datasets over the periods of 2000 to 2019. Feature selection showed that the models retained most of the performance with only one-third of the tested features. Incremental learning was tested within the same topic over time and between different topics, which resulted in slight performance improvements in both cases. This indicates there is an underlying pattern to the neighbors of new topics common to research domains, likely beyond the sample topics used in the experiment. The result showed that network-based new topic prediction can be applied to various research domains with different research patterns.
C1 [Jung, Sukhwan; Segev, Aviv] Univ S Alabama, Dept Comp Sci, 150 Student Serv Dr, Mobile, AL 36608 USA.
C3 University of South Alabama
RP Jung, S (corresponding author), Univ S Alabama, Dept Comp Sci, 150 Student Serv Dr, Mobile, AL 36608 USA.
EM shjung@southalabama.edu
RI Jung, Suk hwan/HIK-1039-2022; Segev, Aviv/C-2060-2011
CR Allan J, 1998, TOPIC DETECTION TRAC, DOI [DOI 10.1184/R1/6626252.V1, 10.1184/R1/6626252. v1]
[Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076
Balili C, 2017, IEEE INT CONF BIG DA, P1694, DOI 10.1109/BigData.2017.8258108
Battistella C, 2014, TECHNOL FORECAST SOC, V87, P60, DOI 10.1016/j.techfore.2013.10.022
Blei D, 2006, P 23 INT C MACH LEAR, P113
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bongers A, 2014, TECHNOL FORECAST SOC, V87, P125, DOI 10.1016/j.techfore.2013.12.007
Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
Dieng AB, 2020, T ASSOC COMPUT LING, V8, P439, DOI 10.1162/tacl_a_00325
Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526
Fiscus JG, 2002, KLUW S INF, V12, P17
Gencosman BC, 2014, INFORM PROCESS MANAG, V50, P821, DOI 10.1016/j.ipm.2014.06.005
Gohr Andrll., 2009, SDM, P859, DOI DOI 10.1137/1.9781611972795.74
Guo Z, 2014, IEEE T KNOWL DATA EN, V26, P780, DOI 10.1109/TKDE.2013.56
Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8
Jo Yookyung., 2011, P 20 INT C WORLD WID, P257, DOI DOI 10.1145/1963405.1963444
Jung S., 2013, P ACM INT C INF KNOW, P15, DOI [10.1145/2513549.2513553, DOI 10.1145/2513549.2513553]
Jung SW, 2020, IEEE INT CONF BIG DA, P5078, DOI 10.1109/BigData50022.2020.9378277
Jung S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101040
Jung S, 2016, IEEE INT CONGR BIG, P357, DOI 10.1109/BigDataCongress.2016.57
Jung S, 2014, KNOWL-BASED SYST, V69, P34, DOI 10.1016/j.knosys.2014.04.036
Kay L, 2014, J ASSOC INF SCI TECH, V65, P2432, DOI 10.1002/asi.23146
Li MN, 2017, J INF SCI, V43, P725, DOI 10.1177/0165551516661914
Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895
Newman NC, 2014, J ENG TECHNOL MANAGE, V32, P97, DOI 10.1016/j.jengtecman.2013.09.001
Osborne F, 2017, K-CAP 2017: PROCEEDINGS OF THE KNOWLEDGE CAPTURE CONFERENCE, DOI 10.1145/3148011.3148080
Ozmutlu HC, 2005, INFORM PROCESS MANAG, V41, P1243, DOI 10.1016/j.ipm.2004.04.018
Ozmutlu S, 2006, INFORM PROCESS MANAG, V42, P934, DOI 10.1016/j.ipm.2005.10.002
Parés F, 2018, STUD COMPUT INTELL, V689, P229, DOI 10.1007/978-3-319-72150-7_19
PORTER AL, 1995, TECHNOL FORECAST SOC, V49, P237, DOI 10.1016/0040-1625(95)00022-3
Salatino AA, 2019, LECT NOTES COMPUT SC, V11799, P296, DOI 10.1007/978-3-030-30760-8_26
Salatino AA, 2018, ACM-IEEE J CONF DIG, P303, DOI 10.1145/3197026.3197052
Salatino AA, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.119
Segev A, 2015, IEEE T SERV COMPUT, V8, P903, DOI 10.1109/TSC.2014.2338855
Segev A, 2013, IEEE INT CONGR BIG, P419, DOI 10.1109/BigData.Congress.2013.65
Shen ZH, 2018, 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P87
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Steyvers Mark, 2007, Handbook of latent semantic analysis, V427, P424
Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045
Zhang J., 2004, ADV NEURAL INFORM PR
Zhu CY, 1997, ACM T MATH SOFTWARE, V23, P550, DOI 10.1145/279232.279236
NR 43
TC 6
Z9 6
U1 1
U2 19
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 1570-0844
EI 2210-4968
J9 SEMANT WEB
JI Semant. Web
PY 2022
VL 13
IS 3
BP 423
EP 439
DI 10.3233/SW-212951
PG 17
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 0J3YH
UT WOS:000780041500007
OA hybrid
DA 2024-09-05
ER
PT J
AU Li, R
Wang, XD
Lei, L
Wu, CM
AF Li, Rui
Wang, Xiaodan
Lei, Lei
Wu, Chongming
TI Representation learning by hierarchical ELM auto-encoder with double
random hidden layers
SO IET COMPUTER VISION
LA English
DT Article
DE learning (artificial intelligence); pattern classification; random
hidden mapping layers; output layer; decoding feature; stacking DELM-AE;
hierarchical structure; H-DELM model; feature representation; original
input information; original input data; expressive feature; compact
feature; deep learning algorithms; extreme learning machine; multilayer
network architecture lead; extremely fast training speed; expressive
representation learning method; hierarchical ELM; H-ELM; novel
architectural unit; double random hidden layers ELM; auto-encoder; novel
DELM-AE; research developments; relevant multilayer ELM
ID EXTREME; MACHINE; NETWORKS
AB Recent research developments of extreme learning machine (ELM) with multilayer network architecture lead to a promising high performance with extremely fast training speed for representation learning. In this work, the authors are dedicated to develop an efficient and expressive representation learning method with hierarchical ELM, and proposing a novel architectural unit named as double random hidden layers ELM auto-encoder (DELM-AE). The novel DELM-AE consists of one input layer, two random hidden mapping layers for encoding feature, and one output layer for decoding feature. When stacking DELM-AE in the hierarchical structure, they can construct an H-DELM model, where the input of the current AE is the feature representation learned by the previous one, but the output is identical to the original input information and is not the input. Hence, the H-DELM can reproduce the original input data as much as possible to learn more expressive and compact feature. They validate their method on various widely public datasets, and the results demonstrate that H-DELM can bring significant performance improvements in terms of classification accuracy and robustness compared with existing relevant multilayer ELM and other deep learning algorithms at a slight computational cost.
C1 [Li, Rui; Wang, Xiaodan; Lei, Lei] Air Force Engn Univ, Coll Air & Missile Def, Xian 710051, Shanxi, Peoples R China.
[Wu, Chongming] Xijing Univ, Coll Business, Xian 710123, Shanxi, Peoples R China.
C3 Air Force Engineering University; Xijing University
RP Wang, XD (corresponding author), Air Force Engn Univ, Coll Air & Missile Def, Xian 710051, Shanxi, Peoples R China.
EM afeu_wang@163.com
RI Li, June/JEF-1173-2023; wang, xiao/HZI-9156-2023; Wu,
Chongming/AAQ-9085-2021
OI Li, Rui/0000-0003-1770-906X
FU National Natural Science Foundation of China [61876189, 61806219,
61503407, 61703426, 61273275]
FX This work was supported by the National Natural Science Foundation of
China under Grants nos. 61876189, 61806219, 61503407, 61703426, and
61273275.
CR Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50
Bengio Y, 2009, FOUND TRENDS MACH LE, V2, P1, DOI 10.1561/2200000006
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Chen L, 2018, MOL GENET GENOMICS, V293, P137, DOI 10.1007/s00438-017-1372-7
Guo YM, 2016, NEUROCOMPUTING, V187, P27, DOI 10.1016/j.neucom.2015.09.116
He B, 2014, COGN COMPUT, V6, P264, DOI 10.1007/s12559-013-9224-1
Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647
Huang G, 2015, NEURAL NETWORKS, V61, P32, DOI 10.1016/j.neunet.2014.10.001
Huang GB, 2006, NEUROCOMPUTING, V70, P489, DOI 10.1016/j.neucom.2005.12.126
Huang GB, 2006, IEEE T NEURAL NETWOR, V17, P879, DOI 10.1109/TNN.2006.875977
Huang GB, 2015, COGN COMPUT, V7, P263, DOI 10.1007/s12559-015-9333-0
Huang GB, 2012, IEEE T SYST MAN CY B, V42, P513, DOI 10.1109/TSMCB.2011.2168604
Huang MX, 2016, J APPL ANAL COMPUT, V6, P376, DOI 10.11948/2016029
Huang ZY, 2017, IEEE T CYBERNETICS, V47, P920, DOI 10.1109/TCYB.2016.2533424
Jiang XJ, 2013, 2013 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), P256, DOI 10.1109/ICACI.2013.6748512
Kasun LLC, 2013, IEEE INTELL SYST, V28, P31
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Liou CY, 2014, NEUROCOMPUTING, V139, P84, DOI 10.1016/j.neucom.2013.09.055
Ma Z., 2017, NEURAL PROCESS LETT, V44, P1
Meng LH, 2017, INT J MACH LEARN CYB, V8, P1719, DOI 10.1007/s13042-016-0550-y
RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0
Salakhutdinov R., 2009, Deep boltzmann machines, V5, P448
Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003
Song G, 2017, KNOWL-BASED SYST, V134, P31, DOI 10.1016/j.knosys.2017.07.014
Sun K, 2017, NEUROCOMPUTING, V230, P374, DOI 10.1016/j.neucom.2016.12.027
Tang JX, 2016, IEEE T NEUR NET LEAR, V27, P809, DOI 10.1109/TNNLS.2015.2424995
Vincent P, 2010, J MACH LEARN RES, V11, P3371
Wang YS, 2016, NEUROCOMPUTING, V184, P232, DOI 10.1016/j.neucom.2015.08.104
Yang YM, 2016, IEEE T CYBERNETICS, V46, P2570, DOI 10.1109/TCYB.2015.2481713
Yao L, 2018, IEEE T IND ELECTRON, V65, P1490, DOI 10.1109/TIE.2017.2733448
Yu WC, 2015, NEUROCOMPUTING, V149, P308, DOI 10.1016/j.neucom.2014.03.077
Yu Y, 2012, IEEE T AUTOM SCI ENG, V9, P276, DOI 10.1109/TASE.2011.2173800
Zhang N, 2016, NEUROCOMPUTING, V171, P1066, DOI 10.1016/j.neucom.2015.07.058
NR 33
TC 9
Z9 9
U1 0
U2 24
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1751-9632
EI 1751-9640
J9 IET COMPUT VIS
JI IET Comput. Vis.
PD JUN
PY 2019
VL 13
IS 4
BP 411
EP 419
DI 10.1049/iet-cvi.2018.5590
PG 9
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA IG7TO
UT WOS:000474000800007
OA Bronze
DA 2024-09-05
ER
PT J
AU Kawamura, T
Egami, S
AF Kawamura, Takahiro
Egami, Shusaku
TI Bilingual Textual Similarity in Scientific Documents
SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
LA English
DT Article
DE Artificial intelligence; bibliometrics; semantic web; text mining
ID INFORMATION
AB Y Maps of science visualizing the structure of science help us analyze the current spread of science, technology, and innovation (ST&I). ST&I enterprises can use the maps of science as competitive technical intelligence to anticipate changes, especially those initiated in their immediate vicinity. Research laboratories and universities can understand their environmental changes and use the map for their research management. However, traditional maps based on bibliometrics, such as citation and cocitation, have difficulty in representing recently published papers and ongoing projects that have few or no references; thus, maps based on contents, i.e., text-mining, have been developed in recent years for locating research papers/projects, for example, using word and paragraph vectors. The content-based maps, however, still pose difficulty in comparing documents in different languages. Therefore, aiming to construct a bilingual (English and Japanese) content-based map of science for the analyses of ST&I information resources in different languages, this article proposes a method for creating word and paragraph vectors corresponding to bilingual textual information in the same multidimensional space. In a comparison of 11 methods for generating document vectors, we confirmed that the best method achieved 87% accuracy of the bilingual content matching based on 10 000 IEEE papers. Finally, we published a map of approximately 150 000 funding projects of the National Science Foundation, Japan Society for the Promotion of Science, and Japan Science and Technology agency from 2013 to 2017.
C1 [Kawamura, Takahiro] Natl Agr & Food Res Org, Tokyo 1000013, Japan.
[Kawamura, Takahiro] Japan Sci & Technol Agcy, Tokyo 1028666, Japan.
[Egami, Shusaku] Natl Inst Maritime Port & Aviat Technol, Tokyo 1820012, Japan.
C3 National Agriculture & Food Research Organization - Japan; Japan Science
& Technology Agency (JST)
RP Kawamura, T (corresponding author), Natl Agr & Food Res Org, Tokyo 1000013, Japan.
EM takahiro.kawamura@affrc.go.jp; s-egami@mpat.go.jp
RI Egami, Shusaku/R-6180-2019
OI Egami, Shusaku/0000-0002-3821-6507; Kawamura,
Takahiro/0000-0002-2765-6232
CR Ahlgren P, 2009, J INFORMETR, V3, P49, DOI 10.1016/j.joi.2008.11.003
[Anonymous], 2015, VS@ HLT-NAACL
[Anonymous], 2014, ADV NEURAL INFORM PR
[Anonymous], 2009, Science of science (Sci2) tool
[Anonymous], 2013, COMPUTER SCI
[Anonymous], 2015, P 2015 INT C N AM CH
[Anonymous], 1957, STUDIES LINGUISTIC A
Archambault É, 2011, PRO INT CONF SCI INF, P66
Bérard A, 2016, LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P4188
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boyack KW, 2013, J AM SOC INF SCI TEC, V64, P1759, DOI 10.1002/asi.22896
Boyack KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018029
Cer D., 2017, SEMEVAL ACL, P1, DOI DOI 10.18653/V1/S17-2001
Fillmore C., 1968, UNIVERSALS LINGUIST, P1, DOI DOI 10.4236/ENG
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Hermann KM, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P58
Herr BW, 2009, INFORMATION VISUALIZATION, IV 2009, PROCEEDINGS, P505, DOI 10.1109/IV.2009.105
Kawamura T., 2017, P 9 ACM INT C KNOWL, P9
Kawamura T., 2018, P 23 INT C SCI TECHN, P385
Kawamura T, 2017, PRO INT CONF SCI INF, P1107
Kawamura T, 2018, SCIENTOMETRICS, V116, P941, DOI 10.1007/s11192-018-2783-x
Kawamura T, 2016, NEW GENERAT COMPUT, V34, P307, DOI 10.1007/s00354-016-0401-0
Kimura T., 2015, P 14 INT SEM WEB C
Klavans R, 2017, J INFORMETR, V11, P1158, DOI 10.1016/j.joi.2017.10.002
Klementiev Alexandre, 2012, P COLING 2012, P1459
Koopman R, 2017, SCIENTOMETRICS, V111, P1119, DOI 10.1007/s11192-017-2303-4
KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694
Lafferty John, 2001, em Proceedings of the Eighteenth International Conference on Machine Learning
Le Q., 2014, 31 INT C MACH LEARN, P1188, DOI DOI 10.1145/2740908.2742760
Mikolov T., 2013, Advances in Neural Information Processing Systems, P3111
Mikolov T., 2013, INT C LEARNING REPRE
Mooney R. J., 2014, CS 388 NATURAL LANGU
PRICE DJD, 1965, SCIENCE, V149, P510
Ruder Sebastian, 2017, ARXIV170604902
Salah A., 2013, P ICIS 2013, P75
Sammons M., 2014, SEMANTIC ROLE LABELI
Sammons M., 2014, SEMANTIC PARSING SEM
Sparck-Jones K, 2000, INFORM PROCESS MANAG, V36, P779, DOI 10.1016/S0306-4573(00)00015-7
Steyvers M., 2007, HDB LATENT SEMANTIC, V427, P32
Talley EM, 2011, NAT METHODS, V8, P443, DOI 10.1038/nmeth.1619
Waltman L, 2017, PRO INT CONF SCI INF, P691
Wang SH, 2017, SCIENTOMETRICS, V111, P1017, DOI 10.1007/s11192-017-2298-x
Xing C., 2015, P 2015 C N AM CHAPT, P1006, DOI [DOI 10.3115/V1/N15-1104, 10.3115/v1/N15-1104]
NR 43
TC 0
Z9 0
U1 3
U2 21
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9391
EI 1558-0040
J9 IEEE T ENG MANAGE
JI IEEE Trans. Eng. Manage.
PD OCT
PY 2021
VL 68
IS 5
BP 1299
EP 1308
DI 10.1109/TEM.2019.2946886
PG 10
WC Business; Engineering, Industrial; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Business & Economics; Engineering
GA TK4EZ
UT WOS:000674114900008
OA hybrid
DA 2024-09-05
ER
PT J
AU Gurcan, F
Dalveren, GGM
Cagiltay, NE
Soylu, A
AF Gurcan, Fatih
Dalveren, Gonca Gokce Menekse
Cagiltay, Nergiz Ercil
Soylu, Ahmet
TI Detecting Latent Topics and Trends in Software Engineering Research
Since 1980 Using Probabilistic Topic Modeling
SO IEEE ACCESS
LA English
DT Article
DE Market research; Systematics; Software engineering; Software;
Bibliometrics; Text mining; Licenses; Corpus creation; research trends
and topics; software engineering; text mining; topic model
ID SYSTEMATIC LITERATURE-REVIEWS; CITED ARTICLES; EMPIRICAL-RESEARCH;
JOURNALS; SCHOLARS
AB The landscape of software engineering research has changed significantly from one year to the next in line with industrial needs and trends. Therefore, today's research literature on software engineering has a rich and multidisciplinary content that includes a large number of studies; however, not many of them demonstrate a holistic view of the field. From this perspective, this study aimed to reveal a holistic view that reflects topics, trends, and trajectories in software engineering research by analyzing the majority of domain-specific articles published over the last 40 years. This study first presents an objective and systematic method for corpus creation through major publication sources in the field. A corpus was then created using this method, which includes 44 domain-specific conferences and journals and 57,174 articles published between 1980 and 2019. Next, this corpus was analyzed using an automated text-mining methodology based on a probabilistic topic-modeling approach. As a result of this analysis, 24 main topics were found. In addition, topical trends in the field were revealed. Finally, three main developmental stages of the field were identified as: the programming age, the software development age, and the software optimization age.
C1 [Gurcan, Fatih] Karadeniz Tech Univ, Fac Engn, Dept Comp Engn, TR-61080 Trabzon, Turkey.
[Dalveren, Gonca Gokce Menekse; Cagiltay, Nergiz Ercil] Atilim Univ, Fac Engn, Dept Software Engn, TR-06830 Ankara, Turkey.
[Soylu, Ahmet] Norwegian Univ Sci & Technol, Dept Comp Sci, N-2815 Gjovik, Norway.
C3 Karadeniz Technical University; Atilim University; Norwegian University
of Science & Technology (NTNU)
RP Soylu, A (corresponding author), Norwegian Univ Sci & Technol, Dept Comp Sci, N-2815 Gjovik, Norway.
EM ahmet.soylu@ntnu.no
RI Cagiltay, Nergiz/O-3082-2019; GURCAN, Fatih/AAJ-7503-2021; Soylu,
Ahmet/D-9960-2011; Menekse Dalveren, Gonca Gokce/HHS-4591-2022; Forti,
Stefano/I-3083-2018
OI Cagiltay, Nergiz/0000-0003-0875-9276; GURCAN, Fatih/0000-0001-9915-6686;
Menekse Dalveren, Gonca Gokce/0000-0002-8649-1909; Forti,
Stefano/0000-0002-4159-8761
CR [Anonymous], 2004, TRSE0401 U KEEL NAT
[Anonymous], TOMOTOPY TOPIC MODEL
[Anonymous], 1998, ACM COMPUTING CLASSI
[Anonymous], 2005, Int. Sugar J.
Barua A, 2014, EMPIR SOFTW ENG, V19, P619, DOI 10.1007/s10664-012-9231-y
Binkley D, 2016, J SOFTW-EVOL PROC, V28, P893, DOI 10.1002/smr.1802
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boehm B., 2006, Systems Engineering, V9, P1, DOI 10.1002/sys.20044
Brereton P, 2007, J SYST SOFTWARE, V80, P571, DOI 10.1016/j.jss.2006.07.009
Buyya R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3241737
Cai KY, 2008, J SYST SOFTWARE, V81, P1051, DOI 10.1016/j.jss.2007.08.028
Cosh K, 2018, INT CONF KNOWL SMART, P106, DOI 10.1109/KST.2018.8426070
da Silva FQB, 2011, INFORM SOFTWARE TECH, V53, P899, DOI 10.1016/j.infsof.2011.04.004
Datta Subhajit, 2016, IEEE Transactions on Big Data, V2, P124, DOI 10.1109/TBDATA.2016.2580541
de Freitas F.G., 2011, LECT NOTES COMPUTER, P5, DOI 10.1007/978-3-642-14843-9
Farhoodi R, 2013, INT J SOFTW ENG KNOW, V23, P463, DOI 10.1142/S0218194013500137
Felizardo KR, 2011, INT SYMP EMP SOFTWAR, P77, DOI 10.1109/ESEM.2011.16
Fernandes JM, 2014, SCIENTOMETRICS, V101, P257, DOI 10.1007/s11192-014-1331-6
Garousi V., 2010, COMPUT INF SCI, V3, P1
Garousi V, 2016, INFORM SOFTWARE TECH, V80, P195, DOI 10.1016/j.infsof.2016.09.002
Garousi V, 2016, INFORM SOFTWARE TECH, V79, P106, DOI 10.1016/j.infsof.2016.07.006
Garousi V, 2016, COMPUT SCI REV, V19, P56, DOI 10.1016/j.cosrev.2015.12.002
Garousi V, 2016, INFORM SOFTWARE TECH, V71, P108, DOI 10.1016/j.infsof.2015.11.003
Garousi V, 2015, SCIENTOMETRICS, V105, P23, DOI 10.1007/s11192-015-1663-x
Garousi V, 2013, INT J SOFTW ENG KNOW, V23, P1343, DOI 10.1142/S0218194013500423
Gurcan F., INTERACT LEARN ENV
Gurcan F, 2022, IEEE ACCESS, V10, P31480, DOI 10.1109/ACCESS.2022.3160795
Gurcan F, 2021, INT REV RES OPEN DIS, V22, P1
Gurcan F, 2021, INT J HUM-COMPUT INT, V37, P267, DOI 10.1080/10447318.2020.1819668
Gurcan F, 2019, IEEE ACCESS, V7, P82541, DOI 10.1109/ACCESS.2019.2924075
Gurcan F, 2019, INT J ENG EDUC, V35, P1110
Hall T, 2009, ACM T SOFTW ENG METH, V18, DOI 10.1145/1525880.1525883
Hamadicharef B, 2012, ADV INTEL SOFT COMPU, V144, P101
Hassler E, 2016, INFORM SOFTWARE TECH, V70, P122, DOI 10.1016/j.infsof.2015.10.011
Jalali S, 2012, J SOFTW-EVOL PROC, V24, P643, DOI 10.1002/smr.561
Kitchenham B.A., 2007, GUIDELINES PERFORMIN
Kitchenham BA, 2002, IEEE T SOFTWARE ENG, V28, P721, DOI 10.1109/TSE.2002.1027796
Kitchenham B, 2013, INFORM SOFTWARE TECH, V55, P2049, DOI 10.1016/j.infsof.2013.07.010
Kitchenham B, 2010, J SYST SOFTWARE, V83, P37, DOI 10.1016/j.jss.2009.06.041
Kitchenham B, 2009, INFORM SOFTWARE TECH, V51, P7, DOI 10.1016/j.infsof.2008.09.009
Konrad M., 2017, TEXT MINING TOPIC MO
MacDonell S, 2010, IEEE T SOFTWARE ENG, V36, P676, DOI 10.1109/TSE.2010.28
Mathew George, 2018, IEEE Transactions on Software Engineering, DOI 10.1109/TSE.2018.2870388
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Mongeon P, 2016, SCIENTOMETRICS, V106, P213, DOI 10.1007/s11192-015-1765-5
Nazar N, 2016, J COMPUT SCI TECH-CH, V31, P883, DOI 10.1007/s11390-016-1671-1
Porter Martin., Snowball
Ramírez A, 2019, IEEE T SOFTWARE ENG, V45, P760, DOI 10.1109/TSE.2018.2803055
Rodríguez-Pérez G, 2021, EMPIR SOFTW ENG, V26, DOI 10.1007/s10664-021-09992-2
Shakeel Y, 2020, ACM J DATA INF QUAL, V12, DOI 10.1145/3356901
Sun XB, 2016, 2016 17TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), P357, DOI 10.1109/SNPD.2016.7515925
Uysal AK, 2014, INFORM PROCESS MANAG, V50, P104, DOI 10.1016/j.ipm.2013.08.006
Vayansky I, 2020, INFORM SYST, V94, DOI 10.1016/j.is.2020.101582
Verner J. M., 2012, 16th International Conference on Evaluation & Assessment in Software Engineering (EASE 2012), P2, DOI 10.1049/ic.2012.0001
Wohlin C, 2005, INFORM SOFTWARE TECH, V47, P957, DOI 10.1016/j.infsof.2005.09.002
Wohlin C, 2008, INFORM SOFTWARE TECH, V50, P3, DOI 10.1016/j.infsof.2007.10.002
Wohlin C, 2007, INFORM SOFTWARE TECH, V49, P2, DOI 10.1016/j.infsof.2006.08.004
Wong WE, 2008, J SYST SOFTWARE, V81, P1059, DOI 10.1016/j.jss.2007.09.018
Wong WE, 2011, J SYST SOFTWARE, V84, P162, DOI 10.1016/j.jss.2010.09.036
Wong WE, 2009, J SYST SOFTWARE, V82, P1370, DOI 10.1016/j.jss.2009.06.018
Zhang L, 2018, J COMPUT SCI TECH-CH, V33, P876, DOI 10.1007/s11390-018-1864-x
Zuo Y, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2105, DOI 10.1145/2939672.2939880
NR 64
TC 11
Z9 11
U1 3
U2 10
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2022
VL 10
BP 74638
EP 74654
DI 10.1109/ACCESS.2022.3190632
PG 17
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA 3Q9KV
UT WOS:000838542600001
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Yin, ZL
Wang, HY
Chen, B
Zhang, X
Lin, XG
Sun, HL
Li, AJ
Zhou, CY
AF Yin, Zilong
Wang, Haoyu
Chen, Bin
Zhang, Xin
Lin, Xiaogang
Sun, Hangling
Li, Anji
Zhou, Chenyu
TI Federated semi-supervised representation augmentation with
cross-institutional knowledge transfer for healthcare collaboration
SO KNOWLEDGE-BASED SYSTEMS
LA English
DT Article
DE Healthcare collaboration; Vertical federated learning; Knowledge
transfer; Semi-supervised representation augmentation
ID BIG DATA; SECURE; CHALLENGES; ATTACK
AB In the healthcare field, cross-institutional collaboration can fasten medical research progress. Vertical federated learning (VFL) addresses data heterogeneity across multiple medical institutions while ensuring medical data privacy, thereby enhancing the accuracy of disease diagnoses and treatments. However, traditional VFL only benefits from aligned samples, thereby limiting its applicability due to constrained sample sizes, and a large amount of non-aligned data remains untapped, resulting in wasted data. To exert full leverage on the value of all data obtained from medical institutions, this paper proposes a federated healthcare collaborative framework based on semi-supervised representation augmentation mechanism with cross-institutional knowledge transfer (CrossKT-FRA). Specifically, the developed method comprises three steps. First, the federated representations of shared data (aligned data) among medical institutions are extracted through efficient vertical federated representation learning (FRL) methods. Second, the federated knowledge contained in federated representations and potential labels derived through recurrent learning assist local shared data representations in performing supervised augmented learning. Finally, the federated knowledge is transferred indirectly from the representation augmentation module for shared data to the unsupervised representation augmentation module for local private data (non-aligned data). The experimental results show the effectiveness of the proposed knowledge transfer mechanism, whether applied independently or used to enhance VFL on medical datasets. Our findings contribute to a deeper theoretical understanding of VFL, further facilitating the utilization of high- value medical data. By promoting cross-institutional and cross-disciplinary collaboration in healthcare data sharing, our study enhances the quality efficiency of medical services, thereby accelerating the development of interdisciplinary medical research. Code is available at https://github.com/LieLieLieLieLie/CrossKT-FRA.
C1 [Yin, Zilong; Wang, Haoyu; Chen, Bin] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai, Peoples R China.
[Sun, Hangling] Hengtu Imalligent Technol Shanghai Co Ltd, Shanghai, Peoples R China.
[Li, Anji] Abbott Labs Shanghai Co Ltd, Shanghai, Peoples R China.
[Zhang, Xin] Tianjin Univ Technol, Tianjin, Peoples R China.
[Lin, Xiaogang] North Univ China, Taiyuan, Peoples R China.
[Zhou, Chenyu] Xinjiang Univ, Sch Comp Sci & Technol, Urumqi, Peoples R China.
[Chen, Bin] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai, Peoples R China.
[Zhou, Chenyu] Tsinghua Univ, Beijing, Peoples R China.
C3 University of Shanghai for Science & Technology; Tianjin University of
Technology; North University of China; Xinjiang University; Shanghai
Jiao Tong University; Tsinghua University
RP Chen, B (corresponding author), Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai, Peoples R China.
EM zilong_yin@163.com; ambityuki@gmail.com; chenbin1933@163.com;
kxamanda@163.com; lxg2630782125@163.com; sunnyhl2000@gmail.com;
anjicake@gmail.com; Zhou_cy@stu.xju.edu.cn
OI Yin, Zilong/0009-0002-7994-2772
CR Abadi M, 2016, CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P308, DOI 10.1145/2976749.2978318
Adjei-Mensah I, 2024, ENG APPL ARTIF INTEL, V128, DOI 10.1016/j.engappai.2023.107448
Alzubi JA, 2023, IEEE T IND INFORM, V19, P1080, DOI 10.1109/TII.2022.3189170
Antunes RS, 2022, ACM T INTEL SYST TEC, V13, DOI 10.1145/3501813
Bercea CI, 2022, NAT MACH INTELL, V4, P685, DOI 10.1038/s42256-022-00515-2
Bharati Subrato, 2022, Int. J. Hybrid Intell. Syst., V18, P19
Bonawitz K, 2017, CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1175, DOI 10.1145/3133956.3133982
Chai D, 2022, PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, P46, DOI 10.1145/3534678.3539402
Cheng KW, 2021, IEEE INTELL SYST, V36, P87, DOI 10.1109/MIS.2021.3082561
Cheung YM, 2021, LECT NOTES COMPUT SC, V13080, P173, DOI 10.1007/978-3-030-90888-1_14
China Knowledge Centre for Engineering Sciences and Technology, 2016, Aminer database
Dash S, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0217-0
Dayan I, 2021, NAT MED, V27, P1735, DOI 10.1038/s41591-021-01506-3
Devi P, 2024, HEALTH TECHNOL-GER, V14, P623, DOI 10.1007/s12553-024-00861-8
Dhruva SS, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0265-z
Dwork C, 2013, FOUND TRENDS THEOR C, V9, P211, DOI 10.1561/0400000042
Emanuel EJ, 2020, NEW ENGL J MED, V382, P2049, DOI 10.1056/NEJMsb2005114
Esteva A, 2019, NAT MED, V25, P24, DOI 10.1038/s41591-018-0316-z
Fattahi M, 2023, EUR J OPER RES, V304, P192, DOI 10.1016/j.ejor.2022.01.023
Feng YJ, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P183, DOI 10.1145/3442381.3449811
Fu C, 2022, PROCEEDINGS OF THE 31ST USENIX SECURITY SYMPOSIUM, P1397
Gao JQ, 2023, IEEE T DEPEND SECURE, V20, P147, DOI 10.1109/TDSC.2021.3128679
Gao JQ, 2022, IEEE T IND INFORM, V18, P6340, DOI 10.1109/TII.2022.3145837
Gu B, 2022, IEEE T NEUR NET LEAR, V33, P6103, DOI 10.1109/TNNLS.2021.3072238
Hazra A, 2022, IEEE NETWORK, V36, P56, DOI 10.1109/MNET.007.2100549
Hou JP, 2022, IEEE INTERNET THINGS, V9, P22158, DOI 10.1109/JIOT.2021.3090951
Hu YC, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2232, DOI 10.1145/3292500.3330765
Huang Chung-ju, 2023, WWW '23: Proceedings of the ACM Web Conference 2023, P4188, DOI 10.1145/3543507.3583874
Huang L, 2024, P 36 INT C NEUR INF
Iwendi C, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00357
Jin X., 2021, Advances in Neural Information Processing Systems, P994
Johnson AEW, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.35
Kaggle, 2022, Breast cancer wisconsin (diagnostic) data set
Kairouz P, 2021, FOUND TRENDS MACH LE, V14, P1, DOI 10.1561/2200000083
Kaissis GA, 2020, NAT MACH INTELL, V2, P305, DOI 10.1038/s42256-020-0186-1
Kang Y, 2024, Arxiv, DOI arXiv:2008.10838
Kang Y, 2022, ACM T INTEL SYST TEC, V13, DOI 10.1145/3510031
Khalid N, 2023, COMPUT BIOL MED, V158, DOI 10.1016/j.compbiomed.2023.106848
Kosinski M, 2013, P NATL ACAD SCI USA, V110, P5802, DOI 10.1073/pnas.1218772110
Kushner T, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P2906, DOI 10.1145/3366423.3380056
Lenert L, 2020, J AM MED INFORM ASSN, V27, P963, DOI 10.1093/jamia/ocaa039
Li FS, 2021, MEAS SCI TECHNOL, V32, DOI 10.1088/1361-6501/abf61a
Li Tian, 2020, MLSys, P429
Lima EM, 2021, medRxiv, DOI [10.1101/2021.02.19.21251232, 10.1101/2021.02.19.21251232, DOI 10.1101/2021.02.19.21251232]
Liu QD, 2021, PROC CVPR IEEE, P1013, DOI 10.1109/CVPR46437.2021.00107
Liu Y, 2024, IEEE T KNOWL DATA EN, V36, P3615, DOI 10.1109/TKDE.2024.3352628
Liu Y, 2020, IEEE INTELL SYST, V35, P70, DOI 10.1109/MIS.2020.2988525
Liu ZL, 2022, AAAI CONF ARTIF INTE, P12396
Ma J, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P171, DOI 10.1145/3442381.3449832
Mawuli CB, 2023, INFORM SCIENCES, V643, DOI 10.1016/j.ins.2023.119235
McMahan HB, 2017, PR MACH LEARN RES, V54, P1273
Messinis S, 2024, COMPUT BIOL MED, V170, DOI 10.1016/j.compbiomed.2024.108036
Nock R, 2018, Arxiv, DOI arXiv:1803.04035
Parsa AB, 2020, ACCIDENT ANAL PREV, V136, DOI 10.1016/j.aap.2019.105405
Rong G, 2020, ENGINEERING-PRC, V6, P291, DOI 10.1016/j.eng.2019.08.015
Shen M, 2020, IEEE J SEL AREA COMM, V38, P1229, DOI 10.1109/JSAC.2020.2986619
Shilo S, 2020, NAT MED, V26, P29, DOI 10.1038/s41591-019-0727-5
Song MK, 2020, IEEE J SEL AREA COMM, V38, P2430, DOI 10.1109/JSAC.2020.3000372
Thapa C, 2021, COMPUT BIOL MED, V129, DOI 10.1016/j.compbiomed.2020.104130
Wang JB, 2024, INFORM SCIENCES, V662, DOI 10.1016/j.ins.2024.120201
Wang KIK, 2022, IEEE T IND INFORM, V18, P4088, DOI 10.1109/TII.2021.3088057
Wei K, 2020, IEEE T INF FOREN SEC, V15, P3454, DOI 10.1109/TIFS.2020.2988575
Wu Q, 2022, IEEE T MOBILE COMPUT, V21, P2818, DOI 10.1109/TMC.2020.3045266
Wu YC, 2020, PROC VLDB ENDOW, V13, P2090, DOI 10.14778/3407790.3407811
Xing WC, 2020, IEEE ACCESS, V8, P28808, DOI 10.1109/ACCESS.2019.2955754
Xu J, 2021, J HEALTHC INFORM RES, V5, P1, DOI 10.1007/s41666-020-00082-4
Yang Q, 2021, KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3845, DOI 10.1145/3447548.3467185
Yang Q, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3298981
Yao A. C., 1982, 23rd Annual Symposium on Foundations of Computer Science, P160, DOI 10.1109/SFCS.1982.38
Yin LH, 2021, IEEE T NETW SCI ENG, V8, P2706, DOI 10.1109/TNSE.2021.3074185
Yin XF, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3460427
Zaldo-Aubanell Q, 2022, SCI TOTAL ENVIRON, V806, DOI 10.1016/j.scitotenv.2021.150308
Zhang XZ, 2017, ETHNIC DIS, V27, P95, DOI 10.18865/ed.27.2.95
Zhong ZY, 2023, COMPLEX INTELL SYST, V9, P1995, DOI 10.1007/s40747-022-00894-4
Zhou JX, 2024, COMPUT BIOL MED, V169, DOI 10.1016/j.compbiomed.2023.107861
Zhou Z, 2023, IEEE T IND INFORM, V19, P6669, DOI 10.1109/TII.2022.3215192
NR 76
TC 0
Z9 0
U1 1
U2 1
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0950-7051
EI 1872-7409
J9 KNOWL-BASED SYST
JI Knowledge-Based Syst.
PD SEP 27
PY 2024
VL 300
AR 112208
DI 10.1016/j.knosys.2024.112208
EA JUL 2024
PG 21
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA ZK3H4
UT WOS:001275148500001
DA 2024-09-05
ER
PT J
AU Basilio, MP
Pereira, V
de Oliveira, MWCM
AF Basilio, Marcio Pereira
Pereira, Valdecy
Oliveira, Max William Coelho Moreira de
TI Knowledge discovery in research on policing strategies: an overview of
the past fifty years
SO JOURNAL OF MODELLING IN MANAGEMENT
LA English
DT Article
DE Community policing; Bibliometric analysis; Policing strategies;
Problem-oriented policing; Predictive policing; Latent Dirichlet
allocation; Focused policing; Police crackdown; Repeat offenders; Hot
spot policing; Foot patrol; Radio patrol
ID FOOT PATROL; BIBLIOMETRIC ANALYSIS; CRIME REDUCTION; HOT-SPOTS; BIG
DATA; COMMUNITY; IMPACT; PERCEPTIONS; COCITATION; EVOLUTION
AB Purpose The insecurity generated, today in various parts of the planet, by the various conflicts that arise in the violence in large cities, has motivated the academy to research the solutions and strategies adopted by local governments in the fight against crime. The volume of data generated by several universities over the past 50 years has increased exponentially. Consequently, researchers struggle to process essential data in today's competitive world. The aim of this study is to explore and provide an overview of the studies carried out in the field of action to combat crime in different countries. Design/methodology/approach The Web of Science and Scopus databases were searched for publications from January 1945 to September 3, 2020 on the topic of policing strategies in titles, abstracts and keywords. References were analyzed using the R bibliometrix package, and abstracts were analyzed using latent Dirichlet allocation (LDA) with collapsed Gibbs sampling for topics related to policing and related subjects. Findings As a result of the research, this paper can assert that in the last 50 years, 3,361 authors have produced 2,085 documents on the theme of policing strategy and related subjects in 58 countries. Scientific production in this area grows at a rate of 5.10 per year. The USA is the leading country in publications with 42.58%, followed by the UK with 8.39% and Canada with 4.07%. As for journals, the highlight is Policing, Policing and Society and Police Quarterly, which account for more than 15.44% of all indexed literature. Regarding the authors, the highlight is Weisburd and Braga. As a result, the LDA grouped the latent words in the articles analyzed by themes studied and presented the list of articles by themes. The thematic map identifies the following themes as basic research subjects: community policing, problem-oriented policing, predictive policing, fear of crime and social control. Practical implications As the main implication between the combination of the bibliometric analysis method with the probabilistic topic modelling, is the emergence of a primordial step in the systematic literature review process, as this method allows to explore and group a large volume of data. Another practical implication that is intended is to provide the beginning researcher or any other reader with a panoramic view of the main authors who study the themes that impact police activity in any city in the world, which are the countries and reference centers of the study on the subject and, finally, the evolution of the main themes researched in the police area. Originality/value The value of these studies is summarized in the presentation of an overview on the theme in the last 50 years, offering the opportunity for other researchers to use this research as a starting point for other analyses.
C1 [Basilio, Marcio Pereira; Pereira, Valdecy] Fed Fluminense Univ, Prod Engn Dept, Niteroi, RJ, Brazil.
[Basilio, Marcio Pereira] Mil Police State Rio de Janeiro, Rio De Janeiro, Brazil.
[Oliveira, Max William Coelho Moreira de] Secretariat State Mil Police, Coordinat Special Affairs, Rio De Janeiro, Brazil.
C3 Universidade Federal Fluminense
RP Basilio, MP (corresponding author), Fed Fluminense Univ, Prod Engn Dept, Niteroi, RJ, Brazil.; Basilio, MP (corresponding author), Mil Police State Rio de Janeiro, Rio De Janeiro, Brazil.
EM marciopbasilio@gmail.com; valdecy.pereira@gmail.com;
mwcoliveira@yahoo.com.br
RI Basilio, Marcio Pereira/L-4363-2016; Pereira, Valdecy/I-7493-2017
OI Basilio, Marcio Pereira/0000-0002-9453-741X; Pereira,
Valdecy/0000-0003-0599-8888
FU Federal Fluminense University; Military Police of the State of Rio de
Janeiro; coordination for the improvement of Higher Education Personnel
- Brazil (CAPES)
FX The authors thank the Federal Fluminense University and the Military
Police of the State of Rio de Janeiro for the unrestricted support
received for the research. In addition to the coordination for the
improvement of Higher Education Personnel - Brazil (CAPES), for partial
funding of the research. Finally, the authors would like to thank the
contributions of the reviewers and editors that resulted in this
publication.
CR Alves MC, 2012, POLIC SOC, V22, P101, DOI 10.1080/10439463.2011.597857
Andresen MA, 2019, INT J OFFENDER THER, V63, P1446, DOI 10.1177/0306624X19828586
Andresen MA, 2018, POLICING, V41, P314, DOI 10.1108/PIJPSM-01-2018-0012
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7
Basilio M.P., 2017, UNIVERSAL J MANAGEME, V5, P549, DOI [10.13189/ujm.2017.051202, DOI 10.13189/UJM.2017.051202]
Basilio M.P., 2019, Exacta, V18, P130, DOI [10.5585/exactaep.v18n1.8725, DOI 10.5585/EXACTAEP.V18N1.8725]
Basilio M. P., 2020, J MODEL MANAG, V15
Basilio MP, 2021, DATA TECHNOL APPL, V55, P480, DOI 10.1108/DTA-08-2020-0179
Basilio MP, 2021, J MODEL MANAG, V16, P1185, DOI 10.1108/JM2-05-2020-0122
Basilio MP, 2020, J MODEL MANAG, V15, P849, DOI 10.1108/JM2-10-2018-0166
Basilio MP, 2019, DATA TECHNOL APPL, V53, P333, DOI 10.1108/DTA-12-2018-0109
Basílio Márcio Pereira, 2010, Sociologias, P438
Bayley D.H., 1994, Police for the future
Belina B, 2016, MONATS KRIMINOL, V99, P85, DOI 10.1515/mks-2016-990201
Benbouzid B, 2015, CHAMP PENAL, V12, DOI 10.4000/champpenal.9050
Blei, 2011, COMMUN ACM
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Borgatti SP, 2009, SCIENCE, V323, P892, DOI 10.1126/science.1165821
Bullock K, 2013, POLIC SOC, V23, P125, DOI 10.1080/10439463.2012.671822
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Carson JV, 2018, POLICE Q, V21, P139, DOI 10.1177/1098611117744005
Chen, 2008, J INFORM TECHNOLOGY, V2, P43
Chen CT, 2017, KNOWL-BASED SYST, V126, P1, DOI 10.1016/j.knosys.2017.04.006
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Cheng B, 2014, EDUC RES REV-NETH, V11, P56, DOI 10.1016/j.edurev.2014.01.001
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Costa H.G., 2018, J MODEL MANAG, V14
Crowl JN, 2017, POLICE PRACT RES, V18, P449, DOI 10.1080/15614263.2017.1303771
Cunnigham FW, 1933, P IRE, V21, P1239, DOI 10.1109/JRPROC.1933.225930
Darling, 2011, THEORETICAL PRACTICA
Dervis H, 2019, J SCIENTOMETR RES, V8, P156, DOI 10.5530/jscires.8.3.32
Drenth AR, 2020, J CRIME JUSTICE, V43, P486, DOI 10.1080/0735648X.2020.1722202
Dunn KM, 2016, POLICE PRACT RES, V17, P196, DOI 10.1080/15614263.2015.1015126
Egbert S, 2019, SURVEILL SOC, V17, P83, DOI 10.24908/ss.v17i1/2.12920
Elkan C.P., 2014, TEXT MINING TOPIC MO
Eterno JA, 2021, POLICE PRACT RES, V22, P886, DOI 10.1080/15614263.2020.1725273
Faleiros T.D., 2016, 409 U SAO PAUL I CIE
Feinerer I, 2008, J STAT SOFTW, V25, P1
Frydl K., 2004, FAIRNESS EFFECTIVENE
Ghadimi P, 2019, RESOUR CONSERV RECY, V140, P72, DOI 10.1016/j.resconrec.2018.09.005
Gill N.S., 2019, INT J ADV TRENDS COM, V8, P795, DOI DOI 10.30534/IJATCSE/2019/71832019
González-Alcaide G, 2020, SCIENTOMETRICS, V123, P707, DOI 10.1007/s11192-020-03404-w
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Grün B, 2011, J STAT SOFTW, V40, P1
Haberman CP, 2019, POLICE Q, V22, P247, DOI 10.1177/1098611118813531
Hendrix JA, 2019, POLIC SOC, V29, P727, DOI 10.1080/10439463.2017.1322966
Hutt O, 2018, POLICING, V41, P339, DOI 10.1108/PIJPSM-09-2017-0117
Inamdar Z, 2021, J ENTERP INF MANAG, V34, P101, DOI 10.1108/JEIM-09-2019-0267
Jere M, 2012, REV KRIMINALISTIKO K, V63, P3
Jones NA, 2019, CAN J CRIMINOL CRIM, V61, P41, DOI 10.3138/cjccj.2017-0060.r2
Kailemia M, 2019, INT J COMP APPL CRIM, V43, P145, DOI 10.1080/01924036.2018.1515093
Kee YH, 2019, MINDFULNESS, V10, P1474, DOI 10.1007/s12671-019-01136-4
Kringen JA, 2020, POLIC-J POLICY PRACT, V14, P218, DOI 10.1093/police/pay006
KUYKENDALL JL, 1974, CRIMINOLOGY, V12, P229, DOI 10.1111/j.1745-9125.1974.tb00633.x
Leigh J, 2019, ANN OPER RES, V283, P395, DOI [10.1007/s10479-017-2528-x, 10.1007/s10479-017-2528-X]
Leung XY, 2017, INT J HOSP MANAG, V66, P35, DOI 10.1016/j.ijhm.2017.06.012
Lombardo RM, 2018, POLICE PRACT RES, V19, P427, DOI 10.1080/15614263.2017.1405265
Costa ATM, 2019, DADOS-REV CIENC SOC, V62, DOI 10.1590/001152582019172
Hernández JM, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8040544
Martin JT, 2014, CRIME LAW SOCIAL CH, V61, P401, DOI 10.1007/s10611-013-9496-0
Mazerolle L, 2013, POLICING, V36, P543, DOI 10.1108/PIJPSM-06-2012-0055
Meijer A, 2019, INT J PUBLIC ADMIN, V42, P1031, DOI 10.1080/01900692.2019.1575664
Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004
Mucchielli L, 2017, DEVIANCE SOC, V41, P239, DOI 10.3917/ds.412.0239
Peng Chen, 2019, 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), P118, DOI 10.1109/ICBDA.2019.8713192
Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006
Porsché Y, 2021, DISCOURSE STUD, V23, P67, DOI 10.1177/1461445620942908
Prisian K, 2019, REV KRIMINALISTIKO K, V70, P483
Punch M, 2002, POLICING, V25, P60, DOI 10.1108/13639510210417908
Ratcliffe JH, 2011, CRIMINOLOGY, V49, P795, DOI 10.1111/j.1745-9125.2011.00240.x
Ribeiro L, 2018, REV ADM PUBL-RIO JAN, V52, P1155, DOI 10.1590/0034-761220170288
Riccio V., 2017, UNIVERSAL J MANAGEME, V5, P570, DOI DOI 10.13189/UJM.2017.051204
Rousseau D., 2012, The Oxford Handbook of Evidence Based Management, DOI DOI 10.1093/OXFORDHB/9780199763986.001.0001
Sandhu A, 2021, POLIC SOC, V31, P66, DOI 10.1080/10439463.2020.1803315
Santos RB, 2014, J CONTEMP CRIM JUST, V30, P147, DOI 10.1177/1043986214525080
Shapiro A, 2019, SURVEILL SOC, V17, P456, DOI 10.24908/ss.v17i3/4.10410
Sherman L., 1997, PREVENTING CRIME WHA, P8
Sorg ET, 2013, CRIMINOLOGY, V51, P65, DOI 10.1111/j.1745-9125.2012.00290.x
Sytsma VA, 2018, POLICE PRACT RES, V19, P347, DOI 10.1080/15614263.2017.1364998
Telep CW, 2012, POLICE Q, V15, P331, DOI 10.1177/1098611112447611
Thomas L, 2017, PROF DEV EDUC, V43, P497, DOI 10.1080/19415257.2016.1228538
Wang C, 2020, OMEGA-INT J MANAGE S, V93, DOI 10.1016/j.omega.2019.08.005
Wang C, 2019, J CLEAN PROD, V206, P741, DOI 10.1016/j.jclepro.2018.09.172
Yan EJ, 2012, J AM SOC INF SCI TEC, V63, P1313, DOI 10.1002/asi.22680
Zavrsnik A, 2017, REV KRIMINALISTIKO K, V68, P135
Zhang Y, 2019, MICROORGANISMS, V7, DOI 10.3390/microorganisms7080213
NR 88
TC 14
Z9 14
U1 4
U2 25
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 1746-5664
EI 1746-5672
J9 J MODEL MANAG
JI J. Model. Manag.
PD NOV 29
PY 2022
VL 17
IS 4
BP 1372
EP 1409
DI 10.1108/JM2-10-2020-0268
EA AUG 2021
PG 38
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA 6R1FP
UT WOS:000681522800001
DA 2024-09-05
ER
PT J
AU Jing, YH
Zhao, LY
Zhu, KK
Wang, HM
Wang, CL
Xia, Q
AF Jing, Yuhui
Zhao, Leying
Zhu, Keke
Wang, Haoming
Wang, Chengliang
Xia, Qi
TI Research Landscape of Adaptive Learning in Education: A Bibliometric
Study on Research Publications from 2000 to 2022
SO SUSTAINABILITY
LA English
DT Article
DE adaptive learning; artificial intelligence; bibliometrics; intelligent
technology; learning system
ID FUZZY-NEURAL-NETWORK; SYSTEM; MODEL; PATH; FRAMEWORK; SCIENCE; ONLINE;
PERSONALIZATION; CLASSIFICATION; ENVIRONMENT
AB Adaptive learning is an approach toward personalized learning and places the concept of "learner-centered education" into practice. With the rapid development of artificial intelligence and other technologies in recent years, there have been many breakthroughs in adaptive learning. Thus, it is important to gain insight into the evolution of related research and to track the research frontiers to further promote its development. This study used CiteSpace and VOSviewer to conduct a bibliometric analysis of 644 adaptive learning journal papers indexed in the WoS database from 2000 to 2022. This study presented a general view of the field of adaptive learning research over the last two decades using quantitative analysis. Currently, adaptive learning research is rapidly developing. In terms of the major research forces, a core group of authors including Qiao J. F., Han H. G. and Song Q has been formed; the major publishing country in this field is China; the core publishing journals include IEEE Transactions on Neural Networks and Learning Systems. Four major research topics in this field were identified using cluster analysis, namely the application of deep learning in educational data analysis, the development and application of adaptive learning model in AI education, the development and application of intelligent tutoring system in tutoring and teaching, cutting-edge modeling technology for feature modeling and knowledge tracing. Through evolution analyses, the logic of adaptive learning research's development was determined; that is, technological changes have played a key role in the development of this field. Following the logic, we presented three frontiers of adaptive learning with burst terms: feature extraction, adaptation model and computational modeling. Adaptive learning is a core research topic for both computer science and educational technology disciplines, and it is also an important field where emerging technologies empowering education and teaching can play a part. The findings of the study clearly presented the current research status, evolutionary logic and research frontiers of this topic, which can provide references for the further development of this research field.
C1 [Jing, Yuhui; Zhao, Leying; Wang, Haoming; Wang, Chengliang] Zhejiang Univ Technol, Coll Educ Sci & Technol, Hangzhou 310023, Peoples R China.
[Zhu, Keke] Zhejiang Univ Technol, Coll Foreign Languages, Hangzhou 310023, Peoples R China.
[Xia, Qi] Chinese Univ Hong Kong, Instruction Fac Educ, Dept Curriculum, Hongkong 999077, Peoples R China.
C3 Zhejiang University of Technology; Zhejiang University of Technology;
Chinese University of Hong Kong
RP Zhao, LY; Wang, CL (corresponding author), Zhejiang Univ Technol, Coll Educ Sci & Technol, Hangzhou 310023, Peoples R China.
EM 202005720434@zjut.edu.cn; 201906120404@zjut.edu.cn
RI Wang, Henry/HMD-3336-2023; Wang, Chengliang/JEZ-9556-2023; XIA,
Qi/KRO-3142-2024
OI Wang, Henry/0000-0003-3624-2127; Wang, Chengliang/0000-0003-2208-3508;
XIA, Qi/0000-0003-0538-7665; Jing, Yuhui/0000-0002-8593-2725
FU National Social Science Foundation Education Youth Project "Research on
the Strategy of Creating Learning Space Value and Empowering Classroom
Teaching under the background of Double Reduction'" [CCA220319]
FX This research was supported by the 2022 National Social Science
Foundation Education Youth Project "Research on the Strategy of Creating
Learning Space Value and Empowering Classroom Teaching under the
background of Double Reduction'" (Grant No. CCA220319).
CR Adnan M, 2022, PEERJ COMPUT SCI, V8, DOI 10.7717/peerj-cs.803
Agand P, 2017, ENG APPL ARTIF INTEL, V65, P1, DOI 10.1016/j.engappai.2017.07.009
[Anonymous], 2022, EDUCAUSE HOR REP TEA
Azevedo R, 2010, EDUC PSYCHOL-US, V45, P210, DOI 10.1080/00461520.2010.515934
Bang HJ, 2023, EARLY CHILD EDUC J, V51, P717, DOI 10.1007/s10643-022-01332-3
Bernacki ML, 2021, EDUC PSYCHOL REV, V33, P1675, DOI 10.1007/s10648-021-09615-8
Beyhan S, 2011, INT J ADAPT CONTROL, V25, P168, DOI 10.1002/acs.1214
Bhasin S, 2013, AUTOMATICA, V49, P82, DOI 10.1016/j.automatica.2012.09.019
Binet A, 1904, ANN PSYCHOL, V11, P191
Binet A., 1916, The development of intelligence in children (The Binet-Simon Scale), P37, DOI [10.1037/11069-002, DOI 10.1037/11069-002]
Binh HT, 2021, EDUC INF TECHNOL, V26, P4969, DOI 10.1007/s10639-021-10485-4
Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018
Bodily R, 2019, BRIT J EDUC TECHNOL, V50, P64, DOI 10.1111/bjet.12712
Brusilovsky P, 1998, ADAPTIVE HYPERTEXT AND HYPERMEDIA, P1
Caballé S, 2014, J COMPUT ASSIST LEAR, V30, P51, DOI 10.1111/jcal.12021
Campus Computing, 2018, 29 NAT SURV COMP INF
Capuano N, 2020, AI MAG, V41, P96
Cavanagh T, 2020, INT REV RES OPEN DIS, V21, P172
Chang TY, 2013, J NETW COMPUT APPL, V36, P533, DOI 10.1016/j.jnca.2012.04.002
Chen HL, 2020, COMPUT EDUC, V150, DOI 10.1016/j.compedu.2020.103836
Chen J, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.883150
Chen JY, 2023, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1079955
Chen XL, 2023, EDUC INF TECHNOL, V28, P1323, DOI 10.1007/s10639-022-11209-y
Chu HC, 2021, EDUC TECHNOL SOC, V24, P36
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388
Daghestani LF, 2020, COMPUT APPL ENG EDUC, V28, P568, DOI 10.1002/cae.22227
de Melo FR, 2014, COMPUT EDUC, V79, P126, DOI 10.1016/j.compedu.2014.07.012
Dhakshinamoorthy A, 2019, COMPUT APPL ENG EDUC, V27, P319, DOI 10.1002/cae.22076
Dima A, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12010062
Ding X, 2022, ELECTRON COMMER RES, V22, P787, DOI 10.1007/s10660-020-09410-7
Diodato VP., 2013, DICT BIBLIOMETRICS, DOI [10.4324/9780203714133, DOI 10.4324/9780203714133]
Donthu N, 2020, J BUS RES, V109, P1, DOI 10.1016/j.jbusres.2019.10.039
Dutt S, 2022, EDUC INF TECHNOL, V27, P2613, DOI 10.1007/s10639-021-10713-x
Dwivedi P, 2018, EDUC INF TECHNOL, V23, P819, DOI 10.1007/s10639-017-9637-7
Ebibi M, 2012, TECH TECHNOL EDUC MA, V7, P864
Faber TJE, 2022, LEARN INSTR, V83, DOI 10.1016/j.learninstruc.2022.101666
Fernandez G., 2003, LECT NOTES COMPUT SC, DOI [10.1007/978-3-540-45200-3_2, DOI 10.1007/978-3-540-45200-3_2]
Gandomkar R, 2020, MED EDUC, V54, P727, DOI 10.1111/medu.14079
González-Castro N, 2021, AUSTRALAS J EDUC TEC, V37, P24, DOI 10.14742/ajet.6646
Gu K, 2017, IEEE T IMAGE PROCESS, V26, P4005, DOI 10.1109/TIP.2017.2711279
Gu K, 2018, IEEE T NEUR NET LEAR, V29, P1301, DOI 10.1109/TNNLS.2017.2649101
Han HG, 2011, NEURAL NETWORKS, V24, P717, DOI 10.1016/j.neunet.2011.04.006
Han HG, 2014, IEEE T CYBERNETICS, V44, P554, DOI 10.1109/TCYB.2013.2260537
Hassan MA, 2021, INTERACT LEARN ENVIR, V29, P545, DOI 10.1080/10494820.2019.1588745
Holmes M, 2018, IEEE T LEARN TECHNOL, V11, P5, DOI 10.1109/TLT.2017.2754497
Hwang GJ, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060584
Karampiperis P, 2005, EDUC TECHNOL SOC, V8, P128
Kärki T, 2022, EDUC STUD MATH, V110, P101, DOI 10.1007/s10649-021-10120-6
Kiumarsi B, 2018, IEEE T NEUR NET LEAR, V29, P2042, DOI 10.1109/TNNLS.2017.2773458
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Lewis FL, 2012, IEEE CONTR SYST MAG, V32, P76, DOI 10.1109/MCS.2012.2214134
Li FY, 2021, EDUC TECHNOL SOC, V24, P256
Lin CF, 2013, COMPUT EDUC, V68, P199, DOI 10.1016/j.compedu.2013.05.009
Lin YT, 2016, IEEE T EDUC, V59, P175, DOI 10.1109/TE.2015.2487341
Liu HI, 2005, IEEE T EDUC, V48, P676, DOI 10.1109/TE.2005.858398
Lo JJ, 2005, BRIT J EDUC TECHNOL, V36, P43, DOI 10.1111/j.1467-8535.2005.00437.x
Luo ZN, 2021, EDUC INF TECHNOL, V26, P4457, DOI 10.1007/s10639-021-10468-5
Martin F, 2020, ETR&D-EDUC TECH RES, V68, P1903, DOI 10.1007/s11423-020-09793-2
Martins AF, 2021, SOFT COMPUT, V25, P11019, DOI 10.1007/s00500-021-05836-9
Mavroudi A, 2018, INTERACT LEARN ENVIR, V26, P206, DOI 10.1080/10494820.2017.1292531
Mo CY, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.839982
Narciss S, 2014, COMPUT EDUC, V71, P56, DOI 10.1016/j.compedu.2013.09.011
Nedungadi P, 2012, ETR&D-EDUC TECH RES, V60, P659, DOI 10.1007/s11423-012-9250-9
Nguyen UP, 2020, SIMULAT GAMING, V51, P744, DOI 10.1177/1046878120941569
Nilashi M, 2022, EDUC INF TECHNOL, V27, P9401, DOI 10.1007/s10639-022-10997-7
Normadhi NBA, 2019, COMPUT EDUC, V130, P168, DOI 10.1016/j.compedu.2018.11.005
Pavlik PI Jr, 2021, IEEE T LEARN TECHNOL, V14, P624, DOI 10.1109/TLT.2021.3128569
Peng HC, 2019, SMART LEARN ENVIRON, V6, DOI 10.1186/s40561-019-0089-y
Peng P, 2022, MOBILE NETW APPL, V27, P1186, DOI 10.1007/s11036-022-01942-6
Peng T, 2008, KNOWL INF SYST, V16, P281, DOI 10.1007/s10115-007-0107-1
Popescu DV, 2022, AMFITEATRU ECON, V24, P314, DOI 10.24818/EA/2022/60/410
Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012
Pressey SL, 1927, SCHOOL SOC, V25, P549
PRITCHARD A, 1969, J DOC, V25, P348
Qiao JF, 2017, IEEE T NEUR NET LEAR, V28, P391, DOI 10.1109/TNNLS.2016.2514275
Reinstein I, 2021, ADV HEALTH SCI EDUC, V26, P881, DOI 10.1007/s10459-021-10027-0
Roach M, 2001, INNOV EDUC TRAIN INT, V38, P369, DOI 10.1080/14703290110074957
Santos J.M., 2003, P INT C COMPUTATIONA, DOI [10.1007/3-540-44862-4_116, DOI 10.1007/3-540-44862-4_116]
Sariyalcinkaya A D., 2021, Advancing the Power of Learning Analytics and Big Data in Education, P61, DOI DOI 10.4018/978-1-7998-7103-3.CH003
Schumacher C, 2021, INTERNET HIGH EDUC, V49, DOI 10.1016/j.iheduc.2020.100791
Sharma K, 2019, BRIT J EDUC TECHNOL, V50, P3004, DOI 10.1111/bjet.12854
Sridharan S, 2021, EDUC INF TECHNOL, V26, P5895, DOI 10.1007/s10639-021-10560-w
Strotmann A, 2012, J AM SOC INF SCI TEC, V63, P1820, DOI 10.1002/asi.22695
Tempelaar D, 2020, ASSESS EVAL HIGH EDU, V45, P579, DOI 10.1080/02602938.2019.1677855
Tsai CJ, 2001, LECT NOTES COMPUT SC, V2074, P429
Tseng JCR, 2008, COMPUT EDUC, V51, P776, DOI 10.1016/j.compedu.2007.08.002
Tseng SS, 2008, EDUC TECHNOL SOC, V11, P171
UNESCO, 2020, INT FOR AI FUT ED DE
Vamvoudakis KG, 2010, AUTOMATICA, V46, P878, DOI 10.1016/j.automatica.2010.02.018
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vanitha V, 2019, COMPUT ELECTR ENG, V77, P325, DOI 10.1016/j.compeleceng.2019.06.016
Verbeek A, 2002, INT J MANAG REV, V4, P179, DOI 10.1111/1468-2370.00083
Villegas-Ch W, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10207016
Wan HP, 2023, INTERACT LEARN ENVIR, V31, P1821, DOI 10.1080/10494820.2020.1858115
Wang C., 2022, 2022 7 INT C CLOUD C, P507, DOI [10.1109/ICCCBDA55098.2022.9778874, DOI 10.1109/ICCCBDA55098.2022.9778874]
Wang FH, 2004, EXPERT SYST APPL, V27, P11, DOI 10.1016/j.eswa.2003.12.001
Wang S, 2023, INTERACT LEARN ENVIR, V31, P793, DOI 10.1080/10494820.2020.1808794
Wang XH, 2018, BRIT J EDUC TECHNOL, V49, P742, DOI 10.1111/bjet.12646
Wang YS, 2022, SCI PROGRAMMING-NETH, V2022, DOI 10.1155/2022/4684461
Wei W, 2019, DISASTER MED PUBLIC, V13, P405, DOI 10.1017/dmp.2018.63
Wu LJ, 2023, INTERACT LEARN ENVIR, V31, P890, DOI 10.1080/10494820.2020.1815216
Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599
Yaghmaie M, 2011, EXPERT SYST APPL, V38, P3280, DOI 10.1016/j.eswa.2010.08.113
Yang TC, 2013, EDUC TECHNOL SOC, V16, P185
Yang Y., 2012, International Journal of Innovation, Management and Technology, V3, P337, DOI [DOI 10.7763/IJIMT.2012.V3.250, 10.7763/ijimt.2012.v3.250]
Yang YTC, 2014, BRIT J EDUC TECHNOL, V45, P723, DOI 10.1111/bjet.12080
Zeng LY, 2021, INT J ELEC ENG EDUC, DOI 10.1177/0020720920984325
Zhang H, 2020, J CLOUD COMPUT-ADV S, V9, DOI 10.1186/s13677-020-00165-y
Zhang JT, 2021, NEUROCOMPUTING, V462, P31, DOI 10.1016/j.neucom.2021.07.046
Zhang L., 2020, IEEE transactions on learning technologies, V14, P338
Zhou YW, 2018, INFORM SCIENCES, V444, P135, DOI 10.1016/j.ins.2018.02.053
Zourmpakis AI, 2022, INT J TECHNOL ENHANC, V14, P1
NR 113
TC 10
Z9 10
U1 21
U2 82
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD FEB
PY 2023
VL 15
IS 4
AR 3115
DI 10.3390/su15043115
PG 21
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA 9K0PW
UT WOS:000940578200001
OA gold
DA 2024-09-05
ER
PT J
AU Luo, FS
Li, RYM
Crabbe, MJC
Pu, RH
AF Luo, Fansong
Li, Rita Yi Man
Crabbe, M. James C.
Pu, Ruihui
TI Economic development and construction safety research: A bibliometrics
approach
SO SAFETY SCIENCE
LA English
DT Article
DE Construction industry; Reconstruction; Bibliometrics; Safety management
and artificial intelligence
ID INTELLECTUAL STRUCTURE; MANAGEMENT; CLIMATE; HEALTH; FATALITIES;
ACCIDENTS; BEHAVIOR; COUNTRY; WORKERS; IMPACT
AB The construction industry contributes significantly to economic development worldwide, yet it is one of the most hazardous industries where numerous accidents and fatalities happen every year. Little research to date has shed light on the impact of economic development on construction safety research. In this paper, we conduct an analysis of construction safety articles published in the 21st century via a bibliometrics approach. We have analysed: (1) construction safety in developed and developing countries; (2) the major organisations that have conducted construction safety research; (3) authors and territories of the research and (4) topics in construction safety and future research directions. The largest number of published construction safety documents were published by scholars from the US and China; the total number of published articles by these two countries was 1,125, at 56% of the 2000 articles that were published. Both countries showed high levels of research collaboration. While our results suggest that economic development may drive academic construction safety research, there has been an increase in construction safety research conducted by developing countries in recent years, probably due to an improvement in their economic development. While authors' keywords evidenced the popularity of research on safety management and climate, the network analysis on all keywords, i.e. keywords given by Web of Science and authors, suggest that construction safety research focused on three areas: construction safety management, the relationship between people and construction safety, and the protection and health of workers' impact on construction safety. We found that there is a new interdisciplinary research trend where construction safety combines with digital technologies, with the largest number involving deep learning. Other trends focus on machine learning, Building Information Modelling, machine learning and visualisation.
C1 [Luo, Fansong; Li, Rita Yi Man] Hong Kong Shue Yan Univ, Sustainable Real Estate Res Ctr, Hong Kong, Peoples R China.
[Crabbe, M. James C.] Univ Oxford, Wolfson Coll, Oxford OX2 6UD, England.
[Crabbe, M. James C.] Univ Bedfordshire, Inst Biomed & Environm Sci & Technol, Luton LU1 3JU, Beds, England.
[Crabbe, M. James C.] Shanxi Univ, Sch Life Sci, Taiyuan 030006, Peoples R China.
[Pu, Ruihui] Srinakharinwirot Univ, Fac Econ, Bangkok 10110, Thailand.
C3 Hong Kong Shue Yan University; University of Oxford; University of
Bedfordshire; Shanxi University; Srinakharinwirot University
RP Pu, RH (corresponding author), Srinakharinwirot Univ, Fac Econ, Bangkok 10110, Thailand.
EM 179034@hksyu.edu.hk; ymli@hksyu.edu; crabbe@wolfson.ox.ac.uk;
ruihui@g.swu.ac.th
RI LUO, Fansong/AFJ-9215-2022
OI Pu, Ruihui/0000-0002-8523-242X
FU Research Grants Council of the Hong Kong Special Administrative Region,
China [UGC/FDS15/E01/18]
FX This work described in this paper was fully supported by a grant from
the Research Grants Council of the Hong Kong Special Administrative
Region, China (Project No. UGC/FDS15/E01/18).
CR Abbas M, 2018, SAFETY SCI, V103, P183, DOI 10.1016/j.ssci.2017.10.026
Abueisheh Q, 2020, SAFETY SCI, V128, DOI 10.1016/j.ssci.2020.104742
Abukhashabah E, 2020, SAUDI J BIOL SCI, V27, P1993, DOI 10.1016/j.sjbs.2020.06.033
Ajayi SO, 2021, J BUILD ENG, V41, DOI 10.1016/j.jobe.2021.102398
Akinosho TD, 2020, J BUILD ENG, V32, DOI 10.1016/j.jobe.2020.101827
Al Mawli B, 2021, SAFETY SCI, V136, DOI 10.1016/j.ssci.2020.105156
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
[Anonymous], 2021, S NEWS WORLD REP
[Anonymous], 2017, EC ANAL AUTOMATED CO
Arthur S., 2003, EC PRINCIPLES ACTION, P471
Awwad R, 2016, SAFETY SCI, V83, P1, DOI 10.1016/j.ssci.2015.10.016
Basaga HB, 2018, SAFETY SCI, V110, P344, DOI 10.1016/j.ssci.2018.09.002
Behm M, 2005, SAFETY SCI, V43, P589, DOI 10.1016/j.ssci.2005.04.002
BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680
Brolin K, 2021, SAFETY SCI, V136, DOI 10.1016/j.ssci.2020.105147
Chen YT, 2018, SAFETY SCI, V109, P434, DOI 10.1016/j.ssci.2018.07.003
Choudhry RA, 2007, SAFETY SCI, V45, P993, DOI 10.1016/j.ssci.2006.09.003
Choudhry RM, 2008, SAFETY SCI, V46, P566, DOI 10.1016/j.ssci.2007.06.027
Clarivate, 2021, WHO WE ARE CLAR
Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004
Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003
Fang DP, 2020, SAFETY SCI, V128, DOI 10.1016/j.ssci.2020.104761
Fang WL, 2020, AUTOMAT CONSTR, V110, DOI 10.1016/j.autcon.2019.103013
Fang WL, 2020, ADV ENG INFORM, V43, DOI 10.1016/j.aei.2019.100980
Fetscherin M, 2015, J BUS RES, V68, P380, DOI 10.1016/j.jbusres.2014.06.010
Glendon AI, 2001, SAFETY SCI, V39, P157, DOI 10.1016/S0925-7535(01)00006-6
Guo BHW, 2021, SAFETY SCI, V135, DOI 10.1016/j.ssci.2020.105130
Guo QJ, 2020, RELIAB ENG SYST SAFE, V201, DOI 10.1016/j.ress.2020.106956
*ILO, 2018, ILOSTAT ILO DAT LAB
Kim J, 2020, AUTOMAT CONSTR, V120, DOI 10.1016/j.autcon.2020.103376
Li R.Y.M., 2013, CONSTRUCTION SAFEY
Li RYM, 2011, ECON AFFA, V31, P73, DOI 10.1111/j.1468-0270.2010.02053.x
Liang KZ, 2019, J SAFETY RES, V70, P149, DOI 10.1016/j.jsr.2019.06.004
Lingard H, 2021, SAFETY SCI, V133, DOI 10.1016/j.ssci.2020.105028
Lu Y, 2021, AUTOMAT CONSTR, V124, DOI 10.1016/j.autcon.2021.103553
Manu P, 2018, SAFETY SCI, V107, P188, DOI 10.1016/j.ssci.2017.07.007
Merigó JM, 2015, J BUS RES, V68, P2645, DOI 10.1016/j.jbusres.2015.04.006
Mohamed S, 2002, J CONSTR ENG M, V128, P375, DOI 10.1061/(ASCE)0733-9364(2002)128:5(375)
Nerur SP, 2008, STRATEG MANAGE J, V29, P319, DOI 10.1002/smj.659
Oh TK, 2021, SAFETY SCI, V133, DOI 10.1016/j.ssci.2020.104994
Oxford Economics, 2015, CAP PROJ INFR SPEND
Ramos-Rodríguez AR, 2004, STRATEGIC MANAGE J, V25, P981, DOI 10.1002/smj.397
Rodriguez A, 2014, SCIENCE, V344, P1492, DOI 10.1126/science.1242072
Sick V, 2020, CO2 CAN HELP CONSTRU
Sinyai C, 2020, SAFETY SCI, V131, DOI 10.1016/j.ssci.2020.104915
Stanton EA., 2007, Polit Econ Res Inst Work Pap Ser, V127, P1
Tam CM, 2004, SAFETY SCI, V42, P569, DOI 10.1016/j.ssci.2003.09.001
U.S. Bureau of Labor Statistics, 2019, CENS FAT OCC INJ SUM
UKGOV, 2013, CONSTR 2025 IND STRA
van Eck N.J., 2020, VOSviewer Manual
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
Lozano-Díez RV, 2019, J SAFETY RES, V68, P149, DOI 10.1016/j.jsr.2018.12.012
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Xu YY, 2021, DEV BUILT ENVIRON, V6, DOI 10.1016/j.dibe.2021.100045
Zahoor H, 2015, PROCEDIA ENGINEER, V118, P581, DOI 10.1016/j.proeng.2015.08.488
Zhang SJ, 2013, AUTOMAT CONSTR, V29, P183, DOI 10.1016/j.autcon.2012.05.006
Zhong BT, 2020, AUTOMAT CONSTR, V113, DOI 10.1016/j.autcon.2020.103089
Zhou ZP, 2015, SAFETY SCI, V72, P337, DOI 10.1016/j.ssci.2014.10.006
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 59
TC 48
Z9 49
U1 10
U2 136
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0925-7535
EI 1879-1042
J9 SAFETY SCI
JI Saf. Sci.
PD JAN
PY 2022
VL 145
AR 105519
DI 10.1016/j.ssci.2021.105519
EA OCT 2021
PG 10
WC Engineering, Industrial; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Engineering; Operations Research & Management Science
GA WH6TY
UT WOS:000707808600018
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Alipour, O
Soheili, F
Khasseh, AA
AF Alipour, Omid
Soheili, Faramarz
Khasseh, Ali Akbar
TI A Co-Word Analysis of Global Research on Knowledge Organization:
1900-2019
SO KNOWLEDGE ORGANIZATION
LA English
DT Article
DE co-word analysis; bibliometric networks; strategic diagram;
scientometrics; knowledge structure; hierarchical clustering
ID INTELLECTUAL STRUCTURE; INFORMATION-SCIENCE; LIBRARY; COOCCURRENCE
AB The study's objective is to analyze the structure of knowledge organization studies conducted worldwide. This applied research has been conducted with a scientometrics approach using the co-word analysis. The research records consisted of all articles published in the journals of Knowledge Organization and Cataloging & Classification Quarterly and keywords related to the field of knowledge organization indexed in Web of Science from 1900 to 2019, in which 17,950 records were analyzed entirely with plain text format. The total number of keywords was 25,480, which was reduced to 12,478 keywords after modifications and removal of duplicates. Then, 115 keywords with a frequency of at least 18 were included in the final analysis, and finally, the co-word network was drawn. BibExcel, UCINET, VOSviewer, and SPSS software were used to draw matrices, analyze co-word networks, and draw dendrograms. Furthermore, strategic diagrams were drawn using Excel software. The keywords "information retrieval," "classification," and "ontology" are among the most frequently used keywords in knowledge organization articles. Findings revealed that "Ontology*Semantic Web", "Digital Library*Information Retrieval" and "Indexing*Information Retrieval" are highly frequent co-word pairs, respectively. The results of hierarchical clustering indicated that the global research on knowledge organization consists of eight main thematic clusters; the largest is specified for the topic of "classification, indexing, and information retrieval." The smallest clusters deal with the topics of "data processing" and "theoretical concepts of information and knowledge organization" respectively. Cluster 1 (cataloging standards and knowledge organization) has the highest density, while Cluster 5 (classification, indexing, and information retrieval) has the highest centrality. According to the findings of this research, the keyword "information retrieval" has played a significant role in knowledge organization studies, both as a keyword and co-word pair. In the co-word section, there is a type of related or general topic relationship between co-word pairs. Results indicated that information retrieval is one of the main topics in knowledge organization, while the theoretical concepts of knowledge organization have been neglected. In general, the co-word structure of knowledge organization research indicates the multiplicity of global concepts and topics studied in this field globally.
C1 [Alipour, Omid] Guilan Univ, Fac Nat Resources, Lib Serv, Guilan, Iran.
[Soheili, Faramarz; Khasseh, Ali Akbar] Payame Noor Univ, Dept Lib & Informat Sci, POB 19395-4697, Tehran, Iran.
C3 University of Guilan; Payame Noor University
RP Alipour, O (corresponding author), Guilan Univ, Fac Nat Resources, Lib Serv, Guilan, Iran.
EM alipour.omid@gmail.com; soheili@pnu.ac.ir; khasseh@pnu.ac.ir
RI Khasseh, Ali Akbar/W-4434-2017; soheili, faramarz/ABE-4978-2020
OI Khasseh, Ali Akbar/0000-0001-5664-4671;
CR Assefa SG, 2013, J AM SOC INF SCI TEC, V64, P2513, DOI 10.1002/asi.22917
Birkle C, 2020, QUANT SCI STUD, V1, P363, DOI 10.1162/qss_a_00018
Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6
Barros THB, 2019, KNOWL ORGAN, V46, P493, DOI 10.5771/0943-7444-2019-7-493
Bredillet C.N., 2006, Global project management handbook: planning, organizing, and controlling international projects
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Chen XW, 2019, SCIENTOMETRICS, V121, P349, DOI 10.1007/s11192-019-03187-9
Corrochano MD, 2013, KNOWL ORGAN, V40, P28, DOI 10.5771/0943-7444-2013-1-28
Deng SL, 2021, J LIBR INF SCI, V53, P280, DOI 10.1177/0961000620938120
Ding Y, 2001, INFORM PROCESS MANAG, V37, P817, DOI 10.1016/S0306-4573(00)00051-0
Gályez C, 2018, REV GEN INF DOC, V28, P455, DOI 10.5209/RGID.62834
Ghazizadeh H., 2018, SCIENTOMETRICS RES J, V4, P101
Hu CP, 2013, SCIENTOMETRICS, V97, P369, DOI 10.1007/s11192-013-1076-7
Katsurai M, 2019, SCIENTOMETRICS, V121, P1583, DOI 10.1007/s11192-019-03241-6
Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001
Kumar S, 2012, PROCD SOC BEHV, V65, P1027, DOI 10.1016/j.sbspro.2012.11.237
Lee PC, 2010, INNOV-MANAG POLICY P, V12, P26, DOI 10.5172/impp.12.1.26
Leydesdorff L, 1997, J AM SOC INFORM SCI, V48, P418
Leydesdorff L, 2011, J INFORMETR, V5, P469, DOI 10.1016/j.joi.2011.01.008
Li SQ, 2015, SCIENTOMETRICS, V103, P1023, DOI 10.1007/s11192-015-1571-0
Liu GY, 2012, SCIENTOMETRICS, V91, P203, DOI 10.1007/s11192-011-0586-4
Liu P, 2015, SCIENTOMETRICS, V104, P737, DOI 10.1007/s11192-015-1629-z
Mane KK, 2004, P NATL ACAD SCI USA, V101, P5287, DOI 10.1073/pnas.0307626100
Melcer E., 2015, The Proceedings of the 10th International Conference on the Foundations of Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA
Mokhtarpour R, 2021, J INF SCI, V47, P794, DOI 10.1177/0165551520932119
Mokhtarpour R, 2020, J LIBR INF SCI, V52, P1186, DOI 10.1177/0961000620907956
Morgan J, 2006, J INF SCI, V32, P108, DOI 10.1177/0165551506062324
Olmeda-Gomez C. O., 2017, TENDENCIAS ATUAIS PE, VXX, P499
Olmeda-Gómez C, 2017, SCIENTOMETRICS, V113, P195, DOI 10.1007/s11192-017-2486-8
Pattuelli MC, 2010, J INF SCI, V36, P812, DOI 10.1177/0165551510388118
Ryan GW., 2003, FIELD METHOD, V15, P85, DOI [DOI 10.1177/1525822X02239569, 10.1177/1525822X02239569]
Shen LN, 2017, J DOC, V73, P618, DOI 10.1108/JD-10-2016-0125
Smiraglia RP, 2017, KNOWL ORGAN, V44, P215, DOI 10.5771/0943-7444-2017-3-215
Tariq M., 2020, LIB PHILOS PRACTICE
Wang X., 2009, Art Res, V9, P123
Wu Ke, 2013, Knowledge Science, Engineering and Management. 6th International Conference, KSEM 2013. Proceedings. LNCS 8041, P538, DOI 10.1007/978-3-642-39787-5_45
Xu F, 2021, J ACAD LIBR, V47, DOI 10.1016/j.acalib.2020.102295
Zhang J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034497
Zhu X, 2020, SCIENTOMETRICS, V123, P753, DOI 10.1007/s11192-020-03400-0
Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1
NR 40
TC 1
Z9 1
U1 8
U2 19
PU NOMOS VERLAGSGESELLSCHAFT MBH & CO KG
PI BADEN-BADEN
PA WALDSEESTR 3 5, BADEN-BADEN, 76530, GERMANY
SN 0943-7444
J9 KNOWL ORGAN
JI Knowl. Organ.
PY 2022
VL 49
IS 5
BP 303
EP 315
DI 10.5771/0943-7444-2022-5-303
PG 13
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA G1FR9
UT WOS:000986704600001
DA 2024-09-05
ER
PT J
AU Millimouno, TM
Delvaux, T
Kolié, JM
Kourouma, K
Van Bastelaere, S
Tsunami, CK
Béavogui, AH
Garcia, M
Van Damme, W
Delamou, A
AF Millimouno, Tamba Mina
Delvaux, Therese
Kolie, Jean Michel
Kourouma, Karifa
Van Bastelaere, Stefaan
Tsunami, Carlos Kiyan
Beavogui, Abdoul Habib
Garcia, Marlon
Van Damme, Wim
Delamou, Alexandre
TI Evaluation of Three Blended Learning Courses to Strengthen Health
Professionals' Capacity in Primary Health Care, Management of Sexual and
Reproductive Health Services and Research Methods in Guinea
SO FRONTIERS IN DIGITAL HEALTH
LA English
DT Article
DE blended learning (BL); e-learning; online learning (OL); distance
learning; training; health professionals (HPs); medical education;
Guinea (Conakry)
ID EDUCATION; IMPLEMENTATION
AB BackgroundThree blended courses on Primary Health Care (eSSP), Management of Sexual and Reproductive Health Services (eSSR), and Research Methods (eMR) were developed and implemented between 2017 and 2021 by the Maferinyah National Training and Research Center in Rural Health, a training and research institution of the Ministry of Health in Guinea. The study objectives were to evaluate the reasons for dropout and abstention, the learners' work behavior following the training, and the impact of the behavior change on the achievements of learners' organizations or services. MethodsWe evaluated the three implemented courses in 2021, focusing on levels 3 and 4 of the Kirkpatrick training evaluation model. Quantitative and qualitative data were collected through an open learning platform (Moodle), via an electronic questionnaire, during the face-to-face component of the courses (workshops), and at learners' workplaces. Descriptive statistics and thematic analysis were performed for quantitative and qualitative data, respectively. ResultsOut of 1,016 applicants, 543 including 137 (25%) women were enrolled in the three courses. Over the three courses, the completion rates were similar (67-69%) along with 20-29% dropout rates. Successful completion rates were 72% for eSSP, 83% for eMR and 85% for eSSR. Overall success rate (among all enrollees) ranged from 50% (eSSP) to 58% (eSSR). The majority (87%) of the learners reported applying the knowledge and skills they acquired during the courses through activities such as supervision (22%), service delivery (20%), and training workshops (14%). A positive impact of the training on utilization/coverage of services and increased revenues for their health facilities were also reported by some trainees. ConclusionThese findings showed fair success rates and a positive impact of the training on learners' work behavior and the achievements of their organizations.
C1 [Millimouno, Tamba Mina; Kolie, Jean Michel; Kourouma, Karifa; Beavogui, Abdoul Habib; Delamou, Alexandre] Maferinyah Natl Training & Res Ctr Rural Hlth, Forecariah, Guinea.
[Delvaux, Therese; Garcia, Marlon; Van Damme, Wim] Inst Trop Med, Dept Publ Hlth, Antwerp, Belgium.
[Van Bastelaere, Stefaan] Belgian Dev Agcy Enabel, Brussels, Belgium.
[Tsunami, Carlos Kiyan] Inst Trop Med, Dept Clin Sci, Antwerp, Belgium.
[Delamou, Alexandre] Gamal Abdel Nasser Univ, Africa Ctr Excellence Prevent & Control Transmiss, Conakry, Guinea.
C3 Institute of Tropical Medicine (ITM); Institute of Tropical Medicine
(ITM)
RP Millimouno, TM (corresponding author), Maferinyah Natl Training & Res Ctr Rural Hlth, Forecariah, Guinea.
EM minamillimouno@gmail.com
RI Van Damme, Wim/F-7404-2011
OI Van Damme, Wim/0000-0002-6344-3007; KOUROUMA,
KARIFA/0000-0001-6375-262X; Millimouno, Tamba Mina/0000-0002-4628-1296;
Kiyan Tsunami, Carlos/0009-0008-3215-4078
FU Belgian Development Agency (Enabel)
FX This evaluation was funded by the Belgian Development Agency (Enabel).
CR Annan RA, 2020, GLOBAL HEALTH ACTION, V13, DOI 10.1080/16549716.2020.1831794
Ashraf MA, 2022, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.772322
Attardi SM, 2015, ANAT SCI EDUC, V8, P53, DOI 10.1002/ase.1465
Bates R, 2004, EVAL PROGRAM PLANN, V27, P341, DOI 10.1016/j.evalprogplan.2004.04.011
Bediang G, 2013, BMC MED EDUC, V13, DOI 10.1186/1472-6920-13-57
Bonk C. J., 2005, HDB BLENDED LEARNING, P624
Bouzguenda K., 2014, TRANSFER LEARNING OR, P23, DOI [10.1007/978-3-319-02093-8_3, DOI 10.1007/978-3-319-02093-8_3]
Bove L., 2019, NEW PARADIGMS CALL N, P1
Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA]
Cahapay MB, 2021, INT J ASSESS TOOLS E, V8, P135, DOI 10.21449/ijate.856143
Caner M, 2012, BLENDED LEARNING ENVIRONMENTS FOR ADULTS: EVALUATIONS AND FRAMEWORKS, P19, DOI 10.4018/978-1-4666-0939-6.ch002
Medina LC, 2018, AUSTRALAS J EDUC TEC, V34, P42, DOI 10.14742/ajet.3100
DIRKX JM, 1994, ADULT EDUC QUART, V45, P269, DOI 10.1177/0741713694045001002
District.Team, MOB 2 0 EQ CARD DIST
Du S, 2013, INT NURS REV, V60, P167, DOI 10.1111/inr.12015
Garley A, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1354-y
Garrison D. R., 2004, Internet and Higher Education, V7, P95, DOI 10.1016/j.iheduc.2004.02.001
Gauthier PD., 2001, DIMENSION CACH E E L
Graham CR, 2003, The Handbook of Blended Learning: Pfeiffer-An Imprint of Wiley
Harden RM, 2005, J CONTIN EDUC HEALTH, V25, P43, DOI 10.1002/chp.8
Hugenholtz NIR, 2008, OCCUP MED-OXFORD, V58, P370, DOI 10.1093/occmed/kqn053
Ibrahim NK, 2021, J INFECT PUBLIC HEAL, V14, P17, DOI 10.1016/j.jiph.2020.11.007
Karsenti T., 2009, J APPL COMPUT, V5, P16
Keen C.M., 2014, Perf. Improv, V53, P22, DOI DOI 10.1002/PFI.21443
Kirkpatrick D, 1996, TRAINING DEV, V50, P54
Kumar Basak S., 2018, E-LEARNING DIGITAL M, V15, P191, DOI 10.1177%2F2042753018785180
Lahti M, 2014, INT J NURS STUD, V51, P136, DOI 10.1016/j.ijnurstu.2012.12.017
Levy Y, 2007, COMPUT EDUC, V48, P185, DOI 10.1016/j.compedu.2004.12.004
Manyazewal T, 2017, AM J CLIN PATHOL, V147, P285, DOI [10.1093/ajcp/aqx002, 10.1093/AJCP/AQX002]
Masic Izet, 2008, Acta Inform Med, V16, P102, DOI 10.5455/aim.2008.16.102-117
Millimouno TM, 2021, BMC MED EDUC, V21, DOI 10.1186/s12909-021-02847-w
Millimouno Tamba Mina, 2021, Sante Publique, V32, P537, DOI 10.3917/spub.205.0537
Mohanna K, 2007, POSTGRAD MED J, V83, P211, DOI 10.1136/pgmj.2007.058610
Molenda M., 2003, PERFORMANCE IMPROVEM, V42, P34
Naal H, 2020, J GLOB HEALTH, V10, DOI 10.7189/jogh.10.020412
Regmi K, 2020, BMC MED EDUC, V20, DOI 10.1186/s12909-020-02007-6
Rudd KE, 2019, INT J MED INFORM, V131, DOI 10.1016/j.ijmedinf.2019.08.005
Saunders B, 2018, QUAL QUANT, V52, P1893, DOI 10.1007/s11135-017-0574-8
Turnbow D., INSTRUCTION DESIGN K
Vaismoradi M, 2013, NURS HEALTH SCI, V15, P398, DOI 10.1111/nhs.12048
Vaona A, 2018, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011736.pub2
Watson J., 2008, Promising practices in online learning: Blended learning: The convergence of online and face-to-face education
Wilkinson T.W., 1990, American Journal of Distance Education, V4, P47, DOI DOI 10.1080/08923649009526716
NR 43
TC 2
Z9 2
U1 0
U2 2
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
EI 2673-253X
J9 FRONT DIGIT HEALTH
JI Front. Digit. Health
PD JUN 27
PY 2022
VL 4
AR 911089
DI 10.3389/fdgth.2022.911089
PG 10
WC Health Care Sciences & Services; Medical Informatics
WE Emerging Sources Citation Index (ESCI)
SC Health Care Sciences & Services; Medical Informatics
GA M4TV3
UT WOS:001030161100001
PM 35832657
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Pei, B
Xing, WL
Wang, MJ
AF Pei, Bo
Xing, Wanli
Wang, Minjuan
TI Academic development of multimodal learning analytics: a bibliometric
analysis
SO INTERACTIVE LEARNING ENVIRONMENTS
LA English
DT Article
DE Multimodal learning analytics; bibliometric analysis; learning
analytics; social network analysis; topic modeling
ID KNOWLEDGE
AB Multimodal Learning Analytics (MMLA) has huge potential for extending the work beyond traditional learning analytics for the capabilities of leveraging multiple data modalities (e.g. physiological data, digital tracing data). To shed a light on its applications and academic development, a systematic bibliometric analysis was conducted in this paper. Specifically, we examine the following aspects: (1) Analyzing the yearly publication and citation trends since the year 2010; (2) Recognizing the most prolific countries, institutions, and authors in this field; (3) Identifying the collaborative patterns among countries, institutions, and authors, respectively; (4) Tracing the evolving procedure of the applied keywords and development of the research topics during the last decade. These analytic tasks were conducted on 194 carefully selected articles published since 2010. The analytical results revealed an increasing trend in the number of publications and citations, identified the prominent institutions and scholars with significant academic contributions to the area, and detected the topics (e.g. characterizing learning processes using multimodal data, implementing ubiquitous learning platforms) that received the most attention. Finally, we also highlighted the current research hotspots attempting to initiate potential interdisciplinary collaborations to promote further progress in the area of MMLA.
C1 [Pei, Bo; Xing, Wanli] Univ Florida, Coll Educ, Sch Teaching & Learning, Gainesville, FL 32611 USA.
[Wang, Minjuan] San Diego State Univ, Learning Design & Technol, San Diego, CA 92182 USA.
C3 State University System of Florida; University of Florida; California
State University System; San Diego State University
RP Xing, WL (corresponding author), Univ Florida, Coll Educ, Sch Teaching & Learning, Gainesville, FL 32611 USA.
EM wanli.xing@coe.ufl.edu
OI Pei, Bo/0000-0002-6328-6929; Xing, Wanli/0000-0002-1446-889X
CR Agarwal A, 2016, ASIAN J ANDROL, V18, P296, DOI 10.4103/1008-682X.171582
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blikstein P., 2016, J. Learn. Anal., V3, P220, DOI DOI 10.18608/JLA.2016.32.11
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chiluiza, 2017, CEUR WORKSHOP P, V1828, P94
Cukurova M., 2019, P AIAED 2019
Di Mitri D, 2018, J COMPUT ASSIST LEAR, V34, P338, DOI 10.1111/jcal.12288
EGGHE L, 1987, SCIENTOMETRICS, V11, P81, DOI 10.1007/BF02016632
Iqbal W, 2019, SCIENTOMETRICS, V119, P1121, DOI 10.1007/s11192-019-03086-z
Loper Edward, 2002, ASS COMPUTATIONAL LI, P63
Manocha D, 2019, TEXTUAL SPEECH CUES, V34, P1359, DOI [10.1609/aaai.v34i02.5492, DOI 10.1609/AAAI.V34I02.5492]
Morency LP, 2013, ICMI'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, P373, DOI 10.1145/2522848.2534669
Noroozi O, 2020, EDUC INF TECHNOL, V25, P5499, DOI 10.1007/s10639-020-10229-w
Ochoa X., 2016, Journal of Learning Analytics, V3, P213, DOI DOI 10.18608/JLA.2016.32.10
Oviatt S, 2013, ICMI'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, P563, DOI 10.1145/2522848.2533790
Pei B, 2019, BRIT J EDUC TECHNOL, V50, P3391, DOI 10.1111/bjet.12741
Scherer S, 2012, ICMI '12: PROCEEDINGS OF THE ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, P609
Shankar SK, 2018, IEEE INT CONF ADV LE, P212, DOI 10.1109/ICALT.2018.00057
Talburt, 2013, INFORM QUALITY GOVER
Worsley M., 2018, CEUR WORKSHOP P
Xing WL, 2019, INTERNET HIGH EDUC, V43, DOI 10.1016/j.iheduc.2019.100690
Xing WL, 2016, COMPUT HUM BEHAV, V58, P119, DOI 10.1016/j.chb.2015.12.007
Xing WL, 2015, COMPUT HUM BEHAV, V47, P168, DOI 10.1016/j.chb.2014.09.034
Zhong SZ, 2016, J CLEAN PROD, V139, P122, DOI 10.1016/j.jclepro.2016.08.039
Zhu GX, 2019, USER MODEL USER-ADAP, V29, P789, DOI 10.1007/s11257-019-09241-8
NR 25
TC 11
Z9 11
U1 8
U2 91
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1049-4820
EI 1744-5191
J9 INTERACT LEARN ENVIR
JI Interact. Learn. Environ.
PD AUG 18
PY 2023
VL 31
IS 6
BP 3543
EP 3561
DI 10.1080/10494820.2021.1936075
EA JUN 2021
PG 19
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA P6MO6
UT WOS:000658203800001
DA 2024-09-05
ER
PT J
AU van den Besselaar, P
Leydesdorff, L
AF van den Besselaar, P
Leydesdorff, L
TI Mapping change in scientific specialties: A scientometric reconstruction
of the development of artificial intelligence
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
LA English
DT Article
ID CITATION ANALYSIS; JOURNALS; SCIENCE
AB Has an identifiable core of activities called AI been established, during the AI-boom in the eighties? Is AI already in a ''paradigmatic'' phase? There has been a lot of disagreement among commentators and specialists about the nature of Artificial Intelligence as a specialty, This makes AI an interesting case of an emerging specialty, We use aggregated journal-journal citations for describing Artificial Intelligence as sets of journals; factor analytic techniques are used to analyze the development of AI in terms of (an emerging) stability and coherency of the journal-sets during the period 1982-1992, The analysis teaches us that AI has emerged as a set of journals with the characteristics of a discipline only since 1988, The thereafter relatively stable set of journals includes both fundamental and applied AI-journals, and journals with a focus on expert systems, Additionally, specialties related to artificial intelligence (like pattern analysis, computer science, cognitive psychology) are identified, Neural network research is a part neither of AI nor of its direct citation environment, Information science is related to AI only in the early eighties, The citation environment of AI is more stable than AI itself.
C1 UNIV AMSTERDAM, DEPT SCI & TECHNOL DYNAM, 1018 WV AMSTERDAM, NETHERLANDS.
C3 University of Amsterdam
RP van den Besselaar, P (corresponding author), UNIV AMSTERDAM, DEPT SOCIAL SCI INFORMAT, ROETERSSTR 15, 1018 WB AMSTERDAM, NETHERLANDS.
RI van den Besselaar, Peter A A/E-5938-2013; Leydesdorff, Loet/E-2903-2010;
van den Besselaar, Peter A.A./A-8945-2011
OI van den Besselaar, Peter A A/0000-0002-8304-8565; Leydesdorff,
Loet/0000-0002-7835-3098;
CR [Anonymous], 1976, EVALUATIVE BIBLIOMET
[Anonymous], 1962, The Structure of Scientific Revolutions
[Anonymous], 1976, TECHNOL CULT
[Anonymous], SCIENTOMETRICS
[Anonymous], CARTOGRAPHY SCI SCIE
[Anonymous], 1986, UNDERSTANDING COMPUT
BOBROW DG, 1985, ARTIF INTELL, V25, P375, DOI 10.1016/0004-3702(85)90077-3
Boden M.A., 1990, PHILOS ARTIFICIAL IN
BORGMAN CL, 1992, J AM SOC INFORM SCI, V43, P397, DOI 10.1002/(SICI)1097-4571(199207)43:6<397::AID-ASI1>3.0.CO;2-M
Burt RonaldS., 1982, Toward a Structural Theory of Action : Network Models of Social Structure, Perception, and Action
CARPENTER MP, 1973, J AM SOC INFORM SCI, V24, P425, DOI 10.1002/asi.4630240604
Chubin D., 1983, Sociology of science: An annotated bibliography on invisible college 1972- 1981
COY W, 1989, ERFAHRUNG BERECHNUNG
Cozzens SE, 1993, P JOINT EC LEID WORK, P219
DOREIAN P, 1985, J AM SOC INFORM SCI, V36, P28, DOI 10.1002/asi.4630360103
DREYFUS HL, 1986, WHAT COMPUTERS CANT
EVERETT JE, 1991, J AM SOC INFORM SCI, V42, P405, DOI 10.1002/(SICI)1097-4571(199107)42:6<405::AID-ASI3>3.0.CO;2-W
Garfield Eugene., 1979, CITATION INDEXING
GRIFFITH BC, 1972, SCIENCE, V177, P959, DOI 10.1126/science.177.4053.959
KHAWAM YJ, 1991, LIBR INFORMATION SCI, V14, P57
Knoke D., 1982, NETWORK ANAL
LEYDESDORFF L, 1994, RES POLICY, V23, P217, DOI 10.1016/0048-7333(94)90054-X
LEYDESDORFF L, 1987, SCIENTOMETRICS, V11, P295, DOI 10.1007/BF02279351
LEYDESDORFF L, 1990, SCI TECHNOL HUM VAL, V15, P305, DOI 10.1177/016224399001500303
LEYDESDORFF L, 1986, SCIENTOMETRICS, V9, P103, DOI 10.1007/BF02017235
Leydesdorff L., 2001, The Challenge of Scientometrics: The Development, Measurement, and Self-Organization of Scientific Communications
LEYDESDORFF L, 1993, P JOINT EC LEID WORK, P289
LEYDESDORFF L, 1993, SCIENTOMETRICS, V26, P133
MCCAIN KW, 1984, J AM SOC INFORM SCI, V35, P351, DOI 10.1002/asi.4630350607
MCCAIN KW, 1990, J AM SOC INFORM SCI, V41, P433, DOI 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q
MCCAIN KW, 1986, J AM SOC INFORM SCI, V37, P111, DOI 10.1002/asi.4630370303
MCCAIN KW, 1994, KNOWLEDGE, V15, P285, DOI 10.1177/107554709401500303
MCCRAY AT, 1992, INFORMATIEWETENSCHAP, P21
Mowshowitz A., 1976, The conquest of will: Information processing in human affairs
Negrotti M., 1987, Applied Artificial Intelligence, V1, P109, DOI 10.1080/08839518708927963
PRICE DJD, 1965, SCIENCE, V149, P510
Shrum W., 1988, Handbook of Quantitative Studies of Science and Technology, P107, DOI DOI 10.1016/B978-0-444-70537-2.50009-X
SMALL H, 1974, SCI STUD, V4, P147
SMALL HG, 1978, SOC STUD SCI, V8, P327, DOI 10.1177/030631277800800305
Studer Kenneth., 1980, The Cancer Mission: Social Contexts of Biomedical Research
Tijssen RJW, 1987, SCIENTOMETRICS, V11, P347
van den Besselaar P., 1993, AI Communications, V6, P83
VANDENBESSELAAR P, 1992, INFORMATIEWETENSCHAP, P63
1993, COGNITIVE SCI, V17
NR 44
TC 77
Z9 83
U1 1
U2 47
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0002-8231
J9 J AM SOC INFORM SCI
JI J. Am. Soc. Inf. Sci.
PD JUN
PY 1996
VL 47
IS 6
BP 415
EP 436
DI 10.1002/(SICI)1097-4571(199606)47:6<415::AID-ASI3>3.0.CO;2-Y
PG 22
WC Computer Science, Information Systems; Information Science & Library
Science
WE Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA UM121
UT WOS:A1996UM12100003
DA 2024-09-05
ER
PT J
AU Porter, LA
AF Porter, Lon A., Jr.
TI Active Learning and Student Engagement via 3D Printing and Design:
Integrating Undergraduate Research, Service Learning, and
Cross-Disciplinary Collaborations
SO MRS ADVANCES
LA English
DT Article
AB In order to provide students with the training required to meet the substantial and diverse challenges of the 21st Century, effective programs in engineering, science, and technology must continue to take the lead in developing high-impact educational practices. Over the past year, faculty across several departments collaborated in the establishment of a campus 3D printing and fabrication center. This facility was founded to offer opportunities for exploring innovative active learning strategies in order to enhance the lives of Wabash College students and serve as a model to other institutions of higher education. This campus resource provides the infrastructure that will empower faculty and staff to explore diverse and meaningful cross-disciplinary collaborations related to teaching and learning across campus. New initiatives include the development of courses on design and fabrication, collaborative cross-disciplinary projects that bridge courses in the arts and sciences, 3D printing and fabrication-based undergraduate research internships, and entrepreneurial collaborations with local industry. These innovative approaches are meant to open the door to greater active learning experiences that empower and prepare students for creative and practical problem solving. Furthermore, service learning projects, community-based opportunities, and global outreach initiatives provide students with a sense of social responsibility, ethical awareness, leadership, and teamwork. This paper shares initial successes of this effort and goals for future enrichment of student learning.
C1 [Porter, Lon A., Jr.] Wabash Coll, Dept Chem, 301 W Wabash Ave, Crawfordsville, IN 47933 USA.
RP Porter, LA (corresponding author), Wabash Coll, Dept Chem, 301 W Wabash Ave, Crawfordsville, IN 47933 USA.
FU Wabash College and the Department of Chemistry; Ball Brothers Foundation
Venture Fund
FX The authors gratefully acknowledge financial support of this work by
Wabash College and the Department of Chemistry. The Wabash College 3D
Printing and Fabrication Center, supported through a Ball Brothers
Foundation Venture Fund Grant, is thanked for facilities and
instrumentation support. Roland Morin and the Wabash Center for
Innovation, Business & Entrepreneurship (CIBE) are acknowledged for
student intern support.
CR Barnatt C., 2013, 3D PRINTING
Gross BC, 2014, ANAL CHEM, V86, P3240, DOI 10.1021/ac403397r
Hofmann M, 2014, ACS MACRO LETT, V3, P382, DOI 10.1021/mz4006556
Hutchings P., 2011, SCHOLARSHIP TEACHING
Kuh G.D., 2008, Excerpt from "High-Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter
Lipson H., 2014, FABRICATED NEW WORLD
Porter Jr L. A., 2016, J CHEM ED IN PRESS
Sousa DavidThomas Pilecki., 2013, From Stem to Steam: Using Brain-Compatible Strategies to Integrate the Arts
Violante LEH, 2014, ACS SYM SER, V1180, P125
NR 9
TC 4
Z9 4
U1 0
U2 13
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 2059-8521
J9 MRS ADV
JI MRS Adv.
PY 2016
VL 1
IS 56
BP 3703
EP 3708
DI 10.1557/adv.2016.82
PG 6
WC Materials Science, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Materials Science
GA FJ4GQ
UT WOS:000412695200001
DA 2024-09-05
ER
PT J
AU Sarol, MJ
Ming, SF
Radhakrishna, S
Schneider, J
Kilicoglu, H
AF Sarol, Maria Janina
Ming, Shufan
Radhakrishna, Shruthan
Schneider, Jodi
Kilicoglu, Halil
TI Assessing citation integrity in biomedical publications: corpus
annotation and NLP models
SO BIOINFORMATICS
LA English
DT Article
ID COUNTS MEASURE; ACCURACY
AB Motivation Citations have a fundamental role in scholarly communication and assessment. Citation accuracy and transparency is crucial for the integrity of scientific evidence. In this work, we focus on quotation errors, errors in citation content that can distort the scientific evidence and that are hard to detect for humans. We construct a corpus and propose natural language processing (NLP) methods to identify such errors in biomedical publications.Results We manually annotated 100 highly-cited biomedical publications (reference articles) and citations to them. The annotation involved labeling citation context in the citing article, relevant evidence sentences in the reference article, and the accuracy of the citation. A total of 3063 citation instances were annotated (39.18% with accuracy errors). For NLP, we combined a sentence retriever with a fine-tuned claim verification model to label citations as ACCURATE, NOT_ACCURATE, or IRRELEVANT. We also explored few-shot in-context learning with generative large language models. The best performing model-which uses citation sentences as citation context, the BM25 model with MonoT5 reranker for retrieving top-20 sentences, and a fine-tuned MultiVerS model for accuracy label classification-yielded 0.59 micro-F1 and 0.52 macro-F1 score. GPT-4 in-context learning performed better in identifying accurate citations, but it lagged for erroneous citations (0.65 micro-F1, 0.45 macro-F1). Citation quotation errors are often subtle, and it is currently challenging for NLP models to identify erroneous citations. With further improvements, the models could serve to improve citation quality and accuracy.Availability and implementation We make the corpus and the best-performing NLP model publicly available at https://github.com/ScienceNLP-Lab/Citation-Integrity/.
C1 [Sarol, Maria Janina] Univ Illinois, Informat Programs, Champaign, IL 61820 USA.
[Ming, Shufan; Schneider, Jodi; Kilicoglu, Halil] Univ Illinois, Sch Informat Sci, 501 E Daniel St, Champaign, IL 61820 USA.
[Radhakrishna, Shruthan] Univ Illinois, Dept Comp Sci, Champaign, IL 61801 USA.
C3 University of Illinois System; University of Illinois Urbana-Champaign;
University of Illinois System; University of Illinois Urbana-Champaign;
University of Illinois System; University of Illinois Urbana-Champaign
RP Kilicoglu, H (corresponding author), Univ Illinois, Sch Informat Sci, 501 E Daniel St, Champaign, IL 61820 USA.
EM halil@illinois.edu
RI Schneider, Jodi/AAK-2236-2020
OI Schneider, Jodi/0000-0002-5098-5667
FU Office of Research Integrity (ORI) of the US Department of Health and
Human Services (HHS) [ORIIR220073]
FX This study was supported by the Office of Research Integrity (ORI) of
the US Department of Health and Human Services (HHS) (grant number:
ORIIR220073). The contents are those of the authors and do not
necessarily represent the official views of, nor an endorsement, by
ORI/OASH/HHS, or the US Government.
CR Agarwal Shashank, 2010, AMIA Annu Symp Proc, V2010, P11
Athar A., 2014, Technical report
Awrey J, 2011, WORLD J SURG, V35, P475, DOI 10.1007/s00268-010-0912-7
Beltagy I, 2020, Arxiv, DOI arXiv:2004.05150
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Brown T., 2020, NEURIPS
Chandrasekaran MK., 2019, P 4 JOINT WORKSH BIB, P153
Cohan A, 2017, SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1133, DOI 10.1145/3077136.3080740
Dai C, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0255849
Davids JR, 2010, J BONE JOINT SURG AM, V92A, P1155, DOI 10.2106/JBJS.I.00063
DELACEY G, 1985, BRIT MED J, V291, P884, DOI 10.1136/bmj.291.6499.884
Fong EA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0187394
Greenberg Steven A, 2009, BMJ, V339, pb2680, DOI 10.1136/bmj.b2680
Hsiao TK, 2023, SCI DATA, V10, DOI 10.1038/s41597-023-02134-x
Hsiao TK, 2022, QUANT SCI STUD, V2, P1144, DOI 10.1162/qss_a_00155
Iqbal S, 2021, SCIENTOMETRICS, V126, P6551, DOI 10.1007/s11192-021-04055-1
Jaidka K., 2016, P JOINT WORKSH BIBLI, P93
Jergas H, 2015, PEERJ, V3, DOI 10.7717/peerj.1364
Kilicoglu H, 2019, J BIOMED INFORM, V91, DOI 10.1016/j.jbi.2019.103123
Kilicoglu H, 2018, BRIEF BIOINFORM, V19, P1400, DOI 10.1093/bib/bbx057
Kotonya N, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P7740
Leung PTM, 2017, NEW ENGL J MED, V376, P2194, DOI 10.1056/NEJMc1700150
Li XC, 2024, Arxiv, DOI arXiv:2309.06365
Luo M, 2013, FOOT ANKLE INT, V34, P949, DOI 10.1177/1071100713475354
Nogueira R, 2020, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, P708
Pavlovic V, 2021, CLIN SCI, V135, P671, DOI 10.1042/CS20201573
PORTER J, 1980, NEW ENGL J MED, V302, P123
Qazvinian V., 2008, P 22 INT C COMP LING, V1, P689
Robertson Stephen, 2009, Foundations and Trends in Information Retrieval, V3, P333, DOI 10.1561/1500000019
Sarrouti M, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, P3499
Schneider J, 2020, SCIENTOMETRICS, V125, P2877, DOI 10.1007/s11192-020-03631-1
SMITH LC, 1981, LIBR TRENDS, V30, P83
SPIEGELROSING I, 1977, SOC STUD SCI, V7, P97, DOI 10.1177/030631277700700111
Stenetorp P., 2012, P DEMONSTRATIONS 13, P102
Suelzer EM, 2019, JAMA NETW OPEN, V2, DOI 10.1001/jamanetworkopen.2019.15552
SWALES J, 1986, APPL LINGUIST, V7, P39, DOI 10.1093/applin/7.1.39
Tahamtan I, 2019, SCIENTOMETRICS, V121, P1635, DOI 10.1007/s11192-019-03243-4
Teufel S., 2009, P 7 SIGDIAL WORKSH D, P80
Valenzuela M., 2015, WORKSHOPS 20 9 AAAI
van der Vet Paul E, 2016, Res Integr Peer Rev, V1, P3, DOI 10.1186/s41073-016-0008-5
Wadden D., 2022, FINDINGS ASS COMPUTA, P61
Wadden D, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P7534
Wager E, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.MR000002.pub3
Waltman L, 2016, J INFORMETR, V10, P365, DOI 10.1016/j.joi.2016.02.007
Wei JS, 2022, ADV NEUR IN
Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334
Yu Gu, 2022, ACM Transactions on Computing and Healthcare, V3, DOI 10.1145/3458754
Zhang G, 2013, J AM SOC INF SCI TEC, V64, P1490, DOI 10.1002/asi.22850
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 49
TC 0
Z9 0
U1 1
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1367-4803
EI 1367-4811
J9 BIOINFORMATICS
JI Bioinformatics
PD JUL 9
PY 2024
VL 40
IS 7
AR btae420
DI 10.1093/bioinformatics/btae420
PG 9
WC Biochemical Research Methods; Biotechnology & Applied Microbiology;
Computer Science, Interdisciplinary Applications; Mathematical &
Computational Biology; Statistics & Probability
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Computer Science; Mathematical & Computational Biology; Mathematics
GA XV4F6
UT WOS:001264431900001
PM 38924508
OA gold
DA 2024-09-05
ER
PT J
AU Xu, ZY
Archambault, É
AF Xu, Ziyun
Archambault, Eric
TI Chinese interpreting studies: structural determinants of MA students'
career choices
SO SCIENTOMETRICS
LA English
DT Article
DE Scientometrics; Chinese interpreting studies; Targeted maximum
likelihood estimation; MA theses; Career choices; Causal inference
ID MENTOR
AB During the last 30 years, the growth of the interpreting industry in China has been outstanding. Increasing economic and political collaboration has driven the demand for interpreters to bridge the linguistic and cultural divides that exist between China and the West. With the creation of master's and bachelor's degrees in interpreting and translation all over China, hundreds of graduates from various universities have since undertaken distinctly different career paths. Using an exhaustive corpus of Masters' theses and a combination of logistic regression and Targeted Maximum Likelihood Estimation to establish causalities, this paper focuses on some of the structural determinants of graduate students' career choices. The paper examines to what extent university affiliations, thesis advisors, research methodology and thesis content influence the choice to pursue an academic career. The research reveals that graduating from a top university makes students less likely to become academics, and studying under a top advisor does not necessarily increase an individual's chances of securing an academic post. By contrast, writers of empirical theses or ones that are about training are more likely to enter the academic sphere.
C1 [Xu, Ziyun] Univ Rovira & Virgili, Intercultural Studies Grp, E-43007 Tarragona, Spain.
[Archambault, Eric] Sci Metrix, Montreal, PQ, Canada.
C3 Universitat Rovira i Virgili
RP Xu, ZY (corresponding author), Univ Rovira & Virgili, Intercultural Studies Grp, E-43007 Tarragona, Spain.
EM xuziyun@gmail.com
RI Archambault, Eric JA/G-5808-2019
OI Archambault, Eric JA/0000-0002-4422-1054
CR AIIC, 2013, DIR INT SCH PROGR
[Anonymous], 2001, ACAD TRIBES TERRITOR
Bao J., 2009, THESIS SHANGHAI INT
Bourdicu P., 1989, NOBLESSE ETAT GRANDE
Brown D.G., 1967, MOBILE PROFESSORS
Chai Mingjiong, 2012, J U SHANGHAI SCI TEC, V34, P91, DOI [10.13256/j.cnki.jusst.sse.2012.02.005, DOI 10.13256/J.CNKI.JUSST.SSE.2012.02.005]
Chen K, 2008, THESIS NATL TAIWAN N
Cole JR., 1973, Social stratification in science
Cone J.D., 1993, DISSERTATIONS THESES
Feng X, 2012, THESIS DALIAN MARITI
GAGNON RJ, 1982, INTERFACES, V12, P98, DOI 10.1287/inte.12.4.98
Gao Y, 2008, THESIS SHANGHAI INT
Gile D, 1994, BENJAMIN TRANSL LIB, V2, P149
Gile D., 1998, TARGET-NETH, V10, P69, DOI [10.1075/target.10.1.04gil, DOI 10.1075/TARGET.10.1.04GIL]
Gile D., 2000, TARGET-NETH, V12, P297, DOI [DOI 10.1075/TARGET.12.2.07GIL, https://doi.org/10.1075/target.12.2.07gil]
Gruber S, 2012, J STAT SOFTW, V51, P1
Hofer KM, 2010, SCIENTOMETRICS, V84, P845, DOI 10.1007/s11192-010-0216-6
Jin Y., 2011, THESIS BEIJING FOREI
Kushkowski JD, 2003, PORTAL-LIBR ACAD, V3, P459, DOI 10.1353/pla.2003.0062
Li B., 2007, THESIS HUNAN NORMAL
Liu H., 2008, P 6 NAT C INT FOR IN, P144
Liu W., 2012, THESIS U INT BUSINES
LONG JS, 1985, SCIENTOMETRICS, V7, P255, DOI 10.1007/BF02017149
LONG JS, 1995, ANNU REV SOCIOL, V21, P45, DOI 10.1146/annurev.so.21.080195.000401
Ma H., 2009, THESIS GUANGDONG U F
McGee R. J., 1965, ACAD MARKETPLACE
Merton R. K., 1974, SOCIOLOGY SCI THEORE
Ministry of Education, 2013, NOT NEW MTI ACCR
Moser-Mercer B, 2005, FORUM-REV INT INTERP, V3, P205, DOI 10.1075/forum.3.1.09mos
Moser-Mercer Barbara, 2011, Advances in Interpreting Research. Inquiry in Action, P47, DOI [10.1075/BTL.99.06MOS, DOI 10.1075/BTL.99.06MOS]
Niska H., 2005, TRAINING NEW MILLENN, V60, P35, DOI DOI 10.1075/BTL.60.07NIS
PEARL S, 1995, PERSPECT STUD TRANSL, P161
Pinheiro D, 2014, TECHNOL FORECAST SOC, V81, P56, DOI 10.1016/j.techfore.2012.09.008
Pochhacker Franz, 2002, INTERPRETING STUDIES, P1
Rose S, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-1-4419-9782-1
Schnitzer ME, 2013, BIOSTATISTICS, V14, P1, DOI 10.1093/biostatistics/kxs024
Shen A., 2010, THESIS GUANGXI U
Shneider AM, 2009, TRENDS BIOCHEM SCI, V34, P217, DOI 10.1016/j.tibs.2009.02.002
Spence Jonathan., 1994, UNDER SKY UNDERGROUN, P5
Tang F., 2010, FOREIGN LANGUAGE WOR, V137, P39
Tang L., 2011, THESIS HUNAN U
Tseng J., 2005, THESIS FU JEN CATHOL
Van Der Laan M.J., 2006, Social Sciences, V2
van der Weijden I, 2015, HIGH EDUC, V69, P275, DOI 10.1007/s10734-014-9774-5
Wang R., 2006, P 5 NAT C INT FOR IN, P143
Xu ZY, 2015, PERSPECT STUD TRANSL, V23, P284, DOI 10.1080/0907676X.2015.1011175
Yi S, 2012, SCIENTOMETRICS, V90, P1015, DOI 10.1007/s11192-011-0560-1
Yoon B, 2010, SCIENTOMETRICS, V85, P803, DOI 10.1007/s11192-010-0294-5
Zhang Q., 2012, THESIS XIAMEN U
Zhang W., 2011, FOREIGN LANGUAGES CH, V5, P94
Zhang Y., 2009, THESIS SHANGHAI INT
Zhao N, 2009, THESIS GUANGDONG FOR
Zhao Z., 2012, THESIS XIAMEN U
NR 53
TC 2
Z9 3
U1 4
U2 46
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2015
VL 105
IS 2
BP 1041
EP 1058
DI 10.1007/s11192-015-1717-0
PG 18
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA CU1ED
UT WOS:000363261600021
DA 2024-09-05
ER
PT J
AU Nah, S
Luo, J
Akçakir, G
Wu, XL
Nam, G
Kim, S
AF Nah, Seungahn
Luo, Jun
Akcakir, Gulsah
Wu, Xinlei
Nam, Gwiwon
Kim, Seungbae
TI Revisiting citizen journalism scholarship in the Web Era (1994-2023):
Past, present, and prospect
SO JOURNALISM
LA English
DT Article; Early Access
DE Citizen journalism; topic modeling; bibliometric analysis; and manual
content analysis
ID USER-GENERATED CONTENT; SOCIAL MEDIA; PARTICIPATORY JOURNALISM; NEWS;
COMMUNICATION; INITIATIVES; INFORMATION; NEWSROOMS; NETWORKS; INTERNET
AB The study revisits citizen journalism scholarship spanning 30 years of journal articles published in the fields of journalism, communication, media, technology studies, and beyond. Previous studies in this domain have endeavored to evaluate the landscape of citizen journalism research since the inception of the Internet and its associated web technologies in 1994. Nonetheless, it remains fully unexplored concerning the topology and knowledge network structure of citizen journalism scholarship. The study assesses the landscape of citizen journalism scholarship over the past 30 years by employing a variety of mixed methods, including topic modeling, bibliometric analysis, and manual content analysis. This study provides an exploratory examination of the realm of citizen journalism within the context of journalism and democracy and further discusses the past, present, and prospects for future directions of this field. The study aims to advance citizen journalism scholarship in terms of theory, research, practice, and policy implications with a focus on English language articles. While the study contributes to the existing body of knowledge on citizen journalism scholarship, it serves as a catalyst for continuous intellectual inquiry in an international and interdisciplinary environment.
C1 [Nah, Seungahn] Univ Florida, Coll Journalism & Commun, Polit Commun & Journalism, Gainesville, FL USA.
[Nah, Seungahn] Univ Florida, Coll Journalism & Commun, Media Trust, Gainesville, FL USA.
[Luo, Jun; Akcakir, Gulsah] Univ Calif Los Angeles, Dept Commun, Los Angeles, CA USA.
[Wu, Xinlei; Nam, Gwiwon] Univ Florida, Coll Journalism & Commun, Gainesville, FL USA.
[Kim, Seungbae] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL USA.
C3 State University System of Florida; University of Florida; State
University System of Florida; University of Florida; University of
California System; University of California Los Angeles; State
University System of Florida; University of Florida; State University
System of Florida; University of South Florida
RP Nah, S (corresponding author), Univ Florida, Dept Journalism, Coll Journalism & Commun, 1885 Stadium Rd, Gainesville, FL 32611 USA.
EM snah@ufl.edu
OI Kim, Seungbae/0000-0001-5667-3560; AKCAKIR, GULSAH/0000-0001-9572-9352
CR Ambala AT, 2016, AFR JOURNAL STUD, V37, P45, DOI 10.1080/23743670.2016.1256056
[Anonymous], 2023, Social Media and News Fact Sheet
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Benson Rodney., 2005, BOURDIEU JOURNALISTI
Borger M, 2016, NEW MEDIA SOC, V18, P708, DOI 10.1177/1461444814545842
Borges-Rey E, 2015, DIGIT JOURNAL, V3, P571, DOI 10.1080/21670811.2015.1034526
Ceron A, 2015, J COMPUT-MEDIAT COMM, V20, P487, DOI 10.1111/jcc4.12129
Chadha K, 2015, JOURNALISM STUD, V16, P706, DOI 10.1080/1461670X.2015.1054179
Chernobrov D, 2018, DIGIT JOURNAL, V6, P928, DOI 10.1080/21670811.2018.1462666
Chia A, 2012, AM BEHAV SCI, V56, P421, DOI 10.1177/0002764211429359
Chung DS, 2014, JOURNAL PRACT, V8, P390, DOI 10.1080/17512786.2013.813198
Domingo D, 2008, JOURNAL PRACT, V2, P326, DOI 10.1080/17512780802281065
Dovbysh O, 2021, SOC MEDIA SOC, V7, DOI 10.1177/20563051211013253
Martínez RGF, 2019, COMMUN SOC-SPAIN, V32, P213, DOI 10.15581/003.32.1.213-234
Ferrucci P, 2017, DIGIT JOURNAL, V5, P868, DOI 10.1080/21670811.2016.1208054
Friedland LA., 2009, Encyclopedia of Journalism, P297
Gillmor D., 2004, P 15 ACM C HYP HYP, P270, DOI [10.1145/1012807.1012808, DOI 10.1145/1012807.1012808]
Goode L, 2009, NEW MEDIA SOC, V11, P1287, DOI 10.1177/1461444809341393
García VG, 2015, COMMUN SOC-SPAIN, V28, P33, DOI 10.15581/003.28.4.33-48
Hadland A, 2016, JOURNAL PRACT, V10, P820, DOI 10.1080/17512786.2016.1163236
Hänska-Ahy MT, 2013, JOURNALISM STUD, V14, P29, DOI 10.1080/1461670X.2012.657908
Harrison J, 2010, JOURNALISM STUD, V11, P243, DOI 10.1080/14616700903290593
Hermida A, 2008, JOURNAL PRACT, V2, P343, DOI 10.1080/17512780802054538
Hung CF, 2013, CHINA INT J, V11, P40
Ibahrine M, 2020, JOURNAL PRACT, V14, P971, DOI 10.1080/17512786.2019.1679037
Johnston J, 2017, DIGIT JOURNAL, V5, P850, DOI 10.1080/21670811.2016.1196592
Jouët J, 2009, JAVNOST-PUBLIC, V16, P59
Kermani H, 2021, BIG DATA SOC, V8, DOI 10.1177/20539517211025568
Krippendorff K., 2018, CONTENT ANAL INTRO I
Lawrence RG, 2018, JOURNAL PRACT, V12, P1220, DOI 10.1080/17512786.2017.1391712
Lawson-Borders G, 2005, AM BEHAV SCI, V49, P548, DOI 10.1177/0002764205279425
Lee AYL, 2012, CHIN J COMMUN, V5, P210, DOI 10.1080/17544750.2012.664442
Luce A, 2017, JOURNAL PRACT, V11, P266, DOI 10.1080/17512786.2016.1222883
Mabweazara HM, 2014, DIGIT JOURNAL, V2, P44, DOI 10.1080/21670811.2013.850200
McElroy BP, 2019, CONVERGENCE-US, V25, P449, DOI 10.1177/1354856517736975
Meijer IC, 2013, JOURNALISM STUD, V14, P13, DOI 10.1080/1461670X.2012.662398
Meraz S, 2011, J MASS COMMUN Q, V88, P176, DOI 10.1177/107769901108800110
Mitchell A., 2020, AMERICANS WHO MAINLY
Moon YE., 2020, Iowa Journal of Communication, V52
Moyo D, 2009, JOURNALISM STUD, V10, P551, DOI 10.1080/14616700902797291
Nah S., 2008, Encyclopedia of American Journalism, P100
Nah S., 2020, Understanding Citizen Journalism as Civic Participation
Nah S, 2019, COMMUN THEOR, V29, P24, DOI 10.1093/ct/qty019
Nah S, 2015, J MASS COMMUN Q, V92, P399, DOI 10.1177/1077699015574483
Nip JoyceY. M., 2006, JOURNALISM STUD, V7, P212, DOI DOI 10.1080/14616700500533528
Nixon B, 2020, JOURNALISM, V21, P73, DOI 10.1177/1464884917719145
Norris W, 2017, JOURNAL PRACT, V11, P213, DOI 10.1080/17512786.2016.1228471
Paschalidis G, 2015, DIGIT JOURNAL, V3, P634, DOI 10.1080/21670811.2015.1034529
Pearce SC, 2020, SOCIOL COMPASS, V14, DOI 10.1111/soc4.12823
Pew Research Center, 2023, News platform fact sheet
Saldaña M, 2017, JOURNAL PRACT, V11, P396, DOI 10.1080/17512786.2016.1151818
Scott J, 2015, DIGIT JOURNAL, V3, P737, DOI 10.1080/21670811.2014.952983
Spyksma H, 2019, JOURNALISM STUD, V20, P1, DOI 10.1080/1461670X.2017.1351885
Straub-Cook P, 2018, DIGIT JOURNAL, V6, P1314, DOI 10.1080/21670811.2017.1412801
Thurman N, 2008, NEW MEDIA SOC, V10, P139, DOI 10.1177/1461444807085325
Tong JR, 2015, ASIAN J COMMUN, V25, P600, DOI 10.1080/01292986.2015.1019526
Tsai JY, 2022, JOURNALISM, V23, P2132, DOI 10.1177/1464884920983261
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Veenstra AS, 2015, JOURNALISM, V16, P488, DOI 10.1177/1464884914521580
Veenstra AS, 2014, COMPUT HUM BEHAV, V31, P65, DOI 10.1016/j.chb.2013.10.011
Walker D, 2022, JOURNAL PRACT, V16, P2022, DOI 10.1080/17512786.2021.1884990
Wall M, 2017, JOURNAL PRACT, V11, P134, DOI 10.1080/17512786.2016.1245890
Wall M, 2015, DIGIT JOURNAL, V3, P797, DOI 10.1080/21670811.2014.1002513
Walter D, 2019, COMMUN METHODS MEAS, V13, P248, DOI 10.1080/19312458.2019.1639145
Wardle C, 2010, MEDIA CULT SOC, V32, P781, DOI 10.1177/0163443710373953
Watson H, 2011, SOCIOL RES ONLINE, V16, DOI 10.5153/sro.2417
Wold T, 2022, COMMUN SOC-SPAIN, V35, P137, DOI 10.15581/003.35.1.137-150
Yeo TED, 2016, J MASS COMMUN Q, V93, P609, DOI 10.1177/1077699016628823
NR 68
TC 0
Z9 0
U1 0
U2 0
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1464-8849
EI 1741-3001
J9 JOURNALISM
JI Journalism
PD 2024 JUN 6
PY 2024
DI 10.1177/14648849241247972
EA JUN 2024
PG 26
WC Communication
WE Social Science Citation Index (SSCI)
SC Communication
GA TN7V7
UT WOS:001242017100001
DA 2024-09-05
ER
PT J
AU Citron, DT
Way, SF
AF Citron, Daniel T.
Way, Samuel F.
TI Network assembly of scientific communities of varying size and
specificity
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE Collaboration networks; Network assembly; Social network analysis; Topic
modeling; Scientometrics
ID DYNAMICS
AB How does the collaboration network of researchers coalesce around a scientific topic? What sort of social restructuring occurs as a new field develops? Previous empirical explorations of these questions have examined the evolution of co-authorship networks associated with several fields of science, each noting a characteristic shift in network structure as fields develop. Historically, however, such studies have tended to rely on manually annotated datasets and therefore only consider a handful of disciplines, calling into question the universality of the observed structural signature. To overcome this limitation and test the robustness of this phenomenon, we use a comprehensive dataset of over 189,000 scientific articles and develop a framework for partitioning articles and their authors into coherent, semantically related groups representing scientific fields of varying size and specificity. We then use the resulting population of fields to study the structure of evolving co-authorship networks. Consistent with earlier findings, we observe a global topological transition as the co-authorship networks coalesce from a disjointed aggregate into a dense giant connected component that dominates the network. We validate these results using a separate, complimentary corpus of scientific articles, and, overall, we find that the previously reported characteristic structural evolution of a scientific field's associated co-authorship network is robust across a large number of scientific fields of varying size, scope, and specificity. Additionally, the framework developed in this study may be used in other scientometric contexts in order to extend studies to compare across a larger range of scientific disciplines. (C) 2017 Elsevier Ltd. All rights reserved.
C1 [Citron, Daniel T.] Cornell Univ, Ithaca, NY 14853 USA.
[Way, Samuel F.] Univ Colorado, Boulder, CO 80309 USA.
C3 Cornell University; University of Colorado System; University of
Colorado Boulder
RP Citron, DT (corresponding author), Cornell Univ, Ithaca, NY 14853 USA.
EM dtc65@cornell.edu; samuel.way@colorado.edu
RI way, S/JRY-7985-2023
FU National Science Foundation Graduate Research Fellowship [DGE-1144153];
NSF [SMA 1633747]
FX This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE-1144153, and
NSF award SMA 1633747. Any opinion, findings, and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation.
The authors would also like to acknowledge Michael W. Macy, Paul H.
Ginsparg, Alexandra Schofield, and Haofei Wei, as well as Brent
Schneeman, Laurence Brandenberger, Richard Barnes, and the other
attendees of the Santa Fe Institute's 2015 Complex Systems Summer School
for helpful discussions.
CR [Anonymous], FORMATION SCI FIELDS
[Anonymous], 2016, ARXIV SUBMISSION RAT
[Anonymous], 2002, Learning to Classify Text Using Support Vector Machines: Methods, Theory and Algorithms
[Anonymous], 2005, SIGKDD
[Anonymous], 2010, Networks: An Introduction, DOI 10.1162/artl_r_00062
Backstrom Lars, 2006, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'06) [Em linha]. p, P44, DOI DOI 10.1145/1150402.1150412
Bettencourt LMA, 2009, J INFORMETR, V3, P210, DOI 10.1016/j.joi.2009.03.001
Bhattacharya I., 2007, ACM Transactions on Knowledge Discovery from Data (TKDD), V1, P1, DOI [10.1145/1217299.1217304, DOI 10.1145/1217299.1217304]
Blei D, 2006, P 23 INT C MACH LEAR, P113
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Börner K, 2010, SCI TRANSL MED, V2, DOI 10.1126/scitranslmed.3001399
Borner K., 2004, P NATL ACAD SCI USA, V101
Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6
de Solla Price DerekJ., 1986, Little science, big science- and beyond
Ginsparg P, 2004, P NATL ACAD SCI USA, V101, P5236, DOI 10.1073/pnas.0308253100
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Guimerà R, 2005, SCIENCE, V308, P697, DOI 10.1126/science.1106340
Guo Z, 2009, PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P720, DOI 10.1145/1571941.1572095
Jacobs A.Z., 2015, P ACM WEB SCI C, P1
Kaiser David, 2005, Drawing theories apart: the dispersion of Feynman diagrams in postwar physics
Larivière V, 2014, J ASSOC INF SCI TECH, V65, P1157, DOI 10.1002/asi.23044
Lee D, 2010, PHYS REV E, V82, DOI 10.1103/PhysRevE.82.026112
McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit
Newman MEJ, 2004, P NATL ACAD SCI USA, V101, P5200, DOI 10.1073/pnas.0307545100
Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898
Rosen-Zvi Michal., 2004, UAI
Song Y, 2007, ACM-IEEE J CONF DIG, P342, DOI 10.1145/1255175.1255243
Sun XL, 2013, ADV MATER RES-SWITZ, V616-618, P3, DOI [10.4028/www.scientific.net/AMR.616-618.3, 10.1038/srep01069]
Tabah AN, 1999, ANNU REV INFORM SCI, V34, P249
Wang Xuerui., P 12 ACM SIGKDD INT, P424
Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918
NR 31
TC 8
Z9 8
U1 0
U2 28
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD FEB
PY 2018
VL 12
IS 1
BP 181
EP 190
DI 10.1016/j.joi.2017.12.008
PG 10
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA FZ3ID
UT WOS:000427479800013
OA Bronze, Green Submitted
DA 2024-09-05
ER
PT J
AU Amjad, T
Shahid, N
Daud, A
Khatoon, A
AF Amjad, Tehmina
Shahid, Nafeesa
Daud, Ali
Khatoon, Asma
TI Citation burst prediction in a bibliometric network
SO SCIENTOMETRICS
LA English
DT Article
DE Journal; Conference; Citation burst; Citations analysis; Features;
Correlation; Multiple linear regression
ID IMPACT; JOURNALS; AUTHOR; COUNT
AB In the field of computer science, both journal and conference publications are considered valuable. The popularity of an author is mostly determined by the paper's high citations in a short time. Features that can help to attract higher visibility are not yet thoroughly investigated in the literature. This study aims to investigate the impact of the several features on received citations, for articles published in both journals or conferences. The correlation analysis and multiple linear regression models are applied to explore the strength of all related features. The study helps in finding the impact of the individual features on the number of citations both for journals and conferences, and to predict future citations. AMiner citation dataset has been used for experimental analysis. The findings of the study show that in the case of journal publications, "author first-year citations" and "author total citation" are the most important features. While, in the case of conference publications, "author total citation" is more effective as compared to other features. In the case of journal publications, the multiple linear regression model shows the coefficient of determination (R-2) is 0.975 and accuracy 0.846. For the conference publications, the R-2 value and accuracy are 0.877 and 0.846, respectively.
C1 [Amjad, Tehmina; Shahid, Nafeesa; Khatoon, Asma] IIU, Dept Comp Sci & Software Engn, Islamabad, Pakistan.
[Daud, Ali] Zhejiang Ocean Univ, Sch Informat Engn, Zhoushan 316022, Peoples R China.
[Daud, Ali] Univ Jeddah, Dept Comp Sci & Artificial Intelligence, Jeddah, Saudi Arabia.
C3 Zhejiang Ocean University; University of Jeddah
RP Daud, A (corresponding author), Zhejiang Ocean Univ, Sch Informat Engn, Zhoushan 316022, Peoples R China.; Daud, A (corresponding author), Univ Jeddah, Dept Comp Sci & Artificial Intelligence, Jeddah, Saudi Arabia.
EM alimsdb@gmail.com
RI Shahid, Nafeesa/LDF-5707-2024; Amjad, Tehmina/GLS-0209-2022; Daud,
Ali/ABA-8422-2020; Khatoon, Asma/V-4893-2019
OI Daud, Ali/0000-0002-8284-6354; Khatoon, Asma/0000-0001-9871-1844; Amjad,
Tehmina/0000-0003-1201-498X
CR Amara N, 2015, SCIENTOMETRICS, V103, P489, DOI 10.1007/s11192-015-1537-2
Amjad A., 2021, INVESTIGATING CITATI
Amjad T, 2020, SCIENTOMETRICS, V122, P915, DOI 10.1007/s11192-019-03334-2
Amjad T, 2018, INT CONF EMERG TECHN
Amjad T, 2017, J INFORMETR, V11, P307, DOI 10.1016/j.joi.2017.01.004
Amjad T, 2016, INFORM PROCESS MANAG, V52, P374, DOI 10.1016/j.ipm.2015.12.001
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Bar-Ilan J, 2010, SCIENTOMETRICS, V83, P809, DOI 10.1007/s11192-009-0145-4
Bethard S., 2010, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, P609, DOI [DOI 10.1145/1871437.1871517, 10.1145/1871437.1871517]
Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005
Chen JL, 2010, COMMUN ACM, V53, P79, DOI 10.1145/1743546.1743569
Danell R, 2011, J AM SOC INF SCI TEC, V62, P50, DOI 10.1002/asi.21454
Daud, 2019, CORRELATIONAL ANAL T
Daud A, 2017, LIBR HI TECH, V35, P509, DOI 10.1108/LHT-02-2017-0044
Daud A, 2015, SCIENTOMETRICS, V102, P1687, DOI 10.1007/s11192-014-1455-8
Franceschet M, 2010, Commun. ACM, V53, P129, DOI [10.1145/1859204.1859234, DOI 10.1145/1859204.1859234]
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Hurley L. A., 2013, Proceedings of the American Society for Information Science and Technology, V50, P1, DOI [DOI 10.1002/MEET.14505001070, 10.1002/meet.14505001070]
Ibáñez A, 2009, BIOINFORMATICS, V25, P3303, DOI 10.1093/bioinformatics/btp585
Kim J, 2019, J ASSOC INF SCI TECH, V70, P71, DOI 10.1002/asi.24079
Lee DN, 2020, ELECTRON LIBR, V38, P463, DOI 10.1108/EL-10-2019-0253
Lee DH, 2019, SCIENTOMETRICS, V118, P281, DOI 10.1007/s11192-018-2943-z
Lee DH, 2019, J ASSOC INF SCI TECH, V70, P83, DOI 10.1002/asi.24100
Li CT, 2015, LECT NOTES ARTIF INT, V9077, P659, DOI 10.1007/978-3-319-18038-0_51
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
Pan RK, 2014, SCI REP-UK, V4, DOI 10.1038/srep04880
Peng-hui Lyu, 2018, Proceedings of the Association for Information Science and Technology, V55, DOI 10.1002/pra2.2018.14505501035
Rostami F, 2014, SCIENTOMETRICS, V98, P2007, DOI 10.1007/s11192-013-1118-1
Silva FN, 2020, QUANT SCI STUD, V1, P1298, DOI 10.1162/qss_a_00070
Singh M, 2017, ACM-IEEE J CONF DIG, P59
Sohrabi B, 2017, SCIENTOMETRICS, V110, P243, DOI 10.1007/s11192-016-2161-5
Stern DI, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112520
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Vintzileos AM, 2010, AM J OBSTET GYNECOL, V202, DOI 10.1016/j.ajog.2009.06.038
Vrettas G, 2015, J ASSOC INF SCI TECH, V66, P2674, DOI 10.1002/asi.23349
Wainer J, 2013, J AM SOC INF SCI TEC, V64, P1104, DOI 10.1002/asi.22818
Yan R, 2012, P 12 ACM IEEE CS JOI, P51, DOI DOI 10.1145/2232817.2232831
Yan R, 2011, P 20 ACM INT C INF K, P1247, DOI DOI 10.1145/2063576.2063757
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
Zhang X., 2006, Proceedings of the 22nd International Conference on Data Engineering (ICDE'06), page, P146
Zhu XP, 2018, INT CON ADV INFO NET, P534, DOI 10.1109/AINA.2018.00084
NR 41
TC 18
Z9 19
U1 8
U2 81
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD MAY
PY 2022
VL 127
IS 5
BP 2773
EP 2790
DI 10.1007/s11192-022-04344-3
EA MAR 2022
PG 18
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 1I1KM
UT WOS:000773181400002
DA 2024-09-05
ER
PT J
AU Kravets, LG
AF Kravets, L. G.
TI Fifty years of patent information centres in Russia
SO WORLD PATENT INFORMATION
LA English
DT Article
DE Machine translation; Automatic indexing; Subject matter search;
Bibliographic data processing; Machine-readable information;
International exchange; State patent information system; Competitive
business information support; Soviet Union
AB The article contains a brief historical review of developing patent information centres in the structure of the State Committee on Inventions and Discoveries (Rospatent) and their participation in establishing the national patent information system. The process is divided into three stages resulting from, first, changes in demands made by the new generations of users of information products and services and, second, renewal of methods, technologies and organizational forms of information support of innovation processes. (C) 2011 Elsevier Ltd. All rights reserved.
C1 [Kravets, L. G.] Patent Informat Today Magazine, Druzhinnikovskaia Str 11A, Moscow 123995, Russia.
RP Kravets, LG (corresponding author), Patent Informat Today Magazine, Druzhinnikovskaia Str 11A, Moscow 123995, Russia.
EM kravets27@yandex.ru
CR Alferova I. V., 1981, THESIS
Budnikova L. F., 2010, PATENTNAIA INFORM SE
Kedrovski OV, 1984, WORLD PATENT INFORMA, V6, P18
Kedrovsky O. V., 1980, VOPROSY IZOBRETATELS
Kedrovsky OV, 1986, WORLD PATENT INFORM, V8, P273
Kravets L. G., 1966, 6 ANN M ICIREPAT HAG
Kravets L. G., THESIS
Morozov A. N., 1981, World Patent Information, V3, P50, DOI 10.1016/0172-2190(81)90002-8
Smorodinova E. V., 1967, 3 ALL UN C INF SEARC, P1
Vchrashny R. P., 1967, 3 ALL UN C INF SEARC, V1
Zakstelsky BA, 1970, SYSTEM BIBLIO INFORM
NR 11
TC 2
Z9 2
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0172-2190
EI 1874-690X
J9 WORLD PAT INF
JI World Pat. Inf.
PD SEP
PY 2011
VL 33
IS 3
BP 282
EP 285
DI 10.1016/j.wpi.2011.04.003
PG 4
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA V6Z1L
UT WOS:000420747200010
DA 2024-09-05
ER
PT J
AU Jeong, B
Yoon, J
AF Jeong, Byeongki
Yoon, Janghyeok
TI Competitive Intelligence Analysis of Augmented Reality Technology Using
Patent Information
SO SUSTAINABILITY
LA English
DT Article
DE competitive intelligence analysis; patent analysis; Topic modeling;
bibliometrics; augmented reality
ID FORECASTING EMERGING TECHNOLOGIES; MOBILE
AB Augmented reality has recently achieved a rapid growth through its applications in various industries, including education and entertainment. Despite the growing attraction of augmented reality, trend analyses in this emerging technology have relied on qualitative literature review, failing to provide comprehensive competitive intelligence analysis using objective data. Therefore, tracing industrial competition trends in augmented reality will provide technology experts with a better understanding of evolving competition trends and insights for further technology and sustainable business planning. In this paper, we apply a topic modeling approach to 3595 patents related to augmented reality technology to identify technology subjects and their knowledge stocks, thereby analyzing industrial competitive intelligence in light of technology subject and firm levels. As a result, we were able to obtain some findings from an inventional viewpoint: technological development of augmented reality will soon enter a mature stage, technologies of infrastructural requirements have been a focal subject since 2001, and several software firms and camera manufacturing firms have dominated the recent development of augmented reality.
C1 [Jeong, Byeongki; Yoon, Janghyeok] Konkuk Univ, Dept Ind Engn, 120 Neungdong Ro, Seoul 05029, South Korea.
C3 Konkuk University
RP Yoon, J (corresponding author), Konkuk Univ, Dept Ind Engn, 120 Neungdong Ro, Seoul 05029, South Korea.
EM byeongkij@konkuk.ac.kr; janghyoon@konkuk.ac.kr
OI Jeong, Byeongki/0000-0003-2701-4245
FU Konkuk University
FX This paper was supported by Konkuk University in 2016.
CR Altuntas S, 2015, TECHNOL FORECAST SOC, V96, P202, DOI 10.1016/j.techfore.2015.03.011
[Anonymous], 2014, SOFT COMPUTING BIG D
Azuma R, 2001, IEEE COMPUT GRAPH, V21, P34, DOI 10.1109/38.963459
Azuma RT, 1997, PRESENCE-VIRTUAL AUG, V6, P355, DOI 10.1162/pres.1997.6.4.355
Bacca J, 2014, EDUC TECHNOL SOC, V17, P133
Barsom EZ, 2016, SURG ENDOSC, V30, P4174, DOI 10.1007/s00464-016-4800-6
Becker G, 2010, WILEY ENCY MANAGEMEN
Bengisu M, 2006, TECHNOL FORECAST SOC, V73, P835, DOI 10.1016/j.techfore.2005.09.001
Billinghurst Mark, 2015, Foundations and Trends in Human-Computer Interaction, V8, P73, DOI 10.1561/1100000049
Biro I., 2008, AIRWeb, P29
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bower M, 2014, EDUC MEDIA INT, V51, P1, DOI 10.1080/09523987.2014.889400
Bulearca M., 2010, Global Business Management Research, V2, P237
Chen T, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9010026
Choi S, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8121315
Choi S, 2013, R&D MANAGE, V43, P52, DOI 10.1111/j.1467-9310.2012.00702.x
Cirulis A, 2013, PROCEDIA COMPUT SCI, V25, P71, DOI 10.1016/j.procs.2013.11.009
Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004
FEINER S, 1993, COMMUN ACM, V36, P53, DOI 10.1145/159544.159587
Fujii H, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8040351
Gao LD, 2013, TECHNOL FORECAST SOC, V80, P398, DOI 10.1016/j.techfore.2012.10.003
Guandong Xu, 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops, P529, DOI 10.1109/WIIAT.2008.313
Hu AGZ, 2003, INT J IND ORGAN, V21, P849, DOI 10.1016/S0167-7187(03)00035-3
Joung J, 2017, TECHNOL FORECAST SOC, V114, P281, DOI 10.1016/j.techfore.2016.08.020
Jun Wang, 2014, Construction Innovation, V14, P453, DOI 10.1108/CI-03-2014-0019
Luo X, 2009, 2009 INTERNATIONAL SYMPOSIUM ON UBIQUITOUS VIRTUAL REALITY (ISUVR 2009), P29, DOI 10.1109/ISUVR.2009.13
Mann D., 2002, HANDS SYSTEMATIC INN
MarketsAndMarkets, 2015, AUGM REAL MARK COMP
Matsumoto A, 2012, APPL ECON LETT, V19, P181, DOI 10.1080/13504851.2011.570705
McCartney M., 2016, BR MED J
MILGRAM P, 1994, IEICE T INF SYST, VE77D, P1321
Miller Richard., 1982, Antitrust Bulletin, V27, P593
Mourtzis D., 2016, INT J COMPUT INTEGR
Newman DJ, 2006, J AM SOC INF SCI TEC, V57, P753, DOI 10.1002/asi.20342
Ong SK, 2008, INT J PROD RES, V46, P2707, DOI 10.1080/00207540601064773
Pantano E, 2017, J RETAIL CONSUM SERV, V34, P88, DOI 10.1016/j.jretconser.2016.10.001
Papagiannakis G, 2008, COMPUT ANIMAT VIRT W, V19, P3, DOI 10.1002/cav.221
Park H, 2013, EXPERT SYST APPL, V40, P2373, DOI 10.1016/j.eswa.2012.10.073
Pucihar KC, 2013, COMPUT ENTERTAIN, V11, DOI 10.1145/2582179.2633427
Rauschnabel P.A., 2015, AUGMENTED REALITY SM
Seo W, 2016, TECHNOL FORECAST SOC, V105, P94, DOI 10.1016/j.techfore.2016.01.011
Sheng Y, 2011, IEEE T VIS COMPUT GR, V17, P38, DOI 10.1109/TVCG.2009.209
Sielhorst T, 2008, J DISP TECHNOL, V4, P451, DOI 10.1109/JDT.2008.2001575
TERBRAAK CJF, 1986, ECOLOGY, V67, P1167
Thomas BH, 2012, COMPUT ENTERTAIN, V10, DOI 10.1145/2381876.2381879
Van Krevelen D., 2010, INT J VIRTUAL REAL, V9
Wang B, 2014, SCIENTOMETRICS, V101, P685, DOI 10.1007/s11192-014-1342-3
Wang Chong, 2011, P ACM SIGKDD INT C K, P448, DOI DOI 10.1145/2020408.2020480
Wang Y, 2009, IEEE T PATTERN ANAL, V31, P1762, DOI 10.1109/TPAMI.2009.43
Xing DS, 2007, PATTERN RECOGN LETT, V28, P1727, DOI 10.1016/j.patrec.2007.04.015
Yoon J, 2015, TECHNOL FORECAST SOC, V100, P153, DOI 10.1016/j.techfore.2015.04.012
Yoon J, 2014, J NANOPART RES, V16, DOI 10.1007/s11051-014-2471-6
Yoon J, 2013, SCIENTOMETRICS, V94, P313, DOI 10.1007/s11192-012-0830-6
Yu DG, 2010, VISUAL INFORMATION COMMUNICATION, P311, DOI 10.1007/978-1-4419-0312-9_21
Zhou F, 2008, INT SYM MIX AUGMENT, P193, DOI 10.1109/ISMAR.2008.4637362
Zhu ZW, 2015, IEEE WINT CONF APPL, P618, DOI 10.1109/WACV.2015.88
NR 56
TC 18
Z9 18
U1 8
U2 93
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
SN 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD APR
PY 2017
VL 9
IS 4
AR 497
DI 10.3390/su9040497
PG 22
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA EV9FE
UT WOS:000402090300020
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Cichowicz, E
Rollnik-Sadowska, E
AF Cichowicz, Ewa
Rollnik-Sadowska, Ewa
TI Inclusive Growth in CEE Countries as a Determinant of Sustainable
Development
SO SUSTAINABILITY
LA English
DT Article
DE inclusive growth; CEE countries; sustainable development; globalization;
cohesion; public policy; factor analysis; principal component analysis;
bibliometric analysis
AB Pursuant to the concept of inclusive growth, the authors analyze the transition economies of Central and Eastern European countries, which have become EU members (Bulgaria, Croatia, the Czech Republic, Estonia, Latvia, Lithuania, Hungary, Poland, Romania, Slovakia, and Slovenia). CEE countries characterized by comparable historic and economic backgrounds now seem to reach diversified stages of development. The objective of the study is to identify the level of inclusive growth among CEE countries by taking into account indicators assigned to its seven pillars. The article's thesis is that CEE countries represent social and economic heterogeneity as well as varied levels of sustainable development. Research methods included the application of the principal components analysis and the multivariate analysis. For a literature review, the bibliometric analysis was conducted with the visualization prepared by the VOSviewer software. The main findings suggest that Estonia, Slovenia, and the Czech Republic seem to exhibit the highest level of inclusive growth while Bulgaria and Romania represent the lowest level of indicators measured.
C1 [Cichowicz, Ewa] Warsaw Sch Econ, Coll Socioecon, Inst Social Econ, Al Niepodleglosci 162, PL-02554 Warsaw, Poland.
[Rollnik-Sadowska, Ewa] Bialystok Tech Univ, Fac Engn Management, Div Managerial Econ, 45AWiejska St, PL-15351 Bialystok, Poland.
C3 Warsaw School of Economics; Bialystok University of Technology
RP Rollnik-Sadowska, E (corresponding author), Bialystok Tech Univ, Fac Engn Management, Div Managerial Econ, 45AWiejska St, PL-15351 Bialystok, Poland.
EM ewa.cichowicz@sgh.waw.pl; e.rollnik@pb.edu.pl
RI Rollnik-Sadowska, Ewa/AAV-4280-2020
OI Rollnik-Sadowska, Ewa/0000-0002-4896-1199; Cichowicz,
Ewa/0000-0002-9379-9127
FU Ministry of Science and Higher Education of Poland [KES/BMN18/01/18,
S/WZ/4//2015]
FX The research for this paper has been conducted in the framework of
projects no. KES/BMN18/01/18 and S/WZ/4//2015 financed from the funds of
the Ministry of Science and Higher Education of Poland.
CR Adams W.M., 2006, P IUCN REN THINK M B
Adil Khan M., 1995, Sustainable Development (Bradford), V3, P63, DOI 10.1002/sd.3460030203
Ali I., 2007, Inclusive growth toward a prosperous asia: Policy implications
[Anonymous], 2018, Ownership and Governance of State-Owned Enterprises: A Compendium of National Practices, P20
[Anonymous], 2010, COMMUNICATION COMMIS, DOI DOI 10.1016/J.RESCONREC.2010.03.010
Asici AA, 2013, ECOL INDIC, V24, P324, DOI 10.1016/j.ecolind.2012.06.019
Balicki A., 2009, STATYSTYCZNA ANALIZA
Brundtland Commission, 1987, OUR COMMON FUTURE, P41
Cabeza-García L, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10010121
CRONBACH LJ, 1951, PSYCHOMETRIKA, V16, P297, DOI [DOI 10.1007/BF02310555, 10.1007/BF02310555]
Dbkowska K., 2012, EKONOMIA ZARZDZANIE, V4, P18
De Rosa D., 2018, UNEVEN GROWTH INCLUS
Demirguc-Kunt A., 2018, The Global Findex Database 2017", DOI [10.1596/978-1-4648-1259-0, DOI 10.1596/978-1-4648-1259-0]
Demirguc-Kunt Asli., 2012, Measuring Financial Inclusion: The Global Findex Database.
Diamond P., 2010, GLOBALIZATION IS CHA
Doyle MW, 2014, ETHICS INT AFF, V28, P5, DOI 10.1017/S0892679414000021
Flamm L., 2012, EUROPE FORM, V2, P305, DOI [10.3917/eufor.364.0305, DOI 10.3917/EUFOR.364.0305]
Fleaca E, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10041032
Gatnar E., 2015, RES PAP WROCAW UNIWE, V384, P93, DOI [10.15611/pn.2015.384.09, DOI 10.15611/PN.2015.384.09]
Gawthorpe S., 2010, NEW VOICES PUB POL S, V4, P2, DOI [10.13021/nvpp.v4i2.20, DOI 10.13021/NVPP.V4I2.20]
George G, 2012, J MANAGE STUD, V49, P661, DOI 10.1111/j.1467-6486.2012.01048.x
Grela M., 2017, 264 NBP EC RES DEP
Gudanowska AE, 2017, PROCEDIA ENGINEER, V182, P247, DOI 10.1016/j.proeng.2017.03.185
Guijarro F, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10093167
Hanousek J, 2016, EUR J POLIT ECON, V43, P14, DOI 10.1016/j.ejpoleco.2016.02.002
Hedlund-de Witt A, 2014, SUSTAINABILITY-BASEL, V6, P8310, DOI 10.3390/su6118310
Lior N, 2018, SUSTAIN SCI, V13, P973, DOI 10.1007/s11625-018-0557-2
Manly B.F.J., 2005, MULTIVARIATE STAT PR
Mathur G, 2013, MANAG RES REV, V36, P112, DOI 10.1108/01409171311292234
McKinley T., INCLUSIVE GROWTH CRI
Mikhaylov A.S., 2017, J ADV RES LAW EC, V8, P1854, DOI [10.14505/jarle.v8.6(28).20, DOI 10.14505/JARLE.V8.6(28).20]
Myers J.H., 2003, MANAGERIAL APPL MULT
Nunnally J.C., 1978, Psychometric Theory, Vsecond
OECD, OECD EC SURV EST OV
Panayotou T, 2003, Econ Surv Eur., V2, P45
Paprotny D, 2016, SOC INDIC RES, V127, P939, DOI 10.1007/s11205-015-0991-9
Passaris C., 2006, J COMP INT MANAG, V9, P3
Radulescu M, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10020566
Rauniyar G, 2010, J ASIA PAC ECON, V15, P455, DOI 10.1080/13547860.2010.517680
Rollnik-Sadowska E., 2016, P 21 INT SCI C EC MA
Romeiro Ademar Ribeiro, 2012, Estud. av., V26, P65
Rozmahel P., INTEGRATION CENTRAL
Samans R., 2015, The inclusive growth and development report 2015
Siderska J., 2018, Engineering Management in Production Services, V10, P22, DOI DOI 10.1515/EMJ-2018-0002
Smtkowski M., 2015, ROCZNIKI EKONOMICZNE, V8, P324
Sun CZ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10082863
NR 46
TC 23
Z9 23
U1 1
U2 16
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD NOV
PY 2018
VL 10
IS 11
AR 3973
DI 10.3390/su10113973
PG 23
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA HC1AQ
UT WOS:000451531700147
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Yin, B
Dridi, M
El Moudni, A
AF Yin, Biao
Dridi, Mahjoub
El Moudni, Abdellah
TI Forward search algorithm based on dynamic programming for real-time
adaptive traffic signal control
SO IET INTELLIGENT TRANSPORT SYSTEMS
LA English
DT Article; Proceedings Paper
CT Vienna Congress on How to Enhance the Sustainable Use of ITS
CY 2014
CL Vienna, AUSTRIA
DE search problems; dynamic programming; adaptive control; road traffic
control; scheduling; artificial intelligence; decision trees; optimal
control; forward search algorithm; traffic signal scheduling; artificial
intelligence system; decision tree; real-time adaptive traffic signal
control policy; fixed phase sequence; variable phase sequence; forward
research dynamic programming; process optimisation; FSDP algorithm;
online algorithm; labelled position method; rolling horizon approach;
optimal fixed-time control; adaptive control; traffic delay evaluation;
asymmetrical traffic flow scenarios
ID FUNCTION APPROXIMATION; ARCHITECTURE; SYSTEM
AB The scheduling of traffic signal at intersections is involved in an application of artificial intelligence system. This study presents a new forward search algorithm based on dynamic programming (FSDP) under a decision tree, and explores an efficient solution for real-time adaptive traffic signal control policy. Traffic signal control with cases of fixed phase sequence and variable phase sequence are both considered in the algorithm. Owing to the properties of forward research dynamic programming and the process optimisation of repeated or invalid traffic states the authors proposed, FSDP algorithm reduces the number of states and saves much computation time. Consequently, FSDP is certain to be an on-line algorithm through its application to a complicated traffic control problem. Moreover, the labelled position method is firstly proposed in the author's study to search the optimal policy after reaching the goal state. For practical operations, this new algorithm is extended by adding the rolling horizon approach, and some derived methods are compared with the optimal fixed-time control and adaptive control on the evaluation of traffic delay. Experimental results obtained by the simulations of symmetrical and asymmetrical traffic flow scenarios show that the FSDP method can perform quite well with high efficiency and good qualities in traffic control.
C1 [Yin, Biao; Dridi, Mahjoub; El Moudni, Abdellah] Univ Technol Belfort Montbeliard, Lab Syst & Transports, F-90000 Belfort, France.
C3 Universite de Technologie de Belfort-Montbeliard (UTBM)
RP Yin, B (corresponding author), Univ Technol Belfort Montbeliard, Lab Syst & Transports, F-90000 Belfort, France.
EM biao.yin@utbm.fr
RI University of Technology of Belfort-Montbeliard, Mahjoub
DRIDI./AAS-2243-2021; Gomaa, Ahmed/I-6442-2017; Yin, Biao/AAN-7652-2021
OI Yin, Biao/0000-0001-8087-5939
CR [Anonymous], 2004, Handbook of Learning and Approximate Dynamic Programming
Arel I, 2010, IET INTELL TRANSP SY, V4, P128, DOI 10.1049/iet-its.2009.0070
BARTO AG, 1995, ARTIF INTELL, V72, P81, DOI 10.1016/0004-3702(94)00011-O
Bazzan ALC, 2010, ENG APPL ARTIF INTEL, V23, P560, DOI 10.1016/j.engappai.2009.11.009
Busoniu L, 2010, AUTOM CONTROL ENG SE, P1, DOI 10.1201/9781439821091-f
Cai C, 2009, TRANSPORT RES C-EMER, V17, P456, DOI 10.1016/j.trc.2009.04.005
Ceylan H, 2004, TRANSPORT RES B-METH, V38, P329, DOI 10.1016/S0191-2615(03)00015-8
Choy MC, 2003, IEEE T SYST MAN CY A, V33, P597, DOI 10.1109/TSMCA.2003.817394
García-Nieto J, 2012, ENG APPL ARTIF INTEL, V25, P274, DOI 10.1016/j.engappai.2011.04.011
Gartner N., 1991, TRANSPORT RES REC, P105
Gartner N. H., 1983, TRANSPORT RES REC, P75
Haijema R, 2008, PROBAB ENG INFORM SC, V22, P587, DOI 10.1017/S026996480800034X
Hansen EA, 2001, ARTIF INTELL, V129, P35, DOI 10.1016/S0004-3702(01)00106-0
Head K.L., 1992, Transportation Research Record: Journal of the Transportation Research Board, P82
Khan SG, 2012, ANNU REV CONTROL, V36, P42, DOI 10.1016/j.arcontrol.2012.03.004
Kuyer L, 2008, LECT NOTES ARTIF INT, V5211, P656, DOI 10.1007/978-3-540-87479-9_61
Mirchandani P, 2001, TRANSPORT RES C-EMER, V9, P415, DOI 10.1016/S0968-090X(00)00047-4
Powell WB, 2007, APPROXIMATE DYNAMIC PROGRAMMING: SOLVING THE CURSES OF DIMENSIONALITY, P1, DOI 10.1002/9780470182963
Prashanth LA, 2011, IEEE T INTELL TRANSP, V12, P412, DOI 10.1109/TITS.2010.2091408
Srinivasan D, 2006, IEEE T INTELL TRANSP, V7, P261, DOI 10.1109/TITS.2006.874716
Trabia MB, 1999, TRANSPORT RES C-EMER, V7, P353, DOI 10.1016/S0968-090X(99)00026-1
Xu X, 2014, INFORM SCIENCES, V261, P1, DOI 10.1016/j.ins.2013.08.037
Yin B, 2014, ADV INTELL SYST, V285, P369, DOI 10.1007/978-3-319-06740-7_31
Yu XH, 2006, TRANSPORT RES C-EMER, V14, P263, DOI 10.1016/j.trc.2006.08.002
NR 24
TC 14
Z9 19
U1 1
U2 23
PU INST ENGINEERING TECHNOLOGY-IET
PI HERTFORD
PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND
SN 1751-956X
EI 1751-9578
J9 IET INTELL TRANSP SY
JI IET Intell. Transp. Syst.
PD SEP
PY 2015
VL 9
IS 7
SI SI
BP 754
EP 764
DI 10.1049/iet-its.2014.0156
PG 11
WC Engineering, Electrical & Electronic; Transportation Science &
Technology
WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Transportation
GA CQ5XW
UT WOS:000360680000013
OA Bronze
DA 2024-09-05
ER
PT J
AU Zyoud, SH
Zyoud, AH
AF Zyoud, Shaher H.
Zyoud, Ahed H.
TI Visualization and Mapping of Knowledge and Science Landscapes in
Expert Systems With Applications Journal: A 30 Years'
Bibliometric Analysis
SO SAGE OPEN
LA English
DT Article
DE artificial intelligence; expert systems; visualization maps;
bibliometric indicators; content analysis
ID SUPPORT VECTOR MACHINES; DECISION-MAKING TECHNIQUES; DATA MINING
TECHNIQUES; SUPPLIER SELECTION; NEURAL-NETWORKS; SCIENTIFIC-RESEARCH;
RISK-EVALUATION; GOOGLE-SCHOLAR; CLIMATE-CHANGE; FUZZY DEMATEL
AB The Expert Systems With Applications (ESWA) is a leading journal in the fields of computer science and engineering. Motivated by its outstanding performance, this paper seeks to develop a comprehensive overview of research activities in ESWA since its inception in 1990. In this regard, bibliometric techniques have been utilized to characterize the status quo, dynamics, and development trends of research patterns in ESWA. In doing so, the work used Scopus database as a source of data required. A data visualization software, visualization of similarities (VOS) viewer, was used to map the bibliographic material. The Scopus database yielded 12,254 documents published in ESWA from 105 countries with an average of 408 documents/year. The most productive country was Taiwan (2,069 documents; 17.0%). National Cheng Kung University, Taiwan, was the most productive institution (219 documents; 1.8%). The major topics which will continue to be active include genetic algorithms, data mining, neural networks, support vector machines, classification and machine learning, feature selection, particle swarm optimization, fuzzy logic, and clustering. The outcomes underline the significant growth of ESWA through time. The vitality of topics addressed in ESWA to solve real-world problems boosts the progress and advancements of knowledge in this journal.
C1 [Zyoud, Shaher H.] Palestine Tech Univ Kadoorei, Tulkarem, Palestine.
[Zyoud, Ahed H.] An Najah Natl Univ, Nablus, Palestine.
C3 An Najah National University
RP Zyoud, SH (corresponding author), Palestine Tech Univ Kadoorei, Dept Bldg Engn & Environm, Fac Engn & Technol, POB Tulkarem Jaffa St 7, Tulkarem 00970, Palestine.
EM shaher.zyoud@ptuk.edu.ps
RI Zyoud, Shaher/AAB-4345-2022; Zyoud, Ahed/R-6263-2016
OI Zyoud, Shaher/0000-0002-2832-1047; Zyoud, Ahed/0000-0001-5812-5955
CR Akay MF, 2009, EXPERT SYST APPL, V36, P3240, DOI 10.1016/j.eswa.2008.01.009
Alatas B, 2010, EXPERT SYST APPL, V37, P5682, DOI 10.1016/j.eswa.2010.02.042
Aleixandre-Benavent R, 2017, J CLEAN PROD, V147, P406, DOI 10.1016/j.jclepro.2017.01.112
Atsalakis GS, 2009, EXPERT SYST APPL, V36, P5932, DOI 10.1016/j.eswa.2008.07.006
Behzadian M, 2012, EXPERT SYST APPL, V39, P13051, DOI 10.1016/j.eswa.2012.05.056
Bioxbio, 2020, J IMP EXP SYST APPL
Bokor-Billmann T, 2020, J CLIN EPIDEMIOL, V119, P1, DOI 10.1016/j.jclinepi.2019.11.005
Boran FE, 2009, EXPERT SYST APPL, V36, P11363, DOI 10.1016/j.eswa.2009.03.039
Bornmann L, 2016, SCIENTOMETRICS, V107, P1041, DOI 10.1007/s11192-016-1925-2
Büyüközkan G, 2012, EXPERT SYST APPL, V39, P3000, DOI 10.1016/j.eswa.2011.08.162
Celebi ME, 2013, EXPERT SYST APPL, V40, P200, DOI 10.1016/j.eswa.2012.07.021
Chai JY, 2013, EXPERT SYST APPL, V40, P3872, DOI 10.1016/j.eswa.2012.12.040
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Dagdeviren M, 2009, EXPERT SYST APPL, V36, P8143, DOI 10.1016/j.eswa.2008.10.016
Elsevier, 2020, EXPERT SYST APPL
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Fonseca BDFE, 2016, HEALTH RES POLICY SY, V14, DOI 10.1186/s12961-016-0104-5
Güler NF, 2005, EXPERT SYST APPL, V29, P506, DOI 10.1016/j.eswa.2005.04.011
Tzeng GH, 2007, EXPERT SYST APPL, V32, P1028, DOI 10.1016/j.eswa.2006.02.004
Havemann Frank, 2006, J Biomed Discov Collab, V1, P6, DOI 10.1186/1747-5333-1-6
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hong JY, 2009, EXPERT SYST APPL, V36, P8509, DOI 10.1016/j.eswa.2008.10.071
Huang CL, 2007, EXPERT SYST APPL, V33, P847, DOI 10.1016/j.eswa.2006.07.007
Huang CL, 2006, EXPERT SYST APPL, V31, P231, DOI 10.1016/j.eswa.2005.09.024
Huang L, 2020, J CLEAN PROD, V252, DOI 10.1016/j.jclepro.2019.119908
Ishizaka A, 2011, EXPERT SYST APPL, V38, P14336, DOI 10.1016/j.eswa.2011.04.143
Jae Kyeong Kim, 1990, Expert Systems with Applications, V1, P3, DOI 10.1016/0957-4174(90)90064-2
Janmaijaya M, 2018, PUBLICATIONS-BASEL, V6, DOI 10.3390/publications6030032
Kayacan E, 2010, EXPERT SYST APPL, V37, P1784, DOI 10.1016/j.eswa.2009.07.064
Kevin W.U.A., 2017, MALAYS J LIBR INF SC, V14, P17
Kim KJ, 2000, EXPERT SYST APPL, V19, P125, DOI 10.1016/S0957-4174(00)00027-0
Kumar MA, 2009, EXPERT SYST APPL, V36, P7535, DOI 10.1016/j.eswa.2008.09.066
Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027
Lee AHI, 2008, EXPERT SYST APPL, V34, P96, DOI 10.1016/j.eswa.2006.08.022
Lee AHI, 2009, EXPERT SYST APPL, V36, P7917, DOI 10.1016/j.eswa.2008.11.052
Liao SH, 2003, EXPERT SYST APPL, V25, P155, DOI 10.1016/S0957-4174(03)00043-5
Liao SH, 2005, EXPERT SYST APPL, V28, P93, DOI 10.1016/j.eswa.2004.08.003
Liao SH, 2012, EXPERT SYST APPL, V39, P11303, DOI 10.1016/j.eswa.2012.02.063
Lin CH, 2014, EXPERT SYST APPL, V41, P1118, DOI 10.1016/j.eswa.2013.07.107
Lin SW, 2008, EXPERT SYST APPL, V35, P1817, DOI 10.1016/j.eswa.2007.08.088
Liu HC, 2013, EXPERT SYST APPL, V40, P828, DOI 10.1016/j.eswa.2012.08.010
Mardani A, 2015, EXPERT SYST APPL, V42, P4126, DOI 10.1016/j.eswa.2015.01.003
Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002
Meho LI, 2008, J AM SOC INF SCI TEC, V59, P1711, DOI 10.1002/asi.20874
Merigó JM, 2018, INFORM SCIENCES, V432, P245, DOI 10.1016/j.ins.2017.11.054
Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859
Min JH, 2005, EXPERT SYST APPL, V28, P603, DOI 10.1016/j.eswa.2004.12.008
Muhuri PK, 2018, APPL SOFT COMPUT, V69, P381, DOI 10.1016/j.asoc.2018.03.041
Nature index, 2020, NATURE
Ngai EWT, 2009, EXPERT SYST APPL, V36, P2592, DOI 10.1016/j.eswa.2008.02.021
Niu JQ, 2016, ISPRS INT J GEO-INF, V5, DOI 10.3390/ijgi5050066
Ocak H, 2009, EXPERT SYST APPL, V36, P2027, DOI 10.1016/j.eswa.2007.12.065
Paliwal M, 2009, EXPERT SYST APPL, V36, P2, DOI 10.1016/j.eswa.2007.10.005
Park DH, 2012, EXPERT SYST APPL, V39, P10059, DOI 10.1016/j.eswa.2012.02.038
Park HS, 2009, EXPERT SYST APPL, V36, P3336, DOI 10.1016/j.eswa.2008.01.039
Phinyomark A, 2012, EXPERT SYST APPL, V39, P7420, DOI 10.1016/j.eswa.2012.01.102
Prashar A, 2020, J CLEAN PROD, V245, DOI 10.1016/j.jclepro.2019.118665
Romero C, 2007, EXPERT SYST APPL, V33, P135, DOI 10.1016/j.eswa.2006.04.005
Roy K., 2015, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, P1, DOI [DOI 10.1016/B978-0-12-801505-6.00001-6, 10.1016/B978-0-12-801505-6.00001-6, 10.1016/b978-0-12-801505-6.00001-6]
Ryu S, 2003, EXPERT SYST APPL, V25, P113, DOI 10.1016/S0957-4174(03)00011-3
Sanayei A, 2010, EXPERT SYST APPL, V37, P24, DOI 10.1016/j.eswa.2009.04.063
SCImago Journal Rank, 2020, SCIMAGO J COUNTRY RA
SCImago Journal Rank, 2020, EXPERT SYST APPL
Scopus, 2020, CITESCORE RANK TREND
Shaw K, 2012, EXPERT SYST APPL, V39, P8182, DOI 10.1016/j.eswa.2012.01.149
Shin KS, 2005, EXPERT SYST APPL, V28, P127, DOI 10.1016/j.eswa.2004.08.009
Shukla AK, 2019, ENG APPL ARTIF INTEL, V85, P517, DOI 10.1016/j.engappai.2019.06.010
Subasi A, 2007, EXPERT SYST APPL, V32, P1084, DOI 10.1016/j.eswa.2006.02.005
Subasi A, 2010, EXPERT SYST APPL, V37, P8659, DOI 10.1016/j.eswa.2010.06.065
Tsai CF, 2009, EXPERT SYST APPL, V36, P11994, DOI 10.1016/j.eswa.2009.05.029
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wagner WP, 2017, EXPERT SYST APPL, V76, P85, DOI 10.1016/j.eswa.2017.01.028
Wallin JA, 2005, BASIC CLIN PHARMACOL, V97, P261, DOI 10.1111/j.1742-7843.2005.pto_139.x
Wang LY, 2017, RENEW SUST ENERG REV, V68, P57, DOI 10.1016/j.rser.2016.08.021
Wang TC, 2007, EXPERT SYST APPL, V33, P870, DOI 10.1016/j.eswa.2006.07.003
Wang TC, 2009, EXPERT SYST APPL, V36, P8980, DOI 10.1016/j.eswa.2008.11.035
Wang YM, 2006, EXPERT SYST APPL, V31, P309, DOI 10.1016/j.eswa.2005.09.040
Wang YM, 2009, EXPERT SYST APPL, V36, P1195, DOI 10.1016/j.eswa.2007.11.028
Web of Science, 2020, J SELF CITATION J CI
Web of Science, 2020, CLAR AN IMP FACT
Wei GW, 2010, EXPERT SYST APPL, V37, P7895, DOI 10.1016/j.eswa.2010.04.047
Wiig KM, 1997, EXPERT SYST APPL, V13, P1, DOI 10.1016/S0957-4174(97)00018-3
Wu WW, 2007, EXPERT SYST APPL, V32, P499, DOI 10.1016/j.eswa.2005.12.005
Yataganbaba A, 2016, RENEW SUST ENERG REV, V59, P206, DOI 10.1016/j.rser.2015.12.357
Ye Q, 2009, EXPERT SYST APPL, V36, P6527, DOI 10.1016/j.eswa.2008.07.035
Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732
Zyoud SH, 2015, J OCCUP MED TOXICOL, V10, DOI 10.1186/s12995-015-0078-1
ZYOUD SH, 2015, IDA J DESALINATION W, V7, P3, DOI DOI 10.1179/2051645215Y.0000000001
Zyoud SH, 2017, INT J ENVIRON SCI TE, V14, P689, DOI 10.1007/s13762-016-1180-3
Zyoud SH, 2021, ENVIRON DEV SUSTAIN, V23, P8895, DOI 10.1007/s10668-020-01004-5
Zyoud SH, 2020, ENVIRON SCI POLLUT R, V27, P3523, DOI 10.1007/s11356-019-07100-y
Zyoud SH, 2017, APPL WATER SCI, V7, P1255, DOI [10.100, 10.1007/s13201-016-0520-2]
Zyoud SH, 2017, EXPERT SYST APPL, V78, P158, DOI 10.1016/j.eswa.2017.02.016
Zyoud SH, 2016, ENVIRON SCI POLLUT R, V23, P10288, DOI 10.1007/s11356-016-6434-6
NR 94
TC 3
Z9 3
U1 3
U2 21
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 2158-2440
J9 SAGE OPEN
JI SAGE Open
PD APR
PY 2021
VL 11
IS 2
AR 21582440211027574
DI 10.1177/21582440211027574
PG 23
WC Social Sciences, Interdisciplinary
WE Social Science Citation Index (SSCI)
SC Social Sciences - Other Topics
GA UL2ZC
UT WOS:000692524200001
OA gold
DA 2024-09-05
ER
PT J
AU Yalcinkaya, T
Yucel, SC
AF Yalcinkaya, Turgay
Yucel, Sebnem Cinar
TI Bibliometric and content analysis of ChatGPT research in nursing
education: The rabbit hole in nursing education
SO NURSE EDUCATION IN PRACTICE
LA English
DT Article
DE ChatGPT; OpenAI; Artificial intelligence; Bibliometrics analysis;
Nursing education; Nursing students
AB Aim: This study was conducted to perform the bibliometric and content analysis of ChatGPT studies in nursing education. Background: ChatGPT is an artificial intelligence -based chatbot developed by OpenAI. The benefits and limitations of the use of ChatGPT in nursing education are still discussed; however, it is a tool having potential to be used in nursing education. Design: Bibliometric and content analysis. Methods: The study data were scanned through Scopus and Web of Science. Bibliometric analysis was carried out with VOSViewer and Bibliometrix software. In the bibliometric analysis, science mapping and performance analysis techniques were used. Various bibliometric data, including most cited publications, journals and countries, were analyzed and visualized. The synthetic knowledge synthesis method was used in content analysis. Results: We analyzed 53 publications to which 151 authors contributed. The publications had been published in 29 different journals. The average number of citations of publications is 8.2. It was determined that most of the articles were published in Nurse Education Today and Nurse Educator journals and that the leading countries were the USA and Canada. It was observed that international cooperation on the issue was weak. The most frequently mentioned keywords in the publications were "ChatGPT", "artificial intelligence" and "nursing". The following three themes emerged after the content analysis: (1) Integration of ChatGPT into nursing education; (2) Potential benefits and limitations of ChatGPT; and (3) Stepping down the rabbit hole. Conclusions: We expect that the results of the study can give nursing faculties and academics ideas about the current status of ChatGPT in nursing education and enable them to make inferences for the future.
C1 [Yalcinkaya, Turgay] Sinop Univ, Fac Hlth Sci, Dept Nursing, Sinop, Turkiye.
[Yucel, Sebnem Cinar] Ege Univ, Dept Fundamentals Nursing, Nursing Fac, Izmir, Turkiye.
C3 Sinop University; Ege University
RP Yalcinkaya, T (corresponding author), Sinop Univ, Fac Hlth Sci, Dept Nursing, Sinop, Turkiye.
EM tyalcinkaya@sinop.edu.tr
RI Yalcinkaya, Turgay/HFZ-8650-2022
OI Yalcinkaya, Turgay/0000-0002-0115-295X
CR Abdulai AF, 2023, NURS INQ, V30, DOI 10.1111/nin.12556
Ahmed SK, 2023, ANN BIOMED ENG, V51, P2351, DOI 10.1007/s10439-023-03262-6
Allen C, 2023, INT J NURS STUD, V145, DOI 10.1016/j.ijnurstu.2023.104522
Archibald MM, 2023, J ADV NURS, V79, P3648, DOI 10.1111/jan.15643
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Athilingam P, 2024, TEACH LEARN NURS, V19, P97, DOI 10.1016/j.teln.2023.11.004
Barrington NM, 2023, MED SCI-BASEL, V11, DOI 10.3390/medsci11030061
Berse S, 2024, ANN BIOMED ENG, V52, P130, DOI 10.1007/s10439-023-03296-w
Buchanan Christine, 2021, JMIR Nurs, V4, pe23933, DOI 10.2196/23933
Byrne MD, 2024, NURS EDUC PERSPECT, V45, P63, DOI 10.1097/01.NEP.0000000000001225
Castonguay A, 2023, NURS EDUC TODAY, V129, DOI 10.1016/j.nedt.2023.105916
Chan MMK, 2023, NURS EDUC, V48, pE200, DOI 10.1097/NNE.0000000000001476
Chang CY, 2024, EDUC TECHNOL SOC, V27, P215, DOI 10.30191/ETS.202401_27(1).TP02
Choi EPH, 2023, NURS EDUC TODAY, V125, DOI 10.1016/j.nedt.2023.105796
Christiansen M., 2023, H. ogre Utbild., V13, P56, DOI [10.23865/hu.v13.5331, DOI 10.23865/HU.V13.5331]
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Echchakoui S, 2020, J MARK ANAL, V8, P165, DOI 10.1057/s41270-020-00081-9
Evans J, 2024, NURS EDUC, V49, pE41, DOI 10.1097/NNE.0000000000001424
Goktas P, 2024, TEACH LEARN NURS, V19, pe358, DOI 10.1016/j.teln.2023.12.014
Goktas P, 2023, SKIN RES TECHNOL, V29, DOI 10.1111/srt.13417
Gosak L, 2024, NURSE EDUC PRACT, V75, DOI 10.1016/j.nepr.2024.103888
Harder N, 2023, CLIN SIMUL NURS, V78, P1, DOI 10.1016/j.ecns.2023.02.011
Harmon J, 2021, NURS EDUC TODAY, V97, DOI 10.1016/j.nedt.2020.104700
He SK, 2024, ASIAN J SURG, V47, P784, DOI 10.1016/j.asjsur.2023.10.034
Huang HM, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11212855
Irwin P, 2023, NURS EDUC TODAY, V127, DOI 10.1016/j.nedt.2023.105835
Kokol P, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11162485
Kokol P, 2019, NURS OUTLOOK, V67, P680, DOI 10.1016/j.outlook.2019.04.009
Krüger L, 2023, MED KLIN-INTENSIVMED, V118, P534, DOI 10.1007/s00063-023-01038-3
Levin G, 2023, ARCH GYNECOL OBSTET, V308, P1785, DOI 10.1007/s00404-023-07081-x
Liu HY, 2024, AESTHET PLAST SURG, V48, P1644, DOI 10.1007/s00266-023-03709-0
Liu JL, 2023, NURS OUTLOOK, V71, DOI 10.1016/j.outlook.2023.102064
Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410
Miao Hongyu, 2023, Asian Pac Isl Nurs J, V7, pe48136, DOI 10.2196/48136
Mukherjee D, 2022, J BUS RES, V148, P101, DOI 10.1016/j.jbusres.2022.04.042
O'Connor S, 2023, NURSE EDUC PRACT, V66, DOI 10.1016/j.nepr.2022.103537
O'Connor S, 2020, NURSE EDUC PRACT, V56, DOI 10.1016/j.nepr.2021.103224
OpenAI, 2023, Introd. ChatGPT.
Parker JL, 2023, J NURS EDUC, V62, P721, DOI 10.3928/01484834-20231006-02
Pradana M, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2243134
PRITCHARD A, 1969, J DOC, V25, P348
Qi X., 2023, Aging Health Res, V3, DOI [10.1016/j.ahr.2023.100136, DOI 10.1016/J.AHR.2023.100136]
Rodgers DL, 2023, SIMUL HEALTHC, V18, P395, DOI 10.1097/SIH.0000000000000747
Saban M, 2024, J ADV NURS, DOI 10.1111/jan.16101
Sallam M, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11060887
Seney V, 2023, NURS EDUC, V48, P124, DOI 10.1097/NNE.0000000000001383
Sharma M, 2023, NURS EDUC TODAY, V131, DOI 10.1016/j.nedt.2023.105972
Sharpnack PA, 2024, NURS EDUC PERSPECT, V45, P67, DOI 10.1097/01.NEP.0000000000001242
Shi JY, 2023, J NURS SCHOLARSHIP, V55, P853, DOI 10.1111/jnu.12852
Shorey S, 2024, NURS EDUC TODAY, V135, DOI 10.1016/j.nedt.2024.106121
Simsir I., 2022, Bir Literatur I.ncelemesi Araci Olarak Bibliyometrik Analiz, V3rd, P7
Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z
Su MC, 2024, INT J NURS STUD, V153, DOI 10.1016/j.ijnurstu.2024.104717
Sun GH, 2023, NURS EDUC, V48, P119, DOI 10.1097/NNE.0000000000001390
Taira Kazuya, 2023, JMIR Nurs, V6, pe47305, DOI 10.2196/47305
Tam W, 2023, NURS EDUC TODAY, V129, DOI 10.1016/j.nedt.2023.105917
Thakur A, 2023, TEACH LEARN NURS, V18, P450, DOI 10.1016/j.teln.2023.03.011
van Eck N J., 2013, VOSviewer manual
Vaughn J, 2024, CLIN SIMUL NURS, V87, DOI 10.1016/j.ecns.2023.101487
Vitorino LM, 2023, J CLIN NURS, V32, P7921, DOI 10.1111/jocn.16706
Woodnutt S, 2024, J PSYCHIATR MENT HLT, V31, P79, DOI 10.1111/jpm.12965
Zong H, 2024, BMC MED EDUC, V24, DOI 10.1186/s12909-024-05125-7
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 63
TC 1
Z9 1
U1 35
U2 35
PU ELSEVIER SCI LTD
PI London
PA 125 London Wall, London, ENGLAND
SN 1471-5953
EI 1873-5223
J9 NURSE EDUC PRACT
JI Nurse Educ. Pract.
PD MAY
PY 2024
VL 77
AR 103956
DI 10.1016/j.nepr.2024.103956
EA APR 2024
PG 10
WC Nursing
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Nursing
GA SB9R6
UT WOS:001232121800001
PM 38653086
DA 2024-09-05
ER
PT J
AU Wang, YQ
Luo, H
Shi, YY
AF Wang, Yinqiu
Luo, Hui
Shi, Yunyan
TI Complex network analysis for international talent mobility based on
bibliometrics
SO INTERNATIONAL JOURNAL OF INNOVATION SCIENCE
LA English
DT Article
DE Bibliometrics; Multiple linear regression; International talent
mobility; Complex network
ID GLOBAL COMPETITION; MIGRATION; MIGRANTS
AB Purpose This paper aims to explore international talent mobility and identify its negative/positive factors. Design/methodology/approach Bibliometric data from Scopus are explicated to model the mobility network and providing a more comprehensive posture. In addition, by using indicators of complex network, significant features of international talent mobility are described quantitatively. After that, by introducing a kind of improved gravity model with multiple linear regression, the authors identify factors to explain international talent mobility flows. Findings With the analysis of international talent mobility in complex network, the overall network is not balanced. A small part of developed countries and developing countries with good emergency attract and drain a lot of talents and talents usually moving between these countries, the amount of talents leaving or entering into other countries is very limited. Furthermore, according to multiple linear regression, it is found that the share of migrants in population is the major negative factor for international talent mobility, and the factors of destination countries is more significant than original countries. Originality/value The result of this paper may support further research studies and political suggestions for cultivating, attracting and retaining scientific and technological talents in the world.
C1 [Wang, Yinqiu; Luo, Hui; Shi, Yunyan] Natl Acad Innovat Strategy, Beijing, Peoples R China.
RP Wang, YQ (corresponding author), Natl Acad Innovat Strategy, Beijing, Peoples R China.
EM wh6509@yahoo.com; HuiLuo@sina.com; shiyunyan@cast.org.cn
CR [Anonymous], 2010, Regression analysis
Appelt Silvia., 2015, OECD Science, Technology and Industry Working Papers 2015/02
Beechler S, 2009, J INT MANAG, V15, P273, DOI 10.1016/j.intman.2009.01.002
Cañibano C, 2011, SCIENTOMETRICS, V89, P653, DOI 10.1007/s11192-011-0462-2
Castles Stephen., 2009, The_Age_of_Migration:_International_Population Movements in the Modern World
Chen G, 2012, INT C WIREL COMM NET
Choudaha R., 2017, STUDIES HIGHER ED, V42, P1
Docquier F, 2016, WORLD ECON, V39, P530, DOI 10.1111/twec.12267
Edler J, 2011, RES POLICY, V40, P791, DOI 10.1016/j.respol.2011.03.003
Franzoni C, 2011, SCIENCE, V333, P702, DOI 10.1126/science.1197286
Freeman RB, 2010, ECON INNOV NEW TECH, V19, P393, DOI 10.1080/10438590903432871
Haupt A., 2016, J POPUL ECON, V29, P1
Home O., 2008, GLOBAL COMPETITION T
Hunter R.S., 2009, EC J J BRIT EC ASS
Kerr SP, 2016, J ECON PERSPECT, V30, P83, DOI 10.1257/jep.30.4.83
Laudel G, 2003, SCIENTOMETRICS, V57, P215, DOI 10.1023/A:1024137718393
Moed H, 2014, SCIENTOMETRICS, V101, P1987, DOI 10.1007/s11192-014-1307-6
Moed HF, 2013, SCIENTOMETRICS, V94, P929, DOI 10.1007/s11192-012-0783-9
Nijkamp P, 2011, SPAT ECON ANAL, V6, P359, DOI 10.1080/17421772.2011.610814
OECD, 2017, SCI TECHN IND SCOR 2
Org Z., 2015, GLOBAL MOBILITY RES
Podemski K., 2010, MIGRATION HIGHLY SKI
Qin F, 2015, RES POLICY, V44, P405, DOI 10.1016/j.respol.2014.08.007
Roach M, 2010, RES POLICY, V39, P422, DOI 10.1016/j.respol.2010.01.004
Saxenian A., 2007, EC GEOGRAPHY INNOVAT, V1, P190
Schaeffer R, 1999, SOC FORCES, V77, P1197
Shachar A, 2006, NEW YORK U LAW REV, V81, P148
Solimano A., 2006, WORKING PAPERS, V32, P41
Stephan P., 2015, Innovation Policy and the Economy, V15, P73
Stephan P, 2016, IND CORP CHANGE, V25, P457, DOI 10.1093/icc/dtv037
Straubhaar T., 2000, HWWA DISCUSSION PAPE
Wang Y., 2017, INT J BUSIN EC DEV I, V5, P5
Wang YQ., 2016, GLOB OUTLOOK SCI TEC, V31, P30
Yang SS, 2010, IEEE NETWORK, V24, P6, DOI 10.1109/MNET.2010.5578912
Yinqiu W., 2016, INT J HUMANITIES SOC, V7, P133
NR 35
TC 9
Z9 11
U1 6
U2 55
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 1757-2223
EI 1757-2231
J9 INT J INOV SCI
JI Int. J. Innov. Sci.
PD OCT 11
PY 2019
VL 11
IS 3
BP 419
EP 435
DI 10.1108/IJIS-04-2019-0044
PG 17
WC Business
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA JC0JR
UT WOS:000488965800006
DA 2024-09-05
ER
PT J
AU Akhil, MP
Lathabhavan, R
Mathew, AM
AF Akhil, M. P.
Lathabhavan, Remya
Mathew, Aparna Merin
TI Exploring research trends of metaverse in education: a bibliometric
analysis
SO HIGHER EDUCATION SKILLS AND WORK-BASED LEARNING
LA English
DT Article; Early Access
DE Metaverse; Education; Virtual reality; Augmented reality; Artificial
intelligence
AB Purpose - By a thorough bibliometric examination of the area through time, this paper analyses the research landscape of metaverse in education. It is an effort that is focused on the metaverse research trends, academic production and conceptual focus of scientific publications.Design/methodology/approach - The Web of Science (WoS) database was explored for information containing research articles and associated publications that met the requirements. For a thorough analysis of the trend, thematic focus and scientific output in the subject of metaverse in education, a bibliometric technique was used to analyse the data. The bibliometrix package of R software, specifically the biblioshiny interface of R-studio, was used to conduct the analysis. Findings - The analysis of the metaverse in education spanning from 1995 to the beginning of 2023 reveals a dynamic and evolving landscape. Notably, the field has experienced robust annual growth, with a peak of publications in 2022. Citation analysis highlights seminal works, with Dionisio et al. (2013) leading discussions on the transition of virtual worlds into intricate digital cultures. Thematic mapping identifies dominant themes such as "system," "augmented reality" and "information technology," indicating a strong technological focus. Surprisingly, China emerges as a leading contributor with significant citation impact, emphasising the global nature of metaverse research. The thematic map suggests ongoing developments in performance and future aspects, emphasising the essential role of emerging technologies like artificial intelligence and virtual reality. Overall, the findings depict a vibrant and multidimensional metaverse in education, poised for continued exploration and innovation. Originality/value - The study is among the pioneers that provide a comprehensive bibliometric analysis in the area of metaverse in education which will guide the novice researchers to identify the unexplored areas.
C1 [Akhil, M. P.] Alliance Univ, Bengaluru, India.
[Lathabhavan, Remya] IIM Bodh Gaya, Dept OB & HRM, Bodh Gaya, India.
[Mathew, Aparna Merin] All St Coll Trivandrum, Trivandrum, India.
C3 Alliance University; Indian Institute of Management (IIM System); Indian
Institute of Management Bodh Gaya
RP Lathabhavan, R (corresponding author), IIM Bodh Gaya, Dept OB & HRM, Bodh Gaya, India.
EM remya.l@iimbg.ac.in
RI MP, Akhil/IQS-7253-2023
OI MP, Akhil/0000-0002-2409-0747; Lathabhavan, Remya/0000-0002-4666-4748
CR Adtani R, 2023, HIGH EDUC SKILL WORK, V13, P846, DOI 10.1108/HESWBL-03-2022-0058
Akhil M.P., 2022, Big Data Analytics in the Insurance Market, P207, DOI [10.1108/978-1-80262-637-720221011, DOI 10.1108/978-1-80262-637-720221011]
Allam Z, 2022, SMART CITIES-BASEL, V5, P771, DOI 10.3390/smartcities5030040
Anshari M, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142315805
Arsyad S., 2018, Discourse and Interaction, V11, P28, DOI [DOI 10.5817/DI2018-1-28, 10.5817/D12018-1-28]
Ayub E, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.841363
Azuma RT, 1997, PRESENCE-VIRTUAL AUG, V6, P355, DOI 10.1162/pres.1997.6.4.355
Bojic L, 2022, EUR J FUTURES RES, V10, DOI 10.1186/s40309-022-00208-4
Bourgeois-Bougrine S, 2020, CREATIVITY RES J, V32, P55, DOI 10.1080/10400419.2020.1712162
Bourlakis M, 2009, ELECTRON COMMER RES, V9, P135, DOI 10.1007/s10660-009-9030-8
Cerasa A, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e11762
Chen Z., 2022, Metaverse security and privacy: an overview
Choi HS, 2017, INT J INFORM MANAGE, V37, P1519, DOI 10.1016/j.ijinfomgt.2016.04.017
Contreras GS, 2022, Mod Appl Sci, V16, P1, DOI [DOI 10.5539/MAS.V16N3P34, 10.5539/mas.v16n3p34]
Di Pietro R, 2021, 2021 THIRD IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS (TPS-ISA 2021), P281, DOI 10.1109/TPSISA52974.2021.00032
Dionisio JDN, 2013, ACM COMPUT SURV, V45, DOI 10.1145/2480741.2480751
Duan HH, 2021, PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, P153, DOI 10.1145/3474085.3479238
Dwivedi YK, 2022, INT J INFORM MANAGE, V66, DOI 10.1016/j.ijinfomgt.2022.102542
Dziuban C, 2018, INT J EDUC TECHNOL H, V15, DOI 10.1186/s41239-017-0087-5
El Beheiry M, 2019, J MOL BIOL, V431, P1315, DOI 10.1016/j.jmb.2019.01.033
Fitria T.N., 2022, Jurnal Ilmu Sosial dan Humaniora, V1, DOI [10.55123/sosmaniora, DOI 10.55123/SOSMANIORA]
Gocen A., 2022, USOBED International Western Black Sea Journal of Social and Human Sciences, V6, P98
Guinard G., 2022, Public Policy Master Thesis, V1
Gupta A, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12020391
Hare R, 2023, IEEE T SYST MAN CY-S, V53, P2047, DOI 10.1109/TSMC.2022.3227919
Henz P., 2022, Discov. Artif. Intell, V2, P19, DOI [10.1007/s44163-022-00032-6, DOI 10.1007/S44163-022-00032-6]
Hines P, 2023, INT J LEAN SIX SIG, V14, P1121, DOI 10.1108/IJLSS-02-2022-0035
Hirsh-Pasek K., 2022, Policy Brief. Center for Universal Education at The Brookings Institution
Holts K., 2013, Work Organ. labour Glob, V7, P31, DOI DOI 10.13169/WORKORGALABOGLOB.7.1.0031
Hwang G. J., 2022, Computers and Education: Artificial Intelligence, DOI [DOI 10.1016/J.CAEAI.2022.100082, 10.1016/j.caeai.2022.100082]
Klimova O., 2021, Russian Language Journal, V71, P2021
Kraus S, 2022, INT J ENTREP BEHAV R, V28, P52, DOI 10.1108/IJEBR-12-2021-0984
Lee L.H., 2022, arXiv
Lester S, 2023, HIGH EDUC SKILL WORK, V13, P786, DOI 10.1108/HESWBL-01-2022-0008
Li YJ, 2023, INFORM TECHNOL PEOPL, V36, P2563, DOI 10.1108/ITP-11-2021-0870
Lin Hong, 2022, P IEEE INT C BIG DAT, P2857, DOI DOI 10.1109/BIGDATA55660.2022.10021004
Liu Z, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19031525
Morfaki C, 2023, HIGH EDUC SKILL WORK, V13, P697, DOI 10.1108/HESWBL-03-2022-0062
Mystakidis S., 2022, ENCYCLOPEDIA, V2, P486, DOI [10.3390/encyclopedia2010031, DOI 10.3390/ENCYCLOPEDIA2010031]
Negm E, 2023, HIGH EDUC SKILL WORK, V13, P53, DOI 10.1108/HESWBL-05-2022-0121
Njoku JN, 2023, IET INTELL TRANSP SY, V17, P1, DOI 10.1049/itr2.12252
Paiva CE, 2012, CLINICS, V67, P509
Pandita D, 2023, HIGH EDUC SKILL WORK, V13, P682, DOI 10.1108/HESWBL-03-2022-0059
Park SM, 2022, IEEE ACCESS, V10, P4209, DOI 10.1109/ACCESS.2021.3140175
Pellas N, 2021, VIRTUAL REAL-LONDON, V25, P835, DOI 10.1007/s10055-020-00489-9
Reddy JS, 2023, HIGH EDUC SKILL WORK, V13, P813, DOI 10.1108/HESWBL-06-2022-0140
S. Bhavana, 2022, WSEAS Transactions on Systems, P178, DOI 10.37394/23202.2022.21.19
Sá MJ, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15032186
Sharma P., 2023, J. Foreign Lang. Educ. Technol, V8, P2023
Shiau WL, 2023, INFORM TECHNOL PEOPL, V36, P500, DOI 10.1108/ITP-11-2020-0793
Slater M, 2016, FRONT ROBOT AI, V3, DOI 10.3389/frobt.2016.00074
Spicer JI, 2001, J COMPUT ASSIST LEAR, V17, P345, DOI 10.1046/j.0266-4909.2001.00191.x
Srisawat S., 2022, International Education Studies, V15, P153, DOI [https://doi.org/10.5539/ies.v15n5p153, DOI 10.5539/IES.V15N5P153]
Talan T., 2022, Int. J. Technol. Educ. Sci. (IJTES), V6, P333, DOI [10.46328/ijtes.385, DOI 10.46328/IJTES.385]
Tlili A, 2022, SMART LEARN ENVIRON, V9, DOI 10.1186/s40561-022-00205-x
Usmani SS, 2022, GEN PSYCHIAT, V35, DOI 10.1136/gpsych-2022-100825
Valentine Cleo, 2023, Int J Environ Res Public Health, V20, DOI 10.3390/ijerph20032735
Wesemann A., 2022, Friedrich Berlin Verlagsgesellschaft mbH, P52, DOI [10.3390/ENCYCLOPEDIA2010031, DOI 10.3390/ENCYCLOPEDIA2010031]
Zhang XL, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1016300
Zhao R., 2022, Journal of Latex Class Files, V14, P1
NR 60
TC 0
Z9 0
U1 11
U2 14
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 2042-3896
EI 2042-390X
J9 HIGH EDUC SKILL WORK
JI High Educ. Skills Work-based Learn
PD 2024 JAN 19
PY 2024
DI 10.1108/HESWBL-06-2023-0156
EA JAN 2024
PG 21
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA FK3K5
UT WOS:001145630900001
DA 2024-09-05
ER
PT J
AU da Silva, RF
Pantoja, MJ
AF da Silva, Ricardo Freitas
Pantoja, Maria Julia
TI Active learning: a new look at learning organizations
SO REVISTA DE GESTAO E SECRETARIADO-GESEC
LA English
DT Article
DE Distance education; Learning; Bibliometric Review; Covid-19
ID KNOWLEDGE; REFLECTIONS; MANAGEMENT; CLASSROOM; CONTEXT; WORK
AB This article aims to analyze the national scientific production on andragogy, active learning and organizational learning, in the period from 2015 to 2021, in order to identify the contribution of distance education (DL) in the learning process to overcome the challenges faced by organizations today. To this end, a systematic literature review was conducted based on the protocol for selecting and analyzing sources defined by Cronnin, et al. (2008). The qualitative and quantitative research was carried out in journals classified as Qualis Capes A1 to B2, in the Web of Science database. Bibliometric mapping was used to analyze the publications and Iramuteq software was used to process the lexical data of the abstracts of the selected articles. The results of the research point to distance education as a potential model for the educational process capable of working on different organizational competencies.
C1 [da Silva, Ricardo Freitas] Minist Gestao & Inovacao Serv Publ, Gestao Publ, Brasilia, Brazil.
[Pantoja, Maria Julia] Univ Brasilia UNB, Psicol Socialdo Trabalho & Org, Foco Proc Aprendizagem Humana Trabalho, Programa Posgrad Gestao Publ, BR-70910900 Brasilia, DF, Brazil.
C3 Universidade de Brasilia
RP da Silva, RF (corresponding author), Minist Gestao & Inovacao Serv Publ, Gestao Publ, Brasilia, Brazil.
EM ricardo.freitas@economia.gov.br; jpantoja@unb.br
CR Almeida B. G., 2020, EDUCA O UFSM, V45, P64, DOI [10.5902/1984644437035, DOI 10.5902/1984644437035]
Armond L. P., 2016, ANAIS 40 ENCONTRO AS
Borges-Andrade Jairo Eduardo, 2010, Psic.: Teor. e Pesq., V26, P37
Brasil, DAD AB
Camargo BV, 2013, Temas Psicol, V21, P513, DOI [DOI 10.9788/TP2013.2-16, 10.9788/tp2013.2-16]
Caprioli KC, 2016, REV ADM DIALOGO, V18, P76, DOI 10.20946/rad.v18i3.21453
Costa CDC, 2018, REV IBERO-AM ESTUD E, V13, P553, DOI 10.21723/riaee.nesp1.v13.2018.11454
Castro A. B. C., 2018, HOLOS, V4, P137, DOI [10.15628/holos.2018.5170, DOI 10.15628/HOLOS.2018.5170]
Colet D. S., 2019, REV GEST ORGAN, V12, P60, DOI [10.22277/rgo.v14i1.4080, DOI 10.22277/RGO.V14I1.4080]
Cronin Patricia, 2008, Br J Nurs, V17, P38
Monteiro JCD, 2020, REVIST EDUC, V14, P119
Fernandes SRD, 2020, REV IBERO-AM ESTUD E, V15, P1669, DOI 10.21723/riaee.v15iesp2.13838
Zaduski JCD, 2017, REV IBERO-AM ESTUD E, V12, P1243, DOI 10.21723/riaee.v12.n.esp.2.10293
Deprá VM, 2018, NAVUS-REV GEST TECNO, V8, P22, DOI 10.22279/navus.2018.v8n4.p22-36.699
Brandao JMF, 2017, ADM PUBLICA GEST SOC, V9, P265, DOI 10.21118/apgs.v1i4.1233
Lemos C, 2018, REVIST EDUC, V12, P48
Lima GP, 2018, REV GES PROJ, V9, P81, DOI 10.5585/GeP.v9i3.10942
Meirelles K, 2020, REV EDAPECI, V20, P68, DOI 10.29276/redapeci.2020.20.213166.68-81
Monte WS, 2017, HOLOS, V33, P90, DOI 10.15628/holos.2017.5759
Moraes FV, 2020, REV GEST SECR-GESEC, V11, P164, DOI 10.7769/gesec.v11i2.1066
Oliveira M. A. M., 2020, REV 101 NCIAS ADMINI, V26, DOI [10.5020/2318-0722.2020.26.3.9538, DOI 10.5020/2318-0722.2020.26.3.9538]
Pedro N, 2017, REV TEMPOS ESPACOS E, V10, P99, DOI 10.20952/revtee.v10i23.7448
Pereira JA, 2020, EDUC ESCRITO, V11, DOI 10.15448/2179-8435.2020.2.30993
Salerno B. N., 2019, ANAIS 2 CONGRESSO GE
Salvagni J, 2020, EDUC ESCRITO, V11, DOI 10.15448/2179-8435.2020.2.38898
Santos VT, 2017, TEOR PRAT ADM-TPA, V7, P170, DOI 10.21714/2238-104X2017v7i1-31081
Campos IMS, 2018, NAVUS-REV GEST TECNO, V8, P17, DOI 10.22279/navus.2018.v8n2.p17-26.634
Soares T. L. F. S., 2020, DIALOGIA, V36, P35, DOI [10.5585/dialogia.n36.18396, DOI 10.5585/DIALOGIA.N36.18396]
Teixeira WG, 2020, REV SERV PUBLICO, V71, P604, DOI 10.21874/rsp.v71i3.3999
Sanabria MLV, 2017, REV CUID, V8, P1907, DOI 10.15649/cuidarte.v8i3.456
Werlang NB, 2018, REV ELETRONICA ESTRA, V11, P198, DOI 10.19177/reen.v11e22018198-218
NR 31
TC 0
Z9 0
U1 2
U2 6
PU SINDICATO SECRETARIAS ESTADO SAO PAULO
PI SAO PAULO
PA RUA TUPI 118, SAO PAULO, 01233-000, BRAZIL
SN 2178-9010
J9 REV GEST SECR-GESEC
JI Rec. Gest. Secr.-GeSeC
PD JAN-APR
PY 2023
VL 14
IS 1
BP 174
EP 195
DI 10.7769/gesec.v14i1.1507
PG 22
WC Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA F3YD0
UT WOS:000981726300003
OA gold
DA 2024-09-05
ER
PT J
AU Lahman, MKE
D'Amato, RC
Stecker, S
McGrain, E
AF Lahman, Maria K. E.
D'Amato, Rik Carl
Stecker, Steffanie
McGrain, Elizabeth
TI Addressing the shortage of rural school psychologists via technology -
Using candidate qualitative interviews to inform practice
SO SCHOOL PSYCHOLOGY INTERNATIONAL
LA English
DT Article
DE curriculum; distance education; e-learning; interactive video; online
learning; program evaluation; qualitative approaches; qualitative
research; school psychology jobs; school psychology training; shortage;
technology
AB For decades Colorado, USA, has had a shortage of school psychologists, especially in rural areas. The program 'Giving Rural Areas Access to School Psychologist' (GRAASP) was developed to meet this need by offering a technology based distance education program that trained candidates from remote sites across the state. Through the use of in-depth interviews the authors sought to answer the following question: What are the student-candidate perceptions of the GRAASP program? Students' perceptions of their experiences added significantly to our understanding of the effectiveness of the GRAASP program. This article offers insight to educators of school psychologists and others who are considering the use of technology to train learners in remote areas to meet current shortages of qualified personnel in education and related areas.
C1 Univ No Colorado, Ctr Collaborat Res Educ, Coll Educ & Behav Sci, Greeley, CO 80639 USA.
C3 University of Northern Colorado
RP D'Amato, RC (corresponding author), Univ No Colorado, Ctr Collaborat Res Educ, Coll Educ & Behav Sci, McKee Hall Educ 125, Greeley, CO 80639 USA.
EM rik.damato@unco.edu
CR Badri A, 1998, SCHOOL PSYCHOL INT, V19, P121, DOI 10.1177/0143034398192002
BAILEY EK, 1994, COMMUN EDUC, V43, P184, DOI 10.1080/03634529409378975
Barab S.A., 2004, DESIGNING VIRTUAL CO
BERGE ZL, 1994, COMMUN EDUC, V43, P102, DOI 10.1080/03634529409378967
CONNOLLY L, 1990, NASP COMMUNIQUE, V19, P1
D'Amato R.C., 1988, J PSYCHOEDUC ASSESS, V6, P118
D'Amato R.C., 2005, HDB SCH NEUROPSYCHOL
D'Amato RC, 2001, SCHOOL PSYCHOL INT, V22, P285, DOI 10.1177/0143034301223005
DAMATO RC, 2002, 54 ANN M AM ASS COLL
Davis C, 2000, Eat Behav, V1, P33, DOI 10.1016/S1471-0153(00)00007-6
Edwards OW, 2003, SCHOOL PSYCHOL INT, V24, P204, DOI 10.1177/0143034303024002005
FAGAN TK, 1994, SCH PSYCHOL PAST PRE
Haboush KL, 2003, SCHOOL PSYCHOL INT, V24, P232, DOI 10.1177/0143034303024002007
HALL KE, 2000, SCH PSYCHOL, V54, P66
Harrison PL, 2003, SCHOOL PSYCHOL QUART, V18, P358, DOI 10.1521/scpq.18.4.358.27001
Janesick V.V., 1994, HDB QUALITATIVE RES, P209
Jimerson SR, 2004, SCHOOL PSYCHOL INT, V25, P259, DOI 10.1177/0143034304046901
Lam SF, 1998, SCHOOL PSYCHOL INT, V19, P317, DOI 10.1177/0143034398194004
McIntosh DE, 2004, PSYCHOL SCHOOLS, V41, P411, DOI 10.1002/pits.10183
Medley M.D., 1999, J CONTIN HIGH EDUC, V47, P25
Merriam S. B., 1998, Qualitative research and case study applications in education, DOI DOI 10.1016/J.IJPROMAN.2011.04.002
Myrick R.D., 1995, Elementary School Guidance and Counseling, V30, P35
Oakland T.D., 1992, School Psychology International, V13, P99, DOI [10.1177/0143034392132001, DOI 10.1177/0143034392132001]
POLKINGHORNE DE, 1991, HDB SCH PSYCHOL, P108
RESCHLY D, 1990, REPORT RETENTION STU
Reynolds C.R., 1999, The handbook of school psychology, V3rd
NR 26
TC 6
Z9 13
U1 1
U2 7
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0143-0343
J9 SCHOOL PSYCHOL INT
JI Sch. Psychol. Int.
PD OCT
PY 2006
VL 27
IS 4
BP 439
EP 461
DI 10.1177/0143034306070429
PG 23
WC Psychology, Educational
WE Social Science Citation Index (SSCI)
SC Psychology
GA 109XH
UT WOS:000242342400005
DA 2024-09-05
ER
PT J
AU Yang, DH
Wang, Y
Yu, T
Liu, XY
AF Yang, Dong-Hui
Wang, Yan
Yu, Tian
Liu, Xueyu
TI Macro-level collaboration network analysis and visualization with
Essential Science Indicators: A case of social sciences
SO MALAYSIAN JOURNAL OF LIBRARY & INFORMATION SCIENCE
LA English
DT Article
DE International collaboration; Scientometrics; Social network analysis;
Hierarchical clustering; Essential Science Indicators
ID INTERNATIONAL RESEARCH COLLABORATION; SCIENTIFIC COLLABORATION;
PREFERENTIAL ATTACHMENT; PUBLICATIONS; CONVERGENCE; PATTERNS; GROWTH;
KEY
AB Cross-national collaboration has been shaped by internationalization of scientific relationships. To study the synergic network of high quality research patterns, this paper collects a total of 300 top 50 items, in each indicator from the big database, Essential Science Indicators, which lists top-ranking papers, scientists and institutions from 2005 to 2015. First, the country level relations of co-authorship addresses in five indicator variables are extracted in the field of social sciences to build international collaboration networks. The social network analysis (SNA) method was applied to calculate the metrics of vertices, edges, average degree, average shortest path, diameter, clustering coefficient and betweenness centrality to illuminate the structural characters and collaboration patterns. Based on the international collaboration similarities, this paper also visualizes the endemic clustering groups of six networks, as cluster dendrograms, using Hierarchical Clustering (HC) method. Findings illustrate that USA, England and Canada are outstanding countries in the international collaboration networks of five indicators. There are geographical groups in European countries in the collaboration networks of scientists, institutes and countries/territories. It is also found that international collaboration contributes to both highly cited papers in the recent 10 years and hot papers in the recent 2 years in this field, rather than geographical similarity does. Those conclusions are critical for policy makers to produce guidelines on how to encourage researchers to build collaboration networks with high-level scholars in different countries.
C1 [Yang, Dong-Hui; Wang, Yan; Liu, Xueyu] Southeast Univ, Sch Econ & Management, Nanjing 210096, Peoples R China.
[Yu, Tian] Harbin Engn Univ, Sch Econ & Management, Harbin 150001, Peoples R China.
C3 Southeast University - China; Harbin Engineering University
RP Yang, DH (corresponding author), Southeast Univ, Sch Econ & Management, Nanjing 210096, Peoples R China.; Yu, T (corresponding author), Harbin Engn Univ, Sch Econ & Management, Harbin 150001, Peoples R China.
EM dhyang@seu.edu.cn; happyyanyan003@163.com; yutian@hrbeu.edu.cn;
xyliu@gmail.com
FU National Natural Science Foundation of China [71871053]; China
Scholarship Council; Fundamental Research Funds for the Central
Universities
FX Many thanks to two reviewers for giving useful suggestions to refine
this paper. This work was supported by the National Natural Science
Foundation of China (Grant No. 71871053), the China Scholarship Council
and the Fundamental Research Funds for the Central Universities.
CR Almeida JAS, 2007, CHEMOMETR INTELL LAB, V87, P208, DOI 10.1016/j.chemolab.2007.01.005
Almeida JAS, 2009, J INFORMETR, V3, P134, DOI 10.1016/j.joi.2009.01.001
Arunachalam S, 2000, CURR SCI INDIA, V79, P621
Barrios C, 2019, SCIENTOMETRICS, V120, P631, DOI 10.1007/s11192-019-03133-9
Borgatti SP, 2009, SCIENCE, V323, P892, DOI 10.1126/science.1165821
Butrous G, 2015, PULM CIRC, V5, P413, DOI 10.1086/682961
Chen KH, 2019, RES POLICY, V48, P149, DOI 10.1016/j.respol.2018.08.005
Chuang KY, 2011, SCIENTOMETRICS, V87, P551, DOI 10.1007/s11192-011-0365-2
Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113
Csajbók E, 2007, SCIENTOMETRICS, V73, P91, DOI 10.1007/s11192-007-1859-9
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
FRAME JD, 1979, SOC STUD SCI, V9, P481
Francisco JS, 2015, ANGEW CHEM INT EDIT, V54, P14984, DOI 10.1002/anie.201505267
Fu HZ, 2011, SCIENTOMETRICS, V88, P841, DOI 10.1007/s11192-011-0416-8
Guo SS, 2016, J EDUC COMPUT RES, V53, P499, DOI 10.1177/0735633115611114
Harzing AW, 2014, J INFORMETR, V8, P29, DOI 10.1016/j.joi.2013.10.007
Hayati Z, 2010, LIBR HI TECH, V28, P433, DOI 10.1108/07378831011076675
He TW, 2009, SCIENTOMETRICS, V80, P571, DOI 10.1007/s11192-007-2043-y
Hou H, 2008, SCIENTOMETRICS, V75, P189, DOI 10.1007/s11192-007-1771-3
Hsiehchen D, 2016, PHYSICA A, V444, P188, DOI 10.1016/j.physa.2015.09.085
Jalal SK, 2019, ANN LIBR INF STUD, V66, P57, DOI 10.56042/alis.v66i2.22404
Jonsen K, 2013, J MANAGE INQUIRY, V22, P394, DOI 10.1177/1056492612464429
Kossinets G, 2006, SCIENCE, V311, P88, DOI 10.1126/science.1116869
Liu J, 2015, PHYSICA A, V419, P29, DOI 10.1016/j.physa.2014.10.006
LUUKKONEN T, 1992, SCI TECHNOL HUM VAL, V17, P101, DOI 10.1177/016224399201700106
Mason S, 2020, SCIENTOMETRICS, V122, P1751, DOI 10.1007/s11192-020-03345-4
Murtagh F, 2012, WIRES DATA MIN KNOWL, V2, P86, DOI 10.1002/widm.53
Niu FG, 2014, SCIENTOMETRICS, V98, P1221, DOI 10.1007/s11192-013-1170-x
Olmeda-Gómez C, 2015, INFORM RES, V20
Palacios-Callender M, 2016, J DOC, V72, P362, DOI 10.1108/JD-11-2014-0164
Perianes-Rodríguez A, 2009, J INFORMETR, V3, P91, DOI 10.1016/j.joi.2008.12.001
Peterson MF, 2001, J ORGAN BEHAV, V22, P59, DOI 10.1002/job.61
Ronda-Pupo GA, 2016, SCIENTOMETRICS, V107, P1423, DOI 10.1007/s11192-016-1939-9
Rousseau R, 2016, J ASSOC INF SCI TECH, V67, P1009, DOI 10.1002/asi.23565
Sarwar R, 2015, SCIENTOMETRICS, V105, P1059, DOI 10.1007/s11192-015-1718-z
Schmoch U, 2008, SCIENTOMETRICS, V74, P361, DOI 10.1007/s11192-007-1818-5
SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007
Sud P, 2016, J ASSOC INF SCI TECH, V67, P1849, DOI 10.1002/asi.23515
Teixeira da Silva JA, 2012, ROM BIOTECH LETT, V17, P7043
Ulnicane I, 2015, SCI PUBL POLICY, V42, P433, DOI 10.1093/scipol/scu060
Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002
Wagner CS, 2005, SCIENTOMETRICS, V62, P3, DOI 10.1007/s11192-005-0001-0
Wang L, 2015, SCIENTOMETRICS, V105, P843, DOI 10.1007/s11192-015-1735-y
Wang MY, 2008, PHYSICA A, V387, P4692, DOI 10.1016/j.physa.2008.03.017
Wang MY, 2011, SCIENTOMETRICS, V87, P695, DOI 10.1007/s11192-011-0366-1
Wang MY, 2009, PHYSICA A, V388, P4273, DOI 10.1016/j.physa.2009.05.008
Yang DH, 2014, J INF SCI, V40, P3, DOI 10.1177/0165551513512251
Yang GY, 2015, PHYSICA A, V419, P429, DOI 10.1016/j.physa.2014.10.012
Zdravkovic M, 2016, SCIENTOMETRICS, V108, P717, DOI 10.1007/s11192-016-1989-z
Zhao Y, 2016, SCIENTOMETRICS, V107, P1373, DOI 10.1007/s11192-016-1898-1
Zitt M, 2000, SCIENTOMETRICS, V47, P627, DOI 10.1023/A:1005632319799
NR 51
TC 13
Z9 13
U1 1
U2 55
PU UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH
PI KUALA LUMPUR
PA UNIV MALAYA, FAC COMPUTER SCIENCE & INFORMATION TECH, KUALA LUMPUR,
50603, MALAYSIA
SN 1394-6234
J9 MALAYS J LIBR INF SC
JI Malays. J. Libr. Sci.
PY 2020
VL 25
IS 1
BP 121
EP 138
DI 10.22452/mjlis.vol25no1.7
PG 18
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA NF0BS
UT WOS:000562968500007
OA Bronze
DA 2024-09-05
ER
PT J
AU Mostafa, MM
AF Mostafa, Mohamed M.
TI Two decades of Wikipedia research: a PubMed bibliometric network
analysis
SO GLOBAL KNOWLEDGE MEMORY AND COMMUNICATION
LA English
DT Article
DE Topic modeling; Wikipedia; Collaboration networks; Bibliometric
networks; Keywords co-occurrence network; Scholarly publications
ID CO-WORD ANALYSIS; INFORMATION-SCIENCE; KNOWLEDGE DOMAIN; DOCTORAL
DISSERTATIONS; INTELLECTUAL STRUCTURE; SCIENTOMETRIC ANALYSIS; CITATION
ANALYSIS; TOURISM RESEARCH; EMERGING TRENDS; RESEARCH THEMES
AB Purpose - This paper aims to examine the structure and dynamics of scholarly publications dealing with Wikipedia. The research also aims to investigate how such research evolved since its launch in 2001.
Design/methodology/approach - Wikipedia has grown to be the biggest online encyclopedia in terms of comprehensiveness, reach and coverage. Based on 1,040 PubMed Wikipedia documents written by 5,280 authors over two decades (2001-2021), this paper conducts a bibliometric review of the intellectual structure of scholarly publications dealing withWikipedia.
Findings - Results show that annual scholarly publications on Wikipedia growth rate is 13.26. Major outlets publishing Wikipedia's research are PloS One, the Journal of Medical Internet Research, Nucleic Acids Research, Studies in Health Technology and Informatics, Bioinformatics and the International Journal of Medical Informatics. Results also show that the author collaboration network is very sparse, signifying rather negligible collaboration among the authors. Furthermore, results reveal that the Wikipedia research institutions' collaboration network reflects what is sometimes termed Wikipedia's "North-South divide," indicating limited collaboration between rich and poor nations' institutions. Finally, the multiple correspondence analysis applied to obtain the Wikipedia research conceptual map and its intellectual structure reveals the intellectual thrust and the diversity of the scholarly publications dealing withWikipedia.
Originality/value - To the best of the author's knowledge, this research represents the first application of bibliometric methods to investigate two decades of scholarly publications dealing with Wikipedia based on the PubMed database.
C1 [Mostafa, Mohamed M.] Gulf Univ Sci & Technol, West Mishref, Kuwait.
RP Mostafa, MM (corresponding author), Gulf Univ Sci & Technol, West Mishref, Kuwait.
EM mostafa@usa.com
OI Mostafa, Mohamed/0000-0002-1145-4919
CR AJIFERUKE I, 1988, SCIENTOMETRICS, V14, P421, DOI 10.1007/BF02017100
[Anonymous], 2002, HDB SOFTWARE ENG KNO
[Anonymous], 2018, J SUSTAIN TOUR, DOI [10.1080/09669582.2017.1329310, DOI 10.1080/09669582.2017.1329310]
[Anonymous], 2021, THE ECONOMIST 0109, P49
[Anonymous], 2017, CHINESE NURSING RES
Arazy O, 2011, J MANAGE INFORM SYST, V27, P71, DOI 10.2753/MIS0742-1222270403
Avila-Robinson A, 2018, J DESTIN MARK MANAGE, V10, P101, DOI 10.1016/j.jdmm.2018.06.005
Azad HK, 2019, INFORM SCIENCES, V492, P147, DOI 10.1016/j.ins.2019.04.019
Baker HK, 2020, MANAG FINANC, V46, P1495, DOI 10.1108/MF-06-2019-0277
Behrendt S, 2020, INT REV FINANC ANAL, V72, DOI 10.1016/j.irfa.2020.101563
Benckendorff P, 2009, J HOSP TOUR MANAG, V16, P1, DOI 10.1375/jhtm.16.1.1
Bouzembrak Y, 2019, TRENDS FOOD SCI TECH, V94, P54, DOI 10.1016/j.tifs.2019.11.002
Brazzeal Bradley, 2011, Issues in Science & Technology Librarianship, DOI 10.5062/F4057CV7
Brigo F, 2015, J CLIN NEUROSCI, V22, P1170, DOI 10.1016/j.jocn.2015.02.006
Brown AR, 2011, PS-POLIT SCI POLIT, V44, P339, DOI 10.1017/S1049096511000199
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Chen CM, 2008, DATA KNOWL ENG, V67, P234, DOI 10.1016/j.datak.2008.05.004
Chen CM, 2014, J ASSOC INF SCI TECH, V65, P334, DOI 10.1002/asi.22968
Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507
Chen CM, 2001, COMPUTER, V34, P65, DOI 10.1109/2.910895
Chen XY, 2020, TRANSPORT POLICY, V85, P1, DOI 10.1016/j.tranpol.2019.10.004
Chen XL, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-020-00239-6
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chi E. H., 2001, CHI 2001 Conference Proceedings. Conference on Human Factors in Computing Systems, P490, DOI 10.1145/365024.365325
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Colicchia C, 2019, SUPPLY CHAIN MANAG, V24, P5, DOI 10.1108/SCM-01-2018-0003
Coquidé C, 2019, EUR PHYS J B, V92, DOI 10.1140/epjb/e2018-90532-7
Corbet S, 2019, RESOUR POLICY, V63, DOI 10.1016/j.resourpol.2019.101416
de la Hoz-Correa A, 2018, TOURISM MANAGE, V65, P200, DOI 10.1016/j.tourman.2017.10.001
Della Corte V, 2018, BRIT FOOD J, V120, P2270, DOI 10.1108/BFJ-09-2017-0538
Dewald N., 2014, PUBLIC SERVICES Q, V10, P245
DiMaggio P, 2001, ANNU REV SOCIOL, V27, P307, DOI 10.1146/annurev.soc.27.1.307
Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008
El Zant S, 2018, IEEE ACCESS, V6, P47735, DOI 10.1109/ACCESS.2018.2867327
Ezell J., 2021, ETHNIC RACIAL STUD, V44
Ferreira MP, 2014, SCIENTOMETRICS, V98, P1899, DOI 10.1007/s11192-013-1172-8
Flanagin AJ, 2011, INFORM COMMUN SOC, V14, P355, DOI 10.1080/1369118X.2010.542823
Francisco GL, 2019, INT BUS REV, V28, P713, DOI 10.1016/j.ibusrev.2019.02.001
Gaede J, 2018, ENERGY RES SOC SCI, V40, P142, DOI 10.1016/j.erss.2017.12.006
Gavel Y, 2008, ONLINE INFORM REV, V32, P8, DOI 10.1108/14684520810865958
Gaviria-Marin M, 2018, J KNOWL MANAG, V22, P1655, DOI 10.1108/JKM-10-2017-0497
Giles J, 2005, NATURE, V438, P900, DOI 10.1038/438900a
Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257
Göbel S, 2018, SOC SCI COMPUT REV, V36, P157, DOI 10.1177/0894439317703579
Gruzd A, 2011, AM BEHAV SCI, V55, P1294, DOI 10.1177/0002764211409378
Himelboim I, 2013, COMMUN METHODS MEAS, V7, P195, DOI 10.1080/19312458.2013.813922
Himelboim I, 2014, J HEALTH COMMUN, V19, P210, DOI 10.1080/10810730.2013.811321
Hino A, 2019, INT J INFORM MANAGE, V48, P175, DOI 10.1016/j.ijinfomgt.2019.01.019
Hjorland B, 2013, INFORM PROCESS MANAG, V49, P1313, DOI 10.1016/j.ipm.2013.07.001
Keegan B, 2013, AM BEHAV SCI, V57, P595, DOI 10.1177/0002764212469367
Khan GF, 2016, COMMUN ASSOC INF SYS, V39, P367, DOI 10.17705/1CAIS.03918
Khasseh AA, 2017, INFORM PROCESS MANAG, V53, P705, DOI 10.1016/j.ipm.2017.02.001
Kim J, 2019, TECHNOVATION, V79, P25, DOI 10.1016/j.technovation.2018.06.008
Kim MC, 2015, SCIENTOMETRICS, V104, P239, DOI 10.1007/s11192-015-1595-5
Knoke D., 2010, Social Network Analysis
Koppen L, 2015, J MED LIBR ASSOC, V103, P140, DOI 10.3163/1536-5050.103.3.007
Korfiatis NT, 2006, ONLINE INFORM REV, V30, P252, DOI 10.1108/14684520610675780
Kosterich A, 2019, JOURNAL PRACT, V13, P431, DOI 10.1080/17512786.2018.1497454
Krauskopf E, 2018, J INFECT PUBLIC HEAL, V11, P224, DOI 10.1016/j.jiph.2017.12.011
Kumar HA, 2011, LIBR COLLECT ACQUIS, V35, P32, DOI 10.1016/j.lcats.2011.03.002
Kumar S, 2020, PUBLIC MANAG REV, V22, P1876, DOI 10.1080/14719037.2020.1721122
Laengle S, 2018, INT J COMPUT INTEG M, V31, P1247, DOI 10.1080/0951192X.2018.1529434
Lamprecht D, 2015, SEMANT WEB, V6, P403, DOI 10.3233/SW-140143
LAW J, 1988, SCIENTOMETRICS, V14, P251, DOI 10.1007/BF02020078
Lee MR, 2012, KNOWL-BASED SYST, V28, P47, DOI 10.1016/j.knosys.2011.11.016
Levitt Peggy., 2012, Religion on the Edge: De-Centering and Re-Centering the Sociology of Religion, P159
Lim MH, 2022, COMPUT ASSIST LANG L, V35, P2675, DOI 10.1080/09588221.2021.1892768
Linnenluecke M.M., 2021, AUST J MANAGE
Aleixandre JL, 2015, SCIENTOMETRICS, V105, P295, DOI 10.1007/s11192-015-1677-4
González-Valiente CL, 2019, BIBL-AN INVESTIG, V15, P83
Mas-Tur A, 2020, REV MANAG SCI, V14, P933, DOI 10.1007/s11846-020-00406-z
Mestyán M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071226
MILGRAM S, 1967, PSYCHOL TODAY, V1, P61
Moat HS, 2013, SCI REP-UK, V3, DOI 10.1038/srep01801
Mostafa M., 2016, INT J MANAGEMENT MAR, V9, P81
Mostafa MM, 2020, TRENDS FOOD SCI TECH, V99, P660, DOI 10.1016/j.tifs.2020.03.022
Mostafa Mohamed M., 2015, J BUSINESS EC STUDIE, V21, P24
Mulet-Forteza C, 2018, J TRAVEL TOUR MARK, V35, P1201, DOI 10.1080/10548408.2018.1487368
Navarrete T, 2016, CULT TRENDS, V25, P233, DOI 10.1080/09548963.2016.1241342
Neff MW, 2009, SCIENTOMETRICS, V80, P657, DOI 10.1007/s11192-008-2099-3
Neuhaus C, 2006, PORTAL-LIBR ACAD, V6, P127, DOI 10.1353/pla.2006.0026
Park SJ, 2015, TECHNOL FORECAST SOC, V95, P208, DOI 10.1016/j.techfore.2015.02.003
Pirolli P, 2003, LECT NOTES ARTIF INT, V2702, P45
Pirolli P., 1999, Information foraging
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
PRICE DJD, 1966, AM PSYCHOL, V21, P1011
Prieto-Gutierrez J., 2021, SERIAL LIBRARIAN
Qi T., 2018, Int. J. Crowd Sci, V2, P136, DOI [10.1108/IJCS-08-2018-0015, DOI 10.1108/IJCS-08-2018-0015]
Qian JW, 2019, SCAND J HOSP TOUR, V19, P192, DOI 10.1080/15022250.2018.1526113
Ratkiewicz J., 2010, Proceedings of the 2010 IEEE Second International Conference on Social Computing (SocialCom 2010). the Second IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT 2010), P393, DOI 10.1109/SocialCom.2010.63
Rodi GC, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170746
Rollin G, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0222508
SALTON G, 1991, SCIENCE, V253, P974, DOI 10.1126/science.253.5023.974
Sangam SL, 2015, COLLNET J SCIENTOMET, V9, P175, DOI 10.1080/09737766.2015.1069956
Shi F, 2019, NAT HUM BEHAV, V3, P329, DOI 10.1038/s41562-019-0541-6
Shiau WL, 2017, INT J INFORM MANAGE, V37, P390, DOI 10.1016/j.ijinfomgt.2017.04.007
Shirky C., 2008, Here Comes Everybody: The Power of Organizing Without Organizations
Smith N, 2019, INFORM COMMUN SOC, V22, P1310, DOI 10.1080/1369118X.2017.1418406
SPENCE DP, 1990, J PSYCHOLINGUIST RES, V19, P317, DOI 10.1007/BF01074363
Surowiecki James., 2007, American Journal of Physics, V75, P190, DOI DOI 10.1119/1.2423042
Tang M, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051655
Tang M, 2018, INT J FUZZY SYST, V20, P1403, DOI 10.1007/s40815-018-0484-5
Tausczik Y, 2012, HEALTH COMMUN, V27, P179, DOI 10.1080/10410236.2011.571759
Thompson N., 2019, 523817 MIT SLOAN RES
Tomaszewski Robert, 2016, Science & Technology Libraries, V35, P246, DOI 10.1080/0194262X.2016.1206052
Trier M, 2013, EUR J INFORM SYST, V22, P317, DOI 10.1057/ejis.2012.27
Valenzuela-Fernandez L, 2019, J BUS-BUS MARK, V26, P75, DOI 10.1080/1051712X.2019.1565142
Van Eck N J., 2019, Manual for VOSviewer version 1.6.13. VOSviewer Manual
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Vanni T, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093376
Vidgen R, 2007, EUR J INFORM SYST, V16, P5, DOI 10.1057/palgrave.ejis.3000661
Vieira F, 2015, J BUS IND MARK, V30, P105, DOI 10.1108/JBIM-02-2014-0027
Vos T., 2015, GATEKEEPING TRANSITI
Wakefield R., 2008, The British Accounting Review, V40, P228, DOI DOI 10.1016/J.BAR.2008.03.001
Wallace DP, 2005, REF USER SERV Q, V45, P100
Wallace J, 2018, DIGIT JOURNAL, V6, P274, DOI 10.1080/21670811.2017.1343648
Wamba SF, 2017, BUS PROCESS MANAG J, V23, P477, DOI 10.1108/BPMJ-02-2017-0047
Wang C., 2021, EVOLUTION OMEGA INT
Wang Y., 2012, 32 ANN INT NETW SOC
Watad A, 2017, J MED INTERNET RES, V19, DOI 10.2196/jmir.8225
Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918
West R, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1242, DOI 10.1145/2736277.2741666
West R, 2009, 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, P1598
Wetzstein A, 2019, J PURCH SUPPLY MANAG, V25, DOI 10.1016/j.pursup.2018.10.002
Wildgaard LE, 2016, LIBR HI TECH, V34, P669, DOI 10.1108/LHT-06-2016-0066
Wilkerson B., 2015, ANN M MIDW POL SCI A
Williamson PO, 2019, J MED LIBR ASSOC, V107, P16, DOI 10.5195/jmla.2019.433
Wu GY, 2015, KNOWL INF SYST, V45, P473, DOI 10.1007/s10115-014-0802-7
Xu SX, 2013, MIS QUART, V37, P1043, DOI 10.25300/MISQ/2013/37.4.03
Yang GC, 2015, SCIENTOMETRICS, V105, P1319, DOI 10.1007/s11192-015-1763-7
Yang HL, 2011, BEHAV INFORM TECHNOL, V30, P131, DOI 10.1080/0144929X.2010.516019
Yang SL, 2016, J INFORMETR, V10, P132, DOI 10.1016/j.joi.2015.12.003
Yasseri T., 2015, PREDICTING ELECTIONS
Zant S., 2018, EUR PHYS J B, V91
Zeleznik D, 2017, J ADV NURS, V73, P2407, DOI 10.1111/jan.13296
Zhu J, 2017, SCIENTOMETRICS, V110, P893, DOI 10.1007/s11192-016-2187-8
Zong QJ, 2013, SCIENTOMETRICS, V94, P781, DOI 10.1007/s11192-012-0799-1
Zou X, 2018, ACCIDENT ANAL PREV, V118, P131, DOI 10.1016/j.aap.2018.06.010
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 140
TC 1
Z9 1
U1 0
U2 17
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 2514-9342
EI 2514-9350
J9 GLOB KNOWL MEM COMMU
JI Glob. Knowl. Mem. Commun.
PD DEC 5
PY 2022
VL 71
IS 8/9
BP 947
EP 971
DI 10.1108/GKMC-03-2021-0056
EA NOV 2021
PG 25
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA 6S6FF
UT WOS:000713737600001
DA 2024-09-05
ER
PT C
AU Roopashree, N
Umadevi, V
AF Roopashree, N.
Umadevi, V
BE Chandrasekaran, K
Tahiliani, MP
Mathew, J
TI Future Collaboration Prediction in Co-authorship Network
SO 2014 3RD INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND
COMMUNICATION SYSTEMS (ICECCS 2014)
LA English
DT Proceedings Paper
CT 3rd International Conference on Eco-Friendly Computing and Communication
Systems (ICECCS)
CY DEC 18-21, 2014
CL Natl Inst Technol, Mangalore, INDIA
HO Natl Inst Technol
DE SVM; Co-authorship network; Future collaboration
AB The advent of proliferation of social networking is high on use in present era. A co-authorship network which shows research collaborations, are an important class of social networks. Research collaborations often yield good results but organizing a research group is a tedious task. Every researcher is concerned to collaborate with the best expertise complimenting him. Although there was abundant research conducted to find future collaborators or links, very few of them are able to find out effective relationship among them. In this article, we propose a method that makes link predictions in co-authorship networks using supervised approach. The model extracts the features from the networks node and topological structure which can be good indicators of future collaborations. The proposed method was evaluated on synthetic as well as real social networks such as NetScience. Our experiment corroborated the results, and demonstrated the efficiency of the method.
C1 [Roopashree, N.; Umadevi, V] BMS Coll Engn, Dept CSE, Bangalore, Karnataka, India.
C3 BMS College of Engineering
RP Roopashree, N (corresponding author), BMS Coll Engn, Dept CSE, Bangalore, Karnataka, India.
EM roops.gowda@gmail.com; umav.77@gmail.com
RI , Dr. Umadevi V/E-6454-2017
OI , Dr. Umadevi V/0000-0001-5265-3925
CR Al Hasan M, 2011, SOCIAL NETWORK DATA ANALYTICS, P243
AlHasan M., 2006, P SDM 06 WORKSH LINK
[Anonymous], P 7 WORKSH SOC NETW
Backstrom L., 2011, WSDM, P635
Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199
Gong NZ., 2011, JOINTLY PREDICTING L
Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591
Newman MEJ, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.036104
NR 8
TC 1
Z9 1
U1 0
U2 1
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-4799-7002-5
PY 2014
BP 183
EP 188
DI 10.1109/Eco-friendly.2014.45
PG 6
WC Computer Science, Interdisciplinary Applications; Engineering,
Electrical & Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BI2ZA
UT WOS:000410569900035
DA 2024-09-05
ER
PT J
AU Zhao, XT
Langlois, K
Furst, J
An, Y
Hu, XH
Gualdron, DG
Uribe-Romo, F
Greenberg, J
AF Zhao, Xintong
Langlois, Kyle
Furst, Jacob
An, Yuan
Hu, Xiaohua
Gualdron, Diego Gomez
Uribe-Romo, Fernando
Greenberg, Jane
TI Research evolution of metal organic frameworks: A scientometric approach
with human-in-the-loop
SO JOURNAL OF DATA AND INFORMATION SCIENCE
LA English
DT Article
DE Scientometric; Metal-Organic Frameworks (MOFs); Network Analysis; Topic
Modeling; Human in the Loop
ID BIBLIOMETRIC ANALYSIS; CRYSTAL-STRUCTURE; DESIGN; CHEMISTRY
AB Purpose This paper reports on a scientometric analysis bolstered by human-in-the-loop, domain experts, to examine the field of metal-organic frameworks (MOFs) research. Scientometric analyses reveal the intellectual landscape of a field. The study engaged MOF scientists in the design and review of our research workflow. MOF materials are an essential component in next-generation renewable energy storage and biomedical technologies. The research approach demonstrates how engaging experts, via human-in-the-loop processes, can help develop a comprehensive view of a field's research trends, influential works, and specialized topics.Design/methodology/approach A scientometric analysis was conducted, integrating natural language processing (NLP), topic modeling, and network analysis methods. The analytical approach was enhanced through a human-in-the-loop iterative process involving MOF research scientists at selected intervals. MOF researcher feedback was incorporated into our method. The data sample included 65,209 MOF research articles. Python3 and software tool VOSviewer were used to perform the analysis.Findings The findings demonstrate the value of including domain experts in research workflows, refinement, and interpretation of results. At each stage of the analysis, the MOF researchers contributed to interpreting the results and method refinements targeting our focus on MOF research. This study identified influential works and their themes. Our findings also underscore four main MOF research directions and applications.Research limitations This study is limited by the sample (articles identified and referenced by the Cambridge Structural Database) that informed our analysis.Practical implications Our findings contribute to addressing the current gap in fully mapping out the comprehensive landscape of MOF research. Additionally, the results will help domain scientists target future research directions.Originality/value To the best of our knowledge, the number of publications collected for analysis exceeds those of previous studies. This enabled us to explore a more extensive body of MOF research compared to previous studies. Another contribution of our work is the iterative engagement of domain scientists, who brought in-depth, expert interpretation to the data analysis, helping hone the study.
C1 [Zhao, Xintong; An, Yuan; Hu, Xiaohua; Greenberg, Jane] Drexel Univ, 3141 Chestnut St, Philadelphia, PA 19104 USA.
[Langlois, Kyle; Furst, Jacob; Uribe-Romo, Fernando] Univ Cent Florida, 4000 Cent Florida Blvd, Orlando, FL USA.
[Gualdron, Diego Gomez] Colorado Sch Mines, 1500 Illinois St, Golden, CO USA.
C3 Drexel University; State University System of Florida; University of
Central Florida; Colorado School of Mines
RP Zhao, XT (corresponding author), Drexel Univ, 3141 Chestnut St, Philadelphia, PA 19104 USA.
EM xz485@drexel.edu
FU NSF OAC [2118201]
FX This work is funded by NSF OAC # 2118201.
CR [Anonymous], 1997, Science studies: An advanced introduction
Batten SR, 1998, ANGEW CHEM INT EDIT, V37, P1460, DOI 10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z
Bonilla CA, 2015, SCIENTOMETRICS, V105, P1239, DOI 10.1007/s11192-015-1747-7
Castillo-Vergara M, 2018, J BUS RES, V85, P1, DOI 10.1016/j.jbusres.2017.12.011
Cavka JH, 2008, J AM CHEM SOC, V130, P13850, DOI 10.1021/ja8057953
Churchill R, 2021, IEEE DATA MINING, P71, DOI 10.1109/ICDM51629.2021.00017
Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
Côté AP, 2005, SCIENCE, V310, P1166, DOI 10.1126/science.1120411
Crossref.org, RETRIEVED OCTOBER 31
Cui YJ, 2012, CHEM REV, V112, P1126, DOI 10.1021/cr200101d
De Bakker Frank., 2005, Business Society, V44, P283, DOI [DOI 10.1177/0007650305278086, 10.1177/0007650305278086]
Dong BS, 2012, SCIENTOMETRICS, V93, P1101, DOI 10.1007/s11192-012-0730-9
EDDAOUDI M, 2002, SCIENCE, V0295
Eddaoudi M, 2001, ACCOUNTS CHEM RES, V34, P319, DOI 10.1021/ar000034b
Egghe L, 2005, J AM SOC INF SCI TEC, V56, P669, DOI 10.1002/asi.20158
Férey G, 2008, CHEM SOC REV, V37, P191, DOI 10.1039/b618320b
Furukawa H, 2013, SCIENCE, V341, P974, DOI 10.1126/science.1230444
Groom CR, 2016, ACTA CRYSTALLOGR B, V72, P171, DOI 10.1107/S2052520616003954
Guo YM, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133606
Guo YQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/18228
HAGBERG A., 2008, P 7 PYTH SCI C SCIPY, P11
HALL SR, 1991, ACTA CRYSTALLOGR A, V47, P655, DOI 10.1107/S010876739101067X
Ho YS, 2014, CURR SCI INDIA, V107, P1565
Jeong Y. K., 2020, EXAMINING DRUG SIDE, V14, DOI [10.1016/j.joi.2019.100999, DOI 10.1016/J.JOI.2019.100999]
KINOSHITA Y, 1959, B CHEM SOC JPN, V32, P741, DOI 10.1246/bcsj.32.741
Kitagawa S, 2004, ANGEW CHEM INT EDIT, V43, P2334, DOI 10.1002/anie.200300610
KLEMPERER WG, 1990, INORG SYN, V27, P71, DOI 10.1002/9780470132586.ch14
Kreno LE, 2012, CHEM REV, V112, P1105, DOI 10.1021/cr200324t
Krishnamoorthy G., 2009, BIBLIOMETRIC ANAL LI
Lan JM, 2022, J ENERGY STORAGE, V54, DOI 10.1016/j.est.2022.105275
Lee J, 2009, CHEM SOC REV, V38, P1450, DOI 10.1039/b807080f
Li H, 1999, NATURE, V402, P276, DOI 10.1038/46248
Li JR, 2012, CHEM REV, V112, P869, DOI 10.1021/cr200190s
Li JR, 2009, CHEM SOC REV, V38, P1477, DOI 10.1039/b802426j
Lund BD, 2021, J SCIENTOMETR RES, V10, P348, DOI 10.5530/jscires.10.3.51
Mak KK, 2022, EXPERT OPIN DRUG DIS, V17, P79, DOI 10.1080/17460441.2022.1985108
Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004
Moghadam P. Z., 2017, DEV CAMBRIDGE STRUCT, V29, DOI [10.1021/acs.chemmater.7b00441, DOI 10.1021/ACS.CHEMMATER.7B00441]
Moulton B, 2001, CHEM REV, V101, P1629, DOI 10.1021/cr9900432
Murray LJ, 2009, CHEM SOC REV, V38, P1294, DOI 10.1039/b802256a
Naseer MN, 2022, MATERIALS, V15, DOI 10.3390/ma15145053
Perc M, 2010, J INFORMETR, V4, P358, DOI 10.1016/j.joi.2010.03.001
Perry JJ, 2011, METAL-ORGANIC FRAMEWORKS: APPLICATIONS FROM CATALYSIS TO GAS STORAGE, P269, DOI 10.1039/b802352m
Scopus, RETRIEVED
Sebastian Y., 2017, EMERGING APPROACHES, V32, DOI [10.1017/S0269888917000042, DOI 10.1017/S0269888917000042]
SENGUPTA IN, 1992, LIBRI, V42, P75, DOI 10.1515/libr.1992.42.2.75
Seo JS, 2000, NATURE, V404, P982, DOI 10.1038/35010088
Sheldrick GM, 2015, ACTA CRYSTALLOGR C, V71, P3, DOI [10.1107/S2053229614024218, 10.1107/S0108767307043930, 10.1107/S2053273314026370]
Shidiq A. P., 2023, ASEAN J SCI ENG, V3, P31, DOI DOI 10.17509/AJSE.V3I1.43345
Spek AL, 2003, J APPL CRYSTALLOGR, V36, P7, DOI 10.1107/S0021889802022112
Sumida K, 2011, ABSTR PAP AM CHEM S, V242
SWANSON DR, 1986, LIBR QUART, V56, P103, DOI 10.1086/601720
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vinker P., 1991, DR1 N SENGUPTAS INT
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Wang CH, 2016, CHEM SOC REV, V45, P5107, DOI 10.1039/c6cs00362a
Wang CC, 2016, SCIENTOMETRICS, V109, P481, DOI 10.1007/s11192-016-1986-2
Wu XJ, 2022, FUTURE GENER COMP SY, V135, P364, DOI 10.1016/j.future.2022.05.014
Xin D, 2018, PROCEEDINGS OF THE SECOND WORKSHOP ON DATA MANAGEMENT FOR END-TO-END MACHINE LEARNING, DOI 10.1145/3209889.3209897
Yaghi OM, 2019, INTRODUCTION TO RETICULAR CHEMISTRY: METAL-ORGANIC FRAMEWORKS AND COVALENT ORGANIC FRAMEWORKS, P1, DOI 10.1002/9783527821099
Yaghi OM, 2003, NATURE, V423, P705, DOI 10.1038/nature01650
Ye N, 2020, J CLEAN PROD, V272, DOI 10.1016/j.jclepro.2020.122679
Ye WM, 2022, J IND ENG CHEM, V109, P68, DOI 10.1016/j.jiec.2022.02.017
Zanzotto FM, 2019, J ARTIF INTELL RES, V64, P243, DOI 10.1613/jair.1.11345
NR 64
TC 0
Z9 0
U1 0
U2 0
PU SCIENDO
PI WARSAW
PA BOGUMILA ZUGA 32A, WARSAW, MAZOVIA, POLAND
SN 2096-157X
EI 2543-683X
J9 J DATA INFO SCI
JI J. Data Info. Sci.
PD JUN 1
PY 2024
VL 9
IS 3
BP 44
EP 64
DI 10.2478/jdis-2024-0019
EA JUL 2024
PG 21
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA A4S8X
UT WOS:001272122700001
OA gold
DA 2024-09-05
ER
PT J
AU Yasar, MY
Kaya, M
AF Yasar, Mehmet Yasar
Kaya, Mehmet
TI Author-Profile-Based Journal Recommendation for a Candidate Article:
Using Hybrid Semantic Similarity and Trend Analysis
SO IEEE ACCESS
LA English
DT Article
DE Market research; Bibliometrics; Recommender systems; Deep learning;
Databases; Collaborative filtering; Semantics; Journal suggester;
ontological similarity; trend analyses; venue selection; user-profile
recommender
AB Finding the right journal for a manuscript to be submitted is difficult and often time-consuming because authors take into account some criteria while searching for the appropriate journal for their manuscript. One of the most important criteria is the content similarity of the journals and manuscript. For this purpose, the subject of the manuscript should be in accordance with the scope of the journal. Also, the manuscript content should be closed to the journals' trend for higher chance of acceptance. Second criterion is to take into account the impact-factor, acceptance-rate, review-time and publishing houses of the journal, which are suitable for the author's past publication profile. In this study, a novel method is proposed in which both the content of the article and the author / authors profile are considered together to find the appropriate journal. To the best of our knowledge, this is the first effort in this direction. Experimental results conducted on real data sets have shown that the proposed method is applicable and performs high accuracy values.
C1 [Yasar, Mehmet Yasar] Bingol Univ, Muhendislik Fakult, Bilgisayar Muhendisligi, Bingol, Turkiye.
[Kaya, Mehmet] Firat Univ, Muhendislik Fakult, Bilgisayar Muhendisligi, Elazig, Turkiye.
C3 Bingol University; Firat University
RP Yasar, MY (corresponding author), Bingol Univ, Muhendislik Fakult, Bilgisayar Muhendisligi, Bingol, Turkiye.
EM mybayraktar@bingol.edu.tr
RI Bayraktar, Mehmet Yasar/JRX-8798-2023; Kaya, Mehmet/D-4459-2013
OI Bayraktar, Mehmet Yasar/0000-0003-3182-120X; Kaya,
Mehmet/0000-0003-2995-8282
CR Alhoori H, 2017, J INFORMETR, V11, P553, DOI 10.1016/j.joi.2017.03.006
[Anonymous], 2020, P C AL NETW
Bai XM, 2019, IEEE ACCESS, V7, P9324, DOI 10.1109/ACCESS.2018.2890388
Balog K., 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P43, DOI 10.1145/1148170.1148181
Bangale S., 2019, SSRN ELECT J
Becerra-Fernandez I, 2005, LECT NOTES ARTIF INT, V3782, P19
Bhagavatula C, 2018, Arxiv, DOI arXiv:1802.08301
Boukhris I, 2014, INT SYMP COMP INTELL, P465, DOI 10.1109/CINTI.2014.7028720
Bozanta A, 2018, MOB INF SYST, V2018, DOI 10.1155/2018/3258916
Bulut B, 2018, 2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), P911, DOI 10.1109/ASONAM.2018.8508313
Burnham Judy F, 2006, Biomed Digit Libr, V3, P1
Cai XY, 2018, AAAI CONF ARTIF INTE, P5747
Cai XY, 2018, IEEE T NEUR NET LEAR, V29, P6026, DOI 10.1109/TNNLS.2018.2817245
Campbell C.S., 2003, P 12 INT C INFORM KN, P528, DOI DOI 10.1145/956863.956965
cfplist, AC CALL PAP DAT
Chen MH, 2015, ADV ENG INFORM, V29, P830, DOI 10.1016/j.aei.2015.04.005
Diao QM, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P193, DOI 10.1145/2623330.2623758
Hoang DT, 2016, IEEE SYS MAN CYBERN, P4411, DOI 10.1109/SMC.2016.7844925
DUMAIS ST, 1992, SIGIR 92 : PROCEEDINGS OF THE FIFTEENTH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P233
Feng Xia, 2016, IEEE Transactions on Big Data, V2, P101, DOI 10.1109/TBDATA.2016.2555318
Forrester A., 2017, IMPACT SOCIAL SCI BL
Kang N., 2015, P 9 ACM C RECOMMENDE, P261, DOI [DOI 10.1145/2792838.2799663, 10.1145/2792838.2799663]
Kartal E, 2018, METIN MADENCILIGI IL
Kuhn M, 2008, LECT NOTES COMPUT SC, V4976, P81
Li SC, 2018, IEEE ACCESS, V6, P17153, DOI 10.1109/ACCESS.2018.2817497
Ma ST, 2020, SCIENTOMETRICS, V122, P1445, DOI 10.1007/s11192-019-03336-0
Maybury M, 2001, COMMUN ACM, V44, P51, DOI 10.1145/501317.501342
Medvet E, 2014, PROC INT C TOOLS ART, P1004, DOI 10.1109/ICTAI.2014.152
Mhirsi Nour, 2018, Intelligent Systems Design and Applications. 17th International Conference on Intelligent Systems Design and Applications (ISDA 2017). Advances in Intelligent Systems and Computing (AISC 736), P83, DOI 10.1007/978-3-319-76348-4_9
Monteagudo Garcia Grettel, 2017, Journal of the Brazilian Computer Society, V23, DOI 10.1186/s13173-017-0053-z
Ola, 1384, TEXT SIM FASTT WORLD
Patak A., 2016, International Journal on Advanced Science Engineering Information Technology, V6, P557, DOI [DOI 10.18517/IJASEIT.6.4.890, https://doi.org/10.18517/ijaseit.6.4.890]
Pudovkin AI, 2002, J AM SOC INF SCI TEC, V53, P1113, DOI 10.1002/asi.10153
Qu W, 2013, J COMPUT SCI TECH-CH, V28, P776, DOI 10.1007/s11390-013-1376-7
Razack HIA, 2021, SCI EDIT, V8, P134, DOI 10.6087/kcse.244
Ren X, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P821, DOI 10.1145/2623330.2623630
Schuemie MJ, 2008, BIOINFORMATICS, V24, P727, DOI 10.1093/bioinformatics/btn006
Singh M, 2016, J INFORMETR, V10, P1005, DOI 10.1016/j.joi.2016.08.001
Socher Richard, 2014, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), P1532, DOI [10.3115/v1/D14-1162.https, DOI 10.3115/V1/D14-1162.HTTPS, 10.3115/v1/D14-1162]
Theiler S., 2019, BASICS USING PRETRAI
Wang DH, 2018, KNOWL-BASED SYST, V157, P1, DOI 10.1016/j.knosys.2018.05.001
Yang LB, 2019, COMPUT INTEL NEUROSC, V2019, DOI 10.1155/2019/1232581
Yu S, 2018, J NETW COMPUT APPL, V104, P38, DOI 10.1016/j.jnca.2017.12.004
NR 43
TC 0
Z9 0
U1 5
U2 11
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2023
VL 11
BP 45826
EP 45837
DI 10.1109/ACCESS.2023.3271732
PG 12
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA G8KY0
UT WOS:000991592900001
OA gold
DA 2024-09-05
ER
PT S
AU Cirillo, B
Tzabbar, D
Seo, D
AF Cirillo, Bruno
Tzabbar, Daniel
Seo, Donghwi
BE Tzabbar, D
Cirillo, B
TI A BIBLIOMETRIC AND TOPIC MODELING ANALYSIS OF THE STRUCTURAL DIVIDE IN
THE MULTIDISCIPLINARY RESEARCH ON EMPLOYEE MOBILITY
SO EMPLOYEE INTER- AND INTRA-FIRM MOBILITY: TAKING STOCK OF WHAT WE KNOW,
IDENTIFYING NOVEL INSIGHTS AND SETTING A THEORETICAL AND EMPIRICAL
AGENDA
SE Advances in Strategic Management-A Research Annual
LA English
DT Article; Book Chapter
ID INTERGENERATIONAL OCCUPATIONAL-MOBILITY; JOB EMBEDDEDNESS;
GREAT-BRITAIN; UNITED-STATES; TURNOVER; METAANALYSIS; PERFORMANCE;
ANTECEDENTS; PREDICTOR; SEARCH
AB Research on employee mobility has proliferated in the past four decades across four research traditions: Economics, sociology, management, and organizational behavior/human resource management. Despite significant overlap in interest and focus, these four streams of research have evolved independent from each other, resulting in a structural divide. We provide a detailed account of the research on employee mobility and the structural divide across disciplines. We document that the payoff from this profusion of research and increasing interest has been disappointing, as reflected in the limited number of cross-disciplinary citations, even among common topics of interest. However, our analysis also provides some encouraging signs in the form of specific journals and individuals who provide a bridge for cross-disciplinary fertilization.
C1 [Cirillo, Bruno] Univ Cote Azur GREDEG, SKEMA Business Sch, Sophia Antipolis, France.
[Tzabbar, Daniel; Seo, Donghwi] Drexel Univ, LeBow Coll Business, Philadelphia, PA 19104 USA.
C3 SKEMA Business School; Universite Cote d'Azur; Drexel University
RP Cirillo, B (corresponding author), Univ Cote Azur GREDEG, SKEMA Business Sch, Sophia Antipolis, France.
CR Agarwal R, 2004, ACAD MANAGE J, V47, P501, DOI [10.5465/20159599, 10.2307/20159599]
Almeida P, 1999, MANAGE SCI, V45, P905, DOI 10.1287/mnsc.45.7.905
Campbell BA, 2012, ACAD MANAGE REV, V37, P376, DOI 10.5465/amr.2010.0276
Campbell BA, 2012, STRATEGIC MANAGE J, V33, P65, DOI 10.1002/smj.943
Chen G, 2011, ACAD MANAGE J, V54, P159, DOI 10.5465/AMJ.2011.59215089
Chetty R, 2014, Q J ECON, V129, P1553, DOI 10.1093/qje/qju022
Felps W, 2009, ACAD MANAGE J, V52, P545, DOI 10.5465/AMJ.2009.41331075
Franco AM, 2006, RAND J ECON, V37, P841, DOI 10.1111/j.1756-2171.2006.tb00060.x
Griffeth RW, 2000, J MANAGE, V26, P463, DOI 10.1177/014920630002600304
Groysberg B, 2008, MANAGE SCI, V54, P1213, DOI 10.1287/mnsc.1070.0809
Hancock JI, 2013, J MANAGE, V39, P573, DOI 10.1177/0149206311424943
Hausknecht JP, 2011, J MANAGE, V37, P352, DOI 10.1177/0149206310383910
Hom PW, 2001, ACAD MANAGE J, V44, P975, DOI 10.5465/3069441
Kacmar KM, 2006, ACAD MANAGE J, V49, P133, DOI 10.2307/20159750
Klepper S, 2005, MANAGE SCI, V51, P1291, DOI 10.1287/mnsc.1050.0411
Lee TW, 2004, ACAD MANAGE J, V47, P711, DOI 10.5465/20159613
Long J, 2013, AM ECON REV, V103, P1109, DOI 10.1257/aer.103.4.1109
Marx M, 2009, MANAGE SCI, V55, P875, DOI 10.1287/mnsc.1080.0985
Mawdsley JK, 2016, J MANAGE, V42, P85, DOI 10.1177/0149206315616459
Meyer JP, 2002, J VOCAT BEHAV, V61, P20, DOI 10.1006/jvbe.2001.1842
Mitchell TR, 2001, ACAD MANAGE J, V44, P1102, DOI 10.5465/3069391
Ng TWH, 2005, PERS PSYCHOL, V58, P367, DOI 10.1111/j.1744-6570.2005.00515.x
Rosenkopf L, 2003, MANAGE SCI, V49, P751, DOI 10.1287/mnsc.49.6.751.16026
Shaw JD, 2005, ACAD MANAGE J, V48, P594, DOI 10.5465/AMJ.2005.17843940
Singh J, 2011, MANAGE SCI, V57, P129, DOI 10.1287/mnsc.1100.1253
Somaya D, 2008, ACAD MANAGE J, V51, P936
Song J, 2003, MANAGE SCI, V49, P351, DOI 10.1287/mnsc.49.4.351.14429
Vardi Y., 1980, ACAD MANAGE REV, V5, P341
Wezel FC, 2006, ORGAN SCI, V17, P691, DOI 10.1287/orsc.1060.0219
Xie Y, 2013, AM ECON REV, V103, P2003, DOI 10.1257/aer.103.5.2003
NR 30
TC 1
Z9 1
U1 0
U2 8
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY, W YORKSHIRE BD16 1WA, ENGLAND
SN 0742-3322
BN 978-1-78973-549-9; 978-1-78973-550-5
J9 ADV STRATEG MANAGE
JI Adv. Strat. M.
PY 2020
VL 41
BP 15
EP 36
DI 10.1108/S0742-332220200000041001
D2 10.1108/S0742-3322202041
PG 22
WC Management
WE Book Citation Index – Social Sciences & Humanities (BKCI-SSH); Social Science Citation Index (SSCI)
SC Business & Economics
GA BS1MN
UT WOS:000693396900002
DA 2024-09-05
ER
PT J
AU Frohardt, RJ
AF Frohardt, Russell J.
TI Engaging Community College Students in Publishable Research
SO FRONTIERS IN PSYCHOLOGY
LA English
DT Article
DE extramural funding; guided pathway; active learning; community college;
experiential learning; co-curricular activities; STEM - science
technology engineering mathematics; hispanic serving institution (HSI)
C1 [Frohardt, Russell J.] Northwest Vista Coll, Acad Success, San Antonio, TX 78251 USA.
RP Frohardt, RJ (corresponding author), Northwest Vista Coll, Acad Success, San Antonio, TX 78251 USA.
EM rfrohardt@alamo.edu
CR Altman W. S, 1995, PSYCHOL RES CAPSTONE
American Association of Community Colleges, 2018, MEMB DAT
American Association of Community Colleges, 2018, AACC PATHW PROJ
American Psychological Association, 2018, GRANTS AW FUND PAG
[Anonymous], DEV HISP SERV I TITL
Association for Psychological Science, 2018, GRANTS AW S
Bailey T.R., 2015, Redesigning America's community colleges: A clearer path to student success
Bowen J., 2012, Teaching naked: How moving technology out of your classromm will improve student learning, VFirst
*COLL BOARD, 2017, TRENDS COLL PRIC 201
Community College Research Center and American Association of Community Colleges, 2018, PATHW MOD DESCR
Davidson N., 2014, J EXCELLENCE COLL TE, V25, P1
Lucas D, 2018, SW PSYCHOL, V11, P3
National Center for Educational Statistics, 2018, IPEDS FALL 2016 ENR
National Science Foundation, 2018, IMPR UND STEM ED HIS
Psi Beta, 2019, AW OV DEADL
Society for Neuroscience, 2017, NEUR CAR ADV UND RES
Stevens C., 2016, SCHOLARSHIP TEACHING, V2, P245, DOI [https://doi.org/10.1037/stl0000070, DOI 10.1037/STL0000070]
NR 17
TC 2
Z9 4
U1 0
U2 3
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND
SN 1664-1078
J9 FRONT PSYCHOL
JI Front. Psychol.
PD APR 23
PY 2019
VL 10
AR 882
DI 10.3389/fpsyg.2019.00882
PG 4
WC Psychology, Multidisciplinary
WE Social Science Citation Index (SSCI)
SC Psychology
GA HU6OD
UT WOS:000465399200001
PM 31065248
OA Green Published, gold
DA 2024-09-05
ER
PT C
AU Muhamedyev, RI
Amirgaliyev, YN
Kalimoldayev, MN
Khamitov, AN
Abdilmanova, A
AF Muhamedyev, Ravil I.
Amirgaliyev, Yedilkhan N.
Kalimoldayev, Maksat N.
Khamitov, Alim N.
Abdilmanova, Ainur
BE Guvercin, S
Zhaparov, M
Sagandykova, A
TI Selection of the most prominent lines of research in ICT domain
SO 2015 TWELVE INTERNATIONAL CONFERENCE ON ELECTRONICS COMPUTER AND
COMPUTATION (ICECCO)
LA English
DT Proceedings Paper
CT 12th International Conference on Electronics Computer and Computation
(ICECCO)
CY SEP 27-30, 2015
CL Suleyman Demirel Univ, Almaty, KAZAKHSTAN
HO Suleyman Demirel Univ
DE ICT domain; taxonomy; scientometric databases; Big Data; Bioinformatics;
Cloud computing; Cyber-Physical systems; Embedded systems; Information
Security; Internet of Things; Human-machine systems; Mobile computing;
Machine Learning; Machine to Machine; Multi agent systems; Neural
Networks; Robotics; Visualization; Augmented Reality; SDN; 5G;
e-Governance
AB The paper is devoted to selection of the most crucial directions of research in ICT domain that could be implemented in the Republic of Kazakhstan. In the paper we evaluated the dynamics of the annual changes in the number of publications and convergence of ICT sub-domains based on data of Scopus, EBSCO (Information Science & Technology Abstracts, Academic Search Complete) and Google Scholar. To analyze the place of Kazakhstan, we considered indexes shown in the Global Competitiveness Report. As a result, the most rapidly developing areas of research were revealed (big data, machine learning, 5G, augmented reality, and etc.). The semantic network of the most modern concepts of the ICT domain was constructed that visualizes the binary relationship between the components and their relative importance. By using comparative analysis of the number of publications in the leading countries and some other countries including Kazakhstan, we selected some key domains which need to be seriously improved onto the way of development science in RK.
C1 [Muhamedyev, Ravil I.; Kalimoldayev, Maksat N.] Minist Educ & Sci Republ Kazakhstan, IICT, 125 Pushkina St, Alma Ata 050010, Kazakhstan.
[Amirgaliyev, Yedilkhan N.] Suleyman Demirel Univ, Kaskelen 040900, Kazakhstan.
[Muhamedyev, Ravil I.] ISMA Univ, LV-1019 Riga, Latvia.
[Khamitov, Alim N.; Abdilmanova, Ainur] Int Informat Technol Univ, Alma Ata 050010, Kazakhstan.
C3 Suleyman Demirel University - Kazakhstan; International Information
Technology University
RP Muhamedyev, RI (corresponding author), Minist Educ & Sci Republ Kazakhstan, IICT, 125 Pushkina St, Alma Ata 050010, Kazakhstan.
EM ravil.muhamedyev@gmail.com; amir_ed@mail.ru; mnk@ipic.kz;
alikhamt@umail.iu.edu; abdilmanovaa@gmail.com
RI Kozbakova, Ainur/K-5077-2018; Kalimoldayev, Maksat/ABE-8607-2021;
Abdildayeva, Assel/O-4374-2017; Amirgaliyev, Yedilkhan N/C-6963-2015;
Mukhamediev, Ravil I./X-1461-2019
OI Kozbakova, Ainur/0000-0002-5213-4882; Mukhamediev, Ravil
I./0000-0002-3727-043X
CR Abdilmanova A., 2015, P 13 INT SCI C INF T, P106
Adolph M., 2014, P INT SCI PRACT C SM, P7
Alkaras Christina, 2014, OPEN SYSTEMS
[Anonymous], BIG DATA SURVEY MOBI
Ardito L, 2013, ENERGIES, V6, P251, DOI 10.3390/en6010251
Chernyak L., 2014, OPEN SYSTEMS, P12
Golyshko A.V., 2013, TELECOMMUNICATIONS, P4
Gubbi J, 2013, FUTURE GENER COMP SY, V29, P1645, DOI 10.1016/j.future.2013.01.010
Larsson EG, 2014, IEEE COMMUN MAG, V52, P186, DOI 10.1109/MCOM.2014.6736761
López G, 2014, ENERGIES, V7, P3453, DOI 10.3390/en7053453
Muhamedyev RI, 2014, P 2014 C EL GOV OP S, P178, DOI [10.1145/2729104.2729112, DOI 10.1145/2729104.2729112]
Sanger DavidE., 2012, NEW YORK TIMES
Schwab K., 2012, The global competitiveness report
Skrynnikov V.G., 2013, TELECOMMUNICATIONS, P34
Tihvinsky V.O., 2013, TELECOMMUNICATIONS, P29
Vermesan O, 2013, RIVER PUBL SER COMM, P7
Wang D, 2014, ENERGIES, V7, P1517, DOI 10.3390/en7031517
NR 17
TC 2
Z9 2
U1 0
U2 9
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
PY 2015
BP 36
EP 42
PG 7
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BF1IW
UT WOS:000380400900035
DA 2024-09-05
ER
PT J
AU Song, M
Heo, GE
Lee, D
AF Song, Min
Heo, Go Eun
Lee, Dahee
TI Identifying the landscape of Alzheimer's disease research with network
and content analysis
SO SCIENTOMETRICS
LA English
DT Article
DE Alzheimer's disease (AD); Bibliometrics; Document representation;
Concept graph; Topic modeling
ID BIBLIOMETRIC ANALYSIS; DEMENTIA; RISK; PRODUCTIVITY; INFORMATION;
DECLINE; IMPACT; WOMEN; AD
AB Alzheimer's disease (AD) is one of degenerative brain diseases, whose cause is hard to be diagnosed accurately. As the number of AD patients has increased, researchers have strived to understand the disease and develop its treatment, such as medical experiments and literature analysis. In the area of literature analysis, several traditional studies analyzed the literature at the macro level like author, journal, and institution. However, analysis of the literature both at the macro level and micro level will allow for better recognizing the AD research field. Therefore, in this study we adopt a more comprehensive approach to analyze the AD literature, which consists of productivity analysis (year, journal/proceeding, author, and Medical Subject Heading terms), network analysis (co-occurrence frequency, centrality, and community) and content analysis. To this end, we collect metadata of 96,081 articles retrieved from PubMed. We specifically perform the concept graph-based network analysis applying the five centrality measures after mapping the semantic relationship between the UMLS concepts from the AD literature. We also analyze the time-series topical trend using the Dirichlet multinomial regression topic modeling technique. The results indicate that the year 2013 is the most productive year and Journal of Alzheimer's Disease the most productive journal. In discovery of the core biological entities and their relationships resided in the AD related PubMed literature, the relationship with glycogen storage disease is founded most frequently mentioned. In addition, we analyze 16 main topics of the AD literature and find a noticeable increasing trend in the topic of transgenic mouse.
C1 [Song, Min; Heo, Go Eun; Lee, Dahee] Yonsei Univ, Dept Lib & Informat Sci, Seoul 120749, South Korea.
C3 Yonsei University
RP Song, M (corresponding author), Yonsei Univ, Dept Lib & Informat Sci, 50 Yonsei Ro, Seoul 120749, South Korea.
EM min.song@yonsei.ac.kr
RI song, min/KPA-7030-2024
OI Song, Min/0000-0003-3255-1600
FU Bio-Synergy Research Project of the Ministry of Science, ICT and Future
Planning through the National Research Foundation [2013M3A9C4078138]
FX This work was supported by the Bio-Synergy Research Project
(2013M3A9C4078138) of the Ministry of Science, ICT and Future Planning
through the National Research Foundation.
CR Al-Mubaid Hisham., 2005, American Journal of Biochemistry and Biotechnology, V1, P145, DOI DOI 10.3844/ajbbsp.2004.145.152
Andreasen T, 2009, LECT NOTES ARTIF INT, V5822, P323, DOI 10.1007/978-3-642-04957-6_28
Ansari MA, 2006, Trends Inf Manag, V2, P130
BACHMAN DL, 1993, NEUROLOGY, V43, P515, DOI 10.1212/WNL.43.3_Part_1.515
Barnes LL, 2003, NEUROLOGY, V60, P1777, DOI 10.1212/01.WNL.0000065892.67099.2A
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bleik Said, 2009, 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop, BIBMW, P38, DOI 10.1109/BIBMW.2009.5332134
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Brookmeyer R, 2007, ALZHEIMERS DEMENT, V3, P186, DOI 10.1016/j.jalz.2007.04.381
Cavnar William B., 1994, Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, V161175
Chen HQ, 2014, SCIENTOMETRICS, V98, P1865, DOI 10.1007/s11192-013-1132-3
Chen YM, 2005, Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, P1937
DAMASHEK M, 1995, SCIENCE, V267, P843, DOI 10.1126/science.267.5199.843
Ercan G, 2007, INFORM PROCESS MANAG, V43, P1705, DOI 10.1016/j.ipm.2007.01.015
Erhardt RAA, 2006, DRUG DISCOV TODAY, V11, P315, DOI 10.1016/j.drudis.2006.02.011
Evans DA, 2003, ARCH NEUROL-CHICAGO, V60, P185, DOI 10.1001/archneur.60.2.185
Ravetti MG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010153
Gong Y., 2001, SIGIR 2001, P19, DOI DOI 10.1145/383952.383955
Hebert LE, 2001, AM J EPIDEMIOL, V153, P132, DOI 10.1093/aje/153.2.132
Huang C, 2006, IEEE DATA MINING, P275
Krauthammer M, 2004, P NATL ACAD SCI USA, V101, P15148, DOI 10.1073/pnas.0404315101
Kukull WA, 2002, ARCH NEUROL-CHICAGO, V59, P1737, DOI 10.1001/archneur.59.11.1737
Lambiotte R., 2015, IEEE Transactions on Network Science and Engineering, P76, DOI DOI 10.1109/TNSE.2015.2391998
Li JF, 2009, PLANT METHODS, V5, DOI [10.1186/1746-4811-5-6, 10.1371/journal.pcbi.1000450]
LINDBERG DAB, 1993, METHOD INFORM MED, V32, P281, DOI 10.1055/s-0038-1634945
Miech RA, 2002, NEUROLOGY, V58, P209, DOI 10.1212/WNL.58.2.209
Mimno D, 2008, UAI, P411
Rocca WA, 1998, AM J EPIDEMIOL, V148, P51, DOI 10.1093/oxfordjournals.aje.a009560
SALTON G, 1975, COMMUN ACM, V18, P613, DOI 10.1145/361219.361220
Seshadri S, 1997, NEUROLOGY, V49, P1498, DOI 10.1212/WNL.49.6.1498
Shehata S, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P629
Smalheiser NR, 1996, NEUROLOGY, V47, P809, DOI 10.1212/WNL.47.3.809
Smalheiser NR, 1998, COMPUT METH PROG BIO, V57, P149, DOI 10.1016/S0169-2607(98)00033-9
Song M, 2014, J ASSOC INF SCI TECH, V65, P352, DOI 10.1002/asi.22970
Sorensen AA, 2010, PROCD SOC BEHV, V2, P6582, DOI 10.1016/j.sbspro.2010.04.068
Sorensen AA, 2009, J ALZHEIMERS DIS, V16, P451, DOI 10.3233/JAD-2009-1046
Tang J, 2009, GENOME MED, V1, DOI [10.1186/gm35, 10.1186/gm204]
Thota H, 2007, BIOINFORMATION, V2, P91, DOI 10.6026/97320630002091
Turney PD, 2010, J ARTIF INTELL RES, V37, P141, DOI 10.1613/jair.2934
Wan X., 2007, In Proceedings of the Joint conference of the 47th Annual Meeting of the Association for Computational Linguistics (ACL-2007), P552
Wasserman S., 1994, Social Network Analysis
NR 43
TC 23
Z9 25
U1 1
U2 63
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 2015
VL 102
IS 1
BP 905
EP 927
DI 10.1007/s11192-014-1372-x
PG 23
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA AY0OZ
UT WOS:000347297400044
DA 2024-09-05
ER
PT J
AU Tyni, J
Tarkiainen, A
Lopez-Pernas, S
Saqr, M
Kahila, J
Bednarik, R
Tedre, M
AF Tyni, Janne
Tarkiainen, Anni
Lopez-Pernas, Sonsoles
Saqr, Mohammed
Kahila, Juho
Bednarik, Roman
Tedre, Matti
TI Games and Rewards: A Scientometric Study of Rewards in Educational and
Serious Games
SO IEEE ACCESS
LA English
DT Article
DE Games; Education; Bibliometrics; Collaboration; Licenses; Clustering
algorithms; Vocabulary; Scientometric analysis; bibliometrics; rewards;
educational games; serious games
ID VIDEO GAMES; GAMIFICATION; SYSTEMS; FUTURE; SUPPORT; SCIENCE; TOOLS
AB In this study we provide a new viewpoint on the body of literature regarding rewards in serious and educational games. The study includes a quantitative bibliometric analysis of literature in this context from 1969 to 2020. The dataset from the Scopus abstract and citation database was analyzed with the Bibliometrix R library. The data set was manually cleaned to contain only the relevant articles and conference papers. The data was then categorized to match the common themes. From the remaining documents, the amount of annual numbers of publications is presented and the most contributing countries are shown. The most frequent terms from the abstracts and keywords set by the authors are presented, and a co-occurrence network is drawn from the same data. The results of this study reveal that the most occurring topics in this dataset are gamification, physical activity, health, game design, and game-based learning. New directions for research are provided as the most commonly used media appear to be video games and mobile devices in addition to the literature being mostly focused on theory and not practical application.
C1 [Tyni, Janne; Tarkiainen, Anni; Saqr, Mohammed; Bednarik, Roman; Tedre, Matti] Univ Eastern Finland, Sch Comp, Joensuu 80101, Finland.
[Lopez-Pernas, Sonsoles] Univ Politecn Madrid, Dept Sistemas Informat, ETSI Sistemas Informat, E-28040 Madrid, Spain.
[Kahila, Juho] Univ Eastern Finland, Sch Appl Educ Sci & Teacher Educ, Joensuu 80101, Finland.
C3 University of Eastern Finland; Universidad Politecnica de Madrid;
University of Eastern Finland
RP Tyni, J (corresponding author), Univ Eastern Finland, Sch Comp, Joensuu 80101, Finland.
EM janne.tyni@uef.fi
RI Saqr, Mohammed/AAH-2520-2020; López-Pernas, Sonsoles/M-7375-2019
OI Saqr, Mohammed/0000-0001-5881-3109; López-Pernas,
Sonsoles/0000-0002-9621-1392; Tyni, Janne/0000-0003-4512-1570; Kahila,
Juho/0000-0002-9913-0627
CR Alahäivälä T, 2016, INT J MED INFORM, V96, P62, DOI 10.1016/j.ijmedinf.2016.02.006
[Anonymous], 2011, Learning science through computer games and simulations
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Barko T, 2013, AM BIOL TEACH, V75, P29, DOI 10.1525/abt.2013.75.1.7
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Connolly TM, 2012, COMPUT EDUC, V59, P661, DOI 10.1016/j.compedu.2012.03.004
de Freitas S, 2018, EDUC TECHNOL SOC, V21, P74
Garris R., 2002, Simulation & Gaming, V33, P441, DOI 10.1177/1046878102238607
Girard C, 2013, J COMPUT ASSIST LEAR, V29, P207, DOI 10.1111/j.1365-2729.2012.00489.x
Huang R, 2020, ETR&D-EDUC TECH RES, V68, P1875, DOI 10.1007/s11423-020-09807-z
Huotari K, 2017, ELECTRON MARK, V27, P21, DOI 10.1007/s12525-015-0212-z
Izzo F., 2020, INT BUS RES, V13, P27
Jabbar AIA, 2015, REV EDUC RES, V85, P740, DOI 10.3102/0034654315577210
Johnson Daniel, 2016, Internet Interv, V6, P89, DOI 10.1016/j.invent.2016.10.002
Ke F., 2009, EFFECTIVE ELECT GAMI, V1, P1, DOI [DOI 10.4018/978-1-60960-195-9.CH701, DOI 10.4018/978-1-59904-808-6.CH001]
Kim B., 2015, LIBR TECHNOL REPOR, V51, P5, DOI DOI 10.1145/2181037.2181040
Koivisto J, 2019, INT J INFORM MANAGE, V45, P191, DOI 10.1016/j.ijinfomgt.2018.10.013
Kokol P, 2018, ARXIV180205458
Landers RN, 2018, SIMULAT GAMING, V49, P315, DOI 10.1177/1046878118774385
Lewis ZH, 2016, GAMES HEALTH J, V5, P93, DOI 10.1089/g4h.2015.0078
Majumdar J. D., 2018, P NATL ACAD SCI IN A, V88, P1
Marsh T, 2011, ENTERTAIN COMPUT, V2, P61, DOI 10.1016/j.entcom.2010.12.004
Martí-Parreño J, 2016, J COMPUT ASSIST LEAR, V32, P663, DOI 10.1111/jcal.12161
Metwally AHS, 2021, INT J EDUC RES, V109, DOI 10.1016/j.ijer.2021.101832
Morschheuser B, 2017, INT J HUM-COMPUT ST, V106, P26, DOI 10.1016/j.ijhcs.2017.04.005
Phillips C, 2013, P 1 INT C GAM DES RE, P103, DOI DOI 10.1145/2583008.2583025
Phillips C., 2015, P ANN M AUSTR SPEC I, P83, DOI DOI 10.1145/2838739.2838782
Robson K, 2015, BUS HORIZONS, V58, P411, DOI 10.1016/j.bushor.2015.03.006
Ryan RM, 2006, MOTIV EMOTION, V30, P347, DOI 10.1007/s11031-006-9051-8
Shaffer DW, 2005, PHI DELTA KAPPAN, V87, P104, DOI 10.1177/003172170508700205
Virvou M, 2005, EDUC TECHNOL SOC, V8, P54
Wang HF, 2012, DISCOVERY, INNOVATION AND COMMUNICATION - 5TH CSAA SCIENCE AND TECHNIQUE YOUTH FORUM, P1
Warmelink H, 2020, J BUS RES, V106, P331, DOI 10.1016/j.jbusres.2018.09.011
Wee SC, 2019, J ENVIRON MANAGE, V233, P97, DOI 10.1016/j.jenvman.2018.11.127
Wouters P, 2013, COMPUT EDUC, V60, P412, DOI 10.1016/j.compedu.2012.07.018
Xi NN, 2019, INT J INFORM MANAGE, V46, P210, DOI 10.1016/j.ijinfomgt.2018.12.002
NR 36
TC 5
Z9 5
U1 4
U2 35
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2022
VL 10
BP 31578
EP 31585
DI 10.1109/ACCESS.2022.3160230
PG 8
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA 0J8OU
UT WOS:000780360500001
OA gold
DA 2024-09-05
ER
PT J
AU Vital, A
Amancio, DR
AF Vital, Adilson
Amancio, Diego R.
TI A comparative analysis of local similarity metrics and machine learning
approaches: application to link prediction in author citation networks
SO SCIENTOMETRICS
LA English
DT Article
DE Link prediction; Citation networks; Network similarity; Science of
science; Authors citation networks
ID COMPLEX NETWORKS; COLLABORATION; EVOLUTION; SCIENCE
AB Understanding the evolution of paper and author citations is of paramount importance for the design of research policies and evaluation criteria that can promote and accelerate scientific discoveries. Recently many studies on the evolution of science have been conducted in the context of the emergent Science of Science field. While many studies have probed the link problem in citation networks, only a few works have analyzed the temporal nature of link prediction in author citation networks. In this study we compared the performance of 10 well-known local network similarity measurements with four machine learning models to predict future links in author citations networks. Differently from traditional link prediction methods, the temporal nature of the predict links is relevant for our approach. Our analysis revealed that the Jaccard coefficient was found to be among the most relevant measurements. The preferential attachment measurement, conversely, displayed the worst performance. We also found that the extension of local measurements to their weighted version do not significantly improved the performance of predicting citations. Finally, we also found that a XGBoost and neural network approach summarizing the information from all 10 considered similarity measurements was able to provide the highest AUC performance and competitive precision values.
C1 [Vital, Adilson; Amancio, Diego R.] Univ Sao Paulo, Inst Math & Comp Sci, Dept Comp Sci, Sao Carlos, SP, Brazil.
C3 Universidade de Sao Paulo
RP Amancio, DR (corresponding author), Univ Sao Paulo, Inst Math & Comp Sci, Dept Comp Sci, Sao Carlos, SP, Brazil.
EM diego@icmc.usp.br
RI Amancio, Diego Raphael/I-1071-2012
FU Sao Paulo Research Foundation (FAPESP) [2020/06271-0]; CNPq-Brazil
[304026/2018-2, 311074/2021-9]; Coordenacao de Aperfeicoamento de
Pessoal de Nivel Superior -Brasil (CAPES) [001]
FX A preprint version of this manuscript is available at arXiv (Vital and
Amancio 2021). D.R.A. acknowledges financial support from Sao Paulo
Research Foundation (FAPESP Grant No. 2020/06271-0) and CNPq-Brazil
(Grant No. 304026/2018-2 and 311074/2021-9). This study was financed in
part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior
-Brasil (CAPES) -Finance Code 001.
CR Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1
Amancio DR, 2012, SCIENTOMETRICS, V91, P827, DOI 10.1007/s11192-012-0630-z
Amancio DR, 2011, PHYSICA A, V390, P131, DOI 10.1016/j.physa.2010.08.052
Amancio DR, 2015, SCIENTOMETRICS, V102, P465, DOI 10.1007/s11192-014-1381-9
Amancio DR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094137
Amancio DR, 2012, J INFORMETR, V6, P427, DOI 10.1016/j.joi.2012.02.005
[Anonymous], 2015, Neural networks and deep learning
[Anonymous], 2014, Link prediction in social networks: the State-of-the-Art"
Bai XM, 2020, IEEE ACCESS, V8, P17548, DOI 10.1109/ACCESS.2020.2968459
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Bai XM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162364
Barabási AL, 2002, PHYSICA A, V311, P590, DOI 10.1016/S0378-4371(02)00736-7
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Bradley AP, 1997, PATTERN RECOGN, V30, P1145, DOI 10.1016/S0031-3203(96)00142-2
Chacon XSQ, 2020, SCIENTOMETRICS, V125, P625, DOI 10.1007/s11192-020-03651-x
Chen S., 2019, Link prediction on the patent citation network
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Cui P, 2019, IEEE T KNOWL DATA EN, V31, P833, DOI 10.1109/TKDE.2018.2849727
Daud A, 2017, LIBR HI TECH, V35, P509, DOI 10.1108/LHT-02-2017-0044
Davis J., 2006, P 23 INT C MACH LEAR, P233, DOI 10.1145/1143844.1143874
de Sá HR, 2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), P2281, DOI 10.1109/IJCNN.2011.6033513
Edwards MA, 2017, ENVIRON ENG SCI, V34, P51, DOI 10.1089/ees.2016.0223
Eom YH, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024926
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Hennemann S, 2012, J INFORMETR, V6, P217, DOI 10.1016/j.joi.2011.12.002
Hug SE., 2017, ARXIV
Hung SW, 2010, SCIENTOMETRICS, V82, P121, DOI 10.1007/s11192-009-0032-z
Jain AK, 1996, COMPUTER, V29, P31, DOI 10.1109/2.485891
KATZ JS, 1994, SCIENTOMETRICS, V31, P31, DOI 10.1007/BF02018100
Kohavi R, 1995, INT JOINT C ART INT, V2, P1137, DOI DOI 10.1067/MOD.2000.109031
Krumov L, 2011, EUR PHYS J B, V84, P535, DOI 10.1140/epjb/e2011-10746-5
Lande D, 2020, WORLD WIDE WEB, V23, P2239, DOI 10.1007/s11280-019-00768-9
Li WH, 2019, EPJ DATA SCI, V8, DOI 10.1140/epjds/s13688-019-0199-3
Liu XF, 2021, PHYSICA A, V564, DOI 10.1016/j.physa.2020.125518
Lizhi Zhang, 2020, Natural Language Processing and Chinese Computing. 9th CCF International Conference, NLPCC 2020. Proceedings. Lecture Notes in Artificial Intelligence Subseries of Lecture Notes in Computer Science (LNAI 12430), P617, DOI 10.1007/978-3-030-60450-9_49
Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027
Lü LY, 2010, EPL-EUROPHYS LETT, V89, DOI 10.1209/0295-5075/89/18001
Martincic-Ipsic S, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181079
Milojevic S, 2013, J INFORMETR, V7, P767, DOI 10.1016/j.joi.2013.06.006
Molléri JS, 2018, SCIENTOMETRICS, V117, P1453, DOI 10.1007/s11192-018-2907-3
Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.016131, 10.1103/PhysRevE.64.016132]
Nie ZW, 2021, ADV ENERGY MATER, V11, DOI 10.1002/aenm.202003580
Nielsen MW, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2012208118
Noble WS, 2006, NAT BIOTECHNOL, V24, P1565, DOI 10.1038/nbt1206-1565
Parnas DL, 2007, COMMUN ACM, V50, P19, DOI 10.1145/1297797.1297815
Powell WW, 2005, AM J SOCIOL, V110, P1132, DOI 10.1086/421508
Radicchi F, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.056103
Refaeilzadeh P., 2009, encyclopedia of database systems, V5, P532, DOI DOI 10.1007/978-0-387-39940-9_565
Sebo P, 2021, SCIENTOMETRICS, V126, P4121, DOI 10.1007/s11192-020-03845-3
Shibata N, 2012, J AM SOC INF SCI TEC, V63, P78, DOI 10.1002/asi.21664
Silva FN, 2016, J INFORMETR, V10, P487, DOI 10.1016/j.joi.2016.03.008
Silva FN, 2020, QUANT SCI STUD, V1, P1298, DOI 10.1162/qss_a_00070
Stella M, 2020, PHYSICA A, V554, DOI 10.1016/j.physa.2020.124382
Stella M, 2019, BIG DATA COGN COMPUT, V3, DOI 10.3390/bdcc3010010
Vital, 2021, ARXIV
Wang KS, 2020, QUANT SCI STUD, V1, P396, DOI 10.1162/qss_a_00021
Wang MY, 2008, PHYSICA A, V387, P4692, DOI 10.1016/j.physa.2008.03.017
Wright R.E., 1995, READING UNDERSTANDIN, P217
Wuestman ML, 2019, RES POLICY, V48, P1771, DOI 10.1016/j.respol.2019.04.004
Yegnanarayana Bayya, 2009, ARTIFICIAL NEURAL NETWORKS
Zhang G, 2013, J AM SOC INF SCI TEC, V64, P1490, DOI 10.1002/asi.22850
Zhou T, 2009, EUR PHYS J B, V71, P623, DOI 10.1140/epjb/e2009-00335-8
NR 62
TC 6
Z9 7
U1 5
U2 43
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD OCT
PY 2022
VL 127
IS 10
BP 6011
EP 6028
DI 10.1007/s11192-022-04484-6
EA AUG 2022
PG 18
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 4P1FY
UT WOS:000840040600001
DA 2024-09-05
ER
PT J
AU Ardia, D
Bluteau, K
Meghani, MA
AF Ardia, David
Bluteau, Keven
Meghani, Mohammad-Abbas
TI Thirty years of academic finance
SO JOURNAL OF ECONOMIC SURVEYS
LA English
DT Article; Early Access
DE finance literature; structural topic model (STM); scientometrics; topic
modeling; textual analysis
ID BETA REGRESSION; TEXT; REVEAL; GENDER; MODEL
AB We study how the financial literature has evolved in scale, research team composition, and article topicality across finance-focused academic journals from 1992 to 2021. We document that the field has vastly expanded regarding outlets and published articles. Teams have become larger, and the proportion of women participating in research has increased significantly. Using the Structural Topic Model, we identify 45 topics discussed in the literature. We investigate the topic coverage of individual journals and can identify highly specialized and generalist outlets, but our analyses reveal that most journals have covered more topics over time, thus becoming more generalist. Finally, we find that articles with at least one woman author focus more on topics related to social and governance aspects of corporate finance. We also find that teams with at least one top-tier institution scholar tend to focus more on theoretical aspects of finance.
C1 [Ardia, David; Meghani, Mohammad-Abbas] HEC Montreal, GERAD, Montreal, PQ, Canada.
[Ardia, David; Meghani, Mohammad-Abbas] HEC Montreal, Dept Decis Sci, Montreal, PQ, Canada.
[Bluteau, Keven] Univ Sherbrooke, Dept Finance, Sherbrooke, PQ, Canada.
[Ardia, David] HEC Montreal, GERAD, 3000 Chemin Cote Sainte Catherine, Montreal, PQ H3T 2A7, Canada.
[Ardia, David] HEC Montreal, Dept Decis Sci, 3000 Cheminde Cote Sainte Catherine, Montreal, PQ H3T 2A7, Canada.
C3 Universite de Montreal; HEC Montreal; Universite de Montreal; HEC
Montreal; University of Sherbrooke; Universite de Montreal; HEC
Montreal; Universite de Montreal; HEC Montreal
RP Ardia, D (corresponding author), HEC Montreal, GERAD, 3000 Chemin Cote Sainte Catherine, Montreal, PQ H3T 2A7, Canada.; Ardia, D (corresponding author), HEC Montreal, Dept Decis Sci, 3000 Cheminde Cote Sainte Catherine, Montreal, PQ H3T 2A7, Canada.
EM david.ardia@hec.ca
RI Ardia, David/E-4920-2019; Bluteau, Keven/JUB-1302-2023
OI Bluteau, Keven/0000-0003-2990-4807
FU Institut de Valorisation des Donnees; Schweizerischer Nationalfonds zur
Forderung der Wissenschaftlichen Forschung [179281, 191730]; Natural
Sciences and Engineering Research Council of Canada [RGPIN-2022-03767]
FX Institut de Valorisation des Donnees, Grant/Award Number: Professorship;
Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen
Forschung, Grant/Award Numbers: 179281, 191730; Natural Sciences and
Engineering Research Council of Canada, Grant/Award Number:
RGPIN-2022-03767
CR Alexakis C, 2021, COMPUT ECON, V57, P369, DOI 10.1007/s10614-020-10077-3
Ambrosino A, 2018, J ECON METHODOL, V25, P329, DOI 10.1080/1350178X.2018.1529215
Ardia D., J FINANCIAL MARKETS
Bajo E, 2020, J BANK FINANC, V114, DOI 10.1016/j.jbankfin.2020.105780
Baker HK, 2021, J CORP FINANC, V66, DOI 10.1016/j.jcorpfin.2020.101572
Berninger M, 2021, J BANK FINANC, V131, DOI 10.1016/j.jbankfin.2021.106188
Blei D., 2006, Advances in Neural Information Processing Systems, V18, P147
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bohr J, 2018, ENVIRON SOCIOL, V4, P181, DOI 10.1080/23251042.2017.1393863
Caplar N, 2017, NAT ASTRON, V1, DOI 10.1038/s41550-017-0141
Chari Anusha, 2017, NBER Working Paper no. 23953
Corbet S, 2019, RESOUR POLICY, V63, DOI 10.1016/j.resourpol.2019.101416
Cribari-Neto F, 2010, J STAT SOFTW, V34, P1
Curry TA, 2019, J INF TECHNOL POLITI, V16, P379, DOI 10.1080/19331681.2019.1657048
Daenekindt S, 2020, HIGH EDUC, V80, P571, DOI 10.1007/s10734-020-00500-x
Dai R., REV FINANCE
De Battisti F, 2015, SCIENTOMETRICS, V103, P413, DOI 10.1007/s11192-015-1554-1
Dolado JJ, 2012, SERIES-J SPAN ECON, V3, P367, DOI 10.1007/s13209-011-0065-4
Ferrari SLP, 2004, J APPL STAT, V31, P799, DOI 10.1080/0266476042000214501
Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028
Grossmann A, 2022, J BANK FINANC, V138, DOI 10.1016/j.jbankfin.2022.106427
Hansen S, 2018, Q J ECON, V133, P801, DOI 10.1093/qje/qjx045
Jackson SE, 2003, J MANAGE, V29, P801, DOI 10.1016/S0149-2063(03)00080-1
Justeson J.S., 1995, Natural Language Engineering, V1, P9, DOI [DOI 10.1017/S1351324900000048, 10.1017/S1351324900000048]
Lau J.H., 2013, ACM T SPEECH LANGUAG, V10, P10, DOI [10.1145/2483969.2483972, DOI 10.1145/2483969.2483972]
Martin F., 2015, P AUSTR LANG TECHN A
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Mishler A., 2015, COMMUNICATIONS COMPU
Nielsen MW, 2017, NAT HUM BEHAV, V1, P791, DOI 10.1038/s41562-017-0235-x
Priva UC, 2015, COGNITION, V135, P4, DOI 10.1016/j.cognition.2014.11.006
Roberts M.E., 2013, ADV NEURAL INFORM PR, V4, P1
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Rose S., 2010, Text Min. Appl. Theory, P1, DOI DOI 10.1002/9780470689646.CH1
Ruiz J. I., 2021, GENDER DISTRIBUTION
Sachdeva S, 2017, INFORM COMMUN SOC, V20, P1146, DOI 10.1080/1369118X.2016.1218528
Santamaria L., 2018, PEERJ COMPUT SCI, V4, P1
Schofield A., 2016, Transactions of the Association for Computational Linguistics, V4, P287, DOI [DOI 10.1162/TACLA00099, 10.1162/tacla00099]
Schulze P., 2021, EXPLORING TOPIC META
Sebo P, 2021, J MED LIBR ASSOC, V109, P414, DOI 10.5195/jmla.2021.1185
Squazzoni F, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abd0299
Treier S, 2008, AM J POLIT SCI, V52, P201, DOI 10.1111/j.1540-5907.2007.00308.x
Wang C, 2013, J MACH LEARN RES, V14, P1005
Wang LL, 2021, COMMUN ACM, V64, P78, DOI 10.1145/3430803
Wijffels Jan., 2021, UDPIPE TOKENIZATION
Zhang P. G., 1995, J DERIV, V2, P53
Zheng B, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-58
NR 48
TC 0
Z9 0
U1 1
U2 3
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0950-0804
EI 1467-6419
J9 J ECON SURV
JI J. Econ. Surv.
PD 2023 JUN 1
PY 2023
DI 10.1111/joes.12571
EA JUN 2023
PG 35
WC Economics
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA H8NE9
UT WOS:000998455800001
OA Green Submitted, hybrid
DA 2024-09-05
ER
PT C
AU Lund, K
Chen, BD
Grauwin, S
AF Lund, Kristine
Chen, Bodong
Grauwin, Sebastian
GP ACM
TI The Potential of Interdisciplinarity in MOOC Research: How Do Education
and Computer Science Intersect?
SO PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE
(L@S'18)
LA English
DT Proceedings Paper
CT 5th Annual ACM Conference on Learning at Scale (L at S)
CY JUN 26-28, 2018
CL London, ENGLAND
DE MOOC; online learning; interdisciplinary research; bibliometrics
ID BIBLIOMETRIC ANALYSIS
AB Given that both computer scientists and educational researchers publish on the topic of massive open online courses (MOOCs), the research community should analyze how these disciplines approach the same topic. In order to promote productive dialogue within the community, we report on a bibliometrics study of the growing MOOC literature and examine the potential interdisciplinarity of this research space. Drawing from 3,380 bibliographic items retrieved from Scopus, we conducted descriptive analyses on publication years, publication sources, disciplinary categories of publication sources, frequent keywords, leading authors, and cited references. We applied bibliographic coupling and network analysis to further investigate clusters of research topics in the MOOC literature. We found balanced representation of education and computer science within most topic clusters. However, integration could be further improved on, for example, by enhancing communication between the disciplines and broadening the scope of methods in specific studies.
C1 [Lund, Kristine] Univ Lyon, Ctr Natl Rech Sci CNRS, Ecole Normale Super Lyon, Lyon, France.
[Chen, Bodong] Univ Minnesota, Coll Educ & Human Dev, Minneapolis, MN USA.
[Grauwin, Sebastian] Univ Lyon, Ecole Normale Super Lyon, Lab Phys, Lyon, France.
C3 Centre National de la Recherche Scientifique (CNRS); Ecole Normale
Superieure de Lyon (ENS de LYON); University of Minnesota System;
University of Minnesota Twin Cities; Ecole Normale Superieure de Lyon
(ENS de LYON); Universite Paris Cite
RP Lund, K (corresponding author), Univ Lyon, Ctr Natl Rech Sci CNRS, Ecole Normale Super Lyon, Lyon, France.
EM kristine.lund@ens-lyon.fr; chenbd@umn.edu; sebgrauwin@gmail.com
OI Chen, Bodong/0000-0003-4616-4353
FU French Centre National de la Recherche Scientifique; Ecole Normale
SupAl'rieure de Lyon through the Laboratoire de l'Education [UMS 3773];
Aslan of UniversitAl' de Lyon within the program Investissements
d'Avenir of the French government [ANR-10-LABX-0081, ANR-11-IDEX-0007]
FX We gratefully acknowledge financing by the French Centre National de la
Recherche Scientifique and Ecole Normale SupAl'rieure de Lyon through
the Laboratoire de l'Education (UMS 3773), as well as Aslan
(ANR-10-LABX-0081) of UniversitAl' de Lyon, for its financial support
within the program Investissements d'Avenir (ANR-11-IDEX-0007) of the
French government operated by the National Research Agency (ANR).
CR Azer SA, 2015, ACAD MED, V90, P1147, DOI 10.1097/ACM.0000000000000780
Bosworth L, 2009, WOODHEAD PUBL MATER, P3, DOI 10.1533/9781845695477.1.3
Cheng B, 2014, EDUC RES REV-NETH, V11, P56, DOI 10.1016/j.edurev.2014.01.001
Choi BCK, 2006, CLIN INVEST MED, V29, P351
Cormier Dave, 2010, EDUCAUSE Review, V45, P31
Cuccurullo C, 2016, SCIENTOMETRICS, V108, P595, DOI 10.1007/s11192-016-1948-8
Daniel J, 2012, J INTERACT MEDIA EDU, DOI 10.5334/2012-18
Derry S.J., 2005, Interdisciplinary Collabora- tion: An Emerging Cognitive Science
Ebben M, 2014, LEARN MEDIA TECHNOL, V39, P328, DOI 10.1080/17439884.2013.878352
Fischer G, 2014, DISTANCE EDUC, V35, P149, DOI 10.1080/01587919.2014.920752
Gaseric D., 2014, International Review of Research in Open and Distance Learning, V15, P134
Good BH, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.046106
Grauwin S, 2012, J AM SOC INF SCI TEC, V63, P1327, DOI 10.1002/asi.22644
Grauwin S, 2011, SCIENTOMETRICS, V89, P943, DOI 10.1007/s11192-011-0482-y
Haque M, 2013, BANGLADESH J MED SCI, V12, P357, DOI 10.3329/bjms.v12i4.16658
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Kirby JA, 2005, ETR&D-EDUC TECH RES, V53, P37, DOI 10.1007/BF02504856
Kirschner PA, 2013, EDUC PSYCHOL-US, V48, P169, DOI 10.1080/00461520.2013.804395
Liyanagunawardena TR, 2013, INT REV RES OPEN DIS, V14, P202, DOI 10.19173/irrodl.v14i3.1455
Lund Kristine, 2017, USING SCIENTOMETRIC
Lungeanu A, 2015, AM BEHAV SCI, V59, P548, DOI 10.1177/0002764214556804
Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113
Price DerekJ. de Solla., 1978, SCIENTOMETRICS, V1, P3, DOI [10.1007/BF02016836, DOI 10.1007/BF02016836]
Siemens G., 2005, ASTD Learn News, V10, P1
STEMBER M, 1991, SOC SCI J, V28, P1, DOI 10.1016/0362-3319(91)90040-B
SUBRAMANYAM K, 1983, J INFORM SCI, V6, P33, DOI 10.1177/016555158300600105
Suthers D.D., 2013, Productive multivocality in the analysis of group interactions, DOI DOI 10.1007/978-1-4614-8960-3
Van Noorden R, 2015, NATURE, V525, P306, DOI 10.1038/525306a
Veletsianos G, 2015, INT REV RES OPEN DIS, V16
Veletsianos G, 2015, BRIT J EDUC TECHNOL, V46, P570, DOI 10.1111/bjet.12297
Wang Y., 2014, Journal of Learning Analytics, V1, P203, DOI [DOI 10.18608/JLA.2014.13.23, 10.18608/jla.2014.13.23]
Wise AF, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), P383, DOI 10.1145/3027385.3027446
Yang D., 2015, P 2 2015 ACM C LEARN, P121, DOI DOI 10.1145/2724660.2724677
Zheng SJ, 2016, PROCEEDINGS OF THE THIRD (2016) ACM CONFERENCE ON LEARNING @ SCALE (L@S 2016), P419, DOI 10.1145/2876034.2876047
NR 34
TC 3
Z9 3
U1 0
U2 5
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 978-1-4503-5886-6
PY 2018
DI 10.1145/3231644.3231661
PG 10
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BP3ER
UT WOS:000546308900056
DA 2024-09-05
ER
PT J
AU Amarathunga, B
AF Amarathunga, Buddhini
TI ChatGPT in education: unveiling frontiers and future directions through
systematic literature review and bibliometric analysis
SO ASIAN EDUCATION AND DEVELOPMENT STUDIES
LA English
DT Article; Early Access
DE Artificial intelligence; Bibliometric analysis; ChatGPT; Education;
Future directions; Systematic literature review
ID INDEX
AB Purpose - This is a dual-focused study that anticipates qualitatively and quantitatively examining the literature on the recently initiated revolutionizing concept of ChatGPT in education by performing a Systematic Literature Review (SLR) and bibliometric analysis. Current study analyzed eight research questions: (1) the main information and annual scientific publications on ChatGPT in education, (2) the pioneer authors and collaborative authors exploring ChatGPT in education, (3) the authors' productivity through Lotka's Law of Authors' Scientific Productivity, (4) the most pertinent sources on ChatGPT in education and how are sources clustered through Bradford's Law of Scattering, (5) the most related, cited countries and the nature of international collaborations exploring ChatGPT in education, (6) the most relevant publications exploring ChatGPT in education, (7) the most occurring and trending keywords in the empirical studies on ChatGPT in education, and (8) the themes and areas for future investigations on ChatGPT in education. Design/methodology/approach - The current study was designed as a SLR and bibliometric analysis, extracting articles from the Scopus database and utilizing both Biblioshiny and VOSviewer software for advanced scientific mapping and visualizations via quantitative and qualitative analysis approaches. Findings - The results indicated that ChatGPT in education is a progressively evolving worldwide concept generating 45 scientific publications from 2023 to 2024 (May). The USA, China, and Indonesia are the most productive countries that have published articles on ChatGPT in education. The education systems, AI, students, educational computing, human experiments, teaching, educational status, chatbots, generative AI, academic integrity, educational technology, worldwide education, and technology acceptance are the pertinent future directions in the field of ChatGPT in education. Originality/value - The analysis's outcomes will enhance the area of study with theoretical and practical implications and benefit students, teachers, policymakers, regulators of educational and higher educational sectors, government, and the general public worldwide with effective utilization of ChatGPT in education.
C1 [Amarathunga, Buddhini] Wayamba Univ Sri Lanka, Dept Business Management, Kuliyapitiya, Sri Lanka.
C3 Wayamba University of Sri Lanka
RP Amarathunga, B (corresponding author), Wayamba Univ Sri Lanka, Dept Business Management, Kuliyapitiya, Sri Lanka.
EM buddhini@wyb.ac.lk
RI Amarathunga, Buddhini/GMX-4063-2022
OI Amarathunga, Buddhini/0000-0003-3837-9979
FX I am grateful to the editor-in-chief, the editorial board of the Asian
Education and Development Studies Journal, and Emerald Publishing for
their valuable cooperation in the article publication process. Moreover,
I thank anonymous reviewers for constructive comments to enhance the
quality of the article. This research did not receive any specific grant
from funding agencies in the public, commercial, or not-for-profit
sectors.
CR Alzard MH, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141811646
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Baidoo-Anu D., 2023, Journal of AI, V7, P52, DOI [DOI 10.61969/JAI.1337500, 10.2139/ssrn.4337484, DOI 10.2139/SSRN.4337484, 10.61969/jai.1337500]
Bozic V., 2023, PREPRINT, DOI [10.13140/RG.2.2.18837.40168, DOI 10.13140/RG.2.2.18837.40168]
Bradford S.C., 1934, Nature, P134, DOI [10.1038/134400b0, DOI 10.1038/134400B0]
Dissanayake H, 2022, ADM SCI, V12, DOI 10.3390/admsci12040185
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Elbanna S., 2024, Management Sustainability: An Arab Review, V3, P16, DOI 10.1108/MSAR-03-2023-0016
Grassini S, 2023, EDUC SCI, V13, DOI 10.3390/educsci13070692
Gupta S, 2024, INT J INTELL SYST, V2024, DOI 10.1155/2024/5511224
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Islam I., 2024, Discover Education, V3, P31, DOI 10.1007/s44217-024-00114-w
Javaid M., 2023, BenchCouncil Transactions on Benchmarks, Standards and Evaluations, V3, DOI DOI 10.1016/J.TBENCH.2023.100115
Lancichinetti A, 2012, SCI REP-UK, V2, DOI 10.1038/srep00336
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Mai DTT, 2024, FRONT EDUC, V9, DOI 10.3389/feduc.2024.1328769
Miles D.A., 2017, DOCTORAL STUDENT WOR, P1, DOI [10.1155/2017/5936239, DOI 10.1155/2017/5936239]
Newman M, 2020, SYSTEMATIC REVIEWS IN EDUCATIONAL RESEARCH: METHODOLOGY, PERSPECTIVES AND APPLICATION, P3, DOI 10.1007/978-3-658-27602-7_1
Norris M, 2010, J DOC, V66, P681, DOI 10.1108/00220411011066790
Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783
Rejeb A, 2024, INT J MANAG EDUC-OXF, V22, DOI 10.1016/j.ijme.2024.100932
Sarkis-Onofre R, 2021, SYST REV-LONDON, V10, DOI 10.1186/s13643-021-01671-z
Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
Wu TY, 2023, IEEE-CAA J AUTOMATIC, V10, P1122, DOI 10.1109/JAS.2023.123618
Xiao ZW, 2022, BUILDINGS-BASEL, V12, DOI 10.3390/buildings12010037
Xu XJ, 2024, J EDUC EVAL HEALTH P, V21, DOI 10.3352/jeehp.2024.21.6
Yu H, 2023, FRONT PSYCHOL, V14, DOI 10.3389/fpsyg.2023.1181712
Zhang J., 2023, ARAB GULF J SCI RES, V42, P44, DOI [https://doi.org/10.1108/AGJSR-10-2022-0225, DOI 10.1108/AGJSR-10-2022-0225]
NR 30
TC 0
Z9 0
U1 27
U2 27
PU EMERALD GROUP PUBLISHING LTD
PI Leeds
PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE,
ENGLAND
SN 2046-3162
EI 2046-3170
J9 ASIAN EDUC DEV STUD
JI Asian Educ. Dev. Stud.
PD 2024 JUL 9
PY 2024
DI 10.1108/AEDS-05-2024-0101
EA JUL 2024
PG 20
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA XS0I0
UT WOS:001263544600001
DA 2024-09-05
ER
PT J
AU Zhu, YP
Park, HW
AF Zhu, Yu-Peng
Park, Han-Woo
TI Use of Triangulation in Comparing the Blockchain Knowledge Structure
between China and South Korea: Scientometric Network, Topic Modeling,
and Prediction Technique
SO SUSTAINABILITY
LA English
DT Article
DE triangulation; scientometric; network analysis; blockchain
ID BIG DATA; COLLABORATION; UNIVERSITY; CRITERIA; SCIENCE
AB Blockchain, as a new innovative technology, has become a popular topic in many fields in recent years. In this study, triangulation was used to investigate the development of knowledge structures. First, scientometric network analysis was employed to identify the cooperation of knowledge networks. It was found that the structure of blockchain knowledge networks in China is relatively more complex and diverse than in South Korea. Since increased teamwork in blockchain is conducive to the creation of high-quality knowledge products, the Chinese government appears to strongly promote diversified cooperation on blockchain technology through centralized policies. Second, machine-learning topic modeling was used to analyze the content exchanged via a collaborative network. As a result, it was found that both countries lacked the societal and commercial aspects of blockchain technology. Finally, we developed a prediction technique based on the Ernie model to automatically categorize the nature of blockchain research.
C1 [Zhu, Yu-Peng] Yeungnam Univ, Cyber Emot Res Inst, Blockchian Policy Res Ctr, Gyongsan 38541, South Korea.
[Zhu, Yu-Peng; Park, Han-Woo] Yeungnam Univ, Dept Media & Commun, Gyongsan 38541, South Korea.
[Park, Han-Woo] Yeungnam Univ, Interdisciplinary Grad Programs Digital Convergen, Gyongsan 38541, South Korea.
[Park, Han-Woo] Yeungnam Univ, Interdisciplinary Grad Programs East Asian Cultur, Gyongsan 38541, South Korea.
C3 Yeungnam University; Yeungnam University; Yeungnam University; Yeungnam
University
RP Zhu, YP (corresponding author), Yeungnam Univ, Cyber Emot Res Inst, Blockchian Policy Res Ctr, Gyongsan 38541, South Korea.; Zhu, YP; Park, HW (corresponding author), Yeungnam Univ, Dept Media & Commun, Gyongsan 38541, South Korea.; Park, HW (corresponding author), Yeungnam Univ, Interdisciplinary Grad Programs Digital Convergen, Gyongsan 38541, South Korea.; Park, HW (corresponding author), Yeungnam Univ, Interdisciplinary Grad Programs East Asian Cultur, Gyongsan 38541, South Korea.
EM zhuyupeng@ynu.ac.kr; hanpark@ynu.ac.kr
RI Zhu, Yu Peng/AAM-6683-2021
OI Zhu, Yu Peng/0000-0003-0544-3911; Park, Han Woo/0000-0002-1378-2473
CR Abramo G, 2019, SCIENTOMETRICS, V118, P215, DOI 10.1007/s11192-018-2970-9
Akulich M, 2018, MANAG-POL, V22, P238, DOI 10.2478/manment-2018-0017
[Anonymous], 2020, LDAM
Aslam J, 2021, J INNOV KNOWL, V6, P124, DOI 10.1016/j.jik.2021.01.002
Baik J.S., POLIT NETW WORKSH C
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
BlockData, 2019, AS BLOCKCH DEV REP 2
Bonacich P, 2007, SOC NETWORKS, V29, P555, DOI 10.1016/j.socnet.2007.04.002
Chen SJ, 2015, J INFORMETR, V9, P1034, DOI 10.1016/j.joi.2015.09.003
Chen Yi-jia, 2020, Journal of Sustainable Development, V13, P1, DOI 10.5539/jsd.v13n1p1
Danowski J. A., 2020, J CONT E ASIA, V19, P43, DOI [https://doi.org/10.17477/jcea.2020.19.1.043, DOI 10.17477/JCEA.2020.19.1.043]
Davarpanah MR, 2008, SCIENTOMETRICS, V77, P21, DOI 10.1007/s11192-007-1803-z
Dimitrov B, THESE CHINESE BLOCKC
Ferligoj A, 2015, SCIENTOMETRICS, V104, P985, DOI 10.1007/s11192-015-1585-7
Franco M, 2019, J INNOV KNOWL, V4, P62, DOI 10.1016/j.jik.2018.03.003
FREEMAN LC, 1979, SOC NETWORKS, V1, P215, DOI 10.1016/0378-8733(78)90021-7
Hagen L, 2018, INFORM PROCESS MANAG, V54, P1292, DOI 10.1016/j.ipm.2018.05.006
Hansen DL, 2011, ANALYZING SOCIAL MEDIA NETWORKS WITH NODEXL: INSIGHTS FROM A CONNECTED WORLD, P11, DOI 10.1016/B978-0-12-382229-1.00002-3
Jung N, 2019, ADV ENG INFORM, V41, DOI 10.1016/j.aei.2019.04.007
Khan GF, 2016, SCIENTOMETRICS, V108, P531, DOI 10.1007/s11192-015-1822-0
Kibria MG, 2018, IEEE ACCESS, V6, P32328, DOI 10.1109/ACCESS.2018.2837692
Luthardt J., 2022, QUAL QUANT, V56, DOI [10.1007/s11135-021-01195-7, DOI 10.1007/S11135-021-01195-7]
Malmstrom M.M., 2016, J INNOVATION ENTREPR, V5:4, DOI [DOI 10.1186/S13731-016-0034-Z, 10.1186/s13731-016-0034-z]
Martín-Sempere MJ, 2008, SCIENTOMETRICS, V76, P457, DOI 10.1007/s11192-007-1866-x
Mingers J, 2015, EUR J OPER RES, V246, P1, DOI 10.1016/j.ejor.2015.04.002
Ministry of Industry and Information Technology of, 2018, CHIN WHIT PAP CHIN B
Nakamoto S., 2008, Bitcoin: A peer-to-peer electronic cash system, DOI DOI 10.1007/S10838-008-9062-0
Naughton B, 2017, J ECON PERSPECT, V31, P3, DOI 10.1257/jep.31.1.3
Oppermann M., 2000, International Journal of Tourism Research, V2, P141, DOI 10.1002/(SICI)1522-1970(200003/04)2:2<141::AID-JTR217>3.0.CO;2-U
Park H. W., 2019, Journal of Contemporary Eastern Asia, V18, P1, DOI [DOI 10.17477/JCEA.2019.18.2.001, 10.17477/JCEA.2019.18.2.001]
Park H. W., 2020, QUAL QUANT, V54, P1, DOI [DOI 10.1007/S11135-020-00969-9, 10.1007/s11135-020-00969-9]
Park HW, 2019, SCIENTOMETRICS, V119, P771, DOI 10.1007/s11192-019-03056-5
Park H, 2021, PROF INFORM, V30, DOI 10.3145/epi.2021.mar.14
Park S, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.sep.16
Park S, 2019, INFORM PROCESS MANAG, V56, P1468, DOI 10.1016/j.ipm.2018.10.021
Perz SG, 2010, ENVIRON CONSERV, V37, P419, DOI 10.1017/S0376892910000810
Rakhmatullin R., 2014, J INNOV ENTREP, V3, pe6, DOI [10.1186/2192-5372-3-6, DOI 10.1186/2192-5372-3-6]
Scarazzati S, 2019, SCIENTOMETRICS, V121, P839, DOI 10.1007/s11192-019-03220-x
Schwartz R. D., 1966, Unobtrusive Measures: Non-Reactive Research in the Social Sciences
Sena V, 2021, TECHNOL FORECAST SOC, V168, DOI 10.1016/j.techfore.2021.120790
Shelton RC, 2019, SOC SCI MED, V220, P81, DOI 10.1016/j.socscimed.2018.10.013
Sivertsen G, 2016, SCIENTOMETRICS, V107, P357, DOI 10.1007/s11192-016-1845-1
State Council of China, 2016, 13 5 YEAR PLAN NAT I
Sun Y, 2020, AAAI CONF ARTIF INTE, V34, P8968
Thomas OlajideOlubayo., 2020, Annals of the University of Craiova: Economic Sciences Series, V1, P141
van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075
Wambugu L., 2021, Quality and Quantity, P1, DOI DOI 10.1007/S11135-021-01150-6
Wang Y, 2019, J BRIT BLOCKCHAIN AS, V2, P83, DOI 10.31585/jbba-2-2-(5)2019
Yao Q, 2020, YICAI
Yoon J, 2020, SCIENTOMETRICS, V124, P1421, DOI 10.1007/s11192-020-03497-3
Yoon J, 2017, SCIENTOMETRICS, V113, P61, DOI 10.1007/s11192-017-2476-x
Young K M., 2021, Quality and Quantity, V55, P1917, DOI DOI 10.1007/S11135-020-01084-5
Zhang JN, 2013, INT J EDUC DEV, V33, P185, DOI 10.1016/j.ijedudev.2012.04.004
ZHUYUPENG, 2020, Journal of The Korean Data Analysis Society, V22, P513
NR 54
TC 0
Z9 0
U1 5
U2 19
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD FEB
PY 2022
VL 14
IS 4
AR 2326
DI 10.3390/su14042326
PG 16
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA ZT2OV
UT WOS:000768993700001
OA gold
DA 2024-09-05
ER
PT J
AU Oliski, M
Krukowski, K
Siecinski, K
AF Olinski, Marian
Krukowski, Krzysztof
Siecinski, Kacper
TI Bibliometric Overview of ChatGPT: New Perspectives in Social Sciences
SO PUBLICATIONS
LA English
DT Article
DE ChatGPT; artificial intelligence; bibliometric analysis; ethical
implications; educational technology; interdisciplinary research
AB This study delves into a bibliometric analysis of ChatGPT, an AI tool adept at analysing and generating text, highlighting its influence in the realm of social sciences. By harnessing data from the Scopus database, a total of 814 relevant publications were selected and scrutinised through VOSviewer, focusing on elements such as co-citations, keywords and international collaborations. The objective is to unearth prevailing trends and knowledge gaps in scholarly discourse regarding ChatGPT's application in social sciences. Concentrating on articles from the year 2023, this analysis underscores the rapid evolution of this research domain, reflecting the ongoing digital transformation of society. This study presents a broad thematic picture of the analysed works, indicating a diversity of perspectives-from ethical and technological to sociological-regarding the implementation of ChatGPT in the fields of social sciences. This reveals an interest in various aspects of using ChatGPT, which may suggest a certain openness of the educational sector to adopting new technologies in the teaching process. These observations make a contribution to the field of social sciences, suggesting potential directions for future research, policy or practice, especially in less represented areas such as the socio-legal implications of AI, advocating for a multidisciplinary approach.
C1 [Olinski, Marian; Krukowski, Krzysztof; Siecinski, Kacper] Univ Warmia & Mazury, Inst Management & Qual Sci, Fac Econ Sci, PL-10719 Olsztyn, Poland.
C3 University of Warmia & Mazury
RP Oliski, M (corresponding author), Univ Warmia & Mazury, Inst Management & Qual Sci, Fac Econ Sci, PL-10719 Olsztyn, Poland.
EM olinski@uwm.edu.pl; kkruk@uwm.edu.pl; kacper.siecinski@uwm.edu.pl
RI ; Olinski, Marian/X-2066-2018; Krukowski, Krzysztof/T-2278-2018
OI Siecinski, Kacper/0000-0001-8484-0741; Olinski,
Marian/0000-0002-1707-0553; Krukowski, Krzysztof/0000-0002-1614-4397
CR [Anonymous], SIMILARWEB CHAT OPEN
Baber H, 2024, INFORM LEARN SCI, V125, P587, DOI 10.1108/ILS-04-2023-0035
Barrington NM, 2023, MED SCI-BASEL, V11, DOI 10.3390/medsci11030061
Bianchini S, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2022.104604
Bin-Nashwan SA, 2023, TECHNOL SOC, V75, DOI 10.1016/j.techsoc.2023.102370
Bu Y, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102300
Bukar UA, 2023, METHODSX, V11, DOI 10.1016/j.mex.2023.102339
Calonge D.S., 2023, J. Appl. Learn. Teach, V6, P346, DOI [10.37074/jalt.2023.6.2.22, DOI 10.37074/JALT.2023.6.2.22]
Clark TM, 2023, J CHEM EDUC, V100, P3934, DOI 10.1021/acs.jchemed.3c00500
Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y
Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148
Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02
Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662
Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642
Farhat F, 2024, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1270749
Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846
Fisch C., 2018, Management Review Quarterly, V68, P103, DOI DOI 10.1007/S11301-018-0142-X
Gallego-Valero L, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13095066
Gamage KA, 2023, J Appl Learn Teach, V6, DOI [10.37074/jalt.2023.6.2.32, DOI 10.37074/JALT.2023.6.2.32]
García-Fernández FJ, 2020, J NEUROIMMUNOL, V349, DOI 10.1016/j.jneuroim.2020.577379
Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312
Guliyev H., 2023, Res. Globalizat., V7, DOI [10.1016/j.resglo.2023.100140, DOI 10.1016/J.RESGLO.2023.100140]
Guo Y, 2023, J CHEM EDUC, V100, P4876, DOI 10.1021/acs.jchemed.3c00505
Halaweh M, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13036
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hulland J, 2020, J ACAD MARKET SCI, V48, P351, DOI 10.1007/s11747-020-00721-7
Ismail F., 2023, Journal of Applied Learning and Teaching, V6, P56, DOI [10.37074/jalt.2023.6.2.34, DOI 10.37074/JALT.2023.6.2.34]
Kashani ES, 2023, INT J INNOV STUD, V7, P68, DOI 10.1016/j.ijis.2022.09.003
Katchanov YL, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101245
Khosravi H., 2023, INT J DATA MIN MODEL
Kirby A, 2023, PUBLICATIONS, V11, DOI 10.3390/publications11010010
Knopp MI, 2023, JMIR MED EDUC, V9, DOI 10.2196/50373
Kooli C, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15075614
Korzynski P, 2023, CENT EUR MANAG J, V31, P3, DOI 10.1108/CEMJ-02-2023-0091
Kraus S, 2022, REV MANAG SCI, V16, P2577, DOI 10.1007/s11846-022-00588-8
Liao WX, 2023, JMIR MED EDUC, V9, DOI [10.2196/48904, 10.2023/1/e48904]
Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790
Liu J, 2024, ASIA PAC J EDUC, V44, P156, DOI 10.1080/02188791.2024.2305170
Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750
Martin-Martin A., 2019, GOOGLE SCHOLAR WEB S
Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577
Peres R, 2023, INT J RES MARK, V40, P269, DOI 10.1016/j.ijresmar.2023.03.001
Perkins M, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.02.07
Pittaway L., 2014, SYNTHESISING KNOWLED
Raj R., 2023, BenchCouncil Transactions on Benchmarks, Standards and Evaluations, V3, DOI DOI 10.1016/J.TBENCH.2023.100140
Rudolph J., 2023, Journal of Applied Learning and Teaching, V6, P342, DOI [10.37074/jalt.2023.6.1.9, DOI 10.37074/JALT.2023.6.1.23, DOI 10.37074/JALT.2023.6.1.9]
SCI Journal, J APPL LEARN TEACH I
SCI Journal, J CHEM ED IMP FACT K
Sharma S, 2024, FUTURES, V157, DOI 10.1016/j.futures.2024.103328
Shiau WL, 2023, INFORM MANAGE-AMSTER, V60, DOI 10.1016/j.im.2023.103774
Shin H, 2023, EXPERT SYST APPL, V233, DOI 10.1016/j.eswa.2023.120889
Sullivan M., 2023, Journal of Applied Learning and Teaching, V6, DOI DOI 10.37074/JALT.2023.6.1.17
Taecharungroj V, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7010035
Tangadulrat P, 2023, JMIR MED EDUC, V9, DOI 10.2196/50658
Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x
UNESCO, SOC SCI R D DAT
West JK, 2023, J CHEM EDUC, V100, P4351, DOI 10.1021/acs.jchemed.3c00581
Xu RX, 2024, INFORM PROCESS MANAG, V61, DOI 10.1016/j.ipm.2024.103665
Yalcinkaya T, 2023, NURSE EDUC PRACT, V71, DOI 10.1016/j.nepr.2023.103714
Zhang LL, 2022, ENERGY REP, V8, P14072, DOI 10.1016/j.egyr.2022.10.347
Zheltukhina MR, 2024, ONLINE J COMMUN MEDI, V14, DOI 10.30935/ojcmt/14103
NR 61
TC 2
Z9 2
U1 25
U2 25
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2304-6775
J9 PUBLICATIONS-BASEL
JI Publications
PD MAR
PY 2024
VL 12
IS 1
AR 9
DI 10.3390/publications12010009
PG 16
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA MH7V5
UT WOS:001192807500001
OA gold
DA 2024-09-05
ER
PT J
AU Huang, XY
Zou, D
Cheng, GRY
Chen, XL
Xie, HR
AF Huang, Xinyi
Zou, Di
Cheng, Gary
Chen, Xieling
Xie, Haoran
TI A bibliometric analysis of the trends, topics, and findings of research
publications on asynchronous and synchronous online language learning
over three decades
SO KNOWLEDGE MANAGEMENT & E-LEARNING-AN INTERNATIONAL JOURNAL
LA English
DT Article
DE Synchronous learning; Online learning; Language learning; Bibliometric
analysis
ID FOREIGN-LANGUAGE; CLASSROOM; ENGLISH; FUTURE
AB Since the first study on computer-mediated communication tools in support of language learning was published in 1992, asynchronous and synchronous tools have been widely adopted; however, few reviews have been conducted to explore the research status in this field. As COVID-19 has increased the use of online tools in education, the need to understand how asynchronous and synchronous tools are being used in language education has grown. In this bibliometric analysis, we reviewed asynchronous and synchronous online language learning (ASOLL) by analyzing the trends, topics, and findings of 319 articles on ASOLL. The results indicate that interest in ASOLL has increased over the past three decades with ASOLL for oral proficiency development and collaborative ASOLL being the two main research issues. Interest in three topics collaborative ASOLL, emotions, and corrective feedback - was especially apparent. The review contributes to the understanding of ASOLL while providing practical implications for using information communication technologies to enhance language learning.
C1 [Huang, Xinyi; Cheng, Gary; Chen, Xieling] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China.
[Zou, Di] Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong, Peoples R China.
C3 Education University of Hong Kong (EdUHK); Education University of Hong
Kong (EdUHK); Lingnan University
RP Zou, D (corresponding author), Educ Univ Hong Kong, Dept English Language Educ, Hong Kong, Peoples R China.
EM hxinyicara@gmail.com; dizoudaisy@gmail.com; chengks@eduhk.hk;
xielingchen0708@gmail.com; hrxie2@gmail.com
RI Huang, Xinyi/AFI-7092-2022; Xie, Haoran/AFS-3515-2022
OI Huang, Xinyi/0000-0001-9777-7905; Xie, Haoran/0000-0003-0965-3617; ZOU,
Di/0000-0001-8435-9739
FU University Grant Committee; Strategic Development of Virtual Teaching
and Learning, The Education University of Hong Kong
FX Dr Di Zou's work is supported by the University Grant Committee, Special
Grant for Strategic Development of Virtual Teaching and Learning, The
Education University of Hong Kong, Hong Kong.
CR Abrams ZI, 2003, MOD LANG J, V87, P157, DOI 10.1111/1540-4781.00184
Ahmed MMH, 2021, KNOWL MANAG E-LEARN, V13, P290, DOI 10.34105/j.kmel.2021.13.016
Al-Hoorie AH, 2019, LANG TEACH RES, V23, P727, DOI 10.1177/1362168818767191
Arnold N, 2006, LANG LEARN TECHNOL, V10, P42
Basaran B, 2020, KNOWL MANAG E-LEARN, V12, P209
Basri M., 2021, METATHESIS J ENGLISH, V4, P263, DOI [10.31002/metathesis.v4i3.2734, DOI 10.31002/METATHESIS.V4I3.2734]
BEAUVOIS MH, 1992, FOREIGN LANG ANN, V25, P455, DOI 10.1111/j.1944-9720.1992.tb01128.x
Biesenbach-Lucas S., 2000, Computer Assisted Language Learning, V13, P221, DOI 10.1076/0958-8221(200007)13:3;1-3;FT221
Blake R., 2000, Language Learning Technology, V4, P111, DOI 10125/25089
Bower M, 2015, COMPUT EDUC, V86, P1, DOI 10.1016/j.compedu.2015.03.006
Chang CC, 2023, INTERACT LEARN ENVIR, V31, P5995, DOI 10.1080/10494820.2022.2027457
Chen X., 2020, Computers and Education: Artificial Intelligence, V1, P100002, DOI DOI 10.1016/J.CAEAI.2020.100002
Chen XL, 2021, LANG LEARN TECHNOL, V25, P151
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Chiang THC, 2014, KNOWL MANAG E-LEARN, V6, P1
Elola I, 2010, LANG LEARN TECHNOL, V14, P51
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Güzer B, 2014, PROCD SOC BEHV, V116, P4596, DOI 10.1016/j.sbspro.2014.01.992
Hampel R., 2006, ReCALL, V118, P105, DOI 10.1017/S0958344006000711
Henderson C, 2021, LANG TEACH RES, V25, P185, DOI 10.1177/1362168819832907
KERN RG, 1995, MOD LANG J, V79, P457, DOI 10.2307/329999
Lin WC, 2013, LANG LEARN TECHNOL, V17, P123
Luo SQ, 2024, J RES TECHNOL EDUC, V56, P332, DOI 10.1080/15391523.2022.2139026
Martin F, 2021, INT REV RES OPEN DIS, V22, P205
McIntosh S., 2003, Educational Media International, V40, P63, DOI 10.1080/0952398032000092125
Parmaxi A, 2016, UNIVERSAL ACCESS INF, V15, P169, DOI 10.1007/s10209-015-0405-4
Payne J. S., 2002, CALICO Journal, V20, P7
Perveen A, 2016, OPEN PRAX, V8, P21, DOI 10.5944/openpraxis.8.1.212
Peterson M, 2010, RECALL, V22, P273, DOI 10.1017/S0958344010000169
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Serdyukov P., 2020, Exploring online learning through synchronous and asynchronous instructional methods, P1, DOI [DOI 10.4018/978-1-7998-1622-5.CH001, 10.4018/978-1-7998-1622-5.ch001]
Shang HF, 2017, J COMPUT HIGH EDUC, V29, P496, DOI 10.1007/s12528-017-9154-0
Shih YC, 2008, EDUC TECHNOL SOC, V11, P56
Skinner B., 1999, ELT Journal, V53, P270, DOI DOI 10.1093/ELTJ/53.4.270
Smith B, 2004, STUD SECOND LANG ACQ, V26, P365, DOI 10.1017/S0272263104043013
Sotillo S. M., 2000, LANGUAGE LEARNING TE, V4, P77
Thomas J, 2013, COMPUT EDUC, V69, P199, DOI 10.1016/j.compedu.2013.07.005
van Aalst J, 2010, EDUC RESEARCHER, V39, P387, DOI 10.3102/0013189X10371120
Ware PD, 2005, MOD LANG J, V89, P190, DOI 10.1111/j.1540-4781.2005.00274.x
Watts L., 2016, Q REV DISTANCE ED, V17, P23
Weldon A, 2021, KNOWL MANAG E-LEARN, V13, P161
Young E.H., 2018, EuroCALL Review, V26, P59, DOI [DOI 10.4995/EUROCALL.2018, 10.4995/eurocall.2018.8599, DOI 10.4995/EUROCALL.2018.8599]
Zhang L, 2016, ASIA-PAC J TEACH EDU, V44, P242, DOI 10.1080/1359866X.2015.1081673
Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666
Zou D, 2022, EDUC INF TECHNOL, V27, P10585, DOI 10.1007/s10639-022-10991-z
NR 45
TC 0
Z9 0
U1 6
U2 10
PU LABORATORY KNOWLEDGE MANAGEMENT & E-LEARNING UNIV
PI HONG KONG
PA RM 212, RUNME SHAW BLDG, FAC EDUCATION, UNIV HONG KONG, HONG KONG,
00000, HONG KONG
SN 2073-7904
J9 KNOWL MANAG E-LEARN
JI Knowl. Manag. E-Learn.
PD JUN
PY 2023
VL 15
IS 2
BP 153
EP 173
DI 10.34105/j.kmel.2023.15.009
PG 22
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA H5FS2
UT WOS:000996225100002
OA gold
DA 2024-09-05
ER
PT J
AU Vorohobovs, V
Kleinhofs, M
AF Vorohobovs, Vladimirs
Kleinhofs, Martins
TI DEFICIENCY-SURPLUS TRANSITION FUNCTION (DeSuTra) IN SEMI-EMPIRICAL
FORMULAS FOR TUMBLING OF FREELY FALLING CARD
SO COMPOSITES THEORY AND PRACTICE
LA English
DT Article
DE phenomenology; heuristics; semi-empirical research; tumbling cards;
Magnus effect; autorotation; lift force; bifurcation; efficiency
reducer; efficiency diminisher; DeSuTra function; singularity
ID FLUTTER; ZIGZAG; FLUID; WINGS
AB A new phenomenological method for composing analytical formulae to describe dynamic systems using the DeSuTra function as a building block is introduced. Based on heuristic considerations, it is possible to write a correct formula with several unknown coefficients. Next, these coefficients are tuned such a way that the result coincides with the experimental data. To illustrate the viability of such a method, a simple but not trivial aerodynamic system was chosen: the autorotation of a rectangular piece of paper that falls in air. Three correction coefficients (diminishers) were introduced to calculate its rotation frequency. Then a simple expression for the Magnus effect and drag force was used. All the obtained formulae were experimentally proved and the coefficients calculated. The conclusions drawn confirm the usefulness of the presented calculation procedure for the design of composites with chaotically distributed reinforcements.
C1 [Vorohobovs, Vladimirs; Kleinhofs, Martins] Riga Tech Univ, Inst Aeronaut, Fac Mech Engn Transport & Aeronaut, 6B Kipsalas St, LV-1048 Riga, Latvia.
C3 Riga Technical University
RP Vorohobovs, V (corresponding author), Riga Tech Univ, Inst Aeronaut, Fac Mech Engn Transport & Aeronaut, 6B Kipsalas St, LV-1048 Riga, Latvia.
EM riga2006@inbox.lv
CR Andersen A, 2005, J FLUID MECH, V541, P65, DOI 10.1017/S002211200500594X
Andersen A, 2005, J FLUID MECH, V541, P91, DOI 10.1017/S0022112005005847
Assemat P, 2012, J FLUID MECH, V690, P173, DOI 10.1017/jfm.2011.419
Auguste F, 2013, J FLUID MECH, V719, P388, DOI 10.1017/jfm.2012.602
Belmonte A, 1998, PHYS REV LETT, V81, P345, DOI 10.1103/PhysRevLett.81.345
Bönisch S, 2007, COMPUT FLUIDS, V36, P1434, DOI 10.1016/j.compfluid.2007.01.010
Changqui J, NUMERICAL STUDY UNST
Chatys R, 2004, MECH COMPOS MATER, V40, P159, DOI 10.1023/B:MOCM.0000025490.66094.86
Chrust M, 2013, PHYS FLUIDS, V25, DOI 10.1063/1.4799179
Ern P, 2012, ANNU REV FLUID MECH, V44, P97, DOI 10.1146/annurev-fluid-120710-101250
Fernando V, 2010, CALCULATION DYNAMIC
Field S.B.M, 1997, LETT NATURE
Field SB, 1997, NATURE, V388, P252, DOI 10.1038/40817
Heisinger L, 2013, COINS FALLING WATER
IVERSEN JD, 1979, J FLUID MECH, V92, P327, DOI 10.1017/S0022112079000641
Jones MA, 2005, J FLUID MECH, V540, P393, DOI 10.1017/S0022112005005859
Koziol M, 2013, J COMPOS MATER, V47, P1919, DOI 10.1177/0021998312452179
Lee CB, 2013, J FLUID MECH, V732, P77, DOI 10.1017/jfm.2013.390
Mahadevan L, 1999, PHYS FLUID
Maxwell J.C., 1853, PARTICULAR CASE DESC
Mittal R, 2004, THEOR COMP FLUID DYN, V17, P165, DOI 10.1007/s00162-003-0101-5
Olesik P, 2019, MATERIALS, V12, DOI 10.3390/ma12162520
Pesavento U, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.144501
SMITH AMO, 1953, J AERONAUT SCI, V20, P73, DOI 10.2514/8.2545
SMITH EH, 1971, J FLUID MECH, V50, P513, DOI 10.1017/S0022112071002738
Toron B, 2020, MATERIALS, V13, DOI 10.3390/ma13040902
Vincent L, 2016, J FLUID MECH, V801, P250, DOI 10.1017/jfm.2016.432
Wang WB, 2013, J FLUID MECH, V733, P650, DOI 10.1017/jfm.2013.461
Wang Y, 2016, PHYS FLUIDS, V28, DOI 10.1063/1.4963242
Zeeman E.C., 1977, CATASTROPHE THEORY S, P1972
Zhong HJ, 2013, J FLUID MECH, V716, P228, DOI 10.1017/jfm.2012.543
Zhong HJ, 2011, PHYS FLUIDS, V23, DOI 10.1063/1.3541844
NR 32
TC 0
Z9 0
U1 0
U2 0
PU POLISH SOC COMPOSITE MATERIALS
PI CZESTOCHOWA
PA AL ARMII KRAJOWEJ 19, CZESTOCHOWA, 42-200, POLAND
SN 2084-6096
EI 2299-128X
J9 COMPOS THEORY PRACT
JI Compos. Theory Pract.
PY 2022
VL 22
IS 2
BP 92
EP 98
PG 7
WC Materials Science, Composites
WE Emerging Sources Citation Index (ESCI)
SC Materials Science
GA 2X3WD
UT WOS:000825137100005
DA 2024-09-05
ER
PT J
AU Yang, L
Sun, TT
Liu, YL
AF Yang, Lie
Sun, Tiantian
Liu, Yanli
TI A Bibliometric Investigation of Flipped Classroom Research during
2000-2015
SO INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING
LA English
DT Article
DE flipped classroom; active learning; blended learning; bibliometric
ID NURSING-EDUCATION; CONFCHEM CONFERENCE; STUDENT ENGAGEMENT; STRATEGIES
AB The paper analyzed the global growth and development of flipped classroom research productivity in terms of publication output as reflected in SCI/SSCI for the period 2000-2015. Publication types and languages, characteristics of articles outputs, countries, subject categories and journals, and the frequency of keywords were analyzed using bibliometric methods. There are 149 articles in 78 journals listed in 41 SCI/SSCI subject categories. A sharp growth trend of publication output was observed during 2011-2015. USA played a predominant role in flipped classroom research. Education educational research, chemistry and medical were the top 3 categories and "active learning" and "blended learning" recent major topics of flipped classroom research during the past 16 years. The results could help researchers understand the characteristics of research output and search hot spots of flipped education field.
C1 [Yang, Lie; Sun, Tiantian; Liu, Yanli] Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan, Hubei, Peoples R China.
C3 Wuhan University of Technology
RP Yang, L (corresponding author), Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan, Hubei, Peoples R China.
EM yanglie612@whut.edu.cn; stt313352667@163.com; liuyanli_l@163.com
RI Yang, Lie/S-9216-2019
OI Yang, Lie/0000-0002-2814-5311
FU Program of National Natural Science Foundation of China [51508430]
FX This work was supported by Program of National Natural Science
Foundation of China (No. 51508430).
CR Betihavas V, 2016, NURS EDUC TODAY, V38, P15, DOI 10.1016/j.nedt.2015.12.010
Chen HQ, 2015, RENEW SUST ENERG REV, V49, P12, DOI 10.1016/j.rser.2015.04.060
Chiu WT, 2007, SCIENTOMETRICS, V73, P3, DOI 10.1007/s11192-005-1523-1
Chou CK, 2015, SPRINGERPLUS, V4, DOI 10.1186/s40064-015-1106-4
Chuang KY, 2007, SCIENTOMETRICS, V72, P201, DOI [10.1007/s11192-007-1721-0, 10.1007/s11192-007-1693-0]
Critz CM, 2013, NURS EDUC, V38, P210, DOI 10.1097/NNE.0b013e3182a0e56a
Dong BS, 2012, SCIENTOMETRICS, V93, P1101, DOI 10.1007/s11192-012-0730-9
Garfield E, 2004, J INF SCI, V30, P119, DOI 10.1177/0165551504042802
Gilboy MB, 2015, J NUTR EDUC BEHAV, V47, P109, DOI 10.1016/j.jneb.2014.08.008
Haile JD, 2015, J CHEM EDUC, V92, P1572, DOI 10.1021/ed500917j
Hao YW, 2016, COMPUT HUM BEHAV, V57, P250, DOI 10.1016/j.chb.2015.12.022
Kakosimos KE, 2015, EDUC CHEM ENG, V12, P1, DOI 10.1016/j.ece.2015.06.001
Lage MJ, 2000, J ECON EDUC, V31, P11
Leung JYC, 2014, MED EDUC, V48, P1127, DOI 10.1111/medu.12576
Liebert CA, 2016, AM J SURG, V211, P451, DOI 10.1016/j.amjsurg.2015.10.004
Long T., 2016, J COMPUTING HIGHER E
Luker C, 2015, J CHEM EDUC, V92, P1564, DOI 10.1021/acs.jchemed.5b00024
McDonald K, 2013, J CONTIN EDUC NURS, V44, P437, DOI 10.3928/00220124-20130925-19
McGowan BS, 2014, J CONTIN EDUC NURS, V45, P477, DOI 10.3928/00220124-20141027-11
Missildine K, 2013, J NURS EDUC, V52, P597, DOI 10.3928/01484834-20130919-03
O'Flaherty J, 2015, INTERNET HIGH EDUC, V25, P85, DOI 10.1016/j.iheduc.2015.02.002
Roach T, 2014, INT REV ECON EDUC, V17, P74, DOI 10.1016/j.iree.2014.08.003
Schlairet MC, 2014, NURS EDUC, V39, P321, DOI 10.1097/NNE.0000000000000096
Seery MK, 2015, J CHEM EDUC, V92, P1566, DOI 10.1021/ed500919u
Smith CM, 2013, J CONTIN EDUC NURS, V44, P486, DOI 10.3928/00220124-20131025-93
Tomory A, 2015, J SCI EDUC TECHNOL, V24, P875, DOI 10.1007/s10956-015-9570-8
Weaver G. C., J CHEM ED, V92, P1437
Wen H, 2012, SCIENTOMETRICS, V91, P51, DOI 10.1007/s11192-011-0535-2
Yang L, 2013, SCIENTOMETRICS, V96, P133, DOI 10.1007/s11192-012-0911-6
Yi H, 2008, SCIENTOMETRICS, V75, P111, DOI 10.1007/s11192-007-1828-3
NR 30
TC 26
Z9 30
U1 2
U2 27
PU KASSEL UNIV PRESS GMBH
PI KASSEL
PA DIAGONALE 10, D-34127 KASSEL, GERMANY
SN 1863-0383
J9 INT J EMERG TECHNOL
JI Int. J. Emerg. Technol. Learn.
PY 2017
VL 12
IS 6
BP 178
EP 186
DI 10.3991/ijet.v12i06.7095
PG 9
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA FB9KC
UT WOS:000406457000014
OA gold
DA 2024-09-05
ER
PT J
AU Qian, Y
Gou, XJ
Xu, ZS
AF Qian, Yu
Gou, Xunjie
Xu, Zeshui
TI The Development and Progress of Engineering Economics: A Retrospect and
Prospect Based on Visual Analysis
SO INZINERINE EKONOMIKA-ENGINEERING ECONOMICS
LA English
DT Article
DE Engineering Economics; Bibliometric Analysis; Software Engineering;
Artificial Intelligence; Environment.
ID ARTIFICIAL-INTELLIGENCE TECHNIQUES; PRESCRIBING EFFICIENCY; CARBON
CAPTURE; OPTIMIZATION; MODEL; DESIGN; EUROPE
AB Engineering economics is a cross subject with a wide range of applications, and it has taken on different characteristics with the changing times. The aim of this paper is to depict a sufficiently elaborate and vivid knowledge map of this field, with further discussion and outlook on the hotspots presented therein. Based on the principles and methods of bibliometrics, we use several visualization tools, mainly Vosviewer, to present the characteristics of the published literature within the field of engineering economics from multiple perspectives. Specifically, we collect 624 engineering economics documents published in the Web of Science core collection database between 1915 and 2021, and quantitatively analyze them in the following three aspects: (1) basic data characteristics, including annual publications, annual citations, research directions, and highly cited publications; (2) outstanding performers and cooperations in the four levels of country/region, institution, source and author, including co-authorship, bibliographic coupling, co-citation and co-occurrence analyses; and (3) keyword analyses, including co-occurrence analyses, burst detection analyses, and high-frequency word clouds. In addition, we further explore important topics within the field represented by intelligent and green transformation.
C1 [Qian, Yu; Gou, Xunjie; Xu, Zeshui] Sichuan Univ, Business Sch, 29 Jiuyanqiao Wangjiang Rd, Chengdu 610064, Peoples R China.
C3 Sichuan University
RP Qian, Y (corresponding author), Sichuan Univ, Business Sch, 29 Jiuyanqiao Wangjiang Rd, Chengdu 610064, Peoples R China.
EM yuqian_echo@163.com; gou_xunjie@163.com; xuzeshui@263.net
RI Gou, Xunjie/KEJ-2735-2024; Xu, Zeshui/N-8908-2013
OI Gou, Xunjie/0000-0003-1963-0451;
FU National Natural Science Foundation of China [72071135, 72271173];
National Social Science Fund of China [22FGLB005]; Ministry of education
of Humanities and Social Science project [21YJC630030]; China
Postdoctoral Science Foundation [2020M680151, 2023T160459]
FX Acknowledgments The work was supported by the National Natural Science
Foundation of China (Nos. 72071135 and 72271173) , the National Social
Science Fund of China (22FGLB005) , the Ministry of education of
Humanities and Social Science project (No. 21YJC630030) , and the China
Postdoctoral Science Foundation (No. 2020M680151, 2023T160459) .
CR Adler N, 2021, EUR J OPER RES, V291, P808, DOI 10.1016/j.ejor.2020.11.020
Adriaanse LS, 2013, ELECTRON LIBR, V31, P727, DOI 10.1108/EL-12-2011-0174
Afolalu SA, 2021, MATER TODAY-PROC, V44, P2889, DOI 10.1016/j.matpr.2021.01.098
Ahmed A, 2022, INT J E-HEALTH MED C, V13, DOI 10.4018/IJEHMC.20220701.oa5
Ahmed W, 2019, INTERACT TECHNOL SMA, V17, P67, DOI 10.1108/ITSE-08-2019-0043
Allwood JM, 2013, PHILOS T R SOC A, V371, DOI 10.1098/rsta.2012.0496
Aydin S, 2018, INZ EKON, V29, P254, DOI 10.5755/j01.ee.29.3.19392
Backhouse RE, 2009, J ECON PERSPECT, V23, P221, DOI 10.1257/jep.23.1.221
Balaganesan M, 2020, ADV INTELL SYST COMP, V1040, P647, DOI 10.1007/978-981-15-1451-7_66
Banga JR, 2008, BMC SYST BIOL, V2, DOI 10.1186/1752-0509-2-47
Barboza C, 2015, PROCEDIA COMPUT SCI, V44, P568, DOI 10.1016/j.procs.2015.03.017
BOEHM BW, 1984, IEEE T SOFTWARE ENG, V10, P4, DOI 10.1109/TSE.1984.5010193
Boltürk E, 2023, IEEE T ENG MANAGE, V70, P2891, DOI 10.1109/TEM.2022.3190914
Burns J, 2020, ENG ECON, V65, P236, DOI 10.1080/0013791X.2020.1781309
Bussey L.E., 1978, EC ANAL IND PROJECTS
Chen HG, 2014, ADV MATER RES-SWITZ, V838-841, P2689, DOI 10.4028/www.scientific.net/AMR.838-841.2689
Chen YW, 2006, FUZZY SET SYST, V157, P34, DOI 10.1016/j.fss.2005.06.004
Cruz M, 2020, IEEE ACCESS, V8, P26773, DOI 10.1109/ACCESS.2019.2952191
Davis GA, 2012, ENG ECON, V57, P130, DOI 10.1080/0013791X.2012.677302
De Garmo E.P., 1989, Engineering Economy, V8e
Dean J, 1951, Capital budgeting, DOI [10.7312/dean90552, DOI 10.7312/DEAN90552]
Ding WX, 2013, APPL MECH MATER, V368-370, P1135, DOI 10.4028/www.scientific.net/AMM.368-370.1135
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234
Duarte PG, 2020, HIST POLIT ECON, V52, P10, DOI 10.1215/00182702-8717898
Duarte Pedro Garcia, 2020, History of Political Economy, V51
Fang HW, 2019, J CENT SOUTH UNIV, V26, P1856, DOI 10.1007/s11771-019-4139-y
Fish J. C. L, 1915, Engineering economics: first principles
Fokaefs M, 2018, ACM T AUTON ADAP SYS, V12, DOI 10.1145/3139290
Gao J. X., 2021, China Development, P47, DOI [10.15885/j.cnki.cn11-4683/z.2021.s1.006, DOI 10.15885/J.CNKI.CN11-4683/Z.2021.S1.006]
Gill F, 1943, Journal of the Institution of Electrical Engineers-Part I: General, V90, P373, DOI [10.1049/ji-1.1943.0073, DOI 10.1049/JI-1.1943.0073]
Godman B, 2011, FRONT PHARMACOL, V1, DOI 10.3389/fphar.2010.00141
Godman B, 2010, EXPERT REV PHARM OUT, V10, P707, DOI [10.1586/erp.10.72, 10.1586/ERP.10.72]
Goldman O. B, 1920, Financial engineering: A text for consulting, managing and designing engineers and for students
Grant EugeneL., 1930, Principles of Engineering Economy
Hébert RF, 2021, J IND BUS ECON, V48, P609, DOI 10.1007/s40812-021-00198-7
Hess HW, 1915, ANN AM ACAD POLIT SS, V62, P309
Heydt GT, 2018, IEEE T POWER SYST, V33, P4488, DOI 10.1109/TPWRS.2017.2764449
Hodder E, 1978, The Engineering Economist, V25, P146
Jung Hae-Il, 2009, 2009 Canadian Conference on Electrical and Computer Engineering (CCECE 2009), P41, DOI 10.1109/CCECE.2009.5090088
Khalilpour R, 2015, J CLEAN PROD, V103, P286, DOI 10.1016/j.jclepro.2014.10.050
Khlebnikova E, 2021, AICHE J, V67, DOI 10.1002/aic.17124
Kliestik T, 2018, SCI ENG ETHICS, V24, P791, DOI 10.1007/s11948-017-9912-4
Kumar L., 2017, 2017 10 INT C CONT C, P1, DOI [10.1109/IC3.2017.8284297, DOI 10.1109/IC3.2017.8284297]
Kwon TD, 2023, J BUILD ENG, V69, DOI 10.1016/j.jobe.2023.106277
Li D, 2023, INTELLIGENCE, V96, DOI 10.1016/j.intell.2022.101719
Li GH, 2009, PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE OF MANAGEMENT ENGINEERING AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, P273
Li LT, 2023, ENERGY REP, V9, P381, DOI 10.1016/j.egyr.2023.04.300
Li Y, 2018, P 2 INT C CULTURE ED, DOI [10.2991/iccese-18.2018.36, DOI 10.2991/ICCESE-18.2018.36]
List G, 2007, STRUCT INFRASTRUCT E, V3, P95, DOI 10.1080/15732470600590903
Liu HZ, 2023, PROBABILIST ENG MECH, V71, DOI 10.1016/j.probengmech.2022.103406
Liu JJ, 2020, J COASTAL RES, P197, DOI 10.2112/SI106-046.1
Mahlia TMI, 2010, ENER EDUC SCI TECH-A, V26, P1
Mandavi S, 2015, INFORM SCIENCES, V295, P407, DOI 10.1016/j.ins.2014.10.042
Mariotti S., 2021, Integration and Implementation Insights
Mariotti S, 2022, INZ EKON, V33, P341, DOI 10.5755/j01.ee.33.4.31806
Mariotti S, 2022, J IND BUS ECON, V49, P1, DOI 10.1007/s40812-021-00203-z
Mariotti S, 2021, J IND BUS ECON, V48, P551, DOI 10.1007/s40812-021-00187-w
Martis R, 2021, INT J HYDROGEN ENERG, V46, P6139, DOI 10.1016/j.ijhydene.2020.10.208
Mellit A, 2009, RENEW SUST ENERG REV, V13, P406, DOI 10.1016/j.rser.2008.01.006
Mellit A, 2008, PROG ENERG COMBUST, V34, P574, DOI 10.1016/j.pecs.2008.01.001
Michalski RS, 2000, MACH LEARN, V38, P9, DOI 10.1023/A:1007677805582
Moore J, 2017, INT J HYDROGEN ENERG, V42, P12047, DOI 10.1016/j.ijhydene.2017.03.182
Nilsson LJ, 2021, CLIM POLICY, V21, P1053, DOI 10.1080/14693062.2021.1957665
Ortloff CR, 2023, WATER-SUI, V15, DOI 10.3390/w15071363
Pinto CA, 2011, J HOMEL SECUR EMERG, V8, DOI 10.2202/1547-7355.1533
Plouff C, 2012, PROC FRONT EDUC CONF, DOI 10.1109/FIE.2012.6462309
Qian Y, 2023, RESOUR POLICY, V85, DOI 10.1016/j.resourpol.2023.103908
Qian Y, 2022, ECON RES-EKON ISTRAZ, DOI 10.1080/1331677X.2022.2155860
Ramasubbu N, 2019, IEEE T SOFTWARE ENG, V45, P285, DOI 10.1109/TSE.2017.2774832
Rane V, 2020, ENG ECON, V65, P213, DOI 10.1080/0013791X.2020.1784336
Riggs J.L., 1977, ENG ECON
Riotto T, 2021, ACS SUSTAIN CHEM ENG, V9, P13233, DOI 10.1021/acssuschemeng.1c04031
Sanchez-Segura MI, 2021, KYBERNETES, V50, P2790, DOI 10.1108/K-05-2020-0302
Sarfaraz AR, 2006, 4th International Industrial Simulation Conference 2006, P199
Shen Y, 2013, ADVANCES IN UNDERGROUND SPACE DEVELOPMENT, P876, DOI 10.3850/978-981-07-3757-3_RP-118-8076
Si S, 2023, TECHNOVATION, V119, DOI 10.1016/j.technovation.2022.102484
Sonabend R, 2021, BIOINFORMATICS, V37, P2789, DOI 10.1093/bioinformatics/btab039
Su HEC, 2021, J HIST ECON THOUGHT, V43, P297, DOI 10.1017/S1053837220000231
Su Y, 2015, J CONSTR ENG M, V141, DOI 10.1061/(ASCE)CO.1943-7862.0000938
Sullivan W. G., 1991, Engineering Economist, V36, P187, DOI 10.1080/00137919108903044
Tansey B, 2010, CAN J ADM SCI, V27, P39, DOI 10.1002/CJAS.130
TSATSARONIS G, 1993, PROG ENERG COMBUST, V19, P227, DOI 10.1016/0360-1285(93)90016-8
Ventura-Molina E, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8112002
Voncina L, 2011, EXPERT REV PHARM OUT, V11, P469, DOI [10.1586/erp.11.42, 10.1586/ERP.11.42]
Walwyn DR, 2021, IND HIGHER EDUC, V35, P598, DOI 10.1177/0950422220987088
Wang YL, 2023, ALEX ENG J, V68, P67, DOI 10.1016/j.aej.2023.01.010
Wellington A.M., 1887, The economic theory of the location of railways
Wu LS, 2010, PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON SUSTAINABLE URBANIZATION (ICSU 2010), P1779
Xu HT, 2020, IET GENER TRANSM DIS, V14, P1912, DOI 10.1049/iet-gtd.2019.0356
Xu XR, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e18763
Yilmaz M., 2011, An approach for improving the social aspects of the software development process by using a game theoretic perspective: Towards a theory of social productivity of software development teams, DOI [10.5220/0003492900350040, DOI 10.5220/0003492900350040]
Young D, 2000, WASTE MANAGE, V20, P605, DOI 10.1016/S0956-053X(00)00047-7
Youns YT, 2023, FUEL, V349, DOI 10.1016/j.fuel.2023.128680
Zhang WY, 2020, J COASTAL RES, P125, DOI 10.2112/SI103-026.1
Zhang YW, 2021, ENERGY REP, V7, P1297, DOI 10.1016/j.egyr.2021.09.134
Zhu XL, 2013, ADV MATER RES-SWITZ, V779-780, P1314, DOI 10.4028/www.scientific.net/AMR.779-780.1314
NR 97
TC 0
Z9 0
U1 8
U2 8
PU KAUNAS UNIV TECHNOL
PI KAUNAS
PA LAISVES AL 55, KAUNAS, 44309, LITHUANIA
SN 1392-2785
EI 2029-5839
J9 INZ EKON
JI Inz. Ekon.
PY 2024
VL 35
IS 1
BP 4
EP 24
DI 10.5755/j01.ee.35.1.32448
PG 21
WC Economics
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA JL1W8
UT WOS:001173240600005
OA gold
DA 2024-09-05
ER
PT C
AU Liao, HT
Pan, CL
Huang, JQ
AF Liao, Han-Teng
Pan, Chung-Lien
Huang, Jieqi
BE Singh, M
Kang, DK
Lee, JH
Tiwary, US
Singh, D
Chung, WY
TI A Scientometric Review of Digital Economy for Intelligent Human-Computer
Interaction Research
SO INTELLIGENT HUMAN COMPUTER INTERACTION, PT I
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 12th International Conference on Intelligent Human Computer Interaction
(IHCI)
CY NOV 24-26, 2020
CL Daegu, SOUTH KOREA
DE Human-Computer Interaction; Digital economy; Platform economy;
Artificial intelligence
ID PLATFORMS; LABOR; GIG
AB As the economy goes digital, Human-Computer Interaction (HCI) professionals have been helping companies to better understand the usability, experience, and thus profitability issues, suggesting the contribution ofHCI professionals to the digital economy. However, there is no comprehensive review or theorydriven work that comes from the research area of the digital economy itself. This exploratory study, based on a scientometric analysis of digital economy literature, aims to outline the possibilities and application areas for future research and policy development for HCI research and its intelligent applications. By identifying and analyzing top key authors from 2,778 articles and their more than 100,000 citations, collected from the Web of Science database, the study reveals a dense network with a few clusters of concepts and research work.
C1 [Liao, Han-Teng; Pan, Chung-Lien; Huang, Jieqi] Sun Yat Sen Univ, Higher Educ Impact Assessment Ctr, Nanfang Coll, Guangzhou, Peoples R China.
C3 Sun Yat Sen University; Nanfang College, Guangzhou
RP Pan, CL (corresponding author), Sun Yat Sen Univ, Higher Educ Impact Assessment Ctr, Nanfang Coll, Guangzhou, Peoples R China.
EM peter5612@gmail.com
RI Liao, Han-Teng/AAC-5793-2019; Pan, Chung-Lien/ACJ-6686-2022
OI Liao, Han-Teng/0000-0003-1081-5599; Pan, Chung-Lien/0000-0001-9488-5329;
huang, jieqi/0000-0003-0814-2495
FU project of Smart AppDesign Innovation Research in the Age of New
Business, Arts and Engineering Disciplines under the 2019 Guangdong
Education Grants, China [2019GXJK186]
FX The research is funded by a project of Smart AppDesign Innovation
Research in the Age of New Business, Arts and Engineering Disciplines
(2019GXJK186), under the 2019 Guangdong Education Grants, China.
CR [Anonymous], 2006, OPEN INNOVATION RES
[Anonymous], 2008, Convergence Culture: La cultura de la convergencia de los medios de comunicacion
Benkler Y., 2006, The wealth of networks: How social production transforms markets and freedom
Blandford A, 2001, EXPERT SYST, V18, P3, DOI 10.1111/1468-0394.00151
Bunnell T, 2002, ANTIPODE, V34, P265, DOI 10.1111/1467-8330.00238
Castells M., 2001, The internet galaxy
Curran D, 2018, EUR J SOC THEORY, V21, P207, DOI 10.1177/1368431017710907
Emejulu A, 2019, CRIT STUD EDUC, V60, P131, DOI 10.1080/17508487.2016.1234494
EPSRC, RES AR HUM COMP INT
Fuchs C, 2010, INFORM SOC, V26, P179, DOI 10.1080/01972241003712215
Garfield E, 1994, CURR COMMENTS
Gawer A, 2014, RES POLICY, V43, P1239, DOI 10.1016/j.respol.2014.03.006
Graham M, 2017, TRANSFER-LONDON, V23, P135, DOI 10.1177/1024258916687250
Huws U., 2017, Work in the European Gig Economy: Research Results from the UK, Sweden Germany Austria, the Netherlands Switzerland and Italy
Huws Ursula., 2014, Labor in the Global Digital Economy: The Cybertariat Comes of Age
ITU, AI GOOD GLOB SUMM
Lehdonvirta V, 2019, J MANAGE, V45, P567, DOI 10.1177/0149206318786781
Lessig Lawrence, 1999, CODE OTHER LAWS CYBE
Lohse GJ, 2000, BCS CONFERENCE S, P3
Organisation for Economic Co-operation and Development, 2015, OECD G20 BAS ER PROF, DOI [10.1787/9789264241046-en, DOI 10.1787/9789264241046-EN]
Parker G. G., 2016, PLATFORM REVOLUTION
Rochet JC, 2003, J EUR ECON ASSOC, V1, DOI 10.1162/154247603322493212
Schor J., 2016, Journal of SelfGovernance and Management Economics, V4, P7, DOI [DOI 10.22381/JSME4320161, 10.7903/cmr.11116]
Schor JB, 2017, SOCIOL COMPASS, V11, DOI 10.1111/soc4.12493
Schor JB, 2017, CAMB J REG ECON SOC, V10, P263, DOI 10.1093/cjres/rsw047
Srnicek Nick, 2017, PLATFORM CAPITALISM
Taddeo M, 2018, SCIENCE, V361, P751, DOI 10.1126/science.aat5991
Tapscott, 1996, DIGITAL EC PROMISE P, DOI DOI 10.5860/CHOICE.33-5199
UN, 2020, ROAD MAP DIG COOP IM
van Dijck J., 2018, The platform society: Public values in a connective world, DOI DOI 10.1093/OSO/9780190889760.001.0001
Wood AJ, 2019, WORK EMPLOY SOC, V33, P56, DOI 10.1177/0950017018785616
NR 31
TC 0
Z9 0
U1 1
U2 13
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-68449-5; 978-3-030-68448-8
J9 LECT NOTES COMPUT SC
PY 2021
VL 12615
BP 469
EP 480
DI 10.1007/978-3-030-68449-5_45
PG 12
WC Computer Science, Artificial Intelligence; Computer Science,
Cybernetics; Computer Science, Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BT5BZ
UT WOS:000835686200045
DA 2024-09-05
ER
PT J
AU Lauer, MS
Danthi, NS
Kaltman, J
Wu, CL
AF Lauer, Michael S.
Danthi, Narasimhan S.
Kaltman, Jonathan
Wu, Colin
TI Predicting Productivity Returns on Investment Thirty Years of Peer
Review, Grant Funding, and Publication of Highly Cited Papers at the
National Heart, Lung, and Blood Institute
SO CIRCULATION RESEARCH
LA English
DT Article
DE bibliometrics; National Institutes of Health (US); National Heart, Lung,
and Blood Institute (US); peer review; ROC curve
ID CITATION IMPACT; PERCENTILE RANKING; SCIENCE; TRIALS; PEOPLE
AB There are conflicting data about the ability of peer review percentile rankings to predict grant productivity, as measured through publications and citations. To understand the nature of these apparent conflicting findings, we analyzed bibliometric outcomes of 6873 de novo cardiovascular R01 grants funded by the National Heart, Lung, and Blood Institute (NHLBI) between 1980 and 2011. Our outcomes focus on top-10% articles, meaning articles that were cited more often than 90% of other articles on the same topic, of the same type (eg, article, editorial), and published in the same year. The 6873 grants yielded 62468 articles, of which 13507 (or 22%) were top-10% articles. There was a modest association between better grant percentile ranking and number of top-10% articles. However, discrimination was poor (area under receiver operating characteristic curve [ROC], 0.52; 95% confidence interval, 0.51-0.53). Furthermore, better percentile ranking was also associated with higher annual and total inflation-adjusted grant budgets. There was no association between grant percentile ranking and grant outcome as assessed by number of top-10% articles per $million spent. Hence, the seemingly conflicting findings on peer review percentile ranking of grants and subsequent productivity largely reflect differing questions and outcomes. Taken together, these findings raise questions about how best National Institutes of Health (NIH) should use peer review assessments to make complex funding decisions.
C1 [Lauer, Michael S.] NHLBI, Off Director, Div Cardiovasc Sci, Bethesda, MD 20892 USA.
[Danthi, Narasimhan S.] NHLBI, Adv Technol & Surg Branch, Div Cardiovasc Sci, Bethesda, MD 20892 USA.
[Kaltman, Jonathan] NHLBI, Heart Dev & Struct Dis Branch, Div Cardiovasc Sci, Bethesda, MD 20892 USA.
[Wu, Colin] NHLBI, Off Biostat Res, Div Cardiovasc Sci, Bethesda, MD 20892 USA.
C3 National Institutes of Health (NIH) - USA; NIH National Heart Lung &
Blood Institute (NHLBI); National Institutes of Health (NIH) - USA; NIH
National Heart Lung & Blood Institute (NHLBI); National Institutes of
Health (NIH) - USA; NIH National Heart Lung & Blood Institute (NHLBI);
National Institutes of Health (NIH) - USA; NIH National Heart Lung &
Blood Institute (NHLBI)
RP Lauer, MS (corresponding author), 6701 Rockledge Dr,Room 8128, Bethesda, MD 20892 USA.
EM lauerm@nhlbi.nih.gov
RI Lauer, Michael S/L-9656-2013
CR Azoulay P, 2012, NATURE, V484, P31, DOI 10.1038/484031a
Berg JM, 2012, NATURE, V489, P203, DOI 10.1038/489203a
Bornmann L, J ASS INF S IN PRESS
Bornmann L, 2013, EMBO REP, V14, P226, DOI 10.1038/embor.2013.9
Danthi N, 2014, CIRC RES, V114, P600, DOI 10.1161/CIRCRESAHA.114.302656
Danthi NS, 2015, CIRC RES, V116, P784, DOI 10.1161/CIRCRESAHA.116.305894
Devereaux PJ, 2013, NEW ENGL J MED, V369, P1962, DOI 10.1056/NEJMe1310554
Doyle JM, 2015, MOL PSYCHIAT
Gordon DJ, 2014, NEW ENGL J MED, V370, P782, DOI 10.1056/NEJMc1315653
Graves N, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d4797
Hicks Diana, 2015, Nature, V520, P429, DOI 10.1038/520429a
Ioannidis JPA, 2011, NATURE, V477, P529, DOI 10.1038/477529a
Kaiser J, 2014, SCIENCE, V345, P366, DOI 10.1126/science.345.6195.366
Kaltman JR, 2014, CIRC RES, V115, P617, DOI 10.1161/CIRCRESAHA.115.304766
Lauer MS, 2014, ANN INTERN MED, V160, P651, DOI 10.7326/M14-0655
Li D, 2015, SCIENCE, V348, P434, DOI 10.1126/science.aaa0185
Mervis J, 2015, SCIENCE, V348, P384, DOI 10.1126/science.348.6233.384
Mervis J, 2014, SCIENCE, V343, P596, DOI 10.1126/science.343.6171.596
Opthof T, 2011, MED BIOL ENG COMPUT, V49, P613, DOI 10.1007/s11517-011-0783-6
Pettigrew R, 2014, MESSAGE DIRECTOR OCT
Press WH, 2013, SCIENCE, V342, P817, DOI 10.1126/science.342.6160.817
Robin X, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-77
Sachs M, PLOTROC GENERATE USE
Scheiner SM, 2013, FRONT ECOL ENVIRON, V11, P406, DOI 10.1890/13.WB.017
Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3
NR 25
TC 32
Z9 34
U1 0
U2 30
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA
SN 0009-7330
EI 1524-4571
J9 CIRC RES
JI Circ.Res.
PD JUL 17
PY 2015
VL 117
IS 3
BP 239
EP 243
DI 10.1161/CIRCRESAHA.115.306830
PG 5
WC Cardiac & Cardiovascular Systems; Hematology; Peripheral Vascular
Disease
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Cardiovascular System & Cardiology; Hematology
GA CM9QZ
UT WOS:000358045300005
PM 26089369
OA Green Accepted
DA 2024-09-05
ER
PT J
AU Cao, LM
Yang, Q
AF Cao, Limei
Yang, Qi
TI Interaction With Cutting-Edge Technologies: A Bibliometric Analysis and
a Theoretical Framework
SO JOURNAL OF HOSPITALITY & TOURISM RESEARCH
LA English
DT Article; Early Access
DE cutting-edge technologies; artificial intelligence; virtual reality;
robot; interaction
ID VIRTUAL-REALITY; CULTURAL-DIFFERENCES; TOURISM; EXPERIENCE; SERVICE;
ACCEPTANCE; LESSONS; TRENDS; ROBOTS
AB In hospitality and tourism research, cutting-edge technologies (CETs) are receiving growing attention. However, most reviews on CETs focus on specific types of CETs and are devoid of theories focusing on the stakeholders-CETs interaction. Consequently, a comprehensive review and an integrated theoretical framework from an interaction perspective is necessary. To address this gap, we conducted a bibliometric analysis of 554 articles published between 2003 and 2023 to identify three research clusters and key entities of CETs. Moreover, drawing on stimulus-organism-response (SOR) theory and media equation theory, we built a new integrated theoretical framework for understanding the stakeholders' interaction with the CETs. The focus of this new framework centers on how CETs' representations and CETs' types directly and indirectly interact to affect stakeholders' outcomes. This study represents the first attempt to combine bibliometric and qualitative analysis, contributing to a forward-thinking review and theoretical building that accelerates and enhances research in CETs.
C1 [Cao, Limei] Sun Yat Sen Univ, Sch Business, Guangzhou, Guangdong, Peoples R China.
[Yang, Qi] Macao Inst Tourism Studies, Sch Tourism Management, Macau, Peoples R China.
[Yang, Qi] Guangdong Univ Sci & Technol, Management Sch, Dongguan, Guangdong, Peoples R China.
[Yang, Qi] Macao Inst Tourism Studies, Sch Tourism Management, Xu Rishengyin Rd, Taipa 999078, Macao, Peoples R China.
C3 Sun Yat Sen University; Macao University of Tourism; Guangdong
University of Science & Technology; Macao University of Tourism
RP Yang, Q (corresponding author), Macao Inst Tourism Studies, Sch Tourism Management, Xu Rishengyin Rd, Taipa 999078, Macao, Peoples R China.
EM yeungkei@foxmail.com
OI Yang, Qi/0000-0002-2527-1283
CR Acedo FJ, 2006, J MANAGE STUD, V43, P957, DOI 10.1111/j.1467-6486.2006.00625.x
Ameen N, 2021, COMPUT HUM BEHAV, V120, DOI 10.1016/j.chb.2021.106761
Angeloni S, 2016, TOURISM MANAGE, V52, P187, DOI 10.1016/j.tourman.2015.06.011
Bagozzi RP, 2022, J SERV RES-US, V25, P499, DOI 10.1177/10946705221118579
Benckendorff P, 2013, ANN TOURISM RES, V43, P121, DOI 10.1016/j.annals.2013.04.005
Bogicevic V, 2019, TOURISM MANAGE, V74, P55, DOI 10.1016/j.tourman.2019.02.009
Borner K., 2005, J. Am. Soc. Inf. Sci, DOI DOI 10.1007/978-1-4471-5128-9_8
Buhalis D, 2019, J SERV MANAGE, V30, P484, DOI 10.1108/JOSM-12-2018-0398
Chan APH, 2019, J TRAVEL TOUR MARK, V36, P458, DOI 10.1080/10548408.2019.1568953
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Cho V, 2003, TOURISM MANAGE, V24, P323, DOI 10.1016/S0261-5177(02)00068-7
Choi M, 2023, INT J CONTEMP HOSP M, V35, P469, DOI 10.1108/IJCHM-02-2022-0157
Christou P, 2020, INT J CONTEMP HOSP M, V32, P3665, DOI 10.1108/IJCHM-05-2020-0423
Cohen SA, 2019, ANN TOURISM RES, V74, P33, DOI 10.1016/j.annals.2018.10.009
Colombetti G, 2005, J CONSCIOUSNESS STUD, V12, P103
Loureiro SMC, 2020, TOURISM MANAGE, V77, DOI 10.1016/j.tourman.2019.104028
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
Filieri R, 2022, J SERV RES-US, V25, P614, DOI 10.1177/10946705221103937
Gardner WL, 2010, LEADERSHIP QUART, V21, P922, DOI 10.1016/j.leaqua.2010.10.003
Grundner L, 2021, J DESTIN MARK MANAGE, V19, DOI 10.1016/j.jdmm.2020.100511
Guttentag DA, 2010, TOURISM MANAGE, V31, P637, DOI 10.1016/j.tourman.2009.07.003
He Q, 1999, LIBR TRENDS, V48, P133
Hermann E, 2022, MARKET LETT, V33, P157, DOI 10.1007/s11002-021-09587-3
Hofman K, 2022, J SUSTAIN TOUR, V30, P742, DOI 10.1080/09669582.2021.1884690
Hu YO, 2021, J HOSP TOUR RES, V45, P1022, DOI 10.1177/10963480211011533
Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459
International Organization for Standardization, 2021, 83732021EN ISO
Ivanov S, 2020, INF TECHNOL TOUR, V22, P505, DOI 10.1007/s40558-020-00187-x
Ivanov SH, 2022, TOURISM ECON, V28, P3, DOI 10.1177/1354816620946541
Jacoby J, 2002, J CONSUM PSYCHOL, V12, P51, DOI 10.1207/S15327663JCP1201_05
Johnson Richard D., 2021, Journal of Tourism Futures, V7, P40, DOI 10.1108/JTF-02-2020-0013
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Jung TH, 2018, INT J CONTEMP HOSP M, V30, P1621, DOI [10.1108/IJCHM-02-2017-0084, 10.1108/ijchm-02-2017-0084]
Kim H, 2022, TOURISM MANAGE, V92, DOI 10.1016/j.tourman.2022.104537
Kim MJ, 2020, J TRAVEL RES, V59, P69, DOI 10.1177/0047287518818915
Kim SY, 2019, MARKET LETT, V30, P1, DOI 10.1007/s11002-019-09485-9
Kim T, 2023, J ACAD MARKET SCI, V51, P785, DOI 10.1007/s11747-021-00832-9
Kim WG, 2009, INT J HOSP MANAG, V28, P144, DOI 10.1016/j.ijhm.2008.06.010
Knani M, 2022, INT J HOSP MANAG, V107, DOI 10.1016/j.ijhm.2022.103317
Kong HY, 2021, INT J CONTEMP HOSP M, V33, P717, DOI 10.1108/IJCHM-07-2020-0789
Li J, 2019, TOURISM MANAGE, V73, P172, DOI 10.1016/j.tourman.2019.02.006
Li X, 2021, J TRAVEL RES, V60, P1213, DOI 10.1177/0047287520934871
Lin IY, 2021, INT J HOSP MANAG, V94, DOI 10.1016/j.ijhm.2021.102876
Lin PMG, 2019, INT J HOSP MANAG, V77, P492, DOI 10.1016/j.ijhm.2018.08.013
Liu X, 2022, ANN TOURISM RES, V92, DOI 10.1016/j.annals.2021.103324
Liu ZG, 2015, SCIENTOMETRICS, V103, P135, DOI 10.1007/s11192-014-1517-y
McCartney G, 2020, INT J CONTEMP HOSP M, V13, P3835, DOI 10.1108/IJCHM-05-2020-0450
MEHRABIA.A, 1974, PERCEPT MOTOR SKILL, V38, P283, DOI 10.2466/pms.1974.38.1.283
Melián-González S, 2020, TOURISM MANAGE, V80, DOI 10.1016/j.tourman.2020.104123
Meuter ML, 2000, J MARKETING, V64, P50, DOI 10.1509/jmkg.64.3.50.18024
Mori M, 2012, IEEE ROBOT AUTOM MAG, V19, P98, DOI 10.1109/MRA.2012.2192811
Murphy J, 2019, J TRAVEL TOUR MARK, V36, P784, DOI 10.1080/10548408.2019.1571983
Nass C, 2000, J SOC ISSUES, V56, P81, DOI 10.1111/0022-4537.00153
Pillai R, 2020, INT J CONTEMP HOSP M, V32, P3199, DOI 10.1108/IJCHM-04-2020-0259
Prentice C, 2020, INT J HOSP MANAG, V90, DOI 10.1016/j.ijhm.2020.102629
Prentice C, 2020, J HOSP MARKET MANAG, V29, P739, DOI 10.1080/19368623.2020.1722304
Qiu HL, 2020, J HOSP MARKET MANAG, V29, P247, DOI 10.1080/19368623.2019.1645073
Racherla P, 2010, ANN TOURISM RES, V37, P1012, DOI 10.1016/j.annals.2010.03.008
Rajan K, 2017, ARTIF INTELL, V247, P1, DOI 10.1016/j.artint.2017.03.003
Reeves B., 1996, The media equation
Ribeiro MA, 2022, J TRAVEL RES, V61, P620, DOI 10.1177/0047287521993578
Roesler E, 2021, SCI ROBOT, V6, DOI 10.1126/scirobotics.abj5425
Saydam MB, 2022, J HOSP MARKET MANAG, V31, P908, DOI 10.1080/19368623.2022.2118923
Schwartz Z, 2016, INT J CONTEMP HOSP M, V28, P267, DOI 10.1108/IJCHM-10-2014-0507
Seyitoglu F, 2020, INT J HOSP MANAG, V91, DOI 10.1016/j.ijhm.2020.102661
Shi S, 2021, J TRAVEL RES, V60, P1714, DOI 10.1177/0047287520966395
Shin Hyejo Hailey, 2022, International Journal of Contemporary Hospitality Management, V35, P563, DOI 10.1108/IJCHM-03-2022-0376
Slevitch L, 2022, J HOSP TOUR RES, V46, P212, DOI 10.1177/1096348020957067
Solakis K, 2024, J TOUR FUTURES, V10, P116, DOI 10.1108/JTF-06-2021-0157
Taherdoost H, 2018, PROCEDIA MANUF, V22, P960, DOI 10.1016/j.promfg.2018.03.137
Tung VWS, 2017, INT J CONTEMP HOSP M, V29, P2498, DOI 10.1108/IJCHM-09-2016-0520
Tuomi A, 2021, CORNELL HOSP Q, V62, P232, DOI 10.1177/1938965520923961
Tussyadiah I, 2020, ANN TOURISM RES, V81, DOI 10.1016/j.annals.2020.102883
Tussyadiah IP, 2018, TOURISM MANAGE, V66, P140, DOI 10.1016/j.tourman.2017.12.003
van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Van Kerrebroeck H, 2017, COMPUT HUM BEHAV, V77, P437, DOI 10.1016/j.chb.2017.07.019
Walters G, 2024, J HOSP TOUR RES, V48, P564, DOI 10.1177/10963480221116047
Wang CH, 2004, TOURISM MANAGE, V25, P367, DOI 10.1016/S0261-5177(03)00132-8
Wen J, 2020, J HOSP TOUR MANAG, V45, P370, DOI 10.1016/j.jhtm.2020.06.001
Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119
Xu FZ, 2021, J HOSP MARKET MANAG, V30, P373, DOI 10.1080/19368623.2020.1813670
Yang Y, 2022, J HOSP MARKET MANAG, V31, P1, DOI 10.1080/19368623.2021.1926037
Ye Q, 2013, J HOSP TOUR RES, V37, P51, DOI 10.1177/1096348011425500
Yoganathan V, 2021, TOURISM MANAGE, V85, DOI 10.1016/j.tourman.2021.104309
Yu CE, 2020, J HOSP MARKET MANAG, V29, P22, DOI 10.1080/19368623.2019.1592733
Yu CE, 2019, TOUR REV, V74, P428, DOI 10.1108/TR-07-2018-0097
Zheng WM, 2019, TOURISM MANAGE, V71, P54, DOI 10.1016/j.tourman.2018.09.019
Zhu DH, 2020, INT J CONTEMP HOSP M, V32, P1367, DOI 10.1108/IJCHM-10-2019-0904
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 91
TC 0
Z9 0
U1 7
U2 32
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1096-3480
EI 1557-7554
J9 J HOSP TOUR RES
JI J. Hosp. Tour. Res.
PD 2023 JUN 30
PY 2023
DI 10.1177/10963480231182965
EA JUN 2023
PG 14
WC Hospitality, Leisure, Sport & Tourism
WE Social Science Citation Index (SSCI)
SC Social Sciences - Other Topics
GA K8TQ3
UT WOS:001019111000001
DA 2024-09-05
ER
PT J
AU Valizadeh, M
Moezzi, F
Khavassi, Z
Movahedinia, M
Mazloomzadeh, S
Mehran, L
AF Valizadeh, Majid
Moezzi, Farzaneh
Khavassi, Zohreh
Movahedinia, Mohammad
Mazloomzadeh, Seideh
Mehran, Ladan
TI Influence of topical iodine-containing antiseptics used during delivery
on recall rate of congenital hypothyroidism screening program
SO JOURNAL OF PEDIATRIC ENDOCRINOLOGY & METABOLISM
LA English
DT Article
DE congenital hypothyroidism; endocrinology-pediatric; iodine; thyroid
function
ID PROVINCE
AB Background: The proportion of newborns recalled during neonatal screening programs for congenital hypothyroidism (CH) varies substantially by country and may be higher in settings where povodine iodine (PVP-I) is used during delivery. We assessed this hypothesis by substituting PVP-I for chlorhexidine (CHL) and evaluated the reduction in the recall rate of the Irainian newborn screening program.
Methods: This study investigated 2282 neonates of mothers admitted to a local hospital for delivery between December 2012 and October 2013. We measured thyorid stimulating hormone (TSH) levels in heel-prick blood specimens of infants, aged between 3 and 5 days, born to mothers who received PVP-I (phase I) and those who received CHL after withdrawal of PVP-I from obstetric procedures (phase II). Then we compared the median TSH levels and the recall rate based on a TSH level >= 5 mU/L.
Results: Of 2282 cases, 1094 infants were born to mothers exposed to PVP-I during phase I (PVP-I group) and 1188 ones were born to mothers exposed to chlorhexidine in phase II (CHL group); 6.56% of the PVP-I group and 1.91% of the CHL group were recalled later during screening (p < 0.001). The median TSH level was significantly higher in the PVP-I group compared to the CHL group (1.35 vs. 1.00, p < 0.001).
Conclusions: Replacement of iodine-containing antiseptics by iodine-free ones, during delivery resulted in a significant reduction in the recall rate of the Iranian screening program for CH.
C1 [Movahedinia, Mohammad] Shaheed Beheshti Univ Med Sci, Velenjak St,Shahid Chamran Highway, Tehran 193954719, Iran.
[Valizadeh, Majid; Mehran, Ladan] Shaheed Beheshti Univ Med Sci, Res Inst Endocrine Sci, Tehran, Iran.
[Moezzi, Farzaneh; Khavassi, Zohreh] Zanjan Univ Med Sci, Mosavi Hosp Zanjan, Zanjan, Iran.
[Mazloomzadeh, Seideh] Zanjan Univ Med Sci, Dept Publ Hlth Zanjan, Zanjan, Iran.
C3 Shahid Beheshti University Medical Sciences; Shahid Beheshti University
Medical Sciences
RP Movahedinia, M (corresponding author), Shaheed Beheshti Univ Med Sci, Velenjak St,Shahid Chamran Highway, Tehran 193954719, Iran.
EM pudo_72@yahoo.com
RI Movahedinia, Mohammad/IUP-6790-2023; Mazloomzadeh, Saeideh/H-4062-2016
OI Movahedinia, Mohammad/0000-0001-7889-8015; Mazloomzadeh,
Saeideh/0000-0001-6325-0662; Valizadeh, Majid/0000-0002-3155-1951
CR Caldwell KL, 2013, THYROID, V23, P927, DOI 10.1089/thy.2013.0012
Cassio A, 1998, Ann Ist Super Sanita, V34, P337
CHANOINE JP, 1988, ARCH DIS CHILD, V63, P1207, DOI 10.1136/adc.63.10.1207
Francis I, 1983, EFFECT BETADINE TREA, P52
FYRO K, 1987, ACTA PAEDIATR SCAND, V76, P107, DOI 10.1111/j.1651-2227.1987.tb10424.x
Gruters A, 1983, THYROID FUNCTION IOD, P54
Harada S., 1994, SCREENING, V3, P115, DOI 10.1016/0925-6164(94)90019-1
Hashemipour M, 2004, J CLIN ENDOCR METAB, V6, P13
Hashemipour Mahin, 2012, Adv Biomed Res, V1, P37, DOI 10.4103/2277-9175.100130
Kliegman RM., 2012, NELSON TXB PEDIAT
Koga Y, 1995, J Obstet Gynaecol (Tokyo 1995), V21, P581
McPherson R., 2007, HENRYS CLIN DIAGNOSI
Mengreli C, 2010, J CLIN ENDOCR METAB, V95, P4283, DOI 10.1210/jc.2010-0057
Nagendran V, 2009, OCCUP MED-OXFORD, V59, P270, DOI 10.1093/occmed/kqp042
Nohr SB, 2000, J CLIN ENDOCR METAB, V85, P623, DOI 10.1210/jc.85.2.623
Ordookhani A, 2007, THYROID, V17, P1097, DOI 10.1089/thy.2007.0058
ROSENTHAL M, 1988, ARCH DIS CHILD, V63, P790, DOI 10.1136/adc.63.7.790
Valizadeh M, 2011, INT J ENDOCRINOL MET, V9, P338, DOI 10.5812/Kowsar.1726913X.3639
Wittczak T, 2013, OCCUP MED-OXFORD, V63, P301, DOI 10.1093/occmed/kqt035
NR 19
TC 6
Z9 7
U1 0
U2 4
PU WALTER DE GRUYTER GMBH
PI BERLIN
PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
SN 0334-018X
EI 2191-0251
J9 J PEDIATR ENDOCR MET
JI J. Pediatr. Endocrinol. Metab.
PD SEP
PY 2017
VL 30
IS 9
BP 973
EP 978
DI 10.1515/jpem-2016-0164
PG 6
WC Endocrinology & Metabolism; Pediatrics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Endocrinology & Metabolism; Pediatrics
GA FF3LB
UT WOS:000408795400009
PM 28809751
DA 2024-09-05
ER
PT J
AU Hoes, AC
Regeer, BJ
Bunders, JFG
AF Hoes, Anne-Charlotte
Regeer, Barbara J.
Bunders, Joske F. G.
TI TransFormers in knowledge production: building science-practice
collaborations
SO ACTION LEARNING
LA English
DT Article
DE action learning; system innovation; inter-institutional collaboration;
science and society
AB This article places action learning in the context of system innovation, as it studies the potential use of action learning for system change. In order to effect such system change, collaboration between actors from different institutional backgrounds is essential. To gain insight into if and how action learning can be applied for system change, we study three system change projects in Dutch agriculture. We focus specifically on the approaches developed by the project leaders for collaboration between the scientists and the entrepreneurs and analyse how the interaction between these two contributed to the learning process within the project. This article concludes with guiding concepts for action learning for system change in the field of sustainable development of agriculture and beyond.
C1 [Hoes, Anne-Charlotte; Regeer, Barbara J.] Vrije Univ Amsterdam, Athena Inst Res Commun & Innovat Hlth & Life Sci, Athena Inst, Amsterdam, Netherlands.
[Bunders, Joske F. G.] Vrije Univ Amsterdam, Athena Inst Res Commun & Innovat Hlth & Life Sci, Athena Inst, Biol & Soc, Amsterdam, Netherlands.
C3 Vrije Universiteit Amsterdam; Vrije Universiteit Amsterdam
RP Hoes, AC (corresponding author), Vrije Univ Amsterdam, Athena Inst Res Commun & Innovat Hlth & Life Sci, Athena Inst, Amsterdam, Netherlands.
EM ahoes@falw.vu.nl
RI Regeer, Barbara J/JCE-1493-2023; Regeer, Barbara J/M-1207-2018
OI Regeer, Barbara J/0000-0002-9044-9367
FU TransForum
FX We are grateful for the support of TransForum, the co-funder of our
research project 'Networked Learning, Learning from Networks', of which
the three case studies discussed in this article form a part. TransForum
is a national programme that supports collaboration between science and
practice in order to realise the sustainable development of agribusiness
and rural areas. In addition we would also like to thank the project
leaders and other interviewees, without whose openness this research
would not have been possible.
CR [Anonymous], ABC ACTION LEARNING
[Anonymous], INTERMEDIARY P UNPUB
[Anonymous], THESIS
[Anonymous], CULTICATING COMMUNIT
[Anonymous], 2007, IEEE ENG MANAGEMENT, DOI DOI 10.1109/EMR.2007.4296430
[Anonymous], INTERDISCIPLINARY EN, DOI [10.1504/ier.2003.053901, DOI 10.1504/IER.2003.053901]
[Anonymous], 6 GUIDING PRIN UNPUB
[Anonymous], DEV STRATEGY INCLUDE
[Anonymous], 2007, PhD-Thesis.
Bos A.P., 2008, Social Epistemology, V22, P29, DOI DOI 10.1080/02691720701773502
Coughlan P., 2004, ACTION LEARN, V1, P43
Feenberg Andrew., 2008, SOC EPISTEMOL, V22, P5, DOI DOI 10.1080/02691720701773247
Flinterman J.F., 2001, Bulletin of Science Technology Society, V21, P253, DOI DOI 10.1177/027046760102100403
FUNTOWICZ SO, 1993, FUTURES, V25, P739, DOI 10.1016/0016-3287(93)90022-L
Gibbons M., 1997, The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies
Grin J, 1996, SCI TECHNOL HUM VAL, V21, P72, DOI 10.1177/016224399602100104
Guba E. G., 1989, Fourth Generation Evaluation, V1st ed
Jasanoff S., 2006, States of Knowledge: The co-Production of Science and Social Order
Klein J.T., 2001, Transdisciplinarity: Joint problem solving among science, technology, and society: An effective way for managing complexity
Kleiner A., 1996, FIELD MANUAL LEARNIN
Linder F, 2003, CONTEMP SOCIOL, V32, P255, DOI 10.2307/3089636
Marquardt M., 2004, ACTION LEARN, V1, P185, DOI DOI 10.1080/1476733042000264146
Raelin JA, 2006, ACTION LEARN, V3, P45, DOI 10.1080/14767330600574615
Regeer B.J., 2007, Kenniscocreatie: samenspel tussen wetenschap praktijk
Revans R.W., 1998, ABC of action learning, V3rd
Stringer E.T., 1996, Action research: A handbook for practitioners
Tress G., 2003, From tacit to explicit knowledge in integrative and participatory research
Veldkamp A, 2009, AGRON SUSTAIN DEV, V29, P87, DOI 10.1051/agro:2008022
Willis V.J., 2004, Action Learning: Research and Practice, V1, P11
NR 29
TC 25
Z9 27
U1 0
U2 0
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1476-7333
EI 1476-7341
J9 ACTION LEARN
JI Action Learn.
PY 2008
VL 5
IS 3
BP 207
EP 220
DI 10.1080/14767330802461298
PG 14
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA V99JE
UT WOS:000213462500002
DA 2024-09-05
ER
PT J
AU Hiragi, S
Tamura, H
Goto, R
Kuroda, T
AF Hiragi, Shusuke
Tamura, Hiroshi
Goto, Rei
Kuroda, Tomohiro
TI The effect of model selection on cost-effectiveness research: a
comparison of kidney function-based microsimulation and disease
grade-based microsimulation in chronic kidney disease modeling
SO BMC MEDICAL INFORMATICS AND DECISION MAKING
LA English
DT Article
DE Chronic kidney disease; Health economics; Cost effectiveness analysis;
Disease modeling
ID QUALITY-OF-LIFE; GLOMERULAR-FILTRATION-RATE; STAGE RENAL-DISEASE; IGA
NEPHROPATHY; DECLINE; PROGRESSION; POPULATION; TRIAL; CARE; CKD
AB BackgroundCost effectiveness research is emerging in the chronic kidney disease (CKD) research field. Especially, an individual-level state transition model (microsimulation) is widely used for these researches. Some researchers set CKD grades as discrete health states, and the transition probabilities between these states were dependent on the CKD grades (disease grade-based microsimulation, MSM-dg), while others set estimated glomerular filtration rate value which determines the severity of CKD as a main variable describing patients' continuous status (kidney function-based microsimulation, MSM-kf). MSM-kf seems to reflect the real world more precisely but is more difficult to implement. We compared the calculation results of these two microsimulation models to evaluate the effect of model selection on CKD cost-effectiveness analysis.MethodsWe implemented simplified MSM-dg and MSM-kf emulating natural course of CKD in general, and compared models using parameters derived from an IgA nephropathy cohort. After checking these models' overall behavior, life-years, utilities, and thresholds regarding intervention costs below which the intervention is thought as dominant (V0) or cost-effective (V1) were calculated. In addition, one-way and probabilistic sensitivity analyses were performed.ResultsWith base-case parameters, the calculated life-years was shorter in MSM-dg (73.89 vs. 75.80years) while the thresholds were almost equal (86.87 vs. 90.43 (V0), 132.29 vs. 146.25 [V1 in 1000 USD]) compared to MSM-kf. Sensitivity analyses showed a tendency of the MSM-dg to show shorter results in life-years. V0 and V1 were distributed by approximately 100,000 USD (V0) and +/- 150,000 USD (V1) between models.Conclusions p id= Par4 Estimated cost-effectiveness thresholds by both models were not the same and its difference distributed too wide to be ignored. This result indicated that model selection in CKD cost-effectiveness research has large effect on their conclusions.
C1 [Hiragi, Shusuke; Tamura, Hiroshi; Kuroda, Tomohiro] Kyoto Univ Hosp, Div Med Informat Technol & Adm Planning, Sakyo Ku, 54 Kawaharacho, Kyoto 6068507, Japan.
[Hiragi, Shusuke] Kyoto Univ Hosp, Dept Nephrol, Sakyo Ku, 54 Kawaharacho, Kyoto 6068507, Japan.
[Goto, Rei] Keio Univ, Grad Sch Business Adm, Kohoku Ku, 2-33-28 Hiyoshi Honcho, Yokohama, Kanagawa 2238526, Japan.
[Goto, Rei] Keio Univ, Keio Business Sch, Kohoku Ku, 2-33-28 Hiyoshi Honcho, Yokohama, Kanagawa 2238526, Japan.
C3 Kyoto University; Kyoto University; Keio University; Keio University
RP Hiragi, S (corresponding author), Kyoto Univ Hosp, Div Med Informat Technol & Adm Planning, Sakyo Ku, 54 Kawaharacho, Kyoto 6068507, Japan.; Hiragi, S (corresponding author), Kyoto Univ Hosp, Dept Nephrol, Sakyo Ku, 54 Kawaharacho, Kyoto 6068507, Japan.
EM hiragi.shusuke.4x@kyoto-u.ac.jp
RI Tamura, Hiroshi/H-1855-2011; Kuroda, Tomohiro/F-7041-2010; Hiragi,
Shusuke/AAF-4310-2019; HIRAGI, Shusuke/GYA-3171-2022
OI Tamura, Hiroshi/0000-0002-7740-2732; Kuroda,
Tomohiro/0000-0003-1472-7203; Hiragi, Shusuke/0000-0003-1629-6195;
FU Kyoto University; Advanced Science, Technology & Management Research
Institute of KYOTO (ASTEM RI / KYOTO)
FX Financial support for this study was provided in part by a grant from
Kyoto University and Advanced Science, Technology & Management Research
Institute of KYOTO (ASTEM RI / KYOTO). The funding agreement ensured the
authors' independence in designing the study, interpreting the data,
writing, and publishing the report.
CR [Anonymous], 2015, LANG ENV STAT COMP
[Anonymous], 2017, DRAWING SURVIVAL CUR
[Anonymous], KIDNEY INT S, DOI DOI 10.1038/KISUP.2012.23
[Anonymous], AM J KIDNEY DIS, V39, pS170, DOI [10. 1053/ajkd. 2002. 30946, DOI 10.1053/AJKD.2002.30946]
[Anonymous], 2016, CAN HLTH EXP SPEND P
[Anonymous], 2013, KIDNEY INT SUPPL
[Anonymous], 2012, NIHON JINZO GAKKAI S, V54, P1034
Bartosik LP, 2001, AM J KIDNEY DIS, V38, P728, DOI 10.1053/ajkd.2001.27689
Blanchette Christopher M, 2015, Drugs Context, V4, P212275, DOI 10.7573/dic.212275
Briggs A, 1998, PHARMACOECONOMICS, V13, P397, DOI 10.2165/00019053-199813040-00003
Cooper BA, 2010, NEW ENGL J MED, V363, P609, DOI 10.1056/NEJMoa1000552
Drummond MF., 2015, EC EVALUATION USING, P311
Erickson KF, 2013, ANN INTERN MED, V159, P382, DOI 10.7326/0003-4819-159-6-201309170-00004
Glassock Richard J, 2009, Trans Am Clin Climatol Assoc, V120, P419
Go AS, 2004, NEW ENGL J MED, V351, P1296, DOI 10.1056/NEJMoa041031
Gorodetskaya I, 2005, KIDNEY INT, V68, P2801, DOI 10.1111/j.1523-1755.2005.00752.x
Harris A, 2011, AM J KIDNEY DIS, V57, P707, DOI 10.1053/j.ajkd.2010.12.018
Hegg BMS, 2008, PHARMACOECONOMICS, V26, P633, DOI 10.2165/00019053-200826080-00002
Hirth RA, 2000, MED DECIS MAKING, V20, P332, DOI 10.1177/0272989X0002000310
Hoerger TJ, 2010, AM J KIDNEY DIS, V55, P452, DOI 10.1053/j.ajkd.2009.11.016
Honeycutt AA, 2013, J AM SOC NEPHROL, V24, P1478, DOI 10.1681/ASN.2012040392
Imai E, 2008, HYPERTENS RES, V31, P433, DOI 10.1291/hypres.31.433
Jones C, 2006, NEPHROL DIAL TRANSPL, V21, P2133, DOI 10.1093/ndt/gfl198
Luo Lola, 2013, EGEMS (Wash DC), V1, P1040, DOI 10.13063/2327-9214.1040
Marseille E, 2015, B WORLD HEALTH ORGAN, V93, P118, DOI 10.2471/BLT.14.138206
Mazairac AHA, 2013, CLIN J AM SOC NEPHRO, V8, P82, DOI 10.2215/CJN.00010112
Mennini FS, 2014, J RENAL NUTR, V24, P313, DOI 10.1053/j.jrn.2014.05.003
MITCH WE, 1976, LANCET, V2, P1326
Orlando LA, 2011, BMC MED INFORM DECIS, V11, DOI 10.1186/1472-6947-11-41
Perlman RL, 2005, AM J KIDNEY DIS, V45, P658, DOI 10.1053/j.ajkd.2004.12.021
Pozzi C, 2004, J AM SOC NEPHROL, V15, P157, DOI 10.1097/01.ASN.0000103869.08096.4F
Schwartz LM, 1999, J GEN INTERN MED, V14, P230, DOI 10.1046/j.1525-1497.1999.00322.x
Siebert U, 2012, MED DECIS MAKING, V32, P690, DOI 10.1177/0272989X12455463
Skupien J, 2016, DIABETES CARE, V39, P2262, DOI 10.2337/dc16-0950
Skupien J, 2012, KIDNEY INT, V82, P589, DOI 10.1038/ki.2012.189
SONNENBERG FA, 1993, MED DECIS MAKING, V13, P322, DOI 10.1177/0272989X9301300409
Tesar V, 2015, J AM SOC NEPHROL, V26, P2248, DOI 10.1681/ASN.2014070697
Walz G, 2010, NEW ENGL J MED, V363, P830, DOI 10.1056/NEJMoa1003491
Weinstein MC, 2003, VALUE HEALTH, V6, P9, DOI 10.1046/j.1524-4733.2003.00234.x
Wright JT, 2002, JAMA-J AM MED ASSOC, V288, P2421, DOI 10.1001/jama.288.19.2421
NR 40
TC 7
Z9 7
U1 0
U2 2
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1472-6947
J9 BMC MED INFORM DECIS
JI BMC Med. Inform. Decis. Mak.
PD NOV 9
PY 2018
VL 18
AR 94
DI 10.1186/s12911-018-0678-7
PG 11
WC Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Medical Informatics
GA GZ8IZ
UT WOS:000449734700001
PM 30413200
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Maria, MR
Ballini, R
Souza, RF
AF Maria, Mariana Reis
Ballini, Rosangela
Souza, Roney Fraga
TI Evolution of Green Finance: A Bibliometric Analysis through Complex
Networks and Machine Learning
SO SUSTAINABILITY
LA English
DT Article
DE green finance; bibliometric analysis; literature review; topic modelling
ID RENEWABLE ENERGY-CONSUMPTION; JUSTICE ADAPTATION FINANCE; CARBON
EMISSIONS EVIDENCE; EMERGING RESEARCH FRONTS; CLIMATE-CHANGE;
ECONOMIC-GROWTH; CITATION NETWORKS; CO2 EMISSIONS; COUNTRIES; AID
AB A fundamental structural transformation that must occur to break global temperature rise and advance sustainable development is the green transition to a low-carbon system. However, dismantling the carbon lock-in situation requires substantial investment in green finance. Historically, investments have been concentrated in carbon-intensive technologies. Nonetheless, green finance has blossomed in recent years, and efforts to organise this literature have emerged, but a deeper understanding of this growing field is needed. For this goal, this paper aims to delineate this literature's existing groups and explore its heterogeneity. From a bibliometric coupling network, we identified the main groups in the literature; then, we described the characteristics of these articles through a novel combination of complex network analysis, topological measures, and a type of unsupervised machine learning technique called structural topic modelling (STM). The use of computational methods to explore literature trends is increasing as it is expected to be compatible with a large amount of information and complement the expert-based knowledge approach. The contribution of this article is twofold: first, identifying the most relevant articles in the network related to each group and, second, the most prestigious topics in the field and their contributions to the literature. A final sample of 3275 articles shows three main groups in the literature. The more mature is mainly related to the distribution of climate finance from the developed to the developing world. In contrast, the most recent ones are related to climate financial risks, green bonds, and the insertion of financial development in energy-emissions-economics models. Researchers and policy-makers can recognise current research challenges and make better decisions with the help of the central research topics and emerging trends identified from STM. The field's evolution shows a clear movement from an international perspective to a nationally-determined discussion on finance to the green transition.
C1 [Maria, Mariana Reis; Ballini, Rosangela] Univ Estadual Campinas, Inst Econ, BR-13083857 Campinas, SP, Brazil.
[Souza, Roney Fraga] Univ Fed Mato Grosso, Fac Econ, BR-78060900 Cuiaba, MT, Brazil.
C3 Universidade Estadual de Campinas; Universidade Federal de Mato Grosso
RP Maria, MR (corresponding author), Univ Estadual Campinas, Inst Econ, BR-13083857 Campinas, SP, Brazil.
EM marianareismaria@gmail.com
RI Ballini, Rosangela/B-1560-2015; Maria, Mariana/CAJ-5582-2022; Fraga
Souza, Roney/M-5661-2013
OI Maria De Lana, Mariana Reis/0000-0002-0036-3667; Fraga Souza,
Roney/0000-0001-5750-489X
CR Abadie LM, 2013, MITIG ADAPT STRAT GL, V18, P943, DOI 10.1007/s11027-012-9401-7
Acheampong AO, 2019, ENERG ECON, V83, P156, DOI 10.1016/j.eneco.2019.06.025
[Anonymous], 2019, HDB GREEN FINANCE, DOI DOI 10.1007/978-981-13-0227-5
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Barrett S, 1998, OXFORD REV ECON POL, V14, P20, DOI 10.1093/oxrep/14.4.20
Barrett S, 2014, WORLD DEV, V58, P130, DOI 10.1016/j.worlddev.2014.01.014
Barrett S, 2013, GLOBAL ENVIRON CHANG, V23, P1819, DOI 10.1016/j.gloenvcha.2013.07.015
Barrett S, 2013, PROG HUM GEOG, V37, P215, DOI 10.1177/0309132512448270
Batagelj V, 2013, SCIENTOMETRICS, V96, P845, DOI 10.1007/s11192-012-0940-1
Bates D. M., 1988, NONLINEAR REGRESSION, DOI DOI 10.1002/9780470316757
Battiston S, 2017, NAT CLIM CHANGE, V7, P283, DOI [10.1038/nclimate3255, 10.1038/NCLIMATE3255]
Berensmann K., 2017, POLICY AREA CLIMATE
Betzold C, 2017, INT ENVIRON AGREEM-P, V17, P17, DOI 10.1007/s10784-016-9343-8
Bhatnagar S, 2022, RENEW SUST ENERG REV, V162, DOI 10.1016/j.rser.2022.112405
Bischof JonathanM., 2012, Proceedings of the 29th International Conference on Machine Learning, V29, P201, DOI DOI 10.5555/3042573.3042578
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Bouckaert S., 2021, NET ZERO 2050 ROADMA
Boutabba MA, 2014, ECON MODEL, V40, P33, DOI 10.1016/j.econmod.2014.03.005
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Campiglio E, 2018, NAT CLIM CHANGE, V8, P462, DOI 10.1038/s41558-018-0175-0
Carleton TA, 2016, SCIENCE, V353, DOI 10.1126/science.aad9837
Cetin M, 2018, ENVIRON SCI POLLUT R, V25, P36589, DOI 10.1007/s11356-018-3526-5
Charfeddine L, 2019, RENEW ENERG, V139, P198, DOI 10.1016/j.renene.2019.01.010
Chirambo D, 2014, J DEV SOC, V30, P415, DOI 10.1177/0169796X14545581
Christophers B, 2017, ANN AM ASSOC GEOGR, V107, P1108, DOI 10.1080/24694452.2017.1293502
Clement V., 2021, GROUNDSWELL 2
Deleidi M, 2020, ENERG POLICY, V140, DOI 10.1016/j.enpol.2019.111195
Dell M, 2014, J ECON LIT, V52, P740, DOI 10.1257/jel.52.3.740
Dell M, 2012, AM ECON J-MACROECON, V4, P66, DOI 10.1257/mac.4.3.66
Desalegn G, 2022, ENERGIES, V15, DOI 10.3390/en15124436
Dietz S, 2016, NAT CLIM CHANGE, V6, P676, DOI [10.1038/NCLIMATE2972, 10.1038/nclimate2972]
Dogan E, 2016, RENEW SUST ENERG REV, V60, P1074, DOI 10.1016/j.rser.2016.02.006
Donner SD, 2016, ENVIRON RES LETT, V11, DOI 10.1088/1748-9326/11/5/054006
Fankhauser S, 2016, CLIM DEV, V8, P203, DOI 10.1080/17565529.2015.1064811
Farrell J, 2016, P NATL ACAD SCI USA, V113, P92, DOI 10.1073/pnas.1509433112
Gampfer R, 2014, GLOBAL ENVIRON CHANG, V29, P118, DOI 10.1016/j.gloenvcha.2014.08.006
Gomez-Echeverri L, 2013, CLIM POLICY, V13, P632, DOI 10.1080/14693062.2013.822690
Grajzl P, 2019, J COMP ECON, V47, P111, DOI 10.1016/j.jce.2018.10.004
Grasso M, 2010, GLOBAL ENVIRON CHANG, V20, P74, DOI 10.1016/j.gloenvcha.2009.10.006
Guimerà R, 2005, NATURE, V433, P895, DOI 10.1038/nature03288
Halimanjaya A, 2015, CLIM POLICY, V15, P223, DOI 10.1080/14693062.2014.912978
Intergovernmental Panel on Climate Change (IPCC), 2018, SPECIAL REPORT GLOBA
Karpf A, 2018, NAT CLIM CHANGE, V8, P161, DOI 10.1038/s41558-017-0062-0
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Kim SH, 2020, J SCI STUD RELIG, V59, P62, DOI 10.1111/jssr.12639
Kitsak M, 2018, PHYS REV E, V97, DOI 10.1103/PhysRevE.97.012309
Krueger P, 2020, REV FINANC STUD, V33, P1067, DOI 10.1093/rfs/hhz137
Kuhn KD, 2018, TRANSPORT RES C-EMER, V87, P105, DOI 10.1016/j.trc.2017.12.018
Lindenberg N., 2014, Definition of Green Finance
Mazzucato M., 2015, WHAT WILL IT TAKE GE
Mazzucato M, 2017, OXFORD REV ECON POL, V33, P24, DOI 10.1093/oxrep/grw036
Monasterolo I, 2017, CLIMATIC CHANGE, V145, P495, DOI 10.1007/s10584-017-2095-9
Naeem MA, 2023, QUAL RES FINANC MARK, V15, P608, DOI 10.1108/QRFM-10-2021-0174
Nepusz T, 2006, InterJournal Comp. Syst., VComplex Systems, P1695
Nordhaus W., 2012, RICE CLIMATE EC MODE
Ozturk I, 2010, ENERG POLICY, V38, P340, DOI 10.1016/j.enpol.2009.09.024
Pata UK, 2018, J CLEAN PROD, V187, P770, DOI 10.1016/j.jclepro.2018.03.236
Pickering J, 2015, GLOBAL ENVIRON POLIT, V15, P39, DOI 10.1162/GLEP_a_00325
Pickering J, 2015, WORLD DEV, V68, P149, DOI 10.1016/j.worlddev.2014.10.033
Pittel K, 2013, WORLD ECON, V36, P419, DOI 10.1111/twec.12029
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
PRICE D.J.S., 1961, SCI BABYLON
Puig D., 2016, The Adaptation Finance Gap Report
PWC, 2013, Exploring Green Finance Incentives in China
Reboredo JC, 2018, ENERG ECON, V74, P38, DOI 10.1016/j.eneco.2018.05.030
Roberts JT, 2017, INT ENVIRON AGREEM-P, V17, P129, DOI 10.1007/s10784-016-9347-4
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684
Rockström J, 2009, NATURE, V461, P472, DOI 10.1038/461472a
Salahuddin M, 2015, RENEW SUST ENERG REV, V51, P317, DOI 10.1016/j.rser.2015.06.005
Samuwai J, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10041192
Schoenmaker D., 2018, Principles of Sustainable Finance
Scholtens B, 2007, CORP GOV-OXFORD, V15, P1090, DOI 10.1111/j.1467-8683.2007.00633.x
Shahbaz M, 2018, ENERG ECON, V74, P843, DOI 10.1016/j.eneco.2018.07.020
Shahzad SJH, 2017, RENEW SUST ENERG REV, V70, P185, DOI 10.1016/j.rser.2016.11.042
Shibata N, 2008, TECHNOVATION, V28, P758, DOI 10.1016/j.technovation.2008.03.009
Shibata N, 2007, J AM SOC INF SCI TEC, V58, P872, DOI 10.1002/asi.20529
Shibata N, 2011, TECHNOL FORECAST SOC, V78, P274, DOI 10.1016/j.techfore.2010.07.006
Smith JB, 2011, CLIM POLICY, V11, P987, DOI 10.1080/14693062.2011.582385
Stadelmann M, 2013, CLIM POLICY, V13, P718, DOI 10.1080/14693062.2013.791146
Stadelmann M, 2011, CLIM DEV, V3, P175, DOI 10.1080/17565529.2011.599550
Steffen W, 2007, AMBIO, V36, P614, DOI 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2
Taghizadeh-Hesary F, 2019, FINANC RES LETT, V31, P98, DOI 10.1016/j.frl.2019.04.016
UNCC, 2022, COP27 REACH BREAKTHR
UNHCR The UN Refugee Agency, 2022, DISPL FRONTL CLIM EM
United Nations Climate Change-UNCC, 2015, NDC SPOTL
Unruh GC, 2002, ENERG POLICY, V30, P317, DOI 10.1016/S0301-4215(01)00098-2
Unruh GC, 2006, ENERG POLICY, V34, P1185, DOI 10.1016/j.enpol.2004.10.013
Unruh GC, 2000, ENERG POLICY, V28, P817, DOI 10.1016/S0301-4215(00)00070-7
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang MR, 2021, ENERG POLICY, V154, DOI 10.1016/j.enpol.2021.112295
Weiler F, 2018, WORLD DEV, V104, P65, DOI 10.1016/j.worlddev.2017.11.001
Woo SH, 2011, TRANSPORT RES A-POL, V45, P667, DOI 10.1016/j.tra.2011.04.014
Young H., 1983, ALA GLOSSARY LIB INF
Zaidi SAH, 2019, J CLEAN PROD, V228, P533, DOI 10.1016/j.jclepro.2019.04.210
Zhang DY, 2019, FINANC RES LETT, V29, P425, DOI 10.1016/j.frl.2019.02.003
NR 99
TC 6
Z9 6
U1 8
U2 61
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2071-1050
J9 SUSTAINABILITY-BASEL
JI Sustainability
PD JAN
PY 2023
VL 15
IS 2
AR 967
DI 10.3390/su15020967
PG 23
WC Green & Sustainable Science & Technology; Environmental Sciences;
Environmental Studies
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics; Environmental Sciences & Ecology
GA 8Q7KD
UT WOS:000927380500001
OA gold
DA 2024-09-05
ER
PT J
AU Ikram, MT
Afzal, MT
AF Ikram, Muhammad Touseef
Afzal, Muhammad Tanvir
TI Aspect based citation sentiment analysis using linguistic patterns for
better comprehension of scientific knowledge
SO SCIENTOMETRICS
LA English
DT Article
DE Citation analytics; Aspect detection; n-grams; n-gram after; n-gram
before; n-gram around; Scientometrics
ID FEATURE-SELECTION; CONTEXT; EXTRACTION; INDEX
AB An almost unrestrained access to research plethora has emerged with a potential drawback: extracting relevant scientific publications is not a straightforward task anymore. The best way is to search on citation indexes, which also provide large number of pertinent papers and when a paper is focused even then it ascertains thousands of citations. In such a scenario, citation text could be a quintessential indicator in determining the importance and relevancy of paper for the researcher based on different aspects of the cited work such as technique, corpus, method, task, concept, measure, model and tool etc. This paper presents a novel approach to identify aspect level sentiments to reveal the hidden patterns from scholarly big data. The proposed methodology comprises of two levels. At first level, it extracts the aspects from the citation sentences using the pattern of opinionated phrases around the aspect. At the second level, it detects the sentiment polarity of the identified aspect considering nearby words and associates it with the corresponding aspect category based on a linguistic rule-based approach. We consider the words before, after and around the aspect using n-gram based features: N-gram after', N-gram before' and N-gram around'. Our results reveal that N-gram around' feature performed better than other features and the SVM outperformed other considered classifiers for all N-gram models.
C1 [Ikram, Muhammad Touseef; Afzal, Muhammad Tanvir] Capital Univ Sci & Technol, Comp Sci Dept, Islamabad, Pakistan.
C3 Capital University of Science & Technology
RP Ikram, MT (corresponding author), Capital Univ Sci & Technol, Comp Sci Dept, Islamabad, Pakistan.
EM touseefgrw@hotmail.com; tanvirqau@hotmail.com
RI Afzal, Muhammad/D-3741-2019
OI Afzal, Muhammad/0000-0002-7851-2327; Afzal, Muhammad
Tanvir/0000-0002-9765-8815
CR Abirami AM, 2016, J UNIVERS COMPUT SCI, V22, P650
Agarwal B., 2016, Prominent feature extraction for sentiment analysis, P21, DOI DOI 10.1007/978-3-319-25343-5_3
Agarwal B, 2016, J EXP THEOR ARTIF IN, V28, P485, DOI 10.1080/0952813X.2014.977830
Anand D, 2016, PROCEDIA COMPUT SCI, V84, P86, DOI 10.1016/j.procs.2016.04.070
[Anonymous], 2015, AAAI WORKSH SCHOL BI
Appel O, 2016, KNOWL-BASED SYST, V108, P110, DOI 10.1016/j.knosys.2016.05.040
Athar A., 2011, P ACL 2011 STUD SESS, P81
Bar-Ilan J, 2017, SCIENTOMETRICS, V113, P547, DOI 10.1007/s11192-017-2242-0
Bertin M, 2016, SCIENTOMETRICS, V109, P1417, DOI 10.1007/s11192-016-2134-8
Salas-Zárate MD, 2017, COMPUT MATH METHOD M, V2017, DOI 10.1155/2017/5140631
Er MJ, 2016, LECT NOTES COMPUT SC, V9719, P426, DOI 10.1007/978-3-319-40663-3_49
Ghosh S., 2017, ARXIV170701425
Hernandez M, 2015, NATURAL LANGUAGE PRO, P149
Hernandez-Alvarez M., 2016, LATIN AM J COMPUTING, V3, P35
Hernández-Alvarez M, 2016, NAT LANG ENG, V22, P327, DOI 10.1017/S1351324915000388
Ikram MT, 2016, TURK J ELECTR ENG CO, V24, P4481, DOI 10.3906/elk-1502-173
Jochim C., 2012, P COLING 2012, P1343
Kazi P, 2016, SCIENTOMETRICS, V107, P103, DOI 10.1007/s11192-016-1844-2
Khalid A., 2017, CLUSTER COMPUT, V21, P1
Kilicoglu H, 2018, BRIEF BIOINFORM, V19, P1400, DOI 10.1093/bib/bbx057
Liu SB, 2014, SCIENTOMETRICS, V101, P1293, DOI 10.1007/s11192-014-1233-7
Lu C, 2017, SCIENTOMETRICS, V112, P927, DOI 10.1007/s11192-017-2398-7
Luna-Aveiga H, 2017, INT C COMP SCI APPL, P141
Manek AS, 2017, WORLD WIDE WEB, V20, P135, DOI 10.1007/s11280-015-0381-x
Peñalver-Martinez I, 2014, EXPERT SYST APPL, V41, P5995, DOI 10.1016/j.eswa.2014.03.022
Quan CQ, 2016, ENTERP INF SYST-UK, V10, P505, DOI 10.1080/17517575.2014.985613
Rana TA, 2016, ARTIF INTELL REV, V46, P459, DOI 10.1007/s10462-016-9472-z
Saggion Horacio., 2016, Proceedings of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL); 2016 June 23; Newark, P175, DOI DOI 10.1007/978-94-017-2388-6_4
Salas-Zarate M. D. P., 2016, J INFORM SCI
Tandon N., 2012, P 35 GERMAN C ARTIFI, P98
Widyantoro DH, 2014, INT C ADV COMP SCI I, P291, DOI 10.1109/ICACSIS.2014.7065871
Xiaojun Wan, 2014, Journal of the Association for Information Science and Technology, V65, P1929, DOI 10.1002/asi.23083
Xu Jun, 2015, AMIA Annu Symp Proc, V2015, P1334
Zainuddin N, 2016, LECT NOTES ARTIF INT, V9799, P269, DOI 10.1007/978-3-319-42007-3_23
Zainuddin N, 2016, LECT NOTES ARTIF INT, V9621, P151, DOI 10.1007/978-3-662-49381-6_15
Zhang X, 2016, BEHAV INFORM TECHNOL, V35, P1130, DOI 10.1080/0144929X.2016.1212403
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 37
TC 23
Z9 27
U1 4
U2 53
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD APR
PY 2019
VL 119
IS 1
BP 73
EP 95
DI 10.1007/s11192-019-03028-9
PG 23
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA HS1QS
UT WOS:000463637600004
DA 2024-09-05
ER
PT C
AU Belz, A
Graddy-Reed, A
Shweta, F
Giga, A
Murali, SM
AF Belz, Andrea
Graddy-Reed, Alexandra
Shweta, Fnu
Giga, Aleksandar
Murali, Shivesh Meenakshi
GP IEEE
TI Deterministic bibliometric disambiguation challenges in company names
SO 2023 IEEE 17TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC
LA English
DT Proceedings Paper
CT 17th IEEE International Conference on Semantic Computing (ICSC)
CY FEB 01-03, 2023
CL Laguna Hills, CA
DE disambiguation; names; patents; NLP; bibliometric; NASA; SBIR
ID GOVERNMENT
AB Peer-reviewed publications and patents serve as important signatures of knowledge generation, and therefore the authors and their organizations can represent agents of intellectual transformation. Accurate tracking of these players enables scholars to follow knowledge evolution. However, while author name disambiguation has been discussed extensively, less is known about the impact of organization name on bibliometric studies. We expand here on the recently defined phenomenon of "onomastic profusion," high-frequency words used in organization names for semantic reasons, and thus contributing a non-random source of error to bibliographic studies. We use the Small Business Innovation Research (SBIR) Phase I awardees of the National Aeronautics and Space Administration (NASA) as a use case in the field of engineering innovation. We find that firms in California or Massachusetts experience a six percent decrease in the likelihood of using the word "Technologies" in their names. Furthermore, use of the words "Research" and "Science" is linked to doubling the number of awards. We illustrate that, in aggregate, firms executing rational strategic naming decisions can create deterministic bibliometric challenges.
C1 [Belz, Andrea; Shweta, Fnu; Murali, Shivesh Meenakshi] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90007 USA.
[Graddy-Reed, Alexandra] Univ Southern Calif, Sol Price Sch Publ Policy, Los Angeles, CA USA.
[Giga, Aleksandar] Delft Univ Technol, Fac Technol Policy & Management, Delft, Netherlands.
C3 University of Southern California; University of Southern California;
Delft University of Technology
RP Belz, A (corresponding author), Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90007 USA.
EM abelz@usc.edu; graddyre@usc.edu; s779682@usc.edu; A.Giga@tudelft.nl;
smeenaks@usc.edu
FU National Science Foundation (NSF) I-Corps [1444080, 1740721]
FX This research was funded in part by the National Science Foundation
(NSF) I-Corps awards 1444080 and 1740721. Any opinions, findings, or
recommendations expressed in this paper are those of the authors and do
not necessarily reflect the views of the aforementioned organizations.
CR Andrews RJ, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104437
Belenzon S, 2017, AM ECON REV, V107, P1638, DOI 10.1257/aer.20141524
Belz A., 2022, 6 IEEE INT WORKSHOP
Belz A, 2021, IEEE T ENG MANAGE, V68, P1476, DOI 10.1109/TEM.2019.2904441
Belz AP, 2022, STRATEG ENTREP J, V16, P255, DOI 10.1002/sej.1429
Best MH, 2015, TECHNOVATION, V39-40, P4, DOI 10.1016/j.technovation.2014.04.004
Bol T, 2022, RES POLICY, V51, DOI 10.1016/j.respol.2021.104399
Chan CSR, 2018, VENTUR CAP, V20, P1, DOI 10.1080/13691066.2017.1334369
Conti A, 2013, J IND ECON, V61, P592, DOI 10.1111/joie.12025
D'Angelo CA, 2020, SCIENTOMETRICS, V123, P883, DOI 10.1007/s11192-020-03410-y
Engel Y, 2022, J SMALL BUS MANAGE, V60, P828, DOI 10.1080/00472778.2020.1738820
Feng QC, 2022, FINANC RES LETT, V47, DOI 10.1016/j.frl.2021.102526
Fleming L, 2019, SCIENCE, V364, P1139, DOI 10.1126/science.aaw2373
Giga A, 2022, J TECHNOL TRANSFER, V47, P846, DOI 10.1007/s10961-021-09859-0
Glynn MA, 2002, ACAD MANAGE J, V45, P267, DOI 10.5465/3069296
Guzman J, 2015, SCIENCE, V347, P606, DOI 10.1126/science.aaa0201
Hoberg G, 2016, J POLIT ECON, V124, P1423, DOI 10.1086/688176
Hoberg G, 2010, REV FINANC STUD, V23, P3773, DOI 10.1093/rfs/hhq053
Hotelling H, 1929, ECON J, V39, P41, DOI 10.2307/2224214
Howell ST, 2017, AM ECON REV, V107, P1136, DOI 10.1257/aer.20150808
Jensen K, 2018, NAT BIOTECHNOL, V36, P307, DOI 10.1038/nbt.4120
Keller KL, 1998, J MARKETING, V62, P48, DOI 10.2307/1251802
Klink R., 2001, Journal of Marketing Theory and Practice, V9, P27, DOI [10.1080/10696679.2001.11501889, DOI 10.1080/10696679.2001.11501889]
Kohli C.S., 2000, Marketing Management Journal, V10, P112
Lerner J, 1999, J BUS, V72, P285, DOI 10.1086/209616
Marx M, 2020, STRATEGIC MANAGE J, V41, P1572, DOI 10.1002/smj.3145
McDevitt RC, 2014, J POLIT ECON, V122, P909, DOI 10.1086/676333
McDevitt RC, 2011, AM ECON J-MICROECON, V3, P193, DOI 10.1257/mic.3.3.193
Mihaljevic H, 2021, SCIENTOMETRICS, V126, P3893, DOI 10.1007/s11192-021-03951-w
Minichilli A, 2022, MANAGE SCI, V68, P2330, DOI 10.1287/mnsc.2021.3974
Monath N., 2021, Technical report
Monath N., Disambiguating patent inventors, assignees, and their locations in patentsview
Motschenbacher H, 2020, NAMES, V68, P88, DOI 10.1080/00277738.2020.1731240
Roe P, 2014, SCIENTOMETRICS, V100, P287, DOI 10.1007/s11192-013-1223-1
ROMER PM, 1990, J POLIT ECON, V98, pS71, DOI 10.1086/261725
Shweta F, 2021, PROC INT C TOOLS ART, P1132, DOI 10.1109/ICTAI52525.2021.00179
Stinchcombe A.L., 1965, HDB ORG, P142, DOI DOI 10.1016/S0742-3322(00)17019-6
Stoyneva I., 2022, NEW ENGL J ENTREP, V25, P121
Teodoridis F., 2021, MEASURING DIRECTION
Todea L, 2015, INT CONF ONOMAST NAM, P856
Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304
Yin DY, 2020, SCIENTOMETRICS, V122, P765, DOI 10.1007/s11192-019-03310-w
NR 42
TC 2
Z9 2
U1 0
U2 1
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
BN 978-1-6654-8263-9
PY 2023
BP 239
EP 243
DI 10.1109/ICSC56153.2023.00047
PG 5
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BV0YC
UT WOS:000981661600039
OA Green Published
DA 2024-09-05
ER
PT J
AU Argueta-Guzman, M
West, M
Gaiarsa, MP
Allen, CW
Cecala, JM
Gedlinske, L
McFrederick, QS
Murillo, AC
Sankovitz, M
Rankin, EEW
AF Argueta-Guzman, Magda
West, Mari
Gaiarsa, Marilia P.
Allen, Christopher W.
Cecala, Jacob M.
Gedlinske, Lauren
McFrederick, Quinn S.
Murillo, Amy C.
Sankovitz, Madison
Rankin, Erin E. Wilson
TI Words matter: how ecologists discuss managed and non-managed bees and
birds
SO SCIENTOMETRICS
LA English
DT Article
DE Invasion biology; Sentiment analysis; Wild; Native; Introduced;
Bibliometric analysis
ID INVASION BIOLOGY; FERAL CHICKENS; HONEY-BEES; SCIENCE; WILD;
CONSERVATION; LANGUAGE
AB Effectively promoting the stability and quality of ecosystem services involves the successful management of domesticated species and the control of introduced species. In the pollinator literature, interest and concern regarding pollinator species and pollinator health dramatically increased in recent years. Concurrently, the use of loaded terms when discussing domesticated and non-native species may have increased. As a result, pollinator ecology has inherited both the confusion associated with invasion biology's lack of a standardized terminology to describe native, managed, or introduced species as well as loaded terms with very strong positive or negative connotations. The recent explosion of research on native bees and alternative pollinators, coupled with the use of loaded language, has led to a perceived divide between native bee and managed bee researchers. In comparison, the bird literature discusses the study of managed (poultry) and non-managed (all other birds) species without an apparent conflict with regard to the use of terms with strong connotations or sentiment. Here, we analyze word usage when discussing non-managed and managed bee and bird species in 3614 ecological and evolutionary biology papers published between 1990 and 2019. Using time series analyses, we demonstrate how the use of specific descriptor terms (such as wild, introduced, and exotic) changed over time. We then conducted co-citation network analyses to determine whether papers that share references have similar terminology and sentiment. We predicted a negative language bias towards introduced species and positive language bias towards native species. We found an association between the term invasive and bumble bees and we observed significant increases in the usage of more ambiguous terms to describe non-managed species, such as wild. We detected a negative sentiment associated with the research area of pathogen spillover in bumble bees, which corroborates the subjectivity that language carries. We recommend using terms that acknowledge the role of human activities on pathogen spillover and biological invasions. Avoiding the usage of loaded terms when discussing managed and non-managed species will advance our understanding and promote effective and productive communication across scientists, general public, policy makers and other stake holders in our society.
C1 [Argueta-Guzman, Magda; West, Mari; Gaiarsa, Marilia P.; Allen, Christopher W.; Cecala, Jacob M.; Gedlinske, Lauren; McFrederick, Quinn S.; Murillo, Amy C.; Sankovitz, Madison; Rankin, Erin E. Wilson] Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA.
[Gaiarsa, Marilia P.] Univ Calif, Dept Life & Environm Sci, Merced, CA 95343 USA.
[Gaiarsa, Marilia P.] Univ Zurich, Dept Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland.
[Cecala, Jacob M.] Univ Calif Davis, Dept Entomol & Nematol, Davis, CA 95616 USA.
[Gedlinske, Lauren] Montana State Univ, Dept Ecol, Bozeman, MT 59715 USA.
C3 University of California System; University of California Riverside;
University of California System; University of California Merced;
University of Zurich; University of California System; University of
California Davis; Montana State University System; Montana State
University Bozeman
RP Rankin, EEW (corresponding author), Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA.
EM e.wilson.rankin@gmail.com
RI McFrederick, Quinn/AAD-2858-2019; Wilson Rankin, E E/GLS-9381-2022;
Gedlinske, Lauren/HMV-3667-2023
OI Wilson Rankin, E E/0000-0001-7741-113X; West, Mari/0000-0001-5828-7639;
McFrederick, Quinn S./0000-0003-0740-6954; Cecala,
Jacob/0000-0002-6224-8517; Murillo, Amy/0000-0002-2467-2747; Argueta
Guzman, Magda Paola/0000-0003-1758-3129; Palumbo Gaiarsa,
Marilia/0000-0003-4414-472X
CR Aho PW., 2002, COMMERCIAL CHICKEN M, DOI 10.1007/978-1-4615-0811-3_1
Alford D.V., 2019, Beneficial Insects
[Anonymous], 2022, Cambridge Dictionary.com
[Anonymous], 2022, Oxford English Dictionary published by Oxford University Press
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Associated Press, 2008, ASS PRESS NEWS SERVI
Ayala AJ, 2020, FRONT VET SCI, V7, DOI 10.3389/fvets.2020.539925
Bates D, 2015, J STAT SOFTW, V67, P1, DOI 10.18637/jss.v067.i01
Beck KG, 2008, INVAS PLANT SCI MANA, V1, P414, DOI 10.1614/IPSM-08-089.1
BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x
Bezerra CM, 2014, MEM I OSWALDO CRUZ, V109, P887
Blackburn TM, 2011, TRENDS ECOL EVOL, V26, P333, DOI 10.1016/j.tree.2011.03.023
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bonney, 2012, BEEKEEPING PRACTICAL, P192
Buckley Cara, 2004, MIAMI HERALD 0108, p1B
Callaway E, 2016, NATURE, V529, P270, DOI 10.1038/529270a
Chew MK, 2003, SCIENCE, V301, P52, DOI 10.1126/science.1085274
Cox-Foster DL, 2007, SCIENCE, V318, P283, DOI 10.1126/science.1146498
Crane E., 1984, Evolution of domesticated animals, P403
Cridland JM, 2017, GENOME BIOL EVOL, V9, P457, DOI 10.1093/gbe/evx009
Davis MA, 2006, INVAD NAT SPRING SER, P35, DOI 10.1007/1-4020-4925-0_3
Diallo SY, 2016, SCIENTOMETRICS, V107, P1005, DOI 10.1007/s11192-016-1891-8
Dorson J., 2011, METRO 0416, P04
Elkhoraibi C, 2014, POULTRY SCI, V93, P2920, DOI 10.3382/ps.2014-04154
Falk-Petersen J, 2006, BIOL INVASIONS, V8, P1409, DOI 10.1007/s10530-005-0710-6
Ferrario C, 2017, ENVIRON MICROBIOL, V19, P4771, DOI 10.1111/1462-2920.13943
Fortier J, 2011, NEW FOREST, V42, P241, DOI 10.1007/s11056-011-9250-3
Gao BY, 2020, MOV ECOL, V8, DOI 10.1186/s40462-020-00235-5
Gering E, 2015, MOL ECOL, V24, P2112, DOI 10.1111/mec.13096
Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799
Graystock P, 2016, INT J PARASITOL-PAR, V5, P64, DOI 10.1016/j.ijppaw.2015.10.001
Henriksen R., 2018, ORIGIN EVOLUTION BIO, DOI [10.1007/978-3-319-95954-2_11, DOI 10.1007/978-3-319-95954-2_11]
Holland RA, 2006, SCIENCE, V313, P794, DOI 10.1126/science.1127272
Honolulu Star-Advertiser, 2022, NEWS BANK 0513
Jones BA, 2013, P NATL ACAD SCI USA, V110, P8399, DOI 10.1073/pnas.1208059110
KESSLER MM, 1963, AM DOC, V14, P10, DOI 10.1002/asi.5090140103
Kijlstra A, 2009, J FOOD PROTECT, V72, P2629, DOI 10.4315/0362-028X-72.12.2629
Klein AM, 2018, CURR OPIN INSECT SCI, V26, P82, DOI 10.1016/j.cois.2018.02.011
Koopman Marm E., 2007, Human-Wildlife Conflicts, V1, P235
Kueffer C, 2014, BIOSCIENCE, V64, P719, DOI 10.1093/biosci/biu084
Langford SM, 2013, BMC GENET, V14, DOI 10.1186/1471-2156-14-91
Larson BMH, 2005, FRONT ECOL ENVIRON, V3, P495
Lockwood JulieL., 2013, INVASION ECOLOGY, V2nd
Lyall C, 2013, SCI PUBL POLICY, V40, P62, DOI 10.1093/scipol/scs121
MacDonald James., 2019, JSTOR Daily
MacLeod M, 2018, SYNTHESE, V195, P697, DOI 10.1007/s11229-016-1236-4
Mallinger RE, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0189268
Marcelino J, 2022, FRONT ECOL EVOL, V10, DOI 10.3389/fevo.2022.850600
MARTIN EC, 1973, ANNU REV ENTOMOL, V18, P207, DOI 10.1146/annurev.en.18.010173.001231
Mburu J., 2006, Economic Valuation of Pollination Services: Review of Methods
McAffee A., 2020, SCI AM
Mennes J, 2019, LANG RESOUR EVAL, V53, P889, DOI 10.1007/s10579-019-09455-7
Merriam-Webster.com, 2022, HOME
Messner R., 2014, 1045 PAP
Moritz RFA, 2007, J INSECT CONSERV, V11, P391, DOI 10.1007/s10841-006-9054-5
MYLESGONZALEZ E, 2019, AQUAT INVASIONS
Nettle D, 2019, P ROY SOC B-BIOL SCI, V286, DOI 10.1098/rspb.2019.0040
Office of the Federal Register National Archives and Records Administration, 2019, PUBLIC LAW 116 9 JOH
Ohl F, 2012, VET J, V192, P13, DOI 10.1016/j.tvjl.2011.05.019
Oksanen J., 2020, VEGAN COMMUNITY ECOL, DOI DOI 10.4135/9781412971874.N145
Olson ME, 2019, TRENDS ECOL EVOL, V34, P605, DOI 10.1016/j.tree.2019.03.001
Piggins D, 1998, APPL ANIM BEHAV SCI, V57, P181, DOI 10.1016/S0168-1591(98)00095-1
Pollock, 2012, BACKYARD POULTRY PRI
Pollock SL, 2012, J COMMUN HEALTH, V37, P734, DOI 10.1007/s10900-011-9504-1
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Pritchard ZA, 2021, ENVIRON ENTOMOL, V50, P455, DOI 10.1093/ee/nvaa181
Pysek P, 2020, BIOL REV, V95, P1511, DOI 10.1111/brv.12627
Read AF, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002198
Rinker T., 2017, Package 'sentimentr'
Rudis, 2015, STREAMGRAPH HTMLWIDG
Satterfield DA, 2020, FRONT ECOL ENVIRON, V18, P335, DOI 10.1002/fee.2217
Schmid-Hempel R, 2014, J ANIM ECOL, V83, P823, DOI 10.1111/1365-2656.12185
Simberloff D., 2011, Encyclopedia of biological invasions
Smith TJ, 2016, INSECT CONSERV DIVER, V9, P384, DOI 10.1111/icad.12178
Sokolow SH, 2019, PHILOS T R SOC B, V374, DOI 10.1098/rstb.2018.0342
Velthuis HHW, 2006, APIDOLOGIE, V37, P421, DOI 10.1051/apido:2006019
Vice News, 2021, VICE NEWS 0701
Warren CR, 2007, PROG HUM GEOG, V31, P427, DOI 10.1177/0309132507079499
Warren RJ, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182502
Wear DN, 1999, ECOSYSTEMS, V2, P299, DOI 10.1007/s100219900080
WEST B, 1988, J ARCHAEOL SCI, V15, P515, DOI 10.1016/0305-4403(88)90080-5
Winfree R, 2010, ANN NY ACAD SCI, V1195, P169, DOI 10.1111/j.1749-6632.2010.05449.x
Young AM, 2011, ENVIRON RES, V111, P893, DOI 10.1016/j.envres.2011.06.006
NR 83
TC 0
Z9 0
U1 3
U2 36
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD MAR
PY 2023
VL 128
IS 3
BP 1745
EP 1764
DI 10.1007/s11192-022-04620-2
EA JAN 2023
PG 20
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 9M3IZ
UT WOS:000916678200001
OA hybrid
DA 2024-09-05
ER
PT J
AU Piryani, R
Gupta, V
Singh, VK
Pinto, D
AF Piryani, Rajesh
Gupta, Vedika
Singh, Vivek Kumar
Pinto, David
TI Book impact assessment: A quantitative and text-based exploratory
analysis
SO JOURNAL OF INTELLIGENT & FUZZY SYSTEMS
LA English
DT Article
DE Altmetrics; book impact; citation impact; review mining; sentiment
analysis
ID ALTERNATIVE METRICS; CITATION ANALYSIS; REVIEWS; LEVEL
AB Books are an important source of knowledge to disseminate information. Researchers and academicians write books to propagate their innovative research or teachings amongst academic as well as non-academic audience. The number of books written every year is increasing rapidly. According to International Publisher Association (IPA) annual report 2015-2016, around 150 million different books were published worldwide in 2014-2015. Many e-commerce websites are also involved in selling books. A recent addition to book publishing world is e-books, which have really made it very simple to publish. While, availability of large number of books is good for readers, at the same time it is challenging to find a good book, particularly in scholarly settings. Researchers in the area of Scientometrics have attempted to view assessment of goodness of a scholarly book by measuring citations that a book receive. However, citations alone are not a true measure of a book's impact. Many a times people use the knowledge in a book without actually citing it. Also use of books in classroom settings or for general reading often is not reflected in terms of citations. Therefore, it is important to obtain users's opinion about a book from other forms of data. Fortunately, we have now some data of this sort available in form of reviews, downloads and social media mentions etc. Amazon and Goodreads, both of which provide the readers' views about a book, are two good examples. This paper presents an exploratory research work on using these non-traditional data about books to assess impact of a book. A set of Scopus-indexed computer science books with good citations as well as some other popular books in computer science domain are used for analysis. The reviews of books have been crawled in an automated fashion from Amazon and Goodreads. Thereafter sentiment analysis is carried out the text of reviews. Results of sentiment analysis are compared and correlated with traditional impact assessment metrics. The experimental analysis does not show a coherent relationship between citation and online reviews. Also, majority of the online reviews are found to be positive for large number of books in the dataset. As a related exercise, the Scopus citation data and Google scholar citation data for books are also compared. A high value of correlation is observed in these two. Overall the exploratory analysis provides a useful insight into the problem of book impact assessment.
C1 [Piryani, Rajesh] South Asian Univ, Dept Comp Sci, New Delhi, India.
[Gupta, Vedika] Natl Inst Technol Delhi, Dept Comp Sci & Engn, Delhi, India.
[Singh, Vivek Kumar] Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India.
[Pinto, David] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
C3 South Asian University (SAU); National Institute of Technology (NIT
System); National Institute of Technology Delhi; Banaras Hindu
University (BHU); Benemerita Universidad Autonoma de Puebla
RP Singh, VK (corresponding author), Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India.
EM vivek@bhu.ac.in
RI Piryani, Rajesh/AAF-8148-2020; Singh, Vivek Kumar/O-5699-2019; gupta,
vedika/ABD-1934-2021; Gupta, Vedika/JXL-2328-2024; pinto,
david/C-2797-2019
OI Piryani, Rajesh/0000-0003-3374-0657; Singh, Vivek
Kumar/0000-0002-7348-6545; gupta, vedika/0000-0002-8109-498X; Pinto,
David/0000-0002-8516-5925
FU Indo-German (DST-DAAD) Joint Research Project
[DST/INT/FRG/DAAD/P-28/2017]
FX This project is partly funded by an Indo-German (DST-DAAD) Joint
Research Project, Grant No.: DST/INT/FRG/DAAD/P-28/2017.
CR Almind TC, 1997, J DOC, V53, P404, DOI 10.1108/EUM0000000007205
Bar-Ilan J, 2010, SCIENTOMETRICS, V82, P495, DOI 10.1007/s11192-010-0185-9
Bollen J, 2005, INFORM PROCESS MANAG, V41, P1419, DOI 10.1016/j.ipm.2005.03.024
Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345
CHUBIN DE, 1975, SOC STUD SCI, V5, P423, DOI 10.1177/030631277500500403
Cronin B, 1997, J DOC, V53, P263, DOI 10.1108/EUM0000000007200
Devaraj M, 2016, IETE TECH REV, V33, P332, DOI 10.1080/02564602.2015.1073572
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
Kousha K, 2008, J AM SOC INF SCI TEC, V59, P2060, DOI 10.1002/asi.20920
Kousha K, 2016, J ASSOC INF SCI TECH, V67, P566, DOI 10.1002/asi.23404
Kousha K, 2015, PROF INFORM, V24, P724, DOI 10.3145/epi.2015.nov.04
Kousha K, 2011, J AM SOC INF SCI TEC, V62, P2147, DOI 10.1002/asi.21608
MacRoberts MH, 1996, SCIENTOMETRICS, V36, P435, DOI 10.1007/BF02129604
Nicolaisen J, 2002, RES EVALUAT, V11, P129, DOI 10.3152/147154402781776808
Piryani R, 2017, INFORM PROCESS MANAG, V53, P122, DOI 10.1016/j.ipm.2016.07.001
Piryani R., COMPUTACION SISTEMAS
Piryani R, 2017, J INTELL FUZZY SYST, V32, P3297, DOI 10.3233/JIFS-169272
Poria S, 2016, KNOWL-BASED SYST, V108, P42, DOI 10.1016/j.knosys.2016.06.009
SHAW D, 1991, LIBR INFORM SCI RES, V13, P147
Shema H, 2014, J ASSOC INF SCI TECH, V65, P1018, DOI 10.1002/asi.23037
Small Helen., 2013, VALUE HUMANITIES
Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171
Torres-Salinas D, 2012, REV ESP DOC CIENT, V35, P615, DOI 10.3989/redc.2012.4.1010
Uddin A, 2016, SCIENTOMETRICS, V106, P1135, DOI 10.1007/s11192-016-1836-2
Zuccala A, 2013, PRO INT CONF SCI INF, P353
NR 25
TC 8
Z9 8
U1 2
U2 55
PU IOS PRESS
PI AMSTERDAM
PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
SN 1064-1246
EI 1875-8967
J9 J INTELL FUZZY SYST
JI J. Intell. Fuzzy Syst.
PY 2018
VL 34
IS 5
BP 3101
EP 3110
DI 10.3233/JIFS-169494
PG 10
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA GH2AV
UT WOS:000433204800025
DA 2024-09-05
ER
PT J
AU Fuentealba, D
Flores-Fernández, C
Carrasco, R
AF Fuentealba, Diego
Flores-Fernandez, Cherie
Carrasco, Raul
TI Analisis bibliometrico y de contenido sobre VUCA
SO REVISTA ESPANOLA DE DOCUMENTACION CIENTIFICA
LA English
DT Article
DE VUCA; Bibliometrics; content analysis; LDA; K-Means
ID LEADERSHIP; CHALLENGES; INNOVATION; WORLD
AB analysis Abstract: VUCA is an acronym for volatility, uncertainty, complexity, and ambiguity, used to describe an environment that defies confident predictions. An example of this environment is the Covid-19 pandemic, which has created uncer-tainty worldwide because it is an unknown and highly contagious disease that neither society nor institutions were pre-pared to face. This article aims to describe the scientific production of VUCA to understand its main research focus. This research analyzes 105 documents from the Web of Science (WoS) database using Bibliometrics and Content Analysis. The bibliometric analysis reported several production indexes: annual, personal, national, institutional, and journal productiv-ity. The content analysis analyzed 95 article abstracts in nineteen clusters selected by comparing two clustering methods, Latent Dirichlet Allocation and K-Means, using the coherence and silhouette indices, respectively. VUCA is an emerging topic with increased scientific production in the last four years. However, there are no major producers to date. The most frequent topics are management, leadership, and change, where several works emphasize the role of the leader in deal-ing with change. The literature has focused on understanding the skills needed to cope with a VUCA environment and how to teach them. In addition, the use of two methods based on machine learning techniques to estimate the number of clusters of scientific papers is highlighted as an alternative to splitting articles into topics when the dataset is small.
C1 [Fuentealba, Diego] Univ Tecnol Metropolitana, Dept Informat & Comp, Santiago, Chile.
[Flores-Fernandez, Cherie] Univ Tecnol Metropolitana, Dept Gest Informac, Santiago, Chile.
[Carrasco, Raul] Univ Amer, Fac Ingn & Negocios, Providencia, Chile.
C3 Universidad Tecnologica Metropolitana; Universidad Tecnologica
Metropolitana; Universidad de Las Americas - Chile
RP Fuentealba, D (corresponding author), Univ Tecnol Metropolitana, Dept Informat & Comp, Santiago, Chile.
EM d.fuentealba@utem.cl; cflores@utem.cl; rcarrasco@udla.cl
RI Flores, Cherie/AAC-6868-2020; Fuentealba, Diego/AAM-8509-2020; Carrasco,
Raúl/G-5440-2015
OI Flores, Cherie/0000-0001-5294-7157; Fuentealba,
Diego/0000-0001-5284-0448; Carrasco, Raúl/0000-0002-5023-9349
CR Ahmad N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13073828
Antonacopoulou EP, 2019, LEARN ORGAN, V27, P117, DOI 10.1108/TLO-10-2018-0160
Antonacopoulou EP, 2019, LEARN ORGAN, V26, P304, DOI 10.1108/TLO-10-2018-0159
Ardanuy J., 2012, Breve introduccion a la bibliometria
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Ashraf A, 2020, CINEJ CINE J, V8, P195, DOI 10.5195/cinej.2020.247
Tran BX, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16152699
Baraibar-Diez E, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12229389
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Buckley PJ, 2021, MANAGE ORGAN REV, V17, P35, DOI 10.1017/mor.2020.72
Castillo EA, 2019, J ORGAN CHANGE MANAG, V32, P356, DOI 10.1108/JOCM-04-2017-0100
Chatterjee M, 2019, PAC BUS REV INT, V11, P14
Cook PJ, 2016, IND COMMER TRAIN, V48, P294, DOI 10.1108/ICT-01-2016-0006
Ding R, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P830
Dolamic L, 2010, J AM SOC INF SCI TEC, V61, P200, DOI 10.1002/asi.21186
Dolot A, 2020, E-MENTOR, P35
Edison RE, 2019, INT J ORGAN LEADERSH, V8, P46, DOI 10.19236/IJOL.2019.01.04
Elkington R, 2018, J LEADERSH STUD, V12, P66, DOI 10.1002/jls.21599
Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003
Figuerola CG, 2017, SCIENTOMETRICS, V112, P1507, DOI 10.1007/s11192-017-2432-9
Fletcher G, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102185
Flores-Fernández C., 2018, Rev. Soc. Esp. Dolor, V25, P307, DOI 10.20986/resed.2018.3650/2018
Fuentealba D, 2021, IEEE LAT AM T, V19, P1391, DOI 10.1109/TLA.2021.9475870
Rubio AG, 2019, CULT CUID, V23, P182, DOI 10.14198/cuid.2019.54.16
Garcia-Marco F.-J., 2020, PROFESIONAL INFORM, P1, DOI [10.3145/epi.2020.jul.27, DOI 10.3145/EPI.2020.JUL.27]
Geysi N, 2020, CORP COMMUN, V25, P67, DOI 10.1108/CCIJ-07-2019-0077
Hall RD, 2016, J MANAG DEV, V35, P942, DOI 10.1108/JMD-09-2015-0121
Hao TY, 2018, SOFT COMPUT, V22, P7875, DOI 10.1007/s00500-018-3511-4
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
Helgeson J, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084554
Hernández-Santibáñez N, 2019, SIAM J CONTROL OPTIM, V57, P3072, DOI 10.1137/18M1184527
Herrera-Viedma E, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.may.22
Hoffman Matthew D., 2010, Adv. Neural Inf. Process. Syst. (NIPS), DOI DOI 10.5555/2997189.2997285
Jo T, 2019, STUD BIG DATA, V45, P1, DOI 10.1007/978-3-319-91815-0
Kaivo-Oja JRL, 2018, FORESIGHT, V20, P27, DOI 10.1108/FS-06-2017-0022
Katta AK, 2019, J MECH CONTIN MATH S, V14, P943, DOI 10.26782/jmcms.2019.10.00076
Khalatur S., 2021, Banks and Bank Systems, V16, P182, DOI [10.21511/bbs.16(1).2021.16, DOI 10.21511/BBS.16(1).2021.16]
Kodinariya T.M., 2013, Int. J., V1, P90
Labib A, 2021, SAFETY SCI, V139, DOI 10.1016/j.ssci.2021.105274
Lai LWC, 2020, INT J ENTREP VENTUR, V12, P439
Levey J, 2019, CLIN RADIOL, V74, P739, DOI 10.1016/j.crad.2019.06.026
Lopes MP, 2017, MANAG ORGAN HIST, V12, P374, DOI 10.1080/17449359.2017.1397027
Lues L, 2021, TEACH PUBLIC ADMIN, V39, P175, DOI 10.1177/0144739420974737
Maini A, 2020, MED TEACH, V42, P1308, DOI 10.1080/0142159X.2020.1788713
Mofuoa K, 2016, J ENTERP COMMUNITIES, V10, P164, DOI 10.1108/JEC-09-2014-0019
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Nindl BC, 2018, J SCI MED SPORT, V21, P1116, DOI 10.1016/j.jsams.2018.05.005
Sokil JP, 2022, REV ESP DOC CIENT, V45, DOI 10.3989/redc.2022.1.1849
Panichella A, 2021, INFORM SOFTWARE TECH, V130, DOI 10.1016/j.infsof.2020.106411
Penarroya-Farell M., 2021, Journal of Open Innovation: Technology, Market, and Complexity, V7, P1, DOI [10.3390/joitmc7010081, DOI 10.3390/JOITMC7010081]
Peterson M, 2020, J PROD BRAND MANAG, V29, P234, DOI 10.1108/JPBM-12-2018-2163
Qadir J, 2020, EDUC SCI, V10, DOI 10.3390/educsci10090236
Raghuramapatruni R., 2017, IOSR Journal of Business and Management, P16
Robinson J, 2017, ADM SCI, V7, DOI 10.3390/admsci7030023
Safina AM, 2020, TARIH KULT SANAT ARA, V9, P61, DOI 10.7596/taksad.v9i2.2677
Schoemaker PJH, 2018, CALIF MANAGE REV, V61, P15, DOI 10.1177/0008125618790246
Selvaseelan J, 2018, ADM SCI, V8, DOI 10.3390/admsci8020022
Seow PS, 2019, INT J MANAG EDUC-OXF, V17, P62, DOI 10.1016/j.ijme.2018.12.001
Shawyun T., 2018, WILEY INT HDB ED FDN, P369, DOI [10.1002/9781118931837.ch22, DOI 10.1002/9781118931837.CH22]
Steinberg S, 2019, GIO-GRUP-INTERAKT-OR, V50, P115, DOI 10.1007/s11612-019-00456-2
Tsui E, 2018, MANAG MARK, V13, P848, DOI 10.2478/mmcks-2018-0009
Ungureanu P, 2018, EUR J INNOV MANAG, V21, P636, DOI 10.1108/EJIM-01-2018-0015
Valderrama L, 2018, RESOURCES-BASEL, V7, DOI 10.3390/resources7020026
Vera J, 2021, EPL-EUROPHYS LETT, V136, DOI 10.1209/0295-5075/ac39ee
Villajos E, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11246933
Williams P, 2017, INT J EVID BASED COA, P18
Xing YJ, 2020, HUM RESOUR MANAGE R, V30, DOI 10.1016/j.hrmr.2019.100696
NR 67
TC 2
Z9 2
U1 8
U2 29
PU CONSEJO SUPERIOR INVESTIGACIONES CIENTIFICAS-CSIC
PI MADRID
PA Editorial CSIC, C/VITRUVIO 8, 28006 MADRID, SPAIN
SN 0210-0614
EI 1988-4621
J9 REV ESP DOC CIENT
JI Rev. Esp. Doc. Cient.
PD APR-JUN
PY 2023
VL 46
IS 2
AR 1968
DI 10.3989/redc.2023.2.1968
PG 13
WC Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Information Science & Library Science
GA H0VN0
UT WOS:000993225500003
OA gold
DA 2024-09-05
ER
PT J
AU Di Vaio, A
Hassan, R
Alavoine, C
AF Di Vaio, Assunta
Hassan, Rohail
Alavoine, Claude
TI Data intelligence and analytics: A bibliometric analysis of
human-Artificial intelligence in public sector decision-making
effectiveness
SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE
LA English
DT Article
DE Ambidexterity; Industry 4; 0; Business intelligence; Big data;
Intellectual capital; Human intellect; Accountability and performance
ID BIG DATA ANALYTICS; FIRM PERFORMANCE; SUPPLY CHAIN; BUSINESS
INTELLIGENCE; PREDICTIVE ANALYTICS; INSTITUTIONAL THEORY; VALUE
CREATION; MEDIATING ROLE; HEALTH-CARE; MANAGEMENT
AB This study investigates the literary corpus of the role and potential of data intelligence and analytics through the lenses of artificial intelligence (AI), big data, and the human-AI interface to improve overall decision-making processes. It investigates how data intelligence and analytics improve decision-making processes in the public sector. A bibliometric analysis of a database containing 161 English-language articles published between 2017 and 2021 is performed, providing a map of the knowledge produced and disseminated in previous studies. It provides insights into key topics, citation patterns, publication activities, the status of collaborations between contributors over past studies, aggregated data intelligence, and analytics research contributions. The study provides a retrospective review of published content in the field of data intelligence and analytics. The findings indicate that field research has been concentrated mainly on emerging technologies' intelligence capabilities rather than on human-artificial intelligence in decision-making performance in the public sector. This study extends an ambidexterity theory in decision support, which enlightens how this ambidexterity can be encouraged and how it affects decision outcomes. The study emphasises the importance of the public sector adoption of data intelligence and analytics, as well as its efficiency. Furthermore, this study expands how researchers and practitioners interpret and understand data intelligence and analytics, AI, and big data for effective public sector decision-making.
C1 [Di Vaio, Assunta] Univ Naples Parthenope, Dept Law, Via G Parisi 13, I-80132 Naples, Italy.
[Hassan, Rohail] Univ Utara Malaysia UUM, Othman Yeop Abdullah Grad Sch Business OYAGSB, Kuala Lumpur 50300, Malaysia.
[Alavoine, Claude] IPAG Business Sch, 4 Bd Carabacel, F-06000 Nice, France.
C3 Parthenope University Naples; Universiti Utara Malaysia; IPAG Business
School
RP Di Vaio, A (corresponding author), Univ Naples Parthenope, Dept Law, Via G Parisi 13, I-80132 Naples, Italy.
EM susy.divaio@uniparthenope.it; rohail.hassan@uum.edu.my;
c.alavoine@ipag.fr
RI Hassan, Rohail/G-1213-2015; Di Vaio, Assunta/N-2259-2019
OI Hassan, Rohail/0000-0002-7825-0283; Di Vaio, Assunta/0000-0002-0498-1630
CR Ajah IA, 2019, BIG DATA COGN COMPUT, V3, DOI 10.3390/bdcc3020032
Akter S, 2016, INT J PROD ECON, V182, P113, DOI 10.1016/j.ijpe.2016.08.018
Al-Htaybat K, 2019, J INTELLECT CAP, V20, P733, DOI 10.1108/JIC-01-2019-0016
Amankwah-Amoah J, 2017, TECHNOL FORECAST SOC, V116, P299, DOI 10.1016/j.techfore.2016.10.006
Andrews L, 2019, PUBLIC ADMIN, V97, P296, DOI 10.1111/padm.12534
Ardito L, 2019, MANAGE DECIS, V57, P1993, DOI 10.1108/MD-07-2018-0754
Arnott D, 2005, J INF TECHNOL-UK, V20, P67, DOI 10.1057/palgrave.jit.2000035
Aydiner AS, 2019, J BUS RES, V96, P228, DOI 10.1016/j.jbusres.2018.11.028
Bag S, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120420
BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108
Bogoviz AV, 2020, J INTELLECT CAP, V21, P583, DOI 10.1108/JIC-11-2019-0270
Bonilla CA, 2015, SCIENTOMETRICS, V105, P1239, DOI 10.1007/s11192-015-1747-7
Borges AFS, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102225
Bornmann L., 2008, ETHICS SCI ENV POLIT, V8, P93, DOI [10.3354/esep00084, DOI 10.3354/ESEP00084]
Bornmann L, 2007, J AM SOC INF SCI TEC, V58, P1381, DOI 10.1002/asi.20609
Braganza A, 2017, J BUS RES, V70, P328, DOI 10.1016/j.jbusres.2016.08.006
Brown B., 2011, Big data: The next frontier for innovation, competition, and productivity, P156, DOI DOI 10.1080/01443610903114527
Caputo F., 2019, Opening up Education for Inclusivity across Digital Economies and Societies, P277
Caputo F, 2019, MANAGE DECIS, V57, P2032, DOI 10.1108/MD-07-2018-0833
Carayannis EG, 2017, J TECHNOL TRANSFER, V42, P236, DOI 10.1007/s10961-016-9497-0
Chaudhuri S, 2011, COMMUN ACM, V54, P88, DOI 10.1145/1978542.1978562
Chen DQ, 2015, J MANAGE INFORM SYST, V32, P4, DOI 10.1080/07421222.2015.1138364
Chen HC, 2012, MIS QUART, V36, P1165
Chiang RHL, 2012, ACM TRANS MANAG INF, V3, DOI 10.1145/2361256.2361257
Davenport T. H., 2007, COMPETING ANAL NEW S
Davenport TH, 2006, HARVARD BUS REV, V84, P98
Demlehner Q, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102317
Di Vaio A, 2020, J BUS RES, V121, P283, DOI 10.1016/j.jbusres.2020.08.019
DiMaggio PJ, 2000, ADV STRATEG MANAGE, V 17, P143, DOI 10.2307/2095101
Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021
Dubey R, 2021, INT J PROD RES, V59, P1586, DOI 10.1080/00207543.2020.1865583
Dubey R, 2020, INT J PROD ECON, V226, DOI 10.1016/j.ijpe.2019.107599
Dubey R, 2017, INT J PROD ECON, V193, P63, DOI [10.1109/TEM.2017.2723042, 10.1016/j.ijpe.2017.06.029]
Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002
Erickson GS, 2017, SERV IND J, V37, P589, DOI 10.1080/02642069.2017.1346628
Eriksson T, 2020, TQM J, V32, P795, DOI 10.1108/TQM-12-2019-0303
Fink A., 2019, Conducting research literature reviews: From the internet to paper
Freyn SL, 2020, FORESIGHT, V22, P617, DOI 10.1108/FS-02-2020-0011
Frisk JE, 2017, MANAGE DECIS, V55, P2074, DOI 10.1108/MD-07-2016-0460
Grover P, 2022, ANN OPER RES, V308, P177, DOI 10.1007/s10479-020-03683-9
Guan C., 2020, International Journal of Innovation Studies, V4, P134, DOI [DOI 10.1016/J.IJIS.2020.09.001, https://doi.org/10.1016/j.ijis.2020.09.001]
Gunasekaran A, 2017, J BUS RES, V70, P308, DOI 10.1016/j.jbusres.2016.08.004
Gupta M, 2016, INFORM MANAGE-AMSTER, V53, P1049, DOI 10.1016/j.im.2016.07.004
Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
HM Government, 2013, SEIZ DAT OPP STRAT U
Howard MC, 2017, COMPUT HUM BEHAV, V70, P317, DOI 10.1016/j.chb.2017.01.013
Hu Q, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102250
Janssen M, 2015, GOV INFORM Q, V32, P363, DOI 10.1016/j.giq.2015.11.007
Jayakrishnan M., 2019, INT J RECENT TECHNOL, V8, P128
Kostova T, 2008, ACAD MANAGE REV, V33, P994
Kowalczyk M, 2015, DECIS SUPPORT SYST, V80, P1, DOI 10.1016/j.dss.2015.08.010
Krippendorff K, 2004, HUM COMMUN RES, V30, P411, DOI 10.1093/hcr/30.3.411
Liang HG, 2007, MIS QUART, V31, P59
Lim EP, 2013, ACM TRANS MANAG INF, V3, DOI 10.1145/2407740.2407741
Lin YK, 2017, MIS QUART, V41, P473, DOI 10.25300/MISQ/2017/41.2.07
Liu HF, 2010, J OPER MANAG, V28, P372, DOI 10.1016/j.jom.2009.11.010
Manzoor A., 2016, Big data: Concepts, methodologies, tools, and applications, P2458
Marzi G, 2017, SCIENTOMETRICS, V113, P673, DOI 10.1007/s11192-017-2500-1
Massaro M, 2016, ACCOUNT AUDIT ACCOUN, V29, P767, DOI 10.1108/AAAJ-01-2015-1939
McAfee A, 2012, HARVARD BUS REV, V90, P60
Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434
Mikalef P, 2019, LECT NOTES COMPUT SC, V11701, P267, DOI 10.1007/978-3-030-29374-1_22
Mitchell RB, 2021, J EDUC BUS, V96, P1, DOI 10.1080/08832323.2020.1719961
Munoko I, 2020, J BUS ETHICS, V167, P209, DOI 10.1007/s10551-019-04407-1
Nishant R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102104
Okoli C., 2010, A guide to conducting a systematic literature review of information systems research, DOI DOI 10.2139/SSRN.1954824
Oliver C, 1997, STRATEGIC MANAGE J, V18, P697, DOI 10.1002/(SICI)1097-0266(199710)18:9<697::AID-SMJ909>3.0.CO;2-C
Otokiti A, 2019, INT J HEALTH CARE Q, V32, P425, DOI 10.1108/IJHCQA-03-2018-0062
Pillai R, 2022, PROD PLAN CONTROL, V33, P1517, DOI 10.1080/09537287.2021.1882689
Pillai R, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102207
Qasim A., 2019, J EMERG TECHNOL ACCO, P0000
Rieple A., 2012, Symphona Emerging Issues in Management, V2, P13, DOI [DOI 10.4468/2012.2.02RIEPLE.PIRONTI.PISANO, 10.4468/2012.2.02rieple.pironti]
Schubert A, 2020, SCIENTOMETRICS, V123, P1341, DOI 10.1007/s11192-020-03443-3
Scott WR, 2014, MANAGEMENT, V17, P136, DOI 10.3917/mana.172.0136
Scuotto V, 2017, J KNOWL MANAG, V21, P640, DOI 10.1108/JKM-10-2016-0465
Scuotto V, 2016, BUS PROCESS MANAG J, V22, P357, DOI 10.1108/BPMJ-05-2015-0074
Sen D, 2016, PROCD SOC BEHV, V235, P159, DOI 10.1016/j.sbspro.2016.11.011
Shareef MA, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120334
Sharma R, 2014, EUR J INFORM SYST, V23, P433, DOI 10.1057/ejis.2014.17
Sheng J, 2019, TECHNOL FORECAST SOC, V143, P321, DOI 10.1016/j.techfore.2018.06.009
Singh SK, 2019, MANAGE DECIS, V57, P1729, DOI 10.1108/MD-08-2019-020
Srinivasan R, 2018, PROD OPER MANAG, V27, P1849, DOI 10.1111/poms.12746
Tatoglu E, 2016, J WORLD BUS, V51, P278, DOI 10.1016/j.jwb.2015.11.001
Tien J.M., 2017, Annals of Data Science, V4, P149, DOI 10.1007/s40745-017-0112-5
Turner JR, 2020, ADV DEV HUM RESOUR, V22, P72, DOI 10.1177/1523422319886300
Turner N, 2013, MANAGE LEARN, V44, P179, DOI 10.1177/1350507612444074
Valenzuela-Fernandez L, 2019, J BUS-BUS MARK, V26, P75, DOI 10.1080/1051712X.2019.1565142
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Van Eck NJ, 2007, STUD CLASS DATA ANAL, P299
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Rijmenan M, 2019, LONG RANGE PLANN, V52, DOI 10.1016/j.lrp.2018.05.007
Viaene S, 2013, IT PROF, V15, P12, DOI 10.1109/MITP.2013.93
Wamba SF, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2020.120482
Wamba SF, 2017, J BUS RES, V70, P356, DOI 10.1016/j.jbusres.2016.08.009
Wang YC, 2018, TECHNOL FORECAST SOC, V126, P3, DOI 10.1016/j.techfore.2015.12.019
Watson H.J., 2011, Business Intelligence Journal, V16, P4
Wirtz BW, 2020, INT J PUBLIC ADMIN, V43, P818, DOI 10.1080/01900692.2020.1749851
Wirtz BW, 2019, INT J PUBLIC ADMIN, V42, P596, DOI 10.1080/01900692.2018.1498103
Wirtz BW, 2019, PUBLIC MANAG REV, V21, P1076, DOI 10.1080/14719037.2018.1549268
Yang Y, 2011, GROUP ORGAN MANAGE, V36, P6, DOI 10.1177/1059601110390997
You KF, 2019, J BUS RES, V97, P268, DOI 10.1016/j.jbusres.2018.01.015
Zhang C, 2009, INT J PROD ECON, V120, P252, DOI 10.1016/j.ijpe.2008.07.023
Zhang D, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102304
Zhao JL, 2014, J MANAG ANAL, V1, P169, DOI 10.1080/23270012.2014.968643
Zheng DQ, 2013, EUR J INFORM SYST, V22, P221, DOI 10.1057/ejis.2012.28
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 107
TC 55
Z9 56
U1 53
U2 275
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA
SN 0040-1625
EI 1873-5509
J9 TECHNOL FORECAST SOC
JI Technol. Forecast. Soc. Chang.
PD JAN
PY 2022
VL 174
AR 121201
DI 10.1016/j.techfore.2021.121201
EA SEP 2021
PG 17
WC Business; Regional & Urban Planning
WE Social Science Citation Index (SSCI)
SC Business & Economics; Public Administration
GA UY7AO
UT WOS:000701672300012
DA 2024-09-05
ER
PT J
AU Ding, ZJ
Ji, YR
Gan, Y
Wang, YW
Xia, YK
AF Ding, Zijie
Ji, Yingrui
Gan, Yan
Wang, Yuwen
Xia, Yukun
TI Current status and trends of technology, methods, and applications of
Human-Computer Intelligent Interaction (HCII): A bibliometric research
SO MULTIMEDIA TOOLS AND APPLICATIONS
LA English
DT Article; Early Access
DE Human-Computer Intelligent Interaction; Human-Computer Interaction;
Artificial intelligence; Bibliometric Research; CiteSpace
ID TRACKING; NETWORK
AB This study delves into Human-Computer Intelligent Interaction (HCII), a burgeoning interdisciplinary field that builds upon traditional Human-Computer Interaction (HCI) by integrating advanced technologies like Natural Language Processing (NLP) and Machine Learning (ML). In this paper, we scrutinize 5,781 HCII papers published between 2000 and 2023, narrowing our focus to 803 most relevant articles to construct co-citation and interdisciplinary networks based on the CiteSpace Software. Our findings reveal that the publications of the United States and China are relatively high with 558 and 616 publications respectively. Furthermore, we found that machine learning and deep learning have emerged as the prevalent methodologies in HCII, which currently emphasizes multimodal emotion recognition, facial expression recognition, and NLP. We predict that HCII will be integrated into advanced applications such as neural-based interactive games and multi-sensory environments. In sum, our analysis underscores HCII's role in advancing artificial intelligence, facilitating more intuitive and efficient human-computer interactions, and its prospective societal impact. We hope that our review and analysis may guide the efforts of researchers aiming to contribute to HCII and develop more powerful and intelligent methods, tools, and applications.
C1 [Ding, Zijie; Gan, Yan; Wang, Yuwen; Xia, Yukun] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China.
[Ji, Yingrui] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100190, Peoples R China.
[Ji, Yingrui] Univ Chinese Acad Sci, Beijing 100190, Peoples R China.
C3 Huazhong University of Science & Technology; Chinese Academy of
Sciences; Aerospace Information Research Institute, CAS; Chinese Academy
of Sciences; University of Chinese Academy of Sciences, CAS
RP Gan, Y (corresponding author), Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China.
EM ganyan@hust.edu.cn
FU National Laboratory of Mechanical Systems and Vibrations of China
FX No Statement Available
CR Ahamed MM., 2017, Int J Contemp Comput Res, V1, P31
AlEisa HN, 2023, IEEE ACCESS, V11, P62233, DOI 10.1109/ACCESS.2023.3284457
Ansar H, 2023, IEEE ACCESS, V11, P82065, DOI 10.1109/ACCESS.2023.3300712
Bai JS, 2009, ECONOMETRICA, V77, P1229, DOI 10.3982/ECTA6135
Basak S, 2021, IEEE ACCESS, V9, P37557, DOI 10.1109/ACCESS.2021.3063884
Bi LS, 2023, BMC MUSCULOSKEL DIS, V24, DOI 10.1186/s12891-023-06438-2
Cantoni V, 2004, J VISUAL LANG COMPUT, V15, P333, DOI 10.1016/j.jvlc.2003.10.002
Casini L, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-36015-5
Changhoon O., 2018, Assoc Comput Mach Pap, V649, P1
Charissis V, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11041397
Chen CM, 2017, J DATA INFO SCI, V2, P1, DOI 10.1515/jdis-2017-0006
Chen WY, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20041074
Chen YW, 2022, IEEE ACCESS, V10, P90523, DOI 10.1109/ACCESS.2022.3201555
Chen Y, 2021, BUILDINGS-BASEL, V11, DOI 10.3390/buildings11100427
Choi DY, 2020, IEEE ACCESS, V8, P203814, DOI 10.1109/ACCESS.2020.3036877
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
de Arriba-Pérez F, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21165515
Dey A., 2016, Int. J. Sci. Res., V7, P1174
Diederich S., 2022, J Assoc Inf Syst, V1, P23
El Ouariachi I, 2022, MULTIMED TOOLS APPL, V81, P12725, DOI 10.1007/s11042-022-12161-2
Foucher J, 2022, IEEE ACCESS, V10, P104242, DOI 10.1109/ACCESS.2022.3210526
Gagliardi G, 2023, IEEE ACCESS, V11, P39544, DOI 10.1109/ACCESS.2023.3268233
García-Méndez S, 2021, IEEE ACCESS, V9, P75878, DOI 10.1109/ACCESS.2021.3080837
Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685
Hu ZM, 2021, IEEE T VIS COMPUT GR, V27, P2681, DOI 10.1109/TVCG.2021.3067779
Hussien RM., 2021, J Phys: Conf Ser, V1
Jacob S, 2020, IEEE ACCESS, V8, P100721, DOI 10.1109/ACCESS.2020.2997727
Jaimes A, 2005, LECT NOTES COMPUT SC, V3766, P1, DOI 10.1007/11573425_1
Jia N, 2022, MULTIMED TOOLS APPL, V81, P32265, DOI 10.1007/s11042-022-13091-9
Jo AH, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13042167
Karpov AA, 2018, HER RUSS ACAD SCI+, V88, P67, DOI 10.1134/S1019331618010094
Khalil RA, 2019, IEEE ACCESS, V7, P117327, DOI 10.1109/ACCESS.2019.2936124
Kim H, 2023, ETRI J, V45, P75, DOI 10.4218/etrij.2021-0241
Kothadiya DR, 2023, IEEE ACCESS, V11, P47410, DOI 10.1109/ACCESS.2023.3274851
Krepki R, 2007, MULTIMED TOOLS APPL, V33, P73, DOI 10.1007/s11042-006-0094-3
Kusal S, 2022, IEEE ACCESS, V10, P92337, DOI 10.1109/ACCESS.2022.3201144
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Lee CH, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app121910066
Li C, 2022, IEEE ACCESS, V10, P91631, DOI 10.1109/ACCESS.2022.3202554
Li K, 2020, VISUAL COMPUT, V36, P391, DOI 10.1007/s00371-019-01627-4
Li M, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21051613
Li X, 2020, SIGNAL PROCESS-IMAGE, V81, DOI 10.1016/j.image.2019.115686
Lin S, 2021, IEEE ACCESS, V9, P111181, DOI 10.1109/ACCESS.2021.3102606
Lv TQ, 2020, IEEE ACCESS, V8, P68320, DOI 10.1109/ACCESS.2020.2986246
Lv ZH, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122211457
Lyu Y, 2023, PROC ACM INTERACT MO, V7, DOI 10.1145/3596251
Malibari AA, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12146848
Miah AM, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12083933
Miao YM, 2018, MOBILE NETW APPL, V23, P1645, DOI 10.1007/s11036-018-1110-3
Nazar M, 2021, IEEE ACCESS, V9, P153316, DOI 10.1109/ACCESS.2021.3127881
Ometto M., 2022, Danieli Intelligent Plant. IFAC-PapersOnLine, V55, P313, DOI [10.1016/j.ifacol.2023.01.091, DOI 10.1016/J.IFACOL.2023.01.091]
Ozcan T, 2020, MULTIMED TOOLS APPL, V79, P26587, DOI 10.1007/s11042-020-09268-9
Padfield N, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22155802
Raptis GE, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11062695
Rawat KS, 2021, COMPUT APPL ENG EDUC, V29, P1324, DOI 10.1002/cae.22388
Razzaq MA, 2023, SENSORS-BASEL, V23, DOI 10.3390/s23094373
Singh SK, 2023, MULTIMED TOOLS APPL, V82, P23833, DOI 10.1007/s11042-022-14117-y
Souza KES, 2019, IEEE ACCESS, V7, P96506, DOI 10.1109/ACCESS.2019.2927860
Tang JS, 2019, INT J HUM-COMPUT INT, V35, P846, DOI 10.1080/10447318.2018.1502000
Tang Y, 2021, IEEE T IMAGE PROCESS, V30, P444, DOI 10.1109/TIP.2020.3037467
Vail EF, 1999, INFORM SYST MANAGE, V16, P16, DOI 10.1201/1078/43189.16.4.19990901/31199.3
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Van Mechelen M, 2023, ACM T COMPUT-HUM INT, V30, DOI 10.1145/3569897
Waldron SM, 2008, ERGONOMICS, V51, P775, DOI 10.1080/00140130701811933
Wang GZ, 2018, ADV EXP MED BIOL, V1093, P207, DOI 10.1007/978-981-13-1396-7_17
Wang T, 2021, INT J COMPUT INTEG M, V34, P888, DOI 10.1080/0951192X.2021.1925966
Wang T, 2021, J MANUF SYST, V58, P261, DOI 10.1016/j.jmsy.2020.07.011
Wei FW, 2015, PROF GEOGR, V67, P374, DOI 10.1080/00330124.2014.983588
Xi Y, 2016, WIRELESS PERS COMMUN, V91, P1779, DOI 10.1007/s11277-016-3356-z
Xiong SQ, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22155509
Zhang QL, 2023, SYSTEMS-BASEL, V11, DOI 10.3390/systems11030156
Zhong SH, 2019, PROCESSES, V7, DOI 10.3390/pr7110818
NR 72
TC 1
Z9 1
U1 28
U2 31
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1380-7501
EI 1573-7721
J9 MULTIMED TOOLS APPL
JI Multimed. Tools Appl.
PD 2024 JAN 30
PY 2024
DI 10.1007/s11042-023-18096-6
EA JAN 2024
PG 34
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Computer Science, Theory & Methods; Engineering, Electrical
& Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA HA6S6
UT WOS:001156811100010
DA 2024-09-05
ER
PT J
AU Nielsen, MW
Börjeson, L
AF Nielsen, Mathias Wullum
Borjeson, Love
TI Gender diversity in the management field: Does it matter for research
outcomes?
SO RESEARCH POLICY
LA English
DT Article
DE Gender diversity; Research outcomes; Management research; Citations;
Topic modeling; Bibliometrics; Research questions
ID RESEARCH PRODUCTIVITY; SCIENTIFIC PRODUCTIVITY; COMBINED COCITATION; SEX
SEGREGATION; WORD ANALYSIS; SCIENCE; IMPACT; PERFORMANCE; FACULTY;
DETERMINANTS
AB This study examines the relationship between gender diversity and research outcomes. Existing research on the topic primarily focuses on how team gender diversity influences scholarly productivity in terms of citations and publication rates. Far less attention has been devoted to the question of how the intellectual contents of research disciplines change as they become more gender diverse. Drawing on a global sample of more than 25,000 management papers, we use natural language processing techniques, correspondence analysis and regression models to illuminate impact-, content- and status-related dimensions of gender diversity in management research. In regression models adjusting for geographical setting, institutional prestige and collaboration patterns, we find no discernable effects of team gender diversity on per-paper scientific impact. In contrast, our analyses converge to yield a broadly consistent pattern of gender-related variations in research focus: women are well represented in social- and human-centered areas of management, while men comprise the vast majority in areas addressing more technical and operational aspects. Our findings corroborate recent sociological research suggesting that cultural norms and expectations are channeling women and men towards different areas of work and study. We argue that the broadened repertoire of perspectives, values and questions resulting from gender diversity may render management research more responsive to the full gamut of societal needs and expectations.
C1 [Nielsen, Mathias Wullum] Aarhus Univ, Dept Polit Sci, Danish Ctr Studies Res & Res Policy, Bartholins Alle 7, DK-8000 Aarhus, Denmark.
[Borjeson, Love] Stockholm Sch Econ, Stockholm Sch Econ Inst Res SIR, Box 6501, S-11383 Stockholm, Sweden.
C3 Aarhus University; Stockholm School of Economics
RP Nielsen, MW (corresponding author), Aarhus Univ, Dept Polit Sci, Danish Ctr Studies Res & Res Policy, Bartholins Alle 7, DK-8000 Aarhus, Denmark.
EM mwn@ps.au.dk
RI Nielsen, Mathias/KUC-8621-2024
OI Borjeson, Love/0000-0003-1328-4164; Nielsen, Mathias
Wullum/0000-0001-8759-7150
FU Aarhus University Research Foundation [AUFF-F-2018-7-5]
FX Bibliometric indices (CS, NCS, PP top-10%, JS, self-citation rates,
institutional collaboration, international collaboration and WoS
coverage) were generously provided by the Centre for Science and
Technology Studies (CWTS) at Leiden University. We thank Jesper Wiborg
Schneider and Sergiy Prostiv for help with data acquisition and
processing, and useful comments on the manuscript. We also received
valuable feedback from audiences at SCANCOR, Stanford University, the
Editor Paul Nightingale and three anonymous reviewers. This project was
generously funded by the Aarhus University Research Foundation [Award
AUFF-F-2018-7-5].
CR Abramo G, 2013, J INFORMETR, V7, P811, DOI 10.1016/j.joi.2013.07.002
Abramo G, 2009, SCIENTOMETRICS, V81, P137, DOI 10.1007/s11192-008-2131-7
Aksnes DW, 2011, J AM SOC INF SCI TEC, V62, P628, DOI 10.1002/asi.21486
Alers M, 2014, PERSPECT MED EDUC, V3, P163, DOI 10.1007/s40037-014-0132-1
ALLISON PD, 1990, AM SOCIOL REV, V55, P469, DOI 10.2307/2095801
[Anonymous], 2012, COMMUNICATION
[Anonymous], 2003, Women in Science: Career Processes and Outcomes
[Anonymous], 2015, IS GENDER GAP NARROW
[Anonymous], EC ANAL DIVERSITY 28
[Anonymous], 2008, DIFFERENCE POWER DIV
[Anonymous], 1990, LOGIC PRACTICE TRANS
Archambault E, 2009, SCIENTOMETRICS, V79, P635, DOI 10.1007/s11192-007-2036-x
Association to Advance Collegiate Schools of Business (AACSB), 2016, BUSINESS DATA GUIDE
Asuncion A., 2009, C UNC ART INT UAI QU, P27, DOI DOI 10.1080/10807030390248483
Ballesteros-Rodriguez JL, 2015, SCIENTIST, V47, P165, DOI 10.1111/RADM.12139
Baruch Y., 2001, International Journal of Cross-Cultural Management, V1, P109, DOI DOI 10.1177/147059580111010
Bland CJ, 2006, J HIGH EDUC, V77, P89, DOI 10.1353/jhe.2006.0002
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Borgatti S. P., 2018, Analysing social networks, V2nd
Bornmann L., 2008, ETHICS SCI ENV POLIT, V8, P93, DOI [10.3354/esep00084, DOI 10.3354/ESEP00084]
Borrego A, 2010, SCIENTOMETRICS, V83, P93, DOI 10.1007/s11192-009-0025-y
Botelho TL, 2017, ADMIN SCI QUART, V62, P698, DOI 10.1177/0001839217694358
Bozeman B, 2004, RES POLICY, V33, P599, DOI 10.1016/j.respol.2004.01.008
BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I
BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P252, DOI 10.1002/(SICI)1097-4571(199105)42:4<252::AID-ASI2>3.0.CO;2-G
Campbell LG, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079147
Caplar N, 2017, NAT ASTRON, V1, DOI 10.1038/s41550-017-0141
Cech EA, 2013, AM J SOCIOL, V119, P747, DOI 10.1086/673969
Charles M, 2002, AM SOCIOL REV, V67, P573, DOI 10.2307/3088946
Charles M., 2004, Occupational ghettos: the worldwide segregation of women and men
Charles M, 2009, AM J SOCIOL, V114, P924, DOI 10.1086/595942
Cole JR., 1973, Social stratification in science
CRONIN B, 1981, J DOC, V37, P16, DOI 10.1108/eb026703
CWTS, 2016, CWTS LEID RANK IND
Dolado JJ, 2012, SERIES-J SPAN ECON, V3, P367, DOI 10.1007/s13209-011-0065-4
Duch J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051332
Eccles J.S., 2007, WHY ARENT MORE WOMEN, P199, DOI DOI 10.1037/11546-016
Elsevier, 2021, GENDER GLOBAL RES LA
Ely RJ, 2001, ADMIN SCI QUART, V46, P229, DOI 10.2307/2667087
England P, 2006, GENDER SOC, V20, P657, DOI 10.1177/0891243206290753
Ferber MA, 2011, FEM ECON, V17, P151, DOI 10.1080/13545701.2010.541857
Fernandez RM, 2011, IND RELAT, V50, P591, DOI 10.1111/j.1468-232X.2011.00654.x
Gender API, 2016, GEND API DET GEND 1
Glaser J., 2007, CHANGING GOVERNANCE, P101, DOI [10.1007/978-1-4020-6746-4_5, DOI 10.1007/978-1-4020-6746-4_5]
Glaser J., 2015, EPISTEMIC DIVERSITY
Glob. Res. Council, 2016, STAT PRINC ACT PROM
Golde CM, 2005, J HIGH EDUC-UK, V76, P669, DOI 10.1353/jhe.2005.0039
Gonzalez-Brambila C, 2007, RES POLICY, V36, P1035, DOI 10.1016/j.respol.2007.03.005
GRANT L, 1991, GENDER SOC, V5, P207, DOI 10.1177/089124391005002005
Greenacre M, 2007, Correspondence Analysis in Practice, V2
Harrison DA, 1998, ACAD MANAGE J, V41, P96, DOI 10.5465/256901
Hasrati M., 2009, J ENGL ACAD PURP, V8, P14, DOI DOI 10.1016/J.JEAP.2009.01.002
Homan AC, 2007, J APPL PSYCHOL, V92, P1189, DOI 10.1037/0021-9010.92.5.1189
Horwitz S. K., 2005, HUMAN RESOURCE DEV R, V4, P219, DOI [10.1177/153448430527584, DOI 10.1177/1534484305275847]
Hülsheger UR, 2009, J APPL PSYCHOL, V94, P1128, DOI 10.1037/a0015978
ISAAC PD, 1992, J HIGH EDUC, V63, P241, DOI 10.2307/1982014
Joshi A, 2014, ADMIN SCI QUART, V59, P202, DOI 10.1177/0001839214528331
Judge TA, 2007, ACAD MANAGE J, V50, P491
Larivière V, 2016, SOC STUD SCI, V46, P417, DOI 10.1177/0306312716650046
Larivière V, 2011, SCIENTOMETRICS, V87, P483, DOI 10.1007/s11192-011-0369-y
Leahey E, 2006, GENDER SOC, V20, P754, DOI 10.1177/0891243206293030
Leisyte L, 2016, STUD HIGH EDUC, V41, P828, DOI 10.1080/03075079.2016.1147721
Lerchenmueller MJ, 2018, RES POLICY, V47, P1007, DOI 10.1016/j.respol.2018.02.009
Light R, 2013, RES SOCIOL WORK, V24, P239, DOI 10.1108/S0277-2833(2013)0000024012
LONG JS, 1992, SOC FORCES, V71, P159, DOI 10.2307/2579971
Lungeanu A, 2015, AM BEHAV SCI, V59, P548, DOI 10.1177/0002764214556804
Maes K., 2012, Women, research and universities: Excellence without gender bias
Mairesse J, 2015, REV ECON-FR, V66, P65, DOI 10.3917/reco.661.0065
Mannix Elizabeth, 2005, Psychol Sci Public Interest, V6, P31, DOI 10.1111/j.1529-1006.2005.00022.x
McCullagh P., 1989, Generalized linear models, V2nd
McFarland DA, 2013, POETICS, V41, P607, DOI 10.1016/j.poetic.2013.06.004
McLeod J, 2005, THEORY RES EDUC, V3, P11, DOI 10.1177/1477878505049832
Medin D, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0088
Merrill-Sands D., 2000, Working with diversity: A framework for action
Mingers J, 2010, EUR J OPER RES, V205, P422, DOI 10.1016/j.ejor.2009.12.008
Mohr JW, 2013, POETICS, V41, P545, DOI 10.1016/j.poetic.2013.10.001
Moretti Franco., 2005, Graphs, Maps, Trees: Abstract Models for a Literary History
Moss-Racusin CA, 2012, P NATL ACAD SCI USA, V109, P16474, DOI 10.1073/pnas.1211286109
Neumann R, 2007, STUD HIGH EDUC, V32, P459, DOI 10.1080/03075070701476134
Nichols LG, 2014, SCIENTOMETRICS, V100, P741, DOI 10.1007/s11192-014-1319-2
Nielsen MW, 2018, NAT HUM BEHAV, V2, P726, DOI 10.1038/s41562-018-0433-1
Nielsen MW, 2018, SCI TECHNOL STUD, V31, P2, DOI 10.23987/sts.60610
Nielsen MW, 2017, J INFORMETR, V11, P1213, DOI 10.1016/j.joi.2017.09.005
Nielsen MW, 2017, STUD HIGH EDUC, V42, P1033, DOI 10.1080/03075079.2015.1075197
Nielsen MW, 2016, STUD HIGH EDUC, V41, P2044, DOI 10.1080/03075079.2015.1007945
Nishii LH, 2013, ACAD MANAGE J, V56, P1754, DOI 10.5465/amj.2009.0823
Pelled LH, 1999, ADMIN SCI QUART, V44, P1, DOI 10.2307/2667029
PFEFFER J, 1993, ACAD MANAGE REV, V18, P599, DOI 10.2307/258592
Podsakoff PM, 2008, J MANAGE, V34, P641, DOI 10.1177/0149206308319533
Rafols I, 2012, RES POLICY, V41, P1262, DOI 10.1016/j.respol.2012.03.015
Ramage D., 2011, Stanford topic modeling toolbox
Reskin B.F., 2009, JOB QUEUES GENDER QU
Ridgeway CeciliaL., 2011, Framed by gender
Rosenberg N., 1994, C GROWTH DEV EC 21 C
Royal Society, 2017, DIV SCI
Santamaría L, 2018, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.156
Sax LJ, 2002, RES HIGH EDUC, V43, P423, DOI 10.1023/A:1015575616285
Schneid M, 2015, INT J HUM RESOUR MAN, V26, P733, DOI 10.1080/09585192.2014.957712
Slyder JB, 2011, SCIENTOMETRICS, V89, P955, DOI 10.1007/s11192-011-0467-x
Stirling A., 2009, WORKING PAPER
Stirling A, 2007, J R SOC INTERFACE, V4, P707, DOI 10.1098/rsif.2007.0213
Stvilia B, 2011, J AM SOC INF SCI TEC, V62, P270, DOI 10.1002/asi.21464
Sugimoto C. R., 2009, THESIS
Sugimoto CR, 2015, SCI PUBL POLICY, V42, P789, DOI 10.1093/scipol/scv007
Sugimoto CR, 2013, NATURE, V504, P211, DOI 10.1038/504211a
Symonds MRE, 2006, PLOS ONE, V1, DOI 10.1371/journal.pone.0000127
Talley EM, 2011, NAT METHODS, V8, P443, DOI 10.1038/nmeth.1619
Taylor SW, 2006, SOUTH ECON J, V72, P846, DOI 10.2307/20111856
Valantine HA, 2015, P NATL ACAD SCI USA, V112, P12240, DOI 10.1073/pnas.1515612112
van Arensbergen P, 2012, SCIENTOMETRICS, V93, P857, DOI 10.1007/s11192-012-0712-y
van Dijk H, 2012, ORGAN BEHAV HUM DEC, V119, P38, DOI 10.1016/j.obhdp.2012.06.003
VANMAANEN J, 1995, ORGAN SCI, V6, P133, DOI 10.1287/orsc.6.1.133
Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001
Williams KW, 1998, HUM FAC ERG SOC P, P77
Xie Y, 1998, AM SOCIOL REV, V63, P847, DOI 10.2307/2657505
NR 115
TC 42
Z9 44
U1 4
U2 119
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0048-7333
EI 1873-7625
J9 RES POLICY
JI Res. Policy
PD SEP
PY 2019
VL 48
IS 7
BP 1617
EP 1632
DI 10.1016/j.respol.2019.03.006
PG 16
WC Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA IC4RC
UT WOS:000470952000002
DA 2024-09-05
ER
PT C
AU Zou, D
Han, Y
AF Zou, Dan
Han, Yi
GP ISSI
BE Atanassova, I
Bertin, M
Mayr, P
TI An Altmetrics Study of TOP100 Samples in 2016
SO 16TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS (ISSI
2017)
SE Proceedings of the International Conference on Scientometrics and
Informetrics
LA English
DT Proceedings Paper
CT 16th International Conference on Scientometrics and Informetrics (ISSI)
CY OCT 16-20, 2017
CL Wuhan Univ, Wuhan, PEOPLES R CHINA
HO Wuhan Univ
DE Altmetrics; Altmetrics scores; citation counting; correlation analysis;
multiple linear regression analysis
AB This paper takes the TOP100 literatures with the highest Altmetrics Scores in the Altmetric.com in 2016 as samples. Taking the advantage of SPSS19.0, the correlation analysis between Altmetrics score and citation counting was presented, and the Pearson correlation coefficient is 0.036, which means that the Altmetrics score does not correlate with the citation counting and the Altmetrics indicator maybe independent variable to assess the literature impact. Meanwhile, the multiple linear regression analysis was conducted, which the Altmetric scores was viewed as dependent variable and some component indicators as independent ones. The fitness between the independent variable and the dependent variable is very good, and the significance test of the variable coefficient is also verified.
C1 [Zou, Dan; Han, Yi] Southwest Univ, Coll Comp & Informat Sci, Chongqing, Peoples R China.
C3 Southwest University - China
RP Zou, D (corresponding author), Southwest Univ, Coll Comp & Informat Sci, Chongqing, Peoples R China.
EM 531479222@qq.com; hanyi72@swu.edu.cn
CR Cabezas-Clavijo A, 2010, PROF INFORM, V19, P431, DOI 10.3145/epi.2010.jul.14
Curry S., 2014, DEBATING ROLE METRIC
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
LI Gen, 2016, ACTA EDITOLOGICA, V2, P196
Li XM, 2012, SCIENTOMETRICS, V91, P461, DOI 10.1007/s11192-011-0580-x
Liu Jean, 2013, Bulletin of the American Society for Information Science and Technology, V39, P22
Piwowar H, 2013, NATURE, V493, P159, DOI 10.1038/493159a
Priem J, 2012, PLOS ONE, V11, P35
Thelwall M, 2013, PUBLIC LIB SCI, V5
Torres-Salinas D, 2013, COMUNICAR, V21, P53, DOI 10.3916/C41-2013-05
Wang Rui, 2014, LIB INFORM SERVICE, V21, P92
Wang Xianwen, 2016, ATTENTION CITATION W
Zhao Rongying, 2016, J LIB SCI CHINA, V1, P96
NR 13
TC 1
Z9 1
U1 0
U2 7
PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI
PI LEUVEN
PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN,
B-3000, BELGIUM
SN 2175-1935
J9 PRO INT CONF SCI INF
PY 2017
BP 1710
EP 1718
PG 9
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BO2SP
UT WOS:000508234900188
DA 2024-09-05
ER
PT J
AU Sharmiladevi, JC
Khandelwal, NK
Mishra, PK
Dutt, I
Raees, S
Mathur, AR
Sharma, A
AF Sharmiladevi, J. C.
Khandelwal, Nishant Kumar
Mishra, Punit Kumar
Dutt, Ishita
Raees, Sameera
Mathur, Ashutosh Rajendera
Sharma, Adya
TI Changes and Current Trends in Higher Education in Management and Allied
Disciplines: A Bibliometric Study
SO INTERNATIONAL JOURNAL OF EDUCATIONAL SCIENCES
LA English
DT Article
DE Online Learning; Research Trends; Sustainable Higher Education;
Management; Scientometrics
ID SCIENTIFIC LITERATURE; COMPETENCES; COCITATION; IMPACT
AB Changes in the higher education domain are essential for the enhancement of the future generation. It must be embraced successfully to face the dynamics and accept new developments with their inherent outcomes. Sustaining changes will equip policymakers to understand the wheel of knowledge central to success. This domain has undergone many changes recently due to multiple global events. Using bibliometric analysis, authors tried to understand these changes in management and allied fields by extracting 2503 documents from the Scopus database from January 2020 to April 2023. Studies in Higher Education and International Journal of Sustainability in Higher Education are the most prominent sources. Mishra L, Gupta T, and Shree A are the highest-cited authors. Braun, Marginson, and Bourdieu are the most co-cited authors. Change management, online collaborative learning, and digital competence are the themes that emerged from thematic analysis. The results of this study are significant in decision-making for scholars, researchers, policymakers, and institutions in the higher education sector.
C1 [Sharmiladevi, J. C.; Khandelwal, Nishant Kumar; Mishra, Punit Kumar; Dutt, Ishita; Raees, Sameera; Mathur, Ashutosh Rajendera; Sharma, Adya] Symbiosis Int Deemed Univ, Symbiosis Ctr Management Studies, Pune, Maharashtra, India.
C3 Symbiosis International University; Symbiosis Centre for Management
Studies Pune
RP Sharmiladevi, JC (corresponding author), Symbiosis Int Deemed Univ, Symbiosis Ctr Management Studies, Pune, Maharashtra, India.
EM sharmiladevi@scmspune.ac.in
RI J.C, Sharmiladevi/U-3983-2017; Sharma, Adya/HLV-8669-2023; Dutt,
Ishita/GLT-8249-2022; RAEES, Dr. SAMEERA/GHD-8110-2022; Mishra, Punit
Kumar/HDL-9155-2022; Mathur, Ashutosh/HJP-2278-2023
OI Mishra, Punit Kumar/0000-0002-2912-4977;
CR Abu Talib M, 2021, EDUC INF TECHNOL, V26, P6719, DOI 10.1007/s10639-021-10507-1
Adedoyin O.B., 2020, INTERACT LEARN ENVIR, P1, DOI DOI 10.1080/10494820.2020.1813180
Adhya D, 2022, EDUC MEDIA INT, V59, P131, DOI 10.1080/09523987.2022.2101204
Akter S, 2021, INT J SOC ECON, V48, P399, DOI 10.1108/IJSE-08-2020-0545
Altbach P., 2022, International Higher Education, V111, P3
Annala J, 2022, J CURRICULUM STUD, V54, P53, DOI 10.1080/00220272.2020.1836261
[Anonymous], 2023, What you need to know about higher education
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arora AK., 2020, PRABANDHAN INDIAN J, V13, P43, DOI [10.17010/pijom/2020/v13i4/151825, DOI 10.17010/PIJOM/2020/V13I4/151825]
Azorín C, 2020, J PROF CAP COMMUNITY, V5, P381, DOI 10.1108/JPCC-05-2020-0019
Basantes-Andrade A, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09456
Belchior-Rocha H, 2022, EDUC SCI, V12, DOI 10.3390/educsci12040255
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
BOURDIEU P, 1977, SOC SCI INFORM, V16, P645, DOI 10.1177/053901847701600601
BOURDIEU P, 1985, THEOR SOC, V14, P723, DOI 10.1007/bf00174048
Brachem JC, 2018, J FURTH HIGH EDUC, V42, P166, DOI 10.1080/0309877X.2016.1224326
Braun E., 2015, Peabody Journal of Education, V90, P574, DOI DOI 10.1080/0161956X.2015.1068086
Braun E, 2008, DIAGNOSTICA, V54, P30, DOI 10.1026/0012-1924.54.1.30
Braun E, 2009, EUR PSYCHOL, V14, P297, DOI 10.1027/1016-9040.14.4.297
Brika SKM, 2021, FRONT EDUC, V6, DOI 10.3389/feduc.2021.666087
Bruggeman B, 2022, COMPUT EDUC OPEN, V3, DOI 10.1016/j.caeo.2022.100095
Brunner LR, 2022, STUD SOC JUSTICE, V16, P78
Chatterjee S, 2020, EDUC INF TECHNOL, V25, P3443, DOI 10.1007/s10639-020-10159-7
Chen XL, 2019, BMC MED INFORM DECIS, V19, DOI 10.1186/s12911-019-0757-4
Clark B.R., 1983, The higher education system: Academic organization in crossnational perspective, DOI [10.1525/9780520340725, DOI 10.1525/9780520340725]
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Coman C, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122410367
Corcoran C., 2022, Journal ofInstructionalPedagogies, V27, P1
Crompton H, 2021, BRIT J EDUC TECHNOL, V52, P1554, DOI 10.1111/bjet.13114
de Wit H, 2021, GLOB PERSP HIGHER ED, V50, P303, DOI 10.1163/9789004462717_016
Torres-Caceres FD, 2022, TUNING J HIGH EDUC, V9, P470, DOI 10.18543/tjhe.2217
Dervenis C, 2022, QUAL ASSUR EDUC, V30, P199, DOI 10.1108/QAE-08-2021-0126
Dubey P., 2020, INT J INDIAN PSYCHOL, V8, P43, DOI [DOI 10.25215/0802, 10.25215/0802]
Eli-Chukwu NC, 2023, J APPL RES HIGH EDUC, V15, P238, DOI 10.1108/JARHE-09-2021-0346
Eschmann R, 2021, SOCIOL RACE ETHNIC, V7, P264, DOI 10.1177/2332649220933307
Fakunle O, 2021, HIGH EDUC Q, V75, P525, DOI 10.1111/hequ.12345
Falkenstern A, 2020, A Bridge between Educational Theory and Empirical Educational Research. Student Learning in German Higher Education: Innovative Measurement Approaches and Research Results, P301
Fauzi MA, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e09433
Ferreira JJ, 2018, Entrepreneurial Universities, Cheltenham
Forliano C, 2021, TECHNOL FORECAST SOC, V165, DOI 10.1016/j.techfore.2020.120522
Fynn A, 2023, SA J HUM RESOUR MANA, V21
Gao Y., 2022, International Journal of Information and Education Technology, V12, P390, DOI [10.18178/ijiet.2022.12.5.1632, DOI 10.18178/IJIET.2022.12.5.1632]
Garcez A, 2022, EDUC INF TECHNOL, V27, P1159, DOI 10.1007/s10639-021-10638-5
Garg A, 2022, EDUC INF TECHNOL, V27, P4793, DOI 10.1007/s10639-021-10797-5
Glass CR, 2023, HIGH EDUC, V85, P415, DOI 10.1007/s10734-022-00841-9
Gonzalez T, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239490
Goren H, 2017, INT J EDUC RES, V82, P170, DOI 10.1016/j.ijer.2017.02.004
Hamzah NFA, 2023, International Journal of Learning, Teaching and Educational Research, V22, P33
Hansson P, 2021, IAFOR Journal of Education, V9, P77
Haryati S, 2021, AlIshlah: Jurnal Pendidikan, V13, P364
Hodges CB., 2020, International Journal of Multidisciplinary Perspectives in Higher Education, V5, P118, DOI [10.32674/jimphe.v5i1.2507, DOI 10.32674/JIMPHE.V5I1.2507]
Horta H, 2023, ASIAN ECON POLICY R, V18, P171, DOI 10.1111/aepr.12416
Thi HP, 2023, J APPL RES HIGH EDUC, V15, P324, DOI 10.1108/JARHE-05-2021-0191
Hyytinen H, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1162156
Jeong YK, 2014, J INFORMETR, V8, P197, DOI 10.1016/j.joi.2013.12.001
Kelchen R., 2021, The lingering fiscal effects of the COVID-19 pandemic on higher education
Keshavarz M.H., 2020, Budapest International Research and Critics in Linguistics and Education (BirLE) Journal, V3, P1384, DOI [DOI 10.33258/BIRLE.V3I3.1193, https://doi.org/10.33258/birle.v3i3.1193]
Khan ZR, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-020-00068-0
Laufer M, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00287-6
Le Vo TH, 2021, Journal of Asian Business and Economic Studies, V29, P205
Li X., 2022, ASIA PAC J EDUC, V42, P211, DOI DOI 10.1080/02188791.2020.1766417
Lin DM, 2009, PRO INT CONF SCI INF, V2, P552
Liu CX, 2021, ASIA PAC EDUC REV, V22, P515, DOI 10.1007/s12564-021-09692-y
Makruf I, 2022, INT J INSTR, V15, P135, DOI 10.29333/iji.2022.1518a
Marginson S, 2006, HIGH EDUC, V52, P1, DOI 10.1007/s10734-004-7649-x
Marginson S, 2002, HIGH EDUC, V43, P281, DOI 10.1023/A:1014699605875
Marginson S, 2007, The Organisation for Economic Co-operation and Development OECD Education Working Papers, V8
Marginson S., 2007, Journal of Studies in International Education, V11, P306, DOI [10.1177/1028315307303544, DOI 10.1177/1028315307303544]
Marginson S, 2007, HIGH EDUC, V53, P307, DOI 10.1007/s10734-005-8230-y
Marom L, 2023, HIGH EDUC, V85, P123, DOI 10.1007/s10734-022-00825-9
Martin EC, 2021, SOC CURR, V8, P424, DOI 10.1177/23294965211026692
McCowan T, 2022, INT J EDUC DEV, V90, DOI 10.1016/j.ijedudev.2022.102558
Mishra Lokanath, 2020, Int J Educ Res Open, V1, P100012, DOI 10.1016/j.ijedro.2020.100012
Müller L, 2018, Z ERZIEHWISS, V21, P649, DOI 10.1007/s11618-017-0799-2
Munim ZH, 2020, MARIT POLICY MANAG, V47, P577, DOI 10.1080/03088839.2020.1788731
Murphy MPA, 2020, CONTEMP SECUR POL, V41, P492, DOI 10.1080/13523260.2020.1761749
Naim A, 2022, American Journal of Pedagogical and Educational Research, V1, P21
Nourshahi N, 2023, Research and Planning in Higher Education, V20, P95
Nowakowski A, 2012, Z ERZIEHWISS, V15, P253, DOI 10.1007/s11618-012-0275-y
Oke A., 2020, Journal of Open Innovation: Technology, Market, and Complexity, V6, P31
Oleksiyenko A, 2021, EUR J HIGH EDUC, V11, P101, DOI 10.1080/21568235.2020.1777446
Oliveira G, 2021, BRIT J EDUC TECHNOL, V52, P1357, DOI 10.1111/bjet.13112
Parejo JL, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.991263
Pham HH, 2020, HIGH EDUC RES DEV, V39, P1327, DOI 10.1080/07294360.2020.1823945
Portillo J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122310128
Pozas M, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.1045067
PRABHUPADA A.B.S., 1972, Bhagavad-Gita as it is
Pratiwi DI, 2023, Contemporary Educational Technology, V15, P423
Quezada RL, 2020, J EDUC TEACHING, V46, P472, DOI 10.1080/02607476.2020.1801330
Raffaghelli JE, 2015, BRIT J EDUC TECHNOL, V46, P488, DOI 10.1111/bjet.12279
Rahman A., 2021, HIGHER ED FUTURE, V8, P71, DOI DOI 10.1177/2347631120980549
Rapanta C., 2020, Postdigital Science and Education, V2, P923, DOI [10.1007/s42438-020-00155-y, DOI 10.1007/S42438-020-00155-Y]
Rapanta C., 2021, Postdigital Science and Education, V3, P715, DOI [DOI 10.1007/S42438-021-00249-1, https://doi.org/10.1007/s42438-021-00249-1]
Ratten V, 2020, J ENTERP COMMUNITIES, V14, P753, DOI 10.1108/JEC-06-2020-0121
Raza SA, 2022, J APPL RES HIGH EDUC, V14, P1603, DOI 10.1108/JARHE-02-2021-0054
Rees S, 2021, TEACH HIGH EDUC, V26, P663, DOI 10.1080/13562517.2019.1670637
Riofrío-Calderón G, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14052951
Rizvi S, 2022, COMPUT HUM BEHAV, V126, DOI 10.1016/j.chb.2021.106973
Roco M, 2022, INT J EDUC TECHNOL H, V19, DOI 10.1186/s41239-022-00336-8
Rodrigues M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13168718
Ruggeri G, 2019, INT J CONSUM STUD, V43, P134, DOI 10.1111/ijcs.12492
Salas-Pilco SZ, 2022, BRIT J EDUC TECHNOL, V53, P593, DOI 10.1111/bjet.13190
Santos A.I., 2020, Journal of Education and E-Learning Research, V7, P167, DOI [DOI 10.20448/JOURNAL.509.2020.72.167.173, 10.20448/journal.509.2020.72.167, DOI 10.20448/JOURNAL.509.2020.72.167]
Sauphayana S., 2021, Journal of Educational and Social Research, V11, P163, DOI [10.36941/jesr-2021-0137, DOI 10.36941/JESR-2021-0137]
Schina D, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su122310085
Shahzad Arfan, 2021, Qual Quant, V55, P805, DOI 10.1007/s11135-020-01028-z
Shomotova Aizhan., 2022, The Past, Present, and Future of Higher Education in the Arabian Gulf Region, P159
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Sokol T., 2022, Pedagogy and Education Management Review, V5, P49, DOI 10.36690/2733-2039-2022-5-49
Sundgren M, 2023, COMPUT EDUC OPEN, V4, DOI 10.1016/j.caeo.2023.100134
Phan TTT, 2022, J UNIV TEACH LEARN P, V19
Thompson KM, 2020, INFORM LEARN SCI, V121, P481, DOI 10.1108/ILS-04-2020-0083
Toquero C.M., 2020, PEDAGOGICAL RES, V5, pem0063, DOI [DOI 10.29333/PR/7947, https://doi.org/10.29333/pr/7947]
Trevisan O, 2023, ETR&D-EDUC TECH RES, V71, P79, DOI 10.1007/s11423-023-10197-1
Tsiligkiris V, 2022, HIGH EDUC Q, V76, P343, DOI 10.1111/hequ.12390
Tuhkala A, 2021, EUR J EDUC, V56, P641, DOI 10.1111/ejed.12471
Varadarajan S, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00381-x
Wahyuningsih S., 2023, INT J LEARNING TEACH, V22, P209, DOI [10.26803/ijlter.22.3.13, DOI 10.26803/IJLTER.22.3.13]
Waters J. L., 2021, Student Migrants and Contemporary Educational Mobilities
Wilkens L, 2021, SOC INCL, V9, P117, DOI 10.17645/si.v9i3.4125
Yang G, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.829193
Zalat MM, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0248758
Zhang L, 2022, BRIT J EDUC TECHNOL, V53, P620, DOI 10.1111/bjet.13191
NR 124
TC 0
Z9 0
U1 4
U2 9
PU KAMLA-RAJ ENTERPRISES
PI GURUGRAM
PA C210, NIRVANA COURTYARD SOUTH CITY 2, GURUGRAM, HARYANA 122 018, INDIA
SN 0975-1122
J9 INT J EDUC SCI
JI Int. J. Educ. Sci.
PD JUL-SEP
PY 2023
VL 42
IS 1-3
BP 6
EP 20
DI 10.31901/24566322.2023/42.1-3.1292
PG 15
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA T9CX3
UT WOS:001080901500002
DA 2024-09-05
ER
PT J
AU Cunillera, T
Guilera, G
AF Cunillera, Toni
Guilera, Georgina
TI Twenty years of statistical learning: from language, back to
machine learning
SO SCIENTOMETRICS
LA English
DT Article
DE Statistical learning; Language; Psychology; Bibliometrics
ID WORD SEGMENTATION; CHILDREN
AB Twenty years ago, Saffran et al. (Science 274:1926-1928, 1996) published a paper in the prestigious journal Science, proposing statistical learning as a key learning process to explain how infants acquire their first words. The current paper presents an overview of how this publication has impacted the scientific community under a bibliometric perspective. Documents citing that paper were searched on the Web of Science Core Collection. Its evolution over time has been analyzed, most productive journals and subject areas have been identified, and a keywords co-occurrence map has been created. Results show that statistical learning has spread widely around scientific areas out of Linguistics and Psychology, and has aroused the interest of researchers from other related areas such as Rehabilitation or Education and Educational Research.
C1 [Cunillera, Toni] Univ Barcelona, Fac Psicol, Dept Cognit Dev & Educ Psychol, Pg Vall dHebron 171, Barcelona 08035, Spain.
[Guilera, Georgina] Univ Barcelona, Fac Psychol, Dept Social Psychol & Quantitat Psychol, Barcelona, Spain.
C3 University of Barcelona; University of Barcelona
RP Cunillera, T (corresponding author), Univ Barcelona, Fac Psicol, Dept Cognit Dev & Educ Psychol, Pg Vall dHebron 171, Barcelona 08035, Spain.
EM tcunillera@ub.edu
RI Guilera, Georgina/A-4253-2009; Cunillera, Toni/I-4212-2015
OI Guilera, Georgina/0000-0002-4941-2511; Cunillera,
Toni/0000-0002-1768-5910
CR [Anonymous], 2006, Machine Learning
[Anonymous], NEW PSYCHOL LANGUAGE
Baldwin D, 2008, COGNITION, V106, P1382, DOI 10.1016/j.cognition.2007.07.005
Conway CM, 2005, J EXP PSYCHOL LEARN, V31, P24, DOI 10.1037/0278-7393.31.1.24
Domjan M., 2010, PRINCIPLES LEARNING
Frank MC, 2010, COGNITION, V117, P107, DOI 10.1016/j.cognition.2010.07.005
Gabay Y, 2015, J SPEECH LANG HEAR R, V58, P934, DOI 10.1044/2015_JSLHR-L-14-0324
Guo LY, 2015, J SPEECH LANG HEAR R, V58, P987, DOI 10.1044/2015_JSLHR-H-14-0135
HASTIE T., 2009, Unsupervised Learning, P485
Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415
Lu K, 2014, P NATL ACAD SCI USA, V111, P14553, DOI 10.1073/pnas.1412109111
Murphy K. P., 2012, MACHINE LEARNING PRO
Perruchet P, 2006, TRENDS COGN SCI, V10, P233, DOI 10.1016/j.tics.2006.03.006
Perruchet P, 2014, ACTA PSYCHOL, V149, P1, DOI 10.1016/j.actpsy.2014.01.015
REBER AS, 1967, J VERB LEARN VERB BE, V6, P855, DOI 10.1016/S0022-5371(67)80149-X
Saffran JR, 1996, SCIENCE, V274, P1926, DOI 10.1126/science.274.5294.1926
Santolin C, 2018, TRENDS COGN SCI, V22, P52, DOI 10.1016/j.tics.2017.10.003
Sengottuvel K, 2013, RES DEV DISABIL, V34, P3317, DOI 10.1016/j.ridd.2013.06.036
Stadler M.A., 1998, HDB IMPLICIT LEARNIN
van Eck NJ, 2010, SCIENTOMETRICS, V82, P581, DOI 10.1007/s11192-010-0173-0
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vapnik VN, 1999, IEEE T NEURAL NETWOR, V10, P988, DOI 10.1109/72.788640
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
NR 23
TC 5
Z9 6
U1 1
U2 109
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD OCT
PY 2018
VL 117
IS 1
BP 1
EP 8
DI 10.1007/s11192-018-2856-x
PG 8
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA GR6EH
UT WOS:000442737700001
DA 2024-09-05
ER
PT J
AU O'Leary, DE
AF O'Leary, Daniel E.
TI INTELLIGENT SYSTEMS IN ACCOUNTING, FINANCE AND MANAGEMENT: ISI
JOURNAL AND PROCEEDING CITATIONS, AND RESEARCH ISSUES FROM MOST- CITED
PAPERS
SO INTELLIGENT SYSTEMS IN ACCOUNTING FINANCE & MANAGEMENT
LA English
DT Article
DE naming a journal; ISI proceeding citations; ISI journal citations;
Google citations; most-cited papers; research topics in artificial
intelligence
ID INDEX
AB This paper analyses the citations from Intelligent Systems in Accounting, Finance and Management that have occurred in ISI's Web of Knowledge in February 2010. I found roughly 1000 citations to the journal under 10 different journal name abbreviations, with roughly 25% of the citations occurring during 2008-2009, associated with 27 of the more frequently cited papers. Using that citation data, the H-index and the 40 (42 with ties) mostcited papers are presented. I found that ISI's new proceedings data appear to have a different citation pattern than ISI's journal citation data, resulting in citations to more sources, but fewer citations per source. I also examine the research methodologies and applications of the most-cited papers in an attempt to determine what areas have been cited most and where there are potential gaps in the research. Copyright (C) 2010 John Wiley & Sons, Ltd.
C1 [O'Leary, Daniel E.] Univ South Calif, Marshall Sch Business, 3660 Trousdale Pkwy, Los Angeles, CA 90089 USA.
C3 University of Southern California
RP O'Leary, DE (corresponding author), Univ South Calif, Marshall Sch Business, 3660 Trousdale Pkwy, Los Angeles, CA 90089 USA.
EM oleary@usc.edu
RI O'Leary, Daniel E/B-6469-2008
CR Adams A, 1998, SCIENCE, V281, P1936
Anandarajan M., 2001, International Journal of Intelligent Systems in Accounting, Finance and Management, V10, P69, DOI 10.1002/isaf.199
[Anonymous], INT J INTELLIGENT SY
[Anonymous], 1993, Intelligent Systems in Accounting, Finance and Management, DOI DOI 10.1002/J.1099-1174.1993.TB00034.X
Barniv R., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P177, DOI 10.1002/(SICI)1099-1174(199709)6:3<177::AID-ISAF134>3.0.CO;2-D
Bell T. B., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P249, DOI 10.1002/(SICI)1099-1174(199709)6:3<249::AID-ISAF125>3.0.CO;2-H
Bennell J., 2004, International Journal of Intelligent Systems in Accounting, Finance and Management, V12, P243, DOI 10.1002/isaf.254
Bensic M, 2005, INTELL SYST ACCOUNT, V13, P133, DOI 10.1002/isaf.261
Boritz J. E., 1995, International Journal of Intelligent Systems in Accounting, Finance and Management, V4, P95
Brown C. E., 1994, International Journal of Intelligent Systems in Accounting, Finance and Management, V3, P205
Bryant S. M., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P195, DOI 10.1002/(SICI)1099-1174(199709)6:3<195::AID-ISAF132>3.0.CO;2-F
Changduk Jung, 1999, International Journal of Intelligent Systems in Accounting, Finance and Management, V8, P61, DOI 10.1002/(SICI)1099-1174(199903)8:1<61::AID-ISAF156>3.0.CO;2-6
CHUNG HM, 1993, INT J INTELL SYST, V2, P3, DOI [DOI 10.1002/J.1099-1174.1993.TB00031.X, DOI 10.1002/j.1099-1174.1993.tb00031.x]
Coakley J. R., 2000, International Journal of Intelligent Systems in Accounting, Finance and Management, V9, P119, DOI 10.1002/1099-1174(200006)9:2<119::AID-ISAF182>3.0.CO;2-Y
Decker K., 1994, INT J INTELL SYST, V2, P215
DIAMOND AM, 1986, J HUM RESOUR, V21, P200
Duan Y., 1998, International Journal of Intelligent Systems in Accounting, Finance and Management, V7, P1, DOI 10.1002/(SICI)1099-1174(199803)7:1<1::AID-ISAF139>3.0.CO;2-W
Duchessi P., 1993, Intell Syst Account Financ Manag, V2, P151, DOI [10.1002/j.1099-1174.1993.tb00039.x, DOI 10.1002/J.1099-1174.1993.TB00039.X]
Fanning K., 1995, International Journal of Intelligent Systems in Accounting, Finance and Management, V4, P113
Fanning K. M., 1998, International Journal of Intelligent Systems in Accounting, Finance and Management, V7, P21, DOI 10.1002/(SICI)1099-1174(199803)7:1<21::AID-ISAF138>3.0.CO;2-K
Fanning K. M., 1994, International Journal of Intelligent Systems in Accounting, Finance and Management, V3, P241
Garfield E., 1992, Science and Public Policy, V19, P321, DOI [DOI 10.1093/SPP/19.5.321, 10.1093/spp/19.5.321]
Hean-Lee Poh, 1998, International Journal of Intelligent Systems in Accounting, Finance and Management, V7, P253, DOI 10.1002/(SICI)1099-1174(199812)7:4<253::AID-ISAF150>3.0.CO;2-X
Herbst J., 2000, International Journal of Intelligent Systems in Accounting, Finance and Management, V9, P67, DOI 10.1002/1099-1174(200006)9:2<67::AID-ISAF186>3.0.CO;2-7
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Kohara K., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P11, DOI 10.1002/(SICI)1099-1174(199703)6:1<11::AID-ISAF115>3.0.CO;2-3
Kun Chang Lee, 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P41, DOI 10.1002/(SICI)1099-1174(199703)6:1<41::AID-ISAF119>3.0.CO;2-J
Kwon Y. S., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P23, DOI 10.1002/(SICI)1099-1174(199703)6:1<23::AID-ISAF113>3.0.CO;2-4
Li SL, 2009, INTELL SYST ACCOUNT, V16, P231, DOI 10.1002/isaf.302
Maher J. J., 1997, International Journal of Intelligent Systems in Accounting, Finance and Management, V6, P59, DOI 10.1002/(SICI)1099-1174(199703)6:1<59::AID-ISAF116>3.0.CO;2-H
Maringer D, 2007, INTELL SYST ACCOUNT, V15, P57, DOI 10.1002/isaf.285
May RM, 1997, SCIENCE, V275, P793, DOI 10.1126/science.275.5301.793
McKee T. E., 2000, International Journal of Intelligent Systems in Accounting, Finance and Management, V9, P159, DOI 10.1002/1099-1174(200009)9:3<159::AID-ISAF184>3.0.CO;2-C
Morris B. W., 1994, International Journal of Intelligent Systems in Accounting, Finance and Management, V3, P47
Nanda S., 2001, International Journal of Intelligent Systems in Accounting, Finance and Management, V10, P155, DOI 10.1002/isaf.203
Nissen M., 2000, International Journal of Intelligent Systems in Accounting, Finance and Management, V9, P237, DOI 10.1002/1099-1174(200012)9:4<237::AID-ISAF192>3.0.CO;2-R
O'Keefe RM, 1993, INT J INTELL SYST, V6, P249
O'Leary D. E., 1995, International Journal of Intelligent Systems in Accounting, Finance and Management, V4, P149
O'Leary D. E., 1998, International Journal of Intelligent Systems in Accounting, Finance and Management, V7, P187, DOI 10.1002/(SICI)1099-1174(199809)7:3<187::AID-ISAF144>3.0.CO;2-7
O'Leary DE, 2008, IEEE INTELL SYST, V23, P10, DOI 10.1109/MIS.2008.74
O'Leary DE, 2009, INTELL SYST ACCOUNT, V16, P21, DOI 10.1002/isaf.291
O'Leary DE, 2007, HUM SYST MANAGE, V26, P153
Oxley H, 1998, DATABASE, V21, P37
Seglen PO, 1997, BRIT MED J, V314, P498
Shu-Heng Chen, 1999, International Journal of Intelligent Systems in Accounting, Finance and Management, V8, P237, DOI 10.1002/(SICI)1099-1174(199912)8:4<237::AID-ISAF174>3.0.CO;2-J
Singh M. P., 1999, International Journal of Intelligent Systems in Accounting, Finance and Management, V8, P105, DOI 10.1002/(SICI)1099-1174(199906)8:2<105::AID-ISAF163>3.0.CO;2-#
Slowinski R., 1995, International Journal of Intelligent Systems in Accounting, Finance and Management, V4, P27
Smith SD, 2004, FINANC MANAGE, V33, P133
Srivastava R. P., 1996, International Journal of Intelligent Systems in Accounting, Finance and Management, V5, P165, DOI 10.1002/(SICI)1099-1174(199609)5:3<165::AID-ISAF107>3.0.CO;2-E
Stefanowski J., 2001, International Journal of Intelligent Systems in Accounting, Finance and Management, V10, P97, DOI 10.1002/isaf.197
Swicegood P., 2001, International Journal of Intelligent Systems in Accounting, Finance and Management, V10, P169, DOI 10.1002/isaf.201
Vojinovic Z., 2001, International Journal of Intelligent Systems in Accounting, Finance and Management, V10, P225, DOI 10.1002/isaf.207
Xin H, 2006, SCIENCE, V312, P1464, DOI 10.1126/science.312.5779.1464
Yu E. S. K., 1996, International Journal of Intelligent Systems in Accounting, Finance and Management, V5, P1, DOI 10.1002/(SICI)1099-1174(199603)5:1<1::AID-ISAF99>3.0.CO;2-C
Zhiang Lin, 1993, International Journal of Intelligent Systems in Accounting, Finance and Management, V2, P271
NR 55
TC 4
Z9 4
U1 0
U2 6
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 1055-615X
EI 1099-1174
J9 INTELL SYST ACCOUNT
JI Intell. Syst. Account. Financ. Manag.
PD JAN-MAR
PY 2010
VL 17
IS 1
BP 41
EP 58
DI 10.1002/isaf.312
PG 18
WC Business, Finance
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA VA3PS
UT WOS:000409823400003
DA 2024-09-05
ER
PT J
AU Willbur, JF
Vail, JD
Mitchell, LN
Jakeman, DL
Timmons, SC
AF Willbur, Jaime F.
Vail, Justin D.
Mitchell, Lindsey N.
Jakeman, David L.
Timmons, Shannon C.
TI Expression, Purification, and Characterization of a Carbohydrate-Active
Enzyme: A Research-Inspired Methods Optimization Experiment for the
Biochemistry Laboratory
SO BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION
LA English
DT Article
DE active learning; curriculum assessment; curriculum design; curriculum
development; curriculum implementation; enzymes and catalysis; gene
expression; glycobiology; integration of research into undergraduate
teaching; laboratory exercises
ID RESEARCH EXPERIENCES; MECHANISMS; BENEFITS
AB The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern techniques and instrumentation commonly found in a research laboratory. Unlike in a traditional cookbook-style experiment, students generate their own hypotheses regarding expression conditions and quantify the amount of protein isolated using their selected variables. Over the course of three 3-hour laboratory periods, students learn to use sterile technique to express a protein using recombinant DNA in E. coli, purify the resulting enzyme via affinity chromatography and dialysis, analyze the success of their purification scheme via SDS-PAGE, assess the activity of the enzyme via an HPLC-based assay, and quantify the amount of protein isolated via a Bradford assay. Following the completion of this experiment, students were asked to evaluate their experience via an optional survey. All students strongly agreed that this laboratory module was more interesting to them than traditional experiments because of its lack of a predetermined outcome and desired additional opportunities to participate in the experimental design process. This experiment serves as an example of how research-inspired, discovery-based experiences can benefit both the students and instructor; students learned important skills necessary for real-world biochemistry research and a more concrete understanding of the research process, while generating new knowledge to enhance the scholarly endeavors of the instructor. (C) 2015 by The International Union of Biochemistry and Molecular Biology, 44: 75-85, 2016.
C1 [Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Timmons, Shannon C.] Lawrence Technol Univ, Dept Nat Sci, 21000 West Ten Mile Rd, Southfield, MI 48075 USA.
[Jakeman, David L.] Dalhousie Univ, Coll Pharm, Halifax, NS B3H 4R2, Canada.
C3 Dalhousie University
RP Timmons, SC (corresponding author), Lawrence Technol Univ, Dept Nat Sci, 21000 West Ten Mile Rd, Southfield, MI 48075 USA.
EM stimmons@ltu.edu
RI Jakeman, David/X-7624-2018; Timmons, Shannon/IQS-9336-2023
OI Timmons, Shannon/0000-0003-0178-1286; Jakeman, David/0000-0003-3002-3388
FU Lawrence Tech Faculty Seed Grant; Lawrence Tech Quest co-curricular
experiential learning program; Department of Natural Sciences
FX The development of this laboratory module was supported by funding from
a Lawrence Tech Faculty Seed Grant, the Lawrence Tech Quest
co-curricular experiential learning program, and the Department of
Natural Sciences. Special thanks to Dr. Nicole Villeneuve for HPLC
assistance and to the CHM 3411 students who completed this experiment
and the corresponding surveys.
CR Ardèvol A, 2015, J AM CHEM SOC, V137, P7528, DOI 10.1021/jacs.5b01156
Auchincloss LC, 2014, CBE-LIFE SCI EDUC, V13, P29, DOI 10.1187/cbe.14-01-0004
Bauerle C., 2011, Vision and Change in Undergraduate Biology Education. A call to action
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
Fakayode SO, 2014, J CHEM EDUC, V91, P662, DOI 10.1021/ed400482b
Friedrich S, 2015, TETRAHEDRON, V71, P1473, DOI 10.1016/j.tet.2014.12.026
Garrett TA, 2015, BIOCHEM MOL BIOL EDU, V43, P145, DOI 10.1002/bmb.20844
Hatfull GF, 2006, PLOS GENET, V2, P835, DOI 10.1371/journal.pgen.0020092
Lairson LL, 2008, ANNU REV BIOCHEM, V77, P521, DOI 10.1146/annurev.biochem.76.061005.092322
Laursen S., 2010, UNDERGRADUATE RES SC
Lopatto D., 2006, PEER REV, V8, P22
Lopatto David, 2007, CBE Life Sci Educ, V6, P297, DOI 10.1187/cbe.07-06-0039
Seymour E, 2004, SCI EDUC, V88, P493, DOI 10.1002/sce.10131
Shaffer CD, 2014, CBE-LIFE SCI EDUC, V13, P111, DOI 10.1187/cbe-13-08-0152
Thorson JS, 2001, CURR ORG CHEM, V5, P139, DOI 10.2174/1385272013375706
Timmons SC, 2007, ORG LETT, V9, P857, DOI 10.1021/ol0630853
Tsui L., 2007, The Journal of Negro Education, V76, P555
WeymouthWilson AC, 1997, NAT PROD REP, V14, P99, DOI 10.1039/np9971400099
NR 18
TC 4
Z9 4
U1 0
U2 22
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1470-8175
EI 1539-3429
J9 BIOCHEM MOL BIOL EDU
JI Biochem. Mol. Biol. Educ.
PD JAN-FEB
PY 2016
VL 44
IS 1
BP 75
EP 85
DI 10.1002/bmb.20928
PG 11
WC Biochemistry & Molecular Biology; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Education & Educational Research
GA DH7YN
UT WOS:000373010200009
PM 26710673
OA Bronze
DA 2024-09-05
ER
PT J
AU Chan, CH
Grill, C
AF Chan, Chung-hong
Grill, Christiane
TI The Highs in Communication Research: Research Topics With High Supply,
High Popularity, and High Prestige in High-Impact Journals
SO COMMUNICATION RESEARCH
LA English
DT Article
DE research topics; foci of scientific interest; topic modeling; citation
counts; citation networks; high-impact journals
ID TECHNOLOGY RESEARCH; CITATION COUNTS; MODEL; INTERNET; FUTURE; SCHOLARS;
NETWORK; TRENDS
AB More and more scholarly attention is paid to dissecting discipline of communication research under the microscope thereby aiming at revealing foci of scientific interest. The lion's share of research has hereby focused either on the supply side of research examining what topics scholars write about or at the popularity side of research shedding light on what scientific publications receive the most citations. Building up on this, we argue that these research strands are inadequate to the task of exhaustively identifying foci of scientific interest. Tailoring for the fragmented topical landscape of communication research, we propose an integrative combination of three metrics: supply, popularity, and prestige of research topics. By means of topic modeling, citation counts and citation networks, our study showcases how our approach is able to reveal the intellectual architecture of our discipline in order to identify relevant paths for further scientific inquiry.
C1 [Chan, Chung-hong] Univ Mannheim, Mannheim, Germany.
[Grill, Christiane] Univ Mannheim, Mannheim Ctr European Social Res MZES, MZES A5,6 Bauteil A, D-68131 Mannheim, Germany.
C3 University of Mannheim; University of Mannheim
RP Chan, CH (corresponding author), Univ Mannheim, Mannheim Ctr European Social Res MZES, MZES A5,6 Bauteil A, D-68131 Mannheim, Germany.
EM Chung-hong.chan@mzes.uni-mannheim.de
CR [Anonymous], 2016, CONTENT ANAL GUIDEBO
Antons D, 2016, J PROD INNOVAT MANAG, V33, P726, DOI 10.1111/jpim.12300
BERGER CR, 1991, COMMUN MONOGR, V58, P101, DOI 10.1080/03637759109376216
Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bollen J, 2006, SCIENTOMETRICS, V69, P669, DOI 10.1007/s11192-006-0176-z
Borah P, 2017, NEW MEDIA SOC, V19, P616, DOI 10.1177/1461444815621512
Bornmann L., 2008, ETHICS SCI ENV POLIT, V8, P93, DOI [10.3354/esep00084, DOI 10.3354/ESEP00084]
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Brown G., 1983, Cambridge Textbooks in Linguistics
Bruns A, 2019, INFORM COMMUN SOC, V22, P1544, DOI 10.1080/1369118X.2019.1637447
Bürkner PC, 2017, J STAT SOFTW, V80, P1, DOI 10.18637/jss.v080.i01
Carley S, 2013, SCIENTOMETRICS, V94, P777, DOI 10.1007/s11192-012-0745-2
Carpenter C. J., 2019, Annals of the International Communication Association, V43, P1, DOI [10.1080/23808985.2018.1564881, DOI 10.1080/23808985.2018.1564881]
Case DO, 2000, J AM SOC INFORM SCI, V51, P635, DOI 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H
Chung CJ, 2013, SCIENTOMETRICS, V95, P985, DOI 10.1007/s11192-012-0869-4
Clauset A, 2009, SIAM REV, V51, P661, DOI 10.1137/070710111
Cooper Roger., 1994, JOURNALISM ED, P54, DOI DOI 10.1177/107769589304800408
D'Urso SC, 2009, J COMPUT-MEDIAT COMM, V14, P708, DOI 10.1111/j.1083-6101.2009.01459.x
Evans JA, 2011, SCIENCE, V331, P721, DOI 10.1126/science.1201765
Franceschet M, 2010, J INFORMETR, V4, P55, DOI 10.1016/j.joi.2009.08.001
Freelon D, 2020, INT J COMMUN-US, V14, P427
Griffin DJ, 2016, SCIENTOMETRICS, V106, P91, DOI 10.1007/s11192-015-1774-4
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385
Günther E, 2017, INT J COMMUN-US, V11, P3051
Ha J.H., 2014, INT J STRATEGIC COMM, V8, P29, DOI [DOI 10.1080/1553118X.2013.850694, 10.1080/1553118X.2013.850694]
Ha L, 2019, J MASS COMMUN Q, V96, P963
Herbst S, 2008, J COMMUN, V58, P603, DOI 10.1111/j.1460-2466.2008.00402.x
Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384
Jacobi C, 2016, DIGIT JOURNAL, V4, P89, DOI 10.1080/21670811.2015.1093271
Johnson B., 2008, SAGE SOURCEBOOK ADV, P311, DOI [10.4135/9781452272054.n11, DOI 10.4135/9781452272054.N11]
Kamhawi R, 2003, J MASS COMMUN Q, V80, P7, DOI 10.1177/107769900308000102
Kearney M.W., 2017, The SAGE Encyclopedia of Communication Research Methods, DOI [DOI 10.4135/9781483381411.N264, DOI 10.4135/9781483381411]
Kim ST, 2002, NEW MEDIA SOC, V4, P518, DOI 10.1177/146144402321466796
Kim YoungJi., 2015, Annals of the International Communication Association, V39, P163, DOI DOI 10.1080/23808985.2015.11679175
Lee H, 2018, J TECHNOL TRANSFER, V43, P1291, DOI 10.1007/s10961-017-9561-4
Lee K, 2016, SCIENTOMETRICS, V109, P1761, DOI 10.1007/s11192-016-2135-7
Levine TR, 2010, COMMUN EDUC, V59, P41, DOI 10.1080/03634520903296825
Lin Y, 2000, SCIENTOMETRICS, V47, P143, DOI 10.1023/A:1005678011835
Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754
Mane KK, 2004, P NATL ACAD SCI USA, V101, P5287, DOI 10.1073/pnas.0307626100
Merton RobertK., 1938, Osiris, V4, P360, DOI [10.1086/368484, DOI 10.1086/368484]
Neuman WR, 2011, COMMUN THEOR, V21, P169, DOI 10.1111/j.1468-2885.2011.01381.x
O'Sullivan PB, 2018, NEW MEDIA SOC, V20, P1161, DOI 10.1177/1461444816686104
O'Sullivan PB, 1999, HUM COMMUN RES, V25, P569, DOI 10.1111/j.1468-2958.1999.tb00462.x
OPPENHEIM C, 1995, J DOC, V51, P18, DOI 10.1108/eb026940
Park HW, 2009, SCIENTOMETRICS, V81, P157, DOI 10.1007/s11192-009-2119-y
Parks MR, 2014, J COMMUN, V64, P355, DOI 10.1111/jcom.12090
Paul B., 2000, Mass Communication Society, V3, P57, DOI [DOI 10.1207/S15327825MCS030104, 10.1207/S15327825MCS0301_04, DOI 10.1207/S15327825MCS0301_04, https://doi.org/10.1207/S15327825MCS0301_04]
PETERS JD, 1993, J COMMUN, V43, P132, DOI 10.1111/j.1460-2466.1993.tb01313.x
PINSKI G, 1976, INFORM PROCESS MANAG, V12, P297, DOI 10.1016/0306-4573(76)90048-0
Puschmann C, 2019, INFORM COMMUN SOC, V22, P1582, DOI 10.1080/1369118X.2019.1646300
Rauchfleisch A, 2018, JCOM-J SCI COMMUN, V17, DOI 10.22323/2.17030207
Rauchfleisch A, 2017, COMMUN PUBLIC, V2, P3, DOI 10.1177/2057047317691054
REARDON KK, 1988, HUM COMMUN RES, V15, P284, DOI 10.1111/j.1468-2958.1988.tb00185.x
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
So CYK, 1998, SCIENTOMETRICS, V41, P325, DOI 10.1007/BF02459049
Song H, 2020, J COMMUN, V70, P310, DOI 10.1093/joc/jqaa009
Sweet TM, 2017, J EDUC BEHAV STAT, V42, P107, DOI 10.3102/1076998616659752
Peng TQ, 2013, SCIENTOMETRICS, V97, P675, DOI 10.1007/s11192-013-1012-x
Tomasello TK, 2010, NEW MEDIA SOC, V12, P531, DOI 10.1177/1461444809342762
Tomasello TK, 2001, JOURNALISM MASS COMM, V78, P659, DOI 10.1177/107769900107800403
Waisbord S., 2019, Communication: A Post-Discipline
Wilhite AW, 2012, SCIENCE, V335, P542, DOI 10.1126/science.1212540
XHIGNESSE L V, 1967, American Psychologist, V22, P778, DOI 10.1037/h0024961
Ye L, 2012, J PUBLIC RELAT RES, V24, P409, DOI 10.1080/1062726X.2012.723277
Zhang Y, 2015, NEW MEDIA SOC, V17, P1007, DOI 10.1177/1461444813520477
Zhou YB, 2012, NEW J PHYS, V14, DOI 10.1088/1367-2630/14/3/033033
Zhu YE, 2019, J COMMUN, V69, P273, DOI 10.1093/joc/jqz012
NR 70
TC 12
Z9 12
U1 4
U2 42
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0093-6502
EI 1552-3810
J9 COMMUN RES
JI Commun. Res.
PD JUL
PY 2022
VL 49
IS 5
SI SI
BP 599
EP 626
AR 0093650220944790
DI 10.1177/0093650220944790
EA JUL 2020
PG 28
WC Communication
WE Social Science Citation Index (SSCI)
SC Communication
GA 1U4RA
UT WOS:000556225200001
OA Green Published
DA 2024-09-05
ER
PT J
AU Hintzen, RE
Papadopoulou, M
Mounce, R
Banks-Leite, C
Holt, RD
Mills, M
Knight, A
Leroi, AM
Rosindell, J
AF Hintzen, Rogier E.
Papadopoulou, Marina
Mounce, Ross
Banks-Leite, Cristina
Holt, Robert D.
Mills, Morena
Knight, Andrew
Leroi, Armand M.
Rosindell, James
TI Relationship between conservation biology and ecology shown through
machine reading of 32,000 articles
SO CONSERVATION BIOLOGY
LA English
DT Article
DE bibliometrics; ecological applications; ecological theory;
interdisciplinary; latent Dirichlet allocation; aplicaciones ecologicas;
asignacion latente Dirichlet; bibliometria; interdisciplinario; teoria
ecologica; (sic)(sic)(sic)(sic)(sic)(sic)(sic); (sic)(sic)(sic);
(sic)(sic)(sic)(sic)(sic); (sic)(sic)(sic)(sic)(sic);
(sic)(sic)(sic)(sic)(sic)
ID OVERESTIMATE EXTINCTION RATES; HABITAT LOSS; COEXISTENCE; SCIENCE;
BIODIVERSITY; DYNAMICS; DESIGN
AB Conservation biology was founded on the idea that efforts to save nature depend on a scientific understanding of how it works. It sought to apply ecological principles to conservation problems. We investigated whether the relationship between these fields has changed over time through machine reading the full texts of 32,000 research articles published in 16 ecology and conservation biology journals. We examined changes in research topics in both fields and how the fields have evolved from 2000 to 2014. As conservation biology matured, its focus shifted from ecology to social and political aspects of conservation. The 2 fields diverged and now occupy distinct niches in modern science. We hypothesize this pattern resulted from increasing recognition that social, economic, and political factors are critical for successful conservation and possibly from rising skepticism about the relevance of contemporary ecological theory to practical conservation.
C1 [Hintzen, Rogier E.; Papadopoulou, Marina; Banks-Leite, Cristina; Mills, Morena; Knight, Andrew; Leroi, Armand M.; Rosindell, James] Imperial Coll London, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SW7 2AZ, Berks, England.
[Papadopoulou, Marina] Univ Groningen, Groningen Inst Evolutionary Life Sci, NL-9747 AG Groningen, Netherlands.
[Holt, Robert D.] Univ Florida, Dept Biol, Gainesville, FL 32611 USA.
[Mounce, Ross] Arcadia Fund, Sixth Floor,5 Young St, London W8 6EH, England.
C3 Imperial College London; University of Groningen; State University
System of Florida; University of Florida
RP Rosindell, J (corresponding author), Imperial Coll London, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SW7 2AZ, Berks, England.
EM j.rosindell@imperial.ac.uk
RI Papadopoulou, Marina/AGG-3307-2022; Mounce, Ross/A-2538-2010;
Papadopoulou, Marina/GQP-2573-2022; Knight, Andrew Thomas/C-8394-2009;
Banks-Leite, Cristina/D-3075-2011
OI Mounce, Ross/0000-0002-3520-2046; Papadopoulou,
Marina/0000-0002-6478-8365; Knight, Andrew Thomas/0000-0002-6563-0500;
Banks-Leite, Cristina/0000-0002-0091-2857; Leroi,
Armand/0000-0002-5603-0351; Rosindell, James/0000-0002-5060-9346
FU Natural Environment Research Council (NERC) doctoral training
scholarship (Science and Solutions for a Changing Planet DTP); NERC
[NE/L011611/1]; NERC [NE/L011611/1] Funding Source: UKRI
FX The authors thank attendees of the Tansley Workshops at Imperial College
for valuable discussion. R.H. was funded by a Natural Environment
Research Council (NERC) doctoral training scholarship (Science and
Solutions for a Changing Planet DTP). J.R. was funded by a NERC
fellowship (NE/L011611/1). This study is a contribution to Imperial
College's Grand Challenges in Ecosystems and the Environment initiative.
CR [Anonymous], 1973, Stability and Complexity in Model Systems
Axelsen JB, 2013, ECOLOGY, V94, P761, DOI 10.1890/12-0047.1
Barabas G, 2018, ECOL MONOGR, V88, P277, DOI 10.1002/ecm.1302
Bawa KS, 2004, CONSERV BIOL, V18, P859, DOI 10.1111/j.1523-1739.2004.01838.x
Bell G, 2001, SCIENCE, V293, P2413, DOI 10.1126/science.293.5539.2413
Bennett NJ, 2017, BIOL CONSERV, V205, P93, DOI 10.1016/j.biocon.2016.10.006
Bird Steven, 2004, NLTK: The Natural Language Toolkit, P31
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bradshaw CJA, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149852
Brannelly LA, 2018, ANIM CONSERV, V21, P108, DOI 10.1111/acv.12416
BRUSSARD PF, 1991, ECOL APPL, V1, P6, DOI 10.2307/1941843
Cafaro P, 2014, BIOL CONSERV, V170, P1, DOI 10.1016/j.biocon.2013.12.022
Chapron G, 2016, TRENDS ECOL EVOL, V31, P578, DOI 10.1016/j.tree.2016.06.003
Chesson P, 2000, THEOR POPUL BIOL, V58, P211, DOI 10.1006/tpbi.2000.1486
Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343
Debinski DM, 2000, CONSERV BIOL, V14, P342, DOI 10.1046/j.1523-1739.2000.98081.x
Desmet P, 2004, ECOL SOC, V9
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Fraser KC, 2018, FRONT ECOL EVOL, V6, DOI 10.3389/fevo.2018.00150
Godfray HCJ, 2014, BMC BIOL, V12, DOI 10.1186/1741-7007-12-22
Gotelli NJ, 2001, ECOL LETT, V4, P379, DOI 10.1046/j.1461-0248.2001.00230.x
HANSKI I, 1989, TRENDS ECOL EVOL, V4, P113, DOI 10.1016/0169-5347(89)90061-X
Harfoot MBJ, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001841
Hastings A, 2018, SCIENCE, V361, P990, DOI 10.1126/science.aat6412
He FL, 2011, NATURE, V473, P368, DOI 10.1038/nature09985
Hubbell Stephen P., 2001, V32, pi
Jacquet C, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12573
Kareiva P, 2014, J APPL ECOL, V51, P1137, DOI 10.1111/1365-2664.12259
Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712
Lewis OT, 2006, PHILOS T R SOC B, V361, P163, DOI 10.1098/rstb.2005.1712
Lomolino MV, 2001, PROG PHYS GEOG, V25, P1
MAY RM, 1972, NATURE, V238, P413, DOI 10.1038/238413a0
MAY RM, 1975, NATURE, V254, P177, DOI 10.1038/254177a0
Meine C, 2006, CONSERV BIOL, V20, P631, DOI 10.1111/j.1523-1739.2006.00449.x
O'Hanlon SJ, 2018, SCIENCE, V360, P621, DOI 10.1126/science.aar1965
PASZTOR L, 2016, THEOR EC DARW APPR
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Petchey OL, 2015, ECOL LETT, V18, P597, DOI 10.1111/ele.12443
Pritchard JK, 2000, GENETICS, V155, P945
Rehuek R., 2011, GENSIM STAT SEMANTIC
Röder M, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P399, DOI 10.1145/2684822.2685324
Rybicki J, 2013, ECOL LETT, V16, P27, DOI 10.1111/ele.12065
SHAFFER ML, 1981, BIOSCIENCE, V31, P131, DOI 10.2307/1308256
Soule M., 1980, Conservation Biology. An Evolutionary-Ecological Perspective
SOULE ME, 1986, BIOL CONSERV, V35, P19, DOI 10.1016/0006-3207(86)90025-X
SOULE ME, 1985, BIOSCIENCE, V35, P727, DOI 10.2307/1310054
Stancil DD, 2012, MOD PHYS LETT A, V27, DOI 10.1142/S0217732312500770
Stein A, 2014, ECOL LETT, V17, P866, DOI 10.1111/ele.12277
Sutherland W, 2018, CONSERVATION EVIDENC
Teel TL, 2018, CONSERV BIOL, V32, P6, DOI 10.1111/cobi.13059
Thompson JN, 2001, BIOSCIENCE, V51, P15, DOI 10.1641/0006-3568(2001)051[0015:FOE]2.0.CO;2
Tilman D, 2006, NATURE, V441, P629, DOI 10.1038/nature04742
Tylianakis JM, 2008, ECOL LETT, V11, P1351, DOI 10.1111/j.1461-0248.2008.01250.x
Urban MC, 2016, SCIENCE, V353, P1113, DOI 10.1126/science.aad8466
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
Van Dyke F., 2008, Conservation Biology: Foundations, Concepts, Applications, V2nd
Vincenot C, 2017, DIDEROT BIBLIO NETWO
von Humboldt A, 1819, PERSONAL NARRATIVE T, V4
Wallace AR., 1869, The Malay Archipelago: The land of the orang-utan, and the bird of paradise. A narrative of travel, V2
Wedekind C, 2002, CONSERV BIOL, V16, P1204, DOI 10.1046/j.1523-1739.2002.01217.x
Worster Donald., 1994, NATURES EC HIST ECOL
NR 61
TC 23
Z9 24
U1 0
U2 37
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0888-8892
EI 1523-1739
J9 CONSERV BIOL
JI Conserv. Biol.
PD JUN
PY 2020
VL 34
IS 3
BP 721
EP 732
DI 10.1111/cobi.13435
EA DEC 2019
PG 12
WC Biodiversity Conservation; Ecology; Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA LQ6QH
UT WOS:000501791200001
PM 31702070
OA hybrid, Green Published
DA 2024-09-05
ER
PT C
AU Pishtari, G
Sarmiento-Márquez, EM
Tammets, K
Aru, J
AF Pishtari, Gerti
Sarmiento-Marquez, Edna Milena
Tammets, Kairit
Aru, Jaan
BE Hilliger, I
Munoz-Merino, PJ
DeLaet, T
Ortega-Arranz, A
Farrell, T
TI The Evaluation of One-to-One Initiatives: Exploratory Results from a
Systematic Review
SO EDUCATING FOR A NEW FUTURE: MAKING SENSE OF TECHNOLOGY-ENHANCED LEARNING
ADOPTION, EC-TEL 2022
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 17th European Conference on Technology Enhanced Learning (EC-TEL)
CY SEP 12-16, 2022
CL Inst Rech Informatique Toulouse, Toulouse, FRANCE
HO Inst Rech Informatique Toulouse
DE One-to-one computing; Evaluation; Bibliometric network analysis; Topic
modeling; Systematic literature review
ID FRAMEWORK
AB While one-to-one initiatives (that equip each student and teacher with digital devices) have been widely implemented, no systematic review has explored how they are being evaluated. The contribution of this paper is twofold. First, we present exploratory insights from a systematic review on the evaluation of one-to-one initiatives. We focus on the relations inside the related research community and explore the relevant research topics that they have considered, through bibiliometric network analyses and topic modeling. Second, this paper contributes to existing guidelines about systematic reviews with an example that applies the mentioned analyses after the manual in-depth review of the papers (usually they are applied in parallel, or afterwards). Results depict a fragmented community, with little explicit collaborations among the research groups, but that shares a common body of literature providing good practices that can inform future one-to-one implementations. This community has considered a common set of topics (including, the implementation of educational technologies, mobile learning and classroom orchestration). Future evaluations of one-to-one initiatives would benefit if grounded in pedagogical theories and informed by learning analytics. Our approach enabled us to understand the dynamics of the related community, identify the core literature, and define guiding questions for future qualitative analyses.
C1 [Pishtari, Gerti] Danube Univ Krems, Univ Continuing Educ Krems, Dr Karl Dorrek 30, A-3500 Krems An Der Donau 3500, Austria.
[Sarmiento-Marquez, Edna Milena; Tammets, Kairit] Tallinn Univ, Narva Mnt 25, EE-10120 Tallinn, Estonia.
[Aru, Jaan] Univ Tartu, Ulikooli 18, EE-50090 Tartu, Estonia.
C3 Danube University Krems; Tallinn University; University of Tartu
RP Pishtari, G (corresponding author), Danube Univ Krems, Univ Continuing Educ Krems, Dr Karl Dorrek 30, A-3500 Krems An Der Donau 3500, Austria.
EM gerti.pishtari@donau-uni.ac.at; msm@t1u.ee; kairit@tlu.ee;
jaan.aru@ut.ee
RI Aru, Jaan/H-3967-2015
OI Aru, Jaan/0000-0003-3927-452X; Sarmiento-Marquez, Edna
Milena/0000-0002-8186-9028
FU ETAG [PRG1634]; HarNothe; European Social Fund through the IT Academy
Programme; Estonian Research Council [PSG728]
FX This research was supported by the ETAG project PRG1634 and HarNothe, as
well as the European Social Fund through the IT Academy Programme and
the Estonian Research Council grant PSG728.
CR Bethel E.C., 2015, THESIS CONCORDIA U
Carr JM, 2012, J INF TECHNOL EDUC-R, V11, P269
Decker A, 2019, SIGCSE '19: PROCEEDINGS OF THE 50TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, P558, DOI 10.1145/3287324.3287393
Greller W, 2012, EDUC TECHNOL SOC, V15, P42
Grimes D, 2008, J EDUC COMPUT RES, V38, P305, DOI 10.2190/EC.38.3.d
Holcomb LB, 2009, TECHTRENDS, V53, P49
Islam MS, 2016, J EDUC CHANG, V17, P191, DOI 10.1007/s10833-016-9271-y
Kay R., 2019, Society for information technology teacher education international conference, P1862
Kearney M, 2012, RES LEARN TECHNOL, V20, DOI 10.3402/rlt.v20i0.14406
Kitchenham B.A., 2007, GUIDELINES PERFORMIN
Matatall A., 2019, IMPACT 1 1 TECHNOLOG
Mishra P, 2006, TEACH COLL REC, V108, P1017, DOI 10.1111/j.1467-9620.2006.00684.x
Penuel WR, 2006, J RES TECHNOL EDUC, V38, P329, DOI 10.1080/15391523.2006.10782463
Pishtari G., 2022, Hybrid learning spaces, P167, DOI 10.1007/978-3-030-88520-5_10
Pishtari G, 2020, BRIT J EDUC TECHNOL, V51, P1078, DOI 10.1111/bjet.12944
Sell G.R., 2012, METASYNTHESIS RES 1, P1
Tedre M., 2011, IST-Africa Conference Proceedings, 2011, P1
Zheng BB, 2016, REV EDUC RES, V86, P1052, DOI 10.3102/0034654316628645
Zucker AA, 2008, J SCI EDUC TECHNOL, V17, P586, DOI 10.1007/s10956-008-9125-3
NR 19
TC 2
Z9 2
U1 0
U2 3
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-16290-9; 978-3-031-16289-3
J9 LECT NOTES COMPUT SC
PY 2022
VL 13450
BP 310
EP 323
DI 10.1007/978-3-031-16290-9_23
PG 14
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BU0US
UT WOS:000871898800023
DA 2024-09-05
ER
PT J
AU Drongstrup, D
Malik, S
Aljohani, NR
Alelyani, S
Safder, I
Hassan, SU
AF Drongstrup, Dorte
Malik, Shafaq
Aljohani, Naif Radi
Alelyani, Salem
Safder, Iqra
Hassan, Saeed-Ul
TI Can social media usage of scientific literature predict journal indices
of AJG, SNIP and JCR? An altmetric study of economics
SO SCIENTOMETRICS
LA English
DT Article
DE Altmetrics; Economics; AJG; SNIP; JCR; Machine learning
ID IMPACT; DOCUMENTS; CITATIONS
AB Altmetrics are often praised as an alternative or complement to classic bibliometric metrics, especially in the social sciences discipline. However, empirical investigations of altmetrics concerning the social sciences are scarce. This study investigates the extent to which economic research is shared on social media platforms with an emphasis on mentions in policy documents in addition to other mentions such as Twitter or Facebook. Moreover, this study explores machine learning models to predict the likelihood of a research article being classified into the top-quality tier of a journal ranking based on the altmetric mentions. The included journal rankings are the academic journal guide (AJG), source normalized impact per paper (SNIP) and journal citation reports (JCR). The investigated journals have been selected based on the AJG list and extracted from Altmetric.com data. After applying extensive data cleaning on the extracted data, a final set of 55,560 journal article records is obtained. The results indicate that the average number of policy mentions of the publications of economics journals is higher than the other subject areas included in the AJG list. Moreover, the publications in top-ranking economic journals are more likely to have a higher average number of policy mentions. Policy and Twitter mentions are presented as the most significant and informative social media mentions in demonstrating the broader impact and dissemination of Economics discipline followed by Blogs, Facebook, Wikipedia, and News. The results show that Support Vector Machine and Logistic Regression performed best in classifying the journal ranking tiers i.e. SNIP-based with 77% accuracy, JCR-based with 71% accuracy, and AJG-based with 66% accuracy. The models classified the ranking tier AJG18 with lower accuracy than SNIP and JCR. This might be because the AJG18 rankings are based on expert opinion, whereas SNIP and JCR are based on citations.
C1 [Drongstrup, Dorte] Univ Lib Southern Denmark, Res & Anal Sect, Campusvej 55, DK-5230 Odense, Denmark.
[Malik, Shafaq; Safder, Iqra; Hassan, Saeed-Ul] Informat Technol Univ, 346-B,Ferozepur Rd, Lahore, Pakistan.
[Aljohani, Naif Radi] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia.
[Alelyani, Salem] King Khalid Univ, Ctr Artificial Intelligence CAI, POB 9004, Abha 61413, Saudi Arabia.
[Alelyani, Salem] King Khalid Univ, Coll Comp Sci, POB 9004, Abha 61413, Saudi Arabia.
C3 King Abdulaziz University; King Khalid University; King Khalid
University
RP Hassan, SU (corresponding author), Informat Technol Univ, 346-B,Ferozepur Rd, Lahore, Pakistan.
EM shafaq.malik@itu.edu.pk; nraljohani@kau.edu.sa; s.alelyani@kku.edu.sa;
iqra.safder@itu.edu.pk; saeed-ul-hassan@itu.edu.pk
RI Safder, Iqra/JXN-8069-2024; Alelyani, Salem/AAT-8273-2020; Aljohani,
Naif R/S-1109-2017; Drongstrup, Dorte/I-7395-2018; Hassan,
Saeed-Ul/G-1889-2016
OI Alelyani, Salem/0000-0002-4571-9073; Drongstrup,
Dorte/0000-0002-2541-3819; Hassan, Saeed-Ul/0000-0002-6509-9190
FU King Khalid University [239]
FX This article is an extended version of research in progress presented at
the 17th International Conference on Scientometrics and Informetrics,
Rome (Italy), 2-5 September 2019 (Drongstrup et al. 2019). The authors
(Saeed-Ul Hassan and Salem Alelyani) are grateful for the financial
support received from King Khalid University for this research under
Grant No. 239, 2019.
CR Aung HH, 2019, J ASSOC INF SCI TECH, V70, P872, DOI 10.1002/asi.24162
Bailey C., 2017, 2017 ACM IEEE JOINT, P1
Bornmann L, 2016, SCIENTOMETRICS, V109, P1477, DOI 10.1007/s11192-016-2115-y
CABS, 2018, AJG AC J GUID METH
Costas R, 2015, J ASSOC INF SCI TECH, V66, P2003, DOI 10.1002/asi.23309
Drongstrup D., 2019, 17 INT C SCI INF ROM
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Hammarfelt B, 2014, SCIENTOMETRICS, V101, P1419, DOI 10.1007/s11192-014-1261-3
Hassan SU, 2020, SCIENTOMETRICS, V123, P1407, DOI 10.1007/s11192-020-03447-z
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
HASSAN SU, 2020, SCIENTOMETRICS 0518, DOI DOI 10.1007/S11192-020-03499-1
Haunschild R, 2017, SCIENTOMETRICS, V110, P1209, DOI 10.1007/s11192-016-2237-2
Haustein S, 2014, J ASSOC INF SCI TECH, V65, P656, DOI 10.1002/asi.23101
Holmberg K, 2014, SCIENTOMETRICS, V101, P1027, DOI [10.1007/s11192-014-1229-3, 10.1159/000358776]
Jacso P, 2009, 5 YEAR IMPACT FACTOR, P603
Kelly E. J., 2017, J CONT ARCH STUDIES, V4, P1
Lewis D. D., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P4, DOI 10.1007/BFb0026666
Liu J., 2014, NEW SOURCE ALERT POL
Moed HF, 2010, J INFORMETR, V4, P265, DOI 10.1016/j.joi.2010.01.002
Nederhof AJ, 2006, SCIENTOMETRICS, V66, P81, DOI 10.1007/s11192-006-0007-2
Nuredini K., 2015, 14 INT S INFORM SCI, P380
Nuredini K., 2016, P 21 INT C SCI TECHN
Saeed-Ul Hassan, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2019.105383
Saeed-Ul Hassan, 2019, SCIENTOMETRICS, V119, P481, DOI 10.1007/s11192-019-03044-9
Saeed-Ul Hassan, 2017, SCIENTOMETRICS, V113, P1037, DOI 10.1007/s11192-017-2512-x
Said A, 2019, SCIENTOMETRICS, V120, P217, DOI 10.1007/s11192-019-03112-0
Segal M.R., 2004, Machine learning benchmarks and random forest regression
Shuai X, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047523
Suykens JAK, 1999, NEURAL PROCESS LETT, V9, P293, DOI 10.1023/A:1018628609742
Tattersall A., 2018, FRONTIERS RES METRIC, V2, P9, DOI [DOI 10.3389/FRMA.2017.00009, 10.3389/frma.2017.00009]
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Waltman L, 2013, J INFORMETR, V7, P272, DOI 10.1016/j.joi.2012.11.011
Wright R.E., 1995, LOGISTIC REGRESSION
Zahedi Z., 2014, ALTMETRICS
NR 34
TC 13
Z9 14
U1 10
U2 71
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2020
VL 125
IS 2
BP 1541
EP 1558
DI 10.1007/s11192-020-03613-3
EA JUL 2020
PG 18
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA OT3PI
UT WOS:000547804200011
DA 2024-09-05
ER
PT J
AU Basu, A
Hazra, AK
Chaudhury, S
Ross, AB
Balachandran, S
AF Basu, Aman
Hazra, Amit Kumar
Chaudhury, Shibani
Ross, Andrew B.
Balachandran, Srinivasan
TI State of the Art Research on Sustainable Use of Water Hyacinth: A
Bibliometric and Text Mining Analysis
SO INFORMATICS-BASEL
LA English
DT Article
DE water hyacinth; cluster analysis; sentiment analysis; text-mining;
network analysis
ID CRASSIPES MART SOLMS; EICHHORNIA-CRASSIPES; AQUEOUS-SOLUTION; GROWTH
DYNAMICS; ETHANOL; REMOVAL; BIOMASS; FOCUS; PHYTOREMEDIATION;
SACCHARIFICATION
AB This study aims to present a systematic data-driven bibliometric analysis of the water hyacinth (Eichhornia crassipes) infestation problem around the globe. As many solutions are being proposed in academia for its management, mitigation, and utilization, it requires investigation through a systematic scrutinizing lens. In this study, literature records from 1977 to June 2020 concerning research on water hyacinth are taken from Scopus for text analysis. Trends in the publication of different article types, dynamics of publication, clustering, correlation, and co-authoring patterns between different countries are observed. The cluster analysis indicated four clusters viz. (i) ecological works related to species, (ii) pollutant removal process and methods, (iii) utilization of biofuels for biogas production, and (iv) modelling works. It is clear from the networking analysis that most of the publications regarding water hyacinth are from India, followed by China and the United States. Sentiment analysis with the AFINN lexicon showed that the negative sentiment towards the aquatic weed has intensified over time. An exploratory analysis was performed using a bigram network plot, depicting and outlining different important domains of water hyacinth research. Water hyacinth research has passed the pioneering phase and is now at the end of a steady growth phase or at the beginning of an acceleration phase. In this article, an overview is given for the entirety of water hyacinth research, with an indication of future trends and possibilities.
C1 [Basu, Aman] York Univ, Dept Biol, 4700 Keele St, Toronto, ON M3J 1P3, Canada.
[Hazra, Amit Kumar] Visva Bharati Univ, Dept Environm Studies, Visva Bharati 731235, W Bengal, India.
[Chaudhury, Shibani; Balachandran, Srinivasan] Inst Rural Reconstruct, Dept Lifelong Learning & Extens, Visva Bharati 731235, W Bengal, India.
[Ross, Andrew B.] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England.
C3 York University - Canada; Visva Bharati University; University of Leeds
RP Balachandran, S (corresponding author), Inst Rural Reconstruct, Dept Lifelong Learning & Extens, Visva Bharati 731235, W Bengal, India.
EM amanbasu@yorku.ca; amit.hazra@visva-bharati.ac.in;
shibani.chaudhury@visva-bharati.ac.in; A.B.Ross@leeds.ac.uk;
s.balachandran@visva-bharati.ac.in
RI Balachandran, Srinivasan/AAW-7223-2020
OI Balachandran, Srinivasan/0000-0003-4247-408X; Basu,
Aman/0000-0001-6814-4615
FU Biotechnology and Biological Sciences Research Council (BBSRC)
[BB/S011439/1]; BBSRC [BB/S011439/1] Funding Source: UKRI
FX This research was funded by the Biotechnology and Biological Sciences
Research Council (BBSRC; grant number BB/S011439/1) via the GCRF project
BEFWAM (Bioenergy, Fertilizer, and Clean Water from Invasive Aquatic
Macrophytes).
CR BENTON AR, 1978, WATER RESOUR BULL, V14, P919
Bickel MW, 2019, ENERGY SUSTAIN SOC, V9, DOI 10.1186/s13705-019-0226-z
Biswas B, 2017, BIORESOURCE TECHNOL, V242, P139, DOI 10.1016/j.biortech.2017.03.044
Das S, 2015, SUSTAIN MATER TECHNO, V3, P17, DOI 10.1016/j.susmat.2015.01.001
Davies RM, 2013, J COMBUST, V2013, DOI 10.1155/2013/549894
Dhote S, 2009, ENVIRON MONIT ASSESS, V152, P149, DOI 10.1007/s10661-008-0303-9
Eid EM, 2017, REND LINCEI-SCI FIS, V28, P169, DOI 10.1007/s12210-016-0589-4
El-Zawahry MM, 2016, CARBOHYD POLYM, V136, P507, DOI 10.1016/j.carbpol.2015.09.071
Ganguly A, 2012, RENEW SUST ENERG REV, V16, P966, DOI 10.1016/j.rser.2011.09.018
Gautam P, 2017, SCIENTOMETRICS, V113, P1245, DOI 10.1007/s11192-017-2538-0
Gopal B., 1987, Water hyacinth.
Goyal S, 2005, BIORESOURCE TECHNOL, V96, P1584, DOI 10.1016/j.biortech.2004.12.012
Guerrero-Coronilla I, 2015, J ENVIRON MANAGE, V152, P99, DOI 10.1016/j.jenvman.2015.01.026
Gunnarsson CC, 2007, WASTE MANAGE, V27, P117, DOI 10.1016/j.wasman.2005.12.011
GUPTA GC, 1980, J ENVIRON HEALTH, V43, P80
Holm L. G., 1977, The world's worst weeds. Distribution and biology.
Kelley C, 1999, ENVIRON SCI TECHNOL, V33, P1439, DOI 10.1021/es9807789
Ma WT, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11112999
Mabe M, 2001, SCIENTOMETRICS, V51, P147, DOI 10.1023/A:1010520913124
Malik A, 2007, ENVIRON INT, V33, P122, DOI 10.1016/j.envint.2006.08.004
Mathew AK, 2015, CLEAN TECHNOL ENVIR, V17, P1681, DOI 10.1007/s10098-014-0877-6
Monroy SE, 2018, SCIENTOMETRICS, V115, P1139, DOI 10.1007/s11192-018-2728-4
Munjeri K, 2016, INT J ENERGY ENVIR E, V7, P37, DOI 10.1007/s40095-015-0195-8
MUSIL CF, 1977, HYDROBIOLOGIA, V53, P165, DOI 10.1007/BF00029295
Nigam JN, 2002, J BIOTECHNOL, V97, P107, DOI 10.1016/S0168-1656(02)00013-5
Pimchuai A, 2010, ENERG FUEL, V24, P4638, DOI 10.1021/ef901168f
Polprasert C, 1998, WATER RES, V32, P179, DOI 10.1016/S0043-1354(97)00191-7
Priya ES, 2017, ARAB J CHEM, V10, pS3548, DOI 10.1016/j.arabjc.2014.03.002
Rezania S, 2017, INT J HYDROGEN ENERG, V42, P20955, DOI 10.1016/j.ijhydene.2017.07.007
Rezania S, 2015, J ENVIRON MANAGE, V163, P125, DOI 10.1016/j.jenvman.2015.08.018
Rezania S, 2015, RENEW SUST ENERG REV, V41, P943, DOI 10.1016/j.rser.2014.09.006
Senthilkumar ST, 2013, J MATER CHEM A, V1, P1086, DOI 10.1039/c2ta00210h
Shanab SMM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013200
Silge J., 2017, Text mining with R: A tidy approach
Sindhu R, 2017, BIORESOURCE TECHNOL, V230, P152, DOI 10.1016/j.biortech.2017.01.035
Singh R, 2015, BIORESOURCE TECHNOL, V178, P157, DOI 10.1016/j.biortech.2014.08.119
Sukumaran RK, 2009, RENEW ENERG, V34, P421, DOI 10.1016/j.renene.2008.05.008
Sundari MT, 2012, CARBOHYD POLYM, V87, P1701, DOI 10.1016/j.carbpol.2011.09.076
Thamaga K.H., 2018, Remote Sens. Appl. Soc. Environ, DOI DOI 10.1016/J.RSASE.2018.02.005
Theuri M., 2013, ENVIRON DEV, V7, P139, DOI DOI 10.1016/J.ENVDEV.2013.05.002
Ting WHT, 2018, J WATER PROCESS ENG, V22, P239, DOI 10.1016/j.jwpe.2018.02.011
Villamagna AM, 2010, FRESHWATER BIOL, V55, P282, DOI 10.1111/j.1365-2427.2009.02294.x
Wickham H, 2010, J COMPUT GRAPH STAT, V19, P3, DOI 10.1198/jcgs.2009.07098
Yadvika, 2004, BIORESOURCE TECHNOL, V95, P1, DOI 10.1016/j.biortech.2004.02.010
Yan S., 2017, WATER HYACINTH ENV C
Yin DX, 2016, CHEMOSPHERE, V152, P196, DOI 10.1016/j.chemosphere.2016.01.044
Yusuf MOL, 2011, BIOMASS BIOENERG, V35, P1345, DOI 10.1016/j.biombioe.2010.12.033
Zhang F, 2015, J ENVIRON MANAGE, V153, P68, DOI 10.1016/j.jenvman.2015.01.043
NR 48
TC 6
Z9 6
U1 1
U2 6
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2227-9709
J9 INFORMATICS-BASEL
JI Informatics-Basel
PD JUN
PY 2021
VL 8
IS 2
AR 38
DI 10.3390/informatics8020038
PG 14
WC Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA SX4KE
UT WOS:000665175000001
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Rober, R
Hall, B
Daubner, C
Goodman, A
Pikaart, M
Sikora, A
Craig, P
AF Rober, Rebecca
Hall, Bonnie
Daubner, Colette
Goodman, Anya
Pikaart, Michael
Sikora, Arthur
Craig, Paul
TI Flexible Implementation of the BASIL CURE
SO BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION
LA English
DT Article
DE active learning; assessment of educational activities; computers in
research and teaching; curriculum design development and implementation;
enzymes and catalysis; genomics proteomics bioinformatics; inquiry based
teaching
ID EDUCATION; DATABASE; DOCKING
AB Course-based Undergraduate Research Experiences (CUREs) can be a very effective means to introduce a large number of students to research. CUREs are often an extension of the instructor's research, which may make them difficult to replicate in other settings because of differences in expertise or facilities. The BASIL (Biochemistry Authentic Scientific Inquiry Lab) CURE has evolved over the past 4 years as faculty members with different backgrounds, facilities, and campus cultures have all contributed to a robust curriculum focusing on enzyme function prediction that is suitable for implementation in a wide variety of academic settings. (c) 2019 International Union of Biochemistry and Molecular Biology, 00(00):1-8, 2019.
C1 [Rober, Rebecca] Ursinus Coll, Dept Biol, Collegeville, PA 19426 USA.
[Hall, Bonnie] Grand View Univ, Dept Chem, Des Moines, IA USA.
[Daubner, Colette] St Marys Univ, Dept Biol Sci, San Antonio, TX USA.
[Goodman, Anya] Cal Poly San Luis Obispo, Dept Chem & Biochem, San Luis Obispo, CA USA.
[Pikaart, Michael] Hope Coll, Dept Chem & Biochem, Holland, MI 49423 USA.
[Sikora, Arthur] Nova Southeastern Univ, Dept Chem & Phys, Ft Lauderdale, FL 33314 USA.
[Craig, Paul] Rochester Inst Technol, Head Sch Chem & Mat Sci, Rochester, NY 14623 USA.
C3 California State University System; California Polytechnic State
University San Luis Obispo; Hope College; Nova Southeastern University;
Rochester Institute of Technology
RP Craig, P (corresponding author), Rochester Inst Technol, Head Sch Chem & Mat Sci, Rochester, NY 14623 USA.
EM paul.craig@rit.edu
RI Pikaart, Mike/ABE-3086-2020
OI Roberts, Rebecca/0000-0002-3855-0871; Craig, Paul/0000-0002-2085-7816;
Pikaart, Michael/0000-0002-3771-4942; Sikora,
Arthur/0000-0001-6295-9928; Goodman, Anya/0000-0003-1385-9992; Hall,
Bonnie/0000-0002-7431-0349
FU Division of Undergraduate Education [1709170]; Division Of Undergraduate
Education; Direct For Education and Human Resources [1709170] Funding
Source: National Science Foundation
FX Grant sponsor: Division of Undergraduate Education; Grant number:
1709170
CR Altschul SF, 1997, NUCLEIC ACIDS RES, V25, P3389, DOI 10.1093/nar/25.17.3389
ANDERSON J, 1994, J CHEM EDUC, V71, P715, DOI 10.1021/ed071p715
Auchincloss LC, 2014, CBE-LIFE SCI EDUC, V13, P29, DOI 10.1187/cbe.14-01-0004
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkh121, 10.1093/nar/gkp985, 10.1093/nar/gkr1065]
Bell JK, 2017, BIOCHEM MOL BIOL EDU, V45, P7, DOI 10.1002/bmb.20989
Bell JK, 2019, FASEB J, V33
Caruso JP, 2016, J MICROBIOL BIOL EDU, V17, P156, DOI 10.1128/jmbe.v17i1.1011
CRAIG P, 2014, FASEB J S, V28
Craig PA, 2018, J BIOL CHEM, V293, P10447, DOI 10.1074/jbc.RA118.003722
Craig PA, 2017, BIOCHEM MOL BIOL EDU, V45, P426, DOI 10.1002/bmb.21060
Dallakyan S, 2015, METHODS MOL BIOL, V1263, P243, DOI 10.1007/978-1-4939-2269-7_19
Davis E, 2017, MICROBIOLOGYOPEN, V6, DOI 10.1002/mbo3.435
DELANO WL, 2002, PYMOL MOL GRAPHICS S, DOI DOI 10.1234/12345678
Elgin SCR, 2016, CBE-LIFE SCI EDUC, V15, DOI 10.1187/cbe.16-03-0118
Grell L, 2006, BIOCHEM MOL BIOL EDU, V34, P402, DOI 10.1002/bmb.2006.494034062672
Hanson B, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-87
Holm L, 2016, NUCLEIC ACIDS RES, V44, pW351, DOI 10.1093/nar/gkw357
IRBY SM, 2018, CBE LIFE SCI EDUC, V17
Jordan TC, 2014, MBIO, V5, DOI 10.1128/mBio.01051-13
Lopatto D, 2008, SCIENCE, V322, P684, DOI 10.1126/science.1165351
MCDONALD AR, BASIL BIOCH CURRICUL
McKay Talia, 2015, Journal of Structural and Functional Genomics, V16, P43, DOI 10.1007/s10969-015-9194-5
Olson S., 2012, REP PRES
Pope WH, 2015, ELIFE, V4, DOI 10.7554/eLife.06416
Ribeiro AJM, 2018, NUCLEIC ACIDS RES, V46, pD618, DOI 10.1093/nar/gkx1012
Seiler CY, 2014, NUCLEIC ACIDS RES, V42, pD1253, DOI 10.1093/nar/gkt1060
Shaffer CD, 2010, CBE-LIFE SCI EDUC, V9, P55, DOI 10.1187/09-11-0087
TAN K, CRYSTAL STRUCTURE PO
Truhlar DG, 2007, J COMPUT CHEM, V28, P73, DOI 10.1002/jcc.20529
Woodin T, 2010, CBE-LIFE SCI EDUC, V9, P71, DOI 10.1187/cbe.10-03-0044
NR 30
TC 16
Z9 17
U1 0
U2 11
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1470-8175
EI 1539-3429
J9 BIOCHEM MOL BIOL EDU
JI Biochem. Mol. Biol. Educ.
PD SEP
PY 2019
VL 47
IS 5
BP 498
EP 505
DI 10.1002/bmb.21287
EA AUG 2019
PG 8
WC Biochemistry & Molecular Biology; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Education & Educational Research
GA IW9HU
UT WOS:000479286300001
PM 31381264
OA Bronze
DA 2024-09-05
ER
PT J
AU Xu, ZS
Yu, DJ
Wang, XZ
AF Xu, Zeshui
Yu, Dejian
Wang, Xizhao
TI A bibliometric overview of International Journal of Machine Learning and
Cybernetics between 2010 and 2017
SO INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
LA English
DT Article
DE Bibliometric; Citation and co-citation; IJMLC; CiteSpace; Vosviewer
ID PARTICLE SWARM OPTIMIZATION; FUZZY DECISION TREES; INFORMATION-SCIENCE;
EMERGING TRENDS; NEURAL-NETWORK; SCIENTOMETRICS; ENSEMBLE; MEDICINE;
ENERGY
AB International Journal of Machine Learning and Cybernetics (IJMLC) is one of the influential journals in the area of computer science, and it published its first issue in 2010. On the one hand, taking the 544 IJMLC publications between 2010 and 2017 as the research object, this paper uses bibliometric methods to study the citation characteristics, international cooperation and institutional cooperation, the author's cooperation rate and cooperation degree, geographical distribution of the IJMLC publications. On the other hand, CiteSpace and Vosviewer, two data visualization software tools, are used to make the comprehensive analysis of the co-occurrence of the author keywords of the IJMLC publications. The document co-citation clusters visualization and burst detection of keywords are also presented to explore the development of the research trends. The research results in this paper provide a basis for further improving the academic level and quality of the IJMLC.
C1 [Xu, Zeshui] Sichuan Univ, Business Sch, Chengdu 610064, Sichuan, Peoples R China.
[Yu, Dejian] Nanjing Audit Univ, Business Sch, Nanjing 211815, Jiangsu, Peoples R China.
[Wang, Xizhao] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China.
C3 Sichuan University; Nanjing Audit University; Shenzhen University
RP Xu, ZS (corresponding author), Sichuan Univ, Business Sch, Chengdu 610064, Sichuan, Peoples R China.
EM xuzeshui@263.net; yudejian62@126.com; xizhaowang@ieee.org
RI Wang, Xizhao/ABG-7225-2020; Xu, Zeshui/N-8908-2013
FU China National Natural Science Foundation [71771155, 71571123]
FX The work was supported in part by the China National Natural Science
Foundation (nos. 71771155, 71571123).
CR Akmal A, 2018, PROD PLAN CONTROL, V29, P333, DOI 10.1080/09537287.2018.1429030
Biggio B, 2010, INT J MACH LEARN CYB, V1, P27, DOI 10.1007/s13042-010-0007-7
Boehm O, 2011, INT J MACH LEARN CYB, V2, P125, DOI 10.1007/s13042-011-0030-3
Borgman CL, 2002, ANNU REV INFORM SCI, V36, P3
Cancino CA, 2017, COMPUT IND ENG, V113, P614, DOI 10.1016/j.cie.2017.08.033
Castillo-Vergara M, 2018, J BUS RES, V85, P1, DOI 10.1016/j.jbusres.2017.12.011
Chacko BP, 2012, INT J MACH LEARN CYB, V3, P149, DOI 10.1007/s13042-011-0049-5
Chau KW, 2007, AUTOMAT CONSTR, V16, P642, DOI 10.1016/j.autcon.2006.11.008
Chen CM, 2010, J AM SOC INF SCI TEC, V61, P1386, DOI 10.1002/asi.21309
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Fang YQ, 2015, SCIENTOMETRICS, V105, P5, DOI 10.1007/s11192-015-1696-1
Gaede J, 2018, ENERGY RES SOC SCI, V40, P142, DOI 10.1016/j.erss.2017.12.006
Graaff AJ, 2012, INT J MACH LEARN CYB, V3, P1, DOI 10.1007/s13042-011-0041-0
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342
Hu QH, 2010, INT J MACH LEARN CYB, V1, P63, DOI 10.1007/s13042-010-0008-6
Hu Y, 2014, SCIENTOMETRICS, V98, P1269, DOI 10.1007/s11192-013-1067-8
Huang F, 2018, J CHIN MED ASSOC, V81, P450, DOI 10.1016/j.jcma.2017.08.012
Huang GB, 2007, NEUROCOMPUTING, V70, P3056, DOI 10.1016/j.neucom.2007.02.009
Huang GB, 2011, INT J MACH LEARN CYB, V2, P107, DOI 10.1007/s13042-011-0019-y
Jun W, 2011, INT J MACH LEARN CYB, V2, P261, DOI 10.1007/s13042-011-0024-1
Kim MC, 2015, SCIENTOMETRICS, V104, P239, DOI 10.1007/s11192-015-1595-5
Laengle S, 2017, EUR J OPER RES, V262, P803, DOI 10.1016/j.ejor.2017.04.027
Lan Y, 2009, NEUROCOMPUTING, V72, P3391, DOI 10.1016/j.neucom.2009.02.013
Leydesdorff L, 2006, J AM SOC INF SCI TEC, V57, P1616, DOI 10.1002/asi.20335
Li JH, 2013, INT J MACH LEARN CYB, V4, P721, DOI 10.1007/s13042-013-0150-z
Li MB, 2005, NEUROCOMPUTING, V68, P306, DOI 10.1016/j.neucom.2005.03.002
Liang JZ, 2012, INT J MACH LEARN CYB, V3, P141, DOI 10.1007/s13042-011-0047-7
Liu N, 2010, IEEE SIGNAL PROC LET, V17, P754, DOI 10.1109/LSP.2010.2053356
Liu Z, 2011, INT J MACH LEARN CYB, V2, P37, DOI 10.1007/s13042-011-0012-5
Merigó JM, 2017, OMEGA-INT J MANAGE S, V73, P37, DOI 10.1016/j.omega.2016.12.004
Merigó JM, 2017, INT J INTELL SYST, V32, P526, DOI 10.1002/int.21859
PRITCHARD A, 1969, J DOC, V25, P348
Rana S, 2013, INT J MACH LEARN CYB, V4, P391, DOI 10.1007/s13042-012-0103-y
Sharma A, 2012, INT J MACH LEARN CYB, V3, P269, DOI 10.1007/s13042-011-0061-9
Tang Y, 2011, INT J MACH LEARN CYB, V2, P15, DOI 10.1007/s13042-011-0011-6
Tong DL, 2010, INT J MACH LEARN CYB, V1, P75, DOI 10.1007/s13042-010-0004-x
Tsang ECC, 2000, IEEE T FUZZY SYST, V8, P601, DOI 10.1109/91.873583
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Wang XZ, 2008, INFORM SCIENCES, V178, P3188, DOI 10.1016/j.ins.2008.03.021
Wang XZ, 2011, INFORM SCIENCES, V181, P4230, DOI 10.1016/j.ins.2011.06.002
Wei GW, 2016, INT J MACH LEARN CYB, V7, P1093, DOI 10.1007/s13042-015-0433-7
White HD, 1998, J AM SOC INFORM SCI, V49, P327, DOI 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-W
Xiao JZ, 2012, INT J MACH LEARN CYB, V3, P77, DOI 10.1007/s13042-011-0035-y
Yang XB, 2012, INT J MACH LEARN CYB, V3, P223, DOI 10.1007/s13042-011-0054-8
Ye SQ, 2013, ANN MED, V45, P532, DOI 10.3109/07853890.2013.850838
Yi WG, 2011, INT J MACH LEARN CYB, V2, P67, DOI 10.1007/s13042-011-0015-2
Yu DJ, 2018, KNOWL-BASED SYST, V141, P188, DOI 10.1016/j.knosys.2017.11.018
Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732
Yu DJ, 2017, INFORM SCIENCES, V418, P619, DOI 10.1016/j.ins.2017.08.031
Yu DJ, 2018, APPL INTELL
Zhang Y, 2010, INT J MACH LEARN CYB, V1, P43, DOI 10.1007/s13042-010-0001-0
Zhu W, 2011, INT J MACH LEARN CYB, V2, P273, DOI 10.1007/s13042-011-0027-y
NR 55
TC 16
Z9 16
U1 4
U2 124
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1868-8071
EI 1868-808X
J9 INT J MACH LEARN CYB
JI Int. J. Mach. Learn. Cybern.
PD SEP
PY 2019
VL 10
IS 9
BP 2375
EP 2387
DI 10.1007/s13042-018-0875-9
PG 13
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA IR4QF
UT WOS:000481418600011
DA 2024-09-05
ER
PT C
AU Bhoiwala, J
Jhaveri, RH
AF Bhoiwala, Jaina
Jhaveri, Rutvij H.
BE Sa, PK
Bakshi, S
Hatzilygeroudis, IK
Sahoo, MN
TI A Bibliometric Analysis of Recent Research on Machine Learning for
Medical Science
SO RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 1
SE Advances in Intelligent Systems and Computing
LA English
DT Proceedings Paper
CT 5th International Conference on Advanced Computing, Networking, and
Informatics (ICACNI)
CY JUN 01-03, 2017
CL Natl Inst Technol Goa, Dept Comp Sci & Engn, Goa, INDIA
HO Natl Inst Technol Goa, Dept Comp Sci & Engn
DE Wireless sensor networks; Trend analysis; Graphical interpretation
ID CLASSIFICATION
AB Machine learning is a system capable of the independent acquisition and integration of knowledge. Machine learning is a chosen approach to speech recognition, natural language processing computer vision, medical outcome analysis, and computational biology. In this paper we carry out bibliometric analysis of 150 papers from January 2015 to September 2016 in order to recognize various aspects of machine learning when used for medical science. We have considered large number of objectives and top rated publishers for analyzing the papers. For carrying out further research in the machine learning for medical science, our analysis would assist students, researchers, publishers, and experts to study the recent trends.
C1 [Bhoiwala, Jaina; Jhaveri, Rutvij H.] Shri Sad Vidya Mandal Inst Technol, Dept Comp Engn, Bharuch, India.
RP Bhoiwala, J (corresponding author), Shri Sad Vidya Mandal Inst Technol, Dept Comp Engn, Bharuch, India.
EM jainabhoiwala@gmail.com; rhj_symit@yahoo.com
RI Jhaveri, Rutvij H./A-5354-2018
OI Jhaveri, Rutvij H./0000-0002-3285-7346
CR Bhardwaj A., 2015, EXPERT SYST APPL
Jain R., RECENT MACHINE LEARN, P1
Kalaiselvi T., 2015, RAPID AUTOMATIC BRAI
Kang S, 2015, EXPERT SYST APPL, V42, P4265, DOI 10.1016/j.eswa.2015.01.042
Kourou K., 2014, CSBJ
Lee H., 2015, EXPERT SYST APPL
Menze BH, 2015, IEEE T MED IMAGING, V34, P1993, DOI 10.1109/TMI.2014.2377694
Sharma R, 2015, EXPERT SYST APPL, V42, P1106, DOI 10.1016/j.eswa.2014.08.030
Soman S, 2015, APPL SOFT COMPUT, V30, P305, DOI 10.1016/j.asoc.2015.01.018
Uddin S, 2012, SCIENTOMETRICS, V90, P687, DOI 10.1007/s11192-011-0511-x
Yang G., 2015, AUTOMATED CLASSIFICA
NR 11
TC 0
Z9 0
U1 2
U2 9
PU SPRINGER-VERLAG SINGAPORE PTE LTD
PI SINGAPORE
PA 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
SN 2194-5357
EI 2194-5365
BN 978-981-10-8639-7; 978-981-10-8638-0
J9 ADV INTELL SYST
PY 2019
VL 707
BP 225
EP 233
DI 10.1007/978-981-10-8639-7_23
PG 9
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BQ4EW
UT WOS:000589271900023
DA 2024-09-05
ER
PT J
AU Myers, CT
O'Brien, SP
AF Myers, Christine Teeters
O'Brien, Shirley Peganoff
TI Teaching Interprofessional Collaboration: Using Online Education Across
Institutions
SO OCCUPATIONAL THERAPY IN HEALTH CARE
LA English
DT Article
DE Distance learning; e-Learning; Interprofessional education; Online
learning; Social presence
AB Interdisciplinary courses among students in occupational therapy, physical therapy, and speech-language pathology are important for addressing teamwork, communication, and understanding of professional roles, especially in pre-service training for early intervention and school-based practice where collaboration is essential. Although interprofessional education (IPE) as a part of higher education in the health sciences has been strongly encouraged, IPE courses are difficult to schedule and implement. This article discusses the challenges of developing and delivering two IPE courses in an online format, specifically the innovation that addresses logistics, time factors, and social presence for the IPE courses across two institutions.
C1 [Myers, Christine Teeters; O'Brien, Shirley Peganoff] Eastern Kentucky Univ, Dept Occupat Sci & Occupat Therapy, Richmond, KY 40475 USA.
C3 Eastern Kentucky University
RP Myers, CT (corresponding author), Eastern Kentucky Univ, Dept Occupat Sci & Occupat Therapy, Dizney 103,521 Lancaster Ave, Richmond, KY 40475 USA.
EM christine.myers@eku.edu
OI Myers, Christine/0000-0003-1492-9008
CR [Anonymous], 1972, SOILS HUMID TROPICS
[Anonymous], 2010, Framework for Action on Inter-professional Education and Collaborative Practice
[Anonymous], 2011, Core competencies for interprofessional collaborative practice: Report of an expert panel
Aragon S. R., 2003, New Directions for Adult and Continuing Education, V100, P57, DOI [DOI 10.1002/ACE.119, 10.1002/ace.119]
Bainbridge L., 2010, J PHYS THERAPY ED, V24, P6, DOI DOI 10.1097/00001416-201010000-00003
Blackboard Inc, 2015, BLACKB COMP SOFTW
Boettcher J.V., 2010, ONLINE TEACHING SURV, V1st
Buxton EC, 2014, AM J PHARM EDUC, V78, DOI 10.5688/ajpe7818
Carson NE, 2012, AM OCC THER ASS 2012
Chandler B, 2010, EARLY CHILDHOOD OCCU
Fisher T., 2013, Final report and recommendations: Ad hoc committee for future of occupational therapy education
Glassick CE, 1997, CARNEGIE FDN ADVANCE
Hanft B., 2008, COLLABORATING STUDEN
Kelly R., 2014, Faculty Focus: Higher Ed. Teaching Strategies From Magna Publications
Knebel E., 2003, HLTH PROFESSIONS ED, DOI DOI 10.17226/10681
Learning Objects Inc, 2014, CAMP PACK COMP SOFTW
Mandernach B.Jean., 2009, The International Review of Research in Open and Distance Learning, V10, P1, DOI DOI 10.19173/IRRODL.V10I3.606
MarylandOnline, 2014, QUAL MATT
Mossavar-Rahmani F, 2009, WWW J ONLINE ED
Myers CT, 2014, J OCC THER SCH EARLY, V7, P70, DOI 10.1080/19411243.2014.898494
Neill Mark, 2007, J Interprof Care, V21, P425
O'Neil E.H., 1998, RECREATING HLTH PROF
Plante K, 2014, NURS EDUC PERSPECT, V35, P219, DOI 10.5480/13-1094.1
Revere L., 2011, Quarterly Review Of Distance Education, V12, P113
University of Kentucky, PREPARE PREP REL SER
Zimmerman Scott D, 2011, J Allied Health, V40, P15
NR 26
TC 13
Z9 18
U1 0
U2 10
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0738-0577
EI 1541-3098
J9 OCCUP THER HEALTH CA
JI Occup. Ther. Health Care
PD APR
PY 2015
VL 29
IS 2
SI SI
BP 178
EP 185
DI 10.3109/07380577.2015.1017789
PG 8
WC Rehabilitation
WE Emerging Sources Citation Index (ESCI)
SC Rehabilitation
GA CH8WQ
UT WOS:000354317300008
PM 25821890
DA 2024-09-05
ER
PT J
AU Tang, L
Walsh, JP
AF Tang, Li
Walsh, John P.
TI Bibliometric fingerprints: name disambiguation based on approximate
structure equivalence of cognitive maps
SO SCIENTOMETRICS
LA English
DT Article
DE Name disambiguation; Common names; Cognitive map; Approximate structural
equivalence; Knowledge homogeneity score; Hierarchical clustering
ID CITATION ANALYSIS; PUBLICATIONS; AUTHORSHIP; IMPACT; WEB
AB Authorship identity has long been an Achilles' heel in bibliometric analyses at the individual level. This problem appears in studies of scientists' productivity, inventor mobility and scientific collaboration. Using the concepts of cognitive maps from psychology and approximate structural equivalence from network analysis, we develop a novel algorithm for name disambiguation based on knowledge homogeneity scores. We test it on two cases, and the results show that this approach outperforms other common authorship identification methods with the ASE method providing a relatively simple algorithm that yields higher levels of accuracy with reasonable time demands.
C1 [Tang, Li; Walsh, John P.] Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA.
C3 University System of Georgia; Georgia Institute of Technology
RP Walsh, JP (corresponding author), Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA.
EM litang@gatech.edu; jwalsh6@mail.gatech.edu
RI Tang, Li/B-6182-2011; Walsh, John/GQI-2785-2022; Tang, Li/AAG-8045-2021
OI Tang, Li/0000-0003-4971-6192; Walsh, John/0000-0002-2510-8734; Tang,
Li/0000-0003-4971-6192
FU Direct For Social, Behav & Economic Scie; Divn Of Social and Economic
Sciences [0937591] Funding Source: National Science Foundation
CR ABBASI A, 2006, P 4 IEEE C INT SEC I, P60
[Anonymous], 2008, Science and engineering indicators
[Anonymous], 2005, International Journal of Digital Evidence
[Anonymous], 2009, Social Network Analysis. Methods and Applications
BORGMAN CL, 1999, J AM SOC INFORM SCI, V43, P45
FRIETSCH R, 2008, FRAUNHOFER ISI DISCU, V15
GARFIELD E, 1969, NATURE, V223, P763, DOI 10.1038/223763b0
GRIFFITH RA, 2008, Patent No. 20080275859
Han H, 2005, ACM-IEEE J CONF DIG, P334, DOI 10.1145/1065385.1065462
Han H, 2005, P 2005 ACM S APPL CO
HAN H, 2004, P ACM IEEE JOINT C D
Hanneman R. A., 2005, INTRO SOCIAL NETWORK
Houvardas J, 2006, LECT NOTES COMPUT SC, V4183, P77
Huang Jian, 2006, FAST AUTHOR NAME DIS
Jacobs LF, 2003, PSYCHOL REV, V110, P285, DOI 10.1037/0033-295X.110.2.285
Jones BF, 2008, SCIENCE, V322, P1259, DOI 10.1126/science.1158357
Kang IS, 2009, INFORM PROCESS MANAG, V45, P84, DOI 10.1016/j.ipm.2008.06.006
Keefe J.O., 1978, HIPPOCAMPUS COGNITIV
KOSTOFF R, 2008, J INFORMETR, V57, P1
KOSTOFF R, 2006, 443315 DTIC ADA
Kuhn T.S., 2012, The structures of scientific revolutions
Lai Ronald., 2009, The careers and co-authorship networks of u.s. patent-holders, DOI 10.2200/S00428ED1V01Y201207WBE002
Lin J. C., 1988, Cataloging & Classification Quarterly, V9, P69, DOI 10.1300/J104v09n01_08
Lorrain F., 1971, Journal of Mathematical Sociology, V1, P49, DOI DOI 10.1080/0022250X.1971.9989788
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
MCCALLUM A, 2003, IJCAI WORKSH INF INT
Meho LI, 2007, J AM SOC INF SCI TEC, V58, P2105, DOI 10.1002/asi.20677
Merton R. K., 1974, SOCIOLOGY SCI THEORE
PASULA H, 2004, ADV NEUR INF PROC NI
Pauly D., 2005, Ethics Sci Environ Polit, V5, P33
Phelan TJ, 1999, SCIENTOMETRICS, V45, P117, DOI 10.1007/BF02458472
Pieters R, 1999, INT J RES MARK, V16, P113, DOI 10.1016/S0167-8116(99)00008-7
Porter AL, 2008, J NANOPART RES, V10, P715, DOI 10.1007/s11051-007-9266-y
Raffo J, 2009, RES POLICY, V38, P1617, DOI 10.1016/j.respol.2009.08.001
Smalheiser Neil R., 2009, ANN REV INFORM SCI T, V43
Soler JM, 2007, SCIENTOMETRICS, V72, P281, DOI 10.1007/s11192-007-1730-z
STROTMANN A, 2009, AUTHOR NAME DISAMBIG
TAN CN, 1986, LIBRARY ASS RECORD, V88, P551
Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304
Trajtenberg M., 2006, 12479 NBER, V2479
TREERATPITUK P, 2009, JCDL AUST TEX US
Van Mechelen I, 2004, STAT METHODS MED RES, V13, P363, DOI 10.1191/0962280204sm373ra
Wooding S, 2006, SCIENTOMETRICS, V66, P11, DOI 10.1007/s11192-006-0002-7
Youtie J, 2008, J NANOPART RES, V10, P981, DOI 10.1007/s11051-008-9360-9
Zhao DZ, 2002, SCIENTOMETRICS, V54, P449, DOI 10.1023/A:1016090601710
Zhou W, 2008, INT J ELECTRON COMM, V13, P9, DOI 10.2753/JEC1086-4415130201
NR 46
TC 83
Z9 90
U1 2
U2 70
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD SEP
PY 2010
VL 84
IS 3
BP 763
EP 784
DI 10.1007/s11192-010-0196-6
PG 22
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 630LK
UT WOS:000280274400014
DA 2024-09-05
ER
PT J
AU Ganjavi, C
Eppler, MB
Pekcan, A
Biedermann, B
Abreu, A
Collins, GS
Gill, IS
Cacciamani, GE
AF Ganjavi, Conner
Eppler, Michael B.
Pekcan, Asli
Biedermann, Brett
Abreu, Andre
Collins, Gary S.
Gill, Inderbir S.
Cacciamani, Giovanni E.
TI Publishers' and journals' instructions to authors on use of generative
artificial intelligence in academic and scientific publishing:
bibliometric analysis
SO BMJ-BRITISH MEDICAL JOURNAL
LA English
DT Article
ID CHATGPT
AB OBJECTIVES To determine the extent and content of academic publishers' and scientific journals' guidance for authors on the use of generative artificial intelligence (GAI). DESIGN Cross sectional, bibliometric study. SETTING Websites of academic publishers and scientific journals, screened on 19-20 May 2023, with the search updated on 8-9 October 2023. PARTICIPANTS Top 100 largest academic publishers and top 100 highly ranked scientific journals, regardless of subject, language, or country of origin. Publishers were identified by the total number of journals in their portfolio, and journals were identified through the Scimago journal rank using the Hirsch index (H index) as an indicator of journal productivity and impact. MAIN OUTCOME MEASURES The primary outcomes were the content of GAI guidelines listed on the websites of the top 100 academic publishers and scientific journals, and the consistency of guidance between the publishers and their affiliated journals. RESULTS Among the top 100 largest publishers, 24% provided guidance on the use of GAI, of which 15 (63%) were among the top 25 publishers. Among the top 100 highly ranked journals, 87% provided guidance on GAI. Of the publishers and journals with guidelines, the inclusion of GAI as an author was prohibited in 96% and 98%, respectively. Only one journal (1%)explicitly prohibited the use of GAI in the generation of a manuscript, and two (8%) publishers and 19 (22%) journals indicated that their guidelines exclusively applied to the writing process. When disclosing the use of GAI, 75% of publishers and 43% of journals included specific disclosure criteria. Where to disclose the use of GAI varied, including in the methods or acknowledgments, in the cover letter, or in a new section. Variability was also found in how to access GAI guidelines shared between journals and publishers. GAI guidelines in 12 journals directly conflicted with those developed by the publishers. The guidelines developed by top medical journals were broadly similar to those of academic journals. CONCLUSIONS Guidelines by some top publishers and journals on the use of GAI by authors are lacking. Among those that provided guidelines, the allowable uses of GAI and how it should be disclosed varied substantially, with this heterogeneity persisting in some instances among affiliated publishers and journals. Lack of standardization places a burden on authors and could limit the effectiveness of the regulations. As GAI continues to grow in popularity, standardized guidelines to protect the integrity of scientific output are needed.
C1 [Ganjavi, Conner; Eppler, Michael B.; Pekcan, Asli; Biedermann, Brett; Abreu, Andre; Gill, Inderbir S.; Cacciamani, Giovanni E.] Univ Southern Calif, Keck Sch Med, Los Angeles, CA 90007 USA.
[Ganjavi, Conner; Eppler, Michael B.; Pekcan, Asli; Biedermann, Brett; Abreu, Andre; Gill, Inderbir S.; Cacciamani, Giovanni E.] Univ Southern Calif, USC Inst Urol, Los Angeles, CA 90007 USA.
[Ganjavi, Conner; Eppler, Michael B.; Pekcan, Asli; Biedermann, Brett; Abreu, Andre; Gill, Inderbir S.; Cacciamani, Giovanni E.] Univ Southern Calif, Keck Sch Med, Catherine & Joseph Aresty Dept Urol, Los Angeles, CA 90007 USA.
[Ganjavi, Conner; Eppler, Michael B.; Pekcan, Asli; Biedermann, Brett; Abreu, Andre; Gill, Inderbir S.; Cacciamani, Giovanni E.] Univ Southern Calif, USC Inst Urol, Artificial Intelligence Ctr, USC Urol, Los Angeles, CA 90007 USA.
[Collins, Gary S.] Univ Oxford, UK EQUATOR Ctr, Ctr Stat Med, Nuffield Dept Orthopaed Rheumatol & Musculoskeleta, Oxford, England.
C3 University of Southern California; University of Southern California;
University of Southern California; University of Southern California;
University of Oxford
RP Cacciamani, GE (corresponding author), Univ Southern Calif, Keck Sch Med, Los Angeles, CA 90007 USA.; Cacciamani, GE (corresponding author), Univ Southern Calif, USC Inst Urol, Los Angeles, CA 90007 USA.; Cacciamani, GE (corresponding author), Univ Southern Calif, Keck Sch Med, Catherine & Joseph Aresty Dept Urol, Los Angeles, CA 90007 USA.; Cacciamani, GE (corresponding author), Univ Southern Calif, USC Inst Urol, Artificial Intelligence Ctr, USC Urol, Los Angeles, CA 90007 USA.
EM Giovanni.cacciamani@med.usc.edu
RI Collins, Gary Stephen/A-2258-2014
OI Collins, Gary Stephen/0000-0002-2772-2316; Cacciamani,
Giovanni/0000-0002-8892-5539; Pekcan, Asli/0000-0002-8826-3184
CR Allen B, 2019, J AM COLL RADIOL, V16, P1179, DOI 10.1016/j.jacr.2019.04.014
[Anonymous], 2023, WAME Recommendations on Chatbots and Generative Artificial Intelligence in Relation to Scholarly Publications, press release
Beall J, 2012, NATURE, V489, P179, DOI 10.1038/489179a
Cacciamani GE, 2023, NATURE, V618, P238, DOI 10.1038/d41586-023-01853-w
COPE, 2023, Authorship and AI tools: COPE Position Statement: COPE
COPE, About COPE
Curcic D., 2023, Number of academic papers published per year
de Vries E, 2018, POLIT ANAL, V26, P417, DOI 10.1017/pan.2018.26
Delardas O, 2022, J MED INTERNET RES, V24, DOI 10.2196/43089
Delgado-López-Cózar E, 2013, LEARN PUBL, V26, P101, DOI 10.1087/20130206
Flanagin A, 2023, JAMA-J AM MED ASSOC, V329, P637, DOI 10.1001/jama.2023.1344
Gallego V, 2021, MOL DIVERS, V25, P1461, DOI 10.1007/s11030-021-10266-8
Graf A, 2023, NEUROSCIENCE, V515, P71, DOI 10.1016/j.neuroscience.2023.02.008
Grammarly, 2023, US
Lecler A, 2023, DIAGN INTERV IMAG, V104, P269, DOI 10.1016/j.diii.2023.02.003
Microsoft, 2023, Announcing Microsoft Copilot, your everyday AI companion, press release
Moher D, 2010, PLOS MED, V7, DOI 10.1371/journal.pmed.1000217
Newman J., 2023, 33 AI tools you can try for free Fast Company
Nishikawa-Pacher A, 2022, J DOC, V78, P450, DOI 10.1108/JD-04-2022-0083
Opena I, 2022, Introducing ChatGPT OpenAI
Pichai S., 2023, An important next step on our AI journey
Rakha EA, 2021, J CLIN PATHOL, V74, P409, DOI 10.1136/jclinpath-2020-206908
Reuters, 2023, REUTERS
Sample I, 2023, The Guardian
Sholklapper TN, 2023, INT J SURG, V109, P1489, DOI 10.1097/JS9.0000000000000323
Singhal K, 2023, NATURE, V620, P172, DOI 10.1038/s41586-023-06291-2
Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z
Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879
NR 28
TC 16
Z9 16
U1 36
U2 36
PU BMJ PUBLISHING GROUP
PI LONDON
PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND
SN 0959-535X
EI 1756-1833
J9 BMJ-BRIT MED J
JI BMJ-British Medical Journal
PD JAN 31
PY 2024
VL 384
AR e077192
DI 10.1136/bmj-2023-077192
PG 12
WC Medicine, General & Internal
WE Science Citation Index Expanded (SCI-EXPANDED)
SC General & Internal Medicine
GA NE0G5
UT WOS:001198653600005
PM 38296328
OA hybrid
HC Y
HP N
DA 2024-09-05
ER
PT J
AU Wu, DH
Zhou, DH
Chen, MY
Zhu, JF
Yan, F
Zheng, SM
Guo, ET
AF Wu, Dehao
Zhou, Donghua
Chen, Maoyin
Zhu, Jifeng
Yan, Fei
Zheng, Shuiming
Guo, Entao
TI Output-Relevant Common Trend Analysis for KPI-Related Nonstationary
Process Monitoring With Applications to Thermal Power Plants
SO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
LA English
DT Article
DE Market research; Power generation; Process monitoring; Coal; Temperature
measurement; Power measurement; Informatics; Anomaly detection; fault
diagnosis; common trend analysis; key performance indicator (KPI);
nonstationary process monitoring; power plant; thermal efficiency
ID PARTIAL LEAST-SQUARES; FAULT-DETECTION; DIAGNOSIS; COINTEGRATION;
COMPONENTS; REGRESSION; PROJECTION; ALGORITHM
AB Operation safety and efficiency are two main concerns in power plants. It is important to detect the anomalies in power plants, and further judge whether they affect key performance indicators (KPIs), such as the thermal efficiency. These two goals can be achieved by KPI-related nonstationary process monitoring. Although the thermal efficiency cannot be accurately measured online, it can be strongly characterized by some online measurable variables, including the exhaust gas temperature and oxygen content of flue gas. These critical variables closely related to the thermal efficiency are termed as output variables. Inspired from nonstationary common trends between input and output variables in thermal power plants, the output-relevant common trend analysis (OCTA) method is proposed, in this article, to model the input-output relationship. In OCTA, input and output variables are decomposed into nonstationary common trends and stationary residuals, and the model parameters are estimated by solving an optimization problem. It is pointed out that OCTA is a generalized form of partial least squares (PLS). The superior monitoring performance of OCTA is illustrated by case studies on a real power plant in Zhejiang Provincial Energy Group of China. Compared with the other PLS-based recursive algorithms, OCTA can effectively detect the anomalies in power plants and accurately determine whether they have an impact on the thermal efficiency or not.
C1 [Wu, Dehao; Zhou, Donghua; Chen, Maoyin] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China.
[Zhou, Donghua] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China.
[Zhu, Jifeng; Yan, Fei; Zheng, Shuiming; Guo, Entao] Zhejiang Zheneng Zhongmei Zhoushan Coal & Elect C, Zhejiang Prov Energy Grp, Zhoushan 316000, Peoples R China.
C3 Tsinghua University; Shandong University of Science & Technology
RP Zhou, DH; Chen, MY (corresponding author), Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China.; Zhou, DH (corresponding author), Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China.
EM wudh16@mails.tsinghua.edu.cn; zdh@tsinghua.edu.cn;
mychen@tsinghua.edu.cn; 61030737@qq.com; 451995139@qq.com;
316643967@qq.com; guoentao@126.com
RI Wu, Dehao/GZH-1054-2022
OI Wu, Dehao/0000-0003-0649-1085
FU National Natural Science Foundation of China [61751307, 61873143,
62033008]; Research Fund for the Taishan Scholar Project of Shandong
Province of China [LZB2015-162, TII-20-3264]
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 61751307, Grant 61873143, and Grant
62033008 and in part by the Research Fund for the Taishan Scholar
Project of Shandong Province of China under Grant LZB2015-162. Paper no.
TII-20-3264.
CR BARTELS RH, 1972, COMMUN ACM, V15, P820, DOI 10.1145/361573.361582
Boyd Stephen, 2010, Foundations and Trends in Machine Learning, V3, P1, DOI 10.1561/2200000016
Byon E, 2016, IEEE T AUTOM SCI ENG, V13, P997, DOI 10.1109/TASE.2015.2440093
Chen Q, 2009, IND ENG CHEM RES, V48, P3533, DOI 10.1021/ie801611s
Ding SX, 2013, IEEE T IND INFORM, V9, P2239, DOI 10.1109/TII.2012.2214394
Dong J, 2015, NEUROCOMPUTING, V154, P77, DOI 10.1016/j.neucom.2014.12.017
Escribano A., 1994, J TIME SER ANAL, V15, P577, DOI [10.1111/j.1467-9892.1994.tb00213.x, DOI 10.1111/J.1467-9892.1994.TB00213.X]
GEURTS M, 1977, J MARKETING RES, V14, P269, DOI 10.2307/3150485
GOLUB GH, 1979, IEEE T AUTOMAT CONTR, V24, P909, DOI 10.1109/TAC.1979.1102170
GONZALO J, 1995, J BUS ECON STAT, V13, P27
HELLAND K, 1992, CHEMOMETR INTELL LAB, V14, P129, DOI 10.1016/0169-7439(92)80098-O
Hu CH, 2019, IEEE ACCESS, V7, P128746, DOI 10.1109/ACCESS.2019.2939163
Huang JM, 2020, IEEE T POWER ELECTR, V35, P7086, DOI 10.1109/TPEL.2019.2956812
Jiang YC, 2019, IEEE T IND INFORM, V15, P2849, DOI 10.1109/TII.2018.2875067
Juricek BC, 2004, IND ENG CHEM RES, V43, P458, DOI 10.1021/ie0301684
Li G., 2014, IFAC Proc. Vol, V49, P10616, DOI [10.3182/20140824-6-ZA-1003.00754, DOI 10.3182/20140824-6-ZA-1003.00754]
Li G, 2010, AUTOMATICA, V46, P204, DOI 10.1016/j.automatica.2009.10.030
Lin YL, 2019, IND ENG CHEM RES, V58, P6486, DOI 10.1021/acs.iecr.8b05099
Lin YL, 2017, IND ENG CHEM RES, V56, P8895, DOI 10.1021/acs.iecr.7b00011
Ma L, 2019, IEEE T IND INFORM, V15, P2091, DOI 10.1109/TII.2018.2855189
Odiowei PEP, 2010, IEEE T IND INFORM, V6, P36, DOI 10.1109/TII.2009.2032654
Qin SJ, 2013, AICHE J, V59, P496, DOI 10.1002/aic.13959
Qin SJ, 1998, COMPUT CHEM ENG, V22, P503, DOI 10.1016/S0098-1354(97)00262-7
Shang J, 2017, CONTROL ENG PRACT, V66, P156, DOI 10.1016/j.conengprac.2017.06.011
Si YB, 2021, IEEE T IND ELECTRON, V68, P2626, DOI 10.1109/TIE.2020.2972472
STOCK JH, 1988, J AM STAT ASSOC, V83, P1097, DOI 10.2307/2290142
Sun H, 2017, IND ENG CHEM RES, V56, P6993, DOI 10.1021/acs.iecr.7b00156
The American Society of Mechanical Engineers, PERF TEST COD
Wang G, 2018, IEEE ACCESS, V6, P10341, DOI 10.1109/ACCESS.2018.2793281
Wang G, 2015, IEEE T IND INFORM, V11, P398, DOI 10.1109/TII.2015.2396853
Wang SN, 2019, IEEE T CYBERNETICS, V49, P1896, DOI 10.1109/TCYB.2018.2816791
Wang XX, 2019, IEEE T IND INFORM, V15, P5139, DOI 10.1109/TII.2019.2899118
WOLD S, 1978, TECHNOMETRICS, V20, P397, DOI 10.2307/1267639
Yin S, 2015, IEEE T IND ELECTRON, V62, P1651, DOI 10.1109/TIE.2014.2345331
Zhang K, 2015, J PROCESS CONTR, V33, P112, DOI 10.1016/j.jprocont.2015.06.007
Zhang SM, 2019, IEEE T CONTR SYST T, V27, P103, DOI 10.1109/TCST.2017.2755580
Zhang YC, 2020, IEEE T IND INFORM, V16, P4390, DOI 10.1109/TII.2019.2945366
Zhao CH, 2018, AICHE J, V64, P1662, DOI 10.1002/aic.16048
Zhou B, 2006, SYST CONTROL LETT, V55, P193, DOI 10.1016/j.sysconle.2005.07.002
Zhou DH, 2010, AICHE J, V56, P168, DOI 10.1002/aic.11977
NR 40
TC 8
Z9 9
U1 5
U2 13
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1551-3203
EI 1941-0050
J9 IEEE T IND INFORM
JI IEEE Trans. Ind. Inform.
PD OCT
PY 2021
VL 17
IS 10
BP 6664
EP 6675
DI 10.1109/TII.2020.3041516
PG 12
WC Automation & Control Systems; Computer Science, Interdisciplinary
Applications; Engineering, Industrial
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Automation & Control Systems; Computer Science; Engineering
GA TJ3VW
UT WOS:000673414500011
DA 2024-09-05
ER
PT C
AU Nasiar, N
Baker, RS
Li, J
Gong, WY
AF Nasiar, Nidhi
Baker, Ryan S.
Li, Jillian
Gong, Weiyi
BE Rodrigo, MM
Matsuda, N
Cristea, AI
Dimitrova, V
TI How do A/B Testing and Secondary Data Analysis on AIED Systems Influence
Future Research?
SO ARTIFICIAL INTELLIGENCE IN EDUCATION, PT I
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 23rd International Conference on Artificial Intelligence in Education
(AIED)
CY JUL 27-31, 2022
CL Durham Univ, Durham, ENGLAND
HO Durham Univ
DE Scientometrics; A/B testing; Online learning; AIED systems
AB Recent years have seen a surge in research conducted on intelligent online learning platforms, with a particular expansion of research conducting A/B testing to decide which design to use, and research using secondary platform data in analyses. This scientometric study aims to investigate how scholarship builds on these two different types of research. We collected papers for both categories - A/B testing, and educational data mining (EDM) on log data- in the context of the same learning platform. We then collected a randomized stratified sample of papers citing those A/B and EDM papers, and coded the reason for each citation. Oncomparing the frequency of citation categories between the two types of papers, we found that A/B test papers were cited more often to provide background and context for a study, whereas the EDM papers were cited to use past specific core ideas, theories, and findings in the field. This paper establishes a method to compare the contribution of different types of research on AIED systems such as interactive learning platforms.
C1 [Nasiar, Nidhi; Baker, Ryan S.; Li, Jillian; Gong, Weiyi] Univ Penn, Grad Sch Educ, Philadelphia, PA 19104 USA.
C3 University of Pennsylvania
RP Nasiar, N (corresponding author), Univ Penn, Grad Sch Educ, Philadelphia, PA 19104 USA.
EM nasiar@upenn.edu
RI Baker, Ryan/IWE-2102-2023
OI Nasiar, Nidhi/0009-0006-7063-5433
CR [Anonymous], 2016, P 9 INT C ED DAT MIN
[Anonymous], 2011, Evaluation, DOI DOI 10.1177/1356389010389908
Baker R. S., 2009, Journal of educational Data Mining, V1, P3, DOI DOI 10.5281/ZENODO.3554657
Beck JE, 1999, FR ART INT, V50, P611
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
CAMBROSIO A, 1993, SCIENTOMETRICS, V27, P119, DOI 10.1007/BF02016546
Chen GL, 2020, LAK20: THE TENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P544, DOI 10.1145/3375462.3375500
COLE JR, 1972, SCIENCE, V178, P368, DOI 10.1126/science.178.4059.368
Cronin B., 1984, The citation process. The role and significance of citations in scientific communication, P103
Dormezil S., 2019, EDM WORKSHOPS, P17
Fazeli S., 2019, P LAK DATA CHALLENGE
GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189
Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337
Goel Gagan, 2012, Intelligent Tutoring Systems. Proceedings 11th International Conference (ITS 2012), P428, DOI 10.1007/978-3-642-30950-2_55
Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385
Hopkins AL, 2013, SCIENTOMETRICS, V96, P515, DOI 10.1007/s11192-012-0893-4
Kizilcec RF, 2020, P NATL ACAD SCI USA, V117, P14900, DOI 10.1073/pnas.1921417117
Koedinger K. R, 2010, Handbook of Educational Data Mining, V43, P43, DOI DOI 10.1201/B10274-6
Koedinger KR, 2012, COGNITIVE SCI, V36, P757, DOI 10.1111/j.1551-6709.2012.01245.x
Krichevsky N., 2020, THESIS WORCESTER POL
Liu R., 2017, Journal of Educational Data Mining, V9, P25, DOI [DOI 10.5281/ZEN0D0.3554625, 10.5281/zenodo.3554625, DOI 10.5281/ZENODO.3554625]
Malmi Lauri, 2020, ICER '20. Proceedings of the 2020 ACM Conference on International Computing Education Research, P36, DOI 10.1145/3372782.3406279
Maturana R.A., 2013, P LAK DATA CHALLENGE
Mostow J., 2003, P THEWORKSHOP ASSESS, P61
Murphy R, 2020, J RES EDUC EFF, V13, P235, DOI 10.1080/19345747.2019.1710885
OECD, 2020, Digital transformation in the age of COVID-19. Building Resilience and bridging divides, DOI DOI 10.5281/ZENODO.4143612
Ostrow K, 2017, TEACH COLL REC, V119
Park JH, 2009, EDUC TECHNOL SOC, V12, P207
Peña-Ayala A, 2014, EXPERT SYST APPL, V41, P1432, DOI 10.1016/j.eswa.2013.08.042
Reich J, 2015, SCIENCE, V347, P34, DOI 10.1126/science.1261627
Romero C, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1355
SHOCKLEY W, 1957, P IRE, V45, P279, DOI 10.1109/JRPROC.1957.278364
Stamper J.C., 2012, P INT C ED DATA MINI
VanLehn K, 2011, EDUC PSYCHOL-US, V46, P197, DOI 10.1080/00461520.2011.611369
Verbert K, 2013, AM BEHAV SCI, V57, P1500, DOI 10.1177/0002764213479363
VINKLER P, 1987, SCIENTOMETRICS, V12, P47, DOI 10.1007/BF02016689
Waheed H, 2018, BEHAV INFORM TECHNOL, V37, P941, DOI 10.1080/0144929X.2018.1467967
Wise AF, 2019, J LEARN ANAL, V6, P53, DOI 10.18608/jla.2019.62.4
Yeung CK, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231647
Zhang JN, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P765, DOI 10.1145/3038912.3052580
Zouaq A., 2013, P LAK DATA CHALLENGE
NR 41
TC 0
Z9 0
U1 0
U2 2
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-11644-5; 978-3-031-11643-8
J9 LECT NOTES COMPUT SC
PY 2022
VL 13355
BP 115
EP 126
DI 10.1007/978-3-031-11644-5_10
PG 12
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Education & Educational Research
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BU1FW
UT WOS:000877435100010
DA 2024-09-05
ER
PT J
AU Li, BJ
Lee, HM
AF Li, Benjamin (Benjy) J.
Lee, Hui Min
TI Emotional Personalization in Immersive Journalism: Exploring the
Influence of Emotional Testimonies and Modality on Emotional Valence,
Presence, Empathy, and Recall
SO PRESENCE-VIRTUAL AND AUGMENTED REALITY
LA English
DT Article
ID VIRTUAL-REALITY; EXPERIENCE; NEWS; PERCEPTIONS; CITIZENS; IMPACT
AB Immersive journalism (IJ), where individuals engage in a news story from a first-person perspective using interactive technologies, has become increasingly popular in recent years. Such stories may improve the impact of journalism on the audience by enhancing feelings and emotions associated with the news content. Studies have shown that rather than undermining rationality, emotion could increase engagement toward news pieces, and improve knowledge of social issues. Emotional personalization (EP), a strategy where the production of news content involves the emotional testimony of ordinary citizens at the heart of the story, is therefore increasingly employed. This study explores how EP, as well as the modality of IJ content, influences our perceptions and cognitions with regards to an IJ piece on war and conflict. In our study, 193 participants took part in a 2 (EP: present vs. absent) x 2 (modality: VR vs. desktop) experiment. Participants in the EP-present condition reported stronger feelings of presence and greater story recall, while those in the VR condition experienced lower emotional valence and stronger feelings of empathy. Our results support current literature on IJ and EP and suggest that with the rising interest in immersive technologies, sustained investigation on the implications of EP strategies in IJ is crucial.
C1 [Li, Benjamin (Benjy) J.; Lee, Hui Min] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore, Singapore.
C3 Nanyang Technological University
RP Li, BJ (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, Singapore, Singapore.
EM benjyli@ntu.edu.sg
FU Nanyang Technological University
FX This project was supported by a Start-up Grant from Nanyang
Technological University. The authors thank Carynn Chung for her
assistance in data collection.
CR [Anonymous], 1992, Presence: Teleoper. Virtual Environ., DOI [DOI 10.1162/PRES.1992.1.2.262, 10.1162/pres.1992.1.2.262]
[Anonymous], 2001, MASS COMMUN SOC, DOI DOI 10.1207/S15327825MCS0403_01
Baños RM, 2004, CYBERPSYCHOL BEHAV, V7, P734, DOI 10.1089/cpb.2004.7.734
Baños RM, 2008, CYBERPSYCHOL BEHAV, V11, P1, DOI 10.1089/cpb.2007.9936
Baños RM, 2006, LECT NOTES COMPUT SC, V3962, P7
Barnidge M, 2022, MASS COMMUN SOC, V25, P1, DOI 10.1080/15205436.2021.1925300
Bas O, 2016, AM BEHAV SCI, V60, P1719, DOI 10.1177/0002764216676247
Bas O, 2015, COMMUN RES, V42, P159, DOI 10.1177/0093650213514602
Batson CD, 1997, PERS SOC PSYCHOL B, V23, P751, DOI 10.1177/0146167297237008
BURGOON JK, 1987, COMMUN MONOGR, V54, P19, DOI 10.1080/03637758709390214
DAVIS MH, 1983, J PERS, V51, P167, DOI 10.1111/j.1467-6494.1983.tb00860.x
DAVIS MH, 1983, J PERS SOC PSYCHOL, V44, P113, DOI 10.1037/0022-3514.44.1.113
de la Peña N, 2010, PRESENCE-TELEOP VIRT, V19, P291, DOI 10.1162/PRES_a_00005
Estupiñán S, 2014, LECT NOTES COMPUT SC, V8518, P541, DOI 10.1007/978-3-319-07626-3_51
Grabe ME, 2017, INT J COMMUN-US, V11, P907
Harvey K., 2013, ENCY SOCIAL MEDIA PO, DOI [10.4135/9781452244723.n267, DOI 10.4135/9781452244723.N267]
Hatfield E., 1992, REV PERSONALITY SOCI
Herrera F, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0204494
Jennett C, 2008, INT J HUM-COMPUT ST, V66, P641, DOI 10.1016/j.ijhcs.2008.04.004
Jeong SH, 2020, INT J MOB COMMUN, V18, P300, DOI 10.1504/IJMC.2020.107098
Kim M, 2021, ATL J COMMUN, V29, P202, DOI 10.1080/15456870.2020.1752693
Kobach MJ, 2012, COMMUN REP, V25, P51, DOI 10.1080/08934215.2012.721087
Laws ALS, 2020, DIGIT JOURNAL, V8, P213, DOI 10.1080/21670811.2017.1389286
Lee KM, 2004, COMMUN THEOR, V14, P27, DOI 10.1093/ct/14.1.27
Lombard M., 1997, Journal of Computer-Mediated Communication, V3, pJCMC321, DOI [10.1111/j.1083-6101.1997.tb00072.x, DOI 10.1111/J.1083-6101.1997.TB00072.X, https://doi.org/10.1111/j.1083-6101.1997.tb00072.x]
Matthews M., 2021, OUR SINGAPOREAN VALU, DOI [10.25818/zb6t-tz11, DOI 10.25818/ZB6T-TZ11]
Mayer RE., 2014, The Cambridge Handbook of Multimedia Learning, DOI [10.1017/CBO9781139547369.017, DOI 10.1017/CBO9781139547369, 10.1017/CBO9781139547369]
Mujica C, 2018, JOURNALISM STUD, V19, P334, DOI 10.1080/1461670X.2016.1190661
Pantti M, 2010, EUR J COMMUN, V25, P168, DOI 10.1177/0267323110363653
Seijo SP, 2017, ADV INTELL SYST, V503, P113, DOI 10.1007/978-3-319-46068-0_14
Peters C, 2011, JOURNALISM, V12, P297, DOI 10.1177/1464884910388224
Riva G, 2007, CYBERPSYCHOL BEHAV, V10, P45, DOI 10.1089/cpb.2006.9993
Sanchez-Vives MV, 2005, NAT REV NEUROSCI, V6, P332, DOI 10.1038/nrn1651
Shen LJ, 2010, WESTERN J COMM, V74, P504, DOI 10.1080/10570314.2010.512278
Shin D, 2018, NEW MEDIA SOC, V20, P2800, DOI 10.1177/1461444817733133
Shin D, 2018, COMPUT HUM BEHAV, V78, P64, DOI 10.1016/j.chb.2017.09.012
Silverstein Jake., 2015, The New York Times Magazine
Slater M, 2009, PHILOS T R SOC B, V364, P3549, DOI 10.1098/rstb.2009.0138
Steinfeld N, 2020, JOURNAL PRACT, V14, P240, DOI 10.1080/17512786.2019.1704842
Stocks EL, 2009, EUR J SOC PSYCHOL, V39, P649, DOI 10.1002/ejsp.561
Sundar SS, 2017, CYBERPSYCH BEH SOC N, V20, P672, DOI 10.1089/cyber.2017.0271
Susindar Sahinya, 2019, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, V63, P252, DOI 10.1177/1071181319631509
Wald DM, 2021, FRONT COMMUN, V5, DOI 10.3389/fcomm.2020.588978
NR 43
TC 3
Z9 3
U1 2
U2 30
PU MIT PRESS
PI CAMBRIDGE
PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA
SN 1054-7460
EI 1531-3263
J9 PRESENCE-VIRTUAL AUG
JI PRESENCE-Virtual Augmented Reality
PD JAN 1
PY 2019
VL 28
BP 281
EP 292
DI 10.1162/pres_a_00352
PG 12
WC Computer Science, Cybernetics; Computer Science, Software Engineering
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 1F2AR
UT WOS:000794975800003
DA 2024-09-05
ER
PT J
AU Hu, YH
Tai, CT
Liu, KE
Cai, CF
AF Hu, Ya-Han
Tai, Chun-Tien
Liu, Kang Ernest
Cai, Cheng-Fang
TI Identification of highly-cited papers using topic-model-based and
bibliometric features: the consideration of keyword popularity
SO JOURNAL OF INFORMETRICS
LA English
DT Article
DE highly-cited papers; keyword popularity; supervised learning; binary
classification; topic model
ID CITATION IMPACT; COUNTS; EVOLUTION; ARTICLES; PREDICT; FIELDS
AB The number of received citations have been used as an indicator of the impact of academic publications. Developing tools to find papers that have the potential to become highly-cited has recently attracted increasing scientific attention. Topics of concern by scholars may change over time in accordance with research trends, resulting in changes in received citations. Author-defined keywords, title and abstract provide valuable information about a research article. This study performs a latent Dirichlet allocation technique to extract topics and keywords from articles; five keyword popularity (KP) features are defined as indicators of emerging trends of articles. Binary classification models are utilized to predict papers that were highly-cited or less highly-cited by a number of supervised learning techniques. We empirically compare KP features of articles with other commonly used journal-related and author-related features proposed in previous studies. The results show that, with KP features, the prediction models are more effective than those with journal and/or author features, especially in the management information system discipline. (C) 2019 Elsevier Ltd. All rights reserved.
C1 [Hu, Ya-Han] Natl Cent Univ, Dept Informat Management, Taoyuan 320, Taiwan.
[Hu, Ya-Han] Natl Chung Cheng Univ, Ctr Innovat Res Aging Soc, Chiayi 621, Taiwan.
[Hu, Ya-Han] Natl Cheng Kung Univ, MOST AI Biomed Res Ctr, Tainan 701, Taiwan.
[Tai, Chun-Tien; Cai, Cheng-Fang] Natl Chung Cheng Univ, Dept Informat Management, Chiayi 621, Taiwan.
[Tai, Chun-Tien] Chiayi Chang Gung Mem Hosp, Chiayi 613, Taiwan.
[Liu, Kang Ernest] Natl Taiwan Univ Taipei, Dept Agr Econ, Taipei 106, Taiwan.
C3 National Central University; National Chung Cheng University; National
Cheng Kung University; National Chung Cheng University; Chang Gung
Memorial Hospital; National Taiwan University
RP Liu, KE (corresponding author), Natl Taiwan Univ, Dept Agr Econ, 1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan.
EM yahan.hu@mis.ccu.edu.tw; flamquit@hotmail.com; kangernestliu@ntu.edu.tw;
u9933116@gmail.com
FU Ministry of Science and Technology of the Republic of China [MOST
107-2410-H-194 -054 -MY2]; Center for Innovative Research on Aging
Society from The Featured Areas Research Center Program within Ministry
of Education (MOE) in Taiwan
FX This research was supported in part by the Ministry of Science and
Technology of the Republic of China (grant number MOST 107-2410-H-194
-054 -MY2) and the Center for Innovative Research on Aging Society from
The Featured Areas Research Center Program within the framework of the
Higher Education Sprout Project by the Ministry of Education (MOE) in
Taiwan.
CR Abrishami A, 2019, J INFORMETR, V13, P485, DOI 10.1016/j.joi.2019.02.011
Acuna DE, 2012, NATURE, V489, P201, DOI 10.1038/489201a
[Anonymous], MEASURING SCHOLARLY
[Anonymous], BIBLIOMETRIC ANAL PU
[Anonymous], 1993, MORGAN KAUFMANN SERI
[Anonymous], ENCY BIOSTATISTICS
[Anonymous], JAVA IMPLEMENTATION
Bai XM, 2019, J INFORMETR, V13, P407, DOI 10.1016/j.joi.2019.01.010
Beliakov G, 2011, FUZZY SET SYST, V167, P101, DOI 10.1016/j.fss.2010.08.011
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bornmann L, 2014, J INFORMETR, V8, P175, DOI 10.1016/j.joi.2013.11.005
Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8
Chen PI, 2010, EXPERT SYST APPL, V37, P1928, DOI 10.1016/j.eswa.2009.07.016
Chenguang Pan, 2010, 2010 International Conference on Computer Design and Applications (ICCDA 2010), P264, DOI 10.1109/ICCDA.2010.5541170
Choi J, 2011, INFORM MANAGE-AMSTER, V48, P371, DOI 10.1016/j.im.2011.09.004
Demsar J, 2013, J MACH LEARN RES, V14, P2349
Dorta-González P, 2014, J INFORMETR, V8, P406, DOI 10.1016/j.joi.2014.01.013
Finardi U, 2014, J INFORMETR, V8, P13, DOI 10.1016/j.joi.2013.10.003
Fu LD, 2010, SCIENTOMETRICS, V85, P257, DOI 10.1007/s11192-010-0237-1
GLANZEL W, 1995, J INFORM SCI, V21, P37, DOI 10.1177/016555159502100104
Hosmer D. W., 2004, APPL LOGISTIC REGRES
Huang TY, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0208370
Jiang HC, 2016, ECOL INDIC, V60, P693, DOI 10.1016/j.ecolind.2015.08.007
Kar M, 2015, INFORM PROCESS MANAG, V51, P809, DOI 10.1016/j.ipm.2015.06.002
Kim HN, 2011, DECIS SUPPORT SYST, V51, P772, DOI 10.1016/j.dss.2011.01.012
Kosteas VD, 2018, SCIENTOMETRICS, V115, P1395, DOI 10.1007/s11192-018-2703-0
Kretschmann E, 2001, BIOINFORMATICS, V17, P920, DOI 10.1093/bioinformatics/17.10.920
Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P217, DOI 10.1002/asi.21450
Li LL, 2009, SCIENTOMETRICS, V80, P39, DOI 10.1007/s11192-008-1939-5
Liang TP, 2008, DECIS SUPPORT SYST, V45, P401, DOI 10.1016/j.dss.2007.05.004
Liu JY, 2019, SCIENTOMETRICS, V118, P617, DOI 10.1007/s11192-018-2974-5
Natale F, 2012, SCIENTOMETRICS, V90, P983, DOI 10.1007/s11192-011-0562-z
Newman MEJ, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/28002
Rodríguez-Bolívara MP, 2018, INT J INFORM MANAGE, V40, P111, DOI 10.1016/j.ijinfomgt.2017.12.011
PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814
RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0
Sohrabi B, 2017, SCIENTOMETRICS, V110, P243, DOI 10.1007/s11192-016-2161-5
Stegehuis C, 2015, J INFORMETR, V9, P642, DOI 10.1016/j.joi.2015.06.005
Tian YG, 2008, J INFORMETR, V2, P65, DOI 10.1016/j.joi.2007.10.001
Tsai CF, 2014, J INFORMETR, V8, P318, DOI 10.1016/j.joi.2014.01.002
Uddin S, 2016, J INFORMETR, V10, P1166, DOI 10.1016/j.joi.2016.10.004
Vapnik V., 2013, The nature of statistical learning theory
Wacker D, 2013, SCIENCE, V340, P615, DOI 10.1126/science.1232808
Wang J, 2013, SCIENTOMETRICS, V94, P851, DOI 10.1007/s11192-012-0775-9
Wang MY, 2019, SCIENTOMETRICS, V119, P1575, DOI 10.1007/s11192-019-03052-9
Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002
Yin JH, 2018, J CLEAN PROD, V197, P827, DOI 10.1016/j.jclepro.2018.06.169
Zhang X, 2014, APPL ENERG, V113, P1059, DOI 10.1016/j.apenergy.2013.08.047
Zhang Y, 2018, J INFORMETR, V12, P1099, DOI 10.1016/j.joi.2018.09.004
Zhang Y, 2012, PHYSICA A, V391, P5759, DOI 10.1016/j.physa.2012.05.013
Zheng HT, 2009, INFORM SCIENCES, V179, P2249, DOI 10.1016/j.ins.2009.02.019
Zhou XD, 2015, SCIENTOMETRICS, V105, P231, DOI 10.1007/s11192-015-1659-6
NR 52
TC 33
Z9 36
U1 5
U2 78
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1751-1577
EI 1875-5879
J9 J INFORMETR
JI J. Informetr.
PD FEB
PY 2020
VL 14
IS 1
AR 101004
DI 10.1016/j.joi.2019.101004
PG 14
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA LH7EI
UT WOS:000528948000006
DA 2024-09-05
ER
PT C
AU Saier, T
Krause, J
Färber, M
AF Saier, Tarek
Krause, Johan
Faerber, Michael
GP ACM
TI unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including
Structured Full-Text and Citation Network
SO 2023 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, JCDL
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 23rd ACM/IEEE Joint Conference on Digital Libraries (JCDL)
CY JUN 26-30, 2023
CL Santa Fe, NM
DE scholarly data; information extraction; citation network; LATEX
AB Large-scale data sets on scholarly publications are the basis for a variety of bibliometric analyses and natural language processing (NLP) applications. Especially data sets derived from publication's full-text have recently gained attention. While several such data sets already exist, we see key shortcomings in terms of their domain and time coverage, citation network completeness, and representation of full-text content. To address these points, we propose a new version of the data set unarXive. We base our data processing pipeline and output format on two existing data sets, and improve on each of them. Our resulting data set comprises 1.9 M publications spanning multiple disciplines and 32 years. It furthermore has a more complete citation network than its predecessors and retains a richer representation of document structure as well as non-textual publication content such as mathematical notation. In addition to the data set, we provide ready-to-use training/test data for citation recommendation and IMRaD classification. All data and source code is publicly available at https://github.com/IllDepence/unarXive.
C1 [Saier, Tarek; Krause, Johan; Faerber, Michael] Karlsruhe Inst Technol, Karlsruhe, Germany.
C3 Helmholtz Association; Karlsruhe Institute of Technology
RP Saier, T (corresponding author), Karlsruhe Inst Technol, Karlsruhe, Germany.
EM tarek.saier@kit.edu; johan.krause@student.kit.edu;
michael.faerber@kit.edu
RI Färber, Michael/AAA-4789-2021
OI Färber, Michael/0000-0001-5458-8645
FU German Federal Ministry of Education and Research (BMBF); Software
Campus project [01IS17042]; state of Baden-Wurttemberg through bwHPC
FX This work was partially supported by the German Federal Ministry of
Education and Research (BMBF) via [KOM,BI], a Software Campus project
(01IS17042). The authors acknowledge support by the state of
Baden-Wurttemberg through bwHPC. We thank Johannes Reber for supporting
early stages of the software development.
CR Bast H, 2017, ACM-IEEE J CONF DIG, P99
Bethesda (MD): National Library of Medicine, PMC Open Access Subset
Bhagavatula C., 2018, Long Papers, V1, P238, DOI DOI 10.18653/V1/N18-1022
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Chen H, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, P1483
Färber M, 2020, INT J DIGIT LIBRARIE, V21, P375, DOI 10.1007/s00799-020-00288-2
Gipp Bela, 2015, ICONFERENCE 2015 P
Harper C., 2021, P 15 INT WORKSH SEM, P306
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Lai V., 2022, INT WORKSH SEM EV SE, P1671
Lo K., 2020, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, P4969, DOI [DOI 10.18653/V1/2020.ACL-MAIN.447, 10.18653/v1/2020.acl-main.447]
Lopez P, 2009, LECT NOTES COMPUT SC, V5714, P473, DOI 10.1007/978-3-642-04346-8_62
Luan Y, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P3219
Mao Y., 2022, P 2022 C EMP METH NA, P10922
Papillon Mathilde, 2022, PREPRINT
Parisot Mathias, 2022, P 3 WORKSHOP SCHOLAR, P80
Pontika Nancy, 2016, LIBER Quarterly, V25, P172, DOI 10.18352/lq.10138
Prasad A, 2018, INT J DIGIT LIBRARIE, V19, P323, DOI 10.1007/s00799-018-0242-1
Priem J, 2022, Arxiv, DOI [arXiv:2205.01833, DOI 10.48550/ARXIV.2205.01833, 10.48550/arXiv.2205.01833]
Saier T, 2022, INT J DIGIT LIBRARIE, V23, P179, DOI 10.1007/s00799-021-00312-z
Saier T, 2020, SCIENTOMETRICS, V125, P3085, DOI 10.1007/s11192-020-03382-z
Scheidsteger T, 2022, Arxiv, DOI arXiv:2206.14168
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Veneri Michele Delli, 2022, Research Notes of the AAS, V6, P113, DOI [10.3847/2515-5172/ac74c7, DOI 10.3847/2515-5172/AC74C7]
Viswanathan V, 2021, 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), P719
Wadden D, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P7534
Wilkinson MD, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.18
NR 27
TC 1
Z9 1
U1 0
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
SN 2575-7865
EI 2575-8152
BN 979-8-3503-9931-8
J9 ACM-IEEE J CONF DIG
PY 2023
BP 66
EP 70
DI 10.1109/JCDL57899.2023.00020
PG 5
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BW0PC
UT WOS:001098971300010
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Sulastri, S
Rahayu, A
Sulaksana, RDIZF
AF Sulastri, S.
Rahayu, Agus
Sulaksana, Ratu Dintha Insyani Zukhruf Firdausi
TI MODEL OF TECHNOLOGY ACCEPTANCE USING ONLINE LEARNING SYSTEMS AND ITS
IMPACT ON LEARNING EFFECTIVENESS
SO JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Bibliometric; Inquiry-based learning; Scopus; Technology; VOSviewer
AB This study presents a bibliometric and bibliographic review of the studies of technology-assisted inquiry-based learning (IBL). A bibliometric approach using VOSviewer was used to conduct this study. 191 eligible and included documents published between 1999 - 2022 from the Scopus database were analysed using some main analyses such as performance, citation, co-authorship, and co-word supported by visualization and clustering analysis. The results revealed that the development of publications regarding technology-assisted IBL studies relatively soared from 1999 to 2020 while the development of citations related to the studies of technology-assisted IBL relatively fluctuated between 1999 and 2022. Furthermore, the United States relatively had the dominant influence in which most influential documents, authors, sources, and institutions affiliated with the became the leaders in conducting the studies of technology-assisted IBL in the social interactions among authors and also countries. This study implies that the use of technologies such as websites, computers, robots, and video conferencing extremely supports educational practitioners such as teachers and lecturers in implementing IBL. Additionally, this study suggests exploring the trending research topic related to critical digital literacy, an essential cognitive skill.
C1 [Sulastri, S.; Rahayu, Agus; Sulaksana, Ratu Dintha Insyani Zukhruf Firdausi] Univ Pendidikan Indonesia, Jl Dr Setiabudi 229, Bandung, Indonesia.
C3 Universitas Pendidikan Indonesia
RP Sulastri, S (corresponding author), Univ Pendidikan Indonesia, Jl Dr Setiabudi 229, Bandung, Indonesia.
EM sulastri@upi.edu
RI Sulastri, Sulastri/O-3540-2019
OI Sulastri, Sulastri/0000-0001-6091-4451; Dintha IZFS,
Ratu/0009-0003-3125-0985
CR Achdiani Y, 2019, J ENG SCI TECHNOL, V14, P2565
Aderele S.O., 2022, INDONESIAN J TEACHIN, P117
Aderogba O.A., 2021, INDONESIAN J TEACHIN, V1, P69
Agustina S., 2021, Indonesian Journal of Multidiciplinary Research, V1, P89
Akinoso SO., 2023, Indonesian Journal of Educational Research and Technology, V3, P79
Albar C., 2021, Indonesian Journal of Multidiciplinary Research, V1, P35
Ana A, 2020, J ENG SCI TECHNOL, V15, P3789
Anthony N.S., 2017, J ENG SCI TECHNOL, V1, P67
Arciosa R.M., 2022, Indonesian Journal of Teaching in Science, V2, P51
Ardiana A., 2022, Indonesian Journal of, P265
Arrasyid R, 2020, J ENG SCI TECHNOL, V15, P3859
Artawati A., 2022, ASEAN Journal of Community Service and Education, V1, P51
Ayupratiwi T., 2022, ASEAN J ED RES TECHN, V1, P125
Azhar F.M., 2023, ASEAN J ED RES TECHN, V2, P21
Azzahra S., 2022, INDONESIAN J MULTIDI, V2, P245
Babalola E.O., 2023, INDONESIAN J MULTIDI, V3, P31
Benito B.S.A., 2023, ASEAN J ED RES TECHN, V2, P145
Bolaji H., 2023, Indones. J. Educ. Res. Technol, V3, P97, DOI DOI 10.17509/IJERT.V3I2.48244
Bolaji H.O., 2022, Indonesian Journal of Multidiciplinary Research, V2, P257
Budiarti I., 2021, INT J RES APPL TECHN, V1, P6
Daramola F.O., 2022, ASEAN Journal of Educational Research and Technology, V1, P87
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
Dirgantari P.D., 2022, ASEAN J EC EC ED, V1, P61
Djohar AA, 2020, Indonesian Journal of Science and Technology, V5, P308
Dwiana O., 2022, ASEAN J SCI ENG ED, V2, P193
Fadillah I.N., 2021, INDONESIAN J MULTIDI, V1, P329
Fahrannisa A L., 2022, Indonesian Journal of Multidisciplinary Research, V2, P237
Fale C.E.P., 2021, INDONESIAN J MULTIDI, V1, P309
Ganesha P., 2021, Indonesian Journal of Teaching in Science, V1, P1, DOI DOI 10.17509/IJOTIS.V1I1.33534
Giani W.A., 2022, ASEAN J COMMUNITY SE, V1, P43
HILL RJ, 1977, CONTEMP SOCIOL, V6, P244, DOI 10.2307/2065853
Huwaidi F., 2021, Indonesian Journal of Educational Research and Technology, V1, P35
Keengwe J, 2012, EDUC INF TECHNOL, V17, P365, DOI 10.1007/s10639-011-9164-x
Leony I., 2022, ASEAN Journal of Economic and Economic Education, V1, P27
Manosa C., 2022, INDONESIAN J MULTIDI, P373
Maryanti R, 2020, J ENG SCI TECHNOL, V15, P1909
Maulidayani T., 2022, INDONESIAN J MULTIDI, V2, P117
Medani D. I., 2022, INDONESIAN J MULTIDI, V2, P229, DOI DOI 10.17509/IJOMR.V2I1.38668
Mohammad N., 2023, ASEAN J ED RES TECHN, V2, P35
Mugianti D.S., 2022, INDONESIAN J MULTIDI, V2, P223
Nasution A.R., 2021, Indonesian Journal of Educational Research and Technology, V1, P31
Ochayi O.A., 2021, ASEAN J SCI ENG ED, V2, P141
Ochayi O.A., 2021, INDONESIAN J MULTIDI, V1, P313
Odefunsho O.A., 2023, Indonesian Journal of Teaching in Science, V3, P9
Olumorin C. O., 2022, Indonesian Journal of Educational Research and Technology, V2, P213
Putri N.A.K.A., 2021, INDONESIAN J MULTIDI, V1, P399
Ramdhani T., 2021, Indonesian Journal of Multidiciplinary Research, V1, P107
Saefurohman S., 2021, ASEAN Journal of Science and Engineering Education, V3, P11
Saripudin S, 2021, J ENG SCI TECHNOL, V16, P666
Shah S.S., 2022, Indonesian Journal of Educational Research and Technology, V2, P133
Shirtode M.B., 2022, ASEAN J ED RES TECHN, V1, P53
Sombria K.J.F., 2023, ASEAN J SCI ENG ED, V3, P193
Sukmawati D., 2022, INDONESIAN J MULTIDI, V1, P235
Sultanto M.A., 2023, ASEAN J COMMUNITY SP, V2, P17
Suroto S., 2021, Indonesian Journal of Multidiciplinary Research, V1, P79
Thoriq M., 2023, INDONESIAN J TEACHIN, V3, P17
Wekke IS, 2013, PROCD SOC BEHV, V83, P585, DOI 10.1016/j.sbspro.2013.06.111
Yahya FH, 2018, J ENG SCI TECHNOL, V13, P1
Zheng A, 2011, J ENG SCI TECHNOL, V6, P639
NR 59
TC 0
Z9 0
U1 1
U2 1
PU TAYLORS UNIV SDN BHD
PI SELANGOR
PA 1 JALAN SS15-8, SUBANG JAYA, SELANGOR, 47500, MALAYSIA
EI 1823-4690
J9 J ENG SCI TECHNOL
JI J. Eng. Sci. Technol.
PD JAN
PY 2023
VL 18
SI SI
BP 39
EP 52
PG 14
WC Engineering, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA L7BK2
UT WOS:001024772800004
DA 2024-09-05
ER
PT J
AU Klein, JJ
Baker, NC
Foil, DH
Zorn, KM
Urbina, F
Puhl, AC
Ekins, S
AF Klein, Jennifer J.
Baker, Nancy C.
Foil, Daniel H.
Zorn, Kimberley M.
Urbina, Fabio
Puhl, Ana C.
Ekins, Sean
TI Using Bibliometric Analysis and Machine Learning to Identify Compounds
Binding to Sialidase-1
SO ACS OMEGA
LA English
DT Article
ID ENZYME REPLACEMENT THERAPY; DRUG DISCOVERY; GENE-THERAPY; DISEASES;
DATABASE; AGREEMENT
AB Rare diseases impact hundreds of millions of individuals worldwide. However, few therapies exist to treat the rare disease population because financial resources are limited, the number of patients affected is low, bioactivity data is often nonexistent, and very few animal models exist to support preclinical development efforts. Sialidosis is an ultrarare lysosomal storage disorder in which mutations in the NEU1 gene result in the deficiency of the lysosomal enzyme sialidase-1. This enzyme catalyzes the removal of sialic acid moieties from glycoproteins and glycolipids. Therefore, the defective or deficient protein leads to the buildup of sialylated glycoproteins as well as several characteristic symptoms of sialidosis including visual impairment, ataxia, hepatomegaly, dysostosis multiplex, and developmental delay. In this study, we used a bibliometric tool to generate links between lysosomal storage disease (LSD) targets and existing bioactivity data that could be curated in order to build machine learning models and screen compounds in silico. We focused on sialidase as an example, and we used the data curated from the literature to build a Bayesian model which was then used to score compound libraries and rank these molecules for in vitro testing. Two compounds were identified from in vitro testing using microscale thermophoresis, namely sulfameter (K-d 2.15 +/- 1.02 mu M) and mexenone (K-d 8.88 +/- 4.02 mu M), which validated our approach to identifying new molecules binding to this protein, which could represent possible drug candidates that can be evaluated further as potential chaperones for this ultrarare lysosomal disease for which there is currently no treatment. Combining bibliometric and machine learning approaches has the ability to assist in curating small molecule data and model building, respectively, for rare disease drug discovery. This approach also has the capability to identify new compounds that are potential drug candidates.
C1 [Klein, Jennifer J.; Foil, Daniel H.; Zorn, Kimberley M.; Urbina, Fabio; Puhl, Ana C.; Ekins, Sean] Collaborat Pharmaceut Inc, Raleigh, NC 27606 USA.
[Baker, Nancy C.] ParlezChem, Hillsborough, NC 27278 USA.
RP Puhl, AC; Ekins, S (corresponding author), Collaborat Pharmaceut Inc, Raleigh, NC 27606 USA.
EM ana@collaborationspharma.com; sean@collaborationspharma.com
RI Baker, Nancy/ABE-7415-2021; Foil, Daniel/AAJ-1809-2021
OI Foil, Daniel/0000-0003-0512-8997; Puhl, Ana/0000-0002-1456-8882
FU NIH [DP7OD020317]; NIGMS [R44GM122196-02A1]; NINDS [1R43NS107079-01,
3R43NS107079-01S1]
FX We acknowledge Dr. Alexander Tropsha and Dr. Anthony Hickey for rare
disease discussions and Dr. Alex M. Clark (Molecular Materials
Informatics, Inc.) for Assay Central support. We thank Dr. Dinorah Leyva
for helping with the analysis of MST data. We kindly acknowledge NIH
funding to develop the software from NIGMS R44GM122196-02A1 as well as
support from NINDS 1R43NS107079-01, NINDS 3R43NS107079-01S1. F.U. was
partially supported by the NIH award number DP7OD020317.
CR Aldenhoven M, 2015, CYTOTHERAPY, V17, P765, DOI 10.1016/j.jcyt.2015.03.609
[Anonymous], 2013, RARE DIS REPORT ORPH
Baker NC, 2010, J BIOMED INFORM, V43, P510, DOI 10.1016/j.jbi.2010.03.008
Bonten EJ, 2004, FASEB J, V18, P971, DOI 10.1096/fj.03-0941fje
Bruni S, 2007, Acta Myol, V26, P87
Capuzzi SJ, 2018, J CHEM INF MODEL, V58, P212, DOI 10.1021/acs.jcim.7b00589
Carletta J, 1996, COMPUT LINGUIST, V22, P249
Carvalho-Silva D, 2019, NUCLEIC ACIDS RES, V47, pD1056, DOI 10.1093/nar/gky1133
Clark AM, 2015, J CHEM INF MODEL, V55, P1231, DOI 10.1021/acs.jcim.5b00143
Clark AM, 2015, J CHEM INF MODEL, V55, P1246, DOI 10.1021/acs.jcim.5b00144
COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104
D'Azzo A, 2015, EXPERT OPIN ORPHAN D, V3, P491, DOI 10.1517/21678707.2015.1025746
Ekins S, 2019, NAT MATER, V18, P435, DOI 10.1038/s41563-019-0338-z
Franceschetti S, 2016, EPILEPTIC DISORD, V18, pS89, DOI 10.1684/epd.2016.0845
Gaulton A, 2017, NUCLEIC ACIDS RES, V45, pD945, DOI 10.1093/nar/gkw1074
GULLNER G, 1990, ACTA BIOCHIM BIOPHYS, V25, P31
Guo TL, 2018, J MED CHEM, V61, P11261, DOI 10.1021/acs.jmedchem.8b04111
Hu HM, 2012, MOL THER, V20, P267, DOI 10.1038/mt.2011.227
James RA, 2016, J PAEDIATR CHILD H, V52, P262, DOI 10.1111/jpc.13122
Khan A, 2018, DIAGNOSTICS, V8, DOI 10.3390/diagnostics8020029
Lane T, 2018, MOL PHARMACEUT, V15, P4346, DOI 10.1021/acs.molpharmaceut.8b00083
Languillon J, 1975, Lepr Rev, V46, P81
MACLEOD TM, 1975, BRIT J DERMATOL, V92, P417, DOI 10.1111/j.1365-2133.1975.tb03103.x
Marques ARA, 2019, J CELL SCI, V132, DOI 10.1242/jcs.221739
MATTHEWS BW, 1975, BIOCHIM BIOPHYS ACTA, V405, P442, DOI 10.1016/0005-2795(75)90109-9
MEDINA A, 1963, Antimicrob Agents Chemother (Bethesda), V161, P541
Minerali E, 2020, MOL PHARMACEUT, V17, P2628, DOI 10.1021/acs.molpharmaceut.0c00326
Perryman AL, 2018, PHARM RES-DORDR, V35, DOI 10.1007/s11095-018-2439-9
Platt FM, 2018, NAT REV DIS PRIMERS, V4, DOI 10.1038/s41572-018-0025-4
Rath A, 2012, HUM MUTAT, V33, P803, DOI 10.1002/humu.22078
Russo DP, 2018, MOL PHARMACEUT, V15, P4361, DOI 10.1021/acs.molpharmaceut.8b00546
Sands MS, 2008, ACTA PAEDIATR, V97, P22, DOI 10.1111/j.1651-2227.2008.00660.x
Sands MS, 2006, MOL THER, V13, P839, DOI 10.1016/j.ymthe.2006.01.006
Seyrantepe V, 2003, HUM MUTAT, V22, P343, DOI 10.1002/humu.10268
Sly W S, 1978, Prog Clin Biol Res, V23, P547
Tambuyzer E, 2020, NAT REV DRUG DISCOV, V19, P93, DOI 10.1038/s41573-019-0049-9
Thompson R, 2014, J GEN INTERN MED, V29, pS780, DOI 10.1007/s11606-014-2908-8
Trujillano D, 2017, MOL GENET GENOM MED, V5, P66, DOI 10.1002/mgg3.262
Wager TT, 2016, ACS CHEM NEUROSCI, V7, P767, DOI 10.1021/acschemneuro.6b00029
Wager TT, 2010, ACS CHEM NEUROSCI, V1, P435, DOI 10.1021/cn100008c
Wakap SN, 2020, EUR J HUM GENET, V28, P165, DOI 10.1038/s41431-019-0508-0
Wang DN, 2005, MOL GENET METAB, V85, P181, DOI 10.1016/j.ymgme.2005.03.007
Wang D, 2009, BBA-GEN SUBJECTS, V1790, P275, DOI 10.1016/j.bbagen.2009.01.006
Willighagen EL, 2017, J CHEMINFORMATICS, V9, DOI 10.1186/s13321-017-0220-4
Xu K, 2011, BRIEF BIOINFORM, V12, P341, DOI 10.1093/bib/bbr006
Zorn KM, 2019, MOL PHARMACEUT, V16, P1620, DOI 10.1021/acs.molpharmaceut.8b01297
NR 46
TC 10
Z9 10
U1 1
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2470-1343
J9 ACS OMEGA
JI ACS Omega
PD FEB 2
PY 2021
VL 6
IS 4
BP 3186
EP 3193
DI 10.1021/acsomega.0c05591
EA JAN 2021
PG 8
WC Chemistry, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry
GA QH2DO
UT WOS:000618087400074
PM 33553934
OA Green Published, gold
DA 2024-09-05
ER
PT J
AU Niu, CL
Gutierrez, G
Cossette, L
Sadeghi, S
Portugal, M
Zeng, S
Zhang, P
AF Niu, Chunling
Gutierrez, Grace
Cossette, Loren
Sadeghi, Soheila
Portugal, Missy
Zeng, Shuang
Zhang, Peng
TI Introducing Bibliometric Analysis: A Methodological Tutorial Using Adult
Online Learning Motivation Literature (2000-2022)
SO AMERICAN JOURNAL OF DISTANCE EDUCATION
LA English
DT Article; Early Access
ID STUDENT MOTIVATION; DISTANCE EDUCATION; LEARNERS; PARTICIPATION;
PERFORMANCE; INSTRUCTOR
AB This paper introduces an innovative and robust methodology for bibliometric analyses, utilizing the adult online learning motivation literature from 2000 to 2022 as its exemplar. Capitalizing on this comprehensive dataset, the methodology adeptly identifies emerging research trends, influential contributors, and thematic interconnections. The United States emerges as a dominant research contributor, and "Computers & Education" is spotlighted as an influential journal shaping discourse. From an overarching perspective, the study delves into the multifaceted dynamics of the field, spotlighting the rise of themes such as Self-Directed/Self-Regulated Learning (SDL), Transformative Learning (TL), gamification, and the profound influence of global events like the COVID-19 pandemic on online learning trajectories. However, the manuscript's central value lies in its methodological prowess, offering scholars a blueprint to rigorously interpret and dissect voluminous literatures across varied academic terrains.
C1 [Niu, Chunling; Gutierrez, Grace; Cossette, Loren; Sadeghi, Soheila; Portugal, Missy] Univ Incarnate Word, San Antonio, TX USA.
[Zeng, Shuang] Univ Shanghai Sci & Technol, Shanghai, Peoples R China.
[Zhang, Peng] Sichuan Int Studies Univ, Chongqing, Peoples R China.
[Niu, Chunling] Univ Incarnate Word, Dreeben Sch Educ, 4301 Broadway, San Antonio, TX 78209 USA.
C3 University Incarnate Word; University of Shanghai for Science &
Technology; Sichuan International Studies University; University
Incarnate Word
RP Niu, CL (corresponding author), Univ Incarnate Word, Dreeben Sch Educ, 4301 Broadway, San Antonio, TX 78209 USA.
EM chunling.niu@gmail.com
RI Cossette, Loren/KIH-9449-2024; Sadeghi, Soheila/HMV-2123-2023
OI Sadeghi, Soheila/0000-0002-7062-9002; Niu, Chunling/0000-0002-9106-0417
CR Abafe EA, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141710651
Abedini A, 2021, BRIT J EDUC TECHNOL, V52, P1663, DOI 10.1111/bjet.13120
Adams J, 2012, NATURE, V490, P335, DOI 10.1038/490335a
Aguinis H, 2011, ORGAN RES METHODS, V14, P306, DOI 10.1177/1094428110375720
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Banaszak-Holl J, 2013, HEALTH CARE MANAGE R, V38, P295, DOI 10.1097/HMR.0b013e3182678fb0
BANDURA A, 1981, J PERS SOC PSYCHOL, V41, P586, DOI 10.1037/0022-3514.41.3.586
Bannier BJ, 2010, J SCI EDUC TECHNOL, V19, P215, DOI 10.1007/s10956-009-9195-x
Baran E, 2011, DISTANCE EDUC, V32, P421, DOI 10.1080/01587919.2011.610293
Barnett BG, 2012, LEADERSH POLICY SCH, V11, P92, DOI 10.1080/15700763.2011.611924
Boling EC, 2012, INTERNET HIGH EDUC, V15, P118, DOI 10.1016/j.iheduc.2011.11.006
Bozeman B., 2014, Research collaboration and team science: A stateoftheart review and agenda, V17
Brookfield S. D., 2017, Becoming a critically reflective teacher, V2nd, DOI [https://doi.org/10.37074/jalt.2019.2.2.22, DOI 10.37074/JALT.2019.2.2.22]
Brown MA, 2020, ENERGY RES SOC SCI, V70, DOI 10.1016/j.erss.2020.101756
Deci E. L., 1985, INTRINSIC MOTIVATION, DOI DOI 10.1007/978-1-4899-2271-7
Deschacht N, 2015, COMPUT EDUC, V87, P83, DOI 10.1016/j.compedu.2015.03.020
Diep NA, 2016, COMPUT EDUC, V101, P84, DOI 10.1016/j.compedu.2016.06.002
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Evans C, 2008, COMPUT EDUC, V50, P491, DOI 10.1016/j.compedu.2007.09.016
Figueroa F, 2020, ACTA ORTHOP, V91, P543, DOI 10.1080/17453674.2020.1776461
Fini A, 2009, INT REV RES OPEN DIS, V10
Freud S., 1957, The standard edition of the complete psychological works of Sigmund Freud, volume XI (1910): Five lectures on psycho-analysis, Leonardo da Vinci and other works, P209
Garrison D. R., 2008, BLENDED LEARNING HIG, DOI DOI 10.1002/9781118269558
Hartree A., 1984, International Journal of Lifelong Education, V3, P203, DOI DOI 10.1080/0260137840030304
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Huang HM, 2002, BRIT J EDUC TECHNOL, V33, P27, DOI 10.1111/1467-8535.00236
Huang J., 2022, Quality Quantity, V56, P1347, DOI [https://doi.org/10.1007/s11135-021-01179-7, DOI 10.1007/S11135-021-01179-7]
Jung I, 2002, INNOV EDUC TEACH INT, V39, P153, DOI 10.1080/13558000210121399
Kara M, 2019, OPEN PRAX, V11, P5, DOI 10.5944/openpraxis.11.1.929
Kim KJ, 2011, J EDUC COMPUT RES, V44, P1, DOI 10.2190/EC.44.1.a
Knowles M.S., 1980, CAMBRIDGE ADULT ED
Mazzolini M, 2003, COMPUT EDUC, V40, P237, DOI 10.1016/S0360-1315(02)00129-X
Mazzolini M, 2007, COMPUT EDUC, V49, P193, DOI 10.1016/j.compedu.2005.06.011
McDougall J, 2015, AUST J ADULT LEARN, V55, P94
Merriam S. B., 2013, Adult learning: Linking theory and practice, DOI [https://doi.org/10.1080/03601277.2015.1011576, DOI 10.1080/03601277.2015.1011576]
Moore M.G., 2011, Distance Education: A Systems View of Online Learning, V3rd
Nash-Stewart CE, 2012, J MED LIBR ASSOC, V100, P135, DOI 10.3163/1536-5050.100.2.013
Park JH, 2009, EDUC TECHNOL SOC, V12, P207
Pintrich PR, 2003, J EDUC PSYCHOL, V95, P667, DOI 10.1037/0022-0663.95.4.667
R Core Team, 2023, R LANG ENV STAT COMP
Rajabalee BY, 2020, E-LEARNING DIGITAL M, V17, P1, DOI 10.1177/2042753019882567
Rasheed RA, 2020, COMPUT EDUC, V144, DOI 10.1016/j.compedu.2019.103701
Sarsar F., 2012, Anadolu Journal of Educational Sciences International, V2
Schwartz Andrew M, 2020, JB JS Open Access, V5, pe0045, DOI 10.2106/JBJS.OA.20.00045
Spante M, 2018, COGENT EDUC, V5, DOI 10.1080/2331186X.2018.1519143
Stone C, 2016, AUST J ADULT LEARN, V56, P146
Willems PP, 2021, ETR&D-EDUC TECH RES, V69, P1003, DOI 10.1007/s11423-021-09972-9
Xu J, 2021, J AFFECT DISORDERS, V293, P444, DOI 10.1016/j.jad.2021.06.070
Zembylas M, 2008, DISTANCE EDUC, V29, P71, DOI 10.1080/01587910802004852
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
NR 50
TC 0
Z9 0
U1 4
U2 5
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0892-3647
EI 1538-9286
J9 AM J DISTANCE EDUC
JI Am. J. Distance Educ.
PD 2024 JAN 21
PY 2024
DI 10.1080/08923647.2024.2303324
EA JAN 2024
PG 32
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA FI8C8
UT WOS:001145214000001
DA 2024-09-05
ER
PT J
AU Arana-Barbier, PJ
AF Arana-Barbier, Pablo Jose
TI The Relationship Between Scientific Production and Economic Growth
Through R&D Investment: A Bibliometric Approach
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Bibliometrics; Economic growth; Multiple linear regression; Research and
development; Scientific production; SDG 8
ID INNOVATION; SCIENCE; IMPACT; CHINA
AB This quantitative bibliometric research measures the efficiency of investment in R&D for the 17 more relevant countries investing in R&D through a novel indicator based on the number of scientific articles (associated with stock markets), produced for every 1% of investment in R&D in terms of GDP. The study is justified by the need to deepen the relationship between investment in R&D and economic growth, and was conducted for developed and emerging countries separately, so that the understanding of which countries or regions' investment in R&D and its consequent scientific production has the greatest impact over the size of their economies through innovation. Our findings indicate clearly that R&D investment strongly correlates to the economy's size of the studied countries. In addition to finding our novel indicator statistically significant with respect to economic growth through a series of multiple linear regressions and proposing economic growth not statically, but as a dynamic cumulative effect over time, this becomes more relevant for emerging countries (represented in this study by China, Brazil, India, Russia and Turkey, or BRIC + Turkey) compared to developed ones, which decants into an opportunity for scholars and particularly governments to design or restructure their R&D policies towards innovation.
C1 [Arana-Barbier, Pablo Jose] Ctr Catolica Grad Business Sch CCGBS, Lima, Peru.
[Arana-Barbier, Pablo Jose] Pontificia Univ Catolica Peru PUCP, Lima, Peru.
[Arana-Barbier, Pablo Jose] Jr Daniel Alomia Robles 125, Lima 15023, Peru.
C3 Pontificia Universidad Catolica del Peru
RP Arana-Barbier, PJ (corresponding author), Ctr Catolica Grad Business Sch CCGBS, Lima, Peru.; Arana-Barbier, PJ (corresponding author), Pontificia Univ Catolica Peru PUCP, Lima, Peru.; Arana-Barbier, PJ (corresponding author), Jr Daniel Alomia Robles 125, Lima 15023, Peru.
EM pablo.arana@pucp.pe
CR Abramo G, 2022, J INFORMETR, V16, DOI 10.1016/j.joi.2021.101244
Agu Sunday C., 2022, Intelligent Systems with Applications, V14, P200082, DOI [10.1016/j.iswa.2022.200082, DOI 10.1016/J.ISWA.2022.200082]
Al-Marzouqi AH, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e11309
Ali M, 2023, ENERG POLICY, V173, DOI 10.1016/j.enpol.2022.113380
[Anonymous], 1984, The citation process: The role and significance of citations in scientific communication
Arana Barbier Pablo José, 2020, Investig. bibl, V34, P37, DOI 10.22201/iibi.24488321xe.2020.83.58111
Baker HK, 2023, INT J FINANC ECON, V28, P9, DOI 10.1002/ijfe.2725
Baker HK, 2021, GLOB FINANC J, V47, DOI 10.1016/j.gfj.2019.100492
Betarelli AA, 2020, ECON MODEL, V90, P235, DOI 10.1016/j.econmod.2020.04.017
Bilbao-Osorio B, 2004, GROWTH CHANGE, V35, P434, DOI 10.1111/j.1468-2257.2004.00256.x
Boeing P, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121212
Caporale GM, 2015, INT J FINANC ECON, V20, P48, DOI 10.1002/ijfe.1498
Chhatoi BP, 2021, J SCIENTOMETR RES, V10, P148, DOI 10.5530/jscires.10.2.29
Chowdhury RH, 2012, RES INT BUS FINANC, V26, P258, DOI 10.1016/j.ribaf.2011.12.003
Cicea C, 2021, J BUS ECON MANAG, V22, P445, DOI 10.3846/jbem.2020.14018
Confraria H, 2015, SCIENTOMETRICS, V102, P1241, DOI 10.1007/s11192-014-1463-8
Dai XY, 2015, INNOV-ORGAN MANAG, V17, P182, DOI 10.1080/14479338.2015.1011053
De Moya-Anegón F, 1999, SCIENTOMETRICS, V46, P299, DOI 10.1007/BF02464780
Duran DC, 2015, PROC ECON FINANC, V26, P806, DOI 10.1016/S2212-5671(15)00849-7
Fassin Y, 2021, MALAYS J LIBR INF SC, V26, P1, DOI 10.22452/mjlis.vol26no2.1
Fraumeni BM, 2022, Gross domestic product: Are other measures needed?, DOI [10.15185/izawol.368.v2, DOI 10.15185/IZAWOL.368.V2]
Greenstone M, 2011, MIT Center for Energy and Environmental Policy Research, P1
Guimón J, 2018, J INT MANAG, V24, P165, DOI 10.1016/j.intman.2017.09.005
Hair J.F., 2009, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Vseventh
Henderson V, 2011, AM ECON REV, V101, P194, DOI 10.1257/aer.101.3.194
Herzer D, 2022, WORLD DEV, V151, DOI 10.1016/j.worlddev.2021.105754
Huseynov AG, 2021, MARK MANAG INNOV, P293, DOI 10.21272/mmi.2021.2-24
Jansen BJ, 2006, INFORM PROCESS MANAG, V42, P248, DOI 10.1016/j.ipm.2004.10.007
Johnson G, 2018, LIBRI, V68, P331, DOI 10.1515/libri-2018-0033
Khan A, 2022, FINANC RES LETT, V47, DOI 10.1016/j.frl.2021.102520
Kumar S, 2020, J EMERG MARK FINANC, V19, P326, DOI 10.1177/0972652720944329
Meo SA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066449
OECD, 2023, R&D (% of GDP)
Pattnaik D, 2022, ECON MODEL, V107, DOI 10.1016/j.econmod.2021.105712
Radas S, 2009, TECHNOVATION, V29, P438, DOI 10.1016/j.technovation.2008.12.002
Salameh S, 2022, J PUBLIC AFF, V22, DOI 10.1002/pa.2316
Soete L, 2022, IND CORP CHANGE, V31, P1, DOI 10.1093/icc/dtab066
Stahl BC, 2013, SCI PUBL POLICY, V40, P708, DOI 10.1093/scipol/sct067
United Nations, 2023, The sustainable development goals report special edition
World Bank, 2023, GDP growth rate
Zhang LJ, 2022, ACCOUNT FINANC, V62, P2467, DOI 10.1111/acfi.12871
NR 41
TC 1
Z9 1
U1 5
U2 5
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD SEP-DEC
PY 2023
VL 12
IS 3
BP 596
EP 602
DI 10.5530/jscires.12.3.057
PG 7
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA JE8W2
UT WOS:001171589100008
OA hybrid
DA 2024-09-05
ER
PT J
AU Bansal, R
Shrivastava, P
Kumar, A
AF Bansal, Ramita
Shrivastava, Preeti
Kumar, Amar
TI Impact of goods and services tax (GST) on Indian economy
SO INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING
LA English
DT Article
DE GST; goods and services tax bill; sentiment analysis; bibliometric
visualization; India
ID SAP-LAP; INNOVATION
AB India has implemented the Goods and Services Tax, an indirect tax, to help and promote the nation's economic expansion. The Goods and Services Tax Bill has been enacted in the majority of developed nations. In India, GST was established in 1999. A committee was set up to design the model of GST. But GST was re-launched on 1 July 2017 by the Indian government. There was a lot of uproar in favor of its introduction. All of the different taxes levied by the federal and state governments were replaced with the GST. The phrase "One Nation, One Tax" refers to the fact that all taxes must be paid in one location nationwide. The report thoroughly examines the effects of GST in India. The study offers sentiment analysis and bibliometric visualization of GST. It was discovered that the government implemented the GST in order to tax everyone in the nation and stop the flow of illicit money. However, it was noted that many Indian residents' feelings were conflicted. Therefore, it is advised to review the structure and maintain a focus on ongoing development.
C1 [Bansal, Ramita; Shrivastava, Preeti; Kumar, Amar] IIMT Coll Management, Greater Noida, India.
RP Kumar, A (corresponding author), IIMT Coll Management, Greater Noida, India.
EM theamarkumar.ak@gmail.com
CR Anand R, 2018, INF COMPUT SECUR, V26, P58, DOI 10.1108/ICS-12-2016-0090
Besley T, 2009, AM ECON REV, V99, P1218, DOI 10.1257/aer.99.4.1218
Bhattacharya G, 2017, INT J COMMER MANAG R, V3, P65
Bindal M, 2018, INT J ENG MANAGEMENT, V8, P143
Birken SA, 2015, HEALTH CARE MANAGE R, V40, P159, DOI 10.1097/HMR.0000000000000018
Birkinshaw J, 2008, ACAD MANAGE REV, V33, P825
CAG, 2019, REP COMPTR AUD GEN I
Chand P, 2018, RESOUR POLICY, V59, P389, DOI 10.1016/j.resourpol.2018.08.011
Charan P, 2012, MEAS BUS EXCELL, V16, P67, DOI 10.1108/13683041211204680
Chavan M, 2019, HABITAT INT, V89, DOI 10.1016/j.habitatint.2019.102002
Chichkanov N, 2021, SERV IND J, V41, P489, DOI 10.1080/02642069.2019.1570151
Chikermane G, 2018, 70 POLICIES SHAPED I
Chung GH, 2017, J ORGAN BEHAV, V38, P1130, DOI 10.1002/job.2191
Crandall W J, 2006, REVENUE AUTHORITIES
Dabla-Norris ME, 2017, IMF WORKING PAPERS, V2017/095
Damanpour F, 2006, BRIT J MANAGE, V17, P215, DOI 10.1111/j.1467-8551.2006.00498.x
Das Sourav, 2020, Computational Intelligence in Pattern Recognition. Proceedings of CIPR 2019. Advances in Intelligent Systems and Computing (AISC 999), P69, DOI 10.1007/978-981-13-9042-5_7
Das S, 2017, 2017 THIRD IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), P239, DOI 10.1109/ICRCICN.2017.8234513
NR 18
TC 0
Z9 0
U1 2
U2 2
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 2424-7863
EI 2424-7944
J9 INT J FINANC ENG
JI Int. J. Financ. Eng.
PD JUN
PY 2024
VL 11
IS 02
DI 10.1142/S2424786323500457
EA MAR 2024
PG 10
WC Business, Finance
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA WD9K9
UT WOS:001180825700001
DA 2024-09-05
ER
PT C
AU Kumar, D
Karwasra, K
Soni, G
AF Kumar, Devesh
Karwasra, Kritika
Soni, Gunjan
TI Bibliometric analysis of artificial neural network applications in
materials and engineering
SO MATERIALS TODAY-PROCEEDINGS
LA English
DT Proceedings Paper
CT International Conference on Aspects of Materials Science and Engineering
(ICAMSE)
CY MAY 29-30, 2020
CL ELECTR NETWORK
DE Bibliometric analysis; ANN; Statistics; Materials; Machining
AB Manufacturing industries in world are under pressure to adopt new technologies in order to sustain their market reputation and increase their performance. ANN is the widely used approach using in the manufacturing industries in various machining processes which results in improving the performance of manufacturing industries. There is need to identify the relationship in cutting parameters in various machining processes which results in the improving the quality and productivity. These relationships can be identified with various mathematical modelling techniques in which ANN is widely used at present time. An Artificial neural network (ANN) is the collection of nodes called artificial neurons, which is modelled according to neurons in biological brain. ANN approach is used because it has an ability to learn, can be used to model complex patterns and prediction problems. Here, Scopus database is used for collection of data with the keywords "Artificial neural network" and also "Artificial Neural Network and machining" is used to determine the trend on machining area, based on collected data bibliometric analysis has been performed. This analysis is used to determine the popularity, impact of publications and use of ANN on machining of different materials. This method is to explore the impact of ANN, the impact of different research areas. A thorough study of statistics of ANN publications by years, research areas, document types, countries, source titles and authors are conducted in this paper. This paper is for research evaluation only. (C) 2020 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Aspects of Materials Science and Engineering.
C1 [Kumar, Devesh; Karwasra, Kritika; Soni, Gunjan] Malaviya Natl Inst Technol Jaipur, Dept Mech Engn, Jaipur 302017, Rajasthan, India.
C3 National Institute of Technology (NIT System); Malaviya National
Institute of Technology Jaipur
RP Kumar, D (corresponding author), Malaviya Natl Inst Technol Jaipur, Dept Mech Engn, Jaipur 302017, Rajasthan, India.
EM deveshkumar1993@gmail.com
RI Kumar, Devesh/HLX-4332-2023
OI Kumar, Devesh/0000-0002-4888-5173; Karwasra, Kritika/0000-0003-2044-0073
CR [Anonymous], 1993, CHAPMAN HALL NEURAL
Eldon Y.Li, 1994, ARTIFICIAL NEURAL NE
Gardner MW, 1998, ATMOS ENVIRON, V32, P2627, DOI 10.1016/S1352-2310(97)00447-0
Gershenson C., 2016, ARTIFICIAL NEURAL NE
Ghasemiyeh R, 2017, CYBERNET SYST, V48, P365, DOI 10.1080/01969722.2017.1285162
Gorgel Pelin, 2013, INTELL AUTOM SOFT CO, P451
Gorucu FB, 2004, ENERG SOURCE, V26, P299, DOI 10.1080/00908310490256626
Haykin SS., 2018, NEURAL NETWORKS LEAR
Jamwal A., 2018, INT RES J ENG TECHNO, V5, P433
Jamwal A, 2020, J COMPOS MATER, V54, P2635, DOI 10.1177/0021998319900655
Jebaraj S, 2011, ENERG SOURCE PART A, V33, P1305, DOI 10.1080/15567030903397859
Jha G. K., ARTIFICIAL NEURAL NE
Modin J., 1995, Construction Management and Economics, V13, P411, DOI [10.1080/01446199500000046, DOI 10.1080/01446199500000046]
Muthukrishnan N, 2009, J MATER PROCESS TECH, V209, P225, DOI 10.1016/j.jmatprotec.2008.01.041
Nayim SMTI, 2019, AIP CONF PROC, V2148, DOI 10.1063/1.5123973
Scopus, 2019, ABOUT SCOPUS
Selvan MCP, 2020, MATER TODAY-PROC, V28, P538, DOI 10.1016/j.matpr.2019.12.215
Singh AK, 2020, MATER TODAY-PROC, V26, P2839, DOI 10.1016/j.matpr.2020.02.591
Smith Leslie, 1996, INTRO NEURAL NETWORK, p[98, 2001]
Vemuri V., 1988, ARTIFICIAL NEURAL NE
NR 20
TC 10
Z9 10
U1 0
U2 4
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 2214-7853
J9 MATER TODAY-PROC
JI Mater. Today-Proc.
PY 2020
VL 28
BP 1629
EP 1634
DI 10.1016/j.matpr.2020.04.855
PN 2
PG 6
WC Materials Science, Multidisciplinary
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Materials Science
GA MJ4RE
UT WOS:000548078600028
DA 2024-09-05
ER
PT J
AU Jankowski, R
Sienkiewicz, J
AF Jankowski, R.
Sienkiewicz, J.
TI Determining Crucial Factors for the Popularity of Scientific Articles
SO ACTA PHYSICA POLONICA A
LA English
DT Article; Proceedings Paper
CT 10th Polish Symposium of Physics in Economy and Social Sciences (FENS)
CY JUL 03-05, 2019
CL Natl Ctr Nucl Res, Otwock Swierk, POLAND
HO Natl Ctr Nucl Res
DE scientometrics; scientific data; predictions; machine learning
AB Using a set of over 70.000 records from PLOS One journal consisting of 37 lexical, sentiment and bibliographic variables we perform analysis backed with machine learning methods to predict the class of popularity of scientific papers defined by the number of times they have been viewed. Our study shows correlations among the features and recovers a threshold for the number of views that results in the best prediction outcomes in terms of Matthew's correlation coefficient. Moreover, by creating a variable importance plot for random forest classifier, we are able to reduce the number of features while keeping similar predictability and determine crucial factors responsible for the popularity.
C1 [Jankowski, R.; Sienkiewicz, J.] Warsaw Univ Technol, Fac Phys, Koszykowa 75, PL-00662 Warsaw, Poland.
C3 Warsaw University of Technology
RP Sienkiewicz, J (corresponding author), Warsaw Univ Technol, Fac Phys, Koszykowa 75, PL-00662 Warsaw, Poland.
EM julian.sienkiewicz@pw.edu.pl
RI Sienkiewicz, Julian/AAB-4900-2020
OI Sienkiewicz, Julian/0000-0003-2097-1499
CR [Anonymous], 1979, Information Retrieval
[Anonymous], 2001, The elements of statistical learning: data mining, inference and prediction
Arumugam J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0153776
Bollen J., 2009, PLOS ONE, V4, P111
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Breiman L, 1996, MACH LEARN, V24, P41, DOI 10.1023/A:1018094028462
Carleo G, 2019, REV MOD PHYS, V91, DOI 10.1103/RevModPhys.91.045002
Catalini C, 2015, P NATL ACAD SCI USA, V112, P13823, DOI 10.1073/pnas.1502280112
Chmiel A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022207
Choloniewski J, 2014, ACTA PHYS POL A, V127, P21
Deng B, 2015, Nature News, P1
Didegah F, 2013, J INFORMETR, V7, P861, DOI 10.1016/j.joi.2013.08.006
Gajewski LG, 2016, ACTA PHYS POL A, V129, P1071, DOI 10.12693/APhysPolA.129.1071
Glanzel W., 2015, SCIENTOMETRICS, V102
Hearst MA, 1998, IEEE INTELL SYST APP, V13, P18, DOI 10.1109/5254.708428
Kleinbaum D.G, 2002, Logistic regression
Letchford A, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150266
MATTHEWS BW, 1975, BIOCHIM BIOPHYS ACTA, V405, P442, DOI 10.1016/0005-2795(75)90109-9
Mehta P, 2019, PHYS REP, V810, P1, DOI 10.1016/j.physrep.2019.03.001
Mika Sebastian, 1999, NEURAL NETWORKS SIGN
Newman MEJ, 2005, CONTEMP PHYS, V46, P323, DOI 10.1080/00107510500052444
Paiva C., 2012, CLINICS, V67
Rostami F, 2014, SCIENTOMETRICS, V98, P2007, DOI 10.1007/s11192-013-1118-1
Sienkiewicz J, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26511-4
Sienkiewicz J, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160140
Sienkiewicz J, 2013, ADV COMPLEX SYST, V16, DOI 10.1142/S0219525913500264
Warriner AB, 2013, BEHAV RES METHODS, V45, P1191, DOI 10.3758/s13428-012-0314-x
Ye J, 2007, LECT NOTES ENG COMP, P1008
NR 28
TC 0
Z9 0
U1 1
U2 10
PU POLISH ACAD SCIENCES INST PHYSICS
PI WARSAW
PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND
SN 0587-4246
EI 1898-794X
J9 ACTA PHYS POL A
JI Acta Phys. Pol. A
PD JUL
PY 2020
VL 138
IS 1
BP 41
EP 47
DI 10.12693/APhysPolA.138.41
PG 7
WC Physics, Multidisciplinary
WE Science Citation Index Expanded (SCI-EXPANDED); Conference Proceedings Citation Index - Science (CPCI-S)
SC Physics
GA NX2JT
UT WOS:000575541700007
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Mashroofa, MM
Jusoh, M
Chinna, K
AF Mashroofa, Mohamed Majeed
Jusoh, Mazuki
Chinna, Karuthan
TI Research trend on the application of "E-learning adoption theory" : A
scientometric study during 2000-2019, based on Web of Science and SCOPUS
SO COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT
LA English
DT Article
DE Scientometric study; Learning theories; Educational Technology;
Technology Acceptance Theories; Online learning
ID TECHNOLOGY ACCEPTANCE MODEL; BEHAVIOR
AB Bibliometric study of the research trend on e-learning adoption theory is essential to investigate the existing literature to identify a suitable theory for new research. Objective of this study is to explore the research trend in scientific literature on e-learning adoption theory. Search of Web of Science and SCOPUS were carried out to find papers dealing with the contours of e-learning adoption theory. This study retrieved 84 research papers from Web of Science and 324 from SCOPUS on the "e-learning adoption theory." USA and Taiwan accounted for the highest number of publications with 39 papers (12.03%) and 19 papers (22.62%) in SCOPUS and Web of Science respectively. Computer Science has the highest number of papers in SCOPUS whilst Education and Educational Research is the top in Web of Science. China Agricultural University and Universiti Teknologi Malaysia have the highest number of publications four and seven in Web of Science and SCOPUS respectively. National Central University and China Agricultural University are the most productive organization as they have received 321 and 69 citations on e-learning adoption theory in Web of Science and SCOPUS respectively. Among the authors, Tarhini Ali of Brunel University, London has published the highest number of papers (five) on e-learning adoption theory in Web of Science and received 124 citations. Despites, Giannakos, M.N. and Pappas, I.O. have published the same quantity of papers (five) in SCOPUS, they have received only 47 and 22 citations respectively. Journal namely Computers and Education have published the highest number of papers in both databases at 13 (16.05%) and 14 (4.32%) received the highest number of citations at 996 (53.04%) and 1487 (39.37%) for those papers in Web of Science and SCOPUS respectively. Among the technology adoption theories, the Decomposed Theory of Planned Behaviour is more suitable to study e-learning behavior of individuals.
C1 [Mashroofa, Mohamed Majeed] South Eastern Univ Sri Lanka, Sci Lib, Oluvil, Sri Lanka.
[Mashroofa, Mohamed Majeed] Management & Sci Univ, Shah Alam, Selangor, Malaysia.
[Jusoh, Mazuki] Management & Sci Univ, Postgrad Ctr, Shah Alam, Selangor, Malaysia.
[Chinna, Karuthan] Taylors Univ, Fac Hlth & Med Sci, Sch Med, Subang Jaya, Selangor, Malaysia.
C3 South Eastern University of Sri Lanka; Management Science University;
Management Science University; Taylor's University
RP Mashroofa, MM (corresponding author), South Eastern Univ Sri Lanka, Sci Lib, Oluvil, Sri Lanka.; Mashroofa, MM (corresponding author), Management & Sci Univ, Shah Alam, Selangor, Malaysia.
EM mashroof@seu.ac.lk
RI Mashroofa, Mohamed Majeed/GNM-7789-2022; Mashroofa, Mohamed
Majeed/AAP-2633-2020
OI Mashroofa, Mohamed Majeed/0000-0002-2250-2445; Mashroofa, Mohamed
Majeed/0000-0002-2250-2445
CR Ajjan H, 2008, INTERNET HIGH EDUC, V11, P71, DOI 10.1016/j.iheduc.2008.05.002
Ali M, 2018, INTERACT TECHNOL SMA, V15, P59, DOI 10.1108/ITSE-02-2017-0012
Andersson A., 2008, INT J ED DEV USING I, V4, P1
Bhardwaj RK, 2015, COLLNET J SCIENTOMET, V9, P205, DOI 10.1080/09737766.2015.1069960
Bidin S. Z., 2012, PROC 6 INT C U LEARN, DOI [10.1016/j.sbspro, DOI 10.1016/J.SBSPRO]
Chametzky B., 2016, Online Journal of Distance Education and e-Learning, V4, P15
Clark Jimmy D., 2007, Learning and Teaching in the Mobile Learning Environment of the Twenty-First Century
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
Edumadze J.K.E., 2019, ONLINE J DISTANCE ED, V7, P70
Eke HN, 2010, LIBR REV, V59, P274, DOI 10.1108/00242531011038587
Fu ZT, 2007, NEW ZEAL J AGR RES, V50, P609, DOI 10.1080/00288230709510329
Hwang GJ, 2011, COMPUT EDUC, V57, P1368, DOI 10.1016/j.compedu.2010.12.013
Jaiyeoba OO, 2019, INT J INF LEARN TECH, V36, P157, DOI 10.1108/IJILT-05-2018-0058
Lai HJ, 2017, INTERACT LEARN ENVIR, V25, P295, DOI 10.1080/10494820.2015.1121879
Lakshman I., 2015, European Scientific Journal, V11, P280
Munezero M., 2016, ONLINE J DISTANCE ED, V4, P1
Santos L., 2015, Structure and Morphologic Infl uence of WO3 Nanoparticles on the Electrochromic Performance of Dual-Phase a-WO3 / WO3 Inkjet Printed Films, P1, DOI DOI 10.1080/03075079.2015.1007940
Shih YY, 2004, INTERNET RES, V14, P213, DOI 10.1108/10662240410542643
Sung YT, 2016, COMPUT EDUC, V94, P252, DOI 10.1016/j.compedu.2015.11.008
Takalani T., 2008, BARRIERS LEARNING PO
Tan PJB, 2013, SAGE OPEN, V3, DOI 10.1177/2158244013503837
Tarhini A, 2017, J INT EDUC BUS, V10, P164, DOI 10.1108/JIEB-09-2016-0032
Tarhini A, 2015, BRIT J EDUC TECHNOL, V46, P739, DOI 10.1111/bjet.12169
Tarhini A, 2014, COMPUT HUM BEHAV, V41, P153, DOI 10.1016/j.chb.2014.09.020
Taylor M, 1995, SW ACAD MANAG P, P137
TAYLOR S, 1995, INFORM SYST RES, V6, P144, DOI 10.1287/isre.6.2.144
Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926
Venkatesh V, 2008, DECISION SCI, V39, P273, DOI 10.1111/j.1540-5915.2008.00192.x
NR 28
TC 9
Z9 9
U1 0
U2 13
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0973-7766
EI 2168-930X
J9 COLLNET J SCIENTOMET
JI Collnet J. Scientometr. Inf. Manag.
PD JUL 3
PY 2019
VL 13
IS 2
BP 387
EP 408
DI 10.1080/09737766.2020.1729072
PG 22
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA KY9GO
UT WOS:000522883100011
DA 2024-09-05
ER
PT J
AU Pozsgai-Alvarez, J
Sanz, IP
AF Pozsgai-Alvarez, Joseph
Pastor Sanz, Ivan
TI Mapping the (anti-)corruption field: key topics and changing trends,
1968-2020
SO JOURNAL OF COMPUTATIONAL SOCIAL SCIENCE
LA English
DT Article
DE Corruption; Corpus; Machine learning; Bibliometrics; Interdisciplinary
ID FOREIGN DIRECT-INVESTMENT; MORAL DISENGAGEMENT; CORRUPTION; IMPACT;
GROWTH; INSTITUTIONS; ENFORCEMENT; PERFORMANCE; GOVERNANCE; GOVERNMENT
AB As research on (anti-)corruption continues to accelerate, the heterogeneity of perspectives that have emerged in the field complicates the identification of key topics and trends, limiting our capacity to set meaningful research priorities, risking the waste of time and funds, and potentially broadening the gap between scholarly production and policy necessities. To help elucidate this morass, we use the Latent Dirichlet Allocation (LDA) algorithm to classify a dataset of 5417 publications listed in the Global Anticorruption Blog's (GAB) Anticorruption Bibliography. The results allow us to recognize eight main topics in the literature, as well as their evolution over the past 2 decades in terms of relative attention (as measured by citation count) and publication rates. The topics and trends found here invite us to reflect on the current structure of the (anti-)corruption field, and to draw attention to persistent-and emerging-gaps.
C1 [Pozsgai-Alvarez, Joseph] Kyoto Univ, Ctr Southeast Asian Studies, 46 Shimoadachi Cho, Kyoto 6068501, Japan.
[Pastor Sanz, Ivan] Univ Valladolid, Sch Business & Econ, Avda Valle de Esgueva 6, Valladolid 47011, Spain.
C3 Kyoto University; Universidad de Valladolid
RP Pozsgai-Alvarez, J (corresponding author), Kyoto Univ, Ctr Southeast Asian Studies, 46 Shimoadachi Cho, Kyoto 6068501, Japan.
EM jpozsgai@dailycorruption.info; ivanpastorsanz@gmail.com
RI Pozsgai-Alvarez, Joseph/AAL-8789-2021
OI Pozsgai-Alvarez, Joseph/0000-0002-9338-2583
CR ABRAMS NORMAN., 2010, FEDERAL CRIMINAL LAW AND ITS ENFORCEMENT, V5th
Ali T.B., 2019, J. Econ. Stud
Allen NW, 2014, PAC AFF, V87, P221, DOI 10.5509/2014872221
Annoni P, 2019, SOC INDIC RES, V141, P31, DOI 10.1007/s11205-017-1821-z
[Anonymous], 2004, CORRUPTION DESIGN
[Anonymous], 2011, DEV NGO CORRUPTION R
Aromataris E, 2015, INT J EVID-BASED HEA, V13, P132, DOI 10.1097/XEB.0000000000000055
Asquer R., 2015, THESIS UCLA
Attard J, 2015, GOV INFORM Q, V32, P399, DOI 10.1016/j.giq.2015.07.006
Bahoo S, 2020, INT BUS REV, V29, DOI 10.1016/j.ibusrev.2019.101660
Bandura A, 2002, J MORAL EDUC, V31, P101, DOI 10.1080/0305724022014322
Bardhan P, 2002, J ECON PERSPECT, V16, P185, DOI 10.1257/089533002320951037
Barth JR, 2009, J FINANC ECON, V91, P361, DOI 10.1016/j.jfineco.2008.04.003
Bekelman JE, 2003, JAMA-J AM MED ASSOC, V289, P454, DOI 10.1001/jama.289.4.454
Bertot JC, 2010, GOV INFORM Q, V27, P264, DOI 10.1016/j.giq.2010.03.001
Bes-Rastrollo M, 2013, PLOS MED, V10, DOI 10.1371/journal.pmed.1001578
BHAGWATI JN, 1982, J POLIT ECON, V90, P988, DOI 10.1086/261104
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Boatright R. G., 2019, POLITICAL CORRUPTION, P299
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Brown ME, 2005, ORGAN BEHAV HUM DEC, V97, P117, DOI 10.1016/j.obhdp.2005.03.002
Brunnschweiler CN, 2008, WORLD DEV, V36, P399, DOI 10.1016/j.worlddev.2007.03.004
Buchanan BG, 2012, INT REV FINANC ANAL, V21, P81, DOI 10.1016/j.irfa.2011.10.001
Campos NF, 2016, J INST THEOR ECON, V172, P521, DOI 10.1628/093245616X14616712130543
Ceva E, 2018, ETHICAL THEORY MORAL, V21, P789, DOI 10.1007/s10677-018-9950-2
Chan APC, 2017, J CONSTR ENG M, V143, DOI 10.1061/(ASCE)CO.1943-7862.0001353
CHANG J., 2009, Advances in Neural Information Processing Systems, V22, P288
Chang SC, 2015, PORT ECON J, V14, P75, DOI 10.1007/s10258-015-0112-3
Charron N, 2016, EUR POLIT SCI REV, V8, P147, DOI 10.1017/S1755773914000447
Chen HK, 2018, J FINANC STABIL, V36, P130, DOI 10.1016/j.jfs.2018.02.010
Chereches RM, 2013, HEALTH POLICY, V110, P105, DOI 10.1016/j.healthpol.2013.01.010
Cintra RF, 2018, RES INT BUS FINANC, V45, P607, DOI 10.1016/j.ribaf.2017.07.177
Coogan J., 2015, Journal of Financial Crime, V22, P228
Dhaliwal Iqbal., 2014, Deal with the Devil: The Successes and Limitations of Bureaucratic Reform in India. Tech. rep
Djankov S, 2002, Q J ECON, V117, P1, DOI 10.1162/003355302753399436
Dupuy K.y., 2018, Microlevel explanations for unethical behaviour, VU4, P2
Epremian L, 2018, GEOFORUM, V97, P198, DOI 10.1016/j.geoforum.2018.09.004
Erinsyah RA., 2019, INT J MULTICULTURAL, V6, P497
Erlingsson GO, 2016, ICEL REV POLIT ADM, V12, P215, DOI 10.13177/irpa.a.2016.12.2.2
Esoimeme E. E, 2018, J FINANCIAL CRIME
Faccio M, 2006, AM ECON REV, V96, P369, DOI 10.1257/000282806776157704
Fisman R, 2007, J POLIT ECON, V115, P1020, DOI 10.1086/527495
Friedman E, 2000, J PUBLIC ECON, V76, P459, DOI 10.1016/S0047-2727(99)00093-6
Gaitonde R, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008856.pub2
Gawthorpe S., 2020, ACE DIGITAL LIB GLOB
Giliomee H, 1998, J DEMOCR, V9, P128, DOI 10.1353/jod.1998.0060
Glaeser EL, 2004, J ECON GROWTH, V9, P271, DOI 10.1023/B:JOEG.0000038933.16398.ed
Gou ZN, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11121486
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Hanna R., 2011, EFFECTIVENESS ANTICO
Hodgkinson P, 1997, SOCIOLOGY, V31, P17, DOI 10.1177/0038038597031001003
Hutchinson E., 2019, 9 ACE RES CONS
Johansen ER, 1990, POLITICAL CORRUPTION
Johnson Rob, 2018, The STM report: an overview of scientific and scholarly publishing, V5th
Judge WQ, 2011, J WORLD BUS, V46, P93, DOI 10.1016/j.jwb.2010.05.021
Kaufmann D, 2004, WORLD BANK ECON REV, V18, P253, DOI 10.1093/wber/lhh041
Khan M., 2019, International Journal of Supply Chain Management, V8, P549
Kim HT, 2017, J MULTINATL FINANC M, V39, P39, DOI 10.1016/j.mulfin.2017.02.001
Kobis N. C., 2020, RES AGENDA STUDIES C
Kohler JC, 2011, FIGHT CORR HLTH SECT
Kouznetsov A., 2018, Int. Trade J., V32, P414
Kristin D. M, 2018, IOP C SERIES EARTH E, V195
Kruk ME, 2008, TROP MED INT HEALTH, V13, P1442, DOI 10.1111/j.1365-3156.2008.02173.x
Larsen PO, 2010, SCIENTOMETRICS, V84, P575, DOI 10.1007/s11192-010-0202-z
León CJ, 2013, SOC INDIC RES, V114, P977, DOI 10.1007/s11205-012-0185-7
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Liu Y, 2019, J BUS ETHICS, V160, P127, DOI 10.1007/s10551-018-3806-5
Luo YD, 2012, MANAGE ORGAN REV, V8, P139, DOI 10.1111/j.1740-8784.2011.00273.x
MAURO P, 1995, Q J ECON, V110, P681, DOI 10.2307/2946696
Mesquita De., 2005, LOGIC POLITICAL SURV
Minka T.P., 2002, Uncertainty in Artificial Intelligence, P352
Molina E., 2016, Campbell Systematic Reviews, V12, P1
Monteiro MD, 2018, CORP GOV-INT J BUS S, V18, P1207, DOI 10.1108/CG-01-2018-0031
Moore C, 2008, J BUS ETHICS, V80, P129, DOI 10.1007/s10551-007-9447-8
Mulyana A., 2019, MIMBAR JURNAL SOSIAL, V35, P245
Naher N., 2018, 004 SOAS ACE
Nichols P., 2017, Thinking About Bribery: Neuroscience, Moral Cognition, and Psychology of Bribery, DOI [10.1017/9781316450765, DOI 10.1017/9781316450765]
Norris SL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025153
Olken BA, 2009, J PUBLIC ECON, V93, P950, DOI 10.1016/j.jpubeco.2009.03.001
Onwujekwe O, 2019, HEALTH POLICY PLANN, V34, P529, DOI 10.1093/heapol/czz070
Palvia S, 2017, AMCIS 2017 PROCEEDINGS
Persson A, 2013, GOVERNANCE, V26, P449, DOI 10.1111/j.1468-0491.2012.01604.x
Punch M., 2000, European Journal on Criminal Policy and Research, V8, P301, DOI [10.1023/A:1008777013115, DOI 10.1023/A:1008777013115]
RANDALL DM, 1991, J BUS ETHICS, V10, P805, DOI 10.1007/BF00383696
Rashidian A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041988
Röder M, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P399, DOI 10.1145/2684822.2685324
Sachs JD, 2001, EUR ECON REV, V45, P827, DOI 10.1016/S0014-2921(01)00125-8
Saddiq SA., 2019, Journal of Financial Crime, V26, P910, DOI DOI 10.1108/JFC-10-2018-0112
Samuel A, 2010, ECON GOV, V11, P333, DOI 10.1007/s10101-010-0080-0
Samuel A, 2009, J ECON BEHAV ORGAN, V71, P441, DOI 10.1016/j.jebo.2009.04.013
SCHNEIDER B, 1987, PERS PSYCHOL, V40, P437, DOI 10.1111/j.1744-6570.1987.tb00609.x
Schuppan T, 2009, GOV INFORM Q, V26, P118, DOI 10.1016/j.giq.2008.01.006
Seligson MA, 2002, J POLIT, V64, P408, DOI 10.1111/1468-2508.00132
Sengupta M, 2014, SOC MOVEMENT STUD, V13, P406, DOI 10.1080/14742837.2013.860025
Sforza V., 2020, REV LIT CORRUPTION H
SHLEIFER A, 1994, Q J ECON, V109, P995, DOI 10.2307/2118354
Stoerk T, 2016, ATMOS ENVIRON, V127, P365, DOI 10.1016/j.atmosenv.2015.12.055
Tanzi V, 1998, WELFARE STATE, PUBLIC INVESTMENT AND GROWTH, P41
Termini RB, 2017, J PHARM HEALTH SERV, V8, P77, DOI 10.1111/jphs.12174
Torsello D, 2016, J MANAGE INQUIRY, V25, P34, DOI 10.1177/1056492615579081
Treisman D, 2000, J PUBLIC ECON, V76, P399, DOI 10.1016/S0047-2727(99)00092-4
Ugur M., 2011, Evidence on the Economic Growth Impacts of Corruption in Low-Income Countries and Beyond
Ugur M, 2014, J ECON SURV, V28, P472, DOI 10.1111/joes.12035
Ullah B, 2020, Q REV ECON FINANC, V75, P120, DOI 10.1016/j.qref.2019.05.009
Ungpakorn JG, 2002, J CONTEMP ASIA, V32, P191, DOI 10.1080/00472330280000121
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
Wallach HM, 2009, ADV NEURAL INFORM PR, V22, P1973, DOI DOI 10.1007/S10708-008-9161-9
Wane Waly., 2000, TAX EVASION CORRUPTI
Wang CB, 2019, BRIT J NEUROSURG, V33, P675, DOI 10.1080/02688697.2017.1396286
Zhang YJ, 2016, TECHNOL FORECAST SOC, V112, P220, DOI 10.1016/j.techfore.2016.05.027
NR 110
TC 3
Z9 3
U1 1
U2 8
PU SPRINGERNATURE
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND
SN 2432-2717
EI 2432-2725
J9 J COMPUT SOC SCI
JI J. Comput. Soc. Sci.
PD NOV
PY 2021
VL 4
IS 2
BP 851
EP 881
DI 10.1007/s42001-021-00110-2
PG 31
WC Social Sciences, Mathematical Methods
WE Emerging Sources Citation Index (ESCI)
SC Mathematical Methods In Social Sciences
GA WH4ET
UT WOS:000707633900018
DA 2024-09-05
ER
PT J
AU Baker, RS
Nasiar, N
Gong, WY
Porter, C
AF Baker, Ryan S.
Nasiar, Nidhi
Gong, Weiyi
Porter, Chelsea
TI The impacts of learning analytics and A/B testing research: a case study
in differential scientometrics
SO INTERNATIONAL JOURNAL OF STEM EDUCATION
LA English
DT Article
DE Scientometrics; A; B testing; Learning analytics; Online learning; STEM
education platform
ID SCIENCE
AB Background In recent years, research on online learning platforms has exploded in quantity. More and more researchers are using these platforms to conduct A/B tests on the impact of different designs, and multiple scientific communities have emerged around studying the big data becoming available from these platforms. However, it is not yet fully understood how each type of research influences future scientific discourse within the broader field. To address this gap, this paper presents the first scientometric study on how researchers build on the contributions of these two types of online learning platform research (particularly in STEM education). We selected a pair of papers (one using A/B testing, the other conducting learning analytics (LA), on platform data of an online STEM education platform), published in the same year, by the same research group, at the same conference. We then analyzed each of the papers that cited these two papers, coding from the paper text (with inter-rater reliability checks) the reason for each citation made. Results After statistically comparing the frequency of each category of citation between papers, we found that the A/B test paper was self-cited more and that citing papers built on its work directly more frequently, whereas the LA paper was more often cited without discussion. Conclusions Hence, the A/B test paper appeared to have had a larger impact on future work than the learning analytics (LA) paper, even though the LA paper had a higher count of total citations with a lower degree of self-citation. This paper also established a novel method for understanding how different types of research make different contributions in learning analytics, and the broader online learning research space of STEM education.
C1 [Baker, Ryan S.; Nasiar, Nidhi; Gong, Weiyi; Porter, Chelsea] Univ Penn, Grad Sch Educ, Philadelphia, PA 19104 USA.
C3 University of Pennsylvania
RP Baker, RS (corresponding author), Univ Penn, Grad Sch Educ, Philadelphia, PA 19104 USA.
EM ryanshaunbaker@gmail.com
RI Baker, Ryan/IWE-2102-2023
OI Nasiar, Nidhi/0009-0006-7063-5433; Porter, Chelsea/0009-0005-0246-8509
FU Schmidt Futures Foundation
FX The project is funded by the Schmidt Futures Foundation, in an award
initially given to Worcester Polytechnic Institute. This article does
not necessarily represent the perspectives of either of these
organizations.
CR [Anonymous], 2012, 2012 Conference of the North American Chapter of the Association for Computational Linguistics
[Anonymous], 1984, The citation process: The role and significance of citations in scientific communication
[Anonymous], 2011, Evaluation, DOI DOI 10.1177/1356389010389908
Baker R. S., 2009, Journal of educational Data Mining, V1, P3, DOI DOI 10.5281/ZENODO.3554657
Beck JE, 1999, FR ART INT, V50, P611
BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Chen GL, 2020, LAK20: THE TENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P544, DOI 10.1145/3375462.3375500
COLE JR, 1972, SCIENCE, V178, P368, DOI 10.1126/science.178.4059.368
Dawson S., 2014, P 4 INT C LEARNING A, P231
Derntl M., 2013, P LEARN AN KNOWL LAK
Dormezil S., 2019, EDM WORKSHOPS, P17
Fazeli S., 2013, P LEARN AN KNOWL LAK
Feng MY, 2009, USER MODEL USER-ADAP, V19, P243, DOI 10.1007/s11257-009-9063-7
Fletcher JD, 2018, INT J STEM EDUC, V5, DOI 10.1186/s40594-018-0106-7
GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189
Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337
Graesser AC, 2018, INT J STEM EDUC, V5, DOI 10.1186/s40594-018-0110-y
Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385
Guo L., 2021, ASIA PAC EDUC REV, V18, P1
Harwood N, 2009, J PRAGMATICS, V41, P497, DOI 10.1016/j.pragma.2008.06.001
Heffernan N, 2014, INT J ARTIF INTELL E, V24, P470, DOI 10.1007/s40593-014-0024-x
Inventado PS, 2018, INT J STEM EDUC, V5, DOI 10.1186/s40594-018-0107-6
Khajah M., 2016, P 9 INT C ED DAT MIN, P94
Kizilcec RF, 2020, P NATL ACAD SCI USA, V117, P14900, DOI 10.1073/pnas.1921417117
Koedinger K. R, 2010, Handbook of Educational Data Mining, V43, P43, DOI DOI 10.1201/B10274-6
Koedinger KR, 2013, SCIENCE, V342, P935, DOI 10.1126/science.1238056
Koedinger KR, 2012, COGNITIVE SCI, V36, P757, DOI 10.1111/j.1551-6709.2012.01245.x
LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
Malmi Lauri, 2020, ICER '20. Proceedings of the 2020 ACM Conference on International Computing Education Research, P36, DOI 10.1145/3372782.3406279
Maturana RA., 2013, P LAK DAT CHALL HELD, V34
Mostow J., 2003, P THEWORKSHOP ASSESS, P61
Mulqueeny K, 2015, INT J STEM EDUC, V2, DOI 10.1186/s40594-015-0028-6
Nawaz S., 2013, P LEARN AN KNOWL LAK
Nye BD, 2018, INT J STEM EDUC, V5, DOI 10.1186/s40594-018-0109-4
OECD, 2020, Digital transformation in the age of COVID-19. Building Resilience and bridging divides, DOI DOI 10.5281/ZENODO.4143612
Ostrow K. S., 2019, LEARNING SCI THEORY, P201
Park JH, 2009, EDUC TECHNOL SOC, V12, P207
Razzaq L, 2006, LECT NOTES COMPUT SC, V4053, P635
Reich J, 2015, SCIENCE, V347, P34, DOI 10.1126/science.1261627
SHOCKLEY W, 1957, P IRE, V45, P279, DOI 10.1109/JRPROC.1957.278364
Stamper J., 2012, P 5 INT C ED DAT MIN
Valle N, 2021, BRIT J EDUC TECHNOL, V52, P1724, DOI 10.1111/bjet.13089
VanLehn K, 2011, EDUC PSYCHOL-US, V46, P197, DOI 10.1080/00461520.2011.611369
Verbert K, 2013, AM BEHAV SCI, V57, P1500, DOI 10.1177/0002764213479363
VINKLER P, 1987, SCIENTOMETRICS, V12, P47, DOI 10.1007/BF02016689
Waheed H, 2018, BEHAV INFORM TECHNOL, V37, P941, DOI 10.1080/0144929X.2018.1467967
Walonoski JA, 2006, LECT NOTES COMPUT SC, V4053, P382
Yeung CK, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231647
Zhang JN, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P765, DOI 10.1145/3038912.3052580
Zouaq A., 2013, LAK DAT CHALL 2013 H
NR 51
TC 0
Z9 0
U1 0
U2 18
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 2196-7822
J9 INT J STEM EDUC
JI Int. J. STEM Educ.
PD FEB 14
PY 2022
VL 9
IS 1
AR 16
DI 10.1186/s40594-022-00330-6
PG 10
WC Education & Educational Research; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Education & Educational Research
GA YY9UO
UT WOS:000755130600002
PM 35194544
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Kuznetsova, A
Pozdniakov, S
Musabirov, I
AF Kuznetsova, Anastasiya
Pozdniakov, Stanislav
Musabirov, Ilya
BE Alexandrov, DA
Boukhanovsky, AV
Chugunov, AV
Kabanov, Y
Koltsova, O
TI Analyzing Web Presence of Russian Universities in a Scientometric
Context
SO DIGITAL TRANSFORMATION AND GLOBAL SOCIETY (DTGS 2017)
SE Communications in Computer and Information Science
LA English
DT Proceedings Paper
CT 2nd International Conference on Digital Transformation and Global
Society (DTGS)
CY JUN 21-23, 2017
CL ITMO Univ, St. Petersburg, RUSSIA
HO ITMO Univ
DE Russian universities; Northwestern region; Webometrics; Altmetrics; LDA;
Topic modelling
AB In this paper, we analyse the strategies and stratification of Russian universities in the Northwestern region. By enriching traditional social network analysis scientometric tools, we developed web presence indicators focused on the contexts in which universities are linked with businesses and are mentioned in media. We treat resulting groups in terms of Gouldner's cosmopolitans versus locals theory, based on differences in their publication strategies, and embeddedness in business connections and media contexts.
C1 [Kuznetsova, Anastasiya; Pozdniakov, Stanislav; Musabirov, Ilya] Natl Res Univ Higher Sch Econ, St Petersburg, Russia.
C3 HSE University (National Research University Higher School of Economics)
RP Kuznetsova, A (corresponding author), Natl Res Univ Higher Sch Econ, St Petersburg, Russia.
EM adkuznetsova13@gmail.com; pozdniakov.stanislav@gmail.com;
ilya@musabirov.info
RI Musabirov, Ilya/K-3905-2015
FU Academic Fund Program at the National Research University Higher School
of Economics (HSE) in 2017 2018 [17-05-0024]
FX The article was prepared within the framework of the Academic Fund
Program at the National Research University Higher School of Economics
(HSE) in 2017 2018 (grant No. 17-05-0024) and by the Russian Academic
Excellence Project "5-100".
CR Altbach P., 2017, ANARCHY EXPLOITATION
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Dyachenko E., 2017, HIGH ED RUSSIA, V11, P7
Espeland WN, 2007, AM J SOCIOL, V113, P1, DOI 10.1086/517897
GOULDNER AW, 1957, ADMIN SCI QUART, V2, P281, DOI 10.2307/2391000
Ingwersen P, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P339
Ingwersen P, 1998, J DOC, V54, P236, DOI 10.1108/EUM0000000007167
Kasyanov P., 2017, HIGHER ED RUSSIA, V11, P9
Kim E.Han., 2010, American Universities in a Global Market, P163
Putten J.V., 2014, OP TRACK EAIR 36 ANN
STAHL MJ, 1979, IEEE T ENG MANAGE, V26, P39, DOI 10.1109/TEM.1979.6447440
Thelwall M, 2003, J AM SOC INF SCI TEC, V54, P594, DOI 10.1002/asi.10161
NR 12
TC 0
Z9 0
U1 0
U2 1
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 1865-0929
EI 1865-0937
BN 978-3-319-69784-0; 978-3-319-69783-3
J9 COMM COM INF SC
PY 2017
VL 745
BP 113
EP 119
DI 10.1007/978-3-319-69784-0_9
PG 7
WC Computer Science, Theory & Methods; Telecommunications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Telecommunications
GA BO4XN
UT WOS:000515664100009
DA 2024-09-05
ER
PT J
AU Li, SQ
Zhang, YP
Ding, M
Dai, PC
AF Li, Shuqin
Zhang, Yipeng
Ding, Meng
Dai, Pengcheng
TI Research on integrated computer game algorithm for dots and boxes
SO JOURNAL OF ENGINEERING-JOE
LA English
DT Article; Proceedings Paper
CT 3rd Asian Conference on Artificial Intelligence Technology (ACAIT)
CY JUN 07-09, 2019
CL Chongqing, PEOPLES R CHINA
DE C++ language; tree searching; Monte Carlo methods; artificial
intelligence; neural nets; computer games; game theory; research on
integrated computer game algorithm; dots; computer game research; game
progresses; famous chess game; Monte Carlo tree search algorithm;
Alpha-Beta algorithm; deep convolution neural network; computer game
problem; deep convolutional neural network model; deep value network;
situation assessment; strategy recommendation; Monte Carlo Tree Search
algorithm; deep strategy network integrated MCTS algorithm; integrated
models; Alpha-Beta complete search; Monte Carlo simulation process;
integrated algorithm game systems
ID GO
AB Situation assessment and search are two key problems in computer game research. In general, as the game progresses, the difficulty of evaluating the situation of the game is significantly reduced, and the accuracy of the evaluation is significantly increased. Based on the famous chess game, this article proposes and implements a new scheme that combines the Monte Carlo tree search algorithm, the Alpha-Beta algorithm and the model based on the deep convolution neural network (CNN) to solve the computer game problem. This article first proposes a deep convolutional neural network model based on dots and boxes, including deep value network and deep strategy network, focusing on situation assessment and strategy recommendation, respectively. Then, using the Monte Carlo Tree Search (MCTS) algorithm as a framework, deep value network integrated MCTS algorithm and deep strategy network integrated MCTS algorithm are proposed. In both integrated models, Alpha-Beta complete search is used to truncate the Monte Carlo simulation process and improve simulation efficiency. Through competition with human players, the results show that the two integrated algorithm game systems have reached much higher intelligence level than ordinary humans in solving the problem of dots and boxes.
C1 [Li, Shuqin; Zhang, Yipeng; Ding, Meng; Dai, Pengcheng] Beijing Informat Sci & Technol Univ, Comp Acad, Beijing, Peoples R China.
[Li, Shuqin; Zhang, Yipeng; Ding, Meng; Dai, Pengcheng] Percept & Computat Intelligence Joint Lab, 35 North Fourth Ring Rd, Beijing, Peoples R China.
C3 Beijing Information Science & Technology University
RP Li, SQ (corresponding author), Beijing Informat Sci & Technol Univ, Comp Acad, Beijing, Peoples R China.; Li, SQ (corresponding author), Percept & Computat Intelligence Joint Lab, 35 North Fourth Ring Rd, Beijing, Peoples R China.
EM lishuqin_de@126.com
RI Zhang, Yipeng/HGD-1556-2022
OI Zhang, Yipeng/0000-0003-2869-4692
FU Key potential projects of Promoting Research Level program at Beijing
Information Science and Technology University [5211910927]; Normal
projects of General Science and Technology research program
[KM201911232002]; Science & Technology Innovation program for graduated
students at Beijing Information Science and Technology University
[5121911044]; Normal projects of promoting graduated education program
at Beijing Information Science and Technology University [5121911019]
FX This work is supported by Key potential projects of Promoting Research
Level program at Beijing Information Science and Technology University
(NO. 5211910927), by Normal projects of General Science and Technology
research program (NO. KM201911232002), by Science & Technology
Innovation program for graduated students at Beijing Information Science
and Technology University (NO. 5121911044), by Normal projects of
promoting graduated education program at Beijing Information Science and
Technology University (NO. 5121911019).
CR Berlekamp E.R, 2000, The Dots and Boxes Game: Sophisticated Child's Play
Berlekamp Elwyn, 2000, MORE GAMES NO CHANCE, V42, P317
Chaslot G., 2008, BELG NETH ART INT C
Clevert D.-A., 2015, 4 INT C LEARN REPR I
Garivier A, 2011, LECT NOTES ARTIF INT, V6925, P174, DOI 10.1007/978-3-642-24412-4_16
Kingma DP, 2014, ADV NEUR IN, V27
Kocsis L, 2006, LECT NOTES COMPUT SC, V4212, P282, DOI 10.1007/11871842_29
Lecun Y., 1998, The handbook of brain theory and neural networks, P1
Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236
PEARL J, 1982, COMMUN ACM, V25, P559, DOI 10.1145/358589.358616
Schmid M., 2017, ARXIV170101724
Silver D, 2017, NATURE, V550, P354, DOI 10.1038/nature24270
Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961
Yuan YL, 2014, INT GEOSCI REMOTE SE, DOI 10.1109/IGARSS.2014.6946435
NR 14
TC 1
Z9 1
U1 0
U2 3
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
EI 2051-3305
J9 J ENG-JOE
JI J. Eng.-JOE
PD JUL
PY 2020
VL 2020
IS 13
BP 601
EP 606
DI 10.1049/joe.2019.1185
PG 6
WC Engineering, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Engineering
GA NI3QK
UT WOS:000565270600060
OA gold
DA 2024-09-05
ER
PT C
AU Antonakaki, D
Polakis, I
Athanasopoulos, E
Ioannidis, S
Fragopoulou, P
AF Antonakaki, Despoina
Polakis, Iasonas
Athanasopoulos, Elias
Ioannidis, Sotiris
Fragopoulou, Paraskevi
BE Aiello, LM
McFarland, D
TI Think Before RT: An Experimental Study of Abusing Twitter Trends
SO SOCIAL INFORMATICS
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT SocInfo International Workshops
CY NOV 10, 2014
CL Barcelona, SPAIN
DE Spam; Twitter; Microblogging; Social influence; Spammer; Spam campaign;
Trending topic; Machine learning; Classification; Regression trees; Gain
more followers campaign; Online social networks; Privacy
AB Twitter is one of the most influential Online Social Networks (OSNs), adopted not only by hundreds of millions of users but also by public figures, organizations, news media, and official authorities. One of the factors contributing to this success is the inherent property of the platform for spreading news - encapsulated in short messages that are tweeted from one user to another - across the globe. Today, it is sufficient to just inspect the trending topics in Twitter for figuring out what is happening around the world. Unfortunately, the capabilities of the platform can be also abused and exploited for distributing illicit content or boosting false information, and the consequences of such actions can be really severe: one false tweet was enough for making the stock-market crash for a short period of time in 2013.
In this paper, we analyze a large collection of tweets and explore the dynamics of popular trends and other Twitter features in regards to deliberate misuse. We identify a specific class of trend-exploiting campaigns that exhibits a stealthy behavior and hides spam URLs within Google search-result links. We build a spam classifier for both users and tweets, and demonstrate its simplicity and efficiency. Finally, we visualize these spam campaigns and reveal their inner structure.
C1 [Antonakaki, Despoina; Athanasopoulos, Elias; Ioannidis, Sotiris; Fragopoulou, Paraskevi] FORTH ICS, Iraklion, Greece.
[Polakis, Iasonas] Columbia Univ, New York, NY USA.
C3 Columbia University
RP Antonakaki, D (corresponding author), FORTH ICS, Iraklion, Greece.
EM despoina@ics.forth.gr; polakis@cs.columbia.edu; elathan@ics.forth.gr;
sotiris@ics.forth.gr; fragopou@ics.forth.gr
OI Antonakaki, Despoina/0000-0001-9081-6115
CR [Anonymous], 1954, TIME
[Anonymous], 2011, ICWSM
[Anonymous], 2012, 19 ANN NETWORK DISTR
[Anonymous], 2011, P INT MEAS C IMC, DOI DOI 10.1145/2068816.2068840
[Anonymous], COMM SYST NETW COMSN
Benevenuto F., 2010, ANN COLLABORATION
Flores Marcel, 2013, Passive and Active Measurement. 14th International Conference, PAM 2013. Proceedings, P208, DOI 10.1007/978-3-642-36516-4_21
Gao H., 2010, P 10 ANN C INT MEAS
Grier C, 2010, PROCEEDINGS OF THE 17TH ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'10), P27, DOI 10.1145/1866307.1866311
Martinez-Romo J, 2013, EXPERT SYST APPL, V40, P2992, DOI 10.1016/j.eswa.2012.12.015
O'Donovan J, 2012, PROCEEDINGS OF 2012 ASE/IEEE INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY, RISK AND TRUST AND 2012 ASE/IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING (SOCIALCOM/PASSAT 2012), P293, DOI 10.1109/SocialCom-PASSAT.2012.128
Ozdikis O., 2012, P 1 INT WORKSH ONL S
Perlroth Nicole, 2013, NY TIMES
Sridharan V, 2012, 28TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2012), P389
Stringhini Gianluca., 2013, Proceedings of the 2013 Conference on Internet Measurement Conference, IMC '13, P163, DOI DOI 10.1145/2504730.2504731
Wang AH, 2010, SECRYPT 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, P142
NR 16
TC 1
Z9 1
U1 0
U2 2
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
EI 1611-3349
BN 978-3-319-15168-7; 978-3-319-15167-0
J9 LECT NOTES COMPUT SC
PY 2015
VL 8852
BP 402
EP 413
DI 10.1007/978-3-319-15168-7_49
PG 12
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BF3NP
UT WOS:000380559900049
DA 2024-09-05
ER
PT J
AU Blanco, FJ
AF Blanco, Jose F.
TI Fashion at the museum: successful experiences with student curators
SO MUSEUM MANAGEMENT AND CURATORSHIP
LA English
DT Article
DE fashion exhibition; student curators; active learning; institutional
collaboration; museum exhibitions
AB This paper describes the development of two fashion-centered exhibitions organized by non-museum studies college students in collaboration with a university museum and a community arts center and historic house. The work was the result of a new course, 'Museum Issues in Historic Clothing and Textiles,' offered in the Department of Textiles, Merchandising and Interiors at the University of Georgia. The department holds a large historic clothing and textiles collection, but has limited exhibition space. This paper describes the steps involved in the collaborative project, the active learning process in the classroom, the exact nature and process of the collaboration, and provides information on the final product - the two exhibitions created by the class. The paper aims to encourage similar collaborations between museum and fashion design, or fashion merchandizing programs housing historic clothing and textiles collections.
C1 [Blanco, Jose F.] Univ Georgia, Coll Familyand Consumer Sci, Dept Text Merchandising & Interiors, 303 Dawson Hall, Athens, GA 30602 USA.
C3 University System of Georgia; University of Georgia
RP Blanco, FJ (corresponding author), Univ Georgia, Coll Familyand Consumer Sci, Dept Text Merchandising & Interiors, 303 Dawson Hall, Athens, GA 30602 USA.
EM jblanco@uga.edu
CR Allen S.M., 1999, RARE BOOKS MANUSCRIP, V13, P110, DOI DOI 10.5860/RBML.13.2.157
[Anonymous], 2008, EXCELLENCE EQUITY ED
[Anonymous], CREATING LEARNING CT
Bonwell C., 1991, Active Learning: Creating Excitement in the Classroom, V1
David H., 1990, Museums and Universities: New Paths for Continuing Education, P117
Department of Art & Art History Michigan State University, 2008, STUD CUR EXH KRESG A
Foyle H.C., 1995, INTERACTIVE LEARNING
Genoways HughH., 2003, Museum Administration: An Introduction
Georgia Museum of Art, 2009, MISS STAT
Goodsell A., 1992, Collaborative Learning: A Sourcebook for Higher Education
King L, 2006, NEW MUSEUM THEORY AND PRACTICE: AN INTRODUCTION, P266, DOI 10.1002/9780470776230.ch11
King Lyndel., 2001, Managing university museums, P19
Marstine J, 2006, NEW MUSEUM THEORY AND PRACTICE: AN INTRODUCTION, P1, DOI 10.1002/9780470776230
Marstine J, 2007, MUS MANAG CURATORSHI, V22, P303, DOI 10.1080/09647770701628644
Meyers Chet, 1993, Promoting Active Learning. Strategies for the College Classroom, Vfirst
Millis KK, 2001, TEACH PSYCHOL, V28, P263, DOI 10.1207/S15328023TOP2804_06
Nist S.L., 2000, ACTIVE LEARNING STRA
Schmiesing A, 2002, PORTAL-LIBR ACAD, V2, P465, DOI 10.1353/pla.2002.0065
Silberman M., 2005, TEACHING ACTIVELY 8
Silberman Mel., 1996, ACTIVE LEARNING 101
Spiess PD, 1996, MUSEUM NEWS, V75, P32
Visser Falke M., 2007, INT J HUMANITIES, V5, P215
Willumson G, 2000, MUSEUM INT, V52, P15, DOI 10.1111/1468-0033.00253
NR 23
TC 3
Z9 5
U1 0
U2 1
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0964-7775
EI 1872-9185
J9 MUS MANAGE CURATOR
JI Mus. Manag. Curatorship
PY 2010
VL 25
IS 2
BP 199
EP 217
DI 10.1080/09647771003737323
PG 19
WC Humanities, Multidisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Arts & Humanities - Other Topics
GA V73AY
UT WOS:000211683500005
DA 2024-09-05
ER
PT J
AU Antonakaki, D
Polakis, I
Athanasopoulos, E
Ioannidis, S
Fragopoulou, P
AF Antonakaki, Despoina
Polakis, Iasonas
Athanasopoulos, Elias
Ioannidis, Sotiris
Fragopoulou, Paraskevi
TI Exploiting abused trending topics to identify spam campaigns in Twitter
SO SOCIAL NETWORK ANALYSIS AND MINING
LA English
DT Article
DE Spam; Twitter; Microblogging; Social influence; Spammer; Spam campaign;
Trending topic; Machine learning; Classification; Regression trees;
Gain-more-followers campaign; Online social networks; Privacy
AB Twitter is an online social network (OSN) with approximately 650 million users. It has been fairly characterized as one of the most influential OSNs since it includes public figures, organizations, news media and official authorities. Twitter has an inherent simple philosophy with short messages, friendship relations, hashtags and support for media sharing such as photos and short videos. Popular hashtags that emerge from users' activity are displayed prominently in the platform as Popular Trends. Unfortunately, the capabilities of the platform can be also abused and exploited for distributing illicit content or boosting false information, and the consequences of such actions can be really severe: one false tweet was enough for making the stock market crash for a short period of time in 2013. In this study, we make an experimental analysis on a large dataset containing 150 million tweets. We delve into the dynamics of the popular trends as well as other Twitter features in regard to deliberate misuse. We investigate traditional spam techniques as well as an obfuscated way of spam campaigns that exploit trending topics and hides malicious URLs within Google search result links. We implement a simple and lightweight classifier for indentifying spam users as well as spam tweets. Finally, we visualize these spam campaigns and investigate their inner properties.
C1 [Antonakaki, Despoina; Athanasopoulos, Elias; Ioannidis, Sotiris; Fragopoulou, Paraskevi] FORTH ICS, Iraklion, Greece.
[Polakis, Iasonas] Columbia Univ, New York, NY USA.
C3 Columbia University
RP Antonakaki, D (corresponding author), FORTH ICS, Iraklion, Greece.
EM despoina@ics.forth.gr; polakis@cs.columbia.edu; elathan@ics.forth.gr;
sotiris@ics.forth.gr; fragopou@ics.forth.gr
OI Antonakaki, Despoina/0000-0001-9081-6115
CR [Anonymous], 2010, ANN COLL EL MESS ANT
[Anonymous], 2011, ICWSM
[Anonymous], 2012, 19 ANN NETWORK DISTR
[Anonymous], 2011, P INT MEAS C IMC, DOI DOI 10.1145/2068816.2068840
[Anonymous], COMM SYST NETW COMSN
Cormack Gordon V., 2006, Foundations and Trends in Information Retrieval, V1, P1, DOI 10.1561/1500000006
EFRON B, 1987, J AM STAT ASSOC, V82, P171, DOI 10.2307/2289144
Flores Marcel, 2013, Passive and Active Measurement. 14th International Conference, PAM 2013. Proceedings, P208, DOI 10.1007/978-3-642-36516-4_21
Gao H., 2010, P 10 ANN C INT MEAS
Ghosh S, 2012, P 21 INT C WORLD WID, P61, DOI [10.1145/2187836.2187846, DOI 10.1145/2187836.2187846]
Grier C, 2010, PROCEEDINGS OF THE 17TH ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'10), P27, DOI 10.1145/1866307.1866311
Kleineberg KK, 2014, PHYS REV X, V4, DOI 10.1103/PhysRevX.4.031046
Martinez-Romo J, 2013, EXPERT SYST APPL, V40, P2992, DOI 10.1016/j.eswa.2012.12.015
Newcombe RG, 1998, STAT MED, V17, P873, DOI 10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
O'Donovan J, 2012, PROCEEDINGS OF 2012 ASE/IEEE INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY, RISK AND TRUST AND 2012 ASE/IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING (SOCIALCOM/PASSAT 2012), P293, DOI 10.1109/SocialCom-PASSAT.2012.128
Ozdikis O., 2012, P 1 INT WORKSH ONL S
Perlroth Nicole, 2013, NY TIMES
Sridharan V, 2012, 28TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2012), P389
Stringhini Gianluca., 2013, Proceedings of the 2013 Conference on Internet Measurement Conference, IMC '13, P163, DOI DOI 10.1145/2504730.2504731
Thomas K, 2014, CCS'14: PROCEEDINGS OF THE 21ST ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P489, DOI 10.1145/2660267.2660282
Time.com, 2013, DOES ON FAK TWEET CA
Wang AH, 2010, SECRYPT 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, P142
Yang J, 2011, TWITTER SNAP DATASET
NR 23
TC 13
Z9 14
U1 0
U2 55
PU SPRINGER WIEN
PI WIEN
PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA
SN 1869-5450
EI 1869-5469
J9 SOC NETW ANAL MIN
JI Soc. Netw. Anal. Min.
PD DEC
PY 2016
VL 6
IS 1
DI 10.1007/s13278-016-0354-9
PG 11
WC Computer Science, Information Systems
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA DT1CY
UT WOS:000381220500048
DA 2024-09-05
ER
PT J
AU López-Robles, JR
Cobo, MJ
Gutiérrez-Salcedo, M
Martínez-Sánchez, MA
Gamboa-Rosales, NK
Herrera-Viedma, E
AF Lopez-Robles, J. R.
Cobo, M. J.
Gutierrez-Salcedo, M.
Martinez-Sanchez, M. A.
Gamboa-Rosales, N. K.
Herrera-Viedma, E.
TI 30th Anniversary of Applied Intelligence: A combination of
bibliometrics and thematic analysis using SciMAT
SO APPLIED INTELLIGENCE
LA English
DT Article
DE Science mapping; Journal conceptual structure; Artificial intelligence;
Intelligent systems; Applied intelligence; SciMAT
ID MANAGEMENT; EVOLUTION; BUSINESS
AB Applied Intelligence is one of the most important international scientific journals in the field of artificial intelligence. From 1991, Applied Intelligence has been oriented to support research advances in new and innovative intelligent systems, methodologies, and their applications in solving real-life complex problems. In this way, Applied Intelligence hosts more than 2,400 publications and achieves around 31,800 citations. Moreover, Applied Intelligence is recognized by the industrial, academic, and scientific communities as a source of the latest innovative and advanced solutions in intelligent manufacturing, privacy-preserving systems, risk analysis, knowledge-based management, modern techniques to improve healthcare systems, methods to assist government, and solving industrial problems that are too complex to be solved through conventional approaches. Bearing in mind that Applied Intelligence celebrates its 30th anniversary in 2021, it is appropriate to analyze its bibliometric performance, conceptual structure, and thematic evolution. To do that, this paper conducts a bibliometric performance and conceptual structure analysis of Applied Intelligence from 1991 to 2020 using SciMAT. Firstly, the performance of the journal is analyzed according to the data retrieved from Scopus, putting the focus on the productivity of the authors, citations, countries, organizations, funding agencies, and most relevant publications. Finally, the conceptual structure of the journal is analyzed with the bibliometric software tool SciMAT, identifying the main thematic areas that have been the object of research and their composition, relationship, and evolution during the period analyzed.
C1 [Lopez-Robles, J. R.] Autonomous Univ Zacatecas, Acad Unit Accounting & Management, Zacatecas, Zacatecas, Mexico.
[Lopez-Robles, J. R.] Univ Cadiz, Dept Comp Sci & Engn, Cadiz, Spain.
[Cobo, M. J.] Univ Cadiz, Andalusian Res Inst Data Sci & Computat Intellige, Dept Comp Sci & Engn, Cadiz, Spain.
[Gutierrez-Salcedo, M.] Univ Jaen, Dept Management Mkt & Sociol, Jaen, Spain.
[Martinez-Sanchez, M. A.] Univ Granada, Dept Social Work, Granada, Spain.
[Gamboa-Rosales, N. K.] Autonomous Univ Zacatecas, CONACYT Acad Unit Elect Engn, Zacatecas, Zacatecas, Mexico.
[Herrera-Viedma, E.] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Dept Comp Sci & Artificial Intelligence, Granada, Spain.
C3 Universidad Autonoma de Zacatecas; Universidad de Cadiz; Universidad de
Cadiz; Universidad de Jaen; University of Granada; Universidad Autonoma
de Zacatecas; University of Granada
RP Cobo, MJ (corresponding author), Univ Cadiz, Andalusian Res Inst Data Sci & Computat Intellige, Dept Comp Sci & Engn, Cadiz, Spain.
EM manueljesus.cobo@uca.es
RI Cobo Martín, Manuel Jesús/C-5581-2011; HERRERA-VIEDMA,
ENRIQUE/C-2704-2008; Gutiérrez-Salcedo, María/E-9633-2013
OI Cobo Martín, Manuel Jesús/0000-0001-6575-803X; HERRERA-VIEDMA,
ENRIQUE/0000-0002-7922-4984; Gutiérrez-Salcedo,
María/0000-0002-8874-8069
FU CONACYT-Consejo Nacional de Ciencia y Tecnologia (Mexico);
COZCYT-Consejo Zacatecano de Ciencia, Tecnologia e Innovacion (Mexico);
Spanish State Research Agency
[PID2019-105381GA-I00/AEI/10.13039/501100011033,
PID2019-103880RB-I00/AEI/10.13039/501100011033]
FX The authors acknowledge the support of the CONACYT-Consejo Nacional de
Ciencia y Tecnologia (Mexico) and COZCYT-Consejo Zacatecano de Ciencia,
Tecnologia e Innovacion (Mexico) to carry out this study. Additionally,
this work has been supported by the Spanish State Research Agency
through the project PID2019-105381GA-I00/AEI/10.13039/501100011033
(iScience) and PID2019-103880RB-I00/AEI/10.13039/501100011033.
CR [Anonymous], 2018, APPL INTELL, DOI [10.1007/s10489-017-1105-y., DOI 10.1007/s10489-017-1105-y, DOI 10.1007/S10489-017-1105-Y]
[Anonymous], 2016, HDB BIBLIOMETRIC IND, DOI DOI 10.1002/ANIE.201608447
Garcia-Garcia LA, 2018, INT J BIOPRINTING, V4, DOI 10.18063/IJB.v4i2.147
Batagelj V, 2013, SCIENTOMETRICS, V96, P845, DOI 10.1007/s11192-012-0940-1
Borner Katy, 2015, Bulletin of the Association for Information Science and Technology, V41, P12
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
CALLON M, 1991, SCIENTOMETRICS, V22, P155, DOI 10.1007/BF02019280
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Coulter N, 1998, J AM SOC INFORM SCI, V49, P1206, DOI 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F
Gaviria-Marin M, 2019, TECHNOL FORECAST SOC, V140, P194, DOI 10.1016/j.techfore.2018.07.006
Glanzel W, 1996, SCIENTOMETRICS, V35, P167, DOI 10.1007/BF02018475
Gorraiz J, 2008, J INF SCI, V34, P715, DOI 10.1177/0165551507086991
Gutiérrez-Salcedo M, 2020, STUD INFORM CONTROL, V29, P159, DOI 10.24846/v29i2y202002
He Q, 1999, LIBR TRENDS, V48, P133
Herrera-Viedma E, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.may.22
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Juliani F, 2016, INT J INFORM MANAGE, V36, P1033, DOI 10.1016/j.ijinfomgt.2016.07.003
Kiesslich T, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154199
López-Robles JR, 2019, INT J INFORM MANAGE, V48, P22, DOI 10.1016/j.ijinfomgt.2019.01.013
Martínez MA, 2014, SCIENTOMETRICS, V98, P1971, DOI 10.1007/s11192-013-1155-9
Moral-Muñoz JA, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.03
Murgado-Armenteros EM, 2015, SCIENTOMETRICS, V102, P519, DOI 10.1007/s11192-014-1443-z
Petersen J, 2017, SCIENTOMETRICS, V112, P1593, DOI 10.1007/s11192-017-2434-7
López-Robles JR, 2020, TECHNOL ANAL STRATEG, V32, P604, DOI 10.1080/09537325.2019.1686136
Schneider JW, ACM SIGIR FORUM, V39, P63
Stek PE, 2016, TECHNOL FORECAST SOC, V110, P61, DOI 10.1016/j.techfore.2015.09.017
Yu DJ, 2019, APPL INTELL, V49, P449, DOI 10.1007/s10489-018-1278-z
NR 30
TC 43
Z9 43
U1 13
U2 112
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0924-669X
EI 1573-7497
J9 APPL INTELL
JI Appl. Intell.
PD SEP
PY 2021
VL 51
IS 9
SI SI
BP 6547
EP 6568
DI 10.1007/s10489-021-02584-z
EA JUL 2021
PG 22
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science
GA UC7PL
UT WOS:000671766700001
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Park, S
AF Park, Sungmin
TI Differences in technology innovation R&D performance creation behavior
between for-profit institutions and not-for-profit institutions
SO SPRINGERPLUS
LA English
DT Article
DE Data splitting; For-profit institutions; Not-for-profit institutions;
R&D collaboration; Stepwise performance creation; Successive binary
logistic regression
ID DEVELOPMENT EFFICIENCY; NETWORKS; PRODUCTIVITY; DEA
AB The present study compares the performance creation behavior between for-profit institutions and not-for-profit institutions within a national technology innovation research and development (R&D) program. Based on the stepwise performance creation chain structure of typical R&D logic models, a series of successive binary logistic regression models is newly proposed. Using the models, a sample of n = 2076 completed government-sponsored R&D projects was analyzed. For each institution type, its distinctive behavior is diagnosed, and relevant implications are suggested for improving the R&D performance.
C1 [Park, Sungmin] Baekseok Univ, Dept Business Adm, Cheonan 330704, South Korea.
C3 Baekseok University
RP Park, S (corresponding author), Baekseok Univ, Dept Business Adm, Cheonan 330704, South Korea.
EM smpark99@bu.ac.kr
FU Baekseok University Research Grant
FX The author acknowledges the contribution of the Korea Institute for
Advancement of Technology (KIAT) and the Korea Evaluation Institute of
Industrial Technology (KEIT), who permits the data available in the
present study. This study was partially supported by Baekseok University
Research Grant.
CR [Anonymous], 2003, SCI INNOVATION RETHI
[Anonymous], 1994, HDB IND INNOVATION
[Anonymous], 2004, INT J BUS
Astrom T, 2010, VINNOVA ANAL VA
Bacchiocchi E, 2009, J TECHNOL TRANSFER, V34, P169, DOI 10.1007/s10961-007-9070-y
Barney J., 2002, GAINING SUSTAINING C
Belderbos R, 2004, RES POLICY, V33, P1477, DOI 10.1016/j.respol.2004.07.003
Berchicci L, 2013, RES POLICY, V42, P117, DOI 10.1016/j.respol.2012.04.017
Bickman L., 1987, USING PROGRAM THEORY, DOI [DOI 10.1002/EV.1443, 10.1002/ev.1443]
Bitman WR, 2008, IEEE T ENG MANAGE, V55, P267, DOI 10.1109/TEM.2008.919725
BOWMAN CW, 1992, RES TECHNOL MANAGE, V35, P13, DOI 10.1080/08956308.1992.11670802
Branstetter L., 2005, IS ACAD SCI DRIVING
Caloghirou Y., 2003, Managerial and Decision Economics, V24, P85, DOI [DOI 10.1002/MDE.1087, DOI 10.1002/(ISSN)1099-1468]
Cullmann A, 2012, OXFORD ECON PAP, V64, P176, DOI 10.1093/oep/gpr015
Das TK, 2000, J MANAGE, V26, P31, DOI 10.1016/S0149-2063(99)00037-9
David PA, 2000, RES POLICY, V29, P497, DOI 10.1016/S0048-7333(99)00087-6
Eilat H, 2008, OMEGA-INT J MANAGE S, V36, P895, DOI 10.1016/j.omega.2006.05.002
Elg L, 2012, VINNOVA ANAL VA
Esteve-Pérez S, 2013, SMALL BUS ECON, V41, P219, DOI 10.1007/s11187-012-9421-4
Fritsch M, 2001, RES POLICY, V30, P297, DOI 10.1016/S0048-7333(99)00115-8
GRAVES SB, 1993, STRATEGIC MANAGE J, V14, P593, DOI 10.1002/smj.4250140803
Grimaldi R, 2003, INT J TECHNOL MANAGE, V25, P766, DOI 10.1504/IJTM.2003.003136
Gronum S, 2012, J SMALL BUS MANAGE, V50, P257, DOI 10.1111/j.1540-627X.2012.00353.x
Guan JC, 2010, SCIENTOMETRICS, V82, P165, DOI 10.1007/s11192-009-0030-1
Hagedoorn J, 2000, RES POLICY, V29, P567, DOI 10.1016/S0048-7333(99)00090-6
Hall BH, 2002, OXFORD REV ECON POL, V18, P1, DOI 10.1093/oxrep/18.1.1
Hashimoto A, 2008, RES POLICY, V37, P1829, DOI 10.1016/j.respol.2008.08.004
Hillman AJ, 2009, J MANAGE, V35, P1404, DOI 10.1177/0149206309343469
Hosmer W., 2000, Applied Logistic Regression, VSecond
Hsu FM, 2009, EVAL PROGRAM PLANN, V32, P178, DOI 10.1016/j.evalprogplan.2008.10.005
Hu AGZ, 2009, WORLD DEV, V37, P1465, DOI 10.1016/j.worlddev.2009.01.012
IBM SPSS, 2009, PASW STAT REL 18
Jaffe A.B., 1996, EC ANAL RES SPILLOVE
Kim J., 2009, INT J BUS, V8, P7
KOGUT B, 1988, STRATEGIC MANAGE J, V9, P319, DOI 10.1002/smj.4250090403
Korea Evaluation Institute of Industrial Technology (KEIT), 2010, 2010 PERF INV AN KNO
Korea Evaluation Institute of Industrial Technology (KEIT), 2011, 2011 PERF INV AN KNO
Korea Evaluation Institute of Industrial Technology (KEIT), 2013, 2012 PERF INV AN KNO
Korea Institute of S&T Evaluation and Planning (KISTEP), 2011, INT CAS STUD MAJ ISS
Lamperti F, 2017, J TECHNOL TRANSFER, V42, P158, DOI 10.1007/s10961-015-9455-2
Laursen K, 2006, STRATEGIC MANAGE J, V27, P131, DOI 10.1002/smj.507
Lee SH, 2005, IEEE T ENG MANAGE, V52, P59, DOI 10.1109/TEM.2004.839955
McLaughlin JA, 1999, EVAL PROGRAM PLANN, V22, P65, DOI 10.1016/S0149-7189(98)00042-1
Meng W, 2006, SCIENTOMETRICS, V69, P85, DOI 10.1007/s11192-006-0140-y
Ministry of Knowledge Economy and Korea Institute for Advancement of Technology (MKE KIAT), 2012, 2012 GUID KNOWL EC R
Ministry of Knowledge Economy (MKE), 2008, 2007 EL POW IND R D
Ministry of Science and Technology and Office of Science and Technology Innovation (MST OSTI), 2008, 2008 INT EV MAN NAT
Minitab, 2005, MIN REL 14 20 STATG
Montgomery D.C., 2001, Wiley Series in Probability and Statistics, V3rd ed.
Narula R., 2004, Journal of International Management, V10, P199, DOI DOI 10.1016/J.INTMAN.2004.02.007
Nieto MJ, 2007, TECHNOVATION, V27, P367, DOI 10.1016/j.technovation.2006.10.001
Office of Science and Technology Policy (OSTP), 2012, INN AM EC AM EN AM S
Ortega-Argilés R, 2009, SMALL BUS ECON, V33, P3, DOI 10.1007/s11187-009-9187-5
Osawa Y, 2002, R&D MANAGE, V32, P79, DOI 10.1111/1467-9310.00240
Parikh M., 2001, ENG MANAG J, V13, P27, DOI DOI 10.1080/10429247.2001.11415124
Park S, 2014, SPRINGERPLUS, V3, DOI 10.1186/2193-1801-3-403
Reagans R, 2001, ORGAN SCI, V12, P502, DOI 10.1287/orsc.12.4.502.10637
Robin S, 2013, RES POLICY, V42, P149, DOI 10.1016/j.respol.2012.06.002
Ruegg R., 2003, A Toolkit for Evaluating Public RD Investment: Models, Methods, and Findings from ATP's First Decade
Ruegg R., 2006, Bridging from Project Case Study to Portfolio Analysis in a Public R D Program, NIST GCR 06-891
Scherer F. M., 1990, Industrial market structure and economic performance
Sharma S, 2008, SCIENTOMETRICS, V76, P483, DOI 10.1007/s11192-007-1896-4
Shipp S., 2005, EVALUATION BEST PRAC
Stephan PE, 2012, HBK ECON, V1, P217, DOI 10.1016/S0169-7218(10)01005-1
Tan HX, 2015, SCIENTOMETRICS, V102, P885, DOI 10.1007/s11192-014-1393-5
TONG XS, 1994, RES POLICY, V23, P133, DOI 10.1016/0048-7333(94)90050-7
Van Aken JE, 2000, R&D MANAGE, V30, P139, DOI 10.1111/1467-9310.00164
Werner BM, 1997, RES TECHNOL MANAGE, V40, P34, DOI 10.1080/08956308.1997.11671115
WERNERFELT B, 1984, STRATEGIC MANAGE J, V5, P171, DOI 10.1002/smj.4250050207
Wholey J.S., 1987, New Directions for Program Evaluation, VSpring, P77, DOI DOI 10.1002/EV.1447
Wholey J.S., 1983, EVALUATION EFFECTIVE
WK Kellogg Foundation (WKKF), 2004, WK KELL FDN LOG DEV
Wu WY, 2006, R&D MANAGE, V36, P531, DOI 10.1111/j.1467-9310.2006.00452.x
Xiaohong Chen, 2011, International Journal of Information Technology and Management, V10, P3, DOI 10.1504/IJITM.2011.037759
NR 74
TC 3
Z9 3
U1 4
U2 24
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 2193-1801
J9 SPRINGERPLUS
JI SpringerPlus
PD APR 14
PY 2016
VL 5
AR 451
DI 10.1186/s40064-016-2092-x
PG 23
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Science & Technology - Other Topics
GA DL5TA
UT WOS:000375698600007
PM 27119055
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Hua, GB
AF Hua, Goh Bee
TI The state of applications of quantitative analysis techniques to
construction economics and management (1983 to 2006)
SO CONSTRUCTION MANAGEMENT AND ECONOMICS
LA English
DT Article
DE Artificial intelligence; statistical method; quantitative analysis
technique; bibliometrics; construction economics; construction
management
ID OPTIMIZING RESOURCE UTILIZATION; ARTIFICIAL NEURAL-NETWORK; TIME-COST
OPTIMIZATION; GENETIC ALGORITHMS; SITE LAYOUT; SCHEDULING MODEL;
SIMULATION-MODEL; DYNAMICS MODEL; PERFORMANCE; PROJECTS
AB With increasing complexity of construction industry problems, researchers are experimenting with computationally rigorous techniques with the aim of seeking innovative solutions. In order to trace the applications of quantitative analysis techniques to research in the two fields of construction economics and construction management for both conventional and AI techniques, the methodology involves compiling all the relevant papers from the top two ranking construction management journals, namely, Construction Management and Economics and ASCE's Journal of Construction Engineering and Management. The period is from 1983 to 2006. The compiled papers are classified by field, area (or topic), technique applied and year of publication to enable time series and cross-sectional analyses of the data. Mainly, the results are depicted as trends when the patterns of distribution of the papers are plotted over time. The three findings are: (1) for construction economics, the overall increasing trend is higher for papers that have applied conventional techniques; (2) for construction management, there is a clear positive trend for papers that have applied AI techniques which starts from 1995; and (3) the areas (or topics) of construction management that have increasingly higher growth in the application of AI techniques are optimization of site operations and optimization of project time, cost and resources allocation. Two broad recommendations are made that relate to advancing the fields of construction economics and construction management with the view that researchers must better enable themselves to build tools that incorporate intelligence as innovative solutions for increasingly complex problems.
C1 [Hua, Goh Bee] Natl Univ Singapore, Sch Design & Environm, Dept Bldg, Singapore, Singapore.
C3 National University of Singapore
RP Hua, GB (corresponding author), Natl Univ Singapore, Sch Design & Environm, Dept Bldg, Singapore, Singapore.
EM bdggohbh@nus.edu.sg
CR AbouRizk S, 2001, J CONSTR ENG M ASCE, V127, P502, DOI 10.1061/(ASCE)0733-9364(2001)127:6(502)
Adeli H, 1997, J CONSTR ENG M ASCE, V123, P450, DOI 10.1061/(ASCE)0733-9364(1997)123:4(450)
Adeli H, 1998, J CONSTR ENG M, V124, P18, DOI 10.1061/(ASCE)0733-9364(1998)124:1(18)
AHUJA HN, 1985, J CONSTR ENG M ASCE, V111, P325, DOI 10.1061/(ASCE)0733-9364(1985)111:4(325)
Akintoye A., 1994, Construction Management and Economics, V12, P3
Al-Hussein M, 2005, J CONSTR ENG M, V131, P579, DOI 10.1061/(ASCE)0733-9364(2005)131:5(579)
Al-Momani A., 1996, Construction Management and Economics, V14, P311, DOI [10.1080/014461996373386, DOI 10.1080/014461996373386]
Al-Sobiei OS, 2005, CONSTR MANAG ECON, V23, P423, DOI 10.1080/01446190500041578
Anderson P.W., 1988, EC EVOLVING COMPLEX
[Anonymous], ARTIFICIAL INTELLIGE
[Anonymous], CONSTRUCTION ENG MAN
[Anonymous], CONSTRUCTION ENG MAN
[Anonymous], P SANTA FE I
[Anonymous], ASCE J CONSTR ENG MA
[Anonymous], MANAGEMENT EC
[Anonymous], 1990, P 7 ISARC INT ASS AU
[Anonymous], P SANTA FE I
[Anonymous], COMPUTING CIVIL ENG
[Anonymous], CONSTRUCTION ENG MAN
[Anonymous], 1983, COGNITIVE SCI
[Anonymous], CONSTRUCTION MANAGEM
[Anonymous], CONSTRUCT ENG MANAG
[Anonymous], J CONSTR MANAGE EC
[Anonymous], CONSTRUCTION MANAGEM
[Anonymous], 1988, CONSTRUCTION MANAGEM
[Anonymous], CONSTRUCTION MANAGEM
[Anonymous], CONSTR MANAG EC, DOI DOI 10.1080/014461997372953
[Anonymous], CONSTR MANAGE EC
[Anonymous], CONS MANAG EC
[Anonymous], 1993, CONSTR MANAG ECON, DOI DOI 10.1080/01446199300000027
[Anonymous], J CONSTR MANAGE EC
[Anonymous], CONSTRUCTION MANAGEM
[Anonymous], P C ORG MAN CONSTR W
[Anonymous], CONSTRUCTION MANAGEM
[Anonymous], CONSTRUCTION MANAGEM
Arbib MichaelA., 1964, Brains, Machines, and Mathematics, V1st
Attalla M, 2003, J CONSTR ENG M ASCE, V129, P405, DOI 10.1061/(ASCE)0733-9364(2003)129:4(405)
Back WE, 2000, J CONSTR ENG M ASCE, V126, P29, DOI 10.1061/(ASCE)0733-9364(2000)126:1(29)
Barraza GA, 2004, J CONSTR ENG M, V130, P25, DOI 10.1061/(ASCE)0733-9364(2004)130:1(25)
Barraza GA, 2000, J CONSTR ENG M ASCE, V126, P142, DOI 10.1061/(ASCE)0733-9364(2000)126:2(142)
Baxendale T, 1984, Construct. Manag. Econ., V2, P201
Bennett J., 1984, CONSTR MANAG ECON, V2, P225, DOI DOI 10.1080/01446198400000021
Bonnal P, 2005, CONSTR MANAG ECON, V23, P797, DOI 10.1080/01446190500040869
Boussabaine A., 2004, Construction Management and Economics, V22, P1011, DOI [DOI 10.1080/1466433X.2004.11878565, 10.1080/1466433X.2004.11878565]
Boussabaine A.H., 1996, CONSTR MANAG ECON, V14, P427, DOI [10.1080/014461996373296, DOI 10.1080/014461996373296]
Chan SL, 2005, CONSTR MANAG ECON, V23, P295, DOI 10.1080/01446190500039812
Chassiakos AP, 2005, J CONSTR ENG M, V131, P1115, DOI 10.1061/(ASCE)0733-9364(2005)131:10(1115)
Chiu H., 2002, Construction Management and Economics, V20, P55
Chua DKH, 1997, J CONSTR ENG M ASCE, V123, P214, DOI 10.1061/(ASCE)0733-9364(1997)123:3(214)
Chua DKH, 2001, J CONSTR ENG M ASCE, V127, P35, DOI 10.1061/(ASCE)0733-9364(2001)127:1(35)
Dawood N, 2006, CONSTR MANAG ECON, V24, P19, DOI 10.1080/01446190500310486
El-Rayes K, 2001, J CONSTR ENG M ASCE, V127, P18, DOI 10.1061/(ASCE)0733-9364(2001)127:1(18)
Elazouni AM, 2005, J CONSTR ENG M, V131, P400, DOI 10.1061/(ASCE)0733-9364(2005)131:4(400)
Ezeldin AS, 2006, J CONSTR ENG M ASCE, V132, P650, DOI 10.1061/(ASCE)0733-9364(2006)132:6(650)
Flanagan R., 1983, Construction Management and Economics, V1, P157, DOI DOI 10.1080/01446198300000012
Furusaka S., 1984, Construction Management and Economic, V2, P157
Goh B.H., 2000, CONSTR MANAG ECON, V18, P209
Goldberg DE, 1989, Genetic Algorithms in Search, Optimization and Machine Learning, V1st
Grossberg S., 1982, Studies of mind and brain: Neural principles of learning, perception, development, cognition, and motor control
Haidar A, 1999, J CONSTR ENG M ASCE, V125, P32, DOI 10.1061/(ASCE)0733-9364(1999)125:1(32)
Hegazy T, 2000, J CONSTR ENG M, V126, P414, DOI 10.1061/(ASCE)0733-9364(2000)126:6(414)
Hegazy T, 2003, J CONSTR ENG M, V129, P698, DOI 10.1061/(ASCE)0733-9364(2003)129:6(698)
Hegazy T, 2003, J CONSTR ENG M ASCE, V129, P396, DOI 10.1061/(ASCE)0733-9364(2003)129:4(396)
Hegazy T, 1998, J CONSTR ENG M ASCE, V124, P210, DOI 10.1061/(ASCE)0733-9364(1998)124:3(210)
Hegazy T, 1999, J CONSTR ENG M ASCE, V125, P167, DOI 10.1061/(ASCE)0733-9364(1999)125:3(167)
Hiyassat MAS, 2000, J CONSTR ENG M ASCE, V126, P278, DOI 10.1061/(ASCE)0733-9364(2000)126:4(278)
Holland J, 1975, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, DOI DOI 10.7551/MITPRESS/1090.001.0001
Jaskowski P, 2006, J CONSTR ENG M ASCE, V132, P861, DOI 10.1061/(ASCE)0733-9364(2006)132:8(861)
Kaka A.P., 1991, Construction Management and Economics, V9, P291, DOI DOI 10.1080/01446199100000023
Kandil A, 2006, J CONSTR ENG M, V132, P491, DOI 10.1061/(ASCE)0733-9364(2006)132:5(491)
Karshenas S., 1992, PRECEEDING 8 C COMPU, P841
Khosrowshahi F., 1991, Construction Management and Economics, V9, P113, DOI DOI 10.1080/01446199100000011
Killingsworth R.A., 1990, COST ENG, V32, P11
Lam K., 2001, Construction Management and Economics, V19, P63
Lam KC, 2005, CONSTR MANAG ECON, V23, P127, DOI 10.1080/0144619042000202834
LEBOWITZ M, 1983, ARTIF INTELL, V21, P363, DOI 10.1016/S0004-3702(83)80019-8
Leu S., 2002, J CONSTRUCTION MANAG, V20, P131, DOI DOI 10.1080/01446190110109148
Leu SS, 2001, J CONSTR ENG M ASCE, V127, P270, DOI 10.1061/(ASCE)0733-9364(2001)127:4(270)
Li H, 1999, J CONSTR ENG M, V125, P185, DOI 10.1061/(ASCE)0733-9364(1999)125:3(185)
Li H, 1997, J CONSTR ENG M, V123, P233, DOI 10.1061/(ASCE)0733-9364(1997)123:3(233)
Li J, 2006, J CONSTR ENG M, V132, P1193, DOI 10.1061/(ASCE)0733-9364(2006)132:11(1193)
Marzouk M, 2004, J CONSTR ENG M ASCE, V130, P878, DOI 10.1061/(ASCE)0733-9364(2004)130:6(878)
Marzouk M, 2004, J CONSTR ENG M, V130, P105, DOI 10.1061/(ASCE)0733-9364(2004)130:1(105)
Marzouk M, 2003, J CONSTR ENG M ASCE, V129, P173, DOI 10.1061/(ASCE)0733-9364(2003)129:2(173)
Marzouk M., 2002, Constr. Manage. Econ, V20, P535, DOI DOI 10.1080/01446190210156064
Mawdesley MJ, 2002, J CONSTR ENG M ASCE, V128, P418, DOI 10.1061/(ASCE)0733-9364(2002)128:5(418)
MOSELHI O, 1993, J CONSTR ENG M ASCE, V119, P466, DOI 10.1061/(ASCE)0733-9364(1993)119:3(466)
Oliveros AVO, 2005, J CONSTR ENG M ASCE, V131, P42, DOI 10.1061/(ASCE)0733-9364(2005)131:1(42)
Pietroforte R, 2004, J CONSTR ENG M ASCE, V130, P440, DOI 10.1061/(ASCE)0733-9364(2004)130:3(440)
Portas J, 1997, J CONSTR ENG M ASCE, V123, P399, DOI 10.1061/(ASCE)0733-9364(1997)123:4(399)
Que BC, 2002, J CONSTR ENG M, V128, P139, DOI 10.1061/(ASCE)0733-9364(2002)128:2(139)
Sawhney A, 2002, J CONSTR ENG M ASCE, V128, P265, DOI 10.1061/(ASCE)0733-9364(2002)128:3(265)
Sawhney A., 2001, CONSTR MANAG ECON, P227, DOI 10.1080/01446190010008079
Schank RC., 1983, Dynamic Memory: A Theory of Reminding and Learning in Computers and People
Senouci AB, 2004, J CONSTR ENG M ASCE, V130, P869, DOI 10.1061/(ASCE)0733-9364(2004)130:6(869)
Senouci AB, 2001, J CONSTR ENG M, V127, P28, DOI 10.1061/(ASCE)0733-9364(2001)127:1(28)
Seydel J, 2003, J CONSTR ENG M ASCE, V129, P285, DOI 10.1061/(ASCE)0733-9364(2003)129:3(285)
Sonmez R, 1998, J CONSTR ENG M ASCE, V124, P498, DOI 10.1061/(ASCE)0733-9364(1998)124:6(498)
Tah J.H.M., 2000, CONSTR MANAG ECON, V18, P491, DOI [DOI 10.1080/01446190050024905, 10.1080/01446190050024905]
Tam C.M., 2003, CONSTR MANAG ECON, V21, P257, DOI [DOI 10.1080/0144619032000049665, 10.1080/0144619032000049665]
Tam CM, 2002, J CONSTR ENG M ASCE, V128, P220, DOI 10.1061/(ASCE)0733-9364(2002)128:3(220)
Tang J.C.S., 1990, Construction Management and Economics, V8, P249, DOI DOI 10.1080/01446199000000022
Taylor R.G., 1987, CONSTR MANAG ECON, V5, P21, DOI DOI 10.1080/01446198700000004
THOMAS HR, 1986, J CONSTR ENG M ASCE, V112, P245, DOI 10.1061/(ASCE)0733-9364(1986)112:2(245)
THOMAS HR, 1987, J CONSTR ENG M ASCE, V113, P623, DOI 10.1061/(ASCE)0733-9364(1987)113:4(623)
Touran A, 2003, J CONSTR ENG M ASCE, V129, P280, DOI 10.1061/(ASCE)0733-9364(2003)129:3(280)
Touran A., 1988, Const. Manag. Econ, V6, P295
Tucker S.N., 1986, CONSTR MANAG ECON, V4, P179
Wang C.H., 1998, CONSTR MANAG ECON, P147, DOI DOI 10.1080/014461998372457
Wang R.C., 2004, Constr. Manage. Econom, V22, P1047
WILLIAMS TP, 1994, J CONSTR ENG M ASCE, V120, P306, DOI 10.1061/(ASCE)0733-9364(1994)120:2(306)
Wilmot CG, 2005, J CONSTR ENG M, V131, P765, DOI 10.1061/(ASCE)0733-9364(2005)131:7(765)
WOOLERY JC, 1983, J CONSTR ENG M ASCE, V109, P342, DOI 10.1061/(ASCE)0733-9364(1983)109:3(342)
ZADEH LA, 1965, INFORM CONTROL, V8, P338, DOI 10.1016/S0019-9958(65)90241-X
Zhang H., 2003, CONSTR MANAG ECON, V21, P31
Zhang H, 2006, CONSTR MANAG ECON, V24, P159, DOI 10.1080/01446190500184311
Zheng DXM, 2005, J CONSTR ENG M, V131, P176, DOI 10.1061/(ASCE)0733-9364(2005)131:2(176)
Zheng DXM, 2005, J CONSTR ENG M, V131, P81, DOI 10.1061/(ASCE)0733-9364(2005)131:1(81)
Zheng DXM, 2004, J CONSTR ENG M, V130, P168, DOI 10.1061/(ASCE)0733-9364(2004)130:2(168)
NR 119
TC 10
Z9 10
U1 0
U2 4
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0144-6193
EI 1466-433X
J9 CONSTR MANAG ECON
JI Constr. Manag. Econ.
PY 2008
VL 26
IS 5
BP 485
EP 497
DI 10.1080/01446190801998716
PG 13
WC Business
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA V96DW
UT WOS:000213245900006
DA 2024-09-05
ER
PT J
AU Kumari, P
Kumar, R
AF Kumari, Priti
Kumar, Rajeev
TI Clustering Scientometrics of Computer Science Journals for Subarea
Decomposition
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Scientometrics; Bibliometrics; Publications; K-means; Clustering;
Computer Science; Subarea Indicators; Machine Learning
ID BIBLIOMETRIC INDICATORS; IMPACT; CITATIONS; METRICS; INDEX
AB Scientometrics indicators vary widely across subareas of the Computer Science (CS) discipline. Most researchers have previously analyzed scientometrics data specific to a particular subfield or a few subfields. More popular subareas lead to high scientometrics, and others have lower values. This work considers seven diversified CS subareas and six commonly used scientometrics indicators. First, we study the varying range of chosen scientometrics indicators of various subareas of the CS discipline. We explore the correlation patterns of these six indicators. Then, we consider a few combinations of these indicators and apply K-means clustering to decompose the pattern space. Correlation findings indicate that though the highly correlated indicators vary for most subfields, no single indicator can be considered equally suitable for all the subareas. The K-means clustering results show distinctive patterns across subfields, which are stable across K. The clustered subfield-specific indicators are quite distinct across subfields. This knowledge can be used as a signature for partitioning the subarea-specific indicators.
C1 [Kumari, Priti; Kumar, Rajeev] Jawaharlal Nehru Univ, Sch Comp & Syst Sci, Data Knowledge D2K Lab, New Delhi 110067, India.
C3 Jawaharlal Nehru University, New Delhi
RP Kumari, P (corresponding author), Jawaharlal Nehru Univ, Sch Comp & Syst Sci, Data Knowledge D2K Lab, New Delhi 110067, India.
EM priti08.1993@gmail.com
CR Aggarwal C. C., 2016, Algorithms and Applications
Alonso S, 2009, J INFORMETR, V3, P273, DOI 10.1016/j.joi.2009.04.001
Braun T, 2006, SCIENTOMETRICS, V69, P169, DOI 10.1007/s11192-006-0147-4
Cobo MJ, 2015, KNOWL-BASED SYST, V80, P3, DOI 10.1016/j.knosys.2014.12.035
Dai JG, 2020, KNOWL-BASED SYST, V195, DOI 10.1016/j.knosys.2020.105602
Espinoza-Audelo LF, 2021, J MULT-VALUED LOG S, V36, P543
Fang H, 2021, SCIENTOMETRICS, V126, P5321, DOI 10.1007/s11192-021-03964-5
Franceschet M, 2010, SCIENTOMETRICS, V83, P243, DOI 10.1007/s11192-009-0021-2
GARFIELD E, 1963, AM DOC, V14, P195, DOI 10.1002/asi.5090140304
GARFIELD E, 1972, SCIENCE, V178, P471, DOI 10.1126/science.178.4060.471
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Haddawy P, 2016, J INFORMETR, V10, P162, DOI 10.1016/j.joi.2015.12.005
Halim Z, 2019, SCIENTOMETRICS, V119, P393, DOI 10.1007/s11192-019-03035-w
Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384
Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011
Kim K, 2018, SCI ED, V5, P16, DOI 10.6087/kcse.112
Kumar R, 1998, IEEE T NEURAL NETWOR, V9, P822, DOI 10.1109/72.712155
Liu XZ, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101007
Muhuri PK, 2018, APPL SOFT COMPUT, V69, P381, DOI 10.1016/j.asoc.2018.03.041
Rokach L, 2010, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, SECOND EDITION, P981, DOI 10.1007/978-0-387-09823-4_51
Roldan-Valadez E, 2019, IRISH J MED SCI, V188, P939, DOI 10.1007/s11845-018-1936-5
Roshani S, 2021, SCIENTOMETRICS, V126, P7859, DOI 10.1007/s11192-021-04077-9
Serenko A, 2011, J INFORMETR, V5, P629, DOI 10.1016/j.joi.2011.06.002
Serenko A, 2010, J INFORMETR, V4, P447, DOI 10.1016/j.joi.2010.04.001
Setti G, 2013, IEEE ACCESS, V1, P232, DOI 10.1109/ACCESS.2013.2261115
Thomaz PG, 2011, ARQ BRAS CARDIOL, V96, P90, DOI 10.1590/S0066-782X2011000200001
Tsai CF, 2014, J INFORMETR, V8, P318, DOI 10.1016/j.joi.2014.01.002
Walters WH, 2017, IEEE ACCESS, V5, P22036, DOI 10.1109/ACCESS.2017.2761400
Yan EJ, 2018, SCIENTOMETRICS, V115, P369, DOI 10.1007/s11192-017-2583-8
Yu DJ, 2018, IEEE T FUZZY SYST, V26, P430, DOI 10.1109/TFUZZ.2017.2672732
Yu DJ, 2015, APPL SOFT COMPUT, V32, P189, DOI 10.1016/j.asoc.2015.03.027
Zhao SX, 2018, SCIENTOMETRICS, V115, P153, DOI 10.1007/s11192-018-2662-5
NR 32
TC 0
Z9 0
U1 2
U2 2
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD MAY-AUG
PY 2023
VL 12
IS 2
BP 383
EP 394
DI 10.5530/jscires.12.2.034
PG 12
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA HF6A6
UT WOS:001158105300014
OA hybrid
DA 2024-09-05
ER
PT J
AU Kolahi, J
Khazaei, S
Bidram, E
Kelishadi, R
Iranmanesh, P
Khademi, A
Nekoofar, MH
Dummer, PMH
AF Kolahi, Jafar
Khazaei, Saber
Bidram, Elham
Kelishadi, Roya
Iranmanesh, Pedram
Khademi, Abbasali
Nekoofar, Mohammad H.
Dummer, Paul M. H.
TI Science Map of Cochrane Systematic Reviews Receiving the Most Altmetric
Attention Score: A Network Analysis
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE Cochrane systematic review; Altmetric; Bibliometric; Twitter; Machine
learning; Network analysis; Random forest
ID DENTAL LITERATURE; SCIENTIFIC LANDSCAPE; IMPACT; CITATIONS; ARTICLES;
JOURNALS; TWITTER
AB The present study aimed to analyze and visualize the science map of Cochrane systematic reviews (CSRs) with high Altmetric attention score (AAS). On 2020-07-29, the altmetric data of the Cochrane Database of Systematic Reviews were obtained from the Altmetric database (Altmetric LLP, London, UK). Bibliometric data of the top 5% AAS of CSRs were extracted from the Web of Science. Keyword co-occurrence, co-authorship and co-citation network analyses were then employed using VOSviewer software. The random forest model was used to rank the importance of the altmetric resource. A total of 11222 CSRs with AAS were found (Total mentions: 305265), with Twitter being the most popular Altmetric resource. Consequently, the top 5% AAS (649 articles, mean AAS: 204.95, 95% confidence level: 18.95, mean citations: 123.68, 95% confidence level: 13.9) were included. Density mapping revealed female, adult and child as the most popular author keywords. According to network visualization, Helen V. Worthington (University of Manchester, Manchester, UK), the University of Oxford and UK had the greatest impact on the network at the author, organization and country levels respectively. AAS were weekly correlated with citations (r(s)=0.21) although citations were moderately correlated with policy document and blog mentions (r(s)=0.46 and r(s)=0.43). Cochrane systematic reviews received high levels of online attention, particularly in the Twittersphere and mostly from the UK. However, CSRs were rarely publicized and discussed using recently developed academic tools. such as F1000 prime, Publons and PubPeer.
C1 [Kolahi, Jafar] Dent Hypotheses, Esfahan, Iran.
[Khazaei, Saber] Kermanshah Univ Med Sci, Sch Dent, Dept Endodont, Kermanshah, Iran.
[Bidram, Elham] Isfahan Univ Med Sci, Sch Adv Technol Med, Dept Biomat Nanotechnol & Tissue Engn, Biosensor Res Ctr, Esfahan, Iran.
[Kelishadi, Roya] Isfahan Univ Med Sci, Child Growth & Dev Res Ctr, Res Inst Primordial Prevent Noncommunicable Dis, Dept Pediat, Esfahan, Iran.
[Iranmanesh, Pedram; Khademi, Abbasali] Isfahan Univ Med Sci, Dent Res Ctr, Dent Res Inst, Dept Endodont, Esfahan, Iran.
[Nekoofar, Mohammad H.] Univ Tehran Med Sci, Sch Dent, Dept Endodont, Tehran, Iran.
[Nekoofar, Mohammad H.; Dummer, Paul M. H.] Cardiff Univ, Coll Biomed & Life Sci, Sch Dent, Cardiff, Wales.
C3 Kermanshah University of Medical Sciences; Isfahan University Medical
Science; Isfahan University Medical Science; Isfahan University Medical
Science; Tehran University of Medical Sciences; Cardiff University
RP Iranmanesh, P (corresponding author), Isfahan Univ Med Sci, Sch Dent, Dept Endodont, Hezar Jerib Ave, Esfahan, Iran.
EM pedram.iranmanesh@yahoo.com
RI Dummer, Paul M. H./F-3063-2012; Khazaei, Saber/B-7654-2011; Iranmanesh,
Pedram/M-5673-2017
OI Dummer, Paul M. H./0000-0002-0726-7467; Khazaei,
Saber/0000-0002-9085-1292; Iranmanesh, Pedram/0000-0002-4813-4097;
Bidram, Elham/0000-0002-6319-3204
CR Ali J., 2012, INT J COMPUT SCI ISS, V9, P272
[Anonymous], 2015, DENT HYPOTHESES, DOI [10.4103/2155-8213.150855, DOI 10.4103/2155-8213.150855]
Barakat AF, 2019, J GEN INTERN MED, V34, P825, DOI 10.1007/s11606-019-04838-6
Barakat AF, 2018, J AM COLL CARDIOL, V72, P952, DOI 10.1016/j.jacc.2018.05.062
Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
Butler JS, 2017, CLIN SPINE SURG, V30, P226, DOI 10.1097/BSD.0000000000000531
Clarke M, 2001, LANCET, V357, P1728, DOI 10.1016/S0140-6736(00)04934-5
Clarke M, 2007, OTOLARYNG HEAD NECK, V137, pS52, DOI 10.1016/j.otohns.2007.05.050
Clement D, 2020, J ONCOL, V2020, DOI 10.1155/2020/8341426
Clement J., 2019, Twitter: number of active users 2010-2019
Dawson J., 2020, COCHRANE WIKIPEDIA P
Delli K, 2017, ORAL DIS, V23, P1155, DOI 10.1111/odi.12714
Dinsmore A, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1002003
Hall N, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0424-0
Huang WY, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194962
Kho J., 2020, WHY RANDOM FOREST IS
Kolahi J, 2020, INT ENDOD J, V53, P308, DOI 10.1111/iej.13226
Kolahi J, 2018, BRIT DENT J, V225, P68, DOI 10.1038/sj.bdj.2018.521
Kolahi J, 2017, BRIT DENT J, V222, P695, DOI 10.1038/sj.bdj.2017.408
Kolahi J, 2017, DENT HYPOTHESES, V8, P85, DOI DOI 10.4103/DENTHYP.DENTHYP_51_17
Kolahi J, 2020, REIMAGINING MACHINE, DOI [10.31224/osf.io/ap6xq, DOI 10.31224/OSF.IO/AP6XQ]
Kolahi J, 2016, DENT HYPOTHESES, V7, P29
Kolahi J, 2019, DENT HYPOTHESES, V10, P55, DOI 10.4103/denthyp.denthyp_104_19
Kolahi J, 2019, DENT HYPOTHESES, V10, P25, DOI 10.4103/denthyp.denthyp_63_19
Kolahi J, 2019, INT J PREVENTIVE MED, V10, DOI 10.4103/ijpvm.IJPVM_134_19
Kolahi J, 2019, BRIT DENT J, V226, P673, DOI 10.1038/s41415-019-0212-z
Kolahi J, 2018, DENT HYPOTHESES, V9, P77, DOI 10.4103/denthyp.denthyp_75_18
Kolahi J, 2018, DENT HYPOTHESES, V9, P29, DOI 10.4103/denthyp.denthyp_29_18
Kolahi J, 2018, DENT HYPOTHESES, V9, P1, DOI 10.4103/denthyp.denthyp_6_18
Konkiel SR, 2017, Dent Hypotheses, V8, P31, DOI [10.4103/denthyp.denthyp_12_17, DOI 10.4103/DENTHYP.DENTHYP_12_17]
Kwok Roberta, 2013, Nature, V500, P491
Ortega JL, 2017, ASLIB J INFORM MANAG, V69, P674, DOI 10.1108/AJIM-02-2017-0055
McCambridge J, 2013, PLOS MED, V10, DOI 10.1371/journal.pmed.1001431
Mohammadi E, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197265
Morley Richard F, 2016, Res Involv Engagem, V2, P36, DOI 10.1186/s40900-016-0049-4
Murray H, 2019, BMJ EVID-BASED MED, V24, P90, DOI 10.1136/bmjebm-2018-111040
Noorden RV, 2018, NATURE, DOI [10.1038/d41586-018-00688-0, DOI 10.1038/D41586-018-00688-0]
Patel RB, 2018, JAMA CARDIOL, V3, P1249, DOI 10.1001/jamacardio.2018.3823
Patthi B, 2017, J CLIN DIAGN RES, V11, pZE16, DOI 10.7860/JCDR/2017/26153.10078
Pershad Y, 2018, J CLIN MED, V7, DOI 10.3390/jcm7060121
Punia V, 2019, JAMA NEUROL, V76, P1122, DOI 10.1001/jamaneurol.2019.1791
Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551
Rosenkrantz AB, 2017, ACAD RADIOL, V24, P891, DOI 10.1016/j.acra.2016.11.019
Serghiou S, 2018, JAMA-J AM MED ASSOC, V319, P402, DOI 10.1001/jama.2017.21168
Shen Jiantong, 2013, J Evid Based Med, V6, P34, DOI 10.1111/jebm.12022
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vanlandingham G, 2014, EVIDENCE BASED POLIC
Wang J, 2013, SCIENTOMETRICS, V94, P851, DOI 10.1007/s11192-012-0775-9
Widmer RJ, 2016, CYBERPSYCH BEH SOC N, V19, P360, DOI 10.1089/cyber.2015.0607
NR 50
TC 1
Z9 1
U1 1
U2 11
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD SEP-DEC
PY 2020
VL 9
IS 3
BP 293
EP 299
DI 10.5530/jscires.9.3.36
PG 7
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA PP1WG
UT WOS:000605658100006
OA hybrid, Green Submitted
DA 2024-09-05
ER
PT J
AU Kashnitsky, Y
Roberge, G
Mu, JW
Kang, K
Wang, WW
Vanderfeesten, M
Rivest, M
Chamezopoulos, S
Jaworek, R
Vignes, M
Jayabalasingham, B
Boonen, F
James, C
Doornenbal, M
Labrosse, I
AF Kashnitsky, Yury
Roberge, Guillaume
Mu, Jingwen
Kang, Kevin
Wang, Weiwei
Vanderfeesten, Maurice
Rivest, Maxime
Chamezopoulos, Savvas
Jaworek, Robert
Vignes, Maeva
Jayabalasingham, Bamini
Boonen, Finne
James, Chris
Doornenbal, Marius
Labrosse, Isabelle
TI Evaluating approaches to identifying research supporting the United
Nations Sustainable Development Goals
SO QUANTITATIVE SCIENCE STUDIES
LA English
DT Article
DE benchmarking; bibliometrics; machine learning; scientometrics;
sustainability; Sustainable Development Goals
AB The United Nations (UN) Sustainable Development Goals (SDGs) challenge the global community to build a world where no one is left behind. Recognizing that research plays a fundamental part in supporting these goals, attempts have been made to classify research publications according to their relevance in supporting each of the UN's SDGs. In this paper, we outline the methodology that we followed when mapping research articles to SDGs and which is adopted by Times Higher Education in its Social Impact rankings. We compare our solution with other existing queries and models mapping research papers to SDGs. We also discuss various aspects in which the methodology can be improved and generalized to other types of content apart from research articles. The results presented in this paper are the outcome of the SDG Research Mapping Initiative, which was established as a partnership between the University of Southern Denmark, the Aurora European Universities Alliance (represented by Vrije Universiteit Amsterdam), the University of Auckland, and Elsevier to bring together broad expertise and share best practices on identifying research contributions to UN's Sustainable Development Goals.
C1 [Kashnitsky, Yury; Chamezopoulos, Savvas; Jayabalasingham, Bamini; Boonen, Finne; James, Chris; Doornenbal, Marius] Elsevier BV, Amsterdam, Netherlands.
[Roberge, Guillaume; Rivest, Maxime; Labrosse, Isabelle] Elsevier BV, Montreal, PQ, Canada.
[Mu, Jingwen; Kang, Kevin; Wang, Weiwei] Univ Auckland, Fac Sci, Auckland, New Zealand.
[Vanderfeesten, Maurice] Vrije Univ Amsterdam, Amsterdam, Netherlands.
[Rivest, Maxime] McGill Univ, Montreal, PQ, Canada.
[Jaworek, Robert] Palacky Univ Olomouc, Olomouc, Czech Republic.
[Vignes, Maeva] Univ Southern Denmark, Odense, Denmark.
[Jayabalasingham, Bamini] Elsevier BV, New York, NY USA.
C3 Reed Elsevier; Elsevier; University of Auckland; Vrije Universiteit
Amsterdam; McGill University; Palacky University Olomouc; University of
Southern Denmark; Reed Elsevier; Elsevier
RP Kashnitsky, Y (corresponding author), Elsevier BV, Amsterdam, Netherlands.
EM y.kashnitskiy@elsevier.com
OI Doornenbal, Marius/0000-0001-6319-850X
CR Armitage Caroline, 2020, DataverseNO, DOI 10.18710/98CMDR
Armitage CS, 2020, QUANT SCI STUD, V1, P1092, DOI 10.1162/qss_a_00071
Bordignon F, 2021, DATA BRIEF, V34, DOI 10.1016/j.dib.2021.106731
Confraria H., 2022, Countries research priorities in relation to the Sustainable Development Goals
Duran-Silva Nicolau, 2019, Zenodo
James Chris, 2023, Mendeley Data, V1
James Chris, 2022, Mendeley Data, V1
James Chris, 2021, Mendeley Data, V1, DOI 10.17632/9SXDYKM8S4.1
Jayabalasingham B., 2019, Mendeley, DOI [10.17632/87txkw7khs.1, DOI 10.17632/87TXKW7KHS.1]
Jingwen M., 2022, The University of Auckland SDG keywords mapping
LaFleur M., 2019, Art is long, life is short: An SDG Classification System for DESA Publications, DOI [10.2139/ssrn.3400135, DOI 10.2139/SSRN.3400135]
Nakamura M., 2019, Navigating the structure of research on sustainable development goals
Pukelis L, 2020, Arxiv, DOI [arXiv:2005.14569, 10.48550/arXiv.2005.14569, DOI 10.48550/ARXIV.2005.14569]
Purnell PJ, 2022, QUANT SCI STUD, V3, P976, DOI 10.1162/qss_a_00215
Rodriguez P. C., 2021, Conjunto de datos: Categorization of articles 2017 with authorship of Pontificia Universidad Catolica de Chile, through the SDGS Data set
Ross D., 2022, Impact rankings 2022: Methodology
Schmidt F., 2021, Zenodo, DOI [10.5281/zenodo.4917171, DOI 10.5281/ZENODO.4917171]
South African SDG Hub, 2023, South African SDG Hub
Vanderfeesten M., 2022, Zenodo, DOI [10.5281/zenodo.6487606, DOI 10.5281/ZENODO.6487606]
Vanderfeesten Maurice, 2020, Zenodo
Wang W., 2023, Research Square, DOI [10.21203/rs.3.rs-2544385/v2, DOI 10.21203/RS.3.RS-2544385/V2]
Wastl J., 2020, Contextualizing sustainable development research, DOI [10.6084/m9.figshare.12200081.v2, DOI 10.6084/M9.FIGSHARE.12200081.V2, 10.6084/M9.FIGSHARE.12200081.V2]
Wulff DU, 2023, Arxiv, DOI arXiv:2301.11353
Zhang R, 2020, PR INT CONF DATA SC, P516, DOI 10.1109/DSAA49011.2020.00066
NR 24
TC 0
Z9 0
U1 2
U2 2
PU MIT PRESS
PI CAMBRIDGE
PA ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA
EI 2641-3337
J9 QUANT SCI STUD
JI Quant. Sci. Stud.
PD MAY 1
PY 2024
VL 5
IS 2
BP 408
EP 425
DI 10.1162/qss_a_00304
PG 18
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA XG0J5
UT WOS:001260409900004
OA Green Submitted, gold
DA 2024-09-05
ER
PT J
AU Wang, MY
Wang, ZY
Chen, GS
AF Wang, Mingyang
Wang, Zhenyu
Chen, Guangsheng
TI Which can better predict the future success of articles? Bibliometric
indices or alternative metrics
SO SCIENTOMETRICS
LA English
DT Article
DE Highly-cited papers; Bibliometric index; Alternative metrics; Machine
learning
ID CITATION IMPACT; SCIENTIFIC PAPERS; MENDELEY READERS; JOURNALS; NUMBER;
ALTMETRICS; COLLABORATION; DETERMINANTS; PUBLICATIONS; CORRELATE
AB In this paper, we made a survey on the prediction capability of bibliometric indices and alternative metrics on the future success of articles by establishing a machine learning framework. Twenty-three bibliometric and alternative indices were collected to establish the feature space for the predication task. In order to eliminate the possible redundancy in feature space, three feature selection techniques of Relief-F, principal component analysis and entropy weighted method were used to rank the features according to their contribution to the original data set. Combining the fractal dimension of the data set, the intrinsic features which can better represent the original feature space were extracted. Three classifiers of Naive Bayes, KNN and random forest were performed to detect the classification performance of these features. Experimental results show that both bibliometric indices and alternative metrics are beneficial to articles' growth. Early citation features, early Web usage statistics, as well as the reputation of the first author are the most valuable indicators in making an article more influential in the future.
C1 [Wang, Mingyang; Wang, Zhenyu; Chen, Guangsheng] Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Heilongjiang, Peoples R China.
C3 Northeast Forestry University - China
RP Chen, GS (corresponding author), Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Heilongjiang, Peoples R China.
EM kjc_chen@163.com
RI wang, mingyang/KSM-1989-2024
FU National Natural Science Foundation of China [71473034]; Postdoctoral
Scientific Research Developmental Fund of Heilongjiang Province
[LBH-Q16003]; national undergraduate training programs for innovation
[201510225167]
FX This work was supported by the National Natural Science Foundation of
China (Grant No. 71473034), the financial assistance from Postdoctoral
Scientific Research Developmental Fund of Heilongjiang Province (Grant
No. LBH-Q16003), and the national undergraduate training programs for
innovation (Grant No. 201510225167).
CR Abdi H, 2013, WIRES COMPUT STAT, V5, P149, DOI 10.1002/wics.1246
Adams J, 2005, SCIENTOMETRICS, V63, P567, DOI 10.1007/s11192-005-0228-9
Aksnes DW, 2003, RES EVALUAT, V12, P159, DOI 10.3152/147154403781776645
Ale Ebrahim N., 2014, International Education Studies, V7, P120, DOI DOI 10.5539/IES.V7N4P120
Amara N, 2015, SCIENTOMETRICS, V103, P489, DOI 10.1007/s11192-015-1537-2
Annalingam A, 2014, SPRINGERPLUS, V3, DOI 10.1186/2193-1801-3-140
[Anonymous], 4 INT C WEB INF SCI
[Anonymous], 2013, P ASIST ANN M
[Anonymous], 2010, 1 MONDAY
[Anonymous], 35 INT C INF SYST IC
[Anonymous], P ACM IEEE JOINT C D
[Anonymous], 2014, PROCEEDINGS OF THE 1
[Anonymous], 2014, ATTENTION CITATION W
[Anonymous], 2 INT C FUT SCH COMM
Antoniou GA, 2015, ANN VASC SURG, V29, P286, DOI 10.1016/j.avsg.2014.09.017
Belussi A., 1995, VLDB '95. Proceedings of the 21st International Conference on Very Large Data Bases, P299
Berchtold S., 1998, P ACM SIGMOD INT C M, P142
Biscaro C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099502
Bjarnason T, 2002, ACTA SOCIOL, V45, P253
Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142
Bornmann L, 2014, J INFORMETR, V8, P895, DOI 10.1016/j.joi.2014.09.005
Bornmann L, 2013, J INFORMETR, V7, P722, DOI 10.1016/j.joi.2013.05.002
Bornmann L, 2013, J INFORMETR, V7, P562, DOI 10.1016/j.joi.2013.02.005
Bornmann L, 2012, J INFORMETR, V6, P11, DOI 10.1016/j.joi.2011.08.004
Bornmann L, 2010, J INFORMETR, V4, P83, DOI 10.1016/j.joi.2009.09.001
Borsuk RM., 2009, OPEN ECOLOGY J, V2, P25, DOI DOI 10.2174/1874213000902010025
Bosquet C, 2013, SCIENTOMETRICS, V97, P831, DOI 10.1007/s11192-013-0996-6
Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324
Buela-Casal G, 2010, PSICOTHEMA, V22, P270
Lira RPC, 2013, ARQ BRAS OFTALMOL, V76, P26, DOI 10.1590/S0004-27492013000100008
Chen CM, 2012, J AM SOC INF SCI TEC, V63, P431, DOI 10.1002/asi.21694
Chi PS, 2018, SCIENTOMETRICS, V116, P537, DOI 10.1007/s11192-018-2708-8
Chi PS, 2017, SCIENTOMETRICS, V112, P403, DOI 10.1007/s11192-017-2356-4
Collet F, 2014, STRATEG ORGAN, V12, P157, DOI 10.1177/1476127014530124
de Winter JCF, 2015, SCIENTOMETRICS, V102, P1773, DOI 10.1007/s11192-014-1445-x
Didegah F, 2018, J ASSOC INF SCI TECH, V69, P832, DOI 10.1002/asi.23934
Didegah F, 2013, J AM SOC INF SCI TEC, V64, P1055, DOI 10.1002/asi.22806
Dorta-González P, 2014, J INFORMETR, V8, P406, DOI 10.1016/j.joi.2014.01.013
DUDANI SA, 1976, IEEE T SYST MAN CYB, V6, P327
Eysenbach G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.2012
Falagas ME, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077075
Farshad M., 2013, European Orthopaedics and Traumatology, V4, P125, DOI DOI 10.1007/S12570-013-0174-6
Fausto S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050109
Frandsen TF, 2013, J AM SOC INF SCI TEC, V64, P437, DOI 10.1002/asi.22785
Garner J, 2014, SCIENTOMETRICS, V100, P687, DOI 10.1007/s11192-014-1316-5
Glänzel W, 2014, SCIENTOMETRICS, V101, P939, DOI 10.1007/s11192-014-1247-1
Glänzel W, 2004, SCIENTOMETRICS, V61, P395, DOI 10.1023/B:SCIE.0000045117.13348.b1
Glänzel W, 2003, SCIENTOMETRICS, V56, P357, DOI 10.1023/A:1022378804087
Glänzel W, 2012, J AM SOC INF SCI TEC, V63, P1420, DOI 10.1002/asi.22643
González-Alcaide G, 2016, J STUD ALCOHOL DRUGS, V77, P710, DOI 10.15288/jsad.2016.77.710
Guerrero-Bote VP, 2014, SCIENTOMETRICS, V101, P1043, DOI 10.1007/s11192-014-1243-5
Haslam N, 2010, PSYCHOL REP, V106, P891, DOI 10.2466/PR0.106.3.891-900
Haustein S, 2014, IT-INF TECHNOL, V56, P207, DOI 10.1515/itit-2014-1048
Haustein S, 2013, PRO INT CONF SCI INF, P468
Herrmannova D, 2018, SCIENTOMETRICS, V115, P239, DOI 10.1007/s11192-018-2669-y
Hilmer CE, 2009, REV AGR ECON, V31, P677, DOI 10.1111/j.1467-9353.2009.01461.x
Huang H, 2012, J AM SOC INF SCI TEC, V63, P490, DOI 10.1002/asi.21707
Huang SZ, 2015, J HYDROL, V527, P608, DOI 10.1016/j.jhydrol.2015.05.032
Ibáñez A, 2013, SCIENTOMETRICS, V95, P689, DOI 10.1007/s11192-012-0883-6
Ingwersen P, 2014, SCIENTOMETRICS, V101, P1325, DOI 10.1007/s11192-014-1291-x
Ingwersen P, 2014, SCIENTOMETRICS, V101, P1273, DOI 10.1007/s11192-014-1335-2
Ke SW, 2014, ONLINE INFORM REV, V38, P738, DOI 10.1108/OIR-03-2014-0062
Kononenko I., 1994, Machine Learning: ECML-94. European Conference on Machine Learning. Proceedings, P171
Korn F, 2001, IEEE T KNOWL DATA EN, V13, P96, DOI 10.1109/69.908983
Kousha K, 2017, J ASSOC INF SCI TECH, V68, P762, DOI 10.1002/asi.23694
LANGLEY P, 1992, AAAI-92 PROCEEDINGS : TENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, P223
Lee SY, 2010, APPL ECON LETT, V17, P1697, DOI 10.1080/13504850903120725
Leimu R, 2005, TRENDS ECOL EVOL, V20, P28, DOI 10.1016/j.tree.2004.10.010
Li XM, 2012, SCIENTOMETRICS, V91, P461, DOI 10.1007/s11192-011-0580-x
Ortega J, 2016, SCIENTOMETRICS, V109, P1353, DOI 10.1007/s11192-016-2113-0
Marashi SA, 2013, EXCLI J, V12, P15
McCabe MJ, 2015, REV ECON STAT, V97, P144, DOI 10.1162/REST_a_00437
Miettunen J, 2003, SCIENTOMETRICS, V57, P377, DOI 10.1023/A:1025056718587
Naraei P, 2017, CAN CON EL COMP EN
Neylon C, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000242
Nomaler Ö, 2013, J INFORMETR, V7, P966, DOI 10.1016/j.joi.2013.10.001
Onodera N, 2015, J ASSOC INF SCI TECH, V66, P739, DOI 10.1002/asi.23209
Onyancha OB, 2011, SCIENTOMETRICS, V87, P315, DOI 10.1007/s11192-010-0330-5
Padial AA, 2010, SCIENTOMETRICS, V85, P1, DOI 10.1007/s11192-010-0231-7
Pagel B.-U., 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073), P589, DOI 10.1109/ICDE.2000.839457
Pagel PS, 2011, J CARDIOTHOR VASC AN, V25, P761, DOI 10.1053/j.jvca.2011.03.003
Patterson MS, 2009, SCIENTOMETRICS, V80, P343, DOI 10.1007/s11192-008-2064-1
Peoples BK, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166570
Piwowar Heather, 2013, Bulletin of the American Society for Information Science and Technology, V39, P10
Puuska HM, 2014, SCIENTOMETRICS, V98, P823, DOI 10.1007/s11192-013-1181-7
Ravenscroft J, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173152
Rees T, 2012, CURR MED RES OPIN, V28, pS9
Ringelhan S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134389
Royle P, 2013, SYST REV-LONDON, V2, DOI 10.1186/2046-4053-2-74
Sangwal K, 2012, SCIENTOMETRICS, V93, P987, DOI 10.1007/s11192-012-0805-7
Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009
Shu F, 2018, SCIENTOMETRICS, V116, P505, DOI 10.1007/s11192-018-2732-8
Sin SCJ, 2011, J AM SOC INF SCI TEC, V62, P1770, DOI 10.1002/asi.21572
Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171
Stremersch S, 2015, INT J RES MARK, V32, P64, DOI 10.1016/j.ijresmar.2014.09.004
Syamili C, 2017, COLLNET J SCIENTOMET, V11, P103, DOI 10.1080/09737766.2016.1260815
Tahamtan I, 2016, SCIENTOMETRICS, V107, P1195, DOI 10.1007/s11192-016-1889-2
Taylor Mike., 2013, Information Standards Quarterly, V25, P27, DOI DOI 10.3789/ISQV25NO2.2013.05
Thelwall M, 2018, SCIENTOMETRICS, V115, P1231, DOI 10.1007/s11192-018-2715-9
Thelwall M, 2016, J ASSOC INF SCI TECH, V67, P1962, DOI 10.1002/asi.23501
Thelwall M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064841
Traina C.J., 2000, Proc. 15th Brazil Symposium Databases, P158
van Dalen HP, 2005, SCIENTOMETRICS, V64, P209, DOI 10.1007/s11192-005-0248-5
van der Pol CB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119892
van Eck NJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062395
van Wesel M, 2014, SCIENTOMETRICS, V98, P1601, DOI 10.1007/s11192-013-1154-x
Vanclay JK, 2013, J INFORMETR, V7, P265, DOI 10.1016/j.joi.2012.11.009
Vieira ES, 2010, J INFORMETR, V4, P1, DOI 10.1016/j.joi.2009.06.002
Walters GD, 2006, SCIENTOMETRICS, V69, P499, DOI 10.1007/s11192-006-0166-1
Waltman L, 2014, J ASSOC INF SCI TECH, V65, P433, DOI 10.1002/asi.23040
Wang J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127298
Wang L, 2015, SCIENTOMETRICS, V105, P843, DOI 10.1007/s11192-015-1735-y
Wang MY, 2012, SCIENTOMETRICS, V93, P635, DOI 10.1007/s11192-012-0766-x
Wang MY, 2012, J INFORMETR, V6, P586, DOI 10.1016/j.joi.2012.06.002
Willis DL, 2011, BJU INT, V107, P1876, DOI 10.1111/j.1464-410X.2010.10028.x
Xu JL, 2008, PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, P460, DOI 10.1109/ICMLC.2008.4620449
Yu T, 2014, SCIENTOMETRICS, V101, P1233, DOI 10.1007/s11192-014-1279-6
Yu T, 2014, MALAYS J LIBR INF SC, V19, P37
Yuan SB, 2011, ELECTRON LIBR, V29, P682, DOI 10.1108/02640471111177107
Yue WP, 2004, SCIENTOMETRICS, V60, P317, DOI 10.1023/B:SCIE.0000034377.93437.18
Zahedi Z, 2013, PRO INT CONF SCI INF, P876
NR 121
TC 29
Z9 34
U1 8
U2 116
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUN
PY 2019
VL 119
IS 3
BP 1575
EP 1595
DI 10.1007/s11192-019-03052-9
PG 21
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA HZ7UB
UT WOS:000469058000012
DA 2024-09-05
ER
PT C
AU Ray, JB
Maitra, S
AF Ray, Julie Basu
Maitra, Samita
GP IEEE
TI Collaborative Interdisciplinary Teaching and Learning across Borders,
Using Mobile Technologies and Smart Devices
SO 2017 5TH IEEE INTERNATIONAL CONFERENCE ON MOOCS, INNOVATION AND
TECHNOLOGY IN EDUCATION (MITE)
LA English
DT Proceedings Paper
CT 5th IEEE International Conference on MOOCs, Innovation and Technology in
Education (MITE)
CY OCT 27-28, 2017
CL Bangalore, INDIA
DE Collaboration; Undergraduate Institutions; Active learning strategies;
Heavy Metals in Biology; Fermentation
ID METALS
AB Collaborative teaching today, is one of the best practices followed globally to foster active learning. As a variety of teaching styles emerge to address more student learning preferences, collaboration across disciplines and across borders, using mobile technologies, allows a cultural and academic exchange of ideas, improving teaching and learning pedagogy. The authors at the Department of Biology, Dillard University (DU) in New Orleans, Louisiana, USA and the Department of Chemical Engineering, BMS College of Engineering in Bangalore (BMSCE), India collaborated in Fall 2015 and 2016 to develop a teaching module where DU Human Physiology students and BMSCE Chemical Engineering students participated. This paper chronicles our experience in the interdisciplinary study across borders, focusing on critical and creative thinking; writing and communication using smart devices and collaboration and shared leadership.
C1 [Ray, Julie Basu] Dillard Univ, Dept Biol, New Orleans, LA 70122 USA.
[Maitra, Samita] BMS Coll Engn, Dept Chem Engn, Bangalore, Karnataka, India.
C3 Dillard University; BMS College of Engineering
RP Ray, JB (corresponding author), Dillard Univ, Dept Biol, New Orleans, LA 70122 USA.
RI Maitra, Samita/ABA-8195-2020
OI Maitra, Samita/0000-0003-0196-1762
CR [Anonymous], MILL DEV GOALS REP 2
Costello P., 2010, BRIT J EDUC TECHNOL, V41, P6
Cowden Chapel D., 2015, J CHEM ED
Dolmans DHJM, 2005, MED EDUC, V39, P732, DOI 10.1111/j.1365-2929.2005.02205.x
Duron R., 2006, INT J TEACHING LEARN, V17, P160, DOI DOI 10.1016/J.NEPR.2006.09.004
Guengerich FP, 2014, J BIOL CHEM, V289, P28094, DOI 10.1074/jbc.R114.607093
Jan AT, 2015, INT J MOL SCI, V16, P29592, DOI 10.3390/ijms161226183
Jans C, 2017, INT J FOOD MICROBIOL, V250, P27, DOI 10.1016/j.ijfoodmicro.2017.03.012
Jones C., 2010, Essai, V7, P26
Laal M, 2012, PROCD SOC BEHV, V31, P486, DOI 10.1016/j.sbspro.2011.12.091
Lill R, 2009, NATURE, V460, P831, DOI 10.1038/nature08301
Mercier EM, 2017, LEARN INSTR, V50, P31, DOI 10.1016/j.learninstruc.2016.11.006
Mundorf AR, 2015, J URBAN HEALTH, V92, P605, DOI 10.1007/s11524-015-9969-9
Pérez-Escamilla R, 2012, GLOB FOOD SECUR-AGR, V1, P120, DOI 10.1016/j.gfs.2012.10.006
Quansah R, 2015, ENVIRON HEALTH PERSP, V123, P412, DOI 10.1289/ehp.1307894
Savery J. R., 1995, EDUC TECHNOL, V35, P31, DOI DOI 10.2307/44428296
Schnackenberg H. L., 2016, CASES DIGITAL TECHNO, P24
Shi YC, 2003, IEEE PERVAS COMPUT, V2, P47, DOI 10.1109/MPRV.2003.1203753
Trimmer EE, 1999, ESSAYS BIOCHEM, V34, P191, DOI 10.1042/bse0340191
NR 19
TC 1
Z9 1
U1 0
U2 3
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-5386-3189-8
PY 2017
BP 77
EP 82
DI 10.1109/MITE.2017.00020
PG 6
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BM0AA
UT WOS:000458537800016
DA 2024-09-05
ER
PT J
AU Jung, SK
Segev, A
AF Jung, Sukhwan
Segev, Aviv
TI Identifying a common pattern within ancestors of emerging topics for
pan-domain topic emergence prediction
SO KNOWLEDGE-BASED SYSTEMS
LA English
DT Article
DE Topic prediction; Scientometrics; Knowledge management; Machine learning
ID EVOLUTION
AB The shared interest among existing research topics matures over time until it emerges as a topic of its own. This paper detects emerging topics as well as general predictor models spanning multiple research domains through the network-based topic evolution approach, which offers additional topic evolution capabilities such as extrapolation of data and separation of topic transition and correlation. Topics are represented as their neighbors in the past, or ancestors, and their structural properties are used to train binary classification models in capturing the materialization of such topics. The entirety of 197 million publications within the Microsoft Academic Graph was used to build multiple datasets, where machine learning algorithms were trained with structural features resulting in over 0.98 area under the precision-recall curve. General topic emergence predictor equations are then proposed based on the models trained specifically for each domain, which were able to capture a common pattern shared by emerging topics in general.(c) 2022 Elsevier B.V. All rights reserved.
C1 [Jung, Sukhwan; Segev, Aviv] Univ S Alabama, Dept Comp Sci, 150 Student Serv Dr, Mobile, AL 36688 USA.
C3 University of South Alabama
RP Jung, SK (corresponding author), Univ S Alabama, Dept Comp Sci, 150 Student Serv Dr, Mobile, AL 36688 USA.
EM shjung@southalabama.edu
RI Jung, Suk hwan/AAW-3977-2020; Jung, Suk hwan/HIK-1039-2022; Segev,
Aviv/C-2060-2011
OI Jung, Suk hwan/0000-0003-1758-1211;
CR [Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076
Balili C, 2017, IEEE INT CONF BIG DA, P1694, DOI 10.1109/BigData.2017.8258108
Blei D, 2006, P 23 INT C MACH LEAR, P113
Chen BT, 2017, J INFORMETR, V11, P1175, DOI 10.1016/j.joi.2017.10.003
Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785
Zeiler MD, 2012, Arxiv, DOI arXiv:1212.5701
Dietz L., 2007, ICML, P233, DOI DOI 10.1145/1273496.1273526
Gaul WG, 2017, ADV DATA ANAL CLASSI, V11, P159, DOI 10.1007/s11634-016-0241-2
Gohr Andrll., 2009, SDM, P859, DOI DOI 10.1137/1.9781611972795.74
Guo QY, 2022, IEEE T KNOWL DATA EN, V34, P3549, DOI 10.1109/TKDE.2020.3028705
Hug SE, 2017, SCIENTOMETRICS, V111, P371, DOI 10.1007/s11192-017-2247-8
Ilhan N, 2016, ENG APPL ARTIF INTEL, V55, P202, DOI 10.1016/j.engappai.2016.06.003
Jo Yookyung., 2011, P 20 INT C WORLD WID, P257, DOI DOI 10.1145/1963405.1963444
Jung S, 2022, SEMANT WEB, V13, P423, DOI 10.3233/SW-212951
Jung SW, 2020, IEEE INT CONF BIG DA, P5078, DOI 10.1109/BigData50022.2020.9378277
Jung S, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2020.101040
Mei Qiaozhu., 2005, KDD 05, P198, DOI DOI 10.1145/1081870.1081895
Menenberg M, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P3509, DOI 10.1109/BigData.2016.7841014
Niculescu-Mizil A., 2005, P 22 INT C MACH LEAR, P625
Ozmutlu HC, 2005, INFORM PROCESS MANAG, V41, P1243, DOI 10.1016/j.ipm.2004.04.018
PORTER AL, 1995, TECHNOL FORECAST SOC, V49, P237, DOI 10.1016/0040-1625(95)00022-3
Shao YX, 2021, IEEE T KNOWL DATA EN, V33, P2790, DOI 10.1109/TKDE.2019.2956518
Shen ZH, 2018, Arxiv, DOI arXiv:1805.12216
Su Y, 2012, WORKSHOP CHINESE LEX, P84
Wang KS, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00045
NR 25
TC 2
Z9 2
U1 5
U2 17
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0950-7051
EI 1872-7409
J9 KNOWL-BASED SYST
JI Knowledge-Based Syst.
PD DEC 22
PY 2022
VL 258
AR 110020
DI 10.1016/j.knosys.2022.110020
EA OCT 2022
PG 9
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA 6F9QZ
UT WOS:000884396500005
DA 2024-09-05
ER
PT J
AU Pooja
Sood, SK
AF Pooja
Sood, Sandeep Kumar
TI Scientometric analysis of quantum-inspired metaheuristic algorithms
SO ARTIFICIAL INTELLIGENCE REVIEW
LA English
DT Article
DE Quantum-inspired optimization algorithms; Quantum computing;
Quantum-inspired evolutionary algorithms; CiteSpace
ID GRAVITATIONAL SEARCH ALGORITHM; HARMONIC-OSCILLATOR ALGORITHM; PARTICLE
SWARM OPTIMIZATION; GENETIC ALGORITHM; EVOLUTIONARY ALGORITHM
AB Quantum algorithms, based on the principles of quantum mechanics, offer significant parallel processing capabilities with a wide range of applications. Nature-inspired stochastic optimization algorithms have long been a research hotspot. The fusion of quantum mechanics with optimization methods can potentially address NP-hard problems more efficiently and exponentially faster. The potential advantages provided by the ground-breaking paradigm have expedited the scientific output of quantum-inspired optimization algorithms locale. Consequently, a pertinent investigation is required to explain how ground-breaking scientific advancements have evolved. The scientometric approach utilizes quantitative and qualitative techniques to analyze research publications to evaluate the structure of scientific knowledge. Henceforth, the current research presents a scientometric and systematic analysis of quantum-inspired metaheuristic algorithms (QiMs) literature from the Scopus database since its inception. The scientometric implications of the article offer a detailed exploration of the publication patterns, keyword co-occurrence network analysis, author co-citation analysis and country collaboration analysis corresponding to each opted category of QiMs. The analysis reveals that QiMs solely account to 26.66% of publication share in quantum computing and have experienced an impressive 42.59% growth rate in the past decade. Notably, power management, adiabatic quantum computation, and vehicle routing are prominent emerging application areas. An extensive systematic literature analysis identifies key insights and research gaps in the QiMs knowledge domain. Overall, the findings of the current article provide scientific cues to researchers and the academic fraternity for identifying the intellectual landscape and latest research trends of QiMs, thereby fostering innovation and informed decision-making.
C1 [Pooja; Sood, Sandeep Kumar] Natl Inst Technol Kurukshetra, Dept Comp Applicat, Kurukshetra 136119, Haryana, India.
C3 National Institute of Technology (NIT System); National Institute of
Technology Kurukshetra
RP Pooja (corresponding author), Natl Inst Technol Kurukshetra, Dept Comp Applicat, Kurukshetra 136119, Haryana, India.
EM insanpooja777@gmail.com
OI , Pooja/0000-0002-3504-9694
CR Abdel-Basset M., 2018, Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, P185, DOI [DOI 10.1016/B978-0-12813314-9.00010-4, 10.1016/b978-0-12-813314-9.00010-4, DOI 10.1016/B978-0-12-813314, 10.1016/B978-0-12-813314-9.00010-4]
Abualigah L, 2021, ARTIF INTELL REV, V54, P2567, DOI 10.1007/s10462-020-09909-3
Agrawal RK, 2020, APPL SOFT COMPUT, V89, DOI 10.1016/j.asoc.2020.106092
Akay B, 2022, ARTIF INTELL REV, V55, P829, DOI 10.1007/s10462-021-09992-0
Alia OM, 2011, ARTIF INTELL REV, V36, P49, DOI 10.1007/s10462-010-9201-y
Arpaia P, 2011, APPL SOFT COMPUT, V11, P4655, DOI 10.1016/j.asoc.2011.07.017
Baghel Malti., 2012, INT J COMPUTER APPL, V58, P21, DOI [10.5120/9391-3813, DOI 10.5120/9391-3813]
Bandyopadhyay S, 2008, IEEE T EVOLUT COMPUT, V12, P269, DOI 10.1109/TEVC.2007.900837
Barani F, 2017, APPL INTELL, V47, P304, DOI 10.1007/s10489-017-0894-3
Bechikh S, 2015, IEEE T CYBERNETICS, V45, P2051, DOI 10.1109/TCYB.2014.2363878
Bharill N, 2019, IEEE ACCESS, V7, P50347, DOI 10.1109/ACCESS.2019.2891956
Binitha S, 2012, INT J SOFT COMPUT EN, V2, P137, DOI DOI 10.1007/S11269-015-0943-9
Cai X, 2021, EXPERT SYST APPL, V171, DOI 10.1016/j.eswa.2021.114629
Chen CM, 2012, EXPERT OPIN BIOL TH, V12, P593, DOI 10.1517/14712598.2012.674507
Cheng S, 2016, ARTIF INTELL REV, V46, P445, DOI 10.1007/s10462-016-9471-0
Cheng X, 2023, CHINESE PHYS B, V32, DOI 10.1088/1674-1056/ac65ee
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Dahi ZA, 2016, SWARM EVOL COMPUT, V31, P24, DOI 10.1016/j.swevo.2016.06.003
Dehghani M, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-22458-9
Deng W, 2020, IEEE T INSTRUM MEAS, V69, P7319, DOI 10.1109/TIM.2020.2983233
Desale S., 2015, Int. J. Comput. Eng. Res. Trends, V351, P2349
Dragoi EN, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9182335
Fahad S, 2022, IEEE ACCESS, V10, P72339, DOI 10.1109/ACCESS.2022.3188276
Farhi E, 2014, Arxiv, DOI arXiv:1411.4028
Ganesan V, 2021, COMPUT ELECTR ENG, V94, DOI 10.1016/j.compeleceng.2021.107356
Gao MY, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19148837
Gendreau M, 2005, ANN OPER RES, V140, P189, DOI 10.1007/s10479-005-3971-7
Gharehchopogh FS, 2023, ARTIF INTELL REV, V56, P5479, DOI 10.1007/s10462-022-10280-8
Ghorbani MA, 2018, ENG APPL COMP FLUID, V12, P724, DOI 10.1080/19942060.2018.1517052
Goyal K, 2021, INT J CONSUM STUD, V45, P80, DOI 10.1111/ijcs.12605
Guo YN, 2018, NEURAL COMPUT APPL, V30, P709, DOI 10.1007/s00521-016-2572-5
Hakemi S, 2024, EVOL INTELL, V17, P627, DOI 10.1007/s12065-022-00783-2
Han KH, 2002, IEEE T EVOLUT COMPUT, V6, P580, DOI 10.1109/TEVC.2002.804320
Han XH, 2013, ENG APPL ARTIF INTEL, V26, P2424, DOI 10.1016/j.engappai.2013.05.011
Hussain K, 2019, ARTIF INTELL REV, V52, P2191, DOI 10.1007/s10462-017-9605-z
Hussain M, 2022, APPL SOFT COMPUT, V128, DOI 10.1016/j.asoc.2022.109440
Jacomy M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098679
Jeong YW, 2010, IEEE T POWER SYST, V25, P1486, DOI 10.1109/TPWRS.2010.2042472
JOHNSON JD, 1987, COMMUN EDUC, V36, P92, DOI 10.1080/03634528709378647
Kaur A, 2024, IEEE T ENG MANAGE, V71, P2430, DOI 10.1109/TEM.2022.3176477
Kaur A, 2024, IEEE T ENG MANAGE, V71, P400, DOI 10.1109/TEM.2021.3124977
Kaveh A, 2020, STRUCTURES, V28, P1479, DOI 10.1016/j.istruc.2020.09.079
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
Klarin A, 2023, IEEE T ENG MANAGE, V70, P1531, DOI 10.1109/TEM.2021.3126055
Kolandoozi M, 2019, APPL INTELL, V49, P3652, DOI 10.1007/s10489-019-01476-7
Konar D, 2017, APPL SOFT COMPUT, V53, P296, DOI 10.1016/j.asoc.2016.12.051
Kumar Y, 2020, INT J MOD PHYS C, V31, DOI 10.1142/S0129183120501387
Li BB, 2007, IEEE T SYST MAN CY B, V37, P576, DOI 10.1109/TSMCB.2006.887946
Li B, 2019, IEEE ACCESS, V7, P17377, DOI 10.1109/ACCESS.2019.2895358
Li F, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19153334
Li YY, 2020, IEEE ACCESS, V8, P23568, DOI 10.1109/ACCESS.2020.2970105
Li YC, 2019, ELECTR POW COMPO SYS, V47, P1398, DOI 10.1080/15325008.2019.1689443
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Ma T, 2022, IEEE ACCESS, V10, P65854, DOI 10.1109/ACCESS.2022.3184686
Matlab S, 2012, Matlab
Mirsadeghi E, 2021, CLUSTER COMPUT, V24, P1135, DOI 10.1007/s10586-020-03179-y
Mojrian M, 2021, EXPERT SYST APPL, V171, DOI 10.1016/j.eswa.2020.114555
Montanaro A, 2016, NPJ QUANTUM INFORM, V2, DOI 10.1038/npjqi.2015.23
Montiel O, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48409-5
Ross OHM, 2020, IEEE ACCESS, V8, P814, DOI 10.1109/ACCESS.2019.2962155
Neelam S, 2021, IEEE T ENG MANAGE, V68, P317, DOI 10.1109/TEM.2020.2972288
Nezamabadi-pour H, 2015, ENG APPL ARTIF INTEL, V40, P62, DOI 10.1016/j.engappai.2015.01.002
Niazi MA, 2016, COMPLEX ADAPT SYST M, V4, DOI 10.1186/s40294-016-0036-5
Osman I.H., 1997, J. Oper. Res. Soc., V48, P657, DOI DOI 10.1057/PALGRAVE.JORS.2600781
Osman IH, 2003, COMPUT IND ENG, V44, P205, DOI 10.1016/S0360-8352(02)00175-4
Ozcan S, 2021, IEEE T ENG MANAGE, V68, P1055, DOI 10.1109/TEM.2019.2924199
Pereira CS, 2020, IEEE SYST J, V14, P3926, DOI 10.1109/JSYST.2020.2968039
Peruzzo A, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5213
Rao RV, 2011, COMPUT AIDED DESIGN, V43, P303, DOI 10.1016/j.cad.2010.12.015
RUTENBAR RA, 1989, IEEE CIRCUITS DEVICE, V5, P19, DOI 10.1109/101.17235
Sharma P, 2022, EXPERT SYST, V39, DOI 10.1111/exsy.12813
SHOR PW, 1994, AN S FDN CO, P124
Singh MR, 2016, COMPUT IND ENG, V93, P36, DOI 10.1016/j.cie.2015.12.004
Soleimanpour-moghadam M, 2014, INFORM SCIENCES, V267, P83, DOI 10.1016/j.ins.2013.09.006
Sood SK, 2022, ACM T INTERNET TECHN, V22, DOI 10.1145/3564783
Sood SK, 2023, IEEE Trans Eng Manag, P1
Sood V, 2024, ARCH COMPUT METHOD E, V31, P73, DOI 10.1007/s11831-023-09973-2
Srikanth K, 2018, COMPUT ELECTR ENG, V70, P243, DOI 10.1016/j.compeleceng.2017.07.023
Talatahari S, 2022, INT J STEEL STRUCT, V22, P686, DOI 10.1007/s13296-022-00598-y
Tayarani-N MH, 2014, EVOL INTELL, V7, P219, DOI 10.1007/s12065-014-0120-8
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang L, 2010, EXPERT SYST APPL, V37, P1279, DOI 10.1016/j.eswa.2009.06.013
Wang P, 2018, APPL SOFT COMPUT, V69, P655, DOI 10.1016/j.asoc.2018.05.005
Wong LA, 2014, FRONT ENERGY, V8, P254, DOI 10.1007/s11708-014-0302-1
Wright J, 2017, INTEGR COMPUT-AID E, V24, P203, DOI 10.3233/ICA-170545
Xiao J, 2010, EXPERT SYST APPL, V37, P4966, DOI 10.1016/j.eswa.2009.12.017
Xiong HG, 2018, SWARM EVOL COMPUT, V42, P43, DOI 10.1016/j.swevo.2018.02.020
Yang SY, 2004, IEEE C EVOL COMPUTAT, P320, DOI 10.1109/CEC.2004.1330874
Yasin Zuhaila Mat, 2010, 2010 4th International Power Engineering and Optimization Conference (PEOCO 2010), P468, DOI 10.1109/PEOCO.2010.5559163
Zhang Guanghui, 2022, Complex System Modeling and Simulation, P334, DOI 10.23919/CSMS.2022.0021
Zhang GX, 2011, J HEURISTICS, V17, P303, DOI 10.1007/s10732-010-9136-0
Zhao SF, 2009, COMPUT MATH APPL, V57, P2009, DOI 10.1016/j.camwa.2008.10.048
Zhu LH, 2022, PHYS REV RES, V4, DOI 10.1103/PhysRevResearch.4.033029
Zouache D, 2016, SOFT COMPUT, V20, P2781, DOI 10.1007/s00500-015-1681-x
NR 94
TC 2
Z9 2
U1 11
U2 11
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0269-2821
EI 1573-7462
J9 ARTIF INTELL REV
JI Artif. Intell. Rev.
PD JAN 30
PY 2024
VL 57
IS 2
AR 22
DI 10.1007/s10462-023-10659-1
PG 30
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA HQ8C6
UT WOS:001161054000002
OA hybrid
DA 2024-09-05
ER
PT C
AU Sun, XL
Ding, K
Lin, Y
Lin, HF
AF Sun, Xiaoling
Ding, Kun
Lin, Yuan
Lin, Hongfei
BE Catalano, G
Daraio, C
Gregori, M
Moed, HF
Ruocco, G
TI Open Science Behavior of AI Industry: Collaboration Patterns and Topics
from the Perspective of Cross-Institutional Authors
SO 17TH INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS
(ISSI2019), VOL I
SE Proceedings of the International Conference on Scientometrics and
Informetrics
LA English
DT Proceedings Paper
CT 17th International Conference of the
International-Society-for-Scientometrics-and-Informetrics (ISSI) on
Scientometrics and Informetrics
CY SEP 02-05, 2019
CL Sapienza Univ Rome, Rome, ITALY
HO Sapienza Univ Rome
ID UNIVERSITY; PUBLICATIONS; TECHNOLOGY; LEAD
AB In this study, the open science behaviour of industry is analyzed in terms of publications co-authored by at least one author from industry. Firstly, authors are classified into five types according to affiliations, and collaboration network is built to investigate the role of different types of authors. Then, topic evolution of papers related to industry is studied using Hierarchical Dirichelet Process and topic mapping algorithm. Artificial intelligence research area is taken as an example. Results show cross-university-industry type authors play an important bridge role in the collaboration network. And research topics that industries are concerned about are revealed and analyzed. This research could provide reference for formulating science and technology policy and promoting scientific research innovation in both universities and industries.
C1 [Sun, Xiaoling; Ding, Kun; Lin, Yuan; Lin, Hongfei] Dalian Univ Technol, Dalian, Peoples R China.
C3 Dalian University of Technology
RP Sun, XL (corresponding author), Dalian Univ Technol, Dalian, Peoples R China.
EM xlsun@dlut.edu.cn; dingk@dlut.edu.cn; zhlin@dlut.edu.cn;
hflin@dlut.edu.cn
RI DING, KUN/HNJ-1709-2023
FU National Natural Science Foundation of China [71704019]; Planning Fund
for Liaoning Social Science [L17CGL009]
FX This work is partially supported by grant from National Natural Science
Foundation of China (No. 71704019) and the Planning Fund for Liaoning
Social Science (No. L17CGL009).
CR Ankrah SN, 2013, TECHNOVATION, V33, P50, DOI 10.1016/j.technovation.2012.11.001
Arel I, 2010, IEEE COMPUT INTELL M, V5, P13, DOI 10.1109/MCI.2010.938364
Åstebro T, 2012, RES POLICY, V41, P663, DOI 10.1016/j.respol.2012.01.004
Azagra-Caro Joaquin M., 2019, TECHNOLOGICAL FORECA, V139
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Callaert J, 2015, RES POLICY, V44, P990, DOI 10.1016/j.respol.2015.02.003
Chai S, 2016, RES POLICY, V45, P148, DOI 10.1016/j.respol.2015.07.007
Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056
Etzkowitz H, 2000, RES POLICY, V29, P313, DOI 10.1016/S0048-7333(99)00069-4
Gulbrandsen M., 2007, Universities and strategic knowledge creation, P112, DOI DOI 10.4337/9781847206848.00011
Hicks D., 1995, IND CORP CHANGE, V4, P401, DOI [DOI 10.1093/ICC/4.2.401, 10.1093/icc/4.2.401]
Hottenrott H, 2017, SCIENTOMETRICS, V111, P285, DOI 10.1007/s11192-017-2257-6
Jong S, 2014, RES POLICY, V43, P645, DOI 10.1016/j.respol.2013.12.009
Leydesdorff L., 1996, SCI PUBL POLICY, V23, P279, DOI [10.1093/spp/23.5.279, DOI 10.1093/SPP/23.5.279]
Murray F, 2002, RES POLICY, V31, P1389, DOI 10.1016/S0048-7333(02)00070-7
Ponomariov B, 2013, J TECHNOL TRANSFER, V38, P749, DOI 10.1007/s10961-013-9301-3
Simeth M, 2015, RES POLICY, V44, P1283, DOI 10.1016/j.respol.2015.04.005
Teh YW, 2006, J AM STAT ASSOC, V101, P1566, DOI 10.1198/016214506000000302
Tijssen RJW, 2012, RES EVALUAT, V21, P204, DOI 10.1093/reseval/rvs013
Wong PK, 2013, SCIENTOMETRICS, V97, P245, DOI 10.1007/s11192-013-1029-1
Zhou P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165277
NR 21
TC 0
Z9 0
U1 0
U2 16
PU INT SOC SCIENTOMETRICS & INFORMETRICS-ISSI
PI LEUVEN
PA KATHOLIEKE UNIV LEUVEN, FACULTEIT E T E W, DEKENSTRAAT 2, LEUVEN,
B-3000, BELGIUM
SN 2175-1935
BN 978-88-3381-118-5
J9 PRO INT CONF SCI INF
PY 2019
BP 329
EP 338
PG 10
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BO2SN
UT WOS:000508217900033
DA 2024-09-05
ER
PT J
AU Capizzi, V
Paltrinieri, A
Pattnaik, D
Kumar, S
AF Capizzi, Vincenzo
Paltrinieri, Andrea
Pattnaik, Debidutta
Kumar, Satish
TI Retrospective overview of the journal venture capital using
bibliometric approach
SO VENTURE CAPITAL
LA English
DT Article
DE Venture capital; entrepreneurial finance; bibliometrics; NLP;
co-occurrence analysis; VOSviewer; Gephi
ID BUSINESS ANGELS; ENTREPRENEURS; MODEL; MANAGEMENT; LEGITIMACY; NETWORKS;
FINANCE
AB The journal Venture Capital (VC) is a well-established highly reputed academic outlet specializing in research on entrepreneurial finance conducted from various methodological standpoints, on a global basis. This study uses bibliometrics to analyze the journal's impact, prominent topics, most frequent authors, and their affiliated institutions. Between 1999 and 2021, VC published 385 documents receiving 9,892 citations. About 62% of VC papers have more than 10 citations each. Some of the notable themes which may offer future scope for publications include crowdfunding platforms, equity crowdfunding, government venture capital, private equity firm and investment, entrepreneurial finance, market failure, and female entrepreneurship.
C1 [Capizzi, Vincenzo] Univ Piemonte Orientale Amedeo Avogadro, Dipartimento Studi Econ & Impresa, I-28100 Novara, Italy.
[Paltrinieri, Andrea] Univ Cattolica Sacro Cuore, Dept Econ & Business Admin, Campus Roma, Rome, Italy.
[Pattnaik, Debidutta] Woxsen Sch Business, Sch Business, Hyderabad, India.
[Kumar, Satish] Malaviya Natl Inst Technol, Dept Management Studies, Jaipur, Rajasthan, India.
C3 University of Eastern Piedmont Amedeo Avogadro; Catholic University of
the Sacred Heart; IRCCS Policlinico Gemelli; National Institute of
Technology (NIT System); Malaviya National Institute of Technology
Jaipur
RP Kumar, S (corresponding author), Univ Piemonte Orientale Amedeo Avogadro, Dipartimento Studi Econ & Impresa, I-28100 Novara, Italy.
EM skumar.dms@mnit.ac.in
RI Pattnaik, Debidutta/Q-2125-2019; Kumar, Satish/M-8694-2017; Pattnaik,
Debidutta/GWU-6164-2022; Capizzi, Vincenzo/M-7251-2016
OI Pattnaik, Debidutta/0000-0001-6180-0499; Kumar,
Satish/0000-0001-5200-1476; Capizzi, Vincenzo/0000-0003-3761-9942;
PALTRINIERI, Andrea/0000-0002-8172-9199
CR Acedo FJ, 2006, J MANAGE STUD, V43, P957, DOI 10.1111/j.1467-6486.2006.00625.x
Allen F., 2021, REV CORPORATE FINANC, V1, P259, DOI DOI 10.1561/114.00000007
[Anonymous], 2001, VENTURE CAPITAL INT
[Anonymous], 2013, VENTURE CAPITAL PRIV
Baker HK, 2021, INT REV FINANC ANAL, V78, DOI 10.1016/j.irfa.2021.101946
Baker HK, 2021, J FUTURES MARKETS, V41, P1027, DOI 10.1002/fut.22211
Baker HK, 2021, J FORECASTING, V40, P577, DOI 10.1002/for.2731
Baker HK, 2021, J CORP FINANC, V66, DOI 10.1016/j.jcorpfin.2020.101572
Baker HK, 2020, FINANC REV, V55, P7, DOI 10.1111/fire.12228
Baker HK, 2020, REV FINANC ECON, V38, P3, DOI 10.1002/rfe.1095
Belleflamme P, 2013, VENTUR CAP, V15, P313, DOI 10.1080/13691066.2013.785151
Bianchini R., 2022, REV CORPORATE FINANC, V2
Block J, 2009, VENTUR CAP, V11, P295, DOI 10.1080/13691060903184803
Bonini S, 2019, VENTUR CAP, V21, P137, DOI 10.1080/13691066.2019.1608697
Brush C.G., 2002, VENTUR CAP, V4, P305
Brush CG, 2006, VENTUR CAP, V8, P15, DOI 10.1080/13691060500433975
Bygrave W.D., 2003, VENTUR CAP, V5, P101, DOI DOI 10.1080/1369106032000097021
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Carter N., 2003, Venture Capital, V5, P1, DOI [https://doi.org/10.1080/1369106032000082586, DOI 10.1080/1369106032000082586]
Clark C, 2008, VENTUR CAP, V10, P257, DOI 10.1080/13691060802151945
Cumming D, 2013, VENTUR CAP, V15, P361, DOI 10.1080/13691066.2013.847635
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Donthu N, 2021, J INT MARKETING, V29, P1, DOI 10.1177/1069031X211004234
Donthu N, 2021, J BUS IND MARK, V36, P1435, DOI 10.1108/JBIM-04-2020-0214
Donthu N, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102307
Feeney L., 1999, Venture Capital, V1, P121, DOI DOI 10.1080/136910699295938
Freear J., 2002, VENTUR CAP, V4, P275
Frydrych D, 2014, VENTUR CAP, V16, P247, DOI 10.1080/13691066.2014.916512
Gabrielsson J., 2002, Venture Capital An International Journal of Entrepreneurial Finance, V4, P125
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Greene PG., 2001, Venture Capital, V3, P63, DOI [DOI 10.1080/13691060118175, 10.1080/13691060118175]
Harrison R., 2000, Venture Capital: An international journal of entrepreneurial finance, V2, P223
Jones O, 2010, VENTUR CAP, V12, P127, DOI 10.1080/13691061003658886
Kenney M, 2019, VENTUR CAP, V21, P35, DOI 10.1080/13691066.2018.1517430
Khan MA, 2021, J BUS RES, V125, P295, DOI 10.1016/j.jbusres.2020.12.015
Kumar S, 2022, CROSS CULT STRATEG M, V29, P171, DOI 10.1108/CCSM-08-2021-0147
Kumar S, 2022, INT J BANK MARK, V40, P341, DOI 10.1108/IJBM-07-2021-0351
Kumar S, 2022, SOC INDIC RES, V162, P413, DOI 10.1007/s11205-021-02847-9
Kumar S, 2021, ELECTRON COMMER RES, V21, P1, DOI 10.1007/s10660-021-09464-1
Lehner OM, 2014, VENTUR CAP, V16, P271, DOI 10.1080/13691066.2014.925305
Lehner OM, 2013, VENTUR CAP, V15, P289, DOI 10.1080/13691066.2013.782624
Lockett A., 1999, Venture Capital, V1, P303, DOI DOI 10.1080/136910699295839
Madill JJ, 2005, VENTUR CAP, V7, P107, DOI 10.1080/1369106042000316341
Manigart S., 2002, Venture Capital, V4, P103, DOI [https://doi.org/10.1080/13691060110103233, DOI 10.1080/13691060110103233]
Mason CM, 2008, VENTUR CAP, V10, P309, DOI 10.1080/13691060802380098
Maula M., 2003, VENTUR CAP, V5, P117, DOI DOI 10.1080/1369106032000087275
Maula M, 2005, VENTUR CAP, V7, P3, DOI 10.1080/1369106042000316332
Murray G., 1999, VENTUR CAP, V1, P351
Pattnaik D, 2022, ECON MODEL, V107, DOI 10.1016/j.econmod.2021.105712
Pattnaik D, 2021, AUST ACCOUNT REV, V31, P150, DOI 10.1111/auar.12332
Pattnaik D, 2020, QUAL RES FINANC MARK, V12, P367, DOI 10.1108/QRFM-09-2019-0103
Pattnaik D, 2020, RES INT BUS FINANC, V54, DOI 10.1016/j.ribaf.2020.101287
Paul S, 2007, VENTUR CAP, V9, P107, DOI 10.1080/13691060601185425
Politis D, 2008, VENTUR CAP, V10, P127, DOI 10.1080/13691060801946147
Shepherd D. A., 1999, Venture Capital: An International Journal of Entrepreneurial Finance, V1, P197, DOI DOI 10.1080/136910699295866
Sohl J.E., 1999, VENTUR CAP, V1s, P101, DOI [10.1080/136910699295929, DOI 10.1080/136910699295929]
Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171
Tomczak A, 2013, VENTUR CAP, V15, P335, DOI 10.1080/13691066.2013.847614
Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375
Treichel MZ, 2006, VENTUR CAP, V8, P51, DOI 10.1080/13691060500453726
Valtakoski A, 2020, J SERV MARK, V34, P8, DOI 10.1108/JSM-12-2018-0359
Van Osnabrugge Mark., 2000, VENTUR CAP, V2, P91, DOI [10.1080/136910600295729, DOI 10.1080/136910600295729]
NR 62
TC 6
Z9 6
U1 2
U2 34
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1369-1066
EI 1464-5343
J9 VENTUR CAP
JI Ventur. Cap.
PD JAN 2
PY 2022
VL 24
IS 1
BP 1
EP 23
DI 10.1080/13691066.2022.2051769
EA MAR 2022
PG 23
WC Business, Finance
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA 1B5OO
UT WOS:000771824000001
DA 2024-09-05
ER
PT J
AU Paris, N
Lamer, A
Parrot, A
AF Paris, Nicolas
Lamer, Antoine
Parrot, Adrien
TI Transformation and Evaluation of the MIMIC Database in the OMOP Common
Data Model: Development and Usability Study
SO JMIR MEDICAL INFORMATICS
LA English
DT Article
DE data reuse; open data; OMOP; common data model; critical care; machine
learning; big data; health informatics; health data; health database;
electronic health records; open access database; digital health;
intensive care; health care
ID CRITICALLY-ILL; VALIDATION; MANAGEMENT; RECORDS; CARE
AB Background: In the era of big data, the intensive care unit (ICU) is likely to benefit from real-time computer analysis and modeling based on close patient monitoring and electronic health record data. The Medical Information Mart for Intensive Care (MIMIC) is the first open access database in the ICU domain. Many studies have shown that common data models (CDMs) improve database searching by allowing code, tools, and experience to be shared. The Observational Medical Outcomes Partnership (OMOP) CDM is spreading all over the world. Objective: The objective was to transform MIMIC into an OMOP database and to evaluate the benefits of this transformation for analysts. Methods: We transformed MIMIC (version 1.4.21) into OMOP format (version 5.3.3.1) through semantic and structural mapping. The structural mapping aimed at moving the MIMIC data into the right place in OMOP, with some data transformations. The mapping was divided into 3 phases: conception, implementation, and evaluation. The conceptual mapping aimed at aligning the MIMIC local terminologies to OMOP's standard ones. It consisted of 3 phases: integration, alignment, and evaluation. A documented, tested, versioned, exemplified, and open repository was set up to support the transformation and improvement of the MIMIC community's source code. The resulting data set was evaluated over a 48-hour datathon. Results: With an investment of 2 people for 500 hours, 64% of the data items of the 26 MIMIC tables were standardized into the OMOP CDM and 78% of the source concepts mapped to reference terminologies. The model proved its ability to support community contributions and was well received during the datathon, with 160 participants and 15,000 requests executed with a Conclusions: The resulting MIMIC-OMOP data set is the first MIMIC-OMOP data set available free of charge with real disidentified data ready for replicable intensive care research. This approach can be generalized to any medical field.
C1 [Paris, Nicolas; Lamer, Antoine; Parrot, Adrien] InterHop, 30 Ave Maine, F-75015 Paris, France.
[Lamer, Antoine] Univ Lille, ULR 2694 METRICS Evaluat Technol Sante & Prat Med, CHU Lille, Lille, France.
C3 Universite de Lille; CHU Lille
RP Paris, N (corresponding author), InterHop, 30 Ave Maine, F-75015 Paris, France.
EM nicolas.paris@riseup.net
RI Lamer, Antoine/AAL-2936-2020; Lamer, Antoine/JEP-7710-2023
OI Lamer, Antoine/0000-0002-9546-1808; Lamer, Antoine/0000-0002-9546-1808;
PARROT, Adrien/0000-0002-9862-1408
FU Massachusetts Institute of Technology; Observational Health Data
Sciences and Informatics community
FX We acknowledge the Massachusetts Institute of Technology and the
Observational Health Data Sciences and Informatics community for their
support.
CR Aboab J, 2016, SCI TRANSL MED, V8, DOI 10.1126/scitranslmed.aad9072
Angus DC, 2000, JAMA-J AM MED ASSOC, V284, P2762, DOI 10.1001/jama.284.21.2762
Azoulay É, 2005, INTENS CARE MED, V31, P56, DOI 10.1007/s00134-004-2484-1
Celi LA, 2016, J MED INTERNET RES, V18, DOI 10.2196/jmir.6365
Chronaki C, 2015, COMPUT CARDIOL CONF, V42, P189, DOI 10.1109/CIC.2015.7408618
Denny JC, 2009, J AM MED INFORM ASSN, V16, P806, DOI 10.1197/jamia.M3037
FitzHenry F, 2015, APPL CLIN INFORM, V6, P536, DOI 10.4338/ACI-2014-12-CR-0121
Gagne JJ, 2015, DRUG SAFETY, V38, P683, DOI 10.1007/s40264-015-0313-9
Garza M, 2016, J BIOMED INFORM, V64, P333, DOI 10.1016/j.jbi.2016.10.016
hl7, WELC FHIR
Hripcsak G, 2015, STUD HEALTH TECHNOL, V216, P574, DOI 10.3233/978-1-61499-564-7-574
Johnson AEW, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.35
Kahn MG, 2012, MED CARE, V50, pS60, DOI 10.1097/MLR.0b013e318259bff4
Karwin B., KEEPING IT SIMPLE RE
Klungel OH, 2016, PHARMACOEPIDEM DR S, V25, P156, DOI 10.1002/pds.3968
Lamer A, 2020, APPL CLIN INFORM, V11, P13, DOI 10.1055/s-0039-3402754
Li PY, 2017, JMIR MED INF, V5, DOI 10.2196/medinform.7380
Logical Observation Identifiers Names and Codes, LOINC VERS 2 63 RELM
Luo EM, 2021, BMJ INNOV, V7, P231, DOI 10.1136/bmjinnov-2020-000492
Madigan D, 2013, AM J EPIDEMIOL, V178, P645, DOI 10.1093/aje/kwt010
Maier C, 2018, APPL CLIN INFORM, V9, P54, DOI 10.1055/s-0037-1617452
Meystre S M, 2017, Yearb Med Inform, V26, P38, DOI 10.15265/IY-2017-007
MIT Laboratory for Computational Physiology, MIT LCP MIM OM
MIT Laboratory for Computational Physiology, MIT LCP MIM COD
Moody DL, 2003, INFORM SYST, V28, P619, DOI 10.1016/S0306-4379(02)00043-1
Morgenstern H, 2017, J AUDIO ENG SOC, V65, P42, DOI 10.17743/jaes.2016.0063
Observational Health Data Sciences and Informatics, OHDSI ACH
Observational Health Data Sciences and Informatics, OHDSI US
Observational Health Data Sciences and Informatics, OHDSI FOR
Observational Health Data Sciences and Informatics, 2021, OHDSI OBS HLTH DAT S
OMOPonFHIR, FHIR PROJ GEORG TECH
Overhage JM, 2012, J AM MED INFORM ASSN, V19, P54, DOI 10.1136/amiajnl-2011-000376
Platt R, 2018, JAMA-J AM MED ASSOC, V320, P753, DOI 10.1001/jama.2018.9342
Reich C, 2012, J BIOMED INFORM, V45, P689, DOI 10.1016/j.jbi.2012.05.002
Ross M K, 2014, Yearb Med Inform, V9, P97, DOI 10.15265/IY-2014-0003
Safran C, 2014, Yearb Med Inform, V9, P52, DOI 10.15265/IY-2014-0013
Shamsuzzoha B, CONVERSION MIMIC OHD
U.S. National Library of Medicine, ICD 9 900 DIAGN COD
Vincent JL, 2006, PLOS MED, V3, P1488, DOI 10.1371/journal.pmed.0030346
Xu YH, 2015, DRUG SAFETY, V38, P749, DOI 10.1007/s40264-015-0297-5
Yoon D, 2016, HEALTHC INFORM RES, V22, P54, DOI 10.4258/hir.2016.22.1.54
Zhang Y, 2016, CHINESE MED J-PEKING, V129, P731, DOI 10.4103/0366-6999.178019
NR 42
TC 10
Z9 11
U1 0
U2 2
PU JMIR PUBLICATIONS, INC
PI TORONTO
PA 130 QUEENS QUAY E, STE 1102, TORONTO, ON M5A 0P6, CANADA
EI 2291-9694
J9 JMIR MED INF
JI JMIR Med. Inf.
PD DEC
PY 2021
VL 9
IS 12
AR e30970
DI 10.2196/30970
PG 14
WC Medical Informatics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Medical Informatics
GA YA8SQ
UT WOS:000738596600015
PM 34904958
OA Green Submitted, Green Published, gold
DA 2024-09-05
ER
PT J
AU Edelaar-Peeters, Y
Putter, H
Snoek, GJ
Sluis, TAR
Smit, CAJ
Post, MWM
Stiggelbout, AM
AF Edelaar-Peeters, Yvette
Putter, Hein
Snoek, Govert J.
Sluis, Tebbe A. R.
Smit, Christof A. J.
Post, Marcel W. M.
Stiggelbout, Anne M.
TI The Influence of Time and Adaptation on Health State Valuations in
Patients With Spinal Cord Injury
SO MEDICAL DECISION MAKING
LA English
DT Article
DE affect and emotion; heuristics and biases; utility assessment; utility
measurement; Health-Related Quality of Life; cognitive psychology;
EQ-5D; health state preferences; utilities; valuations; outcomes
research
ID QUALITY-OF-LIFE; SATISFACTION; REHABILITATION; PREFERENCES; ADJUSTMENT;
EXPERIENCE; PREDICTORS; UTILITIES; IMPACT
AB Objectives: One of the explanations for the difference between health state utilities elicited from patients and the public-often provided but seldom studied-is adaptation. The influence of adaptation on utilities was investigated in patients with spinal cord injury. Methods: Interviews were held at 3 time points (T1, after admission to the rehabilitation center; T2, during active rehabilitation; T3, at least half a year after discharge). At T1, 60 patients were interviewed; 10 patients withdrew at T2 and T3. At all time points, patients were asked to value their own health and a health state description of rheumatoid arthritis on a time trade-off and a visual analogue scale. The Barthel Index, a measure of independence from help in activities of daily living, and the adjustment ladder were filled out. Main analyses were performed using mixed linear models taking the time-dependent covariates (Barthel Index and adjustment ladder) into account. Results: Time trade-off valuations for patients' own health changed over time, even after correction for gain in independence from help in activities of daily living, F(2, 59) = 8.86, P < 0.001. This change was related to overall adaptation. Both a main effect for adaptation, F(87, 1) = 10.05; P = 0.002, and an interaction effect between adaptation and time, F(41, 1)= 4.10, P = 0.024, were seen for time trade-off valuations. Valuations given for one's own health on the visual analogue scale did not significantly change over time, nor did the valuations for the hypothetical health state. Conclusion: Patients' health state valuations change over time, over and above the change expected by the rehabilitation process, and this change is partly explained by adaptation. Experience with a chronic illness did not lead to change in valuations of hypothetical health states.
C1 [Edelaar-Peeters, Yvette; Stiggelbout, Anne M.] Leiden Univ, Med Ctr, Dept Med Decis Making, NL-2300 RC Leiden, Netherlands.
[Putter, Hein] Leiden Univ, Med Ctr, Dept Med Stat & Bioinformat, NL-2300 RC Leiden, Netherlands.
[Snoek, Govert J.] Rehabil Ctr Het Roessingh & Roessingh Res & Dev, Enschede, Netherlands.
[Sluis, Tebbe A. R.] Rijndam Rehabil Ctr Rotterdam, Rotterdam, Netherlands.
[Smit, Christof A. J.] Reade, Ctr Rehabil & Rheumatol, Amsterdam, Netherlands.
[Post, Marcel W. M.] Univ Med Ctr, Rudolf Magnus Inst Neurosci, Utrecht, Netherlands.
[Post, Marcel W. M.] Univ Med Ctr, Ctr Excellence Rehabil Med, Utrecht, Netherlands.
C3 Leiden University - Excl LUMC; Leiden University; Leiden University
Medical Center (LUMC); Leiden University; Leiden University Medical
Center (LUMC); Leiden University - Excl LUMC; Utrecht University;
Utrecht University Medical Center; Utrecht University; Utrecht
University Medical Center
RP Edelaar-Peeters, Y (corresponding author), Leiden Univ, Med Ctr, Dept Med Decis Making, POB 9600, NL-2300 RC Leiden, Netherlands.
EM y.peeters@lumc.nl
RI Post, Marcel/AAS-2502-2021; Stiggelbout, Anne/D-2293-2018; Putter,
Hein/C-2244-2018
OI Stiggelbout, Anne/0000-0002-6293-4509; Post, Marcel/0000-0002-2205-9404;
Putter, Hein/0000-0001-5395-1422
FU VIDI award of the Netherlands Organization for Scientific Research,
Innovational Research Incentives Scheme [917.56.356]
FX Y. Peeters and A. M. Stiggelbout were entirely supported by a VIDI award
of the Netherlands Organization for Scientific Research, Innovational
Research Incentives Scheme (grant 917.56.356). This study was presented
at the 12th biennial meeting of the Society for Medical Decision Making,
Europe, 2008. Revision accepted for publication 1 February 2012.
CR Centraal Bureau voor de statistiek, 2007, OV NAAR LEEF TIJD GE
COLLIN C, 1987, INT J REHABIL RES, V10, P356
CREWE NM, 1990, REHABIL PSYCHOL, V35, P205, DOI 10.1037/h0079064
Damschroder LJ, 2008, HEALTH PSYCHOL, V27, P394, DOI 10.1037/0278-6133.27.3.394
Damschroder LJ, 2005, SOC SCI MED, V61, P267, DOI 10.1016/j.socscimed.2004.11.060
Dolan P, 1996, J CLIN EPIDEMIOL, V49, P551, DOI 10.1016/0895-4356(95)00532-3
Folkman S, 2000, AM PSYCHOL, V55, P647, DOI 10.1037//0003-066X.55.6.647
Frederick S., 1999, Well-being: The foundations of hedonic psychology, P302
Gilbert DT, 1998, J PERS SOC PSYCHOL, V75, P617, DOI 10.1037/0022-3514.75.3.617
Jansen SJT, 2001, MED DECIS MAKING, V21, P295, DOI 10.1177/02729890122062596
Knight SJ, 2007, J PALLIAT MED, V10, P1190, DOI 10.1089/jpm.2006.0068
Lazarus, 1984, STRESS APPRAISAL
Lucke KT, 2004, QUAL LIFE RES, V13, P97, DOI 10.1023/B:QURE.0000015284.95515.17
Mortenson WB, 2010, SPINAL CORD, V48, P73, DOI 10.1038/sc.2009.92
Peeters Y, 2010, VALUE HEALTH, V13, P306, DOI 10.1111/j.1524-4733.2009.00610.x
Post M W, 1995, Ned Tijdschr Geneeskd, V139, P1376
Post MWM, 1998, SCAND J REHABIL MED, V30, P23
Post MWM, 1998, ARCH PHYS MED REHAB, V79, P395, DOI 10.1016/S0003-9993(98)90139-3
Riis J, 2005, J EXP PSYCHOL GEN, V134, P3, DOI 10.1037/0096-3445.134.1.3
Robinson A, 1997, SOC SCI MED, V45, P1289, DOI 10.1016/S0277-9536(97)00057-9
Salkeld G, 2000, HEALTH ECON, V9, P267, DOI 10.1002/(SICI)1099-1050(200004)9:3<267::AID-HEC511>3.0.CO;2-H
Stalmeier PFM, 2007, MED CARE, V45, P835, DOI 10.1097/MLR.0b013e3180ca9ac5
Stiggelbout AM, 2008, VALUE HEALTH, V11, P76, DOI 10.1111/j.1524-4733.2007.00216.x
Tedeschi RG, 1996, J TRAUMA STRESS, V9, P455, DOI 10.1002/jts.2490090305
Ubel PA, 2005, J EXP PSYCHOL-APPL, V11, P111, DOI 10.1037/1076-898X.11.2.111
Ubel PA, 2003, QUAL LIFE RES, V12, P599, DOI 10.1023/A:1025119931010
van Koppenhagen CF, 2009, AM J PHYS MED REHAB, V88, P887, DOI 10.1097/PHM.0b013e3181b71afe
Wilson TD, 2005, CURR DIR PSYCHOL SCI, V14, P131, DOI 10.1111/j.0963-7214.2005.00355.x
NR 28
TC 5
Z9 5
U1 0
U2 8
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0272-989X
J9 MED DECIS MAKING
JI Med. Decis. Mak.
PD NOV-DEC
PY 2012
VL 32
IS 6
BP 805
EP 814
DI 10.1177/0272989X12447238
PG 10
WC Health Care Sciences & Services; Health Policy & Services; Medical
Informatics
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Health Care Sciences & Services; Medical Informatics
GA 046YV
UT WOS:000311802700007
PM 22622845
DA 2024-09-05
ER
PT J
AU Mathew, G
Agrawal, A
Menzies, T
AF Mathew, George
Agrawal, Amritanshu
Menzies, Tim
TI Finding Trends in Software Research
SO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
LA English
DT Article
DE Software engineering; Conferences; Software; Analytical models; Data
models; Predictive models; Testing; bibliometrics; topic modeling; text
mining
ID RESEARCH TOPICS; INSTITUTIONS; EVOLUTION; RANKING; GENDER
AB Text mining methods can find large scale trends within research communities. For example, using stable Latent Dirichlet Allocation (a topic modeling algorithm) this study found 10 major topics in 35,391 SE research papers from 34 leading SE venues over the last 25 years (divided, evenly, between conferences and journals). Out study also shows how those topics have changed over recent years. Also, we note that (in the historical record) mono-focusing on a single topic can lead to fewer citations than otherwise. Further, while we find no overall gender bias in SE authorship, we note that women are under-represented in the top-most cited papers in our field. Lastly, we show a previously unreported dichotomy between software conferences and journals (so research topics that succeed at conferences might not succeed at journals, and vice versa). An important aspect of this work is that it is automatic and quickly repeatable (unlike prior SE bibliometric studies that used tediously slow and labor intensive methods). Automation is important since, like any data mining study, its conclusions are skewed by the data used in the analysis. The automatic methods of this paper make it far easier for other researchers to re-apply the analysis to new data, or if they want to use different modeling assumptions.
C1 [Mathew, George; Agrawal, Amritanshu; Menzies, Tim] North Carolina State Univ NCSU, Dept Comp Sci CS, Raleigh, NC 27695 USA.
C3 North Carolina State University
RP Menzies, T (corresponding author), North Carolina State Univ NCSU, Dept Comp Sci CS, Raleigh, NC 27695 USA.
EM george.meg91@gmail.com; aagrawa8@ncsu.edu; timm@ieee.org
RI Menzies, Tim/X-7680-2019; Agrawal, Amritanshu/R-7093-2019
OI Menzies, Tim/0000-0002-5040-3196; Agrawal,
Amritanshu/0000-0002-1220-8533
CR Agrawal A, 2018, INFORM SOFTWARE TECH, V98, P74, DOI 10.1016/j.infsof.2018.02.005
Al-Zubidy A., 2014, SERG201403 U AL DEP
[Anonymous], 2010, P 32 ACM IEEE INT C
[Anonymous], 2013, Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE'13, Saint Petersburg, Russian Federation, August 18-26, 2013
Arcuri A, 2011, 2011 33RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), P1, DOI 10.1145/1985793.1985795
Asuncion A., 2009, C UNC ART INT UAI QU, P27, DOI DOI 10.1080/10807030390248483
Bin Noor T, 2015, 2015 IEEE 1ST INTERNATIONAL WORKSHOP ON SOFTWARE ANALYTICS (SWAN), P13, DOI 10.1109/SWAN.2015.7070482
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Cai KY, 2008, J SYST SOFTWARE, V81, P1051, DOI 10.1016/j.jss.2007.08.028
Carreño LVG, 2013, PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013), P582, DOI 10.1109/ICSE.2013.6606604
Datta Subhajit, 2016, IEEE Transactions on Big Data, V2, P124, DOI 10.1109/TBDATA.2016.2580541
Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171
Efron B., 1993, An Introduction to the Bootstrap, DOI 10.1007/978-1-4899-4541-9
Fernandes JM, 2014, SCIENTOMETRICS, V101, P257, DOI 10.1007/s11192-014-1331-6
Fu W, 2016, INFORM SOFTWARE TECH, V76, P135, DOI 10.1016/j.infsof.2016.04.017
Garousi V., 2010, Computer and Information Science, V3, P19, DOI DOI 10.1142/S0218194013500423
Garousi V, 2016, COMPUT SCI REV, V19, P56, DOI 10.1016/j.cosrev.2015.12.002
Garousi V, 2016, INFORM SOFTWARE TECH, V71, P108, DOI 10.1016/j.infsof.2015.11.003
Garousi V, 2015, SCIENTOMETRICS, V105, P23, DOI 10.1007/s11192-015-1663-x
Garousi V, 2013, INT J SOFTW ENG KNOW, V23, P1343, DOI 10.1142/S0218194013500423
Geunseok Yang, 2015, KIISE Transactions on Computing Practices, V21, P616, DOI 10.5626/KTCP.2015.21.9.616
Glass RL, 2005, J SYST SOFTWARE, V76, P91, DOI 10.1016/j.jss.2004.08.018
Google Scholar, ABOUT US
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Guzman E, 2014, INT REQUIR ENG CONF, P153, DOI 10.1109/RE.2014.6912257
Hamadicharef B, 2012, ADV INTEL SOFT COMPU, V144, P101
Hoonlor A, 2013, COMMUN ACM, V56, P74, DOI 10.1145/2500892
Hummel O., 2013, COMPUT INF SCI, V6
Marshall Christopher, 2013, 2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), P296, DOI 10.1109/ESEM.2013.32
Massey AK, 2013, S VIS LANG HUM CEN C, P4, DOI 10.1109/RE.2013.6636700
Mathew G, 2017, PROC IEEE ACM INT C, P397, DOI 10.1109/ICSE-C.2017.52
Minka T.P., 2002, Uncertainty in Artificial Intelligence, P352
Mullner D., 2011, Modern hierarchical, agglomerative clustering algorithms
Nikolenko SI, 2017, J INF SCI, V43, P88, DOI 10.1177/0165551515617393
Oliveto Rocco, 2010, Proceedings of the 18th IEEE International Conference on Program Comprehension (ICPC 2010), P68, DOI 10.1109/ICPC.2010.20
Panichella A, 2013, PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2013), P522, DOI 10.1109/ICSE.2013.6606598
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
Ren J, 2007, COMMUN ACM, V50, P81, DOI 10.1145/1247001.1247010
Researchgate, SHAR DISC RES
Restificar A, 2012, PROCEEDINGS OF THE ACM SIXTH INTERNATIONAL WORKSHOP ON DATA AND TEXT MINING IN BIOMEDICAL INFORMATICS, P21
Roberts SG, 2016, J LANG EVOL, V1, P163, DOI 10.1093/jole/lzw009
Robles Gregorio., 2014, Proceedings of the 11th Working Conference on Mining Software Repositories, P222
Sarkar S, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1251, DOI 10.1145/3041021.3053051
Storn R, 1997, J GLOBAL OPTIM, V11, P341, DOI 10.1023/A:1008202821328
Sun XB, 2016, 2016 17TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), P357, DOI 10.1109/SNPD.2016.7515925
Sun XB, 2015, INFORM SOFTWARE TECH, V66, P1, DOI 10.1016/j.infsof.2015.05.003
Systa T., 2012, INBREEDING SOFTWARE
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Terrell J, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.111
The ACM digital library, US
Thomas SW, 2014, EMPIR SOFTW ENG, V19, P182, DOI 10.1007/s10664-012-9219-7
Thomas SW, 2014, SCI COMPUT PROGRAM, V80, P457, DOI 10.1016/j.scico.2012.08.003
Tsafnat G, 2014, SYST REV-LONDON, V3, DOI 10.1186/2046-4053-3-74
Vasilescu B, 2014, INTERACT COMPUT, V26, P488, DOI 10.1093/iwc/iwt047
Vasilescu B, 2014, SCI COMPUT PROGRAM, V89, P251, DOI 10.1016/j.scico.2014.01.016
West J., 2012, WOMEN ACAD AUTHORS 1
Wohlin C, 2007, INFORM SOFTWARE TECH, V49, P2, DOI 10.1016/j.infsof.2006.08.004
Yuanyuan Zhang, 2015, Search-Based Software Engineering. 7th International Symposium, SSBSE 2015. Proceedings: LNCS 9275, P301, DOI 10.1007/978-3-319-22183-0_27
NR 58
TC 13
Z9 13
U1 7
U2 27
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 0098-5589
EI 1939-3520
J9 IEEE T SOFTWARE ENG
JI IEEE Trans. Softw. Eng.
PD APR 1
PY 2023
VL 49
IS 4
BP 1397
EP 1410
DI 10.1109/TSE.2018.2870388
PG 14
WC Computer Science, Software Engineering; Engineering, Electrical &
Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA E9NM9
UT WOS:000978723600001
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Zhang, YY
Jin, SX
Li, DG
Chen, GQ
Chen, YL
Xia, QM
Mao, QJ
Li, YL
Yang, J
Fan, XX
Lin, H
AF Zhang, Yiyin
Jin, Shengxi
Li, Duguang
Chen, Guoqiao
Chen, Yongle
Xia, Qiming
Mao, Qijiang
Li, Yiling
Yang, Jing
Fan, Xiaoxiao
Lin, Hui
TI A Machine-Learning-Based Bibliometric Analysis of Cell Membrane-Coated
Nanoparticles in Biomedical Applications over the Past Eleven Years
SO GLOBAL CHALLENGES
LA English
DT Article
DE bibliometrics; cell membrane encapsulation; medical applications;
nanoparticles
ID ERYTHROCYTE-MEMBRANE
AB Cell membrane encapsulation is a growing concept in nanomedicine, for it achieves the purpose of camouflage nanoparticles, realizing the convenience for drug delivery, bio-imaging, and detoxification. Cell membranes are constructed by bilayer lipid phospholipid layers, which have unique properties in cellular uptake mechanism, targeting ability, immunomodulation, and regeneration. Current medical applications of cell membranes include cancers, inflammations, regenerations, and so on. In this article, a general bibliometric overview is conducted of cell membrane-coated nanoparticles covering 11 years of evolution in order to provide researchers in the field with a comprehensive view of the relevant achievements and trends. The authors analyze the data from Web of Science Core Collection database, and extract the annual publications and citations, most productive countries/regions, most influential scholars, the collaborations of journals and institutions. The authors also divided cell membranes into several subgroups to further understand the application of different cell membranes in medical scenarios. This study summarizes the current research overview in cell membrane-coated nanoparticles and intuitively provides a direction for future research.
C1 [Zhang, Yiyin; Jin, Shengxi; Li, Duguang; Chen, Guoqiao; Chen, Yongle; Xia, Qiming; Mao, Qijiang; Li, Yiling; Yang, Jing; Fan, Xiaoxiao; Lin, Hui] Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Dept Gen Surg, Hangzhou 310016, Peoples R China.
[Lin, Hui] Zhejiang Univ, Sir Run Run Shaw Hosp, Zhejiang Engn Res Ctr Cognit Healthcare, Sch Med, Hangzhou 310016, Peoples R China.
C3 Zhejiang University; Zhejiang University
RP Fan, XX; Lin, H (corresponding author), Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Dept Gen Surg, Hangzhou 310016, Peoples R China.; Lin, H (corresponding author), Zhejiang Univ, Sir Run Run Shaw Hosp, Zhejiang Engn Res Ctr Cognit Healthcare, Sch Med, Hangzhou 310016, Peoples R China.
EM fanxx_gs@zju.edu.cn; 369369@zju.edu.cn
RI Liu, Yuan/JFB-4766-2023; li, yang/IQV-3559-2023; li,
chunyuan/IQW-1618-2023; wang, yingying/JSK-6741-2023; WANG,
YANG/JFA-8821-2023; Yang, Jing/HZJ-2451-2023; jing, yang/JDV-8487-2023;
Wang, lili/IXD-9828-2023; zhang, xiao/JCN-8822-2023; wang,
yu/IUQ-6654-2023; li, jing/JEF-8436-2023; Wang, Yanlin/JGC-6782-2023;
liu, jiaming/IWE-3196-2023; lu, yang/IWE-3635-2023; liu,
bing/JJD-5566-2023; liu, huan/JKI-3764-2023; .., What/IXW-6776-2023; LI,
XIAO/JCE-6169-2023; Zhang, Yunyi/JHS-3626-2023; wang, wei/JBS-7400-2023
FU National Natural Science Foundation of China [81874059, 82102105];
Natural Science Foundation of Zhejiang Province [LQ22H160017]; China
Postdoctoral Science Foundation [2021M702825]
FX Acknowledgements Thanks for the help of Figdraw developed by HOME for
Researchers. Table of contents image drawn with assistance from Figdraw.
This work was supported by the National Natural Science Foundation of
China (81874059 and 82102105), the Natural Science Foundation of
Zhejiang Province (LQ22H160017), and the China Postdoctoral Science
Foundation (2021M702825).
CR Aria M, 2021, ANIM COGN, V24, P541, DOI 10.1007/s10071-020-01448-2
Arkaban H, 2022, POLYMERS-BASEL, V14, DOI 10.3390/polym14061259
Chen CM, 2004, P NATL ACAD SCI USA, V101, P5303, DOI 10.1073/pnas.0307513100
Chen WS, 2016, NANOSCALE, V8, P10364, DOI 10.1039/c6nr00535g
Fang RH, 2014, NANO LETT, V14, P2181, DOI 10.1021/nl500618u
Gao WW, 2015, NANO LETT, V15, P1403, DOI 10.1021/nl504798g
Ge Y., 2022, HYDROMETALLURGY, V47
Gou SS, 2021, NANO LETT, V21, P9939, DOI 10.1021/acs.nanolett.1c03243
Han YT, 2019, ADV SCI, V6, DOI 10.1002/advs.201900251
Hu CMJ, 2015, NATURE, V526, P118, DOI 10.1038/nature15373
Hu CMJ, 2011, P NATL ACAD SCI USA, V108, P10980, DOI 10.1073/pnas.1106634108
Hu QY, 2016, ADV MATER, V28, P9573, DOI 10.1002/adma.201603463
Jiang Q, 2020, SMALL, V16, DOI 10.1002/smll.202001704
Jiang Y, 2020, ADV MATER, V32, DOI 10.1002/adma.202001808
Kho ME, 2012, J CLIN EPIDEMIOL, V65, P996, DOI 10.1016/j.jclinepi.2012.03.008
Li PY, 2018, BIOCONJUGATE CHEM, V29, P624, DOI 10.1021/acs.bioconjchem.7b00669
Liu D, 2022, IMMUNOL REV, V306, P25, DOI 10.1111/imr.13055
Meng QF, 2018, NANOTECHNOLOGY, V29, DOI 10.1088/1361-6528/aaa7c7
Park JH, 2022, ANGEW CHEM INT EDIT, V61, DOI 10.1002/anie.202113671
Parodi A, 2013, NAT NANOTECHNOL, V8, P61, DOI 10.1038/nnano.2012.212
Patel RB, 2019, ADV MATER, V31, DOI 10.1002/adma.201902626
Peng LH, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aba2735
Piao JG, 2014, ACS NANO, V8, P10414, DOI 10.1021/nn503779d
Pitchaimani A, 2018, BIOMATERIALS, V160, P124, DOI 10.1016/j.biomaterials.2018.01.018
Rao L, 2018, ANGEW CHEM INT EDIT, V57, P986, DOI 10.1002/anie.201709457
Raza F., 2022, NEUROTOX RES, V1, P199
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang DD, 2018, ACS NANO, V12, P5241, DOI 10.1021/acsnano.7b08355
Wang F., 2021, OPT MATER, V13, P14636
Wang ZH, 2019, ADV SCI, V6, DOI 10.1002/advs.201802246
Xiong JQ, 2021, ACS NANO, V15, P19756, DOI 10.1021/acsnano.1c07180
Xuan MJ, 2015, ADV HEALTHC MATER, V4, P1645, DOI 10.1002/adhm.201500129
Yang BB, 2022, NAT MATER, V21, P1074, DOI 10.1038/s41563-022-01274-6
Yang R, 2018, ACS NANO, V12, P5121, DOI 10.1021/acsnano.7b09041
Yao C, 2020, BIOMATERIALS, V257, DOI 10.1016/j.biomaterials.2020.120256
Yao H., 2021, LAND-BASEL, V351, P145
Zafar H., 2023, BIOMATER SCI-UK, V2, P41
Zhang G, 2020, MBIO, V11, DOI 10.1128/mBio.00903-20
Zhang Y, 2018, NANO LETT, V18, P1908, DOI 10.1021/acs.nanolett.7b05263
Zhang Y, 2017, ACS NANO, V11, P11923, DOI 10.1021/acsnano.7b06968
Zhao YN, 2021, BIOMACROMOLECULES, V22, P3149, DOI 10.1021/acs.biomac.1c00440
Zou MZ, 2021, NANO LETT, V21, P8609, DOI 10.1021/acs.nanolett.1c02482
NR 42
TC 0
Z9 0
U1 4
U2 17
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
EI 2056-6646
J9 GLOB CHALL
JI Glob. Chall.
PD APR
PY 2023
VL 7
IS 4
DI 10.1002/gch2.202200206
EA FEB 2023
PG 13
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA J7NA2
UT WOS:000935244400001
PM 37020629
OA gold, Green Published
DA 2024-09-05
ER
PT C
AU Aparicio, G
Catalán, E
AF Aparicio, Gloria
Catalan, Elena
BE Chova, LG
Martinez, AL
Torres, IC
TI THE CURRENT STATE OF STUDENT ENGAGEMENT AT UNIVERSITIES. REVIEW OF IATED
CONGRESS PAPERS (2011-2015)
SO EDULEARN16: 8TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING
TECHNOLOGIES
SE EDULEARN Proceedings
LA English
DT Proceedings Paper
CT 8th International Conference on Education and New Learning Technologies
(EDULEARN)
CY JUL 04-06, 2016
CL Barcelona, SPAIN
DE Student Engagement; Active Learning and Teaching Methodologies;
Bibliometric Review
ID HIGHER-EDUCATION
AB The impact of recent generations who have grown in up in an information society is displacing the concept of teachers' roles in conveying and transferring knowledge. Neither students nor instructors have ever had access to such accurate, diverse and multidisciplinary means for the teaching-learning process. However, never has there been such a large distance separating them or such unease.
Globalisation has changed the structure of production since the 1990s, creating the need for people with high capacity to adapt to changes that occur in companies and the economy in general. Simultaneously, the information society has drastically revolutionised interpersonal paradigms as well as access to knowledge, causing deep social, political and economic transformations. In this context of rapid change, the university as an institution, and the various levels of its organisation have also been plunged into a paradigm adaption process in order to integrate into the system.
In the particular case of adaptation of the Spanish university system to the EHEA (European Higher Education Area), lecturers' direct involvement in the process due to their relationship with students has led them to rethink education. This has required shifting from a lecturer-centred model to a student-centred one. In view of the challenge involving such a profound cultural change for universities, which are organisationally complex, endeavours have been made to give the new model more flexible guidelines by earmarking resources for training to transform methodology. However, this entire process has taken place in a context of economic crisis. Teachers have therefore often had to assume major changes as per the time and effort devoted while also working with facilities that have not been adapted to the new methodologies due to lack of investment in infrastructures. In effect, it has been necessary to accept changes without any budgetary support, above all in public education where constant cutbacks have limited possibilities for action.
Involving, motivating, making students participate and ultimately achieving their academic and emotional engagement in their own learning process and recognition of the university are the challenges that today's universities must face. This takes place within a broader movement with deep international implications, the so called Student Engagement, which is still somewhat only tentatively seen on the Spanish university panorama. However, it is becoming increasingly important from the perspective of research, education, theory and debate on its content as well as teaching praxis due to the growing evidence of its critical role in students' success and learning.
The main contribution of this work consists of analysis of the content of papers given at IATED congresses in the last five years. The texts are organised by year, county, and theme to draw conclusions on the main ideas we observe, focusing on an overall view of each group of studies conducted on Student Engagement. We consider this as the current state of the issue or roadmap of the topic in the leading congresses on education innovation in Spain where the events were organised and also on the international scene.
C1 [Aparicio, Gloria; Catalan, Elena] Univ Basque Country UPV EHU, Leioa, Spain.
C3 University of Basque Country
RP Aparicio, G (corresponding author), Univ Basque Country UPV EHU, Leioa, Spain.
RI Aparicio, Gloria/L-1866-2017
OI Aparicio, Gloria/0000-0001-6878-3353
CR ASTIN AW, 1984, J COLL STUDENT DEV, V25, P297
Coates H., 2010, HIGH EDUC, V60, P121
Johnson M.K., 2001, ANN M AM ED RES ASS
Kahu ER, 2013, STUD HIGH EDUC, V38, P758, DOI 10.1080/03075079.2011.598505
Kember D, 1997, LEARN INSTR, V7, P255, DOI 10.1016/S0959-4752(96)00028-X
Kuh G., 2003, NATL SURVEY STUDENT
Kuh George D., 2001, The National Survey of Student Engagement: Conceptual framework and overview of Psychometric Properties
Trowler P., 2010, STUDENT ENGAGEMENT E
NR 8
TC 0
Z9 0
U1 0
U2 3
PU IATED-INT ASSOC TECHNOLOGY EDUCATION A& DEVELOPMENT
PI VALENICA
PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN
SN 2340-1117
BN 978-84-608-8860-4
J9 EDULEARN PROC
PY 2016
BP 5889
EP 5894
PG 6
WC Education & Educational Research; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BH7TE
UT WOS:000402955905149
DA 2024-09-05
ER
PT C
AU Rúbio, TRPM
Gulo, CASJ
AF Rubio, Thiago R. P. M.
Gulo, Carlos A. S. J.
BE Rocha, A
Reis, LP
Cota, MP
Suarez, OS
Goncalves, R
TI Enhancing Academic Literature Review through Relevance Recommendation
Using Bibliometric and Text-based Features for Classification
SO 2016 11TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES
(CISTI)
SE Iberian Conference on Information Systems and Technologies
LA English
DT Proceedings Paper
CT 11th Iberian Conference on Information Systems and Technologies (CISTI)
CY JUN 15-18, 2016
CL SPAIN
DE Systematic Literature Review (SLR); Machine Learning; Classification;
Text Mining; Bibliometric
AB The growing number of scientific publications and the availability of information in online repositories enable researchers to discover, analyze and maintain an updated state of the art bibliography. Indeed, few works explore this scenario in order to support researchers on the literature review step. Literature reviewing comprises a fundamental part of the scientific writing, in which publications are evaluated and selected by relevance. Different approaches for relevance are possible, whether a more qualitative (semantic) approach with text-based techniques either more quantitative (numerical) approaches that use article's metadata, such as bibliometric measures. Bibliometrics provide direct evidences of relevance and could represent good attributes for automatic classification. Our insight is that if a bibliometric-based cannot outperform text-based approaches, a hybrid model using both could benefit from it enhancing the classification performance (in terms of accuracy, precision and recall). In this paper we presented a novel approach, using Machine Learning (ML), namely the ID3 algorithm for a classification model that learn from specialist annotated data and recommend relevant papers for a specific research. Experiments showed good results on learning performance when using a hybrid approach, increasing testing performance in 12%, achieving 89.05% in accuracy when classifying a paper as relevant.
C1 [Rubio, Thiago R. P. M.] Univ Porto, Fac Engn, DEI, LIACC Artificial Intelligence & Comp Sci Lab, Oporto, Portugal.
[Gulo, Carlos A. S. J.] Univ Porto, Fac Engn, UNEMAT Brazil, PIXEL Res Grp, Oporto, Portugal.
C3 Universidade do Porto; Universidade do Porto
RP Rúbio, TRPM (corresponding author), Univ Porto, Fac Engn, DEI, LIACC Artificial Intelligence & Comp Sci Lab, Oporto, Portugal.
EM reis.thiago@fe.up.pt; sander@unemat.br
CR Bertin M., 2014, PLOS NEGLECT TROP D, V1, P920
Blei D. M., 2005, ADV NEURAL INFORM PR, V18, P147
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Chen CM, 2006, J AM SOC INF SCI TEC, V57, P359, DOI 10.1002/asi.20317
Cronin B., 2005, The hand of science: Academic writing and its rewards. Lanham
De Bellis N, 2009, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics
Demmer-Fushman D., 2005, AMIA ANN S P ARCH
Dhingra V., 2012, IJWEST, V3, P121
Gulo C. A. S. J., 2015, P 10 DOCT S INF ENG
Gulo C. A. S. J., 2015, OASICS OPENACCESS SE
Jeonghee Y., 2000, INT DAT ENG APPL S
LAWANI SM, 1986, SCIENTOMETRICS, V9, P13, DOI 10.1007/BF02016604
Li DC, 2013, IEEE INT C BIOINF BI
Manning C. D., 2014, 52 ANN M ACL SYST DE
Mayr P., 2014, ADV INFORM RETRIEVAL, V9022, P845
McCallum Andrew Kachites, 2002, MALLET: A machine learning for language toolkit
Moed H, 2014, SCIENTOMETRICS, V101, P1987, DOI 10.1007/s11192-014-1307-6
Okoli C, 2015, COMMUN ASSOC INF SYS, V37, P879
White HD, 2007, J AM SOC INF SCI TEC, V58, P583, DOI 10.1002/asi.20542
NR 19
TC 0
Z9 0
U1 0
U2 9
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2166-0727
BN 978-989-98434-6-2
J9 IBER CONF INF SYST
PY 2016
PG 6
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Engineering
GA BF6BA
UT WOS:000382923300256
DA 2024-09-05
ER
PT J
AU Cheng, CH
Holsapple, CW
Lee, A
AF Cheng, CH
Holsapple, CW
Lee, A
TI Citation-based journal rankings for AI research - A business perspective
SO AI MAGAZINE
LA English
DT Article
AB A significant and growing area of business-computing research is concerned with AI. Knowledge about which journals are the most influential forums for disseminating AI research is important for business school faculty, students, administrators, and librarians. To date, there has been only one study attempting to rank AI journals from a business-computing perspective. It used a subjective methodology, surveying opinions of business faculty about a prespecified list of 30 journals. Here, we report the results of a more objective study. We conducted a citation analysis covering a time period of 5 years to compile 15,600 citations to 1,244 different journals. Based on these data, the journals are ranked in two ways involving the magnitude and the duration of scientific impact each has had in the field of AI.
C1 UNIV KENTUCKY,LEXINGTON,KY 40506.
C3 University of Kentucky
RP Cheng, CH (corresponding author), CHINESE UNIV HONG KONG,SHATIN,HONG KONG.
RI Cheng, Chun-Hung/F-6113-2011; holsapple, c w/A-6342-2013; Holsapple,
Clyde W/A-2338-2008
CR [Anonymous], 1993, KNOWLEDGE PROCESSING
BOBROW DG, 1993, ARTIF INTELL, V59, P5, DOI 10.1016/0004-3702(93)90163-6
CHENG CH, 1995, EXPERT SYST, V12, P1
COOPER RB, 1993, INFORM PROCESS MANAG, V29, P113, DOI 10.1016/0306-4573(93)90027-B
Degross J. I, 1992, DIRECTORY MANAGEMENT
EOM SB, 1993, DECIS SUPPORT SYST, V9, P237, DOI 10.1016/0167-9236(93)90055-8
Garfield Eugene., 1979, CITATION INDEXING
GUPTA UG, 1994, EXPERT SYST APPL, V7, P581, DOI 10.1016/0957-4174(94)90081-7
Holsapple C. W., 1994, Journal of Management Information Systems, V11, P131
HOLSAPPLE CW, 1993, INFORM MANAGE, V25, P231, DOI 10.1016/0378-7206(93)90072-2
ULRICH, 1993, ULRICHS INT PERIODIC
1994, COMMUN ACM, V37, P23
NR 12
TC 11
Z9 12
U1 0
U2 5
PU AMER ASSOC ARTIFICIAL INTELL
PI MENLO PK
PA 445 BURGESS DRIVE, MENLO PK, CA 94025-3496
SN 0738-4602
J9 AI MAG
JI AI Mag.
PD SUM
PY 1996
VL 17
IS 2
BP 87
EP 97
PG 11
WC Computer Science, Artificial Intelligence
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA UT195
UT WOS:A1996UT19500005
DA 2024-09-05
ER
PT J
AU Lathabai, HH
Nandy, A
Singh, VK
AF Lathabai, Hiran H.
Nandy, Abhirup
Singh, Vivek Kumar
TI x-index: Identifying core competency and thematic research
strengths of institutions using an NLP and network based ranking
framework
SO SCIENTOMETRICS
LA English
DT Article
DE Core competency; Expertise indices; Research strength; Thematic
strength; x-index
ID UNIVERSITIES
AB The currently prevailing international ranking systems for institutions are limited in their assessment as they only provide assessments either at an overall level or at very broad subject levels such as Science, Engineering, Medicine, etc. While these rankings have their own usage, they cannot be used to identify best institutions in a specific subject (say Computer Science) by taking into account their performance in different thematic areas of research of the given subject (say Artificial Intelligence or Machine Learning or Computer Vision etc. for the subject Computer Science). This paper tries to bridge this gap by proposing a framework that uses the NLP and Network approach for identifying the core competency of institutions and their thematic research strengths. The core competency can be viewed as a measure of breadth of research capability of an institution in a given subject, whereas thematic research strength can be viewed as depth of research of the institution in a specific theme of a subject. The working of the framework is demonstrated in the area of Computer Science for 195 Indian institutions. The framework can be useful for institutions and the scientometrics research community as a system providing a detailed assessment of the core competency and the research strengths of institutions in different thematic areas. The framework and outcomes can also be useful for funding agencies in devising programs for 'performance-based funding' in 'thrust areas' or 'national priority areas'.
C1 [Lathabai, Hiran H.; Nandy, Abhirup; Singh, Vivek Kumar] Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India.
C3 Banaras Hindu University (BHU)
RP Singh, VK (corresponding author), Banaras Hindu Univ, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India.
EM vivek@bhu.ac.in
RI Lathabai, Hiran H/AAF-4552-2019; Nandy, Abhirup/AFR-0690-2022; Singh,
Vivek Kumar/O-5699-2019; Nandy, Abhirup/GQA-4428-2022
OI Nandy, Abhirup/0000-0001-8618-0847; Singh, Vivek
Kumar/0000-0002-7348-6545; lathabai, hiran/0000-0002-5633-9842
FU DST-NSTMIS [DST/NSTMIS/05/04/2019-20]
FX The authors would like to acknowledge the support provided by the
DST-NSTMIS funded project-'Design of a Computational Framework for
Discipline-wise and Thematic Mapping of Research Performance of Indian
Higher Education Institutions (HEIs)', bearing Grant No.
DST/NSTMIS/05/04/2019-20, for this work.
CR Abramo G, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.100986
Abramo G, 2014, J INFORMETR, V8, P766, DOI 10.1016/j.joi.2014.07.002
Ammar W., 2018, P 2018 C N AM CHAPT, V3, P84, DOI [DOI 10.18653/V1/N18-3011, 10.18653/v1/N18-3011]
[Anonymous], 1998, Connections
Anowar F., 2015, New trends in networking, P559, DOI [DOI 10.1007/978-3-319-06764-3_72, 10.1007/978-3-319-06764-3_72]
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Basu A, 2016, SCIENTOMETRICS, V107, P1171, DOI 10.1007/s11192-016-1935-0
Batagelj V., 2012, COMPUT COMPLEX, P2878
Beck S., 2010, GLOBE MAIL
Billaut JC, 2010, SCIENTOMETRICS, V84, P237, DOI 10.1007/s11192-009-0115-x
Bornmann L, 2014, J INFORMETR, V8, P581, DOI 10.1016/j.joi.2014.04.008
Bowman NA, 2011, HIGH EDUC, V61, P431, DOI 10.1007/s10734-010-9339-1
Costas R, 2007, J INFORMETR, V1, P193, DOI 10.1016/j.joi.2007.02.001
De Boer H., 2015, PERFORMANCE BASED FU
Egghe L., 2006, ISSI NEWSLETTER, V2, P8
García JA, 2012, SCIENTOMETRICS, V93, P1081, DOI 10.1007/s11192-012-0740-7
George S, 2020, SCIENTOMETRICS, V122, P127, DOI 10.1007/s11192-019-03286-7
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Jeremic V, 2011, SCIENTOMETRICS, V87, P587, DOI 10.1007/s11192-011-0361-6
Lathabai H. H., 2021, P 11 INT WORKSH BIBL
Lathabai HH, 2017, SCIENTOMETRICS, V110, P711, DOI 10.1007/s11192-016-2202-0
Lazaridis T, 2010, SCIENTOMETRICS, V82, P211, DOI 10.1007/s11192-009-0048-4
LEVENSHT.VI, 1965, DOKL AKAD NAUK SSSR+, V163, P845
López-Illescas C, 2011, SCIENTOMETRICS, V88, P563, DOI 10.1007/s11192-011-0398-6
Maslen Geof, 2019, New performance-based funding system for universities
Pislyakov V, 2014, J ASSOC INF SCI TECH, V65, P2321, DOI 10.1002/asi.23093
Sivertsen G, 2016, RESEARCH ASSESSMENT IN THE HUMANITIES: TOWARDS CRITERIA AND PROCEDURES, P79, DOI 10.1007/978-3-319-29016-4_7
Sorlin S., 2007, Higher Education Policy, V20, P413
Torres-Salinas D, 2011, SCIENTOMETRICS, V88, P771, DOI 10.1007/s11192-011-0418-6
Uddin A, 2016, SCIENTOMETRICS, V106, P1135, DOI 10.1007/s11192-016-1836-2
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
NR 31
TC 7
Z9 7
U1 3
U2 24
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD DEC
PY 2021
VL 126
IS 12
BP 9557
EP 9583
DI 10.1007/s11192-021-04188-3
EA NOV 2021
PG 27
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA XF4WA
UT WOS:000715664900002
DA 2024-09-05
ER
PT J
AU Schöbel, S
Schmitt, A
Benner, D
Saqr, M
Janson, A
Leimeister, JM
AF Schoebel, Sofia
Schmitt, Anuschka
Benner, Dennis
Saqr, Mohammed
Janson, Andreas
Leimeister, Jan Marco
TI Charting the Evolution and Future of Conversational Agents: A Research
Agenda Along Five Waves and New Frontiers
SO INFORMATION SYSTEMS FRONTIERS
LA English
DT Article
DE Bibliometric analysis; Chatbot; Conversational agent; Voice assistant;
ChatGPT; Large language models; Generative artificial intelligence
ID PERSPECTIVE; SYSTEMS; SCIENCE
AB Conversational agents (CAs) have come a long way from their first appearance in the 1960s to today's generative models. Continuous technological advancements such as statistical computing and large language models allow for an increasingly natural and effortless interaction, as well as domain-agnostic deployment opportunities. Ultimately, this evolution begs multiple questions: How have technical capabilities developed? How is the nature of work changed through humans' interaction with conversational agents? How has research framed dominant perceptions and depictions of such agents? And what is the path forward? To address these questions, we conducted a bibliometric study including over 5000 research articles on CAs. Based on a systematic analysis of keywords, topics, and author networks, we derive "five waves of CA research" that describe the past, present, and potential future of research on CAs. Our results highlight fundamental technical evolutions and theoretical paradigms in CA research. Therefore, we discuss the moderating role of big technologies, and novel technological advancements like OpenAI GPT or BLOOM NLU that mark the next frontier of CA research. We contribute to theory by laying out central research streams in CA research, and offer practical implications by highlighting the design and deployment opportunities of CAs.
C1 [Schoebel, Sofia] Univ Osnabruck, Informat Syst, Osnabruck, Germany.
[Schmitt, Anuschka; Janson, Andreas; Leimeister, Jan Marco] Univ St Gallen, Inst Informat Management IWI HSG, St Gallen, Switzerland.
[Benner, Dennis; Leimeister, Jan Marco] Univ Kassel, Informat Syst Res Ctr IS Design ITeG, Kassel, Germany.
[Saqr, Mohammed] Univ Eastern Finland, Sch Comp, Joensuu, Finland.
C3 University Osnabruck; University of St Gallen; Universitat Kassel;
University of Eastern Finland
RP Schöbel, S (corresponding author), Univ Osnabruck, Informat Syst, Osnabruck, Germany.
EM sofia.schoebel@uni-osnabrueck.de; anuschka.schmitt@unisg.ch;
benner@uni-kassel.de; mohammed.saqr@uef.fi; andreas.janson@unisg.ch;
leimeister@uni-kassel.de
RI Saqr, Mohammed/AAH-2520-2020
OI Saqr, Mohammed/0000-0001-5881-3109; Leimeister, Jan
Marco/0000-0002-1990-2894; Benner, Dennis/0000-0001-6535-1643; Janson,
Andreas/0000-0003-3149-0340
FU Stiftung Innovation in der Hochschullehre"; Swiss National Science
Foundation [100013_192718]; Academy of Finland (Suomen Akatemia)
Research Council for Natural Sciences and Engineering [350560]; Basic
Research Fund (GFF) of the University of St. Gallen; Swiss National
Science Foundation (SNF) [100013_192718] Funding Source: Swiss National
Science Foundation (SNF)
FX The authors acknowledge partial funding of the following funding bodies:
"Stiftung Innovation in der Hochschullehre" within the project
"Universitaet Kassel digital: Universitaere Lehre neu gestalten", Swiss
National Science Foundation (project ID: 100013_192718), Academy of
Finland (Suomen Akatemia) Research Council for Natural Sciences and
Engineering for the project Towards precision education: Idiographic
learning analytics (TOPEILA), Decision Number 350560, and the fifth
author acknowledges personal funding from the Basic Research Fund (GFF)
of the University of St. Gallen.
CR Abedin B, 2022, INFORM SYST FRONT, V24, P691, DOI 10.1007/s10796-022-10313-1
Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7
Ahmad R, 2022, INFORM SYST FRONT, V24, P923, DOI 10.1007/s10796-022-10254-9
Allouch M, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21248448
Androutsopoulos I., 1995, NAT LANG ENG, V1, P29, DOI DOI 10.1017/S135132490000005X
[Anonymous], 2017, P 2017 CHI C HUM FAC, DOI [DOI 10.1145/3027063.3053246, 10.1145/3027063]
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Behera RK, 2024, INFORM SYST FRONT, V26, P899, DOI 10.1007/s10796-021-10168-y
Benner D., 2022, AIS T HUMAN COMPUTER, V14
Bickmore T., 2001, CHI 2001 Conference Proceedings. Conference on Human Factors in Computing Systems, P396, DOI 10.1145/365024.365304
Bickmore T. W., 2005, ACM Transactions on Computer-Human Interaction, V12, P293, DOI 10.1145/1067860.1067867
Bickmore T, 2020, PROCEEDINGS OF THE 20TH ACM INTERNATIONAL CONFERENCE ON INTELLIGENT VIRTUAL AGENTS (ACM IVA 2020), DOI 10.1145/3383652.3423869
Bickmore T, 2015, LECT NOTES ARTIF INT, V9238, P332, DOI 10.1007/978-3-319-21996-7_35
BigScience, 2022, BLOOM 176B PAR OP AC
BigScience, 2022, BIGSCIENCE RES WORKS
Bocklisch T., 2017, NIPS 2017 CONVERSATI
Brandtzaeg PB., 2018, Interactions, V25, P38, DOI [10.1145/3236669, DOI 10.1145/3236669]
Brown T., 2020, NEURIPS
Callejas Z, 2011, EURASIP J ADV SIG PR, DOI 10.1186/1687-6180-2011-6
Cassell J., 1994, P 21 ANN C COMP GRAP, P413, DOI [10.1145/192161, DOI 10.1145/192161.192272]
Castelvecchi Davide, 2022, Nature, DOI 10.1038/d41586-022-04383-z
Chaves AP, 2021, INT J HUM-COMPUT INT, V37, P729, DOI 10.1080/10447318.2020.1841438
Dale R, 2016, NAT LANG ENG, V22, P811, DOI 10.1017/S1351324916000243
Davenport T. H., 2022, Harvard Business Review
De Meo P., 2011, Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), P88, DOI 10.1109/ISDA.2011.6121636
Devlin J., 2018, ARXIV
Diederich S., 2019, P INT TAG WIRTSCH SI, P1550
Diederich S., 2022, J ASS INF SYST JAIS
ELSHAN E, 2023, IEEE T AFFECT COMPUT, DOI DOI 10.1080/07421222.2023.2172776
Elshan E, 2022, INFORM SYST FRONT, V24, P699, DOI 10.1007/s10796-021-10230-9
Feine J, 2019, INT J HUM-COMPUT ST, V132, P138, DOI 10.1016/j.ijhcs.2019.07.009
Fischer J, 2019, PEOPLE NAT, V1, P115, DOI 10.1002/pan3.13
Folstad A, 2019, PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON CONVERSATIONAL USER INTERFACES (CUI 2019), DOI 10.1145/3342775.3342784
FRUCHTERMAN TMJ, 1991, SOFTWARE PRACT EXPER, V21, P1129, DOI 10.1002/spe.4380211102
Goudos SK, 2019, IEEE T ANTENN PROPAG, V67, P4022, DOI 10.1109/TAP.2019.2905665
Graesser AC, 2005, IEEE T EDUC, V48, P612, DOI 10.1109/TE.2005.856149
Graesser AC, 2001, AI MAG, V22, P39
Griol D, 2008, SPEECH COMMUN, V50, P666, DOI 10.1016/j.specom.2008.04.001
Haque M. U., 2022, ARXIV
Hauswald J, 2016, ACM T COMPUT SYST, V34, DOI 10.1145/2870631
Heyselaar E., 2019, INT WORKSH CHATB RES, P158
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266
Io HN, 2017, IN C IND ENG ENG MAN, P215, DOI 10.1109/IEEM.2017.8289883
Kendall L, 2020, INFORM SYST FRONT, V22, P585, DOI 10.1007/s10796-020-10015-6
Knote R, 2021, J ASSOC INF SYST, V22, P418, DOI 10.17705/1jais.00667
Kopp S, 2004, COMPUT ANIMAT VIRT W, V15, P39, DOI 10.1002/cav.6
Kramer N. C., 2005, P S AG WANT LIK ART, P55
Kushwaha AK, 2024, INFORM SYST FRONT, V26, P857, DOI 10.1007/s10796-021-10184-y
Laban G., 2019, INT WORKSH CHATB RES, P215
Lee K, 2020, INFORM SYST FRONT, V22, P563, DOI 10.1007/s10796-019-09975-1
Li JW, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P994
Luger E, 2016, 34TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2016, P5286, DOI 10.1145/2858036.2858288
Mattioli D., 2022, CHI 2019 P 2019 CHI
McTear MF., 2016, CONVERSATIONAL INTER, DOI [DOI 10.1007/978-3-319-32967-3_2, 10.1007/978-3-319-32967-32]
NASS C, 1994, HUMAN FACTORS IN COMPUTING SYSTEMS, CHI '94 CONFERENCE PROCEEDINGS - CELEBRATING INTERDEPENDENCE, P72, DOI 10.1145/191666.191703
Nguyen TH, 2022, INFORM SYST FRONT, V24, P797, DOI 10.1007/s10796-021-10212-x
Norris M, 2007, J INFORMETR, V1, P161, DOI 10.1016/j.joi.2006.12.001
Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006
Porra J, 2020, INFORM SYST FRONT, V22, P533, DOI 10.1007/s10796-019-09969-z
Poser M, 2022, INFORM SYST FRONT, V24, P771, DOI 10.1007/s10796-022-10265-6
Qiu LY, 2009, J MANAGE INFORM SYST, V25, P145, DOI 10.2753/MIS0742-1222250405
Ramesh Aditya, 2022, Hierarchical Text-Conditional Image Generation with CLIP Latents, P2
Rethlefsen ML, 2021, SYST REV-LONDON, V10, DOI 10.1186/s13643-020-01542-z
Revang M., 2022, GARTNER REPORTS
Rheu M, 2021, INT J HUM-COMPUT INT, V37, P81, DOI 10.1080/10447318.2020.1807710
Rombach R, 2022, PROC CVPR IEEE, P10674, DOI 10.1109/CVPR52688.2022.01042
Rzepka C., 2018, P 39 INT C INF SYST, P1
Rzepka C, 2022, INFORM SYST FRONT, V24, P839, DOI 10.1007/s10796-021-10226-5
Schmitt A., 2021, 42 INT C INF SYST AU, P1
Schmitt Anuschka, 2021, ECIS 2021 RES PAPERS, V143
Schwede M., 2022, INT C INF SYST
Seaborn K, 2021, ACM COMPUT SURV, V54, DOI 10.1145/3386867
Sedik A., 2022, J TURK-GER GYNECOL A, V177
Shang L, 2015, ARXIV
Short J., 1976, The Social Psychology of Telecommunications
Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5
Smutny P, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103862
Stieglitz S, 2022, INFORM SYST FRONT, V24, P745, DOI 10.1007/s10796-021-10201-0
Stokel-Walker Chris, 2022, Nature, DOI 10.1038/d41586-022-04397-7
Sun J, 2022, IUI'22: 27TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P212, DOI 10.1145/3490099.3511119
Suta P., 2020, INT J MECH ENG ROBOT, V9, P502, DOI DOI 10.18178/IJMERR.9.4.502-510
Taylor R., 2022, ARXIV
Thoppilan R., 2022, ARXIV
Trinidad M, 2021, IEEE ACCESS, V9, P46505, DOI 10.1109/ACCESS.2021.3063986
Van Pinxteren MME, 2020, J SERV MANAGE, V31, P203, DOI 10.1108/JOSM-06-2019-0175
Vertegaal R., 2001, P SIGCHI C HUMAN FAC, P301, DOI DOI 10.1145/365024.365119
Vössing M, 2022, INFORM SYST FRONT, V24, P877, DOI 10.1007/s10796-022-10284-3
Wahde M., 2022, ARXIV, DOI DOI 10.1142/9789811246050
Wallace RS., 2009, PARSING TURING TEST, P181, DOI [10.1007/978-1-4020-6710-5_13, DOI 10.1007/978-1-4020-6710-5_13]
Wambsganss T., 2021, P 2021 CHI C HUM FAC, P1, DOI [DOI 10.1145/3411764.3445781, 10.1145/3411764.3445781]
WEIZENBAUM J, 1966, COMMUN ACM, V9, P36, DOI 10.1145/357980.357991
Winkler R., 2018, Unleashing the Potential of Chatbots in Education: A State-Of-The-Art Analysis
NR 95
TC 15
Z9 15
U1 17
U2 79
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1387-3326
EI 1572-9419
J9 INFORM SYST FRONT
JI Inf. Syst. Front.
PD APR
PY 2024
VL 26
IS 2
SI SI
BP 729
EP 754
DI 10.1007/s10796-023-10375-9
EA APR 2023
PG 26
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science
GA MX9W3
UT WOS:000972807600001
OA Green Accepted, hybrid
DA 2024-09-05
ER
PT J
AU Haghighat, M
Hayatdavoudi, J
AF Haghighat, Mansour
Hayatdavoudi, Javad
TI How hot are hot papers? The issue of prolificacy and self-citation
stacking
SO SCIENTOMETRICS
LA English
DT Article
DE Self-citation; Hot paper; Web of science; Co-citation; Co-author;
Co-word
ID SCIENCE
AB The nature of self-citation is not unequivocal as it fluctuates across the borders of approbation and condemnation. While it is tenable that scholars tend to build upon and thus appeal to their previous work, excessive self-citation is considered as a likely strategic tool to showcase one's achievement, inflate citations, and distort bibliometric indices. The present study aimed to explore how self-citation may affect hot paper designation in Web of Science (WoS) in a short-term citation window. To this end, we studied the self-citation behavior of the authors contributing a sample of hot papers in a select number of journals over two consecutive periods. The cited and citing papers were analyzed in terms of synchronous and diachronous self-citations as well as co-authorship and co-citation networks. The results showed that self-citation evidently proved problematic in as short a citation window of hot papers as two months. The results also suggested that including too many cited references in a given article might be a potential strategy to inflate citations. Thus, we suggest that hot paper designation should assume sensitivity to self-citation, or at least, excessive self-citations by either ruling them out or setting limits on how often an author can reasonably cite earlier works. Still, this is not an attempt at policing excessive self-citation practice of a group of authors and by no means intends to criticize the authors; rather, we aimed to cite an example of how excessive self-citation practice may distort the original agenda of a bibliometric designation in WoS, hot papers.
C1 [Haghighat, Mansour] Shiraz Univ, Sch Sci, Dept Phys, Shiraz, Iran.
[Haghighat, Mansour] ISC, Deputy Res Affairs, Shiraz, Iran.
[Hayatdavoudi, Javad] ISC, Dept Anal Resources, Shiraz, Iran.
C3 Shiraz University
RP Hayatdavoudi, J (corresponding author), ISC, Dept Anal Resources, Shiraz, Iran.
EM javad.hayatdavoudi@gmail.com
OI Hayatdavoudi, Javad/0000-0002-7529-3499
CR Aksnes DW, 2003, SCIENTOMETRICS, V56, P235, DOI 10.1023/A:1021919228368
Baccini A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0221212
Bartneck C, 2011, SCIENTOMETRICS, V87, P85, DOI 10.1007/s11192-010-0306-5
Baumgartner SE, 2014, J ASSOC INF SCI TECH, V65, P797, DOI 10.1002/asi.23009
BONZI S, 1990, P ASIS ANNU MEET, V27, P204
Bornmann L, 2018, SCIENTOMETRICS, V116, P655, DOI 10.1007/s11192-018-2772-0
BRAAM RR, 1991, J AM SOC INFORM SCI, V42, P233, DOI 10.1002/(SICI)1097-4571(199105)42:4<233::AID-ASI1>3.0.CO;2-I
Carley S, 2013, SCIENTOMETRICS, V94, P777, DOI 10.1007/s11192-012-0745-2
Costas R, 2010, SCIENTOMETRICS, V82, P517, DOI 10.1007/s11192-010-0187-7
D'Antuono P., 2019, FALSE MYTH RISE SELF
Fowler JH, 2007, SCIENTOMETRICS, V72, P427, DOI 10.1007/s11192-007-1777-2
Garfield E, 2000, SCIENTIST, V14, P4
Garfield E, 1979, CITATION INDEXING IT
Glänzel W, 2006, SCIENTOMETRICS, V67, P263, DOI 10.1556/Scient.67.2006.2.8
Glanzel W, 1999, INFORM PROCESS MANAG, V35, P31, DOI 10.1016/S0306-4573(98)00028-4
González-Sala F, 2019, SCIENTOMETRICS, V119, P1345, DOI 10.1007/s11192-019-03101-3
Gross P L, 1927, Science, V66, P385, DOI 10.1126/science.66.1713.385
Ioannidis JPA, 2019, PLOS BIOL, V17, DOI 10.1371/journal.pbio.3000384
Kacem A., 2019, TRACKING SELF CITATI, DOI [10.1101/2019.12.20.884031, DOI 10.1101/2019.12.20.884031]
LAWANI SM, 1982, J AM SOC INFORM SCI, V33, P281
MACROBERTS MH, 1989, J AM SOC INFORM SCI, V40, P342, DOI 10.1002/(SICI)1097-4571(198909)40:5<342::AID-ASI7>3.0.CO;2-U
Mcveigh M. E., 2002, J SELF CITATION J CI
Noruzi A., 2017, WEBOLOGY, V14, P1
Seeber M, 2019, RES POLICY, V48, P478, DOI 10.1016/j.respol.2017.12.004
Simoes N, 2020, J INFORMETR, V14, DOI 10.1016/j.joi.2019.100990
Snyder H, 1998, J INF SCI, V24, P431, DOI 10.1177/016555159802400606
Surwase G., 2011, BOSLA NAT C P IND
Szomszor M, 2020, SCIENTOMETRICS, V123, P1119, DOI 10.1007/s11192-020-03417-5
TAGLIACOZZO R, 1977, J DOC, V33, P251, DOI 10.1108/eb026644
Thijs B, 2006, SCIENTOMETRICS, V66, P71, DOI 10.1007/s11192-006-0006-3
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
Van Noorden R, 2019, NATURE, V572, P578, DOI 10.1038/d41586-019-02479-7
Westney LCH, 1998, J ASS HIST COMPUTING, V1, P1
Zuur A. F, 2018, NEW HOT PAPERS
NR 34
TC 4
Z9 4
U1 5
U2 42
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 2021
VL 126
IS 1
BP 565
EP 578
DI 10.1007/s11192-020-03749-2
EA OCT 2020
PG 14
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA PU7XL
UT WOS:000579442800006
DA 2024-09-05
ER
PT J
AU Grobbelaar, S
Oosthuizen, R
AF Grobbelaar, S.
Oosthuizen, R.
TI A reflection on Southern Forests: a Journal of Forest Science
using bibliometrics
SO SOUTHERN FORESTS-A JOURNAL OF FOREST SCIENCE
LA English
DT Article
DE text classification; supervised machine learning; sustainability;
network analysis
AB Bibliometrics is used to determine patterns in published research. The aim of this paper is to illustrate the observ- able bibliometric patterns in the journal Southern Forests: a Journal of Forest Science. Frequency analysis and co-occurrence network analysis were performed to identify patterns. Natural Language Processing and Supervised Machine Learning were used to perform text classification. The objective of the text classification was to classify articles into 15 themes. Each article was categorised in terms of the two main themes associated with the article. The analysis included 1 574 publications from 1941 to 2020 and confirmed that the journal's change in name and aims were successful in increasing the number of international researchers publishing in the journal. The research institute co-occurrence network diagram illustrates that there are two main research collaboration clusters. The one surrounds Stellenbosch University, and the other encompasses several South African universities and research institutes. Mondi and Sappi were the companies that collaborated the most with independent research institutes. The keywords and theme analysis confirmed that the journal's aim and scope were supported in the publications. The theme analysis also identified themes or aspects with very few publications. The methods illustrated in this paper can be used to identify research strengths and weaknesses and may assist in strategic planning for future research prioritisation.
C1 [Grobbelaar, S.; Oosthuizen, R.] Univ Pretoria, Dept Engn & Technol Management, Fac Engn Built Environm & IT, Hatfield, South Africa.
C3 University of Pretoria
RP Grobbelaar, S (corresponding author), Univ Pretoria, Dept Engn & Technol Management, Fac Engn Built Environm & IT, Hatfield, South Africa.
EM schalk.grobbelaar@up.ac.za
RI Oosthuizen, Rudolph/AAH-9253-2021; Grobbelaar, Schalk/AFE-2046-2022
OI Oosthuizen, Rudolph/0000-0002-2333-6995; Grobbelaar,
Schalk/0000-0001-8148-2440
CR Ackerman PA, 2017, SOUTH FORESTS, V79, P329, DOI 10.2989/20702620.2016.1255380
[Anonymous], 2012, S AFRICAN FORESTRY H
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
BROADUS RN, 1987, SCIENTOMETRICS, V12, P373, DOI 10.1007/BF02016680
du Toit B, 2011, SOUTH FORESTS, V73, pIII, DOI 10.2989/20702620.2011.610878
Elsevier, 2021, SCOPUS
Fisher IE, 2016, INTELL SYST ACCOUNT, V23, P157, DOI 10.1002/isaf.1386
Gianey HK, 2017, 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA SCIENCE (MLDS 2017), P37, DOI 10.1109/MLDS.2017.11
Grobbelaar S, 2021, SOUTH FORESTS, V83, P28, DOI 10.2989/20702620.2020.1813646
Informa UK, 2021, AIMS SCOP SO FOR J F
Kowsari K, 2019, INFORMATION, V10, DOI 10.3390/info10040150
Little KM, 2014, SOUTH FORESTS, V76, P67, DOI 10.2989/20702620.2014.893683
Marais G, 2007, SOUTH HEMISPH FOR J, V69, pV, DOI 10.2989/19919310709505186
Martin S, 2011, PROC SPIE, V7868, DOI 10.1117/12.871402
Mund Sumit., 2015, Microsoft azure machine learning
Notz M., 2019, ICEBI P 3 INT C E BU, P8, DOI [10.1145/3383902.3383904, DOI 10.1145/3383902.3383904]
Oosthuizen R., 2020, ELSEVIER 29 INT C IN
Owen, 2002, SOUTH AFR FOR J, V193, P81, DOI [10.1080/20702620.2002.10433521, DOI 10.1080/20702620.2002.10433521]
Owen, 2006, SOUTH AFR FOR J, V164, P1059
Owen, 2005, SOUTH AFR FOR J, V203, P1, DOI [10.2989/10295920509505212, DOI 10.2989/10295920509505212]
Owen, 2003, SOUTH AFR FOR J, V198, P84, DOI [10.1080/20702620.2003.10431740, DOI 10.1080/20702620.2003.10431740]
Owen DL, 2008, SOUTH FORESTS, V70, pIII, DOI 10.2989/20702620809486758
Owen DL., 2005, S AFRICAN FORESTRY H, V205, P1, DOI [10.2989/10295920509505231, DOI 10.2989/10295920509505231]
Pliuhin Vladyslav, 2019, 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). Proceedings, P631, DOI 10.1109/PICST47496.2019.9061447
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2
PRITCHARD A, 1969, J DOC, V25, P348
Rajput B.S., 2015, IOSR J COMPUT ENG, V17, P76
Sarkar S.D., 2013, International Journal of Computer Applications, V81, P38, DOI DOI 10.5120/14018-2173
Scharkow M, 2013, QUAL QUANT, V47, P761, DOI 10.1007/s11135-011-9545-7
Singh Upendra., 2015, Int. J. Comput. Sci. Trends Technol, V3, P83
Smith C., 2012, S AFRICAN FORESTRY H, P271
Stellenbosch University, 2022, US
Wang XR, 2007, IEEE DATA MINING, P697, DOI 10.1109/ICDM.2007.86
WICHT C. L., 1958, EMPIRE FOREST REV, V37, P311
Zhang Yue, 2021, MATRIX ALGEBRA APPRO, V26, P93, DOI [DOI 10.1007/978-981-15-2770-8, 10.1007/s12204-021-2264-x]
NR 35
TC 1
Z9 1
U1 0
U2 4
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 2070-2620
EI 2070-2639
J9 SOUTH FORESTS
JI South. Forests-A J. Forest Sci.
PD APR 3
PY 2022
VL 84
IS 2
BP 93
EP 100
DI 10.2989/20702620.2022.2084353
EA AUG 2022
PG 8
WC Forestry
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Forestry
GA 5F3TU
UT WOS:000842800200001
OA Green Submitted
DA 2024-09-05
ER
PT C
AU Anchan, J
Laube, D
AF Anchan, John
Laube, Donna
BE Chova, LG
Belenguer, DM
Torres, IC
TI A CONSORTIUM OF COLLABORATION: GOVERNMENT AND POST SECONDARY
INSTITUTIONS IN COMMUNITY OUTREACH
SO 3RD INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION
(ICERI2010)
LA English
DT Proceedings Paper
CT 3rd International Conference of Education, Research and Innovation
(ICERI)
CY NOV 15-17, 2010
CL Madrid, SPAIN
DE University/Industry/Government partnership; Digital Divide; Community
Development; Emerging Technologies; Online Learning; Community Outreach
AB Universities in Canada and around the world are in a crisis of conflict. With higher tuition, dropping enrollments, increasing class sizes, constrained budgets, aging faculty, increasing salaries, systemic use of sessional and stipendiary instructors, and added demand for corollary revenues and bottom lines, universities are being stretched beyond their limits. Increasingly, the ivory towers have lost their gleam and are under constant pressure to publish or perish, react to grade inflation, increase revenues even as they produce knowledge, conduct quality research, and respond to a Net generation demanding employable credentials (Cote & Allahar, 2007). Thus, educational institutions are under siege. Many of these issues are not recent as we see scholars having raised the alarm bells even in the sixties (Coombs, 1985; Dore, 1976).
Nevertheless, with the advent of Toffler's Third Wave, we have emerging technologies challenging our notion of relevant education in relation to pursuit of knowledge. Considerable debate exists on the role and influence of computers in particular and technology in general. While for some like Papert and Zuboff, the computer is a tool, which implies a neutral "social and political content," others like Weizenbaum, Hubert, Dreyfus, and Sullivan question these assumptions (Anchan, 2000; Aronowitz & Giroux, 1993). With some of the greatest criticisms of computer technology having emerged from writers in technology and literature (Roszak, 1986; Stoll, 1995; Hislop, 1995), the influence of technology in the way we learn and interact is undeniable. Conversely, these very same institutions have become isolated ivory towers distanced from their immediate communities that are supposed to be the recipients of progress and development. With the disconnect that has plagued higher institutions of learning, traditional universities have begun to revisit the notion of production of knowledge for its own sake. This is especially true in Canada - where the taxpayers highly subsidize education without having maximized benefit of returns. Amidst the phenomenon of globalization, digital divide and the evolution of McCluhan's the global village, the immediate indigenous communities remain alienated and marginalized (Anchan, 2003a).
Yet, not all is lost. Universities have begun to recognize and acknowledge this disconnect; a wave of sweeping reforms and best practices have started to respond to communities and other stakeholders.
Many initiatives attempt to bridge the chasm of disconnect between the university and the surrounding communities even as they open access to the remote and marginalized populations (Anchan, 2003b). For instance, on a large global scale, and as the first institution in Canada to become the headquarters for international aboriginal programming affiliated with the prestigious MacArthur Foundation network, the University of Winnipeg will be using the latest technologies from Cisco (TelePresence and WebEx systems) to connect across the country and the around the world. This multimillion dollar project will not only establish world class cutting edge research centre in Canada's newest and most environmentally friendly, Science Complex and Richardson College for the Environment, but also be a project that will integrate many of the community needs across the province and beyond. Online/Distance Education using asynchronous and synchronous deliveries will complement state of the art studios to allow collaborative technologies including both urban bureaucrats and remote communities.
C1 [Anchan, John; Laube, Donna] Univ Winnipeg, Winnipeg, MB R3B 2E9, Canada.
C3 University of Winnipeg
EM j.anchan@uwinnipeg.ca; d.laube@uwinnipeg.ca
CR [Anonymous], 2007, ECONOMIST
[Anonymous], 2007, Rearch, DOI [DOI 10.1080/15427600701663023, 10.1080/15427600701663023]
[Anonymous], 1989, 6 THEORIES CHILD DEV
BRONFENBRENNER U, 1993, J PIAGET SY, P3
Campfens H., 1972, COMM NO AFF GOV MAN
Campfens Hubert., 1997, COMMUNITY DEV WORLD
Chekki D., 1979, Community Development: Theory and Method of Planned Change
Dore R., 1981, COMMUNITY DEV
Frank F., 1999, The community development handbook
Grabill JeffreyT., 2007, Writing Community Change: Designing Technologies for Citizen Action. New Dimensions in Computers and Composition
Marshall H.Peter., 1976, The Challenges of a Community Development Role for the Public University: Description and Analysis of a Pilot Extension Effort
Prensky M, 2001, DIGITAL NATIVES DIGI
Public Safety Canada, 2009, AB PEOPL COLL COMM M
Renn KA, 2003, J HIGH EDUC, V74, P261, DOI 10.1353/jhe.2003.0025
Singh P., 1982, COMMUNITY DEV PROGRA
Tapscott D., 2009, Higher education is stuck in the Middle Ages - Will universities adapt or die off in our digital world?
Tissington L. D., 2003, J INSTRUCTIONAL PSYC, V34, P106
Wall D., 1990, DISTANCE ED SUSTAINA
NR 18
TC 0
Z9 0
U1 0
U2 5
PU IATED-INT ASSOC TECHNOLOGY EDUCATION A& DEVELOPMENT
PI VALENICA
PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN
BN 978-84-614-2439-9
PY 2010
PG 7
WC Education & Educational Research
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Education & Educational Research
GA BEZ06
UT WOS:000318797405031
DA 2024-09-05
ER
PT J
AU Küçük-Avci, S
Topal, M
Istanbullu, A
AF Kucuk-Avci, Sirin
Topal, Murat
Istanbullu, Aslihan
TI The Effects of the Covid-19 Pandemic on Distance Education in Higher
Education: A Bibliometric Analysis Study
SO CROATIAN JOURNAL OF EDUCATION-HRVATSKI CASOPIS ZA ODGOJ I OBRAZOVANJE
LA English
DT Article
DE COVID-19; distance education; e-learning; higher education; online
learning; pandemic
ID PUBLICATIONS; TRENDS
AB This study aimed to examine the COVID-19 effect on distance education in higher education in the pre-COVID-19 pandemic (January to November 2019) and postCOVID-19 pandemic periods (December 2019 and January to December 2020). Two different meta-data sets, consisting of 580 articles for the pre-COVID-19 period and 746 for the post-COVID-19 period, obtained by querying the Web of Science database, were used for analysis. SciMAT and Vosviewer software were used for bibliometric analysis. Publications from the two different periods were compared according to keywords, words from abstracts, based on the criteria using co-occurrence and co-word analysis. The results of the keyword co-occurrence analysis show that the keywords "e-learning" and "online learning" were used more in the post-COVID- 19 period compared to the pre-pandemic period. In the pre-pandemic period, the thematic trend of academic studies largely aligned with students and satisfaction. However, in the post-pandemic period, the research trend was mostly toward such themes as video lectures and web 2.0 technologies. The research results show that the impact of COVID-19 was reflected in the research published in the post-pandemic period, with the interest in e-learning and online learning increasing in higher education, alongside a trend towards investigating the delivery of instruction rather than conducting student-centered studies.
C1 [Kucuk-Avci, Sirin] Akdeniz Univ, Fac Educ, Dept Curriculumn & Instruct, Dumlupinar Bulvari,Kampus Antalya, TR-07058 Antalya, Turkey.
[Topal, Murat] Sakarya Univ, Fac Educ, Dept Comp Educ & Instruct Technol, TR-54300 Hendek, Province Sakary, Turkey.
[Istanbullu, Aslihan] Amasya Univ, Vocat Sch Tech Sci, Dept Comp Technol, Seyhcui Mah Kemal Nehrozoglu Cad 92 B, TR-05100 Merkez, Amasya, Turkey.
C3 Akdeniz University; Sakarya University; Amasya University
RP Küçük-Avci, S (corresponding author), Akdeniz Univ, Fac Educ, Dept Curriculumn & Instruct, Dumlupinar Bulvari,Kampus Antalya, TR-07058 Antalya, Turkey.
EM sirinavci@akdeniz.edu.tr; mtopal@sakarya.edu.tr;
aslihan.babur@amasya.edu.tr
RI Topal, Murat/AAB-1651-2022; Kucuk-Avci, Sirin/IQU-6674-2023
OI Topal, Murat/0000-0001-5270-426X; Kucuk-Avci, Sirin/0000-0002-5518-0542
CR Almaiah Mohammed Amin, 2019, Education and Information Technologies, V24, P885, DOI 10.1007/s10639-018-9810-7
Alqahtani AY, 2020, EDUC SCI, V10, DOI 10.3390/educsci10090216
Aristovnik A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12219132
Asia Pacific University of Technology & Innovation, 2020, COVID 19 UPD ADV
Bozkurt A., 2020, Acikogretim Uygulamalari ve Arastirmalari Dergisi, V6, P112
Bozkurt A., 2020, Asian Journal of Distance Education, V15, P1, DOI [10.5281/zenodo.3878572, DOI 10.5281/ZENODO.3878572]
Bozkurt A., 2020, Asian Journal of Distance Education, V15, P1, DOI [10.5281/zenodo.3778083, DOI 10.5281/ZENODO.3778083]
Bozkurt A, 2015, INT REV RES OPEN DIS, V16, P330
Casado-Aranda LA, 2021, ENVIRON RES, V193, DOI 10.1016/j.envres.2020.110416
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
De Felice F, 2020, IN VIVO, V34, P1613, DOI 10.21873/invivo.11951
De Giusti Armando, 2020, Rev. iberoam. tecnol. educ. educ. tecnol., P110
Di Pietro G., 2020, The likely impact of COVID-19 on education: Reflections based on the existing literature and recent international datasets, V30275, DOI [DOI 10.2760/126686, 10.2760/126686]
El Mohadab M, 2020, CHAOS SOLITON FRACT, V139, DOI 10.1016/j.chaos.2020.110052
Ertug C.A. N., 2020, A IK GRETIM UYGULAMA, V6, P11
Gewin V, 2020, NATURE, V580, P295, DOI 10.1038/d41586-020-00896-7
Goksu I, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101491
Harzing A.W., 2007, Publish or perish
Hodges C. B., 2020, DIFFERENCE EMERGENCY
Kasemodel M G. C., 2016, International Journal of Food Studies, V5, P73, DOI DOI 10.7455/IJFS/5.1.2016.A7
Keskin M., 2020, Izmir Katip Celebi Univ Saglik Bilim Derg, V5, P59
Lau J., 2020, Times Higher Education
Li HJ, 2016, PHYSICA A, V450, P657, DOI 10.1016/j.physa.2016.01.017
Martí-Parreño J, 2016, J COMPUT ASSIST LEAR, V32, P663, DOI 10.1111/jcal.12161
Moore M., 1990, CONT ISSUES AM DISTA, pxii
Sigala M, 2020, J BUS RES, V117, P312, DOI 10.1016/j.jbusres.2020.06.015
Sukendro S, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05410
Telli SG, 2020, UNIVERSITE ARASTIRMA, V3, P25, DOI DOI 10.32329/UAD.711110
United Nations Educational Scientific and Cultural Organization, 2020, COVID-19 Educational disruption and response
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
WHO, 2021, WHO DIR GEN OP REM M
World Health Organization, COR DIS COVID 19 ADV
Yalcin, 2020, KURESEL SALGIN ONCES
Yang KL, 2020, INTEGR MED RES, V9, DOI 10.1016/j.imr.2020.100490
Yu YT, 2020, ANN TRANSL MED, V8, DOI 10.21037/atm-20-4235
Zawacki-Richter O, 2016, DISTANCE EDUC, V37, P245, DOI 10.1080/01587919.2016.1185079
Zhang WN, 2020, J RISK FINANC MANAG, V13, DOI 10.3390/jrfm13030055
Zhao XB, 2017, AUTOMAT CONSTR, V80, P37, DOI 10.1016/j.autcon.2017.04.002
Zimmerman J., 2020, The Chronicle of Higher Education
NR 39
TC 5
Z9 5
U1 2
U2 50
PU FAC TEACHER EDUCATION
PI ZAGREB
PA UNIV ZAGREB, SAVSKA CESTA 77, ZAGREB, 00000, CROATIA
SN 1848-5189
EI 1848-5197
J9 CROAT J EDUC
JI Croat. J. Educ.
PY 2022
VL 24
IS 2
BP 457
EP 488
DI 10.15516/cje.v24i2.4534
PG 32
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA 3F6KW
UT WOS:000830776800004
OA Green Published
DA 2024-09-05
ER
PT C
AU Nakatoh, T
Nagatani, K
Minami, T
Hirokawa, S
Nanri, T
Funamori, M
AF Nakatoh, Tetsuya
Nagatani, Kenta
Minami, Toshiro
Hirokawa, Sachio
Nanri, Takeshi
Funamori, Miho
BE Yamamoto, S
TI Analysis of the Quality of Academic Papers by the Words in Abstracts
SO HUMAN INTERFACE AND THE MANAGEMENT OF INFORMATION: SUPPORTING LEARNING,
DECISION-MAKING AND COLLABORATION, HCI INTERNATIONAL 2017, PT II
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 19th International Conference on Human-Computer Interaction (HCI
International)
CY JUL 09-14, 2017
CL Vancouver, CANADA
DE Bibliometrics; Research investigation; SVM; Citation
ID PUBLICATIONS
AB The investigation of related research is very important for research activities. However, it is not easy to choose an appropriate and important academic paper from among the huge number of possible papers. The researcher searches by combining keywords and then selects an paper to be checked because it uses an index that can be evaluated. The citation count is commonly used as this index, but information about recently published papers cannot be obtained. This research attempted to identify good papers using only the words included in the abstract. We constructed a classifier by machine learning and evaluated it using cross validation. As a result, it was found that a certain degree of discrimination is possible.
C1 [Nakatoh, Tetsuya; Hirokawa, Sachio; Nanri, Takeshi] Kyushu Univ, Res Inst Informat Technol, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan.
[Nagatani, Kenta] Kyushu Univ, Grad Sch, Fukuoka, Fukuoka, Japan.
[Nagatani, Kenta] Kyushu Univ, Fac Informat Sci & Elect Engn, Fukuoka, Fukuoka, Japan.
[Minami, Toshiro] Kyushu Inst Informat Sci, Fukuoka, Fukuoka, Japan.
[Funamori, Miho] Natl Inst Informat, Tokyo, Japan.
C3 Kyushu University; Kyushu University; Kyushu University; Research
Organization of Information & Systems (ROIS); National Institute of
Informatics (NII) - Japan
RP Nakatoh, T (corresponding author), Kyushu Univ, Res Inst Informat Technol, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan.
EM nakatoh@cc.kyushu-u.ac.jp
RI Hirokawa, Sachio/S-3526-2018
OI Hirokawa, Sachio/0000-0002-8050-1109
FU JSPS KAKENHI [24500176]; Grants-in-Aid for Scientific Research
[24500176] Funding Source: KAKEN
FX This work was partially supported by JSPS KAKENHI Grant Number 24500176.
CR [Anonymous], 1964, The Use of Citation Data in Writing the History of Science
Ashok V.G., 2013, P 2013 C EMPIRICAL M, P1753
Dasí F, 2012, J CLIN PHARMACOL, V52, P1106, DOI 10.1177/0091270011407916
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Garfield E, 2006, JAMA-J AM MED ASSOC, V295, P90, DOI 10.1001/jama.295.1.90
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Kostoff RN, 1996, SCIENTOMETRICS, V36, P281, DOI 10.1007/BF02129595
MarshakovaShaikevich I, 1996, SCIENTOMETRICS, V35, P283, DOI 10.1007/BF02018487
Martin BR, 1996, SCIENTOMETRICS, V36, P343, DOI 10.1007/BF02129599
Nakatoh T., 2017, 22 INT S ART LIF ROB, P742
Nakatoh T, 2015, SMART INNOV SYST TEC, V39, P471, DOI 10.1007/978-3-319-19857-6_40
Nakatoh T, 2015, 2015 IIAI 4TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI), P166, DOI 10.1109/IIAI-AAI.2015.282
Newman MEJ, 2001, P NATL ACAD SCI USA, V98, P404, DOI 10.1073/pnas.021544898
Otani S, 2014, 2014 IIAI 3RD INTERNATIONAL CONFERENCE ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2014), P216, DOI 10.1109/IIAI-AAI.2014.53
Schulte J, 2015, HOMEOPATHY, V104, P311, DOI 10.1016/j.homp.2015.06.004
Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099
Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0
Zorin NA, 2001, SCIENTOMETRICS, V52, P315, DOI 10.1023/A:1017971908413
NR 18
TC 0
Z9 0
U1 2
U2 5
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-319-58524-6; 978-3-319-58523-9
J9 LECT NOTES COMPUT SC
PY 2017
VL 10274
BP 434
EP 443
DI 10.1007/978-3-319-58524-6_34
PN II
PG 10
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BL6NA
UT WOS:000454446400034
DA 2024-09-05
ER
PT J
AU Polat, H
Topuz, AC
Yildiz, M
Taslibeyaz, E
Kursun, E
AF Polat, Hamza
Topuz, Arif Cem
Yildiz, Mine
Taslibeyaz, Elif
Kursun, Engin
TI A Bibliometric Analysis of Research on ChatGPT in Education
SO INTERNATIONAL JOURNAL OF TECHNOLOGY IN EDUCATION
LA English
DT Article
DE ChatGPT; Educational technologies; Bibliometric analysis; Generative AI
ID ARTIFICIAL-INTELLIGENCE
AB ChatGPT has become a prominent tool for fostering personalized and interactive learning with the advancements in AI technology. This study analyzes 212 academic research articles indexed in the Scopus database as of July 2023. It maps the trajectory of educational studies on ChatGPT, identifying primary themes, influential authors, and contributing institutions. By employing bibliometric indicators and network analysis, the study explores collaboration patterns, citation trends, and the evolution of research interests. The findings show the exponential growth of interest in leveraging ChatGPT for educational purposes and provide insights into the specific educational domains and contexts that have garnered the most attention. Furthermore, the study reveals the collaborative dynamics and intellectual foundations shaping the field by examining co-authorship and citation networks. This bibliometric analysis contributes to a comprehensive understanding of the current state of ChatGPT research in education, offering researchers and practitioners valuable insights into evolving trends and potential future directions for this innovative aspect of AI and learning.
C1 [Polat, Hamza] Ataturk Univ, Fac Sci Appl, Dept Informat Syst & Technol, Erzurum, Turkiye.
[Topuz, Arif Cem] Ardahan Univ, Fac Engn, Dept Comp Engn, TR-75002 Ardahan, Turkiye.
[Yildiz, Mine] Ataturk Univ, Kazim Karabekir Educ Fac, Dept Foreign Language Educ, TR-25240 Erzurum, Turkiye.
[Taslibeyaz, Elif] Erzincan Binali Yildirim Univ, Fac Educ, Dept Comp Educ & Instruct Technol, Erzincan, Turkiye.
[Kursun, Engin] Ataturk Univ, Kazim Karabekir Educ Fac, Dept Comp Educ & Instruct, TR-25240 Erzurum, Turkiye.
C3 Ataturk University; Ardahan University; Ataturk University; Erzincan
Binali Yildirim University; Ataturk University
RP Polat, H (corresponding author), Ataturk Univ, Fac Sci Appl, Dept Informat Syst & Technol, Erzurum, Turkiye.
EM hamzapolat@atauni.edu.tr
RI Polat, Hamza/HWQ-4414-2023
OI Polat, Hamza/0000-0002-9646-7507; Topuz, Arif Cem/0000-0002-5110-5334;
Kursun, Engin/0000-0002-5649-8595
CR AalSaud A. B. F, 2021, International Research in Higher Education, V6, DOI [10.5430/irhe.v6n2p1, DOI 10.5430/IRHE.V6N2P1]
Ali JKM., 2023, Journal of English Studies in Arabia Felix, V2, P41, DOI DOI 10.56540/JESAF.V2I1.51
Alzahrani A, 2022, AMAZON INVESTIG, V11, P293, DOI 10.34069/AI/2022.54.06.28
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arif TB, 2023, MED EDUC ONLINE, V28, DOI 10.1080/10872981.2023.2181052
Atlas S., 2023, ChatGPT for Higher Education and Professional Development: A guide to conversational AI
Baker T., 2019, Educ-AI-tion Rebooted? Exploring the future of artificial intelligence in schools and colleges
Bommineni V., 2023, Performance of ChatGPT on the MCAT: The road to personalized and equitable premedical learning, DOI [10.1101/2023.03.05.23286533, DOI 10.1101/2023.03.05.23286533]
Boucher EM, 2021, EXPERT REV MED DEVIC, V18, P37, DOI 10.1080/17434440.2021.2013200
Buchanan Christine, 2021, JMIR Nurs, V4, pe23933, DOI 10.2196/23933
Cascella M, 2023, J MED SYST, V47, DOI 10.1007/s10916-023-01925-4
Celik I, 2022, TECHTRENDS, V66, P616, DOI 10.1007/s11528-022-00715-y
Chan Kai Siang, 2019, JMIR Med Educ, V5, pe13930, DOI 10.2196/13930
Chiu T. K. F., 2023, Computers and Education: Artificial Intelligence, V4, P100118, DOI DOI 10.1016/J.CAEAI.2022.100118
Chu S T., 2022, Computers and Education: Artificial Intelligence, V3, P100091, DOI [10.1016/j.caeai.2022.100091, DOI 10.1016/J.CAEAI.2022.100091, 10.1016/J.CAEAI.2022.100091]
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Cooper G, 2023, J SCI EDUC TECHNOL, V32, P444, DOI 10.1007/s10956-023-10039-y
Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148
Crescenzi-Lanna L, 2023, J RES TECHNOL EDUC, V55, P21, DOI 10.1080/15391523.2022.2128480
del Río-Rama MD, 2018, EUR J TOUR RES, V19, P56
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Durso SD, 2022, PROBL EDUC 21ST CENT, V80, P679, DOI 10.33225/pec/22.80.679
Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642
Eggmann F, 2023, J ESTHET RESTOR DENT, V35, P1098, DOI 10.1111/jerd.13046
Eysenbach Gunther, 2023, JMIR Med Educ, V9, pe46885, DOI 10.2196/46885
Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846
Fidan M, 2022, J EDUC COMPUT RES, V60, P1716, DOI 10.1177/07356331221077901
Francisco RE, 2022, CSEDU: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION - VOL 1, P338, DOI 10.5220/0011084400003182
Gilson Aidan, 2023, JMIR Med Educ, V9, pe45312, DOI 10.2196/45312
Guan C., 2020, International Journal of Innovation Studies, V4, P134, DOI [DOI 10.1016/J.IJIS.2020.09.001, https://doi.org/10.1016/j.ijis.2020.09.001]
Haleem A., 2022, BenchCouncil Transactions on Benchmarks, Standards and Evaluations, V2, DOI [10.1016/j.tbench.2023.100089, DOI 10.1016/J.TBENCH.2023.100089]
Harmon J, 2021, NURS EDUC TODAY, V97, DOI 10.1016/j.nedt.2020.104700
Heersmink R, 2011, ETHICS INF TECHNOL, V13, P241, DOI 10.1007/s10676-011-9273-7
Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342
Huang JS, 2023, AM J CANCER RES, V13, P1148
Huang XY, 2023, EDUC TECHNOL SOC, V26, P112, DOI 10.30191/ETS.202301_26(1).0009
Huang YX, 2023, Arxiv, DOI arXiv:2304.11957
Huh S, 2023, J EDUC EVAL HEALTH P, V20, DOI 10.3352/jeehp.2023.20.1
Hwang GJ, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9060584
Imran M, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13605
Iqbal S., 2021, MedEdPublish, V10, P41, DOI DOI 10.15694/MEP.2021.000041.1
Jeblick Katharina, 2022, arXiv, DOI 10.48550/arXiv.2212.14882
Jeon J, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2204343
Jeon J, 2023, COMPUT ASSIST LANG L, V36, P1338, DOI 10.1080/09588221.2021.1987272
Kohnke L, 2023, RELC J, V54, P537, DOI 10.1177/00336882231162868
Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3
Lancichinetti A, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.056117
Liu SR, 2023, medRxiv, DOI [10.1101/2023.02.21.23286254, 10.1101/2023.02.21.23286254, DOI 10.1101/2023.02.21.23286254]
Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410
Macdonald C, 2023, J GLOB HEALTH, V13, DOI 10.7189/jogh.13.01003
Mhlanga D., 2023, SSRN Electronic Journal, DOI [DOI 10.2139/SSRN.4354422, 10.2139/ssrn.4354422]
Mojadeddi ZM, 2023, NEW ZEAL MED J, V136, P60, DOI 10.26635/6965.6122
Nadarzynski T, 2019, DIGIT HEALTH, V5, DOI 10.1177/2055207619871808
Nguyen PT, 2023, Arxiv, DOI [arXiv:2307.09381, 10.48550/arXiv.2307.09381, DOI 10.48550/ARXIV.2307.09381]
Okonkwo CW., 2021, COMPUTERS ED ARTIFIC, V2, P100033, DOI [10.1016/j.caeai.2021.100033, DOI 10.1016/J.CAEAI.2021.100033]
Ouyang F, 2022, EDUC INF TECHNOL, V27, P7893, DOI 10.1007/s10639-022-10925-9
Pavlik V. J., 2023, Journalism Mass Communication Educator, V78, P84, DOI DOI 10.1177/10776958221149577
Polat H., 2023, Empowering Education: Exploring the Potential of Artificial Intelligence, P3
Pradana M, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2243134
Qureshi R, 2023, SYST REV-LONDON, V12, DOI 10.1186/s13643-023-02243-z
Rudolph J., 2023, Journal of Applied Learning and Teaching, V6, P342, DOI [10.37074/jalt.2023.6.1.9, DOI 10.37074/JALT.2023.6.1.23, DOI 10.37074/JALT.2023.6.1.9]
Ruksakulpiwat S, 2023, J MULTIDISCIP HEALTH, V16, P1513, DOI 10.2147/JMDH.S413470
Sakirin T, 2023, Mesop J Comput Sci, V2023, P24
Salas-Pilco SZ, 2022, EDUC SCI, V12, DOI 10.3390/educsci12080569
Salas-Pilco SZ, 2022, INT J EDUC TECHNOL H, V19, DOI 10.1186/s41239-022-00326-w
Sallam M, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11060887
Salvagno M, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04380-2
Sharma S, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.38380
Singh VK, 2021, SCIENTOMETRICS, V126, P5113, DOI 10.1007/s11192-021-03948-5
Song P, 2020, ASIA PAC EDUC REV, V21, P473, DOI 10.1007/s12564-020-09640-2
Swathi M. M., 2023, Journal of Engineering Sciences, V14
Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x
Wollny S, 2021, FRONT ARTIF INTELL, V4, DOI 10.3389/frai.2021.654924
Wu R, 2024, BRIT J EDUC TECHNOL, V55, DOI 10.1111/bjet.13334
Xu WQ, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-022-00377-5
Yang S.-C., 2019, P 2019 3 INT C ED E, P79, DOI DOI 10.1145/3371647.3371659
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zhai XS, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/8812542
Zhang J, 2016, J ASSOC INF SCI TECH, V67, P967, DOI 10.1002/asi.23437
Zhang RF, 2023, INTERACT LEARN ENVIR, DOI 10.1080/10494820.2023.2202704
Zhu JW, 2020, SCIENTOMETRICS, V123, P321, DOI 10.1007/s11192-020-03387-8
NR 81
TC 4
Z9 4
U1 47
U2 47
PU INT SOC TECHNOLOGY EDUCATION & SCIENCE-ISTES
PI MONUMENT
PA 19723 LINDENMERE DR, MONUMENT, COLORADO, UNITED STATES
EI 2689-2758
J9 INT J TECHNOL EDUC
JI Int. J. Technol. Educ.
PY 2024
VL 7
IS 1
SI SI
BP 59
EP 85
DI 10.46328/ijte.606
PG 27
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA NB4F0
UT WOS:001197961000004
OA gold
DA 2024-09-05
ER
PT J
AU Kushairi, N
Ahmi, A
AF Kushairi, Norliza
Ahmi, Aidi
TI Flipped classroom in the second decade of the Millenia: a Bibliometrics
analysis with Lotka's law
SO EDUCATION AND INFORMATION TECHNOLOGIES
LA English
DT Article
DE Active learning; Bibliometrics analysis; Lotka's law; Blended learning;
Flipped classroom; Flipped learning
ID STUDENT PERFORMANCE; PRODUCTIVITY; SCIENCE; ENGAGEMENT; EDUCATION;
HIV/AIDS; NIGERIA; AUTHORS; TRENDS; FIELD
AB This paper aims to examine the current dynamics of the flipped classroom studies and to propose a direction for future research for the field. Using a bibliometric approach, we observe a sample of 1557 documents from the Scopus database to identify research activity on the flipped classroom. The keywords "flipped classroom" and "flipped learning" have been executed in the search query. We presented the earlier stage of research in the flipped classroom, the subsequent trends, publications status based on source title, country and institution and examined citations pattern of the publication. We also discuss the themes based on the occurrences and terms of the keywords, title and abstract of the documents. This paper also predicts the future study in the flipped classroom using Lotka's law. We found that the pattern distribution of the author's contribution fits with the law. We conclude by suggesting a few potential research directions on the flipped classroom. Research on flipped classroom focuses on approaches, strategies and effectiveness perceived by practitioners and learners with relatively less attention on author's contribution and the prediction on their future and sustainable contribution and networking in guaranteeing the survival and expansion of flipped classroom approach for the coming decades.
C1 [Kushairi, Norliza] Univ Utara Malaysia, Sch Educ, Sintok 06010, Kedah, Malaysia.
[Ahmi, Aidi] Univ Utara Malaysia, Tunku Puteri Intan Safinaz Sch Accountancy, Sintok 06010, Kedah, Malaysia.
C3 Universiti Utara Malaysia; Universiti Utara Malaysia
RP Kushairi, N (corresponding author), Univ Utara Malaysia, Sch Educ, Sintok 06010, Kedah, Malaysia.
EM drnk@uum.edu.my; aidi@uum.edu.my
RI Ahmi, Aidi/F-2858-2013
OI Ahmi, Aidi/0000-0002-8488-6966
CR Abeysekera L, 2015, HIGH EDUC RES DEV, V34, P1, DOI 10.1080/07294360.2014.934336
Adigwe I, 2016, ELECTRON LIBR, V34, P789, DOI 10.1108/EL-02-2014-0024
Ahmi A., 2020, STUDIES INT J ADV SC, V29, P289
Ahmi A., 2019, P 2019 INT C ELECT I, P1
Al-Shabibi T.S., 2019, International Journal of Learning, Teaching and Educational Research, V18, P96, DOI DOI 10.26803/IJLTER.18.3.6
Baker HK, 2020, J BUS RES, V108, P232, DOI 10.1016/j.jbusres.2019.11.025
Bergmann J, 2012, FLIP YOUR CLASSROOM
Bhagat KK, 2018, IEEE INT CONF ADV LE, P27, DOI 10.1109/ICALT.2018.00013
Bishop J.L., 2013, P ANN C AM SOC ENG E, P6219
Burnham Judy F, 2006, Biomed Digit Libr, V3, P1
Burns J, 2012, CRIT CARE MED, V40, P3305, DOI 10.1097/CCM.0b013e31826bf117
Chen HQ, 2015, RENEW SUST ENERG REV, V49, P12, DOI 10.1016/j.rser.2015.04.060
Chiu WT, 2007, SCIENTOMETRICS, V73, P3, DOI 10.1007/s11192-005-1523-1
Chuang KY, 2007, SCIENTOMETRICS, V72, P201, DOI [10.1007/s11192-007-1721-0, 10.1007/s11192-007-1693-0]
COILE RC, 1977, J AM SOC INFORM SCI, V28, P366, DOI 10.1002/asi.4630280610
Comerio N, 2019, TOURISM ECON, V25, P109, DOI 10.1177/1354816618793762
Dong BS, 2012, SCIENTOMETRICS, V93, P1101, DOI 10.1007/s11192-012-0730-9
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Flumerfelt S, 2013, EDUC TECHNOL SOC, V16, P356
Forsey M, 2013, J SOCIOL, V49, P471, DOI 10.1177/1440783313504059
Gilboy MB, 2015, J NUTR EDUC BEHAV, V47, P109, DOI 10.1016/j.jneb.2014.08.008
Jacomy M., 2009, 3 INT AAAI C WEBL SO
Jensen JL, 2015, CBE-LIFE SCI EDUC, V14, DOI 10.1187/cbe.14-08-0129
Kim MK, 2014, INTERNET HIGH EDUC, V22, P37, DOI 10.1016/j.iheduc.2014.04.003
Kumar A, 2019, LOGFORUM, V15, P509, DOI 10.17270/J.LOG.2019.366
Kushairi N, 2016, JURNAL IPDA, V23, P137
Kushairi N., 2010, THESIS U BRISTOL ENG
Kushairi N, 2018, PEIEP VIA FLIPPED TE
Lage MJ, 2000, J ECON EDUC, V31, P11
Lotka A.J., 1926, J Wash Acad Sci Wash D C, V16, P23
Luker C, 2015, J CHEM EDUC, V92, P1564, DOI 10.1021/acs.jchemed.5b00024
McDonald K, 2013, J CONTIN EDUC NURS, V44, P437, DOI 10.3928/00220124-20130925-19
McLaughlin JE, 2014, ACAD MED, V89, P236, DOI 10.1097/ACM.0000000000000086
Missildine K, 2013, J NURS EDUC, V52, P597, DOI 10.3928/01484834-20130919-03
Naheem K.T., 2019, APPL LOTKAS LAW BELL, V2019, P2892
NICHOLLS PT, 1986, INFORM PROCESS MANAG, V22, P417, DOI 10.1016/0306-4573(86)90076-2
Nwagwu WE, 2007, AFR J LIBR ARCH INFO, V17, P1
O'Flaherty J, 2015, INTERNET HIGH EDUC, V25, P85, DOI 10.1016/j.iheduc.2015.02.002
PAO ML, 1985, INFORM PROCESS MANAG, V21, P305, DOI 10.1016/0306-4573(85)90055-X
Parslow GR, 2012, BIOCHEM MOL BIOL EDU, V40, P337, DOI 10.1002/bmb.20642
Pierce R, 2012, AM J PHARM EDUC, V76, DOI 10.5688/ajpe7610196
Prober CG, 2012, NEW ENGL J MED, V366, P1657, DOI 10.1056/NEJMp1202451
Rathika N., 2020, INT J EMERG TECHNOL, V11, P332
Sedighi M, 2016, LIBR REV, V65, P52, DOI 10.1108/LR-07-2015-0075
Smit K, 2014, SCAND J EDUC RES, V58, P695, DOI 10.1080/00313831.2013.821090
Smith CM, 2013, J CONTIN EDUC NURS, V44, P486, DOI 10.3928/00220124-20131025-93
Sweileh WM, 2017, BMC MED INFORM DECIS, V17, DOI 10.1186/s12911-017-0476-7
Tucker B., 2012, ED NEXT, V12, P1, DOI DOI 10.4236/OALIB.1107398
Tune JD, 2013, ADV PHYSIOL EDUC, V37, P316, DOI 10.1152/advan.00091.2013
van Eck N.J., 2020, VOSviewer Manual
Wen H, 2012, SCIENTOMETRICS, V91, P51, DOI 10.1007/s11192-011-0535-2
Wolbrink Traci A, 2012, J Intensive Care Med, V27, P322, DOI 10.1177/0885066611429539
Yang L, 2017, INT J EMERG TECHNOL, V12, P178, DOI 10.3991/ijet.v12i06.7095
Yang L, 2013, SCIENTOMETRICS, V96, P133, DOI 10.1007/s11192-012-0911-6
Yi H, 2008, SCIENTOMETRICS, V75, P111, DOI 10.1007/s11192-007-1828-3
NR 55
TC 54
Z9 55
U1 14
U2 80
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1360-2357
EI 1573-7608
J9 EDUC INF TECHNOL
JI Educ. Inf. Technol.
PD JUL
PY 2021
VL 26
IS 4
BP 4401
EP 4431
DI 10.1007/s10639-021-10457-8
EA MAR 2021
PG 31
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA TL6AD
UT WOS:000626920500002
PM 33686330
OA Green Published, Bronze
DA 2024-09-05
ER
PT J
AU Tu, K
Sun, A
Levin, DM
AF Tu, Kevin
Sun, Angela
Levin, Daniel M.
TI Using memes to promote student engagement and classroom community during
remote learning
SO BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION
LA English
DT Article
DE active learning; assessment of educational activities; distance
learning; integration of research into undergraduate teaching; memes;
molecular biology; teaching and learning techniques methods and
approaches; using simulation and internet resources for teaching
AB As colleges moved to online teaching during the COVID-19 pandemic, many instructors found it difficult to maintain student engagement and classroom community in the virtual environment. We developed a semester-long activity for a molecular biology research methodology course where students created, and shared original memes related to course content with peers through group chat. Surveys and semi-structured interviews revealed that the exercise was effective in promoting student engagement, a sense of community, and relieving stress.
C1 [Tu, Kevin; Sun, Angela; Levin, Daniel M.] Univ Maryland, Dept Teaching & Learning Policy & Leadership, College Pk, MD USA.
[Tu, Kevin] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD USA.
[Sun, Angela] Univ Maryland, Fischell Dept Bioengn, College Pk, MD USA.
[Tu, Kevin] Univ Maryland, Dept Teaching & Learning Policy & Leadership, College Pk, MD 20742 USA.
C3 University System of Maryland; University of Maryland College Park;
University System of Maryland; University of Maryland College Park;
University System of Maryland; University of Maryland College Park;
University System of Maryland; University of Maryland College Park
RP Tu, K (corresponding author), Univ Maryland, Dept Teaching & Learning Policy & Leadership, College Pk, MD 20742 USA.
EM ktu@umd.edu
OI Tu, Kevin/0000-0002-0089-3932
CR Holton JA, 2008, GROUNDED THEORY REV, V7, P67
Liu X., 2007, Q REV DISTANCE ED, V8, P9
Means B., 2020, Unmasking inequality: STEM course experiences during the COVID-19 pandemic
Perets EA, 2020, J CHEM EDUC, V97, P2439, DOI 10.1021/acs.jchemed.0c00879
Rovai A. P., 2005, Internet and Higher Education, V8, P97, DOI 10.1016/j.iheduc.2005.03.001
Supriya K, 2021, FRONT EDUC, V6, DOI 10.3389/feduc.2021.759624
Wester ER, 2021, J MICROBIOL BIOL EDU, V22, DOI 10.1128/jmbe.v22i1.2385
NR 7
TC 1
Z9 1
U1 2
U2 8
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1470-8175
EI 1539-3429
J9 BIOCHEM MOL BIOL EDU
JI Biochem. Mol. Biol. Educ.
PD MAR
PY 2023
VL 51
IS 2
BP 202
EP 205
DI 10.1002/bmb.21700
EA DEC 2022
PG 4
WC Biochemistry & Molecular Biology; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Education & Educational Research
GA A0KF1
UT WOS:000894584100001
PM 36479805
OA hybrid
DA 2024-09-05
ER
PT J
AU Goulding, L
AF Goulding, Lauren
TI Spotlights: A Bibliometric Analysis of Lab Safety, Machine Learning
Predictions of Nanomaterial Toxicity, and Creating Great Titles
SO ACS CHEMICAL HEALTH & SAFETY
LA English
DT Editorial Material; Early Access
NR 0
TC 0
Z9 0
U1 0
U2 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
EI 1878-0504
J9 ACS CHEM HEALTH SAFE
JI ACS Chem. Health Saf.
PD 2022 JUN 22
PY 2022
DI 10.1021/acs.chas.2c00049
EA JUN 2022
PG 2
WC Public, Environmental & Occupational Health
WE Emerging Sources Citation Index (ESCI)
SC Public, Environmental & Occupational Health
GA 2Q2DG
UT WOS:000820237600001
DA 2024-09-05
ER
PT J
AU Zhou, X
Huang, L
Zhang, Y
Yu, MM
AF Zhou, Xiao
Huang, Lu
Zhang, Yi
Yu, Miaomiao
TI A hybrid approach to detecting technological recombination based on text
mining and patent network analysis
SO SCIENTOMETRICS
LA English
DT Article
DE Patent network analysis; The structure of science revolutions;
Bibliometrics; Text mining; Technological recombination; Artificial
intelligence
ID TECHNICAL INTELLIGENCE; KNOWLEDGE STRUCTURES; INNOVATION; SCIENCE;
IMPACT; SIMILARITY; EVOLUTION; PATHWAYS; DYNAMICS; INTERNET
AB Detecting promising technology groups for recombination holds the promise of great value for R&D managers and technology policymakers, especially if the technologies in question can be detected before they have been combined. However, predicting the future is always easier said than done. In this regard, Arthur's theory (The nature of technology: what it is and how it evolves, Free Press, New York, 2009) on the nature of technologies and how science evolves, coupled with Kuhn's theory of scientific revolutions (Kuhn in The structure of scientific revolutions, 1st edn, University of Chicago Press, Chicago, p 3, 1962), may serve as the basis of a shrewd methodological framework for forecasting recombinative innovation. These theories help us to set out quantifiable criteria and decomposable steps to identify research patterns at each stage of a scientific revolution. The first step in the framework is to construct a conceptual model of the target technology domain, which helps to refine a reasonable search strategy. With the model built, the landscape of a field-its communities, its technologies, and their interactions-is fleshed out through community detection and network analysis based on a set of quantifiable criteria. The aim is to map normal patterns of research in the domain under study so as to highlight which technologies might contribute to a structural deepening of technological recombinations. Probability analysis helps to detect and group candidate technologies for possible recombination and further manual analysis by experts. To demonstrate how the framework works in practice, we conducted an empirical study on AI research in China. We explored the development potential of recombinative technologies by zooming in on the top patent assignees in the field and their innovations. In conjunction with expert analysis, the results reveal the cooperative and competitive relationships among these technology holders and opportunities for future innovation through technological recombinations.
C1 [Zhou, Xiao] Xidian Univ, Sch Econ & Management, 266 Xinglong Sect,Xifeng Rd, Xian 710126, Shaanxi, Peoples R China.
[Huang, Lu; Yu, Miaomiao] Beijing Inst Technol, Sch Management & Econ, 5 South Zhong Guan Cun St, Beijing 100081, Peoples R China.
[Zhang, Yi] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Ultimo, NSW 2007, Australia.
C3 Xidian University; Beijing Institute of Technology; University of
Technology Sydney
RP Huang, L (corresponding author), Beijing Inst Technol, Sch Management & Econ, 5 South Zhong Guan Cun St, Beijing 100081, Peoples R China.
EM belinda1214@126.com; huanglu628@163.com; yi.zhang@uts.edu.au;
18165268237@163.com
RI Zhang, Yi/AAT-6945-2021
OI Zhang, Yi/0000-0002-7731-0301
CR Albert R, 2002, REV MOD PHYS, V74, P47, DOI 10.1103/RevModPhys.74.47
Alpaydin E, 2016, NEURAL NETWORKS DEEP, P217
[Anonymous], 2016, CHINA TIMES
Arjun K, 2016, JAPANS SOFTBANK BUY
Arthur W. B., 2009, The Nature of Technology: What It Is and How It Evolves, DOI DOI 10.20396/RBI.V8I2.8648990
Babaeizadeh M., 2016, C INT C LEARN REPR I
BAE HS, 2016, C IND ELECT APPL, V22, P1542
Barnett G, 2011, SCIENCE, V334, P1497, DOI 10.1126/science.1215785
Behara RS, 2014, INT J OPER PROD MAN, V34, P1537, DOI 10.1108/IJOPM-08-2013-0390
Bunz M, 2017, ARTIFICIAL INTELLIGE
Burse K., 2011, INFORM TECHNOLOGY MO
Carley SF, 2018, SCIENTOMETRICS, V115, P35, DOI 10.1007/s11192-018-2654-5
Carley SF, 2017, SCIENTOMETRICS, V111, P2077, DOI 10.1007/s11192-017-2342-x
Carnabuci G, 2013, STRATEGIC MANAGE J, V34, P1591, DOI 10.1002/smj.2084
Casares AP, 2018, FUTURES, V103, P5, DOI 10.1016/j.futures.2018.05.002
Choi J, 2014, TECHNOL FORECAST SOC, V83, P170, DOI 10.1016/j.techfore.2013.07.004
Choi S, 2011, SCIENTOMETRICS, V88, P863, DOI 10.1007/s11192-011-0420-z
Corredoira RA, 2015, RES POLICY, V44, P508, DOI 10.1016/j.respol.2014.10.003
Corrocher N., 2003, EMERGENCE NEW TECHNO
Corrocher N, 2010, RES POLICY, V39, P945, DOI 10.1016/j.respol.2010.04.008
Dhabe PS, 2017, IMPACT J, V5, P55
Dotsika F, 2017, TECHNOL FORECAST SOC, V119, P114, DOI 10.1016/j.techfore.2017.03.020
Elish MC, 2018, COMMUN MONOGR, V85, P57, DOI 10.1080/03637751.2017.1375130
Fleming L, 2004, STRATEGIC MANAGE J, V25, P909, DOI 10.1002/smj.384
Fleming L, 2001, RECOMBINANT UNCERTAI
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
FREEMAN LC, 1977, SOCIOMETRY, V40, P35, DOI 10.2307/3033543
Freniere C, 2016, COMPUT SCI ENG, V18, P68, DOI 10.1109/MCSE.2016.94
Frutos-Pascual M, 2017, IEEE T COMP INTEL AI, V9, P133, DOI 10.1109/TCIAIG.2015.2512592
Funk RJ, 2017, MANAGE SCI, V63, P791, DOI 10.1287/mnsc.2015.2366
Gallouj F, 1997, RES POLICY, V26, P537, DOI 10.1016/S0048-7333(97)00030-9
Galunic DC, 1998, STRATEGIC MANAGE J, V19, P1193, DOI 10.1002/(SICI)1097-0266(1998120)19:12<1193::AID-SMJ5>3.3.CO;2-6
Gruber M, 2013, MANAGE SCI, V59, P837, DOI 10.1287/mnsc.1120.1572
Guan JC, 2016, RES POLICY, V45, P1460, DOI 10.1016/j.respol.2016.05.002
Gupta Akanksha, 2017, 2017 International Conference on Intelligent Sustainable Systems (ICISS). Proceedings, P1041, DOI 10.1109/ISS1.2017.8389339
Halim Z, 2016, ARTIF INTELL REV, V46, P351, DOI 10.1007/s10462-016-9467-9
Hashimoto DA, 2018, ANN SURG, V268, P70, DOI 10.1097/SLA.0000000000002693
HENDERSON RM, 1990, ADMIN SCI QUART, V35, P9, DOI 10.2307/2393549
Hossain L, 2015, SCIENTOMETRICS, V103, P337, DOI 10.1007/s11192-015-1557-y
iFlytek, 2014, HIT IFLYTEK LANG COG
Inspur, 2016, INSPUR CO NEWS
Kassianos G, 2018, VACCINE, V36, P6546, DOI 10.1016/j.vaccine.2018.02.031
Kelly K., 2016, The Inevitable: Understanding the 12 Technological Forces That Will Shape Our Future
Keupp MM, 2013, RES POLICY, V42, P1457, DOI 10.1016/j.respol.2013.04.006
Kim B, 2014, SCIENTOMETRICS, V98, P1811, DOI 10.1007/s11192-013-1097-2
Kuhn T.S., 1962, The structure of scientific revolutions
Lee PC, 2010, INNOV-MANAG POLICY P, V12, P26, DOI 10.5172/impp.12.1.26
Lee S, 2009, TECHNOL FORECAST SOC, V76, P769, DOI 10.1016/j.techfore.2009.01.003
Lee Y, 2014, SCIENTOMETRICS, V100, P227, DOI 10.1007/s11192-013-1216-0
Liu ZG, 2015, SCIENTOMETRICS, V103, P135, DOI 10.1007/s11192-014-1517-y
Luo Q, 2012, 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT-2012), P441
Ma TT, 2017, TECHNOL FORECAST SOC, V116, P162, DOI 10.1016/j.techfore.2016.10.061
Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006
Meiring GAM, 2015, SENSORS-BASEL, V15, P30653, DOI 10.3390/s151229822
Meyer D, 2014, GOOGLE UNVEILS OPEN
Miao YJ, 2016, INTERSPEECH, P3414, DOI 10.21437/Interspeech.2016-412
Movidius, 2016, MOV INT VIS FUT AUT
Nakamura H, 2015, TECHNOL FORECAST SOC, V94, P187, DOI 10.1016/j.techfore.2014.09.009
Naveen R, 2016, INTEL NERVANA
Pan YH, 2016, ENGINEERING, V2, P409, DOI 10.1016/J.ENG.2016.04.018
Park H, 2013, EXPERT SYST APPL, V40, P2373, DOI 10.1016/j.eswa.2012.10.073
Park Y, 2005, TECHNOL SOC, V27, P471, DOI 10.1016/j.techsoc.2005.08.003
Peter S., 2016, 100 YEAR STUDY ARTIF
Pokkuluri KS, 2017, DEEP LEARNING FUTURE
Porter A.L., 2005, Tech mining: exploiting new technologies for competitive advantage
Rajpurkar Pranav, 2016, EMNLP, DOI DOI 10.18653/V1/D16-1264
Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006
Ruiz M, 2016, IEEE LAT AM T, V14, P4249, DOI 10.1109/TLA.2016.7786301
SABIDUSSI G, 1966, PSYCHOMETRIKA, V31, P581, DOI 10.1007/BF02289527
Saltos R, 2017, IEEE T FUZZY SYST, V25, P1508, DOI 10.1109/TFUZZ.2017.2741442
Schilling MA, 2011, RES POLICY, V40, P1321, DOI 10.1016/j.respol.2011.06.009
Serrano-Guerrero J, 2015, INFORM SCIENCES, V311, P18, DOI 10.1016/j.ins.2015.03.040
Shah SAA, 2016, NEUROCOMPUTING, V174, P866, DOI 10.1016/j.neucom.2015.10.004
Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005
SOHU, 2017, HUAWEIS NEW KIR CHIP
SOHU, 2003, HUAZH U SCI TECHN IN
Stergiou C, 2017, INT J NETW MANAG, V27, DOI 10.1002/nem.1930
Sundbo J, 2000, ECON SCI TECHN INNOV, V18, P43
Takano Y, 2016, J INFORMETR, V10, P967, DOI 10.1016/j.joi.2016.05.004
van den Bergh JCJM, 2008, J ECON BEHAV ORGAN, V68, P565, DOI 10.1016/j.jebo.2008.09.003
Viejo CG, 2018, FOOD CONTROL, V92, P72, DOI 10.1016/j.foodcont.2018.04.037
Wang X, 2016, IEEE T INTELL TRANSP, V17, P1596, DOI 10.1109/TITS.2015.2513086
Wang YX, 2016, INT J COGN INFORM NA, V10, P1, DOI 10.4018/IJCINI.2016100101
Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918
Williams O, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110121
Wood J, 2015, SCIENTOMETRICS, V105, P1
Xiong C, 2017, WORKSHOP, P1
Yang SL, 2016, J INFORMETR, V10, P132, DOI 10.1016/j.joi.2015.12.003
Yayavaram S, 2008, ADMIN SCI QUART, V53, P333, DOI 10.2189/asqu.53.2.333
Ye CL, 2015, 2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), P2648, DOI 10.1109/FSKD.2015.7382375
Yoon B, 2007, IEEE T ENG MANAGE, V54, P588, DOI 10.1109/TEM.2007.900796
ZALTZ A, 2013, PLOS ONE, V0008
Zhang QR, 2017, SCIENTOMETRICS, V111, P1623, DOI 10.1007/s11192-017-2314-1
Zhang Y, 2017, J ASSOC INF SCI TECH, V68, P1925, DOI 10.1002/asi.23814
Zhang Y, 2016, J INFORMETR, V10, P1108, DOI 10.1016/j.joi.2016.09.006
Zhang Y, 2014, TECHNOL FORECAST SOC, V85, P26, DOI 10.1016/j.techfore.2013.12.019
Zhou X, 2013, PORTL INT CONF MANAG, P2188
Zhou X, 2014, SCIENTOMETRICS, V100, P705, DOI 10.1007/s11192-014-1317-4
Zhou X, 2014, NANOMED-NANOTECHNOL, V10, P889, DOI 10.1016/j.nano.2014.03.001
Zhu DH, 2013, SCIENTOMETRICS, V97, P435, DOI 10.1007/s11192-013-1019-3
NR 100
TC 24
Z9 24
U1 7
U2 171
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2019
VL 121
IS 2
BP 699
EP 737
DI 10.1007/s11192-019-03218-5
PG 39
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA JF2FJ
UT WOS:000491201000006
DA 2024-09-05
ER
PT C
AU Freeman, C
Roy, MK
Fattoruso, M
Alhoori, H
AF Freeman, Cole
Roy, Mrinal Kanti
Fattoruso, Michele
Alhoori, Hamed
BE Bonn, M
Wu, D
Downie, SJ
Martaus, A
TI Shared Feelings: Understanding Facebook Reactions to Scholarly Articles
SO 2019 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL 2019)
SE ACM-IEEE Joint Conference on Digital Libraries JCDL
LA English
DT Proceedings Paper
CT 19th ACM/IEEE Joint Conference on Digital Libraries (JCDL)
CY JUN 02-06, 2019
CL IL
DE Facebook Reactions; Altmetrics; Data Collection; Social Clicks; Re-
search Community; Social Media Analytics; Supervised Learning
AB Research on social-media platforms has tended to rely on textual analysis to perform research tasks. While text-based approaches have significantly increased our understanding of online behavior and social dynamics, they overlook features on these platforms that have grown in prominence in the past few years: click-based responses to content. In this paper, we present a new dataset of Facebook Reactions to scholarly content. We give an overview of its structure, analyze some of the statistical trends in the data, and use it to train and test two supervised learning algorithms. Our preliminary tests suggest the presence of stratification in the number of users following pages, divisions that seem to fall in line with distinctions in the subject matter of those pages.
C1 [Freeman, Cole; Roy, Mrinal Kanti; Fattoruso, Michele; Alhoori, Hamed] Northern Illinois Univ, De Kalb, IL 60115 USA.
C3 Northern Illinois University
RP Freeman, C (corresponding author), Northern Illinois Univ, De Kalb, IL 60115 USA.
EM cole.freeman9@gmail.com; mkantiroy@niu.edu; z1840898@students.niu.edu;
alhoori@niu.edu
RI Alhoori, Hamed/B-8106-2009
OI Alhoori, Hamed/0000-0002-4733-6586
CR Alhoori H, 2014, ACM-IEEE J CONF DIG, P375, DOI 10.1109/JCDL.2014.6970193
[Anonymous], 2010, P AM SOC INFORM SCI, DOI DOI 10.1002/MEET.14504701201
Basile Angelo, 2017, P 4 IT C COMP LING C, P28
Bayer J, 2018, NEW MEDIA SOC, V20, P1047, DOI 10.1177/1461444816681522
Gabielkov M., 2016, ACM SIGMETRICS IFIP
Krebs F., 2018, P 10 INT C AGENTS AR, P211, DOI 10.5220/0006656002110220
Krug Sammi., 2016, REACTIONS NOW AVAILA
Pool C., 2016, P WORKSH COMP MOD PE, P30
Rajadesingan A, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P97, DOI 10.1145/2684822.2685316
Shah P., 2018, FACEBOOKS NEW REACTI
Shuai X, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047523
Tian Y., 2017, P 5 INT WORKSH NAT L, P11, DOI DOI 10.18653/V1/W17-1102
NR 12
TC 6
Z9 11
U1 0
U2 6
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2575-7865
EI 2575-8152
BN 978-1-7281-1547-4
J9 ACM-IEEE J CONF DIG
PY 2019
BP 301
EP 304
DI 10.1109/JCDL.2019.00050
PG 4
WC Computer Science, Information Systems; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods;
Information Science & Library Science
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science
GA BP5KE
UT WOS:000555928200043
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Corrin, L
Thompson, K
Lodge, JM
AF Corrin, Linda
Thompson, Kate
Lodge, Jason M.
TI AJET in 2023: Reflections on educational technology, people, and
bibliometrics
SO AUSTRALASIAN JOURNAL OF EDUCATIONAL TECHNOLOGY
LA English
DT Article
DE educational technology; generative AI; academic publishing; bibliometric
data
AB In this editorial we reflect on the last three years of AJET achievements, challenges, and opportunities as we reach a time of transition in the lead editorial team. We also reflect on the key themes of 2023, especially the impact that the growing availability of generative artificial intelligence has had on research and practice in the tertiary education sector. We present our annual round up of bibliometrics, thank our hardworking editorial team, and acknowledge the contributions of those who are ending their service with AJET in 2023. In conclusion, we look ahead by outlining our goals for 2024 and discussing the themes and technologies that will be a focus for AJET in the new year.
C1 [Corrin, Linda] Deakin Univ, Geelong, Australia.
[Thompson, Kate] Queensland Univ Technol, Brisbane, Australia.
[Lodge, Jason M.] Univ Queensland, Brisbane, Australia.
C3 Deakin University; Queensland University of Technology (QUT); University
of Queensland
RP Corrin, L (corresponding author), Deakin Univ, Geelong, Australia.
EM linda.corrin@deakin.edu.au
RI ; Corrin, Linda/AAD-8545-2019
OI Lodge, Jason/0000-0001-6330-6160; Corrin, Linda/0000-0002-1593-3271
CR Conroy G, 2023, NATURE, V622, P234, DOI 10.1038/d41586-023-03144-w
Corrin L, 2023, AUSTRALAS J EDUC TEC, V39, P1, DOI 10.14742/ajet.8887
Corrin L, 2022, AUSTRALAS J EDUC TEC, V38, P1, DOI 10.14742/ajet.8455
D'Andrea R, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0186111
Goodyear P, 2023, AUSTRALAS J EDUC TEC, V39, P1, DOI 10.14742/ajet.9082
Kaebnick Gregory E, 2023, Ethics Hum Res, V45, P39, DOI 10.1002/eahr.500182
Lodge JM, 2023, AUSTRALAS J EDUC TEC, V39, P18, DOI 10.14742/ajet.8695
Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6
Thompson K, 2023, AUSTRALAS J EDUC TEC, V39, DOI 10.14742/ajet.9251
NR 9
TC 0
Z9 0
U1 7
U2 10
PU AUSTRALASIAN SOC COMPUTERS LEARNING TERTIARY EDUCATION-ASCILITE
PI TUGUN
PA UNIT 5, 202 COODE ST, PO BOX 350, TUGUN, 4224, AUSTRALIA
SN 1449-3098
EI 1449-5554
J9 AUSTRALAS J EDUC TEC
JI Australas. J. Educ. Technol.
PY 2023
VL 39
IS 6
AR 9277
DI 10.14742/ajet.9277
PG 8
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA EE9E6
UT WOS:001137353900005
OA Green Submitted, gold
DA 2024-09-05
ER
PT C
AU Shaw, RA
Fleming, SW
Levay, K
Thompson, R
Koekemoer, AM
Tseng, SA
Forshay, P
Hargis, JR
McLean, B
Marston, A
Mullally, SE
Peek, JEG
Shiao, B
White, RL
AF Shaw, Richard A.
Fleming, Scott W.
Levay, Karen
Thompson, Randy
Koekemoer, Anton M.
Tseng, Shui-Ay
Forshay, Peter
Hargis, Jonathan R.
McLean, Brian
Marston, Anthony
Mullally, Susan E.
Peek, J. E. G.
Shiao, Bernie
White, Richard L.
BE Peck, AB
Seaman, RL
Benn, CR
TI Enabling new science with MAST community contributed data collections
SO OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS VII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Observatory Operations - Strategies, Processes, and
Systems VII
CY JUN 11-15, 2018
CL Austin, TX
DE data archive; bibliometrics; machine learning; process improvement;
science impact
AB The Mikulski Archive for Space Telescopes' (MAST), a multi-mission archive that hosts science data products for several NASA missions, has since 2003 solicited collections of processed data, termed High-Level Science Products (HLSPs), from investigators with observing and archive science programs. As of early 2018 there were nearly 130 contributed collections, and the growth rate is expected to accelerate with the start of the TESSc and JWST(d) missions. While the data volume of all HLSP collections is only about 1% of the total volume hosted by MAST, they have an outsized impact on science. The aggregate downloaded volume for a given HLSP collection is typically about 40 times the collection size, and the citation rates for HLSP collections are significantly higher than that for typical observing programs. Yet hosting HLSPs presents special challenges for long-term archives. It is often problematic to obtain sufficient metadata to specify fully the data products without requiring work from potential contributors that may discourage them from sharing their collections. Historically, preparing an HLSP collection for distribution via MAST has been quite time-consuming and often required substantial interaction with the collection contributors. We are creating a more automated workflow and using new technologies for HLSP collection management to improve collection discoverability, simplify the process for the investigator, ease the burden for MAST staff, and shorten the timeframe for publishing HLSPs. This work will also help MAST staff better assess the impact of HLSP collections on science outcomes for hosted mission data.
C1 [Shaw, Richard A.; Fleming, Scott W.; Levay, Karen; Thompson, Randy; Koekemoer, Anton M.; Tseng, Shui-Ay; Forshay, Peter; Hargis, Jonathan R.; McLean, Brian; Marston, Anthony; Mullally, Susan E.; Peek, J. E. G.; Shiao, Bernie; White, Richard L.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
[Marston, Anthony] European Space Agcy, 3400 N Charles St, Baltimore, MD 21218 USA.
[Peek, J. E. G.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA.
C3 Space Telescope Science Institute; Johns Hopkins University
RP Shaw, RA (corresponding author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
EM shaw@stsci.edu
RI White, Richard L/A-8143-2012; Koekemoer, Anton M./F-8400-2014
OI Koekemoer, Anton M./0000-0002-6610-2048; Shaw,
Richard/0000-0003-4058-5202; Marston, Anthony/0000-0001-5788-5258;
White, Richard/0000-0002-9194-2807
FU NASA [NAS 5-26555]
FX MAST is operated by the Space Telescope Science Institute for NASA under
contract NAS 5-26555. This research has made use of NASA's Astrophysics
Data System Bibliographic Services. We are grateful for the contribution
of InSight Data Science Fellow Alicia Shen, who built a machine-learning
model for evaluating whether HLSP data were employed in citing papers.
CR FITS, 2017, DEF FLEX IM TRANSP S
Giavalisco M, 2004, ASTROPHYS J, V600, pL93, DOI 10.1086/379232
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Pepe A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0104798
NR 4
TC 1
Z9 1
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
EI 1996-756X
BN 978-1-5106-1962-3
J9 PROC SPIE
PY 2018
VL 10704
AR UNSP 1070414
DI 10.1117/12.2312810
PG 13
WC Engineering, Aerospace; Remote Sensing; Optics; Imaging Science &
Photographic Technology
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Engineering; Remote Sensing; Optics; Imaging Science & Photographic
Technology
GA BL5SA
UT WOS:000452635900036
DA 2024-09-05
ER
PT J
AU Santos, BS
Silva, I
Costa, DG
AF Santos, Breno Santana
Silva, Ivanovitch
Costa, Daniel G.
TI Symmetry in Scientific Collaboration Networks: A Study Using Temporal
Graph Data Science and Scientometrics
SO SYMMETRY-BASEL
LA English
DT Article
DE graph data science; symmetry properties; machine learning; graph
embedding; temporal analysis; scientometrics
AB This article proposes a novel approach that leverages graph theory, machine learning, and graph embedding to evaluate research groups comprehensively. Assessing the performanceand impact of research groups is crucial for funding agencies and research institutions, but many traditional methods often fail to capture the complex relationships between the evaluated elements.In this sense, our methodology transforms publication data into graph structures, allowing the visualization and quantification of relationships between researchers, publications, and institutions.By incorporating symmetry properties, we offer a more in-depth evaluation of research groups cohesiveness and structure over time. This temporal evaluation methodology bridges the gap between unstructured scientometrics networks and the evaluation process, making it a valuable tool for decision-making procedures. A case study is defined to demonstrate the potential to providevaluable insights into the dynamics and limitations of research groups, which ultimately reinforces the feasibility of the proposed approach when supporting decision making for funding agencies andresearch institutions.
C1 [Santos, Breno Santana; Silva, Ivanovitch] Univ Fed Rio Grande do Norte, Postgrad Program Elect & Comp Engn, BR-59078970 Natal, Brazil.
[Santos, Breno Santana] Univ Fed Sergipe, Informat Syst Dept, BR-49506036 Itabaiana, Brazil.
[Costa, Daniel G.] Univ Porto, Fac Engn, INEGI, P-4200465 Porto, Portugal.
C3 Universidade Federal do Rio Grande do Norte; Universidade Federal de
Sergipe; Universidade do Porto
RP Santos, BS; Silva, I (corresponding author), Univ Fed Rio Grande do Norte, Postgrad Program Elect & Comp Engn, BR-59078970 Natal, Brazil.; Santos, BS (corresponding author), Univ Fed Sergipe, Informat Syst Dept, BR-49506036 Itabaiana, Brazil.
EM breno.santos.038@ufrn.edu.br; breno1005@hotmail.com
RI Silva, Ivanovitch/N-8075-2019; Santos, Breno Santana/AAQ-2189-2020;
Costa, Daniel G./I-4928-2013
OI Silva, Ivanovitch/0000-0002-0116-6489; Santos, Breno
Santana/0000-0002-8790-2546; Costa, Daniel G./0000-0003-3988-8476
CR Agrawal G, 2022, INFORMATION, V13, DOI 10.3390/info13110526
Amat CB, 2016, SCIENTOMETRICS, V108, P41, DOI 10.1007/s11192-016-1952-z
[Anonymous], 2010, The evaluation of research by scientometric indicators
BASILI VR, 1984, IEEE T SOFTWARE ENG, V10, P728, DOI 10.1109/TSE.1984.5010301
Bonaccorso G., 2019, Hands-on Unsupervised Learning with Python
Bramer Max, 2007, Principles of data mining (3. b.), V180
Cai HY, 2018, IEEE T KNOWL DATA EN, V30, P1616, DOI 10.1109/TKDE.2018.2807452
Camargo L.S.d., 2018, Ponto de Acesso, V12, P109, DOI 10.9771/rpa.v12i3.28408
CAPES, 2022, CAPES QUADR EV
CAPES CAPES-Institutional, 2022, US
Franceschini F, 2011, J INFORMETR, V5, P64, DOI 10.1016/j.joi.2010.08.003
Grohe M, 2020, PODS'20: PROCEEDINGS OF THE 39TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, P1, DOI 10.1145/3375395.3387641
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Gu WW, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-23795-5
Jeon HJ, 2019, FRONT BIG DATA, V2, DOI 10.3389/fdata.2019.00039
Ju H., 2022, Collect. Intell, V1, DOI [10.1177/26339137221109839, DOI 10.1177/26339137221109839]
Keramatfar A, 2022, MACH LEARN APPL, V10, DOI 10.1016/j.mlwa.2022.100401
Kudelka M, 2016, INT CONF INTEL NETWO, P375, DOI 10.1109/INCoS.2016.100
Kuprieiev Ruslan, 2021, Zenodo, DOI 10.5281/ZENODO.5562238
Longa A., 2019, THESIS U STUDI TRENT
Menczer F., 2020, A First Course in Network Science
Montazerian M, 2019, SCIENTOMETRICS, V118, P1065, DOI 10.1007/s11192-018-2996-z
Moral-Munoz JA, 2019, SPRINGER HBK, P159, DOI 10.1007/978-3-030-02511-3_7
Mryglod O, 2022, SCIENTOMETRICS, V127, P3279, DOI 10.1007/s11192-022-04373-y
Muller A. C., 2016, Introduction to Machine Learning with Python and Scikit-Learn
Narayanan A, 2017, Arxiv, DOI arXiv:1707.05005
Patel Ankur A., 2019, Hands-on Unsupervised Learning Using Python : How to Build Applied Machine Learning Solutions From Unlabeled Data, V1st ed
Santos B.S., 2021, 15 SIMP SIO BRASILEI, P1998, DOI [10.20906/sbai.v1i1.2838, DOI 10.20906/SBAI.V1I1.2838]
Santos B.S., 2015, P ANN C BRAZILIAN S, P667
Santos Breno, 2022, Mendeley Data, DOI 10.17632/RWFD6P6XSD
Santos BS, 2022, SCIENTOMETRICS, V127, P1609, DOI 10.1007/s11192-021-04260-y
Sugimoto C.R., 2018, Measuring research: What everyone needs to know, DOI DOI 10.1093/WENTK/9780190640118.001.0001
Tang SJ, 2022, SCI CHINA LIFE SCI, V65, P753, DOI 10.1007/s11427-021-1974-7
van Solingen D.R., 1999, GOAL QUESTION METRIC
Wiechetek L, 2022, SCIENTOMETRICS, V127, P1381, DOI 10.1007/s11192-021-04258-6
Zhou S, 2018, PROC INT CONF DATA, P1372, DOI 10.1109/ICDE.2018.00153
Zinoviev D., 2018, Complex Network Analysis in Python: Recognize-Construct-Visualize-Analyze-Interpret
Zweig KA, 2016, LECT NOTES SOC NETW, P1, DOI 10.1007/978-3-7091-0741-6
NR 38
TC 1
Z9 1
U1 2
U2 14
PU MDPI
PI BASEL
PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
EI 2073-8994
J9 SYMMETRY-BASEL
JI Symmetry-Basel
PD MAR
PY 2023
VL 15
IS 3
AR 601
DI 10.3390/sym15030601
PG 17
WC Multidisciplinary Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Science & Technology - Other Topics
GA A9FA6
UT WOS:000958091800001
OA gold
DA 2024-09-05
ER
PT J
AU Velasco, ED
Hirumi, A
Chen, BY
AF de la Mora Velasco, Efren
Hirumi, Atsusi
Chen, Baiyun
TI Improving Instructional Videos with Background Music and Sound Effects:
A Design-Based Research Approach
SO JOURNAL OF FORMATIVE DESIGN IN LEARNING
LA English
DT Article
DE Background music; Music; Sound; Sound effects; Instructional videos;
Animations; Motivation; Engagement; Learning; Knowledge retention;
Attention; Relevance; Confidence; Satisfaction; Working memory;
Cognitive load; Multimedia learning; Multimedia theory; Online learning;
Design-based research; Formative evaluation
ID ENGAGEMENT; MOOD
AB There is a lack of empirical studies incorporating background music (BM) and sounds (SFX) to instructional videos to facilitate students' learning. A design-based research study was conducted to enhance student engagement and motivation including four iterative formative evaluations. In the first iteration, graduate students' reactions were examined to understand the potential influences of BM and SFX in the learning experience. The second iteration consisted of a small-group session focused on describing students' levels of engagement, motivation, and learning while using videos that included BM and SFX. In the third iteration, a field test was conducted to explore the effects of BM and SFX on students' engagement, motivation, and learning. The fourth iteration collected experts' feedback to inform future research and practice. Results showed beneficial effects of BM and SFX for motivation, engagement, and potential learning. Practical guidelines are suggested for faculty and instructional designers to implement BM and SFX on instructional videos. The paper concludes by posing an emergent theory: the design and integration of BM and SFX need to balance the motivational improvements with the challenges of cognitive dissonance and overload.
C1 [de la Mora Velasco, Efren; Hirumi, Atsusi; Chen, Baiyun] Univ Cent Florida, 4000 Cent Florida Blvd, Orlando, FL 32816 USA.
C3 State University System of Florida; University of Central Florida
RP Velasco, ED (corresponding author), Univ Cent Florida, 4000 Cent Florida Blvd, Orlando, FL 32816 USA.
EM efren@ucf.edu
RI de la mora velasco, Efren/AAE-4618-2021
OI de la mora velasco, Efren/0000-0001-7485-9510
CR Allcoat D, 2018, RES LEARN TECHNOL, V26, DOI 10.25304/rlt.v26.2140
Anderson T, 2012, EDUC RESEARCHER, V41, P16, DOI 10.3102/0013189X11428813
[Anonymous], 2004, 1999D00460004 DAAD T
Appleton JJ, 2008, PSYCHOL SCHOOLS, V45, P369, DOI 10.1002/pits.20303
Barron A.E., 2004, HDB RES ED COMMUNICA, P949
Batur Z., 2016, Education, V137, P82
Bishop MJ, 2008, ETR&D-EDUC TECH RES, V56, P467, DOI 10.1007/s11423-006-9032-3
Clark RC, 2011, E-Learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning, 3rd Edition, P1, DOI 10.1002/9781118255971
Cobb P., 2003, Educational Researcher, V32, P9, DOI [10.3102/0013189X032001009, DOI 10.3102/0013189X032001009]
Velasco ED, 2020, ETR&D-EDUC TECH RES, V68, P2817, DOI 10.1007/s11423-020-09783-4
Ferrao JC, 2021, HEALTH SYST, V10, P138, DOI 10.1080/20476965.2020.1729666
Finn JD, 2012, HANDBOOK OF RESEARCH ON STUDENT ENGAGEMENT, P97, DOI 10.1007/978-1-4614-2018-7_5
Greene CM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011739
Grossman G D., 2015, Journal of Natural History Education and Experience, V9, P1
Halcomb EJ, 2006, APPL NURS RES, V19, P38, DOI 10.1016/j.apnr.2005.06.001
Hallam S., 2016, OXFORD HDB MUSIC PSY, P775
Herrington J., 2007, P WORLD C ED MULTIME, P4089, DOI DOI 10.1017/CB09781107415324.004
Hoaglin D., 1983, Understanding Robust and Exploratory Data Analysis, V3
Hu X, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2020.102409
Huizenga J, 2019, COMPUT HUM BEHAV, V99, P137, DOI 10.1016/j.chb.2019.05.020
Iacovides Joanna, 2011, International Journal of Virtual and Personal Learning Environments, V2, P1, DOI 10.4018/jvple.2011040101
Kang HJ, 2014, PSYCHOL MUSIC, V42, P728, DOI 10.1177/0305735613485152
Kao TA, 2014, SYSTEM, V43, P114, DOI 10.1016/j.system.2014.01.003
Keller JM, 2010, MOTIVATIONAL DESIGN FOR LEARNING AND PERFORMANCE: THE ARCS MODEL APPROACH, P297, DOI 10.1007/978-1-4419-1250-3_12
Kiss L, 2021, PSYCHOL RES-PSYCH FO, V85, P2313, DOI 10.1007/s00426-020-01400-6
Kuo FF, 2013, IEEE INT CON MULTI
Langan KA., 2013, Public Services Quarterly, V9, P89, DOI [DOI 10.1080/15228959.2013.785876, 10.1080/15228959.2013.785876]
Lehmann JAM, 2019, APPL COGNITIVE PSYCH, V33, P85, DOI 10.1002/acp.3509
Leiker AM, 2016, HUM MOVEMENT SCI, V49, P326, DOI 10.1016/j.humov.2016.08.005
Mann BL, 2008, COMPUT EDUC, V50, P1157, DOI 10.1016/j.compedu.2006.11.002
MASSEY FJ, 1951, J AM STAT ASSOC, V46, P68, DOI 10.2307/2280095
Mayer RE, 2014, COMPUTER GAMES FOR LEARNING: AN EVIDENCE-BASED APPROACH, P3
Moreno R, 2000, J EDUC PSYCHOL, V92, P117, DOI 10.1037//0022-0663.92.1.117
Murphy J, 2016, J ACAD LIBR, V42, P259, DOI 10.1016/j.acalib.2015.12.010
Murrock CJ, 2009, J ADV NURS, V65, P2249, DOI 10.1111/j.1365-2648.2009.05108.x
Nantais KM, 1999, PSYCHOL SCI, V10, P370, DOI 10.1111/1467-9280.00170
Que Y., 2020, EXPLORING EFFECT PER, DOI [https://doi.org/10.1145/3383583.3398543, DOI 10.1145/3383583.3398543]
Reeve J, 2012, HANDBOOK OF RESEARCH ON STUDENT ENGAGEMENT, P149, DOI 10.1007/978-1-4614-2018-7_7
Reeve J, 2011, CONTEMP EDUC PSYCHOL, V36, P257, DOI 10.1016/j.cedpsych.2011.05.002
Reimann P, 2011, METHODS SER, V9, P37, DOI 10.1007/978-90-481-8933-5_3
Sandoval W, 2014, J LEARN SCI, V23, P18, DOI 10.1080/10508406.2013.778204
Steele KM, 1999, NATURE, V400, P827, DOI 10.1038/23611
Sun YQ, 2020, COMPUT EDUC, V157, DOI 10.1016/j.compedu.2020.103963
Sweller J, 2011, EXPLOR LEARN SCI, P3, DOI 10.1007/978-1-4419-8126-4
Taylor K.M., 2012, Journal of College Reading and Learning, V42, P51
Ten Hove P., 2015, IT NOT WHAT CHARACTE
Thompson WF, 2001, PSYCHOL SCI, V12, P248, DOI 10.1111/1467-9280.00345
Tyng CM, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.01454
Yang TC, 2019, ASIA-PAC EDUC RES, V28, P495, DOI 10.1007/s40299-019-00450-8
조혜영, 2015, [Multimedia-Assisted Language Learning, 멀티미디어 언어교육], V18, P37
NR 50
TC 5
Z9 6
U1 4
U2 28
PU SPRINGER INT PUBL AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
EI 2509-8039
J9 J FORMATIVE DES LEAR
JI J. Formative Des. Learn.
PD JUN
PY 2021
VL 5
IS 1
BP 1
EP 15
DI 10.1007/s41686-020-00052-4
EA JAN 2021
PG 15
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA TS8JB
UT WOS:000607759100001
DA 2024-09-05
ER
PT J
AU Wahid, R
Ahmi, A
Alam, ASAF
AF Wahid, Ratnaria
Ahmi, Aidi
Alam, A. S. A. Ferdous
TI Growth and Collaboration in Massive Open Online Courses: A Bibliometric
Analysis
SO INTERNATIONAL REVIEW OF RESEARCH IN OPEN AND DISTRIBUTED LEARNING
LA English
DT Article
DE massive open online courses; MOOCs; distance education; online learning;
collaborative research; inclusiveness
ID MOOCS
AB Massive open online courses (MOOCs) are an important approach for achieving UNESCO's aim of open and accessible education. However, there are concerns regarding fragmentation or bias of MOOCs toward certain disciplines or countries. This study sought to: (a) examine how MOOCs research has evolved and is distributed, (b) determine what key areas are discussed in MOOCs research, and (c) identify the major players in MOOCs research and their collaborations. This study conducted a bibliometric analysis of 3,118 scholarly works related to MOOCs as recorded in the Scopus database in July, 2019. Specifically, we analyzed the evolution of MOOCs research by examining (a) published studies, (b) source titles, (c) types of sources and documents, as well as (d) the languages in which the documents were written in. We further analyzed the key areas of MOOCs research by looking into common subject areas, keywords used most often, and title analysis. Finally, we sought to increase our understanding of the major players in MOOCs research and their collaborations by examining (a) which countries contributed most to MOOCs research, (b) the main institutions involved, as well as (c) authorship and citation analysis. Findings indicated that in their early development starting in 2009, MOOCs caught the attention of scholars from both the East and the West, and the number of publications grew consistently over the 10 years after that. MOOCs research has been well distributed but has yet to adequately encourage inclusiveness. There has been healthy cross-country collaboration, but there is a gap in MOOCs research originating from certain countries as compared to the rest of the world. Our findings provide important input towards improving the inclusivity and global reach of MOOCs.
C1 [Wahid, Ratnaria; Ahmi, Aidi; Alam, A. S. A. Ferdous] Univ Utara Malaysia, Bukit Kayu Hitam, Kedah, Malaysia.
C3 Universiti Utara Malaysia
RP Wahid, R (corresponding author), Univ Utara Malaysia, Bukit Kayu Hitam, Kedah, Malaysia.
RI Ahmi, Aidi/F-2858-2013; Alam, A. S. A. Ferdous/I-4594-2014; Wahid,
Ratnaria/K-7066-2015
OI Ahmi, Aidi/0000-0002-8488-6966; Alam, A. S. A.
Ferdous/0000-0003-2413-3046; Wahid, Ratnaria/0000-0001-9424-9285
FU Ministry of Education Malaysia [13049]
FX Y This work was supported in part by the Ministry of Education Malaysia,
under the Malaysian Fundamental Research Grant Scheme [S/O Code 13049].
CR Adams J, 2013, NATURE, V497, P557, DOI 10.1038/497557a
Alraimi KM, 2015, COMPUT EDUC, V80, P28, DOI 10.1016/j.compedu.2014.08.006
[Anonymous], 2018, P EDMEDIA WORLD C ED
[Anonymous], 2015, TRANSF OUR WORLD 203
[Anonymous], 2013, P 3 INT C LEARN AN K
Baggaley J, 2013, DISTANCE EDUC, V34, P368, DOI 10.1080/01587919.2013.835768
Cairns R, 2020, SUSTAIN SCI, V15, P1711, DOI 10.1007/s11625-020-00784-z
Daradoumis T, 2013, 2013 EIGHTH INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING (3PGCIC 2013), P208, DOI 10.1109/3PGCIC.2013.37
DeBoer J, 2014, EDUC RESEARCHER, V43, P74, DOI 10.3102/0013189X14523038
Deng RQ, 2019, COMPUT EDUC, V129, P48, DOI 10.1016/j.compedu.2018.10.019
deWaard I, 2011, INT REV RES OPEN DIS, V12, P94, DOI 10.19173/irrodl.v12i7.1046
Ebben M, 2014, LEARN MEDIA TECHNOL, V39, P328, DOI 10.1080/17439884.2013.878352
Fini A, 2009, INT REV RES OPEN DIS, V10
Fox A, 2013, COMMUN ACM, V56, P38, DOI 10.1145/2535918
Gameel BG, 2019, COMPUT EDUC, V136, P49, DOI 10.1016/j.compedu.2019.02.014
Gaseric D., 2014, International Review of Research in Open and Distance Learning, V15, P134
Hew KF, 2014, EDUC RES REV-NETH, V12, P45, DOI 10.1016/j.edurev.2014.05.001
Ichimura Y., 2017, International Journal, V11, P42
Ichou RP, 2018, AUSTRALAS MARK J, V26, P116, DOI 10.1016/j.ausmj.2018.05.007
Jansen D, 2015, INT REV RES OPEN DIS, V16, P116
Jiang SH, 2014, INT REV RES OPEN DIS, V15, P99
Jordan K, 2014, INT REV RES OPEN DIS, V15, DOI 10.19173/irrodl.v15i1.1651
Kay J, 2013, IEEE INTELL SYST, V28, P70, DOI 10.1109/MIS.2013.66
Kerr R., 2019, EMOOCS WIP, P145
King M, 2018, INT REV RES OPEN DIS, V19, P1
Kizilcec R. F., 2013, P 3 INT C LEARN AN K, P170, DOI [10.1145/2460296.2460330, DOI 10.1145/2460296.2460330]
Kizilcec RF, 2020, P NATL ACAD SCI USA, V117, P14900, DOI 10.1073/pnas.1921417117
Kop R, 2011, INT REV RES OPEN DIS, V12, P74, DOI 10.19173/irrodl.v12i7.1041
Kop R, 2011, INT REV RES OPEN DIS, V12, P19, DOI 10.19173/irrodl.v12i3.882
Lambert SR, 2020, COMPUT EDUC, V145, DOI 10.1016/j.compedu.2019.103693
Lee J, 2018, 22 BIENN C INT TEL S
Li YX, 2017, ADV SOC SCI EDUC HUM, V146, P130
Liyanagunawardena TR, 2013, INT REV RES OPEN DIS, V14, P202, DOI 10.19173/irrodl.v14i3.1455
Ma L, 2019, J EDUC COMPUT RES, V57, P571, DOI 10.1177/0735633118757732
Margaryan A, 2015, COMPUT EDUC, V80, P77, DOI 10.1016/j.compedu.2014.08.005
Martin FG, 2012, COMMUN ACM, V55, P26, DOI 10.1145/2240236.2240246
Nordin N., 2018, JURNAL PENDIDIKAN MA, V43, P35, DOI [10.17576/JPEN-2018-43.01-05, DOI 10.17576/JPEN-2018-43.01-05]
Pan RK, 2012, SCI REP-UK, V2, DOI 10.1038/srep00902
Radford AW, 2014, INT REV RES OPEN DIS, V15, P1
Reich J, 2015, SCIENCE, V347, P34, DOI 10.1126/science.1261627
Rogers RA, 2007, J INT STUD-JIS, V3, P92
Rohs M, 2015, INT REV RES OPEN DIS, V16, P1
Ruiqi Deng, 2017, International Journal of Information and Education Technology, V7, P601, DOI 10.18178/ijiet.2017.7.8.939
Scott J, 2014, S VIS LANG HUM CEN C, P45, DOI 10.1109/VLHCC.2014.6883020
Sweileh WM, 2017, BMC MED INFORM DECIS, V17, DOI 10.1186/s12911-017-0476-7
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
Veletsianos G, 2015, INT REV RES OPEN DIS, V16
Veletsianos G, 2016, INT REV RES OPEN DIS, V17, P198
Verk N, 2021, J BUS ETHICS, V168, P491, DOI 10.1007/s10551-019-04232-6
Yousef Ahmed Mohamed Fahmy, 2014, 6th International Conference on Computer-Supported Education (CSEDU 2014). Proceedings, P9
Zancanaro A, 2018, TURK ONLINE J DISTAN, V19, P4, DOI 10.17718/tojde.415602
Zancanaro A, 2017, RIED-REV IBEROAM EDU, V20, P59, DOI 10.5944/ried.20.1.15910
Zancanaro A, 2015, INT REV RES OPEN DIS, V16, P1
Zheng SJ, 2015, PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW'15), P1882, DOI 10.1145/2675133.2675217
Zhu MN, 2018, INTERNET HIGH EDUC, V37, P31, DOI 10.1016/j.iheduc.2018.01.002
NR 55
TC 22
Z9 23
U1 0
U2 9
PU ATHABASCA UNIV PRESS
PI ATHABASCA
PA 1 UNIVERSITY DR, ATHABASCA, AB T9S 3A3, CANADA
SN 1492-3831
J9 INT REV RES OPEN DIS
JI Int. Rev. Res. Open Distrib. Learn.
PD NOV
PY 2020
VL 21
IS 4
BP 292
EP 322
PG 31
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA PA7QU
UT WOS:000595826000016
DA 2024-09-05
ER
PT J
AU Xie, Z
AF Xie, Zheng
TI Assessing the Attractions of MOOCs From the Perspective of
Scientometrics
SO IEEE ACCESS
LA English
DT Article
DE Data science applications in education; distance education and online
learning; evaluation methodologies
ID IMPACT FACTORS; COAUTHORSHIP; PERFORMANCE; INDICATORS; MOTIVATION;
EDUCATION; STUDENTS; MODEL
AB A range of empirical observations show that the right-skewed phenomenon emerges in the citation distributions of papers. The phenomenon also exists in the length distributions of learners' time spent on viewing the videos of a massive open online course. The mechanisms underlying this phenomenon in both cases are the same, namely cumulative advantage, known as the Matthew effect and the Lindy effect respectively. These similarities make it possible to apply the theories and methods in scientometrics to attraction assessments of massive open online courses. Massive data of learning behaviors are recorded on the MOOC platforms with high measurability and wide coverage, setting the precondition for this study. Based on the data derived from the log records of viewing behavior, we showed how to utilize the ideas of typical scientometric indicators, such as the impact factor and h-index, to assess courses' attraction. Our work adumbrates not only the practicability but also the limitation of the provided indicators.
C1 [Xie, Zheng] Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410000, Hunan, Peoples R China.
C3 National University of Defense Technology - China
RP Xie, Z (corresponding author), Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410000, Hunan, Peoples R China.
EM xiezheng81@nudt.edu.cn
OI Xie, Zheng/0000-0003-0391-8725
FU National Education Science Foundation of China [DIA180383]; National
Natural Science Foundation of China [61773020]
FX This work was supported in part by the National Education Science
Foundation of China under Grant DIA180383, and in part by the National
Natural Science Foundation of China under Grant 61773020.
CR Anderson A, 2014, WWW'14: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P687
[Anonymous], 2001, CHALLENGE SCIENTOMET
Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509
Barak M, 2016, COMPUT EDUC, V94, P49, DOI 10.1016/j.compedu.2015.11.010
Bornmann L, 2011, J INFORMETR, V5, P228, DOI 10.1016/j.joi.2010.10.009
Bouyssou D, 2011, J AM SOC INF SCI TEC, V62, P1761, DOI 10.1002/asi.21544
Bouyssou D, 2011, J INFORMETR, V5, P75, DOI 10.1016/j.joi.2010.09.001
BRAUN T, 1990, SCIENTOMETRICS, V19, P513, DOI 10.1007/BF02020712
Breslow L., 2013, RES PRACTICE ASSESSM, V8
Clark DB, 2007, EDUC PSYCHOL REV, V19, P343, DOI 10.1007/s10648-007-9050-7
de Barba PG, 2016, J COMPUT ASSIST LEAR, V32, P218, DOI 10.1111/jcal.12130
DEBRUIN RE, 1993, RES EVALUAT, V3, P25, DOI [DOI 10.1093/REV/3.1.25, DOI 10.1093/rev/3.1.25]
Egghe L, 2006, SCIENTOMETRICS, V69, P131, DOI 10.1007/s11192-006-0144-7
Egghe L, 2008, SCIENTOMETRICS, V77, P377, DOI 10.1007/s11192-007-1968-5
Eliazar I, 2017, PHYSICA A, V486, P797, DOI 10.1016/j.physa.2017.05.077
Emanuel EJ, 2013, NATURE, V503, P342, DOI 10.1038/503342a
Fritz J, 2011, INTERNET HIGH EDUC, V14, P89, DOI 10.1016/j.iheduc.2010.07.007
GADDUM JH, 1945, NATURE, V156, P463, DOI 10.1038/156463a0
Garfield E, 1999, CAN MED ASSOC J, V161, P979
Gikandi JW, 2011, COMPUT EDUC, V57, P2333, DOI 10.1016/j.compedu.2011.06.004
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Lattuca LR., 2007, New Directions for Institutional Research, V136, P81, DOI [10.1002/ir.233, DOI 10.1002/IR.233]
Leydesdorff L, 2011, J AM SOC INF SCI TEC, V62, P2133, DOI 10.1002/asi.21609
Macfadyen LP, 2010, COMPUT EDUC, V54, P588, DOI 10.1016/j.compedu.2009.09.008
Margaryan A, 2015, COMPUT EDUC, V80, P77, DOI 10.1016/j.compedu.2014.08.005
MOED HF, 1995, SCIENTOMETRICS, V33, P381, DOI 10.1007/BF02017338
Nan Li, 2015, Design for Teaching and Learning in a Networked World. 10th European Conference on Technology-Enhanced Learning, EC-TEL 2015. Proceedings: LNCS 9307, P197, DOI 10.1007/978-3-319-24258-3_15
Perc M, 2014, J R SOC INTERFACE, V11, DOI 10.1098/rsif.2014.0378
PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292, DOI 10.1002/asi.4630270505
Reeves TC, 2000, J EDUC COMPUT RES, V23, P101, DOI 10.2190/GYMQ-78FA-WMTX-J06C
Reich J, 2015, SCIENCE, V347, P34, DOI 10.1126/science.1261627
Romero-Zaldivar VA, 2012, COMPUT EDUC, V58, P1058, DOI 10.1016/j.compedu.2011.12.003
Rovai A. P., 2000, Internet and Higher Education, V3, P141, DOI 10.1016/S1096-7516(01)00028-8
Schubert A, 2007, SCIENTOMETRICS, V70, P201, DOI 10.1007/s11192-007-0112-x
Sunar AS, 2017, IEEE T LEARN TECHNOL, V10, P475, DOI 10.1109/TLT.2016.2633268
Waltman L, 2011, SCIENTOMETRICS, V87, P467, DOI 10.1007/s11192-011-0354-5
Waltman L, 2011, J INFORMETR, V5, P37, DOI 10.1016/j.joi.2010.08.001
Watted A, 2018, INTERNET HIGH EDUC, V37, P11, DOI 10.1016/j.iheduc.2017.12.001
William D., 2011, STUD EDUC EVAL, V37, P3, DOI DOI 10.1016/J.STUEDUC.2011.03.001
Xie Z, 2018, J ASSOC INF SCI TECH, V69, P305, DOI 10.1002/asi.23935
Xie Z, 2020, TSINGHUA SCI TECHNOL, V25, P313, DOI 10.26599/TST.2019.9010011
Xie Z, 2019, SCIENTOMETRICS, V121, P503, DOI 10.1007/s11192-019-03183-z
Xie Z, 2019, IEEE ACCESS, V7, P74206, DOI 10.1109/ACCESS.2019.2921009
Xie Z, 2017, SCIENTOMETRICS, V112, P483, DOI 10.1007/s11192-017-2359-1
Xie Z, 2016, J INFORMETR, V10, P299, DOI 10.1016/j.joi.2016.02.001
Xing WL, 2016, COMPUT HUM BEHAV, V58, P119, DOI 10.1016/j.chb.2015.12.007
Zhu MN, 2018, INTERNET HIGH EDUC, V37, P31, DOI 10.1016/j.iheduc.2018.01.002
NR 47
TC 1
Z9 1
U1 2
U2 16
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2019
VL 7
BP 136409
EP 136418
DI 10.1109/ACCESS.2019.2942835
PG 10
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA JQ1DH
UT WOS:000498693400002
OA gold
DA 2024-09-05
ER
PT J
AU Aguilar-Soto, M
Robinson-García, N
Vargas-Quesada, B
AF Aguilar-Soto, Maria
Robinson-Garcia, Nicolas
Vargas-Quesada, Benjamin
TI Altmetrics for the identification of scientific controversies: The case
of NeuroGenderings and neurosexism
SO PROFESIONAL DE LA INFORMACION
LA English
DT Article
DE Neurosexism; Scientific controversies; Altmetrics; Sentiment analysis;
News; Blogs; Social media; Wikipedia; Reddit; Facebook; Science mapping;
Neuroscience; Gender; Sex; Neurogenderings
ID GENDER SIMILARITIES; NEUROSCIENCE; LINKING; SEX
AB This work presents a methodological proposal for the analysis of social controversies related to scientific literature. This methodology consists of three clearly differentiated parts. First, we identify the cognitive structure of a set of scientific works. To do this, a historiogram is created through the analysis of references cited by seminal works. This allows us to expand the set of works to work with, subsequently conducting a co-word analysis to identify the cognitive structure of the scientific field to be explored. Secondly, we obtain social mentions of this scientific literature using so-called altmetrics. This allows us to extract mentions made to each scientific document from non-academic environments. Finally, we apply sentiment analysis techniques to these mentions to identify focal points of negative sentiment. We test this methodology on the case study of NeuroGenderings, a movement in the field of neuroscience that denounces the lack of scientific evidence in works that claim the existence of brain differences driven by the biological sex of the subjects. Our results confirm the viability of these types of approaches that enable the identification of research areas with greater controversy. Although our study is limited to the analysis of controversies in news, blogs, Facebook, Wikipedia, and Reddit, the methodology can be applied to other domains and social platforms.
C1 [Aguilar-Soto, Maria; Vargas-Quesada, Benjamin] Univ Granada, Unit Computat Humanities & Social Sci, Colegio Maximo Cartuja S-N, E-18071 Granada, Spain.
[Robinson-Garcia, Nicolas] Univ Granada, Unit Computat Humanities & Social Sci, EC3 Res Grp, Colegio Maximo Cartuja S-N, E-18071 Granada, Spain.
C3 University of Granada; University of Granada
RP Robinson-García, N (corresponding author), Univ Granada, Unit Computat Humanities & Social Sci, EC3 Res Grp, Colegio Maximo Cartuja S-N, E-18071 Granada, Spain.
EM m_aguilar@ugr.es; elrobin@ugr.es; benjamin@ugr.es
RI Robinson-Garcia, Nicolas/B-3590-2012; Vargas-Quesada,
Benjamin/L-7222-2014
OI Robinson-Garcia, Nicolas/0000-0002-0585-7359; Vargas-Quesada,
Benjamin/0000-0001-5115-7460; Aguilar-Soto, Maria/0000-0002-8772-8832
FU Spanish Ministry of Science and Innovation, reference MCIN/AEI; European
Social Fund "FSE invierte en tu futuro"
FX This work has been financed by the Spanish Ministry of Science and
Innovation, reference MCIN/AEI /10.13039/501100011033, and by the
European Social Fund "FSE invierte en tu futuro". Nicolas
Robinson-Garcia is a Ramon y Cajal researcher (REF: RYC2019-027886-I).
CR Arroyo-Machado W, 2022, QUANT SCI STUD, V3, P931, DOI 10.1162/qss_a_00226
Arroyo-Machado Wenceslao, 2023, Anuario ThinkEPI, V17, DOI [10.3145/thinkepi.2023.e17a16, DOI 10.3145/THINKEPI.2023.E17A16]
Boyack KW, 2009, SCIENTOMETRICS, V79, P45, DOI 10.1007/s11192-009-0403-5
Butler Judith., 1990, Thinking Gender
Butler Judith, 1993, BODIES MATTER DISCUR
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Choudhury S, 2009, BIOSOCIETIES, V4, P61, DOI 10.1017/S1745855209006437
COLE S, 1983, AM J SOCIOL, V89, P111, DOI 10.1086/227835
Fanelli D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066938
Fine Cordelia., 2010, DELUSIONS GENDER OUR
Friedrich N, 2015, PRO INT CONF SCI INF, P107
Griffin A., 2008, New strategies to reputation management: Gaining control of issues, crises, and corporate social responsibility
Hassan SU, 2021, J INF SCI, V47, P712, DOI 10.1177/0165551520930917
Hyde JS, 2014, ANNU REV PSYCHOL, V65, P373, DOI 10.1146/annurev-psych-010213-115057
Hyde JS, 2005, AM PSYCHOL, V60, P581, DOI 10.1037/0003-066X.60.6.581
Jordan-Young R, 2012, NEUROETHICS-NETH, V5, P305, DOI 10.1007/s12152-011-9134-4
Kaiser A, 2012, Z PSYCHOL, V220, P130, DOI 10.1027/2151-2604/a000104
Kaiser A, 2009, BRAIN RES REV, V61, P49, DOI 10.1016/j.brainresrev.2009.03.005
Kostoff RN, 2005, SCIENTOMETRICS, V62, P199, DOI 10.1007/s11192-005-0014-8
Kuhn T.S., 1962, The structure of scientific revolutions
Lamers WS, 2021, ELIFE, V10, DOI [10.7554/eLife.72737, 10.7554/eLife.72737.sa1, 10.7554/eLife.72737.sa2]
LEVAY S, 1991, SCIENCE, V253, P1034, DOI 10.1126/science.1887219
Leydesdorff L, 2012, J INFORMETR, V6, P318, DOI 10.1016/j.joi.2011.11.003
Muñoz-Écija T, 2024, J INF SCI, V50, P145, DOI 10.1177/01655515221084607
Muñoz-Écija T, 2019, J INFORMETR, V13, DOI 10.1016/j.joi.2019.100976
Muñoz-Écija T, 2017, J NANOPART RES, V19, DOI 10.1007/s11051-016-3732-3
Nane Gabriela F., 2021, Pandemic communication and resilience. Risk, systems and decisions
Nicholson JM, 2021, QUANT SCI STUD, V2, P882, DOI 10.1162/qss_a_00146
North A., 2019, Vox
PHOENIX CH, 1959, ENDOCRINOLOGY, V65, P369, DOI 10.1210/endo-65-3-369
Popper K., 2005, LOGIC SCI DISCOVERY
Priem J., 2010, Altmetrics: A manifesto
Proellochs Nicolas, 2023, CRAN
R Core Team, 2023, R LANG ENV STAT COMP
Reverter-Banon Sonia, 2017, Daimon, V72, P95, DOI [10.6018/daimon/291561, DOI 10.6018/DAIMON/291561]
Rippon G, 2017, J NEUROSCI RES, V95, P1357, DOI 10.1002/jnr.24045
Rippon G, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00650
Robinson-Garcia N, 2018, SCI PUBL POLICY, V45, P815, DOI 10.1093/scipol/scy024
Robinson-García N, 2014, PROF INFORM, V23, P359, DOI 10.3145/epi.2014.jul.03
SCOTT J, 1988, SOCIOLOGY, V22, P109, DOI 10.1177/0038038588022001007
Thelwall M, 2021, J ECON SURV, V35, P1302, DOI 10.1111/joes.12381
Torres-Salinas D, 2013, COMUNICAR, V21, P53, DOI 10.3916/C41-2013-05
Torres-Salinas Daniel, 2023, The many publics of science: Using altmetrics to identify common communication channels by scientific field, DOI [10.5281/zenodo.7817445, DOI 10.5281/ZENODO.7817445]
Traag VA, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41695-z
van Eck NJ, 2014, J INFORMETR, V8, P802, DOI 10.1016/j.joi.2014.07.006
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Schalkwyk F, 2020, SCIENTOMETRICS, V125, P1499, DOI 10.1007/s11192-020-03551-0
Vargas-Quesada B., 2007, VISUALIZING STRUCTUR
Vargas-Quesada B., 2017, Frontiers Res. Metrics Anal., V2, P7, DOI 10.3389/frma.2017.00007
Vargas-Quesada B, 2010, INFORM VISUAL, V9, P288, DOI 10.1057/ivs.2009.33
Wasserman Stanley., 1998, Social network analysis : methods and applications
Zumbach David, 2023, CRAN
NR 52
TC 0
Z9 0
U1 9
U2 10
PU EDICIONES PROFESIONALES INFORMACION SL-EPI
PI BARCELONA
PA MISTRAL, 36, BARCELONA, ALBOLOTE, SPAIN
SN 1386-6710
EI 1699-2407
J9 PROF INFORM
JI Prof. Inf.
PY 2023
VL 32
IS 6
AR e320610
DI 10.3145/epi.2023.nov.10
PG 11
WC Communication; Information Science & Library Science
WE Social Science Citation Index (SSCI)
SC Communication; Information Science & Library Science
GA GZ7F9
UT WOS:001156562800014
OA hybrid
DA 2024-09-05
ER
PT J
AU Chen, XL
Zou, D
Xie, HR
Wang, FL
AF Chen, Xieling
Zou, Di
Xie, Haoran
Wang, Fu Lee
TI Metaverse in Education: Contributors, Cooperations, and Research Themes
SO IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES
LA English
DT Article
DE Metaverse; Education; Bibliometrics; Analytical models; Solid modeling;
Collaboration; Databases; Educational Metaverse (Edu-Metaverse); social
network visualization; structural topic modeling
ID AUGMENTED REALITY; COLLABORATIONS; ENVIRONMENT; EVOLUTION; COMMUNITY;
PATTERNS; NETWORK; IMPACT; TIME
AB Research on Educational Metaverse (Edu-Metaverse) has developed into an active research field. Based on 310 academic papers published from 2004 to 2022, this study identifies contributors, scientific cooperations, and research themes using bibliometrics, social network analysis, topic modeling, and keyword analysis. Results suggest that Edu-Metaverse has been gaining increasing attention in academia since 2019. Countries/affiliations located in the same regions are close partners in scientific cooperation. By jointly interpreting topic modeling and keyword analysis results, this study reveals eight main themes in the field of Edu-Metaverse: 1) Metaverse-based physical education; 2) Metaverse-supported simulations for collaborative problem-based learning (PBL) in health/medical education; 3) 3-D virtual learning environment-supported art appreciation and creation in art education; 4) Metaverse-enabled laboratories for STEM education; 5) language and 21st century skill development through Metaverse-supported immersive language learning; 6) Metaverse for developing autism children' social communication abilities; 7) virtual world Metaverse-supported gameful experience-based education; and 8) quantitative research on Edu-Metaverse focusing on learners' experience. We also identified challenges and directions needing further attention: 1) data security and privacy protection; 2) balance between the real world and virtual world identities; 3) preparing instructors for Edu-Metaverse; and 4) assessment of higher-order thinking competencies in Edu-Metaverse-based PBL. This work helps facilitate researchers' and practitioners' understanding of Edu-Metaverse research and raises their awareness of research frontiers and future directions.
C1 [Chen, Xieling] Guangzhou Univ, Guangzhou 510006, Peoples R China.
[Zou, Di] Educ Univ Hong Kong, Hong Kong, Peoples R China.
[Xie, Haoran] Lingnan Univ, Hong Kong, Peoples R China.
[Wang, Fu Lee] Hong Kong Metropolitan Univ, Hong Kong, Peoples R China.
C3 Guangzhou University; Education University of Hong Kong (EdUHK); Lingnan
University; Hong Kong Metropolitan University
RP Zou, D (corresponding author), Educ Univ Hong Kong, Hong Kong, Peoples R China.
EM xielingchen0708@gmail.com; dzou@eduhk.hk; hrxie2@gmail.com;
pwang@hkmu.edu.hk
RI Xie, Haoran/AFS-3515-2022
OI Xie, Haoran/0000-0003-0965-3617; Wang, Fu Lee/0000-0002-3976-0053; ZOU,
Di/0000-0001-8435-9739
FU Special Grant for Strategic Development of Virtual Teaching and
Learning, University Grant Committee, Hong Kong
FX No Statement Available
CR Akour IA., 2022, COMPUTERS ED ARTIFIC, V3, P100052, DOI [10.1016/j.caeai.2022.100052, DOI 10.1016/J.CAEAI.2022.100052]
Allen M, 2016, ELIFE, V5, DOI 10.7554/eLife.18103
Almarzouqi A, 2022, IEEE ACCESS, V10, P43421, DOI 10.1109/ACCESS.2022.3169285
Alsaleh S, 2022, IEEE ACCESS, V10, P89924, DOI 10.1109/ACCESS.2022.3199371
Altiok S, 2020, Educational Technology Theory and Practice, V10, P177, DOI [10.17943/etku.622871, DOI 10.17943/ETKU.622871]
American Psychiatric Association, 2013, DIAGN STAT MAN MENT
[Anonymous], 2010, TEL OPP DEV MEMB STA
Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7
Avila-Garzon C, 2021, CONTEMP EDUC TECHNOL, V13, DOI 10.30935/cedtech/10865
Barbosa A, 2021, LAK21 CONFERENCE PROCEEDINGS: THE ELEVENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P77, DOI 10.1145/3448139.3448147
Bastian M., 2009, Gephi: An open source software for exploring and manipulating networks
Berg C, 2019, FRONT BLOCKCHAIN, V2, DOI 10.3389/fbloc.2019.00022
Billert MS, 2022, IEEE T LEARN TECHNOL, V15, P540, DOI 10.1109/TLT.2022.3176777
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bourne J, 2005, J ENG EDUC, V94, P131, DOI 10.1002/j.2168-9830.2005.tb00834.x
Castro MDB, 2021, EDUC INF TECHNOL, V26, P1367, DOI 10.1007/s10639-019-10027-z
Charles D, 2011, BRIT J EDUC TECHNOL, V42, P638, DOI 10.1111/j.1467-8535.2010.01068.x
Chen XL, 2023, EDUC TECHNOL SOC, V26, P171, DOI 10.30191/ETS.202301_26(1).0013
Chen XL, 2022, EDUC TECHNOL SOC, V25, P28
Chen X, 2020, COMPUT EDUC, V151, DOI 10.1016/j.compedu.2020.103855
Coccia M, 2016, P NATL ACAD SCI USA, V113, P2057, DOI 10.1073/pnas.1510820113
Ding Y, 2011, J INFORMETR, V5, P187, DOI 10.1016/j.joi.2010.10.008
Eldokhny AA, 2021, INT J EMERG TECHNOL, V16, P198, DOI 10.3991/ijet.v16i09.17895
Erlandson BE, 2010, ETR&D-EDUC TECH RES, V58, P693, DOI 10.1007/s11423-010-9152-7
Erturk Emre, 2020, Proceedings of the 14th International Conference e-learning 2020. Part of the Multi Conference on Computer Science and Information Systems MCCSIS 2020, P191
Estudante A, 2020, J CHEM EDUC, V97, P1368, DOI 10.1021/acs.jchemed.9b00933
Falchuk B, 2018, IEEE TECHNOL SOC MAG, V37, P52, DOI 10.1109/MTS.2018.2826060
Garrido-Iñigo P, 2015, INTERACT LEARN ENVIR, V23, P453, DOI 10.1080/10494820.2013.788034
Getchell K, 2010, INT CON ADV INFO NET, P1195, DOI 10.1109/AINA.2010.125
Bote VPG, 2013, J AM SOC INF SCI TEC, V64, P392, DOI 10.1002/asi.22754
Guo HY, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.859159
Guo L, 2016, J MASS COMMUN Q, V93, P332, DOI 10.1177/1077699016639231
Guraya SY, 2016, N AM J MED SCI, V8, P268, DOI 10.4103/1947-2714.187131
Hamari J, 2015, INT J INFORM MANAGE, V35, P419, DOI 10.1016/j.ijinfomgt.2015.04.006
Heo MH, 2021, HUM-CENT COMPUT INFO, V11, DOI 10.22967/HCIS.2021.11.40
Howard SK, 2015, COMPUT EDUC, V90, P24, DOI 10.1016/j.compedu.2015.09.008
Hwang G. J., 2022, Computers and Education: Artificial Intelligence, DOI [DOI 10.1016/J.CAEAI.2022.100082, 10.1016/j.caeai.2022.100082]
Iwanaga J, 2023, CLIN ANAT, V36, P77, DOI 10.1002/ca.23949
JOHNSON K., 1979, COMMUNICATIVE APPROA
Jonassen K.P. D., 2001, Journal of Special Education Technology, V16, P46
Kajastila R, 2016, 34TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2016, P758, DOI 10.1145/2858036.2858450
Kelly P., 2012, P 13 INT WORKSH IM A, P1
Ketelhut DJ, 2010, BRIT J EDUC TECHNOL, V41, P56, DOI 10.1111/j.1467-8535.2009.01036.x
Khazanchi D, 2006, INT J E-COLLAB, V2, P25, DOI 10.4018/jec.2006070102
Kothari A, 2014, SYST PRACT ACT RES, V27, P123, DOI 10.1007/s11213-012-9271-7
Krippendorff K., 2018, CONTENT ANAL INTRO I
Kye B, 2021, J EDUC EVAL HEALTH P, V18, P1, DOI 10.3352/jeehp.2021.18.32
Lee H, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14084786
Lee H, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12052667
Lee L.-H., 2021, arXiv preprint arXiv:2110.05352
Li HY, 2024, WIREL NETW, V30, P4343, DOI 10.1007/s11276-022-03000-1
Liang XN, 2018, RES POLICY, V47, P1295, DOI 10.1016/j.respol.2018.04.012
Lin JR, 2020, IEEE ACCESS, V8, P198503, DOI 10.1109/ACCESS.2020.3035214
Lio C., 2004, P ASS ED COMM TECHN, P592
Liu J., 2022, Adv. Educ. Technol. Psychol., V6, P130
Lu L., 2008, ART EDUC, V61, P48
Makransky G, 2022, EDUC PSYCHOL REV, V34, P1771, DOI 10.1007/s10648-022-09675-4
Min T, 2022, CCF T PERVAS COMPUT, V4, P124, DOI 10.1007/s42486-022-00094-6
Mroz A, 2015, CALICO J, V32, P528, DOI 10.1558/cj.v32i3.26386
Narin N.G., 2021, J METAVERSE, V1, P17
Nelson LK, 2021, SOCIOL METHOD RES, V50, P202, DOI 10.1177/0049124118769114
Ng DTK, 2022, AUSTRALAS J EDUC TEC, V38, P190, DOI 10.14742/ajet.7945
Oh HJ, 2023, COMPUT HUM BEHAV, V139, DOI 10.1016/j.chb.2022.107498
Park M, 2018, RECALL, V30, P196, DOI 10.1017/S0958344017000362
Park S, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031361
Passig D, 2010, J EDUC COMPUT RES, V42, P307, DOI 10.2190/EC.42.3.d
Petty G., 2016, Teaching Today: A Practical Guide
Rogers L, 2011, BRIT J EDUC TECHNOL, V42, P608, DOI 10.1111/j.1467-8535.2010.01057.x
Rojas-Sánchez MA, 2023, EDUC INF TECHNOL, V28, P155, DOI 10.1007/s10639-022-11167-5
Sano Y, 2016, PROCEEDINGS OF THE 2016 ACM INTERNATIONAL CONFERENCE ON INTERACTIVE SURFACES AND SPACES, (ISS 2016), P361, DOI 10.1145/2992154.2996781
Saritas MT, 2022, INT J TECHNOL EDUC, V5, P586, DOI 10.46328/ijte.319
Saundarajan K, 2020, INT J EMERG TECHNOL, V15, P123, DOI 10.3991/ijet.v15i16.10540
Schaf FM, 2012, INT J ENG PEDAGOG, V2, P15, DOI 10.3991/ijep.v2i2.2083
Schlemmer E, 2015, ADV EDUC TECHNOL INS, P1, DOI 10.4018/978-1-4666-6351-0
Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013
Svensson G, 2010, EUR J MARKETING, V44, P23, DOI 10.1108/03090561011008583
Sweller J, 1998, EDUC PSYCHOL REV, V10, P251, DOI 10.1023/A:1022193728205
Taleb T, 2020, IEEE T MOBILE COMPUT, V19, P2010, DOI 10.1109/TMC.2019.2921712
Tlili A, 2022, SMART LEARN ENVIRON, V9, DOI 10.1186/s40561-022-00205-x
Vogel R, 2015, PUBLIC MANAG REV, V17, P1165, DOI 10.1080/14719037.2014.895031
Wiehr F., 2016, P CHI C HUM FACT COM, P1998
Xi NN, 2023, INFORM SYST FRONT, V25, P659, DOI 10.1007/s10796-022-10244-x
Xie H, 2019, COMPUT EDUC, V140, DOI 10.1016/j.compedu.2019.103599
Yang FF, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e10562
Yu ZG, 2022, COMPUT APPL ENG EDUC, V30, P1470, DOI 10.1002/cae.22532
Yu ZG, 2023, INTERACT LEARN ENVIR, V31, P4956, DOI 10.1080/10494820.2021.1989466
Yuping Wang, 2001, CALICO Journal, V18, P539
Zhang XL, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1016300
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 89
TC 13
Z9 13
U1 70
U2 78
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1939-1382
J9 IEEE T LEARN TECHNOL
JI IEEE Trans. Learn. Technol.
PD DEC
PY 2023
VL 16
IS 6
BP 1111
EP 1129
DI 10.1109/TLT.2023.3277952
PG 19
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Education & Educational Research
GA EY5S1
UT WOS:001142515100011
OA hybrid
DA 2024-09-05
ER
PT J
AU Vaicondam, Y
Sikandar, H
Irum, S
Khan, N
Qureshi, MI
AF Vaicondam, Yamunah
Sikandar, Huma
Irum, Sobia
Khan, Nohman
Qureshi, Muhammad Imran
TI Research Landscape of Digital Learning Over the Past 20 Years: A
Bibliometric and Visualisation Analysis
SO INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING
LA English
DT Article
DE digital learning; e-learning; m-learning; bibliometric analysis;
visualisation; online learning; research trend analysis; covid-19
AB The concept of digital learning has grown in popularity significantly over the last few decades especially in the past couple of years due to covid-19. Digital learning is defined as any type of learning that integrated Information and communication technology in its conduct. This study aims to presents a research landscape of digital learning research published in the past 20 years. We conducted a bibliometric analysis to determine the pattern of digital learning published literature from 2002 to 2021. The search for the relevant articles was made on the basis of keywords linked with digital learning in the article's title, abstract, and keywords. As a result, we retrieved 1361 papers from Scopus for bibliometric analysis. The review identifies the publication growth trend, most cited articles, top journals, productive authors, and the leading countries and institutions and major subject areas. According to the findings of our analysis, the United States is the most productive country in terms oof publications and citations. Computers and Education is the leading journal. Through the co-occurrence of keywords analysis, we determined that the most significant keywords associated with digital learning are covid-19, online learning, e-learning and digital learning environment, higher education, digital technologies and so on. The highest number of digital learning articles are published under social science domain. The publication growth trend is consistently rising and is projected to continue in the following years, indicating the importance of digital learning in different domain. The study provides a roadmap for future researchers to follow, where they can focus on key areas where success is possible.
C1 [Vaicondam, Yamunah] Taylors Univ, Sch Accounting & Finance, Subang Jaya, Malaysia.
[Sikandar, Huma] Univ Teknol Malaysia UTM, Azman Hashim Int Business Sch AHIBS, Johor Baharu 81310, Johor, Malaysia.
[Irum, Sobia] Univ Bahrain, Dept Management & Mkt, Coll Business Adm, Zallaq, Bahrain.
[Khan, Nohman] Univ Kuala Lumpur, UniKL Business Sch, Kuala Lumpur, Malaysia.
[Qureshi, Muhammad Imran] Teesside Univ, Int Business Sch, Clarendon Bldg, Middlesbrough TS1 3BX, Cleveland, England.
C3 Taylor's University; Universiti Teknologi Malaysia; University of
Bahrain; University of Kuala Lumpur; University of Teesside
RP Sikandar, H (corresponding author), Univ Teknol Malaysia UTM, Azman Hashim Int Business Sch AHIBS, Johor Baharu 81310, Johor, Malaysia.
EM Huma.sikandar@gmail.com; nohman.khan@s.unikl.edu.my;
m.qureshi@tees.ac.uk
RI Khan, Nohman/AAR-2414-2020; Qureshi, Muhammad Imran/I-4390-2016;
Sikandar, Huma/AAA-1479-2022; Vaicondam, Yamunah/KTI-6691-2024
OI Khan, Nohman/0000-0001-9714-6273; Qureshi, Muhammad
Imran/0000-0001-8861-0628; Sikandar, Huma/0000-0001-7777-2314;
Vaicondam, Yamunah/0000-0003-2658-8319
CR Albort-Morant G, 2016, J BUS RES, V69, P4912, DOI 10.1016/j.jbusres.2016.04.052
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Blake H, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17092997
Bouhnik D, 2006, J AM SOC INF SCI TEC, V57, P299, DOI 10.1002/asi.20277
Brown T., 2005, INT J E LEARNING, V4, P299
Burnham Judy F, 2006, Biomed Digit Libr, V3, P1
Chitkushev Lou, 2014, International Journal of Information and Education Technology, V4, P356, DOI 10.7763/IJIET.2014.V4.429
Das S., 2021, LIB PHILOS PRACTICE, V2021
Djeki E, 2022, J COMPUT EDUC, V9, P727, DOI 10.1007/s40692-021-00218-4
Elaish Monther M., 2019, International Journal of Mobile Learning and Organisation, V13, P91
Garrison D.R., 2016, E LEARNING 21 CENTUR, V3rd, DOI [10.4324/9781315667263, DOI 10.4324/9781315667263]
Gaur P., 2015, SHANLAX INT J COMMER, V1, P29, DOI [10.5281/zenodo.1438182, DOI 10.5281/ZENODO.1438182]
Goksu I, 2021, TELEMAT INFORM, V56, DOI 10.1016/j.tele.2020.101491
Hicks D, 2013, HANDBOOK ON THE THEORY AND PRACTICE OF PROGRAM EVALUATION, P323
Hoppe HU, 2003, J COMPUT ASSIST LEAR, V19, P255, DOI 10.1046/j.0266-4909.2003.00027.x
Khan FM, 2022, INTERACT TECHNOL SMA, V19, P338, DOI 10.1108/ITSE-03-2021-0048
Kumar Basak S., 2018, ELearning and Digital Media, V15, P191, DOI DOI 10.1177/2042753018785180
Kumar Basak S., 2018, E-LEARNING DIGITAL M, V15, P191, DOI 10.1177%2F2042753018785180
Martin F, 2020, COMPUT EDUC, V159, DOI 10.1016/j.compedu.2020.104009
Md Osman S. Z., INT J LEARNING TEACH, V20, P2021
Moher D, 2009, J CLIN EPIDEMIOL, V62, P1006, DOI 10.1016/j.jclinepi.2009.06.005
Perianes-Rodriguez A, 2016, J INFORMETR, V10, P1178, DOI 10.1016/j.joi.2016.10.006
Qureshi Muhammad Imran, 2020, International Journal of Interactive Mobile Technologies, V14, P67, DOI 10.3991/ijim.v14i06.13479
Sikandar Huma, 2021, International Journal of Interactive Mobile Technologies, V15, P129, DOI 10.3991/ijim.v15i18.25535
Sikandar H, 2021, INT J ONLINE BIOMED, V17, P52, DOI 10.3991/ijoe.v17i12.25483
Sobral Sonia Rolland, 2020, International Journal of Interactive Mobile Technologies, V14, P153, DOI 10.3991/ijim.v14i11.13973
Sweileh WM, 2021, MED SCI EDUC, V31, P765, DOI 10.1007/s40670-021-01254-6
Valverde-Berrocoso J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12125153
Van Eck N. J., 2020, MANUAL VOSVIEWER 1 6
Wheeler S., 2012, ENCY SCI LEARNING, P1109, DOI 10.1007/978-1-4419-1428-6_431
Zouhair R., 2016, INT J COMPUTER NETWO, V4, P89
NR 31
TC 7
Z9 7
U1 0
U2 17
PU Int Federation Engineering Education Societies-IFEES
PI Fairfax
PA 4400 University Drive, MS 4A3, Fairfax, VA, UNITED STATES
EI 2626-8493
J9 INT J ONLINE BIOMED
JI Int. J. Online Biomed. Eng.
PY 2022
VL 18
IS 8
BP 4
EP 22
DI 10.3991/ijoe.v18i08.31963
PG 19
WC Computer Science, Interdisciplinary Applications
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA 2R3GA
UT WOS:000820998600001
OA gold, Green Submitted
DA 2024-09-05
ER
PT J
AU Morsink, MC
Dekter, HE
Dirks-Mulder, A
van Leeuwen, WB
AF Morsink, M. C.
Dekter, H. E.
Dirks-Mulder, A.
van Leeuwen, W. B.
TI Molecular diagnostic analysis of outbreak scenarios
SO BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION
LA English
DT Article
DE Assessment of educational activities; molecular biology; molecular
medicine; active learning; emerging diseases; inquiry-based teaching;
integration of courses; integration of research into undergraduate
teaching; laboratory exercises; teaching and learning techniques methods
and approaches
AB In the current laboratory assignment, technical aspects of the polymerase chain reaction (PCR) are integrated in the context of six different bacterial outbreak scenarios. The Enterobacterial Repetitive Intergenic Consensus Sequence (ERIC) PCR was used to analyze different outbreak scenarios. First, groups of 24 students determined optimal ERIC-PCR conditions to validate the protocol and subsequently applied ERIC-PCR to identify genetic relatedness among bacterial strains. Based on these genetic fingerprints, students selected the outbreak cases from the patient samples and assessed the risk factors for the outbreak scenario. Finally, students presented their findings during a classroom presentation. The results indicated that the assignment successfully facilitated student learning on the technical aspects of (ERIC) PCR and clearly demonstrated the practical application of PCR in a clinical diagnostic setting. Additionally, the assignment was highly appreciated by the students.
C1 [Morsink, M. C.; Dekter, H. E.; Dirks-Mulder, A.; van Leeuwen, W. B.] Univ Appl Sci Leiden, Dept Innovat Mol Diagnost, Hogesch Leiden, Leiden, Netherlands.
RP Morsink, MC (corresponding author), Univ Appl Sci Leiden, Dept Innovat Mol Diagnost, Hogesch Leiden, Leiden, Netherlands.
EM maarten.morsink@gmail.com
CR Bres M., 2009, J COLL SCI TEACH, V38, P43
Buckingham Flaws, 2007, MOL DIAGNOSTICS FUND, P121
Centers for Disease Control and Prevention (CDC), 2008, MMWR Morb Mortal Wkly Rep, V57, P929
Romanelli RMD, 2009, BRAZ J INFECT DIS, V13, P341, DOI 10.1590/S1413-86702009000500005
DH Persing, 2004, MOL MICROBIOLOGY DIA, P43
Gillings M, 1997, LETT APPL MICROBIOL, V25, P17, DOI 10.1046/j.1472-765X.1997.00162.x
Janssen D., 2009, Morbidity and Mortality Weekly Report, V58, P194
Kazakova SV, 2005, NEW ENGL J MED, V352, P468, DOI 10.1056/NEJMoa042859
Kur L., 2009, Morbidity and Mortality Weekly Report, V58, P337
Merrill MD, 2002, ETR&D-EDUC TECH RES, V50, P43, DOI 10.1007/BF02505024
Morsink MC, 2009, ADV PHYSIOL EDUC, V33, P46, DOI 10.1152/advan.90179.2008
Nasser, 2004, INFECT CONT HOSP EP, V25, P189
Pelt-Verkuil Van, 2008, PRINCIPLES TECHNICAL, P91
Peng Y, 2007, J APPL MICROBIOL, V103, P2095, DOI 10.1111/j.1365-2672.2007.03440.x
Tortora, 2007, MICROBIOLOGY INTRO, P445
Van Merrienboer J.J. G., 2007, 10 STEPS COMPLEX LEA
VERSALOVIC J, 1991, NUCLEIC ACIDS RES, V19, P6823, DOI 10.1093/nar/19.24.6823
WB Van Leeuwen, 2009, MOL DIAGNOSTICS TECH, P17
NR 18
TC 0
Z9 0
U1 0
U2 4
PU WILEY
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1470-8175
EI 1539-3429
J9 BIOCHEM MOL BIOL EDU
JI Biochem. Mol. Biol. Educ.
PD MAR-APR
PY 2012
VL 40
IS 2
BP 112
EP 120
DI 10.1002/bmb.20562
PG 9
WC Biochemistry & Molecular Biology; Education, Scientific Disciplines
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Biochemistry & Molecular Biology; Education & Educational Research
GA 908JK
UT WOS:000301486500006
PM 22419592
OA Bronze
DA 2024-09-05
ER
PT J
AU Jain, J
Walia, N
Singh, S
Jain, E
AF Jain, Jinesh
Walia, Nidhi
Singh, Simarjeet
Jain, Esha
TI Mapping the field of behavioural biases: a literature review using
bibliometric analysis
SO MANAGEMENT REVIEW QUARTERLY
LA English
DT Article
DE Heuristics; Prospect; Herding; Bibliometric analysis; Content analysis;
Behavioural biases; G40; G41
ID MYOPIC LOSS AVERSION; INVESTMENT DECISION-MAKING; HERD BEHAVIOR;
INTELLECTUAL STRUCTURE; CAPITAL-MARKETS; PROSPECT-THEORY; RISK-TAKING;
INFORMATION; INVESTORS; OVERCONFIDENCE
AB Research on behavioural biases has witnessed a momentous growth in the last two decades, supported by rising interest and publication thrust shown by academic scholars. Present study maps the academic literature on the role of behavioural biases in investment decision-making. With the help of bibliometric tools, the paper highlights the current state-of-the-art and identifies significant gaps in the existing literature on behavioural biases. Through keyword and reference searching approaches, the study retrieved 212 research papers from the Scopus database. Application of performance analysis techniques has helped in identification of influential journals, prolific authors, countries and affiliations enriching the literature on behavioural biases. Scientific mapping approaches such as bibliographic coupling and thematic mapping has provided valuable insights about the conceptual and intellectual structure of the field. Finally, the research directions proposed in this review will provide a roadmap for future research.
C1 [Jain, Jinesh; Jain, Esha] Sri Aurobindo Coll Commerce & Management, Ludhiana, India.
[Walia, Nidhi; Singh, Simarjeet] Punjabi Univ, Univ Sch Appl Management, Patiala, India.
C3 Punjabi University
RP Singh, S (corresponding author), Punjabi Univ, Univ Sch Appl Management, Patiala, India.
EM jineshjain81@gmail.com; nidhiwalia79@gmail.com;
jeetsimarkamal93@gmail.com; ejain2028@gmail.com
RI Singh, Simarjeet/ABB-5409-2020; jain, Jinesh/AAM-6220-2021
OI Singh, Simarjeet/0000-0003-3497-2177; jain, Jinesh/0000-0003-1774-8704
CR Acedo FJ, 2005, INT BUS REV, V14, P619, DOI 10.1016/j.ibusrev.2005.05.003
Amonlirdviman K, 2010, J INT MONEY FINANC, V29, P1303, DOI 10.1016/j.jimonfin.2010.03.003
Anderson A, 2015, J BEHAV EXP FINANC, V6, P93, DOI 10.1016/j.jbef.2015.04.002
Arjoon V, 2020, J ECON BUS, V109, DOI 10.1016/j.jeconbus.2019.105889
Avery C, 1998, AM ECON REV, V88, P724
Aveyard H., 2014, DOING LIT REV HLTH S
Aznar-Sánchez JA, 2019, J CLEAN PROD, V221, P38, DOI 10.1016/j.jclepro.2019.02.243
Baier-Fuentes H, 2019, INT ENTREP MANAG J, V15, P385, DOI 10.1007/s11365-017-0487-y
Baker HK., 2014, How biases affect investor behaviour, DOI [10.1002/9781118813454, DOI 10.1002/9781118813454]
Barber BM, 2000, J FINANC, V55, P773, DOI 10.1111/0022-1082.00226
Barberis N, 2001, J FINANC, V56, P1247, DOI 10.1111/0022-1082.00367
Bartolini M, 2019, J CLEAN PROD, V226, P242, DOI 10.1016/j.jclepro.2019.04.055
Batmunkh MU, 2020, PAC-BASIN FINANC J, V62, DOI 10.1016/j.pacfin.2020.101352
Bellemare C, 2005, ECON LETT, V87, P319, DOI 10.1016/j.econlet.2004.12.011
BENARTZI S, 1995, Q J ECON, V110, P73, DOI 10.2307/2118511
Beneish MD, 2008, J ACCOUNT PUBLIC POL, V27, P433, DOI 10.1016/j.jaccpubpol.2008.09.001
Berelson B., 1952, CONTENT ANAL COMMUNI
BERNARD VL, 1989, J ACCOUNTING RES, V27, P1, DOI 10.2307/2491062
Bernstein M, 1998, AM PHILOS QUART, V35, P39
Best MJ, 2017, Q J FINANC, V7, DOI 10.1142/S201013921750001X
Bhatia A, 2020, J BEHAV EXP FINANC, V25, DOI 10.1016/j.jbef.2020.100281
Bhatt Y, 2020, J CLEAN PROD, V260, DOI 10.1016/j.jclepro.2020.120988
Blavatskyy PR, 2010, J APPL ECONOMET, V25, P963, DOI 10.1002/jae.1116
Bloomfield R., 2000, Journal of Financial Markets, V3, P113, DOI [10.1016/S1386-4181(00)00003-3, DOI 10.1016/S1386-4181(00)00003-3]
Bokhari S, 2011, REAL ESTATE ECON, V39, P635, DOI 10.1111/j.1540-6229.2011.00308.x
Bonner SE, 2014, ACCOUNT REV, V89, P2087, DOI 10.2308/accr-50838
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Borrett SR, 2018, ECOL MODEL, V382, P63, DOI 10.1016/j.ecolmodel.2018.04.020
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X
Briner R. B., 2012, The Oxford Handbook of Evidence-Based Management, P112, DOI [10.1093/oxfordhb/9780199763986.013.0007, DOI 10.1093/OXFORDHB/9780199763986.013.0007]
Bryman A., 2012, SOCIAL RES METHODS
Campbell SD, 2009, J FINANC QUANT ANAL, V44, P369, DOI 10.1017/S0022109009090127
Caust J, 2017, J CULT HERIT, V27, P1, DOI 10.1016/j.culher.2017.02.004
Chang TY, 2016, J FINANC, V71, P267, DOI 10.1111/jofi.12311
Chang YW, 2015, SCIENTOMETRICS, V105, P2071, DOI 10.1007/s11192-015-1762-8
Charles A., 2016, ICTACT Journal on Managament Studies, V2, P297, DOI DOI 10.21917/IJMS.2016.0039
Chen CS, 2017, MANAGE DECIS, V55, P1598, DOI 10.1108/MD-10-2016-0725
Chen D, 2016, ECOL ENG, V90, P285, DOI 10.1016/j.ecoleng.2016.01.026
Chen GM, 2007, J BEHAV DECIS MAKING, V20, P425, DOI 10.1002/bdm.561
Chen T, 2022, INT J FINANC ECON, V27, P4336, DOI 10.1002/ijfe.2374
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Corredor P, 2014, INT BUS REV, V23, P824, DOI 10.1016/j.ibusrev.2014.01.001
Costa DF, 2017, SCIENTOMETRICS, V111, P1775, DOI 10.1007/s11192-017-2371-5
Couckuyt D, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11154200
D'Acunto F, 2019, REV FINANC STUD, V32, P1983, DOI 10.1093/rfs/hhz014
Daniel K, 2002, J MONETARY ECON, V49, P139, DOI 10.1016/S0304-3932(01)00091-5
Daniel K, 1998, J FINANC, V53, P1839, DOI 10.1111/0022-1082.00077
Das S, 2010, J FINANC QUANT ANAL, V45, P311, DOI 10.1017/S0022109010000141
De Bondt W.F. M., 1995, Handbooks in Operations Research and Management Science, V9, P385, DOI DOI 10.1016/S0927-0507(05)80057-X
DeBondt W., 1999, EUR FINANC MANAG, V5, P143, DOI [10.1111/1468-036X.00087, DOI 10.1111/1468-036X.00087]
DEBONDT WFM, 1985, J FINANC, V40, P793, DOI 10.1111/j.1540-6261.1985.tb05004.x
DEBONDT WFM, 1990, AM ECON REV, V80, P52
Dehghani P, 2014, VENTUR CAP, V16, P227, DOI 10.1080/13691066.2014.921100
Denyer D., 2009, SAGE HDB ORG RES MET, P671
Ding Y, 2011, INFORM PROCESS MANAG, V47, P80, DOI 10.1016/j.ipm.2010.01.002
Ding Y, 2009, J AM SOC INF SCI TEC, V60, P2229, DOI 10.1002/asi.21171
Eduardsen J, 2020, INT BUS REV, V29, DOI 10.1016/j.ibusrev.2020.101688
FAMA EF, 1970, J FINANC, V25, P383, DOI 10.2307/2325486
Fernández B, 2011, QUAL RES FINANC MARK, V3, P7, DOI 10.1108/17554171111124595
Frino A., 2008, PAC-BASIN FINANC J, V16, P8, DOI DOI 10.1016/J.PACFIN.2007.04.002
Frino A, 2015, PAC-BASIN FINANC J, V31, P1, DOI 10.1016/j.pacfin.2014.10.009
García-Lillo F, 2017, MANAGE INT REV, V57, P631, DOI 10.1007/s11575-016-0308-5
GARFIELD E, 1955, SCIENCE, V122, P108, DOI 10.1126/science.122.3159.108
Genesove D, 2001, Q J ECON, V116, P1233, DOI 10.1162/003355301753265561
Genesove D, 2001, Nat Bureau Econ Res
Gneezy U, 2003, Q J ECON, V118, P1049, DOI 10.1162/00335530360698496
Goetzmann WN, 2008, REV FINANC, V12, P433, DOI 10.1093/rof/rfn005
González-Torres T, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020513
Grinblatt M, 2005, J FINANC ECON, V78, P311, DOI 10.1016/j.jfineco.2004.10.006
Gurevich G, 2009, J BANK FINANC, V33, P1221, DOI 10.1016/j.jbankfin.2008.12.017
Hao Y, 2016, INT REV ECON FINANC, V43, P121, DOI 10.1016/j.iref.2015.10.035
Hens T, 2021, APPL ECON LETT, V28, P501, DOI 10.1080/13504851.2020.1761529
Hermann D, 2019, J ECON PSYCHOL, V74, DOI 10.1016/j.joep.2019.102192
Hilary G, 2011, J ACCOUNT ECON, V51, P300, DOI 10.1016/j.jacceco.2011.01.002
Hirshleifer D., 2003, Eur. Financ. Manag., V9, P25
Horvath PA., 2017, J Econ Finan, V41, P160, DOI [10.1007/s12197-015-9344-4, DOI 10.1007/S12197-015-9344-4]
Hu WY, 2007, FINANC ANAL J, V63, P71, DOI 10.2469/faj.v63.n6.4928
Hudson Y, 2020, INT REV FINANC ANAL, V71, DOI 10.1016/j.irfa.2020.101494
Hwang S., 2004, J EMPIR FINANC, V11, P585, DOI [10.1016/j.jempfin.2004.04.003, DOI 10.1016/J.JEMPFIN.2004.04.003]
Indars ER, 2019, EMERG MARK REV, V38, P468, DOI 10.1016/j.ememar.2018.12.002
Isidore RR., 2019, J Wealth Manag, V22, P21, DOI [10.3905/jwm.2019.22.2.021, DOI 10.3905/JWM.2019.22.2.021]
Jain J, 2020, REV BEHAV FINANCE, V12, P297, DOI 10.1108/RBF-03-2019-0044
Joghee S, 2020, Decisions effectiveness Of FDI investment biases at real estate industry: empirical evidence from dubai smart city projects, V9, P5
Johnson JEV, 2009, J BEHAV DECIS MAKING, V22, P410, DOI 10.1002/bdm.640
Kahneman D, 2003, AM ECON REV, V93, P1449, DOI 10.1257/000282803322655392
KAHNEMAN D, 1979, COGNITION, V7, P409, DOI 10.1016/0010-0277(79)90024-6
Kengatharan L., 2014, Asian Journal of Finance Accounting, V6, P1, DOI DOI 10.5296/AJFA.V6I1.4893
Kim SJ, 2010, J PSYCHOSOM RES, V68, P159, DOI 10.1016/j.jpsychores.2009.06.010
Kliger D, 2008, J BANK FINANC, V32, P1782, DOI 10.1016/j.jbankfin.2007.12.006
Kliger D, 2009, J ECON BEHAV ORGAN, V71, P361, DOI 10.1016/j.jebo.2009.03.020
Ko KJ, 2007, J FINANC ECON, V84, P529, DOI 10.1016/j.jfineco.2006.03.002
Krokida SI, 2020, J ECON BEHAV ORGAN, V170, P386, DOI 10.1016/j.jebo.2019.12.018
Kumar A, 2009, J FINANC, V64, P1889, DOI 10.1111/j.1540-6261.2009.01483.x
Kumar S., 2020, MANAGEMENT REV Q, V70, P535, DOI [10.1007/s11301-019-00175-4, DOI 10.1007/S11301-019-00175-4]
Kumar S, 2015, QUAL RES FINANC MARK, V7, P88, DOI 10.1108/QRFM-07-2014-0022
Lai MM, 2013, J BEHAV FINANC, V14, P104, DOI 10.1080/15427560.2013.790822
Lather AS., 2020, An empirical examination of the impact of locus of control on investor behavioral biases
Lee B, 2016, J BANK FINANC, V70, P235, DOI 10.1016/j.jbankfin.2016.04.008
Lepone A, 2019, INT REV ECON FINANC, V61, P179, DOI 10.1016/j.iref.2019.02.002
Li J, 2012, J FINANC ECON, V104, P401, DOI 10.1016/j.jfineco.2011.04.003
Li YJ, 2022, INFORM MANAGE-AMSTER, V59, DOI 10.1016/j.im.2020.103269
Liao LC, 2013, N AM J ECON FINANC, V26, P72, DOI 10.1016/j.najef.2013.07.001
Linnainmaa JT, 2021, J FINANC, V76, P587, DOI 10.1111/jofi.12995
Lowies GA, 2016, J PROP INVEST FINANC, V34, P51, DOI 10.1108/JPIF-08-2014-0055
Luo GY, 2013, J FINANC MARK, V16, P152, DOI 10.1016/j.finmar.2012.05.001
Mallawaarachchi H, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120618
MARTYN J, 1964, J DOC, V20, P236, DOI 10.1108/eb026352
Massa M, 2006, REV FINANC STUD, V19, P633, DOI 10.1093/rfs/hhj013
Merton RobertC., 1985, On the Current State of the Stock Market Rationality Hypothesis
Momen O, 2019, QUANT FINANC, V19, P265, DOI 10.1080/14697688.2018.1489138
Moradi M., 2013, Asian J Res Bus Econ Manag, V3, P328
Mugomeri E, 2017, HEALTH RES POLICY SY, V15, DOI 10.1186/s12961-017-0183-y
Mushinada VNC, 2018, INT J MANAG FINANC, V14, P613, DOI 10.1108/IJMF-05-2017-0093
Ngoc L.T.B., 2014, International Journal of Business and Management, V9, P1, DOI [10.5539/ijbm.v9n1p1, DOI 10.5539/IJBM.V9N1P1]
Nofsinger JR, 2001, J BANK FINANC, V25, P1339, DOI 10.1016/S0378-4266(00)00133-3
Nofsinger JR, 1999, J FINANC, V54, P2263, DOI 10.1111/0022-1082.00188
Odean T, 1998, J FINANC, V53, P1775, DOI 10.1111/0022-1082.00072
Olsen R.A., 1997, Review of Financial Economics, V6, P225, DOI DOI 10.1016/S1058-3300(97)90008-2
Paine SJ, 2006, J BIOL RHYTHM, V21, P68, DOI 10.1177/0748730405283154
Patria H, 2019, ASIAN J BUS ACCOUNT, V12, P233, DOI 10.22452/ajba.vol12no2.9
Peng L, 2006, J FINANC ECON, V80, P563, DOI 10.1016/j.jfineco.2005.05.003
Persson O., 2009, CELEBRATING SCHOLARL, V5, P9
Philippas D, 2020, J INT FINANC MARK I, V65, DOI 10.1016/j.intfin.2020.101191
Pittway L., 2008, The SAGE dictionary of qualitative management research
Poteshman AM, 2001, J FINANC, V56, P851, DOI 10.1111/0022-1082.00348
Pruna RT, 2020, QUANT FINANC, V20, P275, DOI 10.1080/14697688.2019.1655784
Qin J, 2020, J BANK FINANC, V114, DOI 10.1016/j.jbankfin.2020.105784
Qin J, 2015, J ECON THEORY, V160, P150, DOI 10.1016/j.jet.2015.08.010
Ren R, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17010261
Rodrigues M, 2018, J CLEAN PROD, V181, P88, DOI 10.1016/j.jclepro.2018.01.163
Rosenboim M, 2008, MANAG DECIS ECON, V29, P601, DOI 10.1002/mde.1435
Rousseau DM, 2008, ACAD MANAG ANN, V2, P475, DOI 10.1080/19416520802211651
Saggese S, 2016, INT J MANAG REV, V18, P417, DOI 10.1111/ijmr.12072
Shadish WR, 2006, SYSTEMATIC REVIEWS IN THE SOCIAL SCIENCES: A PRACTICAL GUIDE, P164
SHEFRIN H, 1995, J PORTFOLIO MANAGE, V21, P26, DOI 10.3905/jpm.1995.409506
Shefrin H., 2007, Behavioral Corporate Finance
Shiller RobertJ., 1998, Indexed Units of Account: Theory and Assessment of Historical Experience
Sias RW, 2004, REV FINANC STUD, V17, P165, DOI 10.1093/rfs/hhg035
Singh A., 2020, Rising threats in expert applications and solutions, P455
Singh H.P., 2016, Indian Journal of Finance, V10, P51, DOI DOI 10.17010/IJF/2016/V10I6/94879
Singh S, 2022, MANAG REV Q, V72, P87, DOI 10.1007/s11301-020-00205-6
SOLNIK BH, 1973, J FINANC, V28, P1151, DOI 10.2307/2978754
Subrahmanyam A, 2008, EUR FINANC MANAG, V14, P12, DOI 10.1111/j.1468-036X.2007.00415.x
Tang AKY, 2019, ELECTRON COMMER R A, V37, DOI 10.1016/j.elerap.2019.100885
Tekçe B, 2016, RES INT BUS FINANC, V37, P515, DOI 10.1016/j.ribaf.2015.11.017
Thaler RH, 1997, Q J ECON, V112, P647, DOI 10.1162/003355397555226
Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375
TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124
ul Abdin SZ, 2017, RES INT BUS FINANC, V42, P674, DOI 10.1016/j.ribaf.2017.07.010
van Oorschot JAWH, 2018, TECHNOL FORECAST SOC, V134, P1, DOI 10.1016/j.techfore.2018.04.032
Waweru NelsonMaina., 2008, International Journal of Business and Emerging Markets, V1, P24, DOI [10.1504/IJBEM.2008.019243, DOI 10.1504/IJBEM.2008.019243]
Welch I, 2000, J FINANC ECON, V58, P369, DOI 10.1016/S0304-405X(00)00076-3
Xu W, 2018, J ECON DYN CONTROL, V87, P1, DOI 10.1016/j.jedc.2017.11.002
Vo XV, 2019, J BEHAV EXP FINANC, V24, DOI 10.1016/j.jbef.2019.02.002
Vo XV, 2019, PAC-BASIN FINANC J, V53, P321, DOI 10.1016/j.pacfin.2018.10.005
Yao J, 2013, J BANK FINANC, V37, P2793, DOI 10.1016/j.jbankfin.2013.04.001
Zeisberger S, 2012, THEOR DECIS, V72, P359, DOI 10.1007/s11238-010-9234-3
Zervoudi E, 2016, REV BEHAV FINANCE, V8, P39, DOI 10.1108/RBF-12-2014-0052
Zhang K, 2017, ELECTRON COMMER R A, V23, P45, DOI 10.1016/j.elerap.2017.04.001
Zhang L, 2006, BERNOULLI, V12, P1019, DOI 10.3150/bj/1165269149
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
Zyoud SH, 2017, EXPERT SYST APPL, V78, P158, DOI 10.1016/j.eswa.2017.02.016
NR 163
TC 35
Z9 35
U1 0
U2 0
PU SPRINGERNATURE
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND
SN 2198-1620
EI 2198-1639
J9 MANAG REV Q
JI Manag. Rev. Q.
PD SEP
PY 2022
VL 72
IS 3
BP 823
EP 855
DI 10.1007/s11301-021-00215-y
PG 33
WC Business; Business, Finance; Management
WE Emerging Sources Citation Index (ESCI)
SC Business & Economics
GA TG4L8
UT WOS:001240099300005
DA 2024-09-05
ER
PT C
AU Johanes, P
AF Johanes, Petr
GP Assoc Comp Machinery
TI Start of a Science: An Epistemological Analysis of Learning at Scale
SO L@S '19: PROCEEDINGS OF THE SIXTH (2019) ACM CONFERENCE ON LEARNING @
SCALE
LA English
DT Proceedings Paper
CT 6th ACM Conference on Learning @ Scale (L@S)
CY JUN 24-25, 2019
CL Chicago, IL
DE Epistemology; Philosophy of Science; Citation Network Analysis;
Bibliometrics; Knowledge Modeling; Online Learning; MOOCs
ID DESIGN-BASED RESEARCH
AB The Learning at Scale (L@S) conference has brought together researchers from diverse scholarly communities to design and study technologies that are explicitly meant to scale to a large number and variety of learners. Over the last three years, the L@S community has published a thematic, methodological, and bibliometric analysis to reflect on its own interests, challenges, and foundations. This paper continues the wider reflection effort and complements these two prior analyses with an epistemological analysis of the way the papers employ learning theory, evaluate evidence, and deploy statistical models. The epistemological analysis uses two methodologies: coding the full papers from the first four years for epistemological markers of interest and analyzing the network of citations from all of the full papers for dominant institutional and epistemological traditions. By combining these two methods, the present analysis reveals that most papers explicitly show their theoretical commitments, target a narrow slice of available learning theory, draw on varied academic fields in different proportions, and showcase epistemological practices in line with what philosophers of computational science observe in communities using similar model-based methods. The paper then situates these claims in wider conversations occurring in the learning sciences and philosophy of science to provide theoretical insights as well as practical recommendations for how the community can more consciously conduct and communicate its scientific endeavor.
C1 [Johanes, Petr] Stanford Univ, Stanford, CA 94305 USA.
C3 Stanford University
RP Johanes, P (corresponding author), Stanford Univ, Stanford, CA 94305 USA.
EM pjohanes@stanford.edu
CR Bang M, 2007, P NATL ACAD SCI USA, V104, P13868, DOI 10.1073/pnas.0706627104
Boaler J., 2000, J MATH BEHAV, V18, P379, DOI DOI 10.1016/S0732-3123(00)00026-2
Botelho A., 2015, LEARNING AT SCALE, P39, DOI DOI 10.1145/2724660.2724675
Bransford J., 2005, Learning Theories and Education
Champaign J., 2014, Proc. of First ACM Conf. on Lrng. @ Scale Conf, P11, DOI [DOI 10.1145/2556325.2566250, 10.1145/2556325.2566250]
Chen GL, 2016, PROCEEDINGS OF THE THIRD (2016) ACM CONFERENCE ON LEARNING @ SCALE (L@S 2016), P409, DOI 10.1145/2876034.2876035
Gitelman L, 2013, INFRASTRUCT SER, P1
Greeno J.G., 1997, Educational Researcher, V26, P5, DOI DOI 10.3102/0013189X026001005
Greeno JG, 1998, AM PSYCHOL, V53, P5, DOI 10.1037/0003-066X.53.1.5
Knight S., 2018, Augmenting Formative Writing Assessment with Learning Analytics: A Design Abstraction Approach, V8
Koedinger K. R., 2015, P 2 2015 ACM C LEARN, P111, DOI [10.1145/2724660.2724681, DOI 10.1145/2724660.2724681]
Koedinger KR, 2012, COGNITIVE SCI, V36, P757, DOI 10.1111/j.1551-6709.2012.01245.x
Konstan JA, 2015, ACM T COMPUT-HUM INT, V22, DOI 10.1145/2728171
Kross S, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231662
Lave J., 1991, SITUATED LEARNING LE
Lee CD, 2010, EDUC RESEARCHER, V39, P643, DOI 10.3102/0013189X10392139
Lund K, 2018, PROCEEDINGS OF THE FIFTH ANNUAL ACM CONFERENCE ON LEARNING AT SCALE (L@S'18), DOI 10.1145/3231644.3231661
Mason M., 2008, Educational Philosophy and Theory, V40, P5, DOI DOI 10.1111/J.1469-5812.2007.00412.X
McDermott R., 2006, CRIT PERSPECT, P89, DOI DOI 10.1017/CBO9780511509568.007
MITCHELL MM, 2003, BIOL COMPLEXITY INTE, P345, DOI DOI 10.1002/WCS.54
Nathan MJ, 2010, WIRES COGN SCI, V1, P329, DOI 10.1002/wcs.54
NEWELL A, 1961, SCIENCE, V134, P2011, DOI 10.1126/science.134.3495.2011
Nisbett R. E., 2003, The geography of thought: How Asians and Westerners think differently... and why
Sandoval WA, 2004, EDUC PSYCHOL-US, V39, P199, DOI 10.1207/s15326985ep3904_1
SKINNER BF, 1986, PHI DELTA KAPPAN, V68, P103
Squazzoni Flaminio, 2009, EPISTEMOLOGICAL ASPE, DOI [10.1007/978-3-642-01109-2, DOI 10.1007/978-3-642-01109-2]
van der Sluis F, 2017, PROCEEDINGS OF THE FOURTH (2017) ACM CONFERENCE ON LEARNING @ SCALE (L@S'17), P131, DOI 10.1145/3051457.3051461
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Wang F, 2005, ETR&D-EDUC TECH RES, V53, P5, DOI 10.1007/BF02504682
Wiese ES, 2017, PROCEEDINGS OF THE FOURTH (2017) ACM CONFERENCE ON LEARNING @ SCALE (L@S'17), P41
Winsberg E, 2009, PHILOS COMPASS, V4, P835, DOI 10.1111/j.1747-9991.2009.00236.x
NR 31
TC 1
Z9 1
U1 1
U2 2
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
BN 978-1-4503-6804-9
PY 2019
DI 10.1145/3330430.3333631
PG 10
WC Computer Science, Interdisciplinary Applications; Education &
Educational Research; Education, Scientific Disciplines
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BO2RA
UT WOS:000507611000001
DA 2024-09-05
ER
PT J
AU Cauthen, K
Rai, P
Hale, N
Freeman, L
Ray, J
AF Cauthen, Katherine
Rai, Prashant
Hale, Nicholas
Freeman, Laura
Ray, Jaideep
TI Detecting technological maturity from bibliometric patterns
SO EXPERT SYSTEMS WITH APPLICATIONS
LA English
DT Article
DE Technology life cycle; Machine learning; Artificial neural network; Data
augmentation
ID LIFE-CYCLE; S-CURVE; INNOVATION; DYNAMICS; GOMPERTZ; PATHS; MODEL
AB The capability to identify emergent technologies based upon easily accessed open-source indicators, such as publications, is important for decision-makers in industry and government. The scientific contribution of this work is the proposition of a machine learning approach to the detection of the maturity of emerging technologies based on publication counts. Time-series of publication counts have universal features that distinguish emerging and growing technologies. We train an artificial neural network classifier, a supervised machine learning algo-rithm, upon these features to predict the maturity (emergent vs. growth) of an arbitrary technology. With a training set comprised of 22 technologies we obtain a classification accuracy ranging from 58.3% to 100% with an average accuracy of 84.6% for six test technologies. To enhance classifier performance, we augmented the training corpus with synthetic time-series technology life cycle curves, formed by calculating weighted averages of curves in the original training set. Training the classifier on the synthetic data set resulted in improved ac-curacy, ranging from 83.3% to 100% with an average accuracy of 90.4% for the test technologies. The perfor-mance of our classifier exceeds that of competing machine learning approaches in the literature, which report an average classification accuracy of only 85.7% at maximum. Moreover, in contrast to current methods our approach does not require subject matter expertise to generate training labels, and it can be automated and scaled.
C1 [Cauthen, Katherine] Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87123 USA.
[Rai, Prashant; Ray, Jaideep] Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA.
[Hale, Nicholas; Freeman, Laura] Virginia Tech Appl Res Corp, 900 N Glebe Rd, Arlington, VA 22203 USA.
[Cauthen, Katherine] Sandia Natl Labs, 1515 Eubank Blvd SE,Mail Stop 1137, Albuquerque, NM 87123 USA.
C3 United States Department of Energy (DOE); Sandia National Laboratories;
United States Department of Energy (DOE); Sandia National Laboratories;
United States Department of Energy (DOE); Sandia National Laboratories
RP Cauthen, K (corresponding author), Sandia Natl Labs, 1515 Eubank Blvd SE,Mail Stop 1137, Albuquerque, NM 87123 USA.
EM kcauthe@sandia.gov; laura.freeman@vt.edu; jairay@sandia.gov
OI Ray, Jaideep/0009-0000-9908-7035
FU U.S. Department of Energys National Nuclear Security Administration
[DE-NA0003525]; Army Research Laboratory, U.S. Army [W911NF-15-3-0001]
FX Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of San-dia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energys National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results
and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government. Effort sponsored
in whole or in part by the Army Research Laboratory, U.S. Army, under
Partnership Intermediary Agreement No. W911NF-15-3-0001. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Army
Research Laboratory.
CR ACHILLADELIS B, 1990, RES POLICY, V19, P1, DOI 10.1016/0048-7333(90)90032-2
ACHILLADELIS B, 1993, RES POLICY, V22, P279, DOI 10.1016/0048-7333(93)90001-X
Achilladelis B, 2001, RES POLICY, V30, P535, DOI 10.1016/S0048-7333(00)00093-7
Albert T., 2015, MEASURING TECHNOLOGY
Albert T, 2015, TECHNOL FORECAST SOC, V92, P196, DOI 10.1016/j.techfore.2014.08.011
Andersen B, 1999, J EVOL ECON, V9, P487, DOI 10.1007/s001910050093
[Anonymous], 1986, MANAGEMENT ZEITALTER
Ansoff H.I., 1984, IMPLANTING STRATEGIC
Byun J, 2018, TECHNOL ANAL STRATEG, V30, P98, DOI 10.1080/09537325.2017.1297397
DALKEY N, 1963, MANAGE SCI, V9, P458, DOI 10.1287/mnsc.9.3.458
Ernst H, 1997, SMALL BUS ECON, V9, P361, DOI 10.1023/A:1007921808138
FORD D, 1981, HARVARD BUS REV, V59, P117
FRANSES PH, 1994, TECHNOL FORECAST SOC, V46, P45, DOI 10.1016/0040-1625(94)90016-7
Gao LD, 2013, TECHNOL FORECAST SOC, V80, P398, DOI 10.1016/j.techfore.2012.10.003
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
Haupt R, 2007, RES POLICY, V36, P387, DOI 10.1016/j.respol.2006.12.004
Kim B, 2003, TECHNOVATION, V23, P371, DOI 10.1016/S0166-4972(02)00168-2
Kim J, 2012, EXPERT SYST APPL, V39, P12618, DOI 10.1016/j.eswa.2012.05.021
Lee C, 2016, TECHNOL FORECAST SOC, V106, P53, DOI 10.1016/j.techfore.2016.01.024
Lemos AD, 1998, IND MANAGE DATA SYST, V98, P330, DOI 10.1108/02635579810227698
Lezama-Nicolás R, 2018, SCIENTOMETRICS, V117, P1425, DOI 10.1007/s11192-018-2941-1
Linden A., 2003, Strategic Analysis Report No R-20-1971
MERINO DN, 1990, TECHNOL FORECAST SOC, V37, P275, DOI 10.1016/0040-1625(90)90028-T
Momeni A, 2016, TECHNOL FORECAST SOC, V104, P16, DOI 10.1016/j.techfore.2015.12.003
Nagula M, 2016, J STAT MANAG SYST, V19, P73, DOI 10.1080/09720510.2014.1001601
Nieto M, 1998, TECHNOVATION, V18, P439, DOI 10.1016/S0166-4972(98)00021-2
Paszke A, 2019, ADV NEUR IN, V32
Ramadhan MH, 2018, 2018 5TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA), P499, DOI 10.1109/IEA.2018.8387152
Ryu J, 2011, TECHNOL FORECAST SOC, V78, P1049, DOI 10.1016/j.techfore.2011.01.003
SHARIF MN, 1980, TECHNOL FORECAST SOC, V18, P247, DOI 10.1016/0040-1625(80)90026-8
Sick N, 2018, J CLEAN PROD, V201, P325, DOI 10.1016/j.jclepro.2018.08.036
Smojver V, 2019, TEH VJESN, V26, P222, DOI 10.17559/TV-20171123182106
STAPLETON E, 1976, TECHNOL FORECAST SOC, V8, P325, DOI 10.1016/0040-1625(76)90008-1
Su HN, 2018, R&D MANAGE, V48, P308, DOI 10.1111/radm.12279
Taylor M, 2012, INT J PROD ECON, V140, P541, DOI 10.1016/j.ijpe.2012.07.006
Urban G.L., 1993, DESIGN MARKETING NEW, V2
van der Pol J, 2018, SCIENTOMETRICS, V114, P307, DOI 10.1007/s11192-017-2579-4
Watts RJ, 1997, TECHNOL FORECAST SOC, V56, P25, DOI 10.1016/S0040-1625(97)00050-4
Wu FS, 2011, TECHNOL FORECAST SOC, V78, P386, DOI 10.1016/j.techfore.2010.08.006
NR 39
TC 6
Z9 6
U1 4
U2 24
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0957-4174
EI 1873-6793
J9 EXPERT SYST APPL
JI Expert Syst. Appl.
PD SEP 1
PY 2022
VL 201
AR 117177
DI 10.1016/j.eswa.2022.117177
EA MAY 2022
PG 12
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic; Operations Research & Management Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Operations Research & Management Science
GA 1L1DO
UT WOS:000799032800001
OA Bronze
DA 2024-09-05
ER
PT J
AU Sonkor, MS
de Soto, BG
AF Sonkor, Muammer Semih
Garcia de Soto, Borja
TI Using ChatGPT in construction projects: unveiling its cybersecurity
risks through a bibliometric analysis
SO INTERNATIONAL JOURNAL OF CONSTRUCTION MANAGEMENT
LA English
DT Article; Early Access
DE ChatGPT; construction 4.0; cybersecurity; large language model; machine
learning
AB ChatGPT, a large language model chatbot by OpenAI, has increasingly become a part of employees' day-to-day activities in numerous industries, including construction, and researchers have looked into this tool since its first release in late 2022 to assist in different fields. One of the benefits of such tools can be related to improved efficiency; however, it raises data privacy and security concerns. Considering the increasing reliance on information technology and operational technology for enhanced productivity, accuracy and quality in projects, these concerns also affect the construction sector. This study presents an overview of the existing literature on the applications of ChatGPT in the construction sector, highlighting its potential to revolutionize various resource-intensive tasks in projects and the related cybersecurity risks. VOSviewer is used for bibliometric analysis of academic publications and to identify the relevant cybersecurity problems. The identified issues are categorized into three main groups and discussed in the context of construction applications. Suggestions are provided to address identified concerns. This paper highlights the importance of ensuring the secure deployment of ChatGPT in the construction sector, a subject that has not been explored in the existing literature.
C1 [Sonkor, Muammer Semih; Garcia de Soto, Borja] New York Univ Abu Dhabi NYUAD, Div Engn, SMART Construct Res Grp, Expt Res Bldg,Saadiyat Isl,POB 129188, Abu Dhabi, U Arab Emirates.
RP Sonkor, MS (corresponding author), New York Univ Abu Dhabi NYUAD, Div Engn, SMART Construct Res Grp, Expt Res Bldg,Saadiyat Isl,POB 129188, Abu Dhabi, U Arab Emirates.
EM semih.sonkor@nyu.edu
FU Center for Cyber Security (CCS) - Tamkeen under the NYUAD Research
Institute Award [G1104]; Tamkeen under the NYUAD Research Institute
Award [CG001]
FX This work was supported by the Center for Cyber Security (CCS), funded
by Tamkeen under the NYUAD Research Institute Award G1104 and in
collaboration with the NYUAD Center for Interacting Urban Networks
(CITIES), funded by Tamkeen under the NYUAD Research Institute Award
CG001.
CR Achiam OJ, 2023, Arxiv, DOI [arXiv:2303.08774, DOI 10.48550/ARXIV.2303.08774]
Agarwal R., 2016, Technical Report
Akbar M.A., 2023, IEEE Trans. Artif. Intell, P1, DOI [10.1109/TAI.2023.3318183, DOI 10.1109/TAI.2023.3318183]
Akhavian R, 2016, AUTOMAT CONSTR, V71, P198, DOI 10.1016/j.autcon.2016.08.015
Al-Hawawreh M, 2023, CLUSTER COMPUT, V26, P3421, DOI 10.1007/s10586-023-04124-5
Aladag H, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su152216071
Alawida M, 2023, INFORMATION, V14, DOI 10.3390/info14080462
Aluga M., 2023, East Afr. J. Eng., V6, P104, DOI [10.37284/eaje.6.1.1272, DOI 10.37284/EAJE.6.1.1272]
Boyes H., 2013, Resilience and Cyber Security of Technology in the Built Environment
Brown TB, 2020, P NEURIPS VIRT 2020
BSI, 2013, Br Stand Inst, P1
Chang YP, 2024, ACM T INTEL SYST TEC, V15, DOI 10.1145/3641289
Chowdhury MDM., 2023, 2023 IEEE INT C EL I, P1, DOI [10.1109/eIT57321.2023.10187355, DOI 10.1109/EIT57321.2023.10187355]
Coles C., 2023, Cyberhaven Online
Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
Duarte F., 2023, Exploding Topics Online
Garcia de Soto B., 2020, Prepr, DOI [10.20944/preprints202005.0213.v1, DOI 10.20944/PREPRINTS202005.0213.V1]
Gasiba TE., 2023, P ICPEC VIL COND POR, DOI [10.4230/OASIcs.ICPEC.2023.2, DOI 10.4230/OASICS.ICPEC.2023.2]
Goud N., 2020, Cybersecurity Insiders
Guleria A, 2023, J INFECT DEV COUNTR, V17, P1292, DOI 10.3855/jidc.18738
Guo Z Jin R Liu C Huang Y Shi D Supryadi Yu L Liu Y Li J Xiong B et al., 2023, ArXiv Prepr, VarXiv, p2310.19736v2, DOI [10.48550/arXiv.2310.19736, DOI 10.48550/ARXIV.2310.19736]
Gupta M, 2023, IEEE ACCESS, V11, P80218, DOI 10.1109/ACCESS.2023.3300381
Hacker P, 2023, PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, P1112, DOI 10.1145/3593013.3594067
Hatoum MB., 2023, PROC, V31, P208, DOI [10.24928/2023/0243, DOI 10.24928/2023/0243]
Hu C., 2023, P NANA QINGD CHIN 20, P324, DOI [10.1109/NaNA60121.2023.00061, DOI 10.1109/NANA60121.2023.00061]
Iqbal F, 2023, FRONT COMMUN NETW, V4, DOI 10.3389/frcmn.2023.1220243
Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274
Klinc R., 2019, ECONOMICANDBUSINESSR, V21, P393, DOI [10.15458/ebr.92, DOI 10.15458/EBR.92]
Ko JC, 2023, Arxiv, DOI arXiv:2308.00227
Lambert J, 2023, COMPUT SCH, DOI 10.1080/07380569.2023.2256710
Liu YH, 2019, Arxiv, DOI arXiv:1907.11692
Mantha B, 2021, SUSTAIN CITIES SOC, V66, DOI 10.1016/j.scs.2020.102682
Mengiste E, 2024, J COMPUT CIVIL ENG, V38, DOI 10.1061/JCCEE5.CPENG-5478
Microsoft, 2024, Presidio-data protection and de-identification SDK Online
Moon S, 2022, AUTOMAT CONSTR, V142, DOI 10.1016/j.autcon.2022.104465
Mukherjee P, 2023, RADIOLOGY, V309, DOI 10.1148/radiol.231147
Okey OD, 2023, COMPUT SECUR, V135, DOI 10.1016/j.cose.2023.103476
OpenAI, 2023, Enterprise Privacy at OpenAI
OpenAI, 2023, Introducing ChatGPT
Piñeiro-Martín A, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12143170
Poremba S., 2023, Security Intelligence
Prieto SA, 2023, BUILDINGS-BASEL, V13, DOI 10.3390/buildings13040857
Pu HX, 2023, Arxiv, DOI [arXiv:2310.07944, 10.48550/arXiv.2310.07944, DOI 10.48550/ARXIV.2310.07944]
Radford A., 2023, Improving Language understanding by generative pre-training
Rafiei MH, 2018, J CONSTR ENG M, V144, DOI 10.1061/(ASCE)CO.1943-7862.0001570
Remington R., 2023, Contractors-protect your confidential information from wrongful disclosure
Saka A, 2024, DEV BUILT ENVIRON, V17, DOI 10.1016/j.dibe.2023.100300
Sawhney A., 2020, Construction 4.0: An Innovation Platform for the Built Environment
Shidarta, 2023, E3S Web of Conferences, DOI 10.1051/e3sconf/202342602046
Singaravel S, 2018, ADV ENG INFORM, V38, P81, DOI 10.1016/j.aei.2018.06.004
Singh AK., 2023, P ISARC CHENN IND 20, P238, DOI [10.22260/ISARC2023/0034, DOI 10.22260/ISARC2023/0034]
Touvron H, 2023, Arxiv, DOI arXiv:2302.13971
Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375
Uddin SMJ, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097121
Vaccino-Salvadore S, 2023, LANGUAGES-BASEL, V8, DOI 10.3390/languages8030191
van Eck NJ, 2017, SCIENTOMETRICS, V111, P1053, DOI 10.1007/s11192-017-2300-7
Vaswani A, 2017, ADV NEUR IN, V30
Wang CY, 2023, J MED INTERNET RES, V25, DOI 10.2196/48009
Watson S., 2023, Construction News Online
Wu X., 2023, Journal of Information and Intelligence, V2, P102, DOI [DOI 10.1016/J.JIIXD.2023.10.007, https://doi.org/10.1016/j.jiixd.2023.10.007]
Yan LX, 2024, BRIT J EDUC TECHNOL, V55, DOI 10.1111/bjet.13370
Yang J, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13116355
Yao D., 2023, IAARC PUBLICATIONS, V40, P537
You HX, 2023, BUILDINGS-BASEL, V13, DOI 10.3390/buildings13071772
Zhang J., 2023, P ISARC CHENN IND 20, P63, DOI [10.22260/ISARC2023/0011, DOI 10.22260/ISARC2023/0011]
Zheng JW, 2023, AUTOMAT CONSTR, V155, DOI 10.1016/j.autcon.2023.105067
NR 66
TC 0
Z9 0
U1 10
U2 10
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 1562-3599
EI 2331-2327
J9 INT J CONSTR MANAG
JI Int. J. Constr. Manag.
PD 2024 MAY 15
PY 2024
DI 10.1080/15623599.2024.2355782
EA MAY 2024
PG 9
WC Construction & Building Technology; Engineering, Civil; Management
WE Emerging Sources Citation Index (ESCI)
SC Construction & Building Technology; Engineering; Business & Economics
GA ST5J1
UT WOS:001236707800001
OA hybrid
DA 2024-09-05
ER
PT J
AU Tattershall, E
Nenadic, G
Stevens, RD
AF Tattershall, E.
Nenadic, G.
Stevens, R. D.
TI Detecting bursty terms in computer science research
SO SCIENTOMETRICS
LA English
DT Article
DE Computer science; Bibliometrics; Term life cycles; Machine learning;
DBLP; MACD
ID TOPICS
AB Research topics rise and fall in popularity over time, some more swiftly than others. The fastest rising topics are typically called bursts; for example "deep learning", "internet of things" and "big data". Being able to automatically detect and track bursty terms in the literature could give insight into how scientific thought evolves over time. In this paper, we take a trend detection algorithm from stock market analysis and apply it to over 30 years of computer science research abstracts, treating the prevalence of each term in the dataset like the price of a stock. Unlike previous work in this domain, we use the free text of abstracts and titles, resulting in a finer-grained analysis. We report a list of bursty terms, and then use historical data to build a classifier to predict whether they will rise or fall in popularity in the future, obtaining accuracy in the region of 80%. The proposed methodology can be applied to any time-ordered collection of text to yield past and present bursty terms and predict their probable fate.
C1 [Tattershall, E.; Nenadic, G.; Stevens, R. D.] Univ Manchester, Dept Comp Sci, Oxford Rd, Manchester M13 9PL, Lancs, England.
C3 University of Manchester
RP Tattershall, E (corresponding author), Univ Manchester, Dept Comp Sci, Oxford Rd, Manchester M13 9PL, Lancs, England.
EM emma.tattershall@postgrad.manchester.ac.uk
RI Tattershall, Emma/HGV-0693-2022
OI Tattershall, Emma/0000-0001-5616-4002
FU Manchester Centre for Doctoral Training in Computer Science
[EP/I028099/1]
FX This research was supported by the Manchester Centre for Doctoral
Training in Computer Science, EP/I028099/1
CR *ALL I ART INT, 2015, SEM SCHOL
[Anonymous], 2010, Proceedings of the 2010 ACM SIGMOD International Conference on Management of data
[Anonymous], 1998, P BROADC NEWS TRANSC
Appel G., 2005, Technical Analysis: Power Tools for Active Investors
Balili C, 2017, IEEE INT CONF BIG DA, P1694, DOI 10.1109/BigData.2017.8258108
Bird S., 2009, Natural language processing with Python: analyzing text with the natural lan-guage toolkit
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Bornmann L, 2015, J ASSOC INF SCI TECH, V66, P2215, DOI 10.1002/asi.23329
Cavacini A, 2015, SCIENTOMETRICS, V102, P2059, DOI 10.1007/s11192-014-1506-1
Chen HM, 2018, DRUG DISCOV TODAY, V23, P1241, DOI 10.1016/j.drudis.2018.01.039
Diao Qiming, 2012, P 50 ANN M ASS COMP, V1, P536
Dieleman S, 2015, MON NOT R ASTRON SOC, V450, P1441, DOI 10.1093/mnras/stv632
FENN J, 2008, GARTNER SERIES
Fung G.P. C., 2005, VLDB, P181
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
He D, 2011, LECT NOTES ARTIF INT, V6635, P532, DOI 10.1007/978-3-642-20847-8_44
He Dan., 2010, KDD, P443
*INV, 2019, IS EXP MOV AV EMA FO
KAHANER D, 1994, IEEE COMPUT GRAPH, V14, P75, DOI 10.1109/38.250923
Kleinberg J, 2003, DATA MIN KNOWL DISC, V7, P373, DOI 10.1023/A:1024940629314
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386
Mane KK, 2004, P NATL ACAD SCI USA, V101, P5287, DOI 10.1073/pnas.0307626100
Mei Q., 2005, P P 11 ACM SIGKDD IN, P198, DOI DOI 10.1145/1081870.1081895
Murphy J. J., 1999, Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications
*NAT LIBR MED, 2019, MED SUBJECT HEADINGS
Prabhakaran V, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1170
RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0
*SCIPY, 2019, HIER CLUST SCIP CLUS
Steyvers M., 2004, Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), P306, DOI [10.1145/1014052.1014087, 10.1145/1014052, DOI 10.1145/1014052]
STROUP DF, 1989, STAT MED, V8, P323, DOI 10.1002/sim.4780080312
Takahashi Yusuke, 2012, Advances in Natural Language Processing. Proceedings 8th International Conference on NLP, JapTAL 2012, P239, DOI 10.1007/978-3-642-33983-7_24
WU Y, 2018, IEEE T EMERGING TOPI
Zhang X., 2006, Proceedings of the 22nd International Conference on Data Engineering (ICDE'06), page, P146
2018, RES CONDITION DIS CA
NR 34
TC 13
Z9 15
U1 2
U2 51
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 2020
VL 122
IS 1
BP 681
EP 699
DI 10.1007/s11192-019-03307-5
EA NOV 2019
PG 19
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA KQ7OX
UT WOS:000498738600001
OA hybrid
DA 2024-09-05
ER
PT J
AU Carballo-Meilan, A
McDonald, L
Pragot, W
Starnawski, LM
Saleemi, AN
Afzal, W
AF Carballo-Meilan, Ara
McDonald, Lewis
Pragot, Wanawan
Starnawski, Lukasz Michal
Saleemi, Ali Nauman
Afzal, Waheed
TI Development of a data-driven scientific methodology: From articles to
chemometric data products
SO CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS
LA English
DT Article
DE Scientific method; Data mining; Meta-methodology; Chemometrics;
Scientometrics; Machine learning; Scientific method; Data mining;
Meta-methodology; Chemometrics; Scientometrics; Machine learning
ID CLASSIFICATION
AB Information and data science algorithms were combined to predict the outcome of an experiment in chemical engineering. Using the Scientific Method workflow, we started the journey with the formulation of a specific question. At the research stage, the common process of querying and reading articles on scientific databases was substituted by a systematic review with a built-in recursive data mining method. This procedure identifies a specific community of knowledge with the key concepts and experiments that are necessary to address the formulated question. A small subset of relevant articles from a very specific topic among thousands of papers was identified while assuring the loss of the least amount of information through the process. The secondary dataset was bigger than a common individual study. The process revealed the main ideas currently under study and identified optimal synthesis conditions to produce a chemical substance. Once the research step was finished, the experimental information was compiled and prepared for metaanalysis using a supervised learning algorithm. This is a hypothesis generation stage whereby the secondary dataset was transformed into experimental knowledge about a particular chemical reaction. Finally, the predicted sets of optimal conditions to produce the desired chemical compound were validated in the laboratory.
C1 [Carballo-Meilan, Ara; McDonald, Lewis; Pragot, Wanawan; Starnawski, Lukasz Michal; Afzal, Waheed] Univ Aberdeen, Kings Coll, Sch Engn, Aberdeen AB24 3UE, Scotland.
[Saleemi, Ali Nauman] GlaxoSmithKline, Stevenage SG1 2NY, Herts, England.
C3 University of Aberdeen; GlaxoSmithKline
RP Afzal, W (corresponding author), Univ Aberdeen, Kings Coll, Sch Engn, Aberdeen AB24 3UE, Scotland.
EM waheed@abdn.ac.uk
OI McDonald, Lewis/0000-0001-6185-7444; McDonald,
Lewis/0000-0002-7635-4732; Afzal, Waheed/0000-0002-2927-0114
CR [Anonymous], 2011, Causality in the Sciences
Azari A, 2020, CHEMOSPHERE, V250, DOI 10.1016/j.chemosphere.2020.126238
Bakeev K.A, 2010, PROCESS ANAL TECHNOL
Baker RE, 2018, BIOL LETTERS, V14, DOI 10.1098/rsbl.2017.0660
Benstoem F, 2017, CHEMOSPHERE
Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
Boyjoo Y, 2014, J MATER CHEM A, V2, P14270, DOI 10.1039/c4ta02070g
Brecevic L, 2007, CROAT CHEM ACTA, V80, P467
Carballo-Meilan A, 2020, CELLULOSE, V27, P10259, DOI 10.1007/s10570-020-03449-3
Carballo-Meilán A, 2016, CELLULOSE, V23, P901, DOI 10.1007/s10570-015-0848-z
Carballo-Meilan A, 2014, CELLULOSE, V21, P261, DOI 10.1007/s10570-013-0093-2
Cartwright JHE, 2012, ANGEW CHEM INT EDIT, V51, P11960, DOI 10.1002/anie.201203125
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Corballis M. C, AM SCI
Donoho D, 2017, J COMPUT GRAPH STAT, V26, P745, DOI 10.1080/10618600.2017.1384734
Evans JA, 2008, SCIENCE, V321, P395, DOI 10.1126/science.1150473
Ezer D, 2019, ELIFE, V8, DOI 10.7554/eLife.43979
Farhadi-Khouzani M, 2016, ANGEW CHEM INT EDIT, V55, P8117, DOI 10.1002/anie.201603176
Hafeez S, 2021, FRONT CHEM SCI ENG, V15, P720, DOI 10.1007/s11705-020-1992-z
Hall M., 2009, ACM SIGKDD Explor. Newsl., V11, P10, DOI DOI 10.1145/1656274.1656278
Hall W., 2017, Independent Report
Han J., 2012, Data Mining, P393, DOI [DOI 10.1016/B978-0-12-381479-1.00009-5, 10.1016/B978-0-12-381479-1.00009-5]
Hassan A., 2000, INT J QUAL RELIAB MA
Jinha AE, 2010, LEARN PUBL, V23, P258, DOI 10.1087/20100308
Juergens H, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.195
Kimura T, 2011, CRYST GROWTH DES, V11, P3877, DOI 10.1021/cg200412h
Kumar V, 2019, CHEMOSPHERE, V236, DOI 10.1016/j.chemosphere.2019.124364
Kuncheva LI, 2007, COMPUT BIOL MED, V37, P1194, DOI 10.1016/j.compbiomed.2006.10.011
LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Liu WY, 2019, ENTROPY-SWITZ, V21, DOI 10.3390/e21121152
Meng XZ, 2016, ENVIRON SCI TECHNOL, V50, P5454, DOI 10.1021/acs.est.5b05583
Mutihac L, 2008, ANAL CHIM ACTA, V612, P1, DOI 10.1016/j.aca.2008.02.025
Nadeau C, 2003, MACH LEARN, V52, P239, DOI 10.1023/A:1024068626366
Ng JJ, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), P976, DOI 10.1109/IEEM.2015.7385794
Nooraie RY, 2020, J MIX METHOD RES, V14, P110, DOI 10.1177/1558689818804060
Penson DF., 2006, Clinical Research Methods for Surgeons
Peres FAP, 2018, COMPUT IND ENG, V115, P603, DOI 10.1016/j.cie.2017.12.006
Rendall R., 2019, COMPUT CHEM ENG
Rothstein HR, 2005, PUBLICATION BIAS IN META-ANALYSIS: PREVENTION, ASSESSMENT AND ADJUSTMENTS, P1, DOI 10.1002/0470870168
Schmack R, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08325-8
Schutt R., 2011, INVESTIGATING SOCIAL, V7th
Smith Emma., 2008, USING SECONDARY DATA
Succi S, 2019, PHILOS T R SOC A, V377, DOI 10.1098/rsta.2018.0145
TEAM S., 2009, Science of Science (Sci2) Tool
Trzesniewski K.H., 2011, SECONDARY DATA ANAL
van Eck NJ, 2010, J AM SOC INF SCI TEC, V61, P2405, DOI 10.1002/asi.21421
Viswanath S., 2021, J. Pharmaceut. Innov., P1
Voit EO, 2019, PLOS COMPUT BIOL, V15, DOI 10.1371/journal.pcbi.1007279
Walker J., 2011, NASSP Bulletin, V95, P46, DOI [10.1177/0192636511406530, DOI 10.1177/0192636511406530]
Witten I.H., 2016, DATA MINING PRACTICA, DOI DOI 10.1016/C2009-0-19715-5
Wu X, 2009, CH CRC DATA MIN KNOW, P1, DOI 10.1201/9781420089653
Xiong ZH, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00835
NR 53
TC 3
Z9 3
U1 0
U2 6
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0169-7439
EI 1873-3239
J9 CHEMOMETR INTELL LAB
JI Chemometrics Intell. Lab. Syst.
PD JUN 15
PY 2022
VL 225
AR 104555
DI 10.1016/j.chemolab.2022.104555
EA APR 2022
PG 13
WC Automation & Control Systems; Chemistry, Analytical; Computer Science,
Artificial Intelligence; Instruments & Instrumentation; Mathematics,
Interdisciplinary Applications; Statistics & Probability
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Automation & Control Systems; Chemistry; Computer Science; Instruments &
Instrumentation; Mathematics
GA 1Q6BI
UT WOS:000802769800004
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Goodell, JW
Kumar, S
Li, X
Pattnaik, D
Sharma, A
AF Goodell, John W.
Kumar, Satish
Li, Xiao
Pattnaik, Debidutta
Sharma, Anuj
TI Foundations and research clusters in investor attention: Evidence from
bibliometric and topic modelling analysis
SO INTERNATIONAL REVIEW OF ECONOMICS & FINANCE
LA English
DT Article
DE Investor attention; Systematic literature review; Bibliometric analysis;
Machine learning; Structural topic modelling; Cluster analysis
ID LIMITED ATTENTION; EARNINGS ANNOUNCEMENTS; CROSS-SECTION; SEARCH;
RETURNS; PREDICT; RETAIL; NEWS; UNDERREACTION; INFORMATION
AB Investor attention is an emergent area in financial scholarship. However, no review till date offers a comprehensive retrospection of this research domain. To address this gap, we present an overview of investor-attention research in finance. Using both co-citation and structural topic modelling analyses, we infer the knowledge and thematic structure of investor-attention research for 1994-2021. By uncovering four co-citation clusters and eight specific topics, we conclude that investor-attention research in the areas of "underreaction to earnings announcements", "sector and financial risk", and "investors' attention and firm disclosures" is likely to soon expand rapidly. Our survey also identifies the most prominent scholars, author affiliations, and scientific outlets publishing on investor-attention research topics. We also explore the various theories examined or discussed in investor-attention scholarship, as well as identify research gaps.
C1 [Goodell, John W.] Univ Akron, Coll Business, 302 Buchtel Common, Akron, OH 44325 USA.
[Kumar, Satish] Malaviya Natl Inst Technol Jaipur, Jaipur, Rajasthan, India.
[Li, Xiao] Nankai Univ, Sch Finance, Tianjin, Peoples R China.
[Li, Xiao] Nankai Univ, Inst Digital Finance, Tianjin, Peoples R China.
[Pattnaik, Debidutta] Int Management Inst, Bhubaneswar, India.
[Sharma, Anuj] Chandragupt Inst Management Patna, Patna, Bihar, India.
[Kumar, Satish] Swinbume Univ Technol, Fac Business Design & Arts, Sarawak, Malaysia.
C3 University System of Ohio; University of Akron; National Institute of
Technology (NIT System); Malaviya National Institute of Technology
Jaipur; Nankai University; Nankai University; International Management
Institute (IMI) Bhubaneswar
RP Goodell, JW (corresponding author), Univ Akron, Coll Business, 302 Buchtel Common, Akron, OH 44325 USA.
EM johngoo@uakron.edu; skumar.dms@mnit.ac.in; xiaoli@nankai.edu.cn;
2018rbm9086@mnit.ac.in; anuj@cimp.ac.in
RI Pattnaik, Debidutta/Q-2125-2019; Kumar, Satish/M-8694-2017; Kumar,
Satish/E-2103-2018; Sharma, Anuj/JTS-4887-2023; Pattnaik,
Debidutta/GWU-6164-2022
OI Pattnaik, Debidutta/0000-0001-6180-0499; Kumar,
Satish/0000-0001-5200-1476; Kumar, Satish/0000-0001-6788-0952; Sharma,
Anuj/0000-0002-6281-6115; Sharma, Anuj/0000-0001-6602-9285; Goodell,
John W./0000-0003-4126-9244
FU National Natural Science Foundation of China [72171125]; Fundamental
Research Funds for the Central Universities [63222068]
FX This work is supported by the National Natural Science Foundation of
China (72171125) and the Fundamental Research Funds for the Central
Universities (63222068).
CR Abramova I, 2020, ACCOUNT REV, V95, P1, DOI 10.2308/tar-2018-0494
Aggarwal D, 2020, J BEHAV EXP FINANC, V27, DOI 10.1016/j.jbef.2020.100335
AJIFERUKE I, 1988, SCIENTOMETRICS, V14, P421, DOI 10.1007/BF02017100
Amihud Y, 2002, J FINANC MARK, V5, P31, DOI 10.1016/S1386-4181(01)00024-6
Andrei D, 2015, REV FINANC STUD, V28, P33, DOI 10.1093/rfs/hhu059
Aouadi A, 2013, ECON MODEL, V35, P674, DOI 10.1016/j.econmod.2013.08.034
Bai XW, 2021, TRANSPORT POLICY, V102, P11, DOI 10.1016/j.tranpol.2020.12.013
Baker HK, 2021, J CORP FINANC, V66, DOI 10.1016/j.jcorpfin.2020.101572
Baker HK, 2019, INT REV FINANC ANAL, V63, P331, DOI 10.1016/j.irfa.2017.02.002
Barber BM, 2008, REV FINANC STUD, V21, P785, DOI 10.1093/rfs/hhm079
Barbopoulos LG, 2020, J CORP FINANC, V64, DOI 10.1016/j.jcorpfin.2020.101583
Bashir HA, 2022, CURR ISSUES TOUR, V25, P28, DOI 10.1080/13683500.2021.1910633
Ben-Rephael A, 2017, REV FINANC STUD, V30, P3009, DOI 10.1093/rfs/hhx031
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007
Boyack KW, 2010, J AM SOC INF SCI TEC, V61, P2389, DOI 10.1002/asi.21419
Bushee B, 2020, J ACCOUNT ECON, V69, DOI 10.1016/j.jacceco.2019.101261
Carhart MM, 1997, J FINANC, V52, P57, DOI 10.2307/2329556
Cervellati EM, 2014, APPL ECON, V46, P1108, DOI 10.1080/00036846.2013.866206
Chapman K, 2018, J ACCOUNT ECON, V66, P222, DOI 10.1016/j.jacceco.2018.05.002
Chen ZD, 2021, J BEHAV EXP FINANC, V30, DOI 10.1016/j.jbef.2021.100511
Cheng FY, 2021, ECON MODEL, V94, P170, DOI 10.1016/j.econmod.2020.10.001
Cheon YH, 2018, MANAGE SCI, V64, P5807, DOI 10.1287/mnsc.2017.2830
Ciampi F, 2021, SCIENTOMETRICS, V126, P2141, DOI 10.1007/s11192-020-03856-0
Cohen L, 2008, J FINANC, V63, P1977, DOI 10.1111/j.1540-6261.2008.01379.x
Conlisk J, 1996, J ECON LIT, V34, P669
Corwin SA, 2008, J FINANC, V63, P3031, DOI 10.1111/j.1540-6261.2008.01420.x
Da Z, 2011, J FINANC, V66, P1461, DOI 10.1111/j.1540-6261.2011.01679.x
Dellavigna S, 2009, J FINANC, V64, P709, DOI 10.1111/j.1540-6261.2009.01447.x
Dimpfl T, 2016, EUR FINANC MANAG, V22, P171, DOI 10.1111/eufm.12058
Ding R, 2015, J INT FINANC MARK I, V37, P12, DOI 10.1016/j.intfin.2015.04.001
Donthu N, 2021, INT J RES MARK, V38, P232, DOI 10.1016/j.ijresmar.2020.10.006
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Donthu N, 2022, J SERV MARK, V36, P340, DOI 10.1108/JSM-04-2020-0122
Donthu N, 2022, J SERV RES-US, V25, P187, DOI 10.1177/1094670520977672
Drake MS, 2017, MANAGE SCI, V63, P2847, DOI 10.1287/mnsc.2016.2477
Drake MS, 2012, J ACCOUNT RES, V50, P1001, DOI 10.1111/j.1475-679X.2012.00443.x
Fang L, 2009, J FINANC, V64, P2023, DOI 10.1111/j.1540-6261.2009.01493.x
Farinós JE, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020721
Gervais S, 2001, J FINANC, V56, P877, DOI 10.1111/0022-1082.00349
Goddard J, 2015, J INT FINANC MARK I, V38, P79, DOI 10.1016/j.intfin.2015.05.001
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Grullon G, 2004, REV FINANC STUD, V17, P439, DOI 10.1093/rfs/hhg039
Guo K, 2017, PHYSICA A, V469, P390, DOI 10.1016/j.physa.2016.11.114
Han LY, 2018, ECON MODEL, V68, P644, DOI 10.1016/j.econmod.2017.06.015
Han LY, 2017, ENERG ECON, V66, P547, DOI 10.1016/j.eneco.2017.04.018
Hao J, 2021, INT REV FINANC ANAL, V74, DOI 10.1016/j.irfa.2021.101675
Hirshleifer D, 2003, J ACCOUNT ECON, V36, P337, DOI 10.1016/j.jacceco.2003.10.002
Hirshleifer D, 2011, REV ASSET PRICING ST, V1, P35, DOI 10.1093/rapstu/rar002
Hirshleifer D, 2009, J FINANC, V64, P2289, DOI 10.1111/j.1540-6261.2009.01501.x
Hsu YJ, 2021, REV QUANT FINANC ACC, V57, P1093, DOI 10.1007/s11156-021-00971-8
Hu YT, 2021, INT REV FINANC ANAL, V73, DOI 10.1016/j.irfa.2020.101617
Huang MLY, 2020, EMPIR ECON, V59, P2821, DOI 10.1007/s00181-019-01725-1
Huang W, 2019, INT REV FINANC ANAL, V65, DOI 10.1016/j.irfa.2019.101375
Huberman G, 2001, J FINANC, V56, P387, DOI 10.1111/0022-1082.00330
Hur J, 2016, REV QUANT FINANC ACC, V46, P261, DOI 10.1007/s11156-014-0469-x
Iatridis G, 2012, REV ACCOUNT FINANC, V11, P73, DOI 10.1108/14757701211201830
Ibikunle G, 2020, INT REV FINANC ANAL, V69, DOI 10.1016/j.irfa.2020.101459
JEGADEESH N, 1993, J FINANC, V48, P65, DOI 10.1111/j.1540-6261.1993.tb04702.x
Johnson A., 2004, Attention: Theory and practice
KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185
Kahneman D., 1973, Attention and effort, V1063
Khalilpour R, 2012, ENERGY, V40, P317, DOI 10.1016/j.energy.2012.01.068
Khan MA, 2021, J BUS RES, V125, P295, DOI 10.1016/j.jbusres.2020.12.015
Kou Y, 2018, FINANC RES LETT, V25, P190, DOI 10.1016/j.frl.2017.10.014
Kumar S, 2021, ELECTRON COMMER RES, V21, P1, DOI 10.1007/s10660-021-09464-1
Kupfer A, 2021, J EMPIR FINANC, V62, P315, DOI 10.1016/j.jempfin.2021.04.004
Lerman A, 2020, CONTEMP ACCOUNT RES, V37, P2020, DOI 10.1111/1911-3846.12603
Li J, 2012, J FINANC ECON, V104, P401, DOI 10.1016/j.jfineco.2011.04.003
Li RH, 2019, J BEHAV FINANC, V20, P490, DOI 10.1080/15427560.2019.1575829
Li X, 2015, ECON MODEL, V49, P162, DOI 10.1016/j.econmod.2015.04.005
Li Y, 2021, INT REV ECON FINANC, V75, P723, DOI 10.1016/j.iref.2021.05.003
Pham L, 2020, FINANC RES LETT, V35, DOI 10.1016/j.frl.2020.101533
Liu HQ, 2021, J BEHAV FINANC, V22, P97, DOI [10.11713/j.issn.1009-4822.2021.01.020, 10.1080/15427560.2020.1748632]
Lou D, 2014, REV FINANC STUD, V27, P1797, DOI 10.1093/rfs/hhu019
Malik TH, 2020, TECHNOL ANAL STRATEG, V32, P574, DOI 10.1080/09537325.2019.1683536
Mattarocci G, 2013, J PROP INVEST FINANC, V31, P314, DOI 10.1108/JPIF-10-2012-0048
MERTON RC, 1987, J FINANC, V42, P483, DOI 10.2307/2328367
Meshcheryakov A, 2022, INT REV FINANC ANAL, V81, DOI 10.1016/j.irfa.2020.101627
Mukherjee D, 2021, MANAGE INT REV, V61, P599, DOI 10.1007/s11575-021-00454-x
NEWEY WK, 1987, ECONOMETRICA, V55, P703, DOI 10.2307/1913610
Obaid K, 2021, FINANC MANAGE, V50, P203, DOI 10.1111/fima.12323
Pattnaik D, 2021, AUST ACCOUNT REV, V31, P150, DOI 10.1111/auar.12332
Pattnaik D, 2020, QUAL RES FINANC MARK, V12, P367, DOI 10.1108/QRFM-09-2019-0103
Peng L, 2006, J FINANC ECON, V80, P563, DOI 10.1016/j.jfineco.2005.05.003
Peng L, 2007, EUR FINANC MANAG, V13, P394, DOI 10.1111/j.1468-036X.2007.00366.x
Phylaktis K., 2005, J INT FINANC MARK I, V15, P91, DOI DOI 10.1016/j.intfin.2004.03.001
Piñeiro-Chousa J, 2020, TECHNOL FORECAST SOC, V158, DOI 10.1016/j.techfore.2020.120115
PRITCHARD A, 1969, J DOC, V25, P348
Rakowski D, 2021, FINANC MANAGE, V50, P3, DOI 10.1111/fima.12307
RAMOS HENRIQUE PINTO, 2017, RAM, Rev. Adm. Mackenzie, V18, P184, DOI 10.1590/1678-69712017/administracao.v18n2p184-210
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Roberts ME, 2016, J AM STAT ASSOC, V111, P988, DOI 10.1080/01621459.2016.1141684
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Saxena K, 2020, APPL ECON, V52, P6562, DOI 10.1080/00036846.2020.1804050
Seasholes Mark., 2007, J EMPIR FINANC, V14, P590, DOI [DOI 10.1016/J.JEMPFIN.2007.03.002, DOI 10.1016/j.jempfin.2007.03.002]
Sharma A, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102316
Shen DH, 2019, ECON LETT, V174, P118, DOI 10.1016/j.econlet.2018.11.007
Sims CA, 2003, J MONETARY ECON, V50, P665, DOI 10.1016/S0304-3932(03)00029-1
Smales LA, 2021, INT REV FINANC ANAL, V73, DOI 10.1016/j.irfa.2020.101616
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265, DOI 10.1002/asi.4630240406
Soni A, 2020, J ALTERN INVEST, V22, P107, DOI 10.3905/jai.2020.1.088
Spurr A., 2021, Quality and Quantity, V55, P1541, DOI DOI 10.1007/S11135-020-01062-X
Subramaniam S, 2021, REV BEHAV FINANCE, V13, P40, DOI 10.1108/RBF-08-2020-0215
Subramaniam S, 2020, J BEHAV FINANC, V21, P103, DOI 10.1080/15427560.2019.1629587
Tang HF, 2022, REAL ESTATE ECON, V50, P431, DOI 10.1111/1540-6229.12314
Tetlock PC, 2007, J FINANC, V62, P1139, DOI 10.1111/j.1540-6261.2007.01232.x
Urquhart A, 2018, ECON LETT, V166, P40, DOI 10.1016/j.econlet.2018.02.017
Valtakoski A, 2020, J SERV MARK, V34, P8, DOI 10.1108/JSM-12-2018-0359
Vanhala M, 2020, J BUS RES, V106, P46, DOI 10.1016/j.jbusres.2019.09.009
Vozlyublennaia N, 2014, J BANK FINANC, V41, P17, DOI 10.1016/j.jbankfin.2013.12.010
Wang A, 2011, J FINANC SERV MARK, V16, P125, DOI 10.1057/fsm.2011.14
Wang XW, 2018, J FUTURES MARKETS, V38, P478, DOI 10.1002/fut.21890
Wen FH, 2019, INT REV FINANC ANAL, V65, DOI 10.1016/j.irfa.2019.101376
Wu Y, 2019, ECON MODEL, V80, P49, DOI 10.1016/j.econmod.2018.05.012
Xiong GY, 2013, J MARKETING RES, V50, P706, DOI 10.1509/jmr.12.0278
Yao T, 2017, APPL ENERG, V205, P336, DOI 10.1016/j.apenergy.2017.07.131
Yarovaya L., 2020, RETHINKING FINANCIAL, DOI 10.2139/ssrn.3602973.
You HF, 2011, CHINA FINANC REV INT, V1, P358, DOI 10.1108/20441391111167487
Yuan Y, 2015, J FINANC ECON, V116, P548, DOI 10.1016/j.jfineco.2015.03.006
Zhang W, 2013, ECON MODEL, V33, P613, DOI 10.1016/j.econmod.2013.03.018
Zhang YH, 2019, FINANC RES LETT, V31, P363, DOI 10.1016/j.frl.2018.12.001
Zhu ZB, 2020, BRIT ACCOUNT REV, V52, DOI 10.1016/j.bar.2019.100859
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 125
TC 18
Z9 18
U1 9
U2 47
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 1059-0560
EI 1873-8036
J9 INT REV ECON FINANC
JI Int. Rev. Econ. Financ.
PD NOV
PY 2022
VL 82
BP 511
EP 529
DI 10.1016/j.iref.2022.06.020
EA JUL 2022
PG 19
WC Business, Finance; Economics
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA 4L8TR
UT WOS:000852903200030
DA 2024-09-05
ER
PT C
AU Makarov, I
Gerasimova, O
AF Makarov, Ilya
Gerasimova, Olga
GP IEEE
TI Predicting Collaborations in Co-authorship Network
SO 2019 14TH INTERNATIONAL WORKSHOP ON SEMANTIC AND SOCIAL MEDIA ADAPTATION
AND PERSONALIZATION (SMAP)
LA English
DT Proceedings Paper
CT 14th International Workshop on Semantic and Social Media Adaptation and
Personalization (SMAP)
CY JUN 09-SEP 10, 2019
CL Larnaka, CYPRUS
DE Co-authorship Networks; Co-occurrence Networks; Recommender Systems;
Network Embedding; Link Prediction; Machine Learning
ID LINK-PREDICTION
AB In this paper, we study the problem of predicting collaborations in co-authorship network. We formulated our task in terms of link prediction problem on weighted co-authorship network, in which authors play the role of nodes, and weighted edges connecting two authors are formed by storing either a number or quality metric of research papers co-authored by these authors. Our task is then formulated as regression machine learning model based on network features constructed using network embedding. We evaluate our edge embeddings on large AMiner co-authorship network for (un)weighted node2vec network embeddings and also on the dataset containing temporal information on National Research University Higher School of Economics (HSE) over twenty five years of research articles indexed in Russian Science Citation Index and Scopus for predicting the quality of future research publications measures in terms of quartiles corresponding to published journals indexed in Scopus. We showed that our model of network edge representation has better performance for stated regression task on both, AMiner and HSE co-authorship networks.
C1 [Makarov, Ilya] Univ Ljubljana, Fac Comp & Informat Sci, Vena Pot 113, SI-1000 Ljubljana, Slovenia.
[Gerasimova, Olga] Natl Res Univ Higher Sch Econ, Sch Data Anal & Artificial Intelligence, 3 Kochnovskiy Proezd, Moscow 125319, Russia.
C3 University of Ljubljana; HSE University (National Research University
Higher School of Economics)
RP Makarov, I (corresponding author), Univ Ljubljana, Fac Comp & Informat Sci, Vena Pot 113, SI-1000 Ljubljana, Slovenia.
EM iamakarov@hse.ru; ogerasimova@hse.ru
RI Gerasimova, Olga/P-1560-2016; Makarov, Ilya/ABC-6521-2021
OI Makarov, Ilya/0000-0002-3308-8825
FU Russian Science Foundation [17-11-01294] Funding Source: Russian Science
Foundation
CR Abu-El-Haija S, 2017, CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1787, DOI 10.1145/3132847.3132959
Adafre S., 2005, P 3 INT WORKSHOP L, P90
Al Hasan M, 2011, SOCIAL NETWORK DATA ANALYTICS, P243
Al-Rfou, 2018, ARXIV PREPRINT ARXIV
[Anonymous], 2018, RUSSIAN WOS J
[Anonymous], 2015, 24 ACM INT C INFORM
[Anonymous], 2007, ACM SIGKDD Explorations Newsletter, DOI DOI 10.1145/1345448.1345462
[Anonymous], 2018, Scopus
Backstrom L., 2011, WSDM, P635
Barabasi A.-L, 2016, Network Science
Belkin M, 2002, ADV NEUR IN, V14, P585
Cai HY, 2018, IEEE T KNOWL DATA EN, V30, P1616, DOI 10.1109/TKDE.2018.2807452
Chang SY, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P119, DOI 10.1145/2783258.2783296
Cho HR, 2018, SOC NETW ANAL MIN, V8, DOI 10.1007/s13278-018-0501-6
Cui P, 2019, IEEE T KNOWL DATA EN, V31, P833, DOI 10.1109/TKDE.2018.2849727
Doan TN, 2018, PROCEEDINGS OF THE 26TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'18), P13, DOI 10.1145/3209219.3209231
Gao F, 2015, SCI PROGRAMMING-NETH, V2015, DOI 10.1155/2015/172879
Gao S., 2011, TEMPORAL LINK PREDIC, P1169
Glänzel W, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P257
González-Pereira B, 2010, J INFORMETR, V4, P379, DOI 10.1016/j.joi.2010.03.002
Goyal P, 2018, IEEE T COMPUT SOC SY, V5, P907, DOI 10.1109/TCSS.2018.2877083
Goyal P, 2018, KNOWL-BASED SYST, V151, P78, DOI 10.1016/j.knosys.2018.03.022
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Guerrero-Bote VP, 2012, J INFORMETR, V6, P674, DOI 10.1016/j.joi.2012.07.001
He Q., 2010, P 19 INT C WORLD WID, DOI DOI 10.1145/1772690.1772734
HSE Portal, 2017, PUBL HSE
Huang Z, 2005, ACM-IEEE J CONF DIG, P141, DOI 10.1145/1065385.1065415
Kong XJ, 2021, IEEE T EMERG TOP COM, V9, P226, DOI 10.1109/TETC.2018.2830698
Kossinets G, 2009, AM J SOCIOL, V115, P405, DOI 10.1086/599247
Li J, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P1209, DOI 10.1145/2567948.2579034
Li X, 2009, ACM-IEEE J CONF DIG, P213
Liang YC, 2011, LECT NOTES COMPUT SC, V6897, P403, DOI 10.1007/978-3-642-23535-1_35
Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591
Liu XM, 2005, INFORM PROCESS MANAG, V41, P1462, DOI 10.1016/j.ipm.2005.03.012
Lopes GR, 2010, LECT NOTES COMPUT SC, V6413, P190, DOI 10.1007/978-3-642-16385-2_24
Lü LY, 2011, PHYSICA A, V390, P1150, DOI 10.1016/j.physa.2010.11.027
Makarov I., 2017, SUPP PROC INT C ANAL, P1
Makarov I, 2016, INT C NETW AN, P251
Makarov I, 2019, IN PRESS, P1
Makarov I, 2019, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.172
Makarov I, 2018, ACM-IEEE J CONF DIG, P365, DOI 10.1145/3197026.3203911
Makarov I, 2018, LECT NOTES COMPUT SC, V10716, P404, DOI 10.1007/978-3-319-73013-4_37
McPherson M, 2001, ANNU REV SOCIOL, V27, P415, DOI 10.1146/annurev.soc.27.1.415
Ortega F, 2018, IEEE ACCESS, V6, P48543, DOI 10.1109/ACCESS.2018.2867731
Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732
Robins G, 2007, SOC NETWORKS, V29, P192, DOI 10.1016/j.socnet.2006.08.003
Roweis ST, 2000, SCIENCE, V290, P2323, DOI 10.1126/science.290.5500.2323
Scott J., 2017, Social network analysis, V4th ed.
Sinha A, 2015, WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P243, DOI 10.1145/2740908.2742839
Srinivas Virinchi., 2016, APPL LINK PRED, P57
Tang J., 2008, KDD, P990, DOI DOI 10.1145/1401890.1402008
Tang J., 2012, P 18 ACM SIGKDD INT, P904, DOI DOI 10.1145/2339530.2339673
Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093
Tang L, 2011, DATA MIN KNOWL DISC, V23, P447, DOI 10.1007/s10618-010-0210-x
Tenenbaum JB, 2000, SCIENCE, V290, P2319, DOI 10.1126/science.290.5500.2319
Thomson Reuters, 2018, INC J RANK
Uddin S, 2012, SCIENTOMETRICS, V90, P687, DOI 10.1007/s11192-011-0511-x
Velden T, 2009, PRO INT CONF SCI INF, V2, P764
Wang P, 2015, SCI CHINA INFORM SCI, V58, DOI 10.1007/s11432-014-5237-y
Wasserman S., 1994, SOCIAL NETWORK ANAL, V8
Yan EJ, 2009, J AM SOC INF SCI TEC, V60, P2107, DOI 10.1002/asi.21128
Yan SC, 2007, IEEE T PATTERN ANAL, V29, P40, DOI 10.1109/TPAMI.2007.250598
Yu Q, 2011, SCIENTOMETRICS, V89, P553, DOI 10.1007/s11192-011-0465-z
NR 63
TC 8
Z9 8
U1 0
U2 0
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-7281-3634-9
PY 2019
BP 72
EP 77
PG 6
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BS3KM
UT WOS:000712164100014
DA 2024-09-05
ER
PT J
AU Natarajan, R
Verma, MK
Muthuraj, S
AF Natarajan, Rajkumar
Verma, Manoj Kumar
Muthuraj, Surulinathi
TI Mapping the Global Academic Support for Sustainable Development Goal 7:
A Bibliometric Analysis and Topic Modelling Approach
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE SDG 7; Affordable and Clean Energy; Scientometrics; Text Analysis;
Machine Learning; Latent Semantic Analysis
ID ENERGY; SCIENCE
AB The Sustainable Development Goal 7 (SDG-7) promises to ensure the affordable and clean energy to the world. The United Nations (UN) has set a target for 2030, which can only be achieved through academic excellence. The present study aims to analyze the academic research support of SDG 7 from a global perspective by using bibliometric analysis and topic modelling approaches using Orange Python -based software. The present study extracts the scholarly publications from the lens database from 2015 to 2022 and the dataset consisted of 918 publications with 18,377 citations related to the SDG 7. These including 121 single -author and 797 multiple -authors publications. Most of the papers have been published in open -access journals. Environmental Science and Pollution Research International (5343 citations; 225 publications and CPP 23.74) was the most impactful journal, Muntasir Murshed (13 publications, 421 citations, CPP 32.3) was the most influential author, and China was the most productive country. Under co -occurrence analysis, Clean Energy, Environmental Economics, Health, Affordable Energy, Climate Change, and Business, six different denoted clusters were found, while in the topic modeling approach, six key topics were identified, in which three topics were related to economics and the other were energy -related and climate change. Environmental, renewable energy, and economics were the top words used in SDG 7, and six key documents on each topic were identified according to the distribution and weighting of the topics. The Implications of the research findings and addressing research gaps can inform researchers, policymakers, and funding agencies involved in advancing SDG 7 to help accelerate the achievement of the SDGs in the decision -making process.
C1 [Natarajan, Rajkumar; Verma, Manoj Kumar; Muthuraj, Surulinathi] Bharathidasan Univ, Dept Lib & Informat Sci, Tiruchirappalli, Tamil Nadu, India.
[Natarajan, Rajkumar] Mizoram Univ, Dept Lib & Informat Sci, Mizoram, India.
C3 Bharathidasan University; Mizoram University
RP Natarajan, R (corresponding author), Bharathidasan Univ, Dept Lib & Informat Sci, Tiruchirappalli, Tamil Nadu, India.
EM rajkumarnataraj19@gmail.com
CR Amala IA, 2022, Build Inform Technol Sci Bits, V4, DOI [10.47065/bits.v4i1.1584, DOI 10.47065/BITS.V4I1.1584]
[Anonymous], Goal 7: Ensure Access To Affordable
[Anonymous], The 17 Sustainable Development Goals
[Anonymous], 2023, United Nations Sustainable Development Goals
Aria M, 2017, J INFORMETR, V11, P959, DOI 10.1016/j.joi.2017.08.007
Arora NK, 2022, ENVIRON SUSTAIN, V5, P395, DOI 10.1007/s42398-022-00257-2
Barbier EB, 2020, WORLD DEV, V135, DOI 10.1016/j.worlddev.2020.105082
Biermann F, 2022, NAT SUSTAIN, V5, P795, DOI 10.1038/s41893-022-00909-5
Bingqi Jiao, 2021, E3S Web of Conferences, V236, DOI 10.1051/e3sconf/202123602002
Bossio DA, 2020, NAT SUSTAIN, V3, P391, DOI 10.1038/s41893-020-0491-z
de Araluze GKB, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0275496
Bryan BA, 2018, NATURE, V559, P193, DOI 10.1038/s41586-018-0280-2
Chaudhry IS, 2022, ENVIRON SCI POLLUT R, V29, P5360, DOI 10.1007/s11356-021-15941-9
Creutzig F, 2018, NAT CLIM CHANGE, V8, P268, DOI 10.1038/s41558-018-0121-1
Crippa M, 2021, NAT FOOD, V2, P198, DOI 10.1038/s43016-021-00225-9
Dantu R, 2021, INFORM SYST MANAGE, V38, P62, DOI 10.1080/10580530.2020.1746982
Debnath R, 2020, engrXiv
Demsar J, 2013, J MACH LEARN RES, V14, P2349
Duarte CM, 2020, NATURE, V580, P39, DOI 10.1038/s41586-020-2146-7
Elsevier, 2023, SDG 7: Affordable and clean energy
Farrukh M, 2021, TECHNOL ANAL STRATEG, V33, P989, DOI 10.1080/09537325.2020.1862413
Ferronato N, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16061060
Fitri H, 2021, IJITEE, V5, P82, DOI [10.22146/ijitee.67467, DOI 10.22146/IJITEE.67467]
Gao L, 2017, NATURE, V544, P217, DOI 10.1038/nature21694
Gielen D, 2019, ENERGY STRATEG REV, V24, P38, DOI 10.1016/j.esr.2019.01.006
Goodell JW, 2021, J BEHAV EXP FINANC, V32, DOI 10.1016/j.jbef.2021.100577
Hengchen S, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P3245, DOI 10.1109/BigData.2016.7840981
Hub ISK, UN-energy plan of action sends SDG 7 road map into implementation phase
Ishtiaque A, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12040691
Islam MM, 2022, ENVIRON SCI POLLUT R, V29, P34231, DOI 10.1007/s11356-021-18488-x
Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1
Katoch OR, 2022, J Energy Res Rev, P92, DOI [10.9734/jenrr/2022/v12i4251, DOI 10.9734/JENRR/2022/V12I4251]
Kroll C, 2019, PALGR COMMUN, V5, DOI 10.1057/s41599-019-0335-5
Lin TC, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.844425
Liu L, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3252-8
Majeed MT, 2022, ENVIRON SCI POLLUT R, V29, P61107, DOI 10.1007/s11356-022-20140-1
Minhaj M., 2017, Clustering of conference papers using LDA based topic modelling
Nerini FF, 2019, NAT SUSTAIN, V2, P674, DOI 10.1038/s41893-019-0334-y
Nerini FF, 2018, NAT ENERGY, V3, P10, DOI 10.1038/s41560-017-0036-5
Ngankam BT, 2019, J Sustain Dev, V12, P40, DOI [10.5539/jsd.v12n4p40, DOI 10.5539/JSD.V12N4P40]
O'Neill DW, 2018, NAT SUSTAIN, V1, P88, DOI 10.1038/s41893-018-0021-4
Prieto-Jiménez E, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13042126
PRITCHARD A, 1969, J DOC, V25, P348
Qian QH, 2020, CHEM REV, V120, P8161, DOI 10.1021/acs.chemrev.0c00119
Raji Saheed Adekunle, 2023, Dialogues Health, V2, P100132, DOI 10.1016/j.dialog.2023.100132
Sachs JD, 2019, NAT SUSTAIN, V2, P805, DOI 10.1038/s41893-019-0352-9
Safrina Rika, 2023, IOP Conference Series: Earth and Environmental Science, DOI 10.1088/1755-1315/1199/1/012012
Sau K, 2023, F1000Res, P11, DOI [10.12688/f1000research.108772.2, DOI 10.12688/F1000RESEARCH.108772.2]
Schroeder P, 2019, J IND ECOL, V23, P77, DOI 10.1111/jiec.12732
Sovacool BK, 2018, ENERGY RES SOC SCI, V45, P12, DOI 10.1016/j.erss.2018.07.007
Thacker S, 2019, NAT SUSTAIN, V2, P324, DOI 10.1038/s41893-019-0256-8
Thomas SP, 2008, Issues Ment Health Nurs, V29, P547, DOI [10.1080/016128 40802046547, DOI 10.1080/01612840802046547]
Tong WM, 2020, NAT ENERGY, V5, P367, DOI 10.1038/s41560-020-0550-8
Trane M, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097055
Tucho GT, 2020, FRONT ENERGY RES, V8, DOI 10.3389/fenrg.2020.564104
UNEP-UN Environment Programme, 2023, GOAL 7: affordable and clean energy
United Nations, 2015, TRANSF OUR WORLD 203, DOI [10.1891/9780826190123.ap02, DOI 10.1891/9780826190123.AP02]
United Nations, 2022, Energy's inter-linkages with other SDGs
Vaishnav D, 2018, PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2018), P603, DOI 10.1109/ICICT43934.2018.9034442
van Daalen KR, 2022, LANCET PUBLIC HEALTH, V7, pE942, DOI 10.1016/S2468-2667(22)00197-9
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Loenhout R, 2022, EXTENDED ABSTRACTS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2022, DOI 10.1145/3491101.3519638
Verma Manoj Kumar, 2023, SRELS Journal of Information Management, P97
Vinuesa R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-019-14108-y
Vivanco DF, 2020, Science, Technology, and Innovation for Sustainable Development Goals: Insights from Agriculture, Health, Environment, and Energy, P192
Wang XY, 2021, CHINESE GEOGR SCI, V31, P600, DOI 10.1007/s11769-021-1213-9
Watts N, 2018, LANCET, V392, P2479, DOI 10.1016/S0140-6736(18)32594-7
Wernecke B, 2021, ANN GLOB HEALTH, V87, DOI 10.5334/aogh.3139
World Bank, Tracking SDG 7-The energy progress report 2022
Yamaguchi NU, 2023, ENVIRON SCI POLLUT R, V30, P5502, DOI 10.1007/s11356-022-24379-6
Yanti Y, 2022, TEM J, V11, P1229, DOI 10.18421/TEM113-31
NR 71
TC 0
Z9 0
U1 2
U2 2
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD JAN-APR
PY 2024
VL 13
IS 1
BP 285
EP 297
DI 10.5530/jscires.13.1.24
PG 13
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA TZ7J6
UT WOS:001245143700024
OA hybrid
DA 2024-09-05
ER
PT J
AU Luong, DH
Nguyen, XA
Ngo, TT
Tran, MN
Nguyen, HL
AF Dinh-Hai Luong
Xuan-An Nguyen
Thanh-Thuy Ngo
My-Ngoc Tran
Hong-Lien Nguyen
TI Social Media in General Education: A Bibliometric Analysis of Web of
Science from 2005-2021
SO JOURNAL OF SCIENTOMETRIC RESEARCH
LA English
DT Article
DE COVID-19; ICT integration; Teachers' beliefs; Online learning; Distance
learning; Social; media; General education.
ID PROFESSIONAL-DEVELOPMENT; PRIOR-KNOWLEDGE; TEACHERS; STUDENTS; FACEBOOK;
BELIEFS; IMPACT; ONLINE; SITES; TOOL
AB Social media plays an increasingly important role in school activities. The study analysised 2,122 eligibility bibliographic records from 2005 to 2021 were extracted from the Web of Science database. This study employs a bibliometric method to analyze the use of social media on K-12 education worldwide. We concerned the following issues: the annual publication of Social Media in General Education (SMGE), the main characteristics of the SMGE research community, the primary sources in the field, the leading research themes and the new research topics in the field of SMGE. The results represented an annual growth trend of 17.15%. Countries with the highest number of publications were the US, England, Australia, China, and Turkey. The research community consisted of small groups; and Valcke M from the University of Ghent (Belgium) was one of the leading authors with large number of publications and citations. Sources focused on four scopes: Language Education, Educational Technology, Teacher and Teaching Education, Science Education. Furthermore, six themes were developed: SMGE's environment, ICT integration, teachers' beliefs and teaching practice, students' learning, teachers' motivation and engagement, SMGE's learning approach. Two prominent topics were COVID-19-related, online and distance learning. The findings represent the basic information of the SMGE knowledge base considered as a source of reference for teachers, school managers, and policymakers interested in SMGE research and suggest further research directions.
C1 [Dinh-Hai Luong; Xuan-An Nguyen; Thanh-Thuy Ngo; My-Ngoc Tran; Hong-Lien Nguyen] Vietnam Natl Inst Educ Sci, Hanoi 100000, Vietnam.
RP Nguyen, HL (corresponding author), Vietnam Natl Inst Educ Sci, Hanoi 100000, Vietnam.
EM honglien2601@gmail.com
RI Luong, Dinh-Hai/AAH-7107-2021
OI Luong, Dinh-Hai/0000-0003-0167-2645
CR Adler I, 2018, SCI EDUC, V102, P820, DOI 10.1002/sce.21445
Ahamer G., 2014, Handbook of Research on Transnational Higher Education, P526, DOI [10.4018/978-1-4666-4458-8.ch027, DOI 10.4018/978-1-4666-4458-8.CH027]
Al-Qaysi N, 2020, J EDUC COMPUT RES, V57, P2085, DOI 10.1177/0735633118817879
Albirini A, 2006, COMPUT EDUC, V47, P373, DOI 10.1016/j.compedu.2004.10.013
Aloraini N, 2022, COMPUT ASSIST LANG L, V35, P1707, DOI 10.1080/09588221.2020.1830804
Annetta LA, 2009, COMPUT EDUC, V53, P74, DOI 10.1016/j.compedu.2008.12.020
Banaji S, 2013, COMUNICAR, V20, P69, DOI 10.3916/C40-2013-02-07
Barrot JS, 2022, COMPUT ASSIST LANG L, V35, P2534, DOI 10.1080/09588221.2021.1883673
Barrot JS, 2021, J EDUC COMPUT RES, V59, P645, DOI 10.1177/0735633120972010
Barrot JS, 2018, J COMPUT ASSIST LEAR, V34, P863, DOI 10.1111/jcal.12295
Beardsley M, 2021, BRIT J EDUC TECHNOL, V52, P1455, DOI 10.1111/bjet.13101
Boholano H.B., 2017, RES PEDAGOGY, V7, P21, DOI [10.17810/2015.45, DOI 10.17810/2015.45]
Bourgonjon J, 2010, COMPUT EDUC, V54, P1145, DOI 10.1016/j.compedu.2009.10.022
Boyd DM, 2007, J COMPUT-MEDIAT COMM, V13, P210, DOI 10.1111/j.1083-6101.2007.00393.x
Carpenter J, 2022, PROF DEV EDUC, V48, P784, DOI 10.1080/19415257.2020.1752287
Carpenter JP, 2019, TEACH TEACH EDUC, V86, DOI 10.1016/j.tate.2019.102904
Carpenter JP, 2019, TEACH TEACH EDUC, V81, P1, DOI 10.1016/j.tate.2019.01.011
Carpenter JP, 2017, TEACH TEACH EDUC, V68, P53, DOI 10.1016/j.tate.2017.08.008
Chai CS, 2009, TEACH COLL REC, V111, P1296
Chan CKK, 2011, COMPUT EDUC, V57, P1445, DOI 10.1016/j.compedu.2010.09.003
Chen CM, 2021, COMPUT EDUC, V163, DOI 10.1016/j.compedu.2020.104095
Chin C, 2007, J RES SCI TEACH, V44, P815, DOI 10.1002/tea.20171
Chu S.K. W., 2020, SOCIAL MEDIA TOOLS E, DOI DOI 10.1007/978-981-15-1560-6
Chugh R, 2018, EDUC INF TECHNOL, V23, P605, DOI 10.1007/s10639-017-9621-2
Davies J, 2012, COMPUT EDUC, V59, P19, DOI 10.1016/j.compedu.2011.11.007
de Vries S, 2013, TEACH TEACH EDUC, V33, P78, DOI 10.1016/j.tate.2013.02.006
Dede C, 2018, EDUCAUSE review, V43, P80
Ha DN, 2021, J SCIENTOMETR RES, V10, P337, DOI 10.5530/jscires.10.3.50
Do TT, 2021, COGENT EDUC, V8, DOI 10.1080/2331186X.2021.1994361
de Larreta-Azelain MDC, 2013, REV ESP LINGUIST APL, V26, P127
Dunleavy M, 2009, J SCI EDUC TECHNOL, V18, P7, DOI 10.1007/s10956-008-9119-1
Elsevier, 2022, Aims and scope. Computer & Education
Eteokleous N, 2008, COMPUT EDUC, V51, P669, DOI 10.1016/j.compedu.2007.07.004
Evagorou M, 2012, INT J SCI EDUC, V34, P401, DOI 10.1080/09500693.2011.619211
Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF
Fischer C, 2019, AERA OPEN, V5, DOI 10.1177/2332858419894252
Friedman L.W., 2013, J ED ONLINE, V10, P1, DOI DOI 10.9743/JEO.2013.1.5
Fuchs C., 2021, Social Media: A Critical Introduction, DOI [10.4324/9781003199182-1, DOI 10.4324/9781003199182-1]
Glass G.V., 1976, Educational Researcher, V5, P3, DOI [10.3102/0013189x005010003, DOI 10.3102/0013189X005010003, 10.2307/1174772ISSN0536-1036, DOI 10.2307/1174772]
González-Betancor SM, 2021, COMPUT EDUC, V168, DOI 10.1016/j.compedu.2021.104195
Greenhow C., 2019, Policy Insights Behav Brain Sci, V6, P178, DOI [10.1177/2372732219865290, DOI 10.1177/2372732219865290]
Greenhow C, 2020, INFORM LEARN SCI, V121, P513, DOI 10.1108/ILS-04-2020-0138
Greenhow C, 2016, LEARN MEDIA TECHNOL, V41, P6, DOI 10.1080/17439884.2015.1064954
Guraya SY, 2016, N AM J MED SCI, V8, P268, DOI 10.4103/1947-2714.187131
Hallinger P, 2014, EDUC ADMIN QUART, V50, P539, DOI 10.1177/0013161X13506594
Hashim AK, 2019, TEACH COLL REC, V121
Hashim Kamarul Faizal, 2018, International Journal of Interactive Mobile Technologies, V12, P4, DOI 10.3991/ijim.v12i7.9634
Hermans R, 2008, COMPUT EDUC, V51, P1499, DOI 10.1016/j.compedu.2008.02.001
Pham HH, 2021, SCIENTOMETRICS, V126, P5201, DOI 10.1007/s11192-021-03965-4
Huang CJ, 2018, COMPUT EDUC, V119, P76, DOI 10.1016/j.compedu.2017.12.010
Javaeed A, 2020, ADV MED EDUC PRACT, V11, P53, DOI 10.2147/AMEP.S209123
Judge M, 2021, IRISH EDUC STUD, V40, P419, DOI 10.1080/03323315.2021.1917443
Junco R, 2013, BRIT J EDUC TECHNOL, V44, P273, DOI 10.1111/j.1467-8535.2012.01284.x
Jung I., 2019, Open and distance education theory revisited: Implications for the Digital Era, DOI [10.1007/978-981-13-7740-2, DOI 10.1007/978-981-13-7740-2]
Kamarainen AM, 2013, COMPUT EDUC, V68, P545, DOI 10.1016/j.compedu.2013.02.018
Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003
Kellogg S, 2014, INT REV RES OPEN DIS, V15, P263
Kinchin IM, 2014, J CONTIN HIGH EDUC, V62, P39, DOI 10.1080/07377363.2014.872011
Kutlu B, 2018, 5 INT MANAGEMENT INF, P80
Lawton D, 2012, J ENG EDUC, V101, P244, DOI 10.1002/j.2168-9830.2012.tb00050.x
Thu HLT, 2021, EDUC SCI, V11, DOI 10.3390/educsci11070353
Liu IF, 2010, COMPUT EDUC, V54, P600, DOI 10.1016/j.compedu.2009.09.009
Llorens Francesc., 2011, Revista de Universidad y Sociedad del Conocimiento(RUSC), V8, P31
Lopes RM, 2017, SCIENTOMETRICS, V111, P1591, DOI 10.1007/s11192-017-2294-1
Manca S, 2013, J COMPUT ASSIST LEAR, V29, P487, DOI 10.1111/jcal.12007
Manca S, 2020, INTERNET HIGH EDUC, V44, DOI 10.1016/j.iheduc.2019.100707
Mitchell K, 2012, CALICO J, V29, P471, DOI 10.11139/cj.29.3.471-493
Nelimarkka M, 2021, COMPUT EDUC, V173, DOI 10.1016/j.compedu.2021.104269
Nochumson TC, 2020, PROF DEV EDUC, V46, P306, DOI 10.1080/19415257.2019.1585382
Oortwijn M, 2008, INSTR SCI, V36, P251, DOI 10.1007/s11251-007-9032-7
PRITCHARD A, 1969, J DOC, V25, P348
Racionero S, 2010, REV PSICODIDACT, V15, P143
Restad F, 2021, J CURRICULUM STUD, V53, P435, DOI 10.1080/00220272.2020.1716391
Rosell-Aguilar F., 2018, Innovative Language Teaching and Learning at University: Integrating Informal Learning into Formal Language Education, P99, DOI [DOI 10.14705/RPNET.2018.22.780, 10.14705/rpnet.2018.22]
So HJ, 2010, COMPUT EDUC, V54, P479, DOI 10.1016/j.compedu.2009.08.031
Sohoni T, 2019, J CRIM JUSTICE EDUC, V30, P389, DOI 10.1080/10511253.2018.1538420
Song D, 2016, INTERACT LEARN ENVIR, V24, P423, DOI 10.1080/10494820.2013.862553
Steinkuehler C, 2008, J SCI EDUC TECHNOL, V17, P530, DOI 10.1007/s10956-008-9120-8
Su JH, 2022, EDUC SCI, V12, DOI 10.3390/educsci12050331
Phan TTT, 2022, J UNIV TEACH LEARN P, V19
Tian WW, 2021, SYSTEM, V103, DOI 10.1016/j.system.2021.102682
Torphy K, 2020, AM J EDUC, V127, P49, DOI 10.1086/711012
Torrington J, 2021, J COMPUT ASSIST LEAR, V37, P1107, DOI 10.1111/jcal.12549
van den Bergh L, 2013, EDUC STUD-UK, V39, P418, DOI 10.1080/03055698.2013.767188
Wan H, 2018, P INT COMP SOFTW APP, P1006, DOI 10.1109/COMPSAC.2018.00177
Wang SG, 2012, CALICO J, V29, P412, DOI 10.11139/cj.29.3.412-430
Weng WY, 2017, INT J SCI EDUC, V39, P877, DOI 10.1080/09500693.2017.1310409
West R., 2018, Foundations of learning and instructional design technology: The past, present, andfuture of learning and instructional design technology
Yang S, 2021, COMPUT EDUC, V163, DOI 10.1016/j.compedu.2020.104116
Yang WT, 2015, INT J SCI EDUC, V37, P1564, DOI 10.1080/09500693.2015.1045957
Yildirim Z, 2014, INTERACT LEARN ENVIR, V22, P721, DOI 10.1080/10494820.2012.745423
Ying YH., 2021, Creative Education, V12, P1503
NR 92
TC 1
Z9 1
U1 0
U2 0
PU PHCOG NET
PI KARNATAKA
PA 17, 2ND FLR, BUDDHA VIHAR RD, NEAR SPORTS ZONE, COX TOWN, BENGALURU,
KARNATAKA, 560005, INDIA
SN 2321-6654
EI 2320-0057
J9 J SCIENTOMETR RES
JI J. Scientometr. Res.
PD SEP-DEC
PY 2023
VL 12
IS 3
BP 680
EP 690
DI 10.5530/jscires.12.3.066
PG 11
WC Information Science & Library Science
WE Emerging Sources Citation Index (ESCI)
SC Information Science & Library Science
GA JE8W2
UT WOS:001171589100017
OA hybrid
DA 2024-09-05
ER
PT J
AU Barrot, JS
AF Barrot, Jessie S.
TI Scientific Mapping of Social Media in Education: A Decade of Exponential
Growth
SO JOURNAL OF EDUCATIONAL COMPUTING RESEARCH
LA English
DT Article
DE bibliometric analysis; informal learning; media in education; online
learning; social media; technology-enhanced learning
ID RESEARCH PERFORMANCE; H-INDEX; FACEBOOK; SCHOOL; WEB; LEADERSHIP;
INDICATORS; UNIVERSITY; STUDENTS
AB Given the increasing number of research on social media for educational purposes, few studies have examined the scientific literature in this field of interest. However, reviews that comprehensively mapped this research landscape in a broader view remain very limited. It is on this premise that the current study identifies the growth trajectory, distribution, and topical foci of scientific literature on social media in education published between 2007 and 2019. A total of 2,215 documents from Scopus-indexed journals were analysed. Using a bibliometric approach, the findings show a steady growth of scientific output and citations and the expansion of the topical foci in the past decade. Of the 15 examined social media platforms, Facebook, Twitter, and YouTube have attracted the greatest attention, while the rest remained underexplored or unexplored. The popularity of certain platforms among scholars was attributed to three factors: the number of active users, the pedagogical affordances, and the geographical scope. Implications for future studies are discussed.
C1 [Barrot, Jessie S.] Natl Univ, Coll Educ Arts & Sci, Manila, Philippines.
C3 National University Philippines
RP Barrot, JS (corresponding author), Natl Univ, 551 MF Jhocson St, Manila 1008, Philippines.
EM jessiebarrot@yahoo.com
RI Barrot, Jessie/AAE-8566-2020
OI Barrot, Jessie/0000-0001-8517-4058
CR Abramo G, 2014, SCIENTOMETRICS, V101, P1129, DOI 10.1007/s11192-014-1269-8
[Anonymous], 2020, Most popular social networks worldwide as of April 2020, ranked by number of active users
[Anonymous], 2010, 24187 EUR EN EUR COM
[Anonymous], 2019, Society at a Glance 2019: OECD Social Indicators, DOI DOI 10.1787/SOC_GLANCE-2019-EN
Appel M, 2020, REV GEN PSYCHOL, V24, P60, DOI 10.1177/1089268019880891
Azer SA, 2015, ACAD MED, V90, P1147, DOI 10.1097/ACM.0000000000000780
Baas J, 2020, QUANT SCI STUD, V1, P377, DOI 10.1162/qss_a_00019
Barrot JS, 2021, LANG CULT CURRIC, V34, P95, DOI 10.1080/07908318.2020.1745822
Barrot JS, 2018, J COMPUT ASSIST LEAR, V34, P863, DOI 10.1111/jcal.12295
Barrot JS, 2017, SCIENTOMETRICS, V110, P1, DOI 10.1007/s11192-016-2163-3
Barrot JS, 2016, LANG CULT CURRIC, V29, P286, DOI 10.1080/07908318.2016.1143481
Bodily R, 2019, BRIT J EDUC TECHNOL, V50, P64, DOI 10.1111/bjet.12712
Bruguera C, 2019, RES LEARN TECHNOL, V27, DOI 10.25304/rlt.v27.2286
Chu S.K. W., 2020, SOCIAL MEDIA TOOLS E, DOI DOI 10.1007/978-981-15-1560-6
Chugh R, 2018, EDUC INF TECHNOL, V23, P605, DOI 10.1007/s10639-017-9621-2
Coleman E, 2019, BMC MED EDUC, V19, DOI 10.1186/s12909-019-1706-8
Culpan Tim, 2018, BLOOMBERG
Diem A, 2013, RES HIGH EDUC, V54, P86, DOI 10.1007/s11162-012-9264-5
Ding JD, 2020, SCIENTOMETRICS, V122, P1303, DOI 10.1007/s11192-020-03364-1
Feng SH, 2019, COMPUT EDUC, V134, P41, DOI 10.1016/j.compedu.2019.02.005
Gleason B, 2018, EDUC TECHNOL SOC, V21, P200
Greenhow C, 2019, BRIT J EDUC TECHNOL, V50, P987, DOI 10.1111/bjet.12772
Greenhow C, 2016, LEARN MEDIA TECHNOL, V41, P6, DOI 10.1080/17439884.2015.1064954
Gumus S, 2018, EDUC MANAG ADM LEAD, V46, P25, DOI 10.1177/1741143216659296
Hallinger P, 2020, EDUC MANAG ADM LEAD, V48, P595, DOI 10.1177/1741143219836684
Hallinger P, 2019, REV EDUC RES, V89, P335, DOI 10.3102/0034654319830380
Hallinger P, 2014, EDUC ADMIN QUART, V50, P539, DOI 10.1177/0013161X13506594
Hartog J, 2000, ECON EDUC REV, V19, P131, DOI 10.1016/S0272-7757(99)00050-3
Heradio R, 2016, COMPUT EDUC, V98, P14, DOI 10.1016/j.compedu.2016.03.010
Hew KF, 2013, EDUC RES REV-NETH, V9, P47, DOI 10.1016/j.edurev.2012.08.001
Hirsch JE, 2005, P NATL ACAD SCI USA, V102, P16569, DOI 10.1073/pnas.0507655102
Hopkins D, 2014, SCH EFF SCH IMPROV, V25, P257, DOI 10.1080/09243453.2014.885452
Jacsó P, 2009, ONLINE INFORM REV, V33, P831, DOI 10.1108/14684520910985756
Jensen P, 2009, SCIENTOMETRICS, V78, P467, DOI 10.1007/s11192-007-2014-3
Jeynes WH, 2007, URBAN EDUC, V42, P82, DOI 10.1177/0042085906293818
Junco R, 2011, J COMPUT ASSIST LEAR, V27, P119, DOI 10.1111/j.1365-2729.2010.00387.x
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1371/journal.pmed.1000097, 10.1136/bmj.i4086, 10.1016/j.ijsu.2010.07.299]
Lopes RM, 2017, SCIENTOMETRICS, V111, P1591, DOI 10.1007/s11192-017-2294-1
Madge C, 2009, LEARN MEDIA TECHNOL, V34, P141, DOI 10.1080/17439880902923606
Maia SC, 2019, SCIENTOMETRICS, V120, P929, DOI 10.1007/s11192-019-03165-1
Malik A, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0166-x
Manca S, 2013, J COMPUT ASSIST LEAR, V29, P487, DOI 10.1111/jcal.12007
Manca S, 2020, INTERNET HIGH EDUC, V44, DOI 10.1016/j.iheduc.2019.100707
Manca S, 2016, COMPUT EDUC, V95, P216, DOI 10.1016/j.compedu.2016.01.012
Mao J, 2014, COMPUT HUM BEHAV, V33, P213, DOI 10.1016/j.chb.2014.01.002
Marker C, 2018, EDUC PSYCHOL REV, V30, P651, DOI 10.1007/s10648-017-9430-6
Menzies R, 2017, EDUC INF TECHNOL, V22, P39, DOI 10.1007/s10639-015-9436-y
Mills N, 2011, CALICO J, V28, P345, DOI 10.11139/cj.28.2.345-368
Moorthy K, 2019, COMPUT EDUC, V130, P94, DOI 10.1016/j.compedu.2018.12.002
Murphy KR, 2017, HUM RESOUR MANAGE R, V27, P193, DOI 10.1016/j.hrmr.2015.06.001
Nagle J, 2018, TEACH TEACH EDUC, V76, P86, DOI 10.1016/j.tate.2018.08.014
Niu L, 2019, J EDUC COMPUT RES, V56, P1384, DOI 10.1177/0735633117745161
Reinhardt J, 2019, LANG TEACHING, V52, P1, DOI 10.1017/S0261444818000356
Sabharwal M, 2013, J COMP POLICY ANAL, V15, P141, DOI 10.1080/13876988.2013.785149
Sarapin SH, 2015, INTERNET HIGH EDUC, V27, P14, DOI 10.1016/j.iheduc.2015.04.001
Shen CW, 2020, COMPUT HUM BEHAV, V104, DOI 10.1016/j.chb.2019.106177
Sheu CF, 2001, BEHAV RES METH INS C, V33, P102, DOI 10.3758/BF03195354
Shih RC, 2011, AUSTRALAS J EDUC TEC, V27, P829
Siemens G, 2017, FDN LEARNING INSTRUC
Statista, 2020, Number of Global Social Network Users 2017-2025
Sterling M, 2017, ACAD MED, V92, P1043, DOI 10.1097/ACM.0000000000001617
Tan E, 2013, LEARN MEDIA TECHNOL, V38, P463, DOI 10.1080/17439884.2013.783594
Thomas L, 2020, COMPUT EDUC, V146, DOI 10.1016/j.compedu.2019.103754
Tijssen RJW, 2009, RES EVALUAT, V18, P13, DOI 10.3152/095820209X393145
van Raan A.F. J., 2003, Technology Assessment-Theory and Practice, V1, P20, DOI DOI 10.14512/TATUP.12.1.20
Veletsianos G, 2019, BRIT J EDUC TECHNOL, V50, P1713, DOI 10.1111/bjet.12788
Wang YY, 2018, EDUC ADMIN QUART, V54, P327, DOI 10.1177/0013161X18761342
Whelan E, 2020, COMPUT EDUC, V143, DOI 10.1016/j.compedu.2019.103692
Wiafe I, 2020, J COMPUT ASSIST LEAR, V36, P636, DOI 10.1111/jcal.12433
Willems J, 2018, AUSTRALAS J EDUC TEC, V34, P135, DOI 10.14742/ajet.3843
Williams B, 2018, EUR J ENG EDUC, V43, P190, DOI 10.1080/03043797.2016.1153043
Yang Y, 2014, LEARN MEDIA TECHNOL, V39, P267, DOI 10.1080/17439884.2013.839564
NR 72
TC 36
Z9 37
U1 3
U2 38
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0735-6331
EI 1541-4140
J9 J EDUC COMPUT RES
JI J. Educ. Comput. Res.
PD JUL
PY 2021
VL 59
IS 4
BP 645
EP 668
AR 0735633120972010
DI 10.1177/0735633120972010
EA NOV 2020
PG 24
WC Education & Educational Research
WE Social Science Citation Index (SSCI)
SC Education & Educational Research
GA RZ5LI
UT WOS:000600152400001
DA 2024-09-05
ER
PT J
AU Coavoux, S
Boutet, M
Zabban, V
AF Coavoux, Samuel
Boutet, Manuel
Zabban, Vinciane
TI What We Know About Games: A Scientometric Approach to Game Studies in
the 2000s
SO GAMES AND CULTURE
LA English
DT Article
DE topic modeling; lexicometric analysis; multidisciplinarity; sociology of
science; epistemic culture; game studies; path dependence; trading zone;
World of Warcraft (WoW); interdisciplinarity
AB This article proposes a reflexive approach on the scientific production in the field of game studies in recent years. It relies on a sociology of science perspective to answer the question: What are game studies really about? Relying on scientometric and lexicometric tools, we analyze the metadata and content of a corpus of articles from the journals Games Studies and Games & Culture and of Digital Games Research Association (DiGRA) proceedings. We show that published researches have been studying only a limited set of game genres and that they especially focus on online games. We then expose the different ways game studies are talking about games through a topic model analysis of our corpus. We test two hypotheses to explain the concentration of research on singular objects: path dependence and trading zone. We describe integrative properties of the focus on common objects but stress also the scientific limits met by this tendency.
C1 [Coavoux, Samuel] Ecole Normale Super Lyon, Ctr Max Weber, Lyon, France.
[Coavoux, Samuel] Ecole Normale Super, Dept Sci Sociales, Paris, France.
[Boutet, Manuel] Univ Cote dAzur, GREDEG Lab, Nice, France.
[Zabban, Vinciane] Paris 13 Univ, EXPERICE Lab, Villetaneuse, France.
C3 Centre National de la Recherche Scientifique (CNRS); Ecole Normale
Superieure de Lyon (ENS de LYON); Universite Jean Monnet; Universite
Lyon 2; Universite PSL; Ecole Normale Superieure (ENS); Universite Cote
d'Azur
RP Boutet, M (corresponding author), Maison Sci Homme & Soc Sud Est, 24 Ave Diables Bleus,Pole Univ St Jean dAngely 3, F-06357 Nice, France.
EM manuel.boutet@unice.fr
RI Coavoux, Samuel/AAV-5125-2021
OI Coavoux, Samuel/0000-0001-7991-3555
CR Aarseth E., 2001, GAME STUDIES, DOI [10.1145/3402942.3402978, DOI 10.1145/3402942.3402978]
Abend G., 2013, AM J SOCIOL, V119, P1, DOI DOI 10.1086/673128
[Anonymous], LEVEL UP
[Anonymous], 2009, TEXT MINING CLASSIFI, DOI [DOI 10.1145/1141844.1143859, DOI 10.1201/9781420059458.CH4]
Apperley TH, 2006, SIMULAT GAMING, V37, P6, DOI 10.1177/1046878105282278
Arsenault D., 2009, Journal for Computer Game Culture, V3, P149
Becker H. S., 2008, Art worlds
Bourdieu Pierre, 2001, SCI SCI REFLEXIVITE
Boutet M., 2013, 5 GLOB C VID CULT FU
Clearwater David., 2011, Loading, V5, P29
Coavoux S., 2016, SOCIOLOGIE, V6, P133
CRANE D, 1967, AM SOCIOL, V2, P195
Galison Peter., 1997, IMAGE LOGIC MAT CULT
Gorman M., 2010, TRADING ZONES INTERA
Knorr-Cetina K., 1999, Epistemic Cultures. How the Sciences Make Knowledge
Lowood H., 2006, Games and Culture, V1, P78
Mayra F., 2015, GAM STUD FRANC C SUP
Melcer E., 2015, The Proceedings of the 10th International Conference on the Foundations of Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA
Ollion E., 2011, SOCIOLOGIE, V2, P277, DOI [10.3917/socio.023.0277, DOI 10.3917/SOCIO.023.0277]
Pierson P, 2000, AM POLIT SCI REV, V94, P251, DOI 10.2307/2586011
Quandt T, 2015, J COMMUN, V65, P975, DOI 10.1111/jcom.12182
Rufat S., 2015, ESPACE GEOGRAPHIQUE, V43, P308
Shaw A, 2010, GAMES CULT, V5, P403, DOI 10.1177/1555412009360414
Simon B., 2013, The Journal of the Canadian Game Studies Association, V7, P1
Williams D, 2005, SIMULAT GAMING, V36, P447, DOI 10.1177/1046878105282275
NR 25
TC 13
Z9 14
U1 1
U2 30
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1555-4120
EI 1555-4139
J9 GAMES CULT
JI Games Cult.
PD SEP
PY 2017
VL 12
IS 6
SI SI
BP 563
EP 584
DI 10.1177/1555412016676661
PG 22
WC Cultural Studies; Communication
WE Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI)
SC Cultural Studies; Communication
GA FD8YG
UT WOS:000407809400005
OA Green Submitted
DA 2024-09-05
ER
PT C
AU Bunga, M
Joshi, S
AF Bunga, Manisha
Joshi, Sujata
GP IEEE
TI A Bibliometric Analysis of Blockchain and its applications in IOT and ML
for Improved Decision Making
SO 2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS
(DASA)
LA English
DT Proceedings Paper
CT International Conference on Decision Aid Sciences and Applications
(DASA)
CY MAR 23-25, 2022
CL Chiangrai, THAILAND
DE Blockchain; Banking; Decision Making; Security; Supplychain; Internet of
Things; Machine Learning
ID INTERNET; THINGS; DIRECTIONS; CHALLENGES
AB The fundamental goal of this research is to examine the evolution of Blockchain technology, particularly in the areas of IoT and machine learning. Decision-making has become more complex in the modern era as there are more options to pick from. This research explains how blockchain is used in the decision-making process. Blockchain stores the data where it is highly impossible to hack or edit this data. The research methodology used is Bibliometric Analysis. Bibliometric analysis is the analysis of books, articles, and other publications using statistical methods. There were a total of 18,978 publications available in Scopus from 2012 to 2021 on Blockchain. There were a total of 18,994 publications on Blockchain overall. Country-wise, year-wise, topic-wise, journal-wise, institution-wise and research field-wise analysis is done in this study. By the obtained data, the performance of Blockchain will be analysed. According to the study, Blockchain has a wide range of applications in IoT and ML, all of which improve decision-making. This analysis provides valuable insights and adds benefit for researchers to understand the overall development of Blockchain.
C1 [Bunga, Manisha; Joshi, Sujata] Symbiosis Inst Digital & Telecom Management, Pune, Maharashtra, India.
C3 Symbiosis International University; Symbiosis Institute of Digital &
Telecom Management (SIDTM)
RP Bunga, M (corresponding author), Symbiosis Inst Digital & Telecom Management, Pune, Maharashtra, India.
EM bunga.manisha2022@sidtm.edu.in; sjoshi@sidtm.edu.in
CR Alamri M, 2019, INT J COMPUT SCI NET, V19, P244
Ali MS, 2019, IEEE COMMUN SURV TUT, V21, P1676, DOI 10.1109/COMST.2018.2886932
[Anonymous], 2020, SMART CITY USE CASES
Bandara E, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102572
Chen F, 2021, CAN J STAT, V49, P1364, DOI 10.1002/cjs.11623
Du Y, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13020048
Duan Ruijun, 2021, MATH PROBL ENG, V2021, P1
Dwivedi SK, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/7142048
Hussain HA, 2021, INT J ADV COMPUT SC, V12, P239
Karafiloski E, 2017, 17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, P763, DOI 10.1109/EUROCON.2017.8011213
Li XL, 2020, IEEE WIREL COMMUN, V27, P116, DOI 10.1109/MWC.001.2000076
Liu MT, 2019, IEEE T IND INFORM, V15, P3559, DOI 10.1109/TII.2019.2897805
Mahdi HM, 2019, STUDIES IN BIG DATA, V60
Navid K., 2021, ELECTRONICS, V10, P2079
Pajooh HH, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00505-y
Pal O, 2021, ICT EXPRESS, V7, P76, DOI 10.1016/j.icte.2019.08.002
Pandit A., 2021, INT J ENG TECHNOL MA, V8, P20
Pascal M., 2021, INF SYST E-BUS MANAG, V19, P13
Reyna A, 2018, FUTURE GENER COMP SY, V88, P173, DOI 10.1016/j.future.2018.05.046
Salah K, 2019, IEEE ACCESS, V7, P10127, DOI 10.1109/ACCESS.2018.2890507
Singh SK, 2020, FUTURE GENER COMP SY, V110, P721, DOI 10.1016/j.future.2019.09.002
Smriti S D., 2019, INT J INNOVATIVE TEC, V9
Sujatha K., 2020, INT J RECENT TECHNOL, V9
Tanwar S, 2020, IEEE ACCESS, V8, P474, DOI 10.1109/ACCESS.2019.2961372
Tsai CW, 2021, ICT EXPRESS, V7, P300, DOI 10.1016/j.icte.2021.08.014
Uddin MA, 2021, BLOCKCHAIN-RES APPL, V2, DOI 10.1016/j.bcra.2021.100006
Ullah N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041801
Waheed N, 2021, ACM COMPUT SURV, V53, DOI 10.1145/3417987
Yu DJ, 2021, INFORMATICA-LITHUAN, V32, P397, DOI 10.15388/20-INFOR437
Zyskind G, 2015, 2015 IEEE SECURITY AND PRIVACY WORKSHOPS (SPW), P180, DOI 10.1109/SPW.2015.27
NR 30
TC 1
Z9 1
U1 0
U2 11
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
BN 978-1-6654-9501-1
PY 2022
BP 416
EP 420
DI 10.1109/DASA54658.2022.9764994
PG 5
WC Computer Science, Artificial Intelligence; Operations Research &
Management Science
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Operations Research & Management Science
GA BT5YM
UT WOS:000839386600221
DA 2024-09-05
ER
PT J
AU Chen, CF
Li, Q
Deng, ZQ
Chiu, K
Wang, P
AF Chen, Chuanfu
Li, Qiao
Deng, Zhiqing
Chiu, Kuei
Wang, Ping
TI The preferences of Chinese LIS journal articles in citing works outside
the discipline
SO JOURNAL OF DOCUMENTATION
LA English
DT Article
DE Bibliometrics; Interdisciplinary studies; Machine learning; Chinese LIS;
Citation preference; Knowledge import
ID INFORMATION-SCIENCE; CITATION ANALYSIS; KNOWLEDGE DISCOVERY;
SUBJECT-MATTER; LIBRARY; INTERDISCIPLINARITY; CLASSIFICATION; SYSTEM;
COMMUNICATION; EVOLUTION
AB Purpose - The purpose of this paper is to understand how Chinese library and information science (LIS) journal articles cite works from outside the discipline (WOD) to identify the impact of knowledge import from outside the discipline on LIS development.
Design/methodology/approach - This paper explores the Chinese LIS' preferences in citing WOD by employing bibliometrics and machine learning techniques.
Findings - Chinese LIS citations to WOD account for 29.69 percent of all citations, and they rise over time. Computer science, education and communication are the most frequently cited disciplines. Under the categorization of Biglan model, Chinese LIS prefers to cite WOD from soft science, applied science or nonlife science. In terms of community affiliation, the cited authors are mostly from the academic community, but rarely from the practice community. Mass media has always been a citation source that is hard to ignore. There is a strong interest of Chinese LIS in citing emerging topics.
Practical implications - This paper can be implemented in the reformulation of Chinese LIS knowledge system, the promotion of interdisciplinary collaboration, the development of LIS library collection and faculty advancement. It may also be used as a reference to develop strategies for the global LIS.
Originality/value - This paper fills the research gap in analyzing citations to WOD from Chinese LIS articles and their impacts on LIS, and recommends that Chinese LIS should emphasize on knowledge both on technology and people as well as knowledge from the practice community, cooperate with partners from other fields, thus to produce knowledge meeting the demands from library and information practice as well as users.
C1 [Chen, Chuanfu; Li, Qiao; Deng, Zhiqing] Wuhan Univ, Sch Informat Management, Dept Lib Sci, Wuhan, Hubei, Peoples R China.
[Chiu, Kuei] Univ Calif Riverside, Univ Lib, Riverside, CA 92521 USA.
[Wang, Ping] Wuhan Univ, Sch Informat Management, Dept Arch & Govt Informat Management, Wuhan, Hubei, Peoples R China.
C3 Wuhan University; University of California System; University of
California Riverside; Wuhan University
RP Chen, CF (corresponding author), Wuhan Univ, Sch Informat Management, Dept Lib Sci, Wuhan, Hubei, Peoples R China.
EM cfchen@whu.edu.cn
RI lan, xueyao/JZD-4201-2024
OI chen, chuan fu/0000-0003-1163-7691; Li, Qiao/0000-0002-9265-8808
FU National Natural Science Foundation of China [91546124]
FX The authors would like to acknowledge reviewers and all participants for
their contribution to the improvement of this study. This study is
supported by a grant from the National Natural Science Foundation of
China under the agreement 91546124.
CR Abramo G, 2012, J AM SOC INF SCI TEC, V63, P2206, DOI 10.1002/asi.22647
[Anonymous], 2013, THESIS
[Anonymous], B AM SOC INFORM SCI
Baeza-Yates Ricardo, 1999, MODERN INFORM RETRIE
Bauer J, 2016, J ASSOC INF SCI TECH, V67, P3095, DOI 10.1002/asi.23568
BAYER AE, 1987, RES HIGH EDUC, V26, P212, DOI 10.1007/BF00992030
Bidault F, 2014, RES POLICY, V43, P1002, DOI 10.1016/j.respol.2014.01.008
BIGLAN A, 1973, J APPL PSYCHOL, V57, P204, DOI 10.1037/h0034699
BIGLAN A, 1973, J APPL PSYCHOL, V57, P195, DOI 10.1037/h0034701
bin Othman MF, 2007, IFMBE PROC, V15, P520
Bornmann L, 2008, J DOC, V64, P45, DOI 10.1108/00220410810844150
Bornmann L, 2017, J ASSOC INF SCI TECH, V68, P1036, DOI 10.1002/asi.23728
Buriak JM, 2015, CHEM MATER, V27, P1147, DOI 10.1021/acs.chemmater.5b00463
Buttlar L, 1999, LIBR INFORM SCI RES, V21, P227, DOI 10.1016/S0740-8188(99)00005-5
Carson S., 2012, Writing for Psychology: A Guide for Psychology Concentrators
Chang YW, 2012, J AM SOC INF SCI TEC, V63, P22, DOI 10.1002/asi.21649
Chen C., 2010, J LIB SCI CHINA, V6, P20
Chen MS, 1996, IEEE T KNOWL DATA EN, V8, P866, DOI 10.1109/69.553155
Chen W., 2012, INFORM RES, V179, P1
Cheng L.M., 1994, J ED MEDIA LIB SCI, V32, P94
COLE JR, 1972, SCIENCE, V178, P368, DOI 10.1126/science.178.4059.368
Cronin B, 2008, J AM SOC INF SCI TEC, V59, P551, DOI 10.1002/asi.20764
Cummings JN, 2005, SOC STUD SCI, V35, P703, DOI 10.1177/0306312705055535
Dai Y.M., 2013, INFORM SCI, V31, P106
Del Favero M, 2006, RES HIGH EDUC, V47, P281, DOI 10.1007/s11162-005-9389-x
Gibbons M., 1997, The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies
Glymour C, 1996, COMMUN ACM, V39, P35, DOI 10.1145/240455.240466
Goldstone RL, 2006, COGNITIVE SCI, V30, P983, DOI 10.1207/s15516709cog0000_96
Guruler H, 2010, COMPUT EDUC, V55, P247, DOI 10.1016/j.compedu.2010.01.010
Hammarfelt B, 2011, SCIENTOMETRICS, V86, P705, DOI 10.1007/s11192-010-0314-5
Herther NK, 2015, DISABIL SOC, V30, P130, DOI 10.1080/09687599.2014.993061
Ho TB, 2003, APPL INTELL, V19, P125, DOI 10.1023/A:1023876925609
Hu CP, 2011, SCIENTOMETRICS, V86, P657, DOI 10.1007/s11192-010-0313-6
Huang M.H., 2007, J LIB INFORM STUDIES, V5, P1
Jiang J., 1995, J LIB SCI CHINA, V21, P18
Kamber M., 2011, Pei. data mining concepts and techniques
Karki R, 1996, J INFORM SCI, V22, P323, DOI 10.1177/016555159602200501
Kodama H, 2013, RES EVALUAT, V22, P93, DOI 10.1093/reseval/rvs040
Lam P, 2014, COMPUT EDUC, V73, P111, DOI 10.1016/j.compedu.2013.12.015
Larivière V, 2012, J AM SOC INF SCI TEC, V63, P997, DOI 10.1002/asi.22645
Larsen PO, 2010, SCIENTOMETRICS, V84, P575, DOI 10.1007/s11192-010-0202-z
Leahey E., 2016, ADM SCI Q, V62, P105
Levitt J., 2008, SCIENTOMETRICS, V78, P45
Li J.X., 1935, BOONE LIB SCH Q, V7, P263
Linderman K, 2010, J OPER MANAG, V28, P357, DOI 10.1016/j.jom.2009.11.012
Liu C, 2011, SCIENTOMETRICS, V89, P89, DOI 10.1007/s11192-011-0450-6
Liu J., 2004, An Introduction to Social Network Analysis
Loh S, 2003, APPL INTELL, V18, P357, DOI 10.1023/A:1023258306854
Ma YC, 2014, SYST RES BEHAV SCI, V31, P115, DOI 10.1002/sres.2163
Maia LC, 2010, PERSPECT CIENC INF, V15, P154, DOI 10.1590/S1413-99362010000100009
Meyer T, 1996, COLL RES LIBR, V57, P23, DOI 10.5860/crl_57_01_23
Milojevic S, 2014, P NATL ACAD SCI USA, V111, P3984, DOI 10.1073/pnas.1309723111
Mingers J, 2010, SCIENTOMETRICS, V85, P613, DOI 10.1007/s11192-010-0270-0
Nonaka I., 1995, The knowledge-creating company: How Japanese companies create the dynamics of innovation
Pettigrew KE, 2001, J AM SOC INF SCI TEC, V52, P62, DOI 10.1002/1532-2890(2000)52:1<62::AID-ASI1061>3.0.CO;2-J
Pierce SJ, 1999, J AM SOC INFORM SCI, V50, P271, DOI 10.1002/(SICI)1097-4571(1999)50:3<271::AID-ASI10>3.3.CO;2-D
Pike GR, 2001, RES HIGH EDUC, V42, P429, DOI 10.1023/A:1011054825704
PORTER AL, 1985, SCIENTOMETRICS, V8, P161, DOI 10.1007/BF02016934
Porter Mu., 1985, Competitive Advantage: Creating and Sustaining Superior Performance
Prebor G, 2010, J LIBR INF SCI, V42, P256, DOI 10.1177/0961000610380820
Price D.De Solla., 1970, Communication among Scientists and Engineers, Heath, P3
Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y
Rinia EJ, 2002, SCIENTOMETRICS, V54, P347, DOI 10.1023/A:1016078331752
ROTHMAN H, 1971, J DOC, V27, P287, DOI 10.1108/eb026523
Saracevic T, 1999, J AM SOC INFORM SCI, V50, P1051, DOI 10.1002/(SICI)1097-4571(1999)50:12<1051::AID-ASI2>3.0.CO;2-Z
Schramm W.L., 1982, Men, women, messages and media
Sima Q., 1986, HISTORICAL RECORDS
SO CYK, 1988, HUM COMMUN RES, V15, P236, DOI 10.1111/j.1468-2958.1988.tb00183.x
Stopar K, 2016, SCIENTOMETRICS, V106, P563, DOI 10.1007/s11192-015-1797-x
Su X.F., 2010, LIB INFORM SERVICE, V54, P51
Sun DL, 2009, 2009 INTERNATIONAL FORUM ON COMPUTER SCIENCE-TECHNOLOGY AND APPLICATIONS, VOL 2, PROCEEDINGS, P388, DOI 10.1109/IFCSTA.2009.217
Sun YT, 2016, SCIENTOMETRICS, V109, P1965, DOI 10.1007/s11192-016-2140-x
Szostak R, 2008, J DOC, V64, P319, DOI 10.1108/00220410810867551
Tang R, 2004, P ASIST ANNU, V41, P54, DOI 10.1002/meet.1450410107
Tomcho TJ, 2015, TEACH PSYCHOL, V42, P5, DOI 10.1177/0098628314562661
Uramoto N, 2004, IBM SYST J, V43, P516, DOI 10.1147/sj.433.0516
URATA H, 1990, SCIENTOMETRICS, V18, P309, DOI 10.1007/BF02017767
Valsamidis S, 2012, EDUC TECHNOL SOC, V15, P154
Vivian J., 1998, The Media of Mass Communication, V5th
Whitmire E, 2002, J AM SOC INF SCI TEC, V53, P631, DOI 10.1002/asi.10123
Wu J.P., 2002, EC INFORM
WU YM, 1994, EDUC INFORM, V12, P247
Xu HY, 2016, SCIENTOMETRICS, V106, P583, DOI 10.1007/s11192-015-1792-2
Xu Q., 2016, DOCUMENTATION INFORM, P96
Yan E, 2013, J INFORMETR, V7, P249, DOI 10.1016/j.joi.2012.11.008
Yegros-Yegros A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135095
Yong R., 1965, GEN CATALOGUE 4 BRAN
Zheng Chengsi., 1997, INTELLECTUAL PROPERT
NR 88
TC 11
Z9 12
U1 4
U2 100
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 0022-0418
EI 1758-7379
J9 J DOC
JI J. Doc.
PY 2018
VL 74
IS 1
BP 99
EP 118
DI 10.1108/JD-04-2017-0057
PG 20
WC Computer Science, Information Systems; Information Science & Library
Science
WE Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA FR6QP
UT WOS:000419191300006
DA 2024-09-05
ER
PT J
AU Klarin, A
Inkizhinov, B
Nazarov, D
Gorenskaia, E
AF Klarin, Anton
Inkizhinov, Boris
Nazarov, Dashi
Gorenskaia, Elena
TI International business education: What we know and what we have yet to
develop
SO INTERNATIONAL BUSINESS REVIEW
LA English
DT Article
DE International business education; Curriculum; Systems research;
Systematic review; Scientometrics; Bibliometric mapping; COVID-19;
Business schools; Language; Online learning
ID CORPORATE SOCIAL-RESPONSIBILITY; ENTREPRENEURSHIP EDUCATION; ACADEMIC
LIFE; MANAGEMENT; STUDENTS; MBA; KNOWLEDGE; LANGUAGE; PEDAGOGY; CULTURE
AB International business education (IBE) scholarship is extensive and is continuously growing. Nevertheless, to date there is no systems perspective overview of the literature dedicated to this topic. Using latest advancements in scientometric analysis, this study structures and visualizes the entire IBE scholarship, which allows to identify gaps in research and propose a number of future research directions. Data extracted from 894 peer-reviewed documents made available through the Scopus database allows to map the scholarship across five identified research directions in IBE - IB, political economy environment, and education; student learning and experience; the lingua franca and communication; interrelationship of IBE and the ecosystem; and business school curricula and internationalization. The scholarship was also compared to the Academy of Management Learning and Education and to the Journal of International Business Studies together with the Journal of World Business journal scholarships to recommend further prospective directions for the future development of IBE.
C1 [Klarin, Anton] Edith Cowan Univ, Sch Business & Law, 270 Joondalup Dr, Joondalup, WA 6027, Australia.
[Inkizhinov, Boris] Univ Surrey, Guildford GU2 7XH, Surrey, England.
[Nazarov, Dashi] Queen Mary Univ, London, England.
[Gorenskaia, Elena] Russian Acad Sci, Siberian Branch, Baikal Inst Nat Management, Ulan Ude 670047, Russia.
C3 Edith Cowan University; University of Surrey; University of London;
Queen Mary University London; Russian Academy of Sciences; Baikal
Institute of Nature Management SB RAS
RP Klarin, A (corresponding author), Edith Cowan Univ, Sch Business & Law, 270 Joondalup Dr, Joondalup, WA 6027, Australia.
EM a.klarin@ecu.edu.au
RI Klarin, Anton/AAB-3031-2019; Klarin, Anton/IQS-6054-2023
OI Klarin, Anton/0000-0002-5597-4027; Klarin, Anton/0000-0002-5597-4027
CR Adler NJ, 2009, ACAD MANAG LEARN EDU, V8, P72, DOI 10.5465/AMLE.2009.37012181
Aggarwal R, 2020, J TEACH INT BUS, V31, P1, DOI 10.1080/08975930.2020.1738755
Aggarwal R, 2018, J TEACH INT BUS, V29, P267, DOI 10.1080/08975930.2018.1560676
Akdeniz MB, 2019, J TEACH INT BUS, V30, P96, DOI 10.1080/08975930.2019.1668333
Gonzalez-Perez MA, 2013, ADV SUSTAIN ENV JUST, V11, P1, DOI 10.1108/S2051-5030(2013)0000011006
Alon I, 2000, ONLINE INFORM REV, V24, P349, DOI 10.1108/14684520010357284
Alon I., 2003, Journal of Teaching in International Business, V14, P79, DOI DOI 10.1300/J066V14N02_06
Alon I, 2014, J TEACH INT BUS, V25, P44, DOI 10.1080/08975930.2013.847814
Alonso AD, 2015, INT J WINE BUS RES, V27, P40, DOI 10.1108/IJWBR-08-2014-0035
Anheier H., 2006, The politics of foundations: A comparative analysis
[Anonymous], 1997, J TEACH INT BUS, DOI DOI 10.1300/J066V09N01
[Anonymous], 1984, J BUS COMMUN, DOI DOI 10.1177/002194368402100404
[Anonymous], 1998, J MARKET EDUC
[Anonymous], 2005, INT BUSINESS SOC MAN
Antal AB, 2008, J MANAG EDUC, V32, P363, DOI 10.1177/1052562907308794
Arambewela R, 2009, ASIA PAC J MARKET LO, V21, P555, DOI 10.1108/13555850910997599
Ayoubi RM, 2006, INT J EDUC MANAG, V20, P380, DOI 10.1108/09513540610676449
Barczyk CC, 2012, J TEACH INT BUS, V23, P98, DOI 10.1080/08975930.2012.718703
Bartell M, 2003, HIGH EDUC, V45, P43, DOI 10.1023/A:1021225514599
Basu A., 2011, International Journal of Entrepreneurship, V15, P1
Beamish P. W., 1989, J INT BUS STUD, V25, P319
Béchard JP, 2005, ACAD MANAG LEARN EDU, V4, P22, DOI 10.5465/AMLE.2005.16132536
Becker-Ritterspach F., 2016, MICROPOLITICS MULTIN
Bedeian AG, 2010, ACAD MANAG LEARN EDU, V9, P11, DOI 10.5465/AMLE.2010.48661188
Bell J., 2004, Jourmal of International entrepreneurship; Vol, V2, P109, DOI DOI 10.1023/B:JIEN.0000026908.35126.15
Berkovich I, 2014, ACAD MANAG LEARN EDU, V13, P245, DOI 10.5465/amle.2012.0367
Blasco M, 2009, ACAD MANAG LEARN EDU, V8, P174, DOI 10.5465/AMLE.2009.41788841
Boddewyn J., 1997, International Business: An Emerging Vision, P50
Bos ND, 2006, SIMULAT GAMING, V37, P56, DOI 10.1177/1046878106286187
Brannen M.Y., 2016, Language in international business: Developing a field
Buckley PJ, 2005, J INT BUS STUD, V36, P595, DOI 10.1057/palgrave.jibs.8400170
Bush V.D., 1999, Journal of Teaching in International Business, V10, P1, DOI 10.1300/J066v10n02_01
Cairns G, 2010, FUTURES, V42, P971, DOI 10.1016/j.futures.2010.08.016
Chavan M, 2011, J TEACH INT BUS, V22, P126, DOI 10.1080/08975930.2011.615677
Cumming D, 2018, J TEACH INT BUS, V29, P181, DOI 10.1080/08975930.2018.1514817
Czinkota MR, 2005, J WORLD BUS, V40, P111, DOI 10.1016/j.jwb.2005.02.006
Czinkota MR, 1997, J INT MARKETING, V5, P73, DOI 10.1177/1069031X9700500406
Danford GL, 2006, J TEACH INT BUS, V18, P7, DOI 10.1300/J066v18n01_02
Darley WK, 2019, ACAD MANAG LEARN EDU, V18, P99, DOI 10.5465/amle.2016.0086
De Vita G, 2001, INNOV EDUC TRAIN INT, V38, P165, DOI 10.1080/14703290110035437
De Vita G., 2000, ACT LEARN HIGH EDUC, V1, P168, DOI [10.1177/1469787400001002006, DOI 10.1177/1469787400001002006]
Dean B., 2018, Social Business, V8, P387
DEANS PC, 1991, J HIGH TECHNOLOGY MA, V2, P57, DOI DOI 10.1016/1047-8310(91)90014-F
DEGEORGE RT, 1987, J BUS ETHICS, V6, P201, DOI 10.1007/BF00382865
Driver M, 2012, ACAD MANAG LEARN EDU, V11, P421, DOI 10.5465/amle.2011.0002A
DUNNING JH, 1989, J INT BUS STUD, V20, P411, DOI 10.1057/palgrave.jibs.8490371
Eden L., 2010, International Studies of Management and Organization, V40, P54, DOI DOI 10.2753/IMO0020-8825400405
Eden L, 2008, J INT BUS STUD, V39, P1, DOI 10.1057/palgrave.jibs.8400336
Edwards R, 2001, AUST J EDUC, V45, P76, DOI 10.1177/000494410104500107
Elahee MN, 2007, EUR BUS REV, V19, P142, DOI 10.1108/09555340710730100
Elenurm T, 2008, BALT J MANAG, V3, P145, DOI 10.1108/17465260810875488
Engle R. L., 2007, Corporate Social Responsibility and Environmental Management, V14, P16, DOI 10.1002/csr.114
Eraydin A, 2008, URBAN STUD, V45, P1663, DOI 10.1177/0042098008091496
Farrell C, 2005, J TEACH INT BUS, V16, P71, DOI 10.1300/J066v16n03_05
FAYERWEATHER J, 1994, J INT BUS STUD, V25, P1, DOI 10.1057/palgrave.jibs.8490192
Feldman DC, 2005, ACAD MANAG LEARN EDU, V4, P217, DOI 10.5465/AMLE.2005.17268569
Festervand T.A., 2001, Journal of Education for Business, V77, P106, DOI [https://doi.org/10.1080/08832320109599058, DOI 10.1080/08832320109599058]
Finkle TA, 2001, J BUS VENTURING, V16, P613, DOI 10.1016/S0883-9026(99)00051-8
Fletcher D., 2000, Education Training, V42, P211, DOI DOI 10.1108/00400910010373651
Fotaki M, 2015, ACAD MANAG LEARN EDU, V14, P556, DOI 10.5465/amle.2014.0182
Gannon M., 2007, Paradoxes of culture and globalization
GILLESPIE K, 1985, FOREIGN LANG ANN, V18, P47, DOI 10.1111/j.1944-9720.1985.tb01765.x
Goby VP, 2007, J BUS TECH COMMUN, V21, P425, DOI 10.1177/1050651907304029
Goodall K, 2004, J WORLD BUS, V39, P311, DOI 10.1016/j.jwb.2004.08.008
Gribble C, 2015, HIGH EDUC SKILL WORK, V5, P401, DOI 10.1108/HESWBL-04-2015-0015
Guillotin B, 2015, THUNDERBIRD INT BUS, V57, P343, DOI 10.1002/tie.21705
Haakonsson SJ, 2013, J ECON GEOGR, V13, P677, DOI 10.1093/jeg/lbs018
Halkias D., 2009, INT J BUSINESS INNOV, V3, P151, DOI DOI 10.1504/IJBIR.2009.022752
Harzing AW, 2016, SCIENTOMETRICS, V106, P787, DOI 10.1007/s11192-015-1798-9
Harzing AW, 2014, J INFORMETR, V8, P29, DOI 10.1016/j.joi.2013.10.007
Hejazi W, 2011, MULTINATL BUS REV, V19, P152, DOI 10.1108/15253831111149780
Henthrone T.L., 2001, Journal of Teaching in International Business, V12, P49, DOI DOI 10.1300/J066V12N04_04
Inglehart RonaldF., 2010, HUMAN VALUES BELIEFS
Jackson MC, 2006, SYST RES BEHAV SCI, V23, P647, DOI 10.1002/sres.799
Jain SC, 2009, J TEACH INT BUS, V20, P4, DOI 10.1080/08975930802671216
Justeson J.S., 1995, Natural Language Engineering, V1, P9, DOI [DOI 10.1017/S1351324900000048, 10.1017/S1351324900000048]
Kaartemo V, 2018, J TEACH INT BUS, V29, P185, DOI 10.1080/08975930.2018.1486777
Kankaanranta A, 2010, ENGL SPECIF PURP, V29, P204, DOI 10.1016/j.esp.2009.06.004
Karakaya F, 1993, J TEACH INT BUS, V4, P9, DOI [10.1300/J066v04n03_02, DOI 10.1300/J066V04N03_02]
Kardes I, 2020, J TEACH INT BUS, V31, P51, DOI 10.1080/08975930.2020.1729292
Kedia B.L., 1994, J TEACH INT BUS, V5, P11, DOI DOI 10.1300/J066V05N03_02
Ketokivi M, 2016, ACAD MANAG LEARN EDU, V15, P123, DOI 10.5465/amle.2015.0133
Klarin A, 2021, J BUS RES, V126, P250, DOI 10.1016/j.jbusres.2020.12.063
Koris R, 2017, MANAGE LEARN, V48, P174, DOI 10.1177/1350507616668480
Laughton D, 2005, J TEACH INT BUS, V16, P47, DOI 10.1300/J066v16n03_04
Li YL, 2013, DECIS SCI-J INNOV ED, V11, P125, DOI 10.1111/j.1540-4609.2012.00371.x
Liesch PW, 2011, SCIENTOMETRICS, V88, P17, DOI 10.1007/s11192-011-0372-3
Lin Z., 1998, Managerial Auditing Journal, V13, P84
LOCKER KO, 1998, J BUS COMMUN, V35, P14
Louhiala-Salminen L, 2011, IEEE T PROF COMMUN, V54, P244, DOI 10.1109/TPC.2011.2161844
Lundstrom W.J., 1996, Journal of Marketing Education, P5
Manuel T.A., 2001, J TEACH INT BUS, V12, P43, DOI DOI 10.1300/J066V12N03_03
Cubillo JM, 2006, INT J EDUC MANAG, V20, P101, DOI 10.1108/09513540610646091
Markoulli MP, 2017, HUM RESOUR MANAGE R, V27, P367, DOI 10.1016/j.hrmr.2016.10.001
Martin JA, 2011, BUS HORIZONS, V54, P355, DOI 10.1016/j.bushor.2011.03.002
Milhauser KL, 2010, J TEACH INT BUS, V21, P78, DOI 10.1080/08975930.2010.483912
Mitchell TR, 2007, ACAD MANAG LEARN EDU, V6, P236, DOI 10.5465/AMLE.2007.25223462
Nabi G, 2017, ACAD MANAG LEARN EDU, V16, P277, DOI 10.5465/amle.2015.0026
Naidoo V, 2010, J STUD INT EDUC, V14, P5, DOI 10.1177/1028315308327953
Nazarov D, 2020, SYST RES BEHAV SCI, V37, P535, DOI 10.1002/sres.2700
Nickerson C, 2005, ENGL SPECIF PURP, V24, P367, DOI 10.1016/j.esp.2005.02.001
Nijhuis J.M. Segers., 2005, LEARNING ENV RES, V8, P67, DOI 10.1007/s10984-005-7950-3
Nijhuis J, 2007, STUD HIGH EDUC, V32, P59, DOI 10.1080/03075070601099457
Orta A, 2013, AM ETHNOL, V40, P689, DOI 10.1111/amet.12048
Ortiz J, 2005, INT EDUC J, V5, P255
Ott D.L., 2018, INT J MANAG REV, V20, P99, DOI [10.1111/ijmr.12118, DOI 10.1111/ijmr.12118]
Pache AC, 2012, ACAD MANAG LEARN EDU, V11, P494, DOI 10.5465/amle.2011.0019
Parodi M. C. H., 2019, PALGRAVE HDB LEARNIN, P111
Paul P., 2001, Marketing Education Review, V11, P81, DOI DOI 10.1080/10528008.2001.11488759
Paul P, 2005, J TEACH INT BUS, V16, P7, DOI 10.1300/J066v16n02_02
Peiperl M.A., 1997, J MANAG DEV, V16, P354, DOI DOI 10.1108/02621719710174534
Pimpa N., 2011, International Journal of Management Education, V9, P77, DOI DOI 10.3794/IJME.93.323
Porth S.J., 1997, Journal of Management Education, V21, P190, DOI DOI 10.1177/105256299702100204
Prasad A, 2019, STUD HIGH EDUC, V44, P1605, DOI 10.1080/03075079.2018.1458220
Prestwich R, 2007, J TEACH INT BUS, V19, P29, DOI 10.1300/J066v19n01_03
Pudelko M, 2019, ACAD MANAG LEARN EDU, V18, P213, DOI 10.5465/amle.2017.0236
Ramburuth P, 2005, J TEACH INT BUS, V16, P5, DOI 10.1300/J066v16n03_02
Randazzo-Davis M., 2020, International Journal for Business Education, V160, P42
Rauch A, 2015, ACAD MANAG LEARN EDU, V14, P187, DOI 10.5465/amle.2012.0293
Richards D, 1997, MANAGE LEARN, V28, P387, DOI 10.1177/1350507697284001
Rodrigues C. A., 2004, Journal of Management Development, V23, P169, DOI 10.1108/02621710410517256
Rooney D., 2010, Wisdom and management in the knowledge economy, DOI DOI 10.4324/9780203852798
Rottig D, 2007, J TEACH INT BUS, V18, P5, DOI 10.1300/J066v18n04_02
Roy A, 2010, J TEACH INT BUS, V21, P4, DOI 10.1080/08975931003644572
Rubin RS, 2013, ACAD MANAG LEARN EDU, V12, P125, DOI 10.5465/amle.2012.0217
SARATHY R, 1990, J TEACHING INT BUSIN, V1, P101
Schlosser R.W., 2008, Evidence-Based Communication Assessment and Intervention, V2, P163, DOI [10.1080/17489530701560831, DOI 10.1080/17489530701560831]
Schuster C.P., 1998, Journal of Marketing Education, V20, P121
Schworm SK, 2017, EUR MANAG J, V35, P493, DOI 10.1016/j.emj.2017.02.009
Scott-Kennel J, 2008, J TEACH INT BUS, V19, P142, DOI 10.1080/08975930802118085
Shams SMR, 2016, J GLOB MARK, V29, P139
Shi YW, 2019, J TEACH INT BUS, V30, P246, DOI 10.1080/08975930.2019.1698392
Smith David E, 2002, J TEACHING INT BUSIN, V13, P55, DOI [10.1300/J066v13n02_04, DOI 10.1300/J066V13N02_04]
Smith R., 2002, Journal of Teaching in International Business, V14, P83, DOI [DOI 10.1300/J066V14N01, 10.1300/J066v14n01_06, DOI 10.1300/J066V14N01_06]
Sommer L, 2011, INT ENTREP MANAG J, V7, P111, DOI 10.1007/s11365-010-0162-z
St JohnM.J., 1996, ENGL SPECIF PURP, V15, P3
Stedham Y.E., 2004, WOMEN MANAGEMENT REV, V19, P233
Szkudlarek B, 2020, J WORLD BUS, V55, DOI 10.1016/j.jwb.2020.101126
Tenzer H, 2017, MANAGE INT REV, V57, P815, DOI 10.1007/s11575-017-0319-x
THANOPOULOS J, 1987, J INT BUS STUD, V18, P91, DOI 10.1057/palgrave.jibs.8490402
Tracey P, 2007, ACAD MANAG LEARN EDU, V6, P264, DOI 10.5465/AMLE.2007.25223465
Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375
Trapnell JE, 2007, J MANAG DEV, V26, P67, DOI 10.1108/02621710710720112
Tsai SC, 2010, COMPUT EDUC, V55, P1245, DOI 10.1016/j.compedu.2010.05.021
Tuleja EA, 2008, BUS PROF COMMUN Q, V71, P314, DOI 10.1177/1080569908321471
Ueltschy L.C., 2001, Journal of Marketing Education, V23, P63
Uljin J., 2000, The Journal of Business Communication, V37, P173
Urgel J, 2007, J MANAG DEV, V26, P73, DOI 10.1108/02621710710721698
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
Vieira ES, 2009, SCIENTOMETRICS, V81, P587, DOI 10.1007/s11192-009-2178-0
Von Bertalanffy L., 1968, General Systems Theory: Foundations, Development, Applications
Walker J, 2009, J TEACH INT BUS, V20, P293, DOI 10.1080/08975930903405050
Wan Guanghua., 2008, INEQUALITY GROWTH MO
Witte AE, 2010, J TEACH INT BUS, V21, P101, DOI 10.1080/08975930.2010.483908
Wright R.W., 1970, Journal of International Business Studies, P109, DOI DOI 10.1057/PALGRAVE.JIBS.8490724
Wright RE, 2010, ACAD MANAG LEARN EDU, V9, P697, DOI 10.5465/AMLE.2010.56659887
Yu H, 2005, J FASH MARK MANAG, V9, P232, DOI 10.1108/13612020510599376
Zhang ZC, 2013, ENGL SPECIF PURP, V32, P144, DOI 10.1016/j.esp.2013.01.002
Zhao J, 2016, J INT EDUC BUS, V9, P52, DOI 10.1108/JIEB-02-2016-0001
NR 160
TC 21
Z9 22
U1 4
U2 50
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0969-5931
EI 1873-6149
J9 INT BUS REV
JI Int. Bus. Rev.
PD OCT
PY 2021
VL 30
IS 5
AR 101833
DI 10.1016/j.ibusrev.2021.101833
EA AUG 2021
PG 15
WC Business
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA UD4VR
UT WOS:000687206200009
OA Green Published, hybrid
DA 2024-09-05
ER
PT J
AU Gowanlock, M
Gazan, R
AF Gowanlock, Michael
Gazan, Rich
TI Assessing researcher interdisciplinarity: a case study of the University
of Hawaii NASA Astrobiology Institute
SO SCIENTOMETRICS
LA English
DT Article
DE Astrobiology; Bibliometrics; Information bottleneck method;
Interdisciplinary science; Machine learning; Text mining
ID SCIENCE; CITATION
AB In this study, we combine bibliometric techniques with a machine learning algorithm, the sequential information bottleneck, to assess the interdisciplinarity of research produced by the University of Hawaii NASA Astrobiology Institute (UHNAI). In particular, we cluster abstract data to evaluate Thomson Reuters Web of Knowledge subject categories as descriptive labels for astrobiology documents, assess individual researcher interdisciplinarity, and determine where collaboration opportunities might occur. We find that the majority of the UHNAI team is engaged in interdisciplinary research, and suggest that our method could be applied to additional NASA Astrobiology Institute teams in particular, or other interdisciplinary research teams more broadly, to identify and facilitate collaboration opportunities.
C1 [Gowanlock, Michael; Gazan, Rich] Univ Hawaii, Dept Informat & Comp Sci, NASA Astrobiol Inst, Lib & Informat Sci Program, Honolulu, HI 96822 USA.
C3 University of Hawaii System; National Aeronautics & Space Administration
(NASA)
RP Gowanlock, M (corresponding author), Univ Hawaii, Dept Informat & Comp Sci, NASA Astrobiol Inst, Lib & Informat Sci Program, POST 310,East West Rd, Honolulu, HI 96822 USA.
EM gowanloc@hawaii.edu
OI Gazan, Rich/0000-0003-0741-9050
FU National Aeronautics and Space Administration through NASA Astrobiology
Institute through Office of Space Science [NNA08DA77A]
FX We thank David Schanzenbach for devising scripts, and Mahdi Belcaid and
the anonymous reviewers for insightful comments. This material is based
upon work supported by the National Aeronautics and Space Administration
through the NASA Astrobiology Institute under Cooperative Agreement No.
NNA08DA77A issued through the Office of Space Science.
CR [Anonymous], 2005, Data Mining: Pratical Machine Learning Tools and Techniques
Bjurström A, 2011, SCIENTOMETRICS, V87, P525, DOI 10.1007/s11192-011-0356-3
Bornmann L, 2011, J INFORMETR, V5, P547, DOI 10.1016/j.joi.2011.04.006
Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6
Brewer GD, 1999, POLICY SCI, V32, P327, DOI 10.1023/A:1004706019826
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Cockell CS, 2002, SPACE POLICY, V18, P263, DOI 10.1016/S0265-9646(02)00039-5
Derrick GE, 2010, SCIENTOMETRICS, V84, P317, DOI 10.1007/s11192-009-0118-7
Gargaud M, 2011, INTEGR SCI TECHNOL, V1, P337, DOI 10.1007/978-94-007-1658-2_20
Jacso P, 2005, CURR SCI INDIA, V89, P1537
Kostoff RN, 2001, J AM SOC INF SCI TEC, V52, P1148, DOI 10.1002/asi.1181
Kostoff RN, 1998, SCIENTOMETRICS, V43, P27, DOI 10.1007/BF02458392
Kousha K, 2008, SCIENTOMETRICS, V74, P273, DOI 10.1007/s11192-008-0217-x
Morillo F, 2001, SCIENTOMETRICS, V51, P203, DOI 10.1023/A:1010529114941
National Academies, 2005, FAC INT RES
National Science Foundation, 2011, INTR INT RES
Oliver CA, 2007, ACTA ASTRONAUT, V61, P716, DOI 10.1016/j.actaastro.2006.12.010
Porter AL, 2007, SCIENTOMETRICS, V72, P117, DOI 10.1007/s11192-007-1700-5
Porter AL, 2009, SCIENTOMETRICS, V81, P719, DOI 10.1007/s11192-008-2197-2
PORTER MF, 1980, PROGRAM-AUTOM LIBR, V14, P130, DOI 10.1108/eb046814
Rafols I, 2010, SCIENTOMETRICS, V82, P263, DOI 10.1007/s11192-009-0041-y
Slonim N., 2002, Proceedings of SIGIR 2002. Twenty-Fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P129
Small H, 2010, SCIENTOMETRICS, V83, P835, DOI 10.1007/s11192-009-0121-z
Staley JT, 2003, CURR OPIN BIOTECH, V14, P347, DOI 10.1016/S0958-1669(03)00073-9
Sugimoto CR, 2011, SCIENTOMETRICS, V86, P449, DOI 10.1007/s11192-010-0275-8
Upham SP, 2010, SCIENTOMETRICS, V83, P15, DOI 10.1007/s11192-009-0051-9
Van Leeuwen TN, 2007, RES EVALUAT, V16, P93, DOI 10.3152/095820207X227529
van Raan AFJ, 2002, RES POLICY, V31, P611, DOI 10.1016/S0048-7333(01)00129-9
Wagner CS, 2011, J INFORMETR, V5, P14, DOI 10.1016/j.joi.2010.06.004
Zhang J, 2011, SCIENTOMETRICS, V86, P1, DOI 10.1007/s11192-010-0318-1
Zhang L, 2010, J INFORMETR, V4, P185, DOI 10.1016/j.joi.2009.11.005
NR 31
TC 19
Z9 23
U1 1
U2 94
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 2013
VL 94
IS 1
BP 133
EP 161
DI 10.1007/s11192-012-0765-y
PG 29
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 063RA
UT WOS:000313016300008
DA 2024-09-05
ER
PT J
AU Berninger, M
Kiesel, F
Schiereck, D
Gaar, E
AF Berninger, Marc
Kiesel, Florian
Schiereck, Dirk
Gaar, Eduard
TI Citations and the readers' information-extracting costs of finance
articles
SO JOURNAL OF BANKING & FINANCE
LA English
DT Article
DE Information extracting costs; Readability; Textual analysis; Finance
literature; Machine learning; Scientometrics
ID CO-AUTHORSHIP; READABILITY; IMPACT; PRODUCTIVITY; DETERMINANTS;
INSTITUTIONS; ABSTRACTS; JOURNALS; NUMBER
AB This paper focuses on the relationship between the reader's information-extracting costs of finance articles and the article's number of citations. The reader's information-extracting costs are measured using three metrics: (i) the Flesch-Kincaid readability score, ( ii ) the article's length, and ( iii ) the number of complex words. Based on a sample of more than 14,0 0 0 full text articles published between 20 0 0 and 2016 in 16 finance journals, we show that the information-extracting costs of finance journals have significantly increased over time, while the topics of these articles, determined by machine-learning topic modeling, remained relatively constant. We find a positive correlation between the reader's information extracting costs and the number of citations achieved by a paper for articles that are published in the top-three finance journals (JF, JFE, RFS), but do not observe this pattern for articles published in other major finance journals. (c) 2021 Elsevier B.V. All rights reserved.
C1 [Berninger, Marc; Schiereck, Dirk; Gaar, Eduard] Tech Univ Darmstadt, Dept Business Adm Econ & Law, D-64289 Darmstadt, Germany.
[Kiesel, Florian] Grenoble Ecole Management, F-38000 Grenoble, France.
C3 Technical University of Darmstadt; Grenoble Ecole Management
RP Berninger, M (corresponding author), Tech Univ Darmstadt, Dept Business Adm Econ & Law, D-64289 Darmstadt, Germany.
EM berninger@bwl.tu-darmstadt.de
OI Gaar, Eduard/0000-0003-2499-3855; Kiesel, Florian/0000-0001-7380-5190
CR ARMSTRONG JS, 1980, INTERFACES, V10, P80, DOI 10.1287/inte.10.2.80
Ayres I, 2000, J LEGAL STUD, V29, P427, DOI 10.1086/468081
Bajo E, 2020, J BANK FINANC, V114, DOI 10.1016/j.jbankfin.2020.105780
Bauerly R.J., 2006, MARK MANAG, V16, P216
Bellstam G, 2021, MANAGE SCI, V67, P4004, DOI 10.1287/mnsc.2020.3682
Berk JB, 2017, J ECON PERSPECT, V31, P231, DOI 10.1257/jep.31.1.231
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
Borokhovich KA, 2000, J FINANC, V55, P1457, DOI 10.1111/0022-1082.00254
Borokhovich KA, 2011, J BANK FINANC, V35, P1, DOI 10.1016/j.jbankfin.2010.07.006
BOTTLE RT, 1983, J INFORM SCI, V6, P103, DOI 10.1177/016555158300600402
Brogaard J, 2014, J FINANC ECON, V111, P251, DOI 10.1016/j.jfineco.2013.10.006
Bryce C, 2020, RES POLICY, V49, DOI 10.1016/j.respol.2020.103957
Jesse Y, 2016, REV QUANT FINANC ACC, V47, P29, DOI 10.1007/s11156-014-0493-x
CHUNG KH, 1990, J FINANC, V45, P301, DOI 10.2307/2328824
Crosier K., 2004, Marketing Intelligence Planning, V22, P540, DOI [https://doi.org/10.1108/02634500410551923, DOI 10.1108/02634500410551923, 10.1108/02634500410551923]
Currie RR, 2020, J BANK FINANC, V111, DOI 10.1016/j.jbankfin.2019.105717
Currie RR, 2011, J BANK FINANC, V35, P7, DOI 10.1016/j.jbankfin.2010.07.034
de Finetti B., 1990, Theory of Probability
EDERINGTON LH, 1979, J FINANC, V34, P777, DOI 10.2307/2327443
Einav L, 2006, J ECON PERSPECT, V20, P175, DOI 10.1257/089533006776526085
Fishe RPH, 1998, J FINANC, V53, P1053, DOI 10.1111/0022-1082.00043
Ganglmair Bernhard, 2015, MEASURING CONTRACT C
Gazni A, 2011, J INF SCI, V37, P273, DOI 10.1177/0165551511401658
Goldsmith-Pinkham P., 2016, FRB of NY Staff Report
Gunning R., 1952, TECHNIQUE CLEAR WRIT, P36
Guo F, 2018, SCIENTOMETRICS, V116, P1531, DOI 10.1007/s11192-018-2805-8
Hamermesh DS, 2018, J ECON LIT, V56, P115, DOI 10.1257/jel.20161326
Hartley J, 2003, SCIENTOMETRICS, V57, P389, DOI 10.1023/A:1025008802657
Hartley J, 2002, SOC STUD SCI, V32, P321, DOI 10.1177/0306312702032002005
HECK JL, 1986, J FINANC, V41, P1129, DOI 10.2307/2328168
Hirshleifer D, 2015, REV FINANC STUD, V28, P637, DOI 10.1093/rfs/hhu093
Hoberg G, 2017, J CORP FINANC, V43, P58, DOI 10.1016/j.jcorpfin.2016.12.007
Holden CW, 2017, REV CORP FINANC STUD, V6, P102, DOI 10.1093/rcfs/cfx009
Hollis A, 2001, LABOUR ECON, V8, P503, DOI 10.1016/S0927-5371(01)00041-0
Hyland K., 2002, ELT Journal, V56, P351, DOI [10.1093/elt/56.4.351, DOI 10.1093/ELT/56.4.351]
Hyland K, 2008, INT J APPL LINGUIST, V18, P41, DOI 10.1111/j.1473-4192.2008.00178.x
Jacques Thomas S, 2010, JRSM Short Rep, V1, P2, DOI 10.1258/shorts.2009.100020
Jamali HR, 2011, SCIENTOMETRICS, V88, P653, DOI 10.1007/s11192-011-0412-z
Karolyi GA, 2011, FINAN REV, V46, P485, DOI 10.1111/j.1540-6288.2011.00309.x
Kerl A, 2018, J BANK FINANC, V89, P26, DOI 10.1016/j.jbankfin.2018.01.014
Kincaid J.P., 1975, Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel
KLEMKOSKY RC, 1977, J FINANC, V32, P901, DOI 10.2307/2326321
Li F, 2008, J ACCOUNT ECON, V45, P221, DOI 10.1016/j.jacceco.2008.02.003
Loughran T, 2014, J FINANC, V69, P1643, DOI 10.1111/jofi.12162
LOVELAND J, 1973, ACAD MANAGE J, V16, P522, DOI 10.5465/255014
MANTEN AA, 1977, ANIM FEED SCI TECH, V2, P195, DOI 10.1016/0377-8401(77)90035-9
MCDOWELL JM, 1983, REV ECON STAT, V65, P155, DOI 10.2307/1924423
Medoff MH, 2003, APPL ECON LETT, V10, P479, DOI 10.1080/1350485032000095348
NAFTULIN DH, 1973, J MED EDUC, V48, P630
NIEMI AW, 1987, J FINANC, V42, P1389, DOI 10.2307/2328535
Pinkowitz L, 2002, J FINANC, V57, P485, DOI 10.1111/1540-6261.00429
Reed Colorado, 2012, LATENT DIRICHLET ALL
Sawyer AG, 2008, J MARKETING, V72, P108, DOI 10.1509/jmkg.72.1.108
SEC, 2007, SPEECH SEC CHAIRM CL
Smith SD, 2004, FINANC MANAGE, V33, P133
Spiegel M, 2012, REV FINANC STUD, V25, P1331, DOI 10.1093/rfs/hhs052
Stremersch S, 2007, J MARKETING, V71, P171, DOI 10.1509/jmkg.71.3.171
You HF, 2009, REV ACCOUNT STUD, V14, P559, DOI 10.1007/s11142-008-9083-2
ZIVNEY TL, 1992, J FINANC, V47, P295, DOI 10.2307/2329099
NR 60
TC 4
Z9 4
U1 3
U2 23
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0378-4266
EI 1872-6372
J9 J BANK FINANC
JI J. Bank Financ.
PD OCT
PY 2021
VL 131
AR 106188
DI 10.1016/j.jbankfin.2021.106188
EA JUN 2021
PG 34
WC Business, Finance; Economics
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA TC8YY
UT WOS:000668925400003
DA 2024-09-05
ER
PT S
AU Umeki, H
Takase, H
AF Umeki, H.
Takase, H.
BE Ahn, J
Apted, MJ
TI Application of knowledge management systems for safe geological disposal
of radioactive waste
SO GEOLOGICAL REPOSITORY SYSTEMS FOR SAFE DISPOSAL OF SPENT NUCLEAR FUELS
AND RADIOACTIVE WASTE
SE Woodhead Publishing Series in Energy
LA English
DT Article; Book Chapter
DE knowledge management system (KMS); knowledge engineering (KE); strategic
environmental assessment (SEA); research and development R&D; quality
management system (QMS); argumentation model (AM); knowledge acquisition
design system (KADS); artificial neural network (ANN)
AB Information overload caused by the rate at which data can be produced and the ease with which it can be accessed poses a significant challenge to those charged with maintaining an overview of large, complex, multidisciplinary projects. Geological disposal of long-lived radioactive waste is a technical area characterised by a breadth of multidisciplinary knowledge wider than almost any other industry. The particular challenges for radwaste require the development of a system that pushes the current limits of information technology (IT). This chapter illustrates an approach to the problem that focuses on a formal knowledge management system (KMS) and associated knowledge base that utilise state-of-the-art tools, developed in the field of knowledge engineering (KE) and IT. It considers whether advanced KM tools can contribute to the development, review, communication and control of the iterative evolution of safety cases.
C1 [Umeki, H.] Japan Atom Energy Agcy, Chiyoda Ku, Tokyo 1008577, Japan.
[Takase, H.] Quintessa KK, Nishi Ku, Yokohama, Kanagawa 2206007, Japan.
C3 Japan Atomic Energy Agency
RP Umeki, H (corresponding author), Japan Atom Energy Agcy, Chiyoda Ku, 2-1-8 Uchisaiwaicho, Tokyo 1008577, Japan.
EM umeki.hiroyuki@jaea.go.jp; htakase@quintessa.co.jp
CR [Anonymous], 1958, The Uses of Arguments
[Anonymous], MODEL BASED REASONIN
[Anonymous], 2008, ARTIFICIAL INTELLIGE
Churchill F., 2002, COLLABORATIVE VIRTUA
Eemeren F.H., 2004, A systematic theory of argumentation: The pragma-dialectical approach, DOI DOI 10.1017/CBO9780511616389
Hullermeier Eyke., 2007, Case-based approximate reasoning
*IAEA NEA, 2006, IAEA SAF STAND SER
JNC, 2000, TN14102000001 JNC JA
JNC, 2005, TN14002005022 JNC JA
Jones M.Tim., 2008, ARTIF INTELL
*KASAM IAEA, 2000, P INT SEM 24 27 OCT
KAWAMURA H, 2008, P INT C UND DISP UN
Kawata T., 2006, P 11 INT HIGH LEV RA, P1236
Kendal S.L., 2007, INTRO KNOWLEDGE ENG
Magnani L., 2007, Model-based reasoning in science, technology, and medicine, VVol. 64
Magnani Lorenzo., 2001, ABDUCTION REASON SCI
Makau J., 2001, COOPERATIVE ARGUMENT
Makino H., 2007, P GLOB 2007
Makino H., 2009, P 12 INT C ENV REM R
Makino H., 2009, P WM2009 C 1 5 MARCH
MCKINLEY IG, 2009, P MRS09
MCKINLEY IG, 2009, P INC 09
*NEA, 2004, POSTCL SAF CAS GEOL
NEA, 2001, REV RETR GEOL DISP R
NEA, 2004, STEPW APPR DEC MAK L
*NUMO, 2007, NUMOTR0702 NUCL WAST
NUMO, 2004, NUMOTR0403
Osawa H., 2009, P 12 INT C ENV REM R
Osawa H., 2009, P WN2009 C 1 5 MARCH
Reed Chris., 2004, Argumentation Machines: New Frontiers in Argument and Computation
Schreiber A.T., 2000, Knowledge Engineering and Management: The CommonKADS Methodology
Semba T., 2009, P 12 INT C ENV REM R
Spink A, 2008, INFORM SCI KNOWL MAN, V14, P1, DOI 10.1007/978-3-540-75829-7
STEFANUK V, 2004, P 6 JOINT C KNOWL BA
UMEKI H, 2008, P OECD NEA EC IAEA I
Umeki H., 2007, P JOINT INT TOP M MA
Umeki H., 2009, P 12 INT C ENV REM R
UMEKI HIROYUKI, 2006, Nuclear Engineering and Technology, V38, P505
van Bruggen JM, 2003, COMP SUPP COMP W SER, P25
Walton D, 2005, ARGUMENTATION METHODS FOR ARTIFICIAL INTELLIGENCE IN LAW, pXI
NR 40
TC 1
Z9 1
U1 0
U2 0
PU WOODHEAD PUBL LTD
PI CAMBRIDGE
PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND
SN 2044-9372
EI 2044-9364
BN 978-1-84569-978-9; 978-1-84569-542-2
J9 WOODHEAD PUBL SER EN
PY 2010
IS 9
BP 610
EP 638
D2 10.1533/9781845699789
PG 29
WC Engineering, Environmental; Nuclear Science & Technology
WE Book Citation Index – Science (BKCI-S)
SC Engineering; Nuclear Science & Technology
GA BRQ28
UT WOS:000283424700020
DA 2024-09-05
ER
PT J
AU Chai, S
D'Amour, A
Fleming, L
AF Chai, Sen
D'Amour, Alexander
Fleming, Lee
TI Explaining and predicting the impact of authors within a community: an
assessment of the bibliometric literature and application of machine
learning
SO INDUSTRIAL AND CORPORATE CHANGE
LA English
DT Article
ID KNOWLEDGE; INNOVATION; NETWORKS; PRODUCTIVITY; MARGINALITY; COMPETITION;
STRENGTH; CREATION; RETURNS; QUALITY
AB Following widespread availability of computerized databases, much research has correlated biblio-metric measures from papers or patents to subsequent success, typically measured as the number of publications or citations. Building on this large body of work, we ask the following questions: given available bibliometric information in one year, along with the combined theories on sources of creative breakthroughs from the literatures on creativity and innovation, how accurately can we explain the impact of authors in a given research community in the following year? In particular, who is most likely to publish, publish highly cited work, and even publish a highly cited outlier? And, how accurately can these existing theories predict breakthroughs using only contemporaneous data? After reviewing and synthesizing (often competing) theories from the literatures, we simultaneously model the collective hypotheses based on available data in the year before RNA interference was discovered. We operationalize author impact using publication count, forward citations, and the more stringent definition of being in the top decile of the citation distribution. Explanatory power of current theories altogether ranges from less than 9% for being top cited to 24% for productivity. Machine learning (ML) methods yield similar findings as the explanatory linear models, and tangible improvement only for non-linear Support Vector Machine models. We also perform predictions using only existing data until 1997, and find lower predictability than using explanatory models. We conclude with an agenda for future progress in the bibliometric study of creativity and look forward to ML research that can explain its models.
C1 [Chai, Sen] ESSEC Business Sch, Dept Management, F-95021 Cergy Pontoise, France.
[D'Amour, Alexander] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA.
[Fleming, Lee] Univ Calif Berkeley, Coll Engn, Coleman Fung Inst Engn Leadership, Berkeley, CA 94720 USA.
C3 ESSEC Business School; University of California System; University of
California Berkeley; University of California System; University of
California Berkeley
RP Chai, S (corresponding author), ESSEC Business Sch, Dept Management, F-95021 Cergy Pontoise, France.
EM chai@esse-c.edu; alex-damour@berkeley.edu; lfleming@ieor.berkeley.edu
RI Chai, Sen/JYP-5197-2024
OI Chai, Sen/0000-0003-1243-3404
FU ESSEC Business School; NSF [1536022]; Coleman Fung Institute for
Engineering Leadership; SBE Off Of Multidisciplinary Activities; Direct
For Social, Behav & Economic Scie [1536022] Funding Source: National
Science Foundation
FX The authors gratefully acknowledge support from the ESSEC Business
School, NSF grant 1536022, and the Coleman Fung Institute for
Engineering Leadership. All opinions and errors remain the authors'.
CR [Anonymous], 1999, Origins of genius: Darwinian perspectives on creativity
[Anonymous], 2005, 11799 NAT BUR EC RES
Arts S, 2018, ORGAN SCI, V29, P1074, DOI 10.1287/orsc.2018.1216
Azoulay P., 2018, 24489 NBER
Azoulay P, 2010, Q J ECON, V125, P549, DOI 10.1162/qjec.2010.125.2.549
Brusoni S, 2001, ADMIN SCI QUART, V46, P597, DOI 10.2307/3094825
Burt RS, 2004, AM J SOCIOL, V110, P349, DOI 10.1086/421787
Chai S, 2019, RES POLICY, V48, P733, DOI 10.1016/j.respol.2018.11.006
COLEMAN JS, 1988, AM J SOCIOL, V94, pS95, DOI 10.1086/228943
Collins Randall., 1998, SOCIOLOGY PHILOS GLO
Couzin J, 2002, SCIENCE, V298, P2296, DOI 10.1126/science.298.5602.2296
DOUGHERTY D, 1992, ORGAN SCI, V3, P179, DOI 10.1287/orsc.3.2.179
Fire A, 1998, NATURE, V391, P806, DOI 10.1038/35888
Fleming L, 2007, ADMIN SCI QUART, V52, P443, DOI 10.2189/asqu.52.3.443
Fortunato S, 2010, PHYS REP, V486, P75, DOI 10.1016/j.physrep.2009.11.002
Furman JL, 2011, AM ECON REV, V101, P1933, DOI 10.1257/aer.101.5.1933
GIERYN TF, 1983, SOC STUD SCI, V13, P87, DOI 10.1177/030631283013001005
Girotra K, 2010, MANAGE SCI, V56, P591, DOI 10.1287/mnsc.1090.1144
GRANOVETTER MS, 1973, AM J SOCIOL, V78, P1360, DOI 10.1086/225469
Guzman J, 2015, SCIENCE, V347, P606, DOI 10.1126/science.aaa0201
Hastie T., 2009, The Elements of Statistical Learning
JANIS IL, 1971, PSYCHOL TODAY, V5, P43
Jeppesen LB, 2010, ORGAN SCI, V21, P1016, DOI 10.1287/orsc.1090.0491
Jones BF, 2009, REV ECON STUD, V76, P283, DOI 10.1111/j.1467-937X.2008.00531.x
Kaplan S, 2015, STRATEGIC MANAGE J, V36, P1435, DOI 10.1002/smj.2294
Kerr WR, 2014, REV FINANC STUD, V27, P20, DOI 10.1093/rfs/hhr098
Kuhn T.S., 1962, The structure of scientific revolutions
Leonard D.A., 1999, SPARK FLY IGNITING C
McEvily B, 1999, STRATEGIC MANAGE J, V20, P1133, DOI 10.1002/(SICI)1097-0266(199912)20:12<1133::AID-SMJ74>3.3.CO;2-Z
McFadyen MA, 2004, ACAD MANAGE J, V47, P735, DOI [10.2307/20159615, 10.5465/20159615]
Merton Robert., 1949, SOCIAL THEORY SOCIAL
Mowery DC, 2002, RES POLICY, V31, P399, DOI 10.1016/S0048-7333(01)00116-0
Obstfeld D, 2005, ADMIN SCI QUART, V50, P100, DOI 10.2189/asqu.2005.50.1.100
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
Reagans R, 2003, ADMIN SCI QUART, V48, P240, DOI 10.2307/3556658
Reagans R, 2001, ORGAN SCI, V12, P502, DOI 10.1287/orsc.12.4.502.10637
ROMER PM, 1987, AM ECON REV, V77, P56
SIMONTON DK, 1989, INT J AGING HUM DEV, V29, P23, DOI 10.2190/U81M-7LWL-XXN4-10T8
Singh J, 2010, MANAGE SCI, V56, P41, DOI 10.1287/mnsc.1090.1072
Stern S, 2004, MANAGE SCI, V50, P835, DOI 10.1287/mnsc.1040.0241
Swanson DR, 2006, J AM SOC INF SCI TEC, V57, P1427, DOI 10.1002/asi.20438
Terwiesch Christian, 2009, Innovation tournaments: Creating and selecting exceptional opportunities
Torvik VI, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1552303.1552304
Uzzi B, 1997, ADMIN SCI QUART, V42, P35, DOI 10.2307/2393808
Uzzi B, 2013, SCIENCE, V342, P468, DOI 10.1126/science.1240474
Wang J, 2017, RES POLICY, V46, P1416, DOI 10.1016/j.respol.2017.06.006
Wuchty S, 2007, SCIENCE, V316, P1036, DOI 10.1126/science.1136099
NR 47
TC 1
Z9 1
U1 1
U2 26
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0960-6491
EI 1464-3650
J9 IND CORP CHANGE
JI Ind. Corp. Change
PD FEB
PY 2020
VL 29
IS 1
BP 61
EP 80
DI 10.1093/icc/dtz042
PG 20
WC Business; Economics; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA LD3KE
UT WOS:000525930700004
DA 2024-09-05
ER
PT J
AU Fleerackers, A
Nehring, L
Maggio, LA
Enkhbayar, A
Moorhead, L
Alperin, JP
AF Fleerackers, Alice
Nehring, Lise
Maggio, Lauren A.
Enkhbayar, Asura
Moorhead, Laura
Alperin, Juan Pablo
TI Identifying science in the news: An assessment of the precision and
recall of Altmetric.com news mention data
SO SCIENTOMETRICS
LA English
DT Article
DE Altmetric; Data quality; News; Accuracy; Scholarly communication;
Journalism
AB The company Altmetric is often used to collect mentions of research in online news stories, yet there have been concerns about the quality of this data. This study investigates these concerns. Using a manual content analysis of 400 news stories as a comparison method, we analyzed the precision and recall with which Altmetric identified mentions of research in 8 news outlets. We also used logistic regression to identify the characteristics of research mentions that influence their likelihood of being successfully identified. We find that, for a predefined set of outlets, Altmetric's news mention data were relatively accurate (F-score = 0.80), with very high precision (0.95) and acceptable recall (0.70), although recall is below 0.50 for some news outlets. Altmetric is more likely to successfully identify mentions of research that include a hyperlink to the research item, an author name, and/or the title of a publication venue. This data source appears to be less reliable for mentions of research that provide little or no bibliometric information, as well as for identifying mentions of scholarly monographs, conference presentations, dissertations, and non-English research articles. Our findings suggest that, with caveats, scholars can use Altmetric news mention data as a relatively reliable source to identify research mentions across a range of outlets with high precision and acceptable recall, offering scholars the potential to conserve resources during data collection. Our study does not, however, offer an assessment of completeness or accuracy of Altmetric news data overall.
C1 [Fleerackers, Alice; Enkhbayar, Asura] Simon Fraser Univ, Interdisciplinary Studies, Vancouver, BC, Canada.
[Nehring, Lise] Univ Victoria, Ctr Forest Biol, Victoria, BC, Canada.
[Maggio, Lauren A.] Uniformed Serv Univ Hlth Sci, Dept Med, Bethesda, MD USA.
[Moorhead, Laura] San Francisco State Univ, Coll Liberal & Creat Arts, Journalism, San Francisco, CA USA.
[Alperin, Juan Pablo] Simon Fraser Univ, Publishing Program, Vancouver, BC, Canada.
C3 Simon Fraser University; University of Victoria; Uniformed Services
University of the Health Sciences - USA; California State University
System; San Francisco State University; Simon Fraser University
RP Fleerackers, A (corresponding author), Simon Fraser Univ, Interdisciplinary Studies, Vancouver, BC, Canada.; Alperin, JP (corresponding author), Simon Fraser Univ, Publishing Program, Vancouver, BC, Canada.
EM afleerac@sfu.ca; juan@alperin.ca
OI Fleerackers, Alice/0000-0002-7182-4061; Maggio,
Lauren/0000-0002-2997-6133; Moorhead, Laura/0000-0001-9185-6290;
Alperin, Juan Pablo/0000-0002-9344-7439
FU Social Sciences and Humanities Research Council of Canada (SSHRC)
insight grant, Sharing health research [453-2020-0401]; Social Sciences
and Humanities Research Council Joseph Bombardier Doctoral Fellowship
[767-2019-0369]
FX This research is supported by a Social Sciences and Humanities Research
Council of Canada (SSHRC) insight grant, Sharing health research
(#453-2020-0401). AF is supported by a Social Sciences and Humanities
Research Council Joseph Bombardier Doctoral Fellowship (#767-2019-0369).
CR ALPERIN JP, 2022, ZENODO
[Anonymous], 2020, ALTMETRIC 0917
Bar-Ilan Judit, 2019, J ALTMETR, V2, P1, DOI [10.29024/joa.4, DOI 10.29024/JOA.4]
Barata G, 2019, TRANSINFORMACAO, V31, DOI 10.1590/2318-0889201931e190031
Bruns A., 2018, Gatewatching and News Curation: Journalism, Social Media, and the Public Sphere, DOI 10.3726/b13293
Casino G, 2018, PROF INFORM, V27, P692, DOI 10.3145/epi.2018.may.22
Covens L., 2018, Ontario Science Centre Canadian science attitudes research
Cranley E., 2020, BUSINESS INSIDER
De Dobbelaer R, 2018, HEALTH COMMUN, V33, P611, DOI 10.1080/10410236.2017.1287237
Dicks, PUBLICATION PRACTICE, V2021, DOI DOI 10.1101/2021.01.21.427563
Enkhbayar A., 2022, ZENODO, DOI [10.5281/zenodo.5963168, DOI 10.5281/ZENODO.5963168]
Fitzpatrick Kathleen., 2021, Generous Thinking: A Radical Approach to Saving the University
Fleerackers A., 2022, HARVARD DATAVERSE, DOI [10.7910/DVN/WNDOFL, DOI 10.7910/DVN/WNDOFL]
Fleerackers A., 2020, HARVARD DATAVERSE, DOI [10.7910/DVN/WG9VDS, DOI 10.7910/DVN/WG9VDS]
Fleerackers A, 2022, HEALTH COMMUN, V37, P726, DOI 10.1080/10410236.2020.1864892
Fraser N, 2021, PLOS BIOL, V19, DOI 10.1371/journal.pbio.3000959
Fraser N, 2020, QUANT SCI STUD, V1, P618, DOI 10.1162/qss_a_00043
Fu DY, 2019, ELIFE, V8, DOI 10.7554/eLife.52646
Funk C., 2017, SCI NEWS INFORM TODA
Gesualdo N, 2020, JOURNALISM STUD, V21, P127, DOI 10.1080/1461670X.2019.1632734
Hansen A., 1994, PUBLIC UNDERST SCI, V3, P111, DOI [DOI 10.1088/0963-6625/3/2/001, 10.1088/0963-6625/3/2/001]
Hatch A, 2020, ELIFE, V9, DOI 10.7554/eLife.58654
Hicks D, 2004, HANDBOOK OF QUANTITATIVE SCIENCE AND TECHNOLOGY RESEARCH: THE USE OF PUBLICATION AND PATENT STATISTICS IN STUDIES OF S&T SYSTEMS, P473
Karmakar M, 2021, SCIENTOMETRICS, V126, P4465, DOI 10.1007/s11192-021-03941-y
Lehmkuhl M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0241376
Ortega JL, 2021, J INFORMETR, V15, DOI 10.1016/j.joi.2021.101175
Ortega JL, 2019, PRO INT CONF SCI INF, P75
Maggio LA, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2018-025783
Mahony N., 2017, Res All, V1, P35, DOI [10.18546/RFA.01.1.04, DOI 10.18546/RFA.01.1.04]
Matthias L., 2019, HARVARD DATAVERSE, DOI [10.7910/DVN/TAGFBL, DOI 10.7910/DVN/TAGFBL]
Matthias L, 2020, FRONT COMMUN, V5, DOI 10.3389/fcomm.2020.00064
Meschede C, 2018, SCIENTOMETRICS, V115, P283, DOI 10.1007/s11192-018-2674-1
Moorhead L, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0247553
NISO, 2016, OUTP NISO ALT ASS ME, P86
Oliveira T., 2021, REV BRASILEIRA HIST, V10, P1, DOI [10.26664/issn.2238-5126.101202111810, DOI 10.26664/ISSN.2238-5126.101202111810]
Ortega JL., 2019, J ALTMETRICS, V2, P4, DOI DOI 10.29024/JOA.14
Ortega JL, 2020, SCIENTOMETRICS, V122, P555, DOI 10.1007/s11192-019-03299-2
Ortega JL, 2020, PROF INFORM, V29, DOI 10.3145/epi.2020.ene.07
Page MJ, 2021, PLOS MED, V18, DOI 10.1371/journal.pmed.1003583
Priem J., 2010, Proceedings of the American Society for Information Science and Technology, V47, P1, DOI [DOI 10.1002/MEET.14504701201, 10.1002/meet.14504701201]
Priem J., 2010, Altmetrics: A manifesto
Robinson-Garcia N, 2019, FEMS MICROBIOL LETT, V366, DOI 10.1093/femsle/fnz075
Schultz T, 2021, QUANT SCI STUD, V2, P828, DOI 10.1162/qss_a_00139
Serghiou S, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0248625
Shoemaker Pamela J, 2009, Gatekeeping Theory, DOI DOI 10.4324/9780203931653
Thelwall M., 2018, J ALTMETRICS, V1, P4, DOI [10.29024/joa.6, DOI 10.29024/JOA.6]
Torres-Salinas D, 2018, ASLIB J INFORM MANAG, V70, P691, DOI 10.1108/AJIM-06-2018-0152
Torres-Salinas D, 2018, PROF INFORM, V27, P483, DOI 10.3145/epi.2018.may.03
Williams AE, 2017, ONLINE INFORM REV, V41, P311, DOI 10.1108/OIR-10-2016-0294
Yanovitzky I, 2019, COMMUN THEOR, V29, P191, DOI 10.1093/ct/qty023
Zahedi Z, 2014, SCIENTOMETRICS, V101, P1491, DOI 10.1007/s11192-014-1264-0
NR 51
TC 6
Z9 7
U1 2
U2 27
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD NOV
PY 2022
VL 127
IS 11
BP 6109
EP 6123
DI 10.1007/s11192-022-04510-7
EA OCT 2022
PG 15
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA 5U5FU
UT WOS:000862527700001
PM 36212767
OA Green Published, Bronze, Green Submitted
DA 2024-09-05
ER
PT C
AU Obaideen, K
AlShabi, M
Bettayeb, M
Gadsden, SA
Bonny, T
AF Obaideen, Khaled
AlShabi, Mohammad
Bettayeb, Maamar
Gadsden, S. Andrew
Bonny, Talal
BE Blowers, M
Wysocki, BT
TI The Convergence of Control and Cognition: A Bibliometric Overview of UKF
in AI-Infused Robotics
SO DISRUPTIVE TECHNOLOGIES IN INFORMATION SCIENCES VIII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Disruptive Technologies in Information Sciences VIII
CY APR 22-25, 2024
CL National Harbor, MD
DE Unscented Kalman Filter; UKF; Robotics; VOSviewer; Bibliometric
ID ARTIFICIAL-INTELLIGENCE TECHNIQUES; UNMANNED AERIAL VEHICLES; UNSCENTED
KALMAN FILTER; ROBUST; STRATEGIES; PREDICTION; NAVIGATION; FUSION;
MODELS; AUV
AB This paper gives a bibliometric summary of Unscented Kalman Filter (UKF) in AI-infused robotics, highlighting its role in unifying control and cognition. Using a systematic approach that includes literature collection from IEEE Xplore, Web of Science and Google Scholar, rigorous screening and selection, and VOSviewer for a comprehensive bibliometric analysis. This analysis reports major trends, primary contributors and central themes, highlighting UKF's pivotal role in improving robotics cognitive and control capacities. The study emphasizes the universally used UKF in many fields of robotics, i.e. in navigation and mapping, sensor fusion, and state estimation, as one of its principal developers, which illustrates its vital role in promoting robotic autonomy and intelligence. The integration of findings from the bibliometric analysis thus not only presents the current state of research but also identifies possible future research directions, highlighting the increasing unification of control theories and cognitive processes in robotics. This research adds to the body of knowledge by delivering a comprehensive map of the UKF application. In this light, the UKF will be able to penetrate AI-infused robotics, the future of robotic developments will rely on the deep fusion of control and cognition facilitated by UKF and alike.
C1 [Obaideen, Khaled] RISE, Smart Automat & Commun Technol, Bio Sensing & Bio Sensors Grp, POB 27272, Sharjah 27272, U Arab Emirates.
[AlShabi, Mohammad] Univ Sharjah, Dept Mech & Nucl Engn, POB 27272, Sharjah, U Arab Emirates.
[Bettayeb, Maamar] Univ Sharjah, Dept Elect Engn, POB 27272, Sharjah, U Arab Emirates.
[Gadsden, S. Andrew] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L8, Canada.
[Bonny, Talal] Univ Sharjah, Dept Comp Engn, POB 27272, Sharjah, U Arab Emirates.
C3 University of Sharjah; University of Sharjah; McMaster University;
University of Sharjah
RP AlShabi, M (corresponding author), Univ Sharjah, Dept Mech & Nucl Engn, POB 27272, Sharjah, U Arab Emirates.
EM malshabi@sharjah.ac.ae
OI Obaideen, Khaled/0000-0002-6472-2753
CR Abushihab K, 2023, J RELIG HEALTH, DOI 10.1007/s10943-023-01955-9
Aggarwal S, 2020, COMPUT COMMUN, V149, P270, DOI 10.1016/j.comcom.2019.10.014
Agwu OE, 2018, J PETROL SCI ENG, V167, P300, DOI 10.1016/j.petrol.2018.04.019
Ahmad F, 2019, INT J ELEC POWER, V107, P200, DOI 10.1016/j.ijepes.2018.11.019
Akca A, 2019, IFAC PAPERSONLINE, V52, P73, DOI 10.1016/j.ifacol.2019.06.013
Al-Kaff A, 2018, EXPERT SYST APPL, V92, P447, DOI 10.1016/j.eswa.2017.09.033
Al-Shabi M, 2013, SIGNAL PROCESS, V93, P420, DOI 10.1016/j.sigpro.2012.07.036
Al-Shabi M., 2015, Intelligent Control and Automation, V6, P147
Al-Shabi M., 2014, ASME INT MECH ENG C, V4648
Al-Shabi M., 2021, IAES Int. J. Artif. Intell, V10, P398, DOI [10.11591/ijai.v10.i2.pp398-406, DOI 10.11591/IJAI.V10.I2.PP398-406]
Al-Shabi M., 2015 IEEE 12 INT MUL, P1
Al-Shabi M., 2017 7 INT C MOD SIM, P1
Al-Shabi M, 2019, INT J ROBOT AUTOM, V34, P632, DOI 10.2316/J.2019.206-0160
Al-Shabi M, 2017, 2017 IEEE 5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS (IRIS), P117, DOI 10.1109/IRIS.2017.8250108
Al-Yateem N., 2021 IEEE 45 ANN COM, P1387
Albasha L., P 2004 IEEE RAD WIR, P343
Alghanmi A, 2022, ENERGY REP, V8, P14673, DOI 10.1016/j.egyr.2022.10.441
AlMallahi M., Energy Harvesting and Storage: Materials, Devices, and Applications XIII, V1251, P113
Alsadi N., 2023 ADV SCI ENG TEC, P1
Alsadi N, 2023, DIGIT SIGNAL PROCESS, V135, DOI 10.1016/j.dsp.2023.103966
Alsadi N, 2022, PROC SPIE, V12113, DOI 10.1117/12.2619029
AlShabi M, 2020, IEEE SYST J, V14, P971, DOI 10.1109/JSYST.2019.2919792
AlShabi M., 2021, IAES International Journal of Artificial Intelligence, V10, P166
AlShabi M., Signal Processing, Sensor/Information Fusion, and Target Recognition XXXI, V1212, P96
AlShabi M., 2021, Design and Performance Optimization of Renewable Energy Systems, P251
AlShabi M, 2022, PROC SPIE, V12113, DOI 10.1117/12.2632218
Apio A, 2019, IFAC PAPERSONLINE, V52, P508, DOI 10.1016/j.ifacol.2019.06.113
Asl RM, 2017, ENG APPL ARTIF INTEL, V59, P205, DOI 10.1016/j.engappai.2017.01.005
Avzayesh M, 2020, IEEE T INSTRUM MEAS, V69, P8744, DOI 10.1109/TIM.2020.2999165
Awwad A, 2023, IEEE SENS J, V23, P8169, DOI 10.1109/JSEN.2023.3248142
Bai YT, 2023, ANNU REV CONTROL, V56, DOI 10.1016/j.arcontrol.2023.100909
Ballous K. A., Unmanned Systems Technology XXV, V1254, P39
Bertachi A, 2019, IFAC PAPERSONLINE, V52, P1000, DOI 10.1016/j.ifacol.2019.06.193
Chen X, 2023, GEOENERGY SCI ENG, V229, DOI 10.1016/j.geoen.2023.212134
Clifton JC, 2005, IEEE T MICROW THEORY, V53, P2251, DOI 10.1109/TMTT.2005.848747
Connie Tee, 2017, Multi-disciplinary Trends in Artificial Intelligence. 11th International Workshop, MIWAI 2017. Proceedings: LNAI 10607, P139, DOI 10.1007/978-3-319-69456-6_12
Cui LL, 2019, MEASUREMENT, V135, P678, DOI 10.1016/j.measurement.2018.12.028
Emran BJ, 2018, ANNU REV CONTROL, V46, P165, DOI 10.1016/j.arcontrol.2018.10.009
Eraliev OMU, 2022, AUTOMAT CONSTR, V141, DOI 10.1016/j.autcon.2022.104428
Fareh R, 2020, ROBOTICA, V38, P118, DOI 10.1017/S026357471900050X
Gadsden S., 2021, Signal Processing, Sensor/Information Fusion, and Target Recognition XXIV, V9474, P54
Gadsden SA, 2014, SIGNAL PROCESS, V96, P290, DOI 10.1016/j.sigpro.2013.08.015
Gadsden S. A., 2011, ISRN Signal Processing, DOI 10.5402/2011/120351
Gadsden SA, 2015, 2015 10TH INTERNATIONAL SYMPOSIUM ON MECHATRONICS AND ITS APPLICATIONS (ISMA)
Ghaeminezhad N, 2023, J ENERGY STORAGE, V72, DOI 10.1016/j.est.2023.108707
Grof T, 2019, IFAC PAPERSONLINE, V52, P376, DOI 10.1016/j.ifacol.2019.11.272
Hatamleh KS, 2015, APPL SOFT COMPUT, V36, P457, DOI 10.1016/j.asoc.2015.06.031
Hose DR, 2019, MED ENG PHYS, V72, P38, DOI 10.1016/j.medengphy.2019.08.007
Javadi MA, 2019, PROCEDIA MANUF, V39, P1834, DOI 10.1016/j.promfg.2020.01.255
Jiang K, 2019, ENGINEERING-PRC, V5, P305, DOI 10.1016/j.eng.2018.11.032
Jinyu L., 2019, Virtual Real. Intell. Hardw., V1, P386
Kahnamouei JT, 2023, OCEAN ENG, V277, DOI 10.1016/j.oceaneng.2023.114260
Khalil A. K., Energy Harvesting and Storage: Materials, Devices, and Applications XIII, V1251, P70
Khan SR, 2019, DRUG DISCOV TODAY, V24, P1735, DOI 10.1016/j.drudis.2019.05.018
Khan S, 2019, APPL SOFT COMPUT, V83, DOI 10.1016/j.asoc.2019.105650
Kheirandish M, 2023, ROBOT AUTON SYST, V161, DOI 10.1016/j.robot.2022.104343
Khokhar S, 2015, RENEW SUST ENERG REV, V51, P1650, DOI 10.1016/j.rser.2015.07.068
Koide K, 2020, ROBOT AUTON SYST, V124, DOI 10.1016/j.robot.2019.103348
Kurpath MI, 2024, SENSOR ACTUAT A-PHYS, V367, DOI 10.1016/j.sna.2024.115019
Lee AS, 2021, IEEE SIGNAL PROC LET, V28, P1295, DOI 10.1109/LSP.2021.3089918
Li C, 2024, ENG APPL ARTIF INTEL, V132, DOI 10.1016/j.engappai.2024.107965
Li WL, 2016, DIGIT SIGNAL PROCESS, V48, P93, DOI 10.1016/j.dsp.2015.09.004
Li Y, 2019, ACTA ASTRONAUT, V163, P77, DOI 10.1016/j.actaastro.2019.02.030
Lin RH, 2019, INT J HYDROGEN ENERG, V44, P5488, DOI 10.1016/j.ijhydene.2018.09.085
Liu CL, 2021, RENEW SUST ENERG REV, V150, DOI 10.1016/j.rser.2021.111408
Liu YF, 2022, COMPUT ELECTRON AGR, V197, DOI 10.1016/j.compag.2022.106920
Long ZH, 2023, ENERGY, V272, DOI 10.1016/j.energy.2023.127068
Manoharan A, 2022, J ENERGY STORAGE, V55, DOI 10.1016/j.est.2022.105384
Mao JL, 2021, CHINESE J CHEM ENG, V37, P1, DOI 10.1016/j.cjche.2021.04.009
Marchesseau S, 2013, MED IMAGE ANAL, V17, P816, DOI 10.1016/j.media.2013.04.012
Mbungu NT, 2023, RENEW SUST ENERG REV, V179, DOI 10.1016/j.rser.2023.113251
Mittal S, 2019, J SYST ARCHITECT, V97, P428, DOI 10.1016/j.sysarc.2019.01.011
Montani Margherita, 2019, Procedia Structural Integrity, V24, P137, DOI 10.1016/j.prostr.2020.02.013
Munadi M, 2024, RESULTS ENG, V21, DOI 10.1016/j.rineng.2023.101678
Obaideen Khaled, 2022, Diabetes Metab Syndr, V16, P102566, DOI 10.1016/j.dsx.2022.102566
Ochella S, 2022, ENG APPL ARTIF INTEL, V108, DOI 10.1016/j.engappai.2021.104552
Peng JQ, 2019, ACTA ASTRONAUT, V162, P589, DOI 10.1016/j.actaastro.2019.03.008
Poulin P, 2019, MAGN RESON IMAGING, V64, P37, DOI 10.1016/j.mri.2019.04.013
Rebollo JA, 2023, IFAC PAPERSONLINE, V56, P4508, DOI 10.1016/j.ifacol.2023.10.942
Renganathan V, 2023, ARTIF INTELL, V314, DOI 10.1016/j.artint.2022.103812
Sarotte C, 2019, IFAC PAPERSONLINE, V52, P280, DOI 10.1016/j.ifacol.2019.11.256
Spencer BF, 2019, ENGINEERING-PRC, V5, P199, DOI 10.1016/j.eng.2018.11.030
Sui ZJ, 2019, ANN NUCL ENERGY, V134, P452, DOI 10.1016/j.anucene.2019.07.001
Taheri H, 2023, MECH MACH THEORY, V190, DOI 10.1016/j.mechmachtheory.2023.105448
Ul Hassan M, 2022, SUSTAIN ENERGY TECHN, V54, DOI 10.1016/j.seta.2022.102801
van Dinter R, 2022, INFORM SOFTWARE TECH, V151, DOI 10.1016/j.infsof.2022.107008
von See TB, 2021, IFAC PAPERSONLINE, V54, P320, DOI 10.1016/j.ifacol.2021.10.111
Wang BJ, 2016, INFRARED PHYS TECHN, V75, P12, DOI 10.1016/j.infrared.2016.01.001
Wang TY, 2023, MECH SYST SIGNAL PR, V204, DOI 10.1016/j.ymssp.2023.110785
Wang Y, 2020, CHINESE J AERONAUT, V33, P561, DOI 10.1016/j.cja.2019.10.008
Wischnewski A, 2019, IFAC PAPERSONLINE, V52, P154, DOI 10.1016/j.ifacol.2019.08.064
Wu XG, 2022, ENERGY REP, V8, P2262, DOI 10.1016/j.egyr.2022.01.056
Yang F, 2023, J ENERGY STORAGE, V58, DOI 10.1016/j.est.2022.106283
Yu QQ, 2022, AUTOMAT CONSTR, V141, DOI 10.1016/j.autcon.2022.104409
Yu XY, 2024, NEUROCOMPUTING, V563, DOI 10.1016/j.neucom.2023.126827
Yusuf SA, 2024, TRANSP RES INTERDISC, V23, DOI 10.1016/j.trip.2023.100980
Zhang JQ, 2023, AUTOMAT CONSTR, V146, DOI 10.1016/j.autcon.2022.104699
Zhang LY, 2020, COMPUT COMMUN, V150, P747, DOI 10.1016/j.comcom.2019.11.038
Zhang L, 2019, IFAC PAPERSONLINE, V52, P256, DOI 10.1016/j.ifacol.2019.09.150
Zhang Y, 2022, INFORM FUSION, V81, P171, DOI 10.1016/j.inffus.2021.11.018
Zhao HQ, 2022, AUTOMATICA, V142, DOI 10.1016/j.automatica.2022.110410
Zhao YS, 2019, IFAC PAPERSONLINE, V52, P126, DOI 10.1016/j.ifacol.2019.12.359
Zhao ZG, 2016, MECH SYST SIGNAL PR, V75, P413, DOI 10.1016/j.ymssp.2015.12.027
Zhuang SW, 2021, J BIOTECHNOL, V339, P32, DOI 10.1016/j.jbiotec.2021.07.013
NR 104
TC 0
Z9 0
U1 0
U2 0
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
EI 1996-756X
BN 978-1-5106-7435-6; 978-1-5106-7434-9
J9 PROC SPIE
PY 2024
VL 13058
AR 1305817
DI 10.1117/12.3013841
PG 8
WC Computer Science, Information Systems
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BX1WH
UT WOS:001253884500036
DA 2024-09-05
ER
PT J
AU Li, JJ
Yu, J
Yang, D
Tian, WY
Zhao, LL
Hu, JF
AF Li, Jianjun
Yu, Jie
Yang, Dan
Tian, Wanyong
Zhao, Lulu
Hu, Junfeng
TI A Novel Semantic Segmentation Algorithm Using a Hierarchical Adjacency
Dependent Network
SO IEEE ACCESS
LA English
DT Article
DE Semantics; Correlation; Feature extraction; Image segmentation;
Convolution; Decoding; Bibliometrics; Semantic segmentation;
hierarchical adjacency dependent network; adjacency dependency module
AB Recent semantic segmentation networks mainly focus on how to fuse multi-level features from classification networks to improve segmentation accuracy. Some researches evenly emphasize the correlation of pixels in a global region, such as conditional random field (CRF). However, the strong correlation feature of pixels in a limited region is less considered in the previous researches and the remedy ability of the correlation of local pixels in semantic segmentation is severely ignored. To deal with this problem, we introduce a hierarchical adjacency dependent network (HadNet), in which an adjacency dependency module (ADM) is constructed by calculating and utilizing the impact fact of the pixel in different directions to classify the pixel. We explored the correlation of adjacent pixels and feature coverage in different feature levels to improve the segmentation accuracy. We evaluate our method on the popular Pascal VOC 2012 test set, and achieve a comparable result of mIOU accuracy of 79.8 with the state of art methods, such as DeepLabv3 and Exfuse. Further, we discuss and analyze the data distribution of COCO dataset for deeply understanding the feature correlation and coverage in semantic segmentation.
C1 [Li, Jianjun; Yu, Jie; Yang, Dan] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China.
[Tian, Wanyong; Zhao, Lulu; Hu, Junfeng] CETC Key Lab Data Link Technol, Xian 710000, Shaanxi, Peoples R China.
C3 Hangzhou Dianzi University; China Electronics Technology Group
RP Li, JJ (corresponding author), Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China.
EM jianjun.li@hdu.edu.cn
OI Li, Jianjun/0000-0001-6658-9709
FU National Science Fund of China [61871170]; National Defense Basic
Research Program [JCKY2017210A001]
FX This work was supported in part by the National Science Fund of China
under Grant 61871170, and in part by the National Defense Basic Research
Program under Grant JCKY2017210A001.
CR [Anonymous], P IEEE INT C COMP VI
[Anonymous], P IEEE C COMP VIS PA
[Anonymous], PROC CVPR IEEE
[Anonymous], 2017, P IEEE C COMP VIS PA
[Anonymous], 2013, ARXIV13124400
[Anonymous], TECH REP
[Anonymous], IEEE IMAGE PROCESS
[Anonymous], 2015, PROC CVPR IEEE
[Anonymous], 2017, P IEEE C COMP VIS PA
[Anonymous], 2016, INT C LEARNING REPRE
[Anonymous], 2017, IEEE T PATTERN ANAL, DOI DOI 10.1109/TPAMI.2016.2644615
[Anonymous], 2017, C COMP VIS PATT REC
Chen LCE, 2018, LECT NOTES COMPUT SC, V11211, P833, DOI 10.1007/978-3-030-01234-2_49
Chen LC, 2018, IEEE T PATTERN ANAL, V40, P834, DOI 10.1109/TPAMI.2017.2699184
Chen LC, 2016, PROC CVPR IEEE, P3640, DOI 10.1109/CVPR.2016.396
Dai JF, 2015, IEEE I CONF COMP VIS, P1635, DOI 10.1109/ICCV.2015.191
Everingham M, 2015, INT J COMPUT VISION, V111, P98, DOI 10.1007/s11263-014-0733-5
Hariharan B, 2011, IEEE I CONF COMP VIS, P991, DOI 10.1109/ICCV.2011.6126343
He KM, 2015, IEEE T PATTERN ANAL, V37, P1904, DOI 10.1109/TPAMI.2015.2389824
Ke TW, 2018, LECT NOTES COMPUT SC, V11205, P605, DOI 10.1007/978-3-030-01246-5_36
Krizhevsky Alex., 2012, Advances in neural information processing systems, P10971105
Lazebnik S., COMPUTER VISION PATT, V2, P2169
Lin TY, 2014, LECT NOTES COMPUT SC, V8693, P740, DOI 10.1007/978-3-319-10602-1_48
Liu W., 2015, COMPUTER SCI
Liu ZW, 2015, IEEE I CONF COMP VIS, P1377, DOI 10.1109/ICCV.2015.162
Noh H, 2015, IEEE I CONF COMP VIS, P1520, DOI 10.1109/ICCV.2015.178
Peng C, 2017, PROC CVPR IEEE, P1743, DOI 10.1109/CVPR.2017.189
Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28
Russakovsky O, 2015, INT J COMPUT VISION, V115, P211, DOI 10.1007/s11263-015-0816-y
SZEGEDY C, 2015, CVPR, DOI [10.1109/cvpr.2015.7298594, DOI 10.1109/CVPR.2015.7298594]
Xu Huiting., 2017, IEEE International Conference on Smart Computing (SMARTCOMP), P1, DOI DOI 10.1109/INFOCOM.2017.8056992
Yan CG, 2019, IEEE T MULTIMEDIA, V21, P2675, DOI 10.1109/TMM.2019.2903448
Yang WB, 2017, COMM COM INF SC, V771, P696, DOI 10.1007/978-981-10-7299-4_58
Yu CQ, 2018, PROC CVPR IEEE, P1857, DOI 10.1109/CVPR.2018.00199
Yuan Yuhui, 2018, arXiv
Zhang ZL, 2018, LECT NOTES COMPUT SC, V11214, P273, DOI 10.1007/978-3-030-01249-6_17
Zhao CY, 2016, INT GEOSCI REMOTE SE, P2881, DOI 10.1109/IGARSS.2016.7729744
Zheng S, 2015, IEEE I CONF COMP VIS, P1529, DOI 10.1109/ICCV.2015.179
Zhou Q, 2019, WORLD WIDE WEB, V22, P555, DOI 10.1007/s11280-018-0556-3
NR 39
TC 1
Z9 1
U1 0
U2 6
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2019
VL 7
BP 150444
EP 150452
DI 10.1109/ACCESS.2019.2944219
PG 9
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA JN8TB
UT WOS:000497163000006
OA gold
DA 2024-09-05
ER
PT J
AU Riekki, J
Mämmela, Ä
AF Riekki, Jukka
Mammela, Aarne
TI Research and Education Towards Smart and Sustainable World
SO IEEE ACCESS
LA English
DT Article
DE Smart world vision; sustainable development goals; Internet of Things
(IoT); artificial intelligence (AI); computational intelligence (CI);
reductive view; systems view; emergence; experimental-inductive method;
hypothetico-deductive method; functionality; basic resources;
performance; energy efficiency; dependability; availability;
reliability; safety; security; constraints; optimization; decision
making; hierarchy; open-loop control; closed-loop feedback control;
degree of centralization; distributed systems; education; integrative
learning; research; innovation; history
ID SYSTEM DYNAMICS; HEALTH RESEARCH; BIG DATA; INTERNET; THINGS;
INTELLIGENT; VISION; MULTIDISCIPLINARITY; TRANSDISCIPLINARITY;
INTERDISCIPLINARITY
AB We propose a vision for directing research and education in the field of information and communications technology (ICT). Our Smart and Sustainable World vision targets prosperity for the people and the planet through better awareness and control of both human-made and natural environments. The needs of society, individuals, and industries are fulfilled with intelligent systems that sense their environment, make proactive decisions on actions advancing their goals, and perform the actions on the environment. We emphasize artificial intelligence, feedback loops, human acceptance and control, intelligent use of basic resources, performance parameters, mission-oriented interdisciplinary research, and a holistic systems view complementing the conventional analytical reductive view as a research paradigm, especially for complex problems. To serve a broad audience, we explain these concepts and list the essential literature. We suggest planning research and education by specifying, in a step-wise manner, scenarios, performance criteria, system models, research problems, and education content, resulting in common goals and a coherent project portfolio as well as education curricula. Research and education produce feedback to support evolutionary development and encourage creativity in research. Finally, we propose concrete actions for realizing this approach.
C1 [Riekki, Jukka] Univ Oulu, Ctr Ubiquitous Comp, Oulu 90570, Finland.
[Mammela, Aarne] VTT Tech Res Ctr Finland Ltd, Oulu 90570, Finland.
C3 University of Oulu; VTT Technical Research Center Finland
RP Riekki, J (corresponding author), Univ Oulu, Ctr Ubiquitous Comp, Oulu 90570, Finland.
EM jukka.riekki@oulu.fi
OI Mammela, Aarne/0000-0002-6659-4126; Riekki, Jukka/0000-0002-1694-9152
CR 5G PPP, 2015, 5G E HLTH
5G PPP, 2015, 5G FACTORIES FUTURE
5G PPP, 2015, 5G MEDIA ENTERTAINME
5G PPP, 2016, 5G EMPOWERING VERTIC
5G PPP, 2015, 5G Automotive Vision
Agnes M., 2001, WEBSTERS NEW WORLD C
Akyildiz IF, 2016, COMPUT NETW, V106, P17, DOI 10.1016/j.comnet.2016.06.010
Al-Kuwaiti M, 2009, IEEE COMMUN SURV TUT, V11, P106, DOI 10.1109/SURV.2009.090208
Albus J.S., 2001, Engineering of mind: An introduction to the science of intelligent systems
ALBUS JS, 1991, IEEE T SYST MAN CYB, V21, P473, DOI 10.1109/21.97471
[Anonymous], 2007, Distributed Systems_ Principles and Paradigms
[Anonymous], 2008, Complexity Explained
[Anonymous], 1990, INTERDISCIPLINARITY
[Anonymous], 2013, ADAPTIVE FILTER THEO
[Anonymous], 2019, Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development
[Anonymous], 2014, Principles of communications
[Anonymous], 2008, SMARTER PLANET
[Anonymous], 2012, COMPUTER ARCHITECTUR
[Anonymous], 2018, IEEE SUSTAINABLE ICT
[Anonymous], 2007, Systems and Models: Complexity, Dynamics, Evolution, Sustainability
[Anonymous], 1991, Feedback Thought in Social Science and Systems Theory
[Anonymous], 2016, The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems
[Anonymous], 2021, IEEE TAXONOMY VERSIO
[Anonymous], 1971, General System Theory: Foundations, Development, Applications.
[Anonymous], 2020, Gartner Top 10 Strategic Predictions for 2021 and beyond
[Anonymous], 2015, EMBRACING COMPLEXITY
[Anonymous], 2018, [No title captured], P44
[Anonymous], 2014, Digital Communications
[Anonymous], 2018, 6GENESIS FLAGSHIP PR
[Anonymous], 2004, NONLINEAR OPTICS TEL, DOI DOI 10.1007/978-3-662-08996-5
[Anonymous], 2006, 5 DISCIPLINE
[Anonymous], 2019, RES PLATFORMS
[Anonymous], 2018, RES ALLIANCE AUTONOM
[Anonymous], 2006, EVOLUTIONARY DYNAMIC, DOI DOI 10.2307/J.CTVJGHW98
[Anonymous], 1995, DISCRETE TIME CONTRO
[Anonymous], 2020, Missions in Horizon Europe
Arbnor I., 1997, METHODOLOGY CREATING
Arora S, 2009, COMPUTATIONAL COMPLEXITY: A MODERN APPROACH, P1, DOI 10.1017/CBO9780511804090
Atiyah M, 2002, B LOND MATH SOC, V34, P1, DOI 10.1112/S0024609301008566
Avizienis A, 2004, IEEE T DEPEND SECURE, V1, P11, DOI 10.1109/TDSC.2004.2
Bacco M, 2019, ARRAY-NY, V3-4, DOI 10.1016/j.array.2019.100009
Baillieul J, 2007, P IEEE, V95, P9, DOI 10.1109/JPROC.2006.887290
Barrett F.Dermot., 1953, Proceedings of the American Academy of Arts and Sciences, V80, P204, DOI DOI 10.2307/20023653
Barrow JohnD., 1998, Impossibility: The Limits of Science and the Science ofLimits
Bekey George A., AUTONOMOUS ROBOTS BI
Ben Yoo SJ, 2011, IEEE J SEL TOP QUANT, V17, P406, DOI 10.1109/JSTQE.2010.2076793
Benbya H., 2006, Information Technology & People, V19, P12, DOI 10.1108/09593840610649952
Bernstein DS, 2002, IEEE CONTR SYST MAG, V22, P53, DOI 10.1109/37.993315
Bezdek James C., 2016, IEEE Systems, Man, and Cybernetics Magazine, V2, P4, DOI 10.1109/MSMC.2016.2558778
Bhattacharya J., 2020, 26752 NAT BUR EC RES
Bishop C.M., 2006, Pattern recognition and machine learning
Bloom N, 2020, AM ECON REV, V110, P1104, DOI 10.1257/aer.20180338
Bock P., 2001, GETTING IT RIGHT R D
Bohn J, 2004, HUM ECOL RISK ASSESS, V10, P763, DOI 10.1080/10807030490513793
Boschert S., 2019, Symbiotic Autonomous Systems
Boulding K., 1985, WORLD TOTAL SYSTEM
BOULDING K.E., 1978, ECODYNAMICS NEW THEO
Brambilla M, 2013, SWARM INTELL-US, V7, P1, DOI 10.1007/s11721-012-0075-2
Calver MC, 2015, AUST UNIV REV, V57, P45
Cao YU, 1997, AUTON ROBOT, V4, P7, DOI 10.1023/A:1008855018923
Chaturvedi DK, 2008, STUD COMPUT INTELL, V103, P1, DOI 10.1007/978-3-540-77481-5
Checkland P., 1999, System Thinking, System Practice, V2e
CHESS D, 1995, IEEE PERS COMMUN, V2, P34, DOI 10.1109/98.468361
Choi BCK, 2007, CLIN INVEST MED, V30, pE224, DOI 10.25011/cim.v30i6.2950
Choi BCK, 2006, CLIN INVEST MED, V29, P351
Cockshott P., 2015, COMPUTATION ITS LIMI
Coulouris G., 2011, Distributed Systems: Concepts and Design, V5th
Courtland R, 2016, IEEE SPECTRUM, V53, P9
DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008
de Coulon F., 1986, SIGNAL THEORY PROCES
de Sio FS, 2018, FRONT ROBOT AI, V5, DOI 10.3389/frobt.2018.00015
DECKER KS, 1987, IEEE T SYST MAN CYB, V17, P729, DOI 10.1109/TSMC.1987.6499280
Dedic N, 2017, LECT NOTES BUS INF P, V285, P114, DOI 10.1007/978-3-319-58801-8_10
Dewdney A.K., 2004, Beyond Reason: Eight Great Problems that Reveal the Limits of Science
Dohler M, 2011, IEEE COMMUN MAG, V49, P159, DOI 10.1109/MCOM.2011.5741160
Dorf R.C., 2017, MODERN CONTROL SYSTE
Eberhart R.C., 2007, COMPUTATIONAL INTELL
Elsayed E. A., 2021, ELIABILITY ENG, V3rd
Epstein D., 2019, RANGE WHY GENERALIST
ETSI, 2020, EXPERIENTIAL NETWORK
ETSI, 2020, ZERO TOUCH SERVICE M
European Commission, 2019, The European Green Deal
European Commission, 2001, A Sustainable Europe for a Better World: A European Union Strategy for Sustainable Development
European Commission, 2019, EUROPEAN RES INFRAST
European Commission, 2020, APPL ARTI CIAL INTEL
European Commission, 2020, A European strategy for data. Communication from the European Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions
European Council, 2019, A new strategic agenda 20192024
FELDER RM, 1988, ENG EDUC, V78, P674
Figueira J., INT SER OPER RES MAN
Filip FG, 2009, SPRINGER HANDBOOK OF AUTOMATION, P619, DOI 10.1007/978-3-540-78831-7_36
Forrester JW, 2007, SYST DYNAM REV, V23, P345, DOI 10.1002/sdr.382
Forrester JW, 2007, SYST DYNAM REV, V23, P359, DOI 10.1002/sdr.381
Frampton KD, 2010, J ACOUST SOC AM, V128, P2798, DOI 10.1121/1.3183369
François C, 1999, SYST RES BEHAV SCI, V16, P203, DOI 10.1002/(SICI)1099-1743(199905/06)16:3<203::AID-SRES210>3.0.CO;2-1
Fricks RB, 2017, P REL MAINT S
Friedman M., 1999, Introduction to Pattern Recognition. Statistical, Structural
Futures Platform, 2020, DYNAMIC FORESIGHT TO
Gass SaulI., 2005, ANNOTATED TIMELINE O, V2nd
Ghosh S., 2015, Distributed systems: An algorithmic approach
Global Footprint Network, 2019, EARTH OVERHOOT DAY
Gupta RA, 2010, IEEE T IND ELECTRON, V57, P2527, DOI 10.1109/TIE.2009.2035462
Haddad W. M., 2008, Nonlinear dynamical systems and control: A Lyapunov-based approach
Haenggi, 2013, STOCHASTIC GEOMETRY
Hall A., 1962, METHODOLOGY SYSTEMS
Harb A, 2011, RENEW ENERG, V36, P2641, DOI 10.1016/j.renene.2010.06.014
High-Level Expert Group on Arti~cial Intelligence, 2019, DE NITION MAIN CAPAB
High-Level Export Group on AI, 2019, Ethics Guidelines for Trustworthy AI
Hind M., 2019, XRDS: Crossroads, the ACM Magazine for Students, V25, P16, DOI DOI 10.1145/3313096
Honderich T., 2005, OXFORD COMPANION PHI, P668
Hubka V., 1988, THEORY TECHNICAL SYS
Hugoson MÅ, 2009, IFIP ADV INF COMM TE, V303, P106
HUURDEMAN AntonA., 2003, WORLDWIDE HIST TELEC
IEEE, 2020, SYSTEMS ENG BODY KNO
IEEE Computational Intelligence Society, 2019, SMARTWORLD TECHNICAL
IEEE Computer Society, 2019, COMPUTING CURRICULUM
Iivari J., 1991, European Journal of Information Systems, V1, P249, DOI 10.1057/ejis.1991.47
International Vocabulary of Metrology~Basic and General Concepts and Associated Terms (VIM), 2012, DOCUMENT JCGM 200201, V3rd
Investopedia, 2018, INTERACTIVECORP IAC
ITU Focus Group on Technologies for Network, 2018, DOCUMENT FG NET 2030
ITU-T Focus Group on AI for Health, 2020, DEL054 TRAIN TEST DA
Jacobson I., 2004, Software Systems Modeling, V3, P210, DOI [DOI 10.1007/S10270-004-0060-3, 10.1007/s10270-004-0060-3]
Jain R. K., 2010, MANAGEMENT RES DEV O, V3rd
Jarke M., 1998, Requirements Engineering, V3, P155, DOI 10.1007/s007660050002
Javidan M, 1998, LONG RANGE PLANN, V31, P60, DOI 10.1016/S0024-6301(97)00091-5
Johnson RR, 2004, J BUS TECH COMMUN, V18, P251, DOI 10.1177/1050651904182008
Kahlen F.J., 2017, Transdisciplinary perspectives on complex systems, DOI DOI 10.1007/978-3-319-38756-7_4
Katsuhiko O., 2010, MODERN CONTROL ENG
Kay S. M., 1993, Fundamentals of Statistical Signal Pro-cessing: Estimation Theory
Kephart JO, 2003, COMPUTER, V36, P41, DOI 10.1109/MC.2003.1160055
Kim KD, 2012, P IEEE, V100, P1287, DOI 10.1109/JPROC.2012.2189792
King WR, 2006, INFORM MANAGE-AMSTER, V43, P740, DOI 10.1016/j.im.2006.05.003
Kline StephenJay., 1995, CONCEPTUAL FDN MULTI
Koksalan M. M., 2011, Multiple Criteria Decision Making: From Early History to the 21st Century
Konar A., 2005, COMPUTATIONAL INTELL
Konig T., P AUSTR PRES COUNC E, P1
Kortenkamp D, 2016, SPRINGER HANDBOOK OF ROBOTICS, P283
Kossiakoff A., 2020, SYSTEMS ENG PRINCIPL, V3rd
Kotseruba I, 2020, ARTIF INTELL REV, V53, P17, DOI 10.1007/s10462-018-9646-y
Kreutz D, 2015, P IEEE, V103, P14, DOI 10.1109/JPROC.2014.2371999
Kridel C.A., 2010, Encyclopedia of curriculum studies
Kurose J. F., 2013, Computer Networking: A Top-Down Approach: International Edition
Laszlo E., 1996, A systems view of the world: A holistic vision for our time
Lee LC, 1998, BT TECHNOL J, V16, P94, DOI 10.1023/A:1009686016775
Liu D., 2016, Systems engineering: Design principles and models
Liu X, 2019, IEEE ACCESS, V7, P79523, DOI 10.1109/ACCESS.2019.2920763
Ma JH, 2005, INT J PERVASIVE COMP, V1, P53, DOI 10.1108/17427370580000113
Ma JH, 2015, IEEE ACCESS, V3, P2475, DOI 10.1109/ACCESS.2015.2504123
Malgieri G, 2019, COMPUT LAW SECUR REV, V35, DOI 10.1016/j.clsr.2019.05.002
Mammela A., IN PRESS, V2
Mämmelä A, 2018, IEEE ACCESS, V6, P17464, DOI 10.1109/ACCESS.2018.2816605
Mämmelä A, 2017, IEEE CIRC SYST MAG, V17, P12, DOI 10.1109/MCAS.2016.2642679
Markov IL, 2014, NATURE, V512, P147, DOI 10.1038/nature13570
Marler RT, 2004, STRUCT MULTIDISCIP O, V26, P369, DOI 10.1007/s00158-003-0368-6
Marsland S, 2015, DECISION COMMITTEE E
Martin M., 2004, Ethics in engineering, V4th
Maslow Abraham Harold, 1981, Motivation and personality
Matheson D., 2015, An Introduction to the Study of Education, V4th
Matinmikko-Blue M., 2020, IS CRYPTO FINANCIAL
Maurer M., 2015, AUTONOMOUS DRIVING T
McGarry K., 1999, Neural Computing Surveys, V2
Meadows D. H., 2008, Thinking in systems: a primer
Medsker L.R., 1995, HYBRID INTELLIGENT S
Mendel J., 1970, Adaptive, Learning and Pattern Recognition Systems: Theory and Applications
MESAROVIC M., 1970, THEORY HIERARCHICAL
Miller JamesGrier., 1978, LIVING SYSTEMS
MILLER JG, 1973, Q REV BIOL, V48, P63, DOI 10.1086/407588
Milojicic D, 2019, COMPUTER, V52, P31, DOI 10.1109/MC.2019.2944708
Mineraud J, 2016, COMPUT COMMUN, V89-90, P5, DOI 10.1016/j.comcom.2016.03.015
Mitchell Melanie, 2009, COMPLEXITY GUIDED TO, DOI DOI 10.1063/1.3326990
Mitchell T. M., 1997, Mach Learn
Müller MK, 2018, EURASIP J WIREL COMM, DOI 10.1186/s13638-018-1238-7
Murata Satoshi., 2012, Self-organizing robots
Neubauer C., 2018, GLOBAL PRESSING PROB
Nguyen D. C., 2020, ARXIV200300866
Nielsen CB, 2015, ACM COMPUT SURV, V48, DOI 10.1145/2794381
Nielsen J., 1994, Usability Engineering | Guidebooks, pp 362, DOI DOI 10.5555/2821575
Nilsson N. J., 1998, ARTI CIAL INTELLIGEN
Norman, 2013, DESIGN EVERYDAY THIN
Ovaska SJ, 2006, IEEE T SYST MAN CY C, V36, P439, DOI 10.1109/TSMCC.2005.855528
Pahlavan K, 2015, IEEE ACCESS, V3, P3058, DOI 10.1109/ACCESS.2015.2508648
Panetta K., 2019, 5 TRENDS EMERGE GART
Partridge C, 2011, ACM SIGCOMM COMP COM, V41, P24, DOI 10.1145/2043165.2043170
Pautasso Cesare., 2009, P 18 INT C WORLD WID
Peltonen E., 2020, ARXIV200414850
Perona E., 2005, REV EC ESTADISTICA, V43, P29
PLATT JR, 1964, SCIENCE, V146, P347, DOI 10.1126/science.146.3642.347
Provost F, 2013, BIG DATA, V1, P51, DOI 10.1089/big.2013.1508
Pyster A., 2015, Graduate Reference Curriculum for Systems Engineering (GRCSETM) V1.1
Ramage M, 2009, SYSTEMS THINKERS, P1, DOI 10.1007/978-1-84882-525-3
Reese B., 2019, GIGAOM
Repko A. F., 2020, INTERDISCIPLINARY RE
Robertazzi T. G., 1986, IEEE Communications Magazine, V24, P28, DOI 10.1109/MCOM.1986.1092925
Robson David., 2019, The Intelligence Trap: Why Smart People Make Dumb Mistakes
Rosenberg Alexander., 2012, Philosophy of Science: A Contemporary Introduction
Rudas IJ, 2008, INT J COMPUT COMMUN, V3, P132
Russell S., 2010, Arti cial Intelligence: A Modern Approach
Russell S, 2015, AI MAG, V36, P105, DOI 10.1609/aimag.v36i4.2577
Saridis G.N., 2001, Hierarchically Intelligent Machines, DOI 10.1142/4846
SARIDIS GN, 1979, P IEEE, V67, P1115, DOI 10.1109/PROC.1979.11407
Satyanarayanan M, 2001, IEEE PERS COMMUN, V8, P10, DOI 10.1109/98.943998
Schetzen M., 2006, VOLTERRA WIENER THEO
Schwab K., 2017, 4 IND REVOLUTION
Sheridan T. B., 2016, MODELING HUMAN SYSTE
Shortle John F., 2018, Fundamentals of Queueing Theory, V4th
Singh S., 2019, 12 MEGA THEMES WILL
Snider E, 2020, NATURE, V586, P373, DOI 10.1038/s41586-020-2801-z
Software and Systems Engineering Vocabulary, 2017, IEEE COMPUTER SOC IS
Solovjew-Wartiovaara A., 2019, FINNISH INNOVATION F
Stanford Encyclopedia of Philosophy Stanford University Stanford CA USA, 2019, FRAME PROBLEM
Stankovic JA, 2014, IEEE INTERNET THINGS, V1, P3, DOI 10.1109/JIOT.2014.2312291
Statista, 2019, Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025
Statista, 2019, SIZE INTERNET THINGS
Stonier T., 1992, INFORM
STONIER T., 1997, Information and meaning: an evolutionary perspective
Strogatz S., 2014, Studies in Nonlinearity
Swanson J, 2002, J OPER RES SOC, V53, P472, DOI 10.1057/palgrave.jors.2601336
Sycara KP, 1998, AI MAG, V19, P79
Talbi EG, 2009, Metaheuristics from design to implementation
Thiel D.V., 2014, Research methods for engineer
Tsoukiàs A, 2008, EUR J OPER RES, V187, P138, DOI 10.1016/j.ejor.2007.02.039
Tubiello FN, 2015, GLOBAL CHANGE BIOL, V21, P2655, DOI 10.1111/gcb.12865
Turing D., 2018, STORY COMPUTING ABAC
Tzafestas S. G., 2018, ENERGY FEEDBACK ADAP
United Nations, 2015, TRANSF OUR WORLD 203, DOI [10.1891/9780826190123.ap02, DOI 10.1891/9780826190123.AP02]
Valavanis K., 2007, ADV UNMANNED AERIAL
Veldhuizen V., 2007, EVOLUTIONARY ALGORIT
Viswanathan H, 2020, IEEE ACCESS, V8, P57063, DOI 10.1109/ACCESS.2020.2981745
Vogt A., 2019, TEKNOWLOGY
von Solms R, 2013, COMPUT SECUR, V38, P97, DOI 10.1016/j.cose.2013.04.004
W3C, 2020, SEMANT WEB
WEISER M, 1991, SCI AM, V265, P94, DOI 10.1038/scientificamerican0991-94
West Geoffrey, 2017, SCALE UNIVERSAL LAWS
Widrow B., 1985, ADAPTIVE SIGNAL PROC
WILDER RL, 1967, SCIENCE, V156, P605, DOI 10.1126/science.156.3775.605
Wilenius M, 2014, EUR J FUTURES RES, V2, DOI 10.1007/s40309-014-0036-7
Wilson EO., 1998, Consilience: The unity of knowledge
Yang P, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3339474
Yang X.-S., 2010, Engineering Optimization: An Introduction with Metaheuristic Applications, DOI DOI 10.1002/9780470640425
Yanofsky NS, 2013, OUTER LIMITS OF REASON: WHAT SCIENCE, MATHEMATICS, AND LOGIC CANNOT TELL US, P1
Yaqoob I, 2017, IEEE WIREL COMMUN, V24, P10, DOI 10.1109/MWC.2017.1600421
Zhang LX, 2013, IEEE T IND INFORM, V9, P403, DOI 10.1109/TII.2012.2219540
Zhang ZQ, 2019, IEEE VEH TECHNOL MAG, V14, P28, DOI 10.1109/MVT.2019.2921208
Zhu C, 2015, IEEE ACCESS, V3, P2151, DOI 10.1109/ACCESS.2015.2497312
NR 243
TC 11
Z9 11
U1 1
U2 29
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2021
VL 9
BP 53156
EP 53177
DI 10.1109/ACCESS.2021.3069902
PG 22
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Engineering; Telecommunications
GA RM7YC
UT WOS:000639873400001
OA gold, Green Submitted
DA 2024-09-05
ER
PT C
AU Zheng, YP
Zhou, ZQ
Blikstein, P
AF Zheng, Yipu
Zhou, Zhuqian
Blikstein, Paulo
BE Rodrigo, MM
Matsuda, N
Cristea, AI
Dimitrova, V
TI Towards an Inclusive and Socially Committed Community in Artificial
Intelligence in Education: A Social Network Analysis of the Evolution of
Authorship and Research Topics over 8 Years and 2509 Papers
SO ARTIFICIAL INTELLIGENCE IN EDUCATION, PT I
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 23rd International Conference on Artificial Intelligence in Education
(AIED)
CY JUL 27-31, 2022
CL Durham Univ, Durham, ENGLAND
HO Durham Univ
DE Co-authorship network; Social network analysis; Keyword analysis;
Bibliometric analysis
AB This paper presents an overviewof the last decade of research on Artificial Intelligence in Education by conducting keyword and social network analysis on the time-evolving co-authorship networks in four major research conferences: the International Conference on Artificial Intelligence in Education, the International Conference on Educational Data Mining, the International Conference on Learning Analytics and Knowledge, and the ACM Conference on Learning at Scale. Time-evolving co-authorship networks were used as a proxy for the collaboration dynamic in the field, while keyword analysis was conducted to supplement the social network analysis in order to pinpoint foci of individuals and cliques. Recent research foci and the level of openness of the four research communities were examined to inform strategies on how to promote diverse ideas and further collaborations within the field of AI in Education.
C1 [Zheng, Yipu; Zhou, Zhuqian; Blikstein, Paulo] Columbia Univ, Teachers Coll, New York, NY 10027 USA.
C3 Columbia University Teachers College; Columbia University
RP Zheng, YP (corresponding author), Columbia Univ, Teachers Coll, New York, NY 10027 USA.
EM yz3204@tc.columbia.edu; zz2404@tc.columbia.edu; paulob@tc.columbia.edu
RI ; Blikstein, Paulo/F-2396-2019
OI Zhou, Zhuqian/0000-0002-8045-6213; Blikstein, Paulo/0000-0003-3941-1088
CR Abbasi A, 2011, SCIENTOMETRICS, V89, P687, DOI 10.1007/s11192-011-0463-1
Benjamin R., 2019, Race After Technology: Abolitionist Tools for the New Jim Code
Berendt B, 2020, LEARN MEDIA TECHNOL, V45, P312, DOI 10.1080/17439884.2020.1786399
Blikstein Paulo., 2021, Algorithmic Rights and Protections for Children, DOI [https://doi.org/10.1162/ba67f642.646d0673, DOI 10.1162/BA67F642.646D0673]
Cheong F., 2009, P 17 EUROPEAN C INFO
Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
Feng SH, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64351-3
Luckin R., 2016, INTELLIGENCE UNLEASH
Pesta Bryan, 2018, J Intell, V6, DOI 10.3390/jintelligence6040046
Sarigöl E, 2014, EPJ DATA SCI, V3, DOI 10.1140/epjds/s13688-014-0009-x
Selwyn N, 2020, LEARN MEDIA TECHNOL, V45, P1, DOI 10.1080/17439884.2020.1694945
Taddeo M, 2018, SCIENCE, V361, P751, DOI 10.1126/science.aat5991
Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0
Zuboff S, 2015, J INF TECHNOL-UK, V30, P75, DOI 10.1057/jit.2015.5
NR 14
TC 1
Z9 1
U1 4
U2 10
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-031-11644-5; 978-3-031-11643-8
J9 LECT NOTES COMPUT SC
PY 2022
VL 13355
BP 414
EP 426
DI 10.1007/978-3-031-11644-5_34
PG 13
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Education & Educational Research
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Education & Educational Research
GA BU1FW
UT WOS:000877435100034
DA 2024-09-05
ER
PT J
AU Pan, XQ
Gan, ZD
AF Pan, Xiaoquan
Gan, Zhengdong
TI Perceiving Technology-Based Professional Development Practices for
Teachers: Accounts From English as a Foreign Language (EFL) Teachers in
China
SO INTERNATIONAL JOURNAL OF COMPUTER-ASSISTED LANGUAGE LEARNING AND
TEACHING
LA English
DT Article
DE Collaboration; Community of Practice; Institutional Culture;
Interaction; Online Learning Community; Teacher Professional
Development; Teachers' Belief; Technology-Based Professional Development
ID COMMUNITY; IDENTITY; AGENCY; MODEL
AB This study explored how 26 Chinese EFL teachers perceived community-based, technology-supported professional development practices. The methods of data collection in this study blend quantitative and qualitative techniques: 1) questionnaire survey of teachers' satisfaction about community-based technology-supported professional development practices; 2) online teacher discussion postings; 3) teacher self-reflection journals; and 4) semi-structured interviews. Data analysis revealed a generally positive attitude and empowering feelings in these Chinese EFL teachers who viewed technology-facilitated practices as affording constructive functions for their professional development. Results also revealed a range of factors that apparently mediated/limited EFL teachers' participation in the professional development activities. This study thus contributes to the understanding of the reality in relation to actual utilization of technological resources in second-language teacher development in the context of a developing country such as China.
C1 [Pan, Xiaoquan] Zhejiang Normal Univ, Xingzhi Coll, Jinhua, Zhejiang, Peoples R China.
[Gan, Zhengdong] Univ Macau, Fac Educ, Macau, Peoples R China.
C3 Zhejiang Normal University; University of Macau
RP Pan, XQ (corresponding author), Zhejiang Normal Univ, Xingzhi Coll, Jinhua, Zhejiang, Peoples R China.
FU Department of Education of Zhejiang Province [kg20160564]
FX This research was supported by the Department of Education of Zhejiang
Province [grant number kg20160564].
CR [Anonymous], 2000, HDB QUALITATIVE RES
[Anonymous], 1998, COMMUNITIES PRACTICE, DOI DOI 10.1017/CBO9780511803932
[Anonymous], 2004, Situated Language and Learning: A Critique of Traditional Schooling, DOI DOI 10.4324/9780203594216
[Anonymous], 2008, Journal of Technology and Teacher Education
Avalos B, 2011, TEACH TEACH EDUC, V27, P10, DOI 10.1016/j.tate.2010.08.007
Booth SE, 2015, BRIT J EDUC TECHNOL, V46, P684, DOI 10.1111/bjet.12168
Carter K., 2004, Technology Learning, V24, P32
Chen YS, 2009, COMPUT EDUC, V53, P1155, DOI 10.1016/j.compedu.2009.05.026
Chih-Hsiung Tu, 2002, American Journal of Distance Education, V16, P131, DOI 10.1207/S15389286AJDE1603_2
Cho V, 2013, LEARN LANDSC, V6, P45, DOI 10.36510/learnland.v6i2.604
Clandinin D., 1995, Advances in contemporary educational thought
Clarke L, 2009, COMPUT EDUC, V52, P521, DOI 10.1016/j.compedu.2008.10.006
Cochran-Smith M, 1999, REV RES EDUC, V24, P249, DOI 10.3102/0091732X024001249
Day C., 1999, DEV TEACHERS CHALLEN
Dede C., 2006, ONLINE PROFESSIONAL
Dede C, 2009, J TEACH EDUC, V60, P8, DOI 10.1177/0022487108327554
Fereday J., 2006, INT J QUAL METH, V5, P80, DOI [DOI 10.1177/160940690600500107, 10.1177/160940690600500107]
Gan ZD, 2016, ASIA-PAC EDUC RES, V25, P251, DOI 10.1007/s40299-015-0258-x
Gerstein J., 2011, International Journal on E-Learning, V10, P273
Graham P., 2007, RMLE ONLINE RES MIDD, V31, P1, DOI DOI 10.1080/19404476.2007.11462044
Hough B. W., 2004, Journal of Technology and Teacher Education, V12, P361
Hramiak A, 2010, TECHNOL PEDAGOG EDUC, V19, P47, DOI 10.1080/14759390903579265
Judson E., 2006, Journal of Technology and Teacher Education, V14, P581, DOI DOI 10.1007/978-94-6209-266-2_
Kear K, 2010, OPEN FLEX LEARN SER, P1
Killen R., 2009, Effective teaching strategies: Lessons from research and practice
King K. P., 2002, Internet and Higher Education, V5, P231, DOI 10.1016/S1096-7516(02)00104-5
Lai C, 2015, INNOV LANG LEARN TEA, V9, P265, DOI 10.1080/17501229.2014.918982
Lee K., 2013, Journal of Technology and Teacher Education, V21, P89
Lee KW, 2018, INT J COMPUT-ASSIST, V8, P13, DOI 10.4018/IJCALLT.2018100102
Lieberman A, 2000, J TEACH EDUC, V51, P221, DOI 10.1177/0022487100051003010
Lieberman A., 2008, TEACHERS PROFESSIONA
Little JW, 2002, TEACH TEACH EDUC, V18, P917
Lomos C, 2011, SCH EFF SCH IMPROV, V22, P121, DOI 10.1080/09243453.2010.550467
McLoughlin C, 2010, J CASES INF TECHNOL, V12, P17, DOI 10.4018/jcit.2010010102
Mehli H, 2013, RES SCI TECHNOL EDUC, V31, P31, DOI 10.1080/02635143.2012.761604
Moate J, 2014, BRIT J EDUC STUD, V62, P249, DOI 10.1080/00071005.2014.955456
Mouza C, 2015, COMPUT EDUC, V88, P1, DOI 10.1016/j.compedu.2015.04.009
Opfer VD, 2011, TEACH TEACH EDUC, V27, P443, DOI 10.1016/j.tate.2010.09.014
Patton M., 2002, QUALITATIVE RES EVAL, DOI DOI 10.1002/NUR.4770140111
Prenger R, 2017, TEACH TEACH EDUC, V68, P77, DOI 10.1016/j.tate.2017.08.014
Prestridge S, 2017, TECHNOL PEDAGOG EDUC, V26, P85, DOI 10.1080/1475939X.2016.1167113
Prestridge S, 2010, TEACH TEACH EDUC, V26, P252, DOI 10.1016/j.tate.2009.04.004
Sahin I., 2007, J TECHNOLOGY TEACHER, V15, P167
Santoro DA, 2011, TEACH COLL REC, V113, P2670
Schn D. A., 1987, Educating the reflexive practitioner
Shea P., 2006, Internet and Higher Education, V9, P175, DOI 10.1016/j.iheduc.2006.06.005
Sjoer E, 2016, EUR J TEACH EDUC, V39, P110, DOI 10.1080/02619768.2014.994058
Smith P., 2017, The challenge of teaching: Through the eyes of pre-service teachers, P25, DOI [DOI 10.1007/978-981-10-2571-6_4, https://doi.org/10.1007/978-981-10-2571-6_4]
Stiler G.M., 2003, EDUCATION, V123, P789
Trent J, 2013, TECHNOL PEDAGOG EDUC, V22, P3, DOI 10.1080/1475939X.2012.720416
Vähäsantanen K, 2015, TEACH TEACH EDUC, V47, P1, DOI 10.1016/j.tate.2014.11.006
Vescio V, 2008, TEACH TEACH EDUC, V24, P80, DOI 10.1016/j.tate.2007.01.004
Wenger E., 2009, Digital habitats: Stewarding technology for communities
Wu B, 2016, J EDUC COMPUT RES, V54, P531, DOI 10.1177/0735633115621922
Yang H, 2012, TECHNOL PEDAGOG EDUC, V21, P101, DOI 10.1080/1475939X.2012.659886
NR 55
TC 7
Z9 7
U1 3
U2 33
PU IGI GLOBAL
PI HERSHEY
PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA
SN 2155-7098
EI 2155-7101
J9 INT J COMPUT-ASSIST
JI Int. J. Comput.-Assist. Lang. Learn. Teach.
PD APR-JUN
PY 2020
VL 10
IS 2
BP 40
EP 58
DI 10.4018/IJCALLT.2020040103
PG 19
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA PP3BA
UT WOS:000605740200003
DA 2024-09-05
ER
PT J
AU Nti, IK
Bawah, FU
Quarcoo, JA
Kalos, F
AF Nti, Isaac Kofi
Bawah, Faiza Umar
Quarcoo, Juanita Ahia
Kalos, Favour
TI A Bibliometric Analysis of Soft Computing Technology Applications Trends
and Characterisation in Educational Research: Africa
SO AFRICA EDUCATION REVIEW
LA English
DT Article
DE Africa education; artificial intelligence in education; educational
analytics; educational data mining; education technology; soft computing
technology applications in education
ID STUDENTS; PERFORMANCE; METAANALYSIS
AB Computers in education, along with soft-computing technology applications, have revolutionised global interconnectedness and the need for a well-educated workforce. Many studies worldwide explore technology in education, often relying on systematic reviews, though concerns about selection bias have emerged. This article takes a different approach, employing bibliometric analysis to delve into the trends, key authors, institutions, and themes of soft-computing technology applications in education (SCTAE) research in Africa. Initially, 7 435 papers were downloaded from Scopus and then narrowed down to 1 358 using the PRISMA model and defined criteria. Utilising the VOSViewer text mining tool, the article maps out prolific authors, institutions, and thematic networks. It provides detailed findings and outlines opportunities, challenges, and future research prospects in SCTAE in the African context.
C1 [Nti, Isaac Kofi] Univ Cincinnati, Cincinnati, ND 45221 USA.
[Bawah, Faiza Umar; Kalos, Favour] Univ Energy & Nat Resources, Sunyani, Ghana.
[Quarcoo, Juanita Ahia] Sunyani Tech Univ, Sunyani, Ghana.
RP Nti, IK (corresponding author), Univ Cincinnati, Cincinnati, ND 45221 USA.
EM isaac.nti@uc.edu
RI NTI, ISAAC KOFI/E-2004-2017
OI NTI, ISAAC KOFI/0000-0001-9257-4295; Ahia Quarcoo,
Juanita/0000-0001-7702-755X
CR Adekitan AI, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01250
Aghayev Firudin T., 2017, Problems of Information Society, V13, P97, DOI [https://doi.org/10.25045/jpis.v13.i1.12, DOI 10.25045/JPIS.V13.I1.12]
Avasthi S., 2021, Advances in Information Communication Technology and Computing, P385
Birhanu AM, 2014, BMC PUBLIC HEALTH, V14, DOI 10.1186/1471-2458-14-1186
Castro L, 2022, J CLEAN PROD, V331, DOI 10.1016/j.jclepro.2021.130004
Dandouh K, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0169-4
Deressa W, 2011, BMC PUBLIC HEALTH, V11, DOI 10.1186/1471-2458-11-660
El Shenawy E, 2007, INT J QUAL RELIAB MA, V24, P442, DOI 10.1108/02656710710748349
Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z
Faheem Abdul., 2021, 4th Industrial Revolution: Challenges and Opportunities
Gao Yuhang, 2021, Theor. Pract. Lang. Stud., V11, P202
George TT, 2021, S AFR J BOT, V141, P12, DOI 10.1016/j.sajb.2021.04.025
Glenisson P, 2005, SCIENTOMETRICS, V63, P163, DOI 10.1007/s11192-005-0208-0
Hailemeskel S, 2016, INT J WOMENS HEALTH, V8, P489, DOI 10.2147/IJWH.S112768
Hair JF, 2021, J MARKET THEORY PRAC, V29, P65, DOI 10.1080/10696679.2020.1860683
Hawlitschek A, 2023, COMPUT SCI EDUC, V33, P400, DOI 10.1080/08993408.2022.2039504
Herrera-Franco G., 2021, Int. J. Sustain. Dev. Plan, V16, P1109, DOI [10.18280/ijsdp.160612, DOI 10.18280/IJSDP.160612]
Kebede MA, 2019, INT J MENT HEALTH SY, V13, DOI 10.1186/s13033-019-0287-6
Kechaou Z., 2011, 2011 IEEE Global Engineering Education Conference (EDUCON), P1032, DOI 10.1109/EDUCON.2011.5773275
Kotzé M, 2013, J PSYCHOL AFR, V23, P51, DOI 10.1080/14330237.2013.10820593
Kumar S., 2011, 2011 3rd International Conference on Electronics Computer Technology (ICECT 2011), P414, DOI 10.1109/ICECTECH.2011.5942032
Linnenluecke MK, 2020, AUST J MANAGE, V45, P175, DOI 10.1177/0312896219877678
Liu GW, 2019, CONSTR INNOV-ENGL, V19, P343, DOI 10.1108/CI-03-2018-0013
Loeneto Bambang Apriady., 2022, Handbook of Research on Teacher Education: Innovations and Practices in Asia, edited by Myint Swe Khine and Yang Liu, P173, DOI [https://doi.org/10.1007/978-981-16-9785-2_10, DOI 10.1007/978-981-16-9785-2_10]
Lu KY, 2022, APPL INTELL, V52, P13689, DOI 10.1007/s10489-021-02909-y
Maphosa M, 2022, IEEE T EDUC, V65, P657, DOI 10.1109/TE.2022.3160935
Matsebula F, 2017, AFRICON, P951, DOI 10.1109/AFRCON.2017.8095610
Asad MM, 2022, EDUC RES INT, V2022, DOI 10.1155/2022/8262304
Mwalumbwe I, 2017, ELECTR J INF SYS DEV, V79
Nti IK, 2022, J COMPUT EDUC, V9, P195, DOI 10.1007/s40692-021-00201-z
Nyirahabimana P., 2022, LUMAT INT J MATH SCI, V10, P89, DOI [10.31129/lumat.10.1.1634, DOI 10.31129/LUMAT.10.1.1634]
Ogor EN, 2007, ELECT ROBOT AUTO MEC, P354, DOI 10.1109/CERMA.2007.4367712
Olufadi Y, 2015, COMPUT EDUC, V86, P84, DOI 10.1016/j.compedu.2015.03.005
Parlina A, 2020, INFORMATION, V11, DOI 10.3390/info11020069
Perry K, 2022, EDUC RES REV-NETH, V36, DOI 10.1016/j.edurev.2022.100451
Qazdar A, 2019, EDUC INF TECHNOL, V24, P3577, DOI 10.1007/s10639-019-09946-8
Ramadan R. A., 2010, 2010 6th International Conference on Intelligent Environments (IE), P344, DOI 10.1109/IE.2010.70
Rinaldi AM, 2021, EXPERT SYST APPL, V169, DOI 10.1016/j.eswa.2020.114320
Ross T., 2012, SURVIVAL GUIDE HLTH, VFirst
Royle P, 2013, SYST REV-LONDON, V2, DOI 10.1186/2046-4053-2-74
Saheb T, 2019, HEALTHC INFORM RES, V25, P61
Saint J., 2022, Computers and Education: Artificial intelligence, V3, P100060, DOI DOI 10.1016/J.CAEAI.2022.100060
Sivakumar S., 2016, Indian Journal of Science and Technology, V9, P1, DOI [10.17485/ijst/2016/v9i4/87032, DOI 10.17485/IJST/2016/V9I4/87032]
Speringer Markus., 2018, InTechOpen, DOI [https://doi.org/10.5772/intechopen.79165, DOI 10.5772/INTECHOPEN.79165]
Stegenga J, 2011, STUD HIST PHI PART C, V42, P497, DOI 10.1016/j.shpsc.2011.07.003
Talan T, 2023, INFORM EDUC, V22, P161, DOI 10.15388/infedu.2023.02
Tella A., 2007, Eurasia Journal of Mathematics, Science Technology Education, V3, P149
Walker E, 2008, CLEV CLIN J MED, V75, P431, DOI 10.3949/ccjm.75.6.431
Yu D., 2019, J. Data. Infor. Manag, V1, P3, DOI [10.3390/su10010166, 10.1007/s42488-019-00001-2, DOI 10.1007/S42488-019-00001-2]
NR 49
TC 0
Z9 0
U1 5
U2 5
PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 1814-6627
EI 1753-5921
J9 AFR EDUC RE
JI Afr. Educ. Rev.
PD MAY 4
PY 2022
VL 19
IS 3
BP 55
EP 77
DI 10.1080/18146627.2023.2284744
PG 23
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA CF0E1
UT WOS:001123710200001
DA 2024-09-05
ER
PT J
AU Limaymanta, CH
Apaza-Tapia, L
Vidal, E
Gregorio-Chaviano, O
AF Limaymanta, Cesar H.
Apaza-Tapia, Ludgarda
Vidal, Elizabeth
Gregorio-Chaviano, Orlando
TI Flipped Classroom in Higher Education: A Bibliometric Analysis and
Proposal of a Framework for its Implementation
SO INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING
LA English
DT Article
DE Flipped classroom; Bibliometrics; Higher education; Active learning;
Framework; Scientific collaboration; Co-occurrence; Scientific
production; Information and communication technology
ID UNIVERSITY; SCIENCE; COLLABORATION
AB The flipped classroom as an educational model is perfectly aligned with the current demands of higher education. Therefore, the objectives of this article were to carry out a bibliometric analysis of the scientific production of the flipped classroom in higher education (2012-2020) and to propose a framework for its implementation in face-to-face, blended or online learning modalities. The records were recovered from the Web of Science Core Collection and Scopus, from which, after a five-phase methodological process, a consolidated dataset of 782 documents was obtained. The results showed the importance of the subject matter as scientific production reflected a continuous growth during the period of study. For their part, the most productive authors come from various institutions worldwide with an H index of over 50. The collaboration indicators show the growth trend of these indexes over the years, which reflects the capacity to generate national and international impact in the documents published in collaboration. The keywords co-occurrence analysis showed that the flipped classroom as a technological and innovative approach is complemented by active learning, blended learning, e-learning, ICT, teaching method, among others. Finally, a framework with five components was proposed as a basic guide for the implementation of the flipped classroom in higher education.
C1 [Limaymanta, Cesar H.] Univ Nacl Mayor San Marcos, Lima, Peru.
[Limaymanta, Cesar H.] Univ Peruana Ciencias Aplicadas, Lima, Peru.
[Apaza-Tapia, Ludgarda] Univ Nacl San Agustin Arequipa, Sch Accounting & Financial Sci, Arequipa, Peru.
[Vidal, Elizabeth] Univ Nacl San Agustin Arequipa, Comp & Syst Engn Dept, Arequipa, Peru.
[Gregorio-Chaviano, Orlando] Pontificia Univ Javeriana, Bibliometr, Bogota, Colombia.
C3 Universidad Nacional Mayor de San Marcos; Universidad Peruana de
Ciencias Aplicadas (UPC); Universidad Nacional de San Agustin de
Arequipa; Universidad Nacional de San Agustin de Arequipa; Pontificia
Universidad Javeriana
RP Limaymanta, CH (corresponding author), Univ Nacl Mayor San Marcos, Lima, Peru.; Limaymanta, CH (corresponding author), Univ Peruana Ciencias Aplicadas, Lima, Peru.
EM climaymantaa@unmsm.edu.pe
RI Limaymanta, Cesar H/IUM-1770-2023; Limaymanta, Cesar H./AAC-2537-2019;
Gregorio-Chaviano, Orlando/B-5480-2018; Vidal, Elizabeth/HMV-4001-2023
OI Limaymanta, Cesar H./0000-0002-8797-4275; Gregorio-Chaviano,
Orlando/0000-0002-3064-8639; Vidal, Elizabeth/0000-0002-8367-9439;
Apaza-Tapia, Ludgarda/0000-0001-8894-3879
CR Abeysekera L, 2015, HIGH EDUC RES DEV, V34, P1, DOI 10.1080/07294360.2014.934336
Aguilera C., 2017, International Journal of Developmental and Educational Psychology, V4, P261, DOI DOI 10.17060/IJODAEP.2017.N1.V4.1055
AJIFERUKE I, 1988, SCIENTOMETRICS, V14, P421, DOI 10.1007/BF02017100
Al-Shabibi T.S., 2019, International Journal of Learning, Teaching and Educational Research, V18, P96, DOI DOI 10.26803/IJLTER.18.3.6
[Anonymous], 2008, ACIMED
Aprianto E, 2020, INT J EMERG TECHNOL, V15, P114, DOI 10.3991/ijet.v15i24.14017
Bergmann J, 2012, FLIP YOUR CLASSROOM
Bergmann J.y., 2014, Dale la vuelta a tu clase. Lleva tu clase a cada estudiante
Brewer R, 2018, J COMPUT ASSIST LEAR, V34, P409, DOI 10.1111/jcal.12250
Carver R., 1996, J EXPERIENT EDUC, V19, P8, DOI DOI 10.1177/105382599601900102
Chan SY, 2020, INNOV EDUC TEACH INT, V57, P62, DOI 10.1080/14703297.2018.1541189
DePietro DM, 2021, ACAD RADIOL, V28, P128, DOI 10.1016/j.acra.2020.10.005
Deterding S., 2011, P 15 INT ACAD MINDTR, P9, DOI DOI 10.1145/2181037.2181040
Ellegaard O, 2015, SCIENTOMETRICS, V105, P1809, DOI 10.1007/s11192-015-1645-z
Franceschet M, 2011, J AM SOC INF SCI TEC, V62, P1992, DOI 10.1002/asi.21614
Glänzel W, 2012, PROF INFORM, V21, P194, DOI 10.3145/epi.2012.mar.11
Glanzel Wolfgang., 2002, Coauthorship patterns and trends in the sciences (1980-1998): A bibliometric study with implications for database indexing and search strategies
GROOS OV, 1969, J DOC, V25, P344, DOI 10.1108/eb026482
He WL, 2016, LEARN INSTR, V45, P61, DOI 10.1016/j.learninstruc.2016.07.001
Hew KF, 2020, INT J EDUC TECHNOL H, V17, DOI 10.1186/s41239-020-00234-x
Hinojo-Lucena FJ, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051334
Jeong JS, 2021, INTERACT LEARN ENVIR, V29, P707, DOI 10.1080/10494820.2019.1636079
Julia J., 2020, European Journal of Educational Research, V9, P1377, DOI [10.12973/eu-jer.9.4, DOI 10.12973/EU-JER.9.4]
Kim MK, 2014, INTERNET HIGH EDUC, V22, P37, DOI 10.1016/j.iheduc.2014.04.003
Lazcano-Peña D, 2020, REV ESP DOC CIENT, V43, DOI 10.3989/redc.2020.1.1626
Lo CK, 2018, KNOWL MANAG E-LEARN, V10, P441
Lundin M, 2018, INT J EDUC TECHNOL H, V15, DOI 10.1186/s41239-018-0101-6
Moral-Munoz JA, 2019, SPRINGER HBK, P159, DOI 10.1007/978-3-030-02511-3_7
O'Flaherty J, 2015, INTERNET HIGH EDUC, V25, P85, DOI 10.1016/j.iheduc.2015.02.002
Ozadowicz A, 2020, EDUC SCI, V10, DOI 10.3390/educsci10100292
Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x
Martínez TS, 2019, REICE-REV IBEROAM CA, V17, P25, DOI 10.15366/reice2019.17.1.002
Strayer J. F., 2012, LEARNING ENVIRON RES, V15, P171, DOI [10.1007/s10984-012-9108-4, DOI 10.1007/S10984-012-9108-4]
Tang T, 2023, INTERACT LEARN ENVIR, V31, P1077, DOI 10.1080/10494820.2020.1817761
Tsai HL, 2020, SCI ED, V7, P163, DOI 10.6087/kcse.212
Umam Khoerul, 2019, International Journal of Interactive Mobile Technologies, V13, P68, DOI 10.3991/ijim.v13i03.10207
UNESCO, 2020, Education: From disruption to recovery
Van Eck N.J., 2014, Measuring Scholarly Impact: Methods and Practice, P285, DOI 10.1007/978-3-319-10377-8_13(InEng.)
van Eck NJ, 2010, SCIENTOMETRICS, V84, P523, DOI 10.1007/s11192-009-0146-3
van Eck NJ, 2009, J AM SOC INF SCI TEC, V60, P1635, DOI 10.1002/asi.21075
Vargas-Quesada B., 2007, VISUALIZING STRUCTUR, DOI [10.1007/3-540-69728-4, DOI 10.1007/3-540-69728-4]
Waltman L, 2010, J INFORMETR, V4, P629, DOI 10.1016/j.joi.2010.07.002
Yang L, 2017, INT J EMERG TECHNOL, V12, P178, DOI 10.3991/ijet.v12i06.7095
Zayapragassarazan Z., 2012, ONLINE SUBMISSION, V19, P3
NR 44
TC 14
Z9 16
U1 2
U2 26
PU INT ASSOC ONLINE ENGINEERING
PI WIEN
PA KIRCHENGASSE 10-200, WIEN, A-1070, AUSTRIA
SN 1863-0383
J9 INT J EMERG TECHNOL
JI Int. J. Emerg. Technol. Learn.
PY 2021
VL 16
IS 9
BP 133
EP 149
DI 10.3991/ijet.v16i09.21267
PG 17
WC Education & Educational Research
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA RZ0OU
UT WOS:000648300600009
OA Green Submitted, gold
DA 2024-09-05
ER
PT C
AU García-Sánchez, P
Cobo, MJ
AF Garcia-Sanchez, P.
Cobo, M. J.
BE Yin, H
Camacho, D
Novais, P
TallonBallesteros, AJ
TI Measuring the Impact of the International Relationships of the
Andalusian Universities Using Dimensions Database
SO INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING (IDEAL 2018), PT II
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 19th International Conference on Intelligent Data Engineering and
Automated Learning (IDEAL)
CY NOV 21-23, 2018
CL Univ Autonoma Madrid, Polytechn Sch, Madrid, SPAIN
HO Univ Autonoma Madrid, Polytechn Sch
DE Bibliometric analysis; International collaboration; Andalusian
universities; Dimensions.ai
ID COLLABORATION
AB Researchers usually have been inclined to publish papers with close collaborators: same University, region or even country. However, thanks to the advancements in communication technologies, members of international research networks can cooperate almost seamlessly. These networks usually tend to publish works with more impact than the local counterparts. In this paper, we try to demonstrate if this assumption is also valid in the region of Andalusia (Spain). The Dimensions.ai database is used to obtain the articles where at least one author is from an Andalusian University. The publication list is divided into 4 geographical areas: local (only one affiliation), regional (only Andalusian affiliations), national (only Spanish affiliations) and International (any affiliation). Results show that the average number of citations per paper increases as the author collaboration networks increases geographically.
C1 [Garcia-Sanchez, P.; Cobo, M. J.] Univ Cadiz, Dept Comp Sci & Engn, Cadiz, Spain.
C3 Universidad de Cadiz
RP García-Sánchez, P (corresponding author), Univ Cadiz, Dept Comp Sci & Engn, Cadiz, Spain.
EM pablo.garciasanchez@uca.es; manueljesus.cobo@uca.es
RI Cobo Martín, Manuel Jesús/C-5581-2011; García-Sánchez,
Pablo/G-2166-2010
OI Cobo Martín, Manuel Jesús/0000-0001-6575-803X; García-Sánchez,
Pablo/0000-0003-4644-2894
FU FEDER funds [TIN2016-75850-R, TIN2017-85727-C4-2-P]; Program of
Promotion and Development of Research Activity of the University of
Cadiz (Programa de Fomento e Impulso de la actividad Investigadora de la
Universidad de Cadiz)
FX This contribution has been made possible thanks to Dimensions.ai
database. Also, the authors would like to acknowledge FEDER funds under
grants TIN2016-75850-R and TIN2017-85727-C4-2-P and Program of Promotion
and Development of Research Activity of the University of Cadiz
(Programa de Fomento e Impulso de la actividad Investigadora de la
Universidad de Cadiz).
CR Adams J, 2013, NATURE, V497, P557, DOI 10.1038/497557a
[Anonymous], 2018, APPL INTELL, DOI [10.1007/s10489-017-1105-y., DOI 10.1007/s10489-017-1105-y, DOI 10.1007/S10489-017-1105-Y]
Cobo MJ, 2011, J AM SOC INF SCI TEC, V62, P1382, DOI 10.1002/asi.21525
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Moed HF, 2013, SCIENTOMETRICS, V94, P929, DOI 10.1007/s11192-012-0783-9
Persson O, 2004, SCIENTOMETRICS, V60, P421, DOI 10.1023/B:SCIE.0000034384.35498.7d
Sugimoto CR, 2017, NATURE, V550, P29, DOI 10.1038/550029a
Wagner CS, 2005, RES POLICY, V34, P1608, DOI 10.1016/j.respol.2005.08.002
NR 8
TC 6
Z9 6
U1 0
U2 0
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-03496-2; 978-3-030-03495-5
J9 LECT NOTES COMPUT SC
PY 2018
VL 11315
BP 138
EP 144
DI 10.1007/978-3-030-03496-2_16
PG 7
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BQ2MP
UT WOS:000582459900016
DA 2024-09-05
ER
PT C
AU Apanovich, Z
Marchuk, A
AF Apanovich, Zinaida
Marchuk, Alexander
BE Allen, RB
Hunter, J
Zeng, ML
TI Experiments on Russian-English Identity Resolution
SO DIGITAL LIBRARIES: PROVIDING QUALITY INFORMATION
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 17th International Conference on Asia-Pacific Digital Libraries (ICADL)
CY DEC 09-12, 2015
CL Seoul, SOUTH KOREA
DE Linked open data; Cross-language identity resolution; Authorship
attribution; Self-citation network; Tf-idf; LDA; Jaro-Winkler
AB The focus of this paper is on Russian-English identity resolution when English names of entities have been created by a transliteration or translation of Russian names. A new approach combining attribute-based identity resolution with the text analysis of publications attributed to these entities has been proposed. The dataset of the Open Archive of the Russian Academy of Sciences and digital library SpringerLink are used as test examples.
C1 [Apanovich, Zinaida; Marchuk, Alexander] Russian Acad Sci, Siberian Branch, AP Ershov Inst Informat Syst, Novosibirsk, Russia.
[Apanovich, Zinaida; Marchuk, Alexander] Novosibirsk State Univ, Novosibirsk 630090, Russia.
C3 Russian Academy of Sciences; Ershov Institute of Informatics Systems;
Novosibirsk State University
RP Apanovich, Z (corresponding author), Russian Acad Sci, Siberian Branch, AP Ershov Inst Informat Syst, Novosibirsk, Russia.
EM apanovich@iis.nsk.su; mag@iis.nsk.su
RI Apanovich, Zinaida V./K-5339-2018
OI Apanovich, Zinaida/0000-0002-5767-284X
CR [Anonymous], 2007, Probabilistic Topic Models
Apanovich Z, 2013, COMM COM INF SC, V394, P1
Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993
COHEN WW, 2003, 2 WEB, P73
Ferreira A. A., 2013, LARG BIBL REP C INT
Godby C. J., COMMON GROUND EXPLOR
Hickey T. B., 2014, D LIB MAGAZINE JUL, V20
Isele Robert, 2010, COLD, V665
Kukushkina O. V., 2001, Problems of Information Transmission, V37, P172, DOI 10.1023/A:1010478226705
Ley M, 2009, PROC VLDB ENDOW, V2, P1493, DOI 10.14778/1687553.1687577
Marchuk A. G., 2010, P RCDL 2010 C, P19
Rogov A. A., 2001, P 6 INT C SEPT 10 14, V2, P187
Schultz A., 2012, SEM TECHN BUS C SAN
Song Y, 2007, ACM-IEEE J CONF DIG, P342, DOI 10.1145/1255175.1255243
Stamatatos E, 2009, J AM SOC INF SCI TEC, V60, P538, DOI 10.1002/asi.21001
NR 15
TC 0
Z9 0
U1 0
U2 2
PU SPRINGER INT PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
BN 978-3-319-27974-9; 978-3-319-27973-2
J9 LECT NOTES COMPUT SC
PY 2015
VL 9469
BP 12
EP 21
DI 10.1007/978-3-319-27974-9_2
PG 10
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods;
Robotics
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science; Robotics
GA BE7RG
UT WOS:000375767400002
DA 2024-09-05
ER
PT J
AU Gehanno, JF
Rollin, L
Le Jean, T
Louvel, A
Darmoni, S
Shaw, W
AF Gehanno, Jean-Francois
Rollin, Laetitia
Le Jean, Tony
Louvel, Alexandre
Darmoni, Stefan
Shaw, William
TI Precision and Recall of Search Strategies for Identifying Studies on
Return-To-Work in Medline
SO JOURNAL OF OCCUPATIONAL REHABILITATION
LA English
DT Article
DE Return to work; Medline; Bibliometrics
ID RANDOMIZED CONTROLLED-TRIALS; MEDICAL SUBJECT-HEADINGS; BIBLIOGRAPHIC
DATABASES; OCCUPATIONAL-HEALTH; TEXT-WORD; PUBLICATIONS; RELEVANT; READ;
CARE
AB Introduction The purpose of this study was to report on the qualities of various search strategies and keywords to find return to work (RTW) studies in the Medline bibliographic database. Methods We searched Medline for articles on RTW published in 2003, using multiple search strings, and hand searched 16 major periodicals of rehabilitation or occupational medicine. Among the retrieved articles, those considered to be relevant, were pooled in a Gold Standard Database. From this database, we identified candidate text words or MeSH terms for search strategies using a word frequency analysis of the abstracts and a MEDLINE categorization algorithm. According to the frequency of identified terms, searches were run for each term independently and in combination. We computed Recall, Precision, and number needed to read (NNR = 1/Precision) of each keyword or combination of keywords. Results Among the 8,073 articles examined, 314 (3.9%) were considered relevant and included in the Gold Standard Database. The search strings ("Rehabilitation, Vocational'' [MeSH]), ("Return to work''[All]) and ("Back to work''[All]) had Recall/Precision ratio of 30.46/19.11, 59.55/87.38 and 3.18/90.91%, respectively. Their combination with the Boolean operator OR yielded to a Recall/Precision ratio of 73.89/58.44% and a NNR of 1.7. For the end user requiring comprehensive literature search, the best string was ("Return to work'' OR "Back to work'' OR "Rehabilitation, vocational''[MeSH] OR "rehabilitation''[Subheading]), with a Recall of 88.22% and a NNR of 18. Conclusions No single MeSH term is available to help the physician to identify relevant studies on RTW in Medline. Locating these types of studies requires the use of various MeSH and non-MeSH terms in combination to obtain a satisfactory Recall. Nevertheless, enhancing the Recall of search strategies may lead to lower Precision, and higher NNR, although with a non linear trend. This factor must be taken into consideration by the end user in order to improve the cost-effectiveness ratio of the search in Medline.
C1 [Gehanno, Jean-Francois; Rollin, Laetitia; Louvel, Alexandre] Rouen Univ Hosp, Inst Occupat Hlth, F-76000 Rouen, France.
[Le Jean, Tony] Gen Hosp Dieppe, Dept Rehabil Med, Dieppe, France.
[Gehanno, Jean-Francois; Darmoni, Stefan] Rouen Univ Hosp, GCSIS Lab, F-76000 Rouen, France.
[Shaw, William] Liberty Mutual Res Inst Safety, Hopkinton, MA USA.
C3 Universite de Rouen Normandie; CHU de Rouen; Universite de Rouen
Normandie; CHU de Rouen; Liberty Mutual Research Institute for Safety
RP Gehanno, JF (corresponding author), Rouen Univ Hosp, Inst Occupat Hlth, 1 Rue Germont, F-76000 Rouen, France.
EM jean-francois.gehanno@chu-rouen.fr
RI Shaw, William/Q-3013-2019; Stefan, Darmoni J/H-4554-2016
OI Shaw, William/0000-0002-6830-6415; Gehanno,
jean-francois/0000-0002-2309-7322; Darmoni, Stefan/0000-0002-7162-318X;
ROLLIN, Laetitia/0000-0002-5454-4340
CR ADAMS CE, 1994, PSYCHOL MED, V24, P741, DOI 10.1017/S0033291700027896
Alper BS, 2004, J MED LIBR ASSOC, V92, P429
Bachmann LM, 2002, J AM MED INFORM ASSN, V9, P653, DOI 10.1197/jamia.M1124
Chang AA, 2006, LARYNGOSCOPE, V116, P336, DOI 10.1097/01.mlg.0000195371.72887.a2
Darmoni Stefan J, 2006, BMC Med Inform Decis Mak, V6, P7, DOI 10.1186/1472-6947-6-7
Devillé WLJM, 2000, J CLIN EPIDEMIOL, V53, P65, DOI 10.1016/S0895-4356(99)00144-4
Dong Peng, 2004, BMC Med Inform Decis Mak, V4, P21, DOI 10.1186/1472-6947-4-21
Felber S H, 2000, Cancer Control, V7, P469
Gehanno JF, 2000, OCCUP ENVIRON MED, V57, P706, DOI 10.1136/oem.57.10.706
Gehanno JF, 1998, OCCUP ENVIRON MED, V55, P562, DOI 10.1136/oem.55.8.562
Greenhalgh T, 1997, BRIT MED J, V315, P180, DOI 10.1136/bmj.315.7101.180
Haafkens J, 2006, OCCUP MED-OXFORD, V56, P39, DOI 10.1093/occmed/kqi193
Jenuwine ES, 2004, J MED LIBR ASSOC, V92, P349
Marson AG, 1996, EPILEPSIA, V37, P377, DOI 10.1111/j.1528-1157.1996.tb00575.x
Montori VM, 2005, BMJ-BRIT MED J, V330, P68, DOI 10.1136/bmj.38336.804167.47
Nwosu CR, 1998, OBSTET GYNECOL, V91, P618, DOI 10.1016/S0029-7844(97)00703-5
Saint S, 2000, J GEN INTERN MED, V15, P881, DOI 10.1046/j.1525-1497.2000.00202.x
Schaafsma F, 2006, AM J IND MED, V49, P127, DOI 10.1002/ajim.20235
Shaw W, 2008, J OCCUP REHABIL, V18, P2, DOI 10.1007/s10926-007-9115-y
vanderWeijden T, 1997, FAM PRACT, V14, P204, DOI 10.1093/fampra/14.3.204
Verbeek J, 2005, OCCUP ENVIRON MED, V62, P682, DOI 10.1136/oem.2004.019117
Verbeek JH, 2002, SCAND J WORK ENV HEA, V28, P197, DOI 10.5271/sjweh.665
Watson RJD, 1999, BRIT J MED PSYCHOL, V72, P535, DOI 10.1348/000711299160220
WYATT J, 1991, LANCET, V338, P1368, DOI 10.1016/0140-6736(91)92245-W
1901, JAMA, V37, P647
NR 25
TC 31
Z9 33
U1 0
U2 11
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1053-0487
J9 J OCCUP REHABIL
JI J. Occup. Rehabil.
PD SEP
PY 2009
VL 19
IS 3
BP 223
EP 230
DI 10.1007/s10926-009-9177-0
PG 8
WC Rehabilitation; Social Issues
WE Social Science Citation Index (SSCI)
SC Rehabilitation; Social Issues
GA 479SA
UT WOS:000268680000001
PM 19381789
DA 2024-09-05
ER
PT J
AU Maisonobe, M
AF Maisonobe, Marion
TI The future of urban models in the Big Data and AI era: a bibliometric
analysis (2000-2019)
SO AI & SOCIETY
LA English
DT Article
DE Bibliometrics; Urban modelling; Research dynamics; Science studies
ID SMART CITIES; CHALLENGES; GOVERNMENT; SCIENCE; HELIX
AB This article questions the effects on urban research dynamics of the Big Data and AI turn in urban management. Increasing access to large datasets collected in real time could make certain mathematical models developed in research fields related to the management of urban systems obsolete. These ongoing evolutions are the subject of numerous works whose main angle of reflection is the future of cities rather than the transformations at work in the academic field. Our article proposes grasp the scientific dynamics in areas of research related to two urban systems: transportation and water. The article demonstrates the importance of grasping these dynamics if we want to be able to apprehend what the urban management of tomorrow's cities will be like. To analyse these research areas' dynamics, we use two complementary materials: bibliometric data and interviews. The interviews conducted in 2018 with academics and higher education officials in Paris and Edinburgh suggest avenues for hybridization between traditional modelling approaches and research in machine learning, artificial intelligence and Big Data. The bibliometric analysis highlight the trends at work: it shows that traffic flow as well as transportation studies are focussing more and more on AI and Big Data and that traffic flow studies are arousing a growing interest among computer scientists, while, so far, this interest is less pronounced in the water research area, and more especially regarding water quality. The differences observed between research on transportation and that on water confirm the multifaceted nature of the developments at work and encourage us to reject overly hasty and simplistic generalisations about the transformations underway.
C1 [Maisonobe, Marion] CNRS, Geog Cites UMR 8504 CNRS, Paris, France.
C3 Centre National de la Recherche Scientifique (CNRS); Universite Paris
Cite
RP Maisonobe, M (corresponding author), CNRS, Geog Cites UMR 8504 CNRS, Paris, France.
EM marion.maisonobe@cnrs.fr
OI Maisonobe, Marion/0000-0002-2968-9038
FU "City and Digital" working group of the "Urban Futures" Labex within the
I-SITE FUTURE [16-IDEX-0003]; joint research unit UMR LATTS in 2018;
IASH fellowship
FX This work was carried out within the framework of the "City and Digital"
working group of the "Urban Futures" Labex within the I-SITE FUTURE
(16-IDEX-0003). It was funded through a post-doctoral contract within
the joint research unit UMR LATTS in 2018. The fieldwork carried out in
Edinburgh was supported by an IASH fellowship. I would like to thank the
interviewees for their time and the qualitative insights they brought to
this exploratory work. I would also like to thank P. Tubaro, A. Casilli
and E. Ollion for organising an inspiring research day about "the Big
Data moment in Social Sciences" on the 21 February 2019 in Paris.
CR Adamala S., 2017, Mach. Learn. Res, V2, P10, DOI [10.11648/j.mlr.20170201.12, DOI 10.11648/J.MLR.20170201.12]
Anderson C., 2008, Wired, DOI DOI 10.1180/MINMAG.2008.072.1.7
Anttiroiko AV, 2014, AI SOC, V29, P323, DOI 10.1007/s00146-013-0464-0
Bassoo V, 2018, STUD BIG DATA, V30, P359, DOI 10.1007/978-3-319-60435-0_15
Batty M., 2016, Built Environment, DOI [DOI 10.2148/BENV.42.3.321, 10.2148/benv.42.3.321, 10.2148/benv.42.3]
Batty Michael, 2013, Dialogues Hum Geogr, V3, P274, DOI 10.1177/2043820613513390
Batty M, 2014, ENVIRON PLANN B, V41, P388, DOI 10.1068/b4103c2
Bettencourt LMA, 2014, BIG DATA, V2, P12, DOI 10.1089/big.2013.0042
Borkowska K, 2018, INT REV EDUC, V64, P355, DOI 10.1007/s11159-018-9723-0
Boyd D, 2012, INFORM COMMUN SOC, V15, P662, DOI 10.1080/1369118X.2012.678878
Cardon Dominique., 2018, Reseaux, V211, P173
Carmichael I, 2018, JPN J STAT DATA SCI, V1, P117, DOI 10.1007/s42081-018-0009-3
Chen CLP, 2014, INFORM SCIENCES, V275, P314, DOI 10.1016/j.ins.2014.01.015
Chui M., 2018, NOTES FRONTIER INSIG
Courmont A, 2018, REV FR SOCIOL, V59, P423, DOI 10.3917/rfs.593.0423
Crandall J, 2010, THEOR CULT SOC, V27, P68, DOI 10.1177/0263276410382027
Engin Z, 2020, J URBAN MANAG, V9, P140, DOI 10.1016/j.jum.2019.12.001
Etzkowitz H, 2000, RES POLICY, V29, P109, DOI 10.1016/S0048-7333(99)00055-4
Gao, 2019, COMPUTATIONAL SOCIOE
Gingras, 2018, EVOLUTION SCI POLICY
González-Bailón S, 2013, POLICY INTERNET, V5, P147, DOI 10.1002/1944-2866.POI328
Goodchild MF, 2007, GEOJOURNAL, V69, P211, DOI 10.1007/s10708-007-9111-y
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI 10.1145/3422622
Graham M., 2013, Dialogues in Human Geography, V3, P255, DOI [10.1177/2043820613513121, DOI 10.1177/2043820613513121]
Gray Steven, 2016, Built Environment, V42, P498, DOI [10.2148/benv.42.3.498, DOI 10.2148/BENV.42.3.498]
Grossetti M, 2008, REV ANTHROPOL CONNAI, V2, P97, DOI 10.3917/rac.003.0097
Huang Y, 2015, SCIENTOMETRICS, V105, P2005, DOI 10.1007/s11192-015-1638-y
Hutchins MG, 2017, WIRES WATER, V4, DOI 10.1002/wat2.1177
Jesse N, 2018, AI SOC, V33, P229, DOI 10.1007/s00146-018-0807-y
Kalantari Ali, 2017, Journal of Big Data, V4, DOI 10.1186/s40537-017-0088-1
Kandt J, 2021, CITIES, V109, DOI 10.1016/j.cities.2020.102992
Kitchin R., 2017, Data and the City, P111
Kitchin R, 2016, PHILOS T R SOC A, V374, DOI 10.1098/rsta.2016.0115
Komninos N, 2016, HANDBOOK ON THE GEOGRAPHIES OF INNOVATION, P187
Korukonda AR, 2007, AI SOC, V21, P347, DOI 10.1007/s00146-006-0064-3
Laborie, 2016, MODELE PREDICTION QU, P43, DOI [10.1051/tsm/201611043, DOI 10.1051/TSM/201611043]
Labrinidis A, 2012, PROC VLDB ENDOW, V5, P2032, DOI 10.14778/2367502.2367572
Lobo J., 2020, SSRN ELECT J, V2020, DOI DOI 10.2139/SSRN.3526940
Lungarella M, 2007, LECT NOTES ARTIF INT, V4850, P1
Pan YH, 2016, ENGINEERING, V2, P171, DOI 10.1016/J.ENG.2016.02.003
Park SC, 2018, AI SOC, V33, P433, DOI 10.1007/s00146-017-0777-5
Polonetsky, 2013, STANFORD LAW REV, P66
Ratinaud, 2008, IRAMUTEQ
Rincon-Patino J, 2018, F1000Research, V7, P1240
Sainct, 2016, THESIS PARIS EST U
Sha XW, 2023, AI SOC, V38, P2705, DOI 10.1007/s00146-016-0662-7
Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001
Stilgoe J, 2018, SOC STUD SCI, V48, P25, DOI 10.1177/0306312717741687
te Brömmelstroet M, 2014, ENVIRON PLANN B, V41, P381, DOI 10.1068/b4103c
Thatcher J, 2014, INT J COMMUN-US, V8, P1765
Turchin A, 2020, AI SOC, V35, P147, DOI 10.1007/s00146-018-0845-5
Zheng Y, 2014, ACM T INTEL SYST TEC, V5, DOI 10.1145/2629592
NR 52
TC 5
Z9 5
U1 2
U2 21
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 0951-5666
EI 1435-5655
J9 AI SOC
JI AI Soc.
PD MAR
PY 2022
VL 37
IS 1
BP 177
EP 194
DI 10.1007/s00146-021-01166-4
EA MAR 2021
PG 18
WC Computer Science, Artificial Intelligence
WE Emerging Sources Citation Index (ESCI)
SC Computer Science
GA YY9XL
UT WOS:000629071300002
DA 2024-09-05
ER
PT J
AU Zennayi, Y
Bourzeix, F
Guennoun, Z
AF Zennayi, Yahya
Bourzeix, Francois
Guennoun, Zouhair
TI Analyzing the Scientific Evolution of Face Recognition Research and Its
Prominent Subfields
SO IEEE ACCESS
LA English
DT Article
DE Face recognition; Performance analysis; Databases; Lighting; Indexes;
Feature extraction; Statistical analysis; Bibliometric studies; co-word
analysis; face recognition; performance analysis; science mapping;
thematic evolution
ID REPRESENTATION BASED CLASSIFICATION; LINEAR DISCRIMINANT-ANALYSIS;
DISCRETE COSINE TRANSFORM; LOCAL BINARY PATTERNS; SPARSE REPRESENTATION;
FEATURE-EXTRACTION; PRESERVING PROJECTIONS; 2-DIMENSIONAL PCA; VISUAL
TRACKING; NEURAL-NETWORK
AB This paper presents a science mapping approach to analyze thematic evolution of face recognition research. For this reason, different bibliometric tools are combined (performance analysis, science mapping and Co-word analysis) in order to identify the most important, productive and the highest-impact subfields. Moreover, different visualization tools are used to display a graphical vision of face recognition field to determine the thematic domains and their evolutionary behavior. Finally, this study proposes the most relevant lines of research for the face recognition field. Findings indicate a huge increase in face recognition research since 2014. Mixed approaches revealed a great interest compared to local and global approaches. In terms of algorithms, the use of deep learning methods is the new trend. On the other hand, the illumination variation impact on face recognition algorithms performances is nowadays, the most important and impacting challenge for the face recognition field.
C1 [Zennayi, Yahya; Guennoun, Zouhair] Mohammed V Univ, Smart Commun ERSC Team, Res Ctr E3S, Rabat 10090, Morocco.
[Zennayi, Yahya; Bourzeix, Francois] Moroccan Fdn Adv Sci Innovat & Res, Embedded Syst & AI Dept, Rabat 10010, Morocco.
C3 Mohammed V University in Rabat; Moroccan Foundation for Advanced Science
Innovation & Research (MASCIR)
RP Zennayi, Y (corresponding author), Mohammed V Univ, Smart Commun ERSC Team, Res Ctr E3S, Rabat 10090, Morocco.; Zennayi, Y (corresponding author), Moroccan Fdn Adv Sci Innovat & Res, Embedded Syst & AI Dept, Rabat 10010, Morocco.
EM zennayi.yahya@gmail.com
OI guennoun, zouhair/0000-0002-7142-0550; ZENNAYI,
Yahya/0000-0002-9561-7622
CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
Abate AF, 2007, PATTERN RECOGN LETT, V28, P1885, DOI 10.1016/j.patrec.2006.12.018
Abdullah MFA, 2014, EXPERT SYST APPL, V41, P6131, DOI 10.1016/j.eswa.2014.04.006
Abdurrahim SH, 2018, VISUAL COMPUT, V34, P1617, DOI 10.1007/s00371-017-1428-z
Abozaid A, 2019, MULTIMED TOOLS APPL, V78, P16345, DOI 10.1007/s11042-018-7012-3
Adini Y, 1997, IEEE T PATTERN ANAL, V19, P721, DOI 10.1109/34.598229
Adjabi I, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9081188
Ahonen T, 2004, LECT NOTES COMPUT SC, V3021, P469
Ahonen T, 2006, IEEE T PATTERN ANAL, V28, P2037, DOI 10.1109/TPAMI.2006.244
Ai H, 2018, MEASUREMENT, V123, P309, DOI 10.1016/j.measurement.2018.04.005
Ali Z, 2018, FUTURE GENER COMP SY, V85, P76, DOI 10.1016/j.future.2018.02.040
[Anonymous], 2018, IEEE T PATTERN ANAL, DOI DOI 10.1109/TPAMI.2017.2737538
[Anonymous], 2018, IEEE T PATTERN ANAL, DOI DOI 10.1109/TPAMI.2017.2710183
Baradarani A, 2013, PATTERN RECOGN, V46, P57, DOI 10.1016/j.patcog.2012.06.007
Bartlett MS, 2002, IEEE T NEURAL NETWOR, V13, P1450, DOI 10.1109/TNN.2002.804287
Bashbaghi S, 2017, PATTERN RECOGN, V69, P61, DOI 10.1016/j.patcog.2017.04.014
Bedagkar-Gala A, 2014, IMAGE VISION COMPUT, V32, P270, DOI 10.1016/j.imavis.2014.02.001
Best-Rowden L, 2018, IEEE T PATTERN ANAL, V40, P148, DOI 10.1109/TPAMI.2017.2652466
Best-Rowden L, 2014, IEEE T INF FOREN SEC, V9, P2144, DOI 10.1109/TIFS.2014.2359577
Bianco S, 2017, PATTERN RECOGN LETT, V90, P36, DOI 10.1016/j.patrec.2017.03.006
Biswas S, 2013, IEEE T PATTERN ANAL, V35, P3037, DOI 10.1109/TPAMI.2013.68
Biswas S, 2012, IEEE T PATTERN ANAL, V34, P2019, DOI 10.1109/TPAMI.2011.278
Blanco-Gonzalo R, 2015, HUM-CENT COMPUT INFO, V5, DOI 10.1186/s13673-015-0043-0
Blanz V, 2003, IEEE T PATTERN ANAL, V25, P1063, DOI 10.1109/TPAMI.2003.1227983
Bowyer KW, 2006, COMPUT VIS IMAGE UND, V101, P1, DOI 10.1016/j.cviu.2005.05.005
BRUNELLI R, 1993, IEEE T PATTERN ANAL, V15, P1042, DOI 10.1109/34.254061
Cai D, 2006, IEEE T IMAGE PROCESS, V15, P3608, DOI 10.1109/TIP.2006.881945
CALLON M, 1983, SOC SCI INFORM, V22, P191, DOI 10.1177/053901883022002003
Cao Q, 2018, IEEE INT CONF AUTOMA, P67, DOI 10.1109/FG.2018.00020
Chakraborty S, 2017, MULTIMED TOOLS APPL, V76, P1201, DOI 10.1007/s11042-015-3111-6
Chamikara MAP, 2020, COMPUT SECUR, V97, DOI 10.1016/j.cose.2020.101951
Chan TH, 2015, IEEE T IMAGE PROCESS, V24, P5017, DOI 10.1109/TIP.2015.2475625
Chaves-González JM, 2010, DIGIT SIGNAL PROCESS, V20, P806, DOI 10.1016/j.dsp.2009.10.008
CHELLAPPA R, 1995, P IEEE, V83, P705, DOI 10.1109/5.381842
Chen BC, 2015, IEEE T MULTIMEDIA, V17, P804, DOI 10.1109/TMM.2015.2420374
Chen WL, 2006, IEEE T SYST MAN CY B, V36, P458, DOI 10.1109/TSMCB.2005.857353
Chihaoui M, 2016, COMPUTERS, V5, DOI 10.3390/computers5040021
Chollet F., 2015, KERAS INTERNET
Cobo MJ, 2012, J AM SOC INF SCI TEC, V63, P1609, DOI 10.1002/asi.22688
Cobo MJ, 2011, J INFORMETR, V5, P146, DOI 10.1016/j.joi.2010.10.002
Cui MS, 2015, IEEE T GEOSCI REMOTE, V53, P2683, DOI 10.1109/TGRS.2014.2363582
Dagnes N, 2018, MACH VISION APPL, V29, P789, DOI 10.1007/s00138-018-0933-z
De Marsico M, 2013, IEEE T SYST MAN CY-S, V43, P149, DOI 10.1109/TSMCA.2012.2192427
Deng JK, 2019, PROC CVPR IEEE, P4685, DOI 10.1109/CVPR.2019.00482
Deng WH, 2018, IEEE T PATTERN ANAL, V40, P2513, DOI 10.1109/TPAMI.2017.2757923
Deng WH, 2012, IEEE T PATTERN ANAL, V34, P1864, DOI 10.1109/TPAMI.2012.30
Déniz O, 2011, PATTERN RECOGN LETT, V32, P1598, DOI 10.1016/j.patrec.2011.01.004
Ding CX, 2018, IEEE T PATTERN ANAL, V40, P1002, DOI 10.1109/TPAMI.2017.2700390
Ding CX, 2017, PATTERN RECOGN, V66, P144, DOI 10.1016/j.patcog.2016.11.024
Ding CX, 2016, ACM T INTEL SYST TEC, V7, DOI 10.1145/2845089
Ding CX, 2015, IEEE T MULTIMEDIA, V17, P2049, DOI 10.1109/TMM.2015.2477042
Du B, 2017, IEEE T MULTIMEDIA, V19, P67, DOI 10.1109/TMM.2016.2608780
Er MJ, 2005, IEEE T NEURAL NETWOR, V16, P679, DOI 10.1109/TNN.2005.844909
Er MJ, 2002, IEEE T NEURAL NETWOR, V13, P697, DOI 10.1109/TNN.2002.1000134
Faltemier TC, 2008, IEEE T INF FOREN SEC, V3, P62, DOI 10.1109/TIFS.2007.916287
Fan KC, 2014, IEEE T IMAGE PROCESS, V23, P2877, DOI 10.1109/TIP.2014.2321495
Fan ZZ, 2020, MULTIMED TOOLS APPL, V79, P7319, DOI 10.1007/s11042-019-08211-x
Feng QX, 2017, IEEE T CYBERNETICS, V47, P378, DOI 10.1109/TCYB.2016.2516239
Galbally J, 2014, IEEE ACCESS, V2, P1530, DOI 10.1109/ACCESS.2014.2381273
Galea C, 2017, IEEE SIGNAL PROC LET, V24, P1586, DOI 10.1109/LSP.2017.2749266
Gao GW, 2020, INFORM SCIENCES, V506, P19, DOI 10.1016/j.ins.2019.08.004
Gao GW, 2017, PATTERN RECOGN, V66, P129, DOI 10.1016/j.patcog.2016.12.021
Gao QX, 2019, IEEE T CYBERNETICS, V49, P1212, DOI 10.1109/TCYB.2018.2796642
Gao QX, 2015, NEUROCOMPUTING, V152, P69, DOI 10.1016/j.neucom.2014.11.018
Gao W, 2008, IEEE T SYST MAN CY A, V38, P149, DOI 10.1109/TSMCA.2007.909557
Gao Y, 2017, IEEE T IMAGE PROCESS, V26, P2545, DOI 10.1109/TIP.2017.2675341
Ge SM, 2019, IEEE T IMAGE PROCESS, V28, P2051, DOI 10.1109/TIP.2018.2883743
Geng CX, 2021, IEEE T PATTERN ANAL, V43, P3614, DOI 10.1109/TPAMI.2020.2981604
Georghiades AS, 2001, IEEE T PATTERN ANAL, V23, P643, DOI 10.1109/34.927464
Ghiass RS, 2014, PATTERN RECOGN, V47, P2807, DOI 10.1016/j.patcog.2014.03.015
Gong DH, 2017, IEEE T IMAGE PROCESS, V26, P2079, DOI 10.1109/TIP.2017.2651380
Gu WF, 2012, PATTERN RECOGN, V45, P80, DOI 10.1016/j.patcog.2011.05.006
Gui J, 2012, PATTERN RECOGN, V45, P2884, DOI 10.1016/j.patcog.2012.02.005
Guo GD, 2019, COMPUT VIS IMAGE UND, V189, DOI 10.1016/j.cviu.2019.102805
Haghighat M, 2016, EXPERT SYST APPL, V47, P23, DOI 10.1016/j.eswa.2015.10.047
Haghighat M, 2015, EXPERT SYST APPL, V42, P7905, DOI 10.1016/j.eswa.2015.06.025
Han H, 2013, IEEE T INF FOREN SEC, V8, P191, DOI 10.1109/TIFS.2012.2228856
Hassaballah M, 2015, IET COMPUT VIS, V9, P614, DOI 10.1049/iet-cvi.2014.0084
Hayat M, 2015, IEEE T PATTERN ANAL, V37, P713, DOI 10.1109/TPAMI.2014.2353635
He R, 2019, IEEE T PATTERN ANAL, V41, P1761, DOI 10.1109/TPAMI.2018.2842770
He R, 2020, IEEE T PATTERN ANAL, V42, P1025, DOI 10.1109/TPAMI.2019.2961900
He R, 2014, IEEE T PATTERN ANAL, V36, P261, DOI 10.1109/TPAMI.2013.102
He R, 2011, IEEE T PATTERN ANAL, V33, P1561, DOI 10.1109/TPAMI.2010.220
He XF, 2005, IEEE T PATTERN ANAL, V27, P328, DOI 10.1109/TPAMI.2005.55
Hine K, 2018, J GEN PSYCHOL, V145, P296, DOI 10.1080/00221309.2018.1472548
Hong L, 1998, IEEE T PATTERN ANAL, V20, P1295, DOI 10.1109/34.735803
Howland P, 2006, PATTERN RECOGN, V39, P277, DOI 10.1016/j.patcog.2005.06.013
Hu JL, 2017, IMAGE VISION COMPUT, V60, P48, DOI 10.1016/j.imavis.2016.08.007
Huang C, 2020, IEEE T PATTERN ANAL, V42, P2781, DOI 10.1109/TPAMI.2019.2914680
Huang D, 2011, IEEE T SYST MAN CY C, V41, P765, DOI 10.1109/TSMCC.2011.2118750
Huang KK, 2017, IEEE T NEUR NET LEAR, V28, P1082, DOI 10.1109/TNNLS.2016.2522431
Huang ZW, 2015, IEEE T IMAGE PROCESS, V24, DOI 10.1109/TIP.2015.2493448
Jadhav DV, 2009, NEUROCOMPUTING, V72, P1951, DOI 10.1016/j.neucom.2008.05.001
Jayaraman U, 2020, NEUROCOMPUTING, V408, P231, DOI 10.1016/j.neucom.2019.08.110
Jia YQ, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P675, DOI 10.1145/2647868.2654889
Jiang JJ, 2017, IEEE T MULTIMEDIA, V19, P27, DOI 10.1109/TMM.2016.2601020
Jiang JJ, 2016, IEEE T CIRC SYST VID, V26, P1674, DOI 10.1109/TCSVT.2015.2433538
Jiang XD, 2008, IEEE T PATTERN ANAL, V30, P383, DOI 10.1109/TPAMI.2007.70708
Jiang XD, 2015, IEEE T PATTERN ANAL, V37, P1067, DOI 10.1109/TPAMI.2014.2359453
Jin Y, 2015, IEEE T INF FOREN SEC, V10, P640, DOI 10.1109/TIFS.2015.2390414
Juefei-Xu F, 2014, IEEE T IMAGE PROCESS, V23, P3490, DOI 10.1109/TIP.2014.2329460
Kakadiaris IA, 2017, COMPUT VIS IMAGE UND, V154, P137, DOI 10.1016/j.cviu.2016.04.012
Kasar MM, 2016, INT J SECUR APPL, V10, P81, DOI 10.14257/ijsia.2016.10.3.08
Kemelmacher-Shlizerman I, 2016, PROC CVPR IEEE, P4873, DOI 10.1109/CVPR.2016.527
Kim TK, 2005, IEEE T PATTERN ANAL, V27, P318, DOI 10.1109/TPAMI.2005.58
Klare BF, 2013, IEEE T PATTERN ANAL, V35, P1410, DOI 10.1109/TPAMI.2012.229
Klare BF, 2011, IEEE T PATTERN ANAL, V33, P639, DOI 10.1109/TPAMI.2010.180
Kong SG, 2005, COMPUT VIS IMAGE UND, V97, P103, DOI 10.1016/j.cviu.2004.04.001
Kortli Y, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20020342
Kumar N, 2011, IEEE T PATTERN ANAL, V33, P1962, DOI 10.1109/TPAMI.2011.48
Kumar PM, 2019, CLUSTER COMPUT, V22, pS7733, DOI 10.1007/s10586-017-1323-4
La Cascia M, 2000, IEEE T PATTERN ANAL, V22, P322, DOI 10.1109/34.845375
Lahasan B, 2019, ARTIF INTELL REV, V52, P949, DOI 10.1007/s10462-017-9578-y
Lai ZH, 2016, IEEE T NEUR NET LEAR, V27, P723, DOI 10.1109/TNNLS.2015.2422994
Lee KC, 2005, COMPUT VIS IMAGE UND, V99, P303, DOI 10.1016/j.cviu.2005.02.002
Lee KC, 2005, IEEE T PATTERN ANAL, V27, P684, DOI 10.1109/TPAMI.2005.92
Lei Z, 2014, IEEE T PATTERN ANAL, V36, P289, DOI 10.1109/TPAMI.2013.112
Li AN, 2012, IEEE T IMAGE PROCESS, V21, P305, DOI 10.1109/TIP.2011.2160957
Li B, 2010, IEEE SIGNAL PROC LET, V17, P20, DOI 10.1109/LSP.2009.2031705
Li HX, 2018, IEEE T INF FOREN SEC, V13, P2383, DOI 10.1109/TIFS.2018.2819124
Li HX, 2016, KNOWL-BASED SYST, V91, P241, DOI 10.1016/j.knosys.2015.07.040
Li P, 2019, IEEE T INF FOREN SEC, V14, P2000, DOI 10.1109/TIFS.2018.2890812
Li YM, 2004, IMAGE VISION COMPUT, V22, P413, DOI 10.1016/j.imavis.2003.12.005
Li ZH, 2017, IEEE T KNOWL DATA EN, V29, P2100, DOI 10.1109/TKDE.2017.2728531
Liao MM, 2019, IET IMAGE PROCESS, V13, P2281, DOI 10.1049/iet-ipr.2018.5263
Liao S, 2009, IEEE T IMAGE PROCESS, V18, P1107, DOI 10.1109/TIP.2009.2015682
Liu CJ, 2008, IEEE T INF FOREN SEC, V3, P213, DOI 10.1109/TIFS.2008.923824
Liu CJ, 2004, IEEE T PATTERN ANAL, V26, P572, DOI 10.1109/TPAMI.2004.1273927
Liu CJ, 2002, IEEE T IMAGE PROCESS, V11, P467, DOI 10.1109/TIP.2002.999679
Liu X, 2017, FRONT COMPUT SCI-CHI, V11, P208, DOI 10.1007/s11704-016-6076-3
Liu Y, 2017, IEEE T IMAGE PROCESS, V26, P684, DOI 10.1109/TIP.2016.2621667
Liu ZH, 2020, SIGNAL PROCESS, V170, DOI 10.1016/j.sigpro.2020.107456
Liu ZH, 2019, APPL SOFT COMPUT, V85, DOI 10.1016/j.asoc.2019.105768
Low CY, 2019, IEEE T CIRC SYST VID, V29, P115, DOI 10.1109/TCSVT.2017.2761829
Lu HP, 2008, IEEE T NEURAL NETWOR, V19, P18, DOI 10.1109/TNN.2007.901277
Lu HP, 2009, IEEE T NEURAL NETWOR, V20, P103, DOI 10.1109/TNN.2008.2004625
Lu JW, 2015, IEEE T PATTERN ANAL, V37, P2041, DOI 10.1109/TPAMI.2015.2408359
Lu JW, 2014, IEEE T PATTERN ANAL, V36, P331, DOI 10.1109/TPAMI.2013.134
Lu JW, 2013, IEEE T PATTERN ANAL, V35, P39, DOI 10.1109/TPAMI.2012.70
Luan X, 2014, PATTERN RECOGN, V47, P495, DOI 10.1016/j.patcog.2013.06.031
Lui M, 2018, INT J PSYCHOPHYSIOL, V133, P159, DOI 10.1016/j.ijpsycho.2018.07.005
Luo XL, 2019, PATTERN RECOGN, V93, P283, DOI 10.1016/j.patcog.2019.04.027
Mahmood Z, 2017, FRACTALS, V25, DOI 10.1142/S0218348X17500256
Mai GC, 2019, IEEE T PATTERN ANAL, V41, P1188, DOI 10.1109/TPAMI.2018.2827389
Marcolin F, 2017, MULTIMED TOOLS APPL, V76, P13805, DOI 10.1007/s11042-016-3741-3
Martìnez AM, 2001, IEEE T PATTERN ANAL, V23, P228, DOI 10.1109/34.908974
Melin P, 2011, IEEE T SYST MAN CY A, V41, P1001, DOI 10.1109/TSMCA.2010.2104318
Min R, 2014, IEEE T SYST MAN CY-S, V44, P1534, DOI 10.1109/TSMC.2014.2331215
Mitra S, 2007, IEEE T SYST MAN CY C, V37, P311, DOI 10.1109/TSMCC.2007.893280
Modak SKS, 2019, INFORM FUSION, V49, P174, DOI 10.1016/j.inffus.2018.11.018
Mohammed AA, 2011, PATTERN RECOGN, V44, P2588, DOI 10.1016/j.patcog.2011.03.013
Naik MK, 2016, APPL SOFT COMPUT, V38, P661, DOI 10.1016/j.asoc.2015.10.039
Naseem I, 2010, IEEE T PATTERN ANAL, V32, P2106, DOI 10.1109/TPAMI.2010.128
Newton EM, 2005, IEEE T KNOWL DATA EN, V17, P232, DOI 10.1109/TKDE.2005.32
Ng CB, 2015, PATTERN ANAL APPL, V18, P739, DOI 10.1007/s10044-015-0499-6
Vu NS, 2012, IEEE T IMAGE PROCESS, V21, P1352, DOI 10.1109/TIP.2011.2166974
Niinuma K, 2010, IEEE T INF FOREN SEC, V5, P771, DOI 10.1109/TIFS.2010.2075927
Ning X, 2023, CONCURR COMP-PRACT E, V35, DOI 10.1002/cpe.6147
Ochoa-Villegas MA, 2015, IET COMPUT VIS, V9, P978, DOI 10.1049/iet-cvi.2014.0086
Ou WH, 2014, PATTERN RECOGN, V47, P1559, DOI 10.1016/j.patcog.2013.10.017
Ouyang SX, 2016, IMAGE VISION COMPUT, V56, P28, DOI 10.1016/j.imavis.2016.09.001
Pang M, 2019, PATTERN RECOGN, V89, P91, DOI 10.1016/j.patcog.2019.01.005
Panis G, 2016, IET BIOMETRICS, V5, P37, DOI 10.1049/iet-bmt.2014.0053
Park JS, 2008, IEEE T IMAGE PROCESS, V17, P1806, DOI 10.1109/TIP.2008.2001394
Park U, 2010, IEEE T PATTERN ANAL, V32, P947, DOI 10.1109/TPAMI.2010.14
Peng CL, 2019, PATTERN RECOGN, V90, P161, DOI 10.1016/j.patcog.2019.01.041
Peng Y, 2015, NEUROCOMPUTING, V149, P340, DOI 10.1016/j.neucom.2013.12.065
Phillips PJ, 2014, IMAGE VISION COMPUT, V32, P74, DOI 10.1016/j.imavis.2013.12.002
Plichoski GF, 2018, REV BRAS COMPUT APL, V10, P2, DOI 10.5335/rbca.v10i2.8046
Prince SJD, 2008, IEEE T PATTERN ANAL, V30, P970, DOI 10.1109/TPAMI.2008.48
Qiao LS, 2010, PATTERN RECOGN, V43, P331, DOI 10.1016/j.patcog.2009.05.005
Rothkrantz L, 2017, P SMART CIT S PRAG S, P1
Sadhya D, 2019, NEUROCOMPUTING, V358, P188, DOI 10.1016/j.neucom.2019.05.045
Sajjad M, 2020, FUTURE GENER COMP SY, V108, P995, DOI 10.1016/j.future.2017.11.013
Sandbach G, 2012, IMAGE VISION COMPUT, V30, P683, DOI 10.1016/j.imavis.2012.06.005
Scherhag U, 2019, IEEE ACCESS, V7, P23012, DOI 10.1109/ACCESS.2019.2899367
Selvakumar K, 2015, INT J SIGNAL IMAGING, V8, P356, DOI 10.1504/IJSISE.2015.072928
Sepas-Moghaddam A, 2018, IEEE T INF FOREN SEC, V13, P1696, DOI 10.1109/TIFS.2018.2799427
Shakeel MS, 2019, PATTERN RECOGN, V93, P442, DOI 10.1016/j.patcog.2019.04.028
Sharma R, 2015, IMAGING SCI J, V63, P361, DOI 10.1179/1743131X14Y.0000000071
Shekhar S, 2014, IEEE T PATTERN ANAL, V36, P113, DOI 10.1109/TPAMI.2013.109
Shi QQ, 2019, IEEE T NEUR NET LEAR, V30, P1803, DOI 10.1109/TNNLS.2018.2873655
Shi XS, 2014, PATTERN RECOGN, V47, P2447, DOI 10.1016/j.patcog.2014.01.007
Soltanpour S, 2017, PATTERN RECOGN, V72, P391, DOI 10.1016/j.patcog.2017.08.003
Su FP, 2009, J AM SOC INF SCI TEC, V60, P2353, DOI 10.1002/asi.21169
Su Y, 2009, IEEE T IMAGE PROCESS, V18, P1885, DOI 10.1109/TIP.2009.2021737
Takacs B, 1998, PATTERN RECOGN, V31, P1873, DOI 10.1016/S0031-3203(98)00076-4
Tan XY, 2010, IEEE T IMAGE PROCESS, V19, P1635, DOI 10.1109/TIP.2010.2042645
Tan XY, 2005, IEEE T NEURAL NETWOR, V16, P875, DOI 10.1109/TNN.2005.849817
Tao DC, 2007, IEEE T PATTERN ANAL, V29, P1700, DOI 10.1109/TPAMI.2007.1096
Tao DP, 2018, IEEE T CIRC SYST VID, V28, P2657, DOI 10.1109/TCSVT.2017.2726580
Tao DP, 2018, IEEE T IMAGE PROCESS, V27, P325, DOI 10.1109/TIP.2017.2762588
Tathe SV, 2016, 2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P2200, DOI 10.1109/ICACCI.2016.7732378
Tian Q, 2013, IETE TECH REV, V30, P427, DOI 10.4103/0256-4602.123127
Tirunagari S, 2015, IEEE T INF FOREN SEC, V10, P762, DOI 10.1109/TIFS.2015.2406533
Turaga P, 2011, IEEE T PATTERN ANAL, V33, P2273, DOI 10.1109/TPAMI.2011.52
Uzair M, 2015, IEEE T IMAGE PROCESS, V24, P1127, DOI 10.1109/TIP.2015.2393057
Wagner A, 2012, IEEE T PATTERN ANAL, V34, P372, DOI 10.1109/TPAMI.2011.112
Wang H, 2018, PROC CVPR IEEE, P5265, DOI 10.1109/CVPR.2018.00552
Wang HJ, 2018, IEEE ACCESS, V6, P6001, DOI 10.1109/ACCESS.2017.2784842
Wang J, 2014, IEEE T CYBERNETICS, V44, P2368, DOI 10.1109/TCYB.2014.2307067
Wang NN, 2018, IEEE T CIRC SYST VID, V28, P2154, DOI 10.1109/TCSVT.2017.2709465
Wang NN, 2017, IEEE T IMAGE PROCESS, V26, P1264, DOI 10.1109/TIP.2017.2651375
Wang R, 2017, IEEE T IMAGE PROCESS, V26, P5019, DOI 10.1109/TIP.2017.2726188
Wang TS, 2009, PATTERN RECOGN LETT, V30, P1161, DOI 10.1016/j.patrec.2009.06.002
Wang XF, 2020, IEEE COMMUN SURV TUT, V22, P869, DOI 10.1109/COMST.2020.2970550
Wang ZF, 2014, VISUAL COMPUT, V30, P359, DOI 10.1007/s00371-013-0861-x
Wang ZY, 2012, SCIENTOMETRICS, V90, P855, DOI 10.1007/s11192-011-0563-y
Wen D, 2015, IEEE T INF FOREN SEC, V10, P746, DOI 10.1109/TIFS.2015.2400395
Widodo A, 2007, EXPERT SYST APPL, V33, P241, DOI 10.1016/j.eswa.2006.04.020
Wiskott L, 1997, IEEE T PATTERN ANAL, V19, P775, DOI 10.1109/34.598235
Wolf L, 2011, IEEE T PATTERN ANAL, V33, P1978, DOI 10.1109/TPAMI.2010.230
Wright J, 2010, P IEEE, V98, P1031, DOI 10.1109/JPROC.2010.2044470
Wright J, 2009, IEEE T PATTERN ANAL, V31, P210, DOI 10.1109/TPAMI.2008.79
Wu X, 2017, PATTERN RECOGN, V66, P404, DOI 10.1016/j.patcog.2016.12.001
Xie SF, 2010, IEEE T IMAGE PROCESS, V19, P1349, DOI 10.1109/TIP.2010.2041397
Xu BR, 2019, IEEE T NEUR NET LEAR, V30, P151, DOI 10.1109/TNNLS.2018.2836933
Xu CF, 2017, NEUROCOMPUTING, V222, P62, DOI 10.1016/j.neucom.2016.10.010
Xu F, 2017, IEEE T AFFECT COMPUT, V8, P254, DOI 10.1109/TAFFC.2016.2518162
Xu Y, 2017, IEEE ACCESS, V5, P8502, DOI 10.1109/ACCESS.2017.2695239
Xu Y, 2017, IEEE T NEUR NET LEAR, V28, P2233, DOI 10.1109/TNNLS.2016.2580572
Xu Y, 2017, INFORM SCIENCES, V375, P171, DOI 10.1016/j.ins.2016.09.059
Xu Y, 2014, IEEE T CYBERNETICS, V44, P1950, DOI 10.1109/TCYB.2014.2300175
Xu Y, 2014, IEEE T CYBERNETICS, V44, P1738, DOI 10.1109/TCYB.2013.2293391
Xu Y, 2014, NEUROCOMPUTING, V131, P191, DOI 10.1016/j.neucom.2013.10.025
Xu Y, 2013, PATTERN RECOGN, V46, P1151, DOI 10.1016/j.patcog.2012.11.003
Xu Y, 2012, NEUROCOMPUTING, V79, P125, DOI 10.1016/j.neucom.2011.10.013
Xu Y, 2011, IEEE T CIRC SYST VID, V21, P1255, DOI 10.1109/TCSVT.2011.2138790
Xu Z, 2019, NEUROCOMPUTING, V355, P1, DOI 10.1016/j.neucom.2018.09.056
Yan HB, 2015, IEEE T CYBERNETICS, V45, P2535, DOI 10.1109/TCYB.2014.2376934
Yan SC, 2007, IEEE T PATTERN ANAL, V29, P40, DOI 10.1109/TPAMI.2007.250598
Yang AY, 2013, IEEE T IMAGE PROCESS, V22, P3234, DOI 10.1109/TIP.2013.2262292
Yang J, 2005, PATTERN RECOGN, V38, P1125, DOI 10.1016/j.patcog.2004.11.019
Yang J, 2005, IEEE T PATTERN ANAL, V27, P230, DOI 10.1109/TPAMI.2005.33
Yang J, 2004, IEEE T PATTERN ANAL, V26, P131, DOI 10.1109/TPAMI.2004.1261097
Yang J, 2007, IEEE T PATTERN ANAL, V29, P650, DOI 10.1109/TPAMI.2007.1008
Yang J, 2017, IEEE T PATTERN ANAL, V39, P156, DOI 10.1109/TPAMI.2016.2535218
Yang J, 2008, IEEE T NEURAL NETWOR, V19, P2088, DOI 10.1109/TNN.2008.2003187
Yang M, 2013, IEEE T IMAGE PROCESS, V22, P1753, DOI 10.1109/TIP.2012.2235849
Yang SC, 2019, IEEE T INF FOREN SEC, V14, P251, DOI 10.1109/TIFS.2018.2849883
Yang WK, 2020, NEUROCOMPUTING, V373, P109, DOI 10.1016/j.neucom.2019.09.102
Yang WK, 2011, PATTERN RECOGN, V44, P1649, DOI 10.1016/j.patcog.2011.01.019
Yang ZJ, 2019, MULTIMED TOOLS APPL, V78, P23847, DOI 10.1007/s11042-018-6242-8
Yin X, 2018, IEEE T IMAGE PROCESS, V27, P964, DOI 10.1109/TIP.2017.2765830
Younis MI, 2018, WIRELESS PERS COMMUN, V101, P1939, DOI 10.1007/s11277-018-5800-8
Yuan XT, 2012, IEEE T IMAGE PROCESS, V21, P4349, DOI 10.1109/TIP.2012.2205006
Zafeiriou S, 2012, IEEE T NEUR NET LEAR, V23, P526, DOI 10.1109/TNNLS.2011.2182058
Zangeneh E, 2020, EXPERT SYST APPL, V139, DOI 10.1016/j.eswa.2019.112854
Zhang BH, 2007, IEEE T IMAGE PROCESS, V16, P57, DOI 10.1109/TIP.2006.884956
Zhang BC, 2010, IEEE T IMAGE PROCESS, V19, P533, DOI 10.1109/TIP.2009.2035882
Zhang DQ, 2005, NEUROCOMPUTING, V69, P224, DOI 10.1016/j.neucom.2005.06.004
Zhang L, 2017, IEEE T NEUR NET LEAR, V28, P3045, DOI 10.1109/TNNLS.2016.2607757
Zhang L, 2012, IEEE T SIGNAL PROCES, V60, P1684, DOI 10.1109/TSP.2011.2179539
Zhang MJ, 2019, IEEE T IMAGE PROCESS, V28, P642, DOI 10.1109/TIP.2018.2869688
Zhang SP, 2013, PATTERN RECOGN, V46, P1772, DOI 10.1016/j.patcog.2012.10.006
Zhang TP, 2009, PATTERN RECOGN, V42, P251, DOI 10.1016/j.patcog.2008.03.017
Zhang TP, 2010, IEEE T SYST MAN CY B, V40, P186, DOI 10.1109/TSMCB.2009.2024759
Zhang WM, 2019, IEEE T PATTERN ANAL, V41, P611, DOI 10.1109/TPAMI.2018.2803179
Zhang X, 2009, PATTERN RECOGN, V42, P2876, DOI 10.1016/j.patcog.2009.04.017
Zhang X, 2015, PATTERN RECOGN, V48, P2935, DOI 10.1016/j.patcog.2015.02.022
Zhang YB, 2006, IMAGE VISION COMPUT, V24, P626, DOI 10.1016/j.imavis.2005.08.004
Zhang YS, 2020, IEEE T INF FOREN SEC, V15, P1683, DOI 10.1109/TIFS.2019.2947872
Zhang Z, 2018, IEEE T NEUR NET LEAR, V29, P3111, DOI 10.1109/TNNLS.2017.2712801
Zhao HT, 2008, IEEE T SYST MAN CY B, V38, P210, DOI 10.1109/TSMCB.2007.908870
Zhao J, 2019, IEEE T PATTERN ANAL, V41, P2380, DOI 10.1109/TPAMI.2018.2858819
Zhao W, 2003, ACM COMPUT SURV, V35, P399, DOI 10.1145/954339.954342
Zhi H, 2019, J VIS COMMUN IMAGE R, V58, P495, DOI 10.1016/j.jvcir.2018.12.012
Zhou CJ, 2008, INT J INNOV COMPUT I, V4, P1723
Zhou SH, 2003, COMPUT VIS IMAGE UND, V91, P214, DOI 10.1016/S1077-3142(03)00080-8
Zong WW, 2011, NEUROCOMPUTING, V74, P2541, DOI 10.1016/j.neucom.2010.12.041
Zou WWW, 2012, IEEE T IMAGE PROCESS, V21, P327, DOI 10.1109/TIP.2011.2162423
NR 271
TC 3
Z9 3
U1 2
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2169-3536
J9 IEEE ACCESS
JI IEEE Access
PY 2022
VL 10
BP 68175
EP 68201
DI 10.1109/ACCESS.2022.3185137
PG 27
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic; Telecommunications
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering; Telecommunications
GA 2P5ZZ
UT WOS:000819820100001
OA gold
DA 2024-09-05
ER
PT C
AU Kumar, MS
Gupta, S
Baskaran, S
Na, JC
AF Kumar, Mahalakshmi Suresh
Gupta, Shreya
Baskaran, Subashini
Na, Jin-Cheon
BE Jatowt, A
Maeda, A
Syn, SY
TI User Motivation Classification and Comparison of Tweets Mentioning
Research Articles in the Fields of Medicine, Chemistry and Environmental
Science
SO DIGITAL LIBRARIES AT THE CROSSROADS OF DIGITAL INFORMATION FOR THE
FUTURE, ICADL 2019
SE Lecture Notes in Computer Science
LA English
DT Proceedings Paper
CT 21st International Conference on Asia-Pacific Digital Libraries (ICADL)
CY NOV 04-07, 2019
CL Kuala Lumpur, MALAYSIA
DE Altmetrics; Machine learning; Support Vector Machine; Medicine; Twitter;
User motivation; Chemistry; Environmental science
ID TWITTER
AB Modern metrics like Altmetrics help researchers and scientists to gauge the impact of their research findings through social media discussions. Twitter holds more scholarly and scientific discussions than other social media platforms and is extensively used to discuss and share research articles by domain experts as well as by the general public. In this study, we have analyzed the motivations of people using Twitter as a medium to propagate the research works. Tweets and the publication details from the field of medicine are collected from altmetric.com for journals with high impact factors and a Support Vector Machine classifier is developed with 85.2% accuracy to categorize the tweets into one of the six motivation classes. The model is then extended to observe the pattern of user motivations in chemistry and environmental science. Medicine and environmental science were found to have similar patterns in user motivations as they directly impact the general public. Chemistry, on the other hand, showed a peculiar pattern with a high percentage of self-citation and promotion. From this study, the domain is also found to play a vital role in measuring research impacts when alternate metrics are used.
C1 [Kumar, Mahalakshmi Suresh; Gupta, Shreya; Baskaran, Subashini; Na, Jin-Cheon] Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore.
C3 Nanyang Technological University
RP Baskaran, S (corresponding author), Nanyang Technol Univ, Wee Kim Wee Sch Commun & Informat, 31 Nanyang Link, Singapore 637718, Singapore.
EM mahalaks002@e.ntu.edu.sg; shreya015@e.ntu.edu.sg;
subashin001@e.ntu.edu.sg; tjcna@ntu.edu.sg
OI Na, Jin-Cheon/0000-0002-2211-9382
CR [Anonymous], 2014, Eighth Int. AAAI Conf. Weblogs Soc. Media
Campion EW, 2004, NEW ENGL J MED, V351, P2436, DOI 10.1056/NEJMe048289
Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953
Collins K, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162680
Erdt M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183217
Esuli Andrea., 2006, P 5 C LANG RES EV LR, P417
George DR, 2013, CLIN OBSTET GYNECOL, V56, P453, DOI 10.1097/GRF.0b013e318297dc38
Halevi G, 2018, Journal of Altmetrics, V1, P2, DOI DOI 10.29024/JOA.1
Haustein S, 2014, ASLIB J INFORM MANAG, V66, P279, DOI 10.1108/AJIM-09-2013-0081
Howard J., 2012, CHRON HIGHER EDUC
Hsu YC, 2012, EDUC TECHNOL SOC, V15, P354
Htoo T.H.H., 2017, WHO ARE TWEETING RES, DOI [10.1633/jistap.2017.5.3.4, DOI 10.1633/JISTAP.2017.5.3.4]
Ikonomakis M., 2005, WSEAS Transactions on Computers, V4, P966
Ke Q, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175368
Knight CG, 2016, INNOV EDUC TEACH INT, V53, P145, DOI 10.1080/14703297.2014.928229
Na JC, 2017, ONLINE INFORM REV, V41, P337, DOI 10.1108/OIR-02-2016-0058
Na JC, 2015, LECT NOTES COMPUT SC, V9469, P197, DOI 10.1007/978-3-319-27974-9_20
Priem Jason, 2010, First Monday, V15, DOI 10.5210/fm.v15i7.2874
Priem J., 2016, Altmetrics: a manifesto
Robinson-Garcia N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183551
Robinson-García N, 2014, PROF INFORM, V23, P359, DOI 10.3145/epi.2014.jul.03
Ross C, 2011, J DOC, V67, P214, DOI 10.1108/00220411111109449
Shema H, 2015, J ASSOC INF SCI TECH, V66, P1136, DOI 10.1002/asi.23239
Zawbaa H., 2017, J CITATION REPORTS T, DOI [10. 13140/rg.2.2.31536.87049, DOI 10.13140/RG.2.2.31536.87049]
NR 24
TC 1
Z9 1
U1 0
U2 10
PU SPRINGER INTERNATIONAL PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 0302-9743
EI 1611-3349
BN 978-3-030-34058-2; 978-3-030-34057-5
J9 LECT NOTES COMPUT SC
PY 2019
VL 11853
BP 40
EP 53
DI 10.1007/978-3-030-34058-2_5
PG 14
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Theory & Methods; Information Science &
Library Science; Imaging Science & Photographic Technology
WE Conference Proceedings Citation Index - Science (CPCI-S); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Computer Science; Information Science & Library Science; Imaging Science
& Photographic Technology
GA BQ3BB
UT WOS:000583740100005
DA 2024-09-05
ER
PT J
AU Tran, J
Meller, L
Le, V
Tam, J
Nicholas, A
AF Tran, Joanne
Meller, Leo
Le, Vy
Tam, Jasmine
Nicholas, Andrea
TI Behavioral assessment of soft skill development in a highly structured
pre-health biology course for undergraduates
SO JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION
LA English
DT Article
DE pre-health undergraduate education; active learning; soft-skill
assessment; biology education; patient simulations; collaborative
learning; videotaped simulations; pre-health skill development; critical
thinking analysis; behavioral analysis; scientific literacy; case-based
education; group work; design-based research; Multiple Mini Exams (MME)
ID QUALITIES; EDUCATION
AB In this study, we assessed a highly structured, yearlong, case-based course designed for undergraduate pre-health students. We incorporated both content learning assessments and developed a novel method called Multiple Mini Exams for assessing course impact on the development of skills that professional schools often seek in pre-health students, focusing on students' abilities to collaborate with others, display bedside manners, synthesize patient case details, appropriately use scientific and medical language, and effectively attain patients' medical histories. This novel method utilized a rubric based on desired medical student skills to score videotaped behaviors and interactions of students role playing as doctors in a hypothetical patient case study scenario. Overall, our findings demonstrate that a highly structured course, incorporating weekly student performance and presentation of patient cases encompassing history taking, diagnosis, and treatment, can result in content learning, as well as improve desired skills specific for success in medical fields.
C1 [Tran, Joanne; Meller, Leo; Le, Vy; Tam, Jasmine] Univ Calif Irvine, Dept Biol Sci, Irvine, CA USA.
[Nicholas, Andrea] Univ Calif Irvine, Dept Neurosci, Irvine, CA 92697 USA.
C3 University of California System; University of California Irvine;
University of California System; University of California Irvine
RP Nicholas, A (corresponding author), Univ Calif Irvine, Dept Neurosci, Irvine, CA 92697 USA.
EM acnichol@uci.edu
CR Allsop J., 2020, International Journal of Teaching and Learning in Higher Education, V22, P418
Anderson MB, 1999, ACAD MED, V74, P13
Angeles C., ANTIBIOTIC RESISTANC
[Anonymous], 1983, Medical education and societal needs: A planning report for the health professions
Bautista JMD., 2017, MED SCI EDUC, V27, P645, DOI [10.1007/s40670-017-0446-9, DOI 10.1007/S40670-017-0446-9]
Duran M, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.37871
Eva KW, 2004, MED EDUC, V38, P314, DOI 10.1046/j.1365-2923.2004.01776.x
Freeman S, 2011, CBE-LIFE SCI EDUC, V10, P175, DOI 10.1187/cbe.10-08-0105
Graffam B, 2007, MED TEACH, V29, P38, DOI 10.1080/01421590601176398
Henneman A, 2020, CURR PHARM TEACH LEA, V12, P585, DOI 10.1016/j.cptl.2020.01.010
Hoffman E A, 2001, Microbiol Educ, V2, P5
McCoy L, 2018, J MED EDUC CURRIC DE, V5, DOI 10.1177/2382120518765135
Mitchell O, 2021, CLIN TEACH, V18, P409, DOI 10.1111/tct.13354
Nicholas A., DIS RIVER CASE STUDY
Nissen JM, 2018, PHYS REV PHYS EDUC R, V14, DOI 10.1103/PhysRevPhysEducRes.14.010115
Scott EE, 2020, CBE-LIFE SCI EDUC, V19, DOI 10.1187/cbe.19-11-0245
Steiner-Hofbauer V, 2018, WIEN MED WOCHENSCHR, V168, P398, DOI 10.1007/s10354-017-0597-8
Sullivan Gail M, 2012, J Grad Med Educ, V4, P279, DOI 10.4300/JGME-D-12-00156.1
Young LM, 2010, J MICROBIOL BIOL EDU, V11, P107, DOI 10.1128/jmbe.v11i2.204
NR 19
TC 0
Z9 0
U1 0
U2 0
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 1935-7877
EI 1935-7885
J9 J MICROBIOL BIOL EDU
JI J. Microbiol. Biol. Educ.
PD AUG 29
PY 2024
VL 25
IS 2
DI 10.1128/jmbe.00192-23
EA JUN 2024
PG 13
WC Education, Scientific Disciplines
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA E0R9E
UT WOS:001243431200001
PM 38860778
OA gold
DA 2024-09-05
ER
PT J
AU Gehanno, JF
Thaon, I
Pelissier, C
Rollin, L
AF Gehanno, Jean-Francois
Thaon, Isabelle
Pelissier, Carole
Rollin, Laetitia
TI Precision and Recall of Search Strategies for Identifying Studies on
Work-Related Psychosocial Risk Factors in PubMed
SO JOURNAL OF OCCUPATIONAL REHABILITATION
LA English
DT Article
DE Psychosocial risk factors; MEDLINE; Bibliometrics
ID OCCUPATIONAL-HEALTH; BIBLIOGRAPHIC DATABASES; SYSTEMATIC REVIEWS;
MEDLINE; PERFORMANCE; SUFFICIENT; FILTERS
AB PurposeThis study aims to report on the effectiveness of various search strategies and keywords to find studies on work-related psychosocial risk factors (PRF) in the PubMed bibliographic database.MethodsWe first selected by hand-searching 191articles published on PRF and indexed in PubMed. We extracted 30 relevant MeSH terms and 38 additional textwords. We then searched PubMed combining these 68 keywords and 27 general keywords on work-related factors. Among the 2953 articles published in January 2020, we identified 446 articles concerning exposure to PRF, which were gathered in a Gold Standard database. We then computed the Recall, Precision, and Number Needed to Read of each keyword or combination of keywords.ResultsOverall, 189 search-words alone or in combination were tested. The highest Recall with a single MeSH term or textword was 43% and 35%, respectively. Subsequently, we developed two different search strings, one optimizing Recall while keeping Precision acceptable (Recall 98.2%, Precision 5.9%, NNR 16.9) and one optimizing Precision while keeping Recall acceptable (Recall 73.1%, Precision 25.5%, NNR 9.7).ConclusionsNo single MeSH term is available to identify relevant studies on PRF in PubMed. Locating these types of studies requires the use of various MeSH and non-MeSH terms in combination to obtain a satisfactory Recall. Nevertheless, enhancing the Recall of search strategies may lead to lower Precision, and higher NNR, although with a non-linear trend. This factor must be taken into consideration when searching PubMed.
C1 [Gehanno, Jean-Francois; Rollin, Laetitia] Rouen Univ Hosp, Inst Occupat Med, 1 Rue Germont, F-76000 Rouen, France.
[Gehanno, Jean-Francois; Rollin, Laetitia] Univ Paris 13, Rouen Univ, Sorbonne Univ, Lab Med Informat & Knowledge Engn E Hlth,Inserm,LI, Paris, France.
[Thaon, Isabelle] CHRU Nancy, Ctr Consultat Pathol Profess, Vandoeuvre Les Nancy, France.
[Pelissier, Carole] Univ Gustave Eiffel IFSTTAR, Hosp Univ Ctr St Etienne, Univ Lyon 1, Univ St Etienne, F-42005 St Etienne, France.
[Pelissier, Carole] UMRESTTE UMR T9405, F-42005 St Etienne, France.
C3 Universite de Rouen Normandie; CHU de Rouen; Universite Paris 13;
Universite de Rouen Normandie; Sorbonne Universite; Institut National de
la Sante et de la Recherche Medicale (Inserm); CHU de Nancy; Universite
Jean Monnet; Universite Claude Bernard Lyon 1
RP Gehanno, JF (corresponding author), Rouen Univ Hosp, Inst Occupat Med, 1 Rue Germont, F-76000 Rouen, France.; Gehanno, JF (corresponding author), Univ Paris 13, Rouen Univ, Sorbonne Univ, Lab Med Informat & Knowledge Engn E Hlth,Inserm,LI, Paris, France.
EM jf.gehanno@chu-rouen.fr
RI Thaon, Isabelle M/AAE-8650-2020
OI Thaon, Isabelle M/0000-0002-1462-3722; Gehanno,
jean-francois/0000-0002-2309-7322
CR Brun Emmanuelle., 2007, EXPERT FORECAST EMER
Cooper C, 2018, J CLIN EPIDEMIOL, V99, P53, DOI 10.1016/j.jclinepi.2018.02.025
Duchaine CS, 2020, JAMA PSYCHIAT, V77, P842, DOI 10.1001/jamapsychiatry.2020.0322
Dunn K, 2017, J MED LIBR ASSOC, V105, P336, DOI 10.5195/jmla.2017.87
Gehanno JF, 2009, J OCCUP REHABIL, V19, P223, DOI 10.1007/s10926-009-9177-0
Gehanno JF, 1998, OCCUP ENVIRON MED, V55, P562, DOI 10.1136/oem.55.8.562
Haafkens J, 2006, OCCUP MED-OXFORD, V56, P39, DOI 10.1093/occmed/kqi193
Halladay CW, 2015, J CLIN EPIDEMIOL, V68, P1076, DOI 10.1016/j.jclinepi.2014.12.017
Hausner E, 2012, SYST REV-LONDON, V1, DOI 10.1186/2046-4053-1-19
Kok R, 2015, BMJ OPEN, V5, DOI 10.1136/bmjopen-2014-006315
Mattioli S, 2013, AM J IND MED, V56, P1473, DOI 10.1002/ajim.22252
Mattioli S, 2012, OCCUP ENVIRON MED, V69, P522, DOI 10.1136/oemed-2011-100180
Mattioli S, 2010, OCCUP ENVIRON MED, V67, P436, DOI 10.1136/oem.2008.044727
Niedhammer I, 2021, SCAND J WORK ENV HEA, V47, P489, DOI 10.5271/sjweh.3968
Rice DB, 2016, J PSYCHOSOM RES, V87, P7, DOI 10.1016/j.jpsychores.2016.06.002
Rollin L, 2010, SCAND J WORK ENV HEA, V36, P484, DOI 10.5271/sjweh.3082
Sampson M, 2016, J CLIN EPIDEMIOL, V78, P108, DOI 10.1016/j.jclinepi.2016.03.004
Schaafsma F, 2006, AM J IND MED, V49, P127, DOI 10.1002/ajim.20235
Taouk Y, 2020, SCAND J WORK ENV HEA, V46, P19, DOI 10.5271/sjweh.3854
van de Glind EMM, 2012, J AM MED INFORM ASSN, V19, P468, DOI 10.1136/amiajnl-2011-000319
van der Molen HF, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2019-034849
Verbeek J, 2005, OCCUP ENVIRON MED, V62, P682, DOI 10.1136/oem.2004.019117
Wagner M, 2020, J CLIN EPIDEMIOL, V120, P17, DOI 10.1016/j.jclinepi.2019.12.008
Wilczynski NL, 2010, QUAL SAF HEALTH CARE, V19, DOI 10.1136/qshc.2010.042432
Wilczynski NL, 2004, CAN MED ASSOC J, V171, P1179, DOI 10.1503/cmaj.1040512
NR 25
TC 1
Z9 1
U1 0
U2 8
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1053-0487
EI 1573-3688
J9 J OCCUP REHABIL
JI J. Occup. Rehabil.
PD DEC
PY 2023
VL 33
IS 4
BP 776
EP 784
DI 10.1007/s10926-023-10110-w
EA MAR 2023
PG 9
WC Rehabilitation; Social Issues
WE Social Science Citation Index (SSCI)
SC Rehabilitation; Social Issues
GA AH2I3
UT WOS:000953888300001
PM 36941513
DA 2024-09-05
ER
PT J
AU Aljohani, NR
Fayoumi, A
Saeed-Ul Hassan
AF Aljohani, Naif Radi
Fayoumi, Ayman
Saeed-Ul Hassan
TI An in-text citation classification predictive model for a scholarly
search system
SO SCIENTOMETRICS
LA English
DT Article
DE Citation classification; Machine learning; In-text citations; Scholarly
search systems; Bibliometric-enhanced information retrieval
ID SCIENTIFIC ARTICLES; CONTEXT; IDENTIFICATION; RETRIEVAL; DOCUMENTS;
KNOWLEDGE
AB We argue that citations in scholarly documents do not always perform equivalent functions or possess equal importance. To address this problem, we worked with a corpus of over 21 k citations from the Association for Computational Linguistics, from which 465 citations were randomly annotated by experts as either important or unimportant. We used an array of machine-learning models on these annotated citations: Random Forest (RF); Support Vector Machine (SVM); and Decision Tree (DT). For the classification task, the selected models employed 15 novel features: contextual; quantitative; and qualitative. We show that the RF model outperformed the comparative model by 9.52%, achieving a 92% precision-recall area under the curve. We present a prototype of a scientific publication search system based on the RF prediction model for feature engineering. This was used on a dataset of 4138 full-text articles indexed by PLOS ONE that consists of 31,839 unique references. The empirical evaluation shows that the proposed search system improves visibility of a given scientific document by including, along with its index terms, terms from the works that it cites that are predicted to be important. Overall, this yields improved search results against the queries by the user.
C1 [Aljohani, Naif Radi; Fayoumi, Ayman] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia.
[Saeed-Ul Hassan] Informat Technol Univ, 346-B Ferozepur Rd, Lahore, Pakistan.
C3 King Abdulaziz University
RP Saeed-Ul Hassan (corresponding author), Informat Technol Univ, 346-B Ferozepur Rd, Lahore, Pakistan.
EM nraljohani@kau.edu.sa; afayoumi@kau.edu.sa; saeed-ul-hassan@itu.edu.pk
RI Aljohani, Naif R/S-1109-2017; Fayoumi, Ayman/E-7236-2014; Hassan,
Saeed-Ul/G-1889-2016
OI Fayoumi, Ayman/0000-0002-4160-3305; Hassan, Saeed-Ul/0000-0002-6509-9190
FU Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah
[RG-14-611-40]
FX This project was funded by the Deanship of Scientific Research (DSR),
King Abdulaziz University, Jeddah, under grant No. RG-14-611-40. The
authors, therefore, gratefully acknowledge DSR technical and financial
support.
CR Ananiadou Sophia, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P318, DOI 10.1007/978-3-642-37256-8_27
Athar A., 2011, P ACL 2011 STUD SESS, P81
Batista-Navarro Riza Theresa, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P559, DOI 10.1007/978-3-642-37247-6_45
Bhagavatula C., 2018, Long Papers, V1, P238, DOI DOI 10.18653/V1/N18-1022
BONZI S, 1982, J AM SOC INFORM SCI, V33, P208, DOI 10.1002/asi.4630330404
Bornmann L, 2020, SCIENTOMETRICS, V122, P1051, DOI 10.1007/s11192-019-03326-2
Bornmann L, 2018, SCIENTOMETRICS, V114, P427, DOI 10.1007/s11192-017-2591-8
Boyack KW, 2018, J INFORMETR, V12, P59, DOI 10.1016/j.joi.2017.11.005
CANO V, 1989, J AM SOC INFORM SCI, V40, P284, DOI 10.1002/(SICI)1097-4571(198907)40:4<284::AID-ASI10>3.0.CO;2-Z
Cohan A, 2018, INT J DIGIT LIBRARIE, V19, P287, DOI 10.1007/s00799-017-0216-8
Conrad J. G., 2001, Proceedings of the 2001 ACM CIKM. Tenth International Conference on Information and Knowledge Management, P287, DOI 10.1145/502585.502634
Councill IG, 2008, SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, P661
Ding Y, 2014, J ASSOC INF SCI TECH, V65, P1820, DOI 10.1002/asi.23256
Dong YX, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1437, DOI 10.1145/3097983.3098016
Drongstrup D, 2020, SCIENTOMETRICS, V125, P1541, DOI 10.1007/s11192-020-03613-3
Finney B., 1979, The reference characteristics of scientific texts
GARFIELD E, 1965, STAT ASSOC METHOD M, V1964, P189
Garzone M, 2000, LECT NOTES ARTIF INT, V1822, P337
Hassan S.-U., 2017, Digital Libraries: Data, Information, and Knowledge for Digital Lives, P119, DOI DOI 10.1007/978-3-319-70232-2_10
Hassan SU, 2018, LECT NOTES COMPUT SC, V11279, P316, DOI 10.1007/978-3-030-04257-8_32
Hassan SU, 2018, SCIENTOMETRICS, V117, P1645, DOI 10.1007/s11192-018-2944-y
Hassan SU, 2015, SCIENTOMETRICS, V103, P33, DOI 10.1007/s11192-015-1528-3
Hassan SU, 2013, SCIENTOMETRICS, V94, P163, DOI 10.1007/s11192-012-0786-6
Hassannejad S., 2017, 2017 ACM IEEE JOINT, V14, P1, DOI [DOI 10.1109/JCDL.2017.7991558, 10.9734/ARRB/2017/27339]
Hoffmann A., 2003, P 2 INT C KNOWL CAPT, P28
HOOTEN PA, 1991, J AM SOC INFORM SCI, V42, P397, DOI 10.1002/(SICI)1097-4571(199107)42:6<397::AID-ASI2>3.0.CO;2-N
Hu ZG, 2013, J INFORMETR, V7, P887, DOI 10.1016/j.joi.2013.08.005
Huang YH, 2013, IEEE DATA MINING, P291, DOI 10.1109/ICDM.2013.120
Jahangir M, 2017, PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), P722, DOI 10.1109/IntelliSys.2017.8324209
Karimi S, 2018, SCIENTOMETRICS, V116, P1331, DOI 10.1007/s11192-018-2785-8
Kumar S, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P63, DOI 10.1145/2872518.2889391
Lamers W., 2018, 23 INT C SCI TECHNOL
Ma Shutian, 2020, Scientometrics, V122, P1445, DOI 10.1007/s11192-019-03336-0
Ma ST, 2018, SCIENTOMETRICS, V116, P1303, DOI 10.1007/s11192-018-2754-2
Mayr P, 2018, INT J DIGIT LIBRARIE, V19, P107, DOI 10.1007/s00799-017-0230-x
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86, DOI 10.1177/030631277500500106
Nakov P. I., 2004, P SIGIR 04 WORKSH SE, P81
Nanba H, 1999, IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, P926
Nawaz R, 2012, LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, P3505
Nawaz R, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-14
Nazir S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0228885
OPPENHEIM C, 1978, J AM SOC INFORM SCI, V29, P225, DOI 10.1002/asi.4630290504
Pang B., 2006, Foundations and Trends in Information Retrieval, V1, P91, DOI DOI 10.1561/1500000011
Qayyum F, 2019, SCIENTOMETRICS, V118, P21, DOI 10.1007/s11192-018-2961-x
Qazvinian V, 2013, J ARTIF INTELL RES, V46, P165, DOI 10.1613/jair.3732
Rose S., 2010, TEXT MINING APPL THE, P1, DOI [DOI 10.1002/9780470689646.CH1, 10.1002/9780470689646.CH1, 10.1002/9780470689646.ch1]
Saeed-Ul Hassan, 2018, SCIENTOMETRICS, V116, P973, DOI 10.1007/s11192-018-2767-x
Safder I, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102269
Safder I, 2019, SCIENTOMETRICS, V119, P257, DOI 10.1007/s11192-019-03025-y
Safder I, 2018, INT CONF DAT MIN WOR, P1308, DOI 10.1109/ICDMW.2018.00186
Shardlow M, 2018, BMC MED INFORM DECIS, V18, DOI 10.1186/s12911-018-0639-1
Small H, 2018, J INFORMETR, V12, P461, DOI 10.1016/j.joi.2018.03.007
Sugiyama Kazunari, 2010, Proceedings of the 2010 International Conference on Information Retrieval and Knowledge Management (CAMP 2010), P67, DOI 10.1109/INFRKM.2010.5466945
Tahamtan I, 2018, J INFORMETR, V12, P203, DOI 10.1016/j.joi.2018.01.002
Thompson P, 2017, LANG RESOUR EVAL, V51, P409, DOI 10.1007/s10579-016-9344-9
Voos H., 1976, The Journal of Academic Librarianship, V1, P19
Wang XL, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-S8-S11
Zhao DZ, 2020, SCIENTOMETRICS, V122, P503, DOI 10.1007/s11192-019-03280-z
Zhu XD, 2015, J ASSOC INF SCI TECH, V66, P408, DOI 10.1002/asi.23179
NR 59
TC 6
Z9 7
U1 6
U2 39
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
EI 1588-2861
J9 SCIENTOMETRICS
JI Scientometrics
PD JUL
PY 2021
VL 126
IS 7
SI SI
BP 5509
EP 5529
DI 10.1007/s11192-021-03986-z
EA APR 2021
PG 21
WC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI)
SC Computer Science; Information Science & Library Science
GA SY3VS
UT WOS:000644380300024
DA 2024-09-05
ER
PT J
AU Liu, JY
Xia, F
Feng, X
Ren, J
Liu, H
AF Liu, Jiaying
Xia, Feng
Feng, Xu
Ren, Jing
Liu, Huan
TI Deep Graph Learning for Anomalous Citation Detection
SO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
LA English
DT Article
DE Anomaly detection; Image edge detection; Bibliometrics; Task analysis;
Semantics; Network analyzers; Representation learning; Anomalous
citation; deep graph learning; network representation; scholarly network
analysis (SNA)
ID SELF-CITATION; NETWORKS
AB Anomaly detection is one of the most active research areas in various critical domains, such as healthcare, fintech, and public security. However, little attention has been paid to scholarly data, that is, anomaly detection in a citation network. Citation is considered as one of the most crucial metrics to evaluate the impact of scientific research, which may be gamed in multiple ways. Therefore, anomaly detection in citation networks is of significant importance to identify manipulation and inflation of citations. To address this open issue, we propose a novel deep graph learning model, namely graph learning for anomaly detection (GLAD), to identify anomalies in citation networks. GLAD incorporates text semantic mining to network representation learning by adding both node attributes and link attributes via graph neural networks (GNNs). It exploits not only the relevance of citation contents, but also hidden relationships between papers. Within the GLAD framework, we propose an algorithm called Citation PUrpose (CPU) to discover the purpose of citation based on citation context. The performance of GLAD is validated through a simulated anomalous citation dataset. Experimental results demonstrate the effectiveness of GLAD on the anomalous citation detection task.
C1 [Liu, Jiaying] Dalian Univ Technol, Sch Econ & Management, Dalian 116024, Peoples R China.
[Xia, Feng; Ren, Jing] Federat Univ Australia, Sch Engn IT & Phys Sci, Ballarat, Vic 3353, Australia.
[Feng, Xu] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China.
[Liu, Huan] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85281 USA.
C3 Dalian University of Technology; Federation University Australia; Dalian
University of Technology; Arizona State University; Arizona State
University-Tempe
RP Xia, F (corresponding author), Federat Univ Australia, Sch Engn IT & Phys Sci, Ballarat, Vic 3353, Australia.
EM f.xia@ieee.org
RI Liu, JY/GYJ-0138-2022; liu, huan/JEO-4705-2023; Xia, Feng/Y-2859-2019;
liu, huan/JKI-3764-2023; Wang, Luyao/JLL-2001-2023
OI Xia, Feng/0000-0002-8324-1859; Feng, Xu/0000-0002-3923-5590; Liu,
Jiaying/0000-0001-9090-6305; Ren, Jing/0000-0003-0169-1491
FU National Natural Science Foundation of China [61872054]
FX This work was supported in part by the National Natural Science
Foundation of China under Grant 61872054.
CR Abu-Jbara A., 2013, NAACL, P596
Atwood J, 2016, ADV NEUR IN, V29
Bai XM, 2020, IEEE ACCESS, V8, P123200, DOI 10.1109/ACCESS.2020.3007709
Bartneck C, 2010, SCIENTOMETRICS, V85, P41, DOI 10.1007/s11192-010-0242-4
Beltagy I, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3615
Bian T, 2020, AAAI CONF ARTIF INTE, V34, P549
Bojchevski A, 2018, PR MACH LEARN RES, V80
Cheng JH, 2018, CHI 2018: EXTENDED ABSTRACTS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3170427.3188467
COHEN J, 1968, PSYCHOL BULL, V70, P213, DOI 10.1037/h0026256
Corbyn Z., 2010, Nature News, DOI DOI 10.1038/NEWS.2010.406
Davis P., 2012, SCHOLARLY KITCHEN, V10, P15
Ding KZ, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P2448, DOI 10.1145/3442381.3449922
Dong M, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P569, DOI 10.1145/3357384.3357994
Feng Xia, 2021, IEEE Transactions on Artificial Intelligence, V2, P109, DOI 10.1109/TAI.2021.3076021
Fiore U, 2019, INFORM SCIENCES, V479, P448, DOI 10.1016/j.ins.2017.12.030
Fortunato S, 2018, SCIENCE, V359, DOI 10.1126/science.aao0185
Franck G, 1999, SCIENCE, V286, P53, DOI 10.1126/science.286.5437.53
Gallicchio C, 2010, IEEE IJCNN
GORI M, 2005, IEEE IJCNN, P729, DOI DOI 10.1109/IJCNN.2005.1555942
Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754
Guo SN, 2019, AAAI CONF ARTIF INTE, P922
Hamilton WL, 2017, ADV NEUR IN, V30
Ioannidis JPA, 2015, J PSYCHOSOM RES, V78, P7, DOI 10.1016/j.jpsychores.2014.11.008
Kojaku S., 2020, ARXIV200909097
Kong XJ, 2020, ACM T KNOWL DISCOV D, V14, DOI 10.1145/3385530
Kong XJ, 2019, J NETW COMPUT APPL, V132, P86, DOI 10.1016/j.jnca.2019.01.029
Li A, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2703, DOI 10.1145/3357384.3357820
Li Y., 2016, ICLR
Liu JY, 2021, IEEE T KNOWL DATA EN, V33, P1763, DOI 10.1109/TKDE.2019.2946825
Lu YJ, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P505
Ma TF, 2018, ADV NEUR IN, V31
Mimouni M, 2016, SCIENTOMETRICS, V108, P1455, DOI 10.1007/s11192-016-2025-z
Moustafa K, 2016, ACCOUNT RES, V23, P230, DOI 10.1080/08989621.2015.1127763
Ouyang L., 2020, 2020 INT JOINT C NEU, P1
Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732
PRABHA CG, 1983, J AM SOC INFORM SCI, V34, P202, DOI 10.1002/asi.4630340305
Le Q, 2014, PR MACH LEARN RES, V32, P1188
Ren Y., 2020, Ambipolar Materials and Devices, P1
Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605
Schuster M, 2012, INT CONF ACOUST SPEE, P5149, DOI 10.1109/ICASSP.2012.6289079
Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093
Tu CC, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2864
Tu K, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2357, DOI 10.1145/3219819.3220068
Velickovic P., 2018, ARXIV180910341
Wang L, 2020, IEEE T COMPUT SOC SY, V7, P503, DOI 10.1109/TCSS.2019.2962819
Wang W, 2022, ACTA PHARMACOL SIN, V43, P771, DOI 10.1038/s41401-021-00714-4
Wang X, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P1243, DOI 10.1145/3394486.3403177
Wang XH, 2021, NEURAL COMPUT APPL, V33, P12073, DOI 10.1007/s00521-021-05924-9
Wu LK, 2021, LECT NOTES COMPUT SC, V12681, P3, DOI 10.1007/978-3-030-73194-6_1
Xia F, 2017, IEEE T BIG DATA, V3, P18, DOI 10.1109/TBDATA.2016.2641460
Xu K, 2018, IEEE INT SYMP CIRC S, DOI 10.1109/ISCAS.2018.8350934
Yu DH, 2021, LECT NOTES ARTIF INT, V12459, P378, DOI 10.1007/978-3-030-67664-3_23
Yu S, 2021, IEEE T COMPUT SOC SY, V8, P134, DOI 10.1109/TCSS.2020.2977958
Yu WC, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2663, DOI 10.1145/3219819.3220000
Yuqin Dou, 2020, GLSVLSI '20. Proceedings of the 2020 Great Lakes Symposium on VLSI, P315, DOI 10.1145/3386263.3407591
Zhang JN, 2018, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P339
Zhang X., 2020, PROC NEURAL INF PROC, P1
Zhao T., 2021, 2021 Int. Conf. on IC Design and Technology (ICICDT), Dresden, P1
Zheng L, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4419
NR 59
TC 25
Z9 26
U1 8
U2 56
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2162-237X
EI 2162-2388
J9 IEEE T NEUR NET LEAR
JI IEEE Trans. Neural Netw. Learn. Syst.
PD JUN
PY 2022
VL 33
IS 6
BP 2543
EP 2557
DI 10.1109/TNNLS.2022.3145092
EA FEB 2022
PG 15
WC Computer Science, Artificial Intelligence; Computer Science, Hardware &
Architecture; Computer Science, Theory & Methods; Engineering,
Electrical & Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA 1T4KK
UT WOS:000754285500001
PM 35143402
OA Green Submitted
DA 2024-09-05
ER
PT J
AU Nahr, N
Heikkilä, M
AF Nahr, Nora
Heikkila, Marikka
TI Uncovering the identity of Electronic Markets research through text
mining techniques
SO ELECTRONIC MARKETS
LA English
DT Article
DE Electronic Markets journal; Core identity; Text mining analysis; Cluster
analysis; Unsupervised machine learning; Bibliometric analysis
ID VALUE CO-CREATION; FINANCIAL SERVICES; RISK; TECHNOLOGIES; MANAGEMENT;
IMPACT; INNOVATIVENESS; METAANALYSIS; EXPERIENCES; ALGORITHMS
AB As an established academic journal in the e-commerce and digital platforms fields, Electronic Markets (EM) features a diverse range of topics and occupies a significant role in the information systems field. The study investigates EM's topic diversity over the time period 2009-2020 using a text mining analysis and a bibliometric analysis and identifies 28 cluster groups. The analysis reveals that the top three topics are 1) service quality, 2) blockchain and other shared trust building solutions, their impact and credibility, as well as 3) consumer buying behavior and interactions. EM's core identity lies in a balanced set of core themes that bring technological, business or human/ social perspectives to the research of networked business and digital economy. This includes research on digital and smart services, applications, consumer behavior and business models, as well as technology and e-commerce data. Ethical and sustainability related topics are however still less present in EM.
C1 [Nahr, Nora] Univ Passau, Chair Informat Syst Informat & IT Serv Management, Innstr 43, D-94032 Passau, Germany.
[Heikkila, Marikka] Univ Turku, Sch Econ, Rehtorinpellonkatu 3, Turku 20500, Finland.
C3 University of Passau; University of Turku
RP Nahr, N (corresponding author), Univ Passau, Chair Informat Syst Informat & IT Serv Management, Innstr 43, D-94032 Passau, Germany.
EM nora.nahr@uni-passau.de; marikka.heikkila@utu.fi
RI Heikkilä, Marikka/AAU-4000-2021
OI Heikkilä, Marikka/0000-0002-7298-7217; Nahr, Nora/0000-0002-2859-4088
FU Projekt DEAL
FX Open Access funding enabled and organized by Projekt DEAL.
CR Akter S, 2016, ELECTRON MARK, V26, P173, DOI 10.1007/s12525-016-0219-0
Akter S, 2013, ELECTRON MARK, V23, P29, DOI 10.1007/s12525-012-0091-5
Akter S, 2010, ELECTRON MARK, V20, P209, DOI 10.1007/s12525-010-0043-x
Albrecht S, 2020, ELECTRON MARK, V30, P241, DOI 10.1007/s12525-019-00371-w
Alt R, 2011, ELECTRON MARK, V21, P41, DOI 10.1007/s12525-011-0057-z
[Anonymous], 2014, MULTIKONFERENZ WIRTS
Balijepally V, 2011, J ASSOC INF SYST, V12, P375
Bauer I, 2020, ELECTRON MARK, V30, P211, DOI 10.1007/s12525-019-00368-5
Belanche D, 2021, ELECTRON MARK, V31, P477, DOI 10.1007/s12525-020-00432-5
Bons RWH, 2020, ELECTRON MARK, V30, P189, DOI 10.1007/s12525-020-00421-8
Boritz JE, 2013, INT J ACCOUNT INF SY, V14, P138, DOI 10.1016/j.accinf.2011.11.002
Bouwman H, 2018, ELECTRON MARK, V28, P149, DOI 10.1007/s12525-016-0243-0
Buchkremer R, 2019, IEEE ACCESS, V7, P65263, DOI 10.1109/ACCESS.2019.2917719
Chompis E, 2014, ELECTRON MARK, V24, P165, DOI 10.1007/s12525-014-0160-z
Clarke R, 2012, P 25 BLED ECONFERENC, P12
Clarke R, 2013, ELECTRON MARK, V23, P271, DOI 10.1007/s12525-013-0144-4
Constantiou I, 2012, ELECTRON MARK, V22, P105, DOI 10.1007/s12525-011-0076-9
Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004
Derks J, 2018, ELECTRON MARK, V28, P321, DOI 10.1007/s12525-018-0308-3
Donthu N, 2021, J BUS RES, V133, P285, DOI 10.1016/j.jbusres.2021.04.070
Dreher, 2012, P 25 BLED ECONFERENC, P193
Faloutsos C, 2012, MOR KAUF D, P39
Feinerer I, 2008, J STAT SOFTW, V25, P1
Feldman R., 2007, TEXT MINING HDB ADV
Fischbach K, 2011, ELECTRON MARK, V21, P19, DOI 10.1007/s12525-011-0051-5
Fteimi, 2020, P THE33RD BLED ECONF, P499
Fteimi N, 2019, INT J KNOWL MANAG, V15, P53, DOI 10.4018/IJKM.2019010104
Gao HX, 2014, ELECTRON MARK, V24, P67, DOI 10.1007/s12525-013-0142-6
Ghazali E, 2016, ELECTRON MARK, V26, P157, DOI 10.1007/s12525-016-0218-1
Gimpel H, 2020, ELECTRON MARK, V30, P699, DOI 10.1007/s12525-019-00361-y
Goyal S, 2018, COMMUN ASSOC INF SYS, V43, P404, DOI 10.17705/1CAIS.04323
Gretzel U, 2015, ELECTRON MARK, V25, P179, DOI 10.1007/s12525-015-0196-8
Grieger M, 2019, ELECTRON MARK, V29, P473, DOI 10.1007/s12525-018-0321-6
Hassan NR, 2017, J INF TECHNOL-UK, V32, P85, DOI 10.1057/jit.2015.29
Hayne SC, 2010, ELECTRON MARK, V20, P95, DOI 10.1007/s12525-010-0036-9
Hofmann P, 2020, ELECTRON MARK, V30, P99, DOI 10.1007/s12525-019-00365-8
Huang, 2008, P 6 NZ COMP SCI RES, P49
Hunke F, 2022, ELECTRON MARK, V32, P503, DOI 10.1007/s12525-021-00506-y
Huotari K, 2017, ELECTRON MARK, V27, P21, DOI 10.1007/s12525-015-0212-z
Hwang Y, 2009, ELECTRON MARK, V19, P89, DOI 10.1007/s12525-009-0007-1
Indulska M, 2012, EUR J INFORM SYST, V21, P49, DOI 10.1057/ejis.2011.37
Jeyaraj A, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103207
Keating BW, 2009, ELECTRON MARK, V19, P237, DOI 10.1007/s12525-009-0021-3
Kollmann T, 2020, ELECTRON MARK, V30, P273, DOI 10.1007/s12525-019-00369-4
Li BL, 2013, LECT NOTES COMPUT SC, V8206, P611, DOI 10.1007/978-3-642-41278-3_74
Liao CC, 2010, ELECTRON MARK, V20, P53, DOI 10.1007/s12525-010-0030-2
Liu W, 2020, ELECTRON MARK, V30, P735, DOI 10.1007/s12525-020-00395-7
Liu Y, 2012, ELECTRON MARK, V22, P83, DOI 10.1007/s12525-012-0085-3
Manthiou A, 2021, ELECTRON MARK, V31, P511, DOI 10.1007/s12525-020-00434-3
Marella V, 2020, ELECTRON MARK, V30, P259, DOI 10.1007/s12525-019-00392-5
Martín-Martín A, 2018, J INFORMETR, V12, P1160, DOI 10.1016/j.joi.2018.09.002
Menschner P, 2011, ELECTRON MARK, V21, P63, DOI 10.1007/s12525-011-0050-6
Möller F, 2022, ELECTRON MARK, V32, P701, DOI 10.1007/s12525-021-00507-x
Munnukka J, 2014, ELECTRON MARK, V24, P219, DOI 10.1007/s12525-013-0138-2
Murtagh F, 2014, J CLASSIF, V31, P274, DOI 10.1007/s00357-014-9161-z
Nam K, 2021, ELECTRON MARK, V31, P553, DOI 10.1007/s12525-020-00442-3
Neuhofer B, 2015, ELECTRON MARK, V25, P243, DOI 10.1007/s12525-015-0182-1
Nicolaou AI, 2011, ELECTRON MARK, V21, P113, DOI 10.1007/s12525-011-0061-3
Novak J, 2009, ELECTRON MARK, V19, P15, DOI 10.1007/s12525-009-0003-5
Ostern NK, 2020, ELECTRON MARK, V30, P195, DOI 10.1007/s12525-019-00387-2
Palvia P, 2015, COMMUN ASSOC INF SYS, V37, P630
Pappas IO, 2014, ELECTRON MARK, V24, P193, DOI 10.1007/s12525-014-0153-y
Penttinen E, 2019, ELECTRON MARK, V29, P337, DOI 10.1007/s12525-018-0298-1
Pucihar A, 2020, ELECTRON MARK, V30, P29, DOI 10.1007/s12525-020-00406-7
Rhee HT, 2015, ELECTRON MARK, V25, P211, DOI 10.1007/s12525-014-0161-y
Riquelme IP, 2014, ELECTRON MARK, V24, P135, DOI 10.1007/s12525-013-0145-3
Martín SS, 2011, ELECTRON MARK, V21, P267, DOI 10.1007/s12525-011-0074-y
Schmidt-Rauch S, 2014, ELECTRON MARK, V24, P5, DOI 10.1007/s12525-013-0124-8
Serenko A, 2013, J KNOWL MANAG, V17, P773, DOI 10.1108/JKM-05-2013-0166
Setia P, 2015, ELECTRON MARK, V25, P283, DOI 10.1007/s12525-015-0189-7
Sha W, 2009, ELECTRON MARK, V19, P43, DOI 10.1007/s12525-008-0001-z
Shao BJ, 2012, ELECTRON MARK, V22, P73, DOI 10.1007/s12525-012-0093-3
Sidorova A, 2007, PROC INT CONF INFORM
Sigala M, 2015, ELECTRON MARK, V25, P189, DOI 10.1007/s12525-014-0179-1
Stamenkov G, 2016, ELECTRON MARK, V26, P291, DOI 10.1007/s12525-016-0221-6
Szmrecsanyi B., 2012, Grammatical variation in British English dialects: A study in corpus-based dialectometry, DOI [10.1017/CBO9780511763380, DOI 10.1017/CBO9780511763380]
Tu HJ, 2012, ELECTRON MARK, V22, P243, DOI 10.1007/s12525-012-0108-0
Vijaymeena M., 2016, Machine Learning and Applications, V3, P19, DOI DOI 10.5121/MLAIJ.2016.3103
Weking J, 2020, ELECTRON MARK, V30, P447, DOI 10.1007/s12525-018-0322-5
Weking J, 2020, ELECTRON MARK, V30, P285, DOI 10.1007/s12525-019-00386-3
Wiegard RB, 2019, ELECTRON MARK, V29, P107, DOI 10.1007/s12525-017-0274-1
Xu H, 2009, ELECTRON MARK, V19, P137, DOI 10.1007/s12525-009-0012-4
Yim D, 2021, ELECTRON MARK, V31, P619, DOI 10.1007/s12525-021-00472-5
Zeng M, 2019, ELECTRON MARK, V29, P263, DOI 10.1007/s12525-018-0311-8
Zhang MM, 2011, ELECTRON MARK, V21, P161, DOI 10.1007/s12525-011-0065-z
Zhao Y, 2005, DATA MIN KNOWL DISC, V10, P141, DOI 10.1007/s10618-005-0361-3
Zupic I, 2015, ORGAN RES METHODS, V18, P429, DOI 10.1177/1094428114562629
NR 87
TC 4
Z9 4
U1 8
U2 36
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1019-6781
EI 1422-8890
J9 ELECTRON MARK
JI Electron. Mark.
PD SEP
PY 2022
VL 32
IS 3
SI SI
BP 1257
EP 1277
DI 10.1007/s12525-022-00560-0
EA JUL 2022
PG 21
WC Business; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA 6G4VT
UT WOS:000824995600001
OA hybrid
DA 2024-09-05
ER
PT J
AU Aagaard, T
Lund, H
Juhl, C
AF Aagaard, Thomas
Lund, Hans
Juhl, Carsten
TI Optimizing literature search in systematic reviews - are MEDLINE, EMBASE
and CENTRAL enough for identifying effect studies within the area of
musculoskeletal disorders?
SO BMC MEDICAL RESEARCH METHODOLOGY
LA English
DT Article
DE Information retrieval; Bibliometric; MECIR guidelines; Evidence-based
medicine; Relative recall; Literature searching; Systematic review;
Musculoskeletal area
ID RANDOMIZED CONTROLLED-TRIALS; MENTAL-HEALTH; DATABASES; INTERVENTIONS;
ARTICLES; INFORMATION; PREVENTION; RELEVANT; NETWORK; DISEASE
AB Background: When conducting systematic reviews, it is essential to perform a comprehensive literature search to identify all published studies relevant to the specific research question. The Cochrane Collaborations Methodological Expectations of Cochrane Intervention Reviews (MECIR) guidelines state that searching MEDLINE, EMBASE and CENTRAL should be considered mandatory. The aim of this study was to evaluate the MECIR recommendations to use MEDLINE, EMBASE and CENTRAL combined, and examine the yield of using these to find randomized controlled trials (RCTs) within the area of musculoskeletal disorders.
Methods: Data sources were systematic reviews published by the Cochrane Musculoskeletal Review Group, including at least five RCTs, reporting a search history, searching MEDLINE, EMBASE, CENTRAL, and adding reference-and hand-searching. Additional databases were deemed eligible if they indexed RCTs, were in English and used in more than three of the systematic reviews. Relative recall was calculated as the number of studies identified by the literature search divided by the number of eligible studies i.e. included studies in the individual systematic reviews. Finally, cumulative median recall was calculated for MEDLINE, EMBASE and CENTRAL combined followed by the databases yielding additional studies.
Results: Deemed eligible was twenty-three systematic reviews and the databases included other than MEDLINE, EMBASE and CENTRAL was AMED, CINAHL, HealthSTAR, MANTIS, OT-Seeker, PEDro, PsychINFO, SCOPUS, SportDISCUS and Web of Science. Cumulative median recall for combined searching in MEDLINE, EMBASE and CENTRAL was 88.9% and increased to 90.9% when adding 10 additional databases.
Conclusion: Searching MEDLINE, EMBASE and CENTRAL was not sufficient for identifying all effect studies on musculoskeletal disorders, but additional ten databases did only increase the median recall by 2%. It is possible that searching databases is not sufficient to identify all relevant references, and that reviewers must rely upon additional sources in their literature search. However further research is needed.
C1 [Aagaard, Thomas] Holbaek Univ Hosp, Dept Physiotherapy, Holbaek, Denmark.
[Aagaard, Thomas; Lund, Hans; Juhl, Carsten] Univ Southern Denmark, Inst Sports Sci & Clin Biomech, Res Unit Musculoskeletal Funct & Physiotherapy, Odense, Denmark.
[Lund, Hans] Bergen Univ Coll, Ctr Evidence Based Practice, Bergen, Norway.
[Juhl, Carsten] Copenhagen Univ Hosp, Dept Rehabil, Gentofte, Denmark.
C3 University of Southern Denmark; Western Norway University of Applied
Sciences; University of Copenhagen
RP Aagaard, T (corresponding author), Holbaek Univ Hosp, Dept Physiotherapy, Holbaek, Denmark.; Aagaard, T (corresponding author), Univ Southern Denmark, Inst Sports Sci & Clin Biomech, Res Unit Musculoskeletal Funct & Physiotherapy, Odense, Denmark.
EM tvaagaard@gmail.com
RI Juhl, Carsten/ISA-2180-2023; Lund, Hans Aage/HWT-2338-2023; Aagaard,
Thomas/O-6439-2018
OI Lund, Hans Aage/0000-0001-6847-8324; Aagaard,
Thomas/0000-0002-5098-5982; Juhl, Carsten/0000-0001-8456-5364
CR ADAMS CE, 1994, PSYCHOL MED, V24, P741, DOI 10.1017/S0033291700027896
Adie S, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD007911.pub2
Aker P D, 1996, J Manipulative Physiol Ther, V19, P518
[Anonymous], COCHRANE DATABASE SY
[Anonymous], COCHRANE DATABASE SY
[Anonymous], COCHRANE DATABASE SY, DOI DOI 10.1002/14651858.CD001984]
[Anonymous], 2010, COCHRANE DATABASE SY
[Anonymous], J CLIN EPIDEMIOL
[Anonymous], COCHRANE DATABASE SY
[Anonymous], COCHRANE DATABASE SY
[Anonymous], COCHRANE DATABASE SY, DOI DOI 10.1007/S00296-012-2619-6
[Anonymous], EVID BASED COMPLEMEN
[Anonymous], COCHRANE DATABASE SY
[Anonymous], COCHRANE DATABASE SY
[Anonymous], COCHRANE DATABASE SY
[Anonymous], US CORK COMP DAT OCC
[Anonymous], COCHRANE DATABASE SY
[Anonymous], COCHRANE DATABASE SY
Bartels EM, 2007, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005523.pub2
Bayliss SE, 2014, HEALTH INFO LIBR J, V31, P303, DOI 10.1111/hir.12075
Beckles Z, 2013, J CLIN EPIDEMIOL, V66, P1051, DOI 10.1016/j.jclinepi.2013.04.009
Bellamy N, 2006, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005321.pub2
Bellamy N, 2006, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005328
Beyer FR, 2013, HEALTH INFO LIBR J, V30, P49, DOI 10.1111/hir.12009
Bramer WM, 2016, SYST REV, V5, DOI 10.1186/s13643-016-0215-7
Chalmers I, 2014, LANCET, V384, P1903, DOI 10.1016/S0140-6736(14)62252-2
Chandler J, 2013, METHODOLOGICAL EXPEC
Cranney A., 2000, COCHRANE DB SYST REV, V2000, pCD001983, DOI DOI 10.1002/14651858.CD001983
Crumley Ellen T, 2005, BMC Med Res Methodol, V5, P24, DOI 10.1186/1471-2288-5-24
De MNA, 2007, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005955
DICKERSIN K, 1994, BMJ-BRIT MED J, V309, P1286, DOI 10.1136/bmj.309.6964.1286
Fidelix TSA, 2006, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005117.pub2
Gray J.A. Muir., 2001, Evidence-based Healthcare
Guyatt GH, 2011, J CLIN EPIDEMIOL, V64, P1277, DOI 10.1016/j.jclinepi.2011.01.011
Haafkens J, 2006, OCCUP MED-OXFORD, V56, P39, DOI 10.1093/occmed/kqi193
Halladay CW, 2015, J CLIN EPIDEMIOL, V68, P1076, DOI 10.1016/j.jclinepi.2014.12.017
Harter S., 1986, ONLINE INFORM RETRIE
Helmer D, 2001, B MED LIBR ASSOC, V89, P346
Higgins J, 2008, Cochrane handbook for systematic reviews of interventions
Horton R, 2012, LANCET, V380, P2053, DOI 10.1016/S0140-6736(12)62133-3
Kelly L, 2008, CAN FAM PHYSICIAN, V54, P1572
Khan F, 2008, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD004957.pub3
Klassen TP, 1998, ARCH PEDIAT ADOL MED, V152, P700
Lawrence DW, 2008, INJURY PREV, V14, P401, DOI 10.1136/ip.2008.019430
Lemeshow AR, 2005, J CLIN EPIDEMIOL, V58, P867, DOI 10.1016/j.jclinepi.2005.03.004
Lethaby A, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD004525.pub2
Li L, 2014, J CLIN EPIDEMIOL, V67, P1001, DOI 10.1016/j.jclinepi.2014.04.003
Lorenzetti DL, 2014, INT J TECHNOL ASSESS, V30, P173, DOI 10.1017/S0266462314000166
Lovarini Meryl, 2006, Phys Occup Ther Pediatr, V26, P19, DOI 10.1300/J006v26n03_03
Lund H, 2016, BMJ-BRIT MED J, V355, DOI 10.1136/bmj.i5440
Matthews E J, 1999, Health Libr Rev, V16, P112
Michaleff ZA, 2011, PHYS THER, V91, P190, DOI 10.2522/ptj.20100116
Minozzi S, 2000, ARCH PHYS MED REHAB, V81, P720, DOI 10.1016/S0003-9993(00)90099-6
Moseley AM, 2009, PHYSIOTHERAPY, V95, P151, DOI 10.1016/j.physio.2009.01.006
Murphy LS, 2003, J MANIP PHYSIOL THER, V26, P374, DOI 10.1016/S0161-4754(03)00076-9
O'Donnell S, 2006, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD005326.pub2
Ogilvie D, 2005, J EPIDEMIOL COMMUN H, V59, P804, DOI 10.1136/jech.2005.034181
RAMOSREMUS C, 1994, J RHEUMATOL, V21, P1912
Richards BL, 2012, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008921.pub2
Robinson KA, 2014, J CLIN EPIDEMIOL, V67, P793, DOI 10.1016/j.jclinepi.2013.11.015
Rollin L, 2010, SCAND J WORK ENV HEA, V36, P484, DOI 10.5271/sjweh.3082
Rome K, 2010, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006311.pub2
Royle P, 2003, INT J TECHNOL ASSESS, V19, P591, DOI 10.1017/S0266462303000552
Rutjes A. W. S., 2010, COCHRANE DB SYST REV, V1, DOI DOI 10.1002/14651858.CD003132.PUB2
Sampson M, 2003, J CLIN EPIDEMIOL, V56, P943, DOI 10.1016/S0895-4356(03)00110-0
Sampson Margaret, 2006, BMC Med Res Methodol, V6, P33, DOI 10.1186/1471-2288-6-33
Sampson M, 2009, J CLIN EPIDEMIOL, V62, P944, DOI 10.1016/j.jclinepi.2008.10.012
Savoie I, 2003, INT J TECHNOL ASSESS, V19, P168, DOI 10.1017/S0266462303000163
Shariff SZ, 2012, CLIN KIDNEY J, V5, P610, DOI 10.1093/ckj/sfs152
Slobogean GP, 2009, J CLIN EPIDEMIOL, V62, P1261, DOI 10.1016/j.jclinepi.2009.01.013
Stevinson C, 2004, COMPLEMENT THER MED, V12, P228, DOI 10.1016/j.ctim.2004.09.003
Suarez-Almazor ME, 2000, CONTROL CLIN TRIALS, V21, P476, DOI 10.1016/S0197-2456(00)00067-2
Vickers A. J., 1998, Complementary Therapies in Medicine, V6, P185, DOI 10.1016/S0965-2299(98)80026-5
Vincent Sam, 2003, Health Info Libr J, V20, P150, DOI 10.1046/j.1365-2532.2003.00427.x
Watson RJD, 1999, BRIT J MED PSYCHOL, V72, P535, DOI 10.1348/000711299160220
Whiting P, 2008, J CLIN EPIDEMIOL, V61, P357, DOI 10.1016/j.jclinepi.2007.05.013
Whittle SL, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD003113.pub3
Winzenberg TM, 2010, COCHRANE DB SYST REV, V10
Woodman J, 2010, J MED LIBR ASSOC, V98, P140, DOI 10.3163/1536-5050.98.2.006
Woolf AD, 2003, B WORLD HEALTH ORGAN, V81, P646
Wright JM, 2014, J CLIN EPIDEMIOL, V67, P800, DOI 10.1016/j.jclinepi.2014.02.017
NR 81
TC 36
Z9 36
U1 0
U2 15
PU BMC
PI LONDON
PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
EI 1471-2288
J9 BMC MED RES METHODOL
JI BMC Med. Res. Methodol.
PD NOV 22
PY 2016
VL 16
AR 161
DI 10.1186/s12874-016-0264-6
PG 11
WC Health Care Sciences & Services
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Health Care Sciences & Services
GA ED0EP
UT WOS:000388516100002
PM 27875992
OA gold, Green Published
DA 2024-09-05
ER
PT J
AU Bragge, J
Thavikulwat, P
Töyli, J
AF Bragge, Johanna
Thavikulwat, Precha
Toyli, Juuso
TI Profiling 40 Years of Research in Simulation & Gaming
SO SIMULATION & GAMING
LA English
DT Article
DE affinity propagation; bibliometrics; clusters of authors; conventional
thinking; descriptors; hidden patterns; hot topics; knowledge creation;
literature review; mapping; new thinking; profiling; prolific authors;
research articles; research profiling; statistical methods; text mining;
topic evolution; visualization; work division
AB The authors apply the research profiling method to review all the research that has been published in Simulation & Gaming since the journal's inauguration in 1970. The data include 2,096 articles, of which 1,046 are research articles. The authors identify the prolific authors and their institutional affiliations. They tally referenced articles, title phrases, and descriptors. They find that the most prolific authors neither engage in more work division nor author more conventional thinking articles than less prolific authors and that the 51 prolific authors fall into 7 to 11 clusters.
C1 [Bragge, Johanna] Aalto Univ, Helsinki, Finland.
[Thavikulwat, Precha] Towson Univ, Towson, MD USA.
[Toyli, Juuso] Turku Sch Econ & Business Adm, Turku, Finland.
C3 Aalto University; University System of Maryland; Towson University;
University of Turku
RP Bragge, J (corresponding author), Aalto Univ, Dept Business Technol, Sch Econ, POB 21220, Aalto 00076, Finland.
EM johanna.bragge@aalto.fi; pthavikulwat@towson.edu; juuso.toyli@gmail.com
RI Bragge, Johanna/C-6227-2008; Töyli, Juuso/B-7305-2009
OI Bragge, Johanna/0000-0002-4084-3104
FU Jenny and Antti Wihuri Foundation
FX The author(s) disclosed receipt of the following financial support for
the research and/or authorship of this article:; The first author
received funding for authorship of this article from the Jenny and Antti
Wihuri Foundation, which is gratefully acknowledged.
CR Börner K, 2003, ANNU REV INFORM SCI, V37, P179, DOI 10.1002/aris.1440370106
Boyack KW, 2005, SCIENTOMETRICS, V64, P351, DOI 10.1007/s11192-005-0255-6
Bragge J, 2010, LECT NOTES ECON MATH, V634, P259, DOI 10.1007/978-3-642-04045-0_22
Cournot A., 1838, Researches Into the Mathematical Principles of the Theory of Wealth
Crookall D, 2009, SIMULAT GAMING, V40, P290, DOI 10.1177/1046878109337760
CULNAN MJ, 1987, MIS QUART, V11, P341, DOI 10.2307/248680
CULNAN MJ, 1986, MANAGE SCI, V32, P156, DOI 10.1287/mnsc.32.2.156
Faria AJ, 2009, SIMULAT GAMING, V40, P464, DOI 10.1177/1046878108327585
Frey BJ, 2007, SCIENCE, V315, P972, DOI 10.1126/science.1136800
Frey BJ, 2008, SCIENCE, V319, DOI 10.1126/science.1151268
GUZZO RA, 1987, RES ORGAN BEHAV, V9, P407
Hood WW, 2001, SCIENTOMETRICS, V52, P291, DOI 10.1023/A:1017919924342
King WR, 2005, COMMUN ASSOC INF SYS, V16, P665
Meyer M, 2009, JASSS-J ARTIF SOC S, V12, pA224
Porter A.L., 2005, Tech mining: exploiting new technologies for competitive advantage
Porter AL, 2002, SCIENTOMETRICS, V53, P351, DOI 10.1023/A:1014873029258
PRITCHARD A, 1969, J DOC, V25, P348
Raghuram S, 2010, INFORM SYST RES, V21, P983, DOI 10.1287/isre.1080.0227
SciMaps, 2005, PLAC SPAC MAPP SCI S
Simon H.A., 1960, The New Science of Management Decision
Small H, 1999, J AM SOC INFORM SCI, V50, P799, DOI 10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G
Watts RJ, 2007, INT J INNOV TECHNOL, V4, P103, DOI 10.1142/S0219877007001016
Webster J, 2002, MIS QUART, V26, pXIII
Yang Y, 2008, WORLD PAT INF, V30, P280, DOI 10.1016/j.wpi.2008.01.007
NR 24
TC 14
Z9 18
U1 0
U2 0
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 1046-8781
EI 1552-826X
J9 SIMULAT GAMING
JI Simul. Gaming
PD DEC
PY 2010
VL 41
IS 6
BP 869
EP 897
DI 10.1177/1046878110387539
PG 29
WC Education & Educational Research; Psychology, Social; Social Sciences,
Interdisciplinary
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research; Psychology; Social Sciences - Other
Topics
GA VG2QN
UT WOS:000445913100004
DA 2024-09-05
ER
PT C
AU Kernerman, VY
Koenig, MED
AF Kernerman, VY
Koenig, MED
BE Williams, ME
TI HyMARC-based CIP IS for the Net/Web (General architecture and
characteristics)
SO 19TH ANNUAL NATIONAL ONLINE MEETING, PROCEEDINGS-1998
LA English
DT Proceedings Paper
CT 19th Annual National Online Meeting
CY MAY 12-14, 1998
CL NEW YORK, NY
DE CIP IS (Cataloging in Publication Information System); DTD (Document
Type Definition); DSR CAPI (Dewey Speech Recognition Client Application
Programming Interface); Dublin Core Metadata format; hyperdocument
(hypertext/hypermedia document); HyMARC (hyperdocument machine readable
caraloging bibliographic format); Net; NC (network computer); OCLC
(Online computer library center, inc.); SGML (Standard generalized
markup language); Web; WebZ (HTTP-Z39 50) server; Z39.50 server
AB Historically, it was the USMARC format that mapped the way from the first library filing systems to modern Electronic CIP (ECIP) and bibliographic online IS. Similarly, the HyMARC may map a way to the CIP IS for the Net/Web. The idea behind this presentation is that not only the requirements of the existing Net/Web systems should determine the specifications of the HyMARC (HDOF) format as it was presented at the 17th NOM (Ref. 1) but these specifications, in turn, would shape the overall architecture of the future CIP IS and general characteristics of its elements modules.
The suggested architecture and general characteristics of the CIP IS are presented, A comparison of the CIP IS architecture (Fig. 1) with the OCLC Web Spectrum System led to the conclusion that the SGML Grammar Builder, WebZ server, Z39.50 Server, and other software developed and implemented by OCLC can be assembled in accordance with the HyMARC structuring/linking specifications and then utilized in the CIP IS architecture.
C1 Truman Coll, Chicago, IL USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU INFORMATION TODAY INC
PI MEDFORD
PA 143 OLD MARLTON PIKE, MEDFORD, NJ 08055 USA
PY 1998
BP 197
EP 204
PG 8
WC Information Science & Library Science
WE Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH)
SC Information Science & Library Science
GA BL14G
UT WOS:000074436800022
DA 2024-09-05
ER
PT J
AU Pooja
Sood, SK
AF Pooja
Sood, Sandeep Kumar
TI Scientometric Analysis of Quantum Algorithms for VANET Optimization
SO IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
LA English
DT Article; Early Access
DE Quantum computing; Optimization; Vehicular ad hoc networks; Machine
learning algorithms; Quantum mechanics; Market research; Bibliometrics;
CiteSpace; quantum algorithm taxonomy; quantum optimization; vehicular
ad-hoc network (VANET)
ID INSPIRED EVOLUTIONARY ALGORITHM; DIFFERENTIAL EVOLUTION; DESIGN; UAV
AB The rapid proliferation of quantum information technologies, spanning theoretical investigations to practical experiments, has generated a number of research papers and documents in quantum algorithms. Consequently, the current research serves as a gateway for interested readers to comprehend the status quo of quantum algorithms, with a specific focus on vehicular network optimization. It aims to explore the research patterns and latest trends by analyzing the dataset sourced from the Scopus and Web of Science databases. The scientometric implications offer valuable insights into publication patterns, keyword co-occurrence, author co-citation, country collaboration, and burst reference. These analyses delineate the temporal progression, prominent research topics, emerging research areas, leading collaborative nations, prolific authors, and research trends within this knowledge domain. The results reveal that smart power grids, traveling salesman problem, electric vehicle charging, battery life estimation, and air traffic control are emerging research areas. Similarly, quantum approximate optimization algorithms, adiabatic quantum computing, quantum-inspired evolutionary algorithms, and quantum annealing emerge as prominent quantum algorithms employed for vehicular network optimization problems. In addition, systematic literature analysis is objectively conducted to discern key insights, research challenges and future research directions in the current knowledge domain.
C1 [Pooja; Sood, Sandeep Kumar] Natl Inst Technol Kurukshetra, Dept Comp Applicat, Kurukshetra 136119, Haryana, India.
C3 National Institute of Technology (NIT System); National Institute of
Technology Kurukshetra
RP Pooja (corresponding author), Natl Inst Technol Kurukshetra, Dept Comp Applicat, Kurukshetra 136119, Haryana, India.
EM insanpooja777@gmail.com; san1198@gmail.com
OI K. Sood, Sandeep/0000-0002-8196-5503
CR Arrazola JM, 2020, QUANTUM-AUSTRIA, V4, DOI 10.22331/q-2020-08-13-307
Asna M, 2022, INT J ENERG RES, V46, P17308, DOI 10.1002/er.8399
Azad U, 2023, IEEE T INTELL TRANSP, V24, P7564, DOI 10.1109/TITS.2022.3172241
Bai H., 2023, Intelligent Computing, V2, DOI DOI 10.34133/ICOMPUTING.0025
Bauer B, 2020, CHEM REV, V120, P12685, DOI 10.1021/acs.chemrev.9b00829
Beloborodov Dmitrii, 2021, Machine Learning: Science and Technology, V2, DOI 10.1088/2632-2153/abc328
Callison A, 2022, PHYS REV A, V106, DOI 10.1103/PhysRevA.106.010101
Che A, 2015, IEEE T SYST MAN CY-S, V45, P1535, DOI 10.1109/TSMC.2015.2417509
Chen CL, 2008, IEEE INT C NETW SENS, P1599
Chen HW, 2011, PHYS REV A, V83, DOI 10.1103/PhysRevA.83.032314
Chen RH, 2020, COMPUT IND ENG, V149, DOI 10.1016/j.cie.2020.106778
Chen SYC, 2022, MACH LEARN-SCI TECHN, V3, DOI 10.1088/2632-2153/ac4559
Chuang IL, 1998, NATURE, V393, P143, DOI 10.1038/30181
Das M, 2023, ADV ENG INFORM, V55, DOI 10.1016/j.aei.2022.101816
Deng W, 2022, IEEE T SYST MAN CY-S, V52, P1578, DOI 10.1109/TSMC.2020.3030792
Dixit VV, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-38787-2
Domino K, 2022, QUANTUM INF PROCESS, V21, DOI 10.1007/s11128-022-03670-y
Dong DY, 2008, IEEE T SYST MAN CY B, V38, P1207, DOI 10.1109/TSMCB.2008.925743
Dong DY, 2012, IEEE-ASME T MECH, V17, P86, DOI 10.1109/TMECH.2010.2090896
Endo S, 2021, J PHYS SOC JPN, V90, DOI 10.7566/JPSJ.90.032001
Fakhari P, 2013, NEW MATH NAT COMPUT, V9, P273, DOI 10.1142/S1793005713400073
Fu YG, 2013, IEEE T SYST MAN CY-S, V43, P1451, DOI 10.1109/TSMC.2013.2248146
Gharehchopogh FS, 2023, INTERNET THINGS-NETH, V24, DOI 10.1016/j.iot.2023.100952
Gharehchopogh FS, 2024, MULTIMED TOOLS APPL, V83, P16929, DOI 10.1007/s11042-023-16300-1
Gharehchopogh FS, 2023, SYMMETRY-BASEL, V15, DOI 10.3390/sym15040894
Gharehchopogh FS, 2023, ARCH COMPUT METHOD E, V30, P2683, DOI 10.1007/s11831-023-09883-3
Gharehchopogh FS, 2023, J BIONIC ENG, V20, P1175, DOI 10.1007/s42235-022-00303-z
Gharehchopogh FS, 2023, ARTIF INTELL REV, V56, P5479, DOI 10.1007/s10462-022-10280-8
Glos A, 2022, NPJ QUANTUM INFORM, V8, DOI 10.1038/s41534-022-00546-y
Gupta BM., 2021, SCI TECH LIBR, V40, P282, DOI DOI 10.1080/0194262X.2021.1892563
Hakemi S, 2024, EVOL INTELL, V17, P627, DOI 10.1007/s12065-022-00783-2
Herrera Bruno Avila Leal de Meirelles, 2015, Pesqui. Oper., V35, P465, DOI 10.1590/0101-7438.2015.035.03.0465
Hu ZZ, 2023, SWARM EVOL COMPUT, V83, DOI 10.1016/j.swevo.2023.101387
Hu ZZ, 2021, ENERGY REP, V7, P916, DOI 10.1016/j.egyr.2021.01.096
Huang HQ, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/8993173
Kea K, 2023, IEEE ACCESS, V11, P109964, DOI 10.1109/ACCESS.2023.3320800
Krauss Thomas, 2020, IEEE Transactions on Quantum Engineering, V1, DOI 10.1109/TQE.2020.3021921
Kumar SK, 2011, ADAPT LEARN OPTIM, V8, P269
Kumar V, 2022, WATER SUPPLY, V22, P3702, DOI 10.2166/ws.2022.010
Li F, 2023, INT PARALL DISTRIB P, P768, DOI 10.1109/IPDPS54959.2023.00082
Li J., 2017, Int. J. High Perform.Syst. Archit., V7, P223
Li YJ, 2021, IEEE WIREL COMMUN LE, V10, P1994, DOI 10.1109/LWC.2021.3089876
Liu X, 2023, IEEE T EM TOP COMP I, V7, P1605, DOI 10.1109/TETCI.2023.3251441
MAHI MJN, 2022, IEEE ACCESS, V10, P65760, DOI 10.1109/ACCESS.2022.3183605
Martonák R, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.057701
Montanaro A, 2016, NPJ QUANTUM INFORM, V2, DOI 10.1038/npjqi.2015.23
Ross OHM, 2020, IEEE ACCESS, V8, P814, DOI 10.1109/ACCESS.2019.2962155
Neukart F, 2017, FRONT ICT, V4, P29, DOI DOI 10.3389/FICT.2017.00029
Nuuman S, 2015, IEEE WIREL COMMUNN, P271, DOI 10.1109/WCNCW.2015.7122566
Papalitsas C, 2019, ALGORITHMS, V12, DOI 10.3390/a12110224
Piri J, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10152742
Pranckute R, 2021, PUBLICATIONS-BASEL, V9, DOI 10.3390/publications9010012
Qian WY, 2023, ENTROPY-SWITZ, V25, DOI 10.3390/e25081238
Radaideh MI, 2021, KNOWL-BASED SYST, V217, DOI 10.1016/j.knosys.2021.106836
Rahmani-andebili M, 2016, IET GENER TRANSM DIS, V10, P2538, DOI 10.1049/iet-gtd.2015.1553
Ramezani SB, 2020, IEEE IJCNN, DOI 10.1109/ijcnn48605.2020.9207714
Rao PU, 2023, SOFT COMPUT, V27, P13347, DOI 10.1007/s00500-022-07478-x
Rethlefsen ML, 2021, SYST REV-LONDON, V10, DOI 10.1186/s13643-020-01542-z
Rötteler M, 2006, COMPUT SCI-RES DEV, V21, P3, DOI 10.1007/s00450-006-0008-7
Rózycki R, 2023, ENERGIES, V16, DOI 10.3390/en16010442
Ruan Y, 2020, CMC-COMPUT MATER CON, V63, P1237, DOI 10.32604/cmc.2020.010001
Sato Rei, 2023, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), P270, DOI 10.1109/QCE57702.2023.10238
Shao CP, 2019, J SYST SCI COMPLEX, V32, P375, DOI 10.1007/s11424-019-9008-0
Sharma M, 2019, PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), P709, DOI 10.1145/3321707.3321813
Sharma P., J. Comput. Inf. Syst.
Shen Y, 2023, EXPERT SYST APPL, V215, DOI 10.1016/j.eswa.2022.119269
Shor PW, 2004, QUANTUM INF PROCESS, V3, P5, DOI 10.1007/s11128-004-3878-2
Sood SK, 2024, ARCH COMPUT METHOD E, V31, P1555, DOI 10.1007/s11831-023-10027-w
Sood SK, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3313984
Sood SK, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3284689
Sood SK, 2022, COMPUT ELECTR ENG, V101, DOI 10.1016/j.compeleceng.2022.107948
Sood V, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3330569
Spyridis Yannis, 2023, 2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT), P354, DOI 10.1109/DCOSS-IoT58021.2023.00064
Stollenwerk T, 2020, IEEE T INTELL TRANSP, V21, P285, DOI 10.1109/TITS.2019.2891235
Suo JW, 2020, QUANTUM INF PROCESS, V19, DOI 10.1007/s11128-020-02673-x
Tan ZP, 2022, SWARM EVOL COMPUT, V75, DOI 10.1016/j.swevo.2022.101194
Tolcheev VO, 2018, AUTOM DOC MATH LINGU, V52, P121, DOI 10.3103/S000510551803007X
Vereno Dominik, 2023, Energy Informatics, DOI 10.1186/s42162-023-00292-1
Wang D, 2021, IEEE INTERNET THINGS, V9, P12588, DOI 10.1109/JIOT.2021.3137984
Wang LX, 2012, J INTELL MANUF, V23, P2227, DOI 10.1007/s10845-011-0568-7
Wang Y, 2007, NEUROCOMPUTING, V70, P633, DOI 10.1016/j.neucom.2006.10.001
Weinberg SJ, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-31765-8
Yetis H., 2019, P 1 INT INF SOFTW EN, P1, DOI [10.1109/UBMYK48245.2019.8965624, DOI 10.1109/UBMYK48245.2019.8965624]
Zaman A, 2023, IEEE ACCESS, V11, P77117, DOI 10.1109/ACCESS.2023.3297658
Zhang FQ, 2020, IEEE ACCESS, V8, P104555, DOI 10.1109/ACCESS.2020.2999608
Zhu QL, 2023, NEUROCOMPUTING, V556, DOI 10.1016/j.neucom.2023.126628
NR 86
TC 0
Z9 0
U1 2
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-2216
EI 2168-2232
J9 IEEE T SYST MAN CY-S
JI IEEE Trans. Syst. Man Cybern. -Syst.
PD 2024 AUG 2
PY 2024
DI 10.1109/TSMC.2024.3428707
EA AUG 2024
PG 11
WC Automation & Control Systems; Computer Science, Cybernetics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Automation & Control Systems; Computer Science
GA A6R6M
UT WOS:001283791300001
DA 2024-09-05
ER
PT J
AU Savin, IV
Teplyakov, NS
AF Savin, Ivan V.
Teplyakov, Nikita S.
TI Using Computational Linguistics to Analyse Main Research Directions in
Economy of Regions
SO ECONOMY OF REGION
LA English
DT Article
DE topic modelling; machine learning; computational linguistics; text
mining; literature review; academic journal; spatial economics;
environmental economics; scientometrics; third-party funding
ID TOPICS; DECADE
AB Over the past decades, the process of knowledge generation has accelerated, producing a lot of scientific publications, which makes reviewing even a relatively narrow subject area very demanding, if not impossible. However, recent text data mining tools can assist researchers in conducting such analysis in an objective and time-efficient way. We conduct such a literature review on 1307 articles published in the journal Economy of Regions from 2010 to 2021 using advanced topic modelling techniques. This analysis aims to describe the main research areas in the journal over time, the dynamics of their popularity and the relationship with key quantitative indicators. We identified 22 topics ranging from "Agriculture" and "Economic Geography" to "Fiscal Policy" and "Entrepreneurship". We estimate how popularity of these topics was changing over time and find topics that gained the most popularity from 2010 to 2021 (+17.61 %, "Spatial Economics") or lost it (-14.58 %, "Economics of Innovation"). The topic of environmental economics collects the largest number of citations per article (3.64, on average), and the topics on monetary policy and poverty are the most popular among manuscripts in English, which is also true for articles written by authors with foreign affiliation. Papers with third-party funding are concentrated the most in "Spatial Economics" (around 11 %), and the least - in "Agriculture". Our results can help to understand the evolution in scope of research of Economy of Regions and serve researchers to find promising directions for future studies.
C1 [Savin, Ivan V.] Ural Fed Univ, Acad Dept Econ, 19 Mira St, Ekaterinburg 620002, Russia.
[Savin, Ivan V.] Univ Autonoma Barcelona, Inst Environm Sci & Technol ICTA, Cerdanyola Del Valles, Barcelona, Spain.
[Teplyakov, Nikita S.] Ural Fed Univ, 19 Mira St, Ekaterinburg 620002, Russia.
C3 Ural Federal University; Autonomous University of Barcelona; Ural
Federal University
RP Teplyakov, NS (corresponding author), Ural Fed Univ, 19 Mira St, Ekaterinburg 620002, Russia.
EM nekit_teplykov@mail.ru
RI Savin, Ivan/P-9035-2016
OI Savin, Ivan/0000-0002-9469-0510
CR Aggarwal C. C., 2018, MACHINE LEARNING TEX
Ambrosino A, 2018, J ECON METHODOL, V25, P329, DOI 10.1080/1350178X.2018.1529215
[Anonymous], 2009, Proceeding of the 18th ACM Conference on Information and Knowledge Management, DOI DOI 10.1145/1645953.1646076
[Anonymous], 2003, The Oxford Handbook of Computational Linguistics
Asmussen CB, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0255-7
Baskakova IV, 2020, EKON REG, V16, P114, DOI 10.17059/2020-1-9
Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826
Callaghan MW, 2020, NAT CLIM CHANGE, V10, P118, DOI 10.1038/s41558-019-0684-5
Dar G.H., 2020, Biodiversity of the Himalaya: Jammu and Kashmir State, V18, P1
De Battisti F, 2015, SCIENTOMETRICS, V103, P413, DOI 10.1007/s11192-015-1554-1
Drews S, 2022, ECOL ECON, V199, DOI 10.1016/j.ecolecon.2022.107507
Fellbaum Christiane, 2005, Encyclopedia of Language and Linguistics, P665
Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101
Kochetkov DM, 2021, EKON REG, V17, P1137, DOI 10.17059/ekon.reg.2021-4-7
Liu GW, 2019, CONSTR INNOV-ENGL, V19, P343, DOI 10.1108/CI-03-2018-0013
Lüdering J, 2016, JAHRB NATL STAT, V236, P483, DOI 10.1515/jbnst-2015-1026
Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754
Mimno David, 2011, P C EMPIRICAL METHOD, P262
Mo YH, 2015, SYST REV-LONDON, V4, DOI 10.1186/s13643-015-0117-0
Moskaleva O, 2018, SCIENTOMETRICS, V116, P449, DOI 10.1007/s11192-018-2758-y
Murakami A, 2017, CORPORA, V12, P243, DOI 10.3366/cor.2017.0118
Roberts ME, 2019, J STAT SOFTW, V91, P1, DOI 10.18637/jss.v091.i02
Roberts ME, 2014, AM J POLIT SCI, V58, P1064, DOI 10.1111/ajps.12103
Savin I, 2023, SMALL BUS ECON, V60, P659, DOI 10.1007/s11187-022-00609-6
Savin I, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121280
Savin I, 2021, ENVIRON INNOV SOC TR, V41, P10, DOI 10.1016/j.eist.2021.06.006
Savin I, 2021, ECOL ECON, V180, DOI 10.1016/j.ecolecon.2020.106878
Savin I, 2020, CLIMATIC CHANGE, V162, P2107, DOI 10.1007/s10584-020-02842-y
Sharma V, 2021, EKON REG, V17, P318, DOI 10.17059/ekon.reg.2021-1-24
Soule M., 2014, KEEPING WILD DOMESTI, P66, DOI DOI 10.5822/978-1-61091-559-5
Speier W, 2016, J BIOMED INFORM, V61, P260, DOI 10.1016/j.jbi.2016.04.005
Uglanova I., 2020, CHR
van den Bergh J, 2021, CLIM POLICY, V21, P745, DOI 10.1080/14693062.2021.1907276
NR 33
TC 3
Z9 3
U1 1
U2 1
PU RUSSIAN ACAD SCIENCES, URAL BRANCH, INST ECONOMICS
PI EKATERINBURG
PA UL MOSKOVSKAYA 29, EKATERINBURG, 620014, RUSSIA
SN 2072-6414
EI 2411-1406
J9 EKON REG
JI Ekon. Reg.
PY 2022
VL 18
IS 2
BP 338
EP 352
DI 10.17059/ekon.reg.2022-2-3
PG 15
WC Area Studies
WE Emerging Sources Citation Index (ESCI)
SC Area Studies
GA F1DJ0
UT WOS:000979818500003
OA gold, Green Published, Green Submitted
DA 2024-09-05
ER
PT J
AU Ray, M
Ramasubramanian, V
Singh, KN
Rathod, S
Shekhawat, RS
AF Ray, Mrinmoy
Ramasubramanian, V
Singh, K. N.
Rathod, Santosha
Shekhawat, Ravindra Singh
TI Technology Forecasting for Envisioning Bt Technology Scenario in Indian
Agriculture
SO AGRICULTURAL RESEARCH
LA English
DT Article
DE Scientometrics; Grey model; Cross impact analysis (CIA) technique;
Activity Index (AI); Genetic Algorithm (GA); TOPSIS; MICMAC; CIAT
ID IMPACT
AB For scoping the future prospects of Bacillus thuringiensis (Bt) technology in Indian agricultural scenario, case studies of three quantitative/quasi-quantitative techniques of Technology Forecasting tools viz., activity index (AI)-based scientometric analysis, Grey modeling and cross impact analysis (CIA) techniques have been done. Under AI-based scientometric analysis, information relating to abstract, keywords, authors, affiliation, etc., relevant to research publication on applications of Bt technology in India vis-a-vis three other competing country regions-China, USA cum Canada and European countries were collected from ScienceDirect database for the period 1997-2017. AI has been constructed for seven domains viz. Bt Cotton, Bt Maize, Bt Mustard, Bt Brinjal, Bt Soybean, Bt Sunflower, Bt Rice, and 'Bt related but not crop specific' under these four regions considered. From the values of AI, it has been found that India's research effort is higher only in Bt Cotton and Bt Mustard than the other regions considered. Secondly, for Grey modeling, its conventional version as well as Grey model improved by Genetic Algorithm (GA) were fitted using yearly Bt cotton yield of India (2002-2003 to 2016-2017) obtained from Cotton Advisory Board of India. Only the first 11 years were utilized for model fitting and the rest were utilized for validation purposes. The results revealed that Grey model improved by GA performed better. Lastly, for employing CIA technique to study the direct as well as indirect cross impacts of Bt technology, 14 factors were considered. Three types of CIA techniques viz., Direct Classification, Cross-Impact Matrix Multiplication Applied to Classification, and CIA with Time Consideration have been attempted. The ranking of the factors obtained by three methods was combined using Technique for Order Preference by Similarity to an Ideal Solution approach. The analysis suggested that factors viz., Government policy, Bt seed sector, and technological interventions came out to be mainly responsible for future prospects of Bt technology in India.
C1 [Ray, Mrinmoy; Ramasubramanian, V; Singh, K. N.; Shekhawat, Ravindra Singh] ICAR Indian Agr Stat Res Inst, New Delhi 110012, India.
[Rathod, Santosha] ICAR Indian Inst Rice Res, Hyderabad 500030, India.
C3 Indian Council of Agricultural Research (ICAR); ICAR - Indian
Agricultural Statistics Research Institute; Indian Council of
Agricultural Research (ICAR); ICAR - Indian Institute of Rice Research
RP Ray, M (corresponding author), ICAR Indian Agr Stat Res Inst, New Delhi 110012, India.
EM mrinmoy.ray@icar.gov.in
RI Ray, Mrinmoy/IAM-4275-2023
OI Rathod, Santosha/0000-0001-9820-149X; Ray, Mrinmoy/0000-0002-1337-0348
CR Abramo G, 2018, J INFORMETR, V12, P590, DOI 10.1016/j.joi.2018.05.001
[Anonymous], 2011, ANN LIBR INF STUD
Asan SS, 2007, TECHNOL FORECAST SOC, V74, P627, DOI 10.1016/j.techfore.2006.05.011
Bañuls VA, 2011, TECHNOL FORECAST SOC, V78, P1579, DOI 10.1016/j.techfore.2011.03.014
Guan JC, 2004, SCIENTOMETRICS, V61, P339, DOI 10.1023/B:SCIE.0000045114.85737.1b
Mao MZ, 2006, TECHNOL FORECAST SOC, V73, P588, DOI 10.1016/j.techfore.2004.08.004
Ou SL, 2012, COMPUT ELECTRON AGR, V85, P33, DOI 10.1016/j.compag.2012.03.007
Pei Z, 2015, APPL SOFT COMPUT, V36, P24, DOI 10.1016/j.asoc.2015.06.042
Ray M, 2017, INT J AGRIC STAT SCI, V13, P563
Wang CH, 2008, APPL MATH COMPUT, V195, P256, DOI 10.1016/j.amc.2007.04.080
Zareie A, 2018, EXPERT SYST APPL, V108, P96, DOI 10.1016/j.eswa.2018.05.001
Zhou P, 2006, ENERGY, V31, P2839, DOI 10.1016/j.energy.2005.12.002
NR 12
TC 1
Z9 1
U1 0
U2 6
PU SPRINGER INDIA
PI NEW DELHI
PA 7TH FLOOR, VIJAYA BUILDING, 17, BARAKHAMBA ROAD, NEW DELHI, 110 001,
INDIA
SN 2249-720X
EI 2249-7218
J9 AGR RES
JI Agric. Res.
PD DEC
PY 2022
VL 11
IS 4
BP 747
EP 757
DI 10.1007/s40003-022-00612-z
EA FEB 2022
PG 11
WC Agronomy
WE Emerging Sources Citation Index (ESCI)
SC Agriculture
GA 6I1EQ
UT WOS:000755402100003
DA 2024-09-05
ER
PT J
AU Choudhary, V
Tanwar, S
Choudhury, T
AF Choudhary, Vandana
Tanwar, Sarvesh
Choudhury, Tanupriya
TI Evaluation of contemporary intrusion detection systems for internet of
things environment
SO MULTIMEDIA TOOLS AND APPLICATIONS
LA English
DT Article
DE Intrusion Detection System (IDS); Internet of Things (IoT); Bibliometric
Analysis; Convolutional Neural Network (CNN); Aquila Optimization (AO)
ID IOT; ANALYTICS
AB Internet of Things (IoT) involves wide-ranging devices connected through the Internet with an aim to enable coherent communication amongst them without human intervention to realize profuse smart applications which inherently makes our life a lot easier and furthermore productive. These connected devices continuously sense and gather information from surroundings, thereby producing an immense amount of data that cater for big data analytics. In the current era, number of smart devices are increasing rapidly due to the magnificent features they offer. Moreover, public access to the Internet makes the system even more vulnerable to intrusions. Catastrophically, this has fascinated numerous cybercriminals who have turned the IoT ecosystem into a hotbed of illicit activities. Thereupon, implication of Intrusion Detection System (IDS) in IoT is apparent. The literature suggests a number of IDS to address intrusions/attacks in the discipline of IoT. In the current paper, besides Systematic Literature Review of the IDS for IoT environment, a deep learning model with aquila optimization is proposed to predict anomaly using IoTID20, UNSW-NB15-1 and UNSW_2018_IoT_Botnet_Full5pc_4 datasets. The hybrid model that we have developed, uses a combined network structure of convolutional neural network and aquila optimization algorithm. In all of the studies that were carried out, the swarm intelligence-driven deep learning strategy outperformed other, comparable approaches. Based on current findings, it is reasonable to draw the conclusion that the suggested technique offers an efficient method for early anomaly detection and contributes to viable control of anomaly in the IoT environment.
C1 [Choudhary, Vandana; Tanwar, Sarvesh] Amity Univ, Amity Inst Informat Technol, Noida 201301, Uttar Pradesh, India.
[Choudhury, Tanupriya] Univ Petr & Energy Studies, Sch Comp Sci, Informat Cluster, Dehra Dun 248007, Uttarakhand, India.
C3 Amity University Noida; University of Petroleum & Energy Studies (UPES)
RP Choudhary, V; Tanwar, S (corresponding author), Amity Univ, Amity Inst Informat Technol, Noida 201301, Uttar Pradesh, India.
EM vandana.choudhary@s.amity.edu; s.tanwar1521@gmail.com;
tanupriya1986@gmail.com
OI Choudhury, Tanupriya/0000-0002-9826-2759; Tanwar,
Sarvesh/0000-0003-0136-0182
CR Abu Al-Haija Q, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11040556
Abualigah L, 2021, COMPUT IND ENG, V157, DOI 10.1016/j.cie.2021.107250
Abualigah L, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10113827
Albawi S, 2017, I C ENG TECHNOL
Ali MH, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11030494
Alkahtani H, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/5579851
Alsulami AA, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app122312336
Amin SO, 2009, 2009 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT - WORKSHOPS, P269, DOI 10.1109/INMW.2009.5195973
Anitha AA, 2021, INT J ADV COMPUT SC, V12, P499
[Anonymous], 2002, P 9 ACM C COMP COMM
Benkhelifa E, 2018, IEEE COMMUN SURV TUT, V20, P3496, DOI 10.1109/COMST.2018.2844742
Bhor Harsh Namdev, 2020, 2020 International Conference on Smart Electronics and Communication (ICOSEC), P939, DOI 10.1109/ICOSEC49089.2020.9215365
Bostani H, 2017, COMPUT COMMUN, V98, P52, DOI 10.1016/j.comcom.2016.12.001
Chaabouni N, 2019, IEEE COMMUN SURV TUT, V21, P2671, DOI 10.1109/COMST.2019.2896380
Creech G, 2014, IEEE T COMPUT, V63, P807, DOI 10.1109/TC.2013.13
Disha RA, 2022, CYBERSECURITY, V5, DOI 10.1186/s42400-021-00103-8
Fenanir S., 2020, Ingenierie Des Systemes D'information, V25, P569, DOI 10.18280/isi.250503
Gassais R, 2020, J CLOUD COMPUT-ADV S, V9, DOI 10.1186/s13677-020-00206-6
Gyamfi E, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22103744
Hajiheidari S, 2019, COMPUT NETW, V160, P165, DOI 10.1016/j.comnet.2019.05.014
Hindy H, 2020, IEEE ACCESS, V8, P104650, DOI 10.1109/ACCESS.2020.3000179
Javed SH, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11050742
Khraisat A, 2021, CYBERSECURITY, V4, DOI 10.1186/s42400-021-00077-7
Khraisat A, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8111210
Koroniotis N, 2020, ARXIV
Koroniotis N., 2020, Designing an effective network forensic framework for the investigation of botnets in the Internet of Things
Koroniotis N, 2020, IEEE ACCESS, V8, P209802, DOI 10.1109/ACCESS.2020.3036728
Koroniotis N, 2020, FUTURE GENER COMP SY, V110, P91, DOI 10.1016/j.future.2020.03.042
Koroniotis N, 2019, FUTURE GENER COMP SY, V100, P779, DOI 10.1016/j.future.2019.05.041
Koroniotis N, 2018, L N INST COMP SCI SO, V235, P30, DOI 10.1007/978-3-319-90775-8_3
Krishna E., 2021, Int. J. Intell. Eng. Syst, V14, P66
Le A, 2016, INFORMATION, V7, DOI 10.3390/info7020025
Le KH, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11040524
Maciá-Pérez F, 2011, IEEE T IND ELECTRON, V58, P722, DOI 10.1109/TIE.2010.2052533
Min EX, 2018, SECUR COMMUN NETW, DOI 10.1155/2018/4943509
Moustafa N, 2015, 2015 MILITARY COMMUNICATIONS AND INFORMATION SYSTEMS CONFERENCE (MILCIS)
Moustafa N, 2019, IEEE T BIG DATA, V5, P481, DOI 10.1109/TBDATA.2017.2715166
Moustafa N, 2017, DATA ANALYTIC, P127, DOI 10.1007/978-3-319-59439-2_5
Moustafa N, 2016, INF SECUR J, V25, P18, DOI 10.1080/19393555.2015.1125974
Nguyen DT, 2022, WIREL COMMUN MOB COM, V2022, DOI 10.1155/2022/9173291
Qaddoura R, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21092987
Ramadan RA., 2020, ANN EMERGING TECHNOL, V4, P61, DOI DOI 10.33166/AETIC.2020.05.004
Ribera EG, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11234041
Saghezchi FB, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11040602
Saheed YK, 2022, ALEX ENG J, V61, P9395, DOI 10.1016/j.aej.2022.02.063
Salcedo-Sanz S, 2016, PHYS REP, V655, P1, DOI 10.1016/j.physrep.2016.08.001
Sandhya E., 2021, Int. J. Intell. Eng. Syst, V14, P30
Sarhan Mohanad, 2021, Big Data Technologies and Applications. 10th EAI International Conference, BDTA 2020, and 13th EAI International Conference on Wireless Internet, WiCON 2020. Virtual Event. Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST 371), P117, DOI 10.1007/978-3-030-72802-1_9
Sedjelimaci H, 2016, IEEE ICC, DOI 10.1109/ICC.2016.7510811
Sicato JCS, 2020, J INF PROCESS SYST, V16, P975, DOI 10.3745/JIPS.03.0144
Song Y, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21134294
Spadaccino P, 2020, ARXIV
Syamsuddin I, 2022, ELECTRONICS-SWITZ, V11, DOI 10.3390/electronics11050737
Tharewal S, 2022, WIREL COMMUN MOB COM, V2022, DOI 10.1155/2022/9023719
Ullah Imtiaz, 2020, Advances in Artificial Intelligence. 33rd Canadian Conference on Artificial Intelligence, Canadian AI 2020. Proceedings. Lecture Notes in Artificial Intelligence. Subseries of Lecture Notes in Computer Science (LNAI 12109), P508, DOI 10.1007/978-3-030-47358-7_52
Ullah I, 2020, ADV ARTIFICIAL INTEL, P08
Wang JP, 2015, PERS UBIQUIT COMPUT, V19, P1021, DOI 10.1007/s00779-015-0874-8
Wani A, 2021, CAAI T INTELL TECHNO, V6, P281, DOI 10.1049/cit2.12003
Zarpelao BB, 2017, J NETW COMPUT APPL, V84, P25, DOI 10.1016/j.jnca.2017.02.009
NR 59
TC 3
Z9 3
U1 1
U2 3
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1380-7501
EI 1573-7721
J9 MULTIMED TOOLS APPL
JI Multimed. Tools Appl.
PD JAN
PY 2024
VL 83
IS 3
BP 7541
EP 7581
DI 10.1007/s11042-023-15918-5
EA JUN 2023
PG 41
WC Computer Science, Information Systems; Computer Science, Software
Engineering; Computer Science, Theory & Methods; Engineering, Electrical
& Electronic
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Computer Science; Engineering
GA GY5L7
UT WOS:001005496300002
DA 2024-09-05
ER
PT J
AU Ehlers, C
Wiesener, N
Teichgräber, U
Guntinas-Lichius, O
AF Ehlers, Claudia
Wiesener, Nadine
Teichgraeber, Ulf
Guntinas-Lichius, Orlando
TI Reformed conventional curriculum promoting the professional interest
orientation of students of medicine: JENOS
SO GMS JOURNAL FOR MEDICAL EDUCATION
LA English
DT Article
DE JENa professional interest-Oriented Studies (JENOS); Ambulatory-oriented
medicine (AoM); bottom-up strategy; Canadian Medical Education
Directions of Specialist (CanMEDS) rolls; Clinic-oriented medicine
(KoM); constructive alignment; costs; curriculum; deep learning;
evaluations; Flexner model; identification; incentives; interactivity;
JUH-specific lecturer and student information system (DOSIS); learning
portfolio; longitudinal curriculum; mapping; Master Plan 2020; medical
didactic programmes; mentoring; organisational difficulties;
performance-based compensation; practical orientation; professional
interest orientation; reduction of the curriculum; reform; reinforcement
of ambulatory and general medicine; research-oriented Medicine (FoM);
resources; scientific orientation; small group modules; student centered
learning
AB Introduction: In the last ten years, the medical faculty at Friedrich Schiller University Jena has reformed its traditional curriculum for human medicine. The reformed JENa professional interest-Oriented Studies (JEnaer Neigungs-Orientiertes Studium, JENOS) - with the objective to facilitate career entry through a professional interest-oriented practical approach - emerged due to the stipulation of cost neutrality.
Methods: Report on the process sequence of JENOS from the reform idea to implementation: the initial processes, the development and assessment process with accompanying dialogue and dispute of the reform process within the faculty shall be discussed. The 17 objectives of the JENOS reformed traditional curriculum shall be presented and the current level of fulfilment assessed.
Results: The structural link of the professional interest-oriented proposals was achieved through the recognition by the "Landesprufungsamt" (State Examination Board) as elective subjects with 21 semester hours (SH). Feedback and evaluations were conducted using lecturer and student information systems that were implemented in parallel. Eleven of 17 objectives have been achieved, three are still in process and three have not been achieved.
Discussion: A professional interest orientation could be achieved through the reform. The weaknesses are found primarily in the links between teaching content. These are currently undergoing a mapping process in order to be optimised.
Conclusions: Despite cost neutrality, JENOS is the successful result of reforming the curriculum. The academic reform complied with some requirements for the Master Plan 2020 for Medical Studies in order to be able to implement future changes.
C1 [Ehlers, Claudia; Wiesener, Nadine; Guntinas-Lichius, Orlando] Friedrich Schiller Univ Jena, Med Fac, Studies, Jena, Germany.
[Teichgraeber, Ulf] Jena Univ Hosp, Inst Diagnost & Intervent Radiol, Jena, Germany.
[Guntinas-Lichius, Orlando] Jena Univ Hosp, ENT Dept, Jena, Germany.
C3 Friedrich Schiller University of Jena; Friedrich Schiller University of
Jena; Friedrich Schiller University of Jena
RP Ehlers, C (corresponding author), Friedrich Schiller Univ, Med Fak, Studiendekanat, Bachstr 18, D-07743 Jena, Germany.
EM claudia.ehlers@med.uni-jena.de
RI Teichgräber, med. Ulf/H-8562-2019; Guntinas-Lichius, Orlando/L-1871-2016
OI Teichgräber, med. Ulf/0000-0002-4048-3938; Guntinas-Lichius,
Orlando/0000-0001-9671-0784
CR [Anonymous], 2017, MAST MED 2020
Cholerton S, 2005, PRACTICAL GUIDE MED, P171
Dornan T, 2006, MED TEACH, V28, P3, DOI 10.1080/01421590500410971
Fabry G.B., 2008, Medizindidaktik. Ein Handbuch fur die Praxis
Harden RM., 2013, PRACTICAL GUIDE MED
Kollewe T., 2018, Medizindidaktik. Erfolgreich Lehren und Wissen vermitteln
Konig K, 2012, TRANSFER STEUERN ANA
Lammerding-Koeppel M, 2017, GMS J MED EDU, V34, DOI 10.3205/zma001083
Lammerding-Koppel M, 2006, GMS Z MED AUSBILD, V23
Lee E, 2016, ETR&D-EDUC TECH RES, V64, P707, DOI 10.1007/s11423-015-9422-5
Prideaux D., 2013, PRACTICAL GUIDE MED
Richter F., 2017, 78 ORD MED FAK 15 16
Sallis E., 2014, Total quality management in education
Seldin P., 2006, EVALUATING FACULTY P
Serrao G, 2017, ULTRASOUND INT OPEN, V3, pE156, DOI 10.1055/s-0043-121983
Sng JH, 2017, MED TEACH, V39, P866, DOI 10.1080/0142159X.2017.1332360
Steven J, 2013, PRACTICAL GUIDE MED
Wissenschaftsrat, 2018, NEUSTR MED AND APPR
Wissenschaftsrat, 2014, EMPFEHLUNGEN WEITERE
NR 19
TC 6
Z9 6
U1 0
U2 3
PU GERMAN MEDICAL SCIENCE-GMS
PI DUESSELDORF
PA UBIERSTRASSE 20, DUESSELDORF, 40223, GERMANY
SN 2366-5017
J9 GMS J MED EDU
JI GMS J. Med. Educ.
PY 2019
VL 36
IS 5
SI SI
AR Doc50
DI 10.3205/zma001258
PG 22
WC Education, Scientific Disciplines
WE Emerging Sources Citation Index (ESCI)
SC Education & Educational Research
GA JE0XH
UT WOS:000490417000004
PM 31815160
DA 2024-09-05
ER
PT C
AU Siddike, MAK
Kohda, Y
AF Siddike, Md Abul Kalam
Kohda, Youji
GP IEEE
TI Service Innovation Research in the World: A Bibliometric Analysis
SO 2013 INTERNATIONAL CONFERENCE ON SERVICE SCIENCES (ICSS 2013)
SE International Conference on Service Sciences
LA English
DT Proceedings Paper
CT International Conference on Service Science (ICSS)
CY APR 11-13, 2013
CL Shenzhen, PEOPLES R CHINA
DE activity index (AI); attractive index (AII); productive author index
(PAI); productive institutions index (PII); productive journal index
(PJI); publication proficiency index (PEI); service innovation (SI)
ID MANAGEMENT
AB The purpose of the study is to find out the growth and development of research productivity in service innovation (SI) in the world during the period of 2001-2011. Firstly, we explore the overall growth of SI research, and then investigate cross-country comparisons in its research performances, with the focus on the world share, relative research effort, impact and quality of top ten productive countries. Furthermore, we develop productive institution index, productive author index and productive journal index in the field of SI. The data was retrieved using Web of Science (WOS) database. The cross-country comparisons show that USA is the leading country and has the biggest world share of SI research.
C1 [Siddike, Md Abul Kalam; Kohda, Youji] Japan Adv Inst Sci & Technol, Sch Knowledge Sci, Kanazawa, Ishikawa, Japan.
C3 Japan Advanced Institute of Science & Technology (JAIST)
RP Siddike, MAK (corresponding author), Japan Adv Inst Sci & Technol, Sch Knowledge Sci, Kanazawa, Ishikawa, Japan.
EM siddike@jaist.ac.jp; kohda@jaist.ac.jp
RI Siddike, Abul Kalam/AAT-6157-2021
OI Siddike, Abul Kalam/0000-0003-0541-0183
CR BARRAS R, 1986, RES POLICY, V15, P161, DOI 10.1016/0048-7333(86)90012-0
Bergmann J., 2003, P I KNOW 03 GRAZ AUS, P442
Chen KH, 2011, J INFORMETR, V5, P233, DOI 10.1016/j.joi.2010.10.007
Chesbrough H., 2005, HARVARD BUS REV, V83, P16
Chuan T. K., 2010, 7 INT C SERV SYST SE
Coombs R, 2000, ECON SCI TECHN INNOV, V18, P85
Paulson LD, 2006, COMPUTER, V39, P18, DOI 10.1109/MC.2006.277
den Hertog P, 2003, ECONOMIST-NETHERLAND, V151, P433
Droege H, 2009, J SERV MANAGE, V20, P131, DOI 10.1108/09564230910952744
fM and IBM, 2007, SUCC SERV INN
FRAME J D, 1977, Interciencia, V2, P143
Gallouj F, 1997, RES POLICY, V26, P537, DOI 10.1016/S0048-7333(97)00030-9
GALLOUJ F., 2002, Journal ofSocio-Economics, V31, P137, DOI [10.1016/S1053-5357(01)00126-3, DOI 10.1016/S1053-5357(01)00126-3]
Gallouj F, 2009, J EVOL ECON, V19, P149, DOI 10.1007/s00191-008-0126-4
Guan JC, 2004, SCIENTOMETRICS, V61, P339, DOI 10.1023/B:SCIE.0000045114.85737.1b
Hu XJ, 2009, SCIENTOMETRICS, V81, P475, DOI 10.1007/s11192-008-2202-9
Johne Axel., 1998, EUR J MARKETING, V32, P184, DOI DOI 10.1108/03090569810204526
Lee PC, 2012, PICMET '12: PROCEEDINGS - TECHNOLOGY MANAGEMENT FOR EMERGING TECHNOLOGIES, P3100
Macbeth D. K., 2012, EUROPEAN MANAGEMENT, V28, P1
Miles I., 2000, INT J INNOV MANAG, V14, P371, DOI [10.1142/S1363919600000202, DOI 10.1142/S1363919600000202]
Noor MNM, 2009, FACILITIES, V27, P211, DOI 10.1108/02632770910944943
PRICE DS, 1975, YB SCI FUTURE
Sakata I., 2011, TECHN MAN EN SMART W
SCHUBERT A, 1986, SCIENTOMETRICS, V9, P281, DOI 10.1007/BF02017249
Sundbo J, 1997, SERV IND J, V17, P432, DOI 10.1080/02642069700000028
Tidd J., 2003, Service Innovation: Organizational Responses to Technological Opportunities and Market Imperatives, DOI DOI 10.1142/9781848161306_0001
Van der Aa W., 2002, SCAND J MANAG, V18, P155, DOI [10.1016/S0956-5221(00)00040-3, DOI 10.1016/S0956-5221(00)00040-3]
Yu Y., 2011, 5 INT C MAN SERV SCI, P1
NR 28
TC 0
Z9 0
U1 0
U2 10
PU IEEE
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017 USA
SN 2165-3828
BN 978-0-7695-4972-9; 978-1-4673-6258-0
J9 INT CONF SERVICE SCI
PY 2013
BP 34
EP 39
DI 10.1109/ICSS.2013.15
PG 6
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems; Computer Science, Interdisciplinary Applications
WE Conference Proceedings Citation Index - Science (CPCI-S)
SC Computer Science
GA BHD52
UT WOS:000325086200007
DA 2024-09-05
ER
EF